1 ‘ Fundamentals of Computer Design

And now for something completely different.

Monty Python's Flying Circus

1.1 Introduction 1

1.2 The Task of a Computer Designer 8
1.3 Technology Trends 11
1.4 Cost, Price and their Trends 14
15 Measuring and Reporting Performance 25
1.6 Quantitative Principles of Computer Design 40
1.7 Putting It All Together: Performance and Price-Performance 49
1.8 Another View: Power Consumption and Efficiency as the Metric 58
1.9 Fallacies and Pitfalls 59
1.10 Concluding Remarks 69
1.11 Historical Perspective and References 70

Exercises 77

1. 1 | Introduction

Computer technology has made incredible progress in the roughly 55 years since
the first general-purpose electronic computer was created. Today, less than a
thousand dollars will purchase a personal computer that has more performance,
more main memory, and more disk storage than a computer bought in 1980 for
$1 million. This rapid rate of improvement has come both from advances in the
technology used to build computers and from innovation in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution; but
beginning in about 1970, computer designers became largely dependent upon in-
tegrated circuit technology. During the 1970s, performance continued to improve
at about 25% to 30% per year for the mainframes and minicomputers that domi-
nated the industry.

The late 1970s saw the emergence of the microprocessor. The ability of the
microprocessor to ride the improvements in integrated circuit technology more
closely than the less integrated mainframes and minicomputers led to a higher
rate of improvement—roughly 35% growth per year in performance.

Chapter 1 Fundamentals of Computer Design

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to be commercially successful with a
new architecture. First, the virtual elimination of assembly language program-
ming reduced the need for object-code compatibility. Second, the creation of
standardized, vendor-independent operating systems, such as UNIX and its
clone, Linux, lowered the cost and risk of bringing out a new architecture.

These changes made it possible to successfully develop a new set of architec-
tures, called RISC (Reduced Instruction Set Computer) architectures, in the early
1980s. The RISC-based machines focused the attention of designers on two criti-
cal performance techniques, the exploitation of instruction-level parallelism (ini-
tially through pipelining and later through multiple instruction issue) and the use
of caches (initially in simple forms and later using more sophisticated organiza-
tions and optimizations). The combination of architectural and organizational en-
hancements has led to 20 years of sustained growth in performance at an annual
rate of over 50%. Figure 1.1 shows the effect of this difference in performance
growth rates.

The effect of this dramatic growth rate has been twofold. Firgt, it has signifi-
cantly enhanced the capability available to computer users. For many applica
tions, the highest performance microprocessors of today outperform the
supercomputer of lessthan 10 years ago.

Second, this dramatic rate of improvement has led to the dominance of micro-
processor-based computers across the entire range of the computer design. Work-
stations and PCs have emerged as major products in the computer industry.
Minicomputers, which were traditionally made from off-the-shelf logic or from
gate arrays, have been replaced by servers made using microprocessors. Main-
frames have been amost completely replaced with multiprocessors consisting of
small numbers of off-the-shelf microprocessors. Even high-end supercomputers
are being built with collections of microprocessors.

Freedom from compatibility with old designs and the use of microprocessor
technology led to a renaissance in computer design, which emphasized both ar-
chitectural innovation and efficient use of technology improvements. Thisrenais-
sance is responsible for the higher performance growth shown in Figure 1.1—a
rate that is unprecedented in the computer industry. This rate of growth has com-
pounded so that by 2001, the difference between the highest-performance micro-
processors and what would have been obtained by relying solely on technology,
including improved circuit design, is about afactor of fifteen.

In the last few years, the tremendous imporvement in integrated circuit capa-
bility has allowed older |ess-streamlined architectures, such asthe x86 (or |A-32)
architecture, to adopt many of the innovations first pioneered in the RISC de-
signs. Aswe will see, modern x86 processors basically consist of afront-end that
fetches and decodes x86 instructions and maps them into simple ALU, memory
access, or branch operations that can be executed on a RISC-style pipelined pro-

1.1 Introduction 3

350
DEC Alpha
300
250 1.58x per year
200
SPECint rating
DEC Alpha
150
IBM Power2
DEC Alpha
100
1.35x per year

FIGURE 1.1 Growth in microprocessor performance since the mid 1980s has been substantially higher than in ear-
lier years as shown by plotting SPECint performance. This chart plots relative performance as measured by the SPECint
benchmarks with base of one being a VAX 11/780. (Since SPEC has changed over the years, performance of newer ma-
chines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g. SPEC92 and
SPEC95.) Prior to the mid 1980s, microprocessor performance growth was largely technology driven and averaged about
35% per year. The increase in growth since then is attributable to more advanced architectural and organizational ideas. By
2001 this growth leads to about a factor of 15 difference in performance. Performance for floating-point-oriented calculations
has increased even faster.

Changethisfigure asfollows:

I 1. they-axis should be labeled “ Relative Performance”

2. Plot only even years

3. Thefollowing data points should changed/added:

a. 1992 136 HP 9000; 1994 145 DEC Alpha; 1996 507 DEC Alpha; 1998 879 HP 9000; 2000 1582 Intel
Pentium [11

4. Extend the lower line by increasing by 1.35x each year

Chapter 1 Fundamentals of Computer Design

cessor. Beginning in the end of the 1990s, as transistor counts soared, the over-
head in transistors of interpreting the more complex x86 architecture became
neglegible as a percentage of the total transistor count of a modern microproces-
sor.

Thistext is about the architectural ideas and accompanying compiler improve-
ments that have made this incredible growth rate possible. At the center of this
dramatic revolution has been the development of a quantitative approach to com-
puter design and analysis that uses empirical observations of programs, experi-
mentation, and simulation as its tools. It is this style and approach to computer
design that isreflected in thistext.

Sustaining the recent improvements in cost and performance will require con-
tinuing innovations in computer design, and the authors believe such innovations
will be founded on this quantitative approach to computer design. Hence, this
book has been written not only to document this design style, but also to stimu-
late you to contribute to this progress.

1.2

The Changing Face of Computing and the
Task of the Computer Designer

In the 1960s, the dominant form of computing was on large mainframes, ma-
chines costing millions of dollars and stored in computer rooms with multiple op-
erators overseeing their support. Typical applications included business data
processing and large-scale scientific computing. The 1970s saw the birth of the
minicomputer, a smaller sized machine initially focused on applications in scien-
tific laboratories, but rapidly branching out as the technology of timesharing,
multiple users sharing a computer interactively through independent terminals,
became widespread. The 1980s saw the rise of the desktop computer based on
microprocessors, in the form of both personal computers and workstations. The
individually owned desktop computer replaced timesharing and led to the rise of
servers, computers that provided larger-scale services such as: reliable, long-term
file storage and access, larger memory, and more computing power. The 1990s
saw the emergence of the Internet and the world-wide web, the first successful
handheld computing devices (personal digital assistants or PDAS), and the emer-
gence of high-performance digital consumer electronics, varying from video
games to set-top boxes.

These changes have set the stage for a dramatic change in how we view com-
puting, computing applications, and the computer markets at the beginning of the
millennium. Not since the creation of the personal computer more than twenty
years ago have we seen such dramatic changes in the way computers appear and
in how they are used. These changes in computer use have led to three different
computing markets each characterized by different applications, requirements,
and computing technologies.

1.2 The Changing Face of Computing and the Task of the Computer Designer 5

Desktop Computing

Thefirst, and still the largest market in dollar terms, is desktop computing. Desk-
top computing spans from low-end systems that sell for under $1,000 to high-
end, heavily-configured workstations that may sell for over $10,000. Throughout
this range in price and capability, the desktop market tends to be driven to opti-
mize price-performance. This combination of performance (measured primarily
in terms of compute performance and graphics performance) and price of a sys-
tem is what matters most to customers in this market and hence to computer de-
signers. As a result desktop systems often are where the newest, highest
performance microprocessors appear, as well as where recently cost-reduced mi-
croprocessors and systems appear first (see section 1.4 on page 14 for a discus-
sion of the issues affecting cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of web-centric, inter-
active applications poses new challenges in performance evaluation. As we dis-
cussin Section 1.9 (Fallacies, Pitfalls), the PC portion of the desktop space seems
recently to have become focused on clock rate as the direct measure of perfor-
mance, and this focus can lead to poor decisions by consumers as well as by de-
signers who respond to this predilection.

Servers

As the shift to desktop computing occurred, the role of servers to provide larger
scale and more reliable file and computing services grew. The emergence of the
world-wide web accelerated this trend due to the tremendous growth in demand
for web servers and the growth in sophistication of web-based services. Such
servers have become the backbone of large-scale enterprise computing replacing
the traditional mainframe.

For servers, different characteristics are important. First, availability iscritical.
We use the term availability, which means that the system can reliably and effec-
tively provide a service. This term is to be distinguished from reliability, which
says that the system never fails. Parts of large-scale systems unavoidably fail; the
challenge in a server is to maintain system availability in the face of component
failures, usually through the use of redundancy. This topic is discussed in detail
in Chapter 6.

Why is availability crucial? Consider the servers running Yahoo!, taking or-
dersfor Cisco, or running auctions on EBay. Obviously such systems must be op-
erating seven days a week, 24 hours a day. Failure of such a server system is far
more catastrophic than failure of a single desktop. Although it is hard to estimate
the cost of downtime, Figure 1.2 shows one analysis, assuming that downtime is
distributed uniformly and does not occur solely during idle times. As we can see,
the estimated costs of an unavailable system are high, and the estimated costs in

6 Chapter 1 Fundamentals of Computer Design

Figure 1.2 are purely lost revenue and do not account for the cost of unhappy cus-

tomers!
Application Cost of downtime Annual losses (millions of $) with downtime of
per hour
(thousands of $) 1% 0.5% 0.1%

(87.6 hrdlyr) (43.8 hrglyr) (8.8 hrdlyr)
Brokerage operations $6,450 $565 $283 $56.5
Credit card authorization $2,600 $228 $114 $22.8
Package shipping services $150 $13 $6.6 $1.3
Home shopping channel $113 $9.9 $4.9 $1.0
Catalog sales center $90 $7.9 $3.9 $0.8
Airline reservation center $89 $7.9 $3.9 $0.8
Cellular service activation $41 $3.6 $1.8 $0.4
On-line network fees $25 $2.2 $1.1 $0.2
ATM service fees $14 $1.2 $0.6 $0.1

FIGURE 1.2 The cost of an unavailable system is shown by analyzing the cost of downtime (in terms of immedi-
ately lost revenue), assuming three different levels of availability. This assumes downtime is distributed uniformly. This
data is from Kembel [2000] and was collected an analyzed by Contingency Planning Research.

A second key feature of server systems is an emphasis on scalability. Server
systems often grow over their lifetime in response to a growing demand for the
services they support or an increase in functional requirements. Thus, the ability
to scale up the computing capacity, the memory, the storage, and the I/O band-
width of aserver are crucial.

Lastly, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or web pages served
per second-is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in aunit time, are the key metrics for most servers.
(We return to the issue of performance and assessing performance for different
types of computing environmentsin Section 1.5 on page 25).

Embedded Computers

Embedded computers, the name given to computers lodged in other devices
where the presence of the computer is not immediately obvious, are the fastest
growing portion of the computer market. The range of application of these devic-
es goes from simple embedded microprocessors that might appear in a everyday
machines (most microwaves and washing machines, most printers, most net-
working switches, and all cars contain such microprocessors) to handheld digital
devices (such as palmtops, cell phones, and smart cards) to video games and digi-
tal set-top boxes. Although in some applications (such as palmtops) the comput-

1.2 The Changing Face of Computing and the Task of the Computer Designer 7

ers are programmable, in many embedded applications the only programming
occurs in connection with the initial loading of the application code or a later
software upgrade of that application. Thus, the application can usually be careful -
ly tuned for the processor and system; this process sometimes includes limited
use of assembly language in key loops, although time-to-market pressures and
good software engineering practice usually restrict such assembly language cod-
ing to asmall fraction of the application. This use of assembly language, together
with the presence of standardized operating systems, and a large code base has
meant that instruction set compatibility has become an important concern in the
embedded market. Simply put, like other computing applications, software costs
are often alarge factor in total cost of an embedded system.

Embedded computers have the widest range of processing power and cost.
From low-end 8-bit and 16-bit processors that may cost less than a dollar, to full
32-bit microprocessors capable of executing 50 million instructions per second
that cost under $10, to high-end embedded processors (that can execute a billion
instructions per second and cost hundreds of dollars) for the newest video game
or for a high-end network switch. Although the range of computing power in the
embedded computing market is very large, price is a key factor in the design of
computers for this space. Performance requirements do exist, of course, but the
primary goal is often meeting the performance need at a minimum price, rather
than achieving higher performance at a higher price.

Often, the performance requirement in an embedded application is areal-time
requirement. A real-time performance requirement is one where a segment of the
application has an absolute maximum execution time that is allowed. For exam-
ple, in adigital set-top box the time to process each video frame is limited, since
the processor must accept and process the next frame shortly. In some applica-
tions, a more sophisticated requirement exists. the average time for a particular
task is constrained as well as the number of instances when some maximum time
is exceeded. Such approaches (sometimes called soft real-time) arise when it is
possible to occasionally miss the time constraint on an event, as long as not too
many are missed. Real-time performance tend to be highly application depen-
dent. It is usually measured using kernels either from the application or from a
standardized benchmark (see the EEMBC benchmarks described in Section 1.5).
With the growth in the use of embedded microprocessors, awide range of bench-
mark requirements exist, from the ability to run small, limited code segments to
the ability to perform well on applications involving tens to hundreds of thou-
sands of lines of code.

Two other key characteristics exist in many embedded applications. the need
to minimize memory and the need to minimize power. In many embedded appli-
cations, the memory can be substantial portion of the system cost, and memory
sizeisimportant to optimize in such cases. Sometimes the application is expected
to fit totally in the memory on the processor chip; other times the applications
needs to fit totally in a small off-chip memory. In any event, the importance of
memory size trandates to an emphasis on code size, since data size is dictated by

Chapter 1 Fundamentals of Computer Design

the application. As we will see in the next chapter, some architectures have spe-
cial instruction set capabilities to reduce code size. Larger memories also mean
more power, and optimizing power is often critical in embedded applications. Al-
though the emphasis on low power is frequently driven by the use of batteries, the
need to use less expensive packaging (plastic versus ceramic) and the absence of
a fan for cooling also limit total power consumption.We examine the issue of
power in more detail later in the chapter.

Another important trend in embedded systems is the use of processor cores to-
gether with application-specific circuitry. Often an application’s functional and
performance requirements are met by combining a custom hardware solution to-
gether with software running on a standardized embedded processor core, which
is designed to interface to such special-purpose hardware. In practice, embedded
problems are usually solved by one of three approaches:

1. using acombined hardware/software solution that includes some custom hard-
ware and typically a standard embedded processor,

2. using custom software running on an off-the-shelf embedded processor, or

3. using adigital signal processor and custom software. (Digital signa proces-
sors are processors specially tailored for signal processing applications. We
discuss some of the important differences between digital signal processors
and general-purpose embedded processors in the next chapter.)

Most of what we discussin this book applies to the design, use, and performance
of embedded processors, whether they are off-the-shelf microprocessors or mi-
croprocessor cores, which will be assembled with other special-purpose hard-
ware. The design of special-purpose application-specific hardware and the
detailed aspects of DSPs, however, are outside of the scope of this book.

Figure 1.3 summarizes these three classes of computing environments and
their important characteristics.

The Task of a Computer Designer

The task the computer designer faces is a complex one: Determine what
attributes are important for a new machine, then design a machine to maximize
performance while staying within cost and power constraints. Thistask has many
aspects, including instruction set design, functional organization, logic design,
and implementation. The implementation may encompass integrated circuit de-
sign, packaging, power, and cooling. Optimizing the design requires familiarity
with avery wide range of technologies, from compilers and operating systems to
logic design and packaging.

In the past, the term computer architecture often referred only to instruction
set design. Other aspects of computer design were called implementation, often

1.2 The Changing Face of Computing and the Task of the Computer Designer 9

Feature Desktop Server Embedded
Price of system $1,000-$10,000 $10,000— $10-$100,000 (including network
$10,000,000 routers at the high-end)

Price of microprocessor $100-$1,000 $200-$2000 $0.20-$200

module (per processor)

Microprocessors sold per 150,000,000 4,000,000 300,000,000

year (estimates for 2000) (32-bit and 64-bit processors only)

Critical system Price-performance Throughput Price

design issues Graphics performance Availability Power consumption
Scalability Application-specific performance

FIGURE 1.3 A summary of the three computing classes and their system characteristics. The total number of em-
bedded processors sold in 2000 is estimated to exceed 1 billion, if you include 8-bit and 16-bit microprocessors. In fact, the

largest selling microprocessor

of all time is an 8-bit microcontroller sold by Intel! It is difficult to separate the low end of the

server market from the desktop market, since low-end servers—especially those costing less than $5,000—-are essentially no
different from desktop PCs. Hence, up to a few million of the PC units may be effectively servers.

insinuating that implementation is uninteresting or less challenging. The authors
believe this view is not only incorrect, but is even responsible for mistakesin the
design of new instruction sets. The architect’s or designer’s job is much more
than instruction set design, and the technical hurdles in the other aspects of the
project are certainly as challenging as those encountered in doing instruction set
design. This challenge is particularly acute at the present when the differences
among instruction sets are small and at atime when there are three rather distinct
applications areas.

In this book the term instruction set architecture refersto the actual programmer-
visible instruction set. The instruction set architecture serves as the boundary be-
tween the software and hardware, and that topic is the focus of Chapter 2. Theim-
plementation of a machine has two components: organization and hardware. The
term organization includes the high-level aspects of a computer’s design, such as
the memory system, the bus structure, and the design of theinternal CPU (central
processing unit—where arithmetic, logic, branching, and data transfer are imple-
mented). For example, two processors with nearly identical instruction set archi-
tectures but very different organizations are the Pentium Ill and Pentium 4.
Although the Pentium 4 has new instructions, these are all in the floating point in-
struction set. Hardware is used to refer to the specifics of a machine, including
the detailed logic design and the packaging technology of the machine. Often a
line of machines contains machines with identical instruction set architectures
and nearly identical organizations, but they differ in the detailed hardware imple-
mentation. For example, the Pentium 11 and Celeron are nearly identical, but offer
different clock rates and different memory systems, making the Celron more ef-
fective for low-end computers. In this book the word architecture is intended to
cover al three aspects of computer design—instruction set architecture, organi-
zation, and hardware.

10

Chapter 1 Fundamentals of Computer Design

Computer architects must design a computer to meet functional requirements
as well as price, power, and performance goals. Often, they also have to deter-
mine what the functional requirements are, and this can be a major task. The re-
guirements may be specific features inspired by the market. Application software
often drives the choice of certain functional requirements by determining how the
machine will be used. If alarge body of software exists for a certain instruction
set architecture, the architect may decide that a new machine should implement
an existing instruction set. The presence of alarge market for a particular class of
applications might encourage the designers to incorporate requirements that
would make the machine competitive in that market. Figure 1.4 summarizes
some requirements that need to be considered in designing a new machine. Many
of these requirements and features will be examined in depth in later chapters.

Functional requirements

Typical featuresrequired or supported

Application area
Genera purpose desktop

Scientific desktops and servers High-performance floating point and graphics (App A,B)

Commercia servers

Embedded computing

Target of computer

Balanced performancefor arange of tasks, including interactive performancefor
graphics, video, and audio (Ch 2,3,4,5)

Support for databases and transaction processing, enhancements for reliability
and availability. Support for scalability. (Ch 2,7)

Often requires special support for graphicsor video (or other application-specific
extension). Power limitations and power control may be required. (Ch 2,3,4,5)

Level of software compatibility — Determines amount of existing software for machine

At programming language

Object code or binary compatible Instruction set architecture is completely defined—Ilittle flexibility—but no in-

Most flexible for designer; need new compiler (Ch 2,8)

vestment needed in software or porting programs

Operating system requirements Necessary features to support chosen OS (Ch 5,7)

Size of address space
Memory management
Protection

Very important feature (Ch 5); may limit applications
Required for modern OS; may be paged or segmented (Ch 5)
Different OS and application needs: page vs. segment protection (Ch 5)

Standards
Floating point

1/0 bus

Operating systems
Networks

Programming languages

Certain standards may be required by marketplace

Format and arithmetic: | EEE 754 standard (App A), specia arithmetic for graph-
icsor signal processing

For 1/O devices: UltraATA, Ultra SCSI, PCI (Ch 6)

UNIX, PAmOS, Windows, Windows NT, Windows CE, CISCO 10S
Support required for different networks: Ethernet, Infiniband (Ch 7)
Languages (ANSI C, C++, Java, Fortran) affect instruction set (Ch 2)

FIGURE 1.4 Summary of some of the most important functional requirements an architect faces. The left-hand col-
umn describes the class of requirement, while the right-hand column gives examples of specific features that might be
needed. The right-hand column also contains references to chapters and appendices that deal with the specific issues.

1.3 Technology Trends 11

Once a set of functional requirements has been established, the architect must
try to optimize the design. Which design choices are optimal depends, of course,
on the choice of metrics. The changesin the computer applications space over the
last decade have dramatically changed the metrics. Although desktop computers
remain focused on optimizing cost-performance as measured by a single user,
servers focus on availability, scalability, and throughput cost-performance, and
embedded computers are driven by price and often power issues.

These differences and the diversity and size of these different markets leads to
fundamentally different design efforts. For the desktop market, much of the effort
goes into designing a leading-edge microprocessor and into the graphics and 1/0
system that integrate with the microprocessor. In the server area, the focusis on
integrating state-of-the-art microprocessors, often in a multiprocessor architec-
ture, and designing scalable and highly available I/O systems to accompany the
processors. Finaly, in the leading edge of the embedded processor market, the
challenge lies in adopting the high-end microprocessor techniques to deliver
most of the performance at alower fraction of the price, while paying attention to
demanding limits on power and sometimes a need for high performance graphics
or video processing.

In addition to performance and cost, designers must be aware of important
trends in both the implementation technology and the use of computers. Such
trends not only impact future cost, but also determine the longevity of an archi-
tecture. The next two sections discuss technology and cost trends.

1.3

| Technology Trends

If an instruction set architectureis to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—the core of the IBM mainframe has been in use
for more than 35 years. An architect must plan for technology changes that can
increase the lifetime of a successful computer.

To plan for the evolution of a machine, the designer must be especialy aware
of rapidly occurring changesin implementation technology. Four implementation
technologies, which change at a dramatic pace, are critical to modern implemen-
tations:

» Integrated circuit logic technology—Transistor density increases by about
35% per year, quadrupling in somewhat over four years. Increasesin die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect isagrowth rate in transistor count on achip of about 55% per year.
Device speed scales more slowly, as we discuss below.

» Semiconductor DRAM (dynamic random-access memory)—Density increases
by between 40% and 60% per year, quadrupling in three to four years. Cycle
time has improved very slowly, decreasing by about one-third in 10 years.
Bandwidth per chip increases about twice as fast as latency decreases. In addi-

12

Chapter 1 Fundamentals of Computer Design

tion, changes to the DRAM interface have also improved the bandwidth; these
are discussed in Chapter 5.

- Magnetic disk technology—Recently, disk density has beenimproving by more
than 100% per year, quadrupling in two years. Prior to 1990, density increased
by about 30% per year, doubling in three years. It appears that disk technology
will continue the faster density growth rate for sometimeto come. Accesstime
hasimproved by one-third in 10 years. Thistechnology is central to Chapter 6,
and we discuss the trends in greater detail there.

= Network technology—Network performance depends both on the performance
of switches and on the performance of the transmission system, both latency
and bandwidth can be improved, though recently bandwidth has been the pri-
mary focus. For many years, networking technol ogy appeared to improve slow-
ly: for example, it took about 10 years for Ethernet technology to move from
10 Mb to 100 Mb. The increased importance of networking has led to a faster
rate of progress with 1 Gb Ethernet becoming available about five years after
100 Mb. The Internet infrastructure in the United States has seen even faster
growth (roughly doubling in bandwidth every year), both through the use of op-
tical media and through the deployment of much more switching hardware.

These rapidly changing technologies impact the design of a microprocessor
that may, with speed and technology enhancements, have a lifetime of five or
more years. Even within the span of a single product cycle for a computing sys-
tem (two years of design and two to three years of production), key technologies,
such as DRAM, change sufficiently that the designer must plan for these changes.
Indeed, designers often design for the next technology, knowing that when a
product begins shipping in volume that next technology may be the most cost-€f-
fective or may have performance advantages. Traditionally, cost has decreased
very closely to therate at which density increases.

Although technology improves fairly continuously, the impact of these im-
provements is sometimes seen in discrete leaps, as a threshold that allows a new
capability is reached. For example, when MOS technology reached the point
where it could put between 25,000 and 50,000 transistors on a single chip in the
early 1980s, it became possible to build a 32-bit microprocessor on asingle chip.
By the late 1980s, first-level caches could go on-chip. By eliminating chip cross-
ings within the processor and between the processor and the cache, adramatic in-
crease in cost/performance and performance/power was possible. This design
was simply infeasible until the technology reached a certain point. Such technol-
ogy thresholds are not rare and have a significant impact on awide variety of de-
sign decisions

Scaling of Transistor Performance, Wires, and Power in Integrated Circuits

Integrated circuit processes are characterized by the feature size, which is the
minimum size of atransistor or awire in either the x or y dimension. Feature siz-

1.3 Technology Trends 13

es have decreased from 10 micronsin 1971 to 0.18 micronsin 2001. Since atran-
sistor is a 2-dimensional object, the density of transistors increases quadratically
with a linear decrease in feature size. The increase in transistor performance,
however, is more complex. As feature sizes shrink, devices shrink quadratically
in the horizontal dimensions and also shrink in the vertical dimension. The shrink
in the vertical dimension requires a reduction in operating voltage to maintain
correct operation and reliability of the transistors. This combination of scaling
factors leads to a complex interrelationship between transistor performance and
process feature size. To first approximation, transistor performance improves lin-
early with decreasing feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity that
computer architects were created for! In the early days of microprocessors, the
higher rate of improvement in density was used to quickly move from 4-hit, to 8-
bit, to 16-bit, to 32-bit microprocessors. More recently, density improvements
have supported the introduction of 64-bit microprocessors as well as many of the
innovationsin pipelining and caches, which we discuss in Chapters 3, 4, and 5.

Although transistors generally improve in performance with decreased feature
size, wiresin an integrated circuit do not. In particular, the signal delay for awire
increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks wires get shorter, but the resistance and capaci-
tance per unit length gets worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
awire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay. In general, however, wire delay
scales poorly compared to transistor performance, creating additional challenges
for the designer. In the past few years, wire delay has become amajor design lim-
itation for large integrated circuits and is often more critica than transistor
switching delay. Larger and larger fractions of the clock cycle have been con-
sumed by the propagation delay of signals on wires. In 2001, the Pentium 4 broke
new ground by allocating two stages of its 20+ stage pipeline just for propagating
signals across the chip.

Power also provides challenges as devices are scaled. For modern CMOS mi-
croprocessors, the dominant energy consumption is in switching transistors. The
energy required per transistor is proportional to the product of the load capaci-
tance of the transistor, the frequency of switching, and the square of the voltage.
As we move from one process to the next, the increase in the number of transis-
tors switching and the frequency with which they switch, dominates the decrease
in load capacitance and voltage, leading to an overall growth in power consump-
tion. The first microprocessors consumed tenths of watts, while a Pentium 4 con-
sumes between 60 and 85 watts, and a 2 GHz Pentium 4 will be close to 100
watts. The fastest workstation and server microprocessors in 2001 consume be-
tween 100 and 150 watts. Distributing the power, removing the heat, and prevent-

14

Chapter 1 Fundamentals of Computer Design

ing hot spots have become increasingly difficult challenges, and it is likely that
power rather than raw transistor count will become the major limitation in the
near future.

14 | Cost, Price and their Trends

Although there are computer designs where costs tend to be less important—
specifically supercomputers—cost-sensitive designs are of growing importance:
more than half the PCs sold in 1999 were priced at less than $1,000, and the aver-
age price of a 32-bit microprocessor for an embedded application isin the tens of
dollars. Indeed, in the past 15 years, the use of technology improvements to
achieve lower cost, as well as increased performance, has been a major themein
the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet an understanding of cost and its factorsis essential for de-
signers to be able to make intelligent decisions about whether or not a new fea-
ture should be included in designs where cost is an issue. (Imagine architects
designing skyscrapers without any information on costs of steel beams and con-
crete.)

This section focuses on cost and price, specifically on the relationship be-
tween price and cost: price is what you sell a finished good for, and cost is the
amount spent to produce it, including overhead. We also discuss the mgjor trends
and factors that affect cost and how it changes over time. The Exercises and Ex-
amples use specific cost data that will change over time, though the basic deter-
minants of cost are less time sensitive. This section will introduce you to these
topics by discussing some of the major factors that influence cost of a computer
design and how these factors are changing over time.

The Impact of Time, Volume, Commodification,
and Packaging

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs de-
crease over time. The learning curve itself is best measured by change in yield—
the percentage of manufactured devices that survives the testing procedure.
Whether it is a chip, a board, or a system, designs that have twice the yield will
have basically half the cost.

Understanding how the learning curve will improve yield is key to projecting
costs over the life of the product. As an example of the learning curve in action,
the price per megabyte of DRAM drops over the long term by 40% per year.
Since DRAMSs tend to be priced in close relationship to cost—with the exception

1.4 Cost, Price and their Trends 15

of periods when there is a shortage—price and cost of DRAM track closely. In
fact, there are some periods (for example early 2001) in which it appears that
price is less than cost; of course, the manufacturers hope that such periods are
both infrequent and short. Figure 1.5 plots the price of anew DRAM chip over its
lifetime. Between the start of a project and the shipping of a product, say two
years, the cost of anew DRAM drops by a factor of between five and ten in con-
stant dollars. Since not all component costs change at the same rate, designs
based on projected costs result in different cost/performance trade-offs than those
using current costs. The caption of Figure 1.5 discusses some of the long-term
trendsin DRAM price. .

Microprocessor prices also drop over time, but because they are less standard-
ized than DRAMSs, the relationship between price and cost is more complex. In a
period of significant competition, price tends to track cost closely, although mi-
croprocessor vendors probably rarely sell at a loss. Figure 1.6 shows processor
price trends for the Pentium I11.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learning
curve, which is partly proportional to the number of systems (or chips) manufac-
tured. Second, volume decreases cost, since it increases purchasing and manufac-
turing efficiency. As a rule of thumb, some designers have estimated that cost
decreases about 10% for each doubling of volume. Also, volume decreases the
amount of development cost that must be amortized by each machine, thus
allowing cost and selling price to be closer. We will return to the other factorsin-
fluencing selling price shortly.

Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commaodities, as are standard DRAMS, disks, monitors, and key-
boards. In the past 10 years, much of the low end of the computer business has
become a commaodity business focused on building IBM-compatible PCs. There
are avariety of vendors that ship virtually identical products and are highly com-
petitive. Of course, this competition decreases the gap between cost and selling
price, but it also decreases cost. Reductions occur because a commodity market
has both volume and a clear product definition, which allows multiple suppliers
to compete in building components for the commodity product. As a result, the
overall product cost is lower because of the competition among the suppliers of
the components and the volume efficiencies the suppliers can achieve. This has
led to the low-end of the computer business being able to achieve better price-
performance than other sectors, and yielded greater growth at the low-end, albeit
with very limited profits (asistypical in any commodity business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard

16 Chapter 1 Fundamentals of Computer Design

80

16 MB

70 1

60 [

50

4 MB

Dollars per 40

DRAM chip 256 KB

30

64 KB Final chip cost

FIGURE 1.5 Prices of six generations of DRAMs (from 16Kb to 64 Mb) over time in 1977 dollars, showing the learn-
ing curve at work. A 1977 dollar is worth about $2.95 in 2001; more than half of this inflation occurred in the five-year period
of 1977-82, during which the value changed to $1.59. The cost of a megabyte of memory has dropped incredibly during this
period, from over $5000 in 1977 to about $0.35 in 2000, and an amazing $0.08 in 2001 (in 1977 dollars)! Each generation
drops in constant dollar price by a factor of 10 to 30 over its lifetime. Starting in about 1996, an explosion of manufacturers
has dramatically reduced margins and increased the rate at which prices fall, as well as the eventual final price for a DRAM.
Periods when demand exceeded supply, such as 1987—-88 and 1992-93, have led to temporary higher pricing, which shows
up as a slowing in the rate of price decrease; more dramatic short-term fluctuations have been smoothed out. In late 2000
and through 2001, there has been tremendous oversupply leading to an accelerated price decrease, which is probably not
sustainable.

» Add 64Mb data Change MB to Mb in labels and KB to Kb.

» Removethefinal chip cost line and the label onit.

» Extend x-axis: change 1996 data point to $6.00; add to the 16Mb line: 1997: 3.78; 1998: $1.30

. Add anew line labeled 64Mb: 1999: $4.36; 2000: $2.78; 2001: $0.68

parts—disks, DRAMSs, and so on—are becoming a significant portion of any sys-
tem’s cost, integrated circuit costs are becoming a greater portion of the cost that
varies between machines, especially in the high-volume, cost-sensitive portion of
the market. Thus computer designers must understand the costs of chips to under-
stand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the basic
procedure of silicon manufacture is unchanged: A wafer is till tested and

1.4 Cost, Price and their Trends 17

$1,000

\ 1000 MHz
$900
£500 \

$700 .\

3600 A \ N

$500 \ \ \.\ 867 MHz
\

\l\733 MHz
$300 \.
$200 \

3400

Intel LISt Price (1,000 units)

 sown 500 MHz 600 MHz
$100
May- Jun- Jul-23 Aug- Sep- 0ct-23 Mow- Dec- Jan- Feb-00 Mar- Apr- May- Jun- Jul-00 0 Aug-
]]]] EE EE ulu} ulu} oo oo uln] aln]
Date

FIGURE 1.6 The price of an Intel Pentium Ill at a given frequency decreases over time as yield enhancements de-
crease the cost of good die and competition forces price reductions. Data courtesy of Microprocessor Report, May
2000 issue. The most recent introductions will continue to decrease until they reach similar prices to the lowest cost parts
available today ($100-$200). Such price decreases assume a competitive environment where price decreases track cost
decreases closely.

chopped into dies that are packaged (see Figures 1.7 and 1.8). Thus the cost of a
packaged integrated circuit is

Cost of die + Cost of testing die + Cost of packaging and final test
Final test yield

Cost of integrated circuit =

In this section, we focus on the cost of dies, summarizing the key issuesin testing
and packaging at the end. A longer discussion of the testing costs and packaging
costs appears in the Exercises.

To learn how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From thereit is simple to predict cost:

18

Chapter 1 Fundamentals of Computer Design

FIGURE 1.7 Photograph of an 12-inch wafer containing Intel Pentium 4 microprocessors. (Courtesy Intel.)

Get new photo!

EXAMPLE

ANSWER

Cost of wafer

Cost of die = Dies per wafer x Dieyield

The most interesting feature of thisfirst term of the chip cost equation isits sensi-
tivity to die size, shown below.

The number of dies per wafer is basically the area of the wafer divided by the
area of thedie. It can be more accurately estimated by

1 x (Wafer diameter/2)° x Wafer diameter

Diearea J2x Diearea

The first term is the ratio of wafer area (nr?) to die area. The second compensates
for the “square peg in around hole” problem—rectangular dies near the periphery
of round wafers. Dividing the circumference (rd) by the diagonal of asquare dieis
approximately the number of dies aong the edge. For example, awafer 30 cm (=
12 inch) in diameter produces it x 225 — (n x 30/1.41) = 640 1-cmdies.

Dies per wafer =

Find the number of dies per 30-cm wafer for a die that is 0.7 cm on a side.

The total die area is 0.49 cm?. Thus

1.4 Cost, Price and their Trends 19

FIGURE 1.8 Photograph of an 12-inch wafer containing NEC MIPS 4122 processors.

Get new photo

nx(30/2f mx30 _ 7065 942 _
049 2x040 049 099

Dies per wafer = 1347

n

But this only gives the maximum number of dies per wafer. The critical ques-
tionis, What is the fraction or percentage of good dies on awafer number, or the
die yield? A simple empirical model of integrated circuit yield, which assumes
that defects are randomly distributed over the wafer and that yield is inversely
proportional to the complexity of the fabrication process, leads to the following:

i i -0,
Dieyidd = Waferyieldx(1+ Defects per unit area x Dlearea)

o

where wafer yield accounts for wafers that are completely bad and so need not be
tested. For simplicity, we'll just assume the wafer yield is 100%. Defects per unit
areais ameasure of the random manufacturing defects that occur. In 2001, these
values typically range between 0.4 and 0.8 per square centimeter, depending on
the maturity of the process (recall the learning curve, mentioned earlier). Lastly,

20

Chapter 1 Fundamentals of Computer Design

EXAMPLE

ANSWER

o, is a parameter that corresponds inversely to the number of masking levels, a
measure of manufacturing complexity, critical to dieyield. For today’s multilevel
metal CMOS processes, agood estimateis o = 4.0.

Find the die yield for dies that are 1 cm on a side and 0.7 cm on a side,

assuming a defect density of 0.6 per cm?.

The total die areas are 1 cm? and 0.49 cm?. For the larger die the yield is

o 0.6x 1\ _
Dieyield = (1+ >0) = 0.35
For the smaller die, it is
Dieyidd = (1

0.6 x 0.49\ 4 _
+T) = 058

n

The bottom lineis the number of good dies per wafer, which comes from mul-
tiplying dies per wafer by die yield (which incorporates the effects of defects).
The examples above predict 224 good 1-cm? dies from the 30-cm wafer and 781
good 0.49-cm? dies. Most 32-bit and 64-bit microprocessors in a modern 0.254
technology fall between these two sizes, with some processors being aslarge as 2
cm? in the prototype process before a shrink. Low-end embedded 32-bit proces-
sors are sometimes as small as 0.25 cm?, while processors used for embedded
control (in printers, automobiles, etc.) are often lessthan 0.1 cm?. Figure 1.34 on
page 81 in the Exercises shows the die size and technology for several current mi-
Croprocessors.

Given the tremendous price pressures on commodity products such as DRAM
and SRAM, designers have included redundancy as a way to raise yield. For a
number of years, DRAMs have regularly included some redundant memory cells,
so that a certain number of flaws can be accomodated. Designers have used simi-
lar techniques in both standard SRAMs and in large SRAM arrays used for cach-
es within microprocessors. Obviously, the presence of redundant entries can be
used to significantly boost the yield.

Processing a 30-cm-diameter wafer in a leading-edge technology with 4-6
metal layers costs between $5000 and $6000 in 2001. Assuming a processed wa
fer cost of $5500, the cost of the 0.49-cm? die s around $7.04, while the cost per
die of the 1-cm? die is about $24.55, or more than three times the cost for a die
that istwo times larger.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yield, o, and defects per unit area, so
the sole control of the designer is die area. Since o is around 4 for the advanced

1.4 Cost, Price and their Trends 21

processes in use today, die costs are proportional to the fifth (or higher) power of
thedie area

Cost of die=f (Die aread)

The computer designer affects die size, and hence cost, both by what functions
areincluded on or excluded from the die and by the number of 1/0 pins.

Before we have a part that is ready for use in a computer, the die must be
tested (to separate the good dies from the bad), packaged, and tested again after
packaging. These steps all add significant costs. These processes and their contri-
bution to cost are discussed and evaluated in Exercise 1.9.

The above analysis has focused on the variable costs of producing a functional
die, which is appropriate for high volume integrated circuits. There is, however,
one very important part of the fixed cost that can significantly impact the cost of
an integrated circuit for low volumes (less than one million parts), namely the
cost of amask set. Each step in the integrated circuit process requires a separate
mask. Thus, for modern high density fabrication processes with four to six metal
layers, mask costs often exceed $1 million. Obviously, thislarge fixed cost affects
the cost of prototyping and debugging runs and, for small volume production, can
be a significant part of the production cost. Since mask costs are likely to contin-
ue to increase, designers may incorporate reconfigurable logic to enhance the
flexibility of a part, or choose to use gate arrays (that have fewer custom mask
levels) and thus, reduce the cost implications of masks.

Distribution of Cost in a System: An Example

To put the costs of silicon in perspective, Figure 1.9 shows the approximate cost
breakdown for a$1,000 PC in 2001. Although the costs of some parts of this ma-
chine can be expected to drop over time, other components, such as the packag-
ing and power supply, have little room for improvement. Furthermore, we can
expect that future machines will have larger memories and disks, meaning that
prices drop more slowly than the technology improvement.

Cost Versus Price—Why They Differ and By How Much

Costs of components may confine a designer’s desires, but they are still far from
representing what the customer must pay. But why should a computer architec-
ture book contain pricing information? Cost goes through a number of changes
before it becomes price, and the computer designer should understand how a de-
sign decision will affect the potential selling price. For example, changing cost
by $1000 may change price by $3000 to $4000. Without understanding the rela-
tionship of cost to price the computer designer may not understand the impact on
price of adding, deleting, or replacing components.

Chapter 1 Fundamentals of Computer Design

System Subsystem Fraction of total
Cabinet Sheet metal, plastic 2%
Power supply, fans 2%
Cables, nuts, bolts 1%
Shipping box, manuals 1%
Subtotal 6%
Processor board Processor 23%
DRAM (128 MB) 5%
Video card 5%
Motherboard with basic I/O support, 5%
and networking
Subtotal 38%
I/0 devices Keyboard and mouse 3%
Monitor 20%
Hard disk (20 GB) 9%
DVD drive 6%
Subtotal 37%
Software OS + Basic Office Suite 20%

FIGURE 1.9 Estimated distribution of costs of the components in a $1,000 PC in 2001.
Notice that the largest single item is the CPU, closely followed by the monitor. (Interestingly,
in 1995, the DRAM memory at about 1/3 of the total cost was the most expensive component!
Since then, cost per MB has dropped by about a factor of 15!) Touma [1993] discusses com-
puter system costs and pricing in more detail. These numbers are based on estimates of vol-
ume pricing for the various components.

The relationship between price and volume can increase the impact of changes
in cost, especialy at the low end of the market. Typically, fewer computers are
sold as the price increases. Furthermore, as volume decreases, costs rise, leading
to further increases in price. Thus, small changes in cost can have a larger than
obvious impact. The relationship between cost and price is a complex one with
entire books written on the subject. The purpose of this section is to give you a
simple introduction to what factors determine price and typical ranges for these
factors.

The categories that make up price can be shown either as atax on cost or as a
percentage of the price. We will look at the information both ways. These differ-
ences between price and cost also depend on where in the computer marketplace
acompany is selling. To show these differences, Figure 1.10 shows how the dif-

1.4 Cost, Price and their Trends 23

ference between cost of materials and list price is decomposed, with the pricein-
creasing from left to right as we add each type of overhead.

Direct costs refer to the costs directly related to making a product. These in-
clude labor costs, purchasing components, scrap (the leftover from yield), and
warranty, which covers the costs of systemsthat fail at the customer’s site during
the warranty period. Direct cost typically adds 10% to 30% to component cost.
Service or maintenance costs are not included because the customer typically
pays those costs, although awarranty allowance may be included here or in gross
margin, discussed next.

The next addition is called the gross margin, the company’s overhead that can-
not be billed directly to one product. This can be thought of asindirect cost. It in-
cludes the company’s research and development (R&D), marketing, saes,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. When the component costs are added to the direct cost and
gross margin, we reach the average selling price—ASP in the language of
MBAs—the money that comes directly to the company for each product sold.
The gross margin istypically 10% to 45% of the average selling price, depending
on the uniqueness of the product. Manufacturers of low-end PCs have lower
gross margins for several reasons. First, their R& D expenses are |ower. Second,
their cost of salesislower, since they use indirect distribution (by mail, the Inter-
net, phone order, or retail store) rather than salespeople. Third, because their
products are less unique, competition is more intense, thus forcing lower prices
and often lower profits, which in turn lead to alower gross margin.

List

- Average

Average price 25% discount

selling Gross Gross

price 25% margin 18.8% margin
17% | Direct costs 12.8% [Direct costs 9.6% | Direct costs
1009 | Component Component Component Component

° costs 83% costs 62.2% costs 46.6% costs

/ e ‘
k’ Add 20% for k’ Add 33% for Add 33% for
direct costs gross margin average discount

FIGURE 1.10 The components of price for a $1,000 PC. Each increase is shown along
the bottom as a tax on the prior price. The percentages of the new price for all elements are
shown on the left of each column.

List price and average selling price are not the same. One reason for thisisthat
companies offer volume discounts, lowering the average selling price. As person-

24

Chapter 1 Fundamentals of Computer Design

al computers became commodity products, the retail mark-ups have dropped sig-
nificantly, so list price and average selling price have closed.

Aswe said, pricing is sensitive to competition: A company may not be able to
sell its product at a price that includes the desired gross margin. In the worst case,
the price must be significantly reduced, lowering gross margin until profit be-
comes negative! A company striving for market share can reduce price and profit
to increase the attractiveness of its products. If the volume grows sufficiently,
costs can be reduced. Remember that these relationships are extremely complex
and to understand them in depth would require an entire book, as opposed to one
section in one chapter. For example, if acompany cuts prices, but does not obtain
asufficient growth in product volume, the chief impact will be lower profits.

Many engineers are surprised to find that most companies spend only 4% (in
the commodity PC business) to 12% (in the high-end server business) of their in-
come on R&D, which includes all engineering (except for manufacturing and
field engineering). This well-established percentageis reported in companies’ an-
nual reports and tabulated in national magazines, so this percentage is unlikely to
change over time. In fact, experience has shown that computer companies with
R& D percentages of 15-20% rarely prosper over the long term.

The information above suggests that a company uniformly applies fixed-
overhead percentages to turn cost into price, and thisis true for many companies.
But another point of view isthat R&D should be considered an investment. Thus
an investment of 4% to 12% of income means that every $1 spent on R& D should
lead to $8 to $25 in sales. This alternative point of view then suggests a different
gross margin for each product depending on the number sold and the size of the
investment.

Large, expensive machines generally cost more to develop—a machine cost-
ing 10 times as much to manufacture may cost many times as much to develop.
Since large, expensive machines generally do not sell as well as small ones, the
gross margin must be greater on the big machines for the company to maintain a
profitable return on its investment. This investment model places large machines
in double jeopardy—because there are fewer sold and they require larger R&D
costs—and gives one explanation for a higher ratio of priceto cost versus smaller
machines.

The issue of cost and cost/performance is a complex one. There is no single
target for computer designers. At one extreme, high-performance design spares
no cost in achieving its goal. Supercomputers have traditionaly fit into this cate-
gory, but the market that only cares about performance has been the slowest
growing portion of the computer market. At the other extreme islow-cost design,
where performance is sacrificed to achieve lowest cost; some portions of the em-
bedded market, for example, the market for cell phone microprocessors, behaves
exactly like this. Between these extremes is cost/performance design, where the
designer balances cost versus performance. Most of the PC market, the worksta-

1.5 Measuring and Reporting Performance 25

tion market, and most of the server market (at least including both low-end and
midrange servers) operate in this region. In the past 10 years, as computers have
downsized, both low-cost design and cost/performance design have become in-
creasingly important. This section has introduced some of the most important
factors in determining cost; the next section deals with performance.

1.5 | Measuring and Reporting Performance

When we say one computer is faster than another, what do we mean? The user of
a desktop machine may say a computer is faster when a program runs in less
time, while the computer center manager running alarge server system may say a
computer is faster when it completes more jobs in an hour. The computer user is
interested in reducing response time—the time between the start and the comple-
tion of an event—also referred to as execution time. The manager of alarge data
processing center may be interested in increasing throughput—the total amount
of work donein agiven time.

In comparing design aternatives, we often want to relate the performance of
two different machines, say X andY. The phrase “X isfaster thanY” is used here
to mean that the response time or execution timeis lower on X thanonY for the
given task. In particular, “ X isntimesfaster than’Y” will mean

Execution ti mey,

Execution ti mey

Since execution time is the reciprocal of performance, the following relationship

holds:
1
Execution ti mey PerformanceY Performancex
n: - — = =
Execution timey 1 PerformanceY
PerformanceX

The phrase “the throughput of X is 1.3 times higher than Y” signifies here that
the number of tasks completed per unit time on machine X is 1.3 times the num-
ber completed on Y.

Because performance and execution time are reciprocals, increasing perfor-
mance decreases execution time. To help avoid confusion between the terms
increasing and decreasing, we usualy say “improve performance” or “improve
execution time” when we mean increase performance and decrease execution
time.

Whether we are interested in throughput or response time, the key measure-
ment is time: The computer that performs the same amount of work in the least
timeisthe fastest. The difference is whether we measure one task (response time)
or many tasks (throughput). Unfortunately, time is not always the metric quoted
in comparing the performance of computers. A number of popular measures have
been adopted in the quest for a easily understood, universal measure of computer

26

Chapter 1 Fundamentals of Computer Design

performance, with the result that a few innocent terms have been abducted from
their well-defined environment and forced into a service for which they were nev-
er intended. The authors’ position is that the only consistent and reliable measure
of performance is the execution time of rea programs, and that all proposed al-
ternatives to time as the metric or to real programs as the items measured have
eventually led to misleading claims or even mistakes in computer design. The
dangers of afew popular aternatives are shown in Fallacies and Pitfalls, section
1.9.

Measuring Performance

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time, re-
sponse time, or elapsed time, which is the latency to complete a task, including
disk accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming the CPU works on another program
while waiting for 1/0 and may not necessarily minimize the elapsed time of one
program. Hence we need a term to take this activity into account. CPU time rec-
ognizes this distinction and means the time the CPU is computing, not including
the time waiting for 1/0O or running other programs. (Clearly the response time
seen by the user is the elapsed time of the program, not the CPU time.) CPU time
can be further divided into the CPU time spent in the program, called user CPU
time, and the CPU time spent in the operating system performing tasks requested
by the program, called system CPU time.

These distinctions are reflected in the UNIX time command, which returns
four measurements when applied to an executing program:

90.7u 12.9s 2:39 65%

User CPU timeis 90.7 seconds, system CPU timeis 12.9 seconds, elapsed timeis
2 minutes and 39 seconds (159 seconds), and the percentage of elapsed time that
isCPU timeis (90.7 + 12.9)/159 or 65%. More than athird of the elapsed timein
this example was spent waiting for 1/0 or running other programs or both. Many
measurements ignore system CPU time because of the inaccuracy of operating
systems’ self-measurement (the above inaccurate measurement came from UNIX)
and the inequity of including system CPU time when comparing performance be-
tween machines with differing system codes. On the other hand, system code on
some machinesis user code on others, and no program runs without some operat-
ing system running on the hardware, so a case can be made for using the sum of
user CPU time and system CPU time.

In the present discussion, a distinction is maintained between performance
based on elapsed time and that based on CPU time. The term system performance
is used to refer to elapsed time on an unloaded system, while CPU performance
refers to user CPU time on an unloaded system. We will focus on CPU perfor-
mance in this chapter, though we do consider performance measurements based
on elapsed time.

1.5 Measuring and Reporting Performance 27

Choosing Programs to Evaluate Performance

Dhrystone does not use floating point. Typical programs don't ...
Rick Richardson, Clarification of Dhrystone (1988)

This program is the result of extensive research to determine the instruction mix
of a typical Fortran program. The results of this program on different machines
should give a good indication of which machine performs better under a typical
load of Fortran programs. The statements are purposely arranged to defeat opti-
mizations by the compiler.

H. J. Curnow and B. A. Wichmann [1976], Comments in the Whetstone Benchmark

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. To evaluate a new system the user
would simply compare the execution time of her workload—the mixture of pro-
grams and operating system commands that users run on a machine. Few are in
this happy situation, however. Most must rely on other methods to evaluate ma-
chines and often other evaluators, hoping that these methods will predict per-
formance for their usage of the new machine. There are five levels of programs
used in such circumstances, listed below in decreasing order of accuracy of pre-
diction.

1. Real applications—Although the buyer may not know what fraction of timeis
spent on these programs, she knows that some users will run them to solve real
problems. Examples are compilersfor C, text-processing software like Word, and
other applications like Photoshop. Real applications have input, output, and op-
tions that a user can select when running the program. There is one major down-
side to using real applications as benchmarks: Real applications often enocunter
portability problems arising from dependences on the operating system or compil-
er. Enhancing portability often means modifying the source and sometimes elim-
inating some important activity, such as interactive graphics, which tends to be
more system-dependent.

2. Modified (or scripted) applications—In many cases, rea applicationsare used
asthe building block for abenchmark either with modificationsto the application
or with a script that acts as stimulus to the application. Applications are modified
for two primary reasons: to enhance portability or to focus on one particul ar aspect
of system performance. For example, to create a CPU-oriented benchmark, 1/0
may be removed or restructured to minimizeitsimpact on execution time. Scripts
are used to reproduce interactive behavior, which might occur on a desktop sys-
tem, or to simulate complex multiuser interaction, which occursin a server sys-
tem.

28

Chapter 1 Fundamentals of Computer Design

3. Kernels—Severa attempts have been made to extract small, key pieces from
real programs and use them to evaluate performance. Livermore Loops and Lin-
pack arethe best known examples. Unlikereal programs, no user would run kernel
programs, for they exist solely to evaluate performance. Kernels are best used to
isolate performance of individual features of a machine to explain the reasons for
differencesin performance of real programs.

4. Toy benchmarks—Toy benchmarks are typically between 10 and 100 lines of
code and produce a result the user already knows before running the toy program.
Programs like Sieve of Eratosthenes, Puzzle, and Quicksort are popular because
they are small, easy to type, and run on almost any computer. The best use of such
programs is beginning programming assignments.

5. Yynthetic benchmarks—Similar in philosophy to kernels, synthetic bench-
marks try to match the average frequency of operations and operands of alarge set
of programs. Whetstone and Dhrystone are the most popul ar synthetic benchmarks.
A description of these benchmarks and some of their flaws appears in section 1.9
on page 59. No user runs synthetic benchmarks, because they don’'t compute any-
thing a user could want. Synthetic benchmarks are, in fact, even further removed
from reality than kernels because kernel code is extracted from real programs,
while synthetic code is created artificially to match an average execution profile.
Synthetic benchmarks are not even pieces of real programs, although kernels might
be.

Because computer companies thrive or go bust depending on price/perfor-
mance of their products relative to others in the marketplace, tremendous re-
sources are available to improve performance of programs widely used in
evaluating machines. Such pressures can skew hardware and software engineer-
ing efforts to add optimizations that improve performance of synthetic programs,
toy programs, kernels, and even real programs. The advantage of the last of these
is that adding such optimizations is more difficult in real programs, though not
impossible. This fact has caused some benchmark providers to specify the rules
under which compilers must operate, as we will see shortly.

Benchmark Suites

Recently, it has become popular to put together collections of benchmarks to try
to measure the performance of processors with a variety of applications. Of
course, such suites are only as good as the constituent individual benchmarks.
Nonetheless, a key advantage of such suites is that the weakness of any one
benchmark is lessened by the presence of the other benchmarks. This advantage
is especialy true if the methods used for summarizing the performance of the
benchmark suite reflect the time to run the entire suite, as opposed to rewarding
performance increases on programs that may be defeated by targeted optimiza-
tions. Later in this section, we discuss the strengths and weaknesses of different
methods for summarizing performance.

1.5 Measuring and Reporting Performance 29

One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in the late 1980s efforts to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the
need for different benchmark suites, and there are now SPEC benchmarksto cov-
er different application classes, as well as other suites based on the SPEC model.

Although we focus our discussion on the SPEC benchmarks in the many of
the following sections, there are also alarge set of benchmarks that have been de-
veloped for PCs running the Windows operating system. These cover a variety of
different application environments, as Figure 1.11 shows.

Benchmark Name

Benchmark description

Business Winstone 99

Runs a script consisting of Netscape Navigator, and several office suite products
(Microsoft, Corel, WordPerfect). The script simulates a user switching among and
running different applications.

High-end Winstone 99

Also simulates multiple applications running simultaneously, but focuses on com-
pute intensive applications such as Adobe Photoshop.

CC Winstone 99 Simulates multiple applications focused on content creation, such as Photoshop, Pre-
miere, Navigator, and various audio editing programs.
Winbench 99 Runsavariety of scriptsthat test CPU performance, video system performance, disk

performance using kernels focused on each subsystem.

FIGURE 1.11 A sample of some of the many PC benchmarks with the first four being scripts using real applica-
tions and the last being a mixture of kernels and synethetic benchmarks. These are all now maintained by Ziff Davis,
a publisher of much of the literature in the PC space. Ziff Davis also provides independent testing service. For more infor-
mation on these benchmarks, see: http://www.zdnet.com/etestinglabs/filters/benchmarks/.

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: CPU intensive benchmarks
and graphics intensive benchmarks (although many graphics benchmarks include
intensive CPU activity). SPEC originally created a benchmark set focusing on
CPU performance (initially called SPEC89), which has evolved into its fourth
generation: SPEC CPU2000, which follows SPEC95, and SPEC92. (Figure 1.30
on page 64 discusses the evol ution of the benchmarks.) SPEC CPU2000, summa:
rized in Figure 1.12, consists of a set of eleven integer benchmarks (CINT2000)
and fourteen floating point benchmarks (CFP2000). The SPEC benchmarks are
real program modified for portability and to minimize the role of 1/O in overall
benchmark performance. The integer benchmarks vary from part of a C compiler
toaVLSI place and route tool to agraphics application. The floating point bench-
marks include code for quantum chromodynmics, finite element modeling, and
fluid dynamics. The SPEC CPU suite is useful for CPU benchmarking for both
desktop systems and single-processor servers. We will see data on many of these
programs throughout this text.

30 Chapter 1 Fundamentals of Computer Design

In the next subsection, we show how a SPEC 2000 report describes the ma-
chine, compiler, and OS configuration. In section 1.9 we describe some of the pit-
falls that have occurred in attempting to develop the SPEC benchmark stite, as
well asthe challenges in maintaining a useful and predictive benchmark suite.

Benchmark Type Source Description

gzip Integer C Compression using the Lempel-Ziv agorithm

vpr Integer C FPGA circuit placement and routing

gcc Integer C Consists of the GNU C compiler generating optimized machine code.
mcf Integer C Combinatoria optimization of public transit scheduling.

crafty Integer C Chess playing program.

parser Integer C Syntactic English language parser

eon Integer C++ Graphics visualization using probabilistic ray tracing

perlmbk Integer C Perl (an interpreted string processing language) with four input scripts
gap Integer C A group theory application package

vortex Integer C An object-oriented database system

bzip2 Integer C A block sorting compression agorithm.

twolf Integer C Timberwolf: a simulated annealing algorithm for VLSI place and route
wupwise FP F77 L attice gauge theory model of quantum chromodynamics.

swim FP F77 Solves shallow water equations using finite difference equations.
mgrid FP Fr7 Multigrid solver over 3-dimensional field.

apply FP F77 Parabolic and elliptic partia differential equation solver

mesa FP C Three dimensional graphics library.

galge FP Fo0 Computational fluid dynamics.

art FP C Image recognition of athermal image using neural networks

equake FP C Simulation of seismic wave propagation.

facerec FP C Face recognition using wavelets and graph matching.

ammp FP C molecular dynamics simulation of a protein in water

lucas FP Fo0 Performs primality testing for Mersenne primes

fma3d FP F90 Finite element modeling of crash simulation

sixtrack FP F77 High energy physics accelerator design simulation.

aps FP F77 A meteorological simulation of pollution distribution.

FIGURE 1.12 The programs in the SPECCPU2000 benchmark suites. The eleven integer programs (all in C, except
one in C++) are used for the CINT2000 measurement, while the fourteen floating point programs (six in Fortran-77, five in
C, and three in Fortran-90) are used for the CFP2000 measurement. See http://www.spec.org/osg/cpu2000/ for more on
these benchmarks.

1.5 Measuring and Reporting Performance 31

Although SPEC CPU2000 is aimed at CPU performance, two different types
of graphics benchmarks were created by SPEC: SPECviewperf (see http://
www.spec.org/gpc/opc.static/opcview.htm) is used for benchmarking systems
supporting the OpenGL graphics library, while SPECapc (http://www.spec.org/
gpc/apc.static/apcfag.htm) consists of applications that make extensive use of
graphics. SPECviewperf measures the 3D rendering performance of systems run-
ning under OpenGL using a 3-D model and a series of OpenGL calls that trans-
form the model. SPECapc consists of runs of three large applications:

1. Pro/Engineer: a solid modeling application that does extensive 3-D rendering.
The input script isamodel of a photocopying machine consisting of 370,000
triangles.

2. SolidWorks 99: a 3-D CAD/CAM design tool running a series of five tests
varying from I/O intensive to CPU intensive. The largetest input isamodel of
an assembly line consisting of 276,000 triangles.

3. Unigraphics V15: The benchmark is based on an aircraft model and covers a
wide spectrum of Unigraphicsfunctionality, including assembly, drafting, nu-
meric control machining, solid modeling, and optimization. The inputs are all
part of an aircraft design.

Server Benchmarks

Just as servers have multiple functions, so there are multiple types of bench-
marks. The simplest benchmark is perhaps a CPU throughput oriented bench-
mark. SPEC CPU2000 uses the SPEC CPU benchmarks to construct a simple
throughput benchmark where the processing rate of a multiprocessor can be mea-
sured by running multiple copies (usualy as many as there are CPUs) of each
SPEC CPU benchmark and converting the CPU time into a rate.This leads to a
measurement called the SPECRate.

Other than SPECRate, most server applications and benchmarks have signifi-
cant /0O activity arising from either disk or network traffic, including benchmarks
for file server systems, for web servers, and for database and transaction process-
ing systems. SPEC offers both a file server benchmark (SPECSFS) and a web
server benchmark (SPECWeb). SPECSFS (see http://www.spec.org/osg/sfs93/)
is a benchmark for measuring NFS (Network File System) performance using a
script of file server requests; it tests the performance of the 1/0 system (both disk
and network 1/0) as well as the CPU. SPECSFS is a throughput oriented bench-
mark but with important response time requirements. (Chapter 6 discusses some
file and I/O system benchmarks in detail.) SPECWEB (see http://www.spec.org/
osg/web99/ for the 1999 version) is a web-server benchmark that simulates mul-
tiple clients requesting both static and dynamic pages from a server, as well as
clients posting data to the server.

Transaction processing benchmarks measure the ability of a system to handle
transactions, which consist of database accesses and updates. An airline reserva-

32

Chapter 1 Fundamentals of Computer Design

tion system or abank ATM system are typical simple TP systems; more complex
TP systems involve complex databases and decision making. In the mid 1980s, a
group of concerned engineers formed the vendor-independent Transaction Pro-
cessing Council (TPC) to try to create a set of readlistic and fair benchmarks for
transaction processing. The first TPC benchmark, TPC-A, was published in 1985
and has since been replaced and enhanced by four different benchmarks. TPC-C,
initially created in 1992, simulates a complex query environment. TPC-H models
ad-hoc decision support meaning that the queries are unrelated and knowledge of
past queries cannot be used to optimize future queries; the result is that query ex-
ecution times can be very long. TPC-R simulates a business decision support sys-
tem where users run a standard set of queries. In TPC-R, pre-knowledge of the
gueriesis taken for granted and the DBM S system can be optimized to run these
gueries. TPC-W web-based transaction benchmark that simulates the activities of
a business oriented transactional web server. It exercises the database system as
well as the underlying web server software. The TPC benchmarks are described
at: http://www.tpc.org/.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response-time requirement, so that throughput perfor-
mance is measured only when the response time limit is met.To model real-world
systems, higher transaction rates are also associated with larger systems, both in
terms of users and the data base that the transactions are applied to. Finally, the
system cost for a benchmark system must also be included, allowing accurate
comparisons of cost-performance.

Embedded Benchmarks

Benchmarks for embedded computing systems are in a far more nascent state
than those for either desktop or server environments. In fact, many manufacturers
guote Dhrystone performance, a benchmark that was criticized and given up by
desktop systems more than 10 years ago! As mentioned earlier, the enormous va-
riety in embedded applications, as well as differences in performance require-
ments (hard real-time, soft real-time, and overall cost-performance), make the
use of asingle set of benchmarks unrealistic. In practice, many designers of em-
bedded systems devise benchmarks that reflect their application, either as kernels
or as stand-alone versions of the entire application.

For those embedded applications that can be characterized well by kernel per-
formance, the best standardized set of benchmarks appears to be a new bench-
mark set: the EDN Embedded Microprocessor Benchmark Consortium (or
EEMBC—pronounced embassy). The EEMBC benchmarks fall into five classes:
automotive/industrial, consumer, networking, office automation, and telecommu-
nications. Figure 1.13 shows the five different application classes, which include
34 benchmarks.

Although many embedded applications are sensitive to the performance of
small kernels, remember that often the overall performance of the entire applica-
tion, which may be thousands of lines) is also critical. Thus, for many embedded

1.5 Measuring and Reporting Performance 33

systems, the EMBCC benchmarks can only be used to partially assess perfor-
mance.

Benchmark Type

#of thistype Example benchmarks

Automotive/industrial

16 6 microbenchmarks (arithmetic operations, pointer chasing, memory
performance, matrix arithmetic, table lookup, bit manipulation), 5 au-
tomobile control benchmarks, and 5 filter or FFT benchmarks.

Consumer 5 5 multimedia benchmarks (JPEG compress/decompress, filtering, and
RGB conversions).
Networking 3 Shortest path calculation, IP routing, and packet flow operations.

Office automation

Graphics and text benchmarks (Bezier curve calculation, dithering, im-
age rotation, text processing).

Telecommunications

6 Filtering and DSP benchmarks (autocorrelation, FFT, decoder, and en-
coder)

FIGURE 1.13 The EEMBC benchmark suite, consisting of 34 kernels in five different classes. See www.eembc.org
for more information on the benchmarks and for scores.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the re-
sults. A SPEC benchmark report requires a fairly complete description of the
machine, the compiler flags, as well as the publication of both the baseline and
optimized results. As an example, Figure 1.14 shows portions of the SPEC
CINT2000 report for an Dell Precision Workstation 410. In addition to hardware,
software, and baseline tuning parameter descriptions, a SPEC report contains the
actual performance times, shown both in tabular form and as a graph. A TPC
benchmark report is even more complete, since it must include results of a bench-
marking audit and must also include cost information.

A system’s software configuration can significantly affect the performance re-
sultsfor abenchmark. For example, operating syustems performance and support
can be very important in server benchmarks. For this reason, these benchmarks
are sometimes run in single-user mode to reduce overhead. Additionally, operat-
ing system enhancements are sometimes made to increase performance on the
TPC benchmarks. Likewise, compiler technology can play abig rolein CPU per-
formance. The impact of compiler technology can be especially large when mod-
ification of the sourceis allowed (see the example with the EEMBC benchmarks
on page 63) or when a benchmark is particularly suspectible to an optimization
(see the example from SPEC described on 61). For these reasons it is important
to describe exactly the software system being measured as well as whether any
special nonstandard modifications have been made.

Another way to customize the software to improve the performance of a
benchmark has been through the use of benchmark-specific flags; these flags of -
ten caused transformations that would be illegal on many programs or would

34

Chapter 1 Fundamentals of Computer Design

slow down performance on others. To restrict this process and increase the signif-
icance of the SPEC results, the SPEC organization created a baseline perfor-
mance measurement in addition to the optimized performance measurement.
Baseline performance restricts the vendor to one compiler and one set of flags for
all the programs in the same language (C or FORTRAN). Figure 1.14 shows the
parameters for the baseline performance; in section 1.8, Fallacies and Pitfalls,
we'll see the tuning parameters for the optimized performance runs on this
machine.

Hardware Software
Model number Precision WorkStation 410 O/Sand version Windows NT 4.0
CPU 700 MHz, Pentium 111 Compilersand version Intel C/C++ Compiler 4.5
Number of CPUs 1 Other software See below
Primary cache 16KBI+16KBD on chip File system type NTFS
Secondary cache 256K B(1+D) on chip System state Default
Other cache None
Memory 256 MB ECC PC100 SDRAM
Disk subsystem SCSI
Other hardware None

SPEC CINT 2000 base tuning parameter s/notessummary of changes:
+FDO: PASS1=-Qprof_gen PASS2=-Qprof_use
Base tuning: -QxK -Qipo_wp shlW32M.lib +FDO
shiW32M .lib is the SmartHeap library V5.0 from MicroQuill www.microquill.com
Portability flags:
176.gcc: -Dalloca=_alloca/F10000000 -Op
186.crafy: -DNT_i386
253.perlbmk: -DSPEC_CPU2000_NTOS-DPERLDLL /MT
254.gap: -DSYS_HAS CALLOC_PROTO -DSYS HAS MALLOC_PROTO

FIGURE 1.14 The machine, software, and baseline tuning parameters for the CINT2000 base report on a Dell Pre-
cision WorkStation 410. This data is for the base CINT2000 report. The data is available online at: http://www.spec.org/
0sg/cpu2000/results/cpu2000.html.

In addition to the question of flags and optimization, another key question is
whether source code modifications or hand-generated assembly language are al-
lowed. There are four broad categories of apporoaches here:

1. No source code modifications are allowed. The SPEC benchmarks fall into
this class, as do most of the standard PC benchmarks.

2. Source code modification are allowed, but are essentially difficult or impossi-
ble. Benchmarkslike TPC-C rely on standard databases, such as Oracle or Mi-
crosoft’s SQL server. Although these third party vendors are interested in the
overall performance of their systems on important industry-standard bench-

1.5 Measuring and Reporting Performance 35

marks, they are highly unlikely to make vendor- specific changes to enhance
the performance for one particular customer. TPC-C also relies heavily on the
operating system, which can be change, provided those changes become part
of the production version.

3. Source modifications are allowed. Several supercomputer benchmark suites
alow modification of the source code. For example, the NAS benchmarks
specify the input and output and supply the source, but vendors are allowed to
rewrite the source, including changing the algorithms, as long as the result is
the same. EEMBC also allows source-level changesto its benchmarks and re-
ports these as “optimized” measurements, versus “out-of-the-box” measure-
ments that allow no changes.

4. Hand-coding is alowed. EEMBC alows assembly language coding of its
benchmarks. The small size of its kernels makes this approach attractive, al-
though in practice with larger embedded applicationsit is unlikely to be used,
except for small loops.Figure 1.31 on page 65 shows the significant benefits
from handcoding on several different processors.

The key issue that benchmark designers face in deciding to allow modification
of the source is whether such modifications will reflect real practice and provide
useful insight to users, or whether such modifications simply reduce the accuracy
of the benchmarks as predictors of real performance.

Comparing and Summarizing Performance

Comparing performance of computersis rarely a dull event, especially when the
designers are involved. Charges and countercharges fly across the Internet; oneis
accused of underhanded tactics and the other of misleading statements. Since ca-
reers sometimes depend on the results of such performance comparisons, it is un-
derstandable that the truth is occasionally stretched. But more frequently
discrepancies can be explained by differing assumptions or lack of information.

We would like to think that if we could just agree on the programs, the experi-
mental environments, and the definition of faster, then misunderstandings would
be avoided, leaving the networks free for scholarly discourse. Unfortunately,
that’s not the reality. Once we agree on the basics, battles are then fought over
what is the fair way to summarize relative performance of a collection of pro-
grams. For example, two articles on summarizing performance in the same jour-
nal took opposing points of view. Figure 1.15, taken from one of the articles, isan
exampl e of the confusion that can arise.

Using our definition of faster than, the following statements hold:

A is 10 times faster than B for program P1.
B is 10 times faster than A for program P2.
A is 20 times faster than C for program P1.

36

Chapter 1 Fundamentals of Computer Design

Computer A Computer B Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40

FIGURE 1.15 Execution times of two programs on three machines. Data from Figure |
of Smith [1988].

C is 50 times faster than A for program P2.
B is 2 times faster than C for program P1.
Cis5timesfaster than B for program P2.

Taken individually, any one of these statements may be of use. Collectively, how-
ever, they present a confusing picture—the relative performance of computersA,
B, and Cisunclear.

Total Execution Time: A Consistent Summary Measure
The simplest approach to summarizing relative performanceis to use total execu-
tion time of the two programs. Thus

B is 9.1 times faster than A for programs P1 and P2.
C is 25 times faster than A for programs P1 and P2.
Cis2.75 times faster than B for programs P1 and P2.

This summary tracks execution time, our fina measure of performance. If the
workload consisted of running programs P1 and P2 an equal number of times, the
statements above would predict the relative execution times for the workload on
each machine.

An average of the execution times that tracks total execution timeisthe arith-
metic mean:

1 n
=Y Time
n
i=1
where Timej is the execution time for the ith program of atotal of n in the work-
load.

Weighted Execution Time

The question arises: What is the proper mixture of programs for the workload?
Are programs P1 and P2 in fact run equally in the workload as assumed by the
arithmetic mean? If not, then there are two approaches that have been tried for
summarizing performance. The first approach when given an unequal mix of pro-
grams in the workload is to assign aweighting factor wj to each program to indi-

1.5 Measuring and Reporting Performance 37

cate the relative frequency of the program in that workload. If, for example, 20%
of the tasks in the workload were program P1 and 80% of the tasks in the work-
load were program P2, then the weighting factors would be 0.2 and 0.8. (Weight-
ing factors add up to 1.) By summing the products of weighting factors and
execution times, a clear picture of performance of the workload is obtained. This
is called the weighted arithmetic mean:
n
Y Weight; x Time,
i=1

where Weightj isthe frequency of theith program inthe workload and Timej isthe
execution time of that program. Figure 1.16 shows the data from Figure 1.15 with
three different weightings, each proportional to the execution time of a workload
with agiven mix.

Programs Weightings
A B C W(1) W(2) W(3)
Program P1 (secs) 1.00 10.00 20.00 0.50 0.909 0.999
Program P2 (secs) 1000.00 100.00 20.00 0.50 0.091 0.001
Arithmetic mean:W(1) 500.50 55.00 20.00
Arithmetic mean:W(2) 91.91 18.19 20.00
Arithmetic mean:W(3) 2.00 10.09 20.00

FIGURE 1.16 Weighted arithmetic mean execution times for three machines (A, B, C) and two programs (P1 and
P2) using three weightings (W1, W2, W3). The top table contains the original execution time measurements and the
weighting factors, while the bottom table shows the resulting weighted arithmetic means for each weighting. W(1) equally
weights the programs, resulting in a mean (row 3) that is the same as the unweighted arithmetic mean. W(2) makes the mix
of programs inversely proportional to the execution times on machine B; row 4 shows the arithmetic mean for that weighting.
W(3) weights the programs in inverse proportion to the execution times of the two programs on machine A; the arithmetic
mean with this weighting is given in the last row. The net effect of the second and third weightings is to “normalize” the
weightings to the execution times of programs running on that machine, so that the running time will be spent evenly between
each program for that machine. For a set of n programs each taking Time; on one machine, the equal-time weightings on
1

that machine are
n
. 1
Time; x 2 (Time-)
/ j

i=1

w; =

Normalized Execution Time and the Pros and Cons of Geometric Means

A second approach to unequal mixture of programs in the workload is to nor-
malize execution times to a reference machine and then take the average of the
normalized execution times. Thisis the approach used by the SPEC benchmarks,

38

Chapter 1 Fundamentals of Computer Design

where a base time on a SPARCstation is used for reference. This measurement
gives a warm fuzzy fedling, because it suggests that performance of new pro-
grams can be predicted by simply multiplying this number times its performance
on the reference machine.

Average normalized execution time can be expressed as either an arithmetic or
geometric mean. The formula for the geometric meanis

n n
J]] Execution time ratio,
i=1

where Execution timeratioj is the execution time, normalized to the reference ma-

chine, for the ith program of atotal of n in the workload. Geometric means also
have anice property for two samples X; and Y;:

Geometric mean(X;)
Geometric mean(Y)

Asaresult, taking either the ratio of the means or the mean of theratiosyieldsthe
same result. In contrast to arithmetic means, geometric means of normalized exe-
cution times are consistent no matter which machine is the reference. Hence, the
arithmetic mean should not be used to average normalized execution times. Fig-
ure 1.17 shows some variations using both arithmetic and geometric means of
normalized times.

Because the weightings in weighted arithmetic means are set proportionate to
execution times on a given machine, as in Figure 1.16, they are influenced not
only by frequency of use in the workload, but also by the peculiarities of a partic-
ular machine and the size of program input. The geometric mean of normalized
execution times, on the other hand, is independent of the running times of the in-
dividual programs, and it doesn’'t matter which machine is used to normalize. If a
situation arose in comparative performance evaluation where the programs were
fixed but the inputs were not, then competitors could rig the results of weighted
arithmetic means by making their best performing benchmark have the largest in-
put and therefore dominate execution time. In such a situation the geometric
mean would be less misleading than the arithmetic mean.

>(i
= Geometric mean (—)

Y.

1.5 Measuring and Reporting Performance 39

Normalized to A Normalized to B Normalized to C
A B C A B C A B C
Program P1 1.0 10.0 20.0 0.1 1.0 2.0 0.05 0.5 1.0
Program P2 1.0 0.1 0.02 10.0 1.0 0.2 50.0 5.0 1.0
Arithmetic mean 1.0 5.05 10.01 5.05 1.0 11 25.03 2.75 1.0
Geometric mean 1.0 1.0 0.63 1.0 1.0 0.63 1.58 1.58 1.0
Total time 1.0 0.11 0.04 9.1 1.0 0.36 25.03 2.75 1.0

FIGURE 1.17 Execution times from Figure 1.15 normalized to each machine. The arithmetic mean performance varies
depending on which is the reference machine—in column 2, B’s execution time is five times longer than A’s, although the
reverse is true in column 4. In column 3, C is slowest, but in column 9, C is fastest. The geometric means are consistent
independent of normalization—A and B have the same performance, and the execution time of C is 0.63 of A or B (1/1.58
is 0.63). Unfortunately, the total execution time of A is 10 times longer than that of B, and B in turn is about 3 times longer
than C. As a point of interest, the relationship between the means of the same set of numbers is always harmonic mean <
geometric mean < arithmetic mean.

The strong drawback to geometric means of normalized execution times is
that they violate our fundamental principle of performance measurement—they
do not predict execution time. The geometric means from Figure 1.17 suggest
that for programs P1 and P2 the performance of machines A and B is the same,
yet this would only be true for a workload that ran program P1 100 times for ev-
ery occurrence of program P2 (see Figure 1.16 on page 37). The total execution
time for such a workload suggests that machines A and B are about 50% faster
than machine C, in contrast to the geometric mean, which says machine C isfast-
er than A and B! In general there is no workload for three or more machines that
will match the performance predicted by the geometric means of normalized exe-
cution times. Our original reason for examining geometric means of normalized
performance was to avoid giving equal emphasis to the programs in our work-
load, but isthis solution an improvement?

An additional drawback of using geometric mean as a method for summariz-
ing performance for a benchmark suite (as SPEC CPU2000 does) is that it en-
courages hardware and software designers to focus their attention on the
benchmarks where performance is easiest to improve rather than on the bench-
marks that are slowest. For example, if some hardware or software improvement
can cut the running time for a benchmark from 2 seconds to 1, the geometric
mean will reward those designers with the same overall mark that it would giveto
designers that improve the running time on another benchmark in the suite from
10,000 seconds to 5000 seconds. Of course, everyone interested in running the
second program thinks of the second batch of designers as their heroes and the
first group as useless. Small programs are often easier to “crack,” obtaining a
large but unrepresentative performance improvement, and the use of geometric
mean rewards such behavior more than a measure that reflects total running time.

The ideal solution isto measure a real workload and weight the programs ac-
cording to their frequency of execution. If this can’'t be done, then normalizing so
that equal time is spent on each program on some machine at least makes the rel-

40

Chapter 1 Fundamentals of Computer Design

ative weightings explicit and will predict execution time of a workload with that
mix. The problem above of unspecified inputsis best solved by specifying the in-
puts when comparing performance. If results must be normalized to a specific
machine, first summarize performance with the proper weighted measure and
then do the normalizing.

Lastly, we must remember that any summary measure necessarily loses infor-
mation, especially when the measurements may vary widely. Thus, it isimportant
both to ensure that the results of individual benchmarks, as well as the summary
number, are available. Furthermore, the summary number should be used with
caution, since the summary—as opposed to a subset of the individual scores-may
be the best indicator of performance for acustomer’s applications.

16 | Quantitative Principles of Computer Design

Now that we have seen how to define, measure, and summarize performance, we
can explore some of the guidelines and principles that are useful in design and
analysis of computers. In particular, this section introduces some important ob-
servations about designing for performance and cost/performance, as well as two
equations that we can use to evaluate design alternatives.

Make the Common Case Fast

Perhaps the most important and pervasive principle of computer design is to
make the common case fast: In making a design trade-off, favor the frequent case
over the infrequent case. This principle also applies when determining how to
spend resources, since the impact on making some occurrence faster is higher if
the occurrence is frequent. Improving the frequent event, rather than the rare
event, will obviously help performance, too. In addition, the frequent case is of-
ten simpler and can be done faster than the infrequent case. For example, when
adding two numbers in the CPU, we can expect overflow to be a rare circum-
stance and can therefore improve performance by optimizing the more common
case of no overflow. This may slow down the case when overflow occurs, but if
that is rare, then overall performance will be improved by optimizing for the nor-
mal case.

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s Law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s Law. Amdahl’s Law states that the per-
formance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

1.6 Quantitative Principles of Computer Design 41

Execution timey,, = Execution timeg4 % ((1 —Fractionganced) +

EXAMPLE

Amdahl’s Law defines the speedup that can be gained by using a particular

feature. What is speedup? Suppose that we can make an enhancement to a ma-
chine that will improve performance when it is used. Speedup istheratio

Performance for entire task using the enhancement when possible

Speedup = - - -

Performance for entire task without using the enhancement
Alternatively,
Speedup = Execution time for entire task without using the enhancement

Execution time for entire task using the enhancement when possible

Speedup tells us how much faster atask will run using the machine with the en-
hancement as opposed to the original machine.

Amdahl’s Law gives us a quick way to find the speedup from some enhance-

ment, which depends on two factors:

1.

The fraction of the computation time in the original machine that can be
converted to take advantage of the enhancement—For example, if 20
seconds of the execution time of aprogram that takes 60 secondsin total can
use an enhancement, the fraction is 20/60. This value, which we will call
Fractiongnhanced, 1S @ways less than or equal to 1.

The improvement gained by the enhanced execution mode; that is, how much
faster the task would run if the enhanced mode were used for the entire pro-
gram—This value is the time of the original mode over the time of the en-
hanced mode: If the enhanced mode takes 2 seconds for some portion of the
program that can compl etely use the mode, while the original mode took 5 sec-
onds for the same portion, the improvement is 5/2. We will call this value,
which is always greater than 1, Speedupenhanced:

The execution time using the original machine with the enhanced mode will be
the time spent using the unenhanced portion of the machine plus the time spent
using the enhancement:

Fraction g panced]
Speedup gyhanced

The overall speedup istheratio of the execution times:

Executiontimeyy 1

Executiontime., Fraction
MOV (1 — Fractiongypancey) + em—nenced
Speedupenhanced

Speedupoyerall =

Suppose that we are considering an enhancement to the processor of a
server system used for web serving. The new CPU is 10 times faster on
computation in the web serving application than the original processor.

Assuming that the original CPU is busy with computation 40% of the time

42

Chapter 1 Fundamentals of Computer Design

ANSWER

EXAMPLE

and is waiting for /0 60% of the time, what is the overall speedup gained
by incorporating the enhancement?

Fractiongnhanced = 0.4

SpeedUpPennanced = 10

1 1
Speedupoyeral = 04 = 06 ~ 196
0.6 + Tl

Amdahl’s Law expresses the law of diminishing returns: The incremental im-
provement in speedup gained by an additional improvement in the performance
of just a portion of the computation diminishes as improvements are added. An
important corollary of Amdahl’s Law isthat if an enhancement is only usable for
afraction of atask, we can’t speed up the task by more than the reciprocal of 1
minus that fraction.

A common mistake in applying Amdahl’s Law is to confuse “fraction of time
converted to use an enhancement” and “fraction of time after enhancement isin
use” If, instead of measuring the time that we could use the enhancement in a
computation, we measure the time after the enhancement is in use, the results
will beincorrect! (Try Exercise 1.2 to see how wrong.)

Amdahl’s Law can serve as a guide to how much an enhancement will im-
prove performance and how to distribute resources to improve cost/performance.
The goal, clearly, isto spend resources proportional to where time is spent. Am-
dahl’s Law is particularly useful for comparing the overall system performance
of two alternatives, but it can also be applied to compare two CPU design alterna-
tives, as the following Example shows.

A common transformation required in graphics engines is square root. Im-
plementations of floating-point (FP) square root vary significantly in per-
formance, especially among processor designed for graphics. Suppose
FP square root (FPSQR) is responsible for 20% of the execution time of
a critical graphics benchmark. One proposal is to enhance the FPSQR
hardware and speed up this operation by a factor of 10. The other alter-
native is just to try to make all FP instructions in the graphics processor
run faster by a factor of 1.6; FP instructions are responsible for a total of
50% of the execution time for the application. The design team believes
that they can make all FP instructions run 1.6 times faster with the same
effort as required for the fast square root. Compare these two design al-

1.6 Quantitative Principles of Computer Design 43

ANSWER

ternatives.

We can compare these two alternatives by comparing the speedups:

1 1
Speeduprpsgr = —————— = ~55 =122
(1_0.2“% 0.82

1 1
Speedupep = = =123
(1-05)+ (1)_2 0.8125

Improving the performance of the FP operations overall is slightly better
because of the higher frequency. n

In the above example, we needed to know the time consumed by the new and
improved FP operations; often it is difficult to measure these times directly. In the
next section, we will see another way of doing such comparisons based on the
use of an equation that decomposes the CPU execution time into three separate
components. If we know how an aternative affects these three components, we
can determine its overall performance effect. Furthermore, it is often possible to
build simulators that measure these components before the hardware is actually
designed.

The CPU Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called ticks, clock ticks, clock periods, clocks, cy-
cles, or clock cycles. Computer designers refer to the time of a clock period by its
duration (e.g., 1 ns) or by itsrate (e.g., 1 GHz). CPU time for a program can then
be expressed two ways:

CPU time = CPU clock cyclesfor aprogram x Clock cycle time

or

CPU clock cyclesfor a program

CPUtime = Clock rate

In addition to the number of clock cycles needed to execute a program, we can
also count the number of instructions executed—the instruction path length or in-
struction count (1C). If we know the number of clock cycles and the instruction
count we can calculate the average number of clock cycles per instruction (CPI).
Becauseit is easier to work with and because we will deal with simple processors

44

Chapter 1 Fundamentals of Computer Design

in this chapter, we use CPI. Designers sometimes also use Instructions per Clock
or IPC, whichisthe inverse of CPI.
CPlI iscomputed as:

CPU clock cyclesfor aprogram
Instruction Count

CPI =

This CPU figure of merit provides insight into different styles of instruction sets
and implementations, and we will use it extensively in the next four chapters.

By transposing instruction count in the above formula, clock cycles can be de-
fined as IC x CPI . Thisallows usto use CPI in the execution time formula:

CPU time = Instruction Count x Clock cycle time x Cycles per Instruction

or

Instruction Count x Clock cycletime

CPUtime = Clock rate

Expanding the first formulainto the units of measurement and inverting the clock
rate shows how the piecesfit together:

Instructions>< Clock cycles . Seconds _ Seconds

- = =CPU i
Program Instruction ~ Clock cycle Program 'me

As this formula demonstrates, CPU performance is dependent upon three charac-
teristics: clock cycle (or rate), clock cycles per instruction, and instruction count.
Furthermore, CPU time is equally dependent on these three characteristics: A
10% improvement in any one of them leads to a 10% improvement in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are interdependent:

. Clock cycle time—Hardware technology and organization
» CPI—Organization and instruction set architecture
= Instruction count—Instruction set architecture and compiler technology

Luckily, many potential performance improvement techniques primarily improve
one component of CPU performance with small or predictable impacts on the
other two.

Sometimes it is useful in designing the CPU to calculate the number of total
CPU clock cycles as

n
CPU clock cycles=)" IC; x CPI
i=1

where ICj represents number of times instruction i is executed in a program and
CPlj represents the average number of instructions per clock for instructioni. This

form can be used to express CPU time as

1.6 Quantitative Principles of Computer Design 45

EXAMPLE

ANSWER

n
CPU time = [z IC, xCPIi]xCIock cycletime
i=1
and overall CPI as:

n
Y IC;x CPI,

: C
cPl = =1 ' CPI

n [
- = 2 n X
Instruction count o Instruction count
1=

The latter form of the CPI calculation uses each individual CPlj and the fraction
of occurrences of that instruction in a program (i.e., 1C; + Instruction count). CPI;

should be measured and not just calculated from atable in the back of areference
manual sinceit must include pipeline effects, cache misses, and any other memory
system inefficiencies.

Consider our earlier example, here modified to use measurements of the fre-
guency of the instructions and of the instruction CPI values, which, in practice, is
obtained by simulation or by hardware instrumentation.

Suppose we have made the following measurements:

Frequency of FP operations (other than FPSQR) = 25%
Average CPI of FP operations = 4.0

Average CPI of other instructions = 1.33

Frequency of FPSQR= 2%

CPIl of FPSQR =20

Assume that the two design alternatives are to decrease the CPI of
FPSQR to 2 or to decrease the average CPI of all FP operations to 2.5.
Compare these two design alternatives using the CPU performance
equation.

First, observe that only the CPI changes; the clock rate and instruction
count remain identical. We start by finding the original CPI with neither en-
hancement:

cPl - Y oom ©
original = _21 > (irarocgon o)
| =

(4x25%) + (1.33x 75%) = 2.0

We can compute the CPI for the enhanced FPSQR by subtracting the
cycles saved from the original CPI:

46

Chapter 1 Fundamentals of Computer Design

CP with new FPSQR — CPI origina — 2% x (CPI old FPSQR — CPI of new FPSQR only)
20-2%x(20-2) = 1.64

We can compute the CPI for the enhancement of all FP instructions the
same way or by summing the FP and non-FP CPIs. Using the latter gives
us

CPI = (75% x 1.33) + (25% x 2.5) = 1.625

new FP
Since the CPI of the overall FP enhancement is slightly lower, its perfor-
mance will be marginally better. Specifically, the speedup for the overall
FP enhancement is

CPU time, IC x Clock cyclex CPI

- original - original
SPeUPrew P = P fime, g, mp 1C X Clock oydex CPl o, rp
CPl .
_ origind _ 2.00 _ 123
CPl o 1625

Happily, this is the same speedup we obtained using Amdahl’'s Law on
page 42. It is often possible to measure the constituent parts of the CPU
performance equation. This is a key advantage for using the CPU perfor-
mance equation versus Amdahl’s Law in the above example. In particular,
it may be difficult to measure things such as the fraction of execution time
for which a set of instructions is responsible. In practice this would proba-
bly be computed by summing the product of the instruction count and the
CPI for each of the instructions in the set. Since the starting point is often
individual instruction count and CPI measurements, the CPU perfor-
mance equation is incredibly useful. n

Measuring and Modeling the Components of the CPU Performance Equation

To use the CPU performance eguation as a design tool, we need to be able to
measure the various factors. For an existing processor, it is easy to obtain the exe-
cution time by measurement, and the clock speed is known. The challenge liesin
discovering the instruction count or the CPl. Most newer processors include
counters for both instructions executed and for clock cycles. By periodically
monitoring these counters, it is also possible to attach execution time and instruc-
tion count to segments of the code, which can be helpful to programmers trying
to understand and tune the performance of an application. Often, a designer or
programmer will want to understand performance at a more fine-grained level
than what is available from the hardware counters. For example, they may want
to know why the CPI iswhat it is. In such cases, simulation techniques like those
used for processors that are being designed are used.

1.6 Quantitative Principles of Computer Design 47

There are three general classes of simulation techniques that are used. In gen-
eral, the more sophisticated techniques yield more accuracy, particularly for more
recent architectures, at the cost of longer execution time The first and simplest
technique, and hence the least costly, is profile-based, static modeling. In this
technique a dynamic execution profile of the program, which indicates how often
each instruction is executed, is obtained by one of three methods:

1. By using hardware counters on the processor, which are periodically saved.
Thistechnique often gives an approximate profile, but onethat iswithin afew
percent of exact.

2. By using instrumented execution, in which instrumentation code is compiled
into the program. This code is used to increment counters, yielding an exact
profile. (This technique can also be used to create a trace of memory address
that are accessed, which is useful for other simulation techniques.)

3. By interpreting the program at the instruction set level, compiling instruction
countsin the process.

Once the profile is obtained, it is used to analyze the program in a static fashion
by looking at the code. Obviously with the profile, the total instruction count is
easy to obtain. It is also easy to get a detailed dynamic instruction mix telling
what types of instructions were executed with what frequency. Finally, for smple
processors, it is possible to compute an approximation to the CPI. This approxi-
mation is computed by modeling and analyzing the execution of each basic block
(or straightline code segment) and then computing an overall estimate of CPl or
total compute cycles by multiplying the estimate for each basic block by the
number of timesit is executed. Although this simple model ignores memory be-
havior and has severe limits for modeling complex pipelines, it is a reasonable
and very fast technique for modeling the performance of short, integer pipelines,
ignoring the memory system behavior.

Trace-driven simulation is a more sophisticated technique for modeling per-
formance and is particularly useful for modeling memory system performance. In
trace-driven simulation, a trace of the memory references executed is created,
usualy either by simulation or by instrumented execution. The trace includes
what instructions were executed (given by the instruction address), as well as the
data addresses accessed.

Trace-driven simulation can be used in several different ways. The most com-
mon use isto model memory system performance, which can be done by simulat-
ing the memory system, including the caches and any memory management
hardware using the address trace. A trace-driven simulation of the memory sys-
tem can be combined with a static analysis of pipeline performance to obtain a
reasonably accurate performance model for simple pipelined processors. For
more complex pipelines, the trace data can be used to perform a more detailed
analysis of the pipeline performance by simulation of the processor pipeline.

48

Chapter 1 Fundamentals of Computer Design

Since the trace data allows a simulation of the exact ordering of instructions,
higher accuracy can be achieved than with a static approach. Trace-driven simu-
lation typically isolates the smulation of any pipeline behavior from the memory
system. In particular, it assumes that the trace is completely independent of the
memory system behavior. As we will see in Chapters 3 and 5, thisis not the case
for the most advanced processors—athird technique is needed.

The third technique, which is the most accurate and most costly, is execution-
driven simulation. In execution-driven simulation a detailed simulation of the
memory system and the processor pipeline are done simultaneously. This allows
the exact modeling of the interaction between the two, which is critical aswe will
seein Chapters 3 and 5.

There are many variations on these three basic techniques. We will see exam-
ples of these tools in later chapters and use various versions of them in the exer-
cises.

Locality of Reference

Although Amdahl’s Law is atheorem that applies to any system, other important
fundamental observations come from properties of programs. The most important
program property that we regularly exploit islocality of reference: Programs tend
to reuse data and instructions they have used recently. A widely held rule of
thumb is that a program spends 90% of its execution time in only 10% of the
code. An implication of locality is that we can predict with reasonable accuracy
what instructions and data a program will use in the near future based on its ac-
cesses in the recent past.

Locality of reference also applies to data accesses, though not as strongly asto
code accesses. Two different types of locality have been observed. Temporal |o-
cality states that recently accessed items are likely to be accessed in the near fu-
ture. Spatial locality says that items whose addresses are near one another tend to
be referenced close together in time. We will see these principles applied in
Chapter 5.

Take Advantage of Parallelism

Taking advantage of paralelism is one of the most important methods for im-
proving performance. We give three brief examples, which are expounded on in
later chapters. Our first example is the use of parallelism at the system level. To
improve the throughput performance on a typical server benchmark, such as
SPECWeb or TPC, multiple processors and multiple disks can be used. The
workload of handling requests can then be spread among the CPUs or disks re-
sulting in improved throughput. This is the reason that scalability is viewed as a
valuable asset for server applications.

At thelevel of anindividual processor, taking advantage of parallelism among
instructions is critical to achieving high performance. One of the simplest ways

1.7 Putting It All Together: Performance and Price-Performance 49

to do this is through pipelining. The basic idea behind pipelining, which is ex-
plained in more detail in Appendix A and a major focus of Chapter 3, is to over-
lap the execution of instructions, so as to reduce the total time to complete a
sequence of instructions. Viewed from the perspective of the CPU performance
equation, we can think of pipelining as reducing the CPI by allowing instructions
that take multiple cycles to overlap. A key insight that allows pipelining to work
isthat not every instruction depends on its immediate predecessor, and thus, exe-
cuting the instructions completely or partialy in parallel may be possible.

Parallelism can also be exploited at the level of detailed digital design. For ex-
ample, set associative caches use multiple banks of memory that are typical
searched in paralld to find a desired item. Modern ALUs use carry-lookahead,
which uses parallelism to speed the process of computing sums from linear in the
number of bitsin the operandsto logarithmic.

There are many different ways designers take advantage of paralelism. One
common class of techniquesis parallel computation of two or more possible out-
comes, followed by late selection. Thistechniqueisused in carry select adders, in
set associative caches, and in handling branches in pipelines. Virtually every
chapter in this book will have an example of how performance is enhanced
through the exploitation of parallelism.

1.7 | Putting It All Together: Performance and Price-Performance

In the Putting It All Together sections that appear near the end of every chapter,
we show real examples that use the principles in that chapter. In this section we
look at measures of performance and price-performance first in desktop systems
using the SPEC CPU benchmarks, then at servers using TPC-C as the bench-
mark, and finally at the embedded market using EEMBC as the benchmark.

Performance and Price-Performance for Desktop Systems

Although there are many benchmark suites for desktop systems, a mgjority of
them are OS or architecture specific. In this section we examine the CPU perfor-
mance and price-performance of a variety of desktop systems using the SPEC
CPU2000 integer and floating point suites. As mentioned earlier, SPEC
CPU2000 summarizes CPU performance using a geometric mean normalized to
a Sun system with larger numbers indicating higher performance.

Each system was configured with one CPU, 512 MB of SDRAM (with ECC
if available), approximately 20 GB of disk, afast graphics system, and an 10/100
Mb Ethernet connection. The seven systems we examined and their processors
and price are shown in Figure 1.18. The wide variation in price is driven by a
number of factors, including system expandability, the use of cheaper disks (ATA
versus SCSl), less expensive memory (PC memory versus custom DIMMS), soft-
ware differences (Linux or a Microsoft OS versus a vendor specific OS), the cost

50 Chapter 1 Fundamentals of Computer Design

of the CPU, and the commoditization effect, which we discussed on page 14.
(See the further discussion on price variation in the caption of Figure 1.18.)

Vendor Model Processor Clock Rate (MH2) Price
Compaq Presario 7000 AMD Athlon 1,400 $2,091
Dl Precision 420 Intel Pentium 11 1,000 $3,834
Dell Precision 530 Intel Pentium 4 1,700 $4,175
HP Workstation c3600 PA 8600 552 $12,631
IBM RS6000 44P/170 IBM 111-2 450 $13,889
Sun Sunblade 100 UltraSPARC Il-e 500 $2,950
Sun Sunblade 1000 UltraSPARC 111 750 $9.950

FIGURE 1.18 Seven different desktop systems from five vendors using seven different microprocessors showing
the processor, its clock rate, and the selling price. All these systems are configured with 512 MB of ECC SDRAM, a
high-end graphics system (which is not the highest performance system available for the more expensive platforms), and
approximately 20 GB of disk. Many factors are responsible for the wide variation in price despite this common elements.
First, the systems offer different levels of expandability (with the Prescario system being the least expandable, the Dell sys-
tems and Sunblade 100 being moderately expandable, nd the HP, IBM, and Sunblade 1000 being very flexible and expand-
able). Second, the use of cheaper disks (ATA versus SCSI) and less expensive memory (PC memory versus custom
DIMMs) has a significant impact. Third the cost of the CPU varies by at least a factor of two. In 2001 the Athlon sells for
about $200, The Pentium IlI for about $240, and the Pentium 4 for about $500. Fourth, software differences (Linux or a Mi-
crosoft OS versus a vendor specific OS) probably affect the final price. Fifth, the lower end systems use PC commodity parts
in others areas (fans, power supply, support chip sets), which lower costs. Finally, the commoditization effect, which we dis-
cussed in page 14, is at work especially for the Compag and Dell systems. These prices are as of July 2001.

Figure 1.19 shows the performance and the price-performance of these seven
systems using SPEC CINT2000 as the metric. The Compag system using the
AMD Athlon CPU offers both the highest performance and the best price-perfor-
mance, followed by the two Dell systems, which have comparable price-perfor-
mance, although the Pentium 4 system is faster. The Sunblade 100 has the lowest
performance, but somewhat better price-performance than the other UNIX-based
workstation systems.

Figure 1.20 shows the performance and price-performance for the SPEC float-
ing point benchmarks. The floating point instruction set enhancements in the
Pentium 4 give it a clear performance advantage, although the Compag Athlon-
based system still has superior price-performance. The IBM, HP, and Sunblade
1000 all outperform the Dell 420 with a Pentium I11, but the Dell system till of-
fers better price-performance than the IBM, Sun, or HP workstations.

Performance and Price-Performance for Transaction Processing Servers

One of the largest server markets is online transaction processing (OLTP), which
we described earlier. The standard industry benchmark for OLTP is TPC-C,
which relies on a database system to perform queries and updates. Five factors

1.7 Putting It All Together: Performance and Price-Performance 51

600 250

\ 1 225
500

SPEC Base CINT2000

SPEC CINT2000 per $1000 in Price

Compaq Presario Dell Precision Dell Precision HP Workstation ~ Sun Sunblade IBM RS6000 Sun Sublade 100

7000 530 420 c3600 1000/1750 44P/170

== SPECbase CINT2000 == SPEC CINT2000 performance/cost

FIGURE 1.19 Performance and price-performance for seven systems are measured using SPEC CINT2000 as the
benchmark. With the exception of the Sunblade 100 (Sun’s low-end entry system), price-performance roughly parallels per-
formance, contradicting the conventional wisdom-at least on the desktop-that higher performance systems carry a dispro-
portionate price premium. Price-performance is plotted as CINT2000 performance per $1,000 in system cost. These
performance numbers and prices are current as of July 2001.The measurements are available online as http://
www.spec.org/osg/cpu2000/.

make the performance of TPC-C particularly interesting. First, TPC-C is a rea-
sonable approximation to a real OLTP application; athough this makes bench-
mark set-up complex and time consuming, it also makes the results reasonably
indicative of real performance for OLTP. Second, TPC-C measures total system
performance, including the hardware, the operating system, the I/O system, and
the database system, making the benchmark more predictive of real performance.
Third, the rules for running the benchmark and reporting execution time are very
complete, resulting in more comparable numbers. Fourth, because of the impor-
tance of the benchmark, computer system efforts devote significant effort to mak-
ing TPC-C run well. Fifth, vendors are required to report both performance and
price-performance, enabling us to examine both.

Because the OLTP market is large and quite varied, there is an incredible
range of computing systems used for these applications, ranging from small sin-
gle processor servers to midrange multiprocessor systems to large-scale clusters

52

Chapter 1 Fundamentals of Computer Design

SPECbase CFP 2000

450

IS
o
o

w
o
o

w
=3
1=}

N
o
=3

N
=3
o

i
o
o

[
o
o

50

250

225

200

175

SPEC CFP2000 per $1000 in Price

Dell Precision Compaq Presario HP Workstation Sun Sunblade IBM RS6000 Dell Precision Sun Sublade 100
530 7000 c3600 1000/1750 44P/170 420

=3 SPECbase CFP 2000 —@—=SPEC CFP2000 performance/cost

FIGURE 1.20 Performance and price-performance for seven systems are measured using SPEC CFP2000 as the
benchmark. Price-performance is plotted as CFP2000 performance per $1,000 in system cost. The dramatically improved
floating point performance of the Pentium 4 versus the Pentium Ill is clear in this figure. Price-performance partially parallels
performance but not as clearly as in the case of the integer benchmarks. These performance numbers and prices are current
as of July 2001. The measurements are available online as http://www.spec.org/osg/cpu2000/.

consisting of tens to hundreds of processors. To alow an appreciation for this di-
versity and its range of performance and price-performance, we will examine six
of the top results by performance (and the comparative price-performance) and
six of the top results by price-performance (and the comparative performance).
For TPC-C performance is measured in transactions per minute (TPM), while
price-performance is measured in TPM per dollar. Figure 1.21 shows the charac-
teristics of a dozen systems whose performance or price-performance is near the
top in one measure or the other.

Figure 1.22 charts the performance and price-performance of six of the high-
est performing OLTP systems described in Figure 1.21.The IBM cluster system,
consisting of 280 Pentium |1l processors, provides the highest overall perfor-
mance beating any other system by almost a factor of three, as well as the best
price-performance by just over a factor of 1.5. The other systems are al moder-
ate-scale multiprocessors and offer fairly comparable performance and similar

1.7 Putting It All Together: Performance and Price-Performance 53
Vendor & System CPUs Database os Price
IBM exSeries 370 c/s 280x Pentiumlll @ Microsoft SQL Microsoft Windows $15,543,346
900 Mhz Server 2000 Adv. Server
Compaqg Alpha 32xAlpha21264@ Oracle 9i Compag Tru64 UNIX $10,286,029
server GS 320 1GHz
Fujitsu PRIMEPOW- 48 x SPARC64 GP SymfoWARE Sun Solaris 8 $9,671,742
ER 20000 @ 563 MHz Server Enterpr.
IBM eServer 680 7017- 24 x IBM RS64-1V Oracle88.1.7.1 IBM AIX 4.3.3 $7,546,837
S85 600 MHz
HP 9000 Enterprise 48xHPPA-RISC Oracle8v8.1.7.1 HPUX 11.i 64-bit $8,522,104
Server 8600 552 MHz
IBM eServer 400 840- 24 X 1Series400 IBM DB2 for IBM OS/400 V4 $8,448,137
2420 Model 840 AS/400 V4
Dell PowerEdge 6400 3 x Pentium 11 Microsoft SQL Microsoft Windows $131,275
700MHz Server 2000 2000
IBM eserver xSeries 4 x Pentium 111 700 Microsoft SQL Microsoft Windows $297,277
250 c/s MHz Server 2000 Adv. Server
Compaq Proliant 4x Intel Pentium1ll Microsoft SQL Microsoft Windows $375,016
ML570 6/700 2 @ 700 MHz Server 2000 Adv. Server
HP NetServer LH 6000 6 x Pentium |11 @ Microsoft SQL Microsoft Windows $372805
550 MHz Server 2000 NT Enterprise
NEC Express5800/180 8 x Pentium 11 900 Microsoft SQL Microsoft Windows $682,724
MHz Server 2000 Adv. Server
HP 9000 / L2000 4x PA-RISC 8500 SybaseAdaptive HPUX 11.0 64-bit $368,367
440MHz Server

FIGURE 1.21 The characteristics of adozen OLTP systems with either high total performance (top half of the table)
or superior price-performance (bottom half of the table). The IBM exSeries with 280 Pentium llIs is a cluster, while all
the other systems are tightly coupled multiprocessors. Surprisingly, none of the top performing systems by either measure
are uniprocessors! The system descriptions and detailed benchmark reports are available at: http://www.tpc.org/.

price-performance to the othersin the group. Chapters 7 and 8 discuss the design
of cluster and multiprocessor systems.

Figure 1.23 charts the performance and price-performance of the six OLTP

systems from Figure 1.21 with the best price-performance. These systems are al
multiprocessor systems, and, with the exception of the HP system, are based on
Pentium I11 processors. Although the smallest system (the 3-processor Dell sys-
tem) has the best price-performance, several of the other systems offer better per-
formance at about a factor of 0.65 of the price-performance. Notice that the
systems with the best price-performance in Figure 1.23 average almost four times
better in price-performance (TPM/$ = 99 versus 27) than the high performance
systemsin Figure 1.22.

54 Chapter 1 Fundamentals of Computer Design

700 50

600

500 >
\ 135
430
200 - A

300

120

200 + 415
410

100 A
0 0

IBM exSeries 370 c/s Compaq Alphaserver Fujitsu PRIMEPOWER IBM eServer 680 7017- HP 9000 Enterprise IBM eServer 400 840-
GS 320 20000 S85 Server 2420

,
N
@
Transcation per Minute per $1,000

Transactions per Minute (thousands)

o

== Performance (Transactions per Minute) =& price-performance (TPM per $1,000)

FIGURE 1.22 The performance (measured in thousands of transactions minute) and the price-performance (mea-
sured in transactions per minute per $1,000) are shown for six of the highest performing systems using TPC-C as
the benchmark. Interestingly, IBM occupies three of these six positions, with different hardware platforms (a cluster of Pen-
tium llIs, an Power Il based multiprocessor, and an AS 400 based multiprocessor.

Performance and Price-Performance for Embedded Processors

Comparing performance and price-performance of embedded processorsis more
difficult than for the desktop or server environments because of several character-
istics. First, benchmarking is in its comparative infancy in the embedded space.
Although the EEMBC benchmarks represent a substantial advance in benchmark
availability and benchmark practice, as we discussed earlier, these benchmarks
have significant drawbacks. Equally importantly, in the embedded space, proces-
sors are often designed for a particular class of applications; such designs are of-
ten not measured outside of their application space and when they are they may
not perform well. Finally, as mentioned earlier cost and power are often the most
important factors for an embedded application. Although we can partially mea-
sure cost by looking at the cost of the processor, other aspects of the design can
be critical in determining system cost. For example, whether or not the memory
controller and 1/O control are integrated into the chip affects both power and cost
of the system. As we said earlier, power is often the critical constraint in embed-

1.7 Putting It All Together: Performance and Price-Performance 55

180 60

160

-
IS
=)

-
Ny
=)

S
=)

-
o
o

©
=)

o
=3

~
o

Tranactions per Minute per $1,000
w
=)

Transcation per Minute (thousands)

IS
=)

20

0 T T T 0
Dell PowerEdge IBM eserver xSeries Compaq Proliant ~ HP NetServer LH NEC Express HP 9000 / L2000
6400 250 cis ML570 6/700 2 6000 5800/180
= Price-Performance (TPM per $1,000) —®—performance (Transactions per Minute) ‘

FIGURE 1.23 Price-performance (plotted as transactions per minute per $1000 of system cost) and overall perfor-
mance (plotted as thousands of transactions per minute).

ded systems, and we focus on the rel ationship between performance and power in
the next section.

Figure 1.24 shows the characteristics of the five processors whose price and
price-performance we examine. These processors span awide range of cost, pow-
er, and performance and thus are used in very different applications. The high-
end processors, such as the PowerPC 650 and AMD Elan are used in applications
such as network switches and possibly high-end laptops. The NEC VR 5432 se-
ries is a newer version of the VR 5400 series, which is one of the most heavily
used processors in color laser printers. In contrast, the NEC VR 4121 is a low-
end, low-power device used primarily in PDAS; in addition to the core computing

56

Chapter 1 Fundamentals of Computer Design

functions, the 4121 provides a number of system functions, reducing the cost of
the overall system.

Processor Instr. Set Processor Cache Processor Typical Price
Clock Instr./Data organization power (€3]
Rate On-chip (in mWw)
(MH2z) Secondary cache
AMD Elan SC520 x86 133 16K/16K Pipelined: single 1600 $38
issue
AMD K6-2E+ x86 500 32K/32K Pipelined: 3+ 9600 $78
128K issues/clock.
IBM PowerPC PowerPC 500 32K/32K Pipelined 4 6000 $94
750CX 128K issues/clock
NEC VR 5432 MIPS-64 167 32K /32K Pipelined: 2 2088 $25
issues/clock
NEC VR 4122 MIPS-64 180 32K /16K Pipelined: single 700 $33
issue

FIGURE 1.24 Five different embedded processors spanning a range of performance (more than a factor of ten, as
we will see) and a wide range in price (roughly a factor of four and probably 50% higher than that if total system
costis considered). The price does not include interface and support chips, which could significantly increase the deployed
system cost. Likewise, the power indicated includes only the processor’s typical power consumption (in milliwatts); These
processors also differ widely in terms of execution capability from a maximum of four instructions per clock to one! All the
processors except the NEC VR4122 include a hardware floating point unit.

Figure 1.25 shows the relative performance of these five processors on three of
the five EEMBC benchmark suites. The summary number for each benchmark
suite is proportional to the geometric mean of the individual performance mea-
sures for each benchmark in the suite (measured as iterations per second). The
clock rate differences explain between 33% and 75% of the performance differ-
ences. For machines with similar organization (such asthe AMD Elan SC520 and
the NEC VR 4121), the clock rate is the primary factor in determining perfor-
mance. For machines with widely differing cache structures (such as the presence
or absence of a secondary cache) or different pipelines, clock rate explains less of
the performance difference.

Figure 1.26 shows the price-performance of these processors, where price is
measured only by the processor cost. Here, the wide range in price narrows the
performance differences, making the slower processors more cost effective. If our
cost analysis also included the system support chips, the differences would nar-
row even further, probably boosting the VR 5432 to the top in price-performance
and making the VR 4132 at least competitive with the high-end IBM and AMD
chips.

1.7 Putting It All Together: Performance and Price-Performance

57

12.0

-
)
o

8.0

6.0

4.0

Performance Relative to AMD Elan SC520

o B

0.0
Automotive

Office

Telecomm

[BAMD Elanscs20
mAMD K6-2E+

i@ !BM PowerPC 750CX|
ImNEC VR 5432

[BINEC VR4122

FIGURE 1.25 Relative performance for three of the five EEMBC benchmark suites on
five different embedded processors. The performance is scaled relative to the AMD Elan
SC520, so that the scores across the suites have a narrower range.

¥

12.0

-
o
o

8.0 1

6.0

Relative Performance / Price

4.0 1

2.0

0.0
Automotive

Office

Telecomm

I[@AMD ElanSC520
(mAMD K6-2E+

i@ !BM PowerPC 750CX|
ImNEC VR 5432

[BNEC VR4122

FIGURE 1.26 Relative price-performance for three of the five EEMBC benchmark
suites on five different embedded processors, using only the price of the processor.

58

Chapter 1 Fundamentals of Computer Design

1.8

Another View: Power Consumption and
Efficiency as the Metric

Throughout the chapters of this book, you will find sections entitled: Another
View. These sections emphasize the way in which different segments of the com-
puting market may solve a problem. For example, if the Putting It All Together
section emphasizes the memory system for a desktop microprocessor, the Anoth-
er View section may emphasize the memory system of an embedded application
or aserver. In thisfirst Another View section, we look at the issue of power con-
sumption in embedded processors.

As mentioned several timesin this chapter, cost and power are often at least as
important as performance in the embedded market. In addition to the cost of the
processor module (which includes any required interface chips), memory is often
the next most costly part of an embedded system. Recall that, unlike a desktop or
server system, most embedded systems do not have secondary storage; instead,
the entire application most reside in either FLASH or DRAM (as described in
Chapter 5). Because many embedded systems, such as PDAs and cell phones, are
constrained by both cost and physical size, the amount of memory needed for the
application iscritical. Likewise, power is often a determining factor in choosing a
processor, especially for battery-powered systems.

Aswe saw in Figure 1.24 on page 56, the power for the five embedded proces-
sors we examined varies by more than a factor of 10. Clearly, the high perfor-
mance AMD K6, with atypical power consumption of 9.3 W, cannot be used in
environments where power or heat dissipation are critical. Figure 1.27 shows the
relative performance per watt of typical operating power. Compare this figure to
Figure 1.25 on page 57, which plots raw performance, and notice how different
the results are. The NEC VR4122 has a clear advantage in performance per watt,
but is the second lowest performing processor! From the viewpoint of power con-
sumption the NEC VR4122, which was designed for battery-based systems, is
the big winner. The IBM PowerPC displays efficient use of power to achieve its
high performance, although at 6 watts typical, it is probably not be suitable for
most battery-based devices.

1.9 Fallacies and Pitfalls 59

4.0

3.5

3.0

2.5

B AMD ElanSC520
B AMD K6-2E+

2.0
@ IBM PowerPC 750CX

B NEC VR 5432
@ NEC VR4122

1.5

Relatgive performance per Watt

1.0 1

0.5

0.0

Automotive Office Telecomm

FIGURE 1.27 Relative performance per watt for the five embedded processors. The power is measured as typical
operating power for the processor, and does not include any interface chips.

19 | Fallacies and Pitfalls

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We
call such misbeliefsfallacies. When discussing afallacy, we try to give a counter-
example. We also discuss pitfalls—easily made mistakes. Often pitfalls are gen-
eralizations of principles that are true in a limited context. The purpose of these
sectionsisto help you avoid making these errors in machines that you design.

Fallacy: The relative performance of two processors with the same | SA can be
judged by clock rate or by the performance of a single benchmark suite.

As processors have become faster and more sophisticated, processor performance
in one application area can diverge from that in another area. Sometimes the in-
struction set architecture is responsible for this, but increasingly the pipeline
structure and memory system are responsible. This also means that clock rate is

60 Chapter 1 Fundamentals of Computer Design

not agood metric, even if the instruction sets are identical. Figure 1.28 shows the
performance of a 1.7 GHz Pentium 4 relative to a 1 GHz Pentium I11. The figure
also shows the performance of a hypothetical 1.7 GHz Pentium |11 assuming lin-
ear scaling of performance based on the clock rate. In all cases except the SPEC
floating point suite, the Pentium 4 delivers less performance per MHz than the
Pentium 111. As mentioned earlier, instruction set enhancements (the SSE2 exten-
sions), which significantly boost floating point execution rates, are probably re-
sponsible for the better performance of the Pentium 4 for these floating point

benchmarks.

1.80
1.60
1.40
1.20

[}

o

c

©

g 1.00

h=

[}

a

[

> 0.80

kS

Kol

24
0.60
0.40
0.20
0.00

SPECbase CINT2000 SPECbase CFP2000 Multimedia Game benchmark Web benchmark

FIGURE 1.28 A comparison of the performance of the Pentium 4 (P4) relative to the Pentium Il (P3) on five different
sets of benchmark suites. The bars show the relative performance of a 1.7 GHz P4 versus a 1 GHz P3. The triple vertical
line at 1.7 shows how much faster a Pentium 4 at 1.7 GHz would be than a 1 GHz Pentium Il assuming performance scaled
linearly with clock rate. Of course, this line represents an idealized approximation to how fast a P3 would run. The first two
sets of bars are the SPEC integer and floating point suites. The third set of bars represents three multimedia benchmarks.
The fourth set represents a pair of benchmarks based on the Game Quake, and the final benchmark is the composite Web-
mark score, a PC-based web benchmark

Exercises 61

Performance within a single processor implementation family (such as Pen-
tium 111) usually scales slower than clock speed because of the increased relative
cost of stalls in the memory system. Across generations (such as the Pentium 4
and Pentium I11) enhancements to the basic implementation usually yield a per-
formance that is somewhat better than what would be derived from just clock rate
scaling. As Figure 1.28 shows, the Pentium 4 is usually slower than the Pentium
11 when performance is adjusted by linearly scaling the clock rate. This may
partly derive from the focus on high clock rate as a primary design goal. We dis-
cuss both the differences between the Pentium [11 and Pentium 4 further in Chap-
ter 3 aswell aswhy the performance does not scale as fast as the clock rate does.

Fallacy: Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance and some of these may change over time. A big factor influencing the
usefulness of a benchmark is the ability of the benchmark to resist “cracking,”
also known as benchmark engineering or “benchmarksmanship.” Once a bench-
mark becomes standardized and popular, there is tremendous pressure to improve
performance by targeted optimizations or by aggressive interpretation of the rules
for running the benchmark. Small kernels or programs that spend their timein a
very small number of lines of code are particularly vulnerable.

For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different 300
x 300 matrix multiplications. In this kernel, 99% of the execution timewasin a
single line (see SPEC [1989]). Optimization of this inner loop by the compiler
(using an idea called blocking, discussed in Chapter 5) for the IBM Powerstation
550 resulted in performance improvement by afactor of more than 9 over an ear-
lier version of the compiler! This benchmark tested compiler performance and
was not, of course, agood indication of overall performance, nor of this particu-
lar optimization.

Even after the elimination of this benchmark, vendors found methods to tune
the performance of individual benchmarks by the use of different compilers or
preprocessors, as well as benchmark-specific flags. Although the baseline perfor-
mance measurements requires the use of one set of flags for all benchmarks, the
tuned or optimized performance does not. In fact, benchmark-specific flags are al -
lowed, even if they areillegal in general and could lead to incorrect compilation!

Allowing benchmark and even input-specific flags has led to long lists of op-
tions, as Figure 1.29 shows. This list of options, which is not significantly differ-
ent from the option lists used by other vendors, is used to obtain the peak
performance for the Compaq AlphaServer DS20E Model 6/667. The list makes it
clear why the baseline measurements were needed. The performance difference
between the baseline and tuned numbers can be substantial. For the SPEC
CFP2000 benchmarks on the AlphaServer DS20E Model 6/667, the overall per-
formance (which by SPEC CPU2000 rules is summarized by geometric mean) is

62 Chapter 1 Fundamentals of Computer Design

1.12 times higher for the peak numbers. As compiler technology improves, the
achieves closer to peak performance using the base flags. Similarly, as the bench-
marks improve in quality, they become less suspectible to highly application spe-
cific optimizations. Thus, the gap between peak and base, which in early times
was often 20%, has narrowed.

Peak: -v -g3 -arch ev6 -non_shared ONESTEP plus:
168.wupwise: 77 -fast -O4 -pipeline -unroll 2
171.swim; f90 -fast -O5 -transform_loops
172.mgrid: kf77 -O5 -transform_loops -tune ev6 -unroll 8
173.applu: f77 -fast -O5 -transform_loops -unroll 14
177.mesa cc -fast -O4
178.galgel: kf90 -O4 -unroll 2 -ldxml RM_SOURCES = |apak.fo0
179.art: kee -fast -O4 -ckapargs="-arl=4 -ur=4' -unroll 10
183.equake: ke -fast -ckapargs="-arl=4' -xtaso_short
187.facerec: f90 -fast -O4
188.ammp: cc -fast -O4 -xtaso_short
189.lucas: kf90 -fast -O5 -fkapargs="-ur=1" -unroll 1
191.fma3d: kf90 -O4
200.sixtrack: f90 -fast -O5 -transform_loops
301.apsi: kf90 -05 -transform_loops -unroll 8 -fkapargs="-ur=1"'

FIGURE 1.29 The tuning parameters for the SPEC CFP2000 report on an AlphaServer DS20E Model 6/667. This is
the portion of the SPEC report for the tuned performance corresponding to that in Figure 1.14 on page 34. These
parameters describe the compiler options (four different compilers are used). Each line shows the option used for one of the
SPEC CFP2000 benchmarks. Data from: http://www.spec.org/osg/cpu2000/results/res1999q4/cpu2000-19991130-
00012.html.

Ongoing improvements in technology can aso change what a benchmark
measures. Consider the benchmark gcc, considered one of the most realistic and
challenging of the SPEC92 benchmarks. Its performance is a combination of
CPU time and real system time. Since the input remains fixed and real system
timeislimited by factors, including disk access time, that improve slowly, an in-
creasing amount of the runtime is system time rather than CPU time. This may be
appropriate. On the other hand, it may be appropriate to change the input over
time, reflecting the desire to compile larger programs. In fact, the SPEC92 input
was changed to include four copies of each input file used in SPEC89; although
this increases runtime, it may or may not reflect the way compilers are actually
being used.

Over a long period of time, these changes may make even a well-chosen
benchmark obsolete. For example, more than half the benchmarks added to the
1992 and 1995 SPEC CPU benchmark release were dropped from the next gener-

Exercises 63

ation of the suite! To show how dramatically benchmarks must adapt over time,
we summarize the status of the integer and FP benchmarks from SPEC 89, 92,
and 95 in Figure 1.30.

Pitfall: Comparing hand-coded assembly and compiler generated high level
language performance.

In most applications of computers, hand-coding is simply not tenable. A combi-
nation of the high cost of software development and maintenance together with
time-to-market pressures have made it impossible for many applications to con-
sider assembly language. In parts of the embedded market, however, several fac-
tors have continued to encourage limited use of hand coding, at least of key
loops. The most important factors favoring this tendency are the importance of a
few small loops to overall performance (particularly real-time performance) in
some embedded applications, and the inclusion of instructions that can signifi-
cantly boost performance of certain types of computations, but that compilers can
not effectively use.

When performance is measured either by kernels or by applications that spend
most of their timein a small number of loops, hand coding of the critical parts of
the benchmark can lead to large performance gains. In such instances, the perfor-
mance difference between the hand-coded and machine-generated versions of a
benchmark can be very large, as shown in for two different machines in Figure
1.31. Both designers and users must be aware of this potentialy large difference

64 Chapter 1 Fundamentals of Computer Design

Benchmark name Integer or SPEC 89 SPEC 92 SPEC 95 SPEC 2000
FP

gcc integer adopted modified modified modified

espresso integer adopted modified dropped

li integer adopted modified modified dropped

egntott integer adopted dropped

spice FP adopted modified dropped

doduc FP adopted dropped

nasa’ FP adopted dropped

fpppp FP adopted modified dropped

matrix300 FP adopted dropped

tomcatv FP adopted modified dropped

compress integer adopted modified dropped

sc integer adopted dropped

mdljdp2 FP adopted dropped

waveb FP adopted modified dropped

ora FP adopted dropped

mdljsp2 FP adopted dropped

avinn FP adopted dropped

ear FP adopted dropped

swm256 (aka swim) FP adopted modified modified

su2cor FP adopted modified dropped

hydro2d FP adopted modified dropped

go integer adopted dropped

m88ksim integer adopted dropped

ijpeg integer adopted dropped

perl integer adopted modified

vortex integer adopted modified

mgrid FP adopted modified

applu FP adopted dropped

aps FP adopted modified

turb3d adopted dropped

FIGURE 1.30 The evolution of the SPEC benchmarks over time showing when benchmarks were adopted, modi-
fied and dropped. All the programs in the 89, 92, and 95 releases are show. Modified indicates that either the input or the
size of the benchmark was changed, usually to increase its running time and avoid perturbation in measurement or domi-
nation of the execution time by some factor other than CPU time.

Exercises

and not extrapolate performance for compiler generate code from hand coded

benchmarks.
Machine EEMBC Performance Performance Ratio hand/
benchmark set Compiler generated Hand coded compiler
Trimedia 1300 @166 MHz Consumer 23.3 110.0 4.7
BOPS Manta @ 136 MHz Telecomm 2.6 225.8 44.6
TI TMS320C6203 @ 300MHz Telecomm 6.8 68.5 10.1

FIGURE 1.31 The performance of three embedded processors on C and hand-coded versions of portions of the
EEMBC benchmark suite. In the case of the BOPS and Tl processor, they also provide versions that are compiled but
where the C is altered initially to improve performance and code generation; such versions can achieve most of the benefit
from hand optimization at least for these machines and these benchmarks.

Fallacy: Peak performance tracks observed performance.

The only universally true definition of peak performanceis“the performance lev-
el a machine is guaranteed not to exceed.” The gap between peak performance
and observed performance is typically afactor of 10 or more in supercomputers.
(See Appendix B on vectors for an explanation.) Since the gap is so large and can
vary significantly by benchmark, peak performance is not useful in predicting ob-
served performance unless the workload consists of small programs that normal-
ly operate close to the peak.

As an example of thisfallacy, asmall code segment using long vectors ran on
the Hitachi S810/20 in 1.3 seconds and on the Cray X-MP in 2.6 seconds. Al-
though this suggests the S810 is two times faster than the X-MP, the X-MP runs
a program with more typical vector lengths two times faster than the S810. These
data are shown in Figure 1.32.

Cray Hitachi
M easur ement X-MP S810/20 Performance
A(i)=B(i)*C(i)+D(i)* E(i) 2.6 secs 1.3 secs Hitachi 2 timesfaster
(vector length 1000 done 100,000 times)
Vectorized FFT 3.9 secs 7.7 secs Cray 2 times faster
(vector lengths 64,32,...,2)

FIGURE 1.32 Measurements of peak performance and actual performance for the Hi-
tachi S810/20 and the Cray X-MP. Note that the gap between peak and observed perfor-
mance is large and can vary across benchmarks. Data from pages 18-20 of Lubeck, Moore,
and Mendez [1985]. Also see Fallacies and Pitfalls in Appendix B.

Fallacy: The best design for a computer is the one that optimizes the primary
objective without considering implementation.

66

Chapter 1 Fundamentals of Computer Design

Although in a perfect world where implementation complexity and implementa-
tion time could be ignored, this might be true, design complexity is an important
factor. Complex designs take longer to complete, prolonging time to market. Giv-
en the rapidly improving performance of computers, longer design time means
that a design will be less competitive. The architect must be constantly aware of
the impact of his design choices on the design time for both hardware and soft-
ware. The many postponements of the availability of the Itanium processor
(roughly atwo year delay from theinitial target date) should serve asatopical re-
minder of the risks of introducing both a new architecture and a complex design.
With processor performance increasing by just over 50% per year, each week de-
lay translates to a 1% loss in rel ative performance!

Pitfall: Neglecting the cost of softwarein either evaluating a system or examining
cost-performance.

For many years, hardware was so expensive that it clearly dominated the cost of
software, but thisis no longer true. Software costs in 2001 can be alarge fraction
of both the purchase and operational costs of a system. For example, for a medi-
um size database OLTP server, Microsoft OS software might run about $2,000,
while the Oracle software would run between $6,000 and $9,000 for a four-year,
one-processor license. Assuming a four-year software lifetime means atotal soft-
ware cost for these two major components of between $8,000 and $11,000. A
midrange Dell server with 512MB of memory, Pentium |1l at 1 GHz, and be-
tween 20 and 100 GB of disk would cost roughly the same amount as these two
major software components. Meaning that software costs are roughly 50% of the
total system cost!

Alternatively, consider a professional desktop system, which can be purchased
with 1 GHz Pentium I11, 128 MB DRAM, 20 GB disk, and a 19 inch monitor for
just under $1000. The software costs of aWindows OS and Office 2000 are about
$300 if bundled with the system and about double that if purchased separately, so
the software costs are somewhere between 23% and 38% of the total cost!

Pitfall: Falling prey to Amdahl’s Law.

Virtually every practicing computer architect knows Amdahl’s Law. Despite this,
we amost all occasionally fall into the trap of expending tremendous effort opti-
mizing some aspect of a system before we measure its usage. Only when the
overall speedup is unrewarding, do we recall that we should have measured the
usage of that feature before we spent so much effort enhancing it!

Fallacy: Synthetic benchmarks predict performance for real programs.

Thisfallacy appeared in thefirst edition of this book, published in 1990. With the
arrival and dominance of organizations such as SPEC and TPC, we thought per-
haps the computer industry had learned alesson and reformed its faulty practices,
but the emerging embedded market, has embraced Dhrystone as its most quoted
benchmark! Hence, thisfallacy survives.

Exercises 67

The best known examples of synthetic benchmarks are Whetstone and Dhrys-
tone. These are not real programs and, as such, may not reflect program behavior
for factors not measured. Compiler and hardware optimizations can artificially
inflate performance of these benchmarks but not of real programs. The other side
of the coin is that because these benchmarks are not natural programs, they don’t
reward optimizations of behaviors that occur in rea programs. Here are some
examples:

- Optimizing compilers can discard 25% of the Dhrystone code; examples in-
cludeloopsthat are only executed once, making the loop overhead instructions
unnecessary. To address these problems the authors of the benchmark “re-
quire” both optimized and unoptimized code to be reported. In addition, they
“forbid” the practice of inline-procedure expansion optimization, since Dhry-
stone’s simple procedure structure alows elimination of all procedure cals at
almost no increase in code size.

» Most Whetstone floating-point loops execute small numbers of times or in-
clude calls inside the loop. These characteristics are different from many real
programs. As a result Whetstone underrewards many loop optimizations and
gainslittlefrom techniques such as multipleissue (Chapter 3) and vectorization
(Appendix B).

. Compilers can optimize a key piece of the Whetstone loop by noting the rela-
tionship between square root and exponential, even though thisisvery unlikely
to occur in real programs. For example, one key loop contains the following
FORTRAN code:

X = SQRT (EXP (ALOG (X) /T1))
It could be compiled asif it were
X = EXP(ALOG (X)/ (2xT1))
since
SORT (EXP (X)) = ZJ;X: eXl2 — ExXp(X/2)

It would be surprising if such optimizations were ever invoked except in this syn-
thetic benchmark. (Yet one reviewer of this book found several compilers that
performed this optimization!) This single change converts all calls to the square
root function in Whetstone into multiplies by 2, surely improving performance—
if Whetstoneis your measure.

Fallacy: MIPS is an accurate measure for comparing performance among
computers.

This fallacy also appeared in the first edition of this book, published in 1990.
Your authors initially thought it could be retired, but, alas, the embedded market

68

Chapter 1 Fundamentals of Computer Design

not only uses Dhrystone as the benchmark of choice, but reports performance as
“Dhrystone MIPS’, ameasure that thisfallacy will show is problematic.
One alternative to time as the metric is MIPS, or million instructions per sec-
ond. For agiven program, MIPSissimply
MIPS = Instruction count - Clock rate
Execution time x 10° CPI x 10°

Some find this rightmost form convenient since clock rate is fixed for a machine
and CPI is usually a small number, unlike instruction count or execution time.
Relating MIPSto time,

Instruction count

MIPS x 10°

Execution time =

Since MIPS is arate of operations per unit time, performance can be specified as
the inverse of execution time, with faster machines having a higher MIPS rating.

The good news about MIPS is that it is easy to understand, especialy by a
customer, and faster machines means bigger MIPS, which matches intuition. The
problem with using MIPS as a measure for comparison is threefold:

» MIPSisdependent on the instruction set, making it difficult to compare MIPS
of computers with different instruction sets.

= MIPS varies between programs on the same computer.
» Most importantly, MIPS can vary inversely to performance!

The classic example of the last case is the MIPS rating of a machine with option-
al floating-point hardware. Since it generally takes more clock cycles per float-
ing-point instruction than per integer instruction, floating-point programs using
the optiona hardware instead of software floating-point routines take less time
but have a lower MIPS rating. Software floating point executes smpler instruc-
tions, resulting in a higher MIPS rating, but it executes so many more that overall
execution timeislonger.

MIPS is sometimes used by a single vendor (e.g. IBM) within a single set of
applications, where this measure is less hamrful since relative differences among
MIPS ratings of machines with the same architecture and the same benchmarks
are reasonably likely to track relative performance differences.

To try to avoid the worst difficulties of using MIPS as a performance measure,
computer designers began using relative MIPS, which we discuss in detail on
page 75, and this is what the embedded market reports for Dhrystone. Although
less harmful than an actual MIPS measurement, relative MIPS have their short-
comings (e.g., they are not really MIPS!), especially when measured using Dhry-
stonel

1.10 Concluding Remarks 69

110 | Concluding Remarks

This chapter has introduced anumber of concepts that we will expand upon aswe
go through this book. The major ideas in instruction set architecture and the alter-
natives available will be the primary subjects of Chapter 2. Not only will we see
the functional alternatives, we will also examine quantitative data that enable us
to understand the trade-offs. The quantitative principle, Make the common case
fast, will be a guiding light in this next chapter, and the CPU performance equa-
tion will be our major tool for examining instruction set alternatives. Chapter 2
concludes an examination of how instruction sets are used by programs.

In Chapter 2, we will include a section, Crosscutting Issues, that specifically
addresses interactions between topics addressed in different chapters. In that sec-
tion within Chapter 2, we focus on the interactions between compilers and in-
struction set design. This Crosscutting Issues section will appear in al future
chapters.

In Chapters 3 and 4 we turn our attention to instruction level parallelism (ILP),
of which pipelining isthe simplest and most common form. Exploiting ILPisone
of the most important techniques for building high speed uniprocessors. The
presence of two chapters reflects the fact that there are two rather different ap-
proaches to exploiting ILP. Chapter 3 begins with an extensive discussion of ba-
sic concepts that will prepare you not only for the wide range of ideas examined
in both chapters, but also to understand and analyze new techniques that will be
introduced in the coming years. Chapter 3 uses examples that span about 35
years, drawing from one of the first modern supercomputers (IBM 360/91) to the
fastest processorsin the market in 2001. It emphasizeswhat is called the dynamic
or runtime approach to exploiting ILP. Chapter 4 focuses on compile-time ap-
proaches to exploiting ILP. These approaches were heavily used in the early
1990s and return again with the introduction of the Intel Itanium. Appendix Gisa
version of an introductory chapter on pipelining from the 1995, Second Edition
of this text. For readers without much experience and background in pipelining,
that appendix is a useful bridge between the basic topics explored in this chapter
(which we expect to be review for many readers, including those of our more in-
troductory text, Computer Organization and Design: The Hardware/Software In-
terface) and the advanced topics in Chapter 3.

In Chapter 5 we turn to the all-important area of memory system design. We
will examine a wide range of techniques that conspire to make memory look
infinitely large while still being as fast as possible. As in Chapters 3 and 4, we
will see that hardware-software cooperation has become a key to high-perfor-
mance memory systems, just asit has to high-performance pipelines.

In Chapters 6 and 7, we move away from a CPU-centric view and discuss is-
sues in storage systems and interconnect. We apply a similar quantitative ap-
proach, but one based on observations of system behavior and using an end-to-

70

Chapter 1 Fundamentals of Computer Design

end approach to performance analysis. Chapter 6 addresses the important issue of
how to efficiently store and retrieve data using primarily lower-cost magnetic
storage technologies. As we saw earlier, such technologies offer better cost per
bit by a factor of 50-100 over DRAM. Magnetic storage is likely to remain ad-
vantageous wherever cost or nonvolatility (it keeps the information after the pow-
er is turned off) are important. In Chapter 6, our focus is on examining the
performance of disk storage systems for typical I/O-intensive workloads, which
are the counterpart to the CPU benchmarks we saw in this chapter. We extensive-
ly explore the idea of RAID-based systems, which use many small disks, ar-
ranged in a redundant fashion to achieve both high performance and high
availability. Chapter 7 discusses the primary interconnection technology used for
I/O devices. This chapter explores the topic of system interconnect more broadly,
including wide-area and system-area networks used to allow computers to com-
municate. Chapter 7 al so describes clusters, which are growing in importance due
to their suitability and efficiency for database and web server applications.

Our final chapter returns to the issue of achieving higher performance through
the use of multiple processors, or multiprocessors. Instead of using parallelism to
overlap individual instructions, multiprocessing uses parallelism to allow multi-
ple instruction streams to be executed simultaneously on different processors.
Our focus is on the dominant form of multiprocessors, shared-memory multipro-
cessors, though we introduce other types as well and discuss the broad issues that
arise in any multiprocessor. Here again, we explore a variety of techniques, fo-
cusing on the important ideas first introduced in the 1980s and 1990s.

1.11 | Historical Perspective and References

If... history... teaches us anything, it is that man in his quest for knowledge and
progress, is determined and cannot be deterred.

John F. Kennedy, Address at Rice University (1962)

A section of historical perspectives closes each chapter in the text. This section
provides historical background on some of the key ideas presented in the chapter.
The authors may trace the development of an idea through a series of machines or
describe significant projects. If you're interested in examining the initial develop-
ment of an idea or machine or interested in further reading, references are provided
at the end of the section. In this historical section, we discuss the early devel opment
of digital computers and the development of performance measurement methodol-
ogies. The development of the key innovations in desktop, server, and embedded
processor architectures are discussed in historical sectionsin virtually every chapter
of the book.

1.11 Historical Perspective and References 71

The First General-Purpose Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built the world's first fully-operational electronic general-purpose
computer. This machine, called ENIAC (Electronic Numerical Integrator and
Calculator), was funded by the U.S. Army and became operational during World
War I1, but it was not publicly disclosed until 1946. ENIAC was used for comput-
ing artillery firing tables. The machine was enormous—100 feet long, 8 1/2 feet
high, and several feet wide. Each of the 20 10-digit registers was 2 feet long. In
total, there were 18,000 vacuum tubes.

Although the size was three orders of magnitude bigger than the size of the av-
erage machines built today, it was more than five orders of magnitude slower,
with an add taking 200 microseconds. The ENIAC provided conditional jumps
and was programmable, which clearly distinguished it from earlier calculators.
Programming was done manually by plugging up cables and setting switches and
required from a half-hour to a whole day. Data were provided on punched cards.
The ENIAC was limited primarily by a small amount of storage and tedious pro-
gramming.

In 1944, John von Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing
programs as numbers; von Neumann helped crystallize the ideas and wrote a
memo proposing a stored-program computer called EDVAC (Electronic Discrete
Variable Automatic Computer). Herman Goldstine distributed the memo and put
von Neumann's name on it, much to the dismay of Eckert and Mauchly, whose
names were omitted. This memo has served as the basis for the commonly used
term von Neumann computer. Severa early inventors in the computer field be-
lieve that this term gives too much credit to von Neumann, who conceptualized
and wrote up the ideas, and too little to the engineers, Eckert and Mauchly, who
worked on the machines. Like most historians, your authors (winners of the 2000
|EEE von Neumann Medal) believe that all three individuals played akey rolein
developing the stored program computer. von Neumann's role in writing up the
ideas, in generalizing them, and in thinking about the programming aspects was
critical in transferring the ideas to awider audience.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School
to attend the latter part of a series of lectures on developments in electronic com-
puters. When he returned to Cambridge, Wilkes decided to embark on aproject to
build a stored-program computer named EDSAC, for Electronic Delay Storage
Automatic Calculator. (The EDSAC used mercury delay lines for its memory;
hence the phrase “ delay storage” inits name.) The EDSAC became operational in
1949 and was the world's first full-scale, operational, stored-program computer
[Wilkes, Wheseler, and Gill 1951; Wilkes 1985, 1995]. (A small prototype called
the Mark |, which was built at the University of Manchester and ran in 1948,
might be called the first operational stored-program machine.) The EDSAC was
an accumulator-based architecture. This style of instruction set architecture re-

72

Chapter 1 Fundamentals of Computer Design

mained popular until the early 1970s. (Chapter 2 starts with a brief summary of
the EDSAC instruction set.)

In 1947, Eckert and Mauchly applied for a patent on electronic computers.
The dean of the Moore School, by demanding the patent be turned over to the
university, may have helped Eckert and Mauchly conclude they should leave.
Their departure crippled the EDVAC project, which did not become operational
until 1952,

Goldstine left to join von Neumann at the Institute for Advanced Study at
Princeton in 1946. Together with Arthur Burks, they issued a report based on the
1944 memo [1946]. The paper led to the IAS machine built by Julian Bigelow at
Princeton’s Institute for Advanced Study. It had a total of 1024 40-bit words and
was roughly 10 times faster than ENIAC. The group thought about uses for the
machine, published a set of reports, and encouraged visitors. These reports and
visitors inspired the development of a number of new computers, including the
first IBM computer, the 701, which was based on the IAS machine. The paper by
Burks, Goldstine, and von Neumann was incredible for the period. Reading it to-
day, you would never guess this landmark paper was written more than 50 years
ago, as most of the architectural concepts seen in modern computers are dis-
cussed there (e.g., see the quote at the beginning of Chapter 5).

In the same time period as ENIAC, Howard Aiken was designing an electro-
mechanical computer called the Mark-I at Harvard. The Mark-1 was built by a
team of engineers from IBM. He followed the Mark-l by a relay machine, the
Mark-11, and a pair of vacuum tube machines, the Mark-111 and Mark-IV. The
Mark-111 and Mark-1V were being built after the first stored-program machines.
Because they had separate memories for instructions and data, the machines were
regarded as reactionary by the advocates of stored-program computers. The term
Harvard architecture was coined to describe this type of machine. Though clear-
ly different from the original sense, thisterm is used today to apply to machines
with asingle main memory but with separate instruction and data caches.

The Whirlwind project [Redmond and Smith 1980] began at MIT in 1947 and
was aimed at applications in real-time radar signal processing. Although it led to
several inventions, its overwhelming innovation was the creation of magnetic
core memory, the first reliable and inexpensive memory technology. Whirlwind
had 2048 16-bit words of magnetic core. Magnetic cores served as the main
memory technology for nearly 30 years.

Important Special-Purpose Machines

During the Second Wold War, there were major computing efforts in both Great
Britain and the United States focused on special-purpose code-breaking comput-
ers. The work in Great Britain was aimed at decrypting messages encoded with
the German Enigma coding machine. This work, which occurred at a location
called Bletchley Perk, led to two important machines. The first, an electrome-
chanical machine, conceived of by Alan Turing, was called BOMB [see Good in

1.11 Historical Perspective and References 73

Metropolis 1980]. The second, much larger and electronic machine, conceived
and designed by Newman and Flowers, was called COLOSSUS [see Randall in
Metropolis 1980]. These were highly specialized cryptanalysis machines, which
played avital role in the war by providing the ability to read coded messages, es-
pecially those sent to U-boats. The work at Bletchley Park was highly classified
(indeed some of it is still classified), and, so, its direct impact on the development
of ENIAC, EDSAC and other computers is hard to trace, but it certainly had an
indirect effect in advancing the technology and gaining understanding of the is-
Sues.

Similar work on special-purpose computers for cryptanalysis went on in the
United States. The most direct descendent of this effort was a company Engineer-
ing Research Associates (ERA [see Thomash in Metropolis 1980], which was
founded after the war to attempt to commercialize on the key ideas. ERA build
several machines, which were sold to secret government agencies, and was even-
tually purchased by Sperry Rand, which had earlier purchased the Eckert Mauch-
ly Computer Corporation.

Another early set of machines that deserves credit was a group of special-pur-
pose machines built by Konrad Zuse in Germany in the late 1930s and early
1940s [see Bauer and Zuse in Metropolis 1980]. In addition to producing an op-
erating machine, Zuse was the first to implement floating point, which von Neu-
mann claimed was unnecessary!. His early machines used a mechanical store that
was smaller than other electromechanical solutions of the time. His last machine
was electromechanical but, because of the war, never completed.

An important early contributor to the development of electronic computers
was John Atanasoff, who built a small-scale electronic computer in the early
1940s [Atanasoff 1940]. His machine, designed at lowa State University, was a
special-purpose computer (called the ABC: Atanasoff Berry Computer) that was
never completely operational. Mauchly briefly visited Atanasoff before he built
ENIAC and several of Atansanoff’sideas (e.g. using binary representation) likely
influenced Mauchly. The presence of the Atanasoff machine, together with delays
in filing the ENIAC patents (the work was classified and patents could not be
filed until after the war) and the distribution of von Neumann’s EDVAC paper,
were used to break the Eckert-Mauchly patent [Larson 1973]. Though controver-
sy still rages over Atanasoff’s role, Eckert and Mauchly are usually given credit
for building the first working, general-purpose, electronic computer [Stern 1980].
Atanasoff, however, demonstrated several important innovations included in later
computers. Atanasoff deserves much credit for his work, and he might fairly be
given credit for the world's first special -purpose electronic computer and for pos-
sibly influencing Eckert and Mauchly.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer Cor-
poration. Their first machine, the BINAC, was built for Northrop and was shown

74

Chapter 1 Fundamentals of Computer Design

in August 1949. After some financia difficulties, the Eckert-Mauchly Computer
Corporation was acquired by Remington-Rand, |ater called Sperry-Rand. Sperry-
Rand merged the Eckert-Mauchly acquisition, ERA, and its tabulating business
to form a dedicated computer division, called UNIVAC. UNIVAC delivered its
first computer, the UNIVAC | in June 1951. The UNIVAC | sold for $250,000
and was the first successful commercial computer—48 systems were built! To-
day, this early machine, along with many other fascinating pieces of computer
lore, can be seen at the Computer Museum in Mountain View, California. Other
places where early computing systems can be visited include the Deutsches Mu-
seum in Munich, and the Smithsonian in Washington, D.C., as well as numerous
online virtual museums.

IBM, which earlier had been in the punched card and office automation busi-
ness, didn't start building computers until 1950. The first IBM computer, the
IBM 701 based on von Neumann's |AS machine, shipped in 1952 and eventually
sold 19 units [see Hurd in Metropolis 1980].In the early 1950s, many people
were pessimistic about the future of computers, believing that the market and op-
portunities for these “highly specialized” machines were quite limited. Nonethe-
less, IBM quickly became the most successful computer company. The focus on
reliability and a customer and market driven strategy was key. Although the 701
and 702 were modest successes, IBM's next machine the 704/705, first delivered
in 1954, greatly exceeded its initial sales forecast of 50 machines, thanks in part
to theinclusion of core memory.

Several books describing the early days of computing have been written by the
pioneers [Wilkes 1985, 1995; Goldstine 1972], as well as [Metropolis, Howlett,
and Rota 1980], which is a collection of recollections by early pioneers. There
are numerous independent histories, often built around the people involved [Slat-
er 1987], aswell as ajournal, Annals of the History of Computing, devoted to the
history of computing.

The history of some of the computers invented after 1960 can be found in
Chapter 2 (the IBM 360, the DEC VAX, the Intel 80x86, and the early RISC
machines), Chapters 3 and 4 (the pipelined processors, including Stretch and the
CDC 6600), and Appendix B (vector processorsincluding the TI ASC, CDC Star,
and Cray processors).

Development of Quantitative Performance Measures:
Successes and Failures

In the earliest days of computing, designers set performance goals—ENIAC was
to be 1000 times faster than the Harvard Mark-1, and the IBM Stretch (7030) was
to be 100 times faster than the fastest machine in existence. What wasn't clear,
though, was how this performance was to be measured. In looking back over the
years, it is a consistent theme that each generation of computers obsoletes the
performance evaluation techniques of the prior generation.

1.11 Historical Perspective and References 75

The original measure of performance was time to perform an individual oper-
ation, such as addition. Since most instructions took the same execution time, the
timing of one gave insight into the others. As the execution times of instructions
in a machine became more diverse, however, the time for one operation was no
longer useful for comparisons. To take these differences into account, an instruc-
tion mix was calculated by measuring the relative frequency of instructionsin a
computer across many programs. The Gibson mix [Gibson 1970] was an early
popular instruction mix. Multiplying the time for each instruction times its
weight in the mix gave the user the average instruction execution time. (If mea-
sured in clock cycles, average instruction execution time is the same as average
CPl.) Since instruction sets were similar, this was a more accurate comparison
than add times. From average instruction execution time, then, it was only asmall
step to MIPS (as we have seen, the oneis the inverse of the other). MIPS had the
virtue of being easy for the layman to understand.

As CPUs became more sophisticated and relied on memory hierarchies and
pipelining, there was no longer a single execution time per instruction; MIPS
could not be calculated from the mix and the manual. The next step was bench-
marking using kernels and synthetic programs. Curnow and Wichmann [1976]
created the Whetstone synthetic program by measuring scientific programs writ-
ten in Algol 60. This program was converted to FORTRAN and was widely used
to characterize scientific program performance. An effort with similar goals to
Whetstone, the Livermore FORTRAN Kernels, was made by McMahon [1986]
and researchers at Lawrence Livermore Laboratory in an attempt to establish a
benchmark for supercomputers. These kernels, however, consisted of loops from
real programs.

Asit became clear that using MIPS to compare architectures with different in-
structions sets would not work, a notion of relative MIPS was created. When the
VAX-11/780 was ready for announcement in 1977, DEC ran small benchmarks
that were also run on an IBM 370/158. IBM marketing referred to the 370/158 as
a 1-MIPS computer, and since the programs ran at the same speed, DEC market-
ing called the VAX-11/780 a 1-MIPS computer. Relative MIPS for a machine M
was defined based on some reference machine as

Performance,,
MIPS,, = =———————xMIPS

reference
Performance, «erence

The popularity of the VAX-11/780 made it a popular reference machine for rela-
tive MIPS, especialy since relative MIPS for a 1-MIPS computer is easy to
calculate: If amachine was five times faster than the VAX-11/780, for that bench-
mark its rating would be 5 relative MIPS. The 1-MIPS rating was unquestioned
for four years, until Joel Emer of DEC measured the VAX-11/780 under a time-
sharing load. He found that the VAX-11/780 native MIPS rating was 0.5. Subse-
guent VAXes that run 3 native MIPS for some benchmarks were therefore called

76

Chapter 1 Fundamentals of Computer Design

6-MIPS machines because they run six times faster than the VAX-11/780. By the
early 1980s, the term MIPS was almost universally used to mean relative MIPS,

The 1970s and 1980s marked the growth of the supercomputer industry, which
was defined by high performance on floating-point-intensive programs. Average
instruction time and MIPS were clearly inappropriate metrics for this industry,
hence the invention of MFLOPS (Millions of FL oating-point Operations Per Sec-
ond), which effectively measured the inverse of execution time for abenchmark. .
Unfortunately customers quickly forget the program used for the rating, and mar-
keting groups decided to start quoting peak MFLOPS in the supercomputer per-
formance wars.

SPEC (System Performance and Evaluation Cooperative) was founded in the
late 1980sto try to improve the state of benchmarking and make amore valid ba-
sisfor comparison. The group initially focused on workstations and serversin the
UNIX marketplace, and that remains the primary focus of these benchmarks to-
day. The first release of SPEC benchmarks, now called SPEC89, was a substan-
tial improvement in the use of more realistic benchmarks.

References

AMDAHL, G. M. [1967]. “Validity of the single processor approach to achieving large scale comput-
ing capabilities,” Proc. AFIPS 1967 Spring Joint Computer Conf. 30 (April), Atlantic City, N.J.,
483-485.

ATANASOFF, J. V. [1940]. “Computing machine for the solution of large systems of linear equations,”
Internal Report, lowa State University, Ames.

BELL, C. G. [1984]. “The mini and micro industries,” |EEE Computer 17:10 (October), 14-30.

BELL, C. G., J. C. MUDGE, AND J. E. MCNAMARA [1978]. A DEC View of Computer Engineering,
Digital Press, Bedford, Mass.

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN [1946]. “Preliminary discussion of the logi-
cal design of an electronic computing instrument,” Report to the U.S. Army Ordnance Department,
p. 1; also appearsin Papers of John von Neumann, W. Aspray and A. Burks, eds., MIT Press, Cam-
bridge, Mass., and Tomash Publishers, Los Angeles, Calif., 1987, 97-146.

CURNOW, H. J. AND B. A. WICHMANN [1976]. “A synthetic benchmark,” The Computer J., 19:1.

FLEMMING, P. J. AND J. J. WALLACE [1986]. “How not to lie with statistics: The correct way to
summarize benchmarks results,” Comm. ACM 29:3 (March), 218-221.

FULLER, S. H. AND W. E. BURR [1977]. “Measurement and evauation of alternative computer
architectures,” Computer 10:10 (October), 24-35.

GIBSON, J. C. [1970Q]. “The Gibson mix,” Rep. TR. 00.2043, IBM Systems Development Division,
Poughkeepsie, N.Y . (Research donein 1959.)

GOLDSTINE, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton University Press,
Princeton, N.J.

JAaIN, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Smulation, and Modeling, Wiley, New Y ork.

LARSON, E. R. [1973]. “Findings of fact, conclusions of law, and order for judgment,” File No. 4-67,
Civ. 138, Honeywell v. Sperry Rand and Illinois Scientific Development, U.S. District Court for the
State of Minnesota, Fourth Division (October 19).

1.11 Historical Perspective and References 77

still a good exercise

LuBECK, O., J. MOORE, AND R. MENDEZ [1985]. “A benchmark comparison of three supercomputers:
Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,” Computer 18:12 (December), 10-24.

MEeTROPOLIS, N., J. HOWLETT, AND G-C ROTA, EDITORS [1980], A History of Computing in the
Twentieth Century, Academic Press, N.Y.

McMAHON, F. M. [1986]. “ The Livermore FORTRAN kernels: A computer test of numerical perfor-
mance range,” Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of Cali-
fornia, Livermore (December).

ReDMOND, K. C. AND T. M. SmITH [1980]. Project Whirlwind—The History of a Pioneer Computer,
Digital Press, Boston.

SHURKIN, J. [1984]. Engines of the Mind: A History of the Computer, W. W. Norton, New Y ork.
SLATER, R. [1987]. Portraitsin Slicon, MIT Press, Cambridge, Mass.

SMITH, J. E. [1988]. “Characterizing computer performance with a single number,” Comm. ACM
31:10 (October), 1202-1206.

SPEC [1989]. SPEC Benchmark Suite Release 1.0, October 2, 1989.
SPEC [1994]. SPEC Newsletter (June).

STERN, N. [1980]. “Who invented the first electronic digital computer,” Annals of the History of
Computing 2:4 (October), 375-376.

ToumA, W. R. [1993]. The Dynamics of the Computer Industry: Modeling the Supply of Work-
stations and Their Components, Kluwer Academic, Boston.

WEICKER, R. P. [1984]. “Dhrystone: A synthetic systems programming benchmark,” Comm. ACM
27:10 (October), 1013-1030.

WILKES, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass.
WILKES, M. V. [1995]. Computing Perspectives, Morgan Kaufmann, San Francisco.

WILKES, M. V., D. J. WHEELER, AND S. GILL [1951]. The Preparation of Programs for an Electronic
Digital Computer, Addison-Wesley, Cambridge, Mass.

EXERCISES

Each exercise has a difficulty rating in square brackets and alist of the chapter sections it
depends on in angle brackets. See the Preface for a description of the difficulty scale.

1.1 [20/10/10/15] <1.6> In this exercise, assume that we are considering enhancing a ma-
chine by adding avector modeto it. When acomputation isrunin vector modeit is 20 times
faster than the normal mode of execution. We call the percentage of time that could be spent
using vector mode the percentage of vectorization.Vectors are discussed in Appendix B, but
you don’t need to know anything about how they work to answer this question!

a. [20] <1.6> Draw a graph that plots the speedup as a percentage of the computation
performed in vector mode. Label they axis“Net speedup” and label the x axis* Percent
vectorization.”

b. [10] <1.6> What percentage of vectorization is needed to achieve a speedup of 2?
c. [10] <1.6> What percentage of vectorization is needed to achieve one-half the maxi-

78

Chapter 1 Fundamentals of Computer Design

still a good exercise

mum speedup attainable from using vector mode?

d. [15] <1.6> Suppose you have measured the percentage of vectorization for programs
to be 70%. The hardware design group says they can double the speed of the vector
rate with a significant additional engineering investment. You wonder whether the
compiler crew could increase the use of vector mode as another approach to increasing
performance. How much of an increase in the percentage of vectorization (relative to
current usage) would you need to obtain the same performance gain? Which invest-
ment would you recommend?

1.2 [15/10] <1.6> Assume—as in the Amdahl’s Law Example on page 41—that we make
an enhancement to acomputer that improves some mode of execution by afactor of 10. En-
hanced mode is used 50% of the time, measured as a percentage of the execution time when
the enhanced mode isin use. Recall that Amdahl’s Law depends on the fraction of the orig-
inal, unenhanced execution time that could make use of enhanced mode. Thus, we cannot
directly use this 50% measurement to compute speedup with Amdahl’s Law.

a [15] <1.6> What is the speedup we have obtained from fast mode?

b. [10] <1.6> What percentage of the original execution time has been converted to fast
mode?

1.3 [15] <1.6> Show that the problem statements in the Examples on page 42 and page 45
are the same.

this exercise has been known to cause confusion, thought the concept is good

14

1.5 [15] <1.6> Suppose we are considering a change to an instruction set. The base ma-
chineinitialy has only loads and storesto memory, and all operationswork on theregisters.
Such machines are called |oad-store machines (see Chapter 2). Measurements of the load-
store machine showing the instruction mix and clock cycle counts per instruction are given
in Figure 1.32 on page 69.

Let’'s assume that 25% of the arithmetic logic unit (ALU) operations directly use aloaded
operand that is not used again.

We propose adding ALU instructions that have one source operand in memory. These new
register-memory instructions have a clock cycle count of 2. Suppose that the extended in-
struction set increases the clock cycle count for branches by 1, but it does not affect the
clock cycle time. (Chapter 3, on pipelining, explains why adding register-memory instruc-
tions might slow down branches.) Would this change improve CPU performance?

cache exercises should be tossed since we eliminated that section, we need some simple pipelining exercis-
es. Feel freeto take some from the old chapter 3

1.6 [15] <1.7> Assume that we have a machine that with a perfect cache behaves as given
in Figure 1.32.

1.11 Historical Perspective and References 79

still a good exercise;

With a cache, we have measured that instructions have a miss rate of 5%, data references
have amissrate of 10%, and the miss penalty is40 cycles. Find the CPI for each instruction
type with cache misses and determine how much faster the machineiswith no cache misses
versus with cache misses.

1.7 [20] <1.6> After graduating, you are asked to become the lead computer designer at
Hyper Computers, Inc. Your study of usage of high-level language constructs suggests that
procedure calls are one of the most expensive operations. You have invented a scheme that
reduces the loads and stores normally associated with procedure calls and returns. Thefirst
thing you do is run some experiments with and without this optimization. Your experiments
use the same state-of-the-art optimizing compiler that will be used with either version of
the computer. These experiments revea the following information:

» Theclock rate of the unoptimized version is 5% higher.
» Thirty percent of the instructions in the unoptimized version are loads or stores.

» The optimized version executes two-thirds as many loads and stores as the unopti-
mized version. For all other instructions the dynamic execution counts are unchanged.

» Allinstructions (including load and store) take one clock cycle.

Which is faster? Justify your decision quantitatively.

still a good exercise, although dated. | wonder if it can be salvaged.

1.8 [15/15/8/12] <1.6,1.9> The Whetstone benchmark contains 195,578 basic floating-
point operationsin asingle iteration, divided as shown in Figure 1.33.

Operation Count
Add 82,014
Subtract 8,229
Multiply 73,220
Divide 21,399
Convert integer to FP 6,006
Compare 4,710
Total 195,578

FIGURE 1.33 The frequency of floating-point
operations in the Whetstone benchmark.

Whetstone was run on a Sun 3/75 using the F77 compiler with optimization turned on. The
Sun 3/75 is based on a Motorola 68020 running at 16.67 MHz, and it includes a floating-
point coprocessor. The Sun compiler allows the floating point to be calculated with the co-
processor or using software routines, depending on compiler flags. A single iteration of
Whetstone took 1.08 seconds using the coprocessor and 13.6 seconds using software. As-
sume that the CPI using the coprocessor was measured to be 10, while the CPI using soft-

80

Chapter 1 Fundamentals of Computer Design

ware was measured to be 6.
a [15] <1.6,1.9> What isthe MIPS rating for both runs?
b. [15] <1.6> What isthe total number of instructions executed for both runs?

c. [8] <1.6> On the average, how many integer instructions does it take to perform a
floating-point operation in software?

d. [12] <1.9> What is the MFLOPS rating for the Sun 3/75 with the floating-point co-
processor running Whetstone? (Assume al the floating-point operations in Figure
1.21 count as one operation.)

a good exercise, but needs some updating of costs and the data used--newer processors, e.g.

1.9 [15/10/15/15/15] <1.3,1.4> This exercise estimates the complete packaged cost of a
microprocessor using the die cost equation and adding in packaging and testing costs. We
begin with a short description of testing cost and follow with a discussion of packaging
issues.

Testing is the second term of the chip cost equation:

Cost of die + Cost of testing die + Cost of packaging

Cost of integrated circuit = - -
Fina test yield

Testing costs are determined by three components:

Cost of testing per hour x Average die test time

Cost of testing die = Dieyidd

Since bad diesare discarded, dieyield isin the denominator in the equati on—the good must
shoulder the costs of testing those that fail. (In practice, abad die may take lesstimeto test,
but this effect issmall, since moving the probes on the dieisamechanical processthat takes
a large fraction of the time.) Testing costs about $50 to $500 per hour, depending on the
tester needed. High-end designs with many high-speed pins require the more expensive
testers. For higher-end microprocessors test time would run $300 to $500 per hour. Die
tests take about 5 to 90 seconds on average, depending on the simplicity of the die and the
provisions to reduce testing time included in the chip.

The cost of a package depends on the material used, the number of pins, and the die area.
The cost of the material used in the packageisin part determined by the ability to dissipate
power generated by the die. For example, a plastic quad flat pack (PQFP) dissipating less
than 1 watt, with 208 or fewer pins, and containing adie up to 1 cm on aside costs $2 in
1995. A ceramic pin grid array (PGA) can handle 300 to 600 pins and a larger die with
more power, but it costs $20 to $60. In addition to the cost of the package itself is the cost
of the labor to place a die in the package and then bond the pads to the pins, which adds
from afew centsto adollar or two to the cost. Some good dies are typicaly lost in the as-
sembly process, thereby further reducing yield. For simplicity weassumethefinal test yield
is1.0; in practiceit isat least 0.95. We also ignore the cost of the final packaged test.

This exercise requires the information provided in Figure 1.34.

1.11 Historical Perspective and References 81

Micr oprocessor D(Irir?:ze;i Pins Technology Estimated wafer cost ($) Package
MIPS 4600 77 208 CMOS, 0.6, 3M 3200 PQFP
PowerPC 603 85 240 CMOS, 0.6y, 4M 3400 PQFP

HP 71x0 196 504 CMOS, 0.8y, 3M 2800 Ceramic PGA
Digital 21064A 166 431 CMOS, 0.5u, 4.5M 4000 Ceramic PGA
SuperSPARC/60 256 293 BICMOS, 0.6y, 3.5M 4000 Ceramic PGA

FIGURE 1.34 Characteristics of microprocessors. The technology entry is the process type, line width, and
number of interconnect levels.

a [15] <1.4> For each of the microprocessors in Figure 1.34, compute the number of
good chips you would get per 20-cm wafer using the model on page 18. Assume ade-
fect density of one defect per cm?, awafer yield of 95%, and assume o, = 3.

b. [10] <1.4> For each microprocessor in Figure 1.34, compute the cost per projected
good die before packaging and testing. Use the number of good dies per wafer from
part (8) of this exercise and the wafer cost from Figure 1.34.

c. [15] <1.3> Both package cost and test cost are proportional to pin count. Using the ad-
ditional assumption shown in Figure 1.35, compute the cost per good, tested, and
packaged part using the costs per good die from part (b) of this exercise.

Packagetype Pin count Packagecost Testtime Test cost per hour
® (secs) ®

PQFP <220 12 10 300

PQFP <300 20 10 320

Ceramic PGA <300 30 10 320

Ceramic PGA <400 40 12 340

Ceramic PGA <450 50 13 360

Ceramic PGA <500 60 14 380

Ceramic PGA >500 70 15 400

FIGURE 1.35 Package and test characteristics.

d. [15] <1.3> There are wide differences in defect densities between semiconductor
manufacturers. Find the costs for the largest processor in Figure 1.34 (total cost in-
cluding packaging), assuming defect densities are 0.6 per cm?2 and assuming that de-
fect densities are 1.2 per cm?.

e. [15] <1.3> The parameter o. depends on the complexity of the process. Additional
metal levelsresult inincreased complexity. For example, oo might be approximated by
the number of interconnect levels. For the Digital 21064awith 4.5 levels of intercon-
nect, estimate the cost of working, packaged, and tested die if o = 3 and if o, = 4.5.
Assume a defect density of 0.8 defects per cm?.

82 Chapter 1 Fundamentals of Computer Design

1.10 [12] <1.5> Onereason people may incorrectly average rates with an arithmetic mean
isthat it always gives an answer greater than or equal to the geometric mean. Show that for
any two positiveintegers, aand b, the arithmetic mean is always greater than or equal to the
geometric mean. When are the two equal ?

we ditched the harmonic mean, so if we keep this (it's not bad), we need to define it here--this would be
fing, since it usesthe exercises to expound on a topic

1.11 [12] <1.5> For reasons similar to those in Exercise 1.10, some people use arithmetic
instead of the harmonic mean. Show that for any two positive rates, r and s, the arithmetic
mean is aways greater than or equal to the harmonic mean. When are the two equal ?

good exercise, if simple exercise, but needs new data for spec (use spec2000)

1.12 [15/15] <1.5> Some of the SPECfp92 performance results from the SPEC92 News-
letter of June 1994 [SPEC 94] are shown in Figure 1.36. The SPECratio is simply the run-
time for abenchmark divided into the VAX 11/780 time for that benchmark. The SPECfp92
number is computed as the geometric mean of the SPECratios. Let's see how a weighted
arithmetic mean compares.

VAX-11/780 DEC 3000 Model 800 IBM Power station Intel Xpress Pentium
Program name Time SPECratio 590 SPECratio 815\100 SPECratio
spice2g6 23,944 97 128 64
doduc 1,860 137 150 84
mdljdp2 7,084 154 206 98
waveb 3,690 123 151 57
tomcatv 2,650 221 465 74
ora 7,421 165 181 97
alvinn 7,690 385 739 157
ear 25,499 617 546 215
mdljsp2 3,350 76 96 48
swm256 12,696 137 244 43
su2cor 12,898 259 459 57
hydro2d 13,697 210 225 83
nasa’ 16,800 265 344 61
fpppp 9,202 202 303 119
Geometric mean 8,098 187 256 81

FIGURE 1.36 SPEC92 performance for SPECfp92. The DEC 3000 uses a 200-MHz Alpha microprocessor (21064) and
a 2-MB off-chip cache. The IBM Powerstation 590 uses a 66.67-MHz Power-2. The Intel Xpress uses a 100-MHz Pentium
with a 512-KB off-chip secondary cache. Data from SPEC [1994].

a. [15] <1.5> Cdculate the weights for a workload so that running times on the VAX-

1.11 Historical Perspective and References 83

still a decent exercise

11/780 will be equal for each of the 14 benchmarks (given in Figure 1.36).

b. [15] <1.5> Using the weights computed in part (a) of this exercise, calculate the
weighted arithmetic means of the execution times of the 14 programs in Figure 1.36.

1.13 [15/15/15] <1.6,1.9> Three enhancements with the following speedups are proposed
for anew architecture:

Speedup; =30
Speedup, =20
Speedups = 10
Only one enhancement is usable at atime.

a [15] <1.6> If enhancements 1 and 2 are each usable for 30% of thetime, what fraction
of the time must enhancement 3 be used to achieve an overall speedup of 10?

b. [15] <1.6,1.9> Assume the distribution of enhancement usage is 30%, 30%, and 20%
for enhancements 1, 2, and 3, respectively. Assuming all three enhancements are in
use, for what fraction of the reduced execution time is no enhancement in use?

c. [15] <1.6> Assume for some benchmark, the fraction of use is 15% for each of en-
hancements 1 and 2 and 70% for enhancement 3. We want to maximize performance.
If only one enhancement can be implemented, which should it be? If two enhance-
ments can be implemented, which should be chosen?

1.14 [15/10/10/12/10] <1.6,1.9> Your company has a benchmark that is considered repre-
sentative of your typical applications. One of the older-model workstations does not have a
floating-point unit and must emul ate each floating-point instruction by a sequence of inte-
ger instructions. This older-model workstation is rated at 120 MIPS on this benchmark. A
third-party vendor offers an attached processor that is intended to give a“mid-life kicker”
to your workstation. That attached processor executes each floating-point instruction on a
dedicated processor (i.e., no emulation is necessary). The workstation/attached processor
rates 80 M| PS on the same benchmark. The following symbols are used to answer parts (a)—
(e) of thisexercise.

I—Number of integer instructions executed on the benchmark.

F—Number of floating-point instructions executed on the benchmark.

Y—Number of integer instructions to emulate a floating-point instruction.

W—Time to execute the benchmark on the workstation alone.

B—Time to execute the benchmark on the workstati on/attached processor combination.

a [15] <1.6,1.9> Write an equation for the MIPS rating of each configuration using the
symbols above. Document your equation.

b. [10] <1.6> For the configuration without the coprocessor, we measurethat F = 8 x 10,
Y =50, and W = 4. Find I.

84

Chapter 1 Fundamentals of Computer Design

c. [10] <1.6> What isthe value of B?

d. [12] <1.6,1.9> What isthe MFLOPS rating of the system with the attached processor
board?

e. [10] <1.6,1.9> Your colleague wants to purchase the attached processor board even
though the MIPS rating for the configuration using the board is less than that of the
workstation alone. Is your colleague’ s evaluation correct? Defend your answer.

1.15 [15/15/10] <1.5,1.9> Assume the two programs in Figure 1.15 on page 36 each exe-
cute 100 million floating-point operations during execution.

a [15] <1.5,1.9> Cdlculate the MFLOPS rating of each program.

b. [15] <1.5,1.9> Calculate the arithmetic, geometric, and harmonic means of MFLOPS
for each machine.

c. [10] <1.5,1.9> Which of the three means matches the rel ative performance of total ex-
ecution time?

OK exercise, but needs updating

1.16 [10/12] <1.9,1.6> One problem cited with MFLOPS as a measure is that not all
FLOPS are created equal. To overcome this problem, normalized or weighted MFLOPS
measures were developed. Figure 1.37 shows how the authors of the “Livermore Loops’
benchmark calculate the number of normalized floating-point operations per program ac-
cording to the operations actually found in the source code. Thus, the native MFLOPS rat-
ing is not the same as the normalized MFLOPS rating reported in the supercomputer
literature, which has come as a surprise to afew computer designers.

Real FP operations Normalized FP operations
Add, Subtract, Compare, Multiply 1
Divide, Square root 4
Functions (Expo, Sin,...) 8

FIGURE 1.37 Real versus normalized floating-point operations. The number of normal-
ized floating-point operations per real operation in a program used by the authors of the Liv-
ermore FORTRAN Kernels, or “Livermore Loops,” to calculate MFLOPS. A kernel with one
Add, one Divide, and one Sin would be credited with 13 normalized floating-point operations.
Native MFLOPS won't give the results reported for other machines on that benchmark.

Let’s examine the effects of this weighted MFL OPS measure. The spice program runs on
the DECstation 3100 in 94 seconds. The number of floating-point operations executed in
that program are listed in Figure 1.38.

Floating-point operation Times executed

FIGURE 1.38 Floating-point operations in spice.

1.11 Historical Perspective and References 85

update

addD 25,999,440
subD 18,266,439
mulD 33,880,810
divD 15,682,333
compareD 9,745,930
negD 2,617,846
absD 2,195,930
convertD 1,581,450
Total 109,970,178

FIGURE 1.38 Floating-point operations in spice.

a [10] <1.9,1.6> What isthe native MFLOPS for spice on a DECstation 3100?

b. [12] <1.9,1.6> Using the conversions in Figure 1.37, what is the normalized
MFLOPS?

1.17 [30] <1.5,1.9> Devise aprogram in C that gets the peak MIPS rating for a computer.
Run it on two machinesto calculate the peak MIPS. Now run the SPEC92 gcc on both ma-
chines. How well do peak MIPS predict performance of gcc?

1.18 [30] <1.5,1.9> Devise aprogram in C or FORTRAN that gets the peak MFLOPS rat-
ing for a computer. Run it on two machines to calculate the peak MFLOPS. Now run the
SPEC92 benchmark spice on both machines. How well do peak MFLOPS predict perfor-
mance of spice?

1.19 [Discussion] <1.5> What is an interpretation of the geometric means of execution
times? What do you think are the advantages and disadvantages of using total execution
times versus weighted arithmetic means of execution times using equal running time on the
VAX-11/780 versus geometric means of ratios of speed to the VAX-11/780

Instruction Set
Principles and
Examples

An Add the number in storage location n into the accumulator.

En [If the number in the accumulator is greater than or equal to
zero execute next the order which stands in storage location

n; otherwise proceed serially.

Z Stop the machine and ring the warning bell.

Wilkes and Renwick
Selection from the List of 18 Machine
Instructions for the EDSAC (1949)

2.1 Introduction 99

2.2 Classifying Instruction Set Architectures 101
2.3 Memory Addressing 105
2.4 Addressing Modes for Signal Processing 111
25 Type and Size of Operands 114
2.6 Operands for Media and Signal Processing 116
2.7 Operations in the Instruction Set 118
2.8 Operations for Media and Signal Processing 118
2.9 Instructions for Control Flow 122
2.10 Encoding an Instruction Set 127
2.11 Crosscutting Issues: The Role of Compilers 130
2.12 Putting It All Together: The MIPS Architecture 140
2.13 Another View: The Trimedia TM32 CPU 151
2.14 Fallacies and Pitfalls 152
2.15 Concluding Remarks 158
2.16 Historical Perspective and References 160

Exercises 172

2 . 1 | Introduction

In this chapter we concentrate on instruction set architecture—the portion of the
computer visible to the programmer or compiler writer. This chapter introduces
the wide variety of design alternatives available to the instruction set architect. In
particular, this chapter focuses on five topics. First, we present a taxonomy of in-
struction set alternatives and give some qualitative assessment of the advantages
and disadvantages of various approaches. Second, we present and analyze some
instruction set measurements that are largely independent of a specific instruction
set. Third, we discuss instruction set architecture of processors not aimed at desk-
tops or servers: digital signal processors (DSPs) and media processors. DSP and
media processors are deployed in embedded applications, where cost and power
are as important as performance, with an emphasis on real time performance. As
discussed in Chapter 1, real time programmers often target worst case perfor-
mance rather to guarantee not to miss regularly occurring events. Fourth, we ad-
dress the issue of languages and compilers and their bearing on instruction set
architecture. Finally, the Putting It All Together section shows how these ideas
are reflected in the MIPS instruction set, which is typical of RISC architectures,
and Another View presents the Trimedia TM32 CPU, an example of a media pro-
cessor. We conclude with fallacies and pitfalls of instruction set design.

100

Chapter 2 Instruction Set Principles and Examples

To make the illustrate the principles further, appendices B through E give four
examples of general purpose RISC architectures (MIPS, Power PC, Precision Ar-
chitecture, SPARC), four embedded RISC processors (ARM, Hitachi SH, MIPS
16, Thumb), and three older architectures (80x86, IBM 360/370, and VAX). Be-
fore we discuss how to classify architectures, we need to say something about in-
struction set measurement.

Throughout this chapter, we examine a wide variety of architectural measure-
ments. Clearly, these measurements depend on the programs measured and on the
compilers used in making the measurements. The results should not be inter-
preted as absolute, and you might see different data if you did the measurement
with a different compiler or a different set of programs. The authors believe that
the measurements in this chapter are reasonably indicative of a class of typical
applications. Many of the measurements are presented using a small set of bench-
marks, so that the data can be reasonably displayed and the differences among
programs can be seen. An architect for a new computer would want to analyze a
much larger collection of programs before making architectural decisions. The
measurements shown are usually dynamic—that is, the frequency of a measured
event is weighed by the number of times that event occurs during execution of the
measured program.

Before starting with the general principles, let’s review the three application
areas from the last chapter. Desktop computing emphasizes performance of pro-
grams with integer and floating-point data types, with little regard for program
size or processor power consumption. For example, code size has never been re-
ported in the four generations of SPEC benchmarks. Servers today are used pri-
marily for database, file server, and web applications, plus some timesharing
applications for many users. Hence, floating-point performance is much less im-
portant for performance than integers and character strings, yet virtually every
server processor still includes floating-point instructions. Embedded applications
value cost and power, so code size is important because less memory is both
cheaper and lower power, and some classes of instructions (such as floating
point) may be optional to reduce chip costs.

Thus, instruction sets for all three applications are very similar; Appendix B
<RISC> takes advantage of the similarities to describe eight instruction sets in
just 43 pages. In point of fact, the MIPS architecture that drives this chapter has
been used successfully in desktops, servers, and embedded applications.

One successful architecture very different from RISC is the 80x86 (see Ap-
pendix C). Surprisingly, its success does not necessarily belie the advantages of a
RISC instruction set. The commercial importance of binary compatibility with
PC software combined with the abundance of transistor’s provided by Moore’s
Law led Intel to use a RISC instruction set internally while supporting an 80x86
instruction set externally. As we shall see in section 3.8 of the next chapter, recent
Intel microprocessors use hardware to translate from 80x86 instructions to RISC-
like instructions and then execute the translated operations inside the chip. They
maintain the illusion of 80x86 architecture to the programmer while allowing the
computer designer to implement a RISC-style processor for performance.

2.2 Classifying Instruction Set Architectures 101

DSPs and media processors, which can be used in embedded applications, em-
phasize real-time performance and often deal with infinite, continuous streams of
data. Keeping up with these streams often means targeting worst case perfor-
mance to offer real time guarantees. Architects of these computers also have a
tradition of identifying a small number of important kernels that are critical to
success, and hence are often supplied by the manufacturer. As a result of this her-
itage, these instruction set architectures include quirks that can improve perfor-
mance for the targeted kernels but that no compiler will ever generate.

In contrast, desktop and server applications historically do not to reward such
eccentricities since they do not have as narrowly defined a set of important ker-
nels, and since little of the code is hand optimized. If a compiler cannot generate
it, desktop and server programs generally won’t use it. We’ll see the impact of
these different cultures on the details of the instruction set architectures of this
chapter.

Given the increasing importance of media to desktop and embedded applica-
tions, a recent trend is to merge these cultures by adding DSP/media instructions
to conventional architectures. Hand coded library routines then try to deliver
DSP/media performance using conventional desktop and media architectures,
while compilers can generate code for the rest of the program using the conven-
tional instruction set. Section 2.8 describes such extensions. Similarly, embedded
applications are beginning to run more general-purpose code as they begin to in-
clude operating systems and more intelligent features.

Now that the background is set, we begin by exploring how instruction set ar-
chitectures can be classified.

2.2 | Classifying Instruction Set Architectures

The type of internal storage in a processor is the most basic differentiation, so in
this section we will focus on the alternatives for this portion of the architecture.
The major choices are a stack, an accumulator, or a set of registers. Operands
may be named explicitly or implicitly: The operands in a stack architecture are
implicitly on the top of the stack, and in an accumulator architecture one operand
is implicitly the accumulator. The general-purpose register architectures have
only explicit operands—either registers or memory locations. Figure 2.1 shows a
block diagram of such architectures and Figure 2.2 shows how the code sequence
C = A + B would typically appear in these three classes of instruction sets. The ex-
plicit operands may be accessed directly from memory or may need to be first
loaded into temporary storage, depending on the class of architecture and choice
of specific instruction.

As the figures show, there are really two classes of register computers. One
class can access memory as part of any instruction, called register-memory archi-
tecture, and the other can access memory only with load and store instructions,
called load-store or register-register architecture. A third class, not found in com-

102 Chapter 2 Instruction Set Principles and Examples

(d) Register-Register

(a) Stack (b) Accumulator (c) Register-Memory /Load-Store

an
_

an
_

\ie/

FIGURE 2.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the operand
is an input or the result of the ALU operation, or both an input and result. Lighter shades indicate inputs and the dark shade
indicates the result. In (a), a Top Of Stack register (TOS), points to the top input operand, which is combined with the oper-
and below. The first operand is removed from the stack, the result takes the place of the second operand, and TOS is up-
dated to point to the result. All operands are implicit. In (b), the Accumulator is both an implicit input operand and a result.
In (c) one input operand is a register, one is in memory, and the result goes to a register. All operands are registers in (d),
and, like the stack architecture, can be transferred to memory only via separate instructions: push or pop for (a) and load or
store for (d).

Register Register
Stack Accumulator (register-memory) (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R3,R1,B Load R2,B
Add Store C Store R3,C Add R3,R1,R2
Pop C Store R3,C

FIGURE 2.2 The code sequence for C = A + B for four classes of instruction sets. Note that the Add instruction has
implicit operands for stack and accumulator architectures, and explicit operands for register architectures. It is assumed that
A, B, and C all belong in memory and that the values of A and B cannot be destroyed. Figure 2.1 shows the Add operation
for each class of architecture.

2.2 Classifying Instruction Set Architectures 103

puters shipping today, keeps all operands in memory and is called a memory-
memory architecture. Some instruction set architectures have more registers than
a single accumulator, but place restrictions on uses of these special registers.
Such an architecture is sometimes called an extended accumulator or special-
purpose register computer.

Although most early computers used stack or accumulator-style architectures,
virtually every new architecture designed after 1980 uses a load-store register ar-
chitecture. The major reasons for the emergence of general-purpose register
(GPR) computers are twofold. First, registers—like other forms of storage inter-
nal to the processor—are faster than memory. Second, registers are more efficient
for a compiler to use than other forms of internal storage. For example, on a reg-
ister computer the expression (AxB) — (B+C) — (A«D) may be evaluated by doing
the multiplications in any order, which may be more efficient because of the loca-
tion of the operands or because of pipelining concerns (see Chapter 3). Neverthe-
less, on a stack computer the hardware must evaluate the expression in only one
order, since operands are hidden on the stack, and it may have to load an operand
multiple times.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (since
registers are faster than memory), and the code density improves (since a register
can be named with fewer bits than can a memory location).

As explained in section 2.11, compiler writers would prefer that all registers
be equivalent and unreserved. Older computers compromise this desire by dedi-
cating registers to special uses, effectively decreasing the number of general-pur-
pose registers. If the number of truly general-purpose registers is too small, trying
to allocate variables to registers will not be profitable. Instead, the compiler will
reserve all the uncommitted registers for use in expression evaluation. The domi-
nance of hand-optimized code in the DSP community has lead to DSPs with
many special-purpose registers and few general-purpose registers.

How many registers are sufficient? The answer, of course, depends on the ef-
fectiveness of the compiler. Most compilers reserve some registers for expression
evaluation, use some for parameter passing, and allow the remainder to be allo-
cated to hold variables. Just as people tend to be bigger than their parents, new in-
struction set architectures tend to have more registers than their ancestors.

Two major instruction set characteristics divide GPR architectures. Both char-
acteristics concern the nature of operands for a typical arithmetic or logical in-
struction (ALU instruction). The first concerns whether an ALU instruction has
two or three operands. In the three-operand format, the instruction contains one re-
sult operand and two source operands. In the two-operand format, one of the oper-
ands is both a source and a result for the operation. The second distinction among
GPR architectures concerns how many of the operands may be memory addresses
in ALU instructions. The number of memory operands supported by a typical
ALU instruction may vary from none to three. Figure 2.3 shows combinations of
these two attributes with examples of computers. Although there are seven possi-

104

Chapter 2

Instruction Set Principles and Examples

ble combinations, three serve to classify nearly all existing computers. As we
mentioned earlier, these three are register-register (also called load-store), register-

memory, and memory-memory.

Number of mem- Maximum number of Type of Examples
ory addresses operands allowed architecture

0 3 Register- Alpha, ARM, MIPS, PowerPC, SPARC, SuperH,
register Trimedia TM5200

1 2 Register- IBM 360/370, Intel 80x86, Motorola 68000, TI
memory TMS320C54x

2 2 Memory- VAX (also has three-operand formats)
memory

3 3 Memory- VAX (also has two-operand formats)
memory

FIGURE 2.3 Typical combinations of memory operands and total operands per typical ALU instruction with exam-
ples of computers. Computers with no memory reference per ALU instruction are called load-store or register-register
computers. Instructions with multiple memory operands per typical ALU instruction are called register-memory or memory-
memory, according to whether they have one or more than one memory operand.

Type Advantages Disadvantages
Register- Simple, fixed-length instruction encoding. Simple ~ Higher instruction count than architectures with
register code-generation model. Instructions take similar memory references in instructions. More instruc-
0,3) numbers of clocks to execute (see App. A). tions and lower instruction density leads to larger
programs.
Register- Data can be accessed without a separate load in- Operands are not equivalent since a source oper-
memory struction first. Instruction format tends to be easy ~ and in a binary operation is destroyed. Encoding a
(1,2) to encode and yields good density. register number and a memory address in each
instruction may restrict the number of registers.
Clocks per instruction vary by operand location.
Memory- Most compact. Doesn’t waste registers for Large variation in instruction size, especially for
memory temporaries. three-operand instructions. In addition, large vari-
(2,2) or ation in work per instruction. Memory accesses
(3.3) create memory bottleneck. (Not used today.)

FIGURE 2.4 Advantages and disadvantages of the three most common types of general-purpose register comput-
ers. The notation (m, n) means m memory operands and n total operands. In general, computers with fewer alternatives
simplify the compiler’s task since there are fewer decisions for the compiler to make (see section 2.11). Computers with a
wide variety of flexible instruction formats reduce the number of bits required to encode the program. The number of registers
also affects the instruction size since you need log, (number of registers) for each register specifier in an instruction. Thus,
doubling the number of registers takes 3 extra bits for a register-register architecture, or about 10% of a 32-bit instruction.

Figure 2.4 shows the advantages and disadvantages of each of these alterna-
tives. Of course, these advantages and disadvantages are not absolutes: They are
qualitative and their actual impact depends on the compiler and implementation
strategy. A GPR computer with memory-memory operations could easily be ig-

2.3 Memory Addressing 105

nored by the compiler and used as a register-register computer. One of the most
pervasive architectural impacts is on instruction encoding and the number of in-
structions needed to perform a task. We will see the impact of these architectural
alternatives on implementation approaches in Chapters 3 and 4.

Summary: Classifying Instruction Set Architectures

Here and at the end of sections 2.3 to 2.11 we summarize those characteristics we
would expect to find in a new instruction set architecture, building the foundation
for the MIPS architecture introduced in section 2.12. From this section we should
clearly expect the use of general-purpose registers. Figure 2.4, combined with
Appendix A on pipelining, lead to the expectation of a register-register (also
called load-store) version of a general-purpose register architecture.

With the class of architecture covered, the next topic is addressing operands.

2.3

| Memory Addressing

Independent of whether the architecture is register-register or allows any operand
to be a memory reference, it must define how memory addresses are interpreted
and how they are specified. The measurements presented here are largely, but not
completely, computer independent. In some cases the measurements are signifi-
cantly affected by the compiler technology. These measurements have been made
using an optimizing compiler, since compiler technology plays a critical role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a
function of the address and the length? All the instruction sets discussed in this
book—except some DSPs—are byte addressed and provide access for bytes (8
bits), half words (16 bits), and words (32 bits). Most of the computers also pro-
vide access for double words (64 bits).

There are two different conventions for ordering the bytes within a larger ob-
ject. Little Endian byte order puts the byte whose address is “x...x000” at the
least-significant position in the double word (the little end). The bytes are num-
bered:

Big Endian byte order puts the byte whose address is “x...x000” at the most-sig-
nificant position in the double word (the big end). The bytes are numbered:

106 Chapter 2 Instruction Set Principles and Examples
When operating within one computer, the byte order is often unnoticeable—only
programs that access the same locations as both, say, words and bytes can notice
the difference. Byte order is a problem when exchanging data among computers
with different orderings, however. Little Endian ordering also fails to match nor-
mal ordering of words when strings are compared. Strings appear “SDRAWK-
CAB” (backwards) in the registers.
A second memory issue is that in many computers, accesses to objects larger
than a byte must be aligned. An access to an object of size s bytes at byte address
A is aligned if A mod s = 0. Figure 2.5 shows the addresses at which an access is
aligned or misaligned.
Value of 3 low order bits of byte address:
Width of object: 0 1 2 3 4 5 6 7
1 Byte (Byte) Aligned | Aligned | Aligned | Aligned | Aligned | Aligned | Aligned | Aligned
2 Bytes (Half word) Aligned Aligned Aligned Aligned
2 Bytes (Half word) Misaligned I Misaligned I Misaligned I Misalig.
4 Bytes (Word) Aligned I Aligned I
4 Bytes (Word) Misaligned | Misaligned
4 Bytes (Word) Misaligned I Misaligned
4 Bytes (Word) Misaligned I Misalig.
8 bytes (Double word) Aligned I
8 bytes (Double word) Misaligned
8 bytes (Double word) Misaligned
8 bytes (Double word) Misaligned
8 bytes (Double word) Misaligned
8 bytes (Double word) Misaligned

8 bytes (Double word)

Misaligned

8 bytes (Double word)

Misalig.

FIGURE 2.5 Aligned and misalighed addresses of byte, half word, word, and double word objects for byte ad-
dressed computers. For each misaligned example some objects require two memory accesses to complete. Every aligned
object can always complete in one memory access, as long as the memory is as wide as the object. The figure shows the
memory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order three bits of the address.

Why would someone design a computer with alignment restrictions? Mis-
alignment causes hardware complications, since the memory is typically aligned
on a multiple of a word or double-word boundary. A misaligned memory access
may, therefore, take multiple aligned memory references. Thus, even in comput-
ers that allow misaligned access, programs with aligned accesses run faster.

2.3 Memory Addressing 107

Even if data are aligned, supporting byte, half-word, and word accesses re-
quires an alignment network to align bytes, half words, and words in 64-bit regis-
ters. For example, in Figure 2.5 above, suppose we read a byte from an address
with its three low order bits having the value 4. We will need shift right 3 bytes to
align the byte to the proper place in a 64-bit register. Depending on the instruc-
tion, the computer may also need to sign-extend the quantity. Stores are easy:
only the addressed bytes in memory may be altered. On some computers a byte,
half word, and word operation does not affect the upper portion of a register. Al-
though all the computers discussed in this book permit byte, half-word, and word
accesses to memory, only the IBM 360/370, Intel 80x86, and VAX supports ALU
operations on register operands narrower than the full width.

Now that we have discussed alternative interpretations of memory addresses,
we can discuss the ways addresses are specified by instructions, called address-
ing modes.

Addressing Modes

Given an address, we now know what bytes to access in memory. In this sub-
section we will look at addressing modes—how architectures specify the address
of an object they will access. Addressing mode specify constants and registers in
addition to locations in memory. When a memory location is used, the actual
memory address specified by the addressing mode is called the effective address.

Figure 2.6 above shows all the data-addressing modes that have been used in
recent computers. Immediates or literals are usually considered memory-address-
ing modes (even though the value they access is in the instruction stream), al-
though registers are often separated. We have kept addressing modes that depend
on the program counter, called PC-relative addressing, separate. PC-relative ad-
dressing is used primarily for specifying code addresses in control transfer instruc-
tions, discussed in section 2.9.

Figure 2.6 shows the most common names for the addressing modes, though
the names differ among architectures. In this figure and throughout the book, we
will use an extension of the C programming language as a hardware description
notation. In this figure, only one non-C feature is used: The left arrow (<) is used
for assignment. We also use the array Mem as the name for main memory and the ar-
ray Regs for registers. Thus, Mem [Regs [R1]] refers to the contents of the mem-
ory location whose address is given by the contents of register 1 (R1). Later, we will
introduce extensions for accessing and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction counts;
they also add to the complexity of building a computer and may increase the av-
erage CPI (clock cycles per instruction) of computers that implement those
modes. Thus, the usage of various addressing modes is quite important in helping
the architect choose what to include.

Figure 2.7 above shows the results of measuring addressing mode usage pat-
terns in three programs on the VAX architecture. We use the old VAX architec-

108 Chapter 2 Instruction Set Principles and Examples
Addressing
mode Example instruction Meaning When used
Register Add R4,R3 Regs [R4] «—Regs [R4] When a value is in a register.
+ Regs [R3]
Immediate Add R4,#3 Regs [R4] «Regs [R4] +3 For constants.
Displacement Add R4,100(R1) Regs [R4] <—Regs [R4] Accessing local variables
+ Mem[100+Regs [R1]] (+ simulates register indirect,
direct addressing modes)
Register indirect ~ Add R4, (R1) Regs [R4] «—Regs [R4] Accessing using a pointer or a
+ Mem[Regs [R1]] computed address.
Indexed Add R3, (R1 + R2) Regs [R3] «—Regs [R3] Sometimes useful in array
+Mem [Regs [R1] +Regs [R2]] addressing: R1 = base of array;
R2 = index amount.
Direct or Add R1, (1001) Regs [R1]«Regs [R1] Sometimes useful for access-
absolute + Mem[1001] ing static data; address con-
stant may need to be large.
Memory indirect Add R1,@(R3) Regs [R1] «—Regs [R1] If R3 is the address of a pointer
+ Mem[Mem[Regs [R3]]] P, then mode yields #p.
Autoincrement Add R1, (R2)+ Regs [R1] «—Regs [R1] Useful for stepping through ar-
+ Mem[Regs [R2]] rays within a loop. R2 points to
Regs [R2] «—Regs [R2] +d start of array; each reference
increments R2 by size of an
element, d.
Autodecrement Add R1,-(R2) Regs [R2] «—Regs [R2] -d Same use as autoincrement.
Regs [R1] «—Regs [R1] Autodecrement/increment can
+ Mem[Regs [R2]] also act as push/pop to imple-
ment a stack.
Scaled Add R1,100(R2) [R3] Regs[R1]« Regs[R1]+ Used to index arrays. May be
Mem [100+Regs [R2] applied to any indexed ad-
+ Regs [R3] *d] dressing mode in some com-
puters.

FIGURE 2.6 Selection of addressing modes with examples, meaning, and usage. In autoincrement/decrement and
scaled addressing modes, the variable d designates the size of the data item being accessed (i.e., whether the instruction
is accessing 1, 2, 4, or 8 bytes). These addressing modes are only useful when the elements being accessed are adjacent
in memory. RISC computers use Displacement addressing to simulate Register Indirect with 0 for the address and simulate
Direct addressing using 0 in the base register. In our measurements, we use the first name shown for each mode. The ex-
tensions to C used as hardware descriptions are defined on the next page, also on page 144, and on the back inside cover.

ture for a few measurements in this chapter because it has the richest set of
addressing modes and fewest restrictions on memory addressing. For example,
Figure 2.6 shows all the modes the VAX supports. Most measurements in this
chapter, however, will use the more recent register-register architectures to show
how programs use instruction sets of current computers.

2.3 Memory Addressing 109

TeX 1%
Memory indirect spice 6%
gec 1%
TeX (0%
Scaled spice 16%
gcc M 6%
TeX 24%
Register indirect spice 3%
gcc [N 11%
TeX 43%
Immediate spice 7%
goc M 39%
TeX 32%
Displacement gpjice 55%
gec I 0% .
0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

FIGURE 2.7 Summary of use of memory addressing modes (including immediates). These major addressing modes
account for all but a few percent (0% to 3%) of the memory accesses. Register modes, which are not counted, account for
one-half of the operand references, while memory addressing modes (including immediate) account for the other half. Of
course, the compiler affects what addressing modes are used; see section 2.11. The memory indirect mode on the VAX can
use displacement, autoincrement, or autodecrement to form the initial memory address; in these programs, almost all the
memory indirect references use displacement mode as the base. Displacement mode includes all displacement lengths (8,
16, and 32 bit). The PC-relative addressing modes, used almost exclusively for branches, are not included. Only the ad-
dressing modes with an average frequency of over 1% are shown. The data are from a VAX using three SPEC89 programs.

As Figure 2.7 shows, immediate and displacement addressing dominate ad-
dressing mode usage. Let’s look at some properties of these two heavily used
modes.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is that of
the range of displacements used. Based on the use of various displacement sizes,
a decision of what sizes to support can be made. Choosing the displacement field
sizes is important because they directly affect the instruction length. Figure 2.8
shows the measurements taken on the data access on a load-store architecture us-
ing our benchmark programs. We look at branch offsets in section 2.9—data ac-
cessing patterns and branches are different; little is gained by combining them,
although in practice the immediate sizes are made the same for simplicity.

Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves where a constant is wanted in a register. The last case oc-

110 Chapter 2 Instruction Set Principles and Examples

40%
35%
30%
25%

Percentage of 20%
displacement 15%

10%
5%
0%

o 1 2 83 4 5 6 7 8 9 101112 13 14 15
Number of bits of displacement

FIGURE 2.8 Displacement values are widely distributed. There are both a large number of small values and a fair num-
ber of large values. The wide distribution of displacement values is due to multiple storage areas for variables and different
displacements to access them (see section 2.11) as well as the overall addressing scheme the compiler uses. The x axis is
log, of the displacement; that is, the size of a field needed to represent the magnitude of the displacement. Zero on the x
axis shows the percentage of displacements of value 0. The graph does not include the sign bit, which is heavily affected
by the storage layout. Most displacements are positive, but a majority of the largest displacements (14+ bits) is negative.
Since this data was collected on a computer with 16-bit displacements, it cannot tell us about longer displacements. These
data were taken on the Alpha architecture with full optimization (see section 2.11) for SPEC CPU2000, showing the average
of integer programs (CINT2000) and the average of floating-point programs (CFP2000).

% 1
23% 1

Loads

|m Floating-point average
O Integer average

ALU operations

16% | |
All instructions ‘ 1
21% .

0% 5% 10% 15% 20% 25% 30%

FIGURE 2.9 About one-quarter of data transfers and ALU operations have an immediate operand. The bottom bars
show that integer programs use immediates in about one-fifth of the instructions, while floating-point programs use immedi-
ates in about one-sixth of the instructions. For loads, the load immediate instruction loads 16 bits into either half of a 32-bit
register. Load immediates are not loads in a strict sense because they do not access memory. Occasionally a pair of load
immediates is used to load a 32-bit constant, but this is rare. (For ALU operations, shifts by a constant amount are included
as operations with immediate operands.) These measurements as in Figure 2.8.

2.4 Addressing Modes for Signal Processing 111

45
40
35
30

Percent26t

immediaé%s]

curs for constants written in the code—which tend to be small-and for address
constants, which tend to be large. For the use of immediates it is important to
know whether they need to be supported for all operations or for only a subset.
The chart in Figure 2.9 shows the frequency of immediates for the general classes
of integer operations in an instruction set.

Another important instruction set measurement is the range of values for im-
mediates. Like displacement values, the size of immediate values affects instruc-
tion length. As Figure 2.10 shows, small immediate values are most heavily used.
Large immediates are sometimes used, however, most likely in addressing calcu-
lations.

1

\

\

/

/

/ \Floatinq-point average
/
I

Integer average

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bits needed for immediate

FIGURE 2.10 The distribution of immediate values. The x axis shows the number of bits needed to represent the mag-
nitude of an immediate value—0 means the immediate field value was 0. The majority of the immediate values are positive.
About 20% were negative for CINT2000 and about 30% were negative for CFP2000. These measurements were taken on
a Alpha, where the maximum immediate is 16 bits, for the same programs as in Figure 2.8. A similar measurement on the
VAX, which supported 32-bit immediates, showed that about 20% to 25% of immediates were longer than 16 bits.

2.4 | Addressing Modes for Signal Processing

To give a flavor of the different perspective between different architecture cul-
tures, here are two addressing modes that distinguish DSPs.

Since DSPs deal with infinite, continuous streams of data, they routinely rely
on circular buffers. Hence, as data is added to the buffer, a pointer is checked to
see if it is pointing at the end of the buffer. If not, it increments the pointer to the
next address; if it is, the pointer is set instead to the start of the buffer. Similar is-
sues arise when emptying a buffer.

112

Chapter 2 Instruction Set Principles and Examples

Every recent DSP has a modulo or circular addressing mode to handle this
case automatically, our first novel DSP addressing mode. It keeps a start register
and an end register with every address register, allowing the autoincrement and
autodecrement addressing modes to reset when the reach the end of the buffer.
One variation makes assumptions about the buffer size starting at an address that
ends in “xxx00.00” and so uses just a single buffer length register per address
register,

Even though DSPs are tightly targeted to a small number of algorithms, its
surprising this next addressing mode is included for just one application: Fast
Fourier Transform (FFT). FFTs start or end their processing with data shuffled in
a particular order. For eight data items in a radix-2 FFT, the transformation is list-
ed below, with addresses in parentheses shown in binary:

0 (000,) = 0(000,)
1(001,) = 4(100,)
2 (010,) = 2 (010,)
3(011,) = 6 (110,)
4 (100,) = 1(001,)
5(101,) = 5(101,)
6 (110,) = 3(011,)
7(111,) = 7(111,)

Without special support such address transformation would take an extra memory
access to get the new address, or involve a fair amount of logical instructions to
transform the address.

The DSP solution is based on the observation that the resulting binary address
is simply the reverse of the initial address! For example, address 100, (4) be-
comes 001,(1). Hence, many DSPs have this second novel addressing mode— bit
reverse addressing—whereby the hardware reverses the lower bits of the address,
with the number of bits reversed depending on the step of the FFT algorithm.

As DSP programmers migrate towards larger programs and hence become
more attracted to compilers, they have been trying to use the compiler technology
developed for the desktop and embedded computers. Such compilers have no
hope of taking high-level language code and producing these two addressing
modes, so they are limited to assembly language programmer. As stated before,
the DSP community routinely uses library routines, and hence programmers may
benefit even if they write at a higher level.

Figure 2.11 shows the static frequency of data addressing modes in a DSP for
a set of 54 library routines. This architecture has 17 addressing modes, yet the 6
modes also found in Figure 2.6 on page 108 for desktop and server computers ac-
count for 95% of the DSP addressing. Despite measuring hand-coded routines to
derive Figure 2.11, the use of novel addressing mode is sparse.

2.4 Addressing Modes for Signal Processing 113

These results are just for one library for just one DSP, other libraries might use
more addressing modes, and static and dynamic frequencies may differ. Yet Fig-
ure 2.11 still makes the point that there is often a mismatch between what pro-
grammers and compilers actually use versus what architects expect, and this is
just as true for DSPs as it is for more traditional processors.

Addressing Mode Assembly Percent
Symbol
Immediate #num 30.02%
Displacement ARx(num) 10.82%
Register indirect *ARx 17.42%
Direct num 11.99%
Autoincrement, pre increment (increment register before use contents as address) ~ *+ARx 0
Autoincrement, post increment (increment register affer use contents as address) *ARx+ 18.84%
Autoincrement, pre increment with 16b immediate *+ARX(num) 0.77%
Autoincrement, pre increment, with circular addressing *ARx+% 0.08%
Autoincrement, post increment with 16b immediate, with circular addressing * ARx+(num)% 0
Autoincrement, post increment by contents of ARO *ARx+0 1.54%
Autoincrement, post increment by contents of ARO, with circular addressing *ARx+0% 2.15%
Autoincrement, post increment by contents of ARO, with bit reverse addressing *ARx+0B 0
Autodecrement, post decrement (decrement register after use contents as address ~ *ARX- 6.08%
Autodecrement, post decrement, with circular addressing *ARx-% 0.04%
Autodecrement, post decrement by contents of ARO *ARx-0 0.16%
Autodecrement, post decrement by contents of ARO, with circular addressing *ARx-0% 0.08%
Autodecrement, post decrement by contents of ARO, with bit reverse addressing *ARx-0B 0
Total 100.00%

FIGURE 2.11 Frequency of addressing modes for TI TMS320C54x DSP. The C54x has 17 data addressing modes, not
counting register access, but the four found in MIPS account for 70% of the modes. Autoincrement and autodecrement,
found in some RISC architectures, account for another 25% of the usage. This data was collected form a measurement of
static instructions for the C-callable library of 54 DSP routines coded in assembly language. See http://www.ti.com/sc/docs/
products/dsp/c5000/c54x/54dsplib.htm

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to support
at least the following addressing modes: displacement, immediate, and register
indirect. Figure 2.7 on page 109 shows they represent 75% to 99% of the ad-
dressing modes used in our SPEC measurements. Second, we would expect the
size of the address for displacement mode to be at least 12 to 16 bits, since the
caption in Figure 2.8 on page 110 suggests these sizes would capture 75% to

114

Chapter 2 Instruction Set Principles and Examples

99% of the displacements. Third, we would expect the size of the immediate field
to be at least 8 to 16 bits. As the caption in Figure 2.10 suggests, these sizes
would capture 50% to 80% of the immediates.

Desktop and server processors rely on compilers and so addressing modes
must match the ability of the compilers to use them, while historically DSPs rely
on hand-coded libraries to exercise novel addressing modes. Even so, there are
times when programmers find they do not need the clever tricks that architects
thought would be useful—or tricks that other programmers promised that they
would use. As DSPs head towards relying even more on compiled code, we ex-
pect increasing emphasis on simpler addressing modes.

Having covered instruction set classes and decided on register-register archi-
tectures plus the recommendations on data addressing modes above, we next cov-
er the sizes and meanings of data.

2.5 | Type and Size of Operands

How is the type of an operand designated? Normally, encoding in the opcode
designates the type of an operand—this is the method used most often. Alterna-
tively, the data can be annotated with tags that are interpreted by the hardware.
These tags specify the type of the operand, and the operation is chosen accord-
ingly. Computers with tagged data, however, can only be found in computer mu-
seums.

Let’s start with desktop and server architectures. Usually the type of an oper-
and—integer, single-precision floating point, character, and so on—effectively
gives its size. Common operand types include character (8 bits), half word (16
bits), word (32 bits), single-precision floating point (also 1 word), and double-
precision floating point (2 words). Integers are almost universally represented as
two’s complement binary numbers. Characters are usually in ASCII, but the 16-
bit Unicode (used in Java) is gaining popularity with the internationalization of
computers. Until the early 1980s, most computer manufacturers chose their own
floating-point representation. Almost all computers since that time follow the
same standard for floating point, the IEEE standard 754. The IEEE floating-point
standard is discussed in detail in Appendix G <Float>.

Some architectures provide operations on character strings, although such op-
erations are usually quite limited and treat each byte in the string as a single char-
acter. Typical operations supported on character strings are comparisons and
moves.

For business applications, some architectures support a decimal format, usu-
ally called packed decimal or binary-coded decimal—4 bits are used to encode
the values 0-9, and 2 decimal digits are packed into each byte. Numeric character
strings are sometimes called unpacked decimal, and operations—called packing
and unpacking—are usually provided for converting back and forth between
them.

2.5 Type and Size of Operands 115

One reason to use decimal operands is to get results that exactly match deci-
mal numbers, as some decimal fractions do not have an exact representation in
binary. For example, 0.10,, is a simple fraction in decimal but in binary it re-
quires an infinite set of repeating digits: 0.0001100110011...,. Thus, calculations
that are exact in decimal can be close but inexact in binary, which can be a prob-
lem for financial transactions. (See Appendix G <Float> to learn more about pre-
cise arithmetic.)

Our SPEC benchmarks use byte or character, half word (short integer), word
(integer), double word (long integer) and floating-point data types. Figure 2.12
shows the dynamic distribution of the sizes of objects referenced from memory
for these programs. The frequency of access to different data types helps in de-
ciding what types are most important to support efficiently. Should the computer
have a 64-bit access path, or would taking two cycles to access a double word be
satisfactory? As we saw earlier, byte accesses require an alignment network: How
important is it to support bytes as primitives? Figure 2.12 uses memory references
to examine the types of data being accessed.

In some architectures, objects in registers may be accessed as bytes or half
words. However, such access is very infrequent—on the VAX, it accounts for no
more than 12% of register references, or roughly 6% of all operand accesses in
these programs.

Double word
(64 bits) }
Word
(32 bits) } }
| | W equake
Half word } } .
: ! |0 gzip
(16 bits) | |
\ (@ perl
Byte | 1 |
(8 bits) l l l
0% 20% 40% 60% 80% 100%

FIGURE 2.12 Distribution of data accesses by size for the benchmark programs. The
double word data type is used for double-precision floating-point in floating-point programs
and for addresses, since the computer uses 64-bit addresses. On a 32-bit address computer
the 64-bit addresses would be replaced by 32-bit addresses, and so almost all double-word
accesses in integer programs would become single word accesses.

116

Chapter 2 Instruction Set Principles and Examples

2.6

EXAMPLE

ANSWER

| Operands for Media and Signal Processing

Graphics applications deal with 2D and 3D images. A common 3D data type is
called a vertex, a data structure with three components: x coordinate, y coordi-
nate, a z coordinate, and a fourth coordinate (w) to help with color or hidden sur-
faces. Three vertices specify a graphics primitive such as a triangle. Vertex values
are usually 32-bit floating-point values.

Assuming a triangle is visible, when it is rendered it is filled with pixels. Pix-
els are usually 32 bits, usually consisting of four 8-bit channels: R (red), G
(green), B (blue) and A (which denotes the transparency of the surface or trans-
parency of the pixel when the pixel is rendered).

DSPs add fixed point to the data types discussed so far. If you think of integers
as having a binary point to the right of the least significant bit, fixed point has a
binary point just to the right of the sign bit. Hence, fixed-point data are fractions
between -1 and +1.

Here are three simple16-bit patterns:

0100 0000 0000 0000
0000 1000 0000 0000
0100 1000 0000 1000

What values do they represent if they are two’s complement integers? Fixed-
point numbers?

Number representation tells us that the i-th digit to the left of the binary
point represents 2" and the i-th digit to the right of the binary point repre-
sents 2. First assume these three patterns are integers. Then the binary
point is to the far right, so they represent 2'4, 2", and (2'4+ 2"+ 29), or
16384, 2048, and 18440.

Fixed point places the binary point just to the right of the sign bit, so as fixed
point these patterns represent 21, 24, and (2'+ 24 + 272). The fractions are
1/2, 1/16, and (2048 + 256 + 1)/4096 or 2305/4096,which represents about
0.50000, 0.06250, and 0.56274. Alternatively, for an n-bit two’s-complement,
fixed-point number we could just use the divide the integer presentation by the
2" to derive the same results:

16384/32768=1/2, 2048/32768=1/16, and 18440/32768=2305/4096.

Fixed point can be thought of as just low cost floating point. It doesn’t include
an exponent in every word and have hardware that automatically aligns and nor-
malizes operands. Instead, fixed point relies on the DSP programmer to keep the

2.6 Operands for Media and Signal Processing 117

exponent in a separate variable and ensure that each result is shifted left or right
to keep the answer aligned to that variable. Since this exponent variable is often
shared by a set of fixed-point variables, this style of arithmetic is also called
blocked floating point, since a block of variables have a common exponent

To support such manual calculations, DSPs usually have some registers that
are wider to guard against round-off error, just as floating-point units internally
have extra guard bits. Figure 2.13 surveys four generations of DSPs, listing data
sizes and width of the accumulating registers. Note that DSP architects are not
bound by the powers of 2 for word sizes. Figure 2.14 shows the size of data oper-
ands for the TI TMS320C540x DSP.

Generation Year Example DSP Data Width Accumulator
Width
1 1982 TI TMS32010 16 bits 32 bits
2 1987 Motorola DSP56001 24 bits 56 bits
3 1995 Motorola DSP56301 24 bits 56 bits
4 1998 TI TMS320C6201 16 bits 40 bits

FIGURE 2.13 Four generations of DSPs, their data width, and the width of the registers that
reduces round-off error. Section 2.8 explains that multiply-accumulate operations use wide
registers to avoid loosing precision when accumulating double-length products [Bier 1997].

Data Size Memory Operand in Operation = Memory Operand in Data Transfer

16 bits 89.3% 89.0%

32 bits 10.7% 11.0%

FIGURE 2.14 Size of data operands for TMS320C540x DSP. About 90% of operands are
16 bits. This DSP has two 40-bit accumulators. There are no floating-point operations, as is
typical of many DSPs, so these data are all fixed-point integers. For details on these mea-
surements, see the caption of Figure 2.11 on page 113.

Summary: Type and Size of Operands

From this section we would expect a new 32-bit architecture to support 8-, 16-,
and 32-bit integers and 32-bit and 64-bit IEEE 754 floating-point data. A new 64-
bit address architecture would need to support 64-bit integers as well. The level
of support for decimal data is less clear, and it is a function of the intended use of
the computer as well as the effectiveness of the decimal support. DSPs need wid-
er accumulating registers than the size in memory to aid accuracy in fixed-point
arithmetic.

We have reviewed instruction set classes and chosen the register-register class,
reviewed memory addressing and selected displacement, immediate, and register
indirect addressing modes, and selected the operand sizes and types above. Now
we are ready to look at instructions that do the heavy lifting in the architecture.

118

Chapter 2 Instruction Set Principles and Examples

2.7 | Operations in the Instruction Set

The operators supported by most instruction set architectures can be categorized
as in Figure 2.15. One rule of thumb across all architectures is that the most
widely executed instructions are the simple operations of an instruction set. For
example Figure 2.16 shows 10 simple instructions that account for 96% of in-
structions executed for a collection of integer programs running on the popular
Intel 80x86. Hence, the implementor of these instructions should be sure to make
these fast, as they are the common case.

Operator type

Examples

Arithmetic and logical

Integer arithmetic and logical operations: add, subtract, and, or, multiple, divide

Data transfer

Loads-stores (move instructions on computers with memory addressing)

Control

Branch, jump, procedure call and return, traps

System

Operating system call, virtual memory management instructions

Floating point

Floating-point operations: add, multiply, divide, compare

Decimal Decimal add, decimal multiply, decimal-to-character conversions
String String move, string compare, string search
Graphics Pixel and vertex operations, compression/decompression operations

FIGURE 2.15 Categories of instruction operators and examples of each. All computers generally provide a full set of
operations for the first three categories. The support for system functions in the instruction set varies widely among archi-
tectures, but all computers must have some instruction support for basic system functions. The amount of support in the
instruction set for the last four categories may vary from none to an extensive set of special instructions. Floating-point in-
structions will be provided in any computer that is intended for use in an application that makes much use of floating point.
These instructions are sometimes part of an optional instruction set. Decimal and string instructions are sometimes primi-
tives, as in the VAX or the IBM 360, or may be synthesized by the compiler from simpler instructions. Graphics instructions
typically operate on many smaller data items in parallel; for example, performing eight 8-bit additions on two 64-bit operands.

As mentioned before, the instructions in Figure 2.16 are found in every com-
puter for every application—desktop, server, embedded—with the variations of
operations in Figure 2.15 largely depending on which data types that the instruc-
tion set includes.

28 | Operations for Media and Signal Processing

Because media processing is judged by human perception, the data for multime-
dia operations is often much narrower than the 64-bit data word of modern desk-
top and server processors. For example, floating-point operations for graphics are
normally in single precision, not double precision, and often at precession less
than required by IEEE 754. Rather than waste the 64-bit ALUs when operating
on 32-bit, 16-bit, or even 8-bit integers, multimedia instructions can operate on

2.8 Operations for Media and Signal Processing 119

Integer average

Rank 80x86 instruction (% total executed)
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%

FIGURE 2.16 The top 10 instructions for the 80x86. Simple instructions dominate this
list, and are responsible for 96% of the instructions executed. These percentages are the av-
erage of the five SPECint92 programs.

several narrower data items at the same time. Thus, a partitioned add operation
on 16-bit data with a 64-bit ALU would perform four 16-bit adds in a single
clock cycle. The extra hardware cost is simply to prevent carries between the four
16-bit partitions of the ALU. For example, such instructions might be used for
graphical operations on pixels.

These operations are commonly called Single-Instruction Multiple Data
(SIMD) or vector instructions. Chapters 6 and Appendix F <vector> describe the
full machines that pioneered these architectures.

Most graphics multimedia applications use 32-bit floating-point operations.
Some computers double peak performance of single-precision, floating-point op-
erations; they allow a single instruction to launch two 32-bit operations on oper-
ands found side-by-side in a double precision register. Just as in the prior case,
the two partitions must be insulated to prevent operations on one half to affect the
other. Such floating-point operations are called paired-single operations. For ex-
ample, such an operation might be used to graphical transformations of vertices.
This doubling in performance is typically accomplished by doubling the number
of floating-point units, making it more expensive than just suppressing carries in
integer adders.

Figure 2.17 summaries the SIMD multimedia instructions found in several re-
cent computers..

DSP operations

DSPs also provide operations found in the first three rows of Figure 2.15, but
they change the semantics a bit. First, because they are often used in real time ap-

120

Chapter 2 Instruction Set Principles and Examples

Instruction category Alpha HP Intel Power PC SPARC VIS
MAX PA-RISC Pentium AltiVec
MAX2 MMX
Add/subtract 4H 8B,4H,2W 16B, 8H, 4W 4H,2W
Saturating add/sub 4H 8B,4H 16B, 8H, 4W
Multiply 4H 16B, 8H
Compare 8B (>=) 8B,4H,2W 16B, 8H, 4W 4H,2W
(=>) (=>>=<,<=) (=.not=,><=)
Shift right/left 4H 4H,2W 16B, 8H, 4W
Shift right arithmetic 4H 16B, 8H, 4W
Multiply and add 8H
Shift and add (saturating) 4H
And/or/xor 8B,4H,2W 8B,4H,2W 8B,4H,2W 16B, 8H, 4W 8B,4H,2W
Absolute difference 8B 16B, 8H, 4W 8B
Maximum/minimum 8B, 4W 16B, 8H, 4W
Pack (2n bits --> n bits) 2W->2B, 2*4H->8B 4H->4B, 4W->4B, 2W->2H,
4H->4B 2W->2H 8H->8B 2W->2B, 4H-
>4B
Unpack/merge 2B->2W, 2B->2W, 4B->4W, 4B->4H,
4B->4H 4B->4H 8B->8H 2*4B->8B
Permute/shuffle 4H 16B, 8H, 4W

FIGURE 2.17 Summary of multimedia support for desktop RISCs. Note the diversity of support, with little in common
across the five architectures. All are fixed width operations, performing multiple narrow operations on either a 64-bit or 128-
bit ALU. B stands for byte (8 bits), H for halfword (16 bits), and W for word (32 bits). Thus, 8B means an operation on 8 bytes
in a single instruction. Note that AltiVec assume a128-bit ALU, and the rest assume 64 bits. Pack and unpack use the no-
tation 2*2W to mean 2 operands each with 2 words. This table is a simplification of the full multimedia architectures, leaving
out many details. For example, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instruc-
tions to set registers to constants. Also, this table does not include the memory alignment operation of AltiVec, MAX and VIS

plications, there is not an option of causing an exception on arithmetic overflow
(otherwise it could miss an event); thus, the result will be used no matter what the
inputs. To support such an unyielding environment, DSP architectures use satu-
rating arithmetic: if the result is too large to be represented, it is set to the largest
representable number, depending on the sign of the result. In contrast, two’s com-
plement arithmetic can add a small positive number to a large positive number
and end up with a negative result. DSP algorithms rely on saturating arithmetic,
and would be incorrect if run on a computer without it.

A second issue for DSPs is that there are several modes to round the wider ac-
cumulators into the narrower data words, just as the IEEE 754 has several round-
ing modes to chose from.

2.8 Operations for Media and Signal Processing 121

Finally, the targeted kernels for DSPs accumulate a series of products, and
hence have a multiply-accumulate or MAC instruction. MACs are key to dot
product operations for vector and matrix multiplies. In fact, MACs/second is the
primary peak-performance metric that DSP architects brag about. The wide accu-
mulators are used primarily to accumulate products, with rounding used when
transferring results to memory.

Instruction Percent

store mem16 32.2%
load mem16 9.4%
add mem16 6.8%
call 5.0%
push mem16 5.0%
subtract mem16 4.9%
multiple-accumulate (MAC) mem16 4.6%
move mem-mem 16 4.0%
change status 3.7%
pop mem16 2.8%
conditional branch 2.6%
load mem32 2.5%
return 2.5%
store mem3?2 2.0%
branch 2.0%
repeat 2.0%
multiply 1.8%
NOP 1.5%
add mem32 1.3%
subtract mem32 0.9%
Total 97.2%

FIGURE 2.18 Mix of instructions for TMS320C540x DSP. As in Figure 2.16, simple instructions dominate this list of most
frequent instructions. Mem16 stands for a 16-bit memory operand and mem32 stands for a 32-bit memory operand. The
large number of change status instructions is to set mode bits to affect instructions, essentially saving opcode space in these
16-bit instructions by keeping some of it in a status register. For example, status bits determine whether 32-bit operations
operate in SIMD mode to produce16-bit results in parallel or act as a single 32-bit result. For details on these measurements,
see the caption of Figure 2.11 on page 113.

Figure 2.18 shows the static mix of instructions for the TI TMS320C540x
DSP for a set of library routines. This 16-bit architecture uses two 40-bit accumu-
lators, plus a stack for passing parameters to library routines and for saving return
addresses. Note that DSPs have many more multiplies and MACs than in desktop

122

Chapter 2 Instruction Set Principles and Examples

programs. Although not shown in the figure, 15% to 20% of the multiplies and
MAC:s round the final sum. The C54 also has 8 address registers that can be ac-
cessed via load and store instructions, as these registers are memory mapped: that
is, each register also has a memory address. The larger number of stores is due in
part to writing portions of the 40-bit accumulators to 16-bit words, and also to
transfer between registers as their index registers also have memory addressees.
There are no floating-point operations, as is typical of many DSPs, so these oper-
ations are all on fixed-point integers.

Summary: Operations in the Instruction Set

From this section we see the importance and popularity of simple instructions:
load, store, add, subtract, move register-register, and, shift. DSPs add multiplies
and multiply-accumulates to this simple set of primitives.

Reviewing where we are in the architecture space, we have looked at instruc-
tion classes and selected register-register. We selected displacement, immediate,
and register indirect addressing and selected 8-,16-, 32-, and 64-bit integers and
32- and 64-bit floating point. For operations we emphasize the simple list men-
tioned above. We are now ready to show how computers make decisions.

29 | Instructions for Control Flow

Because the measurements of branch and jump behavior are fairly independent of
other measurements and applications, we now examine the use of control-flow
instructions, which have little in common with operations of the prior sections.

There is no consistent terminology for instructions that change the flow of
control. In the 1950s they were typically called transfers. Beginning in 1960 the
name branch began to be used. Later, computers introduced additional names.
Throughout this book we will use jump when the change in control is uncondi-
tional and branch when the change is conditional.

We can distinguish four different types of control-flow change:

1. Conditional branches
2. Jumps

3. Procedure calls

4. Procedure returns

We want to know the relative frequency of these events, as each event is different,
may use different instructions, and may have different behavior. Figure 2.19
shows the frequencies of these control-flow instructions for a load-store comput-
er running our benchmarks.

2.9 Instructions for Control Flow 123

call/return

B Floating-point Average
O Integer Average

Jjump

cond.branch

0% 25% 50% 75% 100%

Frequency of branch instructions

FIGURE 2.19 Breakdown of control flow instructions into three classes: calls or re-
turns, jumps, and conditional branches. Conditional branches clearly dominate. Each type
is counted in one of three bars. The programs and computer used to collect these statistics
are the same as those in Figure 2.8.

Addressing Modes for Control Flow Instructions

The destination address of a control flow instruction must always be specified.
This destination is specified explicitly in the instruction in the vast majority of
cases—procedure return being the major exception—since for return the target is
not known at compile time. The most common way to specify the destination is to
supply a displacement that is added to the program counter, or PC. Control flow
instructions of this sort are called PC-relative. PC-relative branches or jumps are
advantageous because the target is often near the current instruction, and specify-
ing the position relative to the current PC requires fewer bits. Using PC-relative
addressing also permits the code to run independently of where it is loaded. This
property, called position independence, can eliminate some work when the pro-
gram is linked and is also useful in programs linked dynamically during execution.

To implement returns and indirect jumps when the target is not known at com-
pile time, a method other than PC-relative addressing is required. Here, there
must be a way to specify the target dynamically, so that it can change at runtime.
This dynamic address may be as simple as naming a register that contains the tar-
get address; alternatively, the jump may permit any addressing mode to be used
to supply the target address.

These register indirect jumps are also useful for four other important features:

1. case or switch statements found in most programming languages (which select among
one of several alternatives);

2. virtual functions or methods in object-oriented languages like C++ or Java (which al-
low different routines to be called depending on the type of the argument);

3. high order functions or function pointers in languages like C or C++ (which al-
lows functions to be passed as arguments giving some of the flavor of object oriented
programming), and

124

Chapter 2 Instruction Set Principles and Examples

30

25

20

Integer average Floating-point

15 \ average
. / r \\
5

O/:XMH

012 3 456 7 8 910111213 1415 16 17 18 19 2

Bits of branch displacement

FIGURE 2.20 Branch distances in terms of number of instructions between the target
and the branch instruction. The most frequent branches in the integer programs are to tar-
gets that can be encoded in four to eight bits. This result tells us that short displacement fields
often suffice for branches and that the designer can gain some encoding density by having a
shorter instruction with a smaller branch displacement. These measurements were taken on
a load-store computer (Alpha architecture) with all instructions aligned on word boundaries.
An architecture that requires fewer instructions for the same program, such as a VAX, would
have shorter branch distances. However, the number of bits needed for the displacement
may increase if the computer has variable length instructions to be aligned on any byte
boundary. Exercise 2.1 shows the accumulative distribution of this branch displacement data
(see Figure 2.42 on page 173). The programs and computer used to collect these statistics
are the same as those in Figure 2.8.

4. dynamically shared libraries (which allow a library to be loaded and linked at runtime
only when it is actually invoked by the program rather than loaded and linked statically
before the program is run).

In all four cases the target address is not known at compile time, and hence is
usually loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targets, an
important question concerns how far branch targets are from branches. Knowing
the distribution of these displacements will help in choosing what branch offsets
to support and thus will affect the instruction length and encoding. Figure 2.20
shows the distribution of displacements for PC-relative branches in instructions.
About 75% of the branches are in the forward direction.

2.9 Instructions for Control Flow 125

Conditional Branch Options

Since most changes in control flow are branches, deciding how to specify the
branch condition is important. Figure 2.21 shows the three primary techniques in
use today and their advantages and disadvantages.

Name Examples How condition is tested Advantages Disadvantages

Condition 80x86, Special bits are set by ALU ~ Sometimes condition CC is extra state. Condition

code (CC) ARM, operations, possibly under is set for free. codes constrain the ordering
PowerPC, program control. of instructions since they pass
SPARC, information from one instruc-
SuperH tion to a branch.

Condition Alpha, Tests arbitrary register with Simple. Uses up a register.

register MIPS the result of a comparison.

Compare PA-RISC, Compare is part of the One instruction rather ~ May be too much work per

and branch VAX branch. Often compare is than two for a branch. instruction for pipelined exe-

limited to subset. cution.
FIGURE 2.21 The major methods for evaluating branch conditions, their advantages, and their disadvantages.

Although condition codes can be set by ALU operations that are needed for other purposes, measurements on programs
show that this rarely happens. The major implementation problems with condition codes arise when the condition code is
set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the instruction. Com-
puters with compare and branch often limit the set of compares and use a condition register for more complex compares.
Often, different techniques are used for branches based on floating-point comparison versus those based on integer com-
parison. This dichotomy is reasonable since the number of branches that depend on floating-point comparisons is much
smaller than the number depending on integer comparisons.

One of the most noticeable properties of branches is that a large number of the
comparisons are simple tests, and a large number are comparisons with zero.
Thus, some architectures choose to treat these comparisons as special cases, es-
pecially if a compare and branch instruction is being used. Figure 2.22 shows the
frequency of different comparisons used for conditional branching.

DSPs add another looping structure, usually called a repeat instruction. It al-
lows a single instruction or a block of instructions to be repeated up to, say, 256
times. For example, the TMS320C54 dedicates three special registers to hold the
block starting address, ending address, and repeat counter. The memory instruc-
tions in a repeat loop will typically have autoincrement or autodecrement ad-
dressing to access a vector. The goal of such instructions is to avoid loop
overhead, which can be significant in the small loops of DSP kernels.

Procedure Invocation Options

Procedure calls and returns include control transfer and possibly some state
saving; at a minimum the return address must be saved somewhere, sometimes in
a special link register or just a GPR. Some older architectures provide a mecha-

126

Chapter 2 Instruction Set Principles and Examples

Not equal 020?
Equal %/%0 l 1 1

Greater than or Equal p%&=— 4 19! | |
B Floating-point Average

O Integer Average

o,
Less than or equal |EEEEEE ¢ 4%

Less than 359, |

Greater than 0% |

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

FIGURE 2.22 Frequency of different types of compares in conditional branches. Less
than (or equal) branches dominate this combination of compiler and architecture. These mea-
surements include both the integer and floating-point compares in branches. The programs
and computer used to collect these statistics are the same as those in Figure 2.8

nism to save many registers, while newer architectures require the compiler to
generate stores and loads for each register saved and restored.

There are two basic conventions in use to save registers: either at the call site
or inside the procedure being called. Caller saving means that the calling proce-
dure must save the registers that it wants preserved for access after the call, and
thus the called procedure need not worry about registers. Callee saving is the op-
posite: the called procedure must save the registers it wants to use, leaving the
caller is unrestrained.

There are times when caller save must be used because of access patterns to
globally visible variables in two different procedures. For example, suppose we
have a procedure P1 that calls procedure P2, and both procedures manipulate the
global variable x. If P1 had allocated x to a register, it must be sure to save x to a
location known by P2 before the call to P2. A compiler’s ability to discover when
a called procedure may access register-allocated quantities is complicated by the
possibility of separate compilation. Suppose P2 may not touch x but can call an-
other procedure, P3, that may access x, yet P2 and P3 are compiled separately.
Because of these complications, most compilers will conservatively caller save
any variable that may be accessed during a call.

In the cases where either convention could be used, some programs will be
more optimal with callee save and some will be more optimal with caller save. As
a result, the most real systems today use a combination of the two mechanisms.

2.10 Encoding an Instruction Set 127

This convention is specified in an application binary interface (ABI) that sets
down the basic rules as to which registers should be caller saved and which
should be callee saved. Later in this chapter we will examine the mismatch be-
tween sophisticated instructions for automatically saving registers and the needs
of the compiler.

Summary: Instructions for Control Flow

Control flow instructions are some of the most frequently executed instructions.
Although there are many options for conditional branches, we would expect
branch addressing in a new architecture to be able to jump to hundreds of instruc-
tions either above or below the branch. This requirement suggests a PC-relative
branch displacement of at least 8 bits. We would also expect to see register-indi-
rect and PC-relative addressing for jump instructions to support returns as well as
many other features of current systems.

We have now completed our instruction architecture tour at the level seen by
assembly language programmer or compiler writer. We are leaning towards a reg-
ister-register architecture with displacement, immediate, and register indirect ad-
dressing modes. These data are 8-,16-, 32-, and 64-bit integers and 32- and 64-bit
floating-point data. The instructions include simple operations, PC-relative con-
ditional branches, jump and link instructions for procedure call, and register indi-
rect jumps for procedure return (plus a few other uses.)

Now we need to select how to represent this architecture in a form that makes
it easy for the hardware to execute.

2.10 | Encoding an Instruction Set

Clearly, the choices mentioned above will affect how the instructions are encoded
into a binary representation for execution by the processor. This representation
affects not only the size of the compiled program; it affects the implementation of
the processor, which must decode this representation to quickly find the operation
and its operands. The operation is typically specified in one field, called the op-
code. As we shall see, the important decision is how to encode the addressing
modes with the operations.

This decision depends on the range of addressing modes and the degree of in-
dependence between opcodes and modes. Some older computers have one to five
operands with 10 addressing modes for each operand (see Figure 2.6 on
page 108). For such a large number of combinations, typically a separate address
specifier is needed for each operand: the address specifier tells what addressing
mode is used to access the operand. At the other extreme are load-store comput-
ers with only one memory operand and only one or two addressing modes; obvi-
ously, in this case, the addressing mode can be encoded as part of the opcode.

128

Chapter 2 Instruction Set Principles and Examples

When encoding the instructions, the number of registers and the number of ad-
dressing modes both have a significant impact on the size of instructions, as the
the register field and addressing mode field may appear many times in a single in-
struction. In fact, for most instructions many more bits are consumed in encoding
addressing modes and register fields than in specifying the opcode. The architect
must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the aver-
age instruction size and hence on the average program size.

3. A desire to have instructions encoded into lengths that will be easy to handle
in a pipelined implementation. (The importance of having easily decoded in-
structions is discussed in Chapters 3 and 4.) As a minimum, the architect wants
instructions to be in multiples of bytes, rather than an arbitrary bit length.
Many desktop and server architects have chosen to use a fixed-length instruc-
tion to gain implementation benefits while sacrificing average code size.

Figure 2.23 shows three popular choices for encoding the instruction set. The
first we call variable, since it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera-
tions. The second choice we call fixed, since it combines the operation and the
addressing mode into the opcode. Often fixed encoding will have only a single
size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size of
programs versus ease of decoding in the processor. Variable tries to use as few
bits as possible to represent the program, but individual instructions can vary
widely in both size and the amount of work to be performed.

Let’s look at an 80x86 instruction to see an example of the variable encoding:

add EAX, 1000 (EBX)

The name add means a 32-bit integer add instruction with two operands, and this
opcode takes 1 byte. An 80x86 address specifier is 1 or 2 bytes, specifying the
source/destination register (EAX) and the addressing mode (displacement in this
case) and base register (EBX) for the second operand. This combination takes one
byte to specify the operands. When in 32-bit mode (see Appendix C <80x86>),
the size of the address field is either 1 byte or 4 bytes. Since 1000 is bigger than
28, the total length of the instruction is

1+1+4=06bytes

The length of 80x86 instructions varies between 1 and 17 bytes. 80x86 programs
are generally smaller than the RISC architectures, which use fixed formats (Ap-
pendix B <RISC>)

2.10 Encoding an Instruction Set 129

Operation & Address Address Address Address
no. of operands | specifier 1 field 1 specifier n field n

(a) Variable (e.g., VAX, Intel 80x86)

Operation Address Address Address
field 1 field 2 field 3

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/70, MIPS16, Thumb, TI TMS320C54x)

FIGURE 2.23 Three basic variations in instruction encoding: variable length, fixed
length, and hybrid. The variable format can support any number of operands, with each ad-
dress specifier determining the addressing mode and the length of the specifier for that op-
erand. It generally enables the smallest code representation, since unused fields need not be
included. The fixed format always has the same number of operands, with the addressing
modes (if options exist) specified as part of the opcode (see also Figure C.3 on page C-4). It
generally results in the largest code size. Although the fields tend not to vary in their location,
they will be used for different purposes by different instructions. The hybrid approach has
multiple formats specified by the opcode, adding one or two fields to specify the addressing
mode and one or two fields to specify the operand address (see also Figure D.7 on page D-
12).

Given these two poles of instruction set design of variable and fixed, the third
alternative immediately springs to mind: Reduce the variability in size and work
of the variable architecture but provide multiple instruction lengths to reduce
code size. This hybrid approach is the third encoding alternative, and we’ll see
examples shortly.

Reduced Code Size in RISCs

As RISC computers started being used in embedded applications, the 32-bit
fixed format became a liability since cost and hence smaller code are important.
In response, several manufacturers offered a new hybrid version of their RISC in-
struction sets, with both 16-bit and 32-bit instructions. The narrow instructions

130

Chapter 2 Instruction Set Principles and Examples

support fewer operations, smaller address and immediate fields, fewer registers,
and two-address format rather than the classic three-address format of RISC
computers. Appendix B <RISC> gives two examples, the ARM Thumb and
MIPS MIPS16, which both claim a code size reduction of up to 40%.

In contrast to these instruction set extensions, IBM simply compresses its
standard instruction set, and then adds hardware to decompress instructions as
they are fetched from memory on an instruction cache miss. Thus, the instruction
cache contains full 32-bit instructions, but compressed code is kept in main mem-
ory, ROMs, and the disk. The advantage of MIPS16 and Thumb is that instruction
caches acts as it they are about 25% larger, while IBM’s CodePack means that
compilers need not be changed to handle different instruction sets and instruction
decoding can remain simple.

CodePack starts with run-length encoding compression on any PowerPC pro-
gram, and then loads the resulting compression tables in a 2KB table on chip.
Hence, every program has its own unique encoding. To handle branches, which
are no longer to an aligned word boundary, the PowerPC creates a hash-table in
memory that maps between compressed and uncompressed addresses. Like a
TLB (Chapter 5), it caches the most recently used address maps to reduce the
number of memory accesses. IBM claims an overall performance cost of 10%,
resulting in a code size reduction of 35% to 40%.

Hitachi simply invented a RISC instruction set with a fixed,16-bit format,
called SuperH, for embedded applications (see Appendix B <RISC>). It has 16
rather than 32 registers to make it fit the narrower format and fewer instructions,
but otherwise looks like a classic RISC architecture.

Summary: Encoding the Instruction Set

Decisions made in the components of instruction set design discussed in prior
sections determine whether the architect has the choice between variable and
fixed instruction encodings. Given the choice, the architect more interested in
code size than performance will pick variable encoding, and the one more inter-
ested in performance than code size will pick fixed encoding. The appendices
give 11 examples of the results of architect’s choices. In Chapters 3 and 4, the im-
pact of variability on performance of the processor will be discussed further.

We have almost finished laying the groundwork for the MIPS instruction set
architecture that will be introduced in section 2.12. Before we do that, however, it
will be helpful to take a brief look at compiler technology and its effect on pro-
gram properties.

2.11 | Crosscutting Issues: The Role of Compilers

Today almost all programming is done in high-level languages for desktop and
server applications. This development means that since most instructions execut-

2.11 Crosscutting Issues: The Role of Compilers 131

ed are the output of a compiler, an instruction set architecture is essentially a
compiler target. In earlier times for these applications, and currently for DSPs,
architectural decisions were often made to ease assembly language programming
or for a specific kernel. Because the compiler will be significantly affect the per-
formance of a computer, understanding compiler technology today is critical to
designing and efficiently implementing an instruction set.

Once it was popular to try to isolate the compiler technology and its effect on
hardware performance from the architecture and its performance, just as it was
popular to try to separate architecture from its implementation. This separation is
essentially impossible with today’s desktop compilers and computers. Architec-
tural choices affect the quality of the code that can be generated for a computer
and the complexity of building a good compiler for it, for better or for worse. For
example, section 2.14 shows the substantial performance impact on a DSP of
compiling vs. hand optimizing the code.

In this section, we discuss the critical goals in the instruction set primarily
from the compiler viewpoint. It starts with a review of the anatomy of current
compilers. Next we discuss how compiler technology affects the decisions of the
architect, and how the architect can make it hard or easy for the compiler to pro-
duce good code. We conclude with a review of compilers and multimedia opera-
tions, which unfortunately is a bad example of cooperation between compiler
writers and architects.

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. Figure 2.24
shows the structure of recent compilers

A compiler writer’s first goal is correctness—all valid programs must be com-
piled correctly. The second goal is usually speed of the compiled code. Typically,
a whole set of other goals follows these two, including fast compilation, debug-
ging support, and interoperability among languages. Normally, the passes in the
compiler transform higher-level, more abstract representations into progressively
lower-level representations. Eventually it reaches the instruction set. This struc-
ture helps manage the complexity of the transformations and makes writing a
bug-free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order and
perform some transformations before others. In the diagram of the optimizing
compiler in Figure 2.24, we can see that certain high-level optimizations are per-
formed long before it is known what the resulting code will look like. Once such
a transformation is made, the compiler can’t afford to go back and revisit all
steps, possibly undoing transformations. Such iteration would be prohibitive,
both in compilation time and in complexity. Thus, compilers make assumptions
about the ability of later steps to deal with certain problems. For example, com-

132

Chapter 2 Instruction Set Principles and Examples

Dependencies Function
Language dependent; Front-end per Transform language to
machine independent language common intermediate form
Intermediate
representation
Somewhat language dependent, ianlcvel For example, loop
largely machine independent jgn-les transformations and
optimizations

procedure inlining
(also called
procedure integration)

Small language dependencies;
machine dependencies slight Global
(e.g., register counts/types)

Including global and local
optimizations + register
allocation

optimizer

Highly machine dependent; Detailed instruction selection
language independent ; Code generator . and machine-dependent
optimizations; may include

or be followed by assembler

FIGURE 2.24 Compilers typically consist of two to four passes, with more highly op-
timizing compilers having more passes. This structure maximizes the probability that a
program compiled at various levels of optimization will produce the same output when given
the same input. The optimizing passes are designed to be optional and may be skipped when
faster compilation is the goal and lower quality code is acceptable. A pass is simply one
phase in which the compiler reads and transforms the entire program. (The term phase is of-
ten used interchangeably with pass.) Because the optimizing passes are separated, multiple
languages can use the same optimizing and code-generation passes. Only a new front end is
required for a new language.

pilers usually have to choose which procedure calls to expand in-line before they
know the exact size of the procedure being called. Compiler writers call this
problem the phase-ordering problem.

How does this ordering of transformations interact with the instruction set ar-
chitecture? A good example occurs with the optimization called global common
subexpression elimination. This optimization finds two instances of an expression
that compute the same value and saves the value of the first computation in a
temporary. It then uses the temporary value, eliminating the second computation
of the common expression.

For this optimization to be significant, the temporary must be allocated to a
register. Otherwise, the cost of storing the temporary in memory and later reload-
ing it may negate the savings gained by not recomputing the expression. There
are, in fact, cases where this optimization actually slows down code when the
temporary is not register allocated. Phase ordering complicates this problem, be-

2.11 Crosscutting Issues: The Role of Compilers 133

cause register allocation is typically done near the end of the global optimization
pass, just before code generation. Thus, an optimizer that performs this optimiza-
tion must assume that the register allocator will allocate the temporary to a regis-
ter.

Optimizations performed by modern compilers can be classified by the style
of the transformation, as follows:

1. High-level optimizations are often done on the source with output fed to later
optimization passes.

2. Local optimizations optimize code only within a straight-line code fragment
(called a basic block by compiler people).

3. Global optimizations extend the local optimizations across branches and intro-
duce a set of transformations aimed at optimizing loops.

4. Register allocation.

5. processor-dependent optimizations attempt to take advantage of specific ar-
chitectural knowledge.

Register Allocation

Because of the central role that register allocation plays, both in speeding up
the code and in making other optimizations useful, it is one of the most impor-
tant—if not the most important—optimizations. Register allocation algorithms
today are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates for al-
location to a register and then to use the graph to allocate registers. Roughly
speaking, the problem is how to use a limited set of colors so that no two adjacent
nodes in a dependency graph have the same color. The emphasis in the approach
is to achieve 100% register allocation of active variables. The problem of color-
ing a graph in general can take exponential time as a function of the size of the
graph (NP-complete). There are heuristic algorithms, however, that work well in
practice yielding close allocations that run in near linear time.

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables and
additional registers for floating point. Unfortunately, graph coloring does not
work very well when the number of registers is small because the heuristic algo-
rithms for coloring the graph are likely to fail.

Impact of Optimizations on Performance

It is sometimes difficult to separate some of the simpler optimizations—Ilocal
and processor-dependent optimizations—from transformations done in the code
generator. Examples of typical optimizations are given in Figure 2.25. The last
column of Figure 2.25 indicates the frequency with which the listed optimizing
transforms were applied to the source program.

134 Chapter 2

Instruction Set Principles and Examples

Optimization name

Explanation

Percentage of the total num-
ber of optimizing transforms

High-level At or near the source level; processor-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression elimination ~ Replace two instances of the same 18%
computation by single copy

Constant propagation Replace all instances of a variable that 22%
is assigned a constant with the constant

Stack height reduction Rearrange expression tree to minimize re- N.M.
sources needed for expression evaluation

Global Across a branch

Global common subexpression Same as local, but this version crosses 13%

elimination branches

Copy propagation Replace all instances of a variable A that 11%
has been assigned X (i.e., A = X) with X

Code motion Remove code from a loop that computes 16%
same value each iteration of the loop

Induction variable elimination Simplify/eliminate array-addressing 2%
calculations within loops

Processor-dependent Depends on processor knowledge

Strength reduction Many examples, such as replace multiply N.M.
by a constant with adds and shifts

Pipeline scheduling Reorder instructions to improve pipeline N.M.
performance

Branch offset optimization Choose the shortest branch displacement N.M.

that reaches target

FIGURE 2.25 Major types of optimizations and examples in each class. These data tell us about the relative frequency
of occurrence of various optimizations. The third column lists the static frequency with which some of the common optimi-
zations are applied in a set of 12 small FORTRAN and Pascal programs. There are nine local and global optimizations done
by the compiler included in the measurement. Six of these optimizations are covered in the figure, and the remaining three
account for 18% of the total static occurrences. The abbreviation N.M. means that the number of occurrences of that opti-
mization was not measured. Processor-dependent optimizations are usually done in a code generator, and none of those
was measured in this experiment. The percentage is the portion of the static optimizations that are of the specified type.
Data from Chow [1983] (collected using the Stanford UCODE compiler).

Figure 2.26 shows the effect of various optimizations on instructions executed
for two programs. In this case, optimized programs executed roughly 25% to
90% fewer instructions than unoptimized programs. The figure illustrates the im-
portance of looking at optimized code before suggesting new instruction set fea-
tures, for a compiler might completely remove the instructions the architect was
trying to improve.

2.11 Crosscutting Issues: The Role of Compilers 135

lucas, level 3 | | | 1
lucas, level 2 1 1 1 l
Program, lucas, level 1 ; ; ; 10d%
Compiler |ycas, level 0 | —
optimi- . ‘ ‘ i ‘
zation mcf, level 3 I [76 % :
'evel mof, level 2 | I 76 % |
mef, level 1 | I 4%
mef, level 0 o — E——
0% 20% 40% 60% 80% 100%
% of unoptimized instructions executed
O Branches/Calls B Fl. Pt. ALU Ops 0O Loads/Stores @ Integer ALU Ops

FIGURE 2.26 Change in instruction count for the programs lucas and mcf from the SPEC2000 as compiler opti-
mization levels vary. Level 0 is the same as unoptimized code. Level 1 includes local optimizations, code scheduling, and
local register allocation. Level 2 includes global optimizations, loop transformations (software pipelining), and global register
allocation. Level 3 adds procedure integration. These experiments were performed on the Alpha compilers.

The Impact of Compiler Technology on the Architect’s Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set architecture. There are two important questions:
How are variables allocated and addressed? How many registers are needed to al-
locate variables appropriately? To address these questions, we must look at the
three separate areas in which current high-level languages allocate their data:

» The stack is used to allocate local variables. The stack is grown and shrunk on
procedure call or return, respectively. Objects on the stack are addressed rela-
tive to the stack pointer and are primarily scalars (single variables) rather than
arrays. The stack is used for activation records, not as a stack for evaluating ex-
pressions. Hence, values are almost never pushed or popped on the stack.

» The global data area is used to allocate statically declared objects, such as glo-
bal variables and constants. A large percentage of these objects are arrays or
other aggregate data structures.

136

Chapter 2 Instruction Set Principles and Examples

= The heap is used to allocate dynamic objects that do not adhere to a stack dis-
cipline. Objects in the heap are accessed with pointers and are typically not
scalars.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap-allocated
objects because they are accessed with pointers. Global variables and some stack
variables are impossible to allocate because they are aliased, which means that
there are multiple ways to refer to the address of a variable, making it illegal to put
it into a register. (Most heap variables are effectively aliased for today’s compiler
technology.)

For example, consider the following code sequence, where & returns the address of
a variable and * dereferences a pointer:

p = &a -— gets address of a in p

a= ... -- assigns to a directly

*p = ... -- uses p to assign to a
..a... -- accesses a

The variable a could not be register allocated across the assignment to xp with-
out generating incorrect code. Aliasing causes a substantial problem because it is
often difficult or impossible to decide what objects a pointer may refer to. A
compiler must be conservative; some compilers will not allocate any local vari-
ables of a procedure in a register when there is a pointer that may refer to one of
the local variables.

How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple state-
ments like A = B + C. Most programs are locally simple, and simple translations
work fine. Rather, complexity arises because programs are large and globally
complex in their interactions, and because the structure of compilers means deci-
sions are made one step at a time about which code sequence is best.

Compiler writers often are working under their own corollary of a basic prin-
ciple in architecture: Make the frequent cases fast and the rare case correct. That
is, if we know which cases are frequent and which are rare, and if generating
code for both is straightforward, then the quality of the code for the rare case may
not be very important—but it must be correct!

Some instruction set properties help the compiler writer. These properties
should not be thought of as hard and fast rules, but rather as guidelines that will
make it easier to write a compiler that will generate efficient and correct code.

2.11 Crosscutting Issues: The Role of Compilers 137

1. Regularity—Whenever it makes sense, the three primary components of an in-
struction set—the operations, the data types, and the addressing modes—
should be orthogonal. Two aspects of an architecture are said to be orthogonal
if they are independent. For example, the operations and addressing modes are
orthogonal if for every operation to which one addressing mode can be ap-
plied, all addressing modes are applicable. This regularity helps simplify code
generation and is particularly important when the decision about what code to
generate is split into two passes in the compiler. A good counterexample of
this property is restricting what registers can be used for a certain class of in-
structions. Compilers for special-purpose register architectures typically get
stuck in this dilemma. This restriction can result in the compiler finding itself
with lots of available registers, but none of the right kind!

2. Provide primitives, not solutions—Special features that “match” a language
construct or a kernel function are often unusable. Attempts to support high-
level languages may work only with one language, or do more or less than is
required for a correct and efficient implementation of the language. An exam-
ple of how such attempts have failed is given in section 2.14.

3. Simplify trade-offs among alternatives—One of the toughest jobs a compiler
writer has is figuring out what instruction sequence will be best for every seg-
ment of code that arises. In earlier days, instruction counts or total code size
might have been good metrics, but—as we saw in the last chapter—this is no
longer true. With caches and pipelining, the trade-offs have become very com-
plex. Anything the designer can do to help the compiler writer understand the
costs of alternative code sequences would help improve the code. One of the
most difficult instances of complex trade-offs occurs in a register-memory
architecture in deciding how many times a variable should be referenced be-
fore it is cheaper to load it into a register. This threshold is hard to compute
and, in fact, may vary among models of the same architecture.

4. Provide instructions that bind the quantities known at compile time as con-
stants—A compiler writer hates the thought of the processor interpreting at
runtime a value that was known at compile time. Good counterexamples of
this principle include instructions that interpret values that were fixed at com-
pile time. For instance, the VAX procedure call instruction (calls) dynami-
cally interprets a mask saying what registers to save on a call, but the mask is
fixed at compile time (see section 2.14).

Compiler Support (or lack thereof) for Multimedia Instructions

Alas, the designers of the SIMD instructions that operate on several narrow data
times in a single clock cycle consciously ignored the prior subsection. These in-
structions tend to be solutions, not primitives, they are short of registers, and the
data types do not match existing programming languages. Architects hoped to
find an inexpensive solution that would help some users, but in reality, only a few
low-level graphics library routines use them.

138

Chapter 2 Instruction Set Principles and Examples

The SIMD instructions are really an abbreviated version of an elegant archi-
tecture style that has its own compiler technology. As explained in Appendix F,
vector architectures operate on vectors of data. Invented originally for scientific
codes, multimedia kernels are often vectorizable as well. Hence, we can think of
Intel’s MMX or PowerPC’s AltiVec as simply short vector computers: MMX
with vectors of eight 8-bit elements, four 16-bit elements, or two 32-bit elements,
and AltiVec with vectors twice that length. They are implemented as simply adja-
cent, narrow elements in wide registers

These abbreviated architectures build the vector register size into the architec-
ture: the sum of the sizes of the elements is limited to 64 bits for MMX and 128
bits for AltiVec. When Intel decided to expand to 128 bit vectors, it added a
whole new set of instructions, called SSE.

The missing elegance from these architectures involves the specification of the
vector length and the memory addressing modes. By making the vector width
variable, these vectors seemlessly switch between different data widths simply by
increasing the number of elements per vector. For example, vectors could have,
say, 32 64-bit elements, 64 32-bit elements, 128 16-bit elements, and 256 8-bit
elements. Another advantage is that the number of elements per vector register
can vary between generations while remaining binary compatible. One genera-
tion might have 32 64-bit elements per vector register, and the next have 64 64-bit
elements. (The number of elements per register is located in a status register.)
The number of elements executed per clock cycle is also implementation depen-
dent, and all run the same binary code. Thus, one generation might operate 64-
bits per clock cycle, and another at 256-bits per clock cycle.

A major advantage of vector computers is hiding latency of memory access by
loading many elements at once and then overlapping execution with data transfer.
The goal of vector addressing modes is to collect data scattered about memory,
place them in a compact form so that they can be operated on efficiently, and then
place the results back where they belong.

Over the years traditional vector computers added strided addressing and
gather/scatter addressing to increase the number of programs that can be vector-
ized. Strided addressing skips a fixed number of words between each access, so
sequential addressing is often called unit stride addressing. Gather and scatter
find their addresses in another vector register: think of it as register indirect ad-
dressing for vector computers. From a vector perspective, in contrast these short-
vector SIMD computers support only unit strided accesses: memory accesses
load or store all elements at once from a single wide memory location. Since the
data for multimedia applications are often streams that start and end in memory,
strided and gather/scatter addressing modes such are essential to successful vec-
toization.

2.11 Crosscutting Issues: The Role of Compilers 139

EXAMPLE

As an example, compare a vector computer to MMX for color representa-
tion conversion of pixels from RBG (red blue green) to YUV (luminosity
chrominance), with each pixel represented by three bytes. The conversion
is just 3 lines of C code placed in a loop:

Y = (9798*R + 19235*G + 3736*B)/ 32768;
U = (-4784*R - 9437*G + 4221*B)/ 32768 + 128;
V = (20218*R - 16941*G - 3277*B) / 32768 + 128;

A 64-bit wide vector computer can calculate eight pixels simultaneously. One
vector computer for media with strided addresses takes:

» 3 vector loads (to get RGB),

» 3 vector multiplies (to convert R),

= 6 vector multiply adds (to convert G and B),
» 3 vector shifts (to divide by 32768),

» 2 vector adds (to add 128), and

» 3 vector stores (to store YUV).

The total is 20 instructions to perform the 20 operations in the C code above
to convert 8 pixels [Kozyrakis 2000]. (Since a vector might have 32 64-bit ele-
ments, this code actually converts up to 32 x 8 or 256 pixels.)

In contrast, Intel’s web site shows a library routine to perform the same
calculation on eight pixels takes 116 MMX instructions plus 6 80x86 instruc-
tions [Intel 2001]. This sixfold increase in instructions is due to the large num-
ber of instructions to load and unpack RBG pixels and to pack and store YUV
pixels, since there are no strided memory accesses.

n

Having short, architecture limited vectors with few registers and simple mem-
ory addressing modes makes it more difficult to use vectorizing compiler tech-
nology. Another challenge is that no programming language (yet) has support for
operations on these narrow data. Hence, these SIMD instructions are commonly
found only in hand coded libraries.

Summary: The Role of Compilers

This section leads to several recommendations. First, we expect a new instruction
set architecture to have at least 16 general-purpose registers—not counting sepa-
rate registers for floating-point numbers—to simplify allocation of registers using
graph coloring. The advice on orthogonality suggests that all supported address-
ing modes apply to all instructions that transfer data. Finally, the last three pieces

140

Chapter 2 Instruction Set Principles and Examples

of advice—provide primitives instead of solutions, simplify trade-offs between
alternatives, don’t bind constants at runtime—all suggest that it is better to err on
the side of simplicity. In other words, understand that less is more in the design of
an instruction set. Alas, SIMD extensions are more an example of good market-
ing than outstanding achievement of hardware/software co-design.

2.12 | Putting It All Together: The MIPS Architecture

In this section we describe a simple 64-bit load-store architecture called MIPS.
The instruction set architecture of MIPS and RISC relatives was based on obser-
vations similar to those covered in the last sections. (In section 2.16 we discuss
how and why these architectures became popular.) Reviewing our expectations
from each section: for desktop applications:

= Section 2.2—Use general-purpose registers with a load-store architecture.

= Section 2.3—Support these addressing modes: displacement (with an address
offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register indirect.

= Section 2.5—Support these data sizes and types: 8-, 16-, 32-bit, and 64-bit in-
tegers and 64-bit IEEE 754 floating-point numbers.

= Section 2.7—Support these simple instructions, since they will dominate the
number of instructions executed: load, store, add, subtract, move register-
register, and, shift.

2 Section 2.9—Compare equal, compare not equal, compare less, branch (with a
PC-relative address at least 8 bits long), jump, call, and return.

= Section 2.10—Use fixed instruction encoding if interested in performance and
use variable instruction encoding if interested in code size.

= Section 2.]1]—Provide at least 16 general-purpose registers, and be sure all ad-
dressing modes apply to all data transfer instructions, and aim for a minimalist
instruction set. This section didn’t cover floating-point programs, but they often
use separate floating-point registers. The justification is to increase the total num-
ber of registers without raising problems in the instruction format or in the speed
of the general-purpose register file. This compromise, however, is not orthogonal.

We introduce MIPS by showing how it follows these recommendations. Like
most recent computers, MIPS emphasizes
» A simple load-store instruction set

» Design for pipelining efficiency (discussed in Appendix A), including a fixed
instruction set encoding

» Efficiency as a compiler target

2.12 Putting It All Together: The MIPS Architecture 141

MIPS provides a good architectural model for study, not only because of the pop-
ularity of this type of processor (see Chapter 1), but also because it is an easy ar-
chitecture to understand. We will use this architecture again in Chapters 3 and 4,
and it forms the basis for a number of exercises and programming projects.

In the 15 years since the first MIPS processor, there have been many versions
of MIPS (see Appendix B <RISC>). We will use a subset of what is now called
MIPS64, which will often abbreviate to just MIPS, but the full instruction set is
found in Appendix B.

Registers for MIPS

MIPS64 has 32 64-bit general-purpose registers (GPRs), named RO, R1, ..., R31.
GPRs are also sometimes known as integer registers. Additionally, there is a set
of 32 floating-point registers (FPRs), named FO0, F1, ..., F31, which can hold 32
single-precision (32-bit) values or 32 double-precision (64-bit) values. (When
holding one single-precision number, the other half of the FPR is unused.) Both
single- and double-precision floating-point operations (32-bit and 64-bit) are pro-
vided. MIPS also includes instructions that operate on two single precision oper-
ands in a single 64-bit floating-point register.

The value of RO is always 0. We shall see later how we can use this register to
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the general-purpose reg-
isters. An example is the floating-point status register, used to hold information
about the results of floating-point operations. There are also instructions for mov-
ing between a FPR and a GPR.

Data types for MIPS

The data types are 8-bit bytes, 16-bit half words, 32-bit words, and 64-bit double
words for integer data and 32-bit single precision and 64-bit double precision for
floating point. Half words were added because they are found in languages like C
and popular in some programs, such as the operating systems, concerned about
size of data structures. They will also become more popular if Unicode becomes
widely used. Single-precision floating-point operands were added for similar rea-
sons. (Remember the early warning that you should measure many more programs
before designing an instruction set.)

The MIPS64 operations work on 64-bit integers and 32- or 64-bit floating
point. Bytes, half words, and words are loaded into the general-purpose registers
with either zeros or the sign bit replicated to fill the 32 bits of the GPRs. Once
loaded, they are operated on with the 64-bit integer operations.

142 Chapter 2 Instruction Set Principles and Examples

|-type instruction
6 5 5 16

Opcode rs rt Immediate

Encodes: Loads and stores of bytes, half words, words,
double words. Allimmediates (rt —rs op immediate)

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
(rd = 0, rs = destination, immediate = 0)

R-type instruction
6 5 5 5 5 6

Opcode rs rt rd shamt funct

Register—register ALU operations: rd— rs funct rt
Function encodes the data path operation: Add, Sub, . ..
Read/write special registers and moves

J-type instruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

FIGURE 2.27 Instruction layout for MIPS. All instructions are encoded in one of three
types, with common fields in the same location in each format.

Addressing modes for MIPS data transfers

The only data addressing modes are immediate and displacement, both with 16-
bit fields. Register indirect is accomplished simply by placing O in the 16-bit dis-
placement field, and absolute addressing with a 16-bit field is accomplished by
using register 0 as the base register. Embracing zero gives us four effective
modes, although only two are supported in the architecture.

MIPS memory is byte addressable in Big Endian mode with a 64-bit address.
As it is a load-store architecture, all references between memory and either GPRs
or FPRs are through loads or stores. Supporting the data types mentioned above,
memory accesses involving GPRs can be to a byte, half word, word, or double
word. The FPRs may be loaded and stored with single-precision or double-preci-
sion numbers. All memory accesses must be aligned.

MIPS Instruction Format

Since MIPS has just two addressing modes, these can be encoded into the op-
code. Following the advice on making the processor easy to pipeline and decode,

2.12 Putting It All Together: The MIPS Architecture 143

all instructions are 32 bits with a 6-bit primary opcode. Figure 2.27 shows the in-
struction layout. These formats are simple while providing 16-bit fields for dis-
placement addressing, immediate constants, or PC-relative branch addresses.

Appendix B shows a variant of MIPS—called MIPS 16—which has 16-bit and
32-bit instructions to improve code density for embedded applications. We will
stick to the traditional 32-bit format in this book.

MIPS Operations

MIPS supports the list of simple operations recommended above plus a few oth-
ers. There are four broad classes of instructions: loads and stores, ALU opera-
tions, branches and jumps, and floating-point operations.

Example instruction

Instruction name Meaning

LD R1,30(R2) Load double word Regs [R1] ¢, Mem[30+Regs [R2]]

LD R1,1000 (RO) Load double word Regs [R1] ¢4, Mem[1000+0]

LW R1,60 (R2) Load word Regs [R1]<, (Mem[60+Regs[R2]11,) > ##
Mem [60+Regs [R2]]

LB R1,40(R3) Load byte Regs [R1]¢—¢, (Mem[40+Regs[R3]] ,)°° ##
Mem[40+Regs [R3]]

LBU R1,40 (R3) Load byte unsigned Regs [R1]¢—, 0°° ## Mem[40+Regs [R3]]

LH R1,40(R3) Load half word Regs [R1]¢—¢, (Mem[40+Regs[R3]],) %% ##
Mem [40+Regs [R3]] ##Mem [41+Regs [R3]]

L.S F0,50(R3) Load FP single Regs [FO] ¢, Mem[50+Regs [R3]] ## 032

L.D FO0,50(R2) Load FP double Regs [FO0] ¢—;, Mem[50+Regs [R2]]

SD R3,500 (R4)

Store double word

Mem [500+Regs [R4]] ¢—¢,4 Regs[R3]

SW R3,500(R4) Store word Mem [500+Regs [R4]] ¢—3, Regs [R3]

S.S F0,40(R3) Store FP single Mem[40+Regs [R3]]¢—3, Regs[FO0]l, 37
S.D F0,40(R3) Store FP double Mem [40+Regs [R3]] ¢4, Regs[FO0]

SH R3,502(R2) Store half Mem[502+Regs [R2]] ¢—14 Regs [R3]1,45 43
SB R2,41(R3) Store byte Mem[41+Regs [R3]]1¢—g Regs[R2]5¢ 43

FIGURE 2.28 The load and store instructions in MIPS. All use a single addressing mode and require that the memory
value be aligned. Of course, both loads and stores are available for all the data types shown.

Any of the general-purpose or floating-point registers may be loaded or stored,
except that loading RO has no effect. Figure 2.28 gives examples of the load and
store instructions. Single-precision floating-point numbers occupy half a floating-
point register. Conversions between single and double precision must be done ex-
plicitly. The floating-point format is IEEE 754 (see Appendix G). A list of the all
the MIPS instructions in our subset appears in Figure 2.31 (page 146).

144

Chapter 2 Instruction Set Principles and Examples

To understand these figures we need to introduce a few additional extensions
to our C description language presented initially on page 107:

» A subscript is appended to the symbol <— whenever the length of the datum be-
ing transferred might not be clear. Thus, <—, means transfer an n-bit quantity.
We use x, y < z to indicate that z should be transferred to x and y.

= A subscript is used to indicate selection of a bit from a field. Bits are labeled
from the most-significant bit starting at 0. The subscript may be a single digit
(e.g., Regs [R4] 4 yields the sign bit of R4) or a subrange (e.g., Regs [R3] 54 63
yields the least-significant byte of R3).

» The variable Mem, used as an array that stands for main memory, is indexed by
a byte address and may transfer any number of bytes.

= A superscript is used to replicate a field (e.g., 0*® yields a field of zeros of
length 48 bits).

» The symbol ## is used to concatenate two fields and may appear on either side
of a data transfer.

A summary of the entire description language appears on the back inside
cover. As an example, assuming that R8 and R10 are 64-bit registers:

Regs [R10]35. g3 ¢ 35 (Mem[Regs[R8]],) 2% 44 Mem[Regs [R8]]

means that the byte at the memory location addressed by the contents of register
R8 is sign-extended to form a 32-bit quantity that is stored into the lower half of
register R10. (The upper half of R10 is unchanged.)

All ALU instructions are register-register instructions. Figure 2.29 gives some
examples of the arithmetic/logical instructions. The operations include simple
arithmetic and logical operations: add, subtract, AND, OR, XOR, and shifts. Imme-
diate forms of all these instructions are provided using a 16-bit sign-extended im-
mediate. The operation LUI (load upper immediate) loads bits 32 to 47 of a
register, while setting the rest of the register to 0. LUT allows a 32-bit constant to
be built in two instructions, or a data transfer using any constant 32-bit address in
one extra instruction.

As mentioned above, RO is used to synthesize popular operations. Loading a
constant is simply an add immediate where one source operand is R0, and a reg-
ister-register move is simply an add where one of the sources is R0. (We some-
times use the mnemonic LI, standing for load immediate, to represent the former
and the mnemonic MOV for the latter.)

MIPS Control Flow Instructions

MIPS provides compare instructions, which compare two registers to see if
the first is less than the second. If the condition is true, these instructions place a

2.12 Putting It All Together: The MIPS Architecture 145

Example instruction Instruction name Meaning

DADDU R1,R2,R3 Add unsigned Regs [R1] «Regs [R2] +Regs [R3]

DADDIU R1,R2,#3 Add immediate unsigned Regs [R1] ¢<—Regs [R2] +3

LUI R1,#42 Load upper immediate Regs [R1] < 032##424##016

SLL R1,R2,#5 Shift left logical Regs [R1] «-Regs [R2] <<5

SLT R1,R2,R3 Set less than if (Regs[R2]<Regs[R3])
Regs[R1] <1 elseRegs [R1]«-0

FIGURE 2.29 Examples of arithmetic/logical instructions on MIPS, both with and without
immediates.

1 in the destination register (to represent true); otherwise they place the value 0.
Because these operations “set” a register, they are called set-equal, set-not-equal,
set-less-than, and so on. There are also immediate forms of these compares.

Example instruction Instruction name Meaning
J name Jump PC3¢ . g3¢—hame
JAL name Jump and link Regs [R31]«-PC+4; PCy4 g3¢—name;

((PC+4)-22"7) < name < ((PC+4)+2%7)

JALR R2 Jump and link register Regs [R31]<-PC+4; PC<Regs [R2]

JR R3 Jump register PC«Regs [R3]

BEQZ R4,name Branch equal zero if (Regs[R4]==0) PC¢name;
((Pc+4)-2'7) < name < ((pCc+4)+2'7)

BNE R3,R4,name Branch not equal zero if (Regs[R3] != Regs[R4]) PCé¢name;

((pc+4)-217) < name < ((PC+4)+27)

MOVZ R1,R2,R3 Conditional move if zero if (Regs[R3]1==0) Regs[R1l]<«Regs[R2]

FIGURE 2.30 Typical control-flow instructions in MIPS. All control instructions, except jumps to an address in a regis-
ter, are PC-relative. Note that the branch distances are longer than the address field would suggestion; since MIPS instruc-
tions are all 32-bits long, the byte branch address is multiplied by 4 to get a longer distance.

Control is handled through a set of jumps and a set of branches. Figure 2.30
gives some typical branch and jump instructions. The four jump instructions are
differentiated by the two ways to specify the destination address and by whether
or not a link is made. Two jumps use a 26-bit offset shifted two bits and then re-
places the lower 28 bits of the program counter (of the instruction sequentially
following the jump) to determine the destination address. The other two jump in-
structions specify a register that contains the destination address. There are two
flavors of jumps: plain jump, and jump and link (used for procedure calls). The
latter places the return address—the address of the next sequential instruction—
inR31.

146

Chapter 2

Instruction Set Principles and Examples

Instruction type/opcode

Instruction meaning

Data transfers

Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

DADD, DADDI , DADDU,
DADDIU

DSUB, DSUBU

DMUL, DMULU, DDIV, DDIVU
AND, ANDT

OR, ORI, XOR, XORI

LUI

DSLL, SDRL, DSRA,
DSLLV, DSRLV, DSRAV

SLT,SLTI,SLTU, SLTIU

LB, LBU, SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH, LHU, SH Load half word, load half word unsigned, store half word (to/from integer registers)
LW, LWU, SW Load word, Load word unsigned, store word (to/from integer registers)

1D, SD Load double word, store double word (to/from integer registers)

L.S,L.D,S.S,S.D Load SP float, load DP float, store SP float, store DP float

MFCO, MTCO Move from/to GPR to/from a special register

MOV.S,MOV.D Copy one SP or DP FP register to another FP register

MFC1,MTC1 Move 32 bits from/to FP registers to/from integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

Add, add immediate (all immediates are 16 bits); signed and unsigned

Subtract, subtract immediate; signed and unsigned

Multiply and divide, signed and unsigned; all operations take and yield 64-bit values
And, and immediate

Or, or immediate, exclusive or, exclusive or immediate

Load upper immediate—loads bits 32 to 47 of register with immediate; then sign extends

Shifts: both immediate (DS__) and variable form (DS__ V) ; shifts are shift left logical,
right logical, right arithmetic

Set less than, set less than immediate; signed and unsigned

ADD.D,ADD.S,ADD.PS
SUB.D, SUB.S,ADD.PS
MUL.D,MUL. S, MUL. PS
DIV.D,DIV.S,DIV.PS
CVT.

C._.D,C._.S

Control Conditional branches and jumps; PC-relative or through register

BEQZ, BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

BC1T,BC1F Test comparison bit in the FP status register and branch; 16-bit offset from PC+4
J, JR Jumps: 26-bit offset from PC+4 (J) or target in register (JR)

JAL, JALR Jump and link: save PC+4 in R31, target is PC-relative (JAL) or a register (JALR)
TRAP Transfer to operating system at a vectored address

ERET Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

Add