

1

Fundamentals of Computer Design 1
And now for something completely different.

Monty Python’s Flying Circus

1.1 Introduction 1

1.2 The Task of a Computer Designer 8

1.3 Technology Trends 11

1.4 Cost, Price and their Trends 14

1.5 Measuring and Reporting Performance 25

1.6 Quantitative Principles of Computer Design 40

1.7 Putting It All Together: Performance and Price-Performance 49

1.8 Another View: Power Consumption and Efficiency as the Metric 58

1.9 Fallacies and Pitfalls 59

1.10 Concluding Remarks 69

1.11 Historical Perspective and References 70

Exercises 77
Computer technology has made incredible progress in the roughly 55 years since
the first general-purpose electronic computer was created. Today, less than a
thousand dollars will purchase a personal computer that has more performance,
more main memory, and more disk storage than a computer bought in 1980 for
$1 million. This rapid rate of improvement has come both from advances in the
technology used to build computers and from innovation in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution; but
beginning in about 1970, computer designers became largely dependent upon in-
tegrated circuit technology. During the 1970s, performance continued to improve
at about 25% to 30% per year for the mainframes and minicomputers that domi-
nated the industry.

The late 1970s saw the emergence of the microprocessor. The ability of the
microprocessor to ride the improvements in integrated circuit technology more
closely than the less integrated mainframes and minicomputers led to a higher
rate of improvement—roughly 35% growth per year in performance.

1.1 Introduction

2 Chapter 1 Fundamentals of Computer Design

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to be commercially successful with a
new architecture. First, the virtual elimination of assembly language program-
ming reduced the need for object-code compatibility. Second, the creation of
standardized, vendor-independent operating systems, such as UNIX and its
clone, Linux, lowered the cost and risk of bringing out a new architecture.

These changes made it possible to successfully develop a new set of architec-
tures, called RISC (Reduced Instruction Set Computer) architectures, in the early
1980s. The RISC-based machines focused the attention of designers on two criti-
cal performance techniques, the exploitation of instruction-level parallelism (ini-
tially through pipelining and later through multiple instruction issue) and the use
of caches (initially in simple forms and later using more sophisticated organiza-
tions and optimizations). The combination of architectural and organizational en-
hancements has led to 20 years of sustained growth in performance at an annual
rate of over 50%. Figure 1.1 shows the effect of this difference in performance
growth rates.

The effect of this dramatic growth rate has been twofold. First, it has signifi-
cantly enhanced the capability available to computer users. For many applica-
tions, the highest performance microprocessors of today outperform the
supercomputer of less than 10 years ago.

Second, this dramatic rate of improvement has led to the dominance of micro-
processor-based computers across the entire range of the computer design. Work-
stations and PCs have emerged as major products in the computer industry.
Minicomputers, which were traditionally made from off-the-shelf logic or from
gate arrays, have been replaced by servers made using microprocessors. Main-
frames have been almost completely replaced with multiprocessors consisting of
small numbers of off-the-shelf microprocessors. Even high-end supercomputers
are being built with collections of microprocessors.
 Freedom from compatibility with old designs and the use of microprocessor
technology led to a renaissance in computer design, which emphasized both ar-
chitectural innovation and efficient use of technology improvements. This renais-
sance is responsible for the higher performance growth shown in Figure 1.1—a
rate that is unprecedented in the computer industry. This rate of growth has com-
pounded so that by 2001, the difference between the highest-performance micro-
processors and what would have been obtained by relying solely on technology,
including improved circuit design, is about a factor of fifteen.

In the last few years, the tremendous imporvement in integrated circuit capa-
bility has allowed older less-streamlined architectures, such as the x86 (or IA-32)
architecture, to adopt many of the innovations first pioneered in the RISC de-
signs. As we will see, modern x86 processors basically consist of a front-end that
fetches and decodes x86 instructions and maps them into simple ALU, memory
access, or branch operations that can be executed on a RISC-style pipelined pro-

1.1 Introduction 3

FIGURE 1.1 Growth in microprocessor performance since the mid 1980s has been substantially higher than in ear-
lier years as shown by plotting SPECint performance. This chart plots relative performance as measured by the SPECint
benchmarks with base of one being a VAX 11/780. (Since SPEC has changed over the years, performance of newer ma-
chines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g. SPEC92 and
SPEC95.) Prior to the mid 1980s, microprocessor performance growth was largely technology driven and averaged about
35% per year. The increase in growth since then is attributable to more advanced architectural and organizational ideas. By
2001 this growth leads to about a factor of 15 difference in performance. Performance for floating-point-oriented calculations
has increased even faster.

Change this figure as follows:
!1. the y-axis should be labeled “Relative Performance.”
2. Plot only even years
3. The following data points should changed/added:
a. 1992 136 HP 9000; 1994 145 DEC Alpha; 1996 507 DEC Alpha; 1998 879 HP 9000; 2000 1582 Intel
Pentium III
4. Extend the lower line by increasing by 1.35x each year

0

50

100

150

200

250

300

350

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

Year

1.58x per year

1.35x per year

SUN4

MIPS
R2000

MIPS
R3000

IBM
Power1

HP
9000

IBM Power2

DEC Alpha

DEC Alpha

DEC Alpha

 SPECint rating

4 Chapter 1 Fundamentals of Computer Design

cessor. Beginning in the end of the 1990s, as transistor counts soared, the over-
head in transistors of interpreting the more complex x86 architecture became
neglegible as a percentage of the total transistor count of a modern microproces-
sor.

This text is about the architectural ideas and accompanying compiler improve-
ments that have made this incredible growth rate possible. At the center of this
dramatic revolution has been the development of a quantitative approach to com-
puter design and analysis that uses empirical observations of programs, experi-
mentation, and simulation as its tools. It is this style and approach to computer
design that is reflected in this text.

Sustaining the recent improvements in cost and performance will require con-
tinuing innovations in computer design, and the authors believe such innovations
will be founded on this quantitative approach to computer design. Hence, this
book has been written not only to document this design style, but also to stimu-
late you to contribute to this progress.

In the 1960s, the dominant form of computing was on large mainframes, ma-
chines costing millions of dollars and stored in computer rooms with multiple op-
erators overseeing their support. Typical applications included business data
processing and large-scale scientific computing. The 1970s saw the birth of the
minicomputer, a smaller sized machine initially focused on applications in scien-
tific laboratories, but rapidly branching out as the technology of timesharing,
multiple users sharing a computer interactively through independent terminals,
became widespread. The 1980s saw the rise of the desktop computer based on
microprocessors, in the form of both personal computers and workstations. The
individually owned desktop computer replaced timesharing and led to the rise of
servers, computers that provided larger-scale services such as: reliable, long-term
file storage and access, larger memory, and more computing power. The 1990s
saw the emergence of the Internet and the world-wide web, the first successful
handheld computing devices (personal digital assistants or PDAs), and the emer-
gence of high-performance digital consumer electronics, varying from video
games to set-top boxes.

These changes have set the stage for a dramatic change in how we view com-
puting, computing applications, and the computer markets at the beginning of the
millennium. Not since the creation of the personal computer more than twenty
years ago have we seen such dramatic changes in the way computers appear and
in how they are used. These changes in computer use have led to three different
computing markets each characterized by different applications, requirements,
and computing technologies.

1.2 The Changing Face of Computing and the
Task of the Computer Designer

1.2 The Changing Face of Computing and the Task of the Computer Designer 5

Desktop Computing

The first, and still the largest market in dollar terms, is desktop computing. Desk-
top computing spans from low-end systems that sell for under $1,000 to high-
end, heavily-configured workstations that may sell for over $10,000. Throughout
this range in price and capability, the desktop market tends to be driven to opti-
mize price-performance. This combination of performance (measured primarily
in terms of compute performance and graphics performance) and price of a sys-
tem is what matters most to customers in this market and hence to computer de-
signers. As a result desktop systems often are where the newest, highest
performance microprocessors appear, as well as where recently cost-reduced mi-
croprocessors and systems appear first (see section 1.4 on page 14 for a discus-
sion of the issues affecting cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of web-centric, inter-
active applications poses new challenges in performance evaluation. As we dis-
cuss in Section 1.9 (Fallacies, Pitfalls), the PC portion of the desktop space seems
recently to have become focused on clock rate as the direct measure of perfor-
mance, and this focus can lead to poor decisions by consumers as well as by de-
signers who respond to this predilection.

Servers

As the shift to desktop computing occurred, the role of servers to provide larger
scale and more reliable file and computing services grew. The emergence of the
world-wide web accelerated this trend due to the tremendous growth in demand
for web servers and the growth in sophistication of web-based services. Such
servers have become the backbone of large-scale enterprise computing replacing
the traditional mainframe.

For servers, different characteristics are important. First, availability is critical.
We use the term availability, which means that the system can reliably and effec-
tively provide a service. This term is to be distinguished from reliability, which
says that the system never fails. Parts of large-scale systems unavoidably fail; the
challenge in a server is to maintain system availability in the face of component
failures, usually through the use of redundancy. This topic is discussed in detail
in Chapter 6.

Why is availability crucial? Consider the servers running Yahoo!, taking or-
ders for Cisco, or running auctions on EBay. Obviously such systems must be op-
erating seven days a week, 24 hours a day. Failure of such a server system is far
more catastrophic than failure of a single desktop. Although it is hard to estimate
the cost of downtime, Figure 1.2 shows one analysis, assuming that downtime is
distributed uniformly and does not occur solely during idle times. As we can see,
the estimated costs of an unavailable system are high, and the estimated costs in

6 Chapter 1 Fundamentals of Computer Design

Figure 1.2 are purely lost revenue and do not account for the cost of unhappy cus-
tomers!

A second key feature of server systems is an emphasis on scalability. Server
systems often grow over their lifetime in response to a growing demand for the
services they support or an increase in functional requirements. Thus, the ability
to scale up the computing capacity, the memory, the storage, and the I/O band-
width of a server are crucial.

Lastly, servers are designed for efficient throughput. That is, the overall per-
formance of the server–in terms of transactions per minute or web pages served
per second–is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
(We return to the issue of performance and assessing performance for different
types of computing environments in Section 1.5 on page 25).

Embedded Computers

Embedded computers, the name given to computers lodged in other devices
where the presence of the computer is not immediately obvious, are the fastest
growing portion of the computer market. The range of application of these devic-
es goes from simple embedded microprocessors that might appear in a everyday
machines (most microwaves and washing machines, most printers, most net-
working switches, and all cars contain such microprocessors) to handheld digital
devices (such as palmtops, cell phones, and smart cards) to video games and digi-
tal set-top boxes. Although in some applications (such as palmtops) the comput-

Application Cost of downtime
per hour

(thousands of $)

Annual losses (millions of $) with downtime of

1%
(87.6 hrs/yr)

0.5%
(43.8 hrs/yr)

0.1%
(8.8 hrs/yr)

Brokerage operations $6,450 $565 $283 $56.5

Credit card authorization $2,600 $228 $114 $22.8

Package shipping services $150 $13 $6.6 $1.3

Home shopping channel $113 $9.9 $4.9 $1.0

Catalog sales center $90 $7.9 $3.9 $0.8

Airline reservation center $89 $7.9 $3.9 $0.8

Cellular service activation $41 $3.6 $1.8 $0.4

On-line network fees $25 $2.2 $1.1 $0.2

ATM service fees $14 $1.2 $0.6 $0.1

FIGURE 1.2 The cost of an unavailable system is shown by analyzing the cost of downtime (in terms of immedi-
ately lost revenue), assuming three different levels of availability. This assumes downtime is distributed uniformly. This
data is from Kembel [2000] and was collected an analyzed by Contingency Planning Research.

1.2 The Changing Face of Computing and the Task of the Computer Designer 7

ers are programmable, in many embedded applications the only programming
occurs in connection with the initial loading of the application code or a later
software upgrade of that application. Thus, the application can usually be careful-
ly tuned for the processor and system; this process sometimes includes limited
use of assembly language in key loops, although time-to-market pressures and
good software engineering practice usually restrict such assembly language cod-
ing to a small fraction of the application. This use of assembly language, together
with the presence of standardized operating systems, and a large code base has
meant that instruction set compatibility has become an important concern in the
embedded market. Simply put, like other computing applications, software costs
are often a large factor in total cost of an embedded system.

Embedded computers have the widest range of processing power and cost.
From low-end 8-bit and 16-bit processors that may cost less than a dollar, to full
32-bit microprocessors capable of executing 50 million instructions per second
that cost under $10, to high-end embedded processors (that can execute a billion
instructions per second and cost hundreds of dollars) for the newest video game
or for a high-end network switch. Although the range of computing power in the
embedded computing market is very large, price is a key factor in the design of
computers for this space. Performance requirements do exist, of course, but the
primary goal is often meeting the performance need at a minimum price, rather
than achieving higher performance at a higher price.

Often, the performance requirement in an embedded application is a real-time
requirement. A real-time performance requirement is one where a segment of the
application has an absolute maximum execution time that is allowed. For exam-
ple, in a digital set-top box the time to process each video frame is limited, since
the processor must accept and process the next frame shortly. In some applica-
tions, a more sophisticated requirement exists: the average time for a particular
task is constrained as well as the number of instances when some maximum time
is exceeded. Such approaches (sometimes called soft real-time) arise when it is
possible to occasionally miss the time constraint on an event, as long as not too
many are missed. Real-time performance tend to be highly application depen-
dent. It is usually measured using kernels either from the application or from a
standardized benchmark (see the EEMBC benchmarks described in Section 1.5).
With the growth in the use of embedded microprocessors, a wide range of bench-
mark requirements exist, from the ability to run small, limited code segments to
the ability to perform well on applications involving tens to hundreds of thou-
sands of lines of code.

Two other key characteristics exist in many embedded applications: the need
to minimize memory and the need to minimize power. In many embedded appli-
cations, the memory can be substantial portion of the system cost, and memory
size is important to optimize in such cases. Sometimes the application is expected
to fit totally in the memory on the processor chip; other times the applications
needs to fit totally in a small off-chip memory. In any event, the importance of
memory size translates to an emphasis on code size, since data size is dictated by

8 Chapter 1 Fundamentals of Computer Design

the application. As we will see in the next chapter, some architectures have spe-
cial instruction set capabilities to reduce code size. Larger memories also mean
more power, and optimizing power is often critical in embedded applications. Al-
though the emphasis on low power is frequently driven by the use of batteries, the
need to use less expensive packaging (plastic versus ceramic) and the absence of
a fan for cooling also limit total power consumption.We examine the issue of
power in more detail later in the chapter.

Another important trend in embedded systems is the use of processor cores to-
gether with application-specific circuitry. Often an application’s functional and
performance requirements are met by combining a custom hardware solution to-
gether with software running on a standardized embedded processor core, which
is designed to interface to such special-purpose hardware. In practice, embedded
problems are usually solved by one of three approaches:

1. using a combined hardware/software solution that includes some custom hard-
ware and typically a standard embedded processor,

2. using custom software running on an off-the-shelf embedded processor, or

3. using a digital signal processor and custom software. (Digital signal proces-
sors are processors specially tailored for signal processing applications. We
discuss some of the important differences between digital signal processors
and general-purpose embedded processors in the next chapter.)

Most of what we discuss in this book applies to the design, use, and performance
of embedded processors, whether they are off-the-shelf microprocessors or mi-
croprocessor cores, which will be assembled with other special-purpose hard-
ware. The design of special-purpose application-specific hardware and the
detailed aspects of DSPs, however, are outside of the scope of this book.

Figure 1.3 summarizes these three classes of computing environments and
their important characteristics.

The Task of a Computer Designer

The task the computer designer faces is a complex one: Determine what
attributes are important for a new machine, then design a machine to maximize
performance while staying within cost and power constraints. This task has many
aspects, including instruction set design, functional organization, logic design,
and implementation. The implementation may encompass integrated circuit de-
sign, packaging, power, and cooling. Optimizing the design requires familiarity
with a very wide range of technologies, from compilers and operating systems to
logic design and packaging.

In the past, the term computer architecture often referred only to instruction
set design. Other aspects of computer design were called implementation, often

1.2 The Changing Face of Computing and the Task of the Computer Designer 9

insinuating that implementation is uninteresting or less challenging. The authors
believe this view is not only incorrect, but is even responsible for mistakes in the
design of new instruction sets. The architect’s or designer’s job is much more
than instruction set design, and the technical hurdles in the other aspects of the
project are certainly as challenging as those encountered in doing instruction set
design. This challenge is particularly acute at the present when the differences
among instruction sets are small and at a time when there are three rather distinct
applications areas.

In this book the term instruction set architecture refers to the actual programmer-
visible instruction set. The instruction set architecture serves as the boundary be-
tween the software and hardware, and that topic is the focus of Chapter 2. The im-
plementation of a machine has two components: organization and hardware. The
term organization includes the high-level aspects of a computer’s design, such as
the memory system, the bus structure, and the design of the internal CPU (central
processing unit—where arithmetic, logic, branching, and data transfer are imple-
mented). For example, two processors with nearly identical instruction set archi-
tectures but very different organizations are the Pentium III and Pentium 4.
Although the Pentium 4 has new instructions, these are all in the floating point in-
struction set. Hardware is used to refer to the specifics of a machine, including
the detailed logic design and the packaging technology of the machine. Often a
line of machines contains machines with identical instruction set architectures
and nearly identical organizations, but they differ in the detailed hardware imple-
mentation. For example, the Pentium II and Celeron are nearly identical, but offer
different clock rates and different memory systems, making the Celron more ef-
fective for low-end computers. In this book the word architecture is intended to
cover all three aspects of computer design—instruction set architecture, organi-
zation, and hardware.

Feature Desktop Server Embedded

Price of system $1,000–$10,000 $10,000–
$10,000,000

$10–$100,000 (including network
routers at the high-end)

Price of microprocessor
module

$100–$1,000 $200–$2000
(per processor)

$0.20–$200

Microprocessors sold per
year (estimates for 2000)

150,000,000 4,000,000 300,000,000
(32-bit and 64-bit processors only)

Critical system
design issues

Price-performance
Graphics performance

Throughput
Availability
Scalability

Price
Power consumption

Application-specific performance

FIGURE 1.3 A summary of the three computing classes and their system characteristics. The total number of em-
bedded processors sold in 2000 is estimated to exceed 1 billion, if you include 8-bit and 16-bit microprocessors. In fact, the
largest selling microprocessor of all time is an 8-bit microcontroller sold by Intel! It is difficult to separate the low end of the
server market from the desktop market, since low-end servers–especially those costing less than $5,000–are essentially no
different from desktop PCs. Hence, up to a few million of the PC units may be effectively servers.

10 Chapter 1 Fundamentals of Computer Design

Computer architects must design a computer to meet functional requirements
as well as price, power, and performance goals. Often, they also have to deter-
mine what the functional requirements are, and this can be a major task. The re-
quirements may be specific features inspired by the market. Application software
often drives the choice of certain functional requirements by determining how the
machine will be used. If a large body of software exists for a certain instruction
set architecture, the architect may decide that a new machine should implement
an existing instruction set. The presence of a large market for a particular class of
applications might encourage the designers to incorporate requirements that
would make the machine competitive in that market. Figure 1.4 summarizes
some requirements that need to be considered in designing a new machine. Many
of these requirements and features will be examined in depth in later chapters.

Functional requirements Typical features required or supported

Application area Target of computer

General purpose desktop Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch 2,3,4,5)

Scientific desktops and servers High-performance floating point and graphics (App A,B)

Commercial servers Support for databases and transaction processing, enhancements for reliability
and availability. Support for scalability. (Ch 2,7)

Embedded computing Often requires special support for graphics or video (or other application-specific
extension). Power limitations and power control may be required. (Ch 2,3,4,5)

Level of software compatibility Determines amount of existing software for machine

At programming language Most flexible for designer; need new compiler (Ch 2,8)

Object code or binary compatible Instruction set architecture is completely defined—little flexibility—but no in-
vestment needed in software or porting programs

Operating system requirements Necessary features to support chosen OS (Ch 5,7)

Size of address space Very important feature (Ch 5); may limit applications

Memory management Required for modern OS; may be paged or segmented (Ch 5)

Protection Different OS and application needs: page vs. segment protection (Ch 5)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE 754 standard (App A), special arithmetic for graph-
ics or signal processing

I/O bus For I/O devices: Ultra ATA, Ultra SCSI, PCI (Ch 6)

Operating systems UNIX, PalmOS, Windows, Windows NT, Windows CE, CISCO IOS

Networks Support required for different networks: Ethernet, Infiniband (Ch 7)

Programming languages Languages (ANSI C, C++, Java, Fortran) affect instruction set (Ch 2)

FIGURE 1.4 Summary of some of the most important functional requirements an architect faces. The left-hand col-
umn describes the class of requirement, while the right-hand column gives examples of specific features that might be
needed. The right-hand column also contains references to chapters and appendices that deal with the specific issues.

1.3 Technology Trends 11

Once a set of functional requirements has been established, the architect must
try to optimize the design. Which design choices are optimal depends, of course,
on the choice of metrics. The changes in the computer applications space over the
last decade have dramatically changed the metrics. Although desktop computers
remain focused on optimizing cost-performance as measured by a single user,
servers focus on availability, scalability, and throughput cost-performance, and
embedded computers are driven by price and often power issues.

These differences and the diversity and size of these different markets leads to
fundamentally different design efforts. For the desktop market, much of the effort
goes into designing a leading-edge microprocessor and into the graphics and I/O
system that integrate with the microprocessor. In the server area, the focus is on
integrating state-of-the-art microprocessors, often in a multiprocessor architec-
ture, and designing scalable and highly available I/O systems to accompany the
processors. Finally, in the leading edge of the embedded processor market, the
challenge lies in adopting the high-end microprocessor techniques to deliver
most of the performance at a lower fraction of the price, while paying attention to
demanding limits on power and sometimes a need for high performance graphics
or video processing.

In addition to performance and cost, designers must be aware of important
trends in both the implementation technology and the use of computers. Such
trends not only impact future cost, but also determine the longevity of an archi-
tecture. The next two sections discuss technology and cost trends.

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—the core of the IBM mainframe has been in use
for more than 35 years. An architect must plan for technology changes that can
increase the lifetime of a successful computer.

To plan for the evolution of a machine, the designer must be especially aware
of rapidly occurring changes in implementation technology. Four implementation
technologies, which change at a dramatic pace, are critical to modern implemen-
tations:

n Integrated circuit logic technology—Transistor density increases by about
35% per year, quadrupling in somewhat over four years. Increases in die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect is a growth rate in transistor count on a chip of about 55% per year.
Device speed scales more slowly, as we discuss below.

n Semiconductor DRAM (dynamic random-access memory)—Density increases
by between 40% and 60% per year, quadrupling in three to four years. Cycle
time has improved very slowly, decreasing by about one-third in 10 years.
Bandwidth per chip increases about twice as fast as latency decreases. In addi-

1.3 Technology Trends

12 Chapter 1 Fundamentals of Computer Design

tion, changes to the DRAM interface have also improved the bandwidth; these
are discussed in Chapter 5.

n Magnetic disk technology—Recently, disk density has been improving by more
than 100% per year, quadrupling in two years. Prior to 1990, density increased
by about 30% per year, doubling in three years. It appears that disk technology
will continue the faster density growth rate for some time to come. Access time
has improved by one-third in 10 years. This technology is central to Chapter 6,
and we discuss the trends in greater detail there.

n Network technology—Network performance depends both on the performance
of switches and on the performance of the transmission system, both latency
and bandwidth can be improved, though recently bandwidth has been the pri-
mary focus. For many years, networking technology appeared to improve slow-
ly: for example, it took about 10 years for Ethernet technology to move from
10 Mb to 100 Mb. The increased importance of networking has led to a faster
rate of progress with 1 Gb Ethernet becoming available about five years after
100 Mb. The Internet infrastructure in the United States has seen even faster
growth (roughly doubling in bandwidth every year), both through the use of op-
tical media and through the deployment of much more switching hardware.

These rapidly changing technologies impact the design of a microprocessor
that may, with speed and technology enhancements, have a lifetime of five or
more years. Even within the span of a single product cycle for a computing sys-
tem (two years of design and two to three years of production), key technologies,
such as DRAM, change sufficiently that the designer must plan for these changes.
Indeed, designers often design for the next technology, knowing that when a
product begins shipping in volume that next technology may be the most cost-ef-
fective or may have performance advantages. Traditionally, cost has decreased
very closely to the rate at which density increases.

Although technology improves fairly continuously, the impact of these im-
provements is sometimes seen in discrete leaps, as a threshold that allows a new
capability is reached. For example, when MOS technology reached the point
where it could put between 25,000 and 50,000 transistors on a single chip in the
early 1980s, it became possible to build a 32-bit microprocessor on a single chip.
By the late 1980s, first-level caches could go on-chip. By eliminating chip cross-
ings within the processor and between the processor and the cache, a dramatic in-
crease in cost/performance and performance/power was possible. This design
was simply infeasible until the technology reached a certain point. Such technol-
ogy thresholds are not rare and have a significant impact on a wide variety of de-
sign decisions

Scaling of Transistor Performance, Wires, and Power in Integrated Circuits

Integrated circuit processes are characterized by the feature size, which is the
minimum size of a transistor or a wire in either the x or y dimension. Feature siz-

1.3 Technology Trends 13

es have decreased from 10 microns in 1971 to 0.18 microns in 2001. Since a tran-
sistor is a 2-dimensional object, the density of transistors increases quadratically
with a linear decrease in feature size. The increase in transistor performance,
however, is more complex. As feature sizes shrink, devices shrink quadratically
in the horizontal dimensions and also shrink in the vertical dimension. The shrink
in the vertical dimension requires a reduction in operating voltage to maintain
correct operation and reliability of the transistors. This combination of scaling
factors leads to a complex interrelationship between transistor performance and
process feature size. To first approximation, transistor performance improves lin-
early with decreasing feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity that
computer architects were created for! In the early days of microprocessors, the
higher rate of improvement in density was used to quickly move from 4-bit, to 8-
bit, to 16-bit, to 32-bit microprocessors. More recently, density improvements
have supported the introduction of 64-bit microprocessors as well as many of the
innovations in pipelining and caches, which we discuss in Chapters 3, 4, and 5.

Although transistors generally improve in performance with decreased feature
size, wires in an integrated circuit do not. In particular, the signal delay for a wire
increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks wires get shorter, but the resistance and capaci-
tance per unit length gets worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
a wire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay. In general, however, wire delay
scales poorly compared to transistor performance, creating additional challenges
for the designer. In the past few years, wire delay has become a major design lim-
itation for large integrated circuits and is often more critical than transistor
switching delay. Larger and larger fractions of the clock cycle have been con-
sumed by the propagation delay of signals on wires. In 2001, the Pentium 4 broke
new ground by allocating two stages of its 20+ stage pipeline just for propagating
signals across the chip.

Power also provides challenges as devices are scaled. For modern CMOS mi-
croprocessors, the dominant energy consumption is in switching transistors. The
energy required per transistor is proportional to the product of the load capaci-
tance of the transistor, the frequency of switching, and the square of the voltage.
As we move from one process to the next, the increase in the number of transis-
tors switching and the frequency with which they switch, dominates the decrease
in load capacitance and voltage, leading to an overall growth in power consump-
tion. The first microprocessors consumed tenths of watts, while a Pentium 4 con-
sumes between 60 and 85 watts, and a 2 GHz Pentium 4 will be close to 100
watts. The fastest workstation and server microprocessors in 2001 consume be-
tween 100 and 150 watts. Distributing the power, removing the heat, and prevent-

14 Chapter 1 Fundamentals of Computer Design

ing hot spots have become increasingly difficult challenges, and it is likely that
power rather than raw transistor count will become the major limitation in the
near future.
.

Although there are computer designs where costs tend to be less important—
specifically supercomputers—cost-sensitive designs are of growing importance:
more than half the PCs sold in 1999 were priced at less than $1,000, and the aver-
age price of a 32-bit microprocessor for an embedded application is in the tens of
dollars. Indeed, in the past 15 years, the use of technology improvements to
achieve lower cost, as well as increased performance, has been a major theme in
the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet an understanding of cost and its factors is essential for de-
signers to be able to make intelligent decisions about whether or not a new fea-
ture should be included in designs where cost is an issue. (Imagine architects
designing skyscrapers without any information on costs of steel beams and con-
crete.)

This section focuses on cost and price, specifically on the relationship be-
tween price and cost: price is what you sell a finished good for, and cost is the
amount spent to produce it, including overhead. We also discuss the major trends
and factors that affect cost and how it changes over time. The Exercises and Ex-
amples use specific cost data that will change over time, though the basic deter-
minants of cost are less time sensitive. This section will introduce you to these
topics by discussing some of the major factors that influence cost of a computer
design and how these factors are changing over time.

The Impact of Time, Volume, Commodification,
and Packaging

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs de-
crease over time. The learning curve itself is best measured by change in yield—
the percentage of manufactured devices that survives the testing procedure.
Whether it is a chip, a board, or a system, designs that have twice the yield will
have basically half the cost.

Understanding how the learning curve will improve yield is key to projecting
costs over the life of the product. As an example of the learning curve in action,
the price per megabyte of DRAM drops over the long term by 40% per year.
Since DRAMs tend to be priced in close relationship to cost–with the exception

1.4 Cost, Price and their Trends

1.4 Cost, Price and their Trends 15

of periods when there is a shortage–price and cost of DRAM track closely. In
fact, there are some periods (for example early 2001) in which it appears that
price is less than cost; of course, the manufacturers hope that such periods are
both infrequent and short. Figure 1.5 plots the price of a new DRAM chip over its
lifetime. Between the start of a project and the shipping of a product, say two
years, the cost of a new DRAM drops by a factor of between five and ten in con-
stant dollars. Since not all component costs change at the same rate, designs
based on projected costs result in different cost/performance trade-offs than those
using current costs. The caption of Figure 1.5 discusses some of the long-term
trends in DRAM price. .

Microprocessor prices also drop over time, but because they are less standard-
ized than DRAMs, the relationship between price and cost is more complex. In a
period of significant competition, price tends to track cost closely, although mi-
croprocessor vendors probably rarely sell at a loss. Figure 1.6 shows processor
price trends for the Pentium III.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learning
curve, which is partly proportional to the number of systems (or chips) manufac-
tured. Second, volume decreases cost, since it increases purchasing and manufac-
turing efficiency. As a rule of thumb, some designers have estimated that cost
decreases about 10% for each doubling of volume. Also, volume decreases the
amount of development cost that must be amortized by each machine, thus
allowing cost and selling price to be closer. We will return to the other factors in-
fluencing selling price shortly.

Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, disks, monitors, and key-
boards. In the past 10 years, much of the low end of the computer business has
become a commodity business focused on building IBM-compatible PCs. There
are a variety of vendors that ship virtually identical products and are highly com-
petitive. Of course, this competition decreases the gap between cost and selling
price, but it also decreases cost. Reductions occur because a commodity market
has both volume and a clear product definition, which allows multiple suppliers
to compete in building components for the commodity product. As a result, the
overall product cost is lower because of the competition among the suppliers of
the components and the volume efficiencies the suppliers can achieve. This has
led to the low-end of the computer business being able to achieve better price-
performance than other sectors, and yielded greater growth at the low-end, albeit
with very limited profits (as is typical in any commodity business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard

16 Chapter 1 Fundamentals of Computer Design

parts—disks, DRAMs, and so on—are becoming a significant portion of any sys-
tem’s cost, integrated circuit costs are becoming a greater portion of the cost that
varies between machines, especially in the high-volume, cost-sensitive portion of
the market. Thus computer designers must understand the costs of chips to under-
stand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the basic
procedure of silicon manufacture is unchanged: A wafer is still tested and

FIGURE 1.5 Prices of six generations of DRAMs (from 16Kb to 64 Mb) over time in 1977 dollars, showing the learn-
ing curve at work. A 1977 dollar is worth about $2.95 in 2001; more than half of this inflation occurred in the five-year period
of 1977–82, during which the value changed to $1.59. The cost of a megabyte of memory has dropped incredibly during this
period, from over $5000 in 1977 to about $0.35 in 2000, and an amazing $0.08 in 2001 (in 1977 dollars)! Each generation
drops in constant dollar price by a factor of 10 to 30 over its lifetime. Starting in about 1996, an explosion of manufacturers
has dramatically reduced margins and increased the rate at which prices fall, as well as the eventual final price for a DRAM.
Periods when demand exceeded supply, such as 1987–88 and 1992–93, have led to temporary higher pricing, which shows
up as a slowing in the rate of price decrease; more dramatic short-term fluctuations have been smoothed out. In late 2000
and through 2001, there has been tremendous oversupply leading to an accelerated price decrease, which is probably not
sustainable.

n Add 64Mb data Change MB to Mb in labels and KB to Kb.
n Remove the final chip cost line and the label on it.
n Extend x-axis: change 1996 data point to $6.00; add to the 16Mb line: 1997: 3.78; 1998: $1.30
n Add a new line labeled 64Mb: 1999: $4.36; 2000: $2.78; 2001: $0.68

0

10

20

30

40

50

60

70

80

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

16 KB

64 KB

256 KB
1 MB

4 MB

16 MB

Final chip cost

Year

 Dollars per
 DRAM chip

1.4 Cost, Price and their Trends 17

chopped into dies that are packaged (see Figures 1.7 and 1.8). Thus the cost of a
packaged integrated circuit is

Cost of integrated circuit =

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end. A longer discussion of the testing costs and packaging
costs appears in the Exercises.

To learn how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From there it is simple to predict cost:

FIGURE 1.6 The price of an Intel Pentium III at a given frequency decreases over time as yield enhancements de-
crease the cost of good die and competition forces price reductions. Data courtesy of Microprocessor Report, May
2000 issue. The most recent introductions will continue to decrease until they reach similar prices to the lowest cost parts
available today ($100-$200). Such price decreases assume a competitive environment where price decreases track cost
decreases closely.

450 MHz
500 MHz

600 MHz

733 MHz

867 MHz

1000 MHz

Cost of die + Cost of testing die + Cost of packaging and final test

Final test yield

18 Chapter 1 Fundamentals of Computer Design

The most interesting feature of this first term of the chip cost equation is its sensi-
tivity to die size, shown below.

The number of dies per wafer is basically the area of the wafer divided by the
area of the die. It can be more accurately estimated by

The first term is the ratio of wafer area (πr2) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periphery
of round wafers. Dividing the circumference (πd) by the diagonal of a square die is
approximately the number of dies along the edge. For example, a wafer 30 cm (≈
12 inch) in diameter produces 1-cm dies.

E X A M P L E Find the number of dies per 30-cm wafer for a die that is 0.7 cm on a side.

A N S W E R The total die area is 0.49 cm2. Thus

FIGURE 1.7 Photograph of an 12-inch wafer containing Intel Pentium 4 microprocessors. (Courtesy Intel.)

Get new photo!

Cost of die Cost of wafer
Dies per wafer Die yield×
---=

Dies per wafer π Wafer diameter/2()2×
Die area

---= π Wafer diameter×
2 Die area×

---–

π 225 π 30 1.41⁄×()–× 640=

1.4 Cost, Price and their Trends 19

n

But this only gives the maximum number of dies per wafer. The critical ques-
tion is, What is the fraction or percentage of good dies on a wafer number, or the
die yield? A simple empirical model of integrated circuit yield, which assumes
that defects are randomly distributed over the wafer and that yield is inversely
proportional to the complexity of the fabrication process, leads to the following:

where wafer yield accounts for wafers that are completely bad and so need not be
tested. For simplicity, we’ll just assume the wafer yield is 100%. Defects per unit
area is a measure of the random manufacturing defects that occur. In 2001, these
values typically range between 0.4 and 0.8 per square centimeter, depending on
the maturity of the process (recall the learning curve, mentioned earlier). Lastly,

FIGURE 1.8 Photograph of an 12-inch wafer containing NEC MIPS 4122 processors.

Get new photo

Dies per wafer π 30 2⁄()2×
0.49

------------------------------= π 30×
2 0.49×

------------------------– 706.5
0.49
------------- 94.2

0.99
----------– 1347= =

Die yield Wafer yield 1 Defects per unit area Die area×
α

--+ 
  α–

×=

20 Chapter 1 Fundamentals of Computer Design

α is a parameter that corresponds inversely to the number of masking levels, a
measure of manufacturing complexity, critical to die yield. For today’s multilevel
metal CMOS processes, a good estimate is α = 4.0.

E X A M P L E Find the die yield for dies that are 1 cm on a side and 0.7 cm on a side,
assuming a defect density of 0.6 per cm2.

A N S W E R The total die areas are 1 cm2 and 0.49 cm2. For the larger die the yield is

For the smaller die, it is

n

The bottom line is the number of good dies per wafer, which comes from mul-
tiplying dies per wafer by die yield (which incorporates the effects of defects).
The examples above predict 224 good 1-cm2 dies from the 30-cm wafer and 781
good 0.49-cm2 dies. Most 32-bit and 64-bit microprocessors in a modern 0.25µ
technology fall between these two sizes, with some processors being as large as 2
cm2 in the prototype process before a shrink. Low-end embedded 32-bit proces-
sors are sometimes as small as 0.25 cm2, while processors used for embedded
control (in printers, automobiles, etc.) are often less than 0.1 cm2. Figure 1.34 on
page 81 in the Exercises shows the die size and technology for several current mi-
croprocessors.

Given the tremendous price pressures on commodity products such as DRAM
and SRAM, designers have included redundancy as a way to raise yield. For a
number of years, DRAMs have regularly included some redundant memory cells,
so that a certain number of flaws can be accomodated. Designers have used simi-
lar techniques in both standard SRAMs and in large SRAM arrays used for cach-
es within microprocessors. Obviously, the presence of redundant entries can be
used to significantly boost the yield.

Processing a 30-cm-diameter wafer in a leading-edge technology with 4-6
metal layers costs between $5000 and $6000 in 2001. Assuming a processed wa-
fer cost of $5500, the cost of the 0.49-cm2 die is around $7.04, while the cost per
die of the 1-cm2 die is about $24.55, or more than three times the cost for a die
that is two times larger.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yield, α, and defects per unit area, so
the sole control of the designer is die area. Since α is around 4 for the advanced

Die yield 1 0.6 1×
2.0

----------------+ 
  4–

0.35= =

Die yield 1 0.6 0.49×
2.0

------------------------+ 
  4–

0.58= =

1.4 Cost, Price and their Trends 21
processes in use today, die costs are proportional to the fifth (or higher) power of
the die area:

Cost of die = f (Die area5)

The computer designer affects die size, and hence cost, both by what functions
are included on or excluded from the die and by the number of I/O pins.

Before we have a part that is ready for use in a computer, the die must be
tested (to separate the good dies from the bad), packaged, and tested again after
packaging. These steps all add significant costs. These processes and their contri-
bution to cost are discussed and evaluated in Exercise 1.9.

The above analysis has focused on the variable costs of producing a functional
die, which is appropriate for high volume integrated circuits. There is, however,
one very important part of the fixed cost that can significantly impact the cost of
an integrated circuit for low volumes (less than one million parts), namely the
cost of a mask set. Each step in the integrated circuit process requires a separate
mask. Thus, for modern high density fabrication processes with four to six metal
layers, mask costs often exceed $1 million. Obviously, this large fixed cost affects
the cost of prototyping and debugging runs and, for small volume production, can
be a significant part of the production cost. Since mask costs are likely to contin-
ue to increase, designers may incorporate reconfigurable logic to enhance the
flexibility of a part, or choose to use gate arrays (that have fewer custom mask
levels) and thus, reduce the cost implications of masks.

Distribution of Cost in a System: An Example

To put the costs of silicon in perspective, Figure 1.9 shows the approximate cost
breakdown for a $1,000 PC in 2001. Although the costs of some parts of this ma-
chine can be expected to drop over time, other components, such as the packag-
ing and power supply, have little room for improvement. Furthermore, we can
expect that future machines will have larger memories and disks, meaning that
prices drop more slowly than the technology improvement.

Cost Versus Price—Why They Differ and By How Much

Costs of components may confine a designer’s desires, but they are still far from
representing what the customer must pay. But why should a computer architec-
ture book contain pricing information? Cost goes through a number of changes
before it becomes price, and the computer designer should understand how a de-
sign decision will affect the potential selling price. For example, changing cost
by $1000 may change price by $3000 to $4000. Without understanding the rela-
tionship of cost to price the computer designer may not understand the impact on
price of adding, deleting, or replacing components.

22 Chapter 1 Fundamentals of Computer Design
The relationship between price and volume can increase the impact of changes
in cost, especially at the low end of the market. Typically, fewer computers are
sold as the price increases. Furthermore, as volume decreases, costs rise, leading
to further increases in price. Thus, small changes in cost can have a larger than
obvious impact. The relationship between cost and price is a complex one with
entire books written on the subject. The purpose of this section is to give you a
simple introduction to what factors determine price and typical ranges for these
factors.

The categories that make up price can be shown either as a tax on cost or as a
percentage of the price. We will look at the information both ways. These differ-
ences between price and cost also depend on where in the computer marketplace
a company is selling. To show these differences, Figure 1.10 shows how the dif-

System Subsystem Fraction of total

Cabinet Sheet metal, plastic 2%

Power supply, fans 2%

Cables, nuts, bolts 1%

Shipping box, manuals 1%

Subtotal 6%

Processor board Processor 23%

DRAM (128 MB) 5%

Video card 5%

Motherboard with basic I/O support,
and networking

5%

Subtotal 38%

I/O devices Keyboard and mouse 3%

Monitor 20%

Hard disk (20 GB) 9%

DVD drive 6%

Subtotal 37%

Software OS + Basic Office Suite 20%

FIGURE 1.9 Estimated distribution of costs of the components in a $1,000 PC in 2001.
Notice that the largest single item is the CPU, closely followed by the monitor. (Interestingly,
in 1995, the DRAM memory at about 1/3 of the total cost was the most expensive component!
Since then, cost per MB has dropped by about a factor of 15!) Touma [1993] discusses com-
puter system costs and pricing in more detail. These numbers are based on estimates of vol-
ume pricing for the various components.

1.4 Cost, Price and their Trends 23
ference between cost of materials and list price is decomposed, with the price in-
creasing from left to right as we add each type of overhead.

Direct costs refer to the costs directly related to making a product. These in-
clude labor costs, purchasing components, scrap (the leftover from yield), and
warranty, which covers the costs of systems that fail at the customer’s site during
the warranty period. Direct cost typically adds 10% to 30% to component cost.
Service or maintenance costs are not included because the customer typically
pays those costs, although a warranty allowance may be included here or in gross
margin, discussed next.

The next addition is called the gross margin, the company’s overhead that can-
not be billed directly to one product. This can be thought of as indirect cost. It in-
cludes the company’s research and development (R&D), marketing, sales,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. When the component costs are added to the direct cost and
gross margin, we reach the average selling price—ASP in the language of
MBAs—the money that comes directly to the company for each product sold.
The gross margin is typically 10% to 45% of the average selling price, depending
on the uniqueness of the product. Manufacturers of low-end PCs have lower
gross margins for several reasons. First, their R&D expenses are lower. Second,
their cost of sales is lower, since they use indirect distribution (by mail, the Inter-
net, phone order, or retail store) rather than salespeople. Third, because their
products are less unique, competition is more intense, thus forcing lower prices
and often lower profits, which in turn lead to a lower gross margin.

List price and average selling price are not the same. One reason for this is that
companies offer volume discounts, lowering the average selling price. As person-

FIGURE 1.10 The components of price for a $1,000 PC. Each increase is shown along
the bottom as a tax on the prior price. The percentages of the new price for all elements are
shown on the left of each column.

Direct costs

Component
costs

Component
costs

Component
costs100%

83%

17%

Average
selling

price

List
price

Add 20% for
direct costs

Add 33% for
gross margin

Add 33% for
average discount

62.2% 46.6%

12.8% 9.6%

25%

25%

Gross
margin

Average
discount

Direct costs

Component
costs

Gross
margin

Direct costs

18.8%

24 Chapter 1 Fundamentals of Computer Design
al computers became commodity products, the retail mark-ups have dropped sig-
nificantly, so list price and average selling price have closed.

As we said, pricing is sensitive to competition: A company may not be able to
sell its product at a price that includes the desired gross margin. In the worst case,
the price must be significantly reduced, lowering gross margin until profit be-
comes negative! A company striving for market share can reduce price and profit
to increase the attractiveness of its products. If the volume grows sufficiently,
costs can be reduced. Remember that these relationships are extremely complex
and to understand them in depth would require an entire book, as opposed to one
section in one chapter. For example, if a company cuts prices, but does not obtain
a sufficient growth in product volume, the chief impact will be lower profits.

Many engineers are surprised to find that most companies spend only 4% (in
the commodity PC business) to 12% (in the high-end server business) of their in-
come on R&D, which includes all engineering (except for manufacturing and
field engineering). This well-established percentage is reported in companies’ an-
nual reports and tabulated in national magazines, so this percentage is unlikely to
change over time. In fact, experience has shown that computer companies with
R&D percentages of 15-20% rarely prosper over the long term.

The information above suggests that a company uniformly applies fixed-
overhead percentages to turn cost into price, and this is true for many companies.
But another point of view is that R&D should be considered an investment. Thus
an investment of 4% to 12% of income means that every $1 spent on R&D should
lead to $8 to $25 in sales. This alternative point of view then suggests a different
gross margin for each product depending on the number sold and the size of the
investment.

Large, expensive machines generally cost more to develop—a machine cost-
ing 10 times as much to manufacture may cost many times as much to develop.
Since large, expensive machines generally do not sell as well as small ones, the
gross margin must be greater on the big machines for the company to maintain a
profitable return on its investment. This investment model places large machines
in double jeopardy—because there are fewer sold and they require larger R&D
costs—and gives one explanation for a higher ratio of price to cost versus smaller
machines.

The issue of cost and cost/performance is a complex one. There is no single
target for computer designers. At one extreme, high-performance design spares
no cost in achieving its goal. Supercomputers have traditionally fit into this cate-
gory, but the market that only cares about performance has been the slowest
growing portion of the computer market. At the other extreme is low-cost design,
where performance is sacrificed to achieve lowest cost; some portions of the em-
bedded market, for example, the market for cell phone microprocessors, behaves
exactly like this. Between these extremes is cost/performance design, where the
designer balances cost versus performance. Most of the PC market, the worksta-

1.5 Measuring and Reporting Performance 25
tion market, and most of the server market (at least including both low-end and
midrange servers) operate in this region. In the past 10 years, as computers have
downsized, both low-cost design and cost/performance design have become in-
creasingly important. This section has introduced some of the most important
factors in determining cost; the next section deals with performance.

When we say one computer is faster than another, what do we mean? The user of
a desktop machine may say a computer is faster when a program runs in less
time, while the computer center manager running a large server system may say a
computer is faster when it completes more jobs in an hour. The computer user is
interested in reducing response time—the time between the start and the comple-
tion of an event—also referred to as execution time. The manager of a large data
processing center may be interested in increasing throughput—the total amount
of work done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different machines, say X and Y. The phrase “X is faster than Y” is used here
to mean that the response time or execution time is lower on X than on Y for the
given task. In particular, “X is n times faster than Y” will mean

 =

Since execution time is the reciprocal of performance, the following relationship
holds:

n = = =

The phrase “the throughput of X is 1.3 times higher than Y” signifies here that
the number of tasks completed per unit time on machine X is 1.3 times the num-
ber completed on Y.

Because performance and execution time are reciprocals, increasing perfor-
mance decreases execution time. To help avoid confusion between the terms
increasing and decreasing, we usually say “improve performance” or “improve
execution time” when we mean increase performance and decrease execution
time.

Whether we are interested in throughput or response time, the key measure-
ment is time: The computer that performs the same amount of work in the least
time is the fastest. The difference is whether we measure one task (response time)
or many tasks (throughput). Unfortunately, time is not always the metric quoted
in comparing the performance of computers. A number of popular measures have
been adopted in the quest for a easily understood, universal measure of computer

1.5 Measuring and Reporting Performance

Execution timeY
Execution timeX
-- n

Execution timeY
Execution timeX
--

1
PerformanceY

1
PerformanceX

PerformanceX
PerformanceY

26 Chapter 1 Fundamentals of Computer Design
performance, with the result that a few innocent terms have been abducted from
their well-defined environment and forced into a service for which they were nev-
er intended. The authors’ position is that the only consistent and reliable measure
of performance is the execution time of real programs, and that all proposed al-
ternatives to time as the metric or to real programs as the items measured have
eventually led to misleading claims or even mistakes in computer design. The
dangers of a few popular alternatives are shown in Fallacies and Pitfalls, section
1.9.

Measuring Performance

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time, re-
sponse time, or elapsed time, which is the latency to complete a task, including
disk accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming the CPU works on another program
while waiting for I/O and may not necessarily minimize the elapsed time of one
program. Hence we need a term to take this activity into account. CPU time rec-
ognizes this distinction and means the time the CPU is computing, not including
the time waiting for I/O or running other programs. (Clearly the response time
seen by the user is the elapsed time of the program, not the CPU time.) CPU time
can be further divided into the CPU time spent in the program, called user CPU
time, and the CPU time spent in the operating system performing tasks requested
by the program, called system CPU time.

These distinctions are reflected in the UNIX time command, which returns
four measurements when applied to an executing program:

90.7u 12.9s 2:39 65%

User CPU time is 90.7 seconds, system CPU time is 12.9 seconds, elapsed time is
2 minutes and 39 seconds (159 seconds), and the percentage of elapsed time that
is CPU time is (90.7 + 12.9)/159 or 65%. More than a third of the elapsed time in
this example was spent waiting for I/O or running other programs or both. Many
measurements ignore system CPU time because of the inaccuracy of operating
systems’ self-measurement (the above inaccurate measurement came from UNIX)
and the inequity of including system CPU time when comparing performance be-
tween machines with differing system codes. On the other hand, system code on
some machines is user code on others, and no program runs without some operat-
ing system running on the hardware, so a case can be made for using the sum of
user CPU time and system CPU time.

In the present discussion, a distinction is maintained between performance
based on elapsed time and that based on CPU time. The term system performance
is used to refer to elapsed time on an unloaded system, while CPU performance
refers to user CPU time on an unloaded system. We will focus on CPU perfor-
mance in this chapter, though we do consider performance measurements based
on elapsed time.

1.5 Measuring and Reporting Performance 27
Choosing Programs to Evaluate Performance

Dhrystone does not use floating point. Typical programs don’t …

Rick Richardson, Clarification of Dhrystone (1988)

This program is the result of extensive research to determine the instruction mix
of a typical Fortran program. The results of this program on different machines
should give a good indication of which machine performs better under a typical
load of Fortran programs. The statements are purposely arranged to defeat opti-
mizations by the compiler.

H. J. Curnow and B. A. Wichmann [1976], Comments in the Whetstone Benchmark

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. To evaluate a new system the user
would simply compare the execution time of her workload—the mixture of pro-
grams and operating system commands that users run on a machine. Few are in
this happy situation, however. Most must rely on other methods to evaluate ma-
chines and often other evaluators, hoping that these methods will predict per-
formance for their usage of the new machine. There are five levels of programs
used in such circumstances, listed below in decreasing order of accuracy of pre-
diction.

1. Real applications—Although the buyer may not know what fraction of time is
spent on these programs, she knows that some users will run them to solve real
problems. Examples are compilers for C, text-processing software like Word, and
other applications like Photoshop. Real applications have input, output, and op-
tions that a user can select when running the program. There is one major down-
side to using real applications as benchmarks: Real applications often enocunter
portability problems arising from dependences on the operating system or compil-
er. Enhancing portability often means modifying the source and sometimes elim-
inating some important activity, such as interactive graphics, which tends to be
more system-dependent.

2. Modified (or scripted) applications—In many cases, real applications are used
as the building block for a benchmark either with modifications to the application
or with a script that acts as stimulus to the application. Applications are modified
for two primary reasons: to enhance portability or to focus on one particular aspect
of system performance. For example, to create a CPU-oriented benchmark, I/O
may be removed or restructured to minimize its impact on execution time. Scripts
are used to reproduce interactive behavior, which might occur on a desktop sys-
tem, or to simulate complex multiuser interaction, which occurs in a server sys-
tem.

28 Chapter 1 Fundamentals of Computer Design
3. Kernels—Several attempts have been made to extract small, key pieces from
real programs and use them to evaluate performance. Livermore Loops and Lin-
pack are the best known examples. Unlike real programs, no user would run kernel
programs, for they exist solely to evaluate performance. Kernels are best used to
isolate performance of individual features of a machine to explain the reasons for
differences in performance of real programs.

4. Toy benchmarks—Toy benchmarks are typically between 10 and 100 lines of
code and produce a result the user already knows before running the toy program.
Programs like Sieve of Eratosthenes, Puzzle, and Quicksort are popular because
they are small, easy to type, and run on almost any computer. The best use of such
programs is beginning programming assignments.

5. Synthetic benchmarks—Similar in philosophy to kernels, synthetic bench-
marks try to match the average frequency of operations and operands of a large set
of programs. Whetstone and Dhrystone are the most popular synthetic benchmarks.
A description of these benchmarks and some of their flaws appears in section 1.9
on page 59. No user runs synthetic benchmarks, because they don’t compute any-
thing a user could want. Synthetic benchmarks are, in fact, even further removed
from reality than kernels because kernel code is extracted from real programs,
while synthetic code is created artificially to match an average execution profile.
Synthetic benchmarks are not even pieces of real programs, although kernels might
be.

Because computer companies thrive or go bust depending on price/perfor-
mance of their products relative to others in the marketplace, tremendous re-
sources are available to improve performance of programs widely used in
evaluating machines. Such pressures can skew hardware and software engineer-
ing efforts to add optimizations that improve performance of synthetic programs,
toy programs, kernels, and even real programs. The advantage of the last of these
is that adding such optimizations is more difficult in real programs, though not
impossible. This fact has caused some benchmark providers to specify the rules
under which compilers must operate, as we will see shortly.

Benchmark Suites

Recently, it has become popular to put together collections of benchmarks to try
to measure the performance of processors with a variety of applications. Of
course, such suites are only as good as the constituent individual benchmarks.
Nonetheless, a key advantage of such suites is that the weakness of any one
benchmark is lessened by the presence of the other benchmarks. This advantage
is especially true if the methods used for summarizing the performance of the
benchmark suite reflect the time to run the entire suite, as opposed to rewarding
performance increases on programs that may be defeated by targeted optimiza-
tions. Later in this section, we discuss the strengths and weaknesses of different
methods for summarizing performance.

1.5 Measuring and Reporting Performance 29
One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in the late 1980s efforts to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the
need for different benchmark suites, and there are now SPEC benchmarks to cov-
er different application classes, as well as other suites based on the SPEC model.

Although we focus our discussion on the SPEC benchmarks in the many of
the following sections, there are also a large set of benchmarks that have been de-
veloped for PCs running the Windows operating system. These cover a variety of
different application environments, as Figure 1.11 shows.

Desktop Benchmarks
Desktop benchmarks divide into two broad classes: CPU intensive benchmarks
and graphics intensive benchmarks (although many graphics benchmarks include
intensive CPU activity). SPEC originally created a benchmark set focusing on
CPU performance (initially called SPEC89), which has evolved into its fourth
generation: SPEC CPU2000, which follows SPEC95, and SPEC92. (Figure 1.30
on page 64 discusses the evolution of the benchmarks.) SPEC CPU2000, summa-
rized in Figure 1.12, consists of a set of eleven integer benchmarks (CINT2000)
and fourteen floating point benchmarks (CFP2000). The SPEC benchmarks are
real program modified for portability and to minimize the role of I/O in overall
benchmark performance. The integer benchmarks vary from part of a C compiler
to a VLSI place and route tool to a graphics application. The floating point bench-
marks include code for quantum chromodynmics, finite element modeling, and
fluid dynamics. The SPEC CPU suite is useful for CPU benchmarking for both
desktop systems and single-processor servers. We will see data on many of these
programs throughout this text.

Benchmark Name Benchmark description

Business Winstone 99 Runs a script consisting of Netscape Navigator, and several office suite products
(Microsoft, Corel, WordPerfect). The script simulates a user switching among and
running different applications.

High-end Winstone 99 Also simulates multiple applications running simultaneously, but focuses on com-
pute intensive applications such as Adobe Photoshop.

CC Winstone 99 Simulates multiple applications focused on content creation, such as Photoshop, Pre-
miere, Navigator, and various audio editing programs.

Winbench 99 Runs a variety of scripts that test CPU performance, video system performance, disk
performance using kernels focused on each subsystem.

FIGURE 1.11 A sample of some of the many PC benchmarks with the first four being scripts using real applica-
tions and the last being a mixture of kernels and synethetic benchmarks. These are all now maintained by Ziff Davis,
a publisher of much of the literature in the PC space. Ziff Davis also provides independent testing service. For more infor-
mation on these benchmarks, see: http://www.zdnet.com/etestinglabs/filters/benchmarks/.

30 Chapter 1 Fundamentals of Computer Design
In the next subsection, we show how a SPEC 2000 report describes the ma-
chine, compiler, and OS configuration. In section 1.9 we describe some of the pit-
falls that have occurred in attempting to develop the SPEC benchmark suite, as
well as the challenges in maintaining a useful and predictive benchmark suite.

Benchmark Type Source Description

gzip Integer C Compression using the Lempel-Ziv algorithm

vpr Integer C FPGA circuit placement and routing

gcc Integer C Consists of the GNU C compiler generating optimized machine code.

mcf Integer C Combinatorial optimization of public transit scheduling.

crafty Integer C Chess playing program.

parser Integer C Syntactic English language parser

eon Integer C++ Graphics visualization using probabilistic ray tracing

perlmbk Integer C Perl (an interpreted string processing language) with four input scripts

gap Integer C A group theory application package

vortex Integer C An object-oriented database system

bzip2 Integer C A block sorting compression algorithm.

twolf Integer C Timberwolf: a simulated annealing algorithm for VLSI place and route

wupwise FP F77 Lattice gauge theory model of quantum chromodynamics.

swim FP F77 Solves shallow water equations using finite difference equations.

mgrid FP F77 Multigrid solver over 3-dimensional field.

apply FP F77 Parabolic and elliptic partial differential equation solver

mesa FP C Three dimensional graphics library.

galgel FP F90 Computational fluid dynamics.

art FP C Image recognition of a thermal image using neural networks

equake FP C Simulation of seismic wave propagation.

facerec FP C Face recognition using wavelets and graph matching.

ammp FP C molecular dynamics simulation of a protein in water

lucas FP F90 Performs primality testing for Mersenne primes

fma3d FP F90 Finite element modeling of crash simulation

sixtrack FP F77 High energy physics accelerator design simulation.

apsi FP F77 A meteorological simulation of pollution distribution.

FIGURE 1.12 The programs in the SPECCPU2000 benchmark suites. The eleven integer programs (all in C, except
one in C++) are used for the CINT2000 measurement, while the fourteen floating point programs (six in Fortran-77, five in
C, and three in Fortran-90) are used for the CFP2000 measurement. See http://www.spec.org/osg/cpu2000/ for more on
these benchmarks.

1.5 Measuring and Reporting Performance 31
Although SPEC CPU2000 is aimed at CPU performance, two different types
of graphics benchmarks were created by SPEC: SPECviewperf (see http://
www.spec.org/gpc/opc.static/opcview.htm) is used for benchmarking systems
supporting the OpenGL graphics library, while SPECapc (http://www.spec.org/
gpc/apc.static/apcfaq.htm) consists of applications that make extensive use of
graphics. SPECviewperf measures the 3D rendering performance of systems run-
ning under OpenGL using a 3-D model and a series of OpenGL calls that trans-
form the model. SPECapc consists of runs of three large applications:

1. Pro/Engineer: a solid modeling application that does extensive 3-D rendering.
The input script is a model of a photocopying machine consisting of 370,000
triangles.

2. SolidWorks 99: a 3-D CAD/CAM design tool running a series of five tests
varying from I/O intensive to CPU intensive. The largetest input is a model of
an assembly line consisting of 276,000 triangles.

3. Unigraphics V15: The benchmark is based on an aircraft model and covers a
wide spectrum of Unigraphics functionality, including assembly, drafting, nu-
meric control machining, solid modeling, and optimization. The inputs are all
part of an aircraft design.

Server Benchmarks
Just as servers have multiple functions, so there are multiple types of bench-
marks. The simplest benchmark is perhaps a CPU throughput oriented bench-
mark. SPEC CPU2000 uses the SPEC CPU benchmarks to construct a simple
throughput benchmark where the processing rate of a multiprocessor can be mea-
sured by running multiple copies (usually as many as there are CPUs) of each
SPEC CPU benchmark and converting the CPU time into a rate.This leads to a
measurement called the SPECRate.

Other than SPECRate, most server applications and benchmarks have signifi-
cant I/O activity arising from either disk or network traffic, including benchmarks
for file server systems, for web servers, and for database and transaction process-
ing systems. SPEC offers both a file server benchmark (SPECSFS) and a web
server benchmark (SPECWeb). SPECSFS (see http://www.spec.org/osg/sfs93/)
is a benchmark for measuring NFS (Network File System) performance using a
script of file server requests; it tests the performance of the I/O system (both disk
and network I/O) as well as the CPU. SPECSFS is a throughput oriented bench-
mark but with important response time requirements. (Chapter 6 discusses some
file and I/O system benchmarks in detail.) SPECWEB (see http://www.spec.org/
osg/web99/ for the 1999 version) is a web-server benchmark that simulates mul-
tiple clients requesting both static and dynamic pages from a server, as well as
clients posting data to the server.

Transaction processing benchmarks measure the ability of a system to handle
transactions, which consist of database accesses and updates. An airline reserva-

32 Chapter 1 Fundamentals of Computer Design
tion system or a bank ATM system are typical simple TP systems; more complex
TP systems involve complex databases and decision making. In the mid 1980s, a
group of concerned engineers formed the vendor-independent Transaction Pro-
cessing Council (TPC) to try to create a set of realistic and fair benchmarks for
transaction processing. The first TPC benchmark, TPC-A, was published in 1985
and has since been replaced and enhanced by four different benchmarks. TPC-C,
initially created in 1992, simulates a complex query environment. TPC-H models
ad-hoc decision support meaning that the queries are unrelated and knowledge of
past queries cannot be used to optimize future queries; the result is that query ex-
ecution times can be very long. TPC-R simulates a business decision support sys-
tem where users run a standard set of queries. In TPC-R, pre-knowledge of the
queries is taken for granted and the DBMS system can be optimized to run these
queries. TPC-W web-based transaction benchmark that simulates the activities of
a business oriented transactional web server. It exercises the database system as
well as the underlying web server software. The TPC benchmarks are described
at: http://www.tpc.org/.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response-time requirement, so that throughput perfor-
mance is measured only when the response time limit is met.To model real-world
systems, higher transaction rates are also associated with larger systems, both in
terms of users and the data base that the transactions are applied to. Finally, the
system cost for a benchmark system must also be included, allowing accurate
comparisons of cost-performance.

Embedded Benchmarks
Benchmarks for embedded computing systems are in a far more nascent state
than those for either desktop or server environments. In fact, many manufacturers
quote Dhrystone performance, a benchmark that was criticized and given up by
desktop systems more than 10 years ago! As mentioned earlier, the enormous va-
riety in embedded applications, as well as differences in performance require-
ments (hard real-time, soft real-time, and overall cost-performance), make the
use of a single set of benchmarks unrealistic. In practice, many designers of em-
bedded systems devise benchmarks that reflect their application, either as kernels
or as stand-alone versions of the entire application.

For those embedded applications that can be characterized well by kernel per-
formance, the best standardized set of benchmarks appears to be a new bench-
mark set: the EDN Embedded Microprocessor Benchmark Consortium (or
EEMBC–pronounced embassy). The EEMBC benchmarks fall into five classes:
automotive/industrial, consumer, networking, office automation, and telecommu-
nications. Figure 1.13 shows the five different application classes, which include
34 benchmarks.

Although many embedded applications are sensitive to the performance of
small kernels, remember that often the overall performance of the entire applica-
tion, which may be thousands of lines) is also critical. Thus, for many embedded

1.5 Measuring and Reporting Performance 33
systems, the EMBCC benchmarks can only be used to partially assess perfor-
mance.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the re-
sults. A SPEC benchmark report requires a fairly complete description of the
machine, the compiler flags, as well as the publication of both the baseline and
optimized results. As an example, Figure 1.14 shows portions of the SPEC
CINT2000 report for an Dell Precision Workstation 410. In addition to hardware,
software, and baseline tuning parameter descriptions, a SPEC report contains the
actual performance times, shown both in tabular form and as a graph. A TPC
benchmark report is even more complete, since it must include results of a bench-
marking audit and must also include cost information.

A system’s software configuration can significantly affect the performance re-
sults for a benchmark. For example, operating syustems performance and support
can be very important in server benchmarks. For this reason, these benchmarks
are sometimes run in single-user mode to reduce overhead. Additionally, operat-
ing system enhancements are sometimes made to increase performance on the
TPC benchmarks. Likewise, compiler technology can play a big role in CPU per-
formance. The impact of compiler technology can be especially large when mod-
ification of the source is allowed (see the example with the EEMBC benchmarks
on page 63) or when a benchmark is particularly suspectible to an optimization
(see the example from SPEC described on 61). For these reasons it is important
to describe exactly the software system being measured as well as whether any
special nonstandard modifications have been made.

Another way to customize the software to improve the performance of a
benchmark has been through the use of benchmark-specific flags; these flags of-
ten caused transformations that would be illegal on many programs or would

Benchmark Type # of this type Example benchmarks

Automotive/industrial 16 6 microbenchmarks (arithmetic operations, pointer chasing, memory
performance, matrix arithmetic, table lookup, bit manipulation), 5 au-
tomobile control benchmarks, and 5 filter or FFT benchmarks.

Consumer 5 5 multimedia benchmarks (JPEG compress/decompress, filtering, and
RGB conversions).

Networking 3 Shortest path calculation, IP routing, and packet flow operations.

Office automation 4 Graphics and text benchmarks (Bezier curve calculation, dithering, im-
age rotation, text processing).

Telecommunications 6 Filtering and DSP benchmarks (autocorrelation, FFT, decoder, and en-
coder)

FIGURE 1.13 The EEMBC benchmark suite, consisting of 34 kernels in five different classes. See www.eembc.org
for more information on the benchmarks and for scores.

34 Chapter 1 Fundamentals of Computer Design
slow down performance on others. To restrict this process and increase the signif-
icance of the SPEC results, the SPEC organization created a baseline perfor-
mance measurement in addition to the optimized performance measurement.
Baseline performance restricts the vendor to one compiler and one set of flags for
all the programs in the same language (C or FORTRAN). Figure 1.14 shows the
parameters for the baseline performance; in section 1.8, Fallacies and Pitfalls,
we’ll see the tuning parameters for the optimized performance runs on this
machine.

In addition to the question of flags and optimization, another key question is
whether source code modifications or hand-generated assembly language are al-
lowed. There are four broad categories of apporoaches here:

1. No source code modifications are allowed. The SPEC benchmarks fall into
this class, as do most of the standard PC benchmarks.

2. Source code modification are allowed, but are essentially difficult or impossi-
ble. Benchmarks like TPC-C rely on standard databases, such as Oracle or Mi-
crosoft’s SQL server. Although these third party vendors are interested in the
overall performance of their systems on important industry-standard bench-

Hardware Software

Model number Precision WorkStation 410 O/S and version Windows NT 4.0

CPU 700 MHz, Pentium III Compilers and version Intel C/C++ Compiler 4.5

Number of CPUs 1 Other software See below

Primary cache 16KBI+16KBD on chip File system type NTFS

Secondary cache 256KB(I+D) on chip System state Default

Other cache None

Memory 256 MB ECC PC100 SDRAM

Disk subsystem SCSI

Other hardware None

SPEC CINT2000 base tuning parameters/notes/summary of changes:

+FDO: PASS1=-Qprof_gen PASS2=-Qprof_use

 Base tuning: -QxK -Qipo_wp shlW32M.lib +FDO

 shlW32M.lib is the SmartHeap library V5.0 from MicroQuill www.microquill.com

 Portability flags:

 176.gcc: -Dalloca=_alloca /F10000000 -Op

 186.crafy: -DNT_i386

 253.perlbmk: -DSPEC_CPU2000_NTOS -DPERLDLL /MT

 254.gap: -DSYS_HAS_CALLOC_PROTO -DSYS_HAS_MALLOC_PROTO

FIGURE 1.14 The machine, software, and baseline tuning parameters for the CINT2000 base report on a Dell Pre-
cision WorkStation 410. This data is for the base CINT2000 report. The data is available online at: http://www.spec.org/
osg/cpu2000/results/cpu2000.html.

1.5 Measuring and Reporting Performance 35
marks, they are highly unlikely to make vendor- specific changes to enhance
the performance for one particular customer.TPC-C also relies heavily on the
operating system, which can be change, provided those changes become part
of the production version.

3. Source modifications are allowed. Several supercomputer benchmark suites
allow modification of the source code. For example, the NAS benchmarks
specify the input and output and supply the source, but vendors are allowed to
rewrite the source, including changing the algorithms, as long as the result is
the same. EEMBC also allows source-level changes to its benchmarks and re-
ports these as “optimized” measurements, versus “out-of-the-box” measure-
ments that allow no changes.

4. Hand-coding is allowed. EEMBC allows assembly language coding of its
benchmarks. The small size of its kernels makes this approach attractive, al-
though in practice with larger embedded applications it is unlikely to be used,
except for small loops.Figure 1.31 on page 65 shows the significant benefits
from handcoding on several different processors.

The key issue that benchmark designers face in deciding to allow modification
of the source is whether such modifications will reflect real practice and provide
useful insight to users, or whether such modifications simply reduce the accuracy
of the benchmarks as predictors of real performance.

Comparing and Summarizing Performance

Comparing performance of computers is rarely a dull event, especially when the
designers are involved. Charges and countercharges fly across the Internet; one is
accused of underhanded tactics and the other of misleading statements. Since ca-
reers sometimes depend on the results of such performance comparisons, it is un-
derstandable that the truth is occasionally stretched. But more frequently
discrepancies can be explained by differing assumptions or lack of information.

We would like to think that if we could just agree on the programs, the experi-
mental environments, and the definition of faster, then misunderstandings would
be avoided, leaving the networks free for scholarly discourse. Unfortunately,
that’s not the reality. Once we agree on the basics, battles are then fought over
what is the fair way to summarize relative performance of a collection of pro-
grams. For example, two articles on summarizing performance in the same jour-
nal took opposing points of view. Figure 1.15, taken from one of the articles, is an
example of the confusion that can arise.

Using our definition of faster than, the following statements hold:

A is 10 times faster than B for program P1.

B is 10 times faster than A for program P2.

A is 20 times faster than C for program P1.

36 Chapter 1 Fundamentals of Computer Design
C is 50 times faster than A for program P2.

B is 2 times faster than C for program P1.

C is 5 times faster than B for program P2.

Taken individually, any one of these statements may be of use. Collectively, how-
ever, they present a confusing picture—the relative performance of computers A,
B, and C is unclear.

Total Execution Time: A Consistent Summary Measure
The simplest approach to summarizing relative performance is to use total execu-
tion time of the two programs. Thus

B is 9.1 times faster than A for programs P1 and P2.

C is 25 times faster than A for programs P1 and P2.

C is 2.75 times faster than B for programs P1 and P2.

This summary tracks execution time, our final measure of performance. If the
workload consisted of running programs P1 and P2 an equal number of times, the
statements above would predict the relative execution times for the workload on
each machine.

An average of the execution times that tracks total execution time is the arith-
metic mean:

where Timei is the execution time for the ith program of a total of n in the work-
load.

Weighted Execution Time

The question arises: What is the proper mixture of programs for the workload?
Are programs P1 and P2 in fact run equally in the workload as assumed by the
arithmetic mean? If not, then there are two approaches that have been tried for
summarizing performance. The first approach when given an unequal mix of pro-
grams in the workload is to assign a weighting factor wi to each program to indi-

Computer A Computer B Computer C

Program P1 (secs) 1 10 20

Program P2 (secs) 1000 100 20

Total time (secs) 1001 110 40

FIGURE 1.15 Execution times of two programs on three machines. Data from Figure I
of Smith [1988].

1
n
--- Timei

i 1=

n

∑

1.5 Measuring and Reporting Performance 37
cate the relative frequency of the program in that workload. If, for example, 20%
of the tasks in the workload were program P1 and 80% of the tasks in the work-
load were program P2, then the weighting factors would be 0.2 and 0.8. (Weight-
ing factors add up to 1.) By summing the products of weighting factors and
execution times, a clear picture of performance of the workload is obtained. This
is called the weighted arithmetic mean:

where Weighti is the frequency of the ith program in the workload and Timei is the
execution time of that program. Figure 1.16 shows the data from Figure 1.15 with
three different weightings, each proportional to the execution time of a workload
with a given mix.

Normalized Execution Time and the Pros and Cons of Geometric Means
A second approach to unequal mixture of programs in the workload is to nor-
malize execution times to a reference machine and then take the average of the
normalized execution times. This is the approach used by the SPEC benchmarks,

Programs Weightings

 A B C W(1) W(2) W(3)

Program P1 (secs) 1.00 10.00 20.00 0.50 0.909 0.999

Program P2 (secs) 1000.00 100.00 20.00 0.50 0.091 0.001

Arithmetic mean:W(1) 500.50 55.00 20.00

Arithmetic mean:W(2) 91.91 18.19 20.00

Arithmetic mean:W(3) 2.00 10.09 20.00

FIGURE 1.16 Weighted arithmetic mean execution times for three machines (A, B, C) and two programs (P1 and
P2) using three weightings (W1, W2, W3). The top table contains the original execution time measurements and the
weighting factors, while the bottom table shows the resulting weighted arithmetic means for each weighting. W(1) equally
weights the programs, resulting in a mean (row 3) that is the same as the unweighted arithmetic mean. W(2) makes the mix
of programs inversely proportional to the execution times on machine B; row 4 shows the arithmetic mean for that weighting.
W(3) weights the programs in inverse proportion to the execution times of the two programs on machine A; the arithmetic
mean with this weighting is given in the last row. The net effect of the second and third weightings is to “normalize” the
weightings to the execution times of programs running on that machine, so that the running time will be spent evenly between
each program for that machine. For a set of n programs each taking Timei on one machine, the equal-time weightings on
that machine are .

Weighti Timei×
i 1=

n

∑

w i
1

Timei
1

Time j
--------------- 

 

j 1=

n

∑×

--=

38 Chapter 1 Fundamentals of Computer Design
where a base time on a SPARCstation is used for reference. This measurement
gives a warm fuzzy feeling, because it suggests that performance of new pro-
grams can be predicted by simply multiplying this number times its performance
on the reference machine.

Average normalized execution time can be expressed as either an arithmetic or
geometric mean. The formula for the geometric mean is

where Execution time ratioi is the execution time, normalized to the reference ma-
chine, for the ith program of a total of n in the workload. Geometric means also
have a nice property for two samples Xi and Yi:

 = Geometric mean

As a result, taking either the ratio of the means or the mean of the ratios yields the
same result. In contrast to arithmetic means, geometric means of normalized exe-
cution times are consistent no matter which machine is the reference. Hence, the
arithmetic mean should not be used to average normalized execution times. Fig-
ure 1.17 shows some variations using both arithmetic and geometric means of
normalized times.

Because the weightings in weighted arithmetic means are set proportionate to
execution times on a given machine, as in Figure 1.16, they are influenced not
only by frequency of use in the workload, but also by the peculiarities of a partic-
ular machine and the size of program input. The geometric mean of normalized
execution times, on the other hand, is independent of the running times of the in-
dividual programs, and it doesn’t matter which machine is used to normalize. If a
situation arose in comparative performance evaluation where the programs were
fixed but the inputs were not, then competitors could rig the results of weighted
arithmetic means by making their best performing benchmark have the largest in-
put and therefore dominate execution time. In such a situation the geometric
mean would be less misleading than the arithmetic mean.

n

Execution time ratioi
i 1=

n

∏

Geometric mean Xi()
Geometric mean Yi()
--

Xi

Yi
----- 

 

1.5 Measuring and Reporting Performance 39
The strong drawback to geometric means of normalized execution times is
that they violate our fundamental principle of performance measurement—they
do not predict execution time. The geometric means from Figure 1.17 suggest
that for programs P1 and P2 the performance of machines A and B is the same,
yet this would only be true for a workload that ran program P1 100 times for ev-
ery occurrence of program P2 (see Figure 1.16 on page 37). The total execution
time for such a workload suggests that machines A and B are about 50% faster
than machine C, in contrast to the geometric mean, which says machine C is fast-
er than A and B! In general there is no workload for three or more machines that
will match the performance predicted by the geometric means of normalized exe-
cution times. Our original reason for examining geometric means of normalized
performance was to avoid giving equal emphasis to the programs in our work-
load, but is this solution an improvement?

An additional drawback of using geometric mean as a method for summariz-
ing performance for a benchmark suite (as SPEC CPU2000 does) is that it en-
courages hardware and software designers to focus their attention on the
benchmarks where performance is easiest to improve rather than on the bench-
marks that are slowest. For example, if some hardware or software improvement
can cut the running time for a benchmark from 2 seconds to 1, the geometric
mean will reward those designers with the same overall mark that it would give to
designers that improve the running time on another benchmark in the suite from
10,000 seconds to 5000 seconds. Of course, everyone interested in running the
second program thinks of the second batch of designers as their heroes and the
first group as useless. Small programs are often easier to “crack,” obtaining a
large but unrepresentative performance improvement, and the use of geometric
mean rewards such behavior more than a measure that reflects total running time.

The ideal solution is to measure a real workload and weight the programs ac-
cording to their frequency of execution. If this can’t be done, then normalizing so
that equal time is spent on each program on some machine at least makes the rel-

Normalized to A Normalized to B Normalized to C

A B C A B C A B C

Program P1 1.0 10.0 20.0 0.1 1.0 2.0 0.05 0.5 1.0

Program P2 1.0 0.1 0.02 10.0 1.0 0.2 50.0 5.0 1.0

Arithmetic mean 1.0 5.05 10.01 5.05 1.0 1.1 25.03 2.75 1.0

Geometric mean 1.0 1.0 0.63 1.0 1.0 0.63 1.58 1.58 1.0

Total time 1.0 0.11 0.04 9.1 1.0 0.36 25.03 2.75 1.0

FIGURE 1.17 Execution times from Figure 1.15 normalized to each machine. The arithmetic mean performance varies
depending on which is the reference machine—in column 2, B’s execution time is five times longer than A’s, although the
reverse is true in column 4. In column 3, C is slowest, but in column 9, C is fastest. The geometric means are consistent
independent of normalization—A and B have the same performance, and the execution time of C is 0.63 of A or B (1/1.58
is 0.63). Unfortunately, the total execution time of A is 10 times longer than that of B, and B in turn is about 3 times longer
than C. As a point of interest, the relationship between the means of the same set of numbers is always harmonic mean ≤
geometric mean ≤ arithmetic mean.

40 Chapter 1 Fundamentals of Computer Design
ative weightings explicit and will predict execution time of a workload with that
mix. The problem above of unspecified inputs is best solved by specifying the in-
puts when comparing performance. If results must be normalized to a specific
machine, first summarize performance with the proper weighted measure and
then do the normalizing.

Lastly, we must remember that any summary measure necessarily loses infor-
mation, especially when the measurements may vary widely. Thus, it is important
both to ensure that the results of individual benchmarks, as well as the summary
number, are available. Furthermore, the summary number should be used with
caution, since the summary–as opposed to a subset of the individual scores–may
be the best indicator of performance for a customer’s applications.

Now that we have seen how to define, measure, and summarize performance, we
can explore some of the guidelines and principles that are useful in design and
analysis of computers. In particular, this section introduces some important ob-
servations about designing for performance and cost/performance, as well as two
equations that we can use to evaluate design alternatives.

Make the Common Case Fast

Perhaps the most important and pervasive principle of computer design is to
make the common case fast: In making a design trade-off, favor the frequent case
over the infrequent case. This principle also applies when determining how to
spend resources, since the impact on making some occurrence faster is higher if
the occurrence is frequent. Improving the frequent event, rather than the rare
event, will obviously help performance, too. In addition, the frequent case is of-
ten simpler and can be done faster than the infrequent case. For example, when
adding two numbers in the CPU, we can expect overflow to be a rare circum-
stance and can therefore improve performance by optimizing the more common
case of no overflow. This may slow down the case when overflow occurs, but if
that is rare, then overall performance will be improved by optimizing for the nor-
mal case.

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s Law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s Law. Amdahl’s Law states that the per-
formance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

1.6 Quantitative Principles of Computer Design

1.6 Quantitative Principles of Computer Design 41
Amdahl’s Law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a ma-
chine that will improve performance when it is used. Speedup is the ratio

Speedup =

Alternatively,

Speedup =

Speedup tells us how much faster a task will run using the machine with the en-
hancement as opposed to the original machine.

Amdahl’s Law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original machine that can be
converted to take advantage of the enhancement—For example, if 20
seconds of the execution time of a program that takes 60 seconds in total can
use an enhancement, the fraction is 20/60. This value, which we will call
Fractionenhanced, is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how much
faster the task would run if the enhanced mode were used for the entire pro-
gram—This value is the time of the original mode over the time of the en-
hanced mode: If the enhanced mode takes 2 seconds for some portion of the
program that can completely use the mode, while the original mode took 5 sec-
onds for the same portion, the improvement is 5/2. We will call this value,
which is always greater than 1, Speedupenhanced.

The execution time using the original machine with the enhanced mode will be
the time spent using the unenhanced portion of the machine plus the time spent
using the enhancement:

Execution timenew = Execution timeold ×

The overall speedup is the ratio of the execution times:

Speedupoverall = =

E X A M P L E Suppose that we are considering an enhancement to the processor of a
server system used for web serving. The new CPU is 10 times faster on
computation in the web serving application than the original processor.
Assuming that the original CPU is busy with computation 40% of the time

Performance for entire task using the enhancement when possible

Performance for entire task without using the enhancement

Execution time for entire task without using the enhancement

Execution time for entire task using the enhancement when possible

1 Fractionenhanced–()
Fractionenhanced

Speedupenhanced
--+

 
 
 

Execution timeold

Execution timenew
-- 1

1 Fractionenhanced–()
Fractionenhanced

Speedupenhanced
--------------------------------------+

--

42 Chapter 1 Fundamentals of Computer Design
and is waiting for I/O 60% of the time, what is the overall speedup gained
by incorporating the enhancement?

A N S W E R Fractionenhanced = 0.4

Speedupenhanced = 10

Speedupoverall = = ≈ 1.56

n

Amdahl’s Law expresses the law of diminishing returns: The incremental im-
provement in speedup gained by an additional improvement in the performance
of just a portion of the computation diminishes as improvements are added. An
important corollary of Amdahl’s Law is that if an enhancement is only usable for
a fraction of a task, we can’t speed up the task by more than the reciprocal of 1
minus that fraction.

A common mistake in applying Amdahl’s Law is to confuse “fraction of time
converted to use an enhancement” and “fraction of time after enhancement is in
use.” If, instead of measuring the time that we could use the enhancement in a
computation, we measure the time after the enhancement is in use, the results
will be incorrect! (Try Exercise 1.2 to see how wrong.)

Amdahl’s Law can serve as a guide to how much an enhancement will im-
prove performance and how to distribute resources to improve cost/performance.
The goal, clearly, is to spend resources proportional to where time is spent. Am-
dahl’s Law is particularly useful for comparing the overall system performance
of two alternatives, but it can also be applied to compare two CPU design alterna-
tives, as the following Example shows.

E X A M P L E A common transformation required in graphics engines is square root. Im-
plementations of floating-point (FP) square root vary significantly in per-
formance, especially among processor designed for graphics. Suppose
FP square root (FPSQR) is responsible for 20% of the execution time of
a critical graphics benchmark. One proposal is to enhance the FPSQR
hardware and speed up this operation by a factor of 10. The other alter-
native is just to try to make all FP instructions in the graphics processor
run faster by a factor of 1.6; FP instructions are responsible for a total of
50% of the execution time for the application. The design team believes
that they can make all FP instructions run 1.6 times faster with the same
effort as required for the fast square root. Compare these two design al-

1

0.6 0.4
10
-------+

--------------------- 1
0.64

1.6 Quantitative Principles of Computer Design 43
ternatives.

A N S W E R We can compare these two alternatives by comparing the speedups:

SpeedupFPSQR = = = 1.22

SpeedupFP = = = 1.23

Improving the performance of the FP operations overall is slightly better
because of the higher frequency. n

In the above example, we needed to know the time consumed by the new and
improved FP operations; often it is difficult to measure these times directly. In the
next section, we will see another way of doing such comparisons based on the
use of an equation that decomposes the CPU execution time into three separate
components. If we know how an alternative affects these three components, we
can determine its overall performance effect. Furthermore, it is often possible to
build simulators that measure these components before the hardware is actually
designed.

The CPU Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called ticks, clock ticks, clock periods, clocks, cy-
cles, or clock cycles. Computer designers refer to the time of a clock period by its
duration (e.g., 1 ns) or by its rate (e.g., 1 GHz). CPU time for a program can then
be expressed two ways:

or

CPU time =

In addition to the number of clock cycles needed to execute a program, we can
also count the number of instructions executed—the instruction path length or in-
struction count (IC). If we know the number of clock cycles and the instruction
count we can calculate the average number of clock cycles per instruction (CPI).
Because it is easier to work with and because we will deal with simple processors

1

1 0.2–() 0.2
10
-------+

----------------------------------- 1
0.82

1

1 0.5–() 0.5
1.6
-------+

----------------------------------- 1
0.8125

CPU time CPU clock cycles for a program Clock cycle time×=

CPU clock cycles for a program
Clock rate

44 Chapter 1 Fundamentals of Computer Design
in this chapter, we use CPI. Designers sometimes also use Instructions per Clock
or IPC, which is the inverse of CPI.

CPI is computed as:

CPI =

This CPU figure of merit provides insight into different styles of instruction sets
and implementations, and we will use it extensively in the next four chapters.

By transposing instruction count in the above formula, clock cycles can be de-
fined as . This allows us to use CPI in the execution time formula:

or

CPU time =

Expanding the first formula into the units of measurement and inverting the clock
rate shows how the pieces fit together:

 = = CPU time

As this formula demonstrates, CPU performance is dependent upon three charac-
teristics: clock cycle (or rate), clock cycles per instruction, and instruction count.
Furthermore, CPU time is equally dependent on these three characteristics: A
10% improvement in any one of them leads to a 10% improvement in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are interdependent:

n Clock cycle time—Hardware technology and organization

n CPI—Organization and instruction set architecture

n Instruction count—Instruction set architecture and compiler technology

Luckily, many potential performance improvement techniques primarily improve
one component of CPU performance with small or predictable impacts on the
other two.

Sometimes it is useful in designing the CPU to calculate the number of total
CPU clock cycles as

CPU clock cycles =

where ICi represents number of times instruction i is executed in a program and

CPIi represents the average number of instructions per clock for instruction i. This

form can be used to express CPU time as

CPU clock cycles for a program
Instruction Count

IC CPI×

CPU time Instruction Count Clock cycle time× Cycles per Instruction×=

Instruction Count Clock cycle time×
Clock rate

Instructions
Program

---------------------------- Clock cycles
Instruction

------------------------------× Seconds
Clock cycle
----------------------------× Seconds

Program

ICi CPIi×
i 1=

n

∑

1.6 Quantitative Principles of Computer Design 45

and overall CPI as:

The latter form of the CPI calculation uses each individual CPIi and the fraction

of occurrences of that instruction in a program (i.e.,). CPIi
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other memory
system inefficiencies.

Consider our earlier example, here modified to use measurements of the fre-
quency of the instructions and of the instruction CPI values, which, in practice, is
obtained by simulation or by hardware instrumentation.

E X A M P L E Suppose we have made the following measurements:

Frequency of FP operations (other than FPSQR) = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR= 2%
CPI of FPSQR = 20

Assume that the two design alternatives are to decrease the CPI of
FPSQR to 2 or to decrease the average CPI of all FP operations to 2.5.
Compare these two design alternatives using the CPU performance
equation.

A N S W E R First, observe that only the CPI changes; the clock rate and instruction
count remain identical. We start by finding the original CPI with neither en-
hancement:

We can compute the CPI for the enhanced FPSQR by subtracting the
cycles saved from the original CPI:

CPU time ICi CPIi×
i 1=

n

∑ 
 
 

Clock cycle time×=

CPI

ICi CPIi×
i 1=

n

∑
Instruction count
--

ICi

Instruction count
-- CPIi×

i 1=

n

∑= =

ICi Instruction count÷

CPIoriginal CPIi

ICi

Instruction count
-- 

 ×
i 1=

n

∑=

4 25%×() 1.33 75%×() 2.0=+=

46 Chapter 1 Fundamentals of Computer Design
We can compute the CPI for the enhancement of all FP instructions the
same way or by summing the FP and non-FP CPIs. Using the latter gives
us

Since the CPI of the overall FP enhancement is slightly lower, its perfor-
mance will be marginally better. Specifically, the speedup for the overall
FP enhancement is

Happily, this is the same speedup we obtained using Amdahl’s Law on
page 42. It is often possible to measure the constituent parts of the CPU
performance equation. This is a key advantage for using the CPU perfor-
mance equation versus Amdahl’s Law in the above example. In particular,
it may be difficult to measure things such as the fraction of execution time
for which a set of instructions is responsible. In practice this would proba-
bly be computed by summing the product of the instruction count and the
CPI for each of the instructions in the set. Since the starting point is often
individual instruction count and CPI measurements, the CPU perfor-
mance equation is incredibly useful. n

Measuring and Modeling the Components of the CPU Performance Equation
To use the CPU performance equation as a design tool, we need to be able to
measure the various factors. For an existing processor, it is easy to obtain the exe-
cution time by measurement, and the clock speed is known. The challenge lies in
discovering the instruction count or the CPI. Most newer processors include
counters for both instructions executed and for clock cycles. By periodically
monitoring these counters, it is also possible to attach execution time and instruc-
tion count to segments of the code, which can be helpful to programmers trying
to understand and tune the performance of an application. Often, a designer or
programmer will want to understand performance at a more fine-grained level
than what is available from the hardware counters. For example, they may want
to know why the CPI is what it is. In such cases, simulation techniques like those
used for processors that are being designed are used.

CPIwith new FPSQR CPIoriginal 2% CPIold FPSQR CPI–
of new FPSQR only

()×–=

2.0 2% 20 2–()×– 1.64= =

CPInew FP 75% 1.33×() 25% 2.5×() 1.625=+=

Speedupnew FP

CPU timeoriginal

CPU timenew FP

IC Clock cycle CPIoriginal××
IC Clock cycle CPInew FP××
---= =

CPIoriginal

CPInew FP
------------------------ 2.00

1.625
------------- 1.23= = =

1.6 Quantitative Principles of Computer Design 47
There are three general classes of simulation techniques that are used. In gen-
eral, the more sophisticated techniques yield more accuracy, particularly for more
recent architectures, at the cost of longer execution time The first and simplest
technique, and hence the least costly, is profile-based, static modeling. In this
technique a dynamic execution profile of the program, which indicates how often
each instruction is executed, is obtained by one of three methods:

1. By using hardware counters on the processor, which are periodically saved.
This technique often gives an approximate profile, but one that is within a few
percent of exact.

2. By using instrumented execution, in which instrumentation code is compiled
into the program. This code is used to increment counters, yielding an exact
profile. (This technique can also be used to create a trace of memory address
that are accessed, which is useful for other simulation techniques.)

3. By interpreting the program at the instruction set level, compiling instruction
counts in the process.

Once the profile is obtained, it is used to analyze the program in a static fashion
by looking at the code. Obviously with the profile, the total instruction count is
easy to obtain. It is also easy to get a detailed dynamic instruction mix telling
what types of instructions were executed with what frequency. Finally, for simple
processors, it is possible to compute an approximation to the CPI. This approxi-
mation is computed by modeling and analyzing the execution of each basic block
(or straightline code segment) and then computing an overall estimate of CPI or
total compute cycles by multiplying the estimate for each basic block by the
number of times it is executed. Although this simple model ignores memory be-
havior and has severe limits for modeling complex pipelines, it is a reasonable
and very fast technique for modeling the performance of short, integer pipelines,
ignoring the memory system behavior.

Trace-driven simulation is a more sophisticated technique for modeling per-
formance and is particularly useful for modeling memory system performance. In
trace-driven simulation, a trace of the memory references executed is created,
usually either by simulation or by instrumented execution. The trace includes
what instructions were executed (given by the instruction address), as well as the
data addresses accessed.

Trace-driven simulation can be used in several different ways. The most com-
mon use is to model memory system performance, which can be done by simulat-
ing the memory system, including the caches and any memory management
hardware using the address trace. A trace-driven simulation of the memory sys-
tem can be combined with a static analysis of pipeline performance to obtain a
reasonably accurate performance model for simple pipelined processors. For
more complex pipelines, the trace data can be used to perform a more detailed
analysis of the pipeline performance by simulation of the processor pipeline.

48 Chapter 1 Fundamentals of Computer Design
Since the trace data allows a simulation of the exact ordering of instructions,
higher accuracy can be achieved than with a static approach. Trace-driven simu-
lation typically isolates the simulation of any pipeline behavior from the memory
system. In particular, it assumes that the trace is completely independent of the
memory system behavior. As we will see in Chapters 3 and 5, this is not the case
for the most advanced processors–a third technique is needed.

The third technique, which is the most accurate and most costly, is execution-
driven simulation. In execution-driven simulation a detailed simulation of the
memory system and the processor pipeline are done simultaneously. This allows
the exact modeling of the interaction between the two, which is critical as we will
see in Chapters 3 and 5.

There are many variations on these three basic techniques. We will see exam-
ples of these tools in later chapters and use various versions of them in the exer-
cises.

Locality of Reference

Although Amdahl’s Law is a theorem that applies to any system, other important
fundamental observations come from properties of programs. The most important
program property that we regularly exploit is locality of reference: Programs tend
to reuse data and instructions they have used recently. A widely held rule of
thumb is that a program spends 90% of its execution time in only 10% of the
code. An implication of locality is that we can predict with reasonable accuracy
what instructions and data a program will use in the near future based on its ac-
cesses in the recent past.

Locality of reference also applies to data accesses, though not as strongly as to
code accesses. Two different types of locality have been observed. Temporal lo-
cality states that recently accessed items are likely to be accessed in the near fu-
ture. Spatial locality says that items whose addresses are near one another tend to
be referenced close together in time. We will see these principles applied in
Chapter 5.

Take Advantage of Parallelism

Taking advantage of parallelism is one of the most important methods for im-
proving performance. We give three brief examples, which are expounded on in
later chapters. Our first example is the use of parallelism at the system level. To
improve the throughput performance on a typical server benchmark, such as
SPECWeb or TPC, multiple processors and multiple disks can be used. The
workload of handling requests can then be spread among the CPUs or disks re-
sulting in improved throughput. This is the reason that scalability is viewed as a
valuable asset for server applications.

At the level of an individual processor, taking advantage of parallelism among
instructions is critical to achieving high performance. One of the simplest ways

1.7 Putting It All Together: Performance and Price-Performance 49
to do this is through pipelining. The basic idea behind pipelining, which is ex-
plained in more detail in Appendix A and a major focus of Chapter 3, is to over-
lap the execution of instructions, so as to reduce the total time to complete a
sequence of instructions. Viewed from the perspective of the CPU performance
equation, we can think of pipelining as reducing the CPI by allowing instructions
that take multiple cycles to overlap. A key insight that allows pipelining to work
is that not every instruction depends on its immediate predecessor, and thus, exe-
cuting the instructions completely or partially in parallel may be possible.

Parallelism can also be exploited at the level of detailed digital design. For ex-
ample, set associative caches use multiple banks of memory that are typical
searched in parallel to find a desired item. Modern ALUs use carry-lookahead,
which uses parallelism to speed the process of computing sums from linear in the
number of bits in the operands to logarithmic.

There are many different ways designers take advantage of parallelism. One
common class of techniques is parallel computation of two or more possible out-
comes, followed by late selection. This technique is used in carry select adders, in
set associative caches, and in handling branches in pipelines. Virtually every
chapter in this book will have an example of how performance is enhanced
through the exploitation of parallelism.

In the Putting It All Together sections that appear near the end of every chapter,
we show real examples that use the principles in that chapter. In this section we
look at measures of performance and price-performance first in desktop systems
using the SPEC CPU benchmarks, then at servers using TPC-C as the bench-
mark, and finally at the embedded market using EEMBC as the benchmark.

Performance and Price-Performance for Desktop Systems

Although there are many benchmark suites for desktop systems, a majority of
them are OS or architecture specific. In this section we examine the CPU perfor-
mance and price-performance of a variety of desktop systems using the SPEC
CPU2000 integer and floating point suites. As mentioned earlier, SPEC
CPU2000 summarizes CPU performance using a geometric mean normalized to
a Sun system with larger numbers indicating higher performance.

 Each system was configured with one CPU, 512 MB of SDRAM (with ECC
if available), approximately 20 GB of disk, a fast graphics system, and an 10/100
Mb Ethernet connection. The seven systems we examined and their processors
and price are shown in Figure 1.18. The wide variation in price is driven by a
number of factors, including system expandability, the use of cheaper disks (ATA
versus SCSI), less expensive memory (PC memory versus custom DIMMs), soft-
ware differences (Linux or a Microsoft OS versus a vendor specific OS), the cost

1.7 Putting It All Together: Performance and Price-Performance

50 Chapter 1 Fundamentals of Computer Design
of the CPU, and the commoditization effect, which we discussed on page 14.
(See the further discussion on price variation in the caption of Figure 1.18.)

Figure 1.19 shows the performance and the price-performance of these seven
systems using SPEC CINT2000 as the metric. The Compaq system using the
AMD Athlon CPU offers both the highest performance and the best price-perfor-
mance, followed by the two Dell systems, which have comparable price-perfor-
mance, although the Pentium 4 system is faster. The Sunblade 100 has the lowest
performance, but somewhat better price-performance than the other UNIX-based
workstation systems.

Figure 1.20 shows the performance and price-performance for the SPEC float-
ing point benchmarks. The floating point instruction set enhancements in the
Pentium 4 give it a clear performance advantage, although the Compaq Athlon-
based system still has superior price-performance. The IBM, HP, and Sunblade
1000 all outperform the Dell 420 with a Pentium III, but the Dell system still of-
fers better price-performance than the IBM, Sun, or HP workstations.

Performance and Price-Performance for Transaction Processing Servers

One of the largest server markets is online transaction processing (OLTP), which
we described earlier. The standard industry benchmark for OLTP is TPC-C,
which relies on a database system to perform queries and updates. Five factors

Vendor Model Processor Clock Rate (MHz) Price

Compaq Presario 7000 AMD Athlon 1,400 $2,091

Dell Precision 420 Intel Pentium III 1,000 $3,834

Dell Precision 530 Intel Pentium 4 1,700 $4,175

HP Workstation c3600 PA 8600 552 $12,631

IBM RS6000 44P/170 IBM III-2 450 $13,889

Sun Sunblade 100 UltraSPARC II-e 500 $2,950

Sun Sunblade 1000 UltraSPARC III 750 $9.950

FIGURE 1.18 Seven different desktop systems from five vendors using seven different microprocessors showing
the processor, its clock rate, and the selling price. All these systems are configured with 512 MB of ECC SDRAM, a
high-end graphics system (which is not the highest performance system available for the more expensive platforms), and
approximately 20 GB of disk. Many factors are responsible for the wide variation in price despite this common elements.
First, the systems offer different levels of expandability (with the Prescario system being the least expandable, the Dell sys-
tems and Sunblade 100 being moderately expandable, nd the HP, IBM, and Sunblade 1000 being very flexible and expand-
able). Second, the use of cheaper disks (ATA versus SCSI) and less expensive memory (PC memory versus custom
DIMMs) has a significant impact. Third the cost of the CPU varies by at least a factor of two. In 2001 the Athlon sells for
about $200, The Pentium III for about $240, and the Pentium 4 for about $500. Fourth, software differences (Linux or a Mi-
crosoft OS versus a vendor specific OS) probably affect the final price. Fifth, the lower end systems use PC commodity parts
in others areas (fans, power supply, support chip sets), which lower costs. Finally, the commoditization effect, which we dis-
cussed in page 14, is at work especially for the Compaq and Dell systems. These prices are as of July 2001.

1.7 Putting It All Together: Performance and Price-Performance 51
make the performance of TPC-C particularly interesting. First, TPC-C is a rea-
sonable approximation to a real OLTP application; although this makes bench-
mark set-up complex and time consuming, it also makes the results reasonably
indicative of real performance for OLTP. Second, TPC-C measures total system
performance, including the hardware, the operating system, the I/O system, and
the database system, making the benchmark more predictive of real performance.
Third, the rules for running the benchmark and reporting execution time are very
complete, resulting in more comparable numbers. Fourth, because of the impor-
tance of the benchmark, computer system efforts devote significant effort to mak-
ing TPC-C run well. Fifth, vendors are required to report both performance and
price-performance, enabling us to examine both.

Because the OLTP market is large and quite varied, there is an incredible
range of computing systems used for these applications, ranging from small sin-
gle processor servers to midrange multiprocessor systems to large-scale clusters

FIGURE 1.19 Performance and price-performance for seven systems are measured using SPEC CINT2000 as the
benchmark. With the exception of the Sunblade 100 (Sun’s low-end entry system), price-performance roughly parallels per-
formance, contradicting the conventional wisdom–at least on the desktop–that higher performance systems carry a dispro-
portionate price premium. Price-performance is plotted as CINT2000 performance per $1,000 in system cost. These
performance numbers and prices are current as of July 2001.The measurements are available online as http://
www.spec.org/osg/cpu2000/.

0

100

200

300

400

500

600

Compaq Presario

7000

Dell Precision

530

Dell Precision

420

HP Workstation

c3600

Sun Sunblade

1000 /1750

IBM RS6000

44P/170

Sun Sublade 100

S
P

E
C

B

a
s

e

C
IN

T
2

0
0

0

0

2 5

5 0

7 5

100

125

150

175

200

225

250

S
P

E
C

C

IN
T

2
0

0
0

p

e
r

$
1

0
0

0

in

P
ri

c
e

SPECbase CINT2000 SPEC CINT2000 performance/cost

52 Chapter 1 Fundamentals of Computer Design
consisting of tens to hundreds of processors. To allow an appreciation for this di-
versity and its range of performance and price-performance, we will examine six
of the top results by performance (and the comparative price-performance) and
six of the top results by price-performance (and the comparative performance).
For TPC-C performance is measured in transactions per minute (TPM), while
price-performance is measured in TPM per dollar. Figure 1.21 shows the charac-
teristics of a dozen systems whose performance or price-performance is near the
top in one measure or the other.

Figure 1.22 charts the performance and price-performance of six of the high-
est performing OLTP systems described in Figure 1.21.The IBM cluster system,
consisting of 280 Pentium III processors, provides the highest overall perfor-
mance beating any other system by almost a factor of three, as well as the best
price-performance by just over a factor of 1.5. The other systems are all moder-
ate-scale multiprocessors and offer fairly comparable performance and similar

FIGURE 1.20 Performance and price-performance for seven systems are measured using SPEC CFP2000 as the
benchmark. Price-performance is plotted as CFP2000 performance per $1,000 in system cost. The dramatically improved
floating point performance of the Pentium 4 versus the Pentium III is clear in this figure. Price-performance partially parallels
performance but not as clearly as in the case of the integer benchmarks. These performance numbers and prices are current
as of July 2001. The measurements are available online as http://www.spec.org/osg/cpu2000/.

0

5 0

100

150

200

250

300

350

400

450

500

550

600

Dell Precision

530

Compaq Presario

7000

HP Workstation

c3600

Sun Sunblade

1000 /1750

IBM RS6000

44P/170

Dell Precision

420

Sun Sublade 100

S
P

E
C

b
a

s
e

C

F
P

2

0
0

0

0

2 5

5 0

7 5

100

125

150

175

200

225

250

S
P

E
C

C

F
P

2
0

0
0

p

e
r

$
1

0
0

0

in

P
ri

c
e

SPECbase CFP 2000 SPEC CFP2000 performance/cost

1.7 Putting It All Together: Performance and Price-Performance 53
price-performance to the others in the group. Chapters 7 and 8 discuss the design
of cluster and multiprocessor systems.

Figure 1.23 charts the performance and price-performance of the six OLTP
systems from Figure 1.21 with the best price-performance. These systems are all
multiprocessor systems, and, with the exception of the HP system, are based on
Pentium III processors. Although the smallest system (the 3-processor Dell sys-
tem) has the best price-performance, several of the other systems offer better per-
formance at about a factor of 0.65 of the price-performance. Notice that the
systems with the best price-performance in Figure 1.23 average almost four times
better in price-performance (TPM/$ = 99 versus 27) than the high performance
systems in Figure 1.22.

Vendor & System CPUs Database OS Price

IBM exSeries 370 c/s 280 x Pentium III @
900 Mhz

Microsoft SQL
Server 2000

Microsoft Windows
Adv. Server

$15,543,346

Compaq Alpha
server GS 320

32 x Alpha 21264 @
1GHz

Oracle 9i Compaq Tru64 UNIX $10,286,029

Fujitsu PRIMEPOW-
ER 20000

48 x SPARC64 GP
@ 563 MHz

SymfoWARE
Server Enterpr.

Sun Solaris 8 $9,671,742

IBM eServer 680 7017-
S85

24 x IBM RS64-IV
600 MHz

Oracle 8 8.1.7.1 IBM AIX 4.3.3 $7,546,837

HP 9000 Enterprise
Server

48 x HP PA-RISC
8600 552 MHz

Oracle8 v8.1.7.1 HP UX 11.i 64-bit $8,522,104

IBM eServer 400 840-
2420

24 x iSeries400
Model 840

IBM DB2 for
AS/400 V4

IBM OS/400 V4 $8,448,137

Dell PowerEdge 6400 3 x Pentium III
700MHz

Microsoft SQL
Server 2000

Microsoft Windows
2000

$131,275

IBM eserver xSeries
250 c/s

4 x Pentium III 700
MHz

Microsoft SQL
Server 2000

Microsoft Windows
Adv. Server

$297,277

Compaq Proliant
ML570 6/700 2

4 x Intel Pentium III
@ 700 MHz

Microsoft SQL
Server 2000

Microsoft Windows
Adv. Server

$375,016

HP NetServer LH 6000 6 x Pentium III @
550 MHz

Microsoft SQL
Server 2000

Microsoft Windows
NT Enterprise

$372805

NEC Express 5800/180 8 x Pentium III 900
MHz

Microsoft SQL
Server 2000

Microsoft Windows
Adv. Server

$682,724

 HP 9000 / L2000 4 x PA-RISC 8500
440MHz

Sybase Adaptive
Server

HP UX 11.0 64-bit $368,367

FIGURE 1.21 The characteristics of a dozen OLTP systems with either high total performance (top half of the table)
or superior price-performance (bottom half of the table). The IBM exSeries with 280 Pentium IIIs is a cluster, while all
the other systems are tightly coupled multiprocessors. Surprisingly, none of the top performing systems by either measure
are uniprocessors! The system descriptions and detailed benchmark reports are available at: http://www.tpc.org/.

54 Chapter 1 Fundamentals of Computer Design
Performance and Price-Performance for Embedded Processors

Comparing performance and price-performance of embedded processors is more
difficult than for the desktop or server environments because of several character-
istics. First, benchmarking is in its comparative infancy in the embedded space.
Although the EEMBC benchmarks represent a substantial advance in benchmark
availability and benchmark practice, as we discussed earlier, these benchmarks
have significant drawbacks. Equally importantly, in the embedded space, proces-
sors are often designed for a particular class of applications; such designs are of-
ten not measured outside of their application space and when they are they may
not perform well. Finally, as mentioned earlier cost and power are often the most
important factors for an embedded application. Although we can partially mea-
sure cost by looking at the cost of the processor, other aspects of the design can
be critical in determining system cost. For example, whether or not the memory
controller and I/O control are integrated into the chip affects both power and cost
of the system. As we said earlier, power is often the critical constraint in embed-

FIGURE 1.22 The performance (measured in thousands of transactions minute) and the price-performance (mea-
sured in transactions per minute per $1,000) are shown for six of the highest performing systems using TPC-C as
the benchmark. Interestingly, IBM occupies three of these six positions, with different hardware platforms (a cluster of Pen-
tium IIIs, an Power III based multiprocessor, and an AS 400 based multiprocessor.

0

100

200

300

400

500

600

700

IBM exSeries 370 c/s Compaq Alphaserver
GS 320

Fujitsu PRIMEPOWER
20000

IBM eServer 680 7017-
S85

HP 9000 Enterprise
Server

IBM eServer 400 840-
2420

T
ra

n
s

a
c

ti
o

n
s

p

e
r

M
in

u
te

(t

h
o

u
s

a
n

d
s

)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

T
ra

n
s

c
a

ti
o

n

p
e

r
M

in
u

te

p
e

r
$

1
,0

0
0

Performance (Transactions per Minute) Price-performance (TPM per $1,000)

1.7 Putting It All Together: Performance and Price-Performance 55
ded systems, and we focus on the relationship between performance and power in
the next section.

Figure 1.24 shows the characteristics of the five processors whose price and
price-performance we examine. These processors span a wide range of cost, pow-
er, and performance and thus are used in very different applications. The high-
end processors, such as the PowerPC 650 and AMD Elan are used in applications
such as network switches and possibly high-end laptops. The NEC VR 5432 se-
ries is a newer version of the VR 5400 series, which is one of the most heavily
used processors in color laser printers. In contrast, the NEC VR 4121 is a low-
end, low-power device used primarily in PDAs; in addition to the core computing

FIGURE 1.23 Price-performance (plotted as transactions per minute per $1000 of system cost) and overall perfor-
mance (plotted as thousands of transactions per minute).

0

2 0

4 0

6 0

8 0

100

120

140

160

180

Dell PowerEdge
6400

IBM eserver xSeries
250 c/s

Compaq Proliant
ML570 6/700 2

HP NetServer LH
6000

NEC Express
5800/180

 HP 9000 / L2000

T
ra

n
a

c
ti

o
n

s

p
e

r
M

in
u

te

p
e

r
$

1
,0

0
0

0

1 0

2 0

3 0

4 0

5 0

6 0

T
ra

n
s

c
a

ti
o

n

p
e

r
M

in
u

te

(t
h

o
u

s
a

n
d

s
)

Price-Performance (TPM per $1,000) Performance (Transactions per Minute)

56 Chapter 1 Fundamentals of Computer Design
functions, the 4121 provides a number of system functions, reducing the cost of
the overall system.

Figure 1.25 shows the relative performance of these five processors on three of
the five EEMBC benchmark suites. The summary number for each benchmark
suite is proportional to the geometric mean of the individual performance mea-
sures for each benchmark in the suite (measured as iterations per second). The
clock rate differences explain between 33% and 75% of the performance differ-
ences. For machines with similar organization (such as the AMD Elan SC520 and
the NEC VR 4121), the clock rate is the primary factor in determining perfor-
mance. For machines with widely differing cache structures (such as the presence
or absence of a secondary cache) or different pipelines, clock rate explains less of
the performance difference.

Figure 1.26 shows the price-performance of these processors, where price is
measured only by the processor cost. Here, the wide range in price narrows the
performance differences, making the slower processors more cost effective. If our
cost analysis also included the system support chips, the differences would nar-
row even further, probably boosting the VR 5432 to the top in price-performance
and making the VR 4132 at least competitive with the high-end IBM and AMD
chips.

Processor Instr. Set Processor
Clock
Rate

(MHz)

Cache
Instr./Data

On-chip
Secondary cache

Processor
organization

Typical
power

(in mW)

Price
($)

AMD Elan SC520 x86 133 16K/16K Pipelined: single
issue

1600 $38

AMD K6-2E+ x86 500 32K/32K
128K

Pipelined: 3+
issues/clock.

9600 $78

IBM PowerPC
750CX

PowerPC 500 32K/32K
128K

Pipelined 4
issues/clock

6000 $94

NEC VR 5432 MIPS-64 167 32K/32K Pipelined: 2
issues/clock

2088 $25

NEC VR 4122 MIPS-64 180 32K/16K Pipelined: single
issue

700 $33

FIGURE 1.24 Five different embedded processors spanning a range of performance (more than a factor of ten, as
we will see) and a wide range in price (roughly a factor of four and probably 50% higher than that if total system
cost is considered). The price does not include interface and support chips, which could significantly increase the deployed
system cost. Likewise, the power indicated includes only the processor’s typical power consumption (in milliWatts); These
processors also differ widely in terms of execution capability from a maximum of four instructions per clock to one! All the
processors except the NEC VR4122 include a hardware floating point unit.

1.7 Putting It All Together: Performance and Price-Performance 57
FIGURE 1.25 Relative performance for three of the five EEMBC benchmark suites on
five different embedded processors. The performance is scaled relative to the AMD Elan
SC520, so that the scores across the suites have a narrower range.

FIGURE 1.26 Relative price-performance for three of the five EEMBC benchmark
suites on five different embedded processors, using only the price of the processor.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Automotive Office Telecomm

P
e

rf
o

rm
a

n
c

e

R
e

la
ti

v
e

to

A

M
D

E

la
n

S

C
5

2
0

AMD ElanSC520

AMD K6-2E+

IBM PowerPC 750CX

NEC VR 5432

NEC VR4122

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Automotive Office Telecomm

R
e

la
ti

v
e

P

e
rf

o
rm

a
n

c
e

/

P
ri

c
e

AMD ElanSC520

AMD K6-2E+

IBM PowerPC 750CX

NEC VR 5432

NEC VR4122

58 Chapter 1 Fundamentals of Computer Design
Throughout the chapters of this book, you will find sections entitled: Another
View. These sections emphasize the way in which different segments of the com-
puting market may solve a problem. For example, if the Putting It All Together
section emphasizes the memory system for a desktop microprocessor, the Anoth-
er View section may emphasize the memory system of an embedded application
or a server. In this first Another View section, we look at the issue of power con-
sumption in embedded processors.

As mentioned several times in this chapter, cost and power are often at least as
important as performance in the embedded market. In addition to the cost of the
processor module (which includes any required interface chips), memory is often
the next most costly part of an embedded system. Recall that, unlike a desktop or
server system, most embedded systems do not have secondary storage; instead,
the entire application most reside in either FLASH or DRAM (as described in
Chapter 5). Because many embedded systems, such as PDAs and cell phones, are
constrained by both cost and physical size, the amount of memory needed for the
application is critical. Likewise, power is often a determining factor in choosing a
processor, especially for battery-powered systems.

As we saw in Figure 1.24 on page 56, the power for the five embedded proces-
sors we examined varies by more than a factor of 10. Clearly, the high perfor-
mance AMD K6, with a typical power consumption of 9.3 W, cannot be used in
environments where power or heat dissipation are critical. Figure 1.27 shows the
relative performance per watt of typical operating power. Compare this figure to
Figure 1.25 on page 57, which plots raw performance, and notice how different
the results are. The NEC VR4122 has a clear advantage in performance per watt,
but is the second lowest performing processor! From the viewpoint of power con-
sumption the NEC VR4122, which was designed for battery-based systems, is
the big winner. The IBM PowerPC displays efficient use of power to achieve its
high performance, although at 6 watts typical, it is probably not be suitable for
most battery-based devices.

1.8 Another View: Power Consumption and
Efficiency as the Metric

1.9 Fallacies and Pitfalls 59
The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We
call such misbeliefs fallacies. When discussing a fallacy, we try to give a counter-
example. We also discuss pitfalls—easily made mistakes. Often pitfalls are gen-
eralizations of principles that are true in a limited context. The purpose of these
sections is to help you avoid making these errors in machines that you design.

Fallacy: The relative performance of two processors with the same ISA can be
judged by clock rate or by the performance of a single benchmark suite.

As processors have become faster and more sophisticated, processor performance
in one application area can diverge from that in another area. Sometimes the in-
struction set architecture is responsible for this, but increasingly the pipeline
structure and memory system are responsible. This also means that clock rate is

FIGURE 1.27 Relative performance per watt for the five embedded processors. The power is measured as typical
operating power for the processor, and does not include any interface chips.

1.9 Fallacies and Pitfalls

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Automotive Office Telecomm

R
e

la
tg

iv
e

p

e
rf

o
rm

a
n

c
e

p

e
r

W
a

tt

AMD ElanSC520

AMD K6-2E+

IBM PowerPC 750CX

NEC VR 5432

NEC VR4122

60 Chapter 1 Fundamentals of Computer Design
not a good metric, even if the instruction sets are identical. Figure 1.28 shows the
performance of a 1.7 GHz Pentium 4 relative to a 1 GHz Pentium III. The figure
also shows the performance of a hypothetical 1.7 GHz Pentium III assuming lin-
ear scaling of performance based on the clock rate. In all cases except the SPEC
floating point suite, the Pentium 4 delivers less performance per MHz than the
Pentium III. As mentioned earlier, instruction set enhancements (the SSE2 exten-
sions), which significantly boost floating point execution rates, are probably re-
sponsible for the better performance of the Pentium 4 for these floating point
benchmarks.

FIGURE 1.28 A comparison of the performance of the Pentium 4 (P4) relative to the Pentium III (P3) on five different
sets of benchmark suites. The bars show the relative performance of a 1.7 GHz P4 versus a 1 GHz P3. The triple vertical
line at 1.7 shows how much faster a Pentium 4 at 1.7 GHz would be than a 1 GHz Pentium III assuming performance scaled
linearly with clock rate. Of course, this line represents an idealized approximation to how fast a P3 would run. The first two
sets of bars are the SPEC integer and floating point suites. The third set of bars represents three multimedia benchmarks.
The fourth set represents a pair of benchmarks based on the Game Quake, and the final benchmark is the composite Web-
mark score, a PC-based web benchmark

0 . 0 0

0 . 2 0

0 . 4 0

0 . 6 0

0 . 8 0

1 . 0 0

1 . 2 0

1 . 4 0

1 . 6 0

1 . 8 0

SPECbase CINT2000 SPECbase CFP2000 Multimedia Game benchmark Web benchmark

R
el

at
iv

e
p

er
fo

rm
an

ce

Exercises 61
Performance within a single processor implementation family (such as Pen-
tium III) usually scales slower than clock speed because of the increased relative
cost of stalls in the memory system. Across generations (such as the Pentium 4
and Pentium III) enhancements to the basic implementation usually yield a per-
formance that is somewhat better than what would be derived from just clock rate
scaling. As Figure 1.28 shows, the Pentium 4 is usually slower than the Pentium
III when performance is adjusted by linearly scaling the clock rate. This may
partly derive from the focus on high clock rate as a primary design goal. We dis-
cuss both the differences between the Pentium III and Pentium 4 further in Chap-
ter 3 as well as why the performance does not scale as fast as the clock rate does.

Fallacy: Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance and some of these may change over time. A big factor influencing the
usefulness of a benchmark is the ability of the benchmark to resist “cracking,”
also known as benchmark engineering or “benchmarksmanship.” Once a bench-
mark becomes standardized and popular, there is tremendous pressure to improve
performance by targeted optimizations or by aggressive interpretation of the rules
for running the benchmark. Small kernels or programs that spend their time in a
very small number of lines of code are particularly vulnerable.

 For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different 300
× 300 matrix multiplications. In this kernel, 99% of the execution time was in a
single line (see SPEC [1989]). Optimization of this inner loop by the compiler
(using an idea called blocking, discussed in Chapter 5) for the IBM Powerstation
550 resulted in performance improvement by a factor of more than 9 over an ear-
lier version of the compiler! This benchmark tested compiler performance and
was not, of course, a good indication of overall performance, nor of this particu-
lar optimization.

Even after the elimination of this benchmark, vendors found methods to tune
the performance of individual benchmarks by the use of different compilers or
preprocessors, as well as benchmark-specific flags. Although the baseline perfor-
mance measurements requires the use of one set of flags for all benchmarks, the
tuned or optimized performance does not. In fact, benchmark-specific flags are al-
lowed, even if they are illegal in general and could lead to incorrect compilation!

Allowing benchmark and even input-specific flags has led to long lists of op-
tions, as Figure 1.29 shows. This list of options, which is not significantly differ-
ent from the option lists used by other vendors, is used to obtain the peak
performance for the Compaq AlphaServer DS20E Model 6/667. The list makes it
clear why the baseline measurements were needed. The performance difference
between the baseline and tuned numbers can be substantial. For the SPEC
CFP2000 benchmarks on the AlphaServer DS20E Model 6/667, the overall per-
formance (which by SPEC CPU2000 rules is summarized by geometric mean) is

62 Chapter 1 Fundamentals of Computer Design
1.12 times higher for the peak numbers. As compiler technology improves, the
achieves closer to peak performance using the base flags. Similarly, as the bench-
marks improve in quality, they become less suspectible to highly application spe-
cific optimizations. Thus, the gap between peak and base, which in early times
was often 20%, has narrowed.

Ongoing improvements in technology can also change what a benchmark
measures. Consider the benchmark gcc, considered one of the most realistic and
challenging of the SPEC92 benchmarks. Its performance is a combination of
CPU time and real system time. Since the input remains fixed and real system
time is limited by factors, including disk access time, that improve slowly, an in-
creasing amount of the runtime is system time rather than CPU time. This may be
appropriate. On the other hand, it may be appropriate to change the input over
time, reflecting the desire to compile larger programs. In fact, the SPEC92 input
was changed to include four copies of each input file used in SPEC89; although
this increases runtime, it may or may not reflect the way compilers are actually
being used.

Over a long period of time, these changes may make even a well-chosen
benchmark obsolete. For example, more than half the benchmarks added to the
1992 and 1995 SPEC CPU benchmark release were dropped from the next gener-

Peak: -v -g3 -arch ev6 -non_shared ONESTEP plus:

168.wupwise: f77 -fast -O4 -pipeline -unroll 2
171.swim: f90 -fast -O5 -transform_loops
172.mgrid: kf77 -O5 -transform_loops -tune ev6 -unroll 8
173.applu: f77 -fast -O5 -transform_loops -unroll 14
177.mesa: cc -fast -O4
178.galgel: kf90 -O4 -unroll 2 -ldxml RM_SOURCES = lapak.f90
179.art: kcc -fast -O4 -ckapargs='-arl=4 -ur=4' -unroll 10
183.equake: kcc -fast -ckapargs='-arl=4' -xtaso_short
187.facerec: f90 -fast -O4
188.ammp: cc -fast -O4 -xtaso_short
189.lucas: kf90 -fast -O5 -fkapargs='-ur=1' -unroll 1
191.fma3d: kf90 -O4
200.sixtrack: f90 -fast -O5 -transform_loops
301.apsi: kf90 -O5 -transform_loops -unroll 8 -fkapargs='-ur=1'

FIGURE 1.29 The tuning parameters for the SPEC CFP2000 report on an AlphaServer DS20E Model 6/667. This is
the portion of the SPEC report for the tuned performance corresponding to that in Figure 1.14 on page 34. These
parameters describe the compiler options (four different compilers are used). Each line shows the option used for one of the
SPEC CFP2000 benchmarks. Data from: http://www.spec.org/osg/cpu2000/results/res1999q4/cpu2000-19991130-
00012.html.

Exercises 63
ation of the suite! To show how dramatically benchmarks must adapt over time,
we summarize the status of the integer and FP benchmarks from SPEC 89, 92,
and 95 in Figure 1.30.

Pitfall: Comparing hand-coded assembly and compiler generated high level
language performance.

In most applications of computers, hand-coding is simply not tenable. A combi-
nation of the high cost of software development and maintenance together with
time-to-market pressures have made it impossible for many applications to con-
sider assembly language. In parts of the embedded market, however, several fac-
tors have continued to encourage limited use of hand coding, at least of key
loops. The most important factors favoring this tendency are the importance of a
few small loops to overall performance (particularly real-time performance) in
some embedded applications, and the inclusion of instructions that can signifi-
cantly boost performance of certain types of computations, but that compilers can
not effectively use.

When performance is measured either by kernels or by applications that spend
most of their time in a small number of loops, hand coding of the critical parts of
the benchmark can lead to large performance gains. In such instances, the perfor-
mance difference between the hand-coded and machine-generated versions of a
benchmark can be very large, as shown in for two different machines in Figure
1.31. Both designers and users must be aware of this potentially large difference

64 Chapter 1 Fundamentals of Computer Design
Benchmark name Integer or
FP

SPEC 89 SPEC 92 SPEC 95 SPEC 2000

gcc integer adopted modified modified modified

espresso integer adopted modified dropped

li integer adopted modified modified dropped

eqntott integer adopted dropped

spice FP adopted modified dropped

doduc FP adopted dropped

nasa7 FP adopted dropped

fpppp FP adopted modified dropped

matrix300 FP adopted dropped

tomcatv FP adopted modified dropped

compress integer adopted modified dropped

sc integer adopted dropped

mdljdp2 FP adopted dropped

wave5 FP adopted modified dropped

ora FP adopted dropped

mdljsp2 FP adopted dropped

alvinn FP adopted dropped

ear FP adopted dropped

swm256 (aka swim) FP adopted modified modified

su2cor FP adopted modified dropped

hydro2d FP adopted modified dropped

go integer adopted dropped

m88ksim integer adopted dropped

ijpeg integer adopted dropped

perl integer adopted modified

vortex integer adopted modified

mgrid FP adopted modified

applu FP adopted dropped

apsi FP adopted modified

turb3d adopted dropped

FIGURE 1.30 The evolution of the SPEC benchmarks over time showing when benchmarks were adopted, modi-
fied and dropped. All the programs in the 89, 92, and 95 releases are show. Modified indicates that either the input or the
size of the benchmark was changed, usually to increase its running time and avoid perturbation in measurement or domi-
nation of the execution time by some factor other than CPU time.

Exercises 65
and not extrapolate performance for compiler generate code from hand coded
benchmarks.

Fallacy: Peak performance tracks observed performance.

The only universally true definition of peak performance is “the performance lev-
el a machine is guaranteed not to exceed.” The gap between peak performance
and observed performance is typically a factor of 10 or more in supercomputers.
(See Appendix B on vectors for an explanation.) Since the gap is so large and can
vary significantly by benchmark, peak performance is not useful in predicting ob-
served performance unless the workload consists of small programs that normal-
ly operate close to the peak.

As an example of this fallacy, a small code segment using long vectors ran on
the Hitachi S810/20 in 1.3 seconds and on the Cray X-MP in 2.6 seconds. Al-
though this suggests the S810 is two times faster than the X-MP, the X-MP runs
a program with more typical vector lengths two times faster than the S810. These
data are shown in Figure 1.32.

Fallacy: The best design for a computer is the one that optimizes the primary
objective without considering implementation.

Machine EEMBC
benchmark set

Performance
Compiler generated

Performance
Hand coded

Ratio hand/
compiler

Trimedia 1300 @166 MHz Consumer 23.3 110.0 4.7

BOPS Manta @ 136 MHz Telecomm 2.6 225.8 44.6

TI TMS320C6203 @ 300MHz Telecomm 6.8 68.5 10.1

FIGURE 1.31 The performance of three embedded processors on C and hand-coded versions of portions of the
EEMBC benchmark suite. In the case of the BOPS and TI processor, they also provide versions that are compiled but
where the C is altered initially to improve performance and code generation; such versions can achieve most of the benefit
from hand optimization at least for these machines and these benchmarks.

Measurement
Cray
X-MP

Hitachi
S810/20 Performance

A(i)=B(i)*C(i)+D(i)*E(i)
(vector length 1000 done 100,000 times)

2.6 secs 1.3 secs Hitachi 2 times faster

Vectorized FFT
(vector lengths 64,32,…,2)

3.9 secs 7.7 secs Cray 2 times faster

FIGURE 1.32 Measurements of peak performance and actual performance for the Hi-
tachi S810/20 and the Cray X-MP. Note that the gap between peak and observed perfor-
mance is large and can vary across benchmarks. Data from pages 18–20 of Lubeck, Moore,
and Mendez [1985]. Also see Fallacies and Pitfalls in Appendix B.

66 Chapter 1 Fundamentals of Computer Design
Although in a perfect world where implementation complexity and implementa-
tion time could be ignored, this might be true, design complexity is an important
factor. Complex designs take longer to complete, prolonging time to market. Giv-
en the rapidly improving performance of computers, longer design time means
that a design will be less competitive. The architect must be constantly aware of
the impact of his design choices on the design time for both hardware and soft-
ware. The many postponements of the availability of the Itanium processor
(roughly a two year delay from the initial target date) should serve as a topical re-
minder of the risks of introducing both a new architecture and a complex design.
With processor performance increasing by just over 50% per year, each week de-
lay translates to a 1% loss in relative performance!

Pitfall: Neglecting the cost of software in either evaluating a system or examining
cost-performance.

For many years, hardware was so expensive that it clearly dominated the cost of
software, but this is no longer true. Software costs in 2001 can be a large fraction
of both the purchase and operational costs of a system. For example, for a medi-
um size database OLTP server, Microsoft OS software might run about $2,000,
while the Oracle software would run between $6,000 and $9,000 for a four-year,
one-processor license. Assuming a four-year software lifetime means a total soft-
ware cost for these two major components of between $8,000 and $11,000. A
midrange Dell server with 512MB of memory, Pentium III at 1 GHz, and be-
tween 20 and 100 GB of disk would cost roughly the same amount as these two
major software components. Meaning that software costs are roughly 50% of the
total system cost!

Alternatively, consider a professional desktop system, which can be purchased
with 1 GHz Pentium III, 128 MB DRAM, 20 GB disk, and a 19 inch monitor for
just under $1000. The software costs of a Windows OS and Office 2000 are about
$300 if bundled with the system and about double that if purchased separately, so
the software costs are somewhere between 23% and 38% of the total cost!

Pitfall: Falling prey to Amdahl’s Law.

Virtually every practicing computer architect knows Amdahl’s Law. Despite this,
we almost all occasionally fall into the trap of expending tremendous effort opti-
mizing some aspect of a system before we measure its usage. Only when the
overall speedup is unrewarding, do we recall that we should have measured the
usage of that feature before we spent so much effort enhancing it!

Fallacy: Synthetic benchmarks predict performance for real programs.

This fallacy appeared in the first edition of this book, published in 1990. With the
arrival and dominance of organizations such as SPEC and TPC, we thought per-
haps the computer industry had learned a lesson and reformed its faulty practices,
but the emerging embedded market, has embraced Dhrystone as its most quoted
benchmark! Hence, this fallacy survives.

Exercises 67
The best known examples of synthetic benchmarks are Whetstone and Dhrys-
tone. These are not real programs and, as such, may not reflect program behavior
for factors not measured. Compiler and hardware optimizations can artificially
inflate performance of these benchmarks but not of real programs. The other side
of the coin is that because these benchmarks are not natural programs, they don’t
reward optimizations of behaviors that occur in real programs. Here are some
examples:

n Optimizing compilers can discard 25% of the Dhrystone code; examples in-
clude loops that are only executed once, making the loop overhead instructions
unnecessary. To address these problems the authors of the benchmark “re-
quire” both optimized and unoptimized code to be reported. In addition, they
“forbid” the practice of inline-procedure expansion optimization, since Dhry-
stone’s simple procedure structure allows elimination of all procedure calls at
almost no increase in code size.

n Most Whetstone floating-point loops execute small numbers of times or in-
clude calls inside the loop. These characteristics are different from many real
programs. As a result Whetstone underrewards many loop optimizations and
gains little from techniques such as multiple issue (Chapter 3) and vectorization
(Appendix B).

n Compilers can optimize a key piece of the Whetstone loop by noting the rela-
tionship between square root and exponential, even though this is very unlikely
to occur in real programs. For example, one key loop contains the following
FORTRAN code:

X = SQRT(EXP(ALOG(X)/T1))

It could be compiled as if it were

X = EXP(ALOG(X)/(2×T1))

since

SQRT(EXP(X)) = = EXP(X/2)

It would be surprising if such optimizations were ever invoked except in this syn-
thetic benchmark. (Yet one reviewer of this book found several compilers that
performed this optimization!) This single change converts all calls to the square
root function in Whetstone into multiplies by 2, surely improving performance—
if Whetstone is your measure.

Fallacy: MIPS is an accurate measure for comparing performance among
computers.

This fallacy also appeared in the first edition of this book, published in 1990.
Your authors initially thought it could be retired, but, alas, the embedded market

e
X2 eX 2/=

68 Chapter 1 Fundamentals of Computer Design
not only uses Dhrystone as the benchmark of choice, but reports performance as
“Dhrystone MIPS”, a measure that this fallacy will show is problematic.

One alternative to time as the metric is MIPS, or million instructions per sec-
ond. For a given program, MIPS is simply

MIPS = =

Some find this rightmost form convenient since clock rate is fixed for a machine
and CPI is usually a small number, unlike instruction count or execution time.
Relating MIPS to time,

Execution time =

Since MIPS is a rate of operations per unit time, performance can be specified as
the inverse of execution time, with faster machines having a higher MIPS rating.

The good news about MIPS is that it is easy to understand, especially by a
customer, and faster machines means bigger MIPS, which matches intuition. The
problem with using MIPS as a measure for comparison is threefold:

n MIPS is dependent on the instruction set, making it difficult to compare MIPS
of computers with different instruction sets.

n MIPS varies between programs on the same computer.

n Most importantly, MIPS can vary inversely to performance!

The classic example of the last case is the MIPS rating of a machine with option-
al floating-point hardware. Since it generally takes more clock cycles per float-
ing-point instruction than per integer instruction, floating-point programs using
the optional hardware instead of software floating-point routines take less time
but have a lower MIPS rating. Software floating point executes simpler instruc-
tions, resulting in a higher MIPS rating, but it executes so many more that overall
execution time is longer.

MIPS is sometimes used by a single vendor (e.g. IBM) within a single set of
applications, where this measure is less hamrful since relative differences among
MIPS ratings of machines with the same architecture and the same benchmarks
are reasonably likely to track relative performance differences.

To try to avoid the worst difficulties of using MIPS as a performance measure,
computer designers began using relative MIPS, which we discuss in detail on
page 75, and this is what the embedded market reports for Dhrystone. Although
less harmful than an actual MIPS measurement, relative MIPS have their short-
comings (e.g., they are not really MIPS!), especially when measured using Dhry-
stone!

Instruction count

Execution time × 106

Clock rate

CPI × 106

Instruction count

MIPS × 106

1.10 Concluding Remarks 69
This chapter has introduced a number of concepts that we will expand upon as we
go through this book. The major ideas in instruction set architecture and the alter-
natives available will be the primary subjects of Chapter 2. Not only will we see
the functional alternatives, we will also examine quantitative data that enable us
to understand the trade-offs. The quantitative principle, Make the common case
fast, will be a guiding light in this next chapter, and the CPU performance equa-
tion will be our major tool for examining instruction set alternatives. Chapter 2
concludes an examination of how instruction sets are used by programs.

In Chapter 2, we will include a section, Crosscutting Issues, that specifically
addresses interactions between topics addressed in different chapters. In that sec-
tion within Chapter 2, we focus on the interactions between compilers and in-
struction set design. This Crosscutting Issues section will appear in all future
chapters.

In Chapters 3 and 4 we turn our attention to instruction level parallelism (ILP),
of which pipelining is the simplest and most common form. Exploiting ILP is one
of the most important techniques for building high speed uniprocessors. The
presence of two chapters reflects the fact that there are two rather different ap-
proaches to exploiting ILP. Chapter 3 begins with an extensive discussion of ba-
sic concepts that will prepare you not only for the wide range of ideas examined
in both chapters, but also to understand and analyze new techniques that will be
introduced in the coming years. Chapter 3 uses examples that span about 35
years, drawing from one of the first modern supercomputers (IBM 360/91) to the
fastest processors in the market in 2001. It emphasizes what is called the dynamic
or runtime approach to exploiting ILP. Chapter 4 focuses on compile-time ap-
proaches to exploiting ILP. These approaches were heavily used in the early
1990s and return again with the introduction of the Intel Itanium. Appendix G is a
version of an introductory chapter on pipelining from the 1995, Second Edition
of this text. For readers without much experience and background in pipelining,
that appendix is a useful bridge between the basic topics explored in this chapter
(which we expect to be review for many readers, including those of our more in-
troductory text, Computer Organization and Design: The Hardware/Software In-
terface) and the advanced topics in Chapter 3.
 In Chapter 5 we turn to the all-important area of memory system design. We
will examine a wide range of techniques that conspire to make memory look
infinitely large while still being as fast as possible. As in Chapters 3 and 4, we
will see that hardware-software cooperation has become a key to high-perfor-
mance memory systems, just as it has to high-performance pipelines.

In Chapters 6 and 7, we move away from a CPU-centric view and discuss is-
sues in storage systems and interconnect. We apply a similar quantitative ap-
proach, but one based on observations of system behavior and using an end-to-

1.10 Concluding Remarks

70 Chapter 1 Fundamentals of Computer Design
end approach to performance analysis. Chapter 6 addresses the important issue of
how to efficiently store and retrieve data using primarily lower-cost magnetic
storage technologies. As we saw earlier, such technologies offer better cost per
bit by a factor of 50–100 over DRAM. Magnetic storage is likely to remain ad-
vantageous wherever cost or nonvolatility (it keeps the information after the pow-
er is turned off) are important. In Chapter 6, our focus is on examining the
performance of disk storage systems for typical I/O-intensive workloads, which
are the counterpart to the CPU benchmarks we saw in this chapter. We extensive-
ly explore the idea of RAID-based systems, which use many small disks, ar-
ranged in a redundant fashion to achieve both high performance and high
availability. Chapter 7 discusses the primary interconnection technology used for
I/O devices. This chapter explores the topic of system interconnect more broadly,
including wide-area and system-area networks used to allow computers to com-
municate. Chapter 7 also describes clusters, which are growing in importance due
to their suitability and efficiency for database and web server applications.

Our final chapter returns to the issue of achieving higher performance through
the use of multiple processors, or multiprocessors. Instead of using parallelism to
overlap individual instructions, multiprocessing uses parallelism to allow multi-
ple instruction streams to be executed simultaneously on different processors.
Our focus is on the dominant form of multiprocessors, shared-memory multipro-
cessors, though we introduce other types as well and discuss the broad issues that
arise in any multiprocessor. Here again, we explore a variety of techniques, fo-
cusing on the important ideas first introduced in the 1980s and 1990s.
.

If... history... teaches us anything, it is that man in his quest for knowledge and
progress, is determined and cannot be deterred.

John F. Kennedy, Address at Rice University (1962)

A section of historical perspectives closes each chapter in the text. This section
provides historical background on some of the key ideas presented in the chapter.
The authors may trace the development of an idea through a series of machines or
describe significant projects. If you’re interested in examining the initial develop-
ment of an idea or machine or interested in further reading, references are provided
at the end of the section. In this historical section, we discuss the early development
of digital computers and the development of performance measurement methodol-
ogies. The development of the key innovations in desktop, server, and embedded
processor architectures are discussed in historical sections in virtually every chapter
of the book.

1.11 Historical Perspective and References

1.11 Historical Perspective and References 71
The First General-Purpose Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built the world’s first fully-operational electronic general-purpose
computer. This machine, called ENIAC (Electronic Numerical Integrator and
Calculator), was funded by the U.S. Army and became operational during World
War II, but it was not publicly disclosed until 1946. ENIAC was used for comput-
ing artillery firing tables. The machine was enormous—100 feet long, 8 1/2 feet
high, and several feet wide. Each of the 20 10-digit registers was 2 feet long. In
total, there were 18,000 vacuum tubes.

Although the size was three orders of magnitude bigger than the size of the av-
erage machines built today, it was more than five orders of magnitude slower,
with an add taking 200 microseconds. The ENIAC provided conditional jumps
and was programmable, which clearly distinguished it from earlier calculators.
Programming was done manually by plugging up cables and setting switches and
required from a half-hour to a whole day. Data were provided on punched cards.
The ENIAC was limited primarily by a small amount of storage and tedious pro-
gramming.

In 1944, John von Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing
programs as numbers; von Neumann helped crystallize the ideas and wrote a
memo proposing a stored-program computer called EDVAC (Electronic Discrete
Variable Automatic Computer). Herman Goldstine distributed the memo and put
von Neumann’s name on it, much to the dismay of Eckert and Mauchly, whose
names were omitted. This memo has served as the basis for the commonly used
term von Neumann computer. Several early inventors in the computer field be-
lieve that this term gives too much credit to von Neumann, who conceptualized
and wrote up the ideas, and too little to the engineers, Eckert and Mauchly, who
worked on the machines. Like most historians, your authors (winners of the 2000
IEEE von Neumann Medal) believe that all three individuals played a key role in
developing the stored program computer. von Neumann’s role in writing up the
ideas, in generalizing them, and in thinking about the programming aspects was
critical in transferring the ideas to a wider audience.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School
to attend the latter part of a series of lectures on developments in electronic com-
puters. When he returned to Cambridge, Wilkes decided to embark on a project to
build a stored-program computer named EDSAC, for Electronic Delay Storage
Automatic Calculator. (The EDSAC used mercury delay lines for its memory;
hence the phrase “delay storage” in its name.) The EDSAC became operational in
1949 and was the world’s first full-scale, operational, stored-program computer
[Wilkes, Wheeler, and Gill 1951; Wilkes 1985, 1995]. (A small prototype called
the Mark I, which was built at the University of Manchester and ran in 1948,
might be called the first operational stored-program machine.) The EDSAC was
an accumulator-based architecture. This style of instruction set architecture re-

72 Chapter 1 Fundamentals of Computer Design
mained popular until the early 1970s. (Chapter 2 starts with a brief summary of
the EDSAC instruction set.)

In 1947, Eckert and Mauchly applied for a patent on electronic computers.
The dean of the Moore School, by demanding the patent be turned over to the
university, may have helped Eckert and Mauchly conclude they should leave.
Their departure crippled the EDVAC project, which did not become operational
until 1952.

Goldstine left to join von Neumann at the Institute for Advanced Study at
Princeton in 1946. Together with Arthur Burks, they issued a report based on the
1944 memo [1946]. The paper led to the IAS machine built by Julian Bigelow at
Princeton’s Institute for Advanced Study. It had a total of 1024 40-bit words and
was roughly 10 times faster than ENIAC. The group thought about uses for the
machine, published a set of reports, and encouraged visitors. These reports and
visitors inspired the development of a number of new computers, including the
first IBM computer, the 701, which was based on the IAS machine. The paper by
Burks, Goldstine, and von Neumann was incredible for the period. Reading it to-
day, you would never guess this landmark paper was written more than 50 years
ago, as most of the architectural concepts seen in modern computers are dis-
cussed there (e.g., see the quote at the beginning of Chapter 5).

In the same time period as ENIAC, Howard Aiken was designing an electro-
mechanical computer called the Mark-I at Harvard. The Mark-I was built by a
team of engineers from IBM. He followed the Mark-I by a relay machine, the
Mark-II, and a pair of vacuum tube machines, the Mark-III and Mark-IV. The
Mark-III and Mark-IV were being built after the first stored-program machines.
Because they had separate memories for instructions and data, the machines were
regarded as reactionary by the advocates of stored-program computers. The term
Harvard architecture was coined to describe this type of machine. Though clear-
ly different from the original sense, this term is used today to apply to machines
with a single main memory but with separate instruction and data caches.
 The Whirlwind project [Redmond and Smith 1980] began at MIT in 1947 and
was aimed at applications in real-time radar signal processing. Although it led to
several inventions, its overwhelming innovation was the creation of magnetic
core memory, the first reliable and inexpensive memory technology. Whirlwind
had 2048 16-bit words of magnetic core. Magnetic cores served as the main
memory technology for nearly 30 years.

Important Special-Purpose Machines
During the Second Wold War, there were major computing efforts in both Great
Britain and the United States focused on special-purpose code-breaking comput-
ers. The work in Great Britain was aimed at decrypting messages encoded with
the German Enigma coding machine. This work, which occurred at a location
called Bletchley Park, led to two important machines. The first, an electrome-
chanical machine, conceived of by Alan Turing, was called BOMB [see Good in

1.11 Historical Perspective and References 73
Metropolis 1980]. The second, much larger and electronic machine, conceived
and designed by Newman and Flowers, was called COLOSSUS [see Randall in
Metropolis 1980]. These were highly specialized cryptanalysis machines, which
played a vital role in the war by providing the ability to read coded messages, es-
pecially those sent to U-boats. The work at Bletchley Park was highly classified
(indeed some of it is still classified), and, so, its direct impact on the development
of ENIAC, EDSAC and other computers is hard to trace, but it certainly had an
indirect effect in advancing the technology and gaining understanding of the is-
sues.

Similar work on special-purpose computers for cryptanalysis went on in the
United States. The most direct descendent of this effort was a company Engineer-
ing Research Associates (ERA [see Thomash in Metropolis 1980], which was
founded after the war to attempt to commercialize on the key ideas. ERA build
several machines, which were sold to secret government agencies, and was even-
tually purchased by Sperry Rand, which had earlier purchased the Eckert Mauch-
ly Computer Corporation.

Another early set of machines that deserves credit was a group of special-pur-
pose machines built by Konrad Zuse in Germany in the late 1930s and early
1940s [see Bauer and Zuse in Metropolis 1980]. In addition to producing an op-
erating machine, Zuse was the first to implement floating point, which von Neu-
mann claimed was unnecessary!. His early machines used a mechanical store that
was smaller than other electromechanical solutions of the time. His last machine
was electromechanical but, because of the war, never completed.

An important early contributor to the development of electronic computers
was John Atanasoff, who built a small-scale electronic computer in the early
1940s [Atanasoff 1940]. His machine, designed at Iowa State University, was a
special-purpose computer (called the ABC: Atanasoff Berry Computer) that was
never completely operational. Mauchly briefly visited Atanasoff before he built
ENIAC and several of Atansanoff’s ideas (e.g. using binary representation) likely
influenced Mauchly. The presence of the Atanasoff machine, together with delays
in filing the ENIAC patents (the work was classified and patents could not be
filed until after the war) and the distribution of von Neumann’s EDVAC paper,
were used to break the Eckert-Mauchly patent [Larson 1973]. Though controver-
sy still rages over Atanasoff’s role, Eckert and Mauchly are usually given credit
for building the first working, general-purpose, electronic computer [Stern 1980].
Atanasoff, however, demonstrated several important innovations included in later
computers. Atanasoff deserves much credit for his work, and he might fairly be
given credit for the world’s first special-purpose electronic computer and for pos-
sibly influencing Eckert and Mauchly.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer Cor-
poration. Their first machine, the BINAC, was built for Northrop and was shown

74 Chapter 1 Fundamentals of Computer Design
in August 1949. After some financial difficulties, the Eckert-Mauchly Computer
Corporation was acquired by Remington-Rand, later called Sperry-Rand. Sperry-
Rand merged the Eckert-Mauchly acquisition, ERA, and its tabulating business
to form a dedicated computer division, called UNIVAC. UNIVAC delivered its
first computer, the UNIVAC I in June 1951. The UNIVAC I sold for $250,000
and was the first successful commercial computer—48 systems were built! To-
day, this early machine, along with many other fascinating pieces of computer
lore, can be seen at the Computer Museum in Mountain View, California. Other
places where early computing systems can be visited include the Deutsches Mu-
seum in Munich, and the Smithsonian in Washington, D.C., as well as numerous
online virtual museums.

IBM, which earlier had been in the punched card and office automation busi-
ness, didn’t start building computers until 1950. The first IBM computer, the
IBM 701 based on von Neumann’s IAS machine, shipped in 1952 and eventually
sold 19 units [see Hurd in Metropolis 1980].In the early 1950s, many people
were pessimistic about the future of computers, believing that the market and op-
portunities for these “highly specialized” machines were quite limited. Nonethe-
less, IBM quickly became the most successful computer company. The focus on
reliability and a customer and market driven strategy was key. Although the 701
and 702 were modest successes, IBM’s next machine the 704/705, first delivered
in 1954, greatly exceeded its initial sales forecast of 50 machines, thanks in part
to the inclusion of core memory.

Several books describing the early days of computing have been written by the
pioneers [Wilkes 1985, 1995; Goldstine 1972], as well as [Metropolis, Howlett,
and Rota 1980], which is a collection of recollections by early pioneers. There
are numerous independent histories, often built around the people involved [Slat-
er 1987], as well as a journal, Annals of the History of Computing, devoted to the
history of computing.

The history of some of the computers invented after 1960 can be found in
Chapter 2 (the IBM 360, the DEC VAX, the Intel 80x86, and the early RISC
machines), Chapters 3 and 4 (the pipelined processors, including Stretch and the
CDC 6600), and Appendix B (vector processors including the TI ASC, CDC Star,
and Cray processors).

Development of Quantitative Performance Measures:
Successes and Failures

In the earliest days of computing, designers set performance goals—ENIAC was
to be 1000 times faster than the Harvard Mark-I, and the IBM Stretch (7030) was
to be 100 times faster than the fastest machine in existence. What wasn’t clear,
though, was how this performance was to be measured. In looking back over the
years, it is a consistent theme that each generation of computers obsoletes the
performance evaluation techniques of the prior generation.

1.11 Historical Perspective and References 75
The original measure of performance was time to perform an individual oper-
ation, such as addition. Since most instructions took the same execution time, the
timing of one gave insight into the others. As the execution times of instructions
in a machine became more diverse, however, the time for one operation was no
longer useful for comparisons. To take these differences into account, an instruc-
tion mix was calculated by measuring the relative frequency of instructions in a
computer across many programs. The Gibson mix [Gibson 1970] was an early
popular instruction mix. Multiplying the time for each instruction times its
weight in the mix gave the user the average instruction execution time. (If mea-
sured in clock cycles, average instruction execution time is the same as average
CPI.) Since instruction sets were similar, this was a more accurate comparison
than add times. From average instruction execution time, then, it was only a small
step to MIPS (as we have seen, the one is the inverse of the other). MIPS had the
virtue of being easy for the layman to understand.

As CPUs became more sophisticated and relied on memory hierarchies and
pipelining, there was no longer a single execution time per instruction; MIPS
could not be calculated from the mix and the manual. The next step was bench-
marking using kernels and synthetic programs. Curnow and Wichmann [1976]
created the Whetstone synthetic program by measuring scientific programs writ-
ten in Algol 60. This program was converted to FORTRAN and was widely used
to characterize scientific program performance. An effort with similar goals to
Whetstone, the Livermore FORTRAN Kernels, was made by McMahon [1986]
and researchers at Lawrence Livermore Laboratory in an attempt to establish a
benchmark for supercomputers. These kernels, however, consisted of loops from
real programs.

As it became clear that using MIPS to compare architectures with different in-
structions sets would not work, a notion of relative MIPS was created. When the
VAX-11/780 was ready for announcement in 1977, DEC ran small benchmarks
that were also run on an IBM 370/158. IBM marketing referred to the 370/158 as
a 1-MIPS computer, and since the programs ran at the same speed, DEC market-
ing called the VAX-11/780 a 1-MIPS computer. Relative MIPS for a machine M
was defined based on some reference machine as

The popularity of the VAX-11/780 made it a popular reference machine for rela-
tive MIPS, especially since relative MIPS for a 1-MIPS computer is easy to
calculate: If a machine was five times faster than the VAX-11/780, for that bench-
mark its rating would be 5 relative MIPS. The 1-MIPS rating was unquestioned
for four years, until Joel Emer of DEC measured the VAX-11/780 under a time-
sharing load. He found that the VAX-11/780 native MIPS rating was 0.5. Subse-
quent VAXes that run 3 native MIPS for some benchmarks were therefore called

MIPSM

PerformanceM

Performancereference
-- MIPSreference×=

76 Chapter 1 Fundamentals of Computer Design
6-MIPS machines because they run six times faster than the VAX-11/780. By the
early 1980s, the term MIPS was almost universally used to mean relative MIPS.

The 1970s and 1980s marked the growth of the supercomputer industry, which
was defined by high performance on floating-point-intensive programs. Average
instruction time and MIPS were clearly inappropriate metrics for this industry,
hence the invention of MFLOPS (Millions of FLoating-point Operations Per Sec-
ond), which effectively measured the inverse of execution time for a benchmark. .
Unfortunately customers quickly forget the program used for the rating, and mar-
keting groups decided to start quoting peak MFLOPS in the supercomputer per-
formance wars.

SPEC (System Performance and Evaluation Cooperative) was founded in the
late 1980s to try to improve the state of benchmarking and make a more valid ba-
sis for comparison. The group initially focused on workstations and servers in the
UNIX marketplace, and that remains the primary focus of these benchmarks to-
day. The first release of SPEC benchmarks, now called SPEC89, was a substan-
tial improvement in the use of more realistic benchmarks.

References

AMDAHL, G. M. [1967]. “Validity of the single processor approach to achieving large scale comput-
ing capabilities,” Proc. AFIPS 1967 Spring Joint Computer Conf. 30 (April), Atlantic City, N.J.,
483–485.

ATANASOFF, J. V. [1940]. “Computing machine for the solution of large systems of linear equations,”
Internal Report, Iowa State University, Ames.

BELL, C. G. [1984]. “The mini and micro industries,” IEEE Computer 17:10 (October), 14–30.

BELL, C. G., J. C. MUDGE, AND J. E. MCNAMARA [1978]. A DEC View of Computer Engineering,
Digital Press, Bedford, Mass.

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN [1946]. “Preliminary discussion of the logi-
cal design of an electronic computing instrument,” Report to the U.S. Army Ordnance Department,
p. 1; also appears in Papers of John von Neumann, W. Aspray and A. Burks, eds., MIT Press, Cam-
bridge, Mass., and Tomash Publishers, Los Angeles, Calif., 1987, 97–146.

CURNOW, H. J. AND B. A. WICHMANN [1976]. “A synthetic benchmark,” The Computer J., 19:1.

FLEMMING, P. J. AND J. J. WALLACE [1986]. “How not to lie with statistics: The correct way to
summarize benchmarks results,” Comm. ACM 29:3 (March), 218–221.

FULLER, S. H. AND W. E. BURR [1977]. “Measurement and evaluation of alternative computer
architectures,” Computer 10:10 (October), 24–35.

GIBSON, J. C. [1970]. “The Gibson mix,” Rep. TR. 00.2043, IBM Systems Development Division,
Poughkeepsie, N.Y. (Research done in 1959.)

GOLDSTINE, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton University Press,
Princeton, N.J.

JAIN, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling, Wiley, New York.

LARSON, E. R. [1973]. “Findings of fact, conclusions of law, and order for judgment,” File No. 4–67,
Civ. 138, Honeywell v. Sperry Rand and Illinois Scientific Development, U.S. District Court for the
State of Minnesota, Fourth Division (October 19).

1.11 Historical Perspective and References 77
LUBECK, O., J. MOORE, AND R. MENDEZ [1985]. “A benchmark comparison of three supercomputers:
Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,” Computer 18:12 (December), 10–24.

METROPOLIS, N., J. HOWLETT, AND G-C ROTA, EDITORS [1980], A History of Computing in the
Twentieth Century, Academic Press, N.Y.

MCMAHON, F. M. [1986]. “The Livermore FORTRAN kernels: A computer test of numerical perfor-
mance range,” Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of Cali-
fornia, Livermore (December).

REDMOND, K. C. AND T. M. SMITH [1980]. Project Whirlwind—The History of a Pioneer Computer,
Digital Press, Boston.

SHURKIN, J. [1984]. Engines of the Mind: A History of the Computer, W. W. Norton, New York.

SLATER, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, Mass.

SMITH, J. E. [1988]. “Characterizing computer performance with a single number,” Comm. ACM
31:10 (October), 1202–1206.

SPEC [1989]. SPEC Benchmark Suite Release 1.0, October 2, 1989.

SPEC [1994]. SPEC Newsletter (June).

STERN, N. [1980]. “Who invented the first electronic digital computer,” Annals of the History of
Computing 2:4 (October), 375–376.

TOUMA, W. R. [1993]. The Dynamics of the Computer Industry: Modeling the Supply of Work-
stations and Their Components, Kluwer Academic, Boston.

WEICKER, R. P. [1984]. “Dhrystone: A synthetic systems programming benchmark,” Comm. ACM
27:10 (October), 1013–1030.

WILKES, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass.

WILKES, M. V. [1995]. Computing Perspectives, Morgan Kaufmann, San Francisco.

WILKES, M. V., D. J. WHEELER, AND S. GILL [1951]. The Preparation of Programs for an Electronic
Digital Computer, Addison-Wesley, Cambridge, Mass.

E X E R C I S E S

Each exercise has a difficulty rating in square brackets and a list of the chapter sections it
depends on in angle brackets. See the Preface for a description of the difficulty scale.

still a good exercise

1.1 [20/10/10/15] <1.6> In this exercise, assume that we are considering enhancing a ma-
chine by adding a vector mode to it. When a computation is run in vector mode it is 20 times
faster than the normal mode of execution. We call the percentage of time that could be spent
using vector mode the percentage of vectorization.Vectors are discussed in Appendix B, but
you don’t need to know anything about how they work to answer this question!

a. [20] <1.6> Draw a graph that plots the speedup as a percentage of the computation
performed in vector mode. Label the y axis “Net speedup” and label the x axis “Percent
vectorization.”

b. [10] <1.6> What percentage of vectorization is needed to achieve a speedup of 2?

c. [10] <1.6> What percentage of vectorization is needed to achieve one-half the maxi-

78 Chapter 1 Fundamentals of Computer Design
mum speedup attainable from using vector mode?

d. [15] <1.6> Suppose you have measured the percentage of vectorization for programs
to be 70%. The hardware design group says they can double the speed of the vector
rate with a significant additional engineering investment. You wonder whether the
compiler crew could increase the use of vector mode as another approach to increasing
performance. How much of an increase in the percentage of vectorization (relative to
current usage) would you need to obtain the same performance gain? Which invest-
ment would you recommend?

still a good exercise

1.2 [15/10] <1.6> Assume—as in the Amdahl’s Law Example on page 41—that we make
an enhancement to a computer that improves some mode of execution by a factor of 10. En-
hanced mode is used 50% of the time, measured as a percentage of the execution time when
the enhanced mode is in use. Recall that Amdahl’s Law depends on the fraction of the orig-
inal, unenhanced execution time that could make use of enhanced mode. Thus, we cannot
directly use this 50% measurement to compute speedup with Amdahl’s Law.

a. [15] <1.6> What is the speedup we have obtained from fast mode?

b. [10] <1.6> What percentage of the original execution time has been converted to fast
mode?

1.3 [15] <1.6> Show that the problem statements in the Examples on page 42 and page 45
are the same.

this exercise has been known to cause confusion, thought the concept is good

1.4

1.5 [15] <1.6> Suppose we are considering a change to an instruction set. The base ma-
chine initially has only loads and stores to memory, and all operations work on the registers.
Such machines are called load-store machines (see Chapter 2). Measurements of the load-
store machine showing the instruction mix and clock cycle counts per instruction are given
in Figure 1.32 on page 69.

Let’s assume that 25% of the arithmetic logic unit (ALU) operations directly use a loaded
operand that is not used again.

We propose adding ALU instructions that have one source operand in memory. These new
register-memory instructions have a clock cycle count of 2. Suppose that the extended in-
struction set increases the clock cycle count for branches by 1, but it does not affect the
clock cycle time. (Chapter 3, on pipelining, explains why adding register-memory instruc-
tions might slow down branches.) Would this change improve CPU performance?

cache exercises should be tossed since we eliminated that section, we need some simple pipelining exercis-
es. Feel free to take some from the old chapter 3

1.6 [15] <1.7> Assume that we have a machine that with a perfect cache behaves as given
in Figure 1.32.

1.11 Historical Perspective and References 79
With a cache, we have measured that instructions have a miss rate of 5%, data references
have a miss rate of 10%, and the miss penalty is 40 cycles. Find the CPI for each instruction
type with cache misses and determine how much faster the machine is with no cache misses
versus with cache misses.

still a good exercise;

1.7 [20] <1.6> After graduating, you are asked to become the lead computer designer at
Hyper Computers, Inc. Your study of usage of high-level language constructs suggests that
procedure calls are one of the most expensive operations. You have invented a scheme that
reduces the loads and stores normally associated with procedure calls and returns. The first
thing you do is run some experiments with and without this optimization. Your experiments
use the same state-of-the-art optimizing compiler that will be used with either version of
the computer. These experiments reveal the following information:

n The clock rate of the unoptimized version is 5% higher.

n Thirty percent of the instructions in the unoptimized version are loads or stores.

n The optimized version executes two-thirds as many loads and stores as the unopti-
mized version. For all other instructions the dynamic execution counts are unchanged.

n All instructions (including load and store) take one clock cycle.

Which is faster? Justify your decision quantitatively.

still a good exercise, although dated. I wonder if it can be salvaged.

1.8 [15/15/8/12] <1.6,1.9> The Whetstone benchmark contains 195,578 basic floating-
point operations in a single iteration, divided as shown in Figure 1.33.

Whetstone was run on a Sun 3/75 using the F77 compiler with optimization turned on. The
Sun 3/75 is based on a Motorola 68020 running at 16.67 MHz, and it includes a floating-
point coprocessor. The Sun compiler allows the floating point to be calculated with the co-
processor or using software routines, depending on compiler flags. A single iteration of
Whetstone took 1.08 seconds using the coprocessor and 13.6 seconds using software. As-
sume that the CPI using the coprocessor was measured to be 10, while the CPI using soft-

Operation Count

Add 82,014

Subtract 8,229

Multiply 73,220

Divide 21,399

Convert integer to FP 6,006

Compare 4,710

Total 195,578

FIGURE 1.33 The frequency of floating-point
operations in the Whetstone benchmark.

80 Chapter 1 Fundamentals of Computer Design
ware was measured to be 6.

a. [15] <1.6,1.9> What is the MIPS rating for both runs?

b. [15] <1.6> What is the total number of instructions executed for both runs?

c. [8] <1.6> On the average, how many integer instructions does it take to perform a
floating-point operation in software?

d. [12] <1.9> What is the MFLOPS rating for the Sun 3/75 with the floating-point co-
processor running Whetstone? (Assume all the floating-point operations in Figure
1.21 count as one operation.)

a good exercise, but needs some updating of costs and the data used--newer processors, e.g.

1.9 [15/10/15/15/15] <1.3,1.4> This exercise estimates the complete packaged cost of a
microprocessor using the die cost equation and adding in packaging and testing costs. We
begin with a short description of testing cost and follow with a discussion of packaging
issues.

Testing is the second term of the chip cost equation:

Cost of integrated circuit =

Testing costs are determined by three components:

Since bad dies are discarded, die yield is in the denominator in the equation—the good must
shoulder the costs of testing those that fail. (In practice, a bad die may take less time to test,
but this effect is small, since moving the probes on the die is a mechanical process that takes
a large fraction of the time.) Testing costs about $50 to $500 per hour, depending on the
tester needed. High-end designs with many high-speed pins require the more expensive
testers. For higher-end microprocessors test time would run $300 to $500 per hour. Die
tests take about 5 to 90 seconds on average, depending on the simplicity of the die and the
provisions to reduce testing time included in the chip.

The cost of a package depends on the material used, the number of pins, and the die area.
The cost of the material used in the package is in part determined by the ability to dissipate
power generated by the die. For example, a plastic quad flat pack (PQFP) dissipating less
than 1 watt, with 208 or fewer pins, and containing a die up to 1 cm on a side costs $2 in
1995. A ceramic pin grid array (PGA) can handle 300 to 600 pins and a larger die with
more power, but it costs $20 to $60. In addition to the cost of the package itself is the cost
of the labor to place a die in the package and then bond the pads to the pins, which adds
from a few cents to a dollar or two to the cost. Some good dies are typically lost in the as-
sembly process, thereby further reducing yield. For simplicity we assume the final test yield
is 1.0; in practice it is at least 0.95. We also ignore the cost of the final packaged test.

This exercise requires the information provided in Figure 1.34.

Cost of die + Cost of testing die + Cost of packaging

Final test yield

Cost of testing die Cost of testing per hour Average die test time×
Die yield

--=

1.11 Historical Perspective and References 81
a. [15] <1.4> For each of the microprocessors in Figure 1.34, compute the number of
good chips you would get per 20-cm wafer using the model on page 18. Assume a de-
fect density of one defect per cm2, a wafer yield of 95%, and assume α = 3.

b. [10] <1.4> For each microprocessor in Figure 1.34, compute the cost per projected
good die before packaging and testing. Use the number of good dies per wafer from
part (a) of this exercise and the wafer cost from Figure 1.34.

c. [15] <1.3> Both package cost and test cost are proportional to pin count. Using the ad-
ditional assumption shown in Figure 1.35, compute the cost per good, tested, and
packaged part using the costs per good die from part (b) of this exercise.

d. [15] <1.3> There are wide differences in defect densities between semiconductor
manufacturers. Find the costs for the largest processor in Figure 1.34 (total cost in-
cluding packaging), assuming defect densities are 0.6 per cm2 and assuming that de-
fect densities are 1.2 per cm2.

e. [15] <1.3> The parameter α depends on the complexity of the process. Additional
metal levels result in increased complexity. For example, α might be approximated by
the number of interconnect levels. For the Digital 21064a with 4.5 levels of intercon-
nect, estimate the cost of working, packaged, and tested die if α = 3 and if α = 4.5.
Assume a defect density of 0.8 defects per cm2.

Microprocessor
Die area
(mm2) Pins Technology Estimated wafer cost ($) Package

MIPS 4600 77 208 CMOS, 0.6µ, 3M 3200 PQFP

PowerPC 603 85 240 CMOS, 0.6µ, 4M 3400 PQFP

HP 71x0 196 504 CMOS, 0.8µ, 3M 2800 Ceramic PGA

Digital 21064A 166 431 CMOS, 0.5µ, 4.5M 4000 Ceramic PGA

SuperSPARC/60 256 293 BiCMOS, 0.6µ, 3.5M 4000 Ceramic PGA

FIGURE 1.34 Characteristics of microprocessors. The technology entry is the process type, line width, and
number of interconnect levels.

Package type Pin count Package cost
($)

Test time
(secs)

Test cost per hour
($)

PQFP <220 12 10 300

PQFP <300 20 10 320

Ceramic PGA <300 30 10 320

Ceramic PGA <400 40 12 340

Ceramic PGA <450 50 13 360

Ceramic PGA <500 60 14 380

Ceramic PGA >500 70 15 400

FIGURE 1.35 Package and test characteristics.

82 Chapter 1 Fundamentals of Computer Design
1.10 [12] <1.5> One reason people may incorrectly average rates with an arithmetic mean
is that it always gives an answer greater than or equal to the geometric mean. Show that for
any two positive integers, a and b, the arithmetic mean is always greater than or equal to the
geometric mean. When are the two equal?

we ditched the harmonic mean, so if we keep this (it’s not bad), we need to define it here--this would be
fine, since it uses the exercises to expound on a topic

1.11 [12] <1.5> For reasons similar to those in Exercise 1.10, some people use arithmetic
instead of the harmonic mean. Show that for any two positive rates, r and s, the arithmetic
mean is always greater than or equal to the harmonic mean. When are the two equal?

good exercise, if simple exercise, but needs new data for spec (use spec2000)

1.12 [15/15] <1.5> Some of the SPECfp92 performance results from the SPEC92 News-
letter of June 1994 [SPEC 94] are shown in Figure 1.36. The SPECratio is simply the run-
time for a benchmark divided into the VAX 11/780 time for that benchmark. The SPECfp92
number is computed as the geometric mean of the SPECratios. Let’s see how a weighted
arithmetic mean compares.

a. [15] <1.5> Calculate the weights for a workload so that running times on the VAX-

Program name
VAX-11/780

Time
DEC 3000 Model 800

SPECratio
IBM Powerstation

590 SPECratio
Intel Xpress Pentium
815\100 SPECratio

spice2g6 23,944 97 128 64

doduc 1,860 137 150 84

mdljdp2 7,084 154 206 98

wave5 3,690 123 151 57

tomcatv 2,650 221 465 74

ora 7,421 165 181 97

alvinn 7,690 385 739 157

ear 25,499 617 546 215

mdljsp2 3,350 76 96 48

swm256 12,696 137 244 43

su2cor 12,898 259 459 57

hydro2d 13,697 210 225 83

nasa7 16,800 265 344 61

fpppp 9,202 202 303 119

Geometric mean 8,098 187 256 81

FIGURE 1.36 SPEC92 performance for SPECfp92. The DEC 3000 uses a 200-MHz Alpha microprocessor (21064) and
a 2-MB off-chip cache. The IBM Powerstation 590 uses a 66.67-MHz Power-2. The Intel Xpress uses a 100-MHz Pentium
with a 512-KB off-chip secondary cache. Data from SPEC [1994].

1.11 Historical Perspective and References 83
11/780 will be equal for each of the 14 benchmarks (given in Figure 1.36).

b. [15] <1.5> Using the weights computed in part (a) of this exercise, calculate the
weighted arithmetic means of the execution times of the 14 programs in Figure 1.36.

still a decent exercise

1.13 [15/15/15] <1.6,1.9> Three enhancements with the following speedups are proposed
for a new architecture:

Speedup1 = 30

Speedup2 =20

Speedup3 = 10

Only one enhancement is usable at a time.

a. [15] <1.6> If enhancements 1 and 2 are each usable for 30% of the time, what fraction
of the time must enhancement 3 be used to achieve an overall speedup of 10?

b. [15] <1.6,1.9> Assume the distribution of enhancement usage is 30%, 30%, and 20%
for enhancements 1, 2, and 3, respectively. Assuming all three enhancements are in
use, for what fraction of the reduced execution time is no enhancement in use?

c. [15] <1.6> Assume for some benchmark, the fraction of use is 15% for each of en-
hancements 1 and 2 and 70% for enhancement 3. We want to maximize performance.
If only one enhancement can be implemented, which should it be? If two enhance-
ments can be implemented, which should be chosen?

1.14 [15/10/10/12/10] <1.6,1.9> Your company has a benchmark that is considered repre-
sentative of your typical applications. One of the older-model workstations does not have a
floating-point unit and must emulate each floating-point instruction by a sequence of inte-
ger instructions. This older-model workstation is rated at 120 MIPS on this benchmark. A
third-party vendor offers an attached processor that is intended to give a “mid-life kicker”
to your workstation. That attached processor executes each floating-point instruction on a
dedicated processor (i.e., no emulation is necessary). The workstation/attached processor
rates 80 MIPS on the same benchmark. The following symbols are used to answer parts (a)–
(e) of this exercise.

I—Number of integer instructions executed on the benchmark.

F—Number of floating-point instructions executed on the benchmark.

Y—Number of integer instructions to emulate a floating-point instruction.

W—Time to execute the benchmark on the workstation alone.

B—Time to execute the benchmark on the workstation/attached processor combination.

a. [15] <1.6,1.9> Write an equation for the MIPS rating of each configuration using the
symbols above. Document your equation.

b. [10] <1.6> For the configuration without the coprocessor, we measure that F = 8 × 106,
Y = 50, and W = 4. Find I.

84 Chapter 1 Fundamentals of Computer Design
c. [10] <1.6> What is the value of B?

d. [12] <1.6,1.9> What is the MFLOPS rating of the system with the attached processor
board?

e. [10] <1.6,1.9> Your colleague wants to purchase the attached processor board even
though the MIPS rating for the configuration using the board is less than that of the
workstation alone. Is your colleague’s evaluation correct? Defend your answer.

1.15 [15/15/10] <1.5,1.9> Assume the two programs in Figure 1.15 on page 36 each exe-
cute 100 million floating-point operations during execution.

a. [15] <1.5,1.9> Calculate the MFLOPS rating of each program.

b. [15] <1.5,1.9> Calculate the arithmetic, geometric, and harmonic means of MFLOPS
for each machine.

c. [10] <1.5,1.9> Which of the three means matches the relative performance of total ex-
ecution time?

OK exercise, but needs updating

1.16 [10/12] <1.9,1.6> One problem cited with MFLOPS as a measure is that not all
FLOPS are created equal. To overcome this problem, normalized or weighted MFLOPS
measures were developed. Figure 1.37 shows how the authors of the “Livermore Loops”
benchmark calculate the number of normalized floating-point operations per program ac-
cording to the operations actually found in the source code. Thus, the native MFLOPS rat-
ing is not the same as the normalized MFLOPS rating reported in the supercomputer
literature, which has come as a surprise to a few computer designers.

Let’s examine the effects of this weighted MFLOPS measure. The spice program runs on
the DECstation 3100 in 94 seconds. The number of floating-point operations executed in
that program are listed in Figure 1.38.

Real FP operations Normalized FP operations

Add, Subtract, Compare, Multiply 1

Divide, Square root 4

Functions (Expo, Sin,...) 8

FIGURE 1.37 Real versus normalized floating-point operations. The number of normal-
ized floating-point operations per real operation in a program used by the authors of the Liv-
ermore FORTRAN Kernels, or “Livermore Loops,” to calculate MFLOPS. A kernel with one
Add, one Divide, and one Sin would be credited with 13 normalized floating-point operations.
Native MFLOPS won’t give the results reported for other machines on that benchmark.

Floating-point operation Times executed

FIGURE 1.38 Floating-point operations in spice.

1.11 Historical Perspective and References 85
a. [10] <1.9,1.6> What is the native MFLOPS for spice on a DECstation 3100?

b. [12] <1.9,1.6> Using the conversions in Figure 1.37, what is the normalized
MFLOPS?

1.17 [30] <1.5,1.9> Devise a program in C that gets the peak MIPS rating for a computer.
Run it on two machines to calculate the peak MIPS. Now run the SPEC92 gcc on both ma-
chines. How well do peak MIPS predict performance of gcc?

1.18 [30] <1.5,1.9> Devise a program in C or FORTRAN that gets the peak MFLOPS rat-
ing for a computer. Run it on two machines to calculate the peak MFLOPS. Now run the
SPEC92 benchmark spice on both machines. How well do peak MFLOPS predict perfor-
mance of spice?

update

1.19 [Discussion] <1.5> What is an interpretation of the geometric means of execution
times? What do you think are the advantages and disadvantages of using total execution
times versus weighted arithmetic means of execution times using equal running time on the
VAX-11/780 versus geometric means of ratios of speed to the VAX-11/780

addD 25,999,440

subD 18,266,439

mulD 33,880,810

divD 15,682,333

compareD 9,745,930

negD 2,617,846

absD 2,195,930

convertD 1,581,450

Total 109,970,178

FIGURE 1.38 Floating-point operations in spice.

2

Instruction Set
Principles and
Examples

1

A n

Add the number in storage location

n

 into the accumulator.

E n

If the number in the accumulator is greater than or equal to

zero execute next the order which stands in storage location

n;

 otherwise proceed serially.

Z

Stop the machine and ring the warning bell.

Wilkes and Renwick

Selection from the List of 18 Machine
Instructions for the EDSAC

(1949)

2.1 Introduction 99

2.2 Classifying Instruction Set Architectures 101

2.3 Memory Addressing 105

2.4 Addressing Modes for Signal Processing 111

2.5 Type and Size of Operands 114

2.6 Operands for Media and Signal Processing 116

2.7 Operations in the Instruction Set 118

2.8 Operations for Media and Signal Processing 118

2.9 Instructions for Control Flow 122

2.10 Encoding an Instruction Set 127

2.11 Crosscutting Issues: The Role of Compilers 130

2.12 Putting It All Together: The MIPS Architecture 140

2.13 Another View: The Trimedia TM32 CPU 151

2.14 Fallacies and Pitfalls 152

2.15 Concluding Remarks 158

2.16 Historical Perspective and References 160

Exercises 172

In this chapter we concentrate on instruction set architecture—the portion of the
computer visible to the programmer or compiler writer. This chapter introduces
the wide variety of design alternatives available to the instruction set architect. In
particular, this chapter focuses on five topics. First, we present a taxonomy of in-
struction set alternatives and give some qualitative assessment of the advantages
and disadvantages of various approaches. Second, we present and analyze some
instruction set measurements that are largely independent of a specific instruction
set. Third, we discuss instruction set architecture of processors not aimed at desk-
tops or servers: digital signal processors (DSPs) and media processors. DSP and
media processors are deployed in embedded applications, where cost and power
are as important as performance, with an emphasis on real time performance. As
discussed in Chapter 1, real time programmers often target worst case perfor-
mance rather to guarantee not to miss regularly occurring events. Fourth, we ad-
dress the issue of languages and compilers and their bearing on instruction set
architecture. Finally, the

 Putting It All Together

 section shows how these ideas
are reflected in the MIPS instruction set, which is typical of RISC architectures,
and

Another View

presents the Trimedia TM32 CPU, an example of a media pro-
cessor. We conclude with fallacies and pitfalls of instruction set design.

2.1

Introduction

100 Chapter 2 Instruction Set Principles and Examples

To make the illustrate the principles further, appendices B through E give four
examples of general purpose RISC architectures (MIPS, Power PC, Precision Ar-
chitecture, SPARC), four embedded RISC processors (ARM, Hitachi SH, MIPS
16, Thumb), and three older architectures (80x86, IBM 360/370, and VAX). Be-
fore we discuss how to classify architectures, we need to say something about in-
struction set measurement.

Throughout this chapter, we examine a wide variety of architectural measure-
ments. Clearly, these measurements depend on the programs measured and on the
compilers used in making the measurements. The results should not be inter-
preted as absolute, and you might see different data if you did the measurement
with a different compiler or a different set of programs. The authors believe that
the measurements in this chapter are reasonably indicative of a class of typical
applications. Many of the measurements are presented using a small set of bench-
marks, so that the data can be reasonably displayed and the differences among
programs can be seen. An architect for a new computer would want to analyze a
much larger collection of programs before making architectural decisions. The
measurements shown are usually

dynamic

—that is, the frequency of a measured
event is weighed by the number of times that event occurs during execution of the
measured program.

Before starting with the general principles, let’s review the three application
areas from the last chapter.

Desktop computing

 emphasizes performance of pro-
grams with integer and floating-point data types, with little regard for program
size or processor power consumption. For example, code size has never been re-
ported in the four generations of SPEC benchmarks.

Servers

 today are used pri-
marily for database, file server, and web applications, plus some timesharing
applications for many users. Hence, floating-point performance is much less im-
portant for performance than integers and character strings, yet virtually every
server processor still includes floating-point instructions.

Embedded applications

value cost and power, so code size is important because less memory is both
cheaper and lower power, and some classes of instructions (such as floating
point) may be optional to reduce chip costs.

Thus, instruction sets for all three applications are very similar; Appendix B
<RISC> takes advantage of the similarities to describe eight instruction sets in
just 43 pages. In point of fact, the MIPS architecture that drives this chapter has
been used successfully in desktops, servers, and embedded applications.

One successful architecture very different from RISC is the 80x86 (see Ap-
pendix C). Surprisingly, its success does not necessarily belie the advantages of a
RISC instruction set. The commercial importance of binary compatibility with
PC software combined with the abundance of transistor’s provided by Moore’s
Law led Intel to use a RISC instruction set internally while supporting an 80x86
instruction set externally. As we shall see in section 3.8 of the next chapter, recent
Intel microprocessors use hardware to translate from 80x86 instructions to RISC-
like instructions and then execute the translated operations inside the chip. They
maintain the illusion of 80x86 architecture to the programmer while allowing the
computer designer to implement a RISC-style processor for performance.

2.2 Classifying Instruction Set Architectures 101

DSPs and media processors, which can be used in embedded applications, em-
phasize real-time performance and often deal with infinite, continuous streams of
data. Keeping up with these streams often means targeting worst case perfor-
mance to offer real time guarantees. Architects of these computers also have a
tradition of identifying a small number of important kernels that are critical to
success, and hence are often supplied by the manufacturer. As a result of this her-
itage, these instruction set architectures include quirks that can improve perfor-
mance for the targeted kernels but that no compiler will ever generate.

In contrast, desktop and server applications historically do not to reward such
eccentricities since they do not have as narrowly defined a set of important ker-
nels, and since little of the code is hand optimized. If a compiler cannot generate
it, desktop and server programs generally won’t use it. We’ll see the impact of
these different cultures on the details of the instruction set architectures of this
chapter.

Given the increasing importance of media to desktop and embedded applica-
tions, a recent trend is to merge these cultures by adding DSP/media instructions
to conventional architectures. Hand coded library routines then try to deliver
DSP/media performance using conventional desktop and media architectures,
while compilers can generate code for the rest of the program using the conven-
tional instruction set. Section 2.8 describes such extensions. Similarly, embedded
applications are beginning to run more general-purpose code as they begin to in-
clude operating systems and more intelligent features.

Now that the background is set, we begin by exploring how instruction set ar-
chitectures can be classified.

The type of internal storage in a processor is the most basic differentiation, so in
this section we will focus on the alternatives for this portion of the architecture.
The major choices are a stack, an accumulator, or a set of registers. Operands
may be named explicitly or implicitly: The operands in a

stack architecture

 are
implicitly on the top of the stack, and in an

accumulator architecture

 one operand
is implicitly the accumulator. The

general-purpose register architectures

 have
only explicit operands—either registers or memory locations. Figure 2.1 shows a
block diagram of such architectures and Figure 2.2 shows how the code sequence

C

=

A

+

B

 would typically appear in these three classes of instruction sets. The ex-
plicit operands may be accessed directly from memory or may need to be first
loaded into temporary storage, depending on the class of architecture and choice
of specific instruction.

As the figures show, there are really two classes of register computers. One
class can access memory as part of any instruction, called

register-memory

 archi-
tecture, and the other can access memory only with load and store instructions,
called

load-store

 or

register-register

 architecture. A third class, not found in com-

2.2

Classifying Instruction Set Architectures

102 Chapter 2 Instruction Set Principles and Examples

FIGURE 2.1 Operand locations for four instruction set architecture classes.

 The arrows indicate whether the operand
is an input or the result of the ALU operation, or both an input and result. Lighter shades indicate inputs and the dark shade
indicates the result. In (a), a Top Of Stack register (TOS), points to the top input operand, which is combined with the oper-
and below. The first operand is removed from the stack, the result takes the place of the second operand, and TOS is up-
dated to point to the result. All operands are implicit. In (b), the Accumulator is both an implicit input operand and a result.
In (c) one input operand is a register, one is in memory, and the result goes to a register. All operands are registers in (d),
and, like the stack architecture, can be transferred to memory only via separate instructions: push or pop for (a) and load or
store for (d).

Stack Accumulator
Register
(register-memory)

Register
(load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R3,R1,B Load R2,B

Add Store C Store R3,C Add R3,R1,R2

Pop C Store R3,C

FIGURE 2.2 The code sequence for C = A + B for four classes of instruction sets.

Note that the Add instruction has
implicit operands for stack and accumulator architectures, and explicit operands for register architectures. It is assumed that
A, B, and C all belong in memory and that the values of A and B cannot be destroyed. Figure 2.1 shows the Add operation
for each class of architecture.

(a) Stack (b) Accumulator (c) Register-Memory

TOS

ALU

Processor

Memory
...

...

...
ALU

...

...

ALU

...

...

...

...
(d) Register-Register

/Load-Store

ALU

...

...

...

...

2.2 Classifying Instruction Set Architectures 103

puters shipping today, keeps all operands in memory and is called a

memory-
memory

 architecture. Some instruction set architectures have more registers than
a single accumulator, but place restrictions on uses of these special registers.
Such an architecture is sometimes called an

extended accumulator

 or

special-
purpose register

 computer.
Although most early computers used stack or accumulator-style architectures,

virtually every new architecture designed after 1980 uses a load-store register ar-
chitecture. The major reasons for the emergence of general-purpose register
(GPR) computers are twofold. First, registers—like other forms of storage inter-
nal to the processor—are faster than memory. Second, registers are more efficient
for a compiler to use than other forms of internal storage. For example, on a reg-
ister computer the expression

(A*B)

–

(B*C)

–

(A*D)

 may be evaluated by doing
the multiplications in any order, which may be more efficient because of the loca-
tion of the operands or because of pipelining concerns (see Chapter 3). Neverthe-
less, on a stack computer the hardware must evaluate the expression in only one
order, since operands are hidden on the stack, and it may have to load an operand
multiple times.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (since
registers are faster than memory), and the code density improves (since a register
can be named with fewer bits than can a memory location).

As explained in section 2.11, compiler writers would prefer that all registers
be equivalent and unreserved. Older computers compromise this desire by dedi-
cating registers to special uses, effectively decreasing the number of general-pur-
pose registers. If the number of truly general-purpose registers is too small, trying
to allocate variables to registers will not be profitable. Instead, the compiler will
reserve all the uncommitted registers for use in expression evaluation. The domi-
nance of hand-optimized code in the DSP community has lead to DSPs with
many special-purpose registers and few general-purpose registers.

How many registers are sufficient? The answer, of course, depends on the ef-
fectiveness of the compiler. Most compilers reserve some registers for expression
evaluation, use some for parameter passing, and allow the remainder to be allo-
cated to hold variables. Just as people tend to be bigger than their parents, new in-
struction set architectures tend to have more registers than their ancestors.

Two major instruction set characteristics divide GPR architectures. Both char-
acteristics concern the nature of operands for a typical arithmetic or logical in-
struction (ALU instruction). The first concerns whether an ALU instruction has
two or three operands. In the three-operand format, the instruction contains one re-
sult operand and two source operands. In the two-operand format, one of the oper-
ands is both a source and a result for the operation. The second distinction among
GPR architectures concerns how many of the operands may be memory addresses
in ALU instructions. The number of memory operands supported by a typical
ALU instruction may vary from none to three. Figure 2.3 shows combinations of
these two attributes with examples of computers. Although there are seven possi-

104 Chapter 2 Instruction Set Principles and Examples

ble combinations, three serve to classify nearly all existing computers. As we
mentioned earlier, these three are register-register (also called load-store), register-
memory, and memory-memory.

Figure 2.4 shows the advantages and disadvantages of each of these alterna-
tives. Of course, these advantages and disadvantages are not absolutes: They are
qualitative and their actual impact depends on the compiler and implementation
strategy. A GPR computer with memory-memory operations could easily be ig-

Number of mem-
ory addresses

Maximum number of
operands allowed

Type of
architecture

Examples

0 3 Register-
register

Alpha, ARM, MIPS, PowerPC, SPARC, SuperH,
Trimedia TM5200

1 2 Register-
memory

IBM 360/370, Intel 80x86, Motorola 68000, TI
TMS320C54x

2 2 Memory-
memory

VAX (also has three-operand formats)

3 3 Memory-
memory

VAX (also has two-operand formats)

FIGURE 2.3 Typical combinations of memory operands and total operands per typical ALU instruction with exam-
ples of computers.

Computers with no memory reference per ALU instruction are called load-store or register-register
computers. Instructions with multiple memory operands per typical ALU instruction are called register-memory or memory-
memory, according to whether they have one or more than one memory operand.

Type Advantages Disadvantages

Register-
register
(0,3)

Simple, fixed-length instruction encoding. Simple
code-generation model. Instructions take similar
numbers of clocks to execute (see App. A).

Higher instruction count than architectures with
memory references in instructions. More instruc-
tions and lower instruction density leads to larger
programs.

Register-
memory
(1,2)

Data can be accessed without a separate load in-
struction first. Instruction format tends to be easy
to encode and yields good density.

Operands are not equivalent since a source oper-
and in a binary operation is destroyed. Encoding a
register number and a memory address in each
instruction may restrict the number of registers.
Clocks per instruction vary by operand location.

Memory-
memory
(2,2) or
(3,3)

Most compact. Doesn’t waste registers for
temporaries.

Large variation in instruction size, especially for
three-operand instructions. In addition, large vari-
ation in work per instruction. Memory accesses
create memory bottleneck. (Not used today.)

FIGURE 2.4 Advantages and disadvantages of the three most common types of general-purpose register comput-
ers.

 The notation (

m, n

) means

m

 memory operands and

n

 total operands. In general, computers with fewer alternatives
simplify the compiler’s task since there are fewer decisions for the compiler to make (see section 2.11). Computers with a
wide variety of flexible instruction formats reduce the number of bits required to encode the program. The number of registers
also affects the instruction size since you need log

2

 (number of registers) for each register specifier in an instruction. Thus,
doubling the number of registers takes 3 extra bits for a register-register architecture, or about 10% of a 32-bit instruction.

2.3 Memory Addressing 105

nored by the compiler and used as a register-register computer. One of the most
pervasive architectural impacts is on instruction encoding and the number of in-
structions needed to perform a task. We will see the impact of these architectural
alternatives on implementation approaches in Chapters 3 and 4.

Summary: Classifying Instruction Set Architectures

Here and at the end of sections 2.3 to 2.11 we summarize those characteristics we
would expect to find in a new instruction set architecture, building the foundation
for the MIPS architecture introduced in section 2.12. From this section we should
clearly expect the use of general-purpose registers. Figure 2.4, combined with
Appendix A on pipelining, lead to the expectation of a register-register (also
called load-store) version of a general-purpose register architecture.

With the class of architecture covered, the next topic is addressing operands.

Independent of whether the architecture is register-register or allows any operand
to be a memory reference, it must define how memory addresses are interpreted
and how they are specified. The measurements presented here are largely, but not
completely, computer independent. In some cases the measurements are signifi-
cantly affected by the compiler technology. These measurements have been made
using an optimizing compiler, since compiler technology plays a critical role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a
function of the address and the length? All the instruction sets discussed in this
book––except some DSPs––are byte addressed and provide access for bytes (8
bits), half words (16 bits), and words (32 bits). Most of the computers also pro-
vide access for double words (64 bits).

There are two different conventions for ordering the bytes within a larger ob-
ject.

Little Endian

 byte order puts the byte whose address is “x...x000” at the
least-significant position in the double word (the little end). The bytes are num-
bered:

Big Endian

 byte order puts the byte whose address is “x...x000” at the most-sig-
nificant position in the double word (the big end). The bytes are numbered:

2.3

Memory Addressing

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

106 Chapter 2 Instruction Set Principles and Examples

When operating within one computer, the byte order is often unnoticeable—only
programs that access the same locations as both, say, words and bytes can notice
the difference. Byte order is a problem when exchanging data among computers
with different orderings, however. Little Endian ordering also fails to match nor-
mal ordering of words when strings are compared. Strings appear “SDRAWK-
CAB” (backwards) in the registers.

A second memory issue is that in many computers, accesses to objects larger
than a byte must be

aligned

. An access to an object of size

s

 bytes at byte address

A

 is aligned if

A

mod

s =

0

.

Figure 2.5 shows the addresses at which an access is
aligned or misaligned.

Why would someone design a computer with alignment restrictions? Mis-
alignment causes hardware complications, since the memory is typically aligned
on a multiple of a word or double-word boundary. A misaligned memory access
may, therefore, take multiple aligned memory references. Thus, even in comput-
ers that allow misaligned access, programs with aligned accesses run faster.

Value of 3 low order bits of byte address:

Width of object: 0 1 2 3 4 5 6 7

1 Byte (Byte) Aligned Aligned Aligned Aligned Aligned Aligned Aligned Aligned

2 Bytes (Half word) Aligned Aligned Aligned Aligned

2 Bytes (Half word) Misaligned Misaligned Misaligned Misalig.

4 Bytes (Word) Aligned Aligned

4 Bytes (Word) Misaligned Misaligned

4 Bytes (Word) Misaligned Misaligned

4 Bytes (Word) Misaligned Misalig.

8 bytes (Double word) Aligned

8 bytes (Double word) Misaligned

8 bytes (Double word) Misaligned

8 bytes (Double word) Misaligned

8 bytes (Double word) Misaligned

8 bytes (Double word) Misaligned

8 bytes (Double word) Misaligned

8 bytes (Double word) Misalig.

FIGURE 2.5 Aligned and misaligned addresses of byte, half word, word, and double word objects for byte ad-
dressed computers.

 For each misaligned example some objects require two memory accesses to complete. Every aligned
object can always complete in one memory access, as long as the memory is as wide as the object. The figure shows the
memory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order three bits of the address.

2.3 Memory Addressing 107

Even if data are aligned, supporting byte, half-word, and word accesses re-
quires an alignment network to align bytes, half words, and words in 64-bit regis-
ters. For example, in Figure 2.5 above, suppose we read a byte from an address
with its three low order bits having the value 4. We will need shift right 3 bytes to
align the byte to the proper place in a 64-bit register. Depending on the instruc-
tion, the computer may also need to sign-extend the quantity. Stores are easy:
only the addressed bytes in memory may be altered. On some computers a byte,
half word, and word operation does not affect the upper portion of a register. Al-
though all the computers discussed in this book permit byte, half-word, and word
accesses to memory, only the IBM 360/370, Intel 80x86, and VAX supports ALU
operations on register operands narrower than the full width.

Now that we have discussed alternative interpretations of memory addresses,
we can discuss the ways addresses are specified by instructions, called

address-
ing modes

.

Addressing Modes

Given an address, we now know what bytes to access in memory. In this sub-
section we will look at addressing modes—how architectures specify the address
of an object they will access. Addressing mode specify constants and registers in
addition to locations in memory. When a memory location is used, the actual
memory address specified by the addressing mode is called the

effective address

.
Figure 2.6 above shows all the data-addressing modes that have been used in

recent computers. Immediates or literals are usually considered memory-address-
ing modes (even though the value they access is in the instruction stream), al-
though registers are often separated. We have kept addressing modes that depend
on the program counter, called

PC-relative addressing

, separate. PC-relative ad-
dressing is used primarily for specifying code addresses in control transfer instruc-
tions, discussed in section 2.9.

Figure 2.6 shows the most common names for the addressing modes, though
the names differ among architectures. In this figure and throughout the book, we
will use an extension of the C programming language as a hardware description
notation. In this figure, only one non-C feature is used: The left arrow (

←

)

is used
for assignment. We also use the array

Mem

 as the name for main memory and the ar-
ray

Regs

 for registers. Thus,

Mem[Regs[R1]]

 refers to the contents of the mem-
ory location whose address is given by the contents of register 1 (

R1

). Later, we will
introduce extensions for accessing and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction counts;
they also add to the complexity of building a computer and may increase the av-
erage CPI (clock cycles per instruction) of computers that implement those
modes. Thus, the usage of various addressing modes is quite important in helping
the architect choose what to include.

Figure 2.7 above shows the results of measuring addressing mode usage pat-
terns in three programs on the VAX architecture. We use the old VAX architec-

108 Chapter 2 Instruction Set Principles and Examples

ture for a few measurements in this chapter because it has the richest set of
addressing modes and fewest restrictions on memory addressing. For example,
Figure 2.6 shows all the modes the VAX supports. Most measurements in this
chapter, however, will use the more recent register-register architectures to show
how programs use instruction sets of current computers.

Addressing
mode Example instruction Meaning When used

Register

Add R4,R3 Regs[R4]

←

Regs[R4]
 + Regs[R3]

When a value is in a register.

Immediate

Add R4,#3 Regs[R4]

←

Regs[R4]+3

For constants.

Displacement

Add R4,100(R1) Regs[R4]

←

Regs[R4]
 + Mem[100+Regs[R1]]

Accessing local variables
(+ simulates register indirect,
direct addressing modes)

Register indirect

Add R4,(R1) Regs[R4]

←

Regs[R4]
 + Mem[Regs[R1]]

Accessing using a pointer or a
computed address.

Indexed

Add R3,(R1 + R2) Regs[R3]

←

Regs[R3]
+Mem[Regs[R1]+Regs[R2]]

Sometimes useful in array
addressing:

R1

 = base of array;

R2

 = index amount.

Direct or
absolute

Add R1,(1001) Regs[R1]

←Regs[R1]
 + Mem[1001]

Sometimes useful for access-
ing static data; address con-
stant may need to be large.

Memory indirect Add R1,@(R3) Regs[R1]←Regs[R1]
 + Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer
p, then mode yields *p.

Autoincrement Add R1,(R2)+ Regs[R1]←Regs[R1]
 + Mem[Regs[R2]]
Regs[R2]←Regs[R2]+d

Useful for stepping through ar-
rays within a loop. R2 points to
start of array; each reference
increments R2 by size of an
element, d.

Autodecrement Add R1,–(R2) Regs[R2]←Regs[R2]–d
Regs[R1]←Regs[R1]
 + Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/increment can
also act as push/pop to imple-
ment a stack.

Scaled Add R1,100(R2)[R3] Regs[R1]← Regs[R1]+
Mem[100+Regs[R2]
 + Regs[R3]*d]

Used to index arrays. May be
applied to any indexed ad-
dressing mode in some com-
puters.

FIGURE 2.6 Selection of addressing modes with examples, meaning, and usage. In autoincrement/decrement and
scaled addressing modes, the variable d designates the size of the data item being accessed (i.e., whether the instruction
is accessing 1, 2, 4, or 8 bytes). These addressing modes are only useful when the elements being accessed are adjacent
in memory. RISC computers use Displacement addressing to simulate Register Indirect with 0 for the address and simulate
Direct addressing using 0 in the base register. In our measurements, we use the first name shown for each mode. The ex-
tensions to C used as hardware descriptions are defined on the next page, also on page 144, and on the back inside cover.

2.3 Memory Addressing 109

As Figure 2.7 shows, immediate and displacement addressing dominate ad-
dressing mode usage. Let’s look at some properties of these two heavily used
modes.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is that of
the range of displacements used. Based on the use of various displacement sizes,
a decision of what sizes to support can be made. Choosing the displacement field
sizes is important because they directly affect the instruction length. Figure 2.8
shows the measurements taken on the data access on a load-store architecture us-
ing our benchmark programs. We look at branch offsets in section 2.9—data ac-
cessing patterns and branches are different; little is gained by combining them,
although in practice the immediate sizes are made the same for simplicity.

Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves where a constant is wanted in a register. The last case oc-

FIGURE 2.7 Summary of use of memory addressing modes (including immediates). These major addressing modes
account for all but a few percent (0% to 3%) of the memory accesses. Register modes, which are not counted, account for
one-half of the operand references, while memory addressing modes (including immediate) account for the other half. Of
course, the compiler affects what addressing modes are used; see section 2.11. The memory indirect mode on the VAX can
use displacement, autoincrement, or autodecrement to form the initial memory address; in these programs, almost all the
memory indirect references use displacement mode as the base. Displacement mode includes all displacement lengths (8,
16, and 32 bit). The PC-relative addressing modes, used almost exclusively for branches, are not included. Only the ad-
dressing modes with an average frequency of over 1% are shown. The data are from a VAX using three SPEC89 programs.

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register indirect

Immediate

Displacement

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

1%
6%Memory indirect

TeX
spice
gcc 1%

Frequency of the addressing mode

110 Chapter 2 Instruction Set Principles and Examples

FIGURE 2.8 Displacement values are widely distributed. There are both a large number of small values and a fair num-
ber of large values. The wide distribution of displacement values is due to multiple storage areas for variables and different
displacements to access them (see section 2.11) as well as the overall addressing scheme the compiler uses. The x axis is
log2 of the displacement; that is, the size of a field needed to represent the magnitude of the displacement. Zero on the x
axis shows the percentage of displacements of value 0. The graph does not include the sign bit, which is heavily affected
by the storage layout. Most displacements are positive, but a majority of the largest displacements (14+ bits) is negative.
Since this data was collected on a computer with 16-bit displacements, it cannot tell us about longer displacements. These
data were taken on the Alpha architecture with full optimization (see section 2.11) for SPEC CPU2000, showing the average
of integer programs (CINT2000) and the average of floating-point programs (CFP2000).

FIGURE 2.9 About one-quarter of data transfers and ALU operations have an immediate operand. The bottom bars
show that integer programs use immediates in about one-fifth of the instructions, while floating-point programs use immedi-
ates in about one-sixth of the instructions. For loads, the load immediate instruction loads 16 bits into either half of a 32-bit
register. Load immediates are not loads in a strict sense because they do not access memory. Occasionally a pair of load
immediates is used to load a 32-bit constant, but this is rare. (For ALU operations, shifts by a constant amount are included
as operations with immediate operands.) These measurements as in Figure 2.8.

0 %

5 %

10%

15%

20%

25%

30%

35%

40%

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Number of bits of displacement

 Percentage of
displacement

Integer average

Floating-point average

21%

25%

23%

16%

19%

22%

0 % 5 % 10% 15% 20% 25% 30%

All instructions

ALU operations

Loads

Floating-point average

Integer average

2.4 Addressing Modes for Signal Processing 111

curs for constants written in the code–which tend to be small–and for address
constants, which tend to be large. For the use of immediates it is important to
know whether they need to be supported for all operations or for only a subset.
The chart in Figure 2.9 shows the frequency of immediates for the general classes
of integer operations in an instruction set.

Another important instruction set measurement is the range of values for im-
mediates. Like displacement values, the size of immediate values affects instruc-
tion length. As Figure 2.10 shows, small immediate values are most heavily used.
Large immediates are sometimes used, however, most likely in addressing calcu-
lations.

To give a flavor of the different perspective between different architecture cul-
tures, here are two addressing modes that distinguish DSPs.

Since DSPs deal with infinite, continuous streams of data, they routinely rely
on circular buffers. Hence, as data is added to the buffer, a pointer is checked to
see if it is pointing at the end of the buffer. If not, it increments the pointer to the
next address; if it is, the pointer is set instead to the start of the buffer. Similar is-
sues arise when emptying a buffer.

FIGURE 2.10 The distribution of immediate values. The x axis shows the number of bits needed to represent the mag-
nitude of an immediate value—0 means the immediate field value was 0. The majority of the immediate values are positive.
About 20% were negative for CINT2000 and about 30% were negative for CFP2000. These measurements were taken on
a Alpha, where the maximum immediate is 16 bits, for the same programs as in Figure 2.8. A similar measurement on the
VAX, which supported 32-bit immediates, showed that about 20% to 25% of immediates were longer than 16 bits.

2.4 Addressing Modes for Signal Processing

-

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Number of bits needed for immediate

Percent of
immediates

Floating-point average

Integer average

112 Chapter 2 Instruction Set Principles and Examples

Every recent DSP has a modulo or circular addressing mode to handle this
case automatically, our first novel DSP addressing mode. It keeps a start register
and an end register with every address register, allowing the autoincrement and
autodecrement addressing modes to reset when the reach the end of the buffer.
One variation makes assumptions about the buffer size starting at an address that
ends in “xxx00.00” and so uses just a single buffer length register per address
register,

Even though DSPs are tightly targeted to a small number of algorithms, its
surprising this next addressing mode is included for just one application: Fast
Fourier Transform (FFT). FFTs start or end their processing with data shuffled in
a particular order. For eight data items in a radix-2 FFT, the transformation is list-
ed below, with addresses in parentheses shown in binary:

0 (0002) => 0 (0002)

1 (0012) => 4 (1002)

2 (0102) => 2 (0102)

3 (0112) => 6 (1102)

4 (1002) => 1 (0012)

5 (1012) => 5 (1012)

6 (1102) => 3 (0112)

7 (1112) => 7 (1112)

Without special support such address transformation would take an extra memory
access to get the new address, or involve a fair amount of logical instructions to
transform the address.

The DSP solution is based on the observation that the resulting binary address
is simply the reverse of the initial address! For example, address 1002 (4) be-
comes 0012(1). Hence, many DSPs have this second novel addressing mode–– bit
reverse addressing––whereby the hardware reverses the lower bits of the address,
with the number of bits reversed depending on the step of the FFT algorithm.

As DSP programmers migrate towards larger programs and hence become
more attracted to compilers, they have been trying to use the compiler technology
developed for the desktop and embedded computers. Such compilers have no
hope of taking high-level language code and producing these two addressing
modes, so they are limited to assembly language programmer. As stated before,
the DSP community routinely uses library routines, and hence programmers may
benefit even if they write at a higher level.

Figure 2.11 shows the static frequency of data addressing modes in a DSP for
a set of 54 library routines. This architecture has 17 addressing modes, yet the 6
modes also found in Figure 2.6 on page 108 for desktop and server computers ac-
count for 95% of the DSP addressing. Despite measuring hand-coded routines to
derive Figure 2.11, the use of novel addressing mode is sparse.

2.4 Addressing Modes for Signal Processing 113

These results are just for one library for just one DSP, other libraries might use
more addressing modes, and static and dynamic frequencies may differ. Yet Fig-
ure 2.11 still makes the point that there is often a mismatch between what pro-
grammers and compilers actually use versus what architects expect, and this is
just as true for DSPs as it is for more traditional processors.

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to support
at least the following addressing modes: displacement, immediate, and register
indirect. Figure 2.7 on page 109 shows they represent 75% to 99% of the ad-
dressing modes used in our SPEC measurements. Second, we would expect the
size of the address for displacement mode to be at least 12 to 16 bits, since the
caption in Figure 2.8 on page 110 suggests these sizes would capture 75% to

Addressing Mode Assembly
Symbol

Percent

Immediate #num 30.02%

Displacement ARx(num) 10.82%

Register indirect *ARx 17.42%

Direct num 11.99%

Autoincrement, pre increment (increment register before use contents as address) *+ARx 0

Autoincrement, post increment (increment register after use contents as address) *ARx+ 18.84%

Autoincrement, pre increment with 16b immediate *+ARx(num) 0.77%

Autoincrement, pre increment, with circular addressing *ARx+% 0.08%

Autoincrement, post increment with 16b immediate, with circular addressing *ARx+(num)% 0

Autoincrement, post increment by contents of AR0 *ARx+0 1.54%

Autoincrement, post increment by contents of AR0, with circular addressing *ARx+0% 2.15%

Autoincrement, post increment by contents of AR0, with bit reverse addressing *ARx+0B 0

Autodecrement, post decrement (decrement register after use contents as address *ARx- 6.08%

Autodecrement, post decrement, with circular addressing *ARx-% 0.04%

Autodecrement, post decrement by contents of AR0 *ARx-0 0.16%

Autodecrement, post decrement by contents of AR0, with circular addressing *ARx-0% 0.08%

Autodecrement, post decrement by contents of AR0, with bit reverse addressing *ARx-0B 0

Total 100.00%

FIGURE 2.11 Frequency of addressing modes for TI TMS320C54x DSP. The C54x has 17 data addressing modes, not
counting register access, but the four found in MIPS account for 70% of the modes. Autoincrement and autodecrement,
found in some RISC architectures, account for another 25% of the usage. This data was collected form a measurement of
static instructions for the C-callable library of 54 DSP routines coded in assembly language. See http://www.ti.com/sc/docs/
products/dsp/c5000/c54x/54dsplib.htm

114 Chapter 2 Instruction Set Principles and Examples

99% of the displacements. Third, we would expect the size of the immediate field
to be at least 8 to 16 bits. As the caption in Figure 2.10 suggests, these sizes
would capture 50% to 80% of the immediates.

Desktop and server processors rely on compilers and so addressing modes
must match the ability of the compilers to use them, while historically DSPs rely
on hand-coded libraries to exercise novel addressing modes. Even so, there are
times when programmers find they do not need the clever tricks that architects
thought would be useful––or tricks that other programmers promised that they
would use. As DSPs head towards relying even more on compiled code, we ex-
pect increasing emphasis on simpler addressing modes.

Having covered instruction set classes and decided on register-register archi-
tectures plus the recommendations on data addressing modes above, we next cov-
er the sizes and meanings of data.

How is the type of an operand designated? Normally, encoding in the opcode
designates the type of an operand—this is the method used most often. Alterna-
tively, the data can be annotated with tags that are interpreted by the hardware.
These tags specify the type of the operand, and the operation is chosen accord-
ingly. Computers with tagged data, however, can only be found in computer mu-
seums.

Let’s start with desktop and server architectures. Usually the type of an oper-
and—integer, single-precision floating point, character, and so on—effectively
gives its size. Common operand types include character (8 bits), half word (16
bits), word (32 bits), single-precision floating point (also 1 word), and double-
precision floating point (2 words). Integers are almost universally represented as
two’s complement binary numbers. Characters are usually in ASCII, but the 16-
bit Unicode (used in Java) is gaining popularity with the internationalization of
computers. Until the early 1980s, most computer manufacturers chose their own
floating-point representation. Almost all computers since that time follow the
same standard for floating point, the IEEE standard 754. The IEEE floating-point
standard is discussed in detail in Appendix G <Float>.

Some architectures provide operations on character strings, although such op-
erations are usually quite limited and treat each byte in the string as a single char-
acter. Typical operations supported on character strings are comparisons and
moves.

For business applications, some architectures support a decimal format, usu-
ally called packed decimal or binary-coded decimal;—4 bits are used to encode
the values 0–9, and 2 decimal digits are packed into each byte. Numeric character
strings are sometimes called unpacked decimal, and operations—called packing
and unpacking—are usually provided for converting back and forth between
them.

2.5 Type and Size of Operands

2.5 Type and Size of Operands 115

One reason to use decimal operands is to get results that exactly match deci-
mal numbers, as some decimal fractions do not have an exact representation in
binary. For example, 0.1010 is a simple fraction in decimal but in binary it re-
quires an infinite set of repeating digits: 0.0001100110011...2. Thus, calculations
that are exact in decimal can be close but inexact in binary, which can be a prob-
lem for financial transactions. (See Appendix G <Float> to learn more about pre-
cise arithmetic.)

Our SPEC benchmarks use byte or character, half word (short integer), word
(integer), double word (long integer) and floating-point data types. Figure 2.12
shows the dynamic distribution of the sizes of objects referenced from memory
for these programs. The frequency of access to different data types helps in de-
ciding what types are most important to support efficiently. Should the computer
have a 64-bit access path, or would taking two cycles to access a double word be
satisfactory? As we saw earlier, byte accesses require an alignment network: How
important is it to support bytes as primitives? Figure 2.12 uses memory references
to examine the types of data being accessed.

In some architectures, objects in registers may be accessed as bytes or half
words. However, such access is very infrequent—on the VAX, it accounts for no
more than 12% of register references, or roughly 6% of all operand accesses in
these programs.

FIGURE 2.12 Distribution of data accesses by size for the benchmark programs. The
double word data type is used for double-precision floating-point in floating-point programs
and for addresses, since the computer uses 64-bit addresses. On a 32-bit address computer
the 64-bit addresses would be replaced by 32-bit addresses, and so almost all double-word
accesses in integer programs would become single word accesses.

18%

3 %

18%

62%

22%

19%

28%

31%

0 %

0 %

6 %

94%

0 %

0 %

40%

60%

0 % 20% 40% 60% 80% 100%

 Byte
(8 bits)

 Half word
(16 bits)

 Word
(32 bits)

Double word
(64 bits)

applu

equake

gzip

perl

116 Chapter 2 Instruction Set Principles and Examples

Graphics applications deal with 2D and 3D images. A common 3D data type is
called a vertex, a data structure with three components: x coordinate, y coordi-
nate, a z coordinate, and a fourth coordinate (w) to help with color or hidden sur-
faces. Three vertices specify a graphics primitive such as a triangle. Vertex values
are usually 32-bit floating-point values.

Assuming a triangle is visible, when it is rendered it is filled with pixels. Pix-
els are usually 32 bits, usually consisting of four 8-bit channels: R (red), G
(green), B (blue) and A (which denotes the transparency of the surface or trans-
parency of the pixel when the pixel is rendered).

DSPs add fixed point to the data types discussed so far. If you think of integers
as having a binary point to the right of the least significant bit, fixed point has a
binary point just to the right of the sign bit. Hence, fixed-point data are fractions
between -1 and +1.

E X A M P L E Here are three simple16-bit patterns:

0100 0000 0000 0000

0000 1000 0000 0000

0100 1000 0000 1000

What values do they represent if they are two’s complement integers? Fixed-
point numbers?

A N S W E R Number representation tells us that the i-th digit to the left of the binary
point represents 2i-1 and the i-th digit to the right of the binary point repre-
sents 2-i. First assume these three patterns are integers. Then the binary
point is to the far right, so they represent 214, 211, and (214+ 211+ 23), or
16384, 2048, and 18440.

Fixed point places the binary point just to the right of the sign bit, so as fixed
point these patterns represent 2-1, 2-4, and (2-1+ 2-4 + 2-12). The fractions are
1/2, 1/16, and (2048 + 256 + 1)/4096 or 2305/4096,which represents about
0.50000, 0.06250, and 0.56274. Alternatively, for an n-bit two’s-complement,
fixed-point number we could just use the divide the integer presentation by the
2n-1 to derive the same results:
16384/32768=1/2, 2048/32768=1/16, and 18440/32768=2305/4096.

n

Fixed point can be thought of as just low cost floating point. It doesn’t include
an exponent in every word and have hardware that automatically aligns and nor-
malizes operands. Instead, fixed point relies on the DSP programmer to keep the

2.6 Operands for Media and Signal Processing

2.6 Operands for Media and Signal Processing 117

exponent in a separate variable and ensure that each result is shifted left or right
to keep the answer aligned to that variable. Since this exponent variable is often
shared by a set of fixed-point variables, this style of arithmetic is also called
blocked floating point, since a block of variables have a common exponent

To support such manual calculations, DSPs usually have some registers that
are wider to guard against round-off error, just as floating-point units internally
have extra guard bits. Figure 2.13 surveys four generations of DSPs, listing data
sizes and width of the accumulating registers. Note that DSP architects are not
bound by the powers of 2 for word sizes. Figure 2.14 shows the size of data oper-
ands for the TI TMS320C540x DSP.

Summary: Type and Size of Operands

From this section we would expect a new 32-bit architecture to support 8-, 16-,
and 32-bit integers and 32-bit and 64-bit IEEE 754 floating-point data. A new 64-
bit address architecture would need to support 64-bit integers as well. The level
of support for decimal data is less clear, and it is a function of the intended use of
the computer as well as the effectiveness of the decimal support. DSPs need wid-
er accumulating registers than the size in memory to aid accuracy in fixed-point
arithmetic.

We have reviewed instruction set classes and chosen the register-register class,
reviewed memory addressing and selected displacement, immediate, and register
indirect addressing modes, and selected the operand sizes and types above. Now
we are ready to look at instructions that do the heavy lifting in the architecture.

Generation Year Example DSP Data Width Accumulator
Width

1 1982 TI TMS32010 16 bits 32 bits

2 1987 Motorola DSP56001 24 bits 56 bits

3 1995 Motorola DSP56301 24 bits 56 bits

4 1998 TI TMS320C6201 16 bits 40 bits

FIGURE 2.13 Four generations of DSPs, their data width, and the width of the registers that
reduces round-off error. Section 2.8 explains that multiply-accumulate operations use wide
registers to avoid loosing precision when accumulating double-length products [Bier 1997].

Data Size Memory Operand in Operation Memory Operand in Data Transfer

16 bits 89.3% 89.0%

32 bits 10.7% 11.0%

FIGURE 2.14 Size of data operands for TMS320C540x DSP. About 90% of operands are
16 bits. This DSP has two 40-bit accumulators. There are no floating-point operations, as is
typical of many DSPs, so these data are all fixed-point integers. For details on these mea-
surements, see the caption of Figure 2.11 on page 113.

118 Chapter 2 Instruction Set Principles and Examples

The operators supported by most instruction set architectures can be categorized
as in Figure 2.15. One rule of thumb across all architectures is that the most
widely executed instructions are the simple operations of an instruction set. For
example Figure 2.16 shows 10 simple instructions that account for 96% of in-
structions executed for a collection of integer programs running on the popular
Intel 80x86. Hence, the implementor of these instructions should be sure to make
these fast, as they are the common case.

As mentioned before, the instructions in Figure 2.16 are found in every com-
puter for every application––desktop, server, embedded––with the variations of
operations in Figure 2.15 largely depending on which data types that the instruc-
tion set includes.

Because media processing is judged by human perception, the data for multime-
dia operations is often much narrower than the 64-bit data word of modern desk-
top and server processors. For example, floating-point operations for graphics are
normally in single precision, not double precision, and often at precession less
than required by IEEE 754. Rather than waste the 64-bit ALUs when operating
on 32-bit, 16-bit, or even 8-bit integers, multimedia instructions can operate on

2.7 Operations in the Instruction Set

Operator type Examples

Arithmetic and logical Integer arithmetic and logical operations: add, subtract, and, or, multiple, divide

Data transfer Loads-stores (move instructions on computers with memory addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point Floating-point operations: add, multiply, divide, compare

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel and vertex operations, compression/decompression operations

FIGURE 2.15 Categories of instruction operators and examples of each. All computers generally provide a full set of
operations for the first three categories. The support for system functions in the instruction set varies widely among archi-
tectures, but all computers must have some instruction support for basic system functions. The amount of support in the
instruction set for the last four categories may vary from none to an extensive set of special instructions. Floating-point in-
structions will be provided in any computer that is intended for use in an application that makes much use of floating point.
These instructions are sometimes part of an optional instruction set. Decimal and string instructions are sometimes primi-
tives, as in the VAX or the IBM 360, or may be synthesized by the compiler from simpler instructions. Graphics instructions
typically operate on many smaller data items in parallel; for example, performing eight 8-bit additions on two 64-bit operands.

2.8 Operations for Media and Signal Processing

2.8 Operations for Media and Signal Processing 119

several narrower data items at the same time. Thus, a partitioned add operation
on 16-bit data with a 64-bit ALU would perform four 16-bit adds in a single
clock cycle. The extra hardware cost is simply to prevent carries between the four
16-bit partitions of the ALU. For example, such instructions might be used for
graphical operations on pixels.

 These operations are commonly called Single-Instruction Multiple Data
(SIMD) or vector instructions. Chapters 6 and Appendix F <vector> describe the
full machines that pioneered these architectures.

Most graphics multimedia applications use 32-bit floating-point operations.
Some computers double peak performance of single-precision, floating-point op-
erations; they allow a single instruction to launch two 32-bit operations on oper-
ands found side-by-side in a double precision register. Just as in the prior case,
the two partitions must be insulated to prevent operations on one half to affect the
other. Such floating-point operations are called paired-single operations. For ex-
ample, such an operation might be used to graphical transformations of vertices.
This doubling in performance is typically accomplished by doubling the number
of floating-point units, making it more expensive than just suppressing carries in
integer adders.

Figure 2.17 summaries the SIMD multimedia instructions found in several re-
cent computers..

DSP operations

DSPs also provide operations found in the first three rows of Figure 2.15, but
they change the semantics a bit. First, because they are often used in real time ap-

Rank 80x86 instruction
Integer average

(% total executed)

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

FIGURE 2.16 The top 10 instructions for the 80x86. Simple instructions dominate this
list, and are responsible for 96% of the instructions executed. These percentages are the av-
erage of the five SPECint92 programs.

120 Chapter 2 Instruction Set Principles and Examples

plications, there is not an option of causing an exception on arithmetic overflow
(otherwise it could miss an event); thus, the result will be used no matter what the
inputs. To support such an unyielding environment, DSP architectures use satu-
rating arithmetic: if the result is too large to be represented, it is set to the largest
representable number, depending on the sign of the result. In contrast, two’s com-
plement arithmetic can add a small positive number to a large positive number
and end up with a negative result. DSP algorithms rely on saturating arithmetic,
and would be incorrect if run on a computer without it.

A second issue for DSPs is that there are several modes to round the wider ac-
cumulators into the narrower data words, just as the IEEE 754 has several round-
ing modes to chose from.

Instruction category Alpha
MAX

 HP
PA-RISC

MAX2

Intel
Pentium
MMX

 Power PC
AltiVec

 SPARC VIS

Add/subtract 4H 8B,4H,2W 16B, 8H, 4W 4H,2W

Saturating add/sub 4H 8B,4H 16B, 8H, 4W

Multiply 4H 16B, 8H

Compare 8B (>=) 8B,4H,2W
(=,>)

16B, 8H, 4W
(=,>,>=,<,<=)

4H,2W
(=,not=,>,<=)

Shift right/left 4H 4H,2W 16B, 8H, 4W

Shift right arithmetic 4H 16B, 8H, 4W

Multiply and add 8H

Shift and add (saturating) 4H

And/or/xor 8B,4H,2W 8B,4H,2W 8B,4H,2W 16B, 8H, 4W 8B,4H,2W

Absolute difference 8B 16B, 8H, 4W 8B

Maximum/minimum 8B, 4W 16B, 8H, 4W

Pack (2n bits --> n bits) 2W->2B,
4H->4B

2*4H->8B 4H->4B,
2W->2H

4W->4B,
8H->8B

2W->2H,
2W->2B, 4H-

>4B

 Unpack/merge 2B->2W,
4B->4H

 2B->2W,
4B->4H

4B->4W,
8B->8H

4B->4H,
2*4B->8B

 Permute/shuffle 4H 16B, 8H, 4W

FIGURE 2.17 Summary of multimedia support for desktop RISCs. Note the diversity of support, with little in common
across the five architectures. All are fixed width operations, performing multiple narrow operations on either a 64-bit or 128-
bit ALU. B stands for byte (8 bits), H for halfword (16 bits), and W for word (32 bits). Thus, 8B means an operation on 8 bytes
in a single instruction. Note that AltiVec assume a128-bit ALU, and the rest assume 64 bits. Pack and unpack use the no-
tation 2*2W to mean 2 operands each with 2 words. This table is a simplification of the full multimedia architectures, leaving
out many details. For example, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instruc-
tions to set registers to constants. Also, this table does not include the memory alignment operation of AltiVec, MAX and VIS

2.8 Operations for Media and Signal Processing 121

Finally, the targeted kernels for DSPs accumulate a series of products, and
hence have a multiply-accumulate or MAC instruction. MACs are key to dot
product operations for vector and matrix multiplies. In fact, MACs/second is the
primary peak-performance metric that DSP architects brag about. The wide accu-
mulators are used primarily to accumulate products, with rounding used when
transferring results to memory.

Figure 2.18 shows the static mix of instructions for the TI TMS320C540x
DSP for a set of library routines. This 16-bit architecture uses two 40-bit accumu-
lators, plus a stack for passing parameters to library routines and for saving return
addresses. Note that DSPs have many more multiplies and MACs than in desktop

Instruction Percent

store mem16 32.2%

load mem16 9.4%

add mem16 6.8%

call 5.0%

push mem16 5.0%

subtract mem16 4.9%

multiple-accumulate (MAC) mem16 4.6%

move mem-mem 16 4.0%

change status 3.7%

pop mem16 2.8%

conditional branch 2.6%

load mem32 2.5%

return 2.5%

store mem32 2.0%

branch 2.0%

repeat 2.0%

multiply 1.8%

NOP 1.5%

add mem32 1.3%

subtract mem32 0.9%

Total 97.2%

FIGURE 2.18 Mix of instructions for TMS320C540x DSP. As in Figure 2.16, simple instructions dominate this list of most
frequent instructions. Mem16 stands for a 16-bit memory operand and mem32 stands for a 32-bit memory operand. The
large number of change status instructions is to set mode bits to affect instructions, essentially saving opcode space in these
16-bit instructions by keeping some of it in a status register. For example, status bits determine whether 32-bit operations
operate in SIMD mode to produce16-bit results in parallel or act as a single 32-bit result. For details on these measurements,
see the caption of Figure 2.11 on page 113.

122 Chapter 2 Instruction Set Principles and Examples

programs. Although not shown in the figure, 15% to 20% of the multiplies and
MACs round the final sum. The C54 also has 8 address registers that can be ac-
cessed via load and store instructions, as these registers are memory mapped: that
is, each register also has a memory address. The larger number of stores is due in
part to writing portions of the 40-bit accumulators to 16-bit words, and also to
transfer between registers as their index registers also have memory addressees.
There are no floating-point operations, as is typical of many DSPs, so these oper-
ations are all on fixed-point integers.

Summary: Operations in the Instruction Set

From this section we see the importance and popularity of simple instructions:
load, store, add, subtract, move register-register, and, shift. DSPs add multiplies
and multiply-accumulates to this simple set of primitives.

Reviewing where we are in the architecture space, we have looked at instruc-
tion classes and selected register-register. We selected displacement, immediate,
and register indirect addressing and selected 8-,16-, 32-, and 64-bit integers and
32- and 64-bit floating point. For operations we emphasize the simple list men-
tioned above. We are now ready to show how computers make decisions.

Because the measurements of branch and jump behavior are fairly independent of
other measurements and applications, we now examine the use of control-flow
instructions, which have little in common with operations of the prior sections.

There is no consistent terminology for instructions that change the flow of
control. In the 1950s they were typically called transfers. Beginning in 1960 the
name branch began to be used. Later, computers introduced additional names.
Throughout this book we will use jump when the change in control is uncondi-
tional and branch when the change is conditional.

We can distinguish four different types of control-flow change:

1. Conditional branches

2. Jumps

3. Procedure calls

4. Procedure returns

We want to know the relative frequency of these events, as each event is different,
may use different instructions, and may have different behavior. Figure 2.19
shows the frequencies of these control-flow instructions for a load-store comput-
er running our benchmarks.

2.9 Instructions for Control Flow

2.9 Instructions for Control Flow 123

Addressing Modes for Control Flow Instructions

The destination address of a control flow instruction must always be specified.
This destination is specified explicitly in the instruction in the vast majority of
cases—procedure return being the major exception—since for return the target is
not known at compile time. The most common way to specify the destination is to
supply a displacement that is added to the program counter, or PC. Control flow
instructions of this sort are called PC-relative. PC-relative branches or jumps are
advantageous because the target is often near the current instruction, and specify-
ing the position relative to the current PC requires fewer bits. Using PC-relative
addressing also permits the code to run independently of where it is loaded. This
property, called position independence, can eliminate some work when the pro-
gram is linked and is also useful in programs linked dynamically during execution.

To implement returns and indirect jumps when the target is not known at com-
pile time, a method other than PC-relative addressing is required. Here, there
must be a way to specify the target dynamically, so that it can change at runtime.
This dynamic address may be as simple as naming a register that contains the tar-
get address; alternatively, the jump may permit any addressing mode to be used
to supply the target address.

These register indirect jumps are also useful for four other important features:

1. case or switch statements found in most programming languages (which select among
one of several alternatives);

2. virtual functions or methods in object-oriented languages like C++ or Java (which al-
low different routines to be called depending on the type of the argument);

3. high order functions or function pointers in languages like C or C++ (which al-
lows functions to be passed as arguments giving some of the flavor of object oriented
programming), and

FIGURE 2.19 Breakdown of control flow instructions into three classes: calls or re-
turns, jumps, and conditional branches. Conditional branches clearly dominate. Each type
is counted in one of three bars. The programs and computer used to collect these statistics
are the same as those in Figure 2.8.

75%

6 %

19%

82%

10%

8 %

0 % 25% 50% 75% 100%

cond.branch

jump

cal l / return

Frequency of branch instructions

Floating-point Average

Integer Average

124 Chapter 2 Instruction Set Principles and Examples

4. dynamically shared libraries (which allow a library to be loaded and linked at runtime
only when it is actually invoked by the program rather than loaded and linked statically
before the program is run).

In all four cases the target address is not known at compile time, and hence is
usually loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targets, an
important question concerns how far branch targets are from branches. Knowing
the distribution of these displacements will help in choosing what branch offsets
to support and thus will affect the instruction length and encoding. Figure 2.20
shows the distribution of displacements for PC-relative branches in instructions.
About 75% of the branches are in the forward direction.

FIGURE 2.20 Branch distances in terms of number of instructions between the target
and the branch instruction. The most frequent branches in the integer programs are to tar-
gets that can be encoded in four to eight bits. This result tells us that short displacement fields
often suffice for branches and that the designer can gain some encoding density by having a
shorter instruction with a smaller branch displacement. These measurements were taken on
a load-store computer (Alpha architecture) with all instructions aligned on word boundaries.
An architecture that requires fewer instructions for the same program, such as a VAX, would
have shorter branch distances. However, the number of bits needed for the displacement
may increase if the computer has variable length instructions to be aligned on any byte
boundary. Exercise 2.1 shows the accumulative distribution of this branch displacement data
(see Figure 2.42 on page 173). The programs and computer used to collect these statistics
are the same as those in Figure 2.8.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bits of branch displacement

Floating-point
average

Integer average

2.9 Instructions for Control Flow 125

Conditional Branch Options

Since most changes in control flow are branches, deciding how to specify the
branch condition is important. Figure 2.21 shows the three primary techniques in
use today and their advantages and disadvantages.

One of the most noticeable properties of branches is that a large number of the
comparisons are simple tests, and a large number are comparisons with zero.
Thus, some architectures choose to treat these comparisons as special cases, es-
pecially if a compare and branch instruction is being used. Figure 2.22 shows the
frequency of different comparisons used for conditional branching.

DSPs add another looping structure, usually called a repeat instruction. It al-
lows a single instruction or a block of instructions to be repeated up to, say, 256
times. For example, the TMS320C54 dedicates three special registers to hold the
block starting address, ending address, and repeat counter. The memory instruc-
tions in a repeat loop will typically have autoincrement or autodecrement ad-
dressing to access a vector. The goal of such instructions is to avoid loop
overhead, which can be significant in the small loops of DSP kernels.

Procedure Invocation Options

Procedure calls and returns include control transfer and possibly some state
saving; at a minimum the return address must be saved somewhere, sometimes in
a special link register or just a GPR. Some older architectures provide a mecha-

Name Examples How condition is tested Advantages Disadvantages

Condition
code (CC)

80x86,
ARM,
PowerPC,
SPARC,
SuperH

Special bits are set by ALU
operations, possibly under
program control.

Sometimes condition
is set for free.

CC is extra state. Condition
codes constrain the ordering
of instructions since they pass
information from one instruc-
tion to a branch.

Condition
register

Alpha,
MIPS

Tests arbitrary register with
the result of a comparison.

Simple. Uses up a register.

Compare
and branch

PA-RISC,
VAX

Compare is part of the
branch. Often compare is
limited to subset.

One instruction rather
than two for a branch.

May be too much work per
instruction for pipelined exe-
cution.

FIGURE 2.21 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on programs
show that this rarely happens. The major implementation problems with condition codes arise when the condition code is
set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the instruction. Com-
puters with compare and branch often limit the set of compares and use a condition register for more complex compares.
Often, different techniques are used for branches based on floating-point comparison versus those based on integer com-
parison. This dichotomy is reasonable since the number of branches that depend on floating-point comparisons is much
smaller than the number depending on integer comparisons.

126 Chapter 2 Instruction Set Principles and Examples

nism to save many registers, while newer architectures require the compiler to
generate stores and loads for each register saved and restored.

There are two basic conventions in use to save registers: either at the call site
or inside the procedure being called. Caller saving means that the calling proce-
dure must save the registers that it wants preserved for access after the call, and
thus the called procedure need not worry about registers. Callee saving is the op-
posite: the called procedure must save the registers it wants to use, leaving the
caller is unrestrained.

There are times when caller save must be used because of access patterns to
globally visible variables in two different procedures. For example, suppose we
have a procedure P1 that calls procedure P2, and both procedures manipulate the
global variable x. If P1 had allocated x to a register, it must be sure to save x to a
location known by P2 before the call to P2. A compiler’s ability to discover when
a called procedure may access register-allocated quantities is complicated by the
possibility of separate compilation. Suppose P2 may not touch x but can call an-
other procedure, P3, that may access x, yet P2 and P3 are compiled separately.
Because of these complications, most compilers will conservatively caller save
any variable that may be accessed during a call.

In the cases where either convention could be used, some programs will be
more optimal with callee save and some will be more optimal with caller save. As
a result, the most real systems today use a combination of the two mechanisms.

FIGURE 2.22 Frequency of different types of compares in conditional branches. Less
than (or equal) branches dominate this combination of compiler and architecture. These mea-
surements include both the integer and floating-point compares in branches. The programs
and computer used to collect these statistics are the same as those in Figure 2.8

35%

33%

0 %

11%

18%

2 %

34%

44%

0 %

0 %

16%

5 %

0 % 10% 20% 30% 40% 50%

Less than

Less than or equal

Greater than

Greater than or Equal

Equal

Not equal

Frequency of comparison types in branches

Floating-point Average

Integer Average

2.10 Encoding an Instruction Set 127

This convention is specified in an application binary interface (ABI) that sets
down the basic rules as to which registers should be caller saved and which
should be callee saved. Later in this chapter we will examine the mismatch be-
tween sophisticated instructions for automatically saving registers and the needs
of the compiler.

Summary: Instructions for Control Flow

Control flow instructions are some of the most frequently executed instructions.
Although there are many options for conditional branches, we would expect
branch addressing in a new architecture to be able to jump to hundreds of instruc-
tions either above or below the branch. This requirement suggests a PC-relative
branch displacement of at least 8 bits. We would also expect to see register-indi-
rect and PC-relative addressing for jump instructions to support returns as well as
many other features of current systems.

We have now completed our instruction architecture tour at the level seen by
assembly language programmer or compiler writer. We are leaning towards a reg-
ister-register architecture with displacement, immediate, and register indirect ad-
dressing modes. These data are 8-,16-, 32-, and 64-bit integers and 32- and 64-bit
floating-point data. The instructions include simple operations, PC-relative con-
ditional branches, jump and link instructions for procedure call, and register indi-
rect jumps for procedure return (plus a few other uses.)

Now we need to select how to represent this architecture in a form that makes
it easy for the hardware to execute.

Clearly, the choices mentioned above will affect how the instructions are encoded
into a binary representation for execution by the processor. This representation
affects not only the size of the compiled program; it affects the implementation of
the processor, which must decode this representation to quickly find the operation
and its operands. The operation is typically specified in one field, called the op-
code. As we shall see, the important decision is how to encode the addressing
modes with the operations.

This decision depends on the range of addressing modes and the degree of in-
dependence between opcodes and modes. Some older computers have one to five
operands with 10 addressing modes for each operand (see Figure 2.6 on
page 108). For such a large number of combinations, typically a separate address
specifier is needed for each operand: the address specifier tells what addressing
mode is used to access the operand. At the other extreme are load-store comput-
ers with only one memory operand and only one or two addressing modes; obvi-
ously, in this case, the addressing mode can be encoded as part of the opcode.

2.10 Encoding an Instruction Set

128 Chapter 2 Instruction Set Principles and Examples

When encoding the instructions, the number of registers and the number of ad-
dressing modes both have a significant impact on the size of instructions, as the
the register field and addressing mode field may appear many times in a single in-
struction. In fact, for most instructions many more bits are consumed in encoding
addressing modes and register fields than in specifying the opcode. The architect
must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the aver-
age instruction size and hence on the average program size.

3. A desire to have instructions encoded into lengths that will be easy to handle
in a pipelined implementation. (The importance of having easily decoded in-
structions is discussed in Chapters 3 and 4.) As a minimum, the architect wants
instructions to be in multiples of bytes, rather than an arbitrary bit length.
Many desktop and server architects have chosen to use a fixed-length instruc-
tion to gain implementation benefits while sacrificing average code size.

Figure 2.23 shows three popular choices for encoding the instruction set. The
first we call variable, since it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera-
tions. The second choice we call fixed, since it combines the operation and the
addressing mode into the opcode. Often fixed encoding will have only a single
size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size of
programs versus ease of decoding in the processor. Variable tries to use as few
bits as possible to represent the program, but individual instructions can vary
widely in both size and the amount of work to be performed.

Let’s look at an 80x86 instruction to see an example of the variable encoding:

add EAX,1000(EBX)

The name add means a 32-bit integer add instruction with two operands, and this
opcode takes 1 byte. An 80x86 address specifier is 1 or 2 bytes, specifying the
source/destination register (EAX) and the addressing mode (displacement in this
case) and base register (EBX) for the second operand. This combination takes one
byte to specify the operands. When in 32-bit mode (see Appendix C <80x86>),
the size of the address field is either 1 byte or 4 bytes. Since 1000 is bigger than
28, the total length of the instruction is

1 + 1 + 4 = 6 bytes

The length of 80x86 instructions varies between 1 and 17 bytes. 80x86 programs
are generally smaller than the RISC architectures, which use fixed formats (Ap-
pendix B <RISC>)

2.10 Encoding an Instruction Set 129

 Given these two poles of instruction set design of variable and fixed, the third
alternative immediately springs to mind: Reduce the variability in size and work
of the variable architecture but provide multiple instruction lengths to reduce
code size. This hybrid approach is the third encoding alternative, and we’ll see
examples shortly.

Reduced Code Size in RISCs

As RISC computers started being used in embedded applications, the 32-bit
fixed format became a liability since cost and hence smaller code are important.
In response, several manufacturers offered a new hybrid version of their RISC in-
struction sets, with both 16-bit and 32-bit instructions. The narrow instructions

FIGURE 2.23 Three basic variations in instruction encoding: variable length, fixed
length, and hybrid. The variable format can support any number of operands, with each ad-
dress specifier determining the addressing mode and the length of the specifier for that op-
erand. It generally enables the smallest code representation, since unused fields need not be
included. The fixed format always has the same number of operands, with the addressing
modes (if options exist) specified as part of the opcode (see also Figure C.3 on page C-4). It
generally results in the largest code size. Although the fields tend not to vary in their location,
they will be used for different purposes by different instructions. The hybrid approach has
multiple formats specified by the opcode, adding one or two fields to specify the addressing
mode and one or two fields to specify the operand address (see also Figure D.7 on page D-
12).

Operation &
no. of operands

Address
specifier 1

Address
field 1

Address
field 1

Operation Address
field 2

Address
field 3

Address
specifier

Operation Address
field

Address
specifier 1

Operation Address
specifier 2

Address
field

Address
specifier

Operation Address
field 1

Address
field 2

Address
specifier n

Address
field n

(a) Variable (e.g., VAX, Intel 80x86)

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

(c) Hybrid (e.g., IBM 360/70, MIPS16, Thumb, TI TMS320C54x)

130 Chapter 2 Instruction Set Principles and Examples

support fewer operations, smaller address and immediate fields, fewer registers,
and two-address format rather than the classic three-address format of RISC
computers. Appendix B <RISC> gives two examples, the ARM Thumb and
MIPS MIPS16, which both claim a code size reduction of up to 40%.

In contrast to these instruction set extensions, IBM simply compresses its
standard instruction set, and then adds hardware to decompress instructions as
they are fetched from memory on an instruction cache miss. Thus, the instruction
cache contains full 32-bit instructions, but compressed code is kept in main mem-
ory, ROMs, and the disk. The advantage of MIPS16 and Thumb is that instruction
caches acts as it they are about 25% larger, while IBM’s CodePack means that
compilers need not be changed to handle different instruction sets and instruction
decoding can remain simple.

CodePack starts with run-length encoding compression on any PowerPC pro-
gram, and then loads the resulting compression tables in a 2KB table on chip.
Hence, every program has its own unique encoding. To handle branches, which
are no longer to an aligned word boundary, the PowerPC creates a hash-table in
memory that maps between compressed and uncompressed addresses. Like a
TLB (Chapter 5), it caches the most recently used address maps to reduce the
number of memory accesses. IBM claims an overall performance cost of 10%,
resulting in a code size reduction of 35% to 40%.

Hitachi simply invented a RISC instruction set with a fixed,16-bit format,
called SuperH, for embedded applications (see Appendix B <RISC>). It has 16
rather than 32 registers to make it fit the narrower format and fewer instructions,
but otherwise looks like a classic RISC architecture.

Summary: Encoding the Instruction Set

Decisions made in the components of instruction set design discussed in prior
sections determine whether the architect has the choice between variable and
fixed instruction encodings. Given the choice, the architect more interested in
code size than performance will pick variable encoding, and the one more inter-
ested in performance than code size will pick fixed encoding. The appendices
give 11 examples of the results of architect’s choices. In Chapters 3 and 4, the im-
pact of variability on performance of the processor will be discussed further.

We have almost finished laying the groundwork for the MIPS instruction set
architecture that will be introduced in section 2.12. Before we do that, however, it
will be helpful to take a brief look at compiler technology and its effect on pro-
gram properties.

Today almost all programming is done in high-level languages for desktop and
server applications. This development means that since most instructions execut-

2.11 Crosscutting Issues: The Role of Compilers

2.11 Crosscutting Issues: The Role of Compilers 131

ed are the output of a compiler, an instruction set architecture is essentially a
compiler target. In earlier times for these applications, and currently for DSPs,
architectural decisions were often made to ease assembly language programming
or for a specific kernel. Because the compiler will be significantly affect the per-
formance of a computer, understanding compiler technology today is critical to
designing and efficiently implementing an instruction set.

Once it was popular to try to isolate the compiler technology and its effect on
hardware performance from the architecture and its performance, just as it was
popular to try to separate architecture from its implementation. This separation is
essentially impossible with today’s desktop compilers and computers. Architec-
tural choices affect the quality of the code that can be generated for a computer
and the complexity of building a good compiler for it, for better or for worse. For
example, section 2.14 shows the substantial performance impact on a DSP of
compiling vs. hand optimizing the code.

In this section, we discuss the critical goals in the instruction set primarily
from the compiler viewpoint. It starts with a review of the anatomy of current
compilers. Next we discuss how compiler technology affects the decisions of the
architect, and how the architect can make it hard or easy for the compiler to pro-
duce good code. We conclude with a review of compilers and multimedia opera-
tions, which unfortunately is a bad example of cooperation between compiler
writers and architects.

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. Figure 2.24
shows the structure of recent compilers

A compiler writer’s first goal is correctness—all valid programs must be com-
piled correctly. The second goal is usually speed of the compiled code. Typically,
a whole set of other goals follows these two, including fast compilation, debug-
ging support, and interoperability among languages. Normally, the passes in the
compiler transform higher-level, more abstract representations into progressively
lower-level representations. Eventually it reaches the instruction set. This struc-
ture helps manage the complexity of the transformations and makes writing a
bug-free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order and
perform some transformations before others. In the diagram of the optimizing
compiler in Figure 2.24, we can see that certain high-level optimizations are per-
formed long before it is known what the resulting code will look like. Once such
a transformation is made, the compiler can’t afford to go back and revisit all
steps, possibly undoing transformations. Such iteration would be prohibitive,
both in compilation time and in complexity. Thus, compilers make assumptions
about the ability of later steps to deal with certain problems. For example, com-

132 Chapter 2 Instruction Set Principles and Examples

pilers usually have to choose which procedure calls to expand in-line before they
know the exact size of the procedure being called. Compiler writers call this
problem the phase-ordering problem.

How does this ordering of transformations interact with the instruction set ar-
chitecture? A good example occurs with the optimization called global common
subexpression elimination. This optimization finds two instances of an expression
that compute the same value and saves the value of the first computation in a
temporary. It then uses the temporary value, eliminating the second computation
of the common expression.

For this optimization to be significant, the temporary must be allocated to a
register. Otherwise, the cost of storing the temporary in memory and later reload-
ing it may negate the savings gained by not recomputing the expression. There
are, in fact, cases where this optimization actually slows down code when the
temporary is not register allocated. Phase ordering complicates this problem, be-

FIGURE 2.24 Compilers typically consist of two to four passes, with more highly op-
timizing compilers having more passes. This structure maximizes the probability that a
program compiled at various levels of optimization will produce the same output when given
the same input. The optimizing passes are designed to be optional and may be skipped when
faster compilation is the goal and lower quality code is acceptable. A pass is simply one
phase in which the compiler reads and transforms the entire program. (The term phase is of-
ten used interchangeably with pass.) Because the optimizing passes are separated, multiple
languages can use the same optimizing and code-generation passes. Only a new front end is
required for a new language.

Language dependent;
machine independent

Dependencies
Transform language to
common intermediate form

Function

Front-end per
language

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Somewhat language dependent,
largely machine independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

2.11 Crosscutting Issues: The Role of Compilers 133

cause register allocation is typically done near the end of the global optimization
pass, just before code generation. Thus, an optimizer that performs this optimiza-
tion must assume that the register allocator will allocate the temporary to a regis-
ter.

Optimizations performed by modern compilers can be classified by the style
of the transformation, as follows:

1. High-level optimizations are often done on the source with output fed to later
optimization passes.

2. Local optimizations optimize code only within a straight-line code fragment
(called a basic block by compiler people).

3. Global optimizations extend the local optimizations across branches and intro-
duce a set of transformations aimed at optimizing loops.

4. Register allocation.

5. processor-dependent optimizations attempt to take advantage of specific ar-
chitectural knowledge.

Register Allocation

Because of the central role that register allocation plays, both in speeding up
the code and in making other optimizations useful, it is one of the most impor-
tant—if not the most important—optimizations. Register allocation algorithms
today are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates for al-
location to a register and then to use the graph to allocate registers. Roughly
speaking, the problem is how to use a limited set of colors so that no two adjacent
nodes in a dependency graph have the same color. The emphasis in the approach
is to achieve 100% register allocation of active variables. The problem of color-
ing a graph in general can take exponential time as a function of the size of the
graph (NP-complete). There are heuristic algorithms, however, that work well in
practice yielding close allocations that run in near linear time.

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables and
additional registers for floating point. Unfortunately, graph coloring does not
work very well when the number of registers is small because the heuristic algo-
rithms for coloring the graph are likely to fail.

Impact of Optimizations on Performance

It is sometimes difficult to separate some of the simpler optimizations—local
and processor-dependent optimizations—from transformations done in the code
generator. Examples of typical optimizations are given in Figure 2.25. The last
column of Figure 2.25 indicates the frequency with which the listed optimizing
transforms were applied to the source program.

134 Chapter 2 Instruction Set Principles and Examples

Figure 2.26 shows the effect of various optimizations on instructions executed
for two programs. In this case, optimized programs executed roughly 25% to
90% fewer instructions than unoptimized programs. The figure illustrates the im-
portance of looking at optimized code before suggesting new instruction set fea-
tures, for a compiler might completely remove the instructions the architect was
trying to improve.

Optimization name Explanation
Percentage of the total num-
ber of optimizing transforms

High-level At or near the source level; processor-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression elimination Replace two instances of the same
computation by single copy

18%

Constant propagation Replace all instances of a variable that
is assigned a constant with the constant

22%

Stack height reduction Rearrange expression tree to minimize re-
sources needed for expression evaluation

N.M.

Global Across a branch

Global common subexpression
elimination

Same as local, but this version crosses
branches

13%

Copy propagation Replace all instances of a variable A that
has been assigned X (i.e., A = X) with X

11%

Code motion Remove code from a loop that computes
same value each iteration of the loop

16%

Induction variable elimination Simplify/eliminate array-addressing
calculations within loops

2%

Processor-dependent Depends on processor knowledge

Strength reduction Many examples, such as replace multiply
by a constant with adds and shifts

N.M.

Pipeline scheduling Reorder instructions to improve pipeline
performance

N.M.

Branch offset optimization Choose the shortest branch displacement
that reaches target

N.M.

FIGURE 2.25 Major types of optimizations and examples in each class. These data tell us about the relative frequency
of occurrence of various optimizations. The third column lists the static frequency with which some of the common optimi-
zations are applied in a set of 12 small FORTRAN and Pascal programs. There are nine local and global optimizations done
by the compiler included in the measurement. Six of these optimizations are covered in the figure, and the remaining three
account for 18% of the total static occurrences. The abbreviation N.M. means that the number of occurrences of that opti-
mization was not measured. Processor-dependent optimizations are usually done in a code generator, and none of those
was measured in this experiment. The percentage is the portion of the static optimizations that are of the specified type.
Data from Chow [1983] (collected using the Stanford UCODE compiler).

2.11 Crosscutting Issues: The Role of Compilers 135

The Impact of Compiler Technology on the Architect’s Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set architecture. There are two important questions:
How are variables allocated and addressed? How many registers are needed to al-
locate variables appropriately? To address these questions, we must look at the
three separate areas in which current high-level languages allocate their data:

n The stack is used to allocate local variables. The stack is grown and shrunk on
procedure call or return, respectively. Objects on the stack are addressed rela-
tive to the stack pointer and are primarily scalars (single variables) rather than
arrays. The stack is used for activation records, not as a stack for evaluating ex-
pressions. Hence, values are almost never pushed or popped on the stack.

n The global data area is used to allocate statically declared objects, such as glo-
bal variables and constants. A large percentage of these objects are arrays or
other aggregate data structures.

FIGURE 2.26 Change in instruction count for the programs lucas and mcf from the SPEC2000 as compiler opti-
mization levels vary. Level 0 is the same as unoptimized code. Level 1 includes local optimizations, code scheduling, and
local register allocation. Level 2 includes global optimizations, loop transformations (software pipelining), and global register
allocation. Level 3 adds procedure integration. These experiments were performed on the Alpha compilers.

0 % 20% 40% 60% 80% 100%

mcf, level 0

mcf, level 1

mcf, level 2

mcf, level 3

lucas, level 0

lucas, level 1

lucas, level 2

lucas, level 3

Program,
Compiler
o p t i m i -
zation
l e v e l

% of unoptimized instructions executed

Branches/Calls Fl. Pt. ALU Ops Loads/Stores Integer ALU Ops

11%

12%

21%
100%

100%

84%

76%

76%

136 Chapter 2 Instruction Set Principles and Examples

n The heap is used to allocate dynamic objects that do not adhere to a stack dis-
cipline. Objects in the heap are accessed with pointers and are typically not
scalars.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap-allocated
objects because they are accessed with pointers. Global variables and some stack
variables are impossible to allocate because they are aliased, which means that
there are multiple ways to refer to the address of a variable, making it illegal to put
it into a register. (Most heap variables are effectively aliased for today’s compiler
technology.)

For example, consider the following code sequence, where & returns the address of
a variable and * dereferences a pointer:

p = &a –– gets address of a in p

a = ... –– assigns to a directly

*p = ... –– uses p to assign to a

...a... -- accesses a

The variable a could not be register allocated across the assignment to *p with-
out generating incorrect code. Aliasing causes a substantial problem because it is
often difficult or impossible to decide what objects a pointer may refer to. A
compiler must be conservative; some compilers will not allocate any local vari-
ables of a procedure in a register when there is a pointer that may refer to one of
the local variables.

How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple state-
ments like A = B + C. Most programs are locally simple, and simple translations
work fine. Rather, complexity arises because programs are large and globally
complex in their interactions, and because the structure of compilers means deci-
sions are made one step at a time about which code sequence is best.

Compiler writers often are working under their own corollary of a basic prin-
ciple in architecture: Make the frequent cases fast and the rare case correct. That
is, if we know which cases are frequent and which are rare, and if generating
code for both is straightforward, then the quality of the code for the rare case may
not be very important—but it must be correct!

Some instruction set properties help the compiler writer. These properties
should not be thought of as hard and fast rules, but rather as guidelines that will
make it easier to write a compiler that will generate efficient and correct code.

2.11 Crosscutting Issues: The Role of Compilers 137

1. Regularity;—Whenever it makes sense, the three primary components of an in-
struction set—the operations, the data types, and the addressing modes—
should be orthogonal. Two aspects of an architecture are said to be orthogonal
if they are independent. For example, the operations and addressing modes are
orthogonal if for every operation to which one addressing mode can be ap-
plied, all addressing modes are applicable. This regularity helps simplify code
generation and is particularly important when the decision about what code to
generate is split into two passes in the compiler. A good counterexample of
this property is restricting what registers can be used for a certain class of in-
structions. Compilers for special-purpose register architectures typically get
stuck in this dilemma. This restriction can result in the compiler finding itself
with lots of available registers, but none of the right kind!

2. Provide primitives, not solutions—Special features that “match” a language
construct or a kernel function are often unusable. Attempts to support high-
level languages may work only with one language, or do more or less than is
required for a correct and efficient implementation of the language. An exam-
ple of how such attempts have failed is given in section 2.14.

3. Simplify trade-offs among alternatives—One of the toughest jobs a compiler
writer has is figuring out what instruction sequence will be best for every seg-
ment of code that arises. In earlier days, instruction counts or total code size
might have been good metrics, but—as we saw in the last chapter—this is no
longer true. With caches and pipelining, the trade-offs have become very com-
plex. Anything the designer can do to help the compiler writer understand the
costs of alternative code sequences would help improve the code. One of the
most difficult instances of complex trade-offs occurs in a register-memory
architecture in deciding how many times a variable should be referenced be-
fore it is cheaper to load it into a register. This threshold is hard to compute
and, in fact, may vary among models of the same architecture.

4. Provide instructions that bind the quantities known at compile time as con-
stants—A compiler writer hates the thought of the processor interpreting at
runtime a value that was known at compile time. Good counterexamples of
this principle include instructions that interpret values that were fixed at com-
pile time. For instance, the VAX procedure call instruction (calls) dynami-
cally interprets a mask saying what registers to save on a call, but the mask is
fixed at compile time (see section 2.14).

Compiler Support (or lack thereof) for Multimedia Instructions

Alas, the designers of the SIMD instructions that operate on several narrow data
times in a single clock cycle consciously ignored the prior subsection. These in-
structions tend to be solutions, not primitives, they are short of registers, and the
data types do not match existing programming languages. Architects hoped to
find an inexpensive solution that would help some users, but in reality, only a few
low-level graphics library routines use them.

138 Chapter 2 Instruction Set Principles and Examples

The SIMD instructions are really an abbreviated version of an elegant archi-
tecture style that has its own compiler technology. As explained in Appendix F,
vector architectures operate on vectors of data. Invented originally for scientific
codes, multimedia kernels are often vectorizable as well. Hence, we can think of
Intel’s MMX or PowerPC’s AltiVec as simply short vector computers: MMX
with vectors of eight 8-bit elements, four 16-bit elements, or two 32-bit elements,
and AltiVec with vectors twice that length. They are implemented as simply adja-
cent, narrow elements in wide registers

These abbreviated architectures build the vector register size into the architec-
ture: the sum of the sizes of the elements is limited to 64 bits for MMX and 128
bits for AltiVec. When Intel decided to expand to 128 bit vectors, it added a
whole new set of instructions, called SSE.

The missing elegance from these architectures involves the specification of the
vector length and the memory addressing modes. By making the vector width
variable, these vectors seemlessly switch between different data widths simply by
increasing the number of elements per vector. For example, vectors could have,
say, 32 64-bit elements, 64 32-bit elements, 128 16-bit elements, and 256 8-bit
elements. Another advantage is that the number of elements per vector register
can vary between generations while remaining binary compatible. One genera-
tion might have 32 64-bit elements per vector register, and the next have 64 64-bit
elements. (The number of elements per register is located in a status register.)
The number of elements executed per clock cycle is also implementation depen-
dent, and all run the same binary code. Thus, one generation might operate 64-
bits per clock cycle, and another at 256-bits per clock cycle.

A major advantage of vector computers is hiding latency of memory access by
loading many elements at once and then overlapping execution with data transfer.
The goal of vector addressing modes is to collect data scattered about memory,
place them in a compact form so that they can be operated on efficiently, and then
place the results back where they belong.

Over the years traditional vector computers added strided addressing and
gather/scatter addressing to increase the number of programs that can be vector-
ized. Strided addressing skips a fixed number of words between each access, so
sequential addressing is often called unit stride addressing. Gather and scatter
find their addresses in another vector register: think of it as register indirect ad-
dressing for vector computers. From a vector perspective, in contrast these short-
vector SIMD computers support only unit strided accesses: memory accesses
load or store all elements at once from a single wide memory location. Since the
data for multimedia applications are often streams that start and end in memory,
strided and gather/scatter addressing modes such are essential to successful vec-
toization.

2.11 Crosscutting Issues: The Role of Compilers 139

E X A M P L E As an example, compare a vector computer to MMX for color representa-
tion conversion of pixels from RBG (red blue green) to YUV (luminosity
chrominance), with each pixel represented by three bytes. The conversion
is just 3 lines of C code placed in a loop:

Y = (9798*R + 19235*G + 3736*B)/ 32768;
U = (-4784*R - 9437*G + 4221*B)/ 32768 + 128;
V = (20218*R - 16941*G - 3277*B) / 32768 + 128;

A 64-bit wide vector computer can calculate eight pixels simultaneously. One
vector computer for media with strided addresses takes:

n 3 vector loads (to get RGB),

n 3 vector multiplies (to convert R),

n 6 vector multiply adds (to convert G and B),

n 3 vector shifts (to divide by 32768),

n 2 vector adds (to add 128), and

n 3 vector stores (to store YUV).

The total is 20 instructions to perform the 20 operations in the C code above
to convert 8 pixels [Kozyrakis 2000]. (Since a vector might have 32 64-bit ele-
ments, this code actually converts up to 32 x 8 or 256 pixels.)

In contrast, Intel’s web site shows a library routine to perform the same
calculation on eight pixels takes 116 MMX instructions plus 6 80x86 instruc-
tions [Intel 2001]. This sixfold increase in instructions is due to the large num-
ber of instructions to load and unpack RBG pixels and to pack and store YUV
pixels, since there are no strided memory accesses.

n

Having short, architecture limited vectors with few registers and simple mem-
ory addressing modes makes it more difficult to use vectorizing compiler tech-
nology. Another challenge is that no programming language (yet) has support for
operations on these narrow data. Hence, these SIMD instructions are commonly
found only in hand coded libraries.

Summary: The Role of Compilers

This section leads to several recommendations. First, we expect a new instruction
set architecture to have at least 16 general-purpose registers—not counting sepa-
rate registers for floating-point numbers—to simplify allocation of registers using
graph coloring. The advice on orthogonality suggests that all supported address-
ing modes apply to all instructions that transfer data. Finally, the last three pieces

140 Chapter 2 Instruction Set Principles and Examples

of advice—provide primitives instead of solutions, simplify trade-offs between
alternatives, don’t bind constants at runtime—all suggest that it is better to err on
the side of simplicity. In other words, understand that less is more in the design of
an instruction set. Alas, SIMD extensions are more an example of good market-
ing than outstanding achievement of hardware/software co-design.

In this section we describe a simple 64-bit load-store architecture called MIPS.
The instruction set architecture of MIPS and RISC relatives was based on obser-
vations similar to those covered in the last sections. (In section 2.16 we discuss
how and why these architectures became popular.) Reviewing our expectations
from each section: for desktop applications:

n Section 2.2—Use general-purpose registers with a load-store architecture.

n Section 2.3—Support these addressing modes: displacement (with an address
offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register indirect.

n Section 2.5—Support these data sizes and types: 8-, 16-, 32-bit, and 64-bit in-
tegers and 64-bit IEEE 754 floating-point numbers.

n Section 2.7—Support these simple instructions, since they will dominate the
number of instructions executed: load, store, add, subtract, move register-
register, and, shift.

n Section 2.9—Compare equal, compare not equal, compare less, branch (with a
PC-relative address at least 8 bits long), jump, call, and return.

n Section 2.10—Use fixed instruction encoding if interested in performance and
use variable instruction encoding if interested in code size.

n Section 2.11—Provide at least 16 general-purpose registers, and be sure all ad-
dressing modes apply to all data transfer instructions, and aim for a minimalist
instruction set. This section didn’t cover floating-point programs, but they often
use separate floating-point registers. The justification is to increase the total num-
ber of registers without raising problems in the instruction format or in the speed
of the general-purpose register file. This compromise, however, is not orthogonal.

We introduce MIPS by showing how it follows these recommendations. Like
most recent computers, MIPS emphasizes

n A simple load-store instruction set

n Design for pipelining efficiency (discussed in Appendix A), including a fixed
instruction set encoding

n Efficiency as a compiler target

2.12 Putting It All Together: The MIPS Architecture

2.12 Putting It All Together: The MIPS Architecture 141

MIPS provides a good architectural model for study, not only because of the pop-
ularity of this type of processor (see Chapter 1), but also because it is an easy ar-
chitecture to understand. We will use this architecture again in Chapters 3 and 4,
and it forms the basis for a number of exercises and programming projects.

In the 15 years since the first MIPS processor, there have been many versions
of MIPS (see Appendix B <RISC>). We will use a subset of what is now called
MIPS64, which will often abbreviate to just MIPS, but the full instruction set is
found in Appendix B.

Registers for MIPS

MIPS64 has 32 64-bit general-purpose registers (GPRs), named R0, R1, …, R31.
GPRs are also sometimes known as integer registers. Additionally, there is a set
of 32 floating-point registers (FPRs), named F0, F1, ..., F31, which can hold 32
single-precision (32-bit) values or 32 double-precision (64-bit) values. (When
holding one single-precision number, the other half of the FPR is unused.) Both
single- and double-precision floating-point operations (32-bit and 64-bit) are pro-
vided. MIPS also includes instructions that operate on two single precision oper-
ands in a single 64-bit floating-point register.

The value of R0 is always 0. We shall see later how we can use this register to
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the general-purpose reg-
isters. An example is the floating-point status register, used to hold information
about the results of floating-point operations. There are also instructions for mov-
ing between a FPR and a GPR.

Data types for MIPS

The data types are 8-bit bytes, 16-bit half words, 32-bit words, and 64-bit double
words for integer data and 32-bit single precision and 64-bit double precision for
floating point. Half words were added because they are found in languages like C
and popular in some programs, such as the operating systems, concerned about
size of data structures. They will also become more popular if Unicode becomes
widely used. Single-precision floating-point operands were added for similar rea-
sons. (Remember the early warning that you should measure many more programs
before designing an instruction set.)

The MIPS64 operations work on 64-bit integers and 32- or 64-bit floating
point. Bytes, half words, and words are loaded into the general-purpose registers
with either zeros or the sign bit replicated to fill the 32 bits of the GPRs. Once
loaded, they are operated on with the 64-bit integer operations.

142 Chapter 2 Instruction Set Principles and Examples

Addressing modes for MIPS data transfers

The only data addressing modes are immediate and displacement, both with 16-
bit fields. Register indirect is accomplished simply by placing 0 in the 16-bit dis-
placement field, and absolute addressing with a 16-bit field is accomplished by
using register 0 as the base register. Embracing zero gives us four effective
modes, although only two are supported in the architecture.

MIPS memory is byte addressable in Big Endian mode with a 64-bit address.
As it is a load-store architecture, all references between memory and either GPRs
or FPRs are through loads or stores. Supporting the data types mentioned above,
memory accesses involving GPRs can be to a byte, half word, word, or double
word. The FPRs may be loaded and stored with single-precision or double-preci-
sion numbers. All memory accesses must be aligned.

MIPS Instruction Format

Since MIPS has just two addressing modes, these can be encoded into the op-
code. Following the advice on making the processor easy to pipeline and decode,

FIGURE 2.27 Instruction layout for MIPS. All instructions are encoded in one of three
types, with common fields in the same location in each format.

I-type instruction

rs rt Immediate

Encodes: Loads and stores of bytes, half words, words,
double words. All immediates (rt rs op immediate)

6 5 5 16

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
 (rd = 0, rs = destination, immediate = 0)

R-type instruction

rs shamtrt

Register—register ALU operations: rd rs funct rt
 Function encodes the data path operation: Add, Sub, . . .
 Read/write special registers and moves

6 5 5 65 5

funct

Opcode

J-type instruction

Offset added to PC

6 26

Jump and jump and link
Trap and return from exception

Opcode

Opcode rd

—

—

2.12 Putting It All Together: The MIPS Architecture 143

all instructions are 32 bits with a 6-bit primary opcode. Figure 2.27 shows the in-
struction layout. These formats are simple while providing 16-bit fields for dis-
placement addressing, immediate constants, or PC-relative branch addresses.

Appendix B shows a variant of MIPS––called MIPS16––which has 16-bit and
32-bit instructions to improve code density for embedded applications. We will
stick to the traditional 32-bit format in this book.

MIPS Operations

MIPS supports the list of simple operations recommended above plus a few oth-
ers. There are four broad classes of instructions: loads and stores, ALU opera-
tions, branches and jumps, and floating-point operations.

Any of the general-purpose or floating-point registers may be loaded or stored,
except that loading R0 has no effect. Figure 2.28 gives examples of the load and
store instructions. Single-precision floating-point numbers occupy half a floating-
point register. Conversions between single and double precision must be done ex-
plicitly. The floating-point format is IEEE 754 (see Appendix G). A list of the all
the MIPS instructions in our subset appears in Figure 2.31 (page 146).

Example instruction Instruction name Meaning

LD R1,30(R2) Load double word Regs[R1]←64 Mem[30+Regs[R2]]

LD R1,1000(R0) Load double word Regs[R1]←64 Mem[1000+0]

LW R1,60(R2) Load word Regs[R1]←64 (Mem[60+Regs[R2]]0)
32 ##

Mem[60+Regs[R2]]

LB R1,40(R3) Load byte Regs[R1]←64 (Mem[40+Regs[R3]] 0)
56 ##

Mem[40+Regs[R3]]

LBU R1,40(R3) Load byte unsigned Regs[R1]←64 0
56 ## Mem[40+Regs[R3]]

LH R1,40(R3) Load half word Regs[R1]←64 (Mem[40+Regs[R3]]0)48 ##
Mem[40+Regs[R3]]##Mem[41+Regs[R3]]

L.S F0,50(R3) Load FP single Regs[F0]←64 Mem[50+Regs[R3]] ## 0
32

L.D F0,50(R2) Load FP double Regs[F0]←64 Mem[50+Regs[R2]]

SD R3,500(R4) Store double word Mem[500+Regs[R4]]←64 Regs[R3]

SW R3,500(R4) Store word Mem[500+Regs[R4]]←32 Regs[R3]

S.S F0,40(R3) Store FP single Mem[40+Regs[R3]]←32 Regs[F0]0..31

S.D F0,40(R3) Store FP double Mem[40+Regs[R3]]←64 Regs[F0]

SH R3,502(R2) Store half Mem[502+Regs[R2]]←16 Regs[R3]48..63

SB R2,41(R3) Store byte Mem[41+Regs[R3]]←8 Regs[R2]56..63

FIGURE 2.28 The load and store instructions in MIPS. All use a single addressing mode and require that the memory
value be aligned. Of course, both loads and stores are available for all the data types shown.

144 Chapter 2 Instruction Set Principles and Examples

To understand these figures we need to introduce a few additional extensions
to our C description language presented initially on page 107:

n A subscript is appended to the symbol ← whenever the length of the datum be-
ing transferred might not be clear. Thus, ←n means transfer an n-bit quantity.
We use x, y ← z to indicate that z should be transferred to x and y.

n A subscript is used to indicate selection of a bit from a field. Bits are labeled
from the most-significant bit starting at 0. The subscript may be a single digit
(e.g., Regs[R4]0 yields the sign bit of R4) or a subrange (e.g., Regs[R3]56..63
yields the least-significant byte of R3).

n The variable Mem, used as an array that stands for main memory, is indexed by
a byte address and may transfer any number of bytes.

n A superscript is used to replicate a field (e.g., 048 yields a field of zeros of
length 48 bits).

n The symbol ## is used to concatenate two fields and may appear on either side
of a data transfer.

A summary of the entire description language appears on the back inside
cover. As an example, assuming that R8 and R10 are 64-bit registers:

Regs[R10]32..63 ← 32(Mem[Regs[R8]]0)
24 ## Mem[Regs[R8]]

means that the byte at the memory location addressed by the contents of register
R8 is sign-extended to form a 32-bit quantity that is stored into the lower half of
register R10. (The upper half of R10 is unchanged.)

All ALU instructions are register-register instructions. Figure 2.29 gives some
examples of the arithmetic/logical instructions. The operations include simple
arithmetic and logical operations: add, subtract, AND, OR, XOR, and shifts. Imme-
diate forms of all these instructions are provided using a 16-bit sign-extended im-
mediate. The operation LUI (load upper immediate) loads bits 32 to 47 of a
register, while setting the rest of the register to 0. LUI allows a 32-bit constant to
be built in two instructions, or a data transfer using any constant 32-bit address in
one extra instruction.

As mentioned above, R0 is used to synthesize popular operations. Loading a
constant is simply an add immediate where one source operand is R0, and a reg-
ister-register move is simply an add where one of the sources is R0. (We some-
times use the mnemonic LI, standing for load immediate, to represent the former
and the mnemonic MOV for the latter.)

MIPS Control Flow Instructions

MIPS provides compare instructions, which compare two registers to see if
the first is less than the second. If the condition is true, these instructions place a

2.12 Putting It All Together: The MIPS Architecture 145

1 in the destination register (to represent true); otherwise they place the value 0.
Because these operations “set” a register, they are called set-equal, set-not-equal,
set-less-than, and so on. There are also immediate forms of these compares.

Control is handled through a set of jumps and a set of branches. Figure 2.30
gives some typical branch and jump instructions. The four jump instructions are
differentiated by the two ways to specify the destination address and by whether
or not a link is made. Two jumps use a 26-bit offset shifted two bits and then re-
places the lower 28 bits of the program counter (of the instruction sequentially
following the jump) to determine the destination address. The other two jump in-
structions specify a register that contains the destination address. There are two
flavors of jumps: plain jump, and jump and link (used for procedure calls). The
latter places the return address—the address of the next sequential instruction—
in R31.

Example instruction Instruction name Meaning

DADDU R1,R2,R3 Add unsigned Regs[R1]←Regs[R2]+Regs[R3]

DADDIU R1,R2,#3 Add immediate unsigned Regs[R1]←Regs[R2]+3

LUI R1,#42 Load upper immediate Regs[R1]←032##42##016

SLL R1,R2,#5 Shift left logical Regs[R1]←Regs[R2]<<5

SLT R1,R2,R3 Set less than if (Regs[R2]<Regs[R3])
Regs[R1]←1 else Regs[R1]←0

FIGURE 2.29 Examples of arithmetic/logical instructions on MIPS, both with and without
immediates.

Example instruction Instruction name Meaning

J name Jump PC36..63←name

JAL name Jump and link Regs[R31]←PC+4; PC36..63←name;

((PC+4)–227) ≤ name < ((PC+4)+227)
JALR R2 Jump and link register Regs[R31]←PC+4; PC←Regs[R2]

JR R3 Jump register PC←Regs[R3]

BEQZ R4,name Branch equal zero if (Regs[R4]==0) PC←name;

((PC+4)–217) ≤ name < ((PC+4)+217)
BNE R3,R4,name Branch not equal zero if (Regs[R3]!= Regs[R4]) PC←name;

((PC+4)–217) ≤ name < ((PC+4)+217)
MOVZ R1,R2,R3 Conditional move if zero if (Regs[R3]==0) Regs[R1]←Regs[R2]

FIGURE 2.30 Typical control-flow instructions in MIPS. All control instructions, except jumps to an address in a regis-
ter, are PC-relative. Note that the branch distances are longer than the address field would suggestion; since MIPS instruc-
tions are all 32-bits long, the byte branch address is multiplied by 4 to get a longer distance.

146 Chapter 2 Instruction Set Principles and Examples

Instruction type/opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB,LBU,SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH,LHU,SH Load half word, load half word unsigned, store half word (to/from integer registers)

LW,LWU,SW Load word, Load word unsigned, store word (to/from integer registers)

LD,SD Load double word, store double word (to/from integer registers)

L.S,L.D,S.S,S.D Load SP float, load DP float, store SP float, store DP float

MFC0,MTC0 Move from/to GPR to/from a special register

MOV.S,MOV.D Copy one SP or DP FP register to another FP register

MFC1,MTC1 Move 32 bits from/to FP registers to/from integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

DADD,DADDI,DADDU,
DADDIU

Add, add immediate (all immediates are 16 bits); signed and unsigned

DSUB,DSUBU Subtract, subtract immediate; signed and unsigned

DMUL,DMULU,DDIV,DDIVU Multiply and divide, signed and unsigned; all operations take and yield 64-bit values

AND,ANDI And, and immediate

OR,ORI,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate

LUI Load upper immediate—loads bits 32 to 47 of register with immediate; then sign extends

DSLL, SDRL, DSRA,
DSLLV, DSRLV, DSRAV

Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift left logical,
right logical, right arithmetic

SLT,SLTI,SLTU,SLTIU Set less than, set less than immediate; signed and unsigned

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

BC1T,BC1F Test comparison bit in the FP status register and branch; 16-bit offset from PC+4

J, JR Jumps: 26-bit offset from PC+4 (J) or target in register (JR)

JAL, JALR Jump and link: save PC+4 in R31, target is PC-relative (JAL) or a register (JALR)

TRAP Transfer to operating system at a vectored address

ERET Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADD.D,ADD.S,ADD.PS Add DP, SP numbers, an d pairs of SP numbers

SUB.D,SUB.S,ADD.PS Subtract DP, SP numbers, an d pairs of SP numbers

MUL.D,MUL.S,MUL.PS Multiply DP, SP floating point, an d pairs of SP numbers

DIV.D,DIV.S,DIV.PS Divide DP, SP floating point, an d pairs of SP numbers

CVT._._ Convert instructions: CVT.x.y converts from type x to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

C.__.D,C.__.S DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE; sets bit in FP status register

FIGURE 2.31 Subset of the instructions in MIPS64. Figure 2.27 lists the formats of these instructions. SP = single
precision; DP = double precision. This list can also be found on the page preceding the back inside cover.

2.12 Putting It All Together: The MIPS Architecture 147

All branches are conditional. The branch condition is specified by the in-
struction, which may test the register source for zero or nonzero; the register may
contain a data value or the result of a compare. There are also conditional branch
instructions to test for whether a register is negative and for equality between two
registers. The branch target address is specified with a 16-bit signed offset that is
added to the program counter, which is pointing to the next sequential instruc-
tion. There is also a branch to test the floating-point status register for floating-
point conditional branches, described below.

Chapters 3 and 4 show that conditional branches are a major challenge to
pipelined execution; hence many architectures have added instructions to convert
a simple branch into a condition arithmetic instruction. MIPS included condition-
al move on zero or not zero. The value of the destination register either is left un-
changed or is replaced by a copy of one of the source registers depending on
whether or not the value of the other source register is zero.

MIPS Floating-Point Operations

Floating-point instructions manipulate the floating-point registers and indicate
whether the operation to be performed is single or double precision. The opera-
tions MOV.S and MOV.D copy a single-precision (MOV.S) or double-precision
(MOV.D) floating-point register to another register of the same type. The opera-
tions MFC1 and MTC1 move data between a single floating-point register and an in-
teger register; moving a double-precision value to two integer registers requires
two instructions. Conversions from integer to floating point are also provided,
and vice versa.

The floating-point operations are add, subtract, multiply, and divide; a suffix D
is used for double precision and a suffix S is used for single precision (e.g.,
ADD.D, ADD.S, SUB.D, SUB.S, MUL.D, MUL.S, DIV.D, DIV.S). Floating-point
compares set a bit in the special floating-point status register that can be tested
with a pair of branches: BC1T and BC1F, branch floating-point true and branch
floating-point false.

To get greater performance for graphics routines, MIPS64 has instructions that
perform two 32-bit floating-point operations on each half of the 64-bit floating-
point register. These paired single operations include ADD.PS, SUB.PS, MUL.PS,
and DIV.PS. (They are loaded and store using double precision loads and stores.)

Giving a nod towards the importance of DSP applications, MIPS64 also in-
cludes both integer and floating-point multiply-add instructions: MADD, MADD.S,
MADD.D, and MADD.PS. Unlike DSPs, the registers are all the same width in these
combined operations.

Figure 2.31 on page 146 contains a list of a subset of MIPS64 operations and
their meaning.

148 Chapter 2 Instruction Set Principles and Examples

MIPS Instruction Set Usage

To give an idea which instructions are popular, Figure 2.32 shows the frequen-
cy of instructions and instruction classes for five SPECint92 programs and Figure
2.33 shows the same data for five SPECfp92 programs. To give a more intuitive

Instruction gap gcc gzip mcf perl
Integer
average

load 44.7% 35.5% 31.8% 33.2% 41.6% 37%

store 10.3% 13.2% 5.1% 4.3% 16.2% 10%

add 7.7% 11.2% 16.8% 7.2% 5.5% 10%

sub 1.7% 2.2% 5.1% 3.7% 2.5% 3%

mul 1.4% 0.1% 0%

compare 2.8% 6.1% 6.6% 6.3% 3.8% 5%

cond branch 9.3% 12.1% 11.0% 17.5% 10.9% 12%

cond move 0.4% 0.6% 1.1% 0.1% 1.9% 1%

jump 0.8% 0.7% 0.8% 0.7% 1.7% 1%

call 1.6% 0.6% 0.4% 3.2% 1.1% 1%

return 1.6% 0.6% 0.4% 3.2% 1.1% 1%

shift 3.8% 1.1% 2.1% 1.1% 0.5% 2%

and 4.3% 4.6% 9.4% 0.2% 1.2% 4%

or 7.9% 8.5% 4.8% 17.6% 8.7% 9%

xor 1.8% 2.1% 4.4% 1.5% 2.8% 3%

other logical 0.1% 0.4% 0.1% 0.1% 0.3% 0%

load FP 0%

store FP 0%

add FP 0%

sub FP 0%

mul FP 0%

div FP 0%

mov reg-reg FP 0%

compare FP 0%

cond mov FP 0%

other FP 0%

FIGURE 2.32 MIPS dynamic instruction mix for five SPECint2000 programs. Note that integer register-register move
instructions are included in the or instruction. Blank entries have the value 0.0%.

2.12 Putting It All Together: The MIPS Architecture 149

feeling, Figure 2.34 shows the data graphically for all instructions that are re-
sponsible on average for more than 1% of the instructions executed.

Instruction applu art equake lucas swim FP average

load 32.2% 28.0% 29.0% 15.4% 27.5% 26%

store 2.9% 0.8% 3.4% 1.3% 2%

add 25.7% 20.2% 11.7% 8.2% 15.3% 16%

sub 2.5% 0.1% 2.1% 3.8% 2%

mul 2.3% 1.2% 1%

compare 7.4% 2.1% 2%

cond branch 2.5% 11.5% 2.9% 0.6% 1.3% 4%

cond mov 0.3% 0.1% 0%

jump 0.1% 0%

call 0.7% 0%

return 0.7% 0%

shift 0.7% 0.2% 1.9% 1%

and 0.2% 1.8% 0%

or 0.8% 1.1% 2.3% 1.0% 7.2% 2%

xor 3.2% 0.1% 1%

other logical 0.1% 0%

load FP 11.4% 12.0% 19.7% 16.2% 16.8% 15%

store FP 4.2% 4.5% 2.7% 18.2% 5.0% 7%

add FP 2.3% 4.5% 9.8% 8.2% 9.0% 7%

sub FP 2.9% 1.3% 7.6% 4.7% 3%

mul FP 8.6% 4.1% 12.9% 9.4% 6.9% 8%

div FP 0.3% 0.6% 0.5% 0.3% 0%

mov reg-reg FP 0.7% 0.9% 1.2% 1.8% 0.9% 1%

compare FP 0.9% 0.6% 0.8% 0%

cond mov FP 0.6% 0.8% 0%

other FP 1.6% 0%

FIGURE 2.33 MIPS dynamic instruction mix for five programs from SPECfp2000. Note that integer register-register
move instructions are included in the or instruction. Blank entries have the value 0.0%.

150 Chapter 2 Instruction Set Principles and Examples

FIGURE 2.34 Graphical display of instructions executed of the five programs from
SPECint2000 in Figure 2.32 (top) and the five programs from SPECfp2000 in Figure
2.33 (bottom). Just as in Figures 2.16 and 2.18, the most popular instructions are simple.
These instruction classes collectively are responsible on average for 96% of instructions ex-
ecuted for SPECint2000 and 97% of instructions executed for SPECfp2000.

0 % 5 % 10% 15% 20% 25% 30% 35% 40%

load int

add/sub int

load FP

add/sub FP

mul FP

store FP

cond branch

and /o r / xo r

compare int

store int

Total dynamic percentage

applu a r t equake lucas swim

26%

15%

20%

10%

8 %

7 %

4 %

4 %

2 %

2 %

0 % 5 % 10% 15% 20% 25% 30% 35% 40%

load

and /o r / xo r

add/sub

cond branch

store

compare

cal l / return

Total dynamic percentage

gap gcc gzip mcf perl

37%

12%

10%

5 %

13%

16%

3 %

2.13 Another View: The Trimedia TM32 CPU 151

Media processor is a name given to a class of embedded processors that are dedi-
cated to multimedia processing, typically being cost sensitive like embedded pro-
cessors but following the compiler orientation from desktop and server
computing. Like DSPs, they operate on narrower data types than the desktop, and
must often deal with infinite, continuous streams of data. Figure 2.35 gives a list
of media application areas and benchmark algorithms for media processors.

The Trimedia TM32 CPU is a representative of this class. As multimedia ap-
plications have considerable parallelism in the processing of these data streams,
the instruction set architectures often look different from the desktop. Its is in-
tended for products like set top boxes and advanced televisions.

First, there are many more registers: 128 32-bit registers, which contain either
integer or floating point data. Second, and not surprisingly, it offers the parti-
tioned ALU or SIMD instructions to allow computations on multiple instances of
narrower data, as described in Figure 2.17 on page 120. Third, showing its heri-
tage, for integers it offers both two’s complement arithmetic favored by desktop
processors and saturating arithmetic favored by DSPs. Figure 2.36 lists the opera-
tions found in the Trimedia TM32 CPU.

However, the most unusual feature from the perspective of the desktop is that
the architecture allows the programmer to specify five independent operations to
be issued at the same time. If there are not five independent instructions available
for the compiler to schedule together–that is, the rest are dependent–then NOPs
are placed in the leftover slots. This instruction coding technique is called, natu-
rally enough, Very Long Instruction Word (VLIW), and it predates the Trimedia
processors. VLIW is the subject of Chapter 4, so just give a preview of VLIW
here. An example helps explain how the Trimedia TM32 CPU works, and one can
be found in Chapter 4 on page 279 <<Xref to example in section 4.8>>. This sec-
tion also compares the performance of the Trimedia TM32 CPU using the EEM-
BC benchmarks.

2.13 Another View: The Trimedia TM32 CPU

Application area Benchmarks

Data Communication Verterbi decoding

Audio coding AC3 Decode

Video coding MPEG2 encode, DVD decode

Video processing Layered natural motion, Dynamic noise,
Reduction, Peaking

Graphics 3D renderer library

FIGURE 2.35 Media processor application areas and example benchmarks. From Ri-
emens [1999]. This lists shares only Viterbi decoding with the EEMBC benchmarks (see Fig-
ure 1.12 in Chapter 1), with the rest being generally larger programs than EEMBC.

152 Chapter 2 Instruction Set Principles and Examples

Given the Trimedia TM32 CPU has longer instruction words and they often
contain NOPs, Trimedia compacts its instructions in memory, decoding them to
the full size when loaded into the cache.

Figure 2.37 shows the TM32 CPU instruction mix for the EEMBC bench-
marks. Using the unmodified source code, the instruction mix is similar to others,
although there are more byte data transfers. If the C code is hand-tuned, it can ex-
tensively use SIMD instructions. Note the large number of pack and merge in-
structions to align the data for the SIMD instructions. The cost in code size of
these VLIW instructions is still a factor of two to three larger than MIPS after
compaction.

Architects have repeatedly tripped on common, but erroneous, beliefs. In this
section we look at a few of them.

Operation
Category

Examples Number of
Operations

Comment

Load/store ops ld8, ld16, ld32,limm.
st8, st16, st32

33 signed, unsigned, register
indirect, indexed, scaled

addressing

Byte shuffles shift right 1-, 2-, 3-bytes, select byte, merge,
pack

11 SIMD type convert

Bit shifts asl, asr, lsl, lsr, rol, 10 shifts, SIMD

Multiplies and
multimedia

mul, sum of products, sum-of-SIMD-elements,
multimedia, e.g. sum of products (FIR)

23 round, saturate, 2’s comp,
SIMD

Integer arithmetic add, sub, min, max, abs, average,
bitand, bitor, bitxor, bitinv, bitandinv
eql, neq, gtr, geq, les, leq, sign extend,
zero extend, sum of absolute differences

62 saturate, 2’s comp,
unsigned, immediate,

SIMD

Floating point add, sub, neg, mul, div, sqrt
eql, neq, gtr, geq, les, leq, IEEE flags

42 scalar

Special ops alloc, prefetch, copy back, read tag read, cache
status, read counter

20 cache, special regs

Branch jmpt, jmpf 6 (un)interruptible

Total 207

FIGURE 2.36 List of operations and number of variations in Trimedia TM32 CPU. The data transfer opcodes include
addressing modes in the count of operations, so the number is high compared to other architectures. SIMD means parti-
tioned ALU operations of multiple narrow data items being operated on simultaneously in a 32-bit ALU, these include special
operations for multimedia. The branches are delayed 3 slots.

2.14 Fallacies and Pitfalls

2.14 Fallacies and Pitfalls 153

Operation Out-of-the-box Modified C Source Code

add word 26.5% 20.5%

load byte 10.4% 1.0%

subtract word 10.1% 1.1%

shift left arithmetic 7.8% 0.2%

store byte 7.4% 1.5%

multiply word 5.5% 0.4%

shift right arithmetic 3.6% 0.7%

and word 3.6% 6.8%

load word 3.5% 7.2%

load immediate 3.1% 1.6%

set greater than, equal 2.9% 1.3%

store word 2.0% 5.3%

jump 1.8% 0.8%

conditional branch 1.3% 1.0%

pack/merge bytes 2.6% 16.8%

SIMD sum of half word products 0.0% 10.1%

SIMD sum of byte products 0.0% 7.7%

pack/merge half words 0.0% 6.5%

SIMD subtract half word 0.0% 2.9%

SIMD maximum byte 0.0% 1.9%

Total 92.2% 95.5%

TM32 CPU Code Size (bytes) 243,968 387,328

MIPS Code Size (bytes) 120,729

FIGURE 2.37 TM32 CPU instruction mix running EEMBC consumer benchmark. The
instruction mix for “out-of-the-box” C code is similar to general-purpose computers, with a
higher emphasis of byte data transfers. The hand-optimized C code uses the SIMD instruc-
tions and the pack and merge instructions to align the data. The middle column shows the
relative instruction mix for unmodified kernels, while the right column allows modification at
the C level. These columns list of all operation that were responsible for at least 1% of the
total in one of the mixes. MIPS code size is for the Apogee compiler for the NECVR5432.

154 Chapter 2 Instruction Set Principles and Examples

Pitfall: Designing a “high-level” instruction set feature specifically oriented
to supporting a high-level language structure.

Attempts to incorporate high-level language features in the instruction set have
led architects to provide powerful instructions with a wide range of flexibility.
However, often these instructions do more work than is required in the frequent
case, or they don’t exactly match the requirements of some languages. Many
such efforts have been aimed at eliminating what in the 1970s was called the se-
mantic gap. Although the idea is to supplement the instruction set with additions
that bring the hardware up to the level of the language, the additions can generate
what Wulf [1981] has called a semantic clash:

... by giving too much semantic content to the instruction, the computer designer
made it possible to use the instruction only in limited contexts. [p. 43]

More often the instructions are simply overkill—they are too general for the
most frequent case, resulting in unneeded work and a slower instruction. Again,
the VAX CALLS is a good example. CALLS uses a callee-save strategy (the regis-
ters to be saved are specified by the callee) but the saving is done by the call in-
struction in the caller. The CALLS instruction begins with the arguments pushed
on the stack, and then takes the following steps:

1. Align the stack if needed.

2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as men-
tioned in section 2.11). The mask is kept in the called procedure’s code—this
permits callee to specify the registers to be saved by the caller even with sep-
arate compilation.

4. Push the return address on the stack, and then push the top and base of stack
pointers (for the activation record).

5. Clear the condition codes, which sets the trap enables to a known state.

6. Push a word for status information and a zero word on the stack.

7. Update the two stack pointers.

8. Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of over-
head. Most procedures know their argument counts, and a much faster linkage
convention can be established using registers to pass arguments rather than the
stack in memory. Furthermore, the CALLS instruction forces two registers to be
used for linkage, while many languages require only one linkage register. Many
attempts to support procedure call and activation stack management have failed
to be useful, either because they do not match the language needs or because they
are too general and hence too expensive to use.

2.14 Fallacies and Pitfalls 155

The VAX designers provided a simpler instruction, JSB, that is much faster
since it only pushes the return PC on the stack and jumps to the procedure.
However, most VAX compilers use the more costly CALLS instructions. The call
instructions were included in the architecture to standardize the procedure link-
age convention. Other computers have standardized their calling convention by
agreement among compiler writers and without requiring the overhead of a com-
plex, very general-procedure call instruction.

Fallacy: There is such a thing as a typical program.

Many people would like to believe that there is a single “typical” program that
could be used to design an optimal instruction set. For example, see the synthetic
benchmarks discussed in Chapter 1. The data in this chapter clearly show that
programs can vary significantly in how they use an instruction set. For example,
Figure 2.38 shows the mix of data transfer sizes for four of the SPEC2000 pro-
grams: It would be hard to say what is typical from these four programs. The
variations are even larger on an instruction set that supports a class of applica-
tions, such as decimal instructions, that are unused by other applications.

FIGURE 2.38 Data reference size of four programs from SPEC2000. Although you can
calculate an average size, it would be hard to claim the average is typical of programs. <<Art-
ist: make data label font smaller>>

18%

3%

18%

62%

22%

19%

28%

31%

0%

0%

6%

94%

0%

0%

40%

60%

0 % 20% 40% 60% 80% 100%

 Byte
(8 bits)

 Half word
(16 bits)

 Word
(32 bits)

Double word
(64 bits)

applu

equake

gzip

perl

156 Chapter 2 Instruction Set Principles and Examples

Pitfall: Innovating at the instruction set architecture to reduce code size with-
out accounting for the compiler.

Figure 2.39 shows the relative code sizes for four compilers for the MIPS instruc-
tion set. Whereas architects struggle to reduce code size by 30% to 40%, different
compiler strategies can change code size by much larger factors. Similar to per-
formance optimization techniques, the architect should start with the tightest
code the compilers can produce before proposing hardware innovations to save
space.

Pitfall: Expecting to get good performance from a compiler for DSPs.

Figure 2.40 shows the performance improvement to be gained by using assembly
language, versus compiling from C for two Texas Instruments DSPs. Assembly
language programming gains factors of 3 to 10 in performance and factors of 1 to
8 in code size. This gain is large enough to lure DSP programmers away from
high-level languages, despite their well-documented advantages in programmer
productivity and software maintenance.

Fallacy: An architecture with flaws cannot be successful.

The 80x86 provides a dramatic example: The instruction set architecture is one
only its creators could love (see Appendix C). Succeeding generations of Intel
engineers have tried to correct unpopular architectural decisions made in design-
ing the 80x86. For example, the 80x86 supports segmentation, whereas all others
picked paging; it uses extended accumulators for integer data, but other proces-
sors use general-purpose registers; and it uses a stack for floating-point data,
when everyone else abandoned execution stacks long before.

Compiler Apogee Software:
Version 4.1

Green Hills:
Multi2000 Version 2.0

Algorithmics
SDE4.0B

IDT/c 7.2.1

Architecture MIPS IV MIPS IV MIPS 32 MIPS 32

Processor NEC VR5432 NEC VR5000 IDT 32334 IDT
79RC32364

Auto Correlation kernel 1.0 2.1 1.1 2.7

Convolutional Encoder kernel 1.0 1.9 1.2 2.4

Fixed-Point Bit Allocation kernel 1.0 2.0 1.2 2.3

Fixed-Point Complex FFT kernel 1.0 1.1 2.7 1.8

Viterbi GSM Decoder kernel 1.0 1.7 0.8 1.1

Geometric Mean of 5 kernels 1.0 1.7 1.4 2.0

FIGURE 2.39 Code size relative to Apogee Software Version 4.1 C compiler for Telecom application of EEMBC
benchmarks. The instruction set architectures are virtually identical, yet the code sizes vary by factors of two. These results
were reported February to June 2000.

2.14 Fallacies and Pitfalls 157

Despite these major difficulties, the 80x86 architecture has been enormously
successful. The reasons are threefold: first, its selection as the microprocessor in
the initial IBM PC makes 80x86 binary compatibility extremely valuable. Sec-
ond, Moore’s Law provided sufficient resources for 80x86 microprocessors to
translate to an internal RISC instruction set and then execute RISC-like instruc-
tions (see section 3.8 in the next chapter). This mix enables binary compatibility
with the valuable PC software base and performance on par with RISC proces-
sors. Third, the very high volumes of PC microprocessors means Intel can easily
pay for the increased design cost of hardware translation. In addition, the high
volumes allow the manufacturer to go up the learning curve, which lowers the
cost of the product.

The larger die size and increased power for translation may be a liability for
embedded applications, but it makes tremendous economic sense for the desktop.
And its cost-performance in the desktop also makes it attractive for servers, with
its main weakness for servers being 32-bit addresses: companies already offer
high-end servers with more than one terabyte (240 bytes) of memory.

TMS320C54 D
(“C54”) for
DSPstone kernels

ratio to as-
sembly in ex-
ecution time
(> 1 means
slower)

ratio to as-
sembly

code space
(> 1 means

bigger)

TMS 320C6203(“C62”) for
EEMBC Telecom kernels

ratio to as-
sembly in ex-
ecution time
(> 1 means
slower)

ratio to as-
sembly

code space
(> 1 means

bigger)

Convolution 11.8 16.5 Convolutional Encoder 44.0 0.5

FIR 11.5 8.7 Fixed-Point Complex FFT 13.5 1.0

Matrix 1x3 7.7 8.1 Viterbi GSM Decoder 13.0 0.7

FIR2dim 5.3 6.5 Fixed-point Bit Allocation 7.0 1.4

Dot product 5.2 14.1 Auto Collrelation 1.8 0.7

LMS 5.1 0.7

N real update 4.7 14.1

IIR n biquad 2.4 8.6

N complex update 2.4 9.8

Matrix 1.2 5.1

Complex update 1.2 8.7

IIR one biquad 1.0 6.4

Real update 0.8 15.6

C54 Geometric Mean 3.2 7.8 C62 Geometric Mean 10.0 0.8

FIGURE 2.40 Ratio of execution time and code size for compiled code vs. hand written code for TMS320C54 DSPs
on left (using the 14 DSPstone kernels) and Texas Instruments TMS 320C6203 on right (using the 6 EEMBC Telecom
kernels). The geometric mean of performance improvements is 3.2:1 for C54 running DSPstone and 10.0:1 for the C62 run-
ning EEMBC. The compiler does a better job on code space for the C62, which is a VLIW processor, but the geometric mean
of code size for the C54 is almost a factor of 8 larger when compiled. Modifying the C code gives much better results. The
EEMBC results were reported May 2000. For DSPstone, see Ropers [1999]

158 Chapter 2 Instruction Set Principles and Examples

Fallacy: You can design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hard-
ware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at the time they were made
look like mistakes. For example, in 1975 the VAX designers overemphasized the
importance of code-size efficiency, underestimating how important ease of de-
coding and pipelining would be five years later. An example in the RISC camp is
delayed branch (see Appendix B <RISC>). It was a simple to control pipeline
hazards with five-stage pipelines, but a challenge for processors with longer pipe-
lines that issue multiple instructions per clock cycle. In addition, almost all archi-
tectures eventually succumb to the lack of sufficient address space.

In general, avoiding such flaws in the long run would probably mean compro-
mising the efficiency of the architecture in the short run, which is dangerous,
since a new instruction set architecture must struggle to survive its first few years.

The earliest architectures were limited in their instruction sets by the hardware
technology of that time. As soon as the hardware technology permitted, computer
architects began looking for ways to support high-level languages. This search
led to three distinct periods of thought about how to support programs efficiently.
In the 1960s, stack architectures became popular. They were viewed as being a
good match for high-level languages—and they probably were, given the com-
piler technology of the day. In the 1970s, the main concern of architects was how
to reduce software costs. This concern was met primarily by replacing software
with hardware, or by providing high-level architectures that could simplify the
task of software designers. The result was both the high-level-language computer
architecture movement and powerful architectures like the VAX, which has a
large number of addressing modes, multiple data types, and a highly orthogonal
architecture. In the 1980s, more sophisticated compiler technology and a re-
newed emphasis on processor performance saw a return to simpler architectures,
based mainly on the load-store style of computer.

The following instruction set architecture changes occurred in the 1990s:

n Address size doubles: The 32-bit address instruction sets for most desktop and
server processors were extended to 64-bit addresses, expanding the width of
the registers (among other things) to 64 bits. Appendix B <RISC> gives three
examples of architectures that have gone from 32 bits to 64 bits.

n Optimization of conditional branches via conditional execution: In the next two
chapters we see that conditional branches can limit the performance of aggres-
sive computer designs. Hence, there was interest in replacing conditional
branches with conditional completion of operations, such as conditional move
(see Chapter 4), which was added to most instruction sets.

2.15 Concluding Remarks

2.15 Concluding Remarks 159

n Optimization of cache performance via prefetch: Chapter 5 explains the in-
creasing role of memory hierarchy in performance of computers, with a cache
miss on some computers taking as many instruction times as page faults took
on earlier computers. Hence, prefetch instructions were added to try to hide the
cost of cache misses by prefetching (see Chapter 5).

n Support for multimedia: Most desktop and embedded instruction sets were ex-
tended with support for multimedia and DSP applications, as discussed in this
chapter.

n Faster floating-point Operations: Appendix G <Float> describes operations
added to enhance floating-point performance, such as operations that perform
a multiply and an add and paired single execution. (We include them in MIPS.)

Looking to the next decade, we see the following trends in instruction set de-
sign:

n Long Instruction Words: The desire to achieve more instruction level parallel-
ism by making changing the architecture to support wider instructions (see
Chapter 4).

n Increased Conditional Execution: More support for conditional execution of
operations to support greater speculation.

n Blending of general purpose and DSP architectures: Parallel efforts between
desktop and embedded processors to add DSP support vs. extending DSP pro-
cessors to make them better targets for compilers, suggesting a culture clash in
the marketplace between general purpose and DSPs.

n 80x86 emulation: Given the popularity of software for the 80x86 architecture,
many companies are looking to see if changes to the instruction sets can signif-
icantly improve performance, cost, or power when emulating the 80x86 archi-
tecture.

Between 1970 and 1985 many thought the primary job of the computer archi-
tect was the design of instruction sets. As a result, textbooks of that era empha-
size instruction set design, much as computer architecture textbooks of the 1950s
and 1960s emphasized computer arithmetic. The educated architect was expected
to have strong opinions about the strengths and especially the weaknesses of the
popular computers. The importance of binary compatibility in quashing innova-
tions in instruction set design was unappreciated by many researchers and text-
book writers, giving the impression that many architects would get a chance to
design an instruction set.

The definition of computer architecture today has been expanded to include
design and evaluation of the full computer system—not just the definition of the
instruction set and not just the processor—and hence there are plenty of topics
for the architect to study. (You may have guessed this the first time you lifted this
book.) Hence, the bulk of this book is on design of computers versus instruction
sets.

160 Chapter 2 Instruction Set Principles and Examples

The many appendices may satisfy readers interested in instruction set archi-
tecture: Appendix B compares seven popular load-store computers with MIPS.
Appendix C describes the most widely used instruction set, the Intel 80x86, and
compares instruction counts for it with that of MIPS for several programs. For
those interested in the historical computers, Appendix D summarizes the VAX ar-
chitecture and Appendix E summarizes the IBM 360/370.

One’s eyebrows should rise whenever a future architecture is developed with a
stack- or register-oriented instruction set. [p. 20]

Meyers [1978]

The earliest computers, including the UNIVAC I, the EDSAC, and the IAS com-
puters, were accumulator-based computers. The simplicity of this type of computer
made it the natural choice when hardware resources were very constrained. The
first general-purpose register computer was the Pegasus, built by Ferranti, Ltd. in
1956. The Pegasus had eight general-purpose registers, with R0 always being zero.
Block transfers loaded the eight registers from the drum memory.

Stack Architectures

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the first
computer to seriously consider software and hardware-software trade-offs. Bar-
ton and the designers at Burroughs made the B5000 a stack architecture (as de-
scribed in Barton [1961]). Designed to support high-level languages such as
ALGOL, this stack architecture used an operating system (MCP) written in a
high-level language. The B5000 was also the first computer from a U.S.
manufacturer to support virtual memory. The B6500, introduced in 1968 (and
discussed in Hauck and Dent [1968]), added hardware-managed activation
records. In both the B5000 and B6500, the top two elements of the stack were
kept in the processor and the rest of the stack was kept in memory. The stack ar-
chitecture yielded good code density, but only provided two high-speed storage
locations. The authors of both the original IBM 360 paper [Amdahl, Blaauw, and
Brooks 1964] and the original PDP-11 paper [Bell et al. 1970] argue against the
stack organization. They cite three major points in their arguments against stacks:

1. Performance is derived from fast registers, not the way they are used.

2. The stack organization is too limiting and requires many swap and copy oper-
ations.

3. The stack has a bottom, and when placed in slower memory there is a perfor-
mance loss.

2.16 Historical Perspective and References

2.16 Historical Perspective and References 161

Stack-based hardware fell out of favor in the late 1970s and, except for the Intel
80x86 floating-point architecture, essentially disappeared. For example, except
for the 80x86, none of the computers listed in the SPEC report uses a stack.

In the 1990s, however, stack architectures received a shot in the arm with the
success of Java Virtual Machine (JVM). The JVM is a software interpreter for an
intermediate language produced by Java compilers, called Java bytecodes ([Lind-
holm 1999]). The purpose of the interpreter is to provide software compatibility
across many platforms, with the hope of “write once, run everywhere.” Although
the slowdown is about a factor of ten due to interpretation, there are times when
compatibility is more important than performance, such as when downloading a
Java “applet” into an Internet browser.

Although a few have proposed hardware to directly execute the JVM instruc-
tions (see [McGhan 1998]), thus far none of these proposals have been significant
commercially. The hope instead is that Just In Time (JIT) Java compilers––which
compile during run time to the native instruction set of the computer running the
Java program––will overcome the performance penalty of interpretation. The
popularity of Java has also lead to compilers that compile directly into the native
hardware instruction sets, bypassing the illusion of the Java bytecodes.

Computer Architecture Defined

IBM coined the term computer architecture in the early 1960s. Amdahl, Blaauw,
and Brooks [1964] used the term to refer to the programmer-visible portion of the
IBM 360 instruction set. They believed that a family of computers of the same archi-
tecture should be able to run the same software. Although this idea may seem obvious
to us today, it was quite novel at that time. IBM, although it was the leading company
in the industry, had five different architectures before the 360. Thus, the notion of a
company standardizing on a single architecture was a radical one. The 360 designers
hoped that defining a common architecture would bring six different divisions of
IBM together. Their definition of architecture was

... the structure of a computer that a machine language programmer must under-
stand to write a correct (timing independent) program for that machine.

The term “machine language programmer” meant that compatibility would hold,
even in machine language, while “timing independent” allowed different imple-
mentations. This architecture blazed the path for binary compatibility, which oth-
ers have followed.

The IBM 360 was the first computer to sell in large quantities with both byte
addressing using 8-bit bytes and general-purpose registers. The 360 also had
register-memory and limited memory-memory instructions. Appendix E <IBM>
summarizes this instruction set.

In 1964, Control Data delivered the first supercomputer, the CDC 6600. As
Thornton [1964] discusses, he, Cray, and the other 6600 designers were among
the first to explore pipelining in depth. The 6600 was the first general-purpose,

162 Chapter 2 Instruction Set Principles and Examples

load-store computer. In the 1960s, the designers of the 6600 realized the need to
simplify architecture for the sake of efficient pipelining. Microprocessor and
minicomputer designers largely neglected this interaction between architectural
simplicity and implementation during the 1970s, but it returned in the 1980s.

High Level Language Computer Architecture

In the late 1960s and early 1970s, people realized that software costs were
growing faster than hardware costs. McKeeman [1967] argued that compilers and
operating systems were getting too big and too complex and taking too long to
develop. Because of inferior compilers and the memory limitations of computers,
most systems programs at the time were still written in assembly language. Many
researchers proposed alleviating the software crisis by creating more powerful,
software-oriented architectures. Tanenbaum [1978] studied the properties of
high-level languages. Like other researchers, he found that most programs are
simple. He then argued that architectures should be designed with this in mind
and that they should optimize for program size and ease of compilation. Tanen-
baum proposed a stack computer with frequency-encoded instruction formats to
accomplish these goals. However, as we have observed, program size does not
translate directly to cost/performance, and stack computers faded out shortly af-
ter this work.

Strecker’s article [1978] discusses how he and the other architects at DEC re-
sponded to this by designing the VAX architecture. The VAX was designed to
simplify compilation of high-level languages. Compiler writers had complained
about the lack of complete orthogonality in the PDP-11. The VAX architecture
was designed to be highly orthogonal and to allow the mapping of a high-level-
language statement into a single VAX instruction. Additionally, the VAX design-
ers tried to optimize code size because compiled programs were often too large
for available memories. Appendix D <Vax> summarizes this instruction set.

The VAX-11/780 was the first computer announced in the VAX series. It is
one of the most successful––and most heavily studied––computers ever built.
The cornerstone of DEC’s strategy was a single architecture, VAX, running a sin-
gle operating system, VMS. This strategy worked well for over 10 years. The
large number of papers reporting instruction mixes, implementation measure-
ments, and analysis of the VAX make it an ideal case study [Wiecek 1982; Clark
and Levy 1982]. Bhandarkar and Clark [1991] give a quantitative analysis of the
disadvantages of the VAX versus a RISC computer, essentially a technical expla-
nation for the demise of the VAX.

While the VAX was being designed, a more radical approach, called high-
level-language computer architecture (HLLCA), was being advocated in the re-
search community. This movement aimed to eliminate the gap between high-lev-
el languages and computer hardware—what Gagliardi [1973] called the
“semantic gap”—by bringing the hardware “up to” the level of the programming
language. Meyers [1982] provides a good summary of the arguments and a his-
tory of high-level-language computer architecture projects.

2.16 Historical Perspective and References 163

HLLCA never had a significant commercial impact. The increase in memory
size on computers eliminated the code-size problems arising from high-level lan-
guages and enabled operating systems to be written in high-level languages. The
combination of simpler architectures together with software offered greater per-
formance and more flexibility at lower cost and lower complexity.

Reduced Instruction Set Computers

In the early 1980s, the direction of computer architecture began to swing away
from providing high-level hardware support for languages. Ditzel and Patterson
[1980] analyzed the difficulties encountered by the high-level-language architec-
tures and argued that the answer lay in simpler architectures. In another paper
[Patterson and Ditzel 1980], these authors first discussed the idea of reduced in-
struction set computers (RISC) and presented the argument for simpler ar-
chitectures. Clark and Strecker [1980], who were VAX architects, rebutted their
proposal.

The simple load-store computers such as MIPS are commonly called RISC
architectures. The roots of RISC architectures go back to computers like the
6600, where Thornton, Cray, and others recognized the importance of instruction
set simplicity in building a fast computer. Cray continued his tradition of keeping
computers simple in the CRAY-1. Commercial RISCs are built primarily on the
work of three research projects: the Berkeley RISC processor, the IBM 801, and
the Stanford MIPS processor. These architectures have attracted enormous indus-
trial interest because of claims of a performance advantage of anywhere from two
to five times over other computers using the same technology.

Begun in 1975, the IBM project was the first to start but was the last to be-
come public. The IBM computer was designed as 24-bit ECL minicomputer,
while the university projects were both MOS-based, 32-bit microprocessors.
John Cocke is considered the father of the 801 design. He received both the Eck-
ert-Mauchly and Turing awards in recognition of his contribution. Radin [1982]
describes the highlights of the 801 architecture. The 801 was an experimental
project that was never designed to be a product. In fact, to keep down cost and
complexity, the computer was built with only 24-bit registers.

In 1980, Patterson and his colleagues at Berkeley began the project that was to
give this architectural approach its name (see Patterson and Ditzel [1980]). They
built two computers called RISC-I and RISC-II. Because the IBM project was not
widely known or discussed, the role played by the Berkeley group in promoting
the RISC approach was critical to the acceptance of the technology. They also
built one of the first instruction caches to support hybrid format RISCs (see
Patterson [1983]). It supported 16-bit and 32-bit instructions in memory but 32
bits in the cache (see Patterson [1983]). The Berkeley group went on to build
RISC computers targeted toward Smalltalk, described by Ungar et al. [1984], and
LISP, described by Taylor et al. [1986].

164 Chapter 2 Instruction Set Principles and Examples

In 1981, Hennessy and his colleagues at Stanford published a description of
the Stanford MIPS computer. Efficient pipelining and compiler-assisted schedul-
ing of the pipeline were both important aspects of the original MIPS design.
MIPS stood for Microprocessor without Interlocked Pipeline Stages, reflecting
the lack of hardware to stall the pipeline, as the compiler would handle depen-
dencies.

These early RISC computers—the 801, RISC-II, and MIPS—had much in
common. Both university projects were interested in designing a simple comput-
er that could be built in VLSI within the university environment. All three com-
puters used a simple load-store architecture, fixed-format 32-bit instructions, and
emphasized efficient pipelining. Patterson [1985] describes the three computers
and the basic design principles that have come to characterize what a RISC com-
puter is. Hennessy [1984] provides another view of the same ideas, as well as
other issues in VLSI processor design.

In 1985, Hennessy published an explanation of the RISC performance advan-
tage and traced its roots to a substantially lower CPI—under 2 for a RISC proces-
sor and over 10 for a VAX-11/780 (though not with identical workloads). A paper
by Emer and Clark [1984] characterizing VAX-11/780 performance was instru-
mental in helping the RISC researchers understand the source of the performance
advantage seen by their computers.

Since the university projects finished up, in the 1983–84 time frame, the tech-
nology has been widely embraced by industry. Many manufacturers of the early
computers (those made before 1986) claimed that their products were RISC com-
puters. These claims, however, were often born more of marketing ambition than
of engineering reality.

In 1986, the computer industry began to announce processors based on the
technology explored by the three RISC research projects. Moussouris et al.
[1986] describe the MIPS R2000 integer processor, while Kane’s book [1986] is
a complete description of the architecture. Hewlett-Packard converted their exist-
ing minicomputer line to RISC architectures; Lee [1989] describes the HP Preci-
sion Architecture. IBM never directly turned the 801 into a product. Instead, the
ideas were adopted for a new, low-end architecture that was incorporated in the
IBM RT-PC and described in a collection of papers [Waters 1986]. In 1990, IBM
announced a new RISC architecture (the RS 6000), which is the first superscalar
RISC processor (see Chapter 4). In 1987, Sun Microsystems began delivering
computers based on the SPARC architecture, a derivative of the Berkeley RISC-II
processor; SPARC is described in Garner et al. [1988]. The PowerPC joined the
forces of Apple, IBM, and Motorola. Appendix B <RISC> summarizes several
RISC architectures.

To help resolve the RISC vs. traditional design debate, designers of VAX pro-
cessors later performed a quantitative comparison of VAX and a RISC processor
for implementations with comparable organizations. Their choices were the VAX
8700 and the MIPS M2000. The differing goals for VAX and MIPS have led to
very different architectures. The VAX goals, simple compilers and code density,

2.16 Historical Perspective and References 165

led to powerful addressing modes, powerful instructions, efficient instruction en-
coding, and few registers. The MIPS goals were high performance via pipelining,
ease of hardware implementation, and compatibility with highly optimizing com-
pilers. These goals led to simple instructions, simple addressing modes, fixed-
length instruction formats, and a large number of registers.

Figure 2.41 shows the ratio of the number of instructions executed, the ratio of
CPIs, and the ratio of performance measured in clock cycles. Since the organizations
were similar, clock cycle times were assumed to be the same. MIPS executes about
twice as many instructions as the VAX, while the CPI for the VAX is about six times
larger than that for the MIPS. Hence, the MIPS M2000 has almost three times the
performance of the VAX 8700. Furthermore, much less hardware is needed to build
the MIPS processor than the VAX processor. This cost/performance gap is the rea-
son the company that used to make the VAX has dropped it and is now making the
Alpha, which is quite similar to MIPS. Bell and Strecker summarize the debate in-
side the company.

Looking back, only one CISC instruction set survived the RISC/CISC debate,
and that one that had binary compatibility with PC-software. The volume of chips
is so high in the PC industry that there is sufficient revenue stream to pay the ex-

FIGURE 2.41 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using
SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the VAX
is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from Bhandarkar and
Clark [1991].)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

li

eq
nt

ot
t

es
pr

es
so

do
du

c

to
m

ca
tv

fp
pp

p

na
sa

7

m
at

rix
sp

ice

Performance
ratio

Instructions
executed ratio

CPI ratio

SPEC 89 benchmarks

MIPS/VAX

166 Chapter 2 Instruction Set Principles and Examples

tra design costs––and sufficient resources due to Moore’s Law––to build micro-
processors which translate from CISC to RISC internally. Whatever loss in
efficiency, due to longer pipeline stages and bigger die size to accommodate
translation on the chip, was hedged by having a semiconductor fabrication line
dedicated to producing just these microprocessors. The high volumes justify the
economics of a fab line tailored to these chips.

Thus, in the desktop/server market, RISC computers use compilers to translate
into RISC instructions and the remaining CISC computer uses hardware to trans-
late into RISC instructions. One recent novel variation for the laptop market is
the Transmeta Crusoe (see section 4.8 of Chapter 4), which interprets 80x86 in-
structions and compiles on the fly into internal instructions.

The embedded market, which competes in cost and power, cannot afford the
luxury of hardware translation and thus uses compilers and RISC architectures.
More than twice as many 32-bit embedded microprocessors were shipped in
2000 than PC microprocessors, with RISC processors responsible for over 90%
of that embedded market.

A Brief History of Digital Signal Processors

(Jeff Bier prepared this DSP history.)
In the late 1990s, digital signal processing (DSP) applications, such as digital

cellular telephones, emerged as one of the largest consumers of embedded com-
puting power. Today, microprocessors specialized for DSP applications ––some-
times called digital signal processors, DSPs, or DSP processors––are used in
most of these applications. In 2000 this was a $6 billion market. Compared to
other embedded computing applications, DSP applications are differentiated by:

n Computationally demanding, iterative numeric algorithms often composed of
vector dot products; hence the importance of multiply and multiply-accumulate
instructions.

n Sensitivity to small numeric errors; for example, numeric errors may manifest
themselves as audible noise in an audio device.

n Stringent real-time requirements.

n “Streaming” data; typically, input data is provided from an analog-to-digital
converter as a infinite stream. Results are emitted in a similar fashion.

n High data bandwidth.

n Predictable, simple (though often eccentric) memory access patterns.

n Predictable program flow (typically characterized by nested loops).

In the 1970s there was strong interest in using DSP techniques in telecommu-
nications equipment, such as modems and central office switches. The micropro-
cessors of the day did not provide adequate performance, though. Fixed-function

2.16 Historical Perspective and References 167

hardware proved effective in some applications, but lacked the flexibility and re-
usability of a programmable processor. Thus, engineers were motivated to adapt
microprocessor technology to the needs of DSP applications.

The first commercial DSPs emerged in the early 1980s, about 10 years after
Intel’s introduction of the 4004. A number of companies, including Intel, devel-
oped early DSPs, but most of these early devices were not commercially success-
ful. NEC’s µPD7710, introduced in 1980, became the first merchant-market DSP
to ship in volume quantities, but was hampered by weak development tools.
AT&T’s DSP1, also introduced in 1980, was limited to use within AT&T, but it
spawned several generations of successful devices which AT&T soon began of-
fering to other system manufacturers. In 1982, Texas Instruments introduced its
first DSP, the TMS32010. Backed by strong tools and applications engineering
support, the TI processor was a solid success.

Like the first microprocessors, these early DSPs had simple architectures. In
contrast with their general-purpose cousins, though, DSPs adopted a range of
specialized features to boost performance and efficiency in signal processing
tasks. For example, a single-cycle multiplier aided arithmetic performance. Spe-
cialized datapaths streamlined multiply-accumulate operations and provided fea-
tures to minimize numeric errors, such as saturation arithmetic. Separate program
and data memories provided the memory bandwidth required to keep the relative-
ly powerful datapaths fed. Dedicated, specialized addressing hardware sped sim-
ple addressing operations, such autoincrement addressing. Complex, specialized
instruction sets allowed these processors to combine many operations in a single
instruction, but only certain limited combinations of operations were supported.

From the mid 1980s to the mid 1990s, many new commercial DSP architec-
tures were introduced. For the most part, these architectures followed a gradual,
evolutionary path, adopting incremental improvements rather than fundamental
innovations when compared with the earliest DSPs like the TMS32010. DSP ap-
plication programs expanded from a few hundred lines of source code to tens of
thousands of lines. Hence, the quality of development tools and the availability of
off-the-shelf application software components became, for many users, more im-
portant than performance in selecting a processor. Today, chips based on these
“conventional DSP” architectures still dominate DSP applications, and are used
in products such as cellular telephones, disk drives (for servo control), and con-
sumer audio devices.

Early DSP architectures had proven effective, but the highly specialized and
constrained instruction sets that gave them their performance and efficiency also
created processors that were difficult targets for compiler writers. The perfor-
mance and efficiency demands of most DSP applications could not be met by the
resulting weak compilers, so much software––all software for some processor––
was written in assembly language. As applications became larger and more com-
plex, assembly language programming became less practical. Users also suffered
from the incompatibility of many new DSP architectures with their predecessors,
which forced them to periodically rewrite large amounts of existing application
software.

168 Chapter 2 Instruction Set Principles and Examples

In roughly 1995, architects of digital signal processors began to experiment
with very different types of architectures, often adapting techniques from earlier
high-performance general-purpose or scientific-application processor designs.
These designers sought to further increase performance and efficiency, but to do
so with architectures that would be better compiler targets, and that would offer a
better basis for future compatible architectures. For example, in 1997, Texas In-
struments announced the TMS320C62xx family, an eight-issue VLIW design
boasting increased parallelism, a higher clock speed, and a radically simple,
RISC-like instruction set. Other DSP architects adopted SIMD approaches, su-
perscalar designs, chip multiprocessing, or a combination of these of techniques.
Therefore, DSP architectures today are more diverse than ever, and the rate of ar-
chitectural innovation is increasing.

DSP architects were experimenting with new approaches, often adapting tech-
niques from general-purpose processors. In parallel, designers of general-purpose
processors (both those targeting embedded applications and those intended for
computers) noticed that DSP tasks were becoming increasingly common in all
kinds of microprocessor applications. In many cases, these designers added fea-
tures to their architectures to boost performance and efficiency in DSP tasks.
These features ranged from modest instruction set additions to extensive archi-
tectural retrofits. In some cases, designers created all-new architectures intended
to encompass capabilities typically found in a DSP and those typically found in a
general-purpose processor. Today, virtually every commercial 32-bit micropro-
cessor architecture––from ARM to 80x86––has been subject to some kind of
DSP-oriented enhancement.

Throughout the 1990s, an increasing number of system designers turned to
system-on-chip devices. These are complex integrated circuits typically contain-
ing a processor core and a mix of memory, application-specific hardware (such as
algorithm accelerators), peripherals, and I/O interfaces tuned for a specific appli-
cation. An example is second-generation cellular phones. In some cases, chip
manufacturers provide a complete complement of application software along
with these highly integrated chips. These processor-based chips are often the so-
lution of choice for relatively mature, high-volume applications. Though these
chips are not sold as “processors,” the processors inside them define their capa-
bilities to a significant degree.

More information on the history of DSPs can be found Boddie [2000], Stauss
[1998], and Texas Instruments [2000].

Multimedia Support in Desktop Instruction Sets

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations. The earliest color for PCs used 8 bits per pixel in the “256
color” format of VGA, which some PCs still support for compatibility. The next
step was 16 bits per pixel by encoding R in 5 bits, G in 6 bits, and B in 5 bits.

2.16 Historical Perspective and References 169

This format is called high color on PCs. On PCs the 32-bit format discussed
above, with R, G, B, and A, is called true color.

The addition of speakers and microphones for teleconferencing and video
games suggested support of sound as well. Audio samples of 16 bit are sufficient
for most end users, but professional audio work uses 24 bits.

The architects of the Intel i860, which was justified as a graphical accelerator
within the company, recognized that many graphics and audio applications would
perform the same operation on vectors of these data. Although a vector unit was
beyond the transistor budget of the i860 in 1989, by partitioning the carry chains
within a 64-bit ALU, it could perform simultaneous operations on short vectors.
It operated on eight 8-bit operands, four 16-bit operands, or two 32-bit operands.
The cost of such partitioned ALUs was small. Applications that lend themselves
to such support include MPEG (video), games like DOOM (3D graphics), Adobe
Photoshop (digital photography), and teleconferencing (audio and image pro-
cessing). Operations on four 8-bit operands were for operating on pixels.

Like a virus, over time such multimedia support has spread to nearly every
desktop microprocessor. HP was the first successful desktop RISC to include
such support. The pair single floating-point operations, which came later, are use-
ful for operations on vertices.

These extensions have been called partitioned ALU, subword parallelism, vec-
tor, or SIMD (single instruction, multiple data). Since Intel marketing uses SIMD
to describe the MMX extension of the 80x86, SIMD has become the popular
name.

Summary

Prior to the RISC architecture movement, the major trend had been highly micro-
coded architectures aimed at reducing the semantic gap and code size. DEC, with
the VAX, and Intel, with the iAPX 432, were among the leaders in this approach.

Although those two computers have faded into history, one contemporary sur-
vives: the 80x86. This architecture did not have a philosophy about high level
language, it had a deadline. Since the iAPX 432 was late and Intel desperately
needed a 16-bit microprocessor, the 8086 was designed in a few months. It was
forced to be assembly language compatible with the 8-bit 8080, and assembly
language was expected to be widely used with this architecture. Its saving grace
has been its ability to evolve.

The 80x86 dominates the desktop with an 85% share, which is due in part to
the importance of binary compatibility as a result of IBM’s selection of the 8086
in the early 1980s. Rather than change the instruction set architecture, recent
80x86 implementations translate into RISC-like instructions internally and then
execute them (see section 3.8 in the next chapter). RISC processors dominate the
embedded market with a similar market share, because binary compatibility is
unimportant plus die size and power goals make hardware translation a luxury.

170 Chapter 2 Instruction Set Principles and Examples

VLIW is currently being tested across the board, from DSPs to servers. Will
code size be a problem in the embedded market, where the instruction memory in
a chip could be bigger than the processor? Will VLIW DSPs achieve respectable
cost-performance if compilers to produce the code? Will the high power and
large die of server VLIWs be successful, at a time when concern for power effi-
ciency of servers is increasing? Once again an attractive feature of this field is
that time will shortly tell how VLIW fares, and we should know answers to these
questions by the fourth edition of this book.

References

AMDAHL, G. M., G. A. BLAAUW, AND F. P. BROOKS, JR. [1964]. “Architecture of the IBM System
360,” IBM J. Research and Development 8:2 (April), 87–101.

BARTON, R. S. [1961]. “A new approach to the functional design of a computer,” Proc. Western Joint
Computer Conf., 393–396.

Bier, J. [1997] “The Evolution of DSP Processors“, presentation at U.C.Berkeley, November 14.

BELL, G., R. CADY, H. MCFARLAND, B. DELAGI, J. O’LAUGHLIN, R. NOONAN, AND W. WULF

[1970]. “A new architecture for mini-computers: The DEC PDP-11,” Proc. AFIPS SJCC, 657–675.

Bell, G. and W. D. Strecker [1998]. “Computer Structures: What Have We Learned from the PDP-
11?” 25 Years of the International Symposia on Computer Architecture (Selected Papers). ACM,
138-151.

BHANDARKAR, D., AND D. W. CLARK [1991]. “Performance from architecture: Comparing a RISC
and a CISC with similar hardware organizations,” Proc. Fourth Conf. on Architectural Support for
Programming Languages and Operating Systems, IEEE/ACM (April), Palo Alto, Calif., 310–19.

BODDIE, J.R. [2000] “HISTORY OF DSPS,” HTTP://WWW.LUCENT.COM/MICRO/DSP/DSPHIST.HTML.

CHOW, F. C. [1983]. A Portable Machine-Independent Global Optimizer—Design and Measure-
ments, Ph.D. Thesis, Stanford Univ. (December).

CLARK, D. AND H. LEVY [1982]. “Measurement and analysis of instruction set use in the VAX-11/
780,” Proc. Ninth Symposium on Computer Architecture (April), Austin, Tex., 9–17.

CLARK, D. AND W. D. STRECKER [1980]. “Comments on ‘the case for the reduced instruction set
computer’,” Computer Architecture News 8:6 (October), 34–38.

CRAWFORD, J. AND P. GELSINGER [1988]. Programming the 80386, Sybex Books, Alameda, Calif.

DITZEL, D. R. AND D. A. PATTERSON [1980]. “Retrospective on high-level language computer archi-
tecture,” in Proc. Seventh Annual Symposium on Computer Architecture, La Baule, France (June),
97–104.

EMER, J. S. AND D. W. CLARK [1984]. “A characterization of processor performance in the VAX-11/
780,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301–310.

GAGLIARDI, U. O. [1973]. “Report of workshop 4–Software-related advances in computer hardware,”
Proc. Symposium on the High Cost of Software, Menlo Park, Calif., 99–120.

GAME, M. and A. BOOKER [1999]. “CodePack code compression for PowerPC processors,” MicroN-
ews, First Quarter 1999, Vol. 5, No. 1.,
http://www.chips.ibm.com/micronews/vol5_no1/codepack.html

GARNER, R., A. AGARWAL, F. BRIGGS, E. BROWN, D. HOUGH, B. JOY, S. KLEIMAN, S. MUNCHNIK,
M. NAMJOO, D. PATTERSON, J. PENDLETON, AND R. TUCK [1988]. “Scalable processor architecture
(SPARC),” COMPCON, IEEE (March), San Francisco, 278–283.

HAUCK, E. A., AND B. A. DENT [1968]. “Burroughs’ B6500/B7500 stack mechanism,” Proc. AFIPS

2.16 Historical Perspective and References 171

SJCC, 245–251.

HENNESSY, J. [1984]. “VLSI processor architecture,” IEEE Trans. on Computers C-33:11 (Decem-
ber), 1221–1246.

HENNESSY, J. [1985]. “VLSI RISC processors,” VLSI Systems Design VI:10 (October), 22–32.

HENNESSY, J., N. JOUPPI, F. BASKETT, AND J. GILL [1981]. “MIPS: A VLSI processor architecture,”
Proc. CMU Conf. on VLSI Systems and Computations (October), Computer Science Press,
Rockville, MY.

Intel [2001] Using MMX™ Instructions to Convert RGB To YUV Color Conversion,
http://cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey=Legacy::irtm_AP548_9996&cnt-
Type=IDS_EDITORIAL

KANE, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J.

Kozyrakis, C. [2000] “Vector IRAM: A Media-oriented vector processor with embedded DRAM,”
presentation at Hot Chips 12 Conference, Palo Alto, CA, 13-15, 2000

LEE, R. [1989]. “Precision architecture,” Computer 22:1 (January), 78–91.

LEVY, H. AND R. ECKHOUSE [1989]. Computer Programming and Architecture: The VAX, Digital
Press, Boston.

Lindholm, T. and F. Yellin [1999]. The Java Virtual Machine Specification, second edition, Addison-
Wesley. Also available online at http://java.sun.com/docs/books/vmspec/.

LUNDE, A. [1977]. “Empirical evaluation of some features of instruction set processor architecture,”
Comm. ACM 20:3 (March), 143–152.

McGhan, H.; O'Connor, M. [1998] “PicoJava: a direct execution engine for Java bytecode.” Comput-
er, vol.31, (no.10), Oct. 1998. p.22-30.

MCKEEMAN, W. M. [1967]. “Language directed computer design,” Proc. 1967 Fall Joint Computer
Conf., Washington, D.C., 413–417.

MEYERS, G. J. [1978]. “The evaluation of expressions in a storage-to-storage architecture,” Computer
Architecture News 7:3 (October), 20–23.

MEYERS, G. J. [1982]. Advances in Computer Architecture, 2nd ed., Wiley, New York.

MOUSSOURIS, J., L. CRUDELE, D. FREITAS, C. HANSEN, E. HUDSON, S. PRZYBYLSKI, T. RIORDAN,
AND C. ROWEN [1986]. “A CMOS RISC processor with integrated system functions,” Proc.
COMPCON, IEEE (March), San Francisco, 191.

PATTERSON, D. [1985]. “Reduced instruction set computers,” Comm. ACM 28:1 (January), 8–21.

PATTERSON, D. A. AND D. R. DITZEL [1980]. “The case for the reduced instruction set computer,”
Computer Architecture News 8:6 (October), 25–33.

Patterson, D.A.; Garrison, P.; Hill, M.; Lioupis, D.; Nyberg, C.; Sippel, T.; Van Dyke, K. “Architec-
ture of a VLSI instruction cache for a RISC,” 10th Annual International Conference on Computer
Architecture Conference Proceedings, Stockholm, Sweden, 13-16 June 1983, 108-16.

RADIN, G. [1982]. “The 801 minicomputer,” Proc. Symposium Architectural Support for Program-
ming Languages and Operating Systems (March), Palo Alto, Calif., 39–47.

Riemens, A. Vissers, K.A.; Schutten, R.J.; Sijstermans, F.W.; Hekstra, G.J.; La Hei, G.D. [1999]
“Trimedia CPU64 application domain and benchmark suite.” Proceedings 1999 IEEE International
Conference on Computer Design: VLSI in Computers and Processors, ICCD'99, Austin, TX, USA,
10-13 Oct. 1999, 580-585.

Ropers, A. H.W. Lollman, and J. Wellhausen [1999] “DSPstone: Texas Instruments TMS320C54x”,
Technical Report Nr.IB 315 1999/9-ISS-Version 0.9, Aachen University of Technology,
http://www.ert.rwth-aachen.de/Projekte/Tools/coal/dspstone_c54x/index.html

STRAUSS, W. “DSP Strategies 2002,” Forward Concepts, 1998. http://www.usadata.com/
market_research/spr_05/spr_r127-005.htm

172 Chapter 2 Instruction Set Principles and Examples

STRECKER, W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11 family,” Proc.
AFIPS National Computer Conf. 47, 967–980.

TANENBAUM, A. S. [1978]. “Implications of structured programming for machine architecture,”
Comm. ACM 21:3 (March), 237–246.

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON, AND B. ZORN [1986]. “Evaluation of the SPUR
LISP architecture,” Proc. 13th Symposium on Computer Architecture (June), Tokyo.

TEXAS INSTRUMENTs [2000]. “History of Innovation: 1980s,” http://www.ti.com/corp/docs/company/
history/1980s.shtml.

THORNTON, J. E. [1964]. “Parallel operation in Control Data 6600,” Proc. AFIPS Fall Joint Com-
puter Conf. 26, part 2, 33–40.

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. “Architecture of SOAR:
Smalltalk on a RISC,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich.,
188–197.

van Eijndhoven, J.T.J.; Sijstermans, F.W.; Vissers, K.A.; Pol, E.J.D.; Tromp, M.I.A.; Struik, P.;
Bloks, R.H.J.; van der Wolf, P.; Pimentel, A.D.; Vranken, H.P.E.[1999] “Trimedia CPU64 archi-
tecture,” Proc. 1999 IEEE International Conference on Computer Design: VLSI in Computers and
Processors, ICCD'99, Austin, TX, USA, 10-13 Oct. 1999, 586-592.

WAKERLY, J. [1989]. Microcomputer Architecture and Programming, J. Wiley, New York.

WATERS, F., ED. [1986]. IBM RT Personal Computer Technology, IBM, Austin, Tex., SA 23-1057.

WIECEK, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler execution,” Proc.
Symposium on Architectural Support for Programming Languages and Operating Systems
(March), IEEE/ACM, Palo Alto, Calif., 177–184.

WULF, W. [1981]. “Compilers and computer architecture,” Computer 14:7 (July), 41–47.

E X E R C I S E S

n Where do instruction sets come from? Since the earliest computes date from
just after WWII, it should be possible to derive the ancestry of the instructions
in modern computers. This project will take a good deal of delving into librar-
ies and perhaps contacting pioneers, but see if you can derive the ancestry of
the instructions in, say, MIPS.

n It would be nice to try to do some comparisons with media processors and
DSPs. How about this. “Very long instruction word (VLIW) computers are dis-
cussed in Chapter 4, but increasingly DSPs and media processors are adopting
this style of instruction set architecture. One example is the TI TMS320C6203.

See if you can compare code size of VLIW to more traditional computers. One
attempt would be to code a common kernel across several computers. Another
would be to get access to compilers for each computer and compare code sizes.
Based on your data, is VLIW an appropriate architecture for embedded appli-
cations? Why or why not?

n Explicit reference to example Trimedia code

n 2.1 Seems like a reasonable exercise, but make it second or third instead of
leadoff?

Exercises 173

2.1 [20/15/10] <2.3,2.12> We are designing instruction set formats for a load-store archi-
tecture and are trying to decide whether it is worthwhile to have multiple offset lengths for
branches and memory references. We have decided that both branch and memory refer-
ences can have only 0-, 8-, and 16-bit offsets. The length of an instruction would be equal
to 16 bits + offset length in bits. ALU instructions will be 16 bits. Figure 2.42 contains the
data in cumulative form. Assume an additional bit is needed for the sign on the offset.

For instruction set frequencies, use the data for MIPS from the average of the five bench-
marks for the load-store computer in Figure 2.32. Assume that the miscellaneous instruc-
tions are all ALU instructions that use only registers.

a. [20] <2.3,2.12> Suppose offsets were permitted to be 0, 8, or 16 bits in length, includ-
ing the sign bit. What is the average length of an executed instruction?

b. [15] <2.3,2.12> Suppose we wanted a fixed-length instruction and we chose a 24-bit
instruction length (for everything, including ALU instructions). For every offset of
longer than 8 bits, an additional instruction is required. Determine the number of
instruction bytes fetched in this computer with fixed instruction size versus those
fetched with a byte-variable-sized instruction as defined in part (a).

c. [10] <2.3,2.12> Now suppose we use a fixed offset length of 16 bits so that no addi-

Offset bits Cumulative data references Cumulative branches

0 30% 0%

1 34% 3%

2 35% 11%

3 40% 23%

4 47% 37%

5 54% 57%

6 60% 72%

7 67% 85%

8 72% 91%

9 73% 93%

10 74% 95%

11 75% 96%

12 77% 97%

13 88% 98%

14 92% 99%

15 100% 100%

FIGURE 2.42 The second and third columns contain the cumulative percentage of the
data references and branches, respectively, that can be accommodated with the
corresponding number of bits of magnitude in the displacement. These are the average
distances of all programs in Figure 2.8.

174 Chapter 2 Instruction Set Principles and Examples

tional instruction is ever required. How many instruction bytes would be required?
Compare this result to your answer to part (b), which used 8-bit fixed offsets that used
additional instruction words when larger offsets were required.

n OK exercise

2.2 [15/10] <2.2> Several researchers have suggested that adding a register-memory ad-
dressing mode to a load-store computer might be useful. The idea is to replace sequences of

LOAD R1,0(Rb)

ADD R2,R2,R1

by

ADD R2,0(Rb)

Assume the new instruction will cause the clock cycle to increase by 10%. Use the instruc-
tion frequencies for the gcc benchmark on the load-store computer from Figure 2.32. The
new instruction affects only the clock cycle and not the CPI.

a. [15] <2.2> What percentage of the loads must be eliminated for the computer with the
new instruction to have at least the same performance?

b. [10] <2.2> Show a situation in a multiple instruction sequence where a load of R1 fol-
lowed immediately by a use of R1 (with some type of opcode) could not be replaced
by a single instruction of the form proposed, assuming that the same opcode exists.

n Classic exercise, although it has been a confusing to some in the past.

2.3 [20] <2.2> Your task is to compare the memory efficiency of four different styles of
instruction set architectures. The architecture styles are

1. Accumulator—All operations occur between a single register and a memory location.

2. Memory-memory—All three operands of each instruction are in memory.

3. Stack—All operations occur on top of the stack. Only push and pop access memory;
all other instructions remove their operands from stack and replace them with the re-
sult. The implementation uses a stack for the top two entries; accesses that use other
stack positions are memory references.

4. Load-store—All operations occur in registers, and register-to-register instructions
have three operands per instruction. There are 16 general-purpose registers, and regis-
ter specifiers are 4 bits long.

To measure memory efficiency, make the following assumptions about all four instruction
sets:

n The opcode is always 1 byte (8 bits).

n All memory addresses are 2 bytes (16 bits).

n All data operands are 4 bytes (32 bits).

n All instructions are an integral number of bytes in length.

There are no other optimizations to reduce memory traffic, and the variables A, B, C, and D

Exercises 175

are initially in memory.

Invent your own assembly language mnemonics and write the best equivalent assembly
language code for the high-level-language fragment given. Write the four code sequences
for

A = B + C;

B = A + C;

D = A - B;

Calculate the instruction bytes fetched and the memory-data bytes transferred. Which ar-
chitecture is most efficient as measured by code size? Which architecture is most efficient
as measured by total memory bandwidth required (code + data)?

2.4 [Discussion] <2.2–2.14> What are the economic arguments (i.e., more computers
sold) for and against changing instruction set architecture in desktop and server markets?
What about embedded markets?

2.5 [25] <2.1–2.5> Find an instruction set manual for some older computer (libraries and
private bookshelves are good places to look). Summarize the instruction set with the
discriminating characteristics used in Figure 2.3. Write the code sequence for this computer
for the statements in Exercise 2.3. The size of the data need not be 32 bits as in Exercise 2.3
if the word size is smaller in the older computer.

2.6 [20] <2.12> Consider the following fragment of C code:

for (i=0; i<=100; i++)

{A[i] = B[i] + C;}

Assume that A and B are arrays of 32-bit integers, and C and i are 32-bit integers. Assume
that all data values and their addresses are kept in memory (at addresses 0, 5000, 1500, and
2000 for A, B, C, and i, respectively) except when they are operated on. Assume that values
in registers are lost between iterations of the loop.

Write the code for MIPS; how many instructions are required dynamically? How many
memory-data references will be executed? What is the code size in bytes?

n Unlikely there is enough detail for people to write programs just from the Ap-
pendix.

2.7 [20] <App. D> Repeat Exercise 2.6, but this time write the code for the 80x86.

2.8 [20] <2.12> For this question use the code sequence of Exercise 2.6, but put the scalar
data—the value of i, the value of C, and the addresses of the array variables (but not the
actual array)—in registers and keep them there whenever possible.

Write the code for MIPS; how many instructions are required dynamically? How many
memory-data references will be executed? What is the code size in bytes?

2.9 [20] <App. D> Make the same assumptions and answer the same questions as the prior
exercise, but this time write the code for the 80x86.

2.10 [15] <2.12> When designing memory systems it becomes useful to know the frequen-
cy of memory reads versus writes and also accesses for instructions versus data. Using the

176 Chapter 2 Instruction Set Principles and Examples

average instruction-mix information for MIPS in Figure 2.32, find

n the percentage of all memory accesses for data

n the percentage of data accesses that are reads

n the percentage of all memory accesses that are reads

Ignore the size of a datum when counting accesses.

2.11 [18] <2.12> Compute the effective CPI for MIPS using Figure 2.32. Suppose we have
made the following measurements of average CPI for instructions:

Assume that 60% of the conditional branches are taken and that all instructions in the mis-
cellaneous category of Figure 2.32 are ALU instructions. Average the instruction frequen-
cies of gcc and espresso to obtain the instruction mix.

2.12 [20/10] <2.3,2.12> Consider adding a new index addressing mode to MIPS. The ad-
dressing mode adds two registers and an 11-bit signed offset to get the effective address.

Our compiler will be changed so that code sequences of the form

ADD R1, R1, R2

LW Rd, 100(R1)(or store)

will be replaced with a load (or store) using the new addressing mode. Use the overall
average instruction frequencies from Figure 2.32 in evaluating this addition.

a. [20] <2.3,2.12> Assume that the addressing mode can be used for 10% of the displace-
ment loads and stores (accounting for both the frequency of this type of address cal-
culation and the shorter offset). What is the ratio of instruction count on the enhanced
MIPS compared to the original MIPS?

b. [10] <2.3,2.12> If the new addressing mode lengthens the clock cycle by 5%, which
computer will be faster and by how much?

2.13 [25/15] <2.11> Find a C compiler and compile the code shown in Exercise 2.6 for one
of the computers covered in this book. Compile the code both optimized and unoptimized.

a. [25] <2.11> Find the instruction count, dynamic instruction bytes fetched, and data ac-
cesses done for both the optimized and unoptimized versions.

b. [15] <2.11> Try to improve the code by hand and compute the same measures as in

Instruction Clock cycles

All ALU instructions 1.0

Loads-stores 1.4

Conditional branches

Taken 2.0

Not taken 1.5

Jumps 1.2

Exercises 177

part (a) for your hand-optimized version.

2.14 [30] <2.12> Small synthetic benchmarks can be very misleading when used for mea-
suring instruction mixes. This is particularly true when these benchmarks are optimized. In
this exercise and Exercises 2.15–2.17, we want to explore these differences. These pro-
gramming exercises can be done with any load-store processor.

Compile Whetstone with optimization. Compute the instruction mix for the top 20 most
frequently executed instructions. How do the optimized and unoptimized mixes compare?
How does the optimized mix compare to the mix for swim256 on the same or a similar
processor?

2.15 [30] <2.12> Follow the same guidelines as the prior exercise, but this time use Dhry-
stone and compare it with gcc.

2.16 [30] <2.12> Many computer manufacturers now include tools or simulators that allow
you to measure the instruction set usage of a user program. Among the methods in use are
processor simulation, hardware-supported trapping, and a compiler technique that instru-
ments the object-code module by inserting counters. Find a processor available to you that
includes such a tool. Use it to measure the instruction set mix for one of TeX, gcc, or spice.
Compare the results to those shown in this chapter.

2.17 [30] <2.3,2.12> MIPS has only three operand formats for its register-register opera-
tions. Many operations might use the same destination register as one of the sources. We
could introduce a new instruction format into MIPS called R2 that has only two operands
and is a total of 24 bits in length. By using this instruction type whenever an operation had
only two different register operands, we could reduce the instruction bandwidth required
for a program. Modify the MIPS simulator to count the frequency of register-register oper-
ations with only two different register operands. Using the benchmarks that come with the
simulator, determine how much more instruction bandwidth MIPS requires than MIPS with
the R2 format.

2.18 [25] <App. C> How much do the instruction set variations among the RISC proces-
sors discussed in Appendix C affect performance? Choose at least three small programs
(e.g., a sort), and code these programs in MIPS and two other assembly languages. What is
the resulting difference in instruction count?

3

Instruction-Level
Parallelism and its
Dynamic Exploitation 4
“Who’s first?”

“America.”

“Who’s second?”

“Sir, there is no second.”

Dialog between two observers of the sailing race later named
“The America’s Cup” and run every few years.

This quote was the inspiration for John Cocke’s naming of
the IBM research processor as “America.” This processor was
the precursor to the RS/6000 series and the first superscalar
microprocessor.

3.1 Instruction-Level Parallelism: Concepts and Challenges 221

3.2 Overcoming Data Hazards with Dynamic Scheduling 231

3.3 Dynamic Scheduling: Examples and the Algorithm 239

3.4 Reducing Branch Costs with Dynamic Hardware Prediction 247

3.5 High Performance Instruction Delivery 261

3.6 Taking Advantage of More ILP with Multiple Issue 268

3.7 Hardware-Based Speculation 278

3.8 Studies of the Limitations of ILP 294

3.9 Limitations on ILP for Realizable Processors 309

3.10 Putting It All Together: The P6 Microarchitecture 316

3.11 Another View: Thread Level Parallelism 329

3.12 Crosscutting Issues: Using an ILP Datapath to Exploit TLP 330

3.13 Fallacies and Pitfalls 330

3.14 Concluding Remarks 333

3.15 Historical Perspective and References 337
Exercises 345

All processors since about 1985, including those in the embedded space, use
pipelining to overlap the execution of instructions and improve performance.
This potential overlap among instructions is called instruction-level parallelism
(ILP) since the instructions can be evaluated in parallel. In this chapter and the
next, we look at a wide range of techniques for extending the pipelining ideas by
increasing the amount of parallelism exploited among instructions. This chapter
is at a considerably more advanced level than the material in Appendix A. If you
are not familiar with the ideas in Appendix A, you should review that Appendix
before venturing into this chapter.

We start this chapter by looking at the limitation imposed by data and control
hazards and then turn to the topic of increasing the ability of the processor to ex-
ploit parallelism. Section 3.1 introduces a large number of concepts, which we
build on throughout these two chapters. While some of the more basic material in

3.1 Instruction-Level Parallelism: Concepts and Challenges

222 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation

this chapter could be understood without all of the ideas in Section 3.1, this basic
material is important to later sections of this chapter as well as to chapter 4.

There are two largely separable approaches to exploiting ILP. This chapter
covers techniques that are largely dynamic and depend on the hardware to locate
the parallelism. The next chapter focuses on techniques that are static and rely
much more on software. In practice, this partitioning between dynamic and static
and between hardware-intensive and software-intensive is not clean, and tech-
niques from one camp are often used by the other. Nonetheless, for exposition
purposes, we have separated the two approaches and tried to indicate where an
approach is transferable.

The dynamic, hardware intensive approaches dominate the desktop and server
markets and are used in a wide range of processors, including: the Pentium III
and 4, the Althon, the MIPS R10000/12000, the Sun ultraSPARC III, the Power-
PC 603, G3, and G4, and the Alpha 21264. The static, compiler-intensive ap-
proaches, which we focus on in the next chapter, have seen broader adoption in
the embedded market than the desktop or server markets, although the new IA-64
architecture and Intel’s Itanium, use this more static approach.

In this section, we discuss features of both programs and processors that limit
the amount of parallelism that can be exploited among instructions, as well as the
critical mapping between program structure and hardware structure, which is key
to understanding whether a program property will actually limit performance and
under what circumstances.

Recall that the value of the CPI (Cycles per Instruction) for a pipelined pro-
cessor is the sum of the base CPI and all contributions from stalls:

The ideal pipeline CPI is a measure of the maximum performance attainable by
the implementation. By reducing each of the terms of the right-hand side, we min-
imize the overall pipeline CPI and thus increase the IPC (Instructions per Clock).
In this chapter we will see that the techniques we introduce to increase the ideal
IPC, can increase the importance of dealing with structural, data hazard, and con-
trol stalls. The equation above allows us to characterize the various techniques we
examine in this chapter by what component of the overall CPI a technique reduc-
es. Figure 3.1 shows the techniques we examine in this chapter and in the next, as
well as the topics covered in the introductory material in Appendix A.

Before we examine these techniques in detail, we need to define the concepts
on which these techniques are built. These concepts, in the end, determine the
limits on how much parallelism can be exploited.

Instruction-Level Parallelism

All the techniques in this chapter and the next exploit parallelism among instruc-
tions. As we stated above, this type of parallelism is called instruction-level paral-
lelism or ILP. The amount of parallelism available within a basic block–a straight-

Pipeline CPI Ideal pipeline CPI Structural stalls Data hazard stalls+ += Control stalls+

3.1 Instruction-Level Parallelism: Concepts and Challenges 223

line code sequence with no branches in except to the entry and no branches out ex-
cept at the exit–is quite small. For typical MIPS programs the average dynamic
branch frequency often between 15% and 25%, meaning that between four and
seven instructions execute between a pair of branches. Since these instructions are
likely to depend upon one another, the amount of overlap we can exploit within a
basic block is likely to be much less than the average basic block size. To obtain
substantial performance enhancements, we must exploit ILP across multiple basic
blocks.

The simplest and most common way to increase the amount of parallelism
available among instructions is to exploit parallelism among iterations of a loop.
This type of parallelism is often called loop-level parallelism. Here is a simple
example of a loop, which adds two 1000-element arrays, that is completely
parallel:

for (i=1; i<=1000; i=i+1)

x[i] = x[i] + y[i];

Every iteration of the loop can overlap with any other iteration, although within
each loop iteration there is little or no opportunity for overlap.

There are a number of techniques we will examine for converting such loop-
level parallelism into instruction-level parallelism. Basically, such techniques
work by unrolling the loop either statically by the compiler (an approach we ex-
plore in the next chapter) or dynamically by the hardware (the subject of this chap-
ter).

Technique Reduces Section

Forwarding and bypassing Potential data hazard stalls A.2

Delayed branches and simple branch scheduling Control hazard stalls A.2

Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences A.8

Dynamic scheduling with renaming Data hazard stalls and stalls from antidependences
and output dependences

3.2

Dynamic branch prediction Control stalls 3.4

Issuing multiple instructions per cycle Ideal CPI 3.6

Speculation Data hazard and control hazard stalls 3.5

Dynamic memory disambiguation Data hazard stalls with memory 3.2, 3.7

Loop unrolling Control hazard stalls 4.1

Basic compiler pipeline scheduling Data hazard stalls A.2, 4.1

Compiler dependence analysis Ideal CPI, data hazard stalls 4.4

Software pipelining, trace scheduling Ideal CPI, data hazard stalls 4,3

Compiler speculation Ideal CPI, data, control stalls 4.4

FIGURE 3.1 The major techniques examined in Appendix A, chapter 3, or chapter 4 are shown together with the
component of the CPI equation that the technique affects.

224 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation

An important alternative method for exploiting loop-level parallelism is the
use of vector instructions (see Appendix B). Essentially, a vector instruction op-
erates on a sequence of data items. For example, the above code sequence could
execute in four instructions on some vector processors: two instructions to load
the vectors x and y from memory, one instruction to add the two vectors, and an
instruction to store back the result vector. Of course, these instructions would be
pipelined and have relatively long latencies, but these latencies may be over-
lapped. Vector instructions and the operation of vector processors are described
in detail in the online Appendix B. Although the development of the vector ideas
preceded many of the techniques we examine in these two chapters for exploiting
ILP, processors that exploit ILP have almost completely replaced vector-based
processors. Vector instruction sets, however, may see a renaissance, at least for
use in graphics, digital signal processing, and multimedia applications.

Data Dependence and Hazards

Determining how one instruction depends on another is critical to determining
how much parallelism exists in a program and how that parallelism can be ex-
ploited. In particular, to exploit instruction-level parallelism we must determine
which instructions can be executed in parallel. If two instructions are parallel,
they can execute simultaneously in a pipeline without causing any stalls, assum-
ing the pipeline has sufficient resources (and hence no structural hazards exist). If
two instructions are dependent they are not parallel and must be executed in or-
der, though they may often be partially overlapped. The key in both cases is to
determine whether an instruction is dependent on another instruction.

Data Dependences
There are three different types of dependences: data dependences (also called

true data dependences), name dependences, and control dependences. An instruc-
tion j is data dependent on instruction i if either of the following holds:

n Instruction i produces a result that may be used by instruction j, or

n Instruction j is data dependent on instruction k, and instruction k is data depen-
dent on instruction i.

The second condition simply states that one instruction is dependent on another if
there exists a chain of dependences of the first type between the two instructions.
This dependence chain can be as long as the entire program.

For example, consider the following code sequence that increments a vector of
values in memory (starting at 0(R1) and with the last element at 8(R2)) by a sca-
lar in register F2:

3.1 Instruction-Level Parallelism: Concepts and Challenges 225

Loop: L.D F0,0(R1);F0=array element

ADD.D F4,F0,F2;add scalar in F2

S.D F4,0(R1);store result

DADDUI R1,R1,#-8;decrement pointer 8 bytes (/e

BNE R1,R2,LOOP; branch R1!=zero

The data dependences in this code sequence involve both floating point data:

and integer data:

Both of the above dependent sequences, as shown by the arrows, with each in-
struction depending on the previous one. The arrows here and in following exam-
ples show the order that must be preserved for correct execution. The arrow
points from an instruction that must precede the instruction that the arrowhead
points to.

If two instructions are data dependent they cannot execute simultaneously or
be completely overlapped. The dependence implies that there would be a chain of
one or more data hazards between the two instructions. Executing the instruc-
tions simultaneously will cause a processor with pipeline interlocks to detect a
hazard and stall, thereby reducing or eliminating the overlap. In a processor with-
out interlocks that relies on compiler scheduling, the compiler cannot schedule
dependent instructions in such a way that they completely overlap, since the pro-
gram will not execute correctly. The presence of a data dependence in an instruc-
tion sequence reflects a data dependence in the source code from which the
instruction sequence was generated. The effect of the original data dependence
must be preserved.

Dependences are a property of programs. Whether a given dependence results
in an actual hazard being detected and whether that hazard actually causes a stall
are properties of the pipeline organization. This difference is critical to under-
standing how instruction-level parallelism can be exploited.

In our example, there is a data dependence between the DADDIU and the BNE;
this dependence causes a stall because we moved the branch test for the MIPS
pipeline to the ID stage. Had the branch test stayed in EX, this dependence would
not cause a stall. Of course, the branch delay would then still be 2 cycles, rather
than 1.

Loop: L.D F0,0(R1);F0=array element

ADD.D F4,F0,F2;add scalar in F2

S.D F4,0(R1);store result

DADDIU R1,R1,-8;decrement pointer

;8 bytes (per DW)

BNE R1,R2,Loop; branch R1!=zero

226 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation

The presence of the dependence indicates the potential for a hazard, but the
actual hazard and the length of any stall is a property of the pipeline. The impor-
tance of the data dependences is that a dependence (1) indicates the possibility of
a hazard, (2) determines the order in which results must be calculated, and (3)
sets an upper bound on how much parallelism can possibly be exploited. Such
limits are explored in section 3.8.

Since a data dependence can limit the amount of instruction-level parallelism
we can exploit, a major focus of this chapter and the next is overcoming these
limitations. A dependence can be overcome in two different ways: maintaining
the dependence but avoiding a hazard, and eliminating a dependence by trans-
forming the code. Scheduling the code is the primary method used to avoid a haz-
ard without altering a dependence. In this chapter, we consider hardware schemes
for scheduling code dynamically as it is executed. As we will see, some types of
dependences can be eliminated, primarily by software, and in some cases by
hardware techniques.

A data value may flow between instructions either through registers or through
memory locations. When the data flow occurs in a register, detecting the depen-
dence is reasonably straightforward since the register names are fixed in the in-
structions, although it gets more complicated when branches intervene and
correctness concerns cause a compiler or hardware to be conservative.

Dependences that flow through memory locations are more difficult to detect
since two addresses may refer to the same location, but look different: For exam-
ple, 100(R4) and 20(R6) may be identical. In addition, the effective address of a
load or store may change from one execution of the instruction to another (so that
20(R4) and 20(R4) will be different), further complicating the detection of a de-
pendence. In this chapter, we examine hardware for detecting data dependences
that involve memory locations, but we shall see that these techniques also have
limitations. The compiler techniques for detecting such dependences are critical
in uncovering loop-level parallelism, as we shall see in the next chapter.

Name Dependences
The second type of dependence is a name dependence. A name dependence oc-
curs when two instructions use the same register or memory location, called a
name, but there is no flow of data between the instructions associated with that
name. There are two types of name dependences between an instruction i that
precedes instruction j in program order:

1. An antidependence between instruction i and instruction j occurs when in-
struction j writes a register or memory location that instruction i reads. The
original ordering must be preserved to ensure that i reads the correct value.

2. An output dependence occurs when instruction i and instruction j write the
same register or memory location. The ordering between the instructions must
be preserved to ensure that the value finally written corresponds to instruction
j.

3.1 Instruction-Level Parallelism: Concepts and Challenges 227

Both antidependences and output dependences are name dependences, as
opposed to true data dependences, since there is no value being transmitted be-
tween the instructions. Since a name dependence is not a true dependence, in-
structions involved in a name dependence can execute simultaneously or be
reordered, if the name (register number or memory location) used in the instruc-
tions is changed so the instructions do not conflict. This renaming can be more
easily done for register operands, where it is called register renaming. Register
renaming can be done either statically by a compiler or dynamically by the hard-
ware. Before describing dependences arising from branches, let’s examine the re-
lationship between dependences and pipeline data hazards.

Data Hazards
A hazard is created whenever there is a dependence between instructions, and
they are close enough that the overlap caused by pipelining, or other reordering
of instructions, would change the order of access to the operand involved in the
dependence. Because of the dependence, we must preserve what is called pro-
gram order, that is the order that the instructions would execute in, if executed se-
quentially one at a time as determined by the original source program. The goal
of both our software and hardware techniques is to exploit parallelism by pre-
serving program order only where it affects the outcome of the program. Detect-
ing and avoiding hazards ensures that necessary program order is preserved.

Data hazards may be classified as one of three types, depending on the order
of read and write accesses in the instructions. By convention, the hazards are
named by the ordering in the program that must be preserved by the pipeline.
Consider two instructions i and j, with i occurring before j in program order. The
possible data hazards are

n RAW (read after write) — j tries to read a source before i writes it, so j incor-
rectly gets the old value. This hazard is the most common type and corresponds
to a true data dependence. Program order must be preserved to ensure that j re-
ceives the value from i. In the simple common five-stage static pipeline (see
Appendix A) a load instruction followed by an integer ALU instruction that di-
rectly uses the load result will lead to a RAW hazard.

n WAW (write after write) — j tries to write an operand before it is written by i.
The writes end up being performed in the wrong order, leaving the value writ-
ten by i rather than the value written by j in the destination. This hazard corre-
sponds to an output dependence. WAW hazards are present only in pipelines
that write in more than one pipe stage or allow an instruction to proceed even
when a previous instruction is stalled. The classic five-stage integer pipeline
used in Appendix A writes a register only in the WB stage and avoids this class
of hazards, but this chapter explores pipelines that allow instructions to be re-
ordered, creating the possibility of WAW hazards. WAW hazards can also be-
tween a short integer pipeline and a longer floating-point pipeline (see the
pipelines in Sections A.5 and A.6 of Appendix A). For example, a floating point
multiply instruction that writes F4, shortly followed by a load of F4 could yield
a WAW hazard, since the load could complete before the multiply completed.

228 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation

n WAR (write after read) — j tries to write a destination before it is read by i,
so i incorrectly gets the new value. This hazard arises from an antidependence.
WAR hazards cannot occur in most static issue pipelines even deeper pipelines
or floating point pipelines because all reads are early (in ID) and all writes are
late (in WB). (See Appendix A to convince yourself.) A WAR hazard occurs
either when there are some instructions that write results early in the instruc-
tion pipeline, and other instructions that read a source late in the pipeline or
when instructions are reordered, as we will see in this chapter.

Note that the RAR (read after read) case is not a hazard.

Control Dependences

The last type of dependence is a control dependence. A control dependence deter-
mines the ordering of an instruction, i, with respect to a branch instruction so that
the instruction i is executed in correct program order and only when it should be.
Every instruction, except for those in the first basic block of the program, is con-
trol dependent on some set of branches, and, in general, these control dependenc-
es must be preserved to preserve program order. One of the simplest examples of
a control dependence is the dependence of the statements in the “then” part of an
if statement on the branch. For example, in the code segment:

if p1 {

S1;

};

if p2 {

S2;

}

S1 is control dependent on p1, and S2 is control dependent on p2 but not on p1.
In general, there are two constraints imposed by control dependences:

1. An instruction that is control dependent on a branch cannot be moved before
the branch so that its execution is no longer controlled by the branch. For ex-
ample, we cannot take an instruction from the then-portion of an if-statement
and move it before the if-statement.

2. An instruction that is not control dependent on a branch cannot be moved after
the branch so that its execution is controlled by the branch. For example, we
cannot take a statement before the if-statement and move it into the then-por-
tion.

Control dependence is preserved by two properties in a simple pipeline, such
as that in Chapter 1. First, instructions execute in program order. This ordering
ensures that an instruction that occurs before a branch is executed before the
branch. Second, the detection of control or branch hazards ensures that an in-

3.1 Instruction-Level Parallelism: Concepts and Challenges 229

struction that is control dependent on a branch is not executed until the branch di-
rection is known.

Although preserving control dependence is a useful and simple way to help
preserve program order, the control dependence in itself is not the fundamental
performance limit. We may be willing to execute instructions that should not
have been executed, thereby violating the control dependences, if we can do so
without affecting the correctness of the program. Control dependence is not the
critical property that must be preserved. Instead, the two properties critical to
program correctness–and normally preserved by maintaining both data and con-
trol dependence–are the exception behavior and the data flow.

Preserving the exception behavior means that any changes in the ordering of
instruction execution must not change how exceptions are raised in the program.
Often this is relaxed to mean that the reordering of instruction execution must not
cause any new exceptions in the program. A simple example shows how main-
taining the control and data dependences can prevent such situations. Consider
this code sequence:

DADDU R2,R3,R4

BEQZ R2,L1

LW R1,0(R2)

L1:

In this case, it is easy to see that if we do not maintain the data dependence in-
volving R2, we can change the result of the program. Less obvious is the fact that
if we ignore the control dependence and move the load instruction before the
branch, the load instruction may cause a memory protection exception. Notice
that no data dependence prevents us from interchanging the BEQZ and the LW; it is
only the control dependence. To allow us to reorder these instructions (and still
preserve the data dependence), we would like to just ignore the exception when
the branch is taken. In section 3.5, we will look at a hardware technique, specula-
tion, which allows us to overcome this exception problem. The next chapter looks
at other techniques for the same problem.

The second property preserved by maintenance of data dependences and con-
trol dependences is the data flow. The data flow is the actual flow of data values
among instructions that produce results and those that consume them. Branches
make the data flow dynamic, since they allow the source of data for a given in-
struction to come from many points. Put another way, it is not sufficient to just
maintain data dependences because an instruction may be data dependent on
more than one predecessor. Program order is what determines which predecessor
will actually deliver a data value to an instruction. Program order is ensured by
maintaining the control dependences.

For example, consider the following code fragment:
DADDU R1,R2,R3

BEQZ R4,L

DSUBU R1,R5,R6

L: ...

230 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
OR R7,R1,R8

In this example, the value of R1 used by the OR instruction depends on whether
the branch is taken or not. Data dependence alone is not sufficient to preserve
correctness. The OR instruction is data dependent on both the DAAU and DSUBU in-
structions, but preserving this order alone is insufficient for correct execution. In-
stead, when the instructions execute, the data flow must be preserved: If the
branch is not taken then the value of R1 computed by the DSUBU should be used
by the OR, and if the branch is taken the value of R1 computed by the DADDU
should be used by the OR. By preserving the control dependence of the OR on the
branch, we prevent an illegal change to the data flow. For similar reasons, the
DSUBU instruction cannot be moved above the branch. Speculation, which helps
with the exception problem, will also allow us to lessen the impact of the control
dependence while still maintaining the data flow, as we will see in section 3.5.

Sometimes we can determine that violating the control dependence cannot
affect either the exception behavior or the data flow. Consider the following code
sequence:

DADDU R1,R2,R3

BEQZ R12,skipnext

DSUBU R4,R5,R6

DADDU R5,R4,R9

skipnext: OR R7,R8,R9

Suppose we knew that the register destination of the DSUBU instruction (R4) was
unused after the instruction labeled skipnext. (The property of whether a value
will be used by an upcoming instruction is called liveness.) If R4 were unused,
then changing the value of R4 just before the branch would not affect the data
flow since R4 would be dead (rather than live) in the code region after skipnext.
Thus, if R4 were dead and the existing DSUBU instruction could not generate an
exception (other than those from which the processor resumes the same process),
we could move the DSUBU instruction before the branch, since the data flow can-
not be affected by this change. If the branch is taken, the DSUBU instruction will
execute and will be useless, but it will not affect the program results. This type of
code scheduling is sometimes called speculation, since the compiler is betting on
the branch outcome; in this case, the bet is that the branch is usually not taken.
More ambitious compiler speculation mechanisms are discussed in Chapter 4.

Control dependence is preserved by implementing control hazard detection
that causes control stalls. Control stalls can be eliminated or reduced by a variety
of hardware and software techniques. Delayed branches, which we saw in Chap-
ter 1, can reduce the stalls arising from control hazards; scheduling a delayed
branch requires that the compiler preserve the data flow.

The key focus of the rest of this chapter is on techniques that exploit instruction-
level parallelism using hardware. The data dependences in a compiled program
act as a limit on how much ILP can be exploited. The challenge is to approach
that limit by trying to minimize the actual hazards and associated stalls that arise.
The techniques we examine become ever more sophisticated in an attempt to ex-

3.2 Overcoming Data Hazards with Dynamic Scheduling 231
ploit all the available parallelism while maintaining the necessary true data de-
pendences in the code.

A simple satirically scheduled pipeline fetches an instruction and issues it, unless
there was a data dependence between an instruction already in the pipeline and
the fetched instruction that cannot be hidden with bypassing or forwarding. (For-
warding logic reduces the effective pipeline latency so that the certain depen-
dences do not result in hazards). If there is a data dependence that cannot be
hidden, then the hazard detection hardware stalls the pipeline (starting with the
instruction that uses the result). No new instructions are fetched or issued until
the dependence is cleared.

In this section, we explore an important technique, called dynamic scheduling,
in which the hardware rearranges the instruction execution to reduce the stalls
while maintaining data flow and exception behavior. Dynamic scheduling offers
several advantages: It enables handling some cases when dependences are un-
known at compile time (e.g., because they may involve a memory reference), and
it simplifies the compiler. Perhaps most importantly, it also allows code that was
compiled with one pipeline in mind to run efficiently on a different pipeline. In
section 3.5, we will explore hardware speculation, a technique with significant
performance advantages, which builds on dynamic scheduling. As we will see,
the advantages of dynamic scheduling are gained at a cost of a significant in-
crease in hardware complexity.

Although a dynamically scheduled processor cannot change the data flow, it
tries to avoid stalling when dependences, which could generate hazards, are
present. In contrast, static pipeline scheduling by the compiler (covered in the
next chapter) tries to minimize stalls by separating dependent instructions so that
they will not lead to hazards. Of course, compiler pipeline scheduling can also be
used on code destined to run on a processor with a dynamically scheduled pipe-
line.

Dynamic Scheduling: The Idea

A major limitation of the simple pipelining techniques we discuss in Appendix A
is that they all use in-order instruction issue and execution: Instructions are issued
in program order and if an instruction is stalled in the pipeline, no later instruc-
tions can proceed. Thus, if there is a dependence between two closely spaced in-
structions in the pipeline, this will lead to a hazard and a stall will result. If there
are multiple functional units, these units could lie idle. If instruction j depends on
a long-running instruction i, currently in execution in the pipeline, then all instruc-

3.2 Overcoming Data Hazards with Dynamic Scheduling

232 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
tions after j must be stalled until i is finished and j can execute. For example, con-
sider this code:

DIV.D F0,F2,F4

ADD.D F10,F0,F8

SUB.D F12,F8,F14

The SUB.D instruction cannot execute because the dependence of ADD.D on
DIV.D causes the pipeline to stall; yet SUB.D is not data dependent on anything
in the pipeline. This hazard creates a performance limitation that can be eliminat-
ed by not requiring instructions to execute in program order.

In the classic five-stage pipeline developed in the first chapter, both structural
and data hazards could be checked during instruction decode (ID): When an in-
struction could execute without hazards, it was issued from ID knowing that all
data hazards had been resolved. To allow us to begin executing the SUB.D in the
above example, we must separate the issue process into two parts: checking for
any structural hazards and waiting for the absence of a data hazard. We can still
check for structural hazards when we issue the instruction; thus, we still use in-
order instruction issue (i.e., instructions issue in program order), but we want an
instruction to begin execution as soon as its data operand is available. Thus, this
pipeline does out-of-order execution, which implies out-of-order completion.

Out-of-order execution introduces the possibility of WAR and WAW hazards,
which do not exist in the five-stage integer pipeline and its logical extension to an
in-order floating-point pipeline. Consider the following MIPS floating-point code
sequence:

DIV.D F0,F2,F4

ADD.D F6,F0,F8

SUB.D F8,F10,F14

MULT.D F6,F10,F8

There is an antidependence between the ADD.D and the SUB.D, and if the pipeline
executes the SUB.D before the ADD.D (which is waiting for the DIV.D), it will vio-
late the antidependence, yielding a WAR hazard. Likewise, to avoid violating
output dependences, such as the write of F6 by MULT.D, WAW hazards must be
handled. As we will see, both these hazards are avoided by the use of register re-
naming.

Out-of-order completion also creates major complications in handling excep-
tions. Dynamic scheduling with out-of-order completion must preserve exception
behavior in the sense that exactly those exceptions that would arise if the program
were executed in strict program order actually do arise. Dynamically scheduled
processors preserve exception behavior by ensuring that no instruction can gener-
ate an exception until the processor knows that the instruction raising the excep-
tion will be executed; we will see shortly how this property can be guaranteed.
Although exception behavior must be preserved, dynamically scheduled proces-
sors may generate imprecise exceptions. An exception is imprecise if the proces-
sor state when an exception is raised does not look exactly as if the instructions

3.2 Overcoming Data Hazards with Dynamic Scheduling 233
were executed sequentially in strict program order. Imprecise exceptions can oc-
cur because of two possibilities:

1. the pipeline may have already completed instructions that are later in program
order than the instruction causing the exception, and

2. the pipeline may have not yet completed some instructions that are earlier in
program order than the instruction causing the exception.

Imprecise exceptions make it difficult to restart execution after an exception.
Rather than address these problems in this section, we will discuss a solution that
provides precise exceptions in the context of a processor with speculation in
section 3.5. For floating-point exceptions, other solutions have been used, as dis-
cussed in Appendix A.

To allow out-of-order execution, we essentially split the ID pipe stage of our
simple five-stage pipeline into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

An instruction fetch stage precedes the issue stage and may fetch either into an
instruction register or into a queue of pending instructions; instructions are then
issued from the register or queue. The EX stage follows the read operands stage,
just as in the five-stage pipeline. Execution may take multiple cycles, depending
on the operation.

We will distinguish when an instruction begins execution and when it com-
pletes execution; between the two times, the instruction is in execution. Our pipe-
line allows multiple instructions to be in execution at the same time, and without
this capability, a major advantage of dynamic scheduling is lost. Having multiple
instructions in execution at once requires multiple functional units, pipelined
functional units, or both. Since these two capabilities—pipelined functional units
and multiple functional units—are essentially equivalent for the purposes of
pipeline control, we will assume the processor has multiple functional units.

In a dynamically scheduled pipeline, all instructions pass through the issue
stage in order (in-order issue); however, they can be stalled or bypass each other
in the second stage (read operands) and thus enter execution out of order. Score-
boarding; is a technique for allowing instructions to execute out-of-order when
there are sufficient resources and no data dependences; it is named after the CDC
6600 scoreboard, which developed this capability. We focus on a more sophisti-
cated technique, called Tomasulo’s algorithm, that has several major enhance-
ments over scoreboarding. The reader wishing a gentler introduction to these

234 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
concepts may want to consult the online version of Appendix G that thoroughly
discusses scoreboarding and includes several examples.

Dynamic Scheduling Using Tomasulo’s Approach

A key approach to allow execution to proceed in the presence of dependences
was used by the IBM 360/91 floating-point unit. Invented by Robert Tomasulo,
this scheme tracks when operands for instructions are available, to minimize
RAW hazards, and introduces register renaming, to minimize WAW and RAW
hazards. There are many variations on this scheme in modern processors, though
the key concept of tracking instruction dependencies to allow execution as soon
as operands are available and renaming registers to avoid WAR and WAW haz-
ards are common characteristics.

The IBM 360/91 was completed just before caches appeared in commercial
processors. IBM’s goal was to achieve high floating-point performance from an
instruction set and from compilers designed for the entire 360-computer family,
rather than from specialized compilers for the high-end processors. The 360 ar-
chitecture had only four double-precision floating-point registers, which limits
the effectiveness of compiler scheduling; this fact was another motivation for the
Tomasulo approach. In addition, the IBM 360/91 had long memory accesses and
long floating-point delays, which Tomasulo’s algorithm was designed to overcome.
At the end of the section, we will see that Tomasulo’s algorithm can also support the
overlapped execution of multiple iterations of a loop.

We explain the algorithm, which focuses on the floating-point unit and load/
store unit, in the context of the MIPS instruction set. The primary difference be-
tween MIPS and the 360 is the presence of register-memory instructions in the
latter processor. Because Tomasulo’s algorithm uses a load functional unit, no
significant changes are needed to add register-memory addressing modes. The
IBM 360/91 also had pipelined functional units, rather than multiple functional
units, but we describe the algorithm as if there were multiple functional units. It
is a simple conceptual extension to also pipeline those functional units.

As we will see RAW hazards are avoided by executing an instruction only
when its operands are available. WAR and WAW hazards, which arise from name
dependences, are eliminated by register renaming. Register renaming eliminates
these hazards by renaming all destination registers, including those with a pending
read or write for an earlier instruction, so that the out-of-order write does not affect
any instructions that depend on an earlier value of an operand.

To better understand how register renaming eliminates WAR and WAW hazards
consider the following example code sequence that includes both a potential WAR
and WAW hazard:

DIV.D F0,F2,F4

ADD.D F6,F0,F8

S.D F6,0(R1)

SUB.D F8,F10,F14

MULT.D F6,F10,F8

3.2 Overcoming Data Hazards with Dynamic Scheduling 235
There is an antidependence between the ADD.D and the SUB.D and an output de-
pendence between the ADD.D and the MULT.D leading to three possible hazards: a
WAR hazard on the use of F8 by ADD.D and on the use of F8 by the MULT.D, and a
WAW hazard since the ADD.D may finish later than the MULT.D. There are also
three true data dependences between the DIV.D and the ADD.D, between the
SUB.D and the MULT.D, and between the ADD.D and the S.D.

These name dependences can both be eliminated by register renaming. For
simplicity, assume the existence of two temporary registers, S and T. Using S and
T, the sequence can be rewritten without any dependences as:

DIV.D F0,F2,F4

ADD.D S,F0,F8

S.D S,0(R1)

SUB.D T,F10,F14

MULT.D F6,F10,T

In addition, any subsequent uses of F8 must be replaced by the register T. In this
code segment, the renaming process can be done statically by the compiler. Find-
ing any uses of F8 that are later in the code requires either sophisticated compiler
analysis or hardware support, since there may be intervening branches between
the above code segment and a later use of F8. As we will see Tomasulo’s algo-
rithm can handle renaming across branches.

In Tomasulo’s scheme, register renaming is provided by the reservation sta-
tions, which buffer the operands of instructions waiting to issue, and by the issue
logic. The basic idea is that a reservation station fetches and buffers an operand
as soon as it is available, eliminating the need to get the operand from a register.
In addition, pending instructions designate the reservation station that will pro-
vide their input. Finally, when successive writes to a register overlap in execu-
tion, only the last one is actually used to update the register. As instructions are
issued, the register specifiers for pending operands are renamed to the names of
the reservation station, which provides register renaming. Since there can be
more reservation stations than real registers, the technique can even eliminate
hazards arising from name dependences that could not be eliminated by a com-
piler. As we explore the components of Tomasulo’s scheme, we will return to the
topic of register renaming and see exactly how the renaming occurs and how it
eliminates WAR and WAW hazards.

The use of reservation stations, rather than a centralized register file, leads to
two other important properties. First, hazard detection and execution control are
distributed: The information held in the reservation stations at each functional unit
determine when an instruction can begin execution at that unit. Second, results are
passed directly to functional units from the reservation stations where they are
buffered, rather than going through the registers. This bypassing is done with a
common result bus that allows all units waiting for an operand to be loaded simul-
taneously (on the 360/91 this is called the common data bus, or CDB). In pipelines
with multiple execution units and issuing multiple instructions per clock, more
than one result bus will be needed.

236 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Figure 3.2 shows the basic structure of a Tomasulo-based MIPS processor, in-
cluding both the floating-point unit and the load/store unit; none of the execution
control tables are shown. Each reservation station holds an instruction that has
been issued and is awaiting execution at a functional unit, and either the operand
values for that instruction, if they have already been computed, or else the names
of the functional units that will be provide the operand values.

The load buffers and store buffers hold data or addresses coming from and go-
ing to memory and behave almost exactly like reservation stations, so we distin-
guish them only when necessary. The floating-point registers are connected by a
pair of buses to the functional units and by a single bus to the store buffers. All re-
sults from the functional units and from memory are sent on the common data
bus, which goes everywhere except to the load buffer. All reservation stations
have tag fields, employed by the pipeline control.

Before we describe the details of the reservation stations and the algorithm,
let’s look at the steps an instruction goes through, just as we did for the five-stage
pipeline of Chapter 1. Since the structure is dramatically different, there are only
three steps (though each one can now take an arbitrary number of clock cycles):

1. Issue—Get the next instruction from the head of the instruction queue, which
is maintained in FIFO order to ensure the maintenance of correct data flow. If
there is a matching reservation station that is empty, issue the instruction to the
station with the operand values, if they are currently in the registers. If there is
not an empty reservation station, then there is a structural hazard and the in-
struction stalls until a station or buffer is freed. If the operands are not in the
registers, enter the functional units that will produce the operands into the Qi
and Qj fields. This step renames registers, eliminating WAR and WAW haz-
ards.

2. Execute—If one or more of the operands is not yet available, monitor the com-
mon data bus (CDB) while waiting for it to be computed. When an operand be-
comes available, it is placed into the corresponding reservation station. When
all the operands are available, the operation can be executed at the correspond-
ing functional unit. By delaying instruction execution until the operands are
available RAW, hazards are avoided. Notice that several instructions could be-
come ready in the same clock cycle for the same functional unit. Although in-
dependent functional units could begin execution in the same clock cycle for
different instructions, if more than one instruction is ready for a single function-
al unit, the unit will have to choose among them. For the floating point reserva-
tion stations, this choice may be made arbitrarily; loads and stores, however,
present an additional complication.

Loads and stores require a two-step execution process. The first step
computes the effective address when the base register is available, and the ef-
fective address is then placed in the load or store buffer. Loads in the load buff-
er execute as soon as the memory unit is available. Stores in the store buffer
wait from the value to be stored before being sent to the memory unit. Loads

3.2 Overcoming Data Hazards with Dynamic Scheduling 237
and stores are maintained in program order through the effective address cal-
culation, which will help to prevent hazards through memory, as we will see
shortly.

To preserve exception behavior, no instruction is allowed to initiate exe-
cution until all branches that precede the instruction in program order have
completed. This restriction guarantees that an instruction that causes an excep-
tion during execution really would have been executed. In a processor using
branch prediction (as all dynamically schedule processors do), this means that
the processor must know that the branch prediction was correct before allowing
an instruction after the branch to begin execution. It is possible by recording

FIGURE 3.2 The basic structure of a MIPS floating point unit using Tomasulo’s algo-
rithm. Instructions are sent from the instruction unit into the instruction queue from which
they are issued in FIFO order. The reservation stations include the operation and the actual
operands, as well as information used for detecting and resolving hazards. Load buffers have
three functions: hold the components of the effective address until it is computed, track out-
standing loads that are waiting on the memory, and hold the results of completed loads that
are waiting for the CDB. Similarly, store buffers have three functions: hold the components of
the effective address until it is computed, hold the destination memory addresses of out-
standing stores that are waiting for the data value to store, and hold the address and value to
store until the memory unit is available. All results from either the FP units or the load unit are
put on the CDB, which goes to the FP register file as well as to the reservation stations and
store buffers. The FP adders implement addition and subtraction, and the FP multipliers do
multiplication and division.

From instruction unit

Floating-point
operations

FP registers

Store buffers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
buses

Load/store
operations

Address unit

Load buffers

Memory unit
AddressData

Instruction
queue

238 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
the occurrence of the exception, but not actually raising it, to allow execution
of the instruction to start and not stall the instruction until it enters write result.
As we will see, speculation provides a more flexible and more complete meth-
od to handle exceptions, so we will delay making this enhancement and show
how speculation handles this problem later.

3. Write result—When the result is available, write it on the CDB and from there
into the registers and into any reservation stations (including store buffers)
waiting for this result. Stores also write data to memory during this step: When
both the address and data value are available, they are sent to the memory unit
and the store completes.

The data structures used to detect and eliminate hazards are attached to the
reservation stations, to the register file, and to the load and store buffers with
slightly different information attached to different objects. These tags are essen-
tially names for an extended set of virtual registers used in renaming. In our ex-
ample, the tag field is a four-bit quantity that denotes one of the five reservation
stations or one of the six load buffers. As we will see, this produces the equivalent
of eleven registers that can be designated as result registers (as opposed to the
four double-precision registers that the 360 architecture contains). In a processor
with more real registers, we would want renaming to provide an even larger set of
virtual registers. The tag field describes which reservation station contains the in-
struction that will produce a result needed as a source operand.

Once an instruction has issued and is waiting for a source operand, it refers to
the operand by the reservation station number where the instruction that will
write the register has been assigned. Unused values, such as zero, indicate that
the operand is already available in the registers. Because there are more reserva-
tion stations than actual register numbers, WAW and WAR hazards are eliminated
by renaming results using reservation station numbers. Although in Tomasulo’s
scheme the reservation stations are used as the extended virtual registers, other
approaches could use a register set with additional registers or a structure like the
reorder buffer, which we will see in section 3.5.

In describing the operation of this scheme, we use a terminology taken from
the CDC scoreboard scheme, showing the terminology used by the IBM 360/91
for historical reference. It is important to remember that the tags in the Tomasulo
scheme refer to the buffer or unit that will produce a result; the register names are
discarded when an instruction issues to a reservation station.

Each reservation station has six fields:

Op—The operation to perform on source operands S1 and S2.

Qj, Qk—The reservation stations that will produce the corresponding source
operand; a value of zero indicates that the source operand is already available
in Vj or Vk, or is unnecessary. (The IBM 360/91 calls these SINKunit and
SOURCEunit.)

Vj, Vk—The value of the source operands. Note that only one of the V field or

3.3 Dynamic Scheduling: Examples and the Algorithm 239
the Q field is valid for each operand. For loads, the Vk field is used to the offset
from the instruction.(These fields are called SINK and SOURCE on the IBM
360/91.)

A–used to hold information for the memory address calculation for a load or
store. Initially, the immediate field of the instruction is stored here; after the ad-
dress calculation, the effective address is stored here.

Busy—Indicates that this reservation station and its accompanying functional
unit are occupied.

The register file has a field, Qi:

Qi—The number of the reservation station that contains the operation whose
result should be stored into this register. If the value of Qi is blank (or 0), no
currently active instruction is computing a result destined for this register,
meaning that the value is simply the register contents.

The load and store buffers each have a field, A, which holds the result of the ef-
fective address once the first step of execution has been completed.

In the next section, we will first consider some examples that show how these
mechanisms work and then examine the detailed algorithm.

Before we examine Tomasulo’s algorithm in detail, let’s consider as few exam-
ples, which will help illustrate how the algorithm works.

E X A M P L E Show what the information tables look like for the following code se-
quence when only the first load has completed and written its result:

1. L.D F6,34(R2)

2. L.D F2,45(R3)

3. MUL.D F0,F2,F4

4. SUB.D F8,F2,F6

5. DIV.D F10,F0,F6

6. ADD.D F6,F8,F2

A N S W E R The result is shown in the three tables in Figure 3.3. The numbers ap-
pended to the names add, mult, and load stand for the tag for that reser-
vation station—Add1 is the tag for the result from the first add unit. In
addition we have included an instruction status table. This table is in-
cluded only to help you understand the algorithm; it is not actually a part
of the hardware. Instead, the reservation station keeps the state of each
operation that has issued .

3.3 Dynamic Scheduling: Examples and the Algorithm

240 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Tomasulo’s scheme offers two major advantages over earlier and simpler
schemes: (1) the distribution of the hazard detection logic and (2) the elimination
of stalls for WAW and WAR hazards.

The first advantage arises from the distributed reservation stations and the use
of the CDB. If multiple instructions are waiting on a single result, and each in-
struction already has its other operand, then the instructions can be released
simultaneously by the broadcast on the CDB. If a centralized register file were
used, the units would have to read their results from the registers when register
buses are available.

Instruction status

Instruction Issue Execute Write result

L.D F6,34(R2) √ √ √
L.D F2,45(R3) √ √
MUL.D F0,F2,F4 √
SUB.D F8,F2,F6 √
DIV.D F10,F0,F6 √
ADD.D F6,F8,F2 √

 Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 no

Load2 yes Load 45+Regs[R3]

Add1 yes SUB Mem[34+Regs[R2]] Load2

Add2 yes ADD Add1 Load2

Add3 no

Mult1 yes MUL Regs[F4] Load2

Mult2 yes DIV Mem[34+Regs[R2]] Mult1

Register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Mult1 Load2 Add2 Add1 Mult2

FIGURE 3.3 Reservation stations and register tags shown when all of the instructions have issued, but only the
first load instruction has completed and written its result to the CDB. The second load has completed effective address
calculation, but is waiting on the memory unit. We use the array Regs[] to refer to the register file and the array Mem[] to
refer to the memory. Remember that an operand is specified by either a Q field or a V field at any time. Notice that the ADD.D
instruction, which has a WAR hazard at the WB stage, has issued and could complete before the DIV.D initiates.

3.3 Dynamic Scheduling: Examples and the Algorithm 241
The second advantage, the elimination of WAW and WAR hazards, is accom-
plished by renaming registers using the reservation stations, and by the process of
storing operands into the reservation station as soon as they are available. For ex-
ample, in our code sequence in Figure 3.3 we have issued both the DIV.D and the
ADD.D, even though there is a WAR hazard involving F6. The hazard is eliminat-
ed in one of two ways. First, if the instruction providing the value for the DIV.D
has completed, then Vk will store the result, allowing DIV.D to execute indepen-
dent of the ADD.D (this is the case shown).

On the other hand, if the L.D had not completed, then Qk would point to the
Load1 reservation station, and the DIV.D instruction would be independent of the
ADD.D. Thus, in either case, the ADD.D can issue and begin executing. Any uses of
the result of the DIV.D would point to the reservation station, allowing the ADD.D
to complete and store its value into the registers without affecting the DIV.D.
We’ll see an example of the elimination of a WAW hazard shortly. But let’s first
look at how our earlier example continues execution. In this example, and the
ones that follow in this chapter, assume the following latencies: Load is 1 cycle,
Add is 2 clock cycles, multiply is 10 clock cycles, and divide is 40 clock cycles.

E X A M P L E Using the same code segment as the previous example (page 239), show
what the status tables look like when the MUL.D is ready to write its result.

A N S W E R The result is shown in the three tables in Figure 3.4. Notice that ADD.D
has completed since the operands of DIV.D were copied, thereby over-
coming the WAR hazard. Notice that even if the load of F6 was delayed,
the add into F6 could be executed without triggering a WAW hazard.

242 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
n

Tomasulo’s Algorithm: the details

Figure 3.5 gives the checks and steps that each instruction must go through. As
mentioned earlier, loads and stores go through a functional unit for effective ad-
dress computation before proceeding to independent load or store buffers. Loads
take a second execution step to access memory and then go to Write Result to
send the value from memory to the register file and/or any waiting reservation
stations. Stores complete their execution in the Write Result stage, which writes
the result to memory. Notice that all writes occur in Write Result, whether the
destination is a register or memory. This restriction simplifies Tomasulo’s algo-
rithm and is critical to its extension with speculation in section 3.5.

Instruction status

Instruction Issue Execute Write result

L.D F6,34(R2) √ √ √
L.D F2,45(R3) √ √ √
MUL.D F0,F2,F4 √ √
SUB.D F8,F2,F6 √ √ √
DIV.D F10,F0,F6 √
ADD.D F6,F8,F2 √ √ √

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 no

Load2 no

Add1 no

Add2 no

Add3 no

Mult1 yes MUL Mem[45+Regs[R3]] Regs[F4]

Mult2 yes DIV Mem[34+Regs[R2]] Mult1

Register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Mult1 Mult2

FIGURE 3.4 Multiply and divide are the only instructions not finished.

3.3 Dynamic Scheduling: Examples and the Algorithm 243
Instruction state Wait until Action or bookkeeping

Issue
FP Operation

Station r empty if (Register Stat[rs].Qi ≠0)
 {RS[r].Qj← RegisterStat[rs].Qi}
else {RS[r].Vj← Regs[rs]; RS[r].Qj← 0};
if (RegisterStat[rt].Qi≠0)
 {RS[r].Qk← RegisterStat[rt]Q.i}
else {RS[r].Vk← Regs[rt]; RS[r].Qk← 0};
RS[r].Busy← yes; RegisterStat[rd].Qi=r;

Load or Store Buffer r empty if (Register Stat[rs].Qi ≠0)
 {RS[r].Qj← RegisterStat[rs].Qi}
else {RS[r].Vj← Regs[rs]; RS[r].Qj← 0};
RS[r].A← imm; RS[r].Busy← yes;

Load only RegisterStat[rt].Qi=r;

Store only if (Register Stat[rt].Qi ≠0)
 {RS[r].Qk← RegisterStat[rs].Qi}
 else {RS[r].Vk← Regs[rt]; RS[r].Qk← 0};

Execute
FP Operation

(RS[r].Qj=0) and
(RS[r].Qk=0)

Compute result: operands are in Vj and Vk

Load/Store
step 1

RS[r].Qj=0 & r is
head of load/store
queue

RS[r].A←RS[r].Vj + RS[r].A;

Load step 2 RS[r].A<>0 Read from Mem[RS[r].A]

Write result
FP Operation

or
Load

Execution complete
at r & CDB
available

∀x(if (RegisterStat[x].Qi=r) {Regs[x]← result;
 RegisterStat[x].Qi← 0});
∀x(if (RS[x].Qj=r) {RS[x].Vj← result;RS[x].Qj ← 0});
∀x(if (RS[x].Qk=r) {RS[x].Vk← result;RS[x].Qk ← 0});
RS[r].Busy← no;

Store Execution complete
at r & RS[r].Qk=0

Mem[RS[r].A]←RS[r].Vk;
RS[r].Busy← no;

FIGURE 3.5 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destina-
tion, rs and rt are the source register numbers, imm is the sign-extended immediate field, and r is the reservation station
or buffer that the instruction is assigned to. RS is the reservation-station data structure. The value returned by a FP unit or
by the load unit is called result. RegisterStat is the register status data structure (not the register file, which is
Regs[]). When an instruction is issued, the destination register has its Qi field set to the number of the buffer or reservation
station to which the instruction is issued. If the operands are available in the registers, they are stored in the V fields. Other-
wise, the Q fields are set to indicate the reservation station that will produce the values needed as source operands. The
instruction waits at the reservation station until both its operands are available, indicated by zero in the Q fields. The Q fields
are set to zero either when this instruction is issued, or when an instruction on which this instruction depends completes and
does its write back. When an instruction has finished execution and the CDB is available, it can do its write back. All the
buffers, registers, and reservation stations whose value of Qj or Qk is the same as the completing reservation station update
their values from the CDB and mark the Q fields to indicate that values have been received. Thus, the CDB can broadcast
its result to many destinations in a single clock cycle, and if the waiting instructions have their operands, they can all begin
execution on the next clock cycle. Loads go through two steps in Execute, and stores perform slightly differently during Write
Result, where they may have to wait for the value to store. Remember that to preserve exception behavior, instructions
should not be allowed to execute if a branch that is earlier in program order has not yet completed. Because any concept of
program order is not maintained after the Issue stage, this restriction is usually implemented by preventing any instruction
from leaving the Issue step, if there is a pending branch already in the pipeline. In Section 3.7, we will see how speculation
support removes this restriction.

244 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Tomasulo’s Algorithm: A Loop-Based Example
To understand the full power of eliminating WAW and WAR hazards through dy-
namic renaming of registers, we must look at a loop. Consider the earlier fol-
lowing simple sequence for multiplying the elements of an array by a scalar in
F2:

Loop: L.D F0,0(R1)

MUL.D F4,F0,F2

S.D F4,0(R1)

DADDUI R1,R1,-8

BNE R1,R2,Loop; branches if R1≠0
If we predict that branches are taken, using reservation stations will allow multi-
ple executions of this loop to proceed at once. This advantage is gained without
changing the code—in effect, the loop is unrolled dynamically by the hardware,
using the reservation stations obtained by renaming to act as additional registers.

Let’s assume we have issued all the instructions in two successive iterations of
the loop, but none of the floating-point loads-stores or operations has completed.
The reservation stations, register-status tables, and load and store buffers at this
point are shown in Figure 3.6. (The integer ALU operation is ignored, and it is as-
sumed the branch was predicted as taken.) Once the system reaches this state,
two copies of the loop could be sustained with a CPI close to 1.0 provided the
multiplies could complete in four clock cycles. As we will see later in this chap-
ter, when extended with multiple instruction issue, Tomasulo’s approach can sus-
tain more than one instruction per clock.

3.3 Dynamic Scheduling: Examples and the Algorithm 245
A load and store can safely be done in a different order, provided the they ac-
cess different addresses. If a load and a store access the same address, then either:

n the load is before the store in program order and interchanging them results in
a WAR hazard, or

n the store is before the load in program order and interchanging them results in
a RAW hazard.

Instruction status

Instruction From iteration Issue Execute Write result

L.D F0,0(R1) 1 √ √
MUL.D F4,F0,F2 1 √
S.D F4,0(R1) 1 √
L.D F0,0(R1) 2 √ √
MUL.D F4,F0,F2 2 √
S.D F4,0(R1) 2 √

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 yes Load Regs[R1]+0

Load2 yes Load Regs[R1]-8

Add1 no

Add2 no

Add3 no

Mult1 yes MUL Regs[F2] Load1

Mult2 yes MUL Regs[F2] Load2

Store1 yes Store Regs[R1] Mult1

Store2 yes Store Regs[R1]-8 Mult2

Register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Load2 Mult2

FIGURE 3.6 Two active iterations of the loop with no instruction yet completed. Entries in the multiplier reservation sta-
tions indicate that the outstanding loads are the sources. The store reservation stations indicate that the multiply destination is
the source of the value to store.

246 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Similarly, interchanging two stores to the same address results in WAW hazard.
Hence, to determine if a load can be executed at a given time, the processor

can check whether any uncompleted store that precedes the load in program order
shares the same data memory address as the load. Similarly, a store must wait un-
til there are no unexecuted loads or stores that are earlier in program order and
share the same data memory address.

To detect such hazards, the processor must have computed the data memory
address associated with any earlier memory operation. A simple, but not neces-
sarily optimal, way to guarantee that the processor has all such addresses is to
perform the effective address calculations in program order. (We really only need
keep the relative order between stores and other memory references; that is, loads
can be reordered freely.).

Let’s consider the situation of a load first. If we perform effective address cal-
culation in program order, then when a load has completed effective address cal-
culation, we can check whether there is an address conflict by examining the A
field of all active store buffers. If the load address matches the address of any ac-
tive entries in the store buffer, the load instruction is not sent to the load buffer
until the conflicting store completes. (Some implementations bypass the value di-
rectly to the load from a pending store, reducing the delay for this RAW hazard.)

Stores operate similarly, except that the processor must check for conflicts in
both the load buffers and the store buffers, since conflicting stores cannot be reor-
dered with respect to either a load or a store. This dynamic disambiguation of ad-
dresses is an alternative to the techniques, discussed in the next chapter, that a
compiler would use when interchanging a load and store.

A dynamically scheduled pipeline can yield very high performance, provided
branches are predicted accurately--an issue we address in the next section. The
major drawback of this approach is the complexity of the Tomasulo scheme,
which requires a large amount of hardware. In particular, each reservation station
must contain an associative buffer, which must run at high speed, as well as com-
plex control logic. Lastly, the performance can be limited by the single comple-
tion bus (CDB). Although additional CDBs can be added, each CDB must
interact with each the reservation station, and the associative tag-matching hard-
ware would need to be duplicated at each station for each CDB.

In Tomasulo’s scheme two different techniques are combined: the renaming of
the architectural registers to a larger set of registers and the buffering of source op-
erands from the register file. Source operand buffering resolves WAR hazards that
arise when the operand is available in the registers. As we will see later, it is also
possible to eliminate WAR hazards by the renaming of a register together with the
buffering of a result until no outstanding references to the earlier version of the
register remain. This approach will be used when we discuss hardware specula-
tion.

Tomasulo’s scheme is particularly appealing if the designer is forced to pipe-
line an architecture for which it is difficult to schedule code, that has a shortage

3.4 Reducing Branch Costs with Dynamic Hardware Prediction 247
of registers, or for which the designer wishes to obtain high performance without
pipeline specific compilation. On the other hand, the advantages of the Tomasulo
approach versus compiler scheduling for a efficient single-issue pipeline are
probably fewer than the costs of implementation. But, as processors become
more aggressive in their issue capability and designers are concerned with the
performance of difficult-to-schedule code (such as most nonnumeric code), tech-
niques such as register renaming and dynamic scheduling have become more im-
portant. Furthermore, the role of dynamic scheduling as a basis for hardware
speculation has made this approach very popular in the past five years.

The key components for enhancing ILP in Tomasulo’s algorithm are dynamic
scheduling, register renaming, and dynamic memory disambiguation. It is diffi-
cult to assess the value of these features independently. When we examine the
studies of ILP in section 3.8, we will look at how these features affect the amount
of parallelism discovered until ideal circumstances.

Corresponding to the dynamic hardware techniques for scheduling around
data dependences are dynamic techniques for handling branches efficiently.
These techniques are used for two purposes: to predict whether a branch will be
taken and to find the target more quickly. Hardware branch prediction, the name
for these techniques, is the next topic we discuss.

The previous section describes techniques for overcoming data hazards. The fre-
quency of branches and jumps demands that we also attack the potential stalls
arising from control dependences. Indeed, as the amount of ILP we attempt to ex-
ploit grows, control dependences rapidly become the limiting factor. Although
schemes in this section are helpful in processors that try to maintain one instruc-
tion issue per clock, for two reasons they are crucial to any processor that tries to
issue more than one instruction per clock. First, branches will arrive up to n times
faster in an n-issue processor and providing an instruction stream to the processor
will probably require that we predict the outcome of branches. Second, Amdahl’s
Law reminds us that relative impact of the control stalls will be larger with the
lower potential CPI in such machines.

In the first chapter, we examined a variety of basic schemes (e.g., predict not
taken and delayed branch) for dealing with branches. Those schemes were all
static: the action taken does not depend on the dynamic behavior of the branch.
This section focuses on using hardware to dynamically predict the outcome of a
branch—the prediction will depend on the behavior of the branch at runtime and
will change if the branch changes its behavior during execution.

We start with a simple branch prediction scheme and then examine approach-
es that increase the accuracy of our branch prediction mechanisms. After that, we
look at more elaborate schemes that try to find the instruction following a branch
even earlier. The goal of all these mechanisms is to allow the processor to resolve
the outcome of a branch early, thus preventing control dependences from causing
stalls. The effectiveness of a branch prediction scheme depends not only on the
accuracy, but also on the cost of a branch when the prediction is correct and when
the prediction is incorrect. These branch penalties depend on the structure of the

3.4 Reducing Branch Costs with Dynamic Hardware Prediction

248 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
pipeline, the type of predictor, and the strategies used for recovering from
misprediction.

Basic Branch Prediction and Branch-Prediction Buffers

The simplest dynamic branch-prediction scheme is a branch-prediction buffer or
branch history table. A branch-prediction buffer is a small memory indexed by
the lower portion of the address of the branch instruction. The memory contains a
bit that says whether the branch was recently taken or not. This scheme is the
simplest sort of buffer; it has no tags and is useful only to reduce the branch delay
when it is longer than the time to compute the possible target PCs. We don’t
know, in fact, if the prediction is correct—it may have been put there by another
branch that has the same low-order address bits. But this doesn’t matter. The pre-
diction is a hint that is assumed to be correct, and fetching begins in the predicted
direction. If the hint turns out to be wrong, the prediction bit is inverted and
stored back. Of course, this buffer is effectively a cache where every access is a
hit, and, as we will see, the performance of the buffer depends on both how often
the prediction is for the branch of interest and how accurate the prediction is
when it matches. Before we analyze the performance, it is useful to make a small,
but important, improvement in the accuracy of the branch prediction scheme.

This simple one-bit prediction scheme has a performance shortcoming: Even
if a branch is almost always taken, we will likely predict incorrectly twice, rather
than once, when it is not taken. The following example shows this.

E X A M P L E Consider a loop branch whose behavior is taken nine times in a row, then
not taken once. What is the prediction accuracy for this branch, assuming
the prediction bit for this branch remains in the prediction buffer?

A N S W E R The steady-state prediction behavior will mispredict on the first and last
loop iterations. Mispredicting the last iteration is inevitable since the pre-
diction bit will say taken (the branch has been taken nine times in a row at
that point). The misprediction on the first iteration happens because the
bit is flipped on prior execution of the last iteration of the loop, since the
branch was not taken on that iteration. Thus, the prediction accuracy for
this branch that is taken 90% of the time is only 80% (two incorrect pre-
dictions and eight correct ones). In general, for branches used to form
loops—a branch is taken many times in a row and then not taken once—
a one-bit predictor will mispredict at twice the rate that the branch is not
taken. It seems that we should expect that the accuracy of the predictor
would at least match the taken branch frequency for these highly regular
branches. n

To remedy this, two-bit prediction schemes are often used. In a two-bit
scheme, a prediction must miss twice before it is changed. Figure 3.7 shows the
finite-state processor for a two-bit prediction scheme.

3.4 Reducing Branch Costs with Dynamic Hardware Prediction 249
The two-bit scheme is actually a specialization of a more general scheme
that has an n-bit saturating counter for each entry in the prediction buffer. With
an n-bit counter, the counter can take on values between 0 and 2n – 1: when the
counter is greater than or equal to one half of its maximum value (2n–1), the
branch is predicted as taken; otherwise, it is predicted untaken. As in the two-bit
scheme, the counter is incremented on a taken branch and decremented on an un-
taken branch. Studies of n-bit predictors have shown that the two-bit predictors
do almost as well, and thus most systems rely on two-bit branch predictors rather
than the more general n-bit predictors.

A branch-prediction buffer can be implemented as a small, special “cache”
accessed with the instruction address during the IF pipe stage, or as a pair of bits
attached to each block in the instruction cache and fetched with the instruction. If
the instruction is decoded as a branch and if the branch is predicted as taken,
fetching begins from the target as soon as the PC is known. Otherwise, sequential
fetching and executing continue. If the prediction turns out to be wrong, the pre-
diction bits are changed as shown in Figure 3.7.

FIGURE 3.7 The states in a two-bit prediction scheme. By using two bits rather than one,
a branch that strongly favors taken or not taken—as many branches do—will be mispredicted
less often than with a one-bit predictor. The two bits are used to encode the four states in the
system. In a counter implementation, the counters are incremented when a branch is taken
and decremented when it is not taken; the counters saturate at 00 or 11. One complication of
the two-bit scheme is that it updates the prediction bits more often than a one-bit predictor,
which only updates the prediction bit on a mispredict. Since we typically read the prediction
bits on every cycle, a two-bit predictor will typically need both a read and a write access port.

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken

Predict taken
11

Predict taken
10

Predict not taken
01

Predict not taken
00

250 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Although this scheme is useful for most pipelines, the five-stage, classic pipe-
line finds out both whether the branch is taken and what the target of the branch
is at roughly the same time, assuming no hazard in accessing the register speci-
fied in the conditional branch. (Remember that this is true for the five-stage pipe-
line because the branch does a compare of a register against zero during the ID
stage, which is when the effective address is also computed.) Thus, this scheme
does not help for the five-stage pipeline; we will explore a scheme that can work
for such pipelines, and for machines issuing multiple instructions per clock, a lit-
tle later. First, let’s see how well branch prediction works in general.

What kind of accuracy can be expected from a branch-prediction buffer using
two bits per entry on real applications? For the SPEC89 benchmarks a branch-
prediction buffer with 4096 entries results in a prediction accuracy ranging from
over 99% to 82%, or a misprediction rate of 1% to 18%, as shown in Figure 3.8.

To show the differences more clearly, we plot misprediction frequency rather

FIGURE 3.8 Prediction accuracy of a 4096-entry two-bit prediction buffer for the
SPEC89 benchmarks. The misprediction rate for the integer benchmarks (gcc, espresso,
eqntott, and li) is substantially higher (average of 11%) than that for the FP programs (aver-
age of 4%). Even omitting the FP kernels (nasa7, matrix300, and tomcatv) still yields a higher
accuracy for the FP benchmarks than for the integer benchmarks. These data, as well as the
rest of the data in this section, are taken from a branch prediction study done using the IBM
Power architecture and optimized code for that system. See Pan et al. [1992].

18%

tomcatv

spiceSPEC89
benchmarks

gcc

li

2% 4% 6% 8% 10% 12% 14% 16%

0%

1%

5%

9%

9%

12%

5%

10%

18%

nasa7

matrix300

doduc

fpppp

espresso

eqntott

1%

0%

Frequency of mispredictions

3.4 Reducing Branch Costs with Dynamic Hardware Prediction 251
than prediction frequency. A 4K-entry buffer, like that used for these results, is
considered large; smaller buffers would have worse results.

Knowing just the prediction accuracy, as shown in Figure 3.8, is not enough to
determine the performance impact of branches, even given the branch costs and
penalties for misprediction. We also need to take into account the branch fre-
quency, since the importance of accurate prediction is larger in programs with
higher branch frequency. For example, the integer programs—li, eqntott, espresso,
and gcc—have higher branch frequencies than those of the more easily predicted
FP programs.

As we try to exploit more ILP, the accuracy of our branch prediction becomes
critical. As we can see in Figure 3.8, the accuracy of the predictors for integer
programs, which typically also have higher branch frequencies, is lower than for
the loop-intensive scientific programs. We can attack this problem in two ways:
by increasing the size of the buffer and by increasing the accuracy of the scheme
we use for each prediction. A buffer with 4K entries is already large and, as
Figure 3.9 shows, performs quite comparably to an infinite buffer. The data in
Figure 3.9 make it clear that the hit rate of the buffer is not the limiting factor. As
we mentioned above, simply increasing the number of bits per predictor without
changing the predictor structure also has little impact. Instead, we need to look at
how we might increase the accuracy of each predictor.

Correlating Branch Predictors
These two-bit predictor schemes use only the recent behavior of a single branch
to predict the future behavior of that branch. It may be possible to improve the
prediction accuracy if we also look at the recent behavior of other branches rather
than just the branch we are trying to predict. Consider a small code fragment
from the SPEC92 benchmark eqntott (the worst case for the two-bit predictor):

if (aa==2)

aa=0;

if (bb==2)

bb=0;

if (aa!=bb) {

Here is the MIPS code that we would typically generate for this code fragment
assuming that aa and bb are assigned to registers R1 and R2:

DSUBUI R3,R1,#2

BNEZ R3,L1 ;branch b1 (aa!=2)

DADD R1,R0,R0 ;aa=0

L1: DSUBUI R3,R2,#2

BNEZ R3,L2 ;branch b2(bb!=2)

DADD R2,R0,R0 ; bb=0

252 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
L2: DSUBU R3,R1,R2 ;R3=aa-bb

BEQZ R3,L3 ;branch b3 (aa==bb)

Let’s label these branches b1, b2, and b3. The key observation is that the behavior
of branch b3 is correlated with the behavior of branches b1 and b2. Clearly, if
branches b1 and b2 are both not taken (i.e., the if conditions both evaluate to true
and aa and bb are both assigned 0), then b3 will be taken, since aa and bb are
clearly equal. A predictor that uses only the behavior of a single branch to predict
the outcome of that branch can never capture this behavior.

Branch predictors that use the behavior of other branches to make a prediction
are called correlating predictors or two-level predictors. To see how such predic-

FIGURE 3.9 Prediction accuracy of a 4096-entry two-bit prediction buffer versus an
infinite buffer for the SPEC89 benchmarks.

nasa7 1%
0%

matrix300 0%
0%

tomcatv
1%
0%

doduc

spice
SPEC89
benchmarks

fpppp

gcc

espresso

eqntott

li

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

4096 entries:
2 bits per entry

Unlimited entries:
2 bits per entry

Frequency of mispredictions

5%
5%

9%
9%

9%
9%

12%
11%

5%
5%

18%
18%

10%
10%

3.4 Reducing Branch Costs with Dynamic Hardware Prediction 253
tors work, let’s choose a simple hypothetical case. Consider the following simpli-
fied code fragment (chosen for illustrative purposes):

if (d==0)

d=1;

if (d==1)

Here is the typical code sequence generated for this fragment, assuming that d is
assigned to R1:

BNEZ R1,L1;branch b1(d!=0)

DADDIU R1,R0,#1;d==0, so d=1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2;branch b2(d!=1)

...

L2:

The branches corresponding to the two if statements are labeled b1 and b2. The
possible sequences for an execution of this fragment, assuming d has values 0, 1,
and 2, are shown in Figure 3.10. To illustrate how a correlating predictor works,
assume the sequence above is executed repeatedly and ignore other branches in
the program (including any branch needed to cause the above sequence to re-
peat).

From Figure 3.10, we see that if b1 is not taken, then b2 will be not taken. A cor-
relating predictor can take advantage of this, but our standard predictor cannot.
Rather than consider all possible branch paths, consider a sequence where d alter-
nates between 2 and 0. A one-bit predictor initialized to not taken has the behav-
ior shown in Figure 3.11. As the figure shows, all the branches are mispredicted!

Initial value
of d d==0? b1

Value of d
before b2 d==1? b2

0 yes not taken 1 yes not taken

1 no taken 1 yes not taken

2 no taken 2 no taken

FIGURE 3.10 Possible execution sequences for a code fragment.

d=?
b1

prediction
b1

action
New b1

prediction
b2

prediction
b2

action
New b2

prediction

2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

FIGURE 3.11 Behavior of a one-bit predictor initialized to not taken. T stands for taken,
NT for not taken.

254 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Alternatively, consider a predictor that uses one bit of correlation. The easiest
way to think of this is that every branch has two separate prediction bits: one pre-
diction assuming the last branch executed was not taken and another prediction
that is used if the last branch executed was taken. Note that, in general, the last
branch executed is not the same instruction as the branch being predicted, though
this can occur in simple loops consisting of a single basic block (since there are
no other branches in the loops).

We write the pair of prediction bits together, with the first bit being the predic-
tion if the last branch in the program is not taken and the second bit being the pre-
diction if the last branch in the program is taken. The four possible combinations
and the meanings are listed in Figure 4.18.

The action of the one-bit predictor with one bit of correlation, when initialized
to NT/NT is shown in Figure 3.13.

In this case, the only misprediction is on the first iteration, when d = 2. The cor-
rect prediction of b1 is because of the choice of values for d, since b1 is not obvi-
ously correlated with the previous prediction of b2. The correct prediction of b2,
however, shows the advantage of correlating predictors. Even if we had chosen
different values for d, the predictor for b2 would correctly predict the case when
b1 is not taken on every execution of b2 after one initial incorrect prediction.

The predictor in Figures 3.12 and 3.13 is called a (1,1) predictor since it uses
the behavior of the last branch to choose from among a pair of one-bit branch

Prediction bits
Prediction if last branch

not taken Prediction if last branch taken

NT/NT not taken not taken

NT/T not taken taken

T/NT taken not taken

T/T taken taken

FIGURE 3.12 Combinations and meaning of the taken/not taken prediction bits. T
stands for taken, NT for not taken.

d=? b1 prediction b1 action New b1 prediction b2 prediction b2 action New b2 prediction

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T

FIGURE 3.13 The action of the one-bit predictor with one bit of correlation, initialized to not taken/not taken. T
stands for taken, NT for not taken. The prediction used is shown in bold.

3.4 Reducing Branch Costs with Dynamic Hardware Prediction 255
predictors. In the general case an (m,n) predictor uses the behavior of the last m
branches to choose from 2m branch predictors, each of which is a n-bit predictor
for a single branch. The attraction of this type of correlating branch predictor is
that it can yield higher prediction rates than the two-bit scheme and requires only
a trivial amount of additional hardware. The simplicity of the hardware comes
from a simple observation: The global history of the most recent m branches can
be recorded in an m-bit shift register, where each bit records whether the branch
was taken or not taken. The branch-prediction buffer can then be indexed using a
concatenation of the low-order bits from the branch address with the m-bit global
history. For example, Figure 3.14 shows a (2,2) predictor and how the prediction
is accessed.

FIGURE 3.14 A (2,2) branch-prediction buffer uses a two-bit global history to choose
from among four predictors for each branch address. Each predictor is in turn a two-bit
predictor for that particular branch. The branch-prediction buffer shown here has a total of 64
entries; the branch address is used to choose four of these entries and the global history is
used to choose one of the four. The two-bit global history can be implemented as a shifter
register that simply shifts in the behavior of a branch as soon as it is known.

2–bit per branch predictors

Branch address

XX prediction

2–bit global branch history

4

XX

256 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
There is one subtle effect in this implementation. Because the prediction
buffer is not a cache, the counters indexed by a single value of the global predic-
tor may in fact correspond to different branches at some point in time. This in-
sight is no different from our earlier observation that the prediction may not
correspond to the current branch. In Figure 3.14 we draw the buffer as a two-di-
mensional object to ease understanding. In reality, the buffer can simply be im-
plemented as a linear memory array that is two bits wide; the indexing is done by
concatenating the global history bits and the number of required bits from the
branch address. For the example in Figure 3.14, a (2,2) buffer with 64 total en-
tries, the four low-order address bits of the branch (word address) and the two
global bits form a six-bit index that can be used to index the 64 counters.

How much better do the correlating branch predictors work when compared
with the standard two-bit scheme? To compare them fairly, we must compare
predictors that use the same number of state bits. The number of bits in an (m,n)
predictor is

2m × n × Number of prediction entries selected by the branch address

A two-bit predictor with no global history is simply a (0,2) predictor.

E X A M P L E How many bits are in the (0,2) branch predictor we examined earlier? How
many bits are in the branch predictor shown in Figure 3.14?

A N S W E R The earlier predictor had 4K entries selected by the branch address. Thus
the total number of bits is

20 × 2 × 4K = 8K.

The predictor in Figure 3.14 has

22 × 2 × 16 = 128 bits.
n

To compare the performance of a correlating predictor with that of our simple
two-bit predictor examined in Figure 3.8, we need to determine how many entries
we should assume for the correlating predictor.

E X A M P L E How many branch-selected entries are in a (2,2) predictor that has a total
of 8K bits in the prediction buffer?

A N S W E R We know that

3.4 Reducing Branch Costs with Dynamic Hardware Prediction 257
22 × 2 × Number of prediction entries selected by the branch = 8K.

Hence

Number of prediction entries selected by the branch = 1K.
n

Figure 3.15 compares the performance of the earlier two-bit simple predictor

FIGURE 3.15 Comparison of two-bit predictors. A noncorrelating predictor for 4096 bits
is first, followed by a noncorrelating two-bit predictor with unlimited entries and a two-bit pre-
dictor with two bits of global history and a total of 1024 entries.

4096 entries:
2 bits per entry

Unlimited entries:
2 bits per entry

1024 entries
(2,2)

nasa7

matrix300

tomcatv

doduc

SPEC89
benchmarks

spice

fpppp

gcc

espresso

eqntott

li

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Frequency of mispredictions

1%
0%
1%

0%
0%
0%

1%
0%
1%

5%
5%
5%

9%
9%

5%

9%
9%

5%

12%
11%
11%

5%
5%

4%

18%
18%

6%

10%
10%

5%

258 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
with 4K entries and a (2,2) predictor with 1K entries. As you can see, this predic-
tor not only outperforms a simple two-bit predictor with the same total number of
state bits, it often outperforms a two-bit predictor with an unlimited number of
entries.

There are a wide spectrum of correlating predictors, with the (0,2) and (2,2)
predictors being among the most interesting. The Exercises ask you to explore
the performance of a third extreme: a predictor that does not rely on the branch
address. For example, a (12,2) predictor that has a total of 8K bits does not use
the branch address in indexing the predictor, but instead relies solely on the glo-
bal branch history. Surprisingly, this degenerate case can outperform a noncorre-
lating two-bit predictor if enough global history is used and the table is large
enough!

Tournament Predictors: Adaptively Combining Local and Global Predictors

The primary motivation for correlating branch predictors came from the observa-
tion that the standard 2-bit predictor using only local information failed on some
important branches and that by adding global information, the performance could
be improved. Tournament predictors take this insight to the next level, by using
multiple predictors, usually one based on global information and one based on lo-
cal information, and combining them with a selector. Tournament predictors can
achieve both better accuracy at medium sizes (8Kb-32Kb) and also make use of
very large numbers of prediction bits effectively.

Tournament predictors are the most popular form of multilevel branch predic-
tors. A multilevel branch predictor use several levels of branch prediction tables
together with an algorithm for choosing among the multiple predictors; we will
see several variations on multilevel predictors in this section. Existing tourna-
ment predictors use a 2-bit saturating counter per branch to choose among two
different predictors. The four states of the counter dictate whether to use predic-
tor 1 or predictor 2. The state transition diagram is shown in Figure 3.16.

The advantage of a tournament predictor is its ability to select the right predic-
tor for the right branch. Figure 3.17 shows how the tournament predictor selects
between a local and global predictor depending on the benchmark, as well as on
the branch. The ability to choose between a prediction based on strictly local in-
formation and one incorporating global information on a per branch basis is par-
ticularly critical in the integer benchmarks.

Figure 3.18 looks at the performance of three different predictors (a local 2-bit
predictor, a correlating predictor, and a tournament predictor) for different num-
bers of bits using SPEC89 as the benchmark. As we saw earlier, the prediction
capability of the local predictor does not improve beyond a certain size. The cor-
relating predictor shows a significant improvement, and the tournament predictor
generates slightly better performance.

An Example: the Alpha 21264 Branch Predictor
The 21264 uses the most sophisticated branch predictor in any processor as of
2001. The 21264 has a tournament predictor using 4K 2-bit counters indexed by
the local branch address to choose from among a global predictor and a local pre-

3.4 Reducing Branch Costs with Dynamic Hardware Prediction 259
dictor. The global predictor also has 4K entries and is indexed by the history of
the last 12 branches; each entry in the global predictor is a standard 2-bit predic-
tor.

The local predictor consists of a two-level predictor. The top level is a local
history table consisting of 1024 10-bit entries; each 10-bit entry corresponds to
the most recent ten branch outcomes for the entry. That is, if the branch was taken
10 or more times in a row, the entry in the local history table will be all 1s. If the
branch is alternately taken and untaken the history entry consist of alternating 0s
nd 1s. This 10-bit history allows patterns of up to ten branches to be discovered
and predicted. The selected entry from the local history table is used to index a
table of 1K entries consisting a three-bit saturating counters, which provide the
local prediction. This combination, which uses a total of 29 Kbits, leads to high
accuracy in branch prediction. For the SPECfp95 benchmarks there is less than

FIGURE 3.16 The state transition diagram for a tournament predictor has four states
corresponding to which predictor to use. The counter is incremented whenever the “pre-
dicted” predictor is correct and the other predictor is incorrect, and it is decremented in the
reverse situation.

0/0, 1/0, 1/1

1/0

0/0, 1/1

0/1

Use predictor 1 Use predictor 2

Use predictor 1 Use predictor 2

0/0, 1/1

0/0, 0/1, 1/1

0/1

0/1

1/0

1/0

260 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
FIGURE 3.17 The fraction of predictions coming from the local predictor for a tourna-
ment predictor using the SPEC89 benchmarks. The tournament predictor selects be-
tween a local 2-bit predictor and a 2-bit local/global predictor, called gshare.
Gshare is indexed by an exclusive or of the branch address bits and the global his-
tory; it performs similarly to the correlating predictor discussed earlier. In this case
each predictor has 1,024 entries, each 2-bits, for a total of 6Kbits.

98%

100%

94%

90%

55%

76%

72%

63%

37%

69%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

Fraction of predictions by local predictor

3.5 High Performance Instruction Delivery 261
one misprediction per 1000 completed instructions, and for SPECint95, there are
about 11.5 mispredictions per 1000 completed instructions.

In a high performance pipeline, especially one with multiple issue, predicting
branches well is not enough: we actually have to be able to deliver a high band-
width instruction stream. In recent multiple issue processors, this has meant de-
livering 4-8 instructions every clock cycle. To accomplish this, we consider three
concepts in this section: a branch target buffer, an integrated instruction fetch
unit, and dealing with indirect branches, by predicting return addresses.

Branch Target Buffers

To reduce the branch penalty for our five-stage pipeline, we need to know from
what address to fetch by the end of IF. This requirement means we must know
whether the as-yet-undecoded instruction is a branch and, if so, what the next PC
should be. If the instruction is a branch and we know what the next PC should be,
we can have a branch penalty of zero. A branch-prediction cache that stores the
predicted address for the next instruction after a branch is called a branch-target
buffer or branch-target cache.

FIGURE 3.18 The misprediction rate for three different predictors on SPEC89 as the
total number of bits is increased. The predictors are: a local 2-bit predictor, a correlating
predictor, which is optimally structured at each point in the graph, and a tournament predictor
using the same structure as in Figure 3.17.

3.5 High Performance Instruction Delivery

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Total predictor size

ournament Predictor

orrelating Predictor

ocal 2-Bit Predictor

262 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
For the classic, five-stage pipeline, a branch-prediction buffer is accessed dur-
ing the ID cycle, so that at the end of ID we know the branch-target address
(since it is computed during ID), the fall-through address (computed during IF),
and the prediction. Thus, by the end of ID we know enough to fetch the next pre-
dicted instruction. For a branch-target buffer, we access the buffer during the IF
stage using the instruction address of the fetched instruction, a possible branch,
to index the buffer. If we get a hit, then we know the predicted instruction address
at the end of the IF cycle, which is one cycle earlier than for a branch-prediction
buffer.

Because we are predicting the next instruction address and will send it out
before decoding the instruction, we must know whether the fetched instruction is
predicted as a taken branch. Figure 3.19 shows what the branch-target buffer
looks like. If the PC of the fetched instruction matches a PC in the buffer, then the
corresponding predicted PC is used as the next PC. In Chapter 5 we will discuss
caches in much more detail; we will see that the hardware for this branch-target
buffer is essentially identical to the hardware for a cache.

FIGURE 3.19 A branch-target buffer. The PC of the instruction being fetched is matched
against a set of instruction addresses stored in the first column; these represent the addresses
of known branches. If the PC matches one of these entries, then the instruction being fetched
is a taken branch, and the second field, predicted PC, contains the prediction for the next PC
after the branch. Fetching begins immediately at that address. The third field, which is optional,
may be used for extra prediction state bits.

Look up Predicted PC

Number of
entries
in branch-
target
buffer

No: instruction is
not predicted to be
branch. Proceed normally

=

Yes: then instruction is branch and predicted
PC should be used as the next PC

Branch
predicted
taken or
untaken

PC of instruction to fetch

3.5 High Performance Instruction Delivery 263
If a matching entry is found in the branch-target buffer, fetching begins imme-
diately at the predicted PC. Note that (unlike a branch-prediction buffer) the entry
must be for this instruction, because the predicted PC will be sent out before it is
known whether this instruction is even a branch. If we did not check whether the
entry matched this PC, then the wrong PC would be sent out for instructions that
were not branches, resulting in a slower processor. We only need to store the pre-
dicted-taken branches in the branch-target buffer, since an untaken branch fol-
lows the same strategy (fetch the next sequential instruction) as a nonbranch.
Complications arise when we are using a two-bit predictor, since this requires
that we store information for both taken and untaken branches. One way to re-
solve this is to use both a target buffer and a prediction buffer, which is the solu-
tion used by several PowerPC processors. We assume that the buffer only holds
PC-relative conditional branches, since this makes the target address a constant;
it is not hard to extend the mechanism to work with indirect branches.

Figure 3.20 shows the steps followed when using a branch-target buffer and
where these steps occur in the pipeline. From this we can see that there will be no
branch delay if a branch-prediction entry is found in the buffer and is correct.
Otherwise, there will be a penalty of at least two clock cycles. In practice, this
penalty could be larger, since the branch-target buffer must be updated. We could
assume that the instruction following a branch or at the branch target is not a
branch, and do the update during that instruction time; however, this does com-
plicate the control. Instead, we will take a two-clock-cycle penalty when the
branch is not correctly predicted or when we get a miss in the buffer. Dealing
with the mispredictions and misses is a significant challenge, since we typically
will have to halt instruction fetch while we rewrite the buffer entry. Thus, we
would like to make this process fast to minimize the penalty.

To evaluate how well a branch-target buffer works, we first must determine the
penalties in all possible cases. Figure 3.21 contains this information.

E X A M P L E Determine the total branch penalty for a branch-target buffer assuming
the penalty cycles for individual mispredictions from Figure 3.21. Make
the following assumptions about the prediction accuracy and hit rate:

n prediction accuracy is 90% (for instructions in the buffer)

n hit rate in the buffer is 90% (for branches predicted taken)

Assume that 60% of the branches are taken.

A N S W E R We compute the penalty by looking at the probability of two events: the
branch is predicted taken but ends up being not taken, and the branch is
taken but is not found in the buffer. Both carry a penalty of two cycles.

264 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
FIGURE 3.20 The steps involved in handling an instruction with a branch-target buffer. If the PC of an instruction is
found in the buffer, then the instruction must be a branch that is predicted taken; thus, fetching immediately begins from the
predicted PC in ID. If the entry is not found and it subsequently turns out to be a taken branch, it is entered in the buffer along
with the target, which is known at the end of ID. If the entry is found, but the instruction turns out not to be a taken branch,
it is removed from the buffer. If the instruction is a branch, is found, and is correctly predicted, then execution proceeds with
no delays. If the prediction is incorrect, we suffer a one-clock-cycle delay fetching the wrong instruction and restart the fetch
one clock cycle later, leading to a total mispredict penalty of two clock cycles. If the branch is not found in the buffer and the
instruction turns out to be a branch, we will have proceeded as if the instruction were not a branch and can turn this into an
assume-not-taken strategy. The penalty will differ depending on whether the branch is actually taken or not.

IF

ID

EX

Send PC to
memory and
branch-target

buffer

Entry found in
branch-target

buffer?

No

No

Normal
instruction
execution

Yes

Send out
predicted

PCIs
instruction

a taken
branch?

Taken
branch?

Enter
branch instruction

address and
next PC

into branch
target buffer

Mispredicted
branch, kill fetched
instruction; restart

fetch at other
target; delete

entry from
target buffer

Branch
correctly

predicted;
continue

execution with
no stalls

Yes

No Yes

3.5 High Performance Instruction Delivery 265
This penalty compares with a branch penalty for delayed branches, which
we evaluated in Chapter 1, of about 0.5 clock cycles per branch. Remem-
ber, though, that the improvement from dynamic branch prediction will
grow as the branch delay grows; in addition, better predictors will yield a
larger performance advantage. n

One variation on the branch-target buffer is to store one or more target in-
structions instead of, or in addition to, the predicted target address. This variation
has two potential advantages. First, it allows the branch-target buffer access to
take longer than the time between successive instruction fetches, possibly allow-
ing a larger branch-target buffer. Second, buffering the actual target instructions
allows us to perform an optimization called branch folding. Branch folding can
be used to obtain zero-cycle unconditional branches, and sometimes zero-cycle
conditional branches. Consider a branch-target buffer that buffers instructions
from the predicted path and is being accessed with the address of an uncondition-
al branch. The only function of the unconditional branch is to change the PC.
Thus, when the branch-target buffer signals a hit and indicates that the branch is
unconditional, the pipeline can simply substitute the instruction from the branch-
target buffer in place of the instruction that is returned from the cache (which is
the unconditional branch). If the processor is issuing multiple instructions per cy-
cle, then the buffer will need to supply multiple instructions to obtain the maxi-

Instruction in buffer Prediction Actual branch Penalty cycles

yes taken taken 0

yes taken not taken 2

no taken 2

no not taken 0

FIGURE 3.21 Penalties for all possible combinations of whether the branch is in the
buffer and what it actually does, assuming we store only taken branches in the buffer.
There is no branch penalty if everything is correctly predicted and the branch is found in the
target buffer. If the branch is not correctly predicted, the penalty is equal to one clock cycle
to update the buffer with the correct information (during which an instruction cannot be
fetched) and one clock cycle, if needed, to restart fetching the next correct instruction for the
branch. If the branch is not found and taken, a two-cycle penalty is encountered, during which
time the buffer is updated.

Probability (branch in buffer, but actually not taken) Percent buffer hit rate Percent incorrect predictions×=

90% 10%× 0.09= =

Probability (branch not in buffer, but actually taken) 10%=

Branch penalty 0.09 0.10+() 2×=

Branch penalty 0.38=

266 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
mum benefit. In some cases, it may be possible to eliminate the cost of a
conditional branch when the condition codes are preset.

Integrated Instruction Fetch Units

To meet the demands of multiple issue processor many recent designers have
chosen to implement an integrated instruction fetch unit, as a separate autono-
mous unit that feeds instructions to the rest of the pipeline. Essentially, this
amounts to recognizing that characterizing instruction fetch as a simple single
pipestage given the complexities of multiple issue is no longer valid.

Instead, recent designs have used an integrated instruction fetch unit that inte-
grates several functions:

1. Integrated branch prediction: the branch predictor becomes part of the instruc-
tion fetch unit and is constantly predicting branches, so to drive the fetch pipe-
line.

2. Instruction prefetch: to deliver multiple instructions per clock, the instruction
fetch unit will likely need to fetch ahead. The unit autonomously manages the
prefetching of instructions (see Chapter 5 for discussion of techniques for do-
ing this), integrating it with branch prediction.

3. Instruction memory access and buffering: when fetching multiple instructions
per cycle a variety of complexities are encountered, including the difficulty
that fetching multiple instructions may require accessing multiple cache lines.
The instruction fetch unit encapsulates this complexity, using prefetch to try
to hide the cost of crossing cache blocks. The instruction fetch unit also pro-
vides buffering, essentially acting as an on-demand unit to provide instruc-
tions to the issue stage as needed and in the quantity needed.

As designers try to increase the number of instructions executed per clock, in-
struction fetch will become an ever more significant bottleneck and clever new
ideas will be needed to deliver instructions at the necessary rate. One of the
emerging ideas, called trace caches, is discussed in Chapter 5.

Return Address Predictors

Another method that designers have studied and included in many recent proces-
sors is a technique for predicting indirect jumps, that is, jumps whose destination
address varies at runtime. Although high-level language programs will generate
such jumps for indirect procedure calls, select or case statements, and FOR-
TRAN-computed gotos, the vast majority of the indirect jumps come from proce-
dure returns. For example, for the SPEC89 benchmarks procedure returns
account for 85% of the indirect jumps on average. For languages like C++ and Ja-
va, procedure returns are even more frequent. Thus, focusing on procedure re-
turns seems appropriate.

Though procedure returns can be predicted with a branch-target buffer, the ac-
curacy of such a prediction technique can be low if the procedure is called from

3.5 High Performance Instruction Delivery 267
multiple sites and the calls from one site are not clustered in time. To overcome
this problem, the concept of a small buffer of return addresses operating as a
stack has been proposed. This structure caches the most recent return addresses:
pushing a return address on the stack at a call and popping one off at a return. If
the cache is sufficiently large (i.e., as large as the maximum call depth), it will
predict the returns perfectly. Figure 3.22 shows the performance of such a return
buffer with 1–16 elements for a number of the SPEC benchmarks. We will use
this type of return predictor when we examine the studies of ILP in section 3.8.

Branch prediction schemes are limited both by prediction accuracy and by the
penalty for misprediction. As we have seen, typical prediction schemes achieve
prediction accuracy in the range of 80–95% depending on the type of program
and the size of the buffer. In addition to trying to increase the accuracy of the pre-
dictor, we can try to reduce the penalty for misprediction. The penalty can be re-
duced by fetching from both the predicted and unpredicted direction. Fetching
both paths requires that the memory system be dual-ported, have an interleaved
cache, or fetch from one path and then the other. Although this adds cost to the
system, it may be the only way to reduce branch penalties below a certain point.
Caching addresses or instructions from multiple paths in the target buffer is an-
other alternative that some processors have used.

FIGURE 3.22 Prediction accuracy for a return address buffer operated as a stack. The
accuracy is the fraction of return addresses predicted correctly. Since call depths are typically
not large, with some exceptions, a modest buffer works well. On average returns account for
81% of the indirect jumps in these six benchmarks.

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

2 41 8 16

Number of entries in the return stack

gcc
fpppp

espresso
doduc

li
tomcatv

Misprediction
rate

268 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
We have seen a variety of software-based static schemes and hardware-based
dynamic schemes for trying to boost the performance of our pipelined processor.
These schemes attack both the data dependences (discussed in the previous sub-
sections) and the control dependences (discussed in this subsection). Our focus to
date has been on sustaining the throughput of the pipeline at one instruction per
clock. In the next section we will look at techniques that attempt to exploit more
parallelism by issuing multiple instructions in a clock cycle.

The techniques of the previous two sections can be used to eliminate data and
control stalls and achieve an ideal CPI of 1. To improve performance further we
would like to decrease the CPI to less than one. But the CPI cannot be reduced
below one if we issue only one instruction every clock cycle.

The goal of the multiple-issue processors, discussed in this section, is to allow
multiple instructions to issue in a clock cycle. Multiple-issue processors come in
two basic flavors: superscalar processors and VLIW (very long instruction word)
processors. Superscalar processors issue varying numbers of instructions per
clock and are either statically scheduled (using compiler techniques covered in
the next chapter) or dynamically scheduled using techniques based on Tomasu-
lo’s algorithm. Statically scheduled processor use in-order execution, while dy-
namically scheduled processors use out-of-order execution.

VLIW processors, in contrast, issue a fixed number of instructions formatted
either as one large instruction or as a fixed instruction packet with the parallelism
among instructions explicitly indicated by the instruction (hence, they are also
known as EPIC--Explicitly Parallel Instruction Computers). VLIW and EPIC pro-
cessors are inherently statically scheduled by the compiler. The next chapter cov-
ers both VLIWs and the necessary compiler technology in detail, so between this
chapter and the next, we will have cover most of the techniques for exploiting in-
struction level parallelism through multiple issue that are in use in existing pro-
cessors. Figure 3.23 summarizes the basic approaches to multiple issue, their
distinguishing characteristics, and shows processors that use each approach.

Although early superscalar processors used static instruction scheduling, and
embedded processors still do, most leading-edge desktop and servers now use su-
perscalars with some degree of dynamic scheduling. In this section, we introduce
the superscalar concept with a simple, statically scheduled processor, which will
require the techniques from the next chapter to achieve good efficiency. We then
explore in detail a dynamically scheduled superscalar that builds on the Tomasulo
scheme.

Statically-Scheduled Superscalar Processors

In a typical superscalar processor, the hardware might issue from zero (since it
may be stalled) to eight instructions in a clock cycle. In a statically-scheduled su-
perscalar, instructions issue in order and all pipeline hazards are checked for at is-
sue time. The pipeline control logic must check for hazards among the

3.6 Taking Advantage of More ILP with Multiple Issue

3.6 Taking Advantage of More ILP with Multiple Issue 269
instructions being issued in a given clock cycle, as well as among the issuing in-
structions and all those still in execution. If some instruction in the instruction
stream is dependent (i.e., will cause a data hazard) or doesn’t meet the issue crite-
ria (i.e., will cause a structural hazard), only the instructions preceding that one in
instruction sequence will be issued. In contrast, in VLIWs, the compiler has com-
plete responsibility for creating a package of instructions that can be simul-
taneously issued, and the hardware does not dynamically make any decisions
about multiple issue. (As we will see, for example, the Intel IA-64 architecture
relies on the programmer to describe the presence of register dependences within
an issue packet.) Thus, we say that a superscalar processor has dynamic issue ca-
pability, and a VLIW processor has static issue capability.

Before we look at an example, let’s explore the process of instruction issue in
slightly more detail. Suppose we had a four-issue, static superscalar processor.
During instruction fetch the pipeline would receive from one to four instructions
from the instruction fetch unit, which may not always be able to deliver four in-
structions. We call this group of instructions received from the fetch unit that
could potentially issue in one clock cycle the issue packet. Conceptually, the in-
struction fetch unit examines each instruction in the issue packet in program or-
der. If an instruction would cause a structural hazard or a data hazard either due
to an earlier instruction already in execution or due to an instruction earlier in the
issue packet, then the instruction is not issued. This issue limitation results in
zero to four instructions from the issue packet actually being issued in a given
clock cycle. Although the instruction decode and issue process logically proceeds
in sequential order through the instructions, in practice, the issue unit examines
all the instructions in the issue packet at once, checks for hazards among the in-

Common
name

Issue
structure

Hazard
detection

Scheduling Distinguishing
characteristic

Examples

Superscalar
(static)

dynamic hardware static in-order execution Sun UltraSPARC II/
III

Superscalar
(dynamic)

dynamic hardware dynamic some out-of-order
execution

HP PA 8500,
IBM RS64 III

Superscalar
(speculative)

dynamic hardware dynamic with
speculation

out-of-order execution
with speculation

Pentium III/4, MIPS
R10K, Alpha 21264

VLIW/LIW static software static no hazards between
issue packets

Trimedia, i860

EPIC mostly
static

mostly
software

mostly
static

explicit dependences
marked by compiler

Itanium

FIGURE 3.23 There are five primary approaches in use for multiple-issue processors, and this table shows the
primary characteristics that distinguish them. This chapter has focused on the hardware-intensive techniques, which are
all some form of superscalar. The next chapter focuses on compiler-based approaches, which are either VLIW or EPIC. Fig-
ure 3.61 on page 341 near the end of this chapter provides more details on a variety of recent superscalar processors.

270 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
structions in the packet and those in the pipeline, and decides which instructions
can issue.

These issue checks are sufficiently complex that performing them in one cycle
could mean that the issue logic determined the minimum clock cycle length. As a
result, in many statically scheduled and all dynamically scheduled superscalars,
the issue stage is split and pipelined, so that it can issue instructions every clock
cycle.

This division is not, however, totally straightforward because the processor
must also detect any hazards between the two packets of instructions while they
are still in the issue pipeline. One approach is to use the first stage of the issue
pipeline to decide how many instructions from the packet can issue simulta-
neously, ignoring instructions already issued, and use the second stage to exam-
ine hazards among the selected instructions and those that have already been
issued. By splitting the issue pipestage and pipelining it, the performance cost of
superscalar instruction issue tends to be higher branch penalties, further increas-
ing the importance of branch prediction.

As we increase the processor’s issue rate, further pipelining of the issue stage
could become necessary. Although breaking the issue stage into two stages is rea-
sonably straightforward, it is less obvious how to pipeline it further. Thus, in-
struction issue is likely to be one limitation on the clock rate of superscalar
processors.

A Statically Scheduled Superscalar MIPS Processor

What would the MIPS processor look like as a superscalar? For simplicity, let’s
assume two instructions can be issued per clock cycle and that one of the instruc-
tions can be a load, store, branch, or integer ALU operation, and the other can be
any floating-point operation. Note that we consider loads and stores, including
those to floating-point registers, as integer operations. As we will see, issue of an
integer operation in parallel with a floating-point operation is much simpler and
less demanding than arbitrary dual issue. This configuration is, in fact, very close
to the organization used in the HP 7100 processor. Although high-end desktop
processors now do four or more issues per clock, dual issue superscalar pipelines
are becoming common at the high-end of the embedded processor market.

Issuing two instructions per cycle will require fetching and decoding 64 bits of
instructions. Early superscalars often limited the placement of the instruction
types; for example, the integer instruction must be first, but modern superscalars
have dropped this restriction. Assuming the instruction placement is not limited,
there are three steps involved in fetch and issue: fetch two instructions from the
cache, determine whether zero, one, or two instructions can issue, and issue them
to the correct functional unit.

Fetching two instructions is more complex than fetching one, since the in-
struction pair could appear anywhere in the cache block. Many processors will
only fetch one instruction if the first instruction of the pair is the last word of a
cache block. High-end superscalars generally rely on an independent instruction

3.6 Taking Advantage of More ILP with Multiple Issue 271
prefetch unit, as mentioned in the previous section and described further in Chap-
ter 5.

For this simple superscalar doing the hazard checking is relatively straightfor-
ward, since the restriction of one integer and one FP instruction eliminates most
hazard possibilities within the issue packet, making it sufficient in many cases to
look only at the opcodes of the instructions. The only difficulties that arise are
when the integer instruction is a floating-point load, store, or move. This possibil-
ity creates contention for the floating-point register ports and may also create a
new RAW hazard when the second instruction of the pair depends on the first
(e.g., the first is an FP load and the second an FP operation, or the first is an FP
operation and the second an FP store). This use of an issue restriction, which rep-
resents a structural hazard, to reduce the complexity of both hazard detection and
pipeline structure is common in multiple issue processors. (There is also the pos-
sibility of new WAR and WAW hazards across issue packet boundaries.)

Finally, the instructions chosen for execution are dispatched to their appropri-
ate functional units. Figure 3.24 shows how the instructions look as they go into
the pipeline in pairs; for simplicity the integer instruction is always shown first,
though it may be the second instruction in the issue packet.

With this pipeline, we have substantially boosted the rate at which we can issue
floating-point instructions. To make this worthwhile, however, we need either
pipelined floating-point units or multiple independent units. Otherwise, the
floating-point datapath will quickly become the bottleneck, and the advantages
gained by dual issue will be small.

By issuing an integer and a floating-point operation in parallel, the need for
additional hardware, beyond the enhanced hazard detection logic, is mini-
mized—integer and floating-point operations use different register sets and dif-

Instruction type Pipe stages

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX EX EX MEM WB

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX EX EX MEM WB

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX EX EX MEM

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX EX EX

FIGURE 3.24 Superscalar pipeline in operation. The integer and floating-point instructions are issued at the same time,
and each executes at its own pace through the pipeline. This figure assumes that all the FP instructions are adds that take
three execution cycles. This scheme will only improve the performance of programs with a large fraction of floating-point op-
erations.

272 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
ferent functional units on load-store architectures. Allowing FP loads and stores
to issue with FP operations, a highly desirable capability for performance rea-
sons, creates the need for an additional read/write port on the FP register file. In
addition, because there are twice as many instructions in the pipeline, a larger set
of bypass paths will be needed.

A final complication is maintaining a precise exception model. To see how im-
precise exceptions can happen, consider the following:

n A floating point instruction can finish execution after an integer instruction that
is later in program order (e.g., when an FP instruction is the first instruction in
an issue packet and both instructions are issued).

n The floating point instruction exception could be detected after the integer in-
struction completed.

Left untouched, this situation would result in an imprecise exception because the
integer instruction, which in program order follows the FP instruction that raised
the exception, will have been completed. This situation represents a slight com-
plication over those that can arise in a single issue pipeline when the floating
point pipeline is deeper than the integer pipeline, but is no different than what we
saw could arise with a dynamically scheduled pipeline. Several solutions are pos-
sible: early detection of FP exceptions (see the pipelining appendix), the use of
software mechanisms to restore a precise exception state before resuming execu-
tion, and delaying instruction completion until we know an exception is impossi-
ble (the speculation approach we cover in the next section uses this approach).

Maintaining the peak throughput for this dual issue pipeline is much harder
than it is for a single-issue pipeline. In our classic, five-stage pipeline, loads had a
latency of one clock cycle, which prevented one instruction from using the result
without stalling. In the superscalar pipeline, the result of a load instruction cannot
be used on the same clock cycle or on the next clock cycle, and hence, the next
three instructions cannot use the load result without stalling. The branch delay for
a taken branch becomes either two or three instructions, depending on whether
the branch is the first or second instruction of a pair.

To effectively exploit the parallelism available in a superscalar processor,
more ambitious compiler or hardware scheduling techniques will be needed. In
fact, without such techniques, a superscalar processor is likely to provide little or
no additional performance.

In the next chapter, we will show how relatively simple compiler techniques
suffice for a two-issue pipeline such as this one. Alternatively, we can employ an
extension of Tomasulo’s algorithm to schedule the pipeline, as the next section
shows.

3.6 Taking Advantage of More ILP with Multiple Issue 273
Multiple Instruction Issue with Dynamic Scheduling

Dynamic scheduling is one method for improving performance in a multiple in-
struction issue processor. When applied to a superscalar processor, dynamic
scheduling has the traditional benefit of boosting performance in the face of data
hazards, but it also allows the processor to potentially overcome the issue restric-
tions. Put another way, although the hardware may not be able to initiate execu-
tion of more than one integer and one FP operation in a clock cycle, dynamic
scheduling can eliminate this restriction at instruction issue, at least until the
hardware runs out of reservation stations.

Let’s assume we want to extend Tomasulo’s algorithm to support our two-is-
sue superscalar pipeline. We do not want to issue instructions to the reservation
stations out of order, since this could lead to a violation of the program seman-
tics. To gain the full advantage of dynamic scheduling we should remove the con-
straint of issuing one integer and one FP instruction in a clock, but this will
significantly complicate instruction issue.

Alternatively, we could use a simpler scheme: separate the data structures for
the integer and floating-point registers, then we can simultaneously issue a float-
ing-point instruction and an integer instruction to their respective reservation sta-
tions, as long as the two issued instructions do not access the same register set.
Unfortunately, this approach bars issuing two instructions with a dependence in
the same clock cycle, such as a floating-point load (an integer instruction) and a
floating-point add. Rather than try to fix this problem, let’s explore the general
scheme for allowing the issue stage to handle two arbitrary instructions per clock.

Two different approaches have been used to issue multiple instructions per
clock in a dynamically scheduled processor, and both rely on the observation that
they key is assigning a reservation station and updating the pipeline control ta-
bles. One approach is to run this step in half a clock cycle, so that two instruc-
tions can be processed in one clock cycle. A second alternative is to build the
logic necessary to handle two instructions at once, including any possible depen-
dences between the instructions. Modern superscalar processors that issue four or
more instructions per clock often include both approaches: they both pipeline and
widen the issue logic.

There is one final issue to discuss before we look at an example: how should
dynamic branch prediction be integrated into a dynamically scheduled pipeline.
The IBM 360/91 used a simple static prediction scheme, but only allowed in-
structions to be fetched and issued (but not actually executed) until the branch
had completed. In this section, we follow the same approach. In the next section,
we will examine speculation, which takes this a step further and actually executes
instructions based on branch predictions.

Assume that we have the most general implementation of a two issue dynami-
cally scheduled processor, meaning that it can issue any pair of instructions if
there are reservation stations of the right type available. Because the interaction of
the integer and floating point instructions is crucial, we also extend Tomasulo’s

274 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
scheme to deal with both the integer and floating point functional units and regis-
ters. Let’s see how a simple loop executes on this processor.

E X A M P L E Consider the execution of the following simple loop, which adds a scalar
in F2 to each element of a vector in memory. Use a MIPS pipeline ex-
tended with Tomasulo’s algorithm and with multiple issue:

Loop: L.D F0,0(R1) ; F0=array element

ADD.D F4,F0,F2 ; add scalar in F2

S.D F4,0(R1) ; store result

DADDIU R1,R1,#-8 ; decrement pointer

; 8 bytes (per DW)

BNE R1,R2,LOOP ; branch R1!=zero

Assume that both a floating-point and an integer operation can be issued
on every clock cycle, even if they are dependent. Assume one integer
functional unit used for both ALU operations and effective address calcu-
lations and a separate pipelined FP functional unit for each operation
type. Assume that issue and write results take one cycle each and that
there is dynamic branch-prediction hardware and a separate functional
unit to evaluate branch conditions. As in most dynamically scheduled pro-
cessors, the presence of the write results stage means that the effective
instruction latencies will be one cycle longer than in a simple in-order
pipeline. Thus, the number of cycles of latency between a source instruc-
tion and an instruction consuming the result is one cycle for integer ALU
operations, two cycles for loads, and three cycles for FP add. Create a ta-
ble showing when each instruction issues, begins execution, and writes
its result to the CDB for the first three iterations of the loop. Assume two
CDBs and assume that branches single issue (no delayed branches) but
that branch prediction is perfect. Also show the resource usage for the in-
teger unit, the floating point unit, the data cache, and the two CDBs.

A N S W E R The loop will be dynamically unwound and, whenever possible, in-
structions will be issued in pairs. The execution timing is shown in
Figure 3.25 and Figure 3.26 shows the resource utilization. The loop will
continue to fetch and issue a new loop iteration every three clock cycles
and sustaining one iteration every three cycles would lead to an IPC of 5/
3 = 1.67. The instruction execution rate, however, is lower: by looking at
the execute stage we can see that the sustained instruction completion
rate is 15/16 = 0.94. Assuming the branches are perfectly predicted, the
issue unit will eventually fill all the reservation stations and will stall.

n

3.6 Taking Advantage of More ILP with Multiple Issue 275
The throughput improvement versus a single issue pipeline is small because
there is only one floating-point operation per iteration and, thus, the integer pipe-
line becomes a bottleneck. The performance could be enhanced by compiler
techniques we will discuss in the next chapter. Alternatively, if the processor
could execute more integer operations per cycle, larger improvements would be
possible. A revised example demonstrates this potential improvement and the
flexibility of dynamic scheduling to adapt to different hardware capabilities.

E X A M P L E Consider the execution of the same loop on two-issue processor, but, in
addition, assume that there are separate integer functional units for effec-
tive address calculation and for ALU operations. Create a table as in
Figure 3.25 for the first three iterations of the same loop and another table

Iter.
Instructions Issues at Executes

Memory
access at

 Write
CDB at Comment

1 L.D F0,0(R1) 1 2 3 4 First issue

1 ADD.D F4,F0,F2 1 5 8 Wait for L.D

1 S.D F4,0(R1) 2 3 9 Wait for ADD.D

1 DADDIU R1,R1,#-8 2 4 5 Wait for ALU

1 BNE R1,R2,Loop 3 6 Wait for DADDIU

2 L.D F0,0(R1) 4 7 8 9 Wait for BNE complete

2 ADD.D F4,F0,F2 4 10 13 Wait for L.D

2 S.D F4,0(R1) 5 8 14 Wait for ADD.D

2 DADDIU R1,R1,#-8 5 9 10 Wait for ALU

2 BNE R1,R2,Loop 6 11 Wait for DADDIU

3 L.D F0,0(R1) 7 12 13 14 Wait for BNE complete

3 ADD.D F4,F0,F2 7 15 18 Wait for L.D

3 S.D F4,0(R1) 8 13 19 Wait for ADD.D

3 DAADIU R1,R1,#-8 8 14 15 Wait for ALU

3 BNE R1,R2,Loop 9 16 Wait for DADDIU

FIGURE 3.25 The clock cycle of issue, execution, and writing result for a dual-issue version of our Tomasulo pipe-
line. The write-result stage does not apply to either stores or branches, since they do not write any registers. We assume a
result is written to the CDB at the end of the clock cycle it is available in. This figure also assumes a wider CDB. For L.D
and S.D, the execution is effective address calculation. For branches, the execute cycle shows when the branch condition
can be evaluated and the prediction checked; we assume that this can happen as early as the cycle after issue, if the oper-
ands are available. Any instructions following a branch cannot start execution until after the branch condition has been eval-
uated. We assume one memory unit, one integer pipeline, and one FP adder.If two instructions could use the same
functional unit at the same point, priority is given to the “older” instruction. Note that the load of the next iteration performs
its memory access before the store of the current iteration.

276 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
to show the resource usage.

A N S W E R Figure 3.27 shows the improvement in performance: the loop executes in
five clock cycles less (11 versus 16 execution cycles). The cost of this im-
provement is both a separate address adder and the logic to issue to it;
note that, in contrast to the earlier example, a second CDB is needed. As
Figure 3.28 shows this example has a higher instruction execution rate
but lower efficiency as measured by the utilization of the functional units.

n

Three factors limit the performance (as shown in Figure 3.27) of the two-issue
dynamically scheduled pipeline:

Clock # Integer ALU FP ALU Data Cache CDB

2 1/ L.D

3 1 / S.D 1/ L.D

4 1 / DADDIU 1/ L.D

5 1 / ADD.D 1 / DADDIU

6

7 2 / L.D

8 2 / S.D 2 / L.D 1 / ADD.D

9 2 / DADDIU 1 / S.D 2 / L.D

10 2 / ADD.D 2 / DADDIU

11

12 3 / L.D

13 3 / S.D 3 / L.D 2 / ADD.D

14 3 / DADDIU 2 / S.D 3 / L.D

15 3 / ADD.D 3 / DADDIU

16

17

18 3 / ADD.D

19 3 / S.D

20

FIGURE 3.26 Resource usage table for the example shown in Figure 3.25. The entry in
each box shows the opcode and iteration number of the instruction that uses the functional
unit heading the column at the clock cycle corresponding to the row. Only a single CDB is
actually required and that is what we show.

3.6 Taking Advantage of More ILP with Multiple Issue 277
Iter.
Instructions

Issues
at Executes

Memory
access at

 Write
CDB at Comment

1 L.D F0,0(R1) 1 2 3 4 First issue

1 ADD.D F4,F0,F2 1 5 8 Wait for L.D

1 S.D F4,0(R1) 2 3 9 Wait for ADD.D

1 DADDIU R1,R1,#-8 2 3 4 Executes earlier

1 BNE R1,R2,Loop 3 5 Wait for DADDIU

2 L.D F0,0(R1) 4 6 7 8 Wait for BNE complete

2 ADD.D F4,F0,F2 4 9 12 Wait for L.D

2 S.D F4,0(R1) 5 7 13 Wait for ADD.D

2 DADDIU R1,R1,#-8 5 6 7 Executes earlier

2 BNE R1,Loop 6 8 Wait for DADDIU

3 L.D F0,0(R1) 7 9 10 11 Wait for BNE complete

3 ADD.D F4,F0,F2 7 12 15 Wait for L.D

3 S.D F4,0(R1) 8 10 16 Wait for ADD.D

3 DADDIU R1,R1,#-8 8 9 10 Executes earlier

3 BNE R1,Loop 9 11 Wait for DADDIU

FIGURE 3.27 The clock cycle of issue, execution, and writing result for a dual-issue version of our Tomasulo pipe-
line with separate functional units for integer ALU operations and effective address calculation, which also uses a
wider CDB. The extra integer ALU allows the DADDIU to execute earlier, in turn allowing the BNE to execute earlier, and,
thereby, starting the next iteration earlier.

Clock # Integer ALU Address Adder FP ALU Data Cache CDB #1 CDB #2

2 1/ L.D

3 1 / DADDIU 1 / S.D 1/ L.D

4 1/ L.D 1 / DADDIU

5 1 / ADD.D

6 2 / DADDIU 2 / L.D

7 2 / S.D 2 / L.D 2 / DADDIU

8 1 / ADD.D 2 / L.D

9 3 / DADDIU 3 / L.D 2 / ADD.D 1 / S.D

10 3 / S.D 3 / L.D 3 / DADDIU

11 3 / L.D

12 3 / ADD.D 2 / ADD.D

13 2 / S.D

14

15 3 / ADD.D

16 3 / S.D

FIGURE 3.28 Resource usage table for the example shown in Figure 3.27, using the same format as Figure 3.26.

278 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
1. There is an imbalance between the functional unit structure of the pipeline and
the example loop. This imbalance means that it is impossible to fully use the
FP units. To remedy this, we would need fewer dependent integer operations
per loop. The next point is a different way of looking at this limitation.

2. The amount of overhead per loop iteration is very high: two of out of five in-
structions (the DADDIU and the BNE) are overhead. In the next chapter we look
at how this overhead can be reduced.

3. The control hazard, which prevents us from starting the next L.D before we
know whether the branch was correctly predicted, causes a one-cycle penalty
on every loop iteration. The next section introduces a technique that addresses
this limitation.

As we try to exploit more instruction level parallelism, maintaining control de-
pendences becomes an increasing burden. Branch prediction reduces the direct
stalls attributable to branches, but for a processor executing multiple instructions
per clock, just predicting branches accurately may not be sufficient to generate
the desired amount of instruction level parallelism. A wide issue processor may
need to execute a branch every clock cycle to maintain maximum performance.
Hence, exploiting more parallelism requires that we overcome the limitation of
control dependence. The performance of the pipeline in Figure 3.25 makes this
clear: there is one stall cycle each loop iteration due to a branch hazard. In pro-
grams with more branches and more data dependent branches, this penalty could
be larger.

Overcoming control dependence is done by speculating on the outcome of
branches and executing the program as if our guesses were correct. This mecha-
nism represents a subtle, but important, extension over branch prediction with dy-
namic scheduling. In particular, with speculation, we fetch, issue, and execute
instructions, as if our branch predictions were always correct; dynamic schedul-
ing only fetches and issues such instructions. Of course, we need mechanisms to
handle the situation where the speculation is incorrect. The next chapter discuss-
es a variety of mechanisms for supporting speculation by the compiler. In this
section, we explore hardware speculation, which extends the ideas of dynamic
scheduling.

Hardware-based speculation combines three key ideas: dynamic branch pre-
diction to choose which instructions to execute, speculation to allow the execu-
tion of instructions before the control dependences are resolved (with the ability
to undo the effects of an incorrectly speculated sequence), and dynamic schedul-
ing to deal with the scheduling of different combinations of basic blocks. (In
comparison, dynamic scheduling without speculation only partially overlaps ba-
sic blocks, because it requires that a branch be resolved before actually executing
any instructions in the successor basic block.) Hardware-based speculation fol-

3.7 Hardware-Based Speculation

3.7 Hardware-Based Speculation 279
lows the predicted flow of data values to choose when to execute instructions.
This method of executing programs is essentially a data-flow execution: opera-
tions execute as soon as their operands are available.

The approach we examine here, and the one implemented in a number of pro-
cessors (PowerPC 603/604/G3/G4, MIPS R10000/R12000, Intel Pentium II/III/
4, Alpha 21264, and AMD K5/K6/Athlon), is to implement speculative execution
based on Tomasulo’s algorithm. Just as with Tomasulo’s algorithm, we explain
hardware speculation in the context of the floating-point unit, but the ideas are
easily applicable to the integer unit.

The hardware that implements Tomasulo’s algorithm can be extended to sup-
port speculation. To do so, we must separate the bypassing of results among in-
structions, which is needed to execute an instruction speculatively, from the
actual completion of an instruction. By making this separation, we can allow an
instruction to execute and to bypass its results to other instructions, without al-
lowing the instruction to perform any updates that cannot be undone, until we
know that the instruction is no longer speculative. Using the bypassed value is
like performing a speculative register read, since we do not know whether the in-
struction providing the source register value is providing the correct result until
the instruction is no longer speculative. When an instruction is no longer specula-
tive, we allow it to update the register file or memory; we call this additional step
in the instruction execution sequence instruction commit.

The key idea behind implementing speculation is to allow instructions to exe-
cute out of order but to force them to commit in order and to prevent any irrevo-
cable action (such as updating state or taking an exception) until an instruction
commits. In the simple single-issue five-stage pipeline we could ensure that in-
structions committed in order, and only after any exceptions for that instruction
had been detected, simply by moving writes to the end of the pipeline. When we
add speculation, we need to separate the process of completing execution from
instruction commit, since instructions may finish execution considerably before
they are ready to commit. Adding this commit phase to the instruction execution
sequence requires some changes to the sequence as well as an additional set of
hardware buffers that hold the results of instructions that have finished execution
but have not committed. This hardware buffer, which we call the reorder buffer, is
also used to pass results among instructions that may be speculated.

The reorder buffer (ROB, for short) provides additional registers in the same
way as the reservation stations in Tomasulo’s algorithm extend the register set.
The ROB holds the result of an instruction between the time the operation associ-
ated with the instruction completes and the time the instruction commits. Hence,
the ROB is a source of operands for instructions, just as the reservation stations
provide operands in Tomasulo’s algorithm. The key difference is that in
Tomasulo’s algorithm, once an instruction writes its result, any subsequently
issued instructions will find the result in the register file. With speculation, the
register file is not updated until the instruction commits (and we know defini-
tively that the instruction should execute); thus, the ROB supplies operands in the

280 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
interval between completion of instruction execution and instruction commit.
The ROB is similar the store buffer in Tomasulo’s algorithm, and we integrate the
function of the store buffer into the ROB for simplicity.

Each entry in the ROB contains three fields: the instruction type, the destina-
tion field, and the value field. The instruction-type field indicates whether the in-
struction is a branch (and has no destination result), a store (which has a memory
address destination), or a register operation (ALU operation or load, which have
register destinations). The destination field supplies the register number (for
loads and ALU operations) or the memory address (for stores), where the instruc-
tion result should be written. The value field is used to hold the value of the in-
struction result until the instruction commits. We will see an example of ROB
entries shortly.

Figure 3.29 shows the hardware structure of the processor including the ROB.
The ROB completely replaces the store buffers. Stores still execute in two steps,
but the second step is performed by instruction commit. Although the renaming
function of the reservation stations is replaced by the ROB, we still need a place
to buffer operations (and operands) between the time they issue and the time they
begin execution. This function is still provided by the reservation stations. Since
every instruction has a position in the ROB until it commits, we tag a result using
the ROB entry number rather than using the reservation station number. This tag-
ging requires that the ROB assigned for an instruction must be tracked in the res-
ervation station. Later in this section, we will explore an alternative
implementation that uses extra registers for renaming and the ROB only to track
when instructions can commit.

Here are the four steps involved in instruction execution:

1. Issue—Get an instruction from the instruction queue. Issue the instruction if
there is an empty reservation station and an empty slot in the ROB, send the
operands to the reservation station if they available in either the registers or the
ROB. Update the control entries to indicate the buffers are in use. The number
of the ROB allocated for the result is also sent to the reservation station, so that
the number can be used to tag the result when it is placed on the CDB. If either
all reservations are full or the ROB is full, then instruction issue is stalled until
both have available entries. This stage is sometimes called dispatch in a dy-
namically scheduled processor.

2. Execute—If one or more of the operands is not yet available, monitor the CDB
(common data bus) while waiting for the register to be computed. This step
checks for RAW hazards. When both operands are available at a reservation
station, execute the operation. (Some dynamically scheduled processors call
this step issue, but we use the name execute, which was used in the first dy-
namically scheduled processor, the CDC 6600.) Instructions may take multi-
ple clock cycles in this stage, and loads still require two steps in this stage.
Stores need only have the base register available at this step, since execution

3.7 Hardware-Based Speculation 281
for a store at this point is only effective address calculation.

3. Write result—When the result is available, write it on the CDB (with the ROB
tag sent when the instruction issued) and from the CDB into the ROB, as well
as to any reservation stations waiting for this result. Mark the reservation sta-
tion as available. Special actions are required for store instructions. If the value
to be stored is available, it is written into the Value field of the ROB entry for
the store. If the value to be stored is not available yet, the CDB must be mon-
itored until that value is broadcast, at which time the Value field of the ROB
entry of the store is updated. For simplicity in our description, we assume that
this occurs during the Write Results stage of a store; we discuss relaxing this
requirement later.

FIGURE 3.29 The basic structure of a MIPS FP unit using Tomasulo’s algorithm and
extended to handle speculation. Comparing this to Figure 3.2 on page 237, which imple-
mented Tomasulo’s algorithm, the major change is the addition of the ROB and the elimina-
tion of the store buffer, whose function is integrated into the ROB. This mechanism can be
extended to multiple issue by making the CDB (common data bus) wider to allow for multiple
completions per clock.

From instruction unit

FP registers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
busesAddress unit

Load buffers

Memory unit

Reorder buffer

DataReg #

Store
Data Address

Load
Data

Store
Address

Floating-point
operations

Load/store
operations

Instruction
queue

282 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
4. Commit—There are three different sequences of actions at commit depending
on whether the committing instruction is: a branch with an incorrect predic-
tion, a store, or any other instruction (normal commit). The normal commit
case occurs when an instruction reaches the head of the ROB and its result is
present in the buffer; at this point, the processor updates the register with the
result and removes the instruction from the ROB. Committing a store is simi-
lar except that memory is updated rather than a result register. When a branch
with incorrect prediction reaches the head of the ROB, it indicates that the
speculation was wrong. The ROB is flushed and execution is restarted at the
correct successor of the branch. If the branch was correctly predicted, the
branch is finished. Some machines call this commit phase completion or grad-
uation.

Once an instruction commits, its entry in the ROB is reclaimed and the
register or memory destination is updated, eliminating the need for the ROB
entry. If the ROB fills, we simply stop issuing instructions until an entry is
made free. Now, let’s examine how this scheme would work with the same
example we used for Tomasulo’s algorithm.

E X A M P L E Assume the same latencies for the floating-point functional units as in ear-
lier examples: add is 2 clock cycles, multiply is 10 clock cycles, and divide
is 40 clock cycles. Using the code segment below, the same one we used
to generate Figure 3.4 on page 242, show what the status tables look like
when the MUL.D is ready to go to commit.

L.D F6,34(R2)

L.D F2,45(R3)

MUL.D F0,F2,F4

SUB.D F8,F6,F2

DIV.D F10,F0,F6

ADD.D F6,F8,F2

A N S W E R The result is shown in the three tables in Figure 3.30. Notice that although
the SUB.D instruction has completed execution, it does not commit until
the MUL.D commits. The reservation stations and register status field con-
tain the same basic information that they did for Tomasulo’s algorithm (see
page 238 for a description of those fields). The differences are that reser-
vation station numbers are replaced with ROB entry numbers in the Qj
and Qk fields, as well as in the register status fields, and we have added
the Dest field to the reservation stations. The Dest field designates the
ROB number that is the destination for the result produced by this reser-
vation station entry. n

3.7 Hardware-Based Speculation 283
The above Example illustrates the key important difference between a proces-
sor with speculation and a processor with dynamic scheduling. Compare the con-
tent of Figure 3.30 with that of Figure 3.4 (page 242), which shows the same
code sequence in operation on a processor with Tomasulo’s algorithm. The key
difference is that in the example above, no instruction after the earliest uncom-
pleted instruction (MUL.D above) is allowed to complete. In contrast, in Figure 3.4
the SUB.D and ADD.D instructions have also completed.

284 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
One implication of this difference is that the processor with the ROB can dy-
namically execute code while maintaining a precise interrupt model. For exam-
ple, if the MUL.D instruction caused an interrupt, we could simply wait until it
reached the head of the ROB and take the interrupt, flushing any other pending
instructions. Because instruction commit happens in order, this yields a precise

 Reservation stations

Name Bu
sy

Op Vj Vk Qj Qk Dest A

Load1 no

Load2 no

Add1 no

Add2 no

Add3 no

Mult1 no MUL.D Mem[45+Regs[R3]] Regs[F4] #3

Mult2 yes DIV.D Mem[34+Regs[R2]] #3 #5

 Reorder buffer

Entry Busy Instruction State Destination Value

1 no L.D F6,34(R2) Commit F6 Mem[34+Regs[R2]]

2 no L.D F2,45(R3) Commit F2 Mem[45+Regs[R3]]

3 yes MUL.D F0,F2,F4 Write result F0 #2 x Regs[F4]

4 yes SUB.D F8,F6,F2 Write result F8 #1 – #2

5 yes DIV.D F10,F0,F6 Execute F10

6 yes ADD.D F6,F8,F2 Write result F6 #4 + #2

FP register status

Field F0 F1 F2 F3 F4 F5 F6 F7 F8 F10

Reorder # 3 6 4 5

Busy yes no no no no no yes ... yes yes

FIGURE 3.30 At the time the MUL.D is ready to commit, only the two L.D instructions have committed, though
several others have completed execution. The MUL.D is at the head of the ROB, and the two L.D instructions are there
only to ease understanding. The SUB.D and ADD.D instructions will not commit until the MUL.D instruction commits, though
the results of the instructions are available and can be used as sources for other instructions.The DIV.D is in execution, but
has not completed solely due to its longer latency than MUL.D. The value column indicates the value being held, the format
#X is used to refer to a value field of ROB entry X. Reorder buffers 1 and 2 are actually completed, but are shown for infor-
mational purposes. we do not show the entries for the load/store queue, but these entries are kept in order.

3.7 Hardware-Based Speculation 285
exception. By contrast, in the example using Tomasulo’s algorithm, the SUB.D
and ADD.D instructions could both complete before the MUL.D raised the excep-
tion. The result is that the registers F8 and F6 (destinations of the SUB.D and
ADD.D instructions) could be overwritten, and the interrupt would be imprecise.
Some users and architects have decided that imprecise floating-point exceptions
are acceptable in high-performance processors, since the program will likely ter-
minate; see Appendix A for further discussion of this topic. Other types of excep-
tions, such as page faults, are much more difficult to accommodate if they are
imprecise, since the program must transparently resume execution after handling
such an exception. The use of a ROB with in-order instruction commit provides
precise exceptions, in addition to supporting speculative execution, as the next
Example shows.

E X A M P L E Consider the code example used earlier for Tomasulo’s algorithm and
shown in Figure 3.6 on page 245 in execution:

Loop: L.D F0,0(R1)

MUL.D F4,F0,F2

S.D F4,0(R1)

DADDIU R1,R1,#-8

BNE R1,R2,Loop ; branches if R1≠0

Assume that we have issued all the instructions in the loop twice. Let’s
also assume that the L.D and MUL.D from the first iteration have commit-
ted and all other instructions have completed execution.Normally, the
store would wait in the ROB for both the effective address operand (R1 in
this example) and the value (F4 in this example). Since we are only con-
sidering the floating-point pipeline, assume the effective address for the
store is computed by the time the instruction is issued.

A N S W E R The result is shown in the two tables in Figure 3.31.

n

Because neither the register values nor any memory values are actually written
until an instruction commits, the processor can easily undo its speculative actions
when a branch is found to be mispredicted. Suppose that in the above example
(see Figure 3.31), the branch BNE is not taken the first time. The instructions prior
to the branch will simply commit when each reaches the head of the ROB; when
the branch reaches the head of that buffer, the buffer is simply cleared and the
processor begins fetching instructions from the other path.

286 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
In practice, machines that speculate try to recover as early as possible after a
branch is mispredicted. This recovery can be done by clearing the ROB for all en-
tries that appear after the mispredicted branch, allowing those that are before the
branch in the ROB to continue, and restarting the fetch at the correct branch suc-
cessor. In speculative processors, however, performance is more sensitive to the
branch prediction mechanisms, since the impact of a misprediction will be high-
er. Thus, all the aspects of handling branches—prediction accuracy, mispredic-
tion detection, and misprediction recovery—increase in importance.

Exceptions are handled by not recognizing the exception until it is ready to
commit. If a speculated instruction raises an exception, the exception is recorded
in the ROB. If a branch misprediction arises and the instruction should not have
been executed, the exception is flushed along with the instruction when the ROB
is cleared. If the instruction reaches the head of the ROB, then we know it is no
longer speculative and the exception should really be taken. We can also try to
handle exceptions as soon as they arise and all earlier branches are resolved, but
this is more challenging in the case of exceptions than for branch mispredict and,
because it occurs less frequently, not as critical.

 Reorder buffer

Entry Busy Instruction State Destination Value

1 no L.D F0,0(R1) Commit F0 Mem[0+Regs[R1]]

2 no MUL.D F4,F0,F2 Commit F4 #1 x Regs[F2]

3 yes S.D F4,0(R1) Write result 0+Regs[R1] #2

4 yes DADDIU R1,R1,#-8 Write result R1 Regs[R1]–8

5 yes BNE R1,R2,Loop Write result

6 yes L.D F0,0(R1) Write result F0 Mem[#4]

7 yes MUL.D F4,F0,F2 Write result F4 #6 x Regs[F2]

8 yes S.D F4,0(R1) Write result 0+#4 #7

9 yes DADDIU R1,R1,#-8 Write result R1 #4 – 8

10 yes BNE R1,R2,Loop Write result

FP register status

Field F0 F1 F2 F3 F4 F5 F6 F7 F8

Reorder # 6 7

Busy yes no no no yes no no ... no

FIGURE 3.31 Only the L.D and MUL.D instructions have committed, though all the others have completed execu-
tion. Hence, no reservation stations are busy and none are shown. The remaining instructions will be committed as fast as
possible. The first two reorder buffers are empty, but are shown for completeness.

3.7 Hardware-Based Speculation 287
Figure 3.32 shows the steps of execution for an instruction, as well as the con-
ditions that must be satisfied to proceed to the step and the actions taken. We
show the case where mispredicted branches are not resolved until commit. Al-
though speculation seems like a simple addition to dynamic scheduling, a com-
parison of Figure 3.32 with the comparable figure for Tomasulo’s algorithm (see
Figure 3.5 on page 243) shows that speculation adds significant complications to
the control. In addition, remember that branch mispredictions are somewhat more
complex as well.

There is an important difference in how stores are handled in a speculative
processor, versus in Tomasulo’s algorithm. In Tomasulo’s algorithm, a store can
update memory when it reaches Write Results (which ensures that the effective
address has been calculated) and the data value to store is available. In a specula-
tive processor, a store updates memory only when it reaches the head of the
ROB.This difference ensures that memory is not updated until an instruction is
no longer speculative.

Figure 3.32 has one significant simplification for stores, which is unneeded in
practice. Figure 3.32 requires stores to wait in the write result stage for the regis-
ter source operand whose value is to be stored; the value is then moved from the
Vk field of the store’s reservation station to the Value field of the store’s ROB en-
try. In reality, however, the value to be stored need not arrive until just before the
store commits and can be placed directly into the store’s ROB entry by the sourc-
ing instruction. This is accomplished by having the hardware track when the
source value to be stored is available in the store’s ROB entry and searching the
ROB on every instruction completion to look for dependent stores. This addition
is not complicated but adding it has two effects: we would need to add a field to
the ROB and Figure 3.32, which is already in a small font, would no longer fit on
one page! Although Figure 3.32 makes this simplification, in our examples, we
will allow the store to pass through the write-results stage and simply wait for the
value to be ready when it commits.

Like Tomasulo’s algorithm, we must avoid hazards through memory. WAW
and WAR hazards through memory are eliminated with speculation, because the
actual updating of memory occurs in order, when a store is at the head of the
ROB, and hence, no earlier loads or stores can still be pending. RAW hazards
through memory are maintained by two restrictions:

1. not allowing a load to initiate the second step of its execution if any active
ROB entry occupied by a store has an Destination field that matches the value
of the A field of the load, and

2. maintaining the program order for the computation of an effective address of
a load with respect to all earlier stores.

Together, these two restrictions ensure that any load that accesses a memory loca-
tion written to by an earlier store, cannot perform the memory access until the

288 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Status Wait until Action or bookkeeping

Issue
All

instructions

Reservation
station (r)

and
ROB (b)

both
available

if (RegisterStat[rs].Busy)/*in-flight instr. writes rs*/
 {h← RegisterStat[rs].Reorder;
 if (ROB[h].Ready)/* Instr completed already */
 {RS[r].Vj← ROB[h].Value; RS[r].Qj ← 0;}
 else {RS[r].Qj← h;} /* wait for instruction */
} else {RS[r].Vj← Regs[rs]; RS[r].Qj← 0;};
RS[r].Busy← yes; RS[r].Dest← b;
ROB[h].Instruction ← opcode; ROB[b].Ready← no;

FP
Operations
and Stores

if (RegisterStat[rt].Busy) /*in-flight instr writes rt*/
 {h← RegisterStat[rt].Reorder;
 if (ROB[b].Ready) /* Instr completed already */
 {RS[r].Vk← ROB[h].Value; RS[r].Qk ← 0;}
 else {RS[r].Qk← h;} /* Wait for instruction */
} else {RS[r].Vk← Regs[rt]; RS[r].Qk← 0;};

FP
Operations

RegisterStat[rd].Qi=b; RegisterStat[rd].Busy← yes;
ROB[b].Dest← rd;

Loads RS[r].A← imm; RegisterStat[rt].Qi=b;
RegisterStat[rt].Busy← yes; ROB[b].Dest← rt;

Stores RS[r].A← imm;

Execute
FP Op

(RS[r].Qj=0) and
(RS[r].Qk=0)

Compute results—operands are in Vj and Vk

Load step1 (RS[r].Qj=0) & there
are no stores earlier in
the queue

RS[r].A←RS[r].Vj + RS[r].A;

Load
step 2

Load step 1 done & all
stores earlier in ROB
have different address

Read from Mem[RS[r].A]

Store (RS[r].Qj=0) &
store at queue head

ROB[h].Address←RS[r].Vj + RS[r].A;

Write result
All but store

Execution done at r &
CDB available.

b←RS[r].Reorder; RS[r].Busy← no;
∀x(if (RS[x].Qj=b) {RS[x].Vj← result; RS[x].Qj ← 0});
∀x(if (RS[x].Qk=b) {RS[x].Vk← result; RS[x].Qk ← 0});
ROB[b].Value←result; ROB[b].Ready←yes;

Store Execution done at r &
(RS[r].Qk=0)

ROB[h].Value←RS[r].Vk;

FIGURE 3.32 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destina-
tion, rs and rt are the sources, and r is the reservation station allocated and b is the assigned ROB entry. RS is the res-
ervation-station data structure. The value returned by a reservation station is called the result. RegisterStat is the
register data structure, Regs represents the actual registers, and ROB is the reorder buffer data structure.

3.7 Hardware-Based Speculation 289
store has written the data. Some speculative machines will actually bypass the
value from the store to the load directly, when such a RAW hazard occurs.

Although this explanation of speculative execution has focused on floating
point, the techniques easily extend to the integer registers and functional units, as
we will see in the Putting It All Together section. Indeed, speculation may be
more useful in integer programs, since such programs tend to have code where
the branch behavior is less predictable. Additionally, these techniques can be ex-
tended to work in a multiple-issue processor by allowing multiple instructions to
issue and commit every clock. In fact, speculation is probably most interesting in
such processors, since less ambitious techniques can probably exploit sufficient
ILP within basic blocks when assisted by a compiler.

Multiple Issue with Speculation

A speculative processor can be extended to multiple issue using the same tech-
niques we employed when extending a Tomasulo-based processor in section 3.6.
The same techniques for implementing the instruction issue unit can be used: We
process multiple instructions per clock assigning reservation stations and reorder
buffers to the instructions.

The two challenges of multiple issue with Tomasulo’s algorithm--instruction
issue and monitoring the CDBs for instruction completion--become the major
challenges for multiple issue with speculation. In addition, to maintain through-
put of greater than one instruction per cycle, a speculative processor must be able
to handle multiple instruction commits per clock cycle. To show how speculation
can improve performance in a multiple issue processor consider the following ex-
ample using speculation.

E X A M P L E Consider the execution of the following loop, which searches an array, on
a two issue processor one with dynamic scheduling and one with specu-

Commit Instruction is at the head
of the ROB (entry h)
and ROB[h].ready =
yes

r = ROB[h].Dest; /* register dest, if exists */
if (ROB[h].Instruction==Branch)
 {if (branch is mispredicted)
 {clear ROB[h], RegisterStat; fetch branch dest;};}
else if (ROB[h].Instruction==Store)
 {Mem[ROB[h].Address]← ROB[h].Value;}
else /* put the result in the register destination */
 {Regs[r]← ROB[h].Value;};
ROB[h].Busy← no; /* free up ROB entry */
/* free up dest register if no one else writing it */
if (RegisterStat[r].Qi==h) {RegisterStat[r].Busy← no;};

FIGURE 3.32 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destina-
tion, rs and rt are the sources, and r is the reservation station allocated and b is the assigned ROB entry. RS is the res-
ervation-station data structure. The value returned by a reservation station is called the result. RegisterStat is the
register data structure, Regs represents the actual registers, and ROB is the reorder buffer data structure.

290 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
lation:

Loop: LW R2,0(R1);R2=array element

DADDIU R2,R2,#1; increment R2

SW 0(R1),R2;store result

DADDIU R1,R1,#4;increment pointer

BNE R2,R3,LOOP; branch if last element!=0

Assume that there are separate integer functional units for effective ad-
dress calculation, for ALU operations, and for branch condition evaluation.
Create a table as in Figure 3.27 for the first three iterations of this loop for
both machines. Assume that up to two instructions of any type can commit
per clock.

A N S W E R Figure 3.33 and 3.34 show the performance for a two issue dynamically
scheduled processor, without and with speculation. In this case, where a
branch is a key potential performance limitation, speculation helps signif-
icantly. The third branch in the speculative processor executes in clock cy-
cle 11, while it executes in clock cycle 19 on nonspeculative pipeline.
Because the completion rate on the nonspeculative pipeline is falling be-
hind the issue rate rapidly, the nonspeculative pipeline will stall when a
few more iterations are issued. The performance of the nonspeculative
processor could be improved by allowing load instructions to complete ef-
fective address calculation before a branch is decided, but unless specu-
lative memory accesses are allowed, this improvement will gain only one
clock per iteration.

The above example clearly shows how speculation can be advantageous when
there are data dependent branches, which otherwise would limit performance.
This advantage depends, however, on accurate branch prediction. Incorrect spec-
ulation will not improve performance, but will, in fact, typically harm perfor-
mance.

Design Considerations for Speculative Machines

In this section we briefly examine a number of important considerations that arise
in speculative machines.

Register renaming versus Reorder Buffers
One alternative to the use of a ROB is the explicit use of a larger physical set of
registers combined with register renaming. This approach builds on the concept
of renaming used in Tomasulo’s algorithm, but extends it. In Tomasulo’s algo-
rithm, the values of the architecturally visible registers (R0,..., R31 and

3.7 Hardware-Based Speculation 291
F0,...,F31) are contained, at any point in execution, in some combination of the
register set and the reservation stations. With the addition of speculation, register
values may also temporarily reside in the ROB. In either case, if the processor
does not issue new instructions for a period of time, all existing instructions will
commit, and the register values will appear in the register file, which directly cor-
responds to the architecturally visible registers.

In the register renaming approach, an extended set of physical registers is used
to hold both the architecturally visible registers as well as temporary values.
Thus, the extended registers replace the function both of the ROB and the reser-
vation stations. During instruction issue, a renaming process maps the names of
architectural registers to physical register numbers in the extended register set, al-
locating a new unused register for the destination. WAW and WAR hazards are
avoided by renaming of the destination register, and speculation recovery is han-
dled because a physical register holding an instruction destination does not be-
come the architectural register until the instruction commits. The renaming map
is a simple data structure that supplies the physical register number of the register
that currently corresponds to the specified architectural register. This structure is
similar is structure and function to the register status table in Tomasulo’s algo-
rithm,

Iter.
Instructions

Issues at
clock

cycle #

Executes
at clock
cycle #

Memory
access at

clock
cycle #

 Write
CDB at
clock

cycle # Comment

1 LW R2,0(R1) 1 2 3 4 First issue

1 DADDIU R2,R2,#1 1 5 6 Wait for LW

1 SW 0(R1),R2 2 3 7 Wait for DADDIU

1 DADDIU R1,R1,#4 2 3 4 Execute directly

1 BNE R2,R3,LOOP 3 7 Wait for DADDIU

2 LW R2,0(R1) 4 8 9 10 Wait for BNE

2 DADDIU R2,R2,#1 4 11 12 Wait for LW

2 SW 0(R1),R2 5 9 13 Wait for DADDIU

2 DADDIU R1,R1,#4 5 8 9 Wait for BNE

2 BNE R2,R3,LOOP 6 13 Wait for DADDIU

3 LW R2,0(R1) 7 14 15 16 Wait for BNE

3 DADDIU R2,R2,#1 7 17 18 Wait for LW

3 SW 0(R1),R2 8 19 20 Wait for DADDIU

3 DADDIU R1,R1,#4 8 14 15 Wait for BNE

3 BNZ R2,R3,LOOP 9 19 Wait for DADDIU

FIGURE 3.33 The time of issue, execution, and writing result for a dual-issue version of our pipeline without spec-
ulation. Note that the L.D following the BNE cannot start execution earlier, because it must wait until the branch outcome
is determined. This type of program with data dependent branches that cannot be resolved earlier, shows the strength of
speculation. Separate functional units for address calculation, ALU operations, and branch condition evaluation allow mul-
tiple instructions to execute in the same cycle.

292 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
One question you may be asking is: How do we ever know which registers are
the architectural registers if they are constantly changing? Most of the time when
the program is executing it does not matter. There are clearly cases, however,
where another process, such as the operating system, must be able to know exact-
ly where the contents of a certain architectural register resides. To understand
how this capability is provided, assume the processor does not issue instructions
for some period of time. Then eventually, all instructions in the pipeline will
commit, and the mapping between the architecturally visible registers and physi-
cal registers will become stable. At that point, a subset of the physical registers
contains the architecturally visible registers, and the value of any physical regis-
ter not associated with an architectural register is unneeded. It is then easy to
move the architectural registers to a fixed subset of physical registers so that the
values can be communicated to another process.

An advantage of the renaming approach versus the ROB approach is that in-
struction commit is simplified, since it requires only two simple actions: record
that the mapping between an architectural register number and physical register
number is no longer speculative, and free up any physical registers being used to
hold the “older” value of the architectural register. In a design with reservation
stations, a station is freed up when the instruction using it completes execution,
and a ROB is freed up when the corresponding instruction commits.

Iter.
Instructions

Issues
at

clock #

Executes
at clock #

Read
access at
clock #

 Write
CDB at
clock #

Com-
mits at
clock # Comment

1 LW R2,0(R1) 1 2 3 4 5 First issue

1 DADDIU R2,R2,#1 1 5 6 7 Wait for LW

1 SW 0(R1),R2 2 3 7 Wait for DADDIU

1 DADDIU R1,R1,#4 2 3 4 8 Commit in order

1 BNE R2,R3,LOOP 3 7 8 Wait for ADDDI

2 LW R2,0(R1) 4 5 6 7 9 No execute delay

2 DADDIU R2,R2,#1 4 8 9 10 Wait for LW

2 SW 0(R1),R2 5 6 10 Wait for DADDIU

2 DADDIU R1,R1,#4 5 6 7 11 Commit in order

2 BNE R2,R3,LOOP 6 10 11 Wait for DADDIU

3 LW R2,0(R1) 7 8 9 10 12 Earliest possible

3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW

3 SW 0(R1),R2 8 9 13 Wait for DADDIU

3 DADDIU R1,R1,#4 8 9 10 14 Executes earlier

3 BNE R2,R3,LOOP 9 11 14 Wait for DADDIU

FIGURE 3.34 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specu-
lation. Note that the L.D following the BNE can start execution early, because it is speculative.

3.7 Hardware-Based Speculation 293
With register renaming, deallocating registers is more complex, since before
we free up a physical register, we must know that it no it longer corresponds to an
architectural register, and that no further uses of the physical register are out-
standing. A physical register corresponds to an architectural register until the ar-
chitectural register is rewritten, causing the renaming table to point elsewhere.
That is, if no renaming entry points to a particular physical register, then it no
longer corresponds to an architectural register. There may, however, still be uses
of the physical register outstanding. The processor can determine whether this is
the case by examining the source register specifiers of all instructions in the func-
tional unit queues. If a given physical register does not appear as a source and it is
not designated as an architectural register, it may be reclaimed and reallocated.

The process of reclamation can be simplified by counting the register source
uses as instructions issue and decrementing the count as the instructions fetch
their operands. When the count reaches zero, there are no further outstanding us-
es.

In addition to simplifying instruction commit, a renaming approach means
that instruction issue need not examine both the ROB and the register file for an
operand, since all results are in the register file. One possibly disconcerting as-
pect of the renaming approach is that the “real” architectural registers are never
fixed but constantly change according to the contents of a renaming map. Al-
though this complicates the design and debugging, it is not inherently problemat-
ic, and is an accepted fact in many newer implementations and sometimes even
made architecturally visible, as we will see in the IA-64 architecture in the next
chapter.

The PowerPC 603/604 series, the MIPS R1000/12000, the Alpha 21264, and
the Pentium II, III and 4 all use register renaming, adding from 20 to 80 extra reg-
isters. Since all results are allocated a new virtual register until they commit,
these extra registers replace a primary function of the ROB and largely determine
how many instructions may be in execution (between issue and commit) at one
time.

How much to speculate
One of the significant advantages of speculation is its ability to uncover events
that would otherwise stall the pipeline early, such as cache misses. This potential
advantage, however, comes with a significant potential disadvantage: the proces-
sor may speculate that some costly exceptional event occurs and begin processing
the event, when in fact, the speculation was incorrect.

To maintain some of the advantage, while minimizing the disadvantages, most
pipelines with speculation will allow only low-cost exceptional events (such as a
first-level cache miss) to be handled in speculative mode. If an expensive excep-
tional event occurs, such as a second-level cache miss or a TLB miss, the proces-
sor will wait until the instruction causing the event is no longer speculative before
handling the event. Although this may slightly degrade the performance of some
programs, it avoids significant performance losses in others, especially those that
suffer from a high frequency of such events coupled with less than excellent
branch prediction.

294 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Speculating through multiple branches
In the examples we have considered so far, it has been possible to resolve a
branch before having to speculate on another. Three different situations can bene-
fit from speculating on multiple branches simultaneously: a very high branch fre-
quency, significant clustering of branches, and long delays in functional units. In
the first two cases, achieving high performance may mean that multiple branches
are speculated, and it may even mean handling more than one branch per clock.
Database programs, and other less structured integer computations, often exhibit
these properties, making speculation on multiple branches important. Likewise,
long delays in functional units can raise the importance of speculating on multi-
ple branches as a way to avoid stalls from the longer pipeline delays.

Speculating on multiple branches slightly complicates the process of specula-
tion recovery, but is straightforward otherwise. A more complex technique is pre-
dicting and speculating on more than one branch per cycle. Although no existing
processor has done this for general instruction execution as of 2000, we can ex-
pect that it may be needed in the future.

Of course, all the techniques described in the next chapter and in this one can-
not take advantage of more parallelism than is provided by the application. The
question of how much parallelism is available, and under what circumstances,
has been hotly debated and is the topic of the next section.

Exploiting ILP to increase performance began with the first pipelined processors
in the 1960s. In the 1980s and 1990s, these techniques were key to achieving rapid
performance improvements. The question of how much ILP exists is critical to our
long-term ability to enhance performance at a rate that exceeds the increase in
speed of the base integrated-circuit technology. On a shorter scale, the critical
question of what is needed to exploit more ILP is crucial to both computer design-
ers and compiler writers. The data in this section also provide us with a way to ex-
amine the value of ideas that we have introduced in this chapter, including
memory disambiguation, register renaming, and speculation.

In this section we review one of the studies done of these questions. The his-
torical section (3.15) describes several studies, including the source for the data
in this section (which is Wall’s 1993 study). All these studies of available paral-
lelism operate by making a set of assumptions and seeing how much parallelism
is available under those assumptions. The data we examine here are from a study
that makes the fewest assumptions; in fact, the ultimate hardware model is proba-
bly unrealizable. Nonetheless, all such studies assume a certain level of compiler
technology and some of these assumptions could affect the results, despite the

3.8 Studies of the Limitations of ILP

3.8 Studies of the Limitations of ILP 295
use of incredibly ambitious hardware. In addition, new ideas may invalidate the
very basic assumptions of this and other studies; for example, value prediction, a
technique we discuss at the end of this section, may allow us to overcome the
limit of data dependences.

In the future, advances in compiler technology together with significantly new
and different hardware techniques may be able to overcome some limitations as-
sumed in these studies; however, it is unlikely that such advances when coupled
with realistic hardware will overcome all these limits in the near future. Instead,
developing new hardware and software techniques to overcome the limits seen in
these studies will continue to be one of the most important challenges in comput-
er design.

The Hardware Model

To see what the limits of ILP might be, we first need to define an ideal processor.
An ideal processor is one where all artificial constraints on ILP are removed. The
only limits on ILP in such a processor are those imposed by the actual data flows
either through registers or memory.

The assumptions made for an ideal or perfect processor are as follows:

1. Register renaming—There are an infinite number of virtual registers available
and hence all WAW and WAR hazards are avoided and an unbounded number
of instructions can begin execution simultaneously.

2. Branch prediction—Branch prediction is perfect. All conditional branches are
predicted exactly.

3. Jump prediction—All jumps (including jump register used for return and
computed jumps) are perfectly predicted. When combined with perfect branch
prediction, this is equivalent to having a processor with perfect speculation
and an unbounded buffer of instructions available for execution.

4. Memory-address alias analysis—All memory addresses are known exactly and
a load can be moved before a store provided that the addresses are not identical.

Assumptions 2 and 3 eliminate all control dependences. Likewise, assump-
tions 1 and 4 eliminate all but the true data dependences. Together, these four as-
sumptions mean that any instruction in the of the program’s execution can be
scheduled on the cycle immediately following the execution of the predecessor
on which it depends. It is even possible, under these assumptions, for the last dy-
namically executed instruction in the program to be scheduled on the very first
cycle! Thus, this set of assumptions subsumes both control and address specula-
tion and implements them as if they were perfect.

Initially, we examine a processor that can issue an unlimited number of in-
structions at once looking arbitrarily far ahead in the computation. For all the
processor models we examine, there are no restrictions on what types of instruc-

296 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
tions can execute in a cycle. For the unlimited-issue case, this means there may
be an unlimited number of loads or stores issuing in one clock cycle. In addition,
all functional unit latencies are assumed to be one cycle, so that any sequence of
dependent instructions can issue on successive cycles. Latencies longer than one
cycle would decrease the number of issues per cycle, although not the number of
instructions under execution at any point. (The instructions in execution at any
point are often referred to as in-flight.)

Finally, we assume perfect caches, which is equivalent to saying that all loads
and stores always complete in one cycle. This assumption allows our study to fo-
cus on fundamental limits to ILP. The resulting data, however, will be very opti-
mistic, because realistic caches would significantly reduce the amount of ILP that
could be successfully exploited, even if the rest of the processor were perfect!

Of course, this processor is on the edge of unrealizable. For example, the Al-
pha 21264 is one of the most advanced superscalar processors announced to date.
The 21264 issues up to four instructions per clock and initiates execution on up to
six (with significant restrictions on the instruction type, e.g., at most two load/
stores), supports a large set of renaming registers (41 integer and 41 floating
point, allowing up to 80 instructions in-flight), and uses a large tournament-style
branch predictor. After looking at the parallelism available for the perfect proces-
sor, we will examine the impact of restricting various features.

To measure the available parallelism, a set of programs were compiled and op-
timized with the standard MIPS optimizing compilers. The programs were instru-
mented and executed to produce a trace of the instruction and data references.
Every instruction in the trace is then scheduled as early as possible, limited only
by the data dependences. Since a trace is used, perfect branch prediction and per-
fect alias analysis are easy to do. With these mechanisms, instructions may be
scheduled much earlier than they would otherwise, moving across large numbers
of instructions on which they are not data dependent, including branches, since
branches are perfectly predicted.

Figure 3.35 shows the average amount of parallelism available for six of the
SPEC92 benchmarks. Throughout this section the parallelism is measured by the
average instruction issue rate (remember that all instructions have a one-cycle
latency), which is the ideal IPC. Three of these benchmarks (fpppp, doduc, and
tomcatv) are floating-point intensive, and the other three are integer programs.
Two of the floating-point benchmarks (fpppp and tomcatv) have extensive paral-
lelism, which could be exploited by a vector computer or by a multiprocessor
(the structure in fpppp is quite messy, however, since some hand transformations
have been done on the code). The doduc program has extensive parallelism, but
the parallelism does not occur in simple parallel loops as it does in fpppp and
tomcatv. The program li is a LISP interpreter that has many short dependences.

In the next few sections, we restrict various aspects of this processor to show
what the effects of various assumptions are before looking at some ambitious but
realizable processors.

3.8 Studies of the Limitations of ILP 297
Limitations on the Window Size and Maximum Issue Count

To build a processor that even comes close to perfect branch prediction and per-
fect alias analysis requires extensive dynamic analysis, since static compile-time
schemes cannot be perfect. Of course, most realistic dynamic schemes will not be
perfect, but the use of dynamic schemes will provide the ability to uncover paral-
lelism that cannot be analyzed by static compile-time analysis. Thus, a dynamic
processor might be able to more closely match the amount of parallelism uncov-
ered by our ideal processor.

How close could a real dynamically scheduled, speculative processor come to
the ideal processor? To gain insight into this question, consider what the perfect
processor must do:

1. Look arbitrarily far ahead to find a set of instructions to issue, predicting all
branches perfectly.

2. Rename all register uses to avoid WAR and WAW hazards.

3. Determine whether there are any data dependencies among the instructions in
the issue packet; if so, rename accordingly.

4. Determine if any memory dependences exist among the issuing instructions
and handle them appropriately.

5. Provide enough replicated functional units to allow all the ready instructions
to issue.

Obviously, this analysis is quite complicated. For example, to determine
whether n issuing instructions have any register dependences among them, as-
suming all instructions are register-register and the total number of registers is
unbounded, requires

FIGURE 3.35 ILP available in a perfect processor for six of the SPEC92 benchmarks.
The first three programs are integer programs, and the last three are floating-point programs.
The floating-point programs are loop-intensive and have large amounts of loop-level parallel-
ism. Artist, Please round the value labels to integers on this graph.

0 20 40 60 80 100 120

Instruction issues per cycle

gcc

espresso

li
SPEC
benchmarks

fpppp

doduc

tomcatv

54.8

62.6

17.9

75.2

118.7

150.1

140 160

298 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
comparisons. Thus, to detect dependences among the next 2000 instructions—the
default size we assume in several figures—requires almost four million compari-
sons! Even issuing only 50 instructions requires 2450 comparisons. This cost ob-
viously limits the number of instructions that can be considered for issue at once.

In existing and near-term processors, the costs are not quite so high, since we
need only detect dependence pairs and the limited number of registers allows dif-
ferent solutions. Furthermore, in a real processor, issue occurs in-order and de-
pendent instructions are handled by a renaming process that accommodates
dependent renaming in one clock. Once instructions are issued, the detection of
dependences is handled in a distributed fashion by the reservation stations or
scoreboard.

The set of instructions that are examined for simultaneous execution is called
the window. Each instruction in the window must be kept in the processor and the
number of comparisons required every clock is equal to the maximum completion
rate times the window size times the number of operands per instruction (today
typically 6 x 80 x 2= 960), since every pending instruction must look at every com-
pleting instruction for either of its operands. Thus, the total window size is limited
by the required storage, the comparisons, and a limited issue rate, which makes
larger window less helpful. To date, the window size has been in the range of 32 to
126, which can require over 2,000 comparisons. The HP PA 8600 reportedly has
over 7,000 comparators!

The window size directly limits the number of instructions that begin execu-
tion in a given cycle. In practice, real processors will have a more limited number
of functional units (e.g., no processor has handled more than two memory refer-
ences per clock or more than two FP operations), as well as limited numbers of
buses and register access ports, which serve as limits on the number of instruc-
tions initiated in the same clock. Thus, the maximum number of instructions that
may issue, begin execution, or commit in the same clock cycle is usually much
smaller than the window size.

Obviously, the number of possible implementation constraints in a multiple is-
sue processor is large, including: issues per clock, functional units and unit laten-
cy, register file ports, functional unit queues (which may be fewer than units),
issue limits for branches, and limitations on instruction commit. Each of these
acts as constraint on the ILP. Rather than try to understand each of these effects,
however, we will focus on limiting the size of the window, with the understand-
ing that all other restrictions would further reduce the amount of parallelism that
can be exploited.

Figures 3.36 and 3.37 show the effects of restricting the size of the window
from which an instruction can execute; the only difference in the two graphs is
the format—the data are identical. As we can see in Figure 3.36, the amount of

2n 2– 2n 4– … 2 2Σi 1=

n 1–
i 2

n 1–()n
2

-------------------- n
2

n–===+ + +

3.8 Studies of the Limitations of ILP 299
parallelism uncovered falls sharply with decreasing window size. In 2000, the
most advanced processors have window sizes in the rang of 64-128, but these
window sizes are not strictly comparable to those shown in Figure 3.36 for two
reasons. First, the functional units are pipelined, reducing the effective window
size compared to the case where all units have single-cycle latency. Second, in
real processors the window must also hold any memory references waiting on a
cache miss, which are not considered in this model, since it assumes a perfect,
single-cycle cache access.

As we can see in Figure 3.37, the integer programs do not contain nearly as
much parallelism as the floating-point programs. This result is to be expected.
Looking at how the parallelism drops off in Figure 3.37 makes it clear that the
parallelism in the floating-point cases is coming from loop-level parallelism. The
fact that the amount of parallelism at low window sizes is not that different
among the floating-point and integer programs implies a structure where there are
dependences within loop bodies, but few dependences between loop iterations in
programs such as tomcatv. At small window sizes, the processors simply cannot
see the instructions in the next loop iteration that could be issued in parallel with
instructions from the current iteration. This case is an example of where better
compiler technology (see the next chapter) could uncover higher amounts of ILP,

FIGURE 3.36 The effects of reducing the size of the window. The window is the group of instructions from which an
instruction can execute. The start of the window is the earliest uncompleted instruction (remember that instructions complete
in one cycle), and the last instruction in the window is determined by the window size. The instructions in the window are
obtained by perfectly predicting branches and selecting instructions until the window is full. Artist: The espresso datapoint
with coordinates (2K,40) is missing.

160

140

120

100

Instruction issues per cycle 80

60

40

20

0
 Infinite 2k 512 128

Window size

gcc

fpppp

espresso

doduc

li

tomcatv

32 8 4

300 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
since it could find the loop-level parallelism and schedule the code to take advan-
tage of it, even with small window sizes.

FIGURE 3.37 The effect of window size shown by each application by plotting the av-
erage number of instruction issues per clock cycle. The most interesting observation is
that at modest window sizes, the amount of parallelism found in the integer and floating-point
programs is similar. Artist: please add a data series to this graph. Legend label is 2K,
this set of points goes between the Infinite and 512 series. The values of the points to
add from top to bottom are: 36, 41, 15, 61, 59, 60. (So that, e.g., there will be a bar la-
beled 41, with the appropriate height as the second bar in the set corresponding to
espresso.

gcc

espresso

li

fpppp

Benchmarks

doduc

tomcatv

0

55
10
10

8
4

3

15
13

8
4

3

18
12
11

9
4

3

49
75

63

119

35
14

5
3

16
15

9
4

3

150
45

34
14

6
3

20

Infinite

Window size

8

512 128 32

4

40 60 80

Instruction issues per cycle

100 120 140 160

3.8 Studies of the Limitations of ILP 301
We know that large window sizes are impractical and inefficient, and the data
in Figures 3.36 and 3.37 tell us that issue rates will be considerably reduced with
realistic windows, thus we will assume a base window size of 2K entries and a
maximum issue capability of 64 instructions per clock for the rest of this analy-
sis. As we will see in the next few sections, when the rest of the processor is not
perfect, a 2K window and a 64-issue limitation do not constrain the amount of
ILP the processor can exploit.

The Effects of Realistic Branch and Jump Prediction

Our ideal processor assumes that branches can be perfectly predicted: The out-
come of any branch in the program is known before the first instruction is exe-
cuted! Of course, no real processor can ever achieve this. Figures 3.38 and 3.39
show the effects of more realistic prediction schemes in two different formats.
Our data is for several different branch-prediction schemes varying from perfect
to no predictor. We assume a separate predictor is used for jumps. Jump predic-
tors are important primarily with the most accurate branch predictors, since the
branch frequency is higher and the accuracy of the branch predictors dominates.

FIGURE 3.38 The effect of branch-prediction schemes. This graph shows the impact of going from a perfect model of
branch prediction (all branches predicted correctly arbitrarily far ahead) to various dynamic predictors (selective and two-bit),
to compile time, profile-based prediction, and finally to using no predictor. The predictors are described precisely in the text.
artist: change label “selective predictor” to “Tournament predictor”

60

Instruction issues per cycle

50

40

30

20

10

0
Perfect Selective

predictor
Standard

2-bit

Branch prediction scheme

Static None

gcc

fpppp

espresso

doduc

li

tomcatv

302 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
The five levels of branch prediction shown in these figures are

1. Perfect—All branches and jumps are perfectly predicted at the start of execution.

2. Tournament-based branch predictor—The prediction scheme uses a correlat-
ing two-bit predictor and a noncorrelating two-bit predictor together with a se-
lector, which chooses the best predictor for each branch. The prediction buffer

FIGURE 3.39 The effect of branch-prediction schemes sorted by application. This
graph highlights the differences among the programs with extensive loop-level parallelism
(tomcatv and fpppp) and those without (the integer programs and doduc). Artist: change la-
bel “selective predictor” to “Tournament predictor” also can you make the cap-
tion vertical and place it in the upper right corner.

gcc

35

41

9
6
6

2

12
7

6
2

espresso

Benchmarks

li

fpppp

doduc

tomcatv

0

16
10

6
7

2

10 20

Selective
predictor

Perfect Standard 2 bit Static None

30 40 50

Instruction issues per cycle

60

61
48

46
45

58

29

15
13

14
4

19

60
46

45
45

Branch predictor

3.8 Studies of the Limitations of ILP 303
contains 213 (8K) entries, each consisting of three two-bit fields, two of which
are predictors and the third is a selector. The correlating predictor is indexed
using the exclusive-or of the branch address and the global branch history. The
noncorrelating predictor is the standard two-bit predictor indexed by the
branch address. The selector table is also indexed by the branch address and
specifies whether the correlating or noncorrelating predictor should be used.
The selector is incremented or decremented just as we would for a standard
two-bit predictor. This predictor, which uses a total of 48K bits, outperforms
both the correlating and noncorrelating predictors, achieving an average accu-
racy of 97% for these six SPEC benchmarks; this predictor is comparable in
strategy and somewhat larger than the best predictors in use in 2000. Jump pre-
diction is done with a pair of 2K-entry predictors, one organized as a circular
buffer for predicting returns and one organized as a standard predictor and
used for computed jumps (as in case statement or computed gotos). These
jump predictors are nearly perfect.

3. Standard two-bit predictor with 512 two-bit entries—In addition, we assume
a 16-entry buffer to predict returns.

4. Static—A static predictor uses the profile history of the program and predicts
that the branch is always taken or always not taken based on the profile.

5. None—No branch prediction is used, though jumps are still predicted. Paral-
lelism is largely limited to within a basic block.

Since we do not charge additional cycles for a mispredicted branch, the only
effect of varying the branch prediction is to vary the amount of parallelism that
can be exploited across basic blocks by speculation. Figure 3.40 shows the accu-
racy of the three realistic predictors for the conditional branches for the subset of
SPEC92 benchmarks we include here. By comparison, Figure 3.61 on page 341
shows the size and type of branch predictor in recent high performance proces-
sors.

Figure 3.39 shows that the branch behavior of two of the floating-point
programs is much simpler than the other programs, primarily because these two
programs have many fewer branches and the few branches that exist are more
predictable. This property allows significant amounts of parallelism to be exploit-
ed with realistic prediction schemes. In contrast, for all the integer programs and
for doduc, the FP benchmark with the least loop-level parallelism, even the dif-
ference between perfect branch prediction and the ambitious selective predictor
is dramatic. Like the window size data, these figures tell us that to achieve signif-
icant amounts of parallelism in integer programs, the processor must select and
execute instructions that are widely separated. When branch prediction is not
highly accurate, the mispredicted branches become a barrier to finding the paral-
lelism.

304 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
As we have seen, branch prediction is critical, especially with a window size
of 2K instructions and an issue limit of 64. For the rest of the studies, in addition
to the window and issue limit, we assume as a base a more ambitious tournament
predictor that uses two levels of prediction and a total of 8K entries. This predic-
tor, which requires more than 150K bits of storage (roughly four times the largest
predictor to date), slightly outperforms the selective predictor described above
(by about 0.5–1%). We also assume a pair of 2K jump and return predictors, as
described above.

The Effects of Finite Registers

Our ideal processor eliminates all name dependences among register references
using an infinite set of physical registers. To date, the Alpha 21264 has provided
the largest number of extended registers: 41 integer and 41 FP registers, in addi-
tion to 32 integer and 32 floating point architectural registers. Figures 3.41
and 3.42 show the effect of reducing the number of registers available for renam-
ing, again using the same data in two different forms. Both the FP and GP regis-
ters are increased by the number of registers shown on the axis or in the legend.

At first, the results in these figures might seem somewhat surprising: you might
expect that name dependences should only slightly reduce the parallelism avail-

FIGURE 3.40 Branch prediction accuracy for the conditional branches in the SPEC92
subset.

94%

96%

8%

8%

97%

100%

0%

82%

77%

82%

84%

99%

88%

6%

88%

6%

5%

99%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

gcc

espresso

li

fpppp

doduc

tomcatv

Branch prediction accuracy

Profile-based
2-bit counter
Tournament

3.8 Studies of the Limitations of ILP 305
able. Remember though, exploiting large amounts of parallelism requires evaluat-
ing many independent threads of execution. Thus, many registers are needed to
hold live variables from these threads. Figure 3.41 shows that the impact of having
only a finite number of registers is significant if extensive parallelism exists. Al-
though these graphs show a large impact on the floating-point programs, the im-
pact on the integer programs is small primarily because the limitations in window
size and branch prediction have limited the ILP substantially, making renaming
less valuable. In addition, notice that the reduction in available parallelism is sig-
nificant even if 64 additional integer and 64 additional FP registers are available
for renaming, which is more than the number of extra registers available on any
existing processor as of 2000.

Although register renaming is obviously critical to performance, an infinite
number of registers is obviously not practical. Thus, for the next section, we as-
sume that there are 256 integer and 256 FP registers available for renaming—far
more than any anticipated processor has.

FIGURE 3.41 The effect of finite numbers of registers available for renaming. Both the number of FP registers and
the number of GP registers are increased by the number shown on the x axis. The effect is most dramatic on the FP pro-
grams, although having only 32 extra GP and 32 extra FP registers has a significant impact on all the programs. As stated
earlier, we assume a window size of 2K entries and a maximum issue width of 64 instructions. None implies no extra regis-
ters available.

60

50

40

30

20

10

0
Infinite 256 128

Number of registers available for renaming

3264 None

gcc

fpppp

espresso

doduc

li

tomcatv

Instruction issues per cycle

306 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
The Effects of Imperfect Alias Analysis

Our optimal model assumes that it can perfectly analyze all memory depen-
dences, as well as eliminate all register name dependences. Of course, perfect
alias analysis is not possible in practice: The analysis cannot be perfect at com-

FIGURE 3.42 The reduction in available parallelism is significant when fewer than an
unbounded number of renaming registers are available. For the integer programs, the im-
pact of having more than 64 registers is not seen here. To use more than 64 registers requires
uncovering lots of parallelism, which for the integer programs requires essentially perfect
branch prediction.Artist: can you make the caption vertical and place it in the upper
right corner.

gcc

espresso

li

Benchmarks

fpppp

doduc

tomcatv

0

11
10
10

9
5

4

15
13

10
5

4

5
4

12
12
12

11
6

5

49
59

15

29

35
20

16
15

11
5
5

54
45

44
28

7
5

10

Infinite

32

256 128 64

None

20 30 40

Instruction issues per cycle

50 60

Renaming registers

3.8 Studies of the Limitations of ILP 307
pile time, and it requires a potentially unbounded number of comparisons at
runtime (since the number of simultaneous memory references is unconstrained).
Figures 3.43 and 3.44 show the impact of three other models of memory alias

analysis, in addition to perfect analysis. The three models are:

1. Global/stack perfect—This model does perfect predictions for global and
stack references and assumes all heap references conflict. This model repre-
sents an idealized version of the best compiler-based analysis schemes cur-
rently in production. Recent and ongoing research on alias analysis for
pointers should improve the handling of pointers to the heap in the future.

2. Inspection—This model examines the accesses to see if they can be deter-
mined not to interfere at compile time. For example, if an access uses R10 as
a base register with an offset of 20, then another access that uses R10 as a base
register with an offset of 100 cannot interfere. In addition, addresses based on
registers that point to different allocation areas (such as the global area and the
stack area) are assumed never to alias. This analysis is similar to that per-
formed by many existing commercial compilers, though newer compilers can

FIGURE 3.43 The effect of various alias analysis techniques on the amount of ILP. Anything less than perfect anal-
ysis has a dramatic impact on the amount of parallelism found in the integer programs, and global/stack analysis is perfect
(and unrealizable) for the FORTRAN programs. As we said earlier, we assume a maximum issue width of 64 instructions
and a window of 2K instructions.Artist: can you make the caption vertical and place it on the right side

60

50

Instruction issues per cycle

40

30

20

10

0
Global/stack

perfect
Inspection

Alias analysis technique

NonePerfect

gcc

fpppp

espresso

doduc

li

tomcatv

308 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
do better, at least for loop-oriented programs.

3. None—All memory references are assumed to conflict.

As one might expect, for the FORTRAN programs (where no heap references
exist), there is no difference between perfect and global/stack perfect analysis.
The global/stack perfect analysis is optimistic, since no compiler could ever find
all array dependences exactly. The fact that perfect analysis of global and stack
references is still a factor of two better than inspection indicates that either so-
phisticated compiler analysis or dynamic analysis on the fly will be required to
obtain much parallelism. In practice, dynamically scheduled processors rely on
dynamic memory disambiguation and are limited by three factors:

FIGURE 3.44 The effect of varying levels of alias analysis on individual programs.

Artist: can you make the caption vertical and place it in the upper right corner
also delete the phrase “Alias analysis” in the legend.

10
7

4
3

15
7

5
5

12
9

4
3

49
49

4
3

16
16

6
4

45
45

5
4

gcc

espresso

li

Benchmarks

fpppp

doduc

tomcatv

0 5

Perfect Global/stack
perfect

Inspection None

10 15 20

Instruction issues per cycle

25 30 35 40 45 50

Alias analysis

3.9 Limitations on ILP for Realizable Processors 309
1. To implement perfect dynamic disambiguation for a given load, we must
know the memory addresses of all earlier stores that not yet committed, since
a load may have a dependence through memory on a store. One technique for
reducing this limitation on in-order address calculation is memory address
speculation. With memory address speculation, the processor either assumes
that no such memory dependences exist or uses a hardware prediction mech-
anism to predict if a dependence exists, stalling the load if a dependence is pre-
dicted. Of course, the processor can be wrong about the absence of the
dependence, so we need a mechanism to discover if a dependence truly exists
and to recover if so. To discover if a dependence exists, the processor exam-
ines the destination address of each completing store that is earlier in program
order than the given load. If a dependence that should have been enforced oc-
curs, the processor uses the speculative restart mechanism to redo the load and
the following instructions. (We will see how this type of address speculation
can be supported with instruction set extensions in the next chapter.)

2. Only a small number of memory references can be disambiguated per clock
cycle.

3. The number of the load/store buffers determines how much earlier or later in
the instruction stream a load or store may be moved.

Both the number of simultaneous disambiguations and the number of the load/
store buffers will affect the clock cycle time.

In this section we look at the performance of processors ambitious levels of hard-
ware support equal to or better than what is likely in the next five years. In partic-
ular we assume the following fixed attributes:

1. Up to 64 instruction issues per clock with no issue restrictions. As we discuss
later, the practical implications of very wide issue widths on clock rate, logic
complexity, and power may be the most important limitation on exploiting
ILP.

2. A tournament predictor with 1K entries and a 16-entry return predictor. This
predictor is fairly comparable to the best predictors in 2000; the predictor is
not a primary bottleneck.

3. Perfect disambiguation of memory references done dynamically—this is
ambitious but perhaps attainable for small window sizes (and hence small is-
sue rates and load/store buffers) or through a memory dependence predictor.

4. Register renaming with 64 additional integer and 64 additional FP registers,

3.9 Limitations on ILP for Realizable Processors

310 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
exceeding largest number available on any processor in 2001 (41 and 41 in the
Alpha 21264), but probably easily reachable within two or three years.

Figures 3.45 and 3.46 show the result for this configuration as we vary the
window size. This configuration is more complex and expensive than any exist-
ing implementations, especially in terms of the number of instruction issues,
which is more than ten times larger than the largest number of issues available on
any processor in 2001. Nonetheless, it gives a useful bound on what future imple-
mentations might yield. The data in these figures is likely to be very optimistic
for another reason. There are no issue restrictions among the 64 instructions: they
may all be memory references. No one would even contemplate this capability in
a processor in the near future. Unfortunately, it is quite difficult to bound the per-
formance of a processor with reasonable issue restrictions; not only is the space
of possibilities quite large, but the existence of issue restrictions requires that the
parallelism be evaluated with an accurate instruction scheduler, making the cost
of studying processors with large numbers of issues very expensive.

In addition, remember that in interpreting these results, cache misses and non-
unit latencies have not been taken into account, and both these effects will have
significant impact (see the Exercises).

Figure 3.45 shows the parallelism versus window size. The most startling
observation is that with the realistic processor constraints listed above, the effect
of the window size for the integer programs is not so severe as for FP programs.
This result points to the key difference between these two types of programs. The
availability of loop-level parallelism in two of the FP programs means that the
amount of ILP that can be exploited is higher, but that for integer programs other
factors—such as branch prediction, register renaming, and less parallelism to
start with—are all important limitations. This observation is critical, because of
the increased emphasis on integer performance in the last few years. As we will
see in the next section, for a realistic processor in 2000, the actual performance
levels are much lower than those shown in Figure 3.45.

Given the difficulty of increasing the instruction rates with realistic hardware
designs, designers face a challenge in deciding how best to use the limited re-
sources available on a integrated circuit. One of the most interesting trade-offs is
between simpler processors with larger caches and higher clock rates versus
more emphasis on instruction-level parallelism with a slower clock and smaller
caches. The following Example illustrates the challenges.

E X A M P L E Consider the following three hypothetical, but not atypical, processors,
which we run with the SPEC gcc benchmark:

1. A simple MIPS two-issue static pipe running at a clock rate of 1 GHz

3.9 Limitations on ILP for Realizable Processors 311
and achieving a pipeline CPI of 1.0. This processor has a cache sys-
tem that yields 0.01 misses per instruction.

2. A deeply pipelined version of MIPS with slightly smaller caches and
a 1.2 GHz clock rate. The pipeline CPI of the processor is 1.2, and
the smaller caches yield 0.015 misses per instruction on average.

3. A speculative superscalar with a 64-entry window. It achieves one-
half of the ideal issue rate measured for this window size. (Use the
data in Figure 3.45 on page 311.) This processor has the smallest
caches, which leads to 0.02 misses per instruction, but it hides 10%
of the miss penalty on every miss by dynamic scheduling. This pro-
cessor has a 800-MHz clock.

Assume that the main memory time (which sets the miss penalty) is 100
ns. Determine the relative performance of these three processors.

A N S W E R First, we use the miss penalty and miss rate information to compute the
contribution to CPI from cache misses for each configuration. We do this
with the following formula:

FIGURE 3.45 The amount of parallelism available for a wide variety of window sizes and a fixed implementation
with up to 64 issues per clock. Although there are fewer rename registers than the window size, the fact that all operations
have zero latency and that the number of rename registers equals the issue width, allows the processor to exploit parallelism
within the entire window. In a real implementation, the window size and the number of renaming registers must be balanced
to prevent one of these factors from overly constraining the issue rate.

60

50

40

30

20

10

0
Infinite

Instruction issues per cycle

256 128

Window size

32 16 864 4

gcc

fpppp

espresso

doduc

li

tomcatv

312 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
We need to compute the miss penalties for each system:

FIGURE 3.46 The amount of parallelism available versus the window size for a variety
of integer and floating-point programs with up to 64 arbitrary instruction issues per
clock.
Artist: could you make legend vertical and move to upper right corner.

10
10
10

4
6

8
9

3

15
15

13

4
6

8
10

2

11
12
12

11

4
3

6
9

14
22

35

52
47

8
5

3

9
12

15
16
17

7
4

3

56
45

34
22

14
9

6
3

gcc

espresso

li

fpppp

Benchmarks

doduc

tomcatv

0 10 20

Instruction issues per cycle

30 40 50 60

Infinite

32

256 128 64

16 8 4

Window size

Cache CPI Misses per instruction Miss penalty×=

3.9 Limitations on ILP for Realizable Processors 313
The clock cycle times for the processors are 1 ns, 0.83 ns, and 1.25 ns,
respectively. Hence, the miss penalties are

Applying this for each cache:

Cache CPI1 = 0.01 × 100 = 1.0
Cache CPI2 = 0.015 × 120 = 1.8
Cache CPI3 = 0.02 × 72 = 1.44

We know the pipeline CPI contribution for everything but processor 3; its
pipeline CPI is given by

Now we can find the CPI for each processor by adding the pipeline and
cache CPI contributions.

CPI1 = 1.0 + 1.0 = 2.0
CPI2 = 1.2 + 1.8 = 3.0
CPI3 = 0.22 + 1.44 = 1.66

Since this is the same architecture we can compare instruction execution
rates to determine relative performance:

In this example, the moderate issue processor looks best. Of course, the
designer building either system 2 or system 3 will probably be alarmed by

Miss penalty Memory access time
Clock cycle

---=

Miss penalty1
100 ns

1 ns
---------------- 100 cycles==

Miss penalty2
100 ns
0.83 ns
----------------- 120 cycles==

Miss penalty3
0.9 1× 00 ns

1.25 ns
------------------------------ 72 cycles==

Pipeline CPI3
1

Issue rate
-----------------------=

1
9 0.5×
---------------- 1

4.5
------- 0.22===

Instruction execution rate CR
CPI
---------=

Instruction execution rate1
1000 MHz

2
-------------------------- 500 MIPS= =

Instruction execution rate2
1200 MHz

3.0
-------------------------- 400 MIPS= =

Instruction execution rate3
800 MHz

1.66
----------------------- 482 MIPS= =

314 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
the large fraction of the system performance lost to cache misses. In the
Chapter 5 we’ll see the most common solution to this problem: adding an-
other level of caches. n

Beyond the limits of this study

Like any limit study, the study we have examined in this section has its own limi-
tations. We divide these into two classes: limitations that arise even for the per-
fect speculative processor and limitations that arise for one or more realistic
models. Of course, all the limitations in the first class apply to the second. The
most important limitations that apply even to the perfect model are:

1. WAR and WAW hazards through memory: the study eliminated WAW and
WAR hazards through register renaming, but not in memory usage. Although,
at first glance it might appear that such circumstances are rare (especially
WAW hazards), they arise due to the allocation of stack frames. A called pro-
cedure reuses the memory locations of a previous procedure on the stack and
this can lead to WAW and WAR hazards that are unnecessarily limiting. Aus-
tin and Sohi’s 1992 paper examines this issue.

2. Unnecessary dependences: with infinite numbers of registers, all but true reg-
ister data dependences are removed. There are, however, dependences arising
from either recurrences or code generation conventions that introduce unnec-
essary true data dependences. One example of these is the dependence on the
control variable in a simple do-loop: since the control variable is incremented
on every loop iteration, the loop contains at least one dependence. As we show
in the next chapter, loop unrolling and aggressive algebraic optimization can
remove such dependent computation. Wall’s study includes a limited amount
of such optimizations, but applying them more aggressively could lead to in-
creased amounts of ILP. In addition, certain code generation conventions in-
troduce unneeded dependences, in particular the use of return address registers
and a register for the stack pointer (which is incremented and decremented in
the call/return sequence). Wall removes the effect of the return address regis-
ter, but the use of a stack pointer in the linkage convention can cause “unnec-
essary” dependences. Postiff, Greene, Tyson, and Mudge explored the
advantages of removing this constraint in a 1999 paper.

3. Overcoming the data flow limit: a recent proposed idea to boost ILP, which
goes beyond the capability of the study above, is value prediction. Value pre-
diction consists of predicting data values and speculating on the prediction.
There are two obvious uses of this scheme: predicting data values and specu-
lating on the result and predicting address values for memory alias elimina-
tion. The latter affects parallelism only under less than perfect circumstances,

3.9 Limitations on ILP for Realizable Processors 315
as we discuss shortly.

Value prediction has possibly the most potential for increasing ILP. Data val-
ue prediction and speculation predicts data values and uses them in destination
instructions speculatively. Such speculation allows multiple dependent instruc-
tions to be executed in the same clock cycle, thus increasing the potential ILP. To
be effective, however, data values must be predicted very accurately, since they
will be used by consuming instructions, just as if they were correctly computed.
Thus, inaccurate prediction will lead to incorrect speculation and recovery, just as
when branches are mispredicted.

One insight that gives some hope is that certain instructions produce the same
values with high frequency, so it may be possible to selectively predict values for
certain instructions with high accuracy. Obviously, perfect data value prediction
would lead to infinite parallelism, since every value of every instruction could be
predicted a priori.

Thus, studying the effect of value prediction in true limit studies is difficult
and has not yet been done. Several studies have examined the role of value pre-
diction in exploiting ILP in more realistic processors (e.g., Lipasti, Wilkerson,
and Shen in 1996). The extent to which general value prediction will be used in
real processors remains unclear at the present.

For a less than perfect processor, there are several ideas, which have been pro-
posed, that could expose more ILP. We mention the two most important here:

1. Address value prediction and speculation predicts memory address values and
speculates by reordering loads and stores. This technique eliminates the need
to compute effective addresses in-order to determine whether memory refer-
ences can be reordered, and could provide better aliasing analysis than any
practical scheme. Because we need not actually predict data values, but only
if effective addresses are identical, this type of prediction can be accomplished
by simpler techniques. Recent processors include limited versions of this tech-
nique and it can be expected that future implementations of address value pre-
diction may yield an approximation to perfect alias analysis, allowing
processors to eliminate this limit to exploiting ILP.

2. Speculating on multiple paths: this idea was discussed by Lam and Wilson in
1992 and explored in the study covered in this section. By speculating on mul-
tiple paths, the cost of incorrect recovery is reduced and more parallelism can
be uncovered. It only makes sense to evaluate this scheme for a limited num-
ber of branches, because the hardware resources required grow exponentially.
Wall’s 1993 study provides data for speculating in both directions on up to
eight branches. Whether such schemes ever become practical, or whether it
will always be better to devote the equivalent silicon area to better branch pre-
dictors remains to be seen. In Chapter 8, we discuss thread-level parallelism
and the use of speculative threads.

It is critical to understand that none of the limits in this section are fundamen-
tal in the sense that overcoming them requires a change in the laws of physics!

316 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Instead, they are practical limitations that imply the existence of some formidable
barriers to exploiting additional ILP. These limitations–whether they be window
size, alias detection, or branch prediction–represent challenges for designers and
researchers to overcome! As we discuss in the concluding remarks, there are a va-
riety of other practical issues that may actually be the more serious limits to ex-
ploiting ILP in future processors.

The Intel P6 microarchitecture forms the basis for the Pentium Pro, Pentium II,
and the Pentium III. In addition to some specialized instruction set extensions
(MMX and SSE), these three processors differ in clock rate, cache architecture,
and memory interface and is summarized in Figure 3.47.

The P6 microarchitecture is a dynamically scheduled processor that translates
each IA-32 instruction to a series of micro-operations (uops) that are executed by
the pipeline; the uops are similar to typical RISC instructions. Up to three IA-32
instructions are fetched, decoded, and translated into uops every clock cycle. If
an IA-32 instruction requires more than four uops, it is implemented by a micro-
coded sequence that generates the necessary uops in multiple clock cycles. The
maximum number of uops that may be generated per clock cycle is six, with four
allocated to the first IA-32 instruction, and one uop slot to each of the remaining
two IA-32 instructions.

The uops are executed by an out-of-order speculative pipeline using register
renaming and a ROB. This pipeline is very similar to that in section 3.7, except
that the functional unit capability and the sizes of buffers are different. Up to
three uops per clock can be renamed and dispatched to the reservation stations;
instruction commit can also complete up to three uops per clock. The pipeline is
structured in 14 stages composed of the following:

3.10 Putting It All Together: The P6 Microarchitecture

Processor First ship
date

Clock rate range L1 cache L2 cache

Pentium Pro 1995 100–200 MHz 8KB instr. + 8KB data 256 KB–1,024 KB

Pentium II 1998 233–450 MHz 16KB instr. + 16KB data 256 KB–512 KB

Pentium II Xenon 1999 400-450 MHz 16KB instr. + 16KB data 512 KB–2 MB

Celeron 1999 500-900 MHz 16KB instr. + 16KB data 128 KB

Pentium III 1999 450–1,100 MHz 16KB instr. + 16KB data 256KB–512 KB

Pentium III Xenon 2000 700-900 MHz 16KB instr. + 16KB data 1 MB–2 MB

FIGURE 3.47 The Intel processors based on the P6 microarchitecture and their important differences. In the Pen-
tium Pro, the processor and specialized cache SRAMs were integrated into a multichip module. In the Pentium II standard
SRAMs are used. In the Pentium III, there is either on on-chip 256 KB L2 cache or an off-chip 512 KB cache. The Xenon
version are intended for server applications; they use an off-chip L2 and support multiprocessing. The Pentium II added the
MMX instruction extension. while the Pentium III added the SSE extensions.

3.10 Putting It All Together: The P6 Microarchitecture 317
n 8 stages are used for in-order instruction fetch, decode, and dispatch. The next
instruction is selected during fetch using a 512-entry, two-level branch predic-
tor. The decode and issue stages including register renaming (using 40 virtual
registers) and dispatch to one of 20 reservation stations and to one of 40 entries
in the ROB.

n 3 stages are used for out-of-order execution in one of five separate functional
units (integer unit, FP unit, branch unit, memory address unit, and memory ac-
cess unit). The execution pipeline is from 1 cycle (for simple integer ALU op-
erations) to 32 cycles for FP divide. The issue rate and latency of some typical
operations appears in Figure 3.48.

n 3 stages are used for instruction commit.

Figure 3.49 shows a high-level picture of the pipeline, the throughput of each
stage, and the capacity of buffers between stages. A stage will not achieve its
throughput if either the input buffer cannot supply enough operands or the output
buffer lacks capacity. In addition, internal restrictions or dynamic events (such as
a cache miss) can cause a stall within all the units. For example, an instruction
cache miss will prevent the instruction fetch stage from generating 16 bytes of in-
structions; similarly, three instructions can be decoded only under certain restric-
tions in how they map to uops.

Performance of the Pentium Pro Implementation

This section looks at some performance measurements for the Pentium Pro im-
plementation. The Pentium Pro has the smallest set of primary caches among the
P6 based microprocessors; it has, however, a high bandwidth interface to the sec-
ondary caches. Thus, while we would expect more performance to be lost to
cache misses than on the Pentium II, the relatively faster and higher bandwidth
secondary caches should reduce this effect somewhat. The measurements in this
section use a 200 MHz Pentium Pro with a 256KB secondary cache and a 66
MHz main memory bus. The data for this section comes from a study by Bhan-
darkar and Ding [1997] that uses SPEC CPU95 as the benchmark set.

Instruction name Pipeline stages Repeat rate

Integer ALU 1 1

Integer load 3 1

Integer multiply 4 1

FP add 3 1

FP multiply 5 2

FP divide (64-bit) 32 32

FIGURE 3.48 The latency and repeat rate for common uops in the P6 microarchitec-
ture. A repeat rate of 1 means that the unit is fully pipelined, and a repeat rate of 2 means
that operations can start every other cycle.

318 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Understanding the performance of a dynamically-scheduled processor is com-
plex. To see why, consider first that the actual CPI will be significantly greater
than the ideal CPI, which in the case of the P6 architecture is 0.33. If the effective
CPI is, for example, 0.66, then the processor can fall behind, achieving an CPI of
1, during some part of the execution and subsequently catch up by issuing and
graduating two instructions per clock. Furthermore, consider how stalls actually
occur in dynamically-scheduled, speculative processors. Since cache misses are
overlapped, branches outcomes are speculated, and data dependences are dynam-
ically scheduled around, what does a stall actually mean? In the limit, stalls occur
when the processor fails to commit its full complement of instructions in a clock
cycle.

Of course, the lack of instructions to complete means that somewhere earlier
in the pipeline, some instructions failed to make progress (or in the limit, failed to
even issue). This blockage can occur for a combination of several reasons in the
Pentium Pro:

1. Less than a three IA-32 instructions could be fetched, due to instruction cache
misses.

2. Less than three instructions could issue, because one of the three IA-32 in-
structions generated more than the allocated number of uops (4 for the first in-
struction and 1 for each of other two).

3. Not all the microoperations generated in a clock cycle could issue because of
a shortage of reservation stations or reorder buffers.

4. A data dependence led to a stall because every reservations station or the re-
order buffer was filled with instructions that are dependent.

5. A data cache misses led to a stall because every reservation station or the re-
order buffer was filled with instructions waiting for a cache miss.

FIGURE 3.49 The P6 processor pipeline showing the throughput of each stage and the total buffering provided
between stages. The buffering provided is either as bytes (before instruction decoding), as uops (after decoding and trans-
lation), as reservation station entries (after issue), or as reorder buffer entries (after execution). There are five execution
units, each of which can potentially initiate a new uop every cycle (though some are not fully pipelined as shown in Figure
3.48). Recall that during renaming an instruction reserves a reorder buffer entry, so that stalls can occur during renaming/
issue when the reorder buffer is full. Notice that the instruction fetch unit can fill the entire prefetch buffer in one cycle; if the
buffer is partially full, fewer bytes will be fetched.

Instruction
fetch

16 bytes
 per cycle

16 bytes Instruction
decode

3 instructions
per cycle

6 uops
Renaming

3 uops
per cycle

Reorder buffer
(40 entries)

Reservation
stations

(20) Execution
units

(5 total)

Graduation
unit

(3 uops
per cycle)

3.10 Putting It All Together: The P6 Microarchitecture 319
6. Branch mispredicts cause stalls directly, since the pipeline will need to be
flushed and refilled. A mispredict can also cause a stall that arises from inter-
ference between speculated instructions that will be canceled and instructions
that will be completed.

Because of the ability to overlap potential stall cycles from multiple sources, it
is difficult to assign the cost of a stall cycle to any single cause. Instead, we will
look at the contributions to stalls and conclude by showing that the actual CPI is
less than what would be observed if no overlap of stalls were possible.

Stalls in the Decode Cycle
To start, let’s look at the rate at which instructions are fetched and issued. Al-
though the processor attempts to fetch three instructions every cycle, it cannot
maintain this rate if the instruction cache generates a miss, if one of the instruc-

FIGURE 3.50 The number of instructions decoded each clock varies widely and depends upon a variety of facts
including the instruction cache miss rate, the instruction decode rate, and the downstream execution rate. On av-
erage for these benchmarks, 0.87 instructions are decoded per cycle.

0 % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vor tex

perl

ijpeg

l i

compress

gcc

m88ksim

go

average

O instructions 1 instruction 2 instructions 3 instructions

320 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
tions requires more than the number of microoperations available to it or if the
six-entry uop issue buffer is full. Figure 3.50 shows the fraction of time in which
0, 1, 2, or 3 IA-32 instructions are decoded,

Figure 3.51 breaks out the stalls at decode time according to whether they are
due to instruction cache stalls, which lead to less than three instructions available
to decode, or resource capacity limitations, which means that a lack of reserva-
tion station or reorder buffers prevents a uop from issuing. Failure to issue a uop,
eventually leads to a full uop buffer (recall that it has six entries), which then
blocks instruction decode.

FIGURE 3.51 Stall cycles per instruction at decode time and the breakdown due to instruction stream stalls, which
occur because of instruction cache misses, or resource capacity stalls, which occur because of a lack of reserva-
tion stations or reorder buffer entries. SPEC CPU95 is used as the benchmark suite, for this, and the rest of the mea-
surements in this section.

0 0.5 1 1.5 2 2.5 3

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vor tex

perl

ijpeg

l i

compress

gcc

m88ksim

go

Stall cycles per instruction

Instruction stream Resource capacity stalls

3.10 Putting It All Together: The P6 Microarchitecture 321
The instruction cache miss rate for the SPEC95 FP benchmarks is small, and,
for most of the FP benchmarks, resource capacity is the primary cause of decode
stalls. The resource limitation arises because of lack of progress further down the
pipeline, due either to large numbers of dependent operations or to long latency
operations; the latter is a limitation for floating point programs, in particular. For
example, the programs su2cor and hydro2d, which both have large numbers of
resource stalls, also have long running, dependent floating-point calculations,

Another possible reason for the reduction in decode throughput could be that
the expansion of IA-32 instructions into uops causes the uop buffer to fill. This
would be the case if the number of uops per IA-32 instruction were large. Figure
3.52 shows, however, that most IA-32 instructions map to a single uop, and that
on average there are 1.37 microoperations per IA-32 instruction (which means
that the CPI for the processor is 1.37 times higher than the CPI of the microoper-
ations). Surprisingly, the integer programs take slightly more microoperations per
IA-32 instruction on average than the floating-point programs!

Data Cache Behavior
Figure 3.53 shows the number of first level (L1) and second level (L2) cache
misses per thousand instructions. The L2 misses, although smaller in number,
cost more than five times as much as L1 misses, and thus, dominate in some ap-
plications. Instruction cache misses are a minor effect in most of the programs.
Although the speculative, out-of-order pipeline may be effective at hiding stalls

FIGURE 3.52 The number of microoperations per IA-32 instruction. Other than fpppp
the integer programs typically require more uops. Most instructions will take only one uop,
and, thus, the uop buffer fills primarily because of delays in the execution unit.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vor tex

perl

ijpeg

l i

compress

gcc

m88ksim

go

ops per IA-32 instruction

322 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
due to L1 data misses, it cannot hide the long latency L2 cache misses, and L2
miss rates and effective CPI track similarly,

Branch Performance and Speculation Costs
Branch target addresses are predicted with a 512-entry BTB, based on the two-
level adaptive scheme of Yeh and Patt, which is similar to the predictor described
on page 258. If the BTB does not hit, a static prediction is used: backward
branches are predicted taken (and have a one cycle penalty if correctly predicted)
and forward branches are predicted not taken (and have no penalty if correctly
predicted). Branch mispredicts have both a direct performance penalty, which is
between 10-15 cycles, and an indirect penalty due to the overhead of incorrectly

FIGURE 3.53 The number of misses per thousand instructions for the primary (L1)
and secondary (L2) caches. Recall that the primary consists of a pair of 8KB caches and
the secondary is 256KB. Because the cost of a secondary cache is about five times higher,
the potential stalls from L2 cache misses are more serious than a simple frequency compar-
ison would show.

0 2 0 4 0 6 0 8 0 100 120 140 160

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vor tex

perl

ijpeg

l i

compress

gcc

m88ksim

go

isses per Thousand Instructions

L1 Instruction
L1 Data
L2

3.10 Putting It All Together: The P6 Microarchitecture 323
speculated instructions, which is essentially impossible to measure. (Sometimes
misspeculated instructions can result in a performance advantage, but this is like-
ly to be rare.) Figure 3.54 shows the fraction of branches mispredicted either be-
cause of BTB misses or because of incorrect predictions. On average about 20%
of the branches either miss or are mispredicted and use the simple static predictor
rule.

To understand the secondary effects arising from speculation that will be can-
celed, Figure 3.53 plots the average number of speculated uops that do not com-
mit. On average about 1.2 times as many uops issue as commit. By factoring in
the branch frequency and the mispredict rates, we find that, on average, each
mispredicted branch issues 20 uops that will later be canceled. Unfortunately, ac-
cessing the exact costs of incorrectly speculated operations is virtually impossi-
ble, since they may cost nothing (if they do not block the progress of other
instructions) or may be very costly.

Putting the Pieces Together: Overall Performance of the P6 Pipeline
Overall performance depends on the rate at which instructions actually complete
and commit. Figure 3.56 shows the fraction of the time that 0, 1, 2, or 3 uops

FIGURE 3.54 The BTB miss frequency dominates the mispredict frequency, arguing
for a larger predictor, even at the cost of a slightly higher mispredict rate.

0 % 5 % 10% 15% 20% 25% 30% 35% 40% 45%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vor tex

perl

ijpeg

l i

compress

gcc

m88ksim

go

Miss/Mispredict ratio

BTB miss frequency
Mispredict frequency

324 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
commit. On average, one uop commits per cycle, but, as Figure 3.56 shows, 23%
of the time 3 uops commit in a cycle. This distribution demonstrates the ability of
a dynamically-scheduled pipeline to fall behind (on 55% of the cycles, no uops
commit) and later catch up (31% of the cycles have 2 or 3 uops committing).

Figure 3.57 sums up all the possible issue and stall cycles per IA-32 instruc-
tion and compares it to the actual measured CPI on the processor. The uop cycles
in Figure 3.57 are the number of cycles per instruction assuming that the proces-
sor sustains three uops per cycle and accounting for the number of uops required
per IA-32 instruction for that benchmark. The sum of the issue cycles plus stalls
exceeds the actual measured CPI by an average of 1.37, varying from 1.0 to 1.75.
This difference arises from the ability of the dynamically-scheduled pipeline to
overlap and hide different classes of stalls arising in different types of programs.
The average CPI is 1.15 for the SPECint programs and 2.0 for the SPECFP pro-
grams. The P6 microarchitecture is clearly designed to focus on integer pro-
grams.

The Pentium III versus the Pentium 4

The microarchitecture of the Pentium 4, which is called NetBurst, is similar to
that of the Pentium III (called the P6 microarchitecture): both fetch up to three
IA-32 instructions per cycle, decode them into micro-ops, and send the uops to an

FIGURE 3.55 The “speculation factor” can be thought of as the fraction of issued in-
structions that do not commit. For the benchmarks with high speculation factors (> 30%),
there are almost certainly some negative performance effects.

0.00 0.10 0.20 0.30 0.40 0.50 0.60

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vor tex

perl

ijpeg

l i

compress

gcc

m88ksim

go

 instructions that do not commit

3.10 Putting It All Together: The P6 Microarchitecture 325
out-of-order execution engine that can graduate up to three uops per cycle. There
are, however, many differences that are designed to allow the NetBurst microar-
chitecture to operate at a significantly higher clock rate than the P6 microarchi-
tecture and to help maintain or close the peak to sustained execution throughput.
Among the most important of these are:

n A much deeper pipeline: P6 requires about 10 clock cycles from the time a sim-
ple add instruction is fetched until the availability of its results. In comparison,
NetBurst takes about 20 cycles, including 2 cycles reserved simply to drive re-
sults across the chip!

n NetBurst uses register renaming (like the MIPS R10K and the Alpha 21264)
rather than the reorder buffer, which is used in P6. Use of register renaming al-
lows many more outstanding results (potentially up to 128) in NetBurst versus
the 40 that are permitted in P6..

n There are seven integer execution units in NetBurst versus five in P6. The ad-
ditions are an additional integer ALU and an additionaladdress computation
unit.

FIGURE 3.56 The breakdown in how often 0, 1, 2, or 3 uops commit in a cycle. The average number of uop comple-
tions per cycle is distributed as: 0 completions 55% of the cycles, 1 completion 13% of the cycles, 2 completions 8% of the
cycles, and 3 completions 23% of the cycles,

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0 uops commit 1 uop commits 2 uops commit 3 uops commit

326 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
n An aggressive ALU (operating at twice the clock rate) and an aggressive data
cache lead to lower latencies for the basic ALU operations (effectively one-half
a clock cycle in NetBurst versus one in P6) and for data loads (effectively two
cycles in NetBurst versus three in P6). These high-speed functional units are
critical to lowering the potential increase in stalls from the very deep pipeline.

n NetBurst uses a sophisticated trace cache (see Chapter 5) to improve instruc-
tion fetch performance, while P6 uses a conventional prefetch buffer and in-
struction cache.

n Netburst has a branch target buffer that is eight times larger and has an im-
proved prediction algorithm.

FIGURE 3.57 The actual CPI (shown as a line) is lower than the sum of the number of uop cycles plus all stalls.
The uop cycles assume that three uops are completed every cycle and include the number of uops per instruction for the
specific benchmark. All other stalls are the actual number of stall cycles. (TLB stalls that contribute less than 0.1 stalls/cycle
are omitted). The overall CPI is lower than the sum of the uop cycles plus stalls through the use of dynamic scheduling.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vor tex

perl

ijpeg

l i

compress

gcc

m88ksim

go

Clock cycles per instruction

uops
Instruction cache stalls
Resource capacity stalls
Branch mispredict penalty
Data Cache Stalls

3.10 Putting It All Together: The P6 Microarchitecture 327
n NetBurst has a level 1 data cache that is 8KB compared to P6’s 16KB L1 data
cache. NetBurst’s larger level two cache (256KB) with higher bandwidth
should offset this disadvantage.

n NetBurst implements the new SSE2 floating point instructions that allow two
floating operations per instruction; these operations are structured as a 128-bit
SIMD or short-vector structure. As we saw in Chapter 1 this gives Pentium 4 a
considerable advantage over Pentium III on floating point code.

A Brief Performance Comparison of the Pentium III and Pentium 4
As we saw in Figure 1.28 on page 60 the Pentium 4 at 1.7 Ghz outperforms the
Pentium III at 1 GHz by a factor of 1.26 for SPEC CINT2000 and 1.8 for SPEC
CFP2000. Figure 3.58 shows the performance of the Pentium III and Pentium 4
on four of the SPEC benchmarks that are in both SPEC95 and SPEC2000. The
floating point benchmarks clearly take advantage of the new instruction set exten-
sions and yield an advantage of 1.6–1.7 above clock rate scaling.

For the two integer benchmarks, the situation is somewhat different. In both
cases the Pentium 4 delivers less than linear scaling with the increase in clock
rate. If we assume the instruction counts are identical for integer codes on the two

FIGURE 3.58 The performance of the Pentium 4 for four SPEC2000 benchmarks (two
integer: gcc and vortex, and two floating point: apllu and mgrid) exceeds the Pentium
III by a factor of between 1.2 and 2.9. This exceeds the purely clock speed advantage for
the floating point benchmarks and is less than the clock speed advantage for the integer pro-
grams.

0

100

200

300

400

500

600

700

800

900

gcc vortex applu mgrid

S
P

E
C

R

a
ti

o

Pentium III Pentium 4

328 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
processors, then the CPI for the two integer benchmarks is higher on the Pentium
4 (by a factor of 1.1 for gcc and a factor of 1.5 for vortex). Looking at the data for
the Pentium Pro, we can see that the these benchmarks have relatively low level-2
miss rates and that they hide much of their level-1 miss penalty through dynamic
scheduling and speculation. Thus, it is likely that the deeper pipeline and larger
pipeline stall penalties on the Pentium 4 lead to a higher CPI for these two pro-
grams and reduce some of the gain from the high clock rate.

One interesting question is: why did the designers at Intel decide on the ap-
proach they took for the Pentium 4? On the surface, the alternative of doubling
the issue rate of the Pentium III, as opposed to doubling the pipeline depth and
the clock rate, looks at least as attractive. Of course, there are numerous changes
between the two architectures, making an exact analysis of the tradeoffs difficult.
Furthermore, because of the changes in the floating point instruction set, a com-
parison of the two pipeline organizations needs to focus on integer performance.

There are two sources of performance loss that arise if we compare the deeper
pipeline of the Pentium 4 with that of the Pentium III. The first is the increase in
clock overhead that occurs due to increased clock skew and jitter. This overhead
is given by the difference between the ideal clock speed and the achieved clock
speed. In comparable technologies, the Pentium 4 clock rate is between 1.7 and
1.8 times higher than the Pentium III clock rate. This range represents between
85% and 90% of the ideal clock rate, which is 2 times higher.

The second source of performance loss is the increase in CPI that arises from
the deeper pipeline. We can estimate this by taking the ratio in clock rate versus
the ratio in achieved overall performance. Using SPECInt as the performance
measure and comparing a 1 GHz Pentium III to a 1.7 GHz Pentium 4, the perfor-
mance ratio is 1.26. This tells us that the CPI for SPECInt on the Pentium 4 must
be 1.7/1.26 = 1.34 times higher., or alternatively that the Pentium 4 is about 1.26/
1.7 = 74% of the efficiency of the Pentium III. Of course, some of this loss is in
the memory system, rather than in the pipeline.

The key question is whether doubling the issue width would result in a greater
than 1.26 times overall performance gain. This is a vey difficult question to an-
swer, since we must account for the improvement in pipeline CPI, the relative in-
crease in cost of memory stalls, and the potential clock rate impact of a processor
with twice the issue width. It is unlikely, looking at the data in Section 3.9, that
doubling the issue rate will achieve better than a factor of 1.5 improvement in
ideal instruction throughput. When combined with the potential impact on clock
rate and the memory system costs, it appears that the choice of the Intel Pentium
4 designers to favor a deeper pipeline rather than wider issue, is at least a reason-
able design choice.

3.11 Another View: Thread Level Parallelism 329
Throughout this chapter, our discussion has focused on exploiting parallelism in
programs by finding and using the parallelism among instructions within the pro-
gram. Although this approach has the great advantage that it is reasonably trans-
parent to the programmer, as we have seen ILP can be quite limited or hard to
exploit in some applications. Furthermore, there may be significant parallelism
occurring naturally at a higher level in the application that cannot be exploited
with the approaches discussed in this chapter. For example, an online transaction
processing system has natural parallelism among the multiple queries and up-
dates that are presented by requests. These queries and updates can be processed
mostly in parallel, since they are largely independent of one another. Similarly,
embedded applications often have natural high-level parallelism. For example, a
processor in a network router can exploit parallelism among independent packets.

This higher level parallelism is called thread level parallelism because it is
logically structured as separate threads of execution. A thread is a separate pro-
cess with its own instructions and data. A thread may represent a process that is
part of a parallel program consisting of multiple processes, or it may represent an
independent program on its own. Each thread has all the state (instructions, data,
PC, register state, and so on) necessary to allow it to execute. Unlike instruction
level parallelism, which exploits implicit parallel operations within a loop or
straight-line code segment, thread level parallelism is explicitly represented by
the use of multiple threads of execution that are inherently parallel.

Thread level parallelism is important alternative to instruction level parallel-
ism primarily because it could be more cost-effective to exploit than instruction
level parallelism. There are many important applications where thread level par-
allelism occurs naturally, as it does in many server applications, In other cases,
the software is being written from scratch and expressing the inherent parallelism
is easy, as is true in some embedded applications. Chapter 6 explores multipro-
cessors and the support they provide for thread level parallelism.

The investment required to program applications to expose thread-level paral-
lelism, makes it costly to switch the large established base of software to multi-
processors. This is especially true for desktop applications, where the natural
paralelism that is present in many server environments, is harder to find. Thus,
despite the potentially greater efficiency of exploiting thread-level parallelism, it
is likely that ILP-based approaches will continue to be the primary focus for
desktop-oriented processors.

3.11 Another View: Thread Level Parallelism

330 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Thread-level and instruction-level parallelism exploit two different kinds of par-
allel structure in a program. One natural question to ask is whether it is possible
for a processor oriented at instruction level parallelism to exploit thread level par-
allelism.

The motivation for this question comes from the observation that a datapath
designed to exploit higher amounts of ILP, will find that functional units are often
idle because of either stalls or dependences in the code. Could the parallelism
among threads to be used a source of independent instructions that might be used
to keep the processor busy during stalls? Could this thread-level parallelism be
used to employ the functional units that would otherwise lie idle when insuffi-
cient ILP exists?

Multithreading, and a variant called simultaneous multithreading, take advan-
tage of these insights by using thread level parallelism either as the primary form
of parallelism exploitation–for example, on top of a simple pipelined processor–
or as a method that works in conjunction with ILP mechanisms. In both cases,
multiple threads are being executed with in single processor by duplicating the
thread-specific state (program counter, registers, and so on.) and sharing the other
processor resources by multiplexing them among the threads. Since multithread-
ing is a method for exploiting thread level parallelism, we discuss it in more
depth in Chapter 6.

Our first fallacy is a two part one that indicates that simple rules do not hold and
that the choice of benchmarks plays a major role.

Fallacies:
Processors with lower CPIs will always be faster.
Processors with faster clock rates will always be faster.

Although a lower CPI is certainly better, sophisticated pipelines typically have
slower clock rates than processors with simple pipelines. In applications with
limited ILP or where the parallelism cannot be exploited by the hardware re-
sources, the faster clock rate often wins. But, when significant ILP exists, a pro-
cessor that exploits lots of ILP may be better.

The IBM Power III processor is designed for high-performance FP and capa-
ble of sustaining four instructions per clock, including two FP and two load-store

3.12 Crosscutting Issues: Using an ILP Datapath to Exploit TLP

3.13 Fallacies and Pitfalls

3.13 Fallacies and Pitfalls 331
instructions. It offers a 400 MHz clock rate in 2000, capable and achieves a
SPEC CINT2000 peak rating of 249 and a SPEC CFP2000 peak rating of 344.
The Pentium III has a comparably aggressive integer pipeline but has less aggres-
sive FP units. An 800 MHz Pentium III in 2000 achieves a SPEC CINT 2000
peak rating of 344 and a SPEC CFP2000 peak rating of 237.

Thus, the faster clock rate of the Pentium III (800 MHz vs. 400 MHz) leads to
an integer rating that is 1.38 times higher than the Power III, but the more aggres-
sive FP pipeline of the Power III (and a better instruction set for floating point)
leads to a lower CPI. If we assume comparable instruction counts, the Power III
CPI must be almost 3x better than that of the Pentium III for the SPECFP 2000
benchmarks, leading to an overall performance advantage of 1.45.

Of course, this fallacy is nothing more than a restatement of a pitfall from
Chapter 2 (see page XXX) about comparing processors using only one part of the
performance equation.

Pitfall: Emphasizing an improvement in CPI by increasing issue rate while
sacrificing clock rate can lead to lower performance.

The TI SuperSPARC design is a flexible multiple-issue processor capable of issu-
ing up to three instructions per cycle. It had a 1994 clock rate of 60 MHz. The HP
PA 7100 processor is a simple dual-issue processor (integer and FP combination)
with a 99-MHz clock rate in 1994. The HP processor is faster on all the SPEC92
benchmarks except two of the integer benchmarks and one FP benchmark, as
shown in Figure 3.59. On average, the two processors are close on integer, but the
HP processor is about 1.5 times faster on the FP benchmarks. Of course, differ-
ences in compiler technology, detailed tradeoffs in the processor (including the
cache size and memory organization), and the implementation technology, could
all contribute to the performance differences.

The potential of multiple-issue techniques has caused many designers to focus
on improving CPI while possibly not focusing adequately on the trade-off in cy-
cle time incurred when implementing these sophisticated techniques. This incli-
nation arises at least partially because it is easier with good simulation tools to
evaluate the impact of enhancements that affect CPI than it is to evaluate the cy-
cle time impact.

There are two factors that lead to this outcome. First, it is difficult to know the
clock rate impact of an approach until the design is well underway, and then it
may be too late to make large changes in the organization. Second, the design
simulation tools available for determining and improving CPI are generally better
than those available for determining and improving cycle time.

In understanding the complex interaction between cycle time and various or-
ganizational approaches, the experience of the designers seems to be one of the
most valuable factors. With ever more complex designs, however, even the best
designers find it hard to understand the complex tradeoffs between clock rate and
other organizational decisions. At the end of Section 3.10, we will see the oppo-

332 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
site problem: how emphasizing a high clock rate, obtained through a deeper pipe-
line, can lead to degraded CPI and a lower performance gain than might be
expected based sole on the higher clock rate.

Pitfall: Improving only one aspect of a multiple-issue processor and expecting
overall performance improvement.

This pitfall is simply a restatement of Amdahl’s Law. A designer might simply
look at a design, see a poor branch prediction mechanism and improve it, expect-
ing to see significant performance improvements. The difficulty is that many fac-
tors limit the performance of multiple-issue machines, and improving one aspect
of a processor often exposes some other aspect that previously did not limit per-
formance.

We can see examples of this in the data on ILP. For example, looking just at
the effect of branch prediction in Figure 3.39 on page 302, we can see that going
from a standard two-bit predictor to a tournament predictor significantly im-
proves the parallelism in espresso (from an issue rate of 7 to an issue rate of 12).
If the processor provides only 32 registers for renaming, however, the amount of
parallelism is limited to 5 issues per clock cycle, even with a branch prediction
scheme better than either alternative.

Pitfalls: Sometimes bigger and dumber is better.

FIGURE 3.59 The performance of a 99-MHz HP PA 7100 processor versus a 60-MHz SuperSPARC. The comparison
is based on 1994 measurements.

300

250

200

150

100

SPEC ratio

50

0

HP PA 7100 TI SuperSPARC

Benchmarks
es

pr
es

so li

eq
nt

ot
t

co
m

pr
es

s sc gc
c

sp
ice

do
du

c

m
dlj

dp
2

wav
e5

to
m

ca
tv or

a

alv
inn ea

r

m
dlj

sp
2

sw
m

25
6

ea
rs

u2
co

r

hy
dr

o2
d

na
sa

fp
pp

p

3.14 Concluding Remarks 333
Advanced pipelines have focused on novel and increasingly sophisticated
schemes for improving CPI. The 21264 uses a sophisticated tournament predictor
with a total of 29 Kbits (see page 258), while the earlier 21164 uses a simple 2-bit
predictor with 2K entries (or a total of 4 Kbits). For the SPEC95 benchmarks, the
more sophisticated branch predictor of the 21264 outperforms the simpler 2-bit
scheme on all but one benchmark. On average, for SPECInt95, the 21264 has
11.5 mispredictions per 1000 instructions committed while the 21164 has about
16.5 mispredictions.

Somewhat surprisingly, the simpler 2-bit scheme works better for the transac-
tion processing workload than the sophisticated 21264 scheme (17 mispredic-
tions vs. 19 per 1000 completed instructions)! How can a predictor with less than
1/7 the number of bits and a much simpler scheme actually work better? The an-
swer lies in the structure of the workload. The transaction processing workload
has a very large code size (more than an order of magnitude larger than any
SPEC95 benchmark) with a large branch frequency. The ability of the 21164 pre-
dictor to hold twice as many branch predictions based on purely local behavior
(2K vs. the 1K local predictor in the 21264) seems to provide a slight advantage.

This pitfall also reminds us that different applications can produce different
behaviors. As processors become more sophisticated including specific microar-
chitectural features aimed at some particular program behavior, it is likely that
different applications will see more divergent behavior.

The tremendous interest in multiple-issue organizations came about because of
an interest in improving performance without affecting the standard uniprocessor
programming model. Although taking advantage of ILP is conceptually simple,
the design problems are amazingly complex in practice. It is extremely difficult
to achieve the performance you might expect from a simple first-level analysis.

The trade-offs between increasing clock speed and decreasing CPI through
multiple issue are extremely hard to quantify. In the 1995 edition of this book, we
stated: “Although you might expect that it is possible to build an advanced multi-
ple-issue processor with a high clock rate, a factor of 1.5 to 2 in clock rate has
consistently separated the highest clock rate processors and the most sophisticat-
ed multiple-issue processors. It is simply too early to tell whether this difference
is due to fundamental implementation trade-offs, or to the difficulty of dealing
with the complexities in multiple-issue processors, or simply a lack of experience
in implementing such processors.”

Given the availability of the Alpha 21264 at 800 MHz, the Pentium III at 1.1
GHz, the AMD Athlon at 1.3 GHz, and the Pentium 4 at 2 GHz, it is clear that the
limitation was primarily our understanding of how to build such processors. It is

3.14 Concluding Remarks

334 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
also likely that this the first generation of CAD tools used for more than two mil-
lion logic transistors was a limitation.

One insight that was clear in 1995 and remains clear in 2000 is that the peak to
sustained performance ratios for multiple-issue processors are often quite large
and typically grow as the issue rate grows. Thus, increasing the clock rate by X is
almost always a better choice than increasing the issue width by X, though often
the clock rate increase may rely largely on deeper pipelining, substantially nar-
rowing the advantage. This insight probably played a role in motivating Intel to
pursue a deeper pipeline for the Pentium 4, rather than trying to increase the issue
width. Recall, however, the fundamental observation we made in Chapter 1 about
the improvement in semiconductor technologies: the number of transistors avail-
able grows faster than the speed of the transistors. Thus, a strategy that focuses
only on deeper pipelining may not be the best use of the technology in the long
run..

Rather than embracing dramatic new approaches in microarchitecture, the last
five years have focused on raising the clock rates of multiple issue machines and
narrowing the gap between peak and sustained performance. The dynamically-
scheduled, multiple-issue processors announced in the last two years (the Alpha
21264, the Pentium III and 4, and the AMD Athlon) have same basic structure
and similar sustained issue rates (three to four instructions per clock) as the first
dynamically-scheduled, multiple-issue processors announced in 1995! But, the
clock rates are 4 to 8 times higher, the caches are 2 to 4 times bigger, there are 2
to 4 times as many renaming registers, and twice as many load/store units! The
result is performance that is 6 to 10 times higher.

All the leading edge desktop and server processors are large, complex chips
with more than 15 million transistors per processor. Notwithstanding, a simple
two-way superscalar that issues FP instructions in parallel with integer instruc-
tions, or dual issues integer instructions (but not memory references) can proba-
bly be built with little impact on clock rate and with a tiny die size (in comparison
to today’s processes). Such a processor should perform well with a higher sus-
tained to peak ratio than the high-end wide-issue processors and can be amazing-
ly cost-effective. As a result, the high-end of the embedded space has recently
moved to multiple-issue processors!

Whether approaches based primarily on faster clock rates, simpler hardware,
and more static scheduling or approaches using more sophisticated hardware to
achieve lower CPI will win out is difficult to say and may depend on the bench-
marks.

Practical Limitations on Exploiting More ILP

Independent of the method used to exploit ILP, there are potential limitations that
arise from employing more transistors. When the number of transistors employed
is increased, the clock period is often determined by wire delays encountered
both in distributing the clock and in the communication path of critical signals,

3.14 Concluding Remarks 335
such as those that signal exceptions. These delays make it more difficult to em-
ploy increased numbers of transistors to exploit more ILP, while also increasing
the clock rate. These problems are sometimes overcome by adding additional
stages, which are reserved just for communicating signals across longer wires.
The Pentium 4 doe this. These increased clock stages, however, can lead to more
stalls and a higher CPI, since they increase pipeline latency. We saw exactly this
phoenom when comparing the Pentium 4 to the Pentium III.

Although the limitations explored in Section 3.8 act as significant barriers to
exploiting more ILP, it may be that more basic challenges would prevent the effi-
cient exploitation of additional ILP, even if it could be uncovered. For example,
doubling the issue rates above the current rates of four instructions per clock will
probably require a processor to sustain three or four memory accesses per cycle
and probably resolve two or three branches per cycle. In addition, supplying eight
instructions per cycle will probably require fetching sixteen, speculating through
multiple branches, and accessing roughly twenty registers per cycle. None of this
is impossible, but whether it can be done while simultaneously maintaining clock
rates exceeding 2 GHz is an open question and will surely be a significant chal-
lenge for any design team!

Equal in importance to the CPI versus clock rate trade-off, are realistic limita-
tions on power. Recall that dynamic power is proportional to the product of the
number of switching transistors and the switching rate. A microprocessor trying
to achieve both a low CPI and a high CR fights both of these factors. Achieving
an improved CPI means more instructions in flight and more transistors switch-
ing every clock cycle.

Two factors make it likely that the switching transistor count grows faster than
performance. The first is the gap between peak issue rates and sustained perfor-
mance, which continues to grow. Since the number of transistors switching is
likely to be proportional to the peak issue rate and the performance is proportion-
al to the sustained rate, the growing performance gap translates to increasing
transistors switches per unit of performance. Second, issuing multiple instruc-
tions incurs some overhead in logic that grows as the issue rate grows. This logic
is responsible for instruction issue analysis, including dependence checking, reg-
ister renaming, and similar functions. The combined result is that, without volt-
age reductions to decrease power, lower CPIs are likely to lead to lower ratios of
performance per watt.

A similar conundrum applies to attempts to increase clock rate. Of course, in-
creasing the clock rate will increase transistor switching frequency and directly
increase power consumption. As we saw in the Pentium 4 discussion, a deeper
pipeline structure can be used to achieve a clock rate increase that exceeds what
could be obtained just from improvements in transistor speed. Deeper pipelines,
however, incur additional power penalties, resulting from several sources. The
most important of these is the simple observation that a deeper pipeline means
more operations are in flight every clock cycle, which means more transistors are
switching, which means more power!

336 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
What is key to understand is the extent to which this potential growth in power
caused by an increase in both the switching frequency and number of transistors
switching is offset by a reduction in the operating voltage. Although these rela-
tionship is complex to understand, we can look at the results empirically and
draw some conclusions.

The Pentium III and Pentium 4 provide an opportunity to examine this issue.
As discussed on page 324, the Pentium 4 has a much deeper pipeline and can ex-
ploit more ILP than the Pentium III, although its basic peak issue rate is the same.
The operating voltage of the Pentium 4 at 1.7 GHz is slightly higher than a 1 GHz
Pentium III: 1.75V versus 1.70V. The power difference, however, is much larger:
the 1.7 GHz Pentium 4 consumes 64 W typical, while the 1 GHz Pentium III con-
sumes only 30 W by comparison. Figure 3.60 shows the effective performance of
a 1.7 GHz Pentium 4 per watt relative to the performance per watt of a 1 GHz
Pentium III using the same benchmarks presented in Figure 1.28 on page 60.
Clearly, while the Pentium 4 is faster, its higher clock rate, deeper pipeline and
higher sustained execution rate, make it significantly less power efficient. Wheth-
er the decreased power efficiency between the Pentium III and Pentium 4 are
deep issues and unlikely to be overcome, or to whether they are artifacts of the
two implementations is a key question that will probably be settled in future im-
plementations. What is clear is that neither deeper pipelines nor wider issue rates
can circumvent the need to consume more power to improve performance.

FIGURE 3.60 The relative performance per Watt of the Pentium 4 is 15% to 40% less
than the Pentium III on these five sets of benchmarks.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

SPECbase CINT2000 SPECbase CFP2000 Multimedia Game benchmark Web benchmark

R
e

la
ti

v
e

p

e
rf

o
rm

a
n

c
e

p

e
r

W
a

tt

3.15 Historical Perspective and References 337
More generally, the question of how best to exploit parallelism remains open.
Clearly ILP will continue to play a big role because of its smaller impact on pro-
grammers and applications when compared to an explicitly parallel model using
multiple threads and parallel processors. What sort of parallelism computer archi-
tects will employ as they try to achieve higher performance levels, and what type
of parallelism programmers will accept are hard to predict. Likewise, it is unclear
whether vectors will play a larger role in processors designed for multimedia and
DSP applications, or whether such processors will rely on limited SIMD and ILP
approaches. We will return to these questions in the next chapter as well as in
Chapter 6.

This section describes some of the major advances in dynamically scheduled
pipelines and ends with some of the recent literature on multiple-issue proces-
sors. Ideas such as data flow computation derived from observations that pro-
grams were limited by data dependence. The history of basic pipelining and the
CDC 6600, the first dynamically scheduled processor, are contained in Appendix
A.

The IBM 360 Model 91: A Landmark Computer

The IBM 360/91 introduced many new concepts, including tagging of data, regis-
ter renaming, dynamic detection of memory hazards, and generalized for-
warding. Tomasulo’s algorithm is described in his 1967 paper. Anderson,
Sparacio, and Tomasulo [1967] describe other aspects of the processor, including
the use of branch prediction. Many of the ideas in the 360/91 faded from use for
nearly 25 years before being broadly resurrected in the 1990s. Unfortunately, the
360/91 was not successful and only a handful were sold. The complexity of the
design made it late to the market and allowed the Model 85, which was the first
IBM processor with a cache, to outperform the 91.

Branch Prediction Schemes

The two-bit dynamic hardware branch prediction scheme was described by J. E.
Smith [1981]. Ditzel and McLellan [1987] describe a novel branch-target buffer
for CRISP, which implements branch folding. McFarling and Hennessy [1986]
did a quantitative comparison of a variety of compile-time and runtime branch
prediction schemes. The correlating predictor we examine was described by Pan,
So, and Rameh [1992]. Yeh and Patt [1992, 1993] generalized the correlation idea
and described multilevel predictors that use branch histories for each branch,
similar to the local history predictor used in the 21264. McFarling’s tournament
prediction scheme, which he refers to a combined predictor, is described in his

3.15 Historical Perspective and References

338 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
1993 technical report. There are a variety of more recent papers on branch predic-
tion based on variations in the multilevel and correlating predictor ideas. Kaeli
and Emma [1991] describe return address prediction.

The Development of Multiple-Issue Processors

The concept of multiple-issue designs has been around for a while, though much
of the work in the 1970s focused on statically scheduled approaches, which we
discuss in the next chapter. IBM did pioneering work on multiple issue. In the
1960s, a project called ACS was underway in California. It included multiple-is-
sue concepts, a proposal for dynamic scheduling (although with a simpler mecha-
nism than Tomasulo’s scheme, which used back-up registers), and fetching down
both branch paths. The project originally started as a new architecture to follow
Stretch and surpass the CDC 6600/6800. ACS started in New York but was
moved to California, later changed to be S/360 compatible, and eventually can-
celed. John Cocke was one of the intellectual forces behind the team that includ-
ed a number of IBM veterans and younger contributors many of whom went on
to other important roles in IBM and elsewhere: Jack Bertram, Ed Sussenguth,
Gene Amdahl, Herb Schorr, Fran Allen, Lynn Conway, and Phil Dauber among
others. While the compiler team published many of their ideas and had great in-
fluence outside IBM, the architecture ideas were not widely disseminated at that
time. The most complete accessible documentation of this important project is at:
http://www.cs.clemson.edu/~mark/acs.html, which includes interviews with the
ACS veterans and pointers to other sources. Sussenguth [1999] is a good over-
view of ACS.

More than 10 years after ACS was cancelled, John Cocke made a new propos-
al for a superscalar processor that dynamically made issue decisions; he de-
scribed the key ideas in several talks in the mid 1980s and coined the name
superscalar. He called the design America; it is described by Agerwala and
Cocke [1987]. The IBM Power-1 architecture (the RS/6000 line) is based on
these ideas (see Bakoglu et al. [1989]).

J. E. Smith [1984] and his colleagues at Wisconsin proposed the decoupled
approach that included multiple issue with limited dynamic pipeline scheduling.
A key feature of this processor is the use of queues to maintain order among a
class of instructions (such as memory references) while allowing it to slip be-
hind or ahead of another class of instructions. The Astronautics ZS-1 described
by Smith et al. [1987] embodies this approach with queues to connect the load-
store unit and the operation units. The Power-2 design uses queues in a similar
fashion. J. E. Smith [1989] also describes the advantages of dynamic scheduling
and compares that approach to static scheduling.

The concept of speculation has its roots in the original 360/91, which per-
formed a very limited form of speculation. The approach used in recent proces-
sors combines the dynamic scheduling techniques of the 360/91 with a buffer to
allow in-order commit. J. E. Smith and Pleszkun [1988] explored the use of buff-

3.15 Historical Perspective and References 339
ering to maintain precise interrupts and described the concept of a reorder buffer.
Sohi [1990] describes adding renaming and dynamic scheduling, making it possi-
ble to use the mechanism for speculation. Patt and his colleagues were early pro-
ponents of aggressive reordering and speculation. They focused on checkpoint
and restart mechanisms and pioneered an approach called HPSm, which is also
an extension of Tomasulo’s algorithm [Hwu and Patt 1986].

The use of speculation as a technique in multiple-issue processors was eval-
uated by Smith, Johnson, and Horowitz [1989] using the reorder buffer tech-
nique; their goal was to study available ILP in nonscientific code using
speculation and multiple issue. In a subsequent book, M. Johnson [1990] de-
scribes the design of a speculative superscalar processor. Johnson later led the
AMD K-5 design, one of the first speculative superscalars.

Studies of ILP and Ideas to Increase ILP

A series of early papers, including Tjaden and Flynn [1970] and Riseman and
Foster [1972], concluded that only small amounts of parallelism could be avail-
able at the instruction level without investing an enormous amount of hardware.
These papers dampened the appeal of multiple instruction issue for more than ten
years. Nicolau and Fisher [1984] published a paper based on their work with
trace scheduling and asserted the presence of large amounts of potential ILP in
scientific programs.

Since then there have been many studies of the available ILP. Such studies
have been criticized since they presume some level of both hardware support and
compiler technology. Nonetheless, the studies are useful to set expectations as
well as to understand the sources of the limitations. Wall has participated in sev-
eral such studies, including Jouppi and Wall [1989], Wall [1991], and Wall
[1993]. Although the early studies were criticized as being conservative (e.g.,
they didn’t include speculation), the last study is by far the most ambitious study
of ILP to date and the basis for the data in section 3.10. Sohi and Vajapeyam
[1989] give measurements of available parallelism for wide-instruction-word
processors. Smith, Johnson, and Horowitz [1989] also used a speculative super-
scalar processor to study ILP limits. At the time of their study, they anticipated
that the processor they specified was an upper bound on reasonable designs. Re-
cent and upcoming processors, however, are likely to be at least as ambitious as
their processor.

Lam and Wilson [1992] looked at the limitations imposed by speculation and
shown that additional gains are possible by allowing processors to speculate in
multiple directions, which requires more than one PC. (Such schemes cannot ex-
ceed what perfect speculation accomplishes, but they help close the gap between
realistic prediction schemes and perfect prediction.) Wall’s 1993 study includes a
limited evaluation of this approach (up to 8 branches are explored).

340 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Going Beyond the Data Flow Limit
One other approach that has been explored in the literature is the use of value

prediction. Value prediction can allow speculation based on data values. There
have been a number of studies of the use of value prediction. Lipasti and Shen
published two papers in 1996 evaluating the concept of value prediction and its
potential impact on ILP exploitation. Sodani and Sohi [1997] approaches the
same problem from the viewpoint of reusing the values produced by instructions.
Moshovos, Breach, Vijaykumar and Sohi [1997] show that by deciding when to
speculate on values, by tracking whether such speculation has been accurate in
the past, is important to achieving performance gains with value speculation.
Moshovos and Sohi [1997] and Chrysos and Emer [1998] focus on predicting
memory dependences and using this information to eliminate the dependence
through memory. Gonzalez and Gozalez [1998], Babbay and Mendelson [1998],
and Calder, Reinman and Tullsen [1999] are more recent studies of the use of val-
ue prediction. This area is currently highly active with new results being pub-
lished in every conference.

Recent Advanced Microprocessors

The years 1994–95 saw the announcement of wide superscalar processors (3 or
more issues per clock) by every major processor vendor: Intel Pentium Pro and
Pentium II (these processors share the same core pipeline architecture, described
by Cowell and Steck [1995]), AMD K5, K6, and Althon, Sun UltraSPARC (see
Lauterbach and Horel [1999]), Alpha 21164 (see Edmonston et. al [1995]) and
21264 (see Kessler [2000]), MIPS R10000 and R12000 (see Yeager [1996]),
PowerPC 603, 604, 620 (see Diep, Nelson, and Shen [1995]), and HP 8000 (Ku-
mar [1997]). The latter part of the decade (1996-2000), saw second generations
of much of these processors (Pentium III, AMD Athlon, Alpha 21264, among
others). The second generation, although similar in issue rate, could sustain a
lower CPI, provided much higher clock rates, all included dynamic scheduling,
and almost universally supported speculation. In practice, many factors, includ-
ing the implementation technology, the memory hierarchy, the skill of the design-
ers, and the type of applications benchmarked, all play a role in determining
which approach is best. Figure 3.61 shows the most interesting processors of the
past five years, their characteristics.

3.15 Historical Perspective and References 341
References

AGERWALA, T. AND J. COCKE [1987]. “High performance reduced instruction set processors,” IBM
Tech. Rep. (March).

ANDERSON, D. W., F. J. SPARACIO, AND R. M. TOMASULO [1967]. “The IBM 360 Model 91:
Processor philosophy and instruction handling,” IBM J. Research and Development 11:1 (January),
8–24.

AUSTIN, T. M. AND G. SOHI [1992]. “Dynamic dependency analysis of ordinary programs,” Proc.
19th Symposium on Computer Architecture (May), Gold Coast, Australia, 342-351.

BABBAY F. AND A. MENDELSON [1998]. “Using Value Prediction to Increase the Power of Specula-
tive Execution Hardware.” ACM Transactions on Computer Systems, vol. 16, No. 3 (August), pages

Processor

Sys-
tem
ship

Max.
current

CR
(MHz)

Power
(W)

Tran-
sistors

(M)

Win-
dow
size

Rename
registers
(int/FP)

Issue rate:
Maximum/
Memory /

Integer / FP /
Branch

Branch
Predict
Buffer

Pipe-
stages
(int/
load)

MIPS
R14000

2000 400 25 7 48 32/32 4/1/2/2/1 2K x 2 6

Ultra
SPARC
III

2001 900 65 29 N.A. None 4/1/4/3/1 16K x 2 14/15

Pentium
III

2000 1000 30 24 40 Total: 40 3/2/2/1/1 512 entries 12/14

Pentium 4 2001 1700 64 42 126 Total:128 3/2/3/2/1 4K x 2 22/24

HP PA
8600

2001 552 60 130 56 Total: 56 4/2/2/2/1 2K x 2 7/9

Alpha
21264B

2001 833 75 15 80 41/41 4/2/4/2/1 multilevel
(see p. 258)

7/9

Power PC
7400 (G4)

2000 450 5 7 5 6/6 3/1/2/1/1 512 x 2 4/5

AMD
Athlon

2001 1330 76 37 72 36/36 3/2/3/3/1 4K x 9 9/11

IBM
Power 3-
II

2000 450 36 23 32 16/24 4/2/2/2/2 2K x 2 7/8

FIGURE 3.61 Recent high-performance processors and their characteristics. The window size column shows the size
of the buffer available for instructions, and, hence, the maximum number of instructions in flight. Both the Pentium III and the
Althon schedule microoperations and the window is the maximum number of microoperations in execution. The IBM, HP, and
UltraSPARC processors support dynamic issue, but not speculation. To read more about these processors the following ref-
erences are useful: IBM Journal of Research and Development (contains issues on Power and PowerPC designs), the Dig-
ital Technical Journal (contains issues on various Alpha processors), and Proceedings of the Hot Chips Symposium (annual
meeting at Stanford, which reviews the newest microprocessors), the International Solid State Circuits Conference, and the
annual Microprocessor Forum meetings, and the annual International Symposium on Computer Architecture. Much of this
data in this table came from Microprocessor Report online April 30, 2001.

342 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
234-270.

BAKOGLU, H. B., G. F. GROHOSKI, L. E. THATCHER, J. A. KAELI, C. R. MOORE, D. P. TATTLE, W. E.
MALE, W. R. HARDELL, D. A. HICKS, M. NGUYEN PHU, R. K. MONTOYE, W. T. GLOVER, AND S.
DHAWAN [1989]. “IBM second-generation RISC processor organization,” Proc. Int’l Conf. on
Computer Design, IEEE (October), Rye, N.Y., 138–142.

BHANDARKAR, D. AND D. W. CLARK [1991]. “Performance from architecture: Comparing a RISC
and a CISC with similar hardware organizations,” Proc. Fourth Conf. on Architectural Support for
Programming Languages and Operating Systems, IEEE/ACM (April), Palo Alto, Calif., 310–319.

BHANDARKAR, D. AND J. DING [1997]. “Performance Characterization of the Pentium Pro Proces-
sor,” Proc. Third International Sym. on High Performance Computer Architecture, IEEE, (Febru-
ary), San Antonio, 288-297.

BLOCH, E. [1959]. “The engineering design of the Stretch computer,” Proc. Fall Joint Computer
Conf., 48–59.

BUCHOLTZ, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New York.

CALDER, B., REINMAN, G. AND D. TULLSEN[1999] “Selective Value Prediction”. Proc. 26th Interna-
tional Symposium on Computer Architecture (ISCA), Atlanta, June

CHEN, T. C. [1980]. “Overlap and parallel processing,” in Introduction to Computer Architecture, H.
Stone, ed., Science Research Associates, Chicago, 427–486.

CHRYSOS, G.Z. AND J.S. EMER [1998]. “Memory Dependence Prediction using Store Sets”. Proc.
25th Int. Symposium on Computer Architecture (ISCA), June, Barcelona, 142-153.

CLARK, D. W. [1987]. “Pipelining and performance in the VAX 8800 processor,” Proc. Second Conf.
on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., 173–177.

COLWELL R. P. AND R. STECK [1995]. “A 0.6um BiCMOS process with Dynamic Execution.” Pro-
ceedings of Int. Sym. on Solid State Circuits.

CVETANOVIC, Z. AND R.E. KESSLER [2000]. “Performance Analysis of the Alpha 21264-based Com-
paq ES40 System,” Proc. 27th Symposium on Computer Architecture (June), Vancouver, Canada.,
192-202.

DAVIDSON, E. S. [1971]. “The design and control of pipelined function generators,” Proc. Conf. on
Systems, Networks, and Computers, IEEE (January), Oaxtepec, Mexico, 19–21.

DAVIDSON, E. S., A. T. THOMAS, L. E. SHAR, AND J. H. PATEL [1975]. “Effective control for pipe-
lined processors,” COMPCON, IEEE (March), San Francisco, 181–184.

DIEP, T. A., C. NELSON, AND J. P. SHEN [1995]. “Performance evaluation of the PowerPC 620 micro-
architecture,” Proc. 22th Symposium on Computer Architecture (June), Santa Margherita, Italy.

DITZEL, D. R. AND H. R. MCLELLAN [1987]. “Branch folding in the CRISP microprocessor: Reduc-
ing the branch delay to zero,” Proc. 14th Symposium on Computer Architecture (June), Pittsburgh,
2–7.

EMER, J. S. AND D. W. CLARK [1984]. “A characterization of processor performance in the VAX-11/
780,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301–310.

EDMONDSON, J.H., RUBINFIELD, P.I., PRESTON, R., AND V. RAJAGOPALAN [1995]. “Superscalar In-
struction Execution in the 21164 Alpha Microprocessor”, IEEE Micro, Vol. 15, 2. 33–43.

FOSTER, C. C. AND E. M. RISEMAN [1972]. “Percolation of code to enhance parallel dispatching and
execution,” IEEE Trans. on Computers C-21:12 (December), 1411–1415.

J. GONZÁLEZ AND A. GONZÁLEZ [1998], "Limits of Instruction Level Parallelism with Data Specula-
tion", in Proc. of the VECPAR Conf., pp. 585-598.

HEINRICH, J. [1993]. MIPS R4000 User’s Manual, Prentice Hall, Englewood Cliffs, N.J.

3.15 Historical Perspective and References 343
HWU, W.-M. AND Y. PATT [1986]. “HPSm, a high performance restricted data flow architecture
having minimum functionality,” Proc. 13th Symposium on Computer Architecture (June), Tokyo,
297–307.

IBM [1990]. “The IBM RISC System/6000 processor” (collection of papers), IBM J. of Research and
Development 34:1 (January).

JORDAN, .H.F. [1983] “Performance measurements on HEP: A pipelined MIMD computer,” Proc.
10th Symposium on Computer Architecture (June), pp. 207--212.

JOHNSON, M. [1990]. Superscalar Microprocessor Design, Prentice Hall, Englewood Cliffs, N.J.

JOUPPI, N. P. AND D. W. WALL [1989]. “Available instruction-level parallelism for superscalar and
superpipelined processors,” Proc. Third Conf. on Architectural Support for Programming
Languages and Operating Systems, IEEE/ACM (April), Boston, 272–282.

KAELI, D.R. AND P.G. EMMA [1991]. “Branch History Table Prediction of Moving Target Branches
Due to Subroutine Returns, Proc. 18th Int. Sym. on Computer Architecture (ISCA), Toronto, May,
34-42.

KELLER R. M. [1975]. “Look-ahead processors,” ACM Computing Surveys 7:4 (December), 177–
195.

KESSLER. R. [1999]. “The Alpha 21264 microprocessor,” IEEE Micro, 19(2) (March/April):pp 24--
36.

KILLIAN, E. [1991]. “MIPS R4000 technical overview–64 bits/100 MHz or bust,” Hot Chips III Sym-
posium Record (August), Stanford University, 1.6–1.19.

KOGGE, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.

KUMAR , A. [1997]. “The HP PA-8000 RISC CPU, “ IEEE Micro, Vol. 17, No. 2 (March/April).

KUNKEL, S. R. AND J. E. SMITH [1986]. “Optimal pipelining in supercomputers,” Proc. 13th Sym-
posium on Computer Architecture (June), Tokyo, 404–414.

LAM, M. S. AND R. P. WILSON [1992]. “Limits of control flow on parallelism,” Proc. 19th Sympo-
sium on Computer Architecture (May), Gold Coast, Australia, 46–57.

LAUTERBACH G. AND HOREL, T. [1999]. “UltraSPARC-III: Designing Third Generation 64-Bit Per-
formance, “ IEEE Micro, Vol. 19, No. 3 (May/June).

LIPASTI, M.H., WILKERSON, C.B., AND J.P. SHEN [1996]. "Value Locality and Load Value Predic-
tion". Proc. Seventh Symposium on Architectural Support for Programming Languages and Oper-
ating Systems (October), pp. 138-147.

LIPASTI, M.H. AND J. P. SHEN [1996]. Exceeding the Dataflow Limit via Value Prediction. Proc. of
the 29 th Annual ACM/IEEE International Symposium on Microarchitecture (December), .

MCFARLING, S. [1993] “Combining branch predictors,” WRL Technical Note TN-36 (June), Digital
Western Research Laboratory, Palo Alto, Calif.

MOSHOVOS, A.AND G.S. SOHI [1997] “Streamlining Inter-operation Memory Communication via
Data Dependence Prediction”. Proc. 30th Annual Int. Sym on Microarchitecture (MICRO-30), Dec,
235-245.

MOSHOVOS, A. BREACH, S, VIJAYKUMAR, T.N. AND G.S. SOHI [1997] “Dynamic Speculation and
Synchronization of Data Dependences”. Proc. 24th Int. Sym. on Computer Architecture (ISCA),
June,Boulder.

NICOLAU, A. AND J. A. FISHER [1984]. “Measuring the parallelism available for very long instruction
word architectures,” IEEE Trans. on Computers C-33:11 (November), 968–976.

PAN, S.-T., K. SO, AND J. T. RAMEH [1992]. “Improving the accuracy of dynamic branch prediction
using branch correlation,” Proc. Fifth Conf. on Architectural Support for Programming Languages
and Operating Systems, IEEE/ACM (October), Boston, 76-84.

344 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
Postiff, M.A.; Greene, D.A.; Tyson, G.S.; Mudge, T.N. “The limits of instruction level parallelism in
SPEC95 Applications” . Computer Architecture News, vol.27, (no.1), ACM, March 1999. p.31-40.

RAMAMOORTHY, C. V. AND H. F. LI [1977]. “Pipeline architecture,” ACM Computing Surveys 9:1
(March), 61–102.

RISEMAN, E. M. AND C. C. FOSTER [1972]. “Percolation of code to enhance parallel dispatching and
execution,” IEEE Trans. on Computers C-21:12 (December), 1411–1415.

RYMARCZYK, J. [1982]. “Coding guidelines for pipelined processors,” Proc. Symposium on Archi-
tectural Support for Programming Languages and Operating Systems, IEEE/ACM (March), Palo
Alto, Calif., 12–19.

SITES, R. [1979]. Instruction Ordering for the CRAY-1 Computer, Tech. Rep. 78-CS-023 (July),
Dept. of Computer Science, Univ. of Calif., San Diego.

SMITH, A. AND J. LEE [1984]. “Branch prediction strategies and branch-target buffer design,” Com-
puter 17:1 (January), 6–22.

SMITH, J. E. AND A. R. PLESZKUN [1988]. “Implementing precise interrupts in pipelined processors,”
IEEE Trans. on Computers 37:5 (May), 562–573.

SMITH, J. E. [1981]. “A study of branch prediction strategies,” Proc. Eighth Symposium on Computer
Architecture (May), Minneapolis, 135–148.

SMITH, J. E. [1984]. “Decoupled access/execute computer architectures,” ACM Trans. on Computer
Systems 2:4 (November), 289–308.

SMITH, J. E. [1989]. “Dynamic instruction scheduling and the Astronautics ZS-1,” Computer 22:7
(July), 21–35.

SMITH, J. E. AND A. R. PLESZKUN [1988]. “Implementing precise interrupts in pipelined processors,”
IEEE Trans. on Computers 37:5 (May), 562–573. This paper is based on an earlier paper that
appeared in Proc. 12th Symposium on Computer Architecture, June 1988.

SMITH, J. E., G. E. DERMER, B. D. VANDERWARN, S. D. KLINGER, C. M. ROZEWSKI, D. L. FOWLER,
K. R. SCIDMORE, AND J. P. LAUDON [1987]. “The ZS-1 central processor,” Proc. Second Conf. on
Architectural Support for Programming Languages and Operating Systems, IEEE/ACM (March),
Palo Alto, Calif., 199–204.

SMITH, M. D., M. HOROWITZ, AND M. S. LAM [1992]. “Efficient superscalar performance through
boosting,” Proc. Fifth Conf. on Architectural Support for Programming Languages and Operating
Systems (October), Boston, IEEE/ACM, 248–259.

SMITH, M. D., M. JOHNSON, AND M. A. HOROWITZ [1989]. “Limits on multiple instruction issue,”
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems,
IEEE/ACM (April), Boston, 290–302.

SODANI, A. AND G. SOHI [1997]. "Dynamic Instruction Reuse", Proc. of the 24th Int. Symp. on Com-
puter Architecture (June)..

SOHI, G. S. [1990]. “Instruction issue logic for high-performance, interruptible, multiple functional
unit, pipelined computers,” IEEE Trans. on Computers 39:3 (March), 349-359.

SOHI, G. S. AND S. VAJAPEYAM [1989]. “Tradeoffs in instruction format design for horizontal archi-
tectures,” Proc. Third Conf. on Architectural Support for Programming Languages and Operating
Systems, IEEE/ACM (April), Boston, 15–25.

SUSSENGUTH, E[1999]. "IBM's ACS-1 Machine," IEEE Computer, 22: 11(November).

THORLIN, J. F. [1967]. “Code generation for PIE (parallel instruction execution) computers,” Proc.
Spring Joint Computer Conf. 27.

THORNTON, J. E. [1964]. “Parallel operation in the Control Data 6600,” Proc. AFIPS Fall Joint Com-
puter Conf., Part II, 26, 33–40.

THORNTON, J. E. [1970]. Design of a Computer, the Control Data 6600, Scott, Foresman, Glenview,

3.15 Historical Perspective and References 345
Ill.

TJADEN, G. S. AND M. J. FLYNN [1970]. “Detection and parallel execution of independent instruc-
tions,” IEEE Trans. on Computers C-19:10 (October), 889–895.

TOMASULO, R. M. [1967]. “An efficient algorithm for exploiting multiple arithmetic units,” IBM J.
Research and Development 11:1 (January), 25–33.

WALL, D. W. [1991]. “Limits of instruction-level parallelism,” Proc. Fourth Conf. on Architectural
Support for Programming Languages and Operating Systems (April), Santa Clara, Calif., IEEE/
ACM, 248–259.

WALL, D. W. [1993]. Limits of Instruction-Level Parallelism, Research Rep. 93/6, Western Research
Laboratory, Digital Equipment Corp. (November).

WEISS, S. AND J. E. SMITH [1984]. “Instruction issue logic for pipelined supercomputers,” Proc. 11th
Symposium on Computer Architecture (June), Ann Arbor, Mich., 110–118.

WEISS, S. AND J. E. SMITH [1987]. “A study of scalar compilation techniques for pipelined super-
computers,” Proc. Second Conf. on Architectural Support for Programming Languages and Oper-
ating Systems (March), IEEE/ACM, Palo Alto, Calif., 105–109.

WEISS, S. AND J. E. SMITH [1994]. Power and PowerPC, Morgan Kaufmann, San Francisco.

YEAGER, K. ET AL. [1996] "The MIPS R10000 Superscalar Microprocessor". IEEE Micro, vol 16, No
2, (April), pp 28-40.

YEH, T. AND Y. N. PATT [1992]. “Alternative implementations of two-level adaptive branch
prediction,” Proc. 19th International Symposium on Computer Architecture (May), Gold Coast,
Australia, 124–134.

YEH, T. AND Y. N. PATT [1993]. “A comparison of dynamic branch predictors that use two levels of
branch history,” Proc. 20th Symposium on Computer Architecture (May), San Diego, 257–266.

E X E R C I S E S

3.1 Exercise from Dave (not fully thought out, but a good direction): Given a table like that
in Figures 3.25 on page 275 or 3.26 on page 276 and some of the following deduce the rest
of the following:

a. the original code

b. the number of functional units

c. the number of instructions issued per clock

d. the functional units

3.2 [10] <3.1> For the following code fragment, list the control dependences. For each
control dependence, tell whether the statement can be scheduled before the if statement
based on the data references. Assume that all data references are shown, that all values are
defined before use, and that only b and c are used again after this segment. You may ignore
any possible exceptions.

if (a>c) {
d = d + 5;
a = b + d + e;}

else {
e = e + 2;
f = f + 2;

346 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
c = c + f;
}
b = a + f;

A good exercise but requires describing how scoreboards work. There are a number of problems based on
scoreboards, which may be salvagable by one of the following: introducing scoreboards (maybe not worth
it), removing part of the reanming capability (WAW ror WAR) and asking about the result, recasting the
problem to ask how Tomasulo avoids the problem.

3.3 [20] <3.2> It is critical that the scoreboard be able to distinguish RAW and WAR haz-
ards, since a WAR hazard requires stalling the instruction doing the writing until the in-
struction reading an operand initiates execution, but a RAW hazard requires delaying the
reading instruction until the writing instruction finishes—just the opposite. For example,
consider the sequence:

MUL.D F0,F6,F4
SUB.D F8,F0,F2
ADD.D F2,F10,F2

The SUB.D depends on the MUL.D (a RAW hazard) and thus the MUL.D must be allowed
to complete before the SUB.D; if the MUL.D were stalled for the SUB.D due to the inabil-
ity to distinguish between RAW and WAR hazards, the processor will deadlock. This se-
quence contains a WAR hazard between the ADD.D and the SUB.D, and the ADD.D cannot
be allowed to complete until the SUB.D begins execution. The difficulty lies in distinguish-
ing the RAW hazard between MUL.D and SUB.D, and the WAR hazard between the SUB.D
and ADD.D.

Describe how the scoreboard for a processor with two multiply units and two add units
avoids this problem and show the scoreboard values for the above sequence assuming the
ADD.D is the only instruction that has completed execution (though it has not written its
result). (Hint: Think about how WAW hazards are prevented and what this implies about
active instruction sequences.)

A good exercise I would transform it by saving that sometimes the CDB bandwidth acts as a limit, using
the 2-issue tomasulo pipeline, show a sequence where 2 CDBs is not enough and can eventually cause a
stall

3.4 [12] <3.2> A shortcoming of the scoreboard approach occurs when multiple functional
units that share input buses are waiting for a single result. The units cannot start simulta-
neously, but must serialize. This property is not true in Tomasulo’s algorithm. Give a code
sequence that uses no more than 10 instructions and shows this problem. Assume the hard-
ware configuration from Figure 4.3, for the scoreboard, and Figure 3.2, for Tomasulo’s
scheme. Use the FP latencies from Figure 4.2 (page 224). Indicate where the Tomasulo ap-
proach can continue, but the scoreboard approach must stall.

A good exercise but requires reworking (e.g., show how even with 1 issue/clock, a single cdb can be prob-
lem) to save it?

3.5 [15] <3.2> Tomasulo’s algorithm also has a disadvantage versus the scoreboard: only
one result can complete per clock, due to the CDB. Use the hardware configuration from
Figures 4.3 and 3.2 and the FP latencies from Figure 4.2 (page 224). Find a code sequence

3.15 Historical Perspective and References 347
of no more than 10 instructions where the scoreboard does not stall, but Tomasulo’s algo-
rithm must due to CDB contention. Indicate where this occurs in your sequence.

Maybe also try a version of this with multiple issue?

3.6 [45] <3.2> One benefit of a dynamically scheduled processor is its ability to tolerate
changes in latency or issue capability without requiring recompilation. This capability was
a primary motivation behind the 360/91 implementation. The purpose of this programming
assignment is to evaluate this effect. Implement a version of Tomasulo’s algorithm for
MIPS to issue one instruction per clock; your implementation should also be capable of in-
order issue. Assume fully pipelined functional units and the latencies shown in Figure 3.62.

A one-cycle latency means that the unit and the result are available for the next instruction.
Assume the processor takes a one-cycle stall for branches, in addition to any data-
dependent stalls shown in the above table. Choose 5–10 small FP benchmarks (with loops)
to run; compare the performance with and without dynamic scheduling. Try scheduling the
loops by hand and see how close you can get with the statically scheduled processor to the
dynamically scheduled results.

Change the processor to the configuration shown in Figure 3.63.

Rerun the loops and compare the performance of the dynamically scheduled processor and

Unit Latency

Integer 7

Branch 9

Load-store 11

FP add 13

FP mul 15

FP divide 17

FIGURE 3.62 Latencies for functional units.

Unit Latency

Integer 19

Branch 21

Load-store 23

FP add 25

FP mul 27

FP divide 29

FIGURE 3.63 Latencies for functional
units, configuration 2.

348 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
the statically scheduled processor.

3.7 [15] <3.4> Suppose we have a deeply pipelined processor, for which we implement a
branch-target buffer for the conditional branches only. Assume that the misprediction pen-
alty is always 4 cycles and the buffer miss penalty is always 3 cycles. Assume 90% hit rate
and 90% accuracy, and 15% branch frequency. How much faster is the processor with the
branch-target buffer versus a processor that has a fixed 2-cycle branch penalty? Assume a
base CPI without branch stalls of 1.

3.8 [10] <3.4> Determine the improvement from branch folding for unconditional branch-
es. Assume a 90% hit rate, a base CPI without unconditional branch stalls of 1, and an un-
conditional branch frequency of 5%. How much improvement is gained by this
enhancement versus a processor whose effective CPI is 1.1?

3.9 [30] <3.6> Implement a simulator to evaluate the performance of a branch-prediction
buffer that does not store branches that are predicted as untaken. Consider the following
prediction schemes: a one-bit predictor storing only predicted taken branches, a two-bit
predictor storing all the branches, a scheme with a target buffer that stores only predicted
taken branches and a two-bit prediction buffer. Explore different sizes for the buffers keep-
ing the total number of bits (assuming 32-bit addresses) the same for all schemes. Deter-
mine what the branch penalties are, using Figure 3.21 as a guideline. How do the different
schemes compare both in prediction accuracy and in branch cost?

3.10 [30] <3.6> Implement a simulator to evaluate various branch prediction schemes. You
can use the instruction portion of a set of cache traces to simulate the branch-prediction
buffer. Pick a set of table sizes (e.g., 1K bits, 2K bits, 8K bits, and 16K bits). Determine the
performance of both (0,2) and (2,2) predictors for the various table sizes. Also compare the
performance of the degenerate predictor that uses no branch address information for these
table sizes. Determine how large the table must be for the degenerate predictor to perform
as well as a (0,2) predictor with 256 entries.

this is an interesting exercise to do in several forms: tomsulo, multiple issue with tomasulo and even spec-
ulation. Needs some reqorking. may want to ask them to create tables like those in the text (Figures 3.25 on
page 275 and 3.26 on page 276)

3.11 [20/22/22/22/22/25/25/25/20/22/22] <3.1,3.2,3.6> In this Exercise, we will look at
how a common vector loop runs on a variety of pipelined versions of MIPS. The loop is the
so-called SAXPY loop (discussed extensively in Appendix B) and the central operation in
Gaussian elimination. The loop implements the vector operation Y = a × X + Y for a vector
of length 100. Here is the MIPS code for the loop:

foo: L.D F2,0(R1) ;load X(i)
MUL.D F4,F2,F0 ;multiply a*X(i)
L.D F6,0(R2) ;load Y(i)
ADD.D F6,F4,F6 ;add a*X(i) + Y(i)
S.D F6,0(R2) ;store Y(i)
DADDUI R1,R1,#8 ;increment X index
DADDUI R2,R2,#8 ;increment Y index
DSGTUI R3,R1,done ;test if done
BEQZ R3,foo ; loop if not done

For (a)–(e), assume that the integer operations issue and complete in one clock cycle (in-

3.15 Historical Perspective and References 349
cluding loads) and that their results are fully bypassed. Ignore the branch delay. You will
use the FP latencies shown in Figure 4.2 (page 224). Assume that the FP unit is fully pipe-
lined.

a. [20] <3.1> For this problem use the standard single-issue MIPS pipeline with the pipe-
line latencies from Figure 4.2. Show the number of stall cycles for each instruction and
what clock cycle each instruction begins execution (i.e., enters its first EX cycle) on
the first iteration of the loop. How many clock cycles does each loop iteration take?

b. [22] <3.2> Use the MIPS code for SAXPY above and a fully pipelined FPU with the
latencies of Figure 4.2. Assume Tomasulo’s algorithm for the hardware with one in-
teger unit taking one execution cycle (a latency of 0 cycles to use) for all integer op-
erations. Show the state of the reservation stations and register-status tables (as in
Figure 3.3) when the SGTI writes its result on the CDB. Do not include the branch.

c. [22] <3.2> Using the MIPS code for SAXPY above, assume a scoreboard with the FP
functional units described in Figure 4.3, plus one integer functional unit (also used for
load-store). Assume the latencies shown in Figure 3.64. Show the state of the score-

board (as in Figure 4.4) when the branch issues for the second time. Assume the
branch was correctly predicted taken and took one cycle. How many clock cycles does
each loop iteration take? You may ignore any register port/bus conflicts.

d. [25] <3.2> Use the MIPS code for SAXPY above. Assume Tomasulo’s algorithm for
the hardware using one fully pipelined FP unit and one integer unit. Assume the laten-
cies shown in Figure 3.64.

Show the state of the reservation stations and register status tables (as in Figure 3.3)
when the branch is executed for the second time. Assume the branch was correctly
predicted as taken. How many clock cycles does each loop iteration take?

e. [25] <3.1,3.6> Assume a superscalar architecture with Tomasulo’s algorithm for
scheduling that can issue any two independent operations in a clock cycle (including
two integer operations). Unwind the MIPS code for SAXPY to make four copies of
the body and schedule it assuming the FP latencies of Figure 4.2. Assume one fully
pipelined copy of each functional unit (e.g., FP adder, FP multiplier) and two integer

Instruction producing result Instruction using result Latency in clock cycles

FP multiply FP ALU op 6

FP add FP ALU op 4

FP multiply FP store 5

FP add FP store 3

Integer operation
(including load)

Any 0

FIGURE 3.64 Pipeline latencies where latency is number of cycles between producing
and consuming instruction.

350 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
functional units with latency to use of 0. How many clock cycles will each iteration
on the original code take? When unwinding, you should optimize the code as in
section 3.1. What is the speedup versus the original code?

f. [25] <3.6> In a superpipelined processor, rather than have multiple functional units,
we would fully pipeline all the units. Suppose we designed a superpipelined MIPS that
had twice the clock rate of our standard MIPS pipeline and could issue any two unre-
lated instructions in the same time that the normal MIPS pipeline issued one operation.
If the second instruction is dependent on the first, only the first will issue. Unroll the
MIPS SAXPY code to make four copies of the loop body and schedule it for this
superpipelined processor, assuming the FP latencies of Figure 3.64. Also assume the
load to use latency is 1 cycle, but other integer unit latencies are 0 cycles. How many
clock cycles does each loop iteration take? Remember that these clock cycles are half
as long as those on a standard MIPS pipeline or a superscalar MIPS.

g. [22] <3.2,3.5> Using the MIPS code for SAXPY above, assume a speculative proces-
sor with the functional unit organization used in section 3.5 and separate functional
units for comparison, for branches, for effective address calculation, and for ALU op-
erations. Assume the latencies shown in Figure 3.64. Show the state of the processor
(as in Figure 3.30) when the branch issues for the second time. Assume the branch was
correctly predicted taken and took one cycle. How many clock cycles does each loop
iteration take?

h. [22] <3.2,3.5> Using the MIPS code for SAXPY above, assume a speculative proces-
sor like Figure 3.29 that can issue one load-store, one integer operation, and one FP
operation each cycle. Assume the latencies in clock cycles of Figure 3.64. Show the
state of the processor (as in Figure 3.30) when the branch issues for the second time.
Assume the branch was correctly predicted taken and took one cycle. How many clock
cycles does each loop iteration take?

3.12 [15/15] <3.5> Consider our speculative processor from section 3.5. Since the reorder
buffer contains a value field, you might think that the value field of the reservation stations
could be eliminated.

a. [15] <3.5> Show an example where this is the case and an example where the value
field of the reservation stations is still needed. Use the speculative processor shown in
Figure 3.29. Show MIPS code for both examples. How many value fields are needed
in each reservation station?

b. [15] <3.5> Find a modification to the rules for instruction commit that allows elimi-
nation of the value fields in the reservation station. What are the negative side effects
of such a change?

3.13 [20] <3.5> Our implementation of speculation uses a reorder buffer and introduces
the concept of instruction commit, delaying commit and the irrevocable updating of the reg-
isters until we know an instruction will complete. There are two other possible implemen-
tation techniques, both originally developed as a method for preserving precise interrupts
when issuing out of order. One idea introduces a future file that keeps future values of a reg-
ister; this idea is similar to the reorder buffer. An alternative is to keep a history buffer that
records values of registers that have been speculatively overwritten.

3.15 Historical Perspective and References 351
Design a speculative processor like the one in section 3.5 but using a history buffer. Show
the state of the processor, including the contents of the history buffer, for the example in
Figure 3.31. Show the changes needed to Figure 3.32 for a history buffer implementation.
Describe exactly how and when entries in the history buffer are read and written, including
what happens on an incorrect speculation.

3.14 [30/30] <3.10> This exercise involves a programming assignment to evaluate what
types of parallelism might be expected in more modest, and more realistic, processors than
those studied in section 3.8. These studies can be done using traces available with this text or
obtained from other tracing programs. For simplicity, assume perfect caches. For a more am-
bitious project, assume a real cache. To simplify the task, make the following assumptions:

n Assume perfect branch and jump prediction: hence you can use the trace as the input
to the window, without having to consider branch effects—the trace is perfect.

n Assume there are 64 spare integer and 64 spare floating-point registers; this is easily
implemented by stalling the issue of the processor whenever there are more live reg-
isters required.

n Assume a window size of 64 instructions (the same for alias detection). Use greedy
scheduling of instructions in the window. That is, at any clock cycle, pick for execu-
tion the first n instructions in the window that meet the issue constraints.

a. [30] <3.10> Determine the effect of limited instruction issue by performing the fol-
lowing experiments:

n Vary the issue count from 4–16 instructions per clock,

n Assuming eight issues per clock: determine what the effect of restricting the
processor to two memory references per clock is.

b. [30] <3.10> Determine the impact of latency in instructions. Assume the following
latency models for a processor that issues up to 16 instructions per clock:

n Model 1: All latencies are one clock.

n Model 2: Load latency and branch latency are one clock; all FP latencies are two
clocks.

n Model 3: Load and branch latency is two clocks; all FP latencies are five clocks.

Remember that with limited issue and a greedy scheduler, the impact of latency effects will
be greater.

3.15 [Discussion] <3.4,3.5> Dynamic instruction scheduling requires a considerable
investment in hardware. In return, this capability allows the hardware to run programs that
could not be run at full speed with only compile-time, static scheduling. What trade-offs
should be taken into account in trying to decide between a dynamically and a statically
scheduled implementation? What situations in either hardware technology or program
characteristics are likely to favor one approach or the other? Most speculative schemes rely
on dynamic scheduling; how does speculation affect the arguments in favor of dynamic
scheduling?

3.16 [Discussion] <3.4> There is a subtle problem that must be considered when imple-

352 Chapter 3 Instruction-Level Parallelism and its Dynamic Exploitation
menting Tomasulo’s algorithm. It might be called the “two ships passing in the night prob-
lem.” What happens if an instruction is being passed to a reservation station during the same
clock period as one of its operands is going onto the common data bus? Before an instruc-
tion is in a reservation station, the operands are fetched from the register file; but once it is
in the station, the operands are always obtained from the CDB. Since the instruction and its
operand tag are in transit to the reservation station, the tag cannot be matched against the
tag on the CDB. So there is a possibility that the instruction will then sit in the reservation
station forever waiting for its operand, which it just missed. How might this problem be
solved? You might consider subdividing one of the steps in the algorithm into multiple
parts. (This intriguing problem is courtesy of J. E. Smith.)

3.17 [Discussion] <3.6-3.5> Discuss the advantages and disadvantages of a superscalar
implementation, a superpipelined implementation, and a VLIW approach in the context of
MIPS. What levels of ILP favor each approach? What other concerns would you consider
in choosing which type of processor to build? How does speculation affect the results?

Need some more exercises on speculation, newer branch predictors, and probably also multiple issue with
Tomasulo and with speculation--maybe an integer loop?

Add something on multiple processors/chip

3.15 Historical Perspective and References 353

4

Exploiting Instruction
Level Parallelism with
Software Approaches 4
Processors are being produced with the potential for very many parallel
operations on the instruction level....Far greater extremes in instruction-
level parallelism are on the horizon.

J. Fisher [1981], in the paper that inaugurated the term
“instruction-level parallelism”

One of the surprises about IA-64 is that we hear no claims of high
frequency, despite claims that an EPIC processor is less complex than a
superscalar processor. It's hard to know why this is so, but one can
speculate that the overall complexity involved in focusing on CPI, as
IA-64 does, makes it hard to get high megahertz.

M. Hopkins [2000], in a commentary on the IA-64 architecture,
a joint development of HP and Intel designed to achieve
dramatic increases in the exploitation of ILP while retaining a
simple architecture, which would allow higher performance.

4.1 Basic Compiler Techniques for Exposing ILP 221

4.2 Static Branch Prediction 231

4.3 Static Multiple Issue: the VLIW Approach 234

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 238

4.5 Hardware Support for Exposing More Parallelism at Compile-Time 260

4.6 Crosscutting Issues 270

4.7 Putting It All Together: The Intel IA-64 Architecture and Itanium Processor 271

4.8 Another View: ILP in the Embedded and Mobile Markets 283

4.9 Fallacies and Pitfalls 292

4.10 Concluding Remarks 293

4.11 Historical Perspective and References 295

Exercises 299
This chapter starts by examining the use of compiler technology to improve the
performance of pipelines and simple multiple-issue processors. These techniques
are key even for processors that make dynamic issue decisions but use static
scheduling and are crucial for processors that use static issue or static scheduling.
After applying these concepts to reducing stalls from data hazards in single issue
pipelines, we examine the use of compiler-based techniques for branch predic-
tion. Armed with this more powerful compiler technology, we examine the de-
sign and performance of multiple-issue processors using static issuing or
scheduling. Sections 4.4 and 4.5 examine more advanced software and hardware
techniques, designed to enable a processor to exploit more instruction-level par-
allelism. Putting It All Together examines the IA-64 architecture and its first im-
plementation, Itanium. Two different static, VLIW-style processors are covered
in Another View.

4.1 Basic Compiler Techniques for Exposing ILP

222 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches

Basic Pipeline Scheduling and Loop Unrolling

To keep a pipeline full, parallelism among instructions must be exploited by find-
ing sequences of unrelated instructions that can be overlapped in the pipeline. To
avoid a pipeline stall, a dependent instruction must be separated from the source
instruction by a distance in clock cycles equal to the pipeline latency of that
source instruction. A compiler’s ability to perform this scheduling depends both
on the amount of ILP available in the program and on the latencies of the
functional units in the pipeline. Throughout this chapter we will assume the FP
unit latencies shown in Figure 4.1, unless different latencies are explicitly stated.
We assume the standard 5-stage integer pipeline, so that branches have a delay of
one clock cycle. We assume that the functional units are fully pipelined or repli-
cated (as many times as the pipeline depth), so that an operation of any type can
be issued on every clock cycle and there are no structural hazards.

In this subsection, we look at how the compiler can increase the amount of
available ILP by unrolling loops. This example serves both to illustrate an impor-
tant technique as well as to motivate the more powerful program transformations
described later in this chapter. We will rely on an example similar to the one we
used in the last chapter, adding a scalar to a vector:

for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

We can see that this loop is parallel by noticing that the body of each iteration is
independent. We will formalize this notion later in this chapter and describe how
we can test whether loop iterations are independent at compile-time. First, let’s
look at the performance of this loop, showing how we can use the parallelism to
improve its performance for a MIPS pipeline with the latencies shown above.

The first step is to translate the above segment to MIPS assembly language. In
the following code segment, R1 is initially the address of the element in the array

Instruction producing result Instruction using result Latency in clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

Load double Store double 0

FIGURE 4.1 Latencies of FP operations used in this chapter. The first column shows the
originating instruction type. The second column is the type of the consuming instruction. The
last column is the number of intervening clock cycles needed to avoid a stall. These numbers
are similar to the average latencies we would see on an FP unit. The latency of a floating-
point load to a store is zero, since the result of the load can be bypassed without stalling the
store. We will continue to assume an integer load latency of 1 and an integer ALU operation
latency of 0.

4.1 Basic Compiler Techniques for Exposing ILP 223

with the highest address, and F2 contains the scalar value, s. Register R2 is pre-
computed, so that 8(R2) is the last element to operate on.

The straightforward MIPS code, not scheduled for the pipeline, looks like this:

Loop: L.D F0,0(R1) ;F0=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)
BNE R1,R2,Loop ;branch R1!=zero

Let’s start by seeing how well this loop will run when it is scheduled on a sim-
ple pipeline for MIPS with the latencies from Figure 4.1.

E X A M P L E Show how the loop would look on MIPS, both scheduled and unsched-
uled, including any stalls or idle clock cycles. Schedule for both delays
from floating-point operations and from the delayed branch.

A N S W E R Without any scheduling the loop will execute as follows:

 Clock cycle issued

Loop: L.D F0,0(R1) 1
stall 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall 8
BNE R1,R2,Loop 9
stall 10

This code requires 10 clock cycles per iteration. We can schedule the loop
to obtain only one stall:

Loop: L.D F0,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,F0,F2
stall
BNE R1,R2,Loop ;delayed branch
S.D F4,8(R1) ;altered & interchanged

 with DADDUI

Execution time has been reduced from 10 clock cycles to 6. The stall after
ADD.D is for the use by the S.D. n

224 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches

Notice that to schedule the delayed branch, the compiler had to determine that
it could swap the DADDUI and S.D by changing the address to which the S.D
stored: the address was 0(R1) and is now 8(R1). This change is not trivial, since
most compilers would see that the S.D instruction depends on the DADDUI and
would refuse to interchange them. A smarter compiler, capable of limited sym-
bolic optimization, could figure out the relationship and perform the interchange.
The chain of dependent instructions from the L.D to the ADD.D and then to the
S.D determines the clock cycle count for this loop. This chain must take at least 6
cycles because of dependencies and pipeline latencies.

In the above example, we complete one loop iteration and store back one array
element every 6 clock cycles, but the actual work of operating on the array ele-
ment takes just 3 (the load, add, and store) of those 6 clock cycles. The remaining
3 clock cycles consist of loop overhead—the DADDUI and BNE—and a stall. To
eliminate these 3 clock cycles we need to get more operations within the loop rel-
ative to the number of overhead instructions.

A simple scheme for increasing the number of instructions relative to the
branch and overhead instructions is loop unrolling. Unrolling simply replicates
the loop body multiple times, adjusting the loop termination code.

Loop unrolling can also be used to improve scheduling. Because it eliminates
the branch, it allows instructions from different iterations to be scheduled together.
In this case, we can eliminate the data use stall by creating additional independent
instructions within the loop body. If we simply replicated the instructions when
we unrolled the loop, the resulting use of the same registers could prevent us from
effectively scheduling the loop. Thus, we will want to use different registers for
each iteration, increasing the required register count.

E X A M P L E Show our loop unrolled so that there are four copies of the loop body,
assuming R1 is initially a multiple of 32, which means that the number of
loop iterations is a multiple of 4. Eliminate any obviously redundant com-
putations and do not reuse any of the registers.

A N S W E R Here is the result after merging the DADDUI instructions and dropping the
unnecessary BNE operations that are duplicated during unrolling. Note
that R2 must now be set so that 32(R2) is the starting address of the last
four elements.

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1) ;drop DADDUI & BNE

L.D F6,-8(R1)

ADD.D F8,F6,F2

S.D F8,-8(R1) ;drop DADDUI & BNE

L.D F10,-16(R1)

4.1 Basic Compiler Techniques for Exposing ILP 225

ADD.D F12,F10,F2

S.D F12,-16(R1) ;drop DADDUI & BNE

L.D F14,-24(R1)

ADD.D F16,F14,F2

S.D F16,-24(R1)

DADDUI R1,R1,#-32

BNE R1,R2,Loop

We have eliminated three branches and three decrements of R1. The ad-
dresses on the loads and stores have been compensated to allow the
DADDUI instructions on R1 to be merged. This optimization may seem triv-
ial, but it is not; it requires symbolic substitution and simplification. We will
see more general forms of these optimizations that eliminate dependent
computations in Section 4.4.

Without scheduling, every operation in the unrolled loop is followed
by a dependent operation and thus will cause a stall. This loop will run in
28 clock cycles—each L.D has 1 stall, each ADD.D 2, the DADDUI 1, the
branch 1, plus 14 instruction issue cycles—or 7 clock cycles for each of
the four elements. Although this unrolled version is currently slower than
the scheduled version of the original loop, this will change when we
schedule the unrolled loop. Loop unrolling is normally done early in the
compilation process, so that redundant computations can be exposed
and eliminated by the optimizer. n

In real programs we do not usually know the upper bound on the loop. Sup-
pose it is n, and we would like to unroll the loop to make k copies of the body. In-
stead of a single unrolled loop, we generate a pair of consecutive loops. The first
executes (n mod k) times and has a body that is the original loop. The second is
the unrolled body surrounded by an outer loop that iterates (n/k) times. For large
values of n, most of the execution time will be spent in the unrolled loop body.

In the above Example, unrolling improves the performance of this loop by
eliminating overhead instructions, although it increases code size substantially.
How will the unrolled loop perform when it is scheduled for the pipeline de-
scribed earlier?

E X A M P L E Show the unrolled loop in the previous example after it has been sched-
uled for the pipeline with the latencies shown in Figure 4.1 on page 222.

A N S W E R Loop: L.D F0,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1)

L.D F14,-24(R1)

ADD.D F4,F0,F2

226 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches

ADD.D F8,F6,F2

ADD.D F12,F10,F2

ADD.D F16,F14,F2

S.D F4,0(R1)

S.D F8,-8(R1)

DADDUI R1,R1,#-32

S.D F12,16(R1)

BNE R1,R2,Loop

S.D F16,8(R1) ;8-32 = -24

The execution time of the unrolled loop has dropped to a total of 14 clock
cycles, or 3.5 clock cycles per element, compared with 7 cycles per
element before scheduling and 6 cycles when scheduled but not unrolled.
n

The gain from scheduling on the unrolled loop is even larger than on the origi-
nal loop. This increase arises because unrolling the loop exposes more computa-
tion that can be scheduled to minimize the stalls; the code above has no stalls.
Scheduling the loop in this fashion necessitates realizing that the loads and stores
are independent and can be interchanged.

Summary of the Loop Unrolling and Scheduling Example
Throughout this chapter we will look at a variety of hardware and software tech-
niques that allow us to take advantage of instruction-level parallelism to fully uti-
lize the potential of the functional units in a processor. The key to most of these
techniques is to know when and how the ordering among instructions may be
changed. In our example we made many such changes, which to us, as human be-
ings, were obviously allowable. In practice, this process must be performed in a
methodical fashion either by a compiler or by hardware. To obtain the final un-
rolled code we had to make the following decisions and transformations:

1. Determine that it was legal to move the S.D after the DADDUI and BNE, and find
the amount to adjust the S.D offset.

2. Determine that unrolling the loop would be useful by finding that the loop it-
erations were independent, except for the loop maintenance code.

3. Use different registers to avoid unnecessary constraints that would be forced
by using the same registers for different computations.

4. Eliminate the extra test and branch instructions and adjust the loop termination
and iteration code.

5. Determine that the loads and stores in the unrolled loop can be interchanged
by observing that the loads and stores from different iterations are indepen-
dent. This transformation requires analyzing the memory addresses and find-
ing that they do not refer to the same address.

4.1 Basic Compiler Techniques for Exposing ILP 227

6. Schedule the code, preserving any dependences needed to yield the same
result as the original code.

The key requirement underlying all of these transformations is an understanding
of how an instruction depends on another and how the instructions can be
changed or reordered given the dependences. Before examining how these tech-
niques work for higher issue rate pipelines, let us examine how the loop unrolling
and scheduling techniques affect data dependences.

E X A M P L E Show how the process of optimizing the loop overhead by unrolling the
loop actually eliminates data dependences. In this example and those
used in the remainder of this chapter, we use nondelayed branches for
simplicity; it is easy to extend the examples to use delayed branches.

A N S W E R Here is the unrolled but unoptimized code with the extra DADDUI instruc-
tions, but without the branches. (Eliminating the branches is another type
of transformation, since it involves control rather than data.) The arrows
show the data dependences that are within the unrolled body and involve
the DADDUI instructions. The underlined registers are the dependent us-
es.

As the arrows show, the DADDUI instructions form a dependent chain that
involves the DADDUI, L.D, and S.D instructions. This chain forces the body
to execute in order, as well as making the DADDUI instructions necessary,
which increases the instruction count. The compiler removes this depen-
dence by symbolically computing the intermediate values of R1 and fold-

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

DADDUI R1,R1,#-8 ;drop BNE

L.D F6,0(R1)

ADD.D F8,F6,F2

S.D F8,0(R1)

DADDUI R1,R1,#-8 ;drop BNE

L.D F10,0(R1)

ADD.D F12,F10,F2

S.D F12,0(R1)

DADDUI R1,R1,#-8 ;drop BNE

L.D F14,0(R1)

ADD.D F16,F14,F2

S.D F16,0(R1)

DADDUI R1,R1,#-8

BNE R1,R2,LOOP

228 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches

ing the computation into the offset of the L.D and S.D instructions and by
changing the final DADDUI into a decrement by 32. This transformation
makes the three DADDUI unnecessary, and the compiler can remove
them. There are other types of dependences in this code, as the next few
example show. n

E X A M P L E Unroll our example loop, eliminating the excess loop overhead, but using
the same registers in each loop copy. Indicate both the data and name de-
pendences within the body. Show how renaming eliminates name depen-
dences that reduce parallelism.

A N S W E R Here’s the loop unrolled but with the same registers in use for each copy.
The data dependences are shown with gray arrows and the name depen-
dences with black arrows. As in earlier examples, the direction of the
arrow indicates the ordering that must be preserved for correct execution
of the code:

The name dependences force the instructions in the loop to be almost
completely ordered, allowing only the order of the L.D following each S.D
to be interchanged. When the registers used for each copy of the loop

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1) ;drop DADDUI & BNE

L.D F0,-8(R1)

ADD.D F4,F0,F2

S.D F4,-8(R1) ;drop DADDUI & BNE

L.D F0,-16(R1)

ADD.D F4,F0,F2

S.D F4,-16(R1)

L.D F0,-24(R1)

ADD.D F4,F0,F2

S.D F4,-24(R1)

DADDUI R1,R1,#-32

BNE R1,R2,LOOP

4.1 Basic Compiler Techniques for Exposing ILP 229
body are renamed only the true dependences within each body remain:

With the renaming, the copies of each loop body become independent
and can be overlapped or executed in parallel. This renaming process can
be performed either by the compiler or in hardware, as we saw in the last
chapter. n

There are three different types of limits to the gains that can be achieved by
loop unrolling: a decrease in the amount of overhead amortized with each unroll,
code size limitations, and compiler limitations. Let’s consider the question of loop
overhead first. When we unrolled the loop four times, it generated sufficient paral-
lelism among the instructions that the loop could be scheduled with no stall cy-
cles. In fact, in fourteen clock cycles, only two cycles were loop overhead: the
DSUBI, which maintains the index value, and the BNE, which terminates the
loop. If the loop is unrolled eight times, the overhead is reduced from 1/2 cycle per
original iteration to 1/4. One of the exercises asks you to compute the theoretically
optimal number of times to unroll this loop for a random number of iterations.

A second limit to unrolling is the growth in code size that results. For larger
loops, the code size growth may be a concern either in the embedded space where
memory may be at a premium or if the larger code size causes a decrease in the in-
struction cache miss rate. We return to the issue of code size when we consider
more aggressive techniques for uncovering instruction level parallelism in Section
4.4.

Another factor often more important than code size is the potential shortfall in
registers that is created by aggressive unrolling and scheduling. This secondary af-
fect that results from instruction scheduling in large code segments is called regis-
ter pressure. It arises because scheduling code to increase ILP causes the number
of live values to increase. After aggressive instruction scheduling, it not be possi-

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1) ;drop DADDUI & BNE

L.D F6,-8(R1)

ADD.D F8,F6,F2

S.D F8,-8(R1) ;drop DADDUI & BNE

L.D F10,-16(R1)

ADD.D F12,F10,F2

S.D F12,-16(R1)

L.D F14,-24(R1)

ADD.D F16,F14,F2

S.D F16,-24(R1)

DADDUI R1,R1,#-32

BNE R1,R2,LOOP

230 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
ble to allocate all the live values to registers. The transformed code, while theoreti-
cally faster, may lose some or all of its advantage, because it generates a shortage
of registers. Without unrolling, aggressive scheduling is sufficiently limited by
branches so that register pressure is rarely a problem. The combination of unroll-
ing and aggressive scheduling can, however, cause this problem. The problem be-
comes especially challenging in multiple issue machines that require the exposure
of more independent instruction sequences whose execution can be overlapped. In
general, the use of sophisticated high-level transformations, whose potential im-
provements are hard to measure before detailed code generation, has led to signifi-
cant increases in the complexity of modern compilers.

Loop unrolling is a simple but useful method for increasing the size of straight-
line code fragments that can be scheduled effectively. This transformation is use-
ful in a variety of processors, from simple pipelines like those in MIPS to the stati-
cally scheduled superscalars we described in the last chapter, as we will see now.

Using Loop Unrolling and Pipeline Scheduling with Static Multiple Issue

We begin by looking at a simple two-issue, statically-scheduled superscalar
MIPS pipeline from the last chapter, using the pipeline latencies from Figure 4.1
on page 222 and the same example code segment we used for the single issue ex-
amples above. This processor can issue two instructions per clock cycle, where
one of the instructions can be a load, store, branch, or integer ALU operation, and
the other can be any floating-point operation.

Recall that this pipeline did not generate a significant performance enhance-
ment for the example above, because of the limited ILP in a given loop iteration.
Let’s see how loop unrolling and pipeline scheduling can help.

E X A M P L E Unroll and schedule the loop used in the earlier examples and shown on
page 223.

A N S W E R To schedule this loop without any delays, we will need to unroll the loop to
make five copies of the body. After unrolling, the loop will contain five each
of L.D, ADD.D, and S.D; one DADDUI; and one BNE. The unrolled and
scheduled code is shown in Figure 4.2.
This unrolled superscalar loop now runs in 12 clock cycles per iteration,
or 2.4 clock cycles per element, versus 3.5 for the scheduled and unrolled
loop on the ordinary MIPS pipeline. In this Example, the performance of
the superscalar MIPS is limited by the balance between integer and float-
ing-point computation. Every floating-point instruction is issued together
with an integer instruction, but there are not enough floating-point instruc-
tions to keep the floating-point pipeline full. When scheduled, the original
loop ran in 6 clock cycles per iteration. We have improved on that by a fac-
tor of 2.5, more than half of which came from loop unrolling. Loop unrolling
took us from 6 to 3.5 (a factor of 1.7), while superscalar execution gave us

4.2 Static Branch Prediction 231
a factor of 1.5 improvement. n

.

In Chapter 3, we examined the use of dynamic branch predictors. Static branch
predictors are sometimes used in processors where the expectation is that branch
behavior is highly predictable at compile-time; static prediction can also be used
to assist dynamic predictors.

In Chapter 1, we discussed an architectural feature that supports static branch
predication, namely delayed branches. Delayed branches expose a pipeline haz-
ard so that the compiler can reduce the penalty associated with the hazard. As we
saw, the effectiveness of this technique partly depends on whether we correctly
guess which way a branch will go. Being able to accurately predict a branch at
compile time is also helpful for scheduling data hazards. Loop unrolling is on
simple example of this; another example, arises from conditional selection
branches. Consider the following code segment:

LD R1,0(R2)

DSUBU R1,R1,R3

BEQZ R1,L

OR R4,R5,R6

DADDU R10,R4,R3

Integer instruction FP instruction Clock cycle

Loop: L.D F0,0(R1) 1

L.D F6,-8(R1) 2

L.D F10,-16(R1) ADD.D F4,F0,F2 3

L.D F14,-24(R1) ADD.D F8,F6,F2 4

L.D F18,-32(R1) ADD.D F12,F10,F2 5

S.D F4,0(R1) ADD.D F16,F14,F2 6

S.D F8,-8(R1) ADD.D F20,F18,F2 7

S.D F12,-16(R1) 8

DADDUI R1,R1,#-40 9

S.D F16,16(R1) 10

BNE R1,R2,Loop 11

S.D F20,8(R1) 12

FIGURE 4.2 The unrolled and scheduled code as it would look on a superscalar MIPS.

4.2 Static Branch Prediction

232 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
L: DADDU R7,R8,R9

The dependence of the DSUBU and BEQZ on the LD instruction means that a stall
will be needed after the LD. Suppose we knew that this branch was almost always
taken and that the value of R7 was not needed on the fall-through path. Then we
could increase the speed of the program by moving the instruction DADD
R7,R8,R9 to the position after the LD. Correspondingly, if we knew the branch
was rarely taken and that the value of R4 was not needed on the taken path, then
we could contemplate moving the OR instruction after the LD. In addition, we can
also use the information to better schedule any branch delay, since choosing how
to schedule the delay depends on knowing the branch behavior. We will return to
this topic in section 4.4, when we discuss global code scheduling.

To perform these optimizations, we need to predict the branch statically when
we compile the program. There are several different methods to statically predict
branch behavior. The simplest scheme is to predict a branch as taken. This
scheme has an average misprediction rate that is equal to the untaken branch fre-
quency, which for the SPEC programs is 34%. Unfortunately, the misprediction
rate ranges from not very accurate (59%) to highly accurate (9%).

A better alternative is to predict on the basis of branch direction, choosing
backward-going branches to be taken and forward-going branches to be not tak-
en. For some programs and compilation systems, the frequency of forward taken
branches may be significantly less than 50%, and this scheme will do better than
just predicting all branches as taken. In the SPEC programs, however, more than
half of the forward-going branches are taken. Hence, predicting all branches as
taken is the better approach. Even for other benchmarks or compilers, direction-
based prediction is unlikely to generate an overall misprediction rate of less than
30% to 40%. An enhancement of this technique was explored by Ball and Larus;
their approach uses program context information and generates more accurate
predictions than a simple scheme based solely on branch direction.

A still more accurate technique is to predict branches on the basis of profile in-
formation collected from earlier runs. The key observation that makes this worth-
while is that the behavior of branches is often bimodally distributed; that is, an
individual branch is often highly biased toward taken or untaken. Figure 4.3
shows the success of branch prediction using this strategy. The same input data
were used for runs and for collecting the profile; other studies have shown that

4.2 Static Branch Prediction 233
changing the input so that the profile is for a different run leads to only a small
change in the accuracy of profile-based prediction.

Although we can derive the prediction accuracy of a predict-taken strategy
and measure the accuracy of the profile scheme, as in Figure 4.3, the wide range
of frequency of conditional branches in these programs, from 3% to 24%, means
that the overall frequency of a mispredicted branch varies widely. Figure 4.4
shows the number of instructions executed between mispredicted branches for
both a profile-based and a predict-taken strategy. The number varies widely, both
because of the variation in accuracy and the variation in branch frequency. On av-
erage, the predict-taken strategy has 20 instructions per mispredicted branch and
the profile-based strategy has 110. These averages, however, are very different for
integer and FP programs, as the data in Figure 4.4 show.

Static branch behavior is useful for scheduling instructions when the branch
delays are exposed by the architecture (either delayed or canceling branches), for
assisting dynamic predictors (as we will see in the IA-64 architecture in section
4.7), and for determining which code paths are more frequent, which is a key step
in code scheduling (see section 4.4, page 251).

FIGURE 4.3 Misprediction rate on SPEC92 for a profile-based predictor varies widely
but is generally better for the FP programs, which have an average misprediction rate
of 9% with a standard deviation of 4%, than for the integer programs, which have an
average misprediction rate of 15% with a standard deviation of 5%. The actual perfor-
mance depends on both the prediction accuracy and the branch frequency, which varies from
3% to 24%; we will examine the combined effect in Figure 4.4.

Misprediction rate

0%

25%

5%

10%

20%

15%

Benchmark

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp

su
2c

or

12%

22%

18%

11%
12%

5% 6%

9% 10%

15%

234 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
.

Superscalar processors decide on the fly how many instructions to issue. A stati-
cally scheduled superscalar must check for any dependences between instruc-
tions in the issue packet as well as between any issue candidate and any
instruction already in the pipeline. As we have seen in Section 4.1, a statically-
scheduled superscalar requires significant compiler assistance to achieve good
performance. In contrast, a dynamically-scheduled superscalar requires less com-
piler assistance, but has significant hardware costs.

An alternative to the superscalar approach is to rely on compiler technology not
only to minimize the potential data hazard stalls, but to actually format the instruc-
tions in a potential issue packet so that the hardware need not check explicitly for
dependences. The compiler may be required to ensure that dependences within the
issue packet cannot be present or, at a minimum, indicate when a dependence may
be present. Such an approach offers the potential advantage of simpler hardware
while still exhibiting good performance through extensive compiler optimization.

FIGURE 4.4 Accuracy of a predict-taken strategy and a profile-based predictor for SPEC92 benchmarks as mea-
sured by the number of instructions executed between mispredicted branches and shown on a log scale. The av-
erage number of instructions between mispredictions is 20 for the predict-taken strategy and 110 for the profile-based
prediction; however, the standard deviations are large: 27 instructions for the predict-taken strategy and 85 instructions for
the profile-based scheme. This wide variation arises because programs such as su2cor have both low conditional branch
frequency (3%) and predictable branches (85% accuracy for profiling), although eqntott has eight times the branch frequen-
cy with branches that are nearly 1.5 times less predictable. The difference between the FP and integer benchmarks as
groups is large. For the predict-taken strategy, the average distance between mispredictions for the integer benchmarks is
10 instructions, and it is 30 instructions for the FP programs. With the profile scheme, the distance between mispredictions
for the integer benchmarks is 46 instructions, and it is 173 instructions for the FP benchmarks.

4.3 Static Multiple Issue: the VLIW Approach

Instructions between
mispredictions

1

10

100

1000

11

9692

11

159

19

250

14

58

11

60

11
37

6

1910

56

14

113 253

Profile basedPredict taken

Benchmark

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp

su
2c

or

4.3 Static Multiple Issue: the VLIW Approach 235
The first multiple-issue processors that required the instruction stream to be ex-
plicitly organized to avoid dependences used wide instructions with multiple oper-
ations per instruction. For this reason, this architectural approach was named
VLIW, standing for Very Long Instruction Word, and denoting that the instruc-
tions, since they contained several instructions, were very wide (64 to 128 bits, or
more). The basic architectural concepts and compiler technology are the same
whether multiple operations are organized into a single instruction, or whether a
set of instructions in an issue packet is preconfigured by a compiler to exclude de-
pendent operations (since the issue packet can be thought of as a very large in-
struction). Early VLIWs were quite rigid in their instruction formats and
effectively required recompilation of programs for different versions of the hard-
ware.

To reduce this inflexibility and enhance performance of the approach, several
innovations have been incorporated into more recent architectures of this type,
while still requiring the compiler to do most of the work of finding and scheduling
instructions for parallel execution. This second generation of VLIW architectures
is the approach being pursued for desktop and server markets.

In the remainder of this section, we look at the basic concepts in a VLIW archi-
tecture. Section 4.4 introduces additional compiler techniques that are required to
achieve good performance for compiler-intensive approaches, and Section 4.5 de-
scribes hardware innovations that improve flexibility and performance of explicit-
ly parallel approaches. Finally, Section 4.7 describes how the Intel IA-64 supports
explicit parallelism.

The Basic VLIW Approach

VLIWs use multiple, independent functional units. Rather than attempting to is-
sue multiple, independent instructions to the units, a VLIW packages the multiple
operations into one very long instruction, or requires that the instructions in the
issue packet satisfy the same constraints. Since there is not fundamental differ-
ence in the two approaches, we will just assume that multiple operations are
placed in one instruction, as in the original VLIW approach. Since the burden for
choosing the instructions to be issued simultaneously falls on the compiler, the
hardware in a superscalar to make these issue decisions is unneeded.

Since this advantage of a VLIW increases as the maximum issue rate grows,
we focus on a wider-issue processor. Indeed, for simple two issue processors, the
overhead of a superscalar is probably minimal. Many designers would probably
argue that a four issue processor has manageable overhead, but as we saw in the
last chapter, this overhead grows with issue width.

Because VLIW approaches make sense for wider processors, we choose to fo-
cus our example on such an architecture. For example, a VLIW processor might
have instructions that contain five operations, including: one integer operation
(which could also be a branch), two floating-point operations, and two memory
references. The instruction would have a set of fields for each functional unit—
perhaps 16 to 24 bits per unit, yielding an instruction length of between 112 and
168 bits.

236 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
To keep the functional units busy, there must be enough parallelism in a code
sequence to fill the available operation slots. This parallelism is uncovered by un-
rolling loops and scheduling the code within the single larger loop body. If the
unrolling generates straighline code, then local scheduling techniques, which op-
erate on a single basic block can be used. If finding and exploiting the parallelism
requires scheduling code across branches, a substantially more complex global
scheduling algorithm must be used. Global scheduling algorithms are not only
more complex in structure, but they must deal with significantly more complicat-
ed tradeoffs in optimization, since moving code across branches is expensive. In
the next section, we will discuss trace scheduling, one of these global scheduling
techniques developed specifically for VLIWs. In Section 4.5, we will examine
hardware support that allows some conditional branches to be eliminated, extend-
ing the usefulness of local scheduling and enhancing the performance of global
scheduling.

For now, let’s assume we have a technique to generate long, straight-line code
sequences, so that we can use local scheduling to build up VLIW instructions and
instead focus on how well these processors operate.

E X A M P L E Suppose we have a VLIW that could issue two memory references, two
FP operations, and one integer operation or branch in every clock cycle.
Show an unrolled version of the loop x[i] = x[i] +s (see page 223 for the
MIPS ode) for such a processor. Unroll as many times as necessary to
eliminate any stalls. Ignore the branch-delay slot.

A N S W E R The code is shown in Figure 4.5. The loop has been unrolled to make sev-
en copies of the body, which eliminates all stalls (i.e., completely empty
issue cycles), and runs in 9 cycles. This code yields a running rate of sev-
en results in 9 cycles, or 1.29 cycles per result, nearly twice as fast as the
two-issue superscalar of Section 4.1 that used unrolled and scheduled
code. n

 For the original VLIW model, there are both technical and logistical prob-
lems. The technical problems are the increase in code size and the limitations of
lock-step operation. Two different elements combine to increase code size sub-
stantially for a VLIW. First, generating enough operations in a straight-line code
fragment requires ambitiously unrolling loops (as earlier examples) thereby in-
creasing code size. Second, whenever instructions are not full, the unused func-
tional units translate to wasted bits in the instruction encoding. In Figure 4.5, we
saw that only about 60% of the functional units were used, so almost half of each
instruction was empty. In most VLIWs, an instruction may need to be left com-
pletely empty if no operations can be scheduled.

To combat this code size increase, clever encodings are sometimes used. For
example, there may be only one large immediate field for use by any functional
unit. Another technique is to compress the instructions in main memory and ex-

4.3 Static Multiple Issue: the VLIW Approach 237
pand them when they are read into the cache or are decoded. We will see tech-
niques to reduce code size increases in both Sections 4.7 and 4.8.

Early VLIWs operated in lock-step; there was no hazard detection hardware at
all. This structure dictated that a stall in any functional unit pipeline must cause
the entire processor to stall, since all the functional units must be kept synchro-
nized. Although a compiler may be able to schedule the deterministic functional
units to prevent stalls, predicting which data accesses will encounter a cache stall
and scheduling them is very difficult. Hence, caches needed to be blocking and to
cause all the functional units to stall. As the issue rate and number of memory
references becomes large, this synchronization restriction becomes unacceptable.
In more recent processors, the functional units operate more independently, and
the compiler is used to avoid hazards at issue time, while hardware checks allow
for unsynchronized execution once instructions are issued.

Binary code compatibility has also been a major logistical problem for VLI-
Ws. In a strict VLIW approach, the code sequence makes use of both the instruc-
tion set definition and the detailed pipeline structure, including both functional
units and their latencies. Thus, different numbers of functional units and unit la-
tencies require different versions of the code. This requirement makes migrating
between successive implementations, or between implementations with different
issue widths, more difficult than it is for a superscalar design. Of course, obtain-
ing improved performance from a new superscalar design may require recompila-
tion. Nonetheless, the ability to run old binary files is a practical advantage for
the superscalar approach.

One possible solution to this migration problem, and the problem of binary
code compatibility in general, is object-code translation or emulation. This tech-
nology is developing quickly and could play a significant role in future migration

Memory
reference 1

Memory
reference 2

FP
operation 1

FP
operation 2

Integer
operation/branch

L.D F0,0(R1) L.D F6,-8(R1)

L.D F10,-16(R1) L.D F14,-24(R1)

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2

ADD.D F20,F18,F2 ADD.D F24,F22,F2

S.D F4,0(R1) S.D -8(R1),F8 ADD.D F28,F26,F2

S.D F12,-16(R1) S.D -24(R1),F16

S.D F20,-32(R1) S.D -40(R1),F24 DADDUI R1,R1,#-56

S.D F28,8(R1) BNE R1,R2,Loop

FIGURE 4.5 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes nine
cycles assuming no branch delay; normally the branch delay would also need to be scheduled. The issue rate is 23 opera-
tions in nine clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of available slots that contained an oper-
ation, is about 60%. To achieve this issue rate requires a larger number of registers than MIPS would normally use in this
loop. The VLIW code sequence above requires at least eight FP registers, while the same code sequence for the base MIPS
processor can use as few as two FP registers or as many as five when unrolled and scheduled. In the superscalar example
in Figure 4.2, six registers were needed.

238 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
schemes. Another approach is to temper the strictness of the approach so that bi-
nary compatibility is still feasible. This later approach is used in the IA-64 archi-
tecture, as we will see in Section 4.7.

The major challenge for all multiple-issue processors is to try to exploit large
amounts of ILP. When the parallelism comes from unrolling simple loops in FP
programs, the original loop probably could have been run efficiently on a vector
processor (described in Appendix B). It is not clear that a multiple-issue proces-
sor is preferred over a vector processor for such applications; the costs are simi-
lar, and the vector processor is typically the same speed or faster. The potential
advantages of a multiple-issue processor versus a vector processor are twofold.
First, a multiple-issue processor has the potential to extract some amount of par-
allelism from less regularly structured code, and, second, it has the ability to use
a more conventional, and typically less expensive, cache-based memory system.
For these reasons multiple-issue approaches have become the primary method for
taking advantage of instruction-level parallelism, and vectors have become pri-
marily an extension to these processors.

In this section we discuss compiler technology for increasing the amount of par-
allelism that we can exploit in a program. We begin by defining when a loop is
parallel and how a dependence can prevent a loop from being parallel. We also
discuss techniques for eliminating some types of dependences. As we will see in
later sections, hardware support for these compiler techniques can greatly in-
crease their effectiveness. This section serves as an introduction to these tech-
niques. We do not attempt to explain the details of ILP-oriented compiler
techniques, since this would take hundreds of pages, rather than the 20 we have
allotted. Instead, we view this material as providing general background that will
enable the reader to have a basic understanding of the compiler techniques used
to exploit ILP in modern computers.

Detecting and Enhancing Loop-Level Parallelism

Loop-level parallelism is normally analyzed at the source level or close to it,
while most analysis of ILP is done once instructions have been generated by the
compiler. Loop-level analysis involves determining what dependences exist
among the operands in a loop across the iterations of that loop. For now, we will
consider only data dependences, which arise when an operand is written at some
point and read at a later point. Name dependences also exist and may be removed
by renaming techniques like those we used earlier.

The analysis of loop-level parallelism focuses on determining whether data
accesses in later iterations are dependent on data values produced in earlier itera-
tions, such a dependence is called a loop-carried dependence. Most of the exam-

4.4 Advanced Compiler Support for Exposing
and Exploiting ILP

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 239
ples we considered in Section 4.1 have no loop-carried dependences and, thus,
are loop-level parallel. To see that a loop is parallel, let us first look at the source
representation:

for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

In this loop, there is a dependence between the two uses of x[i], but this depen-
dence is within a single iteration and is not loop-carried. There is a dependence
between successive uses of i in different iterations, which is loop-carried, but this
dependence involves an induction variable and can be easily recognized and
eliminated. We saw examples of how to eliminate dependences involving induc-
tion variables during loop unrolling in Section 4.1, and we will look at additional
examples later in this section.

Because finding loop-level parallelism involves recognizing structures such as
loops, array references, and induction variable computations, the compiler can do
this analysis more easily at or near the source level, as opposed to the machine-
code level. Let’s look at a more complex example.

E X A M P L E Consider a loop like this one:

for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

Assume that A, B, and C are distinct, nonoverlapping arrays. (In practice,
the arrays may sometimes be the same or may overlap. Because the
arrays may be passed as parameters to a procedure, which includes this
loop, determining whether arrays overlap or are identical often requires
sophisticated, interprocedural analysis of the program.) What are the data
dependences among the statements S1 and S2 in the loop?

A N S W E R There are two different dependences:

1. S1 uses a value computed by S1 in an earlier iteration, since iteration
i computes A[i+1], which is read in iteration i+1. The same is true
of S2 for B[i] and B[i+1].

2. S2 uses the value, A[i+1], computed by S1 in the same iteration.

These two dependences are different and have different effects. To
see how they differ, let’s assume that only one of these dependences ex-
ists at a time. Because the dependence of statement S1 on an earlier it-
eration of S1, this dependence is loop-carried. This dependence forces
successive iterations of this loop to execute in series.

The second dependence above (S2 depending on S1) is within an it-

240 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
eration and is not loop-carried. Thus, if this were the only dependence,
multiple iterations of the loop could execute in parallel, as long as each
pair of statements in an iteration were kept in order. We saw this type of
dependence in an example in Section 4.1, where unrolling was able to ex-
pose the parallelism.

n

It is also possible to have a loop-carried dependence that does not prevent par-
allelism, as the next example shows.

E X A M P L E Consider a loop like this one:

for (i=1; i<=100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

What are the dependences between S1 and S2? Is this loop parallel? If
not, show how to make it parallel.

A N S W E R Statement S1 uses the value assigned in the previous iteration by state-
ment S2, so there is a loop-carried dependence between S2 and S1. De-
spite this loop-carried dependence, this loop can be made parallel. Unlike
the earlier loop, this dependence is not circular: Neither statement de-
pends on itself, and although S1 depends on S2, S2 does not depend on
S1. A loop is parallel if it can be written without a cycle in the dependenc-
es, since the absence of a cycle means that the dependences give a par-
tial ordering on the statements.

Although there are no circular dependences in the above loop, it
must be transformed to conform to the partial ordering and expose the
parallelism. Two observations are critical to this transformation:

1. There is no dependence from S1 to S2. If there were, then there
would be a cycle in the dependences and the loop would not be par-
allel. Since this other dependence is absent, interchanging the two
statements will not affect the execution of S2.

2. On the first iteration of the loop, statement S1 depends on the value
of B[1] computed prior to initiating the loop.

These two observations allow us to replace the loop above with the
following code sequence:

A[1] = A[1] + B[1];

for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 241
}

B[101] = C[100] + D[100];

The dependence between the two statements is no longer loop-carried,
so that iterations of the loop may be overlapped, provided the statements
in each iteration are kept in order.

n

Our analysis needs to begin by finding all loop-carried dependences. This de-
pendence information is inexact, in the sense that it tells us that such a depen-
dence may exist. Consider the following example:

for (i=1;i<=100;i=i+1) {

A[i] = B[i] + C[i]

D[i] = A[i] * E[i]

}

The second reference to A in this example need not be translated to a load instruc-
tion, since we know that the value is computed and stored by the previous state-
ment; hence, the second reference to A can simply be a reference to the register
into which A was computed. Performing this optimization requires knowing that
the two references are always to the same memory address and that there is no in-
tervening access to the same location. Normally, data dependence analysis only
tells that one reference may depend on another; a more complex analysis is re-
quired to determine that two references must be to the exact same address. In the
example above, a simple version of this analysis suffices, since the two references
are in the same basic block.

Often loop-carried dependences are in the form of a recurrence:

for (i=2;i<=100;i=i+1) {

Y[i] = Y[i-1] + Y[i];

}

A recurrence is when a variable is defined based on the value of that variable in
an earlier iteration, often the one immediately preceding, as in the above frag-
ment. Detecting a recurrence can be important for two reasons: Some architec-
tures (especially vector computers) have special support for executing
recurrences, and some recurrences can be the source of a reasonable amount of
parallelism. To see how the latter can be true, consider this loop:

for (i=6;i<=100;i=i+1) {

Y[i] = Y[i-5] + Y[i];

}

242 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
On the iteration i, the loop references element i – 5. The loop is said to have a
dependence distance of 5. Many loops with carried dependences have a depen-
dence distance of 1. The larger the distance, the more potential parallelism can be
obtained by unrolling the loop. For example, if we unroll the first loop, with a de-
pendence distance of 1, successive statements are dependent on one another;
there is still some parallelism among the individual instructions, but not much. If
we unroll the loop that has a dependence distance of 5, there is a sequence of five
statements that have no dependences, and thus much more ILP. Although many
loops with loop-carried dependences have a dependence distance of 1, cases with
larger distances do arise, and the longer distance may well provide enough paral-
lelism to keep a processor busy.

Finding Dependences
Finding the dependences in a program is an important part of three tasks: (1)
good scheduling of code, (2) determining which loops might contain parallelism,
and (3) eliminating name dependences. The complexity of dependence analysis
arises because of the presence of arrays and pointers in languages like C or C++
or pass-by-reference parameter passing in Fortran. Since scalar variable referenc-
es explicitly refer to a name, they can usually be analyzed quite easily, with alias-
ing because of pointers and reference parameters causing some complications
and uncertainty in the analysis.

How does the compiler detect dependences in general? Nearly all dependence
analysis algorithms work on the assumption that array indices are affine. In sim-
plest terms, a one-dimensional array index is affine if it can be written in the form
a × i + b, where a and b are constants, and i is the loop index variable. The index
of a multidimensional array is affine if the index in each dimension is affine.
Sparse array accesses, which typically have the form x[y[i]], are one of the ma-
jor examples of nonaffine accesses.

Determining whether there is a dependence between two references to the
same array in a loop is thus equivalent to determining whether two affine func-
tions can have the same value for different indices between the bounds of the
loop. For example, suppose we have stored to an array element with index value
a × i + b and loaded from the same array with index value c × i + d, where i is the
for-loop index variable that runs from m to n. A dependence exists if two condi-
tions hold:

1. There are two iteration indices, j and k, both within the limits of the for loop.
That is m ≤ j ≤ n, m ≤ k ≤ n.

2. The loop stores into an array element indexed by a × j + b and later fetches
from that same array element when it is indexed by c × k + d. That is, a × j +
b = c × k + d.

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 243
In general, we cannot determine whether a dependence exists at compile time.
For example, the values of a, b, c, and d may not be known (they could be values
in other arrays), making it impossible to tell if a dependence exists. In other
cases, the dependence testing may be very expensive but decidable at compile
time. For example, the accesses may depend on the iteration indices of multiple
nested loops. Many programs, however, contain primarily simple indices where
a, b, c, and d are all constants. For these cases, it is possible to devise reasonable
compile-time tests for dependence.

As an example, a simple and sufficient test for the absence of a dependence is
the greatest common divisor, or GCD, test. It is based on the observation that if a
loop-carried dependence exists, then GCD (c,a) must divide (d – b). (Recall that
an integer, x, divides another integer, y, if there is no remainder when we do the
division y/x and get an integer quotient.)

E X A M P L E Use the GCD test to determine whether dependences exist in the follow-
ing loop:

for (i=1; i<=100; i=i+1) {
X[2*i+3] = X[2*i] * 5.0;

}

A N S W E R Given the values a = 2, b = 3, c = 2, and d = 0, then GCD(a,c) = 2, and
d – b = –3. Since 2 does not divide –3, no dependence is possible. n

The GCD test is sufficient to guarantee that no dependence exists (you can
show this in the Exercises); however, there are cases where the GCD test suc-
ceeds but no dependence exists. This can arise, for example, because the GCD
test does not take the loop bounds into account.

 In general, determining whether a dependence actually exists is NP-complete.
In practice, however, many common cases can be analyzed precisely at low cost.
Recently, approaches using a hierarchy of exact tests increasing in generality and
cost have been shown to be both accurate and efficient. (A test is exact if it
precisely determines whether a dependence exists. Although the general case is
NP-complete, there exist exact tests for restricted situations that are much cheaper.)

In addition to detecting the presence of a dependence, a compiler wants to
classify the type of dependence. This classification allows a compiler to recog-
nize name dependences and eliminate them at compile time by renaming and
copying.

E X A M P L E The following loop has multiple types of dependences. Find all the true
dependences, output dependences, and antidependences, and eliminate

244 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
the output dependences and antidependences by renaming.

for (i=1; i<=100; i=i+1) {
Y[i] = X[i] / c; /*S1*/
X[i] = X[i] + c; /*S2*/
Z[i] = Y[i] + c; /*S3*/
Y[i] = c - Y[i]; /*S4*/

}

A N S W E R The following dependences exist among the four statements:

1. There are true dependences from S1 to S3 and from S1 to S4
because of Y[i]. These are not loop carried, so they do not prevent
the loop from being considered parallel. These dependences will
force S3 and S4 to wait for S1 to complete.

2. There is an antidependence from S1 to S2, based on X[i].

3. There is an antidependence from S3 to S4 for Y[i].

4. There is an output dependence from S1 to S4, based on Y[i].

The following version of the loop eliminates these false (or pseudo)
dependences.

for (i=1; i<=100; i=i+1 {

/* Y renamed to T to remove output dependence*/

T[i] = X[i] / c;

/* X renamed to X1 to remove antidependence*/

X1[i] = X[i] + c;

/* Y renamed to T to remove antidependence */

Z[i] = T[i] + c;

Y[i] = c - T[i];

}

After the loop the variable X has been renamed X1. In code that follows
the loop, the compiler can simply replace the name X by X1. In this case,
renaming does not require an actual copy operation but can be done by
substituting names or by register allocation. In other cases, however,
renaming will require copying. n

Dependence analysis is a critical technology for exploiting parallelism. At the
instruction level it provides information needed to interchange memory references
when scheduling, as well as to determine the benefits of unrolling a loop. For de-
tecting loop-level parallelism, dependence analysis is the basic tool. Effectively
compiling programs to either vector computers or multiprocessors depends criti-

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 245
cally on this analysis. The major drawback of dependence analysis is that it ap-
plies only under a limited set of circumstances, namely among references within
a single loop nest and using affine index functions. Thus, there are a wide variety
of situations in which array-oriented dependence analysis cannot tell us what we
might want to know, including

n when objects are referenced via pointers rather than array indices (but see dis-
cussion below);

n when array indexing is indirect through another array, which happens with
many representations of sparse arrays;

n when a dependence may exist for some value of the inputs, but does not exist
in actuality when the code is run since the inputs never take on those values;

n when an optimization depends on knowing more than just the possibility of a
dependence, but needs to know on which write of a variable does a read of that
variable depend.

To deal with the issue of analyzing programs with pointers, another type of
analysis, often called points-to analysis, is required (see Wilson and Lam [1995]).
The key question that we want answered from dependence analysis of pointers is
whether two pointers can designate the same address. In the case of complex dy-
namic data structures, this problem is extremely difficult. For example, we may
want to know whether two pointers can reference the same node in a list at a giv-
en point in a program, which in general is undecidable and in practice is extreme-
ly difficult to answer. We may, however, be able to answer a simpler question: can
two pointers designate nodes in the same list, even if they may be separate nodes.
This more restricted analysis can still be quite useful in scheduling memory ac-
cesses performed through pointers.

The basic approach used in points-to analysis relies on information from three
major sources:

1. Type information, which restricts what a pointer can point to.

2. Information derived when an object is allocated or when the address of an ob-
ject is taken, which can be used to restrict what a pointer can point to. For ex-
ample, if p always points to an object allocated in a given source line and q
never points to that object, then p and q can never point to the same object.

3. Information derived from pointer assignments. For example, if p may be as-
signed the value of q, then p may point to anything q points to.

There are several cases where analyzing pointers has been successfully ap-
plied and is extremely useful:

n When pointers are used to pass the address of an object as a parameter, it is pos-

246 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
sible to use points-to analysis to determine the possible set of objects refer-
enced by a pointer. One important use is to determine if two pointer parameters
may designate the same object.

n When a pointer can point to one of several types, it is sometimes possible to
determine that the type of the data object a pointer designates at different parts
of the program.

n It is often possible to separate out pointers that may only point to a local object
versus a global one.

There are two different types of limitations that affect our ability to do accu-
rate dependence analysis for large programs. The first type of limitation arises
from restrictions in the analysis algorithms. Often, we are limited by the lack of
applicability of the analysis rather than a shortcoming in dependence analysis per
se. For example, dependence analysis for pointers is essentially impossible for
programs that use pointers in arbitrary fashion–for example, by doing arithmetic
on pointers.

The second limitation is the need to analyze behavior across procedure bound-
aries to get accurate information. For example, if a procedure accepts two param-
eters that are pointers, determining whether the values could be the same requires
analyzing across procedure boundaries. This type of analysis, called interproce-
dural analysis, is much more difficult and complex than analysis within a single
procedure. Unlike the case of analyzing array indices within a single loop nest,
points-to analysis usually requires an interprocedural analysis. The reason for
this is simple. Suppose we are analyzing a program segment with two pointers; if
the analysis does not know anything about the two pointers at the start of the pro-
gram segment, it must be conservative and assume the worst case. The worst case
is that the two pointers may designate the same object, but they are not guaran-
teed to designate the same object. This worst case is likely to propagate through
the analysis producing useless information. In practice, getting fully accurate in-
terprocedural information is usually too expensive for real programs. Instead,
compilers usually use approximations in interprocedural analysis. The result is
that the information may be too inaccurate to be useful.

Modern programming languages that use strong typing, such as Java, make
the analysis of dependences easier. At the same time the extensive use of proce-
dures to structure programs, as well as abstract data types, makes the analysis
more difficult. Nonetheless, we expect that continued advances in analysis algo-
rithms combined with the increasing importance of pointer dependency analysis
will mean that there is continued progress on this important problem.

Eliminating Dependent Computations
Compilers can reduce the impact of dependent computations so as to achieve
more ILP. The key technique is to eliminate or reduce a dependent computation

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 247
by back substitution, which increases the amount of parallelism and sometimes
increases the amount of computation required. These techniques can be applied
both within a basic block and within loops, and we describe them differently.

Within a basic block, algebraic simplifications of expressions and an optimi-
zation called copy propagation, which eliminates operations that copy values,
can be used to simplify sequences like the following:

DADDUI R1,R2,#4

DADDUI R1,R1,#4

to:
DADDUI R1,R2,#8

assuming this is the only use of R1. In fact, the techniques we used to reduce mul-
tiple increments of array indices during loop unrolling and to move the incre-
ments across memory addresses in Section 4.1 are examples of this type of
optimization.

In these examples, computations are actually eliminated, but it also possible
that we may want to increase the parallelism of the code, possibly even increas-
ing the number of operations. Such optimizations are called tree height reduction,
since they reduce the height of the tree structure representing a computation,
making it wider but shorter. Consider the following code sequence:

ADD R1,R2,R3

ADD R4,R1,R6

ADD R8,R4,R7

Notice that this sequence requires at least three execution cycles, since all the in-
structions depend on the immediate predecessor. By taking advantage of associa-
tivity, we can transform the code and rewrite it as:

ADD R1,R2,R3

ADD R4,R6,R7

ADD R8,R1,R4

This sequence can be computed in two execution cycles. When loop unrolling is
used, opportunities for these types of optimizations occur frequently.

Although arithmetic with unlimited range and precision is associative, com-
puter arithmetic is not associative, either for integer arithmetic, because of limit-
ed range, or floating point arithmetic, because of both range and precision. Thus,
using these restructuring techniques can sometimes lead to erroneous behavior,
although such occurrences are rare. For this reason, most compilers require that
optimizations that rely on associativity be explicitly enabled.

When loops are unrolled this sort of algebraic optimization is important to re-
duce the impact of dependences arising from recurrences. Recurrences are ex-
pressions whose value on one iteration is given by a function that depends on the
previous iterations. When a loop with a recurrence is unrolled, we may be able to
algebraically optimize the unrolled loop, so that the recurrence need only be eval-

248 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
uated once per unrolled iteration. One common type of recurrence arises from an
explicit program statements, such as:

sum = sum + x;

Assume we unroll a loop with this recurrence five times, if we let the value of x
on these five iterations be given by x1, x2, x3, x4, and x5, then we can write the
value of sum at the end of each unroll as:

sum = sum + x1 + x2 + x3 + x4 + x5;

If unoptimized this expression requires five dependent operations, but it can be
rewritten as:

sum = ((sum + x1) + (x2 + x3)) + (x4 + x5);

which can be evaluated in only three dependent operations.
Recurrences also arise from implicit calculations, such as those associated

with array indexing. Each array index translates to an address that is computed
based on the loop index variable. Again, with unrolling and algebraic optimiza-
tion, the dependent computations can be minimized.

Software Pipelining: Symbolic Loop Unrolling

We have already seen that one compiler technique, loop unrolling, is useful to un-
cover parallelism among instructions by creating longer sequences of straight-
line code. There are two other important techniques that have been developed for
this purpose: software pipelining and trace scheduling.

Software pipelining is a technique for reorganizing loops such that each itera-
tion in the software-pipelined code is made from instructions chosen from differ-
ent iterations of the original loop. This approach is most easily understood by
looking at the scheduled code for the superscalar version of MIPS, which ap-
peared in Figure 4.2 on page 231. The scheduler in this example essentially inter-
leaves instructions from different loop iterations, so as to separate the dependent
instructions that occur within a single loop iteration. By choosing instructions
from different iterations, dependent computations are separated from one another
by an entire loop body, increasing the possibility that the unrolled loop can be
scheduled without stalls.

A software-pipelined loop interleaves instructions from different iterations
without unrolling the loop, as illustrated in Figure 4.6. This technique is the soft-
ware counterpart to what Tomasulo’s algorithm does in hardware. The software-
pipelined loop for the earlier example would contain one load, one add, and one
store, each from a different iteration. There is also some start-up code that is
needed before the loop begins as well as code to finish up after the loop is com-
pleted. We will ignore these in this discussion, for simplicity; the topic is ad-
dressed in the Exercises.

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 249
E X A M P L E Show a software-pipelined version of this loop, which increments all the
elements of an array whose starting address is in R1 by the contents of
F2:

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

DADDUI R1,R1,#-8

BNE R1,R2,Loop

You may omit the start-up and clean-up code.

A N S W E R Software pipelining symbolically unrolls the loop and then selects instruc-
tions from each iteration. Since the unrolling is symbolic, the loop over-
head instructions (the DADDUI and BNE) need not be replicated. Here’s the
body of the unrolled loop without overhead instructions, highlighting the
instructions taken from each iteration:

FIGURE 4.6 A software-pipelined loop chooses instructions from different loop iter-
ations, thus separating the dependent instructions within one iteration of the original
loop. The start-up and finish-up code will correspond to the portions above and below the
software-pipelined iteration.

Software-
pipelined
iteration

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

250 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
Iteration i: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

Iteration i+1: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D 0(R1),F4

Iteration i+2: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

The selected instructions from different iterations are then put together in
the loop with the loop control instructions:

Loop: S.D F4,16(R1) ;stores into M[i]

ADD.D F4,F0,F2 ;adds to M[i-1]

L.D F0,0(R1) ;loads M[i-2]

DADDUI R1,R1,#-8

BNE R1,R2,Loop

This loop can be run at a rate of 5 cycles per result, ignoring the start-up
and clean-up portions, and assuming that DADDUI is scheduled after the
ADD.D and the L.D instruction, with an adjusted offset, is placed in the
branch delay slot. Because the load and store are separated by offsets of
16 (two iterations), the loop should run for two fewer iterations. (We ad-
dress this and the start-up and clean-up portions in Exercise 4.18.) Notice
that the reuse of registers (e.g., F4, F0, and R1) requires the hardware to
avoid the WAR hazards that would occur in the loop. This hazard should
not be a problem in this case, since no data-dependent stalls should
occur.

By looking at the unrolled version we can see what the start-up code
and finish code will need to be. For start-up, we will need to execute any
instructions that correspond to iteration 1 and 2 that will not be executed.
These instructions are the L.D for iterations 1 and 2 and the ADD.D for it-
eration 1. For the finish code, we need to execute any instructions that will
not be executed in the final two iterations. These include the ADD.D for the
last iteration and the S.D for the last two iterations. n

Register management in software-pipelined loops can be tricky. The example
above is not too hard since the registers that are written on one loop iteration are
read on the next. In other cases, we may need to increase the number of iterations
between when we issue an instruction and when the result is used. This increase
is required when there are a small number of instructions in the loop body and the
latencies are large. In such cases, a combination of software pipelining and loop
unrolling is needed. An example of this is shown in the Exercises.

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 251
Software pipelining can be thought of as symbolic loop unrolling. Indeed,
some of the algorithms for software pipelining use loop-unrolling algorithms to
figure out how to software pipeline the loop. The major advantage of software
pipelining over straight loop unrolling is that software pipelining consumes less
code space. Software pipelining and loop unrolling, in addition to yielding a bet-
ter scheduled inner loop, each reduce a different type of overhead. Loop unroll-
ing reduces the overhead of the loop—the branch and counter-update code.
Software pipelining reduces the time when the loop is not running at peak speed
to once per loop at the beginning and end. If we unroll a loop that does 100 itera-
tions a constant number of times, say 4, we pay the overhead 100/4 = 25 times—
every time the inner unrolled loop is initiated. Figure 4.7 shows this behavior
graphically. Because these techniques attack two different types of overhead, the
best performance can come from doing both.In practice, compilation using soft-
ware pipelining is quite difficult for several reasons: many loops require signifi-
cant transformation before they can be software pipelined, the tradeoffs in terms
of overhead versus efficiency of the software-Pipelined loop are complex, and the
issue of register management creates additional complexities. To help deal with
the last two of these issues, the IA-64 added extensive hardware support for soft-
ware pipelining. Although this hardware can make it more efficient to apply soft-
ware pipelining, it does not eliminate the need for complex compiler support, or
for the need to make difficult decisions about the best way to compile a loop.

Global Code Scheduling

In section 4.1 we examined the use of loop unrolling and code scheduling to im-
prove ILP. The techniques in section 4.1 work well when the loop body is
straightline code, since the resulting unrolled loop looks like a single basic block.
Similarly, software pipelining works well when the body is single basic block,
since it is easier to find the repeatable schedule. When the body of an unrolled
loop contains internal control flow, however, scheduling the code is much more
complex. In general, effective scheduling of a loop body with internal control
flow will require moving instructions across branches, which is global code
scheduling. In this section, we first examine the challenge and limitations of glo-
bal code scheduling. In section 4.5 we examine hardware support for eliminating
control flow within an inner loop; then, we examine two compiler techniques that
can be used when eliminating the control flow is not a viable approach.

Global code scheduling aims to compact a code fragment with internal control
structure into the shortest possible sequence that preserves the data and control
dependences. The data dependences force a partial order on operations, while the
control dependences dictate instructions across which code cannot be easily
moved. Data dependences are overcome by unrolling and, in the case of memory
operations, using dependence analysis to determine if two references refer to the
same address. Finding the shortest possible sequence for a piece of code means

252 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
finding the shortest sequence for the critical path, which is the longest sequence
of dependent instructions.

Control dependences arising from loop branches are reduced by unrolling.
Global code scheduling can reduce the effect of control dependences arising from
conditional nonloop branches by moving code. Since moving code across
branches will often affect the frequency of execution of such code, effectively us-
ing global code motion requires estimates of the relative frequency of different
paths. Although global code motion cannot guarantee faster code, if the frequen-
cy information is accurate, the compiler can determine whether such code move-
ment is likely to lead to faster code.

FIGURE 4.7 The execution pattern for (a) a software-pipelined loop and (b) an un-
rolled loop. The shaded areas are the times when the loop is not running with maximum
overlap or parallelism among instructions. This occurs once at the beginning and once at the
end for the software-pipelined loop. For the unrolled loop it occurs m/n times if the loop has a
total of m iterations and is unrolled n times. Each block represents an unroll of n iterations.
Increasing the number of unrollings will reduce the start-up and clean-up overhead. The over-
head of one iteration overlaps with the overhead of the next, thereby reducing the impact. The
total area under the polygonal region in each case will be the same, since the total number
of operations is just the execution rate multiplied by the time.

(a) Software pipelining

Proportional
to number of

unrolls

Overlap between
unrolled iterations

Time

Wind-down
code

Start-up
code

(b) Loop unrolling Time

Number
of

overlapped
operations

Number
of

overlapped
operations

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 253
Global code motion is important since many inner loops contain conditional
statements. Figure 4.8 shows a typical code fragment, which may be thought of
as an iteration of an unrolled loop and highlights the more common control flow.

Effectively scheduling this code could require that we move the assignments
to B and C to earlier in the execution sequence, before the test of A. Such global
code motion must satisfy a set of constraints to be legal. In addition, the move-
ment of the code associated with B, unlike that associated with C, is speculative:
it will speed the computation up only when the path containing the code would
be taken.

To perform the movement of B, we must ensure that neither the data flow nor
the exception behavior is changed. Compilers avoid changing the exception be-
havior by not moving certain classes of instructions, such as memory references,
that can cause exceptions. In section 4.5, we will see how hardware support allow
for more opportunities for speculative code motion as well as remove control de-
pendences. Although such enhanced support for speculation can make it possible
to explore more opportunities, the difficulty of choosing how to best compile the
code remains complex.

How can the compiler ensure that the assignments to B and C can be moved
without affecting the data flow? To see what’s involved, let’s look at a typical
code generation sequence for the flowchart in Figure 4.8. Assuming that the ad-
dresses for A, B, C are in R1, R2, and R3, respectively, here is such a sequence:

FIGURE 4.8 A code fragment and the common path shaded with gray. Moving the as-
signments to B or C requires a more complex analysis than for straightline code. In this sec-
tion we focus on scheduling this code segment efficiently without hardware assistance.
Predication or conditional instructions, which we discuss in the next section, provide another
way to schedule this code.

A[i] = A[i] + B[i]

T F

XB[i] =

A[i] = 0?

C[i] =

254 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
LD R4,0(R1) ; load A

LD R5,0(R2) ; load B

DADDU R4,R4,R5 ; Add to A

SD 0(R1),R4 ; Store A

...

BNEZ R4,elsepart ; Test A

... ; then part

SD 0(R2),... ; Stores to B

J join ; jump over else

elsepart:... ; else part

X ; code for X

...

join: ... ; after if

SD 0(R3),... ; store C[i]

Let’s first consider the problem of moving the assignment to B to before the
BNEZ instruction. Call the last instruction to assign to B before the if statement, i.
If B is referenced before it is assigned either in code segment X or after the if-
statement, call the referencing instruction j. If there is such an instruction j, then
moving the assignment to B will change the data flow of the program. In particu-
lar, moving the assignment to B will cause j to become data-dependent on the
moved version of the assignment to B rather than on i on which j originally de-
pended. One could imagine more clever schemes to allow B to be moved even
when the value is used: for example, in the first case, we could make a shadow
copy of B before the if statement and use that shadow copy in X. Such schemes
are usually avoided, both because they are complex to implement and because
they will slow down the program if the trace selected is not optimal and the oper-
ations end up requiring additional instructions to execute.

Moving the assignment to C up to before the first branch requires two steps.
First, the assignment is moved over the join point of the else part into the portion
corresponding to the then part. This movement makes the instructions for C con-
trol-dependent on the branch and means that they will not execute if the else path,
which is the infrequent path, is chosen. Hence, instructions that were data-depen-
dent on the assignment to C, and which execute after this code fragment, will be
affected. To ensure the correct value is computed for such instructions, a copy is
made of the instructions that compute and assign to C on the else path. Second,
we can move C from the then part of the branch across the branch condition, if it
does not affect any data flow into the branch condition. If C is moved to before
the if-test, the copy of C in the else branch can usually be eliminated, since it will
be redundant.

We can see from this example that global code scheduling is subject to many
constraints. This observation is what led designers to provide hardware support to
make such code motion easier, and section 4.5 explores such support in detail.

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 255
Global code scheduling also requires complex tradeoffs to make code motion
decisions. For example, assuming that the assignment to B can be moved before
the conditional branch (possibly with some compensation code on the alternative
branch) will this movement make the code run faster? The answer is: possibly!
Similarly, moving the copies of C into the if and else branches, makes the code
initially bigger! Only if the compiler can successfully move the computation
across the if-test will there be a likely benefit.

Consider the factors that the compiler would have to consider in moving the
computation and assignment of B:

n What are the relative execution frequencies of the then-case and the else-case
in the branch? If the then-case is much more frequent, the code motion may be
beneficial. If not, it is less likely, although not impossible to consider moving
the code.

n What is the cost of executing the computation and assignment to B above the
branch? It may be that there are a number of empty instruction issue slots in the
code above the branch and that the instructions for B can be placed into these
slots that would otherwise go empty. This opportunity makes the computation
of B “free” at least to first order.

n How will the movement of B change the execution time for the then-case? If B
is at the start of the critical path for the then-case, moving it may be highly ben-
eficial.

n Is B the best code fragment that can be moved above the branch? How does it
compare with moving C or other statements within the then-case?

n What is the cost of the compensation code that may be necessary for the else-
case? How effectively can this code be scheduled and what is its impact on ex-
ecution time?

As we can see from this partial list, global code scheduling is an extremely
complex problem. The tradeoffs depend on many factors and individual decisions
to globally schedule instructions are highly interdependent. Even choosing which
instructions to start considering as candidates for global code motion is complex!

To try to simplify this process, several different methods for global code
scheduling have been developed. The two methods we briefly explore here rely
on a simple principle: focus the attention of the compiler on a straightline code
segment representing what is estimated to be the most frequently executed code
path. Unrolling is used to generate the straightline code, but, of course, the com-
plexity arises in how conditional branches are handled. In both cases, they are ef-
fectively straightened by choosing and scheduling the most frequent path.

256 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
Trace Scheduling: Focusing on the Critical Path
Trace scheduling is useful for processors with a large number of issues per clock,
where conditional or predicated execution (see Section 4.5) is inappropriate or
unsupported, and where simple loop unrolling may not be sufficient by itself to
uncover enough ILP to keep the processor busy. Trace scheduling is a way to or-
ganize the global code motion process, so as to simplify the code scheduling by
incurring the costs of possible code motion on the less frequent paths. Because it
can generate significant overheads on the designated infrequent path, it is best
used where profile information indicates significant differences in frequency be-
tween different paths and where the profile information is highly indicative of
program behavior independent of the input. Of course, this limits its effective ap-
plicability to certain classes of programs.

There are two steps to trace scheduling. The first step, called trace selection,
tries to find a likely sequence of basic blocks whose operations will be put togeth-
er into a smaller number of instructions; this sequence is called a trace. Loop un-
rolling is used to generate long traces, since loop branches are taken with high
probability. Additionally, by using static branch prediction, other conditional
branches are also chosen as taken or not taken, so that the resultant trace is a
straight-line sequence resulting from concatenating many basic blocks. If, for ex-
ample, the program fragment shown in Figure 4.8 on page 253 corresponds to an
inner loop with the highlighted path being much more frequent, and the loop were
unwound four times, the primary trace would consist of four copies of the shaded
portion of the program, as shown in Figure 4.9. .

Once a trace is selected, the second process, called trace compaction, tries to
squeeze the trace into a small number of wide instructions. Trace compaction is
code scheduling; hence, it attempts to move operations as early as it can in a se-
quence (trace), packing the operations into as few wide instructions (or issue pack-
ets) as possible.

The advantage of the trace scheduling approach is that it simplifies the deci-
sions concerning global code motion. In particular, branches are viewed as jumps
into or out of the selected trace, which is assumed to the most probable path.
When code is moved across such trace entry and exit points, additional book-
keeping code will often be needed on the entry or exit point. The key assumption
is that the trace is so much more probable than the alternatives that the cost of the
bookkeeping code need not be a deciding factor: if an instruction can be moved
and make the main trace execute faster, it is moved.

Although trace scheduling has been successfully applied to scientific code
with its intensive loops and accurate profile data, it remains unclear whether this
approach is suitable for programs that are less simply characterized and less
loop-intensive. In such programs, the significant overheads of compensation code
may make trace scheduling an unattractive approach, or, at best, its effective use
will be extremely complex for the compiler.

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 257
FIGURE 4.9 This trace is obtained by assuming that the program fragment in Figure
4.8 is the inner loop and unwinding it four times treating the shaded portion in Figure
4.8 as the likely path. The trace exits correspond to jumps off the frequent path, and the
trace entrances correspond to returns to the trace.

A[i] = A[i] + B[i]

T F

B[i] =

A[i] = 0?

C[i] =

Trace exit

Trace entrance

A[i] = A[i] + B[i]

T F

B[i] =

A[i] = 0?

C[i] =

Trace exit

Trace entrance

A[i] = A[i] + B[i]

T F

B[i] =

A[i] = 0?

C[i] =

Trace exit

Trace entrance

A[i] = A[i] + B[i]

T F

B[i] =

A[i] = 0?

C[i] =

Trace exit

258 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
Superblocks
One of the major drawbacks of trace scheduling is that the entries and exits into
the middle of the trace cause significant complications requiring the compiler to
generate and track the compensation code and often making it difficult to assess
the cost of such code. Superblocks are formed by a process similar to that used
for traces, but, are a form of extended basic blocks, which are restricted to have a
a single entry point but allow multiple exits.

Because superblocks have only a single entry point, compacting a superblock
is easier than compacting a trace since only code motion across an exit need be
considered. In our earlier example, we would form superblock that did not con-
tain any entrances and hence, moving C would be easier. Furthermore, in loops
that have a single loop exit based on a count (for example, a for-loop with no loop
exit other than the loop termination condition), the resulting superblocks have
only one exit as well as one entrance. Such blocks can then be scheduled more
easily.

How can a superblock with only one entrance be constructed? The answer is
to use tail duplication to create a separate block that corresponds to the portion of
the trace after the entry. In our example above, each unrolling of the loop would
create an exit from the superblock to a residual loop that handles the remaining it-
erations. Figure 4.10 shows the superblock structure if the code fragment from
Figure 4.8 is treated as the body of an inner loop and unrolled four times. The re-
sidual loop handles any iterations that occur if the superblock is exited, which, in
turn, occurs when the unpredicted path is selected. If the expected frequency of
the residual loop were still high, a superblock could be created for that loop as
well.

The superblock approach reduces the complexity of bookkeeping and sched-
uling versus the more general trace generation approach, but may enlarge code
size more than a trace-based approach. Like trace scheduling, superblock sched-
uling my be most appropriate when other techniques (if-conversion, e.g.) fail.
Even in such cases, assessing the cost of code duplication may limit the useful-
ness of the approach and will certainly complicate the compilation process.

Loop unrolling, software pipelining, trace scheduling, and superblock sched-
uling all aim at trying to increase the amount of ILP that can be exploited by a
processor issuing more than one instruction on every clock cycle. The effective-
ness of each of these techniques and their suitability for various architectural ap-
proaches are among the hottest topics being actively pursued by researchers and
designers of high-speed processors.

4.4 Advanced Compiler Support for Exposing and Exploiting ILP 259
FIGURE 4.10 This superblock results from unrolling the code in Figure 4.8 four times
and creating a superblock.

A[i] = A[i] + B[i]

T F

B[i] =

A[i] = 0?

C[i] =

A[i] = A[i] + B[i]

T

F

B[i] =

A[i] = 0?

C[i] =

A[i] = A[i] + B[i]

T F

B[i] =

A[i] = 0?

C[i] =

A[i] = A[i] + B[i]

T F

B[i] =

A[i] = 0?

C[i] =

A[i] = A[i] + B[i]

T F

XB[i] =

A[i] = 0?

C[i] =

Execute
n times

Superblock exit
with n=4

Superblock exit
with n=3

Superblock exit
with n=2

Superblock exit
with n=1

260 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
Techniques such as loop unrolling, software pipelining, and trace scheduling can
be used to increase the amount of parallelism available when the behavior of
branches is fairly predictable at compile time. When the behavior of branches is
not well known, compiler techniques alone may not be able to uncover much ILP.
In such cases, the control dependences may severely limit the amount of parallel-
ism that can be exploited. Similarly, potential dependences between memory ref-
erence instructions could prevent code movement that would increase available
ILP. This section introduces several techniques that can help overcome such limi-
tations.

The first is an extension of the instruction set to include conditional or predi-
cated instructions. Such instructions can be used to eliminate branches convert-
ing a control dependence into a data dependence and potentially improving
performance. Such approaches are useful with either the hardware-intensive
schemes of the last chapter or the software-intensive approaches discussed in this
chapter, since in both cases, predication can be used to eliminate branches.

Hardware speculation with in-order commit preserved exception behavior by
detecting and raising exceptions only at commit time when the instruction was no
longer speculative. To enhance the ability of the compiler to speculatively move
code over branches, while still preserving the exception behavior, we consider
several different methods, which either include explicit checks for exceptions or
techniques to ensure that only those exceptions that should arise are generated.

Finally, the hardware speculation schemes of the last chapter provided support
for reordering loads and stores, by checking for potential address conflicts at
runtime. To allow the compiler to reorder loads and stores when it suspects they
do not conflict, but cannot be absolutely certain, a mechanism for checking for
such conflicts can be added to the hardware. This mechanism permits additional
opportunities for memory reference speculation.

Conditional or Predicated Instructions

The concept behind conditional instructions is quite simple: An instruction refers
to a condition, which is evaluated as part of the instruction execution. If the con-
dition is true, the instruction is executed normally; if the condition is false, the
execution continues as if the instruction was a no-op. Many newer architectures
include some form of conditional instructions. The most common example of
such an instruction is conditional move, which moves a value from one register to
another if the condition is true. Such an instruction can be used to completely
eliminate a branch in simple code sequences.

4.5 Hardware Support for Exposing More
Parallelism at Compile-Time

4.5 Hardware Support for Exposing More Parallelism at Compile-Time 261
E X A M P L E Consider the following code:

if (A==0) {S=T;}

Assuming that registers R1, R2, and R3 hold the values of A, S, and T,
respectively, show the code for this statement with the branch and with the
conditional move.

A N S W E R The straightforward code using a branch for this statement is (remember
that we are assuming normal rather than delayed branches)

BNEZ R1,L

ADDU R2,R3,R0

L:

Using a conditional move that performs the move only if the third operand
is equal to zero, we can implement this statement in one instruction:

CMOVZ R2,R3,R1

The conditional instruction allows us to convert the control dependence
present in the branch-based code sequence to a data dependence. (This
transformation is also used for vector computers, where it is called if-
conversion.) For a pipelined processor, this moves the place where the
dependence must be resolved from near the front of the pipeline, where
it is resolved for branches, to the end of the pipeline where the register
write occurs. n

One obvious use for conditional move is to implement the absolute value
function: A = abs (B), which is implemented as if (B<0) {A=-B;) else
{A=B;}. This if statement can be implemented as a pair of conditional moves,
or as one unconditional move (A=B) and one conditional move (A=-B).

In the example above or in the compilation of absolute value, conditional
moves are used to change a control dependence into a data dependence. This en-
ables us to eliminate the branch and possibly improve the pipeline behavior. As
issue rates increase, designers are faced with one of two choices: execute multi-
ple branches per clock cycle or find a method to eliminate branches to avoid this
requirement. Handling multiple branches per clock is complex, since one branch
must be control dependent on the other. The difficulty of accurately predicting
two branch outcomes, updating the prediction tables, and executing the correct
sequence, has so far caused most designers to avoid processors that execute mul-
tiple branches per clock. Conditional moves and predicated instructions provide a
way of reducing the branch pressure. In addition, a conditional move can often
eliminate a branch that is hard to predict, increasing the potential gain.

Conditional moves are the simplest form of conditional or predicated instruc-
tions, and although useful for short sequences, have limitations. In particular, us-
ing conditional move to eliminate branches that guard the execution of large
blocks of code can be inefficient, since many conditional moves may need to be
introduced.

262 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
To remedy the inefficiency of using conditional moves, some architectures
support full predication, whereby the execution of all instructions is controlled by
a predicate. When the predicate is false, the instruction becomes a no-op. Full
predication allows us to simply convert large blocks of code that are branch de-
pendent. For example, an if-then-else statement within a loop can be entirely con-
verted to predicated execution, so that the code in the then-case executes only if
the value of the condition is true, and the code in the else-case executes only if
the value of the condition is false. Predication is particularly valuable with global
code scheduling, since it can eliminate nonloop branches, which significantly
complicate instruction scheduling.

Predicated instructions can also be used to speculatively move an instruction
that is time-critical, but may cause an exception if moved before a guarding
branch. Although it is possible to do this with conditional move, it is more costly,
as we explore in the exercises.

E X A M P L E Here is a code sequence for a two-issue superscalar that can issue a
combination of one memory reference and one ALU operation, or a
branch by itself, every cycle:

This sequence wastes a memory operation slot in the second cycle and
will incur a data dependence stall if the branch is not taken, since the sec-
ond LW after the branch depends on the prior load. Show how the code
can be improved using a predicated form of LW.

A N S W E R Call the predicated version load word LWC and assume the load occurs
unless the third operand is 0. The LW immediately following the branch can
be converted to a LWC and moved up to the second issue slot:

First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5

ADD R6,R3,R7

BEQZ R10,L

LW R8,0(R10)

LW R9,0(R8)

First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5

LWC R8,20(R10),R10 ADD R6,R3,R7

BEQZ R10,L

LW R9,0(R8)

4.5 Hardware Support for Exposing More Parallelism at Compile-Time 263
This improves the execution time by several cycles since it eliminates one
instruction issue slot and reduces the pipeline stall for the last instruction
in the sequence. Of course, if the compiler mispredicted the branch, the
predicated instruction will have no effect and will not improve the running
time. This is why the transformation is speculative.

If the sequence following the branch were short, the entire block of
code might be converted to predicated execution, and the branch elimi-
nated. n

When we convert an entire code segment to predicated execution or specula-
tively move an instruction and make it predicted, we remove a control depen-
dence. Correct code generation and the conditional execution of predicated
instructions ensure that we maintain the data flow enforced by the branch. To en-
sure that the exception behavior is also maintained, a predicated instruction must
not generate an exception if the predicate is false. The property of not causing ex-
ceptions is quite critical, as the Example above shows: If register R10 contains ze-
ro, the instruction LW R8,0(R10) executed unconditionally is likely to cause a
protection exception, and this exception should not occur. Of course, if the condi-
tion is satisfied (i.e. R10 is not zero), the LW may still cause a legal and resumable
exception (e.g., a page fault), and the hardware must take the exception when it
knows that the controlling condition is true.

The major complication in implementing predicated instructions is deciding
when to annul an instruction. Predicated instructions may either be annulled dur-
ing instruction issue or later in the pipeline before they commit any results or
raise an exception. Each choice has a disadvantage. If predicated instructions are
annulled early in the pipeline, the value of the controlling condition must be
known early to prevent a stall for a data hazard. Since data dependent branch con-
ditions, which tend to be less predictable, are candidates for conversion to predi-
cated execution, this choice can lead to more pipeline stalls. Because of this
potential for data hazard stalls, no design with predicated execution (or condi-
tional move) annuls instructions early. Instead, all existing processors annul in-
structions later in the pipeline, which means that annulled instructions will
consume functional unit resources and potentially have a negative impact on per-
formance. A variety of other pipeline implementation techniques, such as for-
warding, interact with predicated instructions further complicating the
implementation.

Predicated or conditional instructions are extremely useful for implementing
short alternative control flows, for eliminating some unpredictable branches, and
for reducing the overhead of global code scheduling. Nonetheless, the usefulness
of conditional instructions is limited by several factors:

n Predicated instructions that are annulled (i.e., whose conditions are false) still
take some processor resources. An annulled predicated instruction requires
fetch resources at a minimum, and in most processors functional unit execution

264 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
time. Therefore, moving an instruction across a branch and making it condi-
tional will slow the program down whenever the moved instruction would not
have been normally executed. Likewise, predicating a control dependent por-
tion of code and eliminating a branch may slow down the processor if that code
would not have been executed. An important exception to these situations oc-
curs when the cycles used by the moved instruction when it is not performed
would have been idle anyway (as in the superscalar example above). Moving
an instruction across a branch or converting a code segment to predicated exe-
cution is essentially speculating on the outcome of the branch. Conditional in-
structions make this easier but do not eliminate the execution time taken by an
incorrect guess. In simple cases, where we trade a conditional move for a
branch and a move, using conditional moves or predication is almost always
better. When longer code sequences are made conditional, the benefits are
more limited.

n Predicated instructions are most useful when the predicate can be evaluated
early. If the condition evaluation and predicated instructions cannot be separat-
ed (because of data dependences in determining the condition), then a condi-
tional instruction may result in a stall for a data hazard. With branch prediction
and speculation, such stalls can be avoided, at least when the branches are pre-
dicted accurately.

n The use of conditional instructions can be limited when the control flow in-
volves more than a simple alternative sequence. For example, moving an in-
struction across multiple branches requires making it conditional on both
branches, which requires two conditions to be specified or requires additional
instructions to compute the controlling predicate. If such capabilities are not
present, the overhead of if-conversion will be larger, reducing its advantage.

n Conditional instructions may have some speed penalty compared with uncon-
ditional instructions. This may show up as a higher cycle count for such instruc-
tions or a slower clock rate overall. If conditional instructions are more
expensive, they will need to be used judiciously.

For these reasons, many architectures have included a few simple conditional in-
structions (with conditional move being the most frequent), but only a few archi-
tectures include conditional versions for the majority of the instructions. The
MIPS, Alpha, Power-PC, SPARC and Intel x86 (as defined in the Pentium pro-
cessor) all support conditional move. The IA-64 architecture supports full predi-
cation for all instructions, as we will see section 4.7.

Compiler Speculation with Hardware Support

As we saw earlier in this chapter, many programs have branches that can be accu-
rately predicted at compile time either from the program structure or by using a
profile. In such cases, the compiler may want to speculate either to improve the

4.5 Hardware Support for Exposing More Parallelism at Compile-Time 265
scheduling or to increase the issue rate. Predicated instructions provide one meth-
od to speculate, but they are really more useful when control dependences can be
completely eliminated by if-conversion. In many cases, we would like to move
speculated instructions not only before branch, but before the condition evalua-
tion, and predication cannot achieve this.

As pointed out earlier, to speculate ambitiously requires three capabilities:

1. the ability of the compiler to find instructions that, with the possible use of reg-
ister renaming, can be speculatively moved and not affect the program data
flow,

2. the ability to ignore exceptions in speculated instructions, until we know that
such exceptions should really occur, and

3. the ability to speculatively interchange loads and stores, or stores and stores,
which may have address conflicts.

The first of these is a compiler capability, while the last two require hardware
support, which we explore next.

Hardware Support for Preserving Exception Behavior
To speculate ambitiously, we must be able to move any type of instruction and
still preserve its exception behavior. The key to being able to do this is to observe
that the results of a speculated sequence that is mispredicted will not be used in
the final computation, and such a speculated instruction should not cause an ex-
ception.

There are four methods that have been investigated for supporting more ambi-
tious speculation without introducing erroneous exception behavior:

1. The hardware and operating system cooperatively ignore exceptions for spec-
ulative instructions. As we will see below, this approach preserves exception
behavior for correct programs, but not for incorrect ones. This approach may
be viewed as unacceptable for some programs, but it has been used, under pro-
gram control, as a “fast mode” in several processors.

2. Speculative instructions that never raise exceptions are used, and checks are
introduced to determine when an exception should occur.

3. A set of status bits, called poison bits, are attached to the result registers writ-
ten by speculated instructions when the instructions cause exceptions. The
poison bits cause a fault when a normal instruction attempts to use the register.

4. A mechanism is provided to indicate that an instruction is speculative and the
hardware buffers the instruction result until it is certain that the instruction is
no longer speculative.

266 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
To explain these schemes, we need to distinguish between exceptions that in-
dicate a program error and would normally cause termination, such as a memory
protection violation, and those that are handled and normally resumed, such as a
page fault. Exceptions that can be resumed can be accepted and processed for
speculative instructions just as if they were normal instructions. If the speculative
instruction should not have been executed, handling the unneeded exception may
have some negative performance effects, but it cannot cause incorrect execution.
The cost of these exceptions may be high, however, and some processors use
hardware support to avoid taking such exceptions, just as processors with hard-
ware speculation may take some exceptions in speculative mode, while avoiding
others until an instruction is known not to be speculative.

Exceptions that indicate a program error should not occur in correct programs,
and the result of a program that gets such an exception is not well defined, except
perhaps when the program is running in a debugging mode. If such exceptions
arise in speculated instructions, we cannot take the exception until we know that
the instruction is no longer speculative.

In the simplest method for preserving exceptions, the hardware and the operat-
ing system simply handle all resumable exceptions when the exception occurs
and simply return an undefined value for any exception that would cause termina-
tion. If the instruction generating the terminating exception was not speculative,
then the program is in error. Note that instead of terminating the program, the
program is allowed to continue, though it will almost certainly generate incorrect
results. If the instruction generating the terminating exception is speculative, then
the program may be correct and the speculative result will simply be unused;
thus, returning an undefined value for the instruction cannot be harmful. This
scheme can never cause a correct program to fail, no matter how much specula-
tion is done. An incorrect program, which formerly might have received a termi-
nating exception, will get an incorrect result. This is acceptable for some
programs, assuming the compiler can also generate a normal version of the pro-
gram, which does not speculate and can receive a terminating exception.

E X A M P L E Consider the following code fragment from an if-then-else statement of
the form

if (A==0) A = B; else A = A+4;

where A is at 0(R3) and B is at 0(R2):

LD R1,0(R3) ;load A

BNEZ R1,L1 ;test A

LD R1,0(R2) ;then clause

J L2 ;skip else

L1: DADDI R1,R1,#4 ;else clause

L2: SD 0(R3),R1 ;store A

Assume the then clause is almost always executed. Compile the code
using compiler-based speculation. Assume R14 is unused and available.

4.5 Hardware Support for Exposing More Parallelism at Compile-Time 267
A N S W E R Here is the new code:

LD R1,0(R3) ;load A

LD R14,0(R2) ;speculative load B

BEQZ R1,L3 ;other branch of the if

DADDI R14,R1,#4 ;the else clause

L3: SD 0(R3),R14 ;nonspeculative store

The then clause is completely speculated. We introduce a temporary
register to avoid destroying R1 when B is loaded; if the load is speculative
R14 will be useless. After the entire code segment is executed, A will be
in R14. The else clause could have also been compiled speculatively with
a conditional move, but if the branch is highly predictable and low cost,
this might slow the code down, since two extra instructions would always
be executed as opposed to one branch. n

In such a scheme, it is not necessary to know that an instruction is speculative.
Indeed, it is helpful only when a program is in error and receives a terminating
exception on a normal instruction; in such cases, if the instruction were not
marked as speculative, the program could be terminated.

In this method for handling speculation, as in the next one, renaming will of-
ten be needed to prevent speculative instructions from destroying live values. Re-
naming is usually restricted to register values. Because of this restriction, the
targets of stores cannot be destroyed and stores cannot be speculative. The small
number of registers and the cost of spilling will act as one constraint on the
amount of speculation. Of course, the major constraint remains the cost of exe-
cuting speculative instructions when the compiler’s branch prediction is incor-
rect.

A second approach to preserving exception behavior when speculating intro-
duces speculative versions of instructions that do not generate terminating excep-
tions and instructions to check for such exceptions. This combination preserves
the exception behavior exactly.

E X A M P L E Show how the previous example can be coded using a speculative load
(sLD) and a speculation check instruction (SPECCK) to completely pre-
serve exception behavior. Assume R14 is unused and available.

A N S W E R Here is the code that achieves this:

LD R1,0(R3) ;load A

sLD R14,0(R2) ;speculative, no termination

BNEZ R1,L1 ;test A

SPECCK 0(R2) ;perform speculation check

268 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
J L2 ;skip else

L1: DADDI R14,R1,#4 ;else clause

L2: SD 0(R3),R14 ;store A

Notice that the speculation check requires that we maintain a basic block
for the then-case. If we had speculated only a portion of the then-case,
then a basic block representing the then-case would exist in any event.
More importantly, notice that checking for a possible exception requires
extra code. n

A third approach for preserving exception behavior tracks exceptions as they
occur but postpones any terminating exception until a value is actually used, pre-
serving the occurrence of the exception, although not in a completely precise
fashion. The scheme is simple: A poison bit is added to every register and another
bit is added to every instruction to indicate whether the instruction is speculative.
The poison bit of the destination register is set whenever a speculative instruction
results in a terminating exception; all other exceptions are handled immediately.
If a speculative instruction uses a register with a poison bit turned on, the destina-
tion register of the instruction simply has its poison bit turned on. If a normal in-
struction attempts to use a register source with its poison bit turned on, the
instruction causes a fault. In this way, any program that would have generated an
exception still generates one, albeit at the first instance where a result is used by an
instruction that is not speculative. Since poison bits exist only on register values
and not memory values, stores are never speculative and thus trap if either operand
is “poison.”

E X A M P L E Consider the code fragment from page 267 and show how it would be
compiled with speculative instructions and poison bits. Show where an
exception for the speculative memory reference would be recognized.
Assume R14, is unused and available.

A N S W E R Here is the code (an ”s” proceeding the opcode indicates a speculative in-
struction):

LD R1,0(R3) ;load A

sLD R14,0(R2) ;speculative load B

BEQZ R1,L3 ;

DADDI R14,R1,#4 ;

L3: SD 0(R3),R14 ;exception for speculative LW

If the speculative sLD generates a terminating exception, the poison bit of
R14 will be turned on. When the nonspeculative SW instruction occurs, it
will raise an exception if the poison bit for R14 is on. n

One complication that must be overcome is how the OS saves the user regis-
ters on a context switch if the poison bit is set. A special instruction is needed to
save and reset the state of the poison bits to avoid this problem.

4.5 Hardware Support for Exposing More Parallelism at Compile-Time 269
The fourth and final approach listed above relies on a hardware mechanism
that operates like a reorder buffer. In such an approach, instructions are marked
by the compiler as speculative and include an indicator of how many branches the
instruction was speculatively moved across and what branch action (taken/not
taken) the compiler assumed. This last piece of information basically tells the
hardware the location of the code block where the speculated instruction original-
ly was. In practice, most of the benefit of speculation is gained by allowing
movement across a single branch, and, thus, only one bit saying whether the
speculated instruction came from the taken or not taken path is required. Alterna-
tively, the original location of the speculative instruction is marked by a sentinel,
which tells the hardware that the earlier speculative instruction is no longer spec-
ulative and values may be committed.

All instructions are placed in a reorder buffer when issued and are forced to
commit in order, as in a hardware speculation approach. (Notice, though that no
actual speculative branch prediction or dynamic scheduling occurs.) The reorder
buffer tracks when instructions are ready to commit and delays the “write back”
portion of any speculative instruction. Speculative instructions are not allowed to
commit until the branches they have been speculatively moved over are also
ready to commit, or, alternatively, until the corresponding sentinel is reached. At
that point, we know whether the speculated instruction should have been execut-
ed or not. If it should have been executed and it generated a terminating excep-
tion, then we know that the program should be terminated. If the instruction
should not have been executed, then the exception can be ignored. Notice that the
compiler, rather than the hardware, has the job of register renaming to ensure cor-
rect usage of the speculated result, as well as correct program execution.

Hardware Support for Memory Reference Speculation

Moving loads across stores is usually done when the compiler is certain the ad-
dresses do not conflict. As we saw with the examples in section 4.1, such trans-
formations are critical to reducing the critical path length of a code segment. To
allow the compiler to undertake such code motion, when it cannot be absolutely
certain that such a movement is correct, a special instruction to check for address
conflicts can be included in the architecture. The special instruction is left at the
original location of the load instruction (and acts like a guardian) and the load is
moved up across one or more stores.

When a speculated load is executed, the hardware saves the address of the ac-
cessed memory location. If a subsequent store changes the location before the
check instruction, then the speculation has failed. If the location has not been
touched then the speculation is successful. Speculation failure can be handled in
two ways. If only the load instruction was speculated, then it suffices to redo the
load at the point of the check instruction (which could supply the target register
in addition to the memory address). If additional instructions that depended on
the load were also speculated, then a fix-up sequence that re-executes all the

270 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
speculated instructions starting with the load is needed. In this case, the check in-
struction specifies the address where the fix-up code is located.

In this section we have seen a variety of hardware assist mechanisms. Such
mechanisms are key to achieving good support with the compiler intensive ap-
proaches of this chapter. In addition, several of them can be easily integrated in
the hardware-intensive approaches of the prior chapter and provide additional
benefits.

Hardware versus Software Speculation Mechanisms

The hardware-intensive approaches to speculation in the previous chapter and the
software approaches of this chapter provide alternative approaches to exploiting
ILP. Some of the tradeoffs, and the limitations, for these approaches are listed be-
low:

n To speculate extensively, we must be able to disambiguate memory references.
This capability is difficult to do at compile time for integer programs that con-
tain pointers. In a hardware-based scheme, dynamic runtime disambiguation of
memory addresses is done using the techniques we saw earlier for Tomasulo’s
algorithm. This disambiguation allows us to move loads past stores at runtime.
Support for speculative memory references can help overcome the conserva-
tism of the compiler, but unless such approaches are used carefully, the over-
head of the recovery mechanisms may swamp the advantages.

n Hardware-based speculation works better when control flow is unpredictable,
and when hardware-based branch prediction is superior to software-based
branch prediction done at compile time. These properties hold for many integer
programs. For example, a good static predictor has a misprediction rate of
about 16% for four major integer SPEC92 programs, and a hardware predictor
has a misprediction rate of under 10%. Because speculated instructions may
slow down the computation when the prediction is incorrect, this difference is
significant. One result of this difference is that even statically scheduled pro-
cessors normally include dynamic branch predictors.

n Hardware-based speculation maintains a completely precise exception model
even for speculated instructions. Recent software-based approaches have add-
ed special support to allow this as well.

n Hardware-based speculation does not require compensation or bookkeeping
code, which is needed by ambitious software speculation mechanisms.

n Compiler-based approaches may benefit from the ability to see further in the
code sequence, resulting in better code scheduling than a purely hardware-driv-

4.6 Crosscutting Issues

4.7 Putting It All Together: The Intel IA-64 Architecture and Itanium Processor 271
en approach.

n Hardware-based speculation with dynamic scheduling does not require differ-
ent code sequences to achieve good performance for different implementations
of an architecture. Although this advantage is the hardest to quantify, it may be
the most important in the long run. Interestingly, this was one of the motiva-
tions for the IBM 360/91. On the other hand, more recent explicitly parallel ar-
chitectures, such as IA-64, have added flexibility that reduces the hardware
dependence inherent in a code sequence.

Against these advantages stands a major disadvantage: supporting speculation in
hardware is complex and requires additional hardware resources. This hardware
cost must be evaluated against both the complexity of a compiler for a software-
based approach and the amount and usefulness of the simplifications in a proces-
sor that relies on such a compiler. We return to this topic in the concluding re-
marks.

Some designers have tried to combine the dynamic and compiler-based ap-
proaches to achieve the best of each. Such a combination can generate interesting
and obscure interactions. For example, if conditional moves are combined with
register renaming, a subtle side-effect appears. A conditional move that is an-
nulled must still copy a value to the destination register, since it was renamed ear-
lier in the instruction pipeline. These subtle interactions complicate the design
and verification process and can also reduce performance. For example, in the
Alpha 21264 this problem is overcome by mapping conditional to two instruc-
tions in the pipeline.

This section is an overview of the Intel IA-64 architecture and the initial imple-
mentation, the Itanium processor

The Intel IA-64 Instruction Set Architecture

The IA-64 is a RISC-style, register-register instruction set, but with many novel
features designed to support compiler-based exploitation of ILP. Our focus here
is on the unique aspects of the IA-64 ISA. Most of these aspects have been dis-
cussed already in this chapter, including predication, compiler-based parallelism
detection, and support for memory reference speculation.

The IA-64 Register Model
The components of the IA-64 register state are:

4.7 Putting It All Together: The Intel IA-64 Architecture
and Itanium Processor

272 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
n 128 64-bit general-purpose registers, which as we will see shortly are actually
65 bits wide;

n 128 82-bit floating point registers, which provides two extra exponent bits over
the standard 80-bit IEEE format,

n 64 1-bit predicate registers,

n 8 64-bit branch registers, which are used for indirect branches, and

n a variety of registers used for system control, memory mapping, performance
counters, and communication with the OS.

The integer registers are configured to help accelerate procedure calls using a
register stack mechanism similar to that developed in the Berkeley RISC-I pro-
cessor and used in the SPARC architecture. Registers 0-31 are always accessible
and are addressed as 0-31. Registers 32-128 are used as a register stack and each
procedure is allocated a set of registers (from 0 to 96) for its use.The new register
stack frame is created for a called procedure by renaming the registers in hard-
ware; a special register called the current frame pointer (CFM) points to the set of
registers to be used by a given procedure. The frame consists of two parts: the lo-
cal area and the output area. The local area is used for local storage, while the
output area is used to pass values to any called procedure. The alloc instruction
specifies the size of these areas. Only the integer registers have register stack sup-
port.

On a procedure call, the CFM pointer is updated so that R32 of the called pro-
cedure points to the first register of the output area of the called procedure. This
update enables the parameters of the caller to be passed into the addressable reg-
isters of the callee. The callee executes an alloc instruction to allocate both the
number of required local registers, which include the output registers of the call-
er, and the number of output registers needed for parameter passing to a called
procedure. Special load and store instructions are available for saving and restor-
ing the register stack, and special hardware (called the register stack engine) han-
dles overflow of the register stack.

In addition to the integer registers, there are three other sets of registers: the
floating point registers, the predicate registers, and the branch registers. The float-
ing point registers are used for floating point data, and the branch registers are
used to hold branch destination addresses for indirect branches. The predication
registers hold predicates, which control the execution of predicated instructions;
we describe the predication mechanism later in this section.

Both the integer and floating point registers support register rotation for regis-
ters 32-128. Register rotation is designed to ease the task of allocating of regis-
ters in software pipelined loops, a problem that we discussed in Section 4.4. In
addition, when combined with the use of predication, it is possible to avoid the
need for unrolling and for separate prologue and epilogue code for a software
pipelined loop This capability reduces the code expansion incurred to use soft-

4.7 Putting It All Together: The Intel IA-64 Architecture and Itanium Processor 273
ware pipelining and makes the technique usable for loops with smaller numbers
of iterations, where the overheads would traditionally negate many of the advan-
tages.

Instruction Format and Support for Explicit Parallelism
The IA-64 architecture is designed to achieve the major benefits of a VLIW-ap-
proach–implicit parallelism among operations in an instruction and fixed format-
ting of the operation fields–while maintaining greater flexibility than a VLIW
normally allows. This combination is achieved by relying on the compiler to de-
tect ILP and schedule instructions into parallel instruction slots, but adding flexi-
bility in the formatting of instructions and allowing the compiler to indicate when
an instruction cannot be executed in parallel with its successors.

The IA-64 architecture uses two different concepts to achieve the benefits of
implicit parallelism and ease of instruction decode. Implicit parallelism is
achieved by placing instructions into instruction groups, while the fixed format-
ting of multiple instructions is achieved through the introduction of a concept
called a bundle, which contains three instructions. Let’s start by defining an in-
struction group.

An instruction group is a sequence of consecutive instructions with no register
data dependences among them (there are a few minor exceptions). All the instruc-
tions in a group could be executed in parallel, if sufficient hardware resources ex-
isted and if any dependences through memory were preserved. An instruction
group can be arbitrarily long, but the compiler must explicitly indicate the bound-
ary between one instruction group and another. This boundary is indicated by
placing a stop between two instructions that belong to different groups. To under-
stand how stops are indicated, we must first explain how instructions are placed
into bundles.

IA-64 instructions are encoded in bundles, which are 128 bits wide. Each bun-
dle consists of a five-bit template field and three instructions, each 41 bits in
length. To simply the decoding and instruction issue process, the template field of
a bundle specifies what types of execution unit each instruction in the bundle re-
quires. Figure 4.11 shows the five different execution unit types and describes
what instruction classes they may hold, together with some examples.

 The five-bit template field within each bundle describes both the presence of
any stops associated with the bundle and the execution unit type required by each
instruction within the bundle. Figure 4.12 shows the possible formats that the
template field encodes and the position of any stops it specifies. The bundle for-
mats can specify only a subset of all possible combinations of instruction types
and stops. To see how the bundle works, let’s consider an example.

E X A M P L E Unroll the array increment example, x[i] = x[i] +s (introduced on page 223),
seven times (see page 236 for the unrolled code) and place the instruc-
tions into bundles, first ignoring pipeline latencies (to minimize the number

274 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
of bundles) and then scheduling the code to minimize stalls. In scheduling
the code assume 1 bundle executes per clock and that any stalls cause
the entire bundle to be stalled. Use the pipeline latencies from Figure 4.1
on page 222. Use MIPS instruction mnemonics for simplicity.

A N S W E R The two different versions are shown in Figure 4.13. Although the laten-
cies are different from those in Itanium, the most common bundle, MMF,
must be issued by itself in Itanium, just as our example assumes. n

Instruction Set Basics
Before turning to the special support for speculation, we briefly discuss the major
instruction encodings and survey the instructions in each of the primary five in-
struction classes (A, I, M, F, and B). Each IA-64 instruction is 41 bits in length.
The high-order four bits, together with the bundle bits that specify the execution
unit slot, are used as the major opcode. (That is, the four-bit opcode field is re-
used across the execution field slots, and it is appropriate to think of the opcode
as being 4 bits + the M, F, I, B, L+X designation.) The low order six-bit of every
instruction are used for specifying the predicate register that guards the instruc-
tion (see the next section).

Figure 4.14 summarizes most of the major instruction formats, other than the
multimedia instructions, and gives examples of the instructions encoded for each
format.

Predication and Speculation Support
The IA-64 architecture provides comprehensive support for predication: nearly
every instruction in the IA-64 architecture can be predicated. An instruction is

Execution
Unit Slot

Instruction
type

Instruction
Description

Example Instructions

I-unit
A Integer ALU add, subtract, and, or, compare

I Non-ALU Integer integer and multimedia shifts, bit tests, moves

M-unit
A Integer ALU add, subtract, and, or, compare

M Memory access Loads and stores for integer/FP registers

F-unit F Floating point Floating point instructions.

B-unit B Branches Conditional branches, calls, loop branches

L+X L+X Extended Extended immediates, stops and no-ops.

FIGURE 4.11 The five execution unit slots in the IA-64 architecture and what instructions types they may hold are
shown. A-type instructions, which correspond to integer ALU instructions, may be placed in either a I-unit or M-unit slot. L+X
slots are special, as they occupy two instruction slots; L+X instructions are used to encode 64-bit immediates, and a few
special instructions. L+X instructions are executed either by the I-unit or the B-unit.

4.7 Putting It All Together: The Intel IA-64 Architecture and Itanium Processor 275
predicated by a specifying a predicate register, whose identity is placed in the
lower six bits of each instruction field. Because nearly all instructions can be
predicated, both if-conversion and code motion have lower overhead than they
would with only limited support for conditional instructions. One consequence of
full predication is that a conditional branch is simply a branch with a guarding
predicate!

Template Slot 0 Slot 1 Slot 2

0 M I I

1 M I I

2 M I I

3 M I I

4 M L X

5 M L X

8 M M I

9 M M I

10 M M I

11 M M I

12 M F I

13 M F I

14 M M F

15 M M F

16 M I B

17 M I B

18 M B B

19 M B B

22 B B B

23 B B B

24 M M B

25 M M B

28 M F B

29 M F B

FIGURE 4.12 The 24 possible template values (8 possible values are reserved) and
the instructions slots and stops for shown for each format. Stops are indicated by heavy
lines and may appear within and/or at the end of the bundle. For example, template 9 speci-
fies that the instructions slots are M, M, and I (in that order) and that the only stop is between
this bundle and the next. Template 11 has the same type of instructions slots but also in-
cludes a stop after the first slot. The L+X format is used when slot 1 is L and slot 2 is X.

276 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
Bundle
template

Slot 0 Slot 1 Slot 2 Execute cycle
(1 bundle / cycle)

9: M M I L.D F0,0(R1) L.D F6,-8(R1) 1

14: M M F L.D F10,-16(R1) L.D F14,-24(R1) ADD.D F4,F0,F2 3

15: M M F L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F8,F6,F2 4

15: M M F L.D F26,-48(R1) S.D F4,0(R1) ADD.D F12,F10,F2 6

15: M M F S.D F8,-8(R1) S.D F12,-16(R1) ADD.D F16,F14,F2 9

15: M M F S.D F16,-24(R1) ADD.D F20,F18,F2 12

15: M M F S.D F20,-32(R1) ADD.D F24,F22,F2 15

15: M M F S.D F24,-40(R1) ADD.D F28,F26,F2 18

12: M M F S.D F28,-48(R1) DADDUI R1,R1,#-56 BNE R1,R2,Loop 21

a. The code scheduled to minimize the number of bundles.

Bundle
template

Slot 0 Slot 1 Slot 2 Execute cycle
(1 bundle / cycle)

8: M M I L.D F0,0(R1) L.D F6,-8(R1) 1

9: M M I L.D F10,-16(R1) L.D F14,-24(R1) 2

14: M M F L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 3

14: M M F L.D F26,-48(R1) ADD.D F8,F6,F2 4

15: M M F ADD.D F12,F10,F2 5

14: M M F S.D F4,0(R1) ADD.D F16,F14,F2 6

14: M M F S.D F8,-8(R1) ADD.D F20,F18,F2 7

15: M M F S.D F12,-16(R1) ADD.D F24,F22,F2 8

14: M M F S.D F16,-24(R1) ADD.D F28,F26,F2 9

9: M M I S.D F20,-32(R1) S.D F24,-40(R1) 10

8: M M I S.D F28,-48(R1) DADDUI R1,R1,#-56 BNE R1,R2,Loop 11

b. The code scheduled to minimize the number of cycles assuming one bundle executed per cycle.

FIGURE 4.13 The IA-64 instructions, including bundle bits and stops, for the unrolled version of x[i] = x[i] +s, when
unrolled seven times and scheduled (a) to minimize the number of instruction bundles and (b) to minimize the num-
ber of cycles (assuming that a hazard stalls an entire bundle). Blank entries indicate unused slots, which are encoded
as no-ops. The absence of stops indicates that some bundles could be executed in parallel. Minimizing the number of bun-
dles yields 9 bundles versus the 11 needed to minimize the number of cycles. The scheduled version executes in just over
half the number of cycles. Version (a) fills 85% of the instructions slots, while (b) fills 70%. The number of empty slots in the
scheduled code and the use of bundles may lead to code sizes that are much larger than other RISC architectures.

4.7 Putting It All Together: The Intel IA-64 Architecture and Itanium Processor 277
Instr
type

formats

Representative
instructions

Extra
opcode

bits

GPRs/
FPRs

Imm.
bits

Other/Comment

A 8

add, subtract, and, or 9 3 0

shift left and add 7 3 0 2-bit shift count

ALU immediates 9 2 8

Add immediate 3 2 14

Add immediate 0 2 22

Compare 4 2 0 2 predicate register
destinations

Compare immediate 3 1 8 2 predicate register
destinations

I 29

Shift R/L variable 9 3 0 Many multimedia
instructions use this

format

Test bit 6 3 6-bit field
specifier

2 predicate register
destinations

Move to BR 6 1 9-bit
branch
predict

branch register
specifier

M 46

Integer/FP load and store,
Line prefetch

10 2 0 Speculative /non-
speculative

Integer/FP load/store,
and line prefetch & post-
increment by immediate

9 2 8 Speculative /non-
speculative

Integer/FP load prefetch
& register postincrement

10 3 Speculative /non-
speculative

Integer/FP speculation
check

3 1 21 in two
fields

B 9
PC-relative branch,
counted branch

7 0 21

PC relative call 4 0 21 1 branch register

F 15
FP arithmetic 2 4

FP compare 2 2 2 6-bit predicate regs

L+X 4 Move immediate long 2 1 64

FIGURE 4.14 A summary of some of the instruction formats of the IA-64 ISA is shown. The major opcode bits and
the guarding predication register specifier add 10 bits to every instruction. The number of formats indicated for each instruc-
tion class in the second column (a total of 111) is a strict interpretation: where a different use of a field, even of the same
size, is considered a different format. The number of formats that actually have different field sizes is one-third to one-half
as large, Some instructions have unused bits that are reserved, we have not included those in this table. Immediate bits
include the sign bit. The branch instructions include prediction bits, which are used when the predictor does not have a valid
prediction. None of the many formats for the multimedia instructions are shown in this table.

278 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
Predicate registers are set using compare or test instructions. A compare in-
struction specifies one of ten different comparison tests and two predicate regis-
ters as destinations. The two predicate registers are written either with the result
of the comparison (0 or 1) and the complement, or with some logical function
that combines the two tests (such as and) and the complement. This capability al-
lows multiple comparisons to be done in one instruction.

Speculation support in the IA-64 architecture consists of separate support for
control speculation, which deals with deferring exception for speculated instruc-
tions, and memory reference speculation, which supports speculation of load in-
structions.

Deferred exception handling for speculative instructions is supported by pro-
viding the equivalent of poison bits. For the GPRs, these bits are called NaTs for
Not a Thing, and this extra bit makes the GPRs effectively 65 bits wide. For the
FP registers this capability is obtained using a special value, NaTVal, for Not A
Thing Value; this value is encoded using a significand of 0 and an exponent out-
side of the IEEE range. Only speculative load instructions generate such values,
but all instructions that do not affect memory will cause a NaT or NatVal to be
propagated to the result register. (There are both speculative and nonspeculative
loads; the latter can only raise immediate exceptions and cannot defer them.)
Floating point exceptions are not handled through this mechanism, but use float-
ing point status registers to record exceptions.

A deferred exception can be resolved in two different ways. First, if a non-
speculative instruction, such as a store, receives a NaT or NaTVal as a source op-
erand, it generates an immediate and unrecoverable exception. Alternatively, a
chk.s instruction can be used to detect the presence of NaT or NatVal and branch
to a routine designed by the compiler to recover from the speculative operation.
Such a recovery approach makes more sense for memory reference speculation.

The inability to store the contents of instructions with NaT or NatVal set
would make it impossible for the OS to save the state of the processor. Thus, IA-
64 includes special instructions to save and restore registers that do not cause an
exception for a NaT or NaTVal and also save and restore the NaT bits.

Memory reference support in the IA-64 uses the a concept called advanced
loads. An advanced load is a load that has been speculatively moved above store
instructions on which it is potentially dependent. To speculatively perform a load,
the ld.a (for advanced load) instruction is used. Executing this instruction cre-
ates an entry in a special table, called the ALAT. The ALAT stores both the regis-
ter destination of the load and the address of the accessed memory location.
When a store is executed, an associative look-up against the active ALAT entries
is performed. If there is an ALAT entry with the same memory address as the
store, the ALAT entry is marked as invalid.

Before any nonspeculative instruction (i.e., a store) uses the value generated
by an advanced load or a value derived from the result of an advanced load, an
explicit check is required. The check specifies the destination register of the ad-
vanced load. If the ALAT for that register is still valid, the speculation was legal

4.7 Putting It All Together: The Intel IA-64 Architecture and Itanium Processor 279
and the only effect of the check is to clear the ALAT entry. If the check fails, the
action taken depends on which of two different types of checks was employed.
The first type of check is an instruction ld.c, which simply causes the data to be
reloaded from memory at that point. An ld.c instruction is used when only the
load is advanced. The alternative form of a check, chk.a, specifies the address of
a fix-up routine that is used to re-execute the load and any other speculated code
that depended on the value of the load.

The Itanium Processor

The Itanium processor is the first implementation of the IA-64 architecture. It be-
came available in the middle of 2001 with an 800 MHz clock. The processor core
is capable of up to six issues per clock, with up to three branches and two memo-
ry references. The memory hierarchy consists of a three-level cache. The first lev-
el uses split instruction and data caches; floating point data is not placed in the
first level cache. The second and third levels are unified caches, with the third
level being an off-chip 4MB cache placed in the same container as the Itanium
die.

Functional Units and Instruction Issue
There are nine functional units in the Itanium processor: 2 I-units, 2 M-units, 3
B-units, and 2 F-units. All the functional units are pipelined. Figure 4.15 gives
the pipeline latencies for some typical instructions. In addition, when a result is
bypassed from one unit to another, there is usually at least one additional cycle of
delay.

Instruction Latency

Integer load 1

Floating point load 9

Correctly predicted taken branch 0-3

Mispredicted branch 9

Integer ALU operations 0

FP arithmetic 4

FIGURE 4.15 The latency of some typical instructions on Itanium. The latency is de-
fined as the smallest number of intervening instructions between two dependent instructions.
Integer load latency assumes a hit in the first-level cache. FP loads always bypass the prima-
ry cache, so the latency is until a hit in the second-level cache. There are some minor restric-
tions for the some of the functional units, but these primarily involve the execution of
infrequent instructions.

280 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
Itanium has an instruction issue window that contains up to two bundles at any
given time. With this window size, Itanium can issue up to six instructions in a
clock. In the worst case, if a bundle is split when it is issued, the hardware could
see as few as four instructions: one from the first bundle to be executed and three
from the second bundle. Instructions are allocated to functional units based on
the bundle bits, ignoring the presence of no-ops or predicated instructions with
untrue predicates. In addition, when issue to a functional unit is blocked, because
the next instruction to be issued needs an already committed unit, the resulting
bundle is split. A split bundle still occupies one of the two bundle slots, even if it
has only one instruction remaining. In addition, there are several Itanium-depen-
dent restrictions that cause a bundle to be split and issue a stop. For example, an
MMF bundle, which contains two memory type instructions and a floating point
type instruction, always generates a split before this bundle and after this bundle.
This issue limitation means that a sequence of MMF bundles (like those in our
earlier example shown in 4.13 on page 276) can execute at most three instruc-
tions per clock, even if no data dependences are present and no cache misses oc-
cur.

The Itanium processor uses a 10-stage pipeline divided into four major parts:

n Front-end (stages IPG, Fetch, and Rotate): prefetches up to 32 bytes per clock
(2 bundles) into a prefetch buffer, which can hold up to eight bundles (24 in-
structions). Branch prediction is done using a multilevel adaptive predictor like
that in the P6 microarchitecture we saw in Chapter 3.

n Instruction delivery (stages EXP and REN): distributes up to six instructions to
the nine functional units. Implements registers renaming for both rotation and
register stacking.

n Operand delivery (WLD and REG): accesses the register file, performs register
bypassing, accesses and updates a register scoreboard, and checks predicate de-
pendences. The scoreboard is used to detect when individual instructions can
proceed, so that a stall of one instruction in a bundle need not cause the entire
bundle to stall. (As we saw in Figure 4.13 on page 276, stalling the entire bun-
dle leads to poor performance unless the instructions are carefully scheduled.)

n Execution (EXE, DET, and WRB): executes instructions through ALUs and
load/store units, detects exceptions and posts NaTs, retires instructions and per-
forms write-back.

Remarkably, the Itanium has many of the features more commonly associated
with the dynamically-scheduled pipelines described in the last chapter: strong
emphasis on branch prediction, register renaming, scoreboarding, a deep pipeline
with many stages before execution (to handle instruction alignment, renaming,
etc.), and several stages following execution to handle exception detection. It is
somewhat surprising that an approach whose goal is to rely on compiler technol-

4.7 Putting It All Together: The Intel IA-64 Architecture and Itanium Processor 281
ogy and simpler hardware seems to be at least as complex as the dynamically
scheduled processors we saw in the last chapter!

Itanium Performance
Figure 4.16 shows the performance of an 800 MHz Itanium versus a 1 GHz Al-
pha 21264 and a 2 GHz Pentium 4 for SPECint. The Itanium is only about 60%
of the performance of the Pentium 4 and 68% of the performance of the Alpha
21264. What is perhaps even more surprising is that even if we normalize for
clock rate, the Itanium is still only about 85% of the performance of the Alpha
21264, which is an older design in an older technology with about 20% less pow-
er consumption, despite its higher clock rate!

FIGURE 4.16 The SPECint benchmark set shows that the Itanium is considerably slower than either the Alp-ha
21264 or the Pentium 4. The Itanium system is a Hewlett Packard server rx4610 with an 800MHz Itanium and a 4 MB off-
chip, level 3 cache. The Alpha system is a 1 GHz Compaq Alphaserver GS320 with only an on-chip L2 cache. The Pentium
4 system is a Compaq Precision 330 workstation with a 2 GHz part with a 256KB on-chip L2 cache. The overall
SPECint_base 2000 number is computed as the geometric mean of the individual ratios.

0 100 200 300 400 500 600 700 800 900

gzip

v p r

gcc

mcf

c ra f t y

parser

eon

perlbmk

gap

vor tex

bzip2

two l f

SPECint_base2000

SPECint_base2000 performance

Alpha 21264
Pentium 4

Itanium

282 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
The SPECfp benchmarks reveal a different story, as we can see in Figure 4.17.
Overall, the Itanium processor is 1.08 times faster than the Pentium 4 and about
1.20 times faster than the Alpha 21264, at a clock rate that is only 40% to 80% as
high. For floating point applications, the Itanium looks like a very competitive
processor. As we saw in Chapter 3, floating point benchmarks exploit higher de-
grees of ILP well and also can make effective use of an aggressive memory sys-
tem, including a large L3 cache. Both of these factors probably play a role.

There are two unusual aspects of the SPECfp performance measurements.
First, the Itanium gains its performance advantage over the Pentium 4 primarily
on the strength of its performance on one benchmark: “art”, where it is over four
times faster than the Pentium 4. If the benchmark “art” was excluded, the Pen-
tium 4 would outperform the Itanium for SPECfp. The other unusual aspect of

FIGURE 4.17 The SPECfp benchmark set shows that the Itanium is somewhat faster than either the Alpha 21264
or the Pentium 4. The Itanium system is an Hewlett Packard server rx4610 with one 800 MHz Itanium processor enabled
and a 4MB off-chip, level 3 cache. The Alpha system is a Compaq Alphaserver GS320 with an 1 GHz Alpha 212164. The
Pentium 4 system is a Compaq Precision 330 workstation with a 2 GHz part and like the Alpha system only the on-chip level
L2 caches. The overall SPECfp_base 2000 number is computed as the geometric mean of the individual ratios.

0 500 1000 1500 2000 2500

wupwise

swim

mgrid

applu

mesa

galgel

a r t

equake

facerec

ammp

lucas

fma3d

sixtrack

apsi

SPECfp_base2000

Alpha 21264

Pentium 4
Itanium

4.8 Another View: ILP in the Embedded and Mobile Markets 283
this performance data is that the Alpha processor shows a large gap of almost
30% between tuned and base performance for SPECfp. This compares to a gap
between base and peak for the Itanium system of 0% and for the Pentium 4 sys-
tem of 3%. Looking at the benchmark specific flags for the Alpha system, which
primarily describe loop unrolling optimizations, it appears that this difference is
due to compiler immaturity for the Alpha system. If the base performance could
be brought to 95% of the peak performance, the Alpha system would have the
highest SPECfp rating among these three processors.

As we mentioned in the last chapter, power may be most difficult hurdle in fu-
ture processors and in achieving their performance goals.The limitations on pow-
er seem to be serious independent of how ILP is exploited, whether through
pipelining and faster clock rates or through wider issue. The SPECFP data con-
firms this view. Although the Itanium achieves better floating point performance
than either the Alpha 21264 or the Pentium 4, its floating point performance per
watt is no better that of the Alpha 21264 and only 56% of that of the Pentium 4!
.

The Trimedia and Crusoe chips represent interesting approaches to applying the
VLIW concepts in the embedded space.The Trimedia CPU is perhaps the closest
current processor to a “classic” VLIW processor; it also supports a mechanism
for compressing instructions while they are in main memory and the instruction
cache and decompressing them during instruction fetch. This approach addresses
the code size disadvantages of a VLIW processor, which would be especially
troublesome in the embedded space. In contrast, the Crusoe processor uses soft-
ware translation from the x86 architecture to a VLIW processor, achieving lower
power consumption than typical x86 processors, which is key for Crusoe’s target
market--mobile applications.

The Trimedia TM32 Architecture

The Trimedia TM32 CPU is a classic VLIW architecture: every instruction con-
tains five operations and the processor is completely statically scheduled. In par-
ticular, the compiler is responsible for explicitly including no-ops both within an
instruction-- when an operation field cannot be used--and between dependent in-
structions. The processor does not detect hazards, which if present will lead to in-
correct execution. To reduce the cost of explicit no-ops in code size, the Trimedia
processor compresses the code stream until the instructions are fetched from the
instruction cache when they are expanded.

4.8 Another View: ILP in the Embedded and Mobile
Markets

284 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
A Trimedia instruction consists of five operation slots, each able to specify an
operation to one functional unit or an immediate field. Each individual operation
in an instruction is predicated with a single register value, which if 0 causes that
operation in the instruction to be canceled. The compiler must ensure that when
multiple branches are included in an instruction, at most predicate is true. Loads
can be freely speculated in the Trimedia architecture, since they do not generate
exceptions. (There is no support for paged virtual memory.)

The mapping between instruction slots and units is limited, both for instruc-
tion encoding reasons and to simply instruction dispatch. As Figure 4.18 shows,
there are 23 functional units of 11 different types. An instruction can specify any
combination that will fit within the restrictions on the five fields.

To see how this VLIW processor operates, let’s look at an example.

E X A M P L E First compile the loop for the following C code into MIPS instructions, and
then show what it might look like if the Trimedia processor’s operations
fields were the same as MIPS instructions. (In fact, the Trimedia operation
types are very close to MIPS instructions in capability.) Assume the func-

Functional
Unit

Unit
Latency

Operation Slots Typical operations performed
by functional unit

1 2 3 4 5

ALU 0 yes yes yes yes yes Integer add/subtract/compare, logicals

DMem 2 yes yes Loads and stores

DMemSpec 2 yes Cache invalidate, prefetch, allocate

Shifter 0 yes yes Shifts and rotates

DSPALU 1 yes yes Simple DSP arithmetic operations

DSPMul 2 yes yes DSP operations with multiplication

Branch 3 yes yes yes Branches and jumps

FALU 2 yes yes FP add, subtract

IFMul 2 yes yes Integer and FP multiply

FComp 0 yes FP compare

FTough 16 yes FP divide, square root

FIGURE 4.18 There are 23 functional units of 11 different types in the Trimedia CPU. This table shows the type of
operations executed by each functional unit and the instruction slots available for specifying a particular functional unit. The
number of instructions slots available for specifying a unit is equal to the number of copies of that unit. Hence, there are five
ALU units and two FALU units.

4.8 Another View: ILP in the Embedded and Mobile Markets 285
Loop:LD R11,R0(R4) # R11 = a[i]

LD R12,R0(R5)) # R12 = b[i]

DADDU R17,R11,R12 # R17 = a[i]+b[i]

SD 0(R6),R17, # c[i] = a[i]+b[i]

DADDIU R4,R4,8 # R4 = next a[] address

DADDIU R5,R5,8 # R5 = next b[] address

DADDIU R6,R6,8 # R6 = next c[] address

BNE R4,R7,Loop # if not last go to Loop

a. The MIPS code before unrolling.

Loop:LD R11,0(R4)) load a[i]

LD R12,R0(R5)) # load b[i]

DADDU R17,R11,R12 # load b[i]

SD 0(R6),R17, # c[i] = a[i]+b[i]

LD R14,8(R4) # load a[i]

LD R15,8(R5) # load b[i]

DADDU R18,R14,R15 # a[i]+b[i]

SD 8(R6),R18 # c[i] = a[i]+b[i]

LD R19,16(R4) # load a[i]

LD R20,16(R5) # load b[i]

DADDU R21,R19,R20 # a[i]+b[i]

SD 16(R6),R21 # c[i] = a[i]+b[i]

LD R22,24(R4) # load a[i]

LD R23,24(R5) # load b[i]

DADDU R24,R22,R23 # a[i]+b[i]

SD 24(R6),R24 # c[i] = a[i]+b[i]

DADDIU R4,R4,32 # R4 = next a[] address

DADDIU R5,R5,32 # R5 = next b[] address

DADDIU R6,R6,32 # R6 = next c[] address

BNE R4,R7,Loop # if not last go to Loop

b. The MIPS code after unrolling four times and optimizing the code. For simplicity, we have
assumed that n is a multiple of four.

FIGURE 4.19 The MIPS code for the integer vector sum shown in part a before un-
rolling and in part b after unrolling four times. These code sequences assume that
the starting addresses of a, b, and c are in registers R4, R5, and R6, and that R7
contains the address of a[n].

286 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
tional unit capacities and latencies shown in Figure 4.18.

void sum (int a[], int b[], int c[], int n)

{ int i;

for (i=0; i<n; i++)

c[i] = a[i]+b[i];

}

Unroll the loop so there are up to four copies of the body, if needed.

A N S W E R Figure 4.19 shows the MIPS code before and after unrolling. Figure 4.20
shows the code for the Trimedia processor is shown in. (We assume that
R30 contains the address of the first instruction in the sequence.) A stan-
dard MIPS processor needs 20 32-bit instructions for the unrolled loop
and the Trimedia processor takes 8 instructions, meaning that 1/2 of the
VLIW operation slots are full. The importance of compressing the code
stream in the Trimedia CPU is clear from this example. As Figure 2.37
showed, even after compression, Trimedia code is two to three times larg-
er than MIPS code. n

Figure 4.21 shows the performance and code size of the TM1300, a 166 MHz
implementation of the TM-32 architecture, and the NEC VR5000, a 250 MHz

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

LD R11,0(R4) LD R12,R0(R5)

DADDUI R25,R6,32 LD R14,8(R4) LD R15,8(R5)

SETEQ R25,R25,R7 LD R19,16(R4) LD R20,16(R5)

DADDU R17,R11,R12 DADDIU R4,R4,32 LD R22,24(R4) LD R23,24(R5)

DADDU R18,R14,R15 JMPF R25,R30 SD 0(R6),R17,

DADDU R21,R19,R20 DADDIU R5,R5,32 SD 8(R6),R18

DADDU R24,R22,R23 SD 16(R6),R21

DADDIU R6,R6,32 SD 24(R6),R24

FIGURE 4.20 The Trimedia code for a simple loop summing two vectors to generate a third makes good use of
multiple memory ports but still contains a large fraction of idle slots. Loops with more computation within the body
would make better use of the available operation slots. The DADDUI and SETEQ operations in the second and third instruc-
tion (first slot) serve to compute the loop termination test. The DADDUI duplicates a later add, so that the computation can
be done early enough to schedule the branch and fill the 3 branch delay slots. The loop branch uses the JMPF instruction
that tests a register (R25) and branches to an address specified by another register (R30);

4.8 Another View: ILP in the Embedded and Mobile Markets 287
version of the MIPS-32 architecture using the EEMBC consumer benchmarks or
the measurements. The performance, which is plotted with columns on the left
axis, and code size, which is plotted with lines on the right axis, are both shown
relative to the NEC VR4122, a low-end embedded processor implementing the
MIPS instruction set. Two different performance measurements are shown for the
TM1300. The “out-of-box” measurement allows no changes to the source; the
optimized version allows changes, including hand-coding. In the case of the
TM1300 only source code medications and pragmas, which supply directions to
the compiler, are used. The optimized TM1300 result is almost five times faster
overall than the out-of-the-box result when the performance is summarized by
the geometric mean. The out-of-the-box result for the TM1300 is 1.6 times faster
than the VR5000.

FIGURE 4.21 The performance and the code size for the EEMBC consumer benchmarks run on the Trimedia
TM1300 and the NEC VR5000 and shown relative to the performance and code size for the low-end NEC VR4122.
The columns and the left axis show the performance of the processors normalized to the out-of-the-box performance of the
NEC VR4122. The TM1300 has a clock speed of 166 MHz and results are shown for a version with no source code changes
(the “out-of-the-box” version) and with a set of changes at the source level (the “optimized” version) consisting of code
changes and pragmas, which is then compiled. The lines and the right axis show the code size relative to the out-of-the-box
NEC VR4122 using the Green Hills Compiler. thee measurements all come from the EEMBC website: http://www.eem-
bc.org/benchmark/benchmain.asp.

0.0

5.0

10.0

15.0

20.0

25.0

Compress JPEG Decompress JPEG Grey-scale filter RGB to CYMK RGB to YIQ Geometric Mean

P
e

rf
o

rm
a

n
c

e

re
la

ti
v

e

to

N
E

C

V
R

4
1

2
2

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

C
o

d
e

s

iz
e

re

la
ti

v
e

to

V

R
4

1
2

2
TM1300 "out of the box" TM1300 optimized NEC VR5000

TM1300 "out of the box" TM1300 optimized NEC VR5000

288 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
One cost that is paid for this performance gain is a significant increase in code
size. The code size of the out-of-the-box version of the benchmarks on the
TM1300 is twice as large overall as the code size on the VR5000. For the
TM1300 optimized version the code size is four times larger than the VR5000
version. Imagine how much larger the code size might be, if the code compres-
sion techniques were not used in the TM-32 architecture.

This tradeoff between code size and performance illustrates a fundamental
difference in the design objectives of the MIPS and TM-32 architectures. The
MIPS architecture is a general-purpose architecture with some extensions for the
embedded market. The TM-32 architecture is an architecture designed for specif-
ic classes of embedded applications. The much larger code size of the TM-32
would simply make it unsuitable for many market segments and its specialized
instruction set might not have significant performance benefits. On the other
hand, its high performance for certain important functions, especially those in
media processing, may allow it to be used in place of special-purpose chips de-
signed for a single function, such as JPEG compression or image conversion. By
replacing several special-purpose.dedicated chips with a single programmable
processor, system cost might be reduced.

The Transmeta Crusoe Processor

The Crusoe processor is a VLIW processor designed for the low-power market-
place, especially mobile PCs and mobile Internet appliances, but, what makes it
most unusual is that it achieves instruction set compatibility with the x86 instruc-
tion set through a software system that translates from the x86 instruction set to
the VLIW instruction set implemented by Crusoe.

The Crusoe processor: Instruction Set Basics
The Crusoe processor is a reasonably straightforward VLIW with in-order execu-
tion. Instructions come in two sizes: 64 bits (containing two operations) and 128
bits (containing four operations).

There are five different types of operation slots:

1. ALU operations: typical RISC ALU operations with three integer register op-
erands, each specifying one of 64 integer registers.

2. Compute: this slot may specify any integer ALU operation (there are two in-
teger ALUs in the datapath), a floating point operation (using the 32 floating
point registers), or a multimedia operation.

3. Memory: a load or store operation.

4. Branch: a branch instruction.

5. Immediate: a 32-bit immediate used by another operation in this instruction.

4.8 Another View: ILP in the Embedded and Mobile Markets 289
There are two different 128-bit instruction formats, characterized by what opera-
tion slots they have::

The Crusoe processor uses a simple in-order, six-stage pipeline for integer in-
structions–two fetch stages, decode, register read, executive, and register write-
back–and a ten-stage pipeline for floating point, which has four extra execute
stages.

The Crusoe processor: software translation and hardware support
The software responsible for implementing the x86 instruction set uses a variety
of techniques to establish a balance between execution speed and translation
time. Initially, and for lowest overhead execution, the x86 code can be interpreted
on an instruction by instruction basis. If a code segment is executed several times,
it can be translated into an equivalent Crusoe code sequence, and the translation
can be cached. The unit of translation is at least a basic block, since we know that
if any instruction is executed in the block, they will all be executed. Translating
an entire block both improves the translated code quality and reduces the transla-
tion overhead, since the translator need only be called once per basic block. Even
a quick translation of a basic block can produce acceptable results, since simple
code scheduling can be done during the translation.

One of the major challenges of a software-based implementation of an instruc-
tion set is maintaining the exception behavior of the original ISA while achieving
good performance. In particular, achieving good performance often means reor-
dering operations that correspond to instructions in the original program, which
means that operations will be executed in a different order than in a strict sequen-
tial interpretation. This reordering is crucial to obtaining good performance when
the target is a VLIW. Hence, just as other VLIW processors have found it useful
to have support for speculative reordering, such support is important in Crusoe.

The Crusoe support for speculative reordering consists of four major parts: a
shadowed register file, a program-controlled store buffer, memory alias detection
hardware with speculative loads, and a conditional move instruction (called se-
lect) that is used to do if-conversion on x86 code sequences.

The shadowed register file and the program-controlled store buffer allow oper-
ations to be executed in a different order while ensuring that permanent state is
not committed until no exceptions are possible. 48 of the integer registers and 16
of the floating point registers are shadowed. The shadow registers are used to
hold the precise state and are updated only when a translated sequence that may

Memory Compute ALU Immediate

Memory Compute ALU Branch

290 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
correspond to several x86 instructions has been executed without an exception.
To indicate that the shadow registers should be updated a commit is executed,
which has no overhead since every instruction has a bit used to indicate that a
commit should be executed at the end of the instruction. If an exception occurs,
the primary register set (called the working registers) can be restored from the
shadow registers using a rollback operation. This mechanism allows out-of-order
completion of register writes without sacrificing the precise exception model of
the x86.

One of the most novel features of the Crusoe processor is the program-con-
trolled write buffer. Stores generally cause irrevocable state update. Thus, in the
dynamically-scheduled pipelines of Chapter 3, stores are committed in-order.
Similarly, in the IA-64 architecture, stores are not speculated, since the state up-
date cannot be undone. The Crusoe architecture provides a novel solution to this
scheme: it includes the ability to control when the write buffer is allowed to up-
date the memory. A gate instruction causes all stores to be held in the buffer, until
a commit is executed. A rollback will cause the buffer to be flushed. This feature
allows for speculative store execution without violating the exception model.

By using special speculative loads and stores (similar to the ld.s and chk.s
mechanisms in IA-64) together with the rollback capability, the software transla-
tor can speculatively reorder loads and stores. The ldp instruction indicates a
speculative load, whose effective address is stored in a special cache. A special
store, stam, indicates a store that a load was moved across; if the ldp and stam
touch the same address, then the speculative load was incorrect. A rollback is ini-
tiated and the code sequence is re-executed starting at the x86 instruction that fol-
lowed the last gate.

This combination can also be used to do speculative data reuse in the case
where a store intervenes between two loads that the compiler believes are to the
same address. By making the first load a ldp and the store a stam, the translator
can then reuse the value of the first load, knowing that if the store was to the same
address as the load, it would cause a trap. The resulting trap can then re-execute
the sequence using a more conservative interpretation.

The Crusoe processor: performance measures
Since the aim of the Crusoe processor is to achieve competitive performance at
low power, benchmarks that measure both performance and power are critical.
Because Crusoe depends on realistic behavior to tune the code translation pro-
cess, it will not perform in a predictive manner when benchmarked using simple,
but unrealistic scripts. Unfortunately, existing standard benchmarks use simple
scripts that do not necessarily reflect actual user behavior (for benchmarks such
as Microsoft Office) in terms of both repetition and timing. To remedy this factor,
Transmeta has proposed a new set of benchmark scripts. Unfortunately, these
scripts have not been released and endorsed by either a group of vendors or an in-
dependent entity.

4.8 Another View: ILP in the Embedded and Mobile Markets 291
Instead of including such results, Figure 4.22 summarizes the results of bench-
marks whose behavior is well known (both are multimedia benchmarks). Since
the execution time is constrained by real-time constraints the execution times are
identical, and we compare only the power required.

Although processor power differences can certainly affect battery life, with
new processor designed to reduce energy consumption, the processor is often a
minor contributor to overall energy usage. Figure shows power measurements for
a typical laptop based on a Mobile Pentium III. As you can see small differences
in processor power consumption are unlikely to make a large difference in overall
power usage.

Workload description Power consumption for the workload (Watts) Relative consumption
TM 3200 /

Mobile Pentium IIIMobile Pentium III @
500 MHz, 1.6V

TM 3200 @400MHz
1.5V

MP3 playback 0.672 0.214 0.32

DVD playback 1.13 0.479 0.42

FIGURE 4.22 The energy performance of the processor and memory interface modules using two multimedia
benchmarks is shown for the Mobile Pentium III and the Transmeta 3200. Both these chips are available in more recent
versions that have additional power management features.

Major system Component Power (W) Percent of total power

Processor

Low power Pentium III 0.8 8%

Processor interface/ memory controller 0.65 6%

Memory 0.1 1%

Graphics 0.5 5%

I/O

Hard drive 0.65 6%

DVD drive 2.51 24%

Audio 0.5 5%

Control and other 1.3 12%

TFT display 2.8 27%

Power Power supply 0.72 7%

Total 10.43 100%

FIGURE 4.23 Power distribution inside a laptop doing DVD payback shows that the processor subsystem con-
sumes only 20% of the power! The I/O subsystem consumes an astonishing 74% of the power, with the display and DVD
drive alone responsible for more than 50% of the total system power. The lesson for laptop users is clear: do not use your
disk drive and keep your display off! This data was measured by Intel and is available on their web site.

292 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
Fallacy: There is a simple approach to multiple issue processors that yields
high performance without a significant investment in silicon area or design com-
plexity.

This is a fallacy in the sense that many designers have believed it and committed
significant effort to trying to find this “silver bullet” approach. Although it is pos-
sible to build relatively simple multiple-issue processors, as issue rates increase
the gap between peak and sustained performance grows quickly. This gap has
forced designers to explore sophisticated techniques for maintaining performance
(dynamic scheduling, hardware and software support for speculation, more flexi-
ble issue, sophisticated instruction prefetch, and branch prediction). As Figure
4.24--which includes data on Itanium, Pentium III and 4, and Alpha 21264--
shows, the result is uniformly high transistor counts, as well as high power con-
sumption. See if you match the characteristics to the processor without reading
the answer in the caption!

In addition to the hardware complexity, it has become clear that compiling for
processors with significant amounts of ILP has become extremely complex. Not
only must the compiler support a wide set of sophisticated transformation, but
tuning the compiler to achieve good performance across a wide set of bench-
marks appears to be very difficult.

4.9 Fallacies and Pitfalls

Issue rate: Total /
Memory / Integer /

FP / Branch

Max. clock rate
available

(in mid 2001)

Transistors
with / without

caches

On-chip caches:
1st level

second level

Power
(Watts)

SPECbase
CPU2000
INT / FP

4/2/4/2/1 1 GHz 15 M / 6 M 64KB + 64KB 107 561 / 643

3/2/2/1/1 2 GHz 42 M / 23M 12K entries + 8KB
256 KB

67 636 / 648

3/2/2/1/1 1 GHz 28 M / 9.5 M 16KB + 16KB
256 KB

36 454 / 329

6/2/2/2/3 0.8 GHz 25 M / 17 M 16K + 16K
96 KB

130 379 / 714

FIGURE 4.24 The key characteristics of four recent multiple issue microprocessors show significant dramatic va-
riety. These vary from a dynamically-scheduled speculative processor to a statically schedule multiple issue processor to a
VLIW. They range in die size from just over 100 mm2 to almost 300 mm2 and in power from 26 W to just under 100W, al-
though the integrated circuit processes differ significantly. The SPEC numbers are the highest official numbers reported as
of August 2001, and the clock rate of that system is shown. Can you guess what these four processors are?

Answer: Alpha 21264,Intel Pentium 4, Intel Pentium III, Intel Itanium.

4.10 Concluding Remarks 293
Obtaining good performance is also affected by design decisions at the system
level, and such choices can be complex. For example, for the first machine in Fig-
ure 4.24 the highest SPECInt number comes from a 1 GHz part, but the highest
SPECFP number comes from a system with a 833 MHz part!
.

The EPIC approach is based on the application of massive resources. These re-
sources include more load-store, computational, and branch units, as well as
larger, lower-latency caches than would be required for a superscalar processor.
Thus, IA-64 gambles that, in the future, power will not be the critical limitation,
and that massive resources, along with the machinery to exploit them, will not pe-
nalize performance with their adverse effect on clock speed, path length, or CPI
factors.

M. Hopkins [2000], in a commentary on the EPIC approach and the IA-64 architecture
.

The relative merits of software-intensive and hardware-intensive approaches to
exploiting ILP continue to be debated. Over time, it appears that advantageous el-
ements from the “enemy camp” are slowly being incorporated into each ap-
proach. Examples include:

Initially, the software-intensive and hardware-intensive approaches were quite
different, and the ability to manage the complexity of the hardware-intensive ap-
proaches was in doubt. The development of several high performance dynamic
speculation processors, which have high clock rates, has eased this concern. The
complexity of the IA-64 architecture and the Itanium design has indicated to
many designers that it is unlikely that a software-intensive approach will produce
processors that are much faster, much smaller (in transistor count or die size),
much simpler, or much more power efficient. Similarly, the development of com-
pilers for these processors has proved challenging. Although it is likely that both
future compilers for IA-64 and future implementations will be more effective, the
IA-64 architecture does not appear to represent a significant breakthrough in

4.10 Concluding Remarks

“Software” techniques in hardware-centric approaches “Hardware” techniques in software-intensive approaches

Support for conditional instructions. Scoreboard scheduling of instructions.

Prefetch instructions and other cache “hints”. Dynamic branch prediction.

Branch prediction hints. Rollback or trap-and-fixup support for speculation.

Special support for speculative (non-excepting) loads. Hardware for checking speculated load correctness.

294 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
scaling ILP or in avoiding the problems of complexity and power consumption in
high performance processors.

As both approaches have proven to have advantages, each has tended to incor-
porate techniques from the other. It remains unclear whether the two approaches
will continue to move toward the middle, or whether a new architectural ap-
proach that truly combines the best of each will be developed.

The alternative to trying to continue to push uniprocessors to exploit ILP is to
look toward multiprocessors, the topic of Chapter 6. Looking toward multipro-
cessors to take advantage of parallelism overcomes a fundamental problem in
ILP processors: building a cost-effective memory system. A multiprocessor
memory system is inherently multiported and, as we will see, can even be distrib-
uted in a larger processor.

Using multiprocessors to exploit parallelism encounters two difficulties. First,
it is likely that the software model will need to change. Second, multiprocessors
may have difficulty in exploiting fine-grained, low-level parallelism. Although it
appears clear that using a large number of processors requires new programming
approaches, using a smaller number of processors efficiently could be based on
compiler or language approaches, or might even be used for multiple independent
processes. Exploiting the type of fine-grained parallelism that a compiler can eas-
ily uncover can be quite difficult in a multiprocessor, since the processors are rel-
atively far apart. Simultaneous multithreading (see Chapter 6) may be the
intermediate step between ILP and true multiprocessing.

In 2000, IBM announced the first commercial single-chip general-purpose
multiprocessor, the IBM Power4, which contains two Power3 processors and an
integrated second level cache, for a total transistor count of 174 million! Because
the Power4 chip also contains a memory interface, a third-level cache interface,
and a direct multiprocessor interconnect, IBM used the Power4 to build an 8-pro-
cessor module using four Power4 chips. The module has a total size of about 64
in2 and is capable of a peak performance of 32 billion floating point operations
per second! The challenge for multiprocessors appears to be the same as for ILP-
intensive uniprocessors: translate this enormous peak performance into delivered
performance on real applications. In the case of the IBM design, the intended
market is large-scale servers, where the available application parallelism may
make a multiprocessor attractive.

The embedded world actually delivered multiple processors on a die first! The
TI TMS320C80 provides four DSPs and a RISC processor, which acts as control-
ler, on a single die. Likewise, several embedded versions of MIPS processors use
multiple processors per die. The obvious parallelism in embedded applications
and the lack of stringent software compatibility requirements may allow the em-
bedded world to embrace on-chip multiprocessing faster than the desktop envi-
ronment. We will return to this discussion in Chapter 6.

4.11 Historical Perspective and References 295
This section describes the historical development of multiple issue approaches,
which began with static multiple issue and proceeds to the most recent work lead-
ing to IA-64. Similarly, we look at. the long history of compiler technology in
this area.

The Development of Multiple-Issue Processors

Most of the early multiple-issue processors followed a LIW or VLIW design ap-
proach. Charlesworth [1981] reports on the Floating Point Systems AP-120B,
one of the first wide-instruction processors containing multiple operations per
instruction. Floating Point Systems applied the concept of software pipelining in
both a compiler and by hand-writing assembly language libraries to use the pro-
cessor efficiently. Since the processor was an attached processor, many of the dif-
ficulties of implementing multiple issue in general-purpose processors, for
example, virtual memory and exception handling, could be ignored.

The Stanford MIPS processor had the ability to place two operations in a sin-
gle instruction, though this capability was dropped in commercial variants of the
architecture, primarily for performance reasons. Along with his colleagues at
Yale, Fisher [1983] proposed creating a processor with a very wide instruction
(512 bits), and named this type of processor a VLIW. Code was generated for the
processor using trace scheduling, which Fisher [1981] had developed originally
for generating horizontal microcode. The implementation of trace scheduling for
the Yale processor is described by Fisher et al. [1984] and by Ellis [1986]. The
Multiflow processor (see Colwell et al. [1987]) was based on the concepts devel-
oped at Yale, although many important refinements were made to increase the
practicality of the approach. Among these was a controllable store buffer that
provided support for a form of speculation. Although more than 100 Multiflow
processors were sold, a variety of problems, including the difficulties of introduc-
ing a new instruction set from a small company and the competition provided
from commercial RISC microprocessors that changed the economics in the mini-
computer market, led to failure of Multiflow as a company.

Around the same time as Multiflow, Cydrome was founded to build a VLIW-
style processor (see Rau et al. [1989]), which was also unsuccessful commercial-
ly. Dehnert, Hsu, and Bratt [1989] explain the architecture and performance of
the Cydrome Cydra 5, a processor with a wide-instruction word that provides dy-
namic register renaming and additional support for software pipelining. The
Cydra 5 is a unique blend of hardware and software, including conditional in-
structions and register rotation, aimed at extracting ILP. Cydrome relied on more
hardware than the Multiflow processor and achieved competitive performance
primarily on vector-style codes. In the end, Cydrome suffered from problems

4.11 Historical Perspective and References

296 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
similar to those of Multiflow and was not a commercial success. Both Multiflow
and Cydrome, though unsuccessful as commercial entities, produced a number of
people with extensive experience in exploiting ILP as well as advanced compiler
technology; many of those people have gone on to incorporate their experience
and the pieces of the technology in newer processors. Fisher and Rau [1993] edit-
ed a comprehensive collection of papers covering the hardware and software of
these two important processors.

Rau had also developed a scheduling technique called polycyclic scheduling,
which is a basis for most software pipelining schemes (see Rau, Glaeser, and
Picard [1982]). Rau’s work built on earlier work by Davidson and his colleagues
on the design of optimal hardware schedulers for pipelined processors. Other his-
torical LIW processors have included the Apollo DN 10000 and the Intel i860,
both of which could dual issue FP and integer operations.

One of the interesting approaches used in early VLIW processors, such as the
AP-120B and i860, was the idea of a pipeline organization that requires opera-
tions to be “pushed through” a functional unit and the results to be caught at the
end of the pipeline. In such processors, operations advance only when another
operation pushes them from behind (in sequence). Furthermore, an instruction
specifies the destination for an instruction issued earlier that will be pushed out of
the pipeline when this new operation is pushed in. Such an approach has the ad-
vantage that it does not specify a result destination when an operation first issues
but only when the result register is actually written. This separation eliminates
the need to detect WAW and WAR hazards in the hardware. The disadvantage is
that it increases code size since no-ops may be needed to push results out when
there is a dependence on an operation that is still in the pipeline and no other op-
erations of that type are immediately needed. Instead of the “push-and-catch” ap-
proach used in these two processors, almost all designers have chosen to use self-
draining pipelines that specify the destination in the issuing instruction and in
which an issued instruction will complete without further action. The advantages
in code density and simplifications in code generation seem to outweigh the ad-
vantages of the more unusual structure.

Compiler Technology and Hardware-Support for Scheduling

Loop-level parallelism and dependence analysis was developed primarily by D.
Kuck and his colleagues at the University of Illinois in the 1970s. They also
coined the commonly used terminology of antidependence and output depen-
dence and developed several standard dependence tests, including the GCD and
Banerjee tests. The latter test was named after Uptal Banerjee and comes in a va-
riety of flavors. Recent work on dependence analysis has focused on using a vari-
ety of exact tests ending with an algorithm called Fourier-Motzkin, which is a
linear programming algorithm. D. Maydan and W. Pugh both showed that the se-
quences of exact tests were a practical solution.

4.11 Historical Perspective and References 297
In the area of uncovering and scheduling ILP, much of the early work was
connected to the development of VLIW processors, described earlier. Lam [1988]
developed algorithms for software pipelining and evaluated their use on Warp, a
wide-instruction-word processor designed for special-purpose applications.
Weiss and J. E. Smith [1987] compare software pipelining versus loop unrolling
as techniques for scheduling code on a pipelined processor. Rau [1994] devel-
oped modulo scheduling to deal with the issues of software pipelining loops and
simultaneously handling register allocation.

Support for speculative code scheduling was explored in a variety of contexts,
including several processors that provided a mode in which exceptions were ig-
nored, allowing more aggressive scheduling of loads (e.g., the MIPS TFP proces-
sor, see [Hsu 1994].). Several groups explored ideas for more aggressive
hardware support for speculative code scheduling. For example, Smith, Horow-
itz, and Lam [1992] created a concept called boosting that contains a hardware
facility for supporting speculation but provides a checking and recovery mecha-
nism, similar to those in IA-64 and Crusoe. The sentinel scheduling idea, which
is also similar to the speculate-and-check approach used in both Crusoe and the
IA-64 architectures, was developed jointly by researchers at U. of Illinois and HP
Laboratories (see [Mahlke et al. 1992]).

In the early 1990s, Wen-Mei Hwu and his colleagues at the University of Illi-
nois developed a compiler framework, called IMPACT (see [Chang, et. al.
1991]), for exploring the interaction between multiple-issue architectures and
compiler technology. This project led to several important ideas, including: su-
perblock scheduling (see [Hwu et. al. 1993]), extensive use of profiling for guid-
ing a variety of optimizations (e.g., procedure inlining), and the use of a special
buffer (similar to the ALAT or program-controlled store buffer) for compile-aid-
ed memory conflict detection (see [Gallagher, et. al. 1994]). They also explored
the performance trade-offs between partial and full support for predication in
[Mahlke, et. al. 1995].

The early RISC processors all had delayed branches, a scheme inspired from
microprogramming, and several studies on compile-time branch prediction were
inspired by delayed branch mechanisms. McFarling and Hennessy [1986] did a
quantitative comparison of a variety of compile-time and runtime branch predic-
tion schemes. Fisher and Freudenberger [1992] evaluated a range of compile-
time branch prediction schemes using the metric of distance between mispredic-
tions.

EPIC and the IA-64 Development

The roots of the EPIC approach lie in earlier attempts to build LIW and VLIW
machines–especially those at Cydrome and Multiflow–and in a long history of
compiler work that continued after these companies failed at HP, the University
of Illinois, and elsewhere. Insights gained from that work led designers at HP to
propose a VLIW-style, 64-bit architecture to follow on to the HP-PA RISC archi-

298 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
tecture. Intel was looking for a new architecture to replace the x86 (now called
IA-32) architecture and to provide 64-bit capability. In 1995, they formed a part-
nership to design a new architecture, IA-64, and build processors based on it. Ita-
nium is the first such processor. A description of the IA-64 architecture is
available online at: http://devresource.hp.com/devresource/Docs/Refs/IA64ISA/.
A description of the highlights of the Itanium processor is available at: http://
www.intel.com/design/itanium/microarch_ovw/index.htm.

References

BALL, T. AND J.R. LARUS [1993]. “Branch prediction for free,” Proc. SIGPLAN 1993 Conf. on Pro-
gramming Language Design and Implementation, June, 300-313.

CHANG, P. P., MAHLKE, S. A., CHEN, W. Y., WARTER, N. J., AND W. W. HWU [1991], “IMPACT: An
architectural framework for multiple-instruction-issue processors,” Proceedings of the 18th Interna-
tional Symposium on Computer Architecture (May), pp. 266--275.

CHARLESWORTH, A. E. [1981]. “An approach to scientific array processing: The architecture design
of the AP-120B/FPS-164 family,” Computer 14:9 (September), 18–27.

COLWELL, R. P., R. P. NIX, J. J. O’DONNELL, D. B. PAPWORTH, AND P. K. RODMAN [1987]. “A
VLIW architecture for a trace scheduling compiler,” Proc. Second Conf. on Architectural Support
for Programming Languages and Operating Systems, IEEE/ACM (March), Palo Alto, Calif.,
180–192.

DEHNERT, J. C., P. Y.-T. HSU, AND J. P. BRATT [1989]. “Overlapped loop support on the Cydra 5,”
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems
(April), IEEE/ACM, Boston, 26–39.

ELLIS, J. R. [1986]. Bulldog: A Compiler for VLIW Architectures, MIT Press, Cambridge, Mass.

FISHER, J. A. [1981]. “Trace scheduling: A technique for global microcode compaction,” IEEE
Trans. on Computers 30:7 (July), 478–490.

FISHER, J. A. [1983]. “Very long instruction word architectures and ELI-512,” Proc. Tenth Sympo-
sium on Computer Architecture (June), Stockholm, 140–150.

FISHER, J. A., J. R. ELLIS, J. C. RUTTENBERG, AND A. NICOLAU [1984]. “Parallel processing: A smart
compiler and a dumb processor,” Proc. SIGPLAN Conf. on Compiler Construction (June), Palo
Alto, Calif., 11–16.

FISHER, J. A. AND S. M. FREUDENBERGER [1992]. “Predicting conditional branches from previous
runs of a program,” Proc. Fifth Conf. on Architectural Support for Programming Languages and
Operating Systems, IEEE/ACM (October), Boston, 85-95.

FISHER, J. A. AND B. R. RAU [1993]. Journal of Supercomputing (January), Kluwer.

FOSTER, C. C. AND E. M. RISEMAN [1972]. “Percolation of code to enhance parallel dispatching and
execution,” IEEE Trans. on Computers C-21:12 (December), 1411–1415.

GALLAGHER, D.M., CHEN, W.Y., MAHLKE, S.A., GYLLENHAAL, J.C., AND W.W. HWU [1994]. “Dy-
namic memory disambiguation using the memory conflict buffer.” Proc. Sixth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (October),
Santa Clara.

HOPKINS, M. [2000]. “A Critical Look at IA-64: Massive Resources, Massive ILP, But Can It Deliv-
er?” Microprocessor Report, Feb.

P.HSU [1994]. “Designing the TFP Microprocessor”, IEEE Micro, Vol.18 Nr.2 (April), pp 2333.

HWU, W. W., MAHLKE, S. A., CHEN, W. Y., CHANG, P. P., WARTER, N. J., BRINGMANN, R. A.,

4.11 Historical Perspective and References 299
OUELLETTE, R. O., HANK, R. E., KIYOHARA, T., HAAB, G. E., HOLM, J. G., AND D. M. LAVERY

[1993]. “The superblock: An effective technique for VLIW and superscalar compilation.” Journal of
Supercomputing, 7(1,2) (March),:229--248.

LAM, M. [1988]. “Software pipelining: An effective scheduling technique for VLIW processors,”
SIGPLAN Conf. on Programming Language Design and Implementation, ACM (June), Atlanta,
Ga., 318–328.

MAHLKE, S. A., W. Y. CHEN, W.-M. HWU, B. R. RAU, AND M. S. SCHLANSKER [1992]. “Sentinel
scheduling for VLIW and superscalar processors,” Proc. Fifth Conf. on Architectural Support for
Programming Languages and Operating Systems (October), Boston, IEEE/ACM, 238–247.

MAHLKE, S.A., HANK, R.E. MCCORMICK, J.E. AUGUST, D.I. AND HWU.W.W. [1995]. “A Compari-
son of Full and Partial Predicated Execution Support for ILP Processors.” Proceedings of the 22nd
Annual International Symposium on Computer Architecture (June), pages 138--149, Santa Margh-
erita Ligure, Italy.,

MCFARLING, S. AND J. HENNESSY [1986]. “Reducing the cost of branches,” Proc. 13th Symposium
on Computer Architecture (June), Tokyo, 396–403.

NICOLAU, A. AND J. A. FISHER [1984]. “Measuring the parallelism available for very long instruction
word architectures,” IEEE Trans. on Computers C-33:11 (November), 968–976.

B. R. RAU [1994]. “Iterative Modulo Scheduling: An Algorithm For Software Pipelining Loops.”
Proc. 27th Annual International Symposium on Microarchitecture (November), pages 63--74,San
Jose, CA.

RAU, B. R., C. D. GLAESER, AND R. L. PICARD [1982]. “Efficient code generation for horizontal
architectures: Compiler techniques and architectural support,” Proc. Ninth Symposium on Comput-
er Architecture (April), 131–139.

RAU, B. R., D. W. L. YEN, W. YEN, AND R. A. TOWLE [1989]. “The Cydra 5 departmental supercom-
puter: Design philosophies, decisions, and trade-offs,” IEEE Computers 22:1 (January), 12–34.

RISEMAN, E. M. AND C. C. FOSTER [1972]. “Percolation of code to enhance parallel dispatching and
execution,” IEEE Trans. on Computers C-21:12 (December), 1411–1415.

THORLIN, J. F. [1967]. “Code generation for PIE (parallel instruction execution) computers,” Proc.
Spring Joint Computer Conf. 27.

WILSON, R.P. AND MONICA S. LAM [1995]. “Efficient Context-Sensitive Pointer Analysis for C Pro-
grams,” Proc. ACM SIGPLAN'95 Conference on Programming Language Design and Implementa-
tion, La Jolla, CA, June , pp. 1-12.

E X E R C I S E S

Most of these exercises are still good. What we need are exercises that explore the concepts of predication
and speculative scheduling.

New addition: consider the simple loop in Section 4.1. Assume the number of iterations is unknown, but
large. Find the theoretically optimal number of unrollings using the timing of the loop in Section 4.1
Hint: recall that you will need two loops: one unrolled and one not!

4.1 [15] <4.1> List all the dependences (output, anti, and true) in the following code frag-
ment. Indicate whether the true dependences are loop-carried or not. Show why the loop is
not parallel.

for (i=2;i<100;i=i+1) {

300 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
a[i] = b[i] + a[i]; /* S1 */
c[i-1] = a[i] + d[i]; /* S2 */
a[i-1] = 2 * b[i]; /* S3 */
b[i+1] = 2 * b[i]; /* S4 */

}

4.2 [15] <4.1> Here is an unusual loop. First, list the dependences and then rewrite the loop
so that it is parallel.

for (i=1;i<100;i=i+1) {
a[i] = b[i] + c[i]; /* S1 */
b[i] = a[i] + d[i]; /* S2 */
a[i+1] = a[i] + e[i]; /* S3 */

}

4.3 [15] <4.1> Assuming the pipeline latencies from Figure 4.1, unroll the following loop
as many times as necessary to schedule it without any delays, collapsing the loop overhead
instructions. Assume a one-cycle delayed branch. Show the schedule. The loop computes
Y[i] = a × X[i] + Y[i], the key step in a Gaussian elimination.

loop: L.D F0,0(R1)
MUL.D F0,F0,F2
L.D F4,0(R2)
ADD.D F0,F0,F4
S.D F0,0(R2)
DADDUI R1,R1,#-8
DADDUI R1,R1,#-8
BNE R1,R3,loop

4.4 [15] <4.1> Assume the pipeline latencies from Figure 4.1 and a one-cycle delayed
branch. Unroll the following loop a sufficient number of times to schedule it without any
delays. Show the schedule after eliminating any redundant overhead instructions. The loop
is a dot product (assuming F2 is initially 0) and contains a recurrence. Despite the fact that
the loop is not parallel, it can be scheduled with no delays.

loop: L.D F0,0(R1)
L.D F4,0(R2)
MUL.D F0,F0,F4
ADD.D F2,F0,F2
DADDUI R1,R1,#-8
DADDUI R1,R1,#-8
BNE R1,R3,loop

4.5 [20/22/22/22/22/25/25/25/20/22/22] <4.1,4.2,4.3> In this Exercise, we will look at
how a common vector loop runs on a variety of pipelined versions of MIPS. The loop is the
so-called SAXPY loop (discussed extensively in Appendix B) and the central operation in
Gaussian elimination. The loop implements the vector operation Y = a × X + Y for a vector
of length 100. Here is the MIPS code for the loop:

foo: L.D F2,0(R1) ;load X(i)
MUL.D F4,F2,F0 ;multiply a*X(i)
L.D F6,0(R2) ;load Y(i)
ADD.D F6,F4,F6 ;add a*X(i) + Y(i)
S.D F6,0(R2) ;store Y(i)
ADDI R1,R1,#8 ;increment X index
ADDI R2,R2,#8 ;increment Y index
SGTI R3,R1,done ;test if done
BEQZ R3,foo ; loop if not done

4.11 Historical Perspective and References 301
For (a)–(e), assume that the integer operations issue and complete in one clock cycle (in-
cluding loads) and that their results are fully bypassed. Ignore the branch delay. You will
use the FP latencies shown in Figure 4.1 on page 222. Assume that the FP unit is fully pipe-
lined.

a. [20] <4.1> For this problem use the standard single-issue MIPS pipeline with the pipe-
line latencies from Figure 4.1. Show the number of stall cycles for each instruction and
what clock cycle each instruction begins execution (i.e., enters its first EX cycle) on
the first iteration of the loop. How many clock cycles does each loop iteration take?

b. [22] <4.1> Unroll the MIPS code for SAXPY to make four copies of the body and
schedule it for the standard MIPS integer pipeline and a fully pipelined FPU with the
FP latencies of Figure 4.1 on page 222. When unwinding, you should optimize the
code as we did in section 4.1. Significant reordering of the code will be needed to max-
imize performance.

c. [25] <4.1,4.3> Assume a superscalar architecture that can issue any two independent
operations in a clock cycle (including two integer operations). Unwind the MIPS code
for SAXPY to make four copies of the body and schedule it assuming the FP latencies
of Figure 4.1 on page 222. Assume one fully pipelined copy of each functional unit
(e.g., FP adder, FP multiplier) and two integer functional units with latency to use of
0. How many clock cycles will each iteration on the original code take? When unwind-
ing, you should optimize the code as in section 4.1. What is the speedup versus the
original code?

d. [25] <4.3> To further boost clock rates, a number of processors have added additional
pipelining to units traditionally assigned only one stage in the pipeline, resulting in
pipelines with depths of 10-14 cycles for the integer pipeline. Suppose we designed a
deeply pipelined MIPS processor that had twice the clock rate of our standard MIPS
pipeline and could issue any two unrelated instructions in the same time that the nor-
mal MIPS pipeline issued one operation. If the second instruction is dependent on the
first, only the first will issue. Unroll the MIPS SAXPY code to make four copies of
the loop body and schedule it for this deeply pipelined processor, assuming the FP la-
tencies of Figure 4.1 on page 222. Also assume the load to use latency is 1 cycle, but
other integer unit latencies are 0 cycles. How many clock cycles does each loop iter-
ation take? Remember that these clock cycles are half as long as those on a standard
MIPS pipeline or a superscalar MIPS.

e. [20] <4.3> Start with the SAXPY code and the processor used in Figure 4.5. Unroll
the SAXPY loop to make four copies of the body, performing simple optimizations
(as in section 4.1). Assume all integer unit latencies are 0 cycles and the FP latencies
are given in Figure 4.1. Fill in a table like Figure 4.28 for the unrolled loop. How many
clock cycles does each loop iteration take?

4.6 [15] <4.4> Here is a simple code fragment:

for (i=2;i<=100;i+=2)

a[i] = a[50*i+1];

To use the GCD test, this loop must first be “normalized”—written so that the index starts
at 1 and increments by 1 on every iteration. Write a normalized version of the loop (change
the indices as needed), then use the GCD test to see if there is a dependence.

302 Chapter 4 Exploiting Instruction Level Parallelism with Software Approaches
4.7 [15] <4.1,4.4> Here is another loop:

for (i=2,i<=100;i+=2)

a[i] = a[i-1];

Normalize the loop and use the GCD test to detect a dependence. Is there a loop-carried,
true dependence in this loop?

4.8 [25] <4.4> Show that if for two array elements A(a × i + b) and A(c × i + d) there is a
true dependence, then GCD(c,a) divides (d – b).

4.9 [15] <4.4> Rewrite the software pipelining loop shown in the Example on page 249,
so that it can be run by simply decrementing R1 by 16 before the loop starts. After rewriting
the loop, show the start-up and finish-up code. Hint: To get the loop to run properly when
R1 is decremented, the S.D should store the result of the original first iteration. You can
achieve this by adjusting load-store offsets.

4.10 [20] <4.4> Consider the loop that we software pipelined on page 249. Suppose the
latency of the ADD.D was five cycles. The software pipelined loop now has a stall. Show
how this loop can be written using both software pipelining and loop unrolling to eliminate
any stalls. The loop should be unrolled as few times as possible (once is enough). You need
not show loop start-up or clean-up.

4.11 [15] <4.5> Perform the same transformation (moving up the branch) as the example
on page 262, but using only conditional move. Be careful that your loads, which are no
longer control dependent, cannot raise an exception if they should not have been executed!

4.12 [Discussion] <4.3-4.5> Discuss the advantages and disadvantages of a superscalar
implementation and a VLIW approach in the context of MIPS. What levels of ILP favor
each approach? What other concerns would you consider in choosing which type of pro-
cessor to build? How does speculation affect the results?

4.11 Historical Perspective and References 303

5

Memory-Hierarchy
Design

5

Ideally one would desire an indefinitely large memory capacity such

that any particular . . . word would be immediately available. . . .

We are . . . forced to recognize the possibility of constructing a

hierarchy of memories, each of which has greater capacity than the

preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann

Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument

(1946)

5.1 Introduction 373

5.2 Review of the ABCs of Caches 376

5.3 Cache Performance 390

5.4 Reducing Cache Miss Penalty 398

5.5 Reducing Miss Rate 408

5.6 Reducing Cache Miss Penalty or Miss Rate via Parallelism 421

5.7 Reducing Hit Time 430

5.8 Main Memory and Organizations for Improving Performance 435

5.9 Memory Technology 442

5.10 Virtual Memory 448

5.11 Protection and Examples of Virtual Memory 457

5.12 Crosscutting Issues in the Design of Memory Hierarchies 467

5.13 Putting It All Together: Alpha 21264 Memory Hierarchy 471

5.14 Another View: The Emotion Engine of the Sony Playstation 2 479

5.15 Another View: The Sun Fire 6800 Server 483

5.16 Fallacies and Pitfalls 488

5.17 Concluding Remarks 495

5.18 Historical Perspective and References 498

Exercises 504

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. An economical solution to that desire is a

memory hier-
archy

, which takes advantage of locality and cost/performance of memory
technologies. The

principle of locality

, presented in the first chapter, says that
most programs do not access all code or data uniformly (see section 1.6, page
38). This principle, plus the guideline that smaller hardware is faster, led to hier-
archies based on memories of different speeds and sizes. Figure 5.1 shows a mul-
tilevel memory hierarchy, including typical sizes and speeds of access.

Since fast memory is expensive, a memory hierarchy is organized into several
levels—each smaller, faster, and more expensive per byte than the next lower lev-
el. The goal is to provide a memory system with cost almost as low as the cheap-
est level of memory and speed almost as fast as the fastest level. The levels of the
hierarchy usually subset one another. All data in one level is also found in the lev-
el below, and all data in that lower level is found in the one below it, and so on
until we reach the bottom of the hierarchy.

5.1

Introduction

374

Chapter 5 Memory-Hierarchy Design

Note that each level maps addresses from a slower, larger memory to a smaller
but faster memory higher in the hierarchy. As part of address mapping, the mem-
ory hierarchy is given the responsibility of address checking; hence protection
schemes for scrutinizing addresses are also part of the memory hierarchy.

The importance of the memory hierarchy has increased with advances in per-
formance of processors. For example, in 1980 microprocessors were often de-
signed without caches, while in 2001 many come with two levels of caches on the
chip. As noted in Chapter 1, microprocessor performance improved 55% per year
since 1987, and 35% per year until 1986. Figure 5.2 plots CPU performance pro-
jections against the historical performance improvement in time to access main
memory. Clearly, there is a processor-memory performance gap that computer ar-
chitects must try to close.

This chapter describes the many ideas invented to overcome the processor-
memory performance gap. To put these abstract ideas into practice, throughout
the chapter we show examples from the four levels of the memory hierarchy in a
computer using the Alpha 21264 microprocessor. Toward the end of the chapter
we evaluate the impact of these levels on performance using the SPEC95 bench-
mark programs.

FIGURE 5.1 These are the levels in a typical memory hierarchy in embedded, desk-
top, and server computers.

 As we move farther away from the CPU, the memory in the level
below becomes slower and larger. Note that the time units change by factors of ten–from pi-
coseconds to milliseconds–and that the size units change by factors of a thousand–from
bytes to terabytes. Figure 5.3 shows more parameters for desktops and small servers.

CPU
address
Data
in

Data
out

Write
buffer

Lower level memory

Tag

Data

Victim cache

=?

=?

5.1 Introduction

375

The 21264 is a microprocessor designed for desktop and servers. Even these
two related classes of computers have different concerns in a memory hierarchy.
Desktop computers are primarily running one application at a time on top of an
operating system for a single user, whereas server computers may typically have
hundreds of users potentially running potentially dozens of applications simulta-
neously. These characteristics result in more context switches, which effectively
increases compulsory miss rates. Thus, desktop computers are concerned more
with average latency from the memory hierarchy whereas server computers are
also concerned about memory bandwidth. Although protection is important on
desktop computers to deter programs from clobbering each other, server comput-
ers must prevent one user from accessing another’s data, and hence the impor-
tance of protection escalates. Server computers also tend to be much larger, with
more memory and disk storage, and hence often run much larger applications. In
2001 virtually all servers can be purchased as multiprocessors with hundreds of
disks, which places even greater bandwidth demands on the memory hierarchy.

The memory hierarchy of the embedded computers is often quite different
from that of the desktop and server. First, embedded computers are often used in
real-time applications, and hence programmers must worry about worst case per-

FIGURE 5.2 Starting with 1980 performance as a baseline, the gap in performance be-
tween memory and CPUs are plotted over time.

Note that the vertical axis must be on a
logarithmic scale to record the size of the CPU-DRAM performance gap. The memory base-
line is 64-KB DRAM in 1980, with three years to the next generation and a 7% per year per-
formance improvement in latency (see Figure 5.30 on page 444). The CPU line assumes a
1.35 improvement per year until 1986, and a 1.55 improvement thereafter.

<<NOTE: Artist
continue the X-axis to 2005: DRAM should be 5.4 in 2005, and CPU should be 25,000 in
2005. This means the Y-axis needs to be extended to 100,000 to accommodate.>>

10,000

1000

100

10

1

Performance

Year

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

20
00

19
98

19
99

Memory CPU

376

Chapter 5 Memory-Hierarchy Design

formance. This concern is problematic for caches that improve average case per-
formance, but can degrade worst case performance; we’ll mention some
techniques to address this later in the chapter. Second, embedded applications are
often concerned about power and battery life. The best way to save power is to
have less hardware. Hence, embedded computers may not chose hardware-inten-
sive optimizations in the quest of better memory hierarchy performance, as
would most desktop and server computers. Third, embedded applications are typ-
ically only running one application and use a very simple operating system, if
they one at all. Hence, the protection role of the memory hierarchy is often di-
minished. Finally, the main memory itself may be quite small–less than one
megabyte–and there is often no disk storage.

This chapter is a tour of the general principles of memory hierarchy using the
desktop as the generic example, but we will take detours to point out where the
memory hierarchy of servers and embedded computers diverge from the desktop.
Towards the end of the chapter we will pause for two views of the memory hier-
archy in addition to the Alpha 21264: the Sony Playstation 2 and the Sun Fire
6800 server. Our first stop is a review.

Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of the American Language,
Second College Edition

(1976)

This section is a quick review of cache basics, covering the following 36 terms:

5.2

Review of the ABCs of Caches

cache cache hit cache miss block

virtual memory page page fault page fault

memory stall cycles miss penalty miss rate address trace

direct mapped fully associative n-way set associative set

valid bit dirty bit least-recently used random
replacement

block address block offset tag field index

write through

write back write allocate no-write
allocate

instruction cache data cache unified cache write buffer

average memory
access time

hit time misses per
instruction

write stall

5.2 Review of the ABCs of Caches

377

Readers who know the meaning of such terms should skip to “An Example: The
Alpha 21264 Data Cache” on page 387, or even further to section 5.3 on page
390 about cache performance. (If this review goes too quickly, you might want to
look at Chapter 7 in

Computer Organization and Design

, which we wrote for
readers with less experience.)

For those interested in a review, two particularly important levels of the mem-
ory hierarchy are cache and virtual memory.

Cache

 is the name given to the first level of the memory hierarchy encoun-
tered once the address leaves the CPU. Since the principle of locality applies at
many levels, and taking advantage of locality to improve performance is popular,
the term

cache

 is now applied whenever buffering is employed to reuse common-
ly occurring items. Examples include

file caches

,

name caches

, and so on.
When the CPU finds a requested data item in the cache, it is called a

 cache hit

.
When the CPU does not find a data item it needs in the cache, a

cache miss

 oc-
curs. A fixed-size collection of data containing the requested word, called a

block

,
is retrieved from the main memory and placed into the cache.

Temporal locality

tells us that we are likely to need this word again in the near future, so it is useful
to place it in the cache where it can be accessed quickly. Because of

spatial local-
ity

, there is high probability that the other data in the block will be needed soon.
The time required for the cache miss depends on both the latency and band-

width of the memory. Latency determines the time to retrieve the first word of the
block, and bandwidth determines the time to retrieve the rest of this block. A
cache miss is handled by hardware and causes processors following in-order exe-
cution to pause, or stall, until the data are available.

Similarly, not all objects referenced by a program need to reside in main memo-
ry. If the computer has

virtual memory

, then some objects may reside on disk. The
address space is usually broken into fixed-size blocks, called

pages

. At any time,
each page resides either in main memory or on disk. When the CPU references an
item within a page that is not present in the cache or main memory, a

page fault

 oc-
curs, and the entire page is moved from the disk to main memory. Since page faults
take so long, they are handled in software and the CPU is not stalled. The CPU
usually switches to some other task while the disk access occurs. The cache and
main memory have the same relationship as the main memory and disk.

Figure 5.3 shows the range of sizes and access times of each level in the mem-
ory hierarchy for computers ranging from high-end desktops to low-end servers.

Cache Performance Review

Because of locality and the higher speed of smaller memories, a memory hierar-
chy can substantially improve performance. One method to evaluate cache per-
formance is to expand our CPU execution time equation from Chapter 1. We now
account for the number of cycles during which the CPU is stalled waiting for a
memory access, which we call the

memory stall cycles

. The performance is then
the product of the clock cycle time and the sum of the CPU cycles and the memo-
ry stall cycles:

378

Chapter 5 Memory-Hierarchy Design

This equation assumes that the CPU clock cycles include the time to handle a
cache hit, and that the CPU is stalled during a cache miss. Section 5.3 re-exam-
ines this simplifying assumption.

The number of memory stall cycles depends on both the number of misses and
the cost per miss, which is called the

miss penalty

:

The advantage of the last form is that the components can be easily measured. We
already know how to measure IC (instruction count). Measuring the number of
memory references per instruction can be done in the same fashion; every in-
struction requires an instruction access and we can easily decide if it also requires
a data access.

Note that we calculated miss penalty as an average, but we will use it below as
if it were a constant. The memory behind the cache may be busy at the time of the
miss due prior memory requests or memory refresh (see section 5.9). The number
of clock cycles also varies at interfaces between different clocks of the processor,
bus, and memory. Thus, please remember that using a single number for miss
penalty is a simplification.

Level 1 2 3 4

Called Registers Cache Main memory Disk storage

Typical size < 1 KB < 16 MB < 16 GB > 100 GB

Implementation technology Custom memory with
multiple ports,
CMOS

On-chip or off-
chip CMOS
SRAM

CMOS DRAM Magnetic disk

Access time (in ns) 0.25 -0.5 0.5 to 25 80-250 5,000,000

Bandwidth (in MB/sec) 20,000-100,000 5,000-10,000 1000-5000 20-150

Managed by Compiler Hardware Operating system Operating
system/operator

Backed by Cache Main memory Disk CD or Tape

FIGURE 5.3 The typical levels in the hierarchy slow down and get larger as we move away from the CPU for a large
workstation or small server.

Embedded computers might have no disk storage, and much smaller memories and caches.
The access times increase as we move to lower levels of the hierarchy, which makes it feasible to manage the transfer less
responsively. The implementation technology shows the typical technology used for these functions. The access time is given
in nanoseconds for typical values in 2001; these times will decrease over time. Bandwidth is given in megabytes per second
between levels in the memory hierarchy. Bandwidth for disk storage includes both the media and the buffered interfaces.

CPU execution time CPU clock cycles Memory stall cycles+() Clock cycle time×=

Memory stall cycles Number of misses Miss penalty×=

IC
Misses

Instruction-------------------------- Miss penalty××=

IC
Memory accesses

Instruction-- Miss rate× Miss penalty××=

5.2 Review of the ABCs of Caches

379

The component

miss rate

 is simply the fraction of cache accesses that result in
a miss (i.e., number of accesses that miss divided by number of accesses). Miss
rates can be measured with cache simulators that take an

address trace

 of the in-
struction and data references, simulate the cache behavior to determine which
references hit and which miss, and then report the hit and miss totals. Some mi-
croprocessors provide hardware to count the number of misses and memory ref-
erences, which is a much easier and faster way to measure miss rate.

The formula above is an approximation since the miss rates and miss penalties
are often different for reads and writes. Memory stall clock cycles could then be
defined in terms of the number of memory accesses per instruction, miss penalty
(in clock cycles) for reads and writes, and miss rate for reads and writes:

Memory stall clock cycles = IC

×

 Reads per instruction

×

 Read miss rate

×

 Read miss
penalty

+ IC

×

Writes per instruction

×

 Write miss rate

×

 Write miss penalty

We normally simplify the complete formula by combining the reads and writes
and finding the average miss rates and miss penalty for reads

and

 writes:

Memory stall clock cycles = IC

×

×

 Miss rate

×

 Miss penalty

The miss rate is one of the most important measures of cache design, but, as we
will see in later sections, not the only measure.

E X A M P L E

Assume we have a computer where the clocks per instruction (CPI) is 1.0
when all memory accesses hit in the cache. The only data accesses are
loads and stores, and these total 50% of the instructions. If the miss pen-
alty is 25 clock cycles and the miss rate is 2%, how much faster would the
computer be if all instructions were cache hits?

A N S W E R

First compute the performance for the computer that always hits:

Now for the computer with the real cache, first we compute memory stall
cycles:

where the middle term (1 + 0.5) represents one instruction access and 0.5

Memory accesses
Instruction--

CPU execution time CPU clock cycles Memory stall cycles+() Clock cycle×=

IC CPI× 0+() Clock cycle×=

IC 1.0 Clock cycle××=

Memory stall cycles IC
Memory accesses

Instruction-- Miss rate× Miss penalty××=

IC 1 0.5+() 0.02 25×××=

IC 0.75×=

380

Chapter 5 Memory-Hierarchy Design

data accesses per instruction. The total performance is thus

The performance ratio is the inverse of the execution times:

The computer with no cache misses is 1.75 times faster.

n

Some designers prefer measuring miss rate as

misses per instruction

 rather
than misses per memory reference. These two are related:

The latter formula is useful when you know the average number of memory
accesses per instruction as it allows you to convert miss rate into misses per in-
struction, and vice versa. For example, we can turn the miss rate per memory ref-
erence in the example above into misses per instruction:

By the way, misses per instruction are often reported as misses per 1000 in-
structions to show integers instead of fractions. Thus, the answer above could
also be expressed as 30 misses per 1000 instructions.

The advantage of misses per instruction is that it is independent of the hard-
ware implementation. For example, the 21264 fetches about twice as many in-
structions as are actually committed, which can artificially reduce the miss rate if
measured as misses per memory reference rather than per instruction. The draw-
back is that misses per instruction is architecture dependent; for example, the av-
erage number of memory accesses per instruction may be very different for an
80x86 versus MIPS. Thus, misses per instruction are most popular with architects
working with a single computer family, although the similarity of RISC architec-
tures allows one to give insights into others.

E X A M P L E

To show equivalency between the two miss rate equations, let’s redo the
example above, this time assuming a miss rate per 1000 instructions of
30. What is memory stall time in terms of instruction count?

CPU execution timecache IC 1.0× IC 0.75×+() Clock cycle×=

1.75 IC Clock cycle××=

CPU execution timecache

CPU execution time---
1.75 IC Clock cycle××
1.0 IC Clock cycle××---

=

1.75=

Misses
Instruction--------------------------

Miss rate Memory accesses×
Instruction Count--

= Miss rate
Memory accesses

Instruction--×=

Misses
Instruction--------------------------

Miss rate
Memory accesses

Instruction--× 0.02 1.5× 0.030= = =

5.2 Review of the ABCs of Caches

381

A N S W E R

Recomputing the memory stall cycles:

We get the same answer as on page 379.

n

Four Memory Hierarchy Questions

We continue our introduction to caches by answering the four common ques-
tions for the first level of the memory hierarchy:

Q1: Where can a block be placed in the upper level? (

Block placement

)

Q2: How is a block found if it is in the upper level? (

Block identification

)

Q3: Which block should be replaced on a miss? (

Block replacement

)

Q4: What happens on a write? (Write strategy)

The answers to these questions help us understand the different trade-offs of
memories at different levels of a hierarchy; hence we ask these four questions on
every example.

Q1: Where can a block be placed in a cache?
Figure 5.4 shows that the restrictions on where a block is placed create three cate-
gories of cache organization:

n If each block has only one place it can appear in the cache, the cache is said to
be direct mapped. The mapping is usually

(Block address) MOD (Number of blocks in cache)

n If a block can be placed anywhere in the cache, the cache is said to be fully
associative.

n If a block can be placed in a restricted set of places in the cache, the cache is
set associative. A set is a group of blocks in the cache. A block is first mapped
onto a set, and then the block can be placed anywhere within that set. The set
is usually chosen by bit selection; that is,

Memory stall cycles Number of misses Miss penalty×=

IC
Misses

Instruction-------------------------- Miss penalty××=

IC 1000⁄ Misses
Instruction 1000×-- Miss penalty××=

IC 1000⁄ 30 25××=

IC 1000⁄ 750×=

IC 0.75×=

382 Chapter 5 Memory-Hierarchy Design

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.

The range of caches from direct mapped to fully associative is really a continuum
of levels of set associativity. Direct mapped is simply one-way set associative and
a fully associative cache with m blocks could be called m-way set associative.
Equivalently, direct mapped can be thought of as having m sets and fully
associative as having one set.

The vast majority of processor caches today are direct mapped, two-way set
associative, or four-way set associative, for reasons we shall see shortly.

FIGURE 5.4 This example cache has eight block frames and memory has 32 blocks.
The three options for caches are shown left to right. In fully associative, block 12 from the
lower level can go into any of the eight block frames of the cache. With direct mapped, block
12 can only be placed into block frame 4 (12 modulo 8). Set associative, which has some of
both features, allows the block to be placed anywhere in set 0 (12 modulo 4). With two blocks
per set, this means block 12 can be placed either in block 0 or in block 1 of the cache. Real
caches contain thousands of block frames and real memories contain millions of blocks. The
set-associative organization has four sets with two blocks per set, called two-way set asso-
ciative. Assume that there is nothing in the cache and that the block address in question iden-
tifies lower-level block 12.

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Block
no.

Block
no.

Block
no.

Set
0

Set
1

Set
2

Set
3

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block

Block frame address

no.

Cache

Memory

5.2 Review of the ABCs of Caches 383

Q2: How is a block found if it is in the cache?
Caches have an address tag on each block frame that gives the block address. The
tag of every cache block that might contain the desired information is checked to
see if it matches the block address from the CPU. As a rule, all possible tags are
searched in parallel because speed is critical.

There must be a way to know that a cache block does not have valid informa-
tion. The most common procedure is to add a valid bit to the tag to say whether or
not this entry contains a valid address. If the bit is not set, there cannot be a match
on this address.

Before proceeding to the next question, let’s explore the relationship of a CPU
address to the cache. Figure 5.5 shows how an address is divided. The first divi-
sion is between the block address and the block offset. The block frame address
can be further divided into the tag field and the index field. The block-offset field
selects the desired data from the block, the index field selects the set, and the tag
field is compared against it for a hit. Although the comparison could be made on
more of the address than the tag, there is no need because of the following:

n The offset should not be used in the comparison, since the entire block is
present or not, and hence all block offsets result in a match by definition.

n Checking the index is redundant, since it was used to select the set to be
checked. An address stored in set 0, for example, must have 0 in the index field
or it couldn’t be stored in set 0; set 1 must have an index value of 1; and so on.
This optimization saves hardware and power by reducing the width of memory
size for the cache tag.

If the total cache size is kept the same, increasing associativity increases the
number of blocks per set, thereby decreasing the size of the index and increasing
the size of the tag. That is, the tag-index boundary in Figure 5.5 moves to the
right with increasing associativity, with the end point of fully associative caches
having no index field.

FIGURE 5.5 The three portions of an address in a set-associative or direct-mapped
cache. The tag is used to check all the blocks in the set and the index is used to select the
set. The block offset is the address of the desired data within the block. Fully associative
caches have no index field.

Tag Index
Block
offset

Block address

384 Chapter 5 Memory-Hierarchy Design

Q3: Which block should be replaced on a cache miss?
When a miss occurs, the cache controller must select a block to be replaced with
the desired data. A benefit of direct-mapped placement is that hardware decisions
are simplified—in fact, so simple that there is no choice: Only one block frame is
checked for a hit, and only that block can be replaced. With fully associative or
set-associative placement, there are many blocks to choose from on a miss. There
are three primary strategies employed for selecting which block to replace:

n Random—To spread allocation uniformly, candidate blocks are randomly
selected. Some systems generate pseudorandom block numbers to get repro-
ducible behavior, which is particularly useful when debugging hardware.

n Least-recently used (LRU)—To reduce the chance of throwing out information
that will be needed soon, accesses to blocks are recorded. Relying on the past
to predict the future, the block replaced is the one that has been unused for the
longest time. LRU relies on a corollary of locality: If recently used blocks are
likely to be used again, then a good candidate for disposal is the least-recently
used block.

n First In First Out (FIFO)—Because LRU can be complicated to calculate, this
approximates LRU by determining the oldest block rather than the LRU.

A virtue of random replacement is that it is simple to build in hardware. As the
number of blocks to keep track of increases, LRU becomes increasingly ex-
pensive and is frequently only approximated. Figure 5.6 shows the difference in
miss rates between LRU, random, and FIFO replacement.

Q4: What happens on a write?
Reads dominate processor cache accesses. All instruction accesses are reads, and
most instructions don’t write to memory. Figure 2.32 on page 149 in Chapter 2

Associativity

Two-way Four-way Eight-way

Size LRU Random FIFO LRU Random FIFO LRU Random FIFO

16 KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4

64 KB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3

256 KB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

FIGURE 5.6 Data cache misses per 1000 instructions comparing least-recently used, random, and first-in, first-out
replacement for several sizes and associativities. There is little difference between LRU and random for the largest-size
cache, with LRU outpeforming the others for smaller caches. FIFO generally outperforms random in the smaller cache sizes.
These data were collected for a block size of 64 bytes for the Alpha architecture using ten SPEC2000 benchmarks. Five are
from SPECint2000 (gap, gcc, gzip, mcf, and perl) and five are from SPECfp2000 (applu, art, equake, lucas, and swim). We
will use this computer and these benchmarks in most figures in this chapter.

5.2 Review of the ABCs of Caches 385

suggests a mix of 10% stores and 37% loads for MIPS programs, making writes
10%/(100% + 37% + 10%) or about 7% of the overall memory traffic. Of the
data cache traffic, writes are 10%/(37% + 10%) or about 21%. Making the com-
mon case fast means optimizing caches for reads, especially since processors tra-
ditionally wait for reads to complete but need not wait for writes. Amdahl’s Law
(section 1.6, page 29) reminds us, however, that high-performance designs can-
not neglect the speed of writes.

Fortunately, the common case is also the easy case to make fast. The block can
be read from cache at the same time that the tag is read and compared, so the
block read begins as soon as the block address is available. If the read is a hit, the
requested part of the block is passed on to the CPU immediately. If it is a miss,
there is no benefit—but also no harm in desktop and server computers; just ig-
nore the value read. Embedded’s emphasis on power generally means avoiding
unnecessary work, which might lead the designer to separate data read from ad-
dress check so that data is not read on a miss.

Such optimism is not allowed for writes. Modifying a block cannot begin until
the tag is checked to see if the address is a hit. Because tag checking cannot occur
in parallel, writes normally take longer than reads. Another complexity is that the
processor also specifies the size of the write, usually between 1 and 8 bytes; only
that portion of a block can be changed. In contrast, reads can access more bytes
than necessary without fear; once again, embedded designers might weigh the
power benefits of reading less.

The write policies often distinguish cache designs. There are two basic options
when writing to the cache:

n Write through —The information is written to both the block in the cache and
to the block in the lower-level memory.

n Write back —The information is written only to the block in the cache. The
modified cache block is written to main memory only when it is replaced.

To reduce the frequency of writing back blocks on replacement, a feature
called the dirty bit is commonly used. This status bit indicates whether the block
is dirty (modified while in the cache) or clean (not modified). If it is clean, the
block is not written back on a miss, since identical information to the cache is
found in lower levels.

Both write back and write through have their advantages. With write back,
writes occur at the speed of the cache memory, and multiple writes within a block
require only one write to the lower-level memory. Since some writes don’t go to
memory, write back uses less memory bandwidth, making write back attractive in
multiprocessors which are common in servers. Since write back uses the rest of
the memory hierarchy and memory buses less than write through, it also saves
power, making it attractive for embedded applications.

Write through is easier to implement than write back. The cache is always
clean, so unlike write back read misses never result in writes to the lower level.
Write through also has the advantage that the next lower level has the most cur-
rent copy of the data, which simplifies data coherency. Data coherency (see sec-

386 Chapter 5 Memory-Hierarchy Design

tion 5.12) is important for multiprocessors and for I/O, which we examine in
Chapters 6 and 7.

As we shall see, I/O and multiprocessors are fickle: they want write back for
processor caches to reduce the memory traffic and write through to keep the
cache consistent with lower levels of the memory hierarchy.

When the CPU must wait for writes to complete during write through, the
CPU is said to write stall. A common optimization to reduce write stalls is a write
buffer, which allows the processor to continue as soon as the data is written to the
buffer, thereby overlapping processor execution with memory updating. As we
shall see shortly, write stalls can occur even with write buffers.

Since the data are not needed on a write, there are two are two options on a
write miss:

n Write allocate —The block is allocated on a write miss, followed by the write-
hit actions above. In this natural option, write misses act like read misses.

n No-write allocate—This apparently unusual alternative is write misses do not
affect the cache. Instead, the block is modified only in the lower level memory.

Thus, blocks stays out of the cache in no-write allocate until the program tries to
read the blocks, but even blocks that are only written will still be in the cache with
write allocate. Let’s look at an example.

E X A M P L E Assume a fully associative write back cache with many cache entries that
starts empty. Below is a sequence of five memory operations (the address
is in parentheses):

Write Mem[100];
WriteMem[100];
Read Mem[200];
WriteMem[200];
WriteMem[100].

What are the number of hits and misses with using no-write allocate ver-
sus write allocate?

A N S W E R For no-write allocate, the address 100 is not in the cache, and there is no
allocation on write, so the first two writes will result in misses. Address 200
is also not in the cache, so the read is also a miss. The subsequent write
to address 200 is a hit. The last write to 100 is still a miss. The result for
no write allocate is 4 misses and 1 hit.

For write allocate, the first accesses to 100 and 200 are misses, and the
rest are hits since 100 and 200 are both found in the cache. Thus, the re-
sult for write allocate is 2 misses and 3 hits. n

5.2 Review of the ABCs of Caches 387

Either write-miss policy could be used with write through or write back. Normal-
ly, write-back caches use write allocate, hoping that subsequent writes to that block
will be captured by the cache. Write-through caches often use no-write allocate. The
reasoning is that even if there are subsequent writes to that block, the writes must
still go to the lower level memory, so what’s to be gained?

An Example: The Alpha 21264 Data Cache

To give substance to these ideas, Figure 5.7 shows the organization of the data
cache in the Alpha 21264 microprocessor that is found in the Compaq AlphaSer-
ver ES40, one of several models that use it. The cache contains 65,536 (64K)
bytes of data in 64-byte blocks with two-way set-associative placement, write
back, and write allocate on a write miss.

Let’s trace a cache hit through the steps of a hit as labeled in Figure 5.7. (The
four steps are shown as circled numbers.) As we shall see later (Figure 5.36), the
21264 processor presents a 48-bit virtual address to the cache for tag comparison,
which is simultaneously translated into a 44-bit physical address. (It also option-
ally supports 43-bit virtual addresses with 41-bit physical addresses.)

The reason Alpha doesn’t use all 64 bits of virtual address is that its designers
don’t think anyone needs that big of virtual address space yet, and the smaller
size simplifies the Alpha virtual address mapping. The designers planned to grow
the virtual address in future microprocessors.

The physical address coming into the cache is divided into two fields: the 38-
bit block address and 6-bit block offset (64 = 26 and 38 + 6 = 44). The block ad-
dress is further divided into an address tag and cache index. Step 1 shows this di-
vision.

The cache index selects the tag to be tested to see if the desired block is in the
cache. The size of the index depends on cache size, block size, and set associativ-
ity. For the 21264 cache the set associativity is set to two, and we calculate the in-
dex as follows:

Hence, the index is 9 bits wide, and the tag is 38 – 9 or 29 bits wide. Although
that is the index needed to select the proper block, 64 bytes is much more than the
CPU wants to consume at once. Hence, it makes more sense to organize the data
portion of the cache memory 8 bytes wide, which is the natural data word of the
64-bit Alpha processor. Thus, in addition to 9 bits to index the proper cache
block, 3 more bits from the block offset are used to index the proper 8 bytes.

Index selection is step 2 in Figure 5.7. The two tags are compared and the
winner is selected. (Section 5.10 explains how the 21264 handles virtual address
translation.)

2
index Cache size

Block size Set associativity×--
65536
64 2×---------------

512 2
9

= = ==

388 Chapter 5 Memory-Hierarchy Design

After reading the two tags from the cache, they are compared to the tag por-
tion of the block address from the CPU. This comparison is step 3 in the figure.
To be sure the tag contains valid information, the valid bit must be set or else the
results of the comparison are ignored.

Assuming one tag does match, the final step is to signal the CPU to load the
proper data from the cache by using the winning input from a 2:1 multiplexor.
The 21264 allows three clock cycles for these four steps, so the instructions in the
following two clock cycles would wait if they tried to use the result of the load.

FIGURE 5.7 The organization of the data cache in the Alpha 21264 microprocessor.
The 64-KB cache is two-way set associative with 64-byte blocks. The 9-bit index selects be-
tween 512 sets. The four steps of a read hit, shown as circled numbers in order of occurrence,
label this organization. Three bits of the block offset join the index to supply the RAM address
to select the proper 8 bytes. Thus, the cache holds two groups 4096 64-bit words, with each
group containing half of the 512 sets. Although not exercised in this example, the line from
lower level memory to the cache is used on a miss to load the cache. The size of address
leaving the CPU is 44 bits because it is a physical address and not a virtual address.
Figure 5.36 on page 454 explains how the Alpha maps from the virtual to physical for a cache
access. <<REVIZE DRAWING, including the more realistic drawing of the memory
blocks as in old figure 5.10 in CA:AQA 2/e>>

Block address
Block
offset

CPU
address
Data
in

Data
out

<29>

 Tag Index

<9> <6>

4

3

3

(512
blocks)

(512
blocks)

2

2

1

Victim
buffer

Lower level memory

Valid Data
<1> <26> <64>

=?

Tag

2:1 Mux

=?

5.2 Review of the ABCs of Caches 389

Handling writes is more complicated than handling reads in the 21264, as it is
in any cache. If the word to be written is in the cache, the first three steps are the
same. Since the 21264 executes out-of-order, only after it signals that the instruc-
tion has committed and the cache tag comparison indicates a hit are the data are
written to the cache.

So far we have assumed the common case of a cache hit. What happens on a
miss? On a read miss, the cache sends a signal to the processor telling it the data
is not yet available, and 64 bytes are read from the next level of the hierarchy. The
path to the next lower level in the 21264 is 16 bytes wide. In the 667 MHz Al-
phaServer ES40 it takes 2.25 ns per transfer, or 9 ns for all 64 bytes. Since the
data cache is set associative, there is a choice on which block to replace. The
21264 does round robin selection, dedicating a bit for every two blocks to re-
member where to go next. Unlike LRU, which selects the block that was refer-
enced longest ago, round robin selects the block that was filled longest ago.
Round robin is easier to implement since it is only updated on a miss rather than
on every hit. Replacing a block means updating the data, the address tag, the val-
id bit, and the round robin bit.

Since the 21264 uses write back, the old data block could have been modified,
and hence it cannot simply be discarded. The 21264 keeps one dirty bit per block
to record if the block was written. If the “victim” was modified, its data and ad-
dress are sent to the Victim Buffer. (This structure is similar to a write buffer in
other computers.) The 21264 has space for eight victim blocks. In parallel with
other cache actions, it writes victim blocks to the next level of the hierarchy. If
the Victim Buffer is full, the cache must wait.

A write miss is very similar to a read miss, since the 21264 allocates a block
on a read or a write miss.

We have seen how it works, but the data cache cannot supply all the memory
needs of the processor: the processor also needs instructions. Although a single
cache could try to supply both, it can be a bottleneck. For example, when a load
or store instruction is executed, the pipelined processor will simultaneously re-
quest both a data word and an instruction word. Hence, a single cache would
present a structural hazard for loads and stores, leading to stalls. One simple way
to conquer this problem is to divide it: one cache is dedicated to instructions and
another to data. Separate caches are found in most recent processors, including
the Alpha 21264. Hence, it has a 64-KB instruction cache as well as the 64-KB
data cache.

The CPU knows whether it is issuing an instruction address or a data address,
so there can be separate ports for both, thereby doubling the bandwidth between
the memory hierarchy and the CPU. Separate caches also offer the opportunity of
optimizing each cache separately: different capacities, block sizes, and associa-
tivities may lead to better performance. (In contrast to the instruction caches and
data caches of the 21264, the terms unified or mixed are applied to caches that can
contain either instructions or data.)

390 Chapter 5 Memory-Hierarchy Design

Figure 5.8 shows that instruction caches have lower miss rates than data
caches. Separating instructions and data removes misses due to conflicts between
instruction blocks and data blocks, but the split also fixes the cache space devoted
to each type. Which is more important to miss rates? A fair comparison of sepa-
rate instruction and data caches to unified caches requires the total cache size to
be the same. For example, a separate 16-KB instruction cache and 16-KB data
cache should be compared to a 32-KB unified cache. Calculating the average
miss rate with separate instruction and data caches necessitates knowing the per-
centage of memory references to each cache. Figure 2.32 on page 149 suggests
the split is 100%/(100% + 37% + 10%) or about 78% instruction references to
(37% + 10%)/(100% + 37% + 10%) or about 22% data references. Splitting af-
fects performance beyond what is indicated by the change in miss rates, as we
shall see shortly.

Because instruction count is independent of the hardware, it is tempting to evalu-
ate CPU performance using that number. As we saw in Chapter 1, however, such
indirect performance measures have waylaid many a computer designer. The
corresponding temptation for evaluating memory-hierarchy performance is to con-
centrate on miss rate, because it, too, is independent of the speed of the hardware.
As we shall see, miss rate can be just as misleading as instruction count. A better
measure of memory-hierarchy performance is the average memory access time:

Average memory access time = Hit time + Miss rate × Miss penalty

where Hit time is the time to hit in the cache; we have seen the other two terms be-
fore. The components of average access time can be measured either in absolute
time—say, 0.25 to 1.0 nanoseconds on a hit—or in the number of clock cycles that

Size Instruction cache Data cache Unified cache

8 KB 8.16 44.0 63.0

16 KB 3.82 40.9 51.0

32 KB 1.36 38.4 43.3

64 KB 0.61 36.9 39.4

128 KB 0.30 35.3 36.2

256 KB 0.02 32.6 32.9

FIGURE 5.8 Miss per 1000 instructions for instruction, data, and unified caches of dif-
ferent sizes. The percentage of instruction references is about 78%. The data are for two-
way associative caches with 64-byte blocks for the same computer and benchmarks as Fig-
ure 5.6.

5.3 Cache Performance

5.3 Cache Performance 391

the CPU waits for the memory—such as a miss penalty of 75 to 100 clock cycles.
Remember that average memory access time is still an indirect measure of perfor-
mance; although it is a better measure than miss rate, it is not a substitute for exe-
cution time.

This formula can help us decide between split caches and a unified cache.

E X A M P L E Which has the lower miss rate: a 16-KB instruction cache with a 16-KB
data cache or a 32-KB unified cache? Use the miss rates in Figure 5.7 to
help calculate the correct answer assuming 47% of the instructions are
data transfer instructions. Assume a hit takes 1 clock cycle and the miss
penalty is 100 clock cycles. A load or store hit takes 1 extra clock cycle on
a unified cache if there is only one cache port to satisfy two simultaneous
requests. Using the pipelining terminology of the previous chapter, the
unified cache leads to a structural hazard. What is the average memory
access time in each case? Assume write-through caches with a write buff-
er and ignore stalls due to the write buffer.

A N S W E R First let’s convert misses per 1000 instructions into miss rates. Solving the
general formula is from above, miss rate is

Since every instruction access has exactly 1 memory access to fetch the
instruction, the instruction miss rate is:

Since 47% of the instructions are data transfers, the data miss rate is:

The unified miss rate needs to account for instruction and data accesses:

As stated above, about 78% of the memory accesses are instruction
references. Thus, the overall miss rate for the split caches is

(78% × 0.004) + (22% × 0.087) = 0.022

Miss rate

Misses
1000 Instructions--- 1000⁄

Memory accesses
Instruction--

--
=

Miss rate16 KB Instruction
3.82 1000⁄

1.00-------------------------- 0.004==

Miss rate16 KB Data
40.9 1000⁄

0.47-------------------------- 0.087==

Miss rate32 KB Unified
43.3 1000⁄
1.00 0.47+--------------------------- 0.029==

392 Chapter 5 Memory-Hierarchy Design

Thus, a 32-KB unified cache has a higher effective miss rate than two16-
KB caches.

The average memory access time formula can be divided into
instruction and data accesses:

Therefore, the time for each organization is

Hence, the split caches in this example—which offer two memory ports
per clock cycle, thereby avoiding the structural hazard—also have a better
average memory access time than the single-ported unified cache. n

Average memory access time and Processor Performance

An obvious question is whether average memory access time due to cache misses
predicts processor performance.

First, there are other reasons for stalls, such as contention due to I/O devices
using memory. Designers often assume that all memory stalls are due to cache
misses, since the memory hierarchy typically dominates other reasons for stalls.
We use this simplifying assumption here, but beware to account for all memory
stalls when calculating final performance.

Second, the answer depends also on the CPU. If we have an in-order execution
CPU (See Chapter 3), then the answer is basically yes. The CPU stalls during
misses, and the memory stall time is strongly correlated to average memory ac-
cess time. Let’s make that assumption for now, but we’ll return to out-of-order
CPUs in the next subsection.

As stated in the prior section, we can model CPU time as:

CPU time = (CPU execution clock cycles + Memory stall clock cycles) × Clock cycle time

This formula raises the question whether the clock cycles for a cache hit should
be considered part of CPU execution clock cycles or part of memory stall clock
cycles. Although either convention is defensible, the most widely accepted is to
include hit clock cycles in CPU execution clock cycles.

We can now explore the impact of caches on performance.

Average memory access time

% instructions Hit time Instruction miss rate Miss penalty×+() +×=

% data Hit time Data miss rate Miss penalty×+()×

Average memory access timesplit

78% 1 0.004 100×+() 22% 1 0.087 100×+()×+×=

78% 1.38×() 22% 9.70×()+ 1.078 2.134+ 3.21= = =

Average memory access timeunified

78% 1 0.029 100×+() 22% 1 1 0.029 100×+ +()×+×=

78% 3.95×() 22% 4.95×()+ 3.080 1.089+ 4.17= = =

5.3 Cache Performance 393

E X A M P L E Let’s use an in-order execution computer for the first example, such as the
UltraSPARC III (see section 5.15). Assume the cache miss penalty is 100
clock cycles, and all instructions normally take 1.0 clock cycles (ignoring
memory stalls). Assume the average miss rate is 2%, there is an average
of 1.5 memory references per instruction, and that the average number of
cache misses per 1000 instructions is 30. What is the impact on perfor-
mance when behavior of the cache is included? Calculate the impact using
both misses per instruction and miss rate.

A N S W E R

The performance, including cache misses, is

CPU timewith cache = IC × (1.0 + (30 / 1000 × 100)) × Clock cycle time

= IC × 4.00 × Clock cycle time

Now calculating performance using miss rate:

CPU timewith cache = IC × (1.0 + (1.5 × 2% × 100)) × Clock cycle time

= IC × 4.00 × Clock cycle time

The clock cycle time and instruction count are the same, with or with-
out a cache. Thus, CPU time increases fourfold, with CPI from 1.00 for a
“perfect cache” to 4.00 with a cache that can miss. Without any memory
hierarchy at all the CPI would increase again to 1.0 + 100 × 1.5 or 151—
a factor of almost 40 times longer than a system with a cache! n

As this example illustrates, cache behavior can have enormous impact on per-
formance. Furthermore, cache misses have a double-barreled impact on a CPU
with a low CPI and a fast clock:

1. The lower the CPIexecution, the higher the relative impact of a fixed number of
cache miss clock cycles.

2. When calculating CPI, the cache miss penalty is measured in CPU clock
cycles for a miss. Therefore, even if memory hierarchies for two computers are
identical, the CPU with the higher clock rate has a larger number of clock
cycles per miss and hence a higher memory portion of CPI.

CPU time = IC CPIexecution
Memory stall clock cycles

Instruction---
+

× 
 Clock cycle time×

CPU time IC CPIexecution Miss rate+(× Memory accesses
Instruction-- Miss penalty×× 

 Clock cycle time×=

394 Chapter 5 Memory-Hierarchy Design

The importance of the cache for CPUs with low CPI and high clock rates is thus
greater, and, consequently, greater is the danger of neglecting cache behavior in
assessing performance of such computers. Amdahl’s Law strikes again!

Although minimizing average memory access time is a reasonable goal—and
we will use it in much of this chapter—keep in mind that the final goal is to re-
duce CPU execution time. The next example shows how these two can differ.

E X A M P L E What is the impact of two different cache organizations on the perfor-
mance of a CPU? Assume that the CPI with a perfect cache is 2.0, the
clock cycle time is 1.0 ns, there are 1.5 memory references per instruc-
tion, the size of both caches is 64 KB, and both have a block size of 64
bytes. One cache is direct mapped and the other is two-way set associa-
tive. Figure 5.7 on page 388 shows that for set-associative caches we
must add a multiplexor to select between the blocks in the set depending
on the tag match. Since the speed of the CPU is tied directly to the speed
of a cache hit, assume the CPU clock cycle time must be stretched 1.25
times to accommodate the selection multiplexor of the set-associative
cache. To the first approximation, the cache miss penalty is 75 ns for ei-
ther cache organization. (In practice, it is normally rounded up or down to
an integer number of clock cycles.) First, calculate the average memory
access time, and then CPU performance. Assume the hit time is one clock
cycle, the miss rate of a direct-mapped 64-KB cache is 1.4%, and the
miss rate for a two-way set-associative cache of the same size is 1.0%.

A N S W E R Average memory access time is

Average memory access time = Hit time + Miss rate × Miss penalty

Thus, the time for each organization is

Average memory access time1-way = 1.0 + (.014 × 75) = 2.05 ns
Average memory access time2-way = 1.0 × 1.25 + (.010 × 75) = 2.00 ns

The average memory access time is better for the two-way set-associative
cache.

CPU performance is

Substituting 75 ns for (Miss penalty × Clock cycle time), the performance

CPU time IC CPIExecution
Misses

Instruction-------------------------- Miss penalty× 
 Clock cycle time×+

×=

IC CPIExecution(Clock cycle time)××=

Miss rate
Memory accesses

Instruction-- Miss penalty Clock cycle time××× 
 +

5.3 Cache Performance 395

of each cache organization is

and relative performance is

In contrast to the results of average memory access time comparison, the
direct-mapped cache leads to slightly better average performance be-
cause the clock cycle is stretched for all instructions for the two-way set-
associative case, even if there are fewer misses. Since CPU time is our
bottom-line evaluation, and since direct mapped is simpler to build, the
preferred cache is direct mapped in this example. n

Miss Penalty and Out-of-Order Execution Processors

For an out-of-order execution processor, how do you define miss penalty? Is it the
full latency of the miss to memory, or is it just the “exposed” or non-overlapped
latency when the processor must stall? This question does not arise in processors
which stall until the data miss completes.

Let’s redefine memory stalls to lead to a new definition of miss penalty as non-
overlapped latency:

Similarly, as some out-of-order CPUs stretch the hit time, that portion of the per-
formance equation could be divided total hit latency less overlapped hit latency.
This equation could be further expanded to account for contention for memory
resources in an out-of-order processor by dividing total miss latency into latency
without contention and latency due to contention. Let’s just concentrate on miss
latency.

We now have to decide

n length of memory latency: what to consider as the start and the end of a memory
operation in an out-of-order processor; and

n length of latency overlap: what is the start of overlap with for the processor (or
equivalently, when do we say a memory operation is stalling the processor).

Given the complexity of out-of-order execution processors, there is no single cor-
rect definition.

CPU time1-way IC 2 1.0 1.5 0.014 75××()+×()× 3.58 IC×= =

CPU time2-way IC 2 1.0 1.25× 1.5 0.010 75××()+×()× 3.63 IC×= =

CPU time2-way
CPU time1-way

3.63 Instruction count×
3.58 Instruction count×---

3.63
3.58---------- 1.01===

Memory stall cycles
Instruction--

Misses
Instruction-------------------------- Total miss latency Overlapped miss latency–()×=

396 Chapter 5 Memory-Hierarchy Design

Since only committed operations are seen at the retirement pipeline stage, we
say a processor is stalled in a clock cycle if it does not retire the maximum possi-
ble number of instructions in that cycle. We attribute that stall to the first instruc-
tion that could not be retired. This definition is by no means foolproof. For
example, applying an optimization to improve a certain stall time may not always
improve execution time because another type of stall—hidden behind the targeted
stall—may now be exposed.

For latency, we could start measuring from the time the memory instruction is
queued in the instruction window, or when the address is generated, or when the
instruction is actually sent to the memory system. Any option works as long as it
is used in a consistent fashion.

E X A M P L E Let’s redo the example above, but this time assuming the processor with
the longer clock cycle time supports out-of-order execution yet still has a
direct mapped cache. Assume 30% of the 75 ns miss penalty can be over-
lapped; that is, the average CPU memory stall time is now 52.5 ns.

A N S W E R Average memory access time for the out-of-order computer is
Average memory access time1-way,OOO = 1.0 × 1.25+ (0.014 × 52.5) = 1.99 ns

The performance of the OOO cache is

Hence, despite a much slower clock cycle time and the higher miss rate
of a direct mapped cache, the out-of-order computer can be slightly faster
if it can hide 30% of the miss penalty. n

In summary, although the state-of-the-art in defining and measuring memory
stalls for out-of-order processors is not perfect and is relatively complex, readers
should be aware of the issues for they significantly affect performance.

Improving Cache Performance

To help summarize this section and to act as a handy reference, Figure 5.9 lists
the cache equations in this chapter.

The increasing gap between CPU and main memory speeds shown in Figure
5.2 has attracted the attention of many architects. A bibliographic search for the
years 1989 to 2001 revealed more than 5000 research papers on the subject of
caches. Your authors’ job was to survey all 5000 papers, decide what is and is not
worthwhile, translate the results into a common terminology, reduce the results to
their essence, write in an intriguing fashion, and provide just the right amount of
detail!

CPU time1-way,OOO IC 2 1.0 1.25× 1.5 0.014 52.5××()+×()× 3.60 IC×= =

5.3 Cache Performance 397

Fortunately, this task was simplified by our long standing policy of only in-
cluding ideas in this book that have made their way into commercially viable
computers. In computer architecture, many ideas look much better on paper than
in silicon.

The average memory access time formula gave us a framework to present the
surviving cache optimizations for improving cache performance or power:

Average memory access time = Hit time + Miss rate × Miss penalty

Hence, we organize 16 cache optimizations into four categories:

n Reducing the miss penalty (Section 5.4): multilevel caches, critical word first,
read miss before write miss, merging write buffers, victim caches;

n Reducing the miss rate (Section 5.5): larger block size, larger cache size, higher
associativity, pseudo-associativity, and compiler optimizations;

n Reducing the miss penalty or miss rate via parallelism (Section 5.6): nonblock-
ing caches, hardware prefetching, and compiler prefetching;

n Reducing the time to hit in the cache (Section 5.7): small and simple caches,
avoiding address translation, and pipelined cache access.

FIGURE 5.9 Summary of performance equations in this chapter. The first equation calculates with cache index size,
but the rest help evaluates performance. The final two equations deal with multilevel caches, is explained early in the next
section. They are included here to help make the figure a useful reference.

2
index Cache size

Block size Set associativity×--
=

CPU execution time CPU clock cycles Memory stall cycles+() Clock cycle time×=

Memory stall cycles Number of misses Miss penalty×=

Memory stall cycles IC
Misses

Instruction-------------------------- Miss penalty××=

Misses
Instruction--------------------------

Miss rate
Memory accesses

Instruction--×=

Average memory access time Hit time Miss rate Miss penalty×+=

CPU execution time IC CPIexecution
Memory stall clock cycles

Instruction---
+ 

 × Clock cycle time×=

CPU execution time IC CPIexecution
Misses

Instruction-------------------------- Miss penalty×+ 
 × Clock cycle time×=

CPU execution time IC CPIexecution Miss rate
Memory accesses

Instruction--× Miss penalty×+ 
 × Clock cycle time×=

Memory stall cycles
Instruction--

Misses
Instruction-------------------------- Total miss latency Overlapped miss latency–()×=

Average memory access time Hit timeL1 Miss rateL1 Hit timeL2 Miss rateL2+ Miss penaltyL2×()×+=

Memory stall cycles
Instruction--

MissesL1

Instruction-------------------------- Hit timeL2×
MissesL2

Instruction-------------------------- Miss penaltyL2×+=

398 Chapter 5 Memory-Hierarchy Design

Figure 5.26 on page 436 concludes with a summary of the implementation com-
plexity and the performance benefits of the 17 techniques presented.

Reducing cache misses has been the traditional focus of cache research, but the
cache performance formula assures us that improvements in miss penalty can be
just as beneficial as improvements in miss rate. Moreover, Figure 5.2 shows that
technology trends have improved the speed of processors faster than DRAMs,
making the relative cost of miss penalties increase over time.

We give five optimizations here to address increasing miss penalty. Perhaps
the most interesting optimization is the first, which adds more levels of caches to
reduce miss penalty.

First Miss Penalty Reduction Technique: Multi-Level Caches

Many techniques to reduce miss penalty affect the CPU. This technique ignores
the CPU, concentrating on the interface between the cache and main memory.

The performance gap between processors and memory leads the architect to
this question: Should I make the cache faster to keep pace with the speed of
CPUs, or make the cache larger to overcome the widening gap between the CPU
and main memory?

One answer is: both. Adding another level of cache between the original cache
and memory simplifies the decision. The first-level cache can be small enough to
match the clock cycle time of the fast CPU. Yet the second-level cache can be
large enough to capture many accesses that would go to main memory, thereby
lessening the effective miss penalty.

Although the concept of adding another level in the hierarchy is straightfor-
ward, it complicates performance analysis. Definitions for a second level of
cache are not always straightforward. Let’s start with the definition of average
memory access time for a two-level cache. Using the subscripts L1 and L2 to re-
fer, respectively, to a first-level and a second-level cache, the original formula is

Average memory access time = Hit timeL1 + Miss rateL1 × Miss penaltyL1

and

Miss penaltyL1 = Hit timeL2 + Miss rateL2 × Miss penaltyL2

so

Average memory access time = Hit timeL1 + Miss rateL1× (Hit timeL2 + Miss rateL2 × Miss penaltyL2)

5.4 Reducing Cache Miss Penalty

5.4 Reducing Cache Miss Penalty 399

In this formula, the second-level miss rate is measured on the leftovers from the
first-level cache. To avoid ambiguity, these terms are adopted here for a two-level
cache system:

n Local miss rate—This rate is simply the number of misses in a cache divided
by the total number of memory accesses to this cache. As you would expect,
for the first-level cache it is equal to Miss rateL1 and for the second-level cache
it is Miss rateL2.

n Global miss rate—The number of misses in the cache divided by the total num-
ber of memory accesses generated by the CPU. Using the terms above, the
global miss rate for the first-level cache is still just Miss rateL1 but for the sec-
ond-level cache it is Miss rateL1 × Miss rateL2.

This local miss rate is large for second level caches because the first-level
cache skims the cream of the memory accesses. This is why the global miss rate
is the more useful measure: it indicates what fraction of the memory accesses that
leave the CPU go all the way to memory.

Here is a place where the misses per instruction metric shines. Instead of con-
fusion about local or global miss rates, we just expand memory stalls per instruc-
tion to add the impact of a second level cache.
Average memory stalls per instruction = Misses per instructionL1× Hit timeL2 + Misses per
instructionL2 × Miss penaltyL2.

E X A M P L E Suppose that in 1000 memory references there are 40 misses in the first-
level cache and 20 misses in the second-level cache. What are the vari-
ous miss rates? Assume the miss penalty from L2 cache to Memory is
100 clock cycles, the hit time of L2 cache is 10 clock cycles, the Hit time
of L1 is 1 clock cycles, and there are 1.5 memory references per instruc-
tion. What is the average memory access time and average stall cycles
per instruction? Ignore the impact of writes.

A N S W E R The miss rate (either local or global) for the first-level cache is 40/1000 or
4%. The local miss rate for the second-level cache is 20/40 or 50%. The
global miss rate of the second-level cache is 20/1000 or 2%. Then
Average memory access time = Hit timeL1 + Miss rateL1× (Hit timeL2 + Miss
rateL2 × Miss penaltyL2

= 1 + 4% × (10 + 50% × 100) = 1 + 4% × 60 = 3.4 clock cycles
To see how many misses we get per instruction, we divide 1000 memory
references by 1.5 memory references per instruction, which yields 667 in-
structions. Thus, we need to multiply the misses by 1.5 to get the number
of misses per 1000 instructions. We have 40 × 1.5 or 60 L1 misses 20 ×
1.5 or 30 L2 misses per 1000 instructions. For average memory stalls per
instruction, assuming the misses are distributed uniformly between in-
structions and data:

400 Chapter 5 Memory-Hierarchy Design

Average memory stalls per instruction = Misses per instructionL1× Hit timeL2 +
Misses per instructionL2 × Miss penaltyL2

= (60/1000) × 10 + (30/1000) × 100
= 0.060 × 10 + 0.030 × 100 = 3.6 clock cycles
If we subtract the L1 hit time from AMAT and then multiplying by the aver-
age number of memory references per instruction we get the same aver-
age memory stalls per instruction:
(3.4 - 1.0) x 1.5 = 2.4 x 1.5 = 3.6 clock cycles.
As this example shows, there is less confusion with multilevel caches
when calculating using misses per instruction versus miss rates. n

Note that these formulas are for combined reads and writes, assuming a write-
back first-level cache. Obviously, a write-through first-level cache will send all
writes to the second level, not just the misses, and a write buffer might be used.

Figures 5.10 and 5.11 show how miss rates and relative execution time change
with the size of a second-level cache for one design. From these figures we can
gain two insights. The first is that the global cache miss rate is very similar to the
single cache miss rate of the second-level cache, provided that the second-level
cache is much larger than the first-level cache. Hence, our intuition and knowl-
edge about the first-level caches apply. The second insight is that the local cache
rate is not a good measure of secondary caches; it is a function of the miss rate of
the first-level cache, and hence can vary by changing the first-level cache. Thus,
the global cache miss rate should be used when evaluating second-level caches.

With these definitions in place, we can consider the parameters of second-
level caches. The foremost difference between the two levels is that the speed of
the first-level cache affects the clock rate of the CPU, while the speed of the
second-level cache only affects the miss penalty of the first-level cache. Thus, we
can consider many alternatives in the second-level cache that would be ill chosen
for the first-level cache. There are two major questions for the design of the sec-
ond-level cache: Will it lower the average memory access time portion of the
CPI, and how much does it cost?

The initial decision is the size of a second-level cache. Since everything in the
first-level cache is likely to be in the second-level cache, the second-level cache
should be much bigger than the first. If second-level caches are just a little bigger,
the local miss rate will be high. This observation inspires design of huge second-
level caches—the size of main memory in older computers! One question is
whether set associativity makes more sense for second-level caches.

E X A M P L E Given the data below, what is the impact of second-level cache as-
sociativity on its miss penalty?

n Hit timeL2 for direct mapped = 10 clock cycles

n Two-way set associativity increases hit time by 0.1 clock cycles to 10.1
clock cycles

5.4 Reducing Cache Miss Penalty 401

n Local miss rateL2 for direct mapped = 25%

n Local miss rateL2 for two-way set associative = 20%

n Miss penaltyL2 = 100 clock cycles

A N S W E R For a direct-mapped second-level cache, the first-level cache miss
penalty is

Miss penalty1- way L2 = 10 + 25% × 100 = 35.0 clock cycles

FIGURE 5.10 Miss rates versus cache size for multilevel caches. Second-level caches smaller than the sum of the two
64-KB first level make little sense, as reflected in the high miss rates. After 256 KB the single cache is within 10% of the
global miss rates. The miss rate of a single-level cache versus size is plotted against the local miss rate and global miss rate
of a second-level cache using a 32-KB first-level cache. The L2 Caches (unified) were 2-way set-associative with LRU re-
placement. Each had split L1instruction and data caches that were 64KB 2-way set-associative with LRU replacement. The
block size for both L1 and L2 caches was 64 bytes. Data was collected for as in Figure 5.6.<<Artist please separate num-
bers for graphs at bottom>>

99% 99% 98% 96%

88%

67%

55%
51%

46%

39%
34%

4 % 4 % 4 % 4 % 4 % 3 % 3 % 2 % 2 % 1 % 1 %
6 % 5 % 4 % 3 % 3 % 3 % 2 % 2 % 2 % 1 % 1 %0 %

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 1 6 3 2 6 4 128 256 512 1024 2048 4096

Cache size (KB)

Local miss rate

Global miss rate

Single cache miss rate

402 Chapter 5 Memory-Hierarchy Design

Adding the cost of associativity increases the hit cost only 0.1 clock
cycles, making the new first-level cache miss penalty

Miss penalty2- way L2 = 10.1 + 20% × 100 = 30.1 clock cycles

In reality, second-level caches are almost always synchronized with the
first-level cache and CPU. Accordingly, the second-level hit time must be
an integral number of clock cycles. If we are lucky, we shave the second-
level hit time to 10 cycles; if not, we round up to 11 cycles. Either choice
is an improvement over the direct-mapped second-level cache:

Miss penalty2- way L2 = 10 + 20% × 100 = 30.0 clock cycles

Miss penalty2- way L2 = 11 + 20% × 100 = 31.0 clock cycles

n

FIGURE 5.11 Relative execution time by second-level cache size. The two bars are for
different clock cycles for a L2 cache hit. The reference execution time of 1.00 is for an 8192-
KB second-level cache with a one-clock-cycle latency on a second-level hit. These data were
collected the same way as in Figure 5.10, using a simulator to imitate the Alpha 21264.

2.39

1.99

1.82

1.65

1.14

1.06

2.34

1.94

1.76

1.60

1.10

1.02

1.00 1.25 1.50 1.75 2.00 2.25 2.50

256

512

1024

2048

4096

8192

Le
ve

l
tw

o
ca

ch
e

si
ze

 (
K

B
)

Relative execution time

L2 hit = 8 clock cycles

L2 hit = 16 clock cycles

5.4 Reducing Cache Miss Penalty 403

Now we can reduce the miss penalty by reducing the miss rate of the second-lev-
el caches.

Another consideration concerns whether data in the first-level cache is in the
second-level cache. Multilevel inclusion is the natural policy for memory hierar-
chies: L1 data is always present in L2. Inclusion is desirable because consistency
between I/O and caches (or among caches in a multiprocessor) can be determined
just by checking the second-level cache (see section 8.7).

One drawback to inclusion is that measurements can suggest smaller blocks
for the smaller first-level cache and larger blocks for the larger second-level
cache. For example, the Pentium 4 has 64-byte blocks in its L1 caches and 128-
byte blocks in its L2 cache. Inclusion can still be maintained with more work on a
second-level miss. The second-level cache must invalidate all first-level blocks
that map onto the second-level block to be replaced, causing a slightly higher
first-level miss rate. To avoid such problems, many cache designers keep the
block size the same in all levels of caches.

However, what if the designer can only afford an L2 cache that is slightly big-
ger than the L1 cache? Should a significant portion of its space be used as a re-
dundant copy of the L1 cache? In such cases a sensible opposite policy is
multilevel exclusion: L1 data is never found in L2 cache. Typically, with exclu-
sion a cache miss in L1 results in a swap of blocks between L1 and L2 instead of
a replacement of a L1 block with a L2 block. This policy prevents wasting space
in L2 cache. For example, the AMD Athlon chip obeys the exclusion property
since it has two 64 KB first level caches and only a 256 KB L2 cache.

As these issues illustrate, although a novice might design the first and second-
level caches independently, the designer of the first-level cache has a simpler job
given a compatible second-level cache. It is less of a gamble to use a write
through, for example, if there is a write-back cache at the next level to act as a
backstop for repeated writes.

The essence of all cache designs is balancing fast hits and few misses. For sec-
ond-level caches, there are many fewer hits than in the first-level cache, so the
emphasis shifts to fewer misses. This insight leads to much larger caches and
techniques to lower the miss rate described in section 5.5, such as higher associa-
tivity and larger blocks.

Second Miss Penalty Reduction Technique:
Critical Word First and Early Restart

Multilevel caches require extra hardware to reduce miss penalty, but not this sec-
ond technique. It is based on the observation that the CPU normally needs just
one word of the block at a time. This strategy is impatience: Don’t wait for the
full block to be loaded before sending the requested word and restarting the CPU.
Here are two specific strategies:

404 Chapter 5 Memory-Hierarchy Design

n Critical word first—Request the missed word first from memory and send it to
the CPU as soon as it arrives; let the CPU continue execution while filling the
rest of the words in the block. Critical-word-first fetch is also called wrapped
fetch and requested word first.

n Early restart—Fetch the words in normal order, but as soon as the requested
word of the block arrives, send it to the CPU and let the CPU continue execu-
tion.

Generally these techniques only benefit designs with large cache blocks, since
the benefit is low unless blocks are large. The problem is that given spatial locali-
ty, there is more than random chance that the next miss is to the remainder of the
block. In such cases, the effective miss penalty is the time from the miss until the
second piece arrives.

E X A M P L E Let’s assume a computer has a 64-byte cache block, an L2 cache that
takes 11 clock cycles to get the critical 8 bytes, and then 2 clock cycles
per 8 bytes to fetch the rest of the block.(These parameters are similar to
the AMD Athlon.) Calculate the average miss penalty for critical word first,
assuming that there will be no other accesses to the rest of the block until
it is completely fetched. Then calculate assuming the following instruc-
tions reads data sequentially 8 bytes at a time from the rest of the block.
Compare the times with and without critical word first.

A N S W E R The average miss penalty is 11 clock cycles for critical word first. The Ath-
lon can issue two loads per clock cycle, which is faster than the L2 cache
can supply data. Thus, it would take 11 + (8-1) x 2 or 25 clock cycles for
the CPU to sequentially read a full cache block. Without critical word first,
it would take 25 clocks cycle to load the block, and then 8/2 or 4 clocks to
issue the loads, giving 29 clock cycles total. n

As this example illustrates, the benefits of critical word first and early restart de-
pend on the size of the block and the likelihood of another access to the portion
of the block that has not yet been fetched.

The next technique takes overlap between the CPU and cache miss penalty
even further to reduce the average miss penalty.

Third Miss Penalty Reduction Technique:
Giving Priority to Read Misses over Writes

This optimization serves reads before writes have been completed. We start with
looking at complexities of a write buffer.

5.4 Reducing Cache Miss Penalty 405

With a write-through cache the most important improvement is a write buffer
(page 386) of the proper size. Write buffers, however, do complicate memory ac-
cesses in that they might hold the updated value of a location needed on a read
miss.

E X A M P L E Look at this code sequence:

SW R2, 512(R0) ; M[512] ← R3 (cache index 0)

LW R1,1024(R0) ; R1 ← M[1024] (cache index 0)

LW R2,512(R0) ; R2 ← M[512] (cache index 0)

Assume a direct-mapped, write-through cache that maps 512 and 1024
to the same block, and a four-word write buffer. Will the value in R2 always
be equal to the value in R3?

A N S W E R Using the terminology from Chapter 3, this is a read-after-write data haz-
ard in memory. Let’s follow a cache access to see the danger. The data in
R3 are placed into the write buffer after the store. The following load uses
the same cache index and is therefore a miss. The second load instruction
tries to put the value in location 512 into register R2; this also results in a
miss. If the write buffer hasn’t completed writing to location 512 in memo-
ry, the read of location 512 will put the old, wrong value into the cache
block, and then into R2. Without proper precautions, R3 would not be
equal to R2! n

The simplest way out of this dilemma is for the read miss to wait until the
write buffer is empty. The alternative is to check the contents of the write buffer
on a read miss, and if there are no conflicts and the memory system is available,
let the read miss continue. Virtually all desktop and server processors use the lat-
ter approach, giving reads priority over writes.

The cost of writes by the processor in a write-back cache can also be reduced.
Suppose a read miss will replace a dirty memory block. Instead of writing the
dirty block to memory, and then reading memory, we could copy the dirty block
to a buffer, then read memory, and then write memory. This way the CPU read,
for which the processor is probably waiting, will finish sooner. Similar to the sit-
uation above, if a read miss occurs, the processor can either stall until the buffer
is empty or check the addresses of the words in the buffer for conflicts.

Fourth Miss Penalty Reduction Technique:
Merging Write Buffer

This technique also involves write buffers, this time improving their efficiency.
Write through caches rely on write buffers, as all stores must be sent to the

next lower level of the hierarchy. As mentioned above, even write back caches

406 Chapter 5 Memory-Hierarchy Design

use a simple buffer when a block is replaced. If the write buffer is empty, the data
and the full address are written in the buffer, and the write is finished from the
CPU's perspective; the CPU continues working while the write buffer prepares to
write the word to memory. If the buffer contains other modified blocks, the ad-
dresses can be checked to see if the address of this new data matches the address
of the valid write buffer entry. If so, the new data are combined with that entry,
called write merging.

If the buffer is full and there is no address match, the cache (and CPU) must
wait until the buffer has an empty entry. This optimization uses the memory more
efficiently since multiword writes are usually faster than writes performed one
word at a time.

The optimization also reduces stalls due to the write buffer being full. Figure
5.12 shows a write buffer with and without write merging. Assume we had four
entries in the write buffer, and each entry could hold four 64-bit words. Without
this optimization, four stores to sequential addresses would fill the buffer at one
word per entry, even though these four words when merged exactly fit within a
single entry of the write buffer.

FIGURE 5.12 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. The four writes are merged into a single buffer entry
with write merging; without it, the buffer is full even though three-fourths of each entry is wast-
ed. The buffer has four entries, and each entry holds four 64-bit words. The address for each
entry is on the left, with valid bits (V) indicating whether or not the next sequential eight bytes
are occupied in this entry. (Without write merging, the words to the right in the upper drawing
would only be used for instructions which wrote multiple words at the same time.)

100

108

116

124

Write address

1

1

1

1

V

0

0

0

0

V

0

0

0

0

V

0

0

0

0

V

100

Write address

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

Mem[100]

Mem[100]

Mem[108]

Mem[108]

Mem[116]

Mem[116]

Mem[124]

Mem[124]

5.4 Reducing Cache Miss Penalty 407

Note that input/output device registers are often mapped into the physical ad-
dress space, as is the case of the 21264. These I/O addresses cannot allow write
merging, as separate I/O registers may not act like an array of words in memory.
For example, they may require one addresses and data word per register rather
than multiword writes using a single address.

Fifth Miss Penalty Reduction Technique: Victim Caches

One approach to lower miss penalty is to remember what was discarded in case it
is needed again. Since the discarded data has already been fetched, it can be used
again at small cost.

Such “recycling” requires a small, fully associative cache between a cache and
its refill path. Figure 5.13 shows the organization. This victim cache contains
only blocks that are discarded from a cache because of a miss—“victims”—and
are checked on a miss to see if they have the desired data before going to the next
lower-level memory. If it is found there, the victim block and cache block are
swapped. The AMD Athlon has a victim cache with eight entries.

Jouppi [1990] found that victim caches of one to five entries are effective at re-
ducing misses, especially for small, direct-mapped data caches. Depending on
the program, a four-entry victim cache might remove one quarter of the misses in
a 4-KB direct-mapped data cache.

FIGURE 5.13 Placement of victim cache in the memory hierarchy. Although it reduces
miss penalty, the victim cache is aimed at reducing the damage done by conflict misses, de-
scribed in the next section. Jouppi [1990] found the four-entry victim cache could reduce the
miss penalty for 20% to 95% of conflict misses.

CPU
address
Data
in

Data
out

Write
buffer

Lower level memory

Tag

Data

Victim cache

=?

=?

408 Chapter 5 Memory-Hierarchy Design

Summary of Miss Penalty Reduction Techniques

The processor-memory performance gap of Figure 5.2 on page 375 determines
the miss penalty, and as the gap grows so do techniques that try to close it. We
present five in this section. The first technique follows the proverb “the more the
merrier”: assuming the principle of locality will keep applying recursively, just
keep adding more levels of increasingly larger caches until you are happy. The
second technique is impatience: it retrieves the word of the block that caused the
miss rather than waiting for the full block to arrive. The next technique is prefer-
ence. It gives priority to reads over writes since the processor generally waits for
reads but continues after launching writes. The fourth technique is companion-
ship, combining writes to sequential words into a single block to create a more
efficient transfer to memory. Finally comes a cache equivalent of recycling, as a
victim cache keeps a few discarded blocks available for when the fickle primary
cache wants a word that it recently discarded. All these techniques help with miss
penalty, but multilevel caches is probably the most important.

Testimony of the importance of miss penalty is that most desktop and server
computers use the first four of optimizations. Yet most cache research has con-
centrated on reducing the miss rate, so that is where we go in the next section.

The classical approach to improving cache behavior is to reduce miss rates, and
we present five techniques to do so. To gain better insights into the causes of
misses, we first start with a model that sorts all misses into three simple catego-
ries:

n Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. These are also called cold start misses or
first reference misses.

n Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur be-
cause of blocks being discarded and later retrieved.

n Conflict—If the block placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will occur be-
cause a block may be discarded and later retrieved if too many blocks map to
its set. These misses are also called collision misses or interference misses. The
idea is that hits in a fully associative cache which become misses in an N-way
set associative cache are due to more than N requests on some popular sets.

Figure 5.14 shows the relative frequency of cache misses, broken down by
the “three C’s.” Compulsory misses are those that occur in an infinite cache. Ca-
pacity misses are those that occur in a fully associative cache. Conflict misses are
those that occur going from fully associative to 8-way associative, 4-way associa-
tive, and so on. Figure 5.15 presents the same data graphically. The top graph

5.5 Reducing Miss Rate

5.5 Reducing Miss Rate 409

Cache size
Degree

associative
Total

miss rate

Miss rate components (relative percent)
(Sum = 100% of total miss rate)

Compulsory Capacity Conflict

4 KB 1-way 0.098 0.0001 0.1% 0.070 72% 0.027 28%

4 KB 2-way 0.076 0.0001 0.1% 0.070 93% 0.005 7%

4 KB 4-way 0.071 0.0001 0.1% 0.070 99% 0.001 1%

4 KB 8-way 0.071 0.0001 0.1% 0.070 100% 0.000 0%

8 KB 1-way 0.068 0.0001 0.1% 0.044 65% 0.024 35%

8 KB 2-way 0.049 0.0001 0.1% 0.044 90% 0.005 10%

8 KB 4-way 0.044 0.0001 0.1% 0.044 99% 0.000 1%

8 KB 8-way 0.044 0.0001 0.1% 0.044 100% 0.000 0%

16 KB 1-way 0.049 0.0001 0.1% 0.040 82% 0.009 17%

16 KB 2-way 0.041 0.0001 0.2% 0.040 98% 0.001 2%

16 KB 4-way 0.041 0.0001 0.2% 0.040 99% 0.000 0%

16 KB 8-way 0.041 0.0001 0.2% 0.040 100% 0.000 0%

32 KB 1-way 0.042 0.0001 0.2% 0.037 89% 0.005 11%

32 KB 2-way 0.038 0.0001 0.2% 0.037 99% 0.000 0%

32 KB 4-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%

32 KB 8-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%

64 KB 1-way 0.037 0.0001 0.2% 0.028 77% 0.008 23%

64 KB 2-way 0.031 0.0001 0.2% 0.028 91% 0.003 9%

64 KB 4-way 0.030 0.0001 0.2% 0.028 95% 0.001 4%

64 KB 8-way 0.029 0.0001 0.2% 0.028 97% 0.001 2%

128 KB 1-way 0.021 0.0001 0.3% 0.019 91% 0.002 8%

128 KB 2-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

128 KB 4-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

128 KB 8-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

256 KB 1-way 0.013 0.0001 0.5% 0.012 94% 0.001 6%

256 KB 2-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

256 KB 4-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

256 KB 8-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

512 KB 1-way 0.008 0.0001 0.8% 0.005 66% 0.003 33%

512 KB 2-way 0.007 0.0001 0.9% 0.005 71% 0.002 28%

512 KB 4-way 0.006 0.0001 1.1% 0.005 91% 0.000 8%

512 KB 8-way 0.006 0.0001 1.1% 0.005 95% 0.000 4%

FIGURE 5.14 Total miss rate for each size cache and percentage of each according to the “three C’s.” Compulsory
misses are independent of cache size, while capacity misses decrease as capacity increases, and conflict misses decrease
as associativity increases. Figure 5.15 shows the same information graphically. Note that the 2:1 cache rule of thumb (inside
front cover) is supported by the statistics in this table through 128 KB: a direct-mapped cache of size N has about the same
miss rate as a 2-way set-associative cache of size N/2. Caches larger than 128 KB do not prove that rule. Note that the
Capacity column is also the fully associative miss rate. Data was collected as in Figure 5.6 using LRU replacement.

410 Chapter 5 Memory-Hierarchy Design

FIGURE 5.15 Total miss rate (top) and distribution of miss rate (bottom) for each size cache according to three
C’s for the data in Figure 5.14. The top diagram is the actual D-cache miss rates, while the bottom diagram shows per-
centage in each category. (Space allows the graphs to show one extra cache size than can fit in Figure 5.14.

0 %

20%

40%

60%

80%

100%

4 8 1 6 3 2 6 4 128 256 512 1024

Cache size (KB)

M
is

s

ra
te

p

e
r

ty
p

e

1 -way

2 -way

4 -way

8 -way

capacity

compulsory

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

4 8 1 6 3 2 6 4 128 256 512 1024

Cache size (KB)

1 -way

2 -way

4 -way

8 -way

capacity

compulsory

5.5 Reducing Miss Rate 411

shows absolute miss rates; the bottom graph plots percentage of all the misses by
type of miss as a function of cache size.

To show the benefit of associativity, conflict misses are divided into misses
caused by each decrease in associativity. Here are the four divisions of conflict
misses and how they are calculated:

n Eight-way—conflict misses due to going from fully associative (no conflicts)
to eight-way associative

n Four-way—conflict misses due to going from eight-way associative to four-
way associative

n Two-way—conflict misses due to going from four-way associative to two-way
associative

n One-way—conflict misses due to going from two-way associative to one-way
associative (direct mapped)

As we can see from the figures, the compulsory miss rate of the SPEC2000 pro-
grams is very small, as it is for many long-running programs.

Having identified the three C’s, what can a computer designer do about them?
Conceptually, conflicts are the easiest: Fully associative placement avoids all
conflict misses. Full associativity is expensive in hardware, however, and may
slow the processor clock rate (see the example above), leading to lower overall
performance.

There is little to be done about capacity except to enlarge the cache. If the
upper-level memory is much smaller than what is needed for a program, and a
significant percentage of the time is spent moving data between two levels in the
hierarchy, the memory hierarchy is said to thrash. Because so many replacements
are required, thrashing means the computer runs close to the speed of the lower-
level memory, or maybe even slower because of the miss overhead.

Another approach to improving the three C’s is to make blocks larger to re-
duce the number of compulsory misses, but, as we shall see, large blocks can in-
crease other kinds of misses.

The three C’s give insight into the cause of misses, but this simple model has
its limits; it gives you insight into average behavior but may not explain an indi-
vidual miss. For example, changing cache size changes conflict misses as well as
capacity misses, since a larger cache spreads out references to more blocks. Thus,
a miss might move from a capacity miss to a conflict miss as cache size changes.
Note that the three C’s also ignore replacement policy, since it is difficult to
model and since, in general, it is less significant. In specific circumstances the re-
placement policy can actually lead to anomalous behavior, such as poorer miss
rates for larger associativity, which contradicts the three C’s model. (Some have
proposed using an address trace to determine optimal placement to avoid place-
ment misses from the 3 Cs model; we’ve not followed that advice here.)

412 Chapter 5 Memory-Hierarchy Design

 Alas, many of the techniques that reduce miss rates also increase hit time or
miss penalty. The desirability of reducing miss rates using the five techniques
presented in the rest of this section must be balanced against the goal of making
the whole system fast. This first example shows the importance of a balanced
perspective.

First Miss Rate Reduction Technique: Larger Block Size

The simplest way to reduce miss rate is to increase the block size. Figure 5.16
shows the trade-off of block size versus miss rate for a set of programs and cache
sizes. Larger block sizes will reduce compulsory misses. This reduction occurs
because the principle of locality has two components: temporal locality and spa-
tial locality. Larger blocks take advantage of spatial locality.

At the same time, larger blocks increase the miss penalty. Since they reduce
the number of blocks in the cache, larger blocks may increase conflict misses and
even capacity misses if the cache is small. Clearly, there is little reason to in-
crease the block size to such a size that it increases the miss rate. There is also no
benefit to reducing miss rate if it increases the average memory access time. The
increase in miss penalty may outweigh the decrease in miss rate.

FIGURE 5.16 Miss rate versus block size for five different-sized caches. Note that miss
rate actually goes up is the block size is too large relative to the cache size. Each line repre-
sents a cache of different size. Figure 5.17 shows the data used to plot these lines. Unfortu-
nately, SPEC2000 traces would take too long if block size was included, so these data are
based on SPEC92 on a DECstation 5000 (Gee et al [1993]). <<Artist: Drop 1K from graph
and legend.; then scale Y axis to 0% to 10%>>

5%

16

Block size

32

10%

15%

20%

25%

64 128 256

Miss
rate

0%

1k 4k 16k

64k 256k

5.5 Reducing Miss Rate 413

E X A M P L E Figure 5.17 shows the actual miss rates plotted in Figure 5.16. Assume
the memory system takes 80 clock cycles of overhead and then delivers
16 bytes every 2 clock cycles. Thus, it can supply 16 bytes in 82 clock
cycles, 32 bytes in 84 clock cycles, and so on. Which block size has the
smallest average memory access time for each cache size in
Figure 5.17?

A N S W E R Average memory access time is

Average memory access time = Hit time + Miss rate × Miss penalty

If we assume the hit time is one clock cycle independent of block size,
then the access time for a 16-byte block in a 1-KB cache is

Average memory access time = 1 + (15.05% × 82) = 13.341 clock cycles

and for a 256-byte block in a 256-KB cache the average memory access
time is

Average memory access time = 1 + (0.49% × 112) = 1.549 clock cycles

Figure 5.18 shows the average memory access time for all block and
cache sizes between those two extremes. The boldfaced entries show the
fastest block size for a given cache size: 32 bytes for 1-KB and 4-KB, and
64 bytes for the larger caches. These sizes are, in fact, popular block sizes
for processor caches today.

n

As in all of these techniques, the cache designer is trying to minimize both the
miss rate and the miss penalty. The selection of block size depends on both the
latency and bandwidth of the lower-level memory. High latency and high band-

Cache size

Block size 4K 16K 64K 256K

16 8.57% 3.94% 2.04% 1.09%

32 7.24% 2.87% 1.35% 0.70%

64 7.00% 2.64% 1.06% 0.51%

128 7.78% 2.77% 1.02% 0.49%

256 9.51% 3.29% 1.15% 0.49%

FIGURE 5.17 Actual miss rate versus block size for five different-sized caches in
Figure 5.16. Note that for a 4-KB cache, 256-byte blocks have the highest miss rate than 32-
byte blocks. In this example, the cache would have to be 256 KB in order for a 256-byte block
to decrease misses.

414 Chapter 5 Memory-Hierarchy Design

width encourage large block size since the cache gets many more bytes per miss for
a small increase in miss penalty. Conversely, low latency and low bandwidth en-
courage smaller block sizes since there is little time saved from a larger block. For
example, twice the miss penalty of a small block may be close to the penalty of a
block twice the size. The larger number of small blocks may also reduce conflict
misses. Note that Figures 5.16 and 5.18 above show the difference between select-
ing a block size based on minimizing miss rate versus minimizing average memory
access time.

 After seeing the positive and negative impact of larger block size on compul-
sory and capacity misses, the next two subsections look at the potential of higher
capacity and higher associativity.

Second Miss Rate Reduction Technique:
Larger caches

The obvious way to reduce capacity misses in Figures 5.14 and 5.15 above is to in-
creases capacity of the cache. The obvious drawback is longer hit time and higher
cost. This technique has been especially popular in off-chip caches: The size of
second or third level caches in 2001 equals the size of main memory in desktop
computers from the first edition of this book, only a decade before!

Third Miss Rate Reduction Technique:
Higher Associativity

Figures 5.14 and 5.15 above show how miss rates improve with higher associativi-
ty. There are two general rules of thumb that can be gleaned from these figures.
The first is that eight-way set associative is for practical purposes as effective in re-
ducing misses for these sized caches as fully associative. You can see the difference
by comparing the 8-way entries to the capacity miss column in Figure 5.14, since
capacity misses are calculated using fully associative cache. The second observa-
tion, called the 2:1 cache rule of thumb and found on the front inside cover, is that

Cache size

Block size Miss penalty 1K 4K 16K 64K 256K

16 82 13.341 8.027 4.231 2.673 1.894

32 84 12.206 7.082 3.411 2.134 1.588

64 88 13.109 7.160 3.323 1.933 1.449

128 96 16.974 8.469 3.659 1.979 1.470

256 112 25.651 11.651 4.685 2.288 1.549

FIGURE 5.18 Average memory access time versus block size for five different-sized
caches in Figure 5.16. Block sizes of 32 and 64 byte dominate. The smallest average time
per cache size is boldfaced.

5.5 Reducing Miss Rate 415

a direct-mapped cache of size N has about the same miss rate as a 2-way set-
associative cache of size N/2. This held for cache sizes less than 128 KB.

Like many of these examples, improving one aspect of the average memory ac-
cess time comes at the expense of another. Increasing block size reduced miss rate
while increasing miss penalty, and greater associativity can come at the cost of in-
creased hit time (see Figure 5.24 on page 431 in section 5.7.)Hence, the pressure
of a fast processor clock cycle encourages simple cache designs, but the increasing
miss penalty rewards associativity, as the following example suggests.

E X A M P L E Assume higher associativity would increase the clock cycle time as listed
below:

Clock cycle time2-way = 1.36 × Clock cycle time1-way

Clock cycle time4-way = 1.44 × Clock cycle time1-way

Clock cycle time8-way = 1.52 × Clock cycle time1-way

Assume that the hit time is 1 clock cycle, that the miss penalty for the
direct-mapped case is 25 clock cycles to an L2 cache that never misses,
and that the miss penalty need not be rounded to an integral number of
clock cycles. Using Figure 5.14 for miss rates, for which cache sizes are
each of these three statements true?

Average memory access time8-way < Average memory access time4-way

Average memory access time4-way < Average memory access time2-way

Average memory access time2-way < Average memory access time1-way

A N S W E R Average memory access time for each associativity is

Average memory access time8-way = Hit time8-way + Miss rate8-way × Miss penalty8-way = 1.52 + Miss rate8-way × 25
Average memory access time4-way = 1.44 + Miss rate4-way × 25
Average memory access time2-way = 1.36 + Miss rate2-way × 25
Average memory access time1-way = 1.00 + Miss rate1-way × 25

The miss penalty is the same time in each case, so we leave it as 25 clock
cycles. For example, the average memory access time for a 4-KB direct-
mapped cache is

Average memory access time1-way = 1.00 + (0.133 × 25) = 3.44

and the time for a 512-KB, eight-way set-associative cache is

Average memory access time8-way = 1.52 + (0.006 × 25) = 1.66

Using these formulas and the miss rates from Figure 5.14, Figure 5.19
shows the average memory access time for each cache and associativity.
The figure shows that the formulas in this example hold for caches less

416 Chapter 5 Memory-Hierarchy Design

than or equal to 8 KB for up to 4-way associativity. Starting with 16 KB, the
greater hit time of larger associativity outweighs the time saved due to the
reduction in misses.

Note that we did not account for the slower clock rate on the rest of
the program in this example, thereby understating the advantage of direct-
mapped cache.

n

Fourth Miss Rate Reduction Technique:
Way Prediction and Pseudo-Associative Caches and

Another approach reduces conflict misses and yet maintains the hit speed of di-
rect mapped cache. In way-prediction, extra bits are kept in the cache to predict
the set of the next cache access. This prediction means the multiplexor is set early
to select the desired set, and only a single tag comparison is performed that clock
cycle. A miss results in checking the other sets for matches in subsequent clock
cycles.

The Alpha 21264 uses way prediction in its instruction cache. (Added to each
block of the instruction cache is a set predictor bit. The bit is used to select which
of the two sets to try on the next cache access. If the predictor is correct, the in-
struction cache latency is one clock cycle. If not, it tries the other set, changes the
set predictor, and has a latency of three clock cycles. (The latency of the 21264
data cache, which is very similar to its instruction cache, is also three clock cy-
cles.) Simulations using SPEC95 suggested set prediction accuracy is in excess
of 85%, so pseudo associativity saves pipeline stages in more than 85% of the in-
struction fetches.

Associativity

Cache size (KB) One-way Two-way Four-way Eight-way

4 3.44 3.25 3.22 3.28

8 2.69 2.58 2.55 2.62

16 2.23 2.40 2.46 2.53

32 2.06 2.30 2.37 2.45

64 1.92 2.14 2.18 2.25

128 1.52 1.84 1.92 2.00

256 1.32 1.66 1.74 1.82

512 1.20 1.55 1.59 1.66

FIGURE 5.19 Average memory access time using miss rates in Figure 5.14 for param-
eters in the example. Boldface type means that this time is higher than the number to the
left; that is, higher associativity increases average memory access time.

5.5 Reducing Miss Rate 417

In addition to improving performance, way prediction can reduce power for
embedded applications. By only supplying power to the half of the tags that are
expected to be used, the MIPS R4300 series lowers power consumption with the
same benefits.

A related approach is called pseudo-associative or column associative. Ac-
cesses proceed just as in the direct-mapped cache for a hit. On a miss, however,
before going to the next lower level of the memory hierarchy, a second cache en-
try is checked to see if it matches there. A simple way is to invert the most signif-
icant bit of the index field to find the other block in the “pseudo set.”

Pseudo-associative caches then have one fast and one slow hit time—corre-
sponding to a regular hit and a pseudo hit—in addition to the miss penalty.
Figure 5.20 shows the relative times. One danger would be if many fast hit times
of the direct-mapped cache became slow hit times in the pseudo-associative
cache. The performance would then be degraded by this optimization. Hence, it
is important to indicate for each set which block should be the fast hit and which
should be the slow one. One way is simply to make the upper one fast and swap
the contents of the blocks. Another danger is that the miss penalty may become
slightly longer, adding the time to check another cache entry.

Fifth Miss Rate Reduction Technique:
Compiler Optimizations

Thus far our techniques to reduce misses have required changes to or additions to
the hardware: larger blocks, larger caches, higher associativity, or pseudo-asso-
ciativity. This final technique reduces miss rates without any hardware changes.

This magical reduction comes from optimized software—the hardware de-
signer’s favorite solution! The increasing performance gap between processors
and main memory has inspired compiler writers to scrutinize the memory hier-
archy to see if compile time optimizations can improve performance. Once again
research is split between improvements in instruction misses and improvements
in data misses.

Code can easily be rearranged without affecting correctness; for example,
reordering the procedures of a program might reduce instruction miss rates by re-

FIGURE 5.20 Relationship between a regular hit time, pseudo hit time, and miss pen-
alty. Basically, pseudoassociativity offers a normal hit and a slow hit rather than more misses.

Hit time

Pseudo hit time Miss penalty

Time

418 Chapter 5 Memory-Hierarchy Design

ducing conflict misses. McFarling [1989] looked at using profiling information to
determine likely conflicts between groups of instructions. Reordering the instruc-
tions reduced misses by 50% for a 2-KB direct-mapped instruction cache with 4-
byte blocks, and by 75% in an 8-KB cache. McFarling got the best performance
when it was possible to prevent some instructions from ever entering the cache.
Even without that feature, optimized programs on a direct-mapped cache missed
less than unoptimized programs on an eight-way set-associative cache of the
same size.

Another code optimization aims for better efficiency from long cache blocks.
Aligning basic blocks so that the entry point is at the beginning of a cache block
decreases the chance of a cache miss for sequential code.
 Data have even fewer restrictions on location than code. The goal of such
transformations is to try to improve the spatial and temporal locality of the data.
For example, array calculations can be changed to operate on all the data in a
cache block rather than blindly striding through arrays in the order the program-
mer happened to place the loop.

To give a feeling of this type of optimization, we will show two examples,
transforming the C code by hand to reduce cache misses.

Loop Interchange
Some programs have nested loops that access data in memory in nonsequential
order. Simply exchanging the nesting of the loops can make the code access the
data in the order it is stored. Assuming the arrays do not fit in cache, this tech-
nique reduces misses by improving spatial locality; reordering maximizes use of
data in a cache block before it is discarded.

/* Before */

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

The original code would skip through memory in strides of 100 words, while the
revised version accesses all the words in one cache block before going to the next
block. This optimization improves cache performance without affecting the num-
ber of instructions executed, unlike the prior example.

5.5 Reducing Miss Rate 419

Blocking
This optimization tries to reduce misses via improved temporal locality. We are
again dealing with multiple arrays, with some arrays accessed by rows and some
by columns. Storing the arrays row by row (row major order) or column by col-
umn (column major order) does not solve the problem because both rows and
columns are used in every iteration of the loop. Such orthogonal accesses mean
the transformations such as loop interchange are not helpful.

Instead of operating on entire rows or columns of an array, blocked algorithms
operate on submatrices or blocks. The goal is to maximize accesses to the data
loaded into the cache before the data are replaced. The code example below,
which performs matrix multiplication, helps motivate the optimization:

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k + 1)

r = r + y[i][k]*z[k][j];

 x[i][j] = r;

};

The two inner loops read all N by N elements of z, read the same N elements in a
row of y repeatedly, and write one row of N elements of x. Figure 5.21 gives a

FIGURE 5.21 A snapshot of the three arrays x, y, and z when i = 1. The age of accesses to the array elements is
indicated by shade: white means not yet touched, light means older accesses and dark means newer accesses. Compared
to Figure 5.22, elements of y and z are read repeatedly to calculate new elements of x. The variables i, j, and k are shown
along the rows or columns used to access the arrays.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

420 Chapter 5 Memory-Hierarchy Design

snapshot of the accesses to the three arrays. A dark shade indicates a recent ac-
cess, a light shade indicates an older access, and white means not yet accessed.

The number of capacity misses clearly depends on N and the size of the cache.
If it can hold all three N by N matrices, then all is well, provided there are no
cache conflicts. If the cache can hold one N by N matrix and one row of N, then at
least the i-th row of y and the array z may stay in the cache. Less than that and
misses may occur for both x and z. In the worst case, there would be 2N3 + N2

memory words accessed for N3 operations.
To ensure that the elements being accessed can fit in the cache, the original

code is changed to compute on a submatrix of size B by B. Two inner loops now
compute in steps of size B rather than the full length of x and z. B is called the
blocking factor. (Assume x is initialized to zero.)

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B,N); k = k + 1)

r = r + y[i][k]*z[k][j];

 x[i][j] = x[i][j] + r;

};

Figure 5.22 illustrates the accesses to the three arrays using blocking. Looking only
at capacity misses, the total number of memory words accessed is 2N3/B + N2. This
total is an improvement by about a factor of B. Hence, blocking exploits a combi-
nation of spatial and temporal locality, since y benefits from spatial locality and z
benefits from temporal locality.

Although we have aimed at reducing cache misses, blocking can also be used
to help register allocation. By taking a small blocking size such that the block can
be held in registers, we can minimize the number of loads and stores in the
program.

Summary of Reducing Cache Miss Rate

This section first presented the three C’s model of cache misses: compulsory, ca-
pacity, and conflict. This intuitive model led to three obvious optimizations: larg-
er block size to reduce compulsory misses, larger cache size to reduce capacity
misses, and higher associativity to reduce conflict misses. Since higher associa-
tivity may affect cache hit time or cache power consumption, way prediction
checks only a piece of the cache for hits and then on a miss checks the rest. The
final technique is the favorite of the hardware designer, leaving cache optimiza-
tions to the compiler.

5.6 Reducing Cache Miss Penalty or Miss Rate via Parallelism 421

The increasing processor-memory gap has meant that cache misses are a pri-
mary cause of lower than expected performance. As a result, both algorithms and
compilers are changing from the traditional focus of reducing operations to re-
ducing cache misses.

The next section increases performance by having the processor and memory
hierarchy operate in parallel, with compilers again playing a significant role in
orchestrating this parallelism.

This section describes three techniques that overlap the execution of instructions
with activity in the memory hierarchy. The first creates a memory hierarchy to
match the out-of-order processors, but the second and third work with any type of
processor. Although popular in desktop and server computers, the emphasis on
efficiency in power and silicon area of embedded computers means such tech-
niques are only found in embedded computers if they are small and reduce power.

First Miss Penalty/Rate Reduction Technique:
Nonblocking Caches to Reduce Stalls on Cache Misses

For pipelined computers that allow out-of-order completion (Chapter 3), the CPU
need not stall on a cache miss. For example, the CPU could continue fetching in-

FIGURE 5.22 The age of accesses to the arrays x, y, and z. Note in contrast to
Figure 5.21 the smaller number of elements accessed.

5.6 Reducing Cache Miss Penalty or
Miss Rate via Parallelism

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

422 Chapter 5 Memory-Hierarchy Design

structions from the instruction cache while waiting for the data cache to return
the missing data. A nonblocking cache or lockup-free cache escalates the poten-
tial benefits of such a scheme by allowing the data cache to continue to supply
cache hits during a miss. This “hit under miss” optimization reduces the effective
miss penalty by being helpful during a miss instead of ignoring the requests of
the CPU. A subtle and complex option is that the cache may further lower the ef-
fective miss penalty if it can overlap multiple misses: a “hit under multiple miss”
or “miss under miss” optimization. The second option is beneficial only if the
memory system can service multiple misses (see page 441). Be aware that hit un-
der miss significantly increases the complexity of the cache controller as there
can be multiple outstanding memory accesses.

Figure 5.23 shows the average time in clock cycles for cache misses for an
8-KB data cache as the number of outstanding misses is varied. Floating-point
programs benefit from increasing complexity, while integer programs get al-
most all of the benefit from a simple hit-under-one-miss scheme. Following the
discussion in Chapter 3, the number of simultaneous outstanding misses limits
achievable instruction level parallelism in programs.

E X A M P L E For the cache described in Figure 5.23, which is more important for
floating-point programs: two-way set associativity or hit under one miss?
What about integer programs? Assume the following average miss rates
for 8-KB data caches: 11.4% for floating-point programs with a direct-
mapped cache, 10.7% for these programs with a two-way set-associative
cache, 7.4% for integer programs with a direct-mapped cache, and 6.0%
for integer programs with a two-way set-associative cache. Assume the
average memory stall time is just the product of the miss rate and the miss
penalty.

A N S W E R The numbers for Figure 5.23 were based on a miss penalty of 16 clock cy-
cles assuming an L2 cache. Although this is low for a miss penalty (we’ll
see how in the next subsection), let’s stick with it for consistency. For float-
ing-point programs the average memory stall times are

Miss rateDM × Miss penalty = 11.4% × 16 = 1.84

Miss rate2-way × Miss penalty = 10.7% × 16 = 1.71

The memory stalls of two-way are thus 1.71/1.84 or 93% of direct-
mapped cache. The caption of Figure 5.23 says hit under one miss
reduces the average memory stall time to 76% of a blocking cache.
Hence, for floating-point programs, the direct-mapped data cache sup-
porting hit under one miss gives better performance than a two-way set-
associative cache that blocks on a miss.

For integer programs the calculation is

5.6 Reducing Cache Miss Penalty or Miss Rate via Parallelism 423

Miss rateDM × Miss penalty = 7.4% × 16 = 1.18

Miss rate2-way × Miss penalty = 6.0% × 16 = 0.96

The memory stalls of two-way are thus 0.96/1.18 or 81% of direct-
mapped cache. The caption of Figure 5.23 says hit under one miss
reduces the average memory stall time to 81% of a blocking cache, so the
two options give about the same performance for integer programs. One
advantage of hit under miss is that it cannot affect the hit time, as asso-
ciativity can. n

The real difficulty with performance evaluation of nonblocking caches is that
that they imply a dynamic-issue CPU. As a cache miss does not necessarily stall
the CPU as it would a static issue CPU. As mentioned on page 395, it is difficult
to judge the impact of any single miss, and hence difficult to calculate the average

FIGURE 5.23 Ratio of the average memory stall time for a blocking cache to hit-un-
der-miss schemes as the number of outstanding misses is varied for 18 SPEC92 pro-
grams. The hit-under-64-misses line allows one miss for every register in the processor. The
first 14 programs are floating-point programs: the average for hit under 1 miss is 76%, for 2
misses is 51%, and for 64 misses is 39%. The final four are integer programs, and the three
averages are 81%, 78%, and 78%, respectively. These data were collected for an 8-KB di-
rect-mapped data cache with 32-byte blocks and a 16-clock-cycle miss penalty, which today
would imply a second level cache. These data were generated using the VLIW Multiflow
Compiler, which scheduled loads away from use [Farkas and Jouppi 1994].

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Percentage
of the average
memory
stall time

Benchmarks

sw
m

25
6

fp
pp

p

hy
dr

o2
d

na
sa

7

wav
e5

m
dlj

dp
2

sp
ice

2g
6

xli
sp

co
m

pr
es

s

to
m

ca
tv

su
2c

or

m
dlj

sp
2

do
du

c
ea

r

alv
inn or

a

es
pr

es
so

eq
nt

ot
t

Hit under 1 miss Hit under 2 misses Hit under 64 misses

424 Chapter 5 Memory-Hierarchy Design

memory access time. As was the case of a second miss to the remaining block
with critical word first above, the effective miss penalty is not the sum of the
misses but the non-overlapped time that the CPU is stalled. In general, out-of-or-
der CPUs are capable of hiding the miss penalty of an L1 data cache miss which
hits in the L2 cache, but not capable of hiding a significant fraction of an L2
cache miss. Changing the program to pipeline L2 misses can help, especially to a
banked memory system (see section 5.8).

Chapter 1 discusses the pros and cons of execution-driven simulation versus
trace-driven simulation. Cache studies involving an out-of-order CPUs use exe-
cution-driven simulation to evaluate innovations, as avoiding a cache miss that is
completely hidden by dynamic issue does not help performance.

An added complexity of multiple outstanding misses is that it is now possible
for there to be more than one miss request to the same block. For example, with
64 byte blocks there could be a miss to address 1000 and then later a miss to ad-
dress 1032. Thus, the hardware must check on misses to be sure it is not to block
already being requested to avoid possible incoherency problems and to save time.

Second Miss Penalty/Rate Reduction Technique:
Hardware Prefetching of Instructions and Data

Nonblocking caches effectively reduce the miss penalty by overlapping execution
with memory access. To have value, we need a processor that can allow instruc-
tions to execute out-of-order. Another approach is to prefetch items before they
are requested by the processor. Both instructions and data can be prefetched,
either directly into the caches or into an external buffer that can be more quickly
accessed than main memory.

Instruction prefetch is frequently done in hardware outside of the cache. Typi-
cally, the processor fetches two blocks on a miss: the requested block and the
next consecutive block. The requested block is placed in the instruction cache
when it returns, and the prefetched block is placed into the instruction stream
buffer. If the requested block is present in the instruction stream buffer, the origi-
nal cache request is canceled, the block is read from the stream buffer, and the
next prefetch request is issued.

Jouppi [1990] found that a single instruction stream buffer would catch 15%
to 25% of the misses from a 4-KB direct-mapped instruction cache with 16-byte
blocks. With 4 blocks in the instruction stream buffer the hit rate improves to
about 50%, and with 16 blocks to 72%.

A similar approach can be applied to data accesses. Jouppi found that a single
data stream buffer caught about 25% of the misses from the 4-KB direct-mapped
cache. Instead of having a single stream, there could be multiple stream buffers
beyond the data cache, each prefetching at different addresses. Jouppi found that
four data stream buffers increased the data hit rate to 43%. Palacharla and Kessler
[1994] looked at a set of scientific programs and considered stream buffers that
could handle either instructions or data. They found that eight stream buffers
could capture 50% to 70% of all misses from a processor with two 64-KB four-
way set-associative caches, one for instructions and the other for data.

5.6 Reducing Cache Miss Penalty or Miss Rate via Parallelism 425

The UltraSPARC III uses such a prefetch scheme. A prefetch cache remem-
bers the address used to prefetch the data. If a load hits in prefetch cache, the
block is read from the prefetch cache, and the next prefetch request is issued. It
calculates the “stride” of the next prefetched block using the difference between
current address and the previous address. There can be up to eight simultaneous
prefetches in UltraSPARC III.

E X A M P L E What is the effective miss rate of the UltraSPARC III using instruction
prefetching? How much bigger an data cache would be needed in the Ul-
traSPARC III to match the average access time if prefetching were re-
moved? It has an 64-KB data cache. Assume prefetching reduces data
miss rate by 20%.

A N S W E R We assume it takes 1 extra clock cycle if the data misses the cache but is
found in the prefetch buffer. Here is our revised formula:

Average memory access timeprefetch = Hit time + Miss rate × Prefetch hit rate × 1 + Miss rate ×
(1– Prefetch hit rate) × Miss penalty

Let's assume the prefetch hit rate is 50%. Figure 5.8 on page 390 gives
the misses per 1000 instructions for an 64-KB data cache as 36.9. To con-
vert to a miss rate, is we assume 22% data references, the rate is

or 16.7%. Assume the he hit time is 1 clock cycles,

and the miss penalty is 15 clock cycles since UltraSPARC III has an L2
cache:

Average memory access timeprefetch = 1 + (16.7% × 20% × 1) + (16.7% × (1 – 20%) × 15) = 1 + 0.034 + 2.013 = 3.046

To find the effective miss rate with the equivalent performance, we start
with the original formula and solve for the miss rate:

Our calculation suggests that the effective miss rate of prefetching with an
64-KB cache is 13.6%. Figure 5.8 on page 390 gives the misses per 1000
instructions of a 256-KB instruction cache as 32.6, yielding a miss rate of
32.6/(22% x1000) or 14.8%,. If the prefetching reduces miss rate by 20%,
then a 64 KB data cache with prefetching outperforms a 256-KB cache
without it. n

36.9
1000 22 100⁄×-------------------------------------

36.9
220----------

=

Average memory access time Hit time Miss rate Miss penalty×+=

Miss rate Average memory access time – Hit time
Miss penalty--

=

Miss rate 3.046 1–
15----------------------

2.046
15-------------

13.6%= = =

426 Chapter 5 Memory-Hierarchy Design

Prefetching relies on utilizing memory bandwidth that otherwise would be un-
used, but if it interferes with demand misses it can actually lower performance.
Help from compilers can reduce useless prefetching.

Third Miss Penalty/Rate Reduction Technique:
Compiler-Controlled Prefetching

An alternative to hardware prefetching is for the compiler to insert prefetch in-
structions to request the data before they are needed. There are several flavors of
prefetch:

n Register prefetch will load the value into a register.

n Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting; that is, the address does or does
not cause an exception for virtual address faults and protection violations. Non-
faulting prefetches simply turn into no-ops if they would normally result in an ex-
ception. Using this terminology, a normal load instruction could be considered a
“faulting register prefetch instruction.”

The most effective prefetch is “semantically invisible” to a program: it doesn't
change the contents of registers and memory and it cannot cause virtual memory
faults. Most processors today offer non-faulting cache prefetches. This section
assumes nonfaulting cache prefetch, also called nonbinding prefetch.

Prefetching makes sense only if the processor can proceed while the
prefetched data are being fetched; that is, the caches do not stall but continue to
supply instructions and data while waiting for the prefetched data to return. As
you would expect, the data cache for such computers is normally nonblocking.

Like hardware-controlled prefetching, the goal is to overlap execution with
the prefetching of data. Loops are the important targets, as they lend themselves
to prefetch optimizations. If the miss penalty is small, the compiler just unrolls
the loop once or twice and it schedules the prefetches with the execution. If the
miss penalty is large, it uses software pipelining (page 290 in Chapter 4) or un-
rolls many times to prefetch data for a future iteration.

Issuing prefetch instructions incurs an instruction overhead, however, so care
must be taken to ensure that such overheads do not exceed the benefits. By con-
centrating on references that are likely to be cache misses, programs can avoid un-
necessary prefetches while improving average memory access time significantly.

E X A M P L E For the code below, determine which accesses are likely to cause data
cache misses. Next, insert prefetch instructions to reduce misses. Finally,
calculate the number of prefetch instructions executed and the misses
avoided by prefetching. Let's assume we have an 8-KB direct-mapped

5.6 Reducing Cache Miss Penalty or Miss Rate via Parallelism 427

data cache with 16-byte blocks, and it is a write-back cache that does
write allocate. The elements of a and b are 8 bytes long as they are dou-
ble-precision floating-point arrays. There are 3 rows and 100 columns for
a and 101 rows and 3 columns for b. Let’s also assume they are not in the
cache at the start of the program.

for (i = 0; i < 3; i = i+1)

for (j = 0; j < 100; j = j+1)

a[i][j] = b[j][0] * b[j+1][0];

A N S W E R The compiler will first determine which accesses are likely to cause cache
misses; otherwise, we will waste time on issuing prefetch instructions for
data that would be hits. Elements of a are written in the order that they are
stored in memory, so a will benefit from spatial locality: the even values of
j will miss and the odd values will hit. Since a has 3 rows and 100 col-

umns, its accesses will lead to or 150 misses.

The array b does not benefit from spatial locality since the accesses
are not in the order it is stored. The array b does benefit twice from tem-
poral locality: the same elements are accessed for each iteration of i,
and each iteration of j uses the same value of b as the last iteration. Ig-
noring potential conflict misses, the misses due to b will be for b[j+1][0]
accesses when i = 0, and also the first access to b[j][0] when j = 0.
Since j goes from 0 to 99 when i = 0, accesses to b lead to 100 + 1 or
101 misses.

Thus, this loop will miss the data cache approximately 150 times a
for plus a 101 times for b, or 251 misses.

To simplify our optimization, we will not worry about prefetching the
first accesses of the loop. These may be already in the cache, or we will
pay the miss penalty of first few elements of a or b. Nor we will worry about
suppressing the prefetches at the end of the loop which try to prefetch be-
yond the end of a (a[i][100]...a[i][106]) and end of b (b[100][0]...
b[106][0]). If these were faulting prefetches, we could not take this lux-
ury. Let's assume that the miss penalty is so large we prefetch need to
start at least, say, seven iterations in advance. (Stated alternatively, we
assume prefetching has no benefit until the eighth iteration.)

for (j = 0; j < 100; j = j+1) {

prefetch(b[j+7][0]);

/* b(j,0) for 7 iterations later */

prefetch(a[0][j+7]);

/* a(0,j) for 7 iterations later */

3 100
2---------

×

428 Chapter 5 Memory-Hierarchy Design

a[0][j] = b[j][0] * b[j+1][0];};

for (i = 1; i < 3; i = i+1)

for (j = 0; j < 100; j = j+1) {

prefetch(a[i][j+7]);

/* a(i,j) for +7 iterations */

a[i][j] = b[j][0] *b[j+1][0];}

This revised code prefetches a[i][7] through a[i][99] and b[7][0]
through b[99][0], reducing the number of nonprefetched misses to:

n 7 misses for elements b[0][0], b[1][0], ..., b[6][0] in the first loop;

n 4 misses () for elements a[0][0], a[0][1], ..., a[0][6] for in the first
loop (spatial locality reduces misses to one per 16 byte cache block);

n 4 misses () for elements a[1][0], a[1][1], ..., a[1][6] in the second
loop;

n 4 misses () for elements a[2][0], a[2][1], ..., a[2][6] in the second
loop;

or a total of 19 nonprefetched misses. The cost of avoiding 232 cache
misses is executing 400 prefetch instructions, likely a good trade-off. n

E X A M P L E Calculate the time saved in the example above. Ignore instruction cache
misses and assume there are no conflict or capacity misses in the data
cache. Assume that prefetches can overlap with each other and with
cache misses, thereby transferring at the maximum memory bandwidth.
Here are the key loop times ignoring cache misses: the original loop takes
7 clock cycles per iteration, the first prefetch loop takes 9 clock cycles per
iteration, and the second prefetch loop takes 8 clock cycles per iteration
(including the overhead of the outer for loop). A miss takes 100 clock
cycles.

A N S W E R The original doubly nested loop executes the multiply 3 × 100 or 300
times. Since the loop takes 7 clock cycles per iteration, the total is
300 × 7 or 2100 clock cycles plus cache misses. Cache misses add
251 × 100 or 25,100 clock cycles, giving a total of 27,200 clock cycles.
The first prefetch loop iterates 100 times; at 9 clock cycles per iteration the
total is 900 clock cycles plus cache misses. They add 11 × 100 or 1100
clock cycles for cache misses, giving a total of 2000. The second loop ex-
ecutes 2 × 100 or 200 times, and at 8 clock cycles per iteration it takes
1600 clock cycles plus 8 × 100 or 800 clock cycles for cache misses. This
gives a total of 2400 clock cycles. From the prior example we know that
this code executes 400 prefetch instructions during the 2000 + 2400 or

7 2⁄

7 2⁄

7 2⁄

5.6 Reducing Cache Miss Penalty or Miss Rate via Parallelism 429

4400 clock cycles to execute these two loops. If we assume that the
prefetches are completely overlapped with the rest of the execution, then
the prefetch code is 27,200/4400 or 6.2 times faster.

In addition to the nonfaulting prefetch loads, the 21264 offers prefetches to
help with writes. In the example above, we prefetched a[i][j+7]even though
we were not going to read the data. We just wanted it in the cache so that we
could write over it. If an aligned cache block is being written in full, the write
hint instruction tells the cache to allocate the block but do not bother loading the
data, as the CPU will write over it. In the example above, if the array a were
properly aligned and padded, such an instruction could replace the instructions
prefetching a with the write hint instructions, thereby saving hundreds of memo-
ry accesses. Since these write hints do have side effects, care would also have to
be taken not to access memory outside of the memory allocated for a.

Although array optimizations are easy to understand, modern programs are
more likely to use pointers. Luk and Mowry [1999] have demonstrated that com-
piler-based prefetching can sometimes be extended to pointers as well. Of ten
programs with recursive data structures, prefetching all pointers when a node is
visited improved performance by 4% to 31% in half the programs. On the other
hand, the remaining programs were still within 2% of their original performance.
The issue is both whether prefetches are to data already in the cache and whether
they occur early enough for the data to arrive by the time it is needed.

Summary of Reducing Cache Miss Penalty/ Miss Rate via Parallelism

This section first covered non-blocking caches, which enable out-of-order pro-
cessors. In general such processors cache hide misses to L1 caches that hit in the
L2 cache, but not a complete L2 cache miss. However, if miss under miss is sup-
ported, nonblocking caches can take advantage of more bandwidth behind the
cache by having several outstanding misses operating at once for programs with
sufficient instruction level parallelism.

The hardware and software prefetching techniques leverage excess memory
bandwidth for performance by trying to anticipate the needs of a cache. Although
speculation may not make sense for power sensitive embedded applications, it
normally does for desktop and server computers. The potential success of
prefetching is either lower miss penalty, or if they are started far in advance of
need, reduction of the miss rate. This ambiguity of whether they help miss rate or
miss penalty is one reason they are included in separate section.

Now that we have spent nearly 30 pages on techniques that reduce cache miss-
es or miss penalty in sections 5.4 to 5.6, it is time to look at reducing the final
component of average memory access time.

430 Chapter 5 Memory-Hierarchy Design

Hit time is critical because it affects the clock rate of the processor; in many pro-
cessors today the cache access time limits the clock cycle rate, even for proces-
sors that take multiple clock cycles to access the cache. Hence, a fast hit time is
multiplied in importance beyond the average memory access time formula be-
cause it helps everything. This section gives four general techniques.

First Hit Time Reduction Technique:
Small and Simple Caches

A time-consuming portion of a cache hit is using the index portion of the address
to read the tag memory and then compare it to the address. Our guideline from
Chapter 1 suggests that smaller hardware is faster, and a small cache certainly
helps the hit time. It is also critical to keep the cache small enough to fit on the
same chip as the processor to avoid the time penalty of going off-chip. The sec-
ond suggestion is to keep the cache simple, such as using direct mapping (see
page 414). A main benefit of direct-mapped caches is that the designer can over-
lap the tag check with the transmission of the data. This effectively reduces hit
time. Hence, the pressure of a fast clock cycle encourages small and simple cache
designs for first-level caches. For second level caches, some designs strike a com-
promise by keeping the tags on-chip and the data off-chip, promising a fast tag
check, yet providing the greater capacity of separate memory chips.

One approach to determining the impact on hit time in advance of building a
chip is to use CAD tools. CACTI is a program to estimate the access time of al-
ternative cache structures on CMOS microprocessors within 10% of more de-
tailed CAD tools. For a given minimum feature size, it estimates the hit time of
caches as you vary cache size, associativity, and number of read/write ports. Fig-
ure 5.24 shows the estimated impact on hit time as cache size and associativity
are varied. Depending on cache size, for these parameters the model suggests that
hit times for direct mapped is 1.2 to 1.5 times faster than 2-way set associative; 2-
way is l.02 to 1.11 times faster than 4-way; and 4-way is 1.0 to 1.08 times faster
than fully associative (except for a 256 KB cache, which is 1.19 times faster).

Although the amount of on-chip cache increased with new generations of mi-
croprocessors, the size of the L1 caches has recently not increased between gen-
erations. The L1 caches are the same size between the Alpha 21264 and 21364,
UltraSPARC II and III, and AMD K6 and Athlon. The L1 data cache size is actu-
ally reduced from 16 KB in Pentium III to 8 KB in Pentium 4. The emphasis re-
cently is on fast clock time while hiding L1 misses with dynamic execution and
using L2 caches to avoid going to memory.

5.7 Reducing Hit Time

5.7 Reducing Hit Time 431

Second Hit Time Reduction Technique:
Avoiding Address Translation During Indexing of the Cache

Even a small and simple cache must cope with the translation of a virtual address
from the CPU to a physical address to access memory. As described below in
section 5.10, processors treat main memory as just another level of the memory
hierarchy, and thus the address of the virtual memory that exists on disk must be
mapped onto the main memory.

The guideline of making the common case fast suggests that we use virtual
addresses for the cache, since hits are much more common than misses. Such
caches are termed virtual caches, with physical cache used to identify the tradi-
tional cache that uses physical addresses. As we shall shortly see, it is important
to distinguish two tasks: indexing the cache and the comparing addresses. Thus,
the issues are whether a virtual or physical address is used to index the cache and
whether a virtual or physical index is used in the tag comparison. Full virtual ad-
dressing for both index and tags eliminates address translation time from a cache
hit. Then why doesn’t everyone build virtually addressed caches?

One reason is protection. Page level protection is checked as part of the virtual
to physical address translation, and it must be enforced no matter what. One solu-

FIGURE 5.24 Access times for as size and associativity vary in a CMOS cache. These data are based on Spice runs
used to validate the CACTI model 2.0 by Reinmann and Jouppi [1999]. They assumed 0.80-micron feature size, a single
read/write port, 32 address bits, 64 output bits, and 32 byte blocks. The median ratios of access time relative to the direct
mapped caches are 1.36, 1.44, and 1.52 for 2-way, 4-way, and 8-way associative caches, respectively.

0

2

4

6

8

1 0

1 2

1 4

1 6

4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB

Cache size

Access
time
(ns)

1-way 2-way 4-way Fully Associative

432 Chapter 5 Memory-Hierarchy Design

tion is to copy the protection information from the TLB on a miss, add a field to
hold it, and check it on every access to the virtually addressed cache.

Another reason is that every time a process is switched, the virtual addresses
refer to different physical addresses, requiring the cache to be flushed.
Figure 5.25 shows the impact on miss rates of this flushing. One solution is to
increase the width of the cache address tag with a process-identifier tag (PID). If
the operating system assigns these tags to processes, it only need flush the cache
when a PID is recycled; that is, the PID distinguishes whether or not the data in

FIGURE 5.25 Miss rate versus virtually addressed cache size of a program measured
three ways: without process switches (uniprocess), with process switches using a
process-identifier tag (PIDs), and with process switches but without PIDs (purge). PIDs
increase the uniprocess absolute miss rate by 0.3% to 0.6% and save 0.6% to 4.3% over
purging. Agarwal [1987] collected these statistics for the Ultrix operating system running on
a VAX, assuming direct-mapped caches with a block size of 16 bytes. Note that the miss rate
goes up from 128K to 256K. Such nonintuitive behavior can occur in caches because chang-
ing size changes the mapping of memory blocks onto cache blocks, which can change the
conflict miss rate.

20%

18%

16%

14%

12%

10%
Miss
rate

8%

6%

4%

2%

0%
2K

0.6%
0.4%

18.8%

1.1%

0.5%

13.0%

1.8%

0.6%

8.7%

2.7%

0.6%

3.9%

3.4%

0.4%

2.7%

3.9%

0.4%
0.9%

4.1%

0.3%
0.4%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4K 8K

Uniprocess PIDs Purge

16K 32K

Cache size

64K 128K 256K 512K 1024K

5.7 Reducing Hit Time 433

the cache are for this program. Figure 5.25 shows the improvement in miss rates
by using PIDs to avoid cache flushes.

A third reason why virtual caches are not more popular is that operating sys-
tems and user programs may use two different virtual addresses for the same
physical address. These duplicate addresses, called synonyms or aliases, could
result in two copies of the same data in a virtual cache; if one is modified, the oth-
er will have the wrong value. With a physical cache this wouldn’t happen, since
the accesses would first be translated to the same physical cache block.

Hardware solutions to the synonym problem, called anti-aliasing, guarantee
every cache block a unique physical address. The Alpha 21264 uses a 64 KB in-
struction cache with an 8 KB page and two-way set associativity, hence the hard-
ware must handle aliases involved with the 2 virtual address bits in both sets. It
avoids aliases by simply checking all 8 possible locations on a miss–four entries
per set–to be sure that none match the physical address of the data being fetched.
If one is found, it is invalidated, so when the new data is loaded into the cache its
physical address is guaranteed to be unique.

Software can make this problem much easier by forcing aliases to share some
address bits. The version of UNIX from Sun Microsystems, for example, requires
all aliases to be identical in the last 18 bits of their addresses; this restriction is
called page coloring. Note that page coloring is simply set-associative mapping
applied to virtual memory: the 4-KB (212) pages are mapped using 64 (26) sets to
ensure that the physical and virtual addresses match in the last 18 bits. This re-
striction means a direct-mapped cache that is 218 (256K) bytes or smaller can
never have duplicate physical addresses for blocks. From the perspective of the
cache, page coloring effectively increases the page offset, as software guarantees
that the last few bits of the virtual and physical page address are identical

The final area of concern with virtual addresses is I/O. I/O typically uses phys-
ical addresses and thus would require mapping to virtual addresses to interact
with a virtual cache. (The impact of I/O on caches is further discussed below in
section 5.12.)

One alternative to get the best of both virtual and physical caches is to use part
of the page offset—the part that is identical in both virtual and physical address-
es—to index the cache. At the same time as the cache is being read using that in-
dex, the virtual part of the address is translated, and the tag match uses physical
addresses.

This alternative allows the cache read to begin immediately and yet the tag
comparison is still with physical addresses. The limitation of this virtually in-
dexed, physically tagged alternative is that a direct-mapped cache can be no big-
ger than the page size. For example, in the data cache in Figure 5.7 on page 388,
the index is 9 bits and the cache block offset is 6 bits. To use this trick, the virtual
page size would have to be at least 2(9+6) bytes or 32 KB. If not, a portion of the
index must be translated from virtual to physical address.

434 Chapter 5 Memory-Hierarchy Design

Associativity can keep the index in the physical part of the address and yet still
support a large cache. Recall that size of index is controlled by this formula:

For example, doubling associativity and doubling the cache size does not change
the size of the index. The Pentium III, with 8-KB pages, avoids translation with
its16-KB cache by using 2-way set associativity. The IBM 3033 cache, as an ex-
treme example, is 16-way set associative, even though studies show there is little
benefit to miss rates above eight-way set associativity. This high associativity al-
lows a 64-KB cache to be addressed with a physical index, despite the handicap
of 4-KB pages in the IBM architecture.

Third Hit Time Reduction Technique:
Pipelined Cache Access

The final technique is simply to pipeline cache access so that the effective latency
of a first level cache hit can be multiple clock cycles, giving fast cycle time and
slow hits. For example, the pipeline for the Pentium takes one clock cycle to ac-
cess the instruction cache, for the Pentium Pro through Pentium III it takes two
clocks, and for the Pentium 4 it takes four clocks. This split increases the number
of pipeline stages, leading to greater penalty on mispredicted branches and more
clock cycles between the issue of the load and the use of the data (see section
3.9).

Note that this technique in reality increases the bandwidth of instructions rath-
er that decreasing the actual latency of a cache hit.

Fourth Hit Time Reduction Technique:
Trace Caches

A challenge in the effort to find instruction level parallelism beyond four instruc-
tions per cycle is to supply enough instructions every cycle without dependen-
cies. One solution is called a trace cache. Instead of limiting the instructions in a
static cache block to spatial locality, a trace cache finds a dynamic sequence of
instructions including taken branches to load into a cache block.

The name comes from the cache blocks containing dynamic traces of the exe-
cuted instructions as determined by the CPU rather than containing static se-
quences of instructions as determined by memory. Hence, the branch prediction
is folded into cache, and must be validated along with the addresses to have a val-
id fetch. The Intel Netburst microarchitecture, which is the foundation of the Pen-
tium 4 and its successors, uses a trace cache.

2
index Cache size

Block size Set associativity×--
=

5.8 Main Memory and Organizations for Improving Performance 435

Clearly, trace caches have much more complicated address mapping mecha-
nisms, as the addresses are no longer aligned to power of 2 multiple of the word
size. However, they have other benefits for utilization of the data portion of the
instruction cache. Very long blocks in conventional caches may be entered from a
taken branch, and hence the first portion of the block would occupy space in the
cache might not be fetched. Similarly, such blocks may be exited by taken
branches, so the last portion of the block might be wasted. Given that taken
branches or jumps are one in 5 to 10 instructions, space utilization is a real prob-
lem for processors like the AMD Athlon, whose 64 byte block would likely
include16 to 24 80x86 instructions. The trend towards even greater instruction is-
sue should make the problem worse. Trace caches store instructions only from
the branch entry point to the exit of the trace, thereby avoiding such header and
trailer overhead.

The downside of trace caches is that they store the same instructions multiple
times in the instruction cache. Conditional branches making different choices re-
sult in the same instructions being part of separate traces, which each occupy
space in the cache.

Cache Optimization Summary

The techniques in sections 5.4 to 5.7 to improve miss rate, miss penalty, and hit
time generally impact the other components of the average memory access equa-
tion as well as the complexity of the memory hierarchy. Figure 5.26 summarizes
these techniques and estimates the impact on complexity, with + meaning that the
technique improves the factor, – meaning it hurts that factor, and blank meaning
it has no impact. Generally no technique helps more than one category.

Main memory is the next level down in the hierarchy. Main memory satisfies the
demands of caches and serves as the I/O interface, as it is the destination of input
as well as the source for output. Performance measures of main memory empha-
size both latency and bandwidth. (Memory bandwidth is the number of bytes
read or written per unit time.) Traditionally, main memory latency (which affects
the cache miss penalty) is the primary concern of the cache, while main memory
bandwidth is the primary concern of I/O and multiprocessors. The relationship of
main memory and multiprocessors is discussed in Chapter 6, and relationship of
main memory and I/O is discussed in Chapter 7.

5.8 Main Memory and Organizations
for Improving Performance

436 Chapter 5 Memory-Hierarchy Design

Although caches are interested in low latency memory, it is generally easier to
improve memory bandwidth with new organizations than it is to reduce latency.
With the popularity of second-level caches and their larger block sizes, main
memory bandwidth becomes important to caches as well. In fact, cache designers
increase block size to take advantage of the high memory bandwidth.

The previous sections describe what can be done with cache organization to
reduce this CPU-DRAM performance gap, but simply making caches larger or

Technique
Miss
penalty

Miss
rate

Hit
time

Hardware
complexity Comment

Multi-level caches + 2 Costly hardware; harder if block size
L1 ≠ L2; widely used

Critical word first
and early restart

+ 2 Widely used

Giving priority to read misses
over writes

+ 1 Trivial for uniprocessor, and widely
used

Merging Write Buffer + 1 Used with write through; in 21164.
UltraSPARC III; widely used

Victim caches + + 2 AMD Athlon has 8 entries

Larger block size – + 0 Trivial; Pentium 4 L2 uses 128 bytes

Larger cache size + – 1 Widely used, esp. for L2 caches

Higher associativity + – 1 Widely used

Way-predicting caches + 2 Used in I-cache of UltraSPARC III;
D-cache of MIPS R4300 series

Pseudo-associative + 2 Used in L2 of MIPS R10000

Compiler techniques to reduce
cache misses

+ 0 Software is challenge; some com-
puters have compiler option

Nonblocking caches + 3 Used with all out-of-order CPUs

Hardware prefetching of
instructions and data

+ + 2 instr.,
3 data

Many prefetch instructions;
UltraSPARC III prefetches data

Compiler-controlled prefetching + + 3 Needs nonblocking cache too;
several processors support it

Small and simple caches – + 0 Trivial; widely used

Avoiding address translation
during indexing of the cache

+ 2 Trivial if small cache; used in Alpha
21164, UltraSPARC III

Pipelined cache access + 1 Widely used

Trace cache + 3 Used in Pentium 4

FIGURE 5.26 Summary of cache optimizations showing impact on cache performance and complexity for the
techniques in sections 5.4 to 5.7. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, – means it hurts
that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and 3 being
a challenge.

5.8 Main Memory and Organizations for Improving Performance 437

adding more levels of caches may not be a cost-effective way to eliminate the
gap. Innovative organizations of main memory are needed as well. In the this sec-
tion we examine techniques for organizing memory to improve bandwidth.

Let’s illustrate these organizations with the case of satisfying a cache miss.
Assume the performance of the basic memory organization is

n 4 clock cycles to send the address

n 56 clock cycles for the access time per word

n 4 clock cycles to send a word of data

Given a cache block of four words, and that a word is 8 bytes, the miss penalty is 4
× (4 + 56 + 4) or 256 clock cycles, with a memory bandwidth of one-eighth byte
(32/256) per clock cycle. These values are our default case.

Figure 5.27 shows some of the options to faster memory systems. The next
three solutions assume generic memory. The next three solutions assume generic
memory technology, which we explore in the next section.

FIGURE 5.27 Three examples of bus width, memory width, and memory interleaving
to achieve higher memory bandwidth. (a) is the simplest design, with everything the width
of one word; (b) shows a wider memory, bus, and L2 cache with a narrow L1 cache; while (c)
shows a narrow bus and cache with an interleaved memory.

Memory
bank 0

Memory
bank 1

Memory
bank 2

Memory
bank 3

Bus

Cache

CPU

(c) Interleaved
 memory organization

Bus

Cache

CPU

(a) One-word-wide
 memory organization

Cache

CPU

(b) Wide memory organization

Bus

Cache

Multiplexor

Memory

Memory

438 Chapter 5 Memory-Hierarchy Design

The simplest approach to increasing memory bandwidth, then, is to make the
memory wider; we examine this first.

First Technique for Higher Bandwidth: Wider Main Memory

First-level caches are often organized with a physical width of one word because
most CPU accesses are that size; see Figure 5.27(a). Doubling or quadrupling the
width of the cache and the memory will therefore double or quadruple the mem-
ory bandwidth. With a main memory width of two words, the miss penalty in our
example would drop from 4 × 64 or 256 clock cycles as calculated above to 2 ×
64 or 128 clock cycles. The reason is at twice the width we need half the memory
accesses, and each takes 64 clock cycles. At four words wide the miss penalty is
just 1 × 64 clock cycles. The bandwidth is then one-quarter byte per clock cycle
at two words wide and one-half byte per clock cycle when the memory is four
words wide.

There is cost in the wider connection between the CPU and memory, typically
called a memory bus. CPUs will still access the cache a word at a time, so there
now needs to be a multiplexor between the cache and the CPU—and that multi-
plexor may be on the critical timing path. Second-level caches can help since the
multiplexing can be between first- and second-level caches, not on the critical
path; see Figure 5.27(b).

Since main memory is traditionally expandable by the customer, a drawback
to wide memory is that the minimum increment is doubled or quadrupled when
the width is doubled or quadrupled. In addition, memories with error correction
have difficulties with writes to a portion of the protected block, such as a byte.
The rest of the data must be read so that the new error correction code can be cal-
culated and stored when the data are written. (Section 5.15 describes error cor-
rection on the Sun Fire 6800 server.) If the error correction is done over the full
width, the wider memory will increase the frequency of such “read-modify-
write” sequences because more writes become partial block writes. Many designs
of wider memory have separate error correction every word since most writes are
that size.

Second Technique for Higher Bandwidth:
Simple Interleaved Memory

Increasing width is one way to improve bandwidth, but another is to take advan-
tage of the potential parallelism of having many chips in a memory system.
Memory chips can be organized in banks to read or write multiple words at a time
rather than a single word. In general, the purpose of interleaved memory is to try
to take advantage of the potential memory bandwidth of all the chips in the sys-
tem; in contrast, most memory systems activate only the chips containing the
needed words. The two philosophies affect the power of the memory system,

5.8 Main Memory and Organizations for Improving Performance 439

leading to different decisions depending on the relative importance of power ver-
sus performance.

The banks are often one word wide so that the width of the bus and the cache
need not change, but sending addresses to several banks permits them all to read
simultaneously. Figure 5.27(c) shows this organization. For example, sending an
address to four banks (with access times shown on page 437) yields a miss
penalty of 4 + 56 + (4 × 4) or 76 clock cycles, giving a bandwidth of about 0.4
bytes per clock cycle. Banks are also valuable on writes. Although back-to-back
writes would normally have to wait for earlier writes to finish, banks allow one
clock cycle for each write, provided the writes are not destined to the same bank.
Such a memory organization is especially important for write through.

The mapping of addresses to banks affects the behavior of the memory sys-
tem. The example above assumes the addresses of the four banks are interleaved
at the word level: bank 0 has all words whose address modulo 4 is 0, bank 1 has
all words whose address modulo 4 is 1, and so on. Figure 5.28 shows this inter-
leaving.

This mapping is referred to as the interleaving factor; interleaved memory
normally means banks of memory that are word interleaved. This interleaving
optimizes sequential memory accesses. A cache read miss is an ideal match to
word-interleaved memory, as the words in a block are read sequentially. Write-
back caches make writes as well as reads sequential, getting even more efficiency
from word-interleaved memory.

E X A M P L E What can interleaving and wide memory buy? Consider the following de-
scription of a computer and its cache performance:

Block size = 1 word

Memory bus width = 1 word

FIGURE 5.28 Four-way interleaved memory. This example assumes word addressing:
with byte addressing and eight bytes per word, each of these addresses would be multiplied
by eight.

0

4

8

12

Bank 0Word
Address

Word
Address

Word
Address

Word
Address

1

5

9

13

Bank 1

2

6

10

14

Bank 2

3

7

11

15

Bank 3

440 Chapter 5 Memory-Hierarchy Design

Miss rate = 3%

Memory accesses per instruction = 1.2

Cache miss penalty = 64 cycles (as above)

Average cycles per instruction (ignoring cache misses) = 2

If we change the block size to two words, the miss rate falls to 2%, and a
four-word block has a miss rate of 1.2%. What is the improvement in per-
formance of interleaving two ways and four ways versus doubling the
width of memory and the bus, assuming the access times on page 437?

A N S W E R The CPI for the base computer using one-word blocks is

2 + (1.2 × 3% × 64) = 4.30

Since the clock cycle time and instruction count won’t change in this ex-
ample, we can calculate performance improvement by just comparing
CPI.

Increasing the block size to two words gives the following options:

64-bit bus and memory, no interleaving = 2 + (1.2 × 2% × 2 × 64) = 5.07

64-bit bus and memory, interleaving = 2 + (1.2 × 2% × (4 + 56 + 8)) = 3.63

128-bit bus and memory, no interleaving = 2 + (1.2 × 2% × 1 × 64) = 3.54

Thus, doubling the block size slows down the straightforward im-
plementation (5.07 versus 4.30), while interleaving or wider memory is
1.19 or 1.22 times faster, respectively. If we increase the block size to four,
the following is obtained:

64-bit bus and memory, no interleaving = 2 + (1.2 × 1.2% × 4 × 64) = 5.69

64-bit bus and memory, interleaving = 2 + (1.2 × 1.2% × (4 + 56 + 16)) = 3.09

128-bit bus and memory, no interleaving = 2 + (1.2 × 1.2% × 2 × 64) = 3.84

Again, the larger block hurts performance for the simple case (5.69 vs.
4.30), although the interleaved 64-bit memory is now fastest—1.39 times
faster versus 1.22 for the wider memory and bus. n

This subsection has shown that interleaved memory is logically a wide memory,
except that accesses to banks are staged over time to share internal resources—the
memory bus in this example.

How many banks should be included? One metric, used in vector computers,
is as follows:

Number of banks ≥ Number of clock cycles to access word in bank

5.8 Main Memory and Organizations for Improving Performance 441

The memory system goal is to deliver information from a new bank each clock
cycle for sequential accesses. To see why this formula holds, imagine there were
fewer banks than clock cycles to access a word in a 64-bit bank; say, 8 banks with
an access time of 10 clock cycles. After 10 clock cycles the CPU could get a
word from bank 0, and then bank 0 would begin fetching the next desired word as
the CPU received the following 7 words from the other 7 banks. At clock cycle
18 the CPU would be at the door of bank 0, waiting for it to supply the next word.
The CPU would have to wait until clock cycle 20 for the word to appear. Hence,
we want more banks than clock cycles to access a bank to avoid waiting.

We will discuss conflicts on nonsequential accesses to banks in the following
subsection. For now, we note that having many banks reduces the chance of these
bank conflicts.

Ironically, as capacity per memory chip increases, there are fewer chips in the
same-sized memory system, making multiple banks much more expensive. For
example, a 512-MB main memory takes 256 memory chips of 4 M × 4 bit, easily
organized into 16 banks of 16 memory chips. However, it takes only sixteen 64-
M × 4-bit memory chips for 64 MB, making one bank the limit. Many manufac-
turers will want to have a small memory option in the baseline model. This
shrinking number of chips is the main disadvantage of interleaved memory
banks. Chips organized with wider paths, such as 16 M × 16 bits, postpone this
weakness.

A second disadvantage of memory banks is again the difficulty of main mem-
ory expansion. Either the memory system must support multiple generations of
memory chips, or the memory controller changes the interleaving based on the
size of physical memory, or both.

Third Technique for Higher Bandwidth:
Independent Memory Banks

The original motivation for memory banks was higher memory bandwidth by
interleaving sequential accesses. This hardware is not much more difficult since
the banks can share address lines with a memory controller, enabling each bank
to use the data portion of the memory bus.

A generalization of interleaving is to allow multiple independent accesses,
where multiple memory controllers allow banks (or sets of word-interleaved
banks) to operate independently. Each bank needs separate address lines and pos-
sibly a separate data bus. For example, an input device may use one controller
and one bank, the cache read may use another, and a cache write may use a third.
Nonblocking caches (page 421) allow the CPU to proceed beyond a cache miss,
potentially allowing multiple cache misses to be serviced simultaneously. Such a
design only makes sense with memory banks; otherwise the multiple reads will
be serviced by a single memory port and get only a small benefit of overlapping
access with transmission. Multiprocessors that share a common memory provide
further motivation for memory banks (see Chapter 6).

442 Chapter 5 Memory-Hierarchy Design

Independent of memory technology, higher bandwidth is available using
memory banks, by making memory and its bus wider, or doing both. The next
section examines the underlying memory technology.

… the one single development that put computers on their feet was the invention
of a reliable form of memory, namely, the core memory. … Its cost was reason-
able, it was reliable and, because it was reliable, it could in due course be made
large. [p. 209]

Maurice Wilkes, Memoirs of a Computer Pioneer (1985)

The prior section described ways to organize memory chips; this section de-
scribes the technology inside the memory chips. Before describing the options,
let’s go over the performance metrics.

Memory latency is traditionally quoted using two measures—access time and
cycle time. Access time is the time between when a read is requested and when
the desired word arrives, while cycle time is the minimum time between requests
to memory. One reason that cycle time is greater than access time is that the
memory needs the address lines to be stable between accesses.

DRAM technology

The main memory of virtually every desktop or server computer sold since 1975
is composed of semiconductor DRAMs,.

As early DRAMs grew in capacity, the cost of a package with all the necessary
address lines was an issue. The solution was to multiplex the address lines, there-
by cutting the number of address pins in half. Figure 5.29 shows the basic DRAM
organization. One half of the address is sent first, called the row access strobe or
RAS. It is followed by the other half of the address, sent during the column access
strobe or CAS. These names come from the internal chip organization, since the
memory is organized as a rectangular matrix addressed by rows and columns.

An additional requirement of DRAM derives from the property signified by its
first letter, D, for dynamic. To pack more bits per chip, DRAMs use only a single
transistor to store a bit. Reading that bit can disturb the information, however. To
prevent loss of information, each bit must be “refreshed” periodically. Fortunately,
all the bits in a row can be refreshed simultaneously just by reading that row.
Hence, every DRAM in the memory system must access every row within a certain
time window, such as 8 milliseconds. Memory controllers include hardware to peri-
odically refresh the DRAMs.

5.9 Memory Technology

5.9 Memory Technology 443

This requirement means that the memory system is occasionally unavailable
because it is sending a signal telling every chip to refresh. The time for a refresh
is typically a full memory access (RAS and CAS) for each row of the DRAM.
Since the memory matrix in a DRAM is conceptually square, the number of steps
in a refresh is usually the square root of the DRAM capacity. DRAM designers
try to keep time spent refreshing to be less than 5% of the total time.

Earlier sections presented main memory as if operated like a Swiss train, consis-
tently delivering the goods exactly according to schedule. Refresh belies that myth,
for some accesses take much longer than others do. Thus, refresh is another reason
for variability of memory latency and hence cache miss penalty.

Amdahl suggested a rule of thumb that memory capacity should grow linearly
with CPU speed to keep a balanced system, so that a 1000 MIPS processor
should have 1000 megabytes of memory. CPU designers rely on DRAMs to sup-
ply that demand: in the past they expected a four-fold improvement in capacity
every three years, or 55% per year. Unfortunately, the performance of DRAMs is
growing at a much slower rate. Figure 5.30 shows a performance improvement in
row access time, which is related to latency, of about 5% per year. The CAS or
Data Transfer Time, which is related to bandwidth, is growing at more than twice
that rate.

FIGURE 5.29 Internal organization of a 64-Mbit DRAM. DRAMs often use banks of memory arrays internally, and select
between them. For example, instead of one 16,384 x 16,384 memory, a DRAM might use 256 1,024 x 1,024 arrays or 16
2,048 x 2,048 arrays.

Column Decoder

Sense Amps & I/O

Memory Array

(16,384 x 16,384)

A0…A13

…14

D

Q

Word Line
Storage
Cell

444 Chapter 5 Memory-Hierarchy Design

Although we have been talking about individual chips, DRAMs are common-
ly sold on small boards called DIMMs for Dual Inline Memory Modules. DIMMs
typically contain 4 to 16 DRAMs. They are normally organized to be eight bytes
wide for desktop systems.

In addition to the DIMM packaging and the new interfaces to improve the data
transfer time, discussed in the following subsections, the biggest change to
DRAMs has been a slowing down in capacity growth. For 20 years DRAMs
obeyed Moore’s Law, bringing out a new chip with four times the capacity every
three years. As a result of a slowing in demand for DRAMs, since 1998 new
chips only double capacity every two years. In 2001, this new slower pace shows
no sign of changing.

Just as virtually all desktop or server computer since 1975 used DRAMs for
main memory, virtually all use SRAM for cache, the topic of the next subsection.

SRAM Technology

In contrast to DRAMs are SRAMs—the first letter standing for static. The dy-
namic nature of the circuits in DRAM require data to be written back after being
read, hence the difference between the access time and the cycle time as well as
the need to refresh. SRAMs typically use six transistors per bit to prevent the in-
formation from being disturbed when read.

Row access strobe (RAS)

Year of
introduction Chip size

Slowest
DRAM

Fastest
DRAM

Column
access strobe

(CAS) /
Data Transfer

Time

Cycle
time

1980 64 Kbit 180 ns 150 ns 75 ns 250 ns

1983 256 Kbit 150 ns 120 ns 50 ns 220 ns

1986 1 Mbit 120 ns 100 ns 25 ns 190 ns

1989 4 Mbit 100 ns 80 ns 20 ns 165 ns

1992 16 Mbit 80 ns 60 ns 15 ns 120 ns

1996 64 Mbit 70 ns 50 ns 12 ns 110 ns

1998 128 Mbit 70 ns 50 ns 10 ns 100 ns

2000 256 Mbit 65 ns 45 ns 7 ns 90 ns

2002 512 Mbit 60 ns 40 ns 5 ns 80 ns

FIGURE 5.30 Times of fast and slow DRAMs with each generation. Performance im-
provement of row access time is about 5% per year. The improvement by a factor of two in
column access accompanied the switch from NMOS DRAMs to CMOS DRAMs.

5.9 Memory Technology 445

This difference in refresh alone can make a difference for embedded applica-
tions. Devices often go into low power or standby mode for long periods. SRAM
needs only minimal power to retain the charge in standby mode, but DRAMs
must continue to be refreshed occasionally so as to not lose information.

In DRAM designs the emphasis is on cost per bit and capacity, while SRAM
designs are concerned with speed and capacity. (Because of this concern, SRAM
address lines are not multiplexed.). Thus, unlike DRAMs, there is no difference
between access time and cycle time. For memories designed in comparable
technologies, the capacity of DRAMs is roughly 4 to 8 times that of SRAMs. The
cycle time of SRAMs is 8 to 16 times faster than DRAMs, but they are also 8 to
16 times as expensive.

Embedded Processor Memory Technology: ROM and Flash

Embedded computers usually have small memories, and most do not have a disk
to act as non-volatile storage. Two memory technologies are found in embedded
computers to address this problem.

The first is Read-Only Memory (ROM). ROM is programmed at time of manu-
facture, needing only a single transistor per bit to represent 1 or 0. ROM is used
for the embedded program and for constants, often included as part of a larger
chip.

In addition to being non-volatile, ROM is also non-destructible; nothing the
computer can do can modify the contents of this memory. Hence, ROM also pro-
vides a level of protection to the code of embedded computers. Since address-
based protection is often not enabled in embedded processors, ROM can fulfill an
important role.

The second memory technology offers non-volatility but allows the memory
to be modified. Flash memory allows the embedded device to alter nonvolatile
memory after the system is manufactured, which can shorten product develop-
ment. Flash memory, described in on page 498 in Chapter 7, allows reading at al-
most DRAM speeds but writing flash is 10 to 100 times slower. In 2001, the
DRAM capacity per chip and the megabytes per dollar is about four to eight
times greater than flash memory.

Improving Memory Performance in a standard DRAM Chip

As Moore’s Law continues to supply more transistors and as the processor-mem-
ory gap increases pressure on memory performance, some of the ideas of the pri-
or section have made their way inside the DRAM chip. Generally the idea has
been for greater bandwidth, often at the cost of greater latency. This subsection
presents techniques that take advantage of the nature of DRAMs.

As mentioned earlier, a DRAM access is divided into row access and column
access. DRAMs must buffer a row of bits inside the DRAM for the column
access, and this row is usually the square root of the DRAM size—8 Kbits for 64
Mbits, 16 Kbits for 256 Mbits, and so on.

446 Chapter 5 Memory-Hierarchy Design

Although presented logically as a single monolithic array of memory bits, the
internal organization of DRAM actually consists of many memory modules. For
a variety of manufacturing reasons, these modules are usually 1 to 4 megabits.
Thus, if you were to examine a 256 Mbit DRAM under a microscope, you might
see 128 2-megabit memory arrays on the chip. This large number of arrays inter-
nally presents the opportunity to provide much higher bandwidth off chip.

To improve bandwidth, there have been a variety of evolutionary innovations
over time. The first was timing signals that allow repeated accesses to the row
buffer without another row access time, typically called fast page mode. Such a
buffer comes naturally, as each array will buffer 1024 to 2048 bits for each ac-
cess.

The second major change is that conventional DRAMs have an asynchronous
interface to the memory controller, and hence every transfer involves overhead to
synchronize with the controller. The solution was to add a clock signal to the
DRAM interface, so that the repeated transfers would not bear that overhead.
This optimization is called Synchronous DRAM, abbreviated SDRAM. SDRAMs
typically also have a programmable register to hold the number of bytes request-
ed, and hence can send many bytes over several cycles per request.

In 2001 the bus rates are 100 MHz to 150 MHz. SDRAM DIMMs of these
speeds are called PC100, PC133, and PC 150, based on the clock speed of the in-
dividual chip. Multiplying the eight-byte width of the DIMM times the clock
rate, the peak speed per memory module is 800 to 1200 MB/sec.

The third major DRAM innovation to increase bandwidth is to transfer data on
both the rising edge and falling edge of the DRAM clock signal, thereby dou-
bling the peak data rate. This optimization is called Double Data Rate, and abbre-
viated DDR. The bus speeds for these DRAMs are also 100 to 150 MHz, but
these DDR DIMMs are confusingly labeled by the peak DIMM bandwidth. The
name PC1600 comes from100 MHz × 2 × 8 bytes or 1600 Megabytes/second,
133 MHz leads to PC2100, 150 MHz yields PC2400, and so on.

In each of the three cases the advantage of such optimizations is that they add
a small amount of logic to exploit the high internal DRAM bandwidth, adding lit-
tle cost to the system while achieving a significant improvement in bandwidth.
Unlike traditional interleaved memories, there is no danger in using such a mode
as DRAM chips increase in capacity.

Improving Memory Performance via a new DRAM Interface: RAMBUS

Recently new breeds of DRAMs have been produced that further optimize the
interface between the DRAM and CPU. The company RAMBUS takes the stan-
dard DRAM core and provides a new interface, making a single chip act more
like a memory system than a memory component: each chip has interleaved
memory and a high speed interface. RAMBUS licenses its technology to compa-
nies that use its interface, both DRAM and microprocessor manufacturers.

5.9 Memory Technology 447

The first generation RAMBUS interface dropped RAS/CAS, replacing it with
a bus that allows other accesses over the bus between the sending of the address
and return of the data. It is typically called RDRAM. (Such a bus is called a
packet-switched bus or split-transaction bus, described in Chapters 7 and 8.)
This bus allows a single chip to act as a memory bank. A chip can return a vari-
able amount of data from a single request, and even perform its own refresh.
RDRAM offered a byte-wide interface, and was one of the first DRAMs to use a
clock signal, and it also transfers on both edges of its clock. Inside each chip
were four banks, each with their own row buffer. To run at its 300 Mhz clock,
the RAMBUS bus is limited to be no more than 4 inches long. Typically a mi-
croprocessor uses a single RAMBUS channel, so just one RDRAM is transfer-
ring at a time.

The second generation RAMBUS interface, called Direct RDRAM or
DRDRAM, offers up to 1.6 GBytes/second of bandwidth from a single DRAM.
Innovations in this interface include a separate row- and column-command buses
instead of the conventional multiplexing; an 18-bit data bus; expanding from 4 to
16 internal banks per RDRAM to reduce bank conflicts; increasing the number of
row buffers from 4 to 8; increasing the clock to 400 MHz clock; and a much more
sophisticated controller on chip. Because of the separation of data, row, and col-
umn buses, three transactions can be performed simultaneously.

RAMBUS helped set the new optimistic naming trend, calling the 350 MHz
part PC700, the 400 MHz part PC800, and so on. Since each chip is 2 bytes
wide, the peak chip bandwidth of PC700 is 1400 MB/second, PC800 is 1600
MB/second, and so on. RAMBUS chips are not sold in DIMMs but in “RIMMs”
which is similar in size but incompatible with DIMMs. RIMMs are designed to
have a single RAMBUS chip on the RIMM supply the memory bandwidth needs
of the computer, and are not interchangeable with DIMMs.

Comparing RAMBUS and DDR SDRAM

How does the RAMBUS interface compare in cost and performance when placed
in a system? Most main memory systems already use SDRAM to get more bits
per memory access, in the hope of reducing the CPU-DRAM performance gap.
Since the most computers use memory in DIMM packages, which are typically at
least 64-bits wide, the DIMM memory bandwidth is closer to what RAMBUS
provides than you might expect when just comparing DRAM chips.

The one note of caution is that performance of cache based systems are based
in part on latency to the first byte and in part on the bandwidth to deliver the rest
of the bytes in the block. Although these innovations help with the latter case,
none help with latency. Amdahl’s Law reminds us of the limits of accelerating
one piece of the problem while ignoring another part.

 In addition to performance, the new breed of DRAMs such as RDRAM and
DRDRAM have price a premium over traditional DRAMs to provide the greater

448 Chapter 5 Memory-Hierarchy Design

bandwidth since these chips are larger. The question over time is how much
more. In 2001 it is factor of two; Section 5.16 has a detailed price-performance
evaluation.

The marketplace will determine whether the more radical DRAMs such as
RAMBUS will become popular for main memory, or whether the price premium
restricts them to niche markets.

… a system has been devised to make the core drum combination appear to
the programmer as a single level store, the requisite transfers taking place
automatically.

Kilburn et al. [1962]

At any instant in time computers are running multiple processes, each with its
own address space. (Processes are described in the next section.) It would be too
expensive to dedicate a full-address-space worth of memory for each process, es-
pecially since many processes use only a small part of their address space. Hence,
there must be a means of sharing a smaller amount of physical memory among
many processes. One way to do this, virtual memory, divides physical memory
into blocks and allocates them to different processes. Inherent in such an ap-
proach must be a protection scheme that restricts a process to the blocks belong-
ing only to that process. Most forms of virtual memory also reduce the time to
start a program, since not all code and data need be in physical memory before a
program can begin.

Although protection provided by virtual memory is essential for current com-
puters, sharing is not the reason that virtual memory was invented. If a program
became too large for physical memory, it was the programmer’s job to make it fit.
Programmers divided programs into pieces, then identified the pieces that were
mutually exclusive, and loaded or unloaded these overlays under user program
control during execution. The programmer ensured that the program never tried
to access more physical main memory than was in the computer, and that the
proper overlay was loaded at the proper time. As one can well imagine, this re-
sponsibility eroded programmer productivity.

Virtual memory was invented to relieve programmers of this burden; it auto-
matically manages the two levels of the memory hierarchy represented by main
memory and secondary storage. Figure 5.31 shows the mapping of virtual memo-
ry to physical memory for a program with four pages.

In addition to sharing protected memory space and automatically managing
the memory hierarchy, virtual memory also simplifies loading the program for
execution. Called relocation, this mechanism allows the same program to run in
any location in physical memory. The program in Figure 5.31 can be placed any-

5.10 Virtual Memory

5.10 Virtual Memory 449

where in physical memory or disk just by changing the mapping between them.
(Prior to the popularity of virtual memory, processors would include a relocation
register just for that purpose.) An alternative to a hardware solution would be
software that changed all addresses in a program each time it was run.

Several general memory-hierarchy ideas from Chapter 1 about caches are analo-
gous to virtual memory, although many of the terms are different. Page or segment
is used for block, and page fault or address fault is used for miss. With virtual
memory, the CPU produces virtual addresses that are translated by a combination
of hardware and software to physical addresses, which access main memory. This
process is called memory mapping or address translation. Today, the two memory-
hierarchy levels controlled by virtual memory are DRAMs and magnetic disks.
Figure 5.32 shows a typical range of memory-hierarchy parameters for virtual
memory.

There are further differences between caches and virtual memory beyond
those quantitative ones mentioned in Figure 5.32:

n Replacement on cache misses is primarily controlled by hardware, while vir-
tual memory replacement is primarily controlled by the operating system. The
longer miss penalty means it’s more important to make a good decision, so the
operating system can be involved and spend take time deciding what to replace.

n The size of the processor address determines the size of virtual memory, but the
cache size is independent of the processor address size.

FIGURE 5.31 The logical program in its contiguous virtual address space is shown
on the left. It consists of four pages A, B, C, and D. The actual location of three of the blocks
is in physical main memory and the other is located on the disk.

0

4K

8K

12K

16K

20K

24K

28K

Physical
address:

Physical
main memory

Disk
D

0

4K

8K

12K

Virtual
address:

Virtual memory

A

B

C

D

C

A

B

450 Chapter 5 Memory-Hierarchy Design

n In addition to acting as the lower-level backing store for main memory in the
hierarchy, secondary storage is also used for the file system. In fact, the file sys-
tem occupies most of secondary storage. It is not normally in the address space.

Virtual memory also encompasses several related techniques. Virtual memory
systems can be categorized into two classes: those with fixed-size blocks, called
pages, and those with variable-size blocks, called segments. Pages are typically
fixed at 4096 to 65,536 bytes, while segment size varies. The largest segment
supported on any processor ranges from 216 bytes up to 232 bytes; the smallest
segment is 1 byte. Figure 5.33 shows how the two approaches might divide code
and data.

The decision to use paged virtual memory versus segmented virtual memory
affects the CPU. Paged addressing has a single fixed-size address divided into
page number and offset within a page, analogous to cache addressing. A single
address does not work for segmented addresses; the variable size of segments re-

Parameter First-level cache Virtual memory

Block (page) size 16-128 bytes 4096-65,536 bytes

Hit time 1-3 clock cycles 50-150 clock cycles

Miss penalty 8-150 clock cycles 1,000,000-10,000,000 clock cycles

 (Access time) (6-130 clock cycles) (800,000-8,000,000 clock cycles)

 (Transfer time) (2-20 clock cycles) (200,000-2,000,000 clock cycles)

Miss rate 0.1-10% 0.00001- 0.001%

Address mapping 25- 45 bit physical address
to 14- 20 bit cache address

32-64 bit virtual address to 25-45 bit
physical address

FIGURE 5.32 Typical ranges of parameters for caches and virtual memory. Virtual
memory parameters represent increases of 10 to 1,000,000 times over cache parameters.
Normally first level caches contain at most 1 megabyte of data while physical memory con-
tains 32 megabytes to 1 terabyte.

FIGURE 5.33 Example of how paging and segmentation divide a program.

Code Data

Paging

Segmentation

5.10 Virtual Memory 451

quires one word for a segment number and one word for an offset within a seg-
ment, for a total of two words. An unsegmented address space is simpler for the
compiler.

The pros and cons of these two approaches have been well documented in
operating systems textbooks; Figure 5.34 summarizes the arguments. Because of
the replacement problem (the third line of the figure), few computers today use
pure segmentation. Some computers use a hybrid approach, called paged
segments, in which a segment is an integral number of pages. This simplifies re-
placement because memory need not be contiguous, and the full segments need
not be in main memory. A more recent hybrid is for a computer to offer multiple
page sizes, with the larger sizes being powers of two times the smallest page size.
The IBM 405CR embedded processor, for example, allows 1 KB, 4 KB (22 × 1
KB), 16 KB (24 × 1 KB), 64 KB (26 × 1 KB), 256 KB (28 × 1 KB), 1024 KB (210

× 1 KB), and 4096 KB (212 × 1 KB) to act as a single page.

We are now ready to answer the four memory-hierarchy questions for virtual
memory.

Q1: Where can a block be placed in main memory?
The miss penalty for virtual memory involves access to a rotating magnetic stor-
age device and is therefore quite high. Given the choice of lower miss rates or a
simpler placement algorithm, operating systems designers normally pick lower
miss rates because of the exorbitant miss penalty. Thus, operating systems allow
blocks to be placed anywhere in main memory. According to the terminology in
Figure 5.4 (page 382), this strategy would be labeled fully associative.

Page Segment

Words per address One Two (segment and offset)

Programmer visible? Invisible to application programmer May be visible to application programmer

Replacing a block Trivial (all blocks are the same size) Hard (must find contiguous, variable-size,
unused portion of main memory)

Memory use
inefficiency

Internal fragmentation (unused portion
of page)

External fragmentation (unused pieces of main
memory)

Efficient disk traffic Yes (adjust page size to balance access
time and transfer time)

Not always (small segments may transfer just a
few bytes)

FIGURE 5.34 Paging versus segmentation. Both can waste memory, depending on the block size and how well the seg-
ments fit together in main memory. Programming languages with unrestricted pointers require both the segment and the
address to be passed. A hybrid approach, called paged segments, shoots for the best of both worlds: segments are com-
posed of pages, so replacing a block is easy, yet a segment may be treated as a logical unit.

452 Chapter 5 Memory-Hierarchy Design

Q2: How is a block found if it is in main memory?
Both paging and segmentation rely on a data structure that is indexed by the page
or segment number. This data structure contains the physical address of the
block. For segmentation, the offset is added to the segment’s physical address to
obtain the final physical address. For paging, the offset is simply concatenated to
this physical page address (see Figure 5.35).

This data structure, containing the physical page addresses, usually takes the
form of a page table. Indexed by the virtual page number, the size of the table is
the number of pages in the virtual address space. Given a 32-bit virtual address,
4-KB pages, and 4 bytes per page table entry, the size of the page table would be
(232/212) × 22 = 222 or 4 MB.

To reduce the size of this data structure, some computers apply a hashing
function to the virtual address. The hash allows the data structure to be the length
of the number of physical pages in main memory. This number could be much
smaller than the number of virtual pages. Such a structure is called an inverted
page table. Using the example above, a 512-MB physical memory would only
need 1 MB (8 × 512 MB/4 KB) for an inverted page table; the extra 4 bytes per
page table entry is for the virtual address. The HP/Intel IA-64 covers both bases
by offering both traditional pages tables and inverted page tables, leaving the
choice of mechanism to the operating system programmer.

FIGURE 5.35 The mapping of a virtual address to a physical address via a page table.

Main
memory

Page
table

Virtual address

Virtual page number Page offset

Physical address

5.10 Virtual Memory 453

To reduce address translation time, computers use a cache dedicated to these
address translations, called a translation look-aside buffer, or simply translation
buffer. They are described in more detail shortly.

Q3: Which block should be replaced on a virtual memory miss?
As mentioned above, the overriding operating system guideline is minimizing
page faults. Consistent with this guideline, almost all operating systems try to
replace the least-recently used (LRU) block, because if the past predicts the fu-
ture, that is the one less likely to be needed.

To help the operating system estimate LRU, many processors provide a use bit
or reference bit, which is logically set whenever a page is accessed. (To reduce
work, it is actually set only on a translation buffer miss, which is described short-
ly.) The operating system periodically clears the use bits and later records them
so it can determine which pages were touched during a particular time period. By
keeping track in this way, the operating system can select a page that is among
the least-recently referenced.

Q4: What happens on a write?
The level below main memory contains rotating magnetic disks that take millions
of clock cycles to access. Because of the great discrepancy in access time, no one
has yet built a virtual memory operating system that writes through main memory
to disk on every store by the CPU. (This remark should not be interpreted as an
opportunity to become famous by being the first to build one!) Thus, the write
strategy is always write back.

Since the cost of an unnecessary access to the next-lower level is so high, vir-
tual memory systems usually include a dirty bit. It allows blocks to be written to
disk only if they have been altered since being read from the disk.

Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory, and some-
times paged themselves. Paging means that every memory access logically takes
at least twice as long, with one memory access to obtain the physical address and
a second access to get the data. This cost is far too dear.

One remedy is to remember the last translation, so that the mapping process is
skipped if the current address refers to the same page as the last one. A more gen-
eral solution is to again rely on the principle of locality; if the accesses have lo-
cality, then the address translations for the accesses must also have locality. By
keeping these address translations in a special cache, a memory access rarely re-
quires a second access to translate the data. This special address translation cache
is referred to as a translation look-aside buffer or TLB, also called a translation
buffer or TB.

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page frame number, protection
field, valid bit, and usually a use bit and dirty bit. To change the physical page

454 Chapter 5 Memory-Hierarchy Design

frame number or protection of an entry in the page table, the operating system
must make sure the old entry is not in the TLB; otherwise, the system won’t be-
have properly. Note that this dirty bit means the corresponding page is dirty, not
that the address translation in the TLB is dirty nor that a particular block in the
data cache is dirty. The operating system resets these bits by changing the value
in the page table and then invalidating the corresponding TLB entry. When the
entry is reloaded from the page table, the TLB gets an accurate copy of the bits.

Figure 5.36 shows the Alpha 21264 data TLB organization, with each step of a
translation labeled. The TLB uses fully associative placement; thus, the transla-
tion begins (steps 1 and 2) by sending the virtual address to all tags. Of course,
the tag must be marked valid to allow a match. At the same time, the type of
memory access is checked for a violation (also in step 2) against protection infor-
mation in the TLB.

To reduce TLB misses due to context switches, each entry has an 8-bit Ad-
dress Space Number or ASN, which plays the same role as a Process ID number

FIGURE 5.36 Operation of the Alpha 21264 data TLB during address translation. The
four steps of a TLB hit are shown as circled numbers. The Address Space Number (ASN) is
used like a Process ID for virtual caches, in that the TLB is not flushed on a context switch,
only when ASNs are recycled. The next fields of an entry are protection permissions (Prot)
and the valid bit (V). Note that there is no specific reference, use bit, or dirty bit. Hence, a
page replacement algorithm such as LRU must rely on disabling reads and writes occasion-
ally to record reads and writes to pages to measure usage and whether or not pages are dirty.
The advantage of these omissions is that the TLB need not be written during normal memory
accesses nor during a TLB miss. Alpha 21264 has an option of either 44-bit or 41-bit physical
addresses. This TLB has 128 entries.

Virtual page
number
<35>

Address
Space Number

<8>

Page
offset
<13>

ASN Physical address
<8> <4> <31>

Prot Tag
<35>

V
<1>

<31 or 28 >

<13>
44- or
41-bit
physical
address

43

21

(Low-order 13 bits
 of address)

(High-order 31/28 bits of address)

128:1 Mux

5.10 Virtual Memory 455

mentioned in Figure 5.25 on page 432. If the context switching returns to the pro-
cess with the same ASN, it can still match the TLB. Thus, the process ASN and
the PTE ASN must also match for a valid tag.

For reasons similar to those in the cache case, there is no need to include the
13 bits of the Alpha 21264 page offset in the TLB. The matching tag sends the
corresponding physical address through effectively a 128:1 multiplexor (step 3).
The page offset is then combined with the physical page frame to form a full
physical address (step 4). The address size is 44 or 41 bits depending on a physi-
cal address mode bit (see section 5.11).

Address translation can easily be on the critical path determining the clock
cycle of the processor, so the 21264 uses a virtually addressed instruction cache,
thus the TLB is only accessed during an instruction cache miss.

Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the page is a
question of balancing forces that favor a larger page size versus those favoring a
smaller size. The following favor a larger size:

n The size of the page table is inversely proportional to the page size; memory
(or other resources used for the memory map) can therefore be saved by mak-
ing the pages bigger.

n As mentioned on page 433 in section 5.7, a larger page size can allow larger
caches with fast cache hit times.

n Transferring larger pages to or from secondary storage, possibly over a net-
work, is more efficient than transferring smaller pages.

n The number of TLB entries are restricted, so a larger page size means that more
memory can be mapped efficiently, thereby reducing the number of TLB misses.

It is for this final reason that recent microprocessors have decided to support mul-
tiple page sizes; for some programs, TLB misses can be as significant on CPI as
the cache misses.

The main motivation for a smaller page size is conserving storage. A small
page size will result in less wasted storage when a contiguous region of virtual
memory is not equal in size to a multiple of the page size. The term for this un-
used memory in a page is internal fragmentation. Assuming that each process has
three primary segments (text, heap, and stack), the average wasted storage per
process will be 1.5 times the page size. This amount is negligible for computers
with hundreds of megabytes of memory and page sizes of 4 KB to 8 KB. Of
course, when the page sizes become very large (more than 32 KB), lots of storage
(both main and secondary) may be wasted, as well as I/O bandwidth. A final con-
cern is process start-up time; many processes are small, so a large page size
would lengthen the time to invoke a process

456 Chapter 5 Memory-Hierarchy Design

Summary of Virtual Memory and Caches

With virtual memory, TLBs, first level caches, and second levels caches all map-
ping portions of the virtual and physical address space, it can get confusing what
bits go where. Figure 5.37 gives a hypothetical example going from a 64-bit vir-
tual address to a 41 bit physical address with two levels of cache. This L1 cache
is virtually indexed, physically tagged since both the cache size and the page size
are 8 KB. The L2 cache is 4 MB. The block size for both is 64 bytes.

FIGURE 5.37 The overall picture of an hypothetical memory hierarchy going from virtual address to L2 cache ac-
cess. The page size is 8 KB. The TLB is direct mapped with 256 entries. The L1 cache is a direct-mapped 8 KB and the L2
cache is a direct-mapped 4 MB. Both using 64 byte blocks. The virtual address is 64 bits and the physical address is 41 bits.
The primary difference between this simple figure and a real cache, as in Figure 5.43 on page 472 , is replication of pieces
of this figure.

Virtual Address <64>

Physical Address <41>

Virtual Page Number <51>

L1 Tag compare Address <28>

L2 Tag compare Address <19> L2 Cache Index <16> Block Offet <6>

Page Offet <13>

L1 Cache Tag <43> L1 Data <256>TLB Tag <43> TLB Data <28>

L1 Cache Index <7> Block Offet <6>TLB Tag compare Address <43> TLB Index <8>

L2 Cache Tag <19> L2 Data <256>

=? =?

=?

To CPU

To CPU

To CPU

To L1 Cache or CPU

5.11 Protection and Examples of Virtual Memory 457

First, the 64-bit virtual address is logically divided into a virtual page number
and page offset. The former is sent to the TLB to be translated into a physical ad-
dress, and the latter is sent to the L1 cache act as an index. If the TLB match is a
hit, then the physical page number is sent to the L1 cache tag to check for a
match. If it matches, its a L1 cache hit. The block offset then selects the word for
the CPU.

If the L1 cache check results in a miss, the physical address is then used to try
the L2 cache. The middle portion of the physical address is used as an index to
the 4 MB L2 cache. The resulting L2 Cache Tag is compared to the upper part of
the physical address to check for a match. If it matches, we have a L2 cache hit,
and the data is sent to the CPU, which uses the block offset to select the desired
word. On an L2 miss, the physical address is then used to get the block from
memory.

Although this is a simple example, the major difference between this drawing
and a real cache is replication. First, there is only one L1 cache. When there are
two L1 caches, the top half of the diagram is duplicated. Note this would lead to
two TLBs, which is typical. Hence, one cache and TLB is for instructions, driven
from the PC, and one cache and TLB is for data, driven from the effective ad-
dress. The second simplification is that all the caches and TLBs are direct
mapped. If any were N-way set associative, then we would replicate each set of
tag memory, comparators, and data memory N times and connect data memories
with a N:1 multiplexor to select a hit. Of course, if the total cache size remained
the same, the cache index would also shrink by N bits according to the formula in
Figure 5.9 on page 397 .

The invention of multiprogramming, where a computer would be shared by
several programs running concurrently, led to new demands for protection and
sharing among programs. These demands are closely tied to virtual memory in
computers today, and so we cover the topic here along with two examples of vir-
tual memory.

Multiprogramming leads to the concept of a process. Metaphorically, a pro-
cess is a program’s breathing air and living space—that is, a running program
plus any state needed to continue running it. Time-sharing is a variation of multi-
programming that shares the CPU and memory with several interactive users at
the same time, giving the illusion that all users have their own computers. Thus,
at any instant it must be possible to switch from one process to another. This ex-
change is called a process switch or context switch.

A process must operate correctly whether it executes continuously from start
to finish, or is interrupted repeatedly and switched with other processes. The re-
sponsibility for maintaining correct process behavior is shared by designers of

5.11 Protection and Examples of Virtual Memory

458 Chapter 5 Memory-Hierarchy Design

the computer and the operating system. The computer designer must ensure that
the CPU portion of the process state can be saved and restored. The operating
system designer must guarantee that processes do not interfere with each others’
computations.

The safest way to protect the state of one process from another would be to
copy the current information to disk. However, a process switch would then take
seconds—far too long for a time-sharing environment.

This problem is solved by operating systems partitioning main memory so that
several different processes have their state in memory at the same time. This divi-
sion means that the operating system designer needs help from the computer de-
signer to provide protection so that one process cannot modify another. Besides
protection, the computers also provide for sharing of code and data between pro-
cesses, to allow communication between processes or to save memory by reduc-
ing the number of copies of identical information.

Protecting Processes

The simplest protection mechanism is a pair of registers that checks every ad-
dress to be sure that it falls between the two limits, traditionally called base and
bound. An address is valid if

Base ≤ Address ≤ Bound

In some systems, the address is considered an unsigned number that is always
added to the base, so the limit test is just

(Base + Address) ≤ Bound

If user processes are allowed to change the base and bounds registers, then
users can’t be protected from each other. The operating system, however, must be
able to change the registers so that it can switch processes. Hence, the computer
designer has three more responsibilities in helping the operating system designer
protect processes from each other:

1. Provide at least two modes, indicating whether the running process is a user
process or an operating system process. This latter process is sometimes called
a kernel process, a supervisor process, or an executive process.

2. Provide a portion of the CPU state that a user process can use but not write.
This state includes the base/bound registers, a user/supervisor mode bit(s), and
the exception enable/disable bit. Users are prevented from writing this state
because the operating system cannot control user processes if users can change
the address range checks, give themselves supervisor privileges, or disable
exceptions.

3. Provide mechanisms whereby the CPU can go from user mode to supervisor

5.11 Protection and Examples of Virtual Memory 459

mode and vice versa. The first direction is typically accomplished by a system
call, implemented as a special instruction that transfers control to a dedicated
location in supervisor code space. The PC is saved from the point of the sys-
tem call, and the CPU is placed in supervisor mode. The return to user mode
is like a subroutine return that restores the previous user/supervisor mode.

Base and bound constitute the minimum protection system, while virtual
memory offers a more fine-grained alternative to this simple model. As we have
seen, the CPU address must be mapped from virtual to physical address. This
mapping provides the opportunity for the hardware to check further for errors in
the program or to protect processes from each other. The simplest way of doing
this is to add permission flags to each page or segment. For example, since few
programs today intentionally modify their own code, an operating system can de-
tect accidental writes to code by offering read-only protection to pages. This
page-level protection can be extended by adding user/kernel protection to prevent
a user program from trying to access pages that belong to the kernel. As long as
the CPU provides a read/write signal and a user/kernel signal, it is easy for the
address translation hardware to detect stray memory accesses before they can do
damage. Such reckless behavior simply interrupts the CPU and invokes the oper-
ating system.

Processes are thus protected from one another by having their own page
tables, each pointing to distinct pages of memory. Obviously, user programs must
be prevented from modifying their page tables or protection would be circum-
vented.

Protection can be escalated, depending on the apprehension of the computer
designer or the purchaser. Rings added to the CPU protection structure expand
memory access protection from two levels (user and kernel) to many more. Like
a military classification system of top secret, secret, confidential, and unclassi-
fied, concentric rings of security levels allow the most trusted to access anything,
the second most trusted to access everything except the innermost level, and so
on. The “civilian” programs are the least trusted and, hence, have the most limit-
ed range of accesses. There may also be restrictions on what pieces of memory
can contain code—execute protection—and even on the entrance point between
the levels. The Intel Pentium protection structure, which uses rings, is described
later in this section. It is not clear whether rings are an improvement in practice
over the simple system of user and kernel modes.

As the designer’s apprehension escalates to trepidation, these simple rings may
not suffice. Restricting the freedom given a program in the inner sanctum requires
a new classification system. Instead of a military model, the analogy of this system
is to keys and locks: A program can’t unlock access to the data unless it has the
key. For these keys, or capabilities, to be useful, the hardware and operating sys-
tem must be able to explicitly pass them from one program to another without

460 Chapter 5 Memory-Hierarchy Design

allowing a program itself to forge them. Such checking requires a great deal of
hardware support if time for checking keys is to be kept low.

A Paged Virtual Memory Example:
The Alpha Memory Management and the 21264 TLB

The Alpha architecture uses a combination of segmentation and paging, provid-
ing protection while minimizing page table size. With 48-bit virtual addresses,
the 64-bit address space is first divided into three segments: seg0 (bits 63 - 47 =
0...00), kseg (bits 63 - 46 = 0...10), and seg1 (bits 63 to 46 = 1...11). kseg is re-
served for the operating system kernel, has uniform protection for the whole
space, and does not use memory management. User processes use seg0, which is
mapped into pages with individual protection. Figure 5.38 shows the layout of
seg0 and seg1. seg0 grows from address 0 upward, while seg1 grows downward to
0. Many systems today use some such combination of predivided segments and
paging. This approach provides many advantages: segmentation divides the address
space and conserves page table space, while paging provides virtual memory, relo-
cation, and protection.

Even with this division, the size of page tables for the 64-bit address space is
alarming. Hence, the Alpha uses a three-level hierarchical page table to map the
address space to keep the size reasonable. Figure 5.39 shows address translation
in the Alpha. The addresses for each of these page tables come from three “level”
fields, labeled level1, level2, and level3. Address translation starts with adding
the level1 address field to the page table base register and then reading memory
from this location to get the base of the second-level page table. The level2 ad-
dress field is in turn added to this newly fetched address, and memory is accessed
again to determine the base of the third page table. The level3 address field is
added to this base address, and memory is read using this sum to (finally) get the
physical address of the page being referenced. This address is concatenated with
the page offset to get the full physical address. Each page table in the Alpha ar-

FIGURE 5.38 The organization of seg0 and seg1 in the Alpha. User processes live in
seg0, while seg1 is used for portions of the page tables. seg0 includes a downward growing
stack, text and data, and an upward growing heap.

seg0
Address space

seg1
Address space

5.11 Protection and Examples of Virtual Memory 461

chitecture is constrained to fit within a single page. The first three levels (0, 1, and
2) use physical addresses that need no further translation, but Level 3 is mapped
virtually. These normally hit the TLB, but if not, the table is accessed a second
time with physical addresses.

FIGURE 5.39 The mapping of an Alpha virtual address. This figure/description shows
the 21264's virtual memory implementation with 3 page table levels, which supports an effec-
tive physical address size of 41 bits (allowing access up to 2^40 bytes of memory and 2^40
I/O addresses). Each page table is exactly one page long, so each level field is n bits wide
where 2n = page size/8. The Alpha architecture document allows the page size to grow from
8 KB in the current implementations to 16 KB, 32 KB, or 64 KB in the future. The virtual ad-
dress for each page size grows from the original 43 bits to 47, 51, or 55 bits and the maximum
physical address size grows from the current 41 bits to 45, 47, or 48 bits. The 21264 also can
support a 4-level page table structure (with a level 0 page table field in virtual address bits 43-
52) that can allow full access to its 44-bit physical address and 48-bit virtual address while
keeping page sizes to 8 KB. That mode is not depicted here. In addition, the size depends on
the operating system. VMS does not require KSEG like UNIX does, so VMS could reach the
entire 44-bit physical address space with 3-level page tables. The 41-bit physical address re-
striction comes from the fact that some operating systems need the KSEG section.

Page offset

Virtual address

Page table
base register +

seg0/seg1
Selector

Physical address

Page offsetPhysical page-frame number

Main memory

L1 page table

L2 page table

+ L3 page table

+

Level1 Level2 Level3
000 … 0 or
111 … 1

Page table entry

Page table entry

Page table entry

462 Chapter 5 Memory-Hierarchy Design

The Alpha uses a 64-bit page table entry (PTE) in each of these page tables.
The first 32 bits contain the physical page frame number, and the other half
includes the following five protection fields:

n Valid—Says that the page frame number is valid for hardware translation

n User read enable—Allows user programs to read data within this page

n Kernel read enable—Allows the kernel to read data within this page

n User write enable—Allows user programs to write data within this page

n Kernel write enable—Allows the kernel to write data within this page

In addition, the PTE has fields reserved for systems software to use as it pleases.
Since the Alpha goes through three levels of tables on a TLB miss, there are three
potential places to check protection restrictions. The Alpha obeys only the bot-
tom-level PTE, checking the others only to be sure the valid bit is set.

Since the PTEs are 8 bytes long, the page tables are exactly one page long, and
the Alpha 21264 has 8-KB pages, each page table has 1024 PTEs. Each of the
three level fields are 10 bits long and the page offset is 13 bits. This derivation
leaves 64 – (3 × 10 + 13) or 21 bits to be defined. If this is a seg0 address, the
most-significant bit of the level 1 field is a 0, and for seg1 the two most-signifi-
cant bits of the level 1 field are 11two. Alpha requires all bits to the left of the
level1 field to be identical. For seg0 these 21 bits are all zeros and for seg1 they
are all ones. This restriction means the 21264 virtual addresses are really much
shorter than the full 64 bits found in registers.

The maximum virtual address and physical address is then tied to the page
size. The original architecture document allows for the Alpha to expand the mini-
mum page size from 8 KB up to 64 KB, thereby increasing the virtual address to
3 × 13 + 16 or 55 bits and the maximum physical address to 32 + 16 or 48 bits. In
fact, the upcoming 21364 supports both. It will be interesting to see whether or
not operating systems accommodate such expansion plans.

Although we have explained translation of legal addresses, what prevents the
user from creating illegal address translations and getting into mischief? The
page tables themselves are protected from being written by user programs. Thus,
the user can try any virtual address, but by controlling the page table entries the
operating system controls what physical memory is accessed. Sharing of memory
between processes is accomplished by having a page table entry in each address
space point to the same physical memory page.

The Alpha 21264 employs two TLBs to reduce address translation time, one for
instruction accesses and another for data accesses. Figure 5.40 shows the impor-
tant parameters. The Alpha allows the operating system to tell the TLB that con-
tiguous sequences of pages can act as one: the options are 8, 64, and 512 times
the minimum page size. Thus, the variable page size of a PTE mapping makes the
match more challenging, as the size of the space being mapped in the PTE also
must be checked to determine the match. Figure 5.36 above describes the data
TLB.

5.11 Protection and Examples of Virtual Memory 463

Memory management in the Alpha 21264 is typical of most desktop or server
computers today, relying on page-level address translation and correct operation
of the operating system to provide safety to multiple processes sharing the com-
puter. In the next section we see a protection scheme for individuals who want to
trust the operating system as little as possible.

A Segmented Virtual Memory Example:
Protection in the Intel Pentium

The second system is the most dangerous system a man ever designs… . The
general tendency is to over-design the second system, using all the ideas and frills
that were cautiously sidetracked on the first one.

F. P. Brooks, Jr., The Mythical Man-Month (1975)

The original 8086 used segments for addressing, yet it provided nothing for vir-
tual memory or for protection. Segments had base registers but no bound regis-
ters and no access checks, and before a segment register could be loaded the
corresponding segment had to be in physical memory. Intel’s dedication to virtual
memory and protection is evident in the successors to the 8086 (today called IA-
32), with a few fields extended to support larger addresses. This protection
scheme is elaborate, with many details carefully designed to try to avoid security
loopholes. The next few pages highlight a few of the Intel safeguards; if you find
the reading difficult, imagine the difficulty of implementing them!

The first enhancement is to double the traditional two-level protection model:
the Pentium has four levels of protection. The innermost level (0) corresponds to
Alpha kernel mode and the outermost level (3) corresponds to Alpha user mode.
The IA-32 has separate stacks for each level to avoid security breaches between
the levels. There are also data structures analogous to Alpha page tables that con-

Parameter Description

Block size 1 PTE (8 bytes)

Hit time 1 clock cycle

Miss penalty
(average)

20 clock cycles

TLB size Same for Instruction and Data TLBs: 128 PTEs per TLB,
each of which can map 1, 8, 64, or 512 pages

Block selection Round robin

Write strategy (Not applicable)

Block placement Fully associative

FIGURE 5.40 Memory-hierarchy parameters of the Alpha 21264 TLB.

464 Chapter 5 Memory-Hierarchy Design

tain the physical addresses for segments, as well as a list of checks to be made on
translated addresses.

The Intel designers did not stop there. The IA-32 divides the address space, al-
lowing both the operating system and the user access to the full space. The IA-32
user can call an operating system routine in this space and even pass parameters
to it while retaining full protection. This safe call is not a trivial action, since the
stack for the operating system is different from the user’s stack. Moreover, the
IA-32 allows the operating system to maintain the protection level of the called
routine for the parameters that are passed to it. This potential loophole in protec-
tion is prevented by not allowing the user process to ask the operating system to
access something indirectly that it would not have been able to access itself.
(Such security loopholes are called Trojan horses.)

The Intel designers were guided by the principle of trusting the operating sys-
tem as little as possible, while supporting sharing and protection. As an example
of the use of such protected sharing, suppose a payroll program writes checks and
also updates the year-to-date information on total salary and benefits payments.
Thus, we want to give the program the ability to read the salary and year-to-date
information, and modify the year-to-date information but not the salary. We shall
see the mechanism to support such features shortly. In the rest of this subsection,
we will look at the big picture of the IA-32 protection and examine its motiva-
tion.

Adding Bounds Checking and Memory Mapping
The first step in enhancing the Intel processor was getting the segmented address-
ing to check bounds as well as supply a base. Rather than a base address, as in the
8086, segment registers in the IA-32 contain an index to a virtual memory data
structure called a descriptor table. Descriptor tables play the role of page tables
in the Alpha. On the IA-32 the equivalent of a page table entry is a segment
descriptor. It contains fields found in PTEs:

n A present bit—equivalent to the PTE valid bit, used to indicate this is a valid
translation

n A base field—equivalent to a page frame address, containing the physical
address of the first byte of the segment

n An access bit—like the reference bit or use bit in some architectures that is
helpful for replacement algorithms

n An attributes field—specifies the valid operations and protection levels for
operations that use this segment

There is also a limit field, not found in paged systems, which establishes the
upper bound of valid offsets for this segment. Figure 5.41 shows examples of IA-
32 segment descriptors.

5.11 Protection and Examples of Virtual Memory 465

IA-32 provides an optional paging system in addition to this segmented address-
ing. The upper portion of the 32-bit address selects the segment descriptor and the
middle portion is an index into the page table selected by the descriptor. We de-
scribe below the protection system that does not rely on paging.

Adding Sharing and Protection
To provide for protected sharing, half of the address space is shared by all pro-
cesses and half is unique to each process, called global address space and local
address space, respectively. Each half is given a descriptor table with the appro-
priate name. A descriptor pointing to a shared segment is placed in the global

FIGURE 5.41 The IA-32 segment descriptors are distinguished by bits in the at-
tributes field. Base, limit, present, readable, and writable are all self-explanatory. D gives
the default addressing size of the instructions: 16 bits or 32 bits. G gives the granularity of the
segment limit: 0 means in bytes and 1 means in 4-KB pages. G is set to 1 when paging is
turned on to set the size of the page tables. DPL means descriptor privilege level—this is
checked against the code privilege level to see if the access will be allowed. Conforming says
the code takes on the privilege level of the code being called rather than the privilege level of
the caller; it is used for library routines. The expand-down field flips the check to let the base
field be the high-water mark and the limit field be the low-water mark. As one might expect,
this is used for stack segments that grow down. Word count controls the number of words
copied from the current stack to the new stack on a call gate. The other two fields of the call
gate descriptor, destination selector and destination offset, select the descriptor of the desti-
nation of the call and the offset into it, respectively. There are many more than these three
segment descriptors in the IA-32 protection model.

Attributes Base Limit

8 bits 4 bits 32 bits 24 bits

Present

Code segment

DPL 11 Conforming Readable Accessed

Present

Data segment

DPL 10 Expand down Writable Accessed

Attributes Destination selector Destination offset

8 bits 16 bits 16 bits

Word
count

8 bits

Present

Call gate

DPL 0 00100

GD

466 Chapter 5 Memory-Hierarchy Design

descriptor table, while a descriptor for a private segment is placed in the local
descriptor table.

A program loads a IA-32 segment register with an index to the table and a bit
saying which table it desires. The operation is checked according to the attributes
in the descriptor, the physical address being formed by adding the offset in the
CPU to the base in the descriptor, provided the offset is less than the limit field.
Every segment descriptor has a separate 2-bit field to give the legal access level
of this segment. A violation occurs only if the program tries to use a segment
with a lower protection level in the segment descriptor.

We can now show how to invoke the payroll program mentioned above to up-
date the year-to-date information without allowing it to update salaries. The pro-
gram could be given a descriptor to the information that has the writable field
clear, meaning it can read but not write the data. A trusted program can then be
supplied that will only write the year-to-date information. It is given a descriptor
with the writable field set (Figure 5.41). The payroll program invokes the trusted
code using a code segment descriptor with the conforming field set. This setting
means the called program takes on the privilege level of the code being called
rather than the privilege level of the caller. Hence, the payroll program can read
the salaries and call a trusted program to update the year-to-date totals, yet the
payroll program cannot modify the salaries. If a Trojan horse exists in this sys-
tem, to be effective it must be located in the trusted code whose only job is to up-
date the year-to-date information. The argument for this style of protection is that
limiting the scope of the vulnerability enhances security.

Adding Safe Calls from User to OS Gates and Inheriting Protection Level for
Parameters
Allowing the user to jump into the operating system is a bold step. How, then, can
a hardware designer increase the chances of a safe system without trusting the
operating system or any other piece of code? The IA-32 approach is to restrict
where the user can enter a piece of code, to safely place parameters on the proper
stack, and to make sure the user parameters don’t get the protection level of the
called code.

To restrict entry into others’ code, the IA-32 provides a special segment
descriptor, or call gate, identified by a bit in the attributes field. Unlike other de-
scriptors, call gates are full physical addresses of an object in memory; the offset
supplied by the CPU is ignored. As stated above, their purpose is to prevent the
user from randomly jumping anywhere into a protected or more-privileged code
segment. In our programming example, this means the only place the payroll pro-
gram can invoke the trusted code is at the proper boundary. This restriction is
needed to make conforming segments work as intended.

What happens if caller and callee are “mutually suspicious,” so that neither
trusts the other? The solution is found in the word count field in the bottom de-
scriptor in Figure 5.41. When a call instruction invokes a call gate descriptor, the
descriptor copies the number of words specified in the descriptor from the local

5.12 Crosscutting Issues in the Design of Memory Hierarchies 467

stack onto the stack corresponding to the level of this segment. This copying al-
lows the user to pass parameters by first pushing them onto the local stack. The
hardware then safely transfers them onto the correct stack. A return from a call
gate will pop the parameters off both stacks and copy any return values to the
proper stack. Note that this model is incompatible with the current practice of
passing parameters in registers.

This scheme still leaves open the potential loophole of having the operating
system use the user’s address, passed as parameters, with the operating system’s
security level, instead of with the user’s level. The IA-32 solves this problem by
dedicating 2 bits in every CPU segment register to the requested protection level.
When an operating system routine is invoked, it can execute an instruction that
sets this 2-bit field in all address parameters with the protection level of the user
that called the routine. Thus, when these address parameters are loaded into the
segment registers, they will set the requested protection level to the proper value.
The IA-32 hardware then uses the requested protection level to prevent any fool-
ishness: No segment can be accessed from the system routine using those param-
eters if it has a more-privileged protection level than requested.

Summary: Protection on the Alpha versus the IA-32

If the IA-32 protection model looks harder to build than the Alpha model, that’s
because it is. This effort must be especially frustrating for the IA-32 engineers,
since few customers use the elaborate protection mechanism. In addition, the fact
that the protection model is a mismatch for the simple paging protection of
UNIX-like systems means it will be used only by someone writing an operating
system especially for this computer.

In the last edition we wondered whether the popularity of the Internet would
lead to demands for increased support for security, and hence put this elaborate
protection model to good use. Despite widely documented security breaches and
the ubiquity of this architecture, no one has proposed a new operating system to
leverage the 80x86 protection features.

This section describes four topics discussed in other chapters that are fundamen-
tal to memory-hierarchy design.

Superscalar CPU and Number of Ports to the Cache

One complexity of the advanced designs of Chapters 3 and 4 is that multiple in-
structions can be issued within a single clock cycle. Clearly, if there is not suffi-
cient peak bandwidth from the cache to match the peak demands of the
instructions, there is little benefit to designing such parallelism in the processor.

5.12 Crosscutting Issues in the Design of
Memory Hierarchies

468 Chapter 5 Memory-Hierarchy Design

Some processors increase complexity of instruction fetch by allowing instruc-
tions to be issued to be found on any boundary instead of, say, a multiple of four
words. As mentioned above, similar reasoning applies to CPUs that want to con-
tinue executing instructions on a cache miss: clearly the memory hierarchy must
also be nonblocking or the CPU cannot benefit.

For example, the UltraSPARC III fetches up to 4 instructions per clock cycle,
and executes up to 4, with up to 2 being loads or stores. Hence, the instruction
cache must deliver 128 bits per clock cycle and the data cache must support two
64-bit accesses per clock cycle.

Speculative Execution and the Memory System

Inherent in CPUs that support speculative execution or conditional instructions is
the possibility of generating invalid addresses that would not occur without spec-
ulative execution. Not only would this be incorrect behavior if exceptions were
taken, the benefits of speculative execution would be swamped by false exception
overhead. Hence, the memory system must identify speculatively executed in-
structions and conditionally executed instructions and suppress the correspond-
ing exception.

By similar reasoning, we cannot allow such instructions to cause the cache to
stall on a miss, for again unnecessary stalls could overwhelm the benefits of
speculation. Hence, these CPUs must be matched with nonblocking caches (see
page 421).

In reality, the penalty of the an L2 miss is so large that compilers normally
only speculate on L1 misses. Figure 5.23 on page 423 shows that for some well-
behaved scientific programs the compiler can sustain multiple outstanding L2
misses (“miss under miss”) so as to effectively cut the L2 miss penalty. Once
again, for this to work the memory system behind the cache must match the de-
sires of the compiler in number of simultaneous memory accesses.

Combining the Instruction Cache with Instruction Fetch and Decode
Mechanisms

With Moore’s Law continuing to offer more transistors and increasing demands
for instruction level parallelism and clock rate, increasingly the instruction cache
and first part of instruction execution are merging (see Chapter 3).

The leading example is the Netburst microarchitecture of the Pentium 4 and
its successors. Not only does it use a trace cache (see page 434), which combines
branch prediction with instruction fetch, it stores the internal RISC operations
(see Chapter 3) in the trace cache. Hence, cache hits save 5 of 25 pipeline stages
for decoding and translation. The downside of caching decoded instructions is
impact on die size. It appears on the die that the 12000 RISC operations in the
trace cache take equivalent of 96 KB of SRAM, which suggests that the RISC op-
erations are about 64-bits long. 80x86 instructions would surely be two to three
times more efficient.

5.12 Crosscutting Issues in the Design of Memory Hierarchies 469

Embedded computers also have bigger instructions in the cache, but for anoth-
er reason. Given the importance of code size for such applications, several keep a
compressed version of the instruction in main memory and then expand to the
full size in the instruction cache (see page 130 in Chapter 2.)

Embedded Computer Caches and Real Time Performance

As mentioned before, embedded computers often are placed in real time environ-
ments where a set of tasks must be completed every time period. In such situa-
tions performance variability is of more concern than average case performance.
Since caches were invented to improve average case performance at the cost of
greater variability, they would seem to be a problem for real time computing.

In practice, instruction caches are widely used in embedded computers since
most code has predictable behavior. Data caches then are the real issue.

To cope with that challenge, some embedded computers allow a portion of the
cache to be “locked down.” That is, a portion of the cache acts like a small
scratchpad memory under program control. In a set associative data cache, one
block of an entry would be locked down while the others could still buffer access-
es to main memory. If it was direct mapped, then every address that maps onto
that locked down block would result in a miss and later is passed to the CPU.

Embedded Computer Caches and Power

Although caches were invented to reduce memory access time, they also save
power. It is much more power efficient to access on chip memory than it is to
drive the pins of the chip, drive the memory bus, activate the external memory
chips and then make the return trip.

To further improve power efficiency of caches on chip, some of the optimiza-
tions in sections 5.4 to 5.7 are reoriented for power. For example, the MIPS 4300
uses way prediction to only power half of the address checking hardware for its
two-way set associative cache.

I/O and Consistency of Cached Data

Because of caches, data can be found in memory and in the cache. As long as the
CPU is the sole device changing or reading the data and the cache stands between
the CPU and memory, there is little danger in the CPU seeing the old or stale
copy. I/O devices give the opportunity for other devices to cause copies to be in-
consistent or for other devices to read the stale copies. Figure 5.42 illustrates the
problem, generally referred to as the cache-coherency problem.

The question is this: Where does the I/O occur in the computer—between the
I/O device and the cache or between the I/O device and main memory? If input
puts data into the cache and output reads data from the cache, both I/O and the
CPU see the same data, and the problem is solved. The difficulty in this approach

470 Chapter 5 Memory-Hierarchy Design

is that it interferes with the CPU. I/O competing with the CPU for cache access
will cause the CPU to stall for I/O. Input may also interfere with the cache by dis-
placing some information with new data that is unlikely to be accessed soon. For
example, on a page fault the CPU may need to access a few words in a page, but a
program is not likely to access every word of the page if it were loaded into the
cache. Given the integration of caches onto the same integrated circuit, it is also
difficult for that interface to be visible.

The goal for the I/O system in a computer with a cache is to prevent the stale-
data problem while interfering with the CPU as little as possible. Many systems,

FIGURE 5.42 The cache-coherency problem. A' and B' refer to the cached copies of A
and B in memory. (a) shows cache and main memory in a coherent state. In (b) we assume
a write-back cache when the CPU writes 550 into A. Now A' has the value but the value in
memory has the old, stale value of 100. If an output used the value of A from memory, it would
get the stale data. In (c) the I/O system inputs 440 into the memory copy of B, so now B' in
the cache has the old, stale data.

CPU CPU CPU

100

200

A'

B'

B

A

Cache Cache Cache

Memory Memory Memory

550

200

A'

B'

200

I/O
output A
gives 100

B

A

100

100 100 100

200

A'

B'

440

I/O
input

440 to B

(a) Cache and
memory coherent:
A' = A & B' = B

(b) Cache and
memory incoherent:
A' ≠ A (A stale)

(c) Cache and
memory incoherent:
B' ≠ B (B' stale)

B

A

I/O

200

5.13 Putting It All Together: Alpha 21264 Memory Hierarchy 471

therefore, prefer that I/O occur directly to main memory, with main memory
acting as an I/O buffer. If a write-through cache were used, then memory would
have an up-to-date copy of the information, and there would be no stale-data is-
sue for output. (This benefit is a reason processors used write through.) Alas,
write-through usually found only today in first level data caches backed by a L2
cache which uses write back. Even embedded caches avoid write through for rea-
sons of power efficiency

Input requires some extra work. The software solution is to guarantee that no
blocks of the I/O buffer designated for input are in the cache. In one approach, a
buffer page is marked as noncachable; the operating system always inputs to such
a page. In another approach, the operating system flushes the buffer addresses
from the cache after the input occurs. A hardware solution is to check the I/O ad-
dresses on input to see if they are in the cache. To avoid slowing down the cache
to check addresses, a duplicate set of tags may be used to allow checking of I/O
addresses in parallel with processor cache accesses. If there is a match of I/O ad-
dresses in the cache, the cache entries are invalidated to avoid stale data. All these
approaches can also be used for output with write-back caches. More about this is
found in Chapter 7.

The cache-coherency problem applies to multiprocessors as well as I/O. Un-
like I/O, where multiple data copies are a rare event—one to be avoided when-
ever possible—a program running on multiple processors will want to have
copies of the same data in several caches. Performance of a multiprocessor pro-
gram depends on the performance of the system when sharing data. The proto-
cols to maintain coherency for multiple processors are called cache-coherency
protocols, and are described in Chapter 6.

Thus far we have given glimpses of the Alpha 21264 memory hierarchy; this sec-
tion unveils the full design and shows the performance of its components for the
SPEC95 programs. Figure 5.43 gives the overall picture of this design. The
21264 is an out-of-order execution processor that fetches up to four instructions
per clock cycle and executes up to six instructions per clock cycle. It uses either a
48-bit virtual address and a 44-bit physical address or 43-bit virtual address and
41-bit physical; thus far, all systems just use 41 bits. In either case, Alpha halves
the physical address space, with the lower half for memory addresses and the up-
per half for I/O addresses. For the rest of this section, we assume use of the 43-bit
virtual address and the 41-bit physical address.

Let's really start at the beginning, when the Alpha is turned on. Hardware on
the chip loads the instruction cache serially from an external PROM. This initial-
ization fills up to 64-KB worth of instructions (16K instructions) into the cache.
The same serial interface (and PROM) also loads configuration information that
specifies L2 cache speed/timing, system port speed/timing, and much other infor-

5.13 Putting It All Together: Alpha 21264 Memory Hierarchy

472 Chapter 5 Memory-Hierarchy Design

FIGURE 5.43 The overall picture of the Alpha 21264 memory hierarchy. Individual components can be seen in greater
detail in Figures 5.7 (page 388) and 5.36 (page 454). The instruction cache is virtually indexed and tagged, but the data
cache has virtual index but physical tags. Hence, every data address must be sent to the data TLB at the same time as it is
sent to the data cache. Both the instruction and data TLB's have 128 entries. Each TLB entry can map a page of size 8KB,
64KB, 512KB, or 4MB. The 21264 supports a 48-bit or 43-bit virtual address and a 44-bit or 41-bit physical address.

System Chip
Memory Crossbar

Victim
buffer

6

7

12

13

14

20

23

25

24

24

26

26

27

28

26

2935

35

33

32

31

34

30

 Virtual page
 number <35>

Instruction
<128> Data in <64>

Store Queue/
Data Out
<64>

<128>

<64>

<44>

<128>

<256> <256>

<44> <15> <64>

<44>

<64>

Page
offset<13>

Block
offset

Index

<9> <6>

Data virtual page
 number <35>

V Physical address
<8> <31>

ASN
<4>
Prot

<1>
Tag

<35>

<31>

(High-order 28 or 31 bits of
 physical address)

Page
offset<13>

D
C
A
C
H
E

D
T
L
B

PC

CPU

Alpha 21264

=?

Instruction prefetcher

Tag <38> Data <512>

=?

Address<38> Data <512>

Valid Data
<1> <29> <512>

=?

Tag

Block
offset

Index

<9> <6>

I
C
A
C
H
E

Way
<33> <1>

Line
<11>

Data
<512>

2

2

2

4

4

8

1

3

(1024
blocks)

Tag
<4>
Prot

<1>
V

<8>
ASN

ASN
<8>

ASN
<8>

=?

=?

=?

<31>

5

ASN Physical address
<8> <31>

Prot
<4>

V
<1>

Tag
<35>

(High-order 28 or 31 bits
of physical address)

I
T
L
B

128:1 Mux

4:1 Mux

DIMM

DIMM DIMM

2:1 Mux

128:1 Mux

V Data
<1>

D
<1> <21> <512>

=?

(131,072
blocks)

<21>

 Tag Index

<17> Tag

Address

9

10
11

22

15

16

17

19

18

21

L2
C
A
C
H
E

M
A
I
N

M
E
M
O
R
Y

28

26

=?

Predict

DIMM

5.13 Putting It All Together: Alpha 21264 Memory Hierarchy 473

mation necessary for the 21264 to communicate with the external logic. This
code completes the remainder of the processor and system initialization.

The preloaded instructions execute in Privileged Architecture Library (PAL)
mode. The software executed in PAL mode is simply machine language routines
with some implementation-specific extensions to allow access to low-level hard-
ware, such as the TLB. PAL code runs with exceptions disabled, and the instruc-
tion addresses are not translated. Since PAL code avoids the TLB, instruction
accesses are not checked for memory management violations.

One of the first steps is to update the instruction TLB with valid page table en-
tries (PTEs) for this process. Kernel code updates the appropriate page table en-
try (in memory) for each page to be mapped. A miss in the TLB is handled by
PAL code, since normal code that relies on the TLB cannot change the TLB.

Once the operating system is ready to begin executing a user process, it sets
the PC to the appropriate address in segment seg0.

We are now ready to follow memory hierarchy in action: Figure 5.43 is la-
beled with the steps of this narrative. First, a 12-bit address is sent to the 64-KB
instruction cache, along with a 35-bit page number. An 8-bit Address Space
Number (ASN) is also sent, for the same purpose as using ASN’s in the TLB
(step 1).The instruction cache is virtually indexed and virtually tagged, so in-
struction TLB translations are only required on cache misses. As mentioned in
section 5.5, the Instruction cache uses way prediction, so a 1-bit way predict bit is
prepended to the 9-bit index. The effective index is then 10 bits, similar to a 64-
KB direct mapped cache with 1024 blocks. Thus, the effective instruction cache
index is 10 bits (see page 387), and the instruction cache tag is then 48 – 9 bits
(actual index) – 6 bits (block offset) or 33 bits. As the 21264 expects 4 instruc-
tions (16 bytes) each instruction fetch, an additional 2 bits is used from the 6-bit
block offset to select the appropriate 16 bytes. Hence, 10 + 2 or 12 bits to read 16
bytes of instructions.

To reduce latency, the instruction cache includes two mechanisms to begin
early access of the next block. As mentioned in section 5.5, the way predicting
cache relies on a 1-bit field for every 16 bytes to predict which of two sets will be
used next, offering the hit time of direct mapped with miss rate of two-way asso-
ciativity. It also includes 11 bits to predict the next group of 16 bytes to be read.
This field is loaded with the address of the next sequential group on a cache miss,
and updated to a nonsequential address by the dynamic branch predictor. These
two techniques are called way prediction and line prediction.

Thus, the index field of the PC is compared to the predicted block address, the
tag field of the PC is compared to the address from the tag portion of the cache,
and the 8-bit process ASN to the tag ASN field (step 2). The valid bit is also
checked. If any field has the wrong value, it is a miss. On a hit in the instruction
cache, the proper fetch block is supplied, and the next way and line prediction is
loaded to read the next block (step 3). There is also a protection field in the tag, to

474 Chapter 5 Memory-Hierarchy Design

ensure that instruction fetch does not violate protection barriers. The instruction
stream access is now done.

An instruction cache miss causes a simultaneous check of the instruction TLB
and the instruction prefetcher (step 4). The fully associative TLB simultaneously
searches all 128 entries to find a match between the address and a valid PTE (step
5). In addition to translating the address, the TLB checks to see if the PTE de-
mands that this access result in an exception, and if the address space number of
the processor matches the address space number in the field. An exception might
occur if either this access violates the protection on the page or if the page is not
in main memory. If the desired instruction address is found in the instruction
prefetcher (step 6), the instructions are (eventually) supplied directly by the
prefetcher (step 7). Otherwise, if there is no TLB exception, an access to the sec-
ond-level cache is started (step 8).

In the case of a complete miss, the second-level cache continues trying to
fetch the block. The 21264 microprocessor is designed to work with direct-
mapped second-level caches from 1MB to 16 MB. For this section we use the
memory system of the 667 Mhz Compaq AlphaserverES40, a shared memory
system with from 1 to 4 processors. It has a 444 Mhz, 8-MB direct-mapped, sec-
ond-level cache. (The data rate is 444 Mhz; the L2 SRAM parts use the double
data rate technique of DRAMs, so they are clocked at only half that rate.)The L2
index is

so the 35-bit block address (41-bit physical address – 6-bit block offset) is divid-
ed into a 18-bit tag and a 17-bit index (step 9).The cache controller reads the tag
from that index and if it matches and is valid (step 10), it returns the critical 16
bytes (step 11), with the remaining 48 bytes of the cache block supplied 16 bytes
per 2.25 ns. The 21264 L2 interface does not require that the L2 cache clock be
an integer multiple of the processor clock, so it can be loaded faster than 3.00 ns
that you might expect from a 667 MHz processor. At the same time, a request is
made for the next sequential 64-byte block (step 12), which is loaded into the in-
struction prefetcher in the next 6 clock cycles (step 13). Each miss can cause a
prefetch of up to 4 cache blocks. An instruction cache miss costs approximately
15 CPU cycles (22 ns), depending on clock alignments.

By the way, the instruction prefetcher does not rely on the TLB for address
translation. It simply increments the physical address of the miss by 64 bytes,
checking to make sure that the new address is within the same page. If the incre-
mented address crosses a page boundary, then the prefetch is suppressed. To save
time, the prefetched instructions are passed around the CPU and then written to
the instruction cache while the instructions execute in the CPU (step 14).

If the instruction is not found in the secondary cache, the physical address
command is sent to the ES40 system chip set via four consecutive transfer cycles

2
index Cache size

Block size Set associativity×--
8192K
64 1×----------------

128K 2
17

= = ==

5.13 Putting It All Together: Alpha 21264 Memory Hierarchy 475

on a narrow, 15-bit outbound address bus (step 15). The address and command
use the address bus for 8 CPU cycles. The ES40 connects the microprocessor to
memory via a crossbar to one of two 256-bit memory busses to service the re-
quest (step 16). Each bus contains a variable number of DIMMs (dual inline
memory modules). The size and number of DIMMs can vary to give a total of 32
GB of memory in the 667 Mhz ES40. Since the 21264 provides single error cor-
rection/double error detection checking on data cache (see section 5.15), L2
cache, busses, and main memory, the data busses actually include an additional
32-bits for ECC bits.

Although the crossbar has two 256-bit buses, the path to the microprocessor is
much narrower. 64 data bits. Thus, the 21264 has two off-chip paths: 128 data
bits for the L2 cache and 64 data bits for memory crossbar. Separate paths allows
a point-to-point connection and hence a high clock rate interface for both the L2
cache and the crossbar.

 The total latency of the instruction miss that is serviced by main memory is
approximately 130 CPU cycles for the critical instructions. The system logic fills
the remainder of the 64-byte cache block at a rate of 8 bytes per 2 CPU cycles
(step 17).

Since the second-level cache is a write-back cache, any miss can lead to an old
block being written back to memory. The 21264 places this “victim” block into a
victim file (step 18), as it does with a victim dirty block in the data cache, to get
out of the way of new data when the new cache reference determined first read
the L2 cache; that is, the original instruction fetch read that missed (step 8). The
21264 sends out the address of the victim out the system address bus following
the address of the new request (step 19). The system chip set later extracts the
victim data and writes it to the memory DIMMs.

The new data are loaded into the instruction cache as soon as they arrive (step
20). It also goes into a (L1) victim buffer (step 21), and is later written to the L2
cache (step 22). The victim buffer is of size 8, so many victims can be queued be-
fore being written back either to the L2 or to memory. The 21264 can also man-
age up to 8 simultaneous cache block misses, allowing it to hit under 8 misses as
described in section 5.4.

If this initial instruction is a load, the data addresses is also sent to the data
cache. It is 64 KB, 2-way set-associative, and write-back with a 64-byte block
size. Unlike the instruction cache, the data cache is virtually indexed and physi-
cally tagged. Thus, the page frame of the instruction’s data address is sent to the
data TLB (step 23) at the same time as the (9+3)-bit index from the virtual ad-
dress is sent to the data cache (step 24). The data TLB is a fully associative cache
containing 128 PTEs (step 25), each of which represents page sizes from 8 KB to
4 MB. A TLB miss will trap to PAL code to load the valid PTE for this address.
In the worst case, the page is not in memory, and the operating system gets the
page from disk, just as before. Since millions of instructions could execute during
a page fault, the operating system will swap in another process if one is waiting
to run.

476 Chapter 5 Memory-Hierarchy Design

The index field of the address is sent of both sets of the data cache (step 26).
Assuming that we have a valid PTE in the data TLB (step 27), the two tags and
valid bits are compared to the physical page frame (step 28), with a match send-
ing the desired 8 bytes to the CPU (step 29). A miss goes to the second-level
cache, which proceeds similar to an instruction miss (Step 30), except that it must
check the victim buffer first to be sure the block is not there (Step 31).

As mentioned in section 5.7, the data cache can be virtually addressed and
physically tagged. On a miss, the cache controller must check for a synonym
(two different virtual addresses that reference the same physical address). Hence,
the data cache tags are examined in parallel with the L2 cache tags during an L2
lookup. As the minimum page size is 8 KB or 13 bits and the cache index plus
block offset is 15 bits, the cache must check 22 or 4 blocks per set for synonyms.
If it finds a synonym, the offending block is invalidated. This guarantees that a
cache block can reside in one of the 8 possible data cache locations at any given
time.

A write back victim can be produced on a data cache miss. The victim data is
extracted from the data cache simultaneously with the fill of the data cache with
the L2 data, and sent to the victim buffer (Step 32). I

In the case of an L2 miss, the fill data from the system is written directly into
the (L1) data cache (step 33). The L2 is written only with L1 victims (step 34).
They appear either because they were modified by the CPU, or because they had
been loaded from memory directly into the data cache but not yet written into the
L2 cache.

Suppose the instruction is a store instead of a load. When the store issues it
does a data cache lookup just like a load. A store miss causes the block to be
filled into the data cache very much as with a load miss. The store does not up-
date the cache until later, after it is known to be non-speculative. During this time
the store resides in a store queue, part of the out-of-order control mechanism of
the CPU. Stores write from the store queue into the data cache on idle cache cy-
cles (step 35). The data cache is ECC protected, so a read-modify-write operation
is required to update the data cache on stores.

Performance of the 21264 Memory Hierarchy

How well does the 21264 work? The bottom line in this evaluation is the per-
centage of time lost while the CPU is waiting for the memory hierarchy. The ma-
jor components are the instruction and data caches, instruction and data TLBs,
and the secondary cache. Alas, in an out-of-order execution processors like the
21264 it is very hard to isolate the time waiting for memory, since a memory stall
for one instruction may be completely hidden by successful completion of a later
instruction.

How well does out-or-order perform compared in in-order? Figure 5.44 shows
relative performance for SPECint2000 benchmarks for the out-of-order 21264
and its predecessor, the in-order Alpha 21164. The clock rates are similar in the

5.13 Putting It All Together: Alpha 21264 Memory Hierarchy 477

figure, but other differences in addition include the on-chip caches (two 64 KB
L1 caches vs. two 8 KB L1 caches plus one 96 KB L2 cache). The miss rate for
the 21164 on-chip L2 cache is also plotted in the figure along with the miss rate

of a 1MB cache. Figure 5.44 shows that speedup generally tracks its miss rate;
the higher the 21164 miss rate, the higher the speedup of the 21264 over the
21164. The only exception is MCF, which is also the only program with a high
miss rate for the a 1MB cache.

This result is likely explained by the 21264’s ability to continue to execute
during caches misses which stall the 21164 but hit in the L2 cache of the 21264.
If the miss also misses in the L2 cache, then the 21264 must also stall, hence the
lower speedup for MCF.

Figure 5.45 shows the CPI and various misses per 1000 instructions for a
benchmark similar to TPC-C on a commercial database and the SPEC95 pro-
grams. Clearly, the SPEC95 programs do not tax the 21264 memory hierarchy,
with instruction cache misses per instruction of 0.001% to 0.343% and second-
level cache misses per instruction of 0.001% to 1%. The commercial benchmark

FIGURE 5.44 Alpha 21264/21164 Performance speedup vs. miss rates for SPECint2000. The left axis shows the
speedup of the out-of-order 21264 is greatest with the highest miss rate of the 21164 L2 cache (right axis) as long as the
access is a hit in the 21264 L2 cache. If it misses the L2 cache of the 21264, out-of-order execution is not as helpful. The
21264 is running at 500 MHz and the earlier 21164 is running at 533MHz.

-

0.5

1.0

1.5

2.0

2.5

gcc gap perl gzip mcf

SPECint2000 benchmark

S
p

ee
d

u
p

 2
12

64
 v

.
21

16
4

0%

5%

10%

15%

20%

25%

30%

M
is

s
ra

te

Speedup 21264 v. 21164
21164 L2$ (96KB) miss rate
1 MB Miss rate

478 Chapter 5 Memory-Hierarchy Design

does exercise the memory hierarchy more, with misses per instruction of 1.1%
and 0.7%, respectively.

How do the CPIs compare to the peak rate of 0.25, or 4 instructions per clock
cycle? For SPEC95 the 21264 completes almost 2 instructions per clock cycle,
with an average CPI of 0.55 to 0.59. For the database benchmark, the combina-
tion of higher miss rates for caches and TLBs and a higher branch misprediction

Program CPI Cache misses per
1000 instructions

 TLB misses per
1000 instructions

I cache L2 cache D TLB

TPC-C like 2.23 11.15 7.30 1.21

go 0.58 0.53 0.00 0.00

m88ksim 0.38 0.16 0.04 0.01

gcc 0.63 3.43 0.25 0.30

compress 0.70 0.00 0.40 0.00

li 0.49 0.07 0.00 0.01

ijpeg 0.49 0.03 0.02 0.01

perl 0.56 1.66 0.09 0.26

vortex 0.58 1.19 0.63 1.98

Avg. SPECint95 0.55 0.88 0.18 0.03

tomcatv 0.52 0.01 5.16 0.12

swim 0.40 0.00 5.99 0.10

su2cor 0.59 0.03 1.64 0.11

hydro2d 0.64 0.01 0.46 0.19

mgrid 0.44 0.02 0.05 0.10

applu 0.94 0.01 10.20 0.18

turb3d 0.44 0.01 1.60 0.10

apsi 0.67 0.05 0.01 0.04

fpppp 0.52 0.13 0.00 0.00

wave5 0.74 0.07 1.72 0.89

Avg. SPECfp95 0.59 0.03 2.68 0.09

FIGURE 5.45 CPI and misses per 1000 instructions for a running a TPC-C like database workload and the SPEC95
benchmarks (see Chapter 1) on the Alpha 21264 in the Compaq ES40. In addition to the worse miss rates shown here,
the TPC-C like benchmark also has a branch misprediction rate of about 19 per 1000 instructions retired. This rate is 1.7
times worse than the average SPECint95 program and 25 times worse than the average SPECfp95. Since the 21264 uses
an out-of-order instruction execution, the statistics are calculated as the number of misses per 1000 instructions successfully
committed. Cvetnovic and Kessler [2000] collected this data, but unfortunately did not include miss rates of the L1 data
cache or data TLB. Note that their hardware performance monitor could not isolate the benefits of successful hardware
prefetching to the Instruction Cache. Hence, compulsory misses are likely very low.

5.14 Another View: The Emotion Engine of the Sony Playstation 2 479

rate (not shown) yield a CPI of 2.23, or less than one instruction every two clock
cycles. This factor of four slowdown in CPI suggest that microprocessors de-
signed to be used in servers may see much heavier demands on the memory sys-
tems than do microprocessors for desktops.

Desktop computers and severs rely on the memory hierarchy to reduce average
access time to relatively static data, but there are embedded applications where
data is often a continuos stream. In such applications there is still spatial locality,
but temporal locality is much more limited.

To give another look at memory performance beyond the desktop, this section
examines the microprocessor at the heart of Sony Playstation 2. As we shall see,
the steady stream of graphics and audio demanded by electronic games leads to a
different approach to memory design. The style is high bandwidth via many dedi-
cated independent memories.

Figure 5.46 shows the 3Cs for the MP3 decode kernel. Compared to
SPEC2000 results in Figure 5.15 on page 410, much smaller caches capture the
misses for multimedia applications. Hence, we expect small caches.

Figure 5.47 shows a block diagram of the Sony Playstation 2 (PS2). Not sur-
prisingly for a game machine, there are interfaces for video, sound, and a DVD
player. Surprisingly, there are two standard computer I/O busses, USB and IEEE
1394, a PCMCIA slot as found in portable PCs, and a modem. These additions
suggest Sony has suggest greater plans for the PS2 beyond traditional games. Al-
though it appears the that I/O processor (IOP) simply handles the I/O devices and
the game console, it includes a 34 MHz MIPS processor which also acts as the
emulation computer to run games for earlier Sony Playstations. It also connects
to a standard PC audio card to provide the sound for the games.

Thus, one challenge for the memory system of this embedded application is to
act as source or destination for the extensive number of I/O devices. The PS2 de-
signers met this challenge with two PC800 (400 MHz) DRDRAM chips using
two channels, offering 32 MB of storage and a peak memory bandwidth of 3.2
MB/second (see section 5.8).

What’s left in the figure is basically two big chips: the Graphics Synthesizer
and the Emotion Engine.

The Graphics Synthesizer takes rendering commands from the Emotion En-
gine in what are commonly called display lists. These are lists of 32-bit com-
mands that tell the renderer what shape to use and where to place them, plus what
colors and textures to fill them.

This chip also has the highest bandwidth portion of the memory system. By
using embedded DRAM on the Graphics Synthesizer, the chip contains the full
video buffer and has a 2048-bit wide interface so that pixel filling is not a bottle-
neck. This embedded DRAM greatly reduces the bandwidth demands on the

5.14 Another View: The Emotion Engine
of the Sony Playstation 2

480 Chapter 5 Memory-Hierarchy Design

DRDRAM. It illustrates a common technique found in embedded applications:
separate memories dedicated to individual functions to inexpensively achieve
greater memory bandwidth for the entire system.

The remaining large chip is the Emotion Engine, and its job is to accept inputs
from the IOP and create the display lists of a video game to enable 3D video
transformations in real time. A major insight shaped the design of the Emotion
Engine: generally in a racing car game there are foreground objects that are con-
stantly changing and background objects that change less in reaction to the
events, although the background can be most of the screen. This observation led
to a split of responsibilities.

The CPU works with VPU0 as a tightly-coupled coprocessor, in that every
VPU0 instruction is a standard MIPS coprocessor instruction, and the addresses
are generated by the MIPS CPU. VPU0 is called a vector processor, but it is simi-
lar to a 128-bit, SIMD extensions for multimedia found in several desktop pro-
cessors (see Chapter 2).

VPU1, in contrast, fetches its own instructions and data and acts in parallel
with CPU-VPU0, acting more like a traditional vector unit. With this split, the

FIGURE 5.46 Three Cs for MPEG3 decode. A 2-way set associative 16-KB data cache has a total miss rate of 0.013,
compared to in 0.041 in Figure 5.14 on page 409. The compulsory misses are too small to see on the graph. From Hughes
et al [2001].

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

4 8 1 6 3 2 6 4

Cache size (KB)

Miss
rate
per

t y p e

1 -way

2 -way

4 -way

8 -way

capacity

compusory

5.14 Another View: The Emotion Engine of the Sony Playstation 2 481

FIGURE 5.47 Block diagram of the Sony Playstation 2. The 10 DMA channels orchestrate the transfers between all the
small memories on the chip, which when completed all head towards the Graphics Interface so as to be rendered by the
Graphics Synthesizer. The Graphics Synthesized uses DRAM on-chip to provide an entire frame buffer plus graphics pro-
cessors to perform the rendering desired based on the display commands given from the Emotion Engine. The Embedded
DRAM allows 1024-bit transfers between the pixel processors and the display buffer. The Supescalar CPU is a 64-bit MIPS
III with two-instruction issue, and comes with a 2-way set associative, 16-KB instruction cache, a 2-way set associative 8-
KB data cache, and 16 KB of scatchpad memory. It has been extended with 128-bit SIMD instructions for multimedia appli-
cations (see Chapter 2). Vector Unit 0 is a primarily a DSP-like coprocessor for the CPU (see Chapter 2), which can an op-
erator on 128-bit registers in SIMD manner between 8 bits and 32 bits per word. It has 4 KB of instruction memory and 4 KB
of data memory. Vector Unit 1 has similar functions to VPU0, but it normally operates independently of the CPU, and con-
tains 16 KB of instruction memory and 16 KB of data memory. All three units can communicate over the 128-bit system bus,
but there are is also a 128-bit dedicated path between the CPU and VPU0 and a 128-bit dedicated path between VPU1 and
the Graphics Interface. Although VPU0 and VPU1 have identical microarchitectures, the differences in memory size and
units to which they have direct connections affect the roles that they take in a game. At 0.25- micron line widths, the Emotion
Engine chip uses 13.5M transistors and 225 mm2 and the Graphics Synthesizer is 279 mm2. To put this in perspective, the
Alpha 21264 microprocessor in 0.25-micron technology is about 160 mm2 and uses 15M transistors. (This figure is based
on a Figure 1 in “Sony’s Emotionally Charged Chip,” Microprocessor Report, 13:5.)

482 Chapter 5 Memory-Hierarchy Design

more flexible CPU-VPU0 handles the foreground action and the VPU1 handles
the background. Both deposit their resulting display lists into the Graphics Inter-
face to send the lists to the Graphics Synthesizer.

Thus, the programmer of the Emotion Engine thus has three processors sets to
chose from to implement his program: the traditional 64-bit MIPS architecture
including a floating point unit, the MIPS architecture extended with multimedia
instructions (VPU0), and an independent vector processor (VPU1). To accelerate
MPEG decoding, the is another coprocessor (Image Processing Unit) that can act
independent of the other two.

With this split of function, the question then is how to connect the units to-
gether, how to make the data flow between units, and how to provide the memory

FIGURE 5.48 Two modes of using Emotion Engine organization. The first mode divides
the work between the two units, and then allows the Graphics Interface to properly merge the
display lists. The second more uses CPU/VPU0 as a filter of what to send to VPU1, which
then does all the display lists. Its up to the programmer to chose between serial and parallel
data flow. SPRAM is the scratchpad memory. <<Redraw with Serial on top, Parallel on
Bottom; can be much smaller>>

5.15 Another View: The Sun Fire 6800 Server 483

bandwidth needed by all these units. As mentioned above, the Emotion Engine
designers chose many dedicated memories. The CPU has a 16-KB scatchpad
memory (SPRAM) in addition to a 16-KB instruction cache and an 8-KB data
cache. VPU0 has a 4-KB instruction memory and a 4-KB data memory, and
VPU1 has a 16-KB instruction memory and a 16-KB data memory. Note that
these are four memories, not caches of a larger memory elsewhere. In each mem-
ory the latency is just one clock cycle. VPU1 has more memory than VPU0 be-
cause it creates the bulk of the display lists and because it largely acts
independently.

The programmer organizes all memories as two double buffers, one pair for
the incoming DMA data and one pair for the outgoing DMA data. The program-
mer then uses the various processors to transform the data from the input buffer
to the output buffer. To keep the data flowing among the units, the programmer
next sets up the 10 DMA channels, taking care to meet the real time deadline for
realistic animation of 15 frame per second.

Figure 5.48 shows that this organization supports two main operating modes:
serial where CPU/VPU0 act as a preprocessor on what to give VPU1 for it to cre-
ate for the Graphics Interface using the scratchpad memory as the buffer, and par-
allel where both the CPU/VPU0 and VPU1 create display lists. The display lists
and the Graphics Synthesizer have multiple context identifiers to distinguish the
parallel display lists to produce a coherent final image.

All units in the Emotion Engine are linked by a common 150 Mhz, 128-bit
wide bus. To offer greater bandwidth, there are also two dedicated buses: a 128-
bit path between the CPU and VPU0, and a 128-bit path between VPU1 and the
Graphics Interface. The programmer also chooses which bus to use when setting
up the DMA channels.

Taking the big picture, if a server-oriented designer had been given the prob-
lem we might see a single common bus with many local caches and cache coher-
ent mechanism to keep data consistent. In contrast, the Playstation 2 followed the
tradition of embedded designers and has at least nine distinct memory modules.
To keep the data flowing in real time from memory to the display the PS2 uses
dedicated memories, dedicated buses, and DMA channels. Coherency is the re-
sponsibility of the programmer, and given the continuous flow from main memo-
ry to the graphics interface and the real time requirements, programmer
controlled coherency works well for this application.

The Sun Fire 6800 is a mid range multiprocessor server with particular attention
paid to the memory system. The emphasis of this server is cost-performance for
both commercial computing, running data base applications such data warehous-
ing and data mining, as well as high performance computing. This server also in-
cludes special features to improve availability and maintainability.

5.15 Another View: The Sun Fire 6800 Server

484 Chapter 5 Memory-Hierarchy Design

Given these goals, what should be the size of the caches? Looking at the
SPEC2000 results in Figure 5.17 on page 413 suggests miss rates of 0.5% for a
1-MB data cache, with infinitesimal instruction cache miss rates at those sizes. It
would seem that a 1-MB off chip cache should be sufficient.

Commercial workloads, however, get very different results. Figure 5.49 shows
the impact on the off chip cache for an Alpha 21164 server running commercial
workloads. Unlike the results for SPEC2000, commercial workloads running da-
tabase applications have significant misses just for instructions with a 1-mega-
byte cache. The reason is that code size of commercial databases is measured in
millions of lines of code, unlike any SPEC2000 benchmark. Second, note that ca-
pacity and conflict misses remain significant until cache size becomes 4 to 8
megabyte. Note that even compulsory misses lead to a measurable causes higher
CPI; this is because servers often run many processes, which results in many con-
text switches and thus more compulsory misses. Finally, there is a new category
of misses in a multiprocessor, and these are due to having to keep all the caches
of a multiprocessor coherent, a problem mentioned in section 5.12. These are
sometimes called coherency misses, adding a fourth C to our three C model from
section 5.5. Chapter 6 explains a good deal more about coherence or sharing traf-
fic in multiprocessors. The data suggests that commercial workloads need con-
siderably bigger off-chip caches than do SPEC2000.

Figure 5.50 shows the essential characteristics of the Sun Fire 6800 that the
designers selected. Note the 8 MB L2 cache, which is in response to the commer-
cial needs.

The microprocessor that drives this server is the UltraSPARC III. One striking
feature of the chip is the number of pins: 1368 in a Ball Grid Array. Figure 5.51
shows how one chip could use so many pins. The L2 caches bus operates at 200
MHz, local memory at 75 MHz, and the rest operate at 150 MHz. The combina-
tion of UltraSPARC III and the data switch yields a peak bandwidth to off chip
memory of 11 Gbytes/second.

Note that the several wide buses include error correction bits in Figure 5.51.
Error correction codes enable buses and memories to both detect and correct er-
rors. The idea is to calculate and storage parity over different subsets of the bits
in the protected word. When parity does not match it indicates an error. By look-
ing at which of the overlapping subsets have a parity error and which don’t, its
possible to determine the bit that failed. The Sun Fire ECC was also designed to
detect any pair of bit errors, and also to detect if a whole DRAM chip failed turn-
ing all the bits of an 8-bit wide chip to zero. Such codes are generally classified
as Single Error Correcting/Double Error Detecting (SEC/DED). The UltraS-
PARC sends these ECC bits between the memory chips and the microprocessor,
so that errors that occur on the high-speed buses are also detected and corrected.

In addition to several wide busses for memory bandwidth, the designers of Ul-
traSPARC were concerned about latency. Hence, the chip includes a DRAM con-
troller on the chip, which they claim saved 80 ns of latency. The result is 220 ns
to the local memory and 280 ns to the non-local memory. (This server supports
non-uniform memory access shared memory, described in Chapter 6.) Since

5.15 Another View: The Sun Fire 6800 Server 485

memory is connected directly to the processor to lower latency, its size is a func-
tion of the number of processors. The limit in 2001 is 8 GB per processor.

For similar latency reasons, UltraSPARC also includes the tags for the L2
cache on chip. The designers claim this saved 10 clock cycles off a miss. At a to-
tal of almost 90 KB of tag, it is comparable in size to the data cache.

The on-chip caches are both 4-way set associative, with the instruction cache
being 32 KB and the data cache being 64 KB. The block size for these caches is
32 bytes. To reduce latency to the data cache, it combines an address adder with
the word line decoder. This combination largely eliminates the adder's latency.
Compared to UltraSPARC II at the same cache size and clock rate, sum-ad-
dressed memory reduced latency from three to two clock cycles.

The L1 data cache uses write through (no write allocate) and the L2 cache
uses write back (write allocate). Both L1 caches provide parity to detect errors;
since the data cache is write through, there is always a redundant copy of the data
elsewhere, so parity errors only require prefetching the good data. The memory
system behind the cache supports to up 15 outstanding memory accesses.

FIGURE 5.49 Clock cycles per instruction for memory accesses versus off-chip cache size for a four-processor
server. Note how much higher the performance impact is for large caches than for the SPEC2000 programs in Figure 5.15
on page 410. The workload includes the Oracle commercial database engine for the online transaction processing (OLTP)
and decision support systems and the AltaVista search engine for the Web index search. This data was collected by Barroso
et al [1998] using the Alpha 21164 microprocessor.

0

0.5

1

1.5

2

2.5

3

3.5

1 MB 2 MB 4 MB 8 MB
Cache Size

Clock cycles
Per

Instruction
for

Memory
Accesses

Multiprocessor Coherence

Instruction

Capacity/Conflict

Compulsory

486 Chapter 5 Memory-Hierarchy Design

Between the two levels of cache is a 2-KB write cache. The write cache act as
a write buffer and merges writes to consecutive locations. It keeps a bit per byte
to indicate if it is valid and does not read the block from the L2 cache when the
block is allocated. Often the entire block is written, there by avoiding a read ac-
cess to the L2 cache. The designers claim more than 90% of the time UltraS-
PARC III can merge a store into an existing dirty block of the write cache. The
write cache is also a convenient place to calculate ECC.

UltraSPARC III handles address translation with multiple levels of on-chip
TLBs, with the smaller ones being fastest. A cache access starts with a virtual ad-
dress selecting four blocks and four microtags which checks 8 bits of the virtual
address to select the set. In parallel with the cache access the 64-bit virtual ad-
dress is translated to the 43-bit physical address using two TLBs: a 16 entry fully

Processors 2 to 24

Processors 2 to 24 UltraSPARC III processors

Processor Clock rate 900 MHz

Pipeline 14 stages

Superscalar 4-issue, 4-way sustained

L1 I cache 32 KB, 4-way set associative (S.A.), pseudorandom replacement

L1 I cache latency 2 clocks

L1 D cache 64 KB, 4-way SA; write through, no write allocate, pseudorandom replacement

L1 D cache latency 2 clocks

L1 I/D miss penalty 20 ns (15 to 18 clock cycles, depending on clock rate)

L2 cache 8 MB, direct mapped; write back, write allocate, multilevel inclusion

L2 miss penalty 220 to 280 ns (198 to 252 clock cycles, depending whether memory is local)

Write Cache 2 KB, 4-way SA, LRU, 64 byte block, no write allocate

Prefetch Cache 2 KB, 4-way SA, LRU, 64 byte block

Block size 32 bytes

Processor Address space 64 bit

Maximum Memory 8 GB/processor, or up to 192 GB total

System Bus, peak speed Sun Fire Interconnect, 9.6 GB/sec

I/O cards up to 8 66-MHz, 64-bit PCI, 24 33-MHz 64-bit PCI

Domains 1 to 4

Processor Power 70 W at 750 MHz

Processor Package 1368 pin flip-chip ceramic Ball Grid Array

Processor Technology 29 M transistors (75% SRAM cache), die size is 217 mm2; 0.15 micron, 7-layer CMOS

FIGURE 5.50 Technical summary of Sun Fire 6800 server and UltraSPARC III micro-
processor.

5.15 Another View: The Sun Fire 6800 Server 487

associative cache and a 128 entry 4-way associative cache. The physical address
is then compared to the cache full tag, and only if they match is a cache hit al-
lowed to proceed.

To get even more memory performance, UltraSPARC III also has a data
prefetch cache, essentially the same as the streaming buffers described in section
5.6. It supports up to eight prefetch requests initiated either by hardware or by
software. The prefetch cache remembers the address used to prefetch the data. If
a load hits in prefetch cache, it automatically prefetches next load address. It cal-
culates the stride using the current address and the previous address. Each
prefetch entry is 64 bytes, and it is filled in 14 clock cycles from the L2 cache.
Loads from the prefetch cache complete at the rate of 2 every 3 clock cycles ver-
sus 2 every 4 clock cycles from the data cache. This multiported memory can
support two 8-byte reads and one 16-byte write every clock cycle.

FIGURE 5.51 Sun Fire 6800 server block diagram. Note the large number of wide memory paths per processors. Up to
24 processors can be connected. Up to 12 share a single Sun Fire Data Interconnect. With more than 12, a second data
interconnect is added. The number of separate paths to different memories are 256 data pins + 32 bits of error correction
code (ECC) and 17 address bits + 1 bit parity for the off-chip L2 cache (200 MHz); 43 address pins + 1 bit of parity for ad-
dresses to external main memory; 32 address pins + 1 bit of parity for addresses to local main memory; 128 data pins + 16
bits of ECC to a data switch (150 MHz); 256 data pins + 32 bits of ECC between the data switch and the data interconnect
(150 MHz); and 512 data pins + 64 bits of ECC between the data switch and local memory (75 MHz).

Address Interface <43 + 1 parity>

Data Interface <256 + 32 ECC>

...

L2
Cache
†8 MB

UltraSPARC III
900 MHz

256 bits +
32 ECC data
@ 200 MHz

512 bits +
64 ECC data
@ 75 MHz

128 bits +
16 ECC data
@ 150 MHz

256 bits +
32 ECC data
@ 150 MHz

32 bits +
1 parity addr
@ 75 MHz

43 bits +
1 parity addr
@ 150 MHz

17 bits +
1 parity addr
@ 200 MHz

Switch

Main
Memory
† 8 GB

L2
Cache
†8 MB

UltraSPARC III
900 MHz

256 bits +
32 ECC data
@ 200 MHz

512 bits +
64 ECC data
@ 75 MHz

128 bits +
16 ECC data
@ 150 MHz

256 bits +
32 ECC data
@ 150 MHz

32 bits +
1 parity addr
@ 75 MHz

43 bits +
1 parity addr
@ 150 MHz

17 bits +
1 parity addr
@ 200 MHz

Switch

Main
Memory
† 8 GB

488 Chapter 5 Memory-Hierarchy Design

In addition to prefetching data, UltraSPARC III has a small instruction
prefetch buffer of 32 bytes that tries to stay one block ahead of the instruction de-
coder. On an instruction cache miss, two blocks are requested: one for the in-
struction cache and one for the instruction prefetch buffer. The buffer is then used
to fill the cache if a sequential access also misses. In addition to parity and ECC
to help with dependability, Sun Fire 6800 server offers up to four dynamic system
domains. This option allows the computer to be divided into quarters or halves,
with each piece running its own version of the operating system independently.
Thus, a hardware or software failure in one piece does not affect applications run-
ning on the rest of the computer. The dynamic portion of the name means the re-
configuration can occur without rebooting the system.

To help diagnose problems, every UltraSPARC III has an 8-bit ``back door''
bus that runs independently from the main buses. If the system bus has an error,
processors can still boot and run diagnostic programs over this back door bus to
diagnose the problem.

Among the other availability features of the 6800 is a redundant path between
the processors. Each system has two networks to connect the 24 processors to-
gether so that if one fails the system still works. Similarly, each Sun Fire inter-
connect has two crossbar chips to link it to the processor board, so that one
crossbar chip can fail and yet the board can still communicate. There are also
dual redundant system controllers that monitors server operation, and so they are
able to notify administrators when problems are detected. Administrators can use
the controllers to remotely initiate diagnostics and corrective actions.

In summary, the Sun Fire 6800 server and its processor pay much greater at-
tention to dependability, memory latency and bandwidth, and system scalability
than do desktop computers and processors.

As the most naturally quantitative of the computer architecture disciplines, mem-
ory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet the
authors were limited here not by lack of warnings, but by lack of space!

Fallacy: Predicting cache performance of one program from another.

Figure 5.14 on page 409 shows the instruction miss rates and data miss rates for
three programs from the SPEC2000 benchmark suite as cache size varies. De-
pending on the program, the data misses per thousand instructions for a 4096-KB
cache is 9, 2, or 90, and the instruction misses per thousand instructions for a 4-
KB cache is 55, 19, or 0.0004. Figure 5.45 on page 478 shows that commercial
programs such as databases will have significant miss rates even in a 8-MB sec-
ond-level cache, which is generally not the case for the SPEC programs. Similar-
ly, MPEG3 decode in Figure 5.46 on page 480 fits entirely in a 64 KB data cache,

5.16 Fallacies and Pitfalls

5.16 Fallacies and Pitfalls 489

while SPEC doesn’t get such low miss rates until 1024 KB. Clearly, generalizing
cache performance from one programs to another is unwise.

Pitfall: Simulating enough instructions to get accurate performance measures
of the memory hierarchy.

There are really three pitfalls here. One is trying to predict performance of a large
cache using a small trace. Another is that a program's locality behavior is not con-
stant over the run of the entire program. The third is that a program's locality be-
havior may vary depending on the input.

FIGURE 5.52 Instruction and data misses per thousand instructions for as cache size varies from 4 KB to 4096
KB. Instruction misses for gcc are 30,000 to 40,000 times larger than lucas, and conversely, data misses for lucas are 2 to
60 times larger than gcc. The programs gap, gcc, and lucas are from the SPEC2000 benchmark suite. These data are from
the same experiment as in Figure 5.10.

-

2 0

4 0

6 0

8 0

100

120

140

160

4 1 6 6 4 256 1024 4096

Cache size (KB)

Misses per
 1000

in t ruct ions

D: lucas

D: gcc

D: gap

I: gap

I: gcc

I: lucas

490 Chapter 5 Memory-Hierarchy Design

FIGURE 5.53 Instruction misses per 1000 references for five inputs to perl benchmark from SPEC2000. There is
little variation in misses and little difference between the five inputs for the first 1.9 billion instructions, but running to com-
pletion shows how misses vary over the life of the program and how they depend on the input. The top graph shows the
running average misses for the first 1.9 billion instructions, which starts at about 2.5 and ends at about 4.7 misses per 1000
references for all five inputs. The bottom graph shows the running average misses to run to competition, which takes 16 to
41 billion instructions depending on the input. After the first 1.9 billion instructions, the misses per 1000 references vary from
2.4 to 7.9 depending on the input. The simulations were for the Alpha processor using separate L1 caches for instructions
and data, each 2-way 64KB with LRU, and a unified1MB direct-mapped L2 cache.

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0 4 2

Instructions (billion)

In
s

tr
u

c
ti

o
n

m

is
s

e
s

p

e
r

1
0

0
0

re

fe
re

n
ce

s

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Instructions (billion)

In
s

tr
u

c
ti

o
n

m

is
s

e
s

p

e
r

1
0

0
0

re

fe
re

n
ce

s

1

2 ,3 ,4 ,5

5.16 Fallacies and Pitfalls 491

Figure 5.53 shows the cumulative average instruction misses per thousand in-
structions for five inputs to a single SPEC2000 program. For these inputs, the av-
erage memory rate for the first 1.9 billion instructions is very different from their
average miss rate for the rest of the execution.

The first edition of this book included another example of this pitfall. The
compulsory miss ratios were erroneously high (e.g., 1%) because of tracing too
few memory accesses. A program with an compulsory cache miss ratio of 1%
running on a computer accessing memory 10 million times per second (at the
time of the first edition) would access hundreds of megabytes of memory per sec-
ond:

Data on typical page fault rates and process sizes do not support the conclusion
that memory is touched at this rate.

Pitfall: Too small an address space.

Just five years after DEC and Carnegie Mellon University collaborated to design
the new PDP-11 computer family, it was apparent that their creation had a fatal
flaw. An architecture announced by IBM six years before the PDP-11 was still
thriving, with minor modifications, 25 years later. And the DEC VAX, criticized
for including unnecessary functions, sold millions of units after the PDP-11 went
out of production. Why?

The fatal flaw of the PDP-11 was the size of its addresses (16 bits) as com-
pared to the address sizes of the IBM 360 (24 to 31 bits) and the VAX (32 bits).
Address size limits the program length, since the size of a program and the
amount of data needed by the program must be less than 2address size. The reason
the address size is so hard to change is that it determines the minimum width of
anything that can contain an address: PC, register, memory word, and effective-
address arithmetic. If there is no plan to expand the address from the start, then
the chances of successfully changing address size are so slim that it normally
means the end of that computer family. Bell and Strecker [1976] put it like this:

There is only one mistake that can be made in computer design that is difficult to
recover from—not having enough address bits for memory addressing and mem-
ory management. The PDP-11 followed the unbroken tradition of nearly every
known computer. [p. 2]

A partial list of successful computers that eventually starved to death for lack of
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086, Intel
80186, Intel 80286, Motorola AMI 6502, Zilog Z80, CRAY-1, and CRAY X-
MP.

10,000,000 accesses
Second--

0.01 misses
Access----------------------------× 32 bytes

Miss--------------------× 60 seconds
Minute--------------------------

192,000,000 bytes
Minute--

=×

492 Chapter 5 Memory-Hierarchy Design

Even the venerable 80x86 line is showing danger signs, with Intel justifying
migration to IA-64 in part to provide a larger flat address space than 32 bits, and
AMD proposing its own 64-bit address extension called x86-64.

As we expected, by this third edition every desktop and server microprocessor
manufacturer offers computers with 64-bit flat addresses. DSPs and embedded
applications, however, may yet be condemned to repeat history as memories
grow and desired functions multiply.

Pitfall: Emphasizing memory bandwidth in DRAMs versus memory latency.

Direct RDRAM offers up to 1.6 GBytes/second of bandwidth from a single
DRAM. When announced, the peak bandwidth was 8 times faster than individual
conventional SDRAM chips.

PCs do most memory accesses through a two-level cache hierarchy, so its un-
clear how much benefit is gained from high bandwidth without also improving
memory latency. According to Pabst [2000], when comparing PCs with 400 MHz
DRDRAMs to PCs 133 MHz SDRAM, for office applications they had identical
average performance. For games, DRDRAM was 1% to 2% faster. For profes-
sional graphics applications, it was 10% to 15% faster. The tests used a 800 MHz
Pentium III (which integrates a 256-KB L2 cache), chip sets that support a 133
MHz system bus, and 128 MB of main memory.

One measure of the RDRAM cost is about a 20% larger die for the same ca-
pacity compared to SDRAM. DRAM designers use redundant rows and columns
to significantly improve yield on the memory portion of the DRAM, so a much

Modules Dell XPS PCs

ECC? No ECC ECC No ECC ECC

Label DIMM RIMM A B B - A C D D - C

Memory or System? DRAM System DRAM System DRAM

Memory Size (MB) 256 256 128 512 384 128 512 384

SDRAM PC100 $175 $259 $1,519 $2,139 $620 $1,559 $2,269 $710

DRDRAM PC700 $725 $826 $1,689 $3,009 $1,320 $1,789 $3,409 $1,620

Price Ratio
DRDRAM/SDRAM

4.1 3.2 1.1 1.4 2.1 1.1 1.5 2.3

FIGURE 5.54 Comparison of price of SDRAM v. DRDRAM in memory modules and in systems in 2000. DRDRAM
memory modules cost about a factor of four more without ECC and three more with ECC. Looking at the cost of the extra
384 MB of memory in PCs in going from 128 MB to 512 MB, DRDRAM costs twice as much. Except for differences in band-
widths of the DRAMs, the systems were identically configured. The Dell XPS PCs were identical except for memory: 800
MHz Pentium III, 20 GB ATA disk, 48X CDROM, 17” monitor, and Microsoft Windows 95/98 and Office 98. The module pric-
es were the lowest found at pricewatch.com in June 2000. By September 2001 PC800 DRDRAM cost $76 for 256 MB while
PC100 to PC150 SDRAM cost $15 to $23, or about a factor of 3.3 to 5.0 less expensive. (In September 2001 Dell did not
offer systems whose only difference was type of DRAMs, hence we stick with the comparison from 2000.)

5.16 Fallacies and Pitfalls 493

larger interface might have a disproportionate impact on yield. Yields are a close-
ly guarded secret, but prices are not. Figure 5.54 compares prices of various ver-
sions of DRAM, in memory modules and in systems. Using this evaluation, in
2000 the price is about a factor of two to three higher for RDRAM.

RDRAM is at its strongest in small memory systems that need high band-
width. The low cost of the Sony Playstation 2, for example, limits the amount of
memory in the system to just two chips, yet its graphics has an appetite for high
memory bandwidth. RDRAM is at its weakest in servers, where the large number
of DRAM chips needed in even the minimal memory configuration make it easy
to achieve high bandwidth with ordinary DRAMs.

FIGURE 5.55 Top 10 in memory bandwidth as measured by the copy portion of the stream benchmark [McCalpin
2001]. Note that the last three computers are the only cache-based systems on the list, and that six of the top seven are
vector computers. Systems use between 8 and 256 processors to achieve higher memory bandwidth. System bandwidth is
bandwidth of all CPUs collectively. CPU bandwidth is simply system bandwidth divided by the number of CPUs. The
STREAM benchmark is a simple synthetic benchmark program that measures sustainable memory bandwidth (in MB/s) for
simple vector kernels. It is specifically works with data sets much larger than the available cache on any given system.

1

10

100

1,000

10,000

100,000

1,000,000

N
E

C
 S

X
 5

F
uj

its
u

V
P

P
50

00

N
E

C
 S

X
 4

C
ra

y
T

3E

C
ra

y
C

90

C
ra

y
Y

-M
P

C
ra

y
S

V
1

H
P

 S
up

er
D

om
e

S
G

I
O

rig
in

38
00

S
G

I
O

rig
in

20
00

M
eg

ab
yt

es
/s

ec
o

n
d

System MB/sec
CPU MB/sec

494 Chapter 5 Memory-Hierarchy Design

Pitfall: Delivering high memory bandwidth in a cache-based system.

Caches help with average cache memory latency but may not deliver high memo-
ry bandwidth to an application that needs it. Figure 5.55 shows the top ten results
from the Stream benchmark as of 2001, which measures bandwidth to copy data
[McCalpin 2001].The NEC SX 5 memory offers up to 16384 SDRAM memory
banks to achieve its top ranking.

Only three computers rely on data caches, and they are the three slowest of the
top ten, about a factor of a hundred slower than the fastest processor. Stated an-
other way, a processor from 1988–the Cray YMP–still has a factor of 10 in mem-
ory bandwidth advantage over cache based processors from 2001.

Pitfall: Ignoring the impact of the operating system on the performance of the
memory hierarchy.

Figure 5.56 shows the memory stall time due to the operating system spent on
three large workloads. About 25% of the stall time is either spent in misses in the
operating system or results from misses in the application programs because of
interference with the operating system.

Pitfall: Relying on the operating systems to change the page size over time.

The Alpha architects had an elaborate plan to grow the architecture over time by
growing its page size, even building it into the size of its virtual address. When it

Time

Misses
% time due to appl.

misses % time due directly to OS misses
% time OS
misses &

appl.
conflictsWorkload

% in % in
appl OS

Inherent
appl.

misses

OS
conflicts
w. appl.

OS
instr

misses

Data
misses for
migration

Data misses
in block

operations

Rest
of OS
misses

Pmake 47% 53% 14.1% 4.8% 10.9% 1.0% 6.2% 2.9% 25.8%

Multipgm 53% 47% 21.6% 3.4% 9.2% 4.2% 4.7% 3.4% 24.9%

Oracle 73% 27% 25.7% 10.2% 10.6% 2.6% 0.6% 2.8% 26.8%

FIGURE 5.56 Misses and time spent in misses for applications and operating system. The operating system adds
about 25% to the execution time of the application. Each CPU has a 64-KB instruction cache and a two-level data cache
with 64 KB in the first level and 256 KB in the second level; all caches are direct mapped with 16-byte blocks. Collected on
Silicon Graphics POWER station 4D/340, a multiprocessor with four 33-MHz R3000 CPUs running three application work-
loads under a UNIX System V—Pmake: a parallel compile of 56 files; Multipgm: the parallel numeric program MP3D running
concurrently with Pmake and five-screen edit session; and Oracle: running a restricted version of the TP-1 benchmark using
the Oracle database. Data from Torrellas, Gupta, and Hennessy [1992].

5.17 Concluding Remarks 495

became time to grow page sizes with later Alphas, the operating system designers
balked and the virtual memory system was revised to grow the address space
while maintaining the 8-KB page.

Architects of other computers noticed very high TLB miss rates, and so added
multiple, larger page sizes to the TLB. The hope was that operating systems pro-
grammers would allocate an object to the largest page that made sense, thereby
preserving TLB entries. After a decade of trying, most operating systems use
these “superpages” only for handpicked functions: mapping the display memory
or other I/O devices, or using very large pages for the database code.

Figure 5.57 compares the memory hierarchy of microprocessors aimed at desk-
top, server, and embedded applications. The L1 caches are similar across applica-
tions, with the primary differences being L2 cache size, die size, processor clock
rate, and instructions issued per clock.

In contrast to showing the state of the art in a given year, Figure 5.56 shows
evolution over a decade of the memory hierarchy of Alpha microprocessors and
systems. The primary change between the Alpha 21064 and 21364 is the hun-
dredfold increase in on-chip cache size, which tries to compensate for the sixfold
increase in main memory latency as measured in instructions.

The difficulty of building a memory system to keep pace with faster CPUs is
underscored by the fact that the raw material for main memory is the same as that
found in the cheapest computer. It is the principle of locality that saves us here—
its soundness is demonstrated at all levels of the memory hierarchy in current
computers, from disks to TLBs. One question is whether increasing scale breaks
any of our assumptions. Are L3 caches bigger than prior main memories a cost-
effective solution? Do 8 KB pages makes sense with terabyte main memories?

The design decisions at all these levels interact, and the architect must take the
whole system view to make wise decisions. The primary challenge for the
memory-hierarchy designer is in choosing parameters that work well together,
not in inventing new techniques. The increasingly fast CPUs are spending a
larger fraction of time waiting for memory, which has led to new inventions that
have increased the number of choices: prefetching, cache-aware compilers, and
increasing page size. Fortunately, there tends to be a technological “sweet spot”
in balancing cost, performance, power, and complexity: missing the target wastes
performance, power, hardware, design time, debug time, or possibly all five. Ar-
chitects hit the target by careful, quantitative analysis.

5.17 Concluding Remarks

496 Chapter 5 Memory-Hierarchy Design

MPU AMD
Athlon

Intel Pentium
III

Intel Pentium 4 IBM Power-
PC 405CR

Sun
UltraSPARC III

Instruction set ar-
chitecture

80x86 80x86 80x86 PowerPC SPARC v9

Intended
application

desktop desktop, server desktop embedded
core

server

CMOS Process 0.18 0.18 0.18 0.25 0.15

Die size (mm2) 128 106 to 385 217 37 210

Instructions
issued/clock

3 3 3 RISC ops 1 4

Clock Rate (2001) 1400 MHz 900 - 1200 MHz 2000 MHz 266 MHz 900 MHz

Instruction Cache 64 KB,
2-way S.A.

16 KB,
2-way S.A.

12000 RISC op trace
cache (~96 KB)

16 KB,
2-way S.A.

32 KB,
4-way S.A.

Latency (clocks) 3 3 4 1 2

Data Cache 64 KB,
2-way S.A.

16 KB,
2-way S.A.

8 KB,
4-way S.A.

8 KB,
2-way S.A.

64 KB,
4-way S.A.

Latency (clocks) 3 3 2 1 2

TLB entries
(I/D/L2 TLB)

280/288 32/64 128 4/8/64 128/512

Min. page size 8 KB 8 KB 8 KB 1 KB 8 KB

On Chip L2 Cache 256 KB,
16-way S.A.

256 - 2048 KB,
8-way S.A.

256 KB, 8-way S.A. -- --

Off Chip L2 Cache -- -- -- -- 8MB, 1-wayS.A.

Latency (clocks) 11 7 ? -- 15

Block Size
(L1/L2, bytes)

64 32 64/128 32 32

Memory bus width
(bits)

64 64 64 64 128

Memory bus clock 133 MHz 133 MHz 400 MHz 133 MHz 150 MHz

FIGURE 5.57 Desktop, embedded and server microprocessors in 2001. From a memory hierarchy perspective, the
primary differences between applications is L2 cache. There is no L2 cache for embedded, 256 KB on chip for desktop, and
servers use 2MB on chip or 8 MB off chip. The processor clock rates also vary: 266 MHz for embedded, 900 MHz for servers,
and 1200 to 2000 MHz for desktop. The Intel Pentium III includes the Xeon chip set for multiprocessor servers. It has the
same processor core as the standard Pentium III, but a much larger on-chip L2 cache (up to 2 MB) and die size (385 mm2)
but a slower clock rate (900 MHz).

5.17 Concluding Remarks 497

CPU 21064 21164 21264 21364

CMOS Process Feature Size 0.68 0.50 0.35 0.18

Clock Rate (Initial) 200 300 525 ~ 1000

1st System Ship Date 3000 / 800 8400 5/300 ES40 2002-2003?

CPI gcc (SPECInt92/95) 2.51 1.27 0.63 ~ 0.6

Instruction Cache 8 KB, 1-way 8 KB, 1-way 64 KB, 2-way 64 KB, 2-way

Latency (clocks) 2 2 2 or 3 2 or 3

Data Cache 8 KB, 1-way,
Write Through

8 KB, 1-way,
Write Through

64 KB, 2-way,
Write Back

64 KB, 2-way,
Write Back

Latency 2 2 3 3

Write/Victim Buffer 4 blocks 6 blocks 8 blocks 32 blocks

Block Size (bytes, all caches) 32 32 32 or 64 64

Virtual/Physical Address Size 43/34 43/40 48/44 or 43/41 48/44 or 43/41

Page size 8 KB 8 KB 8 KB 8 KB or 64 KB

Instruction TLB 12 entry, F.A 48 entry, F.A 128 entry, F.A 128 entry, F.A

Data TLB 32 entry, F.A 64 entry, F.A 128 entry, F.A 128 entry, F.A

Path Width Off Chip (bits) 128 128 128 to L2,
64 to memory

128?

On Chip Unified L2 Cache --- 96 KB, 3-way,
Write Back

 --- 1536 KB, 6-way,
Write Back

Latency (clocks) --- 7 --- 12

Off Chip Unified L2 or L3
Cache

2 MB, 1-way,
Write Back

4 MB, 1-way,
Write Back

8 MB, 1-way,
Write Back

Latency (clocks) 5 12 16 ---

Memory size .008 - 1 GB 0.125 - 14 GB 0.5 - 32 GB 0.5 - 4 GB / proc.

Latency (clocks) 68 80 122 ~ 90

Latency (instructions) 27 63 194 ~ 150

FIGURE 5.58 Four generations of Alpha microprocessors and systems. Instruction latency was calculated by dividing
the latency in clock cycles by average CPI for SPECint programs. The 21364 integrates a large on-chip cache and a memory
controller to connect directly to DRDRAM chips, thereby significantly lowering memory latency. The large on-chip cache and
low latency to memory make an off-chip cache unnecessary. A network allows processors to access non-local memory with
non-uniform access times (see Chapter 6): 30 clocks per network hop, so 120 clocks in the nearest group of 4 and 200 in a
group of 16. Memory latency in instructions is calculated by dividing clocks by average CPI.

498 Chapter 5 Memory-Hierarchy Design

Although the pioneers of computing knew of the need for a memory hierarchy
and coined the term, the automatic management of two levels was first proposed
by Kilburn et al. [1962]. It was demonstrated with the Atlas computer at the
University of Manchester. This computer appeared the year before the IBM 360
was announced. Although IBM planned for its introduction with the next genera-
tion (System/370), the operating system TSS wasn’t up to the challenge in 1970.
Virtual memory was announced for the 370 family in 1972, and it was for this
computer that the term “translation look-aside buffer” was coined [Case and
Padegs 1978]. The only computers today without virtual memory are a few su-
percomputers, embedded processors, and older personal computers.

Both the Atlas and the IBM 360 provided protection on pages, and the GE 645
was the first system to provide paged segmentation. The earlier Burroughs com-
puters provided virtual memory using segmentation, similar to the segmented ad-
dress scheme of the Intel 8086. The 80286, the first 80x86 to have the protection
mechanisms described on pages 463 to 467, was inspired by the Multics protec-
tion software that ran on the GE 645. Over time, computers evolved more elabo-
rate mechanisms. The most elaborate mechanism was capabilities, which
reached its highest interest in the late 1970s and early 1980s [Fabry 1974; Wulf,
Levin, and Harbison 1981]. Wilkes [1982], one of the early workers on capabili-
ties, had this to say:

Anyone who has been concerned with an implementation of the type just described
[capability system], or has tried to explain one to others, is likely to feel that com-
plexity has got out of hand. It is particularly disappointing that the attractive idea
of capabilities being tickets that can be freely handed around has become lost .…

Compared with a conventional computer system, there will inevitably be a cost to
be met in providing a system in which the domains of protection are small and fre-
quently changed. This cost will manifest itself in terms of additional hardware, de-
creased runtime speed, and increased memory occupancy. It is at present an open
question whether, by adoption of the capability approach, the cost can be reduced
to reasonable proportions.

Today there is little interest in capabilities either from the operating systems or
the computer architecture communities, despite growing interest in protection
and security.

Bell and Strecker [1976] reflected on the PDP-11 and identified a small ad-
dress space as the only architectural mistake that is difficult to recover from. At
the time of the creation of PDP-11, core memories were increasing at a very slow
rate. In addition, competition from 100 other minicomputer companies meant
that DEC might not have a cost-competitive product if every address had to go

5.18 Historical Perspective and References

5.18 Historical Perspective and References 499

through the 16-bit datapath twice. Hence, the architect's decision to add only 4
more address bits than found in the predecessor of the PDP-11.

The architects of the IBM 360 were aware of the importance of address size
and planned for the architecture to extend to 32 bits of address. Only 24 bits were
used in the IBM 360, however, because the low-end 360 models would have been
even slower with the larger addresses in 1964. Unfortunately, the architects didn’t
reveal their plans to the software people, and programmers who stored extra in-
formation in the upper 8 “unused” address bit foiled the expansion effort. (Apple
made a similar mistake 20 years later with the 24-bit address in the Motorola
68000, which required a procedure to later determine “32-bit clean” programs for
the Macintosh when later 68000s used the full 32-bit virtual address.) Virtually
every computer since then, will check to make sure the unused bits stay unused,
and trap if the bits have the wrong value.

A few years after the Atlas paper, Wilkes published the first paper describing
the concept of a cache [1965]:

The use is discussed of a fast core memory of, say, 32,000 words as slave to a
slower core memory of, say, one million words in such a way that in practical
cases the effective access time is nearer that of the fast memory than that of the
slow memory. [p. 270]

This two-page paper describes a direct-mapped cache. Although this is the first
publication on caches, the first implementation was probably a direct-mapped
instruction cache built at the University of Cambridge. It was based on tunnel
diode memory, the fastest form of memory available at the time. Wilkes states
that G. Scarott suggested the idea of a cache memory.

Subsequent to that publication, IBM started a project that led to the first com-
mercial computer with a cache, the IBM 360/85 [Liptay 1968]. Gibson [1967]
describes how to measure program behavior as memory traffic as well as miss
rate and shows how the miss rate varies between programs. Using a sample of 20
programs (each with 3 million references!), Gibson also relied on average memo-
ry access time to compare systems with and without caches. This precedent is
more than 30 years old, and yet many used miss rates until the early 1990s.

Conti, Gibson, and Pitkowsky [1968] describe the resulting performance of
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the 11 programs in
the paper, even though the 360/85 has a slower clock cycle time (80 ns versus
60 ns), less memory interleaving (4 versus 16), and a slower main memory
(1.04 microsecond versus 0.75 microsecond). This paper was also the first to
use the term “cache.”

Others soon expanded the cache literature. Strecker [1976] published the
first comparative cache design paper examining caches for the PDP-11. Smith
[1982] later published a thorough survey paper, using the terms “spatial locali-
ty” and “temporal locality”; this paper has served as a reference for many com-
puter designers.

500 Chapter 5 Memory-Hierarchy Design

Although most studies relied on simulations, Clark [1983] used a hardware
monitor to record cache misses of the VAX-11/780 over several days. Clark and
Emer [1985] later compared simulations and hardware measurements for transla-
tions.

Hill [1987] proposed the three C’s used in section 5.5 to explain cache misses.
Jouppi [1998] retrospectively says that Hill’s three Cs model led directly to his
invention of the victim cache to take advantage of faster direct map caches and
yet avoid most of the cost of conflict misses. Ugumar and Abraham' [1993] argue
that the baseline cache for the three C's model should use optimal replacement;
this eliminates the anomalies of LRU-based miss classification, and allows con-
flict misses to be broken down into those caused by mapping and those caused by
a non-optimal replacement algorithm.

One of the first papers on nonblocking caches is by Kroft [1981]. Kroft [1998]
later explained that he was the first to design a computer with a cache at Control
Data Corporation, and when using old concepts for new mechanisms, he hit upon
the idea of allowing his two-ported cache to continue to service other accesses on
a miss.

Baer and Wang [1988] did one of the first examinations of multilevel inclusion
property. Wang, Baer, and Levy [1989] then produced an early paper on perfor-
mance evaluation of multilevel caches. Later, Jouppi and Wilton [1994] proposed
multilevel exclusion for multilevel caches on chip.

In addition to victim caches, Jouppi [1990] also examined prefetching via
streaming buffers. His work was extended by Farkas et al [1995] to that stream-
ing buffers work well with non-blocking loads and speculative execution for in-
order processors, and later Farkas et al [1997] showed that while out-of-order
processors can tolerate unpredictable latency better, they still benefit. They also
refined memory bandwidth demands of stream buffers.

Proceedings of the Symposium on Architectural Support for Compilers and
Operating Systems (ASPLOS) and the International Computer Architecture
Symposium (ISCA) from the 1990s are filled with papers on caches. (In fact
some wags claimed ISCA really stood for the International Cache Architecture
Symposium.)

This chapter relies on the measurements of SPEC2000 benchmarks collected
by Cantin and Hill [2001]. There are several other papers used in this chapter that
are cited in the captions of the figures that use the data: Agarwal and Pudar
[1993]; Barroso, Gharachorloo, and Bugnion [1998]; Farkas and Jouppi [1994];
Jouppi [1990]; Lam, Rothberg, and Wolf [1991]; Mowry, Lam, and Gupta
[1992]; Lebeck and Wood [1994]; McCalpin [2001]; and Torrellas, Gupta, and
Hennessy [1992].

The Alpha architecture is described in detail by Bhandarkar [1995] and by
Sites [1992], and sources of information on the 21264 are Compaq [1999], Cvet-
anovic and Kessler [2000], and Kessler[1999]. Two Emotion Engine references
are Kunimatsu et al [2000] and Oka and Suzuoki [1999]. Information on the Sun
Fire 6800 server is found primarily on Sun’s web site, but Horel and Lauterbach
[1999] and Heald, R. et al [2000] published detailed information on UltraSPARC
III.

5.18 Historical Perspective and References 501

References

AGARWAL, A. [1987]. Analysis of Cache Performance for Operating Systems and Multiprogram-
ming, Ph.D. Thesis, Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May).

AGARWAL, A. AND S. D. PUDAR [1993]. “Column-associative caches: A technique for reducing the
miss rate of direct-mapped caches,” 20th Annual Int’l Symposium on Computer Architecture ISCA
’20, San Diego, Calif., May 16–19. Computer Architecture News 21:2 (May), 179–90.

BAER, J.-L. AND W.-H. WANG [1988]. “On the inclusion property for multi-level cache hierarchies,”
Proc. 15th Annual Symposium on Computer Architecture (May–June), Honolulu, 73–80.

Barroso, L.A., Gharachorloo, K. and E. Bugnion [1998]. “Memory System Characterization of Com-
mercial Workloads,” Proceedings 25th International Symposium on Computer Architecture, Barce-
lona (July), 3-14.

BELL, C. G. AND W. D. STRECKER [1976]. “Computer structures: What have we learned from the
PDP-11?,” Proc. Third Annual Symposium on Computer Architecture (January), Pittsburgh, 1–14.

BHANDARKAR, D. P. [1995]. Alpha Architecture Implementations, Digital Press, Newton, Mass.

BORG, A., R. E. KESSLER, AND D. W. WALL [1990]. “Generation and analysis of very long address
traces,” Proc. 17th Annual Int’l Symposium on Computer Architecture, Seattle, May 28–31, 270–9.

CABTIN, J. F. AND M. D.HILL, [2001]. Cache Performance for Selected SPEC CPU2000 Bench-
marks, http://www.jfred.org/cache-data.html, (June).

CASE, R. P. AND A. PADEGS [1978]. “The architecture of the IBM System/370,” Communications of
the ACM 21:1, 73–96. Also appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Struc-
tures: Principles and Examples (1982), McGraw-Hill, New York, 830–855.

CLARK, D. W. [1983]. “Cache performance of the VAX-11/780,” ACM Trans. on Computer Systems
1:1, 24–37.

D. W. CLARK and J. S. EMER [1985], “Performance of the VAX-11/780 Translation Buffer: Simu-
lation and Measurement,” ACM Trans. on Computer Systems, 3, 1 (February 1985),31-62.

COMPAQ COMPUTER CORPORATION [1999] Compiler Writer's Guide for the Alpha 21264 Order
Number EC-RJ66A-TE, June, 112 pages. http://www1.support.compaq.com/alpha-tools/documen-
tation/current/21264_EV67/ec-rj66a-te_comp_writ_gde_for_alpha21264.pdf

CONTI, C., D. H. GIBSON, AND S. H. PITKOWSKY [1968]. “Structural aspects of the System/360
Model 85, Part I: General organization,” IBM Systems J. 7:1, 2–14.

CRAWFORD, J. H. AND P. P. GELSINGER [1987]. Programming the 80386, Sybex, Alameda, Calif.

CVETANOVIC, Z. and R.E. KESSLER [2000] “Performance Analysis of the Alpha 21264-based Com-
paq ES40 System.” Proc. 27th Annual Int’l Symposium on Computer Architecture, Vancouver,
Canada, June 10-14, IEEE Computer Society Press, 192-202.

FABRY, R. S. [1974]. “Capability based addressing,” Comm. ACM 17:7 (July), 403–412.

Farkas, K.I., P. Chow, N.P. Jouppi,; Z. Vranesic [1997]. “Memory-system design considerations for
dynamically-scheduled processors.”24th Annual International Symposium on Computer Architec-
ture. Denver, CO, USA, 2-4 June, 133-43.

FARKAS, K. I. AND N. P. JOUPPI [1994]. “Complexity/performance trade-offs with non-blocking
loads,” Proc. 21st Annual Int’l Symposium on Computer Architecture, Chicago (April).

Farkas, K.I., N.P.Jouppi, and P. Chow [1995]. “How useful are non-blocking loads, stream buffers
and speculative execution in multiple issue processors?,” Proceedings. First IEEE Symposium on
High-Performance Computer Architecture, Raleigh, NC, USA, 22-25 Jan.,78-89.

GAO, Q. S. [1993]. “The Chinese remainder theorem and the prime memory system,” 20th Annual
Int’l Symposium on Computer Architecture ISCA '20, San Diego, May 16–19, 1993. Computer
Architecture News 21:2 (May), 337–40.

502 Chapter 5 Memory-Hierarchy Design

GEE, J. D., M. D. HILL, D. N. PNEVMATIKATOS, AND A. J. SMITH [1993]. “Cache performance of the
SPEC92 benchmark suite,” IEEE Micro 13:4 (August), 17–27.

GIBSON, D. H. [1967]. “Considerations in block-oriented systems design,” AFIPS Conf. Proc. 30,
SJCC, 75–80.

HANDY, J. [1993]. The Cache Memory Book, Academic Press, Boston.

Heald, R. et al [2000]. “ A third-generation SPARC V9 64-b microprocessor,” IEEE Journal of Solid-
State Circuits, 35:11 (Nov), 1526-38.

HILL, M. D. [1987]. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D. Thesis,
University of Calif. at Berkeley, Computer Science Division, Tech. Rep. UCB/CSD 87/381
(November).

HILL, M. D. [1988]. “A case for direct mapped caches,” Computer 21:12 (December), 25–40.

Horel, T. and G. Lauterbach [1999]. “UltraSPARC-III: designing third-generation 64-bit perfor-
mance,” IEEE Micro, 19:3 (May-June), 73-85.

Hughes, C.J.; Kaul, P.; Adve, S.V.; Jain, R.; Park, C.; Srinivasan, J. [2001]. “Variability in the execu-
tion of multimedia applications and implications for architecture, “ Proc. 28th Annual International
Symposium on Computer Architecture, Goteborg, Sweden, 30 June-4 July , 254-65.

JOUPPI, N. P. [1990]. “Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers,” Proc. 17th Annual Int’l Symposium on Computer Architec-
ture, 364–73.

JOUPPI, N. P. [1998]. “Retrospective: Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers.“25 Years of the International Symposia on
Computer Architecture (Selected Papers). ACM, 71-73.

Jouppi, N.P. and S.J.E. Wilton [1994]. “Trade-offs in two-level on-chip caching. Proceedings the 21st
Annual International Symposium on Computer Architecture, Chicago, IL, USA, (18-21 April).34-
45.

KESSLER, R.E. [1999] “The Alpha 21264 microprocessor.” IEEE Micro, vol.19, (no.2), March-April,
24-36.

KILBURN, T., D. B. G. EDWARDS, M. J. LANIGAN, AND F. H. SUMNER [1962]. “One-level storage
system,” IRE Trans. on Electronic Computers EC-11 (April) 223–235. Also appears in D. P.
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982),
McGraw-Hill, New York, 135–148.

KROFT, D. [1981]. “Lockup-free instruction fetch/prefetch cache organization,” Proc. Eighth Annual
Symposium on Computer Architecture (May 12–14), Minneapolis, 81–87.

KROFT, D. [1998]. “Retrospective: Lockup-Free Instruction Fetch/Prefetch Cache Organization.“25
Years of the International Symposia on Computer Architecture (Selected Papers). ACM, 20-21.

KUNIMATSU, A., N. IDE, T. SATO, et al. [2000] “Vector unit architecture for emotion synthesis.” IEEE
Micro, vol.20, (no.2), IEEE, March-April, 40-7.

LAM, M. S., E. E. ROTHBERG, AND M. E. WOLF [1991]. “The cache performance and optimizations
of blocked algorithms,” Fourth Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems, Santa Clara, Calif., April 8–11. SIGPLAN Notices 26:4 (April), 63–74.

LEBECK, A. R. AND D. A. WOOD [1994]. “Cache profiling and the SPEC benchmarks: A case study,”
Computer 27:10 (October), 15–26.

LIPTAY, J. S. [1968]. “Structural aspects of the System/360 Model 85, Part II: The cache,” IBM
Systems J. 7:1, 15–21.

LUK, C.-K. and T.C MOWRY[1999]. “Automatic compiler-inserted prefetching for pointer-based ap-
plications.” IEEE Transactions on Computers, vol.48, (no.2), IEEE, Feb. p.134-41.

MCFARLING, S. [1989]. “Program optimization for instruction caches,” Proc. Third Int’l Conf. on

5.18 Historical Perspective and References 503

Architectural Support for Programming Languages and Operating Systems (April 3–6), Boston,
183–191.

MCCALPIN, J.D. [2001]. STREAM: Sustainable Memory Bandwidth in High Performance Computers
http://www.cs.virginia.edu/stream/.

MOWRY, T. C., S. LAM, AND A. GUPTA [1992]. “Design and evaluation of a compiler algorithm for
prefetching,” Fifth Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-V), Boston, October 12–15, SIGPLAN Notices 27:9 (September), 62–73.

OKA, M. and M. SUZUOKI. [1999] “Designing and programming the emotion engine.” IEEE Micro,
vol.19, (no.6), Nov.-Dec., 20-8.

PABST, T. [2000], “Performance Showdown at 133 MHz FSB - The Best Platform for Coppermine,”
http://www6.tomshardware.com/mainboard/00q1/000302/.

PALACHARLA, S. AND R. E. KESSLER [1994]. “Evaluating stream buffers as a secondary cache re-
placement,” Proc. 21st Annual Int’l Symposium on Computer Architecture, Chicago, April 18–21,
24–33.

PRZYBYLSKI, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan Kaufmann
Publishers, San Francisco, Calif.

PRZYBYLSKI, S. A., M. HOROWITZ, AND J. L. HENNESSY [1988]. “Performance trade-offs in cache
design,” Proc. 15th Annual Symposium on Computer Architecture (May–June), Honolulu, 290–
298.

REINMAN, G. and N. P. JOUPPI. [1999]. “Extensions to CACTI,” http://research.com-
paq.com/wrl/people/jouppi/CACTI.html.

SAAVEDRA-BARRERA, R. H. [1992]. CPU Performance Evaluation and Execution Time Prediction
Using Narrow Spectrum Benchmarking, Ph.D. Dissertation, University of Calif., Berkeley (May).

SAMPLES, A. D. AND P. N. HILFINGER [1988]. “Code reorganization for instruction caches,” Tech.
Rep. UCB/CSD 88/447 (October), University of Calif., Berkeley.

SITES, R. L. (ED.) [1992]. Alpha Architecture Reference Manual, Digital Press, Burlington, Mass.

SMITH, A. J. [1982]. “Cache memories,” Computing Surveys 14:3 (September), 473–530.

SMITH, J. E. AND J. R. GOODMAN [1983]. “A study of instruction cache organizations and replace-
ment policies,” Proc. 10th Annual Symposium on Computer Architecture (June 5–7), Stockholm,
132–137.

STOKES, J. [2000], “Sound and Vision: A Technical Overview of the Emotion Engine,” http://arstech-
nica.com/reviews/1q00/playstation2/ee-1.html.

STRECKER, W. D. [1976]. “Cache memories for the PDP-11?,” Proc. Third Annual Symposium on
Computer Architecture (January), Pittsburgh, 155–158.

Sugumar, R.A. and S.G. Abraham [1993]. “Efficient simulation of caches under optimal replacement
with applications to miss characterization.” 1993 ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, Santa Clara, CA, USA, 17-21 May, p.24-35.

TORRELLAS, J., A. GUPTA, AND J. HENNESSY [1992]. “Characterizing the caching and synchron-
ization performance of a multiprocessor operating system,” Fifth Int’l Conf. on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-V), Boston, October 12–15,
SIGPLAN Notices 27:9 (September), 162–174.

WANG, W.-H., J.-L. BAER, AND H. M. LEVY [1989]. “Organization and performance of a two-level
virtual-real cache hierarchy,” Proc. 16th Annual Symposium on Computer Architecture (May 28–
June 1), Jerusalem, 140–148.

WILKES, M. [1965]. “Slave memories and dynamic storage allocation,” IEEE Trans. Electronic
Computers EC-14:2 (April), 270–271.

WILKES, M. V. [1982]. “Hardware support for memory protection: Capability implementations,”

504 Chapter 5 Memory-Hierarchy Design

Proc. Symposium on Architectural Support for Programming Languages and Operating Systems
(March 1–3), Palo Alto, Calif., 107–116.

WULF, W. A., R. LEVIN, AND S. P. HARBISON [1981]. Hydra/C.mmp: An Experimental Computer
System, McGraw-Hill, New York.

E X E R C I S E S

n Jouppi comments, 2nd pass: drop prime number exercises; mention that “L2
misses can be overlapped on 21264 when doing block copies; e.g., overlap
reading of source block, writing of destination block. Stream benchmark uses
this; put 21064 on the web, then still use exercise 5.11.

n Reinhart comments, 2nd pass: “In the prefetching section, it might be interest-
ing to compare & contrast standard prefetches with the speculative load sup-
port found in IA-64 (or maybe this would make a good exercise).”

n Technical reviewer, 2nd pass: Suggests deriving components of accesses to ar-
rays X, Y, and Z before and after in blocking example on page 419 to show how
came up with “2N3 + N2 memory words accessed for N3 operations” before
blocking and “total number of memory words accessed is 2N3/B + N2” after block-
ing. (See page 10 of technical review)

n The CACTI program mentioned in the section allows people to design caches
and compare hit times as well as miss rates; I would propose projects that look
at both, or possible use an existing exercise and look at the cache access times
in different technologies: 0.18, 0.13, 0.10 to see how/if the trade-offs differ. Al-
so, see how access times differ with different sized caches.

n Jouppi said his teaching experience at Stanford was that it was important to
show a simple in-order CPU so that simple memory performance questions
could be answered using spreadsheets before being exposed to the OOO simu-
lators and traces. Thus he suggests saving the 21064 design in some detail and
then include a series of exercises about it so that they can get the ideas here
first. Perhaps just include a section in the exercises that describes the 21064
caches, and keep some of the old exercises?

n To really account for the impact of cache misses on OOO computers, there
needs to be an OOO instruction simulator to go with the cache. A popular one
is Simple Scalar from Doug Berger, originally from Wisconsin. Another is
RSIM from Rice. I’d add the URLs and propose exercises which use them.

n Add a discussion question: given an Out-of-order CPU, how do you quantia-
tively evaluate memory options? Why is it different from an in-order CPU?

n Thus these exercises need to be sorted into whether to assume CPU in-order,
and can use spreadsheet since it stalls, or out-of-order, and use a simulator
since you cannot account for overlap. Perhaps can simply look at L2 cache

Exercises 505

misses, assuming L1 are overlapped?

n One advanced exercise (level [25]) is to study the impact of out of order exe-
cution on temporal locality in an L1 data cache. The hypothesis is that there
may be more conflict misses due to OOO execution, and that hence multiway
set associativity may be more impact for OOO than for in-order CPUs. The
idea would be to vary out-of-orderness in terms of the size of the load and store
queues and to look at different miss rates as you vary associativity, and see if
the CPU execution model makes much difference.

n Some of these examples with a short miss time (e.g., next one where miss is
10X a hit), state that there is a second level cache and for purposes of this equa-
tion assume that it doesn’t miss, hence it makes sense to talk about “small”
miss penalties. Real misses all the way to memory should be no less than 100
clock cycles

n Mark Hill and Norm Jouppi think we should emphasize “misses per 1000 in-
structions” vs. “miss rate” in this edition, so we need several exercises compar-
ing them. I intend to replace some of the figures, or show it both ways, so this
should be supported by exercises using MPI. This is especially true for L2
caches, which is much less confusing.

n Next is a great exercise. I’d just change/modernize the numbers so the answers
are different. Perhaps make up another one that is similar, just to have some
that aren’t in the answer book?

5.1 [15/15/12/12] <5.1,5.2> Let’s try to show how you can make unfair benchmarks. Here
are two computers with the same processor and main memory but different cache organi-
zations. Assume the miss time is 10 times a cache hit time for both computers. Assume writ-
ing a 32-bit word takes 5 times as long as a cache hit (for the write-through cache) and that
writing a whole 32-byte block takes 10 times as long as a cache-read hit (for the write-back
cache). The caches are unified; that is, they contain both instructions and data.

Cache A: 128 sets, two elements per set, each block is 32 bytes, and it uses write through
and no-write allocate.

Cache B: 256 sets, one element per set, each block is 32 bytes, and it uses write back and
does allocate on write misses.

a. [15] <1.5,5.2> Describe a program that makes computer A run as much faster as pos-
sible than computer B. (Be sure to state any further assumptions you need, if any.)

b. [15] <1.5,5.2> Describe a program that makes computer B run as much faster as pos-
sible than computer A. (Be sure to state any further assumptions you need, if any.)

c. [12] <1.5,5.2> Approximately how much faster is the program in part (a) on computer
A than computer B?

d. [12] <1.5,5.2> Approximately how much faster is the program in part (b) on computer
B than on computer A?

506 Chapter 5 Memory-Hierarchy Design

n Next is another interesting exercise. Just update graph example. 21264 would
be great, if you had access to it.

5.2 [15/10/12/12/12/12/12/12/12/12/12] <5.5,5.4> In this exercise, we will run a program
to evaluate the behavior of a memory system. The key is having accurate timing and then
having the program stride through memory to invoke different levels of the hierarchy. Below
is the code in C for UNIX systems. The first part is a procedure that uses a standard UNIX
utility to get an accurate measure of the user CPU time; this procedure may need to change
to work on some systems. The second part is a nested loop to read and write memory at dif-
ferent strides and cache sizes. To get accurate cache timing, this code is repeated many
times. The third part times the nested loop overhead only so that it can be subtracted from
overall measured times to see how long the accesses were. The last part prints the time per
access as the size and stride varies. You may need to change CACHE_MAX depending on the
question you are answering and the size of memory on the system you are measuring. The
code below was taken from a program written by Andrea Dusseau of U.C. Berkeley, and
was based on a detailed description found in Saavedra-Barrera [1992].

#include <stdio.h>
#include <sys/times.h>
#include <sys/types.h>
#include <time.h>
#define CACHE_MIN (1024) /* smallest cache */
#define CACHE_MAX (1024*1024) /* largest cache */
#define SAMPLE 10 /* to get a larger time sample */
#ifndef CLK_TCK
#define CLK_TCK 60 /* number clock ticks per second */
#endif
int x[CACHE_MAX]; /* array going to stride through */

double get_seconds() { /* routine to read time */
struct tms rusage;
times(&rusage); /* UNIX utility: time in clock ticks */
return (double) (rusage.tms_utime)/CLK_TCK;

}
void main() {
int register i, index, stride, limit, temp;
int steps, tsteps, csize;
double sec0, sec; /* timing variables */

for (csize=CACHE_MIN; csize <= CACHE_MAX; csize=csize*2)
for (stride=1; stride <= csize/2; stride=stride*2) {

sec = 0; /* initialize timer */
limit = csize-stride+1; /* cache size this loop */

steps = 0;
do { /* repeat until collect 1 second */

sec0 = get_seconds(); /* start timer */
for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
 for (index=0; index < limit; index=index+stride)

x[index] = x[index] + 1; /* cache access */
steps = steps + 1; /* count while loop iterations */
sec = sec + (get_seconds() - sec0);/* end timer */

Exercises 507

} while (sec < 1.0); /* until collect 1 second */

/* Repeat empty loop to subtract loop overhead */
tsteps = 0; /* used to match no. while iterations */

do { /* repeat until same no. iterations as above */
sec0 = get_seconds(); /* start timer */
for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
 for (index=0; index < limit; index=index+stride)

temp = temp + index; /* dummy code */
tsteps = tsteps + 1; /* count while iterations */
sec = sec - (get_seconds() - sec0);/* - overhead */
} while (tsteps<steps); /* until = no. iterations */

printf("Size:%7d Stride:%7d read+write:%l4.0f ns\n",
csize*sizeof(int), stride*sizeof(int), (double)

sec*1e9/(steps*SAMPLE*stride*((limit-1)/stride+1)));
}; /* end of both outer for loops */

}

The program above assumes that program addresses track physical addresses, which is true
on the few computers that use virtually addressed caches such as the Alpha 21264. In gen-
eral, virtual addresses tend to follow physical addresses shortly after rebooting, so you may
need to reboot the computer in order to get smooth lines in your results.

To answer the questions below, assume that the sizes of all components of the memory
hierarchy are powers of 2.

a. [15] <5.5,5.4> Plot the experimental results with elapsed time on the y-axis and the
memory stride on the x-axis. Use logarithmic scales for both axes, and draw a line for
each cache size.

b. [10] <5.5,5.4> How many levels of cache are there?

c. [12] <5.5,5.4> What is the size of the first-level cache? Block size? Hint: Assume the
size of the page is much larger than the size of a block in a secondary cache (if any),
and the size of a second-level cache block is greater than or equal to the size of a block
in a first-level cache.

d. [12] <5.5,5.4> What is the size of the second-level cache (if any)? Block size?

e. [12] <5.5,5.4> What is the associativity of the first-level cache? Second-level cache?

f. [12] <5.5,5.4> What is the page size?

g. [12] <5.5,5.4> How many entries are in the TLB?

h. [12] <5.5,5.4> What is the miss penalty for the first-level cache? Second-level?

i. [12] <5.5,5.4> What is the time for a page fault to secondary memory? Hint: A page
fault to magnetic disk should be measured in milliseconds.

j. [12] <5.5,5.4> What is the miss penalty for the TLB?

k. [12] <5.5,5.4> Is there anything else you have discovered about the memory hierarchy
from these measurements?

508 Chapter 5 Memory-Hierarchy Design

n Replace Figure below with a newer computer, perhaps by getting results from
someone who has run this on a recent computer, or worst case from the paper
by Saveerda and Smith.

5.3 [10/10/10] <5.2> Figure 5.59 shows the output from running the program in
Exercise 5.2 on a SPARCstation 1+, which has a single unified cache.

a. [10] <5.2> What is the size of the cache?

b. [10] <5.2> What is the block size of the cache?

c. [10] <5.2> What is the miss penalty for the first-level cache?

5.4 [15/15] <5.2> You purchased an Acme computer with the following features:

n 95% of all memory accesses are found in the cache.

n Each cache block is two words, and the whole block is read on any miss.

n The processor sends references to its cache at the rate of 109 words per second.

n 25% of those references are writes.

n Assume that the memory system can support 109 words per second, reads or writes.

n The bus reads or writes a single word at a time (the memory system cannot read or
write two words at once).

FIGURE 5.59 Results of running program in Exercise 5.2 on a SPARCstation 1+.

1100

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

1000

900

800

700

600

500

400

300

200

4K

64K

8K

128K

2M1M

16K

Stride

256K

4M

32K

512K

Time for read + write (ns)

Exercises 509

n Assume at any one time, 30% of the blocks in the cache have been modified.

n The cache uses write allocate on a write miss.

You are considering adding a peripheral to the system, and you want to know how much of
the memory system bandwidth is already used. Calculate the percentage of memory system
bandwidth used on the average in the two cases below. Be sure to state your assumptions.

a. [15] <5.2> The cache is write through.

b. [15] <5.2> The cache is write back.

5.5 [15/15] <5.7> One difference between a write-through cache and a write-back cache
can be in the time it takes to write. During the first cycle, we detect whether a hit will occur,
and during the second (assuming a hit) we actually write the data. Let’s assume that 50%
of the blocks are dirty for a write-back cache. For this question, assume that the write buffer
for write through will never stall the CPU (no penalty). Assume a cache read hit takes 1
clock cycle, the cache miss penalty is 50 clock cycles, and a block write from the cache to
main memory takes 50 clock cycles. Finally, assume the instruction cache miss rate is 0.5%
and the data cache miss rate is 1%.

a. [15] <5.7> Using statistics for the average percentage of loads and stores from MIPS
in Figure 2.32 on page 149, estimate the performance of a write-through cache with a
two-cycle write versus a write-back cache with a two-cycle write for each of the
programs.

b. [15] <5.7> Do the same comparison, but this time assume the write-through cache
pipelines the writes, so that a write hit takes just one clock cycle.

5.6 [20] <5.5> Improve on the compiler prefetch Example found on page 425: Try to elim-
inate both the number of extraneous prefetches and the number of non-prefetched cache
misses. Calculate the performance of this refined version using the parameters in the
Example.

n The following example isn’t there any more

5.7 [15/12] <5.5> The example evaluation of a pseudo-associative cache on page 399
assumed that on a hit to the slower block the hardware swapped the contents with the cor-
responding fast block so that subsequent hits on this address would all be to the fast block.
Assume that if we don’t swap, a hit in the slower block takes just one extra clock cycle in-
stead of two extra clock cycles.

a. [15] <5.5> Derive a formula for the average memory access time using the terminol-
ogy for direct-mapped and two-way set-associative caches as given on page 399.

b. [12] <5.5> Using the formula from part (a), recalculate the average memory access
times for the two cases found on page 399 (8-KB cache and 256-KB cache). Which
pseudo-associative scheme is faster for the given configurations and data?

n Perhaps next is a good in-order v. out-of-order exercise?

5.8 [15/20/15] <5.10> If the base CPI with a perfect memory system is 1.5, what is the CPI
for these cache organizations? Use Figure 5.14 (page 409):

n 16-KB direct-mapped unified cache using write back.

510 Chapter 5 Memory-Hierarchy Design

n 16-KB two-way set-associative unified cache using write back.

n 32-KB direct-mapped unified cache using write back.

Assume the memory latency is 40 clocks, the transfer rate is 4 bytes per clock cycle and
that 50% of the transfers are dirty. There are 32 bytes per block and 20% of the instructions
are data transfer instructions. There is no write buffer. Add to the assumptions above a TLB
that takes 20 clock cycles on a TLB miss. A TLB does not slow down a cache hit. For the
TLB, make the simplifying assumption that 0.2% of all references aren’t found in TLB,
either when addresses come directly from the CPU or when addresses come from cache
misses.

a. [15] <5.5> Compute the effective CPI for the three caches assuming an ideal TLB.

b. [20] <5.5> Using the results from part (a), compute the effective CPI for the three
caches with a real TLB.

c. [15] <5.5> What is the impact on performance of a TLB if the caches are virtually or
physically addressed?

5.9 [10] <5.4> What is the formula for average access time for a three-level cache?

n prime number of memory banks were dropped for the 3/e. Thus we must mod-
ify Exercise 5.10 which refers to the prime number of banks, at least to explain
the ideas. Perhaps even add exercises, including an explanation of the ideas
dropped from the second edition by using text from the second edition?

5.10 [15/15] <5.8> The section on avoiding bank conflicts by having a prime number of
memory banks mentioned that there are techniques for fast modulo arithmetic, especially
when the prime number can be represented as 2N – 1. The idea is that by understanding the
laws of modulo arithmetic we can simplify the hardware. The key insights are the following:

1. Modulo arithmetic obeys the laws of distribution:

((a modulo c) + (b modulo c)) modulo c = (a + b) modulo c
((a modulo c) × (b modulo c)) modulo c = (a × b) modulo c

2. The sequence 20 modulo 2N– 1, 21 modulo 2N– 1, 22 modulo 2N– 1, . . . is a repeating
pattern 20, 21, 22, and so on for powers of 2 less than 2N. For example, if 2N– 1 = 7, then

20 modulo 7 = 1
21 modulo 7 = 2
22 modulo 7 = 4
23 modulo 7 = 1
24 modulo 7 = 2
25 modulo 7 = 4

3. Given a binary number a, the value of (a mod 7) can be expressed as

ai × 2i +. . .+ a2 × 22 + a1 × 21 + a0 × 20 modulo 7 =
((a0 + a3 +. . .) × 1 + (a1 + a4 +. . .) × 2 + (a2 + a5 +…) × 4) modulo 7

where i = log2a and aj = 0 for j >i

This is possible because 7 is a prime number of the form 2N–1. Since the multiplica-

Exercises 511

tions in the expression above are by powers of two, they can be replaced by binary
shifts (a very fast operation).

4. The address is now small enough to find the modulo by looking it up in a read-only
memory (ROM) to get the bank number.

Finally, we are ready for the questions.

a. [15] <5.8> Given 2N– 1 memory banks, what is the approximate reduction in size of
an address that is M bits wide as a result of the intermediate result in step 3 above?
Give the general formula, and then show the specific case of N = 3 and M = 32.

b. [15] <5.8> Draw the block structure of the hardware that would pick the correct bank
out of seven banks given a 32-bit address. Assume that each bank is 8 bytes wide.
What is the size of the adders and ROM used in this organization?

n Old, so drop?

5.11 [25/10/15] <5.8> The CRAY X-MP instruction buffers can be thought of as an in-
struction-only cache. The total size is 1 KB, broken into four blocks of 256 bytes per block.
The cache is fully associative and uses a first-in, first-out replacement policy. The access
time on a miss is 10 clock cycles, with the transfer time of 64 bytes every clock cycle. The
X-MP takes 1 clock cycle on a hit. Use the cache simulator to determine the following:

a. [25] <5.8> Instruction miss rate.

b. [10] <5.8> Average instruction memory access time measured in clock cycles.

c. [15] <5.8> What does the CPI of the CRAY X-MP have to be for the portion due to
instruction cache misses to be 10% or less?

n The next 5 exercises all refer to traces. Since we no longer have traces readily
available, these exercises should be changed to work with something like Burg-
er’s simulator running a program and producing addresses vs. an address trace,
unless there are some traces left online someplace?

5.12 [25] <5.8> Traces from a single process give too high estimates for caches used in a
multiprocess environment. Write a program that merges the uniprocess DLX traces into a
single reference stream. Use the process-switch statistics in Figure 5.25 (page 432) as the
average process-switch rate with an exponential distribution about that mean. (Use the
number of clock cycles rather than instructions, and assume the CPI of DLX is 1.5.) Use
the cache simulator on the original traces and the merged trace. What is the miss rate for
each, assuming a 64-KB direct-mapped cache with 16-byte blocks? (There is a process-
identified tag in the cache tag so that the cache doesn’t have to be flushed on each switch.)

5.13 [25] <5.8> One approach to reducing misses is to prefetch the next block. A simple
but effective strategy, found in the Alpha 21064, is when block i is referenced to make sure
block i + 1 is in the cache, and if not, to prefetch it. Do you think automatic prefetching is
more or less effective with increasing block size? Why? Is it more or less effective with in-
creasing cache size? Why? Use statistics from the cache simulator and the traces to support
your conclusion.

5.14 [20/25] <5.8> Smith and Goodman [1983] found that for a small instruction cache, a

512 Chapter 5 Memory-Hierarchy Design

cache using direct mapping could consistently outperform one using fully associative with
LRU replacement.

a. [20] <5.8> Explain why this would be possible. (Hint: You can’t explain this with the
three C’s model because it ignores replacement policy.)

b. [25] <5.8> Use the cache simulator to see if their results hold for the traces.

5.15 [30] <5.10> Use the cache simulator and traces to calculate the effectiveness of a four-
bank versus eight-bank interleaved memory. Assume each word transfer takes one clock on
the bus and a random access is eight clocks. Measure the bank conflicts and memory band-
width for these cases:

a. <5.10> No cache and no write buffer.

b. <5.10> A 64-KB direct-mapped write-through cache with four-word blocks.

c. <5.10> A 64-KB direct-mapped write-back cache with four-word blocks.

d. <5.10> A 64-KB direct-mapped write-through cache with four-word blocks but the
“interleaving” comes from a page-mode DRAM.

e. <5.10> A 64-KB direct-mapped write-back cache with four-word blocks but the “in-
terleaving” comes from a page-mode DRAM.

5.16 [25/25/25] <5.10> Use a cache simulator and traces to calculate the effectiveness of
early restart and out-of-order fetch. What is the distribution of first accesses to a block as
block size increases from 2 words to 64 words by factors of two for the following:

a. [25] <5.10> A 64-KB instruction-only cache?

b. [25] <5.10> A 64-KB data-only cache?

c. [25] <5.10> A 128-KB unified cache?

Assume direct-mapped placement.

5.17 [25/25/25/25/25/25] <5.2> Use a cache simulator and traces with a program you write
yourself to compare the effectiveness of these schemes for fast writes:

a. [25] <5.2> One-word buffer and the CPU stalls on a data-read cache miss with a write-
through cache.

b. [25] <5.2> Four-word buffer and the CPU stalls on a data-read cache miss with a
write-through cache.

c. [25] <5.2> Four-word buffer and the CPU stalls on a data-read cache miss only if there
is a potential conflict in the addresses with a write-through cache.

d. [25] <5.2> A write-back cache that writes dirty data first and then loads the missed
block.

e. [25] <5.2> A write-back cache with a one-block write buffer that loads the miss data
first and then stalls the CPU on a clean miss if the write buffer is not empty.

f. [25] <5.2> A write-back cache with a one-block write buffer that loads the miss data
first and then stalls the CPU on a clean miss only if the write buffer is not empty and

Exercises 513

there is a potential conflict in the addresses.

Assume a 64-KB direct-mapped cache for data and a 64-KB direct-mapped cache for in-
structions with a block size of 32 bytes. The CPI of the CPU is 1.5 with a perfect memory
system and it takes 14 clocks on a cache miss and 7 clocks to write a single word to memory.

5.18 [25] <5.4> Using the UNIX pipe facility, connect the output of one copy of the cache
simulator to the input of another. Use this pair to see at what cache size the global miss rate
of a second-level cache is approximately the same as a single-level cache of the same
capacity for the traces provided.

5.19 [Discussion] <5.10> Second-level caches now contain several megabytes of data.
Although new TLBs provide for variable length pages to try to map more memory, most
operating systems do not take advantage of them. Does it make sense to miss the TLB on
data that are found in a cache? How should TLBs be reorganized to avoid such misses?

5.20 [Discussion] <5.10> Some people have argued that with increasing capacity of mem-
ory storage per chip, virtual memory is an idea whose time has passed, and they expect to
see it dropped from future computers. Find reasons for and against this argument.

5.21 [Discussion] <5.10> So far, few computer systems take advantage of the extra secu-
rity available with gates and rings found in a CPU like the Intel Pentium. Construct some
scenario whereby the computer industry would switch over to this model of protection.

5.22 [Discussion] <5.17> Many times a new technology has been invented that is expected
to make a major change to the memory hierarchy. For the sake of this question, let's suppose
that biological computer technology becomes a reality. Suppose biological memory tech-
nology has the following unusual characteristic: It is as fast as the fastest semiconductor
DRAMs and it can be randomly accessed, but its per byte costs are the same as magnetic
disk memory. It has the further advantage of not being any slower no matter how big it is.
The only drawback is that you can only write it once, but you can read it many times. Thus
it is called a WORM (write once, read many) memory. Because of the way it is manufac-
tured, the WORM memory module can be easily replaced. See if you can come up with sev-
eral new ideas to take advantage of WORMs to build better computers using
“biotechnology.”

5.23 [Discussion] <3,4,5> Chapters 3 and 4 showed how execution time is being reduced
by pipelining and by superscalar and VLIW organizations: even floating-point operations
may account for only a fraction of a clock cycle in total execution time. On the other hand,
Figure 5.2 on page 375 shows that the memory hierarchy is increasing in importance. The
research on algorithms, data structures, operating systems, and even compiler optimiza-
tions were done in an era of simpler computers, with no pipelining or caches. Classes and
textbooks may still reflect those simpler computers. What is the impact of the changes in
computer architecture on these other fields? Find examples where textbooks suggest the so-
lution appropriate for old computers but inappropriate for modern computers. Talk to peo-
ple in other fields to see what they think about these changes.

6

8

Multiprocessors and
Thread-Level Parallelism 9
The turning away from the conventional organization came in the middle 1960s, when the
law of diminishing returns began to take effect in the effort to increase the operational
speed of a computer. … Electronic circuits are ultimately limited in their speed of
operation by the speed of light… and many of the circuits were already operating in the
nanosecond range.

Bouknight et al., The Illiac IV System [1972]

… sequential computers are approaching a fundamental physical limit on their potential
computational power. Such a limit is the speed of light...

A. L. DeCegama, The Technology of Parallel Processing, Volume I (1989)

… today’s multiprocessors… are nearing an impasse as technologies approach the speed
of light. Even if the components of a sequential processor could be made to work this fast,
the best that could be expected is no more than a few million instructions per second.

Mitchell, The Transputer: The Time Is Now [1989]

6.1 Introduction 635

6.2 Characteristics of Application Domains 649

6.3 Symmetric Shared-Memory Architectures 658

6.4 Performance of Symmetric Shared-Memory Multiprocessors 670

6.5 Distributed Shared-Memory Architectures 687

6.6 Performance of Distributed Shared-Memory Multiprocessors 697

6.7 Synchronization 705

6.8 Models of Memory Consistency: An Introduction 719

6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor 723

6.10 Crosscutting Issues 728

6.11 Putting It All Together: Sun’s Wildfire Prototype 735

6.13 Another View: Embedded Multiprocessors 751

6.14 Fallacies and Pitfalls 752

6.15 Concluding Remarks 758

6.16 Historical Perspective and References 765

Exercises 780
Major changes

1. split up the longest sections

2. clearer discussion of the concept of thread and process

3. SMT and multithreading section

4. two another views

5. reordered the cross cutting issues--no big changes, just reordered

As the quotations that open this chapter show, the view that advances in uni-
processor architecture were nearing an end has been widely held at varying
times. To counter this view, we observe that during the period 1985–2000, uni-

6.1 Introduction

636 Chapter 6 Multiprocessors and Thread-Level Parallelism

processor performance growth, driven by the microprocessor, was at its highest
rate since the first transistorized computers in the late 1950s and early 1960s.

On balance, though, your authors believe that parallel processors will definite-
ly have a bigger role in the future. This view is driven by three observations.
First, since microprocessors are likely to remain the dominant uniprocessor tech-
nology, the logical way to improve performance beyond a single processor is by
connecting multiple microprocessors together. This combination is likely to be
more cost-effective than designing a custom processor. Second, it is unclear
whether the pace of architectural innovation that has been based for more than
fifteen years on increased exploitation of instruction-level parallelism can be sus-
tained indefinitely. As we saw in Chapters 3 and 4, modern multiple-issue
processors have become incredibly complex, and the increases achieved in
performance for increasing complexity, increasing silicon, and increasing power
seem to be diminishing. Third, there appears to be slow but steady progress on
the major obstacle to widespread use of parallel processors, namely software.
This progress is probably faster in the server and embedded markets, as we dis-
cussed in Chapter 3 and 4. Server and embedded applications exhibit natural par-
allelism that can be exploited without some of the burdens of rewriting a gigantic
software base. This is more of a challenge in the desktop space.

Your authors, however, are extremely reluctant to predict the death of ad-
vances in uniprocessor architecture. Indeed, we believe that the rapid rate of per-
formance growth will continue at least for the next five years. Whether this pace
of innovation can be sustained longer is difficult to predict but hard to bet against.
Nonetheless, if the pace of progress in uniprocessors does slow down, multipro-
cessor architectures will become increasingly attractive.

That said, we are left with two problems. First, multiprocessor architecture is
a large and diverse field, and much of the field is in its youth, with ideas coming
and going and, until very recently, more architectures failing than succeeding.
Given that we are already on page 636, full coverage of the multiprocessor design
space and its trade-offs would require another volume. (Indeed, Culler, Singh,
and Gupta [1999] cover only multiprocessors in their 1000 page book!) Second,
such coverage would necessarily entail discussing approaches that may not stand
the test of time, something we have largely avoided to this point. For these rea-
sons, we have chosen to focus on the mainstream of multiprocessor design: mul-
tiprocessors with small to medium numbers of processors (≤128). Such designs
vastly dominate in terms of both units and dollars. We will pay only slight atten-
tion to the larger-scale multiprocessor design space (≥128 processors). At the
present, the future architecture of such multiprocessors is unsettled and even the
viability of that marketplace is in doubt. We will return to this topic briefly at the
end of the chapter, in section 6.15.

6.1 Introduction 637

A Taxonomy of Parallel Architectures

We begin this chapter with a taxonomy so that you can appreciate both the
breadth of design alternatives for multiprocessors and the context that has led to
the development of the dominant form of multiprocessors. We briefly describe
the alternatives and the rationale behind them; a longer description of how these
different models were born (and often died) can be found in the historical per-
spectives at the end of the chapter.

The idea of using multiple processors both to increase performance and to im-
prove availability dates back to the earliest electronic computers. About 30 years
ago, Flynn proposed a simple model of categorizing all computers that is still
useful today. He looked at the parallelism in the instruction and data streams
called for by the instructions at the most constrained component of the multipro-
cessor, and placed all computers in one of four categories:

1. Single instruction stream, single data stream (SISD)—This category is the un-
iprocessor.

2. Single instruction stream, multiple data streams (SIMD)—The same instruc-
tion is executed by multiple processors using different data streams. Each pro-
cessor has its own data memory (hence multiple data), but there is a single
instruction memory and control processor, which fetches and dispatches in-
structions. The multimedia extensions we considered in Chapter 2 are a limit-
ed form of SIMD parallelism. Vector architectures are the largest class of
processors of this type.

3. Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but may be in the future.
Some special purpose stream processors approximate a limited form of this
(there is only a single data stream that is operated on by successive functional
units).

4. Multiple instruction streams, multiple data streams (MIMD)—Each processor
fetches its own instructions and operates on its own data. The processors are
often off-the-shelf microprocessors.

This is a coarse model, as some multiprocessors are hybrids of these categories.
Nonetheless, it is useful to put a framework on the design space.

As discussed in the historical perspectives, many of the early multiprocessors
were SIMD, and the SIMD model received renewed attention in the 1980s, and
except for vector processors, was gone by the mid 1990s. MIMD has clearly
emerged as the architecture of choice for general-purpose multiprocessors. Two
factors are primarily responsible for the rise of the MIMD multiprocessors:

638 Chapter 6 Multiprocessors and Thread-Level Parallelism

1. MIMDs offer flexibility. With the correct hardware and software support,
MIMDs can function as single-user multiprocessors focusing on high perfor-
mance for one application, as multiprogrammed multiprocessors running
many tasks simultaneously, or as some combination of these functions.

2. MIMDs can build on the cost/performance advantages of off-the-shelf
microprocessors. In fact, nearly all multiprocessors built today use the same
microprocessors found in workstations and single-processor servers.

With an MIMD, each processor is executing its own instruction stream. In
many cases, each processor executes a different process. Recall from the last
chapter, that a process is an segment of code that may be run independently, and
that the state of the process contains all the information necessary to execute that
program on a processor. In a multiprogrammed environment, where the proces-
sors may be running independent tasks, each process is typically independent of
the processes on other processors.

It is also useful to be able to have multiple processors executing a single pro-
gram and sharing the code and most of their address space. When multiple pro-
cesses share code and data in this way, they are often called threads. Today, the
term thread is often used in a casual way to refer to multiple loci of execution that
may run on different processors, even when they do not share an address space.

To take advantage of an MIMD multiprocessor with n processors, we must
usually have at least n threads or processes to execute. The independent threads
are typically identified by the programmer or created by the compiler. Since the
parallelism in this situation is contained in the threads, it is called thread-level
parallelism.

Threads may vary from large-scale, independent processes–for example, inde-
pendent programs running in a multiprogrammed fashion on different proces-
sors–to parallel iterations of a loop, automatically generated by a compiler and
each executing for perhaps less than a thousand instructions. Although the size of
a thread is important in considering how to exploit thread-level parallelism effi-
ciently, the important qualitative distinction is that such parallelism is identified
at a high-level by the software system and that the threads consist of hundreds to
millions of instructions that may be executed in parallel. In contrast, instruction-
level parallelism is identified by primarily by the hardware, though with software
help in some cases, and is found and exploited one instruction at a time.

Existing MIMD multiprocessors fall into two classes, depending on the num-
ber of processors involved, which in turn dictate a memory organization and in-
terconnect strategy. We refer to the multiprocessors by their memory
organization, because what constitutes a small or large number of processors is
likely to change over time.

6.1 Introduction 639

The first group, which we call centralized shared-memory architectures, have
at most a few dozen processors in 2000. For multiprocessors with small processor
counts, it is possible for the processors to share a single centralized memory and
to interconnect the processors and memory by a bus. With large caches, the bus
and the single memory, possibly with multiple banks, can satisfy the memory de-
mands of a small number of processors. By replacing a single bus with multiple
buses, or even a switch, a centralized shared memory design can be scaled to a
few dozen processors. Although scaling beyond that is technically conceivable,
sharing a centralized memory, even organized as multiple banks, becomes less at-
tractive as the number of processors sharing it increases.

Because there is a single main memory that has a symmetric relationship to all
processors and a uniform access time from any processor, these multiprocessors
are often called symmetric (shared-memory) multiprocessors (SMPs), and this
style of architecture is sometimes called UMA for uniform memory access. This
type of centralized shared-memory architecture is currently by far the most popu-
lar organization. Figure 6.1 shows what these multiprocessors look like. The ar-
chitecture of such multiprocessors is the topic of section 6.3.

FIGURE 6.1 Basic structure of a centralized shared-memory multiprocessor. Multiple
processor-cache subsystems share the same physical memory, typically connected by a bus.
In larger designs, multiple buses, or even a switch may be used, but the key architectural
property: uniform access time o all memory from all processors remains.

Processor

One or
more levels
of cache

ProcessorProcessor Processor

Main memory I/O system

One or
more levels
of cache

One or
more levels
of cache

One or
more levels
of cache

640 Chapter 6 Multiprocessors and Thread-Level Parallelism

The second group consists of multiprocessors with physically distributed
memory. To support larger processor counts, memory must be distributed among
the processors rather than centralized; otherwise the memory system would not be
able to support the bandwidth demands of a larger number of processors without
incurring excessively long access latency. With the rapid increase in processor per-
formance and the associated increase in a processor’s memory bandwidth require-
ments, the scale of multiprocessor for which distributed memory is preferred over
a single, centralized memory continues to decrease in number (which is another
reason not to use small and large scale). Of course, the larger number of proces-
sors raises the need for a high bandwidth interconnect, of which we saw examples
in Chapter 7. Both direct interconnection networks (i.e., switches) and indirect
networks (typically multidimensional meshes) are used. Figure 6.2 shows what

these multiprocessors look like.
Distributing the memory among the nodes has two major benefits. First, it is a

cost-effective way to scale the memory bandwidth, if most of the accesses are to
the local memory in the node. Second, it reduces the latency for accesses to the
local memory. These two advantages make distributed memory attractive at
smaller processor counts as processors get ever faster and require more memory

FIGURE 6.2 The basic architecture of a distributed-memory multiprocessor consists
of individual nodes containing a processor, some memory, typically some I/O, and an
interface to an interconnection network that connects all the nodes. Individual nodes
may contain a small number of processors, which may be interconnected by a small bus or a
different interconnection technology, which is less scalable than the global interconnection
network.

Memory I/O

Interconnection network

Memory I/O Memory I/O

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory I/O

Memory I/O Memory I/O Memory I/O Memory I/O

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

6.1 Introduction 641

bandwidth and lower memory latency. The key disadvantage for a distributed
memory architecture is that communicating data between processors becomes
somewhat more complex and has higher latency, at least when there is no conten-
tion, because the processors no longer share a single centralized memory. As we
will see shortly, the use of distributed memory leads to two different paradigms
for interprocessor communication.

Typically, I/O as well as memory is distributed among the nodes of the multi-
processor, and the nodes may be small SMPs (2–8 processors). Although the use
of multiple processors in a node together with a memory and a network interface
may be quite useful from a cost-efficiency viewpoint, it is not fundamental to
how these multiprocessors work, and so we will focus on the one-processor-per-
node design for most of this chapter.

Models for Communication and Memory Architecture

As discussed earlier, any large-scale multiprocessor must use multiple memories
that are physically distributed with the processors. There are two alternative ar-
chitectural approaches that differ in the method used for communicating data
among processors.

In the first method, communication occurs through a shared address space.
That is, the physically separate memories can be addressed as one logically
shared address space, meaning that a memory reference can be made by any pro-
cessor to any memory location, assuming it has the correct access rights. These
multiprocessors are called distributed shared-memory (DSM) architectures. The
term shared memory refers to the fact that the address space is shared; that is, the
same physical address on two processors refers to the same location in memory.
Shared memory does not mean that there is a single, centralized memory. In con-
trast to the symmetric shared-memory multiprocessors, also known as UMAs
(uniform memory access), the DSM multiprocessors are also called NUMAs,
non-uniform memory access, since the access time depends on the location of a
data word in memory.

Alternatively, the address space can consist of multiple private address spaces
that are logically disjoint and cannot be addressed by a remote processor. In such
multiprocessors, the same physical address on two different processors refers to
two different locations in two different memories. Each processor-memory mod-
ule is essentially a separate computer; therefore these parallel processors have
been called multicomputers. As pointed out in the previous chapter, a multicom-
puter can even consist of completely separate computers connected on a local
area network, which, today, are popularly called clusters. For applications that re-
quire little or no communication and can make use of separate memories, such
clusters of processors, whether using a standardized or customized interconnect,
can form a very cost-effective approach (see Section 7.x).

642 Chapter 6 Multiprocessors and Thread-Level Parallelism

With each of these organizations for the address space, there is an associated
communication mechanism. For a multiprocessor with a shared address space,
that address space can be used to communicate data implicitly via load and store
operations; hence the name shared memory for such multiprocessors. For a multi-
processor with multiple address spaces, communication of data is done by explic-
itly passing messages among the processors. Therefore, these multiprocessors are
often called message passing multiprocessors.

In message passing multiprocessors, communication occurs by sending mes-
sages that request action or deliver data just as with the network protocols dis-
cussed in section 7.2. For example, if one processor wants to access or operate on
data in a remote memory, it can send a message to request the data or to perform
some operation on the data. In such cases, the message can be thought of as a
remote procedure call (RPC). When the destination processor receives the mes-
sage, either by polling for it or via an interrupt, it performs the operation or ac-
cess on behalf of the remote processor and returns the result with a reply
message. This type of message passing is also called synchronous, since the initi-
ating processor sends a request and waits until the reply is returned before
continuing. Software systems have been constructed to encapsulate the details of
sending and receiving messages, including passing complex arguments or return
values, presenting a clean RPC facility to the programmer.

Communication can also occur from the viewpoint of the writer of data rather
than the reader, and this can be more efficient when the processor producing data
knows which other processors will need the data. In such cases, the data can be
sent directly to the consumer process without having to be requested first. It is of-
ten possible to perform such message sends asynchronously, allowing the sender
process to continue immediately. Often the receiver will want to block if it tries to
receive the message before it has arrived; in other cases, the reader may check
whether a message is pending before actually trying to perform a blocking re-
ceive. Also the sender must be prepared to block if the receiver has not yet con-
sumed an earlier message and no buffer space is available. The message passing
facilities offered in different multiprocessors are fairly diverse. To ease program
portability, standard message passing libraries (for example, message passing in-
terface, or MPI) have been proposed. Such libraries sacrifice some performance
to achieve a common interface.

Performance Metrics for Communication Mechanisms
Three performance metrics are critical in any communication mechanism:

1. Communication bandwidth—Ideally the communication bandwidth is limited
by processor, memory, and interconnection bandwidths, rather than by some
aspect of the communication mechanism. The bisection bandwidth (see Sec-
tion 7.x) is determined by the interconnection network. The bandwidth in or

6.1 Introduction 643

out of a single node, which is often as important as bisection bandwidth, is af-
fected both by the architecture within the node and by the communication
mechanism. How does the communication mechanism affect the communica-
tion bandwidth of a node? When communication occurs, resources within the
nodes involved in the communication are tied up or occupied, preventing other
outgoing or incoming communication. When this occupancy is incurred for
each word of a message, it sets an absolute limit on the communication band-
width. This limit is often lower than what the network or memory system can
provide. Occupancy may also have a component that is incurred for each com-
munication event, such as an incoming or outgoing request. In the latter case,
the occupancy limits the communication rate, and the impact of the occupancy
on overall communication bandwidth depends on the size of the messages.

2. Communication latency—Ideally the latency is as low as possible. As we will
see in Chapter 8, communication latency is equal to

Sender overhead + Time of flight + Transmission time + Receiver overhead

Time of flight is fixed and transmission time is determined by the interconnec-
tion network. The software and hardware overheads in sending and receiving
messages are largely determined by the communication mechanism and its
implementation. Why is latency crucial? Latency affects both performance
and how easy it is to program a multiprocessor. Unless latency is hidden, it di-
rectly affects performance either by tying up processor resources or by causing
the processor to wait. Overhead and occupancy are closely related, since many
forms of overhead also tie up some part of the node, incurring an occupancy
cost, which in turn limits bandwidth. Key features of a communication mech-
anism may directly affect overhead and occupancy. For example, how is the
destination address for a remote communication named, and how is protection
implemented? When naming and protection mechanisms are provided by the
processor, as in a shared address space, the additional overhead is small. Al-
ternatively, if these mechanisms must be provided by the operating system for
each communication, this increases the overhead and occupancy costs of com-
munication, which in turn reduce bandwidth and increase latency.

3. Communication latency hiding—How well can the communication mecha-
nism hide latency by overlapping communication with computation or with
other communication? Although measuring this is not as simple as measuring
the first two metrics, it is an important characteristic that can be quantified by
measuring the running time on multiprocessors with the same communication
latency but different support for latency hiding. We will see examples of la-
tency hiding techniques for shared memory in sections 6.8 and 6.10. Although
hiding latency is certainly a good idea, it poses an additional burden on the
software system and ultimately on the programmer. Furthermore, the amount
of latency that can be hidden is application dependent. Thus, it is usually best
to reduce latency wherever possible.

644 Chapter 6 Multiprocessors and Thread-Level Parallelism

Each of these performance measures is affected by the characteristics of the
communications needed in the application. The size of the data items being com-
municated is the most obvious, since it affects both latency and bandwidth in a di-
rect way, as well as affecting the efficacy of different latency hiding approaches.
Similarly, the regularity in the communication patterns affects the cost of naming
and protection, and hence the communication overhead. In general, mechanisms
that perform well with smaller as well as larger data communication requests, and
irregular as well as regular communication patterns, are more flexible and efficient
for a wider class of applications. Of course, in considering any communication
mechanism, designers must consider cost as well as performance.

Advantages of Different Communication Mechanisms
Each of these two primary communication mechanisms has its advantages. For
shared-memory communication, advantages include

n Compatibility with the well-understood mechanisms in use in centralized
multiprocessors, which all use shared-memory communication.

n Ease of programming when the communication patterns among processors are
complex or vary dynamically during execution. Similar advantages simplify
compiler design.

n The ability to develop applications using the familiar shared-memory model,
focusing attention only on those accesses that are performance critical.

n Lower overhead for communication and better use of bandwidth when commu-
nicating small items. This arises from the implicit nature of communication and
the use of memory mapping to implement protection in hardware, rather than
through the I/O system.

n The ability to use hardware-controlled caching to reduce the frequency of re-
mote communication by supporting automatic caching of all data, both shared
and private. As we will see, caching reduces both latency and contention for ac-
cessing shared data. This advantage also comes with a disadvantage, which we
mention below.

The major advantages for message-passing communication include

n The hardware can be simpler, especially by comparison with a scalable shared-
memory implementation that supports coherent caching of remote data.

n Communication is explicit, which means it is simpler to understand; in shared
memory models, it can be difficult to know when communication is occurring
and when it is not, as well as how costly the communication is.

6.1 Introduction 645

n Explicit communication focuses programmer attention on this costly aspect of
parallel computation, sometimes leading to improved structure in a multipro-
cessor program.

n Synchronization is naturally associated with sending messages, reducing the
possibility for errors introduced by incorrect synchronization.

n It makes it easier to use sender-initiated communication, which may have some
advantages in performance,

Of course, the desired communication model can be created on top of a hard-
ware model that supports either of these mechanisms. Supporting message passing
on top of shared memory is considerably easier: Because messages essentially
send data from one memory to another, sending a message can be implemented by
doing a copy from one portion of the address space to another. The major difficul-
ties arise from dealing with messages that may be misaligned and of arbitrary
length in a memory system that is normally oriented toward transferring aligned
blocks of data organized as cache blocks. These difficulties can be overcome ei-
ther with small performance penalties in software or with essentially no penalties,
using a small amount of hardware support.

Supporting shared memory efficiently on top of hardware for message passing
is much more difficult. Without explicit hardware support for shared memory, all
shared-memory references need to involve the operating system to provide ad-
dress translation and memory protection, as well as to translate memory referenc-
es into message sends and receives. Loads and stores usually move small
amounts of data, so the high overhead of handling these communications in soft-
ware severely limits the range of applications for which the performance of soft-
ware-based shared memory is acceptable. An ongoing area of research is the
exploration of when a software-based model is acceptable and whether a soft-
ware-based mechanism is usable for the highest level of communication in a hier-
archically structured system. One possible direction is the use of virtual memory
mechanisms to share objects at the page level, a technique called shared virtual
memory; we discuss this approach in section 6.10.

In distributed-memory multiprocessors, the memory model and communica-
tion mechanisms distinguish the multiprocessors. Originally, distributed-memory
multiprocessors were built with message passing, since it was clearly simpler and
many designers and researchers did not believe that a shared address space could
be built with distributed memory. Shared-memory communication has been sup-

646 Chapter 6 Multiprocessors and Thread-Level Parallelism

ported in virtually every multiprocessor designed since 1995. What hardware
communication mechanisms will be supported in the very largest multiprocessors
(called massively parallel processors, or MPPs), which typically have far more
than 100 processors, is unclear; shared memory, message passing, and hybrid ap-
proaches are all contenders. Despite the symbolic importance of the MPPs, such
multiprocessors are a small portion of the market and have little or no influence
on the mainstream multiprocessors with tens of processors. We will return to a
discussion of the possibilities and trends for MPPs in the concluding remarks and
historical perspectives at the end of this chapter.

SMPs, which we focus on in Section 6.3, vastly dominate DSM multiproces-
sors in terms of market size (both units and dollars), and SMPs will probably be
the architecture of choice for on-chip multiprocessors. For moderate scale multi-
processors (>8 processors) long-term technical trends favor distributing memory,
which is also likely to be the dominant approach when on-chip SMPs are used as
the building blocks in the future. These distributed shared-memory multiproces-
sors are a natural extension of the centralized multiprocessors that dominate the
market, so we discuss these architectures in section 6.5. In contrast, multicomput-
ers or message-passing multiprocessors build on advances in network technolo-
gy, as we discussed in the last chapter. Since the technologies employed were
well described in the last chapter, we focus our attention on shared-memory ap-
proaches in the rest of this chapter.

Challenges of Parallel Processing

Two important hurdles, both explainable with Amdahl’s Law, make parallel pro-
cessing challenging. The first has to do with the limited parallelism available in
programs and the second arises from the relatively high cost of communications.
Limitations in available parallelism make it difficult to achieve good speedups in
any parallel processor, as our first Example shows.

E X A M P L E Suppose you want to achieve a speedup of 80 with 100 processors. What
fraction of the original computation can be sequential?

A N S W E R Amdahl’s Law is

For simplicity in this example, assume that the program operates in only
two modes: parallel with all processors fully used, which is the enhanced

Speedup =
1

Fractionenhanced
Speedupenhanced
--- (1 – Fractionenhanced)+

--

6.1 Introduction 647

mode, or serial with only one processor in use. With this simplification, the
speedup in enhanced mode is simply the number of processors, while the
fraction of enhanced mode is the time spent in parallel mode. Substituting
into the equation above:

Simplifying this equation yields

Thus to achieve a speedup of 80 with 100 processors, only 0.25% of orig-
inal computation can be sequential. Of course, to achieve linear speedup
(speedup of n with n processors), the entire program must usually be par-
allel with no serial portions. (One exception to this is superlinear speedup
that occurs due to the increased memory and cache available when the
processor count is increased. This effect is usually not very large and
rarely scales linearly with processor count.) In practice, programs do not
just operate in fully parallel or sequential mode, but often use less than
the full complement of the processors when running in parallel mode.
Exercise 6.2 asks you to extend Amdahl’s Law to deal with such a case.

n

The second major challenge in parallel processing involves the large latency
of remote access in a parallel processor. In existing shared-memory multiproces-
sors, communication of data between processors may cost anywhere from 100
clock cycles to over 1,000 clock cycles, depending on the communication mecha-
nism, the type of interconnection network, and the scale of the multiprocessor.
Figure 6.3 shows the typical round-trip delays to retrieve a word from a remote
memory for several different shared-memory parallel processors.

The effect of long communication delays is clearly substantial. Let’s consider
a simple Example.

E X A M P L E Suppose we have an application running on a 32-processor multiproces-
sor, which has a 400 ns time to handle reference to a remote memory. For
this application, assume that all the references except those involving
communication hit in the local memory hierarchy, which may be only

80 1
Fractionparallel

100
------------------------------------ (1 – Fractionparallel)+

---=

0.8 Fractionparallel× 80 (1 – Fractionparallel×)+ 1=

80 79.2 Fractionparallel×– 1=

Fractionparallel
80 1–
79.2

---------------=

Fractionparallel 0.9975=

648 Chapter 6 Multiprocessors and Thread-Level Parallelism

slightly pessimistic. Processors are stalled on a remote request, and the
processor clock rate is 1GHz. If the base IPC (assuming that all referenc-
es hit in the cache) is 2, how much faster is the multiprocessor if there is
no communication versus if 0.2% of the instructions involve a remote
communication reference?

A N S W E R It is simpler to first calculate the CPI. The effective CPI for the multipro-
cessor with 0.2% remote references is

The Remote request cost is

Hence we can compute the CPI:

CPI = 0.5 + 0.8 = 1.3

The multiprocessor with all local references is 1.3/0.5 = 2.6 times faster.
In practice, the performance analysis is much more complex, since some
fraction of the noncommunication references will miss in the local hierar-
chy and the remote access time does not have a single constant value.
For example, the cost of a remote reference could be quite a bit worse,
since contention caused by many references trying to use the global in-
terconnect can lead to increased delays. n

These problems—insufficient parallelism and long latency remote communi-

Multiprocessor
Year

shipped
SMP or
NUMA

Max.
processors

Interconnection
network

Typical remote
memory access time

Sun Starfire servers 1996 SMP 64 Multiple buses 500 ns

SGI Origin 3000 1999 NUMA 512 Fat hypercube 500 ns

Cray T3E 1996 NUMA 2,048 2-way 3D torus 300 ns

HP V series 1998 SMP 32 8x8 crossbar 1000 ns

Compaq Alphaserver GS 1999 SMP 32 Switched busses 400 ns

FIGURE 6.3 Typical remote access times to retrieve a word from a remote memory in shared-memory multipro-
cessors.

CPI Base CPI Remote request rate Remote request cost×+=

1
Base IPC
---------------------- 0.2% Remote request cost×+=

0.5 0.2% Remote request cost×+=

Remote access cost
Cycle time

-- 400ns
1 ns

--------------= 400 cycles=

6.2 Characteristics of Application Domains 649

cation—are the two biggest challenges in using multiprocessors. The problem of
inadequate application parallelism must be attacked primarily in software with
new algorithms that can have better parallel performance. Reducing the impact of
long remote latency can be attacked both by the architecture and by the program-
mer. For example, we can reduce the frequency of remote accesses with either
hardware mechanisms, such as caching shared data, or with software mecha-
nisms, such as restructuring the data to make more accesses local. We can try to
tolerate the latency by using prefetching or multithreading, which we examined
in Chapters 4 and 5.

Much of this chapter focuses on techniques for reducing the impact of long re-
mote communication latency. For example, sections 6.3 and 6.5 discuss how
caching can be used to reduce remote access frequency, while maintaining a co-
herent view of memory. Section 6.7 discusses synchronization, which, because it
inherently involves interprocessor communication, is an additional potential bot-
tleneck. Section 6.8 talks about latency hiding techniques and memory consisten-
cy models for shared memory. Before we wade into these topics, it is helpful to
have some understanding of the characteristics of parallel applications, both for
better comprehension of the results we show using some of these applications
and to gain a better understanding of the challenges in writing efficient parallel
programs.

In earlier chapters, we examined the performance and characteristics of applica-
tions with only a small amount of insight into the structure of the applications.
For understanding the key elements of uniprocessor performance, such as caches
and pipelining, general knowledge of an application is often adequate, although
we saw that deeper application knowledge was necessary to exploit higher levels
of ILP.

In parallel processing, the additional performance-critical characteristics—
such as load balance, synchronization, and sensitivity to memory latency—typi-
cally depend on high-level characteristics of the application. These characteris-
tics include factors like how data is distributed, the structure of a parallel
algorithm, and the spatial and temporal access patterns to data. Therefore at this
point we take the time to examine the three different classes of workloads.

The three different domains of multiprocessor workloads we explore are a
commercial workload, consisting of transaction processing, decision support, and
web searching; a multiprogrammed workload with operating systems behavior
included; and a workload consisting of individual parallel programs from the
technical computing domain.

6.2 Characteristics of Application Domains

650 Chapter 6 Multiprocessors and Thread-Level Parallelism

A Commercial Workload

Our commercial workload consists of three applications:

1. An online transaction processing workload (OLTP) modeled after TPC-B
(which has similar memory behavior to its newer cousin TPC-C) and using
Oracle 7.3.2 as the underlying database. The workload consists of a set of cli-
ent processes that generate requests and a set of servers that handle them. The
server processes consume 85% of the user time, with the remaining going to
the clients. Although the I/O latency is hidden by careful tuning and enough
requests to keep the CPU busy, the server processes typically block for I/O af-
ter about 25,000 instructions.

2. A decision support system (DSS) workload based on TPC-D and also using
Oracle 7.3.2 as the underlying database. The workload includes only six of the
17 read queries in TPC-D, although the six queries examined in the benchmark
span the range of activities in the entire benchmark. To hide the I/O latency,
parallelism is exploited both within queries, where parallelism is detected dur-
ing a query formulation process, and across queries. Blocking calls are much
less frequent than in the OLTP benchmark; the six queries average about 1.5
million instructions before blocking.

3. A web index search (Altavista) benchmark based on a search of a memory
mapped version of the Altavista database (200 GB). The inner loop is heavily
optimized. Because the search structure is static, little synchronization is need-
ed among the threads.

The fraction of time spent in user mode, in the kernel, and in the idle loop are
shown in Figure 6.4. The frequency of I/O increases both the kernel time and the
idle time (see the OLTP entry, which has the largest I/O to computation ratio).
Altavista, which maps the entire search database into memory and has been ex-
tensively tuned, shows the least kernel or idle time.

Benchmark % Time User Mode % Time Kernel % Time CPU Idle

OLTP 71% 18% 11%

DSS (range for the six queries) 82–94% 3–5% 4–13%

DSS (average across all queries) 87% 3.7% 9.3%

Altavista > 98% < 1% <1%

FIGURE 6.4 The distribution of execution time in the commercial workloads. The OLTP benchmark has the largest
fraction of both OS time and CPU idle time (which is I/O wait time). The DSS benchmark shows much less OS time, since
it does less I/O, but still more than 9% idle time. The extensive tuning of the Altavista search engine is clear in these mea-
surement. The data for this workload were collected by Barroso et. al. [1998] on a 4-processor Alphaserver 4100.

6.2 Characteristics of Application Domains 651

Multiprogramming and OS Workload

For small-scale multiprocessors we will also look at a multiprogrammed work-
load consisting of both user activity and OS activity. The workload used is two
independent copies of the compile phase of the Andrew benchmark. The compile
phase consists of a parallel make using eight processors. The workload runs for
5.24 seconds on eight processors, creating 203 processes and performing 787
disk requests on three different file systems. The workload is run with 128 MB of
memory, and no paging activity takes place.

The workload has three distinct phases: compiling the benchmarks, which in-
volves substantial compute activity; installing the object files in a library; and re-
moving the object files. The last phase is completely dominated by I/O and only
two processes are active (one for each of the runs). In the middle phase, I/O also
plays a major role and the CPU is largely idle.

Because both CPU idle time and instruction cache performance are important
in this workload, we examine these two issues here, focusing on the data cache
performance later in the chapter. For the workload measurements, we assume the
following memory and I/O systems:

Figure 6.5 shows how the execution time breaks down for the eight processors
using the parameters just listed. Execution time is broken into four components:
idle—execution in the kernel mode idle loop; user—execution in user code; syn-
chronization—execution or waiting for synchronization variables; and kernel—
execution in the OS that is neither idle nor in synchronization access.

Unlike the parallel scientific workload, this multiprogramming workload has a
significant instruction cache performance loss, at least for the OS. The instruction
cache miss rate in the OS for a 64-byte block size, two set-associative cache varies
from 1.7% for a 32-KB cache to 0.2% for a 256-KB cache. User-level, instruction
cache misses are roughly one-sixth of the OS rate, across the variety of cache sizes.

I/O system Memory

Level 1 instruction cache 32K bytes, two-way set associative with a 64-byte block,
one clock cycle hit time

Level 1 data cache 32K bytes, two-way set associative with a 32-byte block,
one clock cycle hit time

Level 2 cache 1M bytes unified, two-way set associative with a 128-byte
block, hit time 10 clock cycles

Main memory Single memory on a bus with an access time of 100 clock
cycles

Disk system Fixed access latency of 3 ms (less than normal to reduce
idle time)

652 Chapter 6 Multiprocessors and Thread-Level Parallelism

Scientific/Technical Applications

Our scientific/technical parallel workload consists of two applications and two
computational kernels. The kernels are an FFT (fast Fourier transformation) and
an LU decomposition, which were chosen because they represent commonly
used techniques in a wide variety of applications and have performance charac-
teristics typical of many parallel scientific applications. In addition, the kernels
have small code segments whose behavior we can understand and directly track
to specific architectural characteristics. Like many scientific application, I/O is
essentially nonexistent in this workload.

The two applications that we use in this chapter are Barnes and Ocean, which
represent two important but very different types of parallel computation. We
briefly describe each of these applications and kernels and characterize their ba-
sic behavior in terms of parallelism and communication. We describe how the
problem is decomposed for a distributed shared-memory multiprocessor; certain
data decompositions that we describe are not necessary on multiprocessors that
have a single centralized memory.

The FFT Kernel
The fast Fourier transform (FFT) is the key kernel in applications that use spec-
tral methods, which arise in fields ranging from signal processing to fluid flow to
climate modeling. The FFT application we study here is a one-dimensional ver-
sion of a parallel algorithm for a complex-number FFT. It has a sequential execu-
tion time for n data points of n log n. The algorithm uses a high radix (equal to

) that minimizes communication. The measurements shown in this chapter are
collected for a million-point input data set.

There are three primary data structures: the input and output arrays of the data
being transformed and the roots of unity matrix, which is precomputed and only
read during the execution. All arrays are organized as square matrices. The six
steps in the algorithm are as follows:

1. Transpose data matrix.

User execution Kernel execution Synchronization
wait

CPU Idle
(waiting for I/O)

% instructions executed 27% 3% 1% 69%

% execution time 27% 7% 2% 64%

FIGURE 6.5 The distribution of execution time in the multiprogrammed parallel make workload. The high fraction
of idle time is due to disk latency when only one of the eight processes is active. These data and the subsequent measure-
ments for this workload were collected with the SimOS system [Rosenblum 1995]. The actual runs and data collection were
done by M. Rosenblum, S. Herrod, and E. Bugnion of Stanford University, using the SimOS simulation system.

n

6.2 Characteristics of Application Domains 653
2. Perform 1D FFT on each row of data matrix.

3. Multiply the roots of unity matrix by the data matrix and write the result in the
data matrix.

4. Transpose data matrix.

5. Perform 1D FFT on each row of data matrix.

6. Transpose data matrix.

The data matrices and the roots of unity matrix are partitioned among proces-
sors in contiguous chunks of rows, so that each processor’s partition falls in its
own local memory. The first row of the roots of unity matrix is accessed heavily
by all processors and is often replicated, as we do, during the first step of the al-
gorithm just shown. The data transposes ensure good locality during the individu-
al FFT steps, which would otherwise access nonlocal data.

The only communication is in the transpose phases, which require all-to-all
communication of large amounts of data. Contiguous subcolumns in the rows as-
signed to a processor are grouped into blocks, which are transposed and placed
into the proper location of the destination matrix. Every processor transposes one
block locally and sends one block to each of the other processors in the system.
Although there is no reuse of individual words in the transpose, with long cache
blocks it makes sense to block the transpose to take advantage of the spatial
locality afforded by long blocks in the source matrix.

The LU Kernel
LU is an LU factorization of a dense matrix and is representative of many dense
linear algebra computations, such as QR factorization, Cholesky factorization,
and eigenvalue methods. For a matrix of size n × n the running time is n3 and the
parallelism is proportional to n2. Dense LU factorization can be performed effi-
ciently by blocking the algorithm, using the techniques in Chapter 5, which leads
to highly efficient cache behavior and low communication. After blocking the al-
gorithm, the dominant computation is a dense matrix multiply that occurs in the
innermost loop. The block size is chosen to be small enough to keep the cache
miss rate low, and large enough to reduce the time spent in the less parallel parts
of the computation. Relatively small block sizes (8 × 8 or 16 × 16) tend to satisfy
both criteria.

Two details are important for reducing interprocessor communication. First,
the blocks of the matrix are assigned to processors using a 2D tiling: the
(where each block is B × B) matrix of blocks is allocated by laying a grid of size

 over the matrix of blocks in a cookie-cutter fashion until all the blocks are
allocated to a processor. Second, the dense matrix multiplication is performed by
the processor that owns the destination block. With this blocking and allocation
scheme, communication during the reduction is both regular and predictable. For

n
B
--- n

B
---×

p p×

654 Chapter 6 Multiprocessors and Thread-Level Parallelism
the measurements in this chapter, the input is a 512 × 512 matrix and a block of
16 × 16 is used.

A natural way to code the blocked LU factorization of a 2D matrix in a shared
address space is to use a 2D array to represent the matrix. Because blocks are
allocated in a tiled decomposition, and a block is not contiguous in the address
space in a 2D array, it is very difficult to allocate blocks in the local memories of
the processors that own them. The solution is to ensure that blocks assigned to a
processor are allocated locally and contiguously by using a 4D array (with the
first two dimensions specifying the block number in the 2D grid of blocks, and
the next two specifying the element in the block).

The Barnes Application
Barnes is an implementation of the Barnes-Hut n-body algorithm solving a
problem in galaxy evolution. N-body algorithms simulate the interaction among
a large number of bodies that have forces interacting among them. In this in-
stance the bodies represent collections of stars and the force is gravity. To reduce
the computational time required to model completely all the individual inter-
actions among the bodies, which grow as n2, n-body algorithms take advantage
of the fact that the forces drop off with distance. (Gravity, for example, drops off
as 1/d2, where d is the distance between the two bodies.) The Barnes-Hut algo-
rithm takes advantage of this property by treating a collection of bodies that are
“far away” from another body as a single point at the center of mass of the collec-
tion and with mass equal to the collection. If the body is far enough from any
body in the collection, then the error introduced will be negligible. The collec-
tions are structured in a hierarchical fashion, which can be represented in a tree.
This algorithm yields an n log n running time with parallelism proportional to n.

The Barnes-Hut algorithm uses an octree (each node has up to eight children)
to represent the eight cubes in a portion of space. Each node then represents the
collection of bodies in the subtree rooted at that node, which we call a cell. Be-
cause the density of space varies and the leaves represent individual bodies, the
depth of the tree varies. The tree is traversed once per body to compute the net
force acting on that body. The force-calculation algorithm for a body starts at the
root of the tree. For every node in the tree it visits, the algorithm determines if the
center of mass of the cell represented by the subtree rooted at the node is “far
enough away” from the body. If so, the entire subtree under that node is approxi-
mated by a single point at the center of mass of the cell, and the force this center
of mass exerts on the body is computed. On the other hand, if the center of mass
is not far enough away, the cell must be “opened” and each of its subtrees visited.
The distance between the body and the cell, together with the error tolerances,
determines which cells must be opened. This force calculation phase dominates
the execution time. This chapter takes measurements using 16K bodies; the crite-
rion for determining whether a cell needs to be opened is set to the middle of the
range typically used in practice.

6.2 Characteristics of Application Domains 655
Obtaining effective parallel performance on Barnes-Hut is challenging be-
cause the distribution of bodies is nonuniform and changes over time, making
partitioning the work among the processors and maintenance of good locality of
reference difficult. We are helped by two properties: the system evolves slowly;
and because gravitational forces fall off quickly, with high probability, each cell
requires touching a small number of other cells, most of which were used on the
last time step. The tree can be partitioned by allocating each processor a subtree.
Many of the accesses needed to compute the force on a body in the subtree will
be to other bodies in the subtree. Since the amount of work associated with a sub-
tree varies (cells in dense portions of space will need to access more cells), the
size of the subtree allocated to a processor is based on some measure of the work
it has to do (e.g., how many other cells does it need to visit), rather than just on
the number of nodes in the subtree. By partitioning the octree representation, we
can obtain good load balance and good locality of reference, while keeping the
partitioning cost low. Although this partitioning scheme results in good locality
of reference, the resulting data references tend to be for small amounts of data
and are unstructured. Thus this scheme requires an efficient implementation of
shared-memory communication.

The Ocean Application
Ocean simulates the influence of eddy and boundary currents on large-scale flow
in the ocean. It uses a restricted red-black Gauss-Seidel multigrid technique to
solve a set of elliptical partial differential equations. Red-black Gauss-Seidel is
an iteration technique that colors the points in the grid so as to consistently up-
date each point based on previous values of the adjacent neighbors. Multigrid
methods solve finite difference equations by iteration using hierarchical grids.
Each grid in the hierarchy has fewer points than the grid below, and is an approx-
imation to the lower grid. A finer grid increases accuracy and thus the rate of con-
vergence, while requiring more execution time, since it has more data points.
Whether to move up or down in the hierarchy of grids used for the next iteration
is determined by the rate of change of the data values. The estimate of the error at
every time-step is used to decide whether to stay at the same grid, move to a
coarser grid, or move to a finer grid. When the iteration converges at the finest
level, a solution has been reached. Each iteration has n2 work for an n × n grid
and the same amount of parallelism.

The arrays representing each grid are dynamically allocated and sized to the
particular problem. The entire ocean basin is partitioned into square subgrids (as
close as possible) that are allocated in the portion of the address space corre-
sponding to the local memory of the individual processors, which are assigned
responsibility for the subgrid. For the measurements in this chapter we use an in-
put that has 130 × 130 grid points. There are five steps in a time iteration. Since
data are exchanged between the steps, all the processors present synchronize at
the end of each step before proceeding to the next. Communication occurs when
the boundary points of a subgrid are accessed by the adjacent subgrid in nearest-
neighbor fashion.

656 Chapter 6 Multiprocessors and Thread-Level Parallelism
Computation/Communication for the Parallel Programs
A key characteristic in determining the performance of parallel programs is the
ratio of computation to communication. If the ratio is high, it means the applica-
tion has lots of computation for each datum communicated. As we saw in section
6.1, communication is the costly part of parallel computing; therefore high com-
putation-to-communication ratios are very beneficial. In a parallel processing
environment, we are concerned with how the ratio of computation to communica-
tion changes as we increase either the number of processors, the size of the prob-
lem, or both. Knowing how the ratio changes as we increase the processor count
sheds light on how well the application can be sped up. Because we are often in-
terested in running larger problems, it is vital to understand how changing the
data set size affects this ratio.

To understand what happens quantitatively to the computation-to-communica-
tion ratio as we add processors, consider what happens separately to computation
and to communication as we either add processors or increase problem size. Fig-
ure 6.6 shows that as we add processors, for these applications, the amount of
computation per processor falls proportionately and the amount of communica-
tion per processor falls more slowly. As we increase the problem size, the compu-
tation scales as the O() complexity of the algorithm dictates. Communication
scaling is more complex and depends on details of the algorithm; we describe the
basic phenomena for each application in the caption of Figure 6.6.

The overall computation-to-communication ratio is computed from the indi-
vidual growth rate in computation and communication. In general, this ratio rises
slowly with an increase in data set size and decreases as we add processors. This
reminds us that performing a fixed-size problem with more processors leads to
increasing inefficiencies because the amount of communication among proces-
sors grows. It also tells us how quickly we must scale data set size as we add pro-
cessors, to keep the fraction of time in communication fixed. The following
example illustrates this tradeoffs.

E X A M P L E Suppose we know that for a given multiprocessor the Ocean application
spends 20% of its execution time waiting for communication when run on
four processors. Assume that the cost of each communication event is in-
dependent on processor count, which is not true in general, since com-
munication costs rise with processor count. How much faster might we
expect Ocean to run on a 32-processor machine with the same problem
size? What fraction of the execution time is spent on communication in
this case? How much larger a problem should we run if we want the frac-
tion of time spent communicating to be the same?

A N S W E R The computation to communication ratio for Ocean is , so if the
problem size is the same, the communication frequency scales by .

n p⁄
p

6.2 Characteristics of Application Domains 657
This means that communication time increase by . We can use a variation on
Amdahl’s Law, recognizing that the computation is decreased but the communi-
cation time is increased. If T4 is the total execution time for 4 processors, then the
execution time for 32 processors is:

Hence the speed-up is:

And the fraction of time spent in communication goes from 20% to 0.57/
0.67 = 85%.

Application
Scaling of

computation
Scaling of

communication
Scaling of computation-

to-communication

FFT

LU

Barnes
Approximately Approximately

Ocean

FIGURE 6.6 Scaling of computation, of communication, and of the ratio are critical
factors in determining performance on parallel multiprocessors. In this table p is the in-
creased processor count and n is the increased data set size. Scaling is on a per-processor
basis. The computation scales up with n at the rate given by O() analysis and scales down
linearly as p is increased. Communication scaling is more complex. In FFT all data points
must interact, so communication increases with n and decreases with p. In LU and Ocean,
communication is proportional to the boundary of a block, so it scales with data set size at a
rate proportional to the side of a square with n points, namely ; for the same reason com-
munication in these two applications scales inversely to . Barnes has the most complex
scaling properties. Because of the fall-off of interaction between bodies, the basic number of
interactions among bodies, which require communication, scales as . An additional factor
of log n is needed to maintain the relationships among the bodies. As processor count is in-
creased, communication scales inversely to .

n nlog
p

-------------- n
p
--- nlog

n
p
--- n

p
------- n

p

n nlog
p

-------------- n nlog()
p

----------------------- n

p

n
p
--- n

p
------- n

p

n
p

n

p

8

T32 Compute time + Communicaton time=

0.8 T× 4
8

-------------------- 0.2 T× 4() 8×+=

0.1 T× 4 0.57 T× 4+= 0.67 T× 4=

Speedup
T4
T32

T4
0.67 T× 4
----------------------- 1.49= = =

658 Chapter 6 Multiprocessors and Thread-Level Parallelism
For the fraction of the communication time to remain the same, we
must keep the computation to communication ratio the same, so the prob-
lem size must scale at the same rate as the processor count. Notice that
because we have changed the problem size, we cannot measure of the
scaled problem. We will return to the critical issue of scaling applications
for multiprocessors in both in the Cross Cutting Issues and the Fallacies
and Pitfalls. n

Multis are a new class of computers based on multiple microprocessors. The small
size, low cost, and high performance of microprocessors allow design and con-
struction of computer structures that offer significant advantages in manufacture,
price-performance ratio, and reliability over traditional computer families....
Multis are likely to be the basis for the next, the fifth, generation of computers.
[p. 463]

Bell [1985]

As we saw in Chapter 5, the use of large, multilevel caches can substantially re-
duce the memory bandwidth demands of a processor. If the main memory band-
width demands of a single processor are reduced, multiple processors may be
able to share the same memory. Starting in the 1980s, this observation, combined
with the emerging dominance of the microprocessor, motivated many designers
to create small-scale multiprocessors where several processors shared a single
physical memory connected by a shared bus. This type of design is called sym-
metric shared memory, because each processor has the same relationship to one
single shared memory. Because of the small size of the processors and the signifi-
cant reduction in the requirements for bus bandwidth achieved by large caches,
such symmetric multiprocessors are extremely cost-effective, provided that a suf-
ficient amount of memory bandwidth exists. Early designs of such multiproces-
sors were able to place an entire CPU and cache subsystem on a board, which
plugged into the bus backplane. More recent designs have placed up to four pro-
cessors per board; and a recent announcement by IBM includes 2 processors on
the same die. Figure 6.1 on page 639 shows a simple diagram of such a multipro-
cessor.

Small-scale shared-memory machines usually support the caching of both
shared and private data. Private data is used by a single processor, while shared
data is used by multiple processors, essentially providing communication among
the processors through reads and writes of the shared data. When a private item is
cached, its location is migrated to the cache, reducing the average access time as
well as the memory bandwidth required. Since no other processor uses the data,

6.3 Symmetric Shared-Memory Architectures

6.3 Symmetric Shared-Memory Architectures 659
the program behavior is identical to that in a uniprocessor. When shared data are
cached, the shared value may be replicated in multiple caches. In addition to the
reduction in access latency and required memory bandwidth, this replication also
provides a reduction in contention that may exist for shared data items that are
being read by multiple processors simultaneously. Caching of shared data, how-
ever, introduces a new problem: cache coherence.

What Is Multiprocessor Cache Coherence?

As we saw in Chapter 6, the introduction of caches caused a coherence problem
for I/O operations, since the view of memory through the cache could be different
from the view of memory obtained through the I/O subsystem. The same problem
exists in the case of multiprocessors, because the view of memory held by two dif-
ferent processors is through their individual caches. Figure 6.7 illustrates the prob-
lem and shows how two different processors can have two different values for the
same location. This difficulty s generally referred to as the cache-coherence prob-
lem.

Informally, we could say that a memory system is coherent if any read of a
data item returns the most recently written value of that data item. This definition,
although intuitively appealing, is vague and simplistic; the reality is much more
complex. This simple definition contains two different aspects of memory system
behavior, both of which are critical to writing correct shared-memory programs.
The first aspect, called coherence, defines what values can be returned by a read.
The second aspect, called consistency, determines when a written value will be
returned by a read. Let’s look at coherence first.

A memory system is coherent if

Time Event

Cache
contents

for CPU A

Cache
contents for

CPU B

Memory
contents for
location X

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU A stores 0 into X 0 1 0

FIGURE 6.7 The cache-coherence problem for a single memory location (X), read and
written by two processors (A and B). We initially assume that neither cache contains the
variable and that X has the value 1. We also assume a write-through cache; a write-back
cache adds some additional but similar complications. After the value of X has been written
by A, A’s cache and the memory both contain the new value, but B’s cache does not, and if
B reads the value of X, it will receive 1!

660 Chapter 6 Multiprocessors and Thread-Level Parallelism
1. A read by a processor, P, to a location X that follows a write by P to X, with
no writes of X by another processor occurring between the write and the read
by P, always returns the value written by P.

2. A read by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated in
time and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized: that is, two writes to the same loca-
tion by any two processors are seen in the same order by all processors. For
example, if the values 1 and then 2 are written to a location, processors can
never read the value of the location as 2 and then later read it as 1.

The first property simply preserves program order—we expect this property to be
true even in uniprocessors. The second property defines the notion of what it
means to have a coherent view of memory: If a processor could continuously
read an old data value, we would clearly say that memory was incoherent.

The need for write serialization is more subtle, but equally important. Suppose
we did not serialize writes, and processor P1 writes location X followed by P2
writing location X. Serializing the writes ensures that every processor will see the
write done by P2 at some point. If we did not serialize the writes, it might be the
case that some processor could see the write of P2 first and then see the write of
P1, maintaining the value written by P1 indefinitely. The simplest way to avoid
such difficulties is to serialize writes, so that all writes to the same location are
seen in the same order; this property is called write serialization.

Although the three properties just described are sufficient to ensure coherence,
the question of when a written value will be seen is also important. To see why,
observe that we cannot require that a read of X instantaneously see the value
written for X by some other processor. If, for example, a write of X on one pro-
cessor precedes a read of X on another processor by a very small time, it may be
impossible to ensure that the read returns the value of the data written, since the
written data may not even have left the processor at that point. The issue of exact-
ly when a written value must be seen by a reader is defined by a memory consis-
tency model—a topic discussed in section 6.8.

Coherence and consistency are complementary: Coherence defines the behav-
ior of reads and writes to the same memory location, while consistency defines
the behavior of reads and writes with respect to accesses to other memory loca-
tions. For simplicity, and because we cannot explain the problem in full detail at
this point, assume that we require that a write does not complete until all proces-
sors have seen the effect of the write and that the processor does not change the
order of any write with any other memory access. This allows the processor to re-
order reads, but forces the processor to finish a write in program order. We will
rely on this assumption until we reach section 6.8, where we will see exactly the
meaning of this definition, as well as the alternatives.

6.3 Symmetric Shared-Memory Architectures 661
Basic Schemes for Enforcing Coherence

The coherence problem for multiprocessors and I/O, although similar in origin,
has different characteristics that affect the appropriate solution. Unlike I/O,
where multiple data copies are a rare event—one to be avoided whenever possi-
ble—a program running on multiple processors will normally have copies of the
same data in several caches. In a coherent multiprocessor, the caches provide
both migration and replication of shared data items.

Coherent caches provide migration, since a data item can be moved to a local
cache and used there in a transparent fashion. This migration reduces both the la-
tency to access a shared data item that is allocated remotely and the bandwidth
demand on the shared memory.

Coherent caches also provide replication for shared data that is being
simultaneously read, since the caches make a copy of the data item in the local
cache. Replication reduces both latency of access and contention for a read
shared data item. Supporting this migration and replication is critical to perfor-
mance in accessing shared data. Thus, rather than trying to solve the problem by
avoiding it in software, small-scale multiprocessors adopt a hardware solution by
introducing a protocol to maintain coherent caches.

The protocols to maintain coherence for multiple processors are called cache-
coherence protocols. Key to implementing a cache-coherence protocol is track-
ing the state of any sharing of a data block. There are two classes of protocols,
which use different techniques to track the sharing status, in use:

n Directory based—The sharing status of a block of physical memory is kept in
just one location, called the directory; we focus on this approach in section 6.5,
when we discuss scalable shared-memory architecture.

n Snooping—Every cache that has a copy of the data from a block of physical
memory also has a copy of the sharing status of the block, and no centralized
state is kept. The caches are usually on a shared-memory bus, and all cache
controllers monitor or snoop on the bus to determine whether or not they have
a copy of a block that is requested on the bus. We focus on this approach in this
section.

Snooping protocols became popular with multiprocessors using microproces-
sors and caches attached to a single shared memory because these protocols can
use a preexisting physical connection—the bus to memory—to interrogate the
status of the caches.

Snooping Protocols

There are two ways to maintain the coherence requirement described in the previ-
ous subsection. One method is to ensure that a processor has exclusive access to a
data item before it writes that item. This style of protocol is called a write invali-
date protocol because it invalidates other copies on a write. It is by far the most

662 Chapter 6 Multiprocessors and Thread-Level Parallelism
common protocol, both for snooping and for directory schemes. Exclusive access
ensures that no other readable or writable copies of an item exist when the write
occurs: all other cached copies of the item are invalidated.

Figure 6.8 shows an example of an invalidation protocol for a snooping bus
with write-back caches in action To see how this protocol ensures coherence,
consider a write followed by a read by another processor: Since the write requires
exclusive access, any copy held by the reading processor must be invalidated
(hence the protocol name). Thus, when the read occurs, it misses in the cache and
is forced to fetch a new copy of the data. For a write, we require that the writing
processor have exclusive access, preventing any other processor from being able
to write simultaneously. If two processors do attempt to write the same data si-
multaneously, one of them wins the race (we’ll see how we decide who wins
shortly), causing the other processor’s copy to be invalidated. For the other pro-
cessor to complete its write, it must obtain a new copy of the data, which must
now contain the updated value. Therefore, this protocol enforces write serializa-
tion.

The alternative to an invalidate protocol is to update all the cached copies of a
data item when that item is written. This type of protocol is called a write update
or write broadcast protocol. To keep the bandwidth requirements of this protocol
under control it is useful to track whether or not a word in the cache is shared—
that is, is contained in other caches. If it is not, then there is no need to broadcast
or update any other caches. Figure 6.8 shows an example of a write update proto-
col in operation. In the decade since these protocols were developed, invalidate
has emerged as the winner for the vast majority of designs. To understand why,
let’s look at the qualitative performance differences.

The performance differences between write update and write invalidate proto-
cols arise from three characteristics:

Processor activity Bus activity
Contents of

CPU A’s cache
Contents of

CPU B’s cache
Contents of memory

location X

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Invalidation for X 1 0

CPU B reads X Cache miss for X 1 1 1

FIGURE 6.8 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with
write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0. The CPU and
memory contents show the value after the processor and bus activity have both completed. A blank indicates no activity or
no copy cached. When the second miss by B occurs, CPU A responds with the value canceling the response from memory.
In addition, both the contents of B’s cache and the memory contents of X are updated. This update of memory, which occurs
when a block becomes shared, is typical in most protocols and simplifies the protocol, as we will see shortly.

6.3 Symmetric Shared-Memory Architectures 663
1. Multiple writes to the same word with no intervening reads require multiple
write broadcasts in an update protocol, but only one initial invalidation in a
write invalidate protocol.

2. With multiword cache blocks, each word written in a cache block requires a
write broadcast in an update protocol, although only the first write to any word
in the block needs to generate an invalidate in an invalidation protocol. An in-
validation protocol works on cache blocks, while an update protocol must
work on individual words (or bytes, when bytes are written). It is possible to
try to merge writes in a write broadcast scheme, just as we did for write buffers
in Chapter 5, but the basic difference remains.

3. The delay between writing a word in one processor and reading the written
value in another processor is usually less in a write update scheme, since the
written data are immediately updated in the reader’s cache (assuming that the
reading processor has a copy of the data). By comparison, in an invalidation
protocol, the reader is invalidated first, then later reads the data and is stalled
until a copy can be read and returned to the processor.

Because bus and memory bandwidth is usually the commodity most in de-
mand in a bus-based multiprocessor and invalidation protocols generate less bus
and memory traffic, invalidation has become the protocol of choice for almost all
multiprocessors. Update protocols also cause problems for memory consistency
models, reducing the potential performance gains of update, mentioned in point
3, even further. In designs with very small processor counts (2, or at most, 4)
where the processors are tightly coupled (perhaps even on the same chip), the
larger bandwidth demands of update may be acceptable. Nonetheless, given the
trends in increasing processor performance and the related increase in bandwidth

Processor activity Bus activity
Contents of

CPU A’s cache
Contents of

CPU B’s cache
Contents of memory

location X

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Write broadcast of X 1 1 1

CPU B reads X 1 1 1

FIGURE 6.9 An example of a write update or broadcast protocol working on a snooping bus for a single cache
block (X) with write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0.
The CPU and memory contents show the value after the processor and bus activity have both completed. A blank indicates
no activity or no copy cached. When CPU A broadcasts the write, both the cache in CPU B and the memory location of X
are updated.

664 Chapter 6 Multiprocessors and Thread-Level Parallelism
demands, we can expect update schemes to be used very infrequently. For this
reason, we will focus only on invalidate protocols for the rest of the chapter.

Basic Implementation Techniques

The key to implementing an invalidate protocol in a small-scale multiprocessor is
the use of the bus to perform invalidates. To perform an invalidate the processor
simply acquires bus access and broadcasts the address to be invalidated on the
bus. All processors continuously snoop on the bus watching the addresses. The
processors check whether the address on the bus is in their cache. If so, the corre-
sponding data in the cache is invalidated.

The serialization of access enforced by the bus also forces serialization of
writes, since when two processors compete to write to the same location, one
must obtain bus access before the other. The first processor to obtain bus access
will cause the other processor’s copy to be invalidated, causing writes to be strict-
ly serialized. One implication of this scheme is that a write to a shared data item
cannot complete until it obtains bus access.

In addition to invalidating outstanding copies of a cache block that is being
written into, we also need to locate a data item when a cache miss occurs. In a
write-through cache, it is easy to find the recent value of a data item, since all
written data are always sent to the memory, from which the most recent value of a
data item can always be fetched. (Write buffers can lead to some additional com-
plexities, which are discussed in section 6.8.)

For a write-back cache, however, the problem of finding the most recent data
value is harder, since the most recent value of a data item can be in a cache rather
than in memory. Happily, write-back caches can use the same snooping scheme
both for caches misses and for writes: Each processor snoops every address
placed on the bus. If a processor finds that it has a dirty copy of the requested
cache block, it provides that cache block in response to the read request and caus-
es the memory access to be aborted. Since write-back caches generate lower
requirements for memory bandwidth, they are greatly preferable in a multi-
processor, despite the slight increase in complexity. Therefore, we focus on im-
plementation with write-back caches.

The normal cache tags can be used to implement the process of snooping, and
the valid bit for each block makes invalidation easy to implement. Read misses,
whether generated by an invalidation or by some other event, are also straightfor-
ward since they simply rely on the snooping capability. For writes we’d like to
know whether any other copies of the block are cached, because, if there are no
other cached copies, then the write need not be placed on the bus in a write-back
cache. Not sending the write reduces both the time taken by the write and the re-
quired bandwidth.

To track whether or not a cache block is shared we can add an extra state bit
associated with each cache block, just as we have a valid bit and a dirty bit. By
adding a bit indicating whether the block is shared, we can decide whether a
write must generate an invalidate. When a write to a block in the shared state oc-

6.3 Symmetric Shared-Memory Architectures 665
curs, the cache generates an invalidation on the bus and marks the block as pri-
vate. No further invalidations will be sent by that processor for that block. The
processor with the sole copy of a cache block is normally called the owner of the
cache block.

When an invalidation is sent, the state of the owner’s cache block is changed
from shared to unshared (or exclusive). If another processor later requests this
cache block, the state must be made shared again. Since our snooping cache also
sees any misses, it knows when the exclusive cache block has been requested by
another processor and the state should be made shared.

Every bus transaction must check the cache-address tags, which could poten-
tially interfere with CPU cache accesses. This potential interference is reduced
by one of two techniques: duplicating the tags or employing a multilevel cache
with inclusion, whereby the levels closer to the CPU are a subset of those further
away. If the tags are duplicated, then the CPU and the snooping activity may pro-
ceed in parallel. Of course, on a cache miss the processor needs to arbitrate for and
update both sets of tags. Likewise, if the snoop finds a matching tag entry, it
needs to arbitrate for and access both sets of cache tags (to perform an invalidate
or to update the shared bit), as well as possibly the cache data array to retrieve a
copy of a block. Thus with duplicate tags the processor only needs to be stalled
when it does a cache access at the same time that a snoop has detected a copy in
the cache. Furthermore, snooping activity is delayed only when the cache is deal-
ing with a miss.

If the CPU uses a multilevel cache with the inclusion property, then every en-
try in the primary cache is required to be in the secondary cache. Thus the snoop
activity can be directed to the second-level cache, while most of the processor’s
activity is directed to the primary cache. If the snoop gets a hit in the secondary
cache, then it must arbitrate for the primary cache to update the state and possi-
bly retrieve the data, which usually requires a stall of the processor. Since many
multiprocessors use a multilevel cache to decrease the bandwidth demands of
the individual processors, this solution has been adopted in many designs.
Sometimes it may even be useful to duplicate the tags of the secondary cache to
further decrease contention between the CPU and the snooping activity. We dis-
cuss the inclusion property in more detail in section 6.10 on page 728.

An Example Protocol

A bus-based coherence protocol is usually implemented by incorporating a finite
state controller in each node. This controller responds to requests from the pro-
cessor and from the bus, changing the state of the selected cache block, as well as
using the bus to access data or to invalidate it. Figure 6.10 shows the requests
generated by the processor-cache module in a node, in the top half of the table, as
well as those coming from the bus, in the bottom half of the table. For simplicity,

666 Chapter 6 Multiprocessors and Thread-Level Parallelism
the protocol we explain does not distinguish between a write hit and a write miss
to a shared cache block: in both cases, we treat such an access as a write miss.
When the write miss is placed on the bus, any processors with copies of the cache
block invalidate it. In a write-back cache, if the block is exclusive in just one
cache, that cache also writes back the block. Treating write hits to shared blocks
as cache misses reduces the number of different bus transactions and simplifies
the controller. In more sophisticated protocols, these “misses” are treated as up-
grade requests that generate a bus transaction and an invalidate, but do not actual-
ly transfer the data, since the copy in he cache is up-to-date.

Figure 6.11 shows a finite-state transition diagram for a single cache block us-
ing a write-invalidation protocol and a write-back cache. For simplicity, the three
states of the protocol are duplicated to represent transitions based on CPU re-
quests (on the left, which corresponds to the top half of the table in Figure 6.11),
as opposed to transitions based on bus requests (on the right, which corresponds

Request Source State of addressed
cache block

Function and explanation

Read hit Processor Shared or Exclusive Read data in cache

Read miss Processor Invalid Place read miss on bus.

Read miss Processor Shared Address conflict miss: place read miss on bus

Read miss Processor Exclusive Address conflict miss: write back block, then place read miss
on bus

Write hit Processor Exclusive Write data in cache.

Write hit Processor Shared Place write miss on bus.

Write miss Processor Invalid Place write miss on bus.

Write miss Processor Shared Address conflict miss: place write miss on bus

Write miss Processor Exclusive Address conflict miss: write back block, then place write miss
on bus

Read Miss Bus Shared No action; allow memory to service read miss.

Read Miss Bus Exclusive Attempt to share data: place cache block on bus and change
state to Shared.

Write miss Bus Shared Attempt to write shared block; invalidate the block.

Write miss Bus Exclusive Attempt to write block that is exclusive elsewhere: write back
the cache block and make its state Invalid.

FIGURE 6.10 The cache-coherence mechanism receives requests from both the processor and the bus and re-
sponds to these based on the type of request, whether it hits or misses in the cache, and the state of the cache
block specified in the request. For read or write misses snooped from the bus, an action is required only if the read or
write addresses matches a block in the cache and the block is valid. Placing a write miss on the bus when a write hits in the
Shared state, ensures an exclusive copy, though the data need not actually be transferred. This is referred to as an upgrade,
and some protocols distinguish it from a write miss to avoid the data transfer.

6.3 Symmetric Shared-Memory Architectures 667
to the bottom half of the table in Figure 6.11). Boldface type is used to distin-
guish the bus actions, as opposed to the conditions on which a state transition de-
pends. The state in each node represents the state of the selected cache block
specified by the processor or bus request.

All of the states in this cache protocol would be needed in a uniprocessor
cache, where they would correspond to the invalid, valid (and clean), and dirty

FIGURE 6.11 A write-invalidate, cache-coherence protocol for a write-back cache showing the states and state
transitions for each block in the cache. The cache states are shown in circles with any access permitted by the CPU with-
out a state transition shown in parenthesis under the name of the state. The stimulus causing a state change is shown on
the transition arcs in regular type, and any bus actions generated as part of the state transition are shown on the transition
arc in bold. The stimulus actions apply to a block in the cache, not to a specific address in the cache. Hence, a read miss to
a block in the shared state is a miss for that cache block but for a different address. The left side of the diagram shows state
transitions based on actions of the CPU associated with this cache; the right side shows transitions based on operations on
the bus. A read miss in the exclusive or shared state and a write miss in the exclusive state occur when the address request-
ed by the CPU does not match the address in the cache block. Such a miss is a standard cache replacement miss. An at-
tempt to write a block in the shared state always generates a miss, even if the block is present in the cache, since the block
must be made exclusive. Whenever a bus transaction occurs, all caches that contain the cache block specified in the bus
transaction take the action dictated by the right half of the diagram. The protocol assumes that memory provides data on a
read miss for a block that is clean in all caches. In actual implementations, these two sets of state diagrams are combined.
This protocol is somewhat simpler than those in use in existing multiprocessors.

Invalid

Exclusive
(read/write)

Write miss for
this block

Write miss
for this block

CPU write hit
CPU read hit

Cache state transitions based
on requests from the bus

CPU write

P
la

ce
 w

ri
te

m
is

s
o

n
 b

u
s

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Pla
ce

 w
rit

e
m

is
s

on b
us

Plac
e r

ea
d m

iss
 o

n b
us CPU w

rit
e

Place read miss on bus

Place read
miss on bus

W
ri

te
-b

ac
k

b
lo

ck
;

ab
o

rt
 m

em
o

ry
ac

ce
ss

W
rit

e-
bac

k b
lo

ck
; a

bort

m
em

ory
 ac

ce
ss

CPU read

Cache state transitions
based on requests from CPU

Shared
(read only)

Exclusive
(read/write)

CPU read hit

CPU write miss

Write-back cache block
Place write miss on bus

CPU
read
miss

Read miss
for this block

Invalid
Shared

(read only)

668 Chapter 6 Multiprocessors and Thread-Level Parallelism
states. All of the state changes indicated by arcs in the left half of Figure 6.11
would be needed in a write-back uniprocessor cache; the only difference in a
multiprocessor with coherence is that the controller must generate a write miss
when the controller has a write hit for a cache block in the shared state. The state
changes represented by the arcs in the right half of Figure 6.11 are needed only
for coherence and would not appear at all in a uniprocessor cache controller.

In reality, there is only one finite-state machine per cache, with stimuli coming
either from the attached CPU or from the bus. Figure 6.12 shows how the state

transitions in the right half of Figure 6.11 are combined with those in the left half
of the figure to form a single state diagram for each cache block.

FIGURE 6.12 Cache-coherence state diagram with the state transitions induced by
the local processor shown in black and by the bus activities shown in gray. As in
Figure 6.11, the activities on a transition are shown in bold.

Exclusive
(read/write)

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

ri
te

 m
is

s
o

n
 b

u
s

Rea
d

m
iss

 fo
r b

loc
k

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Plac
e w

rit
e m

iss
 o

n b
us

CPU w
rit

e

Place read miss on bus

Place read
miss on bus

CPU read

CPU read hit

CPU write miss

Write-back data
Place write miss on bus

CPU
read
miss

Invalid

Write miss for this block

W
rit

e-
bac

k d
at

a;
 p

lac
e r

ea
d m

iss
 o

n b
us

Shared
(read only)

W
ri

te
-b

ac
k

b
lo

ck

6.3 Symmetric Shared-Memory Architectures 669
To understand why this protocol works, observe that any valid cache block is
either in the shared state in multiple caches or in the exclusive state in exactly one
cache. Any transition to the exclusive state (which is required for a processor to
write to the block) requires a write miss to be placed on the bus, causing all
caches to make the block invalid. In addition, if some other cache had the block
in exclusive state, that cache generates a write back, which supplies the block
containing the desired address. Finally, if a read miss occurs on the bus to a block
in the exclusive state, the owning cache also makes its state shared, forcing a sub-
sequent write to require exclusive ownership.

The actions in gray in Figure 6.12, which handle read and write misses on the
bus, are essentially the snooping component of the protocol. One other property
that is preserved in this protocol, and in most other protocols, is that any memory
block in the shared state is always up to date in the memory. This simplifies the
implementation, as we will see in detail in section 6.7.

Although our simple cache protocol is correct, it omits a number of complica-
tions that make the implementation much trickier. The most important of these is
that the protocol assumes that operations are atomic—that is, an operation can be
done in such a way that no intervening operation can occur. For example, the pro-
tocol described assumes that write misses can be detected, acquire the bus, and
receive a response as a single atomic action. In reality this is not true. Similarly, if
we used a split transaction bus (see Chapter 6, section 6.3), as most modern bus-
based multiprocessors do, then even read misses would also not be atomic.

Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. Appendix E deals with
these complex issues, showing how the protocol can be modified to deal with
nonatomic writes without introducing deadlock.

As stated earlier, this coherence protocol is actually simpler than those used in
practice. There are two major simplifications. First, in this protocol all transitions
to the exclusive state generate a write miss on the bus, and we assume that the re-
questing cache always fills the block with the contents returned. This simplifies
the detailed implementation. Most real protocols distinguish between a write
miss and a write hit, which can occur when the cache block is initially in the
shared state. Such misses are called ownership or upgrade misses, since they
involve changing the state of the block, but do not actually require a data fetch.
To support such state changes, the protocol uses an invalidate operation, in addi-
tion to a write miss. With such operations, however, the actual implementation of
the protocol becomes slightly more complex.

The second major simplification is that many multiprocessors distinguish be-
tween a cache block that is really shared and one that exists in the clean state in
exactly one cache. This addition of a “clean and private” state eliminates the need
to generate a bus transaction on a write to such a block. Another enhancement in
wide use allows other caches to supply data on a miss to a shared block.

670 Chapter 6 Multiprocessors and Thread-Level Parallelism
Constructing small (2-4) processor bus-based multiprocessors has become
very easy. Many modern microprocessors provide basic support for cache coher-
ency and also allow the construction of a shared memory bus by direct connec-
tion of the external memory bus of two processors. These capabilities reduce the
number of chips required to build a small-scale multiprocessor. For example, the
Intel Pentium III Xeon and Pentium 4 Xeon processors are designed for use in
cache coherent multiprocessors and have an external interface that supports
snooping and allows two processors to be directly connected. They also have
larger on-chip caches to reduce bus utilization. A system chip set containing an
external memory controller is used to connect the shared processor memory bus
with a set of memory chips. The memory controller also implements the coheren-
cy protocol. Since different size multiprocessors generate different demands for
bus bandwidth, Intel has two different system chip sets designed for dual proces-
sor systems and for midrange range systems (2-4 processors). A small-scale mul-
tiprocessor may be built with only two additional system chips: the memory
controller memory controller mentioned above and an I/O hub chip that interfac-
es standard I/O buses, such as PCI, to the memory bus.

The next part of this section examines the performance of these protocols for
our parallel and multiprogrammed workloads; the value of these extensions to a
basic protocol will be clear when we examine the performance.

In a bus-based multiprocessor using an invalidation protocol, several different
phenomena combine to determine performance. In particular, the overall cache
performance is a combination of the behavior of uniprocessor cache miss traffic
and the traffic caused by communication, which results in invalidations and sub-
sequent cache misses. Changing the processor count, cache size, and block size
can affect these two components of the miss rate in different ways, leading to
overall system behavior that is a combination of the two effects.

In Chapter 5, we saw how breaking the uniprocessor miss rate into the 3C
classification could provide insight into both application behavior and potential
improvements to the cache design. Similarly, the misses that arise from interpro-
cessor communication, which are often called coherence misses, can be broken
into two separate sources.

The first source are the so-called true sharing misses that arise from the com-
munication of data through the cache coherence mechanism. In an invalidation-
based protocol, the first write by a processor to a shared cache block causes an in-
validation to establish ownership of that block. Additionally, when another pro-
cessor attempts to read a modified word in that cache block, a miss occurs and the

6.4 Performance of Symmetric Shared-Memory
Multiprocessors

6.4 Performance of Symmetric Shared-Memory Multiprocessors 671
resultant block is transferred. Both these misses are classified as true sharing
misses since they directly arise from the sharing of data among processors.

The second effect, called false sharing, arises from the use of an invalidation-
based coherence algorithm with a single valid bit per cache block. False sharing
occurs when a block is invalidated (and a subsequent reference causes a miss) be-
cause some word in the block, other than the one being read, is written into. If the
word written into is actually used by the processor that received the invalidate,
then the reference was a true sharing reference and would have caused a miss in-
dependent of the block size or position of words. If, however, the word being
written and the word read are different and the invalidation does not cause a new
value to be communicated, but only causes an extra cache miss, then it is a false
sharing miss. In a false sharing miss, the block is shared, but no word in the cache
is actually shared, and the miss would not occur if the block size were a single
word. The following Example makes the sharing patterns clear.

E X A M P L E Assume that words x1 and x2 are in the same cache block, which is in the
shared state in the caches of P1 and P2. Assuming the following se-
quence of events, identify each miss as a true sharing miss, a false shar-
ing miss, or a hit. Any miss that would occur if the block size were one
word is designated a true sharing miss.

A N S W E R Here are classifications by time step:

1. This event is a true sharing miss, since x1 was read by P2 and needs
to be invalidated from P2.

2. This event is a false sharing miss, since x2 was invalidated by the
write of x1 in P1, but that value of x1 is not used in P2.

3. This event is a false sharing miss, since the block containing x1 is
marked shared due to the read in P2, but P2 did not read x1. The
cache block containing x1 will be in the shared state after the read by
P2; a write miss is required to obtain exclusive access to the block.
In some protocols this will be handled as an upgrade request, which

Time P1 P2

1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

672 Chapter 6 Multiprocessors and Thread-Level Parallelism
generates a bus invalidate, but does not transfer the cache block.

4. This event is a false sharing miss for the same reason as step 3.

5. This event is a true sharing miss, since the value being read was
written by P2. n

True sharing and false sharing miss rates can be affected by a variety of
changes in the cache architecture. Thus, we will find it useful to decompose not
only the uniprocessor and multiprocessor miss rates, but also the true-sharing and
false-sharing miss rates.

Performance Measurements of the Commercial Workload

The performance measurements of the commercial workload, which we examine
in this section, were taken either on a Alphaserver 4100, or using a configurable
simulator modeled after the Alphaserver 4100. The Alphaserver 4100 used for
these measurements has four processors, each of which is an Alpha 21164 run-
ning at 300 MHz. Each processor has a three-level cache hierarchy:

n L1 consist of a pair of 8 KB direct-mapped on-chip caches, one for instruction
and one for data. The block size is 32-bytes, and the data cache is write-through
to L2, using a write buffer.

n L2 is a 96 KB on-chip unified 3-way set associative cache with a 32-byte block
size, using write-back.

n L3 is an off-chip, combined, direct-mapped 2 MB caches with 64-byte blocks
also using write-back.

The latency for an access to L2 is 7 cycles, to L3 it is 21 cycles, and to main
memory it is 80 clock cycles (typical without contention). Cache to cache trans-
fers, which occur on a miss to an exclusive block held in another cache, require
125 clock cycles. All the measurement shown in this section were collected by
Barroso, Gharachorloo, and Bugnion [1998].

We start by looking at the overall CPU execution for these benchmarks on the
4-processor system; as discussed on page 650, these benchmarks include sub-
stantial I/O time, which is ignored in the CPU time measurements. We group the
six DSS queries as a single benchmark, reporting the average behavior. The ef-
fective CPI varies widely for these benchmarks, from a CPI of 1.3 for the Altavis-
ta web search to an average CPI of 1.6 for the DSS workload, to 7.0 for the OLTP
workload. Figure 6.13 shows how the execution time breaks down into instruc-
tion execution, cache and memory system access time, and other stalls (which are
primarily pipeline resource stalls, but also include TLB and branch mispredict
stalls). Although the performance of the DSS and Altavista workloads is reason-
able, the performance of the OLTP workload is very poor, due to a poor perfor-
mance of the memory hierarchy.

6.4 Performance of Symmetric Shared-Memory Multiprocessors 673
Since the OLTP workload demands the most from the memory system with
large numbers of expensive L3 misses, we focus on examining the impact of L3
cache size, processor count, and block size on the OLTP benchmark. Figure 6.14
shows the effect of increasing the cache size, using 2-way set associative caches,
which reduces the large number of conflict misses. The execution time is im-
proved as the L3 cache grows due to the reduction in L3 misses. The idle time
also grows, reducing some of the performance gains. This growth occurs because
with fewer memory system stalls, more server processes are needed to cover the
I/O latency. The workload could be retuned to increase the computation/commu-
nication balance, holding the idle time in check.

To better understand how the L3 miss rate responds, we ask: What factors con-
tribute to the L3 miss rate and how do they change as the L3 cache grows? Figure
6.15 shows this data, displaying the number of memory access cycles contributed
per instruction from five sources. The two largest sources of memory access cy-
cles (due to L3 misses) with a 1 MB L3 are instruction and capacity/conflict
misses. With a larger L3 these two sources shrink to be minor contributors. Un-

FIGURE 6.13 The execution time breakdown for the three programs (OLTP, DSS, and Altavista) in the commercial
workload. The DSS numbers are the average across six different queries. The CPI varies widely from a low of 1.3 for Al-
tavista, to 1.61 for the DSS queries, to 7.0 for Oracle. (Individually, the DSS queries show a CPI range of 1.3 to 1.9.) Other
stalls includes: resource stalls (implemented with replay traps on the 21164), branch mispredict, memory barrier, and TLB
misses. For these benchmarks resource-based pipeline stalls are the dominant factor.This data combines the behavior of
user and kernel accesses. Only OLTP has a significant fraction of kernel accesses, and the kernel accesses tend to be better
behaved than the user accesses!

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

OLTP DSS A V

Other stalls
Memory Access
L3 Access
L2 Access
Instruction execution

674 Chapter 6 Multiprocessors and Thread-Level Parallelism
fortunately, the cold, false sharing, and true sharing misses are unaffected by a
larger L3. Thus, at 4 and 8 MB, the true sharing misses generate the dominant
fraction of the misses.

Clearly, increasing the cache size eliminates most of the uniprocessor misses,
while leaving the multiprocessor misses untouched. How does increasing the pro-
cessor count affect different types of misses? Figure 6.16 shows this data assum-
ing a base configuration with a 2 MB, 2-way set associative L3 cache. As we
might expect, the increase in the true sharing miss rate, which is not compensated
for by any decrease in the uniprocessor misses, leads to an overall increase in the
memory access cycles per instruction.

The final question we examine is whether increasing the block size, which
should decrease the instruction and cold miss rate and, within limits, also reduce
the capacity/ conflict miss rate, is helpful for this workload. Figure 6.17 shows

FIGURE 6.14 The relative performance of the OLTP workload as the size of the L3 cache, which is set as 2-way set
associative, is grown from 1 MB to 8MB. Interestingly, the performance of the 1 MB, 2-way set associative cache is very
similar to the direct-mapped 2 MB cache that is used in the Alphaserver 4100.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

1 MB 2 MB 4 MB 8MB

L3 Cache Size

Idle
PAL Code
Memory Access
L2/L3 Cache Access
Instruction Execution

6.4 Performance of Symmetric Shared-Memory Multiprocessors 675
the number of misses per one-thousand instructions as the block size is increased
from 32 to 256. Increasing the block size from 32 to 256 affects four of the miss
rate components:

n the true sharing miss rate decreases by more than a factor of 2, indicating lo-
cality in the true sharing patterns,

n the cold start miss rate significantly decreases, as we would expect,

n the conflict/capacity misses show a small decrease (a factor of 1.26 compared
to a factor of 8 increase in block size), indicating that the spatial locality is not
high in the uniprocessor misses, and

n the false sharing miss rate. although small in absolute terms, nearly doubles.

The lack of a significant effect on the instruction miss rate is startling and clearly
indicates that the large instruction footprint has very poor spatial locality! Over-

FIGURE 6.15 The contributing causes of memory access cycles shift as the cache size is increased. The L3 cache
is simulated as 2-way set associative.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

1 MB 2 MB 4 MB 8 MB

Cache size

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

676 Chapter 6 Multiprocessors and Thread-Level Parallelism
all, increasing the block size of the of the third-level cache to 128 or possibly 256
bytes seems appropriate.

Performance of the Multiprogramming and OS Workload

In this subsection we examine the cache performance of the multiprogrammed
workload as the cache size and block size are changed. The workload remains the
same as described in the previous section: two independent parallel makes, each
using up to eight processors. Because of differences between the behavior of the
kernel and that of the user processes, we keep these two components separate.
Remember, though, that the user processes execute more than eight times as
many instructions, so that the overall miss rate is determined primarily by the
miss rate in user code, which, as we will see, is often one-fifth of the kernel miss
rate.

Figure 6.18 shows the data miss rate versus data cache size for the kernel and
user components. The misses can be broken into three significant classes:

n Compulsory, or cold, misses represent the first access to this block by this pro-

FIGURE 6.16 The contribution to memory access cycles increases as processor count increases primarily due to
increased true sharing. The cold misses slightly increase since each processor must now handle more cold misses.

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8

Processor count

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

6.4 Performance of Symmetric Shared-Memory Multiprocessors 677
cessor and are significant in this workload.

n Coherence misses represent misses due to invalidations.

n Normal capacity misses include misses caused by interference between the OS
and the user process and between multiple user processes. Conflict misses are
included in this category.

For this workload the behavior of the operating system is more complex than
the user processes. This is for two reasons. First, the kernel initializes all pages
before allocating them to a user, which significantly increases the compulsory
component of the kernel’s miss rate. Second, the kernel actually shares data and
thus has a nontrivial coherence miss rate. In contrast, user processes cause coher-
ence misses only when the process is scheduled on a different processor; this
component of the miss rate is small. Figure 6.19 shows the breakdown of the ker-
nel miss rate as the cache size is increased.

Increasing the block size is likely to have beneficial effects for this workload,
since a larger fraction of the misses arise from compulsory and capacity, both of
which can be potentially improved with larger block sizes. Since coherence miss-
es are relatively more rare, the negative effects of increasing block size should be

FIGURE 6.17 The number of misses per one-thousand instructions drops steadily as the block size of the L3 cache
is increased making a good case for an L3 block size of at least 128 bytes. The L3 cache is a 2MB, 2-way set associa-
tive,

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

32 64 128 256

lock size in bytes

Insruction
Capacity/Conflict
Cold
False Sharing
True Sharing

678 Chapter 6 Multiprocessors and Thread-Level Parallelism
FIGURE 6.18 The data miss rate drops faster for the user code than for the kernel code as the data cache is in-
creased from 32 KB to 256 KB with a 32-byte block. Although the user level miss rate drops by a factor of 3, the kernel
level miss rate drops only by a factor of 1.3. As Figure 6.19 shows, this is due to a higher rate of compulsory misses and
coherence misses. This multiprogramming workload is run on eight processors.

FIGURE 6.19 The components of the kernel data miss rate change as the data cache size is increased from 32KB
to 256 KB, when the multiprogramming workload is run on eight processors. The compulsory miss rate component
stays constant, since it is unaffected by cache size. The capacity component drops by more than a factor of two, while the
coherence component nearly doubles. The increase in coherence misses occurs because the probability of a miss being
caused by an invalidation increases with cache size, since fewer entries are bumped due to capacity.

7%

4%

5%

6%

3%

2%

1%

Miss rate

0%

Cache size (KB)

32 64 128 256

Kernel miss rate

User miss rate

Miss rate

0%

2%

4%

6%

5%

3%

1%

32 64 128

Cache size (KB)

256

7%

Compulsory Coherence Capacity

6.4 Performance of Symmetric Shared-Memory Multiprocessors 679
small. Figure 6.20 shows how the miss rate for the kernel and user references
changes as the block size is increased, assuming a 32 KB two-way set-associative
data cache. Figure 6.21 confirms that, for the kernel references, the largest im-

provement is the reduction of the compulsory miss rate. The absence of large in-
creases in the coherence miss rate as block size is increased means that false
sharing effects are insignificant.

If we examine the number of bytes needed per data reference, as in Figure
6.22, we see that the e kernel has a higher traffic ratio that grows quickly with
block size. This is despite the significant reduction in compulsory misses; the
smaller reduction in capacity and coherence misses drives an increase in total
traffic. The user program has a much smaller traffic ratio that grows very slowly.

For the multiprogrammed workload, the OS is a much more demanding user
of the memory system. If more OS or OS-like activity is included in the work-
load, it will become very difficult to build a sufficiently capable memory system.

FIGURE 6.20 Miss rate for the multiprogramming workload drops steadily as the
block size is increased for a 32-KB two-way set-associative data cache and an eight-
CPU multiprocessor. As we might expect based on the higher compulsory component in the
kernel, the improvement in miss rate for the kernel references is larger (almost a factor of 4
for the kernel references when going from 16-byte to 128-byte blocks versus just under a fac-
tor of 3 for the user references).

10%

6%

7%

8%

9%

4%

5%

3%

1%

2%

Miss rate

0%

Block size (bytes)

16 32 64 128

Kernel miss rate

User miss rate

680 Chapter 6 Multiprocessors and Thread-Level Parallelism
Performance for the Scientific/Technical Workload

In this section, we use a simulator to study the performance of our four scientific
parallel programs. For these measurements, the problem sizes are as follows:

n Barnes-Hut—16K bodies run for six time steps (the accuracy control is set to
1.0, a typical, realistic value);

n FFT—1 million complex data points

n LU—A 512 × 512 matrix is used with 16 × 16 blocks

n Ocean—A 130 × 130 grid with a typical error tolerance

In looking at the miss rates as we vary processor count, cache size, and block
size, we decompose the total miss rate into coherence misses and normal unipro-
cessor misses. The normal uniprocessor misses consist of capacity, conflict, and
compulsory misses. We label these misses as capacity misses, because that is the
dominant cause for these benchmarks. For these measurements, we include as a
coherence miss any write misses needed to upgrade a block from shared to exclu-
sive, even though no one is sharing the cache block. This measurement reflects a
protocol that does not distinguish between a private and shared cache block.

FIGURE 6.21 As we would expect, the increasing block size substantially reduces the
compulsory miss rate in the kernel references. It also has a significant impact on the ca-
pacity miss rate, decreasing it by a factor of 2.4 over the range of block sizes. The increased
block size has a small reduction in coherence traffic, which appears to stabilize at 64 bytes,
with no change in the coherence miss rate in going to 128-byte lines. Because there are not
significant reductions in the coherence miss rate as the block size increases, the fraction of
the miss rate due to coherence grows from about 7% to about 15%.

Miss rate

0%

2%

4%

9%

8%

7%

6%

5%

3%

1%

16 32 64

Block size (bytes)

128

10%

Compulsory Coherence Capacity

6.4 Performance of Symmetric Shared-Memory Multiprocessors 681
Figure 6.23 shows the data miss rates for our four applications, as we increase
the number of processors from one to sixteen, while keeping the problem size
constant. As we increase the number of processors, the total amount of cache in-
creases, usually causing the capacity misses to drop. In contrast, increasing the
processor count usually causes the amount of communication to increase, in turn
causing the coherence misses to rise. The magnitude of these two effects differs
by application.

In FFT, the capacity miss rate drops (from nearly 7% to just over 5%) but the
coherence miss rate increases (from about 1% to about 2.7%), leading to a con-
stant overall miss rate. Ocean shows a combination of effects, including some
that relate to the partitioning of the grid and how grid boundaries map to cache
blocks. For a typical 2D grid code the communication-generated misses are pro-
portional to the boundary of each partition of the grid, while the capacity misses
are proportional to the area of the grid. Therefore, increasing the total amount of
cache while keeping the total problem size fixed will have a more significant ef-
fect on the capacity miss rate, at least until each subgrid fits within an individual
processor’s cache. The significant jump in miss rate between one and two proces-

FIGURE 6.22 The number of bytes needed per data reference grows as block size is
increased for both the kernel and user components. It is interesting to compare this chart
against the same chart for the parallel program workload shown in Figure 6.26.

3.5

2.0

2.5

3.0

1.5

1.0

0.5

Memory traffic
measured as bytes
per data reference

0.0

Block size (bytes)

16 32 64 128

Kernel traffic

User traffic

682 Chapter 6 Multiprocessors and Thread-Level Parallelism
FIGURE 6.23 Data miss rates can vary in nonobvious ways as the processor count is increased from one to six-
teen. The miss rates include both coherence and capacity miss rates. The compulsory misses in these benchmarks are all
very small and are included in the capacity misses. Most of the misses in these applications are generated by accesses to
data that is potentially shared, although in the applications with larger miss rates (FFT and Ocean), it is the capacity misses
rather than the coherence misses that comprise the majority of the miss rate. Data is potentially shared if it is allocated in a
portion of the address space used for shared data. In all except Ocean, the potentially shared data is heavily shared, while
in Ocean only the boundaries of the subgrids are actually shared, although the entire grid is treated as a potentially shared
data object. Of course, since the boundaries change as we increase the processor count (for a fixed-size problem), different
amounts of the grid become shared. The anomalous increase in capacity miss rate for Ocean in moving from one to two
processors arises because of conflict misses in accessing the subgrids. In all cases except Ocean, the fraction of the cache
misses caused by coherence transactions rises when a fixed-size problem is run on an increasing number of processors. In
Ocean, the coherence misses initially fall as we add processors due to a large number of misses that are write ownership
misses to data that is potentially, but not actually, shared. As the subgrids begin to fit in the aggregate cache (around 16
processors), this effect lessens. The single processor numbers include write upgrade misses, which occur in this protocol
even if the data is not actually shared, since it is in the shared state. For all these runs, the cache size is 64 KB, two-way set
associative, with 32-byte blocks. Notice that the scale on the y-axis for each benchmark is different, so that the behavior of
the individual benchmarks can be seen clearly.

Miss rate

0%

3%

2%

1%

1 2 4

Processor count

FFT

8 16

8%

4%

7%

6%

5%

Miss rate

0%

6%

4%

2%

1 2 4

Processor count

Ocean

8 16

16%
18%

20%

8%

14%

12%

10%

Miss rate

0%

1%

1 2 4

Processor count

LU

8 16

2%

Miss rate

0%
1 2 4

Processor count

Barnes

8 16

1%

Coherence miss rate Capacity miss rate

6.4 Performance of Symmetric Shared-Memory Multiprocessors 683
sors occurs because of conflicts that arise from the way in which the multiple
grids are mapped to the caches. This conflict is present for direct-mapped and
two-way set associative caches, but fades at higher associativities. Such conflicts
are not unusual in array-based applications, especially when there are multiple
grids in use at once. In Barnes and LU the increase in processor count has little
effect on the miss rate, sometimes causing a slight increase and sometimes caus-
ing a slight decrease.

Increasing the cache size usually has a beneficial effect on performance, since
it reduces the frequency of costly cache misses. Figure 6.24 illustrates the change
in miss rate as cache size is increased for 16 processors, showing the portion of
the miss rate due to coherence misses and to uniprocessor capacity misses. Two
effects can lead to a miss rate that does not decrease—at least not as quickly as
we might expect—as cache size increases: inherent communication and plateaus
in the miss rate. Inherent communication leads to a certain frequency of coher-
ence misses that are not significantly affected by increasing cache size. Thus if
the cache size is increased while maintaining a fixed problem size, the coherence
miss rate eventually limits the decrease in cache miss rate. This effect is most ob-
vious in Barnes, where the coherence miss rate essentially becomes the entire
miss rate.

A less important effect is a temporary plateau in the capacity miss rate that
arises when the application has some fraction of its data present in cache but
some significant portion of the data set does not fit in the cache or in caches that
are slightly bigger. In LU, a very small cache (about 4 KB) can capture the pair of
16 × 16 blocks used in the inner loop; beyond that the next big improvement in
capacity miss rate occurs when both matrices fit in the caches, which occurs
when the total cache size is between 4 MB and 8 MB. This effect, sometimes
called a working set effect, is partly at work between 32 KB and 128 KB for FFT,
where the capacity miss rate drops only 0.3%. Beyond that cache size, a faster
decrease in the capacity miss rate is seen, as a major data structure begins to re-
side in the cache. These plateaus are common in programs that deal with large ar-
rays in a structured fashion.

Increasing the block size is another way to change the miss rate in a cache. In
uniprocessors, larger block sizes are often optimal with larger caches. In multi-
processors, two new effects come into play: a reduction in spatial locality for
shared data and a potential increase in miss rate due to false sharing. Several
studies have shown that shared data have lower spatial locality than unshared da-
ta. Poorer locality means that for shared data, fetching larger blocks is less effec-
tive than in a uniprocessor, because the probability is higher that the block will be
replaced before all its contents are referenced. Likewise, increasing the basic size
also increases the potential frequency of false sharing, increasing the miss rate.

Figure 6.25 shows the miss rates as the cache block size is increased for a 16-
processor run with a 64-KB cache. The most interesting behavior is in Barnes,
where the miss rate initially declines and then rises due to an increase in the num-

684 Chapter 6 Multiprocessors and Thread-Level Parallelism
ber of coherence misses, which probably occurs because of false sharing. In the
other benchmarks, increasing the block size decreases the overall miss rate. In
Ocean and LU, the block size increase affects both the coherence and capacity
miss rates about equally. In FFT, the coherence miss rate is actually decreased at
a faster rate than the capacity miss rate. This reduction occurs because the com-
munication in FFT is structured to be very efficient. In less optimized programs,
we would expect more false sharing and less spatial locality for shared data, re-
sulting in more behavior like that of Barnes.

Although the drop in miss rates with longer blocks may lead you to believe
that choosing a longer block size is the best decision, the bottleneck in bus-based

FIGURE 6.24 The miss rate usually drops as the cache size is increased, although co-
herence misses dampen the effect. The block size is 32 bytes and the cache is two-way
set-associative. The processor count is fixed at 16 processors. Observe that the scale for
each graph is different.

Miss rate

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256

10%

6%

8%

Miss rate

0%

1%

1%

32 64 128

Cache size (KB)

LU

256

2%

2%

Miss rate

0%

6%

2%

4%

32 64 128

Cache size (KB)

Ocean

256

14%

10%

8%

12%

Miss rate

0%

1%

32 64 128

Cache size (KB)

 Barnes

256

2%

1%

Coherence miss rate Capacity miss rate

6.4 Performance of Symmetric Shared-Memory Multiprocessors 685
multiprocessors is often the limited memory and bus bandwidth. Larger blocks
mean more bytes on the bus per miss. Figure 6.26 shows the growth in bus traffic
as the block size is increased. This growth is most serious in the programs that
have a high miss rate, especially Ocean. The growth in traffic can actually lead to
performance slowdowns due both to longer miss penalties and to increased bus
contention.

Summary: Performance of Snooping Cache Schemes

In this section we examined the cache performance of three very different work-
loads. We saw that the coherence traffic can introduce new behaviors in the mem-
ory system that do not respond as easily to changes in cache size or block size
that are normally used to improve uniprocessor cache performance.

FIGURE 6.25 The data miss rate drops as the cache block size is increased. All these
results are for a 16-processor run with a 64-KB cache and two-way set associativity. Once
again we use different scales for each benchmark.

Miss rate

0%

6%

4%

2%

16 32 64

Block size (bytes)

FFT

128

14%

10%

8%

12%

Miss rate

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

Miss rate

0%

6%

2%

4%

16 32 64

Block size (bytes)

Ocean

128

14%

10%

8%

12%

Miss rate

0%
16 32 64

Block size (bytes)

Barnes

128

1%

Coherence miss rate Capacity miss rate

686 Chapter 6 Multiprocessors and Thread-Level Parallelism
In the commercial workload, the performance of the web searching and DSS
benchmarks is reasonable (CPI of 1.3 and 1.6, respectively), while the OLTP
benchmark is much worse (CPI=7.0). For OLTP, the large instruction working set
demands a large cache to achieve acceptable performance. Increasing the cache
size reduces the execution time, but is limited by the true and false sharing miss-
es, which do not decrease as the cache grows. Similarly, increasing the processor
counts increases true and false sharing, leading to an increase in memory access
cycles. Fortunately, this workload responds favorably to an increase in block size,
although the instruction miss rate remains similar. For these large workloads, it
appears that very large (≥4 MB) off-chip caches with large block sizes (64-128
bytes) could work reasonably well.

In the multiprogrammed workload, the user and OS portions perform very dif-
ferently, although neither has significant coherence traffic. In the OS portion, the
compulsory and capacity contributions to the miss rate are much larger, leading
to overall miss rates that are comparable to the worst programs in the parallel

FIGURE 6.26 Bus traffic for data misses climbs steadily as the block size in the data
cache is increased. The factor of 3 increase in traffic for Ocean is the best argument against
larger block sizes. Remember that our protocol treats ownership or upgrade misses the same
as other misses, slightly increasing the penalty for large cache blocks; in both Ocean and FFT
this simplification accounts for less than 10% of the traffic.

7.0

4.0

5.0

6.0

3.0

2.0

1.0

Memory traffic
measured as bytes
per data reference

0.0

Block size (bytes)

16 32 64 128

FFT LU Barnes Ocean

6.5 Distributed Shared-Memory Architectures 687
program workload. User cache performance, on the other hand, is very good and
compares to the best programs in the parallel program workload.

Coherence requests are a significant but not overwhelming component in the
scientific processing workload. We can expect, however, that coherence requests
will be more important in parallel programs that are less optimized.

The question of how these cache miss rates affect CPU performance depends
on the rest of the memory system, including the latency and bandwidth of the in-
terconnect and memory, a topic we return to in Section 6.11.

A scalable multiprocessor supporting shared memory could choose to exclude or
include cache coherence. The simplest scheme for the hardware is to exclude
cache coherence, focusing instead on a scalable memory system. Several compa-
nies have built this style of multiprocessor; the Cray T3D/E is best-known exam-
ple. In such multiprocessors, memory is distributed among the nodes and all
nodes are interconnected by a network. Access can be either local or remote—a
controller inside each node decides, on the basis of the address, whether the data
resides in the local memory or in a remote memory. In the latter case a message is
sent to the controller in the remote memory to access the data.

These systems have caches, but to prevent coherence problems, shared data is
marked as uncacheable and only private data is kept in the caches. Of course,
software can still explicitly cache the value of shared data by copying the data
from the shared portion of the address space to the local private portion of the
address space that is cached. Coherence is then controlled by software. The
advantage of such a mechanism is that little hardware support is required, al-
though support for features such as block copy may be useful, since remote
accesses fetch only single words (or double words) rather than cache blocks.

There are several disadvantages to this approach. First, compiler mechanisms
for transparent software cache coherence are very limited. The techniques that
currently exist apply primarily to programs with well-structured loop-level paral-
lelism or a very strict form of object-oriented programming, and these techniques
have significant overhead arising from explicitly copying data. For irregular prob-
lems or problems involving dynamic data structures and pointers (including oper-
ating systems, for example), compiler-based software cache coherence is
currently impractical. The basic difficulty is that software-based coherence algo-
rithms must be conservative: every block that might be shared must be treated as

6.5 Distributed Shared-Memory Architectures

688 Chapter 6 Multiprocessors and Thread-Level Parallelism
if it is shared. Being conservative results in excess coherence overhead, because
the compiler cannot predict the actual sharing accurately enough. Due to the
complexity of the possible interactions, asking programmers to deal with coher-
ence is unworkable.

Second, without cache coherence, the multiprocessor loses the advantage of
being able to fetch and use multiple words in a single cache block for close to the
cost of fetching one word. The benefits of spatial locality in shared data cannot be
leveraged when single words are fetched from a remote memory for each refer-
ence. Support for a DMA mechanism among memories can help, but such mech-
anisms are often either costly to use (since they may require OS intervention) or
expensive to implement since special-purpose hardware support and a buffer are
needed. For message-passing programs, however, such mechanisms can be ex-
tremely useful, since programmers can overcome the usage penalties by using
large messages.

Third, mechanisms for tolerating latency such as prefetch are more useful
when they can fetch multiple words, such as a cache block, and where the fetched
data remain coherent; we will examine this advantage in more detail later.

These disadvantages are magnified by the large latency of access to remote
memory versus a local cache. For example, on the Cray T3E a local cache access
has a latency of two cycles and is pipelined. A remote memory access takes up to
400 processor clock cycles for a remote memory using the 450 MHz Alpha pro-
cessor in the T3E-900.

For these reasons, cache coherence is an accepted requirement in small-scale
multiprocessors. For larger-scale architectures, there are new challenges to ex-
tending the cache-coherent shared-memory model. Although the bus can certain-
ly be replaced with a more scalable interconnection network (the SUN Enterprise
servers use up to four buses, e.g.), and we could certainly distribute the memory
so that the memory bandwidth could also be scaled, the lack of scalability of the
snooping coherence scheme needs to be addressed.

A snooping protocol requires communication with all caches on every cache
miss, including writes of potentially shared data. The absence of any centralized
data structure that tracks the state of the caches is both the fundamental advan-
tage of a snooping-based scheme, since it allows it to be inexpensive, as well as
its Achilles’ heel when it comes to scalability. For example, with only 16 proces-

6.5 Distributed Shared-Memory Architectures 689
sors and a block size of 64 bytes and a 512 KB data cache, the total bus band-
width demand (ignoring stall cycles) for the four programs in the scientific/
technical workload ranges from about 1 GB/sec (for Barnes) to about 42 GB/sec
(for FTT), assuming a processor that sustains a data reference every 1 ns, which
is what a 2000 superscalar processor with nonblocking caches might generate. In
comparison, the Sun Enterprise system with the Starfire interconnect, the highest
bandwidth SMP system in 2000, can support about 12 GB/sec of random access-
es for the 16x16 crossbar and has a maximum bandwidth of 21.3 GB/sec at the
memory system. Although the cache size used in these simulations is moderate
(though large enough to eliminate much of the uniprocessor miss traffic), so is the
problem size.

Alternatively, we could build scalable shared-memory architectures that in-
clude cache coherency. The key is to find an alternative coherence protocol to the
snooping protocol. One alternative protocol is a directory protocol. A directory
keeps the state of every block that may be cached. Information in the directory in-
cludes which caches have copies of the block, whether it is dirty, and so on. (Sec-
tion 6.11 on page 735 describes a hybrid approach that uses directories to extend
a snooping protocol.)

Existing directory implementations associate an entry in the directory with
each memory block. In typical protocols, the amount of information is propor-
tional to the product of the number of memory blocks and the number of proces-
sors. This overhead is not a problem for multiprocessors with less than about two
hundred processors, because the directory overhead will be tolerable. For larger
multiprocessors, we need methods to allow the directory structure to be efficient-
ly scaled. The methods that have been proposed either try to keep information for
fewer blocks (e.g., only those in caches rather than all memory blocks) or try to
keep fewer bits per entry.

To prevent the directory from becoming the bottleneck, directory entries can
be distributed along with the memory, so that different directory accesses can go
to different locations, just as different memory requests go to different memories.
A distributed directory retains the characteristic that the sharing status of a block
is always in a single known location. This property is what allows the coherence
protocol to avoid broadcast. Figure 6.27 shows how our distributed-memory mul-
tiprocessor looks with the directories added to each node.

Directory-Based Cache-Coherence Protocols: The Basics

Just as with a snooping protocol, there are two primary operations that a directory
protocol must implement: handling a read miss and handling a write to a shared,

690 Chapter 6 Multiprocessors and Thread-Level Parallelism
clean cache block. (Handling a write miss to a shared block is a simple combina-
tion of these two.) To implement these operations, a directory must track the state
of each cache block. In a simple protocol, these states could be the following:

n Shared—One or more processors have the block cached, and the value in mem-
ory is up to date (as well as in all the caches).

n Uncached—No processor has a copy of the cache block.

n Exclusive—Exactly one processor has a copy of the cache block and it has writ-
ten the block, so the memory copy is out of date. The processor is called the
owner of the block.

In addition to tracking the state of each cache block, we must track the proces-
sors that have copies of the block when it is shared, since they will need to be in-
validated on a write. The simplest way to do this is to keep a bit vector for each
memory block. When the block is shared, each bit of the vector indicates whether
the corresponding processor has a copy of that block. We can also use the bit vec-

FIGURE 6.27 A directory is added to each node to implement cache coherence in a
distributed-memory multiprocessor. Each directory is responsible for tracking the caches
that share the memory addresses of the portion of memory in the node. The directory may
communicate with the processor and memory over a common bus, as shown, or it may have
a separate port to memory, or it may be part of a central node controller through which all
intranode and internode communications pass.

Interconnection network

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Memory

Directory

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory I/O Memory MemoryI/O I/O Memory I/O

Directory Directory Directory Directory

6.5 Distributed Shared-Memory Architectures 691
tor to keep track of the owner of the block when the block is in the exclusive
state. For efficiency reasons, we also track the state of each cache block at the in-
dividual caches.

The states and transitions for the state machine at each cache are identical to
what we used for the snooping cache, although the actions on a transition are
slightly different. We make the same simplifying assumptions that we made in
the case of the snooping cache: attempts to write data that is not exclusive in the
writer’s cache always generate write misses, and the processors block until an ac-
cess completes. Since the interconnect is no longer a bus and since we want to
avoid broadcast, there are two additional complications. First, we cannot use the
interconnect as a single point of arbitration, a function the bus performed in the
snooping case. Second, because the interconnect is message oriented (unlike the
bus, which is transaction oriented), many messages must have explicit responses.

Before we see the protocol state diagrams, it is useful to examine a catalog of
the message types that may be sent between the processors and the directories.
Figure 6.28 shows the type of messages sent among nodes. The local node is the
node where a request originates. The home node is the node where the memory
location and the directory entry of an address reside. The physical address space
is statically distributed, so the node that contains the memory and directory for a
given physical address is known. For example, the high-order bits may provide
the node number, while the low-order bits provide the offset within the memory
on that node. The local node may also be the home node. The directory must be
accessed when the home node is the local node, since copies may exist in yet a
third node, called a remote node.

A remote node is the node that has a copy of a cache block, whether exclusive
(in which case it is the only copy) or shared. A remote node may be the same as
either the local node or the home node. In such cases, the basic protocol does not
change, but interprocessor messages may be replaced with intraprocessor
messages.

In this section, we assume a simple model of memory consistency. To mini-
mize the type of messages and the complexity of the protocol, we make an as-
sumption that messages will be received and acted upon in the same order they
are sent. This assumption may not be true in practice, and can result in additional
complications, some of which we address in section 6.8 when we discuss mem-
ory consistency models. In this section, we use this assumption to ensure that in-
validates sent by a processor are honored immediately.

692 Chapter 6 Multiprocessors and Thread-Level Parallelism
An Example Directory Protocol

The basic states of a cache block in a directory-based protocol are exactly like
those in a snooping protocol, and the states in the directory are also analogous to
those we showed earlier. Thus we can start with simple state diagrams that show

Message type Source Destination
Message
contents Function of this message

Read miss Local cache Home
directory

P, A Processor P has a read miss at address A;
request data and make P a read sharer.

Write miss Local cache Home
directory

P, A Processor P has a write miss at address A; —
request data and make P the exclusive owner.

Invalidate Home
directory

Remote cache A Invalidate a shared copy of data at address A.

Fetch Home
directory

Remote cache A Fetch the block at address A and send it to its
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate Home
directory

Remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply Home
directory

Local cache D Return a data value from the home memory.

Data write back Remote
cache

Home
directory

A, D Write back a data value for address A.

FIGURE 6.28 The possible messages sent among nodes to maintain coherence are shown with the source and
destination node, the contents (where P=requesting processor number), A=requested address, and D=data con-
tents), and the function of the message. The first two messages are miss requests sent by the local cache to the home.
The third through fifth messages are messages sent to a remote cache by the home when the home needs the data to satisfy
a read or write miss request. Data value replies are used to send a value from the home node back to the requesting node.
Data value write backs occur for two reasons: when a block is replaced in a cache and must be written back to its home
memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing back the data value whenever the
block becomes shared simplifies the number of states in the protocol, since any dirty block must be exclusive and any shared
block is always available in the home memory.

6.5 Distributed Shared-Memory Architectures 693
the state transitions for an individual cache block and then examine the state dia-
gram for the directory entry corresponding to each block in memory. As in the
snooping case, these state transition diagrams do not represent all the details of a
coherence protocol; however, the actual controller is highly dependent on a num-
ber of details of the multiprocessor (message delivery properties, buffering struc-
tures, and so on). In this section we present the basic protocol state diagrams. The
knotty issues involved in implementing these state transition diagrams are exam-
ined in Appendix E, along with similar problems that arise for snooping caches.

694 Chapter 6 Multiprocessors and Thread-Level Parallelism
Figure 6.29 shows the protocol actions to which an individual cache responds.

We use the same notation as in the last section, with requests coming from out-
side the node in gray and actions in bold. The state transitions for an individual
cache are caused by read misses, write misses, invalidates, and data fetch re-
quests; these operations are all shown in Figure 6.29. An individual cache also
generates read and write miss messages that are sent to the home directory. Read

FIGURE 6.29 State transition diagram for an individual cache block in a directory-
based system. Requests by the local processor are shown in black and those from the home
directory are shown in gray. The states are identical to those in the snooping case, and the
transactions are very similar, with explicit invalidate and write-back requests replacing the
write misses that were formerly broadcast on the bus. As we did for the snooping controller,
we assume that an attempt to write a shared cache block is treated as a miss; in practice,
such a transaction can be treated as an ownership request or upgrade request and can de-
liver ownership without requiring that the cache block be fetched.

Exclusive
(read/write)

CPU write hit
CPU read hit

Fetch
invalidate

CPU write

S
en

d
 w

ri
te

 m
is

s
m

es
sa

g
e

Fet
ch

CPU re
ad

 m
iss

Dat
a w

rit
e-

bac
k

Sen
d w

rit
e m

iss
 m

es
sa

ge
CPU w

rit
e

Send read miss message

Read miss

CPU read

CPU read hit

CPU write miss

Data write-back
Write miss

CPU
read
miss

Invalid

Invalidate

Dat
a w

rit
e-

bac
k;

 re
ad

 m
iss

Shared
(read only)

D
at

a
w

ri
te

-b
ac

k

6.5 Distributed Shared-Memory Architectures 695
and write misses require data value replies, and these events wait for replies be-
fore changing state.

The operation of the state transition diagram for a cache block in Figure 6.29
is essentially the same as it is for the snooping case: the states are identical, and
the stimulus is almost identical. The write miss operation, which was broadcast
on the bus in the snooping scheme, is replaced by the data fetch and invalidate
operations that are selectively sent by the directory controller. Like the snooping
protocol, any cache block must be in the exclusive state when it is written and
any shared block must be up to date in memory.

In a directory-based protocol, the directory implements the other half of the
coherence protocol. A message sent to a directory causes two different types of
actions: updates of the directory state, and sending additional messages to satisfy
the request. The states in the directory represent the three standard states for a
block; unlike in a snoopy scheme, however, the directory state indicates the state
of all the cached copies of a memory block, rather than for a single cache block.
The memory block may be uncached by any node, cached in multiple nodes and
readable (shared), or cached exclusively and writable in exactly one node. In ad-
dition to the state of each block, the directory must track the set of processors that
have a copy of a block; we use a set called Sharers to perform this function. In
multiprocessors with less than 64 nodes (which may represent 2-4 times as many
processors), this set is typically kept as a bit vector. In larger multiprocessors,
other techniques, which we discuss in the Exercises, are needed. Directory re-
quests need to update the set Sharers and also read the set to perform invalida-
tions.

Figure 6.30 shows the actions taken at the directory in response to messages
received. The directory receives three different requests: read miss, write miss,
and data write back. The messages sent in response by the directory are shown in
bold, while the updating of the set Sharers is shown in bold italics. Because all
the stimulus messages are external, all actions are shown in gray. Our simplified
protocol assumes that some actions are atomic, such as requesting a value and
sending it to another node; a realistic implementation cannot use this assumption.

To understand these directory operations, let’s examine the requests received
and actions taken state by state. When a block is in the uncached state the copy in
memory is the current value, so the only possible requests for that block are

n Read miss—The requesting processor is sent the requested data from memory
and the requestor is made the only sharing node. The state of the block is made
shared.

n Write miss—The requesting processor is sent the value and becomes the Shar-
ing node. The block is made exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

When the block is in the shared state the memory value is up-to-date, so the same
two requests can occur:

696 Chapter 6 Multiprocessors and Thread-Level Parallelism
n Read miss—The requesting processor is sent the requested data from memory
and the requesting processor is added to the sharing set.

n Write miss—The requesting processor is sent the value. All processors in the
set Sharers are sent invalidate messages, and the Sharers set is to contain the
identity of the requesting processor. The state of the block is made exclusive.

When the block is in the exclusive state the current value of the block is held in
the cache of the processor identified by the set sharers (the owner), so there are
three possible directory requests:

n Read miss—The owner processor is sent a data fetch message, which causes
the state of the block in the owner’s cache to transition to shared and causes the
owner to send the data to the directory, where it is written to memory and sent
back to the requesting processor. The identity of the requesting processor is
added to the set sharers, which still contains the identity of the processor that

FIGURE 6.30 The state transition diagram for the directory has the same states and
structure as the transition diagram for an individual cache. All actions are in gray be-
cause they are all externally caused. Bold indicates the action taken by the directory in re-
sponse to the request. Bold italics indicate an action that updates the sharing set, Sharers,
as opposed to sending a message.

Exclusive
(read/write)

Data
write-back

Write miss

D
at

a
va

lu
e

re
p

ly
;

S
h

ar
er

s=
{P

}

S
h

ar
er

s=
{}

In
va

lid
at

e;
 S

har
er

s=
{P

};
dat

a v
alu

e r
ep

ly

Read miss

Data value reply
Sharers=Sharers+{P}

Data value reply; Sharers={P}

Write
miss

Fetch/invalidate
Data value reply
Sharers={P}

Read
miss

Uncached

Fet
ch

; d
at

a v
alu

e r
ep

ly;
 S

har
er

s=
Shar

er
s+

{P
}

Rea
d

m
iss

W
rit

e
m

iss

Shared
(read only)

6.6 Performance of Distributed Shared-Memory Multiprocessors 697
was the owner (since it still has a readable copy).

n Data write-back—The owner processor is replacing the block and therefore
must write it back. This write-back makes the memory copy up to date (the
home directory essentially becomes the owner), the block is now uncached, and
the sharer set is empty.

n Write miss—The block has a new owner. A message is sent to the old owner
causing the cache to invalidate the block and send the value to the directory,
from which it is sent to the requesting processor, which becomes the new owner.
Sharers is set to the identity of the new owner, and the state of the block remains
exclusive.

This state transition diagram in Figure 6.30 is a simplification, just as it was in
the snooping cache case. In the directory case it is a larger simplification, since
our assumption that bus transactions are atomic no longer applies. Appendix E
explores these issues in depth.

In addition, the directory protocols used in real multiprocessors contain addi-
tional optimizations. In particular, in this protocol when a read or write miss oc-
curs for a block that is exclusive, the block is first sent to the directory at the
home node. From there it is stored into the home memory and also sent to the
original requesting node. Many of the protocols in use in commercial multipro-
cessors forward the data from the owner node to the requesting node directly (as
well as performing the write back to the home). Such optimizations often add
complexity by increasing the possibility of deadlock and by increasing the types
of messages that must be handled.

The performance of a directory-based multiprocessor depends on many of the
same factors that influence the performance of bus-based multiprocessors (e.g.,
cache size, processor count, and block size), as well as the distribution of misses
to various locations in the memory hierarchy. The location of a requested data
item depends on both the initial allocation and the sharing patterns. We start by
examining the basic cache performance of our scientific/technical workload and
then look at the effect of different types of misses.

Because the multiprocessor is larger and has longer latencies than our snoop-
ing-based multiprocessor, we begin with a slightly larger cache (128 KB) and a
larger block size of 64 bytes.

6.6 Performance of Distributed Shared-Memory
Multiprocessors

698 Chapter 6 Multiprocessors and Thread-Level Parallelism
In distributed memory architectures, the distribution of memory requests be-
tween local and remote is key to performance, because it affects both the con-
sumption of global bandwidth and the latency seen by requests. Therefore, for the
figures in this section we separate the cache misses into local and remote re-
quests. In looking at the figures, keep in mind that, for these applications, most of
the remote misses that arise are coherence misses, although some capacity misses
can also be remote, and in some applications with poor data distribution, such
misses can be significant (see the Pitfall on page 758).

As Figure 6.31 shows, the miss rates with these cache sizes are not affected
much by changes in processor count, with the exception of Ocean, where the
miss rate rises at 64 processors. This rise results from two factors: an increase in
mapping conflicts in the cache that occur when the grid becomes small, which
leads to a rise in local misses, and an increase in the number of the coherence
misses, which are all remote.

Figure 6.32 shows how the miss rates change as the cache size is increased,
assuming a 64-processor execution and 64-byte blocks. These miss rates decrease
at rates that we might expect, although the dampening effect caused by little or
no reduction in coherence misses leads to a slower decrease in the remote misses
than in the local misses. By the time we reach the largest cache size shown, 512
KB, the remote miss rate is equal to or greater than the local miss rate. Larger
caches would amplify this trend.

We examine the effect of changing the block size in Figure 6.33. Because
these applications have good spatial locality, increases in block size reduce the
miss rate, even for large blocks, although the performance benefits for going to
the largest blocks are small. Furthermore, most of the improvement in miss rate
comes from a reduction in the local misses.

Rather than plot the memory traffic, Figure 6.34 plots the number of bytes re-
quired per data reference versus block size, breaking the requirement into local
and global bandwidth. In the case of a bus, we can simply aggregate the demands
of each processor to find the total demand for bus and memory bandwidth. For a
scalable interconnect, we can use the data in Figure 6.34 to compute the required
per-node global bandwidth and the estimated bisection bandwidth, as the next
Example shows.

E X A M P L E Assume a 64-processor multiprocessor with 1GHz processors that sus-
tain one memory reference per processor clock. For a 64-byte block size,
the remote miss rate is 0.7%. Find the per-node and estimated bisection
bandwidth for FFT. Assume that the processor does not stall for remote
memory requests; this might be true if, for example, all remote data were
prefetched. How do these bandwidth requirements compare to various in-
terconnection technologies?

A N S W E R The per-node bandwidth is simply the number of data bytes per reference

6.6 Performance of Distributed Shared-Memory Multiprocessors 699
times the reference rate: 0.7% × 1000 × 64 = 448 MB/sec. This rate is
somewhat higher than the hardware sustainable transfer rate for the
CrayT3E (using a block prefetch) and lower than that for an SGI Origin
3000 (1.6 GB/processor pair). The FFT per-node bandwidth demand ex-

FIGURE 6.31 The data miss rate is often steady as processors are added for these
benchmarks. Because of its grid structure, Ocean has an initially decreasing miss rate,
which rises when there are 64 processors. For Ocean, the local miss rate drops from 5% at
8 processors to 2% at 32, before rising to 4% at 64. The remote miss rate in Ocean, driven
primarily by communication, rises monotonically from 1% to 2.5%. Note that to show the de-
tailed behavior of each benchmark, different scales are used on the y-axis. The cache for all
these runs is 128 KB, two-way set associative, with 64-byte blocks. Remote misses include
any misses that require communication with another node, whether to fetch the data or to de-
liver an invalidate. In particular, in this figure and other data in this section, the measurement
of remote misses includes write upgrade misses where the data is up to date in the local
memory but cached elsewhere and, therefore, requires invalidations to be sent. Such invali-
dations do indeed generate remote traffic, but may or may not delay the write, depending on
the consistency model (see section 6.8).

Miss rate

0%

3%

2%

1%

8 16 32

Processor count

FFT

64

6%

4%

5%

Miss rate

0.0%

0.5%

8 16 32

Processor count

LU

64

1.0%

Miss rate

0%

4%

2%

8 16 32

Processor count

Ocean

64

8%

6%

Miss rate

0.0%
8 16 32

Processor count

Barnes

64

0.5%

Local misses Remote misses

700 Chapter 6 Multiprocessors and Thread-Level Parallelism
ceeds the bandwidth sustainable from the fastest standard networks by
more than a factor of 5.

FFT performs all-to-all communication, so the bisection bandwidth is
equal to the number of processors times the per-node bandwidth, or
about 64 x 448 MB/sec = 28.7 GB/sec. The SGI Origin 3000 with 64-pro-
cessors has a bisection bandwidth of about 50 GB/sec. No standard net-
working technology comes close. n

FIGURE 6.32 Miss rates decrease as cache sizes grow. Steady decreases are seen in
the local miss rate, while the remote miss rate declines to varying degrees, depending on
whether the remote miss rate had a large capacity component or was driven primarily by com-
munication misses. In all cases, the decrease in the local miss rate is larger than the decrease
in the remote miss rate. The plateau in the miss rate of FFT, which we mentioned in the last
section, ends once the cache exceeds 128 KB. These runs were done with 64 processors
and 64-byte cache blocks.

Miss rate

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256 512

10%

6%

8%

Miss rate

0.0%

1.0%

0.5%

32 64 128

Cache size (KB)

LU

Ocean

256 512

2.5%

1.5%

2.0%

Miss rate

0.0%

0.5%

32 64 128

Cache size (KB)

Barnes

256 512

1.5%

1.0% Miss rate

0%

10%

5%

32 64 128

Cache size (KB)

256 512

20%

15%

Local misses Remote misses

6.6 Performance of Distributed Shared-Memory Multiprocessors 701
The previous Example looked at the bandwidth demands. The other key issue
for a parallel program is remote memory access time, or latency. To get insight
into this, we use a simple example of a directory-based multiprocessor.
Figure 6.35 shows the parameters we assume for our simple multiprocessor mod-
el. It assumes that the time to first word for a local memory access is 85 processor
cycles and that the path to local memory is 16 bytes wide, while the network in-
terconnect is 4 bytes wide. This model ignores the effects of contention, which
are probably not too serious in the parallel benchmarks we examine, with the
possible exception of FFT, which uses all-to-all communication. Contention
could have a serious performance impact in other workloads.

FIGURE 6.33 Data miss rate versus block size assuming a 128-KB cache and 64 pro-
cessors in total. Although difficult to see, the coherence miss rate in Barnes actually rises
for the largest block size, just as in the last section.

Miss rate

0%

4%

6%

2%

16 32 64

Block size (bytes)

FFT

128

12%

8%

10%

Miss rate

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

Miss rate

0%

5%

10%

16 32 64

Block size (bytes)

Ocean

128

15%

Miss rate

0.0%

0.1%

16 32 64

Block size (bytes)

Barnes

128

0.3%

0.2%

Local misses Remote misses

702 Chapter 6 Multiprocessors and Thread-Level Parallelism
Figure 6.36 shows the cost in cycles for the average memory reference, as-
suming the parameters in Figure 6.35. Only the latencies for each reference type
are counted. Each bar indicates the contribution from cache hits, local misses, re-
mote misses, and 3-hop remote misses. The cost is influenced by the total
frequency of cache misses and upgrades, as well as by the distribution of the lo-
cation where the miss is satisfied. The cost for a remote memory reference is fair-
ly steady as the processor count is increased, except for Ocean. The increasing
miss rate in Ocean for 64 processors is clear in Figure 6.31. As the miss rate in-
creases, we should expect the time spent on memory references to increase also.

Although Figure 6.36 shows the memory access cost, which is the dominant
multiprocessor cost in these benchmarks, a complete performance model would

FIGURE 6.34 The number of bytes per data reference climbs steadily as block size is
increased. These data can be used to determine the bandwidth required per node both in-
ternally and globally. The data assumes a 128-KB cache for each of 64 processors.

Bytes per data
reference

Bytes per data
reference

Bytes per data
reference

Bytes per data
reference

0.0

2.0

3.0

1.0

16 32 64

Block size (bytes)

FFT

128

6.0

4.0

5.0

0.0

0.2

0.3

0.1

16 32 64

Block size (bytes)

LU

128

0.6

0.4

0.5

0.0

2.0

4.0

6.0

5.0

3.0

1.0

16 32 64

Block size (bytes)

Ocean

128

7.0

0.0

0.1

16 32 64

Block size (bytes)

Barnes

128

0.4

0.3

0.2

Local Global

6.6 Performance of Distributed Shared-Memory Multiprocessors 703
need to consider the effect of contention in the memory system, as well as the
losses arising from synchronization delays.

The coherence protocols that we have discussed so far have made several sim-
plifying assumptions. In practice, real protocols must deal with two realities:
nonatomicity of operations and finite buffering. We have seen why certain opera-
tions (such as a write miss) cannot be atomic. In DSM multiprocessors the pres-
ence of only a finite number of buffers to hold message requests and replies
introduces additional possibilities for deadlock. The challenge for the designer is
to create a protocol that works correctly and without deadlock, using nonatomic
actions and finite buffers as the building blocks. These factors are fundamental
challenges in all parallel multiprocessors, and the solutions are applicable to a
wide variety of protocol design environments, both in hardware and in software.

Because this material is extremely complex and not necessary to comprehend
the rest of the chapter, we have placed it in Appendix E. For the interested reader,
Appendix E shows how the specific problems in our coherence protocols are
solved and illustrates the general principles that are more globally applicable. It
describes the problems arising in snooping cache implementations, as well as the
more complex problems that arise in more distributed systems using directories.
If you want to understand how either state-of-the-art SMPs (which use split trans-
actions buses and nonblocking memory accesses) or DSM multiprocessors really
work and why designing them is such a challenge, go read Appendix E!

Characteristic Processor clock cycles
≤ 16 processor

Processor clock cycles
17–64 processor

Cache hit 1 1

Cache miss to local memory 85 85

Cache miss to remote home directory 125 150

Cache miss to remotely cached data (3-hop miss) 140 170

FIGURE 6.35 Characteristics of the example directory-based multiprocessor. Misses can be serviced locally (includ-
ing from the local directory), at a remote home node, or using the services of both the home node and another remote node
that is caching an exclusive copy. This last case is called a 3-hop miss and has a higher cost because it requires interrogating
both the home directory and a remote cache. Note that this simple model does not account for invalidation time, but does
include some factor for increasing interconnect time. These remote access latencies are based on those in an SGI Origin
3000, the fastest scalable interconnect system in 2000, and assume a 500 MHz processor.

704 Chapter 6 Multiprocessors and Thread-Level Parallelism
FIGURE 6.36 The effective latency of memory references in a DSM multiprocessor depends both on the relative
frequency of cache misses and on the location of the memory where the accesses are served. These plots show the
memory access cost (a metric called average memory access time in Chapter 5) for each of the benchmarks for 8, 16, 32,
and 64 processors, assuming a 512KB data cache that is two-way set associative with 64-byte blocks. The average memory
access cost is composed of four different types of accesses, with the cost of each type given in Figure 6.35. For the Barnes
and LU benchmarks, the low miss rates lead to low overall access times. In FFT, the higher access cost is determined by a
higher local miss rate (1-4%) and a significant 3-hop miss rate (1%). The improvement in FFT comes from the reduction in
local miss rate from 4% to 1%, as the aggregate cache increases. Ocean shows the biggest change in the cost of memory
accesses, and the highest overall cost at 64 processors. The high cost is driven primarily by a high local miss rate (average
1.6%). The memory access cost drops from 8 to 16 processors as the grids more easily fit in the individual caches. At 64
processors, the data set size is too small to map properly and both local misses and coherence misses rise, as we saw in
Figure 6.31.

Cache hit Local miss Remote miss 3-hop miss to remote cac

arnes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 16 32 64

rocessor count

FFT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 16 32 64

Processor count

LU

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 16 32 64

Processor count

Ocean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

8 16 32 64

rocessor count

6.7 Synchronization 705
Synchronization mechanisms are typically built with user-level software routines
that rely on hardware-supplied synchronization instructions. For smaller multi-
processors or low-contention situations, the key hardware capability is an unin-
terruptible instruction or instruction sequence capable of atomically retrieving
and changing a value. Software synchronization mechanisms are then construct-
ed using this capability. For example, we will see how very efficient spin locks
can be built using a simple hardware synchronization instruction and the coher-
ence mechanism. In larger-scale multiprocessors or high-contention situations,
synchronization can become a performance bottleneck, because contention intro-
duces additional delays and because latency is potentially greater in such a multi-
processor. We will see how contention can arise in implementing some common
user-level synchronization operations and examine more powerful hardware-sup-
ported synchronization primitives that can reduce contention as well as latency.

We begin by examining the basic hardware primitives, then construct several
well-known synchronization routines with the primitives, and then turn to perfor-
mance problems in larger multiprocessors and solutions for those problems.

Basic Hardware Primitives

The key ability we require to implement synchronization in a multiprocessor is a
set of hardware primitives with the ability to atomically read and modify a mem-
ory location. Without such a capability, the cost of building basic synchronization
primitives will be too high and will increase as the processor count increases.
There are a number of alternative formulations of the basic hardware primitives,
all of which provide the ability to atomically read and modify a location, together
with some way to tell if the read and write were performed atomically. These
hardware primitives are the basic building blocks that are used to build a wide va-
riety of user-level synchronization operations, including things such as locks and
barriers. In general, architects do not expect users to employ the basic hardware
primitives, but instead expect that the primitives will be used by system program-
mers to build a synchronization library, a process that is often complex and tricky.
Let’s start with one such hardware primitive and show how it can be used to build
some basic synchronization operations.

One typical operation for building synchronization operations is the atomic
exchange, which interchanges a value in a register for a value in memory. To see
how to use this to build a basic synchronization operation, assume that we want
to build a simple lock where the value 0 is used to indicate that the lock is free
and a 1 is used to indicate that the lock is unavailable. A processor tries to set the
lock by doing an exchange of 1, which is in a register, with the memory address
corresponding to the lock.The value returned from the exchange instruction is 1 if
some other processor had already claimed access and 0 otherwise. In the latter

6.7 Synchronization

706 Chapter 6 Multiprocessors and Thread-Level Parallelism
case, the value is also changed to be 1, preventing any competing exchange from
also retrieving a 0.

For example, consider two processors that each try to do the exchange simul-
taneously: This race is broken since exactly one of the processors will perform
the exchange first, returning 0, and the second processor will return 1 when it
does the exchange. The key to using the exchange (or swap) primitive to imple-
ment synchronization is that the operation is atomic: the exchange is indivisible
and two simultaneous exchanges will be ordered by the write serialization mech-
anisms. It is impossible for two processors trying to set the synchronization vari-
able in this manner to both think they have simultaneously set the variable.

There are a number of other atomic primitives that can be used to implement
synchronization. They all have the key property that they read and update a mem-
ory value in such a manner that we can tell whether or not the two operations exe-
cuted atomically. One operation, present in many older multiprocessors, is test-
and-set, which tests a value and sets it if the value passes the test. For example,
we could define an operation that tested for 0 and set the value to 1, which can be
used in a fashion similar to how we used atomic exchange. Another atomic syn-
chronization primitive is fetch-and-increment: it returns the value of a memory
location and atomically increments it. By using the value 0 to indicate that the
synchronization variable is unclaimed, we can use fetch-and-increment, just as
we used exchange. There are other uses of operations like fetch-and-increment,
which we will see shortly.

A slightly different approach to providing this atomic read-and-update opera-
tion has been used in some recent multiprocessors. Implementing a single atomic
memory operation introduces some challenges, since it requires both a memory
read and a write in a single, uninterruptible instruction. This requirement compli-
cates the implementation of coherence, since the hardware cannot allow any oth-
er operations between the read and the write, and yet must not deadlock.

An alternative is to have a pair of instructions where the second instruction re-
turns a value from which it can be deduced whether the pair of instructions was
executed as if the instructions were atomic. The pair of instructions is effectively
atomic if it appears as if all other operations executed by any processor occurred
before or after the pair. Thus, when an instruction pair is effectively atomic, no
other processor can change the value between the instruction pair.

The pair of instructions includes a special load called a load linked or load
locked and a special store called a store conditional. These instructions are used
in sequence: If the contents of the memory location specified by the load linked
are changed before the store conditional to the same address occurs, then the
store conditional fails. If the processor does a context switch between the two in-
structions, then the store conditional also fails. The store conditional is defined to
return a value indicating whether or not the store was successful. Since the load
linked returns the initial value and the store conditional returns 1 if it succeeds
and 0 otherwise, the following sequence implements an atomic exchange on the
memory location specified by the contents of R1:

6.7 Synchronization 707
try: MOV R3,R4,R0 ;mov exchange value

LL R2,0(R1) ;load linked

SC R3,0(R1) ;store conditional

BEQZ R3,try ;branch store fails

MOV R4,R2 ;put load value in R4

At the end of this sequence the contents of R4 and the memory location speci-
fied by R1 have been atomically exchanged (ignoring any effect from delayed
branches). Any time a processor intervenes and modifies the value in memory be-
tween the LL and SC instructions, the SC returns 0 in R3, causing the code se-
quence to try again.

An advantage of the load linked/store conditional mechanism is that it can be
used to build other synchronization primitives. For example, here is an atomic
fetch-and-increment:

try: LL R2,0(R1) ;load linked

DADDUI R3,R2,#1 ;increment

SC R3,0(R1) ;store conditional

BEQZ R3,try ;branch store fails

These instructions are typically implemented by keeping track of the address
specified in the LL instruction in a register, often called the link register. If an in-
terrupt occurs, or if the cache block matching the address in the link register is in-
validated (for example, by another SC), the link register is cleared. The SC
instruction simply checks that its address matches that in the link register; if so,
the SC succeeds; otherwise, it fails. Since the store conditional will fail after ei-
ther another attempted store to the load linked address or any exception, care
must be taken in choosing what instructions are inserted between the two instruc-
tions. In particular, only register-register instructions can safely be permitted;
otherwise, it is possible to create deadlock situations where the processor can
never complete the SC. In addition, the number of instructions between the load
linked and the store conditional should be small to minimize the probability that
either an unrelated event or a competing processor causes the store conditional to
fail frequently.

Implementing Locks Using Coherence

Once we have an atomic operation, we can use the coherence mechanisms of a
multiprocessor to implement spin locks: locks that a processor continuously tries
to acquire, spinning around a loop until it suceeds. Spin locks are used when a
programmer expects the lock to be held for a very short amount of time and when

708 Chapter 6 Multiprocessors and Thread-Level Parallelism
she wants the process of locking to be low latency when the lock is available. Be-
cause spin locks tie up the processor, waiting in a loop for the lock to become
free, they are inappropriate in some circumstances.

The simplest implementation, which we would use if there were no cache co-
herence, would keep the lock variables in memory. A processor could continually
try to acquire the lock using an atomic operation, say exchange, and test whether
the exchange returned the lock as free. To release the lock, the processor simply
stores the value 0 to the lock. Here is the code sequence to lock a spin lock whose
address is in R1 using an atomic exchange:

DADDUI R2,R0,#1

lockit: EXCH R2,0(R1) ;atomic exchange

BNEZ R2,lockit ;already locked?

If our multiprocessor supports cache coherence, we can cache the locks using
the coherence mechanism to maintain the lock value coherently. Caching locks
has two advantages. First, it allows an implementation where the process of
“spinning” (trying to test and acquire the lock in a tight loop) could be done on a
local cached copy rather than requiring a global memory access on each attempt
to acquire the lock. The second advantage comes from the observation that there
is often locality in lock accesses: that is, the processor that used the lock last will
use it again in the near future. In such cases, the lock value may reside in the
cache of that processor, greatly reducing the time to acquire the lock.

Obtaining the first advantage—being able to spin on a local cached copy rath-
er than generating a memory request for each attempt to acquire the lock—re-
quires a change in our simple spin procedure. Each attempt to exchange in the
loop directly above requires a write operation. If multiple processors are attempt-
ing to get the lock, each will generate the write. Most of these writes will lead to
write misses, since each processor is trying to obtain the lock variable in an ex-
clusive state.

Thus we should modify our spin-lock procedure so that it spins by doing reads
on a local copy of the lock until it successfully sees that the lock is available.
Then it attempts to acquire the lock by doing a swap operation. A processor first
reads the lock variable to test its state. A processor keeps reading and testing until
the value of the read indicates that the lock is unlocked. The processor then races
against all other processes that were similarly “spin waiting” to see who can lock
the variable first. All processes use a swap instruction that reads the old value and
stores a 1 into the lock variable. The single winner will see the 0, and the losers
will see a 1 that was placed there by the winner. (The losers will continue to set
the variable to the locked value, but that doesn’t matter.) The winning processor
executes the code after the lock and, when finished, stores a 0 into the lock vari-
able to release the lock, which starts the race all over again. Here is the code to
perform this spin lock (remember that 0 is unlocked and 1 is locked):

6.7 Synchronization 709
lockit: LD R2,0(R1) ;load of lock

BNEZ R2,lockit ;not available-spin

DADDUI R2,R0,#1 ;load locked value

EXCH R2,0(R1) ;swap

BNEZ R2,lockit ;branch if lock wasn’t 0

Let’s examine how this “spin-lock” scheme uses the cache-coherence mecha-
nisms. Figure 6.37 shows the processor and bus or directory operations for multi-
ple processes trying to lock a variable using an atomic swap. Once the processor
with the lock stores a 0 into the lock, all other caches are invalidated and must
fetch the new value to update their copy of the lock. One such cache gets the copy
of the unlocked value (0) first and performs the swap. When the cache miss of
other processors is satisfied, they find that the variable is already locked, so they
must return to testing and spinning.

Step Processor P0 Processor P1 Processor P2
Coherence
state of lock Bus/directory activity

1 Has lock Spins, testing if
lock = 0

Spins, testing if
lock = 0

Shared None

2 Set lock to 0 (Invalidate
received)

(Invalidate
received)

Exclusive Write invalidate of lock
variable from P0

3 Cache miss Cache miss Shared Bus/directory services P2
cache miss; write back from
P0

4 (Waits while bus/
directory busy)

Lock = 0 Shared Cache miss for P2 satisfied

5 Lock = 0 Executes swap,
gets cache miss

Shared Cache miss for P1 satisfied

6 Executes swap,
gets cache miss

Completes swap:
returns 0 and sets
Lock =1

Exclusive Bus/directory services P2
cache miss; generates
invalidate

7 Swap completes
and returns 1

Enter critical
section

Shared Bus/directory services P1
cache miss; generates write
back

8 Spins, testing if
lock = 0

None

FIGURE 6.37 Cache-coherence steps and bus traffic for three processors, P0, P1, and P2. This figure assumes write-
invalidate coherence. P0 starts with the lock (step 1). P0 exits and unlocks the lock (step 2). P1 and P2 race to see which
reads the unlocked value during the swap (steps 3–5). P2 wins and enters the critical section (steps 6 and 7), while P1’s
attempt fails so it starts spin waiting (steps 7 and 8). In a real system, these events will take many more than eight clock
ticks, since acquiring the bus and replying to misses takes much longer.

710 Chapter 6 Multiprocessors and Thread-Level Parallelism
This example shows another advantage of the load-linked/store-conditional
primitives: the read and write operation are explicitly separated. The load linked
need not cause any bus traffic. This fact allows the following simple code se-
quence, which has the same characteristics as the optimized version using ex-
change (R1 has the address of the lock):

lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin

DADDUIR2,R0,#1 ;locked value

SC R2,0(R1) ;store

BEQZ R2,lockit ;branch if store fails

The first branch forms the spinning loop; the second branch resolves races when
two processors see the lock available simultaneously.

Although our spin lock scheme is simple and compelling, it has difficulty scal-
ing up to handle many processors because of the communication traffic generated
when the lock is released. The next section discusses these problems in more de-
tail, as well as techniques to overcome these problems in larger multiprocessors.

Synchronization Performance Challenges

To understand why the simple spin-lock scheme of the previous section does not
scale well, imagine a large multiprocessor with all processors contending for the
same lock. The directory or bus acts as a point of serialization for all the proces-
sors, leading to lots of contention, as well as traffic. The following Example
shows how bad things can be.

E X A M P L E Suppose there are 10 processors on a bus that each try to lock a variable
simultaneously. Assume that each bus transaction (read miss or write
miss) is 100 clock cycles long. You can ignore the time of the actual read
or write of a lock held in the cache, as well as the time the lock is held (they
won’t matter much!). Determine the number of bus transactions required
for all 10 processors to acquire the lock, assuming they are all spinning
when the lock is released at time 0. About how long will it take to process
the 10 requests? Assume that the bus is totally fair so that every pending
request is serviced before a new request and that the processors are
equally fast.

A N S W E R Figure 6.38 shows the sequence of events from the time of the release to
the time to the next release. Of course, the number of processors con-
tending for the lock drops by one each time the lock is acquired, which re-
duces the average cost to 1550 cycles. Thus for 10 lock-unlock pairs it will
take over 15,000 cycles for the processors to pass through the lock. Fur-

6.7 Synchronization 711
thermore, the average processor will spend half this time idle, simply try-
ing to get the lock. The number of bus transactions involved is over 200!

n

The difficulty in this Example arises from contention for the lock and serial-
ization of lock access, as well as the latency of the bus access. (The fairness prop-
erty of the bus actually makes things worse, since it delays the processor that
claims the lock from releasing it; unfortunately, for any bus arbitration scheme
some worst-case scenario does exist.) The key advantages of spin locks, namely
that they have low overhead in terms of bus or network cycles and offer good per-
formance when locks are reused by the same processor, are both lost in this ex-
ample. We will consider alternative implementations in the next section, but
before we do that, let’s consider the use of spin locks to implement another com-
mon high-level synchronization primitive.

Barrier Synchronization
One additional common synchronization operation in programs with parallel
loops is a barrier. A barrier forces all processes to wait until all the processes
reach the barrier and then releases all of the processes. A typical implementation
of a barrier can be done with two spin locks: one used to protect a counter that
tallies the processes arriving at the barrier and one used to hold the processes un-
til the last process arrives at the barrier. To implement a barrier we usually use the
ability to spin on a variable until it satisfies a test; we use the notation spin(con-
dition) to indicate this. Figure 6.40 is a typical implementation, assuming that
lock and unlock provide basic spin locks and total is the number of processes
that must reach the barrier.

In practice, another complication makes barrier implementation slightly more
complex. Frequently a barrier is used within a loop, so that processes released
from the barrier would do some work and then reach the barrier again. Assume
that one of the processes never actually leaves the barrier (it stays at the spin op-

Event Duration

Read miss by all waiting processors to fetch lock (10 × 100) 1000

Write miss by releasing processor and invalidates 100

Read miss by all waiting processors (10 × 100) 1000

Write miss by all waiting processors, one successful lock (100),
and invalidation of all lock copies (9 × 100)

1000

Total time for one processor to acquire and release lock 3100 clocks

FIGURE 6.38 The time to acquire and release a single lock when 10 processors
contend for the lock, assuming each bus transaction takes 100 clock cycles. Be-
cause of fair bus arbitration, the releasing processor must wait for all other 9 proces-
sors to try to get the lock in vain!

712 Chapter 6 Multiprocessors and Thread-Level Parallelism
eration), which could happen if the OS scheduled another process, for example.
Now it is possible that one process races ahead and gets to the barrier again be-
fore the last process has left. The “fast” process then traps the remaining “slow”
process in the barrier by resetting the flag release. Now all the processes will
wait infinitely at the next instance of this barrier, because one process is trapped
at the last instance, and the number of processes can never reach the value of to-
tal.

The important observation in this example is that the programmer did nothing
wrong. Instead, the implementer of the barrier made some assumptions about for-
ward progress that cannot be assumed. One obvious solution to this is to count
the processes as they exit the barrier (just as we did on entry) and not to allow any
process to reenter and reinitialize the barrier until all processes have left the prior
instance of this barrier. This extra step would significantly increase the latency of
the barrier and the contention, which as we will see shortly are already large. An
alternative solution is a sense-reversing barrier, which makes use of a private per-
process variable, local_sense, which is initialized to 1 for each process. Figure
6.40 shows the code for the sense-reversing barrier. This version of a barrier is

lock (counterlock);/* ensure update atomic */

if (count==0) release=0;/*first=>reset release */

count = count +1;/* count arrivals */

unlock(counterlock);/* release lock */

if (count==total) {/* all arrived */

count=0;/* reset counter */

release=1;/* release processes */

}

else {/* more to come */

spin (release==1);/* wait for arrivals */

}

FIGURE 6.39 Code for a simple barrier. The lock counterlock protects the counter so
that it can be atomically incremented. The variable count keeps the tally of how many pro-
cesses have reached the barrier. The variable release is used to hold the processes until
the last one reaches the barrier.The operation spin (release==1) causes a process to
wait until all processes reach the barrier.

6.7 Synchronization 713
safely usable; as the next example shows, however, its performance can still be
quite poor.

E X A M P L E Suppose there are 10 processors on a bus that each try to execute a bar-
rier simultaneously. Assume that each bus transaction is 100 clock cycles,
as before. You can ignore the time of the actual read or write of a lock held
in the cache as the time to execute other nonsynchronization operations
in the barrier implementation. Determine the number of bus transactions
required for all 10 processors to reach the barrier, be released from the
barrier, and exit the barrier. Assume that the bus is totally fair, so that
every pending request is serviced before a new request and that the pro-
cessors are equally fast. Don’t worry about counting the processors out of
the barrier. How long will the entire process take?

A N S W E R The following table shows the sequence of events for one processor to
traverse the barrier, assuming that the first process to grab the bus does
not have the lock.

local_sense =! local_sense; /*toggle local_sense*/

lock (counterlock);/* ensure update atomic */

count=count+1;/* count arrivals */

unlock (counterlock);/* unlock */

if (count==total) {/* all arrived */

count=0;/* reset counter */

release=local_sense;/* release processes */

}

else {/* more to come */

spin (release==local_sense);/*wait for signal*/

}

FIGURE 6.40 Code for a sense-reversing barrier. The key to making the barrier reusable
is the use of an alternating pattern of values for the flag release, which controls the exit from
the barrier. If a process races ahead to the next instance of this barrier while some other pro-
cesses are still in the barrier, the fast process cannot trap the other processes, since it does
not reset the value of release as it did in Figure 6.40.

Event
Duration in clocks
for one processor

Duration in clocks
for 10 processors

Time for each processor to grab lock, increment, release lock 3100 31,000

Time to execute release 100 100

Time for each processor to get the release flag 100 1000

Total 3300 31,100

714 Chapter 6 Multiprocessors and Thread-Level Parallelism
Our barrier operation takes about as long as the 10-processor lock-unlock
sequence we considered earlier. The total number of bus transactions is
about 220. n

As we can see from these examples, synchronization performance can be a
real bottleneck when there is substantial contention among multiple processes.
When there is little contention and synchronization operations are infrequent, we
are primarily concerned about the latency of a synchronization primitive—that is,
how long it takes an individual process to complete a synchronization operation.
Our basic spin-lock operation can do this in two bus cycles: one to initially read
the lock and one to write it. We could improve this to a single bus cycle by a vari-
ety of methods. For example, we could simply spin on the swap operation. If the
lock were almost always free, this could be better, but if the lock were not free, it
would lead to lots of bus traffic, since each attempt to lock the variable would
lead to a bus cycle. In practice, the latency of our spin lock is not quite as bad as
we have seen in this example, since the write miss for a data item present in the
cache is treated as an upgrade and will be cheaper than a true read miss.

The more serious problem in these examples is the serialization of each pro-
cess’s attempt to complete the synchronization. This serialization is a problem
when there is contention, because it greatly increases the time to complete the
synchronization operation. For example, if the time to complete all 10 lock and
unlock operations depended only on the latency in the uncontended case, then it
would take 1000 rather than 15,000 cycles to complete the synchronization oper-
ations. The barrier situation is as bad, and in some ways worse, since it is highly
likely to incur contention. The use of a bus interconnect exacerbates these prob-
lems, but serialization could be just as serious in a directory-based multiproces-
sor, where the latency would be large. The next section presents some solutions
that are useful when either the contention is high or the processor count is large.

Synchronization Mechanisms for Larger-Scale Multiprocessors

What we would like are synchronization mechanisms that have low latency in un-
contended cases and that minimize serialization in the case where contention is
significant. We begin by showing how software implementations can improve the
performance of locks and barriers when contention is high; we then explore two
basic hardware primitives that reduce serialization while keeping latency low.

Software Implementations
The major difficulty with our spin-lock implementation is the delay due to con-
tention when many processes are spinning on the lock. One solution is to artifi-
cially delay processes when they fail to acquire the lock. The best performance is
obtained by increasing the delay exponentially whenever the attempt to acquire

6.7 Synchronization 715
the lock fails. Figure 6.41 shows how a spin lock with exponential back-off is im-
plemented. Exponential back-off is a common technique for reducing contention
in shared resources, including access to shared networks and buses (see section
7.7). This implementation still attempts to preserve low latency when contention
is small by not delaying the initial spin loop. The result is that if many processes
are waiting, the back-off does not affect the processes on their first attempt to ac-
quire the lock. We could also delay that process, but the result would be poorer
performance when the lock was in use by only two processes and the first one
happened to find it locked.

Another technique for implementing locks is to use queuing locks. Queuing
locks work by constructing a queue of waiting processors; whenever a processor
frees up the lock, it causes the next processor in the queue to attempt access. This
eliminates contention for a lock when it is freed. We show how queuing locks op-
erate in the next section using a hardware implementation, but software imple-
mentations using arrays can achieve most of the same benefits (see Exercise
6.25). Before we look at hardware primitives, let’s look at a better mechanism for
barriers.

Our barrier implementation suffers from contention both during the gather
stage, when we must atomically update the count, and at the release stage, when

ADDUI R3,R0,#1 ;R3 = initial delay

lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin

DADDUI R2,R2,#1 ;get locked value

SC R2,0(R1) ;store conditional

BNEZ R2,gotit ;branch if store succeeds

DSLL R3,R3,#1 ;increase delay by factor of 2

PAUSE R3 ;delays by value in R3

J lockit

gotit: use data protected by lock

FIGURE 6.41 A spin lock with exponential back-off. When the store conditional fails, the
process delays itself by the value in R3. The delay can be implemented by decrementing R3
until it reaches 0. The exact timing of the delay is multiprocessor dependent, although it
should start with a value that is approximately the time to perform the critical section and re-
lease the lock. The statement pause R3 should cause a delay of R3 of these time units. The
value in R3 is increased by a factor of 2 every time the store conditional fails, which causes
the process to wait twice as long before trying to acquire the lock again. The small variations
in the rate at which competing processors execute instructions are usually sufficient to ensure
that processes will not continually collide. If the natural perturbation in execution time was in-
sufficient, R3 could be initialized with a small random value, increasing the variance in the
successive delays an reducing the probability of successive collisions.

716 Chapter 6 Multiprocessors and Thread-Level Parallelism
all the processes must read the release flag. The former is more serious because it
requires exclusive access to the synchronization variable and thus creates much
more serialization; in comparison, the latter generates only read contention. We
can reduce the contention by using a combining tree, a structure where multiple
requests are locally combined in tree fashion. The same combining tree can be
used to implement the release process, reducing the contention there; we leave
the last step for the Exercises.

Our combining tree barrier uses a predetermined n-ary tree structure. We use
the variable k to stand for the fan-in; in practice k = 4 seems to work well. When
the kth process arrives at a node in the tree, we signal the next level in the tree.
When a process arrives at the root, we release all waiting processes. As in our ear-
lier example, we use a sense-reversing technique. A tree-based barrier, as shown in
Figure 6.42, uses a tree to combine the processes and a single signal to release the
barrier, Exercises 6.23 and 6.24 ask you to analyze the time for the combining
barrier versus the noncombining version. Some MPPs (e.g., the T3D and CM-5)
have also included hardware support for barriers, but more recent machines have
relied on software libraries for this support.

Hardware Primitives
In this section we look at two hardware synchronization primitives. The first
primitive deals with locks, while the second is useful for barriers and a number of
other user-level operations that require counting or supplying distinct indices. In
both cases we can create a hardware primitive where latency is essentially identi-
cal to our earlier version, but with much less serialization, leading to better scal-
ing when there is contention.

The major problem with our original lock implementation is that it introduces
a large amount of unneeded contention. For example, when the lock is released
all processors generate both a read and a write miss, although at most one proces-
sor can successfully get the lock in the unlocked state. This sequence happens on
each of the 20 lock/unlock sequences, as we saw in the example on page 710.

We can improve this situation by explicitly handing the lock from one waiting
processor to the next. Rather than simply allowing all processors to compete ev-
ery time the lock is released, we keep a list of the waiting processors and hand the
lock to one explicitly, when its turn comes. This sort of mechanism has been
called a queuing lock. Queuing locks can be implemented either in hardware,
which we describe here, or in software using an array to keep track of the waiting
processes. The basic concepts are the same in either case. Our hardware imple-
mentation assumes a directory-based multiprocessor where the individual proces-
sor caches are addressable. In a bus-based multiprocessor, a software
implementation would be more appropriate and would have each processor using

6.7 Synchronization 717
a different address for the lock, permitting the explicit transfer of the lock from
one process to another.

How does a queuing lock work? On the first miss to the lock variable, the miss
is sent to a synchronization controller, which may be integrated with the memory
controller (in a bus-based system) or with the directory controller. If the lock is
free, it is simply returned to the processor. If the lock is unavailable, the control-
ler creates a record of the node’s request (such as a bit in a vector) and sends the

struct node{/* a node in the combining tree */
int counterlock; /* lock for this node */
int count; /* counter for this node */

 int parent; /* parent in the tree = 0..P-1cep except for root
};
struct node tree [0..P–1]; /* the tree of nodes */
int local_sense; /* private per processor */
int release; /* global release flag */

/* function to implement barrier */
barrier (int mynode) {

lock (tree[mynode].counterlock); /* protect count */
tree[mynode].count=tree[mynode].count+1;

/* increment count */
unlock (tree[mynode].counterlock); /* unlock */
if (tree[mynode].count==k) {/* all arrived at mynode */

if (tree[mynode].parent >=0) {
barrier(tree[mynode].parent);

} else{
release = local_sense;

};
tree[mynode].count = 0; /* reset for the next time */

} else{
spin (release==local_sense); /* wait */

};
};
/* code executed by a processor to join barrier */
local_sense =! local_sense;
barrier (mynode);

FIGURE 6.42 An implementation of a tree-based barrier reduces contention considerably. The tree is assumed to
be prebuilt statically using the nodes in the array tree. Each node in the tree combines k processes and provides a separate
counter and lock, so that at most k processes contend at each node. When the kth process reaches a node in the tree it
goes up to the parent, incrementing the count at the parent. When the count in the parent node reaches k, the release flag
is set. The count in each node is reset by the last process to arrive. Sense-reversing is used to avoid races as in the simple
barrier.

718 Chapter 6 Multiprocessors and Thread-Level Parallelism
processor back a locked value for the variable, which the processor then spins on.
When the lock is freed, the controller selects a processor to go ahead from the list
of waiting processors. It can then either update the lock variable in the selected
processor’s cache or invalidate the copy, causing the processor to miss and fetch
an available copy of the lock.

E X A M P L E How many bus transaction and how long does it take to have 10 proces-
sors lock and unlock the variable using a queuing lock that updates the
lock on a miss? Make the other assumptions about the system the same
as those in the earlier example on page 710.

A N S W E R Each processor misses once on the lock initially and once to free the lock,
so it takes only 20 bus cycles. The first 10 initial misses take 1000 cycles,
followed by a 100-cycle delay for each of the 10 releases. This sequence
yields a total of 2100 cycles—significantly better than the case with con-
ventional coherence-based spin locks. n

There are a couple of key insights in implementing such a queuing lock capa-
bility. First, we need to be able to distinguish the initial access to the lock, so we
can perform the queuing operation, and also the lock release, so we can provide
the lock to another processor. The queue of waiting processes can be implemented
by a variety of mechanisms. In a directory-based multiprocessor, this queue is akin
to the sharing set, and similar hardware can be used to implement the directory
and queuing lock operations. One complication is that the hardware must be pre-
pared to reclaim such locks, since the process that requested the lock may have
been context-switched and may not even be scheduled again on the same proces-
sor.

Queuing locks can be used to improve the performance of our barrier opera-
tion (see Exercise 6.17). Alternatively, we can introduce a primitive that reduces
the amount of time needed to increment the barrier count, thus reducing the seri-
alization at this bottleneck, which should yield comparable performance to using
queuing locks. One primitive that has been introduced for this and for building
other synchronization operations is fetch-and-increment, which atomically fetch-
es a variable and increments its value. The returned value can be either the incre-
mented value or the fetched value. Using fetch-and-increment we can
dramatically improve our barrier implementation, compared to the simple code-
sensing barrier.

E X A M P L E Write the code for the barrier using fetch-and-increment. Making the
same assumptions as in our earlier example and also assuming that a

6.8 Models of Memory Consistency: An Introduction 719
fetch-and-increment operation takes 100 clock cycles, determine the time
for 10 processors to traverse the barrier. How many bus cycles are
required?

A N S W E R Figure 6.40 shows the code for the barrier. This implementation requires
10 fetch-and-increment operations and 10 cache misses for the release
operation for a total time of 2000 cycles and 20 bus/interconnect opera-
tions versus an earlier implementation that took over 15 times longer and
10 times more bus operations to complete the barrier. Of course, fetch-
and-increment can also be used in implementing the combining tree bar-
rier, reducing the serialization at each node in the tree.

n

As we have seen, synchronization problems can become quite acute in larger-
scale multiprocessors. When the challenges posed by synchronization are com-
bined with the challenges posed by long memory latency and potential load im-
balance in computations, we can see why getting efficient usage of large-scale
parallel processors is very challenging.

Cache coherence ensures that multiple processors see a consistent view of memo-
ry. It does not answer the question of how consistent the view of memory must
be. By “:how consistent” we mean, when must a processor see a value that has
been updated by another processor? Since processors communicate through

local_sense =! local_sense; /*toggle local_sense*/

fetch_and_increment(count);/* atomic update*/

if (count==total) {/* all arrived */

count=0;/* reset counter */

release=local_sense;/* release processes */

}

else {/* more to come */

spin (release==local_sense);/*wait for signal*/

}

FIGURE 6.43 Code for a sense-reversing barrier using fetch-and-increment to
do the counting.

6.8 Models of Memory Consistency: An Introduction

720 Chapter 6 Multiprocessors and Thread-Level Parallelism
shared variables (used both for data values and for synchronization), the question
boils down to this: In what order must a processor observe the data writes of an-
other processor? Since the only way to “observe the writes of another processor”
is through reads, the question becomes, what properties must be enforced among
reads and writes to different locations by different processors?

Although the question of how consistent memory be seems simple, it is re-
markably complicated, as we can see with a simple example. Here are two code
segments from processes P1 and P2, shown side by side:

P1: A = 0; P2: B = 0;

A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0)...

Assume that the processes are running on different processors, and that locations
A and B are originally cached by both processors with the initial value of 0. If
writes always take immediate effect and are immediately seen by other proces-
sors, it will be impossible for both if-statements (labeled L1 and L2) to evaluate
their conditions as true, since reaching the if-statement means that either A or B
must have been assigned the value 1. But suppose the write invalidate is delayed,
and the processor is allowed to continue during this delay; then it is possible that
both P1 and P2 have not seen the invalidations for B and A (respectively) before
they attempt to read the values. The question is, should this behavior be allowed,
and if so, under what conditions?

The most straightforward model for memory consistency is called sequential
consistency. Sequential consistency requires that the result of any execution be
the same as if the memory accesses executed by each processor were kept in or-
der and the accesses among different processors were arbitrarily interleaved. Se-
quential consistency eliminates the possibility of some nonobvious execution in
the previous example, because the assignments must be completed before the if
statements are initiated.

The simplest way to implement sequential consistency is to require a proces-
sor to delay the completion of any memory access until all the invalidations
caused by that access are completed. Of course, it is equally effective to delay the
next memory access until the previous one is completed. Remember that memory
consistency involves operations among different variables: the two accesses that
must be ordered are actually to different memory locations. In our example, we
must delay the read of A or B (A==0 or B==0) until the previous write has complet-
ed (B=1 or A=1). Under sequential consistency, we cannot, for example, simply
place the write in a write buffer and continue with the read. Although sequential
consistency presents a simple programming paradigm, it reduces potential

6.8 Models of Memory Consistency: An Introduction 721
performance, especially in a multiprocessor with a large number of processors or
long interconnect delays, as we can see in the following Example.

E X A M P L E Suppose we have a processor where a write miss takes 40 cycles to es-
tablish ownership, 10 cycles to issue each invalidate after ownership is
established, and 50 cycles for an invalidate to complete and be acknowl-
edged once it is issued. Assuming that four other processors share a
cache block, how long does a write miss stall the writing processor if the
processor is sequentially consistent? Assume that the invalidates must be
explicitly acknowledged before the directory controller knows they are
completed. Suppose we could continue executing after obtaining owner-
ship for the write miss without waiting for the invalidates; how long would
the write take?

A N S W E R When we wait for invalidates, each write takes the sum of the ownership
time plus the time to complete the invalidates. Since the invalidates can
overlap, we need only worry about the last one, which starts 10 + 10 + 10
+ 10 = 40 cycles after ownership is established. Hence the total time for
the write is 40 + 40 + 50 = 130 cycles. In comparison, the ownership time
is only 40 cycles. With appropriate write-buffer implementations it is even
possible to continue before ownership is established. n

To provide better performance, researchers and architects have explored two
different routes. First, they developed ambitious implementations that preserve
sequential consistency but use latency hiding techniques to reduce the penalty;
we discuss these in the section on cross-cutting issues (see page 731). Second,
they developed less restrictive memory consistency models that allow for faster
hardware. Such models can affect how the programmer sees the multiprocessor,
so before we discuss these less restrictive models, let’s look at what the program-
mer expects.

The Programmer’s View

Although the sequential consistency model has a performance disadvantage,
from the viewpoint of the programmer it has the advantage of simplicity. The
challenge is to develop a programming model that is simple to explain and yet al-
lows a high performance implementation.

One such programming model that allows us to have a more efficient imple-
mentation is to assume that programs are synchronized. A program is synchro-
nized if all access to shared data is ordered by synchronization operations. A data
reference is ordered by a synchronization operation if, in every possible execu-
tion, a write of a variable by one processor and an access (either a read or a write)

722 Chapter 6 Multiprocessors and Thread-Level Parallelism
of that variable by another processor are separated by a pair of synchronization
operations, one executed after the write by the writing processor and one execut-
ed before the access by the second processor. Cases where variables may be up-
dated without ordering by synchronization are called data races, because the
execution outcome depends on the relative speed of the processors, and like races
in hardware design, the outcome is unpredictable, which leads to another name
for synchronized programs: data-race-free.

As a simple example, consider a variable being read and updated by two dif-
ferent processors. Each processor surrounds the read and update with a lock and
an unlock, both to ensure mutual exclusion for the update and to ensure that the
read is consistent. Clearly, every write is now separated from a read by the other
processor by a pair of synchronization operations: one unlock (after the write)
and one lock (before the read). Of course, if two processors are writing a variable
with no intervening reads, then the writes must also be separated by synchroniza-
tion operations.

It is a broadly accepted observation that most programs are synchronized. This
observation is true primarily because if the accesses were unsynchronized, the
behavior of the program would be quite difficult to determine because the speed
of execution would determine which processor won a data race and thus affect
the results of the program. Even with sequential consistency, reasoning about
such programs is very difficult. Programmers could attempt to guarantee order-
ing by constructing their own synchronization mechanisms, but this is extremely
tricky, can lead to buggy programs, and may not be supported architecturally,
meaning that they may not work in future generations of the multiprocessor. In-
stead, almost all programmers will choose to use synchronization libraries that
are correct and optimized for the multiprocessor and the type of synchronization.
Finally, the use of standard synchronization primitives ensures that even if the ar-
chitecture implements a more relaxed consistency model than sequential consis-
tency, a synchronized program will behave as if the hardware implemented
sequential consistency.

Relaxed Consistency Models: The Basics

The key idea in relaxed consistency models is to allow reads and writes to com-
plete out of order, but to use synchronization operations to enforce ordering, so
that a synchronized program behaves as if the processor were sequentially con-
sistent. There are a variety of relaxed models that are classified according to what
orderings they relax. The three major sets of orderings that are relaxed are:

1. The W→R ordering: which yields a model known as total store ordering or
processor consistency. Because this ordering retains ordering among writes,
many programs that operate under sequential consistency operate under this
model, without additional synchronization.

6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor 723
2. The W→W ordering: which yields a model known as partial store order.

3. The R→W and R→R orderings: which yields a variety of models including
weak ordering, the Alpha consistency model, the PowerPC consistency mod-
el, and release consistency depending on the details of the ordering restrictions
and how synchronization operations enforce ordering.

By relaxing these orderings, the processor can possibly obtain significant perfor-
mance advantages. There are, however, many complexities in describing relaxed
consistency models, including the advantages and complexities of relaxing dif-
ferent orders, defining precisely what it means for a write to complete, and decid-
ing when processors can see values that the processor itself has written. These
complexities, as well as an assessment of the performance of relaxed model and a
discussion of the implementation issues, are described in more detail in Appendix
F.

Final Remarks on Consistency Models

At the present time, many multiprocessors being built support some sort of re-
laxed consistency model, varying from processor consistency to release consis-
tency. Since synchronization is highly multiprocessor specific and error prone,
the expectation is that most programmers will use standard synchronization li-
braries and will write synchronized programs, making the choice of a weak con-
sistency model invisible to the programmer and yielding higher performance.

An alternative viewpoint, which we discuss more extensively in the next sec-
tion (specifically on page 731), argues that with speculation much of the perfor-
mance advantage of relaxed consistency models can be obtained with sequential
or processor consistency.

A key part of this argument in favor of relaxed consistency revolves the role of
the compiler and its ability to optimize memory access to potentially shared vari-
ables. This topic is also discussed on page 731.

Multithreading allows multiple threads to share the functional units of a single
processor in an overlapping fashion. To permit this sharing, the processor must
duplicate the independent state of each thread. For example, a separate copy of
the register file, a separate PC, and a separate page table are required for each
thread. The memory itself can be shared through the virtual memory mecha-
nisms, which already support multiprogramming. In addition, the hardware must

6.9 Multithreading: Exploiting Thread-Level
Parallelism within a Processor

724 Chapter 6 Multiprocessors and Thread-Level Parallelism
support the ability to change to a different thread relatively quickly; in particular,
a thread switch should be much more efficient than a process switch, which typi-
cally requires hundreds to thousands of processor cycles.

There are two main approaches to multithreading. Fine-grained multithread-
ing switches between threads on each instruction, causing the execution of multi-
ples threads to be interleaved. This interleaving is often done in a round-robin
fashion, skipping any threads that are stalled at that time. To make fine-grained
multithreading practical, the CPU must be able to switch threads on every clock
cycle. One key advantage of fine-grained multithreading is that it can hide the
throughput losses that arise from both short and long stalls, since instructions
from other threads can be executed when one thread stalls. The primary disad-
vantage of fine-grained multithreading is that it slows down the execution of the
individual threads, since a thread that is ready to execute without stalls will be de-
layed by instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly
stalls, such as level two cache misses. This change relieves the need to have
thread-switching be essentially free and is much less likely to slow the processor
down, since instructions from other threads will only be issued, when a thread en-
counters a costly stall. Coarse-grained multithreading suffers, however, from a
major drawback: it is limited in its ability to overcome throughput losses, espe-
cially from shorter stalls. This limitation arises from the pipeline start-up costs of
coarse-grain multithreading. Because a CPU with coarse-grained multithreading
issues instructions from a single thread, when a stall occurs, the pipeline must be
emptied or frozen. The new thread that begins executing after the stall must fill
the pipeline before instructions will be able to complete. Because of this start-up
overhead, coarse-grained multithreading is much more useful for reducing the
penalty of high cost stalls, where pipeline refill is negligible compared to the stall
time.

The next section explores a variation on fine-grained multithreading that en-
ables a superscalar processor to exploit ILP and multithreading in an integrated
and efficient fashion. Section 6.12 examines a commercial processor using
coarse-grained multithreading.

Simultaneous Multithreading: Converting Thread-Level Parallelism
into Instruction-Level Parallelism

Simultaneous multithreading (SMT) is a variation on multithreading that uses the
resources of a multiple-issue, dynamically-scheduled processor to exploit TLP at
the same time it exploits ILP. The key insight that motivates SMT is that modern
multiple-issue processors often have more functional unit parallelism available
than a single thread can effectively use. Furthermore, with register renaming and
dynamic scheduling, multiple instructions from independent threads can be is-

6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor 725
sued without regard to the dependences among them; the resolution of the depen-
dences can be handled by the dynamic scheduling capability.

Figure 6.44 conceptually illustrates the differences in a processor’s ability to
exploit the resources of a superscalar for the following processor configurations:

n a superscalar with no multithreading support,

n a superscalar with coarse-grained multithreading,

n a superscalar with fine-grained multithreading, and

n a superscalar with simultaneous multithreading.

In the superscalar without multithreading support, the use of issue slots is limited
by a lack of ILP, a topic we discussed extensively in Chapter 3. In addition, a ma-
jor stall, such as an instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor.
Although this reduces the number of completely idle clock cycles, within each
clock cycle, the ILP limitations still lead to idle cycles. Furthermore, in a coarse-
grained multithreaded processor, since thread switching only occurs when there
is a stall and the new thread has a start-up period, there are likely to be some fully
idle cycles remaining.

Issue Slots

Superscalar Coarse MT Fine MT SMT

T
i

m
e

FIGURE 6.44 This illustration shows how these four different approaches use the issue slots of a superscalar pro-
cessor. The horizontal dimension represents the instruction issue capability in each clock cycle. The vertical dimension rep-
resents a sequence of clock cycles. An empty (white) box indicates that the corresponding issue slot is unused in that clock
cycle. The shades of grey and black correspond to four different threads in the multithreading processors. Black is also used
to indicate the occupied issue slots in the case of the superscalar without multithreading support.

726 Chapter 6 Multiprocessors and Thread-Level Parallelism
In the fine-grained case, the interleaving of threads eliminates fully empty
slots. Because only one thread issues instructions in a given clock cycle, however,
ILP limitations still lead to a significant number of idle slots within individual
clock cycles.

In the SMT case, thread-level parallelism (TLP) and instruction-level parallel-
ism (ILP) are exploited simultaneously; with multiple threads using the issue
slots in a single clock cycle. Ideally, the issue slot usage is limited by imbalances
in the resource needs and resource availability over multiple threads. In practice,
other factors–including how many active threads are considered, finite limitations
on buffers, the ability to fetch enough instructions from multiple threads, and
practical limitations of what instruction combinations can issue from one thread
and from multiple threads–can also restrict how many slots are used. Although
Figure 6.44 greatly simplifies the real operation of these processors it does illus-
trate the potential performance advantages of multithreading in general and SMT
in particular.

As mentioned above, simultaneous multithreading uses the insight that a dy-
namically scheduled processor already has many of the hardware mechanisms
needed to support the integrated exploitation of TLP through multithreading. In
particular, dynamically scheduled superscalars have a large set of virtual registers
that can be used to hold the register sets of independent threads (assuming sepa-
rate renaming tables are kept for each thread). Because register renaming pro-
vides unique register identifiers, instructions from multiple threads can be mixed
in the datapath without confusing sources and destinations across the threads.
This observation leads to the insight that multithreading can be built on top of an
out-of-order processor by adding a per thread renaming table, keeping separate
PCs, and providing the capability for instructions from multiple threads to com-
mit. There are complications in handling instruction commit, since we would like
instructions from independent threads to be able to commit independently. The
independent commitment of instructions from separate threads can be supported
by logically keeping a separate reorder buffer for each thread.

Design Challenges in SMT processors
Because a dynamically scheduled superscalar processor is likely to have a deep
pipeline, SMT will be unlikely to gain much in performance if it were coarse-
grained. Since SMT will likely make sene only in a fine-grained implementation,
we must worry about the impact of fine-grained scheduling on single thread per-
formance. This effect can be minimized by having a preferred thread, which still
permits multithreading to preserve some of its performance advantage with a
smaller compromise in single thread performance. At first glance, it might appear
that a preferred thread approach sacrifices neither throughput nor single-thread
performance. Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when the preferred thread encounters a stall. The rea-

6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor 727
son is that the pipeline is less likely to have a mix of instructions from several
threads, resulting in greater probability that either empty slots or a stall will oc-
cur. Throughput is maximized by having a sufficient number of independent
threads to hide all stalls in any combination of threads.

Unfortunately, mixing many threads will inevitably compromise the execution
time of individual threads. Similar problems exist in instruction fetch. To maxi-
mize single thread performance, we should fetch as far ahead as possible in that
single thread and always have the fetch unit free when a branch is mispredicted
and a miss occurs in the prefetch buffer. Unfortunately, this limits the number of
instructions available for scheduling from other threads, reducing throughput. All
multithreaded processor must seek to balance this tradeoff.

In practice, the problems of dividing resources and balancing single-thread
and multiple-thread performance turn out not to be as challenging as they sound,
at least for current superscalar back-ends. In particular, for current machines that
issue four to eight instructions per cycle, it probably suffices to have a small num-
ber of active threads, and an even smaller number of “preferred” threads. When-
ever possible, the processor acts on behalf of a preferred thread. This starts with
prefetching instructions: whenever the prefetch buffers for the preferred threads
are not full, instructions are fetched for those threads. Only when the preferred
thread buffers are full is the instruction unit directed to prefetch for other threads.
Note that having two preferred threads means that we are simultaneously
prefetching for two instruction streams and this adds complexity to the instruc-
tion fetch unit and the instruction cache. Similarly, the instruction issue unit can
direct its attention to the preferred threads, considering other threads only if the
preferred threads are stalled and cannot issue. In practice, having four to eight
threads and two to four preferred threads is likely to completely utilize the capa-
bility of a superscalar back-end that is roughly double the capability of those
available in 2001.

There are a variety of other design challenges for an SMT processor, includ-
ing:

n dealing with a larger register file needed to hold multiple contexts,

n maintaining low overhead on the clock cycle, particularly in critical steps such
as instruction issue, where more candidate instructions need to be considered,
and in instruction completion, where choosing what instructions to commit
may be challenging, and

n ensuring that the cache conflicts generated by the simultaneous execution of
multiple threads do not cause significant performance degradation.

In viewing these problems, two observation are important. In many cases, the po-
tential performance overhead due to multithreading is small, and simple choices
work well enough. Second, the efficiency of current superscalars is low enough
that there is room for significant improvement, even at the cost of some overhead.

728 Chapter 6 Multiprocessors and Thread-Level Parallelism
SMT appears to be the most promising way to achieve that improvement in
throughput.

Because SMT exploits thread-level parallelism on a multiple-issue supersca-
lar, it is most likely to be included in high-end processors targeted at server mar-
kets. In addition, it is likely that there will be some mode to restrict the
multithreading, so as to maximize the performance of a single thread.

Prior to deciding to abandon the Alpha architecture in mid 2001, Compaq had
announced that the Alpha 21364 would have SMT capability when it became
available in 2002 In July 2001, Intel announced that a future processor based on
the Pentium 4 microarchitecture and targeted at the server market, most likely
Pentium 4 Xenon, would support SMT, initially with two-thread implementation.
Intel claims a 30% improvement in throughput for server applications with this
new support.

Because multiprocessors redefine many system characteristics (e.g., performance
assessment, memory latency, and the importance of scalability), they introduce
interesting design problems that cut across the spectrum, affecting both hardware
and software. In this section we give several examples including: measuring and
reporting the performance of multiprocessors, enhancing latency tolerance in
memory systems, and a method for using virtual memory support to implement
shared memory.

Memory System Issues

As we have seen in this chapter, memory system issues are at the core of the de-
sign of shared-memory multiprocessors. Indeed, multiprocessing introduces
many new memory system complications that do not exist in uniprocessors. In
this section we look at two implementation issues that have a significant impact
on the design and implementation of a memory system in a multiprocessor
context.

Inclusion and Its Implementation
Many multiprocessors use multilevel cache hierarchies to reduce both the de-
mand on the global interconnect and the latency of cache misses. If the cache also
provides multilevel inclusion—every level of cache hierarchy is a subset of the
level further away from the processor—then we can use the multilevel structure
to reduce the contention between coherence traffic and processor traffic, as
explained earlier. Thus most multiprocessors with multilevel caches enforce the

6.10 Crosscutting Issues

6.10 Crosscutting Issues 729
inclusion property. This restriction is also called the subset property, because
each cache is a subset of the cache below it in the hierarchy.

At first glance, preserving the multilevel inclusion property seems trivial.
Consider a two-level example: any miss in L1 either hits in L2 or generates a
miss in L2, causing it to be brought into both L1 and L2. Likewise, any invalidate
that hits in L2 must be sent to L1, where it will cause the block to be invalidated,
if it exists.

The catch is what happens when the block size of L1 and L2 are different.
Choosing different block sizes is quite reasonable, since L2 will be much larger
and have a much longer latency component in its miss penalty, and thus will want
to use a larger block size. What happens to our “automatic” enforcement of inclu-
sion when the block sizes differ? A block in L2 represents multiple blocks in L1,
and a miss in L2 causes the replacement of data that is equivalent to multiple L1
blocks. For example, if the block size of L2 is four times that of L1, then a miss
in L2 will replace the equivalent of four L1 blocks. Let’s consider a detailed
example.

E X A M P L E Assume that L2 has a block size four times that of L1. Show how a miss
for an address that causes a replacement in L1 and L2 can lead to viola-
tion of the inclusion property.

A N S W E R Assume that L1 and L2 are direct mapped and that the block size of L1 is
b bytes and the block size of L2 is 4b bytes. Suppose L1 contains two
blocks with starting addresses x and x + b and that x mod 4b = 0, meaning
that x also is the starting address of a block in L2, then that single block
in L2 contains the L1 blocks x, x + b, x + 2b, and x + 3b. Suppose the pro-
cessor generates a reference to block y that maps to the block containing
x in both caches and hence misses. Since L2 missed, it fetches 4b bytes
and replaces the block containing x, x + b, x + 2b, and x + 3b, while L1
takes b bytes and replaces the block containing x. Since L1 still contains
x + b, but L2 does not, the inclusion property no longer holds. n

To maintain inclusion with multiple block sizes, we must probe the higher lev-
els of the hierarchy when a replacement is done at the lower level to ensure that
any words replaced in the lower level are invalidated in the higher-level caches.
Most systems chose this solution rather than the alternative of not relying on in-
clusion and snooping the higher-level caches. In the Exercises we explore inclu-
sion further and show that similar problems exist if the associativity of the levels
is different. Baer and Wang [1988] describe the advantages and challenges of in-
clusion in detail.

730 Chapter 6 Multiprocessors and Thread-Level Parallelism
Nonblocking Caches and Latency Hiding
We saw the idea of nonblocking or lockup-free caches in Chapter 5, where the
concept was used to reduce cache misses by overlapping them with execution and
by pipelining misses. There are additional benefits in the multiprocessor case.
The first is that the miss penalties are likely to be larger, meaning there is more
latency to hide, and the opportunity for pipelining misses is also probably larger,
since the memory and interconnect system can often handle multiple outstanding
memory references also.

Second, a multiprocessor needs nonblocking caches to take advantage of weak
consistency models. For example, to implement a model like processor consis-
tency requires that writes be nonblocking with respect to reads so that a processor
can continue either immediately, by buffering the write, or as soon as it establish-
es ownership of the block and updates the cache. Relaxed consistency models al-
low further reordering of misses, but nonblocking caches are needed to take full
advantage of this flexibility.
 Finally, nonblocking support is critical to implementing prefetching. Prefetch-
ing, which we also discussed in Chapter 5, is even more important in multipro-
cessors than in uniprocessors, again due to longer memory latencies. In Chapter 5
we described why it is important that prefetches not affect the semantics of the
program, since this allows them to be inserted anywhere in the program without
changing the results of the computation.

In a multiprocessor, maintaining the absence of any semantic impact from the
use of prefetches requires that prefetched data be kept coherent. A prefetched val-
ue is kept coherent if, when the value is actually accessed by a load instruction,
the most recently written value is returned, even if that value was written after the
prefetch. This result is exactly the property that cache coherence gives us for oth-
er variables in memory. A prefetch that brings a data value closer, and guarantees
that on the actual memory access to the data (a load of the prefetched value) the
most recent value of the data item is obtained, is called nonbinding, since the data
value is not bound to a local copy, which would be incoherent. By contrast, a
prefetch that moves a data value into a general-purpose register is binding, since
the register value is a new variable, as opposed to a cache block, which is a coher-
ent copy of a variable. A nonbinding prefetch maintains the coherence properties
of any other value in memory, while a binding prefetch appears more like a regis-
ter load, since it removes the data from the coherent address space.

Why is nonbinding prefetch critical? Consider a simple but typical example: a
data value written by one processor and used by another. In this case, the con-
sumer would like to prefetch the value as early as possible; but suppose the pro-
ducing process is delayed for some reason. Then the prefetch may fetch the old
value of the data item. If the prefetch is nonbinding, the copy of the old data is in-
validated when the value is written, maintaining coherence. If the prefetch is
binding, however, then the old, incoherent value of the data is used by the
prefetching process. Because of the long memory latencies, a prefetch may need
to be placed a hundred or more instructions earlier than the data use, if we aim to

6.10 Crosscutting Issues 731
hide the entire latency. This requirement makes the nonbinding property vital to
ensure coherent usage of the prefetch in multiprocessors.

Implementing prefetch requires the same sort of support that a lockup-free
cache needs, since there are multiple outstanding memory accesses. This require-
ment causes several complications:

1. A local node will need to keep track of the multiple outstanding accesses, since
the replies may return in a different order than they were sent. This accounting
can be handled by adding tags to the requests, or by incorporating the address
of the memory block in the reply.

2. Before issuing a request (either a normal fetch or a prefetch), the node must
ensure that it has not already issued a request for the same block, since two
write requests for the same block could lead to incorrect operation of the pro-
tocol. For example, if the node issues a write prefetch to a block, while it has
a write miss or write prefetch outstanding, both our snooping protocol and di-
rectory protocol can fail to operate properly.

3. Our implementation of the directory and snooping controllers assumes that the
processor stalls on a miss. Stalling allows the cache controller to simply wait
for a reply when it has generated a request. With a nonblocking cache or with
prefetching, a processor can generate additional requests while it is waiting for
replies. This complicates the directory and snooping controllers; Appendix E
shows how these issues can be addressed.

Compiler Optimization and the Consistency Model
Another reason for defining a model for memory consistency is to specify the
range of legal compiler optimizations that can be performed on shared data. In ex-
plicitly parallel programs, unless the synchronization points are clearly defined
and the programs are synchronized, the compiler could not interchange a read and
a write of two different shared data items, because such transformations might af-
fect the semantics of the program. This prevents even relatively simple optimiza-
tions, such as register allocation of shared data, because such a process usually
interchanges reads and writes. In implicitly parallelized programs—for example,
those written in High Performance FORTRAN (HPF)—programs must be syn-
chronized and the synchronization points are known, so this issue does not arise.

Using Speculation to Hide Latency in Strict Consistency Models
As we saw in Chapters 4 and 5, speculation can be used to hide memory latency.
It can also be used to hide latency arising from a strict consistency model, giving
much of the benefit of a relaxed memory model. The key idea is for: the proces-
sor to use dynamic scheduling to reorder memory references, letting them possi-
bly execute out-of-order. Executing the memory references out-of-order may
generate violations of sequential consistency, which might affect the execution of
the program. This possibility is avoided by using the delayed commit feature of a

732 Chapter 6 Multiprocessors and Thread-Level Parallelism
speculative processor. Assume the coherency protocol is based on invalidation. If
the processor receives an invalidation for a memory reference before the memory
reference is committed, the processor uses speculation recovery to back-out the
computation and restart with the memory reference whose address was invalidat-
ed.

If the reordering of memory requests by the processor yields an execution or-
der that could result in an outcome that differs from what would have been seen
under sequential consistency, the processor will redo the execution. The key to
using this approach is that the processor need only guarantee that the result
would be the same as if all access were completed in order, and it can achieve this
by detecting when the results might differ. The approach is attractive because the
speculative restart will rarely be triggered. It will only be triggered when there
are unsynchronized access that actually cause a race. Gharachorloo, et. al. made
this observation in a 1992 paper.

Hill in a 1998 paper advocates the combination of sequential or processor con-
sistency together with speculative execution as the consistency model of choice.
His argument has three parts. First, that an aggressive implementation of either
sequential consistency or processor consistency will gain most of the advantage
of a more relaxed model. Second, that such an implementation adds very little to
the implementation cost of a speculative processor. Third, that such an approach
allows the programmer to reason using the simpler programming models of ei-
ther sequential or processor consistency.

The MIPS R10000 design team had this insight in the mid 1990s and used the
R10000’s out-of-order capability to support this type of aggressive implementa-
tion of sequential consistency. Hill’s arguments are likely to motivate others to
follow this approach.

One open question is how successful compiler technology will be in optimiz-
ing memory references to shared variables. The state of optimization technology
and the fact that shared data is often accessed via pointers or array indexing has
limited the use of such optimizations. If this technology became available and led
to significant performance advantages, compiler writers would want to be able to
take advantage of a more relaxed programming model.

6.10 Crosscutting Issues 733
Using Virtual Memory Support to Build Shared Memory

Suppose we wanted to support a shared address space among a group of worksta-
tions connected to a network. One approach is to use the virtual memory mecha-
nism and operating system (OS) support to provide shared memory. This
approach, which was first explored more than 10 years ago, has been called dis-
tributed virtual memory (DVM) or shared virtual memory (SVM). The key obser-
vation that this idea builds on is that the virtual memory hardware has the ability
to control access to portions of the address space for both reading and writing. By
using the hardware to check and intercept accesses and the operating system to
ensure coherence, we can create a coherent, shared address space across the dis-
tributed memory of multiple processors.

In SVM, pages become the units of coherence, rather than cache blocks. The
OS can allow pages to be replicated in read-only fashion, using the virtual memo-
ry support to protect the pages from writing. When a process attempts to write
such a page, it traps to the operating system. The operating system on that proces-
sor can then send messages to the OS on each node that shares the page, request-
ing that the page be invalidated. Just as in a directory system, each page has a
home node, and the operating system running in that node is responsible for
tracking who has copies of the page.

The mechanisms are quite similar to those at work in coherent shared memory.
The key differences are that the unit of coherence is a page and that software is
used to implement the coherence algorithms. It is exactly these two differences
that lead to the major performance differences. A page is considerably bigger
than a cache block, and the possibilities for poor usage of a page and for false
sharing are very high. Such events can lead to much less stable performance and
sometimes even lower performance than a uniprocessor. Because the coherence
algorithms are implemented in software, they have much higher overhead.

The result of this combination is that shared virtual memory has become an
acceptable substitute for loosely coupled message passing, since in both cases the
frequency of communication must be low, and communication that is structured
in larger blocks is favored. Distributed virtual memory is not currently competi-
tive with schemes that have hardware-supported, coherent memory, such as the
distributed shared-memory schemes we examined in section 6.5: Most programs
written for coherent shared memory cannot be run efficiently on shared virtual
memory without changes.

Several factors could change the attractiveness of shared virtual memory. Bet-
ter implementation and small amounts of hardware support could reduce the
overhead in the operating system. Compiler technology, as well as the use of
smaller or multiple page sizes, could allow the system to reduce the disadvantag-
es of coherence at a page-level granularity. The concept of software-supported

734 Chapter 6 Multiprocessors and Thread-Level Parallelism
shared memory remains an active area of research, and such techniques may play
an important role in connecting more loosely coupled multiprocessors, such as
networks of workstations.

Performance Measurement of Parallel Processors

One of the most controversial issues in parallel processing has been how to mea-
sure the performance of parallel processors. Of course, the straightforward an-
swer is to measure a benchmark as supplied and to examine wall-clock time.
Measuring wall-clock time obviously makes sense; in a parallel processor, mea-
suring CPU time can be misleading because the processors may be idle but un-
available for other uses.

Users and designers are often interested in knowing not just how well a multi-
processor performs with a certain fixed number of processors, but also how the
performance scales as more processors are added. In many cases, it makes sense
to scale the application or benchmark, since if the benchmark is unscaled, effects
arising from limited parallelism and increases in communication can lead to re-
sults that are pessimistic when the expectation is that more processors will be
used to solve larger problems. Thus, it is often useful to measure the speedup as
processors are added both for a fixed-size problem and for a scaled version of the
problem, providing an unscaled and a scaled version of the speedup curves. The
choice of how to measure the uniprocessor algorithm is also important to avoid
anomalous results, since using the parallel version of the benchmark may under-
state the uniprocessor performance and thus overstate the speedup, as discussed
with an example in section 6.14.

Once we have decided to measure scaled speedup, the question is how to scale
the application. Let’s assume that we have determined that running a benchmark
of size n on p processors makes sense. The question is how to scale the bench-
mark to run on m × p processors. There are two obvious ways to scale the prob-
lem: keeping the amount of memory used per processor constant; and keeping the
total execution time, assuming perfect speedup, constant. The first method, called
memory-constrained scaling, specifies running a problem of size m × n on m × p
processors. The second method, called time-constrained scaling, requires that we
know the relationship between the running time and the problem size, since the
former is kept constant. For example, suppose the running time of the application
with data size n on p processors is proportional to n2/p. Then with time-
constrained scaling, the problem to run is the problem whose ideal running time
on m × p processors is still n2/p. The problem with this ideal running time has
size .

E X A M P L E Suppose we have a problem whose execution time for a problem of size
n is proportional to n3. Suppose the actual running time on a 10-processor
multiprocessor is 1 hour. Under the time-constrained and memory-con-
strained scaling models, find the size of the problem to run and the effec-

m n×

6.11 Putting It All Together: Sun’s Wildfire Prototype 735
tive running time for a 100-processor multiprocessor.

A N S W E R For the time-constrained problem, the ideal running time is the same, 1
hour, so the problem size is or 2.15 times larger than the original.
For memory-constrained scaling, the size of the problem is 10n and the
ideal execution time is 103/10, or 100 hours! Since most users will be re-
luctant to run a problem on an order of magnitude more processors for
100 times longer, this size problem is probably unrealistic. n

In addition to the scaling methodology, there are questions as to how the pro-
gram should be scaled when increasing the problem size affects the quality of the
result. Often, we must change other application parameters to deal with this ef-
fect. As a simple example, consider the effect of time to convergence for solving
a differential equation. This time typically increases as the problem size increas-
es, since, for example, we often require more iterations for the larger problem.
Thus when we increase the problem size, the total running time may scale faster
than the basic algorithmic scaling would indicate.

For example, suppose that the number of iterations grows as the log of the
problem size. Then for a problem whose algorithmic running time is linear in the
size of the problem, the effective running time actually grows proportional to n
log n. If we scaled from a problem of size m on 10 processors, purely algorithmic
scaling would allow us to run a problem of size 10 m on 100 processors. Ac-
counting for the increase in iterations means that a problem of size k × m, where k
log k = 10, will have the same running time on 100 processors. This problem size
yields a scaling of 5.72 m, rather than 10 m.

In practice, scaling to deal with error requires a good understanding of the ap-
plication and may involve other factors, such as error tolerances (for example, it
affects the cell-opening criteria in Barnes-Hut). In turn, such effects often signifi-
cantly affect the communication or parallelism properties of the application as
well as the choice of problem size.

Scaled speedup is not the same as unscaled (or true) speedup; confusing the
two has led to erroneous claims (e.g., see the fallacy on page 753). Scaled speed-
up has an important role, but only when the scaling methodology is sound and the
results are clearly reported as using a scaled version of the application. Singh et.
al.[1993] describe these issues in detail.

In Sections 6.3 and 6.5 we examined centralized memory architectures (also
known as SMPs or symmetric multiprocessors) and distributed memory architec-
tures (also known as DSMs or distributed shared memory multiprocessors).
SMPs have the advantage of maintaining a single centralized memory with uni-

6.11 Putting It All Together: Sun’s Wildfire Prototype

103 n×

736 Chapter 6 Multiprocessors and Thread-Level Parallelism
form access time, and although cache hit rates are crucial, memory placement is
not. In comparison, DSMs have a nonuniform memory architecture and memory
placement can be important; in return, they can achieve far greater scalability.

The question is whether there is a way to combine the advantages of the two
approaches: maximizing the uniform memory access property while simulta-
neously allowing greater scalability. The answer is a partial yes, if we accept
some compromises on the uniformity of the memory model and some limits of
scalability. The machine we discuss in this section, an experimental prototype
multiprocessor called Wildfire, built by Sun Microsystems, attempts to do exactly
this.

One key motivation for an approach that maximizes the uniformity of memory
access while accepting some limits on scalability is the rising importance of
OLTP and web server markets for large-scale multiprocessors. In comparison to
scientific applications, which played a key role in driving both SMP and DSM
development, commercial server applications have both less predictable memory
access patterns and less demand for scalability to hundreds or thousands of pro-
cessors.

The Wildfire Architecture

Wildfire attempts to maximize the benefits of SMP, while allowing scalability by
creating a DSM architecture using large SMPs as the nodes. The individual nodes
in the Wildfire design are Sun E series multiprocessors (E6x00, E5x00, E4x00, or
E3x00. Our measurements in this section are all done with E6000 multiproces-
sors as the nodes. An E6000 can accept up to 15 processor or I/O boards on the
Gigaplane bus interconnect, which supports 50 million bus transactions per sec-
ond, up to 112 outstanding transactions, and has a peak bandwidth of 3.2 GB/sec.
Each processor board contains 2 UltraSPARC III processors.

Wildfire can connect 2 to 4 E6000 multiprocessors by replacing one dual pro-
cessor (or I/O) board with a Wildfire Interface board (WFI), yielding up to 112
processors (4 x 28), as shown in Figure 6.45. The WFI board supports one coher-
ent address space across all four multiprocessor nodes with the two high-order
address bits used to designate which node contains a memory address. Hence,
Wildfire is a cache-coherent nonuniform memory access architecture (cc-NU-
MA) with large nodes. Within each node of 28 processors, memory is uniformly
accessible, only processes that span nodes need to worry about the non uniformi-
ty in memory access times.

The WFI plugs into the bus and sees all memory requests; it implements the
global coherence across up to four nodes. Each WFI has three ports that connect
to up to three additional Wildfire nodes, each with a dual directional 800 MB/sec
connection. WFI uses a simple directory scheme, similar to that discussed in Sec-
tion 6.7. To keep the amount of directory state small, the directory is actually a
cache, which is backed by the main memory in the node. When an miss occurs,
the request is routed to the home node for the requested address. When the re-

6.11 Putting It All Together: Sun’s Wildfire Prototype 737
quest arrives at the WFI of the home node, the WFI does a directory look-up. If
the address is cached locally or clean in memory, a bus transaction is used to re-
trieve it. If the requested data is cached exclusively in a remote node, a request is
sent to that remote node, where the WFI on that node generates a bus request to
fetch the data. When the data is returned from either the remote owner or the
home node, it is placed on the bus by the WFI and returned to the requesting pro-
cessor.

We can see from this discussion one major disadvantage of this design: each
remote request requires either four or five bus transactions. Two transactions are
required at the local node and two or three others are required elsewhere, depend-
ing on where the data is cached:

n If the referenced data is cached only in the home node, then two additional bus
transactions in the home are sufficient to retrieve the data.

n If the referenced data is cached exclusively in a third remote node, then two bus
transactions are required at the remote node and one is required at the home
node (to write the shared data back into the home memory).

These are one-way transactions and the E6000 bus is a split transaction bus, so
even a normal memory access takes two bus transactions. Nonetheless, there is an
increase in the required bus bandwidth of between 1.5 and 2.5. This increase

FIGURE 6.45 The Wildfire Architecture uses a bus-based SUN Enterprise server as its
building blocks. The WFI replaces a processor or I/O board and provides internode coheren-
cy and communication, as well as hardware support for page replication.

Memory

WFI
WFI

WFI WFI

E6000

E6000

E6000

CPUCPUI/OI/O

E6000

28

738 Chapter 6 Multiprocessors and Thread-Level Parallelism
means that the processor count at which the buses within the nodes become satu-
rated is lowered by a factor of at least 1.5, so that if a 28 processor design saturat-
ed the bus bandwidth of an E6000, a four-node Wildfire design could
accommodate about 18 processors per node before saturating the bus bandwidth,
assuming an even distribution of remote requests. A significant fraction of re-
quests to data cached remotely from its home would further lower the useful pro-
cessor count in each node. We will return to a further discussion of the
advantages and disadvantages of this approach shortly, but first, let us look at
how the Wildfire design reduces the fraction of costly remote memory accesses.

Using Page Replication and Migration to Reduce NUMA Effects
Wildfire uses special support, called CMR for Coherent Memory Replication, for
page migration and replication. The idea is inspired by a more sophisticated hard-
ware scheme for supporting migration and replication, called COMA for Cache
Only Memory Architecture. COMA is an approach that treats all main memory as
a cache allowing replication and migration of memory blocks. Full COMA im-
plementations are quite complex, so a variety of simplifications have been pro-
posed. CMR is based on one of these simplifications called S-COMA, for Simple
COMA. S-COMA, like CMR, uses page-level mechanisms for migrating and
replicating pages in memory, although coherence is still maintained at the cache-
block level. We discuss the COMA ideas, as well as other approaches to migra-
tion and replication, in more detail in the historical perspectives and in the exer-
cises.

To decide when to replicate or migrate pages, CMR uses a set of page counters
that record the frequency of misses to remote pages. Migration is preferred when
a page is primarily used by a node other than the one where the page is currently
allocated. Replication is useful when multiple nodes share a page; the drawback
of replication is that it requires extra memory. When the node sizes in a DSM are
small, page migration and replication can lead to both excessive overhead for
moving pages and excessive memory overhead from duplication of pages. With
the large nodes in Wildfire, however, page-level migration and replication are
much more attractive.

CMR, like S-COMA, maintains coherence at the unit of a cache-block, rather
than at the page level. This choice is important for two reasons. First, maintaining
coherence at the page level is likely to lead to a significant numbers of false shar-
ing misses; we saw this increase in false sharing misses with increases in block
size in Section 6.3. Second, the large size of a page means that even true sharing
misses are likely to end up moving many bytes of data that are never used. These
two drawbacks have limited the usefulness of the Shared Virtual Memory ap-
proach, which we discussed on page 733. CMR avoids these problems by making
the unit of coherence a cache block and by selectively migrating and replicating
some pages, while leaving others as standard NUMA pages that are accessed re-
motely when a cache miss occurs.

6.11 Putting It All Together: Sun’s Wildfire Prototype 739
In addition to the page counters that the operating system uses to decide when
to migrate or replicate a page, CMR requires special support to map between
physical and virtual addresses of replicated pages. First, when a page is replicat-
ed the page tables are changed to refer to the local physical memory address of
the duplicated page. To maintain coherence, however, a miss to this page must be
sent to the home node to check the directory entry in that node. Thus, the WFI
maintains a structure that maps the address of a replicated page (the local physi-
cal address) to its original physical address (called the global address) and gener-
ates the appropriate remote memory request, just as if the page were never
replicated. When a write-back request or invalidation request is received, the glo-
bal address must be translated to the local address, and the WFI maintains such a
mapping for all pages that have been replicated. By maintaining these two maps,
pages can be replicated while maintaining coherence at the unit of a cache block,
which increases the usefulness of page replication.

Performance of Wildfire

In this section we look at the performance of the Wildfire prototype starting first
with basic performance measures such as latency for memory accesses and band-
width and then turning to application performance. Since Wildfire is a research
prototype, rather than a product, its performance evaluation for applications is
limited, but some interesting experiments that evaluate the use of page migration
and replication are available.

Basic Performance Measures: Latency and Bandwidth
To better understand the design trade-offs between DSM architectures with nodes
that have small, medium, and large processor counts, we compare the latency and
bandwidth measurements of two different machines: the Sun Wildfire and the
SGI Origin 2000.

The SGI Origin 2000 is a highly scalable cc-NUMA architecture capable of
accommodating up to 2,048 processors. Each node consists of a pair of MIPS
R1000 processors sharing a single memory module. An interface processor called
the Hub (see Figure 6.46) provides an interface to the memory and directory in
each node and implements the coherence protocol. The Hub interfaces directly to
the routing chip, which provides a hypercube interconnection network that main-
tains a a bisection bandwidth of 200 MB/sec per processor. The high dimension
of the router also reduces hop counts leading to a lower ratio of remote to local
access.

The Origin and Wildfire designs have significantly different motivations, so a
comparison of the design trade-offs must acknowledge this fact. Among the most
important differences are:

740 Chapter 6 Multiprocessors and Thread-Level Parallelism
n The range of scalability: Origin can scale to thousands of processors, while the
Wildfire design can scale to 112. Practically, the Wildfire design limit is likely
to be closer to 64 to 80 processors, since bus bandwidth limits and the need for
I/O boards will reduce the effective size of each node.

n The Origin is designed primarily, though not exclusively, for scientific compu-
tation and the Wildfire design is oriented primarily for commercial processing.
For the Origin design, this means that scalable bandwidth is crucial, and for the
Wildfire design, it means that hiding more of the NUMA-ness is crucial.

n The processors are also different in ways that affect both the bandwidth and la-
tency of the nodes, including the block sizes of the L2 caches. We try to reduce
this artifact by supplying multiple comparison numbers (e.g., latency to restart
and back-to-back worst-case latency).

In Figure 6.47 we compare a variety of latency measurements for the two ma-
chines showing the variation arising both from local versus remote accesses and
the variation arising from the cache organization. The first portion of the table
concentrates on local memory accesses, which remain within one node. We com-
pare both the restart latency, which is the time from miss detection to pipeline re-

FIGURE 6.46 The SGI Origin 2000 uses an architecture that contains two processors per
node and a scalable interconnection network that can handle up to 2,048 processors. A high-
er dimension network leads to scalable bisection bandwidth and a low ratio per out-of-node
and in-node references.

Router

800 MB/sec

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

R10000 R10000

800 MB/sec

Memory
+

Directory
Hub

Node

Node

Node

Node

Node

Network

6.11 Putting It All Together: Sun’s Wildfire Prototype 741
start, and a worst-case, back-to-back measurement, which is measured by a
sequence of dependent loads. The performance differences arise from the cache
architecture (including a factor of two difference in block size), the pipeline ar-
chitecture, and the main memory access time. Local memory latency also de-
pends on the state of the cache block. We show three cases:

Characteristic How
measured?

Target
status?

Sun Wildfire SGI Origin
2000

Local memory latency Restart Unowned 342 338

Local memory latency Back-to-back Unowned 330 472

Local memory latency Restart Exclusive 362 656

Local memory latency Back-to-back Exclusive 350 707

Local memory latency Restart Dirty 482 892

Local memory latency Back-to-back Dirty 470 1036

Remote memory latency to nearest node Restart Unowned 1774 570

Remote memory latency to nearest node Restart Dirty 2162 1128

Remote memory latency to furthest node (< 128) Restart Unowned 1774 1219

Remote memory latency to furthest node (< 128) Restart Dirty 2162 1787

Avg. remote memory latency processors (< 128) Restart Unowned 1774 973

Avg. remote memory latency: processors (< 128) Restart Dirty 2162 1531

Average memory latency all processors (< 128) Restart Unowned 1416 963

Average memory latency all processors (< 128) Restart Dirty 1742 1520

Three hop miss to nearest node Restart Dirty 2550 953

Three hop miss to furthest node (worst case) Restart Dirty 2550 1967

Average three hop miss Restart Dirty 2453 1582

FIGURE 6.47 A comparison of memory access latencies (in ns) between the Sun Wildfire prototype (using E6000 nodes)
and a SGI Origin 2000 shows significant differences in both local and remote access times. This table has four parts corre-
sponding to local memory accesses (which are within the node), remote memory access involving only the requesting and
home node, a third section that compares the average memory latency for the combination of local and remote (but not 3-
hop) misses, and a final section showing the 3-hop latencies. The second column describes whether the latency is measured
by time to restart the pipeline or by the back-to-back miss cost. For local accesses we show both; for remote accesses, we
show the restart latency, which is the more likely case. The third column indicates the state of the remote data. Unowned
means that it is in the shared or invalid state in the other caches. Exclusive means exclusive but clean, which requires an
intervention to be completed before the memory access can complete, so that write serialization may be maintained. Dirty
indicates that the data is exclusive and has been updated; an access, therefore, requires retrieving the data from the cache.
In the local case, we show all three possibilities, to show the effect of the processor architecture (e.g., intervention cost and
cache block size both affect the access times), while for remote accesses we show the unowned and dirty case, which are
likely to be the most frequent.

742 Chapter 6 Multiprocessors and Thread-Level Parallelism
1. the accessed block is unowned or it is in the shared state

2. the accessed block is owned exclusively but clean, which requires that the
block be invalidated,

3. the accessed block is owned and dirty, which requires that the block be re-
trieved from the cache to satisfy the miss.

These 6 combinations (3 possible states of the target block x 2 possible miss tim-
ings) are the most likely cases of a local miss, though there are several other pos-
sibilities. These latencies are primarily dominated by choices in the
microprocessor design (such as minimizing time to restart or minimizing total
miss time) as well as in the local memory system and coherence implementation.
These choices increase the difficulty in comparing memory latency for a multi-
processor, since some of these design choices affect the remote latencies as well.

The second section of the table compares the remote access times under a va-
riety of different circumstances but all assuming that the home address is in a dif-
ferent node and that any cached copies are in the home node. For these numbers
we use restart latency and consider the two most probable coherence states for a
remotely accessed datum: unowned and dirty. The first two entries describe the
time to access a datum whose home is in the nearest node; for the Wildfire system
all remote nodes are equidistant, while for the Origin, the nearest node is one
router hop away. The second pair of numbers deals with the latency when the
home is as far away as possible for Origin. Finally, the third and last pair provide
the average latency for a uniform distribution of the home address across a multi-
processor with 128 processors.

The fourth set of numbers deals with 3-hop misses, assuming that the owner is
in a different node from either the home or the originating node. Here the most
likely case is that the data is Dirty, and we show the restart latency for this case
under the best, worst, and average assumptions.

From these measurements, we can see several of the trade-offs at work in a de-
sign that uses large nodes versus one that uses smaller nodes. Large nodes in-
crease the number of processors reachable with a local access, but also typically
have a longer remote access time. The latter is driven primarily by the higher
overhead of acquiring access to the bus either for the directory or to access a re-
mote cached copy. Of course, access latency is only part of the picture, band-
width is also affected by these design decisions.

As Figure 6.48 shows, the pipeline memory bandwidth can be measured in
many different ways. The Origin design supports greater memory bandwidth by
every measure except local bandwidth to dirty data. Local bandwidth and bisec-
tion bandwidth are almost three times higher on a per processor basis for Origin.

Application performance of Wildfire

In this section, we examine the performance of Wildfire, first on an OLTP appli-
cation and then on a scientific application. We look at both the basic performance

6.11 Putting It All Together: Sun’s Wildfire Prototype 743
of the architecture versus alternatives such as a strict SMP or a small-node
NUMA and then consider the effect of Wildfire’s support for replication and mi-
gration.

Performance of the OLTP Workload
In this study an OLTP application supporting 900 warehouses was run on a 16-
processor E6000 and on a two-node, 16-processor Wildfire configuration. I/O
was supplied by 240 disks connected by fiber-channel. To examine the perfor-
mance of Wildfire and the effect of its support for replication and migration, we
consider six system alternatives:

1. Ideal SMP: a 16-processor SMP design, modeled using the E6000.

2. Wildfire with CMR and locality scheduling: a 2-node, 16-processor Wildfire
with replication and migration enabled and using the locality scheduling in the
OS.

3. Wildfire with CMR only.

4. Wildfire base with neither CMR nor locality scheduling.

5. Unoptimized Wildfire with poor data placement: Wildfire with poor data

Characteristic Sun Wildfire
MB/sec

SGI Origin 2000
MB/sec

Pipelined local memory bandwidth: unowned data 312 554

Pipelined local memory bandwidth: exclusive data 266 340

Pipelined local memory bandwidth: dirty data 246 182

Total local memory bandwidth (per node) 2,700 631

Local memory bandwidth per processor 96 315

Aggregate local memory bandwidth (all nodes, 112 processors) 10,800 39,088

Remote memory bandwidth, unowned data 508

Remote 3-hop bandwidth, dirty data 238

Total bisection bandwidth (112 processors) 9,600 25,600

Bisection bandwidth per processor (112 processors) 86 229

FIGURE 6.48 A comparison of memory bandwidth measurements (in MB/sec) between the Sun Wildfire prototype (using
E6000 nodes) and a SGI Origin 2000 shows significant differences in both local and remote memory bandwidth. The first
section of the table compares pipelined local memory bandwidth, which is defined as the sustainable bandwidth for inde-
pendent accesses generated by a single processor; like restart latency, this measure depends on the state of the addressed
cache block. The second section of the table compares the total local memory bandwidth (i.e., within a node) on a per pro-
cessor basis and system wide. The third section compares the memory bandwidth for remote accesses, both a two-hop ac-
cess to an unowned cache block and a three-hop access to a dirty cache block. The final section compares the total bisection
bandwidth for the entire system and on a per processor basis.

744 Chapter 6 Multiprocessors and Thread-Level Parallelism
placement and unintelligent scheduling. Poor data placement is modeled by
assuming that 50% of the cache misses are remote, which in practice is unre-
alistic.

6. Unoptimized Wildfire with thin nodes (2 processors per node) and poor data
placement. This system assumes Wildfires interconnection characteristics, but
with eight two-processor nodes. Poor data placement is modeled by assuming
that 87.5% (i.e., 14/16) 1of the cache misses are remote, which in practice is
unrealistic.

To examine performance we first look at the fraction of cache misses satisfied
within a node. Figure 6.49 shows the fraction of local accesses for each of these
configurations. For this OLTP application the Wildfire optimizations improve
fraction of local accesses by a factor of 1.23 over unoptimized Wildfire, bringing
the fraction of local accesses to 87%.

FIGURE 6.49 The fraction of local accesses (defined as within the node) is shown for six different configurations,
ranging from an ideal SMP (with only one node and 16 processors) to four configurations with 8-processor nodes,
to a configuration with thin, 2-processor nodes. The fraction of remote accesses is set as a parameter for the two right-
most data points, while the other numbers are measured.

100%

87%

76%

71%

50%

13%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ideal SMP Wildfire complete Wildfire CMR only Unoptimized Wildfire Unoptimized Wildfire,
poor data allocation

Unoptimized thin-
node Wildfire, poor

data allocation

%
 L

oc
al

 A
cc

es
se

s

6.11 Putting It All Together: Sun’s Wildfire Prototype 745
Figure 6.50 shows how these changes in local versus remote access fractions
translate to performance for this OLTP application. The performance of each sys-
tem in Figure 6.50 is relative to the E6000; however, as we will see when we ex-
amine a scientific application, the E6000 can encounter performance losses from
bus contention at 16 processors, so that, in fact, the performance of the E6000
does not represent an upper bound for a multiprocessor using sixteen of the same
processors. The E6000 performance is probably within 10-20% of contention-
free performance for this benchmark. As we can see from the data the penalty for
off-node accesses translates directly to reduced performance. The next section
examine how Wildfire performs for a scientific application.

Performance of Wildfire on a Scientific Application
In this section we examine a performance study of Wildfire using a Red-Black fi-
nite difference solver to solve a 2-dimensional Poisson equation for a square grid.
In this implementation, each 2x2 block of grid points is assigned either a red or

FIGURE 6.50 The performance of the OLTP application using 16 processors is highest for the E6000, and drops
off as remote memory accesses become a major performance loss.

100%

7%

75%

67%

55%

41%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E6000 Wildfire complete Wildfire CMR only Unoptimized Wildfire Unoptimized Wildfire,
poor data allocation

Unoptimized thin-
node Wildfire, poor

data allocation

R
el

at
iv

e
P

er
fo

rm
an

ce

746 Chapter 6 Multiprocessors and Thread-Level Parallelism
black color, so that the overall grid looks like a checkerboard. Red data points are
updated based on values of black data points and vice versa, which allows all red
points to be updated in parallel and all black points to be updated in parallel. A
point is updated by accessing the four neighboring points (all of which are a dif-
ferent color). This data access pattern is common in two-dimensional solvers.

Our first performance comparisons examine the performance of Wildfire ver-
sus the E6000 and the E10000. The E 10000 uses a two-level interconnect. Four
processors are connected with a 4x4 cross-bar to four memory modules, creating
a 4-processor SMP. Up to 16 of these 4-processor nodes can be connected with
the Starfire interconnect, which uses a 16x16 cross-bar. Coherence is maintained
by a global broadcast scheme.

Figure 6.51 shows the performance of the generalized red-black (GRB) solver
for six different configurations. The performance is given in terms of iterations
per second with more iterations being better. The leftmost group of columns
compares 24-processor measurements on an E6000, E10000, and Wildfire; while
the rightmost bars compare 36-processor runs on two different Wildfire configu-
rations and an E10000. Both the 24 and 36 processor runs use the same processor
(250 MHZ UltraSPARC II) with 4MB secondary caches.

FIGURE 6.51 Wildfire performance for the Red-Black solver measured as iterations per second shows the perfor-
mance for three different 24-processor and three different 36-processor machines. Iterations per second is directly
proportional to performance.

0.56

0.48

0.40

0.91

0.77

0.67

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Wildfire (3x8
CPUs)

E10000 (24
CPUs)

E6000 (24 CPUs) Wildfire (4x9
CPUs)

E10000 (2x18
CPUs)

E6000 (36 CPUs)

It
er

at
io

ns
/s

ec
on

d

6.11 Putting It All Together: Sun’s Wildfire Prototype 747
The 24-processor runs include a 3-node Wildfire configuration (with an 8-pro-
cessor E6000 in each Wildfire node), a 6-node E10000 and a 24-processor
E6000. The performance differences among the 24-processor runs on Wildfire,
the E1000, and the E6000 arise primarily from bus and interconnect differences.
The global broadcast of the E10000 has nontrivial overhead. Thus, despite the
fact that the E10000 interconnect has performance equal to that of Wildfire, the
performance of Wildfire is about 1.17 times better. For the E6000, the measured
bus usage for the 24-processor runs is between 90% and 100%, leading to a sig-
nificant bottleneck and lengthened memory access time. Overall, Wildfire has a
performance advantage of about 1.19 versus the E6000. Equally importantly,
these measurements tell us that configurations of Wildfire with larger processor
counts per node will not have good performance, at least for applications with be-
havior similar to this solver. The 36 processor runs confirm this view.

The 36-processor runs compare three alternatives: a 9-node E10000, a 2x18
configure of Wildfire (each Wildfire node is an 18-processor E6000) and a 4x9
configuration of Wildfire (each Wildfire node is an 9-processor E6000). The most
interesting comparison here involve the 36-processor versus 24-processor results.
The E10000 shows a faster than linear speedup (1.67 in runtime versus 1.5 in
processor count); this probably results from improved cache behavior due to the
smaller data set that each processor must access in the 36-processor case. The
Wildfire results are even more interesting; the 4x9 configuration also shows faster
than linear speed-up versus the 24-processor result. The 2x18 configuration,
however, shows speed-up that is slower than linear (1.38 vs. 1.5), most probably
because the bus has become a major bottleneck.

How well do the migration and replication capabilities of Wildfire work for
scientific applications? To examine this question, this solver was executed start-
ing with a memory allocation that placed all the data on a single node. Wildfire’s
migration and replication capabilities were used to allow data to migrate and rep-
licate to one of the other nodes. Figure 6.52 shows the performance in iterations
per second over time for a 1, 2, 3, and 4 node Wildfire, each with 24 processors/
node. As shown, the 2, 3, and 4 node runs converge to stable and best perfor-
mance after somewhere between 120 and 180 seconds. Since during the initial
time period, the application averages about 0.2 iterations per second, it requires
between 600 and 900 iterations to reach the stable performance levels.

Although the eventual convergence to a good operating point from an initial
pathological memory allocation is impressive, the number of iterations required
is rather large, and leaves open the question of how well the migration and repli-
cation strategies might work in problems where the memory allocation continued
to change over time.

A key question is what the relative benefits of migration and replication are?
Figure 6.53 examines this question by showing the iteration rate and time to
reach that rate. We also show the number of replications and migrations. The pri-

748 Chapter 6 Multiprocessors and Thread-Level Parallelism
mary conclusion we can draw from the performance of these three cases is that
the stable performance level for migration is competitive with the combination of
migration and replication. Since supporting migration had much lower hardware
costs that supporting replication (because the reverse memory maps are not need-
ed), a design that supports migration may be equally or more cost effective than
supporting both migration and replication. The large data set coupled with well

FIGURE 6.52 The replication and migration support of Wildfire allows an application to start with a pathological
memory allocation (all memory on one node) and converge to a stable allocation that gives nearly linear speed-up.
The final iterations/second number shows that the 96-processor, 4-node version achieves 90% of linear speedup. As ex-
pected, the two node runs converge slightly faster than three or four node runs.

1 node

2 nodes

3 nodes

4 nodes

6.11 Putting It All Together: Sun’s Wildfire Prototype 749
defined access patterns by the “owner” of each portion of the grid means that rep-
lication buys little over only migration.

Concluding Remarks on Wildfire

Wildfire represents an alternative to thin-node NUMAs with 2 to 4 processors per
node, while permitting greater scalability than strict SMP designs. The shift in
market interest from scientific and supercomputing applications to large-scale
servers for database and web applications may favor a fat-node design with 8 to
16 processors per node. The two primary reasons for this are:

1. Although a moderate range of scalability, up to a few hundred processors may
be of interest, the “sweet spot” of the server market is likely to be tens of pro-
cessors. Few, if any, customers will express interest in the thousand processor
machines that are a key part of the supercomputer marketplace.

2. The memory access patterns of commercial applications tend to have less
sharing and less predictable sharing and data access. The lower rates of shar-
ing are key because a fat node design will tend to have lower bisection band-
width per processor than a thin-node design. Since a fat-node design has
somewhat less dependence on exact memory allocation and data placement, it
is likely to perform better for applications with irregular or changing data ac-
cess patterns. Furthermore, fat-nodes make it easier for migration and replica-
tion to work well.

The drawbacks of a fat node design are essentially the dual of its advantages.
These include: less scalability, lower bisection bandwidth per processor, and
higher internode latencies. For applications that require significant amounts of in-
ternode communication even with fat nodes, a fat-node design will face a more
challenging programming and optimization task, since the ratio of local to remote
accesses times is likely to be quite a bit larger. To read more on Wildfire see:

Policy Iterations
per second

Iterations needed
to reach stability

Migrations # Replications

No migration or replication 0.10 0 0 0

Migration only 1.06 154 sec. 99,251

Replication only 1.15 61 sec. 98.545

Migration + replication 1.09 151 sec. 98,543 85

FIGURE 6.53 Migration only, replication only, and the combination of all three achieve about the same perfor-
mance given enough execution time and that number is roughly 10 times the performance achieved with the initial
data allocation and no replication or migration. For this experiment, which used a 96-processor, 4-node Wildfire, the pag-
es were allocated in a cyclic fashion, meaning that roughly 25% of were allocated to the correct location initially. A large data
set size (16K x 8K) that exceeds the capacity of the secondary caches, leads to a high miss rate, which requires migration,
replication, or careful initial data placement to reduce the miss penalty.

750 Chapter 6 Multiprocessors and Thread-Level Parallelism
Hagersten and Koster [1998] and Noordergraaf and van der Pas [1999], which are
also the sources for the data in this section.

Considering the growing significance of the commercial server market with its
less predictable memory access patterns, its reduced emphasis on ultimate scal-
ability, and its lower interprocess communication requirements, it is likely the
“plump” node designs will become more attractive. Growing processor demands
and avoidance of bus limits, is likely to lead to designs with 4-8 processors per
node rather than the 16-24 limit in Wildfire. Although fatter nodes are likely to be
beneficial, the nonuniform access time to memory cannot be ignored when the lo-
cal node provide SMP-style access to only 3-7 other nodes.
.

As we have seen, dynamic scheduling can be used to make a single program run
faster, as we saw in the Pentium III. Alternatively, multithreading can use a dif-
ferent form of dynamic scheduling (scheduling across multiple threads) to in-
crease the throughput of multiple simultaneously executing programs. This is the
approach used in the IBM RS64 III.

The IBM RS64 III processor, also called Pulsar, is a PowerPC microprocessor
that supports two different IBM product lines: the RS/6000 series, where it is
called the RS64 III processor, and the AS/400 series, where it is called the A50.
Both product lines are aimed at commercial servers and focus on throughput in
common commercial applications.

Motivated by the observation that such applications encounter high cache and
TLB miss rates and thus degraded CPI, the designers decided to include a multi-
threading capability to enhance throughput and make use of the processor during
long TLB or cache-miss stalls. In deciding how to support multithreading, the de-
signers considered three facts:

1. The Pulsar processor, which was based on the earlier Northstar, is a statically
scheduled processor.

2. The performance penalty for multithreading must be small both in silicon area
and in clock rate.

3. Single thread performance on Pulsar must not suffer.

This combination of considerations led to a multithreading architecture with
the following characteristics:

1. Pulsar supports precisely two threads: this minimizes both the incremental sil-
icon area and the potential clock rate impact.

6.12 Another View: Multithreading in a Commercial Server

6.13 Another View: Embedded Multiprocessors 751
2. The multithreading is coarsely scheduled; that is, threads are not interleaved,
instead a thread switch occurs only when a long latency stall is encountered.
Coarse multithreading was chosen to maximize single thread performance and
make use of the statically scheduled pipeline structure, which makes SMT an
impractical choice.

To implement the multithreading architecture, Pulsar includes two copies of
the register files and PC register, which resulted in relatively minor silicon over-
head (< 10%). In addition, a special register that determines the maximum num-
ber of cycles between a thread switch ensures that no thread is ever completely
starved for cycles. The overall architecture provides a significant improvement in
multithreaded throughput, a key metric for the commercial server workloads. The
Pulsar microprocessor is the first widely available, mainline microprocessor to
support multithreading; it is likely that future microprocessors will include such a
capability either a coarse-grained form or using the SMT approach.

Multiprocessors are now common in server environments, and several desktop
multiprocessors are available from vendors, such as Sun, Compaq, and Apple. In
the embedded space, a number of special-purpose designs have used customized
multiprocessors, including the Sony Playstation described in Chapters 2 and 5.
Many special-purpose embedded designs consist of a general-purpose program-
mable processor with special purpose finite-state machines that are used for
stream-oriented I/O. In applications ranging from computer graphics and media
processing to telecommunications, this style of special-purpose multiprocessor is
becoming common. Although the interprocessor interactions in such deigns is
highly regimented and relatively simple–consisting primarily of a simple com-
munication channel–because much of the design is committed to silicon, ensur-
ing that the communication protocols among the input/output processors and the
general-purpose processor are correct is a major challenge in such designs.

More recently, we have seen the first appearance, in the embedded space, of
embedded multiprocessors built from several general-purpose processors. These
multiprocessors have been focused primarily on the high-end telecommunica-
tions and networking market, where scalability is critical. An example of such a
design is the MXP processor designed by empowerTel Networks for use in voice
over IP systems. The MXP processor consists of four main components:

1. An interface to serial voice streams, including support for handling jitter.

2. Support for fast packet routing and channel lookup.

6.13 Another View: Embedded Multiprocessors

752 Chapter 6 Multiprocessors and Thread-Level Parallelism
3. A complete Ethernet interface, including the MAC layer.

4. Four MIPS32 R4000-class processors each with its own caches (a total of 48
KB or 12 KB per processor).

The MIPS processors are used to run the code responsible for maintaining the
voice over IP channels, including the assurance of quality of service, echo can-
cellation, simple compression, and packet encoding. Since the goal is to run as
many independent voice streams as possible, a multiprocessor is an ideal solu-
tion.

Because of the small size of the MIPS cores, the entire chip takes only 13.5M
transistors. Future generations of the chip are expected to handle more voice
channels, as well as do more sophisticated echo cancellation, voice activity de-
tection, and more sophisticated compression.

Your authors expect that multiprocessing will become widespread in the em-
bedded computing arena in the future for two primary reasons. First, the issues of
binary software compatibility, which plague desktop and server systems, are less
relevant in the embedded space. Often software in an embedded application is
written from scratch for an application or significant modified. Second, the appli-
cations often have natural parallelism, especially at the high-end of the embedded
space. Examples of this natural parallelism abound in applications such as a set-
top box, a network switch, or a game system. The lower barriers to use of thread-
level parallelism together with the greater sensitivity to die cost (and hence effi-
cient use of silicon) will likely lead to more ready adoption of multiprocessing in
the embedded space, as the application needs grow to demand more performance.

Given the lack of maturity in our understanding of parallel computing, there are
many hidden pitfalls that will be uncovered either by careful designers or by un-
fortunate ones. Given the large amount of hype that has surrounded multi-
processors, especially at the high end, common fallacies abound. We have
included a selection of these.

Pitfall: Measuring performance of multiprocessors by linear speedup versus
execution time.

“Mortar shot” graphs—plotting performance versus number of processors show-
ing linear speedup, a plateau, and then a falling off—have long been used to
judge the success of parallel processors. Although speedup is one facet of a paral-
lel program, it is not a direct measure of performance. The first question is the
power of the processors being scaled: A program that linearly improves perfor-
mance to equal 100 Intel 486s may be slower than the sequential version on a
workstation. Be especially careful of floating-point-intensive programs; process-

6.14 Fallacies and Pitfalls

6.14 Fallacies and Pitfalls 753
ing elements without hardware assist may scale wonderfully but have poor col-
lective performance.

Comparing execution times is fair only if you are comparing the best algo-
rithms on each computer. Comparing the identical code on two processors may
seem fair, but it is not; the parallel program may be slower on a uniprocessor than
a sequential version. Developing a parallel program will sometimes lead to algo-
rithmic improvements, so that comparing the previously best-known sequential
program with the parallel code—which seems fair—will not compare equivalent
algorithms. To reflect this issue, the terms relative speedup (same program) and
true speedup (best program) are sometimes used.

Results that suggest super-linear performance, when a program on n pro-
cessors is more than n times faster than the equivalent uniprocessor, may indicate
that the comparison is unfair, although there are instances where “real” superlin-
ear speedups have been encountered. For example, when Ocean is run on two
processors, the combined cache produces a small superlinear speedup (2.1 vs.
2.0).

In summary, comparing performance by comparing speedups is at best tricky
and at worst misleading. Comparing the speedups for two different multiproces-
sors does not necessarily tell us anything about the relative performance of the
multiprocessors. Even comparing two different algorithms on the same multipro-
cessor is tricky, since we must use true speedup, rather than relative speedup, to
obtain a valid comparison.

Fallacy: Amdahl’s Law doesn’t apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl’s Law (see
section 1.6) had been broken by an MIMD multiprocessor. This statement hardly
meant, however, that the law has been overturned for parallel computers; the ne-
glected portion of the program will still limit performance. To understand the ba-
sis of the media reports, let’s see what Amdahl [1967] originally said:

A fairly obvious conclusion which can be drawn at this point is that the effort ex-
pended on achieving high parallel processing rates is wasted unless it is accom-
panied by achievements in sequential processing rates of very nearly the same
magnitude. [p. 483]

One interpretation of the law was that since portions of every program must be
sequential, there is a limit to the useful economic number of processors—say
100. By showing linear speedup with 1000 processors, this interpretation of
Amdahl’s Law was disproved.

The basis for the statement that Amdahl’s Law had been “overcome” was the
use of scaled speedup.The researchers scaled the benchmark to have a data set
size that is 1000 times larger and compared the uniprocessor and parallel execu-
tion times of the scaled benchmark. For this particular algorithm the sequential

754 Chapter 6 Multiprocessors and Thread-Level Parallelism
portion of the program was constant independent of the size of the input, and the
rest was fully parallel—hence, linear speedup with 1000 processors.

We have already described the dangers of relating scaled speedup as true
speedup. Additional problems with this sort of scaling methodology, which can
result in unrealistic running times, were examined in section 6.10.

Fallacy: Linear speedups are needed to make multiprocessors cost-effective.

It is widely recognized that one of the major benefits of parallel computing is to
offer a “shorter time to solution” than the fastest uniprocessor. Many people, how-
ever, also hold the view that parallel processors cannot be as cost-effective as uni-
processors unless they can achieve perfect linear speedup. This argument says that
because the cost of the multiprocessor is a linear function of the number of proces-
sors, anything less than linear speedup means that the ratio of performance/cost
decreases, making a parallel processor less cost-effective than using a uniproces-
sor.

The problem with this argument is that cost is not only a function of processor
count, but also depends on memory and I/O. The effect of including memory in
the system cost was pointed out by Wood and Hill [1995], and we use an example
from their article to demonstrate the effect of looking at a complete system. They
compare a uniprocessor server, the Challenge DM (a deskside unit with one pro-
cessor and up to 6 GB of memory), against a multiprocessor Challenge XL, a
rack-mounted, bus-based multiprocessor holding up to 32-processors. (The XL
also has faster processors than those of the Challenge DM—150 MHz versus 100
MHz—but we will ignore this difference.)

First, Wood and Hill introduce a cost function: cost (p, m), which equals the
list price of a multiprocessor with p processors and m megabytes of memory. For
the Challenge DM:

For the Challenge XL:

Suppose our computation requires 1 GB of memory on either multiprocessor.
Then the cost of the DM is $138,400, while the cost of the Challenge XL is
$181,600 + $20,000 × p.

For different numbers of processors, we can compute what speedups are nec-
essary to make the use of parallel processing on the XL more cost effective than
that of the uniprocessor. For example, the cost of an 8-processor XL is $341,600,
which is about 2.5 times higher than the DM, so if we have a speedup on 8 pro-
cessors of more than 2.5, the multiprocessor is actually more cost effective than
the uniprocessor. If we are able to achieve linear speedup, the 8-processor XL

tcos 1 m,() $38,400 $100 m×+=

tcos p m,() $81,600 $20,000 p× $100 m×+ +=

Exercises 755
system is actually more than three times more cost effective! Things get better
with more processors: On 16 processors, we need to achieve a speedup of only
3.6, or less than 25% parallel efficiency, to make the multiprocessor as cost effec-
tive as the uniprocessor.

The use of a multiprocessor may involve some additional memory overhead,
although this number is likely to be small for a shared-memory architecture. If
we assume an extremely conservative number of 100% overhead (i.e., double the
memory is required on the multiprocessor), the 8-processor multiprocessor needs
to achieve a speedup of 3.2 to break even, and the 16-processor multiprocessor
needs to achieve a speedup of 4.3 to break even.

Surprisingly, the XL can even be cost effective when compared against a
headless workstation used as a server. For example, the cost function for a Chal-
lenge S, which can have at most 256 MB of memory, is

For problems small enough to fit in 256 MB of memory on both multiprocessors,
the XL breaks even with a speedup of 6.3 on 8 processors and 10.1 on 16 proces-
sors.

In comparing the cost/performance of two computers, we must be sure to in-
clude accurate assessments of both total system cost and what performance is
achievable. For many applications with larger memory demands, such a compari-
son can dramatically increase the attractiveness of using a multiprocessor.

Fallacy: Multiprocessors are “free.”

This fallacy has two different interpretations, and both are erroneous. The first is,
given that modern microprocessors contain support for snooping caches, we can
build small-scale, bus-based multiprocessors for no additional cost in dollars
(other than the microprocessor cost) or sacrifice of performance. Many designers
believed this to be true and have even tried to build multiprocessors to prove it.

To understand why this doesn’t work, you need to compare a design with no
multiprocessing extensibility against a design that allows for a moderate level of
multiprocessing (say 2–4 processors). The 2–4 processor design requires some
sort of bus and a coherence controller that is more complicated than the simple
memory controller required for the uniprocessor design. Furthermore, the mem-
ory access time is almost always faster in the uniprocessor case, since the proces-
sor can be directly connected to memory with only a simple single-master bus.
Thus the strictly uniprocessor solution typically has better performance and
lower cost than the 1-processor configuration of even a very small multiproces-
sor.

It also became popular in the 1980s to believe that the multiprocessor design
was free in the sense that an MP could be quickly constructed from state-of-the-
art microprocessors and then quickly updated using newer processors as they

tcos 1 m,() $16,600 $100 m×+=

756 Chapter 6 Multiprocessors and Thread-Level Parallelism
became available. This viewpoint ignores the complexity of cache coherence and
the challenge of designing high-bandwidth, low-latency memory systems, which
for modern processors is extremely difficult. Moreover, there is additional soft-
ware effort: compilers, operating systems, and debuggers all must be adapted for
a parallel system. The next two fallacies are closely related to this one.

Fallacy: Scalability is almost free.

The goal of scalable parallel computing was a focus of much of the research and
a significant segment of the high-end multiprocessor development from the mid-
1980s through the late 1990s. In the first half of that period, it was widely held
that you could build scalability into a multiprocessor and then simply offer the
multiprocessor at any point on the scale from a small to large number of proces-
sors without sacrificing cost effectiveness. The difficulty with this view is that
multiprocessors that scale to larger processor counts require substantially more
investment (in both dollars and design time) in the interprocessor communication
network, as well as in aspects such as operating system support, reliability, and
reconfigurability.

As an example, consider the Cray T3E, which uses 3D torus capable of scal-
ing to 2,048 processors as an interconnection network. At 128 processors, it de-
livers a peak bisection bandwidth of 38.4 GB/s, or 300 MB/s per processor. But
for smaller configurations, the Compaq Alphaserver ES40 can accept up to 4 pro-
cessors and has 5.6 GB/s of interconnect bandwidth, or almost four times the
bandwidth per processor. Furthermore, the cost per CPU in a Cray T3E is several
times higher than the cost in the ES40.

The cost of scalability can be seen even in more limited design ranges, such as
the Sun Enterprise server line that all use the same basic Ultraport interconnect,
scaling the amount of interconnect for different systems. For example, the 4 pro-
cessor Enterprise 450 places all four processors on a single board and uses an on-
board crossbar. The midrange system, designed to support 6 to 30 processors,
uses a single address bus and a 32-byte wide data bus to connect the processors.
The Enterprise 10000 series uses four addresses buses (memory address inter-
leaved) and a 16x16 crossbar to connect the processors. Although the solution
gives getter scalability across the product range than forcing the low-end systems
to accommodate four address buses and a multiboard crossbar, the cost of the in-
terconnect system grows faster than linear as the number of processors grows,
leading to a higher per processor cost for the 6000 series versus the 450 and for
the 10000 series versus the 6000 series.

Scalability is also not free in software: To build software applications that
scale requires significantly more attention to load balance, locality, potential con-
tention for shared resources, and the serial (or partly parallel) portions of the pro-
gram. Obtaining scalability for real applications, as opposed to toys or small
kernels, across factors of more than 10 in processor count, is a major challenge.

6.14 Fallacies and Pitfalls 757
In the future, better compiler technology and performance analysis tools may
help with this critical problem.

Pitfall: Not developing the software to take advantage of, or optimize for, a
multiprocessor architecture.

There is a long history of software lagging behind on massively parallel proces-
sors, possibly because the software problems are much harder. Two examples
from mainstream, bus-based multiprocessors illustrate the difficulty of develop-
ing software for new multiprocessors. The first has to do with not being able to
take advantage of a potential architectural capability, and the second arises from
the need to optimize the software for a multiprocessor.

The SUN SPARCCenter was an earlier bus-based multiprocessor with one or
two buses. Memory is distributed on the boards with the processors to create a
simple building block consisting of processor, cache, and memory. With this
structure, the multiprocessor could also have a fast local access and use the bus
only to access remote memory. The SUN operating system, however, was not
able to deal with the NUMA (non-uniform memory access) aspect of memory, in-
cluding such issues as controlling where memory was allocated (local versus glo-
bal). If memory pages were allocated randomly, then successive runs of the same
application could have substantially different performance, and the benefits of
fast local access might be small or nonexistent. In addition, providing both a re-
mote and a local access path to memory slightly complicated the design because
of timing. Since neither the system software nor the application software would
not have been able to take advantage of faster local memory and the design was
believed to be more complicated, the designers decided to require all requests to
go over the bus.

Our second example shows the subtle kinds of problems that can arise when
software designed for a uniprocessor is adapted to a multiprocessor environment.
The SGI operating system protects the page table data structure with a single
lock, assuming that page allocation is infrequent. In a uniprocessor this does not
represent a performance problem. In a multiprocessor situation, it can become a
major performance bottleneck for some programs. Consider a program that uses
a large number of pages that are initialized at start-up, which UNIX does for stat-
ically allocated pages. Suppose the program is parallelized so that multiple pro-
cesses allocate the pages. Because page allocation requires the use of the page
table data structure, which is locked whenever it is in use, even an OS kernel that
allows multiple threads in the OS will be serialized if the processes all try to allo-
cate their pages at once (which is exactly what we might expect at initialization
time!).

This page table serialization eliminates parallelism in initialization and has
significant impact on overall parallel performance. This performance bottleneck
persists even under multiprogramming. For example, suppose we split the paral-
lel program apart into separate processes and run them, one process per proces-

758 Chapter 6 Multiprocessors and Thread-Level Parallelism
sor, so that there is no sharing between the processes. (This is exactly what one
user did, since he reasonably believed that the performance problem was due to
unintended sharing or interference in his application.) Unfortunately, the lock
still serializes all the processes—so even the multiprogramming performance is
poor. This pitfall indicates the kind of subtle but significant performance bugs
that can arise when software runs on multiprocessors. Like many other key soft-
ware components, the OS algorithms and data structures must be rethought in a
multiprocessor context. Placing locks on smaller portions of the page table effec-
tively eliminates the problem.

Pitfall: Neglecting data distribution in a distributed shared-memory multipro-
cessor.

Consider the Ocean benchmark running on a 32-processor DSM architecture. As
Figure 6.31 (page 699) shows, the miss rate is 3.1% for a 64KB cache. Because
the grid used for the calculation is allocated in a tiled fashion (as described on
page 658), 2.5% of the accesses are local capacity misses and 0.6% are remote
communication misses needed to access data at the boundary of each grid. As-
suming a 50-cycle local memory access cost and a 150-cycle remote memory ac-
cess cost, the average miss has a cost of 69.3 cycles.

If the grid was allocated in a straightforward fashion by round-robin allocation
of the pages, we could expect 1/32 of the misses to be local and the rest to be re-
mote, which would lead to local miss rate of and a re-
mote miss rate of 3.0%, for an average miss cost of 146.7 cycles. If the average
CPI without cache misses is 0.6, and 45% of the instructions are data references,
the version with tiled allocation is

This analysis only considers latency, and assumes that contention effects do not
lead to increased latency, which is very optimistic. Round-robin is also not the
worst possible data allocation: if the grid fit in a subset of the memory and was
allocated to only a subset of the nodes, contention for memory at those nodes
could easily lead to a difference in performance of more than a factor of 2.

For over a decade prophets have voiced the contention that the organization of a
single computer has reached its limits and that truly significant advances can be
made only by interconnection of a multiplicity of computers in such a manner as
to permit cooperative solution. …Demonstration is made of the continued validity
of the single processor approach. … [p. 483]

6.15 Concluding Remarks

3.1% 1 32⁄× 0.1%=

0.6 45% 3.1%× 146.7×+
0.6 45% 3.1%× 69.3×+
--- 0.6 2.05+

0.6 0.97+
--------------------- 2.65

1.57
--------- 1.69 times faster= = =

6.15 Concluding Remarks 759
Amdahl [1967]

The dream of building computers by simply aggregating processors has been
around since the earliest days of computing. Progress in building and using effec-
tive and efficient parallel processors, however, has been slow. This rate of
progress has been limited by difficult software problems as well as by a long pro-
cess of evolving architecture of multiprocessors to enhance usability and improve
efficiency. We have discussed many of the software challenges in this chapter, in-
cluding the difficulty of writing programs that obtain good speedup due to Am-
dahl’s law, dealing with long remote access or communication latencies, and
minimizing the impact of synchronization. The wide variety of different architec-
tural approaches and the limited success and short life of many of the architec-
tures to date has compounded the software difficulties. We discuss the history of
the development of these multiprocessors in section 6.16.

Despite this long and checkered past, progress in the last fifteen years leads to
some reasons to be optimistic about the future of parallel processing and multi-
processors. This optimism is based on a number of observations about this
progress and the long-term technology directions:

1. The use of parallel processing in some domains is beginning to be understood.
Probably first among these is the domain of scientific and engineering compu-
tation. This application domain has an almost limitless thirst for more compu-
tation. It also has many applications that have lots of natural parallelism.
Nonetheless, it has not been easy: programming parallel processors even for
these applications remains very challenging. Another important, and much
larger (in terms of market size), application area is large-scale data base and
transaction processing systems. This application domain also has extensive
natural parallelism available through parallel processing of independent re-
quests, but its needs for large-scale computation, as opposed to purely access
to large-scale storage systems, are less well understood. There are also several
contending architectural approaches that may be viable—a point we discuss
shortly.

2. It is now widely held that the most effective way to build a computer that of-
fers more performance than that achieved with a single-chip microprocessor
is by building a multiprocessor the or a cluster at leverages the significant
price/performance advantages of mass-produced microprocessors.

3. Multiprocessors are highly effective for multiprogrammed workloads, which
are often the dominant use of mainframes and large servers, as well as for file
servers or web servers, which are effectively a restricted type of parallel work-
load. In the future, such workloads may well constitute a large portion of the
market for higher-performance multiprocessors. When a workload wants to
share resources, such as file storage, or can efficiently timeshare a resource,
such as a large memory, a multiprocessor can be a very efficient host. Further-

760 Chapter 6 Multiprocessors and Thread-Level Parallelism
more, the OS software needed to efficiently execute multiprogrammed work-
loads is commonplace.

4. More recently, multiprocessors have proved very effective for certain inten-
sive commercial workloads, such as OLTP (assuming the system supports
enough I/O to be CPU-limited), DSS applications (where query optimization
is critical), and large-scale, web searching applications. For commercial appli-
cations with undemanding communication requirements, little need for very
large memories (typically used to cache databases), or limited demand for
computation, clusters are likely to be more cost-effective than multiproces-
sors. The commercial space is currently a mix of clusters of basic PCs, SMPs,
and clustered SMPs with different architectural styles appearing to hold some
lead in different application spaces.

5. On-chip multiprocessing appears to be growing in importance for two reasons.
First, in the embedded market where natural parallelism often exists, such ap-
proaches are an obvious alternative to faster, and possibly less silicon effi-
cient, processors. Second, diminishing returns in high-end microprocessor
design will encourage designers to pursue on-chip multiprocessing as a poten-
tially more cost-effective direction. We explore the challenges to this direction
at the end of this section.

Although there is reason to be optimistic about the growing importance of mul-
tiprocessors, many areas of parallel architecture remain unclear. Two particularly
important questions are, How will the largest-scale multiprocessors (the massively
parallel processors, or MPPs) be built? and What is the role of multiprocessing as
a long-term alternative to higher-performance uniprocessors?

The Future of MPP Architecture

Hennessy and Patterson should move MPPs to Chapter 11.

Jim Gray, when asked about coverage of MPPs
in the second edition of this book, alludes to
Chapter 11 bankruptcy protection in U.S. law (1995)

Small-scale multiprocessors built using snooping-bus schemes are extremely
cost-effective. Microprocessors traditionally have even included much of the log-
ic for cache coherence in the processor chip, and several allow the buses of two
or more processors to be directly connected—implementing a coherent bus with
no additional logic. With modern integration levels, multiple processors can be
placed on a board, on a single multi-chip module (MCM), or even within a single
die (as we saw in Section 6.13) resulting in a highly cost-effective multiproces-
sor. Recent microprocessors have been including support for DSM approaches,

6.15 Concluding Remarks 761
making it possible to connect small to moderate numbers of processors with little
overhead. It is premature to predict that such architectures will dominate the mid-
dle range of processor counts (16–64), but it appears at the present that this ap-
proach is the most attractive.

What is totally unclear at the present is how the very largest multiprocessors
will be constructed. The difficulties that designers face include the relatively
small market for very large multiprocessors (> 64 nodes and often > $5 million)
and the need for multiprocessors that scale to larger processor counts to be ex-
tremely cost-effective at the lower processor counts where most of the multipro-
cessors will be sold. At the present there appear to be four slightly different
alternatives for large-scale multiprocessors:

1. Large-scale multiprocessors that simply scale up naturally, using proprietary
interconnect and communications controller technology. This approach has
been followed in multiprocessors like the Cray T3E and the SGI Origin. There
are two primary difficulties with such designs. First, the multiprocessors are
not cost-effective at small scales, where the cost of scalability is not valued.
Second, these multiprocessors have programming models that are incompati-
ble, in varying degrees, with the mainstream of smaller and midrange multi-
processors.

2. Large-scale multiprocessors constructed from clusters of midrange multipro-
cessors with combinations of proprietary and standard technologies to inter-
connect such multiprocessors. The Wildfire design is just such a system. This
cluster approach gets its cost-effectiveness through the use of cost-optimized
building blocks. In some approaches, the basic architectural model (e.g., co-
herent shared memory) is extended. Many companies offer a high-end version
of such a machine including HP, Sun, and SGI. Due to the two-level nature of
the design, the programming model sometimes must be changed from shared
memory to message passing or to a different variation on shared memory,
among clusters. The migration and replication features in Wildfire offer a way
to minimize this disadvantage. This class of machines has made important in-
roads, especially in commercial applications.

3. Designing clustered multicomputers that use off-the-shelf uniprocessor nodes
and a custom interconnect. The advantage of such a design is the cost-effec-
tiveness of the standard uniprocessor node, which is often a repackaged work-
station; the disadvantage is that the programming model will probably need to
be message passing even at very small node counts. In some application envi-
ronments where little or no sharing occurs, this may be acceptable. In addition,
the cost of the interconnect, because it is custom, can be significant, making
the multiprocessor costly, especially at small node counts. The IBM SP-2 is
the best example of this approach today.

4. Designing a cluster using all off-the-shelf components, which promises the

762 Chapter 6 Multiprocessors and Thread-Level Parallelism
lowest cost. The leverage in this approach lies in the use of commodity tech-
nology everywhere: in the processors (PC or workstation nodes), in the inter-
connect (high-speed local area network technology, such as ATM or Gigabit
Ethernet), and in the software (standard operating systems and programming
languages). Of course, such multiprocessors will use message passing, and
communication is likely to have higher latency and lower bandwidth than in
the alternative designs. Like the previous class of designs, for applications that
do not need high bandwidth or low-latency communication, this approach can
be extremely cost-effective. Web servers, for example, may be a good match
to these multicomputers, as we saw for the Google cluster in Chapter 8.

Each of these approaches has advantages and disadvantages, and the impor-
tance of the shortcomings of any one approach are dependent on the application
class. In 2000 it is unclear which if any of these models will win out for larger-
scale multiprocessors, although the growth of the market for web servers has made
“racks of PCs” the dominant form at least by processor count. It is likely that the
current bifurcation by market and scale will continue for some time, although in
some area a hybridization of these ideas may emerge, given the similarity in sever-
al of the approaches.

The Future of Microprocessor Architecture

As we saw in Chapters 3 and 4, architects are using ever more complex tech-
niques to try to exploit more instruction-level parallelism. As we also saw in that
chapter, the prospects for finding ever-increasing amounts of instruction-level
parallelism in a manner that is efficient to exploit are somewhat limited. Like-
wise, there are increasingly difficult problems to be overcome in building memo-
ry hierarchies for high-performance processors. Of course, continued technology
improvements will allow us to continue to advance clock rate. But the use of
technology improvements that allow a faster gate speed alone is not sufficient to
maintain the incredible growth of performance that the industry has experienced
for over 15 years. Maintaining a rapid rate of performance growth will depend to
an increasing extent on exploiting the dramatic growth in effective silicon area,
which will continue to grow much faster than the basic speed of the process tech-
nology.

Unfortunately, for almost ten years, increases in performance have come at the
cost of ever-increasing inefficiencies in the use of silicon area, external connec-
tions, and power. This diminishing-returns phenomenon has only recently (as of
2001) appeared to have slowed the rate of performance growth. Whether or not
this is slowdown temporary is unclear. What is clear, is that we cannot sustain the
rapid rate of performance improvements without significant new innovations in
computer architecture.

Unlike the prophets quoted at the beginning of the chapter, your authors do not
believe that we are about to “hit a brick wall” in our attempts to improve single-

6.15 Concluding Remarks 763
processor performance. Instead, we may see a gradual slowdown in performance
growth, especially for integer performance, with the eventual growth being limited
primarily by improvements in the speed of the technology. When these limitation
will become serious is hard to say, but possibly as early as 2005 and likely by
2010. Even if such a slowdown were to occur, performance might well be expect-
ed to grow at the annual rate of 1.35 that we saw prior to 1985 at least until fun-
damental limitations in silicon are become serious in th 2015 time frame.

Furthermore, we do not want to rule out the possibility of a breakthrough in
uniprocessor design. In the early 1980s, many people predicted the end of growth
in uniprocessor performance, only to see the arrival of RISC technology and an
unprecedented 15-year growth in performance averaging 1.5 times per year!

With this in mind, we cautiously ask whether the long-term direction will be
to use increased silicon to build multiple processors on a single chip. Such a di-
rection is appealing from the architecture viewpoint—it offers a way to scale per-
formance without increasing hardware complexity. It also offers an approach to
easing some of the challenges in memory-system design, since a distributed
memory can be used to scale bandwidth while maintaining low latency for local
accesses. The challenge lies in software and in what architecture innovations may
be used to make the software easier.

In 2000, IBM announced the first commercial chips with two general-purpose
processors on a single die, the Power4 processor. Each Power4 contains two
Power3 microprocessors, a shared secondary cache, an interface to an off-chip
tertiary cache or main memory, and chip-to-chip communication system, which
allows a four processor cross-bar connected module to be built with no additional
logic. Using 4 Power4 chips and the appropriate DRAMS, an eight-processor
system can be integrated onto a board about 8 inches on a side. The board would
contain 700 million transistors, not including the third level cache or main mem-
ory, and would have a peak instruction execution rate of 32 billion instructions
per second!

Evolution Versus Revolution and the Challenges to Paradigm Shifts in the
Computer Industry

Figure 6.54 shows what we mean by the evolution-revolution spectrum of com-
puter architecture innovation. To the left are ideas that are invisible to the user
(presumably excepting better cost, better performance, or both) and are at the
evolutionary end of the spectrum. At the other end are revolutionary architecture
ideas. These are the ideas that require new applications from programmers who
must learn new programming languages and models of computation, and must in-
vent new data structures and algorithms.

Revolutionary ideas are easier to get excited about than evolutionary ideas, but
to be adopted they must have a much higher payoff. Caches are an example of an
evolutionary improvement. Within 5 years after the first publication about caches,
almost every computer company was designing a computer with a cache. The

764 Chapter 6 Multiprocessors and Thread-Level Parallelism
RISC ideas were nearer to the middle of the spectrum, for it took more than eight
years for most companies to have a RISC product and more than fifteen year for
the last hold out to announce their product. Most multiprocessors have tended to
the revolutionary end of the spectrum, with the largest-scale multiprocessors
(MPPs) being more revolutionary than others. Most programs written to use mul-
tiprocessors as parallel engines have been written especially for that class of mul-
tiprocessors, if not for the specific architecture.

The challenge for both hardware and software designers that would propose
that multiprocessors and parallel processing become the norm, rather than the ex-
ception, is the disruption to the established base of programs. There are two possi-
ble ways this paradigm shift could be facilitated: if parallel processing offers the
only alternative to enhance performance, and if advances in hardware and soft-
ware technology can construct a gentle ramp that allows the movement to parallel
processing, at least with small numbers of processors, to be more evolutionary.

FIGURE 6.54 The evolution-revolution spectrum of computer architecture. The sec-
ond through fourth columns are distinguished from the final column in that applications and
operating systems can be ported from other computers rather than written from scratch. For
example, RISC is listed in the middle of the spectrum because user compatibility is only at
the level of high-level languages, while microprogramming allows binary compatibility, and la-
tency-oriented MIMDs require changes to algorithms and extending HLLs. Timeshared MIMD
means MIMDs justified by running many independent programs at once, while latency MIMD
means MIMDs intended to run a single program faster.

SISD vs.
Intel Paragon

Algorithms,
extended HLL,
programs

High-level
language

Sun 3 vs. Sun 4

Full instruction set
(same data
representation)

Assembly

MIPS 1000
vs.
DEC 3100

Byte order
(Big vs. Little
Endian)

Upward
binary

Intel 8086 vs.
80286 vs.
80386 vs.
80486

Some new
instructions

Binary

VAX-11/780
vs. 8800

Microcode,
TLB, caches,
pipelining,
MIMD

User
compatibility

Example

Difference

New programs,
extended or
new HLL, new
algorithms

RevolutionaryEvolutionary

S
pe

ci
al

 p
ur

po
se

La
te

nc
y

M
IM

D

M
as

si
ve

 S
IM

D

R
IS

C

V
ec

to
r

in
st

ru
ct

io
ns

V
irt

ua
l m

em
or

y

T
im

es
ha

re
d

M
IM

D
C

ac
he

P
ip

el
in

in
g

M
ic

ro
pr

og
ra

m
m

in
g

6.16 Historical Perspective and References 765
There is a tremendous amount of history in parallel processing; in this section we
divide our discussion by both time period and architecture. We start with the
SIMD approach and the Illiac IV. We then turn to a short discussion of some oth-
er early experimental multiprocessors and progress to a discussion of some of the
great debates in parallel processing. Next we discuss the historical roots of the
present multiprocessors and conclude by discussing recent advances.

SIMD Computers: Several Attempts, No Lasting Successes

The cost of a general multiprocessor is, however, very high and further design op-
tions were considered which would decrease the cost without seriously degrading
the power or efficiency of the system. The options consist of recentralizing one of
the three major components.... Centralizing the [control unit] gives rise to the
basic organization of [an]... array processor such as the Illiac IV.

Bouknight et al. [1972]

The SIMD model was one of the earliest models of parallel computing, dating
back to the first large-scale multiprocessor, the Illiac IV. The key idea in that mul-
tiprocessor, as in more recent SIMD multiprocessors, is to have a single instruc-
tion that operates on many data items at once, using many functional units.

The earliest ideas on SIMD-style computers are from Unger [1958] and Slot-
nick, Borck, and McReynolds [1962]. Slotnick’s Solomon design formed the ba-
sis of the Illiac IV, perhaps the most infamous of the supercomputer projects.
Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the
planned multiprocessor. Actual performance was at best 15 MFLOPS, versus ini-
tial predictions of 1000 MFLOPS for the full system [Hord 1982]. Delivered to
NASA Ames Research in 1972, the computer took three more years of engineer-
ing before it was usable. These events slowed investigation of SIMD, with Danny
Hillis [1985] resuscitating this style in the Connection Machine, which had
65,636 1-bit processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructions.
There is an SISD host computer to perform operations such as branches and ad-
dress calculations that do not need parallel operation. The SIMD instructions are
broadcast to all the execution units, each of which has its own set of registers. For
flexibility, individual execution units can be disabled during a SIMD instruction.

6.16 Historical Perspective and References

766 Chapter 6 Multiprocessors and Thread-Level Parallelism
In addition, massively parallel SIMD multiprocessors rely on interconnection or
communication networks to exchange data between processing elements.

SIMD works best in dealing with arrays in for-loops. Hence, to have the op-
portunity for massive parallelism in SIMD there must be massive amounts of da-
ta, or data parallelism. SIMD is at its weakest in case statements, where each
execution unit must perform a different operation on its data, depending on what
data it has. The execution units with the wrong data are disabled so that the
proper units can continue. Such situations essentially run at 1/nth performance,
where n is the number of cases.

The basic trade-off in SIMD multiprocessors is performance of a processor
versus number of processors. Recent multiprocessors emphasize a large degree of
parallelism over performance of the individual processors. The Connection Mul-
tiprocessor 2, for example, offered 65,536 single bit-wide processors, while the
Illiac IV had 64 64-bit processors.

After being resurrected in the 1980s, first by Thinking Machines and then by
MasPar, the SIMD model has once again been put to bed as a general-purpose
multiprocessor architecture, for two main reasons. First, it is too inflexible. A
number of important problems cannot use such a style of multiprocessor, and the
architecture does not scale down in a competitive fashion; that is, small-scale
SIMD multiprocessors often have worse cost/performance compared with that of
the alternatives. Second, SIMD cannot take advantage of the tremendous perfor-
mance and cost advantages of microprocessor technology. Instead of leveraging
this low-cost technology, designers of SIMD multiprocessors must build custom
processors for their multiprocessors.

Although SIMD computers have departed from the scene as general-purpose
alternatives, this style of architecture will continue to have a role in special-
purpose designs. Many special-purpose tasks are highly data parallel and require
a limited set of functional units. Thus designers can build in support for certain
operations, as well as hardwire interconnection paths among functional units.
Such organizations are often called array processors, and they are useful for
tasks like image and signal processing.

Other Early Experiments

It is difficult to distinguish the first MIMD multiprocessor. Surprisingly, the first
computer from the Eckert-Mauchly Corporation, for example, had duplicate units
to improve availability. Holland [1959] gave early arguments for multiple proces-
sors.

Two of the best-documented multiprocessor projects were undertaken in the
1970s at Carnegie Mellon University. The first of these was C.mmp [Wulf and
Bell 1972; Wulf and Harbison 1978], which consisted of 16 PDP-11s connected
by a crossbar switch to 16 memory units. It was among the first multiprocessors
with more than a few processors, and it had a shared-memory programming mod-
el. Much of the focus of the research in the C.mmp project was on software, espe-

6.16 Historical Perspective and References 767
cially in the OS area. A later multiprocessor, Cm* [Swan et al. 1977], was a
cluster-based multiprocessor with a distributed memory and a nonuniform access
time. The absence of caches and a long remote access latency made data place-
ment critical. This multiprocessor and a number of application experiments are
well described by Gehringer, Siewiorek, and Segall [1987]. Many of the ideas in
these multiprocessors would be reused in the 1980s when the microprocessor
made it much cheaper to build multiprocessors.

Great Debates in Parallel Processing

The quotes at the beginning of this chapter give the classic arguments for aban-
doning the current form of computing, and Amdahl [1967] gave the classic reply
in support of continued focus on the IBM 370 architecture. Arguments for the
advantages of parallel execution can be traced back to the 19th century [Mena-
brea 1842]! Yet the effectiveness of the multiprocessor for reducing latency of in-
dividual important programs is still being explored. Aside from these debates
about the advantages and limitations of parallelism, several hot debates have fo-
cused on how to build multiprocessors.

Predictions of the Future
It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions for
1995. We included these predictions in the first edition of the book, when the out-
come was completely unclear. We discuss them in this section, together with an
assessment of the accuracy of the prediction.

The first is that a computer capable of sustaining a teraFLOPS—one million
MFLOPS—will be constructed by 1995, either using a multicomputer with 4K to
32K nodes or a Connection Multiprocessor with several million processing ele-
ments [Bell 1989]. To put this prediction in perspective, each year the Gordon
Bell Prize acknowledges advances in parallelism, including the fastest real pro-
gram (highest MFLOPS). In 1989 the winner used an eight-processor Cray Y-MP
to run at 1680 MFLOPS. On the basis of these numbers, multiprocessors and pro-
grams would have to have improved by a factor of 3.6 each year for the fastest
program to achieve 1 TFLOPS in 1995. In 1999, the first Gordon Bell prize win-
ner crossed the 1 TF bar, using a 5,832 processor IBM RS/6000 SST system de-
signed specially for Livermore Laboratories, they achieved 1.18 Teraflops on a
shock-wave simulation. This ratio represents a year-to-year improvement of 1.93,
which is still quite impressive.

What has become recognized since 1989 is that although we may have the
technology to build a teraFLOPS multiprocessor, it is not clear that the machine
is cost-effective, except perhaps for a few very specialized and critically impor-
tant application related to national security. Your authors estimated in 1990 that to
achieve 1 TF would require a machine with about 5,000 processors and would
cost about $100 million. The 5,832 processor IBM system at Livermore cost

768 Chapter 6 Multiprocessors and Thread-Level Parallelism
$110 million. As might be expected, improvements in the performance of indi-
vidual microprocessors both in cost and performance directly affect the cost and
performance of large-scale multiprocessors, but a 5000 processor system will
cost more than 5000 times the price of a desktop system using the same proces-
sor.

The second Bell prediction concerned the number of data streams in super-
computers shipped in 1995. Danny Hillis believed that although supercomputers
with a small number of data streams may be the best sellers, the biggest multipro-
cessors will be multiprocessors with many data streams, and these will perform
the bulk of the computations. Bell bet Hillis that in the last quarter of calendar
year 1995 more sustained MFLOPS will be shipped in multiprocessors using few
data streams (≤100) rather than many data streams (≥1000). This bet concerned
only supercomputers, defined as multiprocessors costing more than $1 million
and used for scientific applications. Sustained MFLOPS was defined for this bet
as the number of floating-point operations per month, so availability of multipro-
cessors affects their rating.

In 1989, when this bet was made, it was totally unclear who would win. In
1995, a survey of the current publicly known supercomputers showed only six
multiprocessors in existence in the world with more than 1000 data streams, so
Bell’s prediction was a clear winner. In fact, in 1995, much smaller microproces-
sor-based multiprocessors (≤ 20 processors) were becoming dominant. 1n 1995,
a survey of the 500 highest-performance multiprocessors in use (based on Lin-
pack ratings), called the Top 500, showed that the largest number of multiproces-
sors were bus-based shared-memory multiprocessors! By 2000, the picture had
become less clear: the top four vendors were IBM (144 SP systems), Sun (121
Enterprise systems), SGI (62 Origin systems), and Cray (54 T3E systems). Al-
though IBM holds the largest number of spots, almost all the other systems on the
TOP 500 list are shared-memory systems or clusters of such systems.

More Recent Advances and Developments

With the primary exception of the parallel vector multiprocessors (see Appendix
B), all other recent MIMD computers have been built from off-the-shelf micro-
processors using a bus and logically central memory or an interconnection net-
work and a distributed memory. A number of experimental multiprocessors built
in the 1980s further refined and enhanced the concepts that form the basis for
many of today’s multiprocessors.

The Development of Bus-Based Coherent Multiprocessors
Although very large mainframes were built with multiple processors in the
1970s, multiprocessors did not become highly successful until the 1980s. Bell
[1985] suggests the key was that the smaller size of the microprocessor allowed
the memory bus to replace the interconnection network hardware, and that porta-

6.16 Historical Perspective and References 769
ble operating systems meant that multiprocessor projects no longer required the
invention of a new operating system. In this paper, Bell defines the terms multi-
processor and multicomputer and sets the stage for two different approaches to
building larger-scale multiprocessors.

The first bus-based multiprocessor with snooping caches was the Synapse
N+1 described by Frank [1984]. Goodman [1983] wrote one of the first papers to
describe snooping caches. The late 1980s saw the introduction of many com-
mercial bus-based, snooping-cache architectures, including the Silicon Graphics
4D/240 [Baskett et al. 1988], the Encore Multimax [Wilson 1987], and the Se-
quent Symmetry [Lovett and Thakkar 1988]. The mid 1980s saw an explosion in
the development of alternative coherence protocols, and Archibald and Baer
[1986] provide a good survey and analysis, as well as references to the original
papers. Figure 6.55 summarizes several snooping cache-coherence protocols and
shows some multiprocessors that have used or are using that protocol.

The early 1990s saw the beginning of an expansion of such systems with the
use of very wide, high speed buses (the SGI Challenge system used a 256-bit,
packet-oriented bus supporting up to 8 processor boards and 32 processors) and
later, the use of multiple buses and crossbar interconnects, e.g. in the SUN
SPARCCenter and Enterprise systems (Charlesworth [1998] discusses the inter-
connect architecture of these multiprocessors). In 2001, the Sun Enterprise serv-

Name Protocol
type

Memory-write policy Unique feature Multiprocessors using

Write
Once

Write
invalidate

Write back after first write First snooping protocol
described in literature

Synapse
N+1

Write
invalidate

Write back Explicit state where
memory is the owner

Synapse multiprocessors;
first cache-coherent multi-
processors available

Berkeley
(MOESI)

Write
invalidate

Write back Owned shared state Berkeley SPUR multipro-
cessor; SUN Enterprise
servers

Illinois
(MESI)

Write
invalidate

Write back Clean private state; can
supply data from any
cache with a clean copy

SGI Power and Challenge
series

“Firefly” Write
broadcast

Write back when private,
write through when shared

Memory updated on
broadcast

No current multiproces-
sors; SPARCCenter 2000
closest.

FIGURE 6.55 Five snooping protocols summarized. Archibald and Baer [1986] use these names to describe the five
protocols, and Eggers [1989] summarizes the similarities and differences as shown in this figure. The Firefly protocol was
named for the experimental DEC Firefly multiprocessor, in which it appeared. The alternative names for protocols are based
on the states they support: M=Modified, E=Exclusive (shared clean), S=Shared, I=Invalid, O=Owner (shared dirty).

770 Chapter 6 Multiprocessors and Thread-Level Parallelism
ers represent the primary example of large-scale (> 16 processors), symmetric
multiprocessors in active use.

Toward Large-Scale Multiprocessors
In the effort to build large-scale multiprocessors, two different directions were
explored: message passing multicomputers and scalable shared-memory multi-
processors. Although there had been many attempts to build mesh and hyper-
cube-connected multiprocessors, one of the first multiprocessors to successfully
bring together all the pieces was the Cosmic Cube built at Caltech [Seitz 1985]. It
introduced important advances in routing and interconnect technology and sub-
stantially reduced the cost of the interconnect, which helped make the multicom-
puter viable. The Intel iPSC 860, a hypercube-connected collection of i860s, was
based on these ideas. More recent multiprocessors, such as the Intel Paragon,
have used networks with lower dimensionality and higher individual links. The
Paragon also employed a separate i860 as a communications controller in each
node, although a number of users have found it better to use both i860 processors
for computation as well as communication. The Thinking Multiprocessors CM-5
made use of off-the-shelf microprocessors and a fat tree interconnect (see Chap-
ter 7). It provided user-level access to the communication channel, thus signifi-
cantly improving communication latency. In 1995, these two multiprocessors
represent the state of the art in message-passing multicomputers.

Early attempts at building a scalable shared-memory multiprocessor include
the IBM RP3 [Pfister et al. 1985], the NYU Ultracomputer [Schwartz 1980;
Elder et al. 1985], the University of Illinois Cedar project [Gajksi et al. 1983],
and the BBN Butterfly and Monarch [BBN Laboratories 1986; Rettberg et al.
1990]. These multiprocessors all provided variations on a nonuniform distribut-
ed-memory model (and hence are distributed shared memory or DSM multipro-
cessors), but did not support cache coherence, which substantially complicated
programming. The RP3 and Ultracomputer projects both explored new ideas in
synchronization (fetch-and-operate) as well as the idea of combining references
in the network. In all four multiprocessors, the interconnect networks turned out
to be more costly than the processing nodes, raising problems for smaller ver-
sions of the multiprocessor. The Cray T3D/E (see Arpaci et. al. [1995] for an
evaluation of the T3D and Scott [1996] for a description of the T3E enhance-
ments) builds on these ideas, using a noncoherent shared address space but build-
ing on the advances in interconnect technology developed in the multicomputer
domain (see Scott and Thorson [1996]).

Extending the shared-memory model with scalable cache coherence was done
by combining a number of ideas. Directory-based techniques for cache coherence
were actually known before snooping cache techniques. In fact, the first cache-
coherence protocols actually used directories, as described by Tang [1976] and
implemented in the IBM 3081. Censier and Feautrier [1978] described a directo-
ry coherence scheme with tags in memory. The idea of distributing directories

6.16 Historical Perspective and References 771
with the memories to obtain a scalable implementation of cache coherence was
first described by Agarwal et al. [1988] and served as the basis for the Stanford
DASH multiprocessor (see Lenoski et al. [1990, 1992]), which was the first oper-
ational cache-coherent DSM multiprocessor. DASH was a “plump” node cc-
NUMA machine that used 4-processor SMPs as its nodes; interconnecting them
in a style similar to that of Wildfire but using a more scalable 2-dimension al grid
rather than a crossbar for the interconnect.

The Kendall Square Research KSR-1 [Burkhardt et al. 1992] was the first
commercial implementation of scalable coherent shared memory. It extended the
basic DSM approach to implement a concept called COMA (cache-only memory
architecture), which makes the main memory a cache. Like the Wildfire CMR
scheme, in the KSR-1 memory blocks could be replicated in the main memories
of each node with hardware support to handle the additional coherence require-
ments for these replicated blocks. (The KSR-1 was not strictly a pure COMA be-
cause it did not migrate the home location of a data item, but always kept a copy
at home. Essentially, it implemented only replication.)

In parallel, researchers at the Swedish Institute for Computer Science [Hager-
sten et. al. 1992.] developed a concept called DDM (for Data Diffusion Machine)
which is a true COMA, since all memory operates as a cache, and a memory
block does not exist in a predefined node. The absence of a designated home for a
memory block significantly complicates the protocols, since it means that there is
no static look-up scheme to find the location and status of a block. Furthermore, a
true COMA must contend with the problem of finding a place to move a memory
block when it conflicts with another block for the same location in memory
(which happens because the memory is a cache with a limited associativity). In
the event that the displaced block is the last copy of a memory block, which in it-
self may be difficult to know precisely, the displaced block must be migrated to
some other memory location, since it cannot be destroyed (as it is the only copy
of the data). This migration process can be very complex requiring a potentially
unbounded number of memory blocks to be displaced!

Although no pure COMA machines were ever built, the COMA idea has in-
spired many variations. COMA-F, or FLAT COMA was proposed by Stenström,
Joe, and Gupta in 1992 as a simpler alternative to the original COMA proposals.
By allocating a home location COMA-F eliminated the need for multilevel hier-
archical look-ups and possible displacement misses, since the block status could
always be looked up in the home and the home location always had space for the
block. In 1995, Saulsbury et. al. proposed Simple COMA (S-COMA), which im-
plemented COMA using the virtual memory mechanisms for replication and mi-
gration, rather than hardware support at the cache-level. Reactive NUMA [Falsafi
and Wood 1997] is a proposal to develop a protocol that merges the best of CC-
NUMA protocols with S-COMA protocols. At the same time, several groups (see
Chandra et. al. 1994 and Soundararajan 1996] explored the use of page-level rep-
lication and migration, both to assist in reducing remote misses and as an alterna-
tive to other schemes such as strict COMA or remote access caches. Wildfire

772 Chapter 6 Multiprocessors and Thread-Level Parallelism
builds on many of these ideas to create a blend of hardware and software mecha-
nisms.

The Convex Exemplar implemented scalable coherent shared memory using a
two-level architecture: at the lowest level eight-processor modules are built using
a crossbar. A ring can then connect up to 32 of these modules, for a total of 256
processors (see Thekkath et. al. [1997] for an evaluation). Lenoski and Laudon
[1997] describe the SGI Origin, which was first delivered in 1996 and is closely
based on the original Stanford DASH machine, though including a number of in-
novations for scalability and ease of programming. Origin uses a bit-vector for
the directory structure, which is either 16 or 32 bits long. Each bit represents a
node, which consists of two processors; a coarse bit vector representation allows
each bit to represent up to 8 nodes for a total of 1,024 processors. As Galles
[1996] describes, a high performance fat hypercube is used for the global inter-
connect. Hristea et. al [1997] is a thorough evaluation of the performance of the
Origin memory system.

More recent research has focused on enhanced scalability for cache-coherent
designs, flexible and adaptable techniques for implementing coherency, and ap-
proaches that merge hardware and software schemes. The MIT Alewife machine
[Agarwal et. al. 1995] incorporated several innovations including processor sup-
port for multithreading and the use of cooperative mechanisms for handling co-
herence. The Stanford FLASH multiprocessor [Kuskin et. al. 1994, Gibson et. al.
2000] makes use of a programmable processor that implements the coherence
scheme, as well as alternative schemes for message-passing, synchronization
primitives, or performance instrumentation. Reinhadt and his colleagues at the
University of Wisconsin [1994] explored an alternative for a combination of user
and-base software and hardware support for coherent shared-memory. The Star-T
[Nikhil et. al 1992] and Star-T Voyager [Ang, et. al. 1998] projects at MIT ex-
plored the use of multithreading and combining customized and commodity ap-
proaches to building scalable multiprocessors.

Developments in Synchronization and Consistency Models
A wide variety of synchronization primitives have been proposed for shared-
memory multiprocessors. Mellor-Crummey and Scott [1991] provide an over-
view of the issues as well as efficient implementations of important primitives,
such as locks and barriers. An extensive bibliography supplies references to other
important contributions, including developments in spin locks, queuing locks,
and barriers.

Lamport [1979] introduced the concept of sequential consistency and what
correct execution of parallel programs means. Dubois, Scheurich, and Briggs
[1988] introduced the idea of weak ordering (originally in 1986). In 1990, Adve
and Hill provided a better definition of weak ordering and also defined the con-
cept of data-race-free; at the same conference, Gharachorloo [1990] and his col-
leagues introduced release consistency and provided the first data on the

6.16 Historical Perspective and References 773
performance of relaxed consistency models. More relaxed consistency models
have been widely adopted in microprocessor architectures, including the Sun
SPARC, Alpha, and IA-64. Adve and Gharachorloo [1996] is an excellent tutorial
on memory consistency and the differences among these models.

Other References

The concept of using virtual memory to implement a shared address space among
distinct machines was pioneered in Kai Li’s Ivy system in 1988. There have been
subsequent papers exploring both hardware support issues, software mecha-
nisms, and programming issues. Amza et. al. [1996] describe a system built on
workstations using a new consistency model, L. Kontothanassis, et. al. [1997] de-
scribe a software shared memory scheme using remote writes, and Erlichson et.
al. [1996] describe the use of shared virtual memory to build large-scale multi-
processors using SMPs as nodes.

There is an almost unbounded amount of information on multiprocessors and
multicomputers: Conferences, journal papers, and even books seem to appear
faster than any single person can absorb the ideas. No doubt many of these papers
will go unnoticed—not unlike the past. Most of the major architecture conferenc-
es contain papers on multiprocessors. An annual conference, Supercomputing XY
(where X and Y are the last two digits of the year), brings together users, archi-
tects, software developers, and vendors and publishes the proceedings in book,
CD-ROM, and online (see www.scXY.org) form. Two major journals, Journal of
Parallel and Distributed Computing and the IEEE Transactions on Parallel and
Distributed Systems, contain papers on all aspects of parallel processing. Several
books focusing on parallel processing are included in the following references
with Culler, Singh, and Gupta [1999] being the most recent, large-scale effort.
For years, Eugene Miya of NASA Ames has collected an online bibliography of
parallel-processing papers. The bibliography, which now contains that contains
more than 35,000 entries, is available online at:

http://liinwww.ira.uka.de/bibliography/Parallel/Eugene/index.html.
In addition to documenting the discovery of concepts now used in practice, these
references also provide descriptions of many ideas that have been explored and
found wanting, as well as ideas whose time has just not yet come.

Multithreading and Simultaneous Multithreading

The concept of multithreading dates back to one of the earliest transistorized
computers, the TX-2. TX-2 was one of the earliest transistorized computers and
is also famous for being the computer on which Ivan Sutherland created Sketch-
pad, the first computer graphics system. TX-2 was built at MIT’s Lincoln Labora-
tory and became operational in 1959. It used multiple threads to support fast
context switching to handle I/O functions. Clark [1957] describes the basic archi-
tecture and Forgie [1957] describes the I/O architecture. Multithreading was also

774 Chapter 6 Multiprocessors and Thread-Level Parallelism
used in the CDC 6600, where a fine-grained multithreading scheme with inter-
leaved scheduling among threads was used as the architecture of the I/O proces-
sors. The HEP processor, a pipelined multiprocessor, designed by Denelcor. and
shipped in 1982 used fine-grained multithreading to hide the pipeline latency as
well as to hide the latency to a large memory shared among all the processors.
Because the HEP had no cache, this hiding of memory latency was critical. Bur-
ton Smith, one the primary architects, describes the HEP architecture in a 1978
paper and Jordan [1983] published a performance evaluation. The Tera processor
extends the multithreading ideas and is described by Alverson et. al. in a 1992 pa-
per.

In the late 1980s and early 1990s, researchers explored the concept of coarse-
grained (also called block multithreading), as a way to tolerate latency, especially
in multiprocessor environments. The SPARCLE processor in the Alewife system
used such a scheme, switching threads whenever a high latency exceptional
event, such as a long cache miss, occurred. Agarwal et. al. describe SPARCLE in
a 1993 paper. The IBM Pulsar processor uses similar ideas.

By the early 1990s, several research groups had arrived at two key insights.
First, they realized that fine-grained multithreading was needed to get the maxi-
mum performance benefit, since in a coarse-grained approach, the overhead of
thread switching and thread start-up (e.g., filling the pipeline from the new
thread) negated much of the performance advantage (see Laudon et. al. 1994).
Second, several groups realized that to effectively use large numbers of function-
al units would require both ILP and thread-level parallelism (TLP). These in-
sights led to several architectures that used combinations of multithreading and
multiple issue. Wolfe and Shen [1991] describe an architecture called XIMD that
statically interleaves threads scheduled for a VLIW processor. Mirata et. al.
(1992) describe a proposed processor for media use that combines a static super-
scalar pipeline with support for multithreading; they report speed-ups from com-
bining both forms of parallelism. Keckler and Dally [1992] combine static
scheduling of ILP nd dynamic scheduling of threads combing the two forms for a
processor with multiple functional units. The question of how to balance the allo-
cation of functional units between ILP and TLP and how to schedule the two
forms of parallelism remained open.

When it became clear in the middle of the 1990s that dynamically-scheduled
superscalars would be delivered shortly, several research groups proposed using
the dynamic scheduling capability to mix instructions from several threads on the
fly. Yamamoto, Searing, Talcott, Wood, and Nemirosky [1994] appears to be the
first such proposal, though the simulation results for their multithreaded super-
scalar architecture use simplistic assumptions. This work was quickly followed
by Tullsen, Eggers, and Levy [1995], which was the first realistic simulation as-
sessment and coined the name simultaneous multithreading. Subsequent work by
the same group together with industrial coauthors addressed many of the open
questions about SMT. For example, Tullsen et. al. [1996] addressed questions
about the challenges of scheduling ILP vs. TLP. Lo et. al. [1997] is an extensive

6.16 Historical Perspective and References 775
discussion of the SMT concept and an evaluation of its performance potential,
and Lo et. al. [1998] evaluates database performance on an SMT processor.

References

A. AGARWAL, A., KUBIATOWICZ, J., KRANZ, D., LIM, B.-H, YEUNG, D., D'SOUZA, G. AND M. PAR-

KIN [1993], “Sparcle: An evolutionary processor design for large-scale multiprocessors,” IEEE Mi-
cro 13 (June), pp. 48--61.

ALVERSON, G. ALVERSON, R., CALLAHAN, D. , KOBLENZ, B., PORTERFIELD, A. AND B. SMITH

[1992]. “Exploiting heterogeneous parallelism on a multithreaded multiprocessor,” Proc. 1992 In-
ternational Conf. on Supercomputing (November) , pp. 188--197.

ADVE, S. V. AND K. GHARACHORLOO[1996]. “Shared Memory Consistency Models: A Tutorial,”
IEEE Computer 29:12 (December), 66–76.

ADVE, S. V. AND M. D. HILL [1990]. “Weak ordering—A new definition,” Proc. 17th Int’l Sympo-
sium on Computer Architecture (June), Seattle, 2–14.

AGARWAL, A., BIANCHINI, R., CHAIKEN, D., JOHNSON, K., AND D. KRANZ [1995].“THE MIT ALE-

WIFE MACHINE: ARCHITECTURE AND PERFORMANCE”, INTERNATIONAL SYMPOSIUM ON COM-

PUTER ARCHITECTURE, DENVER, JUNE, 2–13

AGARWAL, A., J. L. HENNESSY, R. SIMONI, AND M.A. HOROWITZ [1988]. “An evaluation of direc-
tory schemes for cache coherence,” Proc. 15th Int’l Symposium on Computer Architecture
(June), 280–289.

ALMASI, G. S. AND A. GOTTLIEB [1989]. Highly Parallel Computing, Benjamin/Cummings, Red-
wood City, Calif.

AMDAHL, G. M. [1967]. “Validity of the single processor approach to achieving large scale
computing capabilities,” Proc. AFIPS Spring Joint Computer Conf. 30, Atlantic City, N.J. (April),
483–485.

AMZA C., COX, A. L., DWARKADAS, S., KELEHER, P., LU, H., RAJAMONY, R., YU, W. AND W.
ZWAENEPOEL.[1996]. “TREADMARKS: SHARED MEMORY COMPUTING ON NETWORKS OF WORKSTA-

TIONS”. IEEE COMPUTER, 29(2) (FEBRUARY), 18–28.

ANG, B., CHIOU, D., ROSENBAND, D., EHRLICH, M., AND RUDOLPH, L., AND ARVIND [1998].
“START-VOYAGER: A FLEXIBLE PLATFORM FOR EXPLORING SCALABLE SMP ISSUES”, PROCEED-

INGS OF SC'98, ORLANDO, FLORIDA, NOV.

ARCHIBALD, J. AND J.-L. BAER [1986]. “Cache coherence protocols: Evaluation using a multiproces-
sor simulation model,” ACM Trans. on Computer Systems 4:4 (November), 273–298.

ARPACI, R.H., CULLER, D.E., KRISHNAMURTHY, A., STEINBERG, S.G. AND K. YELICK [1995].”Em-
pirical evaluation of the CRAY-T3D: A compiler perspective,” Proceedings of the International
Symposium on Computer Architecture, Denver (June), pages 320-331.

BAER J-L. AND W-H. WANG [1988]. “On the Inclusion Properties for Multi-Level Cache Hierar-
chies.” In Proceedings of the 15th Annual International Symposium on Computer Architecture, Ho-
nolulu, June, 73--80.

BARROSO, L.A., GHARACHORLOO, K. AND E. BUGNION [1998]. “Memory System Characterization of
Commercial Workloads,” Proceedings 25th International Symposium on Computer Architecture,
Barcelona (July), 3-14.

BASKETT, F., T. JERMOLUK, AND D. SOLOMON [1988]. “The 4D-MP graphics superworkstation:
Computing + graphics = 40 MIPS + 40 MFLOPS and 10,000 lighted polygons per second,” Proc.
COMPCON Spring, San Francisco, 468–471.

BBN LABORATORIES [1986]. “Butterfly parallel processor overview,” Tech. Rep. 6148, BBN Labo-

776 Chapter 6 Multiprocessors and Thread-Level Parallelism
ratories, Cambridge, Mass.

BELL, C. G. [1985]. “Multis: A new class of multiprocessor computers,” Science 228 (April 26), 462–467.

BELL, C. G. [1989]. “The future of high performance computers in science and engineering,” Comm.
ACM 32:9 (September), 1091–1101.

BOUKNIGHT, W. J, S. A. DENEBERG, D. E. MCINTYRE, J. M. RANDALL, A. H. SAMEH, AND D. L.
SLOTNICK [1972]. “The Illiac IV system,” Proc. IEEE 60:4, 369–379. Also appears in D. P.
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples, McGraw-
Hill, New York (1982), 306–316.

BURKHARDT, H. III, S. FRANK, B. KNOBE, AND J. ROTHNIE [1992]. “Overview of the KSR1 computer
system,” Tech. Rep. KSR-TR-9202001, Kendall Square Research, Boston (February).

CENSIER, L. AND P. FEAUTRIER [1978]. “A new solution to coherence problems in multicache sys-
tems,” IEEE Trans. on Computers C-27:12 (December), 1112–1118.

CHANDRA, R., DEVINE, S., VERGHESE, B., GUPTA, A. AND MENDEL ROSENBLUM [1994]. “Schedul-
ing and Page Migration for Multiprocessor Compute Servers.” In Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-VI).
ACM,Santa Clara, CA. October, 12-24. .

CHARLESWORTH, A [1998]. “STARFIRE: EXTENDING THE SMP ENVELOPE,” IEEE MICRO 18:1 (JAN/
FEB), P 39-49.

CLARK. W.A. [1957]. “The Lincoln TX-2 Computer Development.” Proceedings of the Western Joint
Computer Conference (February), Institute of Radio Engineers, Los Angeles, 143-145.

.CULLER, D. E., SINGH, J. P., AND A. GUPTA [1999]. Parallel Computer Architecture A Hardware/
Software Approach. Morgan Kaufmann Publishers,

 1 EDITION, 1999.DUBOIS, M., C. SCHEURICH, AND F. BRIGGS [1988]. “Synchronization, coherence,
and event ordering,” IEEE Computer 9-21 (February).

EGGERS, S. [1989]. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors, Ph.D.
Thesis, Univ. of California, Berkeley. Computer Science Division Tech. Rep. UCB/CSD 89/501
(April).

ELDER, J., A. GOTTLIEB, C. K. KRUSKAL, K. P. MCAULIFFE, L. RANDOLPH, M. SNIR, P. TELLER, AND

J. WILSON [1985]. “Issues related to MIMD shared-memory computers: The NYU Ultracomputer
approach,” Proc. 12th Int’l Symposium on Computer Architecture (June), Boston, 126–135.

ERLICHSON, A., NUCKOLLS, N., CHESSON, G. AND J. L. HENNESSY [1996]. “SoftFLASH: Analyzing the
performance of clustered distributed virtual shared memory.” In Proc. of the 7th Symp.on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VII), pages 210--220, October.

FLYNN, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (December), 1901–1909.

FALSAFI , B. ANDWOOD, D.A. [1997]. “Reactive NUMA: a design for unifying S-COMA and CC-
NUMA,” Proceedings of the 24th international symposium on Computer architecture, June, Denver,
CO, 229-240.

FORGIE, J.W [1957]. "The Lincoln TX-2 Input-Output System," Proceedings of the Western Joint
Computer Conference (February), Institute of Radio Engineers, Los Angeles, 156-160.

FRANK, S. J. [1984] “TIGHTLY COUPLED MULTIPROCESSOR SYSTEMS SPEED MEMORY ACCESS TIME,”
ELECTRONICS 57:1 (JANUARY), 164–169.

GALLES, M. [1996]. “Scalable Pipelined Interconnect for Distributed Endpoint Routing: The SGI
SPIDER chip” . Proceedings Hot Interconnects ‘96, Stanford University, August.

GAJSKI, D., D. KUCK, D. LAWRIE, AND A. SAMEH [1983]. “CEDAR—A large scale multiprocessor,”
Proc. Int’l Conf. on Parallel Processing (August), 524–529.

GEHRINGER, E. F., D. P. SIEWIOREK, AND Z. SEGALL [1987]. Parallel Processing: The Cm* Experi-
ence, Digital Press, Bedford, Mass.

6.16 Historical Perspective and References 777
GHARACHORLOO, K., GUPTA, A., AND J.L. HENNESSY [1992]. “Hiding memory latency using dynam-
ic scheduling in shared-memory multiprocessors.” In Proc. of the 19th Annual Int. Symp. on Com-
puter Architecture, FGold Coast, Austrailia, June.

GHARACHORLOO, K., D. LENOSKI, J. LAUDON, P. GIBBONS, A. GUPTA, AND J. L. HENNESSY [1990].
“Memory consistency and event ordering in scalable shared-memory multiprocessors,” Proc. 17th
Int’l Symposium on Computer Architecture (June), Seattle, 15–26.

GIBSON, J, KUNZ, R, OFELT, D, HOROWITZ,M, HENNESSY, J, AND M. HEINRICH [2000]. "FLASH vs.
(Simulated) FLASH: Closing the Simulation Loop". Proc. of the 9th Conference on Architectural
Support for Programming Languages and Operating Systems (November), San Jose, 49-58.

2000. GOODMAN, J. R. [1983]. “Using cache memory to reduce processor memory traffic,” Proc. 10th
Int’l Symposium on Computer Architecture (June), Stockholm, Sweden, 124–131.

HAGERSTEN E. AND M. KOSTER [1998]. “WILDFIRE: A SCALABLE PATH FOR SMPS,” ROCEEDINGS

OF THE THE FIFTH INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITEC-

TURE , 1998.

HAGERSTEN, E., LANDIN, A. AND S. HARIDI. DDM --- A Cache-Only Memory Architecture. IEEE
Computer, 25(9):44-54, September, 1992.

HILL, M.D. [1998]. “Multiprocessors should support simple memory consistency models,” IEEE
Computer, 31:8 (August), 28–34.

HILLIS, W. D. [1985]. The Connection Multiprocessor, MIT Press, Cambridge, Mass.

HIRATA, H., KIMURA, K., NAGAMINE, S., MOCHIZUKI, Y., NISHIMURA, A., NAKASE, Y., AND NISH-

IZAWA, T. [1992]. “An elementary processor architecture with simultaneous instruction issuing
from multiple threads,” Proc. 19th Annual International Symposium on Computer Architecture
(May). 136–145.

HOCKNEY, R. W. AND C. R. JESSHOPE [1988]. Parallel Computers-2, Architectures, Programming
and Algorithms, Adam Hilger Ltd., Bristol, England.

HOLLAND, J. H. [1959]. “A universal computer capable of executing an arbitrary number of subpro-
grams simultaneously,” Proc. East Joint Computer Conf. 16, 108–113.

HORD, R. M. [1982]. The Illiac-IV, The First Supercomputer, Computer Science Press, Rockville, Md.

HRISTEA, C., LENOSKI, D., AND J. KEEN [1997]. Measuring Memory Hierarchy Performance of
Cache-Coherent Multiprocessors Using Micro Benchmarks, Proc. Supercomputing 97, San Jose,
CA, November.

HWANG, K. [1993]. Advanced Computer Architecture and Parallel Programming, McGraw-Hill,
New York.

KECKLER, S.W. AND DALLY, W. J. [1992]. “Processor coupling: Integrating compile time and runt-
ime scheduling for parallelism,”. Proc. 19th Annual International Symposium on Computer Archi-
tecture (May). 202–213.

KONTOTHANASSIS, L., HUNT, G., STETS, R.,HARDAVELLAS, N., CIERNIAK, M., PARTHASARATHY,S.,
MEIRA, W., DWARKADAS, S. AND M. SCOTT [1997]. “VM-based shared memory on low-latency,
remote-memory-access networks”, . Proc., 24th Annual Int'l. Symp. on Computer Architecture,
June, Denver.

KUSKIN, J., OFELT, D., HEINRICH, M., HEINLEIN, J., SIMONI, R., GHARACHORLOO, K., CHAPIN, J.,
NAKAHIRA, D., BAXTER, J., HOROWITZ, M., GUPTA, A., ROSENBLUM, M., AND J.L. HENNESSY

[1994]. "The Stanford FLASH Multiprocessor”, Proceedings of the 21th International Symposium
on Computer Architecture, Chicago, April.

LAMPORT, L. [1979]. “How to make a multiprocessor computer that correctly executes multiprocess
programs,” IEEE Trans. on Computers C-28:9 (September), 241–248.

LAUDON, J., GUPTA, A., AND M. HOROWITZ [1994]. “Interleaving: A multithreading technique target-

778 Chapter 6 Multiprocessors and Thread-Level Parallelism
ing multiprocessors and work-stations.,” Proc Sixth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (October), Boston, 308–318.

LAUDON J. AND D. LENOSKI [1997]. “THE SGI ORIGIN: A CCNUMA HIGHLY SCALABLE SERVER,”
Proceedings of the 24th international symposium on Computer architecture , June, Denver, p 241-
251

LENOSKI, D., J. LAUDON, K. GHARACHORLOO, A. GUPTA, AND J. L. HENNESSY [1990]. “The Stan-
ford DASH multiprocessor,” Proc. 17th Int’l Symposium on Computer Architecture (June), Seattle,
148–159.

LENOSKI, D., J. LAUDON, K. GHARACHORLOO, W.-D. WEBER, A. GUPTA, J. L. HENNESSY, M. A.
HOROWITZ, AND M. LAM [1992]. “The Stanford DASH multiprocessor,” IEEE Computer 25:3
(March).

LI,.K., [1988] “IVY: A Shared Virtual Memory System for Parallel Computing,” Proceedings of the
1988 International Conference on Parallel Processing, Pennsylvania State University Press.

LO,J., EGGERS, S., EMER, J., LEVY, H., STAMM, R., AND D. TULLSEN [1997]. “Converting Thread-
Level Parallelism Into Instruction-Level Parallelism via Simultaneous Multithreading.” ACM
Transactions on Computer Systems 15:2 (August), 322-354.

LO,J., BARROSO, L., EGGERS, S., GHARACHORLOO, K., LEVY,H., AND S. PAREKH [1998]. “An Analy-
sis of Database Workload Performance on Simultaneous Multithreaded Processors.” Proceedings
of the 25th International Symposium on Computer Architecture (June), 39-50.

LOVETT, T. AND S. THAKKAR [1988]. “The Symmetry multiprocessor system,” Proc. 1988 Int’l Conf.
of Parallel Processing, University Park, Penn., 303–310.

MELLOR-CRUMMEY, J. M. AND M. L. SCOTT [1991]. “Algorithms for scalable synchronization on
shared-memory multiprocessors,” ACM Trans. on Computer Systems 9:1 (February), 21–65.

MENABREA, L. F. [1842]. “Sketch of the analytical engine invented by Charles Babbage,” Bibio-
thèque Universelle de Genève (October).

MITCHELL, D. [1989]. “The Transputer: The time is now,” Computer Design (RISC supplement), 40–41.

MIYA, E. N. [1985]. “Multiprocessor/distributed processing bibliography,” Computer Architecture
News (ACM SIGARCH) 13:1, 27–29.

NIKHIL, R.S., PAPADOPOULOS, G.M. AND ARVIND [1992]. “*T: A Multithreaded Massively Parallel
Architecture.” In Proceedings of the 19th International Symposium on Computer Architecture, Gold
Coast, Australia, May, 156–167.

NOORDERGRAAF, L. AND R VAN DER PAS [1999]. “Performance Experiences on Sun's WildFire Pro-
totype,” Proc. Supercomputing 99, Portand, Oregon, November.

PFISTER, G. F., W. C. BRANTLEY, D. A. GEORGE, S. L. HARVEY, W. J. KLEINFEKDER, K. P. MCAU-

LIFFE, E. A. MELTON, V. A. NORTON, AND J. WEISS [1985]. “The IBM research parallel processor
prototype (RP3): Introduction and architecture,” Proc. 12th Int’l Symposium on Computer Architec-
ture (June), Boston, 764–771.

REINHARDT, S.K., LARUS, J.R., AND D. A. WOOD[1994]. “Tempest and Typhoon: User-Level Shared
Memory.” In Proceedings of the 21st Annual International Symposium on Computer Architecture, .
Chicago, April, 325--336.

RETTBERG, R. D., W. R. CROWTHER, P. P. CARVEY, AND R. S. TOWLINSON [1990]. “The Monarch
parallel processor hardware design,” IEEE Computer 23:4 (April).

ROSENBLUM, M., S. A. HERROD, E. WITCHEL, AND A. GUTPA [1995]. “Complete computer simula-
tion: The SimOS approach,” to appear in IEEE Parallel and Distributed Technology 3:4 (fall).

SAULSBURY, A., WILKINSON, T., CARTER, J. AND A. LANDIN [1995]. “An Argument for Simple CO-
MA,” Proc. First Conf. on High Performance Computer Architectures (January), Raleigh, N. Caro-
lina,, 276-285

6.16 Historical Perspective and References 779
SCHWARTZ, J. T. [1980]. “Ultracomputers,” ACM Trans. on Programming Languages and Systems
4:2, 484–521.

SCOTT S. L. [1996] “SYNCHRONIZATION AND COMMUNICATION IN THE T3E MULTIPROCESSOR,“ Pro-
ceeding Architectural Support for Programming Languages and Operating Systems (ASPLOS-VII),
Cambridge, Massachusetts, October, pp. 26--36.

SCOTT S. L. AND G. M. THORSON. “The Cray T3E Network: Adaptive Routing in a High Performance
3D Torus,” In Proceedings of the Symposium on High Performance Interconnects (Hot Intercon-
nects 4), Stanford University, August, pages 14-156.

SEITZ, C. [1985]. “The Cosmic Cube,” Comm. ACM 28:1 (January), 22–31.

SINGH, J. P, HENNESSY, J. L. AND A. GUPTA., "Scaling Parallel Programs for Multiprocessors: Meth-
odology and Examples," Computer 26: 7 (July), 22–33.

SLOTNICK, D. L., W. C. BORCK, AND R. C. MCREYNOLDS [1962]. “The Solomon computer,” Proc.
Fall Joint Computer Conf. (December), Philadelphia, 97–107.

SMITH, B.J. [1978] “A pipelined, shared resource MIMD computer,” Proc. 1978 ICPP (August) pp. 6-
-8.

SOUNDARARAJAN, V., HEINRICH, M., VERGHESE, B., GHARACHORLOO, K., GUPTA, A., AND J.L.
HENNESSY [1998]. “FLEXIBLE USE OF MEMORY FOR REPLICATION/MIGRATION IN CACHE-COHER-

ENT DSM MULTIPROCESSORS,” . Proc. 25th Int’l Symposium on Computer Architecture (June),
Barcelona, Spain, 342-355.

STENSTRÖM, P., JOE, T. AND A. GUPTA [1992]. “Comparative performance evaluation of cache-co-
herent NUMA and COMA architectures.” Proceedings of the 19th annual international symposium
on Computer architecture, May, Queensland Australia, 80-91.

STONE, H. [1991]. High Performance Computers, Addison-Wesley, New York.

SWAN, R. J., A. BECHTOLSHEIM, K. W. LAI, AND J. K. OUSTERHOUT [1977]. “The implementation of
the Cm* multi-microprocessor,” Proc. AFIPS National Computing Conf., 645–654.

SWAN, R. J., S. H. FULLER, AND D. P. SIEWIOREK [1977]. “Cm*—A modular, multi-microproces-
sor,” Proc. AFIPS National Computer Conf. 46, 637–644.

TANG, C. K. [1976]. “Cache design in the tightly coupled multiprocessor system,” Proc. AFIPS
National Computer Conf., New York (June), 749–753.

THEKKATH, R. SINGH, A.P. SINGH, J.P., JOHN, S. AND J.L. HENNESSY [1997]. “An Evaluation of a
Commercial CC-NUMA Architecture---The CONVEX Exemplar SPP1200,” Proceedings of the
11th International Parallel Processing Symposium (IPPS '97), Geneva, Switzerland, April.

TULLSEN, D.M., EGGERS, S.J.,. EMER, J.S.,. LEVY, H.M.. LO, J.L. AND R.L. STAMM [1996]. “Exploit-
ing choice: Instruction fetch and issue on an implementable simultaneous multithreading proces-
sor.” Proceedings of the 23rd Annual International Symposium on Computer Architecture (May),
pages 191--202.

TULLSEN, D.M., EGGERS, S.J., AND H.M. LEVY [1995], “Simultaneous multithreading: Maximizing
on-chip parallelism,” Proc. 22nd International Symposium on Computer Architecture (June),
pp.392-403.

UNGER, S. H. [1958]. “A computer oriented towards spatial problems,” Proc. Institute of Radio
Enginers 46:10 (October), 1744–1750.

WILSON, A. W., JR. [1987]. “Hierarchical cache/bus architecture for shared-memory multiproces-
sors,” Proc. 14th Int’l Symposium on Computer Architecture (June), Pittsburgh, 244–252.

WOOD, D. A. AND M. D. HILL [1995]. “Cost-effective parallel computing,” IEEE Computer 28:2
(February).

WOLFE, A. AND J. P. SHEN [1991]. “A variable instruction stream extension to the VLIW architec-
ture.” Proc. of the Fourth Conference on Architectural Support for Programming Languages and

780 Chapter 6 Multiprocessors and Thread-Level Parallelism
Operating Systems (April), Santa Clara, 2-14.

WULF, W. AND C. G. BELL [1972]. “C.mmp—A multi-mini-processor,” Proc. AFIPS Fall Joint
Computing Conf. 41, part 2, 765–777.

WULF, W. AND S. P. HARBISON [1978]. “Reflections in a pool of processors—An experience report
on C.mmp/Hydra,” Proc. AFIPS 1978 National Computing Conf. 48 (June), Anaheim, Calif., 939–
951.

Yamamoto, W., Serrano, M.J., Talcott, A.R., Wood, R.C., and M. Nemirosky [1992].. “Performance
estimation of multistreamed, superscalar processors,” Proc. Twenty-Seventh Hawaii International
Conference on System Sciences (January), pages I:195–204.

E X E R C I S E S

6.1 [10] <6.1> Suppose we have an application that runs in three modes: all processors
used, half the processors in use, and serial mode. Assume that 0.02% of the time is serial
mode, and there are 100 processors in total. Find the maximum time that can be spent in
the mode when half the processors are used, if our goal is a speedup of 80.

6.2 [15] <6.1> Assume that we have a function for an application of the form F(i,p), which
gives the fraction of time that exactly i processors are usable given that a total of p proces-
sors are available. This means that

Assume that when i processors are in use, the application runs i times faster. Rewrite
Amdahl’s Law so that it gives the speedup as a function of p for some application.

6.3 [10] <6.1, 6.2> The Transaction Processing Council (TPC) has several different bench-
marks. Visit their website at www.tpc.org and look at the top 10 performers in each bench-
mark class. Determine whether each of the top 10 configurations is a multiprocessor or if
so what types (SMP, NUMA, cluster, e.g.). Does the ordering look different if price-perfor-
mance is used as the metric?

6.4 [10] <6.1, 6.2> The Top 500 list categorizes the fastest scientific machines in the world
according to their performance on the Linpack benchmark. Visit their website at
www.top500.org and look at the top 100 performers (there are many repeats of a particular
vendor product, since individual supercomputer sites rather than a product are counted).
Determine how many different supercomputer products occur among the top 100 configu-
rations and what type (SMP, NUMA, cluster, e.g.) each different supercomputer is. Try to
obtain cost information and see how the data changes when cost-performance is consid-
ered.

6.5 [15] <6.3> In small bus-based multiprocessors, write-through caches are sometimes
used. One reason is that a write-through cache has a slightly simpler coherence protocol.
Show how the basic snooping cache coherence protocol of Figure 6.12 on page 668 can be
changed for a write-through cache. From the viewpoint of an implementor, what is the ma-
jor hardware functionality that is not needed with a write-through cache compared with a

F i,p() 1=

i 1=

p

∑

6.16 Historical Perspective and References 781
write-back cache?

6.6 [20] <6.3> Add a clean private state to the basic snooping cache-coherence protocol
(Figure 6.12 on page 668). Show the protocol in the format of Figure 6.12.

6.7 [15] <6.3> One proposed solution for the problem of false sharing is to add a valid bit
per word (or even for each byte). This would allow the protocol to invalidate a word without
removing the entire block, allowing a cache to keep a portion of a block in its cache while
another processor wrote a different portion of the block. What extra complications are in-
troduced into the basic snooping cache coherency protocol (Figure 6.12) if this capability
is included? Remember to consider all possible protocol actions.

6.8 [12/10/15] <6.3> The performance differences for write invalidate and write update
schemes can arise from both bandwidth consumption and latency. Assume a memory sys-
tem with 64-byte cache blocks. Ignore the effects of contention.

a. [12] <6.3> Write two parallel code sequences to illustrate the bandwidth differences
between invalidate and update schemes. One sequence should make update look much
better and the other should make invalidate look much better.

b. [10] <6.3> Write a parallel code sequence to illustrate the latency advantage of an up-
date scheme versus an invalidate scheme.

c. [15] <6.3> Show, by example, that when contention is included, the latency of update
may actually be worse. Assume a bus-based multiprocessor with 50-cycle memory
and snoop transactions.

6.9 Use the data on miss rates versus block size for the scientific applications in Section 6.3
to compute AMAT and bus bandwidth making some assumptions about memory access
time based n block size.

6.10 [15/15] <6.3–6.5> Restructure this exercise to use timing from E6000 series.

One possible approach to achieving the scalability of distributed shared memory and the
cost-effectiveness of a bus design is to combine the two approaches, using a set of proces-
sors with memories attached directly to the processors, and interconnected with a bus. The
argument in favor of such a design is that the use of local memories and a coherence scheme
with limited broadcast results in a reduction in bus traffic, allowing the bus to be used for
a larger number of processors. For these Exercises, assume the same parameters as for the
Challenge bus. Assume that remote snoops and memory accesses take the same number of
cycles as a memory access on the Challenge bus. Ignore the directory processing time for
these Exercises. Assume that the coherency scheme works as follows on a miss: If the data
are up-to-date in the local memory, it is used there. Otherwise, the bus is used to snoop for
the data. Assume that local misses take 25 bus clocks.

a. [15] <6.3–6.5> Find the time for a read or write miss to data that are remote.

b. [15] <6.3–6.5> Ignoring contention and using the data from the Ocean benchmark run
on 16 processors for the frequency of local and remote misses (Figure 6.31 on
page 699), estimate the average memory access time versus that for a Challenge using
the same total miss rate.

6.11 [12/15] <6.3,6.5,6.11> Restructure this exercise using the data comparing Origin to

782 Chapter 6 Multiprocessors and Thread-Level Parallelism
E6000.

Although it is widely believed that buses are the ideal interconnect for small-scale multipro-
cessors, this may not always be the case. For example, increases in processor performance
are lowering the processor count at which a more distributed implementation becomes at-
tractive. Because a standard bus-based implementation uses the bus both for access to mem-
ory and for interprocessor coherency traffic, it has a uniform memory access time for both.
In comparison, a distributed memory implementation may sacrifice on remote memory ac-
cess, but it can have a much better local memory access time.

Consider the design of a DSM multiprocessor with 16 processors. Assume the R4400 cache
miss overheads shown for the Challenge design (see pages 730–731). Assume that a mem-
ory access takes 150 ns from the time the address is available from either the local processor
or a remote processor until the first word is delivered.

a. [12] <6.3,6.5,6.11> How much faster is a local access than on the Challenge?

b. [15] <6.3,6.5,6.11> Assume that the interconnect is a 2D grid with links that are 16
bits wide and clocked at 100 MHz, with a start-up time of five cycles for a message.
Assume one clock cycle between nodes in the network, and ignore overhead in the
messages and contention (i.e., assume that the network bandwidth is not the limit).
Find the average remote memory access time, assuming a uniform distribution of re-
mote requests. How does this compare to the Challenge case? What is the largest frac-
tion of remote misses for which the DSM multiprocessor will have a lower average
memory access time than that of the Challenge multiprocessor?

6.12 [20/15/30] <6.5> One downside of a straightforward implementation of directories
using fully populated bit vectors is that the total size of the directory information scales as
the product: Processor count × Memory blocks. If memory is grown linearly with processor
count, then the total size of the directory grows quadratically in the processor count. In
practice, because the directory needs only 1 bit per memory block (which is typically 32 to
128 bytes), this problem is not serious for small to moderate processor counts. For example,
assuming a 128-byte block, the amount of directory storage compared to main memory is
Processor count/1024, or about 10% additional storage with 100 processors. This problem
can be avoided by observing that we only need to keep an amount of information that is pro-
portional to the cache size of each processor. We explore some solutions in these Exercises.

a. [20] <6.5> One method to obtain a scalable directory protocol is to organize the mul-
tiprocessor as a logical hierarchy with the processors at the leaves of the hierarchy and
directories positioned at the root of each subtree. The directory at each subtree root
records which descendents cache which memory blocks, as well as which memory
blocks with a home in that subtree are cached outside of the subtree. Compute the
amount of storage needed to record the processor information for the directories, as-
suming that each directory is fully associative. Your answer should incorporate both
the number of nodes at each level of the hierarchy as well as the total number of nodes.

b. [15] <6.5> Assume that each level of the hierarchy in part (a) has a lookup cost of 50
cycles plus a cost to access the data or cache of 50 cycles, when the point is reached.
We want to compute the AMAT (average memory access time—see Chapter 5) for a
64-processor multiprocessor with four-node subtrees. Use the data from the Ocean
benchmark run on 64 processors (Figure 6.31) and assume that all noncoherence miss-

6.16 Historical Perspective and References 783
es occur within a subtree node and that coherence misses are uniformly distributed
across the multiprocessor. Find the AMAT for this multiprocessor. What does this say
about hierarchies?

c. [30] <6.5> An alternative approach to implementing directory schemes is to imple-
ment bit vectors that are not dense. There are two such strategies: one reduces the
number of bit vectors needed and the other reduces the number of bits per vector. Us-
ing traces, you can compare these schemes. First, implement the directory as a four-
way set-associative cache storing full bit vectors, but only for the blocks that are
cached outside of the home node. If a directory cache miss occurs, choose a directory
entry and invalidate the entry. Second, implement the directory so that every entry has
8 bits. If a block is cached in only one node outside of its home, this field contains the
node number. If the block is cached in more than one node outside its home, this field
is a bit vector with each bit indicating a group of eight processors, at least one of which
caches the block. Using traces of 64-processor execution, simulate the behavior of
these two schemes. Assume a perfect cache for nonshared references, so as to focus
on coherency behavior. Determine the number of extraneous invalidations as the di-
rectory cache size is increased.

6.13 [25/40] <6.10> Prefetching and relaxed consistency models are two methods of tol-
erating the latency of longer access in multiprocessors. Another scheme, originally used in
the HEP multiprocessor and incorporated in the MIT Alewife multiprocessor, is to switch
to another activity when a long-latency event occurs. This idea, called multiple context or
multithreading, works as follows:

n The processor has several register files and maintains several PCs (and related pro-
gram states). Each register file and PC holds the program state for a separate parallel
thread.

n When a long-latency event occurs, such as a cache miss, the processor switches to an-
other thread, executing instructions from that thread while the miss is being handled.

a. [25] <6.10> Using the data for the Ocean benchmark running on 64 processors (Figure
6.31), determine how many contexts are needed to hide all the latency of remote ac-
cesses. Assume that local cache misses take 40 cycles and that remote misses take 120
cycles. Assume that the increased demands due to a higher request rate do not affect
either the latency or the bandwidth of communications.

b. [40] <6.10> Implement a simulator for a multiple-context directory-based multipro-
cessor. Use the simulator to evaluate the performance gains from multiple context.
How significant are contention and the added bandwidth demands in limiting the
gains?

6.14 [25] <6.10> Prove that in a two-level cache hierarchy, where L1 is closer to the pro-
cessor, inclusion is maintained with no extra action if L2 has at least as much associativity
as L1, both caches use LRU replacement, and both caches have the same block size.

6.15 [20] <6.5,6.11> As we saw in the Putting it All Together and in Fallacies and Pitfalls,
data distribution can be important when an application has a nontrivial private data miss
rate caused by capacity misses. This problem can be attacked with compiler technology
(distributing the data in blocks) or through architectural support, as we saw in the descrip-

784 Chapter 6 Multiprocessors and Thread-Level Parallelism
tion of CMR on Wildfire.

Assume that we have two DSM multiprocessors: one with CMR support and one without
such support. Both multiprocessors have one processor per node and remote coherence
misses, which are uniformly distributed, take 1 µS. Assume that all capacity misses on the
CMR multiprocessor hit in the local memory and require 250 ns. Assume that capacity
misses take 200 ns when they are local on the DSM multiprocessor without CMR and 800
ns, otherwise. Using the Ocean data for 32 processors (Figure 6.23), find what fraction of
the capacity misses on the DSM multiprocessor must be local if the performance of the two
multiprocessors is identical.

6.16 [15] <6.7> Some multiprocessors have implemented a special broadcast coherence
protocol just for locks, sometimes even using a different bus. Evaluate the performance of
the spin lock in the Example on page 710 assuming a write broadcast protocol.

6.17 [15] <6.7> Implement the barrier in Figure 6.40 on page 713, using queuing locks.
Compare the performance to the spin-lock barrier.

6.18 [15] <6.7> Implement the barrier in Figure 6.40 on page 713, using fetch-and-incre-
ment. Compare the performance to the spin-lock barrier.

6.19 [15] <6.7> Implement the barrier on page 717, so that barrier release is also done with
a combining tree.

6.20 [30] <6.3–6.7,6.11> Using an available shared-memory multiprocessor, see if you
can determine the organization and latencies of its memory hierarchy. For each level of the
hierarchy, you can look at the total size, block size, and associativity, as well as the latency
of each level of the hierarchy. If the multiprocessor uses a nonbus interconnection network,
see if you can discover the topology and latency characteristics of the network. Try to make
a table like that in Figure 6.47 for the machine. The lmbench (www.bitmover.com/lmbench/
) and stream (http://www.cs.virginia.edu/stream/) benchmark may prove useful in this ex-
ercise.

6.21 [30] <6.3–6.7,6.11> Perform exercise 6.20 but looking at the bandwidth characteris-
tics rather than latency. See if you can prepare a table like that in Figure 6.48. Extend the
table by looking at the effect of strided accesses, as well as sequential and unrelated access-
es.

6.22 [20] <6.5> As we discussed earlier, the directory controller can send invalidates for
lines that have been replaced by the local cache controller. To avoid such messages, and to
keep the directory consistent, replacement hints are used. Such messages tell the controller
that a block has been replaced. Modify the directory coherence protocol of section 6.5 to
use such replacement hints.

6.23 [15] <6.7> Find the time for n processes to synchronize using a standard barrier. As-
sume that the time for a single process to update the count and release the lock is c.

6.24 [15] <6.7> Find the time for n processes to synchronize using a combining tree barrier.
Assume that the time for a single process to update the count and release the lock is c.

6.25 [25] <6.7> Implement a software version of the queuing lock for a bus-based system.
Using the model in the Example on page 710, how long does it take for 20 processors to
acquire and release the lock? You need only count bus cycles.

6.16 Historical Perspective and References 785
6.26 [20/30] <6.2–6.7> Both researchers and industry designers have explored the idea of
having the capability to explicitly transfer data between memories. The argument in favor
of such facilities is that the programmer can achieve better overlap of computation and
communication by explicitly moving data when it is available. The first part of this exercise
explores the potential on paper; the second explores the use of such facilities on real mul-
tiprocessors.

a. [20] <6.2–6.7> Assume that cache misses stall the processor, and that block transfer
occurs into the local memory of a DSM node. Assume that remote misses cost 100 cy-
cles and that local misses cost 40 cycles. Assume that each DMA transfer has an over-
head of 10 cycles. Assuming that all the coherence traffic can be replaced with DMA
into main memory followed by a cache miss, find the potential improvement for
Ocean running on 64 processors (Figure 6.31).

b. [30] <6.2–6.7> Find a multiprocessor that implements both shared memory (coherent
or incoherent) and a simple DMA facility. Implement a blocked matrix multiply using
only shared memory and using the DMA facilities with shared memory. Is the latter
faster? How much? What factors make the use of a block data transfer facility attrac-
tive?

6.27 [Discussion] <6.11> Construct a scenario whereby a truly revolutionary architec-
ture—pick your favorite candidate—will play a significant role. Significant is defined as
10% of the computers sold, 10% of the users, 10% of the money spent on computers, or
10% of some other figure of merit.

6.28 [40] <6.2,6.10,6.14> A multiprocessor or cluster is typically marketed using pro-
grams that can scale performance linearly with the number of processors. The project here
is to port programs written for one multiprocessor to the others and to measure their abso-
lute performance and how it changes as you change the number of processors. What chang-
es need to be made to improve performance of the ported programs on each multiprocessor?
What is the ratio of processor performance according to each program?

6.29 [35] <6.2,6.10,6.14> Instead of trying to create fair benchmarks, invent programs that
make one multiprocessor or cluster look terrible compared with the others, and also pro-
grams that always make one look better than the others. It would be an interesting result if
you couldn’t find a program that made one multiprocessor or cluster look worse than the
others. What are the key performance characteristics of each organization?

6.30 [40] <6.2,6.10,6.14> Multiprocessors and cluster usually show performance increas-
es as you increase the number of processors, with the ideal being n times speedup for n pro-
cessors. The goal of this biased benchmark is to make a program that gets worse
performance as you add processors. For example, this means that one processor on the mul-
tiprocessor or cluster runs the program fastest, two are slower, four are slower than two, and
so on. What are the key performance characteristics for each organization that give inverse
linear speedup?

6.31 [50] <6.2,6.10,6.14> Networked workstations can be considered multicomputers or
clusters, albeit with somewhat slower, though perhaps cheaper, communication relative to
computation. Port some cluster benchmarks to a network using remote procedure calls for
communication. How well do the benchmarks scale on the network versus the cluster?
What are the practical differences between networked workstations and a commercial clus-

786 Chapter 6 Multiprocessors and Thread-Level Parallelism
ter, such as the IBM-SP series?

6.16 Historical Perspective and References 787

7

Storage Systems

7

I/O certainly has been lagging in the last decade.

Seymour Cray

Public Lecture

(1976)

Also, I/O needs a lot of work.

David Kuck

Keynote Address, 15th Annual Symposium
on Computer Architecture

(1988)

Combining bandwidth and storage ... enables swift and reliable
access to the ever expanding troves of content on the proliferating
disks and ... repositories of the Internet. ... the capacity of storage
arrays of all kinds is rocketing ahead of the advance of computer
performance.

George Gilder

“The End Is Drawing Nigh” Forbes ASAP
(April 4, 2000)

7.1 Introduction 485

7.2 Types of Storage Devices 487

7.3 Buses—Connecting I/O Devices to CPU/Memory 500

7.4 Reliability, Availability, and Dependability 509

7.5 RAID: Redundant Arrays of Inexpensive Disks 514

7.6 Errors and Failures in Real Systems 520

7.7 I/O Performance Measures 524

7.8 A Little Queuing Theory 530

7.9 Benchmarks of Storage Performance and Availability 541

7.10 Crosscutting Issues 547

7.11 Designing an I/O System in Five Easy Pieces 552

7.12 Putting It All Together: EMC Symmetrix and Celerra 565

7.13 Another View: Sanyo DSC-110 Digital Camera 572

7.14 Fallacies and Pitfalls 575

7.15 Concluding Remarks 581

7.16 Historical Perspective and References 582

Exercises 590

Input/output has been the orphan of computer architecture. Historically neglected
by CPU enthusiasts, the prejudice against I/O is institutionalized in the most
widely used performance measure, CPU time (page 32). The performance of a
computer’s I/O system cannot be measured by CPU time, which by definition ig-
nores I/O. The second-class citizenship of I/O is even apparent in the label

pe-
ripheral

 applied to I/O devices.
This attitude is contradicted by common sense. A computer without I/O devic-

es is like a car without wheels—you can’t get very far without them. And while
CPU time is interesting, response time—the time between when the user types a
command and when results appear—is surely a better measure of performance.
The customer who pays for a computer cares about response time, even if the CPU
designer doesn’t.

7.1

Introduction

486

Chapter 7 Storage Systems

Does I/O Performance Matter?

Some suggest that the prejudice against I/O is well founded. I/O speed doesn’t
matter, they argue, since there is always another process to run while one process
waits for a peripheral.

There are several points to make in reply. First, this is an argument that perfor-
mance is measured as

throughput

—number of tasks completed per hour—versus
response time. Plainly, if users didn’t care about response time, interactive soft-
ware never would have been invented, and there would be no workstations or per-
sonal computers today; section 7.7 gives experimental evidence of the
importance of response time. It may also be expensive to rely on running other
processes, since paging traffic from process switching might actually increase I/
O. Furthermore, with mobile devices and desktop computing, there is only one
person per computer and thus fewer processes than in timesharing. Many times
the only waiting process is the human being! Moreover, applications such as
transaction processing (section 7.7) place strict limits on response time as part of
the performance analysis.

I/O’s revenge is at hand. Suppose response time is just 10% longer than CPU
time. First we speed up the CPU by a factor of 10, while neglecting I/O. Am-
dahl’s Law tells us the speedup is only 5 times, half of what we would have
achieved if both were sped up tenfold. Similarly, making the CPU 100 times fast-
er without improving the I/O would obtain a speedup of only 10 times, squander-
ing 90% of the potential. If, as predicted in Chapter 1, performance of CPUs
improves at 55% per year and I/O did not improve, every task would become I/O-
bound. There would be no reason to buy faster CPUs—and no jobs for CPU
designers. Thus, I/O performance increasingly limits system performance and ef-
fectiveness.

Does CPU Performance Matter?

Moore’s Law leads to both large, fast CPUs but also to very small, cheap CPUs.
Especially for systems using the latter CPU, it is increasingly unlikely that the
most important goal is keeping the CPU busy versus keeping I/O devices busy, as
the bulk of the costs may not be with the CPU.

This change in importance is also reflected by the names of our times. Where-
as the 1960s to 1980s were called the Computing Revolution, the period since
1990 is been called the Information Age, with concerns focussed on advances in
information technology versus raw computational power.

This shift in focus from computation to communication and storage of infor-
mation emphasizes reliability and scalability as well as cost-performance. To re-
flect the increasing importance of I/O, the third edition of this book has twice as
many I/O chapters as the first edition and half as many on instruction set architec-
ture. This chapter covers storage I/O and the next covers communication I/O. Al-
though two chapters cannot fully vindicate I/O, they may at least atone for some of
the sins of the past and restore some balance.

7.2 Types of Storage Devices

487

Does Performance Matter?

After 15 years of doubling processor performance every 18 months, processor
performance is not the problem it once was. Many would find highly dependable
systems much more attractive than faster versions of today’s systems with today’s
level of unreliability. Although it is frustrating when a program crashes, people
become hysterical if they lose their data. Hence, storage systems are typically
held to a higher standard of dependability than the rest of the computer. Because
of traditional demands placed on storage–and because a new century needs new
challenges–this chapter defines reliability, availability, and dependability and
shows how to improve them.

Dependability is the bedrock of storage, yet it also has its own rich perfor-
mance theory–queueing theory–that balances throughput versus response time.
The software that determines which processor features get used is the compiler,
but the operating system usurps that role for storage.

Thus, storage has a different, multifaceted culture from processors, yet it is
still found within the architecture tent. We start our exploration of storage with
the hardware building blocks.

Rather than discuss the characteristics of all storage devices, we will concentrate
on those most commonly found: magnetic disks, magnetic tapes, automated tape
libraries, CDs, and DVDs. As these I/O devices are generally too large for em-
bedded applications, we conclude with a description of Flash memory, a storage
device commonly used in portable devices. (Experienced readers should skip the
following subsections with which they are already familiar.)

Magnetic Disks

I think Silicon Valley was misnamed. If you look back at the dollars shipped in
products in the last decade, there has been more revenue from magnetic disks than
from silicon. They ought to rename the place Iron Oxide Valley.

Al Hoagland, One of the Pioneers of Magnetic Disks (1982)

Despite repeated attacks by new technologies, magnetic disks have dominated
nonvolatile storage since 1965. Magnetic disks play two roles in computer sys-
tems:

n

Long-term, nonvolatile storage for files, even when no programs are running

n

A level of the memory hierarchy below main memory used as a backing store
for virtual memory during program execution (see section 5.10)

7.2

Types of Storage Devices

488

Chapter 7 Storage Systems

In this section, we are not talking about floppy disks, but the original “hard”
disks.

As descriptions of magnetic disks can be found in countless books, we will
only list the essential characteristics, with the terms illustrated in Figure 7.1.
(Readers who recall these terms might want to skip to the section entitled "The
Future of Magnetic Disks" on page 492; those interested in more detail should
see Hospodor and Hoagland [1993]) A magnetic disk consists of a collection of

platters

 (generally 1 to 12), rotating on a spindle at 3,600 to 15,000 revolutions
per minute (RPM). These platters are metal or glass disks covered with magnetic
recording material on both sides, so 10 platters have 20 recording surfaces. Disk
diameters in 2001 vary by almost a factor of four, from 1.0 to 3.5 inches, al-
though more than 95% of sales are either 2.5- or 3.5- inch diameter disks. Tradi-
tionally, the biggest disks have the highest performance and the smallest disks
have the lowest price per disk drive. Price per gigabyte often goes to the disks
sold in highest volume, which today are 3.5-inch disks.

FIGURE 7.1 Disks are organized into platters, tracks, and sectors.

 Both sides of a plat-
ter are coated so that information can be stored on both surfaces. A cylinder refers to a track
at the same position on every platter.

Sectors

Tracks

Cylinder

Track

Platter

Platters

7.2 Types of Storage Devices

489

The disk surface is divided into concentric circles, designated

tracks

. There
are typically 5,000 to 30,000 tracks on each surface. Each track in turn is divided
into

sectors

 that contain the information; a track might have 100 to 500 sectors. A
sector is the smallest unit that can be read or written. IBM mainframes allow us-
ers to select the size of the sectors, although most systems fix their size, typically
at 512 bytes of data. The sequence recorded on the magnetic media is a sector
number, a gap, the information for that sector including error correction code, a
gap, the sector number of the next sector, and so on. Occasionally people forget
this sequence––confusing the recording density with the density that a user’s data
can be stored––leading to fallacies about disks (see section 7.14).

In the past, all tracks had the same number of sectors; the outer tracks, which
are longer, recorded information at a much lower density than the inner tracks.
Recording more sectors on the outer tracks than on the inner tracks, called

con-
stant bit density

, is the standard today. This name is misleading, as the bit density
is not really constant. Typically, the inner tracks are recorded at the highest densi-
ty and the outer tracks at the lowest, but the outer tracks might record, say, 1.7
times more bits despite being 2.1 times longer.

Figure 7.2 shows the characteristics of three magnetic disks in 2000. Large-di-
ameter drives have many more gigabytes to amortize the cost of electronics, so
the traditional wisdom used to be that they had the lowest cost per gigabyte. This
advantage can be offset, however, if the small drives have much higher sales vol-
ume, which lowers manufacturing costs. The 3.5-inch drive, which is the largest
surviving drive in 2001, also has the highest sales volume, so it unquestionably
has the best price per gigabyte

To read and write information into a sector, a movable

arm

 containing a

read/
write head

 is located over each surface. Rather than represent each recorded bit
individually, groups of bits are recorded using a run-length-limited code. Run-
length limited codes ensure that there is both a minimum and maximum number
of bits in a group that the reader must decipher before seeing synchronization sig-
nals, which enables higher recording density as well as reducing error rates. The
arms for all surfaces are connected together and move in conjunction, so that all
arms are over the same track of all surfaces. The term

cylinder

 is used to refer to
all the tracks under the arms at a given point on all surfaces.

To read or write a sector, the disk controller sends a command to move the arm
over the proper track. This operation is called a

seek

, and the time to move the
arm to the desired track is called

seek time

.
Average seek time is the subject of considerable misunderstanding. Disk man-

ufacturers report minimum seek time, maximum seek time, and average seek
time in their manuals. The first two are easy to measure, but the average was open
to wide interpretation. The industry decided to calculate average seek time as the
sum of the time for all possible seeks divided by the number of possible seeks.
Average seek times are advertised to be 5 ms to 12 ms. Depending on the applica-
tion and operating system, however, the actual average seek time may be only
25% to 33% of the advertised number. The explanation is locality of disk refer-
ences. Section 7.14 has a detailed example.

490

Chapter 7 Storage Systems

Characteristics
Seagate Cheetah

ST173404LC
Ultra160 SCSI Drive

IBM Travelstar
32GH DJSA - 232

ATA-4 Drive

IBM 1GB
Microdrive

DSCM-11000

Disk diameter (inches) 3.5 2.5 1.0

Formatted data capacity (GB) 73.4 32.0 1.0

Cylinders 14,100 21,664 7,167

Disks 12 4 1

Recording Surfaces (or Heads) 24 8 2

Bytes per sector 512 to 4096 512 512

Average Sectors per track (512 byte)

≈

 424

≈

 360 (256-469)

≈

 140

Maximum areal density (Gbit/sq.in.) 6.0 14.0 15.2

Rotation speed (RPM) 10033 5411 3600

Average seek random cylinder to cylinder
(read/write) in ms

5.6/6.2 12.0 12.0

Minimum seek in ms (read/write) 0.6/0.9 2.5 1.0

Maximum seek in ms 14.0/15.0 23.0 19.0

Data transfer rate in MB/second 27 to 40 11 to 21 2.6 to 4.2

Link speed to disk buffer in MB/second 160 67 13

Power idle/operating in Watts 16.4 / 23.5 2.0 / 2.6 0.5 / 0.8

Buffer size in MB 4.0 2.0 0.125

Size: height x width x depth in inches 1.6 x 4.0 x 5.8 0.5 x 2.7 x 3.9 0.2 x 1.4 x 1.7

Weight in pounds 2.00 0.34 0.035

Rated MTTF in powered-on hours 1,200,000 (see caption) (see caption)

% of powered on hours (POH) per month 100% 45% 20%

% of POH seeking, reading, writing 90% 20% 20%

Load/Unload cycles (disk powered on/off) 250 per year 300,000 300,000

Nonrecoverable read errors per bits read <1 per 10

15

< 1 per 10

13

< 1 per 10

13

Seek errors <1 per 10

7

not available not available

Shock tolerance: Operating,
Not operating

10 G,
175 G

150 G,
700 G

175 G,
1500 G

Vibration tolerance: Operating,
Not operating (sine swept, 0 to peak)

5-400 Hz @ 0.5G,
22-400 Hz @ 2G

5-500 Hz @ 1G,
2.5-500 Hz @ 5G

5-500 Hz @ 1G,
10-500 Hz @ 5G

FIGURE 7.2 Characteristics of three magnetic disks of 2000.

 To help the reader gain intuition about disks, this table
gives typical values for disk parameters. The 2.5-inch drive is a factor of 6 to 9 better in weight, size, and power than the
3.5-inch drive. The 1.0-inch drive is a factor 10 to 11 better than the 2.5-inch drive in weight and size, and a factor of 3-4
better in power. Note that 3.5-inch drives are designed to be used almost continuously, and so rarely turned on and off,
while the smaller drives spend most of their time unused and thus are turned on and off repeatedly. In addition, these mobile
drives must handle much larger shocks and vibrations, especially when turned off. These requirements affect the relative
cost of these drives. Note that IBM no longer quotes MTBF for 2.5 inch drives, but when they last did it was 300,000 hours.
IBM quotes the service life as 5 years or 20,000 powered on hours, whichever is first. The service life for the 1.0-inch drives
is 5 years or 8800 powered on hours, whichever is first.

7.2 Types of Storage Devices

491

The time for the requested sector to rotate under the head is the

rotation
latency

 or

rotational delay

. The average latency to the desired information is ob-
viously halfway around the disk; if a disk rotates at 10,000 revolutions per minute
(RPM), the average rotation time is therefore

Note that there are two mechanical components to a disk access. It takes several
milliseconds on average for the arm to move over the desired track and several
milliseconds on average for the desired sector to rotate under the read/write head.
A simple performance model is to allow one-half rotation of the disk to find the
desired data after the proper track is found. Of course, the disk is always spin-
ning, so seeking and rotating actually overlap.

The next component of disk access,

transfer time,

 is the time it takes to trans-
fer a block of bits, typically a sector, under the read-write head. This time is a
function of the block size, disk size, rotation speed, recording density of the
track, and speed of the electronics connecting the disk to computer. Transfer rates
in 2001 range from 3 MB per second for the 3600 RPM, 1-inch drives to 65 MB
per second for the 15000 RPM, 3.5-inch drives.

Between the disk controller and main memory is a hierarchy of controllers and
data paths, whose complexity varies. For example, whenever the transfer time is a
small portion of the time of a full access, the designer will want to disconnect the
memory device during the access so that other devices can transfer their data.
(The default is to hold the datapath for the full access.) This desire is true for
high-performance disk controllers, and, as we shall see later, for buses and net-
works.

There is also a desire to amortize this long access by reading more than simply
what is requested; this is called

read ahead

. Read ahead is another case of com-
puter designs trying to leverage spatial locality to enhance performance (see
Chapter 5). The hope is that a nearby request will be for the nearby sectors, which
will already be available. These sectors go into buffers on the disk that act as a
cache. As Figure 7.2 shows, the size of this buffer varies from 0.125 to 4 MB. The
hit rate presumably comes solely from spatial locality, but disk-caching algo-
rithms are proprietary and so their techniques and hit rates are unknown. Trans-
fers to and from the buffer operate at the speed of the I/O bus versus the speed of
the disk media. In 2001, the I/O bus speeds vary from 80 to 320 MB per second.

To handle the complexities of disconnect/connect and read ahead, there is usu-
ally, in addition to the disk drive, a device called a

disk controller

. Thus, the final
component of disk-access time is

controller time

, which is the overhead the con-
troller imposes in performing an I/O access. When referring to the performance
of a disk in a computer system, the time spent waiting for a disk to become free
(

queuing delay

) is added to this time.

Average rotation time 0.5
10000 RPM-----------------------------

0.5
10000 60⁄() RPS--

0.0030 sec 3.0 ms== = =

492

Chapter 7 Storage Systems

E X A M P L E

What is the average time to read or write a 512-byte sector for a disk? The
advertised average seek time is 5 ms, the transfer rate is 40 MB/second,
it rotates at 10000 RPM, and the controller overhead is 0.1 ms. Assume
the disk is idle so that there is no queuing delay. In addition, calculate the
time assuming the advertised seek time is three times longer than the
measured seek time.

A N S W E R

Average disk access is equal to average seek time + average rotational
delay + transfer time + controller overhead. Using the calculated, average
seek time, the answer is

5 ms + + 0.1 ms = 5.0 + 3.0 + 0.013 + 0.1 = 8.11 ms

Assuming the measured seek time is 33% of the calculated average, the
answer is

1.67 ms + 3.0 ms + 0.013 ms + 0.1 ms = 4.783 ms

Note that only or 0.3% of the time is the disk transferring data
in this example. Even page-sized transfers often take less than 5%, so
disks normally spend most of their time waiting for the head to get over
the data rather than reading or writing the data.

n

Many disks today are shipped in

disk arrays

. These arrays contain dozens of
disks, and may look like a single large disk to the computer. Hence, there is often
another level to the storage hierarchy, the

array controller

. They are often key in
dependability and performance of storage systems, implementing functions such
as RAID (see section 7.5) and caching (see section 7.12).

The Future of Magnetic Disks

The disk industry has concentrated on improving the capacity of disks. Improve-
ment in capacity is customarily expressed as improvement in

areal density

,

mea-
sured in bits per square inch:

Through about 1988 the rate of improvement of areal density was 29% per year,
thus doubling density every three years. Between then and about 1996, the rate
improved to 60% per year, quadrupling density every three years and matching
the traditional rate of DRAMs. From 1997 to 2001 the rate increased to 100%, or
doubling every year. In 2001, the highest density in commercial products is 20
billion bits per square inch, and the lab record is 60 billion bits per square inch.

Cost per gigabyte has dropped at least as fast as areal density has increased,
with smaller drives playing the larger role in this improvement. Figure 7.3 on

0.5
10000 RPM-----------------------------

0.5 KB
40.0 MB/sec------------------------------

+

0.013 4.783⁄

Areal density
Tracks
Inch---------------- on a disk surface

Bits
Inch---------- on a track×=

7.2 Types of Storage Devices

493

page 493 plots price per personal computer disk between 1983 and 2000, show-
ing both the rapid drop in price and the increase in capacity. Figure 7.4 on
page 494 above translates these costs into price per gigabyte, showing that it has
improved by a factor of 10,000 over those 17 years. Notice the much quicker
drop in prices per disk over time, reflecting faster decrease in price per gigabyte.

Because it is more efficient to spin smaller mass, smaller-diameter disks save
power as well as volume. In 2001, 3.5-inch or 2.5-inch drives are the leading
technology. In the largest drives, rotation speeds have improved from the 3600
RPM standard of the 1980s to 5400–7200 RPM in the 1990s to 10000-15000
RPM in 2001. When combined with increasing density (bits per inch on a track),
transfer rates have improved recently by almost 40% per year. There has been
some small improvement in seek speed, typically less than 10% per year.

FIGURE 7.3 Price per personal computer disk by capacity (in megabytes) between 1983 and 2001.

 Note that later
the price declines become steeper as the industry increases its rate of improvement from 30% per year to 100% per year.
The capacity per disk increased almost 4000 times in 18 years. Although disks come in many sizes, we picked a small num-
ber of fixed sizes to show the trends. The price was adjusted to get a consistent disk capacity (e.g., shrinking the price of an
86-MB disk by 80/86 to get a point for the 80-MB line). The prices are in July 2001 dollars, adjusted for inflation using the
Producer Price Index for manufacturing industries. The prices through 1995 were collected by Mike Dahlin from advertise-
ments from the January and July editions of Byte magazine, using the lowest price of a disk of a particular size in that issue.
Between January 1996 and January 2000, the advertisements come from PC Magazine, as Byte ceased publication. Since
July 2000, the results came from biannual samples of pricewatch.com. (See http://www.cs.utexas.edu/users/dahlin/
techTrends/data/diskPrices)

$ 0

$500

$1,000

$1,500

$2,000

$2,500

8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 1

Price
per disk

20 80 210 420 1050 2100

4200 9100 18200 36400 72800

494

Chapter 7 Storage Systems

Magnetic disks have been challenged many times for supremacy of secondary
storage. One reason has been the fabled

access time gap

 between disks and
DRAM, as shown in Figure 7.5. DRAM latency is about 100,000 times less than
disk, although bandwidth is only about 50 times larger. That performance gain
costs 100 times more per gigabyte in 2001.

Many have tried to invent a technology cheaper than DRAM but faster than
disk to fill that gap, but thus far, all have failed. So far, challengers have never had
a product to market at the right time. By the time a new product would ship,
DRAMs and disks have made advances as predicted earlier, costs have dropped
accordingly, and the challenging product is immediately obsolete.

FIGURE 7.4 Price per gigabyte of personal computer disk over time, dropping a factor of 10000 between 1983 and
20001.

The center point is the median price per GB, with the low point on the line being the minimum and the high point
being the maximum. Note that the graph drops starting in about 1991, and that in January 1997 the spread from minimum
to maximum becomes large. This spread is due in part to the increasing difference in price between ATA.IDE and SCSI
disks; see section 7.14. The data collection method changed in 2001 to collect more data, which may explain the larger
spread between minimum and maximum. These data were collected in the same way as for Figure 7.3, except that more
disks are included on this graph. The prices were adjusted for inflation as in Figure 7.3.

$ 1

$10

$100

$1,000

$10,000

$100,000

$1,000,000

8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 1

Dollars per
Gigabyte

7.2 Types of Storage Devices

495

Optical Disks

One challenger to magnetic disks is

optical compact disks,

 or

CDs

, and its suc-
cessor, called

Digital Video Discs

 and then

Digital Versatile Discs

 or just

DVDs

.
Both the

CD-ROM

 and

DVD-ROM

 are removable and inexpensive to manufac-
ture, but they are read-only mediums. These 4.7-inch diameter disks hold 0.65
and 4.7 GB, respectively, although some DVDs write on both sides to double
their capacity. Their high capacity and low cost have led to CD-ROMs and DVD-
ROMs replacing floppy disks as the favorite medium for distributing software
and other types of computer data.

The popularity of CDs and music that can be downloaded from the WWW led
to a market for rewritable CDs, conveniently called CD-RW, and write once CDs,
called CD-R. In 2001, there is a small cost premium for drives that can record on
CD-RW. The media itself costs about $0.20 per CD-R disk or $0.60 per CD-RW
disk. CD-RWs and CD-Rs read at about half the speed of CD-ROMs and CD-
RWs and CD-Rs write at about a quarter the speed of CD-ROMs.

FIGURE 7.5 Cost versus access time for SRAM, DRAM, and magnetic disk in 1980, 1985, 1990, 1995, and 2000.

The
two-order-of-magnitude gap in cost and access times between semiconductor memory and rotating magnetic disks has in-
spired a host of competing technologies to try to fill it. So far, such attempts have been made obsolete before production by
improvements in magnetic disks, DRAMs, or both. Note that between 1990 and 2000 the cost per megabyte of SRAM and
DRAM chips made less improvement, while disk cost made dramatic improvement. <<Note to artist: Need to change the Y-
axis scale to go to 0.001, so that can add 2000 disk point at about 0.01 and 8,000,0000 ns.>>

Access time (ns)

Cost
($/MB)

100,000

10,000 100,000 1,000,000 10,000,000 100,000,000

1000

1000

100

100

10

10

1

1
.1

Access time gap

1980

10,000 1980

1985

1990
1995

2000

1980

1985

1990
1995 1985

1990

1995

2000

2000

SRAM (chip) DRAM (chip) Disk

496

Chapter 7 Storage Systems

The are also write-once and rewritable DVDs, called DVD-R and (alas) DVD-
RAM. Rewritable DVD drives cost ten times as much as DVD-ROM drives. The
media cost is about $10 per DVD-R disk to $15 per DVD-RAM disk. DVD-RAM
reads and writes at about a third of the speed of DVD-ROMs, and DVD-R writes
at the speed of DVD-RAM and reads at the speed of DVD-ROMs.

As CDs and DVDs are the replaceable media for the consumer mass market,
their rate of improvement is governed by standards committees. It appears that
magnetic storage grows more quickly than human beings can agree on standards.
Writable optical disks may have the potential to compete with new tape technolo-
gies for archival storage, as tape also improves much more slowly than disks.

Magnetic Tapes

Magnetic tapes have been part of computer systems as long as disks because they
use the similar technology as disks, and hence historically have followed the
same density improvements. The inherent cost/performance difference between
disks and tapes is based on their geometries:

n

Fixed rotating platters offer random access in milliseconds, but disks have a
limited storage area and the storage medium is sealed within each reader.

n

Long strips wound on removable spools of “unlimited” length mean many
tapes can be used per reader, but tapes require sequential access that can take
seconds.

One of the limits of tapes had been the speed at which the tapes can spin with-
out breaking or jamming. A technology called

helical scan tapes

 solves this prob-
lem by keeping the tape speed the same but recording the information on a
diagonal to the tape with a tape reader that spins much faster than the tape is
moving. This technology increases recording density by about a factor of 20 to
50. Helical scan tapes were developed for low-cost VCRs and camcorders, which
brought down the cost of the tapes and readers.

One drawback to tapes is that they wear out; Helical tapes last for hundreds of
passes, while the traditional longitudinal tapes wear out in thousands to millions
of passes. The helical scan read/write heads also wear out quickly, typically rated
for 2000 hours of continuous use. Finally, there are typically long rewind, eject,
load, and spin-up times for helical scan tapes. In the archival backup market, such
performance characteristics have not mattered, and hence there has been more
engineering focus on increasing density than on overcoming these limitations.

Traditionally, tapes enjoyed a 10X-100X advantage over disks in price per gi-
gabyte, and were the technology of choice for disk backups. In 2001, it appears
that tapes are falling behind the rapid advance in disk technology. Whereas in the
past the contents of several disks could be stored on a single tape, the largest disk
has greater capacity than the largest tapes. Amazingly, the prices of magnetic
disks and tape media have crossed: in 2001, the price of a 40 GB IDE disk is
about the same as the price of a 40 GB tape!

7.2 Types of Storage Devices

497

In the past, the claim was that magnetic tapes must track disks since innova-
tions in disks must help tapes. This claim was important, because tapes are a
small market and cannot afford a separate large research and development effort.
One reason the market is small is that PC owners generally do not back up disks
onto tape, and so while PCs are by far the largest market for disks, PCs are a
small market for tapes.

Recently the argument has changed to that tapes have compatibility require-
ments that are not imposed on disks; tape readers must read or write the current
and previous generation of tapes, and must read the last four generations of tapes.
As disks are a closed system, the disk heads need only read the platters that are
enclosed with them, and this advantage explains why disks are improving at rates
that much more rapid.

In addition to the issue of capacity, another challenge is recovery time. Tapes
are also not keeping up in bandwidth of disks. Thus, as disks continue to grow, its
is not only more expensive to use tapes for backups, it will also take much longer
to recover if a disaster occurs.

This growing gap between rate of improvement in disks and tapes calls into
question the sensibility of tape backup for disk storage.

Some bold organizations get rid of tapes altogether, using networks and re-
mote disks to replicate the data geographically. The sites are picked so that disas-
ters would not take out both sites, enabling instantaneous recovery time. These
sites typically use a file system that does not overwrite data, which allows acci-
dentally discarded files to be recovered. Such a solution depends on advances in
disk capacity and network bandwidth to make economic sense, but these two are
getting much more investment and hence have better records of accomplishment
than tape.

Automated Tape Libraries

Tape capacities are enhanced by inexpensive robots to automatically load and
store tapes, offering a new level of storage hierarchy. These

nearline

 tapes mean
access to terabytes of information in tens of seconds, without the intervention of
a human operator. Figure 7.6 shows the Storage Technologies Corporation (STC)
PowderHorn, which loads up to 6000 tapes, giving a total capacity of 300 ter-
abytes. Putting this capacity into perspective, the Library of Congress is estimat-
ed to have 30 terabytes of text, if books could be magically transformed into
ASCII characters.

There are many versions of tape libraries, but these mechanical marvels are
not as reliable as other parts of the computer; its not uncommon for tape libraries
to have failure rates a factor of 10 higher than other storage devices.

Flash Memory

Embedded devices also need nonvolatile storage, but premiums placed on space
and power normally lead to the use of Flash memory instead of magnetic record-

498

Chapter 7 Storage Systems

ing. Flash memory is also used as a rewritable ROM in embedded system, typi-
cally to allow software to be upgraded without having to replace chips.
Applications are typically prohibited from writing to Flash memory in such cir-
cumstances.

Like electrically erasable and programmable read-only memories (EEPROM),
Flash memory is written by inducing the tunneling of charge from transistor gain
to a floating gate. The floating gate acts as a potential well which stores the
charge, and the charge cannot move from there without applying an external
force. The primary difference between EEPROM and Flash memory is that Flash
restricts write to multi-kilobyte blocks, increasing memory capacity per chip by
reducing area dedicated to control.

Compared to disks, Flash memories offer low power consumption (less than
50 milliwatts), can be sold in small sizes, and offer read access times comparable
to DRAMs. In 2001, a 16 Mbit Flash memory has a 65 ns access time, and a 128
Mbit Flash memory has a 150 ns access time. Some memories even borrow the
page mode assesses acceleration from DRAM to bring the time per word down in
block transfers to 25 to 40 ns. Unlike DRAMs, writing is much slower and more
complicated, sharing characteristics with the older electrically programmable
read-only memories (EPROM) and electrically erasable and programmable read-
only memories (EEPROM). A block of Flash memory are first electrically erased,
and then written with 0s and 1s.

If the logical data is smaller than the Flash block size, the good data that
should survive must be copied to another block before the old block can be
erased. Thus, information is organized in Flash as linked lists of blocks. Such
concerns lead to software that collects good data into fewer blocks so that the rest

FIGURE 7.6 The StorageTek PowderHorn 9310.

This storage silo holds 2000 to 6000
tape cartridges per Library Storage Module (LSM); using the 9840 cartridge, the total uncom-
pressed capacity is 300 terabytes. Each cartridge holds 20 GB of uncompressed data. De-
pending on the block size and compression, reader transfer at 1.6 to 7.7 MB/second in tests,
with a peak speed of 20 MB/second of compressed data. Each LSM has up to 10 tape read-
ers, and can exchange up to 450 cartridges per hour. One LSM is 7.7 feet tall, 10.7 feet in
diameter, uses about 1.1 kilowatts, and weighs 8200 pounds. Sixteen LSMs can be linked to-
gether to pass cartridges between modules, increasing storage capacity another order of
magnitude (Courtesy STC.)

7.2 Types of Storage Devices

499

can be erased. The linked list structure is also used by some companies to map
out bad blocks and offer reduced memory parts at half price rather than discard
flawed chips.

The electrical properties of Flash memory are not as well understood as
DRAM. Each company’s experience, including whether it manufactured EPROM
or EEPROM before Flash, affects the organization that it selects. The two basic
types of Flash are based on the whether the building blocks for the bits are NOR
or NAND gates. NOR Flash devices in 2000 typically take one to two seconds to
erase 64 KB to 128 KB blocks, while NAND Flash devices take 5 to 6 millisec-
ond to erase smaller blocks of 4 KB to 8 KB. Programming takes 10 microsec-
onds per byte for NOR devices and 1.5 microseconds per byte for NAND
devices. The number of times bits can be erased and still retain information is
also often limited, typically about 100,000 cycles for NOR devices and 1,000,000
for some NAND devices.

An example illustrates read and write performance of Flash versus disks.

E X A M P L E

Compare the time to read and write a 64-KB block to Flash memory, and
magnetic disk. For Flash, assume it takes 65 nanoseconds to read one
byte, 1.5 microseconds to write one byte, and 5 milliseconds to erase 4
KB. For disk, use the parameters of the Microdrive in Figure 7.2 on
page 490. Assume the measured seek time is one-third of the calculated
average, the controller overhead is 0.1 ms, and the data is stored in the
outer tracks giving it the fastest transfer rate.

A N S W E R

Average disk access is equal to average seek time + average rotational
delay + transfer time + controller overhead. The average time to read or
write 64 KB in a Microdrive disk is:

 + 0.1 ms = 4.0 + 8.3 + 14.9 + 0.1 = 27.3 ms

To read 64 KB in Flash you simply divide the 64 KB by the read bandwidth:

To write 64 KB, first erase it and then divide 64 KB by the write bandwidth:

Thus, Flash memory is about 6 times faster than disk for reading 64KB,
and disk is about 6 times faster than Flash memory for writing 64KB. Note
that this example assumes the Microdrive is already operating. If it was
powered off to save energy, we should add time for it to resume.

n

12 ms
3--------------

0.5
3600 RPM--------------------------

64 KB
4.2 MB/sec---------------------------

+ +

Flash read time 64 KB
1B/65 nanoseconds---

4 259 840 ns 4.3 ms=, ,= =

Flash write time 64 KB
4KB/5 ms-------------------------

64 KB
1B/1.5 microseconds---

+ 80 ms 98 304,+ us 178.3 ms== =

500 Chapter 7 Storage Systems

The price per megabyte of Flash memory is about 6 times more than DRAM
in 2001, making it 600 times more expensive per megabyte than disk. Of course
Flash does has its uses, for example when the designer may need only tens of
megabytes or less of storage, not provided economically by disks.

Now that we have described several storage devices, we must discover how to
connect them to a computer.

In a computer system, the various subsystems must have interfaces to one anoth-
er; for instance, the memory and CPU need to communicate, and so do the CPU
and I/O devices. This communication is commonly done using a bus. The bus
serves as a shared communication link between the subsystems. The two major
advantages of the bus organization are low cost and versatility. By defining a sin-
gle interconnection scheme, new devices can be added easily and peripherals
may even be moved between computer systems that use a common bus. The cost
of a bus is low, since a single set of wires is shared among multiple devices.

The major disadvantage of a bus is that it creates a communication bottleneck,
possibly limiting the maximum I/O throughput. When I/O must pass through a
central bus, this bandwidth limitation is as real as—and sometimes more severe
than—memory bandwidth. In server systems, where I/O is frequent, designing a
bus system capable of meeting the demands of the processor is a major challenge.

As Moore’s Law marches on, buses are increasingly being replaced by net-
works and switches (see section 7.10). To avoid the bus bottleneck, some I/O de-
vices are connected to computers via Storage Area Networks (SANs). SANs are
covered in the next chapter, so this section concentrates on buses.

One reason bus design is so difficult is that the maximum bus speed is largely
limited by physical factors: the length of the bus and the number of devices (and,
hence, bus loading). These physical limits prevent arbitrary bus speedup. The de-
sire for high I/O rates (low latency) and high I/O throughput can also lead to con-
flicting design requirements.

Buses were traditionally classified as CPU-memory buses or I/O buses. I/O
buses may be lengthy, may have many types of devices connected to them, have a
wide range in the data bandwidth of the devices connected to them, and normally
follow a bus standard. CPU-memory buses, on the other hand, are short, generally
high speed, and matched to the memory system to maximize memory-CPU band-
width. During the design phase, the designer of a CPU-memory bus knows all the
types of devices that must connect together, while the I/O bus designer must ac-
cept devices varying in latency and bandwidth capabilities. To lower costs, some
computers have a single bus for both memory and I/O devices. In the quest for
higher I/O performance, some buses are a hybrid of the two. For example, PCI is
relatively short, and is used to connect to more traditional I/O buses via bridges
that speak both PCI on one end and the I/O bus protocol on the other. To indicate
its intermediate state, such buses are sometimes called mezzanine buses.

7.3 Buses—Connecting I/O Devices to CPU/Memory

7.3 Buses—Connecting I/O Devices to CPU/Memory 501

Let’s review a typical bus transaction, as seen in Figure 7.7. A bus transaction
includes two parts: sending the address and receiving or sending the data. Bus
transactions are usually defined by what they do to memory: A read transaction
transfers data from memory (to either the CPU or an I/O device), and a write
transaction writes data to the memory.

In a read transaction, the address is first sent down the bus to the memory, to-
gether with the appropriate control signals indicating a read. In Figure 7.7, this
means asserting the read signal. The memory responds by returning the data on
the bus with the appropriate control signals, in this case deasserting the wait sig-
nal. A write transaction requires that the CPU or I/O device send both address
and data and requires no return of data. Usually the CPU must wait between
sending the address and receiving the data on a read, but the CPU often does not
wait between sending the address and sending the data on writes.

Bus Design Decisions

The design of a bus presents several options, as Figure 7.8 shows. Like the rest of
the computer system, decisions depend on cost and performance goals. The first
three options in the figure are clear—separate address and data lines, wider data
lines, and multiple-word transfers all give higher performance at more cost.

FIGURE 7.7 Typical bus read transaction. The diagonal lines show when the data is
changing with respect to the clock signal. This bus is synchronous. The read begins when the
Not Read signal is asserted, and data are not ready until the wait signal is deasserted. The
vertical bar shows when the data is ready to be read by the CPU.

Clock

Address

Data

Read

Wait

502 Chapter 7 Storage Systems

The next item in the table concerns the number of bus masters. These devices
can initiate a read or write transaction; the CPU, for instance, is always a bus
master. A bus has multiple masters when there are multiple CPUs or when I/O
devices can initiate a bus transaction. If there are multiple masters, an arbitration
scheme is required among the masters to decide which one gets the bus next. Ar-
bitration is often a fixed priority for each device, as is the case with daisy-chained
devices, or an approximately fair scheme that randomly chooses which master
gets the bus.

With multiple masters, a bus can offer higher bandwidth by using packets, as
opposed to holding the bus for the full transaction. This technique is called split
transactions. (Some systems call this ability connect/disconnect, a pipelined bus,
a pended bus, or a packet-switched bus; the next chapter goes into more detail on
packet switching.) Figure 7.9 shows the split-transaction bus. The idea is to di-
vide bus events into requests and replies, so that bus can be used in the time be-
tween the request and the reply.

The read transaction is broken into a read-request transaction that contains the
address and a memory-reply transaction that contains the data. Each transaction
must now be tagged so that the CPU and memory can tell which reply is for
which request. Split transactions make the bus available for other masters while
the memory reads the words from the requested address. It also normally means
that the CPU must arbitrate for the bus to send the data and the memory must ar-
bitrate for the bus to return the data. Thus, a split-transaction bus has higher
bandwidth, but it usually has higher latency than a bus that is held during the
complete transaction.

The final item in Figure 7.8, clocking, concerns whether a bus is synchronous
or asynchronous. If a bus is synchronous, it includes a clock in the control lines
and a fixed protocol for sending address and data relative to the clock. Since little
or no logic is needed to decide what to do next, these buses can be both fast and
inexpensive. They have two major disadvantages, however. Because of clock-
skew problems, synchronous buses cannot be long, and everything on the bus
must run at the same clock rate. Some buses allow multiple speed devices on a

Option High performance Low cost

Bus width Separate address and data lines Multiplex address and data lines

Data width Wider is faster (e.g., 64 bits) Narrower is cheaper (e.g., 8 bits)

Transfer size Multiple words have less bus overhead Single-word transfer is simpler

Bus masters Multiple (requires arbitration) Single master (no arbitration)

Split
transaction?

Yes—separate request and reply packets get
higher bandwidth (need multiple masters)

No—continuous connection is cheaper and
has lower latency

Clocking Synchronous Asynchronous

FIGURE 7.8 The main options for a bus. The advantage of separate address and data buses is primarily on writes.

7.3 Buses—Connecting I/O Devices to CPU/Memory 503

bus, but they all run at the rate of the slowest device. CPU-memory buses are typ-
ically synchronous.

An asynchronous bus, on the other hand, is not clocked. Instead, self-timed,
handshaking protocols are used between bus sender and receiver. Figure 7.10
shows the steps of a master performing a write on an asynchronous bus.

Asynchrony makes it much easier to accommodate a variety of devices and to
lengthen the bus without worrying about clock skew or synchronization prob-
lems. If a synchronous bus can be used, it is usually faster than an asynchronous
bus because it avoids the overhead of synchronizing the bus for each transaction.
The choice of synchronous versus asynchronous bus has implications not only for
data bandwidth, but also for an I/O system’s physical distance and the number of
devices that can be connected to the bus. Hence, I/O buses are more likely to be
asynchronous than are memory buses. Figure 7.11 suggests when to use one over
the other.

Bus Standards

The number and variety of I/O devices is flexible on many computers, permitting
customers to tailor computers to their needs. The I/O bus is the interface to which
devices are connected. Standards that let the computer designer and I/O-device
designer work independently play a large role in buses. As long as both designers
meet the requirements, any I/O device can connect to any computer. The I/O bus
standard is the document that defines how to connect devices to computers.

FIGURE 7.9 A split-transaction bus. Here the address on the bus corresponds to a later
memory access.

Address addr1 addr2 addr3

Data data 0 data 1 d

Wait Wait 1 OK 1

504 Chapter 7 Storage Systems

Machines sometimes grow to be so popular that their I/O buses become de
facto standards; examples are the PDP-11 Unibus and the IBM PC-AT Bus. Once
many I/O devices have been built for a popular machine, other computer design-
ers will build their I/O interface so that those devices can plug into their machines
as well. Sometimes standards also come from an explicit standards effort on the
part of I/O device makers. Ethernet is an example of a standard that resulted from
the cooperation of manufacturers. If standards are successful, they are eventually
blessed by a sanctioning body like ANSI or IEEE. A recent variation on tradition-
al standards bodies is trade associations. In that case a limited number of compa-
nies agree to produce a standard without cooperating with standards bodies, yet it
is still done by committee. PCI is one example of a trade association standard.

Examples of Buses

Figures 7.12 to 7.14 summarize characteristics of common desktop I/O buses,
I/O buses found in embedded devices, and CPU-memory interconnects found in
servers.

FIGURE 7.10 A master performs a write on an asynchronous bus. The state of the transaction at each time step is as
follows. The master has obtained control and asserts address, read/write, and data. It then waits a specified amount of time
for slaves to decode target: t1: Master asserts request line; t2: Slave asserts ack, indicating data received; t3: Master releas-
es req; t4: Slave releases ack.

Address Next address

Data

Master asserts address

Master asserts data

Read

Request

t0 t1 t2 t3 t4

Acknowledgment

7.3 Buses—Connecting I/O Devices to CPU/Memory 505

FIGURE 7.11 Preferred bus type as a function of length/clock skew and variation in
I/O device speed. Synchronous is best when the distance is short and the I/O devices on
the bus all transfer at similar speeds.

IDE/Ultra ATA SCSI PCI PCI-X

Data width (primary) 16 bits 8 or 16 bits (Wide) 32 or 64 bits 32 or 64 bits

Clock rate up to 100 MHz 10 MHz (Fast),
 20 MHz (Ultra),
 40 MHz (Ultra2),
 80 MHz (Ultra3 or Ultra160),
160 MHz (ultra4or Ultra320)

33 or 66 MHz 66, 100, 133
MHz

Number of bus masters 1 Multiple Multiple Multiple

Bandwidth, peak 200 MB/sec 320 MB/sec 533 MB/sec 1066 MB/sec

Clocking Asynchronous Asynchronous Synchronous Synchronous

Standard — ANSI X3.131 — —

FIGURE 7.12 Summary of parallel I/O buses. Peripheral Component Interconnect (PCI) and PCI Extended (PCI-X) con-
nect main memory to peripheral devices. IDE/ATA and SCSI compete as interfaces to storage devices. IDE, or Integrated
Drive Electronics, is an early disk standard that connects two disks to a PC. It has been extended by AT-bus Attachment
(ATA), to be both wider and faster. Small Computer System Interconnect (SCSI) connects up to 7 devices for 8-bit bus-
ses and up to 15 devices for 16-bit busses. They can even be different speeds, but they run at the rate of the slowest device.
The peak bandwidth of a SCIS bus is the width (1 or 2 bytes) times the clock rate (10 to 160 MHz). Most SCSI buses today
are 16-bits.

Asynchronous better

Synchronous better

Mixture of I/O
device speeds

VariedSimilar

Short

Long

Clock skew
(function of
bus length)

506 Chapter 7 Storage Systems

Interfacing Storage Devices to the CPU

Having described I/O devices and looked at some of the issues of the connecting
bus, we are ready to discuss the CPU end of the interface. The first question is
where the physical connection of the I/O bus should be made. The two choices
are connecting the bus to memory or to the cache. In this section, we examine the
more usual case in which the I/O bus is connected to the main memory bus.
Figure 7.15 shows a typical organization for desktops. In low-cost systems, the I/
O bus is the memory bus; this means an I/O command on the bus could interfere
with a CPU instruction fetch, for example.

Once the physical interface is chosen, the question becomes: How does the
CPU address an I/O device that it needs to send or receive data? The most com-
mon practice is called memory-mapped I/O. In this scheme, portions of the ma-
chine’s address space are assigned to I/O devices. Reads and writes to those

I2C 1-wire RS232 SPI

Data width (primary) 1 bit 1 bit 2 bits 1 bit

Signal Wires 2 1 9 or 25 3

Clock rate 0.4 to 10 MHz Asynchronous 0.040 MHz or
asynchronous

asynchronous

Number of bus masters Multiple Multiple Multiple Multiple

Bandwidth, peak 0.4 to 3.4 Mbit/sec 0.014 Mbit/sec 0.192 Mbit/sec 1 Mbit/sec

Clocking Asynchronous Asynchronous Asynchronous Asynchronous

Standard None None ElA, ITU-T V.21 None

FIGURE 7.13 Summary of serial I/O buses, often used in embedded computers. I2C was invented by Phillips in the
early 1980s. 1-wire was developed by Dallas Semiconductor. RS-232 was introduced in 1962. SPI was created by Motorola
in the early 1980s.

HP HyperPlane Crossbar IBM SP Sun Gigaplane-XB

Data width (primary) 64 bits 128 bits 128 bits

Clock rate 120 MHz 111 MHz 83.3 MHz

Number of bus masters Multiple Multiple Multiple

Bandwidth per port, peak 960 MB/sec 1,700 MB/sec 1,300 MB/sec

Bandwidth total, peak 7,680 MB/sec 14,200 MB/sec 10,667 MB/sec

Clocking Synchronous Synchronous Synchronous

Standard None None None

FIGURE 7.14 Summary of CPU-memory interconnects found in 2000 servers. These servers use crossbars switches
to connect nodes processors together instead of a shared bus interconnect. Each bus connects up to four processors and
memory controllers, and then the crossbar connects the busses together. The number of slots in the crossbar is 16, 8, and
16, respectively.

7.3 Buses—Connecting I/O Devices to CPU/Memory 507

addresses may cause data to be transferred; some portion of the I/O space may
also be set aside for device control, so commands to the device are just accesses
to those memory-mapped addresses.

The alternative practice is to use dedicated I/O opcodes in the CPU. In this
case, the CPU sends a signal that this address is for I/O devices. Examples of
computers with I/O instructions are the Intel 80x86 and the IBM 370 computers.
I/O opcodes have been waning in popularity.

No matter which addressing scheme is selected, each I/O device has registers to
provide status and control information. Through either loads and stores in memo-
ry-mapped I/O or through special instructions, the CPU sets flags to determine the
operation the I/O device will perform.

FIGURE 7.15 A typical interface of I/O devices and an I/O bus to the CPU-memory
bus.

Cache

CPU-memory bus

CPU

I/O bus

I/O
controller

Disk Disk CD

Network

I/O
controller

I/O
controller

Bus
adapter

AGP bus

Graphics
output

I/O
controller

Bus
adapter

PCI bus

Bus
adapter

Main
memory

508 Chapter 7 Storage Systems

Any I/O event is rarely a single operation. For example, the DEC LP11 line
printer has two I/O device registers: one for status information and one for data to
be printed. The status register contains a done bit, set by the printer when it has
printed a character, and an error bit, indicating that the printer is jammed or out
of paper. Each byte of data to be printed is put into the data register; the CPU
must then wait until the printer sets the done bit before it can place another char-
acter in the buffer.

This simple interface, in which the CPU periodically checks status bits to see
if it is time for the next I/O operation, is called polling. As you might expect,
CPUs are so much faster than I/O devices that polling may waste a lot of CPU
time. A huge fraction of the CPU cycles must be dedicated to interrogating the I/
O device rather than performing useful computation. This inefficiency was recog-
nized long ago, leading to the invention of interrupts that notify the CPU when it
is time to service the I/O device.

Interrupt-driven I/O, used by most systems for at least some devices, allows
the CPU to work on some other process while waiting for the I/O device. For ex-
ample, the LP11 has a mode that allows it to interrupt the CPU whenever the
done bit or error bit is set. In general-purpose applications, interrupt-driven I/O is
the key to multitasking operating systems and good response times.

The drawback to interrupts is the operating system overhead on each event. In
real-time applications with hundreds of I/O events per second, this overhead can
be intolerable. One hybrid solution for real-time systems is to use a clock to peri-
odically interrupt the CPU, at which time the CPU polls all I/O devices.

Delegating I/O Responsibility from the CPU

We approached the task by starting with a simple scheme and then adding com-
mands and features that we felt would enhance the power of the machine. Gradu-
ally the [display] processor became more complex. ... Finally the display
processor came to resemble a full-fledged computer with some special graphics
features. And then a strange thing happened. We felt compelled to add to the pro-
cessor a second, subsidiary processor, which, itself, began to grow in complexity.
It was then that we discovered the disturbing truth. Designing a display processor
can become a never-ending cyclical process. In fact, we found the process so frus-
trating that we have come to call it the “wheel of reincarnation.”

Ivan Sutherland, considered the father of computer graphics (1968)

Interrupt-driven I/O relieves the CPU from waiting for every I/O event, but many
CPU cycles are still spent in transferring data. Transferring a disk block of 2048
words, for instance, would require at least 2048 loads from disk to CPU registers
and 2048 stores from CPU registers to memory, as well as the overhead for the
interrupt. Since I/O events so often involve block transfers, direct memory access
(DMA) hardware is added to many computer systems to allow transfers of num-
bers of words without intervention by the CPU.

7.4 Reliability, Availability, and Dependability 509

The DMA hardware is a specialized processor that transfers data between
memory and an I/O device while the CPU goes on with other tasks. Thus, it is ex-
ternal to the CPU and must act as a master on the bus. The CPU first sets up the
DMA registers, which contain a memory address and number of bytes to be trans-
ferred. More sophisticated DMA devices support scatter/gather, whereby a DMA
device can write or read data from a list of separate addresses. Once the DMA
transfer is complete, the DMA controller interrupts the CPU. There may be multi-
ple DMA devices in a computer system; for example, DMA is frequently part of
the controller for an I/O device.

Increasing the intelligence of the DMA device can further unburden the
CPU. Devices called I/O processors (or channel controllers) operate either from
fixed programs or from programs downloaded by the operating system. The op-
erating system typically sets up a queue of I/O control blocks that contain infor-
mation such as data location (source and destination) and data size. The I/O
processor then takes items from the queue, doing everything requested and
sending a single interrupt when the task specified in the I/O control blocks is
complete. Whereas the LP11 line printer would cause 4800 interrupts to print a
60-line by 80-character page, an I/O processor could save 4799 of those inter-
rupts.

I/O processors are similar to multiprocessors in that they facilitate several
processes being executed simultaneously in the computer system. I/O processors
are less general than CPUs, however, since they have dedicated tasks, and thus
the parallelism they enable is much more limited. In addition, an I/O processor
doesn’t normally change information, as a CPU does, but just moves information
from one place to another.

Embedded computers are characterized by a rich variety of DMA devices and
I/O controllers. For example, Figure 7.16 shows the Au1000, a MIPS processor
for embedded applications, which includes about 10 DMA channels and 20 I/O
device controllers on chip.

Now that we have covered the basic types of storage devices and ways to con-
nect them to the CPU, we are ready to look at ways to evaluate the performance
of storage systems.

Whereas people may be willing to live with a computer that occasionally crashes
and forces all programs to be restarted, they insist that their information is never
lost. The prime directive for storage is then to remember information, no matter
what happens.

One persistent shortcoming with the general topic of making computers sys-
tems that can survive component faults has been confusion over terms. Conse-

7.4 Reliability, Availability, and Dependability

510 Chapter 7 Storage Systems

quently, perfectly good words like reliability and availability have been abused
over the years so that their precise meaning is unclear.

Here are some examples of the difficulties. Is a programming mistake a fault,
error, or failure? Does it matter whether we are talking about when it was de-
signed, or when the program is run? If the running program doesn’t exercise the
mistake, is it still a fault/error/failure? Try another one. Suppose an alpha particle

FIGURE 7.16 The Alchemy Semiconductor Au1000. Embedded devices typically have many DMAs and I/O intercon-
nections, as illustrated in the Au1000. Eight DMA channels are included along with a separate IrDA DMA controller for net-
working. On chip controllers include an SDRAM memory controller, a static RAM controller, two Ethernet MAC layer
controllers, USB host and device controllers, two interrupt controllers, two 32-bit GPIO buses, and several embedded bus
controllers: four UARTs, a SPI, a SSP, a I2S, and a AC97. This MIPS32 core operates from 200 MHz, at 1.25V and 200 mW
for the whole chip, to 500 MHz, at 1.8V and 900 mW. The on-chip system bus operates at 1/2 to 1/5 of the MIPS core clock
rate.

SDRAMSDRAM

SDRAMSDRAM

100 MHz

UART (4)UART (4)

SPISPI

P
erip

heral B
us

GPIO (6-32)GPIO (6-32)

Power MgmtPower Mgmt

RTC (2)RTC (2)

I2SI2S

Interrupt ControlInterrupt Control

AC97 LinkAC97 Link

USB-DeviceUSB-Device

SSPSSP

Peripheral BUS IF

SRAMSRAM
ControllerController

E
n

ha
nc

ed
E

nh
an

ce
d

M
IP

S
32

M
IP

S3
2

C
P

U
C

PU

SDRAMSDRAM
ControllerController

32 x 16 32 x 16
MACMAC D

M
M

U
D

M
M

U
D

M
M

U
D

M
M

U

16KB 16KB
D-CacheD-Cache

16KB 16KB
D-CacheD-Cache

Bus UnitBus Unit

USB – HostUSB – HostUSB – Host

Ethernet MACEthernet MACEthernet MAC

DMA ControllerDMA ControllerDMA Controller

EJTAGEJTAGEJTAG

Ethernet MACEthernet MACEthernet MAC

Fast IRDAFast IRDAFast IRDA

Sy
st

em
 B

us

System Bus

SR
A

M
, R

O
M

, F
la

sh
, P

C
M

C
IA

, X
 -

 B
us

,..
.

7.4 Reliability, Availability, and Dependability 511

hits a DRAM memory cell. Is it a fault/error/failure if it doesn’t change the val-
ue? Is it a fault/error/failure if the memory doesn’t access the changed bit? Did a
fault/error/failure still occur if the memory had error correction and delivered the
corrected value to the CPU? A third example is a mistake by a human operator.
Again, the same issues arise about data change, latency, and observability. You
get the drift of the difficulties.

Clearly, we need precise definitions to discuss about such events intelligently.

Defining Failure

To avoid such imprecision, this subsection is based on the terminology used by
Laprie [1985] and Gray and Siewiorek [1991], endorsed by IFIP working group
10.4 and the IEEE Computer Society Technical Committee on Fault Tolerance.
We talk about a system as a single module, but the terminology applies to sub-
modules recursively.

Laprie picked a new term––dependability–– to have a clean slate to work
with:

Computer system dependability is the quality of delivered service such that re-
liance can justifiably be placed on this service. The service delivered by a sys-
tem is its observed actual behavior as perceived by other system(s) interacting
with this system’s users. Each module also has an ideal specified behavior,
where a service specification is an agreed description of the expected behavior.
A system failure occurs when the actual behavior deviates from the specified
behavior. The failure occurred because an error, a defect in that module. The
cause of an error is a fault.

When a fault occurs it creates a latent error, which becomes effective when it
is activated; when the error actually affects the delivered service, a failure oc-
curs. The time between the occurrence of an error and the resulting failure is
the error latency. Thus, an error is the manifestation in the system of a fault,
and a failure is the manifestation on the service of an error.

Let’s go back to our motivating examples above. A programming mistake is a
fault; the consequence is an error (or latent error) in the software; upon activa-
tion, the error becomes effective; when this effective error produces erroneous
data which affect the delivered service, a failure occurs. An alpha particle hitting
a DRAM can be considered a fault; if it changes the memory, it creates an error;
the error will remain latent until the effected memory word is read; if the effec-
tive word error affects the delivered service, a failure occurs. (If ECC corrected
the error, a failure would not occur.) A mistake by a human operator is a fault; the
resulting altered data is an error; it is latent until activated; and so on as before.

To clarify, the relation between faults, errors, and failures is:

n A fault creates one or more latent errors.

n The properties of errors are a) a latent error becomes effective once activated;

512 Chapter 7 Storage Systems

b) an error may cycle between its latent and effective states; c) an effective er-
ror often propagates from one component to another, thereby creating new er-
rors. Thus, an effective error is either a formerly latent error in that component
or it has propagated from another error in that component or from elsewhere.

n A component failure occurs when the error affects the delivered service.

n These properties are recursive, and apply to any component in the system.

We can now return to see how Laprie defines reliability and availability. Users
perceive a system alternating between two states of delivered service with respect
to the service specification:

1. Service accomplishment, where the service is delivered as specified,

2. Service interruption, where the delivered service is different from the speci-
fied service.

Transitions between these two states are caused by failures (from state 1 to
state 2) or restorations (2 to 1). Quantifying these transitions lead to the two
main measures of dependability:

1. Module reliability is a measure of the continuous service accomplishment (or,
equivalently, of the time to failure) from a reference initial instant. Hence, the
Mean Time To Failure (MTTF) of disks in Figure 7.2 on page 490 is a reliabil-
ity measure. The reciprocal of MTTF is a rate of failures. If a collection of
modules have exponentially distributed lifetimes (see section 7.7), the overall
failure rate of the collection is the sum of the failure rates of the modules. Ser-
vice interruption is measured as Mean Time To Repair (MTTR).

2. Module availability is a measure of the service accomplishment with respect
to the alternation between the two states of accomplishment and interruption.
For non-redundant systems with repair, module availability is statistically
quantified as:

Note that reliability and availability are now quantifiable metrics, rather than
synonyms for dependability. Mean Time Between Failures (MTBF) is simply
the sum of MTTF + MTTR. Although MTBF is widely used, MTTF is often
the more appropriate term.

Module availability MTTF
MTTF MTTR+()---

=

7.4 Reliability, Availability, and Dependability 513

E X A M P L E Assume a disk subsystem with the following components and MTTF:

n 10 disks, each rated at 1,000,000 hour MTTF;

n 1 SCSI controller, 500,000 hour MTTF

n 1 power supply, 200,000 hour MTTF

n 1 fan, 200,000 hour MTTF

n 1 SCSI cable, 1,000,000 hour MTTF

Using the simplifying assumption that the components lifetimes are expo-
nentially distributed–which means that the age of the component is not
important in probability of failure–and that failures are independent, com-
pute the MTTF of the system as a whole.

A N S W E R The sum of the failure rates is:

The MTTF for the system is just the inverse of the failure rate

or just under 5 years.
n

Classifying faults and fault tolerance techniques may aid with understanding.
Gray and Siewiorek classify faults into four categories according to their cause:

1. Hardware faults: devices that fail.

2. Design faults: faults in software (usually) and hardware design (occasionally).

3. Operation faults: mistakes by operations and maintenance personnel.

4. Environmental faults: fire, flood, earthquake, power failure, and sabotage.

Faults are also classified by their duration into transient, intermittent, and perma-
nent [Nelson 1990]. Transient faults exist for a limited time and are not recurring.
Intermittent faults cause a system to oscillate between faulty and fault free opera-
tion. Permanent faults do not correct themselves with passing of time.

Gray and Siewiorek divide improvements in module reliability into valid con-
struction and error correction. Validation removes faults before the module is
completed, ensuring that the module conforms to its specified behavior. Error
correction occurs by having redundancy in designs to tolerate faults. Latent error

Failure Ratesystem 10 1
1000000---------------------

1
500000------------------

+× 1
200000------------------

1
200000------------------

1
1000000---------------------

10 2 5 5 1+ + + +
1000000hours---

23
1000000hours----------------------------------

==+ + +=

MTTFsystem
1

Failure Ratesystem
--

1000000hours
23---------------------------------- 43500 hours===

514 Chapter 7 Storage Systems

processing describes the practice of trying to detect and repair errors before they
become effective, such as preventative maintenance. Effective error processing
describes correction of the error after it becomes effective, either by masking the
error or by recovering from the error. Error correction, such as that used in disk
sectors, can mask errors. Error recovery is either backward–returning to a previ-
ous correct state, such as with checkpoint-restart–or forward–constructing a new
correct state, such as by resending a disk block.

Taking a slightly different view, Laprie divides reliability improvements into
four methods:

1. Fault avoidance: how to prevent, by construction, fault occurrence;

2. Fault tolerance: how to provide, by redundancy, service complying with the
service specification in spite of faults having occurred or are occurring;

3. Error removal: how to minimize, by verification, the presence of latent errors;

4. Error forecasting: how to estimate, by evaluation, the presence, creation, and
consequences of errors.

An innovation that improves both dependability and performance of storage sys-
tems is disk arrays. One argument for arrays is that potential throughput can be
increased by having many disk drives and, hence, many disk arms, rather than
one large drive with one disk arm. For example, upcoming Figure 7.32 on
page 544 shows how NFS throughput increases as the systems expand from 67
disks to 433 disks. Simply spreading data over multiple disks, called striping, au-
tomatically forces accesses to several disks. (Although arrays improve through-
put, latency is not necessarily improved.) The drawback to arrays is that with
more devices, dependability decreases: N devices generally have 1/N the reliabili-
ty of a single device.

Although a disk array would have more faults than a smaller number of larger
disks when each disk has the same reliability, dependability can be improved by
adding redundant disks to the array to tolerate faults. That is, if a single disk fails,
the lost information can be reconstructed from redundant information. The only
danger is in having another disk fail between the time the first disk fails and the
time it is replaced (termed mean time to repair, or MTTR). Since the mean time
to failure (MTTF) of disks is tens of years, and the MTTR is measured in hours,
redundancy can make the measured reliability of 100 disks much higher than that
of a single disk. These systems have become known by the acronym RAID, stand-
ing originally for redundant array of inexpensive disks, although some have re-
named it to redundant array of independent disks (see section 7.16).

7.5 RAID: Redundant Arrays of Inexpensive Disks

7.5 RAID: Redundant Arrays of Inexpensive Disks 515

The several approaches to redundancy have different overhead and perfor-
mance. Figure 7.17 shows the standard RAID levels. It shows how eight disks of
user data must be supplemented by redundant or check disks at each RAID level.
It also shows the minimum number of disk failures that a system would survive.

One problem is discovering when a disk faults. Fortunately, magnetic disks
provide information about their correct operation. As mentioned in section 7.2,
extra check information is recorded in each sector to discover errors within that
sector. As long as we transfer at least one sector and check the error detection in-
formation when reading sectors, electronics associated with disks will with very
high probability discover when a disk fails or loses information.

 Another issue in the design of RAID systems is decreasing the mean time to
repair. This reduction is typically done by adding hot spares to the system: extra
disks that are not used in normal operation. When a failure occurs on an active
disk in a RAID, an idle hot spare is first pressed into service. The data missing
from the failed disk is then reconstructed onto the hot spare using the redundant
data from the other RAID disks. If this process is performed automatically,
MTTR is significantly reduced because waiting for the operator in the repair pro-
cess is no longer the pacing item (see section 7.9).

RAID level Minimum
number of
Disk faults
survived

Example
Data disks

Corre-
sponding

Check disks

Corporations producing RAID
products at this level

0 Non-redundant striped 0 8 0 Widely used

1 Mirrored 1 8 8 EMC, Compaq (Tandem), IBM

2 Memory-style ECC 1 8 4

3 Bit-interleaved parity 1 8 1 Storage Concepts

4 Block-interleaved parity 1 8 1 Network Appliance

5 Block-interleaved
distributed parity

1 8 1 Widely used

6 P+Q redundancy 2 8 2

FIGURE 7.17 RAID levels, their fault tolerance, and their overhead in redundant disks. The paper that introduced the
term RAID [Patterson, Gibson, and Katz 1987] used a numerical classification that has become popular. In fact, the non-
redundant disk array is often called RAID 0, indicating the data is striped across several disks but without redundancy. Note
that mirroring (RAID 1) in this instance can survive up to 8 disk failures provided only one disk of each mirrored pair fails;
worst case is both disks in a mirrored pair. RAID 6 has a regular, RAID 5 parity block across drives along with a second
parity block on another drive. RAID 6 allows failure of any two drives, which is beyond the survival capability of a RAID 5. In
2001, there may be no commercial implementations of RAID 2 or RAID 6; the rest are found in a wide range of products.
RAID 0+1, 1+0, 01, and 10 are discussed in the text below.

516 Chapter 7 Storage Systems

A related issue is hot swapping. Systems with hot swapping allow components
to be replaced shutting down the computer. Hence, a system with hot spares and
hot swapping need never go off-line; the missing data is constructed immediately
onto spares and the broken component is replaced to replenish the spare pool.

We cover here the most popular of these RAID levels; readers interested in
more detail should see the paper by Chen et al. [1994].

No Redundancy (RAID 0)

This notation is refers to a disk array in which data is striped but there is no re-
dundancy to tolerate disk failure. Striping across a set of disks makes the collec-
tion appear to software as a single large disk, which simplifies storage
management. It also improves performance for large accesses, since many disks
can operate at once. Video editing systems, for example, often stripe their data.

RAID 0 something of a misnomer as there is no redundancy, it is not in the
original RAID taxonomy, and striping predates RAID. However, RAID levels are
often left to the operator to set when creating a storage system, and RAID 0 is of-
ten listed as one of the options. Hence, the term RAID 0 has become widely used.

Mirroring (RAID 1)

This traditional scheme for tolerating disk failure, called mirroring or shadowing,
uses twice as many disks as does RAID 0. Whenever data is written to one disk,
that data is also written to a redundant disk, so that there are always two copies of
the information. If a disk fails, the system just goes to the “mirror” to get the de-
sired information. Mirroring is the most expensive RAID solution, since it re-
quires the most disks.

One issue is how mirroring interacts with striping. Suppose you had, say, four
disks worth of data to store and eight physical disks to use. Would you create four
pairs of disks–each organized as RAID 1–and then stripe data across the four
RAID 1 pairs? Alternatively, would you create two sets of four disks–each orga-
nized as RAID 0–and then mirror writes to both RAID 0 sets? The RAID termi-
nology has evolved to call the former RAID 1+0 or RAID 10 (“striped mirrors”)
and the latter RAID 0+1 or RAID 01 (“mirrored stripes”).

Bit-Interleaved Parity (RAID 3)

The cost of higher availability can be reduced to 1/N, where N is the number of
disks in a protection group. Rather than have a complete copy of the original data
for each disk, we need only add enough redundant information to restore the lost
information on a failure. Reads or writes go to all disks in the group, with one
extra disk to hold the check information in case there is a failure. RAID 3 is pop-
ular in applications with large data sets, such as multimedia and some scientific
codes.

7.5 RAID: Redundant Arrays of Inexpensive Disks 517

Parity is one such scheme. Readers unfamiliar with parity can think of the re-
dundant disk as having the sum of all the data in the other disks. When a disk
fails, then you subtract all the data in the good disks from the parity disk; the re-
maining information must be the missing information. Parity is simply the sum
modulo two. The assumption behind this technique is that failures are so rare that
taking longer to recover from failure but reducing redundant storage is a good
trade-off.

 Just as direct-mapped associative placement in caches can be considered a
special case of set-associative placement (see section 5.2), the mirroring can be
considered the special case of one data disk and one parity disk (N = 1). Parity
can be accomplished in this case by duplicating the data, so mirrored disks have
the advantage of simplifying parity calculation. Duplicating data also means that
the controller can improve read performance by reading from the disk of the pair
that has the shortest seek distance. This optimization means the arms are no long-
er synchronized, however, and thus writes must now wait for the arm with the
longer seek. Of course, the redundancy of N = 1 has the highest overhead for in-
creasing disk availability.

Block-Interleaved Parity and Distributed Block-Interleaved Parity
(RAID 4 and RAID 5)

Both these levels use the same ratio of data disks and check disks as RAID 3, but
they access data differently. The parity is stored as blocks and associated with a
set of data blocks.

In RAID 3, every access went to all disks. Some applications would prefer to
do smaller accesses, allowing independent accesses to occur in parallel. That is
the purpose of the next RAID levels. Since error-detection information in each
sector is checked on reads to see if data is correct, such “small reads” to each disk
can occur independently as long as the minimum access is one sector.

Writes are another matter. It would seem that each small write would demand
that all other disks be accessed to read the rest of the information needed to
recalculate the new parity, as in Figure 7.18. A “small write” would require read-
ing the old data and old parity, adding the new information, and then writing the
new parity to the parity disk and the new data to the data disk.

The key insight to reduce this overhead is that parity is simply a sum of infor-
mation; by watching which bits change when we write the new information, we
need only change the corresponding bits on the parity disk. Figure 7.18 shows the
shortcut. We must read the old data from the disk being written, compare old data
to the new data to see which bits change, read the old parity, change the corre-
sponding bits, then write the new data and new parity. Thus, the small write
involves four disk accesses to two disks instead of accessing all disks. This orga-
nization is RAID 4.

RAID 4 efficiently supports a mixture of large reads, large writes, small reads,
and small writes. One drawback to the system is that the parity disk must be up-

518 Chapter 7 Storage Systems

dated on every write, so it is the bottleneck for back-to-back writes. To fix the
parity-write bottleneck, the parity information can be spread throughout all the
disks so that there is no single bottleneck for writes. The distributed parity orga-
nization is RAID 5.

Figure 7.19 shows how data are distributed in RAID 4 vs. RAID 5. As the or-
ganization on the right shows, in RAID 5 the parity associated with each row of
data blocks is no longer restricted to a single disk. This organization allows mul-
tiple writes to occur simultaneously as long as the stripe units are not located in

FIGURE 7.18 Small write update on RAID 3 vs. RAID 4/ RAID5. This optimization for small writes reduces the number of
disk accesses as well as the number of disks occupied. This figure assumes we have four blocks of data and one block of
parity. The straightforward RAID 3 parity calculation at the top of the figure reads blocks D1, D2, and D3 before adding block
D0’ to calculate the new parity P’. (In case you were wondering, the new data D0’ comes directly from the CPU, so disks are
not involved in reading it.) The RAID 4/ RAID 5shortcut at the bottom reads the old value D0 and compares it to the new
value D0’ to see which bits will change. You then read to old parity P and then change the corresponding bits to form P’. The
logical function exclusive or does exactly what we want. This example replaces 3 disks reads (D1, D2, D3) and 2 disk writes
(D0’,P’) involving all the disks for 2 disk reads (D0,P) and 2 disk writes (D0’,P’) which involve just 2 disks. Increasing the size
of the parity group increases the savings of the shortcut.

D0’ D0 D1 D2 D3 P

D0’ D1 D2 D3 P’

+

1. ReadNew data 2. Read 3. Read

4. Write 5. Write

D0’ D0 D1 D2 D3 P

D0’ D1 D2 D3 P’

+
+

1. ReadNew data 2. Read

3. Write 4. Write

XOR

XOR

XOR

7.5 RAID: Redundant Arrays of Inexpensive Disks 519

the same disks. For example, a write to block 8 on the right must also access its
parity block P2, thereby occupying the first and third disks. A second write to
block 5 on the right, implying an update to its parity block P1, accesses the sec-
ond and fourth disks and thus could occur at the same time as the write to block
8. Those same writes to the organization on the left would result in changes to
blocks P1 and P2, both on the fifth disk, which would be a bottleneck.

P+Q redundancy (RAID 6)

Parity based schemes protect against a single, self-identifying failures. When a
single failure is not sufficient, parity can be generalized to have a second calcula-
tion over the data and another check disk of information. Yet another parity block
is added to allow recovery from a second failure. Thus, the storage overhead is
twice that of RAID 5. The small write shortcut of Figure 7.18 works as well, ex-
cept now there are six disk accesses instead of four to update both P and Q infor-
mation.

RAID Summary

The higher throughput, measured either as megabytes per second or as I/Os
per second, as well the ability to recover from failures make RAID attractive.
When combined with the advantages of smaller size and lower power of small-
diameter drives, RAIDs now dominate large-scale storage systems.
Publications of real error rates are rare for two reasons. First, academics rarely
have access to significant hardware resources to measure. Second, industrial re-

FIGURE 7.19 Block-interleaved parity (RAID 4) versus distributed block-interleaved
parity (RAID 5). By distributing parity blocks to all disks, some small writes can be performed
in parallel.

0

4

8

12

16

20

. . .

1

5

9

13

17

21

. . .

2

6

10

14

18

22

. . .

3

7

11

15

19

23

.

0

4

8

12

20

. . .

1

5

9

16

21

. . .

2

6

13

17

22

. . .

3

10

14

18

23

. . .

7

11

15

19

. . .

P0

P1

P2

P3

P4

P5

P4

P3

P2

P1

P0

P5

RAID 4 RAID 5

520 Chapter 7 Storage Systems

searchers are rarely allowed to publish failure information for fear that it would
be used against their companies in the marketplace. Below are four exceptions.

Berkeley’s Tertiary Disk

The Tertiary Disk project at the University of California created an art-image
server for the Fine Arts Museums of San Francisco. This database consists of
high quality images of over 70,000 art works. The database was stored on a clus-
ter, which consisted of 20 PCs containing 368 disks connected by a switched
Ethernet. It occupied in seven 7-foot high racks.

7.6 Errors and Failures in Real Systems

Component Total in System Total Failed % Failed

SCSI Controller 44 1 2.3%

SCSI Cable 39 1 2.6%

SCSI Disk 368 7 1.9%

IDE Disk 24 6 25.0%

Disk Enclosure -Backplane 46 13 28.3%

Disk Enclosure - Power Supply 92 3 3.3%

Ethernet Controller 20 1 5.0%

Ethernet Switch 2 1 50.0%

Ethernet Cable 42 1 2.3%

CPU/Motherboard 20 0 0%

FIGURE 7.20 Failures of components in Tertiary Disk over eighteen months of oper-
ation. For each type of component, the table shows the total number in the system, the num-
ber that failed, and the percentage failure rate. Disk enclosures have two entries in the table
because they had two types of problems, backplane integrity failure and power supply failure.
Since each enclosure had two power supplies, a power supply failure did not affect availabil-
ity. This cluster of 20 PCs, contained in seven 7-foot high, 19-inch wide rack, hosts 368 8.4
GB, 7200 RPM, 3.5-inch IBM disks. The PCs are P6-200MHz with 96 MB of DRAM each.
They run FreeBSD 3.0 and the hosts are connected via switched 100 Mbit/second Ethernet.
All SCSI disks are connected to two PCs via double-ended SCSI chains to support RAID-
1.The primary application is called the Zoom Project, which in 1998 was the world's largest
art image database, with 72,000 images. See Talagala et al [2000].

7.6 Errors and Failures in Real Systems 521

Figure 7.20 shows the failure rates of the various components of Tertiary Disk.
In advance of building the system, the designers assumed that data disks would
be the least reliable part of the system, as they are both mechanical and plentiful.
Next would be the IDE disks, since there were fewer of them, then the power sup-
plies, followed by integrated circuits. They assumed that passive devices like ca-
bles would scarcely ever fail.

Figure 7.20 shatters those assumptions. Since the designers followed the man-
ufacturer’s advice of making sure the disk enclosures had reduced vibration and
good cooling, the data disks were very reliable. In contrast, the PC chassis con-
taining the IDE disks did not afford the same environmental controls. (The IDE
disks did not store data, but help the application and operating system to boot the
PCs.) Figure 7.20 shows that the SCSI backplane, cables, and Ethernet cables
were no more reliable than the data disks themselves!

As Tertiary Disk was a large system with many redundant components, it had
the potential to survive this wide range of failures. Components were connected
and mirrored images were placed no single failure could make any image un-
available. This strategy, which initially appeared to be overkill, proved to be vi-
tal.

This experience also demonstrated the difference between transient faults and
hard faults. Transient faults are faults that come and go, at least temporarily fix-
ing themselves. Hard faults stop the device from working properly, and will con-
tinue to misbehave until repaired. Virtually all the failures in Figure 7.20
appeared first as transient faults. It was up to the operator to decide if the behav-
ior was so poor that they needed to be replaced or if they could continue. In fact,
the word failure was not used; instead, the group borrowed terms normally used
for dealing with problem employees, with the operator deciding whether a prob-
lem component should or should not be fired. Section 7.14 gives examples of
transient and hard failures.

Tandem

The next example comes from industry. Gray [1990] collected data on faults for
Tandem Computers, which was one of the pioneering companies in fault tolerant
computing. Figure 7.21 graphs the faults that caused system failures between
1985 and 1989 in absolute faults per system and in percentage of faults encoun-
tered. The data shows a clear improvement in the reliability of hardware and
maintenance. Disks in 1985 needed yearly service by Tandem, but they were re-
placed by disks that needed no scheduled maintenance. Shrinking number of
chips and connectors per system plus software’s ability to tolerate hardware
faults reduced hardware’s contribution to only 7% of failures by 1989. And when
hardware was at fault, software embedded in the hardware device (firmware) was
often the culprit. The data indicates that software in 1989 was the major source of
reported outages (62%), followed by system operations (15%).

522 Chapter 7 Storage Systems

The problem with any such statistics are that these data only refer to what is
reported; for example, environmental failures due to power outages were not re-
ported to Tandem because they were seen as a local problem. Very difficult data
to collect is operations faults, because it relies on the operators to report personal
mistakes, which may affect the opinion of their managers, which in turn can af-
fect job security and pay raises. Gray believes both environmental faults and op-
erator faults are under-reported. His study concluded that achieving higher
availability requires improvement in software quality and software fault toler-
ance, simpler operations, and tolerance of operational faults.

FIGURE 7.21 Faults in Tandem between 1985 and 1989. Gray [1990] collected these data for the fault tolerant Tandem
computers based on reports of component failures by customers.

0

2 0

4 0

6 0

8 0

100

120

1985 1987 1989

Faults
per

1000
Systems

Unknown

Environment: power, network

Operations (by customer)

Maintenance (by Tandem)

Hardware

Software: app + OS

34% 39%

62%

29% 22%

7 %
19%

13%
5 %

9 %
12% 15%

6 % 10% 6 %
4 % 5 % 5 %

0 %

20%

40%

60%

80%

100%

1985 1987 1989

% Faults
per

Category

7.6 Errors and Failures in Real Systems 523

VAX

The next example is also from industry. Murphy and Gent [1995] measured
faults in VAX systems. They classified faults as hardware, operating system, sys-
tem management, or application/networking. Figure 7.22 shows their data for
1985 and 1993. They tried to improve the accuracy of data on operator faults by
having the system automatically prompt the operator on each boot for the reason
for that reboot. They also classified consecutive crashes to the same fault as oper-
ator fault. Although they believe is operator error is still under-reported, they did
get more accurate information than did Gray who relied on a form that the opera-
tor filled out and then sent up the management chain. Note that the hardware/op-
erating system went from causing 70% of the failures in 1985 to 28% in 1993.
Murphy and Gent expected system management to be the primary dependability
challenge in the future.

FCC

The final set of data comes from the government. The Federal Communications
Commission (FCC) requires that all telephone companies submit explanations
when they experience an outage that affects at least 30,000 people or lasts thirty
minutes. These detailed disruption reports do not suffer from the self-reporting

FIGURE 7.22 Causes of system failures on Digital VAX systems between 1985 and 1993 collected by Murphy and
Gent [1995]. System management crashes include having several crashes for the same problem, suggesting that the prob-
lem was difficult for the operator to diagnose. It also included operator actions that directly resulted in crashes, such as giving
parameters bad values, bad configurations, and bad application installation.

20%
10%

50%

18%

15%

53%

15% 18%

0 %

100%

1985 1993

% Failures
per

Category

Other: app,
power,
network

System
management:
actions +
N/problem
Operating
System

Hardware

524 Chapter 7 Storage Systems

problem of earlier figures, as investigators determine the cause of the outage rath-
er than operators of the equipment. Kuhn [1997] studied the causes of outages
between 1992 and 1994 and Enriquez [2001] did a follow-up study for the first
half of 2001. In addition to reporting number of outages, the FCC data includes
the number of customers affected and how long they were affected. Hence, we
can look at the size and scope of failures, rather than assuming that all are equally
important. Figure 7.23 plots the absolute and relative number of customer-outage
minutes for those years, broken into four categories:

n Failures due to exceeding the network’s capacity (overload).

n Failures due to people (human).

n Outages caused by faults in the telephone network software (software).

n Switch failure, cable failure, and power failure (hardware).

 Although there was a significant improvement in failures due to overloading
of the network over the years, failures due to humans increased, from about one
third to two thirds of the customer-outage minutes.

These four examples and others suggest that the primary cause of failures in
large systems today is faults by human operators. Hardware faults have declined
due to a decreasing number of chips in systems, reduced power, and fewer con-
nectors. Hardware dependability has improved through fault tolerance techniques
such as RAID. At least some operating systems are considering reliability impli-
cations before new adding features, so in 2001 the failures largely occur else-
where.

Although failures may be initiated due to faults by operators, it is a poor re-
flection on the state of the art of systems that the process of maintenance and up-
grading are so error prone. Thus, the challenge for dependable systems of the
future is either to tolerate faults by operators or to avoid faults by simplifying the
tasks of system administration.

We have now covered the bedrock issue of dependability, giving definitions,
case studies, and techniques to improve it. The next step in the storage tour is per-
formance. We’ll cover performance metrics, queuing theory, and benchmarks.

I/O performance has measures that have no counterparts in CPU design. One of
these is diversity: Which I/O devices can connect to the computer system? An-
other is capacity: How many I/O devices can connect to a computer system?

In addition to these unique measures, the traditional measures of performance,
namely response time and throughput, also apply to I/O. (I/O throughput is some-
times called I/O bandwidth, and response time is sometimes called latency.) The

7.7 I/O Performance Measures

7.7 I/O Performance Measures 525

FIGURE 7.23 Failures in the Public Switched Telephone Network according to the FCC in 1992-94 and 2001. Note
that in both absolute and relative terms that overload outages shrank and outages due to human error increased, with human
error responsible for two-thirds of the outages for this graph in 2001. These charts leave out two categories collected by
Kuhn [1997] and Enriquez [2001], vandalism and nature. Vandalism is less than 1% of customer minutes, and was not in-
cluded because it was too small to plot. Nature is a very significant cause of outages in PSTN, as fires and floods can be
extensive and their damage take a while to repair. Nature was not included because it has little relevance for indication of
failures in computer systems. Customer-minutes multiplies the number of customers potentially affected by the length of the
outage to indicate the size of the outage. Enriquez [2001] also reports blocked calls, which means calls that could not be
made due to the outage. Blocked calls differentiate impact of outages during the middle of the day versus in 2001the middle
of the night. Blocked-call data also suggests human error is the most important challenge for outages.

0

100

200

300

400

500

600

1992-94 2001

Lost
Customer
minutes

per month
(m i l l i o n)

Overload

Human Error

Software

Hardware

8 % 13%3 %
3 %

34%

67%

54%

16%

0 %

100%

1992-94 2001

% Lost
Customer

minutes per
month per
Category

526 Chapter 7 Storage Systems

next two figures offer insight into how response time and throughput trade off
against each other. Figure 7.24 shows the simple producer-server model. The pro-
ducer creates tasks to be performed and places them in a buffer; the server takes
tasks from the first-in-first-out buffer and performs them.

Response time is defined as the time a task takes from the moment it is placed
in the buffer until the server finishes the task. Throughput is simply the average
number of tasks completed by the server over a time period. To get the highest
possible throughput, the server should never be idle, and thus the buffer should
never be empty. Response time, on the other hand, counts time spent in the buffer
and is therefore minimized by the buffer being empty.

Another measure of I/O performance is the interference of I/O with CPU exe-
cution. Transferring data may interfere with the execution of another process.
There is also overhead due to handling I/O interrupts. Our concern here is how
much longer a process will take because of I/O for another process.

Throughput versus Response Time

Figure 7.25 shows throughput versus response time (or latency) for a typical I/O
system. The knee of the curve is the area where a little more throughput results in
much longer response time or, conversely, a little shorter response time results in
much lower throughput.

How does the architect balance these conflicting demands? If the computer is
interacting with human beings, Figure 7.26 suggests an answer. This figure
presents the results of two studies of interactive environments: one keyboard
oriented and one graphical. An interaction, or transaction, with a computer is
divided into three parts:

FIGURE 7.24 The traditional producer-server model of response time and through-
put. Response time begins when a task is placed in the buffer and ends when it is completed
by the server. Throughput is the number of tasks completed by the server in unit time.

Producer Server

Queue

7.7 I/O Performance Measures 527

1. Entry time—The time for the user to enter the command. The graphics system
in Figure 7.26 required 0.25 seconds on average to enter a command versus
4.0 seconds for the keyboard system.

2. System response time—The time between when the user enters the command
and the complete response is displayed.

3. Think time—The time from the reception of the response until the user begins
to enter the next command.

The sum of these three parts is called the transaction time. Several studies report
that user productivity is inversely proportional to transaction time; transactions
per hour are a measure of the work completed per hour by the user.

The results in Figure 7.26 show that reduction in response time actually de-
creases transaction time by more than just the response time reduction. Cutting
system response time by 0.7 seconds saves 4.9 seconds (34%) from the conven-
tional transaction and 2.0 seconds (70%) from the graphics transaction. This im-
plausible result is explained by human nature: People need less time to think
when given a faster response.

FIGURE 7.25 Throughput versus response time. Latency is normally reported as re-
sponse time. Note that the minimum response time achieves only 11% of the throughput,
while the response time for 100% throughput takes seven times the minimum response time.
Note that the independent variable in this curve is implicit: To trace the curve, you typically
vary load (concurrency). Chen et al. [1990] collected these data for an array of magnetic
disks.

300

0%

Percent of maximum throughput (bandwidth)

Response time
(latency)
in ms

20% 40% 60% 80% 100%

200

100

0

528 Chapter 7 Storage Systems

Whether these results are explained as a better match to the human attention
span or getting people “on a roll,” several studies report this behavior. In fact, as
computer response times drop below one second, productivity seems to make a
more than linear jump. Figure 7.27 compares transactions per hour (the inverse of
transaction time) of a novice, an average engineer, and an expert performing
physical design tasks on graphics displays. System response time magnified tal-
ent: a novice with subsecond system response time was as productive as an
experienced professional with slower response, and the experienced engineer in
turn could outperform the expert with a similar advantage in response time. In all
cases the number of transactions per hour jumps more than linearly with subsec-
ond response time.

Since humans may be able to get much more work done per day with better re-
sponse time, it is possible to attach an economic benefit to lowering response
time into the subsecond range [IBM 1982]. This assessment helps the architect
decide how to tip the balance between response time and throughput.

Although these studies were on older machines, people’s patience has not
changed. Its is still a problem today as response times are often still much longer
than a second, even if hardware is 1000 times faster. Examples of long delays
starting an application on a desktop PC due to include many disk I/Os or network
delays when clicking on WWW links.

FIGURE 7.26 A user transaction with an interactive computer divided into entry time,
system response time, and user think time for a conventional system and graphics
system. The entry times are the same, independent of system response time. The entry time
was 4 seconds for the conventional system and 0.25 seconds for the graphics system. (From
Brady [1986].)

0

Time (seconds)

High-function graphics workload
(0.3 sec. system response time)

5 10 15

High-function graphics workload
(1.0 sec. system response time)

Conventional interactive workload
(0.3 sec. system response time)

Conventional interactive workload
(1.0 sec. system response time)

Workload

–70% total
(–81% think)

–34% total
(–70% think)

Entry time System response time Think time

7.7 I/O Performance Measures 529

Response Time vs. Throughput in Benchmarks

I/O benchmarks offer another perspective on the response time vs. throughput
trade-off. Figure 7.28 shows the response time restrictions for three I/O bench-
marks. The two reporting approaches report maximum throughput given either
that 90% of response times must be less than a limit or that the average response
time must be less than a limit.

FIGURE 7.27 Transactions per hour versus computer response time for a novice, ex-
perienced engineer, and expert doing physical design on a graphics system. Trans-
actions per hour are a measure of productivity. (From IBM [1982].)

I/O Benchmark Response Time Restriction Throughput Metric

TPC-C: Complex Query
OLTP

≥ 90% of transaction must meet response time limit;
5 seconds for most types of transactions

new order transactions per
minute

TPC-W: Transactional web
benchmark

≥ 90%of web interactions must meet response time
limit; 3 seconds for most types of web interactions

web interactions
per second

SPECsfs97 Average response time ≤ 40 milliseconds NFS operations per second

FIGURE 7.28 Response time restrictions for three I/O Benchmarks.

4500

System response time (secs)

Transactions
per user
hour
(productivity)

0.250.00 0.50 0.75 1.00 1.50

1000

500

0
1.25

1500

2000

2500

3000

3500

4000

Novice

Engineer

Expert

530 Chapter 7 Storage Systems

In processor design we have simple back-of-the-envelope calculations of perfor-
mance associated with the CPI formula in Chapter 1. The next step in accuracy is
full-scale simulation of the system, which is considerably more work. In I/O sys-
tems we also have a best case analysis as a back-of-the-envelope calculation, and
again full scale simulation is also much more accurate and much more work to
calculate expected performance.

With I/O systems, however, we also have a mathematical tool to guide I/O de-
sign that is a little more work and much more accurate than best case analysis,
but much less work than full scale simulation. Because of the probabilistic nature
of I/O events and because of sharing of I/O resources, we can give a set of simple
theorems that will help calculate response time and throughput of an entire I/O
system. This helpful field is called queuing theory. Since there are many books
are courses on the subject, this section serves only as a first introduction to the
topic; interested readers should see section 7.16 to learn more.

Let’s start with a black box approach to I/O systems, as in Figure 7.29. In our
example, the CPU is making I/O requests that arrive at the I/O device, and the re-
quests “depart” when the I/O device fulfills them.

We are usually interested in the long term, or steady state, of a system rather
than in the initial start-up conditions. Suppose we weren’t. Although there is a
mathematics that helps (Markov chains), except for a few cases, the only way to
solve the resulting equations. Since the purpose of this section is to show some-
thing a little harder than back-of-the-envelope calculations but less than simula-
tion, we won’t cover such analyses here. (Interested readers should follow the
references at the end of this chapter.)

7.8 A Little Queuing Theory

FIGURE 7.29 Treating the I/O system as a black box. This leads to a simple but important
observation: If the system is in steady state, then the number of tasks entering the systems
must equal the number of tasks leaving the system. This flow-balanced state is necessary but
not sufficient for steady state. If the system has been observed or measured for a sufficiently
long time and mean waiting times stabilize, then we say that the system has reached steady
state.

Arrivals Departures

7.8 A Little Queuing Theory 531

Hence, in this section we make the simplifying assumption that we are evalu-
ating systems with multiple independent requests for I/O service that are in equi-
librium: the input rate must be equal to the output rate. We also assume there is a
steady supply of tasks, for in many real systems the task consumption rate is de-
termined by system characteristics such as capacity. TPC-C is one example.

This leads us to Little’s Law, which relates the average number of tasks in the
system, the average arrival rate of new tasks, and the average time to perform a
task:

Little’s Law applies to any system in equilibrium, as long as nothing inside the
black box is creating new tasks or destroying them. Note that the arrival rate and
the response time must use the same time unit; inconsistency in time units is a
common cause of errors.

Let’s try to derive Little’s Law. Assume we observe a system for Timeobserve
minutes. During that observation, we record how long it took each task to be ser-
viced, and then sum those times. The number of tasks completed during Timeob-

serve is Numbertask, and the sum of waiting times is Timeaccumulated. Then

Algebra lets us split the first formula:

Since the following definitions hold

if we substitute these three definitions in the formula above, and swap the result-
ing two terms on the right hand side, we get Little’s Law.

Mean number of tasks in system Arrival rate Mean response time×=

Mean number of tasks in system
Timeaccumulated

Timeobserve

=

Mean response time
Timeaccumulated

Numbertasks

=

Timeaccumulated
Timeobserve

Timeaccumulated
Numbertasks

Numbertasks
Timeobserve
------------------------------×=

Mean number of tasks in system
Timeaccumulated

Timeobserve

=

Mean response time
Timeaccumulated

Numbertasks

=

Arrival rate
Numbertasks
Timeobserve

=

Mean number of tasks in system Arrival rate Mean response time×=

532 Chapter 7 Storage Systems

This simple equation is surprisingly powerful, as we shall see.
If we open the black box, we see Figure 7.30. The areas where the tasks accu-

mulate, waiting to be serviced, is called the queue, or waiting line, and the device
performing the requested service is called the server. Until we get to the last two
pages of this section, we assume a single server.

Little’s Law and a series of definitions lead to several useful equations:

Timeserver—Average time to service a task; average service rate is 1/Timeserver,
traditionally represented by the symbol µ in many queueing texts.

Timequeue—Average time per task in the queue.

Timesystem—Average time/task in the system, or the response time, the sum of
Timequeue and Timeserver.

Arrival rate—Average number of arriving tasks/second, traditionally repre-
sented by the symbol in many queueing texts.

Lengthserver—Average number of tasks in service.

Lengthqueue—Average length of queue.

Lengthsystem—Average number of tasks in system, the sum of Lengthqueue and
Lengthserver.

One common misunderstanding can be made clearer by these definitions:
whether the question is how long a task must wait in the queue before service
starts (Timequeue) or how long a task takes until it is completed (Timesystem). The
latter term is what we mean by response time, and the relationship between the
terms is Timesystem = Timequeue + Timeserver.

The mean number of tasks in service (Lengthserver) is simply
, which is Little’s Law. Server utilization is simply the

mean number of tasks being serviced divided by by the service rate. For a single
server, the service rate is . Server utilization (and, in this case, the
mean number of tasks per server) is simply

FIGURE 7.30 The single server model for this section. In this situation, an I/O request
“departs” by being completed by the server.

Arrivals

Queue Server

I/O controller
& device

λ

Arrival rate Timeserver×

1 Timeserver⁄

7.8 A Little Queuing Theory 533

The value must be between 0 and 1, for otherwise there would be more tasks ar-
riving than could be serviced, violating our assumption that the system is in equi-
librium. Note that this formula is just a restatement of Little’s Law. Utilization is
also called traffic intensity and is represented by the symbol in many texts.

E X A M P L E Suppose an I/O system with a single disk gets on average 50 I/O requests
per second. Assume the average time for a disk to service an I/O request
is10 ms. What is the utilization of the I/O system?

A N S W E R Using the equation above, with 10 ms represented as 0.01 seconds:

Therefore, the I/O system utilization is 0.5. n

How the queue delivers tasks to the server is called the queue discipline. The
simplest and most common discipline is first-in-first-out (FIFO). If we assume
FIFO, we can relate time waiting in the queue to the mean number of tasks in the
queue:

That is, the time in the queue is the number of tasks in the queue times the mean
service time plus the time it takes the server to complete whatever task is being
serviced when a new task arrives. (There is one more restriction about the arrival
of tasks, which we reveal on page 534.)

The last component of the equation is not as simple as it first appears. A new
task can arrive at any instant, so we have no basis to know how long the existing
task has been in the server. Although such requests are random events, if we
know something about the distribution of events we can predict performance.

To estimate the last component of the formula we need to know a little about
distributions of random variables. A variable is random if it takes one of a speci-
fied set of values with a specified probability; that is, you cannot know exactly
what its next value will be, but you may know the probability of all possible val-
ues.

Requests for service from an I/O system can be modeled by a random variable
because the operating system is normally switching between several processes
that generate independent I/O requests. We also model I/O service times by a ran-
dom variable given the probabilistic nature of disks in terms of seek and rotation-
al delays.

Server utilization Arrival rate Timeserver×=

ρ

Server utilization Arrival rate Timeserver× 50
sec------- 0.01sec× 0.50= = =

Timequeue Lengthqueue Timeserver
Mean time to complete service of task when new task arrives if server is busy

+×=

534 Chapter 7 Storage Systems

One way to characterize the distribution of values of a random variable with
discrete values is a histogram, which divides the range between the minimum and
maximum values into subranges called buckets. Histograms then plot the number
in each bucket as columns. Histograms work well for distributions that are dis-
crete values—for example, the number of I/O requests. For distributions that are
not discrete values, such as time waiting for an I/O request, we have two choices.
Either we need a curve to plot the values over the full range, so that we can accu-
rately estimate the value, or we need a very fine time unit so that we get a very
large number of buckets to accurately estimate time. For example, a histogram
can be built of disk service times measured in intervals of ten microseconds al-
though disk service times are truly continuous.

Hence, to be able to solve the last part of the equation above we need to char-
acterize the distribution of this random variable. The mean time and some mea-
sure of the variance are sufficient for that characterization.

For the first term, we use the arithmetic mean time (see page 26 in Chapter 1
for a slightly different version of the formula). Let’s first assume after measuring
the number of occurrences, say ni, of tasks one could compute frequency of oc-
currence of task i:

Then arithmetic mean is:

where Ti is the time for task i and fi is the frequency of occurrence of task i.
To characterize variability about the mean, many people use the standard devi-

ation. Let’s use the variance instead, which is simply the square of the standard
deviation, as it will help us with characterizing the probability distribution. Given
the arithmetic mean, the variance can be calculated as

It is important to remember the units when computing variance. Let’s assume the
distribution is of time. If time is on the order of 100 milliseconds, then squaring it
yields 10,000 square milliseconds. This unit is certainly unusual. It would be
more convenient if we had a unitless measure.

To avoid this unit problem, we use the squared coefficient of variance, tradi-
tionally called C2:

f i ni ni
i 1=

n

∑ 
 
 

⁄=

Arithmetic mean time f 1 T1× f 2 T2× … f n Tn×+ + +=

Variance f 1 T1
2× f 2 T2

2× … f n Tn
2×+ + +() Arithmetic mean time

2
–=

C
2 Variance

Arithmetic mean time
2---

=

7.8 A Little Queuing Theory 535

We can solve for C, the coefficient of variance, as

We are trying to characterize random events, but to be able to predict perfor-
mance we need a distribution of random events where the mathematics is tracta-
ble. The most popular such distribution is the exponential distribution, which has
a C value of 1.

Note that we are using a constant to characterize variability about the mean.
The invariance of C over time reflects the property that the history of events has
no impact on the probability of an event occurring now. This forgetful property is
called memoryless, and this property is an important assumption used to predict
behavior using these models. (Suppose this memoryless property did not exist;
then we would have to worry about the exact arrival times of requests relative to
each other, which would make the mathematics considerably less tractable!)

One of the most widely used exponential distributions is called a Poisson dis-
tribution, named after the mathematician Simeon Poisson. It is used to character-
ize random events in a given time interval, and has several desirable
mathematical properties. The Poisson distribution is described by the following
equation (called the probability mass function):

where . If interarrival times are exponentially dis-
tributed and we use Arrival rate from above for rate of events, the number of ar-
rivals in a time interval t is a Poisson process, which has the Poisson distribution
with . As mentioned on page 533, the equation for Timeserver
had another restriction on task arrival: it holds only for Poisson processes.

Finally, we can answer the question about the length of time a new task must
wait for the server to complete a task, called the average residual service time,
which again assumes Poisson arrivals:

Although we won’t derive this formula, we can appeal to intuition. When the dis-
tribution is not random and all possible values are equal to the average, the stan-
dard deviation is 0 and so C is 0. The average residual service time is then just
half the average service time, as we would expect. If the distribution is random
and it is Poisson, then C is 1 and the average residual service time equals the
weighted mean time.

C Variance
Arithmetic mean time--

Standard deviation
Arithmetic mean time--

= =

probability k() e
a–

a
k×

k!--------------------
=

a rate of events elapsed time×=

a Arrical rate t×=

Average residual service time 1 2 Weighted mean time 1 C
2

+()××⁄=

536 Chapter 7 Storage Systems

E X A M P L E Using the definitions and formulas above, derive the average time waiting
in the queue (Timequeue) in terms of the average service time (Timeserver)
and server utilization.

A N S W E R All tasks in the queue (Lengthqueue) ahead of the new task must be com-
pleted before the task can be serviced; each takes on average Timeserver.
If a task is at the server, it takes average residual service time to complete.
The chance the server is busy is server utilization, hence the expected
time for service is Server utilization × Average residual service time. This
leads to our initial formula:

Replacing average residual service time by its definition and Lengthqueue
by Arrival rate × Timequeue yields

Since this section is concerned with exponential distributions, C2 is 1.
Thus

Rearranging the last term, let us replace Arrival rate × Timeserver by Server
utilization:

Rearranging terms and simplifying gives us the desired equation:

n

Little’s Law can be applied to the components of the black box as well, since
they must also be in equilibrium:

Timequeue Lengthqueue Timeserver× Server utilization Average residual service time×+=

Timequeue Server utilization 1 2 Timeserver 1 C
2

+()××⁄()× Arrival rate Timequeue×() Timeserver×+=

Timequeue Server utilization Timeserver× Arrival rate Timequeue×() Timeserver×+=

Timequeue Server utilization Timeserver× Arrival rate Timeserver×() Timequeue×+=

Server utilization Timeserver× Server utilization Timequeue×+=

Timequeue Server utilization Timeserver× Server utilization Timequeue×+=

Timequeue Server utilization Timequeue×– Server utilization Timeserver×=

Timequeue 1 Server utilization–()× Server utilization Timeserver×=

Timequeue Timeserver
Server utilization

1 Server utilization–()---×=

Lengthqueue Arrival rate Timequeue×=

7.8 A Little Queuing Theory 537

If we substitute for Timequeue from above, we get

Since , we can simplify further:

E X A M P L E For the system in the example on page 533, which has a Server utilization
of 0.5, what is the mean number of I/O requests in the queue?

A N S W E R Using the equation above,

So there are 0.5 requests on average in the queue. n

As mentioned above, these equations and this section are based on an area of
applied mathematics called queuing theory, which offers equations to predict be-
havior of such random variables. Real systems are too complex for queuing theo-
ry to provide exact analysis, and hence queuing theory works best when only
approximate answers are needed.

Queuing theory makes a sharp distinction between past events, which can be
characterized by measurements using simple arithmetic, and future events, which
are predictions requiring more sophisticated mathematics. In computer systems,
we commonly predict the future from the past; one example is least recently used
block replacement (see Chapter 5). Hence, the distinction between measurements
and predicted distributions is often blurred; we use measurements to verify the
type of distribution and then rely on the distribution thereafter.

Let’s review the assumptions about the queuing model:

n The system is in equilibrium.

n The times between two successive requests arriving, called the interarrival
times, are exponentially distributed, which characterizes the arrival rate men-
tioned above.

n The number of sources of requests is unlimited (this is called an infinite popu-
lation model in queuing theory; finite population models are used when sys-
tems are not in equilibrium).

n The server can start on the next job immediately after finishing with the prior
one.

n There is no limit to the length of the queue, and it follows the first-in-first-out
order discipline, so all tasks in line must be completed.

Lengthqueue Arrival rate Timeserver
Server utilization

1 Server utilization–()---××=

Arrival rate Timeserver× Server utilization=

Lengthqueue Server utilization
Server utilization

1 Server utilization–()---× Server utilization
2

1 Server utilization–()---
= =

Lengthqueue
Server utilization

2

1 Server utilization–()---
0.5

2

1 0.5–()---------------------
0.25
0.50----------

0.5= = = =

538 Chapter 7 Storage Systems

n There is one server

Such a queue is called M/M/1:

M = exponentially random request arrival (C2 = 1), with M standing for A. A.
Markov, the mathematician who defined and analyzed the memoryless pro-
cesses mentioned above

M = exponentially random request arrival (C2 = 1), with M again for Markov

1 = single server

The M/M/1 model is a simple and widely used model.
The assumption of exponential distribution is commonly used in queuing

examples for three reasons, one good, one fair, and one bad. The good reason is
that a superposition of many arbitrary distributions acts as an exponential distribu-
tion. Many times in computer systems, a particular behavior is the result of many
components interacting, so an exponential distribution of interarrival times is the
right model. The fair reason is that when variability is unclear, an exponential dis-
tribution with intermediate variability (C = 1) is a safer guess than low variability
(C ≈ 0) or high variability (large C). The bad reason is that the math is simpler if
you assume exponential distributions.

Let’s put queuing theory to work in a few examples.

E X A M P L E Suppose a processor sends 10 disk I/Os per second, these requests are
exponentially distributed, and the average service time of an older disk is
20 ms. Answer the following questions:

1. On average, how utilized is the disk?

2. What is the average time spent in the queue?

3. What is the average response time for a disk request, including the
queuing time and disk service time?

A N S W E R Let’s restate these facts:

Average number of arriving tasks/second is 40.

Average disk time to service a task is 20 ms (0.02 sec).

The server utilization is then

Since the service times are exponentially distributed, we can use the sim-
plified formula for the average time spent waiting in line:

Server utilization Arrival rate Timeserver× 40 0.02× 0.8= = =

Timequeue Timeserver
Server utilization

1 Server utilization–()---× 20 ms
0.8

1 0.8–----------------× 20
0.8
0.2-------× 20 4× 80 ms= = = = =

7.8 A Little Queuing Theory 539

The average response time is

Thus, on average we spend 80% of our time waiting in the queue!
n

E X A M P L E Suppose we get a new, faster disk. Recalculate the answers to the ques-
tions above, assuming the disk service time is 10 ms.

A N S W E R The disk utilization is then

The formula for the average time spent waiting in line:

The average response time is 10 + 6.7 ms or 16.7 ms, 6.0 times fast-
er than the old response time even though the new service time is only
2.0 times faster. n

Thus far, we have been assuming a single server, such as a single disk. Many
real systems have multiple disks and hence could use multiple servers. Such a
system is called a M/M/m model in queueing theory.

Let’s give the same formulas for the M/M/m queue, using Nservers to represent
the number of servers. The first two formulas are easy:

The time waiting in the queue is

,

This formula is related to the one for M/M/1, except we replace utilization of a
single server with the probability of that a task will be queued as opposed to be-
ing immediately serviced, and divide the time in queue by the number of servers.
Alas, calculating the probability of jobs being in the queue when there are Nservers
servers is much more complicated. First, the probability that there are no tasks in
the system is:

Timequeue Timeserver 80 20 ms 100 ms=+=+

Server utilization Arrival rate Timeserver× 40 0.01× 0.4= = =

Timequeue Timeserver
Server utilization

1 Server utilization–()---× 10 ms
0.4

1 0.4–----------------× 10
0.4
0.6-------× 10

2
3---

× 6.7 ms= = = = =

Utilization
Arrival rate Timeserver×

Nservers

=

Lengthqueue Arrival rate Timequeue×=

Timequeue Timeserver

Ptasks Nservers≥

Nservers 1 Utilization–()×---×=

540 Chapter 7 Storage Systems

Then the probability there are as many or more tasks than we have servers is:

Note that if Nservers is 1, Probtask ≥ Nservers simplifies back to Utilization, and we get
the same formula as for M/M/1.

Let’s try an example.

E X A M P L E Suppose instead of a new, faster disk, we add a second slow disk, and
duplicate the data so that reads can be serviced by either disk. Let’s as-
sume that the requests are all reads. Recalculate the answers to the
questions above, this time using a M/M/m queue.

A N S W E R The average utilization of the two disks is then

We first calculate the probability of no tasks in the queue:

We use this result to calculate the probability of tasks in the queue:

Prob0 tasks 1
Nservers Utilization×()

Nservers

Nservers! 1 Utilization–()×--

Nservers Utilization×()n

n!---

n 1=

Nservers 1–

∑+ +

1–

=

Probtasks Nservers≥
Nservers Utilization×

Nservers

Nservers! 1 Utilization–()×--- Prob0 tasks×=

Server utilization
Arrival rate Timeserver×

Numberservers

40 0.02×
2----------------------

0.4= = =

Prob0 tasks 1 2 Utilization×()2

2! 1 Utilization–()×--

2 Utilization×()n

n!--

n 1=

1

∑+ +

1–

=

1 2 0.4×()2

2 1 0.4–()×------------------------------
2 0.4×()+ +

1–
1 0.640

1.2-------------
0.800+ +

1–
==

1 0.533 0.800+ +[] 1–
2.333

1–
==

Probtasks Nservers≥
2 Utilization× 2

2! 1 Utilization–()×-- Prob0 tasks×=

2 0.4×()2

2 1 0.4–()×------------------------------ 2.333
1–× 0.640

1.2------------- 2.333
1–×==

0.533 2.333⁄ 0.229==

7.9 Benchmarks of Storage Performance and Availability 541

Finally, the time waiting in the queue:

The average response time is 20 + 3.8 ms or 23.8 ms. For this work-
load, two disks cut the queue waiting time by a factor of 21 over a single
slow disk and a factor of 1.75 versus a single fast disk. The mean service
time of a system with a single fast disk, however, is still 1.4 times faster
than one with two disks since the disk service time is 2.0 times faster. n

Section 7.11 and the exercises have other examples using queuing theory to
predict performance.

The prior subsection tries to predict the performance of storage subsystems. We
also need to measure the performance of real systems to collect the values of
parameters needed for prediction, to determine if the queuing theory assumptions
hold, and to suggest what to do if the assumptions don’t hold. Benchmarks help.

Transaction Processing Benchmarks

Transaction processing (TP, or OLTP for on-line transaction processing) is chiefly
concerned with I/O rate: the number of disk accesses per second, as opposed to
data rate, measured as bytes of data per second. TP generally involves changes to
a large body of shared information from many terminals, with the TP system guar-
anteeing proper behavior on a failure. Suppose, for example, a bank’s computer
fails when a customer tries to withdraw money. The TP system would guarantee
that the account is debited if the customer received the money and that the account
is unchanged if the money was not received. Airline reservations systems as well
as banks are traditional customers for TP.

As mentioned in Chapter 1, two dozen members of the TP community con-
spired to form a benchmark for the industry and, to avoid the wrath of their legal
departments, published the report anonymously [1985]. This report led to the
Transaction Processing Council, which in turn has led to seven benchmarks since
its founding.

7.9 Benchmarks of Storage Performance
and Availability

Timequeue Timeserver

Ptasks Nservers≥

Nservers 1 Utilization–()×---×=

0.020
0.229

2 1 0.4–()×------------------------------× 0.020
0.229
1.2-------------×==

0.020 0.190× 0.0038==

542 Chapter 7 Storage Systems

Figure 7.31 summarizes these benchmarks. Let’s describe TPC-C to give the
flavor of these benchmarks. TPC-C uses a database to simulate an order-entry en-
vironment of a wholesale supplier, including entering and delivering orders, re-
cording payments, checking the status of orders, and monitoring the level of
stock at the warehouses. It runs five concurrent transactions of varying complexi-
ty, and the database includes nine tables with a scalable range of records and cus-
tomers. TPC-C is measured in transactions per minute (tpmC) and in price of
system, including hardware, software, and three years of maintenance support.

These TPC benchmarks were either the first, and in some cases still the only
ones, that have these unusual characteristics:

n Price is included with the benchmark results. The cost of hardware, software,
and five-year maintenance agreements is included in a submission, which en-
ables evaluations based on price-performance as well as high performance.

n The data set generally must scale in size as the throughput increases. The
benchmarks are trying to model real systems, in which the demand on the sys-
tem and the size of the data stored in it increase together. It makes no sense, for
example, to have thousands of people per minute access hundreds of bank ac-
counts.

n The benchmark results are audited. Before results can be submitted, they must
be approved by a certified TPC auditor, who enforces the TPC rules that try to
make sure that only fair results are submitted. Results can be challenged and
disputes resolved by going before the TPC council.

n Throughput is the performance metric but response times are limited. For ex-
ample, with TPC-C, 90% of the New-Order transaction response times must be
less than 5 seconds.

Benchmark Data Size (GB) Performance Metric Date of First Results

A: Debit Credit (retired) 0.1 to 10 transactions per second July, 1990

B: Batch Debit Credit (retired) 0.1 to 10 transactions per second July, 1991

C: Complex Query OLTP 100 to 3000
(minimum 0.07 * tpm)

new order transactions
per minute

September, 1992

D: Decision Support (retired) 100, 300, 1000 queries per hour December, 1995

H: Ad hoc decision support 100, 300, 1000 queries per hour October, 1999

R: Business reporting decision support 1000 queries per hour August, 1999

W: Transactional web benchmark ≈ 50, 500 web interactions
per second

July, 2000

FIGURE 7.31 Transaction Processing Council Benchmarks. The summary results include both the performance metric
and the price-performance of that metric. TPC-A, TPC-B, and TPC-D were retired.

7.9 Benchmarks of Storage Performance and Availability 543

n An independent organization maintains the benchmarks. Dues collected by
TPC pay for an administrative structure including a Chief Operating Office.
This organization settles disputes, conducts mail ballots on approval of changes
to benchmarks, hold board meetings, and so on.

SPEC System-Level File Server (SFS) and Web Benchmarks

The SPEC benchmarking effort is best known for its characterization of proces-
sor performance, but has created benchmarks for other fields as well. In 1990
seven companies agreed on a synthetic benchmark, called SFS, to evaluate sys-
tems running the Sun Microsystems network file service NFS. This benchmark
was upgraded to SFS 2.0 (also called SPEC SFS97) to include support for NSF
version 3, using TCP in addition to UDP as the transport protocol, and making
the mix of operations more realistic. Measurements on NFS systems to propose a
reasonable synthetic mix of reads, writes, and file operations such as examining a
file. SFS supplies default parameters for comparative performance. For example,
half of all writes are done in 8-KB blocks and half are done in partial blocks of 1,
2, or 4 KB. For reads, the mix is 85% full blocks and 15% partial blocks.

Like TPC-C, SFS scales the amount of data stored according to the reported
throughput: For every 100 NFS operations per second, the capacity must increase
by 1 GB. It also limits the average response time, in this case to 40 ms. Figure
7.32 shows average response time versus throughput for four systems. Unfortu-
nately, unlike the TPC benchmarks, SFS does not normalize for different price
configurations. The fastest system in Figure 7.32 has 7 times the number of CPUs
and disks as the slowest system, but SPEC leaves it to you to calculate price ver-
sus performance. As performance scaled to new heights, SPEC discovered bugs
in the benchmark that impact the amount of work done during the measurement
periods. Hence, it was retired in June 2001.

SPEC WEB is a benchmark for evaluating the performance of World Wide
Web servers. The SPEC WEB99 workload simulates accesses to a web service
provider, where the server supports home pages for several organizations. Each
home page is a collection of files ranging in size from small icons to large docu-
ments and images, with some files being more popular than others. The workload
defines four sizes of files and their frequency of activity:

n less than 1 KB, representing an small icon: 35% of activity

n 1 to 10 KB: 50% of activity

n 10 to 100 KB: 14% of activity

n 100 KB to 1 MB: representing a large document and image,1% of activity

For each home page, there are nine files in each of the four classes.
The workload simulates dynamic operations such as rotating advertisements

on a web page, customized web page creation, and user registration. The work-
load is gradually increased until the server software is saturated with hits and the
response time degrades significantly.

544 Chapter 7 Storage Systems

Figure 7.33 shows results for Dell computers. The performance result repre-
sents the number of simultaneous connections the web server can support using
the predefined workload. As the disk system is the same, it appears that the large
memory is used for a file cache to reduce disk I/O. Although memory of this size
may be common in practice, it lessens the role for SPEC WEB99 as a storage
benchmark. Note that with a single processor the HTTP web server software and
operating system make a significant difference in performance, which grows as
the number of processors increase. A dual processor running TUX/Linux is faster
than a quad processor running IIS/Windows 2000.

FIGURE 7.32 SPEC sfs97 performance for four EMC Celerra 507 NFS servers: 2, 4, 8, and 14 CPUs provided 15,723,
32,049, 61,809, and 104,607 ops per second. Each processor had its own file system running across about 30 disks. Re-
ported in June 2000, these systems all used DART v2.1.15.200 operating system, 700 MHz Pentium III microprocessors,
0.5 GB of DRAM per processor, and Seagate Cheetah 36GB disks. The total number of disks per system was 67, 133, 265,
and 433, respectively. These disks were connected using six Symmetrix Model 8430 disk controllers. The 40-ms average
response time limit imposed by SPECsfs97 was not an issue for these machines. The benchmark was retired in June 2001
after bugs were uncovered that affect the comparability of results, which is a serious bug for a benchmark! For more infor-
mation, see www.spec.org/osg/sfs97/sfs97_notice.html

0

1

2

3

4

5

6

7

8

9

1 0

0 30000 60000 90000 120000

SPECsfs97.v3 Ops/sec

Overall
response

time
 (ms)

2 CPUs 4 CPUs 8 CPUs 14 CPUs

7.9 Benchmarks of Storage Performance and Availability 545

Examples of Benchmarks of Dependability and Availability

The TPC-C benchmark does in fact have a dependability requirement. The
benchmarked system must be able to handle a single disk failure, which means in
practice that all submitters are running some RAID organization in their storage
system.

Relatively recent efforts have focused on the effectiveness on fault-tolerance
in systems. Brown et al [2000] propose that availability be measured by examin-
ing the variations in system quality of service metrics over time as faults are in-
jected into the system. For a web server the obvious metrics are performance,
measured as requests satisfied per second and degree of fault-tolerance, measured
as the number of faults that can be tolerated by the storage subsystem, network
connection topology, and so forth.

The initial experiment injected a single fault––such as a disk sector write er-
ror––and recorded the system's behavior as reflected in the quality of service
metrics. The example compared software RAID implementations provided by
Linux, Solaris, and Windows 2000 Server. SPEC WEB99 was used to provide a
workload and to measure performance. To inject faults, one of the SCSI disks in
the software RAID volume was replaced with an emulated disk. It was just a PC
running software with a special SCSI controller that makes the combination of
PC, controller, and software appear to other devices on the SCSI bus as a disk
drive. The disk emulator allowed the injection of faults. The faults injected in-
cluded a variety of transient disk faults, such as correctable read errors, and per-
manent faults, such as disk media failures on writes.

Figure 7.34 shows the behavior of each system under different faults. The two
top graphs show Linux (on the left) and Solaris (on the right). Both systems auto-
matically reconstruct data onto a hot spare disk immediately when a disk failure
is detected. As can be seen in the figure, Linux reconstructs slowly and Solaris re-
constructs quickly. Windows is shown in the bottom; a single disk failed so the
data is still available, but this system does not begin reconstructing on the hot
spare until the operator gives permission. Linux and Solaris, in contrast, start re-
construction upon the fault injection.

System Name Result CPUs Result/
CPU

HTTP Version/OS Pentium III DRAM

PowerEdge 2400/667 732 1 732 IIS 5.0/Windows 2000 667 MHz EB 2 GB

PowerEdge 2400/667 1270 1 1270 TUX 1.0/Red Hat Linux 6.2 667 MHz EB 2 GB

PowerEdge 4400/800 1060 2 530 IIS 5.0/Windows 2000 800 MHz EB 4 GB

PowerEdge 4400/800 2200 2 1100 TUX 1.0/Red Hat Linux 6.2 800 MHz EB 4 GB

PowerEdge 6400/700 1598 4 400 IIS 5.0/Windows 2000 700 MHz Xeon 8 GB

PowerEdge 6400/700 4200 4 1050 TUX 1.0/Red Hat Linux 6.2 700 MHz Xeon 8 GB

FIGURE 7.33 SPEC WEB99 results in 2000 for Dell computers. Each machine uses five 9GB, 10,000 RPM disks except
the fifth system, which had seven disk. The first four have 256 KB of L2 cache while the last two have 2 MB of L2 cache.

546 Chapter 7 Storage Systems

As RAID systems can lose data if a second disk fails before completing recon-
struction, the longer the reconstruction (MTTR), the lower the availability (see
section 6.7 below). Increased reconstruction speed implies decreased application
performance, however, as reconstruction steals I/O resources from running appli-
cations. Thus, there is a policy choice between taking a performance hit during
reconstruction, or lengthening the window of vulnerability and thus lowering the
predicted MTTF.

FIGURE 7.34 Availability benchmark for software RAID systems on the same computer running Redhat 6.0 Linux,
Solaris 7, and Windows 2000 operating systems. Note the difference in philosophy on speed of reconstruction of Linux
vs. Windows and Solaris. The Y-axis is behavior in hits per second running SPEC WEB99. The arrow indicates time of fault
insertion. The lines at the top give the 99% confidence interval of performance before the fault is inserted. A 99% confidence
interval means the if the variable is outside of this range, the probability is only 1% that this value would appear. <<Artist:
please add reconstruction arrows like in upper right graph to dip in lower graph; there are no Excel sheet for these
graphs>>

Time (minutes)
0 5 10 15 20 25 30 35 40 45

H
it

s
p

er
 s

ec
o

n
d

150

160

170

180

190

200

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

H
it

s
p

er
 s

ec
o

n
d

190

195

200

205

210

215

220

225

Reconstruction

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100

H
it

s
p

er
 s

ec
o

n
d

80

90

100

110

120

130

140

150

160

Reconstruction

Solaris

Windows

Linux

7.10 Crosscutting Issues 547

Although none of the tested system documented their reconstruction policies
outside of the source code, even a single fault injection was able to give insight
into those policies. The experiments revealed that both Linux and Solaris initiate
automatic reconstruction of the RAID volume onto a hot spare when an active
disk is taken out of service due to a failure. Although Windows supports RAID
reconstruction, the reconstruction must be initiated manually. Thus, without hu-
man intervention, a Windows system will not rebuild redundancy after a first fail-
ure, and will remain susceptible to a second failure indefinitely, which increases
the window of vulnerability increases the window of vulnerability.

The fault-injection experiments also provided insight into other availability
policies of Linux, Solaris, and Windows 2000 concerning automatic spare utiliza-
tion, reconstruction rates, transient errors, and so on. Again, no system docu-
mented their policies.

In terms of managing transient faults, the fault-injection experiments revealed
that Linux's software RAID implementation takes an opposite approach than do
the RAID implementations in Solaris and Windows. The Linux implementation
is paranoid––it would rather shut down a disk in a controlled manner at the first
error, rather than wait to see if the error is transient. In contrast, Solaris and Win-
dows are more forgiving––they ignore most transient faults with the expectation
that they will not recur. Thus, these systems are substantially more robust to tran-
sients than the Linux system. Note that both Windows and Solaris do log the tran-
sient faults, ensuring that the errors are reported even if not acted upon. When
faults were not transient, the systems behaved similarly.

Considering real failure data, none of the observed policies is particularly
good, regardless of reconstruction behavior. Talagala [1999] reports that transient
SCSI errors are frequent in a large system–such as the 368-disk Tertiary Disk
farm–yet rarely do they indicate that a disk must be replaced. The logs covering
368 disks for 11 months indicate that 13 disks reported transient hardware errors
but only 2 actually required replacement. In this situation, Linux’s policy would
have incorrectly wasted 11 disks and 11 spares, or 6% of the array. If there were
not enough spares, data could have been lost despite no true disk failures. Equally
poor would have been the response of Solaris or Windows, as these systems most
likely would have ignored the stream of intermittent transient errors from the 2
truly defective disks, requiring administrator intervention to take them offline.

Future directions in availability benchmarking include characterizing a realis-
tic fault-workload, injecting multiple faults, and applying the technique to other
fault tolerant systems.

Thus far, we have ignored the role of the operating system in storage. In a manner
analogous to the way compilers use an instruction set, operating systems deter-
mine what I/O techniques implemented by the hardware will actually be used.

7.10 Crosscutting Issues

548 Chapter 7 Storage Systems

For example, many I/O controllers used in early UNIX systems were 16-bit
microprocessors. To avoid problems with 16-bit addresses in controllers, UNIX
was changed to limit the maximum I/O transfer to 63 KB or less. Thus, a new I/O
controller designed to efficiently transfer 1-MB files would never see more than
63 KB at a time under early UNIX, no matter how large the files.

The operating system enforces the protection between processes, which must
include I/O activity as well as memory accesses. Since I/O is typically between a
device and memory, the operating system must endure safety.

DMA and Virtual Memory

Given the use of virtual memory, there is the matter of whether DMA should
transfer using virtual addresses or physical addresses. Here are a couple of prob-
lems with DMA using physically mapped I/O:

n Transferring a buffer that is larger than one page will cause problems, since the
pages in the buffer will not usually be mapped to sequential pages in physical
memory.

n Suppose DMA is ongoing between memory and a frame buffer, and the oper-
ating system removes some of the pages from memory (or relocates them). The
DMA would then be transferring data to or from the wrong page of memory.

One answer is for the operating system to guarantee that those pages touched
by DMA devices are in physical memory for the duration of the I/O, and the pag-
es are said to be pinned into main memory. Note that the addresses from for a
scatter/gather DMA transfer probably come from the page table.

To ensure protection often the operating system will copy user data into the
kernel address space and then transfer between the kernel address space to the I/
O device. Relentless copying of data is often the price paid for protection. If
DMA supports scatter gather, the operating system may be able to create a list of
addresses and transfer sizes to reduce some of the overhead of copying.

Another answer is virtual DMA. It allows the DMA to use virtual addresses
that are mapped to physical addresses during the DMA. Thus, a buffer could be
sequential in virtual memory, but the pages can be scattered in physical memory,
and the virtual addresses provide the protection of other processes. The operating
system would update the address tables of a DMA if a process is moved using
virtual DMA. It Figure 7.35 shows address-translation registers added to the
DMA device.

Asynchronous I/O and Operating Systems

As mentioned in section 7.2, disks typically spend much more time in mechani-
cal delays than in transferring data. Thus, a natural path to higher I/O perfor-
mance is parallelism, trying to get many disks to simultaneously be trying to get
data for a program.

7.10 Crosscutting Issues 549

The straightforward approach to I/O is to request data and then start using it.
The operating system then switches to another process until the desired data ar-
rives, and then the operating system switches back to the requesting process.
Such a style is called synchronous I/O, in that the process waits until the data has
been read from disk.

The alternative model is for the process to continue after making a request,
and it is not blocked until it tries to read the requested data. Such asynchronous I/
O allows the process to continue making requests so that many I/O requests can
be operating simultaneously. Asynchronous I/O is shares the same philosophy as
caches in out-of-order CPUs, trying to get the multiple events happening to get
greater bandwidth.

Block Servers vs. Filers

The operating system typically provides the file abstraction on top of blocks
stored on the disk. The terms logical units, logical volumes, and physical vol-
umes are related terms used in Microsoft and UNIX systems to refer to subset
collections of disk blocks. A logical unit is the element of storage exported from
a disk array, usually constructed from a subset of the array’s disks. A logical unit

FIGURE 7.35 Virtual DMA requires a register for each page to be transferred in the
DMA controller, showing the protection bits and the physical page corresponding to
each virtual page.

Disk Disk

Cache

I/O bus

I/O
controller

Graphics
output

Network

I/O
controller

I/O
controller

CPU-memory bus

Address
translation
registers Main

memoryTLB

CPU

DMA

550 Chapter 7 Storage Systems

appears to the server as single virtual “disk.” In a RAID disk array, the logical
unit is configured as a particular RAID layout, such as RAID 5. A physical vol-
ume is the device file used by the file system to access a logical unit. A logical
volume provides a level of virtualization that enables the file system to split the
physical volume across multiple pieces or to stripe data across multiple physical
volumes. A logical unit is an abstraction of a disk array that presents a virtual
disk to the operating system, while physical and logical volumes are abstractions
used by the operating system to divide these virtual disks into smaller, indepen-
dent file systems.

Having covered some of the terms for collections of blocks, the question aris-
es as to where the file illusion should be maintained: in the server or at the other
end of the storage area network?

The traditional answer is the server. It accesses storage as disk blocks and
maintains the metadata. Most file systems use a file cache, so it is the job of the
server to maintain consistency of file accesses. The disks may be direct attached–
located inside the server box connected to an I/O bus–or attached over a storage
area network, but the server transmits data blocks to the storage subsystem.

The alternative answer is the disk subsystem itself maintains the file abstrac-
tion, and the server uses a file system protocol to communicate with storage. Ex-
ample protocols are Network File System (NFS) for Unix systems and Common
Internet File System (CIFS) for Windows systems. Such devices are called Net-
work Attached Storage (NAS) devices since it makes no sense for storage to be di-
rectly attached to the server. The name is something of a misnomer because a
storage area network like FC-AL can also be used to connect to block servers.
The term filer is often used for NAS devices that only provide file service and file
storage. Network Appliances is one of the first companies to make filers.

Recently new products have been announced which sit between the compute
server and the disk array controller. They provide snapshots of storage, caching,
backup and so on. The goal is to make the storage system easier to manage.

The driving force behind placing storage on the network is make it easier for
many computers to share information and for operators to maintain it.

Caches Cause Problems for Operating Systems—Stale Data

The prevalence of caches in computer systems has added to the responsibilities of
the operating system. Caches imply the possibility of two copies of the data—one
each for cache and main memory—while virtual memory can result in three cop-
ies—for cache, memory, and disk. These copies bring up the possibility of stale
data: the CPU or I/O system could modify one copy without updating the other
copies (see page 469). Either the operating system or the hardware must make
sure that the CPU reads the most recently input data and that I/O outputs the cor-
rect data, in the presence of caches and virtual memory.

There are two parts to the stale-data problem:

7.10 Crosscutting Issues 551

1. The I/O system sees stale data on output because memory is not up-to-date.

2. The CPU sees stale data in the cache on input after the I/O system has updated
memory.

The first dilemma is how to output correct data if there is a cache and I/O is con-
nected to memory. A write-through cache solves this by ensuring that memory
will have the same data as the cache. A write-back cache requires the operating
system to flush output addresses to make sure they are not in the cache. This flush
takes time, even if the data is not in the cache, since address checks are se-
quential. Alternatively, the hardware can check cache tags during output to see if
they are in a write-back cache, and only interact with the cache if the output tries
to read data that is in the cache.

The second problem is ensuring that the cache won’t have stale data after in-
put. The operating system can guarantee that the input data area can’t possibly be
in the cache. If it can’t guarantee this, the operating system flushes input address-
es to make sure they are not in the cache. Again, this takes time, whether or not
the input addresses are in the cache. As before, extra hardware can be added to
check tags during an input and invalidate the data if there is a conflict.

These problems are like cache coherency in a multiprocessor, discussed in
Chapter 6. I/O can be thought of as a second dedicated processor in a multipro-
cessor.

Switches Replacing Buses

The cost of replacing passive buses with point-to-point links and switches (Chap-
ter 8) is dropping as Moore’s Law continues to reduce the cost of components.
Combined with the higher I/O bandwidth demands from faster processors, faster
disks, and faster local area networks, the decreasing cost advantage of buses
means the days of buses in desktop and servers computers are numbered. In
2001, high end servers have already replaced processor-memory buses with
switches––see Figure 7.14 on page 506––and switches are now available for high
speed storage buses, such as fibre channel.

Not only do switched networks provide more aggregate bandwidth than do
buses, the point-to-point links can be much longer. For example, the planned suc-
cessor to the PCI I/O bus, called Infiniband, uses point-to-point links and switch-
es. It delivers 2 to 24 gigabits/second of bandwidth per link and stretches the
maximum length of the interconnect using copper wire from 0.5 meters of a PCI
bus to 17 meters.

We’ll return to discussion of switches in the next chapter.

Replication of Processors for Dependability

In this and prior chapters we have discussed providing extra resources to check
and correct errors in main memory and in storage. As Moore’s Law continues and

552 Chapter 7 Storage Systems

dependability increases in importance for servers, some manufacturers are plac-
ing multiple processors on a single chip for the primary purpose of improving the
reliability of the processor.

The state-of-the-art in processor dependability is likely the IBM 390 main-
frame. Naturally, all its caches and main memory are protected by ECC, but so
are the register files. The G6 chips and modules include up to14 processors, some
of which are used as built in spares. Each processor has redundant instruction
fetch/decode, execution units, L1 cache, and register file to check for errors. At
the completion of every instruction, the results produced by the two instruction-
execution units are compared and, if equal, the results of the instruction are
checkpointed for recovery in case the next instruction fails. Upon detecting an in-
consistency, the processor will retry instructions several times to see if the error
was transient. If an error is not transient, the hardware can swap in a spare pro-
cessor in less than a second without disrupting the application.

The art of I/O system design is to find a design that meets goals for cost, depend-
ability, and variety of devices while avoiding bottlenecks to I/O performance.
Avoiding bottlenecks means that components must be balanced between main
memory and the I/O device, because performance—and hence effective cost/per-
formance—can only be as good as the weakest link in the I/O chain. The archi-
tect must also plan for expansion so that customers can tailor the I/O to their
applications. This expansibility, both in numbers and types of I/O devices, has its
costs in longer I/O buses, larger power supplies to support I/O devices, and larger
cabinets. Finally, storage must be dependable, adding new constraints on pro-
posed designs.

In designing an I/O system, analyze performance, cost, capacity, and availabil-
ity using varying I/O connection schemes and different numbers of I/O devices of
each type. Here is one series of steps to follow in designing an I/O system. The
answers for each step may be dictated by market requirements or simply by cost,
performance, and availability goals.

1. List the different types of I/O devices to be connected to the machine, or list
the standard buses that the machine will support.

2. List the physical requirements for each I/O device. Requirements include size,
power, connectors, bus slots, expansion cabinets, and so on.

3. List the cost of each I/O device, including the portion of cost of any controller
needed for this device.

4. List the reliability of each I/O device.

5. Record the CPU resource demands of each I/O device. This list should include

n Clock cycles for instructions used to initiate an I/O, to support operation

7.11 Designing an I/O System in Five Easy Pieces

7.11 Designing an I/O System in Five Easy Pieces 553

of an I/O device (such as handling interrupts), and complete I/O

n CPU clock stalls due to waiting for I/O to finish using the memory, bus, or
cache

n CPU clock cycles to recover from an I/O activity, such as a cache flush

6. List the memory and I/O bus resource demands of each I/O device. Even when
the CPU is not using memory, the bandwidth of main memory and the I/O bus
is limited.

7. The final step is assessing the performance and availability of the different
ways to organize these I/O devices. Performance can only be properly eval-
uated with simulation, though it may be estimated using queuing theory. Re-
liability can be calculated assuming I/O devices fail independently and are that
MTTFs are exponentially distributed. Availability can be computed from reli-
ability by estimating MTTF for the devices, taking into account the time from
failure to repair.

You then select the best organization, given your cost, performance, and avail-
ability goals.

Cost/performance goals affect the selection of the I/O scheme and physical
design. Performance can be measured either as megabytes per second or I/Os per
second, depending on the needs of the application. For high performance, the
only limits should be speed of I/O devices, number of I/O devices, and speed of
memory and CPU. For low cost, the only expenses should be those for the I/O
devices themselves and for cabling to the CPU. Cost/performance design, of
course, tries for the best of both worlds. Availability goals depend in part on the
cost of unavailability to an organization.

To make these ideas clearer, the next dozen pages go through five examples.
Each looks at constructing a disk array with about 2 terabytes of capacity for user
data with two sizes of disks. To offer a gentle introduction to I/O design and eval-
uation, the examples evolve in realism.

To try to avoid getting lost in the details, let’s start with an overview of the five
examples:

1. Naive cost-performance design and evaluation: The first example calculates
cost-performance of an I/O system for the two types of disks. It ignores de-
pendability concerns, and makes the simplifying assumption of allowing
100% utilization of I/O resources. This example is also the longest.

2. Availability of the first example: The second example calculates the poor
availability of this naive I/O design.

3. Response times of the first example: The third example uses queuing theory to
calculate the impact on response time of trying to use 100% of an I/O resource.

554 Chapter 7 Storage Systems

4. More realistic cost-performance design and evaluation: Since the third exam-
ple shows the folly of 100% utilization, the fourth example changes the design
to obey common rules of thumb on utilization of I/O resources. It then evalu-
ates cost-performance.

5. More realistic design for availability and its evaluation: Since the second ex-
ample shows the poor availability when dependability is ignored, this final ex-
ample uses a RAID 5 design. It then calculates availability and performance.

Figure 7.36 summarizes changes in the results in cost-performance, latency,
and availability as examples become more realistic. Readers may want to first
skim the examples, and then dive in when one catches their fancy.

First Example: Naive Design and Cost-Performance

Now let’s take a long look at the cost/performance of two I/O organizations. This
simple performance analysis assumes that resources can be used at 100% of their
peak rate without degradation due to queueing. (The fourth example takes a more
realistic view.)

E X A M P L E Assume the following performance and cost information:

n A 2500-MIPS CPU costing $20,000.

n A 16-byte-wide interleaved memory that can be accessed every 10
ns.

n 1000 MB/sec I/O bus with room for 20 Ultra3SCSI buses and control-
lers.

Simplistic
Organization

(Examples 1, 2, 3)

Performance Tuned
Organization
(Example 4)

Performance and Availability
Tuned Organization

(Examples 5)

Small v. Large disks Small v. Large disks Small v. Large disks

Cost of 1.9 TB system $47,200 v. $45,200 $49,200 v. $47,200 $57,750 v. $54,625

Performance (IOPS) 6,144 v. 3,072 IOPS 4,896 v. 2,448 IOPS 6,120 v. 3,060 IOPS

Cost-Performance $8 v. $15 per IOPS $10 v. $19 per IOPS $9 v. $18 per IOPS

Disk Utilization 100% 80% 80%

Disk Access Latency 238 ms (@ 97%) 41 ms 41 ms

Availability: MTTF
(hours)

9,524 v. 15,385 -- 2,500,000 v. 5,200,000

FIGURE 7.36 Summary of cost, performance, and availability metrics of the five examples. on the next ten pages.
Note that performance in the fifth example assumes all I/Os are reads.

7.11 Designing an I/O System in Five Easy Pieces 555

n Wide Ultra3SCSI buses that can transfer 160 MB/sec and support up
to 15 disks per bus (these are also called SCSI strings).

n A $500 Ultra3SCSI controller that adds 0.3 ms of overhead to per-
form a disk I/O.

n An operating system that uses 50,000 CPU instructions for a disk I/O.

n A choice of a large disk containing 80 GB or a small disk containing
40 GB, each costing $10.00 per GB.

n A $1500 enclosure supplies power and cooling to either 8 80 GB
disks or 12 40 GB disks.

n Both disks rotate at 15000 RPM, have an 5-ms average seek time,
and can transfer 40 MB/sec.

n The storage capacity must be 1920 GB.

n The average I/O size is 32 KB.

Evaluate the cost per I/O per second (IOPS) of using small or large drives.
Assume that every disk I/O requires an average seek and average rota-
tional delay. Use the optimistic assumption that all devices can be used at
100% of capacity and that the workload is evenly divided among all disks.

A N S W E R I/O performance is limited by the weakest link in the chain, so we evaluate
the maximum performance of each link in the I/O chain for each organiza-
tion to determine the maximum performance of that organization.

 Let’s start by calculating the maximum number of IOPS for the CPU,
main memory, and I/O bus. The CPU I/O performance is determined by
the speed of the CPU and the number of instructions to perform a disk I/O:

Maximum IOPS for CPU = = 50,000 IOPS

The maximum performance of the memory system is determined by the
memory cycle time, the width of the memory, and the size of the I/O trans-
fers:

Maximum IOPS for main memory = ≈ 50,000 IOPS

The I/O bus maximum performance is limited by the bus bandwidth and
the size of the I/O:

Maximum IOPS for the I/O bus = ≈ 31,250 IOPS

Thus, no matter which disk is selected, the I/O bus limits the maximum
performance to no more than 31,250 IOPS.

2500 MIPS
50,000 instructions per I/O---

1/10 ns() 16×
32 KB per I/O----------------------------------

1000 MB/sec
32 KB per I/O----------------------------------

556 Chapter 7 Storage Systems

Now it’s time to look at the performance of the next link in the I/O
chain, the SCSI controllers. The time to transfer 32 KB over the SCSI bus is

Ultra3SCSI bus transfer time = = 0.2 ms

Adding the 0.3-ms SCSI controller overhead means 0.5 ms per I/O, mak-
ing the maximum rate per controller

Maximum IOPS per Ultra3SCSI controller = = 2000 IOPS

All organizations will use several controllers, so 2000 IOPS is not the limit
for the whole system.

The final link in the chain is the disks themselves. The time for an av-
erage disk I/O is

I/O time = 5 ms + = 5 + 2.0 + 0.8 = 7.8 ms

Therefore, disk performance is

Maximum IOPS (using average seeks) per disk = ≈ 128 IOPS

The number of disks in each organization depends on the size of each
disk: 1920 GB can be either 24 80-GB disks or 48 40-GB disks. The max-
imum number of I/Os for all the disks is

Thus, provided there are enough SCSI strings, the disks become the new
limit to maximum performance: 3072 IOPS for the 80-GB disks and 6144
for the 40-GB disks.

Although we have determined the performance of each link of the
I/O chain, we still have to determine how many SCSI buses and control-
lers to use and how many disks to connect to each controller, as this may
further limit maximum performance. The I/O bus is limited to 20 SCSI con-
trollers, and the limit is 15 disks per SCSI string. The minimum number of
controllers for the 80-GB disks is

Minimum number of SCSI-2 strings for 24 80-GB disks = or 2 strings

and for 40-GB disks

Minimum number of SCSI-2 strings for 48 40-GB disks = or 4 strings

Although the formulas suggest the ideal number of strings, they must be

32 KB
160 MB/sec-----------------------------

1
0.5 ms----------------

0.5
15000 RPM-----------------------------

32 KB
40 MB/sec--------------------------

+

1
7.8 ms----------------

Maximum IOPS for 24 8-GB disks 24 128× 3072 IOPS= =

Maximum IOPS for 48 2-GB disks 48 128× 6144 IOPS= =

24
15------

48
15------

7.11 Designing an I/O System in Five Easy Pieces 557

matched with the requirements of the physical packaging. Three enclo-
sures needed for 24 80-GB disks are a poor match to 2 strings, although
4 strings needed for 48 40-GB are a good match to the 4 enclosures.
Thus, we increase the number of strings to 3 for the big disks.
We can calculate the maximum IOPS for each configuration:

The maximum performance of this number of controllers is higher than the
disk I/O throughput, so there is no benefit of adding more strings and con-
trollers.

Using the format

Min(CPU limit, memory limit, I/O bus limit, disk limit, string limit)

the maximum performance of each option is limited by the bottleneck (in
boldface):

80-GB disks, 2 strings = Min(50,000, 50,000, 31,250, 3072, 6000) = 3072 IOPS
40-GB disks, 4 strings = Min(50,000, 50,000, 31,250, 6144, 8000) = 6144 IOPS

We can now calculate the cost for each organization:

80-GB disks = $20,000 + 3 × $500 + 24 × (80 × $10) + $1500 x = $45,200

40-GB disks = $20,000 + 4 × $500 + 48 × (40 × $10)+ $1500 x = $47,200

Finally, the cost per IOPS is $15 for the large disks and $8 for the
small disks. Calculating the maximum number of average I/Os per sec-
ond, assuming 100% utilization of the critical resources, the small disks
have about 1.9 times better cost/performance than the large disks in this
example. n

Second Example: Calculating MTTF of First Example

We ignored dependability in the design above, so let’s look at the resulting Mean
Time To Fail.

E X A M P L E For the organizations in the last example, calculate the MTTF. Make the
following assumptions, again assuming exponential lifetimes:

n CPU/Memory MTTF is 1,000,000 hours

n Disk MTTF is 1,000,000 hours;

n SCSI controller MTTF is 500,000 hours

Maximum IOPS for 3 Ultra3SCSI strings 3 2000× 6000 IOPS= =

Maximum IOPS for 4 Ultra3SCSI strings 4 2000× 8000 IOPS= =

24
8------

48
12------

558 Chapter 7 Storage Systems

n Power supply MTTF is 200,000 hours

n Fan MTTF is 200,000 hours

n SCSI cable MTTF is 1,000,000 hours

n Enclosure MTTF is 1,000,000 hours (not including MTTF of one fan
and one power supply)

A N S W E R Collecting these together, we compute these failure rates:

The MTTF for the system is just the inverse of the failure rate

The smaller, more numerous drives have almost twice the cost performance but
about 60% of the reliability, and the collective reliability for both options is only
about 1% of a single disk.

n

Third Example: Calculating Response time of First Example

The first example assumed that resources can be used 100%. It is instructive to
see the impact on response time as we approach 100% utilization of a resource.
Let’s do this for just one disk to keep the calculations simple; the exercises do
more disk.

E X A M P L E Recalculate performance in terms of response time. To simplify the calcu-
lation, ignore the SCSI strings and controller and just calculate for one
disk. From the example above, the average disk service time is 7.8 ms. As-
sume Poisson arrivals with an exponential service time. Plot the mean re-
sponse time for the following number of I/Os per second: 64, 72, 80, 88,
96, 104, 112, 120, and 124.

Failure Ratebig disks
1

1000000---------------------
24

1000000---------------------
2

500000------------------
+ + 3

200000------------------
3

200000------------------
3

1000000---------------------
3

1000000---------------------
+ + + +=

1 24 4 15 15 3 3+ + + + + +
1000000 hours--

65
1000000 hours------------------------------------

==

Failure Rate small disks
1

1000000---------------------
48

1000000---------------------
4

500000------------------
+ + 4

200000------------------
4

200000------------------
4

1000000---------------------
4

1000000---------------------
+ + + +=

1 48 8 20 20 4 4+ + + + + +
1000000 hours--

105
1000000 hours------------------------------------

==

MTTFbig disks
1

Failure Ratebig disks
--

1000000 hours
65------------------------------------ 15385 hours===

MTTF small disks
1

Failure Ratesmall disks

1000000 hours
105------------------------------------ 9524 hours===

7.11 Designing an I/O System in Five Easy Pieces 559

A N S W E R To be able to calculate the average response time, we can use the equa-
tion for an M/M/1 queue given the assumptions above about arrival rates
and services times. From page 538, the equations for time waiting in the
queue is (evaluated for 64 I/O requests per second):

Figure 7.37 shows the utilization and mean response time for other re-
quest rates, and Figure 7.38 plots the response times versus request rate.

n

Fourth Example: More Realistic Design and Cost-Performance

Figure 7.38 shows the severe increase in response time when trying to use 100%
of a server. A variety of rules of thumb have been evolved to guide I/O designers
to keep response time and contention low:

n No disk should be used more than 80% of the time.

n No disk arm should be seeking more than 60% of the time.

n No disk string should be utilized more than 40%.

n No I/O bus should be utilized more than 75%.

One reason the SCSI string bandwidth is set so low is that there is about a 20%
SCSI command overhead on data transfers, further reducing available bandwidth.

Request rate Utilization (%) Mean response time (ms)

64 50% 15.6

72 56% 17.8

80 62% 20.7

88 69% 24.9

96 75% 31.1

104 81% 41.3

112 87% 61.7

120 94% 121.9

124 97% 237.8

FIGURE 7.37 Utilization and mean response time for one disk in the prior
example, ignoring the impact of SCSI buses and controllers. The nominal ser-
vice time is 7.8 ms. 100% utilization of disks is unrealistic.

Server utilization Arrival rate Timeserver× 64 0.0078× 0.50= = =

Timequeue Timeserver
Server utilization

1 Server utilization–()---× 7.8 ms
0.50

1 0.50–-------------------× 7.8
0.5
0.5-------× 7.8 ms= = = =

Timesystem Timeserver Timequeue+ 7.8 7.8+ 15.6 ms= = =

560 Chapter 7 Storage Systems

E X A M P L E Recalculate performance in the example above using these rules of
thumb, and show the utilization of each component before and after these
assumptions.

A N S W E R First let’s see how much the resources are utilized using the assumptions
above. The new limit on IOPS for disks used 80% of the time is 128 × 0.8
= 102 IOPS. Notice that the IOPS is in the relatively flat part of the re-
sponse time graph in Figure 7.38, as we would hope. The utilization of
seek time per disk is

This is below the rule of thumb of 60%.
The I/O bus can support 31,250 IOPS but the most that is used be-

fore was 6144 IOPS, which is just 6144/31250 or a 20% utilization. Thus,
the I/O bus is far below the suggested limit.

The biggest impact is on the SCSI bus. A SCSI bus with 12 disks
uses . The revised limit per SCSI string is now
40%, which limits a SCSI bus to 800 IOPS.

FIGURE 7.38 X-Y plot of response times in Figure 7.37.

-

5 0

100

150

200

250

6 0 7 0 8 0 9 0 100 110 120 130

Request rate (IOPS)

Time of average seek
Time between I/Os---

5
1

102 IOPS-----------------------

5

9.8-------
51%= = =

12 102 2000⁄× 61%=

7.11 Designing an I/O System in Five Easy Pieces 561

With this data, we can recalculate IOPS for each organization:
80-GB disks, 3 strings = Min(50,000,50,000, 31,250, 2448, 2400) = 2400 IOPS
40-GB disks, 4 strings = Min(50,000,50,000, 31,250, 4896, 3200) = 3200 IOPS

Under these assumptions, the small disks have about 1.3 times the per-
formance of the large disks.

Clearly, the string bandwidth is the bottleneck now. The number of
disks per string that would not exceed the guideline is

Number of disks per SCSI string at full bandwidth = = 7 disks

and the ideal number of strings is

Number of SCSI strings with 80-GB disks = = 4 strings

Number of SCSI strings with 40-GB disks = = 7 strings

As mentioned before, the number of strings must match the packag-
ing requirements. Three enclosures needed for 24 80-GB disks are a poor
match to 4 strings, and 7 strings needed for 48 40-GB disks are a poor
match to the 4 enclosures. Thus, we increase the number of enclosures
to 4 for the big disks and increase the number of strings to 8 for small
disks, so that each small-disk enclosure has two strings.

The IOPS for the suggested organization is:
80-GB disks, 4 strings = Min(50,000,50,000, 31,250, 2448, 3200) = 2448 IOPS
40-GB disks, 8 strings = Min(50,000,50,000, 31,250, 4896, 6400) = 4896 IOPS

We can now calculate the cost for each organization:

80-GB disks, 4 strings = $20,000 + 4 × $500 + 24 × (80 × $10) + 4 x $1500 = $47,200
40-GB disks, 8 strings = $20,000 + 8 × $500 + 48 × (40 × $10) + 4 x $1500 = $49,200

The respective cost per IOPS is $19 versus $10, or an advantage of about
1.9 for the small disks. Compared with the naive assumption that we could
use 100% of resources, the cost per IOPS increased about 1.3 times.

Figure 7.39 shows the utilization of each resource before and after
following these guidelines. Exercise 7.18 explores what happens when
this SCSI limit is relaxed.

n

Fifth Example: Designing for Availability

Just as the fourth example made a more realistic design for performance, we can
show a more realistic design for dependability. To tolerate faults we will add re-

800
102---------

7.8=

24
7------

3.6=

48
7------

6.9=

562 Chapter 7 Storage Systems

dundant hardware: extra disks, controllers, power supplies, fans, and controllers
in a RAID-5 configuration.

To calculate reliability now, we need a formula to show what to expect when
we can tolerate a failure and still provide service. To simplify the calculations we
assume that the lifetimes of the components are exponentially distributed and the
there is no dependency between the component failures. Instead of mean time to
failure, we calculate mean time until data loss (MTDL), for a single failure will
not, in general, result in lost service. For RAID, data is lost only if a second disk
failure occurs in the group protected by parity before the first failed disk is re-
paired. Mean time until data loss is the mean time until a disk will fail divided by
the chance that one of the remaining disks in the parity group will fail before the
first failure is repaired. Thus, if the chance of a second failure before repair is
large, then MTDL is small, and vice versa.

Assuming independent failures, since we have N disks, the mean time until
one disk fails is . The good approximation of the probability of the
second failure is MTTR over the mean time until one of the remaining G -1 disks
in the parity group will fail. Similar to before, the means time for G -1 disks is
(). Hence, a reasonable approximation for MTDL for a RAID
is [Chen 1994]:

where N is the number of disks in the system and G is the number of disks in a
group protected by parity. Thus, MTDL increases with increased disk reliability,
reduced parity group size, and reduced mean time to repair (MTTR).

Rule of
Thumb

100%
Utilization

Following the Rule of Thumb

Resource

80-GB
disks,

3 strings

40-GB
disks,

4 strings

80-GB
disks,

3 strings

40-GB
disks,

4 strings

80-GB
disks,

4 strings

40-GB
disks,

8 strings

CPU 6% 12% 5% 6% 5% 10%

Memory 6% 12% 5% 6% 5% 10%

I/O bus 75% 10% 20% 8% 10% 8% 16%

SCSI buses 40% 51% 77% 40% 40% 31% 31%

Disks 80% 100% 100% 78% 52% 80% 80%

Seek utilization 60% 64% 64% 50% 33% 51% 51%

IOPS 3072 6144 2400 3200 2448 4896

FIGURE 7.39 The percentage of utilization of each resource, before and after using the rules of thumb. Bold font
shows resources in violation of the rules of thumb. Using the prior example, the utilization of three resources violated the
rules of thumb: SCSI buses, disks, and seek utilization.

MTTFdisk N⁄

MTTFdisk G 1–()⁄

MTDL
MTTFdisk N⁄

MTTRdisk
MTTFdisk G 1–()⁄()--

--

MTTFdisk
2

N⁄
G 1–() MTTRdisk×--

MTTFdisk
2

N G 1–()× MTTRdisk×--
= = =

7.11 Designing an I/O System in Five Easy Pieces 563

The physical design of the disk array gives a strong suggestion to the parity
group size. Figure 7.40 shows two ways of organizing a RAID. The problem with
option 1 is if the string or string controller fails, then all the disks in the RAID
group fail, and data is lost. Option 2, called orthogonal RAID, in contrast loses
only one disk per RAID group even if a string controller fails. Note that if the
string is located in a single enclosure, then orthogonal RAID also protects against
power supply and fan failures.

E X A M P L E For the organizations in the fourth example and using the MTTF ratings
of the components in the second example, create orthogonal RAID arrays
and calculate the MTDL for the arrays.

A N S W E R Both organizations use four enclosures, so we add a fifth enclosure in
each to provide redundancy to tolerate faults. The redundant enclosure

FIGURE 7.40 Two RAID organizations. Orthogonal RAID (Option 2) allows the RAID fault
tolerant scheme to protect against string faults as well as disk faults.

String
Controller

String
Controller

String
Controller

String
Controller

String
Controller

O
ption 2

Option 1

564 Chapter 7 Storage Systems

contains 1 controller and 6 large disks or 2 controllers and 12 small disks.
The failure rate of the enclosures can be calculated similar to a prior ex-
ample:

The MTTF for each enclosure is just the inverse of the failure rate

As the array can continue to provide data despite the loss of a single com-
ponent, we can modify the disk MTDL to calculate for enclosures:

In this case, N = G = the number of enclosures. Even if we assume it takes
24 hours to replace an enclosure (MTTRenclosure), the MTDL for each or-
ganization is:

We can now calculate the higher cost for RAID 5 organizations:

80-GB disks, 5 strings = $20,000 + 5 × $500 + 30 × (80 × $10) + 5 x $1500 = $54,625
40-GB disks, 10 strings = $20,000 + 10 × $500 + 60 × (40 × $10) + 5 x $1500= $57,750

If we evaluated the cost-reliability, for large disk costs $11 per thousand
hours of MTDL while the small disk system costs $23 per thousand hours
of MTDL.

The IOPS for the more dependable organization now depends on the
mix of reads and writes in the I/O workload, since writes in RAID 5 system

Enclosure Failure Ratebig disks
6

1000000---------------------
1

500000------------------
+ 1

200000------------------
1

200000------------------
1

1000000---------------------
1

1000000---------------------
+ + + +=

6 2 5 5 1 1+ + + + +
1000000hours---

20
1000000hours----------------------------------

==

Enclosure Failure Rate small disks
12

1000000---------------------
2

500000------------------
+ 1

200000------------------
1

200000------------------
2

1000000---------------------
1

1000000---------------------
+ + + +=

12 4 5 5 2 1+ + + + +
1000000hours--

29
1000000hours----------------------------------

==

MTTFbig disks
1

Failure Ratebig disks
--

1000000hours
20---------------------------------- 50000hours===

MTTF small disks
1

Failure Ratesmall disks

1000000hours
29----------------------------------

= 34500hours≈=

MTDLRAID

MTTFenclosure
2

N G 1–()× MTTRenclosure×--
=

MTDLbig disk RAID
50 000, 2

5 5 1–()× 24×--------------------------------------
2 500 000 000hours, , ,

480-- 5 200 000hours, ,≈= =

MTDLsmall disk RAID
34 500, 2

5 5 1–()× 24×--------------------------------------
1 190 250 000hours, , ,

480-- 2 500 000 hours, ,≈= =

7.12 Putting It All Together: EMC Symmetrix and Celerra 565

are much slower than writes for RAID 0 systems. For simplicity, lets as-
sume 100% reads. (The exercises look at other workloads.) Since RAID-
5 allows reads to all disks, and there are more disks and strings in our de-
pendable design, read performance improves as well as dependability.:

80-GB disks, 5 strings = Min(50,000,50,000, 31,250, 3060, 4000) = 3060 IOPS
40-GB disks, 10 strings= Min(50,000,50,000, 31,250, 6120, 8000) = 6120 IOPS

We can now calculate the cost per IOPS for RAID 5 organizations.
Compared to the results from the first example, the respective cost per
IOPS increased slightly from $15 to $18 and from $8 to $9, respectively.
The exercises look at the impact on cost-performance as the I/O workload
includes reads in a RAID 5 organization.

n

In both cases, given the reliability assumptions above, the mean time to data
loss for redundant arrays containing several dozen disks is greater than the mean
time to failure of a single disk. At least for a read-only workload, the cost-perfor-
mance impact of dependability is small. Thus, a weakness was turned into a
strength: the larger number of components allows redundancy so that some can
fail without affecting the service.

The EMC Symmetrix is one of the leading disk arrays that works with most com-
puter systems, and the EMC Celerra is a relatively new filer for both UNIX NFS
and Windows CIFS file systems. Both machines have significant features to im-
prove dependability of storage. After reviewing the two architectures, we’ll sum-
marize the results of their performance and dependability benchmarks.

EMC Symmetrix 8000

The Symmetrix 8000 holds up to 384 disks, which are protected either via mir-
roring (RAID 1) or via a variation of RAID-5 that EMC calls RAID-S. The
RAID-S group size is 4 or 8 drives. At 73 GB per drive, the total raw capacity is
about 28 terabytes. Figure 7.41 shows its organization.

The internal architecture is built around four busses that run at 60 MHz and
transfer 64 bits of data and 16 bits of error correcting code (ECC). With this
scheme, any number of incorrect bits in any two nibbles can be detected while
any number of incorrect bits in one nibble can be corrected. Each component is
connected to two buses so that failure of a bus does not disconnect the component
from the system. The components that connect to these four buses are:

7.12 Putting It All Together:
EMC Symmetrix and Celerra

566 Chapter 7 Storage Systems

FIGURE 7.41 EMC Symmetrix 8000 organization. Every component is paired so that there is no single point of failure.
If mirroring is used, then the disks are also paired. If RAID-S is used, there is one block of parity for every 4 to 8 blocks.

Cache Cache
Disk
Caches
(2 to 4,
each
1 to 8 GB)

Busses
(4, each
64-bit data,
16-bit ECC
@60 Mhz)

Disk
Directors
(2 / card,
2 to 8 cards)

SCSI
Strings
(2 / Disk
Director =
4/card)

SCSI
Disks
(4 to 12
per string)

Channel
Directors
(2 / card,
2 to 8 cards)

Disk
Director

Disk
Director

SCSI SCSI

Cache Cache

Disk
Director

Disk
Director

FC-AL FC-AL...

...

...

...

7.12 Putting It All Together: EMC Symmetrix and Celerra 567

n Channel Directors connect the server host to the internal busses of the disk ar-
ray, and work with SCSI, FC-AL, and ESCON (IBM mainframe I/O bus). They
also run the algorithms to manage the caches. Up to sixteen channel directors
are provided, packaged two directors per card.

n Disk Cache Memory acts as speed-matching buffer between the host servers
and the disks; in addition, it exploits locality to reduce accesses to the disks.
There are up to four slots for cache boards, and each contains 1 GB to 8 GB.
Each system has at least two cache boards, producing systems that have from
2 GB to 32 GB of cache. EMC claims 90% to 95% read hit rates for the largest
cache size. The caches will also buffer writes, allowing the system to report
that the write is completed before it reaches the disk. The Channel Director
monitors the amount of dirty data. It will not send the write complete signal if
the cache is behind and the Channel Director needs to flush more data to disk
to reduce the length of the write buffer queue. Symmetrix does not include bat-
teries in the cache for nonvolatility, but instead provides batteries for the whole
array to protect the whole system from short power failures.

n Disk Directors connect the internal busses to the disks. Each disk director has
two Ultra1 SCSI strings, running at 40 MB/sec in 2001. Each string uses a re-
dundant SCSI controller on a different director to watch the behavior of the pri-
mary controller and to take over in case it fails. Up to sixteen disk directors are
provided, packaged two directors per card. With up to 12 SCSI disks on a
string, we get drives.

Both directors contain the same embedded computers. They have two Power-
PC 750s running at 333 MHz, each with 16 MB of DRAM and a 1MB L2 cache.
The PowerPC buses contain 32 bits of data plus 4 bits for ECC, and run at 33
MHz. These computers also have several DMA devices, so requested data does
not go through the computer memory, but directly between the disks and the
cache or the cache and the host bus. The processors act independently, sharing
only boot ROMs and an Ethernet port.

The storage system can exploit modifications of disks as requested by EMC,
which disk manufacturers in turn make available to others. For example, some
disks can understand a notion of request priority allowing the storage system to
submit more requests to the drives knowing that the drives will maintain proper
order in their internal queues.

The Symmetrix disk cache is controlled by a combination of LRU and
prefetching algorithms, fetching between 2 and 12 blocks at a time. The cache
memory is independent of the PowerPC processors. The cache is structured as a
sequence of tracks of data each 32 KB long. Each 4-KB segment of a track has
associated metadata that contains CRC checksums on the data and metadata used
by other Symmetrix features. The Symmetrix provides “end-to-end” checking on
transfers between disk to cache and between cache and the host server by ensur-
ing that the both the DRAM ECC and associated CRC checksums match at the
beginning and end of every data transfer.

16 2 12×× 384=

568 Chapter 7 Storage Systems

As faults must be activated before they can become effective errors and then
corrected, all cache locations are periodically read and rewritten using the ECC
on memory to correct single bit errors and detect double bit errors. Cache scrub-
bing also keeps a record of errors for each block. If the channel director finds an
uncorrectable error, then this section of the cache is “fenced” and removed from
service. The data is first copied to another block of the cache. The service proces-
sor (see below) then contacts EMC to request repair of the failed component.

During idle time, disk scrubbing is performed analogously to cache scrubbing
above, with the same benefit of turning latent errors into activated errors during
relatively idle times. Correctable errors are logged, and uncorrectable errors
cause the bad disk sector to be replaced, with the missing data coming from the
redundant information. If too many sectors in a track must be skipped, the whole
track is fenced. Such repairs to the cache and to the disks are transparent to the
user.

Rather than have a XOR engine only in the disk directors, RAID-5 parity cal-
culations are done inside the drives themselves and combined by the directors as
needed. As mentioned above, small writes in RAID-5 involve four accesses over
two disks. This optimization avoids having to read the rest of the data blocks of a
group to calculate parity on a “small” write. Symmetrix supplies the new data
and asks the disk to calculate which bits changed, and then passes this informa-
tion to the disk containing parity for it to read the old parity and modify it.

Having the disk drive perform the XOR calculations provides two benefits.
First, it avoids having a XOR engine become a bottleneck by spreading the func-
tion to each disk. Second, it allows the older data to be read and rewritten without
an intervening seek; the same benefit applies when updating parity.

In addition to the dynamic nature of managing the cache, the Symmetrix can
change how mirroring works to get better performance from the second disk. It
monitors access patterns to the data and changes policy depending on the pattern.
Data is organized into logical volumes, so there is a level of indirection between
the logical data accesses and the layout of data on the physical disks. Depending
on whether accesses are sequential or random, the mirror policy options include:

n Interleaved: the mirrors alternate which cylinders they serve, ranging from ev-
ery other cylinder to large blocks of cylinders. This policy helps with sequen-
tial accesses by allowing one disk to seek to the next cylinder while the other
disk is reading data.

n Mixed: One disk serves the first half of the data and one disk serves the second
half. This policy helps with random accesses by allowing the two independent
requests to be overlapped.

Policy options also let only a single disk serve all accesses, which helps error re-
covery.

The Symmetrix 8000 also has a service processor. It is just a laptop that talks
to all directors over an internal Ethernet. To allow remote maintenance of the disk
array, the service processor is also connected to a telephone line. All system er-

7.12 Putting It All Together: EMC Symmetrix and Celerra 569

rors are logged to the service processor, which filters the log to determine wheth-
er it should contact EMC headquarters to see if repair is warranted. That is, it is
predicting potential failures. If it suspects a failure, it contacts support personnel
who review the data and decide if intervention is required. They can call back
into the service processor to collect more data and to probe the Symmetrix to de-
termine the root cause of the error. A customer service engineer is then dis-
patched to replace the failing component.

In addition to error logging and remote support, the service processor is used
for code installation and upgrades, creating and modifying system configura-
tions, running scripts, and other maintenance activities. To allow upgrades in the
field, the service processor can systematically upgrade the EEPROMs of each di-
rector and then put the director into a busy state so that it performs no storage ac-
cesses until it reboots with the new software.

EMC Celerra 500

The Celerra contains no disk storage itself, but simply connects to clients on one
side and to Symmetrix disk arrays on the other. Using the NAS terminology, its is
called a filer. Its job is to translate the file requests from clients into commands
for data from Symmetrix arrays, and to transfer files as requested.

The Celerra has 14 slots for Data Movers, which are simply PC motherboards
that connect to the Symmetrix array via two SCSI buses. Each data mover con-
tains a 700 MHz Pentium III processor, PCI bus, and 512 MB of DRAM. It also
supports several varieties of network cards with varying number of networks:
ATM, FDDI, two 1-Gigabit Ethernets per card, and eight 100-Mbit Ethernets per
card. Each data mover acts as a fully autonomous file server, running EMC’s real-
time operating system called DART.

In addition to the Data Movers, there are two Control Stations, which act anal-
ogously to the service processor in the Symmetrix array. A pair of control stations
provides protection in case one fails. The hardware used in control stations is the
same as the hardware used in the Data Movers, but with a different function.
They run Linux as their operating system.

Celerra has an extensive set of features to provide dependable file service:

n The Celerra has multiple fans, multiple power supplies, multiple batteries, and
two power cords to the box. In every case, a single failure of one of these com-
ponents does not affect behavior of the system.

n Each Data Mover can contact all the disks in the Symmetrix array over either
SCSI bus, allowing the Symmetrix to continue despite a bus failure.

n Each Data Mover has two internal Ethernet cards, allowing communication
with the Control Station to continue even if one card or network fails.

n Each Data Mover has at least two interfaces for clients, allowing redundant
connections so that clients have at least two paths to each Data Mover.

570 Chapter 7 Storage Systems

n The software allows a Data Mover to act as a standby spare.

n There is space for a redundant Control Station, to take over in case the primary
Control Station fails.

The Celerra relies on the Service Processor in the Symmetrix box to call home
when attention is needed.

EMC Symmetrix and Celerra Performance and Availability

Figure 7.32 on page 544 shows the performance of the Celerra 507 with the Sym-
metrix 8700 running SPECsfs97, as the number of Data Movers scales from 2 to
14. The 100,000 NFS operations per second with 14 Data Movers set the record
at the time it was submitted. Despite their focus on dependability–with a large
number of features to detect and predict failures and to reduce mean time to re-
pair–the Celerra/Symmetrix combination had leading performance on benchmark
results.

The disk cache of the EMC Symmetrix disk array was subjected to initial
availability and maintainability benchmarking (Lambright [2000]). A small num-
ber of experiments were performed with the goal of learning more about how to
go about doing availability and maintainability benchmarks.

Faults were injected via software, going from narrowly focused faults to very
broad faults. These were not intended to represent typical faults: they were in-
tended to stress the system, and many are unlikely to occur in real systems.

As mentioned above, the EMC array has the ability to shrink the size of the
cache in response to faults by fencing off a portion of the cache. It also has error
correction that can prevent a fault from causing a failure. The system under test
had 8 GB of cache and 96 disks each with 18 GB of capacity, and it was connect-
ed to an IBM mainframe over 12 channels. The workload was random I/O with
75% reads and 25% writes. Performance was evaluated using EMC benchmarks.

The first fault tests the behavior of the system when the CPUs in the front and
back end get confused: the data structure representing which portions of the
cache were available or fenced is not identical in each CPU. Thus, some CPUs
assumed that the cache was bigger than what other CPUs assumed. Figure 7.42
shows the behavior when half of the CPUs are out-of-sync. A fault was injected
at the 5-th minute and corrected at the 10-th minute. The I/O rate increases in the
12-th minute as the system catches up with delayed requests.

Performance dropped because some CPUs would try to access disabled mem-
ory, generating an error. As each error happened there was a short delay to report
it; as the number of CPUs reporting errors increased, so did the delay.

The second fault experiment forced improper behavior of a cache software
lock. The lock protects metadata related to the LRU replacement algorithm. The
fault simulated a CPU in an infinite loop that repeatedly takes the cache lock
without releasing it. Figure 7.43 shows the results: the flawed CPU takes the lock
in the 6-th, 10-th, and 15-th minute, each time holding it for 20 seconds. Note

7.12 Putting It All Together: EMC Symmetrix and Celerra 571

FIGURE 7.42 I/O rate as Symmetrix CPUs become inconsistent in their model of the size of the cache. Faults were
inserted in the 5-th minute and corrected at in the 10-th minute.

FIGURE 7.43 Host Response time as a rogue CPU hogs a lock for metadata. The lock was held for 20 seconds at
minutes 6, 10, and 15.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20

Minutes

I/O
 r

at
e

0

10

20

30

40

50

0 5 10 15 20

Minutes

R
es

po
ns

e
T

im
e

(m
s)

572 Chapter 7 Storage Systems

that the Y-axis reports response time, so smaller is better. As expected, response
time was impacted by this fault

Standard maintenance techniques fixed the first error, but the second error was
much more difficult to diagnose. The benchmark experiments led to suggestions
on improving EMC management utilities.

At the other end of the storage spectrum from giant servers are digital cameras.
Digital cameras are basically embedded computers with removable, writable,
nonvolatile storage and interesting I/O devices. Figure 7.44 shows our example.

When powered on, the microprocessor first runs diagnostics on all compo-
nents and writes any error messages to the liquid crystal display (LCD) on the
back of the camera. This camera uses a 1.8-inch low temperature polysilicon TFT

7.13 Another View:
Sanyo DSC-110 Digital Camera

FIGURE 7.44 The Sanyo VPC-SX500. Although newer cameras offer more pixels per pic-
ture, the principles are the same. This 1360 x 1024 pixel digital camera stores pictures either
using Compact Flash memory, which ranges from 8 MB to 64 MB, or using a 340 MB IBM
Microdrive. It is 4.3" wide x 2.5" high x 1.6" deep, and it weighs 7.4 ounces. In addition to tak-
ing still picture and converting it to JPEG format every 0.9 seconds, it can record a Quick
Time video clip at VGA Size (640 x 480). Using the IBM Microdrive, it can record up to 7.5
minutes at 15 frames per second with sound (10,000 images) or 50 minutes for 160 x 120
pixel video with sound. Without video, it can record up to 12 hours of 8-bit 8 KHz audio. The
Flash memory storage capacity is 5X to 40X shorter, so its video and audio capacity are also
5X to 40X smaller. One technological advantage is the use of a custom system on a chip to
reduce size and power, so the camera only needs two AA batteries to operate versus four in
other digital cameras.

7.13 Another View: Sanyo DSC-110 Digital Camera 573

color LCD. When a photographer takes a picture, he first holds the shutter half-
way so that the microprocessor can take a light reading. The microprocessor then
keeps the shutter open to get the necessary light, which is captured by a charged-
couple device (CCD) as red, green, and blue pixels. For the camera in Figure
7.44, the CCD is a 1/2 inch, 1360 x 1024 pixel, progressive scan chip. The pixels
are scanned out row-by-row and then passed through routines for white balance,
color, and aliasing correction, and then stored in a 4-MB frame buffer. The next
step is to compress the image into a standard format, such as JPEG, and store it in
the removable Flash memory. The photographer picks the compression, in this
camera called either fine or normal, with a compression ratio of 10x to 20x. An 8
MB Flash memory can store at least 19 fine-quality compressed images or 31
normal-quality compressed images. The microprocessor then updates the LCD
display to show that there is room for one less picture.

Although the above paragraph covers the basics of a digital camera, there are
many more features that are included: showing the recorded images on the color
LCD display; sleep mode to save battery life; monitoring battery energy; buffer-
ing to allow recording a rapid sequence of uncompressed images; and, in this
camera, video recording using MPEG format and audio recording using WAV
format.

The VPC-SX500 camera allows the photographer to use a 340 MB IBM Mi-
crodrive instead of CompactFlash memory. Figure 7.45 compares CompactFlash
and the IBM Microdrive.

Characteristics
Sandisk Type I
CompactFlash
SDCFB-64-144

Sandisk Type II
CompactFlash
SDCF2B-300-530

IBM 340 MB
Microdrive
DSCM-10340

Formatted data capacity (MB) 64 300 340

Bytes per sector 512 512 512

Data transfer rate in MB/second 4 (burst) 4 (burst) 2.6 to 4.2

Link speed to buffer in MB/second 6 6 13

Power standby/operating in Watts 0.15 / 0.66 0.15 / 0.66 0.07/ 0.83

Size: height x width x depth in inches 1.43 x 1.68 x 0.13 1.43 x 1.68 x 0.20 1.43 x 1.68 x 0.20

Weight in grams (454 grams/pound) 11.4 13.5 16

Write cycles before sector wear out 300,000 300,000 not applicable

Load/Unload cycles (on/off) not applicable not applicable 300,000

Nonrecoverable read errors per bits read <1 per 1014 <1 per 1014 < 1 per 1013

Shock tolerance: operating, not operating 2000 G, 2000 G 2000 G, 2000G 175 G, 1500G

Mean Time Between Failures (hours) >1,000,000 >1,000,000 (see caption)

Best Price (in August 2001) $41 $595 $165

FIGURE 7.45 Characteristics of three storage alternatives for digital cameras. IBM matches the Type II form factor in
the Microdrive, while the CompactFlash card uses that space to include many more Flash chips. IBM does not quote MTTF
for the 1.0-inch drives, but the service life is five years or 8800 powered on hours, whichever is first.

574 Chapter 7 Storage Systems

The CompactFlash standard package was proposed by Sandisk Corporation in
1994 for the PCMCIA-ATA cards of portable PCs. Because it follows the ATA in-
terface, it simulates a disk interface including seek commands, logical tracks, and
so on. It includes a built-in controller to support many types of Flash memory and
to help with chip yield for Flash memories byte mapping out bad blocks.

The electronic brain of this camera is an embedded computer with several spe-
cial functions embedded on the chip (Okada [1999]). Figure 7.46 shows the block
diagram of a similar chip to the one in the camera. Such chips have been Systems
On a Chip (SOC), because they essentially integrate into a single chip all the
parts that were found on a small printed circuit board of the past. SOC generally
reduce size and lower power compared to less integrated solutions; Sanyo claims
SOC enables the camera to operate on half the number of batteries and to offer a
smaller form factor than competitors’ cameras. For higher performance, it has
two busses. The16-bit bus is for the many slower I/O devices: Smart Media inter-
face, program and data memory, DMA. The 32-bit bus is for the SDRAM, the
signal processor (which is connected to the CCD), the Motion JPEG encoder, and
the NTSC/PAL encoder (which is connected to the LCD). Unlike desktop micro-
processors, not the large variety of I/O buses that this chip must integrate. The
32-bit RISC MPU is a proprietary design and runs at 28.8 MHz, the same clock
rate as the busses. This 700 milliWatt chip contains 1.8M transistors in a 10.5 x
10.5 mm die implemented using a 0.35 micron process.

FIGURE 7.46 The system on a chip (SOC) found in Sanyo digital cameras. This block diagram, found in Okada [1999],
is for the predecessor of the SOC in the camera in Figure 7.45. The successor SOC, called Super Advanced IC, uses three
buses instead of two, operates at 60 MHz, consumes 800 mW, and fits 3.1M transistors in a 10.2 x 10.2 mm using a 0.35
micron process. Note that this embedded system has twice as many transistors as the state-of-the-art, high performance
microprocessor in 1990! The SOC in the figure is limited to processing 1024 x 768 pixels, but its successor supports 1360
x 1024 pixels.

Signal
Processor

SDRAM
controller

Bus Bridge

DRAM
controller

PCMCIA
controller

DMA
controller

UART
x2

IrDA SIO
PIO

PWM

SSFDC
controller

2 ch
video D/A

Audio
D/A, A/D

NTSC/PAL
encoderMJPEG

RISC

32 bits

16 bits

16 bits
10 bits

16 bits

Signal Bus

CPU Bus

LCD/TV

CCD

SDRAM

DRAM

Smart
Media

Flash
(Program)

MIC

Speaker

RS-232 IrDA port PCMCIA
card

Others

7.14 Fallacies and Pitfalls 575

Fallacy: The rated Mean Time To Failure of disks is 1,200,000 hours or almost
140 years, so disks practically never fail.

The current marketing practices of disk manufacturers can mislead users. How is
such a MTTF calculated? Early in the process manufacturers will put thousands
of disks in a room, run them for a few months, and count the number that fail.
They compute MTTF as the total number of hours that the disks were cumula-
tively up divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be five years or 43,800 hours. For this large MTTF to
make some sense, disk manufacturers argue that the model corresponds to a user
who buys a disk, and then keeps replacing the disk every five years--the planned
lifetime of the disk. The claim is that if many customers (and their great-grand-
children) did this for the next century, on average they would replace a disk 27
times before a failure, or about 140 years.

A more useful measure would be percentage of disks that fail. Assume 1000
disks with a 1,000,000-hour MTTF and the disks are used 24 hours a day. If you
replaced failed disks with a new one having the same reliability characteristics,
the number that would fail over 5 years (43,800 hours) is:

Stated alternatively, 4.4% would fail over the 5-year period. If they were powered
on less per day, then fewer would fail, provided the number of load/unload cycles
are not exceeded (see Figure 7.2 on page 490).

Fallacy: Components fail fast.

A good deal of the fault tolerant literature is based on the simplifying assumption
that a component operates perfectly until a latent error becomes effective, and
then a failure occurs which stops the component.

The Tertiary Disk project had the opposite experience. Many components
started acting strangely long before they failed, and it was generally up to the sys-
tem operator to determine whether to declare a component as failed. The compo-
nent would generally be willing to continue to act in violation of the service
agreement (see section 7.4) until an operator “terminated” that component.

Figure 7.47 shows the history of four drives that were terminated, and the
number of hours they started acting strangely before they were replaced.

7.14 Fallacies and Pitfalls

Failed disks
1000 drives 43800 hours/drive×

1000000 hours/failure--- 44==

576 Chapter 7 Storage Systems

Fallacy: Computers systems achieve 99.999% availability (“Five 9’s), as ad-
vertised.

Marketing departments of companies making servers have started bragging about
the availability of their computer hardware; in terms of Figure 7.48, they claim
availability of 99.999%, nicknamed five nines. Even the marketing departments
of operating system companies have tried to give this impression.

Five minutes of unavailability per year is certainly impressive, but given the
failure data collected in surveys, it’s hard to believe. For example, Hewlett Pack-
ard claims with the HP-9000 server hardware and HP-UX operating system can
deliver 99.999% availability guarantee “in certain pre-defined, pre-tested custom-
er environments” (see Hewlett Packard [1998]). This guarantee does not include
failures due to operator faults, application faults, or environmental faults, which
are likely the dominant fault categories today. Nor does it include scheduled
down time. Its also unclear what is the financial penalty to a company if a system
does not match its guarantee.

Microsoft has also promulgated a five 9’s marketing campaign. In January
2001, www.microsoft.com was unavailable for 22 hours. For its web site to
achieve 99.999% availability, it will require a clean slate for the next 250 years.

In contrast to marketing suggestions, well-managed servers in 2001 typically
achieve 99% to 99.9% availability.

Pitfall: Where a function is implemented affects its reliability.

In theory, it is fine to move the RAID function into software. In practice, it is very
difficult to make it work reliably.

The software culture is generally based on eventual correctness via a series of
releases and patches. It is also difficult to isolate from other layers of software.
For example, proper software behavior is often based on having the proper ver-
sion and patch release of the operating system. Thus, many customers have lost
data due software bugs or incompatibilities in environment in software RAID
systems.

Messages in system log for failed disk Number of
log messages

Duration
(hours)

Hardware Failure (Peripheral device write fault [for] Field Replaceable Unit) 1763 186

Not Ready (Diagnostic failure: ASCQ = Component ID [of] Field Replaceable Unit) 1460 90

Recovered Error (Failure Prediction Threshold Exceeded [for] Field Replaceable Unit) 1313 5

Recovered Error (Failure Prediction Threshold Exceeded [for] Field Replaceable Unit) 431 17

FIGURE 7.47 Record in system log for 4 of the 368 disks in Tertiary Disk that were replaced over 18 months. See
Talagala [1999].These messages, matching the SCSI specification, were placed into the system log by device drivers. Mes-
sages started occurring as much as a week before one drive was replaced by the operator. The third and fourth message
indicates that the drive’s failure prediction mechanism’s detected and predicted imminent failure, yet it was still hours before
the drives were replaced by the operator.

7.14 Fallacies and Pitfalls 577

Obviously, hardware systems are not immune to bugs, but the hardware cul-
tures tends to have greater emphasis on testing correctness in the initial release.
In addition, the hardware is more likely to be independent of the version of the
operating system.

Fallacy: Semiconductor memory will soon replace magnetic disks in desktop
and server computer systems.

When the first edition of this book was written, disks were growing in capacity
at 29% per year and DRAMs at 60% per year. One exercise even asked when
DRAMs would match the cost per bit of magnetic disks.

At about the same time, these same questions were being asked inside of disk
manufacturing companies such as IBM. Therefore, disk manufacturers pushed
the rate of technology improvement to match the rate of DRAMs––60% per
year––with magneto-resistive heads being the first advance to accelerate disk
technology. Figure 7.49 shows the relative areal density of DRAM to disk, with
the gap closing in the late 1980s and widening ever since. In 2001, the gap is
larger than it was in 1975. Instead of DRAMs wiping out disks, disks are wiping
out tapes!

Fallacy: Since head-disk assemblies of disks are the same technology indepen-
dent of the disk interface, the disk interface matters little in price.

As the high-tech portion of the disk are the heads, arms, platters, motors, and so
on, it stands to reason that the I/O interface should matter little in the price of a
disk. Perhaps you should pay $25 extra per drive for the more complicated SCSI
interface versus the PC IDE interface. Figure 7.50 shows this reason does not
stand.

There are two explanations for a factor of 2.5 difference in price per megabyte
between SCSI and IDE disks. First, the PC market is much more competitive
than the server market; PCs normally use IDE drives and servers normally use

Unavailability
(Minutes per year)

Availability
(in percent)

Availability Class
(“number of nines”)

50,000 90% 1

5,000 99% 2

500 99.9% 3

50 99.99% 4

5 99.999% 5

0.5 99.9999% 6

0.05 99.99999% 7

FIGURE 7.48 Minutes unavailable per year to achieve availability class. (from Gray and
Siewiorek [1991].) Note that five nines means unavailable five minutes per year.

578 Chapter 7 Storage Systems

SCSI drives. Second, SCSI drives tend to be higher performance in rotation speed
and seek times. To try to account for the performance differences, the second ra-
tio line Figure 7.50 is limited to comparisons of disks with similar capacity and
performance but different interfaces, yet the ratio in 2000 was still about 2.0.

A third argument for the price difference is called the manufacturing learning
curve. The rational is that every doubling in manufacturing volume reduces costs
by a significant percentage. As about 10 times as many IDE/ATA drives are sold
per year as SCSI drives, if manufacturing costs dropped 20% for every doubling
in volume, the learning curve effect would explain a cost factor of 1.8.

Fallacy: The time of an average seek of a disk in a computer system is the time
for a seek of one-third the number of cylinders.

This fallacy comes from confusing the way manufacturers market disks with the
expected performance, and from the false assumption that seek times are linear in
distance. The one-third-distance rule of thumb comes from calculating the dis-
tance of a seek from one random location to another random location, not includ-
ing the current cylinder and assuming there are a large number of cylinders. In
the past, manufacturers listed the seek of this distance to offer a consistent basis

FIGURE 7.49 Areal density of DRAMs vs. Maximal areal density of magnetic disks in products, as a percentage,
over time. Source: New York Times, 2/23/98, page C3, “Makers of disk drives crowd even more data into even smaller spac-
es. Year 2000 data added to the N.Y. Times information.

0 %

5 %

10%

15%

20%

25%

30%

35%

40%

45%

1970 1975 1980 1985 1990 1995 2000 2005

7.14 Fallacies and Pitfalls 579

for comparison. (As mentioned on page 489, today they calculate the “average”
by timing all seeks and dividing by the number.) Assuming (incorrectly) that seek
time is linear in distance, and using the manufacturer’s reported minimum and
“average” seek times, a common technique to predict seek time is

Timeseek = Timeminimum +

The fallacy concerning seek time is twofold. First, seek time is not linear with
distance; the arm must accelerate to overcome inertia, reach its maximum travel-
ing speed, decelerate as it reaches the requested position, and then wait to allow
the arm to stop vibrating (settle time). Moreover, sometimes the arm must pause
to control vibrations. For disks with more than 200 cylinders, Chen and Lee
[1995] modeled the seek distance as

FIGURE 7.50 Price per gigabyte of 3.5-inch disks between 1995 and 2000 for IDE/ATA and SCSI drives. The data
comes from the same sources as Figure 7.3 on page 493. The downward-heading lines plot price per gigabyte, and the up-
ward-heading lines plot ratio of SCSI price to IDE price. The first upward-line is simply the ratio of the average price per
gigabyte of SCSI versus IDE. The second such line is limited to comparisons of disks with the same capacity and the same
RPM; it is the geometric mean of the ratios of the prices of the similar disks for each month. Note that the ratio of SCSI prices
to IDE/ATA prices got larger over time, presumably because of the increasing volume of IDE versus SCSI drives and in-
creasing competition for IDE disk suppliers.

$ 0

$150

$300

$450

J u l -
9 5

Jan-
9 6

J u l -
9 6

Jan-
9 7

J u l -
9 7

Jan-
9 8

J u l -
9 8

Jan-
9 9

J u l -
9 9

Jan-
0 0

J u l -
0 0

Price
per

gigabyte

-

0.50

1.00

1.50

2.00

2.50

3.00

Price ratio
per gigabye:

 SCSI v. IDE

SCSI

IDE

Ratio SCSI/IDE

Ratio similar disks SCSI/IDE

Distance
Distanceaverage
------------------------------------- Timeaverage Timeminimum–()×

580 Chapter 7 Storage Systems

where a, b, and c are selected for a particular disk so that this formula will match
the quoted times for Distance = 1, Distance = max, and Distance = 1/3 max. Fig-
ure 7.51 above plots this equation versus the fallacy equation. Unlike the first
equation, the square root of the distance reflects acceleration and deceleration.

The second problem is that the average in the product specification would
only be true if there were no locality to disk activity. Fortunately, there is both
temporal and spatial locality (see page 377 in Chapter 5): disk blocks get used
more than once, and disk blocks near the current cylinder are more likely to be
used than those farther away. For example, Figure 7.52 shows sample measure-
ments of seek distances for two workloads: a UNIX timesharing workload and a
business-processing workload. Notice the high percentage of disk accesses to the
same cylinder, labeled distance 0 in the graphs, in both workloads.

Thus, this fallacy couldn’t be more misleading. (The Exercises debunk this
fallacy in more detail.)

FIGURE 7.51 Seek time versus seek distance for sophisticated model versus naive model. Chen and Lee [1995]
found the equations shown above for parameters a, b, and c worked well for several disks.

30

25

20

15

10

5

Access time (ms)

0

Seek distance

0

a =
3 × Number of cylinders

250 500 750 1000 1250 1500

Naive seek formula

New seek formula

1750 2000 2250 2500

– 10 × Time
min

+ 15 × Time
avg

– 5 × Time
max

b =
3 × Number of cylinders

7 × Time
min

– 15 × Time
avg

+ 8 × Time
max

c = Time
min

Seek time Distance() a Distance 1–× b Distance 1–()× c+ +=

7.15 Concluding Remarks 581

Storage is one of those technologies that we tend to take for granted. And yet, if
we look at the true status of things today, storage is king. One can even argue that
servers, which have become commodities, are now becoming peripheral to stor-
age devices. Driving that point home are some estimates from IBM, which expects
storage sales to surpass server sales in the next two years.

Michael Vizard, Editor in Chief, Infoworld, August 11, 2001

As their value is becoming increasingly evident, storage systems have become
the target of innovation and investment.

FIGURE 7.52 Sample measurements of seek distances for two systems. The measurements on the left were taken
on a UNIX timesharing system. The measurements on the right were taken from a business-processing application in which
the disk seek activity was scheduled to improve throughput. Seek distance of 0 means the access was made to the same
cylinder. The rest of the numbers show the collective percentage for distances between numbers on the y axis. For example,
11% for the bar labeled 16 in the business graph means that the percentage of seeks between 1 and 16 cylinders was 11%.
The UNIX measurements stopped at 200 of the 1000 cylinders, but this captured 85% of the accesses. The business mea-
surements tracked all 816 cylinders of the disks. The only seek distances with 1% or greater of the seeks that are not in the
graph are 224 with 4% and 304, 336, 512, and 624 each having 1%. This total is 94%, with the difference being small but
nonzero distances in other categories. Measurements courtesy of Dave Anderson of Seagate.

7.15 Concluding Remarks

0% 10%

Percentage of seeks (UNIX timesharing workload)

23%

8%

4%

20% 40%30% 50% 60% 70%

24%

3%

3%

1%

3%

3%

3%

3%

3%

2%

2%

0% 10%

Percentage of seeks (business workload)

Seek
distance

Seek
distance

11%

20% 40%30% 50% 60% 70%

61%

3%

0%

3%

0%

0%

1%

1%

1%

1%

1%

3%

0%195

180

165

150

135

120

105

90

75

60

45

30

15

0

208

192

176

160

144

128

112

96

80

64

48

32

16

0

582 Chapter 7 Storage Systems

The challenge for storage systems today is dependability and maintainability.
Not only do users want to be sure their data is never lost (reliability), applications
today increasingly demand that the data is always available to access (availabili-
ty). Despite improvements in hardware and software reliability and fault-toler-
ance, the awkwardness of maintaining such systems is a problem both for cost
and for availability. Challenges in storage dependability and maintainability to-
day dominate the challenges in performance.

Disk capacity is now the fastest improving computer technology, doubling ev-
ery year. Hence, despite the challenges of dependability and maintainability, new
storage applications arrive, such as digital cameras and digital libraries.

Today we are just a few keystrokes away from much of humankind’s knowl-
edge. Just this application has changed your life: How often do you search the
world wide web versus go to the library?

Getting those requests to digital repositories and getting the answer back is the
challenge of networks, the topic of the next chapter. In addition to explaining the
Internet, the next chapter also gives the anatomy of a WWW search engine,
showing how a network of thousands of desktop computers can provide a valu-
able and reliable service.

Mass storage is a term used there to imply a unit capacity in excess of one million
alphanumeric characters…

Hoagland [1963]

The variety of storage I/O and issues leads to a varied history for the rest of the
story. (Smotherman [1989] explores the history of I/O in more depth.) This sec-
tion discusses magnetic storage, RAID, and I/O buses and controllers. Jain
[1991] and Lazowska et al [1984] offer books for those interested in learning
more about queuing theory.

Magnetic Storage

Magnetic recording was invented to record sound, and by 1941, magnetic tape
was able to compete with other storage devices. It was the success of the ENIAC
in 1947 that led to the push to use tapes to record digital information. Reels of
magnetic tapes dominated removable storage through the 1970s. In the 1980s, the
IBM 3480 cartridge became the de facto standard, at least for mainframes. It can
transfer at 3 MB/sec by reading 18 tracks in parallel. The capacity is just 200 MB
for this 1/2-inch tape. The 9840 cartridge, used by StorageTek in the Powderhorn,
transfers at 10 MB/sec and stores 20,000 MB. This device records the tracks in a
zigzag fashion rather than just longitudinally, so that the head reverses direction

7.16 Historical Perspective and References

7.16 Historical Perspective and References 583

to follow the track. This technique is called serpentine recording. Another 1/2-
inch tape is Digital Linear Tape, with DLT7000 storing 35,000 MB and transfer-
ring at 5 MB/sec. Its competitor is helical scan, which rotates the head to get the
increased recording density. In 2001, the 8-mm helical-scan tapes contain 20000
MB and transfer at about 3 MB/second. Whatever their density and cost, the seri-
al nature of tapes creates an appetite for storage devices with random access.

In 1953, Reynold B. Johnson of IBM picked a staff of 15 scientists with the
goal of building a radically faster random access storage system than tape. The
goal was to have the storage equivalent of 50,000 standard IBM punch cards and
to fetch the data in a single second. Johnson’s disk drive design was simple but
untried: the magnetic read/write sensors would have to float a few thousandths of
an inch above the continuously rotating disk. Twenty-four months later the team
emerged with the functional prototype. It weighed one ton, and occupied about
300 cubic feet of space. The RAMAC-350 (Random Access Method of Account-
ing Control) used 50 platters that were 24 inches in diameter, rotated at 1200
RPM, with a total capacity of 5 MB and an access time of 1 second.

Starting with the RAMAC, IBM maintained its leadership in the disk industry,
with its storage headquarters in San Jose, California where Johnson’s team did its
work. Many of the future leaders of competing disk manufacturers started their
careers at IBM, and many disk companies are located near San Jose.

Although RAMAC contained the first disk, a major breakthrough in magnetic
recording was found in later disks with air-bearing read-write heads, where the
head would ride on a cushion of air created by the fast-moving disk surface. This
cushion meant the head could both follow imperfections in the surface and yet be
very close to the surface. Subsequent advances have come largely from improved
quality of components and higher precision. In 2001, heads fly 2 to 3 microinches
above the surface, whereas in the RAMAC drive was 1000 microinches away.

Moving-head disks quickly became the dominant high-speed magnetic storage,
though their high cost meant that magnetic tape continued to be used extensively
until the 1970s. The next important development for hard disks was the removable
hard disk drive developed by IBM in 1962; this made it possible to share the ex-
pensive drive electronics and helped disks overtake tapes as the preferred storage
medium. The IBM 1311 disk in 1962 had an areal density of 50,000 bits per
square inch and a cost of about $800 per megabyte.

IBM also invented the floppy disk drive in 1970, originally to hold microcode
for the IBM 370 series. Floppy disks became popular with the PC about 10 years
later.

The second major disk breakthrough was the so-called Winchester disk design
in about 1973. Winchester disks benefited from two related properties. First, inte-
grated circuits lowered the costs of not only CPUs, but also of disk controllers and
the electronics to control disk arms. Reductions in the cost of the disk electronics
made it unnecessary to share the electronics, and thus made nonremovable disks
economical. Since the disk was fixed and could be in a sealed enclosure, both the
environmental and control problems were greatly reduced. Sealing the system al-

584 Chapter 7 Storage Systems

lowed the heads to fly closer to the surface, which in turn enables increases in ar-
eal density. The first sealed disk that IBM shipped had two spindles, each with a
30-MB disk; the moniker “30-30” for the disk led to the name Winchester. (Amer-
ica’s most popular sporting rifle, the Winchester 94 was nicknamed the “30-30”
after the caliber of its cartridge.) Winchester disks grew rapidly in popularity in
the 1980s, completely replacing removable disks by the middle of that decade. Be-
fore this time, the cost of the electronics to control the disk meant that the media
had to be removable.

In 2001, IBM sold disks with 25 billion bits per square inch at a price of about
$0.01 per megabyte. (See Hospodor and Hoagland [1993] for more on magnetic
storage trends.) The disk industry today is responsible for 90% of the mass storage
market.

As mentioned in the section 7.14, as DRAMs started to close the areal density
gap and appeared to be catching up with disk storage, internal meetings at IBM
called into question the future of disk drives. Disk designers concluded that disks
must improve at 60% per year to forestall the DRAM threat, in contrast to the
historical 29% per year. The essential enabler was magneto-resistive heads, with
giant magneto-resistive heads enabling the current densities.

Because of this competition, the gap in time between when a density record is
achieved in the lab and when a disk is shipped with that density has closed con-
siderably. In 2001, the lab record is 60 Gbits/square inch, but drives are shipping
with a third of that density. It is also unclear to disk engineers whether evolution-
ary change will achieve 1000 Gbits/square inch.

The personal computer created a market for small form-factor disk drives,
since the 14-inch disk drives used in mainframes were bigger than the PC. In
2001, the 3.5-inch drive is the market leader, although the smaller 2.5-inch drive
needed for laptop computers is significant in sales volume. Personal video re-
corders–which record television on disk instead of tape–may become a signifi-
cant consumer of disk drives. Existing form factors and speed are sufficient, with
the focus on low noise and high capacity for PVRs. Hence, a market for large,
slow, quiet disks may develop. It remains to be seen whether hand-held devices
or video cameras, requiring even smaller disks, will become as significant in
sales volume as PCs or laptops. For example, 1.8-inch drives were developed in
the early 1990s for palmtop computers, but that market chose Flash instead, and
hence 1.8-inch drives disappeared.

RAID

The small form factor hard disks for PCs in the 1980s led a group at Berkeley to
propose Redundant Arrays of Inexpensive Disks, or RAID. This group had
worked on the Reduced Instruction Set Computers effort, and so expected much
faster CPUs to become available. Their questions were what could be done with
the small disks that accompanied their PCs, and what could be done in the area of
I/O to keep up with much faster processors. They argued to replace one main-

7.16 Historical Perspective and References 585

frame drive with 50 small drives, as you could get much greater performance
with that many independent arms. The many small drives even offered savings in
power consumption and floor space.

The downside of many disks was much lower MTTF. Hence, on their own
they reasoned out the advantages of redundant disks and rotating parity to ad-
dresses how to get greater performance with many small drives yet have reliabili-
ty as high as that of a single mainframe disk.

The problem they experienced when explaining their ideas was that some re-
searchers had heard of disk arrays with some form of redundancy, and they didn’t
understand the Berkeley proposal. Hence, the first RAID paper (Patterson, Gib-
son, Katz [1987]) is not only a case for arrays of small form factor disk drives,
but something of a tutorial and classification of existing work on disk arrays. Mir-
roring (RAID 1) had long been used in fault tolerant computers such as those
sold by Tandem; Thinking Machines had a arrays with 32 data disks and 7 check
disks using ECC for correction (RAID 2) in 1987, and Honeywell Bull had a
RAID 2 product even earlier; and disk arrays with a single parity disk had been
used in scientific computers in the same time frame (RAID 3). Their paper then
described single parity disk with support for sector accesses (RAID 4) and rotat-
ed parity (RAID 5). Chen et al. [1994] survey the original RAID ideas, commer-
cial products, and more recent developments.

Unknown to the Berkeley group, engineers at IBM working on the AS/400
computer also came up with rotated parity to give greater reliability for a collec-
tion of large disks. IBM filed a patent on RAID 5 before the Berkeley group
wrote their paper. Patents for RAID 1, RAID 2, RAID 3 from several companies
predate the IBM RAID 5 patent, which has led to plenty of courtroom action.

The Berkeley paper written was before the World Wide Web, but it captured
the imagination of many engineers, as copies were faxed around the world. One
engineer at what is now Seagate received seven copies of the paper from friends
and customers.

EMC had been a supplier of DRAM boards for IBM computers, but around
1988 new policies from IBM made it nearly impossible for EMC to continue to
sell IBM memory boards. Apparently, the Berkeley paper also crossed the desks
of EMC executives, and so they decided to go after the market dominated by
IBM disk storage products instead. As the paper advocated, their model was to
use many small drives to compete with mainframe drives, and EMC announced a
RAID product in 1990. It relied on mirroring (RAID 1) for reliability; RAID-5
products came much later for EMC. Over the next year, Micropolis offered a
RAID-3 product, Compaq offered a RAID-4 product, and Data General, IBM,
and NCR offered RAID-5 products.

The RAID ideas soon spread to the rest of workstation and server industry. An
article explaining RAID in Byte magazine (see Anderson 1990) lead to RAID
products being offered on desktop PCs, which was something of a surprise to the
Berkeley group. They had focused on performance with good availability, but
higher availability was attractive to the PC market.

586 Chapter 7 Storage Systems

Another surprise was the cost of the disk arrays. With redundant power sup-
plies and fans, the ability to “hot swap” a disk drive, the RAID hardware control-
ler itself, the redundant disks, and so on, the first disk arrays cost many times the
cost of the disks. Perhaps as a result, the Inexpensive in RAID morphed into In-
dependent. Many marketing departments and technical writers today know of
RAID only as Redundant Arrays of Independent Disks.

The EMC transformation was successful; in 2000 EMC was the leading sup-
plier of storage systems. RAID was a $27B industry in 2000, and more than 80%
of the nonPC drives sales were found in RAIDs.

In recognition of their role, in 1999 Garth Gibson, Randy Katz, and David
Patterson received the IEEE Reynold B. Johnson Information Storage Award “for
the development of Redundant Arrays of Inexpensive Disks (RAID).”

I/O Buses and Controllers

The ubiquitous microprocessor has inspired not only the personal computers of
the 1970s, but also the trend in the late 1980s and 1990s of moving controller
functions into I/O devices. I/O devices continued this trend by moving controllers
into the devices themselves. These devices are called intelligent devices, and
some bus standards (e.g., SCSI) have been created specifically for them. Intelli-
gent devices can relax the timing constraints by handling many low-level tasks
themselves and queuing the results. For example, many SCSI-compatible disk
drives include a track buffer on the disk itself, supporting read ahead and con-
nect/disconnect. Thus, on a SCSI string some disks can be seeking and others
loading their track buffer while one is transferring data from its buffer over the
SCSI bus. The controller in the original RAMAC, built from vacuum tubes, only
needed to move the head over the desired track, wait for the data to pass under the
head, and transfer data with calculated parity.

 SCSI, which stands for small computer systems interface, is an example of
one company inventing a bus and generously encouraging other companies to
build devices that would plug into it. Shugart created this bus, originally called
SASI. It was later standardized by the IEEE.

There have been several candidates to be the successor to SCSI, with the cur-
rent leading contender being Fibre Channel Arbitrated Loop (FC-AL). The SCSI
committee continues to increase the clock rate of the bus, giving this standard a
new life, and SCSI is lasting much longer than some of its proposed successors.

Perhaps the first multivendor bus was the PDP-11 Unibus in 1970 from DEC.
Alas, this open-door policy on buses is in contrast to companies with proprietary
buses using patented interfaces, thereby preventing competition from plug-com-
patible vendors. Making a bus proprietary also raises costs and lowers the num-
ber of available of I/O devices that plug into proprietary buses, since such devices
must have an interface designed just for that bus. The PCI bus pushed by Intel
represented a return to open, standard I/O buses inside computers. Its immediate
successor is PCI-X, with Infiniband under development in 2000, with both stan-
dardized by multi-company trade associations.

7.16 Historical Perspective and References 587

The machines of the RAMAC era gave us I/O interrupts as well as storage de-
vices. The first machine to extend interrupts from detecting arithmetic abnormali-
ties to detecting asynchronous I/O events is credited as the NBS DYSEAC in
1954 [Leiner and Alexander 1954]. The following year, the first machine with
DMA was operational, the IBM SAGE. Just as today’s DMA has, the SAGE had
address counters that performed block transfers in parallel with CPU operations.

The early IBM 360s pioneered many of the ideas that we use in I/O systems
today. The 360 was the first commercial machine to make heavy use of DMA,
and it introduced the notion of I/O programs that could be interpreted by the de-
vice. Chaining of I/O programs was an important feature. The concept of chan-
nels introduced in the 360 corresponds to the I/O bus of today.

Myer and Sutherland [1968] wrote a classic paper on the trade-off of com-
plexity and performance in I/O controllers. Borrowing the religious concept of
the “Wheel of Reincarnation,” they eventually noticed they were caught in a loop
of continuously increasing the power of an I/O processor until it needed its own
simpler coprocessor. The quote on page 508 captures their cautionary tale.

The IBM mainframe I/O channels, with their I/O processors, can be thought of
as an inspiration for Infiniband, with their processors on their Host Channel
Adaptor cards. How Infiniband will compete with FC-AL as an I/O interconnect
will be interesting to watch. Infiniband is one of the Storage Area Networks dis-
cussed in the next chapter.

References

ANDERSON, M.H. [1990] “STRENGTH (AND SAFETY) IN NUMBERS (RAID, DISK STORAGE TECHNOLO-

GY),” BYTE, VOL.15, (NO.13), DEC. P.337-9.

ANON, ET AL. [1985]. “A measure of transaction processing power,” Tandem Tech. Rep. TR 85.2.
Also appeared in Datamation, April 1, 1985.

BASHE, C. J., W. BUCHHOLZ, G. V. HAWKINS, J. L. INGRAM, AND N. ROCHESTER [1981]. “The archi-
tecture of IBM’s early computers,” IBM J. Research and Development 25:5 (September), 363–375.

BASHE, C. J., L. R. JOHNSON, J. H. PALMER, AND E. W. PUGH [1986]. IBM’s Early Computers, MIT
Press, Cambridge, Mass.

BRADY, J. T. [1986]. “A theory of productivity in the creative process,” IEEE CG&A (May), 25–34.

Brown, A. and D.A. Patterson [2000]. "Towards Maintainability, Availability, and Growth Bench-
marks: A Case Study of Software RAID Systems." Proceedings of the 2000 USENIX Annual Tech-
nical Conference, San Diego, CA,(June).

BUCHER, I. V. AND A. H. HAYES [1980]. “I/O performance measurement on Cray-1 and CDC 7000
computers,” Proc. Computer Performance Evaluation Users Group, 16th Meeting, NBS 500-65,
245–254.

CHEN, P. M., G. A. GIBSON, R. H. KATZ, AND D. A. PATTERSON [1990]. “An evaluation of redundant
arrays of inexpensive disks using an Amdahl 5890,” Proc. 1990 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (May), Boulder, Colo.

CHEN, P. M., E. K. LEE, G. A. GIBSON, R. H. KATZ, AND D. A. PATTERSON [1994]. “RAID: High-
performance, reliable secondary storage,” ACM Computing Surveys 26:2 (June), 145–88.

CHEN, P. M. AND E. K. LEE [1995]. “Striping in a RAID level 5 disk array,” Proc. 1995 ACM SIG-

588 Chapter 7 Storage Systems

METRICS Conference on Measurement and Modeling of Computer Systems (May), 136–145.

DOHERTY, W. J. AND R. P. KELISKY [1979]. “Managing VM/CMS systems for user effectiveness,”
IBM Systems J. 18:1, 143–166.

Enriquez, P. [2001] “What Happened to my Dial Tone? A study of FCC service disruption reports, “
poster, Richard Tapia Symposium on the Celebration of Diversity in Computing, October 18-20,
Houston, Texas.

FRIESENBORG, S. E. AND R. J. WICKS [1985]. “DASD expectations: The 3380, 3380-23, and MVS/
XA,” Tech. Bulletin GG22-9363-02 (July 10), Washington Systems Center.

Gibson, G. A. [1992] Redundant disk arrays: reliable, parallel secondary storage, ACM Distin-
guished Dissertation Series, MIT Press, Cambridge, Mass.

GOLDSTEIN, S. [1987]. “Storage performance—An eight year outlook,” Tech. Rep. TR 03.308-1
(October), Santa Teresa Laboratory, IBM, San Jose, Calif.

GRAY, J. (ED.) [1993]. The Benchmark Handbook for Database and Transaction Processing Systems,
2nd ed. Morgan Kaufmann Publishers, San Francisco.

GRAY, J. AND A. REUTER [1993]. Transaction Processing: Concepts and Techniques, Morgan
Kaufmann Publishers, San Francisco.

GRAY, J. AND D.P. SIEWIOREK, [1991] “High-availability computer systems.” Computer, 24:9,
(Sept), 39-48.

GRAY, J. [1990]. “A census of Tandem system availability between 1985 and 1990.” IEEE Transac-
tions on Reliability, vol.39, (no.4), (Oct.) 409-18.

HENLY, M. AND B. MCNUTT [1989]. “DASD I/O characteristics: A comparison of MVS to VM,”
Tech. Rep. TR 02.1550 (May), IBM, General Products Division, San Jose, Calif.

HOAGLAND, A. S. [1963]. Digital Magnetic Recording, Wiley, New York.

HEWLETT PACKARD [1998] . HP's "5NINES:5MINUTES" Vision Extends Leadership and Re-De-
fines High Availability in Mission-Critical Environments, (Feb 10), see
http://www.future.enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html

HOSPODOR, A. D. AND A. S. HOAGLAND [1993]. “The changing nature of disk controllers.” Proc.
IEEE 81:4 (April), 586–94.

IBM [1982]. The Economic Value of Rapid Response Time, GE20-0752-0, White Plains, N.Y., 11–82.

IMPRIMIS [1989]. Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2 GB,
Document No. 64402302 (May).

JAIN, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling, Wiley, New York.

KATZ, R. H., D. A. PATTERSON, AND G. A. GIBSON [1990]. “Disk system architectures for high
performance computing,” Proc. IEEE 78:2 (February).

KIM, M. Y. [1986]. “Synchronized disk interleaving,” IEEE Trans. on Computers C-35:11
(November).

Kuhn, D. R. [1997]. “Sources of Failure in the Public Switched Telephone Network.” IEEE Com-
puter 30:4 (April).

Lambright, D [2000]. “Experiences in Measuring the Reliability of a Cache-Based Storage Sys-
tem,” Proceedings of First Workshop on Industrial Experiences with Systems Software (WIESS
2000), collocated with the 4th Symposium on Operating Systems Design and Implementation
(OSDI), San Diego, California. (October 22).

LAPRIE, J.-C. [1985] “Dependable computing and fault tolerance: concepts and terminology.” Fif-
teenth Annual International Symposium on Fault-Tolerant Computing FTCS 15. Digest of Pa-
pers. Ann Arbor, MI, USA, (19-21 June) 2-11.

7.16 Historical Perspective and References 589

Lazowska, E.D., J. Zahorjan, G. S. Graham, and K. C. Sevcik [1984]. Quantitative system perfor-
mance : computer system analysis using queueing network models, Prentice-Hall, Englewood
Cliffs, N.J. (Although out of print, it is available online at
www.cs.washington.edu/homes/lazowska/qsp/)

LEINER, A. L. [1954]. “System specifications for the DYSEAC,” J. ACM 1:2 (April), 57–81.

LEINER, A. L. AND S. N. ALEXANDER [1954]. “System organization of the DYSEAC,” IRE Trans. of
Electronic Computers EC-3:1 (March), 1–10.

MABERLY, N. C. [1966]. Mastering Speed Reading, New American Library, New York.

MAJOR, J. B. [1989]. “Are queuing models within the grasp of the unwashed?,” Proc. Int’l Confer-
ence on Management and Performance Evaluation of Computer Systems, Reno, Nev. (December
11-15), 831–839.

Mueller, M.; Alves, L.C.; Fischer, W.; Fair, M.L.; Modi, I. [1999] “RAS strategy for IBM S/390 G5
and G6,” IBM Journal of Research and Development, 43:5-6 (Sept.-Nov), 875-88.

Myer, T. H. and I. E. Sutherland [1968]. “On the Design of Display Processors,” Communications of
the ACM, 11:6 (June), 410-414.

National Storage Industry Consortium [1998], Tape Roadmap, (June), see www.nsic.org.

Nelson, V.P. [1990]“Fault-tolerant computing: fundamental concepts.” Computer, vol.23, (no.7), (Ju-
ly). p.19-25.

Okada, S.; Okada, S.; Matsuda, Y.; Yamada, T.; Kobayashi, [1999] “A. System on a chip for digital
still camera,” IEEE Transactions on Consumer Electronics, 45:.3, (Aug.) 584-90.

PATTERSON, D. A., G. A. GIBSON, AND R. H. KATZ [1987]. “A case for redundant arrays of inexpen-
sive disks (RAID),” Tech. Rep. UCB/CSD 87/391, Univ. of Calif. Also appeared in ACM SIGMOD
Conf. Proc., Chicago, June 1–3, 1988, 109–116.

PAVAN, P., R. BEZ, P.,OLIVO, E. ZANONI [1997] “Flash memory cells-an overview.” Proceedings of
the IEEE, vol.85, (no.8),(Aug.)p.1248-71.

ROBINSON, B. AND L. BLOUNT [1986]. “The VM/HPO 3880-23 performance results,” IBM Tech.
Bulletin GG66-0247-00 (April), Washington Systems Center, Gaithersburg, Md.

SALEM, K. AND H. GARCIA-MOLINA [1986]. “Disk striping,” IEEE 1986 Int’l Conf. on Data Engi-
neering.

SCRANTON, R. A., D. A. THOMPSON, AND D. W. HUNTER [1983]. “The access time myth,” Tech.
Rep. RC 10197 (45223) (September 21), IBM, Yorktown Heights, N.Y.

SEAGATE [2000] Seagate Cheetah 73 Family: ST173404LW/LWV/LC/LCV Product Manual, Volume
1, see http://www.seagate.com/support/disc/manuals/scsi/29478b.pdf.

SMOTHERMAN, M. [1989]. “A sequencing-based taxonomy of I/O systems and review of historical
machines,” Computer Architecture News 17:5 (September), 5–15. Reprinted in Computer Architec-
ture Readings, Morgan Kauffman, 1999, 451-461.

Talagala, N., S. Asami, D. Patterson, R. Futernick, and D. Hart, [2000]“ The Art of Massive Storage:
A Case Study of a Web Image Archive”, Computer, (November).

Talagala, N. and D. Patterson. [1999] “An Analysis of Error Behavior in a Large Storage System”.
Technical Report UCB//CSD-99-1042, Computer Science Division, University of California at
Berkeley. (February).

THADHANI, A. J. [1981]. “Interactive user productivity,” IBM Systems J. 20:4, 407–423.

590 Chapter 7 Storage Systems

E X E R C I S E S

n One of my students, Nisha Talagala, finished her PhD and as a self-indentifying
benchmark to automatically classify disks. I think this would be a GREAT ex-
ercise, similar to Exercises 5.2-5.3 in the cache chapter. The idea is that stu-
dents could run it and learn about there own disks. They don’t need to modify
data, but they may need to be super user on their PC/workstation. Interest
project might be to port it to NT or windows. Like the cache example, there
could be slides analyzing a figure in the exercises as well as running the pro-
gram on their own disks. See http://www.cs.berkeley.edu/~nisha/bench.html.
Perhaps not one of the first exercises, but should be included later. There is re-
lated work by Schindler and Ganger in Sigmetrics 2000.

n The analysis of our I/O system design performance did not include queuing
theory for the full array, just one disk. Do the same analysis for close to 100%
utilization using M/M/m queue. Then do it for the same analysis when the sys-
tem follows the rules of thumb.

The new sections on reliability calculations and RAID examples suggests a new
set of exercises. Here are a few:

n A simple example is calculating performance and cost performance of the fifth
example when the workload is not 100% reads. Examples include 100% writes,
and what is the highest percentage of writes that keeps cost-performance is
within, say, 1.2 times that of the nonredundant solution in example four?

n One issue that was ignored by the example is the performance of the RAID sys-
tem when a drive has failed. Assume that the non faulting workload would keep
the system 50% utilized. First assume 100% reads. What is the % of the non-
faulting performance available assuming a single disk has failed? What is it if
an enclosure fails? Another exercise can redo the example assuming 80% reads
and 20% writes.

n One way to improve reliability is to reduce MTTR. If we must wait for a human
to notice the failure, then its hard to make much an improvement. Having stand-
by spares in place can significantly reduce MTTR. Redo the calculations as-
suming that you have a spare enclosure of disks that can be put to work on a
failiure.How long does it take to recover on a failure with a standby spare? How
does this affect MTDL? How does it affect cost per I/O? How does parity group
size affect MTTR?

n Redo the example with RAID, this time adding 1 redundant power supply and
1 redundant fan per enclosure. How much does this improve the MTTF of the
enclosure? How much does it improve MTDL of the RAID?

n The example assumed the RPM, seek time, MTTF, bandwidth, and cost per GB
was the same for the large disk drive and the small disk drive. Go to a web site

Exercises 591

and find the best cost-performance 3.5 inch drive and the best cost-performance
2.5 inch drive. Assume in a single enclosure you can pack 8 3.5 inch “half
height” drives (1.7 inches high), 12 3.5 inch “low profile” (1.0 inches high), or
36 2.5 inch drives. Assume that all have a SCSI interface so that you can con-
nect up to 15 drives on a string. Design the RAID organization and calculate
the cost-performance and reliability as in the example on page 563. Use param-
eters from that example if you cannot find more recent information form web
sites.

n Good idea to talk about the reliability terminology: maybe some examples, and
ask what they are: fault, error, failure? When would things fail?

n A discussion topic is the so called “superparamagnetic limit” of disks. What are
the issues, do people believe its a real limit, what would be the impact if it
were? see http://www.research.ibm.com/journal/rd/443/thompson.html.

n Another discussion topic is what services people rely on magnetic tapes: back-
up, media distribution, How would systems have (or user’s expectations)
have to change to do backup without tapes? To build systems that didn’t need
backup?

n Another discussion is the technology direction of disks: what is happening to
the relative rates of seek time, transfer rate, RPM, and capacity. Perhaps can in-
clude disks for 1st and 2nd edition of book to give historical perspective. Based
on these disks, calculate the trends. Be sure to include time it takes to read a
full disk sequentially over the years, and the time it takes to do random 32KB
seeks over years. What are the impacts of these trends? What opportunities will
arise? What problems of these trends for systems designers?

n This one would be a research topic exercises. A more sophisticated analysis of
RAID failures relies on Markov models of faults; see Gibson [1992]. Learn
about Markov models and redo the simplified failure analysis of the disk array.

7.1 [10] <7.14> Using the formulas in the fallacy starting on page 578, including the cap-
tion of Figure 7.51 (page 580), calculate the seek time for moving the arm over one-third
of the cylinders of the disk in Figure 7.2 (page 490).

7.2 [25] <7.14> Using the formulas in the fallacy starting on page 578, including the cap-
tion of Figure 7.51 (page 580), write a short program to calculate the “average” seek time
by estimating the time for all possible seeks using these formulas and then dividing by the
number of seeks. How close is the answer to Exercise 7.1 to this answer?

7.3 [20] <7.14> Using the formulas in the fallacy starting on page 578, including the cap-
tion of Figure 7.51 (page 580) and the statistics in Figure 7.52 (page 581), calculate the av-
erage seek distance on the disk in Figure 7.2 (page 490). Use the midpoint of a range as the
seek distance. For example, use 98 as the seek distance for the entry representing 91–105
in Figure 7.52. For the business workload, just ignore the missing 5% of the seeks. For the
UNIX workload, assume the missing 15% of the seeks have an average distance of 300
cylinders. If you were misled by the fallacy, you might calculate the average distance as

592 Chapter 7 Storage Systems

884/3. What is the measured distance for each workload?

7.4 [20] <7.14> Figure 7.2 (page 490) gives the manufacturer’s average seek time. Using
the formulas in the fallacy starting on page 578, including the equations in Figure 7.51
(page 580), and the statistics in Figure 7.52 (page 581), what is the average seek time for
each workload on the disk in Figure 7.2 using the measurements? Make the same assump-
tions as in Exercise 7.3.

n The following example needs to be updated: faster computer, bigger disks,
cheaper per MB disks

7.5 [20/15/15/15/15/15] <7.7> The I/O bus and memory system of a computer are capable
of sustaining 1000 MB/sec without interfering with the performance of an 800-MIPS CPU
(costing $50,000). Here are the assumptions about the software:

n Each transaction requires 2 disk reads plus 2 disk writes.

n The operating system uses 15,000 instructions for each disk read or write.

n The database software executes 40,000 instructions to process a transaction.

n The transfer size is 100 bytes.

You have a choice of two different types of disks:

n A small disk that stores 500 MB and costs $100.

n A big disk that stores 1250 MB and costs $250.

Either disk in the system can support on average 30 disk reads or writes per second.

Answer parts (a)–(f) using the TPS benchmark in section 7.7. Assume that the requests are
spread evenly to all the disks, that there is no waiting time due to busy disks, and that the
account file must be large enough to handle 1000 TPS according to the benchmark ground
rules.

a. [20] <7.7> How many TPS transactions per second are possible with each disk orga-
nization, assuming that each uses the minimum number of disks to hold the account
file?

b. [15] <7.7> What is the system cost per transaction per second of each alternative for
TPS?

c. [15] <7.7> How fast does a CPU need to be to make the 1000 MB/sec I/O bus a bot-
tleneck for TPS? (Assume that you can continue to add disks.)

d. [15] <7.7> As manager of MTP (Mega TP), you are deciding whether to spend your
development money building a faster CPU or improving the performance of the soft-
ware. The database group says they can reduce a transaction to 1 disk read and 1 disk
write and cut the database instructions per transaction to 30,000. The hardware group
can build a faster CPU that sells for the same amount as the slower CPU with the same
development budget. (Assume you can add as many disks as needed to get higher per-
formance.) How much faster does the CPU have to be to match the performance gain
of the software improvement?

Exercises 593

e. [15] <7.7> The MTP I/O group was listening at the door during the software presen-
tation. They argue that advancing technology will allow CPUs to get faster without
significant investment, but that the cost of the system will be dominated by disks if
they don’t develop new small, faster disks. Assume the next CPU is 100% faster at the
same cost and that the new disks have the same capacity as the old ones. Given the
new CPU and the old software, what will be the cost of a system with enough old small
disks so that they do not limit the TPS of the system?

f. [15] <7.7> Start with the same assumptions as in part (e). Now assume that you have
as many new disks as you had old small disks in the original design. How fast must
the new disks be (I/Os per second) to achieve the same TPS rate with the new CPU as
the system in part (e)? What will the system cost?

n Next one needs to be updated to newer disk parameters

7.6 [20] <7.7> Assume that we have the following two magnetic-disk configurations: a sin-
gle disk and an array of four disks. Each disk has 20 surfaces, 885 tracks per surface, and
16 sectors/track. Each sector holds 1K bytes, and it revolves at 7200 RPM. Use the seek-
time formula in the fallacy starting on page 578, including the equations in Figure 7.51
(page 580). The time to switch between surfaces is the same as to move the arm one track.
In the disk array all the spindles are synchronized—sector 0 in every disk rotates under the
head at the exact same time—and the arms on all four disks are always over the same track.
The data is “striped” across all four disks, so four consecutive sectors on a single-disk sys-
tem will be spread one sector per disk in the array. The delay of the disk controller is 2 ms
per transaction, either for a single disk or for the array. Assume the performance of the I/O
system is limited only by the disks and that there is a path to each disk in the array. Calculate
the performance in both I/Os per second and megabytes per second of these two disk orga-
nizations, assuming the request pattern is random reads of 4 KB of sequential sectors.
Assume the 4 KB are aligned under the same arm on each disk in the array.

7.7 [20]<7.7> Start with the same assumptions as in Exercise 7.5 (e). Now calculate the
performance in both I/Os per second and megabytes per second of these two disk organiza-
tions assuming the request pattern is reads of 4 KB of sequential sectors where the average
seek distance is 10 tracks. Assume the 4 KB are aligned under the same arm on each disk
in the array.

7.8 [20] <7.7> Start with the same assumptions as in Exercise 7.5 (e). Now calculate the
performance in both I/Os per second and megabytes per second of these two disk organiza-
tions assuming the request pattern is random reads of 1 MB of sequential sectors. (If it mat-
ters, assume the disk controller allows the sectors to arrive in any order.)

7.9 [20] <7.2> Assume that we have one disk defined as in Exercise 7.5 (e). Assume that
we read the next sector after any read and that all read requests are one sector in length. We
store the extra sectors that were read ahead in a disk cache. Assume that the probability of
receiving a request for the sector we read ahead at some time in the future (before it must
be discarded because the disk-cache buffer fills) is 0.1. Assume that we must still pay the
controller overhead on a disk-cache read hit, and the transfer time for the disk cache is 250
ns per word. Is the read-ahead strategy faster? (Hint: Solve the problem in the steady state
by assuming that the disk cache contains the appropriate information and a request has just
missed.)

594 Chapter 7 Storage Systems

n I’d try updating this, possibly using a second level cache

7.10 [20/10/20/20] <7.7–7.10> Assume the following information about a MIPS machine:

n Loads 2 cycles.

n Stores 2 cycles.

n All other instructions are 1 cycle.

Use the summary instruction mix information on MIPS for gcc from Chapter 2.

Here are the cache statistics for a write-through cache:

n Each cache block is four words, and the whole block is read on any miss.

n Cache miss takes 23 cycles.

n Write through takes 16 cycles to complete, and there is no write buffer.

Here are the cache statistics for a write-back cache:

n Each cache block is four words, and the whole block is read on any miss.

n Cache miss takes 23 cycles for a clean block and 31 cycles for a dirty block.

n Assume that on a miss, 30% of the time the block is dirty.

Assume that the bus

n Is only busy during transfers

n Transfers on average 1 word / clock cycle

n Must read or write a single word at a time (it is not faster to access two at once)

a. [20] <7.7–7.10> Assume that DMA I/O can take place simultaneously with CPU
cache hits. Also assume that the operating system can guarantee that there will be no
stale-data problem in the cache due to I/O. The sector size is 1 KB. Assume the cache
miss rate is 5%. On the average, what percentage of the bus is used for each cache
write policy? (This measured is called the traffic ratio in cache studies.)

b. [10] <7.7–7.10> Start with the same assumptions as in part (a). If the bus can be loaded
up to 80% of capacity without suffering severe performance penalties, how much
memory bandwidth is available for I/O for each cache write policy? The cache miss
rate is still 5%.

c. [20] <7.7–7.10> Start with the same assumptions as in part (a). Assume that a disk sec-
tor read takes 1000 clock cycles to initiate a read, 100,000 clock cycles to find the data
on the disk, and 1000 clock cycles for the DMA to transfer the data to memory. How
many disk reads can occur per million instructions executed for each write policy?
How does this change if the cache miss rate is cut in half?

d. [20] <7.7–7.10> Start with the same assumptions as in part (c). Now you can have any
number of disks. Assuming ideal scheduling of disk accesses, what is the maximum
number of sector reads that can occur per million instructions executed?

7.11 [50] < 7.7> Take your favorite computer and write a program that achieves maximum

Exercises 595

bandwidth to and from disks. What is the percentage of the bandwidth that you achieve
compared with what the I/O device manufacturer claims?

7.12 [20] <7.2,7.4> Search the World Wide Web to find descriptions of recent magnetic
disks of different diameters. Be sure to include at least the information in Figure 7.2 on
page 490.

7.13 [20] <7.14> Using data collected in Exercise 7.12, plot the two projections of seek
time as used in Figure 7.51 (page 580). What seek distance has the largest percentage of
difference between these two predictions? If you have the real seek distance data from Ex-
ercise 7.12, add that data to the plot and see on average how close each projection is to the
real seek times.

n Multiply both targets by factors of at least 10X

7.14 [15] <7.2,7.4> Using the answer to Exercise 7.13, which disk would be a good build-
ing block to build a 100-GB storage subsystem using mirroring (RAID 1)? Why?

7.15 [15] <7.2,7.4> Using the answer to Exercise 7.13, which disk would be a good build-
ing block to build a 1000-GB storage subsystem using distributed parity (RAID 5)? Why?

n We need some queueing questions, but we need to be careful that they match
the limited amount of queuing theory that they know; we had to drop stuff since
I had some of it wrong. These next two figures point to the wrong example;
may work with simple one there, which just calculates for a single disk.

7.16 [15] <7.7> Starting with the Example on page 538, calculate the average length of the
queue and the average length of the system.

7.17 [15] <7.7> Redo the Example that starts on page 538, but this time assume the distri-
bution of disk service times has a squared coefficient of variance of 2.0 (C = 2.0), versus
1.0 in the Example. How does this change affect the answers?

7.18 [20] <7.11> The I/O utilization rules of thumb on page 559 are just guidelines and are
subject to debate. Redo the Example starting on page 560, but increase the limit of SCSI
utilization to 50%, 60%, ..., until it is never the bottleneck. How does this change affect the
answers? What is the new bottleneck? (Hint: Use a spreadsheet program to find answers.)

n Do next one for STC Powderhorn in Figure 7.6 on page 498

7.19 [15]<7.2> Tape libraries were invented as archival storage, and hence have relatively
few readers per tape. Calculate how long it would take to read all the data for a system with
6000 tapes, 10 readers that read at 9 MB/sec, and 30 seconds per tape to put the old tape
away and load a new tape.

n Replace Byte with PC Magazine, and record both January and July. Mention
which figures: Figure 7.5 on page 495 and Figure 7.4 on page 494

7.20 [25]<7.2>Extend the figures, showing price per system and price per megabyte of
disks by collecting data from advertisements in the January issues of Byte magazine after
1995. How fast are prices changing now

8

Interconnection
Networks and Clusters

8

“The Medium is the Message” because it is the medium that

shapes and controls the search and form of human associations

and actions.

Marshall McLuhan

Understanding Media

(1964)

The marvels—of film, radio, and television—are marvels of

one-way communication, which is not communication at all.

Milton Mayer

On the Remote Possibility of
Communication

 (1967)

8.1 Introduction 563

8.2 A Simple Network 570

8.3 Interconnection Network Media 580

8.4 Connecting More Than Two Computers 583

8.5 Network Topology 592

8.6 Practical Issues for Commercial Interconnection Networks 600

8.7 Examples of Interconnection Networks 604

8.8 Internetworking 610

8.9 Crosscutting Issues for Interconnection Networks 615

8.10 Clusters 619

8.11 Designing a Cluster 624

8.12 Putting It All Together: The Goggle Cluster of PCs 638

8.13 Another View: Inside a Cell Phone 645

8.14 Fallacies and Pitfalls 650

8.15 Concluding Remarks 653

8.16 Historical Perspective and References 654

Exercises 660

Thus far we have covered the components of a single computer, which has been
the traditional focus of computer architecture. In this chapter we see how to con-
nect computers together, forming a community of computers. Figure 8.1 shows
the generic components of this community: computer nodes, hardware and soft-
ware interfaces, links to the interconnection network, and the interconnection
network. Interconnection networks are also called

networks

 or

communication
subnets

, and nodes are sometimes called

end systems

 or

hosts

. The connection of
two or more interconnection networks is called

internetworking

, which relies on
communication standards to convert information from one kind of network to an-
other. The Internet is the most famous example of internetworking.

There are two reasons that computer architects should devote attention to net-
working. In addition to providing external connectivity, Moore’s Law shrunk net-
works so much that they connect the components

within

 a single computer. Using
a network to connect autonomous systems within a computer has long been
found in mainframes, but today this such designs can be found in PCs too.
Switches are replacing buses as the normal communication technique: between

8.1

Introduction

564 Chapter 8 Interconnection Networks and Clusters

computers, between I/O devices, between boards, between chips, and even be-
tween modules inside chips. As a result, computer architects must understand
networking terminology, problems and solutions in order to design and evaluate
modern computers.

The second reason architects should study networking is that today almost all
computers are--or will be--networked to other devices. Thus, understanding net-
working is critical; any device without a network is somehow flawed. Just as a
modern computer without a memory hierarchy “broken”–hence a chapter just for
it–a modern computer without a network is “broken” too. Hence this chapter.

This topic is vast, with portions of Figure 8.1 the subject of whole books and
college courses. Networking is also a buzzword-rich environment, where many
simply ideas are obscured behind acronyms and unusual definitions. To help you
breakthrough the buzzword barrier, Figure 8.2 is a glossary of about 80 network-
ing terms. The goal of this chapter is to provide computer architects a gentle,
qualitative introduction to networking. It defines terms, helps you understand the
architectural implications of interconnection network technology, provides intro-
ductory explanations of the key ideas, and give references to more detailed de-
scriptions.

Most of this chapter is on networking, but the final quarter of this chapter fo-
cuses on clusters. A

cluster

is the coordinated use of interconnected computers in
a machine room. In contrast to the qualitative network introduction, these sec-
tions give a more quantitative description of clusters, including many examples.
It ends with a guided tour of the Google clusters.

FIGURE 8.1 Drawing of the generic interconnection network.

Link Link Link Link

Interconnection network

Node

SW interface

HW interface

Node

SW interface

HW interface

Node

SW interface

HW interface

Node

SW interface

HW interface

8.1 Introduction 565

Term Definition

adaptive routing

Router picks best path based upon measure of delay on outgoing links

ATM

Asynchronous Transfer Mode is a WAN designed for real-time traffic such as digital voice

attenuation

Loss of signal strength as signal passes through the medium over a long distance

backpressure flow
control

When the receiver cannot accept another message, separate wires between adja-
cent senders and receivers tell the sender to stop immediately. It causes links be-
tween two end points to freeze until the receiver makes room for the next message.

bandwidth

Maximum rate the network can propagate information once the message enters the it

base station

A network architecture that uses boxes connected via land lines to communicate to wireless
handsets

bisection bandwidth

Sum of the bandwidth of lines that cross that imaginary dividing line between two
roughly equal parts of the network, each with half the nodes

bit error rate

BER, the error rate of a network, typically in errors per million bits transferred

blade

A removable computer component that fits vertically into a box in a standard VME rack

blocking

Contention that prevents a message from making progress along a link of a switch

bridge

OSI layer 2 networking device that connects multiple LANs, which can operate in parallel;
in contrast, a router connects networks with incompatible addresses at OSI layer 3

category 5 wire

“Cat 5” twisted-pair, copper wire used for 10, 100, and 1000 Mbits/sec LANs

carrier sensing

“Listening” to the medium to be sure it is unused before trying to send a message

channel

In wireless networks, it is a pair of frequency bands that allow 2-way communication

checksum

A field of a message for a error correction code

circuit switching

A circuit is established from source to destination, reserving bandwidth along a path until
the circuit is broken

cluster

Coordinated use of interconnected computers in a machine room

coaxial cable

A single stiff copper wire is surrounded by insulating material and a shield; historically fast-
er and longer distance than twisted pair copper wire

collision

Two nodes (or more) on a shared medium try to send at the same time

collision detection

“Listening” to shared medium after sending to see if a message collided with another

FIGURE 8.2 Networking terms in this chapter and their definitions

566 Chapter 8 Interconnection Networks and Clusters

collocation site

A warehouse for remote hosting of servers with expansible networking, space, cooling, and
security

communication
subnets

Another name for interconnection network

credit-based flow
control

To reduce overhead for flow control, a sender is given a credit to send up to N packets, and
only checks for network delays when the credit is spent

cut-through routing

The switch examines the header, decides where to send the message, and then start trans-
mitting it immediately without waiting for the rest of the message. When the head of the
message blocks, the message stays strung out over the network.

destination-based
routing

The message contains a destination address, and the switch picks a path to deliver the mes-
sage, often by table lookup

deterministic routing

Router always picks the same path for the message

end systems

Another name for interconnection network node as opposed to the intermediate switches

end-to-end argument

Intermediate functions (error checking, performance optimization, and so on) may be in-
complete as compared to performing the function end-to end

Ethernet

The most popular LAN, it has scaled from its original 3 Mbits/second rate using shared me-
dia in 1975 to switched media at 1000 Mbits/second in 2001; it shows no signs of stopping

fat tree

a network topology with extra links at each level enhancing a simple tree, so bandwidth be-
tween each level is normally constant (see Figure 8.14 on page 595)

FC-AL

Fibre Channel Arbitrated Loop; a SAN for storage devices

frequency-division
multiplexing

Divide the bandwidth of the transmission line into a fixed number of frequencies,
and assign each frequency to a conversation.

full duplex

Two-way communication on a network segment

header

The first part of a message that contains no user information, but contents helps that net-
work, such as providing the destination address

host

Another name for interconnection network node

hub

An OSI layer 1 networking device that connects multiples LANs to act as one

Infiniband

An emerging standard SAN for both storage and systems in a machine room

Term Definition

FIGURE 8.2 Networking terms in this chapter and their definitions

8.1 Introduction 567

interference

In wireless networks, reduction of signal due to frequency reuse; frequency is reused to try
to increase the number of simultaneous conversations over a large area

internetworking

Connection of two or more interconnection networks

IP

Internet Protocol is an OSI layer 3 protocol, at the network layer

iSCSI

SCSI over IP networks, it is a competitor to SANs using IP and Ethernet switches

LAN

Local Area Network, for machines in a building or campus, such as Ethernet

message

The smallest piece of electronic “mail” sent over a network

multimode fiber

An inexpensive optical fiber that reduces bandwidth and distance for cost

multipath fading

In wireless networks, interference between multiple versions of signal that arrive at differ-
ent times, determined by time between fastest signal and slowest signal relative to signal
bandwidth

multistage switch

a switch containing many smaller switches that perform a portion of routing

OSI layer

Open System Interconnect models the network as seven layers (see 8.25 on page 612)

overhead

In this chapter, networking overhead is sender overhead + receiver overhead + time of flight

packet switching

In contrast to circuit switching, information is broken into packets (usually fixed or maxi-
mum size), each with it’s own destination address, and they are routed independently

payload

The middle part of the message that contains user information

peer-to-peer protocol

C

ommunication between two nodes occurs

logically at the same level

of the protocol

peer-to-peer wireless

Instead of communicating to base stations, peer-to-peer wireless networks communicate
between handsets

protocol

The sequence of steps that network software follows to communicate

rack unit

An R.U. is 1.7 inches, the height of a single slot in a standard 19-inch VME rack; there are
44 R.U. in standard 6-foot rack

receiver overhead

The time for the processor to pull the message from the interconnection network

router

OSI layer 3 networking device that connects multiples LANs with incompatible addresses

SAN

Originally System Area Network but more recently Storage Area Network, it connects
computers and/or storage devices in a machine room. FC-AL or Infiniband are SANs.

Term Definition

FIGURE 8.2 Networking terms in this chapter and their definitions

568 Chapter 8 Interconnection Networks and Clusters

sender overhead

The time for the processor to inject the message into the network; the processor is busy for
the entire time

shadow fading

In wireless networks, when the received signal is blocked by objects; buildings outdoors or
walls indoors

signal-to-noise ratio

SNR, the ratio of the strength of the signal carrying information to the background noise

simplex

One-way communication on a network segment

single-mode fiber

“Single-wavelength” fiber is narrower and more expensive than multimode fiber but it of-
fers greater bandwidth and distance

source-based routing

The message specifies the path to the destination at each switch

store-and-forward

Each switch waits for the full message to arrive before it is sent on to the next switch

TCP

Transmission Control Protocol, it is an OSI layer 4 protocol (transport layer)

throughput

In networking, measured speed of the medium or network bandwidth delivered to an appli-
cation; i.e., does not give credit for headers and trailers

time of flight

The time for the first bit of the message to arrive at the receiver

trailer

The last part of a message that has no user information but helps the network, such as error
correction code

transmission time

The time for the message to pass through the network (not including time of flight)

transport latency

Time that the message spends in the interconnection network (including time of flight)

twisted pairs

Two wires twisted together to reduce electrical interference

virtual circuit

A logical circuit is established between source and destination for a message to follow

WAN

Wide Area Network, a network across a continent, such as ATM

wavelength division
multiplexing

WDM sends different streams simultaneously on the same fiber using different wave-
lengths of light and then demultiplexes the different wavelengths at the receiver

window

In TCP, the number of TCP datagrams that can be sent without waiting for approval

wireless network

A network that communicates without physical connections, such as radio

wormhole routing

The switch examines the header, decides where to send the message, and then starts trans-
mitting it immediately without waiting for the rest of the message. The tail continues when
the head blocks, potentially compressing the strung-out message into a single switch

Term Definition

FIGURE 8.2 Networking terms in this chapter and their definitions

8.1 Introduction 569

Let’s start with the generic types of interconnections. Depending on the num-
ber of nodes and their proximity, these interconnections are given different
names:

n

Wide area network (WAN)

—Also called

long haul network

, the WAN connects
computers distributed throughout the world. WANs include thousands of com-
puters, and the maximum distance is thousands of kilometers. ATM is a current
example of a WAN.

n

Local area network (LAN)

—This device connects hundreds of computers, and
the distance is up to a few kilometers. Unlike a WAN, a LAN connects comput-
ers distributed throughout a building or on a campus. The most popular and en-
during LAN is Ethernet.

n

Storage or System area network (SAN)—

This interconnection network is for a
machine room, so the maximum distance of a link is typically less than 100
meters, and it can connect hundreds of nodes. Today SAN usually means

Stor-
age

 area network as it connects computers to storage devices, such as disk ar-
rays. Originally SAN meant a

System

 area network to connect computers
together, such as PCs in a cluster. A recent SAN trying to network both storage
and system is Infiniband.

Figure 8.3 shows the rough relationship of these systems in terms of number au-
tonomous systems connected, including a bus for comparison. Note the area of
overlap between buses, SANs, and LANs, which lead to product competition.

FIGURE 8.3 Relationship of four types of interconnects in terms of number of auton-
omous systems connected: bus, system or storage area network, local area network,
and wide area network/Internet.

Note that there are overlapping ranges where buses,
SANs, and LANs compete. Some supercomputers have a switch-based custom network to
interconnect up to thousands of computers; such interconnects are basically custom SANs.

1 1 0 100 1000 10000

Number of Autonomous Systems Connected

Bus

SAN

LAN

WAN/Internet

570 Chapter 8 Interconnection Networks and Clusters

These three types of interconnection networks have been designed and sus-
tained by several different cultures—Internet, telecommunications, workgroup/
enterprise, storage, and high performance computing—each using its own dia-
lects and its own favorite approaches to the goal of interconnecting autonomous
computers.

This chapter gives a common framework for evaluating all interconnection
networks, using a single set of terms to describe the basic alternatives.
Figure 8.22 in section 8.7 gives several other examples of each of these inter-
connection networks. As we shall see, some components are common to all types
and some are quite different.

We begin the chapter in section 8.2 by exploring the design and performance
of a simple network to introduce the ideas. We then consider the following prob-
lems: which media to use as the interconnect (8.3), how to connect many comput-
ers together (8.4 and 8.5), and what are the practical issues for commercial
networks (8.6). We follow with examples illustrating the trade-offs for each type
of network (8.7), explore internetworking (8.8), and cross cutting issues for net-
works (8.9). With this gentle introduction to networks in sections 8.2 to 8.9, read-
ers interested in more depth should try the suggested reading in section 8.16.
Sections 8.10 to 8.12 switch to clusters, and give a more quantitative description
with designs and examples. Section 8.13 gives a view of networks from the em-
bedded perspective, using a cell phone and wireless networks as the example. We
conclude in sections 8.14 to 8.16 with the traditional ending of the chapters.

As we shall see, networking shares more characteristics with storage than with
processors and memory. Like storage, the operating system controls what fea-
tures of the network are used. Again like storage, performance includes both la-
tency and bandwidth, and queueing theory is a valuable tool. Like RAID,
networking assumes failures occur, and thus dependability in the presence of er-
rors is the norm.

There is an old network saying: Bandwidth problems can be cured with money.
Latency problems are harder because the speed of light is fixed—you can’t bribe
God.

Anonymous

To explain the complexities and concepts of networks, this section describes a
simple network of two computers. We then describe the software steps for these
two machines to communicate. The remainder of the section gives a detailed and
then a simple performance model, including several examples to see the implica-
tions of key network parameters.

8.2 A Simple Network

8.2 A Simple Network 571

Suppose we want to connect two computers together. Figure 8.4 shows a simple
model with a unidirectional wire from machine A to machine B and vice versa. At
the end of each wire is a first-in-first-out (FIFO) queue to hold the data. In this
simple example, each machine wants to read a word from the other’s memory. A
message is the information sent between machines over an interconnection net-
work.

For one machine to get data from the other, it must first send a request contain-
ing the address of the data it desires from the other node. When a request arrives,
the machine must send a reply with the data. Hence, each message must have at
least 1 bit in addition to the data to determine whether the message is a new re-
quest or a reply to an earlier request. The network must distinguish between in-
formation needed to deliver the message, typically called the header or the trailer
depending on where it is relative to the data, and the payload, which contains the
data. Figure 8.5 shows the format of messages in our simple network. This exam-
ple shows a single-word payload, but messages in some interconnection networks
can include hundreds of words.

Interconnection networks involve normally software. Even this simple exam-
ple invokes software to translate requests and replies into messages with the ap-
propriate headers. An application program must usually cooperate with the
operating system to send a message to another machine, since the network will be
shared with all the processes running on the two machines, and the operating sys-
tem cannot allow messages for one process to be received by another. Thus, the
messaging software must have some way to distinguish between processes; this
distinction may be included in an expanded header. Although hardware support
can reduce the amount of work, most is done by software.

In addition to protection, network software is often responsible for ensuring
reliable delivery of messages. The twin responsibilities are ensuring that the mes-
sage is neither garbled nor lost in transit.

FIGURE 8.4 A simple network connecting two machines.

Machine A Machine B

572 Chapter 8 Interconnection Networks and Clusters

Adding a checksum field (or some other error detection code) to the message
format meets the first responsibility. This redundant information is calculated
when the message is first sent and checked upon receipt. The receiver then sends
an acknowledgment if the message passes the test.

One way to meet the second responsibility is to have a timer record the time
each message is sent and to presume the message is lost if the timer expires be-
fore an acknowledgment arrives. The message is then re-sent.

The software steps to send a message are as follows:

1. The application copies data to be sent into an operating system buffer.

2. The operating system calculates the checksum, includes it in the header or
trailer of the message, and then starts the timer.

3. The operating system sends the data to the network interface hardware and
tells the hardware to send the message.

Message reception is in just the reverse order:

3. The system copies the data from the network interface hardware into the op-
erating system buffer.

2. The system calculates the checksum over the data. If the checksum matches
the sender’s checksum, the receiver sends an acknowledgment back to the
sender. If not, it deletes the message, assuming that the sender will resend the
message when the associated timer expires.

1. If the data pass the test, the system copies the data to the user’s address space
and signals the application to continue.

The sender must still react to the acknowledgment:

FIGURE 8.5 Message format for our simple network. Messages must have extra infor-
mation beyond the data.

Header (1 bit) Payload (32 bits)

0= Request
1 = Reply

0

1

Address

Data

8.2 A Simple Network 573

n When the sender gets the acknowledgment, it releases the copy of the message
from the system buffer.

n If the sender gets the time-out instead of an acknowledgment, it resends the
data and restarts the timer.

Here we assume that the operating system keeps the message in its buffer to sup-
port retransmission in case of failure. Figure 8.6 shows how the message format
looks now.

The sequence of steps that software follows to communicate is called a proto-
col and generally has the symmetric but reversed steps between sending and re-
ceiving.

Note that this example protocol above is for sending a single message. When
an application does not require a response before sending the next message, the
sender can overlap the time to send with the transmission delays and the time to
receive.

A protocol must handle many more issues than reliability. For example, if two
machines are from different manufacturers, they might order bytes differently
within a word (see section 2.3 of Chapter 2). The software must reverse the order
of bytes in each word as part of the delivery system. It must also guard against the
possibility of duplicate messages if a delayed message were to become unstuck.
It is often necessary to deliver the messages to the application in the order they
are sent, and so sequence numbers may be added to the header to enable assem-
bly. Finally, it must work when the receiver’s FIFO becomes full, suggesting
feedback to control the flow of messages from the sender (see section 8.4).

Now that we have covered the steps in sending and receiving a message, we
can discuss performance.

Figure 8.7 shows the many performance parameters of interconnection net-
works. This figure is critical to understanding network performance, so study it

FIGURE 8.6 Message format for our simple network. Note that the checksum is in the
trailer.

Header (2 bits)

00 = Request
01 = Reply
10 = Acknowledge request
11 = Acknowledge reply

Payload (32 bits) Trailer (4 bits)
(Checksum)

Data

574 Chapter 8 Interconnection Networks and Clusters

well! Note that the parameters in Figure 8.7 apply to the interconnect in many
levels of the system: inside a chip, between chips on a board, between computers
in a cluster, and so on. The units change, but the principles remain the same, as
does the bandwidth that results.

These terms are often used loosely, leading to confusion, so we define them
here precisely:

n Bandwidth—We use this most widely used term to refer to the maximum rate
at which the network can propagate information once the message enters the
network. Unlike disks, bandwidth includes the headers and trailers as well as
the payload, and the units are traditionally bits/second rather than bytes/second.
The term bandwidth is also used to mean the measured speed of the medium or
network bandwidth delivered to an application. Throughput is sometimes used
for this latter term.

n Time of flight—The time for the first bit of the message to arrive at the receiver,
including the delays due to repeaters or other hardware in the network. Time of
flight can be milliseconds for a WAN or nanoseconds for an SAN.

n Transmission time—The time for the message to pass through the network, not
including time of flight. One way to measure it is the difference in time between
when the first bit of the message arrives at the receiver and when the last bit of
the message arrives at the receiver. Note that by definition transmission time is
equal to the size of the message divided by the bandwidth. This measure as-
sumes there are no other messages to contend for the network.

FIGURE 8.7 Performance parameters of interconnection networks. Depending on
whether it is an SAN, LAN, or WAN, the relative lengths of the time of flight and transmission
may be quite different from those shown here. (Based on a presentation by Greg Papa-
dopolous of Sun Microsystems.)

Sender
overheadSender

Receiver

Transmission
time

(bytes/Bandwidth)

Time of
flight

Transmission
time

(bytes/Bandwidth)
Receiver
overhead

Transport latency

Total latency

Time

8.2 A Simple Network 575

n Transport latency—The sum of time of flight and transmission time. Transport
latency is the time that the message spends in the interconnection network.
Stated alternatively, it is the time between when the first bit of the message is
injected into the network and when the last bit of the message arrives at the re-
ceiver. It does not include the overhead of injecting the message into the net-
work nor pulling it out when it arrives.

n Sender overhead—The time for the processor to inject the message into the
network, including both hardware and software components. Note that the pro-
cessor is busy for the entire time, hence the use of the term overhead. Once the
processor is free, any subsequent delays are considered part of the transport la-
tency. For pedagogic reasons, we assume overhead is not dependent on mes-
sage size. (Typically, only very large messages have larger overhead.)

n Receiver overhead—The time for the processor to pull the message from the
interconnection network, including both hardware and software components.
In general, the receiver overhead is larger than the sender overhead: for exam-
ple, the receiver may pay the cost of an interrupt.

The total latency of a message can be expressed algebraically:

Let’s look at how the time of flight and overhead parameters change in impor-
tance as we go from SAN to LAN to WAN.

E X A M P L E Assume a network with a bandwidth of 1000 Mbits/second has a sending
overhead of 80 microseconds and a receiving overhead of 100 microsec-
onds. Assume two machines. One wants to send a 10000-byte message
to the other (including the header), and the message format allows 10000
bytes in a single message. Let’s compare SAN, LAN, and WAN by chang-
ing the distance between the machines. Calculate the total latency to
send the message from one machine to another in a SAN assuming they
are 10 meters apart. Next, perform the same calculation but assume the
machines are now 500 meters apart, as in a LAN. Finally, assume they
are 1000 kilometers apart, as in a WAN.

A N S W E R The speed of light is 299,792.5 kilometers per second in a vacuum, and
signals propagate at about 63% to 66% of the speed of light in a conduc-
tor. Since this is an estimate, in this chapter we’ll round the speed of light
to 300,000 kilometers per second, and assume we can achieve two-thirds
of that in a conductor. Hence, we can estimate time of flight. Let’s plug the
parameters for the short distance of a SAN into the formula above:

Total latency Sender overhead Time of flight Message size
Bandwidth-------------------------------

Receiver overhead+ + +=

576 Chapter 8 Interconnection Networks and Clusters

Converting all terms into microseconds (µsecs) leads to

Substituting an example LAN distance into the third equation yields

Substituting the WAN distance into the equation yields

The increased fraction of the latency required by time of flight for long dis-
tances, as well as the greater likelihood of errors over long distances, are
why wide area networks use more sophisticated and time-consuming pro-
tocols. Complexity increases from protocols used on a bus versus a LAN
versus the Internet as we go from ten to hundreds to thousands of nodes.

Note that messages in LANs and WANs go through switches which
add to the latency, which we neglected above. Generally, switch latency is
small compared to overhead in LANs or time of flight in SANs.

As mentioned above, when an application does not require a re-
sponse before sending the next message, the sender can overlap the
sending overhead with the transport latency and receiver overhead. In-
creased latency affects the structure of programs that try to hide this la-
tency, requiring quite different solutions if the latency is 1, 100, or 10,000
microseconds.

n

Total latency Sender overhead Time of flight Message size
Bandwidth-------------------------------

Receiver overhead+ + +=

80µsecs 0.01km
2 3⁄ 300 000 km/sec,×--

10000 bytes
1000 Mbits/sec------------------------------------

100 µsecs+ + +=

Total latency 80µsecs
0.01 10

6×
2 3⁄ 300 000,×------------------------------------- µsecs

10000 8×
1000------------------------ µsecs 100 µsecs+ + +=

80 µsecs 0.05 µsecs 80 µsecs 100 µsec = 260 + 0.05 µsecs+ + +=

260µsecs=

Total latency 80µsecs 0.5km
2 3⁄ 300 000 km/sec,×--

10000 bytes
1000 Mbits/sec------------------------------------

100 µsecs+ + +=

80 µsecs 2.50 µsecs 80 µsecs 100 µsec = 260 + 2.5 µsecs+ + +=

262µsecs=

Total latency 80µsecs 1000 km
2 3⁄ 300 000 km/sec,×--

10000 bytes
1000 Mbits/sec------------------------------------

100 µsecs+ + +=

80 µsecs 5000 µsecs 80 µsecs 100 µsec = 260 + 5000 µsecs+ + +=

5260µsecs=

8.2 A Simple Network 577

Note that the example above shows that time of flight for SANs is so short rel-
ative to overhead that it can be ignored, yet in WANs, time of flight is so long that
sender and receiver overheads can be ignored. Thus, we can simplify the perfor-
mance equation by combining sender overhead, receiver overhead, and time of
flight into a single term called Overhead:

We can use this formula to calculate the effective bandwidth delivered by the net-
work as message size varies:

Let’s use this simpler equation to explore the impact of overhead and message
size on effective bandwidth.

E X A M P L E Plot the effective bandwidth versus message size for overheads of 25 and
250 microseconds and for network bandwidths of 100, 1000, and 10000
Mbits/second. Vary message size from 16 bytes to 4 megabytes. For what
message sizes is the effective bandwidth virtually the same as the raw net-
work bandwidth? If overhead is 250 microseconds, for what message sizes
is the effective bandwidth always less than 100 Mbits/second?

A N S W E R Figure 8.8 plots effective bandwidth versus message size using the sim-
plified equation above. The notation “oX,bwY” means an overhead of X
microseconds and a network bandwidth of Y Mbits/second. To amortize
the cost of high overhead, message sizes must be four megabytes for ef-
fective bandwidth to be about the same as network bandwidth. Assuming
the high overhead, message sizes about 3K bytes or less will not break
the 100 Mbits/second barrier no matter what the actual network band-
width.

Thus, we must lower overhead as well as increase network band-
width unless messages are very large.n

 Hence, message size is important in getting full benefit of fast networks. What
is the natural size of messages? Figure 8.9 above shows the size of Network File
System (NFS) messages for 239 machines at Berkeley collected over a period of
one week. One plot is cumulative in messages sent, and the other is cumulative in
data bytes sent. The maximum NFS message size is just over 8 KB, yet 95% of
the messages are less than 192 bytes long..Figure 8.10 below shows the similar
results for Internet traffic, where the maximum transfer unit was 1500 bytes.

Total latency Overhead Message size
Bandwidth-------------------------------

+≈

Effective bandwidth Message size
Total latency-------------------------------

=

578 Chapter 8 Interconnection Networks and Clusters

Again, 60% of the messages are less than 192 bytes long, and 1500-byte messag-
es represented 50% of the bytes transferred. Many applications send far more
small messages than large messages, since requests and acknowledgements are
more frequent than data

Summarizing this section, even this simple network has brought up the issues
of protection, reliability, heterogeneity, software protocols, and a more sophisti-
cated performance model. The next four sections address other key questions:

n Which media are available to connect computers together?

n What issues arise if you want to connect more than two computers?

n What practical issues arise for commercial networks?

FIGURE 8.8 Bandwidth delivered versus message size for overheads of 25 and 250 microseconds and for network
bandwidths of 100, 1000, and 10000 Mbits/second. Note that with 250 microseconds of overhead and a network band-
width of 1000 Mbits/second, only the 4-MB message size gets an effective bandwidth of 1000 Mbits/second. In fact, mes-
sage sizes must be greater than 256 B for the effective bandwidth to exceed 10 Mbits/second. The notation “oX,bwY” means
an overhead of X microseconds and a network bandwidth of Y Mbits/second. <<Artist: label lines, drop legend.>>

0.1

1.0

10.0

100.0

1,000.0

10,000.0

1 6 6 4 256 1K 4K 16K 64K 256K 1M 4M

Message size (bytes)

Effective
bandwidth

(Mbits/sec)

o25,bw10000

o25,bw1000

o25,bw100

o250,bw10000

o250,bw1000

o250,bw100

8.2 A Simple Network 579

FIGURE 8.9 Cumulative percentage of messages and data transferred as message
size varies for NFS traffic. Each x-axis entry includes all bytes up to the next one; e.g., 32
represents 32 bytes to 63 bytes. More than half the bytes are sent in 8-KB messages, but
95% of the messages are less than 192 bytes. Figure 8.50 (page 651) shows details of this
measurement. Collected at the University of California at Berkeley.

FIGURE 8.10 Cumulative percentage of messages and data transferred as message
size varies for Internet traffic. About 40% of the messages were 40 bytes long, and 50% of
the data transfer was in messages 1500 bytes long. The maximum transfer unit of most
switches was 1500 bytes. Collect by Vern Paxton on MCI Internet traffic in 1998.

32 64 96 12
8

16
0

19
2

22
4

25
6

51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

51
20

61
44

71
68

81
92

Message size (bytes)

0%

10%

20%

30%

40%

Messages

Data bytes

50%

60%

70%

80%

90%

100%

Cumulative
percentage

0%
10%

20%
30%

40%
50%
60%

70%
80%

90%
100%

0 256 512 768 1024 1280 1536

Message Size

Cumulative
percentage

Messages
Data bytes

580 Chapter 8 Interconnection Networks and Clusters

Just as there is a memory hierarchy, there is a hierarchy of media to interconnect
computers that varies in cost, performance, and reliability. Network media have
another figure of merit, the maximum distance between nodes. This section cov-
ers three popular examples, and Figure 8.11 illustrates them.

The first medium is twisted pairs of copper wires. These are two insulated
wires, each about 1 mm thick. They are twisted together to reduce electrical inter-
ference, since two parallel lines form an antenna but a twisted pair does not. As
they can transfer a few megabits per second over several kilometers without ampli-
fication, twisted pair were the mainstay of the telephone system. Telephone com-
panies bundled together (and sheathed) many pairs coming into a building.
Twisted pairs can also offer tens of megabits per second of bandwidth over shorter
distances, making them plausible for LANs.

8.3 Interconnection Network Media

FIGURE 8.11 Three network media. (From a presentation by David Culler of U.C. Berkeley.)

Category 5 Unsheilded Twisted pair ("Cat5"):

Coaxial cable:

Fiber optics:

Transmitter is
LED or Laser dieoge

Silica CoreLight source

Total internal
reflection

Receiver is Photodiode

Plastic covering

Braided outer conductor

Cladding

Cladding
Buffer

Insulator

Copper core

8.3 Interconnection Network Media 581

The desire to go at higher speeds with the less expensive copper led to im-
provements in the quality of unshielded twisted-pair copper cabling systems. The
original telephone-line quality was called Level 1. Level 3 was good enough for
10 Mbits/second Ethernet. The desire for even greater bandwidth lead to the Lev-
el 5 or Category 5, which is sufficient for 100 Mbits/second Ethernet. By limiting
the length to 100 meters, “Cat5” wiring can be used for 1000 Mbits/second
Ethernet links today. It uses the RJ-45 connector, which is similar to the connec-
tor found on telephone lines.

Coaxial cable was deployed by cable television companies to deliver a higher
rate over a few kilometers. To offer high bandwidth and good noise immunity, insu-
lating material surrounds a single stiff copper wire, and then cylindrical conductor
surrounds the insulator, often woven as a braided mesh. A 50-ohm baseband coaxi-
al cable delivers 10 megabits per second over a kilometer.

Connecting to this heavily insulated media is more challenging. The original
technique was a T junction: the cable is cut in two and a connector is inserted that
reconnects the cable and adds a third wire to a computer. A less invasive solution
is a vampire tap: a hole of precise depth and width is first drilled into the cable,
terminating in the copper core. A connector is then screwed in without having to
cut the cable.

To keep up with the demands of bandwidth and distance, it became clear that
the telephone company would need to find new media. The solution could be
more expensive provided that it offered much higher bandwidth and that supplies
were plentiful. The answer was to replace copper with glass and electrons with
photons. Fiber optics transmits digital data as pulses of light.

A fiber optic network has three components:

1. the transmission medium, a fiber optic cable;

2. the light source, an LED or laser diode;

3. the light detector, a photodiode.

First, cladding surrounds the glass fiber core to confine the light. A buffer then
surrounds the cladding to protect the core and cladding. Note that unlike twisted
pairs or coax, fibers are one-way, or simplex, media. A two-way, or full duplex,
connection between two nodes requires two fibers.

Since light bends or refracts at interfaces, it can slowly spread as it travels
down the cable unless the diameter of the cable is limited to one wavelength of
light; then it transfers in a straight line. Thus, fiber optic cables are of two forms:

1. Multimode fiber—It uses inexpensive LEDs as a light source. It is typically
much larger than the wavelength of light: typically 62.5 microns in diameter
vs. the 1.3-micron wavelength of infrared light. Since it is wider it has more
dispersion problems, where some wave frequencies have different propaga-
tion velocities. The LEDs and dispersion limit it to up to a few hundred meters
at 1000 Mbits/second or a few kilometers at 100 Mbits /second. It is older and
less expensive than single mode fiber.

582 Chapter 8 Interconnection Networks and Clusters

2. Single-mode fiber—This “single-wavelength” fiber (typically 8 to 9 microns in
diameter) requires more expensive laser diodes for light sources and currently
transmits gigabits per second for hundreds of kilometers, making it the medium
of choice for telephone companies. The loss of signal strength as it passes
through a medium, called attenuation, limits the length of the fiber.

Although single-mode fiber is a better transmitter, it is much more difficult to
attach connectors to single-mode; it is less reliable and more expensive, and the
cable itself has restrictions on the degree it can be bent. The cost, bandwidth, and
distance of single-mode fiber is affected by the power of the light source, the sen-
sitivity of the light detector, and the attenuation rate per kilometer of the fiber ca-
ble. Typically, glass fiber has better characteristics than the less expensive plastic
fiber, and so is more widely used.

Connecting fiber optics to a computer is more challenging than connecting
cable. The vampire tap solution of cable fails because it loses light. There are two
forms of T-boxes:

1. Taps are fused onto the optical fiber. Each tap is passive, so a failure cuts off
just a single computer.

2. In an active repeater, light is converted to electrical signals, sent to the com-
puter, converted back to light, and then sent down the cable. If an active
repeater fails, it blocks the network.

These taps and repeaters also reduce optical signal strength, reducing the useful
distance of a single piece of fiber.

In both cases, fiber optics has the additional cost of optical-to-electrical and
electrical-to-optical conversion as part of the computer interface. Hence, the net-
work interface cards for fiber optics are considerably more expensive than for
Cat5 copper wire. In 2001, most switches for fiber involve such a conversion to
allow switching, although expensive all optical switches are beginning to be
available.

To achieve even more bandwidth from a fiber, wavelength division multiplex-
ing (WDM) sends different streams simultaneously on the same fiber using differ-
ent wavelengths of light, and then demultiplexes the different wavelengths at the
receiver. In 2001, WDM can deliver a combined 40 Gbits/second using about 8
wavelengths, with plans to go to 80 wavelengths and deliver 400 Gbits/second.

The product of the bandwidth and maximum distance forms a single figure of
merit: gigabit-kilometers per second. According to Desurvire [1992], since 1975
optical fibers have increased transmission capacity by tenfold every four years by
this measure.

Let’s compare media in an example.

8.4 Connecting More Than Two Computers 583

E X A M P L E Suppose you have 25 magnetic tapes, each containing 40 GB. Assume
that you have enough tape readers to keep any network busy. How long
will it take to transmit the data over a distance of one kilometer? Assume
the choices are Category 5 twisted pair wires at 100 Mbits/second, multi-
mode fiber at 1000 Mbits/second, and single mode fiber at 2500 Mbits/
second. How do they compare to delivering the tapes by car?

A N S W E R The amount of data is 1000 GB. The time for each medium is given below:

A car filled with high-density tapes is a high-bandwidth medium! n

Computer power increases by the square of the number of nodes on the network.

Robert Metcalf (“Metcalf’s Law”)

Thus far, we have discussed two computers communicating over private lines, but
what makes interconnection networks interesting is the ability to connect hun-
dreds of computers together. And what makes them more interesting also makes
them more challenging to build.

Shared versus Switched Media

Certainly the simplest way to connect multiple computers is to have them share a
single interconnection medium, just as I/O devices share a single I/O bus. The
most popular LAN, Ethernet, originally was simply a bus shared by a hundred of
computers.

Given that the medium is shared, there must be a mechanism to coordinate and
arbitrate the use of the shared medium so that only one message is sent at a time.

8.4 Connecting More Than Two Computers

Twisted pair 1000 1024 8 Mb××
100 Mb/sec---

81,920 secs 22.8 hours= = =

Multimode fiber 1000 1024 8 Mb××
1000 Mb/sec---

 8192 secs 2.3 hours= = =

Single-mode fiber 1000 1024 8 Mb××
2500 Mb/sec---

3277 secs 0.9 hoursœ= = =

Car Time to load car Transport time Time to unload car+ +=

300 secs 1 km
30 kph----------------

300 secs+ + = 300 secs 120 secs 300 secs+ +=

720 secs 0.3 hours= =

584 Chapter 8 Interconnection Networks and Clusters

If the network is small, it may be possible to have an additional central arbiter to
give permission to send a message. (Of course, this leaves open the question of
how the nodes talk to the arbiter.)

Centralized arbitration is impractical for networks with a large number of
nodes spread out over a kilometer, so we must distribute arbitration. A first step
towards arbitration is looking before you leap. A node first checks the network to
avoid trying to send a message while another message is already on the network.
If the interconnection is idle, the node tries to send. Looking first is not a guaran-
tee of success, of course, as some other node may decide to send at the same in-
stant. When two nodes send at the same time, it is called a collision. Let’s assume
that the network interface can detect any resulting collisions by listening to hear
if the data were garbled by other data appearing on the line. Listening to avoid
and detect collisions is called carrier sensing and collision detection. This is the
second step of arbitration.

The problem is not solved. If every node on the network waited exactly the
same amount of time, listened to be sure there was no traffic, and then tried to
send again, we could still have synchronized nodes that would repeatedly bump
heads. To avoid repeated head-on collisions, each node whose message was gar-
bled waits (or “backs off”) a random time before resending. Note that randomiza-
tion breaks the synchronization. Subsequent collisions result in exponentially
increasing time between attempts to retransmit, so as not to tax the network.

Although this approach is not guaranteed to be fair—some subsequent node
may transmit while those that collided are waiting—it does control congestion on
the shared medium. If the network does not have high demand from many nodes,
this simple approach works well. Under high utilization, performance degrades
since the medium is shared.

Another approach to arbitration is to pass a token between the nodes, with the
token giving the node the right to use the network. If the shared media is connect-
ed in a ring, then the token can rotate through all the nodes on the ring.

Shared media have some of the same advantages and disadvantages as buses:
they are inexpensive, but they have limited bandwidth. And like buses, they must
have a arbitration scheme to solve conflicting demands.

The alternative to sharing the media is to have a dedicated line to a switch that
in turn provides a dedicated line to all destinations. Figure 8.12 shows the poten-
tial bandwidth improvement of switches: Aggregate bandwidth is many times
that of a single shared medium.

Switches allow communication directly from source to destination, without
intermediate nodes to interfere with these signals. Such point-to-point communi-
cation is faster than a line shared between many nodes because there is no arbitra-
tion and the interface is simpler electrically. Of course, it does pay the added
latency of going through the switch, trading off arbitration overhead for switch-
ing overhead.

Given the obvious advantages, why weren’t switches always used? Earlier
computers were much slower and so could share media. In addition, applications

8.4 Connecting More Than Two Computers 585

such as the World Wide Web rely on the network much more than older applica-
tions. Finally, earlier switches would take several large boards, and be as a large
as a computer. In 2001, a single chip contains a full 64-by-64 switch, or at least a
large slice of it. Moore’s Law is making switches more attractive, and so technol-
ogy trends favor switches today.

Every node of a shared line will see every message, even if it is just to check to
see whether or not the message is for that node, so this style of communication is
sometimes called broadcast to contrast it with point-to-point. The shared medium
makes it easy to broadcast a message to every node, and even to broadcast to sub-
sets of nodes, called multicasting.

Switches allow multiple pairs of nodes to communicate simultaneously, giv-
ing these interconnections much higher aggregate bandwidth than the speed of a
shared link to a node. Switches also allow the interconnection network to scale to
a very large number of nodes. Switches are also called data switching exchanges,
multistage interconnection networks, or even interface message processors
(IMPs). Depending on the distance of the node to the switch and desired band-
width, the network medium is either copper wire or optical fiber.

FIGURE 8.12 Shared medium versus switch. Ethernet was originally a shared medium,
and but Ethernet switches are now available. All nodes on the shared media must share the
100 Mb/sec interconnection, but switches can support multiple 100 Mb/sec transfers simulta-
neously. Low cost Ethernet switches are sometimes implemented with an internal bus with
higher bandwidth, but high-speed switches have a cross-bar interconnect.

Shared media (Ethernet)

Switched media (ATM)

Node

Node

Node Node

Node

Node Node

Switch

586 Chapter 8 Interconnection Networks and Clusters

E X A M P L E Compare 16 nodes connected three ways: a single 100 Mb/sec shared
media; a switch connected via Cat5, each segment running at 100 Mb/
sec; and a switch connected via optical fibers, each running at 1000 Mb/
sec. The shared media is 500 meters long, and the average length of each
segment to a switch is 50 meters. Both switches can support the full band-
width. Assume each switch adds 5 microseconds to the latency. Calculate
the aggregate bandwidth and transport latency. Assume the average
message size is 125 bytes, and ignore the overhead of sending or receiv-
ing a message and contention for the network.

A N S W E R The aggregate bandwidth of each example is the simplest calculation:
100 Mb/sec for the shared media; 16 × 100, or 1600 Mb/sec for the
switched twisted pairs; and 16 × 1000, or 16000 Mb/sec for the switched
optical fibers.

The transport time is

For coax we just plug in the distance, bandwidth, and message size:

For the switches, the distance is twice the average segment, since there
is one segment from the sender to the switch and one from the switch to
the receiver. We must also add the latency for the switch.

Although the bandwidth of the switch is many times the shared media, the
latency for unloaded networks is comparable. n

Transport time Time of flight Message size
Bandwidth-------------------------------

+=

Transport timeshared
500/1000 10

6×
2 3⁄ 300 000,×------------------------------------- µsecs

125 8×
100------------------ µsecs+=

2.5 µsecs 10 µsecs+=

12.5 µsecs=

Transport timeswtich 2
50/1000 10

6×
2 3⁄ 300 000,×------------------------------------- 

 × µsecs 5 µsecs
125 8×

100------------------ µsecs+ +=

0.5 µsecs 5 µsecs 10+ µsecs+=

15.5 µsecs=

Transport timefiber 2
50/1000 10

6×
2 3⁄ 300 000,×------------------------------------- 

 × µsecs 5 µsecs
125 8×

1000------------------ µsecs+ +=

0.5 µsecs 5 µsecs 1+ µsecs+=

6.5 µsecs=

8.4 Connecting More Than Two Computers 587

Switches allow communication to harvest the same rapid advance from silicon
as have processors and main memory. Whereas the switches from telecommuni-
cations companies were once the size of mainframe computers, today we see
single-chip switches. Just as single-chip processors led to processors replacing
logic in a surprising number of places, single-chip switches are increasingly re-
placing buses and shared media networks.

Connection-Oriented versus Connectionless Communication

Before computers arrived on the scene, the telecommunications industry allowed
communication around the world. An operator set up a connection between a
caller and a callee, and once the connection is established, a conversation can
continue for hours. To share transmission lines over long distances, the telecom-
munications industry used switches to multiplex several conversations on the
same lines. Since audio transmissions have relatively low bandwidth, the solution
was to divide the bandwidth of the transmission line into a fixed number of fre-
quencies, with each frequency assigned to a conversation. This technique is called
frequency-division multiplexing.

Although a good match for voice, frequency-division multiplexing is ineffi-
cient for sending data. The problem is that the frequency channel is dedicated to
the conversation whether or not there is anything being said. Hence, the long dis-
tance lines are “busy” based on the number of conversations, and not on the
amount of information being sent at a particular time. An alternative style of
communication is called connectionless, where each package is routed to the des-
tination by looking at its address. The postal system is a good example of connec-
tionless communication.

Closely related to the idea of connection versus connectionless communica-
tion are the terms circuit switching and packet switching. Circuit switching is the
traditional way to offer a connection-based service. A circuit is established from
source to destination to carry the conversation, reserving bandwidth until the cir-
cuit is broken. The alternative to circuit-switched transmission is to divide the in-
formation into packets, or frames, with each packet including the destination of
the packet plus a portion of the information. Queuing theory in section 6.4 tells
us that packets cannot use all of the bandwidth, but in general, this packet-
switched approach allows more use of the bandwidth of the medium and is the
traditional way to support connectionless communication.

E X A M P L E Let’s compare a single 1000 Mbits/sec packet switched network with ten
100 Mbits/sec packet-switched networks. Assume that the mean size of a
packet is 250 bytes, the arrival rate is 250,000 packets per second, and
the interarrival times are exponentially distributed. What is the mean re-
sponse time for each alternative? What is the intuitive reason behind the
difference?

588 Chapter 8 Interconnection Networks and Clusters

A N S W E R From section 6.4 in the prior chapter, we can use an M/M/1 queue to
calculate the mean response time for the single fast network:

The 10 slow networks can be modeled by an M/M/m queue, and the
appropriate formulas are found in section 6.7:

The intuition is clear from the results: the service time is much less
for the faster network even though the queuing times are the same. This
intuition is the argument for “statistical multiplexing” using packets; queu-
ing times are not worse for a single faster network, and the latency for a
single packet is much less. Stated alternatively, you get better latency
when you use an unloaded fast network, and data traffic is bursty so it
works. n

Although connections traditionally align with circuit switching, providing the
user with the appearance of a logical connection on top of a packet-switched net-
work is certainly possible. TCP/IP, as we shall see in section 8.8, is a connection-
oriented service that operates over packet-switched networks.

Service rate Bandwidth
Message size-------------------------------

1000 10
6×

250 8×---------------------------
1000 10

6×
2000---------------------------

500,000 packets per second= = = =

Timeserver
1

500,000-------------------
2 µsecs= =

Utilization Arrival rate
Service rate----------------------------

250,000
500,000-------------------

0.5= = =

Timequeue Timeserver
Server utilization

1 Server utilization–()---× 2 µsecs
0.5

1 0.5–----------------× 2
0.5
0.5-------× 2 µsecs= = = =

Mean response time Timequeue Timeserver+ 2 2+ 4 µsecs= = =

Service rate 100 10
6×

250 8×------------------------
100 10

6×
2000------------------------

50,000 packets per second= = =

Timeserver
1

50,000----------------
0.00002 secs 20 µsecs= = =

Utilization Arrival rate
m Service rate×---------------------------------------

250,000
10 50000×---------------------------

250,000
500,000-------------------

0.5= = = =

Timequeue Timeserver
Server utilization

m 1 Server utilization–()×--× 20 µsecs
0.5

10 1 0.5–()×---------------------------------× 2
0.5
0.5-------× 2 µsecs= = = =

Mean response time Timequeue Timeserver+ 2 20+ 22 µsecs= = =

8.4 Connecting More Than Two Computers 589

Routing: Delivering Messages

Given that the path between nodes may be difficult to navigate depending upon
the topology, the system must be able to route the message to the desired node.
Shared media has a simple solution: The message is broadcast to all nodes that
share the media, and each node looks at an address within the message to see
whether the message is for that node. This routing also made it easy to broadcast
one message to all nodes by reserving one address for everyone; broadcast is
much harder to support in switch-based networks.

Switched media use three solutions for routing. In source-based routing, the
message specifies the path to the destination. Since the network merely follows
directions, it can be simpler. A second alternative is the virtual circuit, whereby a
circuit is established between source and destination, and the message simply
names the circuit to follow. ATM uses virtual circuits. The third approach is a
destination-based routing, where the message merely contains a destination ad-
dress, and the switch must pick a path to deliver the message. IP uses destination
routing. Hence, ATM switches are simpler conceptually; once a virtual circuit is
established, packet switching is very fast. On the other hand, IP routers must de-
cide how to route every packet it receives by doing a routing table lookup on ev-
ery packet.

Destination-based routing may be deterministic and always follow the same
path, or it may be adaptive, allowing the network to pick different routes to avoid
failures or congestion. Closely related to adaptive routing is randomized routing,
whereby the network will randomly pick between several equally good paths to
spread the traffic throughout the network, thereby avoiding hot spots.

Switches in WANs route messages using a store-and-forward policy; each
switch waits for the full message to arrive in the switch before it is sent on to the
next switch. Generally store-and-forward can retry a message within the network
in case of failure. The alternative to store-and-forward, available in some SANs,
is for the switch to examine the header, decide where to send the message, and
then start transmitting it immediately without waiting for the rest of the message.
It requires retransmission from the source on a failure within the network.

This alternative is called either cut-through routing or wormhole routing. In
wormhole routing, when the head of the message is blocked, the message stays
strung out over the network, potentially blocking other messages. Cut-through
routing lets the tail continue when the head is blocked, compressing the strung-
out message into a single switch. Clearly, cut-through routing requires a buffer
large enough to hold the largest packet, while wormhole routing needs only to
buffer the piece of the packet sent between switches.

The advantage of both cut-through and wormhole routing over store-and-
forward is that latency reduces from a function of the number of intermediate
switches multiplied by the size of the packet to the time for the first part of the
packet to negotiate the switches plus the transmission time.

590 Chapter 8 Interconnection Networks and Clusters

E X A M P L E The CM-5 supercomputer used wormhole routing, with each switch buffer
being just 4 bits per port. Compare efficiency of store-and-forward versus
wormhole routing for a 128-node machine using a CM-5 interconnection
sending a 16-byte payload. Assume each switch takes 0.25 microsec-
onds and that the transfer rate is 20 MBytes/sec.

A N S W E R The CM-5 interconnection for 128 nodes is hierarchy (see Figure 8.14 on
page 595), and a message goes through seven intermediate switches.
Each CM-5 packet has four bytes of header information, so the length of
this packet is 20 bytes. The time to transfer 20 bytes over one CM-5 link is

Then the time for store and forward is

(Switches × Switch delay) + ((Switches + 1) × Transfer time) = (7 × 0.25) + (8 × 1) = 9.75 µsecs

while wormhole routing is

(Switches × Switch delay) + Transfer time = (7 × 0.25) + 1 = 2.75 µsecs

For this example, wormhole routing improves latency by more than a
factor of three. n

A final routing issue is the order in which packets arrive. Some networks
require that packets arrive in the order sent. The alternative removes this restric-
tion, requiring software to reassemble the packets in proper order.

Congestion Control

One advantage of a circuit-switched network is that once a circuit is established,
it ensures there is sufficient bandwidth to deliver all the information sent along
that circuit. Moreover, switches along a path can be requested to give specific
quality of service guarantees. Thus, interconnection bandwidth is reserved as cir-
cuits are established rather than consumed as data are sent, and if the network is
full, no more circuits can be established. You may have encountered this blockage
when trying to place a long distance phone call on a popular holiday or to a tele-
vision show, as the telephone system tells you that “all circuits are busy” and asks
you to please call back at a later time.

Packet-switched networks generally do not reserve interconnect bandwidth in
advance, so the interconnection network can become clogged with too many
packets. Just as with rush hour traffic, a traffic jam of packets increases packet la-
tency. Packets take longer to arrive, and in extreme cases fewer packets per sec-
ond are delivered by the interconnect, just as is the case for the poor rush-hour
commuters. There is even the computer equivalent of gridlock: deadlock is

20
20 MB/sec--------------------------

1 µsec=

8.4 Connecting More Than Two Computers 591

achieved when packets in the interconnect can make no forward progress no mat-
ter what sequence of events happens. Chapter 6 addresses how to avoid this ulti-
mate congestion in the context of a multiprocessor.

Higher bandwidth and longer distance networks exacerbate these problems, as
this example illustrates.

E X A M P L E Assume a 155 Mbits/sec network stretching from San Francisco to New
York City. How many bytes will be in flight? What is the number if the net-
work is upgraded to 1000 Mbits/sec?

A N S W E R Use the prior assumptions and speed of light. The distance between San
Francisco and New York City is 4120 km. Calculating time of flight:

Let’s assume the network delivers 50% of the peak bandwidth. The num-
ber of bytes in transit on a 155 Mbits/sec network is

At 1000 Mbits/sec the number is

More than a megabyte of messages will be a challenge to control and to
store in the network. n

The solution to congestion is to prevent new packets from entering the net-
work until traffic reduces, just as metering lights guarding on-ramps control the
rate of cars entering a freeway. There are three basic schemes used for congestion
control in computer interconnection networks, each with its own weaknesses:
packet discarding, flow control, and choke packets.

The simplest, and most callous, is packet discarding. If a packet arrives at a
switch and there is no room in the buffer, the packet is discarded. This scheme re-
lies on higher-level software that handles errors in transmission to resend lost
packets. Internetworking protocols such as UDP discard packets.

Time of flight 4120 km
2 3⁄ 300 000 km/sec,×--

0.0206 secs= =

Bytes in transit Delivered bandwidth Time of Flight×=

0.5 155× Mbits/sec
8-- 0.0206 secs× 9.7 MB/sec 0.0206 secs×= =

0.200MB=

Bytes in transit
0.5 1000× Mbits/sec

8--- 0.0206 secs× 62.5 MB/sec 0.0206 secs×= =

1.718MB=

592 Chapter 8 Interconnection Networks and Clusters

The second scheme is to rely on flow control between pairs of receivers and
senders. The idea is to use feedback to tell the sender when it is allowed to send
the next packet. One version of feedback is via separate wires between adjacent
senders and receivers that tell the sender to stop immediately when the receiver
cannot accept another message. This backpressure feedback is rapidly sent back
to the original sender over dedicated lines, causing all links between the two end
points to be frozen until the receiver can make room for the next message. Back-
pressure flow control is common in supercomputer networks, SANs and even
some gigabit Ethernet switches which send fake collision signal to control flow.

A more sophisticated variation of feedback is for the ultimate destination to
give the original sender a credit to send n packets before getting permission to
send more. These are generically called credit-based flow control. A window is
one version of credit-based flow control. The window’s size determines the mini-
mum frequency of communication from receiver to sender. The goal of the win-
dow is to send enough packets to overlap the latency of the interconnection with
the overhead to send and receive a packet. The TCP protocol uses a window.

This brings us to a point of confusion on terminology in many papers and text-
books. Note that flow control describes just two nodes of the interconnection and
not the total interconnection network between all end systems. Congestion con-
trol refers to schemes that reduce traffic when the collective traffic of all nodes is
too large for the network to handle. Hence, flow control helps congestion control,
but it is not a universal solution.

 Choke packets are basis of the third scheme. The observation is that you only
want to limit traffic when the network is congested. The idea is for each switch to
see how busy it is, entering a warning state when it passes a threshold. Each
packet received by the switch in a warning state are sent back to the source via a
choke packet that includes the intended destination. The source is expected to re-
duce traffic to that destination by a fixed percentage. Since it likely will have al-
ready sent many packets along that path, it waits for all the packets in transit to be
returned before taking choke packets seriously.

The number of topologies described in publications would be difficult to count,
but the number that have been used commercially is just a handful, with design-
ers of parallel supercomputers being the most visible and imaginative. They have
used regular topologies to simplify packaging and scalability. The topologies of
SANS, LANs and WANs are more haphazard, having more to do with the chal-
lenges of long distance or simply the connection of equipment purchased over
several years. Topology matters less today than it did in the past. You don’t want
to rewrite your application for each new topology, but you would like the system
to take advantage of locality that naturally occurs in programs.

8.5 Network Topology

8.5 Network Topology 593

Centralized Switch

Figure 8.13 illustrates two of the popular switch organizations, with the path
from node P0 to node P6 shown in gray in each topology. A fully connected, or
crossbar, interconnection allows any node to communicate with any other node in
one pass through the interconnection. Routing depends on the style of address-
ing. In source-based routing, the message includes a sequence of out-bound arcs
to reach a destination. Once an outgoing arc is picked, that portion of the routing

FIGURE 8.13 Popular switch topologies for eight nodes. The links are unidirectional; data come in at the left and exit
out the right link. The switch box in (c) can pass A to C and B to D or B to C and A to D. The crossbar uses n2 switches,
where n is the number of processors, while the Omega network uses n/2 log2 n of the large switch boxes, each of which is
logically composed of four of the smaller switches. In this case the crossbar uses 64 switches versus 12 switch boxes or 48
switches in the Omega network. The crossbar, however, can simultaneously route any permutation of traffic pattern between
processors. The Omega network cannot.

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

a. Cross bar b. Omega network

A

B

C

D

c. Omega network switch box

594 Chapter 8 Interconnection Networks and Clusters

sequence may be dropped from the packet. In destination-based routing, a table
decides which port to take for a given address. Some networks will run programs
in the switches (“spanning tree protocols”) to generate the routing table on the fly
once the network is connected. The Internet does something similar for routing.

An Omega interconnection uses less hardware than the crossbar interconnec-
tion (n/2 log2 n vs. n2 switches), but contention is more likely to occur between
messages. The amount of contention depends on the pattern of communication.
This form of contention is called blocking. For example, in the Omega intercon-
nection in Figure 8.13 a message from P1 to P7 blocks while waiting for a mes-
sage from P0 to P6. Of course, if two nodes try to send to the same destination—
both P0 and P1 send to P6—there will be contention for that link, even in the
crossbar.Routing in an Omega net can uses the same techniques as in a full-cross-
bar.

A tree is the basis of another switch, with bandwidth added higher in the tree
to match the requirements of common communications patterns. Figure 8.14
shows this topology, called a fat tree. Interconnections are normally drawn as
graphs, with each arc of the graph representing a link of the communication inter-
connection, with nodes shown as black squares and switches shown as shaded cir-
cles.

To double the number of nodes in a fat tree, we just add another level to the
top of the tree. Notices that this also increases the bandwidth at the top of the
tree, which is an advantage of a fat tree.

This figure shows that there are multiple paths between any two nodes in a fat
tree. For example, between node 0 and node 8 there are four paths. Such redun-
dancy can help with fault tolerance. In addition, if messages are randomly as-
signed to different paths, then this should spread the load throughout the switch
and result in fewer congestion problems.

Thus far, the switch is separate from the processor and memory, and assumed
to be located in a central location. Looking inside this switch, we see many
smaller switches. The term multistage switch is sometimes used to refer to cen-
tralized units to reflect the multiple steps that a message may travel before it
reaches a computer.

Distributed Switch

Instead of centralizing these small switching elements, an alternative is to place
one small switch at every computer, yielding a distributed switching function.

Given a distributed switch, the question is how to connect the switches together.
Figure 8.15 shows that a low-cost alternative to full interconnection is a network
that connects a sequence of nodes together. This topology is called a ring. Since
some nodes are not directly connected, some messages will have to hop along
intermediate nodes until they arrive at the final destination. Unlike shared lines, a
ring is capable of many simultaneous transfers: the first node can send to the sec-
ond at the same time as the third node can send to the fourth, for example. Rings

8.5 Network Topology 595

FIGURE 8.14 A fat-tree topology for 16 nodes. The shaded circles are switches, and the squares at the bottom are pro-
cessor-memory nodes. A simple 4-ary tree would only have the links at the front of the figure; that is, the tree with the root
labeled 0,0. This three-dimensional view suggests the increase in bandwidth via extra links at each level over a simple tree,
so bandwidth between each level of a fat tree is normally constant rather than reduced by a factor of four as in a 4-ary tree.
Multiple paths and random routing give it the ability to route common patterns well, which ensures no single pattern from a
broad class of communication patterns will do badly. In the CM-5 fat-tree implementation, the switches have four downward
connections and two or four upward connections; in this figure the switches have two upward connections.

FIGURE 8.15 A ring network topology.

00 10

01
11

02
12

03
13

00
10

20
30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

596 Chapter 8 Interconnection Networks and Clusters

are not quite as good as this sounds because the average message must travel
through n/2 switches, where n is the number of nodes. To first order, a ring is like
a pipelined bus: on the plus side are point-to-point links, and on the minus side
are “bus repeater” delays.

One variation of rings used in local area networks is the token ring. To simplify
arbitration, a single slot, or token, goes around the ring to determine which node is
allowed to send a message. A node can send only when it gets the token. (A token
is simply a special bit pattern.) In this section we evaluate the ring as a topology
with more bandwidth than a bus, neglecting its advantages in arbitration.

A straightforward but expensive alternative to a ring is to have a dedicated
communication link between every element of a distributed switch. The tremen-
dous improvement in performance of fully connected switches is offset by the
enormous increase in cost, typically going up with the square of the number of
nodes. This cost inspires designers to invent new topologies that are between the
cost of rings and the performance of fully connected networks. The evaluation of
success depends in large part on the nature of the communication in the intercon-
nection network. Real machines frequently add extra links to these simple topol-
ogies to improve performance and reliability. Figure 8.16 illustrates three popular
topologies for high performance computers with distributed switches.

One popular measure for interconnections, in addition to the ones covered in
section 8.2, is the bisection bandwidth. This measure is calculated by dividing the
interconnect into two roughly equal parts, each with half the nodes. You then sum
the bandwidth of the lines that cross that imaginary dividing line. For fully con-
nected interconnections the bisection bandwidth is proportional to (n/2)2, where n
is the number of nodes. For a bus, bisection bandwidth is just the speed of one
link.

Since some interconnections are not symmetric, the question arises as to
where to draw the imaginary line when bisecting the interconnect. Bisection
bandwidth is a worst-case metric, so the answer is to choose the division that
makes interconnection performance worst. Stated alternatively, calculate bisec-
tion bandwidths for all pairs of equal-sized parts, and pick the smallest.
Figure 8.17 summarizes these different topologies using bisection bandwidth and
the number of links for 64 nodes.

E X A M P L E A common communication pattern in scientific programs is to consider the
nodes as elements of a two-dimensional array and then have communi-
cation to the nearest neighbor in a given direction. (This pattern is some-
times called NEWS communication, standing for north, east, west, and
south, the directions on the compass.) Map an eight-by-eight array onto
the 64 nodes in each topology, and assume every link of every intercon-
nect is the same speed. How long does it take each node to send one
message to its northern neighbor and one to its eastern neighbor? Ignore
nodes that have no northern or eastern neighbors.

8.5 Network Topology 597

A N S W E R In this case, we want to send 2 × (64 – 8), or 112, messages. Here are the
cases, again in increasing order of difficulty of explanation:

n Bus—The placement of the eight-by-eight array makes no difference
for the bus, since all nodes are equally distant. The 112 transfers are
done sequentially, taking 112 time units.

n Fully connected—Again the nodes are equally distant; all transfers
are done in parallel, taking one time unit.

n Ring—Here the nodes are differing distances. Assume the first row

FIGURE 8.16 Network topologies that have appeared in commercial supercomputers.
The shaded circles represent switches, and the black squares represent nodes. Even though
a switch has many links, generally only one goes to the node. Frequently these basic topolo-
gies are supplemented with extra arcs to improve performance and reliability. For example,
connecting the switches in the left and right columns of the 2D grid using the unused ports on
each switch forms a 2D torus. The Boolean hypercube topology is an n-dimensional intercon-
nect for 2n nodes, requiring n ports per switch (plus one for the processor), and thus n nearest
neighbor nodes.

a. 2D grid or mesh of 16 nodes

c. Hypercube tree of 16 nodes (16 = 24 so n = 4)

b. 2D torus of 16 nodes

598 Chapter 8 Interconnection Networks and Clusters

of the array is placed on nodes 0 to 7, the second row on nodes 8 to
15, and so on. It takes just one time unit to send to the eastern neigh-
bor, for this is a send from node n to node n + 1. In this scheme the
northern neighbor is exactly eight nodes away, so it takes eight time
units for each node to send to its northern neighbor. The ring total is
nine time units.

n 2D torus—There are eight rows and eight columns in our grid of 64
nodes, which is a perfect match to the NEWS communication. It takes
just two time units to send to the northern and eastern neighbors.

n 6-cube—It is possible to place the array so that it will take just two
time units for this communication pattern, as in the case of the torus.

n

This simple analysis of interconnection networks in this section ignores sever-
al important practical considerations in the construction of an interconnection
network. First, these three-dimensional drawings must be mapped onto chips,
boards, and cabinets that are essentially two-dimensional media, often tree-like.
For example, due to the fixed height of cabinets, an n-node Intel Paragon used an

 rectangular grid rather than the ideal of . Another consider-
ation is the internal speed of the switch: if it is fixed, then more links per switch
means lower bandwidth per link, potentially affecting the desirability of different
topologies. Yet another consideration is that the latency through a switch depends
on the complexity of the routing pattern, which in turn depends on the topology.
Finally, the bandwidth from the processor is often the limiting factor: if there is
only one port in and out of the processor, then it can only send or receive one
message per time unit regardless of the technology.

Topologies that appear elegant when sketched on the blackboard may look
awkward when constructed from chips, cables, boards, and boxes. The bottom

Evaluation category Bus Ring 2D torus 6-cube Fully connected

Performance

Bisection bandwidth 1 2 16 32 1024

Cost

Ports per switch
Total number of lines

NA
1

3
128

5
192

7
256

64
2080

FIGURE 8.17 Relative cost and performance of several interconnects for 64 nodes. The bus is the standard refer-
ence at unit cost, and of course there can be more than one data line along each link between nodes. Note that any
network topology that scales the bisection bandwidth linearly must scale the number of interconnection lines faster than lin-
early. Figure 8.13a on page 593 is an example of a fully connected network.

n 16⁄ 16× n n×

8.5 Network Topology 599

line is that quality of implementation matters more than topology. To put these
topologies in perspective, Figure 8.18 lists those used in commercial high perfor-
mance computers.

Once again the issues discussed in this section apply at many levels, from in-
side a chip to a country-sized WAN. The redundancy of a topology matter so that
the network can survive despite failures. This is true within a switch as well, so
that a single chip failure need not lead to switch failure. It also must be true for a
WAN, so that a single backhoe cannot take down the network of a country. The
switch then depends on the implementation technology and the demands of the
application: it is a multistage network whose topology can be anything from a
bus to Omega network.

Institution Name
Number
of nodes

Basic
topology

Data
bits/link

Network
clock rate

Peak
BW/link
(MB/sec)

Bisection
(MB/sec) Year

Thinking
Machines

CM-2 1024 to
4096

12-cube 1 7 MHz 1 1024 1987

Intel Delta 540 2D grid 16 40 MHz 40 640 1991

Thinking
Machines

CM-5 32 to 2048 Multistage
fat tree

4 40 MHz 20 10,240 1991

Intel Paragon 4 to 2048 2D grid 16 100 MHz 175 6400 1992

IBM SP-2 2 to 512 Multistage
fat tree

8 40 MHz 40 20,480 1993

Cray
Research

T3E 16 to 2048 3D torus 16 300?
MHz

600 122,000 1997

Intel ASCI Red 4536 (x 2
CPUS)

2D Grid 800 51,600 1996

IBM ASCI Blue
Pacific

1336 (x 4
CPUS)

150

SGI ASCI Blue
Mountain

1464 (x 2
CPUS)

Fat Hyper-
cube

800 200 x
nodes

1998

IBM ASCI Blue
Horizon

144 (x 8
CPUs)

Multistage
Omega

115 1999

IBM SP 1 to 512
(x 2 to 16
CPUs)

Multistage
Omega

500 2000

IBM ASCI
White

484 (x 16
CPUs)

Multistage
Omega

500 2001

FIGURE 8.18 Characteristics of interconnections of some commercial supercomputers. The bisection bandwidth is
for the largest machine. The 2D grid of the Intel Delta is 16 rows by 35 columns and the ASCI Red is 38 rows by 32 columns.
The fat-tree topology of the CM-5 is restricted in the lower two levels, hence the lower bandwidth in the bisection. Note that
the Cray T3D has two processors per node and the Intel Paragon has from two to four processors per node.

600 Chapter 8 Interconnection Networks and Clusters

There are practical issues in addition to the technical issues described so far that
are important considerations for some interconnection networks: connectivity,
standardization, and fault tolerance.

Connectivity

The number of machines that communication affects the complexity of the net-
work and its protocols. The protocols must target the largest size of the network,
and handle the types of anomalous events that occur. Hundreds of machines com-
municating are a much easier than millions.

Connecting the Network to the Computer

Where the network attaches to the computer affects both the network interface
hardware and software. Questions include whether to use the memory bus or the
I/O bus, whether to use polling or interrupts, and how to avoid invoking the oper-
ating system. The network interface is the often the network bottleneck.

Computers have a hierarchy of buses with different cost/performance. For ex-
ample, a personal computer in 2001 has a memory bus, a PCI bus for fast I/O de-
vices, and an USB bus for slow I/O devices. I/O buses follow open standards and
have less stringent electrical requirements. Memory buses, on the other hand,
provide higher bandwidth and lower latency than I/O buses. Where to connect the
network to the machine depends on the performance goals and whether you hope
to buy a standard network interface card or are willing to design or buy one that
only works with the memory bus on your model of computer. A few SAN plugs
into the memory bus, but most SANs and all LANs and WANs plug into the I/O
bus.

The location of the network connection significantly affects the software inter-
face to the network as well as the hardware. As mentioned in section 6.6, one key
is whether the interface is coherent with the processor’s caches: the sender may
have to flush the cache before each send, and the receiver may have to flush its
cache before each receive to prevent the stale data problem. Such flushes increase
send and receive overhead. A memory bus is more likely to be cache-coherent
than an I/O bus and therefore more likely to avoid these extra cache flushes.

A related question of where to connect to the computer is how to connect to
the software: Do you use programmed I/O or direct memory access (DMA) to
send a message? (See section 6.6.) In general, DMA is the best way to send large

8.6 Practical Issues for Commercial
Interconnection Networks

8.6 Practical Issues for Commercial Interconnection Networks 601

messages. Whether to use DMA to send small messages depends on the efficien-
cy of the interface to the DMA. The DMA interface is usually memory-mapped,
and so each interaction is typically at the speed of main memory rather than of a
cache access. If DMA setup takes many accesses, each running at uncached
memory speeds, then the sender overhead may be so high that it is faster to sim-
ply send the data directly to the interface.

Standardization: Cross-Company Interoperability

Standards are useful in many places in computer design, but with interconnection
networks they are often critical. Advantages of successful standards include low
cost and stability. The customer has many vendors to choose from, which both
keeps price close to cost due to competition. It makes the viability of the inter-
connection independent of the stability of a single company. Components de-
signed for a standard interconnection may also have a larger market, and this
higher volume can lower the vendor’s costs, further benefiting the customer. Fi-
nally, a standard allows many companies to build products with interfaces to the
standard, so the customer does not have to wait for a single company to develop
interfaces to all the products the customer might be interested in.

One drawback of standards is the time it takes for committees to agree on the
definition of standards, which is a problem when technology is changing quickly.
Another problem is when to standardize: on one hand, designers would like to
have a standard before anything is built; on the other, it would be better if some-
thing is built before standardization to avoid legislating useless features or omit-
ting important ones. When done too early, it is often done entirely by committee,
which is like asking all of the chefs in France to prepare a single dish of food;
masterpieces are rarely served. Standards can also suppress innovation at that
level, since the standard fixes interfaces.

LANs and WANs use standards and interoperate effectively. WANs involve
many types of companies and must connect to many brands of computers, so it is
difficult to imagine a proprietary WAN ever being successful. The ubiquitous na-
ture of the Ethernet shows the popularity of standards for LANs as well as
WANs, and it seems unlikely that many customers would tie the viability of their
LAN to the stability of a single company.

Alas, some SANs are standardized yet switches from different companies do
not interoperate, and some interoperate as well as LANs and WANs.

Message Failure Tolerance

Although some hardware designers try to build fault free networks, in practice it
is only a question of the rate of faults, not whether you can prevent them. Thus,
the communication system must have mechanisms for retransmission of a mes-
sage in case of failure. Often it is handled in higher layers of the software proto-
col at the end points, requiring retransmission at the source. Given the long time
of flight for WANs, often they can retransmit from hop to hop rather relying only
on retransmission from the source.

602 Chapter 8 Interconnection Networks and Clusters

Node Failure Tolerance

The second practical issue refers to whether or not the interconnection relies on
all the nodes being operational in order for the interconnection to work properly.
Since software failures are generally much more frequent than hardware failures,
the question is whether a software crash on a single node can prevent the rest of
the nodes from communicating.

Clearly, WANs would be useless if they demanded that thousands of comput-
ers spread across a continent be continuously available, and so they all tolerate
the failures of individual nodes. LANs connect dozens to hundreds of computers
together, and again it would be impractical to require that no computer ever fail.
All successful LANs normally survive node failures.

Although most SANs have the ability to work around failed nodes and switch-
es, it is not clear that all communication layer software supports this feature. Typ-
ically, low latency schemes sacrifice fault tolerance.

E X A M P L E Figure 8.19 shows the number of failures of 58 desktop computers on a
local area network for a period of just over one year. Suppose that one lo-
cal area network is based on a network that requires all machines to be
operational for the interconnection network to send data; if a node crash-
es, it cannot accept messages, so the interconnection becomes choked
with data waiting to be delivered. An alternative is the traditional local area
network, which can operate in the presence of node failures; the intercon-
nection simply discards messages for a node that decides not to accept
them. Assuming that you need to have both your workstation and the con-
necting LAN to get your work done, how much greater are your chances
of being prevented from getting your work done using the failure-intolerant
LAN versus traditional LANs? Assume the down time for a crash is less
than 30 minutes. Calculate using the one-hour intervals from this figure.

A N S W E R Assuming the numbers for Figure 8.19, the percentage of hours that you
can’t get your work done using the failure-intolerant network is

The percentage of hours that you can’t get your work done using the
traditional network is just the time your workstation has crashed. If these
failures are equally distributed among workstations, the percentage is

Intervals with failures
Total intervals--

Total intervals – Intervals no failures
Total intervals--

=

8974 8605–
8974------------------------------

369
8974------------

4.1%= ==

Failures/Machines
Total intervals--

654/58
8974----------------

11.28
8974-------------

0.13%===

8.6 Practical Issues for Commercial Interconnection Networks 603

Hence, you are more than 30 times more likely to be prevented from get-
ting your work done with the failure-intolerant LAN than with the traditional
LAN, according to the failure statistics in Figure 8.19. Stated alternatively,
the person responsible for maintaining the LAN would receive a thirtyfold
increase in phone calls from irate users! n

Failed
machines per
time interval

One-hour intervals
with number of failed

machines in
first column

Total failures per
one-hour interval

One-day intervals
with number of failed

machines in
first column

Total failures per
one-day interval

0 8605 0 184 0

1 264 264 105 105

2 50 100 35 70

3 25 75 11 33

4 10 40 6 24

5 7 35 9 45

6 3 18 6 36

7 1 7 4 28

8 1 8 4 32

9 2 18 2 18

10 2 20

11 1 11 2 22

12 1 12

17 1 17

20 1 20

21 1 21 1 21

31 1 31

38 1 38

58 1 58

Total 8974 654 373 573

FIGURE 8.19 Measurement of reboots of 58 DECstation 5000s running Ultrix over a 373-day period. These reboots
are distributed into time intervals of one hour and one day. The first column sorts the intervals according to the number of
machines that failed in that interval. The next two columns concern one-hour intervals, and the last two columns concern
one-day intervals. The second and fourth columns show the number of intervals for each number of failed machines. The
third and fifth columns are just the product of the number of failed machines and the number of intervals. For example, there
were 50 occurrences of one-hour intervals with two failed machines, for a total of 100 failed machines, and there were 35
days with two failed machines, for a total of 70 failures. As we would expect, the number of failures per interval changes with
the size of the interval. For example, the day with 31 failures might include one hour with 11 failures and one hour with 20
failures. The last row shows the total number of each column: the number of failures doesn’t agree because multiple reboots
of the same machine in the same interval do not result in separate entries. (Randy Wang of U.C. Berkeley collected these
data.)

604 Chapter 8 Interconnection Networks and Clusters

One practical issue ties to node failure tolerance: If the interconnection can
survive a failure, can it also continue operation while a new node is added to the
interconnection? If not, each addition of a new node disables the interconnection
network. Disabling is impractical for both WANs and LANs.

Finally, we have been discussing the ability of the network to operate in the
presence of failed nodes. Clearly as important to the happiness of the network ad-
ministrator is the reliability of the network media and switches themselves, for
their failure is certain to frustrate much of the user community.

To further understand these issues, we look at ten design decisions on the topics
we covered so far using examples from LAN, SAN, and WAN:

n What is the target bandwidth?

n What is the message format?

n Which media are used?

n Is the network shared or switched?

n Is it connection-oriented or connectionless?

n Does it use store-and-forward or cut-through routing?

n Is routing use source-based, destination-based, or virtual-circuit based?

n What is used for congestion control?

n What topologies are supported?

n Does it follow a standard?

Ethernet: The Local Area Network

The first example is the Ethernet. It has been extraordinarily successful, with the
10 Mbits/second standard proposed in 1978 used practically everywhere. In
2001, the 100 Mbits/second standard proposed in 1994 is closing in popularity.
Many classes of computers include Ethernet as a standard interface. This packet-
switched network is connectionless, and it routes using the destination address.
Figure 8.20 shows the packet formats for Ethernet, as well as the other two exam-
ples. Ethernet is codified as IEEE standard 802.3.

Designed originally for co-axial cable, today Ethernets are primarily Cat5
copper wire, with optical fiber reserved for longer distances and higher band-
widths. There is even a wireless version, which is testimony to its ubiquity.

Computers became thousands of times faster than they were in 1978 and the
shared interconnection was no faster for almost 20 years. Hence, past engineers

8.7 Examples of Interconnection Networks

8.7 Examples of Interconnection Networks 605

FIGURE 8.20 Packet format for Infiniband, Ethernet, and ATM. ATM calls their messages “cells” instead of packets, so
the proper name is ATM cell format. The width of each drawing is 32 bits. All three formats have destination addressing
fields, encoded differently for each situation. All three also have a checksum field to catch transmission errors, although the
ATM checksum field is calculated only over the header; ATM relies on higher-level protocols to catch errors in the data. Both
Infiniband and Ethernet have a length field, since the packets hold a variable amount of data, with the former counted in 32-
bit words and the latter in bytes.Infiniband and ATM headers have a type field (T) that gives the type of packet. The remaining
Ethernet fields are a preamble to allow the receiver to recover the clock from the self-clocking code used on the Ethernet,
the source address, and a pad field to make sure the smallest packet is 64 bytes (including the header). Infiniband includes
a version field for protocol version, a sequence number to allow in-order delivery, a field to select the destination queue, and
a partition key field.Infiniband has many more small fields not shown and many other packet formats; above is a simplified
view. ATM’s short packet, fixed is a good match to real-time demand of digital voice

ATM

Data (48)

Destination

Checksum

T

Inifiniband

Sequence Number

T

Version

32 bits

Ethernet

Preamble

Preamble

Pad (0-46)

Checksum

Checksum

Checksum

32 bits

Destination

Destination

Source

Destination

Partition Key

Destination Queue

Type Length

Length

Source

Source

Data (0 - 1500)

Data (0 - 4096)

32 bits

606 Chapter 8 Interconnection Networks and Clusters

invented temporary solutions until a faster Ethernet was available. One solution
was to use multiple Ethernets to connect machines, and to connect these smaller
Ethernets with devices that can take traffic from one Ethernet and pass it on to an-
other as needed. These devices allow individual Ethernets to operate in parallel,
thereby increasing the aggregate interconnection bandwidth of a collection of
computers. In effect these devices provide similar functionality to the switches
described above for point-to-point networks.

Figure 8.21 shows the potential parallelism. Depending on how they pass traf-
fic and what kinds of interconnections they can put together, these devices have
different names:

n Bridges—These devices connect LANs together, passing traffic from one side
to another depending on the addresses in the packet. Bridges operate at the
Ethernet protocol level and are usually simpler and cheaper than routers, dis-
cussed next. Using the notation of the OSI model described in the next section
(see Figure 8.25 on page 612), bridges operate at layer 2, the data link layer.

n Routers or gateways—These devices connect LANs to WANs or WANs to
WANs, and resolve incompatible addressing. Generally slower than bridges,
they operate at OSI layer 3, the network layer. Routers divide the interconnect

FIGURE 8.21 The potential increased bandwidth of using many Ethernets and bridges.

Single Ethernet: 1 packet at a time

Multiple Ethernets: Multiple packets at a time

NodeNode

Node Node Node NodeNode

Node NodeNode Node

Bridge Bridge

NodeNode

Node Node Node NodeNode

Node NodeNode Node

8.7 Examples of Interconnection Networks 607

into separate smaller subnets, which simplifies manageability and improves
security.

The final network devices are hubs, but they merely extend multiple segments
into a single LAN. Thus, hubs do not help with performance, as only one mes-
sage can transmit at a time. Hubs operate at OCI layer 1, the physical layer.

Since these devices were not planned as part of the Ethernet standard, their ad
hoc nature has added to the difficulty and cost of maintaining LANs.

In 2001, Ethernet link speed is available at 10, 100, and 1000 Mbits/second,
with 10000 Mbits per second likely available in 2002 to 2003. Although 10 and
100 Mbits/sec can share the media with multiple devices, 1000 Mbits/second and
above relies on point-to-point links and switches. Ethernet switches normally use
cut-through routing.

Due to its age, Ethernet has no real flow control. It originally used carrier sens-
ing with exponential back-off (see page 584) to arbitrate for the shared media.
Some switches try to use that interface to retrofit their version of flow control, but
flow control is not part of an Ethernet standard.

Storage Area Network: Infiniband

A SAN that tries to optimize based on shorter distances is Infiniband. This new
standard has clock rates of 2.5 GHz and can transmit data at a peak speed of 2000
Mbits/second per link. These point-to-point links can be bundled together in
groups of 4 to 12 to give 4 to 12 times the bandwidth per link. Like Ethernet, it is
a packet switched, connectionless network. It also relies only on switches, as
does gigabit Ethernet, and also uses cut-through routing and destination-based ad-
dressing. The distances are much shorter than Ethernet, with category 5 wire lim-
ited to 17 meters and optical fiber limited to 100 meters. It uses backpressure for
flow control (see page 592). When going to storage, it relies on the SCSI com-
mand set. Although it is not a traditional standard, a trade organization of cooper-
ating companies is responsible for Infiniband.

Given the similarities, why does one need a separate standard for a storage
area network versus a local area network? The storage community believes a
SAN has different emphasis from a LAN. First, protocol overhead is much lower
for a SAN. A gigabit per second LAN can fully occupy a 0.8 to 1.0 GHz CPU
when running TCP/IP (see page 653). The Infiband protocol, on the other hand,
places a very light load on the host computer. The reason is a controller on the In-
finiband network interface card that offloads the processing from the host comp-
tuer. Second, protection is much more important in the LAN than the SAN. The
SAN is for data only, and is behind the server. From a SAN perspective, the serv-
er is like a firewall for the SAN, and hence the SAN is not required to provide
protection. Third, storage designers think that graceful behavior under congestion
is critical for SANs. The lack of flow control in Ethernet can lead to a lack of
grace under pressure. TCP/IP copes with congestion by dropping packets, but
storage applications do not appreciate dropped packets.

608 Chapter 8 Interconnection Networks and Clusters

Not surprisingly, the LAN advocates have a response. First, Ethernet switches
are less costly than SAN switches due to greater competition in the marketplace.
Second, since Internet Protocol (IP) networks are naturally large, they enable rep-
lication of data to geographically diverse sites of the Internet. This geographical
advantage both protects against disasters and offers an alternative to tape backup.
Thus far, SANs have been relatively small, both in number of nodes and physical
distance. Finally, although TCP/IP does have overhead, to try to preserve server
utilization, TCP/IP off-loading engines are appearing in the marketplace.

Some LAN advocates are embracing a standard called iSCSI, which exports
native SCSI commands over IP networks. The operating system intercepts SCSI
commands, and repackages and sends them in a TCP/IP message. At the receiv-
ing end, it unpacks messages into SCSI commands and issues them locally. iSC-
SI allows a company to send SCSI commands and data over its internal WAN or,
if transmitted over the Internet, to locations with Internet access.

Wide Area Network: ATM

Asynchronous Transfer Mode (ATM) is latest of the ongoing standards set by the
telecommunications industry. Although it flirted as competition to Ethernet as a
LAN in the 1990s, today ATM has retreated to its WAN stronghold.

The telecommunications standard has scalable bandwidth built in. It starts at
155 Mbits/second, and scales by factors of four to 620 Mbits/second, 2480 Mbits
per second, and so on. Since it is a WAN, ATM’s media is fiber, both single mode
and multimode. Although it is a switched media, unlike the other examples, it re-
lies on connections for communication. ATM uses virtual channels for routing to
multiplex different connections on a single network segment, thereby avoiding
the inefficiencies of conventional connection-based networking. The WAN focus
also leads to store-and-forward routing. Unlike the other protocols, Figure 8.20
shows ATM has a small, fixed sized packet. (For those curious to the selection of
a 48-byte payload, see Section 8.16.) It uses a credit-based flow control scheme
(see page 592).

The reason for connections and small packets is quality of service. Since the
telecommunications industry is concern about voice traffic, predictability matters
as well as bandwidth. Establishing a connection has less variability than connec-
tionless networking, and it simplifies store and forward routing. The small, fixed
packet also makes it simpler to have fast routers and switches. Towards that goal,
ATM even offers its own protocol stack to compete with TCP/IP. Surprisingly,
even though the switches are simple, the ATM suite of protocols is large and
complex. The dream was a seamless infrastructure from LAN to WAN, avoiding
the hodge-podge of routers common today. That dream has faded from inspira-
tion to nostalgia.

8.7 Examples of Interconnection Networks 609

Summary

Figure 8.22 summarizes answers to the ten questions from the start of this sec-
tion. It covers three example networks covered here, plus a few other. This sec-
tion shows how similar technology gets different spins for different concerns of
LAN, SAN, and WAN. Nevertheless, the inherent similarity leads to marketplace
competition. ATM tried (and failed) to usurp the LAN championship from Ether-
net, and in 2001 Ethernet/iSCSI is trying to compete with Fibre Channel Arbitrat-
ed Loop (FC-AL) and Infiniband for the SAN markets.

LAN SAN WAN

10-Mb
Ethernet

100-Mb
Ethernet

1000-Mb
Ethernet

FC-AL Infiniband Myrinet ATM

Length
(meters)

500/
2500

200 100 30/1000 17/100 10/550/
10000

Number
data lines

1 1 4/1 2 1, 4, or 12 ? 1

Clock rate
(MHz)

10 100 1000 1000 2500 1000 155/622…

Switch? Optional Optional Yes Optional Yes Yes Yes

Nodes ≤254 ≤254 ≤254 ≤127 ≤≈1000 ≤≈1000 ≈10000

Media Copper Copper Copper/
fiber

Copper/
fiber

Copper/fiber Copper/
m.m./
s.m.fiber

Copper/fiber

Peak link
BW
(Mbits/sec)

10 100 1000 800 2000, 8000,
or 24000

1300 to
2000

155/622/...

Topology Line or
Star

Line or
Star

Star Ring or
Star

Star Star Star

Connec-
tionless?

Yes Yes Yes Yes Yes Yes No

Routing Dest.
based

Dest.
based

Dest.
based

Destina-
tion based

Destina-
tion based

Dest.
based

Virtual
circuit

Store &
forward?

No No No No No No Yes

Congestion
control

Carrier
sense

Carrier
sense

Carrier
sense

Credit-
based

Back-
pressure

Back-
pressure

Credit based

Standard IEEE
802.3

IEEE
802.3

IEEE
802.3ab-
1999

ANSI Task
Group
X3T11

Infiniband
Trade
Association

ANSI/
VITA
26-1998

ATM
Forum

FIGURE 8.22 Several examples of SAN, LAN, and WAN interconnection networks. FC-AL is a network for disks.

610 Chapter 8 Interconnection Networks and Clusters

.

Undoubtedly one of the most important innovations in the communications com-
munity has been internetworking. It allows computers on independent and in-
compatible networks to communicate reliably and efficiently. Figure 8.23
illustrates the need to cross networks. It shows the networks and machines in-
volved in transferring a file from Stanford University to the University of Califor-
nia at Berkeley, a distance of about 75 km.

8.8 Internetworking

FIGURE 8.23 The connection established between mojave.stanford.edu and mammoth.berkeley.edu. (1995) FDDI
is a 100 Mbits/sec LAN, while a T1 line is a 1.5 Mbits/sec telecommunications line and a T3 is a 45 Mbits/sec telecommuni-
cations line. BARRNet stands for Bay Area Research Network. Note that inr-111-cs2.Berkeley.edu is a router with two In-
ternet addresses, one for each port.

UCB1.
BARRNet.net
192.31.161.4

mojave.
Stanford.edu
36.22.0.120

CIS-Gateway.
Stanford.edu

36.1.0.22

SU-CM.
BARRNet.net
131.119.5.3

EthernetFDDI

T1 line

T3 line

inr-108-eecs.
Berkeley.edu

128.32.120.108 128.32.120.111

 inr-111-cs2.
Berkeley.edu

128.32.149.13

 mammoth.
Berkeley.edu

128.32.149.78

FDDI

FDDI

Ethernet Ethernet

Internet

fd-0.enss128.t3.
ans.net

192.31.48.244Stanford,
California

Berkeley,
California

8.8 Internetworking 611

The low cost of internetworking is remarkable. For example, it is vastly less
expensive to send electronic mail than to make a coast-to-coast telephone call and
leave a message on an answering machine. This dramatic cost improvement is
achieved using the same long-haul communication lines as the telephone call,
which makes the improvement even more impressive.

The enabling technologies for internetworking are software standards that
allow reliable communication without demanding reliable networks. The under-
lying principle of these successful standards is that they were composed as a hier-
archy of layers, each layer taking responsibility for a portion of the overall
communication task. Each computer, network, and switch implements its layer of
the standards, relying on the other components to faithfully fulfill their responsi-
bilities. These layered software standards are called protocol families or protocol
suites. They enable applications to work with any interconnection without extra
work by the application programmer. Figure 8.24 suggests the hierarchical model
of communication.

The most popular internetworking standard is TCP/IP, which stands for trans-
mission control protocol/internet protocol. This protocol family is the basis of the
humbly named Internet, which connects tens of millions of computers around the
world. This popularity means TCP/IP is used even when communicating locally
across compatible networks; for example, the network file system NFS uses IP
even though it is very likely to be communicating across a homogenous LAN
such as Ethernet.

We use TCP/IP as our protocol family example; other protocol families follow
similar lines. Section 8.16 gives the history of TCP/IP.

The goal of a family of protocols is to simplify the standard by dividing
responsibilities hierarchically among layers, with each layer offering services
needed by the layer above. The application program is at the top, and at the bot-
tom is the physical communication medium, which sends the bits. Just as abstract
data types simplify the programmer’s task by shielding the programmer from de-
tails of the implementation of the data type, this layered strategy makes the stan-
dard easier to understand.

FIGURE 8.24 The role of internetworking. The width indicates the relative number of
items at each level.

Applications

Networks

Internetworking

612 Chapter 8 Interconnection Networks and Clusters

There were many efforts at network protocols, which led to confusion in
terms. Hence, Open Systems Interconnect (OSI) developed a model that popular-
ized describing networks as a series of layers. Figure 8.25 shows the model. Al-
though all protocols do not exactly follow this layering, the nomenclature for the
different layers is widely used. Thus, you can hear discussions about a simple
layer 3 switch versus a layer 7 smart switch.

The key to protocol families is that communication occurs logically at the
same level of the protocol in both sender and receiver, but services of the lower
level implement it. This style of communication is called peer-to-peer. As an
analogy, imagine that General A needs to send a message to General B on the bat-
tlefield. General A writes the message, puts it in an envelope addressed to Gener-
al B, and gives it to a colonel with orders to deliver it. This colonel puts it in an
envelope and writes the name of the corresponding colonel who reports to Gener-
al B, and gives it to a major with instructions for delivery. The major does the
same thing and gives it to a captain, who gives it to a lieutenant, who gives it to a
sergeant. The sergeant takes the envelope from the lieutenant, puts it into an en-
velope with the name of a sergeant who is in General B’s division, and finds a pri-
vate with orders to take the large envelope. The private borrows a motorcycle and

Layer number Layer name Main Function Example
Protocol

Network component

7 Application Used for applications specifical-
ly written to run over the network

FTP, DNS,
NFS, http

Gateway, smart switch

6 Presentation Translates from application to
network format, and vice-versa

Gateway

5 Session Establishes, maintains and ends
sessions across the network

Named
pipes, RPC

Gateway

4 Transport Additional connection below the
session layer

TCP Gateway

3 Network Translates logical network ad-
dress and names to their physical
address (e.g., computer name to
MAC address)

IP Router, ATM switch

2 Data Link Turns packets into raw bits and at
the receiving end turns bits into
packets

Ethernet Bridge,
Network Interface Card

1 Physical Transmits raw bit stream over
physical cable

IEEE 802 Hub

FIGURE 8.25 The OSI model layers. Based on
/www.geocities.com/SiliconValley/Monitor/3131/ne/osimodel.html

8.8 Internetworking 613

delivers the envelope to the other sergeant. Once it arrives, it is passed up the
chain of command, with each person removing an outer envelope with his name
on it and passing on the inner envelope to his superior. As far as General B can
tell, the note is from another general. Neither general knows who was involved in
transmitting the envelope, nor how it was transported from one division to the
other.

Protocol families follow this analogy more closely than you might think, as
Figure 8.26 shows. The original message includes a header and possibly a trailer
sent by the lower-level protocol. The next-lower protocol in turn adds its own
header to the message, possibly breaking it up into smaller messages if it is too
large for this layer. Reusing our analogy, a long message from the general is di-
vided and placed in several envelopes if it could not fit in one. This division of the
message and appending of headers and trailers continues until the message de-
scends to the physical transmission medium. The message is then sent to the des-
tination. Each level of the protocol family on the receiving end will check the
message at its level and peel off its headers and trailers, passing it on to the next
higher level and putting the pieces back together. This nesting of protocol layers
for a specific message is called a protocol stack, reflecting the last-in-first-out na-
ture of the addition and removal of headers and trailers.

As in our analogy, the danger in this layered approach is the considerable
latency added to message delivery. Clearly, one way to reduce latency is to re-
duce the number of layers. But keep in mind that protocol families define a stan-
dard, but do not force how the to implement the standard. Just as there are many
ways to implement an instruction set architecture, there are many ways to imple-
ment a protocol family.

FIGURE 8.26 A generic protocol stack with two layers. Note that communication is
peer-to-peer, with headers and trailers for the peer added at each sending layer and removed
by each receiving layer. Each layer offers services to the one above to shield it from unnec-
essary details.

T

Message

H T

HH T T HH T T HH T T HH T T HH T TT

H T H T

Message

H T H T H T

Actual Actual

Actual

Actual

Logical

Logical

Actual

614 Chapter 8 Interconnection Networks and Clusters

FIGURE 8.27 The headers for IP and TCP. This drawing is 32 bits wide. The standard headers for both are 20 bytes, but
both allow the headers to optionally lengthen for rarely transmitted information. Both headers have a length of header field
(L) to accommodate the optional fields, as well as source and destination fields. The length field of the whole datagram is in
a separate length field in IP, while TCP combines the length of the datagram with the sequence number of the datagram by
giving the sequence number in bytes. TCP uses the checksum field to be sure that the datagram is not corrupted, and the
sequence number field to be sure the datagrams are assembled into the proper order when they arrive. IP provides check-
sum error detection only for the header, since TCP has protected the rest of the packet. One optimization is that TCP can
send a sequence of datagrams before waiting for permission to send more. The number of datagrams that can be sent with-
out waiting for approval is called the window, and the window field tells how many bytes may be sent beyond the byte being
acknowledged by this datagram. TCP will adjust the size of the window depending on the success of the IP layer in sending
datagrams; the more reliable and faster it is, the larger TCP makes the window. Since the window slides forward as the data
arrives and is acknowledged, this technique is called a sliding window protocol. The piggyback acknowledgment field of TCP
is another optimization. Since some applications send data back and forth over the same connection, it seems wasteful to
send a datagram containing only an acknowledgment. This piggyback field allows a datagram carrying data to also carry the
acknowledgment for a previous transmission, “piggybacking” on top of a data transmission. The urgent pointer field of TCP
gives the address within the datagram of an important byte, such as a break character. This pointer allows the application
software to skip over data so that the user doesn’t have to wait for all prior data to be processed before seeing a character

IP header

IP data

TCP data

Identifier Fragment

Header checksum

Source

Source

Sequence no. (length)

Destination

Destination

LengthType

Time Protocol

V L

TCP header

Urgent pointer

Window

TCP data

32 bits

Piggyback acknowledgment

Flags

Checksum

L

 (0 – 65,516 bytes)

8.9 Crosscutting Issues for Interconnection Networks 615

that tells the software to stop. The identifier field and fragment field of IP allow intermediary machines to break the original
datagram into many smaller datagrams. A unique identifier is associated with the original datagram and placed in every frag-
ment, with the fragment field saying which piece is which. The time-to-live field allows a datagram to be killed off after going
through a maximum number of intermediate switches no matter where it is in the network. Knowing the maximum number
of hops that it will take for a datagram to arrive—if it ever arrives—simplifies the protocol software. The protocol field identi-
fies which possible upper layer protocol sent the IP datagram; in our case, it is TCP. The V (for version) and type fields allow
different versions of the IP protocol software for the network. Explicit version numbering is included so that software can be
upgraded gracefully machine by machine, without shutting down the entire network

Our protocol stack example is TCP/IP. Let’s assume that the bottom protocol
layer is Ethernet. The next level up is the Internet Protocol or IP layer; the official
term for an IP packet is datagram. The IP layer routes the datagram to the desti-
nation machine, which may involve many intermediate machines or switches. IP
makes a best effort to deliver the packets, but does not guarantee delivery, con-
tent, or order of datagrams. The TCP layer above IP makes the guarantee of reli-
able, in-order delivery and prevents corruption of datagrams.

Following the example in Figure 8.26, assume an application program wants
to send a message to a machine via an Ethernet. It starts with TCP. The largest
number of bytes that can be sent at once is 64 KB. Since the data may be much
larger than 64 KB, TCP must divide it into smaller segments and reassemble
them in proper order upon arrival. TCP adds a 20-byte header (Figure 8.27) to ev-
ery datagram, and passes them down to IP. The IP layer above the physical layer
adds a 20-byte header, also shown in Figure 8.27. The data sent down from the IP
level to the Ethernet is sent in packets with the format shown in Figure 8.20 on
page 605. Note that the TCP packet appears inside the data portion of the IP data-
gram, just as Figure 8.26 suggests.

This section describes four topics discussed in other chapters that are fundamen-
tal to interconnections.

Density-Optimized Processors versus SPEC-optimized Processors

Given that people all over the world are accessing WWW sites, it doesn’t really
matter where your servers are located. Hence, many servers are kept at colloca-
tion sites, which charge by network bandwidth reserved and used, and by space
occupied and power consumed.

Desktop microprocessors in the past have been designed to be as fast as possi-
ble at whatever heat could be dissipated, with little regard to the size of the pack-
age and surrounding chips. One microprocessor in 2001 burns 135 watts! Floor
space efficiency was also largely ignored. As a result of these priorities, power is a
major cost for collocation sites, and density of processors is limited by the power
consumed and dissipated.

8.9 Crosscutting Issues for
Interconnection Networks

616 Chapter 8 Interconnection Networks and Clusters

With portable computers making different demands on power consumption and
cooling for processors and disks, the opportunity exists for using this technology
to create considerably denser computation. In such a case performance per watt or
performance per cubic foot could replace performance per microprocessor as the
important figure of merit.

The key is that many applications already work with large clusters (see section
8.10), so its possible that replacing 64 power hungry processors with, say, 256 effi-
cient processors could be cheaper to run yet be software compatible.

Smart Switches vs. Smart Interface Cards

Figure 8.28 shows a trade-off is where intelligence is located in the network.
Generally the question is whether to have smarter network interfaces or smarter
switches. Making one side smarter generally makes the other side easier and less
expensive.

By having an inexpensive interface it was possible for Ethernet to become
standard as part of most desktop and server computers. Lower cost switches were
made available for people with small configurations, not needing sophisticated
routing tables and spanning tree protocols of larger Ethernet switches.

Infiniband is trying a hybrid approach by offering lower cost interface cards
for less demanding devices, such as disks, in the hopes that it will be included
with some I/O devices. As Inifiband is planned as the successor to PCI bus, com-
puters may come with an Host Channel Adapter built in.

Protection and User Access to the Network

A challenge is to ensure safe communication across a network without invoking
the operating system in the common case. The Cray Research T3D supercomput-
er offers an interesting case study. It supports a global address space, so loads and
stores can access memory across the network. Protection is ensured because each
access is checked by the TLB.

To support transfer of larger objects, a block transfer engine (BLT) was added
to the hardware. Protection of access requires invoking the operating system be-
fore using the BLT, to check the range of accesses to be sure there will be no pro-
tection violations.

Figure 8.29 compares the bandwidth delivered as the size of the object varies
for reads and writes. For very large reads, 512 KB, the BLT does achieve the
highest performance: 140 MBytes/sec. But simple loads get higher performance
for 8 KB or less. For the write case, both achieve a peak of 90 MBytes/sec, pre-
sumably because of the limitations of the memory bus. But for writes, BLT can
only match the performance of simple stores for transfers of 2 MB; anything
smaller and it’s faster to send stores. Clearly, a BLT that avoided invoking the op-
erating system in the common case would be more useful.

8.9 Crosscutting Issues for Interconnection Networks 617

Efficient Interface to Memory Hierarchy versus Interconnection Network

Traditional evaluations of processor performance, such as SPECint and SPECfp,
encourage integration of the memory hierarchy with the processor, as the effi-
ciency of the memory hierarchy translates directly into processor performance.
Hence, microprocessors have first-level caches on chips along with buffers for
writes, and usually have second-level caches on-chip or immediately next to the
chip.

Benchmarks such as SPECint and SPECfp do not reward good interfaces to
interconnection networks, and hence many machines make the access time to the
network delayed by the full memory hierarchy. Writes must lumber their way
through full write buffers, and reads must go through the cycles of first- and
second-level cache misses before reaching the interconnection. This hierarchy re-
sults in newer systems having higher latencies to interconnections than older ma-
chines.

Let’s compare three machines from the past. A 40-MHz SPARCstation-2, a
50-MHz SPARCstation-20 without an external cache, and a 50-MHz SPARCsta-
tion-20 with an external cache. According to SPECint95, this list is in order of in-

FIGURE 8.28 Intelligence in a network: Switch vs. Interface card. Note that Ethernet
switches comes in two styles, depending on the size of the network, and that Infiniband net-
work interfaces come in two styles, depending on whether they are attached to a computer
or to a storage device. Myrinet is a proprietary System Area Network

Switch

Interface
Card

Small Scale
Ethernet Switch

Large Scale
Ethernet Switch

Ethernet Myrinet

Myrinet

Infiniband

Infiniband Target
Channel Adapter

Infiniband Host
Channel Adapter

More
intellgince

618 Chapter 8 Interconnection Networks and Clusters

creasing performance. The time to access the I/O bus (S-bus), however, increases
in this sequence: 200 ns, 500 ns, and 1000 ns. The SPARCstation-2 is fastest be-
cause it has a single bus for memory and I/O, and there is only one level to the
cache. The SPARCstation-20 memory access must first go over the memory bus
(M-bus) and then to the I/O bus, adding 300 ns. Machines with a second-level
cache pay an extra penalty of 500 ns before accessing the I/O bus.

On the other hand, recent computers have dramatically improved memory
bandwidth, which is helpful to network bandwidth.

Compute-Optimized Processors versus Receiver Overhead

The overhead to receive a message likely involves an interrupt, which bears the
cost of flushing and then restarting the processor pipeline. As mentioned earlier,
to read the network status and to receive the data from the network interface like-
ly operates at cache miss speeds. As microprocessors become more superscalar
and go to faster clock rates, the number of missed instruction issue opportunities
per message reception is likely to rise quickly over time.

FIGURE 8.29 Bandwidth versus transfer size for simple memory access instructions
versus a block transfer device on the Cray Research T3D. (Arpaci et al. [1995].)

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

Transfer size (bytes)

0

20

40

60

80

100

120

140

160

CPU write

BLT read

BLT write

CPU read

Bandwidth
(MB/sec)

8.10 Clusters 619

...do-it-yourself Beowulf clusters built from commodity hardware and soft-
ware...has mobilized a community around a standard architecture and tools. Be-
owulf’s economics and sociology are poised to kill off the other architectural
lines–and will likely affect traditional supercomputer centers as well.

Gordon Bell and Jim Gray [2001]

Instead of relying on custom machines and custom networks to build massively
parallel machines, the introduction of switches as part of LAN technology meant
that high network bandwidth and scaling was available from off-the-shelf compo-
nents. When combined with using desktop computers and disks as the computing
and storage devices, a much less expensive computing infrastructure could be
created that could tackle very large problems. And by their component nature,
clusters are much easier to scale and more easily isolate failures.

There are many mainframe applications––such as databases, file servers, Web
servers, simulations, and multiprogramming/batch processing––amenable to run-
ning on more loosely coupled machines than the cache-coherent NUMA ma-
chines of Chapter 6. These applications often need to be highly available,
requiring some form of fault tolerance and repairability. Such applications––plus
the similarity of the multiprocessor nodes to desktop computers and the emer-
gence of high-bandwidth, switch-based local area networks—lead to clusters of
off-the-shelf, whole computers for large-scale processing.

Performance Challenges of Clusters

One drawback is that clusters are usually connected using the I/O bus of the com-
puter, whereas multiprocessors are usually connected on the memory bus of the
computer. The memory bus has higher bandwidth and much lower latency, allow-
ing multiprocessors to drive the network link at higher speed and to have fewer
conflicts with I/O traffic on I/O-intensive applications. This connection point also
means that clusters generally use software-based communication while multipro-
cessors use hardware for communication. However, it makes connections non-
standard and hence more expensive.

A second weakness is the division of memory: a cluster of N machines has N
independent memories and N copies of the operating system, but a shared address
multiprocessor allows a single program to use almost all the memory in the com-
puter. Thus, a sequential program in a cluster has 1/Nth the memory available
compared to a sequential program in a shared memory multiprocessor. Interest-

8.10 Clusters

620 Chapter 8 Interconnection Networks and Clusters

ingly, the drop in DRAM prices has made memory costs so low that this multi-
processor advantage is much less important in 2001 than it was in 1995. The
primary issue in 2001 is whether the maximum memory per cluster node is suffi-
cient for the application.

Dependability and Scalability Advantage of Clusters

The weakness of separate memories for program size turns out to be a strength in
system availability and expansibility. Since a cluster consists of independent
computers are connected through a local area network, it is much easier to re-
place a machine without bringing down the system in a cluster than in an shared
memory multiprocessor. Fundamentally, the shared address means that it is diffi-
cult to isolate a processor and replace a processor without significant work by the
operating system and hardware designer. Since the cluster software is a layer that
runs on top of local operating systems running on each computer, it is much easi-
er to disconnect and replace a broken machine.

Given that clusters are constructed from whole computers and independent,
scalable networks, this isolation also makes it easier to expand the system with-
out bringing down the application that runs on top of the cluster. High availability
and rapid, incremental extensibility make clusters attractive to service providers
for the World Wide Web.

Pros and Cons of Cost of Clusters

One drawback of clusters has been that the cost of ownership. Administering a
cluster of N machines is close to the cost of administering N independent ma-
chines, while the cost of administering a shared address space multiprocessor
with N processors is close to the cost of administering a single, big machine.

Another difference between the two tends to be the price for equivalent com-
puting power for large-scale machines. Since large-scale multiprocessors have
small volumes, the extra development costs of large machines must be amortized
over few systems, resulting in higher cost to the customer. As we shall see, even
prices for components common to small machines are increased, possibly to re-
cover development. In addition, the manufacturer learning curve (see 573 in the
prior chapter) brings down the price of components used in the high volume PC
market. Since the same switches sold in high volume for small systems can be
composed to construct large networks for large clusters, local area network
switches have the same economy-of-scale advantages as small computers.

Originally, the partitioning of memory into separate modules in each node was
a significant disadvantage to clusters, as division means memory is used less effi-
ciently than on a shared address computer. The incredible drop in price of memo-
ry has mitigated this weakness, dramatically changed the trade-offs in favor of
clusters.

8.10 Clusters 621

Shooting for the Best of Both Worlds

As is often the case with two competing solutions, each side tries to borrow ideas
from the other to become more attractive.

On one side of the battle, to combat the high-availability weakness of multi-
processors, hardware designers and operating system developers are trying to of-
fer the ability to run multiple operating systems on portions of the full machine.
The goal is that a node can fail or be upgraded without bringing down the whole
machine. For example, the Sun Fire 6800 server has these features (see section
5.15).

On the other side of the battle, since both system administration and memory
size limits are approximately linear in the number of independent machines,
some are reducing the cluster problems by constructing clusters from small-scale
shared memory multiprocessors.

A more radical approach is to keep storage outside of the cluster, possibly over
a SAN, so that all computers inside can be treated as clones of one another. As
the nodes may cost on the order of a few thousand dollars, it can be cheaper to
simply discard a flaky node than spend the labor costs to try hard to repair it. The
tasks of the failed node are then handed off to another clone. Clusters are also
benefiting from faster SANs and from network interface cards that offer lower-
overhead communication.

Popularity of Clusters

Low cost, scaling and fault isolation proved a perfect match to the companies
providing services over the Internet since the mid 1990s. Internet applications
such as search engines and email servers are amenable to more loosely coupled
computers, as the parallelism consists of millions of independent tasks. Hence,
companies like Amazon, AOL, Google, Hotmail, Inktomi, WebTV, and Yahoo
rely on clusters of PCs or workstations to provide services used by millions of
people every day. We delve into Google in section 8.11.

Clusters are growing in popularity in the scientific computing market as well.
Figure 8.30 shows the mix of architecture styles between 1993 and 2000 for the
top 500 fastest scientific computers. One attraction is that individual scientists
can afford to construct clusters themselves, allowing them to dedicate their clus-
ter to their problem. Shared supercomputers are placed on monthly allocation of
CPU time, so its plausible for a scientist to get more work done from a private
cluster than from a shared supercomputer. It is also relatively easy for the scien-
tist to scale his computing over time as he gets more money for computing.

Clusters are also growing in popularity in the database community. Figure
8.31 plots the cost-performance and the cost-performance per processor of the
different architecture styles running the TPC-C benchmark. Note in the top graph

622 Chapter 8 Interconnection Networks and Clusters

that not only are clusters fastest, they achieve good cost performance. For example,
five SMPs with just 6 to 8 processors have worse cost-performance than the 280-
processor cluster! Only small SMPs with two to four processors have much better
cost performance than clusters. This combination of high performance and cost-ef-
fectiveness is rare. Figure 8.32 shows similar results for TPC-H.

The bottom half of Figure 8.31 shows the scalability of clusters for TPC-C.
They scale by about a factor of eight in price or processors while maintaining re-
spectable cost performance.

Now that we have covered the pros and cons of clusters and showed their suc-
cesses in several fields, the next step is to design some clusters.

FIGURE 8.30 Plot of Top 500 supercomputer sites between 1993 and 2000. Note that clusters of various kinds grew
from 2% to almost 30% in the last three years, while uniprocessors and SMPs have almost disappeared. In fact, most of the
MPPs in the list look are similar to clusters. In 2001, the top 500 collectively has a performance of about 100 Teraflops [Bell
2001]. Performance is measured as speed of running Linpack, which solves a dense system of linear equations. This list at
www.top500.org is updated twice a year.

0

100

200

300

400

500

Jun-
93

Dec-
93

Jun-
94

Dec-
94

Jun-
95

Dec-
95

Jun-
96

Dec-
96

Jun-
97

Dec-
97

Jun-
98

Dec-
98

Jun-
99

Dec-
99

Jun-
00

Cluster
(Network of

Workstations)

Cluster
(Network of

SMPs)

Masively
Parallel

Processors
(MPPs)

Shared
Memory

Multiprocessos
(SMPs)

Single Instruction Multiple Data (SIMD)

Uniprocessors

8.10 Clusters 623

FIGURE 8.31 Performance, Cost, and Cost-Performance per Processor for TPC-C. Not only do clusters have the
highest tpmC rating, they have better cost performance ($/tpmC) for any SMP with a total cost over $1M. The bottom graph
shows that clusters get high performance by scaling. They can sustain 40 to 50 transactions per minute per $1000 of cost
from 32 to 280 processors. Figure 8.40 on page 636 describes the leftmost cluster, and Figure 8.41 on page 637 shows the
cost model of TPC-C in more detail. These plots are for all computers that have run version 5 of the TPC-C benchmark as
of August 2001.

0

100

200

300

400

500

600

700

800

$0 $5 $10 $15 $20

Total System Cost ($Millions)

Thousands of
Transactions

per Minute

Cluster
NUMA
SMP

0

2 0

4 0

6 0

8 0

100

120

140

160

0 5 0 100 150 200 250 300

Number of Processors

Transactions
per Minute
per $1000

Cluster
NUMA
SMP

624 Chapter 8 Interconnection Networks and Clusters

To take the discussion of clusters from the abstract to the concrete, this section
goes through four examples of cluster design. Like section 7.11 in the prior chap-
ter, the examples evolve in realism. The examples of the last chapter which exam-
ined performance and availability apply to clusters as well. Instead, we show cost
trade-offs, a topic rarely found in computer architecture.

In each case we are a designing a system with about 32 processors, 32 GB of
DRAM, and 32 or 64 disks. Figure 8.33 lists the components we use to construct
the cluster, including their prices.

Before starting the examples, Figure 8.33 confirms some of the philosophical
points of the prior section. Note that difference in cost and speed processor is in
the smaller systems versus the larger multiprocessor. In addition, the price per
DRAM DIMM goes up with the size of the computers.

Regarding the processors, the server chip includes a much larger L2 cache, in-
creasing from 0.25 MB to 1 MB. Due to its much larger die size, the price of 1-
MB-cache chip is more than double the 0.25-MB-cache. The purpose of the larg-
er L2 cache is to reduce memory bandwidth to allow eight processors to share a
memory system. Not only are these large caches chips much more expensive, its

FIGURE 8.32 Performance vs. Cost for TPC-H in August 2001. Clusters are used for the largest computers, NUMA the
smaller computers, and SMP the smallest. In violation of TPC-H rules, this figure plots results for different TPC-H scale fac-
tors (SF): 100 GB, 300 GB, 1000 GB, and 3000 GB. The ovals separate them.

8.11 Designing a Cluster

0

2500

5000

7500

10000

12500

15000

17500

20000

$0 $5,000 $10,000 $15,000 $20,000

Price (thousands)

Queries
per

Hour
(QphH)

Cluster
NUMA
SMP100

GB
S.F.

300 GB S.F.

1000 GB
S.F.

3000 GB
 S.F.

8.11 Designing a Cluster 625

IBM model name xSeries 300 xSeries 330 xSeries 370

Maximum number processors per box 1 2 8

Pentium III Processor Clock Rate (MHz) 1000 1000 700

L2 Cache (KB) 256 256 1,024

Price of base computer with 1 Processor $1,759 $1,939 $14,614

Price per extra Processor n.a. $799 $1,779

Price per 256 MB SDRAM DIMM $159 $269 $369

Price per 512 MB SDRAM DIMM $549 $749 $1,069

Price per 1024 MB SDRAM DIMM n.a. $1,689 $2,369

IBM 36.4 GB 10K RPM Ultra160 SCSI $579 $639 $639

IBM 73.4 GB 10K RPM Ultra160 SCSI n.a. $1,299 $1,299

PCI slots: 32bit,33 MHz / 64bit,33 MHz / 64bit,66 MHz 1 / 0 / 0 0 / 2 / 0 0 / 8 / 4

Rack space (VME Rack Units) 1 1 8

Power Supply 200 W 200 W 3 x 750 W

Emulex cLAN-1000 Host Adapter (1 Gbit) $795 $795 $795

Emulex cLAN5000 8-port switch $6,280 $6,280 $6,280

Emulex cLAN5000 Rack space (R.U.) 1 1 1

Emulex cLAN5300 30-port switch $15,995 $15,995 $15,995

Emulex cLAN5300 Rack space (R.U.) 2 2 2

Emulex cLAN-1000 10-meter cable $135 $135 $135

Extra PCI Ultra160 SCSI Adapter $299 $299 $299

EXP300 Storage Enclosure (up to 14 disks) $3,179 $3,179 $3,179

EXP300 Rack space (VME Rack Units) 3 3 3

Ultra2 SCSI 4-meter cable $105 $105 $105

Standard 19-in Rack (44 VME Rack Units) $1795 $1795 $1795

FIGURE 8.33 Prices of options for three rack-mounted servers from IBM and 1-Gbit Ethernet switches from
Emulex in August 2001. Note the higher price for processors and DRAM DIMMs with larger computers. The base price of
these computers includes 256 MB of DRAM (512 MB for 8-way server), two slots for disks, an UltraSCSI 160 adapter, two
100 Mbit Ethernets, a CD-ROM drive, a floppy drive, six to eight fans, and SVGA graphics. The power supply for the Emulex
switches is 200 watts and is 500 watts for the EXP300. n the xSeries 370 you must add an accelerator costing $1249 to go
over 4 CPUs.

626 Chapter 8 Interconnection Networks and Clusters

has also been hard for Intel to achieve the similar clock rates to the small-cache
chips: 700 MHz vs. 1000 MHz in August 2001.

The higher price of the DRAM is harder too explain based on cost. For exam-
ple, all include ECC. The uniprocessor uses 133 MHz SDRAM and the 2-way
and 8-way both use registered DIMM modules (RDIMM) SDRAM. There might
a slightly higher cost for the buffered DRAM between the uniprocessor and 2-
way boxes, but it is hard to explain increasing price 1.5 times for the 8-way SMP
vs. the 2-way SMP. In fact, the 8-way SDRAM operates at just 100 MHz. Pre-
sumably, customers willing to pay a premium for processors for an 8-way SMP
are also willing to pay more for memory.

Reasons for higher price matters little to the designer of a cluster. The task is
to minimize cost for a given performance target. To motivate this section, here is
an overview of the four examples:

1. Cost of Cluster Hardware Alternatives with Local Disk: The first example
compares the cost of building from a uniprocessor, a 2-way SMP, and an 8-
way SMP. In this example, the disks are directly attached to the computers in
the cluster.

2. Cost of Cluster Hardware Alternatives with Disks over SAN: The second ex-
ample moves the disk storage behind a RAID controller on a Storage Area
Network.

3. Cost of Cluster Options that is more realistic: The third example includes the
cost of software, the cost of space, some maintenance costs, and operator
costs.

4. Cost and Performance of a Cluster for Transaction Processing: This final ex-
ample describes a similar cluster tailored by IBM to run the TPC-C bench-
mark. (It is one of the cluster results in Figure 8.31.)This example has more
memory and many more disks to achieve a high TPC-C result, and at the time
of this writing, it the 13th fastest TPC-C system. In fact, the machine with the
fastest TPC-C is just a replicated version of this cluster with a bigger LAN
switch. This section highlights the differences between this database-oriented
cluster and the prior examples.

First Example: Cost of Cluster Hardware Alternatives with Local Disk

This first example looks only at hardware cost of the three alternatives using the
IBM pricing information. We’ll look at the cost of software and space later.

E X A M P L E Using the information in Figure 8.33, compare the cost of the hardware for
three clusters built from the three options in the figure. In addition, calcu-
late the rack space. The goal for this example is to construct a cluster with
32 processors, 32 GB of memory protected by ECC, and more than 2 TB
of disk. Connect the clusters with 1 gigabit, switched Ethernet.

8.11 Designing a Cluster 627

A N S W E R Figure 8.34 shows the logical organization of the three clusters.
Let’s start with the 1-processor option (IBM xSeries model 300). First,

we need 32 processors and thus 32 computers. The maximum memory
for this computer is 1.5 GB, allowing 1GB x 32 = 32 GB. Each computer
can hold two disks and the largest disk available in the model 300 is 36.4
GB, yielding 32 x 2 x 36.4 GB or 2330 GB. Using the built-in slots for stor-
age is the least expensive solution, so we’ll take this option. Each com-
puter needs its own Gbit Host Adapter, but 32 cables are more than a 30-
port switch can handle. Thus, we use two Emulex cLAN5300 switches. We
connect the two switches together with four cables, leaving plenty for of
ports for the 32 computers.

A standard VME rack is 19 inches wide and about 6 feet tall, with a
typical depth of 30 inches. This size is so popular that it has its own units:
1 VME rack unit (RU) is about 1.75 inches high, so a rack can hold ob-
jects up to 44 RU. The 32 uniprocessor computers each use 1 rack unit of
space, plus 2 rack units for each switch, for a total of 36 rack units. This
fits snugly in one standard rack.

For the 2-processor case (model 330), everything is halved. The 32
processors need only 16 computers. The maximum memory is 4 GB, but
we need just 2 GB per computer to hit our target of 32 GB total. This mod-
el allows 73.4 GB disks, so we need only 16 x 2 x 73.4 GB to reach 2.3
TB, and these disks fit in the slots in the computers. A single 30-port
switch has more ports than we need. The total space demand is 18 rack
units (16 x 1 + 1 x 2), or less than half a standard rack.

The 8-processor case (model 370) needs only 4 computers to hold
32 processors. The maximum memory is 32 GB, but we need just 8 GB
per computer to reach our target. Since there are only 4 computers, the
8-port switch is fine. The shortingcoming is in disks. At 2 disks per com-
puter, these 4 computers can hold at most 8 disks, and the maximum ca-
pacity per disk is still 73.4 GB. The solution is to add a storage expansion
box (EXP300) to each computer, which can hold up to 14 disks. This so-
lution requires adding an external UltraSCSI controller to each computer
as well. The rack space is 8 RU for the computer, 3 RU for the disk enclo-
sure, and 1 RU for the switch. Alas, the total is 4 x (8 + 3) + 1 or 45 rack
units, which just misses the maximum of a standard rack. Hence, this op-
tion occupies two racks.

Figure 8.35 shows the total cost of each option. This example shows
some issues for clusters:

* Expansibility incurs high prices. For example, just 4 of the base 8-
way SMPs--each with just one processor and 0.5 GB of DRAM--
costs more than 32 uniprocessor computers, each with 1 processor
and 0.25 GB of DRAM. The only hope of cost competitiveness is to
occupy all the options of a large SMP.

628 Chapter 8 Interconnection Networks and Clusters

FIGURE 8.34 Three cluster organizations based on uniprocessors (top), 2-way SMPs (middle), and 8-way SMPs
(bottom). P stands for processor, M for memory (1, 2, and 8 GB), and D for disk (36.4, 73.4, 73.4 GB).

P

D

M

D

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

P

D

P

D

M

D

P P P P P P P P

D

D D D DD D

M

D

P P P P P P P P

D

D D D DD D

M

D

P P P P P P P P

D

D D D DD D

M

D

P P P P P P P P

D

D D D DD D

M

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

1 Gigabit Ethernet Switch

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

P

D

M

D

1 Gigabit Ethernet Switch

Internet

Internet

Internet

1 Gigabit Ethernet Switch

1 Gigabit Ethernet Switch

Cluster

2-way SMP
Cluster

8-way SMP
Cluster

8.11 Designing a Cluster 629

* Network vs. local bus trade-off. Figure 8.35 shows how the larger
SMPs need less to spend less on networking, as the memory buses
carry more of the communication workload.

The uniprocessor cluster costs 1.1 times the 2-way SMP option, and the
8-way SMP cluster cost 1.6 times the 2-way SMP. The 2-way SMP wins
the cost competition because the components are relatively cost-effective
and it needs fewer systems and network components. n

Second Example: Using a SAN for disks.

The previous example uses disks local to the computer. Although this can reduce
costs and space, the problem for the operator is that 1) there is no protection

FIGURE 8.35 Price of three clusters with a total of 32 processors, 32 GB memory, and
2.3 TB disk. Note the reduction in network costs as the size of the SMP increases, since the
memory buses supply more of the interprocessor communication. Rack prices are included
in the total price, but are too small to show in the bars. They account for $1725 in the first two
cases and $3450 in the third case.

$56
$31

$58

$55

$23 $43

$71

$37
$42

$56

$62 $31

$13

$10

$ 0

$40

$80

$120

$160

$200

$240

$280

$320

1 -way 2 -way 8 -way

Price
(thousands)

network

disk

extra memory

extra processors

system

$180
$161

$253

630 Chapter 8 Interconnection Networks and Clusters

against a single disk failure, and 2) there is state in each computer that must be
managed separately. Hence, the system is down on a disk failures until the opera-
tor arrives, and there is no separate visibility or access to storage.

This second example centralizes the disks behind a RAID controller in each
case using FC-AL as the Storage Area Network. To keep comparisons fair, we
continue use of IBM components. Figure 8.36 lists the costs of the components in
this option. Note that this IBM RAID controller requires FC-AL disks.

E X A M P L E Using the information in Figure 8.36, calculate the cost of the hardware
for three clusters above but now use the SAN and RAID controller.

A N S W E R The change from the clusters in the first example is that we remove all in-
ternal SCSI disks and replace them with FC-AL disks behind the RAID
storage server. To connect to the RAID box, we add a FC-AL host bus
adapter per computer to the uniprocessor and 2-way SMP clusters and
replace the SCSI host bus adapter in the 8-way SMP cluster.

FC-AL can be connected in a loop with up to 127 devices, so there is
no problem in connecting the computers to the RAID box. The RAID box
has a separate FC-AL loop for the disks. It has room for 10 FC-AL disks,
so we need three EXP500 enclosures for the remaining 22 FC-AL disks.
(The FC-AL disks are half-height, which are taller than the low profile
SCSI disks, so we can fit only 10 FC-AL disks per enclosure.) We just
need to add cables for each segment of the loop.

Since the RAID box needs 3 rack units as do each of the 3 enclo-
sures, we need 12 additional rack units of space. This adds a second rack
to the uniprocessor cluster, but there is sufficient space in the racks of the
other clusters. If we use RAID-5 and have a parity group size of 8 disks,
we still have 28 disks of data or 28 x 73.4 or 2.05 TB of user data, which
is sufficient for our goals.

Figure 8.37 shows the hardware costs of this solution. Since there

IBM FC-AL High Availability RAID storage server $15,999

IBM 73.4 GB 10K RPM FC-AL disk $1,699

IBM EXP500 FC-AL storage enclosure (up to 10 disks) $3,815

FC-AL 10-meter cables $100

IBM PCI FC-AL Host Bus adaptor $1,485

IBM FC-AL RAID server rack space (VME rack units) 3

IBM EXP500 FC-AL rack space (VME rack units) 3

FIGURE 8.36 Components for Storage Area Network cluster.

8.11 Designing a Cluster 631

must be one FC-AL host bus adapter per computer, they cost enough to
bring the prices of the uniprocessor and 8-way SMP clusters to parity. The
2-way SMP is still substantially cheaper. Notice that again the cost of both
the LAN network and the SAN network decrease as the number of com-
puters in the cluster decrease.

The SAN adds about $40,000 to $100,000 to the price of the hard-
ware for the clusters. We’ll see in the next example whether we justify
such costs. n

FIGURE 8.37 Prices for hardware for three clusters using SAN for storage. As in Fig-
ure 8.35, the cost of the SAN network also shrinks as the servers increase in number of pro-
cessors per computer. They share the FC-AL host bus adapters and also have fewer cables.
Rack prices are too small to see in the columns, but they account for $3450, $1725, and
$3450, respectively.

$56
$31

$58
$13

$55

$23 $43

$71

$54
$54

$54

$62
$31

$27

$27

$27
$54

$29

$10

$10

$ 0

$40

$80

$120

$160

$200

$240

$280

$320

1 -way 2 -way 8 -way

Price
(Thousands)

SAN network

RAID+enclosure

LAN network

disk

memory

extra processors

system

$281

$230

$289

632 Chapter 8 Interconnection Networks and Clusters

Third Example: Accounting for Other Costs

The first and second examples only calculated the cost of the hardware (which is
what you might expect from book on computer architecture). There are two other
obvious costs not included: software and the cost of a maintenance agreement for
the hardware. Figure 8.38 lists the costs covered in this example.

Notice that Microsoft quadruples the price when the operating system runs on
a computer with 5 to 8 processors versus a computer with 1 to 4 processors.
Moreover, the database cost is primarily a linear function of the number of pro-
cessors. Once again, software pricing appears to be based on value to the custom-
er versus cost of development.

Another significant cost is the cost of the operators to keep the machine run-
ning, upgrade software, perform backup and restore, and so on. In 2001, the cost
(including overhead) is about $100,000 per year for an operator.

In addition to labor costs, backup uses up tapes to act as the long-term storage
for system. A typical backup policy is daily incremental dumps and weekly full
dumps. A common practice is to save four weekly tapes and then one full dump
per month for the last six months. The total is 10 full dumps, plus a week of in-
cremental dumps.

There are other costs, however. One is the cost of the space to house the server.
Thus, collocation sites have been created to provide virtual machine rooms for
companies. They provide scalable space, power, cooling, and network bandwidth
plus provide physical security. They make money by charging rent for space, for
network bandwidth, and for optional services from on-site administrators.

Software: Windows 2000 1-4 CPUs + IBM Director $799

Software: Windows 2000 1-8 CPUs + IBM Director $3,295

Software: SQL Server Database (per processor!) $16,541

3-year HW maintenance: LAN switches + HBA $45,000

3-year HW maintenance: IBM xSeries computers 7.5%

Rack space rental (monthly per rack) $800 to $1200

Extra 20 amp circuit per rack (monthly) $200 to $400

Bandwidth charges per megabit (monthly) $500 to $2000

Operator costs (yearly) $100,000

DLT tapes (40 GB raw, 80 GB compressed) $70

FIGURE 8.38 Components for Storage Area Network cluster in 2001. Notice the higher
cost of the operating system in the larger server. (Redhat Linix 7.1, however, is $49 for all
three.)

8.11 Designing a Cluster 633

Collocation rates are negotiated and much cheaper per unit as space require-
ments increase. A rough guideline in 2001 is that rack space, which includes one
20-amp circuit, costs $800 to $1200 per month. It drops by 20% if you use more
than 75 to 100 racks. Each additional 20 amp circuit per rack costs another $200
to $400 per month. Although we are not calculating these costs in this case, they
also charge for network bandwidth: $1500 to $2000 per Mbits/sec per month, if
your continuous use is just 1-10 Mbits/second, drops to $500 to $750 per Mbits/
sec per month, if your continuous use measures 1 - 2 Gbits/second.

Pacific Gas and Electric in Silicon Valley limits a single building to have no
more than 12 megawatts of power and the typical size of a building is no more
than 100,000 square feet. Thus, a guideline is that collocation sites are designed
assuming no more than 100 watts per square foot. If you include the space for
people to get access to a rack to repair and replace components, a rack needs
about 10 square feet. Thus, collocation sites expect at most 1000 watts per rack.

E X A M P L E Using the information in Figure 8.38, calculate the total cost of ownership
for three years: purchase prices, operator costs, and maintenance costs.

A N S W E R Figure 8.39 shows the total cost of ownership for the six clusters.
To keep things simple, we assume each system with local disks

needs a full -time operator, but the clusters that access their disks over an
SAN with RAID need only a half-time operator. Thus, operator cost is 3 x
$100,000 = $300,000 or 3 x $50,000 = $150,000.

For backup, let’s assume we need enough tapes to store 2 TB for a
full dump. We need four sets for the weekly dumps plus six more sets so
that we can have a six-month archive. Tape units normally compress their
data to get a factor of two in density, so we’ll assume compression suc-
cessfully turns 40 GB drives into 80 GB drives. The cost of these tapes is:

The daily backups depend on the amount of data changed. If 2 tapes per
day are sufficient (up to 8% changes per day), we need to spend another

The figure lists maintenance costs for the computers and the LAN.
The disks come with a 3-year warranty, so there is no extra maintenance
cost for them.

The cost per rack of rental space for three years is 3 x 12 x $1000 or
$36,000.

Figure 8.39 shows the 2-way SMP using SAN is the winner. Note that
hardware costs are only a half to a third of the cost of ownership. Over

10
2000GB

80GB/tape--------------------------× $ 70× 10 25 $ 70×× $17 500,= =

7 2× $ 70× 14 $ 70× $ 980= =

634 Chapter 8 Interconnection Networks and Clusters

three years the operator costs can be more than the cost of purchase of
the hardware, so reducing those costs significantly reduces total cost of
ownership.

Our results depend on some critical assumptions, but surveys of the
total cost of ownership for items with storage go up to factors five to ten
over purchase price. n

FIGURE 8.39 Total cost of ownership for three years for clusters in Figures 8.35 and 8.37. Operator costs are as
significant as purchase price, and hence the assumption that SAN halves operator costs is very significant.

$180 $161

$253 $281
$230

$289

$49
$47

$50
$51

$49

$51
$36

$36

$72

$72

$36

$72

$300
$300

$300
$150

$150

$150

$13

$13

$26
$13

$13
$26

$18

$18

$18

$18

$18
$18

$ 0

$100

$200

$300

$400

$500

$600

$700

$800

1 -way 2 -way 8 -way 1-way SAN 2-way SAN 8-way SAN

Price
(Thousands)

Backup tapes

Operator

Space rental

SW costs

HW maintenance

HW purchase$609 $576

$707

$598

$497

$594

8.11 Designing a Cluster 635

Fourth Example: Cost and Performance of a Cluster for Transaction Pro-
cessing

The August 2001 TPC-C report includes a cluster built from similar
building blocks to the examples above. This cluster also has 32 proces-
sors, uses the same IBM computers as building blocks, and it uses the
same switch to connect computers together. Figure 8.40 shows its orga-
nization. It achieves 121,319 queries for hour for $2.2M.

Here are the key differences:

n Disk size: since TPC-C cares more about I/Os per second (IOPS)
than disk capacity, this clusters uses many small fast disks. The use
of small disks gives many more IOPS for the same capacity. These
disks also rotate at 15000 RPM vs. 10000 RPM, delivering more
IOPS per disk. The 9.1-GB disk costs $405 and the 18.2-GB disk
costs $549, or an increase in dollars per GB of factor of 1.7 to 2.5.
The totals are 560 9.1-GB disks and 160 18.2-GB disks, yielding a
total capacity of 8 TB. (Presumably the reason for the mix of sizes is
get sufficient capacity and IOPS to run the benchmark.) These 720
disks need or 52 enclosures, which is 13 enclosures per
computer. In contrast, earlier 8-way clusters achieved 2 TB with 32
disks, as we cared more about cost per GB than IOPS.

n RAID: Since the TPC-C benchmark does not factor in human costs
for running a system, there is little incentive to use a SAN. TPC-C
does require a RAID protection of disks, however. IBM used a RAID
product that plugs into a PCI card and provides four SCSI strings. To
get higher availability and performance, each enclosure attaches to
two SCSI buses. Thus, there are 52 x 2 or 104 SCSI cables attached
to the 28 RAID controllers which support up to 28 x 4 or 106 strings.

n Memory: Conventional wisdom for TPC-C is to pack as much DRAM
as possible into the servers. Hence, each of the four 8-way SMPs is
stuffed with the maximum of 32 GB, yielding a total of 128 GB.

n Processor: This benchmark uses 900 MHz Pentium III with a 2MB L2
cache. The price is $6599 as compared to prior 8-way clusters for
$1799 for the 700 MHz Pentium III with a 1 MB L2 cache.

n PCI slots: This cluster uses 7 of the 12 available PCI bus slots for the
RAID controllers compared to 1 PCI bus slot for an external SCSI or
FC-AL controller in the prior 8-way clusters. This greater utilization
follows the guideline of trying to use all resources of a large SMP.

n Tape Reader, Monitor, Uninterruptable Power Supply: To make the
system easier to come up and to keep running for the benchmark,
IBM includes one DLT tape reader, four monitors, and four UPSs.

720 14⁄

636 Chapter 8 Interconnection Networks and Clusters

FIGURE 8.40 IBM Cluster for TPC-C. This cluster has 32 Pentium III processors, each running at 900 MHz with a 2MB
L2 cache. The total of DRAM memory is 128 GB. Seven PCI slots in each computer contain RAID controllers (R for RAID),
and each has four Ultra160 SCSI strings. These strings connect to 13 storage enclosures per computer, giving 52 total. Each
enclosure has 14 SCSI disks, either 9.1 GB or 18.2 GB. The total is 560 9.1 GB disk and 140 18.2 GB disks. There are also
two 9.1 GB disks inside each computer that are used for paging and rebooting.

TPC-C Clients1 Gigabit Ethernet Switch

D

P P P P P P P P

D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

M

R R R R R R R

...

... ...

D

P P P P P P P P

D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

M

R R R R R R R

...

... ...

D

P P P P P P P P

D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

M

R R R R R R R

...

... ...

D

P P P P P P P P

D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

D D D DDD D

M

R R R R R R R

...

... ...

(5 enclosures not shown) (5 enclosures not shown) (5 enclosures not shown) (5 enclosures not shown)

8.11 Designing a Cluster 637

n Maintenance and spares: TPC-C allows use of spares to reduce
maintenance costs, which is a minimum of two spares or 10% of the
items. Hence, there are two spare Ethernet switches, host adapters,
and cables for TPC-C.

Figure 8.41 compares the 8-way cluster from before to this TPC-C cluster.
Note that almost half of the cost is in software, installation, and mainte-
nance for the TPC-C cluster. At the time of this writing, the computer with
the fastest TPC-C result basically scales this cluster from 4 to 35 xSeries
370 servers and uses bigger Ethernet switches..

Summary of Examples

With completion of the cluster tour, you’ve seen a variety of cluster designs, in-
cluding one representative of the state-of-the-art cost-performance cluster in
2001. Note that we concentrated on cost in constructing these clusters, but only
book length prevents us from evaluating the performance and availability bottle-
necks in these designs. Given the similarity to performance analysis of storage
systems in the last chapter, we leave that to the reader in the exercises.

8-way SAN Cluster TPC-C Cluster

4 Systems (700 MHz/1MB v. 900 MHz/2MB) $58 17% $76 3%

28 Extra processors (700 MHz/1MB v. 900 MHz/2MB) $55 16% $190 8%

Extra memory (8 GB v. 32 GB) $71 20% $306 14%

Disk drives (2TB/73.4GB v. 8TB/9.1,18.2 GB) $54 15% $316 14%

Disk enclosures (3 v. 52) $11 3% $165 7%

RAID controller (1 v. 28) $16 4% $69 3%

LAN network (1 switch/4 HBAs v. 3 switches/6 HBAs) $10 3% $24 1%

SAN network (4 NICs, cables v. 0) $10 3% n.a. 0%

Software (Windows v. Windows + SQL server + installation) $13 4% $951 42%

Maintenance + hardware setup costs $51 14% $115 5%

Racks, UPS, backup (2 racks vs. 7 racks + 4 UPS +1 tape unit) $3 1% $40 2%

Total $352 100% $2,252 100%

FIGURE 8.41 Comparing 8-way SAN cluster and TPC-C cluster in price (in $1000) and percentage. The higher cost
of the system and extra processors is due to using the faster chips with the larger caches. Memory costs are higher due to
more total memory and using the more expensive 1 GB DIMMs. The increased disk costs and disk enclosure costs are due
to higher capacity and using smaller drives. Software costs increase due to adding SQL server database plus IBM charges
for software installation of this cluster. Similarly, although hardware maintenance costs are close, IBM charged to setup sev-
en racks of hardware, whereas we assumed the customer assembled two racks of hardware “for free.” Finally, SAN costs
are higher due to TPC-C policy of buying spares to lower maintenance costs.

638 Chapter 8 Interconnection Networks and Clusters

Having completed the tour of cluster examples, a few things standout. First,
the cost of purchase is less than half the cost of ownership. Thus, inventions that
only help with hardware costs can solve only a part of the problem. For example,
despite the higher costs of SAN, they may lower cost of ownership sufficiently to
justify the investment. Second, the smaller computers are generally cheaper and
faster for a given function compared to the larger computers. In this case, for the
larger cache required to allow several processors to share a bus means a much
larger die, which increases cost and limits clock rate. Third, space and power
matter for both ends of the computing spectrum: clusters at the high end and em-
bedded computers at the low end.

Figure 8.42 shows the rapid growth of the World Wide Web and the correspond-
ing demand for searching it. The number of pages indexed grew by a factor of
1000 between 1994 and 1997, but people were still only interested in the top 10
answers, which was a problem for search engines. In 1997, only one quarter of
the search engines would find themselves in their top 10 queries.

8.12 Putting It All Together: The Goggle Cluster of PCs

Date WWW pages indexed (Million) Queries per day (Million) Search Engine

April 1994 0.11 0.0015 World Wide Web Worm

November 1997 100 20 Alta Vista

December 2000 1327 70 Google

FIGURE 8.42 Growth in pages indexed and search queries performed by several search engines. [Brin and Page,
1998] Searches have been growing about 20% per month at Google, or about 8.9 times per year. Most of the 1.3 billion
pages are fully indexed and cached at Google. Google also indexes pages based only on the URLs in cached and indexed
pages, so about 40% of the 1.3 billion are just URLs without cached copies of the page at Google.

FIGURE 8.43 First entry in result of a search for “Hennessy Patterson”. Note that the search took less than 1/4 sec-
ond, and that it includes a capsule summary of the contents from the WWW page at Morgan Kauffman, and that it offers you
to either follow the actual URL (www.mkp...) or just read the cached copy of the page (Cached) stored in the Google cluster.

Hennessy Patterson

Searched the web for Hennessy Patterson. Results 1 - 10 of about 13,300. Search took 0.23 seconds.

Computer Architecture: A Quantitative Approach
... on currently predominant and emerging commercial systems, the Hennessy and Patterson have pre-
pared entirely new chapters covering additional advanced topics: ...
www.mkp.com/books_catalog/1-55860-329-8.asp - 13k - Cached - Similar pages

Google Search I’m Feeling Lucky

8.12 Putting It All Together: The Goggle Cluster of PCs 639

Google was designed first to be a search engine that could scale at that growth
rate. In addition to keeping up with the demand, Google improved the relevance
of the top queries produced so that user would likely get what the desired result .
For example, Figure 8.43 shows the first Google result for the query “Hennessy
Patterson,” which from your authors’ perspective is the right answer. Techniques
to improve search relevance include ranking pages by popularity, examining the
text at the anchor sites of the URLs, and proximity of keyword text within a page.

Search engines also have a major reliability requirement, as people are using it
at all times of the day and from all over the world. Google must essentially be
continuously available.

Since a search engine is normally interacting with a person, its latency must
not exceed its users’ patience. Google’s goal is that no search takes more than 0.5
seconds, including network delays.

As the figures above show, bandwidth is also vital. In 2000, Google served an
average of almost 1000 queries per second as well as searched and indexed more
than a billion pages.

In addition, a search engine must crawl the WWW regularly to have up-to-
date information to search. Google crawls the entire WWW and updates its index
every 4 weeks, so that every WWW page is visited once a month. Google also
keeps a local copy of the text of most pages so that it can provide the snippet text
as well as offer a cached copy of the page, as shown in Figure 8.43.

Description of the Google Infrastructure

To keep up with such demand, in December 2000 Google uses more than 6000
processors and 12000 disks, giving Google a total of about one petabyte of disk
storage. At the time, the Google site was likely the single system with the largest
storage capacity in the private sector.

Rather than achieving availability by using RAID storage, Google relies on re-
dundant sites each with thousands of disks and processors: two sites are in Sili-
con Valley and one in Virginia. The search index, which is a small number of
terabytes, plus the repository of cached pages, which is on the order of the same
size, are replicated across the three sites. Thus, if a single site fails, there are still
two more that can retain the service. In addition, the index and repository are rep-
licated within a site to help share the workload as well as to continue to provide
service within a site even if components fail.

Each site is connected to the Internet via OC48 (2488 Mbits/sec) links of the
collocation site. To provide against failure of the collocation link, there is a sepa-
rate OC12 link connecting the two Silicon Valley sites so that in an emergency
both sites can use the Internet link at one site. The external link is unlikely to fail
at both sites since different network providers supply the OC48 lines. (The Vir-
ginia site now has a sister site to provide so as to provide the same benefits.)

Figure 8.44 shows the floor plan of a typical site. The OC48 link connects to
two Foundry BigIron 8000 switches via a large Cisco 12000 switch. Note that

640 Chapter 8 Interconnection Networks and Clusters

this link is also connected to the rest of the servers in the site. These two switches
are redundant so that a switch failure does not disconnect the site. There is also
an OC12 link from the Foundry switches to the sister site for emergencies. Each
switch can connect to 128 1-Gbit/sec Ethernet lines. Racks of PCs, each with 4 1-
Gbit/sec Ethernet interfaces, are connected to the 2 Foundry switches. Thus, a
single site can support or 64 racks of PCs.

Figure 8.45 shows Google’s rack of PCs. Google uses PCs that are only 1
VME rack unit. To connect these PCs to the Foundry switches, it uses an HP
Ethernet switch. It is 4 RU high, leaving room in the rack for 40 PCs. This switch
has modular network interfaces, which are organized as removable blades. Each
blade can contain 8 100- Mbits/s Ethernet interfaces or a single 1-Gbit Ethernet
interface. Thus, 5 blades are used to connect 100 Mbits/s Cat5 cables to each of
the 40 PCs in the rack, and 2 blades are used to connect 1-Gbit/sec copper cables
to the two Foundry switches.

As Figure 8.45 shows, to pack even more PCs in a rack Google uses the same
configuration in the front and back of the rack, yielding 80 PCs and 2 switches
per rack. There is about a 3-inch gap in the middle between the columns of PCs
for the hot air to exit, which is drawn out of the “chimney” via exhaust fans at the
top of the rack.

FIGURE 8.44 Floor plan of a Google cluster, from a God’s eye view. There are 40 racks, each connected via 4 copper
Gbit Ethernet links to 2 redundant Foundry 128 by 128 switches (‘Fnd swtch”). Figure 8.45 shows a rack contains 80 PCs,
so this facility has about 3200 PCs. (For clarity, the links are only shown for the top and bottom rack in each row.) These
racks are on a raised floor so that the cables can be hidden and protected. Each Foundry switch in turn is connected to the
collocation site network via an OC48 (2.4 Gbit) to the Internet. There are two Foundry switches so that the cluster is still
connected even if one switch fails. There is also a separate OC12 (622 Mbit) link to a separate nearby collocation site in
case the OC48 network of one collocation site fails; it can still serve traffic over the OC12 to the other sites network. Each
Foundry switch can handle 128 1-Gbit Ethernet lines and each rack has 2 1-Gbit Ethernet lines per switch, so the maximum
number of racks for the site is 64. The two racks near the Foundry switches contain a few PCs to act as front ends and help
with tasks such as html service, load balancing, monitoring, and UPS to keep the switch and fronts up in case of a short
power failure. It would seem that a facility that has redundant diesel engines to provide independent power for the whole site
would make UPS redundant. A survey of data center users suggests power failures still happen yearly.

rack
rack
rack
rack
rack
rack
rack
rack
rack
rack

rack
rack
rack
rack
rack
rack
rack
rack
rack
rack

rack
rack
rack
rack
rack
rack
rack
rack
rack
rack

rack
rack
rack
rack
rack
rack
rack
rack
rack
rack

rackrack

OC48

OC12

OC48

OC12 Fnd
swtch

Fnd
swtch

2 128 4⁄×

8.12 Putting It All Together: The Goggle Cluster of PCs 641

FIGURE 8.45 Front view, side view, and close-up of a rack of PCs used by Google. The photograph on the left shows
the HP Procurve 4000M Ethernet switch in the middle, with 20 PCs above and 20 PCs below. Each PC connects via a Cat5
cable on the left side to the switch in the middle, running 100 Mbit Ethernet. Each “blade” of the switch can hold 8 100 Mbit
Ethernet interfaces or 1 1Gbit interface. There are also two 1 Gbit Ethernet links leaving the switch on the right. Thus, each
PC has only 2 cables: 1 Ethernet and 1 power cord. The far right of the photo shows a power strip, with each of the 40 PCs
and the switch connected to it. Each PC is 1 VME rack unit (RU) high. The switch in the middle is 4 RU high. The photo on
the middle is a close up of rack, showing contents of a 1 RUPC. This unit contains 2 Maxtor DiamondMax 5400 RPM IDE
drives on the right of the box, 256 MB of 100 MHz SDRAM, a PC motherboard, a single power supply, and an Intel micro-
processor. Each PC runs versions 2.2.16 or 2.2.17 Linix kernels on a slightly modified RedHat release. Between March 2000
and November 2000, over the period the Google site was populated, the microprocessor varied in performance from a 533
MHz Celeron to an 800 MHz Pentium III. The goal was selecting good cost performance, which was often close to $200 per
chip. Disk capacity varied from 40 to 80 GB. You can see the Ethernet cables on the left, power cords on the right, and table
Ethernet cables connected to the switch at the top of the figure. In December 2000 the unassembled parts costs are about
$500 for the two drives, $200 for the microprocessor, $100 for the motherboard, and $100 for the DRAM. Including the en-
closure, power supply, fans, cabling and so on, an assembled PC might cost $1300 to $1700. The drawing on the right
shows that PCs are kept in two columns, front and back, so that a single rack holds 80 PCs and 2 switches. The typical
power per PC is about 55 watts and about 70 watts per switch, so a rack uses about 4500 watts. Heat is exhausted into a
3-inch vent between the two columns, and the hot air is drawn out the top using fans. (The drawing shows uses 22 PCs per
side each 2 RU high instead of the Google configuration of 40 1 RU PCs plus a switch per side.) (Photos and figure from
Rackable Systems: http://www.rackable.com/advantage.htm).

Front view (also Back view)
19 inches

Close-up view of 1 RU PCs

Side view

642 Chapter 8 Interconnection Networks and Clusters

The PC itself is a fairly standard: 2 Maxtor ATA/IDE drives, 256 MB of
SDRAM, a modest Intel microprocessor, a PC motherboard, one power supply
and a few fans. Each PC runs the Linix operating system. To get the best value
per dollar, every 2-3 months Google increases the capacity of the drives or the
speed of the processor. Thus, the 40 rack site shown above was populated be-
tween March and November 2000 has microprocessors that are from a 533 MHz
Celeron to an 800 MHz Pentium III, disks that vary in capacity between 40 and
80 GB and in speed at 5400 to 7200 RPM, and memory bus speed is either 100 or
133 MHz.

Performance

Each collocation site connects to the Internet via OC48 (2488 Mbits/sec) links,
which is shared by Google and the other Internet service providers. If a typical
response to a query is, say, 4000 bytes, then the average bandwidth demand is

which is just 1% of the link speed of each site. Even if we multiply by a factor of
4 to account for peak versus average demand and requests as well as responses,
Google needs little of that bandwidth.

Crawling the web and updating the sites needs much more bandwidth than
serving the queries. Let’s estimate some parameters to put things into perspec-
tive. Assume that it takes 7 days to crawl a billion pages:

This data is collected at a single site, but the final multi-terabyte index and repos-
itory must then be replicated at the other two sites. If we assume we have 7 days
to replicate the data and that we are shipping, say, 5 terabytes from one site to
two sites, then the average bandwidth demand is

Hence, the machine to person bandwidth is relatively trivial, with the real
bandwidth demand being machine to machine. Moreover, Google’s search rate is
growing 20% per month, and the number of pages indexed has more than dou-
bled every year since 1997, so bandwidth must be available for growth.

 Time of flight for messages across the United States takes about 0.1 seconds,
so it’s important for Europe to be served from the Virginia site and for California
to be served by Silicon Valley sites. To try to achieve the goal of 1/2 second laten-
cy, Google software normally guesses where the search is from in order to reduce
time of flight delays.

70 000 000 queries/day, , 4000× B/query 8 bits/B×
24 60 60 seconds/day××--

2 240 000 Mbits, ,
86,400 seconds-- 26Mbit/s≈=

1 000 000 000 pages, , , 4000× B/page 8 bits/B×
24 60 60 seconds/day×× 7days×--

32 000 000 Mbits, ,
604 800 seconds,--- 59Mbit/s≈=

2
5 000 000 MB, , 8 bits/B×

24 60 60 seconds/day×× 7days×--× 80,000,000 Mbits
604 800 seconds,-- 132Mbit/s≈=

8.12 Putting It All Together: The Goggle Cluster of PCs 643

Cost

Given that the basic building block of the Google cluster is a PC, the capital cost
of a site is typically a function of the cost of a PC. Rather than buy the latest mi-
croprocessor, Google looks for the best cost-performance. Thus, in March 2000
an 800 MHz Pentium III cost about $800, while a 533 MHz Celeron cost under
$200, and the difference in performance couldn’t justify the extra $600 per ma-
chine. (When you purchase PCs by the thousands, every $100 per PC is impor-
tant.) By November the price of the 800 MHz Pentium III dropped to $200, so it
was a better investment. When accounting for this careful buying plus the enclo-
sures and power supplies, your authors estimate the PC cost was $1300 to $1700.

The switches cost about $1500 for the HP Ethernet switch and about $100,000
each for the Foundry switches. If the racks themselves cost about $1000 to $2000
each, the total capital cost of a 40-rack site is about $4.5M to $6.0M. Including
3200 microprocessors and 0.8 terabytes of DRAM, the disk storage costs about
$10,000 to $15,000 per terabyte. To put this into perspective, the leading per-
former for the TPC-C database benchmark in August 2001 is a scaled up version
of the cluster from the last example. The hardware alone costs about $10.8M,
which includes 280 microprocessors, 0.5 terabytes of DRAM, and 116 terabytes
SCSI disks organized as RAID I. Ignoring the RAID I overhead, disk storage
costs about $93,000 per terabyte, about a factor of 8 higher than Google despite
having 1/8 the number of processors and about 5/8 the DRAM.

The Google rack with 80 PCs, with each PC operating at about 55 Watts, uses
4500 Watts in 10 square feet. It is considerably higher than the 1000 Watts per
rack expected by the collocation sites. Each Google rack also uses 60 amps. As
mentioned above, reducing power per PC is a major opportunity for the future of
such clusters, especially as the cost per kilowatt hour is increasing and the cost
per Mbits/second is decreasing.

Reliability

Not surprisingly, the biggest failure in the Google PC is software. On an average
day, about 20 machines will be rebooted, and that normally solves the problem.
To reduce the number of cables per PC as well as cost, Google has no ability to
remotely reboot a machine. The software stops giving work to a machine when it
observes unusual behavior, and the operator calls the collocation site and tells
them to location of the machine that needs to be rebooted, and a person at the site
finds the label and pushes the switch on the front panel. Occasionally the person
hits the wrong switch either by mistake or due to mislabeling on the outside of
the box.

The next reliability problem is the hardware, which has about 1/10th the fail-
ures of software. Typically, about 2% to 3% of the PCs have need to be replaced
per year, with failures due to disks and DRAM accounting for 95% of these fail-
ures. The remaining 5% are due to problems with the motherboard, power supply,
and connectors, and so on. The microprocessors themselves never seem to fail.

644 Chapter 8 Interconnection Networks and Clusters

The DRAM failures are perhaps a third of the failures. Google sees errors both
to bits changing inside DRAM and when bits transfer over the 100 to 133 MHz
bus. There was no ECC protection available on PC desktop motherboard chip
sets in 2000, so it was not used. The DRAM is determined to be the problem
when Linix cannot be installed with a proper check sum until the DRAM is re-
placed. As PC motherboard chip sets become available, Google plans to start us-
ing ECC both to correct some failures but, more importantly, to make it easier to
see when DRAMs fail. The extra cost of the ECC is trivial given the wide fluctua-
tion in DRAM prices: careful purchasing procedures are more important than
whether or not the DIMM has ECC.

Disks are the remaining PC failures. In addition to the standard failures that
result is message to error log in the console, in almost equal numbers these disks
will occasionally result in a performance failure, with no error message to the
log. Instead of delivering normal read bandwidths at 28 Mbytes/second, disks
will suddenly drop to 4 MB/second or even 0.8 MB/second. As the disks are un-
der warranty for 5 years, Google sends the disks back to the manufacture for ei-
ther operational or performance failures to get replacements. Thus, there has been
no exploration of the reason for the disk anomalies.

When a PC has problems, it is reconfigured out of the system, and about once
a week a person removes the broken PCs. They are usually repaired and then re-
inserted into the rack.

In regards to the switches, over a 2-year period perhaps 200 of the HP Ether-
net switches were deployed, and 2 to 3 have failed. None of the six Foundry
switches has failed in the field, although some have had problems on delivery.
These switches have a blade-based design with 16 blades per switch, and 2 to 3
of the blades have failed.

The final issue is collocation reliability. The experience of many Internet ser-
vice providers is that once a year there will be a power outage that affects either
the whole site or a major fraction of a site. On average, there is also a network
outage so that the whole site is disconnected from the Internet. These outages can
last for hours.

There also that collocation site reliability follows a “bathtub” curve: high fail-
ures in the beginning, which quickly fall to low rates in the middle, and then rises
to high rates at the end. When they are new, the sites are empty and so continu-
ously filled with new equipment. With more people and new equipment being in-
stalled, there is a higher outage rate. Once the site is full of equipment, there are
fewer people around and less change, so the site has a low failure rate. Once the
equipment becomes outdated and it starts being replaced, the activity in the site
increases and so does the failure rate. Thus, the failure rate of site depends in part
on its age, just as the classic bathtub reliability curves would predict. It is also a
function of the people, and if there is a turnover in people, the fault rate can
change.

Google accommodates collocation unreliability by having multiple sites with
different network providers, plus leased lines between pairs of site for emergen-

8.13 Another View: Inside a Cell Phone 645

cies. Power failures, network outages, and so do not affect the availability of the
Google service.

In 1999, there were 76 million cellular subscribers in the United States, a 25%
growth from the year before. That growth rate is almost 35% per year worldwide,
as developing countries find it much cheaper to install cellular towers than cop-
per-wire-based infrastructure. Thus, in many countries, the number of cell phones
in use exceeds the number of wired phones in use.

Not surprisingly, the cellular handset market is growing at 35% per year, with
about 280 million cellular phone handsets sold in 1999. To put that in perspec-
tive, in the same year sales of personal computers were 120 million. These num-
bers mean that tremendous engineering resources are available to improve cell
phones, and cell phones are probably leaders in engineering innovation per cubic
inch. [Grice, 2000].

Before unveiling the anatomy of a cell phone, let’s try a short introduction to
wireless technology.

Background on Wireless Networks

Networks can be created out of thin air as well as out of copper and glass, creat-
ing wireless networks. Much of this section is based on a report from the National
Research Council [1997].

A radio wave is an electromagnetic wave propagated by an antenna. Radio
waves are modulated, which means that the sound signal is superimposed on the
stronger radio wave that carries the sound signal, and hence is called the carrier
signal. Radio waves have a particular wavelength or frequency: they are mea-
sured either the length of the complete wave or as the number of waves per sec-
ond. Long waves have low frequencies and short waves have high frequencies.
FM radio stations transmit on the band of 88 MHz to 108 MHz using frequency
modulations (FM) to record the sound signal.

By tuning into different frequencies, a radio receiver can pick up a specific
signal. In addition to AM and FM radio, other frequencies are reserved for citizen
band radio, television, pagers, air traffic control radar, Global Positioning Sys-
tem, and so on. In the United States, the Federal Communications Commission
decides who gets to use frequencies and for what purpose

The bit error rate (BER) of a wireless link is determined by the received signal
power, noise due to interference caused by the receiver hardware, interference
from other sources, and characteristics of the channel. Noise is typically propor-
tional to the radio frequency bandwidth, and a key measure is the signal-to-noise
ratio (SNR) required to achieve a given BER. Figure 8.46 lists more challenges
for wireless communication.

8.13 Another View: Inside a Cell Phone

646 Chapter 8 Interconnection Networks and Clusters

Typically, wireless communication is selected because the communicating de-
vices are mobile or because wiring is inconvenient, which means the wireless
network must rearrange itself dynamically. Such rearrangement makes routing
more challenging. A second challenge is that wireless signals are not protected
and hence are subject to mutual interference, especially as devices move. Power
is the another challenge for wireless communication, both because the devices
tend to be battery powered and because antennas radiate power to communicate
and little of it reaches the receiver. As a result, raw bit error rates are typically a
thousand to a million times higher than copper wire.

There are two primary architectures for wireless networks: base-station archi-
tectures and peer-to-peer architectures. Base stations are connected by land lines
for longer distance communication, and the mobile units communicate only with
a single local base station. Peer-to-peer architectures allow mobile units to com-
municate with each other, and messages hop from one unit to the next until deliv-
ered to the desired unit. Although peer-to-peer is more reconfigurable, base
stations tend to be more reliable since there is only one hop between the device
and the station. Cellular telephony, the most popular example of wireless net-
works, relies on radio with base stations.

Cellular systems exploit exponential path loss to reuse the same frequency at
spatially separated locations, thereby greatly increasing the number of customers
served. Cellular systems will divide a city into nonoverlaping hexagonal cells
which use different frequencies if nearby, reusing a frequency only when cells are
far enough apart so that mutual interference is acceptable.

At the intersection of three hexagonal cells is a base station with transmitters
and antennas that is connected to a switching office which coordinates handoffs
when a mobile device leaves one cell and goes into another, as well as to accept
and place calls over land lines. Depending on topography, population and so on,
the radius of a typical cell is two to ten miles.

Challenge Description Impact

Path loss Received power divided by transmitted power; the radio must
overcome signal-to-noise ratio (SNR) of noise from interfer-
ence. Path loss is exponential in distance, and depends on in-
terference if its above 100 meters

1 Watt transmit power, 1 GHz trans-
mit frequency, 1 Mbits/sec data rate
at 10-7 BER, distance between radi-
os can be 728 meters in free space
vs. 4 meters in a dense jungle

Shadow
fading

Received signal blocked by objects, buildings outdoors or
walls indoors; increase power to improve received SNR. It de-
pends on the number of objects and their dielectric properties

If transmitter is moving, need to
change transmit power to ensure re-
ceived SNR in region

Multipath
fading

Interference between multiple versions of signal that arrive at
different times, determined by time between fastest signal and
slowest signal relative to signal bandwidth.

900 MHz transmit frequency signal
power changes every 30 cm

Interference Frequency reuse, adjacent channel, narrow band interference Requires filters, spread spectrum

FIGURE 8.46 Challenges for wireless communication.

8.13 Another View: Inside a Cell Phone 647

The Cell Phone

Figure 8.47 shows the components of a radio, which is the heart of a cell phone.
Radio signals are first received by the antenna, then amplified, passed through a
mixer, then filtered, demodulated, and finally decoded. The antenna acts as the in-
terface between the medium through which radio waves travel and electronics of
the transmitter or receiver. Antennas can be designed to work best in particular
directions, giving both transmission and reception directional properties. Modu-
lation encodes information in the amplitude, phase, or frequency of the signal to
increase its robustness under impaired conditions. Radio transmitters go through
the same steps, just in the opposite order.

Originally, all components were analog, but over time most were replaced by
digital components, requiring the radio signal to be converted from analog to dig-
ital. The desire for flexibility in the number of radio bands led to software rou-
tines replacing some of these functions in programmable chips, such as digital
signal processors. Because such processors are typically found in mobile devices,
emphasis is placed on performance per joule to extend battery life, performance
per square millimeter of silicon to reduce size and cost, and bytes per task to re-
duce memory size.

Figure 8.48 shows the generic block diagram of the electronics of a cell phone
handset, with the DSP performing the signal processing and the microcontroller
handling the rest of the tasks. Cell phone handsets are basically mobile comput-
ers acting as a radio. The include standard I/O devices––keyboard and LCD dis-
play––plus a microphone, speaker, and antenna for wireless networking. Battery
efficiency affects sales, both in standby power when waiting for a call and in min-
utes of speaking.

FIGURE 8.47 A radio receiver consists of an antenna, radio frequency amplifier, mix-
er, filters, demodulator, and decoder. A mixer accepts two signal input and forms an output
signal at the sum and difference frequencies. Filters select a narrower band of frequencies to
pass on to the next stage. Modulation encodes information to make it more robust. Decoding
turns signals into information. Depending on the application, all electrical components can be
either analog or digital. For example, a car radio is all analog components, but PC modem is
all digital except for the amplifier. Today analog silicon chips are used for the RF amplifier and
first mixer in cellular phones.

DecoderDemodulatorFilterMixer

Antenna
RF Amp

648 Chapter 8 Interconnection Networks and Clusters

When a cell phone is turned on, the first task is to find a cell. It scans the full
bandwidth to find the strongest signal, which it keeps doing every seven seconds
or if the signals strength drops, as its designed to work from moving vehicles. It
then picks an unused radio channel. The local switching office registers the cell
phone and records its phone number and electronic serial number, and assigns it
voice channel for the phone conversation. To be sure the cell phone got the right
channel, the base station sends a special tone on it, which the cell phone sends
back to acknowledge it. The cell phone times out after five seconds of it doesn’t
hear supervisory tone, and starts the process all over again. The original base sta-
tion makes a handoff request to the incoming base station as the signal strength
drops offs.

To achieve a two way conversation over radio, frequency bands are set aside
for each direction, forming a frequency pair or channel. The original cellular base
stations transmitted at 869.04 to 893.97 (called the forward path) and cell phones
transmitted at 824.04 MHz to 848.97 MHz (called the reverse path), with the fre-
quency gap to keep them from interfering with each other. Cells might have had
between 4 and 80 channels. Channels were divided into setup channels for call
setup, and voice channels that handle the data or voice traffic.

The communication is done digitally, just like a modem, at 9,600 bits/second.
Since wireless is a lossy medium, especially from a moving vehicle, the handset
send each message is five times. To preserve battery life, the original cell phones
typically transmit at two signal strengths--0.6 watts and 3.0 watts--depending on
the distance to cell. This relatively low power not only allows smaller batteries
and thus smaller cell phones, it aids frequency reuse, which is key to cellular tele-
phony.

Figure 8.49 shows a circuit board from an Ericsson digital phone, with the
components identified. Note that the board contains two processors. A Z-80 mi-

FIGURE 8.48 Block diagram of a cell phone. The DSP performs the signal processing
steps of Figure 8.47, and the microcontroller controls the user interface, battery manage-
ment, and call setup. (Based on Figure 1.3 of Groe and Larson[2000])

Speaker

Microphone

DSP

Micro-
controller

Antenna

RF Receiver (Rx)

RF Transmitter (Tx)

Display

Keyboard

8.13 Another View: Inside a Cell Phone 649

crocontroller is responsible for controlling the functions of the board, I/O with
the keyboard and display, and coordinating with the base station. The DSP han-
dles all signal compression and decompression. In addition there are dedicated
chips for Analog-to-Digital and Digital-to-Analog conversion, amplifiers, power
management, and RF interfaces.

In 2001, a cell phone has about 10 integrated circuits, including parts made in
exotic technologies like gallium arsinide and silicon germanium as well as to
standard CMOS. The economics and desire for flexibility will likely shrink this to
a few chips, but it appears that a separate microcontroller and DSP will be found
inside those chips, with code implementing many of the functions.

Cell Phone Standards and Evolution

Improved communication speeds for cellular phone were developed, with multi-
ple standards. Code division multiple access (CDMA), as one popular example,
uses a wider radio frequency band for a path than the original cellular phones,
called AMPS for Advanced Mobile Phone Service, a mostly analog system. The
wider frequency makes it more difficult to block, and is called spread spectrum.
Other standards are time division multiple access (TDMA) and global system for
mobile communication (GSM). These second generation standards––CDMA,
GSM, and TDMA––are mostly digital.

FIGURE 8.49 Circuit card from an Ericsson cell phone. (From Brain [2000]) <<Redo with more subtle labels>>

650 Chapter 8 Interconnection Networks and Clusters

The big difference for CDMA is that all callers share the same channel, which
operates at a much higher rate, and then distinguishes the different calls by en-
coding each one uniquely. Each CDMA phone call starts at 9600 bits/second, it is
then encoded and transmitted as equal sized messages at 1.25 megabits/second.
Rather than send each signal five times as in AMPS, each bit is stretched so that it
takes eleven times the minimum frequency, thereby accommodating interference
and yet successful transmission. The base station receives the messages its sepa-
rates them into the separate 9600 bits/second streams for each call.

To enhance privacy, CDMA uses pseudo-random sequences from a set of 64
predefined codes. To synchronize the handset and base station so as to pick a
common pseudo-random seed, CDMA relies on a clock from the Global Posi-
tioning System, which continuously transmits an accurate time signal. By care-
fully selecting the codes, the shared traffic sounds like random noise to the
listener. Hence, as more users share a channel there is more noise, and the signal
to noise ratio gradually degrades. Thus, the capacity of the CDMA system is a
matter of taste, depending upon sensitivity of the listener to background noise.

In addition, CDMA uses speech compression and varies the rate of data trans-
ferred depending how much activity is going on in the call. Both these techniques
preserve bandwidth, which allows for more calls per cell. CDMA must regulate
power carefully so that signals near the cell tower do not overwhelm those from
far away, with the goal of all signals reach the tower at about the same level. The
side benefit is that CDMA handsets emit less power, which both helps battery life
and increases capacity when users are close to the tower.

Thus, compared to AMPS, CDMA improves capacity of a system by up to an
order of magnitude, has better call quality, has better battery life, and enhances
users’ privacy. After considerable commercial turmoil, there is a new third gener-
ation standard called International Mobile Telephony 2000 (IMT-2000) which is
based primarily on two competing versions of CDMA and one TDMA. This stan-
dard may lead to cell phones which work anywhere in the world.

Myths and hazards are widespread with interconnection networks. This section
has just a few warnings, so proceed carefully.

Pitfall: Using bandwidth as the only measure of network performance.

Many network companies apparently believe that given sophisticated protocols
like TCP/IP that maximize delivered bandwidth, there is only one figure of merit
for networks. This may be true for some applications, such as video, where there
is little interaction between the sender and the receiver. Many applications, how-
ever, are of a request-response nature, and so for every large message there must
be one or more small messages. One example is NFS.

8.14 Fallacies and Pitfalls

8.14 Fallacies and Pitfalls 651

Figure 8.50 compares a shared 10 Mbits/second Ethernet LAN to a switched
155 Mbits/second ATM LAN for NFS traffic. Ethernet drivers were better tuned
than the ATM drivers, such that 10 Mbits/s Ethernet was faster than 155 Mbits/s
ATM for payloads of 512 bytes or less. Figure 8.50 shows the overhead time,
transmission time, and total time to send all the NFS messages over Ethernet and
ATM. The peak link speed of ATM is 15 times faster and the measured link speed
for 8-KB messages is almost 9 times faster. Yet the higher overheads offset the
benefits so that ATM would transmit NFS traffic only 1.2 times faster.

Overhead (secs) Transmission (secs) Total time (secs)

Size No. messages ATM Ethernet No. data bytes ATM Ethernet ATM Ethernet

32 771,060 532 389 33,817,052 4 48 536 436

64 56,923 39 29 4,101,088 0 5 40 34

96 4,082,014 2817 2057 428,346,316 46 475 2863 2532

128 5,574,092 3846 2809 779,600,736 83 822 3929 3631

160 328,439 227 166 54,860,484 6 56 232 222

192 16,313 11 8 3,316,416 0 3 12 12

224 4820 3 2 1,135,380 0 1 3 4

256 24,766 17 12 9,150,720 1 9 18 21

512 32,159 22 16 25,494,920 3 23 25 40

1024 69,834 48 35 70,578,564 8 72 56 108

1536 8842 6 4 15,762,180 2 14 8 19

2048 9170 6 5 20,621,760 2 19 8 23

2560 20,206 14 10 56,319,740 6 51 20 61

3072 13,549 9 7 43,184,992 4 39 14 46

3584 4200 3 2 16,152,228 2 14 5 17

4096 67,808 47 34 285,606,596 29 255 76 290

5120 6143 4 3 35,434,680 4 32 8 35

6144 5858 4 3 37,934,684 4 34 8 37

7168 4140 3 2 31,769,300 3 28 6 30

8192 287,577 198 145 2,390,688,480 245 2132 444 2277

Total 11,387,913 7858 5740 4,352,876,316 452 4132 8310 9872

FIGURE 8.50 Total time on 10 Mbit Ethernet and a 155 Mbit ATM, calculating the total overhead and transmission
time separately. Note that the size of the headers needs to be added to the data bytes to calculate transmission time. The
higher overhead of the software driver for ATM offset the higher bandwidth of the network. These measurements were per-
formed in 1994 using SPARCstation 10s, the Fore Systems SBA-200 ATM interface card and he Fore Systems ASX-200
switch. (NFS measurements taken by Mike Dahlin of U.C. Berkeley.)

652 Chapter 8 Interconnection Networks and Clusters

Pitfall: Ignoring software overhead when determining performance.

Low software overhead requires cooperation with the operating system as well as
with the communication libraries. Figure 8.50 gives one example.

Another example comes from supercomputers. The CM-5 supercomputer had a
software overhead of 20 µsecs to send a message and a hardware overhead of 0.5
microseconds. The Intel Paragon reduced the hardware overhead to just 0.2 micro-
seconds, but the initial release of software has a software overhead of 250 micro-
seconds. Later releases reduced this overhead to 25 microseconds, which still
dominates the hardware overhead.

This pitfall is simply Amdahl’s Law applied to networks: Faster network hard-
ware is superfluous if there is not a corresponding decrease in software overhead.

Pitfall: Trying to provide features only within the network vs. end-to-end.

The concern is providing features at a lower level that only partially satisfy the
communication demand that can only be accomplished at the highest level.
Saltzer, Reed, and Clark [1984] give the end-to-end argument as

The function in question can completely and correctly be specified only with
the knowledge and help of the application standing at the endpoints of the com-
munication system. Therefore, providing that questioned function as a feature
of the communication system itself is not possible. [page 278]

Their example of the pitfall was a network at MIT that used several gateways,
each of which added a checksum from one gateway to the next. The programmers
of the application assumed the checksum guaranteed accuracy, incorrectly believ-
ing that the message was protected while stored in the memory of each gateway.
One gateway developed a transient failure that swapped one pair of bytes per mil-
lion bytes transferred. Over time the source code of one operating system was re-
peatedly passed through the gateway, thereby corrupting the code. The only
solution was to correct the infected source files by comparing to paper listings
and repairing the code by hand! Had the checksums been calculated and checked
by the application running on the end systems, safety would have been assured.

There is a useful role for intermediate checks, however, provided that end-to-
end checking is available. End-to-end checking may show that something is bro-
ken between two nodes, but it doesn’t point to where the problem is. Intermediate
checks can discover the broken component.

A second issue regards performance using intermediate checks. Although it is
sufficient to retransmit the whole in case of failures from the end point, it can be
much faster to retransmit a portion of the message at an intermediate point rather
than wait for time-out and a full message retransmit at the end point. Balakrish-
nan et al [1997] found that, for wireless networks, such an intermediate retrans-
mission for TCP/IP communication results in 10-30% higher throughput.

8.15 Concluding Remarks 653

Pitfall: Relying on TCP/IP for all networks, regardless of latency, bandwidth,
or software requirements.

The network designers on the first workstations decided it would be elegant to
use a single protocol stack no matter where the destination of the message: across
a room or across an ocean, the TCP/IP overhead must be paid. This might have
been a wise decision especially given the unreliability of early Ethernet hard-
ware, but it sets a high software overhead barrier for commercial systems. Such
an obstacle lowers the enthusiasm for low-latency network interface hardware
and low-latency interconnection networks if the software is just going to waste
hundreds of microseconds when the message must travel only dozens of meters.
It also can use significant processor resources. One rough rule of thumb is that
each Mbits/second of TCP/IP bandwidth needs about 1 MHz of processor speed,
and so a 1000 Mbits/second link could saturate a processor with a 800 to 1000
MHz clock.

The flip side is that from a software perspective, TCP/IP is the most desirable
target since it is the most connected and hence largest number of opportunities.
The downside of using software optimized to a particular LAN or SAN is that it
is limited. For example, communication from a Java program depends on TCP/IP,
so optimization for another protocol would require creation of glue software to
interface Java to it.

TCP/IP advocates point out that the protocol itself is theoretically not as
burdensome as the current implementations, but progress has been modest in
commercial systems. There are also TCP/IP off-loading engines entering the
market, with the hope of preserving the universal software model while to reduc-
ing processor utilization and message latency. If processors to continue to im-
prove much faster than network speeds, or if multiple processors become
ubiquitous, software TCP/IP may become less significant on processor utilization
and message latency.

Networking is one of the most exciting fields in computer science and engineer-
ing today. The purpose of this chapter to lower the cost of entry into this field by
providing definitions and the basic issues so that readers can more easily go into
more depth.

The Internet and World Wide Web pervade our society and will likely revolu-
tionize how we access information. Although we couldn’t have the Internet with-
out the telecommunication media, it is protocol suites such as TCP/IP that make
electronic communication practical. More than most areas of computer science
and engineering, these protocols embrace failures as the norm; the network must
operate reliably in the presence of failures. Interconnection network hardware
and software blend telecommunications with data communications, calling into

8.15 Concluding Remarks

654 Chapter 8 Interconnection Networks and Clusters

question whether they should remain as separate academic disciplines or be com-
bined into a single field.

The silicon revolution has made its way to the switch: just as the “killer
micro” changed computing, whatever turns out to be the “killer network” will
transform communication. We are seeing the same dramatic change in cost/
performance in switches as the mainframe-minicomputer-microprocessor change
did to processors. In 2001, companies that make switches are acquiring compa-
nies that make embedded microprocessors, just to have better microprocessors
for their switches.

Inexpensive switches mean that network bandwidth can scale with the number
of nodes, even to the level of the traditional I/O bus. Both I/O designers and
memory system designers must consider how to best select and deploy switches.
Thus, networking issues apply to all levels of computers systems today: commu-
nication within chips, between chips on a board, between boards, and between
computers in a machine room, on a campus, or in a country.

The availability and scalability of networks are transforming the machine
room. Disks are being connected over SAN to servers versus being directly at-
tached, and clusters of smaller computers connected by a LAN are replacing
large servers. The cost-performance, scalability, and fault isolation of clusters
have made them attractive to diverse communities: database, scientific comput-
ing, and Internet service providers. It’s hard to think what else these communities
have in common. The challenges for clusters today are the cost of administration.

After decades of low network performance on shared media, networking is in
“catch up” mode, and should improve faster than microprocessors. We are not
near any performance plateaus, so we expect rapid advance SANs, LANs, and
WANs.

This greater network performance is key to the information and communica-
tion centric vision of the future of our field. The dramatic improvement in cost/
performance of communications has enabled millions of people around the world
to find others with common interests. As the quotes at the beginning of this chap-
ter suggest, the authors believe this revolution in two-way communication will
change the form of human associations and actions.

This chapter has taken the unusual perspective that computers inside the machine
room on a LAN or SAN and computers on an intercontinental WAN share many
of the same concerns. Although this observation may be true, their histories are
very different. We highlight readings on each topic, but good general texts on net-
working have been written by Davie, Peterson, and Clark [1999] and by Kurose
and Ross [2001].

8.16 Historical Perspective and References

8.16 Historical Perspective and References 655

Wide Area Networks

The earliest of the data interconnection networks are WANs. The forerunner of
the Internet is the ARPANET, which in 1969 connected computer science depart-
ments across the U.S. that had research grants funded by the Advanced Research
Project Agency (ARPA), a U.S. government agency. It was originally envisioned
as using reliable communications at lower levels. It was the practical experience
with failures of underlying technology that led to the failure-tolerant TCP/IP,
which is the basis for the Internet today. Vint Cerf and Robert Kahn are credited
with developing the TCP/IP protocols in the mid 1970s, winning the ACM Soft-
ware Award in recognition of that achievement. Kahn [1972] is an early reference
on the ideas of ARPANET. For those interested in learning more about TPC/IP,
Stevens [1994] has written classic books on the topic.

In 1975, there were roughly 100 networks in the ARPANET and only 200 in
1983; in 1995 the Internet encompasses 50,000 networks worldwide, about half
of which are in the United States. In 2000, that number is hard to calculate, but
the number of IP hosts grew by a factor of 20 in five years. The key networks that
made the Internet possible, such as ARPANET and NSFNET, have been replaced
by fully commercial systems, and yet the Internet still thrives.

The exciting application of the Internet is the World Wide Web, developed by
Tim Berners-Lee, a programmer at the European Center for Particle Research
(CERN) in 1989 for information access. In 1992, a young programmer at the
University of Illinois, Marc Andreessen, developed a graphical interface for Web
called Mosaic. It became immensely popular. He later became a founder of
Netscape, which popularized commercial browsers. In May 1995, at the time of
the second edition of this book, there were over 30,000 web pages, and the num-
ber was doubling every two months. In November 2000, during the writing of the
third edition of this book, there were almost 100 million Internet hosts and more
than 1.3 billion WWW pages.

Alles [1995] offers a good survey on ATM. ATM is just the latest of the ongo-
ing standards set by the telecommunications industry, and it is undoubtedly the
future for this community. Communication forces standardization by competitive
companies, sometimes leading to anomalies. For example, the telecommunica-
tion companies in North America wanted to use 64-byte packets to match their
existing equipment, while the Europeans wanted 32-byte packets to match their
existing equipment. The new standard compromise was 48 bytes to ensure that
neither group had an advantage in the marketplace!

Finally, WANs today rely on fiber. Fiber has made such advances that it’s orig-
inal assumption of packet switching is no longer true: WAN bandwidth is not pre-
cious. Today WAN fibers are often underutilized. Goralski [1997] discusses
advances in fiber optics.

656 Chapter 8 Interconnection Networks and Clusters

Local Area Networks

ARPA’s success with wide area networks led directly to the most popular local
area networks. Many researchers at Xerox Palo Alto Research Center had been
funded by ARPA while working at universities, and so they all knew the value of
networking. In 1974, this group invented the Alto, the forerunner of today’s desk-
top computers [Thacker et al. 1982], and the Ethernet [Metcalfe and Boggs
1976], today’s LAN. This group--David Boggs, Butler Lampson, Ed McCreight,
Bob Sprowl, and Chuck Thacker--became luminaries in computer science and
engineering, collecting a treasure chest of awards between them.

This first Ethernet provided a 3 Mbits/sec interconnection, which seemed like
an unlimited amount of communication bandwidth with computers of that era. It
relied on the interconnect technology developed for the cable television industry.
Special microcode support gave a round-trip time of 50 microseconds for the
Alto over Ethernet, which is still a respectable latency. It was Boggs’ experience
as a ham radio operator that led to a design that did not need a central arbiter, but
instead listened before use and then varied back-off times in case of conflicts.

The announcement by Digital Equipment Corporation, Intel, and Xerox of a
standard for 10 Mbits/sec Ethernet was critical to the commercial success of
Ethernet. This announcement short-circuited a lengthy IEEE standards effort,
which eventually did publish IEEE 802.3 as an standard for Ethernet.

There have been several unsuccessful candidates in trying to replace the
Ethernet. The FDDI committee, unfortunately, took a very long time to agree on
the standard and the resulting interfaces were expensive. It was also a shared me-
dium when switches are becoming affordable. ATM also missed the opportunity
due in part to the long time to standardize the LAN version of ATM.

Due to failures of the past, LAN modernization efforts have been centered on
extending Ethernet to lower cost media, to switched interconnect, to higher link
speeds, and to new domains such as wireless communication. Spurgeon [2001]
has a nice on-line summary of Ethernet technology, including some of its history.

Massively Parallel Processors

One of the places of innovation in interconnect networks was in massively paral-
lel processors (MPPs). An early MPP was the Cosmic Cube [Seitz 1985], which
used Ethernet interface chips to connect 8086 computers in a hypercube. SAN in-
terconnections have improved considerably since then, with messages routed au-
tomatically through intermediate switches to their final destinations at high
bandwidths and with low latency. Considerable research has gone into the bene-
fits over different topologies in both construction and program behavior. Whether
due to faddishness or changes in technology is hard to say, but topologies certain-
ly become very popular and then disappear. The hypercube, widely popular in the
1980s, almost disappeared from MPPs of the 1990s. Cut-through routing, howev-
er, has been preserved and is covered by Dally and Seitz [1986].

8.16 Historical Perspective and References 657

Chapter 6 records the poor current state of such machines. Government pro-
grams such as the Accelerated Strategic Computing Initiative (ASCI) still result
in a handful of one-of-a-kind MPPs costing $50 to $100 million, yet these are ba-
sically clusters of SMPs.

Clusters

Clusters were probably “invented” in the 1960s by customers who could not fit
all there work in one computer, or who needed a backup machine in case of fail-
ure of the primary machine [Pfister, 1998]. Tandem introduced a 16-node cluster
in 1975. Digital followed with VAXclusters, introduced in 1984. They were origi-
nally independent computers that shared I/O devices, requiring a distributed op-
erating system to coordinate activity. Soon they had communication links
between computers, in part so that the computers could be geographically distrib-
uted to increase availability in case of a disaster at a single site. Users log onto
the cluster and are unaware of which machine they are running on. DEC (now
Compaq) sold more than 25,000 clusters by 1993. Other early companies were
Tandem (now Compaq) and IBM (still IBM), and today virtually every company
has cluster products. Most of these products are aimed at availability, with perfor-
mance scaling as a secondary benefit. Yet in 2000 clusters generally dominate the
list of top performers of the TPC-C database benchmark

Scientific computing on clusters emerged as a competitor to MPPs. In 1993,
the Beowulf Project started with the goal of fulfilling NASA’s desire for a 1
GFLOPS computer for under $50,000. In 1994, a 16-node cluster build from off
the shelf PCs using 80486s achieved that goal [Bell 2001.] This emphasis led to a
variety of software interfaces to make it easier to submit, coordinate, and debug
large programs or a large number of independent programs. In 2001, the fastest
(and largest) supercomputers are typically clusters, at least by some popular mea-
sures.

Efforts were made to reduce latency of communication in clusters as well as to
increase bandwidth, and several research projects worked on that problem. (One
commercial result of the low latency research was the VI interface standard,
which has been embraced by Infiniband, discussed below.) Low latency then
proved useful in other applications. For example, in 1997 a cluster of 100 UltraS-
PARC desktop computers at UC Berkeley, connected by 160-MB/sec per link
Myrinet switches, was used to set world records in database sort—sorting 8.6 GB
of data originally on disk in one minute—and in cracking an encrypted mes-
sage—taking just 3.5 hours to decipher a 40-bit DES key. This research project,
called Network of Workstations [Anderson et al, 1995], also developed the Ink-
tomi search engine, which led to a startup company with the same name.

For those interested in learning more, Pfister [1998] has written an entertain-
ing book on clusters. In even greater details, Sterling [2001] has written a do-it-
yourself-book on how to build a Beowulf cluster.

658 Chapter 8 Interconnection Networks and Clusters

System or Storage Area Networks (SANs)

At the second edition of this book, a new class of networks was emerging: system
area networks. These networks are designed for a single room or single floor and
thus the length is ten to hundreds of meters, and were for use in clusters. Close
distance means the wires can be wider and faster at lower cost, network hardware
can ensure in order delivery, and cascading switches consume less handshaking
time. There is also less reason to go to the cost of optical fiber, since the distance
advantage of fiber is less important for SANs. The limited size of the networks
also makes source-based routing plausible, further simplifying the network. Both
Tandem Computers and Myricom sold SANs.

In the intervening years the acronym SAN has been co-opted to also mean
storage area networks, whereby networking technology is used to connect stor-
age devices to compute servers. Today most people mean storage when they say
SAN. The most widely used example in 2001 is Fibre Channel Arbitrated Loop
(FC-AL). Not only are disk arrays attached to servers via FC-AL links, there are
even some disks with FC-AL links. There are also companies selling FC-AL
switches so that storage area networks can enjoy the benefits of greater band-
width and interconnectivity of switching.

 In October 2000 the Infiniband Trade Association announced version 1.0
specification of Infiniband. Led by Intel, HP, IBM, Sun, and other companies, it
was proposed as a successor to the PCI bus that brings point-to-point links and
switches with its own set of protocols. It’s characteristics are desirable potentially
both for system area networks to connect clusters and for storage area networks
to connect disk arrays to servers. To learn more, the Inifiband standard [2001] is
available on the WWW.

The chief competition for Infiniband is the rapidly improving Ethernet tech-
nology. The Internet Engineering Task Force is proposing a standard called iSCSI
to send SCSI command over IP networks (Satran[2001]). Given the likely cost
advantages of the higher volume Ethernet switches and interface cards, in 2001,
it is unclear who will win.

Will Infiniband take over the machine room, leaving the WAN as the only link
that is not Infiniband? Or will Ethernet will dominate the machine room, even
taking over some of the role of storage area networks, leaving Infiniband to sim-
ply be an I/O bus replacement? Or will there be a three-level solution: Infiniband
in the machine room, Ethernet in the building and on the campus, and then WAN
for country? Will TCP/IP off-loading engines become available that can reduce
processor utilization and provide low latency yet still provide the software inter-
faces and generality of TCP/IP? Or will software TCP/IP and faster multiproces-
sors be sufficient?

 In 2001, it is very hard to tell which will win. A wonderful characteristic of
computer architecture is that such issues will not remain endless academic de-
bates, unresolved as people rehash the same arguments repeatedly. Instead, the
battle is fought in the marketplace, with well-funded and talented groups giving

8.16 Historical Perspective and References 659

their best efforts at shaping the future. Moreover, constant changes to technology
reward those who are either astute or lucky. The best combination of technology
and follow-through has often determined commercial success.

Let the games begin! Time will tell us who wins and who loses, and we will
likely know the score by the next edition of this text.

References

ALLES, A. [1995]. “ATM Internetworking,” (May), www.cisco.com/warp/public/614/12.html.

ANDERSON, T. E., D. E. CULLER, D. PATTERSON [1995]. “A CASE FOR NOW (NETWORKS OF WORK-

STATIONS),” IEEE MICRO 15:1 (FEBRUARY), 54–64.

ARPACI, R. H., D. E. CULLER, A. KRISHNAMURTHY, S. G. STEINBERG, AND K. YELICK [1995].
“Empirical evaluation of the CRAY-T3D: A compiler perspective,” Proc. 23rd Int’l Symposium on
Computer Architecture (June), Italy.

Balakrishnan, H.; Padmanabhan, V.N.; Seshan, S.; Katz, R.H. [1997] A comparison of mechanisms
for improving TCP performance over wireless links. IEEE/ACM Transactions on Networking,
vol.5, (no.6), Dec., 756-69.

Brain, M. [2000] “Iside a Digital Cell Phone, “
http://www.howstuffworks.com/inside-cell-phone.htm.

BREWER, E. A. AND B. C. KUSZMAUL [1994]. “How to get good performance from the CM-5 data
network.” Proc. Eighth Int’l Parallel Processing Symposium (April), Cancun, Mexico.

Brin, S.; Page, L. [1998]. “The anatomy of a large-scale hypertextual Web search engine. “ Proc. 7th
International World Wide Web Conference, Brisbane, Qld., Australia, (14-18 April) , 107-17.

COMER, D. [1993]. Internetworking with TCP/IP, 2nd ed., Prentice Hall, Englewood Cliffs, N.J.

DALLY, W. J. AND C. I. SEITZ [1986]. “The torus routing chip,” Distributed Computing 1:4, 187–96.

Davie, B. S., L. L. Peterson, and D. Clark [1999] Computer Networks: A Systems Approach, second
edition, Morgan Kaufmann Publishers, San Francisco.

DESURVIRE, E. [1992]. “Lightwave communications: The fifth generation,” Scientific American
(International Edition) 266:1 (January), 96–103.

Grice, C. and M. Kanellos [2000] “Cell phone industry at crossroads: Go high or low? , “ CNET
News, August 31,
http://technews.netscape.com/news/0-1004-201-2518386-0.html?tag=st.ne.1002.tgif.sf.

Goralski, W.[1997]. SONET : a guide to Synchronous Optical Network, New York : McGraw-Hill.

Groe, John B. amd Lawrence E. Larson.[2000] CDMA mobile radio design , Boston : Artech House.

InfiniBand Trade Association [2001]. InfiniBand™ Architecture Specifications Release 1.0.a,
www.infinibandta.org.

KAHN, R. E. [1972]. “Resource-sharing computer communication networks,” Proc. IEEE 60:11
(November), 1397–1407.

Kurose, J. F. and K. W. Ross [2001]. Computer networking : a top-down approach featuring the In-
ternet, Addison-Wesley, Boston

METCALFE, R. M. [1993]. “Computer/network interface design: Lessons from Arpanet and Ethernet.
IEEE J. on Selected Areas in Communications 11:2 (February), 173–80.

METCALFE, R. M. AND D. R. BOGGS [1976]. “Ethernet: Distributed packet switching for local
computer networks,” Comm. ACM 19:7 (July), 395–404.

National Research Council [1997]. The evolution of untethered communications, Computer Science
and Telecommunications Board, Washington, D.C. : National Academy Press.

660 Chapter 8 Interconnection Networks and Clusters

PARTRIDGE, C. [1994]. Gigabit Networking. Addison-Wesley, Reading, Mass.

Pfister, Gregory F. [1998]In search of clusters , 2nd ed. Upper Saddle River, NJ : Prentice Hall PTR.

SALTZER, J. H., D. P. REED, D. D. CLARK [1984]. “End-to-end arguments in system design,” ACM
Trans. on Computer Systems 2:4 (November), 277–88.

SEITZ, C. L. [1985]. “The Cosmic Cube (concurrent computing),”Communications of the ACM 28:1
(January), 22–33.

Sterling, T. [2001]. Beowulf PC Cluster Computing with Windows and Beowulf PC Cluster Comput-
ing with Linux, MIT Press, Cambridge, MA.

Spurgeon, C. [2001] “Charles Spurgeon's Ethernet Web Site,”wwwhost.ots.utexas.edu/ethernet/eth-
ernet-home.html.

Satran, J et. al.[2001] "iSCSI," IPS working group of IETF, Internet draft http://www.ietf.org/inter-
net-drafts/draft-ietf-ips-iscsi-07.txt

Stevens, W. R. [1994-1996]. TCP/IP illustrated, (three volumes) Addison-Wesley Pub. Co., Reading,
Mass..

TANENBAUM, A. S. [1988]. Computer Networks, 2nd ed., Prentice Hall, Englewood Cliffs, N.J.

THACKER, C. P., E. M. MCCREIGHT, B. W. LAMPSON, R. F. SPROULL, AND D. R. BOGGS [1982].
“Alto: A personal computer,” in Computer Structures: Principles and Examples, D. P. Siewiorek,
C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549–572.

WALRAND, J. [1991]. Communication Networks: A First Course, Aksen Associates: Irwin, Home-
wood, Ill.

E X E R C I S E S

n Using the examples from section 8.11, use the techniques from Chapter 7 to
calculate the reliability of the cluster. The results of failrues on Tertiary Disk
give one set of failure information. What is the MTTF? Where are the single
points of failure? How could the designs be changed to improve MTTF?

n Along similar lines, calculate the performance bottlenecks? How does it
change if we use rules of thumb on utilization for Chapter 7 vs. assuming 100%
utilization?

n The SAN versions just use FC-AL loops versus adding a FC-AL switch. What
would have to change in the disk system to make a FC-AL switch valuable?
(RAID is the bottleneck with only a single FC-AL loop between the box and
the server.)

n Undoubtedly the top 10 of TPC-C has changed. Find a cluster from Dell or
Compaq, and go to their web sites to determine the prices of the varying cluster
strategies as we did in the examples. Note that the execute overview lists all the
components and their prices at the time of the benchmark. They can serve as
good placeholders until or unless you can find the current real prices online.
They also supply maintenance costs.

n Add a discussion question on use of Ethernet vs.Infiniband in the machine
room. What are the technical advantages of each? What are the economic ad-

Exercises 661

vantages of each? Why would people maintaining the system prefer one to the
other?

n In all exercises, should go to faster Ethernet (and ATM).

n We could use 5 to 10 more exercises.

n Some simple ones: go to the TPC web site and look at which architectures--
clusters vs. some form of multiprocessors--dominate each benchmark in per-
formance and in cost performance. Make a discussion question as to why this
might vary between benchmarks. How has it changed since the data in the fig-
ure? Have the trends contrinued, or not?

n Do a similar study for the Linpack benchmarks (List of Top 500 supercomput-
ers). See if there is older versions of the list so you can see how machine types
and brand names change over time. How has it changed since the data in the
figure? Have the trends contrinued, or not?

n If you have access to an SMP and a cluster, write a program to measure latency
of communication and bandwidth of communication between processors.

8.1 [15] <8.2> Assume the overhead to send a zero-length data packet on an Ethernet is
500 microseconds and that an unloaded network can transmit at 90% of the peak 10 Mbits/
sec rating. Plot the delivered bandwidth as the data transfer size varies from 32 bytes to
1500.

n Change Ethernet speed in the next one. Figure still there?

8.2 [15] <8.2> One reason that ATM has a fixed transfer size is that when a short message
is behind a long message, a node may need to wait for an entire transfer to complete. For
applications that are time-sensitive, such as when transmitting voice or video, the large
transfer size may result in transmission delays that are too long for the application. On an
unloaded interconnection, what is the worst-case delay if a node must wait for one full-size
Ethernet packet versus an ATM transfer? See Figure 8.20 (page 605) to find the packet
sizes. For this question assume you can transmit at 100% of the 155 Mbits/sec of the ATM
network and 100% of the 10 Mbits/sec Ethernet.

n Update next one to larger tapes, speeds. Match assumptions in revised exam-
ple?

8.3 [20/10] <8.3>Is electronic communication always fastest for longer distances than the
Example on page 583? Calculate the time to send 100 GB using 10 8-mm tapes and an over-
night delivery service versus sending 100 GB by FTP over the Internet. Make the following
four assumptions:

n The tapes are picked up at 4 P.M. Pacific time and delivered 4200 km away at 10 A.M.
Eastern time (7 A.M. Pacific time).

n On one route the slowest link is a T1 line, which transfers at 1.5 Mbits/sec.

n On another route the slowest link is a 10 Mbits/sec Ethernet.

662 Chapter 8 Interconnection Networks and Clusters

n You can use 50% of the slowest link between the two sites.

a. [20] <8.3> Will all the bytes sent by either Internet route arrive before the overnight
delivery person arrives?

b. [10] <8.3> What is the bandwidth of overnight delivery? Calculate the average band-
width of overnight delivery service for a 100-GB package.

n Perhaps a next exercise can add bandwidth of networking links on campus and
over the internet. Mary Baker at Stanford has created a new set of software that
is much more efficient at finding bandwidth. Latency can be figured out from
ping and traceroute (I recall). I can imagine several exercises along these lines.

8.4 [20/20/20/20] <8.8> If you have access to a UNIX system, use ping to explore the In-
ternet. First read the manual page. Then use ping without option flags to be sure you can
reach the following sites. It should say that X is alive. Depending on your system, you
may be able to see the path by setting the flags to verbose mode (-v) and trace route mode
(-R) to see the path between your machine and the example machine. Alternatively, you
may need to use the program traceroute to see the path. If so, try its manual page. You
may want to use the UNIX command script to make a record of your session.

a. [20] <8.8> Trace the route to another machine on the same local area network.

b. [20] <8.8> Trace the route to another machine on your campus that is not on the same
local area network.

c. [20] <8.8> Trace the route to another machine off campus. For example, if you have a
friend you send email to, try tracing that route. See if you can discover what types of
networks are used along that route.

d. [20] <8.8> One of the more interesting sites is the McMurdo NASA government sta-
tion in Antarctica. Trace the route to mcmvax.mcmurdo.gov.

n Change next to Ethernet example?

8.5 [12/15/15] <8.4> Assume 64 nodes and 16 × 16 ATM switches in the following. (This
exercise was suggested by Mark Hill.)

a. [12] <8.4> Design a switch topology that has the minimum number of switches.

b. [15] <8.4> Design a switch topology that has the minimum latency through the switch-
es. Assume unit delay in the switches and zero delay for wires.

c. [15] <8.4> Design a switch topology that balances the bandwidth required for all links.
Assume a uniform traffic pattern.

n I think this example was dropped?

8.6 [20] <8.4> Redo the cut-through routing calculation for CM-5 on page 590 of different
sizes: 64, 256, and 1024 nodes.

n I dropped the all-to-all example. Perhaps put in as exercise? Reword and see if
this exercise still makes sense

8.7 [15] <8.4> Calculate the time to perform a broadcast (from-one-to-all) on each of the

Exercises 663

topologies in Figure 8.17 on page 598, making the same assumptions as the two Examples
on pages 584–588.

n I dropped the all-to-all example. Reword and see if this exercise still makes
sense

8.8 [20] <8.4> The two Examples on pages 584–588 assumed unlimited bandwidth be-
tween the node and the network interface. Redo the calculations in Figure 8.17 on page 598,
this time assuming a node can only issue one message in a time unit.

8.9 [15] <8.4> Compare the interconnection latency of a crossbar, Omega network, and fat
tree with eight nodes. Use Figure 8.13 on page 593 and add a fat tree similar to Figure 8.14
on page 595 as a third option. Assume that each switch costs a unit time delay. Assume the
fat tree randomly picks a path, so give the best case and worst case for each example. How
long will it take to send a message from node P0 to P6? How long will it take P1 and P7 to
also communicate?

n figure in next exercise was dropped. Replacing it with 8.50 on page 651 re-
quires changing the question. Perhaps use the data in the figure to first calculate
what is the delivered Mbits/sec (accounting for overheads) for each network
for each size of NSF payload. Then ask what is n1/2 for each network given
those overheads.

n <<Figure below is gone, so pick another example?>>

8.10 [15] <8.4> One interesting measure of the latency and bandwidth of an interconnec-
tion is to calculate the size of a message needed to achieve one-half of the peak bandwidth.
This halfway point is sometimes referred to as n1/2, taken from the vector processing. Using
Figure 7.36 on page 621, estimate n1/2 for TCP/IP message using ATM and the Ethernet.

8.11 [15] <8.8> Use FTP to transfer a file from a remote site and then between local sites
on the same LAN. What is the difference in bandwidth for each transfer? Try the transfer
at different times of day or days of the week. Is the WAN or LAN the bottleneck?

8.12 [15] <8.4> Draw the topology of a 6-cube similar to the drawing of the 4-cube in
Figure 8.16 on page 597.

8.13 [12/12/12/15/15/18] <8.7> Use M/M/1 queuing model to answer this exercise. Mea-
surements of a network bridge show that packets arrive at 200 packets per second and that
the gateway forwards them in about 2 ms.

a. [12] <8.7> What is the utilization of the gateway?

b. [12] <8.7> What is the mean number of packets in the gateway?

c. [12] <8.7> What is the mean time spent in the gateway?

d. [15] <8.7> Plot the response time versus utilization as you vary the arrival rate.

e. [15] <8.7> For an M/M/1 queue, the probability of finding n or more tasks in the sys-

tem is Utilizationn. What is the chance of an overflow of the FIFO if it can hold 10
messages?

f. [18] <8.7> How big must the gateway be to have packet loss due to FIFO overflow to

664 Chapter 8 Interconnection Networks and Clusters

be less than one packet per million?

8.14 [20] <8.7> The imbalance between the time of sending and receiving can cause prob-
lems in network performance. Sending too fast can cause the network to back up and in-
crease the latency of messages, since the receivers will not be able to pull out the message
fast enough. A technique called bandwidth matching proposes a simple solution: Slow
down the sender so that it matches the performance of the receiver [Brewer 1994]. If two
machines exchange an equal number of messages using a protocol like UDP, one will get
ahead of the other, causing it to send all its messages first. After the receiver puts all these
messages away, it will then send its messages. Estimate the performance for this case versus
a bandwidth-matched case. Assume the send overhead is 200 microseconds, the receive
overhead is 300 microseconds, time of flight is 5 microseconds, and latency is 10 microsec-
onds, and that the two machines want to exchange 100 messages.

8.15 [40] <8.7> Compare the performance of UDP with and without bandwidth matching
by slowing down the UDP send code to match the receive code as advised by bandwidth
matching [Brewer 1994]. Devise an experiment to see how much performance changes as
a result. How should you change the send rate when two nodes send to the same destina-
tion? What if one sender sends to two destinations?

8.16 Historical Perspective and References 665

C.1

Introduction C-2

C.2

Addressing Modes and Instruction Formats C-4

C.3

Instructions: The MIPS Core Subset C-5

C.4

Instructions: Multimedia Extensions of the

Desktop/Server RISCs C-16

C.5

Instructions: Digital Signal-Processing Extensions

of the Embedded RISCs C-18

C.6

Instructions: Common Extensions to MIPS Core C-19

C.7

Instructions Unique to MIPS64 C-24

C.8

Instructions Unique to Alpha C-26

C.9

Instructions Unique to SPARC v.9 C-27

C.10

Instructions Unique to PowerPC C-31

C.11

Instructions Unique to PA-RISC 2.0 C-32

C.12

Instructions Unique to ARM C-35

C.13

Instructions Unique to Thumb C-36

C.14

Instructions Unique to SuperH C-37

C.15

Instructions Unique to M32R C-38

C.16

Instructions Unique to MIPS16 C-38

C.17

Concluding Remarks C-40

C.18

Acknowledgments C-41

References C-41

C

A Survey of RISC Architectures

for Desktop, Server, and

Embedded Computers

RISC: any computer announced after 1985.

Steven Przybylski

A Designer of the Stanford MIPS

© 2003 Elsevier Science (USA). All rights reserved.

C-2

�

Appendix C

A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

We cover two groups of reduced instruction set computer (RISC) architectures in
this appendix. The first group is the desktop and server RISCs:

�

Digital Alpha

�

Hewlett-Packard PA-RISC

�

IBM and Motorola PowerPC

�

Silicon Graphics MIPS

�

Sun Microsystems SPARC

The second group is the embedded RISCs:

�

Advanced RISC Machines ARM

�

Advanced RISC Machines Thumb

�

Hitachi SuperH

�

Mitsubishi M32R

�

Silicon Graphics MIPS16

There has never been another class of computers so similar. This similarity
allows the presentation of 10 architectures in about 50 pages. Characteristics of
the desktop and server RISCs are found in Figure C.1 and the embedded RISCs
in Figure C.2.

Notice that the embedded RISCs tend to have 8 to 16 general-purpose regis-
ters while the desktop/server RISCs have 32, and that the length of instructions is
16 to 32 bits in embedded RISCs but always 32 bits in desktop/server RISCs.

Although shown as separate embedded instruction set architectures, Thumb
and MIPS16 are really optional modes of ARM and MIPS invoked by call
instructions. When in this mode they execute a subset of the native architecture
using 16-bit-long instructions. These 16-bit instruction sets are not intended to be
full architectures, but they are enough to encode most procedures. Both machines
expect procedures to be homogeneous, with all instructions in either 16-bit mode
or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or
in 32-bit mode for performance.

One complication of this description is that some of the older RISCs have
been extended over the years. We decided to describe the latest version of the
architectures: Alpha version 3, MIPS64, PA-RISC 2.0, and SPARC version 9 for
the desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3,
M32R version 1, and MIPS16 version 1 for the embedded ones.

The remaining sections proceed as follows. After discussing the addressing
modes and instruction formats of our RISC architectures, we present the survey
of the instructions in five steps:

C.1 Introduction

C.1 Introduction

�

C

-

3

�

Instructions found in the MIPS core, which is defined in Chapter 2 of the
main text

�

Multimedia extensions of the desktop/server RISCs

 Alpha MIPS I PA-RISC 1.1 PowerPC SPARC v.8

Date announced 1992 1986 1986 1993 1987

Instruction size (bits) 32 32 32 32 32

Address space (size,
model)

64 bits, flat 32 bits, flat 48 bits,
segmented

32 bits, flat 32 bits, flat

Data alignment Aligned Aligned Aligned Unaligned Aligned

Data addressing modes 1 1 5 4 2

Protection Page Page Page Page Page

Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped

Integer registers
(number, model, size)

31 GPR

×

 64 bits
31 GPR

×

 32 bits
31 GPR

×

 32 bits
32 GPR

×

 32 bits
31 GPR

×

 32 bits

 Separate floating-
point registers

31

×

 32 or
31

×

 64 bits
16

×

 32 or
16

×

 64 bits
56

×

 32 or
28

×

 64 bits
32

×

 32 or
32

×

 64 bits
32

×

 32 or
32

×

 64 bits

Floating-point format IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

Figure C.1

Summary of the first version of five recent architectures for desktops and servers.

Except for the num-
ber of data address modes and some instruction set details, the integer instruction sets of these architectures are
very similar. Contrast this with Figure C.34. Later versions of these architectures all support a flat, 64-bit address
space.

 ARM Thumb SuperH M32R MIPS16

Date announced 1985 1995 1992 1997 1996

Instruction size (bits) 32 16 16 16/32 16/32

Address space (size,
model)

32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat 32/64 bits, flat

Data alignment Aligned Aligned Aligned Aligned Aligned

Data addressing modes 6 6 4 3 2

Integer registers
(number, model, size)

15 GPR x 32 bits 8 GPR + SP, LR
x 32 bits

16 GPR x 32 bits 16 GPR x 32 bits 8 GPR + SP, RA
x 32/64 bits

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped

Figure C.2

Summary of five recent architectures for embedded applications.

 Except for number of data address
modes and some instruction set details, the integer instruction sets of these architectures are similar. Contrast this
with Figure C.34.

C-4

�

Appendix C

A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

�

Digital signal-processing extensions of the embedded RISCs

�

Instructions not found in the MIPS core but found in two or more architectures

�

The unique instructions and characteristics of each of the 10 architectures

We give the evolution of the instruction sets in the final section and conclude with
a speculation about future directions for RISCs.

Figure C.3 shows the data addressing modes supported by the desktop architec-
tures. Since all have one register that always has the value 0 when used in address
modes, the absolute address mode with limited range can be synthesized using

zero

 as the base in displacement addressing. (This register can be changed by
ALU operations in PowerPC; it is always 0 in the other machines.) Similarly, reg-
ister indirect addressing is synthesized by using displacement addressing with an
offset of 0. Simplified addressing modes is one distinguishing feature of RISC
architectures.

Figure C.4 shows the data addressing modes supported by the embedded
architectures. Unlike the desktop RISCs, these embedded machines do not
reserve a register to contain 0. Although most have two to three simple addressing
modes, ARM and SuperH have several, including fairly complex calculations.
ARM has an addressing mode that can shift one register by any amount, add it to
the other registers to form the address, and then update one register with this new
address.

References to code are normally PC-relative, although jump register indirect
is supported for returning from procedures, for case statements, and for pointer
function calls. One variation is that PC-relative branch addresses are shifted left 2
bits before being added to the PC for the desktop RISCs, thereby increasing the
branch distance. This works because the length of all instructions for the desktop
RISCs is 32 bits and instructions must be aligned on 32-bit words in memory.
Embedded architectures with 16-bit-long instructions usually shift the PC-
relative address by 1 for similar reasons.

Addressing mode Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Register + offset (displacement or based) X X X X X

Register + register (indexed) — X (FP) X (Loads) X X

Register + scaled register (scaled) — — X — —

Register + offset and update register — — X X —

Register + register and update register — — X X —

Figure C.3

Summary of data addressing modes supported by the desktop architectures.

 PA-RISC also has short
address versions of the offset addressing modes. MIPS64 has indexed addressing for floating-point loads and stores.
(These addressing modes are described in Figure 2.6 on page 98.)

C.2 Addressing Modes and Instruction Formats

C.3 Instructions: The MIPS Core Subset

�

C

-

5

Figure C.5 shows the format of the desktop RISC instructions, which includes
the size of the address in the instructions. Each instruction set architecture uses
these four primary instruction formats. Figure C.6 shows the six formats for the
embedded RISC machines. The desire to have smaller code size via 16-bit
instructions leads to more instruction formats.

Figures C.7 and C.8 show the variations in extending constant fields to the
full width of the registers. In this subtle point, the RISCs are similar but not
identical

.

The similarities of each architecture allow simultaneous descriptions, starting
with the operations equivalent to the MIPS core.

MIPS Core Instructions

Almost every instruction found in the MIPS core is found in the other architec-
tures, as Figures C.9 through C.13 show. (For reference, definitions of the MIPS
instructions are found in Section 2.12 and on the back inside cover of the book.)
Instructions are listed under four categories: data transfer (Figure C.9); arith-
metic, logical (Figure C.10); control (Figure C.11); and floating point (Figure
C.12). A fifth category (Figure C.13) shows conventions for register usage and
pseudoinstructions on each architecture. If a MIPS core instruction requires a
short sequence of instructions in other architectures, these instructions are sepa-
rated by semicolons in Figures C.9 through C.13. (To avoid confusion, the desti-
nation register will always be the leftmost operand in this appendix, independent

Addressing mode ARM v.4 Thumb SuperH M32R MIPS16

Register + offset (displacement or based) X X X X X

Register + register (indexed) X X X — —

Register + scaled register (scaled) X — — — —

Register + offset and update register X — — — —

Register + register and update register X — — — —

Register indirect — — X X —

Autoincrement, autodecrement X X X X —

PC-relative data X X (loads) X — X (loads)

Figure C.4

Summary of data addressing modes supported by the embedded architectures.

 SuperH and M32R
have separate register indirect and register + offset addressing modes rather than just putting 0 in the offset of the
latter mode. This increases the use of 16-bit instructions in the M32R, and it gives a wider set of address modes to dif-
ferent data transfer instructions in SuperH. To get greater addressing range, ARM and Thumb shift the offset left 1 or
2 bits if the data size is half word or word. (These addressing modes are described in Figure 2.6 on page 98.)

C.3 Instructions: The MIPS Core Subset

C-6

�

Appendix C

A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

Figure C.5

Instruction formats for desktop/server RISC architectures.

These four formats are found in all five archi-
tectures. (The superscript notation in this figure means the width of a field in bits.) Although the register fields are
located in similar pieces of the instruction, be aware that the destination and two source fields are scrambled. Op =
the main opcode, Opx = an opcode extension, Rd = the destination register, Rs1 = source register 1, Rs2 = source reg-
ister 2, and Const = a constant (used as an immediate or as an address). Unlike the other RISCs, Alpha has a format for
immediates in arithmetic and logical operations that is different from the data transfer format shown here. It pro-
vides an 8-bit immediate in bits 20 to 13 of the RR format, with bits 12 to 5 remaining as an opcode extension.

Opcode Register Constant

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Register-register

Register-immediate

Branch

Jump/call

Op6

31 25 20 15 10 4 0

31 25 20 15 0

31 25

31 25 20

20 15 0

0

Rs15 Rs25

Rd5 Rs15 Const16

Const5

Rs15 Const21

Rs15 Opx5
/Rs25 Const16

Opx6

Opx3

Opx11

Rs15 Const14 Opx2

O C

Opx2

O1 C1

Rs25 Rs15 Const11

Const19

Const26

Const24

Const21

Const30

Const16

Const16

Rs15 Rd5

Rd5 Rs15

Rs25 Rd5

Rd5

Const16

Opx6 Rs15 1 Const13

Rs15 Rs25 Rd5

Rd5 Rs15

Rs15

Rs25 Opx11

Opx6

Opx11Rs15 Rs25 Rd5

Opx80Rd5 Opx6 Rs25

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op2

Op2

Op2

Op2

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op6

31 29 24 18 13 12 4 0

31 29 24 18 13 12 0

31 29 18 12 1 0

31 29 20 15 12 1 0

Rd5Opx11

Const21Rs15

C.3 Instructions: The MIPS Core Subset

�

C

-

7

Figure C.6

Instruction formats for embedded RISC architectures.

These six formats are found in all five architec-
tures. The notation is the same as Figure C.5. Note the similarities in branch, jump, and call formats, and the diversity
in register-register, register-immediate, and data transfer formats. The differences result from whether the architec-
ture has 8 or 16 registers, whether it is a 2- or 3-operand format, and whether the instruction length is 16 or 32 bits.

Const8

Opcode Register Constant

ARM

Thumb

SuperH

M32R

MIPS16

Register-register

Opx4

31 27 19 15 11 3 0

Op8 Rs14 Rd4

Opx4

Rd4

Rd4

Rd3

Op6

Op4

Op4

Op5

15 10 4 17 0

Rs24Opx8

Opx2Rs23Rs13

Rs4Opx4

Opx4Rs4

Rs3 Rd3

ARM

Thumb

SuperH

M32R

MIPS16

Data transfer

Opx4

31 27 19 15 11 0

Op3 Rs14 Rd4

Rs4

Rd4

Rd3

Op5 Const5

Op4

Op5

15 10 0

Const12

Rs4 Const16Opx4

Rs3 Rd3

Const4

ARM

Thumb

SuperH

M32R

MIPS16

Register-immediate

Opx4

31 27 19 15 11 0

Op3 Rs14 Rd4

Rd3

Rd4

Rd4

Rd3

Op5

Op4

Op4

Op5

15 10 47 0

Const12

Const5Rs3

Rs4 Const16Opx4

Const8

Const8

Branch

ARM

Thumb

SuperH

M32R

MIPS16

Jump

Opx4

31 27 23 0

Op4

Op5

Op4

Op5

15 10 0

Const24

Const11

Const8

Const11

Const12

ARM

Thumb

SuperH

M32R

MIPS16

Call

Opx4

31 27 23 0

Op4

Op5

Op4

Op8

Op6

15 25

Const24

Const26

Const8

Const11 Const11Opx5

Const12

ARM

Thumb

SuperH

M32R

MIPS16

Opx4

31 27 23 0

Op4

Rd4

Rd3

Op4 Opx4

Op8

Op4

Op5

15 10 7 0

Const24

Const8
Rs4 Const16Opx4

Const8

Const24

Op4 Rd4

Rs3 Const5

7 4

Op4 Opx4

0

C-8

�

Appendix C

A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

of the notation normally used with each architecture.) Figures C.14 through C.17
show the equivalent listing for embedded RISCs. Note that floating point is gen-
erally not defined for the embedded RISCs.

Every architecture must have a scheme for compare and conditional branch,
but despite all the similarities, each of these architectures has found a different
way to perform the operation.

Compare and Conditional Branch

SPARC uses the traditional four condition code bits stored in the program status
word:

negative, zero, carry,

 and

overflow.

 They can be set on any arithmetic or log-
ical instruction; unlike earlier architectures, this setting is optional on each instruc-
tion. An explicit option leads to fewer problems in pipelined implementation.
Although condition codes can be set as a side effect of an operation, explicit com-
pares are synthesized with a subtract using

r0

 as the destination. SPARC condi-
tional branches test condition codes to determine all possible unsigned and signed
relations. Floating point uses separate condition codes to encode the IEEE 754

Format: instruction category Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign — Sign Sign Sign

Register-immediate: data transfer Sign Sign Sign Sign Sign

Register-immediate: arithmetic Zero Sign Sign Sign Sign

Register-immediate: logical Zero Zero — Zero Sign

Figure C.7

Summary of constant extension for desktop RISCs.

The constants in the jump and call instructions of
MIPS are not sign-extended since they only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged.
PA-RISC has no logical immediate instructions.

Format: instruction category ARM v.4 Thumb SuperH M32R MIPS16

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign Sign/Zero Sign Sign —

Register-immediate: data transfer Zero Zero Zero Sign Zero

Register-immediate: arithmetic Zero Zero Sign Sign Zero/Sign

Register-immediate: logical Zero — Zero Zero —

Figure C.8

Summary of constant extension for embedded RISCs.

 The 16-bit-length instructions have much
shorter immediates than those of the desktop RISCs, typically only 5 to 8 bits. Most embedded RISCs, however, have
a way to get a long address for procedure calls from two sequential half words. The constants in the jump and call
instructions of MIPS are not sign-extended since they only replace the lower 28 bits of the PC, leaving the upper 4
bits unchanged. The 8-bit immediates in ARM can be rotated right an even number of bits between 2 and 30, yield-
ing a large range of immediate values. For example, all powers of 2 are immediates in ARM.

C.3 Instructions: The MIPS Core Subset

�

C

-

9

conditions, requiring a floating-point compare instruction. Version 9 expanded
SPARC branches in four ways: a separate set of condition codes for 64-bit opera-
tions; a branch that tests the contents of a register and branches if the value is =,
not=, <, <=, >=, or <= 0 (see MIPS below); three more sets of floating-point condi-
tion codes; and branch instructions that encode static branch prediction.

PowerPC also uses four condition codes:

less than, greater than, equal,

 and

summary overflow,

 but it has eight copies of them. This redundancy allows the
PowerPC instructions to use different condition codes without conflict, essen-
tially giving PowerPC eight extra 4-bit registers. Any of these eight condition
codes can be the target of a compare instruction, and any can be the source of a
conditional branch. The integer instructions have an option bit that behaves as if
the integer op is followed by a compare to zero that sets the first condition “regis-
ter.” PowerPC also lets the second “register” be optionally set by floating-point
instructions. PowerPC provides logical operations among these eight 4-bit condi-
tion code registers (

CRAND

,

CROR

,

CRXOR

,

CRNAND

,

CRNOR

,

CREQV

), allowing more
complex conditions to be tested by a single branch.

Data transfer
(instruction formats) R-I R-I R-I, R-R R-I, R-R R-I, R-R

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Load byte signed

LDBU; SEXTB LB LDB; EXTRW,S 31,8 LBZ; EXTSB LDSB

Load byte unsigned

LDBU LBU LDB, LDBX, LDBS LBZ LDUB

Load half word signed

LDWU; SEXTW LH LDH; EXTRW,S 31,16 LHA LDSH

Load half word unsigned

LDWU LHU LDH, LDHX, LDHS LHZ LDUH

Load word

LDLS LW LDW, LDWX, LDWS LW LD

Load SP float

LDS

*

LWC1 FLDWX, FLDWS LFS LDF

Load DP float

LDT LDC1 FLDDX, FLDDS LFD LDDF

Store byte

STB SB STB, STBX, STBS STB STB

Store half word

STW SH STH, STHX, STHS STH STH

Store word

STL SW STW, STWX, STWS STW ST

Store SP float

STS SWC1 FSTWX, FSTWS STFS STF

Store DP float STT SDC1 FSTDX, FSTDS STFD STDF

Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, MF_,
MTSPR, MT_

RD, WR, RDPR,
WRPR, LDXFSR,
STXFSR

Move integer to FP register ITOFS MFC1/
DMFC1

STW; FLDWX STW; LDFS ST; LDF

Move FP to integer register FTTOIS MTC1/
DMTC1

FSTWX; LDW STFS; LW STF; LD

Figure C.9 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthe-
size a MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to
MIPS core, they are separated by commas. For this figure, half word is 16 bits and word is 32 bits. Note that in Alpha,
LDS converts single-precision floating point to double precision and loads the entire 64-bit register.

C-10 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

MIPS uses the contents of registers to evaluate conditional branches. Any two
registers can be compared for equality (BEQ) or inequality (BNE), and then the
branch is taken if the condition holds. The set-on-less-than instructions (SLT,
SLTI, SLTU, SLTIU) compare two operands and then set the destination register to
1 if less and to 0 otherwise. These instructions are enough to synthesize the full
set of relations. Because of the popularity of comparisons to 0, MIPS includes
special compare-and-branch instructions for all such comparisons: greater than or
equal to zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ),
and less than zero (BLTZ). Of course, equal and not equal to zero can be synthe-
sized using r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for
floating point with separate floating-point compare and branch instructions;

Arithmetic/ logical
(instruction formats) R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Add ADDL ADDU, ADDU ADDL, LD0, ADDI,
UADDCM

ADD, ADDI ADD

Add (trap if overflow) ADDLV ADD, ADDI ADDO, ADDIO ADDO;
MCRXR; BC

ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overflow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT,
MULTU

SHiADD;...;
(i=1,2,3)

MULLW,
MULLI

MULX

Multiply (trap if overflow) MULLV — SHiADDO;...; — —

Divide — DIV, DIVU DS;...; DS DIVW DIVX

Divide (trap if overflow) — — — — —

And AND AND, ANDI AND AND, ANDI AND

Or BIS OR, ORI OR OR, ORI OR

Xor XOR XOR, XORI XOR XOR, XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI (B fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 31-i,32-i RLWINM SLL

Shift right logical SRL SRLV, SRL EXTRW, U 31, 32-i RLWINM 32-i SRL

Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 32-i SRAW SRA

Compare CMPEQ,
CMPLT, CMPLE

SLT/U, SLTI/U COMB CMP(I)CLR SUBcc r0,...

Figure C.10 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is
not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown
separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by
commas. Note that in the “Arithmetic/logical” category all machines but SPARC use separate instruction mnemonics
to indicate an immediate operand; SPARC offers immediate versions of these instructions but uses a single mne-
monic. (Of course these are separate opcodes!)

C.3 Instructions: The MIPS Core Subset � C-11

Control
(instruction formats) B, J/C B, J/C B, J/C B, J/C B, J/C

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Branch on integer
compare

B_
(<, >, <=,
>=, =, not=)

BEQ, BNE,
B_Z (<, >,
<=, >=)

COMB, COMIB BC BR_Z, BPcc (<, >,
<=, >=, =, not=)

Branch on floating-point
compare

FB_(<, >,
<=, >=, =,
not=)

BC1T,
BC1F

FSTWX f0;
LDW t;
BB t

BC FBPfcc (<, >, <=,
>=, =,...)

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...

Call, call register BSR JAL, JALR BL, BLE BL, BLA,
BCLRL, BCCTRL

CALL, JMPL

Trap CALL_PAL
GENTRAP

BREAK BREAK TW, TWI Ticc, SIR

Return from interrupt CALL_PAL
REI

JR; ERET RFI, RFIR RFI DONE, RETRY,
RETURN

Figure C.11 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions
equivalent to MIPS core, they are separated by commas.

Floating point (instruction formats) R-R R-R R-R R-R R-R

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Add single, double ADDS, ADDT ADD.S,
ADD.D

FADD
FADD/dbl

FADDS,
FADD

FADDS,
FADDD

Subtract single, double SUBS, SUBT SUB.S, SUB.D FSUB
FSUB/dbl

FSUBS,
FSUB

FSUBS,
FSUBD

Multiply single, double MULS, MULT MUL.S, MUL.D FMPY
FMPY/dbl

FMULS,
FMUL

FMULS,
FMULD

Divide single, double DIVS, DIVT DIV.S, DIV.D FDIV,
FDIV/dbl

FDIVS,
FDIV

FDIVS,
FDIVD

Compare CMPT_
(=, <,
<=, UN)

C_.S, C_.D
(<, >, <=,
>=, =,...)

FCMP, FCMP/dbl
(<, =, >)

FCMP FCMPS,
FCMPD

Move R-R ADDT Fd,
F31, Fs

MOV.S, MOV.D FCPY FMV FMOVS/D/Q

Convert (single, double, integer)
to (single, double, integer)

CVTST,
CVTTS,
CVTTQ,
CVTQS,
CVTQT

CVT.S.D,
CVT.D.S,
CVT.S.W,
CVT.D.W,
CVT.W.S,
CVT.W.D

FCNVFF,s,d
FCNVFF,d,s
FCNVXF,s,s
FCNVXF,d,d
FCNVFX,s,s
FCNVFX,d,s

—,
FRSP,
—,
FCTIW,
—,
—

FSTOD,
FDTOS,
FSTOI,
FDTOI,
FITOS,
FITOD

Figure C.12 Desktop RISC floating-point instructions equivalent to MIPS core. Dashes mean the operation is not
available in that architecture, or not synthesized in a few instructions. If there are several choices of instructions
equivalent to MIPS core, they are separated by commas.

C-12 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

MIPS IV expanded this to eight floating-point condition codes, with the floating-
point comparisons and branch instructions specifying the condition to set or test.

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point com-
pares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition holds and
to 0 otherwise. The branch instructions compare one register to 0 (BEQ, BGE, BGT,
BLE, BLT, BNE) or its least-significant bit to 0 (BLBC, BLBS) and then branch if the
condition holds.

PA-RISC has many branch options, which we’ll see in Section C.8. The most
straightforward is a compare and branch instruction (COMB), which compares two
registers, branches depending on the standard relations, and then tests the least-
significant bit of the result of the comparison.

Conventions Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Register with value 0 r31 (source) r0 r0 r0 (addressing) r0

Return address register (any) r31 r2, r31 link (special) r31

No-op LDQ_U r31,... SLL r0, r0,
r0

OR r0, r0, r0 ORI r0, r0, #0 SETHI r0, 0

Move R-R integer BIS..., r31,... ADD...,
r0,...

OR..., r0,... OR rx, ry, ry OR...,
r0,...

Operand order OP Rs1, Rs2,
Rd

OP Rd, Rs1,
Rs2

OP Rs1, Rs2,
Rd

OP Rd, Rs1,
Rs2

OP Rs1, Rs2,
Rd

Figure C.13 Conventions of desktop RISC architectures equivalent to MIPS core.

Instruction name ARM v.4 Thumb SuperH M32R MIPS16

Data transfer (instruction formats) DT DT DT DT DT

Load byte signed LDRSB LDRSB MOV.B LDB LB

Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU

Load half word signed LDRSH LDRSH MOV.W LDH LH

Load half word unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU

Load word LDR LDR MOV.L LD LW

Store byte STRB STRB MOV.B STB SB

Store half word STRH STRH MOV.W STH SH

Store word STR STR MOV.L ST SW

Read, write special registers MRS, MSR —1 LDC, STC MVFC, MVTC MOVE

Figure C.14 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to
synthesize a MIPS instruction is shown separated by semicolons. Note that floating point is generally not defined for
the embedded RISCs. Thumb and MIPS16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so
machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in
32-bit mode but not 16-bit mode in Thumb or MIPS16.

C.3 Instructions: The MIPS Core Subset � C-13

ARM is similar to SPARC, in that it provides fourtraditional condition codes
that are optionally set. CMP subtracts one operand from the other and the differ-
ence sets the condition codes. Compare negative (CMN) adds one operand to the
other, and the sum sets the condition codes. TST performs logical AND on the two
operands to set all condition codes but overflow, while TEQ uses exclusive OR to

Arithmetic/ logical
(instruction formats) R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I

Instruction name ARM v.4 Thumb SuperH M32R MIPS16

Add ADD ADD ADD ADD, ADDI,
ADD3

ADDU, ADDIU

Add (trap if overflow) ADDS; SWIVS ADD; BVC
.+4; SWI

ADDV ADDV, ADDV3 —1

Subtract SUB SUB SUB SUB SUBU

Subtract (trap if overflow) SUBS; SWIVS SUB; BVC
.+1; SWI

SUBV SUBV —1

Multiply MUL MUL MUL MUL MULT, MULTU

Multiply (trap if overflow) —

Divide — — DIV1, DIVoS,
DIVoU

DIV, DIVU DIV, DIVU

Divide (trap if overflow) — — —

And AND AND AND AND, AND3 AND

Or ORR ORR OR OR, OR3 OR

Xor EOR EOR XOR XOR, XOR3 XOR

Load high part register — — SETH —1

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, SLLI,
SLL3

SLLV, SLL

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, SRLI,
SRL3

SRLV, SRL

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, SRAI,
SRA3

SRAV, SRA

Compare CMP,CMN,
TST,TEQ

CMP, CMN,
TST

CMP/cond, TST CMP/I, CMPU/I CMP/I2,
SLT/I,
SLT/IU

Figure C.15 Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation
is not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown
separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by
commas. Thumb and MIPS16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so machines can
switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode
but not 16-bit mode in Thumb or MIPS16. The superscript 2 shows new instructions found only in 16-bit mode of
Thumb or MIPS16, such as CMP/I2. ARM includes shifts as part of every data operation instruction, so the shifts with
superscript 3 are just a variation of a move instruction, such as LSR3.

C-14 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

set the first three condition codes. Like SPARC, the conditional version of the
ARM branch instruction tests condition codes to determine all possible unsigned
and signed relations. As we shall see in Section C.9, one unusual feature of ARM
is that every instruction has the option of executing conditionally depending on
the condition codes. (This bears similarities to the annulling option of PA-RISC,
seen in Section C.8.)

Not surprisingly, Thumb follows ARM. Differences are that setting condition
codes are not optional, the TEQ instruction is dropped, and there is no conditional
execution of instructions.

The Hitachi SuperH uses a single T-bit condition that is set by compare
instructions. Two branch instructions decide to branch if either the T bit is 1 (BT)
or the T bit is 0 (BF). The two flavors of branches allow fewer comparison
instructions.

Mitsubishi M32R also offers a single condition code bit (C) used for signed
and unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less
than the other or not, similar to the MIPS set-on-less-than instructions. Two
branch instructions test to see if the C bit is 1 or 0: BC and BNC. The M32R also
includes instructions to branch on equality or inequality of registers (BEQ and

Control (instruction formats) B, J, C B, J, C B, J, C B, J, C B, J, C

Instruction name ARM v.4 Thumb SuperH M32R MIPS16

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE,
BC,BNC, B__Z

BEQZ2, BNEZ2,
BTEQZ2, BTNEZ2

Jump, jump register MOV pc,ri MOV pc,ri BRA, JMP BRA, JMP B2, JR

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, JALX2

Trap SWI SWI TRAPA TRAP BREAK

Return from interrupt MOVS pc,
r14

—1 RTS RTE —1

Figure C.16 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS16 are just 16-bit
instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruc-
tion set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS16.
The superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS16, such as BTEQZ2.

Conventions ARM v.4 Thumb SuperH M32R MIPS16

Return address reg. R14 R14 PR (special) R14 RA (special)

No-op MOV r0,r0 MOV r0,r0 NOP NOP SLL r0, r0

Operands, order OP Rd, Rs1, Rs2 OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2

Figure C.17 Conventions of embedded RISC instructions equivalent to MIPS core.

C.3 Instructions: The MIPS Core Subset � C-15

BNE) and all relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ).
Unlike BC and BNC, these last instructions are all 32 bits wide.

MIPS16 keeps set-on-less-than instructions (SLT, SLTI, SLTU, SLTIU), but
instead of putting the result in one of the eight registers, it is placed in a special
register named T. MIPS16 is always implemented in machines that also have the
full 32-bit MIPS instructions and registers; hence, register T is really register 24
in the full MIPS architecture. The MIPS16 branch instructions test to see if a reg-
ister is or is not equal to zero (BEQZ and BNEZ). There are also instructions that
branch if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two
registers are equal, MIPS added compare instructions (CMP, CMPI) that compute
the exclusive OR of two registers and place the result in register T. Compare was
added since MIPS16 left out instructions to compare and branch if registers are
equal or not (BEQ and BNE).

Figures C.18 and C.19 summarize the schemes used for conditional branches.

 Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Number of condition code bits
(integer and FP)

0 8 FP 8 FP 8 × 4 both 2 × 4 integer,
4 × 2 FP

Basic compare instructions
(integer and FP)

1 integer,
1 FP

1 integer, 1 FP 4 integer, 2 FP 4 integer, 2 FP 1 FP

Basic branch instructions
(integer and FP)

1 2 integer, 1 FP 7 integer 1 both 3 integer,
1 FP

Compare register with register/
const and branch

— =, not= =, not=, <, <=, >,
>=, even, odd

— —

Compare register to zero and
branch

=, not=, <,
<=, >, >=,
even, odd

=, not=, <, <=,
>, >=

=, not=, <, <=, >,
>=, even, odd

— =, not=, <,
<=, >, >=

Figure C.18 Summary of five desktop RISC approaches to conditional branches. Floating-point branch on PA-
RISC is accomplished by copying the FP status register into an integer register and then using the branch on bit
instruction to test the FP comparison bit. Integer compare on SPARC is synthesized with an arithmetic instruction
that sets the condition codes using r0 as the destination.

 ARM v.4 Thumb SuperH M32R MIPS16

Number of condition code bits 4 4 1 1 1

Basic compare instructions 4 3 2 2 2

Basic branch instructions 1 1 2 3 2

Compare register with register/const and
branch

— — =, >, >= =, not= —

Compare register to zero and branch — — =, >, >= =, not=, <, <=, >, >= =, not=

Figure C.19 Summary of five embedded RISC approaches to conditional branches.

C-16 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations. Many graphics systems use 8 bits to represent each of the
three primary colors plus 8 bits for a location of a pixel.

The addition of speakers and microphones for teleconferencing and video
games suggested support of sound as well. Audio samples need more than 8 bits
of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and half words take up
less space when stored in memory, but due to the infrequency of arithmetic oper-
ations on these data sizes in typical integer programs, there is little support
beyond data transfers. The architects of the Intel i860, which was justified as a
graphical accelerator within the company, recognized that many graphics and
audio applications would perform the same operation on vectors of these data.
Although a vector unit was beyond the transistor budget of the i860 in 1989, by
partitioning the carry chains within a 64-bit ALU (see Section H.8), it could per-
form simultaneous operations on short vectors of eight 8-bit operands, four 16-bit
operands, or two 32-bit operands. The cost of such partitioned ALUs was small.
Applications that lend themselves to such support include MPEG (video), games
like DOOM (3D graphics), Adobe Photoshop (digital photography), and telecon-
ferencing (audio and image processing).

Like a virus, over time such multimedia support has spread to nearly every
desktop microprocessor. HP was the first successful desktop RISC to include
such support. As we shall see, this virus spread unevenly. The PowerPC is the
only holdout, and rumors are that it is “running a fever.”

These extensions have been called subword parallelism, vector, or SIMD
(single instruction, multiple data) (see Chapter 2). Since Intel marketing uses
SIMD to describe the MMX extension of the 80x86, that has become the popular
name. Figure C.20 summarizes the support by architecture.

From Figure C.20 you can see that in general MIPS MDMX works on 8 bytes
or 4 half words per instruction, HP PA-RISC MAX2 works on 4 half words,
SPARC VIS works on 4 half words or 2 words, and Alpha doesn’t do much. The
Alpha MAX operations are just byte versions of compare, min, max, and absolute
difference, leaving it up to software to isolate fields and perform parallel adds,
subtracts, and multiplies on bytes and half words. MIPS also added operations to
work on two 32-bit floating-point operands per cycle, but they are considered part
of MIPS V and not simply multimedia extensions (see Section C.7).

One feature not generally found in general-purpose microprocessors is satu-
rating operations. Saturation means that when a calculation overflows, the result
is set to the largest positive number or most negative number, rather than a mod-
ulo calculation as in two’s complement arithmetic. Commonly found in digital
signal processors (see the next section), these saturating operations are helpful in
routines for filtering.

C.4 Instructions: Multimedia Extensions of the Desktop/
Server RISCs

C.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs � C-17

These machines largely used existing register sets to hold operands: integer
registers for Alpha and HP PA-RISC and floating-point registers for MIPS and
Sun. Hence data transfers are accomplished with standard load and store instruc-
tions. MIPS also added a 192-bit (3*64) wide register to act as an accumulator for
some operations. By having 3 times the native data width, it can be partitioned to
accumulate either 8 bytes with 24 bits per field or 4 half words with 48 bits per
field. This wide accumulator can be used for add, subtract, and multiply/add
instructions. MIPS claims performance advantages of 2 to 4 times for the accu-
mulator.

Perhaps the surprising conclusion of this table is the lack of consistency. The
only operations found on all four are the logical operations (AND, OR, XOR), which
do not need a partitioned ALU. If we leave out the frugal Alpha, then the only
other common operations are parallel adds and subtracts on 4 half words.

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2 PowerPC SPARC VIS

Add/subtract 8B, 4H 4H 4H, 2W

Saturating add/sub 8B, 4H 4H

Multiply 8B, 4H 4B/H

Compare 8B (>=) 8B, 4H (=,<,<=) 4H, 2W
(=, not=, >, <=)

Shift right/left 8B, 4H 4H

Shift right arithmetic 4H 4H

Multiply and add 8B, 4H

Shift and add (saturating) 4H

And/or/xor 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W

Absolute difference 8B 8B

Max/min 8B, 4W 8B, 4H

Pack (2n bits --> n bits) 2W->2B, 4H->4B 2*2W->4H,
2*4H->8B

2*4H->8B 2W->2H,
2W->2B,
4H->4B

Unpack/merge 2B->2W, 4B->4H 2*4B->8B,
2*2H->4H

 4B->4H,
2*4B->8B

Permute/shuffle 8B, 4H 4H

Register sets Integer Fl. Pt. + 192b Acc. Integer Fl. Pt.

Figure C.20 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for half word (16 bits),
and W for word (32 bits). Thus 8B means an operation on 8 bytes in a single instruction. Pack and unpack use the
notation 2*2W to mean 2 operands each with 2 words. Note that MDMX has vector/scalar operations, where the sca-
lar is specified as an element of one of the vector registers. This table is a simplification of the full multimedia archi-
tectures, leaving out many details. For example, MIPS MDMX includes instructions to multiplex between two
operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instructions to set registers
to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS.

C-18 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

Each manufacturer states that these are instructions intended to be used in
hand-optimized subroutine libraries, an intention likely to be followed, as a com-
piler that works well with all desktop RISCs’ multimedia extensions would be
challenging.

One feature found in every digital signal processor (DSP) architecture is support
for integer multiply-accumulate. The multiplies tend to be on shorter words than
regular integers, such as 16-bits, and the accumulator tends to be on longer
words, such as 64 bits. The reason for multiply-accumulate is to efficiently imple-
ment digital filters, common in DSP applications. Since Thumb and MIPS16 are
subset architectures, they do not provide such support. Instead, programmers
should use the DSP or multimedia extensions found in the 32-bit mode instruc-
tions of ARM and MIPS64.

Figure C.21 shows the size of the multiply, the size of the accumulator, and
the operations and instruction names for the embedded RISCs. Machines with
accumulator sizes greater than 32 and less than 64 bits will force the upper bits to
remain as the sign bits, thereby “saturating” the add to set to maximum and mini-
mum fixed-point values if the operations overflow.

 ARM v.4 Thumb SuperH M32R MIPS16

Size of multiply 32B × 32B — 32B × 32B, 16B × 16B 32B × 16B, 16B × 16B —

Size of accumulator 32B/64B — 32B/42B, 48B/64B 56B —

Accumulator name Any GPR or pairs
of GPRs

— MACH, MACL ACC —

Operations 32B/64B product +
64B accumulate
signed/unsigned

— 32B product + 42B/32B
accumulate (operands in
memory); 64B product +
64B/48B accumulate
(operands in memory);
clear MAC

32B/48B product + 64B
accumulate, round, move

—

Corresponding
instruction names

MLA, SMLAL,
UMLAL

— MAC, MACS, MAC.L,
MAC.LS, CLRMAC

MACHI/MACLO, MACWHI/
MACWLO, RAC, RACH,
MVFACHI/MVFACLO,
MVTACHI/MVTACLO

—

Figure C.21 Summary of five embedded RISC approaches to multiply-accumulate.

C.5 Instructions: Digital Signal-Processing Extensions of
the Embedded RISCs

C.6 Instructions: Common Extensions to MIPS Core � C-19

Figures C.22 through C.28 list instructions not found in Figures C.9 through C.17
in the same four categories. Instructions are put in these lists if they appear in
more than one of the standard architectures. The instructions are defined using
the hardware description language defined in Figure C.29.

Although most of the categories are self-explanatory, a few bear comment:

� The “atomic swap” row means a primitive that can exchange a register with
memory without interruption. This is useful for operating system sema-
phores in a uniprocessor as well as for multiprocessor synchronization (see
Section 6.7).

� The 64-bit data transfer and operation rows show how MIPS, PowerPC, and
SPARC define 64-bit addressing and integer operations. SPARC simply
defines all register and addressing operations to be 64 bits, adding only spe-
cial instructions for 64-bit shifts, data transfers, and branches. MIPS includes

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Atomic swap R/M
(for locks and
semaphores)

Temp<---Rd;
Rd<---Mem[x];
Mem[x]<---Temp

LDL/Q_L;
STL/Q_C

LL; SC — (see C.8) LWARX;
STWCX

CASA, CASX

Load 64-bit integer Rd<---64 Mem[x] LDQ LD LDD LD LDX

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX

Load 32-bit integer
unsigned

Rd32..63<---32 Mem[x];
Rd0..31<---32 0

LDL; EXTLL LWU LDW LWZ LDUW

Load 32-bit integer
signed

Rd32..63<---32 Mem[x];
Rd0..31<---32 Mem[x]0

32
LDL LW LDW; EXTRD,S

63, 8
LWA LDSW

Prefetch Cache[x]<---hint FETCH,
FETCH_M*

PREF,
PREFX

LDD, r0
LDW, r0

DCBT,
DCBTST

PRE-FETCH

Load coprocessor Coprocessor<--- Mem[x] — LWCi CLDWX, CLDWS — —

Store coprocessor Mem[x]<--- Coprocessor — SWCi CSTWX, CSTWS — —

Endian (Big/Little Endian?) Either Either Either Either Either

Cache flush (Flush cache block at this
address)

ECB CP0op FDC, FIC DCBF FLUSH

Shared-memory
synchronization

(All prior data transfers
complete before next data
transfer may start)

WMB SYNC SYNC SYNC MEMBAR

Figure C.22 Data transfer instructions not found in MIPS core but found in two or more of the five desktop
architectures. The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for
semaphores, allowing data to be read from memory, modified, and stored without fear of interrupts or other
machines accessing the data in a multiprocessor (see Chapter 6). Prefetching in the Alpha to external caches is
accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31, and LD_Y A. F31 is used in the
Alpha 21164 (see Bhandarkar [1995], p. 190).

C.6 Instructions: Common Extensions to MIPS Core

C-20 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

the same extensions, plus it adds separate 64-bit signed arithmetic instruc-
tions. PowerPC adds 64-bit right shift, load, store, divide, and compare and
has a separate mode determining whether instructions are interpreted as 32-
or 64-bit operations; 64-bit operations will not work in a machine that only
supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and opera-
tions in version 2.0.

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

64-bit integer
arithmetic ops

Rd<---64Rs1 op64 Rs2 ADD,
SUB, MUL

DADD, DSUB
DMULT, DDIV

ADD, SUB,
SHLADD, DS

ADD, SUBF,
MULLD,
DIVD

ADD, SUB,
MULX,
S/UDIVX

64-bit integer logical
ops

Rd<---64Rs1 op64 Rs2 AND, OR,
XOR

AND, OR,
XOR

AND, OR,
XOR

AND, OR,
XOR

AND, OR,
XOR

64-bit shifts Rd<---64Rs1 op64 Rs2 SLL,
SRA,
SRL

DSLL/V,
DSRA/V,
DSRL/V

DEPD,Z
EXTRD,S
EXTRD,U

SLD, SRAD,
SRLD

SLLX,
SRAX,
SRLX

Conditional move if (cond) Rd<---Rs CMOV_ MOVN/Z SUBc, n;
ADD

— MOVcc,
MOVr

Support for multiword
integer add

CarryOut, Rd <--- Rs1
+ Rs2 + OldCarryOut

— ADU; SLTU;
ADDU, DADU;
SLTU; DADDU

ADDC ADDC, ADDE ADDcc

Support for multiword
integer sub

CarryOut, Rd <--- Rs1
Rs2 + OldCarryOut

— SUBU; SLTU;
SUBU, DSUBU;
SLTU; DSUBU

SUBB SUBFC,
SUBFE

SUBcc

And not Rd <--- Rs1 & ~(Rs2) BIC — ANDCM ANDC ANDN

Or not Rd <--- Rs1 | ~(Rs2) ORNOT — — ORC ORN

Add high immediate Rd0..15<---Rs10..15 +
(Const<<16);

— — ADDIL
(R-I)

ADDIS
(R-I)

—

Coprocessor
operations

(Defined by
coprocessor)

— COPi COPR,i — IMPDEPi

Figure C.23 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five desktop
architectures.

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Optimized delayed
branches

(Branch not always
delayed)

— BEQL, BNEL, B_ZL
(<, >, <=, >=)

COMBT, n,
COMBF, n

— BPcc, A,
FPBcc, A

Conditional trap if (COND) {R31<---PC;
PC <---0..0#i}

— T_,,T_I (=, not=,
<, >, <=, >=)

SUBc, n;
BREAK

TW, TD,
TWI, TDI

Tcc

No. control registers Misc. regs (virtual
memory, interrupts, . . .)

6 equiv. 12 32 33 29

Figure C.24 Control instructions not found in MIPS core but found in two or more of the five desktop archi-
tectures.

C.6 Instructions: Common Extensions to MIPS Core � C-21

� The “prefetch” instruction supplies an address and hint to the implementation
about the data. Hints include whether the data is likely to be read or written
soon, likely to be read or written only once, or likely to be read or written many
times. Prefetch does not cause exceptions. MIPS has a version that adds two
registers to get the address for floating-point programs, unlike non-floating-
point MIPS programs. (See Section 5.6 to learn more about prefetching.)

� In the “Endian” row, “Big/Little” means there is a bit in the program status
register that allows the processor to act either as Big Endian or Little
Endian (see Section 2.3). This can be accomplished by simply comple-
menting some of the least-significant bits of the address in data transfer
instructions.

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Multiply and add Fd <--- (Fs1 × Fs2) + Fs3 — MADD.S/D FMPYFADD sgl/
dbl

FMADD/S

Multiply and sub Fd <--- (Fs1 × Fs2) – Fs3 — MSUB.S/D FMSUB/S

Neg mult and add Fd <--- -((Fs1 × Fs2) + Fs3) — NMADD.S/D FMPYFNEG sgl/
dbl

FNMADD/S

Neg mult and sub Fd <--- -((Fs1 × Fs2) – Fs3) — NMSUB.S/D FNMSUB/S

Square root Fd <--- SQRT(Fs) SQRT_ SQRT.S/D FSQRT sgl/dbl FSQRT/S FSQRTS/D

Conditional move if (cond) Fd<---Fs FCMOV_ MOVF/T,
MOVF/T.S/D

FTESTFCPY — FMOVcc

Negate Fd <--- Fs ^ x80000000 CPYSN NEG.S/D FNEG sgl/dbl FNEG FNEGS/D/Q

Absolute value Fd <--- Fs & x7FFFFFFF — ABS.S/D FABS/dbl FABS FABSS/
D/Q

Figure C.25 Floating-point instructions not found in MIPS core but found in two or more of the five desktop
architectures.

Name Definition ARM v.4 Thumb SuperH M32R MIPS16

Atomic swap R/M
(for semaphores)

Temp<---Rd;
Rd<---Mem[x];
Mem[x]<---Temp

SWP, SWPB —1 (see TAS) LOCK;
UNLOCK

—1

Memory management
unit

Paged address translation Via coprocessor
instructions

—1 LDTLB —1

Endian (Big/Little Endian?) Either Either Either Big Either

Figure C.26 Data transfer instructions not found in MIPS core but found in two or more of the five embedded
architectures.We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or
MIPS16.

C-22 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

� The “shared-memory synchronization” helps with cache-coherent multipro-
cessors: All loads and stores executed before the instruction must complete
before loads and stores after it can start. (See Chapter 6.)

� The “coprocessor operations” row lists several categories that allow for the
processor to be extended with special-purpose hardware.

One difference that needs a longer explanation is the optimized branches.
Figure C.30 shows the options. The Alpha and PowerPC offer branches that take
effect immediately, like branches on earlier architectures. To accelerate branches,
these machines use branch prediction (see Section 3.4). All the rest of the desktop
RISCs offer delayed branches (see Appendix A). The embedded RISCs generally
do not support delayed branch, with the exception of SuperH, which has it as an
option.

The other three desktop RISCs provide a version of delayed branch that
makes it easier to fill the delay slot. The SPARC “annulling” branch executes the
instruction in the delay slot only if the branch is taken; otherwise the instruction
is annulled. This means the instruction at the target of the branch can safely be
copied into the delay slot since it will only be executed if the branch is taken. The
restrictions are that the target is not another branch and that the target is known at
compile time. (SPARC also offers a nondelayed jump because an unconditional
branch with the annul bit set does not execute the following instruction.) Later

Name Definition ARM v.4 Thumb SuperH M32R MIPS16

Load immediate Rd<---Imm MOV MOV MOV, MOVA LDI, LD24 LI

Support for multiword
integer add

CarryOut, Rd <--- Rd + Rs1 +
OldCarryOut

ADCS ADC ADDC ADDX —1

Support for multiword
integer sub

CarryOut, Rd <--- Rd – Rs1 +
OldCarryOut

SBCS SBC SUBC SUBX —1

Negate Rd <--- 0 – Rs1 NEG2 NEG NEG NEG

Not Rd <--- ~(Rs1) MVN MVN NOT NOT NOT

Move Rd <--- Rs1 MOV MOV MOV MV MOVE

Rotate right Rd <--- Rs i, >>
Rd0. . . i–1 <--- Rs31–i. . . 31

ROR ROR ROTR

And not Rd <--- Rs1 & ~(Rs2) BIC BIC

Figure C.27 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five embed-
ded architectures. We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Thumb
or MIPS16. The superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS16, such as NEG2.

Name Definition ARM v.4 Thumb SuperH M32R MIPS16

No. control registers Misc. registers 21 29 9 5 36

Figure C.28 Control information in the five embedded architectures.

C.6 Instructions: Common Extensions to MIPS Core � C-23

versions of the MIPS architecture have added a branch likely instruction that also
annuls the following instruction if the branch is not taken. PA-RISC allows
almost any instruction to annul the next instruction, including branches. Its “nul-
lifying” branch option will execute the next instruction depending on the direc-
tion of the branch and whether it is taken (i.e., if a forward branch is not taken or
a backward branch is taken). Presumably this choice was made to optimize loops,
allowing the instructions following the exit branch and the looping branch to exe-
cute in the common case.

Now that we have covered the similarities, we will focus on the unique fea-
tures of each architecture. We first cover the desktop/server RISCs, ordering them
by length of description of the unique features from shortest to longest, and then
the embedded RISCs.

Notation Meaning Example Meaning

<-- Data transfer. Length of transfer is
given by the destination’s length;
the length is specified when not
clear.

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1. Registers
have a fixed length, so transfers shorter
than the register size must indicate which
bits are used.

M Array of memory accessed in bytes.
The starting address for a transfer is
indicated as the index to the
memory array.

Regs[R1]<--M[x]; Place contents of memory location x into
R1. If a transfer starts at M[i] and
requires 4 bytes, the transferred bytes are
M[i], M[i+1], M[i+2], and M[i+3].

<--n Transfer an n-bit field, used
whenever length of transfer is not
clear.

M[y]<--16M[x]; Transfer 16 bits starting at memory
location x to memory location y. The
length of the two sides should match.

Xn Subscript selects a bit. Regs[R1]0<--0; Change sign bit of R1 to 0. (Bits are
numbered from MSB starting at 0.)

Xm..n Subscript selects a field. Regs[R3]24..31<--M[x]; Moves contents of memory location x
into low-order byte of R3.

Xn Superscript replicates a bit field. Regs[R3]0..23<--024; Sets high-order three bytes of R3 to 0.

Concatenates two fields. Regs[R3]<--024## M[x];
F2##F3<--64M[x];

Moves contents of location x into low
byte of R3; clears upper three bytes.
Moves 64 bits from memory starting at
location x; 1st 32 bits go into F2, 2nd 32
into F3.

*, & Dereference a pointer; get the
address of a variable.

p*<--&x; Assign to object pointed to by p the
address of the variable x.

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits.

==, !=, >, <,
>=, <=

C relational operators; equal, not
equal, greater, less, greater or equal,
less or equal.

(Regs[R1]== Regs[R2])
&
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the contents
of R2 and contents of R3 do not equal the
contents of R4.

&, |, ^, ! C bitwise logical operations: and,
or, exclusive or, and complement.

(Regs[R1] &
(Regs[R2]| Regs[R3]))

Bitwise AND of R1 and bitwise OR of R2
and R3.

Figure C.29 Hardware description notation (and some standard C operators).

C-24 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

MIPS has gone through five generations of instruction sets, and this evolution has
generally added features found in other architectures. Here are the salient unique
features of MIPS, the first several of which were found in the original instruction
set.

Nonaligned Data Transfers

MIPS has special instructions to handle misaligned words in memory. A rare
event in most programs, it is included for supporting 16-bit minicomputer appli-
cations and for doing memcpy and strcpy faster. Although most RISCs trap if
you try to load a word or store a word to a misaligned address, on all architec-
tures misaligned words can be accessed without traps by using four load byte
instructions and then assembling the result using shifts and logical ors. The
MIPS load and store word left and right instructions (LWL, LWR, SWL, SWR) allow
this to be done in just two instructions: LWL loads the left portion of the register
and LWR loads the right portion of the register. SWL and SWR do the corresponding
stores. Figure C.31 shows how they work. There are also 64-bit versions of these
instructions.

Remaining Instructions

Below is a list of the remaining unique details of the MIPS64 architecture:

� NOR—This logical instruction calculates ~(Rs1 | Rs2).

� Constant shift amount—Nonvariable shifts use the 5-bit constant field shown
in the register-register format in Figure C.5.

� SYSCALL—This special trap instruction is used to invoke the operating system.

� Move to/from control registers—CTCi and CFCi move between the integer
registers and control registers.

 (Plain) branch Delayed branch
Annulling
delayed branch

Found in
architectures

Alpha, PowerPC, ARM, Thumb,
SuperH, M32R, MIPS 16

MIPS64, PA-RISC,
SPARC, SuperH

MIPS64, SPARC PA-RISC

Execute following
instruction

Only if branch not taken Always Only if branch
taken

If forward branch not
taken or backward
branch taken

Figure C.30 When the instruction following the branch is executed for three types of branches.

C.7 Instructions Unique to MIPS64

C.7 Instructions Unique to MIPS64 � C-25

� Jump/call not PC-relative—The 26-bit address of jumps and calls is not
added to the PC. It is shifted left 2 bits and replaces the lower 28 bits of the
PC. This would only make a difference if the program were located near a
256-MB boundary.

� TLB instructions—Translation lookaside buffer (TLB) misses were handled
in software in MIPS I, so the instruction set also had instructions for manipu-
lating the registers of the TLB (see Chapter 5 for more on TLBs). These regis-
ters are considered part of the “system coprocessor.” Since MIPS I the
instructions differ among versions of the architecture; they are more part of
the implementations than part of the instruction set architecture.

� Reciprocal and reciprocal square root—These instructions, which do not fol-
low IEEE 754 guidelines of proper rounding, are included apparently for
applications that value speed of divide and square root more than they value
accuracy.

Figure C.31 MIPS instructions for unaligned word reads. This figure assumes opera-
tion in Big Endian mode. Case 1 first loads the 3 bytes 101, 102, and 103 into the left of
R2, leaving the least-significant byte undisturbed. The following LWR simply loads byte
104 into the least-significant byte of R2, leaving the other bytes of the register
unchanged using LWL. Case 2 first loads byte 203 into the most-significant byte of R4,
and the following LWR loads the other 3 bytes of R4 from memory bytes 204, 205, and
206. LWL reads the word with the first byte from memory, shifts to the left to discard the
unneeded byte(s), and changes only those bytes in Rd. The byte(s) transferred are from
the first byte to the lowest-order byte of the word. The following LWR addresses the last
byte, right-shifts to discard the unneeded byte(s), and finally changes only those bytes
of Rd. The byte(s) transferred are from the last byte up to the highest-order byte of the
word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is the
inverse of LWR. Changing to Little Endian mode flips which bytes are selected and dis-
carded. (If big-little, left-right, load-store seem confusing, don’t worry; they work!)

100 101 102 103

104 105 106 107

200 201 202 203

204 205 206 207

Case 1
Before

After

After

M[100] D DA V

M[104]

R2

R2

R2

E

J

D

D

O

A

A

H

V

V

N

N

E

LWL R2, 101:

LWR R2, 104:

Case 2
Before

After

After

M[200]

M[204]

R4

R4

R4

A V E

J

D

D

O

O

A

H

H

V

N

N

E

LWL R4, 203:

LWR R4, 206:

C-26 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

� Conditional procedure call instructions—BGEZAL saves the return address and
branches if the content of Rs1 is greater than or equal to zero, and BLTZAL
does the same for less than zero. The purpose of these instructions is to get a
PC-relative call. (There are “likely” versions of these instructions as well.)

� Parallel single-precision floating-point operations—As well as extending the
architecture with parallel integer operations in MDMX, MIPS64 also sup-
ports two parallel 32-bit floating-point operations on 64-bit registers in a sin-
gle instruction. “Paired single” operations include add (ADD.PS), subtract
(SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL, CVT.S.PU),
negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS, MOVF.PS,
MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and multiply-subtract
(MSUB.PS).

There is no specific provision in the MIPS architecture for floating-point exe-
cution to proceed in parallel with integer execution, but the MIPS implementa-
tions of floating point allow this to happen by checking to see if arithmetic
interrupts are possible early in the cycle (see Appendix H). Normally, exception
detection would force serialization of execution of integer and floating-point
operations.

The Alpha was intended to be an architecture that was easy to build high-
performance implementations. Toward that goal, the architects originally made
two controversial decisions: imprecise floating-point exceptions and no byte or
half-word data transfers.

To simplify pipelined execution, Alpha does not require that an exception act
as if no instructions past a certain point are executed and that all before that point
have been executed. It supplies the TRAPB instruction, which stalls until all prior
arithmetic instructions are guaranteed to complete without incurring arithmetic
exceptions. In the most conservative mode, placing one TRAPB per exception-
causing instruction slows execution by roughly five times but provides precise
exceptions (see Darcy and Gay [1996]).

Code that does not include TRAPB does not the obey IEEE 754 floating-point
standard. The reason is that parts of the standard (NaNs, infinities, and denor-
mal) are implemented in software on Alpha, as it is on many other microproces-
sors. To implement these operations in software, however, programs must find
the offending instruction and operand values, which cannot be done with impre-
cise interrupts!

When the architecture was developed, it was believed by the architects that
byte loads and stores would slow down data transfers. Byte loads require an extra
shifter in the data transfer path, and byte stores require that the memory system
perform a read-modify-write for memory systems with error correction codes
since the new ECC value must be recalculated. This omission meant that byte
stores require the sequence load word, replace desired byte, and then store word.

C.8 Instructions Unique to Alpha

C.9 Instructions Unique to SPARC v.9 � C-27

(Inconsistently, floating-point loads go through considerable byte swapping to
convert the obtuse VAX floating-point formats into a canonical form.)

To reduce the number of instructions to get the desired data, Alpha includes
an elaborate set of byte manipulation instructions: extract field and zero rest of a
register (EXTxx), insert field (INSxx), mask rest of a register (MSKxx), zero fields
of a register (ZAP), and compare multiple bytes (CMPGE).

Apparently the implementors were not as bothered by load and store byte as
were the original architects. Beginning with the shrink of the second version of
the Alpha chip (21164A), the architecture does include loads and stores for bytes
and half words.

Remaining Instructions

Below is a list of the remaining unique instructions of the Alpha architecture:

� PAL code—To provide the operations that the VAX performed in microcode,
Alpha provides a mode that runs with all privileges enabled, interrupts dis-
abled, and virtual memory mapping turned off for instructions. PAL (privi-
leged architecture library) code is used for TLB management, atomic
memory operations, and some operating system primitives. PAL code is
called via the CALL_PAL instruction.

� No divide—Integer divide is not supported in hardware.

� “Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using
addresses that ignore the least-significant three bits. Extract instructions then
select the desired unaligned word using the lower address bits. These instruc-
tions are similar to LWL/R,SWL/R in MIPS.

� Floating-point single precision represented as double precision—Single-
precision data are kept as conventional 32-bit formats in memory but are con-
verted to 64-bit double-precision format in registers.

� Floating-point register F31 is fixed at zero—To simplify comparisons to zero.

� VAX floating-point formats—To maintain compatibility with the VAX archi-
tecture, in addition to the IEEE 754 single- and double-precision formats
called S and T, Alpha supports the VAX single- and double-precision formats
called F and G, but not VAX format D. (D had too narrow an exponent field to
be useful for double precision and was replaced by G in VAX code.)

� Bit count instructions—Version 3 of the architecture added instructions to
count the number of leading zeros (CTLZ), count the number of trailing zeros
(CTTZ), and count the number of ones in a word (CTPOP). Originally found on
Cray computers, these instructions help with decryption.

Several features are unique to SPARC.

C.9 Instructions Unique to SPARC v.9

C-28 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

Register Windows

The primary unique feature of SPARC is register windows, an optimization for
reducing register traffic on procedure calls. Several banks of registers are used,
with a new one allocated on each procedure call. Although this could limit the
depth of procedure calls, the limitation is avoided by operating the banks as a cir-
cular buffer, providing unlimited depth. The knee of the cost-performance curve
seems to be six to eight banks.

SPARC can have between 2 and 32 windows, typically using eight registers
each for the globals, locals, incoming parameters, and outgoing parameters.
(Given that each window has 16 unique registers, an implementation of SPARC
can have as few as 40 physical registers and as many as 520, although most have
128 to 136, so far.) Rather than tie window changes with call and return instruc-
tions, SPARC has the separate instructions SAVE and RESTORE. SAVE is used to
“save” the caller’s window by pointing to the next window of registers in addition
to performing an add instruction. The trick is that the source registers are from
the caller’s window of the addition operation, while the destination register is in
the callee’s window. SPARC compilers typically use this instruction for changing
the stack pointer to allocate local variables in a new stack frame. RESTORE is the
inverse of SAVE, bringing back the caller’s window while acting as an add instruc-
tion, with the source registers from the callee’s window and the destination regis-
ter in the caller’s window. This automatically deallocates the stack frame.
Compilers can also make use of it for generating the callee’s final return value.

The danger of register windows is that the larger number of registers could
slow down the clock rate. This was not the case for early implementations. The
SPARC architecture (with register windows) and the MIPS R2000 architecture
(without) have been built in several technologies since 1987. For several genera-
tions the SPARC clock rate has not been slower than the MIPS clock rate for
implementations in similar technologies, probably because cache access times
dominate register access times in these implementations. The current-generation
machines took different implementation strategies—in order vs. out of order—
and it’s unlikely that the number of registers by themselves determined the clock
rate in either machine. Recently, other architectures have included register win-
dows: Tensilica and IA-64.

Another data transfer feature is alternate space option for loads and stores.
This simply allows the memory system to identify memory accesses to input/
output devices, or to control registers for devices such as the cache and memory
management unit.

Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single level
of traps to at least four levels, allowing the window overflow and underflow trap
handlers to be interrupted. The extra levels mean the handler does not need to
check for page faults or misaligned stack pointers explicitly in the code, thereby

C.9 Instructions Unique to SPARC v.9 � C-29

making the handler faster. Two new instructions were added to return from this
multilevel handler: RETRY (which retries the interrupted instruction) and DONE
(which does not). To support user-level traps, the instruction RETURN will return
from the trap in nonprivileged mode.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction. The
designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this influenced some of the features of SPARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multiword arithmetic (see Taylor et al. [1986] and Ungar et al.
[1984]). A small amount of support is offered for tagged data types with opera-
tions for addition, subtraction, and hence comparison. The two least-significant
bits indicate whether the operand is an integer (coded as 00), so TADDcc and
TSUBcc set the overflow bit if either operand is not tagged as an integer or if the
result is too large. A subsequent conditional branch or trap instruction can decide
what to do. (If the operands are not integers, software recovers the operands,
checks the types of the operands, and invokes the correct operation based on
those types.) It turns out that the misaligned memory access trap can also be put
to use for tagged data, since loading from a pointer with the wrong tag can be an
invalid access. Figure C.32 shows both types of tag support.

Figure C.32 SPARC uses the two least-significant bits to encode different data types
for the tagged arithmetic instructions. (a) Integer arithmetic, which takes a single
cycle as long as the operands and the result are integers. (b) The misaligned trap can be
used to catch invalid memory accesses, such as trying to use an integer as a pointer. For
languages with paired data like LISP, an offset of –3 can be used to access the even
word of a pair (CAR) and +1 can be used for the odd word of a pair (CDR).

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, – 3

+
–

–

C-30 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

Overlapped Integer and Floating-Point Operations

SPARC allows floating-point instructions to overlap execution with integer
instructions. To recover from an interrupt during such a situation, SPARC has a
queue of pending floating-point instructions and their addresses. RDPR allows the
processor to empty the queue. The second floating-point feature is the inclusion
of floating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ.

Remaining Instructions

The remaining unique features of SPARC are as follows:

� JMPL uses Rd to specify the return address register, so specifying r31 makes it
similar to JALR in MIPS and specifying r0 makes it like JR.

� LDSTUB loads the value of the byte into Rd and then stores FF16 into the
addressed byte. This version 8 instruction can be used to implement a sema-
phore (see Chapter 6).

� CASA (CASXA) atomically compares a value in a processor register to a 32-
bit (64-bit) value in memory; if and only if they are equal, it swaps the value
in memory with the value in a second processor register. This version 9
instruction can be used to construct wait-free synchronization algorithms that
do not require the use of locks.

� XNOR calculates the exclusive OR with the complement of the second operand.

� BPcc, BPr, and FBPcc include a branch-prediction bit so that the compiler can
give hints to the machine about whether a branch is likely to be taken or not.

� ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how
this is used for proper execution of aggregate returning procedures in C.

� POPC counts the number of bits set to one in an operand, also found in the
third version of the Alpha architecture.

� Nonfaulting loads allow compilers to move load instructions ahead of condi-
tional control structures that control their use. Hence, nonfaulting loads will
be executed speculatively.

� Quadruple-precision floating-point arithmetic and data transfer allow the
floating-point registers to act as eight 128-bit registers for floating-point oper-
ations and data transfers.

� Multiple-precision floating-point results for multiply mean that two single-
precision operands can result in a double-precision product and two double-
precision operands can result in a quadruple-precision product. These instruc-
tions can be useful in complex arithmetic and some models of floating-point
calculations.

C.10 Instructions Unique to PowerPC � C-31

PowerPC is the result of several generations of IBM commercial RISC
machines—IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola
88x00.

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return
address on procedure call, PowerPC puts the address into a special register called
the link register. Since many procedures will return without calling another pro-
cedure, link doesn’t always have to be saved away. Making the return address a
special register makes the return jump faster since the hardware need not go
through the register read pipeline stage for return jumps.

In a similar vein, PowerPC has a count register to be used in for loops where
the program iterates for a fixed number of times. By using a special register the
branch hardware can determine quickly whether a branch based on the count reg-
ister is likely to branch, since the value of the register is known early in the exe-
cution cycle. Tests of the value of the count register in a branch instruction will
automatically decrement the count register.

Given that the count register and link register are already located with the
hardware that controls branches, and that one of the problems in branch predic-
tion is getting the target address early in the pipeline (see Appendix A), the
PowerPC architects decided to make a second use of these registers. Either regis-
ter can hold a target address of a conditional branch. Thus PowerPC supplements
its basic conditional branch with two instructions that get the target address from
these registers (BCLR, BCCTR).

Remaining Instructions

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It
cannot be used as a base register—that is, it generates a 0 in this case—but in
base + index addressing it can be used as the index. The other unique features of
the PowerPC are as follows:

� Load multiple and store multiple save or restore up to 32 registers in a single
instruction.

� LSW and STSW permit fetching and storing of fixed- and variable-length strings
that have arbitrary alignment.

� Rotate with mask instructions support bit field extraction and insertion. One
version rotates the data and then performs logical AND with a mask of ones,
thereby extracting a field. The other version rotates the data but only places
the bits into the destination register where there is a corresponding 1 bit in the
mask, thereby inserting a field.

C.10 Instructions Unique to PowerPC

C-32 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

� Algebraic right shift sets the carry bit (CA) if the operand is negative and any 1
bits are shifted out. Thus a signed divide by any constant power of 2 that
rounds toward 0 can be accomplished with a SRAWI followed by ADDZE, which
adds CA to the register.

� CBTLZ will count leading zeros.

� SUBFIC computes (immediate – RA), which can be used to develop a one’s
or two’s complement.

� Logical shifted immediate instructions shift the 16-bit immediate to the left
16 bits before performing AND, OR, or XOR.

PA-RISC was expanded slightly in 1990 with version 1.1 and changed signifi-
cantly in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most
unusual features of any desktop RISC machine. For example, it has the most
addressing modes, instruction formats, and, as we shall see, several instructions
that are really the combination of two simpler instructions.

Nullification

As shown in Figure C.30, several RISC machines can choose to not execute the
instruction following a delayed branch in order to improve utilization of the
branch slot. This is called nullification in PA-RISC, and it has been generalized to
apply to any arithmetic/logical instruction as well as to all branches. Thus an add
instruction can add two operands, store the sum, and cause the following instruc-
tion to be skipped if the sum is zero. Like conditional move instructions, nullifi-
cation allows PA-RISC to avoid branches in cases where there is just one
instruction in the then part of an if statement.

A Cornucopia of Conditional Branches

Given nullification, PA-RISC did not need to have separate conditional branch
instructions. The inventors could have recommended that nullifying instructions
precede unconditional branches, thereby simplifying the instruction set. Instead,
PA-RISC has the largest number of conditional branches of any RISC machine.
Figure C.33 shows the conditional branches of PA-RISC. As you can see, several
are really combinations of two instructions.

Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be synthe-
sized in software. Instructions that shift one operand 1, 2, or 3 bits and then add,

C.11 Instructions Unique to PA-RISC 2.0

C.11 Instructions Unique to PA-RISC 2.0 � C-33

trapping or not on overflow, are useful in multiplies. (Alpha also includes instruc-
tions that multiply the second operand of adds and subtracts by 4 or by 8: S4ADD,
S8ADD, S4SUB, and S8SUB.) Divide step performs the critical step of nonrestoring
divide, adding or subtracting depending on the sign of the prior result. Magen-
heimer et al. [1988] measured the size of operands in multiplies and divides to
show how well the multiply step would work. Using these data for C programs,
Muchnick [1988] found that by making special cases the average multiply by a
constant takes 6 clock cycles and multiply of variables takes 24 clock cycles. PA-
RISC has 10 instructions for these operations.

The original SPARC architecture used similar optimizations, but with
increasing numbers of transistors the instruction set was expanded to include full
multiply and divide operations. PA-RISC gives some support along these lines by
putting a full 32-bit integer multiply in the floating-point unit; however, the inte-
ger data must first be moved to floating-point registers.

Decimal Operations

COBOL programs will compute on decimal values, stored as 4 bits per digit, rather
than converting back and forth between binary and decimal. PA-RISC has instruc-
tions that will convert the sum from a normal 32-bit add into proper decimal digits.
It also provides logical and arithmetic operations that set the condition codes to test
for carries of digits, bytes, or half words. These operations also test whether bytes
or half words are zero. These operations would be useful in arithmetic on 8-bit
ASCII characters. Five PA-RISC instructions provide decimal support.

Name Instruction Notation

COMB Compare and branch if (cond(Rs1,Rs2)) {PC <--- PC + offset12}

COMIB Compare imm. and branch if (cond(imm5,Rs2)) {PC <--- PC + offset12}

MOVB Move and branch Rs2 <--- Rs1,
if (cond(Rs1,0))

{PC <--- PC + offset12}

MOVIB Move immediate and branch Rs2 <--- imm5,
if (cond(imm5,0))

{PC <--- PC + offset12}

ADDB Add and branch Rs2 <--- Rs1 + Rs2,
if (cond(Rs1 + Rs2,0))

{PC <--- PC + offset12}

ADDIB Add imm. and branch Rs2 <--- imm5 + Rs2,
if (cond(imm5 + Rs2,0))

{PC <--- PC + offset12}

BB Branch on bit if (cond(Rsp,0) {PC <--- PC + offset12}

BVB Branch on variable bit if (cond(Rssar,0) {PC <--- PC + offset12}

Figure C.33 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the
5-bit immediate is called imm5. The 16 conditions are =, <, <=, odd, signed overflow, unsigned no overflow, zero or no
overflow unsigned, never, and their respective complements. The BB instruction selects one of the 32 bits of the reg-
ister and branches depending if its value is 0 or 1. The BVB selects the bit to branch using the shift amount register, a
special-purpose register. The subscript notation specifies a bit field.

C-34 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

Remaining Instructions

Here are some remaining PA-RISC instructions:

� Branch vectored shifts an index register left 3 bits, adds it to a base register,
and then branches to the calculated address. It is used for case statements.

� Extract and deposit instructions allow arbitrary bit fields to be selected from
or inserted into registers. Variations include whether the extracted field is
sign-extended, whether the bit field is specified directly in the instruction or
indirectly in another register, and whether the rest of the register is set to zero
or left unchanged. PA-RISC has 12 such instructions.

� To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which
adds a left-adjusted 21-bit constant to a register and places the result in regis-
ter 1. The following data transfer instruction uses offset addressing to add the
lower 11 bits of the address to register 1. This pair of instructions allows PA-
RISC to add a 32-bit constant to a base register, at the cost of changing regis-
ter 1.

� PA-RISC has nine debug instructions that can set breakpoints on instruction
or data addresses and return the trapped addresses.

� Load and clear instructions provide a semaphore or lock that reads a value
from memory and then writes zero.

� Store bytes short optimizes unaligned data moves, moving either the leftmost
or the rightmost bytes in a word to the effective address, depending on the
instruction options and condition code bits.

� Loads and stores work well with caches by having options that give hints
about whether to load data into the cache if it’s not already in the cache. For
example, load with a destination of register 0 is defined to be software-
controlled cache prefetch.

� PA-RISC 2.0 extended cache hints to stores to indicate block copies, recom-
mending that the processor not load data into the cache if it’s not already in
the cache. It also can suggest that on loads and stores, there is spatial locality
to prepare the cache for subsequent sequential accesses.

� PA-RISC 2.0 also provides an optional branch-target stack to predict indirect
jumps used on subroutine returns. Software can suggest which addresses get
placed on and removed from the branch-target stack, but hardware controls
whether or not these are valid.

� Multiply/add and multiply/subtract are floating-point operations that can
launch two independent floating-point operations in a single instruction in
addition to the fused multiply/add and fused multiply/negate/add introduced
in version 2.0 of PA-RISC.

C.12 Instructions Unique to ARM � C-35

It’s hard to pick the most unusual feature of ARM, but perhaps it is conditional
execution of instructions. Every instruction starts with a 4-bit field that deter-
mines whether it will act as a nop or as a real instruction, depending on the condi-
tion codes. Hence conditional branches are properly considered as conditionally
executing the unconditional branch instruction. Conditional execution allows
avoiding a branch to jump over a single instruction. It takes less code space and
time to simply conditionally execute one instruction.

The 12-bit immediate field has a novel interpretation. The 8 least-significant
bits are zero-extended to a 32-bit value, then rotated right the number of bits
specified in the first 4 bits of the field multiplied by 2. Whether this split actually
catches more immediates than a simple 12-bit field would be an interesting study.
One advantage is that this scheme can represent all powers of 2 in a 32-bit word.

Operand shifting is not limited to immediates. The second register of all
arithmetic and logical processing operations has the option of being shifted
before being operated on. The shift options are shift left logical, shift right logi-
cal, shift right arithmetic, and rotate right. Once again, it would be interesting to
see how often operations like rotate-and-add, shift-right-and-test, and so on
occur in ARM programs.

Remaining Instructions

Below is a list of the remaining unique instructions of the ARM architecture:

� Block loads and stores—Under control of a 16-bit mask within the instruc-
tions, any of the 16 registers can be loaded or stored into memory in a single
instruction. These instructions can save and restore registers on procedure
entry and return. These instructions can also be used for block memory
copy—offering up to four times the bandwidth of a single register load-
store—and today block copies are the most important use.

� Reverse subtract—RSB allows the first register to be subtracted from the
immediate or shifted register. RSC does the same thing, but includes the carry
when calculating the difference.

� Long multiplies—Similar to MIPS, Hi and Lo registers get the 64-bit signed
product (SMULL) or the 64-bit unsigned product (UMULL).

� No divide—Like the Alpha, integer divide is not supported in hardware.

� Conditional trap—A common extension to the MIPS core found in desktop
RISCs (Figures C.22 through C.25), it comes for free in the conditional exe-
cution of all ARM instructions, including SWI.

� Coprocessor interface—Like many of the desktop RISCs, ARM defines a full
set of coprocessor instructions: data transfer, moves between general-purpose
and coprocessor registers, and coprocessor operations.

C.12 Instructions Unique to ARM

C-36 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

� Floating-point architecture—Using the coprocessor interface, a floating-point
architecture has been defined for ARM. It was implemented as the FPA10
coprocessor.

� Branch and exchange instruction sets—The BX instruction is the transition
between ARM and Thumb, using the lower 31 bits of the register to set the PC
and the most-significant bit to determine if the mode is ARM (1) or Thumb (0).

In the ARM version 4 model, frequently executed procedures will use ARM
instructions to get maximum performance, with the less frequently executed ones
using Thumb to reduce the overall code size of the program. Since typically only
a few procedures dominate execution time, the hope is that this hybrid gets the
best of both worlds.

Although Thumb instructions are translated by the hardware into conven-
tional ARM instructions for execution, there are several restrictions. First, condi-
tional execution is dropped from almost all instructions. Second, only the first 8
registers are easily available in all instructions, with the stack pointer, link regis-
ter, and program counter used implicitly in some instructions. Third, Thumb uses
a two-operand format to save space. Fourth, the unique shifted immediates and
shifted second operands have disappeared and are replaced by separate shift
instructions. Fifth, the addressing modes are simplified. Finally, putting all
instructions into 16 bits forces many more instruction formats.

In many ways the simplified Thumb architecture is more conventional than
ARM. Here are additional changes made from ARM in going to Thumb:

� Drop of immediate logical instructions—Logical immediates are gone.

� Condition codes implicit—Rather than have condition codes set optionally,
they are defined by the opcode. All ALU instructions and none of the data
transfers set the condition codes.

� Hi/Lo register access—The 16 ARM registers are halved into Lo registers and
Hi registers, with the 8 Hi registers including the stack pointer (SP), link reg-
ister, and PC. The Lo registers are available in all ALU operations. Variations
of ADD, BX, CMP, and MOV also work with all combinations of Lo and Hi regis-
ters. SP and PC registers are also available in variations of data transfers and
add immediates. Any other operations on the Hi registers require one MOV to
put the value into a Lo register, perform the operation there, and then transfer
the data back to the Hi register.

� Branch/call distance—Since instructions are 16 bits wide, the 8-bit condi-
tional branch address is shifted by 1 instead of by 2. Branch with link is spec-
ified in two instructions, concatenating 11 bits from each instruction and
shifting them left to form a 23-bit address to load into PC.

C.13 Instructions Unique to Thumb

C.14 Instructions Unique to SuperH � C-37

� Distance for data transfer offsets—The offset is now 5 bits for the general-
purpose registers and 8 bits for SP and PC.

Register 0 plays a special role in SuperH address modes. It can be added to
another register to form an address in indirect indexed addressing and PC-relative
addressing. R0 is used to load constants to give a larger addressing range than can
easily be fit into the 16-bit instructions of the SuperH. R0 is also the only register
that can be an operand for immediate versions of AND, CMP, OR, and XOR.

Below is a list of the remaining unique details of the SuperH architecture:

� Decrement and test—DT decrements a register and sets the T bit to 1 if the
result is 0.

� Optional delayed branch—Although the other embedded RISC machines
generally do not use delayed branches (see Appendix A), SuperH offers
optional delayed branch execution for BT and BF.

� Many multiplies—Depending if the operation is signed or unsigned, if the
operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the
proper multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. The product
is found in the MACL and MACH registers.

� Zero and sign extension—Byte or halfwords are either zero-extended (EXTU)
or sign-extended (EXTS) within a 32-bit register.

� One-bit shift amounts—Perhaps in an attempt to make them fit within the 16-
bit instructions, shift instructions only shift a single bit at a time.

� Dynamic shift amount—These variable shifts test the sign of the amount in a
register to determine whether they shift left (positive) or shift right (negative).
Both logical (SHLD) and arithmetic (SHAD) instructions are supported. These
instructions help offset the 1-bit constant shift amounts of standard shifts.

� Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR), which
set the T bit with the value rotated, and also have variations that include the T
bit in the rotations (ROTCL and ROTCR).

� SWAP—This instruction either swaps the high and low bytes of a 32-bit word
or the two bytes of the rightmost 16 bits.

� Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are
placed in another register.

� Negate with carry—Like SUBC (Figure C.27), except the first operand is 0.

� Cache prefetch—Like many of the desktop RISCs (Figures C.22 through
C.25), SuperH has an instruction (PREF) to prefetch data into the cache.

� Test-and-set—SuperH uses the older test-and-set (TAS) instruction to perform
atomic locks or semaphores (see Chapter 9). TAS first loads a byte from

C.14 Instructions Unique to SuperH

C-38 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is not 0.
Finally, it sets the most-significant bit of the byte to 1 and writes the result
back to memory.

The most unusual feature of the M32R is a slight VLIW approach to the pairs of
16-bit instructions. A bit is reserved in the first instruction of the pair to say
whether this instruction can be executed in parallel with the next instruction—
that is, the two instructions are independent—or if these two must be executed
sequentially. (An earlier machine that offered a similar option was the Intel i860.)
This feature is included for future implementations of the architecture.

One surprise is that all branch displacements are shifted left 2 bits before
being added to the PC and the lower 2 bits of the PC are set to 0. Since some
instructions are only 16 bits long, this shift means that a branch cannot go to any
instruction in the program: It can only branch to instructions on word boundaries.
A similar restriction is placed on the return address for the branch-and-link and
jump-and-link instructions: they can only return to a word boundary. Thus for a
slightly larger branch distance, software must ensure that all branch addresses
and all return addresses are aligned to a word boundary. The M32R code space is
probably slightly larger, and it probably executes more NOP instructions than it
would if the branch address were only shifted left 1 bit.

However, the VLIW feature above means that a NOP can execute in parallel
with another 16-bit instruction, so that the padding doesn’t take more clock
cycles. The code size expansion depends on the ability of the compiler to sched-
ule code and to pair successive 16-bit instructions; Mitsubishi claims that code
size overall is only 7% larger than that for the Motorola 680x0 architecture.

The last remaining novel feature is that the result of the divide operation is the
remainder instead of the quotient.

MIPS16 is not really a separate instruction set but a 16-bit extension of the full
32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS
architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). The ISA
mode bit determines the width of instructions: 0 means 32-bit-wide instructions
and 1 means 16-bit-wide instructions. The new JALX instruction toggles the ISA
mode bit to switch to the other ISA. JR and JALR have been redefined to set the
ISA mode bit from the most-significant bit of the register containing the branch
address, and this bit is not considered part of the address. All jump and link
instructions save the current mode bit as the most-significant bit of the return
address.

C.15 Instructions Unique to M32R

C.16 Instructions Unique to MIPS16

C.16 Instructions Unique to MIPS16 � C-39

Hence MIPS supports whole procedures containing either 16-bit or 32-bit
instructions, but it does not support mixing the two lengths together in a single
procedure. The one exception is the JAL and JALX: These two instructions need
32 bits even in the 16-bit mode, presumably to get a large enough address to
branch to far procedures.

In picking this subset, MIPS decided to include opcodes for some three-
operand instructions and to keep 16 opcodes for 64-bit operations. The combina-
tion of this many opcodes and operands in 16 bits led the architects to provide
only 8 easy-to-use registers—just like Thumb—whereas the other embedded
RISCs offer about 16 registers. Since the hardware must include the full 32 regis-
ters of the 32-bit ISA mode, MIPS16 includes move instructions to copy values
between the 8 MIPS16 registers and the remaining 24 registers of the full MIPS
architecture. To reduce pressure on the 8 visible registers, the stack pointer is
considered a separate register. MIPS16 includes a variety of separate opcodes to
do data transfers using sp as a base register and to increment sp: LWSP, LDSP, SWSP,
SDSP, ADJSP, DADJSP, ADDIUSPD, and DADDIUSP.

To fit within the 16-bit limit, immediate fields have generally been shortened
to 5 to 8 bits. MIPS16 provides a way to extend its shorter immediates into the
full width of immediates in the 32-bit mode. Borrowing a trick from the Intel
8086, the EXTEND instruction is really a 16-bit prefix that can be prepended to any
MIPS16 instruction with an address or immediate field. The prefix supplies
enough bits to turn the 5-bit fields of data transfers and 5- to 8-bit fields of arith-
metic immediates into 16-bit constants. Alas, there are two exceptions. ADDIU
and DADDIU start with 4-bit immediate fields, but since EXTEND can only supply 11
more bits, the wider immediate is limited to 15 bits. EXTEND also extends the 3-bit
shift fields into 5-bit fields for shifts. (In case you were wondering, the EXTEND
prefix does not need to start on a 32-bit boundary.)

To further address the supply of constants, MIPS16 added a new addressing
mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shifts
an 8-bit immediate field by 2 or 3 bits, respectively, adding it to the PC with the
lower 2 or 3 bits cleared. The constant word or double word is then loaded into a
register. Thus 32-bit or 64-bit constants can be included with MIPS16 code,
despite the loss of LIU to set the upper register bits. Given the new addressing
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address
and place it in a register.

MIPS16 differs from the other embedded RISCs in that it can subset a 64-bit
address architecture. As a result it has 16-bit instruction-length versions of 64-bit
data operations: data transfer (LD, SD, LWU), arithmetic operations (DADDU/IU,
DSUBU, DMULT/U, DDIV/U), and shifts (DSLL/V, DSRA/V, DSRL/V).

Since MIPS plays such a prominent role in this book, we show all the addi-
tional changes made from the MIPS core instructions in going to MIPS16:

� Drop of signed arithmetic instructions—Arithmetic instructions that can trap
were dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB.

� Drop of immediate logical instructions—Logical immediates are gone too:
ANDI, ORI, XORI.

C-40 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

� Branch instructions pared down—Comparing two registers and then branch-
ing did not fit, nor did all the other comparisons of a register to zero. Hence
these instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, BLEZ, and
BLTZ. As mentioned in Section C.3, to help compensate MIPS16 includes
compare instructions to test if two registers are equal. Since compare and set-
on-less-than set the new T register, branches were added to test the T register.

� Branch distance—Since instructions are 16 bits wide, the branch address is
shifted by one instead of by two.

� Delayed branches disappear—The branches take effect before the next
instruction. Jumps still have a one-slot delay.

� Extension and distance for data transfer offsets—The 5-bit and 8-bit fields are
zero-extended instead of sign-extended in 32-bit mode. To get greater range,
the immediate fields are shifted left 1, 2, or 3 bits depending on whether the
data is half word, word, or double word. If the EXTEND prefix is prepended to
these instructions, they use the conventional signed 16-bit immediate of the
32-bit mode.

� Extension of arithmetic immediates—The 5-bit and 8-bit fields are zero-
extended for set-on-less-than and compare instructions, for forming a PC-
relative address, and for adding to SP and placing the result in a register
(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefix is prepended to these
instructions, they use the conventional signed 16-bit immediate of the 32-bit
mode. They are still sign-extended for general adds and for adding to SP and
placing the result back in SP (ADJSP, DADJSP). Alas, code density and orthog-
onality are strange bedfellows in MIPS16!

� Redefining shift amount of 0—MIPS16 defines the value 0 in the 3-bit shift
field to mean a shift of 8 bits.

� New instructions added due to loss of register 0 as zero—Load immediate,
negate, and not were added, since these operations could no longer be synthe-
sized from other instructions using r0 as a source.

This appendix covers the addressing modes, instruction formats, and all instruc-
tions found in 10 recent RISC architectures. Although the later sections concen-
trate on the differences, it would not be possible to cover 10 architectures in these
few pages if there were not so many similarities. In fact, we would guess that
more than 90% of the instructions executed for any of these architectures would
be found in Figures C.9 through C.17. To contrast this homogeneity, Figure C.34
gives a summary for four architectures from the 1970s in a format similar to that
shown in Figure C.1. (Imagine trying to write a single chapter in this style for
those architectures!) In the history of computing, there has never been such wide-
spread agreement on computer architecture.

C.17 Concluding Remarks

References � C-41

This style of architecture cannot remain static, however. Like people, instruc-
tion sets tend to get bigger as they get older. Figure C.35 shows the genealogy of
these instruction sets, and Figure C.36 shows which features were added to or
deleted from generations of desktop RISCs over time.

As you can see, all the desktop RISC machines have evolved to 64-bit address
architectures, and they have done so fairly painlessly. The only remaining major
desktop 32-bit address architecture is the Intel 80x86.

Its 64-bit address successor is IA-64. If IA-64 proves successful, then micro-
processor architectures of the 1970s will finally step into history rather than
shape the cost and performance of modern desktop computing.

We would like to thank the following people for comments on drafts of this
appendix: Professor Steven B. Furber, University of Manchester; Dr. Dileep
Bhandarkar, Intel Corporation; Dr. Earl Killian, Silicon Graphics/MIPS; and Dr.
Hiokazu Takata, Mitsubishi Electric Corporation.

Bhandarkar, D. P. [1995]. Alpha Architecture and Implementations, Digital Press, New-
ton, Mass.

 IBM 360/370 Intel 8086 Motorola 68000 DEC VAX

Date announced 1964/1970 1978 1980 1977

Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32,..., 432

Addressing (size, model) 24 bits, flat/
31 bits, flat

4 + 16 bits,
segmented

24 bits, flat 32 bits, flat

Data aligned? Yes 360/ No 370 No 16-bit aligned No

Data addressing modes 2/3 5 9 = 14

Protection Page None Optional Page

Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB

I/O Opcode Opcode Memory mapped Memory mapped

Integer registers (size, model,
number)

16 GPR × 32 bits 8 dedicated
data × 16 bits

8 data and 8 address
× 32 bits

15 GPR × 32 bits

Separate floating-point registers 4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0

Floating-point format IBM (floating
hexadecimal)

IEEE 754 single,
double, extended

IEEE 754 single,
double, extended

DEC

Figure C.34 Summary of four 1970s architectures. Unlike the architectures in Figure C.1, there is little agreement
between these architectures in any category. (See Appendix D for more details on the 80x86 and Appendix E for a
description of the VAX.)

C.18 Acknowledgments

References

C-42 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

Darcy, J. D., and D. Gay [1996]. “FLECKmarks: Measuring floating point performance
using a full IEEE compliant arithmetic benchmark,” CS 252 class project, U.C.
Berkeley (see HTTP.CS.Berkeley.EDU/~darcy/Projects/cs252/).

Digital Semiconductor [1996]. Alpha Architecture Handbook, Version 3, Digital Press,
Maynard, Mass., Order number EC-QD2KB-TE (October).

Furber, S. B. [1996]. ARM System Architecture, Addison-Wesley, Harlow, England (see
www.cs.man.ac.uk/amulet/publications/books/ARMsysArch).

Figure C.35 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research
machines in bold. The CDC-6600 and Cray-1 were load-store machines with register 0 fixed at 0, and separate integer
and floating-point registers. Instructions could not cross word boundaries. An early IBM research machine led to the
801 and America research projects, with the 801 leading to the unsuccessful RT/PC and America leading to the suc-
cessful Power architecture. Some people who worked on the 801 later joined Hewlett-Packard to work on the PA-
RISC. The two university projects were the basis of MIPS and SPARC machines. According to Furber [1996], the Berke-
ley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of both
architectures and chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM chips.
(There are no ARM v.4 and ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC built a RISC
microprocessor in 1988 but did not introduce it. Instead, DEC shipped workstations using MIPS microprocessors for
three years before they brought out their own RISC instruction set, Alpha 21064, which is very similar to MIPS III and
PRISM. The Alpha architecture has had small extensions, but they have not been formalized with version numbers;
we used version 3 because that is the version of the reference manual. The Alpha 21164A chip added byte and half-
word loads and stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Internally, Dig-
ital names chips after the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6
(21264). “EV” stands for “extended VAX.”

1960

2000

1995

1990

1985

1980

1975

1970

1965

CDC 6600
1963

IBM ASC 1968

IBM 801
1975

America
 1985

Power1
1990

PowerPC
1993

Power2
1993

RT/PC
1986

PA-RISC
1986

PA-RISC 1.1
1990

Cray 1
1976

Berkeley RISC-1
1981

SPARC v.8
1987

SPARC v.9
1994

Stanford MIPS
1982

MIPS I
1986

ARM1
1985

MIPS II
1989

MIPS III
1992

Alpha
1992

Digital PRISM
1988

MIPS IV
1994

Alpha v.3
1996

PA-RISC 2.0
1996

ARM2
1987

ARM3
1990

ARM v.4
1995

Thumb
1995

SuperH
1992

M32R
1997

MIPS V
1996

MIPS 16
1996

References � C-43

Hewlett-Packard [1994]. PA-RISC 2.0 Architecture Reference Manual, 3rd ed.
Hitachi [1997]. SuperH RISC Engine SH7700 Series Programming Manual

(see www.halsp.hitachi.com/tech_prod/ and search for title).
IBM [1994]. The PowerPC Architecture, Morgan Kaufmann, San Francisco.
Kane, G. [1996]. PA-RISC 2.0 Architecture, Prentice Hall PTR, Upper Saddle River, N.J.
Kane, G., and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood

Cliffs, N.J.
Kissell, K. D. [1997]. MIPS16: High-Density for the Embedded Market (see www.sgi

.com/MIPS/arch/MIPS16/MIPS16.whitepaper.pdf).
Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer multiplication

and division on the HP precision architecture,” IEEE Trans. on Computers 37:8,
980–990.

 PA-RISC SPARC MIPS Power

Feature 1.0 1.1 2.0 v. 8 v. 9 I II III IV V 1 2 PC

Interlocked loads X " " X " + " " X " "

Load-store FP double X " " X " + " " X " "

Semaphore X " " X " + " " X " "

Square root X " " X " + " " + "

Single-precision FP ops X " " X " X " " " +

Memory synchronize X " " X " + " " X " "

Coprocessor X " " X — X " " "

Base + index addressing X " " X " + X " "

Equiv. 32 64-bit FP registers " " + + " X " "

Annulling delayed branch X " " X " + " "

Branch register contents X " " + X " " "

Big/Little Endian + " + X " " " +

Branch-prediction bit + + " " X " "

Conditional move + + X " —

Prefetch data into cache + + + X " "

64-bit addressing/ int. ops + + + " +

32-bit multiply, divide + " + X " " " X " "

Load-store FP quad + + —

Fused FP mul/add + + X " "

String instructions X " " X " —

Multimedia support X " X X

Figure C.36 Features added to desktop RISC machines. X means in the original machine, + means added later, "
means continued from prior machine, and — means removed from architecture. Alpha is not included, but it added
byte and word loads and stores, and bit count and multimedia extensions, in version 3. MIPS V added the MDMX
instructions and paired single floating-point operations.

C-44 � Appendix C A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

MIPS [1997]. MIPS16 Application Specific Extension Product Description, (see www.sgi
.com/MIPS/arch/MIPS16/mips16.pdf)

Mitsubishi [1996]. Mitsubishi 32-Bit Single Chip Microcomputer M32R Family Software
Manual (September).

Muchnick, S. S. [1988]. “Optimizing compilers for SPARC,” Sun Technology 1:3 (Sum-
mer), 64–77.

Silicon Graphics [1996]. MIPS V Instruction Set (see http://www.sgi.com/MIPS/arch
/ISA5/#MIPSV_indx).

Sites, R. L., and R. Witek (eds.) [1995]. Alpha Architecture Reference Manual, Second
Edition, Digital Press, Newton, Mass.

Sun Microsystems [1989]. The SPARC Architectural Manual, Version 8, Part No. 800-
1399-09, August 25.

Taylor, G., P. Hilfinger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of the
SPUR LISP architecture,” Proc. 13th Symposium on Computer Architecture (June),
Tokyo.

Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture of
SOAR: Smalltalk on a RISC,” Proc. 11th Symposium on Computer Architecture
(June), Ann Arbor, Mich., 188–197.

Weaver, D. L., and T. Germond [1994]. The SPARC Architectural Manual, Version 9,
Prentice Hall, Englewood Cliffs, N.J.

Weiss, S., and J. E. Smith [1994]. Power and PowerPC, Morgan Kaufmann, San Francisco.

D.1

Introduction D-2

D.2

80x86 Registers and Data Addressing Modes D-3

D.3

80x86 Integer Operations D-6

D.4

80x86 Floating-Point Operations D-10

D.5

80x86 Instruction Encoding D-12

D.6

Putting It All Together: Measurements of Instruction Set Usage D-14

D.7

Concluding Remarks D-20

D.8

Historical Perspective and References D-21

D

An Alternative to RISC:

The Intel 80x86

The x86 isn’t all that complex—it just doesn’t make a lot of sense.

Mike Johnson

Leader of 80x86 Design at AMD,
Microprocessor Report (1994)

© 2003 Elsevier Science (USA). All rights reserved.

D-2

�

Appendix D

An Alternative to RISC: The Intel 80x86

MIPS was the vision of a single architect. The pieces of this architecture fit nicely
together and the whole architecture can be described succinctly. Such is not the
case of the 80x86: It is the product of several independent groups who evolved
the architecture over 20 years, adding new features to the original instruction set
as you might add clothing to a packed bag. Here are important 80x86 milestones:

�

1978—The Intel 8086 architecture was announced as an assembly language–
compatible extension of the then-successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Whereas the 8080 was a straightforward accumulator machine, the 8086
extended the architecture with additional registers. Because nearly every reg-
ister has a dedicated use, the 8086 falls somewhere between an accumulator
machine and a general-purpose register machine, and can fairly be called an

extended accumulator

machine.

�

1980—The Intel 8087 floating-point coprocessor is announced. This architec-
ture extends the 8086 with about 60 floating-point instructions. Its architects
rejected extended accumulators to go with a hybrid of stacks and registers,
essentially an

extended stack

 architecture: A complete stack instruction set is
supplemented by a limited set of register-memory instructions.

�

1982—The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory mapping and protection
model, and by adding a few instructions to round out the instruction set and to
manipulate the protection model. Because it was important to run 8086 pro-
grams without change, the 80286 offered a

real addressing mode

 to make the
machine look just like an 8086.

�

1985—The 80386 extended the 80286 architecture to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the 80386
added new addressing modes and additional operations. The added instruc-
tions make the 80386 nearly a general-purpose register machine. The 80386
also added paging support in addition to segmented addressing (see Chapter
5). Like the 80286, the 80386 has a mode to execute 8086 programs without
change.

This history illustrates the impact of the “golden handcuffs” of compatibility
on the 80x86, as the existing software base at each step was too important to
jeopardize with significant architectural changes. Fortunately, the subsequent
80486 in 1989, Pentium in 1992, and P6 in 1995 were aimed at higher perfor-
mance, with only four instructions added to the user-visible instruction set: three
to help with multiprocessing plus a conditional move instruction.

Since 1997 Intel has added hundreds of instructions to support multimedia by
operating on many narrower data types within a single clock (see Chapter 2).
These SIMD or vector instructions are primarily used in handcoded libraries or
drivers and rarely generated by compilers. The first extension, called MMX,

D.1 Introduction

D.2 80x86 Registers and Data Addressing Modes

�

D

-

3

appeared in 1997. It consists of 57 instructions that pack and unpack multiple
bytes, 16-bit words, or 32-bit double words into 64-bit registers and performs
shift, logical, and integer arithmetic on the narrow data items in parallel. It sup-
ports both saturating and nonsaturating arithmetic. MMX uses the registers com-
prising the floating-point stack and hence there is no new state for operating
systems to save.

In 1999 Intel added another 70 instructions, labeled SSE as part of Pentium
III. The primary changes were to add eight separate registers, double their width
to 128 bits, and add a single-precision floating-point data type. Hence four 32-bit
floating-point operations can be performed in parallel. To improve memory per-
formance, SSE included cache prefetch instructions plus streaming store instruc-
tions that bypass the caches and write directly to memory.

In 2001 Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit floating-
point operations in parallel. Almost all of these 144 instructions are versions of
existing MMX and SSE instructions that operate on 64 bits of data in parallel.
Not only does this change enable multimedia operations, it gives the compiler a
different target for floating-point operations than the unique stack architecture.
Compilers can choose to use the eight SSE registers as floating-point registers as
found in the RISC machines. This change has boosted performance on the Pen-
tium 4, the first microprocessor to include SSE2 instructions. At the time of
announcement, a 1.5 GHz Pentium 4 was 1.24 times faster than a 1 GHz Pentium
III for SPECint2000(base), but it was 1.88 times faster for SPECfp2000(base).

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other server or desktop proces-
sor in the world, perhaps 500 million in 2001. Nevertheless, its checkered ances-
try has led to an architecture that is difficult to explain and impossible to love.

We start our explanation with the registers and addressing modes, move on to
the integer operations, then cover the floating-point operations, and conclude
with an examination of instruction encoding.

The evolution of the instruction set can be seen in the registers of the 80x86
(Figure D.1). Original registers are shown in black type, with the extensions of
the 80386 shown in a lighter shade, a coloring scheme followed in subsequent
figures. The 80386 basically extended all 16-bit registers (except the segment reg-
isters) to 32 bits, prefixing an “E” to their name to indicate the 32-bit version. The
arithmetic, logical, and data transfer instructions are two-operand instructions
that allow the combinations shown in Figure D.2.

To explain the addressing modes we need to keep in mind whether we are
talking about the 16-bit mode used by both the 8086 and 80286 or the 32-bit
mode available on the 80386 and its successors. The seven data memory address-
ing modes supported are

D.2 80x86 Registers and Data Addressing Modes

D-4

�

Appendix D

An Alternative to RISC: The Intel 80x86

Figure D.1

The 80x86 has evolved over time, and so has its register set.

The original set is shown in black, and the
extended set in gray. The 8086 divided the first four registers in half so that they could be used either as one 16-bit
register or as two 8-bit registers. Starting with the 80386, the top eight registers were extended to 32 bits and could
also be used as general-purpose registers. The floating-point registers on the bottom are 80 bits wide, and although
they look like regular registers they are not. They implement a stack, with the top of stack pointed to by the status
register. One operand must be the top of stack, and the other can be any of the other seven registers below the top
of stack.

FPR 0

FPR 1

FPR 2

FPR 3

FPR 4

FPR 5

FPR 6

FPR 7

079

015

015

8 731

GPR 0 AccumulatorEAX AX AH AL

GPR 3 Base addr. regEBX BX BH BL

GPR 1 Count reg: string, loopECX CX CH CL

GPR 2 Data reg: multiply, divideEDX DX DH DL

GPR 6 ESI Index reg, string source ptr.SI

Code segment ptr.CS

Stack segment ptr. (top of stack)SS

Data segment ptr.DS

Extra data segment ptr. ES

Data segment ptr. 2FS

Data segment ptr. 3GS

GPR 7 EDI Index reg, string dest. ptr.DI

GPR 5 EBP Base ptr. (for base of stack seg.)BP

PC

GPR 4 ESP Stack ptr.SP

EIP Instruction ptr. (PC)IP

EFLAGS Condition codesFLAGS

 Top of FP stack,

 FP condition codes
Status

80x86, 80x28680x386, 80x486, Pentium

D.2 80x86 Registers and Data Addressing Modes

�

D

-

5

�

absolute

�

register indirect

�

based

�

indexed

�

based indexed with displacement

�

based with scaled indexed

�

based with scaled indexed and displacement

Displacements can be 8 or 32 bits in 32-bit mode, and 8 or 16 bits in 16-bit mode.
If we count the size of the address as a separate addressing mode, the total is 11
addressing modes.

Although a memory operand can use any addressing mode, there are restric-
tions on what registers can be used in a mode. Section D.5 on 80x86 instruction
encodings gives the full set of restrictions on registers, but the following descrip-
tion of addressing modes gives the basic register options:

�

Absolute

—With 16-bit or 32-bit displacement, depending on the mode.

�

Register indirect

—

BX

,

SI

,

DI

 in 16-bit mode and

EAX

,

ECX

,

EDX

,

EBX

,

ESI

, and

EDI

 in 32-bit mode.

�

Based mode with 8-bit or 16-bit/32-bit displacement

—

BP

,

BX

,

SI

,

DI

 in 16-bit
mode and

EAX

,

ECX

,

EDX

,

EBX

,

ESI

, and

EDI

 in 32-bit mode. The displacement
is either 8 bits or the size of the address mode: 16 or 32 bits. (Intel gives two
different names to this single addressing mode,

based

 and

indexed

, but they
are essentially identical and we combine them. This book uses indexed
addressing to mean something different and is explained next.)

�

Indexed

—Address is sum of two registers. The allowable combinations are

BX+SI

,

BX+DI

,

BP+SI

, and

BP+DI

. This mode is called

based indexed

 on the
8086. (The 32-bit mode uses a different addressing mode to get the same
effect.)

Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

Figure D.2

Instruction types for the arithmetic, logical, and data transfer instruc-
tions.

The 80x86 allows the combinations shown. The only restriction is the absence of
a memory-memory mode. Immediates may be 8, 16, or 32 bits in length; a register is
any one of the 14 major registers in Figure D.1 (not IP or FLAGS).

D-6

�

Appendix D

An Alternative to RISC: The Intel 80x86

�

Based indexed with 8- or 16-bit displacement

—The address is the sum of dis-
placement and contents of two registers. The same restrictions on registers
apply as in indexed mode.

�

Base plus scaled indexed

—This addressing mode and the next were added in
the 80386, and are only available in 32-bit mode. The address calculation is

Base register + 2

Scale

×

 Index register

where

Scale

 has the value 0, 1, 2, or 3,

Index register

 can be any of the eight
32-bit general registers except

ESP

, and

Base register

 can be any of the eight
32-bit general registers.

�

Base plus scaled index with 8- or 32-bit displacement

—The address is the
sum of the displacement and the address calculated by the scaled mode
immediately above. The same restrictions on registers apply.

The 80x86 uses Little Endian addressing.
Ideally, we would refer discussion of 80x86 logical and physical addresses to

Chapter 5, but the segmented address space prevents us from hiding that informa-
tion. Figure D.3 shows the memory mapping options on the generations of 80x86
machines; Chapter 5 describes the segmented protection scheme in greater detail.

The assembly language programmer clearly must specify which segment reg-
ister should be used with an address, no matter which address mode is used. To
save space in the instructions, segment registers are selected automatically
depending on which address register is used. The rules are simple: References to
instructions (

IP

) use the code segment register (

CS

), references to the stack (

BP

 or

SP

) use the stack segment register (

SS

), and the default segment register for the
other registers is the data segment register (

DS

). The next section explains how
they can be overridden.

The 8086 provides support for both 8-bit (

byte

) and 16-bit (called

word

) data
types. The data type distinctions apply to register operations as well as memory
accesses. The 80386 adds 32-bit addresses and data, called double words. Almost
every operation works on both 8-bit data and one longer data size. That size is
determined by the mode and is either 16 or 32 bits.

Clearly some programs want to operate on data of all three sizes, so the 80x86
architects provide a convenient way to specify each version without expanding
code size significantly. They decided that most programs would be dominated by
either 16- or 32-bit data, and so it made sense to be able to set a default large size.
This default size is set by a bit in the code segment register. To override the
default size, an 8-bit

prefix

 is attached to the instruction to tell the machine to use
the other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple pre-
fixes to modify instruction behavior. The three original prefixes override the

D.3 80x86 Integer Operations

D.3 80x86 Integer Operations

�

D

-

7

default segment register, lock the bus so as to perform a semaphore (see Chapter
6), or repeat the following instruction until

CX

 counts down to zero. This last prefix
was intended to be paired with a byte move instruction to move a variable number
of bytes. The 80386 also added a prefix to override the default address size.

The 80x86 integer operations can be divided into four major classes:

1.

Data movement instructions, including move, push, and pop.

Figure D.3

The original segmented scheme of the 8086 is shown on the left.

All 80x86 processors support this
style of addressing, called

real mode

. It simply takes the contents of a segment register, shifts it left 4 bits, and adds it
to the 16-bit offset, forming a 20-bit physical address. The 80286 (center) used the contents of the segment register
to select a segment descriptor, which includes a 24-bit base address among other items. It is added to the 16-bit off-
set to form the 24-bit physical address. The 80386 and successors (right) expand this base address in the segment
descriptor to 32 bits and also add an optional paging layer below segmentation. A 32-bit linear address is first
formed from the segment and offset, and then this address is divided into two 10-bit fields and a 12-bit page offset.
The first 10-bit field selects the entry in the first-level page table, and then this entry is used in combination with the
second 10-bit field to access the second-level page table to select the upper 20 bits of the physical address. Prepend-
ing this 20-bit address to the final 12-bit field gives the 32-bit physical address. Paging can be turned off, redefining
the 32-bit linear address as the physical address. Note that a “flat” 80x86 address space comes simply by loading the
same value in all the segment registers; that is, it doesn’t matter which segment register is selected.

OffsetSegment

16 32

32

32

32

20 20

20

1010

12

Physical address

Physical address

Linear address

Logical address

Paging

Segmentation

OffsetSegment

16 16

24

24

Logical address

OffsetSegment

16

Physical address

12 4

16

20

Logical address

Segmentation

Real mode Protected mode

(8086) (80286) (80386, 80486, Pentium)

D-8

�

Appendix D

An Alternative to RISC: The Intel 80x86

2.

Arithmetic and logic instructions, including logical operations, test, shifts,
and integer and decimal arithmetic operations.

3.

Control flow, including conditional branches and unconditional jumps, calls,
and returns.

4. String instructions, including string move and string compare.

Figure D.4 shows some typical 80x86 instructions and their functions.
The data transfer, arithmetic, and logic instructions are unremarkable, except

that the arithmetic and logic instruction operations allow the destination to be
either a register or a memory location.

Control flow instructions must be able to address destinations in another seg-
ment. This is handled by having two types of control flow instructions: “near” for
intrasegment (within a segment) and “far” for intersegment (between segments)
transfers. In far jumps, which must be unconditional, two 16-bit quantities follow
the opcode in 16-bit mode. One of these is used as the instruction pointer, while
the other is loaded into CS and becomes the new code segment. In 32-bit mode
the first field is expanded to 32 bits to match the 32-bit program counter (EIP).

Calls and returns work similarly—a far call pushes the return instruction
pointer and return segment on the stack and loads both the instruction pointer and
the code segment. A far return pops both the instruction pointer and the code seg-
ment from the stack. Programmers or compiler writers must be sure to always use
the same type of call and return for a procedure—a near return does not work
with a far call, and vice versa.

Instruction Function

JE name if equal(CC) {IP←name}; IP–128 ≤ name < IP+128
JMP name IP←name

CALLF name, seg SP←SP–2; M[SS:SP]←IP+5; SP←SP–2;
M[SS:SP]←CS; IP←name; CS←seg;

MOVW BX,[DI+45] BX←16M[DS:DI+45]

PUSH SI SP←SP–2; M[SS:SP]←SI

POP DI DI←M[SS:SP]; SP←SP+2

ADD AX,#6765 AX←AX+6765

SHL BX,1 BX←BX1..15 ## 0

TEST DX,#42 Set CC flags with DX & 42

MOVSB M[ES:DI]←8M[DS:SI]; DI←DI+1; SI←SI+1

Figure D.4 Some typical 80x86 instructions and their functions. A list of frequent
operations appears in Figure D.5. We use the abbreviation SR:X to indicate the forma-
tion of an address with segment register SR and offset X. This effective address corre-
sponding to SR:X is (SR<<4)+X. The CALLF saves the IP of the next instruction and the
current CS on the stack. The hardware description language is described on the back
inside cover of this book.

D.3 80x86 Integer Operations � D-9

String instructions are part of the 8080 ancestry of the 80x86 and are not
commonly executed in most programs.

Figure D.5 lists some of the integer 80x86 instructions. Many of the instruc-
tions are available in both byte and word formats.

Instruction Meaning

Control Conditional and unconditional branches

JNZ, JZ Jump if condition to IP + 8-bit offset; JNE (for JNZ), JE (for JZ) are alternative names

JMP, JMPF Unconditional jump—8- or 16-bit offset intrasegment (near), and intersegment (far) versions

CALL, CALLF Subroutine call—16-bit offset; return address pushed; near and far versions

RET, RETF Pops return address from stack and jumps to it; near and far versions

LOOP Loop branch—decrement CX; jump to IP + 8-bit displacement if CX ≠ 0

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory

PUSH Push source operand on stack

POP Pop operand from stack top to a register

LES Load ES and one of the GPRs from memory

Arithmetic/logical Arithmetic and logical operations using the data registers and memory

ADD Add source to destination; register-memory format

SUB Subtract source from destination; register-memory format

CMP Compare source and destination; register-memory format

SHL Shift left

SHR Shift logical right

RCR Rotate right with carry as fill

CBW Convert byte in AL to word in AX

TEST Logical AND of source and destination sets flags

INC Increment destination; register-memory format

DEC Decrement destination; register-memory format

OR Logical OR; register-memory format

XOR Exclusive OR; register-memory format

String instructions Move between string operands; length given by a repeat prefix

MOVS Copies from string source to destination; may be repeated

LODS Loads a byte or word of a string into the A register

Figure D.5 Some typical operations on the 80x86. Many operations use register-memory format, where either the
source or the destination may be memory and the other may be a register or immediate operand.

D-10 � Appendix D An Alternative to RISC: The Intel 80x86

Intel provided a stack architecture with its floating-point instructions: loads push
numbers onto the stack, operations find operands in the top two elements of the
stacks, and stores can pop elements off the stack, just as the stack example in
Figure 2.2 on page 93 suggests.

Intel supplemented this stack architecture with instructions and addressing
modes that allow the architecture to have some of the benefits of a register-
memory model. In addition to finding operands in the top two elements of the
stack, one operand can be in memory or in one of the seven registers below the
top of the stack.

This hybrid is still a restricted register-memory model, however, in that loads
always move data to the top of the stack while incrementing the top of stack
pointer and stores can only move the top of stack to memory. Intel uses the nota-
tion ST to indicate the top of stack, and ST(i) to represent the ith register below
the top of stack.

One novel feature of this architecture is that the operands are wider in the reg-
ister stack than they are stored in memory, and all operations are performed at
this wide internal precision. Numbers are automatically converted to the internal
80-bit format on a load and converted back to the appropriate size on a store.
Memory data can be 32-bit (single-precision) or 64-bit (double-precision) floating-
point numbers, called real by Intel. The register-memory version of these instruc-
tions will then convert the memory operand to this Intel 80-bit format before per-
forming the operation. The data transfer instructions also will automatically
convert 16- and 32-bit integers to reals, and vice versa, for integer loads and
stores.

The 80x86 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store.

2. Arithmetic instructions, including add, subtract, multiply, divide, square root,
and absolute value.

3. Comparison, including instructions to send the result to the integer CPU so
that it can branch.

4. Transcendental instructions, including sine, cosine, log, and exponentiation.

Figure D.6 shows some of the 60 floating-point operations. We use the curly
brackets {} to show optional variations of the basic operations: {I} means there
is an integer version of the instruction, {P} means this variation will pop one
operand off the stack after the operation, and {R} means reverse the sense of the
operands in this operation.

Not all combinations are provided. Hence

F{I}SUB{R}{P}

represents these instructions found in the 80x86:

D.4 80x86 Floating-Point Operations

D.4 80x86 Floating-Point Operations � D-11

FSUB
FISUB
FSUBR
FISUBR
FSUBP
FSUBRP

There are no pop or reverse pop versions of the integer subtract instructions.
Note that we get even more combinations when including the operand modes

for these operations. The floating-point add has these options, ignoring the inte-
ger and pop versions of the instruction:

FADD Both operands in stack, result replaces top of stack.

FADD ST(i) One source operand is ith register below the top of stack,
and the result replaces the top of stack.

FADD ST(i),ST One source operand is the top of stack, and the result
replaces ith register below the top of stack.

FADD mem32 One source operand is a 32-bit location in memory, and
the result replaces the top of stack.

FADD mem64 One source operand is a 64-bit location in memory, and
the result replaces the top of stack.

As mentioned above SSE2 presents yet another model of IEEE floating-point
registers.

Data transfer Arithmetic Compare Transcendental

F{I}LD mem/ST(i) F{I}ADD{P} mem/ST(i) F{I}COM{P}{P} FPATAN

F{I}ST{P} mem/ST(i) F{I}SUB{R}{P} mem/ST(i) F{I}UCOM{P}{P} F2XM1

FLDPI F{I}MUL{P} mem/ST(i) FSTSW AX/mem FCOS

FLD1 F{I}DIV{R}{P} mem/ST(i) FPTAN

FLDZ FSQRT FPREM

FABS FSIN

FRNDINT FYL2X

Figure D.6 The floating-point instructions of the 80x86. The first column shows the data transfer instructions,
which move data to memory or to one of the registers below the top of the stack. The last three operations push con-
stants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations described above. Note
that the last three operate only on the top of stack. The third column is the compare instructions. Since there are no
special floating-point branch instructions, the result of the compare must be transferred to the integer CPU via the
FSTSW instruction, either into the AX register or into memory, followed by an SAHF instruction to set the condition
codes. The floating-point comparison can then be tested using integer branch instructions. The final column gives
the higher-level floating-point operations.

D-12 � Appendix D An Alternative to RISC: The Intel 80x86

Saving the worst for last, the encoding of instructions in the 8086 is complex,
with many different instruction formats. Instructions may vary from one byte,
when there are no operands, to up to six bytes, when the instruction contains a
16-bit immediate and uses 16-bit displacement addressing. Prefix instructions
increase 8086 instruction length beyond the obvious sizes.

The 80386 additions expand the instruction size even further, as Figure D.7
shows. Both the displacement and immediate fields can be 32 bits long, two more
prefixes are possible, the opcode can be 16 bits long, and the scaled index mode
specifier adds another 8 bits. The maximum possible 80386 instruction is 17
bytes long.

Figure D.8 shows the instruction format for several of the example instruc-
tions in Figure D.4. The opcode byte usually contains a bit saying whether the
operand is a byte wide or the larger size, 16 bits or 32 bits depending on the
mode. For some instructions the opcode may include the addressing mode and
the register; this is true in many instructions that have the form register
←register op immediate. Other instructions use a “postbyte” or extra opcode

Figure D.7 The instruction format of the 8086 (black type) and the extensions for
the 80386 (shaded type). Every field is optional except the opcode.

D.5 80x86 Instruction Encoding

Seg. override

Opcode

mod, reg, r/m

Disp8

Disp16

Disp24

Imm8

Imm16

Disp32

Imm24

Imm32

Opcode ext.

sc, index, base

Addr. override

Size override

Prefixes

Address
specifiers

Displacement

Immediate

Opcode

Repeat

Lock

D.5 80x86 Instruction Encoding � D-13

byte, labeled “mod, reg, r/m” in Figure D.7, which contains the addressing mode
information. This postbyte is used for many of the instructions that address mem-
ory. The based with scaled index uses a second postbyte, labeled “sc, index, base”
in Figure D.7.

Figure D.8 Typical 8086 instruction formats. The encoding of the postbyte is shown
in Figure D.9. Many instructions contain the 1-bit field w, which says whether the opera-
tion is a byte or a word. Fields of the form v/w or d/w are a d-field or v-field followed by
the w-field. The d-field in MOV is used in instructions that may move to or from memory
and shows the direction of the move. The field v in the SHL instruction indicates a
variable-length shift; variable-length shifts use a register to hold the shift count. The
ADD instruction shows a typical optimized short encoding usable only when the first
operand is AX. Overall instructions may vary from one to six bytes in length.

JE

a. JE PC + displacement

CALLF Segment numberOffset

b. CALLF

c. MOV BX, [DI + 45]

PUSH

d. PUSH SI

ADD w

e. ADD AX, #6765

SHL
r-r

postbytev/w

f. SHL BX, 1

g. TEST DX, #42

Reg

4 4 8

6 8 8

8 16 16

2

5 3

4 13 16

Constant

6 2 8

7 1 8 8

Condition Displacement

MOV d/w Displacement
r-m

postbyte

TEST Postbyte Immediatew

Reg

D-14 � Appendix D An Alternative to RISC: The Intel 80x86

The floating-point instructions are encoded in the escape opcode of the 8086
and the postbyte address specifier. The memory operations reserve 2 bits to
decide whether the operand is a 32- or 64-bit real or a 16- or 32-bit integer. Those
same 2 bits are used in versions that do not access memory to decide whether the
stack should be popped after the operation and whether the top of stack or a lower
register should get the result.

Alas, you cannot separate the restrictions on registers from the encoding of
the addressing modes in the 80x86. Hence Figures D.9 and D.10 show the encod-
ing of the two postbyte address specifiers for both 16- and 32-bit mode.

In this section we present detailed measurements for the 80x86, and then com-
pare the measurements to MIPS for the same programs. To facilitate comparisons
among dynamic instruction set measurements, we use a subset of the SPEC92
programs. The 80x86 results were taken in 1994 using the Sun Solaris FOR-
TRAN and C compilers V2.0 and executed in 32-bit mode. These compilers were
comparable in quality to the compilers used for MIPS.

w = 1 mod = 0 mod = 1 mod = 2

reg w = 0 16b 32b r/m 16b 32b 16b 32b 16b 32b mod = 3

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL CX ECX 1 addr=BX+DI =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 field

4 AH SP ESP 4 addr=SI =(sib) SI+disp16 (sib)+disp8 SI+disp8 (sib)+disp32 "

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 "

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 "

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 "

Figure D.9 The encoding of the first address specifier of the 80x86, “mod, reg, r/m.” The first four columns show
the encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-
or 32-bit mode. The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends
on the value in the 2-bit mod field and the address size. Basically, the registers used in the address calculation are
listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement and mod = 2
adding a 16- or 32-bit displacement, depending on the address mode. The exceptions are r/m = 6 when mod = 1 or
mod = 2 in 16-bit mode selects BP plus the displacement; r/m = 5 when mod =1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and r/m = 4 in 32-bit mode when mod ≠3 (sib) means use the scaled index mode shown in
Figure D.10. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with
the w bit.

D.6 Putting It All Together: Measurements of Instruction
Set Usage

D.6 Putting It All Together: Measurements of Instruction Set Usage � D-15

Remember that these measurements depend on the benchmarks chosen and
the compiler technology used. Although we feel that the measurements in this
section are reasonably indicative of the usage of these architectures, other pro-
grams may behave differently from any of the benchmarks here, and different
compilers may yield different results. In doing a real instruction set study, the
architect would want to have a much larger set of benchmarks, spanning as wide
an application range as possible, and consider the operating system and its usage
of the instruction set. Single-user benchmarks like those measured here do not
necessarily behave in the same fashion as the operating system.

We start with an evaluation of the features of the 80x86 in isolation, and later
compare instruction counts with those of DLX.

Measurements of 80x86 Operand Addressing

We start with addressing modes. Figure D.11 shows the distribution of the oper-
and types in the 80x86. These measurements cover the “second” operand of the
operation; for example,

mov EAX, [45]

counts as a single memory operand. If the types of the first operand were counted,
the percentage of register usage would increase by about a factor of 1.5.

The 80x86 memory operands are divided into their respective addressing
modes in Figure D.12. Probably the biggest surprise is the popularity of the
addressing modes added by the 80386, the last four rows of the figure. They

Index Base

0 EAX EAX

1 ECX ECX

2 EDX EDX

3 EBX EBX

4 no index ESP

5 EBP if mod = 0, disp32
if mod ≠ 0, EBP

6 ESI ESI

7 EDI EDI

Figure D.10 Based plus scaled index mode address specifier found in the 80386.
This mode is indicated by the (sib) notation in Figure D.9. Note that this mode expands
the list of registers to be used in other modes: register indirect using ESP comes from
Scale = 0, Index = 4, and Base = 4, and base displacement with EBP comes from Scale =
0, Index = 5, and mod = 0. The two-bit scale field is used in this formula of the effective
address: Base register + 2Scale × Index register.

D-16 � Appendix D An Alternative to RISC: The Intel 80x86

account for about half of all the memory accesses. Another surprise is the popu-
larity of direct addressing. On most other machines, the equivalent of the direct
addressing mode is rare. Perhaps the segmented address space of the 80x86
makes direct addressing more useful, since the address is relative to a base
address from the segment register.

These addressing modes largely determine the size of the Intel instructions.
Figure D.13 shows the distribution of instruction sizes. The average number of
bytes per instruction for integer programs is 2.8, with a standard deviation of 1.5,
and 4.1 with a standard deviation of 1.9 for floating-point programs. The differ-
ence in length arises partly from the differences in the addressing modes: Integer
programs rely more on the shorter register indirect and 8-bit displacement
addressing modes, while floating-point programs more frequently use the 80386
addressing modes with the longer 32-bit displacements.

Given that the floating-point instructions have aspects of both stacks and reg-
isters, how are they used? Figure D.14 shows that, at least for the compilers used

Integer average FP average

Register 45% 22%

Immediate 16% 6%

Memory 39% 72%

Figure D.11 Operand type distribution for the average of five SPECint92 programs
(compress, eqntott, espresso, gcc, li) and the average of five SPECfp92 programs
(doduc, ear, hydro2d, mdljdp2, su2cor).

Addressing mode Integer average FP average

Register indirect 13% 3%

Base + 8-bit disp. 31% 15%

Base + 32-bit disp. 9% 25%

Indexed 0% 0%

Based indexed + 8-bit disp. 0% 0%

Based indexed + 32-bit disp. 0% 1%

Base + scaled indexed 22% 7%

Base + scaled indexed + 8-bit disp. 0% 8%

Base + scaled indexed + 32-bit disp. 4% 4%

32-bit direct 20% 37%

Figure D.12 Operand addressing mode distribution by program. This chart does not
include addressing modes used by branches or control instructions.

D.6 Putting It All Together: Measurements of Instruction Set Usage � D-17

in this measurement, the stack model of execution is rarely followed. (See Sec-
tion D.8 for a historical explanation of this observation.)

Finally, Figures D.15 and D.16 show the instruction mixes for 10 SPEC92
programs.

Figure D.13 Averages of the histograms of 80x86 instruction lengths for five
SPECint92 programs and for five SPECfp92 programs, all running in 32-bit mode.

Option doduc ear hydro2d mdljdp2 su2cor FP average

Stack (2nd operand ST (1)) 1.1% 0.0% 0.0% 0.2% 0.6% 0.4%

Register (2nd operand ST(i), i > 1) 17.3% 63.4% 14.2% 7.1% 30.7% 26.5%

Memory 81.6% 36.6% 85.8% 92.7% 68.7% 73.1%

Figure D.14 The percentage of instructions for the floating-point operations (add, sub, mul, div) that use each of
the three options for specifying a floating-point operand on the 80x86. The three options are 1) the strict stack
model of implicit operands on the stack, 2) register version naming an explicit operand that is not one of the top two
elements of the stack, and 3) memory operand.

Percentage of instructions at each length

Instruction lengths

11

10

9

8

7

6

5

4

3

2

1

0%

1%

0%

0%

0%

0%

0%

0%

4%
2%

Floating-point
average

Integer average

8%
39%

4%
6%

7%
5%

18%
25%

19%
40%

10%
14%

0% 20% 40% 60%

D-18 � Appendix D An Alternative to RISC: The Intel 80x86

Comparative Operation Measurements

Figures D.17 and D.18 show the number of instructions executed for each of the
10 programs on the 80x86 and the ratio of instruction execution compared with
that for DLX: Numbers less than 1.0 mean the 80x86 executes fewer instructions
than DLX. The instruction count is surprisingly close to DLX for many integer
programs, as you would expect a load-store instruction set architecture like DLX
to execute more instructions than a register-memory architecture like the 80x86.
The floating-point programs always have higher counts for the 80x86, presum-
ably due to the lack of floating-point registers and the use of a stack architecture.

Instruction compress eqntott espresso gcc (cc1) li Int. average

load 20.8% 18.5% 21.9% 24.9% 23.3% 22%

store 13.8% 3.2% 8.3% 16.6% 18.7% 12%

add 10.3% 8.8% 8.15% 7.6% 6.1% 8%

sub 7.0% 10.6% 3.5% 2.9% 3.6% 5%

mul 0.1% 0%

div 0%

compare 8.2% 27.7% 15.3% 13.5% 7.7% 16%

mov reg-reg 7.9% 0.6% 5.0% 4.2% 7.8% 4%

load imm 0.5% 0.2% 0.6% 0.4% 0%

cond. branch 15.5% 28.6% 18.9% 17.4% 15.4% 20%

uncond. branch 1.2% 0.2% 0.9% 2.2% 2.2% 1%

call 0.5% 0.4% 0.7% 1.5% 3.2% 1%

return, jmp indirect 0.5% 0.4% 0.7% 1.5% 3.2% 1%

shift 3.8% 2.5% 1.7% 1%

and 8.4% 1.0% 8.7% 4.5% 8.4% 6%

or 0.6% 2.7% 0.4% 0.4% 1%

other (xor, not, . . .) 0.9% 2.2% 0.1% 1%

load FP 0%

store FP 0%

add FP 0%

sub FP 0%

mul FP 0%

div FP 0%

compare FP 0%

mov reg-reg FP 0%

other (abs, sqrt, . . .) 0%

Figure D.15 80x86 instruction mix for five SPECint92 programs.

D.6 Putting It All Together: Measurements of Instruction Set Usage � D-19

Another question is the total amount of data traffic for the 80x86 versus DLX,
since the 80x86 can specify memory operands as part of operations while DLX
can only access via loads and stores. Figures D.17 and D.18 also show the data
reads, data writes, and data read-modify-writes for these 10 programs. The total
accesses ratio to DLX of each memory access type is shown in the bottom rows,
with the read-modify-write counting as one read and one write. The 80x86
performs about two to four times as many data accesses as DLX for floating-point
programs, and 1.25 times as many for integer programs. Finally, Figure D.19
shows the percentage of instructions in each category for 80x86 and DLX.

Instruction doduc ear hydro2d mdljdp2 su2cor FP average

load 8.9% 6.5% 18.0% 27.6% 27.6% 20%

store 12.4% 3.1% 11.5% 7.8% 7.8% 8%

add 5.4% 6.6% 14.6% 8.8% 8.8% 10%

sub 1.0% 2.4% 3.3% 2.4% 2.4% 3%

mul 0%

div 0%

compare 1.8% 5.1% 0.8% 1.0% 1.0% 2%

mov reg-reg 3.2% 0.1% 1.8% 2.3% 2.3% 2%

load imm 0.4% 1.5% 0%

cond. branch 5.4% 8.2% 5.1% 2.7% 2.7% 5%

uncond branch 0.8% 0.4% 1.3% 0.3% 0.3% 1%

call 0.5% 1.6% 0.1% 0.1% 0%

return, jmp indirect 0.5% 1.6% 0.1% 0.1% 0%

shift 1.1% 4.5% 2.5% 2.5% 2%

and 0.8% 0.8% 0.7% 1.3% 1.3% 1%

or 0.1% 0.1% 0.1% 0%

other (xor, not, . . .) 0%

load FP 14.1% 22.5% 9.1% 12.6% 12.6% 14%

store FP 8.6% 11.4% 4.1% 6.6% 6.6% 7%

add FP 5.8% 6.1% 1.4% 6.6% 6.6% 5%

sub FP 2.2% 2.7% 3.1% 2.9% 2.9% 3%

mul FP 8.9% 8.0% 4.1% 12.0% 12.0% 9%

div FP 2.1% 0.8% 0.2% 0.2% 0%

compare FP 9.4% 6.9% 10.8% 0.5% 0.5% 5%

mov reg-reg FP 2.5% 0.8% 0.3% 0.8% 0.8% 1%

other (abs, sqrt, . . .) 3.9% 3.8% 4.1% 0.8% 0.8% 2%

Figure D.16 80x86 instruction mix for five SPECfp92 programs.

D-20 � Appendix D An Alternative to RISC: The Intel 80x86

Beauty is in the eye of the beholder.

Old Adage

As we have seen, “orthogonal” is not a term found in the Intel architectural dic-
tionary. To fully understand which registers and which addressing modes are

compress eqntott espresso gcc (cc1) li Int. avg.

Instructions executed on 80x86 (millions) 2226 1203 2216 3770 5020

Instructions executed ratio to DLX 0.61 1.74 0.85 0.96 0.98 1.03

Data reads on 80x86 (millions) 589 229 622 1079 1459

Data writes on 80x86 (millions) 311 39 191 661 981

Data read-modify-writes on 80x86 (millions) 26 1 129 48 48

Total data reads on 80x86 (millions) 615 230 751 1127 1507

Data read ratio to DLX 0.85 1.09 1.38 1.25 0.94 1.10

Total data writes on 80x86 (millions) 338 40 319 709 1029

Data write ratio to DLX 1.67 9.26 2.39 1.25 1.20 3.15

Total data accesses on 80x86 (millions) 953 269 1070 1836 2536

Data access ratio to DLX 1.03 1.25 1.58 1.25 1.03 1.23

Figure D.17 Instructions executed and data accesses on 80x86 and ratios compared to DLX for five SPECint92
programs.

doduc ear hydro2d mdljdp2 su2cor FP average

Instructions executed on 80x86 (millions) 1223 15,220 13,342 6197 6197

Instructions executed ratio to DLX 1.19 1.19 2.53 2.09 1.62 1.73

Data reads on 80x86 (millions) 515 6007 5501 3696 3643

Data writes on 80x86 (millions) 260 2205 2085 892 892

Data read-modify-writes on 80x86 (millions) 1 0 189 124 124

Total data reads on 80x86 (millions) 517 6007 5690 3820 3767

Data read ratio to DLX 2.04 2.36 4.48 4.77 3.91 3.51

Total data writes on 80x86 (millions) 261 2205 2274 1015 1015

Data write ratio to DLX 3.68 33.25 38.74 16.74 9.35 20.35

Total data accesses on 80x86 (millions) 778 8212 7965 4835 4782

Data access ratio to DLX 2.40 3.14 5.99 5.73 4.47 4.35

Figure D.18 Instructions executed and data accesses for five SPECfp92 programs on 80x86 and ratio to DLX.

D.7 Concluding Remarks

D.8 Historical Perspective and References � D-21

available, you need to see the encoding of all addressing modes and sometimes
the encoding of the instructions.

Some argue that the inelegance of the 80x86 instruction set is unavoidable,
the price that must be paid for rampant success by any architecture. We reject that
notion. Obviously no successful architecture can jettison features that were added
in previous implementations, and over time some features may be seen as unde-
sirable. The awkwardness of the 80x86 began at its core with the 8086 instruction
set and was exacerbated by the architecturally inconsistent expansions of the
8087, 80286, and 80386.

A counterexample is the IBM 360/370 architecture, which is much older than
the 80x86. It dominates the mainframe market just as the 80x86 dominates the
PC market. Due undoubtedly to a better base and more compatible enhance-
ments, this instruction set makes much more sense than the 80x86 more than 30
years after its first implementation.

For better or worse, Intel had a 16-bit microprocessor years before its com-
petitors’ more elegant architectures, and this head start led to the selection of the
8086 as the CPU for the IBM PC. What it lacks in style is made up in quantity,
making the 80x86 beautiful from the right perspective.

The saving grace of the 80x86 is that its architectural components are not too
difficult to implement, as Intel has demonstrated by rapidly improving perfor-
mance of integer programs since 1978. High floating-point performance is a
larger challenge in this architecture.

The complexity of the x86 is not an impassable barrier. . . . The biggest weakness in
the x86 instruction set is the lack of registers coupled with an extremely painful
addressing scheme.

Mike Johnson, Leader of 80x86 Design at AMD
Microprocessor Report (1994)

Integer average FP average

Category x86 DLX x86 DLX

Total data transfer 34% 36% 28% 2%

Total integer arithmetic 34% 31% 16% 12%

Total control 24% 20% 6% 10%

Total logical 8% 13% 3% 2%

Total FP data transfer 0% 0% 22% 33%

Total FP arithmetic 0% 0% 25% 41%

Figure D.19 Percentage of instructions executed by category for 80x86 and DLX for
the averages of five SPECint92 and SPECfp92 programs of Figures D.17 and D.18.

D.8 Historical Perspective and References

D-22 � Appendix D An Alternative to RISC: The Intel 80x86

There are numerous descriptions of the 80x86 architecture that have been pub-
lished—Wakerly’s [1989] is both concise and easy to understand. Crawford and
Gelsinger [1988] is a thorough description of the 80386.

The ancestors of the 80x86 were the first microprocessors, produced late in
the first half of the 1970s. The Intel 4004 and 8008 were extremely simple 4- and
8-bit accumulator-style machines. Morse et al. [1980] describe the evolution of
the 8086 from the 8080 in the late 1970s as an attempt to provide a 16-bit
machine with better throughput. At that time almost all programming for micro-
processors was done in assembly language—both memory and compilers were in
short supply. Intel wanted to keep its base of 8080 users, so the 8086 was
designed to be “compatible” with the 8080. The 8086 was never object-code
compatible with the 8080, but the machines were close enough that translation of
assembly language programs could be done automatically.

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus,
called the 8088, for use in the IBM PC. They chose the 8-bit version to reduce the
cost of the machine. This choice, together with the tremendous success of the
IBM PC, has made the 8086 architecture ubiquitous. The success of the IBM PC
was due in part because IBM opened the architecture of the PC and enabled the
PC-clone industry to flourish. As discussed in the introduction of this appendix,
the 80286, 80386, 80486, Pentium, and P6 have extended the architecture and
provided a series of performance enhancements.

Although the 68000 was chosen for the popular Macintosh, the Macintosh
was never as pervasive as the PC, partly because Apple did not allow clones until
recently, and the 68000 did not acquire the same software leverage that the 8086
enjoys. The Motorola 68000 may have been more significant technically than the
8086, but the impact of the selection by IBM and IBM’s open architecture strat-
egy dominated the technical advantages of the 68000 in the market.

Kahan’s history [1990] of the stack architecture selection for the 8086 is enter-
taining. The floating-point architecture of the companion 8087 had to be retrofitted
into the 8086 opcode space, making it inconvenient to offer two operands per
instruction as found in the rest of the 8086. Hence the decision for one operand per
instruction using a stack: “The designer’s task was to make a Virtue of this Neces-
sity.” Rather than the classical stack architecture, which has no provision for
avoiding common subexpressions from being pushed and popped from memory
into the top of the stack found in registers, Intel tried to combine a flat register file
with a stack. The reasoning was the restriction of the top of stack as one operand
was not so bad since it only required the execution of an FXCH instruction (which
swapped registers) to get the same result as a two-operand instruction, and FXCH
was much faster than the floating-point operations of the 8087.

Since floating-point expressions are not that complex, Kahan reasoned that
eight registers meant that the stack would rarely overflow. Hence he urged that
the 8087 use this hybrid scheme with the provision that stack overflow or stack
underflow would interrupt the 8086 so that interrupt software could give the illu-
sion to the compiler writer of an unlimited stack for floating-point data. The Intel
8087 was implemented in Israel, and 7500 miles and 10 time zones made com-
munication difficult from California. According to Palmer and Morse [1984]:

D.8 Historical Perspective and References � D-23

Unfortunately, nobody tried to write a software stack manager until after the 8087
was built, and by then it was too late; what was too complicated to perform in
hardware turned out to be even worse in software. One thing found lacking is the
ability to conveniently determine if an invalid-operation exception is indeed due
to a stack overflow. . . . Also lacking is the ability to restart the instruction that
caused the stack overflow . . . [p. 93]

The result is that the stack exceptions are too slow to handle in software. As
Kahan [1990] says:

Consequently, almost all higher-level languages’ compilers emit inefficient code
for the 80x87 family, degrading the chip’s performance by typically 50% with
spurious stores and loads necessary simply to preclude stack over/underflow. . . .

I still regret that the 8087’s stack implementation was not quite so neat as my
original intention. . . . If the original design had been realized, compilers today
would use the 80x87 and its descendents more efficiently, and Intel’s competitors
could more easily market faster but compatible 80x87 imitations.

 The P6 renames the floating-point registers (see Chapter 3), effectively pro-
viding up to 40 floating-point registers at any given instant. The main effect of the
stack organization is to force design teams to use transistors for dereferencing the
stack before doing the renaming.

Hewlett-Packard and Intel have announced a new, common instruction set
architecture. It is also upward compatible with the 80x86, and thus the 80x86
instruction set will be available in some form in computers of this century.
Instruction set anthropologists will peel off layer by layer from such machines
until they uncover artifacts from the first microprocessor. Given such a find, how
will they judge 20th-century computer architecture?

References

Crawford, J., and P. Gelsinger [1988]. Programming the 80386, Sybex Books, Alameda,
Calif.

Kahan, J. [1990]. “On the advantage of the 8087’s stack,” unpublished course notes, Com-
puter Science Division, University of California at Berkeley.

Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microprocessors—8080
to 8086,” Computer 13:10 (October).

Palmer, J., and S. Morse [1984]. The 8087 Primer, J. Wiley, New York, p. 93.
Wakerly, J. [1989]. Microcomputer Architecture and Programming, J. Wiley, New York.

E.1

Introduction E-2

E.2

VAX Operands and Addressing Modes E-2

E.3

Encoding VAX Instructions E-5

E.4

VAX Operations E-6

E.5

An Example to Put It All Together: swap E-10

E.6

A Longer Example: sort E-13

E.7

Fallacies and Pitfalls E-18

E.8

Concluding Remarks E-19

E.9

Historical Perspective and Further Reading E-20

Exercises E-21

E

Another Alternative to RISC:

The VAX Architecture

In principle, there is no great challenge in designing a large virtual
address minicomputer system. . . . The real challenge lies in two areas:
compatibility—very tangible and important; and simplicity—
intangible but nonetheless important.

William Strecker

“VAX-11/780—A Virtual Address Extension
to the PDP-11 Family,”

AFIPS Proc.,

National Computer Conference, 1978.

Entities should not be multiplied unnecessarily.

William of Occam

Quodlibeta Septem, 1320
(This quote is known as “Occam’s Razor.”)

© 2003 Elsevier Science (USA). All rights reserved.

E-2

�

Appendix E

Another Alternative to RISC: The VAX Architecture

To enhance your understanding of instruction set architectures, we chose the
VAX as the representative

Complex Instruction Set Computers

 (

CISC

) because it
is so different from MIPS and yet still easy to understand. By seeing two such
divergent styles, we are confident that you will be able to learn other instruction
sets on your own.

At the time the VAX was designed, the prevailing philosophy was to create
instruction sets that were close to programming languages in order to simplify
compilers. For example, because programming languages had loops, instruction
sets should have loop instructions. As VAX architect William Strecker said
(“VAX-11/780—A Virtual Address Extension to the PDP-11 Family,”

AFIPS
Proc.,

 National Computer Conference, 1978):

A major goal of the VAX-11 instruction set was to provide for effective compiler
generated code. Four decisions helped to realize this goal: . . . 1) A very regular
and consistent treatment of operators. . . . 2) An avoidance of instructions unlikely
to be generated by a compiler. . . . 3) Inclusions of several forms of common
operators. . . . 4) Replacement of common instruction sequences with single
instructions. Examples include procedure calling, multiway branching, loop con-
trol, and array subscript calculation.

Recall that DRAMs of the mid-1970s contained less than 1/1000th the capac-
ity of today’s DRAMs, so code space was also critical. Hence, another prevailing
philosophy was to minimize code size, which is de-emphasized in fixed-length
instruction sets like MIPS. For example, MIPS address fields always use 16 bits,
even when the address is very small. In contrast, the VAX allows instructions to
be a variable number of bytes, so there is little wasted space in address fields.

Books the size of the one you are reading have been written just about the
VAX, so this VAX extension cannot be exhaustive. Hence, the following sections
describe only a few of its addressing modes and instructions. To show the VAX
instructions in action, later sections show VAX assembly code for two C proce-
dures. The general style will be to contrast these instructions with the MIPS code
that you are already familiar with.

The differing goals for VAX and MIPS have led to very different architec-
tures. The VAX goals, simple compilers and code density, led to the powerful
addressing modes, powerful instructions, and efficient instruction encoding. The
MIPS goals were high performance via pipelining, ease of hardware implementa-
tion, and compatibility with highly optimizing compilers. The MIPS goals led to
simple instructions, simple addressing modes, fixed-length instruction formats,
and a large number of registers.

The VAX is a 32-bit architecture, with 32-bit-wide addresses and 32-bit-wide
registers. Yet the VAX supports many other data sizes and types, as Figure E.1

E.1 Introduction

E.2 VAX Operands and Addressing Modes

E.2 VAX Operands and Addressing Modes

�

E

-

3

shows. Unfortunately, VAX uses the name “word” to refer to 16-bit quantities; in
this text a word means 32 bits. Figure E.1 shows the conversion between the
MIPS data type names and the VAX names. Be careful when reading about VAX
instructions, as they refer to the names of the VAX data types.

The VAX provides 16 32-bit registers. The VAX assembler uses the notation

r0

,

r1

, . . . ,

r15

 to refer to these registers, and we will stick to that notation. Alas,
4 of these 16 registers are effectively claimed by the instruction set architecture.
For example,

r14

 is the stack pointer (

sp

) and

r15

 is the program counter (

pc

).
Hence,

r15

 cannot be used as a general-purpose register, and using

r14

 is very
difficult because it interferes with instructions that manipulate the stack. The
other dedicated registers are

r12

, used as the argument pointer (

ap

), and

r13

,
used as the frame pointer (

fp

); their purpose will become clear later. (Like MIPS,
the VAX assembler accepts either the register number or the register name.)

VAX addressing modes include those discussed in Chapter 2, which has all
the MIPS addressing modes:

register

,

displacement

,

immediate

, and

PC-relative

.
Moreover, all these modes can be used for jump addresses or for data addresses.

But that’s not all the addressing modes. To reduce code size, the VAX has
three lengths of addresses for displacement addressing: 8-bit, 16-bit, and 32-bit
addresses called, respectively,

byte displacement

,

word displacement

, and

long
displacement

 addressing. Thus, an address can be not only as small as possible,
but also as large as necessary; large addresses need not be split, so there is no
equivalent to the MIPS

lui

 instruction (see page 134).
Those are still not all the VAX addressing modes. Several have a

deferred

option, meaning that the object addressed is only the

address

 of the real object,
requiring another memory access to get the operand. This addressing mode is
called

indirect addressing

 in other machines. Thus,

register deferred,

autoincre-
ment deferred,

 and

byte/word/long displacement deferred

 are other addressing
modes to choose from. For example, using the notation of the VAX assembler,

r1

means the operand is register 1 and

(r1)

 means the operand is the location in
memory pointed to by

r1

.

Bits Data type MIPS name VAX name

08 Integer Byte Byte

16 Integer Half word Word

32 Integer Word Long word

32 Floating point Single precision F_floating

64 Integer Double word Quad word

64 Floating point Double precision D_floating or G_floating

8n Character string Character Character

Figure E.1

VAX data types, their lengths, and names.

The first letter of the VAX type
(b, w, l, f, q, d, g, c) is often used to complete an instruction name. Examples of move
instructions include

movb

,

movw

,

movl

,

movf

,

movq

,

movd

,

movg

,

and

movc3

.

Each move
instruction transfers an operand of the data type indicated by the letter following

mov

.

E-4

�

Appendix E

Another Alternative to RISC: The VAX Architecture

There is yet another addressing mode.

Indexed addressing

 automatically con-
verts the value in an index operand to the proper byte address to add to the rest of
the address. For a 32-bit word, we needed to multiply the index of a 4-byte quan-
tity by 4 before adding it to a base address. Indexed addressing, called

 scaled
addressing

 on some computers, automatically multiplies the index of a 4-byte
quantity by 4 as part of the address calculation.

To cope with such a plethora of addressing options, the VAX architecture sep-
arates the specification of the addressing mode from the specification of the oper-
ation. Hence, the opcode supplies the operation and the number of operands, and
each operand has its own addressing mode specifier. Figure E.2 shows the name,
assembler notation, example, meaning, and length of the address specifier.

The VAX style of addressing means that an operation doesn’t know where its
operands come from; a VAX

add

 instruction can have three operands in registers,
three operands in memory, or any combination of registers and memory operands.

Example

How long is the following instruction?

addl3 r1,737(r2),(r3)[r4]

The name

addl3

 means a 32-bit add instruction with three operands. Assume the
length of the VAX opcode is 1 byte.

Answer

The first operand specifier—

r1

— indicates register addressing and is 1 byte long.
The second operand specifier—

737(r2)

—indicates displacement addressing and
has two parts: The first part is a byte that specifies the word displacement
addressing mode and base register (

r2

); the second part is the 2-byte long dis-
placement (

737

). The third operand specifier—

(r3)[r4]

—also has two parts:
The first byte specifies register deferred addressing mode (

(r3)

), and the second
byte specifies the Index register and the use of indexed addressing (

[r4]

).

Thus, the total length of the instruction is 1 + (1) + (1 + 2) + (1 + 1) = 7 bytes.

In this example instruction, we show the VAX destination operand on the left
and the source operands on the right, just as we show MIPS code. The VAX
assembler actually expects operands in the opposite order, but we felt it would be
less confusing to keep the destination on the left for both machines. Obviously,
left or right orientation is arbitrary; the only requirement is consistency.

Elaboration

Because the PC is one of the 16 registers that can be selected in a VAX addressing
mode, 4 of the 22 VAX addressing modes are synthesized from other addressing
modes. Using the PC as the chosen register in each case,

immediate

 addressing is
really autoincrement,

PC-relative

 is displacement,

absolute

 is autoincrement
deferred, and

relative deferred

 is displacement deferred.

E.3 Encoding VAX Instructions

�

E

-

5

Given the independence of the operations and addressing modes, the encoding of
instructions is quite different from MIPS.

VAX instructions begin with a single byte opcode containing the operation
and the number of operands. The operands follow the opcode. Each operand
begins with a single byte, called the

 address specifier

, that describes the address-
ing mode for that operand. For a simple addressing mode, such as register
addressing, this byte specifies the register number as well as the mode (see the
rightmost column in Figure E.2). In other cases, this initial byte can be followed
by many more bytes to specify the rest of the address information.

As a specific example, let’s show the encoding of the add instruction from the
example on page E-4:

addl3 r1,737(r2),(r3)[r4]

Assume that this instruction starts at location 201.
Figure E.3 shows the encoding. Note that the operands are stored in memory

in opposite order to the assembly code above. The execution of VAX instructions

Addressing mode name Syntax Example Meaning
Length of address
specifier in bytes

Literal #value #

–1

–1 1 (6-bit signed value)

Immediate #value #100 100 1 + length of the
immediate

Register rn r3 r3 1

Register deferred (rn) (r3) Memory[r3] 1

Byte/word/long
displacement

Displacement (rn) 100(r3) Memory[r3 + 100] 1 + length of the
displacement

Byte/word/long
displacement deferred

@displacement (rn) @100(r3) Memory[Memory [r3 + 100]] 1 + length of the
displacement

Indexed (scaled) Base mode [rx] (r3)[r4] Memory[r3 + r4

 ×

d

]
(where

d

 is data size in bytes)
1 + length of base
addressing mode

Autoincrement (rn)+ (r3)+ Memory[r3]; r3 = r3 +

d

1

Autodecrement – (rn) –(r3) r3 = r3 –

d;

 Memory[r3] 1

Autoincrement deferred @(rn)+ @(r3)+ Memory[Memory[r3]]; r3 = r3 +

d

1

Figure E.2

Definition and length of the VAX operand specifiers.

The length of each addressing mode is 1 byte plus
the length of any displacement or immediate field needed by the mode. Literal mode uses a special 2-bit tag and the
remaining 6 bits encode the constant value. If the constant is too big, it must use the immediate addressing mode.
Note the length of an immediate operand is dictated by the length of the data type indicated in the opcode, not the
value of the immediate. The symbol

d

 in the last four modes represents the length of the data in bytes; d is 4 for 32-
bit add.

E.3 Encoding VAX Instructions

E-6 � Appendix E Another Alternative to RISC: The VAX Architecture

begins with fetching the source operands, so it makes sense for them to come
first. Order is not important in fixed-length instructions like MIPS, since the
source and destination operands are easily found within a 32-bit word.

The first byte, at location 201, is the opcode. The next byte, at location 202, is
a specifier for the index mode using register r4. Like many of the other specifiers,
the left 4 bits of the specifier give the mode and the right 4 bits give the register
used in that mode. Since addl3 is a 4-byte operation, r4 will be multiplied by 4
and added to whatever address is specified next. In this case it is register deferred
addressing using register r3. Thus bytes 202 and 203 combined define the third
operand in the assembly code.

The following byte, at address 204, is a specifier for word displacement
addressing using register r2 as the base register. This specifier tells the VAX that
the following two bytes, locations 205 and 206, contain a 16-bit address to be
added to r2.

The final byte of the instruction gives the destination operand, and this speci-
fier selects register addressing using register r1.

Such variability in addressing means that a single VAX operation can have
many different lengths; for example, an integer add varies from 3 bytes to 19
bytes. VAX implementations must decode the first operand before they can find
the second, and so implementors are strongly tempted to take one clock cycle to
decode each operand; thus this sophisticated instruction set architecture can
result in higher clock cycles per instruction, even when using simple addresses.

In keeping with its philosophy, the VAX has a large number of operations as well
as a large number of addressing modes. We review a few here to give the flavor of
the machine.

Byte address Contents at each byte Machine code

201 opcode containing addl3 c1hex

202 index mode specifier for [r4] 44hex

203 register indirect mode specifier for (r3) 63hex

204 word displacement mode specifier using r2 as base c2hex

205
the 16-bit constant 737

e1hex

206 02hex

207 register mode specifier for r1 51hex

Figure E.3 The encoding of the VAX instruction addl3 r1,737(r2),(r3)[r4], assuming it
starts at address 201. To satisfy your curiosity, the right column shows the actual VAX
encoding in hexadecimal notation. Note that the 16-bit constant 737ten takes two
bytes.

E.4 VAX Operations

E.4 VAX Operations � E-7

Given the power of the addressing modes, the VAX move instruction per-
forms several operations found in other machines. It transfers data between any
two addressable locations and subsumes load, store, register-register moves, and
memory-memory moves as special cases. The first letter of the VAX data type (b,
w, l, f, q, d, g, c in Figure E.1) is appended to the acronym mov to determine the
size of the data. One special move, called move address, moves the 32-bit address
of the operand rather than the data. It uses the acronym mova.

The arithmetic operations of MIPS are also found in the VAX, with two major
differences. First, the type of the data is attached to the name. Thus addb, addw,
and addl operate on 8-bit, 16-bit, and 32-bit data in memory or registers, respec-
tively; MIPS has a single add instruction that operates only on the full 32-bit reg-
ister. The second difference is that to reduce code size, the add instruction
specifies the number of unique operands; MIPS always specifies three even if one
operand is redundant. For example, the MIPS instruction

add $1, $1, $2

takes 32 bits like all MIPS instructions, but the VAX instruction

addl2 r1, r2

uses r1 for both the destination and a source, taking just 24 bits: 8 bits for the
opcode and 8 bits each for the two register specifiers.

Number of Operations

Now we can show how VAX instruction names are formed:

The operation add works with data types byte, word, long, float, and double and
comes in versions for either 2 or 3 unique operands, so the following instructions
are all found in the VAX:

addb2 addw2 addl2 addf2 addd2
addb3 addw3 addl3 addf3 addd3

Accounting for all addressing modes (but ignoring register numbers and immedi-
ate values) and limiting to just byte, word, and long, there are more than 30,000
versions of integer add in the VAX; MIPS has just 4!

Another reason for the large number of VAX instructions is the instructions
that either replace sequences of instructions or take fewer bytes to represent a sin-
gle instruction. Here are four such examples (* means the data type):

(operation)(datatype) 2
3 

 

E-8 � Appendix E Another Alternative to RISC: The VAX Architecture

The push instruction in the last row is exactly the same as using the move instruc-
tion with autodecrement addressing on the stack pointer:

movl – (sp), r3

Brevity is the advantage of pushl: It is one byte shorter since sp is implied.

Branches, Jumps, and Procedure Calls

The VAX branch instructions are related to the arithmetic instructions because the
branch instructions rely on condition codes. Condition codes are set as a side
effect of an operation, and they indicate whether the result is positive, negative,
zero, or if an overflow occurred. Most instructions set the VAX condition codes
according to their result; instructions without results, such as branches, do not.
The VAX condition codes are N (Negative), Z (Zero), V (oVerflow), and C
(Carry). There is also a compare instruction cmp* just to set the condition codes
for a subsequent branch.

The VAX branch instructions include all conditions. Popular branch instruc-
tions include beql(=), bneq(≠), blss(<), bleq(≤), bgtr(>), and bgeq(≥), which
do just what you would expect. There are also unconditional branches whose
name is determined by the size of the PC-relative offset. Thus brb (branch byte)
has an 8-bit displacement and brw (branch word) has a 16-bit displacement.

The final major category we cover here is the procedure call and return
instructions. Unlike the MIPS architecture, these elaborate instructions can take
dozens of clock cycles to execute. The next two sections show how they work,
but we need to explain the purpose of the pointers associated with the stack
manipulated by calls and ret. The stack pointer, sp, is just like the stack pointer
in MIPS; it points to the top of the stack.The argument pointer, ap, points to the
base of the list of arguments or parameters in memory that are passed to the pro-
cedure. The frame pointer, fp, points to the base of the local variables of the pro-
cedure that are kept in memory (the stack frame). The VAX call and return
instructions manipulate these pointers to maintain the stack in proper condition
across procedure calls and to provide convenient base registers to use when
accessing memory operands. As we shall see, call and return also save and restore
the general-purpose registers as well as the program counter. Figure E.4 gives a
further sampling of the VAX instruction set.

VAX operation Example Meaning

clr* clrl r3 r3 = 0

inc* incl r3 r3 = r3 + 1

dec* decl r3 r3 = r3 – 1

push* pushl r3 sp = sp – 4; Memory[sp] = r3;

E.4 VAX Operations � E-9

Instruction type Example Instruction meaning

Data transfers Move data between byte, half-word, word, or double-word operands; * is data type

mov* Move between two operands

movzb* Move a byte to a half word or word, extending it with zeros

mova* Move the 32-bit address of an operand; data type is last

push* Push operand onto stack

Arithmetic/logical Operations on integer or logical bytes, half words (16 bits), words (32 bits); * is data type

add*_ Add with 2 or 3 operands

cmp* Compare and set condition codes

tst* Compare to zero and set condition codes

ash* Arithmetic shift

clr* Clear

cvtb* Sign-extend byte to size of data type

Control Conditional and unconditional branches

beql, bneq Branch equal, branch not equal

bleq, bgeq Branch less than or equal, branch greater than or equal

brb, brw Unconditional branch with an 8-bit or 16-bit address

jmp Jump using any addressing mode to specify target

aobleq Add one to operand; branch if result ≤ second operand

case_ Jump based on case selector

Procedure Call/return from procedure

calls Call procedure with arguments on stack (see Section E.6)

callg Call procedure with FORTRAN-style parameter list

jsb Jump to subroutine, saving return address (like MIPS jal)

ret Return from procedure call

Floating point Floating-point operations on D, F, G, and H formats

addd_ Add double-precision D-format floating numbers

subd_ Subtract double-precision D-format floating numbers

mulf_ Multiply single-precision F-format floating point

polyf Evaluate a polynomial using table of coefficients in F format

Other Special operations

crc Calculate cyclic redundancy check

insque Insert a queue entry into a queue

Figure E.4 Classes of VAX instructions with examples. The asterisk stands for multiple data types: b, w, l, d, f, g, h, and
q. The underline, as in addd_, means there are 2-operand (addd2) and 3-operand (addd3) forms of this instruction.

E-10 � Appendix E Another Alternative to RISC: The VAX Architecture

To see programming in VAX assembly language, we translate two C procedures
swap and sort. The C code for swap is reproduced in Figure E.5. The next sec-
tion covers sort.

We describe the swap procedure in three general steps of assembly language
programming:

1. Allocate registers to program variables

2. Produce code for the body of the procedure

3. Preserve registers across the procedure invocation

The VAX code for these procedures is based on code produced by the VMS C
compiler using optimization.

Register Allocation for swap

In contrast to MIPS, VAX parameters are normally allocated to memory, so this
step of assembly language programming is more properly called “variable alloca-
tion.” The standard VAX convention on parameter passing is to use the stack. The
two parameters, v[] and k, can be accessed using register ap, the argument
pointer: the address 4(ap) corresponds to v[] and 8(ap) corresponds to k.
Remember that with byte addressing the address of sequential 4-byte words dif-
fers by 4. The only other variable is temp, which we associate with register r3.

Code for the Body of the Procedure swap

The remaining lines of C code in swap are

temp = v[k];
v[k] = v[k + 1];
v[k + 1] = temp;

swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k + 1];
 v[k + 1] = temp;
}

Figure E.5 A C procedure that swaps two locations in memory. This procedure will
be used in the sorting example in the next section.

E.5 An Example to Put It All Together: swap

E.5 An Example to Put It All Together: swap � E-11

Since this program uses v[] and k several times, to make the programs run faster
the VAX compiler first moves both parameters into registers:

movl r2, 4(ap) ;r2 = v[]
movl r1, 8(ap) ;r1 = k

Note that we follow the VAX convention of using a semicolon to start a comment;
the MIPS comment symbol # represents a constant operand in VAX assembly
language.

The VAX has indexed addressing, so we can use index k without converting it
to a byte address. The VAX code is then straightforward:

movl r3, (r2)[r1] ;r3 (temp) = v[k]
addl3 r0, #1,8(ap) ;r0 = k + 1
movl (r2)[r1],(r2)[r0] ;v[k] = v[r0] (v[k + 1])
movl (r2)[r0],r3 ;v[k + 1] = r3 (temp)

Unlike the MIPS code, which is basically two loads and two stores, the key VAX
code is one memory-to-register move, one memory-to-memory move, and one
register-to-memory move. Note that the addl3 instruction shows the flexibility of
the VAX addressing modes: It adds the constant 1 to a memory operand and
places the result in a register.

Now we have allocated storage and written the code to perform the operations
of the procedure. The only missing item is the code that preserves registers across
the routine that calls swap.

Preserving Registers across Procedure Invocation of swap

The VAX has a pair of instructions that preserve registers calls and ret. This
example shows how they work.

The VAX C compiler uses a form of callee convention. Examining the code
above, we see that the values in registers r0, r1, r2, and r3 must be saved so that
they can later be restored. The calls instruction expects a 16-bit mask at the
beginning of the procedure to determine which registers are saved: if bit i is set in
the mask, then register i is saved on the stack by the calls instruction. In addi-
tion, calls saves this mask on the stack to allow the return instruction (ret) to
restore the proper registers. Thus the calls executed by the caller does the sav-
ing, but the callee sets the call mask to indicate what should be saved.

One of the operands for calls gives the number of parameters being passed,
so that calls can adjust the pointers associated with the stack: the argument
pointer (ap), frame pointer (fp), and stack pointer (sp). Of course, calls also
saves the program counter so that the procedure can return!

Thus, to preserve these four registers for swap, we just add the mask at the
beginning of the procedure, letting the calls instruction in the caller do all the
work:

.word ^m<r0,r1,r2,r3> ;set bits in mask for 0,1,2,3

E-12 � Appendix E Another Alternative to RISC: The VAX Architecture

This directive tells the assembler to place a 16-bit constant with the proper bits
set to save registers r0 though r3.

The return instruction undoes the work of calls. When finished, ret sets the
stack pointer from the current frame pointer to pop everything calls placed on
the stack. Along the way, it restores the register values saved by calls, including
those marked by the mask and old values of the fp, ap, and pc.

To complete the procedure swap, we just add one instruction:

ret ;restore registers and return

The Full Procedure swap

We are now ready for the whole routine. Figure E.6 identifies each block of code
with its purpose in the procedure, with the MIPS code on the left and the VAX
code on the right. This example shows the advantage of the scaled indexed
addressing and the sophisticated call and return instructions of the VAX in reduc-
ing the number of lines of code. The 17 lines of MIPS assembly code became 8
lines of VAX assembly code. It also shows that passing parameters in memory
results in extra memory accesses.

Keep in mind that the number of instructions executed is not the same as per-
formance; the fallacy on page E-18 makes this point.

MIPS versus VAX

Saving register

swap: addi $29,$29, –12
sw $2, 0($29)
sw $15, 4($29)
sw $16, 8($29)

swap: .word ^m<r0,r1,r2,r3>

Procedure body

muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

movl r2, 4(a)
movl r1, 8(a)
movl r3, (r2)[r1]
addl3 r0, #1,8(ap)
movl (r2)[r1],(r2)[r0]
movl (r2)[r0],r3

Restoring registers

lw $2, 0($29)
lw $15, 4($29)
lw $16, 8($29)
addi $29,$29, 12

Procedure return

jr $31 ret

Figure E.6 MIPS versus VAX assembly code of the procedure swap in Figure E.5 on
page E-10.

E.6 A Longer Example: sort � E-13

Elaboration VAX software follows a convention of treating registers r0 and r1 as temporaries
that are not saved across a procedure call, so the VMS C compiler does include
registers r0 and r1 in the register saving mask. Also, the C compiler should have
used r1 instead of 8(ap) in the addl3 instruction; such examples inspire com-
puter architects to try to write compilers!

We show the longer example of the sort procedure. Figure E.7 shows the C ver-
sion of the program. Once again we present this procedure in several steps, con-
cluding with a side-by-side comparison to MIPS code.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are found in the stack in loca-
tions 4(ap) and 8(ap), respectively. The two local variables are assigned to reg-
isters: i to r6 and j to r4. Because the two parameters are referenced frequently
in the code, the VMS C compiler copies the address of these parameters into reg-
isters upon entering the procedure:

moval r7,8(ap) ;move address of n into r7
moval r5,4(ap) ;move address of v into r5

It would seem that moving the value of the operand to a register would be more
useful than its address, but once again we bow to the decision of the VMS C
compiler. Apparently the compiler cannot be sure that v and n don’t overlap in
memory.

Code for the Body of the sort Procedure

The procedure body consists of two nested for loops and a call to swap, which
includes parameters. Let’s unwrap the code from the outside to the middle.

Figure E.7 A C procedure that performs a bubble sort on the array v.

E.6 A Longer Example: sort

sort (int v[], int n)
{

int i, j;
for (i = 0; i < n; i = i + 1) {

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1)
 { swap(v,j);
}

}
}

E-14 � Appendix E Another Alternative to RISC: The VAX Architecture

The Outer Loop

The first translation step is the first for loop:

for (i = 0; i < n; i = i + 1) {

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the first part of the
for statement:

clrl r6 ;i = 0

It also takes just one instruction to increment i, the last part of the for:

incl r6 ;i = i + 1

The loop should be exited if i < n is false, or said another way, exit the loop if
i ≥ n. This test takes two instructions:

for1tst: cmpl r6,(r7) ;compare r6 and memory[r7] (i:n)
bgeq exit1 ;go to exit1 if r6 ≥ mem[r7] (i ≥ n)

Note that cmpl sets the condition codes for use by the conditional branch
instruction bgeq.

The bottom of the loop just jumps back to the loop test:

brb for1tst ;branch to test of outer loop
exit1:

The skeleton code of the first for loop is then

clrl r6 ;i = 0
for1tst: cmpl r6,(r7) ;compare r6 and memory[r7] (i:n)

bgeq exit1 ;go to exit1 if r6 ≥ mem[r7] (i ≥ n)
...
(body of first for loop)
...

incl r6 ;i = i + 1
brb for1tst ;branch to test of outer loop

exit1:

The Inner Loop

The second for loop is

 for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1) {

E.6 A Longer Example: sort � E-15

The initialization portion of this loop is again one instruction:

subl3 r4,r6,#1 ;j = i – 1

The decrement of j is also one instruction:

decl r4 ;j = j – 1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

for2tst:blss exit2 ;go to exit2 if r4 < 0 (j < 0)

Notice that there is no explicit comparison. The lack of comparison is a benefit of
condition codes, with the conditions being set as a side effect of the prior instruc-
tion. This branch skips over the second condition test.

The second test exits if v[j] > v[j + 1] is false, or exits if v[j] ≤ v[j + 1].
First we load v and put j + 1 into registers:

movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)

Register indirect addressing is used to get the operand pointed to by r5.
Once again the index addressing mode means we can use indices without

converting to the byte address, so the two instructions for v[j] ≤≤ v[j + 1]are

cmpl (r3)[r4],(r3)[r2] ;v[r4] : v[r2] (v[j]:v[j + 1])
bleq exit2 ;go to exit2 if v[j] ≤ v[j + 1]

The bottom of the loop jumps back to the full loop test:

brb for2tst # jump to test of inner loop

Combining the pieces, the second for loop looks like this:

subl3 r4,r6, #1 ;j = i – 1
for2tst: blss exit2 ;go to exit2 if r4 < 0 (j < 0)

movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)
cmpl (r3)[r4],(r3)[r2];v[r4] : v[r2]
bleq exit2 ;go to exit2 if v[j]≤v[j+1]

...
(body of second for loop)
...

decl r4 ;j = j – 1
brb for2tst ;jump to test of inner loop

exit2:

E-16 � Appendix E Another Alternative to RISC: The VAX Architecture

Notice that the instruction blss (at the top of the loop) is testing the condition
codes based on the new value of r4 (j), set either by the subl3 before entering
the loop or by the decl at the bottom of the loop.

The Procedure Call

The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

calls #2,swap

The constant 2 indicates the number of parameters pushed on the stack.

Passing Parameters

The C compiler passes variables on the stack, so we pass the parameters to swap
with these two instructions:

pushl (r5) ;first swap parameter is v
pushl r4 ;second swap parameter is j

Register indirect addressing is used to get the operand of the first instruction.

Preserving Registers across Procedure Invocation of sort

The only remaining code is the saving and restoring of registers using the callee
save convention. This procedure uses registers r2 through r7, so we add a mask
with those bits set:

.word ^m<r2,r3,r4,r5,r6,r7>; set mask for registers 2-7

Since ret will undo all the operations, we just tack it on the end of the procedure.

The Full Procedure sort

Now we put all the pieces together in Figure E.8. To make the code easier to fol-
low, once again we identify each block of code with its purpose in the procedure
and list the MIPS and VAX code side by side. In this example, 11 lines of the
sort procedure in C become the 44 lines in the MIPS assembly language and 20
lines in VAX assembly language. The biggest VAX advantages are in register sav-
ing and restoring and indexed addressing.

E.6 A Longer Example: sort � E-17

MIPS versus VAX

Saving registers

sort: addi $29,$29, –36
sw $15, 0($29)
sw $16, 4($29)
sw $17, 8($29)
sw $18,12($29)
sw $19,16($29)
sw $20,20($29)
sw $24,24($29)
sw $25,28($29)
sw $31,32($29)

sort: .word ^m<r2,r3,r4,r5,r6,r7>

Procedure body

Move parameters move $18, $4
move $20, $5

moval r7,8(ap)
moval r5,4(ap)

Outer loop add $19, $0, $0
for1tst: slt $8, $19, $20

beq $8, $0, exit1

clrl r6
for1tst: cmpl r6,(r7)

bgeq exit1

Inner loop addi $17, $19, –1
for2tst: slti $8, $17, 0

bne $8, $0, exit2
muli $15, $17, 4
add $16, $18, $15
lw $24, 0($16)
lw $25, 4($16)
slt $8, $25, $24
beq $8, $0, exit2

subl3 r4,r6,#1
for2tst:

blss exit2
movl r3,(r5)

addl3 r2,r4,#1
cmpl (r3)[r4],(r3)[r2]
bleq exit2

Pass parameters
and call

move $4, $18
move $5, $17
jal swap

pushl (r5)
pushl r4
calls #2,swap

Inner loop addi $17, $17, –1
j for2tst

decl r4
brb for2tst

Outer loop exit2: addi $19, $19, 1
j for1tst

exit2: incl r6
brb for1tst

Restoring registers

exit1: lw $15, 0($29)
lw $16, 4($29)
lw $17, 8($29)
lw $18,12($29)
lw $19,16($29)
lw $20,20($29)
lw $24,24($29)
lw $25,28($29)
lw $31,32($29)
addi $29,$29, 36

Procedure return

jr $31 exit1: ret

Figure E.8 MIPS32 versus VAX assembly version of procedure sort in Figure E.7 on page E-13.

E-18 � Appendix E Another Alternative to RISC: The VAX Architecture

The ability to simplify means to eliminate the unnecessary so that the necessary
may speak.

Hans Hoffman
Search for the Real, 1967

Fallacy It is possible to design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hard-
ware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at one time later look like mis-
takes. For example, in 1975 the VAX designers overemphasized the importance
of code size efficiency and underestimated how important ease of decoding and
pipelining would be ten years later. And almost all architectures eventually suc-
cumb to the lack of sufficient address space. Avoiding these problems in the long
run, however, would probably mean compromising the efficiency of the architec-
ture in the short run.

Fallacy An architecture with flaws cannot be successful.

The IBM 360 is often criticized in the literature—the branches are not PC-
relative, and the address is too small in displacement addressing. Yet, the machine
has been an enormous success because it correctly handled several new problems.
First, the architecture has a large amount of address space. Second, it is byte
addressed and handles bytes well. Third, it is a general-purpose register machine.
Finally, it is simple enough to be efficiently implemented across a wide perfor-
mance and cost range.

The Intel 8086 provides an even more dramatic example. The 8086 architec-
ture is the only widespread architecture in existence today that is not truly a
general-purpose register machine. Furthermore, the segmented address space of
the 8086 causes major problems for both programmers and compiler writers.
Finally, it is hard to implement. It has generally provided only half the perfor-
mance of the RISC architectures for the last eight years, despite significant
investment by Intel. Nevertheless, the 8086 architecture—because of its selection
as the microprocessor in the IBM PC—has been enormously successful.

Fallacy The architecture that executes fewer instructions is faster.

Designers of VAX machines performed a quantitative comparison of VAX and
MIPS for implementations with comparable organizations, the VAX 8700 and the
MIPS M2000. Figure E.9 shows the ratio of the number of instructions executed
and the ratio of performance measured in clock cycles. MIPS executes about
twice as many instructions as the VAX while the MIPS M2000 has almost three
times the performance of the VAX 8700.

E.7 Fallacies and Pitfalls

E.8 Concluding Remarks � E-19

The Virtual Address eXtension of the PDP-11 architecture . . . provides a virtual
address of about 4.3 gigabytes which, even given the rapid improvement of mem-
ory technology, should be adequate far into the future.

William Strecker
“VAX-11/780—A Virtual Address Extension to the PDP-11
Family,” AFIPS Proc., National Computer Conference, 1978

We have seen that instruction sets can vary quite dramatically, both in how they
access operands and in the operations that can be performed by a single instruc-
tion. Figure E.10 compares instruction usage for both architectures for two pro-
grams; even very different architectures behave similarly in their use of instruc-
tion classes.

A product of its time, the VAX emphasis on code density and complex opera-
tions and addressing modes conflicts with the current emphasis on easy decoding,
simple operations and addressing modes, and pipelined performance.

With more than 600,000 sold, the VAX architecture has had a very successful
run. In 1991 DEC made the transition from VAX to Alpha, a 64-bit address archi-
tecture very similar to MIPS.

Figure E.9 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using
SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the
VAX is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from “Per-
formance from Architecture: Comparing a RISC and CISC with Similar Hardware Organization,” by D. Bhandarkar and
D. Clark in Proc. Symp. Architectural Support for Programming Languages and Operating Systems IV, 1991.)

3

3.5

4

2.5

2

1.5

1

0.5

0
spice matrix nasa7 fpppp

Instructions executed Performance

tomcatv doduc espresso eqntott li

MIPS/VAX

Number of bits of displacement

E.8 Concluding Remarks

E-20 � Appendix E Another Alternative to RISC: The VAX Architecture

Orthogonality is key to the VAX architecture; the opcode is independent of
the addressing modes that are independent of the data types and even the number
of unique operands.Thus a few hundred operations expand to hundreds of thou-
sands of instructions when accounting for the data types, operand counts, and
addressing modes.

VAX: the most successful minicomputer design in industry history . . . the VAX was
probably the hacker’s favorite machine. . . . Especially noted for its large, assem-
bler-programmer-friendly instruction set—an asset that became a liability after
the RISC revolution.

Eric Raymond
The New Hacker’s Dictionary, 1991

In the mid-1970s, DEC realized that the PDP-11 was running out of address
space. The 16-bit space had been extended in several creative ways, but the small
address space was a problem that could only be postponed, not overcome.

In 1977, DEC introduced the VAX. Strecker described the architecture and
called the VAX “a Virtual Address eXtension of the PDP-11.” One of DEC’s pri-
mary goals was to keep the installed base of PDP-11 customers. Thus, the cus-
tomers were to think of the VAX as a 32-bit successor to the PDP-11. A 32-bit
PDP-11 was possible—there were three designs—but Strecker reports that they
were “overly compromised in terms of efficiency, functionality, programming
ease.” The chosen solution was to design a new architecture and include a PDP-
11 compatibility mode that would run PDP-11 programs without change. This
mode also allowed PDP-11 compilers to run and to continue to be used. The
VAX-11/780 resembled the PDP-11 in many ways. These are among the most
important:

1. Data types and formats are mostly equivalent to those on the PDP-11. The F
and D floating formats came from the PDP-11. G and H formats were added

Program Machine Branch
Arithmetic/

 logical
Data

transfer
Floating

point Totals

gcc VAX 30% 40% 19% 89%

MIPS 24% 35% 27% 86%

spice VAX 18% 23% 15% 23% 79%

MIPS 04% 29% 35% 15% 83%

Figure E.10 The frequency of instruction distribution for two programs on VAX and
MIPS.

E.9 Historical Perspective and Further Reading

Exercises � E-21

later. The use of the term “word” to describe a 16-bit quantity was carried
from the PDP-11 to the VAX.

2. The assembly language was made similar to the PDP-11s.

3. The same buses were supported (Unibus and Massbus).

4. The operating system, VMS, was “an evolution” of the RSX-11M/IAS OS (as
opposed to the DECsystem 10/20 OS, which was a more advanced system),
and the file system was basically the same.

The VAX-11/780 was the first machine announced in the VAX series. It is one
of the most successful and heavily studied machines ever built. It relied heavily
on microprogramming, taking advantage of the increasing capacity of fast semi-
conductor memory to implement the complex instructions and addressing modes.
The VAX is so tied to microcode that we predict it will be impossible to build the
full VAX instruction set without microcode.

To offer a single-chip VAX in 1984, DEC reduced the instructions interpreted
by microcode by trapping some instructions and performing them in software.
DEC engineers found that 20% of VAX instructions are responsible for 60% of
the microcode, yet are only executed 0.2% of the time. The final result was a chip
offering 90% of the performance with a reduction in silicon area by more than a
factor of 5.

The cornerstone of DEC’s strategy was a single architecture, VAX, running a
single operating system, VMS. This strategy worked well for over ten years.
Today, DEC has transitioned to the Alpha RISC architecture. Like the transition
from the PDP-11 to the VAX, Alpha offers the same operating system, file sys-
tem, and data types and formats of the VAX. Instead of providing a VAX compat-
ibility mode, the Alpha approach is to “compile” the VAX machine code into the
Alpha machine code.

To Probe Further

Levy, H., and R. Eckhouse [1989]. Computer Programming and Architecture: The VAX,
Digital Press, Boston.
This book concentrates on the VAX, but includes descriptions of other machines.

E.1 [3] <E.4> The following VAX instruction decrements the location pointed to be
register r5:

decl (r5)

What is the single MIPS instruction, or if it cannot be represented in a single
instruction, the shortest sequence of MIPS instructions, that performs the same
operation? What are the lengths of the instructions on each machine?

Exercises

E.2 [5] <E.4> This exercise is the same as Exercise E.1, except this VAX instruction
clears a location using autoincrement deferred addressing:

clrl @(r5)+

E.3 [5] <E.5> This exercise is the same as Exercise E.1, except this VAX instruction
adds 1 to register r5, placing the sum back in register r5, compares the sum to
register r6, and then branches to L1 if r5 < r6:

aoblss r6, r5,L1 # r5 = r5 + 1; if (r5 < r6) goto L1.

E.4 [5] <E.2> Show the single VAX instruction, or minimal sequence of instructions,
for this C statement:

a = b + 100;

Assume a corresponds to register r3 and b corresponds to register r4.

E.5 [10] <E.2> Show the single VAX instruction, or minimal sequence of instruc-
tions, for this C statement:

x[i + 1] = x[i] + c;

Assume c corresponds to register r3, i to register r4, and x is an array of 32-bit
words beginning at memory location 4,000,000ten.

F.1

Introduction F-2

F.2

System/360 Instruction Set F-3

F.3

360 Detailed Measurements F-6

F.4

Historical Perspective and References F-8

F

The IBM 360/370 Architecture

for Mainframe Computers

We are not at all humble in this announcement. This is the most
important product announcement that this corporation has ever made
in its history. It’s not a computer in any previous sense. It’s not a product,
but a line of products . . . that spans in performance from the very low
part of the computer line to the very high.

IBM spokesman

at announcement of System/360

(1964)

© 2003 Elsevier Science (USA). All rights reserved.

F-2

�

Appendix F

The IBM 360/370 Architecture for Mainframe Computers

The term “computer architecture” was coined by IBM in 1964 for use with the
IBM 360. Amdahl, Blaauw, and Brooks [1994] used the term to refer to the
programmer-visible portion of the instruction set. They believed that a family of
machines of the same architecture should be able to run the same software.
Although this idea may seem obvious to us today, it was quite novel at the time.
IBM, even though it was the leading company in the industry, had five different
architectures before the 360. Thus, the notion of a company standardizing on a
single architecture was a radical one. The 360 designers hoped that six different
divisions of IBM could be brought together by defining a common architecture.
Their definition of architecture was

. . . the structure of a computer that a machine language programmer must
understand to write a correct (timing independent) program for that machine.

The term “machine language programmer” meant that compatibility would hold,
even in assembly language, while “timing independent” allowed different imple-
mentations.

The IBM 360 was introduced in 1964 with six models and a 25:1 perfor-
mance ratio. Amdahl, Blaauw, and Brooks [1994] discuss the architecture of the
IBM 360 and the concept of permitting multiple object-code–compatible imple-
mentations. The notion of an instruction set architecture as we understand it
today was the most important aspect of the 360. The architecture also introduced
several important innovations, now in wide use:

1.

32-bit architecture

2.

Byte-addressable memory with 8-bit bytes

3.

8-, 16-, 32-, and 64-bit data sizes

In 1971, IBM shipped the first System/370 (models 155 and 165), which
included a number of significant extensions of the 360, as discussed by Case and
Padegs [1978], who also discuss the early history of System/360. The most
important addition was virtual memory, though virtual memory 370s did not ship
until 1972 when a virtual memory operating system was ready. By 1978, the
high-end 370 was several hundred times faster than the low-end 360s shipped ten
years earlier. In 1984, the 24-bit addressing model built into the IBM 360 needed
to be abandoned, and the 370-XA (eXtended Architecture) was introduced. While
old 24-bit programs could be supported without change, several instructions
could not function in the same manner when extended to a 32-bit addressing
model (31-bit addresses supported) because they would not produce 31-bit
addresses. Converting the operating system, which was written mostly in assem-
bly language, was no doubt the biggest task.

Several studies of the IBM 360 and instruction measurement have been made.
Shustek’s thesis [1978] is the best known and most complete study of the 360/370
architecture. He made several observations about instruction set complexity that
were not fully appreciated until some years later. Another important study of the

F.1 Introduction

F.2 System/360 Instruction Set

�

F

-

3

360 is the Toronto study by Alexander and Wortman [1975] done on an IBM 360
using 19 XPL programs.

The 360 instruction set is shown in the following tables, organized by instruction
type and format. System/370 contains 15 additional user instructions.

Integer/Logical and Floating-Point R-R Instructions

The * indicates the instruction is floating point, and may be either D (double pre-
cision) or E (single precision).

Instruction Description

ALR

Add logical register

AR

Add register

A*R

FP addition

CLR

Compare logical register

CR

Compare register

C*R

FP compare

DR

Divide register

D*R

FP divide

H*R

FP halve

LCR

Load complement register

LC*R

Load complement

LNR

Load negative register

LN*R

Load negative

LPR

Load positive register

LP*R

Load positive

LR

Load register

L*R

Load FP register

LTR

Load and test register

LT*R

Load and test FP register

MR

Multiply register

M*R

FP multiply

NR

And register

OR

Or register

SLR

Subtract logical register

SR

Subtract register

S*R

FP subtraction

XR

Exclusive or register

F.2 System/360 Instruction Set

F-4

�

Appendix F

The IBM 360/370 Architecture for Mainframe Computers

Branches and Status Setting R-R Instructions

These are R-R format instructions that either branch or set some system status;
several of them are privileged and legal only in supervisor mode.

Branches/Logical and Floating-Point Instructions—RX Format

These are all RX format instructions. The symbol “+” means either a word opera-
tion (and then stands for nothing) or

H

 (meaning half word); for example,

A+

stands for the two opcodes

A

 and

AH

. The symbol “*” is

D

 or

E

 standing for
double- or single-precision floating point.

Instruction Description

BALR

Branch and link

BCTR

Branch on count

BCR

Branch/condition

ISK

Insert key

SPM

Set program mask

SSK

Set storage key

SVC

Supervisor call

Instruction Description

A+

Add

A*

FP add

AL

Add logical

C+

Compare

C*

FP compare

CL

Compare logical

D

Divide

D*

FP divide

L+

Load

L*

Load FP register

M+

Multiply

M*

FP multiply

N

And

O

Or

S+

Subtract

S*

FP subtract

SL

Subtract logical

ST+

Store

ST*

Store FP register

X

Exclusive or

F.2 System/360 Instruction Set

�

F

-

5

Branches and Special Loads and Stores—RX format

RS and SI Format Instructions

These are the RS and SI format instructions. The symbol “*” may be

A

 (arith-
metic) or

L

 (logical).

Instruction Description

BAL

Branch and link

BC

Branch condition

BCT

Branch on count

CVB

Convert-binary

CVD

Convert-decimal

EX

Execute

IC Insert character

LA Load address

STC Store character

Instruction Description

BXH Branch/high

BXLE Branch/low-equal

CLI Compare logical immediate

HIO Halt I/O

LPSW Load PSW

LM Load multiple

MVI Move immediate

NI And immediate

OI Or immediate

RDD Read direct

SIO Start I/O

SL* Shift left A/L

SLD* Shift left double A/L

SR* Shift right A/L

SRD* Shift right double A/L

SSM Set system mask

STM Store multiple

TCH Test channel

TIO Test I/O

TM Test under mask

TS Test-and-set

WRD Write direct

XI Exclusive or immediate

F-6 � Appendix F The IBM 360/370 Architecture for Mainframe Computers

SS Format Instructions

These are add decimal or string instructions.

Figure F.1 shows the frequency of instruction usage for four IBM 360 programs.

Instruction Description

AP Add packed

CLC Compare logical chars

CP Compare packed

DP Divide packed

ED Edit

EDMK Edit and mark

MP Multiply packed

MVC Move character

MVN Move numeric

MVO Move with offset

MVZ Move zone

NC And characters

OC Or characters

PACK Pack (Character → decimal)

SP Subtract packed

TR Translate

TRT Translate and test

UNPK Unpack

XC Exclusive or characters

ZAP Zero and add packed

F.3 360 Detailed Measurements

F.3 360 Detailed Measurements � F-7

Instruction PLIC FORTGO PLIGO COBOLGO Average

Control 32% 13% 5% 16% 16%
BC, BCR 28% 13% 5% 14% 15%
BAL, BALR 3% 2% 1%
Arithmetic/logical 29% 35% 29% 9% 26%
A, AR 3% 17% 21% 10%
SR 3% 7% 3%
SLL 6% 3% 2%
LA 8% 1% 1% 2%
CLI 7% 2%
NI 7% 2%
C 5% 4% 4% 0% 3%
TM 3% 1% 3% 2%
MH 2% 1%
Data transfer 17% 40% 56% 20% 33%
L, LR 7% 23% 28% 19% 19%
MVI 2% 16% 1% 5%
ST 3% 7% 3%
LD 7% 2% 2%
STD 7% 2% 2%
LPDR 3% 1%
LH 3% 1%
IC 2% 1%
LTR 1% 0%
Floating point 7% 2%
AD 3% 1%
MDR 3% 1%
Decimal, string 4% 40% 11%
MVC 4% 7% 3%
AP 11% 3%
ZAP 9% 2%
CVD 5% 1%
MP 3% 1%
CLC 3% 1%
CP 2% 1%
ED 1% 0%

Total 82% 95% 90% 85% 88%

Figure F.1 Distribution of instruction execution frequencies for the four 360 programs. All instructions with a fre-
quency of execution greater than 1.5% are included. Immediate instructions, which operate on only a single byte, are
included in the section that characterized their operation, rather than with the long character-string versions of the
same operation. By comparison, the average frequencies for the major instruction classes of the VAX are 23% (con-
trol), 28% (arithmetic), 29% (data transfer), 7% (floating point), and 9% (decimal). Once again, a 1% entry in the aver-
age column can occur because of entries in the constituent columns. These programs are a compiler for the
programming language PL-I and run time systems for the programming languages FORTRAN, PL/I, and Cobol.

F-8 � Appendix F The IBM 360/370 Architecture for Mainframe Computers

The IBM 360 was the first computer to sell in large quantities with both byte
addressing using 8-bit bytes and general-purpose registers. The 360 also had
register-memory and limited memory-memory instructions. This architecture
blazed the path for binary compatibility, which others have followed.

The architects of the IBM 360 were aware of the importance of address size
and planned for the architecture to extend to 32 bits of address. Only 24 bits were
used in the IBM 360, however, because the low-end 360 models would have been
even slower with the larger addresses in 1964. Unfortunately, the architects didn’t
reveal their plans to the software people, and programmers who stored extra
information in the upper 8 “unused” address bits foiled the expansion effort. Vir-
tually every computer since then will check to make sure the unused bits stay
unused, and will trap if the bits have the wrong value.

IBM officially extended the address to 32 bits in 1970 with the IBMs/370
architecture. Only recently did IBM expand this architecture to a flat, 64-bit
address, with the IBMs/390.

References

Alexander, W. G., and D. B. Wortman [1975]. “Static and dynamic characteristics of XPL
programs,” IEEE Computer 8(11) (November), 41–46.

Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr. [1964]. “Architecture of the IBM Sys-
tem/360,” IBM J. Research and Development 8:2 (April), 87–101.

Case, R. P., and A. Padegs [1978]. “The architecture of the IBM System/370,” Communi-
cations of the ACM, 21:1, 73–96.

Shustek, L. J. [1978]. Analysis and Performance of Computer Instruction Sets. Ph.D. dis-
sertation, Stanford University (January).

F.4 Historical Perspective and References

G.1

Why Vector Processors? G-2

G.2

Basic Vector Architecture G-4

G.3

Two Real-World Issues: Vector Length and Stride G-16

G.4

Enhancing Vector Performance G-23

G.5

Effectiveness of Compiler Vectorization G-32

G.6

Putting It All Together: Performance of Vector Processors G-34

G.7

Fallacies and Pitfalls G-40

G.8

Concluding Remarks G-42

G.9

Historical Perspective and References G-43

Exercises G-49

G

Vector Processors

Revised by Krste Asanovic
Department of Electrical Engineering and Computer Science, MIT

I’m certainly not inventing vector processors. There are three kinds
that I know of existing today. They are represented by the Illiac-IV, the
(CDC) Star processor, and the TI (ASC) processor. Those three were all
pioneering processors. . . . One of the problems of being a pioneer is
you always make mistakes and I never, never want to be a pioneer. It’s
always best to come second when you can look at the mistakes the
pioneers made.

Seymour Cray

Public lecture at Lawrence Livermore Laboratories
on the introduction of the Cray-1

(1976)

© 2003 Elsevier Science (USA). All rights reserved.

G-2

�

Appendix G

Vector Processors

In Chapters 3 and 4 we saw how we could significantly increase the performance
of a processor by issuing multiple instructions per clock cycle and by more
deeply pipelining the execution units to allow greater exploitation of instruction-
level parallelism. (This appendix assumes that you have read Chapters 3 and 4
completely; in addition, the discussion on vector memory systems assumes that
you have read Chapter 5.) Unfortunately, we also saw that there are serious diffi-
culties in exploiting ever larger degrees of ILP.

As we increase both the width of instruction issue and the depth of the
machine pipelines, we also increase the number of independent instructions
required to keep the processor busy with useful work. This means an increase in
the number of partially executed instructions that can be in flight at one time. For
a dynamically-scheduled machine, hardware structures, such as instruction win-
dows, reorder buffers, and rename register files, must grow to have sufficient
capacity to hold all in-flight instructions, and worse, the number of ports on each
element of these structures must grow with the issue width. The logic to track
dependencies between all in-flight instructions grows quadratically in the number
of instructions. Even a statically scheduled VLIW machine, which shifts more of
the scheduling burden to the compiler, requires more registers, more ports per
register, and more hazard interlock logic (assuming a design where hardware
manages interlocks after issue time) to support more in-flight instructions, which
similarly cause quadratic increases in circuit size and complexity. This rapid
increase in circuit complexity makes it difficult to build machines that can control
large numbers of in-flight instructions, and hence limits practical issue widths
and pipeline depths.

Vector processors

 were successfully commercialized long before instruction-
level parallel machines and take an alternative approach to controlling multiple
functional units with deep pipelines. Vector processors provide high-level opera-
tions that work on

vectors

—

linear arrays of numbers. A typical vector operation
might add two 64-element, floating-point vectors to obtain a single 64-element
vector result. The vector instruction is equivalent to an entire loop, with each itera-
tion computing one of the 64 elements of the result, updating the indices, and
branching back to the beginning.

Vector instructions have several important properties that solve most of the
problems mentioned above:

�

A single vector instruction specifies a great deal of work—it is equivalent to
executing an entire loop. Each instruction represents tens or hundreds of
operations, and so the instruction fetch and decode bandwidth needed to keep
multiple deeply pipelined functional units busy is dramatically reduced.

�

By using a vector instruction, the compiler or programmer indicates that the
computation of each result in the vector is independent of the computation of
other results in the same vector and so hardware does not have to check for
data hazards within a vector instruction. The elements in the vector can be

G.1 Why Vector Processors?

G.1 Why Vector Processors?

�

G

-

3

computed using an array of parallel functional units, or a single very deeply
pipelined functional unit, or any intermediate configuration of parallel and
pipelined functional units.

�

Hardware need only check for data hazards between two vector instructions
once per vector operand, not once for every element within the vectors. That
means the dependency checking logic required between two vector instructions
is approximately the same as that required between two scalar instructions, but
now many more elemental operations can be in flight for the same complexity
of control logic.

�

Vector instructions that access memory have a known access pattern. If the
vector’s elements are all adjacent, then fetching the vector from a set of
heavily interleaved memory banks works very well (as we saw in Section
5.8). The high latency of initiating a main memory access versus accessing a
cache is amortized, because a single access is initiated for the entire vector
rather than to a single word. Thus, the cost of the latency to main memory is
seen only once for the entire vector, rather than once for each word of the
vector.

�

Because an entire loop is replaced by a vector instruction whose behavior is
predetermined, control hazards that would normally arise from the loop
branch are nonexistent.

For these reasons, vector operations can be made faster than a sequence of scalar
operations on the same number of data items, and designers are motivated to
include vector units if the application domain can use them frequently.

As mentioned above, vector processors pipeline and parallelize the operations
on the individual elements of a vector. The operations include not only the arith-
metic operations (multiplication, addition, and so on), but also memory accesses
and effective address calculations. In addition, most high-end vector processors
allow multiple vector instructions to be in progress at the same time, creating fur-
ther parallelism among the operations on different vectors.

Vector processors are particularly useful for large scientific and engineering
applications, including car crash simulations and weather forecasting, for which a
typical job might take dozens of hours of supercomputer time running over multi-
gigabyte data sets. Multimedia applications can also benefit from vector process-
ing, as they contain abundant data parallelism and process large data streams. A
high-speed pipelined processor will usually use a cache to avoid forcing memory
reference instructions to have very long latency. Unfortunately, big, long-running,
scientific programs often have very large active data sets that are sometimes
accessed with low locality, yielding poor performance from the memory hierar-
chy. This problem could be overcome by not caching these structures if it were
possible to determine the memory access patterns and pipeline the memory
accesses efficiently. Novel cache architectures and compiler assistance through
blocking and prefetching are decreasing these memory hierarchy problems, but
they continue to be serious in some applications.

G-4

�

Appendix G

Vector Processors

A vector processor typically consists of an ordinary pipelined scalar unit plus a
vector unit. All functional units within the vector unit have a latency of several
clock cycles. This allows a shorter clock cycle time and is compatible with long-
running vector operations that can be deeply pipelined without generating haz-
ards. Most vector processors allow the vectors to be dealt with as floating-point
numbers, as integers, or as logical data. Here we will focus on floating point. The
scalar unit is basically no different from the type of advanced pipelined CPU dis-
cussed in Chapters 3 and 4, and commercial vector machines have included both
out-of-order scalar units (NEC SX/5) and VLIW scalar units (Fujitsu VPP5000).

There are two primary types of architectures for vector processors:

vector-
register processors

 and

memory-memory vector processors

. In a vector-register
processor, all vector operations—except load and store—are among the vector
registers. These architectures are the vector counterpart of a load-store architec-
ture. All major vector computers shipped since the late 1980s use a vector-register
architecture, including the Cray Research processors (Cray-1, Cray-2, X-MP, Y-
MP, C90, T90, and SV1), the Japanese supercomputers (NEC SX/2 through SX/5,
Fujitsu VP200 through VPP5000, and the Hitachi S820 and S-8300), and the mini-
supercomputers (Convex C-1 through C-4). In a memory-memory vector proces-
sor, all vector operations are memory to memory. The first vector computers were
of this type, as were CDC’s vector computers. From this point on we will focus on
vector-register architectures only; we will briefly return to memory-memory vec-
tor architectures at the end of the appendix (Section G.9) to discuss why they have
not been as successful as vector-register architectures.

We begin with a vector-register processor consisting of the primary com-
ponents shown in Figure G.1. This processor, which is loosely based on the Cray-
1, is the foundation for discussion throughout most of this appendix. We will call
it VMIPS; its scalar portion is MIPS, and its vector portion is the logical vector
extension of MIPS. The rest of this section examines how the basic architecture
of VMIPS relates to other processors.

The primary components of the instruction set architecture of VMIPS are the
following:

�

Vector registers

—Each vector register is a fixed-length bank holding a single
vector. VMIPS has eight vector registers, and each vector register holds 64
elements. Each vector register must have at least two read ports and one write
port in VMIPS. This will allow a high degree of overlap among vector opera-
tions to different vector registers. (We do not consider the problem of a short-
age of vector-register ports. In real machines this would result in a structural
hazard.) The read and write ports, which total at least 16 read ports and 8
write ports, are connected to the functional unit inputs or outputs by a pair of
crossbars. (The description of the vector-register file design has been simpli-
fied here. Real machines make use of the regular access pattern within a vec-
tor instruction to reduce the costs of the vector-register file circuitry
[Asanovic 1998]. For example, the Cray-1 manages to implement the register
file with only a single port per register.)

G.2 Basic Vector Architecture

G.2 Basic Vector Architecture

�

G

-

5

�

Vector functional units

—Each unit is fully pipelined and can start a new oper-
ation on every clock cycle. A control unit is needed to detect hazards, both
from conflicts for the functional units (structural hazards) and from conflicts
for register accesses (data hazards). VMIPS has five functional units, as shown
in Figure G.1. For simplicity, we will focus exclusively on the floating-point
functional units. Depending on the vector processor, scalar operations either
use the vector functional units or use a dedicated set. We assume the func-
tional units are shared, but again, for simplicity, we ignore potential conflicts.

�

Vector load-store unit

—This is a vector memory unit that loads or stores a
vector to or from memory. The VMIPS vector loads and stores are fully pipe-
lined, so that words can be moved between the vector registers and memory

Figure G.1

The basic structure of a vector-register architecture, VMIPS.

This proces-
sor has a scalar architecture just like MIPS. There are also eight 64-element vector regis-
ters, and all the functional units are vector functional units. Special vector instructions
are defined both for arithmetic and for memory accesses. We show vector units for log-
ical and integer operations. These are included so that VMIPS looks like a standard vec-
tor processor, which usually includes these units. However, we will not be discussing
these units except in the exercises. The vector and scalar registers have a significant
number of read and write ports to allow multiple simultaneous vector operations.
These ports are connected to the inputs and outputs of the vector functional units by a
set of crossbars (shown in thick gray lines). In Section G.4 we add chaining, which will
require additional interconnect capability.

Main memory

Vector
registers

Scalar
registers

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector
load-store

G-6

�

Appendix G

Vector Processors

with a bandwidth of 1 word per clock cycle, after an initial latency. This unit
would also normally handle scalar loads and stores.

�

A set of scalar registers

—Scalar registers can also provide data as input to the
vector functional units, as well as compute addresses to pass to the vector
load-store unit. These are the normal 32 general-purpose registers and 32
floating-point registers of MIPS. Scalar values are read out of the scalar regis-
ter file, then latched at one input of the vector functional units.

Figure G.2 shows the characteristics of some typical vector processors,
including the size and count of the registers, the number and types of functional
units, and the number of load-store units. The last column in Figure G.2 shows
the number of

lanes

 in the machine, which is the number of parallel pipelines
used to execute operations within each vector instruction. Lanes are described
later in Section G.4; here we assume VMIPS has only a single pipeline per vector
functional unit (one lane).

In VMIPS, vector operations use the same names as MIPS operations, but
with the letter “V” appended. Thus,

ADDV.D

 is an add of two double-precision
vectors. The vector instructions take as their input either a pair of vector registers
(

ADDV.D

) or a vector register and a scalar register, designated by appending “VS”
(

ADDVS.D

). In the latter case, the value in the scalar register is used as the input
for all operations—the operation

ADDVS.D

 will add the contents of a scalar regis-
ter to each element in a vector register. The scalar value is copied over to the vec-
tor functional unit at issue time. Most vector operations have a vector destination
register, although a few (population count) produce a scalar value, which is stored
to a scalar register. The names

LV

 and

SV

 denote vector load and vector store, and
they load or store an entire vector of double-precision data. One operand is
the vector register to be loaded or stored; the other operand, which is a MIPS
general-purpose register, is the starting address of the vector in memory.
Figure G.3 lists the VMIPS vector instructions. In addition to the vector registers,
we need two additional special-purpose registers: the vector-length and vector-
mask registers. We will discuss these registers and their purpose in Sections G.3
and G.4, respectively.

How Vector Processors Work: An Example

A vector processor is best understood by looking at a vector loop on VMIPS.
Let’s take a typical vector problem, which will be used throughout this appendix:

Y = a

 ×

 X + Y

X and Y are vectors, initially resident in memory, and a is a scalar. This is the so-
called

SAXPY

 or

 DAXPY

 loop that forms the inner loop of the Linpack bench-
mark. (SAXPY stands for single-precision a

×

 X plus Y; DAXPY for double-
precision a

×

 X plus Y.) Linpack is a collection of linear algebra routines, and the
routines for performing Gaussian elimination constitute what is known as the

G.2 Basic Vector Architecture

�

G

-

7

Processor (year)

Clock
rate

(MHz)
Vector

registers

Elements per
register
(64-bit

elements) Vector arithmetic units

Vector
load-store

units Lanes

Cray-1 (1976) 80 8 64 6: FP add, FP multiply, FP reciprocal,
integer add, logical, shift

1 1

Cray X-MP
(1983)
Cray Y-MP (1988)

118

166
8 64

8: FP add, FP multiply, FP reciprocal,
integer add, 2 logical, shift, population
count/parity

2 loads
1 store

1

Cray-2 (1985) 244 8 64 5: FP add, FP multiply, FP reciprocal/
sqrt, integer add/shift/population
count, logical

1 1

Fujitsu VP100/
VP200 (1982)

133 8–256 32–1024 3: FP or integer add/logical, multiply,
divide

2 1 (VP100)
2 (VP200)

Hitachi S810/
S820 (1983)

71 32 256 4: FP multiply-add, FP multiply/
divide-add unit, 2 integer add/logical

3 loads
1 store

1 (S810)
2 (S820)

Convex C-1
(1985)

10 8 128 2: FP or integer multiply/divide, add/
logical

1 1 (64 bit)
2 (32 bit)

NEC SX/2 (1985) 167 8 + 32 256 4: FP multiply/divide, FP add, integer
add/logical, shift

1 4

Cray C90 (1991)

Cray T90 (1995)

240

460
8 128

8: FP add, FP multiply, FP reciprocal,
integer add, 2 logical, shift, population
count/parity

2 loads
1 store

2

NEC SX/5 (1998) 312 8 + 64 512 4: FP or integer add/shift, multiply,
divide, logical

1 16

Fujitsu VPP5000
(1999)

300 8–256 128–4096 3: FP or integer multiply, add/logical,
divide

1 load
1 store

16

Cray SV1 (1998)

SV1ex (2001)

300

500
8 64

8: FP add, FP multiply, FP reciprocal,
integer add, 2 logical, shift, population
count/parity

1 load-store
1 load

2
8 (MSP)

VMIPS (2001) 500 8 64 5: FP multiply, FP divide, FP add,
integer add/shift, logical

1 load-store 1

Figure G.2

Characteristics of several vector-register architectures.

If the machine is a multiprocessor, the entries
correspond to the characteristics of one processor. Several of the machines have different clock rates in the vector
and scalar units; the clock rates shown are for the vector units. The Fujitsu machines’ vector registers are config-
urable: The size and count of the 8K 64-bit entries may be varied inversely to one another (e.g., on the VP200, from
eight registers each 1K elements long to 256 registers each 32 elements long). The NEC machines have eight fore-
ground vector registers connected to the arithmetic units plus 32–64 background vector registers connected
between the memory system and the foreground vector registers. The reciprocal unit on the Cray processors is used
to do division (and square root on the Cray-2). Add pipelines perform add and subtract. The multiply/divide-add unit
on the Hitachi S810/820 performs an FP multiply or divide followed by an add or subtract (while the multiply-add
unit performs a multiply followed by an add or subtract). Note that most processors use the vector FP multiply and
divide units for vector integer multiply and divide, and several of the processors use the same units for FP scalar and
FP vector operations. Each vector load-store unit represents the ability to do an independent, overlapped transfer to
or from the vector registers. The number of lanes is the number of parallel pipelines in each of the functional units as
described in Section G.4. For example, the NEC SX/5 can complete 16 multiplies per cycle in the multiply functional
unit. The Convex C-1 can split its single 64-bit lane into two 32-bit lanes to increase performance for applications that
require only reduced precision. The Cray SV1 can group four CPUs with two lanes each to act in unison as a single
larger CPU with eight lanes, which Cray calls a Multi-Streaming Processor (MSP).

G-8

�

Appendix G

Vector Processors

Linpack benchmark. The DAXPY routine, which implements the preceding loop,
represents a small fraction of the source code of the Linpack benchmark, but it
accounts for most of the execution time for the benchmark.

For now, let us assume that the number of elements, or length, of a vector reg-
ister (64) matches the length of the vector operation we are interested in. (This
restriction will be lifted shortly.)

Instruction Operands Function

ADDV.D
ADDVS.D

V1,V2,V3
V1,V2,F0

Add elements of

V2

 and

V3

, then put each result in

V1

.
Add

F0

 to each element of

V2

, then put each result in

V1

.

SUBV.D
SUBVS.D
SUBSV.D

V1,V2,V3
V1,V2,F0
V1,F0,V2

Subtract elements of

V3

 from

V2

, then put each result in

V1

.
Subtract

F0

 from elements of

V2

, then put each result in

V1

.
Subtract elements of

V2

 from

F0

, then put each result in

V1

.

MULV.D
MULVS.D

V1,V2,V3
V1,V2,F0

Multiply elements of

V2

 and

V3

, then put each result in

V1

.
Multiply each element of

V2

by

F0

, then put each result in

V1

.

DIVV.D
DIVVS.D
DIVSV.D

V1,V2,V3
V1,V2,F0
V1,F0,V2

Divide elements of

V2

 by

V3

, then put each result in

V1

.
Divide elements of

V2

 by

F0

, then put each result in

V1

.
Divide

F0

 by elements of

V2

, then put each result in

V1

.

LV V1,R1

Load vector register

V1

 from memory starting at address

R1

.

SV R1,V1

Store vector register

V1 into memory starting at address R1.

LVWS V1,(R1,R2) Load V1 from address at R1 with stride in R2, i.e., R1+i × R2.

SVWS (R1,R2),V1 Store V1 from address at R1 with stride in R2, i.e., R1+i × R2.

LVI V1,(R1+V2) Load V1 with vector whose elements are at R1+V2(i), i.e., V2 is an index.

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1+V2(i), i.e., V2 is an index.

CVI V1,R1 Create an index vector by storing the values 0, 1 × R1, 2 × R1,...,63 × R1 into V1.

S--V.D
S--VS.D

V1,V2
V1,F0

Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put
a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1s in the vector-mask register and store count in R1.

CVM Set the vector-mask register to all 1s.

MTC1
MFC1

VLR,R1
R1,VLR

Move contents of R1 to the vector-length register.
Move the contents of the vector-length register to R1.

MVTM
MVFM

VM,F0
F0,VM

Move contents of F0 to the vector-mask register.
Move contents of vector-mask register to F0.

Figure G.3 The VMIPS vector instructions. Only the double-precision FP operations are shown. In addition to the
vector registers, there are two special registers, VLR (discussed in Section G.3) and VM (discussed in Section G.4).
These special registers are assumed to live in the MIPS coprocessor 1 space along with the FPU registers. The opera-
tions with stride are explained in Section G.3, and the use of the index creation and indexed load-store operations
are explained in Section G.4.

G.2 Basic Vector Architecture � G-9

Example Show the code for MIPS and VMIPS for the DAXPY loop. Assume that the start-
ing addresses of X and Y are in Rx and Ry, respectively.

Answer Here is the MIPS code.

 L.D F0,a ;load scalar a
 DADDIU R4,Rx,#512 ;last address to load

Loop: L.D F2,0(Rx) ;load X(i)
 MUL.D F2,F2,F0 ;a × X(i)
 L.D F4,0(Ry) ;load Y(i)
 ADD.D F4,F4,F2 ;a × X(i) + Y(i)
 S.D 0(Ry),F4 ;store into Y(i)
 DADDIU Rx,Rx,#8 ;increment index to X
 DADDIU Ry,Ry,#8 ;increment index to Y
 DSUBU R20,R4,Rx ;compute bound
 BNEZ R20,Loop ;check if done

Here is the VMIPS code for DAXPY.

 L.D F0,a ;load scalar a
 LV V1,Rx ;load vector X
 MULVS.D V2,V1,F0 ;vector-scalar multiply
 LV V3,Ry ;load vector Y
 ADDV.D V4,V2,V3 ;add
 SV Ry,V4 ;store the result

There are some interesting comparisons between the two code segments in this
example. The most dramatic is that the vector processor greatly reduces the
dynamic instruction bandwidth, executing only six instructions versus almost 600
for MIPS. This reduction occurs both because the vector operations work on 64
elements and because the overhead instructions that constitute nearly half the
loop on MIPS are not present in the VMIPS code.

Another important difference is the frequency of pipeline interlocks. In the
straightforward MIPS code every ADD.D must wait for a MUL.D, and every S.D
must wait for the ADD.D. On the vector processor, each vector instruction will
only stall for the first element in each vector, and then subsequent elements will
flow smoothly down the pipeline. Thus, pipeline stalls are required only once per
vector operation, rather than once per vector element. In this example, the
pipeline stall frequency on MIPS will be about 64 times higher than it is on
VMIPS. The pipeline stalls can be eliminated on MIPS by using software pipelin-
ing or loop unrolling (as we saw in Chapter 4). However, the large difference in
instruction bandwidth cannot be reduced.

G-10 � Appendix G Vector Processors

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on three
factors: the length of the operand vectors, structural hazards among the opera-
tions, and the data dependences. Given the vector length and the initiation rate,
which is the rate at which a vector unit consumes new operands and produces
new results, we can compute the time for a single vector instruction. All modern
supercomputers have vector functional units with multiple parallel pipelines (or
lanes) that can produce two or more results per clock cycle, but may also have
some functional units that are not fully pipelined. For simplicity, our VMIPS
implementation has one lane with an initiation rate of one element per clock
cycle for individual operations. Thus, the execution time for a single vector
instruction is approximately the vector length.

To simplify the discussion of vector execution and its timing, we will use the
notion of a convoy, which is the set of vector instructions that could potentially
begin execution together in one clock period. (Although the concept of a convoy
is used in vector compilers, no standard terminology exists. Hence, we created
the term convoy.) The instructions in a convoy must not contain any structural or
data hazards (though we will relax this later); if such hazards were present, the
instructions in the potential convoy would need to be serialized and initiated in
different convoys. Placing vector instructions into a convoy is analogous to plac-
ing scalar operations into a VLIW instruction. To keep the analysis simple, we
assume that a convoy of instructions must complete execution before any other
instructions (scalar or vector) can begin execution. We will relax this in Section
G.4 by using a less restrictive, but more complex, method for issuing instructions.

Accompanying the notion of a convoy is a timing metric, called a chime, that
can be used for estimating the performance of a vector sequence consisting of
convoys. A chime is the unit of time taken to execute one convoy. A chime is an
approximate measure of execution time for a vector sequence; a chime measure-
ment is independent of vector length. Thus, a vector sequence that consists of m
convoys executes in m chimes, and for a vector length of n, this is approximately
m × n clock cycles. A chime approximation ignores some processor-specific over-
heads, many of which are dependent on vector length. Hence, measuring time in
chimes is a better approximation for long vectors. We will use the chime mea-
surement, rather than clock cycles per result, to explicitly indicate that certain
overheads are being ignored.

If we know the number of convoys in a vector sequence, we know the execu-
tion time in chimes. One source of overhead ignored in measuring chimes is any
limitation on initiating multiple vector instructions in a clock cycle. If only one
vector instruction can be initiated in a clock cycle (the reality in most vector
processors), the chime count will underestimate the actual execution time of a
convoy. Because the vector length is typically much greater than the number of
instructions in the convoy, we will simply assume that the convoy executes in one
chime.

G.2 Basic Vector Architecture � G-11

Example Show how the following code sequence lays out in convoys, assuming a single
copy of each vector functional unit:

LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDV.D V4,V2,V3 ;add
SV Ry,V4 ;store the result

How many chimes will this vector sequence take? How many cycles per FLOP
(floating-point operation) are needed ignoring vector instruction issue overhead?

Answer The first convoy is occupied by the first LV instruction. The MULVS.D is dependent
on the first LV, so it cannot be in the same convoy. The second LV instruction can
be in the same convoy as the MULVS.D. The ADDV.D is dependent on the second
LV, so it must come in yet a third convoy, and finally the SV depends on the
ADDV.D, so it must go in a following convoy. This leads to the following layout of
vector instructions into convoys:

1. LV

2. MULVS.D LV

3. ADDV.D

4. SV

The sequence requires four convoys and hence takes four chimes. Since the
sequence takes a total of four chimes and there are two floating-point operations
per result, the number of cycles per FLOP is 2 (ignoring any vector instruction
issue overhead). Note that although we allow the MULVS.D and the LV both to exe-
cute in convoy 2, most vector machines will take 2 clock cycles to initiate the
instructions.

The chime approximation is reasonably accurate for long vectors. For exam-
ple, for 64-element vectors, the time in chimes is four, so the sequence would
take about 256 clock cycles. The overhead of issuing convoy 2 in two separate
clocks would be small.

Another source of overhead is far more significant than the issue limitation.
The most important source of overhead ignored by the chime model is vector
start-up time. The start-up time comes from the pipelining latency of the vector
operation and is principally determined by how deep the pipeline is for the func-
tional unit used. The start-up time increases the effective time to execute a con-
voy to more than one chime. Because of our assumption that convoys do not
overlap in time, the start-up time delays the execution of subsequent convoys. Of
course the instructions in successive convoys have either structural conflicts for
some functional unit or are data dependent, so the assumption of no overlap is

G-12 � Appendix G Vector Processors

reasonable. The actual time to complete a convoy is determined by the sum of the
vector length and the start-up time. If vector lengths were infinite, this start-up
overhead would be amortized, but finite vector lengths expose it, as the following
example shows.

Example Assume the start-up overhead for functional units is shown in Figure G.4.

Show the time that each convoy can begin and the total number of cycles needed.
How does the time compare to the chime approximation for a vector of length
64?

Answer Figure G.5 provides the answer in convoys, assuming that the vector length is n.
One tricky question is when we assume the vector sequence is done; this deter-
mines whether the start-up time of the SV is visible or not. We assume that the
instructions following cannot fit in the same convoy, and we have already
assumed that convoys do not overlap. Thus the total time is given by the time
until the last vector instruction in the last convoy completes. This is an approxi-
mation, and the start-up time of the last vector instruction may be seen in some
sequences and not in others. For simplicity, we always include it.

The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock
cycles, while the chime approximation would be 4. The execution time with start-
up overhead is 1.16 times higher.

Unit Start-up overhead (cycles)

Load and store unit 12

Multiply unit 7

Add unit 6

Figure G.4 Start-up overhead.

Convoy Starting time First-result time Last-result time

1. LV 0 12 11 + n

2. MULVS.D LV 12 + n 12 + n + 12 23 + 2n

3. ADDV.D 24 + 2n 24 + 2n + 6 29 + 3n

4. SV 30 + 3n 30 + 3n + 12 41 + 4n

Figure G.5 Starting times and first- and last-result times for convoys 1 through 4.
The vector length is n.

G.2 Basic Vector Architecture � G-13

For simplicity, we will use the chime approximation for running time, incor-
porating start-up time effects only when we want more detailed performance or to
illustrate the benefits of some enhancement. For long vectors, a typical situation,
the overhead effect is not that large. Later in the appendix we will explore ways
to reduce start-up overhead.

Start-up time for an instruction comes from the pipeline depth for the func-
tional unit implementing that instruction. If the initiation rate is to be kept at 1
clock cycle per result, then

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock cycle. Pipeline depth, then, is deter-
mined by the complexity of the operation and the clock cycle time of the proces-
sor. The pipeline depths of functional units vary widely—from 2 to 20 stages is
not uncommon—although the most heavily used units have pipeline depths of 4–
8 clock cycles.

For VMIPS, we will use the same pipeline depths as the Cray-1, although
latencies in more modern processors have tended to increase, especially for loads.
All functional units are fully pipelined. As shown in Figure G.6, pipeline depths
are 6 clock cycles for floating-point add and 7 clock cycles for floating-point mul-
tiply. On VMIPS, as on most vector processors, independent vector operations
using different functional units can issue in the same convoy.

Vector Load-Store Units and Vector Memory Systems

The behavior of the load-store vector unit is significantly more complicated than
that of the arithmetic functional units. The start-up time for a load is the time to
get the first word from memory into a register. If the rest of the vector can be sup-
plied without stalling, then the vector initiation rate is equal to the rate at which
new words are fetched or stored. Unlike simpler functional units, the initiation
rate may not necessarily be 1 clock cycle because memory bank stalls can reduce
effective throughput.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

Figure G.6 Start-up penalties on VMIPS. These are the start-up penalties in clock
cycles for VMIPS vector operations.

Pipeline depth Total functional unit time
Clock cycle time

---=

G-14 � Appendix G Vector Processors

Typically, penalties for start-ups on load-store units are higher than those for
arithmetic functional units—over 100 clock cycles on some processors. For
VMIPS we will assume a start-up time of 12 clock cycles, the same as the Cray-
1. Figure G.6 summarizes the start-up penalties for VMIPS vector operations.

To maintain an initiation rate of 1 word fetched or stored per clock, the mem-
ory system must be capable of producing or accepting this much data. This is
usually done by creating multiple memory banks, as discussed in Section 5.8. As
we will see in the next section, having significant numbers of banks is useful for
dealing with vector loads or stores that access rows or columns of data.

Most vector processors use memory banks rather than simple interleaving for
three primary reasons:

1. Many vector computers support multiple loads or stores per clock, and the
memory bank cycle time is often several times larger than the CPU cycle
time. To support multiple simultaneous accesses, the memory system needs to
have multiple banks and be able to control the addresses to the banks inde-
pendently.

2. As we will see in the next section, many vector processors support the ability
to load or store data words that are not sequential. In such cases, independent
bank addressing, rather than interleaving, is required.

3. Many vector computers support multiple processors sharing the same mem-
ory system, and so each processor will be generating its own independent
stream of addresses.

In combination, these features lead to a large number of independent memory
banks, as shown by the following example.

Example The Cray T90 has a CPU clock cycle of 2.167 ns and in its largest configuration
(Cray T932) has 32 processors each capable of generating four loads and two
stores per CPU clock cycle. The CPU clock cycle is 2.167 ns, while the cycle
time of the SRAMs used in the memory system is 15 ns. Calculate the minimum
number of memory banks required to allow all CPUs to run at full memory band-
width.

Answer The maximum number of memory references each cycle is 192 (32 CPUs times 6
references per CPU). Each SRAM bank is busy for 15/2.167 = 6.92 clock cycles,
which we round up to 7 CPU clock cycles. Therefore we require a minimum of
192 × 7 = 1344 memory banks!

The Cray T932 actually has 1024 memory banks, and so the early models
could not sustain full bandwidth to all CPUs simultaneously. A subsequent mem-
ory upgrade replaced the 15 ns asynchronous SRAMs with pipelined synchro-
nous SRAMs that more than halved the memory cycle time, thereby providing
sufficient bandwidth.

G.2 Basic Vector Architecture � G-15

In Chapter 5 we saw that the desired access rate and the bank access time
determined how many banks were needed to access a memory without a stall.
The next example shows how these timings work out in a vector processor.

Example Suppose we want to fetch a vector of 64 elements starting at byte address 136,
and a memory access takes 6 clocks. How many memory banks must we have to
support one fetch per clock cycle? With what addresses are the banks accessed?
When will the various elements arrive at the CPU?

Answer Six clocks per access require at least six banks, but because we want the number
of banks to be a power of two, we choose to have eight banks. Figure G.7 shows
the timing for the first few sets of accesses for an eight-bank system with a 6-
clock-cycle access latency.

Bank

Cycle no. 0 1 2 3 4 5 6 7

0 136

1 busy 144

2 busy busy 152

3 busy busy busy 160

4 busy busy busy busy 168

5 busy busy busy busy busy 176

6 busy busy busy busy busy 184

7 192 busy busy busy busy busy

8 busy 200 busy busy busy busy

9 busy busy 208 busy busy busy

10 busy busy busy 216 busy busy

11 busy busy busy busy 224 busy

12 busy busy busy busy busy 232

13 busy busy busy busy busy 240

14 busy busy busy busy busy 248

15 256 busy busy busy busy busy

16 busy 264 busy busy busy busy

Figure G.7 Memory addresses (in bytes) by bank number and time slot at which
access begins. Each memory bank latches the element address at the start of an access
and is then busy for 6 clock cycles before returning a value to the CPU. Note that the
CPU cannot keep all eight banks busy all the time because it is limited to supplying one
new address and receiving one data item each cycle.

G-16 � Appendix G Vector Processors

The timing of real memory banks is usually split into two different compo-
nents, the access latency and the bank cycle time (or bank busy time). The access
latency is the time from when the address arrives at the bank until the bank
returns a data value, while the busy time is the time the bank is occupied with one
request. The access latency adds to the start-up cost of fetching a vector from
memory (the total memory latency also includes time to traverse the pipelined
interconnection networks that transfer addresses and data between the CPU and
memory banks). The bank busy time governs the effective bandwidth of a mem-
ory system because a processor cannot issue a second request to the same bank
until the bank busy time has elapsed.

For simple unpipelined SRAM banks as used in the previous examples, the
access latency and busy time are approximately the same. For a pipelined SRAM
bank, however, the access latency is larger than the busy time because each ele-
ment access only occupies one stage in the memory bank pipeline. For a DRAM
bank, the access latency is usually shorter than the busy time because a DRAM
needs extra time to restore the read value after the destructive read operation. For
memory systems that support multiple simultaneous vector accesses or allow
nonsequential accesses in vector loads or stores, the number of memory banks
should be larger than the minimum; otherwise, memory bank conflicts will exist.
We explore this in more detail in the next section.

This section deals with two issues that arise in real programs: What do you do
when the vector length in a program is not exactly 64? How do you deal with
nonadjacent elements in vectors that reside in memory? First, let’s consider the
issue of vector length.

Vector-Length Control

A vector-register processor has a natural vector length determined by the number
of elements in each vector register. This length, which is 64 for VMIPS, is
unlikely to match the real vector length in a program. Moreover, in a real program
the length of a particular vector operation is often unknown at compile time. In
fact, a single piece of code may require different vector lengths. For example,
consider this code:

 do 10 i = 1,n
10 Y(i) = a ∗ X(i) + Y(i)

The size of all the vector operations depends on n, which may not even be known
until run time! The value of n might also be a parameter to a procedure containing
the above loop and therefore be subject to change during execution.

G.3 Two Real-World Issues: Vector Length and Stride

G.3 Two Real-World Issues: Vector Length and Stride � G-17

The solution to these problems is to create a vector-length register (VLR).
The VLR controls the length of any vector operation, including a vector load or
store. The value in the VLR, however, cannot be greater than the length of the
vector registers. This solves our problem as long as the real length is less than or
equal to the maximum vector length (MVL) defined by the processor.

What if the value of n is not known at compile time, and thus may be greater
than MVL? To tackle the second problem where the vector is longer than the
maximum length, a technique called strip mining is used. Strip mining is the gen-
eration of code such that each vector operation is done for a size less than or
equal to the MVL. We could strip-mine the loop in the same manner that we
unrolled loops in Chapter 4: create one loop that handles any number of iterations
that is a multiple of MVL and another loop that handles any remaining iterations,
which must be less than MVL. In practice, compilers usually create a single strip-
mined loop that is parameterized to handle both portions by changing the length.
The strip-mined version of the DAXPY loop written in FORTRAN, the major
language used for scientific applications, is shown with C-style comments:

low = 1
VL = (n mod MVL) /*find the odd-size piece*/
do 1 j = 0,(n / MVL) /*outer loop*/
 do 10 i = low, low + VL - 1 /*runs for length VL*/
 Y(i) = a * X(i) + Y(i) /*main operation*/

10 continue
 low = low + VL /*start of next vector*/
 VL = MVL /*reset the length to max*/

1 continue

The term n/MVL represents truncating integer division (which is what FOR-
TRAN does) and is used throughout this section. The effect of this loop is to
block the vector into segments that are then processed by the inner loop. The
length of the first segment is (n mod MVL), and all subsequent segments are of
length MVL. This is depicted in Figure G.8.

Figure G.8 A vector of arbitrary length processed with strip mining. All blocks but
the first are of length MVL, utilizing the full power of the vector processor. In this figure,
the variable m is used for the expression (n mod MVL).

1..m (m + 1)..
m + MVL

(m +
MVL + 1)
.. m + 2 *

MVL

(m + 2 *
MVL + 1)
.. m + 3 *

MVL

. . . (n – MVL
+ 1).. n

Range of i

Value of j n/MVL1 2 3 . . .0

. . .

. . .

G-18 � Appendix G Vector Processors

The inner loop of the preceding code is vectorizable with length VL, which is
equal to either (n mod MVL) or MVL. The VLR register must be set twice—once
at each place where the variable VL in the code is assigned. With multiple vector
operations executing in parallel, the hardware must copy the value of VLR to the
vector functional unit when a vector operation issues, in case VLR is changed for
a subsequent vector operation.

Several vector ISAs have been developed that allow implementations to have
different maximum vector-register lengths. For example, the IBM vector exten-
sion for the IBM 370 series mainframes supports an MVL of anywhere between
8 and 512 elements. A “load vector count and update” (VLVCU) instruction is
provided to control strip-mined loops. The VLVCU instruction has a single sca-
lar register operand that specifies the desired vector length. The vector-length
register is set to the minimum of the desired length and the maximum available
vector length, and this value is also subtracted from the scalar register, setting
the condition codes to indicate if the loop should be terminated. In this way,
object code can be moved unchanged between two different implementations
while making full use of the available vector-register length within each strip-
mined loop iteration.

In addition to the start-up overhead, we need to account for the overhead of
executing the strip-mined loop. This strip-mining overhead, which arises from the
need to reinitiate the vector sequence and set the VLR, effectively adds to the
vector start-up time, assuming that a convoy does not overlap with other instruc-
tions. If that overhead for a convoy is 10 cycles, then the effective overhead per
64 elements increases by 10 cycles, or 0.15 cycles per element.

There are two key factors that contribute to the running time of a strip-mined
loop consisting of a sequence of convoys:

1. The number of convoys in the loop, which determines the number of chimes.
We use the notation Tchime for the execution time in chimes.

2. The overhead for each strip-mined sequence of convoys. This overhead con-
sists of the cost of executing the scalar code for strip-mining each block,
Tloop, plus the vector start-up cost for each convoy, Tstart.

There may also be a fixed overhead associated with setting up the vector
sequence the first time. In recent vector processors this overhead has become
quite small, so we ignore it.

The components can be used to state the total running time for a vector
sequence operating on a vector of length n, which we will call Tn:

The values of Tstart, Tloop, and Tchime are compiler and processor dependent. The
register allocation and scheduling of the instructions affect both what goes in a
convoy and the start-up overhead of each convoy.

Tn
n

MVL
------------- Tloop Tstart+()× n T× chime+=

G.3 Two Real-World Issues: Vector Length and Stride � G-19

For simplicity, we will use a constant value for Tloop on VMIPS. Based on a
variety of measurements of Cray-1 vector execution, the value chosen is 15 for
Tloop. At first glance, you might think that this value is too small. The overhead in
each loop requires setting up the vector starting addresses and the strides, incre-
menting counters, and executing a loop branch. In practice, these scalar instruc-
tions can be totally or partially overlapped with the vector instructions,
minimizing the time spent on these overhead functions. The value of Tloop of
course depends on the loop structure, but the dependence is slight compared with
the connection between the vector code and the values of Tchime and Tstart.

Example What is the execution time on VMIPS for the vector operation A = B × s, where s
is a scalar and the length of the vectors A and B is 200?

Answer Assume the addresses of A and B are initially in Ra and Rb, s is in Fs, and recall
that for MIPS (and VMIPS) R0 always holds 0. Since (200 mod 64) = 8, the first
iteration of the strip-mined loop will execute for a vector length of 8 elements,
and the following iterations will execute for a vector length of 64 elements. The
starting byte addresses of the next segment of each vector is eight times the vec-
tor length. Since the vector length is either 8 or 64, we increment the address reg-
isters by 8 × 8 = 64 after the first segment and 8 × 64 = 512 for later segments.
The total number of bytes in the vector is 8 × 200 = 1600, and we test for comple-
tion by comparing the address of the next vector segment to the initial address
plus 1600. Here is the actual code:

DADDUI R2,R0,#1600 ;total # bytes in vector
DADDU R2,R2,Ra ;address of the end of A vector
DADDUI R1,R0,#8 ;loads length of 1st segment
MTC1 VLR,R1 ;load vector length in VLR
DADDUI R1,R0,#64 ;length in bytes of 1st segment
DADDUI R3,R0,#64 ;vector length of other segments

Loop: LV V1,Rb ;load B
MULVS.D V2,V1,Fs ;vector * scalar
SV Ra,V2 ;store A
DADDU Ra,Ra,R1 ;address of next segment of A
DADDU Rb,Rb,R1 ;address of next segment of B
DADDUI R1,R0,#512 ;load byte offset next segment
MTC1 VLR,R3 ;set length to 64 elements
DSUBU R4,R2,Ra ;at the end of A?
BNEZ R4,Loop ;if not, go back

The three vector instructions in the loop are dependent and must go into three
convoys, hence Tchime = 3. Let’s use our basic formula:

Tn
n

MVL
-------------- Tloop Tstart+()× n Tchime×+=

T200 4 15 Tstart+() 200 3×+×=

T200 60 4 Tstart×() 600+ + 660 4 Tstart×()+= =

G-20 � Appendix G Vector Processors

The value of Tstart is the sum of

� The vector load start-up of 12 clock cycles

� A 7-clock-cycle start-up for the multiply

� A 12-clock-cycle start-up for the store

Thus, the value of Tstart is given by

Tstart = 12 + 7 + 12 = 31

So, the overall value becomes

T200 = 660 + 4 × 31= 784

The execution time per element with all start-up costs is then 784/200 = 3.9,
compared with a chime approximation of three. In Section G.4, we will be more
ambitious—allowing overlapping of separate convoys.

Figure G.9 shows the overhead and effective rates per element for the previ-
ous example (A = B × s) with various vector lengths. A chime counting model
would lead to 3 clock cycles per element, while the two sources of overhead add
0.9 clock cycles per element in the limit.

The next few sections introduce enhancements that reduce this time. We will
see how to reduce the number of convoys and hence the number of chimes using
a technique called chaining. The loop overhead can be reduced by further over-
lapping the execution of vector and scalar instructions, allowing the scalar loop
overhead in one iteration to be executed while the vector instructions in the previ-
ous instruction are completing. Finally, the vector start-up overhead can also be
eliminated, using a technique that allows overlap of vector instructions in sepa-
rate convoys.

Vector Stride

The second problem this section addresses is that the position in memory of adja-
cent elements in a vector may not be sequential. Consider the straightforward
code for matrix multiply:

do 10 i = 1,100
 do 10 j = 1,100
 A(i,j) = 0.0
 do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,j)

At the statement labeled 10 we could vectorize the multiplication of each row of B
with each column of C and strip-mine the inner loop with k as the index variable.

G.3 Two Real-World Issues: Vector Length and Stride � G-21

To do so, we must consider how adjacent elements in B and adjacent elements
in C are addressed. As we discussed in Section 5.5, when an array is allocated
memory, it is linearized and must be laid out in either row-major or column-
major order. This linearization means that either the elements in the row or the
elements in the column are not adjacent in memory. For example, if the preceding
loop were written in FORTRAN, which allocates column-major order, the ele-
ments of B that are accessed by iterations in the inner loop are separated by the
row size times 8 (the number of bytes per entry) for a total of 800 bytes. In Chap-
ter 5, we saw that blocking could be used to improve the locality in cache-based
systems. For vector processors without caches, we need another technique to
fetch elements of a vector that are not adjacent in memory.

This distance separating elements that are to be gathered into a single register
is called the stride. In the current example, using column-major layout for the
matrices means that matrix C has a stride of 1, or 1 double word (8 bytes), sepa-
rating successive elements, and matrix B has a stride of 100, or 100 double words
(800 bytes).

Once a vector is loaded into a vector register it acts as if it had logically adja-
cent elements. Thus a vector-register processor can handle strides greater than
one, called nonunit strides, using only vector-load and vector-store operations
with stride capability. This ability to access nonsequential memory locations and

Figure G.9 The total execution time per element and the total overhead time per
element versus the vector length for the example on page G-19. For short vectors the
total start-up time is more than one-half of the total time, while for long vectors it
reduces to about one-third of the total time. The sudden jumps occur when the vector
length crosses a multiple of 64, forcing another iteration of the strip-mining code and
execution of a set of vector instructions. These operations increase Tn by Tloop + Tstart.

Total time
per element

Total
overhead
per element

10

Clock
cycles

30 50 70 90 110 130 150 170 190
0

1

2

3

4

5

6

7

8

Vector size

9

G-22 � Appendix G Vector Processors

to reshape them into a dense structure is one of the major advantages of a vector
processor over a cache-based processor. Caches inherently deal with unit stride
data, so that while increasing block size can help reduce miss rates for large sci-
entific data sets with unit stride, increasing block size can have a negative effect
for data that is accessed with nonunit stride. While blocking techniques can
solve some of these problems (see Section 5.5), the ability to efficiently access
data that is not contiguous remains an advantage for vector processors on certain
problems.

On VMIPS, where the addressable unit is a byte, the stride for our example
would be 800. The value must be computed dynamically, since the size of the
matrix may not be known at compile time, or—just like vector length—may
change for different executions of the same statement. The vector stride, like the
vector starting address, can be put in a general-purpose register. Then the VMIPS
instruction LVWS (load vector with stride) can be used to fetch the vector into a
vector register. Likewise, when a nonunit stride vector is being stored, SVWS
(store vector with stride) can be used. In some vector processors the loads and
stores always have a stride value stored in a register, so that only a single load and
a single store instruction are required. Unit strides occur much more frequently
than other strides and can benefit from special case handling in the memory sys-
tem, and so are often separated from nonunit stride operations as in VMIPS.

Complications in the memory system can occur from supporting strides
greater than one. In Chapter 5 we saw that memory accesses could proceed at full
speed if the number of memory banks was at least as large as the bank busy time
in clock cycles. Once nonunit strides are introduced, however, it becomes pos-
sible to request accesses from the same bank more frequently than the bank busy
time allows. When multiple accesses contend for a bank, a memory bank conflict
occurs and one access must be stalled. A bank conflict, and hence a stall, will
occur if

Example Suppose we have 8 memory banks with a bank busy time of 6 clocks and a total
memory latency of 12 cycles. How long will it take to complete a 64-element
vector load with a stride of 1? With a stride of 32?

Answer Since the number of banks is larger than the bank busy time, for a stride of 1, the
load will take 12 + 64 = 76 clock cycles, or 1.2 clocks per element. The worst
possible stride is a value that is a multiple of the number of memory banks, as in
this case with a stride of 32 and 8 memory banks. Every access to memory (after
the first one) will collide with the previous access and will have to wait for the 6-
clock-cycle bank busy time. The total time will be 12 + 1 + 6 * 63 = 391 clock
cycles, or 6.1 clocks per element.

Number of banks
Least common multiple (Stride, Number of banks)
--- Bank busy time<

G.4 Enhancing Vector Performance � G-23

Memory bank conflicts will not occur within a single vector memory instruc-
tion if the stride and number of banks are relatively prime with respect to each
other and there are enough banks to avoid conflicts in the unit stride case. When
there are no bank conflicts, multiword and unit strides run at the same rates.
Increasing the number of memory banks to a number greater than the minimum
to prevent stalls with a stride of length 1 will decrease the stall frequency for
some other strides. For example, with 64 banks, a stride of 32 will stall on every
other access, rather than every access. If we originally had a stride of 8 and 16
banks, every other access would stall; with 64 banks, a stride of 8 will stall on
every eighth access. If we have multiple memory pipelines and/or multiple pro-
cessors sharing the same memory system, we will also need more banks to pre-
vent conflicts. Even machines with a single memory pipeline can experience
memory bank conflicts on unit stride accesses between the last few elements of
one instruction and the first few elements of the next instruction, and increasing
the number of banks will reduce the probability of these interinstruction conflicts.
In 2001, most vector supercomputers have at least 64 banks, and some have as
many as 1024 in the maximum memory configuration. Because bank conflicts
can still occur in nonunit stride cases, programmers favor unit stride accesses
whenever possible.

A modern supercomputer may have dozens of CPUs, each with multiple
memory pipelines connected to thousands of memory banks. It would be imprac-
tical to provide a dedicated path between each memory pipeline and each mem-
ory bank, and so typically a multistage switching network is used to connect
memory pipelines to memory banks. Congestion can arise in this switching net-
work as different vector accesses contend for the same circuit paths, causing
additional stalls in the memory system.

In this section we present five techniques for improving the performance of a vec-
tor processor. The first, chaining, deals with making a sequence of dependent
vector operations run faster, and originated in the Cray-1 but is now supported on
most vector processors. The next two deal with expanding the class of loops that
can be run in vector mode by combating the effects of conditional execution and
sparse matrices with new types of vector instruction. The fourth technique
increases the peak performance of a vector machine by adding more parallel exe-
cution units in the form of additional lanes. The fifth technique reduces start-up
overhead by pipelining and overlapping instruction start-up.

Chaining—the Concept of Forwarding Extended
to Vector Registers

Consider the simple vector sequence

G.4 Enhancing Vector Performance

G-24 � Appendix G Vector Processors

MULV.D V1,V2,V3
ADDV.D V4,V1,V5

In VMIPS, as it currently stands, these two instructions must be put into two sep-
arate convoys, since the instructions are dependent. On the other hand, if the vec-
tor register, V1 in this case, is treated not as a single entity but as a group of
individual registers, then the ideas of forwarding can be conceptually extended to
work on individual elements of a vector. This insight, which will allow the
ADDV.D to start earlier in this example, is called chaining. Chaining allows a vec-
tor operation to start as soon as the individual elements of its vector source oper-
and become available: The results from the first functional unit in the chain are
“forwarded” to the second functional unit. In practice, chaining is often imple-
mented by allowing the processor to read and write a particular register at the
same time, albeit to different elements. Early implementations of chaining
worked like forwarding, but this restricted the timing of the source and destina-
tion instructions in the chain. Recent implementations use flexible chaining,
which allows a vector instruction to chain to essentially any other active vector
instruction, assuming that no structural hazard is generated. Flexible chaining
requires simultaneous access to the same vector register by different vector
instructions, which can be implemented either by adding more read and write
ports or by organizing the vector-register file storage into interleaved banks in a
similar way to the memory system. We assume this type of chaining throughout
the rest of this appendix.

Even though a pair of operations depend on one another, chaining allows the
operations to proceed in parallel on separate elements of the vector. This permits
the operations to be scheduled in the same convoy and reduces the number of
chimes required. For the previous sequence, a sustained rate (ignoring start-up) of
two floating-point operations per clock cycle, or one chime, can be achieved,
even though the operations are dependent! The total running time for the above
sequence becomes

Vector length + Start-up timeADDV + Start-up timeMULV

Figure G.10 shows the timing of a chained and an unchained version of the above
pair of vector instructions with a vector length of 64. This convoy requires one
chime; however, because it uses chaining, the start-up overhead will be seen in
the actual timing of the convoy. In Figure G.10, the total time for chained opera-
tion is 77 clock cycles, or 1.2 cycles per result. With 128 floating-point operations
done in that time, 1.7 FLOPS per clock cycle are obtained. For the unchained ver-
sion, there are 141 clock cycles, or 0.9 FLOPS per clock cycle.

Although chaining allows us to reduce the chime component of the execution
time by putting two dependent instructions in the same convoy, it does not
eliminate the start-up overhead. If we want an accurate running time estimate, we
must count the start-up time both within and across convoys. With chaining, the
number of chimes for a sequence is determined by the number of different vector
functional units available in the processor and the number required by the appli-

G.4 Enhancing Vector Performance � G-25

cation. In particular, no convoy can contain a structural hazard. This means, for
example, that a sequence containing two vector memory instructions must take at
least two convoys, and hence two chimes, on a processor like VMIPS with only
one vector load-store unit.

We will see in Section G.6 that chaining plays a major role in boosting vector
performance. In fact, chaining is so important that every modern vector processor
supports flexible chaining.

Conditionally Executed Statements

From Amdahl’s Law, we know that the speedup on programs with low to moder-
ate levels of vectorization will be very limited. Two reasons why higher levels of
vectorization are not achieved are the presence of conditionals (if statements)
inside loops and the use of sparse matrices. Programs that contain if statements in
loops cannot be run in vector mode using the techniques we have discussed so far
because the if statements introduce control dependences into a loop. Likewise,
sparse matrices cannot be efficiently implemented using any of the capabilities
we have seen so far. We discuss strategies for dealing with conditional execution
here, leaving the discussion of sparse matrices to the following subsection.

Consider the following loop:

do 100 i = 1, 64
 if (A(i).ne. 0) then
 A(i) = A(i) – B(i)
 endif

100 continue

This loop cannot normally be vectorized because of the conditional execution of
the body; however, if the inner loop could be run for the iterations for which
A(i) ≠ 0, then the subtraction could be vectorized. In Chapter 4, we saw that the
conditionally executed instructions could turn such control dependences into data
dependences, enhancing the ability to parallelize the loop. Vector processors can
benefit from an equivalent capability for vectors.

Figure G.10 Timings for a sequence of dependent vector operations ADDV and
MULV, both unchained and chained. The 6- and 7-clock-cycle delays are the latency of
the adder and multiplier.

Unchained

Chained

Total = 77

Total = 141
7 64

7 64

MULV

64

ADDV

64

MULV ADDV

6

6

G-26 � Appendix G Vector Processors

The extension that is commonly used for this capability is vector-mask
control. The vector-mask control uses a Boolean vector of length MVL to control
the execution of a vector instruction just as conditionally executed instructions
use a Boolean condition to determine whether an instruction is executed. When
the vector-mask register is enabled, any vector instructions executed operate only
on the vector elements whose corresponding entries in the vector-mask register
are 1. The entries in the destination vector register that correspond to a 0 in the
mask register are unaffected by the vector operation. If the vector-mask register is
set by the result of a condition, only elements satisfying the condition will be
affected. Clearing the vector-mask register sets it to all 1s, making subsequent
vector instructions operate on all vector elements. The following code can now be
used for the previous loop, assuming that the starting addresses of A and B are in
Ra and Rb, respectively:

LV V1,Ra ;load vector A into V1
LV V2,Rb ;load vector B
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
SUBV.D V1,V1,V2 ;subtract under vector mask
CVM ;set the vector mask to all 1s
SV Ra,V1 ;store the result in A

Most recent vector processors provide vector-mask control. The vector-mask
capability described here is available on some processors, but others allow the
use of the vector mask with only a subset of the vector instructions.

Using a vector-mask register does, however, have disadvantages. When we
examined conditionally executed instructions, we saw that such instructions still
require execution time when the condition is not satisfied. Nonetheless, the elim-
ination of a branch and the associated control dependences can make a condi-
tional instruction faster even if it sometimes does useless work. Similarly, vector
instructions executed with a vector mask still take execution time, even for the
elements where the mask is 0. Likewise, even with a significant number of 0s in
the mask, using vector-mask control may still be significantly faster than using
scalar mode. In fact, the large difference in potential performance between vector
and scalar mode makes the inclusion of vector-mask instructions critical.

Second, in some vector processors the vector mask serves only to disable the
storing of the result into the destination register, and the actual operation still
occurs. Thus, if the operation in the previous example were a divide rather than a
subtract and the test was on B rather than A, false floating-point exceptions might
result since a division by 0 would occur. Processors that mask the operation as
well as the storing of the result avoid this problem.

Sparse Matrices

There are techniques for allowing programs with sparse matrices to execute in
vector mode. In a sparse matrix, the elements of a vector are usually stored in

G.4 Enhancing Vector Performance � G-27

some compacted form and then accessed indirectly. Assuming a simplified sparse
structure, we might see code that looks like this:

do 100 i = 1,n
100 A(K(i)) = A(K(i)) + C(M(i))

This code implements a sparse vector sum on the arrays A and C, using index vec-
tors K and M to designate the nonzero elements of A and C. (A and C must have the
same number of nonzero elements—n of them.) Another common representation
for sparse matrices uses a bit vector to say which elements exist and a dense vec-
tor for the nonzero elements. Often both representations exist in the same pro-
gram. Sparse matrices are found in many codes, and there are many ways to
implement them, depending on the data structure used in the program.

A primary mechanism for supporting sparse matrices is scatter-gather opera-
tions using index vectors. The goal of such operations is to support moving
between a dense representation (i.e., zeros are not included) and normal represen-
tation (i.e., the zeros are included) of a sparse matrix. A gather operation takes an
index vector and fetches the vector whose elements are at the addresses given by
adding a base address to the offsets given in the index vector. The result is a non-
sparse vector in a vector register. After these elements are operated on in dense
form, the sparse vector can be stored in expanded form by a scatter store, using
the same index vector. Hardware support for such operations is called scatter-
gather and appears on nearly all modern vector processors. The instructions LVI
(load vector indexed) and SVI (store vector indexed) provide these operations in
VMIPS. For example, assuming that Ra, Rc, Rk, and Rm contain the starting
addresses of the vectors in the previous sequence, the inner loop of the sequence
can be coded with vector instructions such as

LV Vk,Rk ;load K
LVI Va,(Ra+Vk) ;load A(K(I))
LV Vm,Rm ;load M
LVI Vc,(Rc+Vm) ;load C(M(I))
ADDV.D Va,Va,Vc ;add them
SVI (Ra+Vk),Va ;store A(K(I))

This technique allows code with sparse matrices to be run in vector mode. A
simple vectorizing compiler could not automatically vectorize the source code
above because the compiler would not know that the elements of K are distinct
values, and thus that no dependences exist. Instead, a programmer directive
would tell the compiler that it could run the loop in vector mode.

More sophisticated vectorizing compilers can vectorize the loop automatically
without programmer annotations by inserting run time checks for data depen-
dences. These run time checks are implemented with a vectorized software version
of the advanced load address table (ALAT) hardware described in Chapter 4 for
the Itanium processor. The associative ALAT hardware is replaced with a software
hash table that detects if two element accesses within the same strip-mine iteration

G-28 � Appendix G Vector Processors

are to the same address. If no dependences are detected, the strip-mine iteration
can complete using the maximum vector length. If a dependence is detected, the
vector length is reset to a smaller value that avoids all dependency violations, leav-
ing the remaining elements to be handled on the next iteration of the strip-mined
loop. Although this scheme adds considerable software overhead to the loop, the
overhead is mostly vectorized for the common case where there are no depen-
dences, and as a result the loop still runs considerably faster than scalar code
(although much slower than if a programmer directive was provided).

A scatter-gather capability is included on many of the recent supercomputers.
These operations often run more slowly than strided accesses because they are
more complex to implement and are more susceptible to bank conflicts, but they
are still much faster than the alternative, which may be a scalar loop. If the spar-
sity properties of a matrix change, a new index vector must be computed. Many
processors provide support for computing the index vector quickly. The CVI (cre-
ate vector index) instruction in VMIPS creates an index vector given a stride (m),
where the values in the index vector are 0, m, 2 × m, . . . , 63 × m. Some proces-
sors provide an instruction to create a compressed index vector whose entries cor-
respond to the positions with a 1 in the mask register. Other vector architectures
provide a method to compress a vector. In VMIPS, we define the CVI instruction
to always create a compressed index vector using the vector mask. When the vec-
tor mask is all 1s, a standard index vector will be created.

The indexed loads-stores and the CVI instruction provide an alternative
method to support conditional vector execution. Here is a vector sequence that
implements the loop we saw on page G-25:

LV V1,Ra ;load vector A into V1
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets the VM to 1 if V1(i)!=F0
CVI V2,#8 ;generates indices in V2
POP R1,VM ;find the number of 1’s in VM
MTC1 VLR,R1 ;load vector-length register
CVM ;clears the mask
LVI V3,(Ra+V2) ;load the nonzero A elements
LVI V4,(Rb+V2) ;load corresponding B elements
SUBV.D V3,V3,V4 ;do the subtract
SVI (Ra+V2),V3 ;store A back

Whether the implementation using scatter-gather is better than the condition-
ally executed version depends on the frequency with which the condition holds
and the cost of the operations. Ignoring chaining, the running time of the first ver-
sion (on page G-25) is 5n + c1. The running time of the second version, using
indexed loads and stores with a running time of one element per clock, is 4n + 4fn
+ c2, where f is the fraction of elements for which the condition is true (i.e.,
A(i) ≠ 0). If we assume that the values of c1 and c2 are comparable, or that they
are much smaller than n, we can find when this second technique is better.

G.4 Enhancing Vector Performance � G-29

We want Time1 ≥ Time2, so

That is, the second method is faster if less than one-quarter of the elements are
nonzero. In many cases the frequency of execution is much lower. If the index
vector can be reused, or if the number of vector statements within the if statement
grows, the advantage of the scatter-gather approach will increase sharply.

Multiple Lanes

One of the greatest advantages of a vector instruction set is that it allows software
to pass a large amount of parallel work to hardware using only a single short
instruction. A single vector instruction can include tens to hundreds of indepen-
dent operations yet be encoded in the same number of bits as a conventional sca-
lar instruction. The parallel semantics of a vector instruction allows an
implementation to execute these elemental operations using either a deeply pipe-
lined functional unit, as in the VMIPS implementation we’ve studied so far, or by
using an array of parallel functional units, or a combination of parallel and pipe-
lined functional units. Figure G.11 illustrates how vector performance can be
improved by using parallel pipelines to execute a vector add instruction.

The VMIPS instruction set has been designed with the property that all vector
arithmetic instructions only allow element N of one vector register to take part in
operations with element N from other vector registers. This dramatically simpli-
fies the construction of a highly parallel vector unit, which can be structured as
multiple parallel lanes. As with a traffic highway, we can increase the peak
throughput of a vector unit by adding more lanes. The structure of a four-lane
vector unit is shown in Figure G.12.

Each lane contains one portion of the vector-register file and one execution
pipeline from each vector functional unit. Each vector functional unit executes
vector instructions at the rate of one element group per cycle using multiple pipe-
lines, one per lane. The first lane holds the first element (element 0) for all vector
registers, and so the first element in any vector instruction will have its source and
destination operands located in the first lane. This allows the arithmetic pipeline
local to the lane to complete the operation without communicating with other
lanes. Interlane wiring is only required to access main memory. This lack of inter-
lane communication reduces the wiring cost and register file ports required to
build a highly parallel execution unit, and helps explains why current vector
supercomputers can complete up to 64 operations per cycle (2 arithmetic units
and 2 load-store units across 16 lanes).

Time1 5 n()=

Time2 4n 4 fn+=

5n 4n 4 fn+≥
1
4
--- f≥

G-30 � Appendix G Vector Processors

Adding multiple lanes is a popular technique to improve vector performance
as it requires little increase in control complexity and does not require changes to
existing machine code. Several vector supercomputers are sold as a range of
models that vary in the number of lanes installed, allowing users to trade price
against peak vector performance. The Cray SV1 allows four two-lane CPUs to be
ganged together using operating system software to form a single larger eight-
lane CPU.

Pipelined Instruction Start-Up

Adding multiple lanes increases peak performance, but does not change start-up
latency, and so it becomes critical to reduce start-up overhead by allowing the
start of one vector instruction to be overlapped with the completion of preceding
vector instructions. The simplest case to consider is when two vector instructions
access a different set of vector registers. For example, in the code sequence

ADDV.D V1,V2,V3
ADDV.D V4,V5,V6

Figure G.11 Using multiple functional units to improve the performance of a single
vector add instruction, C = A + B. The machine shown in (a) has a single add pipeline
and can complete one addition per cycle. The machine shown in (b) has four add pipe-
lines and can complete four additions per cycle. The elements within a single vector
add instruction are interleaved across the four pipelines. The set of elements that move
through the pipelines together is termed an element group. (Reproduced with permis-
sion from Asanovic [1998].)

A[9]

A[8]

A[7]

A[6]

A[5]

A[4]

A[3]

A[2]

A[1]

C[0]

B[9]

B[8]

B[7]

B[6]

B[5]

B[4]

B[3]

B[2]

B[1]

+

A[8]

A[4]

C[0]

Element group

B[8]

B[4]

+

A[5]

C[1]

B[5]

A[9] B[9]

+

A[6]

C[2]

B[6]

+

A[7]

C[3]

B[7]

+

(a) (b)

G.4 Enhancing Vector Performance � G-31

an implementation can allow the first element of the second vector instruction to
immediately follow the last element of the first vector instruction down the FP
adder pipeline. To reduce the complexity of control logic, some vector machines
require some recovery time or dead time in between two vector instructions dis-
patched to the same vector unit. Figure G.13 is a pipeline diagram that shows
both start-up latency and dead time for a single vector pipeline.

The following example illustrates the impact of this dead time on achievable
vector performance.

Example The Cray C90 has two lanes but requires 4 clock cycles of dead time between any
two vector instructions to the same functional unit, even if they have no data
dependences. For the maximum vector length of 128 elements, what is the reduc-
tion in achievable peak performance caused by the dead time? What would be the
reduction if the number of lanes were increased to 16?

Figure G.12 Structure of a vector unit containing four lanes. The vector-register stor-
age is divided across the lanes, with each lane holding every fourth element of each
vector register. There are three vector functional units shown, an FP add, an FP multiply,
and a load-store unit. Each of the vector arithmetic units contains four execution pipe-
lines, one per lane, that act in concert to complete a single vector instruction. Note how
each section of the vector-register file only needs to provide enough ports for pipelines
local to its lane; this dramatically reduces the cost of providing multiple ports to the
vector registers. The path to provide the scalar operand for vector-scalar instructions is
not shown in this figure, but the scalar value must be broadcast to all lanes.

Vector
registers:
elements
0,4,8, . . .

FP add
pipe 0

FP mul.
pipe 0

Vector
registers:
elements
1,5,9, . . .

FP add
pipe 1

FP mul.
pipe 1

Vector
registers:
elements

2,6,10, . . .

FP add
pipe 2

FP mul.
pipe 2

Vector
registers:
elements

3,7,11, . . .

Lane 0 Lane 1 Lane 2 Lane 3

FP add
pipe 3

FP mul.
pipe 3

Vector load-store unit

G-32 � Appendix G Vector Processors

Answer A maximum length vector of 128 elements is divided over the two lanes and
occupies a vector functional unit for 64 clock cycles. The dead time adds another
4 cycles of occupancy, reducing the peak performance to 64/(64 + 4) = 94.1% of
the value without dead time. If the number of lanes is increased to 16, maximum
length vector instructions will occupy a functional unit for only 128/16 = 8
cycles, and the dead time will reduce peak performance to 8/(8 + 4) = 66.6% of
the value without dead time. In this second case, the vector units can never be
more than 2/3 busy!

Pipelining instruction start-up becomes more complicated when multiple in-
structions can be reading and writing the same vector register, and when some
instructions may stall unpredictably, for example, a vector load encountering
memory bank conflicts. However, as both the number of lanes and pipeline laten-
cies increase, it becomes increasingly important to allow fully pipelined instruc-
tion start-up.

Two factors affect the success with which a program can be run in vector mode.
The first factor is the structure of the program itself: Do the loops have true data
dependences, or can they be restructured so as not to have such dependences?
This factor is influenced by the algorithms chosen and, to some extent, by how
they are coded. The second factor is the capability of the compiler. While no
compiler can vectorize a loop where no parallelism among the loop iterations

Figure G.13 Start-up latency and dead time for a single vector pipeline. Each ele-
ment has a 5-cycle latency: 1 cycle to read the vector-register file, 3 cycles in execution,
then 1 cycle to write the vector-register file. Elements from the same vector instruction
can follow each other down the pipeline, but this machine inserts 4 cycles of dead time
between two different vector instructions. The dead time can be eliminated with more
complex control logic. (Reproduced with permission from Asanovic [1998].)

R X1 X2 X3 W

R X1 X2 X3 W
Second vector

instructionElement 1

R X1 X2 X3

First vector
instruction

Dead time

WElement 0

R X1 X2 X3 WDead cycle

R X1 X2 X3 WDead cycle

R X1 X2 X3 WDead cycle

R X1 X2 X3 WDead cycle

R X1 X2 X3 WElement 63

R X1 X2 X3 W

R X1 X2 X3 W

Start-up
latency

G.5 Effectiveness of Compiler Vectorization

G.5 Effectiveness of Compiler Vectorization � G-33

exists, there is tremendous variation in the ability of compilers to determine
whether a loop can be vectorized. The techniques used to vectorize programs are
the same as those discussed in Chapter 4 for uncovering ILP; here we simply
review how well these techniques work.

As an indication of the level of vectorization that can be achieved in scientific
programs, let's look at the vectorization levels observed for the Perfect Club
benchmarks. These benchmarks are large, real scientific applications. Figure
G.14 shows the percentage of operations executed in vector mode for two versions
of the code running on the Cray Y-MP. The first version is that obtained with just
compiler optimization on the original code, while the second version has been
extensively hand-optimized by a team of Cray Research programmers. The wide
variation in the level of compiler vectorization has been observed by several stud-
ies of the performance of applications on vector processors.

The hand-optimized versions generally show significant gains in vectoriza-
tion level for codes the compiler could not vectorize well by itself, with all codes
now above 50% vectorization. It is interesting to note that for MG3D, FLO52,
and DYFESM, the faster code produced by the Cray programmers had lower lev-
els of vectorization. The level of vectorization is not sufficient by itself to deter-
mine performance. Alternative vectorization techniques might execute fewer

Benchmark
name

Operations executed
in vector mode,

compiler-optimized

Operations executed
in vector mode,
hand-optimized

Speedup from
hand optimization

BDNA 96.1% 97.2% 1.52

MG3D 95.1% 94.5% 1.00

FLO52 91.5% 88.7% N/A

ARC3D 91.1% 92.0% 1.01

SPEC77 90.3% 90.4% 1.07

MDG 87.7% 94.2% 1.49

TRFD 69.8% 73.7% 1.67

DYFESM 68.8% 65.6% N/A

ADM 42.9% 59.6% 3.60

OCEAN 42.8% 91.2% 3.92

TRACK 14.4% 54.6% 2.52

SPICE 11.5% 79.9% 4.06

QCD 4.2% 75.1% 2.15

Figure G.14 Level of vectorization among the Perfect Club benchmarks when exe-
cuted on the Cray Y-MP [Vajapeyam 1991]. The first column shows the vectorization
level obtained with the compiler, while the second column shows the results after the
codes have been hand-optimized by a team of Cray Research programmers. Speedup
numbers are not available for FLO52 and DYFESM as the hand-optimized runs used
larger data sets than the compiler-optimized runs.

G-34 � Appendix G Vector Processors

instructions, or keep more values in vector registers, or allow greater chaining
and overlap among vector operations, and therefore improve performance even if
the vectorization level remains the same or drops. For example, BDNA has
almost the same level of vectorization in the two versions, but the hand-optimized
code is over 50% faster.

There is also tremendous variation in how well different compilers do in vec-
torizing programs. As a summary of the state of vectorizing compilers, consider
the data in Figure G.15, which shows the extent of vectorization for different pro-
cessors using a test suite of 100 handwritten FORTRAN kernels. The kernels
were designed to test vectorization capability and can all be vectorized by hand;
we will see several examples of these loops in the exercises.

In this section we look at different measures of performance for vector processors
and what they tell us about the processor. To determine the performance of a pro-
cessor on a vector problem we must look at the start-up cost and the sustained
rate. The simplest and best way to report the performance of a vector processor
on a loop is to give the execution time of the vector loop. For vector loops people
often give the MFLOPS (millions of floating-point operations per second) rating
rather than execution time. We use the notation Rn for the MFLOPS rating on a
vector of length n. Using the measurements Tn (time) or Rn (rate) is equivalent if
the number of FLOPS is agreed upon (see Chapter 1 for a longer discussion on
MFLOPS). In any event, either measurement should include the overhead.

Processor Compiler
Completely
vectorized

Partially
vectorized

Not
vectorized

CDC CYBER 205 VAST-2 V2.21 62 5 33

Convex C-series FC5.0 69 5 26

Cray X-MP CFT77 V3.0 69 3 28

Cray X-MP CFT V1.15 50 1 49

Cray-2 CFT2 V3.1a 27 1 72

ETA-10 FTN 77 V1.0 62 7 31

Hitachi S810/820 FORT77/HAP V20-2B 67 4 29

IBM 3090/VF VS FORTRAN V2.4 52 4 44

NEC SX/2 FORTRAN77 / SX V.040 66 5 29

Figure G.15 Result of applying vectorizing compilers to the 100 FORTRAN test ker-
nels. For each processor we indicate how many loops were completely vectorized, par-
tially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. Two different compilers for the Cray X-MP show the large depen-
dence on compiler technology.

G.6 Putting It All Together: Performance of Vector
Processors

G.6 Putting It All Together: Performance of Vector Processors � G-35

In this section we examine the performance of VMIPS on our DAXPY loop
by looking at performance from different viewpoints. We will continue to com-
pute the execution time of a vector loop using the equation developed in
Section G.3. At the same time, we will look at different ways to measure perfor-
mance using the computed time. The constant values for Tloop used in this section
introduce some small amount of error, which will be ignored.

Measures of Vector Performance

Because vector length is so important in establishing the performance of a pro-
cessor, length-related measures are often applied in addition to time and
MFLOPS. These length-related measures tend to vary dramatically across differ-
ent processors and are interesting to compare. (Remember, though, that time is
always the measure of interest when comparing the relative speed of two proces-
sors.) Three of the most important length-related measures are

� R∞—The MFLOPS rate on an infinite-length vector. Although this measure
may be of interest when estimating peak performance, real problems do not
have unlimited vector lengths, and the overhead penalties encountered in real
problems will be larger.

� N1/2—The vector length needed to reach one-half of R∞. This is a good mea-
sure of the impact of overhead.

� Nv—The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors.

Let’s look at these measures for our DAXPY problem running on VMIPS.
When chained, the inner loop of the DAXPY code in convoys looks like Figure
G.16 (assuming that Rx and Ry hold starting addresses).

Recall our performance equation for the execution time of a vector loop with
n elements, Tn:

Chaining allows the loop to run in three chimes (and no less, since there is one
memory pipeline); thus Tchime = 3. If Tchime were a complete indication of perfor-
mance, the loop would run at an MFLOPS rate of 2/3 × clock rate (since there are
2 FLOPS per iteration). Thus, based only on the chime count, a 500 MHz VMIPS
would run this loop at 333 MFLOPS assuming no strip-mining or start-up over-
head. There are several ways to improve the performance: add additional vector

LV V1,Rx MULVS.D V2,V1,F0 Convoy 1: chained load and multiply

LV V3,Ry ADDV.D V4,V2,V3 Convoy 2: second load and add, chained

SV Ry,V4 Convoy 3: store the result

Figure G.16 The inner loop of the DAXPY code in chained convoys.

Tn
n

MVL
-------------- Tloop Tstart+()× n Tchime×+=

G-36 � Appendix G Vector Processors

load-store units, allow convoys to overlap to reduce the impact of start-up over-
heads, and decrease the number of loads required by vector-register allocation.
We will examine the first two extensions in this section. The last optimization is
actually used for the Cray-1, VMIPS’s cousin, to boost the performance by 50%.
Reducing the number of loads requires an interprocedural optimization; we
examine this transformation in Exercise G.6. Before we examine the first two
extensions, let’s see what the real performance, including overhead, is.

The Peak Performance of VMIPS on DAXPY

First, we should determine what the peak performance, R∞, really is, since we
know it must differ from the ideal 333 MFLOPS rate. For now, we continue to
use the simplifying assumption that a convoy cannot start until all the instructions
in an earlier convoy have completed; later we will remove this restriction. Using
this simplification, the start-up overhead for the vector sequence is simply the
sum of the start-up times of the instructions:

Using MVL = 64, Tloop = 15, Tstart = 49, and Tchime = 3 in the performance
equation, and assuming that n is not an exact multiple of 64, the time for an n-
element operation is

The sustained rate is actually over 4 clock cycles per iteration, rather than the
theoretical rate of 3 chimes, which ignores overhead. The major part of the differ-
ence is the cost of the start-up overhead for each block of 64 elements (49 cycles
versus 15 for the loop overhead).

We can now compute R∞ for a 500 MHz clock as

The numerator is independent of n, hence

Tstart 12 7 12 6 12+ + + + 49= =

Tn
n
64
------ 15 49+() 3n+×=

n 64+()≤ 3n+

4n 64+=

R∞
Operations per iteration Clock rate×

Clock cycles per iteration
-- 

 
n ∞→
lim=

R∞
Operations per iteration Clock rate×

Clock cycles per iteration()
n ∞→
lim

--=

Clock cycles per iteration()
n ∞→
lim

Tn

n
------ 

 
n ∞→
lim

4n 64+
n

------------------ 
 

n ∞→
lim 4= = =

R∞
2 500 MHz×

4
-------------------------------- 250 MFLOPS= =

G.6 Putting It All Together: Performance of Vector Processors � G-37

The performance without the start-up overhead, which is the peak performance
given the vector functional unit structure, is now 1.33 times higher. In actuality
the gap between peak and sustained performance for this benchmark is even
larger!

Sustained Performance of VMIPS on the Linpack Benchmark

The Linpack benchmark is a Gaussian elimination on a 100 × 100 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of length k is used k
times. Thus, the average vector length is given by

Now we can obtain an accurate estimate of the performance of DAXPY using a
vector length of 66.

The peak number, ignoring start-up overhead, is 1.64 times higher than this
estimate of sustained performance on the real vector lengths. In actual practice,
the Linpack benchmark contains a nontrivial fraction of code that cannot be vec-
torized. Although this code accounts for less than 20% of the time before vector-
ization, it runs at less than one-tenth of the performance when counted as FLOPS.
Thus, Amdahl’s Law tells us that the overall performance will be significantly
lower than the performance estimated from analyzing the inner loop.

Since vector length has a significant impact on performance, the N1/2 and Nv
measures are often used in comparing vector machines.

Example What is N1/2 for just the inner loop of DAXPY for VMIPS with a 500 MHz
clock?

Answer Using R∞ as the peak rate, we want to know the vector length that will achieve
about 125 MFLOPS. We start with the formula for MFLOPS assuming that the
measurement is made for N1/2 elements:

i
2

i 1=

99

∑

i
i 1=

99

∑
-------------- 66.3=

T66 2 15 49+() 66 3×+× 128 198+ 326= = =

R66
2 66 500××

326
------------------------------ MFLOPS 202 MFLOPS= =

MFLOPS
FLOPS executed in N1 2⁄ iterations

Clock cycles to execute N1 2⁄ iterations
-- Clock cycles

Second
------------------------------ 10

6–××=

125
2 N1 2⁄×

TN1 2⁄

--------------------- 500×=

G-38 � Appendix G Vector Processors

Simplifying this and then assuming N1/2 ≤ 64, so that Tn ≤ 64 = 1 × 64 + 3 × n,
yields

So N1/2 = 13; that is, a vector of length 13 gives approximately one-half the peak
performance for the DAXPY loop on VMIPS.

Example What is the vector length, Nv, such that the vector operation runs faster than the
scalar?

Answer Again, we know that Nv < 64. The time to do one iteration in scalar mode can be
estimated as 10 + 12 + 12 + 7 + 6 +12 = 59 clocks, where 10 is the estimate of the
loop overhead, known to be somewhat less than the strip-mining loop overhead. In
the last problem, we showed that this vector loop runs in vector mode in time
Tn ≤ 64 = 64 + 3 × n clock cycles. Therefore,

For the DAXPY loop, vector mode is faster than scalar as long as the vector has
at least two elements. This number is surprisingly small, as we will see in the next
section (“Fallacies and Pitfalls”).

DAXPY Performance on an Enhanced VMIPS

DAXPY, like many vector problems, is memory limited. Consequently, per-
formance could be improved by adding more memory access pipelines. This is
the major architectural difference between the Cray X-MP (and later processors)
and the Cray-1. The Cray X-MP has three memory pipelines, compared with the
Cray-1’s single memory pipeline, and the X-MP has more flexible chaining. How
does this affect performance?

Example What would be the value of T66 for DAXPY on VMIPS if we added two more
memory pipelines?

TN1 2⁄
8 N1 2⁄×=

1 64× 3 N1 2⁄×+ 8 N1 2⁄×=

5 N1 2⁄× 64=

N1 2⁄ 12.8=

64 3Nv+ 59Nv=

Nv
64
56
------=

Nv 2=

G.6 Putting It All Together: Performance of Vector Processors � G-39

Answer With three memory pipelines all the instructions fit in one convoy and take one
chime. The start-up overheads are the same, so

With three memory pipelines, we have reduced the clock cycle count for sus-
tained performance from 326 to 194, a factor of 1.7. Note the effect of Amdahl’s
Law: We improved the theoretical peak rate as measured by the number of
chimes by a factor of 3, but only achieved an overall improvement of a factor of
1.7 in sustained performance.

Another improvement could come from allowing different convoys to overlap
and also allowing the scalar loop overhead to overlap with the vector instructions.
This requires that one vector operation be allowed to begin using a functional unit
before another operation has completed, which complicates the instruction issue
logic. Allowing this overlap eliminates the separate start-up overhead for every
convoy except the first and hides the loop overhead as well.

To achieve the maximum hiding of strip-mining overhead, we need to be able
to overlap strip-mined instances of the loop, allowing two instances of a convoy
as well as possibly two instances of the scalar code to be in execution simulta-
neously. This requires the same techniques we looked at in Chapter 4 to avoid
WAR hazards, although because no overlapped read and write of a single vector
element is possible, copying can be avoided. This technique, called tailgating,
was used in the Cray-2. Alternatively, we could unroll the outer loop to create
several instances of the vector sequence using different register sets (assuming
sufficient registers), just as we did in Chapter 4. By allowing maximum overlap
of the convoys and the scalar loop overhead, the start-up and loop overheads will
only be seen once per vector sequence, independent of the number of convoys
and the instructions in each convoy. In this way a processor with vector registers
can have both low start-up overhead for short vectors and high peak performance
for very long vectors.

Example What would be the values of R∞ and T66 for DAXPY on VMIPS if we added two
more memory pipelines and allowed the strip-mining and start-up overheads to
be fully overlapped?

Answer

Since the overhead is only seen once, Tn = n + 49 + 15 = n + 64. Thus,

T66
66
64
------ Tloop Tstart+() 66 Tchime×+×=

T66 2 15 49+() 66 1×+× 194= =

R∞
Operations per iteration Clock rate×

Clock cycles per iteration
-- 

 
n ∞→
lim=

Clock cycles per iteration()
n ∞→
lim

Tn

n
------ 

 
n ∞→
lim=

G-40 � Appendix G Vector Processors

Adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, T66 = 130, so for
shorter vectors, the sustained performance improvement is about 326/130 = 2.5
times.

In summary, we have examined several measures of vector performance.
Theoretical peak performance can be calculated based purely on the value of
Tchime as

By including the loop overhead, we can calculate values for peak performance for
an infinite-length vector (R∞) and also for sustained performance, Rn for a vector
of length n, which is computed as

Using these measures we also can find N1/2 and Nv, which give us another way of
looking at the start-up overhead for vectors and the ratio of vector to scalar speed.
A wide variety of measures of performance of vector processors are useful in
understanding the range of performance that applications may see on a vector
processor.

Pitfall Concentrating on peak performance and ignoring start-up overhead.

Early memory-memory vector processors such as the TI ASC and the CDC
STAR-100 had long start-up times. For some vector problems, Nv could be
greater than 100! On the CYBER 205, derived from the STAR-100, the start-up
overhead for DAXPY is 158 clock cycles, substantially increasing the break-even
point. With a single vector unit, which contains 2 memory pipelines, the CYBER
205 can sustain a rate of 2 clocks per iteration. The time for DAXPY for a vector
of length n is therefore roughly 158 + 2n. If the clock rates of the Cray-1 and the
CYBER 205 were identical, the Cray-1 would be faster until n > 64. Because
the Cray-1 clock is also faster (even though the 205 is newer), the crossover
point is over 100. Comparing a four-lane CYBER 205 (the maximum-size pro-
cessor) with the Cray X-MP that was delivered shortly after the 205, the 205
has a peak rate of two results per clock cycle—twice as fast as the X-MP. How-
ever, vectors must be longer than about 200 for the CYBER 205 to be faster.

Tn

n
------ 

 
n ∞→
lim

n 64+
n

--------------- 
 

n ∞→
lim 1= =

R∞
2 500 MHz×

1
-------------------------------- 1000 MFLOPS= =

Number of FLOPS per iteration Clock rate×
Tchime

Rn
Number of FLOPS per iteration n× Clock rate×

Tn
--=

G.7 Fallacies and Pitfalls

G.7 Fallacies and Pitfalls � G-41

The problem of start-up overhead has been a major difficulty for the memory-
memory vector architectures, hence their lack of popularity.

Pitfall Increasing vector performance, without comparable increases in scalar per-
formance.

This was a problem on many early vector processors, and a place where Seymour
Cray rewrote the rules. Many of the early vector processors had comparatively
slow scalar units (as well as large start-up overheads). Even today, processors
with higher peak vector performance can be outperformed by a processor with
lower vector performance but better scalar performance. Good scalar perfor-
mance keeps down overhead costs (strip mining, for example) and reduces the
impact of Amdahl’s Law. A good example of this comes from comparing a fast
scalar processor and a vector processor with lower scalar performance. The Liv-
ermore FORTRAN kernels are a collection of 24 scientific kernels with varying
degrees of vectorization. Figure G.17 shows the performance of two different
processors on this benchmark. Despite the vector processor's higher peak perfor-
mance, its low scalar performance makes it slower than a fast scalar processor as
measured by the harmonic mean. The next fallacy is closely related.

Fallacy You can get vector performance without providing memory bandwidth.

As we saw with the DAXPY loop, memory bandwidth is quite important. DAXPY
requires 1.5 memory references per floating-point operation, and this ratio is typical
of many scientific codes. Even if the floating-point operations took no time, a Cray-
1 could not increase the performance of the vector sequence used, since it is mem-
ory limited. The Cray-1 performance on Linpack jumped when the compiler used
clever transformations to change the computation so that values could be kept in the
vector registers. This lowered the number of memory references per FLOP and
improved the performance by nearly a factor of 2! Thus, the memory bandwidth on

Processor

Minimum rate
for any loop

(MFLOPS)

Maximum rate
for any loop

(MFLOPS)

Harmonic mean
of all 24 loops

(MFLOPS)

MIPS M/120-5 0.80 3.89 1.85

Stardent-1500 0.41 10.08 1.72

Figure G.17 Performance measurements for the Livermore FORTRAN kernels on
two different processors. Both the MIPS M/120-5 and the Stardent-1500 (formerly the
Ardent Titan-1) use a 16.7 MHz MIPS R2000 chip for the main CPU. The Stardent-1500
uses its vector unit for scalar FP and has about half the scalar performance (as mea-
sured by the minimum rate) of the MIPS M/120, which uses the MIPS R2010 FP chip. The
vector processor is more than a factor of 2.5 times faster for a highly vectorizable loop
(maximum rate). However, the lower scalar performance of the Stardent-1500 negates
the higher vector performance when total performance is measured by the harmonic
mean on all 24 loops.

G-42 � Appendix G Vector Processors

the Cray-1 became sufficient for a loop that formerly required more bandwidth.
This ability to reuse values from vector registers is another advantage of vector-
register architectures compared with memory-memory vector architectures,
which have to fetch all vector operands from memory, requiring even greater
memory bandwidth.

During the 1980s and 1990s, rapid performance increases in pipelined scalar
processors led to a dramatic closing of the gap between traditional vector super-
computers and fast, pipelined, superscalar VLSI microprocessors. In 2002, it is
possible to buy a complete desktop computer system for under $1000 that has a
higher CPU clock rate than any available vector supercomputer, even those costing
tens of millions of dollars. Although the vector supercomputers have lower clock
rates, they support greater parallelism through the use of multiple lanes (up to 16
in the Japanese designs) versus the limited multiple issue of the superscalar micro-
processors. Nevertheless, the peak floating-point performance of the low-cost
microprocessors is within a factor of 4 of the leading vector supercomputer CPUs.
Of course, high clock rates and high peak performance do not necessarily translate
into sustained application performance. Main memory bandwidth is the key distin-
guishing feature between vector supercomputers and superscalar microprocessor
systems. The fastest microprocessors in 2002 can sustain around 1 GB/sec of main
memory bandwidth, while the fastest vector supercomputers can sustain around 50
GB/sec per CPU. For nonunit stride accesses the bandwidth discrepancy is even
greater. For certain scientific and engineering applications, performance correlates
directly with nonunit stride main memory bandwidth, and these are the applica-
tions for which vector supercomputers remain popular.

Providing this large nonunit stride memory bandwidth is one of the major
expenses in a vector supercomputer, and traditionally SRAM was used as main
memory to reduce the number of memory banks needed and to reduce vector
start-up penalties. While SRAM has an access time several times lower than that
of DRAM, it costs roughly 10 times as much per bit! To reduce main memory
costs and to allow larger capacities, all modern vector supercomputers now use
DRAM for main memory, taking advantage of new higher-bandwidth DRAM
interfaces such as synchronous DRAM.

 This adoption of DRAM for main memory (pioneered by Seymour Cray in
the Cray-2) is one example of how vector supercomputers are adapting commod-
ity technology to improve their price-performance. Another example is that vec-
tor supercomputers are now including vector data caches. Caches are not
effective for all vector codes, however, and so these vector caches are designed to
allow high main memory bandwidth even in the presence of many cache misses.
For example, the cache on the Cray SV1 can support 384 outstanding cache
misses per CPU, while for microprocessors 8–16 outstanding misses is a more
typical maximum number.

G.8 Concluding Remarks

G.9 Historical Perspective and References � G-43

Another example is the demise of bipolar ECL or gallium arsenide as technol-
ogies of choice for supercomputer CPU logic. Because of the huge investment in
CMOS technology made possible by the success of the desktop computer, CMOS
now offers competitive transistor performance with much greater transistor den-
sity and much reduced power dissipation compared with these more exotic tech-
nologies. As a result, all leading vector supercomputers are now built with the
same CMOS technology as superscalar microprocessors. The primary reason that
vector supercomputers now have lower clock rates than commodity microproces-
sors is that they are developed using standard cell ASIC techniques rather than
full custom circuit design to reduce the engineering design cost. While a micro-
processor design may sell tens of millions of copies and can amortize the design
cost over this large number of units, a vector supercomputer is considered a suc-
cess if over a hundred units are sold!

 Conversely, superscalar microprocessor designs have begun to absorb some
of the techniques made popular in earlier vector computer systems. Many multi-
media applications contain code that can be vectorized, and as discussed in Chap-
ter 2, most commercial microprocessor ISAs have added multimedia extensions
that resemble short vector instructions. A common technique is to allow a wide
64-bit register to be split into smaller subwords that are operated on in parallel.
This idea was used in the early TI ASC and CDC STAR-100 vector machines,
where a 64-bit lane could be split into two 32-bit lanes to give higher perfor-
mance on lower-precision data. Although the initial microprocessor multimedia
extensions were very limited in scope, newer extensions such as AltiVec for the
IBM/Motorola PowerPC and SSE2 for the Intel x86 processors have both
increased the vector length to 128 bits (still small compared with the 4096 bits in
a VMIPS vector register) and added better support for vector compilers. Vector
instructions are particularly appealing for embedded processors because they
support high degrees of parallelism at low cost and with low power dissipation,
and have been used in several game machines such as the Nintendo-64 and the
Sony Playstation 2 to boost graphics performance. We expect that microproces-
sors will continue to extend their support for vector operations, as this represents
a much simpler approach to boosting performance for an important class of appli-
cations compared with the hardware complexity of increasing scalar instruction
issue width, or the software complexity of managing multiple parallel processors.

The first vector processors were the CDC STAR-100 (see Hintz and Tate [1972])
and the TI ASC (see Watson [1972]), both announced in 1972. Both were
memory-memory vector processors. They had relatively slow scalar units—the
STAR used the same units for scalars and vectors—making the scalar pipeline
extremely deep. Both processors had high start-up overhead and worked on vec-
tors of several hundred to several thousand elements. The crossover between sca-
lar and vector could be over 50 elements. It appears that not enough attention was
paid to the role of Amdahl’s Law on these two processors.

G.9 Historical Perspective and References

G-44 � Appendix G Vector Processors

Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Research
and introduced the Cray-1 in 1976 (see Russell [1978]). The Cray-1 used a
vector-register architecture to significantly lower start-up overhead and to reduce
memory bandwidth requirements. He also had efficient support for nonunit stride
and invented chaining. Most importantly, the Cray-1 was the fastest scalar pro-
cessor in the world at that time. This matching of good scalar and vector perfor-
mance was probably the most significant factor in making the Cray-1 a success.
Some customers bought the processor primarily for its outstanding scalar perfor-
mance. Many subsequent vector processors are based on the architecture of this
first commercially successful vector processor. Baskett and Keller [1977] provide
a good evaluation of the Cray-1.

In 1981, CDC started shipping the CYBER 205 (see Lincoln [1982]). The
205 had the same basic architecture as the STAR, but offered improved perfor-
mance all around as well as expandability of the vector unit with up to four lanes,
each with multiple functional units and a wide load-store pipe that provided mul-
tiple words per clock. The peak performance of the CYBER 205 greatly exceeded
the performance of the Cray-1. However, on real programs, the performance dif-
ference was much smaller.

The CDC STAR processor and its descendant, the CYBER 205, were
memory-memory vector processors. To keep the hardware simple and support the
high bandwidth requirements (up to three memory references per floating-point
operation), these processors did not efficiently handle nonunit stride. While most
loops have unit stride, a nonunit stride loop had poor performance on these pro-
cessors because memory-to-memory data movements were required to gather
together (and scatter back) the nonadjacent vector elements; these operations
used special scatter-gather instructions. In addition, there was special support for
sparse vectors that used a bit vector to represent the zeros and nonzeros and a
dense vector of nonzero values. These more complex vector operations were slow
because of the long memory latency, and it was often faster to use scalar mode for
sparse or nonunit stride operations. Schneck [1987] described several of the early
pipelined processors (e.g., Stretch) through the first vector processors, including
the 205 and Cray-1. Dongarra [1986] did another good survey, focusing on more
recent processors.

In 1983, Cray Research shipped the first Cray X-MP (see Chen [1983]). With
an improved clock rate (9.5 ns versus 12.5 ns on the Cray-1), better chaining sup-
port, and multiple memory pipelines, this processor maintained the Cray
Research lead in supercomputers. The Cray-2, a completely new design con-
figurable with up to four processors, was introduced later. A major feature of the
Cray-2 was the use of DRAM, which made it possible to have very large memo-
ries. The first Cray-2 with its 256M word (64-bit words) memory contained more
memory than the total of all the Cray machines shipped to that point! The Cray-2
had a much faster clock than the X-MP, but also much deeper pipelines; however,
it lacked chaining, had an enormous memory latency, and had only one memory
pipe per processor. In general, the Cray-2 is only faster than the Cray X-MP on
problems that require its very large main memory.

G.9 Historical Perspective and References � G-45

The 1980s also saw the arrival of smaller-scale vector processors, called mini-
supercomputers. Priced at roughly one-tenth the cost of a supercomputer ($0.5 to
$1 million versus $5 to $10 million), these processors caught on quickly.
Although many companies joined the market, the two companies that were most
successful were Convex and Alliant. Convex started with the uniprocessor C-1
vector processor and then offered a series of small multiprocessors ending with
the C-4 announced in 1994. The keys to the success of Convex over this period
were their emphasis on Cray software capability, the effectiveness of their com-
piler (see Figure G.15), and the quality of their UNIX OS implementation. The
C-4 was the last vector machine Convex sold; they switched to making large-
scale multiprocessors using Hewlett-Packard RISC microprocessors and were
bought by HP in 1995. Alliant [1987] concentrated more on the multiprocessor
aspects; they built an eight-processor computer, with each processor offering vec-
tor capability. Alliant ceased operation in the early 1990s.

In the early 1980s, CDC spun out a group, called ETA, to build a new super-
computer, the ETA-10, capable of 10 GFLOPS. The ETA processor was delivered
in the late 1980s (see Fazio [1987]) and used low-temperature CMOS in a
configuration with up to 10 processors. Each processor retained the memory-
memory architecture based on the CYBER 205. Although the ETA-10 achieved
enormous peak performance, its scalar speed was not comparable. In 1989 CDC,
the first supercomputer vendor, closed ETA and left the supercomputer design
business.

In 1986, IBM introduced the System/370 vector architecture (see Moore et al.
[1987]) and its first implementation in the 3090 Vector Facility. The architecture
extends the System/370 architecture with 171 vector instructions. The 3090/VF is
integrated into the 3090 CPU. Unlike most other vector processors, the 3090/VF
routes its vectors through the cache.

In 1983, processor vendors from Japan entered the supercomputer market-
place, starting with the Fujitsu VP100 and VP200 (see Miura and Uchida [1983]),
and later expanding to include the Hitachi S810 and the NEC SX/2 (see
Watanabe [1987]). These processors have proved to be close to the Cray X-MP in
performance. In general, these three processors have much higher peak per-
formance than the Cray X-MP. However, because of large start-up overhead, their
typical performance is often lower than the Cray X-MP (see Figure 1.32 in
Chapter 1). The Cray X-MP favored a multiple-processor approach, first offering
a two-processor version and later a four-processor. In contrast, the three Japanese
processors had expandable vector capabilities.

In 1988, Cray Research introduced the Cray Y-MP—a bigger and faster ver-
sion of the X-MP. The Y-MP allows up to eight processors and lowers the cycle
time to 6 ns. With a full complement of eight processors, the Y-MP was generally
the fastest supercomputer, though the single-processor Japanese supercomputers
may be faster than a one-processor Y-MP. In late 1989 Cray Research was split
into two companies, both aimed at building high-end processors available in the
early 1990s. Seymour Cray headed the spin-off, Cray Computer Corporation,

G-46 � Appendix G Vector Processors

until its demise in 1995. Their initial processor, the Cray-3, was to be imple-
mented in gallium arsenide, but they were unable to develop a reliable and cost-
effective implementation technology. A single Cray-3 prototype was delivered to
the National Center for Atmospheric Research (NCAR) for evaluation purposes
in 1993, but no paying customers were found for the design. The Cray-4 proto-
type, which was to have been the first processor to run at 1 GHz, was close to
completion when the company filed for bankruptcy. Shortly before his tragic
death in a car accident in 1996, Seymour Cray started yet another company, SRC
Computers, to develop high-performance systems but this time using commodity
components. In 2000, SRC announced the SRC-6 system that combines 512 Intel
microprocessors, 5 billion gates of reconfigurable logic, and a high-performance
vector-style memory system.

Cray Research focused on the C90, a new high-end processor with up to 16
processors and a clock rate of 240 MHz. This processor was delivered in 1991.
Typical configurations are about $15 million. In 1993, Cray Research introduced
their first highly parallel processor, the T3D, employing up to 2048 Digital Alpha
21064 microprocessors. In 1995, they announced the availability of both a new
low-end vector machine, the J90, and a high-end machine, the T90. The T90 is
much like the C90, but offers a clock that is twice as fast (460 MHz), using three-
dimensional packaging and optical clock distribution. Like the C90, the T90 costs
in the tens of millions, though a single CPU is available for $2.5 million. The T90
was the last bipolar ECL vector machine built by Cray. The J90 is a CMOS-based
vector machine using DRAM memory starting at $250,000, but with typical con-
figurations running about $1 million. In mid-1995, Cray Research was acquired
by Silicon Graphics, and in 1998 released the SV1 system, which grafted consid-
erably faster CMOS processors onto the J90 memory system, and which also
added a data cache for vectors to each CPU to help meet the increased memory
bandwidth demands. Silicon Graphics sold Cray Research to Tera Computer in
2000, and the joint company was renamed Cray Inc. Cray Inc. plans to release the
SV2 in 2002, which will be based on a completely new vector ISA.

The Japanese supercomputer makers have continued to evolve their designs
and have generally placed greater emphasis on increasing the number of lanes in
their vector units. In 2001, the NEC SX/5 was generally held to be the fastest
available vector supercomputer, with 16 lanes clocking at 312 MHz and with up
to 16 processors sharing the same memory. The Fujitsu VPP5000 was announced
in 2001 and also had 16 lanes and clocked at 300 MHz, but connected up to 128
processors in a distributed-memory cluster. In 2001, Cray Inc. announced that
they would be marketing the NEC SX/5 machine in the United States, after many
years in which Japanese supercomputers were unavailable to U.S. customers after
the U.S. Commerce Department found NEC and Fujitsu guilty of bidding below
cost for a 1996 NCAR supercomputer contract and imposed heavy import duties
on their products.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University
of Illinois. Banerjee [1979] developed the test named after him. Padua and Wolfe
[1986] give a good overview of vectorizing compiler technology.

G.9 Historical Perspective and References � G-47

Benchmark studies of various supercomputers, including attempts to under-
stand the performance differences, have been undertaken by Lubeck, Moore,
and Mendez [1985], Bucher [1983], and Jordan [1987]. In Chapter 1, we dis-
cussed several benchmark suites aimed at scientific usage and often employed
for supercomputer benchmarking, including Linpack and the Lawrence Liver-
more Laboratories FORTRAN kernels. The University of Illinois coordinated
the collection of a set of benchmarks for supercomputers, called the Perfect
Club. In 1993, the Perfect Club was integrated into SPEC, which released a set
of benchmarks, SPEChpc96, aimed at high-end scientific processing in 1996.
The NAS parallel benchmarks developed at the NASA Ames Research Center
[Bailey et al. 1991] have become a popular set of kernels and applications used
for supercomputer evaluation.

In less than 30 years vector processors have gone from unproven, new archi-
tectures to playing a significant role in the goal to provide engineers and scien-
tists with ever larger amounts of computing power. However, the enormous price-
performance advantages of microprocessor technology are bringing this era to an
end. Advanced superscalar microprocessors are approaching the peak perfor-
mance of the fastest vector processors, and in 2001, most of the highest-
performance machines in the world were large-scale multiprocessors based on
these microprocessors. Vector supercomputers remain popular for certain appli-
cations including car crash simulation and weather prediction that rely heavily on
scatter-gather performance over large data sets and for which effective massively
parallel programs have yet to be written. Over time, we expect that microproces-
sors will support higher-bandwidth memory systems, and that more applications
will be parallelized and/or tuned for cached multiprocessor systems. As the set of
applications best suited for vector supercomputers shrinks, they will become less
viable as commercial products and will eventually disappear. But vector process-
ing techniques will likely survive as an integral part of future microprocessor
architectures, with the currently popular SIMD multimedia extensions represent-
ing the first step in this direction.

References

Alliant Computer Systems Corp. [1987]. Alliant FX/Series: Product Summary (June),
Acton, Mass.

Asanovic, K. [1998]. “Vector microprocessors,” Ph.D. thesis, Computer Science Division,
Univ. of California at Berkeley (May).

Bailey, D. H., E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Ven-
katakrishnan, and S. K. Weeratunga [1991]. “The NAS parallel benchmarks,” Int’l. J.
Supercomputing Applications 5, 63–73.

Banerjee, U. [1979]. “Speedup of ordinary programs,” Ph.D. thesis, Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign (October).

Baskett, F., and T. W. Keller [1977]. “An Evaluation of the Cray-1 Processor,” in High
Speed Computer and Algorithm Organization, D. J. Kuck, D. H. Lawrie, and A. H.
Sameh, eds., Academic Press, San Diego, 71–84.

G-48 � Appendix G Vector Processors

Brandt, M., J. Brooks, M. Cahir, T. Hewitt, E. Lopez-Pineda, and D. Sandness [2000]. The
Benchmarker’s Guide for Cray SV1 Systems. Cray Inc., Seattle, Wash.

Bucher, I. Y. [1983]. “The computational speed of supercomputers,” Proc. SIGMETRICS
Conf. on Measuring and Modeling of Computer Systems, ACM (August), 151–165.

Callahan, D., J. Dongarra, and D. Levine [1988]. “Vectorizing compilers: A test suite and
results,” Supercomputing ’88, ACM/IEEE (November), Orlando, Fla., 98–105.

Chen, S. [1983]. “Large-scale and high-speed multiprocessor system for scientific appli-
cations,” Proc. NATO Advanced Research Work on High Speed Computing (June);
also in K. Hwang, ed., “Superprocessors: Design and applications,” IEEE (August),
1984.

Dongarra, J. J. [1986]. “A survey of high performance processors,” COMPCON, IEEE
(March), 8–11.

Fazio, D. [1987]. “It’s really much more fun building a supercomputer than it is simply
inventing one,” COMPCON, IEEE (February), 102–105.

Flynn, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (Decem-
ber), 1901–1909.

Hintz, R. G., and D. P. Tate [1972]. “Control data STAR-100 processor design,” COMP-
CON, IEEE (September), 1–4.

Jordan, K. E. [1987]. “Performance comparison of large-scale scientific processors: Scalar
mainframes, mainframes with vector facilities, and supercomputers,” Computer 20:3
(March), 10–23.

Kuck, D., P. P. Budnik, S.-C. Chen, D. H. Lawrie, R. A. Towle, R. E. Strebendt, E. W.
Davis, Jr., J. Han, P. W. Kraska, and Y. Muraoka [1974]. “Measurements of parallel-
ism in ordinary FORTRAN programs,” Computer 7:1 (January), 37–46.

Lincoln, N. R. [1982]. “Technology and design trade offs in the creation of a modern
supercomputer,” IEEE Trans. on Computers C-31:5 (May), 363–376.

Lubeck, O., J. Moore, and R. Mendez [1985]. “A benchmark comparison of three super-
computers: Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,” Computer 18:1
(January), 10–29.

Miranker, G. S., J. Rubenstein, and J. Sanguinetti [1988]. “Squeezing a Cray-class super-
computer into a single-user package,” COMPCON, IEEE (March), 452–456.

Miura, K., and K. Uchida [1983]. “FACOM vector processing system: VP100/200,” Proc.
NATO Advanced Research Work on High Speed Computing (June); also in K. Hwang,
ed., “Superprocessors: Design and applications,” IEEE (August 1984), 59–73.

Moore, B., A. Padegs, R. Smith, and W. Bucholz [1987]. “Concepts of the System/370
vector architecture,” Proc. 14th Symposium on Computer Architecture (June), ACM/
IEEE, Pittsburgh, 282–292.

Padua, D., and M. Wolfe [1986]. “Advanced compiler optimizations for supercomputers,”
Comm. ACM 29:12 (December), 1184–1201.

Russell, R. M. [1978]. “The Cray-1 processor system,” Comm. of the ACM 21:1 (January),
63–72.

Schneck, P. B. [1987]. Superprocessor Architecture, Kluwer Academic Publishers, Nor-
well, Mass.

Smith, B. J. [1981]. “Architecture and applications of the HEP multiprocessor system,”
Real-Time Signal Processing IV 298 (August), 241–248.

Sporer, M., F. H. Moss, and C. J. Mathais [1988]. “An introduction to the architecture of
the Stellar Graphics supercomputer,” COMPCON, IEEE (March), 464.

Vajapeyam, S. [1991]. “Instruction-level characterization of the Cray Y-MP processor,”
Ph.D. thesis, Computer Sciences Department, University of Wisconsin-Madison.

Exercises � G-49

Watanabe, T. [1987]. “Architecture and performance of the NEC supercomputer SX sys-
tem,” Parallel Computing 5, 247–255.

Watson, W. J. [1972]. “The TI ASC—a highly modular and flexible super processor
architecture,” Proc. AFIPS Fall Joint Computer Conf., 221–228.

In these exercises assume VMIPS has a clock rate of 500 MHz and that Tloop =
15. Use the start-up times from Figure G.4, and assume that the store latency is
always included in the running time.

G.1 [10] <G.1, G.2> Write a VMIPS vector sequence that achieves the peak MFLOPS
performance of the processor (use the functional unit and instruction description
in Section G.2). Assuming a 500-MHz clock rate, what is the peak MFLOPS?

G.2 [20/15/15] <G.1–G.6> Consider the following vector code run on a 500-MHz
version of VMIPS for a fixed vector length of 64:

LV V1,Ra
MULV.D V2,V1,V3
ADDV.D V4,V1,V3
SV Rb,V2
SV Rc,V4

Ignore all strip-mining overhead, but assume that the store latency must be
included in the time to perform the loop. The entire sequence produces 64 results.

a. [20] <G.1–G.4> Assuming no chaining and a single memory pipeline, how
many chimes are required? How many clock cycles per result (including both
stores as one result) does this vector sequence require, including start-up
overhead?

b. [15] <G.1–G.4> If the vector sequence is chained, how many clock cycles per
result does this sequence require, including overhead?

c. [15] <G.1–G.6> Suppose VMIPS had three memory pipelines and chaining.
If there were no bank conflicts in the accesses for the above loop, how many
clock cycles are required per result for this sequence?

G.3 [20/20/15/15/20/20/20] <G.2–G.6> Consider the following FORTRAN code:

do 10 i=1,n
 A(i) = A(i) + B(i)
 B(i) = x * B(i)

10 continue

Use the techniques of Section G.6 to estimate performance throughout this exer-
cise, assuming a 500-MHz version of VMIPS.

a. [20] <G.2–G.6> Write the best VMIPS vector code for the inner portion of
the loop. Assume x is in F0 and the addresses of A and B are in Ra and Rb,
respectively.

Exercises

G-50 � Appendix G Vector Processors

b. [20] <G.2–G.6> Find the total time for this loop on VMIPS (T100). What is
the MFLOPS rating for the loop (R100)?

c. [15] <G.2–G.6> Find R∞ for this loop.

d. [15] <G.2–G.6> Find N1/2 for this loop.

e. [20] <G.2–G.6> Find Nv for this loop. Assume the scalar code has been pipe-
line scheduled so that each memory reference takes six cycles and each FP
operation takes three cycles. Assume the scalar overhead is also Tloop.

f. [20] <G.2–G.6> Assume VMIPS has two memory pipelines. Write vector
code that takes advantage of the second memory pipeline. Show the layout in
convoys.

g. [20] <G.2–G.6> Compute T100 and R100 for VMIPS with two memory pipe-
lines.

G.4 [20/10] <G.3> Suppose we have a version of VMIPS with eight memory banks
(each a double word wide) and a memory access time of eight cycles.

a. [20] <G.3> If a load vector of length 64 is executed with a stride of 20 double
words, how many cycles will the load take to complete?

b. [10] <G.3> What percentage of the memory bandwidth do you achieve on a
64-element load at stride 20 versus stride 1?

G.5 [12/12] <G.5–G.6> Consider the following loop:

C = 0.0
do 10 i=1,64
 A(i) = A(i) + B(i)
 C = C + A(i)

10 continue

a. [12] <G.5–G.6> Split the loop into two loops: one with no dependence and
one with a dependence. Write these loops in FORTRAN—as a source-to-
source transformation. This optimization is called loop fission.

b. [12] <G.5–G.6> Write the VMIPS vector code for the loop without a dependence.

G.6 [20/15/20/20] <G.5–G.6> The compiled Linpack performance of the Cray-1
(designed in 1976) was almost doubled by a better compiler in 1989. Let's look at
a simple example of how this might occur. Consider the DAXPY-like loop (where
k is a parameter to the procedure containing the loop):

do 10 i=1,64
 do 10 j=1,64
 Y(k,j) = a*X(i,j) + Y(k,j)

10 continue

a. [20] <G.5–G.6> Write the straightforward code sequence for just the inner
loop in VMIPS vector instructions.

b. [15] <G.5–G.6> Using the techniques of Section G.6, estimate the perfor-
mance of this code on VMIPS by finding T64 in clock cycles. You may assume

Exercises � G-51

that Tloop of overhead is incurred for each iteration of the outer loop. What
limits the performance?

c. [20] <G.5–G.6> Rewrite the VMIPS code to reduce the performance limita-
tion; show the resulting inner loop in VMIPS vector instructions. (Hint: Think
about what establishes Tchime; can you affect it?) Find the total time for the
resulting sequence.

d. [20] <G.5–G.6> Estimate the performance of your new version, using the
techniques of Section G.6 and finding T64.

G.7 [15/15/25] <G.4> Consider the following code.

do 10 i=1,64
 if (B(i) .ne. 0) then
 A(i) = A(i) / B(i)

10 continue

Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0
contains 0.

a. [15] <G.4> Write the VMIPS code for this loop using the vector-mask capa-
bility.

b. [15] <G.4> Write the VMIPS code for this loop using scatter-gather.

c. [25] <G.4> Estimate the performance (T100 in clock cycles) of these two vec-
tor loops, assuming a divide latency of 20 cycles. Assume that all vector
instructions run at one result per clock, independent of the setting of the
vector-mask register. Assume that 50% of the entries of B are 0. Considering
hardware costs, which would you build if the above loop were typical?

G.8 [15/20/15/15] <G.1–G.6> In “Fallacies and Pitfalls” of Chapter 1, we saw that
the difference between peak and sustained performance could be large: For one
problem, a Hitachi S810 had a peak speed twice as high as that of the Cray X-MP,
while for another more realistic problem, the Cray X-MP was twice as fast as the
Hitachi processor. Let’s examine why this might occur using two versions of
VMIPS and the following code sequences:

C Code sequence 1
do 10 i=1,10000
 A(i) = x * A(i) + y * A(i)

10 continue

C Code sequence 2
do 10 i=1,100
 A(i) = x * A(i)

10 continue

Assume there is a version of VMIPS (call it VMIPS-II) that has two copies of
every floating-point functional unit with full chaining among them. Assume that
both VMIPS and VMIPS-II have two load-store units. Because of the extra func-

G-52 � Appendix G Vector Processors

tional units and the increased complexity of assigning operations to units, all the
overheads (T

loop
 and T

start
) are doubled.

a. [15] <G.1–G.6> Find the number of clock cycles for code sequence 1 on
VMIPS.

b. [20] <G.1–G.6> Find the number of clock cycles on code sequence 1 for
VMIPS-II. How does this compare to VMIPS?

c. [15] <G.1–G.6> Find the number of clock cycles on code sequence 2 for
VMIPS.

d. [15] <G.1–G.6> Find the number of clock cycles on code sequence 2 for
VMIPS-II. How does this compare to VMIPS?

G.9 [20] <G.5> Here is a tricky piece of code with two-dimensional arrays. Does this
loop have dependences? Can these loops be written so they are parallel? If so,
how? Rewrite the source code so that it is clear that the loop can be vectorized, if
possible.

do 290 j = 2,n
 do 290 i = 2,j
 aa(i,j)= aa(i-1,j)*aa(i-1,j)+bb(i,j)

290 continue

G.10 [12/15] <G.5> Consider the following loop:

do 10 i = 2,n
 A(i) = B

10 C(i) = A(i-1)

a. [12] <G.5> Show there is a loop-carried dependence in this code fragment.

b. [15] <G.5> Rewrite the code in FORTRAN so that it can be vectorized as two
separate vector sequences.

G.11 [15/25/25] <G.5> As we saw in Section G.5, some loop structures are not easily
vectorized. One common structure is a reduction—a loop that reduces an array to
a single value by repeated application of an operation. This is a special case of a
recurrence. A common example occurs in dot product:

dot = 0.0
do 10 i=1,64

10 dot = dot + A(i) * B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vec-
torized in a straightforward fashion. The first thing a good vectorizing compiler
would do is split the loop to separate out the vectorizable portion and the recur-
rence and perhaps rewrite the loop as

do 10 i=1,64
10 dot(i) = A(i) * B(i)

do 20 i=2,64
20 dot(1) = dot(1) + dot(i)

Exercises � G-53

The variable dot has been expanded into a vector; this transformation is called
scalar expansion. We can try to vectorize the second loop either relying strictly
on the compiler (part (a)) or with hardware support as well (part (b)). There is an
important caveat in the use of vector techniques for reduction. To make
reduction work, we are relying on the associativity of the operator being used for
the reduction. Because of rounding and finite range, however, floating-point
arithmetic is not strictly associative. For this reason, most compilers require the
programmer to indicate whether associativity can be used to more efficiently
compile reductions.

a. [15] <G.5> One simple scheme for compiling the loop with the recurrence is
to add sequences of progressively shorter vectors—two 32-element vectors,
then two 16-element vectors, and so on. This technique has been called recur-
sive doubling. It is faster than doing all the operations in scalar mode. Show
how the FORTRAN code would look for execution of the second loop in the
preceding code fragment using recursive doubling.

b. [25] <G.5> In some vector processors, the vector registers are addressable,
and the operands to a vector operation may be two different parts of the same
vector register. This allows another solution for the reduction, called partial
sums. The key idea in partial sums is to reduce the vector to m sums where m
is the total latency through the vector functional unit, including the operand
read and write times. Assume that the VMIPS vector registers are addressable
(e.g., you can initiate a vector operation with the operand V1(16), indicating
that the input operand began with element 16). Also, assume that the total
latency for adds, including operand read and write, is eight cycles. Write a
VMIPS code sequence that reduces the contents of V1 to eight partial sums. It
can be done with one vector operation.

c. Discuss how adding the extension in part (b) would affect a machine that had
multiple lanes.

G.12 [40] <G.2–G.4> Extend the MIPS simulator to be a VMIPS simulator, including
the ability to count clock cycles. Write some short benchmark programs in MIPS
and VMIPS assembly language. Measure the speedup on VMIPS, the percentage
of vectorization, and usage of the functional units.

G.13 [50] <G.5> Modify the MIPS compiler to include a dependence checker. Run
some scientific code and loops through it and measure what percentage of the
statements could be vectorized.

G.14 [Discussion] Some proponents of vector processors might argue that the vector
processors have provided the best path to ever-increasing amounts of processor
power by focusing their attention on boosting peak vector performance. Others
would argue that the emphasis on peak performance is misplaced because an
increasing percentage of the programs are dominated by nonvector performance.
(Remember Amdahl’s Law?) The proponents would respond that programmers
should work to make their programs vectorizable. What do you think about this
argument?

G-54 � Appendix G Vector Processors

G.15 [Discussion] Consider the points raised in “Concluding Remarks” (Section G.8).
This topic—the relative advantages of pipelined scalar processors versus FP vec-
tor processors—was the source of much debate in the 1990s. What advantages do
you see for each side? What would you do in this situation?

H.1

Introduction H-2

H.2

Basic Techniques of Integer Arithmetic H-2

H.3

Floating Point H-13

H.4

Floating-Point Multiplication H-17

H.5

Floating-Point Addition H-21

H.6

Division and Remainder H-27

H.7

More on Floating-Point Arithmetic H-33

H.8

Speeding Up Integer Addition H-37

H.9

Speeding Up Integer Multiplication and Division H-45

H.10

Putting It All Together H-58

H.11

Fallacies and Pitfalls H-62

H.12

Historical Perspective and References H-63

Exercises H-69

H

Computer Arithmetic

by David Goldberg
Xerox Palo Alto Research Center

The Fast drives out the Slow even if the Fast is wrong.

W. Kahan

© 2003 Elsevier Science (USA). All rights reserved.

H-2

�

Appendix H

Computer Arithmetic

Although computer arithmetic is sometimes viewed as a specialized part of CPU
design, it is a very important part. This was brought home for Intel in 1994 when
their Pentium chip was discovered to have a bug in the divide algorithm. This
floating-point flaw resulted in a flurry of bad publicity for Intel and also cost them
a lot of money. Intel took a $300 million write-off to cover the cost of replacing
the buggy chips.

In this appendix we will study some basic floating-point algorithms, includ-
ing the division algorithm used on the Pentium. Although a tremendous variety of
algorithms have been proposed for use in floating-point accelerators, actual
implementations are usually based on refinements and variations of the few basic
algorithms presented here. In addition to choosing algorithms for addition, sub-
traction, multiplication, and division, the computer architect must make other
choices. What precisions should be implemented? How should exceptions be
handled? This appendix will give you the background for making these and other
decisions.

Our discussion of floating point will focus almost exclusively on the IEEE
floating-point standard (IEEE 754) because of its rapidly increasing acceptance.
Although floating-point arithmetic involves manipulating exponents and shifting
fractions, the bulk of the time in floating-point operations is spent operating on
fractions using integer algorithms (but not necessarily sharing the hardware that
implements integer instructions). Thus, after our discussion of floating point, we
will take a more detailed look at integer algorithms.

Some good references on computer arithmetic, in order from least to most
detailed, are Chapter 4 of Patterson and Hennessy [1994]; Chapter 7 of Hama-
cher, Vranesic, and Zaky [1984]; Gosling [1980]; and Scott [1985].

Readers who have studied computer arithmetic before will find most of this sec-
tion to be review.

Ripple-Carry Addition

Adders are usually implemented by combining multiple copies of simple com-
ponents. The natural components for addition are

half adders

 and

full adders

.
The half adder takes two bits

a

 and

b

 as input and produces a sum bit

s

and a
carry bit

c

out

 as output. Mathematically,

s

 = (

a

 +

b

) mod 2

,

 and

c

out

 =



(

a

 +

b

)/2



,
where





 is the floor function. As logic equations,

s

 =

ab

 +

ab

 and

c

out

 =

ab

,
where

ab

 means

a

∧

b

 and

a

 +

b

 means

a

∨

b

. The half adder is also called a (2,2)
adder, since it takes two inputs and produces two outputs. The full adder is a
(3,2) adder and is defined by

s

 = (

a

 +

b

 +

c

) mod 2,

c

out

 =



(

a

 +

b

 +

c

)/2



, or the
logic equations

H.1 Introduction

H.2 Basic Techniques of Integer Arithmetic

H.2 Basic Techniques of Integer Arithmetic

�

H

-

3

H.2.1

s

 =

ab c

 +

abc

 +

abc

 +

abc

H.2.2

c

out

 =

ab

 +

ac

+

bc

The principal problem in constructing an adder for

n

-bit numbers out of
smaller pieces is propagating the carries from one piece to the next. The most
obvious way to solve this is with a

ripple-carry adder,

consisting of

n

 full
adders, as illustrated in Figure H.1. (In the figures in this appendix, the least-sig-
nificant bit is always on the right.) The inputs to the adder are

a

n

–1

a

n

–2

⋅ ⋅ ⋅

a

0

 and

b

n

–1

b

n

–2

⋅ ⋅ ⋅

b

0

, where

a

n

–1

a

n

–2

⋅ ⋅ ⋅

a

0

 represents the number

a

n

–1

 2

n

–1

 +

a

n

–2

 2

n

–2

+

⋅ ⋅ ⋅

 +

a

0

. The

c

i

+1

 output of the

i

th adder is fed into the

c

i

+1

 input of the
next adder (the (

i

+ 1)-th adder) with the lower-order carry-in

c

0

 set to 0. Since
the low-order carry-in is wired to 0, the low-order adder could be a half adder.
Later, however, we will see that setting the low-order carry-in bit to 1 is useful
for performing subtraction.

In general, the time a circuit takes to produce an output is proportional to the
maximum number of logic levels through which a signal travels. However, deter-
mining the exact relationship between logic levels and timings is highly technol-
ogy dependent. Therefore, when comparing adders we will simply compare the
number of logic levels in each one. How many levels are there for a ripple-carry
adder? It takes two levels to compute

c

1

 from

a

0

 and

b

0

. Then it takes two more
levels to compute

c

2

 from

c

1

,

a

1

,

b

1

, and so on, up to

c

n

. So there are a total of 2

n

levels. Typical values of

n

 are 32 for integer arithmetic and 53 for double-
precision floating point. The ripple-carry adder is the slowest adder, but also the
cheapest. It can be built with only

n

 simple cells, connected in a simple, regular
way.

Because the ripple-carry adder is relatively slow compared with the designs
discussed in Section H.8, you might wonder why it is used at all. In technologies
like CMOS, even though ripple adders take time O(

n

), the constant factor is very
small. In such cases short ripple adders are often used as building blocks in larger
adders.

Figure H.1 Ripple-carry adder, consisting of n full adders.The carry-out of one full
adder is connected to the carry-in of the adder for the next most-significant bit. The car-
ries ripple from the least-significant bit (on the right) to the most-significant bit (on the
left).

b
n–1

a
n–1

s
n–1

Full
adder

c
n–1

s
n–2

c
n

a
n–2

b
n–2

Full
adder

b
1

a
1

s
1

Full
adder

s
0

a
0

b
0

Full
adder

c
2 c

1

0

H-4 � Appendix H Computer Arithmetic

Radix-2 Multiplication and Division

The simplest multiplier computes the product of two unsigned numbers, one bit at
a time, as illustrated in Figure H.2(a). The numbers to be multiplied are an–1an–2
⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0, and they are placed in registers A and B, respectively.
Register P is initially 0. Each multiply step has two parts.

Multiply Step (i) If the least-significant bit of A is 1, then register B, containing bn–1bn–2 ⋅ ⋅ ⋅
b0, is added to P; otherwise 00 ⋅ ⋅ ⋅ 00 is added to P. The sum is placed back

into P.

Figure H.2 Block diagram of (a) multiplier and (b) divider for n-bit unsigned inte-
gers. Each multiplication step consists of adding the contents of P to either B or 0
(depending on the low-order bit of A), replacing P with the sum, and then shifting both
P and A one bit right. Each division step involves first shifting P and A one bit left, sub-
tracting B from P, and, if the difference is nonnegative, putting it into P. If the difference
is nonnegative, the low-order bit of A is set to 1.

Carry-out

P A

n

n

n

Shift

P

B0

A

n + 1

n1

n

Shift

(a)

(b)

1

B

H.2 Basic Techniques of Integer Arithmetic � H-5

(ii) Registers P and A are shifted right, with the carry-out of the sum being
moved into the high-order bit of P, the low-order bit of P being moved into
register A, and the rightmost bit of A, which is not used in the rest of the
algorithm, being shifted out.

After n steps, the product appears in registers P and A, with A holding the
lower-order bits.

The simplest divider also operates on unsigned numbers and produces the
quotient bits one at a time. A hardware divider is shown in Figure H.2(b). To
compute a/b, put a in the A register, b in the B register, 0 in the P register, and
then perform n divide steps. Each divide step consists of four parts:

Divide Step (i) Shift the register pair (P,A) one bit left.

(ii) Subtract the content of register B (which is bn–1bn–2 ⋅ ⋅ ⋅ b0) from register
P, putting the result back into P.

(iii) If the result of step 2 is negative, set the low-order bit of A to 0, otherwise
to 1.

(iv) If the result of step 2 is negative, restore the old value of P by adding the
contents of register B back into P.

After repeating this process n times, the A register will contain the quotient,
and the P register will contain the remainder. This algorithm is the binary version
of the paper-and-pencil method; a numerical example is illustrated in Figure
H.3(a).

Notice that the two block diagrams in Figure H.2 are very similar. The main
difference is that the register pair (P,A) shifts right when multiplying and left
when dividing. By allowing these registers to shift bidirectionally, the same hard-
ware can be shared between multiplication and division.

The division algorithm illustrated in Figure H.3(a) is called restoring, because
if subtraction by b yields a negative result, the P register is restored by adding b
back in. The restoring algorithm has a variant that skips the restoring step and
instead works with the resulting negative numbers. Each step of this nonrestoring
algorithm has three parts:

Nonrestoring If P is negative,

Divide Step (i-a) Shift the register pair (P,A) one bit left.

(ii-a) Add the contents of register B to P.

Else,

(i-b) Shift the register pair (P,A) one bit left.

(ii-b) Subtract the contents of register B from P.

(iii) If P is negative, set the low-order bit of A to 0, otherwise set it to 1.

After repeating this n times, the quotient is in A. If P is nonnegative, it is the
remainder. Otherwise, it needs to be restored (i.e., add b), and then it will be the
remainder. A numerical example is given in Figure H.3(b). Since (i-a) and (i-b)

H-6 � Appendix H Computer Arithmetic

are the same, you might be tempted to perform this common step first, and then
test the sign of P. That doesn’t work, since the sign bit can be lost when shifting.

The explanation for why the nonrestoring algorithm works is this. Let rk be
the contents of the (P,A) register pair at step k, ignoring the quotient bits (which

Figure H.3 Numerical example of (a) restoring division and (b) nonrestoring division.

00000

00001

–00011

–00010

00001

00011

–00011

00000

00001

–00011

–00010

00001

00010

–00011

–00001

00010

1110

110

1100

1100

100

1001

001

0010

0010

010

0100

0100

Divide 14 = 1110
2
 by 3 = 11

2
. B always contains 0011

2
.

step 1(i): shift.

step 1(ii): subtract.

step 1(iii): result is negative, set quotient bit to 0.

step 1(iv): restore.

step 2(i): shift.

step 2(ii): subtract.

P A

step 2(iii): result is nonnegative, set quotient bit to 1.

step 3(i): shift.

step 3(ii): subtract.

step 3(iii): result is negative, set quotient bit to 0.

step 3(iv): restore.

step 4(i): shift.

step 4(ii): subtract.

step 4(iii): result is negative, set quotient bit to 0.

step 4(iv): restore. The quotient is 0100
2
 and the remainder is 00010

2
.

00000

00001

+11101

11110

11101

+00011

00000

00001

+11101

11110

11100

+00011

11111

+00011

00010

1110

110

1100

100

1001

001

0010

010

0100

Divide 14 = 1110
2
 by 3 = 11

2
. B always contains 0011

2
.

step 1(i-b): shift.

step 1(ii-b): subtract b (add two’s complement).

step 1(iii): P is negative, so set quotient bit 0.

step 2(i-a): shift.

step 2(ii-a): add b.

step 2(iii): P is nonnegative, so set quotient bit to 1.

step 3(i-b): shift.

step 3(ii-b): subtract b.

step 3(iii): P is negative, so set quotient bit to 0.

step 4(i-a): shift.

step 4(ii-a): add b.

step 4(iii): P is negative, so set quotient bit to 0.

Remainder is negative, so do final restore step.

The quotient is 0100
2
 and the remainder is 00010

2
.

(b)

(a)

H.2 Basic Techniques of Integer Arithmetic � H-7

are simply sharing the unused bits of register A). In Figure H.3(a), initially A con-
tains 14, so r0 = 14. At the end of the first step, r1 = 28, and so on. In the restoring
algorithm, part (i) computes 2rk and then part (ii) 2rk − 2nb (2nb since b is sub-
tracted from the left half). If 2rk − 2nb ≥ 0, both algorithms end the step with
identical values in (P,A). If 2rk − 2nb < 0, then the restoring algorithm restores
this to 2rk, and the next step begins by computing rres = 2(2rk) − 2nb. In the nonre-
storing algorithm, 2rk − 2nb is kept as a negative number, and in the next step
rnonres = 2(2rk − 2nb) + 2nb = 4rk − 2nb = rres. Thus (P,A) has the same bits in both
algorithms.

If a and b are unsigned n-bit numbers, hence in the range 0 ≤ a,b ≤ 2n − 1,
then the multiplier in Figure H.2 will work if register P is n bits long. However,
for division, P must be extended to n + 1 bits in order to detect the sign of P. Thus
the adder must also have n + 1 bits.

Why would anyone implement restoring division, which uses the same hard-
ware as nonrestoring division (the control is slightly different) but involves an
extra addition? In fact, the usual implementation for restoring division doesn’t
actually perform an add in step (iv). Rather, the sign resulting from the sub-
traction is tested at the output of the adder, and only if the sum is nonnegative is it
loaded back into the P register.

As a final point, before beginning to divide, the hardware must check to see
whether the divisor is 0.

Signed Numbers

There are four methods commonly used to represent signed n-bit numbers: sign
magnitude, two’s complement, one’s complement, and biased. In the sign magni-
tude system, the high-order bit is the sign bit, and the low-order n − 1 bits are the
magnitude of the number. In the two’s complement system, a number and its neg-
ative add up to 2n. In one’s complement, the negative of a number is obtained by
complementing each bit (or alternatively, the number and its negative add up to 2n

− 1). In each of these three systems, nonnegative numbers are represented in the
usual way. In a biased system, nonnegative numbers do not have their usual rep-
resentation. Instead, all numbers are represented by first adding them to the bias,
and then encoding this sum as an ordinary unsigned number. Thus a negative
number k can be encoded as long as k + bias ≥ 0. A typical value for the bias is
2n–1.

Example Using 4-bit numbers (n = 4), if k = 3 (or in binary, k = 00112), how is −k
expressed in each of these formats?

Answer In signed magnitude, the leftmost bit in k = 00112 is the sign bit, so flip it to 1: −k
is represented by 10112. In two’s complement, k + 11012 = 2n = 16. So −k is rep-
resented by 11012. In one’s complement, the bits of k = 00112 are flipped, so −k is
represented by 11002. For a biased system, assuming a bias of 2n−1 = 8, k is repre-
sented by k + bias = 10112, and −k by −k + bias = 01012.

H-8 � Appendix H Computer Arithmetic

The most widely used system for representing integers, two’s complement, is
the system we will use here. One reason for the popularity of two’s complement
is that it makes signed addition easy: Simply discard the carry-out from the high-
order bit. To add 5 + −2, for example, add 01012 and 11102 to obtain 00112,
resulting in the correct value of 3. A useful formula for the value of a two’s com-
plement number an–1an–2 ⋅ ⋅ ⋅ a1a0 is

H.2.3 −an–12n–1 + an–22n–2 + ⋅ ⋅ ⋅ + a121 + a0

As an illustration of this formula, the value of 11012 as a 4-bit two’s complement
number is −1⋅23 + 1⋅22 + 0⋅21 + 1⋅20 = −8 + 4 + 1 = −3, confirming the result of
the example above.

Overflow occurs when the result of the operation does not fit in the represen-
tation being used. For example, if unsigned numbers are being represented using
4 bits, then 6 = 01102 and 11 = 10112. Their sum (17) overflows because its
binary equivalent (100012) doesn’t fit into 4 bits. For unsigned numbers, detect-
ing overflow is easy; it occurs exactly when there is a carry-out of the most-
significant bit. For two’s complement, things are trickier: Overflow occurs
exactly when the carry into the high-order bit is different from the (to be dis-
carded) carry-out of the high-order bit. In the example of 5 + −2 above, a 1 is car-
ried both into and out of the leftmost bit, avoiding overflow.

Negating a two’s complement number involves complementing each bit and
then adding 1. For instance, to negate 00112, complement it to get 11002 and then
add 1 to get 11012. Thus, to implement a − b using an adder, simply feed a and b
(where b is the number obtained by complementing each bit of b) into the adder
and set the low-order, carry-in bit to 1. This explains why the rightmost adder in
Figure H.1 is a full adder.

Multiplying two’s complement numbers is not quite as simple as adding
them. The obvious approach is to convert both operands to be nonnegative, do an
unsigned multiplication, and then (if the original operands were of opposite
signs) negate the result. Although this is conceptually simple, it requires extra
time and hardware. Here is a better approach: Suppose that we are multiplying a
times b using the hardware shown in Figure H.2(a). Register A is loaded with the
number a; B is loaded with b. Since the content of register B is always b, we will
use B and b interchangeably. If B is potentially negative but A is nonnegative, the
only change needed to convert the unsigned multiplication algorithm into a two’s
complement one is to ensure that when P is shifted, it is shifted arithmetically;
that is, the bit shifted into the high-order bit of P should be the sign bit of P
(rather than the carry-out from the addition). Note that our n-bit-wide adder will
now be adding n-bit two’s complement numbers between −2n–1 and 2n–1 − 1.

Next, suppose a is negative. The method for handling this case is called Booth
recoding. Booth recoding is a very basic technique in computer arithmetic and
will play a key role in Section H.9. The algorithm on page H-4 computes a × b by
examining the bits of a from least significant to most significant. For example, if
a = 7 = 01112, then step (i) will successively add B, add B, add B, and add 0.
Booth recoding “recodes” the number 7 as 8 − 1 = 10002 − 00012 = 1001, where

H.2 Basic Techniques of Integer Arithmetic � H-9

1 represents −1. This gives an alternate way to compute a × b; namely, succes-
sively subtract B, add 0, add 0, and add B. This is more complicated than the
unsigned algorithm on page H-4, since it uses both addition and subtraction. The
advantage shows up for negative values of a. With the proper recoding, we can
treat a as though it were unsigned. For example, take a = −4 = 11002. Think of
11002 as the unsigned number 12, and recode it as 12 = 16 − 4 = 100002 − 01002
= 10100. If the multiplication algorithm is only iterated n times (n = 4 in this
case), the high-order digit is ignored, and we end up subtracting 01002 = 4 times
the multiplier—exactly the right answer. This suggests that multiplying using a
recoded form of a will work equally well for both positive and negative numbers.
And indeed, to deal with negative values of a, all that is required is to sometimes
subtract b from P, instead of adding either b or 0 to P. Here are the precise rules: If
the initial content of A is an–1⋅⋅⋅a0, then at the ith multiply step, the low-order bit
of register A is ai , and step (i) in the multiplication algorithm becomes

I. If ai = 0 and ai–1 = 0, then add 0 to P.

II. If ai = 0 and ai–1 = 1, then add B to P.

III. If ai = 1 and ai–1 = 0, then subtract B from P.

IV. If ai = 1 and ai–1 = 1, then add 0 to P.

For the first step, when i = 0, take ai–1 to be 0.

Example When multiplying −6 times −5, what is the sequence of values in the (P,A) regis-
ter pair?

Answer See Figure H.4.

Figure H.4 Numerical example of Booth recoding. Multiplication of a = –6 by b = –5
to get 30.

0000

0000

0000

+ 0101

0101

0010

+ 1011

1101

1110

+ 0101

0011

0001

1010

1010

0101

0101

1010

1010

1101

1101

1110

Put –6 = 1010
2
 into A, –5 = 1011

2
 into B.

step 1(i): a
0
 = a

–1
 = 0, so from rule I add 0.

step 1(ii): shift.

step 2(i): a
1
 = 1, a

0
 = 0. Rule III says subtract b (or add –b = –1011

2
 = 0101

2
).

step 2(ii): shift.

step 3(i): a
2
 = 0, a

1
 = 1. Rule II says add b (1011).

step 3(ii): shift. (Arithmetic shift—load 1 into leftmost bit.)

step 4(i): a
3
 = 1, a

2
 = 0. Rule III says subtract b.

step 4(ii): shift. Final result is 00011110
2
 = 30.

P A

H-10 � Appendix H Computer Arithmetic

The four cases above can be restated as saying that in the ith step you should
add (ai–1 − ai)B to P. With this observation, it is easy to verify that these rules
work, because the result of all the additions is

Using Equation H.2.3 (page H-8) together with a−1 = 0, the right-hand side is
seen to be the value of b × a as a two’s complement number.

The simplest way to implement the rules for Booth recoding is to extend the
A register one bit to the right so that this new bit will contain ai–1. Unlike the
naive method of inverting any negative operands, this technique doesn’t require
extra steps or any special casing for negative operands. It has only slightly more
control logic. If the multiplier is being shared with a divider, there will already be
the capability for subtracting b, rather than adding it. To summarize, a simple
method for handling two’s complement multiplication is to pay attention to the
sign of P when shifting it right, and to save the most recently shifted-out bit of A
to use in deciding whether to add or subtract b from P.

Booth recoding is usually the best method for designing multiplication hard-
ware that operates on signed numbers. For hardware that doesn’t directly imple-
ment it, however, performing Booth recoding in software or microcode is
usually too slow because of the conditional tests and branches. If the hardware
supports arithmetic shifts (so that negative b is handled correctly), then the fol-
lowing method can be used. Treat the multiplier a as if it were an unsigned num-
ber, and perform the first n − 1 multiply steps using the algorithm on page H-4.
If a < 0 (in which case there will be a 1 in the low-order bit of the A register at
this point), then subtract b from P; otherwise (a ≥ 0) neither add nor subtract. In
either case, do a final shift (for a total of n shifts). This works because it amounts
to multiplying b by −an–1 2

n–1 + ⋅ ⋅ ⋅ + a12 + a0, which is the value of an–1 ⋅ ⋅ ⋅ a0
as a two’s complement number by Equation H.2.3. If the hardware doesn’t sup-
port arithmetic shift, then converting the operands to be nonnegative is probably
the best approach.

Two final remarks: A good way to test a signed-multiply routine is to try
−2n–1 × −2n–1, since this is the only case that produces a 2n − 1 bit result. Unlike
multiplication, division is usually performed in hardware by converting the oper-
ands to be nonnegative and then doing an unsigned divide. Because division is
substantially slower (and less frequent) than multiplication, the extra time used to
manipulate the signs has less impact than it does on multiplication.

Systems Issues

When designing an instruction set, a number of issues related to integer arith-
metic need to be resolved. Several of them are discussed here.

First, what should be done about integer overflow? This situation is compli-
cated by the fact that detecting overflow differs depending on whether the oper-

b(ai 1– ai–)2i

i 0=

n 1–

∑ b an 1– 2
n 1–

an 2– 2
n 2–

. . . a12 a0+ + + +–() ba 1–+=

H.2 Basic Techniques of Integer Arithmetic � H-11

ands are signed or unsigned integers. Consider signed arithmetic first. There are
three approaches: Set a bit on overflow, trap on overflow, or do nothing on over-
flow. In the last case, software has to check whether or not an overflow occurred.
The most convenient solution for the programmer is to have an enable bit. If this
bit is turned on, then overflow causes a trap. If it is turned off, then overflow sets
a bit (or alternatively, have two different add instructions). The advantage of this
approach is that both trapping and nontrapping operations require only one
instruction. Furthermore, as we will see in Section H.7, this is analogous to how
the IEEE floating-point standard handles floating-point overflow. Figure H.5
shows how some common machines treat overflow.

What about unsigned addition? Notice that none of the architectures in Figure
H.5 traps on unsigned overflow. The reason for this is that the primary use of
unsigned arithmetic is in manipulating addresses. It is convenient to be able to
subtract from an unsigned address by adding. For example, when n = 4, we can
subtract 2 from the unsigned address 10 = 10102 by adding 14 = 11102. This gen-
erates an overflow, but we would not want a trap to be generated.

A second issue concerns multiplication. Should the result of multiplying two
n-bit numbers be a 2n-bit result, or should multiplication just return the low-order
n bits, signaling overflow if the result doesn’t fit in n bits? An argument in favor
of an n-bit result is that in virtually all high-level languages, multiplication is an
operation in which arguments are integer variables and the result is an integer
variable of the same type. Therefore, compilers won’t generate code that utilizes
a double-precision result. An argument in favor of a 2n-bit result is that it can be
used by an assembly language routine to substantially speed up multiplication of
multiple-precision integers (by about a factor of 3).

A third issue concerns machines that want to execute one instruction every
cycle. It is rarely practical to perform a multiplication or division in the same
amount of time that an addition or register-register move takes. There are three
possible approaches to this problem. The first is to have a single-cycle multiply-
step instruction. This might do one step of the Booth algorithm. The second

Machine Trap on signed overflow?
Trap on unsigned
overflow?

Set bit on signed
overflow?

Set bit on unsigned
overflow?

VAX If enable is on No Yes. Add sets V bit. Yes. Add sets C bit.

IBM 370 If enable is on No Yes. Add sets cond
code.

Yes. Logical add sets
cond code.

Intel 8086 No No Yes. Add sets V bit. Yes. Add sets C bit.

MIPS R3000 Two add instructions: one
always traps, the other
never does.

No No. Software must deduce it from sign of
operands and result.

SPARC No No Addcc sets V bit. Add
does not.

Addcc sets C bit. Add
does not.

Figure H.5 Summary of how various machines handle integer overflow. Both the 8086 and SPARC have an
instruction that traps if the V bit is set, so the cost of trapping on overflow is one extra instruction.

H-12 � Appendix H Computer Arithmetic

approach is to do integer multiplication in the floating-point unit and have it be
part of the floating-point instruction set. (This is what DLX does.) The third
approach is to have an autonomous unit in the CPU do the multiplication. In this
case, the result either can be guaranteed to be delivered in a fixed number of
cycles—and the compiler charged with waiting the proper amount of time—or
there can be an interlock. The same comments apply to division as well. As
examples, the original SPARC had a multiply-step instruction but no divide-step
instruction, while the MIPS R3000 has an autonomous unit that does multiplica-
tion and division (newer versions of the SPARC architecture added an integer
multiply instruction). The designers of the HP Precision Architecture did an espe-
cially thorough job of analyzing the frequency of the operands for multiplication
and division, and they based their multiply and divide steps accordingly. (See
Magenheimer et al. [1988] for details.)

The final issue involves the computation of integer division and remainder for
negative numbers. For example, what is −5 DIV 3 and −5 MOD 3? When comput-
ing x DIV y and x MOD y, negative values of x occur frequently enough to be worth
some careful consideration. (On the other hand, negative values of y are quite
rare.) If there are built-in hardware instructions for these operations, they should
correspond to what high-level languages specify. Unfortunately, there is no
agreement among existing programming languages. See Figure H.6.

One definition for these expressions stands out as clearly superior; namely,
x DIV y = x/y, so that 5 DIV 3 = 1, −5 DIV 3 = −2. And MOD should satisfy x =
(x DIV y) × y + x MOD y, so that x MOD y ≥ 0. Thus 5 MOD 3 = 2, and −5 MOD 3 = 1.
Some of the many advantages of this definition are as follows:

1. A calculation to compute an index into a hash table of size N can use MOD N
and be guaranteed to produce a valid index in the range from 0 to N − 1.

2. In graphics, when converting from one coordinate system to another, there is
no “glitch” near 0. For example, to convert from a value x expressed in a sys-
tem that uses 100 dots per inch to a value y on a bitmapped display with 70
dots per inch, the formula y = (70 × x) DIV 100 maps one or two x coordinates
into each y coordinate. But if DIV were defined as in Pascal to be x/y rounded
to 0, then 0 would have three different points (−1, 0, 1) mapped into it.

Language Division Remainder

FORTRAN −5/3 = −1 MOD(−5, 3) = −2

Pascal −5 DIV 3 = −1 −5 MOD 3 = 1

Ada −5/3 = −1 −5 MOD 3 = 1
−5 REM 3 = −2

C −5/3 undefined −5 % 3 undefined

Modula-3 −5 DIV 3 = −2 −5 MOD 3 = 1

Figure H.6 Examples of integer division and integer remainder in various program-
ming languages.

H.3 Floating Point � H-13

3. x MOD 2k is the same as performing a bitwise AND with a mask of k bits, and x
DIV 2k is the same as doing a k-bit arithmetic right shift.

Finally, a potential pitfall worth mentioning concerns multiple-precision
addition. Many instruction sets offer a variant of the add instruction that adds
three operands: two n-bit numbers together with a third single-bit number. This
third number is the carry from the previous addition. Since the multiple-precision
number will typically be stored in an array, it is important to be able to increment
the array pointer without destroying the carry bit.

Many applications require numbers that aren’t integers. There are a number of
ways that nonintegers can be represented. One is to use fixed point; that is, use
integer arithmetic and simply imagine the binary point somewhere other than just
to the right of the least-significant digit. Adding two such numbers can be done
with an integer add, whereas multiplication requires some extra shifting. Other
representations that have been proposed involve storing the logarithm of a num-
ber and doing multiplication by adding the logarithms, or using a pair of integers
(a,b) to represent the fraction a/b. However, only one noninteger representation
has gained widespread use, and that is floating point. In this system, a computer
word is divided into two parts, an exponent and a significand. As an example, an
exponent of −3 and significand of 1.5 might represent the number 1.5 × 2–3

= 0.1875. The advantages of standardizing a particular representation are obvi-
ous. Numerical analysts can build up high-quality software libraries, computer
designers can develop techniques for implementing high-performance hardware,
and hardware vendors can build standard accelerators. Given the predominance
of the floating-point representation, it appears unlikely that any other representa-
tion will come into widespread use.

The semantics of floating-point instructions are not as clear-cut as the
semantics of the rest of the instruction set, and in the past the behavior of
floating-point operations varied considerably from one computer family to the
next. The variations involved such things as the number of bits allocated to the
exponent and significand, the range of exponents, how rounding was carried
out, and the actions taken on exceptional conditions like underflow and over-
flow. Computer architecture books used to dispense advice on how to deal with
all these details, but fortunately this is no longer necessary. That’s because the
computer industry is rapidly converging on the format specified by IEEE stan-
dard 754-1985 (also an international standard, IEC 559). The advantages of
using a standard variant of floating point are similar to those for using floating
point over other noninteger representations.

IEEE arithmetic differs from many previous arithmetics in the following
major ways:

H.3 Floating Point

H-14 � Appendix H Computer Arithmetic

1. When rounding a “halfway” result to the nearest floating-point number, it
picks the one that is even.

2. It includes the special values NaN, ∞, and −∞.

3. It uses denormal numbers to represent the result of computations whose value
is less than 1.0 × 2Emin.

4. It rounds to nearest by default, but it also has three other rounding modes.

5. It has sophisticated facilities for handling exceptions.

To elaborate on (1), note that when operating on two floating-point numbers,
the result is usually a number that cannot be exactly represented as another float-
ing-point number. For example, in a floating-point system using base 10 and two
significant digits, 6.1 × 0.5 = 3.05. This needs to be rounded to two digits. Should
it be rounded to 3.0 or 3.1? In the IEEE standard, such halfway cases are rounded
to the number whose low-order digit is even. That is, 3.05 rounds to 3.0, not 3.1.
The standard actually has four rounding modes. The default is round to nearest,
which rounds ties to an even number as just explained. The other modes are
round toward 0, round toward +∞, and round toward –∞.

We will elaborate on the other differences in following sections. For further
reading, see IEEE [1985], Cody et al. [1984], and Goldberg [1991].

Special Values and Denormals

Probably the most notable feature of the standard is that by default a computation
continues in the face of exceptional conditions, such as dividing by 0 or taking
the square root of a negative number. For example, the result of taking the square
root of a negative number is a NaN (Not a Number), a bit pattern that does not
represent an ordinary number. As an example of how NaNs might be useful, con-
sider the code for a zero finder that takes a function F as an argument and evalu-
ates F at various points to determine a zero for it. If the zero finder accidentally
probes outside the valid values for F, F may well cause an exception. Writing a
zero finder that deals with this case is highly language and operating-system
dependent, because it relies on how the operating system reacts to exceptions and
how this reaction is mapped back into the programming language. In IEEE arith-
metic it is easy to write a zero finder that handles this situation and runs on many
different systems. After each evaluation of F, it simply checks to see whether F
has returned a NaN; if so, it knows it has probed outside the domain of F.

In IEEE arithmetic, if the input to an operation is a NaN, the output is NaN
(e.g., 3 + NaN = NaN). Because of this rule, writing floating-point subroutines
that can accept NaN as an argument rarely requires any special case checks. For
example, suppose that arccos is computed in terms of arctan, using the formula
arccos x = 2 arctan(). If arctan handles an argument of NaN
properly, arccos will automatically do so too. That’s because if x is a NaN, 1 + x,
1 − x, (1 + x)/(1 − x), and will also be NaNs. No checking for
NaNs is required.

1 x–() 1 x+()⁄

1 x–() 1 x+()⁄

H.3 Floating Point � H-15

While the result of is a NaN, the result of 1/0 is not a NaN, but +∞,
which is another special value. The standard defines arithmetic on infinities (there
is both +∞ and –∞) using rules such as 1/∞ = 0. The formula arccos x = 2
arctan() illustrates how infinity arithmetic can be used. Since
arctan x asymptotically approaches π/2 as x approaches ∞, it is natural to define
arctan(∞) = π/2, in which case arccos(−1) will automatically be computed cor-
rectly as 2 arctan(∞) = π.

The final kind of special values in the standard are denormal numbers. In
many floating-point systems, if Emin is the smallest exponent, a number less than
1.0 × 2Emin

 cannot be represented, and a floating-point operation that results in a
number less than this is simply flushed to 0. In the IEEE standard, on the other
hand, numbers less than 1.0 × 2Emin are represented using significands less than 1.
This is called gradual underflow. Thus, as numbers decrease in magnitude below
2Emin, they gradually lose their significance and are only represented by 0 when
all their significance has been shifted out. For example, in base 10 with four
significant figures, let x = 1.234 × 10Emin. Then x/10 will be rounded to 0.123 ×
10Emin, having lost a digit of precision. Similarly x/100 rounds to 0.012 × 10Emin,
and x/1000 to 0.001 × 10Emin, while x/10000 is finally small enough to be
rounded to 0. Denormals make dealing with small numbers more predictable by
maintaining familiar properties such as x = y ⇔ x − y = 0. For example, in a flush-
to-zero system (again in base 10 with four significant digits), if x = 1.256 × 10Emin

and y = 1.234 × 10Emin, then x − y = 0.022 × 10Emin, which flushes to zero. So
even though x ≠ y, the computed value of x − y = 0. This never happens with grad-
ual underflow. In this example, x − y = 0.022 × 10Emin is a denormal number, and
so the computation of x − y is exact.

Representation of Floating-Point Numbers

Let us consider how to represent single-precision numbers in IEEE arithmetic.
Single-precision numbers are stored in 32 bits: 1 for the sign, 8 for the exponent,
and 23 for the fraction. The exponent is a signed number represented using the
bias method (see the subsection “Signed Numbers,” page H-7) with a bias of 127.
The term biased exponent refers to the unsigned number contained in bits 1
through 8 and unbiased exponent (or just exponent) means the actual power to
which 2 is to be raised. The fraction represents a number less than 1, but the sig-
nificand of the floating-point number is 1 plus the fraction part. In other words, if
e is the biased exponent (value of the exponent field) and f is the value of the frac-
tion field, the number being represented is 1. f × 2e–127.

Example What single-precision number does the following 32-bit word represent?

1 10000001 01000000000000000000000

1–

1 x–() 1 x+()⁄

H-16 � Appendix H Computer Arithmetic

Answer Considered as an unsigned number, the exponent field is 129, making the value of
the exponent 129 − 127 = 2. The fraction part is .012 = .25, making the signifi-
cand 1.25. Thus, this bit pattern represents the number −1.25 × 22 = −5.

The fractional part of a floating-point number (.25 in the example above)
must not be confused with the significand, which is 1 plus the fractional part. The
leading 1 in the significand 1. f does not appear in the representation; that is, the
leading bit is implicit. When performing arithmetic on IEEE format numbers, the
fraction part is usually unpacked, which is to say the implicit 1 is made explicit.

Figure H.7 summarizes the parameters for single (and other) precisions. It
shows the exponents for single precision to range from –126 to 127; accordingly,
the biased exponents range from 1 to 254. The biased exponents of 0 and 255 are
used to represent special values. This is summarized in Figure H.8. When the
biased exponent is 255, a zero fraction field represents infinity, and a nonzero
fraction field represents a NaN. Thus, there is an entire family of NaNs. When the
biased exponent and the fraction field are 0, then the number represented is 0.
Because of the implicit leading 1, ordinary numbers always have a significand
greater than or equal to 1. Thus, a special convention such as this is required to
represent 0. Denormalized numbers are implemented by having a word with a
zero exponent field represent the number 0. f × 2Emin.

Single Single extended Double Double extended

p (bits of precision) 24 ≥ 32 53 ≥ 64

Emax 127 ≥ 1023 1023 ≥ 16383

Emin −126 ≤ −1022 −1022 ≤ −16382

Exponent bias 127 1023

Figure H.7 Format parameters for the IEEE 754 floating-point standard. The first row
gives the number of bits in the significand. The blanks are unspecified parameters.

Exponent Fraction Represents

e = Emin − 1 f = 0 ±0

e = Emin − 1 f ≠ 0 0.f × 2
Emin

Emin ≤ e ≤ Emax — 1.f × 2e

e = Emax + 1 f = 0 ± ∞
e = Emax + 1 f ≠ 0 NaN

Figure H.8 Representation of special values. When the exponent of a number falls
outside the range Emin ≤ e ≤ Emax, then that number has a special interpretation as indi-
cated in the table.

H.4 Floating-Point Multiplication � H-17

The primary reason why the IEEE standard, like most other floating-point
formats, uses biased exponents is that it means nonnegative numbers are ordered
in the same way as integers. That is, the magnitude of floating-point numbers can
be compared using an integer comparator. Another (related) advantage is that 0 is
represented by a word of all 0’s. The downside of biased exponents is that adding
them is slightly awkward, because it requires that the bias be subtracted from
their sum.

The simplest floating-point operation is multiplication, so we discuss it first. A
binary floating-point number x is represented as a significand and an exponent,
x = s × 2e. The formula

(s1 × 2e1) • (s2 × 2e2) = (s1 • s2) × 2e1+e2

shows that a floating-point multiply algorithm has several parts. The first part mul-
tiplies the significands using ordinary integer multiplication. Because floating-
point numbers are stored in sign magnitude form, the multiplier need only deal
with unsigned numbers (although we have seen that Booth recoding handles
signed two’s complement numbers painlessly). The second part rounds the result.
If the significands are unsigned p-bit numbers (e.g., p = 24 for single precision),
then the product can have as many as 2p bits and must be rounded to a p-bit num-
ber. The third part computes the new exponent. Because exponents are stored with
a bias, this involves subtracting the bias from the sum of the biased exponents.

Example How does the multiplication of the single-precision numbers

1 10000010 000. . . = –1 × 23

0 10000011 000. . . = 1 × 24

proceed in binary?

Answer When unpacked, the significands are both 1.0, their product is 1.0, and so the
result is of the form

1 ???????? 000. . .

To compute the exponent, use the formula

biased exp (e1 + e2) = biased exp(e1) + biased exp(e2) − bias

From Figure H.7, the bias is 127 = 011111112, so in two’s complement
–127 is 100000012. Thus the biased exponent of the product is

H.4 Floating-Point Multiplication

H-18 � Appendix H Computer Arithmetic

 10000010
 10000011

+ 10000001
 10000110

Since this is 134 decimal, it represents an exponent of 134 − bias = 134 − 127 = 7,
as expected.

The interesting part of floating-point multiplication is rounding. Some of the
different cases that can occur are illustrated in Figure H.9. Since the cases are
similar in all bases, the figure uses human-friendly base 10, rather than base 2.

In the figure, p = 3, so the final result must be rounded to three significant dig-
its. The three most-significant digits are in boldface. The fourth most-significant
digit (marked with an arrow) is the round digit, denoted by r.

If the round digit is less than 5, then the bold digits represent the rounded
result. If the round digit is greater than 5 (as in (a)), then 1 must be added to the
least-significant bold digit. If the round digit is exactly 5 (as in (b)), then addi-
tional digits must be examined to decide between truncation or incrementing by
1. It is only necessary to know if any digits past 5 are nonzero. In the algorithm
below, this will be recorded in a sticky bit. Comparing (a) and (b) in the figure
shows that there are two possible positions for the round digit (relative to the
least-significant digit of the product). Case (c) illustrates that when adding 1 to
the least-significant bold digit, there may be a carry-out. When this happens, the
final significand must be 10.0.

There is a straightforward method of handling rounding using the multiplier
of Figure H.2 (page H-4) together with an extra sticky bit. If p is the number of
bits in the significand, then the A, B, and P registers should be p bits wide. Multi-
ply the two significands to obtain a 2p-bit product in the (P,A) registers (see

Figure H.9 Examples of rounding a multiplication. Using base 10 and p = 3, parts (a)
and (b) illustrate that the result of a multiplication can have either 2p − 1 or 2p digits,
and hence the position where a 1 is added when rounding up (just left of the arrow) can
vary. Part (c) shows that rounding up can cause a carry-out.

a)

✕

b)

c)

1.23
6.78

8.3394

2.83
4.47

12.6501

1.28
7.81

09.9968

r = 9 > 5 so round up
rounds to 8.34

r = 5 and a following digit = 0 so round up
rounds to 1.27 101

r = 6 > 5 so round up
rounds to 1.00 101

✕

✕

✕

✕

H.4 Floating-Point Multiplication � H-19

 Figure H.10). During the multiplication, the first p − 2 times a bit is shifted into
the A register, OR it into the sticky bit. This will be used in halfway cases. Let s
represent the sticky bit, g (for guard) the most-significant bit of A, and r (for
round) the second most-significant bit of A. There are two cases:

1. The high-order bit of P is 0. Shift P left 1 bit, shifting in the g bit from A.
Shifting the rest of A is not necessary.

2. The high-order bit of P is 1. Set s := s ∨ r and r := g, and add 1 to the exponent.

Now if r = 0, P is the correctly rounded product. If r = 1 and s = 1, then P + 1
is the product (where by P + 1 we mean adding 1 to the least-significant bit of P).
If r = 1 and s = 0, we are in a halfway case, and round up according to the least-
significant bit of P. As an example, apply the decimal version of these rules to
Figure H.9(b). After the multiplication, P = 126 and A = 501, with g = 5, r = 0,
s = 1. Since the high-order digit of P is nonzero, case (2) applies and r := g, so
that r = 5, as the arrow indicates in Figure H.9. Since r = 5, we could be in a
halfway case, but s = 1 indicates that the result is in fact slightly over 1/2, so
add 1 to P to obtain the correctly rounded product.

The precise rules for rounding depend on the rounding mode and are given in
Figure H.11. Note that P is nonnegative, that is, it contains the magnitude of the
result. A good discussion of more efficient ways to implement rounding is in San-
toro, Bewick, and Horowitz [1989].

Example In binary with p = 4, show how the multiplication algorithm computes the prod-
uct −5 × 10 in each of the four rounding modes.

Answer In binary, −5 is −1.0102 × 22 and 10 = 1.0102 × 23. Applying the integer multipli-
cation algorithm to the significands gives 011001002, so P = 01102, A = 01002,

Figure H.10 The two cases of the floating-point multiply algorithm. The top line
shows the contents of the P and A registers after multiplying the significands, with
p = 6. In case (1), the leading bit is 0, and so the P register must be shifted. In case (2),
the leading bit is 1, no shift is required, but both the exponent and the round and sticky
bits must be adjusted. The sticky bit is the logical OR of the bits marked s.

Product

Case (1): x
0
 = 0

Shift needed

Case (2): x
0
 = 1

Increment exponent

Adjust binary point,
add 1 to exponent to compensate

rnd sticky

rnd sticky x2 x3 x4 x5x0 . x1

x1 . x2 x3 x4 x5 g

x0 x1 . x2 x3 x4 x5 g r ss s s

P A

H-20 � Appendix H Computer Arithmetic

g = 0, r = 1, and s = 0. The high-order bit of P is 0, so case (1) applies. Thus P
becomes 11002, and since the result is negative, Figure H.11 gives

round to -∞ 11012 add 1 since r ∨ s = 1 ⁄ 0 = TRUE

round to +∞ 11002

round to 0 11002

round to nearest 11002 no add since r ∧ p0 = 1 ∧ 0 = FALSE and

r ∧ s = 1 ∧ 0 = FALSE

The exponent is 2 + 3 = 5, so the result is −1.1002 × 25
 = −48, except when round-

ing to −∞, in which case it is −1.1012 × 25 = −52.

Overflow occurs when the rounded result is too large to be represented. In
single precision, this occurs when the result has an exponent of 128 or higher. If
e1 and e2 are the two biased exponents, then 1 ≤ ei ≤ 254, and the exponent calcu-
lation e1 + e2 − 127 gives numbers between 1 + 1 − 127 and 254 + 254 − 127, or
between −125 and 381. This range of numbers can be represented using 9 bits. So
one way to detect overflow is to perform the exponent calculations in a 9-bit
adder (see Exercise H.12). Remember that you must check for overflow after
rounding—the example in Figure H.9(c) shows that this can make a difference.

Denormals

Checking for underflow is somewhat more complex because of denormals. In sin-
gle precision, if the result has an exponent less than −126, that does not necessar-
ily indicate underflow, because the result might be a denormal number. For
example, the product of (1 × 2–64) with (1 × 2–65) is 1 × 2–129, and −129 is below
the legal exponent limit. But this result is a valid denormal number, namely, 0.125
× 2–126. In general, when the unbiased exponent of a product dips below −126, the
resulting product must be shifted right and the exponent incremented until the

Rounding mode Sign of result ≥ 0 Sign of result < 0

–∞ +1 if r ∨ s

+∞ +1 if r ∨ s
0

Nearest +1 if r ∧ p0 or r ∧ s +1 if r ∧ p0 or r ∧ s

Figure H.11 Rules for implementing the IEEE rounding modes. Let S be the magni-
tude of the preliminary result. Blanks mean that the p most-significant bits of S are the
actual result bits. If the condition listed is true, add 1 to the pth most-significant bit of S.
The symbols r and s represent the round and sticky bits, while p0 is the pth most-
significant bit of S.

H.5 Floating-Point Addition � H-21

exponent reaches −126. If this process causes the entire significand to be shifted
out, then underflow has occurred. The precise definition of underflow is some-
what subtle—see Section H.7 for details.

When one of the operands of a multiplication is denormal, its significand will
have leading zeros, and so the product of the significands will also have leading
zeros. If the exponent of the product is less than –126, then the result is denormal,
so right-shift and increment the exponent as before. If the exponent is greater
than –126, the result may be a normalized number. In this case, left-shift the prod-
uct (while decrementing the exponent) until either it becomes normalized or the
exponent drops to –126.

Denormal numbers present a major stumbling block to implementing
floating-point multiplication, because they require performing a variable shift in
the multiplier, which wouldn’t otherwise be needed. Thus, high-performance,
floating-point multipliers often do not handle denormalized numbers, but instead
trap, letting software handle them. A few practical codes frequently underflow,
even when working properly, and these programs will run quite a bit slower on
systems that require denormals to be processed by a trap handler.

So far we haven’t mentioned how to deal with operands of zero. This can be
handled by either testing both operands before beginning the multiplication or
testing the product afterward. If you test afterward, be sure to handle the case
0 × ∞ properly: This results in NaN, not 0. Once you detect that the result is 0, set
the biased exponent to 0. Don’t forget about the sign. The sign of a product is the
XOR of the signs of the operands, even when the result is 0.

Precision of Multiplication

In the discussion of integer multiplication, we mentioned that designers must
decide whether to deliver the low-order word of the product or the entire product.
A similar issue arises in floating-point multiplication, where the exact product can
be rounded to the precision of the operands or to the next higher precision. In the
case of integer multiplication, none of the standard high-level languages contains a
construct that would generate a “single times single gets double” instruction. The
situation is different for floating point. Many languages allow assigning the prod-
uct of two single-precision variables to a double-precision one, and the construc-
tion can also be exploited by numerical algorithms. The best-known case is using
iterative refinement to solve linear systems of equations.

Typically, a floating-point operation takes two inputs with p bits of precision and
returns a p-bit result. The ideal algorithm would compute this by first performing
the operation exactly, and then rounding the result to p bits (using the current
rounding mode). The multiplication algorithm presented in the previous section
follows this strategy. Even though hardware implementing IEEE arithmetic must

H.5 Floating-Point Addition

H-22 � Appendix H Computer Arithmetic

return the same result as the ideal algorithm, it doesn’t need to actually perform
the ideal algorithm. For addition, in fact, there are better ways to proceed. To see
this, consider some examples.

First, the sum of the binary 6-bit numbers 1.100112 and 1.100012 × 2–5:
When the summands are shifted so they have the same exponent, this is

1.10011
+ .0000110001

Using a 6-bit adder (and discarding the low-order bits of the second addend)
gives

 1.10011
 + .00001

 1.10100

The first discarded bit is 1. This isn’t enough to decide whether to round up. The
rest of the discarded bits, 0001, need to be examined. Or actually, we just need to
record whether any of these bits are nonzero, storing this fact in a sticky bit just
as in the multiplication algorithm. So for adding two p-bit numbers, a p-bit adder
is sufficient, as long as the first discarded bit (round) and the OR of the rest of the
bits (sticky) are kept. Then Figure H.11 can be used to determine if a roundup is
necessary, just as with multiplication. In the example above, sticky is 1, so a
roundup is necessary. The final sum is 1.101012.

Here’s another example:

 1.11011
+ .0101001

A 6-bit adder gives

1.11011
+ .01010

 10.00101

Because of the carry-out on the left, the round bit isn’t the first discarded bit;
rather, it is the low-order bit of the sum (1). The discarded bits, 01, are OR’ed
together to make sticky. Because round and sticky are both 1, the high-order 6
bits of the sum, 10.00102, must be rounded up for the final answer of 10.00112.

Next, consider subtraction and the following example:

 1.00000
– .00000101111

The simplest way of computing this is to convert −.000001011112 to its two’s
complement form, so the difference becomes a sum

H.5 Floating-Point Addition � H-23

 1.00000
 + 1.11111010001

Computing this sum in a 6-bit adder gives

 1.00000
 + 1.11111

 0.11111

Because the top bits canceled, the first discarded bit (the guard bit) is needed to
fill in the least-significant bit of the sum, which becomes 0.1111102, and the sec-
ond discarded bit becomes the round bit. This is analogous to case (1) in the mul-
tiplication algorithm (see page H-19). The round bit of 1 isn’t enough to decide
whether to round up. Instead, we need to OR all the remaining bits (0001) into a
sticky bit. In this case, sticky is 1, so the final result must be rounded up to
0.111111. This example shows that if subtraction causes the most-significant bit
to cancel, then one guard bit is needed. It is natural to ask whether two guard bits
are needed for the case when the two most-significant bits cancel. The answer is
no, because if x and y are so close that the top two bits of x − y cancel, then x − y
will be exact, so guard bits aren’t needed at all.

To summarize, addition is more complex than multiplication because,
depending on the signs of the operands, it may actually be a subtraction. If it is an
addition, there can be carry-out on the left, as in the second example. If it is sub-
traction, there can be cancellation, as in the third example. In each case, the posi-
tion of the round bit is different. However, we don’t need to compute the exact
sum and then round. We can infer it from the sum of the high-order p bits together
with the round and sticky bits.

The rest of this section is devoted to a detailed discussion of the floating-point
addition algorithm. Let a1 and a2 be the two numbers to be added. The notations
ei and si are used for the exponent and significand of the addends ai. This means
that the floating-point inputs have been unpacked and that si has an explicit lead-
ing bit. To add a1 and a2, perform these eight steps.

1. If e1< e2, swap the operands. This ensures that the difference of the exponents
satisfies d = e1 − e2 ≥ 0. Tentatively set the exponent of the result to e1.

2. If the signs of a1 and a2 differ, replace s2 by its two’s complement.

3. Place s2 in a p-bit register and shift it d = e1 − e2 places to the right (shifting in
1’s if s2 was complemented in the previous step). From the bits shifted out, set
g to the most-significant bit, r to the next most-significant bit, and set sticky to
the OR of the rest.

4. Compute a preliminary significand S = s1 + s2 by adding s1 to the p-bit regis-
ter containing s2. If the signs of a1 and a2 are different, the most-significant
bit of S is 1, and there was no carry-out, then S is negative. Replace S with its
two’s complement. This can only happen when d = 0.

5. Shift S as follows. If the signs of a1 and a2 are the same and there was a carry-
out in step 4, shift S right by one, filling in the high-order position with 1 (the

H-24 � Appendix H Computer Arithmetic

carry-out). Otherwise shift it left until it is normalized. When left-shifting, on
the first shift fill in the low-order position with the g bit. After that, shift in
zeros. Adjust the exponent of the result accordingly.

6. Adjust r and s. If S was shifted right in step 5, set r := low-order bit of S
before shifting and s := g OR r OR s. If there was no shift, set r := g, s := r OR

s. If there was a single left shift, don’t change r and s. If there were two or
more left shifts, r := 0, s := 0. (In the last case, two or more shifts can only
happen when a1 and a2 have opposite signs and the same exponent, in which
case the computation s1 + s2 in step 4 will be exact.)

7. Round S using Figure H.11; namely, if a table entry is nonempty, add 1 to the
low-order bit of S. If rounding causes carry-out, shift S right and adjust the
exponent. This is the significand of the result.

8. Compute the sign of the result. If a1 and a2 have the same sign, this is the sign
of the result. If a1 and a2 have different signs, then the sign of the result
depends on which of a1, a2 is negative, whether there was a swap in step 1,
and whether S was replaced by its two’s complement in step 4. See Figure
H.12.

Example Use the algorithm to compute the sum (−1.0012 × 2–2) + (−1.1112 × 20)

Answer s1 = 1.001, e1 = −2, s2 = 1.111, e2 = 0

1. e1 < e2, so swap. d = 2. Tentative exp = 0.

2. Signs of both operands negative, don’t negate s2.

3. Shift s2 (1.001 after swap) right by 2, giving s2 = .010, g = 0, r = 1, s = 0.

4. 1.111
 + .010

 (1)0.001 S = 0.001, with a carry-out.

5. Carry-out, so shift S right, S = 1.000, exp = exp + 1, so exp = 1.

swap compl sign(a1) sign(a2) sign(result)

Yes + – –

Yes – + +

No No + – +

No No – + –

No Yes + – –

No Yes – + +

Figure H.12 Rules for computing the sign of a sum when the addends have different
signs. The swap column refers to swapping the operands in step 1, while the compl col-
umn refers to performing a two’s complement in step 4. Blanks are “don’t care.”

H.5 Floating-Point Addition � H-25

6. r = low-order bit of sum = 1, s = g ∨ r ∨ s = 0 ∨ 1 ∨ 0 = 1.

7. r AND s = TRUE, so Figure H.11 says round up, S = S + 1 or S = 1.001.

8. Both signs negative, so sign of result is negative. Final answer:
−S × 2exp = 1.0012 × 21.

Example Use the algorithm to compute the sum (−1.0102) + 1.1002

Answer s1 = 1.010, e1 = 0, s2 = 1.100, e2 = 0

1. No swap, d = 0, tentative exp = 0.

2. Signs differ, replace s2 with 0.100.

3. d = 0, so no shift. r = g = s = 0.

4. 1.010
+ 0.100
 1.110 Signs are different, most-significant bit is 1, no carry-out, so

must two’s complement sum, giving S = 0.010.

5. Shift left twice, so S = 1.000, exp = exp − 2, or exp = −2.

6. Two left shifts, so r = g = s = 0.

7. No addition required for rounding.

8. Answer is sign × S × 2exp or sign × 1.000 × 2–2. Get sign from Figure H.12.
Since complement but no swap and sign(a1) is −, the sign of sum is +. Thus
answer = 1.0002 × 2–2.

Speeding Up Addition

Let’s estimate how long it takes to perform the algorithm above. Step 2 may
require an addition, step 4 requires one or two additions, and step 7 may require
an addition. If it takes T time units to perform a p-bit add (where p = 24 for single
precision, 53 for double), then it appears the algorithm will take at least 4T time
units. But that is too pessimistic. If step 4 requires two adds, then a1 and a2 have
the same exponent and different signs. But in that case the difference is exact, and
so no roundup is required in step 7. Thus only three additions will ever occur.
Similarly, it appears that a variable shift may be required both in step 3 and step
5. But if |e1 − e2| ≤ 1, then step 3 requires a right shift of at most one place, so
only step 5 needs a variable shift. And if |e1 − e2| > 1, then step 3 needs a variable
shift, but step 5 will require a left shift of at most one place. So only a single vari-
able shift will be performed. Still, the algorithm requires three sequential adds,
which, in the case of a 53-bit double-precision significand, can be rather time
consuming.

H-26 � Appendix H Computer Arithmetic

A number of techniques can speed up addition. One is to use pipelining. The
“Putting It All Together” section gives examples of how some commercial chips
pipeline addition. Another method (used on the Intel 860 [Kohn and Fu 1989]) is
to perform two additions in parallel. We now explain how this reduces the latency
from 3T to T.

There are three cases to consider. First, suppose that both operands have the
same sign. We want to combine the addition operations from steps 4 and 7. The
position of the high-order bit of the sum is not known ahead of time, because the
addition in step 4 may or may not cause a carry-out. Both possibilities are
accounted for by having two adders. The first adder assumes the add in step 4 will
not result in a carry-out. Thus the values of r and s can be computed before the
add is actually done. If r and s indicate a roundup is necessary, the first adder will
compute S = s1 + s2 + 1, where the notation +1 means adding 1 at the position of
the least-significant bit of s1. This can be done with a regular adder by setting the
low-order carry-in bit to 1. If r and s indicate no roundup, the adder computes
S = s1 + s2 as usual. One extra detail: when r = 1, s = 0, you will also need to
know the low-order bit of the sum, which can also be computed in advance very
quickly. The second adder covers the possibility that there will be carry-out. The
values of r and s and the position where the roundup 1 is added are different from
above, but again they can be quickly computed in advance. It is not known
whether there will be a carry-out until after the add is actually done, but that
doesn’t matter. By doing both adds in parallel, one adder is guaranteed to reduce
the correct answer.

The next case is when a1 and a2 have opposite signs, but the same exponent.
The sum a1 + a2 is exact in this case (no roundup is necessary), but the sign isn’t
known until the add is completed. So don’t compute the two’s complement
(which requires an add) in step 2, but instead compute s1 + s2 + 1 and s1 + s2 +1 in
parallel. The first sum has the result of simultaneously complementing s1 and
computing the sum, resulting in s2 − s1. The second sum computes s1 − s2. One of
these will be nonnegative and hence the correct final answer. Once again, all the
additions are done in one step using two adders operating in parallel.

The last case, when a1 and a2 have opposite signs and different exponents, is
more complex. If |e1−e2| > 1, the location of the leading bit of the difference is in
one of two locations, so there are two cases just as in addition. When |e1−e2| = 1,
cancellation is possible and the leading bit could be almost anywhere. However,
only if the leading bit of the difference is in the same position as the leading bit of
s1 could a roundup be necessary. So one adder assumes a roundup, the other
assumes no roundup. Thus the addition of step 4 and the rounding of step 7 can
be combined. However, there is still the problem of the addition in step 2!

To eliminate this addition, consider the following diagram of step 4:

|—— p ——|
s1 1.xxxxxxx
s2 – 1yyzzzzz

If the bits marked z are all 0, then the high-order p bits of S = s1 − s2 can be com-
puted as s1 + s2 + 1. If at least one of the z bits is 1, use s1 + s2. So s1 − s2 can be

H.6 Division and Remainder � H-27

computed with one addition. However, we still don’t know g and r for the two’s
complement of s2, which are needed for rounding in step 7.

To compute s1 − s2 and get the proper g and r bits, combine steps 2 and 4 as
follows. Don’t complement s2 in step 2. Extend the adder used for computing S
two bits to the right (call the extended sum S′). If the preliminary sticky bit (com-
puted in step 3) is 1, compute S′ = s′1 + s′2, where s′1 has two 0 bits tacked onto the
right, and s′2 has preliminary g and r appended. If the sticky bit is 0, compute s′1
+ s′2 + 1. Now the two low-order bits of S′ have the correct values of g and r (the
sticky bit was already computed properly in step 3). Finally, this modification can
be combined with the modification that combines the addition from steps 4 and 7
to provide the final result in time T, the time for one addition.

A few more details need to be considered, as discussed in Santoro, Bewick,
and Horowitz [1989] and Exercise H.17. Although the Santoro paper is aimed at
multiplication, much of the discussion applies to addition as well. Also relevant is
Exercise H.19, which contains an alternate method for adding signed magnitude
numbers.

Denormalized Numbers

Unlike multiplication, for addition very little changes in the preceding descrip-
tion if one of the inputs is a denormal number. There must be a test to see if the
exponent field is 0. If it is, then when unpacking the significand there will not be
a leading 1. By setting the biased exponent to 1 when unpacking a denormal, the
algorithm works unchanged.

To deal with denormalized outputs, step 5 must be modified slightly. Shift S
until it is normalized, or until the exponent becomes Emin (that is, the biased
exponent becomes 1). If the exponent is Emin and, after rounding, the high-order
bit of S is 1, then the result is a normalized number and should be packed in the
usual way, by omitting the 1. If, on the other hand, the high-order bit is 0, the
result is denormal. When the result is unpacked, the exponent field must be set to
0. Section H.7 discusses the exact rules for detecting underflow.

Incidentally, detecting overflow is very easy. It can only happen if step 5
involves a shift right and the biased exponent at that point is bumped up to 255 in
single precision (or 2047 for double precision), or if this occurs after rounding.

In this section, we’ll discuss floating-point division and remainder.

Iterative Division

We earlier discussed an algorithm for integer division. Converting it into a float-
ing-point division algorithm is similar to converting the integer multiplication
algorithm into floating point. The formula

(s1 × 2e1) / (s2 × 2e2) = (s1 / s2) × 2e1–e2

H.6 Division and Remainder

H-28 � Appendix H Computer Arithmetic

shows that if the divider computes s1/s2, then the final answer will be this quotient
multiplied by 2e1−e2. Referring to Figure H.2(b) (page H-4), the alignment of
operands is slightly different from integer division. Load s2 into B and s1 into P.
The A register is not needed to hold the operands. Then the integer algorithm for
division (with the one small change of skipping the very first left shift) can be
used, and the result will be of the form q0.q1

.... To round, simply compute two
additional quotient bits (guard and round) and use the remainder as the sticky bit.
The guard digit is necessary because the first quotient bit might be 0. However,
since the numerator and denominator are both normalized, it is not possible for
the two most-significant quotient bits to be 0. This algorithm produces one quo-
tient bit in each step.

A different approach to division converges to the quotient at a quadratic
rather than a linear rate. An actual machine that uses this algorithm will be dis-
cussed in Section H.10. First, we will describe the two main iterative algorithms,
and then we will discuss the pros and cons of iteration when compared with the
direct algorithms. There is a general technique for constructing iterative algo-
rithms, called Newton’s iteration, shown in Figure H.13. First, cast the problem
in the form of finding the zero of a function. Then, starting from a guess for the
zero, approximate the function by its tangent at that guess and form a new guess
based on where the tangent has a zero. If xi is a guess at a zero, then the tangent
line has the equation

y − f (xi) = f ′(xi)(x − xi)

This equation has a zero at

H.6.1 x = xi +1 = xi −

To recast division as finding the zero of a function, consider f(x) = x–1 – b.
Since the zero of this function is at 1/b, applying Newton’s iteration to it will give

Figure H.13 Newton’s iteration for zero finding. If xi is an estimate for a zero of f, then
xi+1 is a better estimate. To compute xi+1, find the intersection of the x-axis with the tan-
gent line to f at f (xi).

f (xi)

f ′(xi)

x
x

i+1
x

i

f(x)

f(x
i
)

H.6 Division and Remainder � H-29

an iterative method of computing 1/b from b. Using f ′(x) = −1/x2, Equation H.6.1
becomes

H.6.2 xi +1 = xi − = xi + xi – xi
2 b = xi(2 − xib)

Thus, we could implement computation of a/b using the following method:

1. Scale b to lie in the range 1 ≤ b < 2 and get an approximate value of 1/b (call
it x0) using a table lookup.

2. Iterate xi+1 = xi(2 − xib) until reaching an xn that is accurate enough.

3. Compute axn and reverse the scaling done in step 1.

Here are some more details. How many times will step 2 have to be iterated?
To say that xi is accurate to p bits means that (xi − 1/b)/(1/b) = 2−p, and a simple
algebraic manipulation shows that when this is so, then (xi+1 − 1/b)/(1/b) = 2−2p.
Thus the number of correct bits doubles at each step. Newton’s iteration is self-
correcting in the sense that making an error in xi doesn’t really matter. That is, it
treats xi as a guess at 1/b and returns xi+1 as an improvement on it (roughly dou-
bling the digits). One thing that would cause xi to be in error is rounding error.
More importantly, however, in the early iterations we can take advantage of the
fact that we don’t expect many correct bits by performing the multiplication in
reduced precision, thus gaining speed without sacrificing accuracy. Another
application of Newton’s iteration is discussed in Exercise H.20.

The second iterative division method is sometimes called Goldschmidt’s
algorithm. It is based on the idea that to compute a/b, you should multiply the
numerator and denominator by a number r with rb ≈ 1. In more detail, let x0 = a
and y0 = b. At each step compute xi+1 = rixi and yi+1 = riyi. Then the quotient xi+1/
yi+1 = xi/yi = a/b is constant. If we pick ri so that yi → 1, then xi → a/b, so the xi
converge to the answer we want. This same idea can be used to compute other
functions. For example, to compute the square root of a, let x0 = a and y0 = a, and
at each step compute xi+1 = ri

2xi, yi+1 = riyi. Then xi+1/yi+1
2 = xi/yi

2 = 1/a, so if the
ri are chosen to drive xi → 1, then yi → . This technique is used to compute
square roots on the TI 8847.

Returning to Goldschmidt’s division algorithm, set x0 = a and y0 = b, and
write b = 1 − δ, where δ < 1. If we pick r0 = 1 + δ, then y1 = r0y0 = 1 − δ 2. We
next pick r1 = 1 + δ2, so that y2 = r1y1 = 1 − δ4, and so on. Since δ < 1, yi → 1.
With this choice of ri, the xi will be computed as xi+1 = rixi = (1 + δ 2i)xi = (1 +
(1 − b)2i)xi, or

H.6.3 xi+1 = a [1 + (1 − b)] [1 + (1 − b)2] [1 + (1 − b)4] ⋅⋅⋅ [1 + (1 − b)2 i]

There appear to be two problems with this algorithm. First, convergence is
slow when b is not near 1 (that is, δ is not near 0); and second, the formula isn’t
self-correcting—since the quotient is being computed as a product of indepen-
dent terms, an error in one of them won’t get corrected. To deal with slow

1 xi⁄ b–

1 xi
2⁄–

a

H-30 � Appendix H Computer Arithmetic

convergence, if you want to compute a/b, look up an approximate inverse to b
(call it b′), and run the algorithm on ab′/bb′. This will converge rapidly since
bb′ ≈ 1.

To deal with the self-correction problem, the computation should be run with
a few bits of extra precision to compensate for rounding errors. However, Gold-
schmidt’s algorithm does have a weak form of self-correction, in that the precise
value of the ri does not matter. Thus, in the first few iterations, when the full
precision of 1 – δ 2i is not needed you can choose ri to be a truncation of 1 + δ 2i,,
which may make these iterations run faster without affecting the speed of conver-
gence. If ri is truncated, then yi is no longer exactly 1 – δ

2i. Thus, Equation H.6.3
can no longer be used, but it is easy to organize the computation so that it does
not depend on the precise value of ri. With these changes, Goldschmidt’s algo-
rithm is as follows (the notes in brackets show the connection with our earlier
formulas).

1. Scale a and b so that 1 ≤ b < 2.

2. Look up an approximation to 1/b (call it b′) in a table.

3. Set x0 = ab′ and y0 = bb′.
4. Iterate until xi is close enough to a/b:

Loop

r ≈ 2 − y [if yi = 1 + δi, then r ≈ 1 − δi]

y = y × r [yi+1 = yi × r ≈ 1 − δi
2]

xi+1 = xi × r [xi+1 = xi × r]

End loop

The two iteration methods are related. Suppose in Newton’s method that we
unroll the iteration and compute each term xi+1 directly in terms of b, instead of
recursively in terms of xi. By carrying out this calculation (see Exercise H.22), we
discover that

xi+1 = x0(2 − x0b) [(1 + (x0b − 1)2] [1 + (x0b − 1)4] … [1 + (x0b − 1)2i]

This formula is very similar to Equation H.6.3. In fact they are identical if a, b in
H.6.3 are replaced with ax0, bx0 and a = 1. Thus if the iterations were done to infi-
nite precision, the two methods would yield exactly the same sequence xi.

The advantage of iteration is that it doesn’t require special divide hardware.
Instead, it can use the multiplier (which, however, requires extra control). Further,
on each step, it delivers twice as many digits as in the previous step—unlike ordi-
nary division, which produces a fixed number of digits at every step.

There are two disadvantages with inverting by iteration. The first is that the
IEEE standard requires division to be correctly rounded, but iteration only deliv-
ers a result that is close to the correctly rounded answer. In the case of Newton’s

H.6 Division and Remainder � H-31

iteration, which computes 1/b instead of a/b directly, there is an additional
problem. Even if 1/b were correctly rounded, there is no guarantee that a/b will
be. An example in decimal with p = 2 is a = 13, b = 51. Then a/b = .2549. . . ,
which rounds to .25. But 1/b = .0196. . . , which rounds to .020, and then a × .020
= .26, which is off by 1. The second disadvantage is that iteration does not give a
remainder. This is especially troublesome if the floating-point divide hardware is
being used to perform integer division, since a remainder operation is present in
almost every high-level language.

Traditional folklore has held that the way to get a correctly rounded result
from iteration is to compute 1/b to slightly more than 2p bits, compute a/b to
slightly more than 2p bits, and then round to p bits. However, there is a faster
way, which apparently was first implemented on the TI 8847. In this method, a/b
is computed to about 6 extra bits of precision, giving a preliminary quotient q. By
comparing qb with a (again with only 6 extra bits), it is possible to quickly decide
whether q is correctly rounded or whether it needs to be bumped up or down by 1
in the least-significant place. This algorithm is explored further in Exercise H.21.

One factor to take into account when deciding on division algorithms is the
relative speed of division and multiplication. Since division is more complex than
multiplication, it will run more slowly. A common rule of thumb is that division
algorithms should try to achieve a speed that is about one-third that of multipli-
cation. One argument in favor of this rule is that there are real programs (such as
some versions of spice) where the ratio of division to multiplication is 1:3.
Another place where a factor of 3 arises is in the standard iterative method for
computing square root. This method involves one division per iteration, but it can
be replaced by one using three multiplications. This is discussed in Exercise
H.20.

Floating-Point Remainder

For nonnegative integers, integer division and remainder satisfy

a = (a DIV b)b + a REM b, 0 ≤ a REM b < b

A floating-point remainder x REM y can be similarly defined as x = INT(x/y)y + x
REM y. How should x/y be converted to an integer? The IEEE remainder function
uses the round-to-even rule. That is, pick n = INT (x/y) so that x/y − n ≤ 1/2.
If two different n satisfy this relation, pick the even one. Then REM is defined
to be x − yn. Unlike integers where 0 ≤ a REM b < b, for floating-point numbers

x REM y ≤ y/2. Although this defines REM precisely, it is not a practical opera-
tional definition, because n can be huge. In single precision, n could be as large as
2127/2–126 = 2253 ≈ 1076.

There is a natural way to compute REM if a direct division algorithm is used.
Proceed as if you were computing x/y. If x = s12e1 and y = s22e2 and the divider is
as in Figure H.2(b) (page H-4), then load s1 into P and s2 into B. After e1 − e2
division steps, the P register will hold a number r of the form x − yn satisfying

H-32 � Appendix H Computer Arithmetic

0 ≤ r < y. Since the IEEE remainder satisfies REM ≤ y/2, REM is equal to either
r or r − y. It is only necessary to keep track of the last quotient bit produced,
which is needed to resolve halfway cases. Unfortunately, e1 − e2 can be a lot of
steps, and floating-point units typically have a maximum amount of time they are
allowed to spend on one instruction. Thus, it is usually not possible to implement
REM directly. None of the chips discussed in Section H.10 implements REM, but
they could by providing a remainder-step instruction—this is what is done on the
Intel 8087 family. A remainder step takes as arguments two numbers x and y, and
performs divide steps until either the remainder is in P or n steps have been per-
formed, where n is a small number, such as the number of steps required for divi-
sion in the highest-supported precision. Then REM can be implemented as a
software routine that calls the REM step instruction (e1 − e2)/n times, initially
using x as the numerator, but then replacing it with the remainder from the previ-
ous REM step.

REM can be used for computing trigonometric functions. To simplify things,
imagine that we are working in base 10 with five significant figures, and consider
computing sin x. Suppose that x = 7. Then we can reduce by π = 3.1416 and com-
pute sin(7) = sin(7 − 2 × 3.1416) = sin(0.7168) instead. But suppose we want to
compute sin(2.0 × 105). Then 2 × 105/3.1416 = 63661.8, which in our five-place
system comes out to be 63662. Since multiplying 3.1416 times 63662 gives
200000.5392, which rounds to 2.0000 × 105, argument reduction reduces 2 × 105

to 0, which is not even close to being correct. The problem is that our five-place sys-
tem does not have the precision to do correct argument reduction. Suppose we had
the REM operator. Then we could compute 2 × 105 REM 3.1416 and get −.53920.
However, this is still not correct because we used 3.1416, which is an approximation
for π. The value of 2 × 105 REM π is −.071513.

Traditionally, there have been two approaches to computing periodic func-
tions with large arguments. The first is to return an error for their value when x is
large. The second is to store π to a very large number of places and do exact argu-
ment reduction. The REM operator is not much help in either of these situations.
There is a third approach that has been used in some math libraries, such as the
Berkeley UNIX 4.3bsd release. In these libraries, π is computed to the nearest
floating-point number. Let’s call this machine π, and denote it by π′. Then when
computing sin x, reduce x using x REM π′. As we saw in the above example, x
REM π ′ is quite different from x REM π when x is large, so that computing sin x as
sin(x REM π ′) will not give the exact value of sin x. However, computing trigono-
metric functions in this fashion has the property that all familiar identities (such
as sin2 x + cos2 x = 1) are true to within a few rounding errors. Thus, using REM

together with machine π provides a simple method of computing trigonometric
functions that is accurate for small arguments and still may be useful for large
arguments.

When REM is used for argument reduction, it is very handy if it also returns
the low-order bits of n (where x REM y = x − ny). This is because a practical
implementation of trigonometric functions will reduce by something smaller than
2π. For example, it might use π/2, exploiting identities such as sin(x − π/2) = −cos

H.7 More on Floating-Point Arithmetic � H-33

x, sin(x − π) = −sin x. Then the low bits of n are needed to choose the correct
identity.

Before leaving the subject of floating-point arithmetic, we present a few addi-
tional topics.

Fused Multiply-Add

Probably the most common use of floating-point units is performing matrix oper-
ations, and the most frequent matrix operation is multiplying a matrix times a
matrix (or vector), which boils down to computing an inner product, x1⋅y1 + x2⋅y2
+ . . . + xn⋅yn. Computing this requires a series of multiply-add combinations.

Motivated by this, the IBM RS/6000 introduced a single instruction that com-
putes ab + c, the fused multiply-add. Although this requires being able to read
three operands in a single instruction, it has the potential for improving the per-
formance of computing inner products.

The fused multiply-add computes ab + c exactly and then rounds. Although
rounding only once increases the accuracy of inner products somewhat, that is
not its primary motivation. There are two main advantages of rounding once.
First, as we saw in the previous sections, rounding is expensive to implement
because it may require an addition. By rounding only once, an addition operation
has been eliminated. Second, the extra accuracy of fused multiply-add can be
used to compute correctly rounded division and square root when these are not
available directly in hardware. Fused multiply-add can also be used to implement
efficient floating-point multiple-precision packages.

The implementation of correctly rounded division using fused multiply-add
has many details, but the main idea is simple. Consider again the example from
Section H.6 (page H-31), which was computing a/b with a = 13, b = 51. Then 1/b
rounds to b′ = .020, and ab′ rounds to q′ = .26, which is not the correctly rounded
quotient. Applying fused multiply-add twice will correctly adjust the result, via
the formulas

r = a − bq′

q′′ = q′ + rb′

Computing to two-digit accuracy, bq′ = 51 × .26 rounds to 13, and so r = a − bq′
would be 0, giving no adjustment. But using fused multiply-add gives r = a − bq′
= 13 − (51 × .26) = −.26, and then q′′ = q′ + rb′ = .26 − .0052 = .2548, which
rounds to the correct quotient, .25. More details can be found in the papers by
Montoye, Hokenek, and Runyon [1990] and Markstein [1990].

H.7 More on Floating-Point Arithmetic

H-34 � Appendix H Computer Arithmetic

Precisions

The standard specifies four precisions: single, single extended, double, and dou-
ble extended. The properties of these precisions are summarized in Figure H.7
(page H-16). Implementations are not required to have all four precisions, but are
encouraged to support either the combination of single and single extended or all
of single, double, and double extended. Because of the widespread use of double
precision in scientific computing, double precision is almost always imple-
mented. Thus the computer designer usually only has to decide whether to sup-
port double extended and, if so, how many bits it should have.

The Motorola 68882 and Intel 387 coprocessors implement extended preci-
sion using the smallest allowable size of 80 bits (64 bits of significand). However,
many of the more recently designed, high-performance floating-point chips do
not implement 80-bit extended precision. One reason is that the 80-bit width of
extended precision is awkward for 64-bit buses and registers. Some new architec-
tures, such as SPARC V8 and PA-RISC, specify a 128-bit extended (or quad) pre-
cision. They have established a de facto convention for quad that has 15 bits of
exponent and 113 bits of significand.

Although most high-level languages do not provide access to extended preci-
sion, it is very useful to writers of mathematical software. As an example, con-
sider writing a library routine to compute the length of a vector (x,y) in the plane,
namely, . If x is larger than 2Emax/2, then computing this in the obvious
way will overflow. This means that either the allowable exponent range for this
subroutine will be cut in half or a more complex algorithm using scaling will
have to be employed. But if extended precision is available, then the simple algo-
rithm will work. Computing the length of a vector is a simple task, and it is not
difficult to come up with an algorithm that doesn’t overflow. However, there are
more complex problems for which extended precision means the difference
between a simple, fast algorithm and a much more complex one. One of the best
examples of this is binary-to-decimal conversion. An efficient algorithm for
binary-to-decimal conversion that makes essential use of extended precision is
very readably presented in Coonen [1984]. This algorithm is also briefly sketched
in Goldberg [1991]. Computing accurate values for transcendental functions is
another example of a problem that is made much easier if extended precision is
present.

One very important fact about precision concerns double rounding. To illus-
trate in decimals, suppose that we want to compute 1.9 × 0.66, and that single pre-
cision is two digits, while extended precision is three digits. The exact result of
the product is 1.254. Rounded to extended precision, the result is 1.25. When fur-
ther rounded to single precision, we get 1.2. However, the result of 1.9 × 0.66 cor-
rectly rounded to single precision is 1.3. Thus, rounding twice may not produce
the same result as rounding once. Suppose you want to build hardware that only
does double-precision arithmetic. Can you simulate single precision by comput-
ing first in double precision and then rounding to single? The above example sug-
gests that you can’t. However, double rounding is not always dangerous. In fact,
the following rule is true (this is not easy to prove, but see Exercise H.25).

x2 y2+

H.7 More on Floating-Point Arithmetic � H-35

If x and y have p-bit significands, and x + y is computed exactly and then
rounded to q places, a second rounding to p places will not change the an-
swer if q ≥ 2p + 2. This is true not only for addition, but also for multipli-
cation, division, and square root.

In our example above, q = 3 and p = 2, so q ≥ 2p + 2 is not true. On the other
hand, for IEEE arithmetic, double precision has q = 53, p = 24, so q = 53 ≥ 2p
+ 2 = 50. Thus, single precision can be implemented by computing in double pre-
cision—that is, computing the answer exactly and then rounding to double—and
then rounding to single precision.

Exceptions

The IEEE standard defines five exceptions: underflow, overflow, divide by zero,
inexact, and invalid. By default, when these exceptions occur, they merely set a
flag and the computation continues. The flags are sticky, meaning that once set
they remain set until explicitly cleared. The standard strongly encourages imple-
mentations to provide a trap-enable bit for each exception. When an exception
with an enabled trap handler occurs, a user trap handler is called, and the value of
the associated exception flag is undefined. In Section H.3 we mentioned that
has the value NaN and 1/0 is ∞. These are examples of operations that raise an
exception. By default, computing sets the invalid flag and returns the value
NaN. Similarly 1/0 sets the divide-by-zero flag and returns ∞.

The underflow, overflow, and divide-by-zero exceptions are found in most
other systems. The invalid exception is for the result of operations such as ,
0/0, or ∞ − ∞, which don’t have any natural value as a floating-point number or as
±∞. The inexact exception is peculiar to IEEE arithmetic and occurs either when
the result of an operation must be rounded or when it overflows. In fact, since 1/0
and an operation that overflows both deliver ∞, the exception flags must be con-
sulted to distinguish between them. The inexact exception is an unusual “excep-
tion,” in that it is not really an exceptional condition because it occurs so
frequently. Thus, enabling a trap handler for the inexact exception will most
likely have a severe impact on performance. Enabling a trap handler doesn’t
affect whether an operation is exceptional except in the case of underflow. This is
discussed below.

The IEEE standard assumes that when a trap occurs, it is possible to identify
the operation that trapped and its operands. On machines with pipelining or mul-
tiple arithmetic units, when an exception occurs, it may not be enough to simply
have the trap handler examine the program counter. Hardware support may be
necessary to identify exactly which operation trapped.

Another problem is illustrated by the following program fragment.

r1 = r2 / r3
r2 = r4 + r5

3–

3–

1–

H-36 � Appendix H Computer Arithmetic

These two instructions might well be executed in parallel. If the divide traps, its
argument r2 could already have been overwritten by the addition, especially
since addition is almost always faster than division. Computer systems that sup-
port trapping in the IEEE standard must provide some way to save the value of
r2, either in hardware or by having the compiler avoid such a situation in the first
place. This kind of problem is not peculiar to floating point. In the sequence

r1 = 0(r2)
r2 = r3

it would be efficient to execute r2 = r3 while waiting for memory. But if access-
ing 0(r2) causes a page fault, r2 might no longer be available for restarting the
instruction r1 = 0(r2).

One approach to this problem, used in the MIPS R3010, is to identify
instructions that may cause an exception early in the instruction cycle. For exam-
ple, an addition can overflow only if one of the operands has an exponent of Emax,
and so on. This early check is conservative: It might flag an operation that doesn’t
actually cause an exception. However, if such false positives are rare, then this
technique will have excellent performance. When an instruction is tagged as
being possibly exceptional, special code in a trap handler can compute it without
destroying any state. Remember that all these problems occur only when trap
handlers are enabled. Otherwise, setting the exception flags during normal pro-
cessing is straightforward.

Underflow

We have alluded several times to the fact that detection of underflow is more
complex than for the other exceptions. The IEEE standard specifies that if an
underflow trap handler is enabled, the system must trap if the result is denormal.
On the other hand, if trap handlers are disabled, then the underflow flag is set only
if there is a loss of accuracy—that is, if the result must be rounded. The rationale
is, if no accuracy is lost on an underflow, there is no point in setting a warning
flag. But if a trap handler is enabled, the user might be trying to simulate flush-to-
zero and should therefore be notified whenever a result dips below 1.0 × 2Emin.

So if there is no trap handler, the underflow exception is signaled only when
the result is denormal and inexact. But the definitions of denormal and inexact are
both subject to multiple interpretations. Normally, inexact means there was a
result that couldn’t be represented exactly and had to be rounded. Consider the
example (in a base 2 floating-point system with 3-bit significands) of (1.112 × 2−2)
× (1.112 × 2Emin) = 0.1100012 × 2Emin, with round to nearest in effect. The deliv-
ered result is 0.112 × 2Emin, which had to be rounded, causing inexact to be sig-
naled. But is it correct to also signal underflow? Gradual underflow loses
significance because the exponent range is bounded. If the exponent range were
unbounded, the delivered result would be 1.102 × 2Emin–1, exactly the same
answer obtained with gradual underflow. The fact that denormalized numbers

H.8 Speeding Up Integer Addition � H-37

have fewer bits in their significand than normalized numbers therefore doesn’t
make any difference in this case. The commentary to the standard [Cody et al.
1984] encourages this as the criterion for setting the underflow flag. That is, it
should be set whenever the delivered result is different from what would be deliv-
ered in a system with the same fraction size, but with a very large exponent range.
However, owing to the difficulty of implementing this scheme, the standard
allows setting the underflow flag whenever the result is denormal and different
from the infinitely precise result.

There are two possible definitions of what it means for a result to be denor-
mal. Consider the example of 1.102 × 2–1 multiplied by 1.012 × 2Emin. The exact
product is 0.1111 × 2Emin. The rounded result is the normal number 1.002 × 2Emin.
Should underflow be signaled? Signaling underflow means that you are using the
before rounding rule, because the result was denormal before rounding. Not sig-
naling underflow means that you are using the after rounding rule, because the
result is normalized after rounding. The IEEE standard provides for choosing
either rule; however, the one chosen must be used consistently for all operations.

To illustrate these rules, consider floating-point addition. When the result of
an addition (or subtraction) is denormal, it is always exact. Thus the underflow
flag never needs to be set for addition. That’s because if traps are not enabled,
then no exception is raised. And if traps are enabled, the value of the underflow
flag is undefined, so again it doesn’t need to be set.

One final subtlety should be mentioned concerning underflow. When there is
no underflow trap handler, the result of an operation on p-bit numbers that causes
an underflow is a denormal number with p − 1 or fewer bits of precision. When
traps are enabled, the trap handler is provided with the result of the operation
rounded to p bits and with the exponent wrapped around. Now there is a potential
double-rounding problem. If the trap handler wants to return the denormal result,
it can’t just round its argument, because that might lead to a double-rounding
error. Thus, the trap handler must be passed at least one extra bit of information if
it is to be able to deliver the correctly rounded result.

The previous section showed that many steps go into implementing floating-point
operations. However, each floating-point operation eventually reduces to an inte-
ger operation. Thus, increasing the speed of integer operations will also lead to
faster floating point.

Integer addition is the simplest operation and the most important. Even for
programs that don’t do explicit arithmetic, addition must be performed to incre-
ment the program counter and to calculate addresses. Despite the simplicity of
addition, there isn’t a single best way to perform high-speed addition. We will
discuss three techniques that are in current use: carry-lookahead, carry-skip, and
carry-select.

H.8 Speeding Up Integer Addition

H-38 � Appendix H Computer Arithmetic

Carry-Lookahead

An n-bit adder is just a combinational circuit. It can therefore be written by a
logic formula whose form is a sum of products and can be computed by a circuit
with two levels of logic. How do you figure out what this circuit looks like? From
Equation H.2.1 (page H-3) the formula for the ith sum can be written as

H.8.1 si = ai bi ci + ai bi ci + ai bi ci + ai bi ci

where ci is both the carry-in to the ith adder and the carry-out from the (i−1)-st
adder.

The problem with this formula is that although we know the values of ai and
bi—they are inputs to the circuit—we don’t know ci. So our goal is to write ci in
terms of ai and bi. To accomplish this, we first rewrite Equation H.2.2 (page H-3)
as

H.8.2 ci = gi –1+ p i –1c i –1, g i –1= a i –1b i –1, p i –1 = a i –1 + b i –1

Here is the reason for the symbols p and g: If gi–1 is true, then ci is certainly
true, so a carry is generated. Thus, g is for generate. If pi–1 is true, then if ci–1 is
true, it is propagated to ci. Start with Equation H.8.1 and use Equation H.8.2 to
replace ci with gi–1 + pi–1ci–1. Then, use Equation H.8.2 with i − 1 in place of i to
replace ci–1 with ci–2, and so on. This gives the result

H.8.3 ci = g i–1 + p i–1 gi–2 + p i–1 pi–2gi−3 + ⋅⋅⋅ + p i–1 pi–2 ⋅⋅⋅ p1 g0 + p i–1 pi–2 ⋅⋅⋅ p1p0c0

An adder that computes carries using Equation H.8.3 is called a carry-
lookahead adder, or CLA. A CLA requires one logic level to form p and g, two
levels to form the carries, and two for the sum, for a grand total of five logic lev-
els. This is a vast improvement over the 2n levels required for the ripple-carry
adder.

Unfortunately, as is evident from Equation H.8.3 or from Figure H.14, a
carry-lookahead adder on n bits requires a fan-in of n + 1 at the OR gate as well as
at the rightmost AND gate. Also, the pn–1 signal must drive n AND gates. In addi-
tion, the rather irregular structure and many long wires of Figure H.14 make it
impractical to build a full carry-lookahead adder when n is large.

However, we can use the carry-lookahead idea to build an adder that has
about log2n logic levels (substantially fewer than the 2n required by a ripple-carry
adder) and yet has a simple, regular structure. The idea is to build up the p’s and
g’s in steps. We have already seen that

c1 = g0 + c0p0

This says there is a carry-out of the 0th position (c1) either if there is a carry gen-
erated in the 0th position or if there is a carry into the 0th position and the carry
propagates. Similarly,

c2 = G01 + P01c0

H.8 Speeding Up Integer Addition � H-39

G01 means there is a carry generated out of the block consisting of the first two
bits. P01 means that a carry propagates through this block. P and G have the fol-
lowing logic equations:

 G01 = g1 + p1g0

 P01 = p1p0

More generally, for any j with i < j, j + 1 < k, we have the recursive relations

H.8.4 ck+1 = Gik + Pikci

H.8.5 Gik = Gj+1,k + Pj+1,kGij

H.8.6 Pik = Pij Pj+1,k

Equation H.8.5 says that a carry is generated out of the block consisting of bits i
through k inclusive if it is generated in the high-order part of the block (j + 1, k)
or if it is generated in the low-order part of the block (i,j) and then propagated
through the high part. These equations will also hold for i ≤ j < k if we set Gii = gi
and Pii = pi.

Example Express P03 and G03 in terms of p’s and g’s.

Answer Using Equation H.8.6, P03 = P01P23 = P00P11P22P33. Since Pii = pi, P03 =
p0p1p2p3. For G03, Equation H.8.5 says G03 = G23 + P23G01 = (G33 + P33G22) +
(P22P33)(G11 + P11G00) = g3 + p3g2 + p3 p2 g1 + p3 p2 p1g0.

Figure H.14 Pure carry-lookahead circuit for computing the carry-out cn of an n-bit
adder.

g
n–1 p

n–1

c
n

g
n–2

p
n–2

g
n–3

p
1

g
0

p
0

c
0

c
n
= g

n–1
+ p

n–1
g

n–2
+ . . . + p

n–1
p

n–2
. . . p

1
g

0

+ p

n–1
p

n–2
. . . p

0
c

0

H-40 � Appendix H Computer Arithmetic

With these preliminaries out of the way, we can now show the design of a
practical CLA. The adder consists of two parts. The first part computes various
values of P and G from pi and gi, using Equations H.8.5 and H.8.6; the second
part uses these P and G values to compute all the carries via Equation H.8.4. The
first part of the design is shown in Figure H.15. At the top of the diagram, input
numbers a7. . . a0 and b7. . . b0 are converted to p’s and g’s using cells of type 1.
Then various P’s and G’s are generated by combining cells of type 2 in a binary
tree structure. The second part of the design is shown in Figure H.16. By feeding
c0 in at the bottom of this tree, all the carry bits come out at the top. Each cell
must know a pair of (P,G) values in order to do the conversion, and the value it
needs is written inside the cells. Now compare Figures H.15 and H.16. There is a
one-to-one correspondence between cells, and the value of (P,G) needed by the
carry-generating cells is exactly the value known by the corresponding (P,G)-
generating cells. The combined cell is shown in Figure H.17. The numbers to be
added flow into the top and downward through the tree, combining with c0 at the
bottom and flowing back up the tree to form the carries. Note that one thing is
missing from Figure H.17: a small piece of extra logic to compute c8 for the
carry-out of the adder.

The bits in a CLA must pass through about log2 n logic levels, compared with
2n for a ripple-carry adder. This is a substantial speed improvement, especially
for a large n. Whereas the ripple-carry adder had n cells, however, the CLA has

Figure H.15 First part of carry-lookahead tree. As signals flow from the top to the
bottom, various values of P and G are computed.

1 1 1 1 1 1

1

1 1

2

2

2

2

2

a
7

b
7

a
6

b
6

a
5

b
5

a
4

b
4

a
3

b
3

a
2

b
2

a
1

b
1

a
0

b
0

p
0

g
0

p
1

g
1

g
7

p
7

G
6, 7

P
6, 7

G
4, 5

P
4, 5

G
2, 3

P
2, 3

G
0 ,1

P
0 ,1

G
4, 7

P
4, 7

G
0, 3

P
0, 3

G
0, 7

P
0, 7

g
i
 = a

i
b

i
p

i
 = a

i
 + b

i
G

i, k
 = G

j+1, k
 + P

j+1, k
 G

i, j

P
i, k

 = P
i, j

 P
j+1,k

P
i, j

G
i, j

G
j+1, k

 a
i

b
i

P
j+1, k

2 2

2

H.8 Speeding Up Integer Addition � H-41

Figure H.16 Second part of carry-lookahead tree. Signals flow from the bottom to
the top, combining with P and G to form the carries.

Figure H.17 Complete carry-lookahead tree adder. This is the combination of Figures
H.15 and H.16. The numbers to be added enter at the top, flow to the bottom to com-
bine with c 0, and then flow back up to compute the sum bits.

c
7

c
6

c
5

c
4

c
3

c
2

c
1

c
0

p
0

g
0

p
2

g
2

P 0, 1

G
0, 1

p
4

g
4

p
6

g
6

c
6

c
4

c
2

c
0

c
0

c
4

c
0

c
j+1

= G
i j

+ P
i j

c
i

c
i

P
i, j

G
i, j

c
i

p
4, 5

G
4, 5

P
0, 3

G
0, 3

A A

A

B

B

s
7

a
7

b
7

c
7

A A A A A A

B

B B B

+ +

B

s
1

a
1

b
1

s
0

a
0

b
0

c
6 c

5
c

4
c

3
c

2
c

1
c

0

c
0

c
0

P
0, 3

G
0, 3

c
4

c
0

s
i a

i
b

i

s
i
= a

i
p

i
= a

i
+ b

i
g

i
= a

i
b

i

g
i

p
i

c
i G

i, k
P

i, k
c

i

c
i

P
i j

G
ij

c
j +1

P
j +1,k

G
j +1,k

b
i

c
i

c
2

c
4c

6

B

H-42 � Appendix H Computer Arithmetic

2n cells, although in our layout they will take n log n space. The point is that a
small investment in size pays off in a dramatic improvement in speed.

A number of technology-dependent modifications can improve CLAs. For
example, if each node of the tree has three inputs instead of two, then the height
of the tree will decrease from log2 n to log3 n. Of course, the cells will be more
complex and thus might operate more slowly, negating the advantage of the
decreased height. For technologies where rippling works well, a hybrid design
might be better. This is illustrated in Figure H.18. Carries ripple between adders
at the top level, while the “B” boxes are the same as those in Figure H.17. This
design will be faster if the time to ripple between four adders is faster than the
time it takes to traverse a level of “B” boxes. (To make the pattern more clear,
Figure H.18 shows a 16-bit adder, so the 8-bit adder of Figure H.17 corresponds
to the right half of Figure H.18.)

Carry-Skip Adders

A carry-skip adder sits midway between a ripple-carry adder and a carry-
lookahead adder, both in terms of speed and cost. (A carry-skip adder is not
called a CSA, as that name is reserved for carry-save adders.) The motivation for
this adder comes from examining the equations for P and G. For example,

P03 = p0 p1 p2 p3

G03 = g3 + p3 g2
 + p3 p2 g1 + p3 p2 p1 g0

Computing P is much simpler than computing G, and a carry-skip adder only
computes the P’s. Such an adder is illustrated in Figure H.19. Carries begin rip-
pling simultaneously through each block. If any block generates a carry, then the
carry-out of a block will be true, even though the carry-in to the block may not be

Figure H.18 Combination of CLA and ripple-carry adder. In the top row, carries ripple
within each group of four boxes.

c
15

c
14

c
13

c
12

P
12, 15

P
8, 15

c
8

c
0

P
0, 7

c
8

c
4

c
0

c
0

G
0, 3

P
0, 3

c
1

c
2

c
3

C

B

B

C C C

B

H.8 Speeding Up Integer Addition � H-43

correct yet. If at the start of each add operation the carry-in to each block is 0,
then no spurious carry-outs will be generated. Thus, the carry-out of each block
can thus be thought of as if it were the G signal. Once the carry-out from the
least-significant block is generated, it not only feeds into the next block, but is
also fed through the AND gate with the P signal from that next block. If the carry-
out and P signals are both true, then the carry skips the second block and is ready
to feed into the third block, and so on. The carry-skip adder is only practical if the
carry-in signals can be easily cleared at the start of each operation—for example,
by precharging in CMOS.

To analyze the speed of a carry-skip adder, let’s assume that it takes 1 time
unit for a signal to pass through two logic levels. Then it will take k time units for
a carry to ripple across a block of size k, and it will take 1 time unit for a carry to
skip a block. The longest signal path in the carry-skip adder starts with a carry
being generated at the 0th position. If the adder is n bits wide, then it takes k time
units to ripple through the first block, n/k − 2 time units to skip blocks, and k
more to ripple through the last block. To be specific: if we have a 20-bit adder
broken into groups of 4 bits, it will take 4 + (20/4 − 2) + 4 = 11 time units to per-
form an add. Some experimentation reveals that there are more efficient ways
to divide 20 bits into blocks. For example, consider five blocks with the least-
significant 2 bits in the first block, the next 5 bits in the second block, followed by
blocks of size 6, 5, and 2. Then the add time is reduced to 9 time units. This illus-
trates an important general principle. For a carry-skip adder, making the interior
blocks larger will speed up the adder. In fact, the same idea of varying the block
sizes can sometimes speed up other adder designs as well. Because of the large
amount of rippling, a carry-skip adder is most appropriate for technologies where
rippling is fast.

Carry-Select Adder

A carry-select adder works on the following principle: Two additions are per-
formed in parallel, one assuming the carry-in is 0 and the other assuming the
carry-in is 1. When the carry-in is finally known, the correct sum (which has been
precomputed) is simply selected. An example of such a design is shown in Figure
H.20. An 8-bit adder is divided into two halves, and the carry-out from the lower
half is used to select the sum bits from the upper half. If each block is computing
its sum using rippling (a linear time algorithm), then the design in Figure H.20 is

Figure H.19 Carry-skip adder. This is a 20-bit carry-skip adder (n = 20) with each block 4-bits wide (k = 4).

a
3

b
3

a
2

b
2

a
1

b
1

a
0

b
0

c
4

c
0

P
4, 7

c
8

c
12

P
12, 15 P

8, 11

a
19

a
18

b
19

b
18

c
16

c
20

H-44 � Appendix H Computer Arithmetic

twice as fast at 50% more cost. However, note that the c4 signal must drive many
muxes, which may be very slow in some technologies. Instead of dividing the
adder into halves, it could be divided into quarters for a still further speedup. This
is illustrated in Figure H.21. If it takes k time units for a block to add k-bit num-
bers, and if it takes 1 time unit to compute the mux input from the two carry-out
signals, then for optimal operation each block should be 1 bit wider than the next,
as shown in Figure H.21. Therefore, as in the carry-skip adder, the best design
involves variable-size blocks.

As a summary of this section, the asymptotic time and space requirements for
the different adders are given in Figure H.22. (The times for carry-skip and carry-
select come from a careful choice of block size. See Exercise H.26 for the carry-
skip adder.) These different adders shouldn’t be thought of as disjoint choices,
but rather as building blocks to be used in constructing an adder. The utility of
these different building blocks is highly dependent on the technology used. For
example, the carry-select adder works well when a signal can drive many muxes,
and the carry-skip adder is attractive in technologies where signals can be cleared
at the start of each operation. Knowing the asymptotic behavior of adders is use-

Figure H.20 Simple carry-select adder. At the same time that the sum of the low-
order 4 bits is being computed, the high-order bits are being computed twice in paral-
lel: once assuming that c4 = 0 and once assuming c4 = 1.

Figure H.21 Carry-select adder. As soon as the carry-out of the rightmost block is
known, it is used to select the other sum bits.

c
0

s
0

s
1

s
2

s
3

c
4

s
4

a
4

b
4

s
5

s
6

s
7

1

0
a

3
b

3
a

2
b

2
a

1
b

1
a

0
 b

0

a
7
 b

7
a

4
 b

4

c
13

c
8

c
4 c

0

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

1

00

1

s
10

s
11

s
12

s
13

c
13

c
8

1

s
14

s
15

s
16

s
17

s
18

0

H.9 Speeding Up Integer Multiplication and Division � H-45

ful in understanding them, but relying too much on that behavior is a pitfall. The
reason is that asymptotic behavior is only important as n grows very large. But n
for an adder is the bits of precision, and double precision today is the same as it
was 20 years ago—about 53 bits. Although it is true that as computers get faster,
computations get longer—and thus have more rounding error, which in turn
requires more precision—this effect grows very slowly with time.

The multiplication and division algorithms presented in Section H.2 are fairly
slow, producing 1 bit per cycle (although that cycle might be a fraction of the
CPU instruction cycle time). In this section we discuss various techniques for
higher-performance multiplication and division, including the division algorithm
used in the Pentium chip.

Shifting over Zeros

Although the technique of shifting over zeros is not currently used much, it is
instructive to consider. It is distinguished by the fact that its execution time is
operand dependent. Its lack of use is primarily attributable to its failure to offer
enough speedup over bit-at-a-time algorithms. In addition, pipelining, synchroni-
zation with the CPU, and good compiler optimization are difficult with algo-
rithms that run in variable time. In multiplication, the idea behind shifting over
zeros is to add logic that detects when the low-order bit of the A register is 0 (see
Figure H.2(a) on page H-4) and, if so, skips the addition step and proceeds
directly to the shift step—hence the term shifting over zeros.

What about shifting for division? In nonrestoring division, an ALU operation
(either an addition or subtraction) is performed at every step. There appears to be
no opportunity for skipping an operation. But think about division this way: To
compute a/b, subtract multiples of b from a, and then report how many subtrac-
tions were done. At each stage of the subtraction process the remainder must fit
into the P register of Figure H.2(b) (page H-4). In the case when the remainder is
a small positive number, you normally subtract b; but suppose instead you only

Adder Time Space

Ripple O(n) O(n)

CLA O(log n) O(n log n)

Carry-skip O() O(n)

Carry-select O() O(n)

Figure H.22 Asymptotic time and space requirements for four different types of
adders.

n

n

H.9 Speeding Up Integer Multiplication and Division

H-46 � Appendix H Computer Arithmetic

shifted the remainder and subtracted b the next time. As long as the remainder
was sufficiently small (its high-order bit 0), after shifting it still would fit into the
P register, and no information would be lost. However, this method does require
changing the way we keep track of the number of times b has been subtracted
from a. This idea usually goes under the name of SRT division, for Sweeney,
Robertson, and Tocher, who independently proposed algorithms of this nature.
The main extra complication of SRT division is that the quotient bits cannot be
determined immediately from the sign of P at each step, as they can be in ordi-
nary nonrestoring division.

More precisely, to divide a by b where a and b are n-bit numbers, load a and b
into the A and B registers, respectively, of Figure H.2 (page H-4).

SRT Division 1. If B has k leading zeros when expressed using n bits, shift all the registers left
k bits.

2. For i = 0, n − 1,

(a) If the top three bits of P are equal, set qi = 0 and shift (P,A) one bit left.

(b) If the top three bits of P are not all equal and P is negative, set qi = −1
(also written as 1), shift (P,A) one bit left, and add B.

(c) Otherwise set qi = 1, shift (P,A) one bit left, and subtract B.

End loop

3. If the final remainder is negative, correct the remainder by adding B, and cor-
rect the quotient by subtracting 1 from q0. Finally, the remainder must be
shifted k bits right, where k is the initial shift.

A numerical example is given in Figure H.23. Although we are discussing
integer division, it helps in explaining the algorithm to imagine the binary point
just left of the most-significant bit. This changes Figure H.23 from 010002/00112
to 0.10002/.00112. Since the binary point is changed in both the numerator and
denominator, the quotient is not affected. The (P,A) register pair holds the
remainder and is a two’s complement number. For example, if P contains
111102 and A = 0, then the remainder is 1.11102 = −1/8. If r is the value of the
remainder, then −1 ≤ r < 1.

Given these preliminaries, we can now analyze the SRT division algorithm.
The first step of the algorithm shifts b so that b ≥ 1/2. The rule for which ALU
operation to perform is this: If −1/4 ≤ r < 1/4 (true whenever the top three bits of
P are equal), then compute 2r by shifting (P,A) left one bit; else if r < 0 (and
hence r < −1/4, since otherwise it would have been eliminated by the first condi-
tion), then compute 2r + b by shifting and then adding, else r ≥ 1/4 and subtract b
from 2r. Using b ≥ 1/2, it is easy to check that these rules keep −1/2 ≤ r < 1/2. For
nonrestoring division, we only have r ≤ b, and we need P to be n + 1 bits wide.
But for SRT division, the bound on r is tighter, namely, −1/2 ≤ r < 1/2. Thus, we
can save a bit by eliminating the high-order bit of P (and b and the adder). In par-

H.9 Speeding Up Integer Multiplication and Division � H-47

ticular, the test for equality of the top three bits of P becomes a test on just two
bits.

The algorithm might change slightly in an implementation of SRT division.
After each ALU operation, the P register can be shifted as many places as neces-
sary to make either r ≥ 1/4 or r < −1/4. By shifting k places, k quotient bits are set
equal to zero all at once. For this reason SRT division is sometimes described as
one that keeps the remainder normalized to r ≥ 1/4.

Notice that the value of the quotient bit computed in a given step is based on
which operation is performed in that step (which in turn depends on the result of
the operation from the previous step). This is in contrast to nonrestoring divi-
sion, where the quotient bit computed in the ith step depends on the result of the
operation in the same step. This difference is reflected in the fact that when the
final remainder is negative, the last quotient bit must be adjusted in SRT divi-
sion, but not in nonrestoring division. However, the key fact about the quotient
bits in SRT division is that they can include 1. Although Figure H.23 shows the
quotient bits being stored in the low-order bits of A, an actual implementation
can’t do this because you can’t fit the three values −1, 0, 1 into one bit. Further-
more, the quotient must be converted to ordinary two’s complement in a full
adder. A common way to do this is to accumulate the positive quotient bits in
one register and the negative quotient bits in another, and then subtract the two
registers after all the bits are known. Because there is more than one way to
write a number in terms of the digits −1, 0, 1, SRT division is said to use a
redundant quotient representation.

The differences between SRT division and ordinary nonrestoring division can
be summarized as follows:

1. ALU decision rule: In nonrestoring division, it is determined by the sign of P;
in SRT, it is determined by the two most-significant bits of P.

Figure H.23 SRT division of 10002/00112. The quotient bits are shown in bold, using
the notation 1 for −1.

00000
00010

00100

01000
+ 10100

11100
11000

10000
+ 01100

11100
+ 01100

01000

1000
0000

0000

0001

0001
0010

0101

Divide 8 = 1000 by 3 = 0011. B contains 0011.
Step 1: B had two leading 0s, so shift left by 2. B now contains 1100.
Step 2.1: Top three bits are equal. This is case (a), so
 set q

0
 = 0 and shift.

Step 2.2: Top three bits not equal and P > 0 is case (c), so
 set q

1
 = 1 and shift.

 Subtract B.
Step 2.3: Top bits equal is case (a), so
 set q

2
 = 0 and shift.

Step 2.4: Top three bits unequal is case (b), so
 set q

3
 = –1 and shift.

 Add B.
Step 3. Remainder is negative so restore it and subtract 1 from q.

Must undo the shift in step 1, so right-shift by 2 to get true remainder.
 Remainder = 10, quotient = 0101 – 1 = 0010.

P A

H-48 � Appendix H Computer Arithmetic

2. Final quotient: In nonrestoring division, it is immediate from the successive
signs of P; in SRT, there are three quotient digits (1, 0, 1), and the final quo-
tient must be computed in a full n-bit adder.

3. Speed: SRT division will be faster on operands that produce zero quotient
bits.

The simple version of the SRT division algorithm given above does not offer
enough of a speedup to be practical in most cases. However, later on in this sec-
tion we will study variants of SRT division that are quite practical.

Speeding Up Multiplication with a Single Adder

As mentioned before, shifting-over-zero techniques are not used much in current
hardware. We now discuss some methods that are in widespread use. Methods
that increase the speed of multiplication can be divided into two classes: those
that use a single adder and those that use multiple adders. Let’s first discuss tech-
niques that use a single adder.

In the discussion of addition we noted that, because of carry propagation, it is
not practical to perform addition with two levels of logic. Using the cells of Fig-
ure H.17, adding two 64-bit numbers will require a trip through seven cells to
compute the P’s and G’s, and seven more to compute the carry bits, which will
require at least 28 logic levels. In the simple multiplier of Figure H.2 on page H-4,
each multiplication step passes through this adder. The amount of computation in
each step can be dramatically reduced by using carry-save adders (CSAs). A
carry-save adder is simply a collection of n independent full adders. A multiplier
using such an adder is illustrated in Figure H.24. Each circle marked “+” is a sin-
gle-bit full adder, and each box represents one bit of a register. Each addition oper-
ation results in a pair of bits, stored in the sum and carry parts of P. Since each add
is independent, only two logic levels are involved in the add—a vast improvement
over 28.

To operate the multiplier in Figure H.24, load the sum and carry bits of P with
zero and perform the first ALU operation. (If Booth recoding is used, it might be
a subtraction rather than an addition.) Then shift the low-order sum bit of P into
A, as well as shifting A itself. The n − 1 high-order bits of P don’t need to be
shifted because on the next cycle the sum bits are fed into the next lower-order
adder. Each addition step is substantially increased in speed, since each add cell
is working independently of the others, and no carry is propagated.

There are two drawbacks to carry-save adders. First, they require more hard-
ware because there must be a copy of register P to hold the carry outputs of the
adder. Second, after the last step, the high-order word of the result must be fed
into an ordinary adder to combine the sum and carry parts. One way to ac-
complish this is by feeding the output of P into the adder used to perform the
addition operation. Multiplying with a carry-save adder is sometimes called
redundant multiplication because P is represented using two registers. Since there

H.9 Speeding Up Integer Multiplication and Division � H-49

are many ways to represent P as the sum of two registers, this representation is
redundant. The term carry-propagate adder (CPA) is used to denote an adder that
is not a CSA. A propagate adder may propagate its carries using ripples, carry-
lookahead, or some other method.

Another way to speed up multiplication without using extra adders is to
examine k low-order bits of A at each step, rather than just one bit. This is often
called higher-radix multiplication. As an example, suppose that k = 2. If the pair
of bits is 00, add 0 to P; if it is 01, add B. If it is 10, simply shift b one bit left
before adding it to P. Unfortunately, if the pair is 11, it appears we would have to
compute b + 2b. But this can be avoided by using a higher-radix version of Booth
recoding. Imagine A as a base 4 number: When the digit 3 appears, change it to 1
and add 1 to the next higher digit to compensate. An extra benefit of using this
scheme is that just like ordinary Booth recoding, it works for negative as well as
positive integers (Section H.2).

The precise rules for radix-4 Booth recoding are given in Figure H.25. At the
ith multiply step, the two low-order bits of the A register contain a2i and a2i+1.
These two bits, together with the bit just shifted out (a2i–1), are used to select the
multiple of b that must be added to the P register. A numerical example is given in
Figure H.26. Another name for this multiplication technique is overlapping trip-
lets, since it looks at 3 bits to determine what multiple of b to use, whereas ordi-
nary Booth recoding looks at 2 bits.

Besides having more complex control logic, overlapping triplets also requires
that the P register be 1 bit wider to accommodate the possibility of 2b or −2b
being added to it. It is possible to use a radix-8 (or even higher) version of Booth
recoding. In that case, however, it would be necessary to use the multiple 3B as a
potential summand. Radix-8 multipliers normally compute 3B once and for all at
the beginning of a multiplication operation.

Figure H.24 Carry-save multiplier. Each circle represents a (3,2) adder working inde-
pendently. At each step, the only bit of P that needs to be shifted is the low-order sum
bit.

B

A

P

Sum bits

Carry bits

c
i

a
i

c
i+1

s
i

b
i

Shift

+ + + + + +

+

H-50 � Appendix H Computer Arithmetic

Faster Multiplication with Many Adders

If the space for many adders is available, then multiplication speed can be
improved. Figure H.27 shows a simple array multiplier for multiplying two 5-bit
numbers, using three CSAs and one propagate adder. Part (a) is a block diagram
of the kind we will use throughout this section. Parts (b) and (c) show the adder in
more detail. All the inputs to the adder are shown in (b); the actual adders with
their interconnections are shown in (c). Each row of adders in (c) corresponds to a
box in (a). The picture is “twisted” so that bits of the same significance are in the
same column. In an actual implementation, the array would most likely be laid
out as a square instead.

The array multiplier in Figure H.27 performs the same number of additions as
the design in Figure H.24, so its latency is not dramatically different from that of
a single carry-save adder. However, with the hardware in Figure H.27, multiplica-
tion can be pipelined, increasing the total throughput. On the other hand,

Low-order bits of A Last bit shifted out

2i + 1 2i 2i − 1 Multiple

0 0 0 0

0 0 1 +b

0 1 0 +b

0 1 1 +2b

1 0 0 −2b

1 0 1 −b

1 1 0 −b

1 1 1 0

Figure H.25 Multiples of b to use for radix-4 Booth recoding. For example, if the two
low-order bits of the A register are both 1, and the last bit to be shifted out of the A reg-
ister is 0, then the correct multiple is −b, obtained from the second-to-last row of the
table.

Figure H.26 Multiplication of –7 times –5 using radix-4 Booth recoding. The column
labeled L contains the last bit shifted out the right end of A.

00000
+ 11011

11011
11110

+ 01010
01000
00010

1001

1001
1110

1110
0011

Multiply –7 = 1001 times –5 = 1011. B contains 1011.
Low-order bits of A are 0, 1; L = 0, so add B.

Shift right by two bits, shifting in 1s on the left.
Low-order bits of A are 1, 0; L = 0, so add –2b.

Shift right by two bits.
Product is 35 = 0100011.

P A

0

0
1

L

H.9 Speeding Up Integer Multiplication and Division � H-51

although this level of pipelining is sometimes used in array processors, it is not
used in any of the single-chip, floating-point accelerators discussed in Section
H.10. Pipelining is discussed in general in Appendix A and by Kogge [1981] in
the context of multipliers.

Sometimes the space budgeted on a chip for arithmetic may not hold an array
large enough to multiply two double-precision numbers. In this case, a popular
design is to use a two-pass arrangement such as the one shown in Figure H.28.
The first pass through the array “retires” 5 bits of B. Then the result of this first
pass is fed back into the top to be combined with the next three summands. The
result of this second pass is then fed into a CPA. This design, however, loses the
ability to be pipelined.

Figure H.27 An array multiplier. The 5-bit number in A is multiplied by b4b3b2b1b0.
Part (a) shows the block diagram, (b) shows the inputs to the array, and (c) expands the
array to show all the adders.

b
4
A b

3
A

b
2
A b

1
A b

0
A

b
0

a
1

b
0

a
0

b
0

A

b
1

A

b
2

A

b
3

A

b
4

A

b
4

a
1

b
4

a
0

b
0

a
4 b

0
A

b
1

A

b
2

A

b
1

a
4

p
9

p
8

p
7

p
6

p
5

p
4

p
3

p
2

p
1

p
0

(a)

(b)

(c)

CSA

CSA

CSA

Propagate adder

H-52 � Appendix H Computer Arithmetic

If arrays require as many addition steps as the much cheaper arrangements in
Figures H.2 and H.24, why are they so popular? First of all, using an array has a
smaller latency than using a single adder—because the array is a combinational
circuit, the signals flow through it directly without being clocked. Although the
two-pass adder of Figure H.28 would normally still use a clock, the cycle time for
passing through k arrays can be less than k times the clock that would be needed
for designs like the ones in Figures H.2 or H.24. Second, the array is amenable to
various schemes for further speedup. One of them is shown in Figure H.29. The
idea of this design is that two adds proceed in parallel or, to put it another way,
each stream passes through only half the adders. Thus, it runs at almost twice the
speed of the multiplier in Figure H.27. This even/odd multiplier is popular in
VLSI because of its regular structure. Arrays can also be speeded up using asyn-
chronous logic. One of the reasons why the multiplier of Figure H.2 (page H-4)
needs a clock is to keep the output of the adder from feeding back into the input
of the adder before the output has fully stabilized. Thus, if the array in Figure
H.28 is long enough so that no signal can propagate from the top through the bot-
tom in the time it takes for the first adder to stabilize, it may be possible to avoid
clocks altogether. Williams et al. [1987] discuss a design using this idea, although
it is for dividers instead of multipliers.

The techniques of the previous paragraph still have a multiply time of O(n),
but the time can be reduced to log n using a tree. The simplest tree would com-
bine pairs of summands b0A ⋅⋅⋅ bn–1A, cutting the number of summands from n to
n/2. Then these n/2 numbers would be added in pairs again, reducing to n/4, and
so on, and resulting in a single sum after log n steps. However, this simple binary
tree idea doesn’t map into full (3,2) adders, which reduce three inputs to two
rather than reducing two inputs to one. A tree that does use full adders, known as
a Wallace tree, is shown in Figure H.30. When computer arithmetic units were

Figure H.28 Multipass array multiplier. Multiplies two 8-bit numbers with about half
the hardware that would be used in a one-pass design like that of Figure H.27. At the
end of the second pass, the bits flow into the CPA. The inputs used in the first pass are
marked in bold.

CSA

CPA

b
5
A

b
2
A

b
6
A

b
3
A

b
7
A

b
4
A

b
1
A b

0
A

CSA

CSA

H.9 Speeding Up Integer Multiplication and Division � H-53

built out of MSI parts, a Wallace tree was the design of choice for high-speed
multipliers. There is, however, a problem with implementing it in VLSI. If you
try to fill in all the adders and paths for the Wallace tree of Figure H.30, you will
discover that it does not have the nice, regular structure of Figure H.27. This is
why VLSI designers have often chosen to use other log n designs such as the
binary tree multiplier, which is discussed next.

The problem with adding summands in a binary tree is coming up with a (2,1)
adder that combines two digits and produces a single-sum digit. Because of car-
ries, this isn’t possible using binary notation, but it can be done with some other
representation. We will use the signed-digit representation 1, 1, and 0, which we
used previously to understand Booth’s algorithm. This representation has two
costs. First, it takes 2 bits to represent each signed digit. Second, the algorithm
for adding two signed-digit numbers ai and bi is complex and requires examining
aiai–1ai–2 and bibi–1bi–2. Although this means you must look 2 bits back, in binary
addition you might have to look an arbitrary number of bits back because of carries.

We can describe the algorithm for adding two signed-digit numbers as fol-
lows. First, compute sum and carry bits si and ci+1 using Figure H.31. Then com-
pute the final sum as si + ci. The tables are set up so that this final sum does not
generate a carry.

Figure H.29 Even/odd array. The first two adders work in parallel. Their results are fed
into the third and fourth adders, which also work in parallel, and so on.

b
2
A

b
4
A b

3
Ab

5
A

b
1
A b

0
A

CSA

CSA

b
6
A

b
7
A

CSA

CSA

CSA

CPA

CSA

H-54 � Appendix H Computer Arithmetic

Example What is the sum of the signed-digit numbers 1102 and 0012?

Answer The two low-order bits sum to 0 + 1 = 11, the next pair sums to 1 + 0 = 01, and
the high-order pair sums to 1 + 0 = 01, so the sum is 11+ 010 + 0100 = 1012.

This, then, defines a (2,1) adder. With this in hand, we can use a straightfor-
ward binary tree to perform multiplication. In the first step it adds b0A + b1A in
parallel with b2A + b3A, . . . , bn–2A + bn–1A. The next step adds the results of
these sums in pairs, and so on. Although the final sum must be run through a
carry-propagate adder to convert it from signed-digit form to two’s complement,
this final add step is necessary in any multiplier using CSAs.

To summarize, both Wallace trees and signed-digit trees are log n multipliers.
The Wallace tree uses fewer gates but is harder to lay out. The signed-digit tree
has a more regular structure, but requires 2 bits to represent each digit and has
more complicated add logic. As with adders, it is possible to combine different
multiply techniques. For example, Booth recoding and arrays can be combined.

Figure H.30 Wallace tree multiplier. An example of a multiply tree that computes a
product in 0(log n) steps.

Figure H.31 Signed-digit addition table. The leftmost sum shows that when comput-
ing 1 + 1, the sum bit is 0 and the carry bit is 1.

CSA

CSA

CSA

CSA

b
7
A b

6
A b

5
A b

4
A b

3
A b

2
A b

1
A b

0
A

CSA

CSA

Propagate adder

1
+ 1
1 0

1
+ 1
0 0

1
+ 1
1 0

0
+ 0
0 0

x

y
1

+ 0
1 1
0 1

x

y
1

+ 0
0 1
1 1

if 0 and 0
otherwise

x ≥ y ≥ if 0 and 0
otherwise

x ≥ y ≥

H.9 Speeding Up Integer Multiplication and Division � H-55

In Figure H.27 instead of having each input be biA, we could have it be bibi–1A.
To avoid having to compute the multiple 3b, we can use Booth recoding.

Faster Division with One Adder

The two techniques we discussed for speeding up multiplication with a single
adder were carry-save adders and higher-radix multiplication. However, there is a
difficulty when trying to utilize these approaches to speed up nonrestoring divi-
sion. If the adder in Figure H.2(b) on page H-4 is replaced with a carry-save
adder, then P will be replaced with two registers, one for the sum bits and one for
the carry bits (compare with the multiplier in Figure H.24). At the end of each
cycle, the sign of P is uncertain (since P is the unevaluated sum of the two regis-
ters), yet it is the sign of P that is used to compute the quotient digit and decide
the next ALU operation. When a higher radix is used, the problem is deciding
what value to subtract from P. In the paper-and-pencil method, you have to guess
the quotient digit. In binary division there are only two possibilities. We were
able to finesse the problem by initially guessing one and then adjusting the guess
based on the sign of P. This doesn’t work in higher radices because there are more
than two possible quotient digits, rendering quotient selection potentially quite
complicated: You would have to compute all the multiples of b and compare them
to P.

Both the carry-save technique and higher-radix division can be made to work
if we use a redundant quotient representation. Recall from our discussion of SRT
division (page H-46) that by allowing the quotient digits to be −1, 0, or 1, there is
often a choice of which one to pick. The idea in the previous algorithm was to
choose 0 whenever possible, because that meant an ALU operation could be
skipped. In carry-save division, the idea is that, because the remainder (which is
the value of the (P,A) register pair) is not known exactly (being stored in carry-
save form), the exact quotient digit is also not known. But thanks to the redundant
representation, the remainder doesn’t have to be known precisely in order to pick
a quotient digit. This is illustrated in Figure H.32, where the x axis represents ri,

Figure H.32 Quotient selection for radix-2 division. The x-axis represents the ith
remainder, which is the quantity in the (P,A) register pair. The y-axis shows the value of
the remainder after one additional divide step. Each bar on the right-hand graph gives
the range of ri values for which it is permissible to select the associated value of qi.

b–b

–b

b–b 0

q
i
= –1

q
i
= 0 q

i
= 1

q
i
= –1

q
i
= 0

q
i
= 1

r
i

r
i

r
i +1

 = 2r
i
– q

i
b

H-56 � Appendix H Computer Arithmetic

the remainder after i steps. The line labeled qi = 1 shows the value that ri+1 would
be if we chose qi = 1, and similarly for the lines qi = 0 and qi = −1. We can choose
any value for qi, as long as ri+1 = 2ri – qib satisfies ri+1 ≤ b. The allowable
ranges are shown in the right half of Figure H.32. This shows that you don’t need
to know the precise value of ri in order to choose a quotient digit qi. You only
need to know that r lies in an interval small enough to fit entirely within one of
the overlapping bars shown in the right half of Figure H.32.

This is the basis for using carry-save adders. Look at the high-order bits of the
carry-save adder and sum them in a propagate adder. Then use this approximation
of r (together with the divisor, b) to compute qi, usually by means of a lookup
table. The same technique works for higher-radix division (whether or not a
carry-save adder is used). The high-order bits P can be used to index a table that
gives one of the allowable quotient digits.

The design challenge when building a high-speed SRT divider is figuring out
how many bits of P and B need to be examined. For example, suppose that we
take a radix of 4, use quotient digits of 2, 1, 0, 1, 2, but have a propagate adder.
How many bits of P and B need to be examined? Deciding this involves two
steps. For ordinary radix-2 nonrestoring division, because at each stage r ≤ b,
the P buffer won’t overflow. But for radix 4, ri+1 = 4ri – qib is computed at each
stage, and if ri is near b, then 4ri will be near 4b, and even the largest quotient
digit will not bring r back to the range ri+1 ≤ b. In other words, the remainder
might grow without bound. However, restricting ri ≤ 2b/3 makes it easy to
check that ri will stay bounded.

After figuring out the bound that ri must satisfy, we can draw the diagram in
Figure H.33, which is analogous to Figure H.32. For example, the diagram shows
that if ri is between (1/12)b and (5/12)b, we can pick q = 1, and so on. Or to put it
another way, if r/b is between 1/12 and 5/12, we can pick q = 1. Suppose the

Figure H.33 Quotient selection for radix-4 division with quotient digits –2, –1, 0, 1, 2.

2b
3

–2b
3

2b
3

5b
12

b
3

b
6

b
12

0

q
i
 = –2 q

i
 = –1 q

i
 = 1q

i
 = 0 q

i
 = 2

r
i

r
i +1

= 4r
i
– q

i
b

q
i
= 2

q
i
= 1

r
i

q
i
= 0

q
i
= –2

q
i
= –1

–2b
3

r
i +1

H.9 Speeding Up Integer Multiplication and Division � H-57

divider examines 5 bits of P (including the sign bit) and 4 bits of b (ignoring the
sign, since it is always nonnegative). The interesting case is when the high bits of
P are 00011xxx⋅⋅⋅, while the high bits of b are 1001xxx⋅⋅⋅. Imagine the binary point
at the left end of each register. Since we truncated, r (the value of P concatenated
with A) could have a value from 0.00112 to 0.01002, and b could have a value
from .10012 to .10102. Thus r/b could be as small as 0.00112/.10102 or as large as
0.01002/.10012. But 0.00112/.10102 = 3/10 < 1/3 would require a quotient bit of
1, while 0.01002/.10012 = 4/9 > 5/12 would require a quotient bit of 2. In other
words, 5 bits of P and 4 bits of b aren’t enough to pick a quotient bit. It turns out
that 6 bits of P and 4 bits of b are enough. This can be verified by writing a simple
program that checks all the cases. The output of such a program is shown in Fig-
ure H.34.

 b Range of P q b Range of P q

8 −12 −7 −2 12 −18 −10 −2

8 −6 −3 −1 12 −10 −4 −1

8 −2 1 0 12 –4 3 0

8 2 5 1 12 3 9 1

8 6 11 2 12 9 17 2

9 −14 −8 −2 13 −19 −11 −2

9 −7 −3 −1 13 −10 −4 −1

9 −3 2 0 13 −4 3 0

9 2 6 1 13 3 9 1

9 7 13 2 13 10 18 2

10 −15 −9 −2 14 −20 −11 −2

10 −8 −3 −1 14 −11 −4 −1

10 −3 2 0 14 −4 3 0

10 2 7 1 14 3 10 1

10 8 14 2 14 10 19 2

11 −16 −9 −2 15 −22 −12 −2

11 −9 −3 −1 15 −12 −4 −1

11 −3 2 0 15 −5 4 0

11 2 8 1 15 3 11 1

11 8 15 2 15 11 21 2

Figure H.34 Quotient digits for radix-4 SRT division with a propagate adder. The top
row says that if the high-order 4 bits of b are 10002 = 8, and if the top 6 bits of P are
between 1101002 = −12 and 1110012 = −7, then −2 is a valid quotient digit.

H-58 � Appendix H Computer Arithmetic

Example Using 8-bit registers, compute 149/5 using radix-4 SRT division.

Answer Follow the SRT algorithm on page H-46, but replace the quotient selection rule in
step 2 with one that uses Figure H.34. See Figure H.35.

The Pentium uses a radix-4 SRT division algorithm like the one just pre-
sented, except that it uses a carry-save adder. Exercises H.34(c) and H.35 explore
this in detail. Although these are simple cases, all SRT analyses proceed in the
same way. First compute the range of ri, then plot ri against ri+1 to find the quo-
tient ranges, and finally write a program to compute how many bits are necessary.
(It is sometimes also possible to compute the required number of bits analyti-
cally.) Various details need to be considered in building a practical SRT divider.
For example, the quotient lookup table has a fairly regular structure, which means
it is usually cheaper to encode it as a PLA rather than in ROM. For more details
about SRT division, see Burgess and Williams [1995].

In this section, we will compare the Weitek 3364, the MIPS R3010, and the Texas
Instruments 8847 (see Figures H.36 and H.37). In many ways, these are ideal
chips to compare. They each implement the IEEE standard for addition, subtrac-
tion, multiplication, and division on a single chip. All were introduced in 1988
and run with a cycle time of about 40 nanoseconds. However, as we will see, they
use quite different algorithms. The Weitek chip is well described in Birman et al.

Figure H.35 Example of radix-4 SRT division. Division of 149 by 5.

P
000000000
000010010

001001010

100101010
+ 011000000

111101010
110101000

010100000
+ 101000000

111100000
+ 010100000

010000000

A
10010101
10100000

1000000

000002

000002
00020

0202

Divide 149 by 5. B contains 00000101.
Step 1:

Step 2.1:

Step 2.2:

Step 2.3:

Step 2.4:

Step 3:

Answer:

B had 5 leading 0s, so shift left by 5. B now
contains 10100000, so use b = 10 section of table.
Top 6 bits of P are 2, so
shift left by 2. From table, can pick q to be
0 or 1. Choose q

0
 = 0.

Top 6 bits of P are 9, so
shift left 2. q

1
 = 2.

Subtract 2b.
Top bits = –3, so
shift left 2. Can pick 0 or –1 for q, pick q

2
 = 0.

Top bits = –11, so
shift left 2. q

3
 = –2.

Add 2b.
Remainder is negative, so restore
by adding b and subtract 1 from q.
q = 0202 – 1 = 29.
To get remainder, undo shift in step 1 so
remainder = 010000000 >> 5 = 4.

H.10 Putting It All Together

H.10 Putting It All Together � H-59

[1990], the MIPS chip is described in less detail in Rowen, Johnson, and Ries
[1988], and details of the TI chip can be found in Darley et al. [1989].

These three chips have a number of things in common. They perform addition
and multiplication in parallel, and they implement neither extended precision nor
a remainder step operation. (Recall from Section H.6 that it is easy to implement
the IEEE remainder function in software if a remainder step instruction is avail-
able.) The designers of these chips probably decided not to provide extended pre-
cision because the most influential users are those who run portable codes, which
can’t rely on extended precision. However, as we have seen, extended precision
can make for faster and simpler math libraries.

In the summary of the three chips given in Figure H.36, note that a higher
transistor count generally leads to smaller cycle counts. Comparing the cycles/op
numbers needs to be done carefully, because the figures for the MIPS chip are
those for a complete system (R3000/3010 pair), while the Weitek and TI numbers
are for stand-alone chips and are usually larger when used in a complete system.

The MIPS chip has the fewest transistors of the three. This is reflected in the
fact that it is the only chip of the three that does not have any pipelining or hard-
ware square root. Further, the multiplication and addition operations are not com-
pletely independent because they share the carry-propagate adder that performs
the final rounding (as well as the rounding logic).

Addition on the R3010 uses a mixture of ripple, CLA, and carry-select. A
carry-select adder is used in the fashion of Figure H.20 (page H-44). Within each
half, carries are propagated using a hybrid ripple-CLA scheme of the type indi-
cated in Figure H.18 (page H-42). However, this is further tuned by varying the
size of each block, rather than having each fixed at 4 bits (as they are in Figure
H.18). The multiplier is midway between the designs of Figures H.2 (page H-4)
and H.27 (page H-51). It has an array just large enough so that output can be fed
back into the input without having to be clocked. Also, it uses radix-4 Booth

Features MIPS R3010 Weitek 3364 TI 8847

Clock cycle time (ns) 40 50 30

Size (mil2) 114,857 147,600 156,180

Transistors 75,000 165,000 180,000

Pins 84 168 207

Power (watts) 3.5 1.5 1.5

Cycles/add 2 2 2

Cycles/mult 5 2 3

Cycles/divide 19 17 11

Cycles/square root – 30 14

Figure H.36 Summary of the three floating-point chips discussed in this section. The
cycle times are for production parts available in June 1989. The cycle counts are for
double-precision operations.

H-60 � Appendix H Computer Arithmetic

Figure H.37 Chip layout for the TI 8847, MIPS R3010, and Weitek 3364. In the left-hand columns are the photomi-
crographs; the right-hand columns show the corresponding floor plans.

TI 8847

MIPS R3010

H.10 Putting It All Together � H-61

recoding and the even/odd technique of Figure H.29 (page H-53). The R3010 can
do a divide and multiply in parallel (like the Weitek chip but unlike the TI chip).
The divider is a radix-4 SRT method with quotient digits −2, −1, 0, 1, and 2, and
is similar to that described in Taylor [1985]. Double-precision division is about
four times slower than multiplication. The R3010 shows that for chips using an
O(n) multiplier, an SRT divider can operate fast enough to keep a reasonable ratio
between multiply and divide.

The Weitek 3364 has independent add, multiply, and divide units. It also uses
radix-4 SRT division. However, the add and multiply operations on the Weitek
chip are pipelined. The three addition stages are (1) exponent compare, (2) add
followed by shift (or vice versa), and (3) final rounding. Stages (1) and (3) take
only a half-cycle, allowing the whole operation to be done in two cycles, even
though there are three pipeline stages. The multiplier uses an array of the style of
Figure H.28 but uses radix-8 Booth recoding, which means it must compute 3
times the multiplier. The three multiplier pipeline stages are (1) compute 3b, (2)
pass through array, and (3) final carry-propagation add and round. Single preci-
sion passes through the array once, double precision twice. Like addition, the
latency is two cycles.

The Weitek chip uses an interesting addition algorithm. It is a variant on the
carry-skip adder pictured in Figure H.19 (page H-43). However, Pij, which is the

Figure H.37 (Continued.)

Weitek 3364

H-62 � Appendix H Computer Arithmetic

logical AND of many terms, is computed by rippling, performing one AND per rip-
ple. Thus, while the carries propagate left within a block, the value of Pij is prop-
agating right within the next block, and the block sizes are chosen so that both
waves complete at the same time. Unlike the MIPS chip, the 3364 has hardware
square root, which shares the divide hardware. The ratio of double-precision mul-
tiply to divide is 2:17. The large disparity between multiply and divide is due to
the fact that multiplication uses radix-8 Booth recoding, while division uses a
radix-4 method. In the MIPS R3010, multiplication and division use the same
radix.

The notable feature of the TI 8847 is that it does division by iteration (using
the Goldschmidt algorithm discussed in Section H.6). This improves the speed of
division (the ratio of multiply to divide is 3:11), but means that multiplication and
division cannot be done in parallel as on the other two chips. Addition has a two-
stage pipeline. Exponent compare, fraction shift, and fraction addition are done in
the first stage, normalization and rounding in the second stage. Multiplication
uses a binary tree of signed-digit adders and has a three-stage pipeline. The first
stage passes through the array, retiring half the bits; the second stage passes
through the array a second time; and the third stage converts from signed-digit
form to two’s complement. Since there is only one array, a new multiply opera-
tion can only be initiated in every other cycle. However, by slowing down the
clock, two passes through the array can be made in a single cycle. In this case, a
new multiplication can be initiated in each cycle. The 8847 adder uses a carry-
select algorithm rather than carry-lookahead. As mentioned in Section H.6, the TI
carries 60 bits of precision in order to do correctly rounded division.

These three chips illustrate the different trade-offs made by designers with
similar constraints. One of the most interesting things about these chips is the
diversity of their algorithms. Each uses a different add algorithm, as well as a dif-
ferent multiply algorithm. In fact, Booth recoding is the only technique that is
universally used by all the chips.

Fallacy Underflows rarely occur in actual floating-point application code.

Although most codes rarely underflow, there are actual codes that underflow fre-
quently. SDRWAVE [Kahaner 1988], which solves a one-dimensional wave
equation, is one such example. This program underflows quite frequently, even
when functioning properly. Measurements on one machine show that adding
hardware support for gradual underflow would cause SDRWAVE to run about
50% faster.

H.11 Fallacies and Pitfalls

H.12 Historical Perspective and References � H-63

Fallacy Conversions between integer and floating point are rare.

In fact, in spice they are as frequent as divides. The assumption that conversions
are rare leads to a mistake in the SPARC version 8 instruction set, which does not
provide an instruction to move from integer registers to floating-point registers.

Pitfall Don’t increase the speed of a floating-point unit without increasing its memory
bandwidth.

A typical use of a floating-point unit is to add two vectors to produce a third vec-
tor. If these vectors consist of double-precision numbers, then each floating-point
add will use three operands of 64 bits each, or 24 bytes of memory. The memory
bandwidth requirements are even greater if the floating-point unit can perform
addition and multiplication in parallel (as most do).

Pitfall −x is not the same as 0 − x.

This is a fine point in the IEEE standard that has tripped up some designers.
Because floating-point numbers use the sign magnitude system, there are two
zeros, +0 and −0. The standard says that 0 − 0 = +0, whereas −(0) = −0. Thus −x
is not the same as 0 − x when x = 0.

The earliest computers used fixed point rather than floating point. In “Preliminary
Discussion of the Logical Design of an Electronic Computing Instrument,”
Burks, Goldstine, and von Neumann [1946] put it like this:

There appear to be two major purposes in a “floating” decimal point system both
of which arise from the fact that the number of digits in a word is a constant fixed
by design considerations for each particular machine. The first of these purposes
is to retain in a sum or product as many significant digits as possible and the sec-
ond of these is to free the human operator from the burden of estimating and
inserting into a problem “scale factors” — multiplicative constants which serve to
keep numbers within the limits of the machine.

There is, of course, no denying the fact that human time is consumed in arranging
for the introduction of suitable scale factors. We only argue that the time so con-
sumed is a very small percentage of the total time we will spend in preparing an
interesting problem for our machine. The first advantage of the floating point is,
we feel, somewhat illusory. In order to have such a floating point, one must waste
memory capacity which could otherwise be used for carrying more digits per
word. It would therefore seem to us not at all clear whether the modest advantages
of a floating binary point offset the loss of memory capacity and the increased
complexity of the arithmetic and control circuits.

This enables us to see things from the perspective of early computer design-
ers, who believed that saving computer time and memory were more important
than saving programmer time.

H.12 Historical Perspective and References

H-64 � Appendix H Computer Arithmetic

The original papers introducing the Wallace tree, Booth recoding, SRT divi-
sion, overlapped triplets, and so on, are reprinted in Swartzlander [1990]. A good
explanation of an early machine (the IBM 360/91) that used a pipelined Wallace
tree, Booth recoding, and iterative division is in Anderson et al. [1967]. A discus-
sion of the average time for single-bit SRT division is in Freiman [1961]; this is
one of the few interesting historical papers that does not appear in Swartzlander.

The standard book of Mead and Conway [1980] discouraged the use of CLAs
as not being cost-effective in VLSI. The important paper by Brent and Kung
[1982] helped combat that view. An example of a detailed layout for CLAs can be
found in Ngai and Irwin [1985] or in Weste and Eshraghian [1993], and a more
theoretical treatment is given by Leighton [1992]. Takagi, Yasuura, and Yajima
[1985] provide a detailed description of a signed-digit tree multiplier.

Before the ascendancy of IEEE arithmetic, many different floating-point for-
mats were in use. Three important ones were used by the IBM 370, the DEC
VAX, and the Cray. Here is a brief summary of these older formats. The VAX for-
mat is closest to the IEEE standard. Its single-precision format (F format) is like
IEEE single precision in that it has a hidden bit, 8 bits of exponent, and 23 bits of
fraction. However, it does not have a sticky bit, which causes it to round halfway
cases up instead of to even. The VAX has a slightly different exponent range from
IEEE single: Emin is −128 rather than −126 as in IEEE, and Emax is 126 instead of
127. The main differences between VAX and IEEE are the lack of special values
and gradual underflow. The VAX has a reserved operand, but it works like a
signaling NaN: It traps whenever it is referenced. Originally, the VAX’s double
precision (D format) also had 8 bits of exponent. However, as this is too small for
many applications, a G format was added; like the IEEE standard, this format has
11 bits of exponent. The VAX also has an H format, which is 128 bits long.

The IBM 370 floating-point format uses base 16 rather than base 2. This
means it cannot use a hidden bit. In single precision, it has 7 bits of exponent and
24 bits (6 hex digits) of fraction. Thus, the largest representable number is
1627 = 24 × 27 = 229, compared with 228

 for IEEE. However, a number that is nor-
malized in the hexadecimal sense only needs to have a nonzero leading digit.
When interpreted in binary, the three most-significant bits could be zero. Thus,
there are potentially fewer than 24 bits of significance. The reason for using the
higher base was to minimize the amount of shifting required when adding
floating-point numbers. However, this is less significant in current machines,
where the floating-point add time is usually fixed independently of the operands.
Another difference between 370 arithmetic and IEEE arithmetic is that the 370
has neither a round digit nor a sticky digit, which effectively means that it trun-
cates rather than rounds. Thus, in many computations, the result will systemati-
cally be too small. Unlike the VAX and IEEE arithmetic, every bit pattern is a
valid number. Thus, library routines must establish conventions for what to return
in case of errors. In the IBM FORTRAN library, for example, returns 2!

Arithmetic on Cray computers is interesting because it is driven by a motiva-
tion for the highest possible floating-point performance. It has a 15-bit exponent
field and a 48-bit fraction field. Addition on Cray computers does not have a
guard digit, and multiplication is even less accurate than addition. Thinking of

4–

H.12 Historical Perspective and References � H-65

multiplication as a sum of p numbers, each 2p bits long, Cray computers drop the
low-order bits of each summand. Thus, analyzing the exact error characteristics of
the multiply operation is not easy. Reciprocals are computed using iteration, and
division of a by b is done by multiplying a times 1/b. The errors in multiplication
and reciprocation combine to make the last three bits of a divide operation
unreliable. At least Cray computers serve to keep numerical analysts on their toes!

The IEEE standardization process began in 1977, inspired mainly by W.
Kahan and based partly on Kahan’s work with the IBM 7094 at the University of
Toronto [Kahan 1968]. The standardization process was a lengthy affair, with
gradual underflow causing the most controversy. (According to Cleve Moler, vis-
itors to the United States were advised that the sights not to be missed were Las
Vegas, the Grand Canyon, and the IEEE standards committee meeting.) The stan-
dard was finally approved in 1985. The Intel 8087 was the first major commercial
IEEE implementation and appeared in 1981, before the standard was finalized. It
contains features that were eliminated in the final standard, such as projective
bits. According to Kahan, the length of double-extended precision was based on
what could be implemented in the 8087. Although the IEEE standard was not
based on any existing floating-point system, most of its features were present in
some other system. For example, the CDC 6600 reserved special bit patterns for
INDEFINITE and INFINITY, while the idea of denormal numbers appears in
Goldberg [1967] as well as in Kahan [1968]. Kahan was awarded the 1989 Turing
prize in recognition of his work on floating point.

Although floating point rarely attracts the interest of the general press, news-
papers were filled with stories about floating-point division in November 1994. A
bug in the division algorithm used on all of Intel’s Pentium chips had just come to
light. It was discovered by Thomas Nicely, a math professor at Lynchburg Col-
lege in Virginia. Nicely found the bug when doing calculations involving recipro-
cals of prime numbers. News of Nicely’s discovery first appeared in the press on
the front page of the November 7 issue of Electronic Engineering Times. Intel’s
immediate response was to stonewall, asserting that the bug would only affect
theoretical mathematicians. Intel told the press, “This doesn’t even qualify as an
errata . . . even if you’re an engineer, you’re not going to see this.”

Under more pressure, Intel issued a white paper, dated November 30, explain-
ing why they didn’t think the bug was significant. One of their arguments was
based on the fact that if you pick two floating-point numbers at random and
divide one into the other, the chance that the resulting quotient will be in error is
about 1 in 9 billion. However, Intel neglected to explain why they thought that the
typical customer accessed floating-point numbers randomly.

Pressure continued to mount on Intel. One sore point was that Intel had
known about the bug before Nicely discovered it, but had decided not to make it
public. Finally, on December 20, Intel announced that they would uncondition-
ally replace any Pentium chip that used the faulty algorithm and that they would
take an unspecified charge against earnings, which turned out to be $300 million.

The Pentium uses a simple version of SRT division as discussed in Section
H.9. The bug was introduced when they converted the quotient lookup table to a
PLA. Evidently there were a few elements of the table containing the quotient

H-66 � Appendix H Computer Arithmetic

digit 2 that Intel thought would never be accessed, and they optimized the PLA
design using this assumption. The resulting PLA returned 0 rather than 2 in these
situations. However, those entries were really accessed, and this caused the divi-
sion bug. Even though the effect of the faulty PLA was to cause 5 out of 2048
table entries to be wrong, the Pentium only computes an incorrect quotient 1 out
of 9 billion times on random inputs. This is explored in Exercise H.34.

References

Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers [1967]. “The IBM
System/360 Model 91: Floating-point execution unit,” IBM J. Research and Develop-
ment 11, 34–53. Reprinted in Swartzlander [1990].
Good description of an early high-performance floating-point unit that used a pipe-
lined Wallace tree multiplier and iterative division.

Bell, C. G., and A. Newell [1971]. Computer Structures: Readings and Examples,
McGraw-Hill, New York.

Birman, M., A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and J. Barnes [1990].
“Developing the WRL3170/3171 SPARC floating-point coprocessors,” IEEE Micro
10:1, 55–64.
These chips have the same floating-point core as the Weitek 3364, and this paper has
a fairly detailed description of that floating-point design.

Brent, R. P., and H. T. Kung [1982]. “A regular layout for parallel adders,” IEEE Trans.
on Computers C-31, 260–264.
This is the paper that popularized CLAs in VLSI.

Burgess, N., and T. Williams [1995]. “Choices of operand truncation in the SRT division
algorithm,” IEEE Trans. on Computers 44:7.
Analyzes how many bits of divisor and remainder need to be examined in SRT division.

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of
the logical design of an electronic computing instrument,” Report to the U.S. Army
Ordnance Department, p. 1; also appears in Papers of John von Neumann, W. Aspray
and A. Burks, eds., MIT Press, Cambridge, Mass., and Tomash Publishers, Los Ange-
les, 1987, 97–146.

Cody, W. J., J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R. Karpinski,
J. Palmer, F. N. Ris, and D. Stevenson [1984]. “A proposed radix- and word-length-
independent standard for floating-point arithmetic,” IEEE Micro 4:4, 86–100.
Contains a draft of the 854 standard, which is more general than 754. The signifi-
cance of this article is that it contains commentary on the standard, most of which is
equally relevant to 754. However, be aware that there are some differences between
this draft and the final standard.

Coonen, J. [1984]. Contributions to a Proposed Standard for Binary Floating-Point Arith-
metic, Ph.D. thesis, Univ. of Calif., Berkeley.
The only detailed discussion of how rounding modes can be used to implement effi-
cient binary decimal conversion.

Darley, H. M., et al. [1989]. “Floating point/integer processor with divide and square root
functions,” U.S. Patent 4,878,190, October 31, 1989.
Pretty readable as patents go. Gives a high-level view of the TI 8847 chip, but doesn’t
have all the details of the division algorithm.

H.12 Historical Perspective and References � H-67

Demmel, J. W., and X. Li [1994]. “Faster numerical algorithms via exception handling,”
IEEE Trans. on Computers 43:8, 983–992.
A good discussion of how the features unique to IEEE floating point can improve the
performance of an important software library.

Freiman, C. V. [1961]. “Statistical analysis of certain binary division algorithms,” Proc.
IRE 49:1, 91–103.
Contains an analysis of the performance of shifting-over-zeros SRT division algorithm.

Goldberg, D. [1991]. “What every computer scientist should know about floating-point
arithmetic,” Computing Surveys 23:1, 5–48.
Contains an in-depth tutorial on the IEEE standard from the software point of view.

Goldberg, I. B. [1967]. “27 bits are not enough for 8-digit accuracy,” Comm. ACM 10:2,
105–106.
This paper proposes using hidden bits and gradual underflow.

Gosling, J. B. [1980]. Design of Arithmetic Units for Digital Computers, Springer-Verlag,
New York.
A concise, well-written book, although it focuses on MSI designs.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky [1984]. Computer Organization, 2nd
ed., McGraw-Hill, New York.
Introductory computer architecture book with a good chapter on computer arithmetic.

Hwang, K. [1979]. Computer Arithmetic: Principles, Architecture, and Design, Wiley,
New York.
This book contains the widest range of topics of the computer arithmetic books.

IEEE [1985]. “IEEE standard for binary floating-point arithmetic,” SIGPLAN Notices
22:2, 9–25.
IEEE 754 is reprinted here.

Kahan, W. [1968]. “7094-II system support for numerical analysis,” SHARE Secretarial
Distribution SSD-159.
This system had many features that were incorporated into the IEEE floating-point
standard.

Kahaner, D. K. [1988]. “Benchmarks for ‘real’ programs,” SIAM News (November).
The benchmark presented in this article turns out to cause many underflows.

Knuth, D. [1981]. The Art of Computer Programming, vol. II, 2nd ed., Addison-Wesley,
Reading, Mass.
Has a section on the distribution of floating-point numbers.

Kogge, P. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.
Has a brief discussion of pipelined multipliers.

Kohn, L., and S.-W. Fu [1989]. “A 1,000,000 transistor microprocessor,” IEEE Int’l
Solid-State Circuits Conf., 54–55.
There are several articles about the i860, but this one contains the most details about
its floating-point algorithms.

Koren, I. [1989]. Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, N.J.
Leighton, F. T. [1992]. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes, Morgan Kaufmann, San Francisco.
This is an excellent book, with emphasis on the complexity analysis of algorithms.
Section 1.2.1 has a nice discussion of carry-lookahead addition on a tree.

H-68 � Appendix H Computer Arithmetic

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer multiplication
and division on the HP Precision architecture,” IEEE Trans. on Computers 37:8, 980–
990.
Gives rationale for the integer- and divide-step instructions in the Precision architecture.

Markstein, P. W. [1990]. “Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor,” IBM J. of Research and Development 34:1, 111–119.
Explains how to use fused muliply-add to compute correctly rounded division and
square root.

Mead, C., and L. Conway [1980]. Introduction to VLSI Systems, Addison-Wesley, Read-
ing, Mass.

Montoye, R. K., E. Hokenek, and S. L. Runyon [1990]. “Design of the IBM RISC System/
6000 floating-point execution,” IBM J. of Research and Development 34:1, 59–70.
Describes one implementation of fused multiply-add.

Ngai, T.-F., and M. J. Irwin [1985]. “Regular, area-time efficient carry-lookahead adders,”
Proc. Seventh IEEE Symposium on Computer Arithmetic, 9–15.
Describes a CLA like that of Figure H.17, where the bits flow up and then come back
down.

Patterson, D. A., and J. L. Hennessy [1994]. Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufmann, San Francisco.
Chapter 4 is a gentler introduction to the first third of this appendix.

Peng, V., S. Samudrala, and M. Gavrielov [1987]. “On the implementation of shifters,
multipliers, and dividers in VLSI floating point units,” Proc. Eighth IEEE Symposium
on Computer Arithmetic, 95–102.
Highly recommended survey of different techniques actually used in VLSI designs.

Rowen, C., M. Johnson, and P. Ries [1988]. “The MIPS R3010 floating-point coproces-
sor,” IEEE Micro, 53–62 (June).

Santoro, M. R., G. Bewick, and M. A. Horowitz [1989]. “Rounding algorithms for IEEE
multipliers,” Proc. Ninth IEEE Symposium on Computer Arithmetic, 176–183.
A very readable discussion of how to efficiently implement rounding for floating-point
multiplication.

Scott, N. R. [1985]. Computer Number Systems and Arithmetic, Prentice Hall, Englewood
Cliffs, N.J.

Swartzlander, E., ed. [1990]. Computer Arithmetic, IEEE Computer Society Press, Los
Alamitos, Calif.
A collection of historical papers in two volumes.

Takagi, N., H. Yasuura, and S. Yajima [1985].“High-speed VLSI multiplication algorithm
with a redundant binary addition tree,” IEEE Trans. on Computers C-34:9, 789–796.
A discussion of the binary tree signed multiplier that was the basis for the design used
in the TI 8847.

Taylor, G. S. [1981]. “Compatible hardware for division and square root,” Proc. Fifth
IEEE Symposium on Computer Arithmetic, 127–134.
Good discussion of a radix-4 SRT division algorithm.

Taylor, G. S. [1985]. “Radix 16 SRT dividers with overlapped quotient selection stages,”
Proc. Seventh IEEE Symposium on Computer Arithmetic, 64–71.
Describes a very sophisticated high-radix division algorithm.

Weste, N., and K. Eshraghian [1993]. Principles of CMOS VLSI Design: A Systems Per-
spective, 2nd ed., Addison-Wesley, Reading, Mass.
This textbook has a section on the layouts of various kinds of adders.

Exercises � H-69

Williams, T. E., M. Horowitz, R. L. Alverson, and T. S. Yang [1987]. “A self-timed chip
for division,” Advanced Research in VLSI, Proc. 1987 Stanford Conf., MIT Press,
Cambridge, Mass.
Describes a divider that tries to get the speed of a combinational design without using
the area that would be required by one.

H.1 [12] <H.2> Using n bits, what is the largest and smallest integer that can be repre-
sented in the two’s complement system?

H.2 [20/25] <H.2> In the subsection “Signed Numbers” (page H-7), it was stated that
two’s complement overflows when the carry into the high-order bit position is
different from the carry-out from that position.

a. [20] <H.2> Give examples of pairs of integers for all four combinations of
carry-in and carry-out. Verify the rule stated above.

b. [25] <H.2> Explain why the rule is always true.

H.3 [12] <H.2> Using 4-bit binary numbers, multiply −8 × −8 using Booth recoding.

H.4 [15] <H.2> Equations H.2.1 and H.2.2 are for adding two n-bit numbers. Derive
similar equations for subtraction, where there will be a borrow instead of a carry.

H.5 [25] <H.2> On a machine that doesn’t detect integer overflow in hardware, show
how you would detect overflow on a signed addition operation in software.

H.6 [15/15/20] <H.3> Represent the following numbers as single-precision and
double-precision IEEE floating-point numbers.

a. [15] <H.3> 10.

b. [15] <H.3> 10.5.

c. [20] <H.3> 0.1.

H.7 [12/12/12/12/12] <H.3> Below is a list of floating-point numbers. In single preci-
sion, write down each number in binary, in decimal, and give its representation in
IEEE arithmetic.

a. [12] <H.3> The largest number less than 1.

b. [12] <H.3> The largest number.

c. [12] <H.3> The smallest positive normalized number.

d. [12] <H.3> The largest denormal number.

e. [12] <H.3> The smallest positive number.

H.8 [15] <H.3> Is the ordering of nonnegative floating-point numbers the same as
integers when denormalized numbers are also considered?

H.9 [20] <H.3> Write a program that prints out the bit patterns used to represent
floating-point numbers on your favorite computer. What bit pattern is used for
NaN?

Exercises

H-70 � Appendix H Computer Arithmetic

H.10 [15] <H.4> Using p = 4, show how the binary floating-point multiply algorithm
computes the product of 1.875 × 1.875.

H.11 [12/10] <H.4> Concerning the addition of exponents in floating-point multiply:

a. [12] <H.4> What would the hardware that implements the addition of expo-
nents look like?

b. [10] <H.4> If the bias in single precision were 129 instead of 127, would
addition be harder or easier to implement?

H.12 [15/12] <H.4> In the discussion of overflow detection for floating-point multipli-
cation, it was stated that (for single precision) you can detect an overflowed expo-
nent by performing exponent addition in a 9-bit adder.

a. [15] <H.4> Give the exact rule for detecting overflow.

b. [12] <H.4> Would overflow detection be any easier if you used a 10-bit adder
instead?

H.13 [15/10] <H.4> Floating-point multiplication:

a. [15] <H.4> Construct two single-precision floating-point numbers whose
product doesn’t overflow until the final rounding step.

b. [10] <H.4> Is there any rounding mode where this phenomenon cannot
occur?

H.14 [15] <H.4> Give an example of a product with a denormal operand but a normal-
ized output. How large was the final shifting step? What is the maximum possible
shift that can occur when the inputs are double-precision numbers?

H.15 [15] <H.5> Use the floating-point addition algorithm on page H-23 to compute
1.0102 − .10012 (in 4-bit precision) .

H.16 [10/15/20/20/20] <H.5> In certain situations, you can be sure that a + b is exactly
representable as a floating-point number, that is, no rounding is necessary.

a. [10] <H.5> If a, b have the same exponent and different signs, explain why a
+ b is exact. This was used in the subsection “Speeding Up Addition” on
page H-25.

b. [15] <H.5> Give an example where the exponents differ by 1, a and b have
different signs, and a + b is not exact.

c. [20] <H.5> If a ≥ b ≥ 0, and the top two bits of a cancel when computing a – b,
explain why the result is exact (this fact is mentioned on page H-23).

d. [20] <H.5> If a ≥ b ≥ 0, and the exponents differ by 1, show that a − b is exact
unless the high order bit of a − b is in the same position as that of a (men-
tioned in “Speeding Up Addition,” page H-25).

e. [20] <H.5> If the result of a − b or a + b is denormal, show that the result is
exact (mentioned in the subsection “Underflow,” page H-36).

Exercises � H-71

H.17 [15/20] <H.5> Fast floating-point addition (using parallel adders) for p = 5.

a. [15] <H.5> Step through the fast addition algorithm for a + b, where a =
1.01112 and b = .110112.

b. [20] <H.5> Suppose the rounding mode is toward +∞. What complication
arises in the above example for the adder that assumes a carry-out? Suggest a
solution.

H.18 [12] <H.4, H.5> How would you use two parallel adders to avoid the final round-
up addition in floating-point multiplication?

H.19 [30/10] <H.5> This problem presents a way to reduce the number of addition
steps in floating-point addition from three to two using only a single adder.

a. [30] <H.5> Let A and B be integers of opposite signs, with a and b their mag-
nitudes. Show that the following rules for manipulating the unsigned numbers
a and b gives A + B.

1. Complement one of the operands.

2. Use end-around carry to add the complemented operand and the other
(uncomplemented) one.

3. If there was a carry-out, the sign of the result is the sign associated with the
uncomplemented operand.

4. Otherwise, if there was no carry-out, complement the result, and give it the
sign of the complemented operand.

b. [10] <H.5> Use the above to show how steps 2 and 4 in the floating-point
addition algorithm on page H-23 can be performed using only a single addi-
tion.

H.20 [20/15/20/15/20/15] <H.6> Iterative square root.

a. [20] <H.6> Use Newton’s method to derive an iterative algorithm for square
root. The formula will involve a division.

b. [15] <H.6> What is the fastest way you can think of to divide a floating-point
number by 2?

c. [20] <H.6> If division is slow, then the iterative square root routine will also
be slow. Use Newton’s method on f(x) = 1/x2 − a to derive a method that
doesn’t use any divisions.

d. [15] <H.6> Assume that the ratio division by 2 : floating-point add : floating-
point multiply is 1:2:4. What ratios of multiplication time to divide time
makes each iteration step in the method of part (c) faster than each iteration in
the method of part (a)?

e. [20] <H.6> When using the method of part (a), how many bits need to be in
the initial guess in order to get double-precision accuracy after three itera-
tions? (You may ignore rounding error.)

H-72 � Appendix H Computer Arithmetic

f. [15] <H.6> Suppose that when spice runs on the TI 8847, it spends 16.7% of
its time in the square root routine (this percentage has been measured on other
machines). Using the values in Figure H.36 and assuming three iterations,
how much slower would spice run if square root were implemented in soft-
ware using the method of part(a)?

H.21 [10/20/15/15/15] <H.6> Correctly rounded iterative division. Let a and b be
floating-point numbers with p-bit significands (p = 53 in double precision). Let q
be the exact quotient q = a/b, 1 ≤ q < 2. Suppose that q is the result of an iteration
process, that q has a few extra bits of precision, and that 0 < q − q < 2–p. For the
following, it is important that q < q, even when q can be exactly represented as a
floating-point number.

a. [10] <H.6> If x is a floating-point number, and 1 ≤ x < 2, what is the next rep-
resentable number after x?

b. [20] <H.6> Show how to compute q′ from q, where q′ has p + 1 bits of preci-
sion and q − q′  < 2–p.

c. [15] <H.6> Assuming round to nearest, show that the correctly rounded quo-
tient is either q′, q′ − 2–p, or q′ + 2–p.

d. [15] <H.6> Give rules for computing the correctly rounded quotient from q′
based on the low-order bit of q′ and the sign of a − bq′.

e. [15] <H.6> Solve part(c) for the other three rounding modes.

H.22 [15] <H.6> Verify the formula on page H-30. [Hint: If xn = x0(2 − x0b) × Πi=1, n [1
+ (1 − x0b)2i], then 2 − xnb = 2 − x0b(2 − x0b) Π[1 + (1 − x0b)2i] = 2 − [1 − (1 −
x0b)2] Π[1 + (1 − x0b)2i].]

H.23 [15] <H.7> Our example that showed that double rounding can give a different
answer from rounding once used the round-to-even rule. If halfway cases are
always rounded up, is double rounding still dangerous?

H.24 [10/10/20/20] <H.7> Some of the cases of the italicized statement in the “Preci-
sions” subsection (page H-34) aren’t hard to demonstrate.

a. [10] <H.7> What form must a binary number have if rounding to q bits fol-
lowed by rounding to p bits gives a different answer than rounding directly to
p bits?

b. [10] <H.7> Show that for multiplication of p-bit numbers, rounding to q bits
followed by rounding to p bits is the same as rounding immediately to p bits
if q ≥ 2p.

c. [20] <H.7> If a and b are p-bit numbers with the same sign, show that round-
ing a + b to q bits followed by rounding to p bits is the same as rounding
immediately to p bits if q ≥ 2p + 1.

d. [20] <H.7> Do part (c) when a and b have opposite signs.

H.25 [Discussion] <H.7> In the MIPS approach to exception handling, you need a test
for determining whether two floating-point operands could cause an exception.
This should be fast and also not have too many false positives. Can you come up

Exercises � H-73

with a practical test? The performance cost of your design will depend on the dis-
tribution of floating-point numbers. This is discussed in Knuth [1981] and the
Hamming paper in Swartzlander [1990].

H.26 [12/12/10] <H.8> Carry-skip adders.

a. [12] <H.8> Assuming that time is proportional to logic levels, how long does
it take an n-bit adder divided into (fixed) blocks of length k bits to perform an
addition?

b. [12] <H.8> What value of k gives the fastest adder?

c. [10] <H.8> Explain why the carry-skip adder takes time .

H.27 [10/15/20] <H.8> Complete the details of the block diagrams for the following
adders.

a. [10] <H.8> In Figure H.15, show how to implement the “1” and “2” boxes in
terms of AND and OR gates.

b. [15] <H.8> In Figure H.18, what signals need to flow from the adder cells in
the top row into the “C” cells? Write the logic equations for the “C” box.

c. [20] <H.8> Show how to extend the block diagram in H.17 so it will produce
the carry-out bit c8.

H.28 [15] <H.9> For ordinary Booth recoding, the multiple of b used in the ith step is
simply ai–1 − ai. Can you find a similar formula for radix-4 Booth recoding (over-
lapped triplets)?

H.29 [20] <H.9> Expand Figure H.29 in the fashion of H.27, showing the individual
adders.

H.30 [25] <H.9> Write out the analog of Figure H.25 for radix-8 Booth recoding.

H.31 [18] <H.9> Suppose that an–1. . .a1a0 and bn–1. . .b1b0 are being added in a signed-
digit adder as illustrated in the example on page H-54. Write a formula for the ith
bit of the sum, si, in terms of ai, ai–1, ai–2, bi, bi–1, and bi–2.

H.32 [15] <H.9> The text discussed radix-4 SRT division with quotient digits of −2, −1,
0, 1, 2. Suppose that 3 and −3 are also allowed as quotient digits. What relation
replaces ri ≤ 2b/3?

H.33 [25/20/30] <H.9> Concerning the SRT division table, Figure H.34:

a. [25] <H.9> Write a program to generate the results of Figure H.34.

b. [20] <H.9> Note that Figure H.34 has a certain symmetry with respect to pos-
itive and negative values of P. Can you find a way to exploit the symmetry and
only store the values for positive P?

c. [30] <H.9> Suppose a carry-save adder is used instead of a propagate adder.
The input to the quotient lookup table will be k bits of divisor and l bits of
remainder, where the remainder bits are computed by summing the top l bits
of the sum and carry registers. What are k and l? Write a program to generate
the analog of Figure H.34.

0 n()

H-74 � Appendix H Computer Arithmetic

H.34 [12/12/12]<H.9, H.12>The first several million Pentium chips produced had a
flaw that caused division to sometimes return the wrong result. The Pentium uses
a radix-4 SRT algorithm similar to the one illustrated in the example on page H-
58 (but with the remainder stored in carry-save format: see Exercise H.33(c)).
According to Intel, the bug was due to five incorrect entries in the quotient lookup
table.

a. [12] <H.9, H.12> The bad entries should have had a quotient of plus or minus
2, but instead had a quotient of 0. Because of redundancy, it’s conceivable
that the algorithm could “recover” from a bad quotient digit on later itera-
tions. Show that this is not possible for the Pentium flaw.

b. [12] <H.9, H.12> Since the operation is a floating-point divide rather than an
integer divide, the SRT division algorithm on page H-46 must be modified in
two ways. First, step 1 is no longer needed, since the divisor is already nor-
malized. Second, the very first remainder may not satisfy the proper bound
(r ≤ 2b/3 for Pentium, see page H-56). Show that skipping the very first
left shift in step 2(a) of the SRT algorithm will solve this problem.

c. [12] <H.9, H.12> If the faulty table entries were indexed by a remainder that
could occur at the very first divide step (when the remainder is the divisor),
random testing would quickly reveal the bug. This didn’t happen. What does
that tell you about the remainder values that index the faulty entries?

H.35 [12/12/12] <H.6, H.9> The discussion of the remainder-step instruction assumed
that division was done using a bit-at-a-time algorithm. What would have to
change if division were implemented using a higher-radix method?

H.36 [25] <H.9> In the array of Figure H.28, the fact that an array can be pipelined is
not exploited. Can you come up with a design that feeds the output of the bottom
CSA into the bottom CSAs instead of the top one, and that will run faster than the
arrangement of Figure H.28?

I.1

Implementation Issues for the Snooping Coherence Protocol I-2

I.2

Implementation Issues in the Distributed Directory Protocol I-6

Exercises I-12

I

Implementing

Coherence Protocols

The devil is in the details.

Classic Proverb

© 2003 Elsevier Science (USA). All rights reserved.

I-2

�

Appendix I

Implementing Coherence Protocols

The major complication in actually using the snooping coherence protocol from
Section 6.3 is that write misses are not atomic: The operation of detecting a write
miss, obtaining the bus, getting the most recent value, and updating the cache
cannot be done as if it took a single cycle. In particular, two processors cannot
both use the bus at the same time. Thus, we must decompose the write into sev-
eral steps that may be separated in time, but will still preserve correct execution.
The first step detects the miss and requests the bus. The second step acquires the
bus, places the miss on the bus, gets the data, and completes the write. Each of
these two steps is atomic, but the cache block does not become exclusive until the
second step has begun. As long as we do not change the block to exclusive or
allow the cache update to proceed before the bus is acquired, writes to the same
cache block will serialize when they reach the second step of the coherence pro-
tocol. Unfortunately, this two-step process does introduce new complications in
the protocol.

Figure I.1 shows the actual finite-state diagram for implementing coherence
for this two-step process under the assumption that a bus transaction is atomic
once the bus is acquired. This assumption simply means that the bus is not a split
transaction, and once it is acquired any requests are processed before another pro-
cessor can acquire the bus. We discuss the complexities of a split-transaction bus
shortly. In the simplest implementation, the finite-state machine in Figure I.1 is
simply replicated for each block in the cache. Since there is no interaction among
operations on different cache blocks, this replication of the controller works.
Replicating the controller is not necessary, but before we see why, let’s make sure
we understand how the finite-state controller in Figure I.1 operates.

The additional states in Figure I.1 over those in Figure 6.12 on page 559 are
all transient: The controller will leave those states when the bus is available. Four
of the states are pending write-back states that arise because in a write-back
cache when a block is replaced (or invalidated) it must be written back to the
memory. Four events can cause such a write back:

1.

 A write miss on the bus by another processor for this exclusive block.

2.

A CPU read miss that forces the exclusive block to be replaced.

3.

A CPU write miss that forces the exclusive block to be replaced.

4.

A read miss on the bus by another processor for this block.

In each of the cases the next state differs, hence there are four separate pending
write-back states with four different successor states.

Logically replicating the controller for each cache block allows correct opera-
tion if two conditions hold (in addition to our base assumption that the processor
blocks until a cache access completes):

1.

An operation on the bus for a cache block and a pending operation for a dif-
ferent cache block are noninterfering.

I.1 Implementation Issues for the Snooping Coherence
Protocol

I.1 Implementation Issues for the Snooping Coherence Protocol

�

I

-

3

2.

The controller in Figure I.1 correctly deals with the cases when a pending
operation and a bus operation are for the same block.

Figure I.1

A finite-state controller for a simple cache coherence scheme with a write-back cache.

The engine that
implements this controller must be reentrant, that is, it must handle multiple requests for different cache lines that
are overlapped in time. The diagram assumes the processor stalls until a request is completed, but other transactions
must be handled. This controller also assumes that a transition to a new state that involves a bus access does not
complete until the bus access is completed. Notice that if we did not require a processor to generate a write miss
when it transitioned from the shared to exclusive state, it might not obtain the latest value of a cache block, since
some other processor may have updated that block. In a protocol using ownership or upgrade transitions, we will
need to be able to transition out of the pending write state and restart an access if a conflicting write obtains the bus
first.

Write miss for
this block

CPU write

CPU read

CPU write hit
CPU read hit

C
P

U
 re

ad
 m

is
s

CPU read hit

CPU read miss

Place read
miss on bus

Bus available

C
P

U
 w

rit
e

Bus available

Place write miss on bus

B
us

 a
va

ila
bl

e

W
rit

e-
ba

ck
 d

at
a

CPU
 w

rit
e

m
iss

Bus available

B
us

 a
va

ila
bl

e
W

rit
e

m
is

s
fo

r
bl

oc
k

Write-
back
data

Read miss for block

B
us

 a
va

ila
bl

e

W
rit

e-
ba

ck
 b

lo
ck

W
rit

e-
ba

ck
 b

lo
ck

Invalid
Shared

(read only)

Exclusive
(read/write)

Pending
write back 1

Pending
read

Pending
write back 2

Pending
write back 3

Pending
write miss

Pending
write back 4

Write miss for
this block

CPU write

CPU read

CPU write hit
CPU read hit

C
P

U
 re

ad
 m

is
s

CPU read hit

CPU read miss

Place read
miss on bus

Bus available

C
P

U
 w

rit
e

Bus available

Place write miss on bus

B
us

 a
va

ila
bl

e

W
rit

e-
ba

ck
 d

at
a

CPU
 w

rit
e

m
iss

Bus available

B
us

 a
va

ila
bl

e
W

rit
e

m
is

s
fo

r
bl

oc
k

Write-
back
data

Read miss for block

B
us

 a
va

ila
bl

e

W
rit

e-
ba

ck
 b

lo
ck

W
rit

e-
ba

ck
 b

lo
ck

Invalid
Shared

(read only)

Exclusive
(read/write)

Pending
write back 1

Pending
read

Pending
write back 2

Pending
write back 3

Pending
write miss

Pending
write back 4

I-4

�

Appendix I

Implementing Coherence Protocols

The first condition is certainly true, since operations for different blocks may pro-
ceed in any order and do not affect the state transitions for the other block. To see
why the second condition is true, consider each of the pending states and what
happens if a conflicting access occurs:

�

Pending write back 1—The cache is writing back the data to eliminate it any-
way, so a read or write miss for the block has no new effect. Notice, however,
that the pending cache

must

 use the bus cycle generated by the read or write
miss to complete the write back. Otherwise, there will be no response to the
miss, since the pending cache still has the only copy of the cache block. When
it sees that the address of a miss matches the address of the block it is waiting
to write back, it recognizes that the bus is available, writes the data, and tran-
sitions its state. This applies to all the pending write-back states.

�

Pending write back 2, 3—The cache is eliminating a block in the exclusive
state, so another miss for that block simply allows the write back to occur
immediately. If the read or write miss on the bus is for the new block that the
processor is trying to share, there is no interaction, since the processor does
not yet have a copy of the block.

�

Pending write back 4—In this case the processor is surrendering an exclusive
block and simply completes the write back.

�

Pending read, pending write miss —The processor does not yet have a copy
of the block that it is waiting for, so a read or write miss for that block has no
effect. Since the waiting cache still needs to place a miss on the bus and fetch
the block, it is guaranteed to get a new copy.

With these additional states and our assumptions that the bus operates atomi-
cally, that misses always cause the state to be updated, and that the processor
blocks until an access completes, our coherence implementation is both
deadlock-free and correct. If some fairness guarantee is made for bus access, then
this controller is also free of

livelock

. Livelock occurs when some portion of a
computation cannot make progress, though other portions can. If one processor
could be denied the bus indefinitely, then that processor could never make
progress in its computation. Some guarantee of fairness on bus access prevents
this.

There is still, however, one more critical implementation detail related to the
bus transactions and what happens when a miss is processed. The key difference
between the cache coherence case and the standard uniprocessor case occurs
when the block is exclusive in some cache. Because it is a write-back cache, the
memory copy is stale. In this case, the coherence unit will retrieve the block
(called an

intervention

) and generate a write back. Since the memory does not
know the state of the block, it will attempt to respond to the request as well. Since
the data have been updated, the cache and processor will each attempt to drive the
bus with different values. To prevent this, a line is added to the bus (often called
the shared line) to coordinate the response. When the processor detects that it has
a copy in the exclusive state, it signals the memory on this line and the memory

I.1 Implementation Issues for the Snooping Coherence Protocol

�

I

-

5

aborts the transaction. When the write back occurs, the memory gets the data and
updates its copy. Since it is difficult to bound the amount of time that it can take
to snoop the local cache copy, this line is usually implemented as a wired-

OR

 with
each processor holding its input low until it knows it does not have the block in
exclusive state. The memory waits for the line to go high, indicating that no cache
has the copy in the exclusive state, before putting data on the bus.

If the bus had a split-transaction capability then we could not assume that a
response would occur immediately. In fact, implementing a split transaction with
coherence is significantly more complex. One complication arises from the fact
that we must number and track bus transactions, so that a controller knows when
a bus action is a response to its request. Another complication is dealing with
races that can arise because two operations for the same cache block could poten-
tially be outstanding simultaneously. An example illustrates this complication
best. What happens when two processors try to write a word in the same cache
block? Without split transactions, one of the operations reaches the bus first and
the other must change the state of the block to invalid and try the operation again.
Only one of the transactions is outstanding on the bus at any point.

Example

Suppose we have a split-transaction bus and no cache has a copy of a particular
block. Show how when both P1 and P2 try to write a word in that block, we can
get an incorrect result using the protocol in Figure I.1 on page I-3.

Answer

With the protocol in Figure I.1, the following sequence of events could occur:

1.

P1 places a write miss for the block on the bus. Since P2 has the data in the
invalid state, nothing occurs.

2.

P2 places its write miss on the bus; again, since no copy exists, no state
changes are needed.

3.

The memory responds to P1’s request. P1 places the block in the exclusive
state and writes the word into the block.

4.

The memory responds to P2’s request. P2 places the block in the exclusive
state and writes the word into the block.

Disaster! Two caches now have the same block in the exclusive state and memory

will be inconsistent.

How can this race be avoided? The simplest way is to use the broadcast capa-
bility of the bus. All coherence controllers track all bus accesses. In a split-
transaction bus, the transactions must be tagged with the processor identity (or a
transaction number), so that a processor can identify a reply to its request. Every
controller can keep track of the memory address of any outstanding bus requests,
since it can see the request and the corresponding reply on the bus. When the
local processor generates a miss, the controller does not place the miss request on
the bus until there are no outstanding requests for the same cache block. This will

I-6

�

Appendix I

Implementing Coherence Protocols

force P2 in the above example to wait for P1’s access to complete, allowing P1 to
place the data in the exclusive state (and write the word into the block). The miss
request from P2 will then cause P1 to do a write back and move the block to the
invalid state. Alternatively, we could have each processor buffer only its own
requests and track the responses to others. If the address of the requested block
were included in the reply, then the second processor to request the block could
ignore the reply and reissue its request.

These race conditions are what make implementing coherence even more
tricky as the interconnection mechanism becomes more sophisticated. As we will
see in the next section, such problems are slightly worse in a directory-based sys-
tem that does not have a broadcast mechanism like a bus, which can be used to
order all accesses.

One further source of complexity of a directory protocol comes from the lack of
atomicity in transactions. Several of the operations that are atomic in a bus-based
snoopy protocol cannot be atomic in a directory-based machine. For example, a
read miss, which is atomic in the snoopy protocol, cannot be atomic, since it
requires messages to be sent to remote directories and caches. In fact, if we
attempt to implement these operations in an atomic fashion in a distributed-
memory machine, we can have deadlock. Recall from Chapter 6 that a deadlock
means that the machine has reached a state from which it cannot make forward
progress. This is easy to see with an example.

Example

Show how deadlock can occur if a node treats a read miss as atomic and hence is
unable to respond to other requests until the read miss is completed.

Answer

Assume that two nodes P1 and P2 each have exclusive copies of cache blocks X1
and X2 that have different home directories. Consider the following sequence of
events shown in Figure I.2.

Events caused by P1 activity Events caused by P2 activity

P1 read miss for X2 P2 read miss for X1

Directory for X2 receives read miss and
generates a fetch that is sent to P2

Directory for X1 receives read miss and
generates a fetch that is sent to P1

Fetch arrives at P1, waits for completion
of atomic read miss

Fetch arrives at P2, waits for completion of
atomic read miss

Figure I.2

Events caused by P1 and P2 leading to deadlock.

I.2 Implementation Issues in the Distributed Directory
Protocol

I.2 Implementation Issues in the Distributed Directory Protocol

�

I

-

7

At this point the nodes are deadlocked. In this case, since the requests are for sep-
arate blocks, deadlock can be avoided by duplicating the controller for each
block. This allows the controllers to accept a request for one block while a
request for another block is in process. In practice, complications arise because

requests for the same block can collide, as we will see shortly.

The almost complete lack of atomicity in transactions causes most of the
complexities in translating these state transition diagrams into actual finite-state
controllers. There are two assumptions about the interconnection network that
significantly simplify the implementation. First, we assume that the network pro-
vides point-to-point

in-order delivery

 of messages. This means that two messages
sent from a single node to another node arrive in the order they were sent. No
assumptions are made about messages originating from, or destined to, different
nodes. Second, we assume the network has unlimited buffering. This second
assumption means that a message can always be accepted into the network. This
reduces the possibility for deadlock and allows us to treat some nonatomic action,
where we would need to be able to deal with a full set of network buffers, as
atomic actions. Of course, we also assume that the network delivers all messages
within a finite time.

While the first assumption, in-order transmission, is quite reasonable and is,
in fact, true in many machines, the second assumption, unlimited buffering, is not
true. Actually, the network need only be capable of buffering a finite number of
messages, since we still assume that processors block on misses. In practice, this
number may still be large and unreasonable, so later in the section we will discuss
what has to change to eliminate the assumption that a message can always be
accepted, while still preventing deadlock.

We also assume that the coherence controller is duplicated for each cache
block (to avoid having to deal with unrelated transactions) and that a state transi-
tion only completes when a message has been transmitted and a data value reply
received (when needed). This last assumption simply means that we do not allow
the CPU to continue and read or write a cache block until the read or write miss is
satisfied by a data value reply message. This simply eliminates a transition state
that waits for the block to arrive. Because we are assuming unlimited buffering,
we also assume that an outgoing message can always be transmitted before the
next incoming message is accepted.

Under these assumptions the state transition diagram of Figure 6.29 on
page 581 can be used for the coherence controller at the cache with one small
addition: The controller simply throws away any incoming transactions, other
than the data value reply, while waiting for a read or write miss. Let’s look at each
possible case that can arise while the cache is waiting for a response from the
directory. Cases where the cache is transitioning the block to invalid, either from
the shared or exclusive state, do not matter, since any incoming signals for this
block do not affect the block once it is invalid. Hence, we need only consider
cases where the processor is transitioning to the shared or exclusive state. There
are two such cases:

I-8

�

Appendix I

Implementing Coherence Protocols

�

CPU read miss from either invalid or exclusive—The directory will not reply
until the block is available. Furthermore, since any write back of an exclusive
entry for this block has been done, the controller can ignore any requests.

�

CPU write miss—Any required write back is done first and the processor is
stalled. Since it cannot hold a block exclusive in this cache entry, it can ignore
requests for this block until the write miss is satisfied from the directory.

The directory case is more complex to explain, since multiple cache control-
lers may send a message for the same block close to the same time. These opera-
tions must be serialized. Unlike the snoopy case where every controller sees
every request on the bus at the same time, the individual caches only know what
has happened when they are notified by the directory. Because the directory seri-
alizes the messages when it receives them and because all write misses for a
given cache block go to the same directory, writes will be serialized by the home
directory.

Thus, the directory controller’s main problem is to deal with the distributed
representation of the cache state. Since the directory must wait for the completion
of certain operations, such as sending invalidates and fetching a cache block
before transitioning state, most potential races are eliminated. Because we
assume unlimited buffering, the directory can always complete a transaction
before accepting the next incoming message. For this reason, the state transition
diagram in Figure 6.30 can be used as an implementation. To see why, we must
consider cases where the directory and the local cache do not agree on the state of
a block. The cache can only have a block in a less restricted state than the direc-
tory believes the block is in, because transitioning to exclusive from invalid or
shared, or to shared from invalid, requires a message to the directory and a reply.
Thus, the only cases to consider are

�

Local cache state is invalid, directory state is exclusive—The cache controller
must have performed a data write back of the block (see Figure 6.29). Hence
the directory will shortly obtain the block. Furthermore no invalidation is
needed, since the block has been replaced.

�

Local cache state is invalid, directory state is shared (the local cache is
replacing the line)—The directory will send an invalidate, which may be
ignored, since the block has been replaced. Some directory protocols send a

replacement hint

message when a shared line is replaced. Such messages are
used to eliminate unnecessary invalidates and to reduce the state needed in
the directory.

�

Local cache state is shared, directory state is exclusive—The write back has
already been done and the block has been replaced, so a fetch/invalidate,
which could be sent by the directory, can be ignored.

Hence, the protocol operates correctly with infinite buffering.

I.2 Implementation Issues in the Distributed Directory Protocol

�

I

-

9

Dealing with Finite Buffering

What happens when the network does not have unlimited buffering? The major
implication of this limit is that a cache or directory controller may be unable to
complete a message send. This could lead to deadlock. The example on page I-6
showed such a deadlock case. Even if we assume a separate controller for each
cache block, so that the requests do not interfere in the controller, the example
will deadlock if there are no buffers available to send the replies.

The occurrence of such a deadlock is based on three properties, which charac-
terize many deadlock situations:

1.

More than one resource is needed to complete a transaction: Buffers are
needed to generate requests, create replies, and accept replies.

2.

Resources are held until a nonatomic transaction completes: The buffer used
to create the reply cannot be freed until the reply is accepted.

3.

There is no global partial order on the acquisition of resources: Nodes can
generate requests and replies at will.

These characteristics lead to deadlock, and avoiding deadlock requires breaking
one of these properties. Imposing a global partial order, the solution used in a
bus-based system, is unworkable in a larger-scale, distributed machine. Freeing
up resources without completing a transaction is difficult, since the transaction
must be completely backed out and cannot be left half-finished. Hence, our
approach will be to try to resolve the need for multiple resources. We cannot sim-
ply eliminate this need, but we can try to ensure that the resources will always be
available.

One way to ensure that a transaction can always complete is to guarantee that
there are always buffers to accept messages. Although this is possible for a small
machine with processors that block on a cache miss, it may not be very practical,
since a single write could generate many invalidate messages. In addition, fea-
tures such as prefetch would increase the amount of buffering required. There is
an alternative strategy, which most systems use, and which ensures that a transac-
tion will not actually be initiated until we can guarantee that it has the resources
to complete. The strategy has four parts:

1.

A separate network (physical or virtual) is used for requests and replies,
where a reply is any message that a controller waits for in transitioning
between states. This ensures that new requests cannot block replies that will
free up buffers.

2.

Every request that expects a reply allocates space to accept the reply when the
request is generated. If no space is available, the request waits. This ensures
that a node can always accept a reply message, which will allow the replying
node to free its buffer.

I-10

�

Appendix I

Implementing Coherence Protocols

3.

Any controller can reject (usually with a

negative acknowledge

 or

NAK

) any
request, but it can never NAK a reply. This prevents a transaction from start-
ing if the controller cannot guarantee that it has buffer space for the reply.

4.

Any request that receives a NAK in response is simply retried.

To understand why this is sufficient to prevent deadlock, let’s first consider
our earlier example. Because a write miss is a request that requires a reply, the
space to accept the reply is preallocated. Hence, both nodes will have space for
the reply. Since the networks are separate, a reply can be received even if no more
space is available for requests. Since the requests are for two different blocks, the
separate coherence controllers handle the requests. If the accesses are for the
same address, then they are serialized at the directory and no problem exists.

To see that there are no deadlocks more generally, we must ensure that all
replies can be accepted, and that every request is eventually serviced. Since a
cache controller or directory controller can have at most one request needing a
reply outstanding, it can always accept the reply when it returns. To see that every
request is eventually serviced, we need only show that any request could be com-
pleted. Since every request starts with a read or write miss at a cache, it is suffi-
cient to show that any read or write miss is eventually serviced. Since the write
miss case includes the actions for a read miss as a subset, we focus on showing
the write misses are serviced. The simplest situation is when the block is
uncached; since that case is subsumed by the case when the block is shared, we
focus on the shared and exclusive cases. Let’s consider the case where the block
is shared:

�

The CPU attempts to do a write and generates a write miss that is sent to the
directory. At this point the processor is stalled.

�

The write miss is sent to the directory controller for this memory block. Note
that although one cache controller handles all the requests for a given cache
block, regardless of its memory contents, there is a controller for every mem-
ory block. Thus the only conflict at the directory controller is when two
requests arrive for the same block. This is critical to the deadlock-free opera-
tion of the controller and needs to be addressed in an implementation using a
single controller.

�

Now consider what happens at the directory controller: Suppose the write
miss is the next thing to arrive at the directory controller. The controller sends
out the invalidates, which can always be accepted if the controller for this
block is idle. If the controller is not idle, then the processor must be stalled.
Since the processor is stalled, it must have generated a read or write miss. If it
generated a read miss, then it has either displaced this block or does not have
a copy. If it does not have a copy, then it has sent a read miss and cannot con-
tinue until the read miss is processed by the directory (the read miss will not
be handled until the write miss is). If the controller has replaced the block,
then we need not worry about it. If the controller is idle, then an invalidate
occurs, and the copy is eliminated.

I.2 Implementation Issues in the Distributed Directory Protocol

�

I

-

11

The case where the block is exclusive is somewhat trickier. Our analysis
begins when the write miss arrives at the directory controller for processing.
There are two cases to consider:

�

The directory controller sends a fetch/invalidate message to the processor
where it arrives to find the cache controller idle and the block in the exclusive
state. The cache controller sends a data write back to the home directory and
makes its state invalid. This reply arrives at the home directory controller,
which can always accept the reply, since it preallocated the buffer. The direc-
tory controller sends back the data to the requesting processor, which can
always accept the reply; after the cache is updated the requesting cache con-
troller restarts the processor.

�

The directory controller sends a fetch/invalidate message to the node indi-
cated as owner. When the message arrives at the owner node, it finds that this
cache controller has taken a read or write miss that caused the block to be
replaced. In this case, the cache controller has already sent the block to the
home directory with a data write back and made the data unavailable. Since
this is exactly the effect of the fetch/invalidate message, the protocol operates
correctly in this case as well.

We have shown that our coherence mechanism operates correctly when con-
trollers are replicated and when responses can be NAKed and retried. Both of
these assumptions generate some problems in the implementation.

Implementing the Directory Controllers

First, let’s consider how these controllers, which we have assumed are replicated,
can be built without actually replicating them. On the side of the cache control-
lers, because the processors stall, the actual implementation is quite similar to
what was needed for the snoopy controller. We can simply add the transient states
just as we did for the snoopy case and note that a transaction for a different cache
block can be handled while the current processor-generated operation is pending.
Since a processor blocks on a request, at most one pending operation need be
dealt with.

On the side of the directory controller, things are more complicated. The diffi-
culty arises from the way we handle the retrieval and return of a block. In particu-
lar, during the time a directory retrieves an exclusive block and returns it to the
requesting node, the directory must accommodate other transactions. Otherwise,
integrating the directory controllers for different cache blocks will lead to the
possibility of deadlock. Because of this situation, the directory controller must be
reentrant, that is, it must be capable of suspending its execution while waiting for
a reply and accept another transaction. The only place this must occur is in
response to read or write misses, while waiting for a response from the owner.
This leads to three important observations:

I-12

�

Appendix I

Implementing Coherence Protocols

1.

The state of the controller need only be saved and restored while either a fetch
or a fetch/invalidate operation is outstanding.

2.

The implementation can bound the number of outstanding transactions being
handled in the directory, by simply NAKing read or write miss requests that
could cause the number of outstanding requests to be exceeded.

3.

If instead of returning the data through the directory, the owner node forwards
the data directly to the requester (as well as returning it to the directory), we
can eliminate the need for the directory to handle more than one outstanding
request. This motivation, in addition to the reduction of latency, is the reason
for using the forwarding style of protocol. The forwarding-style protocol
introduces another type of problem that we discuss in the exercises.

The major remaining implementation difficulty is to handle NAKs. One alter-
native is for each processor to keep track of its outstanding transactions, so it
knows, when the NAK is received, what the requested transaction was. The alter-
native is to bundle the original request into the NAK, so that the controller receiv-
ing the NAK can determine what the original request was. Because every request
allocates a slot to receive a reply and a NAK is a reply, NAKs can always be
received. In fact, the buffer holding the return slot for the request can also hold
information about the request, allowing the processor to reissue the request if it is
NAKed.

This completes the implementation of the directory scheme. In practice, great
care is required to implement these protocols correctly and to avoid deadlock.
The key ideas we have seen in this section—dealing with nonatomicity and finite
buffering—are critical to ensuring a correct implementation. Designers have
found that both formal and informal verification techniques are helpful for ensur-
ing that implementations are correct.

I.1

[20] <6.5, I.2> The Convex Exemplar is a coherent shared-memory machine
organized as a ring of eight-processor clusters. Describe a protocol for this
machine, assuming that the ring can be snooped and that a directory sits at the
junction of the ring and can also be interrogated from inside the cluster. How
much directory storage is needed? If the coherence misses are uniformly distrib-
uted and the capacity misses are all within a cluster, what is the average memory
access time for Ocean running on 64 processors?

I.2

[15/20] <6.5, I.2> As we discussed in Section I.2, many DSM machines use a for-
warding protocol, where a write miss request to a remote dirty block is forwarded
to the node that has the copy of the block. The remote node then generates both a
write-back operation and a data value reply.

a.

[15] <6.5> Modify the state diagrams of Figures 6.29 and 6.30 so that the dia-
grams implement a forwarding protocol.

Exercises

Exercises

�

I

-

13

b.

[20] <6.5, I.2> Forwarding protocols introduce a race condition into the pro-
tocol. Describe this race condition. Show how NAKs can be used to resolve
the race condition.

I.3

[20] <6.5, I.2> Supporting lock-up free caches can have different implications for
coherence protocols. Show how, without additional changes, allowing multiple
outstanding misses from a node in a DSM can lead to deadlock—even if buffer-
ing is unlimited.

	1 Fundamentals of Computer Design
	1.1 Introduction
	1.2 The Changing Face of Computing and the Task of the Computer Designer
	1.3 Technology Trends
	1.4 Cost, Price and their Trends
	1.5 Measuring and Reporting Performance
	1.6 Quantitative Principles of Computer Design
	1.7 Putting It All Together: Performance and Price-Performance
	1.8 Another View: Power Consumption and

 Efficiency as the Metric
	1.9 Fallacies and Pitfalls
	1.10 Concluding Remarks
	1.11 Historical Perspective and References
	E X E R C I S E S

	2 Instruction Set

Principles and

 Examples

	2.1 Introduction
	2.2 Classifying Instruction Set Architectures
	2.3 Memory Addressing
	2.4 Addressing Modes for Signal Processing
	2.5 Type and Size of Operands
	2.6 Operands for Media and Signal Processing
	2.7 Operations in the Instruction Set
	2.8 Operations for Media and Signal Processing
	2.9 Instructions for Control Flow
	2.10 Encoding an Instruction Set
	2.11 Crosscutting Issues: The Role of Compilers
	2.12 Putting It All Together: The MIPS Architecture
	2.13 Another View: The Trimedia TM32 CPU
	2.14 Fallacies and Pitfalls
	2.15 Concluding Remarks
	2.16 Historical Perspective and References
	E X E R C I S E S

	3 Instruction-Level Parallelism and its Dynamic Exploitation
	3.1 Instruction-Level Parallelism: Concepts and Challenges
	3.2 Overcoming Data Hazards with Dynamic Scheduling
	3.3 Dynamic Scheduling: Examples and the Algorithm
	3.4 Reducing Branch Costs with Dynamic Hardware Prediction
	3.5 High Performance Instruction Delivery
	3.6 Taking Advantage of More ILP with Multiple Issue
	3.7 Hardware-Based Speculation
	3.8 Studies of the Limitations of ILP
	3.9 Limitations on ILP for Realizable Processors
	3.10 Putting It All Together: The P6 Microarchitecture
	3.11 Another View: Thread Level Parallelism
	3.12 Crosscutting Issues: Using an ILP Datapath to Exploit TLP
	3.13 Fallacies and Pitfalls
	3.14 Concluding Remarks
	3.15 Historical Perspective and References
	E X E R C I S E S

	4 Exploiting Instruction Level Parallelism with Software Approaches
	4.1 Basic Compiler Techniques for Exposing ILP
	4.2 Static Branch Prediction
	4.3 Static Multiple Issue: the VLIW Approach
	4.4 Advanced Compiler Support for Exposing and Exploiting ILP
	4.5 Hardware Support for Exposing More Parallelism at Compile-Time
	4.6 Crosscutting Issues
	4.7 Putting It All Together: The Intel IA-64 Architecture and Itanium Processor
	4.8 Another View: ILP in the Embedded and Mobile Markets
	4.9 Fallacies and Pitfalls
	4.10 Concluding Remarks
	4.11 Historical Perspective and References
	E X E R C I S E S

	5 Memory-Hierarchy Design
	5.1 Introduction
	5.2 Review of the ABCs of Caches
	5.3 Cache Performance
	5.4 Reducing Cache Miss Penalty
	5.5 Reducing Miss Rate
	5.6 Reducing Cache Miss Penalty or Miss Rate via Parallelism
	5.7 Reducing Hit Time
	5.8 Main Memory and Organizations for Improving Performance
	5.9 Memory Technology
	5.10 Virtual Memory
	5.11 Protection and Examples of Virtual Memory
	5.12 Crosscutting Issues in the Design of Memory Hierarchies
	5.13 Putting It All Together: Alpha 21264 Memory Hierarchy
	5.14 Another View: The Emotion Engine of the Sony Playstation 2
	5.15 Another View: The Sun Fire 6800 Server
	5.16 Fallacies and Pitfalls
	5.17 Concluding Remarks
	5.18 Historical Perspective and References
	E X E R C I S E S

	6 Multiprocessors and Thread-Level Parallelism
	6.1 Introduction
	6.2 Characteristics of Application Domains
	6.3 Symmetric Shared-Memory Architectures
	6.4 Performance of Symmetric Shared-Memory Multiprocessors
	6.5 Distributed Shared-Memory Architectures
	6.6 Performance of Distributed Shared-Memory Multiprocessors
	6.7 Synchronization
	6.8 Models of Memory Consistency: An Introduction
	6.9 Multithreading: Exploiting Thread-Level Parallelism within a Processor
	6.10 Crosscutting Issues
	6.11 Putting It All Together: Sun’s Wildfire Prototype
	6.12 Another View: Multithreading in a Commercial Server
	6.13 Another View: Embedded Multiprocessors
	6.14 Fallacies and Pitfalls
	6.15 Concluding Remarks
	6.16 Historical Perspective and References
	E X E R C I S E S

	7 Storage Systems
	7.1 Introduction
	7.2 Types of Storage Devices
	7.3 Buses—Connecting I/O Devices to CPU/Memory
	7.4 Reliability, Availability, and Dependability
	7.5 RAID: Redundant Arrays of Inexpensive Disks
	7.6 Errors and Failures in Real Systems
	7.7 I/O Performance Measures
	7.8 A Little Queuing Theory
	7.9 Benchmarks of Storage Performance and Availability
	7.10 Crosscutting Issues
	7.11 Designing an I/O System in Five Easy Pieces
	7.12 Putting It All Together: EMC Symmetrix and Celerra
	7.13 Another View: Sanyo DSC-110 Digital Camera
	7.14 Fallacies and Pitfalls
	7.15 Concluding Remarks
	7.16 Historical Perspective and References
	E X E R C I S E S

	8 Interconnection Networks and Clusters 8
	8.1 Introduction
	8.2 A Simple Network
	8.3 Interconnection Network Media
	8.4 Connecting More Than Two Computers
	8.5 Network Topology
	8.6 Practical Issues for Commercial Interconnection Networks
	8.7 Examples of Interconnection Networks
	8.8 Internetworking
	8.9 Crosscutting Issues for Interconnection Networks
	8.10 Clusters
	8.11 Designing a Cluster
	8.12 Putting It All Together: The Goggle Cluster of PCs
	8.13 Another View: Inside a Cell Phone
	8.14 Fallacies and Pitfalls
	8.15 Concluding Remarks
	8.16 Historical Perspective and References
	E X E R C I S E S

	Appendix C: A Survey of RISC Architectures for Desktop, Server, and Embedded Computers
	C1 Introduction
	C2 Addressing Modes and Instruction Formats
	C3 Instructions: The MIPS Core Subset
	C4 Instructions: Multimedia Extensions of the Desktop/ Server RISCs
	C5 Instructions: Digital Signal-Processing Extensions of the Embedded RISCs
	C6 Instructions: Common Extensions to MIPS Core
	C7 Instructions Unique to MIPS64
	C8 Instructions Unique to Alpha
	C9 Instructions Unique to SPARC v.9
	C10 Instructions Unique to PowerPC
	C11 Instructions Unique to PA-RISC 2.0
	C12 Instructions Unique to ARM
	C13 Instructions Unique to Thumb
	C14 Instructions Unique to SuperH
	C15 Instructions Unique to M32R
	C16 Instructions Unique to MIPS16
	C17 Concluding Remarks
	C18 Acknowledgments

	Appendix D: An Alternative to RISC: The Intel 80x86
	D1 Introduction
	D2 80x86 Registers and Data Addressing Modes
	D3 80x86 Integer Operations
	D4 80x86 Floating-Point Operations
	D5 80x86 Instruction Encoding
	D6 Putting It All Together: Measurements of Instruction Set Usage
	D7 Concluding Remarks
	D8 Historical Perspective and References

	Appendix E: Another Alternative to RISC: The VAX Architecture
	E1 Introduction
	E2 VAX Operands and Addressing Modes
	E3 Encoding VAX Instructions
	E4 VAX Operations
	E5 An Example to Put It All Together: swap
	E6 A Longer Example: sort
	E7 Fallacies and Pitfalls
	E8 Concluding Remarks
	E9 Historical Perspective and Further Reading
	Exercises

	Appendix F: The IBM 360/370 Architecture for Mainframe Computers
	F1 Introduction
	F2 System/360 Instruction Set
	F3 360 Detailed Measurements
	F4 Historical Perspective and References

	Appendix G: Vector Processors
	G1 Why Vector Processors?
	G2 Basic Vector Architecture
	G3 Two Real-World Issues: Vector Length and Stride
	G4 Enhancing Vector Performance
	G5 Effectiveness of Compiler Vectorization
	G6 Putting It All Together: Performance of Vector Processors
	G7 Fallacies and Pitfalls
	G8 Concluding Remarks
	G9 Historical Perspective and References
	Exercises

	Appendix H: Computer Arithmetic
	H1 Introduction
	H2 Basic Techniques of Integer Arithmetic
	H3 Floating Point
	H4 Floating-Point Multiplication
	H5 Floating-Point Addition
	H6 Division and Remainder
	H7 More on Floating-Point Arithmetic
	H8 Speeding Up Integer Addition
	H9 Speeding Up Integer Multiplication and Division
	H10 Putting It All Together
	H11 Fallacies and Pitfalls
	H12 Historical Perspective and References
	Exercises

	Appendix I: Implementing Coherence Protocols
	I1 Implementation Issues for the Snooping Coherence Protocol
	I2 Implementation Issues in the Distributed Directory Protocol
	Exercises

