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1. Introduction

In this paper, we will describe a tree generating system called tree-adjoining
grammar (TAG) and state some of the recent results about TAGs. The work
on TAGs is motivated by linguistic considerations. However, a number of
formal results have been established for TAGs, which we believe, would be
of interest to researchers in formal languages and automata, including those
interested in tree grammars and tree automata.

After giving a short introduction to TAG, we briefly state these results
concerning both the properties of the string sets and tree sets (Section 2.).
We will also describe the notion of lexicalization of grammars (Section 3.) and
investigate the relationship of lexicalization to context-free grammars (CFGs)
and TAGs and then summarize the issues on lexicalization (Sections 4., 5.
and 6.). We then describe an automaton model that exactly corresponds to
TAGs (Section 7.). As we have said earlier TAGs were motivated by some
important linguistic considerations. The formal aspects of these considera-
tions are mathematically important also. Hence we have presented a brief
discussion of these issues together with some simple examples (Section 8.).
We also present in Section 9. some variants of TAGs that are currently un-
der investigation. We then present a bottom up predictive parser for TAGs,
which is both theoretically and practically important (Section 10.) and then
offer some concluding remarks (Section 11.).

The motivations for the study of tree-adjoining grammars (TAG) are of
linguistic and formal nature. The elementary objects manipulated by a TAG
are trees, i.e., structured objects and not strings. Using structured objects as
the elementary objects of a formalism, it is possible to construct formalisms
whose properties relate directly to the strong generative capacity (structural
description) which is more relevant to linguistic descriptions than the weak
generative capacity (set of strings).

TAG is a tree-generating system rather than a string generating system.
The set of trees derived in a TAG constitute the object language. Hence, in
order to describe the derivation of a tree in the object language, it is necessary
to talk about derivation ‘trees’ for the object language trees. These derivation
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trees are important both syntactically and semantically. It has also turned
out that some other formalisms which are weakly equivalent to TAGs are
similar to each other in terms of the properties of the derivation ‘trees’ of
these formalisms [Weir1988, Joshi et al.1991].

Another important linguistic motivation for TAGs is that TAGs allow
factoring recursion from the statement of linguistic constraints (dependen-
cies), thus making these constraints strictly local, and thereby simplifying
linguistic description [Kroch and Joshil985].

Lexicalization of grammar formalism is also one of the key motivations,
both linguistic and formal. Most current linguistic theories give lexical ac-
counts of several phenomena that used to be considered purely syntactic.
The information put in the lexicon is thereby increased in both amount and
complexity?!.

On the formal side, lexicalization allows us to associate each elementary
structure in a grammar with a lexical item (terminal symbol in the context of
formal grammars). The well-known Greibach Normal Form (CNF) for CFG
is a kind of lexicalization, however it is a weak lexicalization in a certain sense
as it does not preserve structures of the original grammar. Qur tree based
approach to lexicalization allows us to achieve lexicalization while preserving
structures, which is linguistically very significant.

2. Tree-Adjoining Grammars

TAGs were introduced by Joshi, Levy and Takahashi (1975) and Joshi (1985).
For more details on the original definition of TAGs, we refer the reader to
[Joshi1987, Kroch and Joshi1985]. It is known that tree-adjoining languages
(TALs) generate some strictly context-sensitive languages and fall in the class
of the so-called ‘mildly context-sensitive languages’ [Joshi et al.1991]. TALs
properly contain context-free languages and are properly contained by in-
dexed languages.

Although the original definition of TAGs did not include substitution as a
combining operation, it can be easily shown that the addition of substitution
does not affect the formal properties of TAGs.

We first give an overview of TAG and then we study the lexicalization
process.

Definition 2.1 (tree-adjoining grammar).
A tree-adjoining grammar (TAG) consists of a quintuple (X, NT,I,A,S),
where

! Some of the linguistic formalisms illustrating the increased use of lexi-
cal information are, lexical rules in LFG [Kaplan and Bresnan1983], GPSG
[Gazdar et al.1985], HPSG [Pollard and Sagl1987], Combinatory Categorial
Grammars [Steedman1987], Karttunen’s version of Categorial Grammar
[Karttunen1986], some versions of GB theory [Chomsky1981], and Lexicon-
Grammars [Gross1984].
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i) X is a finite set of terminal symbols;

ii) NT is a finite set of non-terminal symbols?: ¥ N NT = {;

iii) S is a distinguished non-terminal symbol: S € NT

iv) I is a finite set of finite trees, called initial trees, characterized
as follows (see tree on the left in Fig. 2.1):

(
(
(
(

e interior nodes are labeled by non-terminal symbols;

e the nodes on the frontier of initial trees are labeled by termi-
nals or non-terminals; non-terminal symbols on the frontier of
the trees in I are marked for substitution; by convention, we
annotate nodes to be substituted with a down arrow ({);

(v) Ais afinite set of finite trees, called auxiliary trees, characterized
as follows (see tree on the right in Fig. 2.1):

e interior nodes are labeled by non-terminal symbols;

¢ the nodes on the frontier of auxiliary trees are labeled by termi-
nal symbols or non-terminal symbols. Non-terminal symbol on
the frontier of the trees in A are marked for substitution except
for one node, called the foot node; by convention, we annotate
the foot node with an asterisk (x); the label of the foot node
must be identical to the label of the root node.

In lezicalized TAG, at least one terminal symbol (the anchor) must appear
at the frontier of all initial or auxiliary trees.

The trees in TU A are called elementary trees. We call an elementary tree
an X-type elementary tree if its root is labeled by the non-terminal X.

Initial tree: Auxiliary tree:
X

7*

N

terminal nodes or
substitution nodes

Fig. 2.1. Schematic initial and auxiliary trees.

A tree built by composition of two other trees is called a derived tree.
We now define the two composition operations that TAG uses: adjoining
and substitution.

2 We use lower-case letters for terminal symbols and upper-case letters for non-
terminal symbols.
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Adjoining builds a new tree from an auxiliary tree 8 and a tree a («
is any tree, initial, auxiliary or derived). Let « be a tree containing a non-
substitution node n labeled by X and let 8 be an auxiliary tree whose root
node is also labeled by X. The resulting tree, 7, obtained by adjoining 3 to
a at node n (see top two illustrations in Fig. 2.2) is built as follows:

o the sub-tree of @ dominated by n, call it ¢, is excised, leaving a copy of

n behind.

e the auxiliary tree 8 is attached at the copy of n and its root node is

identified with the copy of n.

e the sub-tree t is attached to the foot node of 8 and the root node of ¢
(i-e. n) is identified with the foot node of 3.

The top two illustrations in Fig. 2.2 illustrate how adjoining works. The
auxiliary tree (; is adjoined on the V P node in the tree as. a; is the resulting
tree.

Substitution takes only place on non-terminal nodes of the frontier of a
tree (see bottom two illustrations in Fig. 2.2). An example of substitution
is given in the fourth illustration (from the top) in Fig. 2.2. By convention,
the nodes on which substitution is allowed are marked by a down arrow (J).
When substitution occurs on a node n, the node is replaced by the tree to
be substituted. When a node is marked for substitution, only trees derived
from initial trees can be substituted for it.

By definition, any adjunction on a node marked for substitution is dis-
allowed. For example, no adjunction can be performed on any NP node in
the tree as. Of course, adjunction is possible on the root node of the tree
substituted for the substitution node.

2.1 Adjoining Constraints

In the system that we have described so far, an auxiliary tree 8 can be
adjoined on a node n if the label of n is identical to the label of the root
node of the auxiliary tree 8 and if n is labeled by a non-terminal symbol
not annotated for substitution. It is convenient for linguistic description to
have more precision for specifying which auxiliary trees can be adjoined at
a given node. This is exactly what is achieved by constraints on adjunction
[Joshil987]. In a TAG G = (¥,NT,I,A,S), one can, for each node of an
elementary tree (on which adjoining is allowed), specify one of the following
three constraints on adjunction:

o Selective Adjunction (SA(T), for short): only members of a set T C A of
auxiliary trees can be adjoined on the given node. The adjunction of an
auxiliary is not mandatory on the given node.

e Null Adjunction (N A for short): it disallows any adjunction on the given
node.?

3 Null adjunction constraint corresponds to a selective adjunction constraint for
which the set of auxiliary trees T is empty: NA = SA(()
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Fig. 2.2. Combining operations: adjoining and substitution
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e Obligatory Adjunction (OA(T), for short): an auxiliary tree member of
the set T' C A must be adjoined on the given node. In this case, the
adjunction of an auxiliary tree is mandatory. OA is used as a notational
shorthand for OA(A).

If there are no substitution nodes in the elementary trees and if there are
no constraints on adjoining, then we have the ‘pure’ (old) Tree Adjoining
Grammar (TAG) as described in [Joshi et al.1975].

The operation of substitution and the constraints on adjoining are both
needed for linguistic reasons. Constraints on adjoining are also needed for
formal reasons in order to obtain some closure properties.

2.2 Derivation in TAG

We now define by an example the notion of derivation in a TAG. Unlike CFGs,
the tree obtained by derivation (the derived tree) does not give enough infor-
mation to determine how it was constructed. The derivation tree is an object
that specifies uniquely how a derived tree was constructed. Both operations,
adjunction and substitution, are considered in a TAG derivation. Take for
example the derived tree aj in Fig. 2.3; as yields the sentence yesterday a
man saw Mary. It has been built with the elementary trees shown in Fig. 2.4.

S
/\
Ad S
‘ /\
yesterday NP VP
/\
D N V NP
|
a man saw N
(as) ‘
Mary

Fig. 2.3. Derived tree for: yesterday a man saw Mary.

The root of a derivation tree for TAGs is labeled by an S-type initial
tree. All other nodes in the derivation tree are labeled by auxiliary trees
in the case of adjunction or initial trees in the case of substitution. A tree
address is associated with each node (except the root node) in the derivation
tree. This tree address is the address of the node in the parent tree to which
the adjunction or substitution has been performed. We use the following
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S NP
/\ /\
Adv S D D! N
Bres) | @) | (e |
yesterday a man
S
/\
NPyl VP NP
/\ |
V NPyl N
(@saw) ‘ (arrary) ‘
saw Mary

Fig. 2.4. Some elementary trees.

convention: trees that are adjoined to their parent tree are linked by an
unbroken line to their parent, and trees that are substituted are linked by a
dashed line.* Since by definition, adjunction can only occur at a particular
node one time, all the children of a node in the derivation tree will have
distinct addresses associated with them.

The derivation tree in Fig. 2.5 specifies how the derived tree a; pictured
in Fig. 2.3 was obtained.

arﬁan(l) OMary (22) Byest (0
|

ay (1)

Fig. 2.5. Derivation tree for Yesterday a man saw Mary.

This derivation tree (Fig. 2.5) should be interpreted as follows: a, is substi-
tuted in the tree a4, at the node of address 1 (D), amqn is substituted in
the tree aqw at address 1 (NPp) in tman, @Mary is substituted in the tree

4 We will use Gorn addresses as tree addresses: 0 is the address of the root node,
k is the address of the k** child of the root node, and p - g is the address of the
¢'" child of the node at address p.
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Qsqw at node 2-2 (NP;) and the tree fyes is adjoined in the tree asqq, at
node 0 (S).

The order in which the derivation tree is interpreted has no impact on
the resulting derived tree.

2.3 Some properties of the string languages and tree sets

We summarize some of the well known properties of tree-adjoining grammar’s
string languages and of the tree sets.

The tree set of a TAG is defined as the set of completed® initial trees
derived from some S-rooted initial tree:

Ta ={t |t is ‘derived’ from some S-rooted initial tree}

The string language of a TAG, L(G), is then defined as the set of yields

of all the trees in the tree set:
L = {w | w is the yield of some t in Tg}

Adjunction is more powerful than substitution and it generates some
context-sensitive languages (see Joshi [1985] for more details). 6

Some well known properties of the string languages follow:

e context-free languages are strictly included in tree-adjoining languages,

which themselves are strictly included in indexed languages;
CFL Cc TAL C Indexed Languages C CSL

e TALs are semilinear;

o All closure properties of context-free languages also hold for tree-adjoining
languages. In fact, TALs are a full abstract family of languages (full
AFLs).

e a variant of the push-down automaton called embedded push-down au-
tomaton (EPDA) [Vijay-Shanker1987] characterizes exactly the set of
tree-adjoining languages, just as push-down automaton characterizes
CFLs.

o there is a pumping lemma for tree-adjoining languages.

e tree-adjoining languages can be parsed in polynomial time, in the worst
case in O(n%) time.

Some well know properties of the tree sets of tree-adjoining grammars
follow:

e the tree sets of recognizable sets (regular tree sets)[Thatcher1971] are
strictly included in the tree sets of tree-adjoining grammars, 7 (T AG);
recognizable sets C T (T AG)

5 We say that an initial tree is completed if there is no substitution nodes on the
frontier of it.

6 Adjunction can simulate substitution with respect to the weak generative ca-
pacity. It is also possible to encode a context-free grammar with auxiliary trees
using adjunction only. However, although the languages correspond, the possible
encoding does not directly reflect the tree set of original context-free grammar
since this encoding uses adjunction.
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e the set of paths of all the trees in the tree set of a given TAG, P(T(QG)),
is a context-free language;

P(T(Q)) is a CFL

e the tree sets of TAG are equivalent to the tree sets of linear indexed
languages. Hence, linear versions of Schimpf-Gallier tree automaton
[Schimpf and Gallier1985] are equivalent to 7 (T AG);

o for every TAG, G, the tree set of G, T'(G), is recognizable in polynomial
time, in the worst case in O(n3)-time, where n is the number of nodes in
atree t € T(G).

We now give two examples to illustrate some properties of tree-adjoining
grammars.

Ezample 2.1. Consider the following TAG G; = ({a, e, b}, {S},{as}, {52}, 5)

SNA

A

a S

S
(a6) ‘ (B2) A
e

S*NA b

G1 generates the language Ly = {a™eb"|n > 1}. For example, in Fig. 2.6,
a7 has been obtained by adjoining 82 on the root node of ag and ag has been
obtained by adjoining (> on the node at address 2 in in the tree ay.

()]
z
>

Q
%2}
z
>

=

(9}
z
>

@

wn

=
>

)
wn
(2]
zZ
>
o

>
>

SNA

o

(as) ‘

e

(ar)

T — 0
pd
>
o

Fig. 2.6. Some derived trees of G;
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Although L, is a context-free language, G; generates cross serial depen-
dencies. For example, a7 generates, ajeb;, and ag generates, ajazebab;. It
can be shown that T'(G1) is not recognizable.

Ezample 2.2. Consider the TAG G2 = ({a,b,c,d, e}, {S}, {as}, {08}, 5) be-
low

SNA

/N

asSd

S
() ‘ (Bs3) %\
e

b S*NA c

G+ generates the context-sensitive language Lo = {a™b"ec"d"|n > 1}. For
example, in Fig. 2.7, ag has been obtained by adjoining 3 on the root node
of ag and a;( has been obtained by adjoining 83 on the node at address 2 in

in the tree ag.

SNA
AN
a SNA d
- /1N
/1N ZAN
asd b SNA ¢
AN 7N
b SNA ¢ b SNA ¢
() (@10)
e e

Fig. 2.7. Some derived trees of G2

One can show that {a"b™c"d"e™|n > 1} is not a tree-adjoining language.

We have seen in Section 2.2 that the derivation in TAG is also a tree. For
a given TAG, G, it can be shown that the set of derivations trees of G, D(G),
is recognizable (in fact a local set). Many different grammar formalisms have
been shown to be equivalent to TAG, their derivation trees are also local sets.



Tree-Adjoining Grammars 11

3. Lexicalized Grammars

We define a notion of “lexicalized grammars” that is of both linguistic and
formal significance. We then show how TAG arises in the processes of lexi-
calizing context-free grammars.

In this “lexicalized grammar” approach [Schabes et al.1988, Schabes1990],
each elementary structure is systematically associated with a lexical item
called the anchor. By ‘lexicalized’ we mean that in each structure there is a
lexical item that is realized. The ‘grammar’ consists of a lexicon where each
lexical item is associated with a finite number of structures for which that
item is the anchor. There are operations which tell us how these structures
are composed. A grammar of this form will be said to be ‘lexicalized’.

Definition 3.1 (Lexicalized Grammar). A grammar is ‘lexicalized’ if it
consists of:
e a finite set of structures each associated with a lexical item; each lexical
item will be called the anchor of the corresponding structure;
e an operation or operations for composing the structures.

We require that the anchor must be an overt (i.e. not the empty string) lexical
item.

The lezicon consists of a finite set of structures each associated with an
anchor. The structures defined by the lexicon are called elementary structures.
Structures built by combination of others are called derived structures.

As part of our definition of lexicalized grammars, we require that the
structures be of finite size. We also require that the combining operations
combine a finite set of structures into a finite number of structures. We will
consider operations that combine two structures to form one derived struc-
ture.

Other constraints can be put on the operations. For examples, the oper-
ations could be restricted not to copy, erase or restructure unbounded com-
ponents of their arguments. We could also impose that the operations yield
languages of constant growth (Joshi [1985]). The operations that we will use
have these properties.

Categorial Grammars [Lambek1958, Steedman1987] are lexicalized ac-
cording to our definition since each basic category has a lexical item associ-
ated with it.

As in Categorial Grammars, we say that the category of a word is the
entire structure it selects. If a structure is associated with an anchor, we say
that the entire structure is the category structure of the anchor.

We also use the term ‘lexicalized’ when speaking about structures. We
say that a structure is lezicalized if there is at least one overt lexical item
that appears in it. If more than one lexical item appears, either one lexical
item is designated as the anchor or a subset of the lexical items local to the
structure are designated as multi-component anchor. A grammar consisting
of only lexicalized structures is of course lexicalized.
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For example, the following structures are lexicalized according to

definition:”

our

S S
/N /N
NP NP:. VP NP, VP
/\ /\ /\
DI N V NPl vV S
(a11) ‘ (a12) ‘ (a1s) ‘
men eat think
S
/N
S NP VP
/N N
NP. VP V NP. PP
N VAN
\ NP take P NP
AN ]
kick D N into N
(a11) | (a15) |
the bucket account

Some simple properties follow immediately from the definition of lexical-
ized grammars.

Proposition 3.1. Lezicalized grammars are finitely ambiguous.

A grammar is said to be finitely ambiguous if there is no sentence of finite
length that can be analyzed in an infinite number of ways.

The fact that lexicalized grammars are finitely ambiguous can be seen
by considering an arbitrary sentence of finite length. The set of structures
anchored by the words in the input sentence consists of a set of structures
necessary to analyze the sentence; while any other structure introduces lexical
items not present in the input string. Since the set of selected structures is
finite, these structures can be combined in finitely many ways (since each tree
is associated with at least one lexical item and since structures can combine to
produce finitely many structures). Therefore lexicalized grammars are finitely
ambiguous.

T The interpretation of the annotations on these structures is not relevant now
and it will be given later.



Tree-Adjoining Grammars 13

Since a sentence of finite length can only be finitely ambiguous,the search
space used for analysis is finite. Therefore, the recognition problem for lexi-
calized grammars is decidable

Proposition 3.2. It is decidable whether or not a string is accepted by a
lezicalized grammar.®

Having stated the basic definition of lexicalized grammars and also some
simple properties, we now turn our attention to one of the major issues: can
context-free grammars be lexicalized?

Not every grammar is in a lexicalized form. Given a grammar G stated in
a formalism, we will try find another grammar Gj., (not necessarily stated
in the same formalism) that generates the same language and also the same
tree set as G and for which the lexicalized property holds. We refer to this
process as lexicalization of a grammar.

Definition 3.2 (Lexicalization). We say that a formalism F can be lexi-
calized by another formalism F”| if for any finitely ambiguous grammar G in
F there is a grammar G’ in F' such that G' is a lexicalized grammar and such
that G and G’ generate the same tree set (and a fortiori the same language).

The next section discusses what it means to lexicalize a grammar. We will
investigate the conditions under which such a ‘lexicalization’ is possible for
CFGs and tree-adjoining grammars (TAGs). We present a method to lexical-
ize grammars such as CFGs, while keeping the rules in their full generality.
We then show how a lexicalized grammar naturally follows from the extended
domain of locality of TAGs.

4. ‘Lexicalization’ of CFGs

Our definition of lexicalized grammars implies their being finitely ambiguous.
Therefore a necessary condition of lexicalization of a CFG is that it is finitely
ambiguous. As a consequence, recursive chain rules obtained by derivation
(such as X=X) or elementary (such as X — X) are disallowed since they
generate infinitely ambiguous branches without introducing lexical items.

In general, a CFG will not be in lexicalized form. For example a rule of
the form, S - NP VP or S — S S, is not lexicalized since no lexical item
appears on the right hand side of the rule.

A lexicalized CFG would be one for which each production rule has a
terminal symbol on its right hand side. These constitute the structures as-
sociated with the lexical anchors. The combining operation is the standard
substitution operation.’

8 Assuming that one can compute the result of the combination operations.

® Variables are independently substituted by substitution. This standard (or first
order) substitution contrasts with more powerful versions of substitution which
allow to substitute multiple occurrences of the same variable by the same term.
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Lexicalization of CFG that is achieved by transforming it into an equiv-
alent Greibach Normal Form CFG, can be regarded as a weak lexicalization,
because it does not give us the same set of trees as the original CFG. Our
notion of lexicalization can be regarded as strong lexicalization.'?

In the next sections, we propose to extend the domain of locality of
context-free grammar in order to make lexical item appear local to the pro-
duction rules. The domain of locality of a CFG is extended by using a tree
rewriting system that uses only substitution. We will see that in general,
CFGs cannot be lexicalized using substitution alone, even if the domain of
locality is extended to trees. Furthermore, in the cases where a CFG could
be lexicalized by extending the domain of locality and using substitution
alone, we will show that, in general, there is not enough freedom to choose
the anchor of each structure. This is important because we want the choice
of the anchor for a given structure to be determined on purely linguistic
grounds. We will then show how the operation of adjunction enables us to
freely ‘lexicalize’ CFGs.

4.1 Substitution and Lexicalization of CFGs

We already know that we need to assume that the given CFG is finitely am-
biguous in order to be able to lexicalized it. We propose to extend the domain
of locality of CFGs to make lexical items appear as part of the elementary
structures by using a grammar on trees that uses substitution as combin-
ing operation. This tree-substitution grammar consists of a set of trees that
are not restricted to be of depth one (rules of context-free grammars can be
thought as trees of depth one) combined with substitution.!!

A finite set of elementary trees that can be combined with substitution
define a tree-based system that we will call a tree substitution grammar.

Definition 4.1 (Tree-Substitution Grammar).
A Tree-Substitution Grammar (TSG) consists of a quadruple (¥, NT,1,5),
where

(i) X is a finite set of terminal symbols;

(ii) NT is a finite set of non-terminal symbols'?: ¥ N NT = §;

(iii) S is a distinguished non-terminal symbol: S € NT;

(iv) I is a finite set of finite trees whose interior nodes are labeled
by non-terminal symbols and whose frontier nodes are labeled by

terminal or non- terminal symbols. All non-terminal symbols on

10 For some recent results in strong lexicalization and CFGs, see
[Schabes and Waters1995] and the discussion in Section 10.

1 We assume here first order substitution meaning that all substitutions are
independent.

12 We use lower-case letters for terminal symbols and upper-case letters for non-
terminal symbols.
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the frontier of the trees in I are marked for substitution. The trees
in I are called initial trees.

We say that a tree is derived if it has been built from some initial tree in
which initial or derived trees were substituted. A tree will be said of type X
if its root is labeled by X. A tree is considered completed if its frontier is to
be made only of nodes labeled by terminal symbols.

Whenever the string of labels of the nodes on the frontier of an X-type
initial tree tx is a € (¥ U NT)*, we will write: Fr(tx) = a.

As for TAG, the derivation in TSG is stated in the form of a tree called
the derivation tree (see Section 2.2).

It is easy to see that the set of languages generated by this tree rewriting
system is exactly the same set as context-free languages.

We now come back to the problem of lexicalizing context-free grammars.
One can try to lexicalize finitely ambiguous CFGs by using tree-substitution
grammars. However we will exhibit a counter example that shows that, in
the general case, finitely ambiguous CFGs cannot be lexicalized with a tree
system that uses substitution as the only combining operation.

Proposition 4.1. Finitely ambiguous context-free grammars cannot be lex-
icalized with a tree-substitution grammar.

Proof'? of Proposition 4.1

We show this proposition by a contradiction. Suppose that finitely ambigu-
ous CFGs can be lexicalized with TSG. Then the following CFG can be
lexicalized:'*

Ezample 4.1 (counter example).

S—SS
S —a

Suppose there were a lexicalized TSG G generating the same tree set as
the one generated by the above grammar. Any derivation in G must start
from some initial tree. Take an arbitrary initial tree ¢ in G. Since G is a
lexicalized version of the above context-free grammar, there is a node n on
the frontier of ¢ labeled by a. Since substitution can only take place on the
frontier of a tree, the distance between n and the root node of ¢ is constant
in any derived tree from ¢. And this is the case for any initial tree ¢ (of which
there are only finitely many). This implies that in any derived tree from G
there is at least one branch of bounded length from the root node to a node
labeled by a (that branch cannot further expand). However in the derivation
trees defined by the context-free grammar given above, a can occur arbitrarily

13 The underlying idea behind this proof was suggested to us by Stuart Shieber.
14 This example was pointed out to us by Fernando Pereira.
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far away from the root node of the derivation. Contradiction.
a

The CFG given in Example 4.1 cannot be lexicalized with a TSG. The
difficulty is due to the fact that TSGs do not permit the distance between
two nodes in the same initial tree to increase.

For example, one might think that the following TSG is a lexicalized ver-
sion of the above grammar:

s s
AN AN

Si S
|
a

w

(0416) (a17) (0418)

a

L — O
»

However, this lexicalized TSG does not generate all the trees generated
by the context-free grammar; for example the following tree (ayg) cannot be
generated by the above TSG:

S

s
SV
i

(a19)

L — W

We now turn to a less formal observation. Even if some CFGs can be
lexicalized by using TSG, the choice of the lexical items that emerge as the
anchor may be too restrictive, for example, the choice may not be linguisti-
cally motivated.

Consider the following example:

Example 4.2.

S —-> NPVP
VP — adv VP
VP v
NP —n

The grammar can be lexicalized as follows:
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S S
aN /\
NP: VP NP1 VP
(r20) ‘ (@21) A
Y adv VP
VP VP NP
(az2) adv VP. (a23) \ (024) n

This tree-substitution grammar generates exactly the same set of trees as
in Example 4.2, however, in this lexicalization one is forced to choose adv (or
n) as the anchor of a structure rooted by S (az1), and it cannot be avoided.
This choice is not linguistically motivated. If one tried not to have an S-type
initial tree anchored by n or by adv, recursion on the VP node would be
inhibited.

For example, the grammar written below:

s
/N
NP. VP VP VP NP

does not generate the tree asos:

(%)

/N
/\

adv VP

(a25) ‘
\

This example shows that even when it is possible to lexicalize a CFG,
substitution (TSG) alone does not allow us to freely choose the lexical an-
chors. Substitution alone forces us to make choices of anchors that might
not be linguistically (syntactically or semantically) justified. From the proof
of proposition 4.1 we conclude that a tree based system that can lexicalize
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context-free grammars must permit the distance between two nodes in the
same tree to be increased during a derivation. In the next section, we suggest
the use of an additional operation when defining a tree-based system in which
one tries to lexicalize CFGs.

4.2 Lexicalization of CFGs with TAGs

Another combining operation is needed to lexicalize finitely ambiguous CFGs.
As the previous examples suggest us, we need an operation that is capable
of inserting a tree inside another one. We suggest using adjunction as an
additional combining operation. A tree-based system that uses substitution
and adjunction coincides with a tree-adjoining grammar (TAG).

We first show that the CFGs in examples 4.1 and 4.2 for which TSG failed
can be lexicalized within TAGs.

Example 4.3. Example 4.1 could not be lexicalized with TSG. It can be lex-

icalized by using adjunction as follows: °
S
S S S
(az6) (B4) ‘
a a

The auxiliary tree 34 can now be inserted by adjunction inside the derived
trees.

For example, the following derived trees can be derived by successive
adjunction of S4:

S

A A

S S S S S

/\ A AN

S S S asSs SSSS
(a16) (c26) ‘ ‘ (az27) ‘ ‘ (cu2g) ‘ ‘ ‘ ‘
a aa a a aaaa

15 g is taken as the lexical anchor of both the initial tree a6 and the auxiliary

tree (s.
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Example 4.4. The CFG given in Example 4.2 can be lexicalized by using
adjunction and one can choose the anchor freely:'®

S
NP, VP NP K
(ar20) v (024) N (Bs) adv VP

The auxiliary tree 85 can be inserted in aig at the V P node by adjunction.
Using adjunction one is thus able to choose the appropriate lexical item as
anchor. The following trees (a29 and agp) can be derived by substitution of
Qo4 into agg for the NP node and by adjunction of 85 on the V P node in
a20:

S
/N
S NP VP
/\ IVAN
NP VP n adv VP
(a29) ‘ ‘ (a30) ‘
n \" \

We are now ready to prove the main result: any finitely ambiguous
context-free grammar can be lexicalized within tree-adjoining grammars; fur-
thermore adjunction is the only operation needed. Substitution as an addi-
tional operation enables one to lexicalize CFGs in a more compact way.

Proposition 4.2. If G = (X,NT, P,S) is a finitely ambiguous CFG which
does not generate the empty string, then there is a lexicalized tree-adjoining
grammar G, = (X,NT,1,A,S) generating the same language and tree set
as G. Furthermore Gie; can be chosen to have no substitution nodes in any
elementary trees.

We give a constructive proof of this proposition. Given an arbitrary CFG,
G, we construct a lexicalized TAG, Gie,, that generates the same language
and tree set as G. The construction is not optimal with respect to time or
the number of trees but it does satisfy the requirements.

16 We chose v as the lexical anchor of aso but, formally, we could have chosen n
instead.
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The idea is to separate the recursive part of the grammar G from the
non-recursive part. The non-recursive part generates a finite number of trees,
and we will take those trees as initial TAG trees. Whenever there is in G
a recursion of the form B=aBf, we will create an B-type auxiliary tree in
which a and f are expanded in all possible ways by the non-recursive part of
the grammar. Since the grammar is finitely ambiguous and since A ¢ L(G),
we are guaranteed that a3 derives some lexical item within the non-recursive
part of the grammar. The proof follows.

Proof. Proposition 4.2

Let G = (X,NT,P,S) be a finitely ambiguous context-free grammar
st. A € L(G). We say that B € NT is a recursive symbol if and only if
3o, B € (X UNT)* s.t. B2>aBf. We say that a production rule B — § is
recursive whenever B is recursive.

The set of production rules of G can be partitioned into two sets: the
set of recursive production rules, say R C P, and the set of non-recursive
production rules, say NR C P; RUNR = P and RN NR = (. In order to
determine whether a production is recursive, given G, we construct a directed
graph G whose nodes are labeled by non-terminal symbols and whose arcs
are labeled by production rules. There is an arc labeled by p € P from a node
labeled by B to a node labeled by C' whenever p is of the form B — aCg,
where a, 3 € (YUNT)*. Then, a symbol B is recursive if the node labeled by
B in G belongs to a cycle. A production is recursive if there is an arc labeled
by the production which belongs to a cycle.

Let L(NR) = {w|S=w using only production rules in NR}. L(NR) is a
finite set. Since A & L(G), A & L(NR). Let I be the set of all derivation
trees defined by L(NR). I is a finite set of trees; the trees in I have at least
one terminal symbol on the frontier since the empty string is not part of the
language. I will be the set of initial trees of the lexicalized TAG Gye;-

We then form a base of minimal cycles of G. Classical algorithms on graphs
gives us methods to find a finite set of so-called ‘base-cycles’ such that any
cycle is a combination of those cycles and such that they do not have any
sub-cycle. Let {c;1 - -- ¢} be a base of cycles of G (each ¢; is a cycle of G).

We initialize the set of auxiliary trees of Gje, to the empty set, i.e. A := (.
We repeat the following procedure for all cycles ¢; in the base until no more
trees can be added to A.

For all nodes n; in ¢;, let B; be the label of n;,
According to ¢;, B;=a;B;0i,
If B; is the label of a node in a tree in I U A then
for all derivations a;=w; € DI ﬂi=*>zz- e x>
that use only non-recursive production rules
add to A the auxiliary tree corresponding to all derivations:
B,-:"EaiBiﬁiéwiBiz,- where the node labeled B; on the frontier is
the foot node.
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In this procedure, we are guaranteed that the auxiliary trees have at
least one lexical item on the frontier, because «;3; must always derive some
terminal symbol otherwise, the derivation B;=a;B;3; would derive a rule of
the form B;=B; and the grammar would be infinitely ambiguous.

It is clear that G, generates exactly the same tree set as G. Furthermore
Gler is lexicalized.

We just showed that adjunction is sufficient to lexicalize context-free
grammars. However, the use of substitution as an additional operation to
adjunction enables one to lexicalize a grammar with a more compact TAG.

5. Closure of TAGs under Lexicalization

In the previous section, we showed that context-free grammars can be lexi-
calized within tree-adjoining grammars. We now ask ourselves if TAGs are
closed under lexicalization: given a finitely ambiguous TAG, G, (A € L(G)),
is there a lexicalized TAG, Gjey, which generates the same language and the
same tree set as G7 The answer is yes. We therefore establish that TAGs are
closed under lexicalization. The following proposition holds:

Proposition 5.1 (TAGs are closed under lexicalization).
If G is a finitely ambiguous TAG that uses substitution and adjunction as
combining operation, s.t. A & L(G), then there exists a lexicalized TAG Gy
which generates the same language and the same tree set as G.

The proof of this proposition is similar to the proof of proposition 4.2
and we only give a sketch of it. It consists of separating the recursive part
of the grammar from the non-recursive part. The recursive part of the lan-
guage is represented in G, by auxiliary trees. Since G is finitely ambiguous,
those auxiliary trees will have at least one terminal symbol on the frontier.
The non-recursive part of the grammar is encoded as initial trees. Since the
empty string is not generated, those initial trees have at least one terminal
symbol on the frontier. In order to determine whether an elementary tree is
recursive, given G, we construct a directed graph G whose nodes are labeled
by elementary trees and whose arcs are labeled by tree addresses. There is an
arc labeled by ad from a node labeled by 8 to a node labeled by o whenever
B can operate (by adjunction or substitution) at address ad in a. Then, an
elementary tree 0 is recursive if the node labeled by § in G belongs to a cycle.
The construction of the lexicalized TAG is then similar to the one proposed
for proposition 4.2.
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6. Summary of Lexicalization!”

The elementary objects manipulated by a tree-adjoining grammar are trees,
i.e., structured objects and not strings. The properties of TAGs relate directly
to the strong generative capacity (structural description) which is more rel-
evant to linguistic descriptions than the weak generative capacity (set of
strings). The tree sets of TAGs are not recognizable sets but are equivalent
to the tree sets of linear indexed languages. Hence, tree-adjoining grammars
generate some context-sensitive languages. However, tree-adjoining languages
are strictly contained in the class of indexed languages.

The lexicalization of grammar formalisms is of linguistic and formal in-
terest. We have taken the point of view that rules should not be separated
totally from their lexical realization. In this “lexicalized” approach, each el-
ementary structure is systematically associated with a lexical anchor. These
structures specify extended domains of locality (as compared to Context Free
Grammars) over which constraints can be stated.

The process of lexicalization of context-free rules forces us to use oper-
ations for combining structures that make the formalism fall in the class
of mildly context sensitive languages. Substitution and adjunction give us
the freedom to lexicalize CFGs. Elementary structures of extended domain
of locality, when they are combined with substitution and adjunction, yield
Lexicalized TAGs. TAGs were so far introduced as an independent formal
system. We have shown that they derive from the lexicalization process of
context-free grammars. We also have shown that TAGs are closed under lex-
icalization.

Until recently it was an open problem whether or not there is a subclass
of TAGs such that lexicalization can be achieved and yet this class was not
more powerful than CFGs. This question has now been answered in the affir-
mative in [Schabes and Waters1995]. The tree insertion grammar they define

17 There are several important papers about TAGs describing their linguistic,
computational and formal properties. Some of these are: Joshi
[Joshi1987], Joshi, Vijay-Shanker and Weir [Joshi et al.1991], Vijay-Shanker
[Vijay-Shanker1987], Weir [Weir1988], Schabes [Schabes1990, Schabes1991],
Schabes and Joshi [Schabes and Joshil988, Schabes and Joshil989], Kroch
[Kroch1987], Kroch and Joshi [Kroch and Joshil985], Abeillé, Bishop, Cote
and Schabes [Abeillé et al.1990], Abeillé [Abeillé1988], Schabes and Waters
[Schabes and Waters1995], Rambow, Vijay-Shanker
and Weir [Rambow et al.1995], Joshi and Srinivas [Joshi and Srinivas1994],
Rambow [Rambow1994], Vijay-Shanker [Vijay-Shanker1992], Shieber and
Schabes [Shieber and Schabes1990]. A reader interested in TAGs will find these
papers very useful. Additional useful references will be found in the Special
Issue of Computational Intelligence (November 1994) [CI1994] devoted to Tree-
Adjoining Grammars. A wide coverage lexicalized TAG grammar for English
(about 300,000 inflected items and about 570 trees in 38 families) and a parser
(XTAG System) has been described in [XTAG-Group1995], which includes
evaluation of XTAG on corpora such as the Wall Street Journal, IBM Computer
Manuals and ATIS Corpus.
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is such a class. This class however cannot capture context-sensitive phenom-
ena needed for the description of natural languages (for example, crossed
dependencies), although it appears to be adequate for English for practical
purposes.

7. Embedded Push-Down Automaton (EPDA)

We will now describe an automaton related to TAGs and briefly describe a
processing application to crossed dependencies.

An EPDA, M’, is very similar to a PDA, except that the push-down store
is not necessarily just one stack but a sequence of stacks. The overall stack
discipline is similar to a PDA, i.e., the stack head will be always at the top
symbol of the top stack, and if the stack head ever reaches the bottom of a
stack, then the stack head automatically moves to the top of the stack below
(or to the left of) the current stack, if there is one (Vijay-Shanker, 1987;
Joshi, 1987; Joshi, Vijay-Shanker, and Weir, 1988).

Initially, M’ starts with only one stack, but unlike a PDA, an EPDA may
create new stacks above and below (right and left of) the current stack. The
behavior of M is specified by a transition function, §', which for a given input
symbol, the state of the finite control, and the stack symbol, specifies the new
state, and whether the current stack is pushed or popped; it also specifies new
stacks to be created above and below the current stack. The number of stacks
to be created above and below the current stack are specified by the move.
Also, in each one of the newly created stacks, some specified finite strings of
symbols can be written (pushed). Thus:

4§’ (input symbol, current state, stack symbol) =

(new state, sby, sba, . .., sby,, push/pop on current stack, st1, sta, . .., sty)
where sby, sbs,...,sb, are the stacks introduced below the current stack,
and sty, sto, ..., st, are the stacks introduced above the current stack!®. In

each one of the newly created stacks, specified information may be pushed.
For simplicity, we have not shown this information explicitly in the above
definition. As in the case of a PDA, an EPDA can be nondeterministic also.

A string of symbols on the input tape is recognized (parsed, accepted) by
M, if starting in the initial state, and with the input head on the leftmost
symbol of the string on the input tape, there is a sequence of moves as
specified by §' such that the input head moves past the rightmost symbol on
the input tape and the current stack is empty, and there are no more stacks
below the current stack. Figures 7.1 and 7.2 illustrate moves of an EPDA,
M'.

18 The transition function must also specify whether the input head moves one
symbol to the right or stays where it is.
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Given the initial configuration as shown in (1), let us assume that for
the given input symbol, the current state of the finite control, and the stack
symbol, ¢’ specifies the move shown in (2):

@ Input tape

~

Current stack

w

Zo | Yo Zo Zo | %o Zo | %4

Current

Fig. 7.1. Moves of an EPDA

In this move, two stacks have been created above (to the right of) the
current stack (which is shown by dotted lines), and three stacks have been
created below (to the left of) the current stack (i.e., the current stack in
(1), the old current stack). W has been pushed on the current stack, Xg
and X, respectively, have been pushed on the two stacks introduced above
the current stack, and Yp, Y7, and Y3, respectively, have been pushed on the
stacks created below the (old) current stack. The stack head has moved to
the top of top stack, so now the topmost stack is the new current stack and
the stack head is on the topmost symbol in the new current stack. We will
use Zy to denote the bottom of each stack.

Let us assume that in the next move the configuration is as shown in (3) in
Fig. 7.2. In this move, 1 stack has been created below the current stack (which
is shown by dotted lines) with V pushed on it, 2 stacks have been created
above the (old) current stack with Ty and 77 pushed on them, respectively.
V is pushed on the (old) current stack. The stack head has again moved to
the topmost symbol of top stack, which is now the new current stack.

Thus in an EPDA in a given configuration there is a sequence of stacks;
however, the stack head is always at the top of the top stack at the end of a
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S EE GE G EE G
‘L
‘ZO‘Yz ‘Zg“(]‘ ‘ZO‘V, ‘ZO‘W ‘ZO‘XQ ‘ZD‘VQ PZQV‘VV ‘ZQ‘TO ‘Zu‘t’,
Current

Fig. 7.2. Moves of an EPDA

move. Thus although, unlike a PDA, there is a sequence of stacks in a given
configuration, the overall stack discipline is the same as in a PDA. PDAs
are special cases of EPDAs, where in each move no new stacks are created,
only a push/pop is carried out on the current stack. Note that in an EPDA,
during each move, push/pop is carried out on the current stack and pushes
on the newly created stacks. Since, in a given move, the information popped
from the current stack may be identical to the information pushed on a newly
created stack, we will have the effect of moving information from one stack
to another. In this case the information, although popped from the current
stack, is still in the EPDA. We will use the term POP (capitalized) to denote
the case when information is popped from the current stack and it is not
‘moved’ to a newly created stack, i.e., the information is discharged from the
EPDA and it is lost from the EPDA.

7.1 Crossed Dependencies

We will now illustrate how EPDAs can process crossed dependencies as they
arise in certain languages, for example, Dutch. The analysis presented below
not only recognizes the strings with crossed dependencies but also shows how
the interpretation is done incrementally. The reader will also note that the
machine shown in Fig. 7.3 can also recognize strings of the form {a™b"c" |
n > 1} and {a™b"c"d™ | n > 1}, which correspond to a mixture of crossed
and nested dependencies.

Rather than defining the EPDA, M, formally, (i.e. specifying the transi-
tion function completely), we will describe simply the moves My goes through
during the processing of the input string (see Fig. 7.3. The symbols in the in-
put string are indexed so as to bring out the dependencies explicitly and thus
the indexing is only for convenience. Also NPs are treated as single symbols.
In the initial configuration, the input head is on NP; and the stack head is
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Jan Piet Marie zag laten zwemmen
\Y
(Input) NP NP NR 1 v, A

® zoNR[ | |
@
®
@ ENNC [zgNENRL [

®

z
©) o NP 2o/N5 Z,|NR zol T [ [
@ Zo/NB ZN8 _pop
®) EANE \\\\
©) E— \

V3(N P3)

V1 (NP, S)

V,(NP, S)

Fig. 7.3. Crossed Dependencies (Dutch)
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on top of the current stack. The first three moves of My, i.e., moves 1, 2,
and 3, push NP, NP,, NP; on the stack. At the end of the third move, the
current stack has NPy, NP,, and NP3 on it and the input head is on V;. No
new stacks have been created in these moves. In move 4, NP; is popped from
the current stack and a new stack has been created below the current stack
and NP; is pushed on this stack, thus NP is still within the EPDA and not
POPPED out of the EPDA. At the end of move 4, the stack head is on top
of the topmost stack, i.e., on NP, and the input head stays at V3. Moves 5
and 6 are similar to move 4. In move 5, NP, is popped from the current stack
and a new stack with NP, on it is created below the current stack. Thus the
stack containing NP, appears between the stack containing NP and the cur-
rent stack. The input head stays at V. Similarly, in move 6, NP; is popped
from the current stack and a new stack is created below the current stack,
and NP, is pushed on it. The input head stays at V;. The current stack is
now empty and since there are stacks below the current stack, the stack head
moves to the top of topmost stack below the empty current stack, i.e., it is
on NP;. In move 7, NP, is POPPED. In effect, we have matched V; from
the input to NP, and the structure Vi (NP, S) is now POPPED and NP is
no longer held by M4'°. V1 (NP, S) denotes a structure encoding V; and its
argument structure. Note that this structure has its predicate and one argu-
ment filled in, and it has a slot for an S type argument, which will be filled
in by the next package that is POPPED by Mj. Thus we are following the
principle of partial interpretation (PPI), as described in Section 1. Similarly
in move 8, V> and NP, are matched and NP, is POPPED, i.e., the structure
V2(NPz, S) is POPPED. This structure now fills in the S argument of the
structure POPPED earlier, and it itself is ready to receive a structure to fill
its S argument. In move 9, V3 and NP; are matched and NP; is POPPED,
i.e., the structure V3(NP;) is POPPED, which fills in the S argument of the
structure previously POPPED. During the moves 7, 8, and 9, the input head
moves one symbol to the right. Hence, at the end of move 9, the input head is
past the rightmost symbol on the input tape; also, the current stack is empty
and there are no stacks below the current stack. Hence, the input string has
been successfully recognized (parsed).

8. Linguistic Relevance

In this section we will discuss very briefly the linguistic relevance of TAGs.
The two formal properties discussed below are linguistically very crucial
and they are mathematically also very interesting. Tree-adjoining grammars

19 Although we are encoding a structure, only a bounded amount of information
is stored in the EPDA stacks. The symbols NP, S, etc. are all atomic symbols.
In an EPDA behaving as a parser, these symbols can be regarded as pointers
to relevant structures, already constructed, and outside the EPDA.
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(TAG) constitute a tree-generating formalism with some attractive properties
for characterizing the strong generative capacity of grammars, that is, their
capacity to characterize the structural descriptions associated with sentences.
Among these properties the two most basic ones are as follows.

1. Extended domain of locality (EDL): TAGs have a larger domain of lo-
cality than context-free grammars (CFG) and CFG based grammars such as
head-driven phrase structure grammars (HPSG) and lexical-functional gram-
mars (LFG). In the CFG in Fig. 8.1 the dependency between the verb likes
and its two arguments, subject (NP) and object (NP), is specified by means
of the first two rules of the grammar. It is not possible to specify this depen-
dency in a single rule without giving up the VP (verb phrase) node in the
structure. That is, if we introduce the rule, S — NP V NP, then we express
this dependency in one rule, but then we cannot have VP in the grammar.
Hence, if we regard each rule of a CFG as specifying the domain of locality,
then the domain of locality for a CFG cannot locally (i.e., in one rule) encode
the dependency between a verb and its arguments, and still keep the VP node
in the grammar. TAGs will permit the localization of these dependencies, in-
cluding the so-called long-distance dependencies.

Syntactic Rules Lezical Rules
1.S - NP VP 4. NP — Harry
2. VP - VP ADV 5. NP — peanuts
3. VP - V NP 6. V — likes
7. ADV — passionately

Fig. 8.1. A Context-Free Grammar (CFG)

2. Factoring recursion from the domain of dependencies (FRD): The ele-
mentary structures of TAGs are the domains over which dependencies such
as agreement, subcategorization, and filler-gap, for example, are stated. The
long-distance behavior of some of these dependencies follows from the op-
eration of ‘adjoining’, thus factoring recursion from the domain over which
dependencies are initially stated.

All other properties of TAGs, mathematical, computational, and linguis-
tic follow from EDL and FRD. TAGs belong to the so-called ‘mildly context-
sensitive grammars’ (MCSG). Roughly speaking, MCSG are only slightly
more powerful than CFGs and preserve all the properties of CFGs. This
extra power is a corollary of EDL and FRD and appears to be adequate
for characterizing various phenomena which require more formal power than
CFGs. Parsing algorithms for CFGs have been extended to TAGs. Three
other formal systems, linear indexed grammars, head grammars and combi-
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natory categorial grammars, have been shown to be weakly equivalent, that
is in terms of the sets of strings these systems generate.

The only operation in TAGs for composing trees is adjoining. Although
adjoining can simulate substitution, by adding the operation of substitution
explicitly, we obtain lexicalized TAGs, called LTAGs. LTAGs are formally
equivalent to TAGs. Hence, we will describe LTAGs only. Moreover, LTAGs
have direct linguistic relevance. All recent work, linguistic and computational,
has been done in the framework of LTAGs.

As we have already discussed in Section 3., in a ‘lexicalized’ grammar,
each elementary structure is associated with a lexical item called its ‘anchor’.
By ‘lexicalized’ we mean that in each structure there is a lexical item that is
realized. In a lexicalized grammar the grammar consists of a lexicon where
each lexical item is associated with a finite set of elementary structures for
which that item is the anchor (multiple anchors are possible). In addition to
these anchored structures we have a finite set of operations which tell us how
these structures are composed. There are no rules as such in the grammar.
The composition operations are universal in the sense that they are the same
for all grammars in the class of lexicalized grammars.

In a CFG, if we take each rule in the grammar as an elementary structure
then it is easily seen that, in general, a CFG is not a lexicalized grammar.
A CFG, G, which is not in a lexicalized form cannot be lexicalized by a lexi-
calized grammar, G', using substitution as the only operation for composing
structures, such that both G and G’ generate the same strings and the same
structural descriptions. If in addition to the operation of substitution we add
the operation of adjoining, then any CFG can be lexicalized and, more in-
terestingly, the resulting system of grammar is exactly the lexicalized TAG
(LTAG) system, which is described below. Thus LTAGs arise naturally in the
process of lexicalizing CFGs.

In the LTAG, G4, in Fig. 8.2, each word is associated with a structure
(tree) (the word serves as an anchor for the tree) which encodes the depen-
dencies between this word and its arguments (and therefore indirectly its
dependency on other words which are anchors for structures that will fill up
the slots of the arguments).

Thus, for likes, the associated tree encodes the arguments of likes (that
is, the two NP nodes in the tree for likes) and also provides slots in the
structure where they fit. The trees for Harry and peanuts can be substituted
respectively in the subject and object slots of the tree for likes. The tree for
passionately can be inserted (adjoined) into the tree for likes at the VP node.
Adjoinable trees, which have a root node and a foot node (marked with *)
with the same label, are called auxiliary trees. The other elementary trees are
called initial trees. Derivation in a TAG is quite different from a derivation
in a CFG. The tree in Fig. 8.3 is a derived tree in G;. It is not the derivation
tree. The derivation tree (not shown here) will be a record of the history of
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NP NP VP ADV

Harry peanuts passionately

Operations: (1) Substitution (for nodes marked with |). (2) Adjoining.

Fig. 8.2. Elementary Trees for a TAG, G;.
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the various adjoinings and substitutions carried out to produce the tree in
Fig. 8.3.

S
/\
NP VP
/\
H a‘r ry VP ADV

N

\% NP passi o‘nately
o

likes peanuts
Harry likes peanuts passionately

Fig. 8.3. A Derived Tree for the TGA, Gi.

Now consider the TAG, G3, in Fig. 8.4. For simplicity the trees in Gs
are shown with the NP substitutions already carried out. By adjoining the
tree for tell at the interior S’ node of the tree for likes in G2, we obtain the
derived tree in Fig. 8.5 corresponding to who; did John tell Sam that Bill likes
e; Note that in the tree for likes, the dependent elements who; and the gap e;
both appear in the same elementary tree. In the derived tree in Fig. 8.5 the
two dependent elements have moved apart and thus the dependencies have
become long-distance.?? This example illustrates the property FRD.

Using FRD, it can be shown that the principle of subjacency, a constraint
on long-distance dependencies, which rules out sentences such as Who; did
you wonder why she wrote to e;, is a corollary of the fact that there cannot be
an elementary tree (for English) which has two preposed WH-phrases. Thus,
the long-distance constraint is replaced by a local constraint on an elementary
tree, a constraint that is needed in any case to define the elementary trees
that are allowed and those that are not. Further linguistic results using EDL

20 The specific linguistic details in Figures 8.4 and 8.5 may be ignored by a reader
not familiar with the Government and Binding Theory. The factoring of recur-
sion from the domain of dependencies illustrated in these figures is independent
of any particular grammatical theory.
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NP, [+wh] s

who COMP S
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that NP VP
/\
Bill Vv NP
S likes e,
comP S
T
@ INFL NP VP
did John  V NP S*

tell Sam

Fig. 8.4. Elementary Trees for a TAG, Ga.
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Fig. 8.5. A Derived Tree for the TAG, G».
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and FRD have been obtained in the treatment of linguistic phenomena such
as extraposition, asymmetries in long-distance extractions, the clause-final
verb clusters in Dutch and German and idioms—their noncompositional and
compositional aspects, among others.

9. Some variants of TAGs

9.1 Feature Structure Based TAGs

A feature structure consists of a set of attribute-value pairs, where a value
may be atomic or another feature structure. The main operation for combin-
ing feature structures is unification. A variety of grammars such as GPSG,
HPSG, and LFG are feature structure based grammars with CFG as their
skeletons. A feature structure based TAG is a TAG in which feature struc-
tures are associated with the nodes of the elementary trees. The operations of
substitution and adjoining are then defined in terms of unifications of appro-
priate feature structures, thus allowing the constraints on substitution and
adjoining to be modeled by the success or failure of unifications. In contrast
to feature structure based grammars with CFG skeletons, those with TAG
skeletons need only finite-valued features due to EDL and FRD, thus reducing
the role of unification as compared to CFG based systems [Joshi et al.1991].

9.2 Synchronous TAGs

Synchronous TAGs are a variant of TAGs, which characterize correspon-
dences between languages [Shieber and Schabes1990]. Using EDL and FRD,
synchronous TAGs allow the application of TAGs beyond syntax to the task
of semantic interpretation, language generation and automatic translation.
The task of interpretation consists of associating a syntactic analysis of a
sentence with some other structure—a logical form representation or an anal-
ysis of a target language sentence. In a synchronous TAG both the original
language and its associated structure are defined by grammars stated in the
TAG formalism. The two TAGs are synchronized with respect to the op-
erations of substitution and adjoining, which are applied simultaneously to
related nodes in pairs of trees, one tree for each language. The left member
of a pair is an elementary tree from the TAG for one language, say English,
and the right member of the pair is an elementary tree from the TAG for
another language, say the logical form language.

9.3 Probabilistic LTAGs

Probabilistic CFGs can be defined by associating a probability with each rule
of the grammar. Then the probability of a derivation can be easily computed
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because each rewriting in a CFG derivation is independent of context and
hence, the probabilities associated with the different rewriting rules can be
multiplied. However, the rule expansions are, in general, not context-free. A
probabilistic CFG can distinguish two words or phrases w and w’ only if
the probabilities P(w/N) and P(w'/N) as given by the grammar differ for
some nonterminal. That is, all the distinctions made by a probabilistic CFG
must be mediated by the nonterminals of the grammar. Representing distri-
butional distinctions in nonterminals leads to an explosion in the number of
parameters required to model the language. These problems can be avoided
by adopting probabilistic TAGs, which provide a framework for integrating
the lexical sensitivity of stochastic approaches and the hierarchical structure
of grammatical systems [Resnick1994, Schabes1992]. Since every tree is asso-
ciated with a lexical anchor, words and their associated structures are tightly
linked. Thus the probabilities associated with the operations of substitution
and adjoining are sensitive to lexical context. This attention to lexical context
is not acquired at the expense of the independence assumption of probabili-
ties because substitutions and adjoinings at different nodes are independent
of each other. Further EDL and FRD allow one to capture locally the co-
occurrences between, the verb likes and the head nouns of the subject and
the object of likes even though they may be arbitrarily apart in a sentence.

9.4 Using Description Trees in TAG

A new perspective on TAGs is provided in [Vijay-Shanker1992] by providing
a formalism for describing the trees in TAG. Roughly speaking an internal
node of a tree in TAG is viewed as a pair of nodes (say top and bottom)one
dominating the other. The root and the foot node of an auxiliary tree in a
TAG can be identified with the top and bottom nodes respectively during
the process of adjunction. Formal correspondence of this approach has been
studied in [Vijay-Shanker1992] and the key ideas in this approach are also
incorporated in D-Tree Grammars [Rambow et al.1995].

9.5 Muti-component TAGs (MCTAG)

In MCTAGs a variant of the adjoining operation is introduced under which,
instead of a single auxiliary tree, a set of such trees is adjoined to a
given elementary tree. Under this definition, MCTAGs are equivalent to
TAGs both in terms of the strings and structural descriptions they generate
[Joshil987, Joshi et al.1991]. Such MCTAGs have been used in the analysis
of extraposition as well as certain kinds of word order variations, for example
scrambling [Rambow1994].



36 Joshi and Schabes

10. Parsing Lexicalized Tree-Adjoining Grammars
(LTAG)

Although formal properties of tree-adjoining grammars have been investi-
gated (Vijay-Shanker, 1987, Vijay-Shanker and Joshi, 1985)—for example,
there is an O(n®)-time CKY-like algorithm for TAGs—little attention has
been put on the design of practical parser for TAG whose average complex-
ity is superior to its worse case. In this Section we will present a predictive
bottom-up parser for TAGs which is in the spirit of Earley’s parser and we
discuss modifications to the parsing algorithms that make it possible to han-
dle extensions of TAGs such as constraints on adjunction, substitution, and
feature structure representation for TAGs. We present this algorithm as it is
both theoretically and practically important.

In 1985, Vijay-Shanker and Joshi introduced a CKY-like algorithm for
TAGs which uses dynamic programming techniques. They established for the
first time O(n®) time as an upper bound for parsing TAGs. The algorithm
was implemented, but in our opinion the result was more theoretical than
practical for several reasons. The algorithm assumes that elementary trees
are binary branching. Most importantly, although it runs in O(n®) worst
time, it also runs in O(n®) best time. As a consequence, the CKY algorithm
is in practice very slow. The lack of any predictive information (i.e. top-
down information) in this purely bottom-up parser disallows for a better
behavior. We investigate the use of predictive information in the design of
parsers for TAGs whose practical performance is superior to the worst case
complexity. In order to use predictive information, any algorithm should have
enough information to know which tokens are to be expected after a given
left context. That type of information is in nature top-down and is therefore
not available for pure bottom-up parsers as the CKY-type parser for TAGs.
Our main objective is to define practical parsers for TAGs that are easy to
modify to handle extensions of TAGs such as unification-based TAG.

Since the average time complexity of Earley’s parser for CFGs depends on
the grammar and in practice runs much better than its worst time complexity,
we decided to try to adapt Earley’s parser for CFGs to TAGs.

Finding an Earley-type parser for TAGs that use predictive information
may seem a difficult task because it is not clear how to parse TAGs bottom
up using top-down information while scanning the input string from left to
right: since adjunction wraps a pair of strings around a string, parsing from
left to right requires to remember more information is expected.

10.1 Left to Right Parsing of TAGs

Our main goal is to define a practical parser for tree-adjoining grammars. We
are going to improve the performance of the parser by designing a bottom-
up parser which uses top-down prediction. The predictive information will be
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used as the parser reads the input from left to right and will enable the parser
to restrict the number of hypothesis it needs to assume. The most filtering
that one might expect with some left to right predictive information is to
rule out all hypotheses that are not consistent with the prefix of the input
string that has been read so far. This notion is captured in the definition of
the valid prefix property (see Section 10.8). However, the parser will not use
all predictive information in order to lower its worst case complexity.

The algorithm relies on a tree traversal that enables one to scan the input
string from left to right while recognizing adjunction.

This traversal is exemplified by the notion of dotted tree which consists of
a node in a tree associated with a position relative to the node. The position
is characterized as a dot at one of the following four possible positions: above
or below and either to the left or to the right of the node. The four positions
of the dot are annotated by la,lb,ra,rb (resp. left above, left below, right
above, right below).

The tree traversal consists of moving the dot in the tree in a manner
consistent with the left to right scanning of the yield while still being able to
recognize adjunctions on interior nodes of the tree. The tree traversal starts
when the dot is above and to the left of the root node and ends when the dot
is above and to the right of the root node. At any time, there is only one dot
in the dotted tree.

Sart End
AN 4
A

‘EFGH I

Fig. 10.1. Example of a tree traversal.

The tree traversal is illustrated in (see Fig. 10.1) and is precisely defined
as follows:

e if the dot is at position la of an internal node (i.e. not a leaf), we move
the dot down to position b,

e if the dot is at position /b of an internal node, we move to position la of
its leftmost child,

o if the dot is at position la of a leaf, we move the dot to the right to
position ra of the leaf,

o if the dot is at position rb of a node, we move the dot up to position ra
of the same node,

e if the dot is at position ra of a node, there are two cases:
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e if the node has a right sibling, then we move the dot to the right
sibling at position la.

o if the node does not have a right sibling, then we move the dot to its
parent at position rb.

This traversal will enable us to scan the frontier of an elementary tree
from left to right while trying to recognize possible adjunctions between the
above and below positions of the dot.

In effect, a dotted tree separates a tree into two parts (see Fig. 10.2): a
left context consisting of nodes that have been already traversed and a right
contezt that still needs to be traversed.

Left context, Right context
already traversed to be traversed.

Fig. 10.2. Left and right contexts of a dotted tree.

It is important to note that the nodes on the path from the root node
to the dotted node have been traversed only to their left sides. This fact is
significant since adjoining may add material on both sides of a node and is
therefore more complex to recognize than concatenation. For those nodes,
only the left parts of the auxiliary trees that were adjoining to them have
been seen.

Suppose that we are trying to recognize the input wjwowswsws (where
each w; are strings of tokens) which was obtained by adjoining an auxiliary
tree 3 into the tree a (see Fig. 10.3).

A - A
A
(a) ®B) (V)wl Vg
wooow o oW “55“”4
v

Fig. 10.3. An adjunction to be recognized.
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A'
®
V\é 'A" \/\Ql V\é . ‘o V\Q1
o X@) (T)"A\(s")

Y5

Fig. 10.4. Moving the dot while recognizing an adjunction.

Since the input is recognized from left to right, the algorithm must act as
if it visits the resulting derived tree (rightmost tree in Fig. 10.3 and Fig. 10.4)
from left to right. In particular, it should visit the nodes labeled by A in the
following order (see Fig. 10.4)

) R LR T LUV

This derived tree however is a composite tree, result of adjoining the
second tree in Fig. 10.3 and Fig. 10.4 into the first tree in in Fig. 10.3 and
Fig. 10.4. Since the algorithm never builds derived tree, it visits the A nodes
in the following order (see Fig. 10.4)

11.-.2/2...33"...4"4...

In order to achieve this traversal across and within trees several concepts
and data structures must be defined.

In the tree traversal defined above we consider equivalent (and therefore
indistinguishable) two successive dot positions (according to the tree traver-
sal) that do not cross a node in the tree (see Fig. 10.5). For example the
following equivalences hold for the tree « pictured in Fig. 10.1:

<a,0,lb >=< a,1,la >
<a,l,ra >=< a,2,la >
<a,2,lb>=<a,2-1,la>

where < a, dot, pos > is the dotted tree in which the dot is at address dot
and at position pos in the tree a.

We assume that the input string is a; - - -a, and that the tree-adjoining
grammar is G = (X, NT,I, A, S): X is the finite set of terminal symbols, NT'
is the set of non-terminal symbols (X N NT = (), I is the set of initial trees,
A is the set of auxiliary trees and S is the start non-terminal symbol.

The algorithm collects items into a chart.2! An item s is defined as an
8-tuple, s = [a, dot, pos, i, j, k,1, sat?] where:

21 We could have grouped the items into item sets as in [Earley1968] but we chose
not to, allowing us to define an agenda driven parser.
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Sart End
N, A
A A

E F G'H . EEH T

Fig. 10.5. Left, left to right tree traversal; right, equivalent dot positions.

e o is an elementary tree, initial or auxiliary tree: o € I U A.

e dot is an address in a. It is the address of the dot in the tree a.

e pos € {la,lb, rb,ra}. It is the position of the dot: to the left and above,
or to the left and below, or to the right and below, or to the right and
above.

e i,j,k,l areindices of positions in the input string ranging over {0, - - - ,n}U
{=1}, n being the length of the input string and — indicating that the in-
dex is not bound. i and [ are always bound, j and k can be simultaneously
unbound. We will come back to these indices later.

e sat? is a boolean; sat? € {true,nil}. The boolean sat? indicates whether
an adjunction has been recognized on the node at address dot in the tree
a. The algorithm may set sat? to ¢ only when pos = rb.

The components a, dot, pos of an item define a dotted tree. The additional
indices i, 4, k, [ record portions of the input string. In the following, we will re-
fer only to one of the two equivalent dot positions for a dotted tree. For exam-
ple, if the dot at address dot and at position pos in the tree « is equivalent to
the dot at address dot' at position pos’ in «, then s = [a, dot, pos, i, j, k, 1, sat?)
and s' = [a,dot’, pos’, i, j, k, 1, sat?] refer to the same item. We will use to our
convenience s or s’ to refer to this unique item.

Tt is useful to think of TAG elementary trees as a set of productions on
pairs of trees and addresses (i.e. nodes). For example, the tree in Fig. 10.1,
let’s call it a, can be written as:

(a,0) = (@,1) (@,2) (e, 3)
(aa2) - (0472 ) 1) (Oé,2 2) (a72 3)
(aa?’) - (0473 ) 1) (Oé,3-2)

Of course, the label of the node at address 7 in « is associated with each
pair (a,).22 For example, consider the dotted tree < a,2,ra > in which
the dot is at address 2 and at position “right above” in the tree « (the tree
in Fig. 10.1). Note that the dotted trees < a,2,7a > and < «,3,la > are
equivalent. The dotted tree < a,2,ra > is can be written in the following
notation:

22 TAGs could be defined in terms of such productions. However adjunction must

be defined within this production system. This is not our goal, since we want
to draw an analogy and not to define a formal system.
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(@,0) = (1) (0,2) ® (a;3)

One can therefore put into correspondence an item defined on a dotted
tree with an item defined on a dotted rule. An item s = [a, dot, pos, i, j, k, 1, sat?]
can also be written as the corresponding dotted rule associated with the in-
dices i, j, k,l and the flag sat?:

Mo =T Ty @My Nz [6,4, K, 1, sat?]
where ng = (a,u) and np = (o, u-p), p € [1, 2]

Here u is the address of the parent node (1) of the dotted node when
pos € {la,ra}, and where u = dot when pos € {lb, rb}.

The algorithm collects items into a set C called a chart. The algorithm
maintains a property that is satisfied for all items in the chart C. This property
is pictured in Fig. 10.6 in terms of dotted trees. We informally describe it
equivalently in terms of dotted rules. If an item of the form:

Tlo — m - TIy ”7y+1 /7 [iajakalasat?] with Tlo = (a,u) and np = (Oé,U'p)

is in the chart then the elementary tree o derives a tree such that:
(@) m ---ny=*>ai---az
(i) (e f) => Qj+1 Ak

where f is the address of the foot node of a. (i7) only applies when the
foot node of a (if there is one) is subsumed by one of the nodes n; ---1,.
When no foot node is found below 7; ---7,, the indices j and k are not
bound.

When pos = rb, the dot is at the end the dotted rule and if sat? =t
the boundaries a; - - - a; include the string introduced by an adjunction on the
dotted tree.

The flag sat? is needed since standard TAG derivations [Vijay-Shanker1987]
disallow more than one adjunction on the same node. sat? = ¢ indicates that
an adjunction was recognized on the dotted node (node at address dot in «).
No more adjunction must be attempted on this node. sat? = nil indicates
that an auxiliary tree can still be adjoined on the dotted node.

Initially, the chart C consists of all items of the form [«, 0, la, 0, —, —, 0, nil],
with « an initial tree whose root node is labeled with S. These initial items
correspond to dotted initial trees with the dot above and to the left of the
root node (at address 0).

Depending on the existing items in the chart C, new items are added to
the chart by four operations until no more items can be added to the chart.
The operations are: PREDICT, COMPLETE, ADJOIN and SCAN. If, in the final
chart, there is an item corresponding to an initial tree completely recognized,
i.e. with the dot to the right and above the root node which spans the input
from position 0 to n (i.e. an item of the form [a,0,ra,0,—, —, n,nil]), the
input is recognized.
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Fig. 10.6. Invariant.

The ScAN (see Fig. 10.7) operation is a bottom-up operation that scans
the input string. It applies when the dot is to the left and above a terminal
symbol.

This operation consists of two cases. In the first case, the dotted node is
to the left and above a node labeled by a non empty terminal which matches
the next token to be expected. In this case, the dot is moved to the right
and the span from i to [ is increased by one (from 4 to [ + 1). The indices
regarding the foot node (j and k) remain unchanged. In the second case, the
dot is to the left and above an empty symbol. In this case, the dot is moved
to the right and no token is consumed.

The PREDICT (see Fig. 10.7) operation is a top-down operation. It predicts
new items accordingly to the left context that has already been seen.

It consists of three steps which may not always be applicable simultane-
ously. Step 1 applies when the dot is to the left and above a non-terminal
symbol. All auxiliary trees adjoinable at the dotted node are predicted. Step
2 also applies when the dot is to the left and above a non-terminal symbol. If
there is no obligatory adjoining constraint on the dotted node, the algorithm
tries to recognize the tree without any adjunction by moving the dot below
the dotted node. Step 3 applies when the dot is to the left and below the foot
node of an auxiliary tree. The algorithm then considers all nodes on which
the auxiliary tree could have been adjoined and tries to recognize the subtree
below each one. It is in Step 3 of the PREDICT operation that the valid prefix
property is violated since not all predicted nodes are compatible with the
left context seen so far. The ones that are not compatible will be pruned in
a later point in the algorithm (by the COMPLETE operation). Ruling them
out during this step requires more complex data-structures and increases the
complexity of the algorithm [Schabes and Joshil988].

The COMPLETE (see Fig. 10.7) operation is a bottom-up operation that
combines two items to form another item that spans a bigger portion of the
input.
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A A
[i,j.k1,nil] -,-1,nil]
asajy
—> @ A >
[|Jk|n||] [|Jk|+ln||] [i.j,kl,nil] -Lnil]
[|Jk|n||] [|Jk|n||] [ InlI] In||]
SCAN PREDICT
* A 4 N\
[i,j.k1,nil] [i,-\-,1,nil] [ii,l, | nil]
[llk|9t°] |n|I] [thIn|I]

S ACA A

-,-l,sat?] [h,j.kii,nil] [h,j.klnil]

COMPLETE

zfyﬁ

[i.j.k.l.nil] [i.p.q.k.nil] [i.p.q.l true]

ADJOIN

Fig. 10.7. The four operations of the parser.
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It consists of two possibly non-exclusive steps that apply when the dot is
at position rb (right below). Step 1 considers that the next token comes from
the part to the right of the foot node of an auxiliary tree adjoined on the
dotted node. Step 2 tries to further recognize the same tree and concatenate
boundaries of two items within the same tree. Step 2 must be differentiated
into two cases, one when the dotted node subsumes the foot node (in which
case j and k are set when the dot is at position right below), the other when
it does not subsume the foot node (in which case j and k are not set when
the dot is at position right below).

The ADJOIN operation (see Fig. 10.7) is a bottom-up operation that com-
bines two items by adjunction to form an item that spans a bigger portion of
the input. It consists of a single step. The item produced has its flag (sat?)
set to true since an adjunction was recognized on the dotted node. The set-
ting of this flag prevents that the same operation applies a second time on
the same item and therefore allows only one adjunction on a given node.
This flag would be ignored for cases of alternative definition of tag deriva-
tions which allow for repeated adjunctions on a same node as suggested in
[Schabes and Shieber1994].

10.2 The Algorithm

The algorithm is a bottom-up parser that uses top-down information. It is
a general recognizer for TAGs with adjunction constraints. Unlike the CKY-
type algorithm for TAGs, it requires no condition on the grammar: the ele-
mentary trees (initial or auxiliary) need not to be binary and they may have
the empty string as frontier. The algorithm given below is off-line: it needs
to know the length n of the input string before starting any computation.
However it can very easily be modified to an on-line algorithm by the use of
an end-marker in the input string.

The pseudo code for the recognizer is shown in Fig. 10.8. Each operation
is stated as inference rules using the following notation:

item1 item?2

conditions
add item3

It specifies that if the items above the horizontal line are present in the
chart, then item below the horizontal line must be added to the chart only if
the conditions of application are met.

In addition, we use the following notations. A tree a will be considered to
be a function from tree addresses to symbols of the grammar (terminal and
non-terminal symbols): if x is a valid address in «, then a(z) is the label of
the node at address z in the tree a.

Addresses of nodes in a tree are encoded by Gorn-positions as defined
by the following inductive definition: 0 is the address of the root node,
k (k natural number) is the address of the k** child of the root node,
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x -y (x is an address, y a natural number) is the address of the y** child of
the node at address x.

Given a tree o and an address add in «, we define Adj(a,add) to be
the set of auxiliary trees that can be adjoined at the node at address add
in a; OA(a,dot) is defined as a boolean, true when the node at address
dot in the tree a has an obligatory adjoining constraint, false otherwise;
Foot(a) is defined as the address of the foot node of the tree « if there
is one, otherwise Foot(a) is undefined. For TAGs with no constraints on
adjunction, Adj(a,add) is the set of elementary auxiliary trees whose root
node is labeled by a(add).

10.3 An Example

We give an example that illustrates how the recognizer works. The gram-
mar used for the example (see Fig. 10.9) generates the language L =
{a™b"ec™d™|n > 0}. It consists of an initial tree @ and an auxiliary tree
B. There is a null adjoining constraint on the root node and on the foot node
of 5.

The input string given to the recognizer is: aabbeccdd. The corresponding
chart is shown in Fig. 10.10. The input is recognized since
[, 0, right, above,0, —, —,9,nil] is in the chart C. For purpose of explana-
tion, we have preceded each item with a number that uniquely identifies the
item and the operation(s) that caused it to be placed into the chart are writ-
ten to its right. We used the following abbreviations: init for the initialization
step, pred(k) for the PREDICT operation applied to the item numbered by k,
sc(k) for the SCAN operation applied to the item numbered by k, compl(k+1)
for the COMPLETE operation applied to the items numbered by &k and [ and
adj(k+1) for the ADJOIN operation applied to the items numbered by k and
. With this convention, one can trace step by step the construction of the
chart. For example,

31. [B,dot : 2,7b,1,4,5,8,t] adj(30+24)
stands for the item [8,dot : 2,7b,1,4,5,8,t] uniquely identified by the num-
ber 31 which was placed into the chart by applying the ADJOIN operation on
the items identified by the numbers 30 and 24.

10.4 Implementation

The algorithm described previously can be implemented to follow an arbitrary
search space strategy by using a priority function that ranks the items to be
processed. The ranking function can also be defined to obtain a left to right
behavior as for context-free grammars [Earley1968].

In order to bound the worst case complexity as stated in the next section,
arrays must be used to implement efficiently the different operations. Due to
the lack of space we do not address these issues.
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Let G =(X,NT,I,A,S) be a TAG.
Let a1---a, be the input string.

program recognizer
begin

C = {[e,0,la,0,—,—,0,nil]| a € [,a(0) =S }

Apply the following operations on each item in the chart C
until no more items can be added to the chart C:

[o,dot,la, i, j, k,1, nil)

1 z =

( ) [a, dot,ra,t,j, k, 1+ 1, nzl] a(dot) € ,a(dot) ai+1
[, dot, la, i, j, k, 1, il

2 z =

@) {a,dot,ra,i, g,k Ly 290D € Fraldot) =

3) [, dot, la, i, 4, k, 1, nil] aldot) € NT. 3 € Adj(o, dot)

[ﬂ: 0: laa la T la n'll]
[, dot, la, i, §, k, 1, nil]

(4) I dot. 16,7, . k. L. nil] a(dot) € NT,OA(a, dot) = false

[a:dOtalb;ly_,_,l,TLil] ) ,

G) ot 16,1, =, = 1, mg] 0t = Footla),a € Adj(6, dot)
(6) [a7d0t7 T'b7 7/7.77k,l7n7/l] [ﬁdet'7lb,i,—7—,i,nil] dot' = FOOt(ﬂ),
(8, dot’, rb, .14, 1,1, mil] B € Adj(a, dot)

[, dot,Tb, 1, j, k, |, true]  [a,dot,la,h, ] k' i, sat?]

NT
(7) [o,dot,ra,h,j U5 kUK 1, sat?] o(dot) €
[ﬂ707ra1i1j7k7l1nil] [a7d0tvrb1j7p1 q,k,ml] .
(8) [, dot, Tb, i, p, q,1, true] B € Adj(a, dot)
If there is an item of the form [®,0,7a,0,—, — ,n,nil] in C with o € I

and @(0) =S then return acceptance, otherwise return rejection.
end.

Fig. 10.8. Pseudo-code for the recognizer

SN A

/1N

S asShb
(a) ‘ (8) /\
e c Sya d

Fig. 10.9. TAG generating L = {a"b"ec"d"|n > 0}



Tree-Adjoining Grammars 47

Input read | Items in the chart

1. [a, dot : 0,la,0,—, —,0,n4l] init

2. [B,dot : 0,1a,0,—,—,0,nil] pred(1)

3. [a,dot : 1,la,0,—,—,0,nil] pred(1)

4. [B,dot : 1,1a,0,—, —,0,nil] pred(2)
a 5. [8,dot : 2,1a,0,—,—,1,n4l] sc(4)
a 6. [8,dot : 0,la,1,—,—,1,nil] pred(5)
a 7. [8,dot : 2.1,la,1,—, —, 1, nil] pred(5)
a 8. [B,dot : 1,la,1,—,—,1,nil] pred(6)
aa 9. [B,dot : 2,la,1,—,—,2,nil] sc(8)
aa 10. [8,dot : 0,1a,2,—, —,2,nil] pred(9)
aa 11. [B,dot : 2.1,1a,2,—, —, 2,nil] pred(9)
aa 12. [B,dot : 1,la,2,—, —,2,nil] pred(10)
aab 13. [B,dot : 2.2,1a,2,—,—,3,nil] sc(11)
aab 14. [B,dot : 2.2,1b,3, —, —, 3, nil] pred(13)
aab 15. [B,dot : 2.1,1a, 3, —, —, 3,nil] pred(14)
aab 16. [a,dot : 1,la,3,—, —, 3, nil] pred(14)
aabb 17. [B,dot : 2.2,1a,3,—, —,4,nil] sc(15)
aabb 18. [B,dot : 2.2,1b,4, —, —, 4, nil] pred(17)
aabb 19. [B,dot : 2.1,1a,4, —, —, 4,nil] pred(18)
aabb 20. [a,dot : 1,1a,4,—, —,4,nil] pred(18)
aabbe 21. [a,dot : 0,7b,4, —, —, 5,nil] sc(20)
aabbe 22. [B,dot : 2.2,1b,4,4,5,5,nil] comp(21+18)
aabbe 23. |8, dot : 2.3,l1a,3,4,5,5,nil] compl(22+15)
aabbec 24. [B,dot : 2,1b,3,4,5,6,nil] sc(23)
aabbec 25. |8, dot : 2.2,7b,3,3,6,6,nil] compl(24+14)
aabbec 26. [B,dot : 2.3,la,2,3,6,6,nil] compl(25+13)
aabbecc 27. [8,dot : 2,1b,2,3,6,7,nil] sc(26)
aabbecc 28. [8,dot : 3,la,1,3,6,7,nil] compl(26+9)
aabbeccd 29. [B,dot : 0,1),1,3,6,8,nil] sc(28)
aabbeccd 30. [B,dot : 0,7a,1,3,6,8,nil] compl(28+6)
aabbeccd 31. [B,dot : 2,1b,1,4,5,8,t] adj(30+24)
aabbeced | 82. [8,dot : 3,1a,0,4, 5,8, nil] compl(31+5)
aabbeccdd | 83. [8,dot : 0,7b,0,4,5,9,nil] sc(82)
aabbeccdd | 84. [8,dot : 0,7ra,0,4,5,9,nil] compl(83+2)
aabbeccdd | 35. [a,dot : 0,7b,0,—,—,9,t] adj(34+21)
aabbeccdd | 36. [a,dot : 0,7a,0,—, —,9,nil] compl(35+1)

Fig. 10.10. TItems constituting the chart for the input:
oarazbzbiescecrdgdy
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10.5 Complexity

The algorithm is a general parser for TAGs with constraints on adjunction
that takes in worst case O(|A||AUI|NnS) time and O(|AUI|Nn*) space, n be-
ing the length of the input string, |A| the number of auxiliary trees, |AUI| the
number of elementary trees in the grammar and N the maximum number of
nodes in an elementary tree. The worst case complexity is similar to the CKY-
type parser for TAG [Vijay-Shanker1987, Vijay-Shanker and Joshi1985].2

The worst case complexity can be reached by the ADJOIN operation. An
intuition of the validity of this result can be obtained by observing that the
ADJOIN operation

[8,0,ra,i,j,k,l,nil] [a,dot,rb,j,m,n,k,nil]
[, dot,rb,i,m,n,l, true]

B € Adj(a, dot)

may be called at most |A||A U I|NnS time since there are at most n®
instances of the indices (i, j, k,I,m,n) and at most |A| x |[AUI|N (a, S, dot)
pairs of dotted trees to combine. When it is used with unambiguous tree-
adjoining grammars, the algorithm takes at most O(|A||AUI|Nn*)-time and
linear time on a large class of grammars.

It is possible to achieve O(]A U I|NnS)-time worst complexity, however
the implementation for such bounds requires complex data structures.

10.6 The Parser

The algorithm we described so far is a recognizer. However, if we include
pointers from an item to a set of items of set of item pairs (pairs of items
for the COMPLETE and the ADJOIN operation, or item for the SCAN and the
PREDICT operations) which caused it to be placed in the chart (in a similar
manner to that shown in Fig. 10.10), the recognizer can be modified to record
all parse trees of the input string.

Instead of storing items of the form [a, dot, pos, i, j, k, 1, sat?] in the chart,
the parser stores items with a set of pairs or singletons of other items that
caused them to exist. The fact that the same item may be added more than
once reflects the fact that the item can be obtained in more than one way.
This corresponds to local or global ambiguity. Therefore, when an item is
added, if the item is already in the chart, the new items that caused the
same item to exist are added to the set of causes.??

23 Recently Satta [Sattal994] was able to transfer the complexity bound of TAG
parsing to the one of matrix multiplication. As a consequence, it is shown that
if one were to improve the bound of O(n®)-time for the TAG parsing problem,
one would have implicitly improved upon the bound of O(n®)-time for matrix
multiplication. Although this is possible, it can require very elaborate (and non
practical) techniques.

These operations can be done in constant time since if an item is added more

than once, each of the pairs (or singletons) of items that caused it to be places
on the chart are distinct.

24
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The worst case time complexity for the parser is the same as for the recog-
nizer (O(|A||A U I| Nn®)-time) since keeping track of the source of each item
does not introduce any overhead. However, the worst case space complexity
increases to O(|A||A U I|Nn®)-space since each cause of existence must be
recorded. Due to the nature of each operation, the additional space required
to record the derivation is not worse than O(|A||AUI|Nn®). For example, in
the case of the ADJOIN operation,

[8,0,ra,i,j,k,l,nil] [a,dot,rb,j,m,n,k,nil]

Adi
[a, dot, b, i,m,n,l, true] B € Adj(a, dot)

for a given item [a, dot, rb,i,m,n, [, true] there can be at most O(|A||A U
I|) pairs of the form ([8,0,ra,i,j,k,l, nil], [a,dot,rb, j, m,n, k,nil]) which
need to be stored.

Once the recognizer has succeeded, it has encoded all possible parses in
the form of a graph (encoded with those pairs of causes) which takes in the
worst case O(|G|? Nn®)-space. All the derivations can then be enumerated
by tracing back the causes of each item. Of course, the enumeration of all
the derivations may take exponential time when the string is exponentially
ambiguous or may not terminate when the input is infinitely ambiguous.

10.7 Parsing Substitution

TAGs use adjunction as their basic composition operation. As a consequence
tree-adjoining languages (TALs) are mildly context-sensitive and properly
contain context-free languages.?

Substitution of non-terminal symbols is the basic operation used in CFG.
Substitution can be very easily extended to trees and has been found to be a
useful additional operation for obtaining appropriate structural descriptions
[Abeillé1988].

Substitution of trees is defined to take place on specified nodes on the
frontiers of elementary trees. When a node is marked to be substituted, no
adjunction can take place on that node. Furthermore, substitution is always
mandatory. Only trees derived from initial trees rooted by a node of the same
label can be substituted on a substitution node. The resulting tree is obtained
by replacing the node by the tree derived from the initial tree.

The parser can be extended very easily to handle substitution. The algo-
rithm must be modified as follows.

First, the ADJ function must disallow any adjunction to be taken place
on nodes marked for substitution.

25 1t is also possible to encode a context-free grammar with auxiliary trees us-
ing adjunction only. However, although the languages correspond, the possible
encoding does not reflect directly the original context free grammar since this
encoding uses adjunction.
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Then, more operations must be added to the parser: PREDICT SUBSTI-
TUTION and COMPLETE SUBSTITUTION. These two operations are explained
in details below.

Given a tree o and an address add in a, assuming that the node at address
add in « is marked for substitution, we define Substit(a, add) to be the set of
initial trees that can be substituted at the node at address add in . For TAGs
with no constraints on substitution, Substit(a, add) is the set of elementary
initial trees whose root node is labeled by a(add).

PREDICT SUBSTITUTION operation predicts all possible initial trees that
can be substituted at a node marked for substitution.

[, dot,la,i, j, k, 1, sat?)
[o,0,la,l,—,—,1,nil]

o' € Substit(a, dot) (10.1)

COMPLETE SUBSTITUTION is a bottom-up operation that combines two
items by substitution.

[a, nil,ra,l, —, —,m,nil][¢/, dot', la, i, j, k, 1, sat?]

o' € Substit(a,dot)10.2
[/, dot!,ra,i, j, k,m, sat?] (o, dot10.2)

The introduction of PREDICT SUBSTITUTION and of COMPLETE SUB-
STITUTION does not increase the worst case complexity of the overall TAG
parser.

10.8 The Valid Prefix Property and Parsing of Tree-Adjoining
Grammar

The valid prefix property, the capability of a left to right parser to detect
errors “as soon as possible”, is often unobserved in parsing CFGs. Earley’s
parser for CFGs [Earley1968] maintains the valid prefix property and obtains
a worst case complexity (O(n®)-time) as good as parsers that do not maintain
it, such as the CKY parser [Younger1967, Kasamil965]. This follows from the
path set complexity, as we will see.

A parser that satisfies the valid prefix property will only consider hypothe-
ses consistent with the input seen so far. More precisely, parsers satisfying
the wvalid prefix property guarantee that, as they read the input from left to
right, the substrings read so far are valid prefixes of the language defined
by the grammar: if the parser has read the tokens a; ---aj from the in-
put a1 - - agag41 - - an, then it is guaranteed that there is a string of tokens
by -+ - by, (b; may not be part of the input) with which the string a; - - - ax can
be suffixed to form a string of the language; i.e. a1 ---agby - - - b, is a valid
string of the language.?%

26 The valid prefix property is independent from the on-line property. An on-line
left to right parser is able to output for each new token read whether the string
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The valid prefix property for an algorithm implies that it must have some
top-down component that enables it to compute which tokens are to be ex-
pected as the input string is read. Pure bottom-up parsers as the CKY-type
parsers®” cannot have the valid prefix property since they do not use any
top-down information.

Maintaining the VPP requires a parser to recognize the possible parse
trees in a prefix order. The prefix traversal of the output tree consists of two
components: a top-down component that expands a constituent to go to the
next level down, and a bottom-up component that reduces a constituent to
go to the next level up. When the VPP is maintained, these two components
must be constrained together.

Context-free productions can be expanded independently of their context,
in particular, independently of the productions that subsume them. The path
set (language defined as the set of paths from root to frontier of all derived
trees) of CFGs is therefore a regular set.?8 It follows that no additional com-
plexity is required to correctly constrain the top-down and bottom-up behav-
ior required by the prefix traversal of the parse tree: the expansion and the
reduction of a constituent.

Contrary to CFGs, maintaining the valid prefix property for TAGs seems
costly. Two observations corroborate this statement and an explanation can
be found in the path set complexity of TAG.

Our first observation was that the worst case complexity of parsers for
TAG that maintain the VPP is higher than the parsers that do not maintain
VPP. Vijay-Shanker and Joshi [Vijay-Shanker and Joshi1985)%° proposed a
CKY-type parser for TAG that achieves O(n®)-time worst case complexity.
As the original CKY parser for CFGs, this parser does not maintain the
VPP. The Earley-type parser developed for TAGs [Schabes and Joshi1988§]
is bottom-up and uses top-down prediction. It maintains the VPP at a
cost to its worst case complexity — O(n?)-time in the worst case. Other
parsers for TAGs have been proposed [Langl988, Lavelli and Sattal991,
Vijay-Shanker and Weir1990]. Although they achieve O(n%) worst case time
complexity, none of these algorithms satisfies the VPP. To our knowledge,
Schabes and Joshi’s parser (1988) is the only known polynomial-time parser
for TAG which satisfies the valid prefix property. It is still an open problem
whether a better worst case complexity can be obtained for parsing TAGs
while maintaining the valid prefix property.

seen so far is a valid string of the language. The valid prefix property is also
sometimes referred as the error detecting property because it implies that errors
can be detected as soon as possible. However, the lack of VPP does not imply
that errors are undetected.

2T We exclude any use of top-down information, even precompiled before run-time.

28 This result follows from Thatcher [Thatcher1971], who defines frontier to root
finite state tree automata.

2% The parser is also reported in Vijay-Shanker [Vijay-Shanker1987].



52 Joshi and Schabes

The second observation is in the context of deterministic left to right
parsing of TAGs [Schabes and Vijay-Shanker1990] where it was for the first
time explicitly noticed that VPP is problematic to obtain. The authors were
not able to define a bottom-up deterministic machine that satisfies the valid
prefix property and which recognizes exactly tree-adjoining languages when
used non-deterministically. Instead, they used a deterministic machine that
does not satisfy the VPP, the bottom-up embedded push-down automaton.
However, that machine recognizes exactly tree-adjoining languages when used
non-deterministically.

The explanation for the difficulty of maintaining the VPP can be seen
in in the complexity of the path set of TAGs. Tree-adjoining grammars gen-
erate some languages that are context-sensitive. The path set of a TAG is
a context-free language [Weir1988] and is therefore more powerful than the
path set of a CFG. Therefore in TAGs, the expansion of a branch may depend
on the parent super-tree, i.e. what is above this branch. Going bottom-up,
these dependencies can be captured by a stack mechanism since trees are
embedded by adjunction. However, if one would like to maintain the valid
prefix property, which requires traversing the output tree in a prefix fashion,
the dependencies are more complex than a context-free language and the
complexity of the parsing algorithm increases.

For example, consider the trees a, 8 and 7 in Fig. 10.11. When ~ is ad-
joined into B at the B node, and the result is adjoined into « at the A node,
the resulting tree yields the string uz’zz”vy”ty’w (see Fig. 10.11).

If this TAG derived tree is recognized purely bottom-up from leaf to
root (and therefore without maintaining the VPP), a stack based mechanism
suffices for keeping track of the trees to which to algorithm needs to come
back. This is illustrated by the fact that the tree domains are embedded (see
bottom left tree in Fig. 10.11) when they are read from leaf to root in the
derived tree.

However, if this derivation is recognized from left to right while maintain-
ing the valid prefix property, the dependencies are more complex and can no
longer be captured by a stack (see bottom right tree in Fig. 10.11).

The context-free complexity of the path set of TAGs makes the valid
prefix property harder to maintain. We suspect that the same difficulty arises
for context-sensitive formalism which use operations such as adjoining or
wrapping [Joshi et al.1991].

In conclusion, Earley’s parser for context-free grammars has been ex-
tended to tree-adjoining grammars. The notion of dotted rule was extended
to tree and a left to right tree traversal was designed to recognize adjunction
while reading the input from left to right. The parser for tree-adjoining gram-
mars achieves O(|A||A U I|Nn®) time in the worst case. However, because of
predictive information based on the prefixes of the input, the parser behaves
in practice much faster than its worst case.
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(@)

o
'

Bottom-up Recognition

Left to Right Recognition

u x' zx'vy'tyw
juszizay
Fig. 10.11. Abowve, a sequence of adjunctions; below left, bottom-up recognition of
the derived tree; right, left to right recognition of the derived tree.

This parser also handles various extensions of tree-adjoining grammars
such as adjoining constraints and feature based tree-adjoining grammars
[Vijay-Shanker and Joshil988]. Its performance is further improved by a
strategy which uses the lexicalized aspect of lexicalized tree-adjoining gram-
mars. This parser is part of the XTAG System, which includes a wide coverage

grammar of English together with a morphological analyzer [XTAG-Group1995].

See also Section 6.

11. Summary

We have presented a class of grammars, Tree-Adjoining Grammars (TAG).
Although motivated originally by some important linguistic considerations
TAGs have turned out to be mathematically and computationally very inter-
esting and have led to important mathematical results, which in turn have
important linguistic implications. Thus TAGs represent an important class
of grammars which demostrate the fascinating interplay between formal lin-
guistic properties and mathematical/computational properties investigated
in formal language theory and automata theory, including tree languages
and tree automata.
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