P(figure 2.6) = 1/20n/400/4 = 1/320

P(figure 2.7) = 1/2@W/4m/2 = 1/160

P(figure 2.8) = 2/2qn/4M/8[1/4 = 1/1280
table 2.1

This table shows that a model which defines prdhgds over parse trees by
taking into account only one derivation, does nebatmodate the frequencies of
all subtrees that may contribute to the generatioa parse tree. By taking into
account the probabilities of all derivations ofage tree, no subtree that might
possibly be of statistical interest is ignored. How can we coerghe probability
of a parse tree? The probability of a parse is letughe probability that it is
generated by any of its derivations. Since thesgat®ns are mutually exclusive,
the probability of a parse is the sum of the prdlies of all its derivations. (This
marks the difference with normal "stochastic gramghavhere no distinction is
made between the probability of a parse tree aagtbbability of a derivation
which generates that tree; cf. §3.3-4). The catmnaof the probability of the
above parse tree forMary likes Susahis left to the reader. Finally, the
probability of a sentence or string is the surrhefpirobabilities of all its parses.

We want to conclude this chapter with an emergiraperty of DOP1, which
will turn out to be of interest for the rest of<lthesis. In DOP1, the probability of
a parse depends on all derivations that generateptirse; therefore, the more
different ways in which a parse can be generatedhigher its probability tends
to be; this implies that a parse which can (alsoybnerated by relatively large
subtrees tends to be favored over a parse whichoobnbe generated by
relatively small subtrees. Thus, given a sentetteare is a preference for the
parse which can be generated by the largest pessiblrees.
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Chapter 3

Towards a Formal Language Theory of
Stochastic Grammars

In this chapter, we develop a theory in which threperties of stochastic
grammars can be formally articulated and comparéel.describe DOP1 as a
projection of a corpus of tree structures into acBastic Tree-Substitution
Grammar (STSG), and we formally compare STSG witheo stochastic
grammars.

3.1 Formal Stochastic Language Theory

The notion of a stochastic grammar usually refersa ffinite specification of
possibly infinitely many strings and their analysegjether with their
probabilities. If we want to compare the formal pedies of different stochastic
grammars, we need a Formal Stochastic LanguagerfifHecsuch a theory, we
are not so much concerned with weak and strongrgéwe capacity (as is the
case in traditional Formal Language Theory), bdlhwieak and strongtochastic
generative capacity. The following definitions #rerefore convenient.
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Definitions:

The stochastic string language generated by a stochastic grami@Bais the set
of pairs<x, p(x)>wherex is a string from the string language generate@ layd
p(x) the probability of that string.

The stochastic tree language generated by a stochastic grami@ais the set of
pairs<x, p(x)> wherex is a tree from the tree language generate@ layid p(x)
the probability of that tree.

In analogy to weak and strong equivalence, we dédfie following equivalences
for stochastic grammars:

Definitions:

Two stochastic grammars are callegakly stochastically equivalent?, iff they
generate the same stochastic string language.

Two stochastic grammars are calbngly stochastically equivalent?, iff they
generate the same stochastic tree language.

Note that if two stochastic grammars are weaklghsstically equivalent they are
also weakly equivalent (i.e. they generate the sstneg language). Moreover, if
two stochastic grammars are strongly stochasticadjyivalent they are also
strongly equivalent (i.e. they generate the same tanguage) and weakly
stochastically equivalent.

1what we call weak stochastic equivalence is calatply "stochastic equivalence" in (Fu,
1974).
21n (Bod, 1993a), this type of equivalence is callaperstrong equivalence".
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Now that we have mathematical notions for compatiireggenerative capacities
of stochastic grammars, we want to exclude thegbadgfical cases afmproper
andinfinitely ambiguougrammars.

Definition Properness of Grammars

A grammar is callegbroperiff only such nonterminals can be generated whose
further rewriting can eventually result in a strisigerminals.

Example: the context free gramme§S,A, {a}, S,{S-Sa, S-a, S-aA}> is
not proper, since there is a generaenaA which can never result in a string of
terminals?

Definition Finite Ambiguity of Grammars

A grammar is calledinitely ambiguousf there is no finite string that has
infinitely many derivations.

Example: the context free grammeaf S}, {a}, S,{S-S, S-a}> is not finitely

ambiguous, since the strimghas infinitely many derivations.

Convention
We will only deal with grammars that are proper &indely ambiguous.

3.2 Stochastic Tree-Substitution Grammar

The way DOP1 combines subtrees into new trees amguates probabilities of
derivations and parses may very well be describedvbat we will call a
"Stochastic Tree-Substitution Grammar" (STSG):

3In (Jelinek et al., 1990), an algorithm is givlattdetermines whether or not a grammar may
be made proper by the elimination of rules (p. 31).
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Definition Stochastic Tree-Substitution Grammar

A Stochastic Tree-Substitution Grammari$za five-tuple<Vy, V1, S, R, P>
where

Vn is a finite set of nonterminal symbols.
Vr is a finite set of terminal symbols.
S[OVy is the distinguished symbol.

Ris a finite set of elementary trees whose top saohe interior nodes are labeled
by nonterminal symbols and whose yield nodes abelél by terminal or
nonterminal symbols.

P is a function which assigns to every elementagttf] R a probabilityp(t). For
a treet with a roota, p(t) is interpreted as the probability of substitutingn a.

We require, therefore, that Op&t) < 1 andZt;mmm:a p(t)=1.

Substitution

If t1 andtp are trees such that theftmost nonterminal yield nodsf t1 is equal to
theroot of tp, thentyetz is the tree that results from substitutindor this leftmost
nonterminal yield node ity. The partial function is calledleftmost substitution.
We will write (tietp)etz as tietetz, and in general(..((tietp)-tg)e..)tnh as
tyotootze...otn. For reasons of conciseness we will use the tedostgution for
leftmost substitution. Notice that the valp@) for an elementary tree with root

is the probability of substituting for any nonterminal leaf node in any

elementary tree iR.

Derivation

A leftmost derivatiorgenerated by an STSG s a tuple of treesty,...,;> such
thatts,...,;y are elements dR, the root oft1 is labeled bySand the yield ofje...sth
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is labeled by terminal symbols. The set of leftmost derivations genera@dsby
thus given byDerivations(G) ={<t1,....,tv> | t1,....h O R O root(t1) = S O
yield(tze...ctn) O V1*}. For convenience we will use the term derivatiar f
leftmost derivation. A derivatiort 1,...,;»> is called a derivation of tre€, iff
t1e...oth = T. A derivation<ts,...,ty> is called a derivation of string, iff
yield(tze...ctn) = s. The probability of a derivatiost 1,...,1> is defined ap(ty) O..
Cp(tn).

Parsetree

A parse tree generated by an STSG is a treeT such that there is a derivation
<1,...,t5> O Derivations(G)for which tie....tn = T. The set of parse trees,
or tree language generated byG is given by Parses(G) =
{T | O<ty,....,;x> O Derivations(G): tye...ctn = T}. For reasons of conciseness we
will often use the termparseor tree for a parse tree. A parse whose vyield is
equal to strings, is called a parse sf The probability of a parse is defined as the
sum of the probabilities of all its derivations.

String

A string generated by an STSGis an element of/t* such that there is a parse
generated byG whose yield is equal to the string. The set oings,
or string language generated byG is given by Strings(G) =
{s|OT: TO Parses(G)YJ s = yield(T}}. The probability of a string is defined as
the sum of the probabilities of all its parses. Thisans that the probability of a
string is also equal to the sum of the probabditéall its derivations.

It may be evident that STSG is a generalization @®P1: the model DOP1
projects a corpus of tree structures into an SVM@@ye the subtrees of DOP1 are
the elementary trees of the STSG, and where thetitution probabilities of the
subtrees of DOP1 are the probabilities of the apwading elementary trees of
the STSG.
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3.3 A Comparison between Stochastic Tree-
Substitution Grammar and Stochastic
Context-Free Grammar

The oldest and most well-known of all stochasticd@ments of context-free
grammars is the so-called "Stochastic Context-Breemmar” or SCFG (Booth,
1969; Suppes, 1970). An SCFG enriches every rewui of a CFG with a
probability which corresponds to the applicatioolability of this rule. In an

SCEFG, the stochastic dependences are limited tecibyge of single rewrite rules.

It may be clear that SCFGs run into serious troubléaced with solving
ambiguities that are beyond the scope of singleitevules. It is therefore almost
evident that SCFGs are stochastically weaker thB8G%. However, as an
example of how Formal Stochastic Language Theory beaused to formally
articulate this, we will compare SCFG and STSGedontext of this theory. Let
us start with the definition of SCPG

Definition Stochastic Context-Free Grammar

A Stochastic Context-Free Grammari§a five-tuple<Vy, Vr, S, R, P>where

Vn is a finite set of nonterminal symbols.

Vr is a finite set of terminal symbols.

S[OVy is the distinguished symbol.

Ris a finite set of productions each of which isleé forma - 3, wherea OVy
andﬁ OVNOVY)*.

P is a function which assigns to every productimn. 8 [0 R a probability
p(a - B), for which holds that 0 (o - 8) < 1 and2., p(a - x) = 1.

4 This definition follows (Booth, 1969), (Fu, 1974)evelt, 1974), (Wetherell, 1980),
(Fujisaki et al., 1989), (Jelinek et al. 1990).
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The probability of a leftmost derivation (and itsrsponding parse tree)
generated by an SCFG is equal to the product gbribleabilities associated with
the productions applied. Note that, contrary to ST&very parse tree is generated
by exactly one leftmost derivation. The probabilifya string generated by an
SCFG is equal to the sum of the probabilities bitaderivations.

We will now compare STSG with SCFG in terms of edjvely weak and
strong stochastic equivalence.

Proposition 1
For every STSG there exists a weakly stochastiegljvalent SCFG.

Proof of Proposition 1

Given an STSG5, we convert every elementary treé R into a context-free
productionroot(t) » yield(t). This may lead to multiple occurrences of the same
production, since different elementary trees maseliee same root and yield. To
every such production a probability is assignedciiis equal to the probability
of the tree from which the production is derived.order to eliminate multiple
occurrences of productions, we collapse equivalent productichadthup their
probabilities. The resulting SCFG' generates the same string languag& ak

is now easy to see that the sum of the probalkilidfeall derivations of a string in
G is equal to the sum of the probabilities of altigations of this string irG'.
This means thaG andG' assign the same probability to every string inrthe
string language. Thu§ andG' are weakly stochastically equivalent.

O

Proposition 2
For every SCFG there exists a weakly stochastiegjlyivalent STSG.

Proof of Proposition 2

Given an SCFGG, we convert every production — 8 0 R into a unique
elementary tree of depth one such thatot(t) = a andyield(t) = 8. To every
such tree a probability is assigned which is edoathe probability of the
production from which the tree is derived. The hésg STSGG' generates the
same string language and tree languag@.dsow it is easy to see that for every
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derivation inG there is a unique derivation @ with the same probability. Thus,
the sum of the probabilities of all derivationsaddtring inG is equal to the sum
of the probabilities of all derivations of thisisgg in G'. This means th& andG'
assign the same probability to every string inrtb&ing language. Thu& and
G' are weakly stochastically equivalent.

O

From the propositions 1 and 2 the following comyllean be deduced.

Corollary 1
The set of stochastic string languages generate8T8Gs is equal to the set of
stochastic string languages generated by SCFGs.

Corrollary 1 is significant in the sense that if were only interested in the strings
and not in the trees (for instance for the taslstoing prediction in speech

recognition output), we might convert an STSG (dng a DOP1 model) into a

more succinct SCFG.

Proposition 3
For every SCFG there exists a strongly stochadjieuivalent STSG.

Proof of Proposition 3

Consider the proof of proposition 2. SinGandG' generate the same tree
language and every derivation@corresponds to a unique derivationGhwith
the same probabilitys andG' are strongly stochastically equivalent.

O

Proposition 4
There exists an STSG for which there is no stroaglyvalent SCFG.

Proof of Proposition 4

Consider the following STSG@ consisting of one elementary tree with a
probability equal to 1:
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figure 3.1

The tree language generated®yis equal to the set containing only the above
elementary tree. An SCFG is strongly equivalenhw@tif it generates only the
above tree. An SCFG which generates the abovestieald consist of the
productionsS — SbhandS - a. But such an SCFG generates more than just the
above tree. Contradiction.

u]

Proposition 5
There exists an STSG for which there is no strosgighastically equivalent
SCFG.

Proof of Proposition 5

Consider the proof of proposition 4. Since strotarisastic equivalence implies
strong equivalence there is no SCFG which is styostpchastically equivalent
with G.

u]

From the propositions 3 and 5 the following conmyllean be deduced.

Corollary 2
The set of stochastic tree languages generateddiyGS is a proper subset of
the set of stochastic tree languages generatedBY:S.

Though corollary 2 may seem a significant restiltnainly follows from the
property that STSGs are not always strongly eqaivalvith SCFGs. In the
context of stochastic language theory, however, we are not so ntedsted in
tree languages as stochastictree languages. Thus, it is more interesting to
compare stochastic tree languages of strongly atpritvgrammars.
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Proposition 6
There exists an STSG for which there is a stroeglyivalent SCFG but no
strongly stochastically equivalent SCFG.

Proof of Proposition 6
Consider the following STSG consisting of three elementary trees that are all

assigned with a probability of 1#3.
/\ S

(%]
>w
o

n
o
)

[

figure 3.2

The string language generated®ys {ab*}. The only (proper) SCF&' which
is strongly equivalent witli consists of the following productions.

S-Sbh (1)
S-a 2

G'is strongly stochastically equivalent wihiff it assigns the same probabilities
to the parse trees in the tree language as asslgn@&l Let us consider the
probabilities of two trees generated Byi.e. the trees representedthy andts.6
The tree represented lyhas exactly one derivation: by selecting the efgarg
treets. The probability of generating this tree is hengea to 1/3. The tree
represented by has two derivations: by selecting elementary tigeor by
combining the elementary treiesandts. The probability of generating this tree is

5 This STSG s also interesting because it can begted from a DOP1-model whose corpus
of sentence-analyses consists only of tiee

6 Note that the treeg andts are both elements of the set of (elementary) tRee&G and of
the tree language generateddy
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equal to the sum of the probabilities of its twohdtions, which is equal ta/3 +
1/3@/3=4/9.

If G'is strongly stochastically equivalent with, then it should assign the
probabilities 4/9 and 1/3 to the trees represeloyed andt3 respectively. The tree

t3 is exhaustively generated by producti®); thus the probability of this
production should be equal to 1/8(S—a) = 1/3. The treet; is exhaustively
generated by applying productiorfd) and (2); thus the product of the
probabilities of these productions should be eqoia/9: p(S— Sb) Op(S-a) =

4/9. By substitution we ggi(S— Sb) (11/3 = 4/9, which implies thgi(S- Sb)=

4/3. This means that the probability of productid) should be larger than 1,
which is not allowed. ThusG' cannot be made strongly stochastically equivalent
with G.

O

The (proof of) proposition 6 is an important resittce it shows that STSGs are
not only stronger than SCFGs because there are $§T@Gvhich there is no
strongly equivalent SCFG, but that STSGs are resttighasticallystronger, also
with respect to SCFGs that might be strongly edaiieto STSGs. It makes also
clear why STSGs are stronger: SCFGs cannot attgecbbebility to a structure
larger than one rewrite rule, while STSGs can.

3.4 Other Stochastic Grammars

In this section, we informally compare STSG wittotather stochastic language
models: Stochastic History-Based Grammar and Stdich@see-Adjoining
Grammar. These grammars have been proposed asatiltes to SCFG to
overcome the stochastic context-insensitivene SG6G.

3.4.1 Stochastic History-Based Grammar (SHBG)
Stochastic History-Based Grammars (SHBG@Gre developed in (Black et al.,

1993; Black, Garside & Leech, 1993), though intictliearlier in (Smith, 1973).
In SHBG, the probability of applying a rewrite rutea leftmost derivation is

7 My abbreviation.
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made conditional on the rules that were used béfidteat derivation. In (Black et
al., 1993), it is said that SHBG provides "a vachiif not the richest model of
context ever attempted in a probabilistic parsirgglet’. However, the limitation
to a leftmost derivation for conditionalizing theopability of a rule means that
still not all possible stochastic dependences ap&uced.

Let us illustrate this with the sententie emaciated man starvedf which an
analysis is given in figure 3.3. The numbers in fiare refer to the order of
applications of the rules in a leftmost derivatdrihis sentence.

S1
NP 2
Nbai 4 VP 7
|
Det 3 A5 N 6 VvV 8
The emalciated | man | sta
figure 3.3

Suppose that there is a strong stochastic deperdbaetween the words
emaciatedandstarved appearing in sentences like the one above, aidthbse
words are largely independent of the words surrignhthem (in this cas&he
andman). An adequate stochastic grammar should be abéedount for this
specific dependence betwesmaciatechndstarved It turns out that SHBG is not
able to do so. In order to show this, let us explaith somewhat more detail the
probabilistic background of SHBG. Suppose thatphabability of rule 1 in
figure 3.3 (i.e.S - NP VP) is given byp(1). Since in SHGB the rule probability
is made conditional on the former rules in thenhef$t derivation, the conditional
probability of rule 2 is given by(2|1). The conditional probability of rule 3 is
given byp(3|2,1) and so forth. The probability of the whole anadyisi equal to
the product of the conditional probabilities of tiwes:p(1) [p(2|1) [p(3|2,1)0..00
n(8]7,6,5.4,3,2,1)

41

While SHBG can thus capture a dependence betwéddaxatal items The
emaciatedman andstarvedtogether, there is no way to account for the $jgeci
dependence betweemaciatedandstarved withoutthe andman What would be
needed are conditional rule probabilities Ii8|7,5,4,2,1)where the probability
of rule 8 is made conditional on all former rulesept 6 and 3. SHBG does not
account for such probabilities, due to the restriction to a leftaergvation for
conditionalizing the probabilities of rewrite ruleBven if a so-called "finite
Markov history" is used, SHBG can only describe idlations between items
like starvedandman, emaciatecandman or emaciategmanandstarved but not
betweeremaciatedandstarvedalone, sincenanis produced afteemaciatecand
before starvedin a leftmost derivation. Moreover, any restrictitlm another
canonical derivation (rightmost, leftcorner etcquid yield analogous limitations.

In STSG, on the other hand, the dependence betemaciatecandstarvedcan
be captured by an elementary tree in whechaciatedandstarvedare the only
lexical items, and where andmanare left out, as is shown in figure 3.4.

NP
Nbai VP
|
Det A N \
emaciated | sta
figure 3.4

This artificial example exemplifies a dependencéctvlis strongly semantic in
nature. An example which expresses a dependenaamafre (semi-)idiomatic
nature, is illustrated by the following sentencanirthe Air Travel Information
System (ATIS) corpus (Hemphill et al., 199@how me flights from Dallas to
Atlanta. The NP-constructioflights from X to Yis almost idiomatic in the ATIS
domain and occurs extremely frequently. It may learcthat, analogous to the
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previous example, SHBG can describe the dependéetesen all the words of
such an NP, but it cannot attach a probabilith®NP-construction whei@allas
andAtlanta are left out. This is a serious shortcoming, siftgethe ambiguity
resolution of a sentence which contains an NP flights from X to Yit is
necessary to describe this NP as one statistitalSTSG, on the other hand, can
easily describe this NP as a statistical unit ying the probability of this
construction in the ATIS corpus.

3.4.2 Stochastic Tree-Adjoining Grammar (STAG)

Although STAG (Resnik, 1992; Schabes, 1992) isanstiochastic enrichment of
a context-free grammar, but of a tree-adjoiningmgrear (Joshi, 1987) which
belongs to the class of mildy context-sensitivergrars (Joshi et al., 1991), it is
interesting to deal with STAG because of its sinityawith STSG. An STAG
assigns a probability to each elementary (inittaduxiliary) tree that corresponds
to the probability that this elementary tree is cameld by substitution or
adjunction with another elementary tree. If we Eaut the adjunction operation,
STAG is formally equivalent with STSG. Thus, it ksoas if STAG captures at
least the stochastic dependences that can be edpiyrSTSG. However, if we
look at current instantiations of STAG, we find tga@rious shortcomings:

(1) Since STAG is linguistically motivated by tradjoining grammar (TAG),
there are constraints on the form and use of elaamgrrees. For instance,
modifiers are usually represented by separateianxirees, which means that in
analyzing the sentencehe emaciated man starvethe modifieremaciateds
inserted in the NRhe manby means of adjunction. Linguistically this may be
elegant, but statistically the dependence betweeesiciatedand starved is lost,
since they are not allowed to appear in one eleamgtree.

(2) In current implementations of STAG, only thelpability of a derivation is
accounted for (cf. Resnik, 1992; Schabes, 1992), reot the probability of a
resulting tree or of an interpretation. This idistizally inadequate, since, like in
STSG, the probability of a derivation is different frora firobability of a tree in
STAG.

Thus, current instantiations of STAG seem stilbtobased on the assumption

that the statistical dependences coincide withlititwuistic dependences of the
underlying competence model. In order to creatadmyuate performance model
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based on TAG, it is not enough to attach probadslito the competence units of
this model. Instead, competence and performanceal neebe carefully
distinguished, where the performance units musaken as arbitrarily large trees
from a corpus of analyzed language utterances.

3.5 Open problems

There are still many problems to be solved regardive relations between
stochastic grammars. So far, we have only desigimedontours of a Formal
Stochastic Language Theory which allowed us to &lyncompare STSG with

SCFG. We believe that the following open probleregdhalso to be treated
within such a theory (whose solutions fall beyadmel $cope of this thesis).

* Does there exist a stochastic enrichment of CF@clv is stochastically
stronger than STSG? We haven't found one yet.

* |s there a stochastic hierarchy within the claéstochastic enrichments of
CFGs, where SCFG is at the bottom, STSG at theatogh SHBG somewhere in
between?

* |f the former question can be answered positivale there similar stochastic
hierarchies in the other classes of the Chomskwptuky?
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