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Grammatical Machine Translation

STEFAN RIEZLER AND JOHN T. MAXWELL III

3.1 Introduction

Recent approaches to statistical machine translation (SMT) piggyback
on the central concepts of phrase-based SMT (Och et al. 1999, Koehn
et al. 2003) and at the same time attempt to improve on some of its
shortcomings by incorporating syntactic knowledge in the translation
process. Phrase-based translation with multi-word units excels at mod-
eling local ordering and short idiomatic expressions; however, it lacks
a mechanism to learn long-distance dependencies and is unable to gen-
eralize to unseen phrases that share non-overt linguistic information.
Publicly available statistical parsers can provide the syntactic informa-
tion that is necessary for linguistic generalizations and for the resolution
of non-local dependencies. This information source is deployed in re-
cent work either for pre-ordering source sentences before they are input
to a phrase-based system (Xia and McCord 2004, Collins et al. 2005),
or for re-ordering the output of translation models by statistical or-
dering models that access linguistic information on dependencies and
part-of-speech (Lin 2004, Ding and Palmer 2005, Quirk et al. 2005).
While these approaches deploy dependency-style grammars for pars-
ing source and/or target text, a utilization of grammar-based genera-
tion on the output of dependency-based translation models has not
yet been attempted. Instead, simple target language realization models

This is an extended version of a paper for HLT/NAACL 2006.
LA notable exception to this kind of approach is Chiang (2005) who introduces
syntactic information into phrase-based SMT via hierarchical phrases rather than
by external parsing.
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that can easily be trained to reflect the ordering of the reference trans-
lations in the training corpus are preferred. The advantage of such
models over grammar-based generation seems to be supported, for ex-
ample, by Quirk et al. (2005)’s improvements over phrase-based SM'T
as well as over an SMT system that deploys a grammar-based generator
(Menezes and Richardson 2001) on n-gram based automatic evaluation
scores (Papineni et al. 2001, Doddington 2002). Another data point,
however, is given by Charniak et al. (2003) who show that parsing-
based language modeling can improve grammaticality of translations,
even if these improvements are not recorded under n-gram based eval-
uation measures.

In this paper we would like to step away from n-gram based au-
tomatic evaluation scores for a moment, and investigate the possi-
ble contributions of incorporating a grammar-based generator into a
dependency-based SMT system. We present a dependency-based SMT
model that integrates the idea of multi-word translation units from
phrase-based SMT into a transfer system for dependency structure
snippets. The statistical components of our system are modeled on the
phrase-based system of Koehn et al. (2003), and component weights
are adjusted by minimum error rate training (Och 2003). In contrast
to phrase-based SMT and to the above cited dependency-based SMT
approaches, our system feeds dependency-structure snippets into a
grammar-based generator, and determines target language ordering by
applying n-gram and distortion models after grammar-based genera-
tion. The goal of this ordering model is thus not foremost to reflect the
ordering of the reference translations, but to improve the grammatical-
ity of translations.

Since our system uses standard SMT techniques to learn about cor-
rect lexical choice and idiomatic expressions, it allows us to investigate
the contribution of grammar-based generation to dependency-based
SMT.? In an experimental evaluation on the test-set that was used
in Koehn et al. (2003), we show that for examples that are in cov-
erage of the grammar-based system, we can achieve state-of-the-art
quality on n-gram based evaluation measures. To discern the factors
of grammaticality and translational adequacy, we conducted a manual
evaluation on 500 in-coverage and 500 out-of-coverage examples. This
showed that incorporation of a grammar-based generator into an SMT
framework provides improved grammaticality over phrase-based SMT
on in-coverage examples. Since in our system it is determinable whether

2 A comparison of the approaches of Quirk et al. (2005) and Menezes and Richard-
son (2001) with respect to ordering models is difficult because they differ from each
other in their statistical and dependency-tree alignment models.
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an example is in-coverage, this opens the possibility for a hybrid system
that achieves improved grammaticality at state-of-the-art translation
quality.

3.2 Phrase-based SMT

Phrase-based SMT starts with a sentence-aligned bilingual corpus of
translations. The words are aligned using a noisy channel model (IBM
model 4: Brown et al. 1999). The word alignment is then improved
by intersecting alignment matrices for both translation directions and
refining the intersection alignment by adding directly adjacent align-
ment points and alignment points that align previously unaligned words
(Och et al. 1999). This produces a many-to-many alignment between
words in the source and the target sentences that is more suitable for
extracting phrase translations than just the noisy channel model.

Next, phrase translations are extracted by collecting all aligned
phrase pairs that are consistent with the improved word alignment.
The words of a legal phrase pair are only aligned to each other, and
not to words outside the phrase pair. For instance, suppose our corpus
contains the following aligned sentences (this example is taken from
our experiments on German-to-English translation):

Dafir bin ich zutiefst dankbar.
I have a deep appreciation for that.

Suppose further that the following many-to-many bi-directional word
alignment has been created

Dafiir{6 7} bin{2} ich{1} zutiefst{3 4 5} dankbar{5}

indicating for example that Dafiir is aligned with words 6 and 7 of
the English sentence (for and that). From this, the following primitive
phrase translations can be extracted:

Dafiir — for that

bin — have

ich — 1

zutiefst dankbar — a deep appreciation

Note that zutiefst — a deep appreciation is not allowed because appre-
ciation is also aligned with dankbar.

In addition, more complex phrase translations can be extracted
which are just combinations of the primitive phrase translations:

bin ich — I have
bin ich zutiefst dankbar — I have a deep appreciation

May 30, 2006



May 30, 2006

38 / STEFAN RIEZLER AND JOHN T. MAXWELL III

Dafir bin ich zutiefst dankbar — I have a deep appreciation for that

Note that the “phrases” do not have to correspond to constituents (e.g.
bin ich — I have). They are just snippets of the original sentences.

Once the phrase translations have been extracted, a sentence in Ger-
man can be translated into English by non-deterministically applying
all of the phrase translations that match on the German side, allow-
ing the English outputs to be rearranged, and then using a statistical
model to pick the best English translation. A beam decoder is used to
make this process more efficient.

The Pharaoh system is a freely available phrase-based SMT sys-
tem (Koehn 2004) that is useful as a benchmark system for our work.
Its statistical model has eight components. The first two measure the
relative frequency of phrase translations in the source-to-target and
target-to-source directions. This is simply the number of times that a
particular phrase translation appears in a training corpus divided by
the number of times either the source phrase appears (for source-to-
target) or the target phrase appears (for target-to-source). The counts
are not smoothed in any way. This means that long phrase translations
usually have a relative frequency of 1.

The second two components measure lexical frequency in the source-
to-target and target-to-source directions. Lexical frequency is just the
average of the relative alignment frequencies for each word on the source
side (for source-to-target) or on the target side (for target-to-source).
The lexical frequencies help measure the quality of the phrase transla-
tions, especially those that have a relative frequency of 1.

The next component counts the number of phrase translations. In
general, fewer phrase translations produce better results because the
phrases are longer.

The next two components measure the language model probability
and the word count of each translation. The language model probabil-
ity gives a measure of the likelihood of a particular string of words. By
itself, it is biased toward short sentences since they have fewer proba-
bilities multiplied together. The word count component is used to offset
this bias.

The last component measures the distortion probability. This is a
measure of how far each phrase gets moved from its default position.
It is not lexicalized. In general, less movement is better than more
movement.

The Pharaoh system works by applying translation rules to snippets
of sentences. It is successful in spite of the simplistic linguistic model
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because of the sophisticated statistical model. However, the simplistic
linguistic model often causes it to produce garbage translations. This
led us to wonder whether it was possible to get better translations by
applying a similar statistical model to snippets of dependency-based
f-structures instead of snippets of strings, thus improving the linguistic
model without losing any of the benefits of the statistical model.

3.3 Extracting F-Structure Snippets

Our method for extracting transfer rules for dependency structure
snippets operates on the paired sentences of a sentence-aligned bilin-
gual corpus. Similar to phrase-based SMT, our approach starts with
an improved word-alignment that is created by intersecting alignment
matrices for both translation directions, and refining the intersection
alignment by adding directly adjacent alignment points and alignment
points that align previously unaligned words (see Och et al. 1999). Next,
source and target sentences are parsed using source and target LFG
grammars to produce a set of possible f(unctional) dependency struc-
tures for each side (see Riezler et al. (2002) for the English grammar
and parser, and Butt et al. (2002) and Rohrer and Forst (this volume)
for German). The two f-structures that most preserve dependencies are
selected for further consideration. Selecting the most similar instead of
the most probable f-structures is advantageous for rule induction since
it provides for higher coverage with simpler rules.

In the third step, the many-to-many word alignment created in the
first step is used to define many-to-many correspondences between the
substructures of the f-structures selected in the second step. The pars-
ing process maintains an association between words in the string and
particular predicate features in the f-structure, and thus the predi-
cates on the two sides are implicitly linked by virtue of the original
word alignment. The word alignment is extended to f-structures by
setting into correspondence the f-structure units that immediately con-
tain linked predicates. These f-structure correspondences are the basis
for hypothesizing candidate transfer rules.

To illustrate, consider the aligned sentences that we discussed ear-
lier:

Dafiir bin ich zutiefst dankbar.

I have a deep appreciation for that.

We use the same many-to-many bi-directional word alignment that the
Pharaoh system uses:

Dafir{6 7} bin{2} ich{1} zutiefst{3 4 5} dankbar{5}
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This results in the links between the predicates of the source and target
f-structures shown in Figure 1.

FRED SEIN 1 [PRED mnave

SUBJ PRED 1cn SUBJ PRED I]

PRED DANKBAR ] PRED APPRECIATION

eReD pnms [ |svec [prep
XCOMP ADJ [

[prED oastn] {1

PRED DEEP}
PRED FrOR

FIGURE 1 F-structure alignment for induction of German-to-English
transfer rules.

From these source-target f-structure alignments, transfer rules are
extracted in two steps. In the first step, primitive transfer rules are
extracted directly from the alignment of f-structure units. These include
simple rules for mapping lexical predicates such as:

PRED(%X1, ich) ==> PRED(%X1, I)

and somewhat more complicated rules for mapping local f-structure
configurations. For example, the rule shown below is derived from the
alignment of the outermost f-structures. It maps any f-structure whose
pred is sein to an f-structure with pred have, and in addition interprets
the subj-to-subj link as an indication to map the subject of a source
with this predicate into the subject of the target and the xcomp of the
source into the object of the target. Features denoting number, person,
type, etc. are not shown; variables %X denote f-structure values.

PRED (%X1,sein) PRED (%X1,have)
SUBJ (%X1,%X2) ==> SUBJ(%X1,%X2)
XCOMP (%X1,%X3) 0BJ (%X1,%X3)

The following rule shows how a single source f-structure can be mapped
to a local configuration of several units on the target side, in this case
the single f-structure headed by dafiir into one that corresponds to an
English preposition+object f-structure.

PRED (%X1,for)

PRED(%X1, dafiir) ==> 0BJ(%X1,%X2)

PRED (%X2, that)
Transfer rules are required to operate only on contiguous units of the
f-structure that are consistent with the word alignment. This transfer
contiguity constraint states that
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1. source and target f-structures are each connected;
2. f-structures in the transfer source can only be aligned with f-
structures in the transfer target, and vice versa.

This constraint on f-structures is analogous to the constraint on con-
tiguous and alignment-consistent phrases employed in phrase-based
SMT. It prevents the extraction of a transfer rule that would trans-
late dankbar directly into appreciation since appreciation is aligned
also to zutiefst and its f-structure would also have to be included in the
transfer. Thus, the primitive transfer rule for these predicates must be:

PRED (%X1,dankbar) PRED (%X1,appreciation)
ADJ (%X1,%X2) ==> SPEC(%X1,%X2)

in_set (%X3,%X2) PRED (%X2,a)

PRED (%X3,zutiefst) ADJ (%X1,%X3)

in_set (%X4,%X3)
PRED (%X4,deep)

In the second step, rules for more complex mappings are created by
combining primitive transfer rules that are adjacent in the source and
target f-structures. For instance, we can combine the primitive transfer
rule that maps sein to have with the primitive transfer rule that maps
ich to I to produce the complex transfer rule:

PRED (%X1,sein) PRED (%X1,have)
SUBJ (%X1,%X2) ==> SUBJ(%X1,%X2)
PRED (%X2,1ich) PRED (%X2,1)
XCOMP (%X1,%X3) 0BJ (%X1,%X3)

In the worst case, there can be an exponential number of combina-
tions of primitive transfer rules, so we allow at most three primitive
transfer rules to be combined. This produces O(n?) transfer rules in
the worst case, where n is the number of f-structures in the source.

Other points where linguistic information comes into play is in mor-
phological stemming in f-structures, and in the optional filtering of
f-structure phrases based on consistency of linguistic types. For ex-
ample, the extraction of a phrase-pair that translates zutiefst dankbar
into a deep appreciation is valid in the string-based world, but would
be prevented in the f-structure world because of the incompatibility of
the types A and N for adjectival dankbar and nominal appreciation.
Similarly, a transfer rule translating sein to have could be dispreferred
because of a mismatch in the verbal types V/A and V/N. However, the
transfer of sein zutiefst dankbar to have a deep appreciation is licensed
by compatible head types V.

May 30, 2006
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3.4 Parsing-Transfer-Generation

We use LFG grammars, producing c(onstituent)-structures (trees) and
f(unctional)-structures (attribute value matrices) as output, for parsing
source and target text (Riezler et al. 2002, Butt et al. 2002, Rohrer and
Forst, this volume). To increase robustness, the standard grammar is
augmented with a FRAGMENT grammar. This allows sentences that are
outside the scope of the standard grammar to be parsed as well-formed
chunks specified by the grammar, with unparsable tokens possibly in-
terspersed. The correct parse is determined by a fewest-chunk method.

Transfer converts source into target f-structures by applying all of
the induced transfer rules non-deterministically and in parallel. Each
fact in the German f-structure must be transferred by exactly one trans-
fer rule. For robustness a default rule is included that transfers any fact
as itself. Similar to parsing, transfer works on a chart. The chart has an
edge for each combination of facts that have been transferred. When
the chart is complete, the outputs of the transfer rules are unified to
make sure they are consistent (for instance, that the transfer rules did
not produce two determiners for the same noun). Selection of the most
probable transfer output is done by beam-decoding on the transfer
chart.

LFG grammars can be used bidirectionally for parsing and gener-
ation; thus, the existing English grammar used for parsing the train-
ing data can also be used for generation of English translations. For
in-coverage examples, the grammar specifies c-structures that differ in
the linear precedence of subtrees for a given f-structure and realizes the
terminal yield according to morphological rules. In order to guarantee
non-empty output for the overall translation system, the generation
component has to be fault-tolerant in cases where the transfer system
operates on a fragmentary parse, or produces non-valid f-structures
from valid input f-structures. For generation from unknown predicates,
a default morphology is used to inflect the source stem correctly for
English. For generation from unknown structures, a default grammar
is used that allows any attribute to be generated in any order as any
category, with optimality marks set so as to prefer the standard gram-
mar over the default grammar.

3.5 Statistical Models and Training

The statistical components of our system are modeled on the statistical
components of the phrase-based system Pharaoh, described in Koehn
et al. (2003) and Koehn (2004). Pharaoh integrates the eight statistical
components discussed earlier: relative frequency of phrase translations
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in source-to-target and target-to-source direction, lexical weighting in
source-to-target and target-to-source direction, phrase count, language
model probability, word count, and distortion probability.

Correspondingly, our system computes the following statistics for
each translation:

1.

11.
12.

13.

log-probability of source-to-target transfer rules, where the prob-
ability r(e|f) of a rule that transfers source snippet f into target
snippet e is estimated by the relative frequency
count(f ==>e
rlele) = ot ==> <)
Y e count(f ==>e”)

log-probability of target-to-source rules

. log-probability of lexical translations from source to target snip-

pets, estimated from Viterbi alignments G between source word
positions ¢ = 1,...,n and target word positions j = 1,...,m for
stems f; and e; in snippets £ and e with relative word translation
frequencies t(e;| f;):

1
l(e|f) zgm Z t(e;lfi)

(i,j)€a

. log-probability of lexical translations from target to source snip-

pets

number of transfer rules

number of transfer rules with frequency 1

number of default transfer rules (translating source features into
themselves)

. log-probability of strings of predicates from root to frontier of

target f-structure, estimated from predicate trigrams in English
f-structures

. number of predicates in target f-structure
10.

number of constituent movements during generation based on
the original order of the head predicates of the constituents (for
example, AP[2] BP[3] CP[1] counts as two movements since the
head predicate of CP moved from the first position to the third
position)

number of generation repairs

log-probability of target string as computed by trigram language
model

number of words in target string

These statistics are combined into a log-linear model whose parameters
are adjusted by minimum error rate training (Och 2003).
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3.6 Experimental Evaluation

The setup for our experimental comparison is German-to-English
translation on the Europarl® parallel data set. For quick experimental
turnaround we restricted our attention to sentences with 5 to 15 words,
resulting in a training set of 163,141 sentences and a development set
of 1,967 sentences. Final results are reported on the test set of 1,755
sentences of length 5-15 that was used in Koehn et al. (2003). To
extract transfer rules, an improved bidirectional word alignment was
created for the training data from the word alignment of IBM model 4
as implemented by GIZA++ (Och et al. 1999). Training sentences were
parsed using German and English LFG grammars (Riezler et al. 2002,
Butt et al. 2002). The grammars obtain 100% coverage on unseen data.
80% receive full parses; 20% receive FRAGMENT parses. Around 700,000
transfer rules were extracted from f-structures pairs chosen according
to a dependency similarity measure. For language modeling, we used
the trigram model of Stolcke (2002).

When applied to translating unseen text, the system operates on n-
best lists of parses, transferred f-structures, and generated strings. For
minimum-error-rate training on the development set, and for trans-
lating the test set, we considered 1 German parse for each source sen-
tence, 10 transferred f-structures for each source parse, and 1,000 gener-
ated strings for each transferred f-structure. Selection of most probable
translations proceeds in two steps: First, the most probable transferred
f-structure is computed by a beam search on the transfer chart using the
first 10 features described above. These features include tests on source
and target f-structure snippets related via transfer rules (features 1-7)
as well as language model and distortion features on the target c- and
f-structures (features 8-10). In our experiments, the beam size was set
to 20 hypotheses. The second step is based on features 11-13, which are
computed on the strings that were generated from the selected n-best
f-structures.

We compared our system to IBM model 4 as produced by GIZA++
(Och et al. 1999) and a phrase-based SMT model as provided by
Pharaoh (Koehn 2004). The same improved word alignment matrix
and the same training data were used for phrase-extraction for phrase-
based SMT as well as for transfer-rule extraction for LFG-based SMT.
Minimum-error-rate training was done using Koehn’s implementation
of Och (2003)’s minimum-error-rate model. To train the weights for
phrase-based SMT, we used the first 500 sentences of the development
set; the weights of the LFG-based translator were adjusted on the 750

3http://people.csail.mit.edu/koehn/publications/europarl/
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TABLE 1 NIST scores on test set for IBM model 4 (M4), phrase-based SMT
(P), and the LFG-based SMT (LFG) on the full test set and on in-coverage
examples for LFG. Results in the same row that are not statistically signifi-
cant from each other are marked with a *.

M4 LFG P
in-coverage | 5.13 | *5.82 | *5.99
full test set | *5.57 | *5.62 | 6.40

TABLE 2 Preference ratings of two human judges for translations of
phrase-based SMT (P) or LFG-based SMT (LFG) under criteria of
fluency /grammaticality and translational/semantic adequacy on 500 in-
coverage examples. Ratings by judge 1 are shown in rows, for judge 2 in
columns. Agreed-on examples are shown in boldface in the diagonals.

adequacy grammaticality
jI\j2 | P | LFG | equal | P | LFG | equal
P 48 8 7 36 2 9

LFG | 10 | 105 18 6 | 113 17
equal | 53 60 192 51 44 223

sentences that were in coverage of our grammars.

For automatic evaluation, we use the NIST metric (Doddington
2002) combined with the approximate randomization test (Noreen
1989), providing the desired combination of a sensitive evaluation met-
ric and an accurate significance test (see Riezler and Maxwell 2005).
In order to avoid a random assessment of statistical significance in
our three-fold pairwise comparison, we reduced the per-comparison
significance level to .01 so as to achieve a standard experimentwise sig-
nificance level of .05 (see Cohen 1995). Table 1 shows results for IBM
model 4, phrase-based SMT, and LFG-based SMT, where examples
that are in coverage of the LFG-based systems are evaluated sepa-
rately. Out of the 1,755 sentences of the test set, 44% were in coverage
of the LFG-grammars; for 51% the system had to resort to the FrAG-
MENT technique for parsing and/or repair techniques in generation; in
5% of the cases our system timed out. Since our grammars are not set
up with punctuation in mind, punctuation is ignored in all evaluations
reported below. For in-coverage examples, the difference between NIST
scores for the LFG system and the phrase-based system is statistically
not significant. On the full set of test examples, the suboptimal qual-
ity on out-of-coverage examples overwhelms the quality achieved on
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TABLE 3 Preference ratings of two human judges for translations of
phrase-based SMT (P) or LFG-based SMT (LFG) under criteria of flu-
ency/grammaticality and translational/semantic adequacy on 500 out-of-
coverage examples. Ratings by judge 1 are shown in rows, for judge 2 in
columns. Agreed-on examples are shown in boldface in the diagonals.

adequacy grammaticality
jI\j2 | P | LFG | equal P | LFG | equal
P 156 1 19 121 1 20
LFG 6 53 7 0 23 11
equal | 69 38 152 54 21 250

in-coverage examples, resulting in a statistically not significant result
difference in NIST scores between the LFG system and IBM model 4.

In order to investigate further the quality of in-coverage examples, we
randomly selected 500 examples that were in coverage of the grammar-
based generator for a manual evaluation. Two independent human
judges were presented with the source sentence and the output of
the phrase-based and LFG-based systems in a blind test. This was
achieved by displaying the system outputs in random order. The judges
were asked to indicate a preference for one system translation over the
other, or whether they thought them to be of equal quality. These
questions had to be answered separately under the criteria of gram-
maticality /fluency and translational/semantic adequacy. As shown in
Table 2, both judges express a preference for the LFG system over
the phrase-based system for both adequacy and grammaticality. If we
look only at sentences where judges agree, we see a net improvement
on translational adequacy of 57 sentences, which is an improvement
of 11.4% over the 500 sentences. If this were part of a hybrid system,
this would amount to a 5% overall improvement in translational ad-
equacy. Similarly we see a net improvement on grammaticality of 77
sentences, which is an improvement of 15.4% over the 500 sentences or
6.7% overall in a hybrid system. Result differences on agreed-on ratings
are statistically significant, where significance was assessed by approx-
imate randomization via stratified shuffling of the preferences between
the systems (Noreen 1989). Examples from the manual evaluation are
shown in the appendix.

Along the same lines, a further manual evaluation was conducted
on 500 randomly selected examples that were out of coverage of the
LFG-based grammars. The two judges agreed on a preference for the
phrase-based system in 156 cases and for the LFG-based system in 53
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cases under the measure of translational adequacy, and on a preference
for the phrase-based system in 121 cases and for the LFG-based system
in 23 cases under the measure of grammaticality. Across the combined
set of 1,000 in-coverage and out-of-coverage sentences, this resulted in
an agreed-on preference for the phrase-based system in 204 cases and for
the LFG-based system in 158 cases under the measure of translational
adequacy. Under the grammaticality measure the phrase-based system
was preferred by both judges in 157 cases and the LFG-based system
in 136 cases.

3.7 Discussion

The evaluation of the LFG-based translator presented above shows
promising results for examples that are in coverage of the employed
LFG grammars. However, a back-off to robustness techniques in parsing
and/or generation results in a considerable loss in translation quality.
The high percentage of examples that fall out of coverage of the LFG-
based system can partially be explained by the accumulation of errors
in parsing the training data where source and target language parser
each produce FRAGMENT parses in 20% of the cases. Together with errors
in rule extraction, this results in a large number of ill-formed transfer
rules that force the generator to back-off to robustness techniques. In
applying the parse-transfer-generation pipeline to translating unseen
text, parsing errors can cause erroneous transfer, which can result in
generation errors. Similar effects can be observed for errors in trans-
lating in-coverage examples. Here disambiguation errors in parsing and
transfer propagate through the system, producing suboptimal transla-
tions. An error analysis on 100 suboptimal in-coverage examples from
the development set showed that 69 suboptimal translations were due
to transfer errors, 10 of which were due to errors in parsing.

The discrepancy between NIST scores and manual preference rank-
ings can be explained by the suboptimal integration of transfer and
generation in our system, making it infeasible to work with large n-best
lists in training and application. Moreover, despite our use of minimum-
error-rate training and n-gram language models, our system cannot be
adjusted to maximize n-gram scores on reference translation in the same
way as phrase-based systems since statistical ordering models are em-
ployed in our framework after grammar-based generation, thus giving
preference to grammaticality over similarity to reference translations.
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3.8 Conclusion

We presented an SMT model that marries phrase-based SMT with tra-
ditional grammar-based MT by incorporating a grammar-based genera-
tor into a dependency-based SMT system. Under the NIST measure, we
achieve results in the range of the state-of-the-art phrase-based system
of Koehn et al. (2003) for in-coverage examples of the LEG-based sys-
tem. A manual evaluation of a large set of such examples shows that on
in-coverage examples our system achieves significant improvements in
grammaticality and also translational adequacy over the phrase-based
system. Fortunately, it is determinable when our system is in-coverage,
which opens the possibility for a hybrid system that achieves improved
grammaticality at state-of-the-art translation quality. Future work thus
will concentrate on improvements of in-coverage translations, e.g. by
stochastic generation. Furthermore, we intend to apply our system to
other language pairs and larger data sets.
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the fact that Ron’s intuitions always proved to be right, it was always
great fun to work with him.

We would also like to thank Sabine Blum for her help with the
manual evaluation which was a crucial ingredient of this paper.

Appendix: Examples from manual evaluation

Examples from manual evaluation: Preference for LFG-based system
(LFG) over phrase-based system (P) under both adequacy and gram-
maticality (the first five), preference of phrase-based system over LFG
(the second five), together with source (src) sentences and human ref-
erence (ref) translations. All ratings are agreed on by both judges.

src: in diesem fall werde ich meine verantwortung wahrnehmen
ref: then i will exercise my responsibility
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LFG: in this case i accept my responsibility
P: in this case i shall my responsibilities

src: die politische stabilitdt héngt ab von der besserung der lebensbedingun-
gen

ref: political stability depends upon the improvement of living conditions
LFG: the political stability hinges on the recovery the conditions

P: the political stability is rejects the recovery of the living conditions

src: und schlieflich mufl dieser agentur eine kritische haltung gegeniiber

der kommission selbst erlaubt sein

ref: moreover the agency must be able to criticise the commission itself
LFG: and even to the commission a critical stance must finally be allowed
this agency

P: finally this is a critical attitude towards the commission itself to be agency

src: nach der ratifizierung werden co2 emissionen ihren preis haben
ref: after ratification co2 emission will have a price tag

LFG: carbon dioxide emissions have its price following the ratification
P: after the ratification co2 emissions are a price

src: die lebensmittel miissen die sichere ernahrung des menschen gewéhrleisten
ref: man’s food must be safe to eat

LFG: food must guarantee the safe nutrition of the people

P: the people of the nutrition safe food must guarantee

src: was wir morgen beschliefen werden ist letztlich material fiir das vermit-
tlungsverfahren

ref: whatever we agree tomorrow will ultimately have to go into the concili-
ation procedure

LFG: one tomorrow we approved what is ultimately material for the concili-
ation procedure

P: what we decide tomorrow is ultimately material for the conciliation pro-
cedure

src: die verwaltung mufl kiinftig schneller reagieren kénnen

ref: in future the administration must be able to react more quickly
LFG: more in future the administration must be able to react

P: the administration must be able to react more quickly

src: das ist jetzt tiber 40 jahre her
ref: that was over 40 years ago
LFG: on 40 years ago it is now
P: that is now over 40 years ago
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src: das ist schon eine seltsame vorstellung von gleichheit
ref: a strange notion of equality

LFG: equality that is even a strange idea

P: this is already a strange idea of equality

src: frau préasidentin ich begliickwiinsche herrn nicholson zu seinem ausgeze-
ichneten bericht

ref: madam president i congratulate mr nicholson on his excellent report
LFG: madam president i congratulate mister nicholson on his report excel-
lented

P: madam president i congratulate mr nicholson for his excellent report
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