
Computer Speech and Language (1990) 4, 35-56

The estimation of stochastic context-free
grammars using the Inside-Outside algorithm

K. Lari and S. J. Young
Cambridge University Engineering Department, Trumpington Street

Cambridge CB2 IPZ, U.K.

Abstract

Using an entropy argument, it is shown that stochastic context-free
grammars (SCFG’s) can model sources with hidden branching
processes more efficiently than stochastic regular grammars (or
equivalently HMM’s). However, the automatic estimation of SCFG’s
using the Inside-Outside algorithm is limited in practice by its O(n))
complexity. In this paper, a novel pre-training algorithm is described
which can give significant computational savings. Also, the need for
controlling the way that non-terminals are allocated to hidden
processes is discussed and a solution is presented in the form of a
grammar minimization procedure.

1. Introduction

III recent years, considerable success has been achieved in a variety of speech recognition

tasks by using Hidden Markov Models (HMM’s) to represent the speech production
process (Levinson, Rabiner & Sondhi, 1983; Kubala et al., 1988; Lee & Hon, 1988).
Since a HMM is directly equivalent to a stochastic regular grammar which is the weakest
class of grammar in the Chomsky Hierarchy, it would seem reasonable to consider the
merits of employing the more powerful stochastic context-free grammars (SCFG’s) to

perform similar tasks. Since a SCFG can be modelled by a multitype Galton-Watson
branching process (Harris, 1963; Sevast’yanov, 1970; Sankoff, 1971), the theory of
statistical inference of Markov processss can be applied to infer the production
probabilities (Anderson & Goodman, 1957).

The potential advantages of SCFG’s lie in their ability to capture embedded structure
within speech data. Such embedded structure appears explicitly at the word level where
context-free grammar’s are often used to model task languages. However, the effective-
ness of phonological rule systems such as that described by Oshika, Zue, Weeks, Neu &
Aubach (1975) suggest that the ability to directly model embedding may be useful at
lower levels also. Furthermore, a simple extension of the standard Baum-Welch re-
estimation procedure, known as the “Inside-Outside algorithm”, enables a SCFG to be
estimated from training data in a similar manner to that used in the HMM case (Baker,
1979). A more detailed derivation of this algorithm along with its extension to training
on multiple observations is given in Section 2 of this paper.

0885-2308/90/010035 + 22 f03.00/0 0 1990 Academic Press Limited

36 K. Lari and S. J. Young

Since Baker first proposed the Inside-Outside algorithm in 1979, there has been
surprisingly little subsequent work reported in the literature. The IBM group have
reported on its use for estimating the production rule probabilities of a context-free
language model (Jelinek, 1985) and the RSRE Speech Research Unit have reported on
its use in estimating spelling rules (Dodd, 1988). Other than these, no further applica-
tions of the Inside-Outside algorithm are known to us.

The limited interest in the application of the Inside-Outside algorithm in speech and
language is probably due to two factors. Firstly, the increased power of CFG’s
compared to regular grammars results from their ability to model recursive embedding.
However, if all of the sentences of a language are assumed to be finite, then any covering
CFG can always be reduced to an equivalent regular grammar. Hence, given that
English sentences are in practice finite, there would seem to be little need for adopting
the complexity of the CFG formalism. Whilst this is certainly true for deterministic
grammars, for the stochastic case, the ability of the grammar to determine language
membership is less important than its ability to model derivation probabilities accur-
ately. In Section 3 of this paper, we demonstrate that the predictive power of a SCFG as
measured by its prediction entropy is greater than that of a regular grammar with the
same number of free parameters.

The second barrier to using the Inside-Outside algorithm is its inherent computatio-
nal complexity which is 0(n3) (see Appendix) both in terms of input string length and the
number of grammar symbols. In Section 4, we describe a novel pre-training algorithm
which can give significant computational savings and in Section 5 we discuss the need for
minimizing the number of non-terminals and controlling the way that they are allocated
to hidden processes during grammar estimation. To this end, the use of a grammar
minimization procedure within the Inside-Outside algorithm is described. Finally, in
Section 6 we briefly comment on our implementation of the algorithm using a parallel
transputer array.

2. The Inside-Outside algorithm

The Inside-Outside algorithm assumes that the source can be modelled as a context-free,
Hidden Markov Process (Baker, 1979). The algorithm allows the estimated grammar to
have an arbitrary degree of ambiguity.

Let O=O,,O,,. . ., 0, be the observation sequence generated by a stochastic context
free grammar G, with rules of the form:

i+jk and i-m

where ij,k are unique integer numbers corresponding to each of the non-terminal
symbols and m is an integer corresponding to a terminal symbol. The matrices of
parameters which describe this stochastic context-free grammar are A and B, where:

a[ij,k] = P(i*jk/G) (1)

b[i,m] = P(i*m/G). (2)

Therefore a[ij,k] is the probability that the non-terminal symbol i will generate the pair
of non-terminal symbols j and k. Similarly, b[i,m] represents the probability that the non-

Estimation of SCFG’s 37

terminal symbol i will generate a single terminal symbol m. Since any context-free
grammar (Chomsky, 1956) may be reduced to Chomsky Normal Form (Chomsky,
1959), these parameters are sufficient to describe any stochastic context-free language.

Note that for consistency the following constraint must always be satisfied:

F a[ij,k] + C b[i,m] = 1, for all i.
m

(3)

This constraint simply means that ail non-terminals must generate either a pair of non-
terminal symbols or a single terminal symbol.

In applying a stochastic context-free grammar we have to address two specific
problems, namely that of recognition and training. The recognition problem is con-
cerned with the computation of the probability of the start symbol S generating an
observation sequence 0 given the grammar G:

I’(&- O/G).

Where an asterisk (*) denotes a derivation sequence consisting of one or more steps. The
training problem is concerned with determining a set of grammar rules G given a training
sequence O(‘),O(*) . ,,OcQ).

Analogous to the forward (a) and backward (B) probabilities of conventional Markov
model algorithms, we define inner (e) and outer (f) probabilities to facilitate the analysis
of stochastic context-free Markov grammars.

The quantity e(s,t,i) is defined as the probability of the non-terminal symbol i
generating the observation O(s),. . .,0(t):

e(s,t,i)= P(ih(s). . .O(t)/G) (4)

In determining a recursive procedure for calculating e, two cases must be considered:

CASE I: (s=t)

Only one observation is emitted and therefore
applies:

e(s,s,i) = P(i=O(s)/G)

= b[i,O(s)].

CASE 2: (s# t)

a transition rule of the form i-m

(5)

In this case we know that rules of the form i+jk must apply since more than one
observation is involved. Referring to Fig. 1, it is clear that e(s,t,i) can be expressed as
follows:

I- I

e(s,t,i)=x 1 a[iJ,k]e(s,r,j)e(r+ l,t,k), for all i. (6)
j.k r=s

38 K. Lari and S. J. Young

I s I r+l t T

Figure 1. Calculation of inner probabilities.

The quantity e can therefore be computed recursively by determining e for all
sequences of length 1, then all sequences of length 2, and so on.

Next we define the outer probabilities as follows:

f(s,r,i)=P(SZO(l). . .O(s- l),i,O(t+ 1). . .0(2)/G). (7)

f(s,t,i) may be thought of as the probability that in the re write process, i is generated
and that the strings not dominated by it are O(1). . .O(s- 1) to the left and
O(t f 1). . .0(T) to the right (see Fig. 2). In this case, the non-terminal symbol i could be
one of two possible settings j+ik orj+ki as shown in Fig. 3, hence:

f(s,t,i)=C [‘~‘_f~~,~JM_i k ‘I (, ,z e r,s- l,k)+ 5 f(s,r,j)a[j,i,k]e(t+ l,r,k) 1 (8) i.k r=l r=r+1
1 1, if i=S;

and f(l,T,i) = \ o, otherwise. (9)

After the inner probabilities have been computed bottom-up, the outer probabilities can
therefore be computed top-down.

For recognition purposes, the e and theyvalues can be used to compute the sentence
probability as follows:

P(SSO/G) = c e(s,t,i)f(s,t,i) (10)

for any s < t. Setting s = 1, t = T in (10) gives:

(11)
=e(l,T$‘).

Estimation of SCFG’s 39

l *~~~*~*b~o***.*..**...*...

I

- :: -5
O(l)...O(S-II O(s)...O(f) o(t+l)...O(r)

Figure 2. Definition of outer probabilities

5 t T , s t I r

Figure 3. Calculation of outer probabilities.

So P(SSO/G) can be computed from the inner probabilities alone. A similar formula
may be derived in terms of outer probabilities by setting s = t in (10):

P(SSO/G) = c e(s,s,i)f(s,s,i)

= C W,Wl f(M).

The problem of training a stochastic context-free grammar is more complicated. We
start by considering the product:

e(s,t,i)f(s,t,i) = P(S~O,i*O(s). . .O(t)/G)

(13)
= P(SzO/G). P(i&O(s). . .0(t)/S~O,G)

40 K. Lari and S. J. Young

The last step is due to Bayes’s theorem. Let

P = P(S:O/G),

then from (13):

P(&O(s). . .O(t)/S&O,G) =ie(s,t,i)f(s,t,i), (14)

therefore

P(i used in derivation)= i i ke(s,t,i)f(s,r,i).
s= I t=s

(15)

Now consider an application of the rule i+jk in a derivation. Substitute (6) into (14) to
obtain:

P(iz jkzO(s). . .O(t)/S&O,G)=

=$‘c’ a[i,j,k]e(s,r,j)e(r+ l,t,k)f(s,t,i) for all j,k and tbs.
T=S

(16)

Hence from (15) and (16):

T-l T 1 r-1

P(i+jk,i used)= C c s=, ,=s+, ‘i; c 4U,&(wJM+ l,Wf(~,~).
T--s

(17)

By definition:

a[ij,k] = P(i-+jk/i used) =
P(i+jk,i used)

P(i used)

therefore a re-estimation formula for a[ij,k] is given by:

for all i,j,k.

Estimation of SCFG’s

By similar reasoning a re-estimation formula for b[i,m] may

6 [i,m] =
f &.Oc,j= m e(W)f(~,~,i)

f C,‘= , qT= s e(s,t,i)f(s,t,i)

41

be expressed as follows:

(19)

In a practice, a single observation is insufficient to estimate the parameters of a SCFG
accurately. Therefore the above equations must be extended to handle an arbitrary
number of observations.

Assume we have a set of Q observations:

0 s [O(‘),O@),. . .,0(Q)].

Let

w,W,i,_Ak) = $ ‘II a[i,j,kle,(s,rj)e,(r + 1 ,t,k)f,(s,t,i)
4r-s

and

v,(W) = f e,(s,t,i)f,(s,t,i).
9

Assuming that the observations are independent, we can sum the contribution from
each of wq and vq to the numerators and denominators of Equations (18) and (19) to give

(21)

The Insideautside algorithm implements Equations (1 I), (20) and (21) in an iterative
fashion as follows:

1. Choose suitable
specified by (3).

2. REPEAT

initial values for the A and B matrices subject to the constraint

A = . . .{Equation 20)
B=. . .{Equation 21)
P=. . .{Equation 11)

UNTIL change in P is less than a set threshold.

42 K. Lari and S. J. Young

3. Regular versus context-free grammars

The role of a grammar or automata in speech recognition is to reduce the uncertainty
inherent in the identification of the input data. One way of measuring this uncertainty is
to calculate the entropy of the language generated by the grammar. Two grammars
estimated from the same finite size data set, in general, generate different languages with
the training data as a common subset (this is strictly because there is never enough
example sentences in the training set to capture the complete structure of the language)
and therefore have different language entropies. One would expect that the grammar
with the lowest language entropy would yield fewest recognition errors. In this paper,
entropy is regarded as a measure of the efficiency with which a stochastic grammar
models the target language. Entropy therefore provides us with an important tool for
comparing regular and context-free grammars, or even two context-free grammars; as
far as language modelling is concerned.

Suppose a random variable X can take on values x~,x*,. . .,x,, with respective
probabilities p,,p2, . . .,p,,. It can be shown that - log,p, is the amount of information
registered when A’ takes the value xi (Ross, 1984, Shannon, 1948). The entropy

H(P,,. . .,p,) is defined to be the expected amount of information received upon learning
the value of X

H(P,,* . .,Ptz)= - i Pi log2 Pi
i= I

(22)

The quantity H can also be interpreted as the amount of uncertainty that exists as to the
value of X. It follows that His maximized when all n events xi have equal probabilities of
occurrence (i.e. pi= l/n, for all i), which is intuitively the most uncertain situation. In this
case H is equal to log, n (Shannon, 1948).

Entropy can be computed for natural languages (Shannon, 1951), deterministic
languages (Kuich, 1970; Levinson, 1985) and stochastic languages (Soule, 1974; Wright,
1988). The entropy of a natural language such as English can be approximated from the
statistics of English. The accuracy increases as more and more of the statistics are taken
into account (Shannon, 1951). In the case of deterministic languages some assumption
must be made about the probability of occurrence of sentences. Two possible assump-
tions are that sentences are either equiprobable or distributed so as to maximize entropy
(Levinson, 1985). However, in the case of stochastic languages no such assumptions are
necessary since the probabilities associated with the production rules are known. For a
non-ambiguous grammar, a probability can be assigned to each sentence in the language
by multiplying the probabilities of the production rules used in its derivation (Wright,
1988). For ambiguous grammars, the inner probability defined by Equations (4), (5) and
(6) in Section 2 can be used since its method of calculation explicitly takes multiple
derivation sequences into account.

Suppose L is a stochastic bounded language, (i.e. L contains a finite number of
sentences) and further assume that an accurate estimate of the probability of each
sentence P(s) can be computed, it follows that the entropy per sentence is given by

H(s) = - c W’l 1% W’l (23)
SGL

Estimation of SCFG’s 43

This is the uncertainty associated with the selection of a sentence from the language. The
entropy of the language L is defined to be the quotient of the sentence entropy and the
average sentence length:

(24

The quantity E{lS!} is simply the expected number of words per sentence, which is
computed by summing individual sentence lengths weighted by their respective probabi-
lities of occurrence:

However, many languages of interest are not bounded and may contain an infinite
number of sentences. The entropy of such unbounded languages can be estimated by
making an e-representation of L in the sense of Booth & Thompson (1973) and using this
representation to compute H,(L) via Equation (24). A set of sentences L, strongly E-
approximates L if

L,cL

c P(s)21-E
SELI

P(S/L,) = P(S/L) for all SEL,

The value of E itself varies from language to language and depends on how good an
approximation is required. L, generally contains sentences which have a relatively high
probability of occurrence (with no repetition). This follows from the fact that an
approximation to L may be obtained by choosing a subset of L consisting of all
sentences of length less than or equal to some fixed integer N, (Booth & Thompson.
1973):

L, = {S/&L, length(S) < N,}.

All sentences longer than this upper bound make insignificant contribution to the value
of entropy (mainly because longer sentences use more production rules in their
derivation, hence, have a smaller probability of occurrence) and therefore may be
omitted from L,. It is this fact that makes Equation (24) computable in practice.

An alternate approach is to compute the sentence probabilities associated with a
number of randomly generated sentences, and compute the empirical entropy (Wright,
1988) as follows:

K. Lari and S. J. Young

The set of K sentences will contain many repetitions of the most likely sentences, but
provided K is large enough, it can nevertheless yield a reasonable estimate of entropy.

To illustrate the effectiveness of these measures in comparing stochastic Regular
versus stochastic context-free grammars, we have used standard Baum-Welch re
estimation and the Inside-Outside algorithm to estimate grammars for the simple
language of palindromes defined by

L(G) = {xylx is a mirror image of yj.

For this experiment, a simple grammar for a two-symbol palindrome was constructed
(see below), which acted as a source to generate 200 random sentences of the language.
These sentences were used as training data for (1) the Inside-Outside algorithm to
compute SCFG’s and (2) the Baum-Welch algorithm to construct HMM’s. Each HMM
was given the same number of parameters as the SCFG, (it is unfair to compare a five
non-terminal SCFG with a five-state HMM, since a five non-terminal SCFG uses more
parameters to express its grammar). Generally, an N-non-terminal, M-terminal SCFG
uses NS + NM parameters and a K-state, M-terminal HMM uses K2 + (M+ 2)K para-
meters (including transition probabilities to and from confluent states). Therefore, the
following condition should hold for comparable models:

K2+(M+2)KxN3+ NM. (27)

The source grammar used to generate the data for this experiment is shown in Fig. 4. It is
a five non-terminal, two terminal SCFG with eight non-zero parameters. We used the

Source SCFG

S+A C (0.3) A-a (1.0)
B D (0.3) B+b (1.0)
A A (0.2) C-iSA (1.0)

B B (0.2) D-rS B (1.0)

Estimated SCFG

S+A B (0.47)

D C (0.45)

B B (O-02)

D D (0.07)

A-B S (0.60)
b (0-W

B-b (1.00)

C+S D (0.66)
a (0.34)

D+a (1W

Estimated regular grammar

S-taA,lbA,
A,+aA,lbA,laA,lalb A,+aA,lbA,,
A,-+aA,lbA,laA,iaA,laA,laA, A,+aA,lbA,,
A,-+aA,lbA, A,+aA,lbA,laA,laA,

A,+aA,\bA,laA, A,-A,IbA,,

A,+aA,laA,lbA,,Ib A,,-aA,lbA,lb

Figure 4. Grammar estimated for the language of two-symbol palindromes.

Estimation of SCFG’s 45

same number of non-terminals and terminals for the estimated SCFG but allowed all

parameters to be non-zero (135 in total). Using (27) this fixed the estimated HMM to
have 10 states. The final SCFG obtained using the Inside-Outside algorithm and the

regular grammar derived from the estimated HMM are also shown in Fig. 4. Inspecting
these grammars, it can be seen that although the estimated SCFG is not identical to the
source it is nevertheless equivalent in the sense that it generates palindromes and only

palindromes.
Table I shows the entropies of the languages associated with both the SCFG and

HMM estimated using (24) and (26), also shown in the table is the entropy of the source
which for this simple grammar can be calculated exactly. From the table, it is clear that
the entropy of the language associated with the estimated SCFG is much closer to the
source than that of the HMM. Thus, for this example at least, the SCFG is able to model
the source more efficiently than the comparable HMM even though the source data is

finite.
Some additional simple tests confirmed this further. Firstly, using a set of 100 distinct

sentences half of which were palindromes, the SCFG classified all 100 sentences correctly
whereas the HMM classified 53 correctly. Secondly, using both the estimated grammars
as generators, all sentences generated by the SCFG were palindromes whereas only 56%

of those generated by the HMM were palindromes.

TABLE I. Entropies of source and estimated Ianguages

H(L) K(L)* Y(L)*

Source
Estimated SCFG
Estimated HMM

0.985 --
0.995 0.989

- 1.196 I.402

* Estimated from 1000 generated sentences.

4. Pre-training

As with standard HMM re-estimation, there is no guarantee that the Inside-Outside
algorithm will converge towards a global optimum. Furthermore, as noted in the
introduction, it is an 0(n3) algorithm. Hence, it is vital to start off the algorithm with
good initial estimates.

In this section, a pre-training algorithm will be described which has proved effective in
both reducing the number of re-estimation cycles required and facilitating the generation
of a good final model.

The key idea is that instead of starting with random A and B matrices, we first use the
Baum-Welch algorithm to obtain a set of regular grammar rules, and use these (with
some modifications to be explained later) as a starting point for the Inside-Outside
algorithm.

Suppose for a given data set, we train a HMM, with N states, and an explicit starting
state S and a final state E (note that in order to describe a HMM in terms of regular
grammar rules, we need two confluent states 5’ and E, otherwise we will not obtain
strings containing only terminal symbols). The transition matrix A, the emission matrix

46 K. Lari and S. J. Young

B, the initial state probability vector x and the final state probability vector F can be used
to define a Chomsky Normal Form grammar as follows:

(a) For each b,, define Yj+k with probability bjk.

(b) For each a#, define Xi+ YiXj with probability aij

(c) For each nj, define S-+Xj with probability n,.

(d) For each Fi, define Xi-+ Y, with probability Fi.

Rules of type (aHd) allow a HMM to be converted into a stochastic grammar.
However, note that the rules resulting from (a) and (b) are in Chomsky Normal Form
whereas those resulting from (c) and (d) are not. Since, the Inside4utside algorithm
requires us to have the rules in Chomsky Normal Form, some further conversion is
necessary:

(e) For each rule of the form:

S+X, with probability rcj

locate all rules with F! on their left and then substitute the right-hand side of each
rule for X, in the origmal rule, i.e. if

Xj-t YjA’, with probability aj,

then create a new rule:

S-+ YT, with probability rr,uj,.

(f) For each rule of the form:

Xi+ q with probability Fi

substitute all right-hand side of rules with Y, on their left-hand side, for Y,, i.e. if

q-+k with probability b,

then create a new rule

X,+k with probability bipi.

(e) and (f) ensure that all the rules are in the required Chomsky Normal Form.
The above algorithm allows a HMM to be transformed into an equivalent Chomsky

Normal Form grammar. If this grammar was used directly as the starting point for the
InsidAutside algorithm, all of the zero parameters would remain zero thus forcing the
grammar to remain regular. To prevent this, all parameters of the initial grammar are
raised above some floor value and then the matrices are renormalized. This allows the re-

Estimation of SCFG’s 47

estimation procedure to transform the grammar into a full SCFG. The floor value we
use is proportional to the number of non-zero parameters (typically around 0.01). To
illustrate the operation of this pre-training algorithm, Fig. 5 shows log P plotted against
iteration number for the palindrome estimation problem described earlier. Curves are
shown for both random initialization and the HMM-based pre-training described
above. The substantially more rapid convergence in the pre-trained case is evident. In
this case, the reduction in total compute time achieved by using the pre-training
technique is approximately 40%. Similar savings have also been achieved across a range
of other problems.

As an aside, it is interesting to note the shape of the curves in Fig. 5 which appear to be
typical in that there seem to be two distinct learning phases. We have no explanation for
this at present but its occurrence means that care needs to be taken to ensure proper
convergence of the algorithm.

The SCFG estimated for the palindrome problem using pre-training is shown in Fig. 6
and its entropy is compared with the randomly initialized case in Table II. As can be
seen, the estimated grammar using pre-training is again equivalent to the source
grammar and there is no statistically significant difference between its entropy and that
obtained earlier. Thus, the entropy measurements suggests that the pre-trained SCFG is
as efficient as the randomly initialized SCFG. In fact, more direct comparisons of the
two grammars suggests that the pre-trained SCFG is actually a closer estimate to the
source. For example, Table III shows the probabilities of generating sentences of length
4 or less. For this case, the pre-trained grammar is clearly closer to the source grammar.

-aoc

-100 -

%
.Z .Z 13 : : -120- ,..’ ,...... ‘.
: ,:. :

0” :

-I

-160 I 1 I I I 1
0 20 40 60 a0

lteratlons

Figure 5. Learning rate for pre-trained (. .) and random (---_) SCFGs.

s-, A c (0.35)

B D (0.41)

cc (0.17)
D D (0.07)

A+CS (1.00)

B-D S (0.72)
8-b (0.28)
C-a (1.00)
D-b (1 .OO)

Figure 6. SCFG obtained with pre-training.

48 K. Lari and S. 3. Young

TABLE II. Effects on entropy due to pre-training

H(L) H,(L)* H,(L)*

Source 0.985
SCFG (random) 0.995 0.989
SCFG (pre-trained) 0.98 1 0.994

* Estimated from 1000 generated sentences.

TABLE III. Comparison of sentence length
distributions

Source 0.64
Pre-trained 0.59
Random 0.46

5. The use of grammar minimization during estimation

The palindrome example of Sections 3 and 4 was drawn from the alphabet {a,b} which is
the simplest of its kind. More complex palindromes can be formed if the alphabet set is
expanded to contain more terminal symbols. However, increasing the number of
terminals requires an increase in the number of non-terminals, which in turn leads to a
more complex grammar. In order to formulate grammar rules for the language of M-
symbol palindromes a minimum of 2M+ 1 non-terminal symbols is required; one start-
symbol, M non-terminals to describe the hidden process and M non-terminals to
describe the observable process. The grammar shown in Fig. 7 generates palindromes
drawn from the alphabet {a&}. Where S is the start-symbol, B,D,F describe the hidden
process and A,C,E describe the observable process.

A stochastic version of the above grammar was used to generate 400 example
sentences of the language. These sentences acted as training data for the Inside-Outside
algorithm, which produced the rules shown in Fig. 8. In this case, the Inside-Outside
algorithm failed to produce a satisfactory set of grammar rules. Only the terminal “a” is
generated in the desired self-embedded fashion, “6” and “c” are generated sequentially.
The symbol “a” acts as a dominant symbol and freezes some of the non-terminals. For
example, non-terminals C, D and F play the same role; only one of them is required for
the generation of “a”s. A similar experiment was performed whereby the number of
non-terminals was increased from 7 to 12. The computed grammar rules were slightly
better but still not very satisfactory, symbols “a” and “6” were now generated in a self-
embedded fashion and only “c” was generated sequentially. Increasing the number of
non-terminals to 18 finally resulted in a set of production rules, which correctly modelled
the language of palindromes and generated only sentences of that language.

We have found that the above experimental results are typical over a wide range of
problems. In order to ensure that sufficient non-terminals are available to model all of
the hidden processes within the source, it is necessary to have many more non-terminals
than are theoretically necessary. Given the O(n3) complexity of the algorithm, this aspect
of the Inside-Outside algorithm renders it computationally intractable for realistic
problems.

Estimation of SCFG’s 49

S-A B B-+SA
CD D-t.17 C
EF F+S E
AA A-a
cc C-b
EE E+c

Figure 7. Source grammar for three-symbol palindromes.

S+A A

CB
cc
DB
DC
DD
EE
FB

A-+SA

B-S C
SD
SF
a

C-to
D-a
E+S E

h
F+a

Figure 8. Grammar inferred for the three-symbol palindrome.

From the above, it is clear that the Inside-Outside training algorithm would be
improved if redundant and/or useless symbols could be detected and eliminated. This
would in effect involve attempting to minimize the grammar. Although the lack of any
formal procedure for testing for the equivalence of two context-free grammars prevents
an exact minimization technique to be defined, the use of approximate techniques may
nevertheless be of value. We have therefore experimented with extended versions of the
Inside-Outside algorithm in which the conventional re-estimation is interleaved with an
approximate Grammar Minimization (GM) procedure.

A GM procedure may be incorporated into the Inside-Outside algorithm in two ways.
Firstly, the Inside-Outside could start with some fixed maximum number of non-
terminals, and a grammar minimization procedure applied periodically to detect and
eliminate useless and redundant symbols (e.g. for the above example the algorithm would
start with 20 non-terminals and end up with 7). However, this approach would be
computationally intractable if the grammar used many non-terminals. A second and
more practical approach would be to start with the desired number of non-terminals (i.e.
7 in the example above) and apply a grammar minimization procedure periodically (or
when the change in log-probability falls below a certain threshold) to detect and
reallocate redundant symbols. This approach is described further in Section 5.2. Before
that however, it is worth noting that for simple grammars like palindromes, the grammar
minimization process may be avoided by introducing suitable constraints. We will
discuss this first before dealing with the more general case.

5.1 Constraining the Inside-Outside algorithm

In the experiments described so far, the Inside-Outside algorithm was given complete
freedom in formulating the grammar rules, and it was this freedom that encouraged
“greedy symbols” to take too many non-terminals. One method of decreasing this
freedom is to introduce constraints (which is so commonly done with HMM’s, e.g. the
use of left to right models). A typical constraint might be to specifically allocate a non-
terminal to each terminal symbol and then force the remaining non-terminals to model

50 K. L.ari and S. J. Young

the hidden branching process. This may be done by setting certain parameters to zero.
For example, allocating the non-terminal A to terminal symbol a in the palindrome case
is done by assigning a probability of 1.0 to that rule (therefore 0.0 to the remaining
derivation parameters for A). Figure 9 shows such a constraint along with the resulting
grammar inferred by the Inside-Outside algorithm for the language of three symbol
palindromes where it can be seen that the required embedding has been achieved now for
all three terminal symbols without having a large excess of non-terminals. This type of
constraint appears to work well for simple languages, but it is clearly not suitable for
realistic problems that use many terminals. For example, recognizing speech encoded by
a 64-codeword Vector Quantizer requires 64 non-terminals dedicated entirely to
generating the terminal symbols. With regard to the complexity of the algorithm, this
type of constraint would be completely infeasible for speech. The next section therefore
describes an approach based on grammar minimization which is practical for larger scale
problems.

(4 S+alblc (0.0)

A-ta (1.0)
B-+b (1.0)
c+c (1.0)
D-ralblc (0.0)
E+alblc (0.0)
F-+alblc (0.0)

(b) S+A A
BE
CC
DA
EB
FC

A-a
B-ib
c-c
D+A S
E-rB S
F-+C S

Figure 9. (a) Constraining the algorithm; (b) grammar obtained with
constraint.

5.2 A Grammar Minimization algorithm

This section outlines how we have incorporated a grammar minimization process into
the Inside-Outside algorithm. The main aim of this extension is to detect and reallocate
redundant non-terminals which are dominated the “greedy” symbols, that is, the
symbols which have an excessive number of parent non-terminals. We have developed
the following algorithm to perform this task:

1. Locate all redundant non-terminal symbols. This is done in a bottom-up fashion by
first examining the terminal symbols that are generated by more than one non-terminal,
and then recursively searching backwards through the possible derivation sequences
recording all rules which are redundant. The redundant non-terminals corresponding to
a particular greedy terminal are then replaced by a single non-terminal throughout the
grammar thereby transforming the redundant grammar rules into several occurrences of
the same rule. These are then collapsed into a single rule by adding their rule
probabilities. This step results in the availability of one or morefree non-terminals which
were previously dominated by greedy symbols.

Estimation of SCFG’s 51

2. Locate non-terminals (other than 5’) that successfully generate parts of a sentence.
These are assumed to be the remaining non-terminals involved in the generation of
greedy symbols since we know that the hidden processes relating to these symbols have
been more than adequately covered by non-terminals. The matrices of parameters
associated with these non-terminals are then fixed i.e. they are excluded from the
parameter updates defined by steps (3) and (4).

3. Randomize the matrices corresponding to the remaining free non-terminals with
the following constraints:

(i) The probability of any free non-terminal generating a greedy symbol is set to
zero and

(ii) rows and columns corresponding to the non-terminals located by step (2) are
also set to zero.

These conditions reallocate the free non-terminals to the stochastic processes not

involved in the generation of the greedy symbols.
4. Randomize those rows and columns of the remaining non-terminals (which

describe the under-represented stochastic processes) corresponding to the free non-
terminals.

To illustrate the effects of the above GM process, consider the grammar inferred by
the Inside-Outside algorithm for the language of three-symbol palindromes (see Fig. 8).
After applying step (l), non-terminals D and Fare set “free” and the grammar is reduced
to that of Fig. 10. At the second step of GM non-terminals B and C are fixed since they
are both involved in the generation of greedy symbol a. Steps (3) and (4) randomize parts
of the matrices corresponding to non-terminals S, A, D, E and F, such that D and Fare
re-allocated to S, A and E for the generation of the non-greedy symbols b and c.

S-+A A C-m

CB D+???
cc E-SE

EE b

A+SA F-r ?‘??

c
B-r,!? C

a

Figure IO. Elimination of D’s and F’s

S-A A
CB
cc
DE
EE
FE

A-+S A

C-+a
D+E S
E+b
F-ES

c

B-+S C

Figure 11. Grammar for three-symbol palindromes after the first application of
the grammar minimization algorithm.

52 K. Lari and S. J. Young

S-A A B-SC
CB a
CC C+a
DE D-ES
EE E+b
FA F-A S

A-+C C

Figure 12. Grammar for three-symbol palindromes after two applications of
the grammar minimization algorithm.

After 34 iterations the Inside-Outside algorithm converged on the new set of rules
shown in Fig. 11. By examining the grammar of Fig. 11 it is clear that non-terminals D
and F are now doing the same job. However, the grammar has improved since non-
terminals D (or F) and E together now generate the b’s in the desired self-embedding
fashion. The grammar minimization algorithm was applied again by replacing all F’s by
D’s and keeping the parameters associated with D and E (as well as B and C) fixed. The
non-terminal F was then reallocated to S and E to cover the generation of c’s.

After another 22 iterations the Insidtiutside algorithm finally produced the “cor-
rect” grammar as shown in Fig. 12.

So far, our testing of the above GM procedure has been limited to “toy” examples.
Although the rules we use for identifying “useful” and “useless” symbols are currently
somewhat “ad hoc”, our result clearly show that it is both possible and profitable to
attempt to redistribute the function of non-terminals during the re-estimation process.
Indeed, for realistic tasks, a procedure such as this appears to be mandatory.

6. Implementation

Implementation of the Inside-Outside algorithm on a conventional serial computer is
practical only if the number of non-terminals is small (less than eight or SO on a
MicroVAX II workstation). As noted earlier, the Inside-Outside algorithm is O(n3)
whereas the Baum-Welch algorithm is O(n’). The graph below (Fig. 13) shows how the
time taken per iteration varies with the number of non-terminals in (arbitrary)
MicroVAX iI units.

I- I I 1 I I

0 100 200 I!

s/lteratlon

10

Figure 13. The O(n’) complexity of the Insidautside algorithm.

Estimation of SCFG’s 53

One can see that when a large number of non-terminals is used, we have an n3
relationship, but for a small number of non-terminals it approaches n2 since the

computation overhead tends to dominate for small n.
Although the Inside-Outside algorithm is computationally rather too complex for a

conventional serial-computer, it is fortunately suitable for parallel implementation.
Since training time is proportional to the number of data strings in the training set, it is
simple to split the problem into smaller sub-problems by partitioning the training data.
We have implemented the Inside-Outside algorithm on the ParSiFal (Knowles, 1986)

transputer array which consists of a reconfigurable array of 64 transputers linked in a
serial fashion as shown in Fig. 14.

The array is attached to a SUN host computer via a control board, which itself is a
transputer. The training data is split into 64 subsets and each transputer works
independently on its own data. All 64 transputers send their contributions to the control
transputer which computes the updated parameter set and transmits it down the chain to
all the other transputers. This method of implementation is 100 times faster than an
optimized C (serial) version running on a MicroVAX II workstation. Using the
transputer array, we are able to tackle problems with around 2@-30 non-terminals and
around 6&100 terminals. All of our algorithms are written in C and are configured to
run both on a conventional workstation and the parallel transputer array. So far, using
double length floating point arithmetic, we have not encountered underflow problems. If
such problems do occur, we will switch to the logarithmic representation developed by
Kingsbury & Rayner (1971) rather than attempt explicit scaling.

SUN

[-fi

~~--i----H--q . ..+--q
Figure 14. The ParSiFal transputer array.

7. Conclusions

This paper has reviewed the Inside-Outside algorithm and described various problems
that arise in its practical application. As with all iterative procedures, it is highly
desirable to start the Inside-Outside algorithm with a good initial estimate. We have
shown that it is possible to derive such an estimate by using standard HMM estimation
in a “pre-training” phase. Not only does this seem to lead to good final solutions, it also
typically reduces the number of iterations needed by half. We have also drawn attention
to the need for controlling the way non-terminal symbols are allocated to the underlying
hidden process during re-estimation. We have found that typically a three-fold excess of
non-terminals is needed to ensure an adequate distribution of non-terminals to each of
the hidden processes and that given the 0(n3) complexity of the algorithm, this is
potentially crippling. Fortunately, however, we have discovered that this problem can be
avoided by interleaving the Inside-Outside re-estimation with a Grammar Minimization
procedure which reallocates useless and/or redundant symbols to under-represented
stochastic processes.

54 K. Lari and S. J. Young

So far the bulk of our work on the Inside4utside algorithm has been restricted to
“toy” problems, that is, estimating models from data generated from a known source.
Our real interest, however, is in modelling speech data at the subword level. Whilst it is
not yet. known whether SCFG’s can in practice provide better subword models than
HMM’s, we have shown in this paper, via an entropy argument, that where branching
processes do exist in data, SCFG’s trained by the Inside-Outside algorithm are superior.
We are therefore currently building SCFG models trained from real speech data to
pursue this further.

References

Aho, A. V., Hopcroft, J. E. & Ullman, J. D. (1983). Data Structures and Algorithms. Addison Wesley,
Reading, MA.

Anderson, T. W. & Goodman, L. A. (1957). Statistical inference about Markov chains. Annals of
tUathematica1 Statistics, t8, 89-100.

Bahl, L. R., Jelinek, F. & Mercer, R. L. (1983). A maximum likelihood approach to continuous speech
recognition. IEEE Transactions on Pattern Matching and Machine Intelligence, 5, 179-190.

Baker, J. K. (1979). Trainable grammars for speech recognition. Speech Communication Papers for the 97th
Meeting of the Acoustical Society of America (D. H. Klatt and J. J. Wolf, eds), pp. 547-550.

Booth, T. L. & Thompson, R. A. (1973). Applying probability measures to abstract languages. IEEE
Transactions on Computers, 22, 442450.

Chomsky, N. (1956). Three models for the description of languages. IRE Transactions on Information
Theory, 2, 113-124.

Chomsky, N. (1959). On certain formal properties of grammars. Information nnd Control, 2, 137-167.
Dodd, L. (1988). Grammatical inference for automatic speech recognition: an application of the

Inside/Outside algorithm and the spelling of English words. Proceedings of the 7th FASE Symposium,
Edinburgh, pp. 1061-1068.

Harris, T. E. (1963). The Theory of Branching Processes. Springer-Verlag, Berlin.
Jelinek, F. (1985). Markov source modeling of text generation. NATO Advanced Study Inst. Impact of

Processing Techniques on Communication, pp. 569-598. Martinus Nijhoff, Amsterdam.
Kingsbury, N. G. & Rayner, P. J. W. (1971). Digital filtering using logarithmic arithmetic. Electronics

Letters, 7, 56-58.
Knowles, A. E. (1986). Specification for T-Rack, ParSiFal Document PSF/MU/87/AEK/3, Department of

Computer Science, University of Manchester.
Kubala, F., Chow, Y., Derr, A., Feng, M., Kimball, O., Makhoul, J., Price, P., Rohlicek, J., Roucos, S.,

Schwartz, R. & Vandegrift, J. (1988). Continuous speech recognition results of the BYBLOS system on
the DARPA lOOO-word resource management database. IEEE ICASSP, 1,291-294.

Kuich, W. (1970). On the entropy of context-free languages. Information and Control, 16, 173-200.
Lee, K. F. & Hon, H. W. (1988). Large-vocabulary speaker-independent continuous speech recognition

using HMM. IEEE ICASSP, 1, 123-126.
Levinson, S. E.. Rabiner, L. R. & Sondhi, M. M. (1983). An introduction to the application of the theory

of probabilistic functions of a Markov process to automatic speech recognition. Liefl System Technical
Journal, 62, 10351074.

Levinson, S. E. (1985). Structural methods in automatic speech recognition. Proceedings of the IEEE, 73,
162>1650.

Oshika, B. T., Zue, V. W., Weeks, R. V., Neu, H. & Aubach, J. (1975). The role of phonological rules in
;r,hl ;,nderstanding research. IEEE Transactions on Acoustics, Speech and Signal Processing, 23,

Ross, S. (1984). A First Course in Probability. Macmillan, New York.
Sankoff, D. (1971). Branching processes with terminal types: applications to context-free grammars.

Journal of Applied Probability, 8, 233-240.
Sevast’yanov, B. A. (1970). Theory of branching processes. Progress in Mathematics, 7, l-51.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27,

37‘%423.
Shannon, C. E. (1951). Prediction and entropy of printed English. Bell System Technical Journal, 29, 5064.
Soule, S. (1974). Entropies of probabilistic grammars. Information and Control, 25, 57-74.
Wright, J. H. (1988). Linguistic modelling for application in speech recognition. Proceedings of the 7th

FASE Symposium, Edinburgh pp. 391-398.

Estimation of SCFG’s 55

Appendix: algorithmic complexity of the Inside-Outside algorithm

The execution time T(n) of a program as a function of input size n is said to be O(nk) if
there exist positive constants c and n, such that

T(n) Q cn k,

for n <n,. We now seek to show that for the Inside-Outside training algorithm
T(n) = O(n’). In the following, the “rule of sums” will be used to calculate the running
time of a sequence of program steps. Suppose T,(n) and T,(n) are the running times for
two program fragments P, and Pz, and that T,(n) is O(f(n)) and T,(n) is O(g(n)). Then
T,(n) + T*(n), the running time of P, followed by P2 is O(max (f(n),g(n))) (Aho, Hopcroft
& Ullman, 1983).

It is clear that the most complex part of the Inside-Outside algorithm is the
computation of the inner (and the outer) probabilities. Therefore, by the “rule of sums”
their running time will determine the complexity of the whole training algorithm. The
inputs to the program are the number of non-terminal symbols N, the number of
terminal symbols A4 and observation sequence(s) 0 with length T. Our aim is to
determine the complexity of the algorithm in terms of the input parameters N and T,

The inner probabilities defined by Equation (6) is computed in two steps. First, all
substrings of length 2 are considered. This eliminates the inner summation of (6) and
simplifies the equation as follows:

N T-l

e(s,t,i) = 1 C 1 a[i,~,k]b[j,O(s)]b[k,O(s + I)]
i=l s=l j.k

The product of the three probability terms is taken to be O(1). The inner summation
with indicesj and k which range over all N non-terminals and therefore is executed N2
times. The middle summation ranges over the length (2) of the observation and is
executed T- 1 times. The outer summation repeats the whole process for every N
making the running time 0(N3) in non-terminals and 0(7) in length of the observation
sequence. The analysis for all the remaining substrings (length greater than 2) is more
complex. The inner probabilities are now computed from:

T-l N T-l r-2

e(s,t,i)= 1 c 1 c c a[i,j,k]e(s,r,j)e(r+ 1,&k), t=s+I.
1=2 i= 1 s= I j.k r=s+ I

The inner summation is executed t-s - 2 times or simply I- 2 times. By counting the
number of times each loop (or summation) is executed the running time may be
expressed as follows:

T-I

1 N3(T-I)(I-2)=N3
i= 2

(-~~l~Z+(T+i)=~21-2T(T-3))
6 2 i=2

=N3{-;T(T-l)(T-j)+l++T(T-l)(T+2)-(T+2)-2T(T-3))

56 K. Lari and S. J. Young

which is O(N3) and O(T)). By applying the “rule of sums”, the computation of inner
probabiIities is cubic both in terms of number of non-terminals and in terms of length of
the observation sequence. The running time of the outer probability computation can be
computed in an identical fashion (and it leads to the same conclusion).

