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Abstract 

Using an entropy argument, it is shown that stochastic context-free 
grammars (SCFG’s) can model sources with hidden branching 
processes more efficiently than stochastic regular grammars (or 
equivalently HMM’s). However, the automatic estimation of SCFG’s 
using the Inside-Outside algorithm is limited in practice by its O(n)) 
complexity. In this paper, a novel pre-training algorithm is described 
which can give significant computational savings. Also, the need for 
controlling the way that non-terminals are allocated to hidden 
processes is discussed and a solution is presented in the form of a 
grammar minimization procedure. 

1. Introduction 

III recent years, considerable success has been achieved in a variety of speech recognition 

tasks by using Hidden Markov Models (HMM’s) to represent the speech production 
process (Levinson, Rabiner & Sondhi, 1983; Kubala et al., 1988; Lee & Hon, 1988). 
Since a HMM is directly equivalent to a stochastic regular grammar which is the weakest 
class of grammar in the Chomsky Hierarchy, it would seem reasonable to consider the 
merits of employing the more powerful stochastic context-free grammars (SCFG’s) to 

perform similar tasks. Since a SCFG can be modelled by a multitype Galton-Watson 
branching process (Harris, 1963; Sevast’yanov, 1970; Sankoff, 1971), the theory of 
statistical inference of Markov processss can be applied to infer the production 
probabilities (Anderson & Goodman, 1957). 

The potential advantages of SCFG’s lie in their ability to capture embedded structure 
within speech data. Such embedded structure appears explicitly at the word level where 
context-free grammar’s are often used to model task languages. However, the effective- 
ness of phonological rule systems such as that described by Oshika, Zue, Weeks, Neu & 
Aubach (1975) suggest that the ability to directly model embedding may be useful at 
lower levels also. Furthermore, a simple extension of the standard Baum-Welch re- 
estimation procedure, known as the “Inside-Outside algorithm”, enables a SCFG to be 
estimated from training data in a similar manner to that used in the HMM case (Baker, 
1979). A more detailed derivation of this algorithm along with its extension to training 
on multiple observations is given in Section 2 of this paper. 
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Since Baker first proposed the Inside-Outside algorithm in 1979, there has been 
surprisingly little subsequent work reported in the literature. The IBM group have 
reported on its use for estimating the production rule probabilities of a context-free 
language model (Jelinek, 1985) and the RSRE Speech Research Unit have reported on 
its use in estimating spelling rules (Dodd, 1988). Other than these, no further applica- 
tions of the Inside-Outside algorithm are known to us. 

The limited interest in the application of the Inside-Outside algorithm in speech and 
language is probably due to two factors. Firstly, the increased power of CFG’s 
compared to regular grammars results from their ability to model recursive embedding. 
However, if all of the sentences of a language are assumed to be finite, then any covering 
CFG can always be reduced to an equivalent regular grammar. Hence, given that 
English sentences are in practice finite, there would seem to be little need for adopting 
the complexity of the CFG formalism. Whilst this is certainly true for deterministic 
grammars, for the stochastic case, the ability of the grammar to determine language 
membership is less important than its ability to model derivation probabilities accur- 
ately. In Section 3 of this paper, we demonstrate that the predictive power of a SCFG as 
measured by its prediction entropy is greater than that of a regular grammar with the 
same number of free parameters. 

The second barrier to using the Inside-Outside algorithm is its inherent computatio- 
nal complexity which is 0(n3) (see Appendix) both in terms of input string length and the 
number of grammar symbols. In Section 4, we describe a novel pre-training algorithm 
which can give significant computational savings and in Section 5 we discuss the need for 
minimizing the number of non-terminals and controlling the way that they are allocated 
to hidden processes during grammar estimation. To this end, the use of a grammar 
minimization procedure within the Inside-Outside algorithm is described. Finally, in 
Section 6 we briefly comment on our implementation of the algorithm using a parallel 
transputer array. 

2. The Inside-Outside algorithm 

The Inside-Outside algorithm assumes that the source can be modelled as a context-free, 
Hidden Markov Process (Baker, 1979). The algorithm allows the estimated grammar to 
have an arbitrary degree of ambiguity. 

Let O=O,,O,,. . ., 0, be the observation sequence generated by a stochastic context 
free grammar G, with rules of the form: 

i+jk and i-m 

where ij,k are unique integer numbers corresponding to each of the non-terminal 
symbols and m is an integer corresponding to a terminal symbol. The matrices of 
parameters which describe this stochastic context-free grammar are A and B, where: 

a[ij,k] = P(i*jk/G) (1) 

b[i,m] = P(i*m/G). (2) 

Therefore a[ij,k] is the probability that the non-terminal symbol i will generate the pair 
of non-terminal symbols j and k. Similarly, b[i,m] represents the probability that the non- 
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terminal symbol i will generate a single terminal symbol m. Since any context-free 
grammar (Chomsky, 1956) may be reduced to Chomsky Normal Form (Chomsky, 
1959), these parameters are sufficient to describe any stochastic context-free language. 

Note that for consistency the following constraint must always be satisfied: 

F a[ij,k] + C b[i,m] = 1, for all i. 
m 

(3) 

This constraint simply means that ail non-terminals must generate either a pair of non- 
terminal symbols or a single terminal symbol. 

In applying a stochastic context-free grammar we have to address two specific 
problems, namely that of recognition and training. The recognition problem is con- 
cerned with the computation of the probability of the start symbol S generating an 
observation sequence 0 given the grammar G: 

I’(&- O/G). 

Where an asterisk (*) denotes a derivation sequence consisting of one or more steps. The 
training problem is concerned with determining a set of grammar rules G given a training 
sequence O(‘),O(*) . ,,OcQ). 

Analogous to the forward (a) and backward (B) probabilities of conventional Markov 
model algorithms, we define inner (e) and outer (f) probabilities to facilitate the analysis 
of stochastic context-free Markov grammars. 

The quantity e(s,t,i) is defined as the probability of the non-terminal symbol i 
generating the observation O(s),. . .,0(t): 

e(s,t,i)= P(ih(s). . .O(t)/G) (4) 

In determining a recursive procedure for calculating e, two cases must be considered: 

CASE I: (s=t) 

Only one observation is emitted and therefore 
applies: 

e(s,s,i) = P(i=O(s)/G) 

= b[i,O(s)]. 

CASE 2: (s# t) 

a transition rule of the form i-m 

(5) 

In this case we know that rules of the form i+jk must apply since more than one 
observation is involved. Referring to Fig. 1, it is clear that e(s,t,i) can be expressed as 
follows: 

I- I 

e(s,t,i)=x 1 a[iJ,k]e(s,r,j)e(r+ l,t,k), for all i. (6) 
j.k r=s 
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I s I r+l t T 

Figure 1. Calculation of inner probabilities. 

The quantity e can therefore be computed recursively by determining e for all 
sequences of length 1, then all sequences of length 2, and so on. 

Next we define the outer probabilities as follows: 

f(s,r,i)=P(SZO(l). . .O(s- l),i,O(t+ 1). . .0(2)/G). (7) 

f(s,t,i) may be thought of as the probability that in the re write process, i is generated 
and that the strings not dominated by it are O(1). . .O(s- 1) to the left and 
O(t f 1). . .0(T) to the right (see Fig. 2). In this case, the non-terminal symbol i could be 
one of two possible settings j+ik orj+ki as shown in Fig. 3, hence: 

f(s,t,i)=C [ ‘~‘_f~~,~JM_i k ‘I ( , ,z e r,s- l,k)+ 5 f(s,r,j)a[j,i,k]e(t+ l,r,k) 1 (8) i.k r=l r=r+1 
1 1, if i=S; 

and f(l,T,i) = \ o, otherwise. (9) 

After the inner probabilities have been computed bottom-up, the outer probabilities can 
therefore be computed top-down. 

For recognition purposes, the e and theyvalues can be used to compute the sentence 
probability as follows: 

P(SSO/G) = c e(s,t,i)f(s,t,i) (10) 

for any s < t. Setting s = 1, t = T in (10) gives: 

(11) 
=e(l,T$‘). 



Estimation of SCFG’s 39 

l *~~~*~*b~o***.*..**...*... 

I 

- :: -5 
O(l)...O(S-II O(s)...O(f) o(t+l)...O(r) 

Figure 2. Definition of outer probabilities 

5 t T , s t I r 

Figure 3. Calculation of outer probabilities. 

So P(SSO/G) can be computed from the inner probabilities alone. A similar formula 
may be derived in terms of outer probabilities by setting s = t in (10): 

P(SSO/G) = c e(s,s,i)f(s,s,i) 

= C W,Wl f(M). 

The problem of training a stochastic context-free grammar is more complicated. We 
start by considering the product: 

e(s,t,i)f(s,t,i) = P(S~O,i*O(s). . .O(t)/G) 

(13) 
= P(SzO/G). P(i&O(s). . .0(t)/S~O,G) 
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The last step is due to Bayes’s theorem. Let 

P = P(S:O/G), 

then from (13): 

P(&O(s). . .O(t)/S&O,G) =ie(s,t,i)f(s,t,i), (14) 

therefore 

P(i used in derivation)= i i ke(s,t,i)f(s,r,i). 
s= I t=s 

(15) 

Now consider an application of the rule i+jk in a derivation. Substitute (6) into (14) to 
obtain: 

P(iz jkzO(s). . .O(t)/S&O,G)= 

=$‘c’ a[i,j,k]e(s,r,j)e(r+ l,t,k)f(s,t,i) for all j,k and tbs. 
T=S 

(16) 

Hence from (15) and (16): 

T-l T 1 r-1 

P(i+jk,i used)= C c s=, ,=s+, ‘i; c 4U,&(wJM+ l,Wf(~,~). 
T--s 

(17) 

By definition: 

a[ij,k] = P(i-+jk/i used) = 
P(i+jk,i used) 

P(i used) 

therefore a re-estimation formula for a[ij,k] is given by: 

for all i,j,k. 
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By similar reasoning a re-estimation formula for b[i,m] may 

6 [i,m] = 
f &.Oc,j= m e(W)f(~,~,i) 

f C,‘= , qT= s e(s,t,i)f(s,t,i) 
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be expressed as follows: 

(19) 

In a practice, a single observation is insufficient to estimate the parameters of a SCFG 
accurately. Therefore the above equations must be extended to handle an arbitrary 
number of observations. 

Assume we have a set of Q observations: 

0 s [O(‘),O@),. . .,0(Q)]. 

Let 

w,W,i,_Ak) = $ ‘II a[i,j,kle,(s,rj)e,(r + 1 ,t,k)f,(s,t,i) 
4r-s 

and 

v,(W) = f e,(s,t,i)f,(s,t,i). 
9 

Assuming that the observations are independent, we can sum the contribution from 
each of wq and vq to the numerators and denominators of Equations (18) and (19) to give 

(21) 

The Insideautside algorithm implements Equations (1 I), (20) and (21) in an iterative 
fashion as follows: 

1. Choose suitable 
specified by (3). 

2. REPEAT 

initial values for the A and B matrices subject to the constraint 

A = . . .{Equation 20) 
B=. . .{Equation 21) 
P=. . .{Equation 11) 

UNTIL change in P is less than a set threshold. 
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3. Regular versus context-free grammars 

The role of a grammar or automata in speech recognition is to reduce the uncertainty 
inherent in the identification of the input data. One way of measuring this uncertainty is 
to calculate the entropy of the language generated by the grammar. Two grammars 
estimated from the same finite size data set, in general, generate different languages with 
the training data as a common subset (this is strictly because there is never enough 
example sentences in the training set to capture the complete structure of the language) 
and therefore have different language entropies. One would expect that the grammar 
with the lowest language entropy would yield fewest recognition errors. In this paper, 
entropy is regarded as a measure of the efficiency with which a stochastic grammar 
models the target language. Entropy therefore provides us with an important tool for 
comparing regular and context-free grammars, or even two context-free grammars; as 
far as language modelling is concerned. 

Suppose a random variable X can take on values x~,x*,. . .,x,, with respective 
probabilities p,,p2, . . .,p,,. It can be shown that - log,p, is the amount of information 
registered when A’ takes the value xi (Ross, 1984, Shannon, 1948). The entropy 

H(P,,. . .,p,) is defined to be the expected amount of information received upon learning 
the value of X 

H(P,,* . .,Ptz)= - i Pi log2 Pi 
i= I 

(22) 

The quantity H can also be interpreted as the amount of uncertainty that exists as to the 
value of X. It follows that His maximized when all n events xi have equal probabilities of 
occurrence (i.e. pi= l/n, for all i), which is intuitively the most uncertain situation. In this 
case H is equal to log, n (Shannon, 1948). 

Entropy can be computed for natural languages (Shannon, 1951), deterministic 
languages (Kuich, 1970; Levinson, 1985) and stochastic languages (Soule, 1974; Wright, 
1988). The entropy of a natural language such as English can be approximated from the 
statistics of English. The accuracy increases as more and more of the statistics are taken 
into account (Shannon, 1951). In the case of deterministic languages some assumption 
must be made about the probability of occurrence of sentences. Two possible assump- 
tions are that sentences are either equiprobable or distributed so as to maximize entropy 
(Levinson, 1985). However, in the case of stochastic languages no such assumptions are 
necessary since the probabilities associated with the production rules are known. For a 
non-ambiguous grammar, a probability can be assigned to each sentence in the language 
by multiplying the probabilities of the production rules used in its derivation (Wright, 
1988). For ambiguous grammars, the inner probability defined by Equations (4), (5) and 
(6) in Section 2 can be used since its method of calculation explicitly takes multiple 
derivation sequences into account. 

Suppose L is a stochastic bounded language, (i.e. L contains a finite number of 
sentences) and further assume that an accurate estimate of the probability of each 
sentence P(s) can be computed, it follows that the entropy per sentence is given by 

H(s) = - c W’l 1% W’l (23) 
SGL 
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This is the uncertainty associated with the selection of a sentence from the language. The 
entropy of the language L is defined to be the quotient of the sentence entropy and the 
average sentence length: 

(24 

The quantity E{lS!} is simply the expected number of words per sentence, which is 
computed by summing individual sentence lengths weighted by their respective probabi- 
lities of occurrence: 

However, many languages of interest are not bounded and may contain an infinite 
number of sentences. The entropy of such unbounded languages can be estimated by 
making an e-representation of L in the sense of Booth & Thompson (1973) and using this 
representation to compute H,(L) via Equation (24). A set of sentences L, strongly E- 
approximates L if 

L,cL 

c P(s)21-E 
SELI 

P(S/L,) = P(S/L) for all SEL, 

The value of E itself varies from language to language and depends on how good an 
approximation is required. L, generally contains sentences which have a relatively high 
probability of occurrence (with no repetition). This follows from the fact that an 
approximation to L may be obtained by choosing a subset of L consisting of all 
sentences of length less than or equal to some fixed integer N, (Booth & Thompson. 
1973): 

L, = {S/&L, length(S) < N,}. 

All sentences longer than this upper bound make insignificant contribution to the value 
of entropy (mainly because longer sentences use more production rules in their 
derivation, hence, have a smaller probability of occurrence) and therefore may be 
omitted from L,. It is this fact that makes Equation (24) computable in practice. 

An alternate approach is to compute the sentence probabilities associated with a 
number of randomly generated sentences, and compute the empirical entropy (Wright, 
1988) as follows: 
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The set of K sentences will contain many repetitions of the most likely sentences, but 
provided K is large enough, it can nevertheless yield a reasonable estimate of entropy. 

To illustrate the effectiveness of these measures in comparing stochastic Regular 
versus stochastic context-free grammars, we have used standard Baum-Welch re 
estimation and the Inside-Outside algorithm to estimate grammars for the simple 
language of palindromes defined by 

L(G) = {xylx is a mirror image of yj. 

For this experiment, a simple grammar for a two-symbol palindrome was constructed 
(see below), which acted as a source to generate 200 random sentences of the language. 
These sentences were used as training data for (1) the Inside-Outside algorithm to 
compute SCFG’s and (2) the Baum-Welch algorithm to construct HMM’s. Each HMM 
was given the same number of parameters as the SCFG, (it is unfair to compare a five 
non-terminal SCFG with a five-state HMM, since a five non-terminal SCFG uses more 
parameters to express its grammar). Generally, an N-non-terminal, M-terminal SCFG 
uses NS + NM parameters and a K-state, M-terminal HMM uses K2 + (M+ 2)K para- 
meters (including transition probabilities to and from confluent states). Therefore, the 
following condition should hold for comparable models: 

K2+(M+2)KxN3+ NM. (27) 

The source grammar used to generate the data for this experiment is shown in Fig. 4. It is 
a five non-terminal, two terminal SCFG with eight non-zero parameters. We used the 

Source SCFG 

S+A C (0.3) A-a (1.0) 
B D (0.3) B+b (1.0) 
A A (0.2) C-iSA (1.0) 

B B (0.2) D-rS B (1.0) 

Estimated SCFG 

S+A B (0.47) 

D C (0.45) 

B B (O-02) 

D D (0.07) 

A-B S (0.60) 
b (0-W 

B-b (1.00) 

C+S D (0.66) 
a (0.34) 

D+a (1W 

Estimated regular grammar 

S-taA,lbA, 
A,+aA,lbA,laA,lalb A,+aA,lbA,, 
A,-+aA,lbA,laA,iaA,laA,laA, A,+aA,lbA,, 
A,-+aA,lbA, A,+aA,lbA,laA,laA, 

A,+aA,\bA,laA, A,-A,IbA,, 

A,+aA,laA,lbA,,Ib A,,-aA,lbA,lb 

Figure 4. Grammar estimated for the language of two-symbol palindromes. 
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same number of non-terminals and terminals for the estimated SCFG but allowed all 

parameters to be non-zero (135 in total). Using (27) this fixed the estimated HMM to 
have 10 states. The final SCFG obtained using the Inside-Outside algorithm and the 

regular grammar derived from the estimated HMM are also shown in Fig. 4. Inspecting 
these grammars, it can be seen that although the estimated SCFG is not identical to the 
source it is nevertheless equivalent in the sense that it generates palindromes and only 

palindromes. 
Table I shows the entropies of the languages associated with both the SCFG and 

HMM estimated using (24) and (26), also shown in the table is the entropy of the source 
which for this simple grammar can be calculated exactly. From the table, it is clear that 
the entropy of the language associated with the estimated SCFG is much closer to the 
source than that of the HMM. Thus, for this example at least, the SCFG is able to model 
the source more efficiently than the comparable HMM even though the source data is 

finite. 
Some additional simple tests confirmed this further. Firstly, using a set of 100 distinct 

sentences half of which were palindromes, the SCFG classified all 100 sentences correctly 
whereas the HMM classified 53 correctly. Secondly, using both the estimated grammars 
as generators, all sentences generated by the SCFG were palindromes whereas only 56% 

of those generated by the HMM were palindromes. 

TABLE I. Entropies of source and estimated Ianguages 

H(L) K(L)* Y(L)* 

Source 
Estimated SCFG 
Estimated HMM 

0.985 -- 
0.995 0.989 

- 1.196 I.402 

* Estimated from 1000 generated sentences. 

4. Pre-training 

As with standard HMM re-estimation, there is no guarantee that the Inside-Outside 
algorithm will converge towards a global optimum. Furthermore, as noted in the 
introduction, it is an 0(n3) algorithm. Hence, it is vital to start off the algorithm with 
good initial estimates. 

In this section, a pre-training algorithm will be described which has proved effective in 
both reducing the number of re-estimation cycles required and facilitating the generation 
of a good final model. 

The key idea is that instead of starting with random A and B matrices, we first use the 
Baum-Welch algorithm to obtain a set of regular grammar rules, and use these (with 
some modifications to be explained later) as a starting point for the Inside-Outside 
algorithm. 

Suppose for a given data set, we train a HMM, with N states, and an explicit starting 
state S and a final state E (note that in order to describe a HMM in terms of regular 
grammar rules, we need two confluent states 5’ and E, otherwise we will not obtain 
strings containing only terminal symbols). The transition matrix A, the emission matrix 
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B, the initial state probability vector x and the final state probability vector F can be used 
to define a Chomsky Normal Form grammar as follows: 

(a) For each b,, define Yj+k with probability bjk. 

(b) For each a#, define Xi+ YiXj with probability aij 

(c) For each nj, define S-+Xj with probability n,. 

(d) For each Fi, define Xi-+ Y, with probability Fi. 

Rules of type (aHd) allow a HMM to be converted into a stochastic grammar. 
However, note that the rules resulting from (a) and (b) are in Chomsky Normal Form 
whereas those resulting from (c) and (d) are not. Since, the Inside4utside algorithm 
requires us to have the rules in Chomsky Normal Form, some further conversion is 
necessary: 

(e) For each rule of the form: 

S+X, with probability rcj 

locate all rules with F! on their left and then substitute the right-hand side of each 
rule for X, in the origmal rule, i.e. if 

Xj-t YjA’, with probability aj, 

then create a new rule: 

S-+ YT, with probability rr,uj,. 

(f) For each rule of the form: 

Xi+ q with probability Fi 

substitute all right-hand side of rules with Y, on their left-hand side, for Y,, i.e. if 

q-+k with probability b, 

then create a new rule 

X,+k with probability bipi. 

(e) and (f) ensure that all the rules are in the required Chomsky Normal Form. 
The above algorithm allows a HMM to be transformed into an equivalent Chomsky 

Normal Form grammar. If this grammar was used directly as the starting point for the 
InsidAutside algorithm, all of the zero parameters would remain zero thus forcing the 
grammar to remain regular. To prevent this, all parameters of the initial grammar are 
raised above some floor value and then the matrices are renormalized. This allows the re- 
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estimation procedure to transform the grammar into a full SCFG. The floor value we 
use is proportional to the number of non-zero parameters (typically around 0.01). To 
illustrate the operation of this pre-training algorithm, Fig. 5 shows log P plotted against 
iteration number for the palindrome estimation problem described earlier. Curves are 
shown for both random initialization and the HMM-based pre-training described 
above. The substantially more rapid convergence in the pre-trained case is evident. In 
this case, the reduction in total compute time achieved by using the pre-training 
technique is approximately 40%. Similar savings have also been achieved across a range 
of other problems. 

As an aside, it is interesting to note the shape of the curves in Fig. 5 which appear to be 
typical in that there seem to be two distinct learning phases. We have no explanation for 
this at present but its occurrence means that care needs to be taken to ensure proper 
convergence of the algorithm. 

The SCFG estimated for the palindrome problem using pre-training is shown in Fig. 6 
and its entropy is compared with the randomly initialized case in Table II. As can be 
seen, the estimated grammar using pre-training is again equivalent to the source 
grammar and there is no statistically significant difference between its entropy and that 
obtained earlier. Thus, the entropy measurements suggests that the pre-trained SCFG is 
as efficient as the randomly initialized SCFG. In fact, more direct comparisons of the 
two grammars suggests that the pre-trained SCFG is actually a closer estimate to the 
source. For example, Table III shows the probabilities of generating sentences of length 
4 or less. For this case, the pre-trained grammar is clearly closer to the source grammar. 

-aoc 

-100 - 

% 
.Z .Z 13 : : -120- ,..’ ,...... ‘. 
: ,:. : 

0” : 

-I 

-160 I 1 I I I 1 
0 20 40 60 a0 

lteratlons 

Figure 5. Learning rate for pre-trained (. .) and random ( ---_) SCFGs. 

s-, A c (0.35) 

B D (0.41) 

cc (0.17) 
D D (0.07) 

A+CS (1.00) 

B-D S (0.72) 
8-b (0.28) 
C-a (1.00) 
D-b ( 1 .OO) 

Figure 6. SCFG obtained with pre-training. 



48 K. Lari and S. 3. Young 

TABLE II. Effects on entropy due to pre-training 

H(L) H,(L)* H,(L)* 

Source 0.985 
SCFG (random) 0.995 0.989 
SCFG (pre-trained) 0.98 1 0.994 

* Estimated from 1000 generated sentences. 

TABLE III. Comparison of sentence length 
distributions 

Source 0.64 
Pre-trained 0.59 
Random 0.46 

5. The use of grammar minimization during estimation 

The palindrome example of Sections 3 and 4 was drawn from the alphabet {a,b} which is 
the simplest of its kind. More complex palindromes can be formed if the alphabet set is 
expanded to contain more terminal symbols. However, increasing the number of 
terminals requires an increase in the number of non-terminals, which in turn leads to a 
more complex grammar. In order to formulate grammar rules for the language of M- 
symbol palindromes a minimum of 2M+ 1 non-terminal symbols is required; one start- 
symbol, M non-terminals to describe the hidden process and M non-terminals to 
describe the observable process. The grammar shown in Fig. 7 generates palindromes 
drawn from the alphabet {a&}. Where S is the start-symbol, B,D,F describe the hidden 
process and A,C,E describe the observable process. 

A stochastic version of the above grammar was used to generate 400 example 
sentences of the language. These sentences acted as training data for the Inside-Outside 
algorithm, which produced the rules shown in Fig. 8. In this case, the Inside-Outside 
algorithm failed to produce a satisfactory set of grammar rules. Only the terminal “a” is 
generated in the desired self-embedded fashion, “6” and “c” are generated sequentially. 
The symbol “a” acts as a dominant symbol and freezes some of the non-terminals. For 
example, non-terminals C, D and F play the same role; only one of them is required for 
the generation of “a”s. A similar experiment was performed whereby the number of 
non-terminals was increased from 7 to 12. The computed grammar rules were slightly 
better but still not very satisfactory, symbols “a” and “6” were now generated in a self- 
embedded fashion and only “c” was generated sequentially. Increasing the number of 
non-terminals to 18 finally resulted in a set of production rules, which correctly modelled 
the language of palindromes and generated only sentences of that language. 

We have found that the above experimental results are typical over a wide range of 
problems. In order to ensure that sufficient non-terminals are available to model all of 
the hidden processes within the source, it is necessary to have many more non-terminals 
than are theoretically necessary. Given the O(n3) complexity of the algorithm, this aspect 
of the Inside-Outside algorithm renders it computationally intractable for realistic 
problems. 
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S-A B B-+SA 
CD D-t.17 C 
EF F+S E 
AA A-a 
cc C-b 
EE E+c 

Figure 7. Source grammar for three-symbol palindromes. 

S+A A 

CB 
cc 
DB 
DC 
DD 
EE 
FB 

A-+SA 

B-S C 
SD 
SF 
a 

C-to 
D-a 
E+S E 

h 
F+a 

Figure 8. Grammar inferred for the three-symbol palindrome. 

From the above, it is clear that the Inside-Outside training algorithm would be 
improved if redundant and/or useless symbols could be detected and eliminated. This 
would in effect involve attempting to minimize the grammar. Although the lack of any 
formal procedure for testing for the equivalence of two context-free grammars prevents 
an exact minimization technique to be defined, the use of approximate techniques may 
nevertheless be of value. We have therefore experimented with extended versions of the 
Inside-Outside algorithm in which the conventional re-estimation is interleaved with an 
approximate Grammar Minimization (GM) procedure. 

A GM procedure may be incorporated into the Inside-Outside algorithm in two ways. 
Firstly, the Inside-Outside could start with some fixed maximum number of non- 
terminals, and a grammar minimization procedure applied periodically to detect and 
eliminate useless and redundant symbols (e.g. for the above example the algorithm would 
start with 20 non-terminals and end up with 7). However, this approach would be 
computationally intractable if the grammar used many non-terminals. A second and 
more practical approach would be to start with the desired number of non-terminals (i.e. 
7 in the example above) and apply a grammar minimization procedure periodically (or 
when the change in log-probability falls below a certain threshold) to detect and 
reallocate redundant symbols. This approach is described further in Section 5.2. Before 
that however, it is worth noting that for simple grammars like palindromes, the grammar 
minimization process may be avoided by introducing suitable constraints. We will 
discuss this first before dealing with the more general case. 

5.1 Constraining the Inside-Outside algorithm 

In the experiments described so far, the Inside-Outside algorithm was given complete 
freedom in formulating the grammar rules, and it was this freedom that encouraged 
“greedy symbols” to take too many non-terminals. One method of decreasing this 
freedom is to introduce constraints (which is so commonly done with HMM’s, e.g. the 
use of left to right models). A typical constraint might be to specifically allocate a non- 
terminal to each terminal symbol and then force the remaining non-terminals to model 
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the hidden branching process. This may be done by setting certain parameters to zero. 
For example, allocating the non-terminal A to terminal symbol a in the palindrome case 
is done by assigning a probability of 1.0 to that rule (therefore 0.0 to the remaining 
derivation parameters for A). Figure 9 shows such a constraint along with the resulting 
grammar inferred by the Inside-Outside algorithm for the language of three symbol 
palindromes where it can be seen that the required embedding has been achieved now for 
all three terminal symbols without having a large excess of non-terminals. This type of 
constraint appears to work well for simple languages, but it is clearly not suitable for 
realistic problems that use many terminals. For example, recognizing speech encoded by 
a 64-codeword Vector Quantizer requires 64 non-terminals dedicated entirely to 
generating the terminal symbols. With regard to the complexity of the algorithm, this 
type of constraint would be completely infeasible for speech. The next section therefore 
describes an approach based on grammar minimization which is practical for larger scale 
problems. 

(4 S+alblc (0.0) 

A-ta (1.0) 
B-+b (1.0) 
c+c (1.0) 
D-ralblc (0.0) 
E+alblc (0.0) 
F-+alblc (0.0) 

(b) S+A A 
BE 
CC 
DA 
EB 
FC 

A-a 
B-ib 
c-c 
D+A S 
E-rB S 
F-+C S 

Figure 9. (a) Constraining the algorithm; (b) grammar obtained with 
constraint. 

5.2 A Grammar Minimization algorithm 

This section outlines how we have incorporated a grammar minimization process into 
the Inside-Outside algorithm. The main aim of this extension is to detect and reallocate 
redundant non-terminals which are dominated the “greedy” symbols, that is, the 
symbols which have an excessive number of parent non-terminals. We have developed 
the following algorithm to perform this task: 

1. Locate all redundant non-terminal symbols. This is done in a bottom-up fashion by 
first examining the terminal symbols that are generated by more than one non-terminal, 
and then recursively searching backwards through the possible derivation sequences 
recording all rules which are redundant. The redundant non-terminals corresponding to 
a particular greedy terminal are then replaced by a single non-terminal throughout the 
grammar thereby transforming the redundant grammar rules into several occurrences of 
the same rule. These are then collapsed into a single rule by adding their rule 
probabilities. This step results in the availability of one or morefree non-terminals which 
were previously dominated by greedy symbols. 
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2. Locate non-terminals (other than 5’) that successfully generate parts of a sentence. 
These are assumed to be the remaining non-terminals involved in the generation of 
greedy symbols since we know that the hidden processes relating to these symbols have 
been more than adequately covered by non-terminals. The matrices of parameters 
associated with these non-terminals are then fixed i.e. they are excluded from the 
parameter updates defined by steps (3) and (4). 

3. Randomize the matrices corresponding to the remaining free non-terminals with 
the following constraints: 

(i) The probability of any free non-terminal generating a greedy symbol is set to 
zero and 

(ii) rows and columns corresponding to the non-terminals located by step (2) are 
also set to zero. 

These conditions reallocate the free non-terminals to the stochastic processes not 

involved in the generation of the greedy symbols. 
4. Randomize those rows and columns of the remaining non-terminals (which 

describe the under-represented stochastic processes) corresponding to the free non- 
terminals. 

To illustrate the effects of the above GM process, consider the grammar inferred by 
the Inside-Outside algorithm for the language of three-symbol palindromes (see Fig. 8). 
After applying step (l), non-terminals D and Fare set “free” and the grammar is reduced 
to that of Fig. 10. At the second step of GM non-terminals B and C are fixed since they 
are both involved in the generation of greedy symbol a. Steps (3) and (4) randomize parts 
of the matrices corresponding to non-terminals S, A, D, E and F, such that D and Fare 
re-allocated to S, A and E for the generation of the non-greedy symbols b and c. 

S-+A A C-m 

CB D+??? 
cc E-SE 

EE b 

A+SA F-r ?‘?? 

c 
B-r,!? C 

a 

Figure IO. Elimination of D’s and F’s 

S-A A 
CB 
cc 
DE 
EE 
FE 

A-+S A 

C-+a 
D+E S 
E+b 
F-ES 

c 

B-+S C 

Figure 11. Grammar for three-symbol palindromes after the first application of 
the grammar minimization algorithm. 
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S-A A B-SC 
CB a 
CC C+a 
DE D-ES 
EE E+b 
FA F-A S 

A-+C C 

Figure 12. Grammar for three-symbol palindromes after two applications of 
the grammar minimization algorithm. 

After 34 iterations the Inside-Outside algorithm converged on the new set of rules 
shown in Fig. 11. By examining the grammar of Fig. 11 it is clear that non-terminals D 
and F are now doing the same job. However, the grammar has improved since non- 
terminals D (or F) and E together now generate the b’s in the desired self-embedding 
fashion. The grammar minimization algorithm was applied again by replacing all F’s by 
D’s and keeping the parameters associated with D and E (as well as B and C) fixed. The 
non-terminal F was then reallocated to S and E to cover the generation of c’s. 

After another 22 iterations the Insidtiutside algorithm finally produced the “cor- 
rect” grammar as shown in Fig. 12. 

So far, our testing of the above GM procedure has been limited to “toy” examples. 
Although the rules we use for identifying “useful” and “useless” symbols are currently 
somewhat “ad hoc”, our result clearly show that it is both possible and profitable to 
attempt to redistribute the function of non-terminals during the re-estimation process. 
Indeed, for realistic tasks, a procedure such as this appears to be mandatory. 

6. Implementation 

Implementation of the Inside-Outside algorithm on a conventional serial computer is 
practical only if the number of non-terminals is small (less than eight or SO on a 
MicroVAX II workstation). As noted earlier, the Inside-Outside algorithm is O(n3) 
whereas the Baum-Welch algorithm is O(n’). The graph below (Fig. 13) shows how the 
time taken per iteration varies with the number of non-terminals in (arbitrary) 
MicroVAX iI units. 

I- I I 1 I I 

0 100 200 I! 

s/lteratlon 

10 

Figure 13. The O(n’) complexity of the Insidautside algorithm. 
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One can see that when a large number of non-terminals is used, we have an n3 
relationship, but for a small number of non-terminals it approaches n2 since the 

computation overhead tends to dominate for small n. 
Although the Inside-Outside algorithm is computationally rather too complex for a 

conventional serial-computer, it is fortunately suitable for parallel implementation. 
Since training time is proportional to the number of data strings in the training set, it is 
simple to split the problem into smaller sub-problems by partitioning the training data. 
We have implemented the Inside-Outside algorithm on the ParSiFal (Knowles, 1986) 

transputer array which consists of a reconfigurable array of 64 transputers linked in a 
serial fashion as shown in Fig. 14. 

The array is attached to a SUN host computer via a control board, which itself is a 
transputer. The training data is split into 64 subsets and each transputer works 
independently on its own data. All 64 transputers send their contributions to the control 
transputer which computes the updated parameter set and transmits it down the chain to 
all the other transputers. This method of implementation is 100 times faster than an 
optimized C (serial) version running on a MicroVAX II workstation. Using the 
transputer array, we are able to tackle problems with around 2@-30 non-terminals and 
around 6&100 terminals. All of our algorithms are written in C and are configured to 
run both on a conventional workstation and the parallel transputer array. So far, using 
double length floating point arithmetic, we have not encountered underflow problems. If 
such problems do occur, we will switch to the logarithmic representation developed by 
Kingsbury & Rayner (1971) rather than attempt explicit scaling. 

SUN 

[-fi 

~~--i----H--q . ..+--q 
Figure 14. The ParSiFal transputer array. 

7. Conclusions 

This paper has reviewed the Inside-Outside algorithm and described various problems 
that arise in its practical application. As with all iterative procedures, it is highly 
desirable to start the Inside-Outside algorithm with a good initial estimate. We have 
shown that it is possible to derive such an estimate by using standard HMM estimation 
in a “pre-training” phase. Not only does this seem to lead to good final solutions, it also 
typically reduces the number of iterations needed by half. We have also drawn attention 
to the need for controlling the way non-terminal symbols are allocated to the underlying 
hidden process during re-estimation. We have found that typically a three-fold excess of 
non-terminals is needed to ensure an adequate distribution of non-terminals to each of 
the hidden processes and that given the 0(n3) complexity of the algorithm, this is 
potentially crippling. Fortunately, however, we have discovered that this problem can be 
avoided by interleaving the Inside-Outside re-estimation with a Grammar Minimization 
procedure which reallocates useless and/or redundant symbols to under-represented 
stochastic processes. 
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So far the bulk of our work on the Inside4utside algorithm has been restricted to 
“toy” problems, that is, estimating models from data generated from a known source. 
Our real interest, however, is in modelling speech data at the subword level. Whilst it is 
not yet. known whether SCFG’s can in practice provide better subword models than 
HMM’s, we have shown in this paper, via an entropy argument, that where branching 
processes do exist in data, SCFG’s trained by the Inside-Outside algorithm are superior. 
We are therefore currently building SCFG models trained from real speech data to 
pursue this further. 
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Appendix: algorithmic complexity of the Inside-Outside algorithm 

The execution time T(n) of a program as a function of input size n is said to be O(nk) if 
there exist positive constants c and n, such that 

T(n) Q cn k, 

for n <n,. We now seek to show that for the Inside-Outside training algorithm 
T(n) = O(n’). In the following, the “rule of sums” will be used to calculate the running 
time of a sequence of program steps. Suppose T,(n) and T,(n) are the running times for 
two program fragments P, and Pz, and that T,(n) is O(f(n)) and T,(n) is O(g(n)). Then 
T,(n) + T*(n), the running time of P, followed by P2 is O(max (f(n),g(n))) (Aho, Hopcroft 
& Ullman, 1983). 

It is clear that the most complex part of the Inside-Outside algorithm is the 
computation of the inner (and the outer) probabilities. Therefore, by the “rule of sums” 
their running time will determine the complexity of the whole training algorithm. The 
inputs to the program are the number of non-terminal symbols N, the number of 
terminal symbols A4 and observation sequence(s) 0 with length T. Our aim is to 
determine the complexity of the algorithm in terms of the input parameters N and T, 

The inner probabilities defined by Equation (6) is computed in two steps. First, all 
substrings of length 2 are considered. This eliminates the inner summation of (6) and 
simplifies the equation as follows: 

N T-l 

e(s,t,i) = 1 C 1 a[i,~,k]b[j,O(s)]b[k,O(s + I)] 
i=l s=l j.k 

The product of the three probability terms is taken to be O(1). The inner summation 
with indicesj and k which range over all N non-terminals and therefore is executed N2 
times. The middle summation ranges over the length (2) of the observation and is 
executed T- 1 times. The outer summation repeats the whole process for every N 
making the running time 0(N3) in non-terminals and 0( 7) in length of the observation 
sequence. The analysis for all the remaining substrings (length greater than 2) is more 
complex. The inner probabilities are now computed from: 

T-l N T-l r-2 

e(s,t,i)= 1 c 1 c c a[i,j,k]e(s,r,j)e(r+ 1,&k), t=s+I. 
1=2 i= 1 s= I j.k r=s+ I 

The inner summation is executed t-s - 2 times or simply I- 2 times. By counting the 
number of times each loop (or summation) is executed the running time may be 
expressed as follows: 

T-I 

1 N3(T-I)(I-2)=N3 
i= 2 

( -~~l~Z+(T+i)=~21-2T(T-3) ) 
6 2 i=2 

=N3{-;T(T-l)(T-j)+l++T(T-l)(T+2)-(T+2)-2T(T-3)) 
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which is O(N3) and O(T)). By applying the “rule of sums”, the computation of inner 
probabiIities is cubic both in terms of number of non-terminals and in terms of length of 
the observation sequence. The running time of the outer probability computation can be 
computed in an identical fashion (and it leads to the same conclusion). 


