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Abstract

We present a generative model for thesupervised learning of dependency structures. We also describe thé-mul
plicative combination of this dependency model with a maddinear constituency. The product model outperforms
both components on their respective evaluation metrigg)gthe best published figures for unsupervised dependency
parsingand unsupervised constituency parsing. We also demonstrataite combined model works and is robust
cross-linguistically, being able to exploit either attarnt or distributional regularities that are salient in dia¢a.

1 Introduction

The task of statistically inducing hierarchical syntadicucture over unannotated sentences of natural lan-
guage has received a great deal of attention (Carroll andniztka 1992; Pereira and Schabes, 1992; Brill,
1993; Stolcke and Omohundro, 1994). Researchers haveredplus problem for a variety of reasons: to
argue empirically against the poverty of the stimulus (K;l2001), to use induction systems as a first stage
in constructing large treebanks (van Zaanen, 2000), tal thetter language models (Baker, 1979; Chen,
1995), and to examine cognitive issues in language lear@otan et al., 2003). An important distinction
should be drawn between work primarily interested in thekngemerative capacity of models, where mod-
eling hierarchical structure is only useful insofar as @&ds to improved models over observed structures
(Baker, 1979; Chen, 1995), and work interested in the stgmmgrative capacity of models, where the un-
observed structure itself is evaluated (van Zaanen, 2000k, 2001; Klein and Manning, 2002). This paper
falls into the latter category; we will be inducing modeldin§uistic constituency and dependency with the
goal of recovering linguistically plausible structures.e\Wiake no claims as to the cognitive plausibility
of the induction mechanisms we present here; however, tiieyaif these systems to recover substantial
linguistic patterns from surface yields alone does speakeacstrength of support for these patterns in the
data, and hence undermines arguments based on “the pofémgy stimulus” (Chomsky, 1965).

2 Unsupervised Dependency Parsing

Most recent progress in unsupervised parsing has come femot phrase-structure grammar based mod-
els (Clark, 2001; Klein and Manning, 2002), but there are peliing reasons to reconsider unsupervised
dependency parsing. First, most state-of-the-atipervised parsers make use of specific lexical information
in addition to word-class level information — perhaps lekinformation could be a useful source of infor-
mation for unsupervised methods. Second, a central migtivédr using tree structures in computational
linguistics is to enable the extraction of dependenciesietian-argument and modification structures — and
it might be more advantageous to induce such structurestigird hird, as we show below, for languages
such as Chinese, which have few function words, and for wttietdefinition of lexical categories is much
less clear, dependency structures may be easier to detect.

2.1 Representation and Evaluation

An example dependency representation of a short sentersteven in figure 1(a), where, following the
traditional dependency grammar notation, the regent ai béa dependency is marked with the tail of the
dependency arrow, and the dependent is marked with the laeamv(Melcuk, 1988). It will be important
in what follows to see that such a representation is isomor(in terms of strong generative capacity) to a
restricted form of phrase structure grammar, where thefserminals and nonterminals is identical, and
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Figure 2: Dependency graph with skeleton chosen, but wartipepulated.

every rule is of the form X—> X Y or X — Y X (Miller, 1999), giving the isomorphic representation of
figure 1(a) shown in figure 1(d) Depending on the model, part-of-speech categories maychelid in the
dependency representation, as shown here, or dependeraydse directly between words. Below, we will
assume an additonal reserved nontermir@bT, whose sole dependent is the head of the sentence. This
simplifies the notation, math, and the evaluation metric.

A dependency analysis will always consist of exactly as n@degendencies as there are words in the
sentence. For example, in the dependency structure of fidhjethe dependencies di@oor, fdl), (fell,
payralls), (fell, in), (in, September), (payrolls, Factory)}. The quality of a hypothesized dependency structure
can hence be evaluated by accuracy as compared to a gottstadependency structure, by reporting the
percentage of dependencies shared between the two analyses

In the next section, we discuss several models of depend&nagture, and throughout this paper we
report the accuracy of various methods at recovering galddard dependency parses from various corpora,
detailed here. WSJ is the entire Penn English Treebank W&idmpo WSJ10 is the subset of sentences
which contained 10 words or less after the removal of puricima CTB10 is the sentences of the same
length from the Penn Chinese treebank (v3). NEGRALLO is theesdor the German NEGRA corpus,
based on the supplied conversion of the NEGRA corpus intm Breebank format. In most of the present
experiments, the provided parts-of-speech were used asghealphabet, though we also present limited
experimentation with synthetic parts-of-speech.

It is important to note that the Penn treebanksndb include dependency annotations; however, the
automatic dependency rules from (Collins, 1999) are sefiiity accurate to be a good benchmark for unsu-
pervised systems for the time being (though see below fanfspéssues). Similar head-finding rules were
used for Chinese experiments. The NEGRA corpus, howeves dapply hand-annotated dependency
structures.

Where possible, we report an accuracy figure for both dideated undirected dependencies. Reporting
undirected numbers has two advantages: first, it facifitatamparison with earlier work, and, more im-
portantly, it allows one to partially obscure the effectsatiernate analyses, such as the systematic choice
between a modal and a main verb for the head of a sentencdh@r ease, the two verbs would be linked,
but the direction would vary).

2.2 Dependency Models

The dependency induction task has received relativelg ktttention; the best known work is Carroll and
Charniak (1992), Yuret (1998), and Paskin (2002). All syste¢hat we are aware of operate under the
assumption that the probability of a dependency structitka product of the scores of the dependencies
(attachments) in that structure. Dependencies are seerdesed (head, dependent) pairs of words, but
the score of a dependency can optionally condition on otharacteristics of the structure, most often the
direction of the dependency (whether the arrow points lefight).

Istrictly, such phrase structure trees are isomorphic nftatalependency structures, but to specific derivations asetstruc-
tures which specify orders of attachment among multipleeddpnts which share a common head.



Model | Dir.  Undir.
English (WSJ)

Paskin 01 39.7
RANDOM 41.7
Charniak and Carroll 92-inspired 447
ADJACENT 53.2
DMV 54.4
English (WSJ10)

RANDOM 30.1 456
ADJACENT 33.6 56.7
DMV 432 63.7
German (NEGRA10)

RANDOM 21.8 415
ADJACENT 326 51.2
DMV 36.3 55.8
Chinese (CTB10)

RANDOM 359 473
ADJACENT 30.2 473
DMV 425 542

Figure 3: Parsing performance (directed and undirecte@midgncy accuracy) of various dependency models on
various treebanks, along with baselines.
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Figure 4: Dependency configurations in a lexicalized tragright attachment, (b) left attachment, (c) right stop, (d
left stop.h anda are head and argument words, respectively, whije andk are positions between words.

Some notation before we present specific models: a dependds@ pair(h, a) of a head and argument,
which are words in a sentensein a corpusS. For uniformity of notation with section 4, words gare
specified as size-one spanssoffor example the first word would bgs,. A dependency structur® over
a sentence is a set of dependencies (arcs) which form a phayatic graph rooted at the special symbol
ROOT, and in which each word imappears as an argument exactly once. For a dependencyisticthere
is an associated graghwhich represents the number of words and arrows between thiénout specifying
the words themselves (see figure 2). A grdphand sentence together thus determine a dependency
structure. The dependency structure is the object gemelogtall of the models that follow; the steps in the
derivations vary from model to model.

Existing generative dependency models intended for umgigeel learning have chosen to first generate
a word-free graphG, then populate the sentenseconditioned onG. For instance, the model of Paskin
(2002), which is broadly similar to the semi-probabilistiodel in Yuret (1998), first chooses a gra@h
uniformly at random (such as figure 2), then fills in the wosldarting with a fixed root symbol (assumed to
be at the rightmost end), and working do@runtil an entire dependency structudeis filled in (figure 1a).
The corresponding probabilistic model is

P(D) = P(s,G)
= P(G)P(s|G)

= PG) ] PGasljs,dir).
(i,j,dir)eG

In Paskin (2002), the distribution(8) is fixed to be uniform, so the only model parameters are the con
ditional multinomial distributions @|h, dir) that encode which head words take which other words as
arguments. The parameters for left and right arguments imigdeshead are completely independent, while
the parameters for first and subsequent arguments in thediegogon are identified.

In those experiments, the model above was trained on over \80Ms of raw newswire, using EM
in an entirely unsupervised fashion, and at great compunalticost. However, as shown in figure 3, the



resulting parser predicted dependencies at below chanelg(leeasured by choosing a random dependency
structure). This below-random performance seems to beubedhe model links word pairs which have
high mutual information (such as occurrencesaigress andbill) regardless of whether they are plausibly
syntactically related. In practice, high mutual infornoatibetween words is often stronger between two
topically similar nouns than between, say, a prepositiahiemobject.

One might hope that the problem with this model is that thei@dexical items are too semantically
charged to represent workable units of syntactic structifi@ne were to apply the Paskin (2002) model to
dependency structures parameterized simply on the wasses, the result would be isomorphic to the “de-
pendency PCFG” models described in Carroll and Charnia@Q19n these models, Carroll and Charniak
considered PCFGs with precisely the productions (discliabeve) that make them isomorphic to depen-
dency grammars, with the terminal alphabet being simplyspafrspeech. Here, the rule probabilities are
equivalent to PY|X, right) and RY|X, left) respectivelyt. The actual experiments in Carroll and Charniak
(1992) do not report accuracies that we can compare to, bytstiggest that the learned grammars were of
extremely poor quality. With hindsight, however, the masuie in their experiments appears to be not their
model, but that they randomly initialized the productiotigehment) probabilities. As a result, their learned
grammars were of very poor quality and had high variance. édaw one nice property of their structural
constraint, which all dependency models share, is thatytimals in the grammar are not symmetric. Even
with a grammar in which the productions are initially unifgra symbol X can only possibly have non-zero
posterior likelihood over spans which contain a matchimmieal X. Therefore, one can start with uniform
rewrites and let the interaction between the data and theehstidicture break the initial symmetry. If one
recasts their experiments in this way, they achieve an acgwsf 44.7% on the Penn treebank, which is
higher than choosing a random dependency structure, bet livan simply linking all adjacent words into
a left-headed (and right-branching) structure (53.2%).

A huge limitation of both of the above models is that they areapable of encoding even first-order
valence facts. For example, the latter model learns thatswtuthe left of the verb (usually subjects) attach
to the verb. But then, givenOUN NOUN VERB sequence, both nouns will attach to the verb — there is no
way that the model can learn that verbs have exactly onecubjée now turn to an improved dependency
model that addresses this problem.

3 An Improved Dependency Model

The dependency models discussed above are distinct froamdepcy models used inside high-performance
supervised probabilistic parsers in several ways. Firsgupervised models, a head outward process is
modeled (Eisner, 1996; Collins, 1999). In such processsjdigenerate a sequence of arguments outward
to the left or right, conditioning on not only the identity thle head and direction of the attachment, but also
on some notion of distance or valence. Moreover, in a headawd model, it is natural to model stop steps,
where the final argument on each side of a head is always tlogabggmbolsTor Models like Paskin
(2002) avoid modelingToPby generating the graph skelet@first, uniformly at random, then populating
the words ofs conditioned onG. Previous work (Collins, 1999) has stressed the importafdecluding
termination probabilities, which allows the graph struetto be generated jointly with the terminal words,
precisely because it does allow the modeling of requirecdeents.

We propose a simple head-outward dependency model over elasdes which includes a model of
valence, which we calDMV (for dependency model with valence). We begin at th&ooT. In the standard
way, each head generates a series of $iIoDP arguments to one side, thersaop argument to that side,
then nonsToParguments to the other side, then a secendr.

For example, in the dependency structure in figure 1, we feserate a single child sfooT, herefdll.
Then we recurse to the subtree untidf. This subtree begins with generating the right argunientVe
then recurse to the subtree undefgeneratingSeptember to the right, a righsTop, and a leftstoP. Since
there are no more right arguments aftgrits right STOPis generated, and the process moves on to the left
arguments ofell.

In this process, there are two kinds of derivation eventsysghocal probability factors constitute the
model’'s parameters. First, there is the decision at anyt pdiether to terminate (generasgopP or not:

2There is another, subtle distinction: in the Paskin workaaonical ordering of multiple attachments was fixed, whilehie
Carroll and Charniak work all attachment orders are comeitlggiving a numerical bias towards structures where hiesd@smore
than one argument.



Psror(sTOR, dir, adj). This is a binary decision conditioned on three things: teadh, the direction
(generating to the left or right of the head), and the adjegdwhether or not an argument has been gen-
erated yet in the current direction, a binary variable). $tugpping decision is estimated directly, with no
smoothing. If a stop is generated, no more arguments areajeddor the current head to the current side. If
the current head’s argument generation does not stop,ematiument is chosen using Bos«alh, dir).
Here, the argument is picked conditionally on the identftthe head (which, recall, is a word class) and the
direction. This term, also, is not smoothed in any way. Adray has no effect on the identity of the argu-
ment, only on the likelihood of termination. After an arguthé generated, its subtree in the dependency
structure is recursively generated.

Formally, for a dependency structube let each wordh have left dependentepsp (h, I) and right depen-
dentsdepsp (h, r). The following recursion defines the probability of the fra@nt D (h) of the dependency

P(D(h)) = ]_[ ]_[ Psros(—sTOR, dir, adj)

dire{l,r} acdepsp(h,dir)
tree rooted ah: Penoosd@lh, dir)P(D (@)

Psror(STORN, dir, adj)

One can view a structure generated by this derivationalga®as a “lexicalized” tree composed of the
local binary and unary context-free configurations showfigire 43 Each configuration equivalently repre-
sents either a head-outward derivation step or a contegtrwrite rule. There are four such configurations.
Figure 4(a) shows a hedrdtaking a right argumerd. The tree headed by containsh itself, possibly some
right arguments oh, but no left arguments df (they attach after all the right arguments). The tree headed
by a containsa itself, along with all of its left and right children. Figurgb) shows a heall taking a left
argumenta — the tree headed by must have already generated its right stop to do so. Figueat(d
figure 4(d) show theealing operations, whereTopderivation steps are generated. The left and right marks
on node labels represent left and rigitors that have been generated.

The basic inside-outside algorithm (Baker, 1979) can bd tmere-estimation. For each sentersce S,
it gives uscs(X : 1, j), the expected fraction of parsesWwith a node labelec extending from position
i to positionj. The model can be re-estimated from these counts. For egamapie-estimate an entry of
Psros(STOP, left, non-adj) according to a current modél, we calculate two quantities.The first is the
(expected) number of trees headedHjywhose rightmost edgeis strictly left of h. The second is the
number of trees headed If] with rightmost edge strictly left of h. The ratio is the MLE of that local
probability factor:

Psros(STORN, l€ft, non-adj) =

> ses 2i<loohy 2k C(NT 11, K)
> ses 2i<locthy 2k ST 11, k)

This can be intuitively thought of as the relative numberiofets a tree headed lbyhad already taken at
least one argument to the left, had an opportunity to takéhandout didn’t®

Initialization is important to the success of any local sharocedure. We chose to initialize EM not with
an initial model, but with an initial guess at posterior digitions over dependency structures (completions).
For the first-round, we constructed a somewhat ad-hoc “haichcompletion where all nomooT words
took the same number of arguments, and each took other werdggaments in inverse proportion to (a
constant plus) the distance between them. AdeT always had a single argument and took each word with
equal probability. This structure had two advantages:, fiveen testing multiple models, it is easier to start

3)tis lexicalized in the sense that the labels in the tree arved from terminal symbols, but in our experiments thenieals
were word classes, not individual lexical items.

4Note that the asymmetry of the attachment rules enforcesighebefore-left attachment convention. This is harrslasd
arbitrary as far as dependency evaluations go, but imposedar-like structure on the constituency assertions rbgdiis model.
This bias/constraint is dealt with in section 5.

5To simplify notation, we assume each wdndoccurs at most one time in a given sentence, between indegés) and
loc(h) + 1).

6As a final note, in addition to enforcing the right-argumérgt convention, we constraineRlooT to have at most a single
dependent, by a similar device.
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Figure 5: The CCM model’s generative process for the seetenfigure 1. (a) A binary tree-equivalent bracketing is
chosen at random. (lach span generates its yield and context (empty spans not shexgi). iDerivations which are
not coherent are given mass zero.

them all off in a common way by beginning with an M-step, argtand, it allowed us to point the model in
the vague general direction of what linguistic dependemmctures should look like.

On the WSJ10 corpus, the DMV model recovers a substantieidraof the broad dependency trends:
43.2% of guessed directed dependencies were correct (8¥8ng direction). To our knowledge, this
is the first published result to break the adjacent-word ibgair(at 33.6% for this corpus). Verbs are the
sentence heads, prepositions take following noun phrasagyaments, adverbs attach to verbs, and so on.
The most common source of discrepancy between the testdiepeias and the model’s guesses is a result
of the model systematically choosing determiners as thdshefnoun phrases, while the test trees have the
rightmost noun as the head. The model’s choice is suppostedgood deal of linguistic research (Abney,
1987), and is sufficiently systematic that we also reporstt@es where thep headship rule is changed to
percolate determiners when present. On this adjustedantitei score jumps hugely to 55.7% directed (and
67.9% undirected).

This model also works on German and Chinese at above-badelinls (55.8% and 54.2% undirected,
respectively), with no modifications whatsoever. In Germhba largest source of errors is also the system-
atic postulation of determiner-headed noun-phrases. Ingsh, the primary mismatch is that subjects are
considered to be the heads of sentences rather than verbs.

This dependency induction model is reasonably succeddfwkever, our intuition is still that the model
can be improved by paying more attention to syntactic cuesicy. To this end, after briefly recapping
the model of Klein and Manning (2002), we present a combinediehthat exploits dependencies and
constituencies. As we will see, this combined model findsembrdependencies more successfully than the
model above, and finds constituents more successfully tteembdel of Klein and Manning (2002).

4 Distributional Constituency Induction

In linear distributional clustering, items (e.g., wordsvaord sequences) are represented by characteristic
distributions over their linear contexts (e.g., multinaiminodels over the preceding and following words,
see figure 5). These context distributions are then clusfarsome way, often using standard data clustering
methods. In the most common case, the items are words, andsesedistributions over adjacent words
to induce word classes. Previous work has shown that evemgthie simple representation allows the
induction of quite high quality word classes, largely cepending to traditional parts of speech (Finch,
1993; Schiitze, 1995; Clark, 2000). A typical pattern wdédthatstocks andtreasuries both frequently
occur before the wordell androse, and might therefore be put into the same class.

Clark (2001) and Klein and Manning (2002) show that this apph can be successfully used for discov-
ering syntactic constituents as well. However, as one nmeghect, it is easier to cluster word sequences
(or word class sequences) than to tell how to put them togattetrees. In particular, if one is given all
contiguous subsequencesifspans) from a corpus of sentences, most natural clusters will eaptasent
valid constituents (to the extent that constituency of asitumted sequence is even a well-formed notion).
For example, it is easy enough to discover thatr N andDET ADJ N are similar and that PREP DET
andv PREP DET ADJare similar, but it is much less clear how to discover thatfurener pair are gen-
erally constituents while the latter pair are generally. nlot Klein and Manning (2002), we proposed a
congtituent-context model (CCM) which solves this problem by building constituencycid®mns directly
into the distributional model, by earmarking a single aust for non-constituents. During the calculation
of cluster assignments, only a non-crossing subset of therebd word sequences can be assigned to other,
constituent clusters. This integrated approach is engtlyisuccessful.



The CCM works as follows. Sentences are given as sequeraéegord classes (parts-of-speech or other-
wise). One imagines each sentence as a list oftr®) index pairs(i, j), each followed by the correspond-
ing subspans; and linear context_1s ~ js;j;1 (see figure 5). The model generates all constituent-context
pairs, span by span.

The first stage is to choosebaacketing B for the sentence, which is a maximal non-crossing subset of
the spans (equivalent to a binary tree). In the basic mod8l) B uniform over binary trees. Then, for each
(i, ]), the subspan and context pais;( i—1S ~ jSj+1) iS generated via a class-conditional independence
model:

P(s, B) = P(B) l_[ PGsjlbij)PG-1S ~ jSj+1lbij)
(i,i)
That is, all spans guess their sequences and contexts giliea oonstituency decision.”

This is a model Bs, B) over hidden bracketings and observed sentences, and tirsated via EM to
maximize the sentence likelihoodsgslP over the training corpus. Figure 6 shows the accuracy of BMC
model not only on English but for the Chinese and German cargiscussed aboeResults are reported
at convergence; for the English casej$-monotonic during training, while for the others, theraisearlier
peak.

Also shown is an upper bound (the target trees are not alhperad so any all-binary system will over-
propose constituents). Klein and Manning (2002) gives amatjve humbers showing that the basic CCM
outperforms other recent systems on the ATIS corpus (whighynother constituency induction systems
have reported on). While absolute numbers are hard to cavguaoss corpora, all the systems compared
to in Klein and Manning (2002) parsed below a right-branghliraseline, while the CCM is substantially
above it.

5 A Combined Model

The two models described above have some common ground.cBothe seen as models over lexicalized
trees composed of the configurations in figure 4. For the DMig, already a model over these structures.
At the “attachment” rewrite for the CCM in (a/b), we assige tjuantity:

PG scltrue)P(i_1S ~ kSkr1ltrue)
PGisfalse)P(i_1S ~ kSc+1lfalse)

which is the odds ratio of generating the subsequence andxtdar span(i, k) as a constituent as opposed
to a non-constituent. If we multiply all trees’ attachmeoores by

[1,, PsilfalsePGas ~ jsjalfalse)

the denominators of the odds ratios cancel, and we are ldftemich tree being assigned the probability it
would have received under the CCM.

In this way, both models can be seen as generating eithetitcemey or dependency structures. Of
course, the CCM will generate fairly random dependencyctiras (constrained only by bracketings). Get-
ting constituency structures from the DMV is also probldmabecause the choice of which side to first
attach arguments on has ramifications on constituency +aeox-bar-like structures — even though it is
an arbitrary convention as far as dependency evaluatiansarcerned. For example, if we attach right
arguments first, then a verb with a left subject and a righgcthwill attach the object first, giving traditional
VPs, while the other attachment order gives subject-veshgg. To avoid this bias, we alter the DMV in the

’As is typical of distributional clustering, positions inetitorpus can get generated multiple times. Since deriatieed not
be consistent, the entire model is mass deficient when vieasedmodel over sentences.

8|n Klein and Manning (2002), we reported results using ueleth bracketing statistics which gave no credit for brazkétich
spanned the entire sentence (raising the scores) but raseraged over sentences (lowering the scores). The nuinberdiew
more closely to the standard methods used for evaluatingreispd parsers, by being micro-averaged and includingspsn
brackets. However, the scores are, overall, approximételgame.

9This scoring function as described is not a generative moet lexicalized trees, because it has no generation stepiel
nodes’ lexical heads are chosen. This can be corrected hipiyiuig in a “head choice” factor of A(k — j) at each final “sealing”
configuration (d). In practice, this correction factor wasrhful for the model combination, since it duplicated arsgte of the
dependency model, badly.



Model [ UP  UR UR | Dir Undir
English (WSJ10 — 7422 Sentences)
LBRANCH/RHEAD 256 32.6 287 33.6 56.7

RANDOM 31.0 394 347 30.1 45.6
RBRANCH/LHEAD 55,1 70.0 61.7 24.0 559
DMV 46.6 59.2 521 432 627
CCM 64.2 816 719 23.8 433

DMV +CCM (POY 693 880 776 | 475 645

DMV+CCM (DISTR.) | 65.2 82.8 72.9 423 604
UBOUND 78.8 100.0 88.1 100.0 100.0
German (NEGRA10 — 2175 Sentences)
LBRANCH/RHEAD 274 488 351 326 512

RANDOM 27.9 496 357 21.8 415
RBRANCH/LHEAD 33.8 60.1 433 21.0 499
DMV 384 695 495 40.0 5738
CCM 48.1 855 61.6 255 449
DMV +CCM 496 897 639 | 50.6 64.7
UBOUND 56.3 100.0 72.1 100.0 100.0

Chinese (CTB10 — 2437 Sentences)
LBRANCH/RHEAD 26.3 48.8 34.2 30.2 439

RANDOM 27.3 50.7 355 359 47.3
RBRANCH/LHEAD 29.0 539 378 142 415
DMV 359 66.7 46.7| 425 542
CCM 346 643 450 23.8 405
DMV +CCM 333 62.0 433 552 60.3

UBOUND 53.9 100.0 70.1 100.0 100.0

Figure 6: Parsing performance of the combined model on vattieebanks, along with baselines.

following ways. When using the dependency model alone, \egvadach word to have even probability for
either generation order (but in each actual head derivatioly one order occurs). When using the models
together, better performance was obtained by releasingrtbeside-attaching-first requirement entirely.

In figure 6, we give the behavior of the CCM constituency maie the DMV dependency model on
both constituency and dependency induction. Unsurptigitigeir strengths are complementary. The CCM
is better at recovering constituency, and the dependendghsbetter at recovering dependency structures.
It is reasonable to hope that a combination model might éxtib best of both. In the supervised parsing
domain, for example, scoring a lexicalized tree with thedpiai of a simple lexical dependency model and
a PCFG model can outperform each factor on its respectivamtktein and Manning, 2003).

In the combined model, we score each tree with the produchefptobabilities from the individual
models above. We use the inside-outside algorithm to sumaitMexicalized trees, similar to the situation
in section 3. The tree configurations are shown in figure 4.eBoh configuration, the relevant scores from
each model are multiplied together. For example, considerdi4(a). From the CCM we generatg as a
constituent and its corresponding context. From the dep@rydmodel, we pay the cost bftakinga as a
right argument (B.00s9, as well as the cost of not stoppings(B.). The other configurations are similar. We
then run the inside-outside algorithm over this product ehoErom the results, we can extract the statistics
needed to re-estimate both individual modéls.

The models in combination were intitialized in the same wawhen they were run individually. Suffi-
cient statistics were separately taken off these inditidoepletions. From then on, the resulting models
were used together during re-estimation.

Figure 6 summarizes the results. The combined model beat€@M on English £ 77.6 vs. 71.9.
The figure also shows the combination model’s score whemyuwsind classes which were induced entirely
automatically, using the simplest distributional clustgrmethod of Schiitze (1995). These classes show
some degradation, e.g. 72.9,Mut it is worth noting that these totally unsupervised narshare better
than the performance of the CCM model of Klein and Mannind@Qunning off of Penn treebank word
classes. Again, if we modify the gold standard so as to matermers the head ofps, then this model
with distributional tags scores 50.6% on directed and 6408%ndirected dependency accuracy.

On the German data, the combination again outperforms eatbrfalone, though while the combina-
tion was most helpful at boosting constituency quality foiglish, for German it provided a larger boost

10The product, like the CCM itself, is mass-deficient.



to the dependency structures. Finally, on the Chinese tt@a,ombination did substantially boost depen-
dency accuracy over either single factor, but actuallyeseff a small drop in constituenty.Overall, the
combination is able to combine the individual factors in Haative way.

6 Conclusion

We have presented a successful new dependency-based mothed finsupervised induction of syntactic
structure, which picks up the key ideas that have made depegdnodels successful in supervised statis-
tical parsing work. We proceeded to show that it works citiwggdistically. We then demonstrated how
this model could be combined with the previous best corestitinduction model to produce a combination
which, in general, substantially outperforms either iidliial model, on either metric. A key reason that
these models are capable of recovering structure moreatetuthan previous work is that they minimize
the amount of hidden structure that must be induced. Inquéati, neither model attempts to learn inter-
mediate, recursive categories with no direct connectimutéace statistics. Our results here are just on the
ungrounded induction of syntactic structure. Nonethelegsssee the investigation of what patterns can be
recovered from corpora as important, both from a computatiperspective and from a philosophical one.
It demonstrates that the broad constituent and dependénmiuse of a language can be recovered quite
successfully (individually or, more effectively, joinjifrom a very modest amount of training data.
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