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Abstract

There is precisely one complete language processing syistefate: the human brain.
Though there is debate on how much built-in bias human lesamrmeght have, we defi-
nitely acquire language in a primarily unsupervised fashi®n the other hand, compu-
tational approaches to language processing are almostséxaly supervised, relying on
hand-labeled corpora for training. This reliance is layghle to unsupervised approaches
having repeatedly exhibited discouraging performanc@alticular, the problem of learn-
ing syntax (grammar) from completely unannotated text basived a great deal of atten-
tion for well over a decade, with little in the way of positikesults. We argue that previous
methods for this task have generally underperformed becalithe representations they
used. Overly complex models are easily distracted by nowasyic correlations (such as
topical associations), while overly simple models areitch renough to capture important
first-order properties of language (such as directionaifyacency, and valence).

In this work, we describe several syntactic representataond associated probabilis-
tic models which are designed to capture the basic charattetural language syntax as
directly as possible. First, we examine a nested, distohat method which induces brack-
eted tree structures. Second, we examine a dependencywiddklinduces word-to-word
dependency structures. Finally, we demonstrate that ttvesenodels perform better in
combination than they do alone. With these representatiigh-quality analyses can be
learned from surprisingly little text, with no labeled exales, in several languages (we
show experiments with English, German, and Chinese). Guiteeshow above-baseline
performance in unsupervised parsing in each of these |gegua

Grammar induction methods are useful since parsed corg@tef@ only a small num-
ber of languages. More generally, most high-level NLP tasiésh as machine translation
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and question-answering, lack richly annotated corpor&imgaunsupervised methods ex-
tremely appealing even for common languages like Englishally, while the models in
this work are not intended to be cognitively plausible, ttegfectiveness can inform the
investigation of what biases are or are not needed in the hawguisition of language.
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Chapter 1

| ntroduction

1.1 TheProblem of Learning aLanguage

The problem of how a learner, be it human or machine, mightlguaacquiring a hu-
man language has received a great deal of attention overeties.y This inquiry raises
many questions, some regarding the human language acouigsibcess, some regarding
statistical machine learning approaches, and some shalating more to the structure
of the language being learned than the learner. While trapteh touches on a variety of
these questions, the bulk of this thesis focuses on the enggpd machine learning of a
language’s syntax from a corpus of observed sentences.

1.1.1 MachineLearning of Tree Structured Linguistic Syntax

This work investigates learners which induce hierarchsyadtactic structures from ob-
served yields alone, sometimes referred ttre@s induction For example, a learner might
observe the following corpus:

the cat stalked the mouse
the mouse quivered
the cat smiled

Given this data, the learner might conclude ttieg mouseas some kind of unit, since it
occurs frequently and in multiple contexts. Moreover, gaaher might posit thahe catis

1



2 CHAPTER 1. INTRODUCTION

somehow similar téthe mousgsince they are observed in similar contexts. This exansple i
extremely vague, and its input corpus is trivial. In lateaters, we will present concrete
systems which operate over substantial corpora.

Compared to the task facing a human child, this isolatedasylgarning task is eas-
ier in some ways but harder in others. On one hand, naturgubege is an extremely
complex phenomenon, and isolating the learning of syntax semplification. A com-
plete knowledge of language includes far more than thetglbidigroup words into nested
units. There are other components to syntax, such as sutbiworphology, agreement,
dislocation/non-locality effects, binding and quantifioa, exceptional constructions, and
many more. Moreover, there are crucial components to laggbayond syntax, particu-
larly semantics and discourse structure, but also (orijigrthonology. A tree induction
system is not forced to simultaneously learn all aspectamjuage. On the other hand,
the systems we investigate have far fewer cues to leveragealchild would. A child
faced with the utterances above would generally know somgtibout cats, mice, and
their interactions, while, to the syntax-only learner, dgare opaque symbols.

Despite being dissimilar to the human language acquisfirogess, the tree induction
task has received a great deal of attention in the naturglge processing and computa-
tional linguistics community (Carroll and Charniak 1992r&ra and Schabes 1992, Brill
1993, Stolcke and Omohundro 1994). Researchers havegdsisiolating it in several
ways. First, for researchers interested in arguing engliyi@gainst the poverty of the
stimulus, whatever syntactic structure can be learnedalatisn gives a bound on how
much structure can be learned by a more comprehensive te@lek 2001a). More-
over, to the extent that the syntactic component of natargjliage is truly modular (Fodor
1983, Jackendoff 1996), one might expect it to be learnabisalation (even if a human
learner would never have a reason to). More practically,pitoeessing task of parsing
sentences into trees is usually approached as a standtaklnby NLP researchers. To
the extent that one cares about this kind of syntactic pguessra delimited task, it is useful
to learn such structure as a delimited task. In additionnieg syntax without either pre-
supposing or jointly learning semantics may actually mdiestask easier, if less organic.
There is less to learn, which can lead to simpler, more toéetaachine learning models
(later chapters argue that this is a virtue).
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1.1.2 Inducing Treebanksand Parsers

There are practical reasons to build tree induction systentteir own sakes. In particu-

lar, one might reasonably be interested in the learnedattifself — a parser or grammar.
Nearly all natural language parsing is done using supahisaning methods, whereby
a large treebank of hand-parsed sentences is generalizesWtgsentences using statisti-
cal techniques (Charniak 1996). This approach has resulteidhly accurate parsers for

English newswire (Collins 1999, Charniak 2000) which aaented on the Penn (English)

Treebank (Marcus et al. 1993). Parsers trained on Englisiswige degrade substantially
when applied to new genres and domains, and fail entirelyaipplied to new languages.
Similar treebanks now exist for several other languageseach treebank requires many
person-years of work to construct, and most languages @euwtisuch a resource. Since
there are many languages, and many genres and domains eaittinanguage, unsuper-
vised parsing methods would represent a solution to a vatyesource constraint.

If unsupervised parsers equaled supervised ones in ageuhay would inherit all
the applications supervised parsers have. Even if unsiggenparsers exhibited more
modest performance, there are plenty of ways in which thasgier output could be useful.
Induction systems might be used as a first pass in annotatigg treebanks (van Zaanen
2000), or features extracted from unsupervised parseis d@ua “better than nothing”
stop-gap for systems such as named-entity detectors whaitincorporate parse features,
but do not require them to be perfect. Such systems will simpke less use of them if
they are less reliable.

1.1.3 Learnability and the Logical Problem of Language Acquisition

Linguists, philosophers, and psychologists have all aared thdogical problem of lan-
guage acquisitior{also referred to aPlato’s problem (Chomsky 1965, Baker and Mc-
Carthy 1981, Chomsky 1986, Pinker 1994, Pullum 1996). The# (distinct from em-
pirical) problem of language acquisition is that a child iseafinite number of utterances
from a target language. This finite experience is consistéht infinitely many possible
targets. Nonetheless, the child somehow manages to singtbeocorrect target language.
Of course, it is not true that every child learns their largpuperfectly, but the key issue is
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that they eventually settle on the correct generalizatairtbe evidence they hear, rather
than wildly incorrect generalizations which are equallpsistent with that evidence.

A version of this problem was formalized in Gold (1967). I fermulation, we are
given a target language drawn from a ser of possible languages. A learn@ris shown
a sequence of positive exampleg, s; € L —that is, it is shown grammatical utterances.
However, the learner is never given negative examples,takl that somes is ungram-
matical ¢ ¢ L). There is a guarantee about the order of presentation: eactl will
be presented at some pointThere are no other guarantees on the order or frequency of
examples.

The learneC’ maintains a hypothesis(C, [sy . . . s;]) € £ at all times. Gold’s criterion
of learning is the extremely strict notion @fentifiability in the limit A language family
L is identifiable in the limit if there is some learnér such that, for any. € £ and
any legal presentation of examplgs|, there is some point such that for allj > &,
L(C,[so...sk]) = L. In other words, for any target language and example seguenc
the learner’s hypothesis is eventually correct (whetherl#arner knows it or not). For
example, the familyC = {{a}, {a,b}} is learnable by the following algorithm: initially
posit{a}, and switch td{a, b} upon being presented withh@xample. The learner is either
correct from the start, or correct as soon aseaample occurs (which is guaranteed).

Gold’s famous results show that a wide variety of languagalfes are not learnable
in this strict sense. In particular, asyperfinitefamily, i.e., a family which contains all
the finite languages and at least one infinite language, ikeaotable. Since the family of
regular languages is superfinite, regular languages adgemtifiable in the limit. Therefore,
neither are context-free languages. This result has o#ten lbaken as a strong argument
against practical learnability of human language.

As stated here, Gold's formalization is open to a wide arrfdyasic objections. First,
as mentioned above, who knows whether all children in a Istgucommunity actually
do learn exactly the same language? All we really know isttheit languages are similar
enough to enable normal communication. Second, for fasdfgrobabilistic languages,

“Grammatical” is a loaded term, but is intended to captueeghrtially pre-theoretical distinction be-
tween utterances the learner should accept as well-fortrtbe @nd of a successful learning process.
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why not assume that the examples are sampled according targfet language’s distribu-
tion? Then, while a very large corpus won’t contain everytsece in the language, it can
be expected to contain the common ones. Indeed, while thiyfafircontext-free gram-
mars is unlearnable in the Gold sense, Horning (1969) shioatsatslightly softer form of
identification is possible for the family of probabilistiomtext-free grammars if these two
constraints are relaxed (and a strong assumption abous mer grammars is made).

Another objection one can raise with the Gold setup is themds of negative exam-
ples. Negative feedback might practically be very poweriabugh formal results such
as Angluin (1990) suggest that allowing negative feedbamsd’t completely solve the
problem. They consider the addition of equivalence oraclevhich allows the learner to
present a hypothesis and get a counterexample if that hggistis incorrect. Even with
such an oracle, the class of context-free grammars is notifiddle in polynomial time.
The issue of negative feedback is often raised in conjunetith child language acquisi-
tion, where a perennial debate rages as to whether childomive negative feedback, and
what use they make of it if they do (Brown and Hanlon 1970, Mart993). A strong
form of negative feedback would be explicit correction — vehtlhe child utters examples
from their hypothesized languadé and a parent maps those examples into related exam-
ples from the correct languade There is a large body of evidence that children either do
not receive explicit correction or do not make good use oftiewthey do (Hirsh-Pasek
et al. 1984, Demetras et al. 1986, Penner 1986). A weaker édmegative feedback is
where the child utters examples frabh and, if the example is not a well-formed element
of L (with the same meaning), the attempted communication isagessful. This kind of
feedback seems plausible, and even bears a resemblancgltormequivalence queries.

It also has the advantage that the notion of “related” thgdsnangrammatical queries to
grammatical ones, which would be a highly semantic and et process, need not be
specified.
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1.1.4 Nativism and the Poverty of the Stimulus

An issue that linguists, and others, have spent a great desthaygy arguing for (and
against) is Chomsky’s hypothesis of theverty of the stimulu&Chomsky 1965). The logi-
cal problem of language acquisition is, basically, the fgoithat children make judgments
about examples they haven't seen, based on examples tlgdtdiae. This necessitates a
process of generalization. Chomsky’'s argument goes aleggtlines: children learn sub-
tle facts about their language from data which (putativdtygs not contain evidence for or
against those facts. The problem of the poverty of the stiswtéfers to the lack of cru-
cial relevant data in the learner’s experience. Chomslofigti®n is to appeal to a richness
of constraint. He argues that because human languagesgirly bonstrained, the ac-
tual family of human languages is relatively small (perhlapsause of the bias in evolved
special-purpose hardware). Therefore small amounts ef sl#fice for a learner to sin-
gle out a target language. Down this road often lies stronigisaargumentation, but the
source of such constraints is really an orthogonal issue.

Chomsky also takes a strong position arguing that humanubgegis a symbolic phe-
nomenon, as opposed to a probabilistic one (Chomsky 196Em&ky 1986). That is, there
are, of course, trends where we actually say one thing maessroften than some other
thing, but these facts are epiphenomenal to a human'’s kdgwlef a language. This view-
point is fairly far removed from the viewpoint of this thesis which (excepting chapter 4)
the knowledge of syntax is encoded in the parameters ofuspeoobabilistic models. The
successes of these kinds of systems in recovering sulatamtiions of the broad structure
of a language do indicate that the probabilistic trends @aprbnounced, detectable, and
usefully exploited. However, such results only serve agré@atl evidence for or against
nativism and symbolic theories of language.

1.1.5 Strongvs. Weak Gener ative Capacity

A useful contrast in linguistic theory is the distinctiontlveen theweakandstrong gen-
erative capacityof a grammar (Miller 1999). The weak generative capacity gfaanmar
is the set of utterances it allows. The strong generativaagp on the other hand, is the
set of derivations it allows. Two grammars may have the sae@kwapacity — generate
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the same set of utterances — but have different strong dagsadror example, consider the
following two grammars:

S— NP VP S— VP NP
VP — V NP VP — NP VP
(@) (b)

From their start symbols, both grammars produce (only) the subject-verb-object se-
guencenP V NP, and therefore have the same weak generative capacity. ldoyggammar
(a) does so using a traditional verb-objgetstructure, while grammar (b) uses a subject-
verb group, so their strong capacities are different. Tee#ttent that we just want to predict
thatNP v NPis a valid English sequence whik® NP Vis not, either grammar suffices. If
we care about the tree structures, we may well prefer onergearaver the other; in this
case, a variety of linguistic evidence has led to the gemprederence of the left grammar
over the right one.

In a probabilistic context, the weak capacity (in the stsignbolic sense) of a grammar
is often uninteresting, since many probabilistic modetseat all terminal sequences with
some (possibly very low) probability. Models within the sanepresentational family will
also often accept all derivations, again with possibly shimg probabilities. In this case,
the straightforward softenings of the weak and strong aépaof a probabilistic model are
the densities that the model assigns to specific derivafgireng capacity), and utterances
(weak capacity).

One can have varying degrees of interest in the strong v vagaacities of a proba-
bilistic model. The weak capacity — density over utteraneesthe primary prediction of
interest in language modeling tasks, such as for noisy+elapeech or translation mod-
els (Chelba and Jelinek 1998, Charniak et al. 2003). Somé& worgrammar induction
has specifically aimed to learn good language models in #nses for example (Baker
1979, Chen 1995). Note that, to the extent that one is inestemnly in the weak capacity
of a grammar, there is no need to built tree-structured nsodel even to have any in-
duced hidden structure at all. One can simply build full\s@tyed models, such as n-gram
models. In this context, hidden structure, such as parss tve part-of-speech chains, is
only useful insofar as it enables a better model over therabdestructure. In particular,
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it is not necessary or important that the hidden structudeded correspond to linguistic
preconceptions.

In contrast, if one is primarily interested in the inducedistures themselves, such
as if one is inducing a tree model with the intention of usingduced trees to represent a
certain kind of syntactic structure for use in subsequemtgssing, then the strong capacity
becomes of primary interest. A minimal goal in this case & tihe hidden structures
postulated be consistent — for example, that learned tithe=s group the subject and verb
together, or group the verb and object together, so longeasttbsen analysis is consistent
from sentence to sentence. A more ambitious goal is to aithérecovery of linguistically
plausible analyses, in which case we have the added pregefenthe traditional verb-
object grouping. Of course, it is often far from clear whidlseveral competing analyses
is the linguistically correct one, but in many cases, sucitisthe verb-object grouping,
particular analyses are supported by the convergence aig\gwiety of evidence.

In this work, we are interested in inducing grammar modetstlieir strong capac-
ity. The quality of induced structures will thus be evalabby a mix of comparing how
closely they replicate linguist-annotated treebanks (@nassumption that such treebanks
are broadly correct) and error analysis of the discrepangieth to illustrate true errors
and to show acceptable behavior that deviates from the geedank).

It is important to note that there is at least one other goal@an have for a language
learning system: the cognitively plausible modeling of lunfanguage acquisition. This
is essentially an axis orthogonal to the strong/weak is$nearticular, if one wants to
mimic a human learner in a weak way, one can try to mimic theratices produced,
for example, hoping that the ability to produce various tartdions is manifested in the
same order as for a human learner. On the other hand, oneycanraproduce the tree
structures used by human learners, as well, though thisresga greater commitment
to the reality of tree-structure syntax than some psychsisgvould like. Solan et al.
(2003) is an example of a system which produces non-treetsted grammars, where
the goal is cognitive plausibility, the structures themeelare of interest, but there is no
desire to replicate traditional linguistic analyses. Sadkhors would likely criticize the
present work as having the wrong objective: too much conagtimrecovering traditional
linguistic structure, too little concern with human psyldyy.
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To be clear on this point: the goal of this work is not to progl@cpsychologically
plausible model or simulation. However, while success atttbe induction task does
not directly speak to the investigation of the human languiagulty, it does have direct
relevance to the logical problem of language acquisiti@amtigularly the argument of the
poverty of the stimulus, and therefore an indirect releeaoccognitive investigations. In
particular, while no such machine system can tell us how msda learn language, it can
demonstrate the presence and strength of statisticatpsittdich are potentially available
to a human learner.

1.2 Limitationsof thisWork

This work has several limitations, some of which are purfidsand serve to usefully
delimit the scope of the investigation and some of which aneenproblematic.

1.2.1 Assumptions about Word Classes

An intentional delimitation of the problem addressed ig tha models in this work all as-
sume that in addition to, or, more often instead of, a seqehwords, one has a sequence
of word classes, for example a sequence of part-of-spegsh Tdnere are several reasons
for this assumption. First, and weakest, it is a traditisialplification, and a good deal
of prior work begins at the word class level, usually becatuseunteracts sparsity and
reduces the computational scale of most potential solsiti@econd, prior work on part-
of-speech induction (see section 3.3) has been successiugb that, even though jointly
learning parts-of-speech and syntax is appealing, an &pp@aevious work to provide
initial word classes seems reasonable. Third, as we willearg chapter 6, models over
word classes are actually more likely to detect valid syiit@onfigurations in some cases,
because a strong correlation between two specific wordstis hikely to be evidence of a
topical relationship than a syntactic one. It is entirelggible that there is some advantage
to inducing parts-of-speech jointly with higher level syxtbut for the present work we
keep them separate as a hopefully defensible choice of stapeonvenience.
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1.2.2 No Model of Semantics

The most blatant difference between the task facing a childuage learner and the sys-
tems presented here is that, for the child, language isyhgjtlated. The utterances have
meaning and communicative purpose, and all agents in theecgation have models of
what the other agents are trying to accomplish. Utteranae®e supplemented with other
mechanisms of communication, such as deixis. Combinatbksiown words are con-
strained by the combinations of their semantics. There #rer substantial differences,
such as the gradual increase in complexity of communicatian time for children, but
the presence of meaning and intent is the most severe difefgetween human language
acquisition and form-only machine learning from text.

Learning the syntax of utterances when the meaning of thttseances is already
known is clearly an easier problem than learning syntax auttsuch knowledge. This
constrained learning has been explored in Chang and Gurg©4), for example. What
is less clear is whether learning syntax at the same timeaasitg semantics is easier or
harder than learning the syntax alone, the trade-off beatgyden having a more complex
model (which would tend to make induction more difficult) draVing the ability to exploit
orthogonal cues (which could make it easier).

In this work, we try to learn syntax alone, using observedratices alone. This con-
ception of the language learning task certainly has a lostpty, and can be defended
on several grounds. First, results on this task inform tHeatkeon the logical problem
of language learning and innateness. A successful grammdaction system provides an
important lower bound on the amount of bias required to rective syntax of a language.
Without serious cognitive modeling, it is difficult to argtieat humans actually use the
same kinds of statistical cues that these systems use twegtammar from data (though
see Saffran et al. (1996) for some evidence that statisticzd are used in word segmenta-
tion). However, it does show the degree to which those cuss&xd it does argue that the
human mechanism does not necessarily need to be more higislydothan the machine
learner. In fact, to the degree that the machine learnefgggn isolation a problem that
humans solve in a situated fashion, we would expect the madbarner to require greater
bias that the human learner.
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Second, and related, it is worth investigating how far one ga in learning syntax
on its own. Empirical evidence suggests that some supérficraponents of language
can be learned by human learners from purely structurakecel. For example, Saffran
et al. (1996) shows that babies are capable of accuratelyesgigng streams of nonsense
words on the basis of their statistical distributions, jugin hearing the streams playing in
the background for a short time. Of course, it could be thigtdbility to segment words
distributionally is only a small component of the human weegymentation faculty, and
that it is even less of a component in the learning of deepstastic structures. However,
it is still worth investigating how strong the cues are, relfgss of whether such meaning-
free learning is a partial or exclusive mechanism for huneanrers.

Third, the task of annotating raw text with syntactic stases is an important practical
engineering task. The natural language processing fielc&esnaktensive use of syntactic
parsers which assign structures in a meaning-free way. ariristation has been shown to
be a useful stage in a processing pipeline which may or magantillowed by a semantic
processing stage, depending on the application. To thaetttat parses, like those that
have been developed for English, are useful, we would liké sools for other languages.
For the small number of languages for which we have treebaveitable, supervised pars-
ing techniques can be applied. However, the vast majoritgrijuages have no treebank
resources, and an unsupervised parser based on grammetiondechniques is the only
alternative to the allocation of human expert resources.

Finally, as a matter of scope, the syntax-only learning taskgood way to further the
understanding of how unsupervised inductive methods nafjéttively learn components
of natural language.

1.2.3 Problematic Evaluation

A serious issue for the present work, as for all grammar iidacsystems, is evaluation.
Such systems can be thought of as producing two kinds of augst, they can be seen in
the classical grammar induction view, where the resulteféiarning process is a grammar
from some grammar family. When the target grammar is knowe, can evaluate the
degree to which the hypothesized grammar resembles thet.tdigwever, except for toy
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experiments with grammar recovery (where one authors argeangenerates from that
grammar, then attempts to recover the generating gramw@go not necessarily know the
target grammar. Additionally, we may not have a satisfgotaay to quantify the closeness
of a hypothesis to a target grammar. Moreover, various Bystaeay learn grammars from
different grammar families. One option for evaluating fesd grammars, which we will
apply in this work, is to qualitatively evaluate them by iespon. This can be highly
illuminating, but is unsatisfying on its own. Another optiowhich will also be used in
this work, is to compare the tree structures predicted byrtbdel to gold-standard trees
produced by a linguist. While this measure is not itself satiye, the gold-standard is
open to criticism. The issues and metrics of evaluation lbgldiscussed in more depth in
section 2.2.1.

1.3 Related Work

The work most closely related to this thesis can be brokensaveral types. A good deal
of classical grammar induction work operated in a primasyynbolic fashion, learning
symbolic context-free grammars, often predating the peexa of probabilistic context-
free grammars. Examples include Olivier (1968), Wolff (8B&nter alia. These methods
will be discussed in section 4.3. More recent work, at leagshe NLP community, has
tended to embrace parameter search methods, usually bsiBgpectation-Maximization
algorithm (EM) to fit probabilistic models to the data. Thesethods will be discussed in
section 5.1 and section 6.1.2.



Chapter 2
Experimental Setup and Baselines

This chapter details the data sets used and the evaluatiicsreported in later chapters.

2.1 Input Corpora

The systems presented in this work all take as input a calecf sentences, where each
word of the sentence is tagged with a word classes. The immfualgorithms in this work
are sensitive only to the word classes, not to the indivis@aids. In all cases, sentences
are taken from treebanks, which contain both sentenceshamndphrase-structure parses.
The treebank parses are not used to guide the induction,atherrare used as a gold
standard to evaluate the induction. The preterminal paspeech symbols in the treebank
parses can be used as word classes, but need not be. We wilbédsere the general data
pre-processing used in the context of the English Penndréelthen briefly describe the
differences for other languages and treebanks.

2.1.1 English data

For experiments on English, the treebank used is the WadkS@ournal\{sJ section of
the English Penn treebank (Marcus et al. 1993). This copusitten English newswire,
clearly not representative of the language child languagenkrs are usually exposed to,
but typical of the language generally parsed by supervisesiqg systems.

13
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One of the trees in this corpus is
They don’t even want to talk to you.

and its treebank entry is

S
I —
NP-SBJ-1 VP
| -
PRP VBP RB ADVP VP
| | | | —
They do n't RB VB S
| | —
even want NP-SBJ VP
| — T
-NONE- TO VP
| | — T
*1 to VB PP-CLR

I T
talk TO NP
I I
to PRP
I
you

Some effort, described below, was made to alter this datztiehrepresent the data
available to a human learner, for example by removing emigtyents and punctuation.

The example here contains the empty elemieht an empty marker indicating a con-
trolled subject of the lower S. Empty elements in the Englrgebank can be identified
by the reserved tagnONE-. All tree nodes dominating no overt elements were pruned
from the tree. Punctuation was similarly pruned, althougé arguable that at least some
punctuation is correlated with information in an acoustigut, e.g. prosody. Words were
considered to be punctuation whenever they were taggedhatiollowing parts-of-speech
(again, for English):

, . o 7 -LRB- -RRB-

The final change to the yields of the English trees is thatahe $ and # were deleted,
not because their contents are not pronounced, but bedasare not pronounced where
the tag occurs. This decision was comparatively arbittaut/the results are little changed
by leaving these items in. There are other broad differebeéseen this data and spoken
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S
///\
NP VP
[ - T
PRP VBP RB ADVP VP
[ [ [ [ _
They do n’t RB VB S
[ [ [
even want VP
/\
TO VP
[ _
to VB PP

talk TO NP
| |
to PRP
|
you

Figure 2.1: A processed gold tree, without punctuation, tgroptegories, or functional
labels for the sentence, “They don’t even want to talk to¥ou.

language, which we make no attempt to alter. For exampladtaiready been tokenized
in a very particular way, including that heden't has been split intdo andn’t. We leave
this tokenization as it is.

Of course, treebank data is dissimilar to general spokeyulage in a number of ways,
but we made only these few broad corrections; no spellintggbnumbers or re-ordering
of words was done. Such spelling-out and re-ordering was @doRoark (2001), and could
presumably be of benefit here, as well.

For the trees themselves, which in fully unsupervised systare used only for evalua-
tion purposes, we always removed the functional tags fraermal nodes. In this example,
the final form of the tree would be as shown in figure 2.1.

From these trees, we extract tpeeterminal yield consisting of the part-of-speech
sequence. In this example, the preterminal yield is

1An obvious way to work with input more representative of sprokext would have been to use the
Switchboard section of the the Penn Treebank, rather tham\iBJ section. However, the Switchboard
section has added complexities, such as dysfluencies amadtsesvhich, though clearly present in a child’s
language acquisition experience, complicate the modelingess.
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PRP VBP RB RB VB TO VB TO PRP

From the English treebank, we formed two data sets. Rirst, consists of the preter-
minal yields for all trees in the English Penn treebank. &dcavsil0 consists of all
preterminal yields of length at most 10 (length measureer dafte removals mentioned
above).wsJ has 49208 trees, whilwsJLO has 7422 trees. Several experiments also refer
to cutoffs less than or more than 10.

For several experiments, we also used the ATIS section dEtiggish Penn treebank.
The resulting sentences will be referred tonass.

Data sets were similarly constructed from other corporafqreriments on other lan-
guages.

2.1.2 Chinesedata

For our Chinese experiments, the Penn Chinese treebardiqued) was used (Xue et al.
2002). The only tags removed were the empty-elementNaglE- and the punctuation tag
PU.? The set of at most 10 word sentences from this corpus will fesnedl to ascTB10
(2473 sentences).

2.1.3 German data

For our German language experiments, the NEGRA corpus wexs (8kut et al. 1998).
This corpus contains substantially more kinds of annatetian the Penn treebank, but we
used the supplied translation of the corpus into Penn trdebgyle tree structures. For the
German data, we removed only the punctuation tags ($. $rR* $* RRB*) and empty-
element tags (tags starting with *). The set of at most 10 veerttences from this corpus
will be referred to asiEGRALO (2175 sentences).

2.1.4 Automatically induced word classes

For the English data, we also constructed a variant of théi&nBenn treebank where the
given part-of-speech preterminals were replaced withraatally-induced word classes.

2For some experiments, the punctuation tag was left in; tbases will be mentioned as they arise.
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To induce these tags, we used the simplest method of (S£h¥25) (which is close to
the methods of (Schitze 1993, Finch 1993)). For (all-leased) word types in the Penn
treebank, a 1000 element vector was made by counting how e&teh co-occurred with
each of the 500 most common words immediately to the leftghtiin both the Treebank
text and additional 1994-96 WSJ newswire. These vectors Veagth-normalized, and
then rank-reduced by an SVD, keeping the 50 largest singatdors. The resulting vectors
were clustered into 200 word classes by a weightadeans algorithm, and then grammar
induction operated over these classes. We do not belietththgquality of our tags matches
that of the better methods of Schitze (1995), much lessttent results of Clark (2000).

2.2 Evaluation

Evaluation of unsupervised methods is difficult in severaysv First, the evaluation ob-
jective is unclear, and will vary according to the motivatfor the grammar induction.

If our aim is to produce a probabilistic language model, wk want to evaluate the
grammar based on a density measure like perplexity of obdestrings.

If our aim is to annotate sentences with syntactic markinigigkvare intended to facili-
tate further processing, e.g. semantic analysis or infooma&xtraction, then we will want
a way to measure how consistently the learned grammar migriesnotations, and how
useful those annotations are to further processing. Thas\gould suggest a task-based
evaluation, for example, turning the learned structuresfieatures for other systems.

If our aim is essentially to automate the job of the linguisgn we will want to judge
the learned grammar by whether they describe the strucfuamguage in the way a lin-
guist would. Of course, with many linguists comes many idgaghat the true grammar of
a language is, but, setting this aside, we might comparestraéd grammar to a reference
grammar or grammars using some metric of grammar similarity

In this work, we take a stance in between the latter two desideand compare the
learned tree structures to a treebank of linguisticallyivawed gold-standard trees. To the
extent that the gold standard is broadly representativeliofjaistically correct grammar,
systematic agreement with gold standard structures wdicate linguistic correctness of
the learned models. Moreover, to the extent that the golttlstal annotations have been
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proven useful in further processing, matching the goldcstmes can reasonably be ex-
pected to correlate well with functional utility of the incled structures.

The approach of measuring agreement with the gold treebamsupervised parsing
accuracy — is certainly not without its share of problemswasdescribe in section 2.2.
Most seriously, grammar induction systems often learnesyatic alternate analyses of
common phenomena, which can be devastating to basic bradkeh metrics. Despite
these issues, beginning in section 2.2.1, we describeaadtn measuring agreement be-
tween induced trees and a gold treebank. Comparing two iseebetter-understood and
better-established process than comparing two gramnmraad)yacomparing hypothesized
trees one can compare two systems which do not use the sammgrdamily, and even
compare probabilistic and symbolic learners. Moreovemgarison of posited structures
is the mechanism used by both work on supervised parsing amth previous work on
grammar induction.

2.2.1 Alternate Analyses

There is a severe liability to evaluating a grammar indurcsigstem by comparing induced
trees to human-annotated treebank trees: for many symtamtistructions, the syntactic
analysis is debatable. For example, the English Penn Tin&etiaalyzesan insurance
company with financial problenas

NP
,/\
NP PP
- —
DT NN NN IN NP
/\
an insurance  company  with JJ NNS

\ \
financial problems

while many linguists would argue for a structure more like
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NP
’/\
DT N’
\ -
an N/’ PP
/\ /\
NN NN IN NP
\ \ \ —
insurance  company  with JJ NN

\ \

financial problems
Here, the prepositional phrase is inside the scope of therméter, and the noun phrase
has at least some internal structure other thanpthémany linguists would want even
more). However, the latter structure would score badlyrajahe former: they’ nodes,
though reasonable or even superior, are either over-ktions (precision errors) or cross-
ing brackets (both precision and recall errors). When ostesys propose alternate analy-
ses along these lines, it will be noted, but in any case it dimates the process of automatic
evaluation.

To be clear what the dangers are, it is worth pointing outarsgtstem which produced
both analyses above in free variation would score bettar tre which only produced
the latter. However, like choosing which side of the roadrigedon, either convention is
preferable to inconsistency.

While there are issues with measuring parsing accuracysiggold standard treebanks,
it has the substantial advantage of providing hard empinaenbers, and is therefore an
important evaluation tool. We now discuss the specific reguised in this work.

2.2.2 Unlabeled Brackets
Consider the pair of parse trees shown in figure 2.2 for theesen
o the, screen, was; a4 sea; of ¢ red

The tree in figure 2.2(a) is the gold standard tree from thenRezebank, while the
tree in figure 2.2(b) is an example output of a version of tliation system described
in chapter 5. This system doesn’t actually label the brackethe tree; it just produces a
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S
,/\
NP VP
/\ ///\
DT NN VBD NP
\ \ \ _
the screen was NP PP
/\ /\
DT NN IN NP
a sea of NN
[
red

(a) Gold Tree

/\
C C
/\ /\
c VBD c c
DT NN was DT NN IN NN
\ \ \ \ \ \
the screen a sea of red

(b) Predicted Tree

Figure 2.2: A predicted tree and a gold treebank tree for éméesice, “The screen was a
sea of red.”
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nested set of brackets. Moreover, for systems which do laiaekets, there is the problem
of knowing how to match up induced symbols with gold symbdlkis latter problem is
the same issue which arises in evaluating clusterings,emiaster labels have no inherent
link to true class labels. We avoid both the no-label andlfabarespondence problems by
measuring the unlabeled brackets only.

Formally, we consider a labeled tréeto be a set of labeled constituent brackets, one
for each node: in the tree, of the formiz : 4, j), wherex is the label of, i is the index
of the left extent of the material dominated byand; is the index of the right extent of
the material dominated by. Terminal and preterminal nodes are excludeslare non-
terminal nodes which dominate only a single termin&or example, the gold tree (a)
consists of the labeled brackets:

Constituent Material Spanned
NP:0,2) the screen

(

(NP:3,5) asea

(pp:5,7) ofred

(NP:3,7) aseaofred

(vp:2,7) was asea of red

(s:0,7) the screen was a sea of red

From this set of labeled brackets, we can define the correlspgret of unlabeled brackets:
brackets(T) = {(i,5) : Jx s.t.(X :4,5) € T}

Note that even if there are multiple labeled constituenés a\given span, there will be only
a single unlabeled bracket in this set for that span. Theitlefis of unlabeled precision
(UP) and recall (UR) of a proposed corplis= [P;| against a gold corpus = [G;] are:

> lbrackets(P;) Nbrackets(G;)|
> lorackets(P;)|

UP(P,G) =

Y. [brackets(P;) N brackets(G;)|
> [brackets(G;)|

UR(P,G) =
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In the example above, both trees have 6 brackets, with ortakrig) each direction, giving
a precision and recall of 5/6.

As a synthesis of these two quantities, we also report ulddbig, their harmonic
mean:

2
UR(P.G) = UP(P,G)~'+ UR(P,G)"

Note that these measures differ from the standard PARSEVA&sures (Black et al. 1991)
over pairs of labeled corpora in several ways: multipliatyrackets is ignored, brackets
of span one are ignored, and bracket labels are ignored.

2.2.3 Crossing Brackets and Non-Crossing Recall

Consider the pair of trees in figure 2.3(a) and (b), for theesezea full four-color page in
newsweek will cost 100,980

There are several precision errors: due the flatness of tlietiggebank, the analysis
inside theNp a full four-color pagecreates two incorrect brackets in the proposed tree.
However, these two brackets do not actually cross, or cdiatraany brackets in the gold
tree. On the other hand, the bracket over the verb greilipcost does contradict the
gold tree’svp node. Therefore, we define several additional measureshwdtant as
mistakes only contradictory brackets. We write- S for an unlabeled brackétand a
set of unlabeled bracketsif b does not cross any brackiéte S, where two brackets are
considered to be crossing if and only if they overlap buthegitontains the other.

The definitions of unlabeled non-crossing precision (UN@mj recall (UNCR) are

_ 2 {b € brackets(F;) : b ~ brackets(Gi)}|
UNCP(P,G) = >, brackets(P)|

_ 2. 1{b € brackets(G;) N brackets(P;) }|
UNCR(P,G) = > lorackets(G;)|

and unlabeled non-crossing I5 defined as their harmonic mean as usual. Note that these

measures are more lenient than UP/UR/UWhere the former metrics count all proposed
analyses of structure inside underspecified gold strustasevrong, these measures count

3Note the removal of thg from what was originallys 100,98Chere.
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S
//\
NP VP
’/\ /\
NP PP MD VP

DT JJ JJ NN IN NP will VB NP

\ \ \ n \ \ \ \
a full four-color page in NNP cost CD

n n

newsweek 100,980

(a) Gold Tree

C C
/\ /\
c c c CD
DT c IN NNP MD VB 100,980

\ _ \ n \ \
a JJ c in newsweek  will cost

\ _

full JJ NN

four-color page

(b) Predicted Tree

Figure 2.3: A predicted tree and a gold treebank tree for ¢émeemice, “A full, four-color
page in Newsweek will cost $100,980.”
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all such analyses as correct. The truth usually appearssorbewhere in between.
Another useful statistic is theossing brackets rat@CB), the average number of guessed
brackets per sentence which cross one or more gold brackets:

4D k Tp):—-bb ts(Te.
CB(P.G) = > |{b € brackets( fP)| rackets(Tg,)}|

2.2.4 Per-Category Unlabeled Recall

Although the proposed trees will either be unlabeled or Halvels with no inherent link
to gold treebank labels, we can still report a per-labellteate for each label in the gold
label vocabulary. For a gold labe) that category’s labeled recall rate (LR) is defined as

> X i g) € Giij > i+ 1A (4, 5) € brackets(P;)|
Ml R6) = > (x4, j) € G

In other words, we take all occurrences of nodes labeléa the gold treebank which

dominate more than one terminal. Then, we count the fragitunoh, as unlabeled brackets,
have a match in their corresponding proposed tree.

2.2.5 Alternate Unlabeled Bracket M easures

In some sections, we report results according to an aleennaiabeled bracket measure,
which was originally used in earlier experiments. The ale unlabeled bracket precision
(UP) and recall (UR) are defined as

, |brackets(P;) Nbrackets(G;)| — 1
P(P =
UP(P,G) Z |brackets(P;)| — 1

)

brackets(P;) N brackets(G;)| — 1

UR/(P,G) = | - -

( ) ZZ: |brackets(G;)| — 1

with, F; (UF,") defined as their harmonic mean, as usual. In the rare casa® loc-
curred, a ratio of 0/0 was taken to be equal to 1. These ateemaasures do not count the
top bracket as a constituent, since, like span-one coastiyall well-formed trees contain
the top bracket. This exclusion tended to lower the scoresth® other hand, the scores
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were macro-averaged at the sentence level, which tendextteaise the scores. The net
differences were generally fairly slight, but for the sakeantinuity we report some older
results by this metric.

226 EVALB

For comparison to earlier work which tested onaltes corpus using the EVALB program
with the supplied unlabeled evaluation settings, we refibdugh only once) the results
of running our predicted and gold versions of thles sentences through EVALB (see
section 5.3. The difference between the measures abovénariEMALB program is that
the program has a complex treatment of multiplicity of bestskwhile the measures above
simply ignore multiplicity.

2.2.7 Dependency Accuracy

The models in chapter 6 model dependencies, linkages betpaes of words, rather than
top-down nested structures (although certain equivakedoexist between the two repre-
sentations, see section 6.1.1). In this setting, we viegstn®t as collections of constituent
brackets, but rather as sets of word pairs. The general mgaha dependency pair is that
one word either modifies or predicates the other word. Fomgka, inthe screen was a
sea of redlwe get the following dependency structure:

—ar i I
DT NN VBD DT NN IN NN ¢
\ \ \ \ \ \ \
the screen was a sea of red

Arrows denote dependencies. When there is an arrow fromggédt) wordw, to
another word (tagged),, we say thatu,, is theheadof the dependency, while we say
that w, is the argumentof the dependency. Unlabeled dependencies like those shown
conflate various kinds of relationships that can exist betw&ords, such as modification,
predication, and delimitation, into a single generic onanuch the same way as unlabeled



26 CHAPTER 2. EXPERIMENTAL SETUP AND BASELINES

brackets collapse the distinctions between various kifidsmstituents. The dependency
graphs we consider in this work are all tree-structuredh aiteservedoot symbol¢ at
the head of the tree, which always has exactly one argumtenhéad of the sentence); that
link forms theroot dependency

All dependency structures for a sentencerafiords (not counting the root) will have
n dependencies (counting the root dependency). Theref@eaw measure dependency
accuracy straightforwardly by comparing the dependeriai@sproposed corpus against
those in a gold corpus. There are two variations on depegdacauracy in this work:
directed and undirected accuracy. In the directed cas®pped word pair is correct only
ifitis in the gold parse in the same direction. For the unttd case, the order is ignored.
Note that two structures which agree exactly as undiredterttsires will also agree as
directed structures, since the root induces a unique hetwaod ordering over all other
dependencies.

One serious issue with measuring dependency accuracytjsahthe data sets above,
the only human-labeled head information appears in celtaations in the NEGRA cor-
pus. However, for these corpora, gold phrase structure edrebristically transduced to
gold dependency structures with reasonable accuracy udegsuch as in Collins (1999).
These rules are imperfect (for example,new york stock exchange lawyethe word
lawyersis correctly taken to be the head, but each of the other waméls Hirectly to it,
incorrectly fornew, yorkandstock. However, for the moment it seems that the accuracy
of unsupervised systems can still be meaningfully compé#oetthis low-carat standard.
Nonetheless, we discuss these issues more when evaluafiegakncy induction systems.

2.3 Basdinesand Bounds

In order to meaningfully measure the performance of ouresgst it is useful to have
baselines, as well as upper bounds, to situate accuracgsigWe describe these baselines
and bounds below; figures of their performance will be memtbas appropriate in later
chapters.

4The most severe oversimplification is not any of these cettapbut rather the treatment of conjunctions,
which do not fit neatly into this word-to-word linkage framesk.
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2.3.1 Constituency Trees

The constituency trees produced by the systems in this werklausually binary branch-
ing. The trees in the gold treebanks, such as in figure 2.1jrageneral, not. Gold trees
may have unary productions because of singleton constngotir removed empty elements
(for example, figure 2.1). Gold trees may also have ternafiatier productions, either be-
cause such constructions seem correct (for example in E@ioh structures) or because
the treebank annotation standards left certain structatestionally flat (for example, in-
side noun phrases, figure 2.3(a)).

Upper Bound on Precision

Unary productions are not much of a concern, since theilepesdoes not change the set
of unlabeled brackets used in the measures of the previati®rse However, when the
proposed trees are more articulated that the gold treegeteral result will be a system
which exhibits higher recall than precision. Moreover, §mid trees which have nodes
with three or more children, it will be impossible to achievperfect precision. Therefore,
against any treebank which has ternary or flatter nodes thiéiroe an upper bound on the
precision achievable by a system which produces binarg tvaby.

Random Trees

A minimum standard for an unsupervised system to claim aesdegf success is that it
produce parses which are of higher quality than selectinggptaees at random from some
uninformed distributiort. For the random baseline in this work, we used the uniform dis-
tribution over binary trees. That is, given a sentence aftlen, all distinct unlabeled trees
overn items were given equal weight. This definition is procedyraduivalent to parsing
with a grammar which has only one nonterminal production = z with weight 1. To

get the parsing scores according to this random parser, ameither sample a parse or
parses at random or calculate the expected value of the. sEzpept where noted other-
wise, we did the latter; see appendix B.1 for details on cdmguhe posteriors of this

SAgain, it is worth pointing out that a below-random match tie gold treebank may indicate a good
parser if there is something seriously wrong or arbitrayualbhe gold treebank.
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distribution, which can be done in closed form.

L eft- and Right-Branching Trees

Choosing the entirely left- or right-branching structufe £ {(0,4) : i € [1,n]} or B =
{(i,n) : i € [0,n — 1]}, respectively, see figure 2.4) over a test sentence is clgriamn
uniformed baseline in the sense that the posited struatuigegentence independent of any
details of that sentence save its length. For English,#igahching structure happens to be
an astonishingly good baseline. However, it would be uhfike perform well for a VOS
language like Malagasy or VSO languages like Hebrew; itagalst is not nearly so strong
for the German and Chinese corpora tested in this work. Mamredahe knowledge that
right-branching structure is better for English than laf@nching structure is a language-
specific bias, even if only a minimal one. Therefore, while systems do exceed these
baselines, that has not always been true for unsupervistemnsyg which had valid claims
of interesting learned structure.

2.3.2 Dependency Baselines

For dependency tree structures,ralivord sentences have dependencies, including the
root dependency. Therefore, there is no systematic uppardon achievable dependency
accuracy. There are sensible baselines, however.

Random Trees

Similarly to the constituency tree case, we can get a lowentidy choosing dependency
trees at random. In this case, we extracted random treesbjnguithe dependency model
of chapter 6 with all local model scores equal to 1.

Adjacent Links

Perhaps surprisingly, most dependencies in natural layeguare between adjacent words,
for example nouns and adjacent adjectives or verbs andeadjaclverbs. This actually
suggests two baselines, shown in figure 2.5. In the backwijadent baseline, each word
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/\
2 NN
_— \
3 IN red
/\
4 NN of
_— \
5 DT sea
_— T \
6 VBD a
/\
7 NN was

The
(a) Left-branching structure
1
/\
DT 2
/\
The NN 3
\ _
screen VBD 4
/\
was DT 5
\ _
a NN 6
/\
sea IN 7
\ \
of NN

\
red

(b) Right-branching structure

Figure 2.4: Left-branching and right-branching baselines
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—r i I
DT NN VBD DT NN IN NN
\ \ \ \ \ \ \
the screen was a sea of red

(a) Correct structure

| K K K K K K \
DT NN VBD DT NN IN NN ¢
\ \ \ \ \ \ \
the screen was a sea of red

(b) Backward-linked structure

] }] }] 1 | e W |
DT NN VBD DT NN IN NN ¢
\ \ \ \ \ \ \
the screen was a sea of red

(c) Forward-linked structure

Figure 2.5: Adjacent-link dependency baselines.

takes the word before it as an argument, with the last worti@tentence being the head
of the sentence (i.e., linked to the root). This directiorresponds to left-branching con-
stituent structure. The forward adjacent baseline is thalt®f making the first word the
head of the sentence and having each word be the argumerd pfabeding word. This
direction corresponds to right-branching constituenicgtire. While it is true that most
dependencies are local, it is not true that they are ovemingly leftward or rightward in
direction; the adjacent-link baseline is therefore mostgetitive on the undirected depen-
dency accuracy measure.



Chapter 3

Distributional M ethods

One area of language learning which has seen substant@ssits the task of inducing
word classes, such as parts-of-speech and semantic fieits sdccess is largely due to
simple, robust distributional methods, which we define axalréne in this chapter. The

basic distributional approach for word classes can be usegveral ways to drive tree

induction; we present a more traditional structure-searethod in chapter 4 and a much

more successful parameter search approach in chapter 5.

3.1 Parts-of-speech and I nterchangeability

The linguistic notion of a part-of-speech is motivated by thct that there are large sets of

words which are syntactically interchangeable. For exampé have

(@)
(b)
()
(d)
(d)
(d)

The cat wenbver the box.
The cat wenunder the box.
The cat weninside the box.
?7he cat wenamong the box.
*The cat wenof the box.
*The cat wenthe the box.

There is class of words, includiryer, underandinside which can be substituted between

the verb and noun phrase in the sentences, changing thengdanipreserving the syntax.

31



32 CHAPTER 3. DISTRIBUTIONAL METHODS

This class is roughly the set of prepositions, though ndirajlistic prepositions can occur
equally well here. In particulanf is usually taken to be a preposition, but usually heads
noun- and adjective-modifying prepositional phrases,@mhot occur here. The preposi-
tion amongis inappropriate, since it places a mass or plurality resjo@nt on its object.
Nonetheless, a sufficiently large collection of examplesiich the set of prepositions are
generally mutually interchangeable can be used to motthateoherence of prepositions
as a part-of-speech, with finer details distinguishingaasisubclasses.

3.2 Contextsand Context Distributions

So what does mutual substitutability mean for a learningesy® The strong claim behind

the part-of-speech level is that the syntactic behaviorwbed depends only on the part-

of-speech of that word, at least broadly speakifidherefore, we should be able to collect
data about which contexts various words occur in, and usertformation to detect parts-

of-speech.

The first operational question is how to tell what context adus in. A particularly
simple definition is to say that the context of a word is the phiwords immediately
adjacent to the left and right. For example, in the senténeeat went over the boxhe
word over occurs in the contexiwent—the). This is thelocal linear contextand has the
advantage of being easy to identify (Finch and Chater 199@yeover, it is a reasonable
hypothesis that the linear context is sufficient for indgcsyntactic classes (cf. discussion
of semantic classes below). Especially if one takes the i@t linear context will be
strongly correlated with other notions of context, it is anpérical issue if and how this

1This claim is often taken to be at odds with the success oféiziation in syntactic modeling (Collins
1999, Charniak 2000) - if we actually need to know what wondsiia the sentence to parse well, doesn’t
that mean there’s more to the syntax of a word than the paspeéch indicates? However, there are three
issues here. First, linguists are generally claiming thatspof-speech suffice for describing which words can
grammatically be substituted, not which words actuallysarestituted empirically, so there is no statistical
independence claim in linguistic argumentation. Secanduists consider parts-of-speech at various granu-
larities: nouns, mass nouns, feminine mass nouns, etcr [Eials influence finer syntactic phenomena. The
broadest levels of nouns, verbs, and adjectives are intiiodiescribe the broadest syntactic phenomena. So
it should not be surprising that knowing that a word is a n@las$s useful than knowing it is the nostocks
but there are levels in between. Finally, disambiguatigraigially semantic, and at that level parts-of-speech
are not intended to reflect interchangeability.
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context might be practically inadequate.
For linguistic argumentation, we generally use more aldited notions of context. For
example, consider the following the sentences.

(@) The cat wenbver the box.
(b) The cat jump®ver people’s feet.
(@) The cat thinkghat/* over the box will support it.

Both (a) and (b) are examples o¥er occurring in roughly the same context (between a
verb and a noun phrase), while (c) is an example of a diffeventext (between a verb and
a subordinate clause), despite the fact that the localrlioatext is in fact more similar
between (a) and (c). In linguistic argumentation, we atyyadesent the entire picture of
a grammar all at once, and essentially argue for its coherembich is problematic for
automated methods, and most work on part-of-speech leph@s used the local linear
context. We will discuss a hierarchical definition of cortiexsection 3.4, but for now we
consider surface contexts.

A few more notes about contexts. In the local linear conteath occurrence of a
word corresponds to a single context (the adjacent word.pdmwever, we can consider
that context to be either atomic or structured (joint or daetl). In the structured view,
we might break/went—the) down into multiplecontext eventsFor example, Finch and
Chater (1992) and Schitze (1995) break these contexta lafbeventwent— ) and a right
event( —the). For non-local contexts, this decomposition is virtualbtigatory. Consider
the 100-word linear contextconsisting of the 100-words on either side of the target. In
this case, the context might be decomposed into 200 postid direction-free events,
resulting in the bag of words inside that window.

3.3 Distributional Wor d-Classes

Formally, if w is a word from some vocabulafy’, let o(w), called thesignatureof w,
denote the counts of each context event in some trainingispwgth context events ranging
over a vocabularyX. There is a great deal of work which uses such signaturestéztde
word classes; we discuss only a few examples here.
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The general approach of distributional clustering is towtbe data as &1| x | X|
matrix M, where there is a row for each word and a column for each context event type
Equivalently, one can think a¥/ as the result of stacking together all the signatutes).
Here, work varies, but most approaches attempt to find a lavedsional representation of
M.

The basic method of Schitze (1995) uses the decomposdditaza context (instead
of joint counts) and restricts context events to the mogjdemtn words. He then row-
normalizesM (so the rows are probability distributions over those cenévents), and
uses a truncated singular-value decomposition to write= UXV’, where the top- left
eigenvectors (columns if) are retainedU is then a|lV| x r matrix, with each column
representing a component weight in one tdtent dimensions. The rows bfare clustered
using the k-means algorithm into flat clusters. This apgnaguerates under the assumption
that M is a low-rank matrix distorted by Gaussian nois&his brief sketch of Schiitze’s
paper omits the crucial innovation of that work, which was echanism for contextually
disambiguating words which belong to multiple classes,cWwhs crucial if one is hoping
to reconstruct word classes that look like traditional paftspeech.

Since the signatures have a probabilistic interpretattda,reasonable to think of/
as an empirical sample from a joint probability over wordd Hreir contexts. This kind of
approach is taken in Pereira et al. (1998)er alia. Here, we think ofd/ as having been
sampled fromP (W, X'). We assume a hidden class variable and write

P(W, X) = P(C)P(W[C)P(X]|C)

We then try to find estimates which maximize the likelihood6f either using EM or spe-

cialized cluster-reassignment algorithms (Clark 200®)e &ppeal of using a probabilistic
divergence instead of least-squares is somewhat offsdtebfatt that not only are the in-
dependence assumptions in the latent model false (as giviagsamples aren’t even 11D
— one word’s left context is another word’s right context.

2We used this method to produce our own word-clusters in sofpergnents; in those cases, we used
r = 100 andk = 200.

Swithout the ability to represent ambiguous words as mixafemultiple simple classes, words such as
to, which can be either a preposition or an infinitive markegvstlup as belonging to completely separate
classes which represent that ambiguity mixture.



3.3. DISTRIBUTIONAL WORD-CLASSES 35

It's worth pointing out that if one considers the context ethe entire document and
uses the position- and direction-free bag-of-words deasitipn into context events, these
two sketched approaches correspond to LSA (Landauer e988)modulo normaliza-
tions) and PLSA (Hofmann 1999), with words rather than doents as the row indices.
One still gets word classes out of such contexts; they’regamantic or topical classes
rather than the more syntactic classes produced by loc&bxisn

Again, there has been a lot of work in this area, much of it log substantial ex-
tensions to the above methods. Two particularly intergstimd successful extensions are
presented in Clark (2000) and Clark (2003). The latter eggobbo model ofP (W |C') in
which words, rather than being generated as opaque synavelgenerated with internal
character/morpheme-level structure. Thus, there is pre$sr words which share suffixes,
for example, to be put into the same class. The innovatiosgmted in Clark (2000) is that,
rather than consider the context of a word to be the adjacerdsiy(as in Finch and Chater
(1992)), or the classes of the adjacent words according telapnary clustering (as in
Schitze (1995)), he considers it to be the classes acgptaime current model. This def-
inition is circular, since the word classes are exactly vghaging learned, and so there is
an iterative process of reclustering followed by signatefmmement.

To raise a point that will be revisited in chapter 5, one camgare the context clus-
tering approaches above with HMM induction. After desergothe Clark (2000) work,
it might seem obvious that learning an HMM is the “correct’ya learning a model in
which words are fully mediated by their classes and a wordsscinteracts directly with
the preceding and following classes. There are at least tle@sons, one practical, one
empirical, and one conceptual, why there is a healthy amotisticcessful work on lo-
cal clustering, but not on HMM induction. The practical reass that signatures are often
built using massive amounts of text, e.g. years of newswine.full word-signature matrix
is far too big to store, and so only counts over frequent castare retained. This short-
cut is easier to work into a local clustering approach. Theidoal reason is that, while
even very early attempts at distributional clustering pted reasonably good word classes
(Finch and Chater 1992), early attempts at inducing HMMsvaiésappointing, even when
highly constrained (Merialdo 1994). Our experience witlwrieng HMMs with EM sug-
gests a conceptual explanation for these findings. Becaasgalasses are a highly local
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kind of syntax — local in the sense that they are not intendeghtode any sentence- or
phrase-wide syntax. However, HMMs are most certainly ckgpabencoding global state,
such as whether the sentence has many numbers or many izcapitabrds. Such global
indicators can be multiplied into the state space, resuitinrstrange learned classes. For
these reasons, a model which does not properly represenbal gitructure can actually
learn better local classes, at the possible cost of feedisg desthetically satisfying.

3.4 Distributional Syntax

Distributional methods can be applied above the word |dwed.example, we can consider
sequences of word classes, such as the part-of-speechmsegie a tagged corpus.

Figure 3.1 shows the most frequent local linear contextthfeparts-of-speech occur-
ring in thewsJ corpus. These signatures encapsulate much of the broaat Bgetactic
trends of English, in essentially the same way a markov mods tag sequences would.
For example, determiners generally precede nouns anavfpliepositions, verbs, and sen-
tence boundaries, just as one would expect. What is addltjonseful about these signa-
tures, and what is implicitly used in word-clustering apioes, is that similarity between
local linear signatures correlates with syntactic relagss. Figure 3.2 shows the top pairs
of treebank part-of-speech tags, sorted by the Jensem8halivergence between the two
tags’ signatures:

1
DJS(pv ) = QDKL(M

whereDy, is the Kullback-Leibler divergence:

D 1
kr(plg) = Zp Jlog 2% )
The lowest divergence (highest similarity) pairs are prilpaf two types. First, there are
pairs like (VBD, VBZ) (past vs. 3sg present tense finite verbs) @i, NNS) (singular
vs. plural common nouns) where the original distinction wasphological, with minimal
distributional reflexes. Second, there are pairs{lk&, PRP$) (determiners vs. possessive
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Tag Top Linear Contexts by Frequency
CC (NNP — NNP, (NN —NN), (NNS — NNS, (CD - CD), (NN -JJ
CD IN—CD), (CD —IN), (IN = NN), (IN-NNS), (TO — CD)

(
DT (IN=NN), (IN—=J3J, (IN-NNP), (¢ —NN), (VB - NN)
EX  (0—VBZ), (0—VBP), (IN - VBZ), (c — VBD), (CC — VBZ)
FW  (NNP—NNP, (NN—FW), (DT — FW), (FW — NN), (FW — FW)
IN (NN = DT), (NN = NNP), (NNS — DT}, (NN = NN), (NN — JJ
JJR (DT —=NN), (IN=IN), (RB—IN), (IN—NNS), (VBD — IN)
JJS (DT —NN), (IN—-CD), (POS —NN, (DT —NNS), (DT -JJ
3 (DT = NN), (IN = NNS), (IN = NN), (JJ— NN, (DT — NNS)
LS (¢=VB), (¢ =33, (¢—=1IN), (¢ =NN), (¢ — PRP
MD  (NN-VB), (PRP —VB, (NNS - VB), (NNP — VB), (WDT — VB)
NNPS (NNP —NNB, (NNP —o), (NNP — VBD), (NNP —IN), (NNP — CG
NNP  (NNP —NNB, (IN—NNP), (¢ — NNP), (NNP — VBD), (DT — NNP)
NNS  (JJ—IN), (33 —), (NN —=IN), (IN—=IN), (NN —o)
NN (DT=IN), (JJ—IN, (DT — NN}, (NN = IN}, (3J —)
PDT  (IN-DT), (VB -DT), (c—DT), (RB—DT), (VBD — DT)
POS (NNP —NN), (NN —NN), (NNP —JJ, (NNP —NNP, (NN -J3J
PR$  (IN—NN), (IN-JJ, (IN-NNS), (VB —-NN), (VBD — NN)
PRP  (¢—VBD), (¢-VBP), (¢ —VBZ), (IN-VBD), (VBD — VBD)
RBR  (NN-—o), (DT —JJ, (RB—JJ, (RB—IN), (NN — IN)
RBS (DT-JJ,(POS-JJ (CC-J), (PR$-JJ, (VBZ-J)
RB (MD -VB), (NN —-IN), (RB —IN), (VBZ - VBN), (VBZ -J3J
RP (VB-DT), (VBN —IN), (VBD —IN), (VB —-IN), (VBD —DT)
SYM  (¢—=IN), (¢ =VBZ), (¢ —=NN), (¢ =33, (¢ —VBN)
TO  (NN-VB), (NNS—VB), (VBN —VB), (VBD — VB), (JJ— VB
UH (¢ —=PRB, (¢ —=DT), (¢ —9), (¢ —UH), (UH —9¢)
VBD  (NNP—DT), (NN—DT), (NN — VBN), (NN — IN), (NNP — PRP
VBG (IN-DT), (NN-DT), (DT — NN), (IN—NNS), (IN—NN)
VBN (NN —IN), (VBD —IN), (NNS —IN), (VB —IN), (RB —IN)
VBP  (NNS-VBN), (NNS - RB, (PRP — RB, (NNS — DT}, (NNS — IN)
VBZ (NN -VBN), (NN—RB), (NN —DT), (NNP — VBN), (NNP — DT)
VB (TO-DT), (TO-IN), (MD - DT), (MD — VBN), (TO — JJ
WDT (NN -VBZ), (NNS - VBP), (NN — VBD), (NNP —VBZ), (NN — MD)
W$ (NNP — NN), (NNP — NNS, (NN — NN), (NNS — NNS, (NNP —JJ
WP (NNS - VBP), (NNP — VBD), (NNP - VBZ), (NNS — VBD), (NN — VBZ)
WRB (NN -DT), (NN —PRP, (¢ —DT), (6 — PRP, (NN — NNS)

Figure 3.1: The most frequent left/right tag context painsthe part-of-speech tags in the
Penn Treebank.
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pronouns) andWDT, WP) (wh-determiners vswh-pronouns) where the syntactic role is
truly different at some deep level, but where the syntacticutiarities of English prevent
there from being an easily detected distributional reflexhat difference. For example,
English noun phrases can begin with eithepalike thein the general idear a PRFS

like hisin his general idea However, they both go in the same initial position and can-
not co-occuft However, in general, similar signatures do reflect broaitilar syntactic
functions.

One might hope that this correlation between similarityadfdl linear context signa-
tures and syntactic function would extend to units of lorigegth. For exampleyT JJ NN
andDT NN, both noun phrases, might be expected to have similar sigggat Figure 3.2
shows the top pairs of multi-tag subsequences by the samatsig divergence metric.

Of course, linguistic arguments of syntactic similarityofve more than linear con-
text distributions. For one, traditional argumentatioagals more emphasis on potential
substitutability (what contexts iteneainbe used in) and less emphasis on empirical substi-
tutability (what contexts thegre used in) (Radford 1988). We might attempt to model this
in some way, such as by flattening the empirical distributear context counts to blunt
the effects of non-uniform empirical usage of grammaticaltexts. For example, we could
use as our context signatures the distribution which isoumifover observed contexts, and
zero elsewhere.

Another difference between linear context distributiond #&aditional linguistic no-
tions of context is that traditional contexts refer to thergunding high-level phrase struc-
ture. For example, the subsequeriaetory payrollsin the sentence below is, linearly,
followed byfell (or, at the tag levelyBD). However, in the treebank parse

4Compare languages such as Italian wherertkigs would require a precedirmr, as inla sua ideaand
where this distributional similarity would not appear.

5The list of candidates was restricted to pairs of items edtdngth at most 4 and each occurring at least
50 times in the treebank — otherwise the top examples ardynhasg singletons with chance zero divergence.
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Rank Tag Pairs

Sequence Pairs

(VBZ, VBD )
( DT, PRP$)
(NN, NNS)
( WDT, WP)
(VBG, VBN )
( VBP, VBD)
(VBP, VBZ)
(EX, PRP)
( POS, WP$
10  (RB,VBN)
11 (CD, JJ)
12 (NNPS, NNP)
13 (CC, IN)
14 (JJS,JIR
15  (RB,VBG)
16 (JIR, 1)
17 (JJR,VBG)
18  (CC,VBD)
19  (JJR,VBN)
20 (DT, JJ)
21  (CD,VBG)
22 (LS, SYM)
23 (NN, JJ)
24  (VBG,JJ)
25  (JJR,RBR)
26  (CC,VBZ)
27  (CC,RB)
28 (DT, CD)
29 (NN, NNP)
30 (VBG,VBD)
31  (CC,VBG)
32  (TO,CC)
33 (WRB, VBG)
34 (CD, NNS)
35  (IN,VBD)
36  (RB, NNS)
37  (RP,JJR
38 (VBZ,VBG)
39  (RB,RBR)
40  (RP,RBR)

O©OooO~NOOTLHA, WNPE

( NNP NNP, NNP NNP NNP
(DTJJINNIN, DT NN IN)

( NNP NNP NNP NNP, NNP NNP NNP

( DT NNP NNP, DT NNP)
(IN DT JINN, IN DT NN)
( DT JINN, DT NN NN)
(DT JJINN, DT NN)

(IN JJ NNS, IN NNS)
(INNNIN, INDTNNIN )
(IN NN, IN JJ NN)

( DT JJ NN NN, DT NN NN}
{ IN NNP, IN NNP NNP)
(IN JJ NNS, IN NN NNS)
(NN IN DT, NN DT )

( IN DT NNP NNP, IN DT NNP)
(INDT NN IN, INNNS IN )
( NNP NNP POS, NNP POS
( NNP NNP IN, NNP IN)
(TO VB DT, TO DT)
(INNNIN, INNNS IN )

( NNS MD, NN MD )
(JINNS, JJ NN NNS
(JINN NN, JJ JI NN
( NN NNS, JJNNS
( PRP VBZ, PRP VBD
( NN IN NNP, NN IN NNP NNP)
( NNP NNP CC, NNP CG
(NN VBZ, NN VBD )

( IN NNP NNP NNP, IN NNP NNP
(IN DT JINN, IN DT NN NN)
(DT JINNS, DT NNS
(JINN, JJ II NN
(DT JJJJ, PR$ JY
(VBZ DT, VBD DT )
(DT JJJJ, DT Y
( CC NNP, CC NNP NNP
(JINN, JINN NN
( DT NNP NN, DT NN NN)
(NN IN, NN NN IN )
(NN IN DT, NNS IN DT )

Figure 3.2: The most similar part-of-speech pairs and paspeech sequence pairs, based

on the Jensen-Shannon divergence of their left/right tigesures.

39



40 CHAPTER 3. DISTRIBUTIONAL METHODS

S
,/\

NP VP
/\ /\
NN NNS VBD PP
factory  payrolls fell IN NP
\ \
in NNP
\
september

the correspondingiP node in the tree is followed by a verb phrase. Since we do have
gold-standard parse trees for the sentences in the Penibahlgeve can do the following
experiment. For each constituent nadim each treebank parse treewve record the yield
of = as well as its context, for two definitions of context. Fimgg look at the local linear
context as before. Second, we define the left contexttofbe the left sibling of the lowest
ancestor ofc (possiblyz itself) which has a left sibling, o if = is sentence-initial. We de-
fine the right context symmetrically. For example, in thesparee abovdactory payrolls

is a noun phrase whose lowest right sibling is Wrenode, and whose lowest left sibling is
the beginning of the sentence. This is tbeal hierarchicalcontext. Figure 3.3 shows the
most similar pairs of frequent sequences according to dieBkannon divergence between
signatures for these two definitions of context. Since wg twok counts for tree nodes
these lists only contain sequences which are frequentlstitaants. The lists are relatively
similar, suggesting that the patterns detected by the tfioitiens of context are fairly
well correlated, supporting the earlier assumption thatltzal linear context should be
largely sufficient. This correlation is fortunate — somelwd ethods we will investigate
are greatly simplified by the ability to appeal to linear etwhen hierarchical context
might be linguistically more satisfying (see chapter 5).

A final important point is that traditional linguistic arg@emtation for constituency goes
far beyond distributional facts (substitutability). Someuments, like the tendency of
targets of dislocation to be constituents might have digtional correlates. For exam-
ple, dislocatable sequences might be expected to occundngly at sentence boundary
contexts, or have high context entropy. Other argumentptoaisal categories, like those
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Rank Constituent Sequences by Linear Context

Constitieuiéhces by Hierarchical Conte

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

{NN'NNS, JINNS
(IN NN, IN DT NN )
(DT JJI NN, DT NN)
(DT JJ NN, DT NN NN)
(INDT JI NN, IN DT NN)
( NN NNS, JJ NN NNS)

( IN JINNS, IN NNS)
(DT JJ NN NN, DT NN NN}
{ NNP NNP POS, NNP POS

(IN JJ NNS, IN JJ NN

( IN NNP, IN NNP NNP)
(JINNS, JJ NN NNS
(IN DT JINN, IN JINNS
( IN'NNS, IN NN NNS)
(IN JJNNS, IN DT NN)

( DT NNP NNP, DT NNP)
(JINNS, DT NNS)
(DT JINNS, DT NNS
(IN JJ NNS, IN NN)

( NN NNS, DT NNS)
(IN DT JJ NN, IN NN)
(JJ JINNS, JJ NN NN
( DT NN POS, NNP NNP PO$
( IN'NNS, IN JJ NN)
(JINN, DT JINN
(INDT NN NN, INDT NN )
( IN NN NNS, IN JJ NN}
(DT NNP NN, DT NN NN)
(IN JJ NNS, IN NN NNS)

( IN'NN, IN NNS )

(IN NN, IN JJ NN)

(JJI NN, DT NN NN)
(VB DT NN, VBNN )
(IN DT NN NN, IN JJ NN)
(DT NN, DT NN NN )

( DT NNP NNP, DT NNP NN)
(JJ JINNS, JJ NNS
(IN DT JINN, IN DT NN NN)
( JJ NN, NN NN)

(DT JINNS, JJ NN NNS

(NN'NNS, JINNS
(IN NN, INDT NN )
(IN DT JJ NN, IN JI NNS
(VBZ VBN, VBD VBN )

{ NN NNS, JJ NN NNS)
(DT JJ NN NN, DT NN NN)
(IN DT JJ NN, IN DT NN)
(IN JJINNS, IN DT NN)
(DT JJI NN, DT NN)
(DT JJI NN, DT NN NN)

( IN'NNS, IN NN NNS)

( IN NNP, IN NNP NNP)
(INDT NN, IN NNP)
(IN JINNS, IN JI NN
( DT NNP NNP, DT NNP)
(IN JJ NNS, IN NNS)

( IN JJ NNS, IN NNP)
(VBZ VBN, MD VB )
(JINNS, JJ NN NNS
(INDT NN NN, IN DT NN )
(IN DT NN NN, IN DT NNS)
(IN JJ NNS, IN NN)
(DT JI NN, JJ NNS
( DT NNP NN, DT NN NN)
(JINNS, DT NN NN)

( DT NNS, DT NN NN)
(IN JJ NNS, IN NN NNS)
( NN NNS, DT NNS)
(IN DT NN NN, IN JJ NN)
(IN DT JJ NN, IN NNP)
(IN DT NN NN, IN NN NNS )
( DT NNP NNP, DT NNP NN)
(IN DT NN NN, IN JJ NNS)
(33 JI NNS, JJ NN NNS
( VBD VBN, VBD JJ)
(IN NN, INNNP )
(VBDTNN, VBNN )

( IN NN NNS, IN JJ NN)

{ NN NNS, DT NN NN)

( IN NN NNS, IN NNP NNP)

Figure 3.3: The most similar sequence pairs, based on tisededhannon divergence of

their signatures, according to both a linear and a hiereatkliefinition of context.

Xt
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which reference internal consistency (e.g., noun phrdkkawang a nominal head), are not
captured by distributional similarity, but can potentyable captured in other ways. How-
ever, scanning figure 3.2, it is striking that similar paicstdnd to have similar internal
structure — the chief difficulty isn’t telling thaiT JJ NN INiS somehow similar t@T NN
IN, it's telling that neither is a constituent.



Chapter 4
A Structure Search Experiment

A broad division in statistical methods for unsupervisedngmar induction is between
structure search methods and parameter search methodsudtuie search, the primary
search operator is a symbolic change to the grammar. Formgaone might add a pro-
duction to a context-free grammar. In parameter searchiakes a parameterized model
with a fixed topology, and the primary search operator is tgeuthe parameters around
a continuous space, using some numerical optimizationephwe. Most of the time, the
optimization procedure is the expectation-maximizatigoathm, and it is used to fit a pa-
rameterized probabilistic model to the data. A classicinsg of this method is estimating
the production weights for a PCFG with arpriori fixed set of rewrites.

Of course, the division is not perfect — a parameter searsthase symbolic effects,
for example by zeroing out certain rewrites’ probabilitiesd a structure search proce-
dure often incorporates parameter search inside each ness gl the symbolic structure.
Nonetheless, the distinction is broadly applicable, amdtitto approaches have contrast-
ing motivations. We will discuss the potential merits of graeter search methods later
(section 5.1, section 6.1.2), but their disadvantagesasg ® see.

First, the historical/empirical stigma: early attemptpatameter search were extremely
discouraging, even when applied to toy problems. Lari anghgy(1990) report that, when
using EM to recover extremely simple context-free gramntheslearned grammar would
require several times the number of non-terminals to recinestructure of a target gram-
mar, and even then it would often learn weakly equivalenewds of that target grammar.
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When applied to real natural language data, the results, wesirprisingly, even worse.
Carroll and Charniak (1992) describes experiments runtiiegeM algorithm from ran-
dom starting points, resulting in widely varying grammafe&xtremely poor quality (for
more on these results, see section 5.1).

Second, parameter search methods all essentially maxthezgata likelihood, either
conditioned on the model or jointly with the model. Of coyrsatside of language mod-
eling scenarios, we don’t generally care about data likelthfor its own sake — we want
our grammars to parse accurately, or be linguistically fitele, or we have some goal ex-
trinsic to the training corpus in front of us. While it’'s aly@possible data likelihood in
our model family will correspond to whatever our real goalimspractice it's not guaran-
teed, and often demonstrably false. As far as it goes, thextbn holds equally well for
structure search methods which are guided by data- or npmdérior-likelihood metrics.
However, in structure search methods one only needs a leaaistic for evaluating sym-
bolic search actions. This heuristic can be anything we wavttether we understand what
it's (greedily) maximizing or not. This property invites approach to grammar induction
which is far more readily available in structure search eapphes than in parameter search
approaches: dream up a local heuristic, grow a grammar gsaegly structure search, and
hope for the best. To the extent that we can invent a heutisticembodies our true goals
better than data likelihood, we might hope to win out withusture search.

The following chapter is a good faith attempt to engineet gugh a structure search
system, using the observations in chapter 3. While the sysl@es indeed produce en-
couragingly linguistically sensible context-free grammsjdhe structure search procedure
turns out to be very fragile and the grammars produced doutwmessfully cope with the
complexities of broad-coverage parsing. Some flaws in osiresy are solved in various
other works; we will compare our system to other struct@waxsh methods in section 4.3.
Nonetheless, our experiences with structure search leal the tmuch more robust param-
eter search systems presented in later chapters.

HUmplicit in this argument is the assumption that inventiagical new objectives for parameter search
procedures is much harder, which seems to be the case.
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4.1 Approach

At the heart of any structure search-based grammar indusgistem is a method, implicit
or explicit, for deciding how to update the grammar. In tl@st®n, we attempt to engineer
a local heuristic which identifies linguistically sensilgeammar changes, then use that
heuristic to greedily construct a grammar. The core idea iss€ distributional statistics to
identify sequences which are likely to be constituentsyéaie categories (grammar non-
terminals) for those sequences, and to merge categories \are distributionally similar.

Two linguistic criteria for constituency in natural langegrammars motivate our
choices of heuristics (Radford 1988):

1. External distribution: A constituent is a sequence ofdsarhich appears in various
structural positions (within larger constituents).

2. Substitutability: A constituent is a sequence of wordghwsimple) variants which
can be substituted for that sequence.

To make use of these intuitions, we use a local notion of idigional context, as
described in chapter 3. Letbe a part-of-speech tag sequence. Every occurrencewif
be in some context « y, wherex andy are the adjacent tags or sentence boundaries. The
distribution over contexts in which occurs is called itsignature which we denote by
o(a).

Criterion 1 regards constituency itself. Consider the tagugncesN DT NN andIN
DT. The former is a canonical example of a constituent (of categpP), while the later,
though strictly more common, is, in general, not a constitu€requency alone does not
distinguish these two sequences, but Criterion 1 pointsdistabutional fact which does.
In particular,iIN DT NN occurs in many environments. It can follow a verb, begin éesere,
end a sentence, and so on. On the other hiand7 is generally followed by some kind of
a noun or adjective.

This argument suggests that a sequence’s constituencyt begioughly indicated by
the entropy of its signaturé/ (o («)). Entropy, however, turns out to be only a weak indica-
tor of true constituency. To illustrate, figure 4.1 showsdbial most frequent constituents
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in the wsJl0 data set (see section 2.1.1), along with their rankingselveral other mea-

sures. Despite the motivating intuition of constituentsuwsang in many contexts, entropy
by itself gives a list that is not substantially better-etmted with the true list than simply
listing sequences by frequency. There are two primary cafmethis. One is that un-

common but possible contexts have little impact on the tagppy value, yet in classical

linguistic argumentation, configurations which are lessicmn are generally not taken to
be less grammatical.

To correct for the empirical skew in observed contextsg]gty) be the uniform distri-
bution over the observed contexts tor This signature flattens out the information about
what contexts are more or less likely, but preserves thetoofupossible contexts. Us-
ing the entropy ofr, («) instead of the entropy of («) would therefore have the direct
effect of boosting the contributions of rare contexts, glanth the more subtle effect of
boosting the rankings of more common sequences, since Hiklae samples of com-
mon sequences will tend to have collected nonzero countsooé f their rare contexts.
However, whileH (o(«)) presumably converges to some sensible limit given infirdta d
H(o,(«)) will not, as noise eventually makes all or most counts naw-zéet u be the
uniform distribution over all contexts. The scaled entropy

Hy(o()) = H(o())[H (0u(ev))/H(u)]

turned out to be a useful quantity in practicéultiplying entropies is not theoretically
meaningful, but this quantity does convergeHdo («)) given infinite (noisy) data. The
list for scaled entropy still has notable flaws, mainly retkelly low ranks for commomps,
which does not hurt system performance, and overly highgémkshort subject-verb se-
guences, which does.

The other fundamental problem with these entropy-basddngs stems from the con-
text features themselves. The entropy values will changendtically if, for example,
all noun tags are collapsed, or if functional tags are sflitis dependence on the tagset

°There are certainly other ways to balance the flattened aftatt@med distribution, including interpola-
tion or discounting. We found that other mechanisms weedéective in practice, but little of the following
rests crucially on this choice.
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Sequence | Actual Freq Entropy Scaled Boundary

DT NN 2 4 2 1

NNP NNP 1 - - 4

CDCD 9 - -

JJI NNS 7 3 3

DT JJ NN

DT NNS

JJ NN

CD NN

IN NN

INDT NN

NN NNS - -

NN NN - 8

TO VB - -

DT JJ - 6 - - -
4

QOWoWO~NOOULE, WNEPE
1
1

H

= . 01,
=

[l e e
o~ W)

MD VB - 10 - -
INDT - -
PRP VBZ - - - - 8
PRP VBD - - 5
NNS VBP - - -
NN VBZ - 10
RB IN - -
NN IN - 5 - - -
NNS VBD -
NNS IN - - 6 - -

(oo NI \ S I

(o]
(0]
1

Figure 4.1: Candidate constituent sequences by varioksngafunctions. Top non-trivial
sequences by actual constituent counts, raw frequencyenérepy, scaled entropy, and
boundary scaled entropy in tlnes11.0 corpus. The upper half of the table lists the ten most
common constituent sequences, while the bottom half liseeguences which are in the
top ten according to at least one of the rankings.
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for constituent identification is very undesirable. Oneegdimg way to remove this de-

pendence is to distinguish only two tags: one for the seet&ocindary (#) and another
for words. Scaling entropies by the entropy of this redudgdature produces the im-

proved list labeled “Boundary.” This quantity was not usegfractice because, although
it is an excellent indicator ofiP, PP, and intransitives constituents, it gives too strong a
bias against other constituents, which do not appear sodréty both sentence-initially

and sentence-finally. However, the present system is nagrdaxclusively by the entropy

measure used, and duplicating the above rankings moreadetudid not always lead to

better end results.

In summary, we have a collection of functions of distribnabsignatures which loosely,
but very imperfectly, seem to indicate the constituency séguence.

Criterion 2 suggests we then use similarity of distribudiibsignatures to identify when
two constituent sequences are of the same constituentTyjeseems reasonable enough
—NNP andPrPare bothnp yields, and occur in similar environments characteristin®s.
This criterion has a serious flaw: even if our data were alstggnerated by a PCFG, it
need not be the case that all possible yields of a symbwill have identical distribu-
tions. As a concrete examplerpP andNNP differ in thatNNP occurs as a subsequence of
longerNnps like NNP NNP, while PRP generally doesn’t. The context-freedom of a PCFG
process doesn’'t guarantee that all sequences which arileass yields have identical
distributions; it only guarantees that the occurrences of such sequences have identical
distributions. Since we generally don't have this kind dbimmation available in a struc-
ture search system, at least to start out with, one genguaityhas to hope that signature
similarity will, in practice, still be reliable as an indita of syntactic similarity. Figure 3.2
shows that if two sequences have similar raw signatures,ttiey do tend to have similar
syntactic behavior. For example7 JJ NNandDT NN have extremely similar signatures,
and both are common noun phrases. Aler,IN andNN NN IN have very similar signa-
tures, and both are primarily non-constituents.

Given these ideas, section 4.2 discusses a system, calked-MERGE, whose
grammar induction steps are guided by sequence entropyngerdhangeability. The out-
put of GREEDY-MERGE is a symbolic CFG suitable for partial parsing. The rulesdrhs
appear to be of high linguistic quality (meaning they pagsdhbious “glance test”, see



4.2. GREEDY-MERGE 49

figures 4.4 and 4.5), but parsing coverage is very low.

4.2 GREEDY-MERGE

GREEDY-MERGE is a precision-oriented system which, to a first approxiomtcan be
seen as an agglomerative clustering process over sequeiee the sequences are taken
from increasingly structured analyses of the data. A rumefdystem shown in figure 4.3
will be used as a concrete example of this process.

We begin with all subsequences occurring in w&il0 corpus. For each pair of such
sequences, a scaled divergence is calculated as follows:

o Djs(o(),0(8))
(e, B) = g ey B )

Small scaled divergence between two sequences indicates c@mbination of similarity
between their signatures and high rank according to thedeadtropy “constituency” heu-
ristic. The pair with the least scaled divergence is setefiie merging® In this case, the
initial top candidates were

3We required that the candidates be among the 250 most fresgmences. The exact threshold was not
important, but without some threshold, long singleton seqes with zero divergence were always chosen.
This suggests that we need a greater bias towards quangtgdence in our basic method.
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Rank Proposed Merge

1 NN NN NN
2 NNP NNP NNP
3 NN JINN
4 NNS NN NNS
5| NNP NNP NNP NNP NNP
6| DTNN DT JJNN
7| JINN NN NN
8 DT PRP$

9 DT DT JJ
10 VBZ VBD

11 NN NNS
12 | PRP VBD PRP VBZ
13 VBD MD VB
14 | NNS VBP NN VBZ
15| DTNN DT NN NN
16 VBZ VBZ RB
17 NNP NNP NNP NNP
18| DT PRP$
19 IN NN IN DT NN
20 RB RB RB

Note that the top few merges are all linguistically sensilden phrase ax unit merges.
Candidates 8, 10, and 11 are reasonable part-of-speeclesnargl lower on the list (19)
there is good prepositional phrase pair. But the rest ofigtsthows what could easily go
wrong in a system like this one. Candidate 9 suggests a gtidgtgrminer-adjective group-
ing, and many of the remaining candidates either create-(at}wverb groups or subject-
verb groupings instead of the standard verb-object verbga®. Either of these kinds of
merges will take the learned grammar away from the receivenlistic standard. While
admittedly neither mistake is really devastating provitieglalternate analysis is system-
atic in the learned grammar, this system has no operatobafiking out of early mistakes.
At this point, however, only the single pgINN, NN NN) is selected.

Merging two sequences involves the creation of a single rmwtarminal category for
those sequences, which rewrites as either sequence. Teasedccategories have arbitrary
names, such asl7, though in the following exposition, we give them useful ctgstors.

In this case, a categoml is created, along with the rules

z1— NN
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z1 — NN NN

Unary rules are disallowed in this system; a learned unanstead interpreted as a merge
of the parent and child grammar symbols, giving

NN — NN NN

This single rule forms the entire grammar after the first ragend roughly captures how
noun-noun compounding works in English: any sequewnceis legal, and can internally
group in any way. The grammar rules are unweighted.

At this point, all the input sentences are re-parsed withctimeent grammar, using a
shallow parser which selects an arbitrary minimum-fragim@arse. Most sentences will
be almost entirely flat, except for sequences of multipl@aeetjt nouns, which will be
analyzed into chunks by this first rule. Once there are naniteal categories, and the
parses aren’t entirely flat, the definitions of sequencescantexts become slightly more
complex. The sequences in the model are now contiguousig#in the current round’s
parses, including, in general, non-terminal symbols intaadto the original terminal set.
The contexts of a sequence can either be the linear contetkte dierarchical context, as
defined in section 3.4. Toillustrate, in figure 4.2, the sege®Bz RB can be considered in
the local contextNIN. . .¢] or the hierarchical contextz[L. . .¢]. The hierarchical context
performed slightly better, and was used for the presentrerpats. The new sequences
and their new signatures were tallied, and another pair elasted for merging.

To fully specify the merging rules, each merge creates a mamiar symbol. Any
unaries are treated as collapsing the parent and child dgmbiote that this means that
whenever the candidate pair contains a length-one seglesicethe first merge, the newly
created symbol is immediately collapsed and discardedh&umore, merging two length-
one sequences collapses the two symbols in the grammar tismlnaceduces the non-
terminal vocabulary by one. In the present example, thimtan happens for the first time
on step 4, where the verbal tagsz andvBD are merged. After a merge, re-analysis of
the right hand sides of the grammar rules is in general napgesAny rule which can be
parsed by the other rules of the grammar is parsed and sietplFior example, in step 14,
common noun phrases with and without determiners are fthtiriggering a re-parsing
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of thezNP — DT JJ NNrule intozNP — DT zNP.4

Eyeballing the merges chosen, the initial choices of this@dure look plausible. Noun
chunks are identified (1,2), then determiner-bearing nduages (3), then some tag dis-
tinctions which encode feature and tense are collapsedl. (£Eepositional phrases are
identified in (7), verb-object verb phrases in (10), and NPAéntence structures in (20).
Some (relatively minor) missteps along the way include astandard verb group chunkin
(6) and a (worse) determiner-adjective chunk in (12). Tinemne is a combination of these
categories being fleshed out (usually sensibly) and meaoggsthier (usually overly aggres-
sively). Starting on merge (45), the system begins implgdmerging nouns with noun
phrases, then adverbs, and so on, until merge (54), whemsr(@ong with most other
tags) are merged with verbs. At this point, all the top matare longer, as-yet-unanalyzed
sequences, but the initially promising grammar has mostliapsed into itself. This be-
havior underscores that for theREEDY-MERGE system, stopping at the correct point is
critical. Since our greedy criterion is not a measure ovéregrammar states, we have
no way to detect the optimal point beyond heuristics (theesaategory appears in sev-
eral merges in a row, for example) or by using a small supierviset to detect a parse
performance drop.

In addition to eyeballing the merges and grammars at eage,stamore quantifiable
way to monitor the coverage and accuracy of our grammar aswsyis to take the out-
put of the partial parser, and compare those (initially Isigl trees to the gold standard.
Figure 4.3 shows unlabeled precision and recall after efagjes These figures ignore the
labels on the proposed trees, and ignore all brackets obszéout not full-sentence brack-
ets, which all partial parses have, which gives the non-ietial recall). Overall, as the
grammar grows, we trade the initially perfect precisionrirall, substantially increasing
F; until step (15). Then, the trade-off continues, withrRore constant until about step
(27), at which point Fbegins to decline. By step (54) where nouns et al. are mergéd w
verbs et al., Fhas dropped from a high of 56.5 down to a low of 33.7.

4This is a case where we really would rather preserve a unatyepresents a null determiner.
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TOP
/N
# z1 VBZ RB—#

/\
DT NN

Figure 4.2: Two possible contexts of a sequence: linear @rdrchical.

421 Grammarslearned by GREEDY-MERGE

Figure 4.4 shows a snapshot of the grammar at one stage ofad GREEDY-MERGE 0On
thewsd0 corpus. The non-terminal categories proposed by the systems anaily
given arbitrary designations, but we have relabeled themdicate what standard classes
they best correspond to.

Categories corresponding tee, VP, PP, ands are learned, although some are split
into sub-categories (transitive and intransitixes, propempPs and two kinds of common
NPs, and so onj.NPs have internal structure where adnominal modifiers arepgwith
nouns, determiners attached higher, and verbs are chuntederb groups (contrary to
most but not all traditional linguistic argumentation, (ktiy 1994, Radford 1988)). Pro-
vided one is willing to accept such a verb-group analysis, glhammar seems sensible,
though quite a few constructions, such as relative cla@sesnissing entirely.

Figure 4.5 shows a grammar learned at one stage of a run whies were split by
transitivity. This grammar is similar, but includes ana&yof sentential coordination and
adverbials, and subordinate clauses. The only rule in ttasngar which seems overly
suspect igvP — IN zs which analyzes complementized subordinate clauseeas

In general, the major mistakes th&*EeDY-MERGE system makes are of three sorts:

» Mistakes of omission. Even though the grammar snapshotsrshave correct, re-
cursive analyses of many categories, neither has ruledweiaic non-trivially incor-
porate a numberaD). There is also no analysis for many common constructions,
including relative clauses, comparatives, and, most vimgty, conjunctions.

5This grammar, while very similar, does not exactly matchftierun shown in figure 4.3, but reflects
slightly different parameter settings.
8Splits often occur because unary rewrites are not learntdgrsystem.
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Step Merged Sequences Resulting Rules UPrec.| URec.| F;
0 (original) (none) 100.0 | 20.5 | 34.1
1 NN NN NN NN — NN NN 92.3 21.0 | 34.2
2 NNP NNP NNP NNP — NNP NNP 83.8 23.8 | 37.1
3 DT NN DT JINN ZNP— DT NN, zNP— DT JJ NN 85.6 31.2 | 45.7
4 VBZ VBD (merge) 85.6 | 31.2 | 45.7
5 NNS NN (merge) 83.8 | 33.7 |48.1
6 VBZ MD VB VBZ — MD VB 81.4 33.8 | 47.8
7 IN NNS IN zZNP zPP— IN NNS, zPP— IN zNP 81.1 | 37.0 | 50.8
8 DT PRP$ (merge) 815 | 38.2 | 52.1
9 VBZ VBP (merge) 81.6 | 38.3 |52.1
10 VBZ NNS VBZ zNP zVP — VBZ NNS, zVP— VBZ zNP 78.4 | 39.7 | 52.7
11 VBZ VBZ RB VBZ — VBZ RB 74.1 | 40.1 | 52.0
12 DT DT JJ DT — DT JJ 727 40.4 | 52.0
13 DT NNP POS DT — NNP POS 710 | 416 | 525
14 ZNP JJINNS ZNP — JJ NNS 71.0 45.2 | 55.2
15 zVP VBZ zPP zVP — VBZ zPP 70.8 456 | 55.5
16 VBZ VBZ VBN VBZ — VBZ VBN 69.0 46.8 | 55.8
17 zVP VBZ JJ zVP — VBZ JJ 68.7 479 | 56.5
18 VBZ VBZ VBG VBZ — VBZ VBG 67.7 48.5 | 56.5
19 zVP RB zVP zVP — RB zVP 67.1 48.5 | 56.4
20 PRP zVP zZNP zVP zS— PRP zVP, zS- zNP zVP 64.8 | 48.9 | 55.7
21 zS NNP zVP zS— NNP zVP 64.0 48.9 | 55.5
22 zS DT zVP zS— DT zVP 63.8 | 489 | 554
23 VBZ VBZ TO VB VBZ — VBZ TO VB 63.1 | 49.4 | 554
24 zS RB zS zS— RB zS 63.0 495 | 554
25 zPP IN NNP zPP— IN NNP 63.1 50.6 | 56.2
26 ZNP DT NNP NNS zNP— DT NNP NNS 63.1 | 51.1 | 56.5
27 zS NNS zVP zS— NNS zVP 62.4 51.2 | 56.3
28 ZNP VBZ NNP VBZ zSi— zNP VBZ, zSi— NNP VBZ 60.1 51.2 | 55.3
29 PRP VBZ zSi zSi— PRP VBZ 58.9 | 51.5 | 549
30 zSi RB zSi zSi— RB zSi 58.8 51.5 | 54.9
31 zS zS zPP zS— zS zPP 58.3 51.5 | 54.7
32 VBZ MD RB VB VBZ — MD RB VB 58.0 | 51.8 | 54.7
33 VBG VBN (merge) 58.0 | 51.8 | 54.7
34 VBG TOVB VBG — TO VB 57.8 52.0 | 54.7
35 VBZ zVP (merge) 53.6 | 50.9 | 52.2
36 zS zSi (merge) 53.3 | 50.6 | 51.9
37 RB VBG (merge) 53.2 | 50.7 | 51.9
38 zSVBZ zS zS zX — zSVBZ, zX— zS zS 52.8 | 50.8 | 51.8
39 zS zX (merge) 52.8 | 50.8 | 51.8
40 MD MD RB MD — MD RB 52.6 50.8 | 51.7
41 zS DT zS zS— DT zS 51.8 50.3 | 51.1
42 zS zPP zS zS— zPP zS 51.6 | 50.3 | 50.9
43 zS NNP zS zS— NNP zS 51.0 50.0 | 50.5
44 NNP NNPS (merge) 50.9 | 50.2 | 50.6
45 zS CCzS zS— CCzS 50.4 | 50.2 | 50.3
46 NNS ZNP (merge) 50.4 | 50.6 | 50.5
47 NNS RB (merge) 47.8 | 49.7 | 48.8
48 NNS JJ (merge) 46.5 | 48.8 | 47.6
49 NNS zPP (merge) 41.8 | 44.7 | 432
50 NNS JIR (merge) 419 | 45.1 | 435
51 NNS DT (merge) 36.3 | 39.4 | 37.8
52 NNS IN (merge) 339 | 375|356
53 NNS JJs (merge) 335 | 37.3 | 353
54 VBZ zS (merge) 34.1 | 38.0 | 35.9
55 NNS VBZ (merge) 31.7 | 35.9 | 33.7
56 RBR TO LS NNS LS z111— RBR TO, z111— LS NNS LS 31.8 | 36.1 | 33.8
57 VB VB VB WRB NNS RP z113— VB VB VB, 2113 — WRB NNS RP 319 | 36.2 | 339
58 | SYMNNSCD CD NNS WP NNS CD| z115— SYM NNS CD CD, z115— NNS WP NNS CD 323 36.7 | 344
59 | WRB NNS PRP VB NNSPDTNNS TO| z117— WRB NNS PRP VB, z117- NNS PDT NNS TO|| 32.5 36.9 | 345
60 117 WRB NNS TO z117— WRB NNS TO 326 | 37.0 | 347
61 NNS 113 NNS PRP VB PRP z121— NNS z113, 2121~ NNS PRP VB PRP 327 | 37.1 | 347
62 z115 NNS VB NNS RBR z115— NNS VB NNS RBR 32.9 37.4 | 35.0
63 z115 NNS VB NNS WRB z115— NNS VB NNS WRB 326 | 37.0 | 347
64 z117 NNS UH TO z117— NNS UH TO 33.0 375 |35.1
65 z115 NNS VB NNS VB z115— NNS VB NNS VB 32.8 37.2 | 349

Figure 4.3: A run of the GEEDY-MERGE system.




4.2. GREEDY-MERGE

N-bar or zero determiner NP
zNN — NN | NNS

ZNN — JJ zNN

ZNN — zNN zNN

NP with determiner
ZNP — DT zNN
ZNP — PRP$ zNN

Proper NP
zZzNNP — NNP | NNPS
ZNNP — zNNP zNNP

PP

zPP— zIN zNN
zPP— zIN zNP
zPP— zIN zNNP

verb groups / intransitive VPs
zV — VBZ | VBD | VBP

zV — MD VB

zV — MD RB VB

zV — zV zRB

zV — zV zVBG

55

Transitive VPs
(complementation)
zZVP — zV JJ

zZVP — zV zZNP
zZVP — zV zZNN
ZVP — zV zPP

Transitive VPs
(adjunction)
zVP — zRB zVP
ZVP — zVP zPP

Intransitive S
zSi— PRP zV
ZSi— zNP zV
ZSi— zZNNP zV

Transitive S
zS— zZNNP zVP
zS— zNN zVP
zS— PRP zVP

Figure 4.4: A grammar learned byREEDY-MERGE
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N-bar or zero-determiner NP
zNN — NN | NNS

ZNN — zNN zNN

ZNN — JJ zNN

Common NP with determiner
ZNP — DT zNN
ZNP — PRP$ zNN

Proper NP
ZNNP — zNNP zNNP
ZNNP — NNP

PP

zPP— zIN zNN
zPP— zIN zNP
zPP— zIN zNNP

Transitive Verb Group

zVt — VBZt | VBDt | VBPt
zVt — MD zVBt

zVt — zVt RB

Intransitive Verb Group
zVP — VBZ | VBD | VBP
zVP — MD VB

zZVP — zVP zVBN'

VP adjunction
zVP — RB zVP
zVP — zVP RB
zVP — zVP zPP
zVP — zVP zJJ

VP complementation
zVP — zVt zZNP
zVP — zVt zNN

S

zS— zNNP zVP
zS— zNN zVP
zS— zNP zVP
zS— DT zVP

2S— CC zS
zS— RB zS

S-bar
ZVP — IN zS?2

1 - wrong attachment level
2 - wrong result category

Figure 4.5: A grammar learned byRGEDY MERGE (with verbs split by transitivity).
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» Alternate analyses. The system almost invariably fornte @goups, mergingiD
VB sequences with single main verbs to form verb group comstitu(argued for at
times by some linguists (Halliday 1994)). Alsers are sometimes attachedNes
below determiners (which is in fact a standard linguistialgsis (Abney 1987)). It
is not always clear whether these analyses should be coedidestakes.

» Over-merging. These errors are the most serious. Sinogeat step two sequences
are merged, the process will eventually learn the grammarevh — X X and
X — (any terminal). However, very incorrect merges are somegimade relatively
early on (such as mergingps with PPs, or merging the sequences NNP IN and
IN).

A serious issue with 8EEDY-MERGE is that the grammar learned is symbolic, not
probabilistic. Any disambiguation is done arbitrarily. &refore, even adding a linguisti-
cally valid rule can degrade numerical performance (sameidramatically) by introduc-
ing ambiguity to a greater degree than it improves coveragés issue, coupled with the
many omissions in these grammars, emphasizes the degrdedo @yeballing grammar
snapshots can be misleadingly encouraging.

4.3 Discussion and Related Work

There is a great deal of previous work on structure-seardhads, and it must be em-
phasized that while the preceding system is broadly reptatee, many of its flaws are
overcome by some prior work or other. Wolff (1988) presemtsoaerview of much of
Wolff's work up to that point. His program SNPR is a chunkingt®m, which has two
operations: folding, which is like the merge above, and gaimtion, which is like the re-
parsing step above. His system is not statistical, thoudbeat prioritize operations based
on corpus frequency. The most striking idea present in hikwadhich is missing here
is that generalizations which are not fully attested candteacted in a repair operation,
allowing, in principle, for early mistakes to be undone tatethe process. His work is in-
tended to be a cognitively plausible account of languageiaitpn using minimal native
bias. Other authors guide structure searches using arcgxoimpression-based criterion,
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preferring to introduce rules which increase the likelidad the grammar given the data.
(Stolcke and Omohundro 1994) describes Bayesian modeajinggmwhere the increase in
data likelihood is balanced against an MDL-style prior anedels (which prefers simpler
models). Chen (1995), Kit (1998), and Langley and Strom&600) present more recent
MDL approaches; these methods have in common that they diepot to scale to real text,
and can suffer from the tendency to chunk common functionasulike IN DT, together
early on. As Alex Clark has pointed out (Clark 2001b), it i$ the use of MDL that is prob-
lematic, but rather itgreedyuse. Magerman and Marcus (1990), which is otherwise along
the same lines, has an innovative mal-rule approach whitld® certain such problematic
sequences from being wrongly analyzed as constituentallfilark (2001a) presents a
hybrid system which uses an MDL search in conjunction witributional methods (see
chapter 3). For a more thorough survey, see Clark (2001b).



Chapter 5

Constituent-Context Models

51 PreviousWork

In contrast with the relative success of word-class legrmirethods, induction of syntax
has proven to be extremely challenging. Some of the eadiedtmost important signs
of discouragement from statistical parameter search rdsthwre the results of Lari and
Young (1990). Their work showed that even simple artificiglgmars could not be re-
liably recovered using EM over the space of PCFGs (usingrtbielé-outside algorithm:
see Manning and Schitze (1999) for an introduction). Télpm wasn’t with the model
family: Charniak (1996) showed that a maximume-likelihoddA& read off of a treebank
could parse reasonably well, and most high-performanceepsaihave, strictly speaking,
been in the class of PCFG parsing. Therefore the problem itleex evith the use of EM
as a search procedure or with some mismatch between ddthdib@ and grammar qual-
ity. Either way, their work showed that simple grammars wesied to recover in a fully
unsupervised manner.

Carroll and Charniak (1992) tried the PCFG induction apghoan natural language
data, again with discouraging results. They used a straituestricted PCFG in which
the terminal symbols were parts-of-speech and the nonitatewere part-of-speech pro-
jections. That is, for every part-of-speextthere was a non-terminal, with the rewrites
restricted to the formg& — X Y andX — Y X (plus unary terminal rewrites of the form
— X). These configurations can be thought of as head-argumewxhatents, wherg is

59
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S End Span Label Constituent Context]
. (0,5 s NN NNS VBD IN NN o—0
NP VP 0123 45 (0,2 NP NN NNS ©—VBD
0 (25 vp VBD IN NN NNS — o
— T — T 1 (35 PP IN NN VBD -0
NN NNS VBD PP £ (0,) NN NN ©—NNS
T~ h 3 21,2§ NNS NNS NN—VBD
2,3 VvBD VBD NNS —IN
IN NN 4 (34 IN IN VBD —NN
‘ ‘ 5 (45 NN NNS IN—¢

o Factory ; payrolls 5 fell 3 in 4, September;

(@) (b) (©)

Figure 5.1: Parses, bracketings, and the constituenextr@presentation for the sentence,
“Factory payrolls fell in September.” Shown are (a) an exkparse tree, (b) its associated
bracketing, and (c) the yields and contexts for each camstitspan in that bracketing.
Distituent yields and contexts are not shown, égtmodeled.

the head. In fact, trees in this grammar are isomorphic tedgncy trees which specify
the attachment order for heads with multiple argumentsl@il999). The hope was that,
while the symbols in an arbitrary PCFG do not have argriori meaning or structural

role, symbols in this dependency grammar are not stru¢yusgmmetric — each one is

anchored to a specific terminal symbol. Carroll and Chardedcribe experiments where
many such grammars were weighted randomly, then re-esitimating EM. The result-

ing grammars exhibited wide variance in the structurenkls@diand in the data likelihood
found. Parsing performance was consistently poor (acegrtti their qualitative evalua-

tion). Their conclusion was that the blame lay with the dtites search problem: EM is a
local maximization procedure, and each initial PCFG cogweérto a different final gram-

mar. Regardless of the cause, the results did not sugge&t@#as induction was going to

be straightforwardly effective.

Other related parameter search work is discussed in se&tia?, but it is worth further
considering the Carroll and Charniak experiments and tebeare. One important advan-
tage of their formulation (that they did not exploit) is thabdom initial rule weights are not
actually needed. In the case of unrestricted binary-briagddCFGs, such as with the Lari
and Young (1990) experiments, one considers a full binaayngnar over symbol$x;}.

If all rules X; — X, X, have exactly equal initial probability, that initial parater vector
will be an unstable symmetric fixed point for EM. Thereforadam noise is required for
symmetry-breaking, to get the optimization started. Thaat the case for the Carroll and
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Charniak grammars. While the parameter space is certaddied with local maxima, and
therefore the initial grammar weights do matter, there islarious uniform starting point,
where all rules have equal starting probability. Beginrfnogn that uniform initializer, EM

will find some solution which we might hope will correspondattigher quality grammar
than most random initializations produce. This hope is bamt in practice: as figure 5.4
shows under the nanEeP-PCFG their method substantially outperforms a random base-
line. It does not break the right-branching baseline, h@reand we can ask why that
might be. One cause is certainly that the grammar itselfpsesentationally lacking; we
will discuss this further in chapter 6. Section 5.3.6 disassanother possible issue: a flat
grammar initialization gives rise to a very un-language-fposterior over trees.

The distributional clustering of words (chapter 3) has provemarkably robust for
discovering patterns which at least broadly approximatssital parts-of-speech. It is
therefore very appealing to try to extend linear distribaél techniques to levels of syn-
tax higher than word-classes. Recall the left column of 83818, which shows the most
similar tag sequences according to the Jensen-Shannageine of their local linear tag
signatures. This list makes one optimistic that constits&guences with very similar
contexts will tend to be of the same constituent type. Fompta, the top three pairs are
noun groups, prepositional phrases, and determineringmpun phrases. The subsequent
examples include more correct noun and prepositional plpass, with some possessive
constructions and verb phrases scattered among them diritiegask of taking constituent
sequences and clustering them into groups like noun-pheaskverb phrases is not much
harder than clustering words into word classes. The proletimat to produce lists like
these, we need to know which subspans of each sentence atgwemts. If we simply
consider all subspans of the sentences in our corpus, nopstisee tokens will not be con-
stituent tokens. The right column of figure 3.2 shows the sege pairs with most similar
contexts, using all subspans instead of constituent sasspaain we see pairs of similar
constituents, like the first pair of proper noun phrases. él@y we also see examples
like the second pair, which are two non-constituent segegnit's no surprise these non-
constituent, odistituent pairs have similar context distributions — if we had to sis
them, they are in some sense similar. But a successful grammehaction system must
somehow learn which sequence types should be regularlyimbedding trees, and which
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should not. That is, we need to form coherent tree-strudtaralyses, and distributional
clustering of sequences, robust though it may be, will net gis trees.

One way to get around this limitation of distributional dkersng is to first group se-
guences into types by signature similarity, then diffaaetthe “good” and “bad” con-
stituent types by some other mechanism. A relatively swfakspproach along these
lines is described in Clark (2001a). Clark first groups segadypes, then uses a mutual
information criterion to filter constituents from distituts. The good sequences are then
used to build up a PCFG according to a MDL measure. The expeatahresults of Clark’s
system are discussed later in this chapter, but the ovexeding performance is rather low
because the discovered grammars are extremely sparse.

5.2 A Generative Constituent-Context M odel

In this chapter, we describe a model which is designed to augrthe robustness of dis-
tributional clustering with the coherence guarantees odipater search. It is specifically
intended to produce a more felicitous search space by rerg@sd much hidden structure
as possible from the syntactic analyses. The fundamergahgstion is a much weak-
ened version of a classic linguistic constituency testsl{®d 1988): constituents appear
in constituent context. A particular linguistic phenomertbat the system exploits is that
long constituents often have short, common equivalengsraforms which appear in sim-
ilar contexts and whose constituency is easily discoveoedjaranteed). Our model is
designed to transfer the constituency of a sequence dittedats containing context, which
is intended to then pressure new sequences that occur indhtExt into being parsed as
constituents in the next round. The model is also designedpit the successes of dis-
tributional clustering, and can equally well be viewed amdalistributional clustering in
the presence of no-overlap constraints.
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5.2.1 Constituents and Contexts

Unlike a PCFG, our model describes all contiguous subsemseof a sentencesgang,
including empty spans, whether they are constituents ditubsits. A span encloses a se-
guence of terminals, grield, o, such aT JJ NN A span occurs in aontextr, such as
©—VBZ, wherez is the ordered pair of preceding and following terminalsi¢notes a sen-
tence boundary). Aracketingof a sentence is a boolean matf# which indicates which
spans are constituents and which are not. Figure 5.1 shoasrsa pf a short sentence, the
bracketing corresponding to that parse, and the labelsisyiend contexts of its constituent
spans.

Figure 5.2 shows several bracketings of the sentence irefiglr. A bracketing3 of
a sentence ison-crossingf, whenever two spans cross, at most one is a constituent in
B. A non-crossing bracketing tsee-equivalenif the size-one terminal spans and the full-
sentence span are constituents, and all size-zero spadsstteents. Figure 5.2(a) and
(b) are tree-equivalent. Tree-equivalent bracketiBgsorrespond to (unlabeled) trees in
the obvious way. A bracketing @nary if it corresponds to a binary tree. Figure 5.2(b) is
binary. We will induce trees by inducing tree-equivaleradietings.

Our generative model over sentenédsas two phases. First, we choose a brackefing
according to some distributid( B) and then generate the sentence given that bracketing:

P(S, B) = P(B)P(S|B)

Given B, we fill in each span independently. The context and yieldaghespan are inde-
pendent of each other, and generated conditionally on thstitoencyB;; of that span.

P(S|B) = H(i,j)ESp(ms(S) P(Ozij, Lij |BZ]>

= H(ij>P(Oéij|Bij)P(xij|Bij)

The distributionP («;;| B;;) is a pair of multinomial distributions over the set of all pitde
yields: one for constituents3; = c) and one for distituentsH;; = d). Similarly for
P(xz;;|B;;) and contexts. The marginal probability assigned to thees®etS is given by
summing over all possible bracketingssf P(S) = >, P(B)P(S|B). Note that this is
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End End End
012345 0123475 012345
0 0 0
= 1 1 1
5 2 52 g
n 3 n 3 n 3
4 4 4
5 5 5
(a) Tree-equivalent (b) Binary (c) Crossing

Figure 5.2: Three bracketings of the sentence “Factoryqgtiayfiell in September.” Con-
stituent spans are shown in black. The bracketing in (b)espwnds to the binary parse
in figure 5.1; (a) does not contain thi2,5 vpP bracket, while (c) contains @,3) bracket
crossing thavp bracket.

a more severe set of independence assumptions than, sayaineabayes model. There,
documents positions are filled independently, and thetreanleasily be an ungrammatical
document. Here, the result need not even be a structurailsistent sentence.

To induce structure, we run EM over this model, treating #r@ancess as observed
and the bracketingB as unobserved. The parametérsf the model are the constituency-
conditional yield and context distributio®¥«|b) andP(z|b). If P(B) is uniform over all
(possibly crossing) bracketings, then this procedure béllequivalent to soft-clustering
with two equal-prior classes.

There is reason to believe that such soft clusterings aldhenet produce valuable
distinctions, even with a significantly larger number ofssles. The distituents must neces-
sarily outnumber the constituents, and so such distribaticlustering will result in mostly
distituent classes. Clark (2001a) finds exactly this eff@atl must resort to a filtering heu-
ristic to separate constituent and distituent clustersufiderscore the difference between
the bracketing and labeling tasks, consider figure 5.3. th plots, each pointis a frequent
tag sequence, assigned to the (normalized) vector of itexbftlequencies. Each plot has
been projected onto the first two principal components ofdspective data set. The left

lviewed as a model generatisgntencesthis model is deficient, placing mass on yield and context
choices which will not tile into a valid sentence, eitherdase specifications for positions conflict or because
yields of incorrect lengths are chosen. We might in prireignormalize by dividing by the mass placed on
proper sentences and zeroing the probability of impropacketings. In practice, there does not seem to be
an easy way to carry out this computation.
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o Usually a Constituent
- ® o OO .« x Rarely a Constituent
o o oo
% go ¢ %O(@ %?f ':‘g 9@': % xg" 0
© .X- »® X ;.E.f °© x OXO
o N x o8 x
'X’ﬁ(. x X R ><O><%o X0 X @
X & % X X X %o X B x o
55X ;{; x 9 ox )
o NP x XK KR Xy OX 0
VP X ° L
x PP o ©
(a) Constituent Types (b) Constituents vs. Distituents

Figure 5.3: Clustering vs. detecting constituents. Thetrfreguent yields of (a) three
constituent types and (b) constituents and distituentgoagext vectors, projected onto
their first two principal components. Clustering is effeetat labeling, but not detecting,
constituents.

plot shows the most frequent sequences of three constilymeg. Even in just two dimen-
sions, the clusters seem coherent, and it is easy to behaveéhey would be found by a
clustering algorithm in the full space. On the right, sequesrhave been labeled according
to whether their occurrences are constituents more or fabg time than a cutoff (of 0.2).
The distinction between constituent and distituent seemnshrtess easily discernible.

We can turn what at first seems to be distributional clusgeniro tree induction by
confining P(B) to put mass only on tree-equivalent bracketings. In pdeiciconsider
Pnin(B) which is uniform over binary bracketings and zero elsewhdfeve take this
bracketing distribution, then when we sum over data corgyist we will only involve
bracketings which correspond to valid binary trees. Thésrietion is the basis for the next
algorithm.

5.2.2 Thelnduction Algorithm

We now essentially have our induction algorithm. We t8k&) to be Py, (B), so that all
binary trees are equally likely. We then apply the EM aldont

E-Step: Find the conditional completion likelihood¥ B|S, ©) according to the current
©.

M-Step: Fix P(B|S, ©) and find the®’ which maximizesy _ , P(B|S, ©) log P(S, B|©’).
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Figure 5.4: Bracketing ffor various models on the&zs10 data set.

The completions (bracketings) cannot be efficiently enaeer, and so a cubic dynamic
program similar to the inside-outside algorithm is useddiculate the expected counts of
each yield and context, both as constituents and distgysae the details in appendix A.1).
Relative frequency estimates (which are the ML estimateshie model) are used to set
©.

5.3 Experiments

The experiments that follow used tines 110 data set, as described in chapter 2, using the
alternate unlabeled metrics described in section 2.2.8) thie exception of figure 5.15
which uses the standard metrics, and figure 5.6 which repartders given by thevAaLB
program. The basic experiments do not label constituemisadvantage to having only a
single constituent class is that it encourages constisuginbne type to be proposed even
when they occur in a context which canonically holds anotigpe. For examplenNps

and Pprs both occur between a verb and the end of the sentence, apndahetransfer
constituency to each other through that context.
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Figure 5.5: Scores for CCM-induced structures by span $ize.drop in precision for span
length 2 is largely due to analysis insides which is omitted by the treebank. Also shown
is F, for the induced PCFG. The PCFG shows higher accuracy on speatis, while the
CCM is more even.

Figure 5.4 shows the;Fscore for various methods of parsirRaNDOM chooses a tree
uniformly at random from the set of binary tree$his is the unsupervised baselimep-
PCFG s the result of duplicating the experiments of Carroll artthiak (1992), using
EM to train a dependency-structured PCFG&BRANCH and RBRANCH choose the left-
and right-branching structures, respectiveRBRANCH is a frequently used baseline for
supervisegharsing, but it should be stressed that it encodes a signifiaet about English
structure, and an induction system need not beat it to clalegeee of successcm is our
system, as described abogiP-PCFGis a supervised PCFG parser trained on a 90-10 split
of this data, using the treebank grammar, with the Viterlbseaight-binarized. uBOUND
is the upper bound of how well a binary system can do agairstrétebank sentences,
which are generally flatter than binary, limiting the maxiimprecision.

CCM is doing quite well at 71.1%, substantially better than tdigfanching structure.
One common issue with grammar induction systems is a tegydenthunk in a bottom-
up fashion. Especially since trecm does not model recursive structure explicitly, one
might be concerned that the high overall accuracy is due igladctcuracy on short-span

°This is different from making random parsing decisions,shigave a higher score of 35%.
Swithout post-binarization, the,Fscore was 88.9.
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System UP UR R| CB
EMILE 51.6 16.8 25.4 0.84
ABL 43.6 35.6 39.2 2.12
cbc-40 53.4 34.6 42.0 1.46
RBRANCH | 39.9 46.4 42.9 2.18
CCM 554 476 51.2| 1.45

Figure 5.6: ComparativaTis parsing results.

constituents. Figure 5.5 shows that this is not true. Rekalbs slightly for mid-size con-
stituents, but longer constituents are as reliably propp@seshort ones. Another effect
illustrated in this graph is that, for span 2, constitueragenlow precision for their recall.
This contrast is primarily due to the single largest differe between the system’s induced
structures and those in the treebank: the treebank doesars# mtonPs such aDT JJ
NN, while our system does, and generally does so correctlgfifgieng N units like JJ NN
This overproposal drops span-2 precision. In contrastrdigu5 also shows the; For
DEP-PCFG which does exhibit a drop in;Fover larger spans.

The top row of figure 5.8 shows the recall of non-trivial breisk split according the
brackets’ labels in the treebank. Unsurprisingly, recall is highest, but other categories
are also high. Because we ignore trivial constituents, tdmeparatively lows represents
only embedded sentences, which are somewhat harder even fovisegesystems.

To facilitate comparison to other recent work, figure 5.6vehohe accuracy of our
system when trained on the same WSJ data, but tested arrtheorpus, and evaluated
according to th&vAaLB program.EMILE andABL are lexical systems described in (van Za-
anen 2000, Adriaans and Haas 1999), both of which operataramal pairs of sentences,
deducing constituents from regions of variatioobc-40, from (Clark 2001a), reflects
training on much more data (12M words), and is describe iti@e&.1. The F numbers
are lower for this corpus and evaluation metfdstill, ccm beats not onl\RBRANCH (by
8.3%), but the next closest unsupervised system by slightise.

4The primary cause of the lower; s that theaTIs corpus is replete with span-ones; adding an extra
bracket aroundll single words raises owlrvALB recall to 71.9; removing all unaries from the&is gold
standard gives anFof 63.3%.
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Rank | Overproposed Underproposed

1 JJ NN NNP POS

2 MD VB TOCDCD

3 DT NN NN NNS

4 NNP NNP NN NN

5 RB VB TO VB

6 JINNS IN CD

7 NNP NN NNP NNP POS
8 RB VBN DT NN POS
9 IN NN RB CD

10 POS NN INDT

Figure 5.7: Constituents most frequently over- and undepgsed by our system.

5.3.1 Error Analysis

Parsing figures can only be a component of evaluating an emgspd induction system.
Low scores may indicate systematic alternate analysesrrithn true confusion, and the
Penn treebank is a sometimes arbitrary or even inconsigtéthstandard. To give a better
sense of the kinds of errors the system is or is not making, avelaok at which se-
guences are most often overproposed, or most often ungeged, compared to the tree-
bank parses.

Figure 5.7 shows the 10 most frequently over- and undergseg sequences. The sys-
tem’s main error trends can be seen directly from these tsis. lilt formsmb vB verb
groups systematically, and it attaches the possessivelpdd the right, like a determiner,
rather than to the left.It provides binary-branching analyses withirs, normally result-
ing in correct extraN constituents, likeyd NN, which are not bracketed in the treebank.
More seriously, it tends to attach post-verbal prepos#tiionthe verb and gets confused by
long sequences of nouns. A significant improvement over ssarleer systems (both ours
and other researchers’) is the absence of subject-verlpgyathich disappeared when we
switched taP,;;; (B) for initial completions (see section 5.3.6); the more bed¢mhsubject-
verb analysis had a substantial combinatorial advantatieRuj, (B).

SLinguists have at times argued for both analyses: Hallid@@4) and Abney (1987), respectively.
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5.3.2 Multiple Constituent Classes

We also ran the system with multiple constituent classesgus slightly more complex
generative model in which the bracketing generates a lapélia mapping from spans to
label classe€’) which then generates the constituents and contexts.

P(S, L, B) = P(B)P(L|B)P(S|L)
P(L|B) = H@’jmmm(s)P(Lij|Bz'j)

P(S|L) = H<i7j>espans(5‘) P(Ozij, .CE'Z]|L”)

= H<Z.j>P(Oéij|Lij)P(~”Cij\Lz‘j)

The set of labels for constituent spans and distituent spemgorced to be disjoint, so
P(L;j|B;;) is given by

(

1 if Bij = false Lij =d

0 if B;; = falsen L;; # d
P(L;;|Bij) = Y 17

0 |f BZ] - trUE/\ Lij - d

whered is a distinguished distituent-only label, and the otheelalare sampled uniformly
at each constituent span.

Intuitively, it seems that more classes should help, bynafig the system to distinguish
different types of constituents and constituent contetavever, it seemed to slightly hurt
parsing accuracy overall. Figure 5.8 compares the perfioceéor 2 versus 12 classes; in
both cases, only one of the classes was allocated for distgu Overall I- dropped very
slightly with 12 classes, but the category recall numbedicate that the errors shifted
around substantiallypp accuracy is lower, which is not surprising considering tie
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Classes Tags Precision Recall F | NP Recall PP Recall VP Recall S Recall
2 Treebank 63.8 80.2 711 834 78.5 78.6 40.7
12 Treebank 63.6 80.0 70.9 822 59.1 82.8 57.0
2 Induced 56.8 71.1 63.2 528 56.2 90.0 60.5

Figure 5.8: Scores for the 2- and 12-class model with Trdetsgs, and the 2-class model
with induced tags.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

NNP NNP NN VBD DT NN NNP NNP CDCD VBN IN MD VB JJ NN
NN IN NN NN JJ NNS NNP NNP NNP CD NN JJIN MDRB VB | JJNNS
INDT NNS VBP | DT NNS CC NNP INCD CD DT NN VBN IN JJ JI NN
DT JJ NNS VBD| DT JJ NN POS NN CD NNS JJCC WDT VBZ | CD NNS
NN VBZ TO VB NN NNS | NNP NNP NNP NNP| CDCDINCD CD | DT JJNN JJIN NNP NN

Figure 5.9: Most frequent members of several classes found.

tend to appear rather optionally and in contexts in whictegtbasier categories also fre-
guently appear. On the other hand, embedded sentenceisesalistantially higher, pos-
sibly because of more effective use of the top-level sem®mcich occur in the context

=0,

The classes found, as might be expected, range from clehatyifiable to nonsense.
Note that simply directly clustering all sequence types it? categories based on their
local linear distributional signatures produced almosirely the latter, with clusters rep-
resenting various distituent types. Figure 5.9 shows s¢weéthe 12 classes. Class 0 is the
model’s distituent class. Its most frequent members arexaphabvious distituentsi{ DT,

DT JJ IN DT, NN vVBZ) and seemingly good sequences ller NNP. However, there are
many sequences of 3 or maxelP tags in a row, and not all adjacent pairs can possibly be
constituents at the same time. Class 1 is mainly comN®Bequences, class 2 is proper
NPs, class 3 isvPs which involve numbers, and class 6Nsequences, which tend to be
linguistically right but unmarked in the treebank. Class 4 imix of seemingly goonps,
often from positions likesyBz—NN where they wer@ot constituents, and other sequences
that share such contexts with otherwise gowdsequences. This is a danger of not jointly
modeling yield and context, and of not modeling any kind clursive structure: our model
cannot learn that a sequence is a constituent only in cextaitexts (the best we can hope
for is that such contexts will be learned as strong distitwemtexts). Class 5 is mainly
composed of verb phrases and verb groups. No class cordspoeatly taers: perhaps
because they have no signature contexts. The 2-class nsceféddtive at identifying them
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only because they share contexts with a range of other toastitypes (such asPs and
VPS).

5.3.3 Induced Parts-of-Speech

A reasonable criticism of the experiments presented safat,some other earlier work,
is that we assume treebank part-of-speech tags as inpw.ciiiticism could be two-fold.
First, state-of-the-art supervised PCFGs do not perforariypeso well with their input
delexicalized. We may be reducing data sparsity and makewmgier to see a broad picture
of the grammar, but we are also limiting how well we can pdgsib. It is certainly worth
exploring methods which supplement or replace tagged whtlexical input. However,
we address here the more serious criticism: that our restdta from clues latent in the
treebank tagging information which are conceptually postéo knowledge of structure.
For instance, some treebank tag distinctions, such asleaftP) vs. prepositionify) or
predeterminerfDT) vs. determinerT) or adjective §J), could be said to import into the
tag set distinctions that can only be made syntactically.

To show results from a complete grammar induction systemala® did experiments
starting with an automatic clustering of the words in thelr@nk (details in section 2.1.4.
We do not believe that the quality of our tags matches thdie@better methods of Schiitze
(1995), much less the recent results of Clark (2000). Nbedts, using these tags as
input still gave induced structure substantially abovétrigranching. Figure 5.8 shows
the performance with induced tags compared to correct agsrall R has dropped, but,
interestingly,vP and s recall are higher. This seems to be due to a marked difference
between the induced tags and the treebank tags: nouns #ieretamong a dispropor-
tionately large number of induced tags, increasing the rmrrobcommonnpP sequences,
but decreasing the frequency of each.

5.3.4 Convergence and Stability

A common issue with many previous systems is their sensitigiinitial choices. While
the model presented here is clearly sensitive to the qualithe input tagging, as well
as the qualitative properties of the initial completiotigjaes not suffer from the need to
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Figure 5.10: Fis non-decreasing until convergence.

inject noise to avoid an initial saddle point. Training onatam subsets of the training data
brought lower performance, but constantly lower over egizd splits.

Figure 5.10 shows the overal|l Bcore and the data likelihood according to our model
during convergenc® Surprisingly, both are non-decreasing as the systemé®ratdicat-
ing that data likelihood in this model corresponds well witirse accuracy.Figure 5.12
shows recall for various categories by iteratiam.recall exhibits the more typical pattern
of a sharp rise followed by a slow fall, but the other categ®rafter some initial drops, all
increase until convergenéeThese graphs stop at 40 iterations. The time to convergence
varied according to smoothing amount, number of classabiags used, but the system
almost always converged within 80 iterations, usually ith0.

5.3.5 Partial Supervision

For many practical applications, supplying a few gold psreay not be much more expen-
sive than deploying a fully unsupervised system. To teseffext of partial supervision,
we trained the CCM model on 90% of thes1.0 corpus, and tested it on the remaining

5The data likelihood is not shown exactly, but rather we shHminear transformation of it calculated by
the system (internal numbers were scaled to avoid undetflow)

"Pereira and Schabes (1992) find otherwise for PCFGs.

8Models in the next chapter also show good correlation bewigelihood and evaluation metrics, but
generally not monotonic as in the present case.
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Figure 5.11: Partial supervision

10%. Various fractions of that 90% were labeled with theildgoeebank parses; during
the learning phase, analyses which crossed the brackete ¢dlieled parses were given
zero weight (but the CCM still filled in binary analyses irsitht gold trees). Figure 5.11
shows k on the held-out 10% as supervision percent increased. Acggoes up initially,
though it drops slightly at very high supervision levels.eThost interesting conclusion
from this graph is that small amounts of supervision do natally seem to help the CCM
very much, at least when used in this naive fashion.

5.3.6 Details

There are several details necessary to get good perfornoamod this model.

I nitialization

The completions in this model, just as in the inside-outsigerithm for PCFGs, are dis-
tributions over trees. For natural language trees, thestghiitions are very non-uniform.
Figure 5.13 shows empirical bracketing distributions foee languages. These distribu-
tions show, over treebank parses of 10-word sentencesrabgoh of trees with a con-
stituent over each start and end point. On the other handeflgd4 (b) shows the bracket
fractions in a distribution which puts equal weight on eaghlgdbeled) binary tree. The
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Figure 5.12: Recall by category during convergence.

most important difference between the actual and treestmibracketing distributions is
that uniform trees are dramatically more likely to have cardonstituents, while in natural
language constituents tend to either start at the begirofiagentence or end at the end of

the sentence.

What this means for an induction algorithm is important. Mosiform” grammars,
such as a PCFG in which all rewrites have equal weight, or otreant proposal with the
constituent and context multinomials being uniform, wiivie the property that all trees
will receive equal scores (or roughly so, modulo any ingiatturbation). Therefore, if we
begin with an E-step using such a grammar, most first M-stelbd&v presented with a
posterior that looks like figure 5.14(b). If we have a bettkya about what the posteriors
should look like, we can begin with an E-step instead, sucthasone where all non-
trivial brackets are equally likely, shown in figure 5.14(#)is bracket distribution does
not correspond to any distribution over binary trees).

Now, we don’t necessarily know what the posterior shouldldee, and we don’t want
to bias it too much towards any particular language. Howeverfound that another rel-
atively neutral distribution over trees made a good in&l In particular, consider the
following uniform-splitting process of generating binarges overk terminals: choose
a split point at random, then recursively build trees by frigcess on each side of the
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Figure 5.13: Empirical bracketing distributions for 10nd@sentences in three languages
(see chapter 2 for corpus descriptions).

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 1 5 6 7 8 9 10
0 SEIEEEEEE o RIEEEIEIEEIR 0| RREEEEREE
1 Djoojoo|oo|jo 1 Jolo|la|lo oo 1 ola|ele]s|s|o
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3 Oojo|ojo|g 3 Odojo|o|(o|o 3 Olo|lalo|o|o
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. oo 7 oo 7 i
3 O 8 O N D
9 9 9
(a) Uniform over Brackets (b) Uniform over Trees (c) Unifoawver Splits

Figure 5.14: Bracketing distributions for several notiohsuniform”: all brackets having
equal likelihood, all trees having equal likelihood, antratursive splits having equal
likelihood.
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Initialization Precision Recall F CB

Tree Uniform 55.5 705 62.1 1.58
Bracket Uniform 55.6 70.6 62.2 1.57
Split Uniform 64.7 822 724 0.99
Empirical 65.5 83.2 73.3 1.00

Figure 5.15: CCM performance omsJLO as the initializer is varied. Unlike other num-
bers in this chapter, these values are micro-averaged &itréloket level, as is typical for
supervised evaluation, and give credit for the whole-ser@dracket).

split. This process gives a distributidt,;; which puts relatively more weight on unbal-
anced trees, but only in a very general, non language-sp&ady. The posterior of the
split-uniform distribution is shown in figure 5.14 (c). Amatr useful property of the split
distribution is that it can be calculated in closed form &ilstin appendix B.2).

In figure 5.13, aside from the well-known right-branchingdency of English (and
Chinese), a salient characteristic of all three languagydsat central brackets are relatively
rare. The split-uniform distribution also shows this pnapewhile the bracket-uniform
distribution and the “natural” tree-uniform distributiao not. Unsurprisingly, results
when initializing with the bracket-uniform and tree-uniio distributions were substan-
tially worse than using the split-uniform one. Using theuatfposterior was, interestingly,
only slightly better (see figure 5.15).

While the split distribution was used as an initial comgatiit was not used in the
model itself. It seemed to bias too strongly against baldsteictures, and led to entirely
linear-branching structures.

Smoothing

The smoothing used was straightforward, but very importkot each yieldy or context
x, we added 10 counts of that item: 2 as a constituent and 8 adient. This reflected
the relative skew of random spans being more likely to betdesits.
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Sentence Length

A weakness of the current model is that it performs much betteshort sentences than
longer ones: Fdrops all the way to 53.4% on sentences of length up to 15 @eef6.9 in
section 6.3). One likely cause is that as spans get longanm, type counts get smaller, and
so the parsing is driven by the less-informative contexttimainials. Indeed, the primary
strength of this system is that it chunks simpkeandpp groups well; longer sentences are
less well-modeled by linear spans and have more complexrcatisons: relative clauses,
coordination structures, and so on. The improved modelsapter 6 degrade substantially
less with increased sentence length (section 6.3).

5.4 Conclusions

We have presented a simple generative model for the unsspdristributional induction
of hierarchical linguistic structure. The system achieesabove-baseline unsupervised
parsing scores on thwsJl0 andATIS data sets. The induction algorithm combines the
benefits of EM-based parameter search and distributionatering methods. We have
shown that this method acquires a substantial amount oéciostructure, to the point that
the most frequent discrepancies between the induced tnektha treebank gold standard
are systematic alternate analyses, many of which are Bitigally plausible. We have
shown that the system is not overly reliant on supervised @ $put, and demonstrated
increased accuracy, speed, simplicity, and stability canegbto previous systems.



Chapter 6

Dependency M odels

6.1 Unsupervised Dependency Parsing

Most recent work (and progress) in unsupervised parsingcbase from tree or phrase-
structure based models, but there are compelling reasoesdnsider unsupervise@pen-
dencyparsing as well. First, most state-of-the-supervisedgarsers make use of specific
lexical information in addition to word-class level infoation — perhaps lexical informa-
tion could be a useful source of information for unsupenviseethods. Second, a central
motivation for using tree structures in computational lirggics is to enable the extraction
of dependencies — function-argument and modification &tras — and it might be more
advantageous to induce such structures directly. Thirdveashow below, for languages
such as Chinese, which have few function words, and for wthiendefinition of lexical
categories is much less clear, dependency structures megsier to detect.

6.1.1 Representation and Evaluation

An example dependency representation of a short senteslcewsh in figure 6.1(a), where,
following the traditional dependency grammar notatioe,rggent or head of a dependency
is marked with the tail of the dependency arrow, and the dégretns marked with the ar-
rowhead (MeEuk 1988). It will be important in what follows to see thathua represen-
tation is isomorphic (in terms of strong generative cagac¢d a restricted form of phrase

79
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structure grammar, where the set of terminals and nontatsis identical, and every rule

is of the form X— XY or X — Y X (Miller 1999), giving the isomorphic representation

of figure 6.1(a) shown in figure 6.1(b)Depending on the model, part-of-speech categories
may be included in the dependency representation, as deddese, or dependencies may
be directly between words (bilexical dependencies). Belogvwill assume an additional
reserved nontermina&ooT, whose sole dependent is the head of the sentence. This sim-
plifies the notation, math, and the evaluation metric.

A dependency analysis will always consist of exactly as ntmpendencies as there are
words in the sentence. For example, in the dependencysteuntfigure 6.1(b), the depen-
dencies arg (RoOT, fell), (fell, payrollg, (fell, in), (in, Septembgr (payrolls, Factory}.
The quality of a hypothesized dependency structure canehiemevaluated by accuracy as
compared to a gold-standard dependency structure, bytinegpdine percentage of depen-
dencies shared between the two analyses.

It is important to note that the Penn treebanksidbinclude dependency annotations;
however, the automatic dependency rules from (Collins 1889sufficiently accurate to be
a good benchmark for unsupervised systems for the time l§ginggh see below for spe-
cific issues). Similar head-finding rules were used for Céenexperiments. The NEGRA
corpus, however, does supply hand-annotated dependenciuses.

Where possible, we report an accuracy figure for both dideatel undirected depen-
dencies. Reporting undirected numbers has two advantlggsit facilitates comparison
with earlier work, and, more importantly, it allows one tately obscure the effects of
alternate analyses, such as the systematic choice betwaeda and a main verb for the
head of a sentence (in either case, the two verbs would bedjriut the direction would
vary).

6.1.2 Dependency Models

The dependency induction task has received relativelg httention; the best known work
is Carroll and Charniak (1992), Yuret (1998), and PaskirD@0 All systems that we are

IStrictly, such phrase structure trees are isomorphic ndlatadependency structures, but to specific
derivations of those structures which specify orders @cdtinent among multiple dependents which share a
common head.
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VBD
/\

NNS VBD
R o~ o~
PN PN 7 O\ NN NNS VBD IN
NN NNS VBD IN NN ROOT | | [N
| | | | | Factory payrolls fell IN NN
Factory payrolls fell in September | |
in September
(a) Classical Dependency Structure (b) Dependency SteieBICF Tree
S
/\

NP VP

/\ /\
NN NNS VBD PP

| | | P
Factory payrolls fell IN NN

| |
in September

(c) CFG Structure

Figure 6.1: Three kinds of parse structures.

. . . .

. ROOT

Figure 6.2: Dependency graph with skeleton chosen, butsuootpopulated.

aware of operate under the assumption that the probabild@ydependency structure is the
product of the scores of the dependencies (attachmentlpirstructure. Dependencies
are seen as ordered (head, dependent) pairs of words, bstdhe of a dependency can
optionally condition on other characteristics of the stmoe, most often the direction of the
dependency (whether the arrow points left or right).

Some notation before we present specific models: a depepdas@ pair(h, a) of a
head and an argument, which are words in a sentenicea corpusS. For uniformity of
notation with chapter 5, words inare specified as size-one spansofor example the
first word would be)s;. A dependency structur® over a sentence is a set of dependen-
cies (arcs) which form a planar, acyclic graph rooted at ffexigl symboRoOT, and in
which each word s appears as an argument exactly once. For a dependencystrlict
there is an associated graghwhich represents the number of words and arrows between
them, without specifying the words themselves (see figu2g @A graphG and sentence
s together thus determine a dependency structure. The depepndtructure is the object
generated by all of the models that follow; the steps in threvdons vary from model to
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model.

Existing generative dependency models intended for umsigeel learning have chosen
to first generate a word-free graph then populate the senteneeonditioned on. For
instance, the model of Paskin (2002), which is broadly simib the semi-probabilistic
model in Yuret (1998), first chooses a graphuniformly at random (such as figure 6.2),
then fills in the words, starting with a fixed root symbol (asgd to be at the rightmost
end), and working downrr until an entire dependency structubeis filled in (figure 6.1a).
The corresponding probabilistic model is

P(D) = P(s,G)
= P(G)P(s|G)
= P(G) H P(i—18:]j-185, dir).

(i,,dir)eG

In Paskin (2002), the distributid?(G) is fixed to be uniform, so the only model parameters
are the conditional multinomial distributiori¥a|h, dir) that encode which head words
take which other words as arguments. The parameters foameftright arguments of
a single head are completely independent, while the pasaméir first and subsequent
arguments in the same direction are identified.

In those experiments, the model above was trained on oven@ils of raw newswire,
using EM in an entirely unsupervised fashion, and at greatpedational cost. However,
as shown in figure 6.3, the resulting parser predicted depenes at below chance level
(measured by choosing a random dependency structure)béloa-random performance
seems to be because the model links word pairs which haveniiginal information (such
as occurrences aongressandbill) regardless of whether they are plausibly syntactically
related. In practice, high mutual information between vgoisl often stronger between
two topically similar nouns than between, say, a prepas#iod its object (worse, it’s also
usually stronger between a verb and a selected prepositamthat preposition and its
object).
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Model | Dir.  Undir.
English (WSJ)

Paskin 01 39.7
RANDOM 41.7
Charniak and Carroll 92-inspired 44.7
ADJACENT 53.2
DMV 54.4
English (WSJ10)

RANDOM 30.1 456
ADJACENT 33.6 56.7
DMV 43.2 63.7
German (NEGRA10)

RANDOM 21.8 415
ADJACENT 326 51.2
DMV 36.3 55.8
Chinese (CTB10)

RANDOM 359 473
ADJACENT 30.2 47.3
DMV 425 54.2

Figure 6.3: Parsing performance (directed and undireaeeémidency accuracy) of various
dependency models on various treebanks, along with baselin

n W 7 7
P A T
h a a n n STOP sTOP 7
PN PN
i J k i J k i J i J
(a) (b) (©) (d)

Figure 6.4: Dependency configurations in a lexicalized: tag right attachment, (b) left
attachment, (c) right stop, (d) left stop.anda are head and argument words, respectively,
while i, 7, andk are positions between words. Not show is the step (if modleldetre
the head chooses to generate right arguments before left onthe configurations if left
arguments are to be generated first.
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The specific connection which argues why this model rougkdyris to maximize mu-
tual information is that in maximizing

P(D) = P(G) [[ Pliisilj—is;,dir)
(i,,dir)eG

it is also maximizing

P(D) P(G) [T jairnec Pli-18ilj-155, dir)

P(D) P(G)IL; P(i-15:)

which, dropping the dependence on directionality, gives

P(D) _ P(G)1lijecPli-15ilj-155)

P/(D) P(G) I, P(i—1s:)
P(i—18i,j-15))

11 P(i—15:)P(j-15;)

(4,7)€G

which is a product of (pointwise) mutual information terms.

One might hope that the problem with this model is that theadexical items are
too semantically charged to represent workable units ofesyic structure. If one were
to apply the Paskin (2002) model to dependency structuneserized simply on the
word-classes, the result would be isomorphic to the “deprogl PCFG” models described
in Carroll and Charniak (1992) (see section 5.1). In thesdetsp Carroll and Charniak
considered PCFGs with precisely the productions (discuabeve) that make them iso-
morphic to dependency grammars, with the terminal alphadiet simply parts-of-speech.
Here, the rule probabilities are equivalenttpY | X, right) andP(Y|X, left) respectively’
The actual experiments in Carroll and Charniak (1992) dorepbrt accuracies that we
can compare to, but they suggest that the learned grammesohextremely poor quality.
As discussed earlier, a main issue in their experiments hashey randomly initialized
the production (attachment) probabilities. As a resuétirtiearned grammars were of very

2There is another, more subtle distinction: in the Paskinkwarcanonical ordering of multiple attach-
ments was fixed, while in the Carroll and Charniak work atheltiment orders are considered to be different
(equal scoring) structures when listing analyses, givimglative bias in the Carroll and Charniak work to-
wards structures where heads take more than one argument.
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poor quality and had high variance. However, one nice ptgpsrtheir structural con-
straint, which all dependency models share, is that the sigribh the grammar are not
symmetric. Even with a grammar in which the productions argaily uniform, a sym-
bol X can only possibly have non-zero posterior likelihood ovearss which contain a
matching terminaX. Therefore, one can start with uniform rewrites and let titerac-
tion between the data and the model structure break thalisigimmetry. If one recasts
their experiments in this way, they achieve an accuracy of%4on the Penn treebank,
which is higher than choosing a random dependency strydiutéower than simply link-
ing all adjacent words into a left-headed (and right-bramghstructure (53.2%). That this
should outperform the bilexical model is in retrospect upgging: a major source of non-
syntactic information has been hidden from the model, acdraingly there is one fewer
unwanted trend that might be detected in the process of nizrigdata likelihood.

A huge limitation of both of the above models, however, id tiey are incapable
of encoding even first-order valence facts, valence heexrief) in a broad way to the
regularities in number and type of arguments a word or woadsctakes (i.e., including
but not limited to subcategorization effects). For examiiie former model will attach all
occurrences of “new” to “york,” even if they are not adjaceartd the latter model learns
that nouns to the left of the verb (usually subjects) attacthé verb. But then, given a
NOUN NOUN VERB sequence, both nouns will attach to the verb — there is no haty t
the model can learn that verbs have exactly one subject. Wetmm to an improved
dependency model that addresses this problem.

6.2 An Improved Dependency M odel

The dependency models discussed above are distinct froemdepcy models used inside
high-performance supervised probabilistic parsers irestwvays. First, in supervised
models, a head outward process is modeled (Eisner 199em£€d899). In such processes,
heads generate a sequence of arguments outward to the tefhrconditioning on not

only the identity of the head and direction of the attachmbut also on some notion of
distance or valence. Moreover, in a head-outward moded,natural to model stop steps,
where the final argument on each side of a head is always te@abpgmbolsTor. Models
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like Paskin (2002) avoid modelirgropby generating the graph skeletGrfirst, uniformly

at random, then populating the wordssafonditioned orG. Previous work (Collins 1999)
has stressed the importance of including termination foitibas, which allows the graph
structure to be generated jointly with the terminal wordgcysely because it does allow
the modeling of required dependents.

We propose a simple head-outward dependency model over elasdes which in-
cludes a model of valence, which we cBIMV (for dependency model with valenc&Ve
begin at theroOT. In the standard way (see below), each head generates s gknien-
SToParguments to one side, thersaopargument to that side, then n@ropParguments
to the other side, then a secostor.

For example, in the dependency structure in figure 6.1, waginserate a single child of
ROOT, herefell. Then we recurse to the subtree unfi#lr This subtree begins with gener-
ating the right argumenn. We then recurse to the subtree unithefgeneratingseptember
to the right, a righsTOR, and a leftsToP. Since there are no more right arguments after
in, its right STOPis generated, and the process moves on to the left argunidiedt o

In this process, there are two kinds of derivation eventgsghocal probability factors
constitute the model's parameters. First, there is thestwcat any point whether to termi-
nate (generateTOP or not: Psos(STORA, dir, adj). This is a binary decision conditioned
on three things: the hedd the direction (generating to the left or right of the heamhd
the adjacency (whether or not an argument has been gengedtiexthe current direction,
a binary variable). The stopping decision is estimatedctliyewith no smoothing. If a
stop is generated, no more arguments are generated forrtieatchiead to the current side.
If the current head’s argument generation does not stoghanargument is chosen us-
ing: Pcuoosdalh, dir). Here, the argument is picked conditionally on the idemityhe
head (which, recall, is a word class) and the direction. Tdmis, also, is not smoothed in
any way. Adjacency has no effect on the identity of the argumanly on the likelihood
of termination. After an argument is generated, its subittedbe dependency structure is
recursively generated.

This process should be compared to what is generally dongpergised parsers (Collins
1999, Charniak 2000, Klein and Manning 2003). The largetmince is that supervised
parsers condition actions on the identity of the head waelfit The lexical identity is a
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good feature to have around in a supervised system, whetacsignlexical facts can be
learned effectively. In our unsupervised experimentsifgalexical items in the model led
to distant topical associations being preferentially nied@ver class-level syntactic pat-
terns, though it would clearly be advantageous to discoveeehanism for acquiring the
richer kinds of models used in the supervised case. Superpiarsers’ decisions to stop or
continue generating arguments are also typically conitioon finer notions of distance
than adjacent/non-adjacent (buckets or punctuation-etfirstance). Moreover, decisions
about argument identity are conditioned on the identity refvpus arguments, not just a
binary indicator of whether there were any previous oness Tibher history allows for
the explicit modeling of inter-argument correlations, Is@&s subcategorization/selection
preferences and argument ordering trends. Again, for tilseipervised case, this much
freedom can be dangerous. We did not use such richer histthigr success in supervised
systems suggests that they could be exploited here, perapsystem which originally
ignored richer context, then gradually began to model it.

Formally, for a dependency structube let each word: have left dependent&psp (h, 1)
and right dependent&psp(h, ). The following recursion defines the probability of the
fragmentD(h) of the dependency tree rooted/at

P(D(h)) = H H Psrof(~STOR, dir, adj)

dire{l,r} a€depsp (h,dir)

Pchoosdalh, dir)P(D(a))
Pstope(STORA, dir, adj)

One can view a structure generated by this derivationalga®@s a “lexicalized”
tree composed of the local binary and unary context-fredigarations shown in fig-
ure 6.43 Each configuration equivalently represents either a hedtasd derivation step
or a context-free rewrite rule. There are four such configoma. Figure 6.4(a) shows a
headh taking a right argument. The tree headed bycontaing. itself, possibly some right

31t is lexicalized in the sense that the labels in the tree @réveld from terminal symbols, but in our
experiments the terminals were word classes, not individuial items.
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arguments of, but no left arguments df (they attach after all the right arguments). The
tree headed by contains: itself, along with all of its left and right children. Figufe4(b)
shows a head taking a left argument — the tree headed bymust have already generated
its right stop to do so. Figure 6.4(c) and figure 6.4(d) shosws#alingoperations, where
sToprderivation steps are generated. The left and right marksde tabels represent left
and rightsTors that have been generated.

The basic inside-outside algorithm (Baker 1979) can be @izede-estimation. For
each sentencec S, it gives uscq(x : 4, j), the expected fraction of parsessofvith a node
labeledr extending from positionto positionj. The model can be re-estimated from these
counts. For example, to re-estimate an entr of,sSTOPA, left, non-ad) according to
a current mode{@, we calculate two quantities.The first is the (expected) number of
trees headed b%) whose start positionis strictly left of h. The second is the number of
trees headed by with start position strictly left of 2. The ratio is the MLE of that local
probability factor:

Psrop(STORA, left non-ad) =
Zses Zi<loc(h) >k C(E L, k)
=

S es Lictoctty Dr e 1)
This can be intuitively thought of as the relative numberimis a tree headed liyhad al-
ready taken at least one argument to the left, had an oppiyrtariake another, but didn&.
Section A.2 has a more detailed exposition of the detailsaffutating the necessary ex-
pectations.

Initialization is important to the success of any local segrocedure. As in chapter 5,
we chose to initialize EM not with an initial model, but with @itial guess at posterior
distributions over dependency structures (completidfaa) the first-round, we constructed

“Note that the asymmetry of the attachment rules enforcesighebefore-left attachment convention.
This is harmless and arbitrary as far as dependency evathsago, but imposes an X-bar-like structure on the
constituency assertions made by this model. This biasti@nsis dealt with in section 6.3.

5To simplify notation, we assume each wdcbccurs at most one time in a given sentence, between
indexedoc(h) andloc(h) + 1.

6As a final note, in addition to enforcing the right-argumérgt convention, we constrainezboT to
have at most a single dependent, by a similar device.



6.2. AN IMPROVED DEPENDENCY MODEL 89

a somewhat ad-hoc “harmonic” completion where all m@BTwords took the same num-
ber of arguments, and each took other words as argumentgarseproportion to (a con-
stant plus) the distance between them. RleT always had a single argument and took
each word with equal probability. This structure had twoadages: first, when testing
multiple models, it is easier to start them all off in a comnveay by beginning with an
M-step, and, second, it allowed us to point the model in thgueageneral direction of
what linguistic dependency structures should look likeshibuld be emphasized that this
initialization was important in getting reasonable patseout of this model.

On thews 1.0 corpus, the DMV model recovers a substantial fractiornefliroad de-
pendency trends: 43.2% of guessed directed dependendiesareect (63.7% ignoring
direction). To our knowledge, this is the first publisheduteto break the adjacent-word
heuristic (at 33.6% for this corpus). Verbs are the sentéeels, prepositions take fol-
lowing noun phrases as arguments, adverbs attach to vertbsoaon. Figure 6.5 shows
the most frequent discrepancies between the test depeaderd the model's guesses.
Most of the top mismatches stem from the model systematicalbosing determiners to
be the heads of noun phrases, where the test trees have tbmog noun as the head.
The model’s choice is supported by a good deal of linguistsearch (Abney 1987), and is
sufficiently systematic that we also report the scores wtiergp headship rule is changed
to percolate determiners when present. On this adjustedontbe score jumps hugely to
55.7% directed (and 67.9% undirected). There are othergfiaacy types, such as modals
dominating main verbs, choice of the wrong noun as the headotin cluster, and having
some sentences headed by conjunctions.

This model also works on German and Chinese at above-badelirls (55.8% and
54.2% undirected, respectively), with no modifications tgbaver. In German, the largest
source of errors is also the systematic postulation of detar-headed noun-phrases.
The second largest source is that adjectives are (inctyyexinsidered to be the head
in adjective-noun units. The third source is the incorrétztclment of adjectives into de-
terminers inside definiteps. Mistakes involving verbs and other classes are less catnmo
but include choosing past participles rather than aux@sas the head of periphrastic verb
constructions. In Chinese, there is even more severe donfusside nominal sequences,
possibly because the lack of functional syntax makes thadenes between adjacenps
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English using DMV
Overproposals Underproposals

DT «— NN 3083| DT — NN 3079
NNP <« NNP 2108 NNP — NNP 1899
CC— ROOT 1003| IN < NN 779
IN — DT 858| DT — NNS 703
DT — NNS 707| NN — VBZ 688
MD — VB 654 NN «— IN 669
DT — IN 567| MD «— VB 657
DT — VBD 553| NN —VBD 582
TO — VB 537 | VBD «+~ NN 550
DT — VBZ 497 | VBZ «— NN 543

English using CCM+DMV
Overproposals Underproposals

DT «— NN 3474 DT — NN 3079
NNP «— NNP 2096| NNP — NNP 1898
CD — CD 760| IN < NN 838
IN — DT 753| NN—-VBZ 714
DT <+ NNS 696| DT — NNS 672
DT — IN 627 NN « IN 669
DT — VBD 470| CD+CD 638
DT — VBZ 420 NN—VBD 600
NNP — ROOT 362| VBZ — NN 553
NNS — IN 347 | VBD «+— NN 528

Figure 6.5: Dependency types most frequently overpropasedunderproposed for En-
glish, with the DMV alone and with the combination model.
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unclear. For example, temporal nouns often take adjacepepmnouns as arguments — all
other classes of errors are much less salient.

This dependency induction model is reasonably succeds$tuever, the model can be
substantially improved by paying more attention to syn¢aminstituency, at the same time
as modeling dependency structure. To this end, we next mraseombined model that
exploits kinds of structure. As we will see, the combined eidithds correct dependencies
more successfully than the model above, and finds constémeore successfully than the
model of chapter 5.

6.3 A Combined M odel

The CCM and the DMV models have a common ground. Both can beasemodels over
lexicalized trees composed of the configurations in figude Bor the DMV, it is already a
model over these structures. At the “attachment” rewritetlie CCM in (a/b), we assign

the quantity:
P(Z—Sk|trUE)P(i_1Si ~ k3k+1|true)

P(Z-Sk|fa|Se)P(i_1Si ~ kSk+1 |fa|se)

which is the odds ratio of generating the subsequence artdxtdar spani, k) as a con-
stituent as opposed to as a non-constituent. If we multiplyrees’ attachment scores
by

Hm> P(;5,|falseP(;_15; ~ ;5,1 |false

the denominators of the odds ratios cancel, and we are |dftegich tree being assigned
the probability it would have received under the CCM.

In this way, both models can be seen as generating eithetitt@mey or dependency
structures. Of course, the CCM will generate fairly randogpehdency structures (con-
strained only by bracketings). Getting constituency $tmes from the DMV is also prob-
lematic, because the choice of which side to first attachraemis on has ramifications on
constituency — it forces x-bar-like structures — even thomigs an arbitrary convention as

"This scoring function as described is not a generative mode lexicalized trees, because it has no
generation step at which nodes’ lexical heads are choseis.c@h be corrected by multiplying in a “head
choice” factor ofl /(k — j) at each final “sealing” configuration (d). In practice, thisrection factor was
harmful for the model combination, since it duplicated aisgth of the dependency model, badly.
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far as dependency evaluations are concerned. For exarhple,adttach right arguments
first, then a verb with a left subject and a right object witihah the object first, giving

traditional VPs, while the other attachment order givegesttbrerb groups. To avoid this
bias, we alter the DMV in the following ways. When using theeedency model alone,
we allow each word to have even probability for either geti@neorder, this order being

chosen as the first step in a head’s outward dependency giengyeocess (in each actual
head derivation, only one order occurs). When using the teddgether, better perfor-
mance was obtained by releasing the one-side-attachstgedguirement entirel.

In figure 6.6, we give the behavior of the CCM constituency elahd the DMV
dependency model on both constituency and dependencytiodutJnsurprisingly, their
strengths are complementary. The CCM is better at recayeamstituency (except for
Chinese where neither is working particularly well), and ttependency model is better
at recovering dependency structures. It is reasonable e titat a combination model
might exhibit the best of both. In the supervised parsing @onfor example, scoring a
lexicalized tree with the product of a simple lexical depamdy model and a PCFG model
can outperform each factor on its respective metric (Kleith Blanning 2003).

In the combined model, we score each tree with the produdieoptobabilities from
the individual models above. We use the inside-outsiderdlgo to sum over all lexi-
calized trees, similarly to the situation in section 6.2.eTree configurations are shown
in figure 6.4. For each configuration, the relevant scores feach model are multiplied
together. For example, consider figure 6.4(a). From the CG\Wyenerates, as a con-
stituent and its corresponding context. From the dependeradel, we pay the cost of
h takinga as a right argument(,,00sg, as well as the cost of not stoppinBs(or). The
other configurations are similar. We then run the insidesidetalgorithm over this product
model. From the results, we can extract the statistics rktedee-estimate both individual
models®

The models in combination were initialized in the same wayvhen they were run
individually. Sufficient statistics were separately takéhthese individual completions.
From then on, the resulting models were used together dughegtimation.

8with no one-side-first constraint, the proper derivationgesss chooses whether to stop entirely before
each dependent, and if not choose a side to generate on,gherate an argument to that side.
9The product, like the CCM itself, is mass-deficient.
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Constituency Dependency
Model upP UR UR | Dir Undir
English (WSJ10 — 7422 Sentences)
LBRANCH/RHEAD 25.6 326 28.7 33.6 56.7

RANDOM 31.0 394 3471 30.1 456
RBRANCH/LHEAD 55.1 70.0 61.7 24.0 55.9
DMV 46.6 59.2 52.1] 43.2 62.7
CCM 64.2 816 71.9 23.8 433

DMV +CCM (POY 69.3 880 776| 475 645

DMV+CCM (DISTR.) | 65.2 82.8 72.9 423 604
UBOUND 78.8 100.0 88.1100.0 100.0
German (NEGRA10 — 2175 Sentences)
LBRANCH/RHEAD 274 488 351 326 51.2

RANDOM 279 496 357 21.8 415
RBRANCH/LHEAD 33.8 60.1 433 21.0 499
DMV 38.4 69.5 495 40.0 57.8
CCM 48.1 85,5 61. 255 449
DMV +CCM 496 897 639 | 506 64.7

UBOUND 56.3 100.0 72.1 100.0 100.0

Chinese (CTB10 — 2437 Sentences)
LBRANCH/RHEAD 26.3 488 34.2 30.2 439

RANDOM 27.3 50.7 355 359 47.3
RBRANCH/LHEAD 29.0 539 37.8 142 415
DMV 359 66.7 46.7| 425 54.2
CCM 346 64.3 45.0 23.8 405
DMV +CCM 33.3 62.0 43.3 552 603

UBOUND 53.9 100.0 70.1 100.0 100.0

Figure 6.6: Parsing performance of the combined model cowsitreebanks, along with
baselines.



94 CHAPTER 6. DEPENDENCY MODELS

Figure 6.6 summarizes the results. The combined model tleat€CM on English
Fi: 77.6 vs. 71.9. To give a concrete indication of how the dtuesticy analyses differ
with and without the addition of the dependency model, fighiieshows the sequences
which were most frequently overproposed and underpropasezbnstituents, as well as
the crossing proposals, which are the overproposals wiittlally cross a gold bracket.
Note that in the combination model, verb groups disappedraaverbs are handled more
correctly (this can be seen in both mistake summaries).

Figure 6.6 also shows the combination model’s score whamusord classes which
were induced entirely automatically, using the same indutasses as in chapter 5. These
classes show some degradation, e.g. 72, Bt it is worth noting that these totally unsu-
pervised numbers are better than the performance of the CG8&hnunning off of Penn
treebank word classes. Again, if we modify the gold standards to make determiners
the head of\ps, then this model with distributional tags scores everebetith 50.6% on
directed and 64.8% on undirected dependency accuracy.

On the German data, the combination again outperforms esthrfalone, though
while the combination was most helpful at boosting constitty quality for English, for
German it provided a larger boost to the dependency strestuFigure 6.8 shows the
common mistake sequences for German, with and without th& Bdmponent. The most
dramatic improvement is the more consistent use of verbevbjps instead of subject-
verb groups. Note that for the German data, the gold staridaxtremely flat. This is
why the precision is so low (49.6% in the combination modeBpite the rather high recall
(89.7%): in fact the crossing bracket rate is extremely 16089, cf. 0.68 for the English
combination model).

Finally, on the Chinese data, the combination did substtiyntioost dependency accu-
racy over either single factor, but actually suffered a $ufralp in constituency® Overall,
the combination is able to combine the individual factoramneffective way.

To point out one final advantage of the combined model ove€@l! (though not the
DMV), consider figure 6.9, which shows how the accuracy otthrabined model degrades
with longer maximum sentence length (10 bewmgil0). On the constituency, fneasure,

10This seems to be partially due to the large number of unaedlfragments in the Chinese gold standard,
which leave a very large fraction of the posited brackettmapletely unjudged.
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English using CCM
Overproposals Underproposals Crossing

JJ NN 1022 NNP NNP 183 MD VB 418

NNP NNP 453 TOCDCD 159 RB VB 306

MD VB 418 NNP POS 159 IN NN 192
DT NN 398 NN NNS 140 POS NN 172

RB VB 349 NN NN 101| CDCDINCDCD 154

JJ NNS 320 CDCD 72 MD RB VB 148

NNP NN 227 IN CD 69 RB VBN 103

RB VBN 198 TO VB 66 CD NNS 80

IN NN 196 RB JJ 63 VNB TO 72

POS NN 172 IN NNP 62 NNP RB 66

English using CCM+DMV
Overproposals Underproposals Crossing

JJ NN 1022 NNP NNP 167 CDCDINCDCD 154

NNP NNP 447/ TOCDCD 154 NNS RB 133

DT NN 398 IN NN 76 NNP NNP NNP 67

JJ NNS 294 INDT NN 65 JJ NN 66
NNP NN 219 IN CD 60 NNP RB 59
NNS RB 164 CD NNS 56| NNP NNP NNP NNP 51
NNP NNP NNP 156 NNP NNP NNP 54 NNP NNP 50
CDCDINCDCD 155 IN NNP 54 NNS DT NN 41
TOCDCDINCDCD 154 NN NNS 49 IN PRP 41
CDNNTOCDCDINCDCD 120 RB JJ 47 RB PRP 33

Figure 6.7: Sequences most frequently overproposed, pragesed, and proposed in lo-
cations crossing a gold bracket for English, for the CCM dreddombination model.
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German using CCM

Overproposals Underproposals Crossing
ADJA NN 461 APPR ART NN 97 ADJA NN 30
ART NN 430 APPR NN 84| ART NN VVPP 23
ART ADJANN 94 APPR NE 46 CARD NN 18
KON NN 71 NE NE 32 NN VVPP 16
CARD NN 67 APPR ADJA NN 31 NE NE 15
PPOSAT NN 37 ADV ADJD 24 VVPP VAINF 13
ADJA NN NE 36 ADV ADV 23 | ARTNNPTKVZ 12
APPRART NN 33| APPR ART ADJANN 21 NE NN 12
NE NE 30 NN NE 20 NE VVPP 12
ART NN VVPP 29 NN KON NN 19| ARTNNVVINF 11

German using CCM+DMV

Overproposals Underproposals Crossing

ADJA NN 461 NE NE 30 ADJA NN 30
ART NN 430 NN KON NN 22 CARD NN 18
ART ADJANN 94 NN NE 12 NE NE 17
KON NN 71 APPR NE 9 APPR NN 15
APPR NN 68 ADV PTKNEG 9| ARTNNARTNN 14
CARD NN 67 VVPP VAINF 9 NE ADJA NN 11
NE ADJA NN 62 ADV ADJA 9 ADV ADJD 9
NE NE 38 ADV CARD 9 NN APPR NN 8
PPOSAT NN 37 ADJD ADJA 8 ADV NN 7
APPR ART NN 36 CARD CARD 7| APPRART NN NN 7

Figure 6.8: Sequences most frequently overproposed, pragesed, and proposed in lo-
cations crossing a gold bracket for German, for the CCM aadcttimbination model.
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Figure 6.9: Change in parse quality as maximum sentencéleémgeases: (a) CCM alone
vs. combination and (b) DMV alone vs. combination.

the combination degrades substantially more slowly witttesgce length than the CCM
alone. This is not too surprising: the CCM's strength is filgdcommon short constituent
chunks: the DMV’s representation is less scale sensitivgfatence time. What is a little
surprising is that the DMV and the combination actually ange in dependency accuracy
as sentences get longer — this may well be because as sentgidenger, the pressure
from the CCM gets relatively weaker: it is essentially agimosbout longer spans.

6.4 Conclusion

We have presented a successful new dependency-based rapde¢ funsupervised in-
duction of syntactic structure, which picks up the key idded have made dependency
models successful in supervised statistical parsing wikle. proceeded to show that it
works cross-linguistically. We then demonstrated how thiglel could be combined with
the constituent-induction model of chapter 5 to produceralioation which, in general,
substantially outperforms either individual model, omeitmetric. A key reason that these
models are capable of recovering structure more accurtatyprevious work is that they
minimize the amount of hidden structure that must be indubeparticular, neither model
attempts to learn intermediate, recursive categories matlairect connection to surface
statistics. For example, the CCM models nesting but notrsé@o. The dependency model
is a recursive model, but each tree node is headed by one [&ahes it dominates, so no
hidden categories must be posited. Moreover, in their Hasms presented here, neither
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model (nor their combination) requires any symmetry-biegkerturbations at initializa-
tion.



Chapter 7
Conclusions

There is a great deal of structure in human languages thaitiexplicit in the observed
input. One way or another, human language learners figurbautto analyze, process,
generalize, and produce languages to which they are exptiseel wish to build systems
which interact with natural languages, we either have te tlsupervised approach and
supply detailed annotation which makes all this hiddencstme explicit, or we have to
develop methods of inducing this structure automaticalijre former problem is well-
studied and well-understood; the latter problem is meredyl-atudied. This work has
investigated a specific corner of the language learning taskucing constituency and
dependency tree structured analyses given only obsemgatiogrammatical sentences (or
word-class sequences). We have demonstrated for thiseaskas systems which exceed
previous systems’ performance in extracting linguisticedasonable structure. Hopefully,
we have also provided some useful ideas about what does aschdbwork for this task,
both in our own systems and in other researchers’ work.

Many open questions and avenues of research remain, raingmghe extremely tech-
nical to the extremely broad. On the narrow side, machinmieg issues exist for the
present models. Aside from the multi-class CCM, the modal&he virtue that symbol
symmetries do not arise, so randomness is not needed alingition. However, all models
are sensitive to initialization to some degree. IndeediifeilCCM, one of the contributions
of this work is the presentation of a better uniform initzali. In addition, the CCM model
family is probabilistically mass deficient; it redundangignerates the observations, and,

99
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most severely, its success may well rely on biases latertisnrédundant generation. It
performs better on corpora with shorter sentences tharetosgntences; part of this issue
is certainly that the linear sequences get extremely sparseng sentences.

A little more broadly, the DMV models, which are motivateddspendency approaches
that have performed well in the supervised case, still ypetéorm the theoretically less
satisfying CCM models. Despite an enduring feeling thatcl#xinformation beyond
word-class must be useful for learning language, it seeniseta statistical distraction
in some cases. General methods for starting with low-capawddels and gradually re-
leasing model parameters are needed — otherwise we willbk @fith a trade-off between
expressivity and learnability that will cap the achievatpmlity of inducible models.

Much more broadly, an ideal language learning system shutlde disconnected from
other aspects of language understanding and use, suchcamtbgt in which the utterances
are situated. Without attempting to learn the meaning dieseres, success at learning their
grammatical structure is at best an illuminating stepptoge to other tasks and at worst
a data point for linguists interested in nativism. Moreg¥em the standpoint of an NLP
researcher in need of a parser for a language lacking sgpértools, approaches which
are weakly supervised, requiring, say 100 or fewer examgisgs, are likely to be just as
reasonable as fully unsupervised methods, and one cowddnahly hope that they would
provide better results. In fact, from an engineering stainap supplying a few parses is
generally much easier than tuning an unsupervised algoifith a specific language.

Nonetheless, it is important to emphasize that this workshasvn that much progress
in the unsupervised learning of real, broad-coverage pacsa come from careful under-
standing of the interaction between the representationgbhabilistic model and what
kinds of trends it detects in the data. We can not expect thatipervised methods will
ever exceed supervised methods in cases where there iy plelatoeled training data,
but we can hope that, when only unlabeled data is availabiejpervised methods will
be important, useful tools, which additionally can shetitign how human languages are
structured, used, and learned.



Appendix A

Calculating Expectations for the M odels

A.1 Expectationsfor the CCM

In estimating parameters for the CCM model, the computatibnttleneck is the E-step,
where we must calculate posterior expectations of varicees ¢configurations according
to a fixed parameter vector (chapter 5). This section givagbé&calynamic program for
efficiently collecting these expectations.

The CCM model family is parameterized by two kinds of multimals: the class-
conditional span generation terigpax («|c) and the class-conditional context generation
termsPcontexT(8|C), Wherec is a boolean indicating the constituency of the spais,the
sequence filling that span, apds the local linear context of that span. The score assigned
to a sentence, ,, under a single bracketing is

P(s, B) = Prreg(B) [ [ Pspan(al(i, j, s)|Byj)Pconrexr(8(i, j, )| Byj)
(i,4)

In Prree(B), the bracketing® with non-zero mass are in one-to-one correspondence with
the set of binary tree structurgs Therefore, we can rewrite this expression in terms of the
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constituent brackets in the tré& B).

P(s, B) = Prree(B H PSPAN (i, j, s)|true)Pconrrxr(5(1, 7, s)|true)
(i,j)ET (B
H Pspan(a(i, j, s)|fals@Pcontext(8(4, J, s)|false)
(,9)¢T(B)

Since most spans in any given tree are distituents, we cancalsulate the score for a
bracketingB by starting with the score for the all-distituent brackgtand multiplying in
correction factors for the spans which do occur as constitue B:

P(s, B) = Prree(B HPSPAN i, J, s)|false@Pcontexr(8(4, j, s)|false

H Pspan(a(i, 7, s)|fals@Pcontexr(8(4, j, s)|false)

G HET(B) Pgpan(a(i, 7, s)|true)Pcontext(5(4, j, s)|true)

Since all binary trees have the same scorengg, and the all-distituent product does not
depend on the bracketing, we can write this as

P(SB H ¢'L]7

<z J)ET(B)

where o o
Pspan(a(i, 7, s)|true)Pcontext(6(1, 4, s)|true)

Pspan(a(i, j, s)|fals€PcontexT(6(1, j, 5)|false)

and K (s) is some sentence-specific constant. This expressioA(forB) now factors ac-

o(i, J, 8) =

cording to the nested tree structuré&/4fB). Therefore, we can define recursions analogous
to the standard inside/outside recurrences and use theaketdate the expectations we’re
interested in.

First, we defind(i, j, s), which is analogous to the inside score in the inside-oatsid
algorithm for PCFGs.

Ii,j,s)= Y. I[I G.ab

TeT (5—1) {(a,b):(a—1i,b—i)€T



A.1. EXPECTATIONS FOR THE CCM 103

(a) Inside recurrence (b) Outside recurrence

Figure A.1: The inside and outside configurational recuresrfor the CCM.

In other words, this is the sum, over all binary tree struesdr spanning(i, j), of the
products of the locap scores of the brackets in those trees (see figure A.1). Thistiy
has a nice recursive decomposition:

Cb(iaja S) Zi<k<j I('Lv ]{3, S)I(kaja S) If ] —1 > 1
1(4,7,5) = < (i, j, s) ifj—i=1
0 if j—i=0

From this recurrence, either a dynamic programming saiutioa memoized solution for
calculating the table df scores in time)(n?) and spac®(n?) is straightforward.

Similarly, we defineD(i, j, s), which is analogous to the outside score for PCFGs:

O(i,j,s)= Y. 11 ¢(a,b, s)

TeT (n—(j—i—1)) (a,b)#(i,j):{a,b—(j—i—1))eT

This quantity is the sum of the scores of all tree structuteside the(z, j) bracket (again
see figure A.1). Note that heré) excludes the factor for the local score(atj). The
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outside sum also decomposes recursively:

Cb(ivj? S) ZO§k<i I(kv i) S)O(k7j7 S) + Zj<k;§n I(]7 ka S)O('Lv ka S) if ] —i1<n
1 if j—i=n

O(i, j, s) =

Again, the table of) values can be computed by dynamic programming or memoizatio

The expectations we need for reestimation of the CCM aredb&epor bracket counts
Pgracker (4, 7|s), the fraction of trees (bracketings) that contain the sppan ) as a con-
stituent.

.. Z Bli.i)= P(S, B)
Prracker (i, j|s) = Bg,y)Ptr(use 7
B 3

We can calculate the terms in this expression using twed O quantities. Since the set
of trees containing a certain bracket is exactly the crosdymt of partial trees inside that
bracket and partial trees outside that bracket, we have

> P(s,B) = K(s)I(i, ,5)0(i, j, )

B:B(i,j)=true
and
> P(s,B) = K(s)1(0,n,5)0(0,n, s)
B
Since the constants (s) cancel and) (0, n, s) = 1, we have

1(4,7,5)0(i, J, 5)
1(0, n, s)

Peracker(i, j|s) =

A.2 Expectationsfor the DMV

The DMV model can be most simply (though not most efficientlgscribed as decom-
posing over a lexicalized tree structure, as shown in figut AThese trees are essen-
tially context-free trees in which the terminal symbols arec W for some terminal
vocabularyW (here, W is the set of word-classes). The non-terminal symbolswre

(_
—

w, W, w, andw, for w € W U {#}. The productions are of the following forms:
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¢
\
=
¢
/\<—
fell *
\ \
— —
i r
= ¢
stocks fell
. L
stocks fell
| = T~
stocks fell yesterday
\ \
\ )
stocks el yesterday
yesterday
\
yesterday

Figure A.2: A lexicalized tree in the fully articulated DMVadel.
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Head choice (right-first) W — w
Head choice (left-first) W — w
Right-first right attachment n—Tn a
—
Right-first right stop I
— —
Right-first left attachment n—a
“—
Right-first seal ek
Left-first left attachment W—a h
—
Left-first left stop W —n
— —
Left-first right attachment h—"h a
—
Left-first seal h—h

We imagine all sentences to end with the sym@phnd treat$ as the start symbol.
Trees with rooth are calledsealedtrees, since their heddcannot take any further argu-
— —

ments in this grammar topology. Trees with rodtsand 1 are calledhalf-sealedtrees,
since they can only take arguments to the final attachmea(l&ft and right, respectively).
Trees rooted af, and 1 are calledunsealedsince they can take arguments to either side
(eventually).

Derivations of a sentence in the DMV dependency model cpoms to parses with
the above grammar. However, each configuration is scoreaf@diog to a head-outward
derivation (Collins 1999), rather than a top-down rewriter example, the right-first head
choice is thought of as deciding, given the head, that indérs/ation the head will attach
its right arguments before its left arguments. This conéijon incurs the probability
factor Porper (right-firstjw). The other configurations indicate attachments or stopping
probabilities, as described in section 6.2.

We define inside and outside recurrences over itemsi, j) in the standard way. The
base cases are projections of terminals, which represepuiiht where we decide whether
a wordw will take its arguments to the right then left, or left thegi, X-bar style.

o PORDER(Ieft-firSt|w) ifer="w
Pinsme(z, 1,1+ 1) = _ i N
Porper (right-firstw)  if z = W
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For spans greater than one, we have to sum over the variooggesitions. Sealed scores
are expressed in terms of half-sealed scores:

=
Wi, §) +

T

Pinsioe(W, 4, j) = Psrop (stop|w, left, adj(i, w)) Pinsiog(
Pgrop (stop|w, right, adj(j, w))Pinsmre( [ w, i, 7)

Half-sealed scores are expressed in terms of either snmalesealed scores or unsealed
scores:

<_
PINSIDE(wa i, ]) = ( Z Z PSTOP(_\StOp|’LU, left, adj(]{?, w))PATTACH(a'|w7 left) X
k a

-
Pinsioe (@, 4, k) Pinsoe (W, k?j)) +

Psrop (stop|w, right, adj(j, w))Psmr (W, i, §)

H
Pixsipe (W, 4, 5) = ( Z Z Pgrop (—stop|w, right, adj(k, w))Parracu(a|w, right) x
k a

N
Pixsioe (W, 4, k) Pivsor (@, £, ])) +

PSTOP (st0p|w, left, adj (7,, w))PINSIDE(U, i, j)

Note the dependency on adjacency: the functidjii, w) indicates whether the index
is adjacent to wordv (on either side}. Unsealed scores (for spans larger than one) are

INote also that we're abusing notation so thdhdicates not just a terminal symbol, but a specific instance
of that symbol in the sentence.



108 APPENDIX A. CALCULATING EXPECTATIONS FOR THE MODELS

expressed in terms of smaller unsealed scores:

Pinsioe(W,4,§) = > Pgrop(-stop|w, right, adj(k, w))Parracu (alw, right) x
k a

—

Pinsipe (W, i, k) Pinsior(@, £, 7)

PINSIDE(%v ’i, ]) = Z Z PSTOP(_!StOp|’LU, left, adj(/{?, w))PATTACH(a|w7 left) X
k a

Pinsioe (@, ¢, k) Pinsioe (W, k, j

The outside recurrences f®ursipe(z, 7, j) are similar. Both can be calculated in
O(n®) time using the standard inside-outside algorithms for bddt&xicalized) PCFGs or
memoization techniques. Of course, thén?) andO(n?) techniques of Eisner and Satta
(1999) apply here, as well, but not in the case of combinatitth the CCM model, and
are slightly more complex to present.

In any case, once we have the inside and outside scores, weasdy calculate the
fraction of trees over a given sentence which contain anyefstructural configurations
which are necessary to re-estimate the model multinomials.

A.3 Expectationsfor the CCM+DMV Combination

For the combination of the CCM and DMV models, we used the Estpechnique which
admitted a dynamic programming solution. For any lexielizlerivation tree structure
of the form shown in figure A.2, we can read off a list of DMV dettion stops (stops,
attachments, etc.). However, we can equally well read affteof assertions that certain
sequences and their contexts are constituents or digitugoth models therefore assign a
score to a lexicalized derivation tree, though multipldided derivation trees will contain
the same set of constituents.
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To combine the models, we took lexicalized derivation trEemsd scored them with

Pcomeo(T) = Peem(T)Pomv (T)

The quantityPcompo IS a deficient probability function, in that, evenkfcy were not
itself deficient, the sum of probabilities over all treBsvill be less than oné.

Calculating expectations with respectigonso is almost exactly the same as working
with Ppyy. We use a set af(n°) recurrences, as in section A.2. The only difference is
that we must premultiply all our probabilities by the CCM bgsoduct

[ Psean(ai. 5, s)lfalsePconrexr(5(i, 4, s)|false
(i.)

and we must multiply in the local CCM correction factafi, j, s) at each constituent that
spans more than one terminal. To do the latter, we simplysadhe binary-branching
recurrences above. Instead of:

=S .
PINSIDE( w,1, j) = Z Z PSTOP(—'stOp|w, left, adj(/{?, w))PATTACH(a|w, left) X
k a

H
Pixsio (@, i, k) Pinsor (W, kJ)) +

Psrop (stop|w, right, adj(j, w))Pixsie (W, i, §)

=N . . .
PINSIDE( w,1, j) = Z Z PSTOP(—'stOp|w, l"lght, adj(]{?, w))PATTACH(a\w, I‘lght) X
k a

H
Pixse( W, 4, k) Pivsmr (@, kJ)) +

PSTOp(stop|w, left, adj (’L, w))PINSIDE(%, ’i, j)

2Except in degenerate cases, such as if both components pstana on a single tree.
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(S . o
(W, i,j|s) = Z ZPSTOP(_‘StOp|wuleftaad.](kvw))PATTACH(a‘waleft>PINSIDE(CL7@7 k) x
k a

«—
PINSIDE(W7 k>])¢(27 jv S)) +

Psrop (stop|w, right, adj(j, w))Pxsmr (W, i, §)

= . . .
I(w,i,j|s) = Z ZPSTOP(ﬁstopW,rlght, adj(k, w))Parracu(alw, right) x
k a

H
Pixsioe (W, 7, k) Pixsior (@, k, §)6(1, 7, 5)) +

Psrop(stop|w, left, adj(i, w))Pismr( W, i, )

and similarly
PINSIDE(wy ’i, ]) = Z Z PSTop(ﬂstop|w, I‘ight, adj(k’, w))PATTACH(CL|’LU, rlght) X
k a
PINSIDE(E)’ i, k)Pinsmor(a, k, j)
Pinsoe (W, 4, 5) = Z Z Psrop(—stop|w, left, adj(k, w))P arracu(alw, left) x
k a

Pinsor (@, 4, k) Pinsor (W, k, )
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becomes

(W4, jls) =Y Y Psrop(-stop|w, right, adj(k, w))P xrracn(alw, right) x
k a
PINSIDE(wa i, k)Pinsioe(@, k, j)¢(i, 7, 5)

(w,i,jls) = Z Z Psrop (—stop|w, left, adj(k, w))Parracu(alw, left) x
k a

Pinsipe (@, i, k) Pixsior (W, &, )¢(i, 7, 5)

Again, the outside expressions are similar. Notice thastioees which were inside proba-
bilities in the DMV case are now only sum-of-products of &syrrelativized to the current
sentence, just as in the CCM case.
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Proofs

B.1 Closed Form for the Tree-Uniform Distribution

The tree-uniform distributior®rrer(7'|n), is simply the uniform distribution over the set
of binary trees spanning leaves. The statistic needed from this distribution in sk

is the posterior bracketing distributioR (i, j|n), the fraction of trees, according to the tree
distribution, which contain the brackét j). In the case of the tree-uniform distribution,
these posterior bracket counts can be calculated in (Bg3iclsed form.

Since each tree has equal mass, we know®{atj|n) is simply the number of trees
containing the(i, j) bracket divided by the total numb&i(n) of trees ovem terminals.
The latter is well-known to bé'(n — 1), the(n — 1)st Catalan number:

7w = =1 = (%7 )osm
So how many trees over leaves contain a brackét= (i, j)? Each such tree can be
described by the pairing of a tree over i leaves, which describes what the tree looks like
inside the bracket, and another tree, over— (j — ¢ — 1) leaves, which describes what
the tree looks like outside of the bracketindeed, the choices of inside and outside trees
will give rise to all and only the trees oversymbols containing. Therefore, the number

112



B.2. CLOSED FORM FOR THE SPLIT-UNIFORM DISTRIBUTION 113

of trees withb isT'(j —i)T'(n — (j — ¢ — 1)), and the final fraction is

Prmacker (i, jln) = LU~ i)T(;(;L)(j —i—1))

B.2 Closed Form for the Split-Uniform Distribution

The split-uniform distribution over the set of binary tregmnningn leaves,Pspri1(T'|n)
is defined (recursively) as follows. i is 1, there is only the trivial tre€l’, which has
conditional probability 1:

Psprir(Th|1) =1

Otherwise, there are — 1 options for top-level split points. One is chosen uniforraty
random. This splits the leaves into a set df left leaves and — £ right leaves, for someé.
The left and right leaves are independently chosen frgm,r(-|k) andPsprir(-|n — k).
Formally, for a specific tre@ overn leaves consisting of a left chilfl;, overk leaves and
a right child7T; overn — k leaves:

Psprir(T|n) = P(k|n)PsprLir(T1|k)Psprir(Tr|n — k)

where
1

n—1

P(kln) =

The statistics of this distribution needed in this work dre posterior bracket expectations
P(i, j|n), the fraction of trees over nodes which contain a given bracket;) according
to this distribution. This quantity can be recursively definas well. Since all trees contain
a bracket over the entire sentence,

Pgracker(0,n|n) =1

For smaller spans, consider a tr€echosen a random frofgsprr(-|n). If it contains
a bracketh = (i, j), then the bracket immediately dominating must be of the form
c = (i',5"), where eithei’ = iandj < 5/ ori < iandj = j/. So how likely is it that
T has bracket? It should be clear that will contain b if and only if it contains such a,
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and thatc has the right immediate split point to produceWe know from the top-down
definition of Pspr 1 (+|n) that the location of the split point inside a brackét independent
of of the chances of having built that Therefore, the total probability of a bracketan
be written (recursively) as:

Peracker(i,jln) = Y Peracker(i’, jln)P(i —i'[j — i) +
0<i’<1
> Poracker(i, j'[n)P(j = jlj’ — i)
Jj<j'<n

The relevant solution to this recurrence is:

1 ifi=0Aj=n
Pgracker (i, j|n) =  1/(j — 1) fi=0@j=n
2/[—0)(j—i+1) if0<i<j<n

This solution was suggested by Noah Smyttg, and can be proven by induction as fol-
lows. The base case € 0, j = n) holds because all binary trees have a root bracket over
all leaves. Now, assume for sorheall brackets of siz¢j —i| > k obey the given solution.
Considen = (i, j), |j —i| = k.

Case |I: Assumei = 0. Then, we can expre®3gracker(i, j|n) in terms of larger
brackets’ likelihoods as

Ppracker(i,jln) = > Ppracker(0,4'n)P(j — 0|5 — 0)
Jhi<j'sn
1 1 1
- [ 2. 7'/—1] i
iegi<n JJ

A partial fraction expansion gives

1 1 1

1
xx—1 -1 =
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and so the sum telescopes:

. 11 1
Peracker(i, jln) = [ Z =1 R
J"j<j'<n
1111 1 1 1
GG i)
B 1
= 773

and so the hypothesis holds.

Casell: Assumej = n. Since the definition dPspr 1 IS Symmetric, a similar argument
holds as in case I.

Caselll: Assume) < i < j < n. Again we can expanit(i, j|n) in terms of known

guantities:
PBRACKET(i,j|n) = Z PBRACKET(iaj/|n)P(j - Z|]/ - Z) +
J"j<ji'<n
Z Peracker (', j|n)P(j —ilj — ')
i:0<4! <i

It turns out that the two sums are equal:

1
(=9 —i+1)

S1(i,jln) = > Peracker(i,j'|n)P(j —ilj’ — i) =

3<j'<n
and

1

S2(i,jln) = Y Poracker(, jIn)P(j —ilj — ') = G—i)G—i+1)

1":0<4/ <14

We will show theS1 equality; theS2 equality is similar. Substituting the uniform split
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probabilities, we get

1

S1(i, jln) = Z PBRACKET(%J'/\W)W

J':j<j'<n

and substituting the assumed values for the larger spangeive

.. o . 1
S1(i, jln) = Z PBRACKET(%],|”)./7.1 + PBRACKET(Z,n|n)7.1
Lj"i<j'<n J—t= n—1i—
i Z 2 1 N 1 1

Here, the relevant partial fraction expansion is

2 1 2 1

(x—1)(x)(z+1) z—-1 2z x+1

Again the sum telescopes:

9 1 1 1
Vi il —
S1(i, jn) [jE: Uuqu—i+wf—%—1]+n—in—i—1

lj<j'<n

B 1 2 1 1 2 1
“[(j—i—l_j—¢+j—¢+1>+<j—¢_j—¢+1+j—i+2)+
1 2 1 1 1
Qw%—Q_n—i—1+n—J}+<n—i—1+n—J

B 1 1 1 N 1 N 1 N 1
o lj—i—-1 j—i n—i—-1 n-—i n—i—1 n—i

1 1
j—i—1 j—i
1
(G —i=1D0 1)
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SincesS?2 is similar, we have

P(i,jln) = S51(,jln) + 52(i, j|n)

= 251(1, j|n)
2

G —i=1)0 1)

and so the hypothesis holds again.



Bibliography

Abney, S. P. 1987The English Noun Phrase in its Sentential Asp&ttD thesis, MIT.

Adriaans, P., and E. Haas. 1999. Grammar induction as swistal inductive logic pro-
gramming. In J. Cussens (EdPxoceedings of the 1st Workshop on Learning Language
in Logic, 117-127, Bled, Slovenia.

Angluin, D. 1990. Negative results for equivalence thenrMachine Learning(2).

Baker, C. L., and J. J. McCarthy (Eds.). 198he logical problem of language acquisition
Cambridge, Mass.: MIT Press.

Baker, J. K. 1979. Trainable grammars for speech recognitioD. H. Klatt and J. J. Wolf
(Eds.),Speech Communication Papers for the 97th Meeting of thesticaliSociety of
Americag 547-550.

Black, E., S. Abney, D. Flickinger, C. Gdaniec, R. Grishnarilarrison, D. Hindle, R. In-
gria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. RmjkB. Santorini, and
T. Strzalkowski. 1991. A procedure for quantitatively caripg the syntactic cover-
age of English grammars. Rroceedings, Speech and Natural Language Workshop
306-311, Pacific Grove, CA. DARPA.

Brill, E. 1993. Automatic grammar induction and parsingftext: A transformation-based
approach. InProceedings of the 31st Meeting of the Association for Caatjaunal
Linguistics 259-265.

Brown, R., and C. Hanlon. 1970. Derivational complexity ander of acquisition in child

118



Bibliography 119

speech. In J. R. Hayes (EdQpgnition and the Development of Langualjew York:
Wiley.

Carroll, G., and E. Charniak. 1992. Two experiments on iegrprobabilistic dependency
grammars from corpora. In C. Weir, S. Abney, R. Grishman,Rnd/eischedel (Eds.),
Working Notes of the Workshop Statistically-Based NLPiigctes 1-13. Menlo Park,
CA: AAAI Press.

Chang, N., and O. Gurevich. 2004. Context-driven constindearning. InProceedings
of the 26th Annual Meeting of the Cognitive Science Saciety

Charniak, E. 1996. Tree-bank grammars Phoceedings of the Thirteenth National Con-
ference on Atrtificial Intelligence (AAAI '961031-1036.

Charniak, E. 2000. A maximum-entropy-inspired parseProceedings of the First Meet-
ing of the North American Chapter of the Association for Cataponal Linguistics
(NAACL 1) 132-139.

Charniak, E., K. Knight, and K. Yamada. 2003. Syntax-baaadliage models for machine
translation. InProceedings of MT Summit IX

Chelba, C., and F. Jelinek. 1998. Exploiting syntacticcttiee for language modeling. In
Proceedings of the 36th Meeting of the Association for Cdatjmnal Linguistics (ACL
36/COLING 17)225-231.

Chen, S. F. 1995. Bayesian grammar induction for languagietimy. InProceedings of
the 33rd Meeting of the Association for Computational Liistjas (ACL 33) 228—-235.

Chomsky, N. 1965Aspects of the Theory of Synta&ambridge, MA: MIT Press.

Chomsky, N. 1986.Knowledge of Language: Its Nature, Origin and UsBlew York:
Praeger.

Clark, A. 2000. Inducing syntactic categories by contestrdiution clustering. Inrhe
Fourth Conference on Natural Language Learning



120 Bibliography

Clark, A. 2001a. Unsupervised induction of stochastic exiafree grammars using distri-
butional clustering. IMhe Fifth Conference on Natural Language Learning

Clark, A. 2001b.Unsupervised Language Acquisition: Theory and PractiekD thesis,
University of Sussex.

Clark, A. 2003. Combining distributional and morpholodicdormation in part of speech
induction. InProceedings of the European Chapter of the Association fanQuta-
tional Linguistics (EACL)

Collins, M. 1999. Head-Driven Statistical Models for Natural Language Pagsi PhD
thesis, University of Pennsylvania.

Demetras, M. J., K. N. Post, and C. E. Snow. 1986. Feedbadistdeinguage learners: the
role of repetitions and clarification questiod®urnal of Child Languagé3:275—-292.

Eisner, J. 1996. Three new probabilistic models for depecylparsing: An exploration. In
Proceedings of the 16th International Conference on Coatprtal Linguistics (COL-
ING 16), 340—-345.

Eisner, J., and G. Satta. 1999. Efficient parsing for bileixcontext-free grammars and
head automaton grammars. Pnoceedings of the 37th Annual Meeting of the Associa-
tion for Computational Linguistic457—-464.

Finch, S., and N. Chater. 1992. Bootstrapping syntactiegmates using statistical meth-
ods. In W. Daelemans and D. Powers (EdB3¢kground and Experiments in Machine
Learning of Natural Language229-235, Tilburg University. Institute for Language
Technology and Al.

Finch, S. P. 1993Finding Structure in LanguagdhD thesis, University of Edinburgh.
Fodor, J. 1983Modularity of mind Cambridge, Mass.: MIT Press.

Gold, E. M. 1967. Language identification in the limibformation and ControlL0:447—
474,



Bibliography 121

Halliday, M. A. K. 1994.An introduction to functional grammat.ondon: Edward Arnold.
2nd edition.

Hirsh-Pasek, K., R. Treiman, and M. Schneiderman. 1984wBrand Hanlon revisited:
mothers’ sensitivity to ungrammatical form¥ournal of Child Languagé1:81-88.

Hofmann, T. 1999. Probabilistic latent semantic analysisProc. of Uncertainty in Arti-
ficial Intelligence Stockholm.

Horning, J. J. 1969A study of grammatical inferenc®hD thesis, Stanford.

Jackendoff, R. 1996The architecture of the language facult¢ambridge, Mass.: MIT
Press.

Kit, C. 1998. A goodness measure for phrase structure legnia compression with the
mdl principle. InProceedings of the European Summer School in Logic, Laregyaad
Information Student Session

Klein, D., and C. D. Manning. 2001a. Distributional phragesture induction. IfProceed-
ings of the Fifth Conference on Natural Language LearningNCL 2001) 113-120.

Klein, D., and C. D. Manning. 2001b. Natural language grammeuction using a
constituent-context model. In T. G. Dietterich, S. Beclkard Z. Ghahramani (Eds.),
Advances in Neural Information Processing Systems 14 (RIRA) Vol. 1, 35-42.
MIT Press.

Klein, D., and C. D. Manning. 2002. A generative constitueomtext model for improved
grammar induction. IMCL 4Q 128-135.

Klein, D., and C. D. Manning. 2003. Fast exact inference waithctored model for natural
language parsing. In S. Becker, S. Thrun, and K. Obermayis.J/Advances in Neural
Information Processing Systems, Tiambridge, MA. MIT Press.

Klein, D., and C. D. Manning. 2004. Corpus-based inductimyatactic structure: Models
of dependency and constituency. Pnoceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics (ACL 04)



122 Bibliography

Landauer, T. K., P. W. Foltz, and D. Laham. 1998. Introducttmlatent semantic analysis.
Discourse Processéx:259-284.

Langley, P., and S. Stromsten. 2000. Learning contextegframars with a simplicity bias.
In Machine Learning: ECML 2000, 11th European Conference octvee Learning,
Barcelona, Catalonia, Spain, May 31 - June 2, 2000, ProasgsiMol. 1810, 220-228.
Springer, Berlin.

Lari, K., and S. J. Young. 1990. The estimation of stochasiitext-free grammars using
the inside-outside algorithnComputer Speech and Languag85-56.

Magerman, D., and M. Marcus. 1990. Parsing a natural largusimg mutual information
statistics. InProceedings of the Eighth National Conference on Artifiélligence

Manning, C. D., and H. Schiitze. 1998oundations of Statistical Natural Language Pro-
cessing Cambridge, Massachusetts: The MIT Press.

Marcus, G. 1993. Negative evidence in language acquisi@agnition46(1):53-85.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 1993uiBling a large annotated
corpus of English: The Penn treebar@omputational Linguisticd9:313-330.

Mel'Cuk, I. A. 1988.Dependency Syntax: theory and practiedbany, NY: State Univer-
sity of New York Press.

Merialdo, B. 1994. Tagging English text with a probabilisthodel. Computational
Linguistics20(2):155-171.

Miller, P. H. 1999.Strong Generative Capacitytanford, CA: CSLI Publications.

Olivier, D. C. 1968. Stochastic Grammars and Language Acquisition Mechanigph®
thesis, Harvard University.

Paskin, M. A. 2002. Grammatical bigrams. In T. G. DietteriShBecker, and Z. Ghahra-
mani (Eds.) Advances in Neural Information Processing System<anbridge, MA.
MIT Press.



Bibliography 123

Penner, S. 1986. Parental responses to grammatical andnamgtical child utterances.
Child Developmen$8:376—-384.

Pereira, F., and Y. Schabes. 1992. Inside-outside redstim@om partially bracketed
corpora. InProceedings of the 30th Meeting of the Association for Caatmnal
Linguistics (ACL 30)128-135.

Pereira, F., N. Tishby, and L. Lee. 1993. Distributionaktéwing of English words. IRro-
ceedings of the 31st Annual Meeting of the Association fon@dational Linguistics
(ACL 31) 183-190.

Pinker, S. 1994The Language InstinctNew York: William Morrow.

Pullum, G. K. 1996. Learnability, hyperlearning, and thevgrty of the stimulus. In
Proceedings of the 22nd Annual Meeting of the Berkeley listiga SocietyBerkeley
CA. Berkeley Linguistics Society.

Radford, A. 1988 Transformational GrammarCambridge: Cambridge University Press.

Roark, B. 2001. Probabilistic top-down parsing and languagdeling. Computational
Linguistics27:249-276.

Saffran, J. R., E. L. Newport, and R. N. Aslin. 1996. Word segtation: the role of
distributional cuesJournal of Memory and Langua@@5:606—621.

Schitze, H. 1993. Part-of-speech induction from scralohiThe 31st Annual Meeting of
the Association for Computational Linguistics (ACL 3251-258.

Schiitze, H. 1995. Distributional part-of-speech taggindg’roceedings of the 7th Meeting
of the European Chapter of the Association for Computatidreguistics (EACL 7)
141-148, San Francisco CA. Morgan Kaufmann.

Skut, W., T. Brants, B. Krenn, and H. Uszkoreit. 1998. A lirgjically interpreted corpus
of German newspaper texts. Rroceedings of the European Summer School in Logic,
Language and Information Workshop on Recent Advances ipusgknnotations



124 Bibliography

Solan, Z., E. Ruppin, D. Horn, and S. Edelman. 2003. Autcrraatquisition and efficient
representation of syntactic structures. In S. Becker, 8uidland K. Obermayer (Eds.),
Advances in Neural Information Processing System<anbridge, MA. MIT Press.

Stolcke, A., and S. M. Omohundro. 1994. Inducing probatiiligrammars by Bayesian
model merging. IMGrammatical Inference and Applications: Proceedings ef 8ec-
ond International Colloquium on Grammatical Inferen&pringer Verlag.

van Zaanen, M. 2000. ABL: Alignment-based learning Phoceedings of the 18th Inter-
national Conference on Computational Linguistics (COLIN®), 961-967.

Wolff, J. G. 1988. Learning syntax and meanings throughnoigaition and distributional
analysis. In Y. Levy, I. M. Schlesinger, and M. D. S. Brainal$b, Categories and
processes in language acquisitidtv9-215. Hillsdale, NJ: Lawrence Erlbaum.

Xue, N., F.-D. Chiou, and M. Palmer. 2002. Building a largets annotated Chinese cor-
pus. InProceedings of the 19th International Conference on Coaturtal Linguistics
(COLING 2002)

Yuret, D. 1998. Discovery of Linguistic Relations Using Lexical AttractioPhD thesis,
MIT.



