
Data-Oriented Models of

Parsing and Translation

Mary Hearne

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

School of Computing

Supervisor: Dr. Andy Way

January 2005

i

Abstract

The merits of combining the positive elements of the rule-based and data-driven ap-
proaches to MT are clear: a combined model has the potential to be highly accurate,
robust, cost-effective to build and adaptable. While the merits are clear, however, how
best to combine these techniques into a model which retains the positive characteristics
of each approach, while inheriting as few of the disadvantages as possible, remains an
unsolved problem. One possible solution to this challenge is the Data-Oriented Transla-
tion (DOT) model originally proposed by Poutsma (1998, 2000, 2003), which is based on
Data-Oriented Parsing (DOP) (e.g. (Bod, 1992; Bod et al., 2003)) and combines examples,
linguistic information and a statistical translation model.

In this thesis, we seek to establish how the DOT model of translation relates to the
other main MT methodologies currently in use. We find that this model differs from other
hybrid models of MT in that it inextricably interweaves the philosophies of the rule-based,
example-based and statistical approaches in an integrated framework.

Although DOT embodies many positive characteristics on a theoretical level, it also in-
herits the computational complexity associated with DOP. Previous experiments assessing
the performance of the DOT model of translation were small in scale and the training data
used was not ideally suited to the task (Poutsma, 2000, 2003). However, the algorithmic
limitations of the DOT implementation used to perform these experiments prevented a
more informative assessment from being carried out. In this thesis, we look to the inno-
vative solutions developed to meet the challenges of implementing the DOP model, and
investigate their application to DOT. This investigation culminates in the development of
a DOT system; this system allows us to perform translation experiments which are on a
larger scale and incorporate greater translational complexity than heretofore. Our eval-
uation indicates that the positive characteristics of the model identified on a theoretical
level are also in evidence when it is subjected to empirical assessment. For example, in
terms of exact match accuracy, the DOT model outperforms an SMT model trained and
tested on the same data by up to 89.73%.

The DOP and DOT models for which we provide empirical evaluations assume context-
free phrase-structure tree representations. However, such models can also be developed for
more sophisticated linguistic formalisms. In this thesis, we also focus on the efforts which
have been made to integrate the representations of Lexical-Functional Grammar (LFG)
with DOP and DOT. We investigate the usefulness of the algorithms developed for DOP
(and adapted here to Tree-DOT) when implementing the (more complex) LFG-DOP and
LFG-DOT models. We examine how constraints are employed in these models for more
accurate disambiguation and seek an alternative methodology for improved constraint
specification. We also hypothesise as to how the constraints used to predict both good
parses and good translations might be pruned in a motivated fashion. Finally, we explore
the relationship between translational equivalence and limited generalisation reusability
for both the tree-based and LFG-based DOT models, focussing on how this relationship
differs depending on which formalism is assumed.

ii

Acknowledgements

Firstly, I would like to thank my supervisor, Andy Way. It was thanks to him that I

became interested in research in the first place, and he has been a constant source of

encouragement, inspiration and common sense throughout the course of my studies – in

short, the ideal supervisor!

My visit to the University of Amsterdam during May and June of 2003 was a highlight

of my time as a PhD student. I would like to thank Khalil Sima’an and Rens Bod for

a stimulating and extremely rewarding six weeks, and for their continued interest and

support.

I thank all the members of the National Centre for Language Technology, and the staff

and postgraduate students at the School of Computing and School of Applied Languages

and Intercultural Studies at DCU for their helpful comments whenever I presented my

work. In particular, I thank Josef van Genabith for his unfailing interest and enthusiasm.

Special thanks go to Nano, Mick and Ruth, and especially Aoife, for always listening to

my ideas and answering my never-ending stream of silly questions, and to Declan, whom

I’ve really enjoyed working with.

I thank Tracy Holloway King and Martin Forst for providing me with data. I acknowl-

edge the DCU School of Computing for providing financial support without which this

work would not have been possible. This work was also partly funded by an Albert College

Senior Research Fellowship awarded to Andy Way.

Of course, I also acknowledge everyone who has helped to keep me from cracking up

over this past year. I mention Andy here – again! – for being the kind of supervisor who

realises that there is more to life than just work. Thanks to Cathal, Tom and Aoife for

finishing before me and proving that it is possible to survive writing up with your mental

health intact! Thanks to Nano for always being on the same timescale as me so I haven’t

had to write up on my own, and to Michelle who has helped keep us both (relatively)

calm – don’t worry, we’ll return the favour! Thanks to Mick and Barry for always being

in good spirits when we’re all in working on the weekend, and to everyone in CAPG for

keeping me sane.

Special thanks to my parents, Michael and Mary, for always supporting me and instill-

iii

ing me with the belief that I could achieve anything I set my mind to, to Kay for being

the kind of older sister who always set me a high standard to aim for but is also good

craic and down-to-earth, and to Liam for making sure I never take myself too seriously.

Thanks also to Gillian and Teresa for not forgetting me, even though I hardly ever get to

come home these days.

Finally, special thanks to Pete for always knowing when to encourage me to relax and

take a break, and when to make me get my act together and get some work done – without

him, I would have finished this thesis either a lot sooner or not at all!

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

2 The state of the art in Data-Oriented Parsing 7

2.1 Probabilistic syntax: modelling lexical and structural dependencies 8

2.2 The Tree-DOP model . 14

2.2.1 Representations . 16

2.2.2 Fragmentation . 16

2.2.3 Composition . 17

2.2.4 The probability model . 18

2.2.5 Tree-DOP as a Stochastic Tree-Substitution Grammar 19

2.3 Fragmentation in practice . 20

2.4 Parsing methodologies for Tree-DOP . 24

2.4.1 Bod: fragments as re-write rules . 27

2.4.2 Sima’an: two-phase parsing . 28

2.4.3 Goodman: parsing with PCFG-reductions 32

2.4.4 Extended Chomsky-Normal Form . 36

2.5 Tree-DOP disambiguation strategies . 36

2.5.1 Most Probable Parse . 37

2.5.2 Most Probable Derivation . 46

2.5.3 Most Probable Parse amongst the n Most Probable Derivations . . . 47

2.5.4 Simplicity: the shortest derivation 48

v

2.5.5 Simplicity and Likelihood Combined 49

2.5.6 Maximum Constituents Parse . 50

2.6 Estimating Tree-DOP fragment probabilities 51

2.6.1 The relative frequency estimator: DOPrf 52

2.6.2 Assuming uniform distribution over the training trees: DOPbon . . . 54

2.6.3 Using Maximum Likelihood Estimation: DOPmle 55

2.6.4 Probability re-estimation using Back-off: DOPbkf 56

2.7 Summary . 59

3 Tree-DOP: implementation, experiments and results 60

3.1 Parser design details . 61

3.1.1 Parse space computation . 61

3.1.2 Compact fragment representation . 64

3.1.3 Ranking parses . 68

3.2 Experiments and results . 69

3.2.1 Experimental set-up . 69

3.2.2 Evaluation metrics . 71

3.2.3 Results for English experiments . 72

3.2.4 Results for French experiments . 76

3.2.5 Discussion and conclusions . 80

3.3 Summary . 88

4 Data-Oriented Translation 90

4.1 Paradigmatic approaches to MT . 90

4.1.1 Rule-based MT . 90

4.1.2 Data-driven Machine Translation . 93

4.1.3 Hybridity: the best of both worlds 95

4.2 Data-Oriented Translation: relating linguistics, statistics and examples . . . 97

4.2.1 The Tree-DOT model . 97

4.2.2 DOT: a holistic approach to hybrid MT 105

4.3 Summary . 109

vi

5 Tree-DOT in practice 111

5.1 Promising ideas, poor performance . 111

5.1.1 Poutsma’s Implementation . 112

5.1.2 Experiments with the Verbmobil corpus 115

5.1.3 Conclusions . 116

5.2 A new implementation of the Tree-DOT model 118

5.2.1 Pruning the fragment space: link depth 118

5.2.2 Translation-space construction . 126

5.2.3 Compact fragment representation . 130

5.2.4 Ranking translations . 135

5.3 Summary . 138

6 Evaluating the DOT model 139

6.1 Experimental set-up . 139

6.1.1 Translational divergence between English and French in the Home-

Centre Corpus . 142

6.2 Evaluation metrics . 146

6.2.1 The exact match metric . 147

6.2.2 The BLEU metric . 147

6.2.3 The NIST metric . 150

6.2.4 The F-score metric . 151

6.3 Results: English to French translation . 154

6.4 Results: French to English translation . 159

6.5 Discussion . 163

6.5.1 Does DOT improve over SMT on the HomeCentre corpus? 163

6.5.2 Do we improve on previous DOT experiments? 166

6.5.3 Ranking algorithms: efficiency vs. accuracy 167

6.5.4 How come MPP ranking performs so poorly? 172

6.5.5 Does the DOP Hypothesis also apply to DOT? 173

6.5.6 Which translation direction is more difficult for DOT? 177

6.6 Acquisition of sub-structurally aligned bilingual treebanks 178

vii

6.7 Summary . 180

7 A richer DOP model: LFG-DOP 181

7.1 The LFG-DOP Model . 182

7.1.1 Representations . 182

7.1.2 Fragmentation . 184

7.1.3 Composition . 188

7.1.4 The Probability Model . 190

7.2 LFG-DOP in practice . 196

7.2.1 Parsing with LFG-DOP . 196

7.2.2 Evaluating LFG-DOP output . 197

7.2.3 Current LFG-DOP performance . 198

7.3 On the nature of LFG-DOP fragments . 199

7.4 Parameter estimation for LFG-DOP . 205

7.4.1 Probability re-estimation using Back-off: LFG-DOPbkf 206

7.4.2 Applying discard in practice . 208

7.5 Implementing LFG-DOP . 209

7.5.1 Computing the LFG-DOP parse space 210

7.5.2 Compact LFG-DOP fragment representations 210

7.5.3 Monte Carlo sampling for LFG-DOP 211

7.6 Summary . 213

8 A richer DOT model: LFG-DOT 215

8.1 The LFG-DOT models of Way (2001) . 215

8.1.1 LFG-DOT Model 1 . 216

8.1.2 LFG-DOT Model 2 . 217

8.1.3 LFG-DOT Model 3 . 218

8.1.4 LFG-DOT Model 4 . 219

8.2 A new LFG-DOT model . 221

8.2.1 Representations . 221

8.2.2 Fragmentation . 221

viii

8.2.3 Composition . 226

8.2.4 The probability model . 228

8.3 Implementing LFG-DOT . 230

8.4 Translational equivalence and limited compositionality 231

8.5 Learning features which predict good solutions 235

8.6 Summary . 240

9 Conclusions 241

9.1 Future work . 243

Bibliography 245

ix

Chapter 1

Introduction

There are two main paradigmatic approaches to the automation of the translation process.

Broadly speaking, rule-based systems translate by following a set of instructions provided

by linguistic experts, whereas data-driven systems learn from example sentences trans-

lated by humans. Increasingly, machine translation (MT) research is converging towards

hybrid models. For example, knowledge for rule-based MT can be induced automatically

from corpora, while data-driven methods are increasingly incorporating linguistic infor-

mation. The merits of combining the positive elements of the rule-based and data-driven

approaches to MT are clear: a combined model has the potential to be highly accurate,

robust, cost-effective to build and adaptable. While the merits are clear, however, how

best to combine these techniques into a model which retains the positive characteristics

of each approach, while inheriting as few of the disadvantages as possible, remains an

unsolved problem to which many solutions are possible.

One possible solution to the challenge of developing an optimal hybrid MT framework

is the Data-Oriented Translation (DOT) model (Poutsma, 1998, 2000, 2003), which is

based on Data-Oriented Parsing (DOP) (e.g. (Bod, 1992; Bod et al., 2003)) and com-

bines examples, linguistic information and a statistical translation model. Studies of this

model carried out previously (Poutsma, op cit.) leave some important research questions

unanswered.

In this thesis, we seek to establish how the DOT model of translation relates to the

other main MT methodologies currently in use. We find that this model differs from other

1

approaches in that it is not allied to any one of rule-based, example-based and statistical

MT over the others, but rather inextricably interweaves the philosophies of all three in

an integrated framework. In short, in the DOT model, none of the three elements –

linguistics, statistics and examples – plays a more or less important role than the others.

We find that the unique characteristics of this approach to translation render it worthy of

empirical investigation.

Although DOT embodies many positive characteristics on a theoretical level, it also

inherits the computational complexity associated with DOP. Previous experiments as-

sessing the performance of the DOT model of translation were small in scale and the

training data used was not ideally suited to the task (Poutsma, 2000, 2003). However, the

algorithmic limitations of the DOT implementation used to perform these experiments

prevented a larger-scale, more informative assessment from being carried out. In this the-

sis, we look to the innovative solutions developed to meet the challenges of implementing

the DOP model, and investigate their application to DOT. This investigation culminates

in the development of a DOT system which allows for a more intensive evaluation than

heretofore.

Thanks to this new, more sophisticated DOT implementation, we are in a position

to perform translation experiments which are on a larger scale and incorporate greater

translational complexity than before. In this thesis, we rigorously assess the capabilities

of the DOT model using up-to-date evaluation techniques. In doing so, we seek to ascertain

whether the positive characteristics of the model identified on a theoretical level are also

in evidence when it is subjected to empirical evaluation.

In order to address the practical questions which arise regarding the implementation

and evaluation of the DOT model, we present a detailed account of the published work –

both theoretical and practical – on DOP. Furthermore, we build a working DOP system

using the techniques we apply when implementing DOT. Of course, as we intend this

parser to form the core technology behind our translation system, we replicate previous

DOP experiments (Bod and Kaplan, 2003) in order to verify that our results are consistent.

In addition, we present a thorough evaluation of parsing experiments on both English and

French data in the interests of further establishing the characteristics of the DOP model

2

itself.

The DOP and DOT models for which we provide empirical evaluations assume context-

free phrase-structure tree representations. However, data-oriented models of parsing and

translation can also be developed for more sophisticated linguistic formalisms. In this

thesis, we also focus on the efforts which have been made to integrate the representations

of Lexical-Functional Grammar (LFG) – which associate with each phrase-structure tree

an attribute-value matrix encoding lexical and functional information – with the DOP and

DOT models of parsing and translation.

We outline the theoretical and empirical work which has been carried out to date on

the LFG-DOP model (e.g. (Bod and Kaplan, 1998, 2003)). We show how parameter re-

estimation techniques developed for the DOP model which assumes phrase-structure trees

(Sima’an and Buratto, 2003) can be applied to the LFG-DOP model (Hearne and Sima’an,

2003). We also study how constraints are employed for more accurate disambiguation and

seek an alternative methodology for improved constraint specification. Again, we look to

the innovative solutions developed to meet the challenges of implementing the DOP model,

and investigate how useful they are when implementing the (more complex) LFG-DOP

model.

Finally, we describe the research that has been carried out on the LFG-DOT translation

model, all of which is theoretical in nature (Way, 1999, 2001). We bring together the

knowledge acquired through implementation of the tree-based DOT model and study of

the complexities of extending our DOP system with LFG representations to suggest how

LFG-DOT might best be implemented. Furthermore, we explore the relationship between

translational equivalence and limited generalisation reusability for both the tree-based and

LFG-based DOT models, focussing on how this relationship differs depending on which

formalism is assumed. In addition, we hypothesise as to how the constraints used to

predict both good parses and good translations might be pruned in a motivated fashion.

Thesis structure Broadly speaking, this thesis is structured as follows. In chapters 2

and 3, we focus on parsing with the DOP model. We review the work which has been

carried out to date for this model in terms of theory, practice and performance. We then

discuss in detail how we have opted to implement DOP and the empirical results we have

3

achieved using our system. In chapters 4, 5, and 6, we investigate the DOT model of

translation. We review the theoretical description of the model given by (Poutsma, 1998,

2000, 2003), as well as discussing how it relates to other MT methodologies, the algorithms

we have chosen to implement it and the empirical results we have achieved through our

implementation. Finally, in chapters 7 and 8, we discuss the data-oriented models of pars-

ing and translation based on the representations of Lexical-Functional Grammar (LFG)

in both theoretical and practical terms. The following gives a more detailed description

of the material we present.

Chapter 2 Data-Oriented Parsing (DOP) was first introduced in (Scha, 1990; Bod,

1992). In this chapter, we give an overview of the state of the art for this model. Firstly,

we focus on the general characteristics of DOP by looking at the types of dependencies

captured, and how they differ from those captured by other experience-based parsing

methodologies. We then give a more precise description of the DOP model in terms of

how fragments – which take the place of rules in a DOP grammar – are induced and

how they are used to assign structure to previously-unseen input strings. While the DOP

model displays interesting characteristics, empirical evaluation is extremely challenging

due to the complexity of both the induced grammars and the required probability model.

We discuss pruning techniques which have been proposed to reduce grammar size and how

these reductions impact on parse accuracy (e.g. (Bod, 1995b; Sima’an, 1995a; Bod, 2001,

2003b)). We also describe the solutions which have been developed to date to address the

tasks of building the DOP parse space for an input string (e.g. (Bod, 1995a; Goodman,

1998; Sima’an, 1999)) and selecting the best parse from that space according to the model

(e.g. (Bod, 1995a, 2000e; Chappelier and Rajman, 2003)). Finally, we present alternatives

to the DOP fragment probability estimation method (e.g. (Bonnema et al., 2000; Sima’an

and Buratto, 2003)) which has been shown to be unsatisfactory (Bonnema et al., 2000;

Johnson, 2002).

Chapter 3 In this chapter, we present the DOP system we have developed in terms

of implementation and performance. Firstly, we describe the algorithms used to imple-

ment each component of our parser. We intend this parser to form the core technology

4

behind implementations of parsing and translation models which assume tree-based repre-

sentations encoding more information than simple phrase-structure trees. Consequently,

we motivate our choice of algorithm for each task to be achieved in terms of both efficiency

and flexibility. We then go on to outline the English and French parsing experiments we

performed and present a detailed evaluation of the results achieved.

Chapter 4 The main machine translation (MT) paradigms in current use are rule-

based MT and data-driven MT. In this chapter, we describe these paradigms and discuss

methods of creating hybrid models which embody the positive characteristics of both. We

then describe the Data-Oriented Translation (DOT) model of MT (Poutsma, 1998, 2000,

2003) both in general and formal terms. We discuss how DOT relates to both the rule-

based and data-driven methodologies and show that it relies on linguistics, statistics and

examples to equal degrees.

Chapter 5 Previous empirical evaluation of the DOT model (Poutsma, 2000, 2003)

indicated that, despite the attractive characteristics it displays on a theoretical level,

the model performs poorly on real data. In this chapter, we assess the reasons for this

disappointing performance. Our findings lead us to conclude that a rigorous examination

of the performance of the DOT model requires a more robust implementation built to

facilitate experiments using larger, more complex datasets than heretofore. Accordingly,

in the remainder of this chapter we describe how we have applied the innovative solutions

to the challenges of implementing the DOP model in building our DOT system.

Chapter 6 In this chapter, we describe a larger-scale, more informative assessment

of the DOT model than before. We describe our experiments in terms of the data used

and the evaluation metrics upon which our assessment is based. We then go on to give

translation accuracy results over variations in system setup and provide detailed analysis

of our findings. Our evaluation shows that the DOT model is capable of generating high-

quality translations which are faithful to the data being modelled in terms of both meaning

and style.

5

Chapter 7 The expressive power of the DOP model is limited by the corpus repre-

sentations it assumes, and phrase-structure trees reflect surface syntactic phenomena only.

In this chapter, we describe the DOP model which assumes Lexical-Functional Grammar

(LFG) representations developed by Bod and Kaplan (1998, 2003) and summarise the pars-

ing results achieved using this model. We then go on to propose an alternative method of

specifying fragment constraints and an alternative method of defining fragment probabili-

ties (Hearne and Sima’an, 2003), and describe the application of efficient DOP algorithms

to this model.

Chapter 8 Way (1999, 2001) investigates the possibility of merging the DOT model

of translation with LFG representations. In this chapter, we describe the models he pro-

posed and present an alternative model. We discuss how this model might be implemented

based on our findings with regard to the implementation of the DOT and LFG-DOP mod-

els. We also discuss the implications of moving from phrase-structure trees to LFG rep-

resentations for the expression of translational equivalence and hypothesise as to how the

feature sets for both monolingual and bilingual fragments of LFG representations might

be pruned.

Chapter 9 Finally, we conclude and give some avenues for future work.

6

Chapter 2

The state of the art in

Data-Oriented Parsing

Data-Oriented Parsing (DOP) is an experience-based approach to natural language pars-

ing where input sentences are analysed by referencing prior analyses of similar sentences.

According to Bod (2003a), collections of analysed sentences were previously used to es-

timate rule probabilities for hand-written grammars but the DOP model, of which the

earliest implementation is described in (Bod, 1992), was the first model to employ prior

analyses directly when parsing new input. In section 2.1, we discuss some of the lexical

and structural dependencies captured by different approaches to experience-based pars-

ing where context-free phrase-structure tree representations are assumed. We also give a

general description of the DOP model – before describing it more formally in section 2.2

– and highlight some dependencies which are captured naturally using DOP.

While the DOP model displays properties which are theoretically attractive, researchers

interested in submitting the model to empirical evaluation have been faced with serious

difficulties. DOP grammars projected from a treebank are large and unwieldy and, in

the worst case, exponential in size (relative to the size of the treebank). Consequently,

parsing with these grammars is prohibitively expensive in terms of both time and space.

Furthermore, calculation of the most probable parse for the DOP model, which is a sum-of-

products model, has been shown to be an NP-hard problem (Sima’an, 1995b, 1999, 2003).

In sections 2.3–2.5, we describe methodologies which have been developed to address each

7

of these issues. Finally, it has been shown that using the relative frequency estimator to

assign probabilities in the DOP model is unsatisfactory (Bonnema et al., 2000; Johnson,

2002; Sima’an and Buratto, 2003). In section 2.6, we illustrate why this is the case and

outline three solutions which seek to address this problem.

2.1 Probabilistic syntax: modelling lexical and structural

dependencies

A parser assigns one or more structural analyses to each natural language string it receives

as input according to a given grammar if the string is in the language defined by the

grammar. A probabilistic parser also ranks the analyses assigned to each string, where

these rankings are calculated according to weights assigned to each rule in the grammar. It

has become usual to extract probabilistic context-free grammars (PCFGs) from treebanks

– collections of sentences which have been annotated with context-free phrase-structure

tree representations – by extracting the rules which occur in the treebank along with their

relative frequencies.

Each PCFG rule extracted from a treebank corresponds to a treebank tree node: the

node category appears on the left-hand side of the rule and each of its child node categories

or terminal symbols (i.e. words) appears on the right-hand side. The probability attached

to any rule in the grammar is its frequency in the treebank conditioned on its left hand

side i.e. P (L −→ R1...Rx) = |L−→R1...Rx|
|L−→∗| . Example (2.1) shows a treebank tree and the CFG

rules which can be extracted from it, along with their relative frequencies.

S

NP VP

john V NP

likes mary

(i) S −→ NP VP (1)

(ii) VP −→ V NP (1)

(iii) V −→ likes (1)

(iv) NP −→ john (1
2
)

(v) NP −→ mary (1
2
)

(2.1)

The disappointing performance of parsers trained on such PCFGs is mainly attributed to

the fact that they do not model non-local dependencies as rule applications are assumed

to be independent. The probability of choosing a rule at any step in a derivation does

8

not reflect the derivation steps seen previously, meaning, for example, that simple PCFGs

do not distinguish probabilistically between noun phrases occurring in subject and object

positions. This is illustrated in example (2.1) where rules (iv) and (v) are equally likely to

be applied when expanding a subject NP despite the fact that, given the evidence in the

treebank, john is far more likely to appear in subject position than mary. Similarly, such

PCFGs do not distinguish probabilistically between verbs with different subcategorisation

requirements. For example, there is no explicit connection between the surface form of

the transitive verb likes and rule (ii) which facilitates the analysis of such transitive verbs;

if the grammar also contained the rule VP −→ V, this V could legitimately be expanded

using rule (iii) to generate an (incorrect) intransitive reading for likes.

Techniques have been developed which go some way towards relaxing these indepen-

dence assumptions and, consequently, significantly improving PCFG performance. These

techniques generally involve transforming the treebank trees in some way and then ex-

tracting the PCFG from this transformed treebank. One such transformation, dubbed

‘parent annotation’ and investigated by Johnson (1999), appends the category of each

parent node to the category labels of all its non-terminal children. This process is illus-

trated in example (2.2), where each node in the treebank tree shown in example (2.1)

has been annotated with its parent category and the corresponding rules and probabilities

extracted.

S

NP∧S VP∧S

john V∧VP NP∧VP

likes mary

(i) S −→ NP∧S VP∧S (1)

(ii) VP∧S −→ V∧VP NP∧VP (1)

(iii) V∧VP −→ likes (1)

(iv) NP∧S −→ john (1)

(v) NP∧VP −→ mary (1)

(2.2)

This parent-annotated PCFG explicitly captures the distinction between the NP occurring

in subject position, which is marked with the category NP∧S and is used in rules (i) and

(iv), and the NP occurring in object position, marked with the category NP∧VP and used

in rules (ii) and (v).

Another treebank transformation, called ‘head-lexicalisation’ and introduced by Car-

roll and Rooth (1998), projects head words up chains of categories by appending them

9

to the label of each phrase of which they are head. This transformation is illustrated in

example (2.3) where the V, VP and S nodes have been annotated with their head surface

form likes.

S,likes

NP VP,likes

john V,likes NP

likes mary

(i) S,likes −→ NP VP,likes (1)

(ii) VP,likes −→ V,likes NP (1)

(iii) V,likes −→ likes (1)

(iv) NP −→ john (1
2
)

(v) NP −→ mary (1
2
)

(2.3)

Subcategorisation information for the verb likes is made explicit by this head-lexicalised

PCFG in rule (ii) as it states that likes is followed by an object NP.

Both the Data-Oriented Parsing (DOP) (e.g. (Bod, 1998; Bod et al., 2003)) and PCFG

approaches to syntactic parsing (e.g. (Johnson, 1999)) are experience-based in that they

learn by extrapolating syntactic generalisations, along with their probabilities, from a set

of example parses. The DOP methodology is applied in precisely the same way as the

PCFG methodology described in the preceding paragraphs: a probabilistic grammar is

extracted from a treebank and used to parse previously unseen input. However, DOP and

PCFG models differ in terms of the types of generalisations (i.e. grammar rules) extracted

from the treebank and, consequently, how the output parses are ranked.

A DOP grammar comprises tree fragments which are extracted by breaking treebank

trees into smaller parts and recombined using a substitution operation to parse new input.

Example (2.4) gives just some1 of the fragments (i) – (vi), along with their relative fre-

1A comprehensive specification as to (i) what constitutes a valid DOP fragment and (ii) how the set
of valid DOP fragments is extracted from a given treebank tree is given in section 2.2.2; an example
illustrating this process is given in Figure 2.3.

10

quencies,2 which are extracted from the example treebank tree under the DOP approach.

S

NP VP

john V NP

likes mary

(i)

S

NP VP

john

(1
10

) (iii)
S

NP VP

(1
10

) (v)
NP

mary

(1
2
)

(ii)

S

NP VP

V NP

mary

(1
10

) (iv)

VP

V NP

likes

(1
4
) (vi)

NP

john

(1
2
)

(2.4)

Without making any alterations to the treebank tree, the DOP fragments also model

those dependencies captured by the parent and head-lexicalisation transformations. For

example, fragments (i) and (ii) explicitly express the distinction between NPs likely to

occur in subject position (john in this case) and those likely to occur in object position

respectively. Similarly, fragment (iv) encodes subcategorisation information about the

verb likes, indicating that it takes a direct object.

The DOP grammar contains all possible fragments which can be extracted from the

treebank trees. This means that, in contrast to the transformed rule sets, the set of DOP

fragments also includes all the PCFG rules which can be extracted from the (unannotated)

treebank tree (i.e. those in example (2.1)) as depth-1 fragments (e.g. fragments (iii), (v)

and (vi) in example (2.4)). Clearly, all fragments in the fragment base overlap to a certain

extent: example (2.4) shows that fragment (v) overlaps with fragment (ii), fragment (vi)

with fragment (i) and fragment (iii) with both fragments (i) and (ii). Consequently, many

different combinations of fragments can yield exactly the same analysis for a given input

string. For example, fragments (i), (iv) and (v) can be combined as shown in example (2.5)

to form a parse for the string john likes mary, as can fragments (iii), (vi), (iv) and (v) as

shown in example (2.6). Each of these fragment combinations is viewed probabilistically

as a piece of evidence in favour of that parse tree and, thus, plays a part in determining

2The 6 example fragments shown here constitute a subset of the set of 17 fragments which can be
extracted and the relative frequencies given are calculated over the full fragment set: 10 fragments have
root node S, 4 have root node VP, 2 have root node NP and 1 has root node V.

11

the final ranking of the output parses.

(i)

S (iv)

NP VP VP (v)

john V NP NP

likes mary

(2.5)

(iii)

(vi) S (iv)

NP NP VP VP v

john V NP NP

likes mary

(2.6)

This characteristic of DOP grammars – whereby the fragments are generalised to vary-

ing degrees from those which incorporate wider context to express particular dependencies

such as (ii) to those which are very general and correspond to plain PCFG rules such as

(iii) – is not explicitly shared by PCFGs. Consequently, PCFGs extracted from trans-

formed treebanks tend to suffer from greater sparse data problems. For example, the

DOP fragment set in example (2.4) and the PCFG rules in examples (2.1) and (2.3) can

be used to parse the sentence mary likes john. However, this sentence can no longer be

parsed using the parent-annotated PCFG in example (2.2). Similarly, while fragment (iii)

in the DOP fragment set and rule (i) in the plain and parent-annotated PCFG rule sets

can all potentially be used to parse sentences where a verb other than likes is preceded by

an NP, this is not the case for the head-lexicalised rules as they specify that the surface

form of the head verb must be likes.3

As demonstrated by the simple examples in (2.1) – (2.3), transformation techniques

successfully weaken some of the independence assumptions inherent in PCFGs, thereby

inducing more fine-grained models which reflect certain functional and subcategorisation

3The effects of the sparse data problem in transformed PCFGs can be addressed to a certain extent by
using larger treebanks, and are generally further counteracted through the use of sophisticated smoothing
and back-off techniques. The simple grammar transformation examples given here are designed to illustrate
the type of dependencies captured by such models; a full exposition of the topic is beyond the scope of
this thesis. State-of-the-art PCFG parsers which utilise these techniques are of far greater complexity than
these examples would suggest; this is also true of DOP parsers, as will be shown in sections 2.3 – 2.5 of
this chapter.

12

preferences. These techniques can also be successfully applied when modelling real tree-

banks. For example, the dependency between connects and to in Figure 2.1(a) can be

captured by the rule in (2.7) if the tree is head-lexicalised.

V P, connects −→ V, connects NP PP, to (2.7)

In addition, the fact that the NP the HomeCentre in Figure 2.1(a) is functioning as direct

object while the NP the PC is an oblique object can be reflected in the model by applying

the parent annotation transformation, which marks the leftmost NP as the child of a VP

(NP∧VP) and the rightmost as the child of a PP (NP∧PP).

It is also the case, however, that these transformations cannot capture all relevant

dependencies, whether structural or lexical. In Figure 2.1(b), for example, from and

to remain probabilistically independent despite the fact that they are both head words

because the intervening NPadj is headed by the noun page. Furthermore, the relationships

between last and first and from last N to first N are not modelled as neither last nor

first are head words. Furthermore, expressions such as keep an eye on in Figure 2.1(c)

are modeled solely as the sum of their parts; the idiomatic nature of the expression is

not recognised. In contrast, the DOP approach allows the extraction of fragments which

express these dependencies also. The partial trees in Figure 2.2 are examples of such

fragments: fragment 2.2(a) expresses explicitly the relationship between connects and to

and the functions of the leftmost and rightmost NPs (as direct object and oblique object),

fragment 2.2(b) models from last N to first N and the idiomatic expression keep an eye on

is captured in fragment 2.2(c). Note that it is frequently the case that these analyses, along

with other analyses for the same strings, can be generated by combining more generalised

fragments. Each of the fragments in Figure 2.2, however, strengthens the probabilistic

case in favour of the analysis it yields.

In summary, DOP fragments provide snapshots of the many lexical and structural

dependencies present in a given treebank. As discussed, some of these distinctions can

also be captured via tree transformations used in conjunction with PCFGs. However,

DOP fragments also allow us to succinctly capture many more dependencies – such as

those discussed in the preceding paragraphs and exemplified by fragments 2.2(b) and (c) –

13

(a) (b) (c)

VP

V NP PP

connects D N P NP

the HomeCentre to D N

the PC

PP

P NPadj

from A N PP

last page P NPadj

to NUMBER N

first page

VPv

V NP PP

keep D N P NP

an eye on D N

the LEDs

Figure 2.1: Example treebank structures exhibiting dependencies which
are difficult to model using PCFGs trained on (transformed)
treebanks.

(a) (b) (c)

VP

V NP PP

connects P NP

to

PP

P NPadj

from A N PP

last P NPadj

to NUMBER N

first

VPv

V NP PP

keep D N P NP

an eye on

Figure 2.2: Examples of DOP fragments – extracted from the treebank
trees in Figure 2.1 – capturing dependencies which are diffi-
cult to model using treebank-induced PCFGs.

which are far more difficult to capture using PCFGs extracted from plain or transformed

treebanks.

In the next section (section 2.2), we provide a formal specification of the basic DOP

model and also introduce the stochastic tree-substitution grammar formalism of which

DOP is an application (section 2.2.5).

2.2 The Tree-DOP model

In order to describe the DOP model we must specify four elements: the type of representa-

tion we expect to find in the example base, how fragments are to be extracted from those

representations, how extracted fragments are to be recombined when forming analyses

of new input strings, and how the resulting analyses are to be ranked. In the following

sections 2.2.1 – 2.2.4, we provide the details of each of these elements for the Tree-DOP

model using the illustration provided in Figure 2.3.

14

(A) A sample treebank :

NPadj (T1)

A N

scanning software

VPv(T2)

V N

scanning text

A (T3)

output

A (T4)

large

V (T5)

scanning

V (T6)

copying

N (T7)

images

(B) The corresponding fragment set t1...t16 and their associated frequencies :

NPadj (t1:1)

A N

scanning software

NPadj (t2:1)

A N

scanning

NPadj (t3:1)

A N

software

NPadj (t4:1)

A N

VPv (t5:1)

V N

scanning text

VPv (t6:1)

V N

scanning

VPv (t7:1)

V N

text

VPv (t8:1)

V N

V (t9:2)

scanning

V (t10:1)

copying

A (t11:1)

output

A (t12:1)

scanning

A (t13:1)

large

N (t14:1)

images

N (t15:1)

software

N (t16:1)

text

(C) All derivations for the input string scanning images according to fragment base (B) :

D1 :

NPadj (t2)

A N

scanning

◦
N(t14)

images

=

NPadj

A N

scanning images

D2 :
NPadj (t4)

A N

◦
A (t12)

scanning

◦
N(t14)

images

=

NPadj

A N

scanning images

D3 :

VPv (t6)

V N

scanning

◦
N(t14)

images

=

VPv

V N

scanning images

D4 :
VPv (t8)

V N

◦
V (t9)

scanning

◦
N(t14)

images

=

VPv

V N

scanning images

(D) Calculation of probabilities corresponding to the derivations in (C) for scanning images :

P (D1) = P (t2) ∗ P (t14) = 1
4

∗ 1
4

= 1
12

P (D2) = P (t4) ∗ P (t12) ∗ P (t14) = 1
4

∗ 1
3

∗ 1
3

= 1
36

P (D3) = P (t6) ∗ P(t14) = 1
4

∗ 1
3

= 1
12

P (D4) = P (t8) ∗ P (t9) ∗ P (t14) = 1
4

∗ 2
3

∗ 1
3

= 1
18

Figure 2.3: Illustration of the process of representation, fragmentation,
composition and ranking for Tree-DOP.

15

T t1 t2 t3

NP

D N

the HomeCentre

NP

D Nmod

NP

N

HomeCentre

D

Figure 2.4: Fragments t1 – t3, when extracted from tree T, are not valid
fragments as they each fail to meet one or more of the criteria
specified in section 2.2.2.

2.2.1 Representations

Many different linguistic formalisms can be used to annotate the database of examples

which underpins all DOP systems. In this section, we assume the representations used

when developing the earliest (and most common) DOP systems: syntactically labelled

context-free phrase structure trees (henceforth “trees”). A sample treebank is given in

Figure 2.3(A).

2.2.2 Fragmentation

The fragmentation process involves extracting generalised fragments (or subtrees) from

the trees contained in the example base. A fragment t extracted from tree T is valid only

if it meets the following criteria:

1. each node in t is a node in T,

2. each node in t either has no children or has exactly the same number of children as

the corresponding node in T, and

3. t consists of more than one node.

Examples of fragments which do not meet these criteria given tree T are given in Figure

2.4: t1 violates (1) as the node Nmod does not appear in tree T, t2 violates (2) as it

indicates that the NP node has only one child (N) whereas in T the NP node has two

children (D and N), and t3 violates (3) as it is comprised of just one node.

Fragments are systematically extracted from the annotated example base using the

root and frontier operations. These are defined as follows (Bod, 1998):

16

• given a copy of tree T called Tcopy, select a node to be root and delete all except the

subtree it dominates, and

• select a set of nodes in Tcopy to be frontier nodes and delete the subtrees they

dominate.

For example, fragment t4 in Figure 2.3(B) was extracted by making a copy of tree T1 from

treebank (A) called t4, selecting the node labelled NPadj to be root, adding the nodes

labelled A and N to the frontier set and deleting the subtrees they dominate. Similarly,

fragment t16 was extracted by making a copy of tree T2, selecting the node labelled N to

be root, deleting all subtrees except the subtree it dominates and selecting the empty set

as the frontier set.

2.2.3 Composition

Each fragment frontier (or leaf) node is either a terminal symbol (i.e. a word) or a syntactic

category. Frontier nodes which are syntactic categories constitute open substitution sites;

fragments whose root node syntactic category matches that of the frontier node can be

substituted at that frontier node. For example, fragment t2 in Figure 2.3(B) has two

frontier nodes, one of which is a terminal symbol labelled scanning and the other an open

substitution site labelled N; any fragment in the fragment base with root node N can be

substituted at this site by simply replacing N with the given fragment.

Tree-DOP substitution is achieved via the composition operation (◦). This is a left-

most substitution operation, meaning that where a fragment has more than one open

substitution site, composition must take place at the leftmost site. This ensures that each

derivation is unique. For example, if the composition operation did not specify order then

the composition sequence in example (2.8) would have two realisations, one where john

is in subject position and the other where john is in object position. However, as we are

required to always compose at the leftmost available site, this sequence can actually only

realise the parse where john is subject.

17

S

NP VP

V NP

likes

◦
NP

john
◦

NP

mary
(2.8)

Tree-DOP derivations are built using the composition operation. Once an initial frag-

ment is chosen to start the derivation, further fragments are successively substituted at

the leftmost open substitution site until no open substitution sites remain. Example

derivations are given in Figure 2.3(C).

2.2.4 The probability model

Frequently, multiple analyses are assigned to an input string. For example, in Figure

2.3(C) we see that two distinct parses are generated for the string scanning images, as the

phrase can be analysed both as a noun phrase and as a verb phrase. The probabilities

associated with each parse are calculated and used to rank the set of parses and (as is

generally required) discern which is the most likely analysis of the input string given the

treebank.

Firstly, the probability of a fragment fx with root node X is its relative frequency in

the set of fragments with root node X, as given in (2.9):4

P (fx) =
|fx|

∑

root(f)=root(fx) |f |
(2.9)

The probability of each derivation Dx is then defined as the product of the probabilities

of the fragments used to build that derivation, as given in (2.10):

P (Dx) =
∏

f ∈ Dx

P (f) (2.10)

Finally, the probability of a parse Tx is the sum of the probabilities of the derivations that

yield that parse, as given in (2.11):

P (Tx) =
∑

D yields Tx

P (D) (2.11)

4The majority of DOP implementations to date have estimated fragment probabilities according to
their relative frequencies; alternative methods of accomplishing this task are discussed in section 2.6.

18

The calculation of derivation probabilities is illustrated in Figure 2.3(D). Note that the

highest derivation probability is 1
12 and is assigned to two derivations, D1 and D3. In this

example, therefore, calculating the most probable derivation does not allow us to distin-

guish which parse tree is the ‘best’ parse for the given input string. However, calculation

of parse probabilities, which requires us to sum over derivation probabilities, results in

just one most probable analysis: the tree yielded by derivations D3 and D4 has probability

5
36 whereas the tree yielded by derivations D1 and D2 has a lower probability 4

36 . This is

due to the fact that there are two instances of scanning as a verb in the treebank (out of

a total of three instances of verbs) whereas there is only one instance of scanning as an

adjective (also out of a total of three adjectives).

2.2.5 Tree-DOP as a Stochastic Tree-Substitution Grammar

The Tree-DOP model can be viewed as an instantiation of a Stochastic Tree-Substitution

Grammar (STSG) (Bod, 1998). As DOP grammars are frequently referred to as STSGs in

the literature (e.g. (Sima’an, 1995a, 1999; Chappelier and Rajman, 2003)) and the terms

are used interchangeably throughout this thesis, we give the formal definition of an STSG

here.

A stochastic tree-substitution grammar G is a 5-tuple < VN , VT , S, R, P > where

• VN is a finite set of non-terminal symbols,

• VT is a finite set of terminal symbols,

• S ∈ VN is the start symbol,

• R is a finite set of elementary trees whose root and internal node symbols are elements

of VN and whose leaf node symbols are elements of VN or VT , and

• P is a function which assigns a probability P (t) to every t ∈ R such that 0 ≤ P (t) ≤ 1

and
∑

t:root(t)=X P (T) = 1.

Elementary trees are composed using the leftmost substitution function ◦: if t1,t2 ∈

R and the root node symbol of t2 is the same as the leftmost non-terminal leaf node of t1

then t = t1 ◦ t2 is produced by substituting t2 at the leftmost non-terminal leaf node of t1.

19

A leftmost derivation is an n-tuple of elementary trees < t1, ..., tn > such that

• t1...tn ∈ R,

• root(t1) = S, and

• the frontiers of t1 ◦ ... ◦ tn are elements of VT .

Derivation < t1, ..., tn > derives tree T if t1◦...◦tn = T and derives string W if frontier(t1◦

...◦ tn) = W . The probability of derivation < t1, ..., tn > is the product of the probabilities

of the elementary trees t1...tn used to build it. The probability of a parse is the sum of

the probabilities of the derivations which yield that parse. The probability of a string is

the sum of the probabilities of the distinct parses which yield that string. The probability

of a string is also the sum of the probabilities of its derivations.

Clearly, the Tree-DOP model is an STSG: Tree-DOP fragments correspond to the

elementary trees of the STSG and the probabilities of those fragments are the probabilities

of the elementary trees.

2.3 Fragmentation in practice

Consider node AT in treebank tree T which immediately dominates nodes CT1 ...CTn . The

number of fragments F (AT) projected from this node under the DOP model is calculated

according to equation (2.12).

F (AT) = (F (CT1) + 1) ∗ ... ∗ (F (CTn) + 1) (2.12)

The total number of fragments TF (T) which can be extracted from treebank tree T is

the sum over the number of fragments which can be projected from each of its nodes, as

stated in equation (2.13).

TF (T) =
∑

AT∈T

F (AT) (2.13)

Applying equation (2.13) to the leftmost tree in Figure 2.5, for example, indicates that it

yields 87 fragments.

20

The set of fragments projected from a treebank of even relatively modest size is gener-

ally extremely large. For example, the English section of the HomeCentre corpus,5 which

contains 980 trees, yields 308,486,334,496 DOP fragments. Many different heuristics have

been used to limit the size of the fragment base. These generally involve setting up-

per limits on fragment characteristics such as depth, number of lexical items, number of

open substitution sites and combinations thereof; fragments which exceed these limits are

excluded from the fragment base.

The aim in introducing such heuristics is to reduce the number of fragments in the

training set. Consider, for example, the trees in Figure 2.5 which have all been extracted

from the tree to the left of the vertical rule using the root operation. These are intermediate

trees, i.e. in order to extract DOP fragments, the frontier operation is applied one or more

times to each of these trees in turn. Restricting the set of fragments extracted with respect

to depth – where tree depth is the longest length of the path from the root node to a

frontier node – involves placing conditions on the sets of nodes selected by the frontier

operation each time it is applied. If we set the maximum fragment depth to 3, then the

set of frontier nodes applied to the intermediate tree with root node C in Figure 2.5 must

contain either nodes H and I or a non-root node which dominates H and I, i.e. E or G.

In other words, any fragment of depth 3 extracted from the tree with root C must have

nodes H and I as open substitution sites; fragments to which H and I are internal exceed

the maximum depth and are discarded. As previously stated, the maximum number of

fragments which can be extracted from the leftmost tree in Figure 2.5 is 87. If, however,

we impose an upper limit of 3 on fragment depth then the number of fragments extracted

is reduced to 39.

While introducing pruning heuristics has the desired effect of reducing the size of the

DOP fragment set, discarding fragments also results in reduced sensitivity to lexical and

structural dependencies. For example, excluding those fragments of depth greater than 3

in the example given in Figure 2.5 means that the relationship between the lexical items b

and f is not explicitly captured. An important motivation behind the development of the

DOP model is that, in contrast to many other experience-based approaches to parsing,

5The HomeCentre corpus is described in detail in sections 3.2.1 and 6.1.

21

A

B C

b D E

d F G

f H I

h i

A

B C

b D E

d F G

f H I

h i

C

D E

d F G

f H I

h i

E

F G

f H I

h i

G

H I

h i

B

b

D

d

F

f

H

h

I

i

Figure 2.5: The trees on the right were extracted from the leftmost tree
via the root operation; the frontier operation must now be
applied (one or more times) to each of these trees in order
to extract DOP fragments. If fragment depth is limited to 3
then nodes appearing below the horizontal lines cannot occur
in extracted DOP fragments.

it models all lexical and structural relationships which occur in the given treebank. Of

course, probabilistically modelling many of these perceived relationships may not signifi-

cantly increase parse accuracy, as we do not know which fragments model relatively weak

lexical and structural relationships that do not play a particularly important probabilistic

role, and which fragments model strong dependencies which constitute valuable pieces of

probabilistic evidence. As the sets of fragments to be excluded are defined in quantitative

rather than linguistic terms, the pruning process is also blind to the probabilistic impor-

tance of the fragments kept and discarded. In other words, returning to the example in

Figure 2.5, as the strength of the relationship between the lexical items b and f is not

known, the impact on parse accuracy of not modelling this relationship is also unknown.6

Clearly, there is strong motivation for using pruning techniques when parsing with the

DOP model: even relatively small treebanks yield extremely large numbers of fragments.

However, it is necessary to determine which heuristics engender least deterioration in the

quality of the output parses. In this section, we describe the heuristics which have been

implemented to date to limit grammar size and report on whether or not use of these

heuristics has led to reduced parse accuracy.

An empirical study of several of the constraints that can be imposed on the subtrees

to be included in the fragment base was performed by Bod (2001, 2003b). Experiments

6Of course, aside from the effect on parse quality of not modelling arbitrary dependencies, excluding
large numbers of fragments also distorts the frequency distribution of the remaining fragments. As fragment
probabilities are estimated according to their relative frequencies in the fragment base, distortion of the
fragment distribution has a profound effect on the probability models which result. This issue is discussed
in greater detail in section 2.6.

22

were performed using sections 2–21 of the WSJ Penn-II treebank (Marcus et al., 1994) for

training, section 22 for development and section 23 for testing (as standard).7 As it was

not practical (due to memory limitations) to use all possible fragments for training, all

fragments of depth 1 and random samples of 400,000 fragments of depths 2 through 14

were used instead. (No fragments of depth greater than 14 were used.) This resulted in a

training set containing 5,217,529 fragments; base-line experiments were performed using

this set and then further experiments performed by excluding various fragment types from

the set.

The first subtree restriction imposed was on subtree depth: experiments were per-

formed where the fragment base contained only fragments of depth N or less such that

1 ≤ N ≤ 14. These experiments showed that parse accuracy increased as the size of the

fragments included in the fragment base increased; the highest scores were obtained when

the full baseline subtree set was used.

The impact of lexical content was also assessed by excluding from the baseline frag-

ment set those subtrees whose number of lexicalised frontiers exceeded an upper limit.

Thus, the fragment set varied from containing fragments which had maximally one lexi-

calised frontier to containing all fragments (i.e. removing the upper limit). Results show

that accuracy increased initially as lexical content was enlarged but started to decrease

when the upper limit exceeded 12.8

The importance of structural dependencies was examined by excluding unlexi-

calised subtrees of varying depths while retaining all lexicalised subtrees with up to 12

lexicalised frontiers. These experiments showed that accuracy increases when unlexicalised

fragments are included in the fragment base up to depth 6; beyond this, unlexicalised frag-

ments do not appear to contribute to parse accuracy for the WSJ corpus.

Restrictions were also imposed on the number of non-headwords in lexicalised frag-

ments in order to investigate the importance of non-headword dependencies. Fragments

containing more than a set maximum of non-headwords were excluded from the fragment

7The parser used to conduct these experiments did not compute the most probable parse; rather the
1000 most probable derivations were calculated using the Viterbi n-best algorithm, and the output parse
selected by summing over the DOP probabilities of those derivations yielding the same trees. This method
does not guarantee that the best parse is found. This model is described fully in section 2.5.3.

8No explanation for this decrease is given but we suspect that it is related to the parameter estimation
issue; again, we discuss this further in section 2.6.

23

base where this maximum varied from one non-headword to an unrestricted fragment set.

Results show that inclusion of non-headword dependencies leads to improved parse accu-

racy, although these improvements are small: the difference between using no headwords

and all headwords is 1.2% for precision and 1% for recall.

Experiments investigating the importance of low-frequency fragments were carried

out on the ATIS treebank and presented in (Bod, 1999). These experiments demonstrated

that low-frequency fragments are useful in determining which parse is most appropriate,

and that excluding them results in decreased accuracy. Bod (1995b) also showed that,

again on the ATIS treebank, excluding all fragments which occur only once in the fragment

base leads to a decrease in parse accuracy of 4%.

Experiments investigating the impact of varying the number of open substitution

sites in each fragment were carried out on the ATIS treebank and presented in (Sima’an,

1995a).9 These experiments show that including fragments with maximally one open

substitution site gives better performance than including those with maximally two open

substitution sites. Furthermore, performance was at least as good as when no restriction

was placed on the number of open sites.

Of course, all of these constraints on the fragment base are heuristics, and while some

may be shown to give better performance than others there is no guarantee that such con-

straints will give similar results when parsing over DOP grammars induced from different

treebanks. As previously stated, if use of such constraints is necessary then the constraint

parameters must be empirically determined during a development phase.

2.4 Parsing methodologies for Tree-DOP

During parsing, the input string is associated with all the possible structures which can be

assigned to it according to the given grammar. (This is distinct from the disambiguation

stage where one of the possible parses is deemed to be the ‘best’ parse, cf. section 2.5.)

These parses are stored on a chart which is usually referred to as a parse space or parse

forest. Rather than explicitly constructing all of the possible parses, the parse space

9These experiments were carried out by searching for the most probable derivation rather than the most
probable parse.

24

NPadj −→ A N (1)

VPv −→ V N (1)

A −→ scanning (1
3
)

A −→ large (1
3
)

A −→ output (1
3
)

V −→ scanning (2
3
)

V −→ copying (1
3
)

N −→ images (1
3
)

N −→ software (1
3
)

N −→ text (1
3
)

NPadj −→ A[0][1] N[1][1]

2 VPv −→ V[0][1] N[1][1]

V −→ scanning

1 A −→ scanning N −→ images

0 1

scanning images

Figure 2.6: The parse space for the input string scanning images accord-
ing to the PCFG on the left extracted from the treebank in
Figure 2.3(A).

contains all grammar rules (which, in the DOP model, correspond to fragments) which

can be used to parse the current input string, along with pointers to those rules with which

they can combine to form valid parses.

Figure 2.6 shows the parse space – a two-dimensional chart of size N2 where N is

the length of the input string – for the phrase scanning images according to the PCFG

grammar on the left which was extracted from the example treebank given in Figure 2.3(A).

Each token in the input string is assigned a number i such that 0 ≤ i < N . These numbers

appear along the horizontal axis; the numbers which appear on the vertical axis (generally

represented by j) indicate the number of input tokens spanned. Thus, rule rx appearing

in chart position [i][j] signifies that derivations of one or more parse trees representing

the portion of the input string which starts with token i and spans j consecutive tokens

can be started with rule rx. Rules in chart position [0][N] span the entire input string;

if this position is empty then the input string cannot be parsed. The right-hand side of

each PCFG rule can consist of non-terminal and/or terminal symbols. Each non-terminal

symbol on the right-hand side of any rule present on the chart can explicitly point to the

chart position from which rules which can be combined with it must be selected. For

example, the rule with left-hand side NPadj in chart position [0][2] in Figure 2.6 has the

non-terminal symbol A on the right-hand side; those rules which can be combined at this

position must have left-hand side A and be selected from chart position [0][1].

Standard chart-parsing algorithms that compute the PCFG parse space for a given

25

input string include the CKY algorithm (Younger, 1967; Aho and Ullman, 1972) and

Earley’s algorithm (Earley, 1970; Stolcke, 1995).

The CKY algorithm enters rules onto the parse chart in a left-to-right bottom-up man-

ner. This algorithm requires the grammar with which it parses to be in Chomsky-Normal

Form (CNF), i.e. the right-hand side of each grammar rule must comprise either one ter-

minal symbol or two non-terminal symbols; converting PCFGs to CNF is straightforward

but results in an increase in the size of the grammar. (The magnitude of the increase

depends on the lengths of the right-hand sides of the rules in the grammar.) The CKY

algorithm comprises a base case and a recursive case. Executing the base case involves fill-

ing in the chart entries for row 1, i.e. inserting all rules of the form X −→ wi for each word

wi in the input string. Executing the recursive case involves filling in the chart entries for

row 2 and upwards. Execution of the recursive case is facilitated by the conversion of the

grammar to CNF: all rules which span more than one token have exactly two non-terminal

symbols on the right-hand side. At position [i][j], rule X −→ Y Z can be inserted into the

chart if there exists already a rule with left-hand side Y at chart position [i][k] and there

exists already a rule with left-hand side Z at position [i + k][j − k] such that i ≤ k ≤ j.

Simply noting the chart positions containing rules with which each right-hand side symbol

can combine yields a chart such as the one in Figure 2.6.

In contrast, Earley’s algorithm is a left-to-right top-down algorithm which can handle

rules with an arbitrary number and combination of terminal and non-terminal symbols

on their right-hand sides. As the input string w1...wn is scanned from left to right, a

set of states representing each point in the recognition process is constructed. Each state

comprises a grammar rule, an indication (taking the form of a dot •) as to how much of the

right-hand side of that rule has been recognised and an indication as to which wi caused

that rule to be entered. For example, state (i) X −→ •Y Z starts at wi and none of its

right-hand side has yet been recognised; this state in turn causes rules with left-hand side

Y to be entered onto the chart. When scanning a word results in full recognition of the

right-hand side of a rule (i.e. the chart contains a rule of the form Y −→ RHS1...RHSn•),

this results in incremental recognition of the right-hand sides of further rules on the chart.

While this algorithm removes the need to convert rules to CNF, it also inserts many more

26

NPadj

A N[1][1]

scanning

NPadj

A[0][1] N[1][1]

2
VPv

V[0][1] N[1][1]

VPv

V N[1][1]

scanning

1
V

scanning

A

scanning

N

images

0 1

scanning images

Figure 2.7: The Tree-DOP parse space for the input string scanning
images given the Tree-DOP grammar in Figure 2.3(B).

failing derivations into the chart and, consequently, is more computationally expensive

than the CKY algorithm.

Figure 2.7 also shows the parse space for the input string scanning images, this time

according to the DOP grammar given in Figure 2.3(B). The first implementation of DOP,

described in (Bod, 1995a), used a standard chart-parsing algorithm to accomplish parse-

space computation, although precisely which algorithm was used is not specified. Stan-

dard algorithms such as CKY and Earley work well with PCFG grammars comprising,

perhaps, 50,000 rules. However, even when a DOP grammar has been pruned using the

techniques outlined in section 2.3, it is generally the case that the remaining fragment

set is still extremely large. Even small DOP grammars are far larger than most PCFGs

and, consequently, directly applying standard algorithms is extremely inefficient. In the

following sections 2.4.1 – 2.4.3, we give further details of Bod’s implementation and outline

two alternative parsing algorithms which allow crucial savings in terms of both time and

memory.

2.4.1 Bod: fragments as re-write rules

The first DOP implementation methodology, introduced in (Bod, 1992) and described in

greater detail in (Bod, 1995a), views each tree as a rewrite rule and uses standard chart-

parsing techniques to build the parse space for any given input string. Each fragment f

27

with n frontiers yields a rule of the form (2.14):

root(f) −→ frontier1(f) ... frontiern(f) (2.14)

As many different internal structures can be associated with fragments which have the

same root and frontier nodes, each rule must also be associated with the fragment which

yielded it. Consider, for example, the fragments in (2.15).

VP

V NP PP

ate D N P NP

with

VP

V NP

ate D N PP

P NP

with

(2.15)

These are both associated with the same rewrite rule VP −→ ate D N with NP but the

distinction between them is maintained by retaining links to the distinct structures (and

their probabilities) with which they are associated.

These rules are then applied to the input string using a standard chart-parsing algo-

rithm; this process results in the parse space for the input string. As each rule references

the structure it represents, every unique fragment corresponds to a rule. Thus, if the

DOP grammar comprises N fragment types, there will be N corresponding rule types.

Given a treebank of reasonable size, the DOP grammar extracted will generally be far too

unwieldy for this approach to be practical. If the CKY algorithm is used, each rule must

be converted to CNF. As the right-hand side of each rule comprises a sequence of terminal

and non-terminal symbols whose maximum length is that of the longest sentence in the

treebank, conversion to CNF results in an explosion in the size of the rule set. On the

other hand, if Earley’s algorithm (even augmented with look-ahead) is used, then a crip-

pling number of failing derivations will inevitably be present in the parse chart. Clearly,

alternative techniques are required.

2.4.2 Sima’an: two-phase parsing

Sima’an (1995a, 1999) describes a two-phase parsing methodology for efficiently computing

28

the DOP parse space of a given input string. The first phase spans a good approximation

of the parse space using the (non-probabilistic) CFG underlying the DOP grammar (i.e.

the CFG which can be extracted from the treebank, in which all trees are assumed to

be binary branching).10 The second phase then uses correspondences between the CFG

rules and the fragments in which they occur to reduce from the CFG parse space to the

DOP parse space. Crucial to the effectiveness of this approach is the fact that the CFG

underlying a typical DOP grammar is far smaller than the fragment set. The following

property of STSGs is essential to this method:

The string/tree language of an STSG is always a subset of the string/tree

language of the CFG underlying it.

In other words, when we approximate the parse space using the underlying CFG in the

first phase, we are certain that we have included all parses which can be assigned by

the STSG to the input string. This is illustrated in Figures 2.6 and 2.7, where both the

CFG parse space and the DOP parse space yield the same parse trees – the fact that the

probabilities with which they are produced differ is not relevant to Sima’an’s algorithm.

Sima’an (1999):118 specifies the two phases of the algorithm as follows:

Phase 1. Apply the CKY algorithm using the CFG Gcfg underlying the DOP

grammar Gstsg; this yields a parse space which is a superset of that yielded by

Gstsg for the same sentence.

Phase 2. Apply an algorithm to compute the parse space yielded by Gstsg from

the approximated parse space yielded by Gcfg and compute the Most Probable

Derivation (MPD) on this parse space.

During the second phase, the atomicity and uniqueness of the fragments from Gstsg

must be preserved and exactly the parse space and derivations of the input string of Gstsg

must be recognised. In order to fulfil these conditions, a mapping is drawn between the

CFG rules and the DOP fragments. Firstly, every node in every fragment in Gstsg is

assigned a unique address – this is illustrated in Figure 2.8(A) where each node address

10The handling of trees which are not binary branching is discussed in section 2.4.4.

29

(A) A DOP grammar where each node has been annotated with a unique identifier :

NPadj[1] (t1)

A[2] N[3]

scanning software

NPadj[4] (t2)

A[5] N[6]

scanning

NPadj[7] (t3)

A[8] N[9]

software

NPadj[10] (t4)

A[11] N[12]

VPv[13] (t5)

V[14] N[15]

scanning text

VPv[16] (t6)

V[17] N[18]

scanning

VPv[19] (t7)

V[20] N[21]

text

VPv[22] (t8)

V[23] N[24]

V[25] (t9)

scanning

V[26] (t10)

copying

A[27] (t11)

output

A[28] (t12)

scanning

A[29] (t13)

large

N[30] (t14)

images

N[31] (t15)

software

N[32] (t16)

text

(B) The annotated PCFG underlying the DOP grammar in (A) :

NPadj[r:{1,4,7,10} i:∅] −→ A[i:{2,5} s:{8,11}] N[i:{3,9} s:{6,12}]

VPv[r:{13,16,19,22} i:∅] −→ V [i :{14,17} s:{20,23}] N[i:{15,21} s:{18,24}]

V[r:{25} i:{14,17}] −→ scanning V[r:{26} i:∅] −→ copying

A[r:{27} i:∅] −→ output A[r:{28} i:{2,5}] −→ scanning

A[r:{29} i:∅] −→ large N[r:{30} i:∅] −→ images

N[r:{31} i:{3,9}] −→ software N[r:{32} i:{15,21}] −→ tabular

(C) The annotated PCFG parse space according to the grammar in (B) :

2
NPadj[r:{1,4,7,10} i:∅][0][2] −→ A[i:{2,5} s:{8,11}][0][1] N[i:{3,9} s:{6,12}][1][1]

VPv[r:{13,16,19,22} i:∅][0][2] −→ V[i:{14,17} s:{20,23}][0][1] N[i:{15,21} s:{18,24}][1][1]

1
V[r:{25} i:{14,17}][0][1] −→ scanning

A[r:{28} i:{2,5}][0][1] −→ scanning

N[r:{30} i:∅][1][1]

−→ images

0 1
scanning images

(D) The DOP parse space calculated from the PCFG space in (C) using the viability property :

NPadj[r:{4} i:∅]

A[i:{5} s:∅] N[i:∅ s:{6}][1][1]

scanning

NPadj[r:{10} i:∅]

A[i:∅ s:{11}][0][1] N[i:∅ s:{12}][1][1]

2
VPv[r:{22} i:∅]

V[i:∅ s:{23}][0][1] N[i:∅ s:{24}][1][1]

VPv[r:{16} i:∅]

V[i:{17} s:∅] N[i:∅ s:{18}][1][1]

scanning

1
V[r:{25} i:∅]

scanning

A[r:{28} i:∅]

scanning

N[r:{30} i:∅]

images

0 1
scanning images

Figure 2.8: Calculation of the DOP parse space for the string scanning
images using Sima’an (1999)’s two-phase analysis algorithm.

30

is an integer displayed in square brackets. Every derivation (i.e. sequence of fragment

compositions yielding a tree containing no open substitution sites) which can be generated

by Gstsg is thus characterised by the unique addresses assigned to its nodes. For example,

the addresses assigned to the nodes of example tree (2.16) indicate that it must have been

derived by the composition sequence (t4 ◦ t13 ◦ t14) and no other.

NPadj[10]

A[29] N[30]

large images

(2.16)

Each rule in Gcfg is associated with the set of addresses of all nodes to which it cor-

responds as illustrated in Figure 2.8(B).11 The first parsing phase uses this annotated

PCFG to generate an annotated Gcfg parse space such as the one in Figure 2.8(C). Each

derivation in this Gcfg parse space is associated with one or more sets of node address

assignments. However, not every set of node address assignments associated with each

derivation corresponds to a Gstsg derivation. This is illustrated in example (2.17): the

left child of node NPadj[4] must be an internal node but according to this derivation it is

an open substitution site at which any fragment whose root node category is A can be

inserted.
NPadj[4]

A[28] N[31]

large images

(2.17)

Thus, Sima’an (1999):119 defines a procedure which recognises whether or not a set of

node address assignments is a valid Gstsg derivation using the viability property:

Viability property. T is a tree derived from Gcfg which is associated with

one or more sets of node address assignments. T ′ is an instance of T decorated

with just one set of these addresses. X is a node in T ′ with label N and address

c. It has a jth child Xch labelled Nj with address cj . The viability property

for X and Xch holds if one of the following holds:

11In the annotated PCFG in Figure 2.8(B), we have partitioned the sets of addresses according to
whether they correspond to root nodes (r), internal nodes (i) or substitution sites (s). The categories on
the left-hand side of each rule cannot correspond to internal nodes and the categories on the right-hand side
of each rule cannot correspond to root nodes. Although partitioned here for the sake of clarity, partitioning
of address sets also results in greater efficiency and partitions based on other criteria are also possible.

31

Parenthood. N ’s code c and Nj ’s code cj correspond to a parent

and its jth child in some fragment; note that one unique address cj

can be the jth child of N at c.

Substitution. N ’s code c appears in a fragment with an open

substitution site Nj as its jth child and Nj ’s code cj corresponds to

the root of a fragment labelled Nj .

Accordingly, during Phase 2 each set of node address assignments corresponding to a

particular Gcfg tree derivation is examined. Each node address must correspond to either

a root node or an internal node; valid derived trees comprise groups of internal nodes

delimited by root nodes (each of which, apart from the root node of the derivation, is also

an open substitution site) where each group corresponds to a Gstsg fragment. It is useful

to construct node addresses such that the parent-child and sisterhood relations can be

efficiently checked. It is also useful to partition the sets of node addresses corresponding

to particular Gcfg rules according, as illustrated, to whether or not a particular address is

a root node and whether or not it has children; such encodings results in further speed-ups.

Sima’an’s approach allows computation of the DOP parse space without looking back

to the original DOP grammar as the relevant fragments are essentially reconstructed using

the node address annotations on the CFG rules. However, it does not allow us to compute

fragment probabilities directly; these must be retrieved from the original grammar by

using the node addresses to identify the corresponding fragments. Sima’an continues by

outlining a method to compute the MPD but his optimised DOP parsing algorithm can

be also used in conjunction with other disambiguation strategies.

2.4.3 Goodman: parsing with PCFG-reductions

Goodman (1996a, 1998, 2003) describes a method by which the DOP grammar projected

from a treebank in which all trees are binary branching12 is reduced to a PCFG containing

at most eight rules for each node in the training data. This PCFG is equivalent to the

DOP grammar in that a) it generates the same strings with the same probabilities and

12Again, the handling of trees which are not binary branching is discussed in section 2.4.4.

32

b) it generates the same parse trees with the same probabilities, although one must sum

over several PCFG trees for each DOP tree.

Goodman PCFG-reductions are constructed as follows. Every node in every tree in the

treebank is assigned a unique address: A@k is the node labelled A at address k. One new

non-terminal Ak is created for every node in the treebank; such non-terminals are called

“interior” nodes and the original nodes “exterior” nodes. ak is the number of subtrees

with root node A@k and a the number of subtrees with root node label A, i.e. a =
∑

j aj .

Given node A@k with a set CH of two or more children CH = {B@l...C@m}, the number

of fragments ak which have root node A@k is calculated by multiplying the numbers of

fragments which each of its child nodes yields: ak =
∏

X@n∈CH(xn + 1).

A@j

B@k C@l
(2.18)

For any node grouping such as the one in example (2.18), the eight PCFG rules and

their corresponding probabilities in example (2.19) are then extracted; Goodman provides

proofs by induction that the rule probabilities are valid.

(1) Aj −→ BC (1
aj

)

(2) Aj −→ BkC (bk
aj

)

(3) Aj −→ BCl (cl
aj

)

(4) Aj −→ BkCl (bkcl
aj

)

(5) A −→ BC (1
a
)

(6) A −→ BkC (bk
a

)

(7) A −→ BCl (cl
a

)

(8) A −→ BkCl (bkcl
a

)

(2.19)

These rules correspond to the eight possible contexts in which the node grouping in exam-

ple (2.18) can occur in fragments extracted from the corresponding treebank tree; each of

the three nodes can be either interior or exterior (i.e. root node or substitution site) to any

fragment in which the grouping occurs. The examples in (2.20) illustrate the contexts to

which rules (3) – (6) in example (2.19) correspond. Node A@j is an interior (i.e. non-root)

node in rules 3 and 4 and an exterior (i.e. root) node in rules 5 and 6 – the parent node

of any grouping (the node which appears on the left-hand side of the rule) corresponds

to either a root or internal node but not a substitution site. Conversely, the child nodes

of each grouping, which appear on the right-hand side of the corresponding rules, can be

either internal nodes or substitution sites but never root nodes as shown in example (2.20).

33

As previously stated, Goodman’s PCFG reduction requires the projection of at most eight

rules for each node in the treebank. The maximum number of rules are projected from

each node which is internal to a treebank tree and dominates two non-terminal children;

four rules are projected from each node corresponding to the root node of a treebank tree,

as this node can never be internal to a fragment, and two rules are projected from nodes

dominating a single terminal symbol as terminal symbols are never substitution sites.

(3)

...

... A@j

B@k C@l

... ...

(4)

...

... A@j

B@k C@l

...

(5)
A@j

B@k C@l

(6)

A@j

B@k C@l

... ...

(2.20)

Figure 2.9 illustrates the process of constructing the parse space for an input string

using Goodman’s method – the treebank with node addresses marked is given in 2.9(A),

Goodman’s PCFG reduction of the treebank is given in 2.9(B) and the corresponding

parse space for the input string scanning images is given in 2.9(C). Figure 2.9(D) gives

the four parse tree derivations, along with their probabilities, which can be extracted from

this parse space.

Goodman states that a PCFG derivation is isomorphic to a DOP derivation if for every

substitution of a DOP fragment there is a corresponding sub-derivation in the PCFG. In

other words, each PCFG sub-derivation yielding a subtree whose internal nodes are all

of the form Xy, whose root node is of the form X and whose frontier nodes are either of

the form X or are terminal symbols, corresponds exactly to a DOP fragment when the

subscripts are removed. Furthermore, each such PCFG sub-derivation has exactly the

same probability as the DOP fragment to which it corresponds. In the example shown in

Figure 2.9(D) and (E), each PCFG derivation corresponds to an STSG derivation for the

same string where the STSG was extracted from the same treebank (this example corre-

sponds exactly to the one given in Figure 2.3). However, this one-to-one correspondence

only occurs where all node groupings (and, therefore, fragments) occur exactly once in the

treebank; where node groupings occur more than once, one must sum over several PCFG

derivation probabilities for each STSG derivation.

34

(A) The sample treebank given in Figure 2.3; here, each node is labelled with a unique address :

NPadj@1 (T1)

A@2 N@3

scanning software

VPv@4 (T2)

V@5 N@6

scanning text

A@7 (T3)

output

A@8 (T4)

large

V@9 (T5)

scanning

V@10 (T6)

copying

N@11 (T7)

images

(B) The Goodman PCFG reduction corresponding to the treebank in (A) :

NPadj −→ A N 1
npadj

= 1
4

VPv −→ V N 1
vpv

= 1
4

NPadj −→ A2 N a2
npadj

= 1
4

VPv −→ V5 N v5
vpv

= 1
4

NPadj −→ A N3
n3

npadj
= 1

4
VPv −→ V N6

n6
vpv

= 1
4

NPadj −→ A2 N3
a2n3
npadj

= 1
4

VPv −→ V5 N6
v5n6
vpv

= 1
4

A −→ scanning 1
a

= 1
3

A2 −→ scanning 1
a2

= 1

A −→ output 1
a

= 1
3

A −→ large 1
a

= 1
3

N −→ software 1
n

= 1
3

N3 −→ software 1
n3

= 1

N −→ text 1
n

= 1
3

N6 −→ text 1
n6

= 1

N −→ images 1
n

= 1
3

V −→ copying 1
v

= 1
3

V −→ scanning 1
v

+ 1
v

= 2
3

V5 −→ scanning 1
v5

= 1

(C) The parse space for the string scanning images according to the grammar in (B) :

NPadj −→ A[0][1] N[1][1] NPadj −→ A2[0][1] N[1][1]

2 VPv −→ V[0][1] N[1][1] VPv −→ V5[0][1] N[1][1]

V −→ scanning V5 −→ scanning

1 A −→ scanning A2 −→ scanning N −→ images

0 1

scanning images

(D) The derivations (and their probabilities) which can be read from the parse space in (C) :

P (D1) = 1
12

P (D2) = 1
36

P (D3) = 1
12

P (D4) = 1
18

NPadj

A2 N

scanning images

NPadj

A N

scanning images

VPv

V5 N

scanning images

VPv

V N

scanning images

(E) The STSG derivations corresponding to the PCFG derivations in (D) :

P (D1) = 1
12

P (D2) = 1
36

P (D3) = 1
12

P (D4) = 1
18

NPadj

A N

scanning

◦
N

images

NPadj

A N
◦

A

scanning
◦

N

images

VPv

V N

scanning

◦
N

images

VPv

V N
◦

V

scanning
◦

N

images

Figure 2.9: Calculation of the parse space for the string scanning images
using Goodman (1996a, 1998, 2003)’s PCFG-reduction.

35

Clearly, although it yields the same trees with the same probabilities, the parse space

corresponding to the PCFG-reduction does not look the same as the DOP parse space –

it contains CFG rules rather than fragments and these rules specify syntactic categories

which do not appear in the corresponding DOP grammar. Conversion to the DOP parse

space is possible but computationally expensive; as Goodman introduces a novel disam-

biguation procedure which does not require this conversion (and which will be discussed

in section 2.5.6), he does not discuss this issue.

2.4.4 Extended Chomsky-Normal Form

A grammar rule is in CNF if each of its rules has a single non-terminal symbol on the

left-hand side and either two non-terminal symbols or a single terminal symbol on the right-

hand side. Sima’an (1999) describes a method by which a treebank can be converted to

Extended Chomsky-Normal Form (ECNF) such that every tree in the converted treebank

is maximally binary branching.

A

B C D E

b c d e

⇒

A

B B1

b C C2

c D E

d e

(2.21)

This method requires the insertion of new, unique node categories into treebank trees at

each node whose branching factor is greater than 2, as illustrated in example (2.21). This

process does not affect the DOP probability model as no newly-inserted node is allowed

to be either the root node or substitution site of any fragment. Furthermore, the original

treebank trees and/or DOP fragments can be easily recovered by simply reversing the

process and removing the inserted nodes.

2.5 Tree-DOP disambiguation strategies

The first task when parsing an input string over a DOP grammar is to compute a compact

representation of all possible parses which can be generated for that string according to the

36

grammar; in the previous section (section 2.4), we outlined three methods for achieving

this goal. The next task, that of disambiguation, is to rank these parses according to

the DOP probability model. However, ranking the parses for a given input string over a

DOP grammar has been shown to be an NP-hard problem (Sima’an, 1995b, 1999, 2003)

as computing the probability of a parse involves summing over the probabilities of all

derivations yielding that parse. As its exact solution cannot be found in an efficient way,

we must either find a way of approximating the search for the most probable parse such that

we do not perform an exhaustive search of the parse space, or we must choose a different

probability to maximise. Several approaches have been proposed; approximation of the

most probable parse by random sampling is discussed in section 2.5.1 while alternatives

to the maximisation of parse probability are presented in sections 2.5.2 – 2.5.6.13

2.5.1 Most Probable Parse

Monte Carlo sampling can be used to estimate the Most Probable Parse (MPP) where

the DOP-ranked list of parses is approximated by ranking according to how often each

parse occurs in a reduced random sample of the possible derivations. This approach to

disambiguation for DOP was introduced by Bod (1992) and further expanded on and

refined by Chappelier and Rajman (2003).

The basic premise behind the application of Monte Carlo estimation to MPP extraction

is as follows (Chappelier and Rajman, 2003):

given a set of random derivations with a known sampling distribution, the

proportion of derivations in the set corresponding to parse P will converge to

the sum of the sampling probabilities of all derivations of P.

However, this convergence property can only be used to estimate PDOP of parse tree P if

the following condition is fulfilled:

13de Pauw (2003) presents an approximation of the DOP model through Memory-Based Language
Processing (MBLP) (Daelemans, 1999), in which the memory-based aspect of the model is exploited.
Under this model, a parse forest for each input string is generated using the grammar underlying the
training treebank. The best parse is then determined by directly comparing the constituents of each parse
with the constituents occurring in the treebank trees, and calculating similarity such that the number of
constituents required to construct the tree is minimised and the size of those constituents is maximised.
Although interesting, further exploration of this approach is beyond the scope of this thesis.

37

PDOP (P) can be estimated from the set of sampled derivations, i.e. there exists

a function which can be computed over the sample set which converges to its

PDOP when the number of samples grows to infinity.

In other words, we can only use sampling frequencies to rank parses if we can establish

the relationship between the sampling frequency of a parse and its DOP probability.

Sampling Algorithm

The sampling methodology itself is very simple: in order to sample a derivation, we

select and compose fragments at random from the parse space in a top-down left-to-right

fashion until no open substitution sites remain. This can be done efficiently when the

open substitution sites of each fragment are annotated with pointers to the chart position

from which fragments which compose with it should be selected.

However, we must select fragments at random such that, if the sampling probability

of fragment fx is n times that of fy, then fx is n times more likely to be chosen during

random selection than fy. The main issue, therefore, is to correctly define the sampling

probability of each fragment at each chart position SP (fij) such that the distribution of

parses in the sample set converges to the true PDOP .

The sampling probability used when selecting fragments can be defined in advance very

easily. If we choose to do this, however, then we cannot be certain that the distribution

of the sample set will converge to give the DOP probability for each parse. The correct

values must instead be obtained by rescoring the relative frequencies of the parses in the

sample set when sampling is complete. Thus the empirical score ES of parse tree P is

defined by equation (2.22), where n is the size of the sample set and Wi is a rescoring

factor.

ES(P) =
∑

Di yields P

ni

n
Wi (2.22)

Alternatively, the sampling probability of each fragment can be computed such that the

sampling probability of each parse in the sample set corresponds exactly to its conditional

DOP probability. Although less simple to implement, computing these probabilities allows

faster convergence and precise control over the size of the sample set.

38

(A) A sample treebank :

S

A C

x x

S

A C

x x

S

A C

x x

S

A D

x x

S

A D

x x

S

E B

x x

S

E B

x x

S

E B

x y

S

E B

x y

B

x

(B) The DOP fragment base generated from the treebank in (A) :

f1 : 3
36

S

A C

x x

f3 : 2
36

S

E B

x x

f5 : 3
36

S

A C

x

f7 : 2
36

S

A D

x

f9 : 2
36

S

E B

x

f11 : 2
36

S

E B

y

f13 : 2
36

S

A D

f15 : 1

A

x

f17 : 1

D

x

f19 : 3
5

B

x

f2 : 2
36

S

A D

x x

f4 : 2
36

S

E B

x y

f6 : 3
36

S

A C

x

f8 : 2
36

S

A D

x

f10 : 4
36

S

E B

x

f12 : 3
36

S

A C

f14 : 4
36

S

E B

f16 : 1

C

x

f18 : 1

E

x

f20 : 2
5

B

y

(D) Parse probabilities (conditioned on the input string) computed from (B) for string xx:

P1 :

S

A C

x x

= P (f1) + P (f5 ◦ f16) + P (f6 ◦ f15) + P (f12 ◦ f15 ◦ f16) =

3
36

+ 3
36

.1 + 3
36

.1 + 3
36

.1.1 = 12
36

= 60
180

. 180
144

= 60
144

P2 :

S

A D

x x

= P (f2) + P (f7 ◦ f17) + P (f8 ◦ f15) + P (f13 ◦ f15 ◦ f17) =

2
36

+ 2
36

.1 + 2
36

.1 + 2
36

.1.1 = 8
36

= 40
180

. 180
144

= 40
144

P3 :

S

E B

x x

= P (f3) + P (f9 ◦ f18) + P (f10 ◦ f19) + P (f14 ◦ f18 ◦ f19) =

2
36

+ 2
36

.1 + 4
36

. 3
5

+ 4
36

.1. 3
5

= 44
180

= 44
180

. 180
144

= 44
144

Figure 2.10: (C) gives the DOP distribution of the three parses for string
xx generated by the grammar in (B).

39

Again, the goal when sampling DOP derivations is to sample such that the distribution

of parse trees in the sampled set corresponds to their DOP probability distribution. In

Figure 2.10, we give an example treebank, the DOP fragments and their relative frequencies

yielded by that treebank, and the parse tree probabilities for the string xx according to the

DOP model. We see from the example that there are three possible parses – P1, P2 and

P3 – for string xx according to the grammar, each of which can be derived in four different

ways. According to the DOP probability model, parse P1 is most likely with probability

60
144 , followed by P3 with probability 44

144 and finally P2 with probability 40
144 . (These

probabilities are conditioned on the input string, i.e. we divide each parse probability by

the total probability mass assigned to all parses of that string.) We require that the parses

in the sample set for this parse space also conform to this distribution.

We present the rescored and exact approaches to sampling in the remainder of this

section. In order to illustrate how the choice of sampling probability calculation affects

the sampling distribution, we give the sampling parse spaces for the same string and DOP

fragment set as in Figure 2.10 for each method, and show the corresponding sampling

distributions.

Rescored Sampling: Näıve A first, näıve solution is to simply assume that each

fragment in competition set CS has equal probability of being selected at random. Without

rescoring, the sampling probability for each parse is calculated according to equation

(2.23).

SP (P) =
∑

D yields P

∏

fij ǫ D

1

|CSij |
(2.23)

As is clear from the example in Figure 2.11, the set of sampled parses generated according

to these probabilities is not distributed according to the DOP probability model. As can

be seen from the parse sampling probabilities (given in brackets), the sampling distribution

indicates that all three parses for the input string are equally likely. This can be corrected

by applying a rescoring factor W calculated according to equation (2.24).

WD =
PDOP (D)

∏

fij ǫ D
1

|CSij |
(2.24)

40

SP (f1) = 1
12

SP (f6) = 1
12

SP (f10) = 1
12

SP (f2) = 1
12

SP (f7) = 1
12

SP (f12) = 1
12

SP (f3) = 1
12

SP (f8) = 1
12

SP (f13) = 1
12

2 SP (f5) = 1
12

SP (f9) = 1
12

SP (f14) = 1
12

SP (f15) = 1 SP (f17) = 1 SP (f19) = 1 SP (f15) = 1 SP (f17) = 1 SP (f19) = 1

1 SP (f16) = 1 SP (f18) = 1 SP (f16) = 1 SP (f18) = 1

0 1

x x

P1 :

S

A C

x x

= SP (f1) + SP (f5).SP (f16) + SP (f6).SP (f15) + SP (f12).SP (f15).SP (f16) =

1
12

+ 1
12

.1 + 1
12

.1 + 1
12

.1.1 (= 48
144

)

W : ↑ . 3
36

.12 ↑ . 3
36

.12.1 ↑ . 3
36

.12.1 ↑ . 3
36

.12.1 = 60
180

. 180
144

= 60
144

P2 :

S

A D

x x

= SP (f2) + SP (f7).SP (f17) + SP (f8).SP (f15) + SP (f13).SP (f15).SP (f17) =

1
12

+ 1
12

.1 + 1
12

.1 + 1
12

.1.1 (= 48
144

)

W : ↑ . 2
36

.12 ↑ . 2
36

.12.1 ↑ . 2
36

.12.1 ↑ . 2
36

.12.1 = 40
180

. 180
144

= 40
144

P3 :

S

E B

x x

= SP (f3) + SP (f9).SP (f18) + SP (f10).SP (f19) + SP (f14).SP (f18).SP (f19) =

1
12

+ 1
12

.1 + 1
12

.1 + 1
12

.1.1 (= 48
144

)

W : ↑ . 2
36

.12 ↑ . 4
36

.12. 3
5

↑ . 2
36

.12.1 ↑ . 4
36

.12. 3
5

= 44
180

. 180
144

= 44
144

Figure 2.11: Sampling distribution induced by näıve rescored sampling
over the example given in Figure 2.10.

Thus, when we apply rescoring factor W to each derivation sampling probability given in

Figure 2.11 – application of W is indicated using up arrows (↑) – and recalculate the parse

probabilities according to equation (2.22), we arrive at the correct DOP distribution for

all parses of the input string.

Rescored Sampling: Hoogweg Hoogweg (2000)’s sampling technique is exactly that

of the näıve approach described in the previous section but with a different sampling

probability distribution. He takes the sampling probability of a fragment to be its DOP

probability14 over the sum of the DOP probabilities of the fragments it is competing with

14Throughout this discussion, the parameter estimation method used is assumed to be the relative
frequency estimator.

41

SP (f1) = 3
36

. 36
32

= 3
32

SP (f8) = 2
36

. 36
32

= 2
32

SP (f2) = 2
36

. 36
32

= 2
32

SP (f9) = 2
36

. 36
32

= 2
32

SP (f3) = 2
36

. 36
32

= 2
32

SP (f10) = 4
36

. 36
32

= 4
32

SP (f5) = 3
36

. 36
32

= 3
32

SP (f12) = 3
36

. 36
32

= 3
32

SP (f6) = 3
36

. 36
32

= 3
32

SP (f13) = 2
36

. 36
32

= 2
32

2 SP (f7) = 2
36

. 36
32

= 2
32

SP (f14) = 4
36

. 36
32

= 4
32

SP (f15) = 1
1

= 1 SP (f18) = 1
1

= 1 SP (f15) = 1
1

= 1 SP (f18) = 1
1

= 1

SP (f16) = 1
1

= 1 SP (f19) = 3
5
. 5
3

= 1 SP (f16) = 1
1

= 1 SP (f19) = 3
5
. 5
3

= 1

SP (f17) = 1
1

= 1 SP (f17) = 1
1

= 1

0 1

x x

P1 :

S

A C

x x

= SP (f1) + SP (f5).SP (f16) + SP (f6).SP (f15) + SP (f12).SP (f15).SP (f16) =

3
32

+ 3
32

.1 + 3
32

.1 + 3
32

.1.1 (= 54
144

)

W : ↑ . 32
36

↑ . 32
36

.1 ↑ . 32
36

.1 ↑ . 32
36

.1.1 = 60
180

. 180
144

= 60
144

P2 :

S

A D

x x

= SP (f2) + SP (f7).SP (f17) + SP (f8).SP (f15) + SP (f13).SP (f15).SP (f17) =

2
32

+ 2
32

.1 + 2
32

.1 + 2
32

.1.1 (= 36
144

)

W : ↑ . 32
36

↑ . 32
36

.1 ↑ . 32
36

.1 ↑ . 32
36

.1.1 = 40
180

. 180
144

= 40
144

P3 :

S

E B

x x

= SP (f3) + SP (f9).SP (f18) + SP (f10).SP (f19) + SP (f14).SP (f18).SP (f19) =

2
32

+ 2
32

.1 + 4
32

.1 + 4
32

.1.1 (= 54
144

)

W : ↑ . 32
36

↑ . 32
36

. 3
5

↑ . 32
36

.1 ↑ . 32
36

.1. 3
5

= 44
180

. 180
144

= 44
144

Figure 2.12: Sampling distribution induced by Hoogweg rescored sam-
pling over the example given in Figure 2.10.

for selection, as given in equation (2.25).

SP (P) =
∑

D yields P

∏

fij ǫ D

P (fij)
∑

f ′ ǫ CSij
P (f ′)

(2.25)

Calculation of these sampling probabilities is illustrated in Figure 2.12; again we see

that the the sampling distribution induced (given in brackets for each parse) does not

correspond to the DOP probability distribution of the parse trees assigned to the input

string. This time, rescoring factor W is is calculated according to equation (2.26) and the

42

probability of each parse recalculated according to equation (2.22).

WD =
∏

fij ǫ D

∑

f ′ ǫ CSij

P (f ′) (2.26)

Again, application of the required rescoring factors to the sampled derivations in Figure

2.12 yields the desired distribution.

Bod (1998) computes sampling probabilities using the same formula as Hoogweg (equa-

tion (2.25)) but uses rescoring factor WD = 1. As pointed out by Chappelier and Rajman

(2003), and as is clearly illustrated by the example we give in Figure 2.12, this does not lead

to the correct probabilities and, therefore, imposes a ranking on the parse trees generated

by the DOP grammar which does not correspond to the DOP probability model.

Exact Sampling The purpose of exact sampling is to ensure that the sampling proba-

bility of each parse tree is directly equal to the conditional DOP probability of that parse

given the input string. As stated by Chappelier and Rajman (2003), this technique then

guarantees that the best parse tree also has the best sampling probability and that the

most frequent tree in a sampled set has a high probability of being the MPP. This method

also enables statistical control over the size of the sampled set.

The formula which must be used to calculate the sampling probability of each fragment

so that the final sampling probability of a parse tree corresponds to its DOP probability

(conditioned on the input string) is given in (2.27):

SP (fij) =
P (fij)

∏

SSkl ǫ SSS(fij)
TSP (CSkl(SS))

TSP (CSij(root(fij)))
(2.27)

Here,

SSS(fij) = {SSkl : fij has an open substitution site of category SS

to be filled from chart position [k][l]},

CSkl(SS) = {f : r(f) = SS ∧ fǫ[k][l]}, and

TSP (CSkl(SS)) =
∑

f ′ǫCSkl(SS) SP (f ′).

Essentially, formula (2.27) states that the sampling probability of fragment fij is equal to

its DOP probability multiplied by the total sampling probability mass available at each

43

SP (f1) = 3
36

= 3
36

. 180
144

= 15
144

SP (f2) = 2
36

= 2
36

. 180
144

= 10
144

SP (f3) = 2
36

= 2
36

. 180
144

= 10
144

SP (f5) = 3
36

.1 = 3
36

. 180
144

= 15
144

SP (f6) = 3
36

.1 = 3
36

. 180
144

= 15
144

SP (f7) = 2
36

.1 = 2
36

. 180
144

= 10
144

SP (f8) = 2
36

.1 = 2
36

. 180
144

= 10
144

SP (f9) = 2
36

.1 = 2
36

. 180
144

= 10
144

SP (f10) = 4
36

. 3
5

= 12
180

. 180
144

= 12
144

SP (f12) = 3
36

.1.1 = 3
36

. 180
144

= 15
144

SP (f13) = 2
36

.1.1 = 2
36

. 180
144

= 10
144

2 SP (f14) = 4
36

.1. 3
5

= 12
180

. 180
144

= 12
144

SP (f15) = 1
1

= 1 SP (f15) = 1
1

= 1

SP (f16) = 1
1

= 1 SP (f16) = 1
1

= 1

SP (f17) = 1
1

= 1 SP (f17) = 1
1

= 1

SP (f18) = 1
1

= 1 SP (f18) = 1
1

= 1

1 SP (f19) = 3
5
. 5
3

= 1 SP (f19) = 3
5
. 5
3

= 1

0 1

x x

P1 :

S

A C

x x

= SP (f1) + SP (f5).SP (f16) + SP (f6).SP (f15) + SP (f12).SP (f15).SP (f16) =

15
144

+ 15
144

.1 + 15
144

.1 + 15
144

.1.1 = 60
144

P2 :

S

A D

x x

= SP (f2) + SP (f7).SP (f17) + SP (f8).SP (f15) + SP (f13).SP (f15).SP (f17) =

10
144

+ 10
144

.1 + 10
144

.1 + 10
144

.1.1 = 40
144

P3 :

S

E B

x x

= SP (f3) + SP (f9).SP (f18) + SP (f10).SP (f19) + SP (f14).SP (f18).SP (f19) =

10
144

+ 10
144

.1 + 12
144

.1 + 12
144

.1.1 = 44
144

Figure 2.13: Sampling distribution induced by exact sampling over the
example given in Figure 2.10.

44

of its substitution sites and divided by the total sampling probability mass available at

position [i][j]. Chappelier and Rajman prove by induction that using this method, the

sampling probability of a derivation PS(D) is equal to its DOP probability conditioned

on the input string PDOP (D)
PDOP (wm

1) . This sampling methodology is illustrated in Figure 2.13,

where we see that the distribution of parses in the sample set corresponds exactly to the

DOP probability distribution of those parse trees conditioned on the input string without

application of rescoring factors.

Controlling sample size with Exact Sampling

In order to statistically control the size of the sample set, we must determine the minimum

number of samples needed to be certain that the most frequent parse in the sample set

corresponds to the most probable parse according to the DOP model.

Chappelier and Rajman (2003) restate the problem as follows. Consider input sentence

S to be a random variable which has two or more possible values. These values (or

modalities) correspond to the two or more parses which have been assigned to S during

parsing. We wish to determine the most probable modality P which we can assign to

variable S on the basis of a sample of its realisations. Expressed thus, the problem of

controlling sample size corresponds to a classical problem of statistical ordering to which

we can directly apply a solution from the statistics literature. Here we outline one such

solution: Bechhofer-Kiefer-Sobel (BKS) sampling (Chappelier and Rajman, 2003).

BKS is a sequential sampling method, meaning that we continue to sample derivations

at random until we fulfil a stopping condition which is predefined but recalculated each

time a sample is taken. BKS relies on the following: for any input sentence S with k

parses (< p[1]...p[k] >) such that p[1] ≥ θp[2] with θ > 1, the probability that the most

frequent parse in the sample is also the most probable one is always greater than 1
1+Z

where Z =
∑k

i=2(
1
θ
)(n[1]−n[i]) and where n[i] is the number of occurrences of the parse in

ith position on the ordered list (decreasing order) of parses seen. The BKS method is then:

• choose values for θ =
p[1]

p[i]
and the error probability Perr,

• sample – updating the ordered list of parses and their frequencies and Z – until

1
1+Z

≥ Perr,

45

• output the most frequent parse in the sample as the most probable one.

The decision to stop sampling is thus based on three factors:

• how closely matched, in terms of frequency of occurrence, the parses in the sample

set are,

• how many of the possible parses for the given input string are present in the set of

sampled parses, and

• how certain we wish to be that the most frequent parse in the sample set is in fact

the most probable parse according to the DOP model.

Controlling sample size according to Bod (1998) Bod (1998) controls the size of

the sample set by calculating in advance the number of samples to be taken. He firstly

defines the probability of error (i.e. the probability that the most frequent sample is not,

in fact, the most probable) as
∑

i6=0(1 − (
√

p0 − √
pi)

2)N . He then states that if we try

to estimate each parse probability by its frequency in the sample set, the variance in the

probability estimate is pi(1−pi)
N

. As pi always lies between 0 and 1, the maximum variance

is 1
4N

. The standard error σ, which is calculated as the square root of the variance, thus

has a maximum value of 1
2
√

N
. If we define in advance an upper bound for σ (again, the

probability that our ranking is incorrect), then we can calculate a lower bound for N . N is

the smallest integer larger than 1
4σ2

. For example, if σ ≤ 0.05 then N ≥ 100 or if σ ≤ 0.01

then N ≥ 2500.

Chappelier and Rajman (2003) state that Bod’s method of controlling the sample size

is wrong because the sampling probabilities themselves are wrong yet Bod estimates the

error probability
∑

i6=0(1 − (
√

p0 −
√

pi)
2)N by

∑

i6=0(1 − (
√

f0 −
√

fi)
2)N . Furthermore,

they say that the sequential nature of his method does not permit advance computation

of the minimum sample size.

2.5.2 Most Probable Derivation

In PCFG parsing, each unique parse for a given input string is generated by exactly

one derivation, which means that calculating the Most Probable Derivation (MPD) is

46

equivalent to calculating the MPP. There exists an efficient algorithm, called Viterbi

optimisation, to compute the MPD for a PCFG. Viterbi optimisation involves pruning

sub-derivations with low probabilities from the PCFG parse space in a bottom-up man-

ner. Two different sub-derivations which have the same root node and span the same

portion of the input string are used in building derivations of the entire input string in

exactly the same way. This means that parses containing the more probable of these sub-

derivations will always be more probable than those parses containing the less probable

sub-derivation. Consequently, the less probable sub-derivation will never be used to build

the most probable derivation/parse and can be removed from the parse space.

Viterbi optimisation can also be used to compute the MPD for DOP grammars. How-

ever, DOP models differ from PCFG models in that many different DOP derivations can

yield exactly the same parse tree, and the probability of a parse is calculated by summing

over the probabilities of all derivations which yield it. It is not possible to use Viterbi

optimisation when computing the MPP as sub-derivations which are less likely are pruned

from the chart regardless of the fact that their probabilities may contribute to that of the

MPP (Bod, 1995b).

As it is not feasible to compute exactly the MPP for DOP and it may be less com-

putationally expensive to compute exactly the MPD than to approximate the MPP using

random sampling, it is important to look at parse accuracy when maximising derivation

probability as opposed to parse probability. Bod (2003c) presents empirical evidence that

maximising derivation probability rather than parse probability results in a 16% decrease

in parse accuracy15 and concludes that, at least for the ATIS treebank, it is more useful

to search for the MPP. This is unsurprising as computation of the MPP allows for over-

lapping fragments: every fragment which can be used to parse the input string provides

probabilistic evidence in favour of those parses it helps to derive.

2.5.3 Most Probable Parse amongst the n Most Probable Derivations

Bod (2000e) presents experiments which were carried out using Monte Carlo disambigua-

tion on the ATIS corpus. He then repeated these experiments using an alternative dis-

15In these experiments, parse accuracy is measured as the proportion of test set sentences whose output
parses exactly match their corresponding test set parses in the treebank.

47

ambiguation strategy, where the MPP is selected by computing the 1000 most probable

derivations using the Viterbi n-best optimisation and then explicitly summing over these

derivation probabilities to compute the most probable parse. His results show that the

two methods achieved similar scores; the differences were not statistically significant. Bod

also used this disambiguation method when parsing the Penn-II Treebank and achieved

an 11% relative error reduction over previous models (Bod, 2003a).

2.5.4 Simplicity: the shortest derivation

PCFG parse probability is computed by multiplying the probabilities of each rule used

to derive a parse. Parses derived using fewer rules generally have higher probabilities

than parses of the same sentence which use greater numbers of rules. This results in an

undesirable bias towards smaller parse trees. However, Bod (2000e) observes that because

DOP grammars use fragments of varying sizes, the tendency to favour shorter derivations

does not necessarily result in a bias towards smaller parse trees. Rather, the shortest DOP

derivation of a parse tree is built using the largest relevant fragments in the fragment base.

Bod (2000e) investigates possible benefits of this bias in favour of shorter derivations

by defining a DOP model in which the best parse tree is the one which is built using the

smallest number of fragments Fmin, i.e. by the shortest derivation. Derivation lengths

are computed by assigning each fragment equal probability, meaning that the shortest

derivation can be computed as the most probable one using Viterbi.16

Although Bod describes this approach as a non-probabilistic DOP model, in the case

where more than one parse tree can be derived using Fmin fragments, fragment probabil-

ities determine which of these parses is selected as the best parse. In order to back off

to frequency-ordering of the fragments, each is assigned a rank according to its frequency

in the fragment base. The most frequent fragment of each root label is assigned rank 1,

the second most frequent rank 2 and so on. The ranks of those derivations using Fmin

fragments are computed as the sum of the ranks of the fragments used in building each

derivation; the highest-ranked derivation (i.e. the one with the smallest sum) is deemed

the shortest derivation and, therefore, yields the best parse tree.

16If each fragment has probability p then the probability of a derivation which uses n fragments is pn;
since 0 < p < 1, the smallest n has the largest probability.

48

Evaluation of this model was carried out on the ATIS, OVIS and WSJ treebanks;

comparison was against a model which disambiguated using the Viterbi n-best technique

described in section 2.5.3. Experiments on the ATIS treebank showed that the shortest

derivation model performed significantly worse than the Viterbi n-best model at lower

fragment depths; by depth 4, scores are roughly the same and at depth 6 the shortest

derivation model outperforms Viterbi n-best by 1.5%. Experiments on the OVIS tree-

bank again showed that the shortest derivation model performed poorly at lower fragment

depths. However, probabilistic DOP suffers from serious data-sparseness on the OVIS

treebank and accuracy decreases as fragment depth exceeds 4. The accuracy of the short-

est derivation model, however, continues to rise (at depth 6, it outperforms the Viterbi

n-best model by 3.4%) which, according to Bod, would appear to indicate that this model

is less sensitive to low frequency counts of larger fragments. Experiments on the WSJ show

that, while the results are comparable, the Viterbi n-best model consistently outperforms

the shortest derivation model.

2.5.5 Simplicity and Likelihood Combined

Bod (2003a) outlines two models which combine the shortest derivation model described

in section 2.5.4,17 referred to as Simplicity-DOP, with the Viterbi n-best model described

in section 2.5.3 which he refers to as Likelihood-DOP. Although Simplicity-DOP does not

perform as well as Likelihood-DOP (the best simplicity f-score is 2.3% lower than the best

likelihood f-score on the WSJ corpus (Bod, 2000e)), it achieves very good results for such

a simple model. Furthermore, according to Bod (2003a), Simplicity-DOP selects parse

trees which are quite different from those selected by Likelihood-DOP, suggesting that

combined models may improve performance.

The idea behind the first model, termed Simplicity-Likelihood-DOP or SL-DOP, is to

select the simplest parse tree from among the n likeliest trees. The second model, which

selects the likeliest tree from among the n simplest trees, is referred to as Likelihood-

Simplicity-DOP or LS-DOP. SL-DOP is equal to Likelihood-DOP when n = 1 as there is

only one most likely parse to choose from; as n gets large the model converges to Simplicity-

17One adjustment was made: the rank of each fragment was averaged by the rank of all its sub-fragments.

49

DOP as the simplest parse is chosen from among most or all of the likely parses. The

opposite clearly holds for LS-DOP.

These models were compared by performing experiments on the WSJ treebank18 where

the value for n varied such that 1 ≤ n ≤ 1, 000. Results indicate that SL-DOP achieves

greatest accuracy at 12 ≤ n ≤ 14, thereafter decreasing and converging to Simplicity-DOP,

whereas the accuracy of LS-DOP continues to increase as n increases and converges to

Likelihood-DOP. The best results are obtained by SL-DOP at 12 ≤ n ≤ 14; these parsing

results are the highest published for the WSJ treebank.

2.5.6 Maximum Constituents Parse

Goodman (1996b) observes that although many different metrics exist for evaluating pars-

ing results (e.g. exact match, labelled precision and recall, unlabelled precision and recall,

crossing brackets rate), most parsing algorithms seek to optimise just one metric: exact

match. He contends that better parsing results can be achieved by developing disam-

biguation algorithms appropriate to the evaluation metric being used. The majority of

parsing metrics can be said to calculate roughly the number of correct constituents19 in

each output parse (the obvious exception being exact match). According to Goodman

(1996a, 1998, 2003), if a parser is to be evaluated on such a measure then the parser

should output the parse most likely to have the largest number of correct constituents, i.e.

the Maximum Constituents Parse (MCP). Goodman illustrates this maximisation with

the following example. Assume the following DOP grammar in (2.28):

S (3
9
)

A C

x x

S (2
9
)

A D

x x

S (2
9
)

E B

x x

S (2
9
)

E B

x

B (1)

x
(2.28)

The three three best parses in this grammar according to three different criteria are those

in (2.29):

18Similar experiments are presented in (Bod, 2002) but maximum fragment depth was limited to 14; in
the experiments currently under discussion (Bod, 2003a), all fragments were used.

19A constituent is a triple (i, X, j) where X is a non-terminal which dominates words wi...wj of an
input string which spans w1...wn. A labelled constituent is correct if the treebank parse also contains the
constituent (i, X, j) and an unlabelled constituent is correct if the treebank parse contains any constituent
(i, Y, j) which spans wi...wj regardless of its non-terminal symbol.

50

A : MPD B : MPP C : MCP

S

A C

x x

S

E B

x x

S

A B

x x

P (A) = 3
9

P (B) = 4
9

Correct constituents = 2

(2.29)

When calculating the MCP, we need to know how many constituents of each parse we

expect to be correct; the parse with the greatest number of expected correct constituents

is the MCP. For parse (C) above, the probability that the constituent (0, S, 1) is correct

is 1 because the only non-terminal which can span the full input string (i.e. two words)

is S. The probability that the chosen constituent (0, A, 0) is correct is 5
9 ; the only other

non-terminal which can span this section of the input string (i.e. the first word) is E with

probability 4
9 . Finally, the probability that the chosen constituent (1, B, 1) is correct is

4
9 ; non-terminals C and D can span the same word (i.e. the second word) with proba-

bilities 3
9 and 2

9 respectively. It follows that the chosen tree has two correct constituents;

all other trees have fewer than two correct constituents so this parse is selected as the

MCP. Goodman’s algorithm uses inside-outside values to calculate the probability that

the constituent is in the correct parse and then uses dynamic programming to put the

most likely constituents together to form an output parse tree.

It is clear from the example given above that this model is not a special case of the

DOP model as the MCP can never be produced by combining DOP fragments. Nonethe-

less, Goodman (2003) presents experimental results which demonstrate that outputting

the MCP yields similar performance to outputting the DOP MPP using Monte Carlo

estimation.

2.6 Estimating Tree-DOP fragment probabilities

The method of estimating fragment probabilities described in section 2.2.4 – whereby the

probability of a fragment is taken to be its relative frequency amongst all fragments in the

fragment set which have the same root node as it – has been shown to be an unsatisfactory

parameter estimation method for DOP (Bonnema et al., 2000; Johnson, 2002). In this

51

section, we describe why this is the case using a simple example, and outline three solutions

which seek to address this problem.20

2.6.1 The relative frequency estimator: DOPrf

The relative frequency estimator for the DOP model (DOPrf) induces a bias in favour

of larger parse trees; this issue was first identified in (Bonnema et al., 2000) and further

examined in (Johnson, 2002) and (Bonnema and Scha, 2003). Figure 2.14 (adapted from

the example given in (Bonnema and Scha, 2003):27) illustrates how this bias comes into

play even for very small treebanks. The treebank trees given in Figure 2.14(A) yield

the set of fragment in (B); trees Ta, Tb and Tc all yield fragment f1 while tree Td yields

fragments f2 - f7. The probabilities associated with these fragments are obtained using

the relative frequency estimator, meaning that each fragment probability is calculated by

dividing its frequency of occurrence in the fragment base by the total number of fragments

with the same root node as it. Figure 2.14(C) shows the five DOP derivations (and

their probabilities) which can be constructed for the string ab given fragment set (B).

Figure 2.14(D) shows, thus, that the DOP probability model (which sums over derivation

probabilities) ranks Tbigger, the larger tree representing ab, higher than the smaller tree

Tsmaller. In other words, the DOP probability model considers that Tbigger is the more

likely analysis for the string ab. This, however, is in contradiction of the evidence present

in the original treebank in (A); treebank (A) predicts that the smaller parse tree for ab is

three times more likely than the larger analysis. Consequently, we conclude that assigning

probabilities to subtrees in terms of their relative frequencies results in an undesirable bias

towards larger parse trees. Furthermore, Johnson (2002) shows that the estimation method

is also inconsistent, i.e. that the estimated probability distribution does not converge to

the true distribution as the size of the treebank increases.

20Collins and Duffy (2001) describe how the use of of kernel methods over trees can be applied to parsing.
They assume all tree fragments which occur in the training data, as does DOP. However, unlike for DOP,
enumeration of these fragments is conceptual rather than explicit. Instead, they discuss how kernels can
be used to represent parse trees such that all subtrees are tracked, and how these kernels can be applied
to parsing using the voted perceptron algorithm. The methods they propose allow for distribution-free
parameter estimation techniques which can be applied efficiently. Although interesting, further discussion
of these methods is beyond the scope of this thesis.

52

(A) A sample treebank :

(Ta) (Tb) (Tc) (Td)

S

a b

S

a b

S

a b

S

P Q

a b

(B) The fragment set extracted from treebank (A) where fragment probabilties are calculated
according to the relative frequency estimator :

P (f1) = 3
7

P (f2) = 1
7

P (f3) = 1
7

P (f4) = 1
7

P (f5) = 1
7

P (f6) = 1 P (f7) = 1

S

a b

S

P Q

a b

S

P Q

a

S

P Q

b

S

P Q

P

a

Q

b

(C) All derivations and derivation probabilities for the string ab according to treebank (B) :

D1 : f1 (3
7
) =

S

a b
(3
7
)

D2 : f2 (1
7
) =

S

P Q

a b

(1
7
)

D3 : f3 (1
7
) ◦ f7 (1) =

S

P Q

a b

(1
7
)

D4 : f4 (1
7
) ◦ f6 (1) =

S

P Q

a b

(1
7
)

D5 : f5 (1
7
) ◦ f6 (1) ◦ f7 (1) =

S

P Q

a b

(1
7
)

(D) Parse probabilities for the string ab according to the DOP probability model and according to
the evidence in the treebank :

DOP probability model : Tbigger :

S

P Q

a b

= (4
7
) Tsmaller :

S

a b
= (3

7
)

Treebank evidence : Tsmaller :

S

a b
= (3

4
) Tbigger :

S

P Q

a b

= (1
4
)

Figure 2.14: This example illustrates the bias in favour of larger parse
trees induced by the DOP relative frequency estimator. This
illustration is adapted from the example given in (Bonnema
and Scha, 2003):27.

53

Bonnema and Scha (2003) note that, despite these demonstrable flaws in the way in

which fragment probabilities are estimated, experimental results indicate that the DOPrf

model achieves very high parse scores. Furthermore, the vast majority of those experiments

which investigate the effects of increasing fragment depth on parse accuracy validate the

DOP Hypothesis, which states that accuracy is expected to increase as fragment size

increases. These experiments are carried out using fragments of depth n or less such that

the value of n is varied while the training and test data remain the same. That they validate

the DOP Hypothesis is surprising in light of the DOPrf bias presented above. However,

closer examination of the experiments performed reveal that these experiments generally

fall into one of two categories: those which used only a subset of the available fragments

at each depth, e.g. (Sima’an, 1999; Bod, 2000d,e, 2001, 2003b), and those which were

performed on the ATIS corpus, e.g. (Sima’an, 1995a; Bod, 1995b, 1996, 2000e, 2003c)).21

The exception to this is the set of experiments performed by Bod (2000e) on the OVIS

corpus, which comprises 10,000 trees containing both syntactic and semantic annotations.

These experiments show that maximum parse accuracy is achieved at fragment depth 4

and including fragments of depths 5 and 6 results in decreased accuracy. However, Bod

(2000e) attributes this finding to the fact that DOP suffers considerably from sparse data

problems on the OVIS because the syntactic and semantic annotations at each node are

treated as one label (Sima’an, 1999). Thus, the experiments which confirm that the DOP

Hypothesis holds are generally either restricted in terms of the proportion of fragments

actually used at each depth or performed on a corpus which yields a relatively low number

of fragments at each depth. Consequently, the biased parameter estimator does not incur

the negative impact on results that one might have expected to see.

2.6.2 Assuming uniform distribution over the training trees: DOPbon

The solution proposed in (Bonnema et al., 2000; Bonnema and Scha, 2003) is based on

the assumption that, as all corpus trees are formed by derivation sequences but we do not

know which ones, all derivations of each corpus tree are equally likely. Furthermore, this

21The number of fragments which can be extracted from the ATIS corpus appears to be relatively small.
Furthermore, some experiments on the ATIS corpus were on tag rather than word sequences, further
reducing the number of fragments extracted. Therefore, the bias in the probability model is likely to have
minimal impact for experiments carried out on this data.

54

uniform distribution can be used to estimate the expected relative frequency of substitution

of each subtree. It is shown (Bonnema et al., 2000; Bonnema and Scha, 2003) that for

every possible fragment α of tree T with root node A, the fraction of derivations of T that

start by substituting α is 2−N(α), where N(α) is the number of non-root, non-terminal

nodes in α. Consequently, they define the probability of fragment α with root node A

as the product of α’s frequency of substitution in the treebank tree derivations and its

relative frequency in the set of all fragments as specified in equation (2.30).

Pbon(α) = 2−N(α)Prf (α) (2.30)

While it is stated in (Bonnema et al., 2000) and (Bonnema and Scha, 2003) that this

estimation method is unbiased and consistent, and performs as desired on toy treebanks,

Sima’an and Buratto (2003) present experiments on the OVIS corpus which show that

DOPbon achieves lower parse accuracy than DOPrf . These experiments also limit the

size of the fragment set not only with respect to depth but also with respect to the

numbers of terminals and substitution sites in each fragment. We have already seen that

this favours the DOPrf model; one wonders what impact it has on the DOPbon model

and, consequently, whether or not this was a fair assessment. Nevertheless, Sima’an and

Buratto (2003) also provide an example which clearly demonstrates that this estimation

method is biased, this time towards smaller parses, and conclude that the bias towards

smaller parses exhibited by DOPbon is more harmful than the bias towards larger parses

exhibited by DOPrf .

2.6.3 Using Maximum Likelihood Estimation: DOPmle

A Maximum Likelihood Estimator assigns probabilities to grammar rules – or, in the case

of DOP, fragments – such that the resulting probabilistic grammar, which can generate

parse trees not in the treebank from which it was extracted, assigns maximum probabilities

to those trees which occurred in the original treebank. As outlined by Bonnema and Scha

(2003), however, this estimation method is not suitable for DOP because, as the treebank

trees also occur as fragments in the fragment base, MLE assigns all probability mass to

those fragments corresponding to treebank trees and zero probability mass to all other

55

fragments in the fragment base. Thus, DOPmle over-learns the training data as it can

only generate those parse trees which already exist in the treebank.

If the set of training fragments are pruned with respect to depth – usually the baseline

pruning strategy – then all of the treebank trees are no longer also fragments in the

fragment set. Consequently, the effects of over-learning are constrained, at least to some

extent. Bod (2000c) compared the DOPrf and DOPmle models by performing word-graph

disambiguation experiments on the OVIS corpus where the fragment base contained all

fragments of depth 4 or less; results showed that the DOPmle model achieved a word error

rate which improved on the score achieved by the DOPrf model by 2.8%. According to

Bonnema and Scha (2003), this result is entirely dependent on pruning, and that the more

fragments allowed, the more marked the effects of overfitting will become.

2.6.4 Probability re-estimation using Back-off: DOPbkf

The models DOPrf , DOPbon and DOPmle all view the DOP fragments as a set of disjoint

events. Sima’an and Buratto (2003), on the other hand, view the DOP fragment set as

a hierarchically structured space of correlated events and define a parameter estimation

method which takes into account the relationships between overlapping fragments.

Sima’an and Buratto (2003) observe that all fragments in the fragment base of depth

greater than 1 can be created by combining other fragments in the fragment base; depth

1 fragments are considered simple fragments and larger fragments are termed complex

fragments. For example, fragment f1 in Figure 2.15(A), which is a complex fragment, can

be created by combining fragments f2 and f6 as shown in Figure 2.15(B). Fragment f2 is

also a complex fragment and can be created by combining fragments f4 and f5 - again,

this is shown in Figure 2.15(B). Fragments f4, f5 and f6 are all simple fragments, meaning

that they cannot be broken down any further.

In DOP, the probability of f is given by P (f |root(f)). Thus, if f = fx ◦ fy then the

probability of fx◦fy is given by P (fx◦fy|root(fx)). According to the chain rule, P (fx◦fy)

is expanded according to equation (2.31). However, the DOP probability model allows

56

(A) A set of DOP fragments :

f1 f2 f3 f4 f5 f6

S

A B

a b

S

A B

a

S

A B

b

S

A B

A

a

B

b

(B) Organisation of the fragments in (A) as a structured space of correlated events :

f1

S

A B

a b

f2 f6 f3 f5

S

A B

a

◦
B

b

S

A B

b

◦
A

a

f4 f5 f4 f6

S

A B
◦

A

a

S

A B
◦

B

b

(C) The backoff graph summarising the fragment relationships exposed in (B) :

f1

f2 f6 f3 f5

f4 f5 f4 f3

Figure 2.15: The fragments in (A) can be organised into the hierarchical
structure in (B) by expressing complex fragments as com-
positions of complex and simple fragments. The back-off
graph in (C) is a summary of this fragment hierarchy; com-
plex fragments are enclosed by a circle and simple fragments
(for which there are no back-offs) by a square and a circle.

57

the expansion of P (fx ◦ fy) according to equation (2.32).

P (fx ◦ fy|root(fx)) = P (fx|root(fx))P (fy|fx) (2.31)

P (fx ◦ fy|root(fx)) = P (fx|root(fx))P (fy|root(fy)) (2.32)

P (fy|fx) ≈ P (fy|root(fy) (2.33)

The only difference between equations (2.31) and (2.32) is in the conditioning context of

fy: in equation (2.31) it is conditioned on fx whereas in equation (2.32) it is conditioned

on root(fy) – this approximation is given in (2.33). As the root node of fy corresponds

to the leftmost substitution site of fx, these are not unrelated. However, conditioning on

root(fy) is weaker than conditioning on fx as, essentially, it involves a ‘backing-off’ from

conditioning on the entire of fragment fx to just one node category in fx. Hence, Sima’an

and Buratto (2003) say that the derivation fx ◦fy constitutes a back-off of subtree f . This

relationship is expressed by equation (2.34).

f ≥bkf fx ◦ fy (2.34)

The back-off relationships between fragments can be used to organise the fragment

set into a hierarchically-structured space of correlated events as shown in Figure 2.15(B).

Sima’an and Buratto (2003) sketch a graphical representation of this hierarchical space

– called a back-off graph – using a directed acyclic graph where each node represents

a pair of fragments <fx,fy>; a directed edge points from fragment f to each pair of

fragments <fx,fy> which derive it. The back-off graph corresponding to the organised

fragment space in Figure 2.15(B) is given in Figure 2.15(C). Sima’an and Buratto (2003)

firstly assign to each fragment its relative frequency and then use the back-off graph to

re-estimate fragment probabilities by transferring probability mass from larger fragments

to their back-offs in a stepwise fashion. DOPbkf experiments carried out on the OVIS

corpus show an error reduction of 11.3% over the DOPrf method and 15.7% over DOPbon

(Sima’an and Buratto, 2003).

58

2.7 Summary

In this chapter, we have provided both general and formal descriptions of the DOP model,

and discussed how the set of lexical and structural dependencies captured naturally using

DOP differs from those captured by other approaches to experience-based parsing. We

have also described methodologies which have been developed to address the issues of

pruning, parsing and disambiguation for the DOP model. Finally, we have illustrated the

unsatisfactory effects of using the relative frequency estimator to assign probabilities to

DOP fragments and outlined three solutions which have been developed to address this

problem.

In the next chapter, we present our Tree-DOP system in terms of design and perfor-

mance. We detail our choice of algorithms to implement each of the main components in

a DOP parser. We perform experiments on both English and French data, and compare

our results to previously-published DOP results, as well as discussing in detail further

characteristics of the DOP model which impact on performance.

59

Chapter 3

Tree-DOP: implementation,

experiments and results

In this chapter, we document the Tree-DOP parser we have built in terms of design and

performance. The system design reflects our overall motivation for building this parser: we

require a Tree-DOP parser which is efficient, and yet flexible enough to serve as the main

technology behind data-oriented language processing systems which assume tree-based

representations encoding more information than simple context-free phrase-structure trees.

Accordingly, in section 3.1 we motivate our choice of algorithms to accomplish the three

main tasks performed by a Tree-DOP system, namely grammar induction, parsing and

disambiguation. Of course, as this system is to form the core technology underlying further

data-oriented language processing models, we wish also to confirm that it is accurate as

well as sufficiently efficient and flexible. Thus, the first task when assessing performance

– the details of which are presented in section 3.2 – is to compare the parse accuracy

achieved using our system to the accuracy of other DOP systems (Bod and Kaplan, 2003)

on the same data. We also compare some of the maximisation techniques which have been

proposed for Tree-DOP in order to ascertain how they perform in terms of both accuracy

and efficiency. In addition, we present detailed discussion on further characteristics of the

DOP model which prove to impact on performance.

60

3.1 Parser design details

In this section, we present the precise description of our Tree-DOP system architecture

in terms of grammar induction, parsing and disambiguation. We motivate our choice of

algorithm for parse-space computation by comparing it to the other possible algorithms in

section 3.1.1. We discuss the challenges which present themselves when creating, storing

and compiling Tree-DOP grammars in section 3.1.2, and we give the algorithms we have

selected to rank output parses in section 3.1.3.

3.1.1 Parse space computation

Three methods for computing the parse space for a given input string over a Tree-DOP

grammar are described in section 2.4. The first of these methods, developed by Bod

(e.g. (Bod, 1992, 1995a)), views each tree as a rewrite rule of the form root(f) −→

frontier1(f) ... frontiern(f) and uses standard chart-parsing techniques to build the

parse space for any given input string. This is the least efficient method as the number of

rules to be considered is linear in the size of the fragment set and the right-hand sides of

these rules are of arbitrary length where the maximum length is the length of the longest

string in the training data. Furthermore, while use of standard chart-parsing techniques

to parse with these rewrite rules is possible, it is also impractical: a bottom-up, CKY-

based approach requires conversion of the rule set to CNF which causes an explosion in

the number of rules, while a top-down approach, even incorporating lookahead techniques,

necessitates the introduction of an undesirable number of failing derivations into the parse

space. As the second and third methods – developed by Sima’an and Goodman – offer far

greater efficiency, we do not consider this method any further.

The two-phase algorithm developed by Sima’an (1995a, 1999) and the PCFG-reduction

developed by Goodman (1996a, 1998, 2003) are both predicated on the same underlying

idea: all of the fragments which can be extracted from a treebank can also be generated

by the context-free grammar underlying that treebank and, consequently, the context-

free rules present in the parse-space for a given input string also characterise all of the

fragments which can be used to parse that string. However, there are two fundamental

differences between the two algorithms.

61

Firstly, Sima’an’s algorithm uses the non-probabilistic context-free grammar underly-

ing the fragments to compute exactly the set of fragments relevant to the parse space but

not the probabilities of those fragments; these probabilities must be estimated by looking

back to the full fragment set. In contrast, Goodman’s method assigns probabilities to each

underlying context-free rule such that the sum of the PCFG derivation probabilities yield-

ing a particular fragment is exactly the DOP probability of that fragment in the fragment

set.

The second fundamental difference between the two algorithms concerns the format of

the parse spaces they generate; this is crucial as it determines which disambiguation tech-

niques can be applied. Sima’an integrates the second phase of his algorithm (during which

the context-free rules are used to establish the set of relevant fragments) with the Viterbi

algorithm to calculate the most probable derivation for the input string. Consequently,

only those fragments used to build the most probable derivation are actually introduced

into the parse space. However, as his method can easily be extended so that the parse

space generated comprises all relevant fragments, the fragments participating in the n

most probable derivations, the fragments participating in the shortest derivation(s) etc.,

it can be used in conjunction with a range of ranking techniques. (The notable exception

to this is Goodman’s maximum constituents parse.) In contrast, the parse space gener-

ated using Goodman’s algorithm does not contain fragments; rather it comprises PCFG

rules which generate the same parses and parse probabilities as the DOP model for the

given input string. Goodman proposes to disambiguate this chart by selecting the max-

imum constituent parse, which does not require conversion of the PCFG parse space to

the DOP parse space. Unfortunately, integrating alternative ranking strategies with this

algorithm is not straightforward. As more than one PCFG derivation can yield each DOP

derivation, computation of the most probable PCFG derivation (and also, therefore, the n

most probable derivations using Viterbi) does not guarantee that we have found the most

probable DOP derivation. If there exists a unique shortest derivation then this can be

generated, but where there is more than one shortest derivation (as is generally the case)

then standard backing-off to the most probable derivation is, again, problematic.1 Com-

1Bod (2003a) documents experiments whereby both the n shortest derivations and the n likeliest deriva-
tions are computed from the PCFG-reduction parse space using Viterbi optimisation. However, precise

62

putation of the most probable parse using random sampling involves selecting fragments

for composition at random according to the probability distribution over the competition

set. However, the sampling probability distributions over sets of rules do not necessarily

correspond to the sampling probability distributions over sets of fragments, meaning that

the distribution of randomly sampled derivations from the parse space generated by the

Goodman algorithm is not guaranteed to correspond to the distribution according to the

DOP model and, therefore, it is not clear how to identify the DOP most probable parse.

Thus, use of maximisations other than the maximum constituent parse would appear to

require the conversion from PCFG parse space to DOP parse space which the algorithm

was developed to avoid.

Finally, use of pruning techniques to limit the size of the fragment space is straightfor-

ward using Sima’an’s algorithm as the CFG rules in the underlying grammar are extracted

directly from the set of fragments being used. On the contrary, it is not straightforward

to estimate Goodman’s CFG rule probabilities such that excluded fragments are adjusted

for; Goodman (2003) describes a method to perform pruning with respect to fragment

depth but a far larger PCFG must be extracted from the treebank to accomplish this.

In summary, in order to output parses other than the maximum constituents parse, we

must convert Goodman’s PCFG-reduction parse space to the DOP parse space. However,

for a treebank even of reasonable size, the number of fragments in the parse space will be

extremely large, and explicitly computing it is unfeasible in terms of both time and space.

Pruning the fragment set so that the parse space is computable unfortunately results in

a large increase in the size of the PCFG-reduction (if, indeed, it is even possible to com-

pute the corresponding PCFG-reduction) and the Goodman algorithm loses its advantage.

Consequently, the decision as to which approach to take when building a Tree-DOP parser

depends on the degree of flexibility required. If selecting the maximum constituents parse

from the parse space generated using the full set of DOP fragments yielded by the given

treebank is appropriate for the task at hand, then Goodman’s algorithm is most suitable.

If, however, use of pruning techniques and/or alternative ranking strategies is necessary

then Sima’an’s algorithm would appear to provide the better solution.2 As we wish to

details of how the issues raised here are addressed are not given.
2Flexibility is also required if data-oriented language processing models involving different types of

63

investigate precisely these issues, we have adopted this algorithm as it was described in

section 2.4.2.

3.1.2 Compact fragment representation

The task of deriving a DOP grammar from a treebank by extracting sets of fragments

from the treebank and computing their frequencies, as well as storing and compiling these

grammars, is computationally expensive. Fortunately, as the two-phase algorithm used

to compute the parse space for each input string requires only an indication as to which

fragments each underlying CFG rule appears in, it is not necessary to explicitly extract

and store the fragment set. Rather, we store only the treebank trees themselves and

establish the fragment set on the fly.

This is accomplished by first explicitly applying the root operation to the treebank

trees, yielding a set of ‘intermediate’ fragments the size of which is linear in the number

of nodes in the treebank. The frontier operation is then applied by assigning to each node

n in each intermediate fragment a set of fragment identifiers such that if its left and right

child nodes nl and nr are present in a fragment, then the corresponding fragment identifier

appears in the node’s identifier set. Either both nl and nr are present in the fragment or

neither are present, in which case node n is itself either a substitution site or not in the

fragment. Thus, the presence of fragment identifier fid at node n signifies that the CFG

rule n −→ nl nr occurs in fragment fid.

If n’s left and right child nodes nl and nr are present in a fragment, each of these

child nodes can be either internal to that fragment (nli ,nri
) or a substitution site of that

fragment (nls ,nrs). Thus, we can partition the set of identifiers at node n into four sets

representing the four possible combinations of internal and external child nodes <nls ,nrs>,

<nls ,nri
>, <nli ,nrs> and <nli ,nri

>.3 Extracting these partitioned sets of fragment iden-

tifiers along with each CFG rule extracted gives us the correspondence between the frag-

ment set and the CFG underlying it which is required to perform the transition from

representations are to be constructed. Examples in this thesis are the paired tree representations used
for translation and the trees associated with f-structures for LFG parsing. The relative merits of each
algorithm for these types of representations are discussed in the relevant chapters.

3We can also partition according to whether n is a root or internal node, creating eight partitions rather
than four; for the sake of clarity, we omit this option in this explanation.

64

(A)

Root-generated ‘intermediate’ fragment which has been converted to ECNF (through which
node B x has been inserted) and each node annotated with the number of different subtrees it
yields when the frontier operation is applied:

A

B C D

b E F d

e f

⇒

A(20)

B(1) B x(10)

b C(4) D(1)

E(1) F(1) d

e f

(B)

Node annotations representing all possible frontier operations where the total number of frontier
operations possible is 20 and the fragments corresponding to each of these frontier operations
have been allocated identifiers from the set of integers 1 - 20:

A(20) <Bs,B xs>:{} <Bs,B xi>:{1-10} <Bi,B xs>:{} <Bi,B xi>:{11-20}

B x(10) <Cs,Ds>:{1,11} <Cs,Di>:{2,12} <Ci,Ds>:{3-6,13-16} <Ci,Di>:{7-10,17-20}

C(4) <Es,Fs>:{3,7,13,17} <Es,Fi>:{4,8,14,18} <Ei,Fs>:{5,9,15,19} <Ei,Fi>:{6,10,16,20}

B(1) :{11-20}

E(1) <e>:{5-6,9-10,15-16,19-20}

F(1) <f>:{4,6,8,10,14,16,18,20}

D(1) <d>:{2,7-10,12,17-20}

Figure 3.1: The ‘intermediate’ fragment in (A) was generated by the root
operation. (B) gives the node annotations representing all
possible frontier operations where the total number of fron-
tier operations possible is 20 and the fragments corresponding
to each of these frontier operations have been allocated iden-
tifiers from the set of integers 1 - 20.

parse phase 1, in which the CFG parse space is constructed, to parse phase 2 in which the

corresponding DOP parse space is constructed.

The process of building compact fragment representations is illustrated in Figure 3.1.

Firstly, node A is selected by the root operation and all nodes not equal to or dominated

by A are deleted; this yields the ‘intermediate’ fragment given in Figure 3.1(A). This

intermediate fragment is converted to ECNF as described in section 2.4.4 through the

insertion of the new node B x, and the number of frontier operations which can be carried

out at each of its nodes is calculated. For example, 10 different sets of frontier nodes

can be selected at node B x; note, however, that as B x must always be an internal

node and, therefore, never a substitution site, the number of different frontier node sets

65

which can be selected at node A is 20.4 Fragment identifiers are then assigned to each

node in the intermediate tree as shown in Figure 3.1(B): an identifier appears at a given

node if both that node and all of its child nodes appear in the corresponding fragment.

These sets of identifiers are further partitioned as described above. For example, the sets

corresponding to node A indicate that node B x is internal to all fragments 1–20 but

node B is a substitution site in fragments 1–10 and internal to fragments 11-20. Similarly,

the sets corresponding to node B x indicate that nodes C and D are, for example, both

substitution sites in fragments 1 and 11 (where node B is a substitution site in 1 and

internal to 11) and both are internal to fragments 7–10 and 17–20 (where node B is a

substitution site in 7–10 and internal to 17–20). As terminal symbols can only be frontier

nodes, they are either present or absent in each fragment and, thus, no partitions are

imposed on their fragment identifier sets. For example, terminal symbol b is internal to

all fragments to which its parent node B is also internal, i.e. fragments 11-20.

This method of representing fragments allows us, when extracting the CFG underlying

the treebank, to also extract for each rule the (partitioned sets of) identifiers of fragments in

which that rule occurs. This annotated grammar can be used during the two-phase analysis

process to (i) establish the CFG parse space for the input string and (ii) transition to the

DOP parse space for that string as described in section 2.4.2. In addition, it allows us to

read off the fragment corresponding to any identifier by simply checking for its absence

or presence (as an internal node or substitution site) at each node in the intermediate

tree.5 For example, consider the situation where we wish to extract the fragment whose

identifier is 13. The sets corresponding to node A indicate that nodes B and B x are both

internal to fragment 13. Trivially, the annotation at node B indicates that the terminal

b is a frontier node of fragment 13. The sets corresponding to node B x indicate that

while node C is internal to fragment 13, node D is a substitution site. Finally, the sets

corresponding to node C tell us that nodes E and F are both substitution sites in fragment

4If node B x was allowed to be a substitution site, two further fragments would be possible; both these
fragments would have node B x as a substitution site but one would also have node B as a substitution
site whereas B would be internal to the other one.

5Sima’an’s two-phase parsing algorithm does not require this facility as fragments are rebuilt using the
CFG rules which characterise them. However, this facet of the compact fragment representation process
will prove important when tree-based representations encoding more information than simple context-free
phrase-structure trees are considered. This issue is discussed further in sections 5.2.3, 7.5.2 and 8.3.

66

13. Thus, fragment 13 corresponds to the fragment shown in (3.1):

A

B B x

b C D

E F

(3.1)

Calculating relative frequencies from compact fragment representations

Calculation of relative frequencies (and the removal of identifiers corresponding to du-

plicate fragments) over these compact fragment representations is straightforward. Two

intermediate trees Ix and Iy encode duplicate DOP fragments if connected portions of

those trees which start at their root nodes are identical. Minimally, these connected

portions must comprise the intermediate tree root nodes and their daughter nodes. Ad-

ditionally, for two minimal portions to be identical, all node categories must be the same

and, in the case of the daughter nodes, appear in the same order. In example (3.2), we see

that intermediate trees I1 and I2 have the same minimal portions, i.e. their root nodes

are of the same category and the children of those root nodes are of the same categories

and in the same order. In contrast, the minimal portion of tree I3 has the same root node

category and daughter node categories as I1 and I2 but those daughter node categories do

not match with respect to order and so the depth 1 fragment extracted from I3 is not the

same as the depth 1 fragment extracted from both I1 and I2.

I1 I2 I3

A

B C D

b c d

A

B C D

E F G H I J

e f g h i j

A

C B D

c b d

(3.2)

Extending the portions of intermediate trees which yield identical DOP fragments is

a recursive process: for each node already in the identical portion of each tree, we simply

check that all of its daughter nodes correspond to those of its identical counterpart in the

67

intermediate tree to which it is being compared. In example (3.2), the identical portions

of I1 and I2 can be extended no further as none the daughter nodes of B, C and D in

I1 match the corresponding daughter nodes in I2.
6 In contrast, in example (3.3) we see

that intermediate trees Ix and Iy have root node category A, and A’s daughter nodes in

both trees are (from left to right) B and C. Accordingly, those depth 1 fragments with

root node A and substitution sites B and C are duplicates of each other. In addition, the

identical portions of Ix and Iy can be extended to include nodes D and E as the daughter

nodes of C also correspond. However, the identical portions can be extended no further

as the children of D and E do not correspond.

Ix Iy

A A

B C B C

b D E b D E

F G e d H I

f g h i

(3.3)

Once we have identified the tree nodes included in the identical tree portions, we have

established exactly which fragments are duplicates of each other: all boundary identical

nodes (i.e. those nodes which are included in the identical tree portions but whose chil-

dren are not) are either substitution sites of those fragments which are duplicates, or not

contained in duplicate fragments. When we have identified these fragments, we simply

increment their counts in one intermediate tree and delete their identifiers from the other.

3.1.3 Ranking parses

As discussed, use of two-phase analysis allows for flexibility as to the disambiguation strat-

egy to be used. Consequently, we have built modules which compute the most probable

parse, the most probable derivation and the shortest derivation.

In order to compute the most probable parse, the full DOP parse space is computed

during analysis and the methods of Chappelier and Rajman (2003) direct the sampling

6Identical tree portions are depicted using bold type and solid lines, and non-identical portions using
dashed lines.

68

process. More specifically, computation of exact sampling probabilities allows control over

the number of samples taken, as described in section 2.5.1.

The Viterbi algorithm is integrated with the building of the parse space by including

only the fragment with the largest inside probability for each root node category at each

chart position, thus facilitating computation of the most probable derivation.

Calculation of the shortest derivation is also integrated with the computation of the

parse space using Viterbi by adopting Bod (2000e)’s strategy of assigning all fragments

equal probability 1
p

and calculating all shortest derivations. However, in the event that

there exists more than one shortest derivation, we select the most probable derivation

amongst the n shortest derivations by performing a second pass over the parse space using

the Viterbi algorithm and the DOP probabilities for each fragment.

3.2 Experiments and results

In section 3.2.1, we give details of the experiments we carried out in terms of the data em-

ployed and languages covered, the pruning and ranking strategies used, and the handling

of input not fully covered by the fragment set. We describe how each evaluation metric

we use is calculated in section 3.2.2 and present the results of our experiments in terms of

the accuracy of the output parses according to these metrics in sections 3.2.3 and 3.2.4.

Finally, in section 3.2.5 we discuss the issues which arise from these results and draw some

conclusions.

3.2.1 Experimental set-up

We present Tree-DOP parsing experiments on the English and French sections of the Xe-

rox HomeCentre corpus. This corpus comprises 980 English sentences and 930 French

sentences from a printer manual – although the English and French corpora are trans-

lations of each other, we consider the sets of sentences independently for the purposes

of these experiments.7 On average, there are 9.20 English words per sentence and 10.82

French words per sentence. The longest English sentence comprises 34 words and the

7The English and French corpora are translations of each other, but there is not always a 1-to-1 mapping
between sentences; this explains why the corpus sizes differ.

69

longest French sentence 39 words. The average depth of the English trees is 5.68 and the

average depth of the French trees is 6.23; the maximum depth of both the English and

French trees is 17. Each sentence is annotated with an LFG representation comprising a

phrase-structure tree, an attribute-value matrix and links between them; we discuss these

representations further in chapters 7 and 8. For these experiments, we extracted only the

phrase-structure trees corresponding to each sentence. We preprocessed these trees by

removing traces and empty categories and by removing unary-branching structures, i.e.

substructures of the form X −→ Y were replaced with the Y category. These changes

were made fully automatically and, therefore, in a consistent manner; no manual alter-

ations of any kind were made to the data. Finally, each dataset was split randomly into 8

training/test splits such that all test words also appeared in the training set. The English

splits contain 90 test sentences and 890 training trees each while the French splits contain

90 test sentences and 840 training trees each.

We parse each test sentence8 using the three ranking strategies – most probable parse,9

most probable derivation and shortest derivation (referred to as MPP, MPD and SDer)

– as they are described in section 3.1.3 above. Furthermore, we also prune the fragment

base extracted from each training set with respect to depth, resulting in fragment bases

comprising fragments of depth 1, depth 2 or less, depth 3 or less and depth 4 or less.

As there are 12 ways of combining the ranking and pruning strategies, each test sentence

in each split is parsed in 12 different ways and the accuracy of the parses obtained are

averaged over all splits for each combination.

It is not always the case that every test sentence in every split will be assigned a full

parse. Where a sentence does not receive a full parse, we assign to that sentence the best

sequence of partial parses according to the relevant ranking strategy. We combine these

partial parses into a single tree by simply inserting a fake root node with category DUMMY

such that all the partial parses are siblings and their parent node is the fake node. (In the

worst case, every word in the sentence is assigned the tag DUMMY and all such DUMMY

8All experiments are carried out on a Pentium 4 with 2.39GHz CPU and 2Gb RAM.
9When computing the most probable parse for each input string using random sampling, we set the

sampling thresholds Perr and θ described in section 2.5.1 to 0.01 and 2 respectively. We also set the
maximum number of samples to 10,000 so that, in the event of there being two or more equally likely parses,
sampling will terminate. For the parsing experiments we present, this situation never arose, meaning that
we could always distinguish one parse as being more probable than the others.

70

−→ word subtrees are considered siblings with parent node DUMMY; no sentences in our

experiments fell into this ‘worst case’ category.) This is illustrated by the trivial example

in (3.4) below, where three partial parses are combined using category DUMMY. Thus,

every sentence receives the best analysis which can be assigned to it, even if that analysis

is incomplete.

DUMMY

N PP VPv

type P N V PP

of paper used P N

for printing

(3.4)

3.2.2 Evaluation metrics

The output parse for each test sentence is evaluated by comparing it to the parse which

was assigned to that test sentence in the corpus – this parse was stripped off when the

corpus was split into training and test sets but held out as a reference parse to be used

for evaluation purposes. We evaluate parses against their reference parses using 4 metrics:

exact match, precision, recall and f-score. The exact match metric is the most stringent,

in that parses which are identical to their reference parses are assigned a score of 1 and

all others assigned a score of 0. The precision, recall and f-score metrics, on the other

hand, compare the constituents present in the output parse with those present in the

reference parse, where a constituent is a syntactic category label occurring in a parse tree

which spans a consecutive sequence of words in the input string. A constituent is correct

if there is a corresponding node in the reference parse with the same syntactic category

label spanning the same consecutive sequence of input string words. Precision is calculated

according to equation (3.5), where P is the parser output and T the reference parse. The

precision rate of a parse is the proportion of constituents in that parse which are correct.

Precision =
correct constituents in P

total number of constituents in P
(3.5)

Recall is calculated according to equation (3.6); the recall rate of a parse is the proportion

of correct constituents in the parse with respect to the total number of constituents in the

71

reference parse.

Recall =
correct constituents in P

total number of constituents in T
(3.6)

F-score is a method of combining precision and recall to facilitate comparison and is

calculated according to equation (3.7).

F − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3.7)

In PCFG parsing, the tasks of tagging and parsing are generally considered separately; sen-

tences are tagged using a tagger and the tag sequences input to the parser. Consequently,

tagging and parsing are evaluated separately, meaning that pre-terminals spanning a sin-

gle word (i.e. structures of the form TAG −→ terminal) are not considered constituents

for parser evaluation purposes. Input to our DOP parser, on the other hand, comprises

sequences of terminal symbols without their tags, meaning that the parser assigns both

tags and structures to each input string. Accordingly, structures of the form TAG −→

terminal are treated as constituents during parser evaluation, and the precision, recall and

f-score figures we report also incorporate tagging accuracy. However, we also perform a

separate evaluation of tagging accuracy by calculating the percentage of words in each

sentence which are correctly tagged.

3.2.3 Results for English experiments

The results given in Table 3.1 – which are calculated over all parses produced, be they

complete or partial – demonstrate the effects on parse accuracy, for each ranking strategy,

of increasing the size of the fragment base by including fragments of greater depth. Results

for the MPP ranking indicate that accuracy increases according to all metrics as fragment

depth increases from depth 1 to depth 2. However, only the exact match figure improves

as fragment depth is increased to 3; precision, recall and f-score all show reduced accuracy

as depth 3 fragments are included. Furthermore, all metrics show a deterioration in output

quality as depth 4 fragments are included. Thus, parse accuracy peaks at depth 2 in terms

of precision, recall and f-score and at depth 3 according to exact match when the MPP

ranking is used. Results for the output parses ranked according to the MPD show improved

72

ALL PARSES

Most Probable Parse (MPP)
precision recall f-score exact tags

1 91.89 90.48 91.18 68.89 97.01
2 94.75 93.65 94.20 78.89 98.34
3 94.64 93.46 94.05 80.00 98.01
4 92.70 91.63 92.17 68.89 97.68

Most Probable Derivation (MPD)
precision recall f-score exact tags

1 91.44 91.44 91.44 62.22 97.68
2 94.17 93.17 93.67 77.78 98.18
3 93.48 92.40 92.94 75.56 97.51
4 92.23 91.25 91.74 65.56 97.51

Shortest Derivation (SDer)
precision recall f-score exact tags

1 91.15 89.13 90.13 65.56 96.35
2 93.67 92.50 93.08 76.67 97.84
3 93.77 92.60 93.18 77.78 98.01
4 93.20 92.21 92.70 68.89 97.84

Table 3.1: ENGLISH. Results demonstrating the effects on parse accu-
racy, for each ranking strategy, of increasing the size of the
fragment base by including fragments of greater depth.

ALL PARSES

F-Score
MPP MPD SDer

1 91.18 91.44 90.13
2 94.20 93.67 93.08
3 94.05 92.94 93.18
4 92.17 91.74 92.70

Exact Match
MPP MPD SDer

1 68.89 62.22 65.56
2 78.89 77.78 76.67
3 80.00 75.56 77.78
4 68.89 65.56 68.89

Table 3.2: ENGLISH. Results showing the relative performance of rank-
ing strategies MPP, MPD and SDer as fragment depth in-
creases.

accuracy across all metrics as fragment depth increases from 1 to 2. However, enlarging

the fragment base to include fragments of depths 3, and then fragments of depth 4, results

in subsequent decreases in output quality. Thus, parse accuracy for MPD ranking peaks

at depth 2 according to all metrics. The quality of the output parses improves across all

metrics as the fragment base is enlarged to include fragments of depth 2 and then fragments

of depth 3 when the SDer ranking method is used. Accuracy decreases, however, when

fragments of depth 4 are included. Thus, we observe that parse accuracy peaks at depth

3 according to all metrics for the SDer ranking strategy.

The results given in Table 3.2 – which are, again, calculated over both partial and

complete parses – show the relative performance of the three ranking strategies as frag-

ment depth increases. At depth 1, the highest f-score is achieved when parses are ranked

73

according to the MPD whereas the highest percentage of exact matches are achieved using

the MPP rankings. At depths 2 and 3, both the highest f-score figures and the highest

exact match figures are achieved when parses are ranked according to the MPP. However,

at depth 4 the highest f-score figures shown correspond to the parses ranked using SDer,

and the SDer and MPP strategies both beat the MPD rankings on the exact match metric

where they achieve exactly the same score. Despite the fact that SDer outperforms the

MPP and MPD rankings at depth 4, overall best performance is achieved using MPP

rankings at depths 2 and 3: the overall best f-score is achieved using MPP ranking at

depth 2 and the best exact match score is achieved using MPP at depth 3.

The results presented thus far have been calculated over both partial and complete

parses. On average, 90.83% of sentences in each test set are assigned full parses according

to the training data and 9.17% receive only partial parses. In order to investigate whether

the trends observed over all parses are also in evidence when we distinguish between partial

and complete parses, we present separate evaluations of the quality of complete and partial

output in Tables 3.3 and 3.4; in each of these tables, the results in column (A) (on the

left) refer to evaluation over full parses only and the results in column (B) (to the right)

refer to evaluation over partial parses only.

We look first at the trends observed from the results presented in Table 3.1. These

show that parse accuracy peaks at depth 2 in terms of precision, recall and f-score and

at depth 3 according to exact match for MPP ranking, and that parse accuracy for MPD

ranking peaks at depth 2 according to all metrics and at depth 3 for SDer ranking for all

metrics. Column (A) of Table 3.3, which gives evaluations over full parses only, shows that

while the same trends are observed for MPD and SDer, MPP ranking now shows peak

performance at depth 3 for the precision, recall and f-score metrics as well as exact match.

Conversely, column (B) of Table 3.3, which gives evaluations over partial parses only, shows

peak f-scores for MPP ranking at depth 2 as before whereas peak MPD performance is

observed at depth 1 and peak SDer performance at depth 2. Note that exact match scores

for partial parses are always 0 as it is not possible for a partial parse to be identical to its

reference parse.

Secondly, we look at the trends observed from the results presented in Table 3.2 which

74

(A) FULL PARSES ONLY (90.83%) (B) PARTIAL PARSES ONLY (9.17%)

Most Probable Parse (MPP)
precision recall f-score exact tags

1 94.95 94.63 94.79 76.54 98.43
2 97.83 97.83 97.83 87.65 99.61
3 98.17 98.17 98.17 88.89 99.61
4 95.78 95.89 95.83 76.54 99.02

Most Probable Parse (MPP)
precision recall f-score exact tags

1 74.34 68.48 71.29 0 89.36
2 77.12 71.52 74.21 0 91.49
3 74.34 68.48 71.29 0 89.36
4 75.00 69.09 71.92 0 90.43

Most Probable Derivation (MPD)
precision recall f-score exact tags

1 94.14 95.43 94.78 69.14 99.02
2 97.38 97.71 97.55 86.42 99.80
3 96.80 96.91 96.86 83.95 99.02
4 95.32 95.54 95.43 72.84 99.02

Most Probable Derivation (MPD)
precision recall f-score exact tags

1 75.82 70.30 72.96 0 90.43
2 75.50 69.09 72.15 0 89.36
3 74.34 68.48 71.29 0 89.36
4 74.34 68.48 71.29 0 89.36

Shortest Derivation (SDer)
precision recall f-score exact tags

1 93.76 92.8 93.28 72.84 97.45
2 96.58 96.69 96.63 85.19 99.21
3 97.14 97.14 97.14 86.42 99.61
4 96.47 96.69 96.58 76.54 99.41

Shortest Derivation (SDer)
precision recall f-score exact tags

1 76.16 69.7 72.78 0 90.43
2 76.82 70.30 73.42 0 90.43
3 74.34 68.48 71.29 0 89.36
4 74.34 68.48 71.29 0 89.36

Table 3.3: ENGLISH. Results in column (A) show the effect on the parse
accuracy of sentences which received full parses, for each rank-
ing strategy, of increasing fragment depth. Results in column
(B) show the effect on the parse accuracy of sentences which
were not assigned full parses, for each ranking strategy, of in-
creasing fragment depth.

(A) FULL PARSES ONLY (90.83%) (B) PARTIAL PARSES ONLY (9.17%)

F-Score
MPP MPD SDer

1 94.79 94.78 93.28
2 97.83 97.55 96.63
3 98.17 96.86 97.14
4 95.83 95.43 96.58

F-Score
MPP MPD SDer

1 71.29 72.96 72.78
2 74.21 72.15 73.42
3 71.29 71.29 71.29
4 71.92 71.29 71.29

Exact Match
MPP MPD SDer

1 76.54 69.14 72.84
2 87.65 86.42 85.19
3 88.89 83.95 86.42
4 76.54 72.84 76.54

Exact Match
MPP MPD SDer

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

Table 3.4: ENGLISH. Results in column (A) show the relative perfor-
mance of ranking strategies MPP, MPD and SDer as fragment
depth increases on sentences which received full parses. Re-
sults in column (B) show the relative performance of ranking
strategies MPP, MPD and SDer as fragment depth increases
on sentences which were not assigned full parses.

75

ALL PARSES

Most Probable Parse (MPP)
precision recall f-score exact tags

1 89.74 90.22 89.98 52.22 97.68
2 92.93 93.55 93.24 64.44 98.72
3 93.92 94.54 94.23 72.22 98.84
4 93.53 94.21 93.87 70.00 98.95

Most Probable Derivation (MPD)
precision recall f-score exact tags

1 90.03 90.75 90.39 50.00 98.03
2 93.36 93.61 93.49 68.89 98.95
3 93.18 93.68 93.43 66.67 98.72
4 93.52 94.15 93.83 66.67 98.95

Shortest Derivation (SDer)
precision recall f-score exact tags

1 88.29 86.29 87.28 47.78 97.44
2 91.12 90.75 90.93 62.22 98.84
3 92.78 93.21 93.00 66.67 98.95
4 92.99 93.55 93.27 66.67 98.95

Table 3.5: FRENCH. Results demonstrating the effects on parse accu-
racy, for each ranking strategy, of increasing the size of the
fragment base by including fragments of greater depth.

show that the best f-scores were obtained using MPD at depth 1, MPP at depths 2 and

3 and SDer at depth 4 and that the best f-score overall is achieved using MPP ranking

at depth 2. The f-scores given in column (A) of Table 3.4 yield similar observations: the

best f-scores were obtained using MPP at depths 2 and 3 and SDer at depth 4. The best

f-score overall is achieved using MPP at depth 2 but the best f-score at depth 1 was this

time obtained using MPP. Conversely, the f-scores given in column (B) of Table 3.4 yield

more contradictory observations: the best f-scores were obtained using MPD at depth 1

and MPP at depth 2, as for all parses, but all three ranking strategies achieved the same

f-scores at depth 3 and MPP ranking outperformed SDer ranking at depth 4. Thus, the

results over full parses only show similar patterns to those seen over all parses whereas

the partial parse results are less predictable. This is clearly a desirable balance as full

parses are far more likely to be reliable than partial ones. Consequently, we observe that

evaluating complete and partial parses together does not unduly skew the results.

3.2.4 Results for French experiments

The results given in Table 3.5 – which are calculated over all parses produced, be they

complete or partial – demonstrate the effects on parse accuracy, for each ranking strategy,

of increasing the size of the fragment base by including fragments of greater depth. Results

76

ALL PARSES

F-Score
MPP MPD SDer

1 89.98 90.39 87.28
2 93.24 93.49 90.93
3 94.23 93.43 93.00
4 93.87 93.83 93.27

Exact Match
MPP MPD SDer

1 52.22 50.00 47.78
2 64.44 68.89 62.22
3 72.22 66.67 66.67
4 70.00 66.67 66.67

Table 3.6: FRENCH. Results showing the relative performance of ranking
strategies MPP, MPD and SDer as fragment depth increases.

for the MPP ranking indicate that accuracy increases according to all metrics as fragment

depth increases from depth 1 – 3. However, only the tagging accuracy figure improves as

fragment depth is increased to 4; precision, recall and f-score all show reduced accuracy

as depth 4 fragments are included. Thus, parse accuracy is highest at depth 3 in terms of

precision, recall, f-score and exact match when the MPP ranking is used. Results for the

output parses ranked according to the MPD show improved accuracy for the precision,

recall and f-score metrics at each increase in fragment depth from 1 to 4. However, exact

match accuracy is highest at depth 2; accuracy decreased by 2.22% as fragments of depth

3 were included and then remained the same when fragments of depth 4 were introduced.

Thus parse accuracy when calculating the MPD peaks at depth 4 for the precision, recall

and f-score metrics and at depth 2 for the exact match metric. No deterioration in the

quality of the output parses is seen for any metric as the fragment base is enlarged when

the SDer ranking method is used, although exact match and tagging accuracy do not

improve after depth 3. Thus, we observe that parse accuracy is highest at depth 3 for the

exact match metric and at depth 4 according to the precision, recall and f-score metrics

for the SDer ranking strategy.

The results given in Table 3.6 – again calculated over both partial and complete parses

– show the relative performance of the three ranking strategies as fragment depth increases.

At depths 1 and 2, the highest f-score is achieved when parses are ranked according to the

MPD whereas the highest percentage of exact matches is achieved using the MPP ranking

at depth 1 but the MPD ranking at depth 2. At depths 3 and 4, both the highest f-score

figures and the highest exact match figures are achieved when parses are ranked according

to the MPP. SDer ranking never outperforms MPD ranking in terms of f-score but matches

it in terms of exact match scores at depths 3 and 4. Overall, best performance is achieved

77

(A) FULL PARSES ONLY (92.36%) (B) PARTIAL PARSES ONLY (7.64%)

Most Probable Parse (MPP)
precision recall f-score exact tags

1 92.12 92.32 92.22 55.29 98.18
2 95.92 96.27 96.10 68.24 99.48
3 96.88 97.24 97.06 76.47 99.48
4 96.44 96.87 96.65 74.12 99.48

Most Probable Parse (MPP)
precision recall f-score exact tags

1 70.48 72.67 71.56 0 93.55
2 68.67 70.81 69.72 0 92.47
3 69.88 72.05 70.95 0 93.55
4 69.88 72.05 70.95 0 94.62

Most Probable Derivation (MPD)
precision recall f-score exact tags

1 92.44 92.92 92.68 52.94 98.57
2 96.13 96.13 96.13 72.94 99.48
3 95.99 96.20 96.09 70.59 99.22
4 96.44 96.80 96.62 70.59 99.48

Most Probable Derivation (MPD)
precision recall f-score exact tags

1 70.48 72.67 71.56 0 93.55
2 70.91 72.67 71.78 0 94.62
3 70.48 72.67 71.56 0 94.62
4 69.88 72.05 70.95 0 94.62

Shortest Derivation (SDer)
precision recall f-score exact tags

1 90.44 88.08 89.24 50.59 97.92
2 93.84 93.14 93.49 65.88 99.48
3 95.54 95.68 95.61 70.59 99.48
4 95.77 96.05 95.91 70.59 99.48

Shortest Derivation (SDer)
precision recall f-score exact tags

1 70.99 71.43 71.21 0 93.55
2 69.09 70.81 69.94 0 93.55
3 70.48 72.67 71.56 0 94.62
4 70.48 72.67 71.56 0 94.62

Table 3.7: FRENCH. Results in column (A) show the effect on the parse
accuracy of sentences which received full parses, for each rank-
ing strategy, of increasing fragment depth. Results in column
(B) show the effect on the parse accuracy of sentences which
were not assigned full parses, for each ranking strategy, of in-
creasing fragment depth.

– both in terms of the f-score and exact match metrics – using MPP ranking at depth 3.

As was the case for English, the results presented thus far have been calculated over

both partial and complete parses. On average, 92.36% of the sentences in each test set are

assigned full parses according to the training data and 7.64% receive only partial parses.

In order to investigate whether the trends observed over all parses also emerge when we

distinguish between partial and complete parses, we present separate evaluations of the

quality of complete and partial output in Tables 3.7 and 3.8; the results in column (A)

(on the left) refer to evaluation over full parses only and the results in column (B) (to the

right) refer to evaluation over partial parses only.

We look first at the trends observed from the results presented in Table 3.5; these

show that parse accuracy peaks at depth 3 in terms of precision, recall, f-score and exact

match for MPP ranking, that parse accuracy for MPD ranking peaks at depth 4 according

to precision, recall and f-score and that accuracy for SDer ranking is highest at depth 4

for precision, recall and f-score and depth 3 for exact match. Column (A) of Table 3.7

shows that exactly the same trends hold when evaluation takes place over full parses only.

Conversely, column (B) of Table 3.7, which gives evaluations over partial parses only, is

78

(A) FULL PARSES ONLY (92.36%) (B) PARTIAL PARSES ONLY (7.64%)

F-Score
MPP MPD SDer

1 92.22 92.68 89.24
2 96.10 96.13 93.49
3 97.06 96.09 95.61
4 96.65 96.62 95.91

F-Score
MPP MPD SDer

1 71.56 71.56 71.21
2 69.72 71.78 69.94
3 70.95 71.56 71.56
4 70.95 70.95 71.56

Exact Match
MPP MPD SDer

1 55.29 52.94 50.59
2 68.24 72.94 65.88
3 76.47 70.59 70.59
4 74.12 70.59 70.59

Exact Match
MPP MPD SDer

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

Table 3.8: FRENCH. Results in column (A) show the relative perfor-
mance of ranking strategies MPP, MPD and SDer as fragment
depth increases on sentences which received full parses. Re-
sults in column (B) show the relative performance of ranking
strategies MPP, MPD and SDer as fragment depth increases
on sentences which were not assigned full parses.

much less consistent: MPP f-scores peak at depth 1 rather than depth 3 while MPD f-

scores peak at depth 2 rather than depth 4 and SDer f-scores are equally high at depths 3

and 4. (Again, exact match scores for partial parses are always 0 as it is not possible for

a partial parse to be identical to its reference parse.)

Trends observed from the results presented in Table 3.6 show that the best f-scores

were obtained using MPD at depths 1 and 2 and the MPP at depths 3 and 4 and that the

best f-score overall is achieved using MPP ranking at depth 3; these trends are precisely

replicated when evaluation is over full parses only, as shown in column (A) of Table 3.8.

Conversely, no discernable trends are observed when partial parse f-scores are considered

in isolation in column (B) of Table 3.8: exactly the same f-score of 71.56% is achieved using

MPP and MPD at depth 1, MPD and SDer at depth 3 and SDer at depth 4 and the best

f-score, which is achieved using MPD at depth 2, only improves on this score by 0.22%.

Thus, the results over full parses only show similar patterns to those seen over all parses

whereas the partial parse results are less predictable. Again, this not an unreasonable

balance as full parses are far more likely to be reliable than partial ones.

79

3.2.5 Discussion and conclusions

In this section, we discuss the parsing results presented above. In particular, we look at

how DOP improves over basic PCFG parsing for the same data, we compare our results

to previous DOP experiments on the English HomeCentre corpus, we look at the trade-

off between accuracy and efficiency, we discuss the DOP Hypothesis and we consider

whether DOP is as successful at modeling French data as it is at modeling English. In

order to facilitate discussion of these issues, we present the CPU times taken to parse

and disambiguate each input sentence for each ranking strategy and fragment depth, the

number of samples taken when parsing using random sampling at each fragment depth,

the size of the fragment set extracted from each training set at each depth and the CPU

times taken to perform this extraction using the method outlined in section 3.1.2.

Does DOP improve over PCFG parsing on the HomeCentre?

Extracting a PCFG from each set of training data and using it to find the most probable

PCFG parse for each sentence in the test set corresponds exactly to extracting the set of

depth 1 DOP fragments from each set of training data and using the Viterbi algorithm

to compute the most probable derivation for each test set sentence. Our English parsing

results (given in Table 3.2) show that the best DOP f-score achieved (94.20% at depth 2

using MPP ranking) is 2.76% higher than the corresponding PCFG f-score (91.44%) and

the best DOP exact match figure achieved (80% at depth 3 using MPP ranking) is 17.78%

higher than the corresponding PCFG exact match score (62.22%). Further increases in

parse accuracy are shown for French parsing (given in Table 3.6): the best DOP f-score

achieved (94.23% at depth 3 using MPP ranking) is 3.84% higher than the corresponding

PCFG f-score (90.39%) and the best DOP exact match figure achieved (72.22% at depth

3 using MPP ranking) is 22.22% higher than the corresponding PCFG exact match score

(50%). Thus, we conclude that the DOP model performs better on the English and French

HomeCentre corpora than the basic PCFG model.

80

Do we improve on previous DOP HomeCentre results?

Results for previous DOP experiments on the English section of the HomeCentre cor-

pus were published by Bod and Kaplan (2003). (No parsing experiments on the French

section have been published to date.) These experiments were run in order to compare

Tree-DOP performance against LFG-DOP performance and, consequently, evaluation of

the Tree-DOP results was limited. The experiments carried out used all fragments up to

and including depth 4 and the MPP was selected by random sampling; no other rank-

ing strategies were used. The output parses were evaluated by averaging exact match,

precision and recall scores over 10 training/test splits; an f-score of 92.75% and an exact

match score of 49% were reported. Our f-score and exact match figures for the equivalent

experiment (i.e. depth ≤ 4, MPP ranking, 8 training/test splits) are 92.17% and 68.89%

respectively. Thus, our f-score is 0.58% lower than that of Bod and Kaplan (2003) but

our exact match score is 19.89% higher. Bod and Kaplan (2003) do not report whether

the scores at depth 4 were the best scores achieved or whether they achieved higher scores

at lower fragment depths; at depth 2 we outperform their f-score by 1.5% and at depth 3

we outperform their exact match score by 31%. Furthermore, their exact match score is

13.22% lower than the lowest exact match score we report (62.22% at depth 1 using MPD

ranking – in other words, the basic PCFG model).

There are a number of possible explanations for the differences in results achieved.

Firstly, as stated in section 3.2.1, we remove unary productions of the form X −→ Y

by simply replacing the production with the more specific category Y ; we do not know

if the experiments described in (Bod and Kaplan, 2003) did the same. Secondly, the

methods used to control the size of the sample set when approximating the search for the

most probable parse are not the same; Bod and Kaplan (2003) use re-scored sampling

probabilities and compute at intervals of 100 samples the probability of error such that

they are 95% certain that the most frequently sampled parse is the most probable. We,

on the other hand, use an exact sampling method which computes the probability of

error after each sample is taken until we are 99% certain that the most frequent parse in

the sample is the most probable. The differences between these methods are discussed

in detail in section 2.5.1. Finally, the experiments reported in (Bod and Kaplan, 2003)

81

use some simple online pruning (Bod, personal communication) whereby each fragment

at each chart position is assigned a score equal to the product of its prior and inside

probabilities (i.e. the fragment probability by the total probability mass available at each

of its substitution sites) and fragments with scores less than 10−5 times that of the best

fragment at that chart position are discarded (Bod, 2001). The experiments we report do

not employ this pruning technique.

Ranking algorithms: efficiency vs. accuracy

Calculating parse probabilities for trees generated by DOP grammars by summing over all

derivations which yield each parse is, in theory, an attractive proposition because it makes

use of all the probabilistic evidence present in the fragment base used for training: every

fragment which can be used in deriving a given parse contributes to the overall probability

of that parse. In practice, however, this proposition is generally considered to be rather

less attractive because (i) explicitly calculating the probability of every possible parse to

find out which one is the most probable is NP-complete (Sima’an, 1995b) and (ii) using

approximations such as Monte Carlo sampling is seen as being less efficient than simply

calculating, for example, the most probable derivation using the Viterbi algorithm. Thus,

there exists a trade-off between accuracy and efficiency: we expect greater accuracy if we

find the MPP but we expect to be able to find the MPD more quickly.

Our results – for both English and French – confirm that greater parse accuracy is

achieved by searching for the most probable parse rather than for the most probable

derivation but scores using MPD ranking are very close to those using MPP ranking.

We see in Table 3.2 that, for English, the highest f-score achieved by finding the MPD

(93.67% at depth 2) is only 0.53% lower than the highest f-score achieved by finding the

MPP (94.2% at depth 2) and the highest exact match score achieved using MPD (77.78%

at depth 2) is 2.22% lower than the highest exact match score achieved using MPP (80%

at depth 3). Similarly, we see in Table 3.6 that, for French, the highest f-score achieved by

finding the MPD (93.83% at depth 4) is only 0.4% lower than the highest f-score achieved

by finding the MPP (94.23% at depth 3) and the highest exact match score achieved using

MPD (68.89% at depth 2) is 3.33% lower than the highest exact match score achieved

82

ENGLISH FRENCH

CPU seconds/sentence
MPP MPD SDer

1 0.878 0.811 0.8111
2 1.811 1.756 1.70
3 4.556 4.633 4.40
4 17.32 17.44 17.33

CPU seconds/sentence
MPP MPD SDer

1 3.178 3.144 3.022
2 4.678 4.611 4.456
3 8.167 8.011 7.722
4 41.69 41.14 39.38

Table 3.9: Comparison of average sentence processing times (parsing and
disambiguation) for each ranking strategy at each depth.

using MPP (72.22% at depth 3).

On the other hand, our experiments do not confirm – either for English or for French –

that finding the most probable derivation can be accomplished more quickly than finding

the most probable parse. Table 3.9 shows that while calculating the MPP takes slightly

longer per sentence, the greatest difference in time taken at each depth is 0.55 seconds

for French at depth 4. This somewhat surprising outcome is due mainly to the sampling

algorithm implemented – which we have adopted directly from (Chappelier and Rajman,

2003) – whereby the number of samples taken is statistically controlled to within a 1%

error rate, i.e. sampling continues until we are 99% certain that the most probable parse

according to the DOP model has been found. The average numbers of samples taken per

sentence at each depth are given in Table 3.10; for English, average samples taken decrease

from just under 30 per sentence at depth 1 to 17.5 at depth 4 and, for French, average

samples taken decrease from just over 57 per sentence at depth 1 to 18.2 at depth 4. (This

decrease is as expected: the more probabilistic context given to the model, the easier it

becomes to discern which parse is most probable.) Clearly, far fewer samples have to be

taken than one might have expected – for example, Bod and Kaplan (2003) compute a

minimum of 100 samples for every sentence and check the probability of error at intervals

100 samples.

Thus, we conclude that greater accuracy can be achieved when parsing the English

and French HomeCentre corpora by ranking output parses according to parse probability

and that, furthermore, this can be done without sacrificing efficiency.

83

ENGLISH

depth 1 depth 2 depth 3 depth 4
MPP sample sizes: 29.65 18.86 18.91 17.53

FRENCH

depth 1 depth 2 depth 3 depth 4
MPP sample sizes: 57.23 29.87 22.38 18.23

Table 3.10: Comparison of the average number of samples taken at each
depth in order to be 99% sure that the most frequent parse
in the set of samples derivations was also the most probable
parse according to the DOP model.

What happened to the DOP Hypothesis?

The DOP Hypothesis states that as we increase the size of the set of fragments extracted

from the training data by including larger fragments, parse accuracy should also increase.

Thus, according to the DOP Hypothesis, as we parse our test sets using increasingly larger

fragment sets including fragments of depth 2 or less, 3 or less and 4 or less, we should see

corresponding increases in the scores obtained by the output parses. Our results, however,

do not confirm this hypothesis. Table 3.1 shows that, for English, all ranking methods

exhibit reduced accuracy as fragment depth increases from 3 to 4 and that performance

also deteriorates as depth increases from 2 to 3 for MPD ranking and also for MPP

ranking for the precision, recall and f-score measures. For French, Table 3.5 shows that

peak performance for MPD and SDer in terms of precision, recall and f-score is achieved

at depth 4 but for MPD the best exact match score is achieved at depth 3 and for SDer

depths 3 and 4 achieve equal exact match scores; MPP performs best at depth 3 for all

metrics – this is the best performance overall.

As discussed in section 2.6.1, the vast majority of published DOP experiments confirm

the DOP Hypothesis but either used only a subset of the available fragments at each

depth or used training sets extracted from smaller corpora which yield (relatively) small

increases in the size of the fragment base as fragment size increases. In our experiments,

we have only pruned the fragment set by limiting the depths of included fragments which

means that we have used the full set of available fragments at each depth. Furthermore,

while the HomeCentre corpora are not particularly large in terms of the number of trees

they contain, they are large in terms of the numbers of fragments they yield. This is

84

ENGLISH

depth 1 depth 2 depth 3 depth 4
Fragments per training set: 13,750 40,958 245,745 4,271,946
CPU seconds to compile fragment set:† 110.9 115.9 126.6 180.0

FRENCH

depth 1 depth 2 depth 3 depth 4
Fragments per training set: 15,066 42,147 182,832 2,747,277
CPU seconds to compile fragment set:† 112.5 116.6 122.2 170.5

†We have included the information on the time taken to compile each fragment set in
order to (i) illustrate the relatively low increase in time required to compile increasingly
larger fragment sets and (ii) be as comprehensive as possible in documenting our exper-
iments. However, the absolute values are not informative as this module has not been
optimised for speed.

Table 3.11: Comparison of training set details in terms of the number of
fragments at each depth and the time taken to compile each
fragment set at each depth.

ENGLISH FRENCH

%(d=1) %(d=2) %(d=3) %(d=4)
d ≤ 1 100 - - -
d ≤ 2 33.57 66.43 - -
d ≤ 3 5.60 11.07 83.33 -
d ≤ 4 0.32 0.64 4.79 94.25

%(d=1) %(d=2) %(d=3) %(d=4)
d ≤ 1 100 - - -
d ≤ 2 35.75 64.25 - -
d ≤ 3 8.24 14.81 76.95 -
d ≤ 4 0.55 0.99 5.12 93.34

Table 3.12: Comparison of the proportion of the fragment set occupied by
each fragment depth (d) as overall fragment depth increases.

illustrated in Table 3.11, where we see that the size of the DOP fragment sets increases

dramatically as fragment depth increases, from just 13,750 and 15,066 depth 1 fragments

for the English and French corpora respectively to approximately 4.25 million and 2.75

million fragments of depth 4 or less.

In order to better illustrate the impact on the distribution of fragments in the fragment

base of this explosion in the numbers of fragments, we provide in Table 3.12 a comparison

of the percentage of fragments (in the fragment base) which are of depth d as the overall

depth of the included fragments increases. For example, trivially, 100% of the fragments

in the fragment base are of depth 1 if depth is restricted to 1, but if the English fragment

base is enlarged to also include fragments of depth 2 then those depth 1 fragments account

for only 33.57% of the fragments and the other 66.43% of the fragments are of depth 2. As

the number of DOP fragments increases exponentially as depth increases, the fragments

of maximum depth occupy the largest proportion of the fragment space. Furthermore, as

overall maximum depth increases, the proportion of the fragment space occupied by the

85

fragments of maximum depth also increases and, correspondingly, the proportion occupied

by the smaller fragments decreases. This means, for example, that those depth 1 English

fragments which comprised 33.57% of the fragment set at d ≤ 2 occupy 5.60% of the

fragment set at d ≤ 3 and just 0.32% at d ≤ 4. Correspondingly, while depth 2 fragments

at d ≤ 2 comprise 66.43% of the fragment set, depth 3 fragments at d ≤ 3 comprise 83.33%

and depth 4 fragments at d ≤ 4 comprise 94.25%.

As discussed in section 2.6, this distribution of fragments in the fragment base impacts

on the probability model when the relative frequency estimator is used to estimate frag-

ment probabilities as it also determines the proportion of the probability mass given over

to the fragments of various depths. For example, for d ≤ 4 only 0.32% of the fragment

probability mass is allocated to fragments of depth 1, whereas 94.25% is allocated to frag-

ments of depth 4 and, consequently, a bias towards larger parses is introduced into the

probability model. As observed in our parsing experiments, the probability model which

results does not exhibit the desired behaviour: parse accuracy decreases for all ranking

strategies despite the increased contextual information available. Interestingly, we observe

from Table 3.10 that the number of samples needed to establish the most probable parse

decreases as the size of the fragments in the fragment base increases. In other words, the

presence of larger fragments in the fragment base makes it easier to determine which parse

is most probable according to the model; it is simply the case that the ranking imposed

by the model is increasingly inaccurate as fragment depth increases due to the skewed

fragment probability estimates.

Why do MPP and MPD not score the same at depth 1?

When fragments of depth 1 only are included in the fragment base, the set of fragments and

relative frequencies correspond exactly to the probabilistic context-free grammar which can

be extracted from the training trees. Thus, a depth 1 DOP grammar behaves exactly as

a PCFG, in that each unique derivation yields a unique parse tree. This means that the

probability of each parse tree is exactly the probability of the unique derivation which

yields that parse tree. Consequently, we would expect that, at depth 1, both the MPP

and MPD ranking algorithms would select the same best parse. Surprisingly, however, the

86

results given in Tables 3.2 and 3.6 indicate otherwise: at depth 1 for both English and

French, MPD ranking outperforms MPP ranking in terms of f-score whereas the opposite

holds, i.e. MPP outperforms MPD, in terms of exact match.

There are two possible explanations for this observation. Firstly, the difference in re-

sults may be due to the 1% chance that the most frequent parse in the random sample

does not correspond to the most probable parse according to the DOP model. However,

it is also possible that the difference in results is due to how the situation where two

sub-derivations are equally likely is handled when the Viterbi algorithm is used to deter-

mine the most probable derivation. For PCFG parsing, as there is no motivated way to

choose between equally likely sub-derivations, these sub-derivations are pruned at random

according to the order in which they are processed: a sub-derivation is only replaced if a

more likely sub-derivation with the same root node is found. We find that, for DOP, this

situation arises quite frequently and, consequently, an unquantified random element has

been introduced into the selection process for the MPD (and, therefore, the SDer).

Which is harder for DOP? Parsing English or parsing French?

As stated in section 3.2.1, the sentences in the English and French HomeCentre treebanks

are translations of each other. Furthermore, the styles in which the treebanks have been

annotated are very similar as they were both annotated at Xerox Parc. Accordingly, the

differences between the treebanks are language-specific rather than treebank-specific, i.e.

the differences are down to the dissimilarities between English and French syntax rather

than to differences in text type and/or treebank annotation styles. Having such parallel

treebanks for English and for French affords us the opportunity to look at how well DOP

models a language other than English in a manner which factors out treebank-specific

explanations for performance differences.

The results presented in Tables 3.2 and 3.6 show that the best f-score achieved for

English (94.20%) is very similar to the best f-score achieved for French (94.23%). However,

exact match scores indicate that the quality of the English parses produced is 7.78% higher

than the quality of those produced for French. This may be partially explained by looking

at the number of fragments extracted from the English and French treebanks at each depth:

87

Table 3.11 shows that the French treebank yields far fewer fragments (and, therefore, less

contextual information) at depths 3 and 4 than the English treebank. It is also the case,

however, that the English treebank sentences are, on average, 1.33 words shorter than the

French treebank sentences. This is reflected in the average parse times for each sentence

at each depth given in Table 3.9, which show that it generally takes longer to parse the

French sentence than the English sentences. Table 3.10 shows that at each fragment depth,

fewer samples need to be taken to disambiguate English sentences than French sentences;

this indicates that the French sentences are more ambiguous (relative to the training data)

than the English sentences. Thus, we conclude that – at least for this corpus type – the

DOP model copes better with English text than with French text.

3.3 Summary

In this chapter, we have presented the design of our Tree-DOP parser and documented

our motivations for selecting each of the algorithms used. The system we have built is

flexible enough to serve as the main technology behind data-oriented models which assume

augmented context-free phrase-structure tree representations. We have confirmed its ac-

curacy by ensuring that our English parse scores are comparable to those achieved by Bod

and Kaplan (2003) on the same data. We have also performed the first experiments which

apply the DOP model to parsing French text10 and shown that parse scores are similar to

those achieved for English, although parse times are generally longer for French than for

English. We note that, as the DOP model is language-independent, the same system was

used for both the English and French experiments. Furthermore, we observed that the

DOP Hypothesis does not hold for parsing experiments on the English and French Home-

Centre corpora and concluded that this was a manifestation of the bias in the parameter

estimation method employed. Finally, we investigated the trade-off between accuracy and

efficiency for DOP and concluded that, for the English and French HomeCentre corpora,

greatest accuracy is achieved by outputting the most probable parse and, furthermore,

this can be done without sacrificing efficiency.

10Although not presented here, we have also performed preliminary experiments on parsing Chinese text
with the DOP model; these experiments are documented in (Hearne and Way, 2004).

88

In the next three chapters, we study the data-oriented model of translation – which

was inspired by DOP – in theoretical, practical and performance terms. We discuss how

it relates to other approaches to machine translation, how the implementation described

here influences our translation system design, and how the translation model performs. In

chapter 7, however, we return to the topic of parsing. In this chapter, we study the DOP

model which assumes and generates LFG representations rather than context-free phrase-

structure trees. The issues raised and conclusions drawn in chapters 2 and 3 regarding the

Tree-DOP model will be referred to throughout the rest of this thesis.

89

Chapter 4

Data-Oriented Translation

In section 4.1 of this chapter, we describe the main machine translation (MT) paradigms

– rule-based MT and data-driven MT – in current use, and discuss methods of creating

hybrid models which combine elements from both. We then outline the general principles

which underlie the Data-Oriented Translation (DOT) model of MT and give a precise

description of a particular instantiation of this model, Tree-DOT, in section 4.2. Hav-

ing presented the Tree-DOT model in detail, we then discuss how it relates to both the

rule-based and data-driven MT paradigms, and pin down the similarities and differences

between DOT and other models.

4.1 Paradigmatic approaches to MT

There are two main paradigmatic approaches to MT. Broadly speaking, rule-based sys-

tems translate by following a set of instructions provided by linguistic experts whereas

data-driven systems learn from example sentences translated by professional translators.

In this section, we discuss the strengths and weaknesses of these paradigms and look at

hybrid approaches which seek to take the best from each.

4.1.1 Rule-based MT

Rule-Based MT (RBMT) is characterised by the use of rules, generally hand-written by

linguists, in order to translate between languages. Translations are produced by analysing

the input – levels of analysis vary from very shallow to deep – using rules to translate

90

INTERLINGUA

TRANSFER

ANALYSE GENERATE

DIRECT

source target

Figure 4.1: The Vauquois pyramid (Vauquois, 1968) summarises the rela-
tionships between the direct, transfer-based and interlingua-
based approaches to Rule-Based MT.

the analysis into a target-language analysis and then generating an output string. Within

the RBMT paradigm there exist three main translation strategies: direct MT, transfer-

based MT and interlingua-based MT. These methodologies differ quite significantly, both

in terms of the types of linguistic information they assume and in how they put this

information to use.

The direct approach calls for a bilingual dictionary and a small number of rules char-

acterising target-language word order. The source language words are replaced with the

translations found for them in the dictionary and then the string is rearranged so that

its word order is appropriate for the target language. The interlingua approach requires

a powerful analysis component which takes the string to be translated and assigns to it

an abstract linguistic representation which is independent of both the source and tar-

get languages. The generation component then produces the appropriate target-language

translation from this representation. The transfer approach calls for an analysis com-

ponent which assigns to the source-language input string an intermediate representation

which is reasonably abstract yet not language-independent. A transfer component com-

prising mapping rules then translates this source-language intermediate representation

into a target-language intermediate representation from which the output translation is

generated.

As illustrated in Figure 4.1 using the Vauquois pyramid (Vauquois, 1968), the main

difference between these strategies lies in the extent to which they abstract away from

the source-language input strings. The direct method takes the shortest possible route

91

from source to target strings; little or no source-language analysis is performed and, con-

sequently, target-language generation is trivial. In contrast, the interlingua method takes

the longest possible route from the source string to the target string, forming a com-

pletely abstract, language-independent representation of the meaning of the input sen-

tence from which a target string can be generated. The transfer method occupies the

middle ground between these two extremes; analysis of the source string is deeper than for

the direct method but, nevertheless, its representation remains language-dependent, while

translation between intermediate representations, which is unnecessary for the interlingua

method, requires more sophisticated transfer mappings than the reordering rules used in

direct translation.

In practice, the distinction between the various instantiations of these methods is far

less clear cut due to the fact that the type of intermediate representation used in a transfer

system determines how far it abstracts from the source string and, consequently, how much

work has to be done during the analysis, transfer and generation stages. For example, if a

reasonably shallow representation is produced, then less work is done during analysis but

transfer from source to target representation is likely to require more work. In contrast, a

very detailed source-language analysis is likely to make the task of transfer less onerous,

but highly abstract target-language representations can prove challenging for generation.

MT systems which use RBMT techniques are capable of producing translations of

reasonable quality due to the fine-grained and sophisticated nature of the linguistic rules

they employ. This quality, however, comes at a high price: RBMT systems are expensive

to build precisely because of the degree of linguistic sophistication they require. Each

component must be hand-coded by linguistic experts who have knowledge of either the

source language, the target language, or both. Furthermore, these components are often

useful only for the language pair, language direction and text type for which they were

initially developed; switching to other languages and genres can often mean starting from

scratch. Extending hand-coded components to widen coverage can also be problematic

as it is frequently not possible to predict how newly-added rules will interact with those

already in use. Widening coverage is, however, crucial to the success of RMBT systems

because they tend not to be robust: if the input is either ill-formed or simply beyond

92

the scope of the rules then the system will fail to generate a translation. This lack of

robustness is also an issue in the opposite situation where more than one translation can

be generated for the input string, as there is often no means of indicating which translation

is the ‘best’ translation.

4.1.2 Data-driven Machine Translation

Within the data-driven MT paradigm there exist two main translation strategies: sta-

tistical MT (SMT), and example-based MT (EBMT). These methodologies are grouped

together because, in contrast to the rule-based approaches, they generate translations for

input strings using evidence gathered from monolingual and bilingual collections of text.

Again, although similar in that they both acquire translation knowledge from previously-

occurring utterances and their translations, these methods differ significantly, both in the

type of information learned and how this information is used.

Statistical MT systems invoke models of both language and translation from large

quantities of (monolingual and bilingual parallel) data using highly-developed theories of

probability distribution and estimation. The translation model is used to establish the set

of target-language words which are likely to be useful in translating the input string and

the language model is used to select for output the string that is most likely to be generated

from this set of target-language words. Training the language model involves establishing

the frequency distributions of all n-grams (i.e. word sequences of length n) occurring in

the monolingual training data; bigram or trigram models are usually used. The translation

model, on the other hand, tends to be more sophisticated, taking into account features such

as source and target word co-occurrence frequencies, sentence lengths and the sentence

positions in which words occur. The translation model is usually trained on bilingual data

comprising raw (i.e. unannotated) strings aligned at sentence level.

Example-based MT systems also assume large quantities of bilingual data aligned at

sentence level – usually referred to as an example base – but translate by the principle of

analogy: translation is performed by adapting past translations of similar input. Trivially,

each input string is matched against the source side of the corpus and if the sentence

is found then its corresponding translation is output. However, things are not usually

93

this simple. If an exact match is not found then sentences which are similar to the

input string are identified, their translations retrieved and phrases or chunks from those

translations combined to form an output translation. When comparing the source string to

the source side of the example base, measures of similarity are usually based on such clues

as word co-occurrences, part-of-speech tags and correspondence to generalised example

templates. Recombining the example translations involves identifying those segments of

the example target string which correspond to the matched segments of the example source

strings, meaning that sub-sentential alignments are necessary. These can be identified

using heuristics and/or resources such as dictionaries and thesauri either off-line or during

translation. Furthermore, empirically-established weights can be assigned to translation

chunks and if there are multiple translations for an input string then these translations

can be ranked according to their weights.

Of course, SMT and EBMT techniques can be combined. For example, the EBMT

matching process – which generally requires less training data than the corresponding

SMT translation model – can be used to retrieve translations of sentences similar to the

input string, and then a statistical language model (trained on monolingual data) used

to generate the best possible output string. EBMT techniques have also had an impact

on SMT, resulting in translation models which work at the phrase level (corresponding to

EBMT chunks) rather than solely at word level.

As data-driven methods of translation are fundamentally string-based, they lack the

linguistic sophistication which allows RBMT systems to output high-quality translations.

As target-language strings are constructed either using word-lists coupled with statistical

information regarding the likelihood of their possible combinations and orderings (SMT) or

using words and phrases which follow the order of the source-language words and phrases

they are translations of (EBMT), the output translation may be ill-formed. Generally, the

further apart dependencies are in the output string, the less likely these methods are to

output well-formed translations. However, data-driven systems are easier and cheaper to

build than RBMT systems because, while good-quality bilingual data in sufficiently large

quantities to be useful for training models and/or as an example base is not easy to come

by, hand-coding RBMT system components is much more difficult. Furthermore, data-

94

driven systems can be extended by adding more data, or used for different language pairs

and text types by replacing the data with appropriate material and, in the case of SMT,

re-training the models. (In theory, no changes need be made to the translation algorithms

themselves.) Another important issue is that of robustness: unlike rule-based systems,

data-driven systems will generally produce the best translation possible no matter what

the input, giving confidence scores to alternative translations according to their weights

or probabilities.

4.1.3 Hybridity: the best of both worlds

The data-driven methods (i.e. SMT and EBMT) are robust: they will always produce some

translation no matter what the input string. This makes such systems very attractive; if

an RBMT system does not find a sequence of rules which can be applied successfully to the

input then no translation will be produced. Another attractive characteristic of the data-

driven methods is ease of knowledge acquisition. RBMT systems are time-consuming and

expensive to build and difficult to maintain and update, whereas it is much easier to acquire

raw data. However, statistical and example-based systems are not good at modeling

linguistic phenomena such as agreement, even at short distances. RBMT systems, in

contrast, can handle linguistic phenomena such as agreement, even at longer distances.

Thus, the merits of combining the positive elements of the rule-based and data-driven

approaches to MT are clear: a combined model has the potential to be highly accurate,

robust, cost-effective to build and adaptable. While the merits are clear, however, how

best to combine these techniques into a model which retains the positive characteristics

of each approach while inheriting as few of the disadvantages as possible remains an open

question.

The analysis, transfer and generation rules traditionally hand-crafted for RBMT can

be (semi-)automatically induced from corpora. For example, a set of hand-crafted transfer

mappings can be coupled with an analysis component comprising a probabilistic grammar

extracted from a treebank. Alternatively, the transfer mappings themselves can also be

extracted automatically, this time from bilingual aligned data. Clearly, while such tech-

niques use data to acquire knowledge, thereby speeding up development time and reducing

95

costs, the translation engines themselves are still rule-based.

There are many possibilities for integrating rule-based techniques into example-based

MT systems. For example, EBMT systems can be modified to incorporate target-language

grammars – built either automatically or by hand – into the recombination component

(e.g. (Bond and Shirai, 2003)). This improves the quality of the output strings by ensuring

that the output translation is not only the most likely but also grammatically correct.

Alternatively, linguistic information can be imported directly by using aligned annotated

text rather than simply aligned sentences. Such systems can, for example, store aligned

pairs of word-dependency structures (e.g. (Sato, 1995; Menezes and Richardson, 2003)).

In this situation, a parser is used to analyse the input string and the parser output matched

against the source representations in the example base. The retrieved target dependency

structures are then combined to produce the output translation. In fact, in their discussion

on the classification of EBMT systems, Turcato and Popowich (2003) point out that

the majority of EBMT systems make use of other resources besides an aligned example

base; such resources include bilingual lexica, thesauri, morphological analysers, taggers

and syntactic parsers. Accordingly, very few EBMT systems work solely on the level

of aligned sentence pairs. Although incorporating many resources which are also used

in RBMT, these models are still classed as example-based models because they also use

knowledge from the example base such that this knowledge cannot be determined before

the input string has been seen.

Statistical MT systems, on the other hand, have traditionally only made use of the

statistics gathered from the data and neither imported linguistic resources nor generated

further linguistic resources from the data. This situation has, however, changed slightly

in order to incorporate information about the structure of language into the models (e.g.

(Yamada and Knight, 2001; Charniak et al., 2003; Melamed, 2004)). The translation

model of Yamada and Knight (2001) assumes bilingual aligned sentence pairs where each

source sentence has been syntactically parsed. The model transforms a source-language

parse tree (i.e. an input string which has been parsed in a pre-processing step) into a

target language string and the best translation is determined by the language model. In

(Charniak et al., 2003), a syntax-driven language model which generates the best target

96

string is employed in conjunction with this syntax-driven translation model.

4.2 Data-Oriented Translation: relating linguistics, statis-

tics and examples

The Data-Oriented Translation (DOT) model (Poutsma, 1998, 2000, 2003), instantiated

as the Tree-DOT model in section 4.2.1, combines examples, linguistic information and

a statistical translation model and, thus, can be described as a hybrid model. The mo-

tivations for adopting this model are precisely as before: it combines the robustness of

data-driven methods, the experience-based philosophy of EBMT, the probabilistic models

of SMT and the linguistic information (to varying degrees) which lends RBMT systems

their accuracy. It does, however, differ from other approaches in that it is not allied to any

one of RBMT, EBMT and SMT over the others, but rather inextricably interweaves the

philosophies of all three in an integrated framework. In short, in the DOT model, none of

the three elements – linguistics, statistics and examples – plays a more or less important

role than the others.

4.2.1 The Tree-DOT model

In this section, we present the model of MT called Tree-DOT which is based on the

Tree-DOP model of parsing. This model was originally described in (Poutsma, 1998) and

further details and refinements were given in (Poutsma, 2000, 2003); the description given

here is based on (Poutsma, 2003).

As for DOP, providing a specification of the DOT model means we must specify four

elements: the type of representation we expect to find in the example base, how fragments

are to be extracted from those representations, how extracted fragments are to be recom-

bined when analysing and translating new input strings, and how the resulting translations

are to be ranked. In the following, we provide details of each of these elements for the

Tree-DOT model.

97

Representations

As for DOP, many different linguistic formalisms can be used to annotate the example

base which underpins any DOT system. Here, as before, we assume context-free phrase

structure tree representations. However, representations for the DOT model comprise

pairs of trees rather than the single trees used for DOP, i.e. we assume a bilingual aligned

treebank such that each tree pair represents an example translation pair. Where the

languages in our bilingual treebank are L1 and L2, all of the trees on the left of our tree

pairs represent L1 strings and all of the trees on the right represent L2 strings. Links

between nodes in L1 trees and L2 trees denote translational equivalences: node Ax in

an L1 tree and node By in the corresponding L2 tree are linked if the substrings they

dominate can be considered translations of each other. In other words, we assume that

the tree pairs are aligned not only at sentence level but also at sub-structural level. While

the links between tree pairs are non-directional – i.e. these linked tree pairs can be used

when translating either from L1 to L2 or from L2 to L1 – we generally refer to the L1

representations on the left of the bilingual treebank as source representations and to the

L2 representations on the right as target representations.

An example DOT representation comprising a pair of linked trees is given in Figure

4.2. Here, as the left tree represents an English string, we refer to English as the source

language and, correspondingly, French as the target language. As this example illustrates,

not every node is (nor should be) linked to a node in the corresponding tree. Frequently,

there is no node which dominates exactly the translational equivalent of a particular

substring. For example, the source substring press and release, dominated by the node

V, is translationally equivalent to the target substring exercez une pression brève sur

but there is no node in the French tree which exactly spans this substring. It is also

frequently the case that a particular substring simply does not have an overt realisation

in the corresponding sentence. For example, we see in Figure 4.2 that the substring de

dominated by node P in the target tree has no corresponding substring in the source tree.

Thus, although we stipulate that there must be links between the root nodes of each tree

pair, a minimally-linked tree pair will be linked only at sentence level. Note, also, that no

links connect terminal symbols directly; this means that words are never separated from

98

LISTITEM

S VPverb PERIOD

VPv PERIOD V NPdet PP .

V NP . exercez D NPap P NPdet

V CONJ V D NPadj une N A sur D NPpp

press and release the A N pression brève le N PP

left button bouton P N

de gauche

Figure 4.2: Each DOT representation comprises linked source- and
target-language phrase-structure trees where the links be-
tween source and target nodes indicate that the substrings
dominated by these nodes are translationally equivalent.

their part-of-speech tags. The importance of these features of the linking between trees

will become clearer as we show how fragments are extracted and combined.

Fragmentation

The fragmentation process involves extracting pairs of linked generalised subtrees from

the linked tree pairs contained in the example base. A fragment <ts,tt> extracted from

tree pair <Ts,Tt> is valid only if it meets the following criteria:

1. each node in ts is a node in Ts and each node in tt is a node in Tt,

2. each linked node in ts either has no children or has exactly the same number of

children as the corresponding node in Ts and each linked node in tt either has no

children or has exactly the same number of children as the corresponding node in

Tt,

3. each unlinked node in ts has exactly the same number of children as the corre-

sponding node in Ts and each unlinked node in tt has exactly the same number of

children as the corresponding node in Tt, and

4. both ts and tt have more than one node.

The difference between criteria 2 and 3 is crucial: linked nodes are not required to have

children whereas unlinked nodes must always have exactly the same set of children as in

99

the original treebank representation. Clearly, then, we must differentiate between linked

nodes and unlinked nodes when extracting fragments. The root and frontier operations

defined for Tree-DOP have to be adapted to reflect this difference because, for Tree-DOP,

all nodes are treated equally. These modified operations are defined as follows:

• given a copy of tree pair <S,T> called <Scopy,Tcopy>, select a linked node pair

<SN ,TN> in <Scopy,Tcopy> to be root nodes and delete all except these nodes, the

subtrees they dominate and the links between them, and

• select a set of linked node pairs in Scopy to be frontier nodes and delete the subtrees

they dominate.

As these operations can be applied to linked node pairs only, well-formedness criterion 3

is never violated because the only way the children of an unlinked node could be deleted

is if that node was selected to be a frontier node. Consequently, every fragment <fs,ft>

extracted comprises two subtrees that are exactly translationally equivalent, i.e. the root

nodes of fs and ft are linked, every non-terminal frontier node in fs is linked to exactly

one non-terminal frontier node in ft and every non-terminal frontier node in ft is linked

to exactly one non-terminal frontier node in fs. This effectively means that subtrees from

the representation in Figure 4.2 such as those given in (4.1) – which are valid monolingual

fragments according to the DOP model – do not exist in the DOT fragment base because

they do not have corresponding subtrees to which they are translationally equivalent. (This

reflects the fact that, for DOT, we are interested in expressing translational dependencies

rather than monolingual dependencies.)

CONJ

and

V

V CONJ V

press and release

P

sur

NPdet

D NPap

une N A

pression brève

(4.1)

Any lexical item can only be translated in contexts which have been seen before. For

example, if the word release only appears once in our bilingual treebank, in the repre-

sentation in Figure 4.2, then the least specific context in which this word appears is the

fragment given in example (4.2) below. If this is the case then we can only translate the

100

word release when it appears in the context of the conjoined phrase press and release and

is followed by a noun phrase.

LISTITEM

S VPverb PERIOD

VPv PERIOD V NPdet PP

V NP exercez D NPap P NPdet

V CONJ V une N A sur

press and release pression brève

(4.2)

As source and target terminal symbols are not directly linked in DOT fragments, the

minimum context specified about any source-target word pair is their part-of-speech tags.

For example, the fragment in (4.3) – also extracted from the representation in Figure 4.2 –

gives a direct word-for-word translation pair representing the English word button and the

French word bouton. However, this fragment can only be used where the (English) source

word button is a noun; if the context in which this word appears signals that it is a verb

(as in, I just need to button my coat) then this fragment cannot be used when building a

translation.
N N

button bouton

(4.3)

An example of a bilingual aligned treebank is given in Figure 4.3(A) and the full set of

DOT fragments which can be extracted from it is given in Figure 4.3(B).

Composition

Following the above description of how DOT fragments are extracted, each unlinked frag-

ment frontier node must be a terminal symbol and each linked fragment frontier node must

be a syntactic category. In composition terms, each pair of linked frontier nodes consti-

tutes an open substitution site; fragments whose linked source and target root nodes are

of the same syntactic category as the linked source and target substitution site categories

can be substituted at these frontiers. For example, fragment f8 in Figure 4.3(B) has one

open substitution site at the linked frontier node pair of category <N ,N>; any fragment

101

(A) A sample bilingual aligned treebank :

VPv

V N

scanning documents

NPpp (P1)

N PP

numérisation P N

de documents

VPv

V N

printing documents

NPpp (P2)

N PP

impression P N

de documents

NPadj

A N

scanning software

NPpp (P3)

N PP

logiciel P N

de numérisation

NPadj

A N

scanning problems

NPpp (P4)

N PP

problèmes P N

de numérisation

N

images

(P5)

N

images

(B) The corresponding bilingual fragment base :

VPv

V N

scanning documents

NPpp (f1:1)

N PP

numérisation P N

de documents

VPv

V N

printing documents

NPpp (f2:1)

N PP

impression P N

de documents

VPv

V N

scanning

NPpp (f3:1)

N PP

numérisation P N

de

VPv

V N

printing

NPpp (f4:1)

N PP

impression P N

de

N

documents

(f5:2)

N

documents

NPadj

A N

scanning software

NPpp (f6:1)

N PP

logiciel P N

de numérisation

NPadj

A N

scanning problems

NPpp (f7:1)

N PP

problèmes P N

de numérisation

NPadj

A N

scanning

NPpp (f8:2)

N PP

P N

de numérisation

N

software

(f9:1)

N

logiciel

N

problems

(f10:1)

N

problèmes

N

images

(f11:1)

N

images

(C) All derivations for the input string scanning images according to fragment base (B) :

D1 :

VPv

V N

scanning

NPpp (f3)

N PP

numérisation P N

de

◦
N

images

(f11)

N

images

=

VPv

V N

scanning images

NPpp

N PP

numérisation P N

de images

D2 :

NPadj

A N

scanning

NPpp (f8)

N PP

P N

de numérisation

◦
N

images

(f11)

N

images

=

NPadj

A N

scanning images

NPpp

N PP

images P N

de numérisation

(D) Calculation of probabilities corresponding to the derivations in (C) for scanning images :

P (D1) = P (f3) ∗ P (f11) = 1
4

∗ 1
5

= 1
20

P (D2) = P (f8) ∗ P(f11) = 1
2

∗ 1
5

= 1
10

Figure 4.3: Illustration of the process of representation, fragmentation,

composition and ranking for Tree-DOT.

102

in the fragment base whose source and target root nodes are both N can be substituted

at this site simply by replacing the source N with the source fragment and the target N

with the target fragment.

The Tree-DOP composition operation (◦) is similar to the one defined for Tree-DOP

but, again, is adapted to handle linked tree pairs. It is a leftmost substitution operation

in that where a fragment has more than one open substitution site, composition must

take place at the leftmost site on the source subtree of the fragment. Furthermore, the

synchronous target substitution must take place at the site linked to the leftmost open

source substitution site. This ensures both that each derivation is unique and that each

translation built adheres to the translational equivalences encoded in the example base.

For example, if the composition operation did not specify order then the composition

sequence given in example (4.4)1 would have two realisations, one where Cleopatra is in

subject position and the other where Cleopatra is in object position (Way, 1999).

S

NP VP

V NP

likes

S

NP VP

V PP

plâıt P NP

à

◦ NP

Cleopatra

NP

Cléopâtre
◦ NP

Anthony

NP

Antoine

(4.4)

Furthermore, this example clearly illustrates the importance of performing target side

substitution at the target node which links to the leftmost source substitution site rather

than at the leftmost target substitution site. In this example, we see that the subject in the

source tree Cleopatra translates as the prepositional object Cléopâtre in the target tree and

the source object as the target subject. If we were to also perform target substitution at

the leftmost target site then an incorrect translation would result, with subject translated

as subject and object as an oblique object.

Tree-DOT derivations are built by simultaneously building source and target represen-

tations using the composition operation. Once an initial fragment is chosen to start the

derivation, further fragments are successively substituted at the leftmost source open sub-

stitution site and its linked target counterpart until no open substitution sites remain. The

1Thanks to Harry Somers for his ‘Antony and Cleopatra’ example!

103

output translation associated with each derivation is extracted by simply concatenating

the frontier nodes of the target tree. Example derivations are given in Figure 4.3(C).

The probability model

Frequently, multiple representations (i.e. parses and translations) are assigned to an input

string. For example, in Figure 4.3(C) we see that two distinct representations are generated

for the string scanning images as the phrase can be analysed both as a noun phrase and

as a verb phrase and the translations differ for each analysis. The probabilities associated

with each representation are calculated and used to rank the set of translations and discern

which is the most likely translation of the input string.

Firstly, the probability of a fragment is its relative frequency in the set of fragments

as given in equation (4.5).2

P (< sx, tx >) =
| < sx, tx > |

∑

root(s)=root(sx)∧root(t)=root(tx) | < s, t > | (4.5)

The probability of each derivation is then defined as the product of the probabilities of

the fragments used to build that derivation as given in equation (4.6).

P (Dx) =
∏

<sx,tx> ∈ Dx

P (< sx, tx >) (4.6)

The probability of a representation (i.e. a pair of source and target trees) is the sum of

the probabilities of the derivations which yield that representation as given in equation

(4.7).

P (< Sx, Tx >) =
∑

Dx yields <Sx,Tx>

P (Dx) (4.7)

Finally, the probability that source string s translates as target string t is the sum of the

probabilities of the representations which yield both s and t, as given in equation (4.8).

P (s, t) =
∑

<Sx,Tx> yields s,t

P (< Sx, Tx >) (4.8)

2As discussed for Tree-DOP in chapters 2 and 3, estimating fragment probabilities according to their
relative frequencies in the fragment base is not desirable. In chapter 6, we discuss the ramifications of this
estimation method for Tree-DOT.

104

P (s, t) =
∑ ∑ ∏ |<sx,tx>|

∑

root(s)=root(sx)∧root(t)=root(tx) |<s,t>|

<Sx,Tx> yields s,t Dx yields <Sx,Tx> <sx,tx> ∈ Dx

fragment probability

derivation probability

parse probability

translation probability

Figure 4.4: The Tree-DOT probability model.

The Tree-DOT probability model is summarised in Figure 4.4.

The calculation of derivation probabilities is illustrated in Figure 4.3(D). Note that in

this example each representation and translation has only one derivation, meaning that

in this case, derivation probability, parse probability and translation probability are all

equal. The second analysis and translation, where the input string is interpreted as a noun

phrase, is twice as likely as the first, where the input string is interpreted as a verb phrase.

These differing analyses yield translations which have completely different meanings, the

second of which is also twice as likely as the first.

4.2.2 DOT: a holistic approach to hybrid MT

At the start of section 4.2, we introduced DOT as a hybrid model of translation which

combines elements of RBMT, EBMT and SMT into an integrated framework. Having

presented an instantiation of the DOT model, we now discuss in turn how DOT relates to

each of these approaches, and highlight how the model is driven by all three equally.

DOT as a transfer-based model of translation

Tree-DOT fragments, which provide snapshots of the translation relationships present in

a bilingual aligned treebank, correspond to structural transfer rules. Some of these snap-

shots, particularly many of those which are not lexicalised, capture very general translation

dependencies whereas others – such as the fragment in example (4.2) – are highly spe-

cific. In fact, as for DOT, the ‘transfer rules’ of a Synchronous Lexicalised Tree-Adjoining

Grammar (Abeillé et al., 1990) comprise linked syntactic subtrees reflecting syntactic and

105

functional dependencies not easily captured using localised rewrite rules. However, unlike

hand-coded transfer components, DOT shares the DOP philosophy of taking all transla-

tional dependencies to be found in the training data into account, rather than just those

translational dependencies of perceived importance.

Furthermore, DOT fragments encapsulate differences in word order between the source

and target languages, some of which are due to syntactic differences between the languages

and some to stylistic differences across text types. While transfer-based systems usually

reflect syntactic differences with a good degree of success, stylistic differences are a dif-

ferent matter. It is generally the case that such systems adhere quite closely to the basic

structures of the source language when formulating a target language translation (Hutchins

and Somers, 1992). DOT, on the other hand, formulates translations on the basis of the

evidence in the fragment base, meaning that it will model stylistic as well as syntactic

differences according to the evidence presented.

The transfer module in a rule-based system is generally invoked only after the input

string has been parsed; the transfer rules are then used to convert from the source parse

to a target parse. If we wish to consider DOT fragments as complex transfer rules then,

effectively, we form our source-language analysis using exactly the same grammar as we

use to translate it. Thus, the analysis and transfer processes are collapsed into one. This

means that we never assign to the input string an analysis which cannot be translated to

a target language analysis during transfer. This would appear to be more efficient than

analysing and transferring separately, as only one grammar is invoked and failing analyses

are never generated. Furthermore, as the target subtrees effectively impose constraints on

how the source subtrees are combined, these target subtrees actively help in disambiguating

the source string.

With regard to the handling of input that is not recognised by the model, we note

that the DOT model has, in common with rule-based approaches in general, the capacity

to signal that the input string is ill-formed. (This is discussed further in section 6.1.)

However, the DOT model can also be adapted in order to generate the best translation

possible for input which is ungrammatical according to the data.

Finally, it is rarely the case that transfer-based MT systems work solely on the level

106

of syntactic structure. While the instantiation of the DOT model presented here does

exactly that, DOT models can also be defined for representations corresponding to more

sophisticated linguistic formalisms – we discuss one such model, which assumes the repre-

sentations of Lexical-Functional Grammar, in chapter 8. Thus, while the Tree-DOT model

is limited in terms of linguistic description to context-free phrase-structure trees, we note

that the data-oriented approach to translation in general is bound by no such limitations.

DOT as an example-based model of translation

The aligned bilingual data assumed by the Tree-DOT model also corresponds to the

sentence-aligned example base assumed by EBMT models of translation, although EBMT

models do not necessarily assume parsed examples. Furthermore, there is a great deal of

similarity between the generalisations derived from the data by each method. For exam-

ple, fragments which also occur as treebank tree pairs correspond to EBMT sententially-

aligned examples, fragments which contain no open substitution sites (i.e. all frontiers are

terminals) but do not span full sentences correspond to EBMT phrasal alignments and

fragments containing open substitution sites correspond to EBMT generalised templates.3

We illustrate in example (4.9) how a DOT fragment can be seen to correspond to a gener-

alised template (e.g. (Brown, 2003; Way and Gough, 2003)): the (linked) frontiers of the

DOT fragment on the left – extracted from the representation in Figure 4.2 – match the

template on the right.

NPadj NPpp

A N N PP

left P N

de gauche

left N ↔ N de gauche (4.9)

There are two main stages in the EBMT translation process. The first – matching –

retrieves those examples in the example base which are similar to the input string and the

second – recombination – combines the translations of those similar examples into a target-

3One of the most significant differences between the DOP model and other experience-based parsing
models is that DOP fragments capture dependencies between arbitrary numbers of words. We note that,
while DOT fragments also capture dependencies between arbitrary numbers of (source and target) words,
this is not novel for MT as EBMT systems do likewise.

107

language translation. These stages roughly correspond to the DOT tasks of establishing

which fragments can participate in deriving (bilingual) representations of the input string

and then selecting the best target-language string to output. However, the EMBT and

DOT models tackle these tasks in significantly different ways.

The EBMT matching process is generally accomplished using similarity measures based

on such clues as word co-occurrences, part-of-speech tags and correspondence to gener-

alised examples. Even when an EBMT model assumes parsed examples, the input string

is parsed in a pre-processing step and then the resulting analysis matched against the

example base. In contrast, and as previously stated, the DOT model uses the fragments

in the fragment base to parse the input string directly. Furthermore, there is no DOT task

corresponding to the EBMT task of establishing the required translation segments of each

partially-matched example as DOT fragments comprise both source and target subtrees.

The recombination process in the EBMT model and the corresponding composition and

disambiguation processes in the DOT model are also driven by quite different strategies.

As discussed above, both methods derive units of translation information which vary with

regard to size and degree of specificity from the bilingual data they assume. However,

they do not prioritise the use of this information in the same way. Generally, EBMT

models prefer to recombine as few examples as possible when forming a translation, i.e.

those retrieved examples which match the longest word sequences in the input string are

chosen for use in recombination. Furthermore, once the smallest set of examples spanning

the input string has been found, no more examples are retrieved. Thus, trivially, if the

input string occurs exactly in the example base then its translation is retrieved and output

without doing any further work. Example weights generally only play a part in selecting

the output translation if two or more sets of examples of the same size span the input

string. In contrast, the DOT model searches for the most probable translation by summing

over the probabilities of all possible translation derivations, irrespective of the number of

fragments required to build each derivation. Thus, the DOT model works as hard to

translate a sentence spanned by exactly one fragment as it does to translate sentences

where long derivations are required.

108

DOT as a statistical model of translation

The SMT translation model, trained on bilingual sententially-aligned data, is used to

establish target-language correspondences for each word in the input string. The SMT

language model is then used to select the most likely string from this set of target-language

words. The DOT model, on the other hand, makes no probabilistic distinction between

translation and generation as each composition sequence explicitly orders the words in

the output translation. However, DOT and SMT are similar in that, unlike many EBMT

systems, they both comprise full probability models. In addition, they both search for the

most probable translation (DOT in one step and SMT in two steps) and, thus, both work

hard to translate sentences occurring exactly in the training data.

More recent SMT models which incorporate information about the structure of lan-

guage into the language and/or translation models are even more similar to the DOT

model. Yamada and Knight (2001) use structural information about the source language

only (transforming the parsed input into a target string in the translation model), whereas

Charniak et al. (2003) also assume structural information in the language model. How-

ever, these syntactic models of SMT are similar to EBMT models which assume parsed

example bases, in that the input string is parsed as a pre-processing step rather than as

an integral part of the translation process. Furthermore, source structural knowledge is

applied independently of target structural knowledge; this contrasts with the integrated

manner in which the DOT model applies this information.4

4.3 Summary

As discussed, the DOT model has much in common with the transfer-based, example-based

and statistical approaches to MT. However, DOT also differs significantly from each of

these models. Uniquely, the DOT model constitutes a holistic methodology for hybrid

MT, in that it depends equally on linguistic information, examples of previously-seen

translations and a statistical model of translation. Consequently, this model shares some

4The DOT model also bears similarities towards the bilingual stochastic inversion transduction gram-
mars of Wu (1997). However, Wu (op. cit) places these in the context of parsing parallel corpora and
states that they remain inadequate as fully-fledged translation models.

109

Rule-based MT Data-driven MT

linguistic DOT robustness
sophistication adaptability

resource
acquisition

Figure 4.5: DOT as a hybrid model of MT.

of the characteristics of rule-based MT and some of the characteristics of data-driven MT.

As summarised in Figure 4.5, the DOT model has the capacity to combine the linguistic

sophistication of rule-based models of translation with the robustness and adaptability of

data-driven methods. In particular, DOT is a language-independent model, meaning that

no adaptation is required when changing to a different language pair, language direction

or text type.5 Furthermore, as for SMT, the model assumes no resources beyond what

can be learned from the data provided. DOT does, however, require annotated examples,

meaning that resource acquisition is more onerous than for SMT and some models of

EBMT. While linguistically-annotated bitexts are not currently freely available, we believe

that automatic knowledge acquisition for DOT is viable, and we address this issue further

in section 6.6.

In chapter 5, we discuss previous evaluation of the DOT model, assess the reasons

behind its disappointing performance and describe an implementation of this model which

allows for a more intensive evaluation. In chapter 6, we present experiments comprising a

greater degree of translational complexity than heretofore and discuss in detail the results

achieved.

5In fact, the DOT model has been used to generate paraphrases for English strings by using English as
both the source and target languages (Finch et al., 2003).

110

Chapter 5

Tree-DOT in practice

The issues which arise when implementing a Tree-DOP system – efficiently extracting frag-

ments from a treebank, computing the DOP parse-space for an input string and selecting

the best parse for the input according to the DOP model, as discussed in chapters 2 and

3 – also arise when implementing the Tree-DOT model. In section 5.1 of this chapter,

we outline the system developed by Poutsma (2000, 2003) in terms of how he attempted

to resolve each of these issues. Evaluation of the experiments carried out by Poutsma

using this system (op cit.) indicate that, disappointingly, the Tree-DOT model performs

poorly. The conclusions he draws suggest that larger-scale experiments on better quality

data should yield a more accurate picture of the behaviour of the model. However, we

find that his solutions to the main Tree-DOT implementation issues are not appropriate

to these more demanding experiments. Thus, in the remainder of this chapter we focus

on alternative solutions to these challenges so that a more detailed empirical evaluation

of the Tree-DOT model can proceed.

5.1 Promising ideas, poor performance

The only implementation of a Tree-DOT system documented to date is that of Poutsma

(2000, 2003). Here we provide details of his implementation and experiments and sum-

marise his findings.

111

2

VPv

V N[1][1]

scanning

NPpp

N PP

numérisation P N[1][1]

de

NPadj

A N[1][1]

scanning

NPpp

N[1][1] PP

P N

de numérisation

1
N

images

N

images

0 1

scanning images

Figure 5.1: The Tree-DOT translation space for the input string scan-
ning images given the Tree-DOT grammar in Figure 4.3(B).

5.1.1 Poutsma’s Implementation

Computing the translation space The DOT translation space for any input string

comprises all possible representations which can be assigned to that string according to

the grammar. This space is very similar to the DOP parse space; the main difference is

that each fragment comprises a pair of linked subtrees rather than a single subtree. Thus,

as for DOP, we use a chart to store all fragments relevant to the input string, along with

pointers to those fragments with which they can compose to form valid representations

and, therefore, translations. An example DOT translation space is given in Figure 5.1.

This translation space again comprises a two-dimensional chart of size N2 where N is the

length of the input string. Each token in the input string is assigned a number i such that

0 ≤ i < N . These numbers appear along the horizontal axis; the numbers which appear on

the vertical axis (generally represented by j) indicate the number of input tokens spanned.

Each open substitution site pair in every fragment present on the chart explicitly points

to a chart position; any fragment composed at a substitution site must be selected from

this position.

Poutsma adapts Bod (1998)’s approach to implementing Tree-DOP, described in sec-

tion 2.4.1, in order to construct the DOT translation space for each input string. During

112

the analysis phase, each fragment is viewed as a rewrite rule where the left-hand side of

each rule corresponds to the root node pair of a fragment and the right-hand side to the

source and target frontiers of that fragment; this generic rule is shown in (5.1):

< root(ts), root(tt) > −→ < (frontier(ts1 ...tsn)), (frontier(tt1 ...ttn)) > (5.1)

Each rewrite rule also has a pointer to the fragment which it represents, meaning that two

identical rewrite rules which point to fragments with different internal structures remain

distinct. Where frontiers are open substitution sites, the links between source and target

sites are maintained. Thus, the topmost fragment in position [0][2] of the translation space

in Figure 5.1 corresponds to the rewrite rule given in (5.2):

< V Pv, NPpp > −→ < (scanning,N), (numérisation,de,N) > (5.2)

This rewrite rule can be combined with rules that have the label <N, N> on the left-hand

side.

When fragments are viewed as rewrite rules in this manner, existing algorithms for

context-free grammars can be applied to construct the derivation forest for a given input

string. Poutsma (2000, 2003), however, gives no information as to which algorithm is used

in his system, or whether or not it required adaptation to handle linked, bilingual rewrite

rules.

The translation space contains all fragments which can be used to form a representation

for the current input. Since every fragment in the derivation space comprises both a source

and a target tree, each derivation read from this space automatically comprises both a

source-language parse tree and a target-language parse tree. Consequently, generating a

translation simply involves extracting the ordered frontiers from the target-language parse

tree.

Selecting the best translation DOP parse probabilities are established by summing

over the probabilities of the derivations yielding each parse. Similarly, DOT translation

probabilities are established by summing over the probabilities of the derivations yielding

113

each source and target string. Thus, the problem of finding the most probable translation

(MPT) for DOT is computationally analogous to the problem of finding the MPP for

DOP and, again, exhaustive search of the translation space is not possible. Poutsma

adopts the top-down breadth-first Monte Carlo sampling algorithm described by Hoogweg

(2000). As the model requires maximisation of translation probability rather than parse

probability, the frequencies of the translations in the sampled set should correspond to

their DOT probabilities. However, while the analysis space built comprises paired source

and target fragments, Poutsma (2003):347 states that “a random selection method to

generate derivations from the target derivation forest” is used. As the DOT probability

of sampling any fragment depends on both the source and target subtree root nodes of

that fragment, sampling over target subtrees only means that the distribution of sampled

translations is unlikely to correspond to their DOT distribution. Furthermore, Poutsma

(op cit.) also states that “the random choices of derivations are based on the probabilities

of the underlying subderivations” but does not discuss how these sampling probabilities are

computed in his system. As discussed in section 2.5.1, there are several ways to compute

sampling probabilities, each with different implications. Finally, Poutsma does not allow

variation in the number of samples taken to reflect the level of translational ambiguity

present in the input string: in every case, 1500 derivations are sampled and the most

frequently-occurring translation in this set is returned.1

Pruning the fragment set Poutsma (2000, 2003) prunes the set of DOT fragments

by varying maximum depth. As we will discuss in detail in section 5.2.1, however, it is

not necessarily the case that the source and target subtrees in each fragment are of the

same depth. As Poutsma does not address this issue, it is not clear whether he calculates

fragment depth over the source subtree, the target subtree or by some other method.

1If each target linked node was transformed into a double category label comprising both the source
and target node labels and sampling probabilities were calculated correctly, then correct trees and strings
could be generated with the correct probabilities. However, from the description presented in (Poutsma,
2000, 2003), we cannot know exactly the properties of the sample set computed for each input string.

114

5.1.2 Experiments with the Verbmobil corpus

Poutsma carried out Tree-DOT experiments on a small section of the Verbmobil corpus

consisting of 266 German-English sentence pairs. The dataset contained transliterated

spoken appointment dialogues in German which were translated into English by native

speakers of German. Each sentence was annotated with a context-free phrase structure

tree and the tree pairs were aligned at both sentential and sub-sentential levels.2 Poutsma

(2000):55 states that the sentence alignments were not entirely correct as, sometimes, “two

sentences in the German corpus corresponded to one sentence in English, or vice-versa.”

However, we do not agree that alignments should be considered erroneous simply because

the correspondences between source and target sentences are not always 1-to-1. (Our

approach to these alignments is given in section 6.1.) Furthermore, he says that he edited

these incorrectly aligned tree pairs, but does not say how these pairs were edited. Finally,

as the model cannot cope with unknown words, it was necessary to ensure that all test

sentences could be analysed. Poutsma extended the training set by adding the smallest

possible valid tree pairs into the training set; again, no information is given as to how

many such fragments were inserted, nor as to how these fragments affected the frequency

distributions. This dataset was split into three different training/test splits where each

training set contained 226 tree pairs and each test set 40 sentences.

Translation experiments were then carried out using each of the three splits (and the

results averaged) and translating both from German to English and English to German.

These experiments were carried out using varying fragment depths from depth 1 through

to depth 6 and finally using all possible fragments. However, as mentioned in section 5.1.1,

no definition for fragment depth is given.

The results achieved are disappointing: exact match figures for experiments from En-

glish to German are 16%–19% and 13%–15% from German to English. Correct translation

figures (i.e. counting translations which are either exact matches or well-formed alterna-

tives) from English to German are 19%–24% and 18%–23% from German to English. In

other words, at best one in every four translations was both grammatical and accurately

preserved the meaning of the source string. Interestingly, we see little increase in transla-

2The sub-sentential alignments were inserted manually.

115

tion quality as the size of the fragments in the fragment base increases, meaning that the

DOP Hypothesis is not confirmed for DOT.

5.1.3 Conclusions

As outlined in section 4.2, the Tree-DOT model embodies many desirable MT system

characteristics and, consequently, would seem to be an MT paradigm worthy of investi-

gation. Poutsma’s pilot experiments yielded disappointing results, however, and he puts

forward some possible explanations as to why this was the case (Poutsma, 2000):

• the dataset used was extremely small in size as it contained only 266 tree pairs;

better performance is assumed if a larger corpus were to be used;

• the quality of the translations in the example base was poor as they were translated

into English by non-native speakers and, as a result, the output translations were

also poor;

• the trees in the dataset were wide and shallow rather than deep, meaning that varying

tree depth did not have a great deal of impact on output quality, and Poutsma

suggests that varying tree width would be more appropriate;

• it was frequently the case that two or more translations had roughly the same prob-

ability and the less preferred translation would have scored better;

• in the German language, case, number and gender influence the choice of word form

and translation quality would improve if this information were integrated into the

model.

We agree with Poutsma that the small number of sentence pairs and poor translation

quality in his dataset contributed to the poor performance. However, it is also the case

that the trees themselves were lacking in linguistic complexity. The total number of

fragments yielded from 226 tree pairs in his dataset was 33479. In contrast, the 810 tree

pairs contained in the English-French section of the HomeCentre corpus (which will be

described more fully in section 6.1) yields a maximum number of fragments in excess of

250,000,000. In other words, although the number of tree pairs in Poutsma’s dataset is

116

just under 28% of the number of pairs in the HomeCentre, it yields just 0.01% of the

number of fragments. We suggest that, not only does the dataset need to be larger, but

the analyses in the dataset need to provide a greater level of linguistic detail in order to

fully assess the capabilities of the model.3 We agree with Poutsma that incorporating

information on features such as number and gender into the model is likely to significantly

improve translation quality. This issue is discussed further in chapter 8. However, we also

feel that the Tree-DOT model merits further investigation and evaluation before moving

on to more linguistically-complex models.

Implementing the Tree-DOT model is analogous to implementing Tree-DOP. Given the

discussion in sections 2.4 and 2.5.1 on the difficulties of efficiently implementing the Tree-

DOP model, however, it is clear that Poutsma’s implementation lacks the sophistication

to be able to handle a dataset which constitutes a significant increase in terms of size and

complexity on the dataset used previously. Furthermore, it is possible that in the situations

Poutsma mentions where two or more translations had roughly the same probability and

the less preferred translation would have scored better, this is at least partly attributable

to the inadequacies of his sampling methodology.

In conclusion, the algorithms developed to make Tree-DOP more efficient must be

adapted for Tree-DOT and a more robust implementation built to facilitate experiments

using larger, more complex datasets. Until such a system is in place and these experi-

ments carried out, it will not be possible to fully demonstrate the merits of the Tree-DOT

approach to translation.

3Much of Poutsma’s discussion as to the quality of translations produced by the DOT model centers
around manual comparison with the translations output by the Systran MT system for the same sets of
test sentences. Clearly, the poor quality of the translations in Poutsma’s training data meant that the
DOT model yielded poor translations compared to those generated by Systran. Consequently, we agree
that poor training translation quality contributed to the disappointing evaluation outcome. However, we
do not feel that this is the most appropriate way to evaluate data-driven MT systems, and that automatic
evaluation gives a better picture of how such models perform. If a data-driven system is trained on poor
quality translations, then we expect to get poor translations out, but if the reference translations are also
poor then we still expect to score well. In a data-driven system, the aim is to model the data supplied,
and if evaluation is over a held-out portion of this data then we expect to score well even if the output
translations are, in human terms, of poor quality. Although he also performed automatic evaluation against
reference translations using a metric he defined himself (Poutsma, 2000):58, Poutsma’s work predates the
development of the automatic evaluation metrics – Bleu (Papineni et al., 2001, 2002), NIST (NIST, 2002;
Doddington, 2002) and F-score (Melamed et al., 2003; Turian et al., 2003)) – currently in use. Poutsma’s
metric, termed ‘Largest Translation Part’, is far less sophisticated than these newer metrics, and so it is
difficult to draw meaningful conclusions from the automatic evaluation he presents.

117

5.2 A new implementation of the Tree-DOT model

As addressed in chapter 2, the main issues when building an implementation of the Tree-

DOP model are how to prune the fragment set, how to build the DOP parse space for

the input string and how to establish which parse in the parse space is best for that

string. Exactly the same issues arise when implementing the corresponding Tree-DOT

translation model. The major practical differences between Tree-DOP and Tree-DOT

implementations come down to the facts that (i) each fragment comprises a linked pair of

subtrees rather than a single subtree and (ii) we wish to search for the most probable string

rather than the most probable parse tree. Thus, in this section we discuss the options for

DOT grammar induction, translation space computation and output translation ranking.

5.2.1 Pruning the fragment space: link depth

The refinement of the fragmentation process to account for translational links may (and

often does) result in a smaller number of DOT fragment per tree pair than would be the

case with DOP. Recall that, as given in section 2.3, the number of monolingual DOP

fragments FDOP (AT) projected from non-terminal node AT in treebank tree T which has

children CT = {CT1 ...CTn} is calculated according to equation (5.3).

FDOP (AT) =
∏

CTx∈CT

(FDOP (CTx) + 1) (5.3)

Recall also that the total number of fragments TFDOP (T) which can be extracted from

treebank tree T is the sum over the number of fragments which can be projected from

each of its nodes, as stated in equation (5.4).

TFDOP (T) =
∑

AT∈T

FDOP (AT) (5.4)

Consider, for example, the English tree on the left-hand side of the Tree-DOT represen-

tation given in Figure 5.2.4 According to equations (5.3) and (5.4), this tree yields 357

4While English and French are considered to be syntactically similar languages, in certain contexts they
exhibit strong stylistic divergences. In this particular translation example, the English printer manual
section header is phrased as a question, whereas the corresponding French translation of that header
is realised as a declarative sentence. We provide further discussion regarding translational divergences

118

HEADER HEADER

CPint INT-MARK NPpp PERIOD

NPint AUXdo S ? N PP .

Dint N does NP V capacité memoire P NPdet

how much memory PRON N have de D N

your PC votre PC

Figure 5.2: Tree-DOT representation.

monolingual DOP fragments. Furthermore, the French tree on the right-hand side of

the Tree-DOT representation given in Figure 5.2 yields 87 fragments according to these

equations.

The definitions of the root and frontier operations given for Tree-DOT in section 4.2.1,

which are used to extract DOT fragments from linked tree pairs, distinguish between linked

and unlinked nodes. Thus, calculating the number of bilingual fragments extracted from

each tree pair also requires that we distinguish between linked and unlinked nodes. Ac-

cordingly, the number of bilingual DOT fragments FDOT (AT) projected from non-terminal

node AT in (source or target) treebank tree T which has children CT = {CT1 ...CTn} is

calculated according to equation (5.5).

FDOT (AT) =
∏

linked(CTx)∈CT

(FDOT (CTx) + 1)
∏

unlinked(CTx)∈CT

FDOT (CTx) (5.5)

Note that, for each linked tree pair, applying equation (5.5) to any linked node in the source

tree and to the node to which this source node is linked in the target tree yields exactly

the same result. For example, applying this formula at the root node of the English tree

in Figure 5.2 (labelled HEADER) and the root node of the French tree (labelled HEADER)

to which it is linked indicates that 10 subtrees are projected from each. Furthermore, each

of the 10 English subtrees corresponds to one of the 10 French subtrees, meaning that a

total of 10 bilingual paired subtrees (i.e. DOT fragments) are projected from the node

pair <HEADER,HEADER> of this tree pair. The total number of fragments TFDOT (T)

which can be extracted from each pair of linked trees T is the sum over the number of

occurring in the data we use to train and test the DOT model in section 6.1.1.

119

ROOT LISTITEM

CPint INT-MARK NPpp PERIOD

NPint AUXdo S ? N PP .

Dint N does NP V P NPdet

how much have de

Figure 5.3: Tree-DOT fragment extracted from the representation in Fig-
ure 5.2.

fragments which can be projected from each of either the source or target tree’s linked

nodes, as stated in equation (5.6).

TFDOT (T) =
∑

linked(AT)∈Ts|t

FDOT (AT) (5.6)

Thus, according to equations (5.5) and (5.6), the number of DOT fragments which can be

extracted from the linked tree pair in Figure 5.2 is 17.

As we model translational dependencies rather than monolingual dependencies, the

number of DOT fragments extracted from a linked tree pair is generally less than the

number of DOP fragments which can be extracted from each of the source and target

trees comprising that tree pair. We have already illustrated this above: the source tree in

Figure 5.2 yields 357 monolingual fragments and the target tree 87 monolingual fragments

but the bilingual tree pair yields just 17 DOT fragments. Nevertheless, pruning methods

to constrain the size of the fragment base are still necessary. We discussed the relative

merits of several pruning methods for Tree-DOP fragments in section 2.3. These methods

involve excluding fragments on the basis of fragment properties such as depth, number of

lexicalised frontiers, number of non-headword frontiers and number of open substitution

sites. The only one of these pruning criteria which can be applied directly to the DOT

fragment base is the restriction on the number of open substitution sites per fragment.

As, in every DOT fragment, each source non-terminal frontier node is linked to ex-

actly one target non-terminal frontier node and vice versa, the source and target subtrees

in each fragment always have the same number of open substitution sites. Thus, the

number of open substitution sites in a fragment can be calculated as the number of links

between non-terminal frontier nodes in that fragment, and placing a restriction on this

120

NPadj NPpp

A N N PP

scanning options options P N

de numérisation

Figure 5.4: Tree-DOT fragment.

fragment property is straightforward. As pointed out in (Way, 2001):187, however, it is

not necessarily the case that the source and target subtrees in each fragment have the

same number of terminal frontier nodes. For example, although the fragment in Figure

5.3 has exactly 2 open substitution sites in each subtree, the source subtree has 4 termi-

nal frontiers5 whereas the target subtree has only 2. Thus, calculation of the number of

terminal frontiers in a fragment involves making a decision as to whether source or target

terminal frontiers should be counted. Way (op cit.) also observes that if, for example,

the number of terminals is counted on the source subtree and the maximum is set to 3

then fragments such as the one given in Figure 5.3 will be excluded. He suggests that

manual intervention may be necessary to prevent such fragments from being pruned. Fur-

thermore, we note that pruning the fragment base by placing an upper limit on fragment

depth is also problematic for DOT as fragments such as the one given in Figure 5.4 do not

necessarily comprise source and target subtrees of the same depths. Again, use of depth

restrictions directly as they are used for DOP involves making an arbitrary decision as

to whether source or target depth should be calculated. However, we observe that this

issue is merely a surface symptom of the fundamental difference between the dependencies

modeled by the DOP and DOT fragment sets rather than constituting a problem in itself:

DOP models monolingual dependencies whereas DOT models bilingual dependencies.

As discussed in section 2.3, the full set of DOP fragments captures all arbitrary de-

pendencies occurring in a given training treebank. Use of pruning techniques reduces this

set such that only a subset of the dependencies present are actually captured. Although

this subset may be specified over quantitative rather than linguistic characteristics of the

full fragment set, it is nevertheless the case that the choice of dependencies modeled is no

longer arbitrary.

5As the first two words of the source string – how much – share the same parent node, they are treated
as a single lexical unit.

121

(A) A phrase-structure tree representing the French string options de numérisation:

NPpp

N PP

options P N

de numérisation

(B) Organisation of the DOP fragments extracted from (A) according to the number of frontier terminals in each:

↓ lex = 3 ↓

NPpp

N PP

options P N

de numérisation

↓ lex = 2 ↓

NPpp

N PP

options P N

de

NPpp

N PP

options P N

numérisation

NPpp

N PP

P N

de numérisation

PP

P N

de numérisation

↓ lex = 1 ↓

NPpp

N PP

P N

numérisation

NPpp

N PP

P N

de

NPpp

N PP

options P N

NPpp

N PP

options

PP

P N

de

PP

P N

numérisation

P

de

N

options

N

numérisation

↓ lex = 0 ↓

NPpp

N PP

P N

NPpp

N PP

PP

P N

(C) Organisation of the DOP fragments extracted from (A) according to the depth of each:

↓ depth = 3 ↓

NPpp

N PP

options P N

de numérisation

NPpp

N PP

options P N

de

NPpp

N PP

options P N

numérisation

NPpp

N PP

P N

de numérisation

NPpp

N PP

P N

numérisation

NPpp

N PP

P N

de

↓ depth = 2 ↓

NPpp

N PP

options P N

NPpp

N PP

options

PP

P N

de

PP

P N

numérisation

NPpp

N PP

P N

PP

P N

de numérisation

↓ depth = 1 ↓

P

de

N

options

N

numérisation

NPpp

N PP

PP

P N

Figure 5.5: 17 unique DOP fragments can be extracted from the phrase-
structure tree in (A). (B) shows these 17 fragments organised
according to the number of terminal frontier nodes in each
and (C) shows these same 17 fragments organised according
to fragment depth.

122

Consider, for example, the treebank tree given in Figure 5.5(A). This tree yields the

17 unique DOP fragments given in Figure 5.5(B) and (repeated in) (C). In Figure 5.5(B),

these fragments are organised in terms of how many lexicalised frontiers each fragment

has, and in (C) they are organised according to fragment depth. Looking firstly at Fig-

ure 5.5(B), we see that if we prune the fragment base by excluding all lexicalised frag-

ments, then just 3 fragments remain. These fragments model structural dependencies

only. Clearly, in this case, the input string must be tagged before it can be parsed with

this DOP grammar. If we relax the restriction to allow fragments with maximally one lex-

icalised frontier then 12 fragments are included in the fragment base. The fragment base

now provides varying amounts of information about the structural contexts in which each

terminal can occur. Relaxing the restriction further to incorporate fragments with max-

imally two lexicalised frontiers allows us to model bilexical dependencies also. However,

the set of fragments comprising maximally one lexicalised frontier encodes information

about all the terminals in the treebank tree in Figure 5.5(A). Looking at Figure 5.5(C),

we see that including only fragments of depth 1 in the fragment base restricts us to cap-

turing local dependencies. However, as is the case when we allow at most 1 terminal per

fragment, information about every terminal in the treebank tree is encoded at depth 1.

Thus, adding fragments of increasingly greater depths allows us simply to capture more

and more probabilistic information about the lexical items already present in the fragment

base.

Clearly, the effects of applying pruning thresholds to the DOP fragment base are pre-

dictable. In particular, we know that – with the exception of restricting to unlexicalised

fragments only, which is not generally done in practice – the minimum amount of informa-

tion encoded about each word in the treebank is its part-of-speech tag. If we apply these

same pruning techniques to the DOT fragment space by calculating fragment properties

over either the source or target subtrees, however, the effects on the dependencies modeled

are not predictable. In particular, if we proceed using this methodology then we can no

longer be sure, as we were for DOP, that there is some minimal amount of information

encoded about each word in the treebank. This is due to the fact that the DOT fragment

base captures translational lexical and structural dependencies rather than monolingual

123

(A) A linked tree pair:

NPadj NPpp

A N N PP

scanning options options P N

de numérisation

(B) The set of DOT fragments extracted from the linked tree pair in (A):

f1 f2 f3

NPadj NPpp

A N N PP

scanning options options P N

de numérisation

NPadj NPpp

A N N PP

scanning P N

de numérisation

N N

options options

Figure 5.6: The linked pair of trees given in (A) yields the set of DOT
fragments given in (B).

ones. Consider, for example, Figure 5.6, where the linked pair of trees given in (A) yields

the set of DOT fragments given in (B). (Note that the target subtree in (A) is exactly the

DOP representation provided in Figure 5.5.) If we restrict the fragment base such that

it includes fragments of depth 1 only, then regardless of whether we measure depth over

the source or target subtrees, the fragment base will comprise fragment f3 only. Thus, by

omitting all other fragments we retain no information about the English word scanning

and the French words de and numérisation. Similarly, if we restrict the fragment base

such that it includes fragments with maximally 1 target terminal frontier then fragment

f3 will again be the only fragment remaining. (While calculating degree of lexicalisation

over the source subtrees will, in this particular instance, result in the retention of fragment

f2 also, this is by no means predictable.)

In section 4.2.1 we saw that the DOT fragmentation operations work over linked nodes

only. Correspondingly, in order to calculate the number of fragments yielded by each DOT

representation, we differentiate between linked and unlinked nodes (equations (5.5) and

(5.6)) as linked nodes are productive whereas unlinked nodes are not. Accordingly, here

we conclude that direct application of DOP pruning methods to the DOT fragment base

is inappropriate because no distinction is drawn between linked and unlinked nodes.

124

NP

N PP

VPv configuration P NPdet

V NPzero de D NPpp

setting N N les N PP

printer options options P N

de impression

Figure 5.7: sourcedepth = 3, target depth = 6, link depth = 2

Consequently, we replace the notion of fragment depth – the greatest number of steps

taken to get from the root node to any frontier node – with the notion of link depth for

fragments comprising linked subtree pairs (Hearne and Way, 2003). The link depth of

a fragment is the greatest number of steps taken which depart from a linked node to get

from the root node to any frontier node. This yields the same result whether calculated

over the source or target side of the fragment. For example, for the fragments comprising

two subtree pairs given in Figure 5.7, the depth of the source language subtree (on the

left) is 3 whereas the depth of the target language subtree is 6. If, however, we simply

calculate the depth of the fragment as a whole using the concept of link depth, we arrive

at fragment depth of 2.

Consider again the fragment set in Figure 5.6(B). According to the definition of link

depth, both fragments f2 and f3 are of depth 1, meaning that the minimal fragment set

comprises these two fragments only. Clearly, these two fragments encode the minimum

amount of information about each word in the treebank as each word is contained in one

of these fragments. Fragment f1 is of link depth 2 and adds (only) further structural and

contextual information about the words already contained in the fragment base. Thus,

not only does link depth characterise each bilingual fragment as a whole, but pruning the

DOT fragment base according to link depth changes the dependencies occurring in the

fragment base in a predictable way. Henceforth, this is the method we use to calculate

DOT fragment depth.

125

5.2.2 Translation-space construction

As discussed in section 5.1.3, we do not feel that the translation algorithm proposed

by Poutsma (2000, 2003) – which is based on the ‘fragments as rewrite rules’ technique

proposed for DOP by Bod (1992) and described in section 2.4.1 – will facilitate the experi-

ments required to fully assess the performance of the DOT model. Thus, in this section we

focus on the adaptation of more efficient DOP parsing algorithms to the DOT translation

model. Firstly, we discuss how the fragments in the DOT translation space for an input

string relate to the fragments in the DOP parse space for that same string. In light of

this relationship, we then outline the elements which building the parse and translation

spaces have in common, and give the general intuition as to how the former can be used

in creating the latter. Finally, we discuss in detail the possibility of adapting the DOP

parsing algorithms developed by Goodman (1996a, 1998, 2003) and Sima’an (1995a, 1999)

to accomplish the task of translation space computation.

From parsing to translation: the general model

Conceptually, the source- and target-language halves of each DOT fragment, along with

the translational links between them, form a single unit. It is useful on a practical level,

however, to make explicit the relationships between (i) the two halves of the set of bilingual

DOT fragments which can be extracted from a set of linked training trees and (ii) the two

sets of monolingual fragments which can be extracted from that same set of linked training

trees by placing the source and target trees in separate sets, discarding the links and apply-

ing the DOP fragmentation operations. In other words, if one of the languages represented

in the bilingual treebank is language L, what is the relationship between (i) the fragment

set Fb generated by applying the DOT fragmentation operations to the bilingual treebank

and then stripping away the links and corresponding-language parts of each extracted

fragment, leaving only representations for L and (ii) the fragment set Fm generated by

taking the bilingual treebank, stripping away the links and corresponding-language trees

and applying the DOP fragmentation operations to this monolingual treebank? As the

fragmentation operations defined for Tree-DOT can only select linked nodes to be either

root or frontier nodes, it follows that non-linked nodes are always internal to the fragments

126

in which they occur. Thus, set Fb comprises a subset of the fragments in Fm such that all

root nodes and substitution sites of fragments in Fb are linked to target-language nodes

in the bilingual treebank.

In Tree-DOT, the process of building the translation space is driven by the input

string, and the building of target language representations can be viewed as a by-product

of parsing with bilingual fragments. It is possible, therefore, to build a first approximation

of the translation space by simply parsing with the source-language half of the bilingual

fragment base only, i.e. fragment set Fb. Once this has been accomplished, the one or

more target-language subtrees which correspond to each source-language fragment in the

approximated space are retrieved. However, according to the DOT composition opera-

tion, the target-language subtrees effectively act as constraints on the source-language

fragments which can combine to form analyses: in order for fragment fx with root node

categories <Rsx ,Rtx> to compose with fragment fy with leftmost substitution site cate-

gories <LSSsy ,LSSty>, not only must the source root in fx, Rsx , correspond to the source

leftmost substitution site in fy, LSSsy , but the target root Rtx must also correspond to

the substitution site category LSSty . Effectively, this means that source-language frag-

ments which can combine freely in a monolingual model are now constrained by their

target-language links. Thus, fragments which, due to translational constraints, cannot be

composed with any other fragments to form valid analyses are removed from the approx-

imated space, giving us the bilingual parse and translation space for the input string.

When the task of building the DOT translation space is viewed from this perspec-

tive, adaptation of the parsing algorithms of Goodman (1996a, 1998, 2003) and Sima’an

(1995a, 1999) to accomplish this task seems worthy of investigation. However, we find

that Sima’an’s two-phase analysis method gives the required flexibility whereas Good-

man’s PCFG-reduction method does not. In the remainder of this section, we detail why

this is the case.

Translating with Goodman’s PCFG-reduction approach

Recall that, as described in section 2.4.3, Goodman (1996a, 1998, 2003)’s algorithm for

computing the DOP parse-space for an input string reduces the DOP fragment set to

127

a PCFG containing maximally 8 rules for each node in the training treebank. Each

training-tree node A is assigned a unique address k and, correspondingly, one new non-

terminal node Ak is created; such non-terminals are called “interior” nodes and the original

nodes “exterior” nodes. In addition, the number of subtrees ak with root node Ak is also

calculated.
A@j

B@k C@l
(5.7)

For any node grouping such as the one in example (5.7), the eight PCFG rules and their

corresponding probabilities in example (5.8) are then extracted.

(1) Aj −→ BC (1
aj

)

(2) Aj −→ BkC (bk
aj

)

(3) Aj −→ BCl (cl
aj

)

(4) Aj −→ BkCl (bkcl
aj

)

(5) A −→ BC (1
a
)

(6) A −→ BkC (bk
a

)

(7) A −→ BCl (cl
a

)

(8) A −→ BkCl (bkcl
a

)

(5.8)

These rules correspond to the eight possible contexts in which the node grouping in ex-

ample (5.7) can occur in fragments extracted from the corresponding treebank tree; each

of the three nodes can be either interior or exterior (i.e. root node or substitution site) to

any fragment in which the grouping occurs. Thus, every relevant DOP fragment can be

constructed using one or more PCFG derivations by converting each internal node to an

external node and, furthermore, the probability of each of these DOP fragments can be

calculated by summing over the PCFG derivations yielding that fragment.

This is a very attractive algorithm for DOP as the size of the extracted PCFG is far

smaller than the corresponding fragment set and because looking back to the fragment set

is not necessary. However, the inflexibility of this approach – discussed in detail in section

3.1.1 – makes it unsuitable for use in a DOT system on several levels. Importantly, the

advantage of not having to look back to the fragment base has, in the context of translation,

turned into a disadvantage: it is extremely computationally expensive to look back to the

fragment base in situations where that becomes necessary.

As the set of source-language DOT fragments is simply a subset of the corresponding

DOP fragment set such that certain treebank tree nodes are not permitted to be external,

Goodman’s PCFG reduction method can also be used to characterise the source-language

parse space for the input string over the set of bilingual fragments. In order to achieve

128

this, we simply extract the PCFG rules from the source side of the bilingual fragment set

subject to the restriction that rules specifying that an unlinked node is external are not

generated. If, for example, in the node grouping given in example (5.7) only nodes A@j

and B@k were linked and, consequently, node C@l was never external to a fragment then

only rules 3, 4, 7 and 8 from example (5.8) would be extracted.

As well as using the PCFG reduction to characterise the subtree structures relevant

to the input string, it must also characterise the parse space probabilistically. In other

words, the rule probabilities must also be estimated such that the probability of deriving

each valid fragment is equal to its relative frequency in the DOT fragment base. As it

stands, the rule probabilities given correspond to the frequency distribution of the source-

language subtrees in the bilingual fragment base rather than the frequency distribution of

the source and target subtree pairs. We can augment each linked source-language subtree

node with the category of the target-subtree node to which it is linked. For example,

source-language node NP linked to target node PP would be assigned the category label

NP.PP; this ‘category’ would thus be distinct from, for example, source-language node NP

linked to target node NP which would be labelled NP.NP. As DOT fragment probabilities

are conditioned on root node pairs, this transformation allows us to correctly establish

the counts for the number of subtrees headed by each root node pair. (The counts for

subtrees whose root nodes are internal to the source-language fragment are calculated as

for DOP.)

However, we see no way of adapting this PCFG reduction so that the target-language

subtrees are also characterised. At best, we could use the PCFG space to rebuild each

source-language subtree and recover its target-language counterpart by matching it against

the training data. However, this involves explicitly recreating every fragment relevant to

the input string which, in turn, requires that we prune the fragment set. As discussed in

section 3.1.1, pruning the fragment set so that the parse space is computable unfortunately

results in a large increase in the size of the PCFG-reduction (if, indeed, it is even possible

to compute the corresponding PCFG-reduction) and this algorithm loses its advantage.

Thus, we do not use Goodman (1996a, 1998, 2003)’s PCFG-reduction method in our DOT

implementation.

129

Translating with Sima’an’s two-phase analysis approach

As described in section 2.4.2, Sima’an (1995a, 1999)’s two-phase analysis approach takes

the context-free grammar underlying the fragment set and uses it to approximate the parse

space of the input string. Correspondences between these CFG rules and the fragments in

which they occur then facilitate the transition from this CFG parse space to the required

DOP parse space for the input. The underlying CFG is, however, non-probabilistic; frag-

ment probabilities are estimated by looking back to the full fragment set. This algorithm

can be applied to the computation of the DOT translation space for a given input string

in a very straightforward manner.

Each DOT fragment is associated with a unique identifier. The CFG underlying the

source side of the fragment set is extracted such that each rule in the CFG is associated

with the set of fragment identifiers in which it occurs. The two-phase analysis algorithm

is then applied exactly as for DOP, as described in section 2.4.2. This algorithm generates

a monolingual parse space comprising those source-subtrees which can be used to parse

the input string. However, as we also retain the fragment identifiers of each of these

source-subtrees, recovering the translational counterpart of each subtree, as well as the

DOT probability of the fragment as a whole, is trivial. Finally, fragments which, due

to translational constraints, cannot be composed with any other fragments to form valid

analyses are removed from the approximated space, giving us the bilingual parse and

translation space for the input string. As we discuss in section 5.2.4, several different

disambiguation strategies can now be applied to this translation space in order to select

the best translation to output.

5.2.3 Compact fragment representation

Explicitly creating the DOP fragment base is expensive due to the very large numbers

of fragments that must be extracted, counted, stored and compiled. As the two-phase

algorithm used to compute the parse space for each input string requires only an indication

as to which fragments each underlying CFG rule appears in, it is not necessary to explicitly

extract and store the fragment set. Thus, in section 3.1.2 we introduced a dynamic method

to establish the fragment set on the fly such that only the treebank trees themselves need to

130

be stored. The same issues with regard to fragment set extraction arise for DOT. However,

the expense of storing and compiling the DOT fragment set is even greater because each

fragment now comprises two subtrees, along with the links between them. Fortunately,

our on-the-fly fragment set extraction can also be applied to bilingual linked treebanks

in a straightforward manner. Explicit fragment characterisation is done over source trees

only and the target subtrees retrieved when converting from the monolingual derivation

space to the bilingual derivation space.

We first apply the DOT root operation to each of the paired treebank representations,

yielding a set of ‘intermediate’ fragments as for DOP but, this time, the size of this set is

linear in the number of linked node pairs in the treebank. The DOT frontier operation is

then applied by assigning to each node n in the source side of each intermediate fragment

a set of fragment identifiers such that if its left and right child nodes nl and nr are present

in a fragment then the corresponding fragment identifier appears in the node’s identifier

set. Either both nl and nr are present in the fragment or neither are present, in which

case node n is itself either a substitution site or not in the fragment. Thus, the presence

of fragment identifier fid at node n in the source subtree signifies that the CFG rule

n −→ nl nr occurs in the source side of fragment fid.

When assigning DOT fragment identifiers to each node in each source subtree, we

must again account for the distinction between linked and unlinked nodes. Recall that,

for DOP, ECNF nodes of the form X y (which are inserted into the treebank trees during

conversion to binary format) never occur as either root or frontier nodes because they

must always be internal to those fragments in which they appear. In fact, unlinked nodes

in DOT fragments can be treated in the same way as these ECNF nodes as they also must

always be internal to those fragments in which they occur.

We partition the set of identifiers at source node n with left and right child nodes nl and

nr into four sets representing the four possible combinations of internal and external child

nodes <nls ,nrs>, <nls ,nri
>, <nli ,nrs> and <nli ,nri

>. However, if node nl is unlinked

then sets <nls ,nrs> and <nls ,nri
> remain empty as this node is never a substitution site.

Similarly, if node nr is unlinked then sets <nls ,nrs> and <nli ,nrs> are empty, and if both

child nodes are unlinked then the only non-empty set is <nli ,nri
>. This is illustrated

131

(A)

Root-generated ‘intermediate’ fragment whose source subtree has been converted to ECNF
(through which source node B x has been inserted) and each source node annotated with the
number of different fragments yielded through application of the frontier operation:

A O

B C D P Q

b E F d p R S

e f T U V s

t u v

⇒

A(16) O

B(1) B x(8) P Q

b C(4) D(1) p R S

E(1) F(1) d T U V s

e f t u v

(B)

Source node annotations representing all possible frontier operations where the total number
of frontier operations possible is 16 and the fragments corresponding to each of these frontier
operations have been allocated identifiers from the set of integers 1 - 16:

A(16) <Bs,B xs>:{} <Bs,B xi>:{1-8} <Bi,B xs>:{} <Bi,B xi>:{9-16}

B x(8) <Cs,Ds>:{} <Cs,Di>:{} <Ci,Ds>:{1-4,9-12} <Ci,Di>:{5-8,13-16}

C(4) <Es,Fs>:{1,5,9,13} <Es,Fi>:{2,6,10,14} <Ei,Fs>:{3,7,11,15} <Ei,Fi>:{4,8,12,16}

B(1) :{9-16}

E(1) <e>:{3,4,7,8,11,12,15,16}

F(1) <f>:{2,4,6,8,10,12,14,16}

D(1) <d>:{5-8,13-16}

Figure 5.8: The ‘intermediate’ fragment in (A) was generated by the root
operation. (B) gives the source node annotations represent-
ing all possible frontier operations where the total number
of frontier operations possible is 16 and the fragments corre-
sponding to each of these frontier operations have been allo-
cated identifiers from the set of integers 1 - 16.

by the example in Figure 5.8 where the node annotations in (B) correspond to the DOT

‘intermediate’ tree in (A). Consider, for example, the annotation for node B x. Its left

child node, C, is an unlinked node whereas its right child node, D, is a linked node. Thus,

the annotation sets specifying node C as a substitution site are empty.

Extracting these partitioned sets of fragment identifiers along with each source-language

CFG rule extracted gives us the correspondence between the source side of the fragment

set and this CFG. Thus, we can transition from phase 1, in which the source-CFG space

is constructed, to phase 2, thereby generating the monolingual space comprising those

source-subtrees which can be used to analyse the input string. For DOP, we stated that

retrieval of any fragment can be accomplished easily by simply checking for its absence or

132

presence, as an internal node or substitution site, at each node in the intermediate tree.

Although this is not strictly necessary for DOP parsing as these fragments are recon-

structed automatically using the annotated CFG during phase 2, it is crucial for DOT as

it allows us to retrieve the target-language subtree corresponding to each source-language

subtree in the derivation space.

Essentially, the set of nodes identified as open substitution sites in any source subtree

also characterise its linked target-language counterpart. Consider, for example, the situa-

tion where the source subtree of fragment f11 in Figure 5.8 is relevant to the input string,

and so we wish to retrieve the corresponding target subtree. We first look at the retrieval

of the source subtree. The sets corresponding to node A indicate that nodes B and B x

are both internal to fragment f11. Trivially, this also means that terminal symbol b is a

frontier node. The sets corresponding to node B x signify that while node C is internal

to f11, node D is a substitution site. Finally, the annotation at C indicates that node E

is internal to f11 (and so e is a frontier terminal symbol) whereas node D is a substitution

site. Thus, we see that fragment f11 comprises two open substitution sites labelled D

and F . Recall that, in every DOT fragment, each source non-terminal frontier node is

linked to exactly one target non-terminal frontier node and vice versa. Consequently, the

only possible open substitution sites in the target subtree are those linked to the source

nodes labelled D and F . Looking at the target side of the intermediate tree, we conclude

that the target subtree of fragment f11 comprises all nodes in the intermediate tree except

those dominated by the nodes linked to the source open substitution sites D and F , which

are, themselves, target open substitution sites. Thus, fragment f11 corresponds to the

fragment given in example (5.9). For disambiguation purposes we retain the links between

source and target root nodes and open substitution sites, but all internal links can be

discarded.
A O

B B x P Q

b C D p R S

E F T U V

e u v

(5.9)

As we complete each DOT fragment in the derivation space, we ascertain that there

133

exists at least one fragment in the derivation space with which each of its (paired) open

substitution sites can potentially be composed. If, for any such site, no fragments are

found then this fragment is discarded as it cannot be used in building a DOT derivation

for the input string. Thus, completion of this process yields the required bilingual parse

and translation space for the input string.

Calculating relative frequencies from compact fragment representations

As for DOP, calculation of relative frequencies (and removal of identifiers corresponding

to duplicate fragments) over these compact bilingual fragment representations is straight-

forward.

Two intermediate fragments <Is,It> and <Js,Jt> encode duplicate DOT fragments

if connected portions of those fragments which start at their root node pair are identical.

Minimally, these connected portions must comprise the fragment of link depth 1 which

can be projected from the intermediate fragment. An example of such a minimal portion

is given in (5.10), where the solid lines connect the nodes forming part of the minimal

portion and the dashed lines denote nodes outside this portion.

A O

B C D P Q

b E F d p R S

e f T U V s

t u v

(5.10)

The extension of the portions of intermediate fragments which yield identical DOT

fragments is a recursive process: for each linked node already in the identical portion of

each fragment, check that every path from this node to either another linked node or

a terminal frontier node has a corresponding identical path in the fragment it is being

compared to. In example (5.11), the identical portions of intermediate fragments <Is,It>

and <Js,Jt> can be extended to include the paths from linked node pair <E,V > to

frontiers e and v and from linked node pair <D,S> to frontiers d and s because these

terminal frontier nodes occur in both fragments. However, as the children of the node pairs

134

<B,P> are different in each of the fragments we are comparing, the identical portions

cannot be extended to include these children; this is also the case for the node pairs

labelled <F ,T>.

<Is,It> <Js,Jt>

A O

B C D P Q

b E F d p R S

e f T U V s

t u v

A O

B C D P Q

g E F d k R S

e i T U V s

m u v

(5.11)

Once we have identified the nodes included in the identical fragment portions, we have

established exactly the set of fragments which are identical to each other: as for DOP, all

boundary-identical nodes (i.e. those nodes which are included in the identical portions but

whose children are not) are either substitution sites in the duplicate fragments or do not

occur in those fragments. When the identifiers of these fragments have been established,

we increment the counts of those fragments in one of the trees being compared and delete

the identifiers of those fragments from the node annotations of the other.

5.2.4 Ranking translations

As discussed in section 5.2.2, adapting Sima’an (1995a, 1999)’s two-phase analysis ap-

proach for DOT allows for flexibility with regard to choice of disambiguation strategy;

this was also the case for parsing, as discussed in section 3.1.1. In this section we discuss

the application of the sampling techniques of Chappelier and Rajman (2003) to the search

for the most probable translation for the DOT model. We also discuss the possibility of

selecting for output the translations yielded by the most probable representation, the most

probable derivation and the shortest derivation.

Most Probable Translation

The DOT model calls for ranking of the output translations according to their probabilities;

this requires summing over the probabilities of all derivations which yield each target string

135

and, therefore, is computationally analogous to the calculation of parse probabilities for

DOP. We approximate the search for the most probable translation according to the DOT

model by applying the random sampling algorithm used for DOP. Again, we sample a

derivation by selecting and composing fragments at random until no open substitution

sites remain. Here, however, each fragment comprises a linked source and target subtree

pair, meaning that each sampled derivation also comprises a linked tree pair such that the

ordered sequence of terminals of the target tree constitutes a valid translation of the input

string according to the evidence presented in the training data.

Recall that, as discussed in section 2.5.1, for DOP our objective for calculating the

exact sampling probability of each fragment is to ensure that the frequency of each parse

tree in the sampled set corresponds to its DOP probability conditioned on the input string

when the sample set is large enough. Thus, we calculate bottom-up the sampling prob-

ability of each fragment in the parse space as its DOP probability by the total sampling

probability mass available at each of its substitution sites. We employ precisely the same

strategy when sampling DOT derivations, taking into account the fact that each substi-

tution site comprises a linked category pair rather than a single category. Just as DOP

parse probability is calculated by summing over derivation probabilities, DOT transla-

tion probability is also calculated by summing over derivation probabilities. Accordingly,

calculating the exact sampling probability of each DOT fragment and using these prob-

abilities to determine the likelihood of selecting random derivations means that, when a

sufficiently large number of samples have been taken, the frequency distribution of the

translations yielded by the sampled derivations corresponds to their DOT probability dis-

tribution. Thus, the most frequent translation in the sampled set is also the most probable

translation according to the Tree-DOT model.

We also adopt the BKS method – as described in section 2.5.1 – to determine, for

each input string, when enough samples have been taken. We restate the three factors

upon which the decision to stop sampling is based so that the search for the DOT MPT

is approximated:

• how closely matched, in terms of frequency of occurrence, the translations in the

sample set are,

136

• how many of the possible translations for the given input string are present in the

set of sampled translations, and

• how certain we wish to be that the most frequent translation in the sample set is, in

fact, the most probable translation according to the DOT model.

Alternative DOT ranking strategies

Of course, choosing the most probable translation as the best translation is not the only

way to rank DOT translations. We can, for example, search instead for the most prob-

able representation (that is, bilingual analysis) of the input string – i.e. the most

probable linked source and target tree pair – and output the translation yielded by this

representation as the best translation. In order to find this representation, we sample

derivations according to their DOT sampling probabilities as described above. However,

in this case our sample set comprises linked source and target tree pairs, rather than trans-

lations (as for DOT) or parses (as for DOP). We again use the BKS method to determine

when enough samples have been taken, this time using the following stopping conditions:

• how closely matched, in terms of frequency of occurrence, the bilingual representa-

tions in the sample set are,

• how many of the possible bilingual representations for the given input string are

present in the set of sampled representations, and

• how certain we wish to be that the most frequent bilingual representation in the

sample set is, in fact, the most probable representation according to the model.

We can also search for the most probable derivation for DOT and, again, output

the translation yielded by the target side of this representation. As for DOP, this is

accomplished using the Viterbi algorithm, where only the fragment with the largest inside

probability for each root node category pair is retained at each chart position.

Finally, we can search for the shortest derivation also – i.e. the derivation built using

the fewest number of fragments – using the Viterbi algorithm by assigning all fragments

equal probability 1
p

(Bod, 2000e), generating the translation space which comprises all

137

shortest derivations and, where there is more than one, selecting the translation yielded

by the most probable (according to the DOT model) of these shortest derivations.

5.3 Summary

We have examined the reasons for the disappointing performance of Poutsma (2000, 2003)’s

DOT system and concluded that a more robust implementation is required to facilitate

experiments using larger, more complex datasets. In order to achieve this, we have adapted

the algorithms developed for Tree-DOP for use in our Tree-DOT system. In particular,

we have outlined an efficient method for dynamically extracting the DOT fragment set

from a bilingual treebank, an algorithm to generate the Tree-DOT translation space for a

given input string, and four methods by which DOT output translations can be ranked.

In addition, we have described a motivated way of pruning the DOT fragment set which

takes into account the translational dependencies captured by DOT fragments. Thus, we

have developed a system which will allow us to carry out a more intensive evaluation of

the Tree-DOT model of translation than was possible heretofore. In the next chapter, we

present the experiments we have carried out using this system and discuss in detail the

results of our evaluation.

138

Chapter 6

Evaluating the DOT model

Previous experiments assessing the performance of the DOT model of translation were

small in scale and the training data used was not ideally suited to the task (Poutsma, 1998,

2000, 2003). However, the limitations of the DOT implementation used to perform these

experiments prevented a larger-scale, more informative assessment from being carried out.

Having developed a DOT system which takes advantage of efficient algorithms developed

for DOP, we are now in a position to perform translation experiments on a larger scale

than heretofore. In this section, we describe our experiments in terms of the data used and

the evaluation metrics upon which our assessment of the performance of the DOT model

is based. We then go on to give translation accuracy results over variations in fragment

depth and ranking strategies, and provide detailed analysis of our findings.

6.1 Experimental set-up

We present bidirectional Tree-DOT translation experiments on the English-French section

of the HomeCentre corpus, which comprises 810 aligned translation pairs. Each sentence

is annotated with an LFG representation comprising c-structure, φ-links and f-structure;

we extracted only the c-structure (i.e. context-free phrase-structure tree) corresponding

to each. As for the DOP parsing experiments presented in chapter 3, we preprocessed

these trees by removing traces and empty categories and by removing unary-branching

structures, i.e. substructures of the form X −→ Y were replaced with the Y category.

In addition, as it is frequently the case that alignments are not one-to-one, i.e. n source

139

sentences map to m target sentences, we combined groups of sentence representations

forming a single translation unit into a single phrase-structure tree by simply inserting

a root node PAIR such that each tree is a child of that pair. These changes were made

fully automatically and, therefore, in a consistent manner; no manual alterations were

made to the trees themselves. Manual intervention was necessary, however, in order to

insert the translational links between paired trees; each English-French tree pair was linked

only at the root node but DOT also requires links indicating translational equivalences

at sub-structural level. This was done very simply by numbering each node in each tree

and providing, for each tree pair, a list of node number pairs such that the presence of

a number pair indicates a link between those two nodes.1 Finally, our bilingual, sub-

structurally aligned dataset was split randomly into 12 training/test splits such that all

test words also appeared in the training set. Each of these splits comprises 80 test sentences

and 720 training tree pairs; 6 of the splits have English as the source language and French

as the target language and the other 6 splits have French as source and English as target.

We translate each test sentence2 using the four ranking strategies – most probable

translation, most probable parse,3 most probable derivation and shortest derivation (re-

ferred to as MPT, MPP, MPD and SDer) – as they are described in section 5.2.4. Fur-

thermore, we also prune the fragment base extracted from each training set with respect

to link depth as defined in section 5.2.1, resulting in fragment bases comprising fragments

of link depth 1, link depth 2 or less, link depth 3 or less and link depth 4 or less. As there

are 16 ways of combining the ranking and pruning strategies, each test sentence in each

split is translated in 16 different ways and the accuracy of the translations obtained is

calculated over all splits for each combination.

It is not always the case that a translation can be produced for every test sentence

1Manual alignment is a time-consuming process which requires knowledge of both the source and target
languages and is, consequently, not an ideal solution to the task of sub-structural alignment. An algorithm
to accomplish this task automatically is described in (Groves et al., 2004). Reduced-scale, preliminary
experiments on data aligned using this algorithm provide evidence that high-quality translations can also
be produced using automatically-induced alignments; we discuss these findings in section 6.6.

2As for our Tree-DOP experiments, all experiments are carried out on a Pentium 4 with 2.39GHz CPU
and 2Gb RAM.

3When computing both the most probable translation and the most probable parse for each input string
using random sampling, we set the sampling thresholds Perr and θ described in section 2.5.1 to 0.01 and
2 respectively. We also set the maximum number of samples to 10,000 so that, in the event of there being
two or more equally likely translations, sampling will terminate – this situation arose for 3 out of 480
sentences for English to French translation and for 4 out of 480 sentences for French to English translation.

140

in every split. Sentences which do not receive full translations fall into one of two cat-

egories: either there are fragments in the translation space which span all source words

but no higher-level fragments to link them together, or there are source words to which

no fragment corresponds.

The first of these situations also arises in parsing but is more common for translation

as source language fragments suffer from reduced compositionality due to the constraints

imposed by their target language counterparts. (We revisit this issue in section 8.4.) We

address this issue in precisely the same way for DOT as for DOP: we assign to the input

sentence the best sequence of partial analyses according to the relevant ranking strategy.

These sequences are combined by simply inserting fake root nodes of category DUMMY

into the source and target trees such that the best source partial trees are siblings and

the best target partial trees are siblings. As all source words are covered by fragments

they all receive translations, meaning that the terminal symbols of the (partial) target

tree comprise a string containing no untranslated words. This string is, however, not

syntactically well-formed with respect to the training data.

The second situation – whereby there are gaps in the translation space such that

there are source words to which no fragment corresponds – also arises as a result of the

reduced compositionality of DOT fragments. In this situation, however, there are words

in the source string for which, due to the context in which they appear, no translation

can be generated. We do not attempt to translate these words by other means (such as

a machine-readable dictionary), but rather leave these words untranslated in the output

string. Again, we search for the most likely sequence of partial analyses according to each

ranking strategy and combine them using the DUMMY category. However, each word for

which we have no information is also tagged with the category DUMMY and this fake

subtree is inserted into the target parse at the appropriate position. Thus, the output

translation yielded by the target parse contains one or more source language words.

141

6.1.1 Translational divergence between English and French in the Home-

Centre Corpus

The data on which we train and test the DOT model, the English-French HomeCentre

corpus, comprises a Xerox printer manual; this manual was translated by professional

translators and aligned and annotated at Xerox Parc. As one would expect, the transla-

tions it contains are of extremely high quality – in fact, we do not know which language

was originally the source language for this dataset. As observed by Frank (1999), the cor-

pus provides a rich source of both linguistic and translational complexity. While English

and French are syntactically quite similar, they often differ significantly in the surface

styles used to express the same concept. As we illustrate in the following discussion,

translational divergences which generally prove challenging for MT models (Hutchins and

Somers, 1992) are very much in evidence in this dataset.4

Instances of nominalisation are very frequent in the HomeCentre corpus. An example

of a simple nominalisation is given in (6.1), where the English verb phrase removing the

print head is realised as the noun phrase retraite de la tête d’impression in French.

removing the print head −→ retraite de la tête d’impression

VPv

V NP

removing

NPpp

N PP

retraite P NPdet

de

(6.1)

Instances of more complex nominalisations which incorporate further translational diver-

gences are also common. Consider, for example, the translation pair given in (6.2). Firstly,

we note the nominalisation: the English passive sentential form the scanner is being cal-

ibrated is realised as the French noun phrase l’étalonnage du scanner. However, we also

observe the presence of relation-changing: the subject of this English sentential form, the

scanner, functions as an oblique object in the French translation. In addition, this example

4For the sake of clarity, we focus this discussion on translation from English to French.

142

exhibits stylistic divergence, as while translates as pendant toute la durée de.

while the scanner is being calibrated −→ pendant toute la durée de l’ étalonnage du scanner

CONJPsub

CONJsub S

while NP VPaux

AUX VPaux

is AUX V

being calibrated

PP

P NPdet

pendant DETP NPpp

PREDET D N PP

toute la durée P NPpp

de N PP

étallonage P NPdet

de

(6.2)

Another complex translation case which occurs in the HomeCentre corpus is that of

head-switching, where the head word in the source language sentence translates as a non-

head word in the target language realisation. An example of head-switching is given in

(6.3). Here, the English verbal unit is displayed is realised in French as reste affichée;

in this context, reste means (roughly) remains and display is realised as the advervbial

modifier affichée. Thus, the head of the English sentence, the verb display, corresponds

to the French non-head word affichée.

the calibration progress dialog box is displayed −→ la bôıte de dialogue Etalonnage de le scanner reste affichée

while the scanner is being calibrated pendant toute la durée de l’ étalonnage du scanner

S

NP VPaux

AUX VPv

is V CONJPsub

displayed

S

NPdet VP

V AP

reste A PP

affichée

(6.3)

Of course, lexical divergences also occur frequently. In some instances, these diver-

gences can be resolved in a straightforward manner. For example, we see in (6.4) that as

in English can translate as au fur et à mesure que in French, but as the idiomatic reading

of this French phrase is reflected in the parse assigned to the sentence, the overall shape

143

of the sentence can remain the same despite the complexity of the translation.

the scanner will move across the page as it scans −→ le scanner se déplace le long de la page

au fur et à mesure que il effectue la numérisation

CONJPsub

CONJsub S

as

CONJPsub

CONJsub S

au fur et à mesure que

(6.4)

However, even for a relatively similar language pair, lexical divergence can cause source

and target sentences expressing exactly the same concept to have completely different

surface realisations. Consider, for example, the translation pair in (6.5). As there is no

French phrase which is directly equivalent to the English expression null and void, the

given French sentence toute intervention non autorisée invaliderait la garantie – which

translates roughly as any unauthorised action would invalidate the guarantee – is entirely

structurally dissimilar to its English counterpart.

if unauthorized repair is performed, −→ toute intervention non autorisée

the remainder of the warranty period is null and void invaliderait la garantie

Sadj

CONJPsub COMMA S

CONJsub S , NP VPcop

if NPadj VPaux D NPadj V NP

A N AUX V the N PP is N CONJ N

unauthorised repair is performed remainder P NP null and void

of D NPzero

the N N

warranty period

S

NPdet VPv

D NPpp V NPdet

toute N APvp invaliderait D N

intervention Amod V la garantie

non autorisée

(6.5)

It is also common for sentences expressing exactly the same concept to have divergent

surface realisations for purely stylistic reasons. For example, section headings in the

English HomeCentre manual are often phrased as questions, whereas they generally appear

in the declarative form in the French version. This is illustrated in example (6.6), where

144

the English section header What if the scanner does not work? corresponds to the French

header Le scanner ne fonctionne pas.

What if the scanner does not work? −→ Le scanner ne fonctionne pas.

HEADER

CPint INT-MARK

PREINT S ?

what if NP VPaux

HEADER

S PERIOD

NPdet VPverb .

(6.6)

Finally, variation in how certain frequently-occurring words are translated, depending

on the context in which the word appears, is also common. Examples (6.7) – (6.10)

illustrate this phenomenon for the English verb to need. you need to X can be realised as

both vous devez X and il faut X in French, as shown in examples (6.7) and (6.8). The

realisation differs, however, where the object is nominal rather than sentential: if you

need X is shown in (6.9) to translate as pour X. Finally, we show in example (6.10) that

the negative you do not need to X can translate as il ne devrait pas être necessaire de

X, which literally means it should not be necessary to X in English. We note that this is

just a subset of the differing French realisations for the verb to need which occur in the

HomeCentre corpus.

S

PRON VPv

you V VPinf

need PART VPv

to

S

PRON VPverb

vous V VPverb

devez

(6.7)

S

PRON VPv

you V VPinf

need PART VPv

to

S

PRON VPverb

il V VPverb

faut

(6.8)

145

CONJPsub

CONJsub S

if PRON VPv

you V NP

need

PP

P NPdet

pour

(6.9)

S

PRON VP

you AUXNEG VPv

do not V VPinf

need PART VPv

to

S

PRON VPverb

il NEG V PostNEG VPcop

ne devrait pas Vcop AP

être A PPinf

necessaire P VPverb

de

(6.10)

Thus, we conclude that the dataset we use to evaluate the DOT model contains many

‘hard’ translation examples, including cases of nominalisations, relation-changing, passivi-

sation, headswitching and combinations thereof. Accordingly, the corpus would appear to

present a challenge to any MT system. However, given that these cases are widespread in

real data, most MT systems will be required to cope with such phenomena.

6.2 Evaluation metrics

Manual evaluation of MT output is informative but it is also time-consuming, expensive

and not reusable. The advantages of automatic evaluation are obvious: it can be quick,

cheap, language-independent, used for large-scale evaluation and, once developed, can be

applied repeatedly to translation output during system development to assess changes

made without incurring any extra costs. Crucially, however, automatic evaluation should

also correlate highly with human judgements; consequently, developing and validating

automatic MT evaluation metrics has proved challenging.

We describe four different automatic translation evaluation metrics: exact match,

BLEU (Papineni et al., 2001, 2002), NIST (NIST, 2002; Doddington, 2002) and f-score

(Melamed et al., 2003; Turian et al., 2003). These metrics all involve comparing output

146

translations (referred to as candidate translations) with their reference translations, but

differ with respect to (i) how they measure the similarity between candidate and reference

strings and (ii) how they reward the similarities and penalise the differences between those

strings. A good automatic evaluation metric will be both sensitive and consistent, i.e. it

will distinguish between systems of similar quality and will do so across varied reference

translations (NIST, 2002).

NIST (2002) observe that automatic scoring is at its most reliable when reference

translations are of high quality and the input sentences are from within the same genre.

As our English and French data comprise Xerox printer manuals translated by professional

translators, we feel that our experiments are particularly well suited to evaluation using

automatic metrics. As we wish to highlight fluctuations in accuracy which result from

(relatively) subtle changes to our system configuration – i.e. variation of fragment depth

and ranking strategies – and none of the available metrics appears significantly better at

reflecting such fluctuations than the others, we present accuracy scores corresponding to

all four metrics5 in order to give as clear a picture as possible as to how the DOT model

performs.

6.2.1 The exact match metric

The exact match metric for measuring translation quality simply assigns score 1 to each

translated sentence that exactly matches its corresponding reference translation and 0

otherwise. This is a very coarse-grained metric which can, nevertheless, yield useful infor-

mation.

6.2.2 The BLEU metric

The BLEU metric (Papineni et al., 2001, 2002) evaluates MT system quality by comparing

output translations to their reference translations in terms of the numbers of co-occurring

n-grams. The main score calculated is the n-gram precision pn for each pair of candidate

and reference sentences. This score represents the proportion of n-word sequences in the

5We used version 11a of the BLEU/NIST evaluation software to calculate BLEU and NIST scores; we
downloaded this software from http://www.nist.gov/speech/tests/mt/resources/scoring.htm. We calcu-
lated f-scores using GTM v1.2 downloaded from http://nlp.cs.nyu.edu/GTM/.

147

candidate translation which also occur in the reference translation. Importantly, if an

n-gram occurs j times in the candidate translation and i times in the reference translation

such that i ≤ j then this sequence is counted only i times; this corresponds to the intuition

that “a reference word sequence should be considered exhausted after a matching candidate

word sequence has been identified” (Papineni et al., 2001). Thus, n-gram precision pn is

calculated according to equation (6.11):

pn =
|cn ∩ rn|

|cn|
(6.11)

where
· cn is the multiset of n-grams occurring in the candidate translation.

· rn is the multiset of n-grams occurring in the reference translation.

· |cn| is the number of n-grams occurring in the candidate translation.

· |cn ∩ rn| is the number of n-grams occurring in cn that also occur in rn such that

elements occurring j times in cn and i times in rn occur maximally i times in

|cn ∩ rn|.

As it is generally not the case that MT output is evaluated one sentence at a time, n-gram

precision can also be calculated over sets of sentences. In this case, pn is the proportion

of co-occurring n-word sequences in the set over the total number of n-word sequences in

the set.

While precision scores pn can be obtained for any value of n,6 Papineni et al. (2001)

point out that greater robustness can be achieved by combining scores for all values of

n into a single metric. It is not surprising that as the value of n increases, the score

pn decreases because longer matching word sequences are more difficult to find. If the

average n-gram precision score is calculated without taking this factor into account (i.e.

by simply summing the values for pn and dividing by N , the largest value for n) then the

scores for longer n-grams will be too small to have much influence on the final score. In

order to make the BLEU metric more sensitive to longer n-grams, the combined score pN

is calculated by summing over the logarithm of each pn multiplied by weight 1/N as given

6Scores can be obtained for any reasonable value of n; in (Papineni et al., 2001, 2002) the maximum
value for n considered was 4.

148

in equation (6.12):

pN = exp(
N

∑

n=1

1

N
log(pn)) (6.12)

A candidate translation which is longer than its reference translation is implicitly

penalised during the calculation of pn. In order to impose a corresponding penalty on

candidate translations which are shorter than their reference translations, a brevity penalty

BP is introduced and the combined precision score pN is multiplied by this penalty.

Papineni et al. (2001) state that BP is a decaying exponential in the length of the reference

sentence over the length of the candidate sentence. This means that if the reference is the

same length or longer than the candidate, then the penalty is 1, and greater than 1 if the

candidate is shorter than the reference. Furthermore, if candidate cx is 1 word shorter

than its reference rx and cy is also 1 word shorter than ry, but rx is longer than ry, then

the BP for cy should be greater than the BP for cx. Thus, BP is calculated according to

equation (6.13):

BP = e
max(1− length(R)

length(C)
,0)

(6.13)

Note that as calculating the brevity penalty for each sentence and averaging it over the

set of sentences is considered by Papineni et al. (2001) to be unduly harsh, it is computed

over the entire corpus, i.e. length(R) is the number of words in the reference set and

length(C) the number of words in the candidate set. This penalty is then applied to the

precision score for the entire candidate translation corpus according to equation (6.14):

BLEU = BP · pN (6.14)

As the ranking behaviour is more visible in the log domain, Papineni et al. (2001) give

equation (6.15):

log BLEU = min(1 − length(R)

length(C)
, 0) +

N
∑

n=1

1

N
log(pn) (6.15)

In summary, the combination of n-gram precision and penalties for shorter translations

mean that in order to achieve a high BLEU score a set of candidate translations must

match the reference translation in length, in word choice and in word order (Papineni

149

et al., 2001).

6.2.3 The NIST metric

NIST (2002) investigated the sensitivity of the BLEU metric to systems whose output is

of similar quality, and the consistency of BLEU as alternative sets of reference translations

were provided. As a result of this investigation, they proposed a new score formulation –

referred to simply as NIST – by making three changes to the BLEU measure.

The first issue addressed is that of n-gram informativeness: when calculating n-gram

precision, BLEU assigns equal weight to each co-occurring n-gram according to formula

(6.11), whereas NIST assigns more weight to co-occurring n-grams which are less frequent

in the reference corpus. Effectively, this weighting works on the premise that finding an

n-gram in both the candidate and reference translations which occurs frequently anyway

gives less information about the quality of the MT output than finding a rare n-gram

in both. Information weights are computed over n-gram counts for the set of reference

translations according to formula (6.16):

Info(w1...wn) = log2(
count(w1...wn−1)

count(w1...wn)
) (6.16)

The NIST metric then factors these information weights into the BLEU n-gram precision

formula given in (6.11) as shown in (6.17):

pn =

∑

w1...wn∈|cn∩rn| Info(w1...wn)

|cn|
(6.17)

The second issue addressed concerns the combining of n-gram precision scores for each

value of n into one score pN . As given in equation (6.12), BLEU calculates the combined

score pN by summing over the logarithm of each pn multiplied by weight 1/N in order

to make the metric more sensitive to longer n-grams. However, (NIST, 2002) point out

that this may be counterproductive; as this scoring is equally sensitive to variation in

co-occurrence frequencies regardless of n’s value, low co-occurrences for larger n-grams

may result in unwarranted variation in scores. Thus, the NIST score combines pn scores

by simply taking their average according to formula (6.18) where n-gram sets Cn and Rn

150

are calculated over the full candidate and reference sets C and R:

pN =

N
∑

n=1

∑

w1...wn∈|Cn∩Rn| Info(w1...wn)

|Cn|
(6.18)

Finally, a change was also made to how the brevity penalty BP is calculated in order

to minimise the impact on scores of small variations in translation length. This is done

by introducing β, the value of which is chosen such that BP = 0.5 when the number of

candidate words is 2
3 the average number of reference translation words. Equation (6.19)

gives the NIST formula for calculating BP:

BP = exp(β · log2(min(
length(R)

length(C)
, 1))) (6.19)

As for BLEU, the overall NIST score is calculated by multiplying the combined n-gram

precision score by the brevity penalty as given in (6.20):

NIST = BP · pN (6.20)

A comparison of the performance of the BLEU and NIST metrics given in (NIST, 2002)

indicates that NIST attains greater score stability and reliability for the corpora they

studied.

6.2.4 The F-score metric

Melamed et al. (2003) and Turian et al. (2003) apply the standard measures of precision

and recall to the evaluation of MT output. In general terms, precision and recall scores for

candidate item C with respect to reference item R are calculated according to equations

6.21 and 6.22 respectively.

precision(C|R) =
|C ∩ R|
|C| (6.21)

recall(C|R) =
|C ∩ R|
|R| (6.22)

A method of calculating the intersection between two sentences must be defined in order

to apply these methods to the evaluation of machine translated sentences against their

151

C B A I C D E
A •

B •

C • •

D •

E •

F

B •

A •

I •

C • •

Figure 6.1: Bitext grid illustrating the relationship between an example
candidate translation and its corresponding reference transla-
tion - the words of the candidate translation are shown from
left to right across the top of the grid and the words of the
reference translation are shown from top to bottom down the
left-hand side of the grid. Each bullet, called a hit, indicates
a word contained in both the candidate and reference strings.
(This illustration is adapted from Figure 1 of (Melamed et al.,
2003; Turian et al., 2003).)

reference translations. Precisely such a definition is given in (Melamed et al., 2003; Turian

et al., 2003), where a bitext grid is used to show the intersection of two texts. An example

of a bitext grid – adapted from Figure 1 of (Melamed et al., 2003) and (Turian et al.,

2003) – is given in Figure 6.1, where the candidate string reads from left to right across

the top of the grid and the reference string from top to bottom down the left-hand side

of the grid. The intersections between these strings are marked by bullets (termed hits),

i.e. each cell in the grid referring to the same candidate and reference word constitutes a

point of intersection.

If we simply take |C ∩ R| to be the number of hits in the grid, then the count is

over-estimated as some words will be counted more than once. For example, in Figure

6.1 the first candidate word ‘C’ gets two hits as this word appears twice in the reference

translation – the total number of hits for each candidate word can be seen at a glance by

simply counting the number of hits in its column in the grid. The concept of a matching

(Melamed et al., 2003; Turian et al., 2003) is used to avoid this problem, where a matching

is a reduced grid such that there is at most one hit in each row and each column. Examples

of such matchings for the grid in Figure 6.1 are given in Figure 6.2. A maximum matching

is a matching in which there are hits for as many candidate words as possible; in Figure

6.2, (b) and (c) are maximum matchings but (a) is not. The maximum match size (MMS)

152

(a) (b) (c)

C B A I C D E
A •

B •

C • ′

D ′

E ′

F

B ′

A ′

I •

C ′ •

C B A I C D E
A •

B •

C ′ ′

D •

E •

F

B ′

A ′

I •

C • •

C B A I C D E
A ′

B ′

C • ′

D •

E •

F

B •

A •

I •

C ′ •

Figure 6.2: (a), (b) and (c) are examples of matchings for the grid in
Figure 6.1. Hits which were in the original grid but are not
contained in the matching are marked ′. In each matching,
each row and column in the grid contains a single hit. (This
illustration is adapted from Figure 1 of (Melamed et al., 2003;
Turian et al., 2003).)

is the number of hits in a maximum matching – in Figure 6.2 (b) and (c), the MMS is 7 –

and the MMS can never exceed the length of the shorter of the strings being compared.

The intersection between candidate and reference translations can be computed as

the MMS (Melamed et al., 2003; Turian et al., 2003) and precision and recall calculated

according to formulae (6.23) and (6.24).

precision(C|R) =
MMS(C, R)

|C| (6.23)

recall(C|R) =
MMS(C, R)

|R| (6.24)

However, these measurements do not penalise either for incorrect word order or non-

contiguous hits, i.e. grids (b) and (c) in Figure 6.2 both contain the same number of hits

and so receive exactly the same precision and recall scores despite the fact that grid (c)

shows a matched 4-word sequence whereas the largest correct sequence shown in grid (b)

has only 2 words. In order to reward correct word order, the definition of match size is

generalised by treating runs as atomic units (Melamed et al., 2003; Turian et al., 2003).

Each run is converted to an aligned block which is its minimum enclosing square; this is

illustrated in Figure 6.3 (b) and (c) where the blocks of cells marked with circles correspond

to the runs in Figure 6.2 (b) and (c).

The intersection of the reference sentence and candidate sentence can now be calculated

153

(b) (c)

C B A I C D E
A © ©

B © ©

C

D © ©

E © ©

F

B

A

I © ©

C © © ©

C B A I C D E
A

B

C ©

D © ©

E © ©

F

B © © © ©

A © © © ©

I © © © ©

C © © © ©

Figure 6.3: (b) and (c) are examples of maximum matchings for the grid
in Figure 6.1. (This illustration is adapted from Figure 1 of
(Melamed et al., 2003; Turian et al., 2003).)

in terms of the area of the aligned blocks by defining the weight of any single run as the

square of its length. Thus, the calculation of match size MMS for a particular maximum

matching M is calculated according to equation (6.25) (Melamed et al., 2003; Turian et al.,

2003):

MMS(M) =

√

∑

r∈M

length(r)2 (6.25)

According to this definition of match size, the grid in Figure 6.3 (b) is of size
√

12 + 22 + 22 + 22 =

3.61 whereas grid (c) is of size
√

12 + 42 + 22 = 4.58. As precision and recall are calculated

according to equations 6.23 and 6.24 as before, grid (c) now scores higher than grid (b).

As computing the MMS for any candidate and reference pair is NP-hard, Turian et al.

(2003) use an approximation which finds the true maximum match size 99% of the time.

6.3 Results: English to French translation

In this section, we present the results of translation experiments carried out using our DOT

system where translation took place from English into French. We consider the effects on

accuracy of variation in the size of the fragment base and compare the performance of

each of our ranking strategies MPT, MPP, MPD and SDer.

Table 6.1 shows, for each ranking strategy, the effect on translation accuracy of in-

creasing the size of the fragments in the fragment base. We observe that the quality of

the translations output increases steadily as fragment link depth increases for all ranking

154

Most Probable Translation (MPT)
bleu NIST f-score exact

1 0.4479 6.356 0.6712 30.21
2 0.5034 6.810 0.7035 37.92
3 0.5277 6.960 0.7179 40.00
4 0.5343 7.037 0.7222 41.25

Most Probable Parse (MPP)
bleu NIST f-score exact

1 0.4507 6.383 0.6733 30.62
2 0.4946 6.743 0.6990 37.50
3 0.5192 6.898 0.7135 38.96
4 0.5216 6.928 0.7149 40.00

Most Probable Derivation (MPD)
bleu NIST f-score exact

1 0.4572 6.439 0.6793 30.42
2 0.5069 6.856 0.7083 37.08
3 0.5269 6.979 0.7213 39.17
4 0.5386 7.064 0.7257 41.04

Shortest Derivation (SDer)
bleu NIST f-score exact

1 0.4168 6.105 0.6513 25.62
2 0.5080 6.851 0.7074 38.12
3 0.5314 6.994 0.7204 41.46
4 0.5386 7.067 0.7254 42.29

Table 6.1: Results for English to French DOT translation experiments
which compare increases in link depth with translation accu-
racy for 4 metrics over all translations produced.

strategies and across all evaluation metrics.7 Focussing in, for example, on exact match

scores (which reflect the number of output translations exactly corresponding to their

reference translations averaged over all splits), we see that for MPT ranking the overall

increase in accuracy was 11.04%, for MPP ranking the overall increase was 9.38%, for

MPD ranking the overall increase was 10.62%, and the greatest overall increase in exact

match accuracy of 16.67% was achieved using SDer ranking. We also observe – again for

all ranking strategies over all metrics – that the greatest increase in accuracy is achieved

when going from link depth 1 fragments only to fragments of link depth 1 and link depth

2; the increases achieved when going from maximum link depth 2 to 3 and from link depth

3 to 4 are much more modest.

Table 6.2 shows, for each evaluation metric, how the different ranking strategies com-

pare in terms of translation accuracy at each depth. At depth 1, we see that the Bleu,

NIST and F-score metrics all show that best performance is achieved using MPD ranking

whereas the exact match metric ranks MPP translations slightly ahead. At depth 2, the

NIST and F-score metrics also show that MPD ranking performs best but the Bleu and

exact match scores favour SDer ranking. At depth 3, Bleu, NIST and exact match all

attribute best performance to MPD ranking but again the F-score measure places MPD

ranking slightly ahead on accuracy. At depth 4, there is little to choose between MPD

and SDer ranking according to Bleu, NIST and F-score but the exact match measure puts

SDer ahead by 1.25%. Interestingly, ranking according to translation probability does not

7Exact match scores are given as percentages; the upper limit for bleu scores and f-scores is 1; NIST
scores have no upper limit.

155

Bleu Scores
1 2 3 4

MPT 0.4479 0.5034 0.5277 0.5343
MPP 0.4507 0.4946 0.5192 0.5216
MPD 0.4572 0.5069 0.5269 0.5386
SDer 0.4168 0.5080 0.5314 0.5386

NIST Scores
1 2 3 4

MPT 6.356 6.810 6.960 7.037
MPP 6.383 6.743 6.898 6.928
MPD 6.439 6.856 6.979 7.064
SDer 6.105 6.851 6.994 7.067

F-scores
1 2 3 4

MPT 0.6712 0.7035 0.7179 0.7222
MPP 0.6733 0.6990 0.7135 0.7149
MPD 0.6793 0.7083 0.7213 0.7257
SDer 0.6513 0.7074 0.7204 0.7254

Exact Match Scores
1 2 3 4

MPT 30.21 37.92 40.00 41.25
MPP 30.62 37.50 38.96 40.00
MPD 30.42 37.08 39.17 41.04
SDer 25.62 38.12 41.46 42.29

Table 6.2: Results for English to French DOT translation experiments
which compare ranking strategies over each link depth for each
metric over all translations produced.

achieve highest accuracy at any depth according to any of the four evaluation measures.

Focussing in on depth 4 – the depth at which all rankings give their best performance –

we see that MPT output is consistently ranked in third place (behind MPD and SDer out-

put) according to the Bleu, NIST and F-score metrics and takes second place over MPD

ranking on the exact match metric by only 0.21%. Overall, these results show that the

highest quality translations are generated using all fragments up to and including depth

4 and using either MPD or SDer ranking.

As discussed in section 6.1, not all translations produced are complete translations;

some, while containing target-language words only, are not grammatical according to the

training data as they were generated from sequences of partial representations whereas

others also contain source-language words for which no translation was found in the train-

ing data. At depth 1, 65.62% of input sentences were assigned fully-formed, grammat-

ical translations and 34.38% were assigned partial and/or ungrammatical translations.

At depth 2, coverage increased slightly: 67.71% of sentences were assigned well-formed

translations and 32.29% were assigned partial translations. No further improvements in

coverage were observed at link depths 3 and 4. Tables 6.3 and 6.4 show accuracy evalu-

ations for fully-formed, grammatical translations only (in the left-hand columns in each

figure) and for partial and/or ungrammatical translations only (in the right-hand columns

in each figure). In other words, the left-hand columns show results obtained by evaluating

the (approximately) 55 sentences in each split which were fully translated against their

reference translations and excluding the other reference translations from the reference set,

156

FULL TRANSLATIONS ONLY PARTIAL TRANSLATIONS ONLY
Most Probable Translation (MPT)
bleu NIST f-score exact

1 0.6788 7.572 0.8217 45.40
2 0.7472 8.081 0.8580 56.00
3 0.7878 8.294 0.8797 59.08
4 0.7906 8.331 0.8825 60.92

Most Probable Translation (MPT)
bleu NIST f-score exact

1 0.2474 4.428 0.5300 1.212
2 0.2729 4.598 0.5444 0
3 0.2808 4.651 0.5503 0
4 0.2913 4.735 0.5561 0

Most Probable Parse (MPP)
bleu NIST f-score exact

1 0.4863 6.625 0.7013 33.57
2 0.5321 6.992 0.7286 40.85
3 0.5608 7.177 0.7445 42.72
4 0.5641 7.219 0.7477 43.66

Most Probable Parse (MPP)
bleu NIST f-score exact

1 0.2124 3.710 0.4896 7.41
2 0.2470 3.856 0.5019 11.11
3 0.2414 3.850 0.5080 9.26
4 0.2410 3.800 0.5003 11.11

Most Probable Derivation (MPD)
bleu NIST f-score exact

1 0.6767 7.553 0.8216 45.40
2 0.7480 8.082 0.8583 54.46
3 0.7845 8.271 0.8793 57.54
4 0.7957 8.335 0.8841 60.31

Most Probable Derivation (MPD)
bleu NIST f-score exact

1 0.2677 4.585 0.5464 1.8180
2 0.2787 4.667 0.5543 0.6452
3 0.2817 4.689 0.5575 0.6452
4 0.2944 4.758 0.5614 0.6452

Shortest Derivation (SDer)
bleu NIST f-score exact

1 0.6312 7.260 0.7892 38.10
2 0.7445 8.046 0.8520 56.00
3 0.7902 8.313 0.8802 60.92
4 0.7992 8.364 0.8853 62.15

Shortest Derivation (SDer)
bleu NIST f-score exact

1 0.2304 4.278 0.5222 1.8180
2 0.2838 4.702 0.5577 0.6452
3 0.2859 4.685 0.5554 0.6452
4 0.2910 4.745 0.5594 0.6452

Table 6.3: Results for English to French DOT translation experiments
which compare increases in link depth with translation ac-
curacy for 4 metrics over partial and complete translations
separately.

and the right-hand columns show corresponding results for the 25 or so sentences in each

split which received translations yielded by partially-formed tree pairs.

Table 6.3 shows, for each ranking strategy, the effect on translation accuracy of in-

creasing the size of the fragment base. We see that the results for complete translations

confirm precisely what the results over all translations showed: translation accuracy im-

proves steadily over all evaluation metrics for all ranking strategies as fragment depth

increase and, again, the greatest increase in accuracy is always obtained when fragment

depth increases from 1 to 2. On the other hand, the performance over partial translations

is far less consistent. Firstly, we note that exact match results for partial translations

do not offer much information as, realistically, we are surprised if any such translations

exactly match their reference translations; we include exact match figures here for the sake

of completeness only. Focussing on the other three metrics, we see that while accuracy

again increases from depth 1 to depth 2, these increases are far smaller than for complete

translations and there is little change in scores as depth increases to 3 and 4. Thus, we

157

FULL TRANSLATIONS ONLY PARTIAL TRANSLATIONS ONLY
Bleu Scores

1 2 3 4
MPT 0.6788 0.7472 0.7878 0.7906
MPP 0.4863 0.5321 0.5608 0.5641
MPD 0.6767 0.7480 0.7845 0.7957
SDer 0.6312 0.7445 0.7902 0.7992

Bleu Scores
1 2 3 4

MPT 0.2474 0.2729 0.2808 0.2913
MPP 0.2124 0.2470 0.2414 0.2410
MPD 0.2677 0.2787 0.2817 0.2944
SDer 0.2304 0.2838 0.2859 0.2910

NIST Scores
1 2 3 4

MPT 7.572 8.081 8.294 8.331
MPP 6.625 6.992 7.177 7.219
MPD 7.553 8.082 8.271 8.335
SDer 7.260 8.046 8.313 8.364

NIST Scores
1 2 3 4

MPT 4.428 4.598 4.651 4.735
MPP 3.710 3.856 3.850 3.800
MPD 4.585 4.667 4.689 4.758
SDer 4.278 4.702 4.685 4.745

F-scores
1 2 3 4

MPT 0.8217 0.8580 0.8797 0.8825
MPP 0.7013 0.7286 0.7445 0.7477
MPD 0.8216 0.8583 0.8793 0.8841
SDer 0.7892 0.8520 0.8802 0.8853

F-scores
1 2 3 4

MPT 0.5300 0.5444 0.5503 0.5561
MPP 0.4896 0.5019 0.5080 0.5003
MPD 0.5464 0.5543 0.5575 0.5614
SDer 0.5222 0.5577 0.5554 0.5594

Exact Match Scores
1 2 3 4

MPT 45.40 56.00 59.08 60.92
MPP 33.57 40.85 42.72 43.66
MPD 45.40 54.46 57.54 60.31
SDer 38.10 56.00 60.92 62.15

Exact Match Scores
1 2 3 4

MPT 1.212 0 0 0
MPP 7.407 11.110 9.2590 11.110
MPD 1.818 0.6452 0.6452 0.6452
SDer 1.818 0.6452 0.6452 0.6452

Table 6.4: Results for English to French DOT translation experiments
which compare ranking strategies over each link depth for each
metric where partial and complete translations are evaluated
separately.

conclude that increasing fragment depth does little to help in situations where sparse data

is an issue.

Table 6.4 shows, for each evaluation metric, how the different ranking strategies com-

pare in terms of translation accuracy at each depth. Here, the results for complete trans-

lations show that the SDer ranking method scores best according to all metrics at link

depths 3 and 4; there was less difference between MPD and SDer rankings at these depths

over all translations. Furthermore, we observe that MPT ranking scores better when eval-

uated over complete translations only than when all translations are evaluated together;

it matches the performance of MPD ranking very closely at link depth 1 and there is little

to choose between MPT, MPD and SDer rankings at link depths 2, 3 and 4. Over partial

translations, on the other hand, according to Bleu, NIST and F-score, MPD gives the best

overall performance at link depths 1 and 4 and SDer does best at link depth 2; at link

depth 3, NIST and F-score favour MPD ranking whereas Bleu favours SDer ranking.

158

Most Probable Translation (MPT)
bleu NIST f-score exact

1 0.4990 6.745 0.7177 43.75
2 0.5513 7.087 0.7463 49.17
3 0.5447 7.040 0.7443 48.75
4 0.5494 7.075 0.7463 49.38

Most Probable Parse (MPP)
bleu NIST f-score exact

1 0.4915 6.659 0.7098 44.38
2 0.5406 7.010 0.7407 50.00
3 0.5454 7.024 0.7423 49.38
4 0.5449 7.028 0.7427 50.21

Most Probable Derivation (MPD)
bleu NIST f-score exact

1 0.4946 6.707 0.7119 44.79
2 0.5396 6.975 0.7376 49.38
3 0.5436 6.993 0.7386 49.79
4 0.5434 7.013 0.7396 50.21

Shortest Derivation (SDer)
bleu NIST f-score exact

1 0.4316 6.358 0.6832 36.46
2 0.5318 6.961 0.7343 48.54
3 0.5465 7.010 0.7401 50.00
4 0.5488 7.044 0.7421 50.42

Table 6.5: Results for French to English DOT translation experiments
which compare increases in link depth with translation accu-
racy for 4 metrics over all translations produced.

6.4 Results: French to English translation

In this section, we present the results of translation experiments carried out using our DOT

system where translation took place from French into English. As before, we consider

the effects on accuracy of variation in the size of the fragment base and compare the

performance of each of our ranking strategies MPT, MPP, MPD and SDer.

Table 6.5 shows, for each ranking strategy, the effect on translation accuracy of in-

creasing the size of the fragments in the fragment base. Unlike the evidence presented for

English to French translation, only the results for SDer ranking show consistent increases

in translation accuracy as fragment depth increases. MPT ranking achieves its highest

Bleu and NIST scores at link depth 2, equally high F-scores at link depths 2 and 4 and

best exact match score at link depth 4. Furthermore, all four metrics show a decrease

in accuracy as link depth 3 fragments are introduced, with an increase as link depth 4

fragments are introduced. Both MPP and MPD ranking achieves best NIST, F-score and

exact match scores at link depth 4 and best Bleu score at link depth 3 but the differences

between scores at link depths 3 and 4 are slight for both. Focussing in on exact match

scores, we observe that the greatest overall increase in accuracy was again achieved using

SDer ranking, as the link depth 4 score is 13.96% higher than the score at link depth 1. As

before, the greatest increases in exact match accuracy are achieved when going from link

depth 1 to link depth 2, and at link depths greater than 2 we see very modest increases

at best.

Table 6.6 shows, for each evaluation metric, how the different ranking strategies com-

159

Bleu Scores
1 2 3 4

MPT 0.4990 0.5513 0.5447 0.5494
MPP 0.4915 0.5406 0.5454 0.5449
MPD 0.4946 0.5396 0.5436 0.5434
SDer 0.4316 0.5318 0.5465 0.5488

NIST Scores
1 2 3 4

MPT 6.745 7.087 7.040 7.075
MPP 6.659 7.010 7.024 7.028
MPD 6.707 6.975 6.993 7.013
SDer 6.358 6.961 7.010 7.044

F-scores
1 2 3 4

MPT 0.7177 0.7463 0.7443 0.7463
MPP 0.7098 0.7407 0.7423 0.7427
MPD 0.7119 0.7376 0.7386 0.7396
SDer 0.6832 0.7343 0.7401 0.7421

Exact Match Scores
1 2 3 4

MPT 43.75 49.17 48.75 49.38
MPP 44.38 50.00 49.38 50.21
MPD 44.79 49.38 49.79 50.21
SDer 36.46 48.54 50.00 50.42

Table 6.6: Results for French to English DOT translation experiments
which compare ranking strategies over each link depth for each
metric over all translations produced.

pare in terms of translation accuracy at each depth. The Bleu, NIST and F-score measures

each indicate – with the exception of Bleu at link depth 3 – that the best performance

at all depths is achieved by searching for the MPT. The exact match scores do not follow

the same trends: MPD performs best at link depth 1, MPP at link depth 2 and SDer

at link depths 3 and 4; the MPT is ranked third at link depths 1 and 2 and last at link

depths 3 and 4. The evidence presented here does not allow us to conclude which com-

bination of depth and ranking method gives the best result. According to the Bleu and

NIST scores, best performance is at link depth 2 using MPT ranking. According to the

F-scores, however, equally high accuracy is achieved using MPT ranking at link depths 2

and 4. Finally, according to the exact match scores, overall best performance is obtained

using SDer ranking at fragment link depth 4.

Again, not all translations produced are complete translations; some, while contain-

ing target-language words only, are not grammatical according to the training data as

they were generated from sequences of partial representations whereas others also contain

source-language words for which no translation was found in the training data. At link

depth 1, 69.79% of input sentences were assigned fully-formed, grammatical translations

and 30.21% were assigned partial and/or ungrammatical translations. At link depth 2,

coverage increased slightly: 72.71% of sentences were assigned well-formed translations

and 27.29% were assigned partial translations. No further improvements in coverage were

observed at link depths 3 and 4. The left-hand columns of Tables 6.7 and 6.8 show results

obtained by evaluating the (approximately) 57 sentences in each split which were fully

160

FULL TRANSLATIONS ONLY PARTIAL TRANSLATIONS ONLY
Most Probable Translation (MPT)
bleu NIST f-score exact

1 0.6370 7.468 0.8051 61.49
2 0.6988 7.935 0.8383 66.76
3 0.6964 7.922 0.8392 67.05
4 0.7067 7.982 0.8438 67.91

Most Probable Translation (MPT)
bleu NIST f-score exact

1 0.2926 4.626 0.5938 2.759
2 0.2923 4.541 0.5938 2.29
3 0.2792 4.460 0.5863 0
4 0.2742 4.435 0.5861 0

Most Probable Parse (MPP)
bleu NIST f-score exact

1 0.5189 6.793 0.7266 47.07
2 0.5714 7.157 0.7613 53.15
3 0.5734 7.159 0.7620 52.48
4 0.5791 7.190 0.7638 53.38

Most Probable Parse (MPP)
bleu NIST f-score exact

1 0.3048 4.049 0.5334 11.11
2 0.3193 4.099 0.5241 11.11
3 0.3382 4.192 0.5346 11.11
4 0.3101 4.074 0.5264 11.11

Most Probable Derivation (MPD)
bleu NIST f-score exact

1 0.6405 7.505 0.8083 62.39
2 0.6903 7.899 0.8373 66.76
3 0.6998 7.930 0.8400 67.91
4 0.7069 7.982 0.8455 68.48

Most Probable Derivation (MPD)
bleu NIST f-score exact

1 0.2800 4.489 0.5754 4.138
2 0.2775 4.366 0.5732 3.053
3 0.2727 4.350 0.5706 1.527
4 0.2611 4.294 0.5660 1.527

Shortest Derivation (SDer)
bleu NIST f-score exact

1 0.5556 7.103 0.7717 50.45
2 0.6770 7.822 0.8313 65.62
3 0.7017 7.936 0.8407 68.19
4 0.7104 7.999 0.8468 68.77

Shortest Derivation (SDer)
bleu NIST f-score exact

1 0.2464 4.311 0.5589 4.138
2 0.2796 4.392 0.5745 3.053
3 0.2765 4.378 0.5729 1.527
4 0.2688 4.336 0.5705 1.527

Table 6.7: Results for French to English DOT translation experiments
which compare increases in link depth with translation ac-
curacy for 4 metrics over partial and complete translations
separately.

translated against their reference translations and excluding the other reference transla-

tions from the reference set, and the right-hand columns show corresponding results for

the 23 or so sentences in each split which received translations yielded by partially-formed

tree pairs.

Table 6.7 shows, for each ranking strategy, the effect on translation accuracy of increas-

ing the size of the fragments in the fragment base. Contrary to the equivalent evidence

presented for all French to English translations and precisely in line with the evidence

presented for English to French translation, the results for complete translations only

show that best performance is achieved for all ranking strategies at link depth 4, although

we do not always see an increase in accuracy as link depth increases from 2 to 3. The

evidence over partial translations is again far less consistent. According to the Bleu and

NIST measures, we see that performance for MPT and MPD ranking is at its best at link

depth 1 and decreases steadily as depth increases. F-scores for these rankings show best

performance at link depths 1 and 2 and similar performance at link depths 3 and 4 rather

161

FULL TRANSLATIONS ONLY PARTIAL TRANSLATIONS ONLY
Bleu Scores

1 2 3 4
MPT 0.6370 0.6988 0.6964 0.7067
MPP 0.5189 0.5714 0.5734 0.5791
MPD 0.6405 0.6903 0.6998 0.7069
SDer 0.5556 0.6770 0.7017 0.7104

Bleu Scores
1 2 3 4

MPT 0.2926 0.2923 0.2792 0.2742
MPP 0.3048 0.3193 0.3382 0.3101
MPD 0.2800 0.2775 0.2727 0.2611
SDer 0.2464 0.2796 0.2765 0.2688

NIST Scores
1 2 3 4

MPT 7.468 7.935 7.922 7.982
MPP 6.793 7.157 7.159 7.190
MPD 7.505 7.899 7.930 7.982
SDer 7.103 7.822 7.936 7.999

NIST Scores
1 2 3 4

MPT 4.626 4.541 4.460 4.435
MPP 4.049 4.099 4.192 4.074
MPD 4.489 4.366 4.350 4.294
SDer 4.311 4.392 4.378 4.336

F-scores
1 2 3 4

MPT 0.8051 0.8383 0.8392 0.8438
MPP 0.7266 0.7613 0.7620 0.7638
MPD 0.8083 0.8373 0.8400 0.8455
SDer 0.7717 0.8313 0.8407 0.8468

F-scores
1 2 3 4

MPT 0.5938 0.5938 0.5863 0.5861
MPP 0.5334 0.5241 0.5346 0.5264
MPD 0.5754 0.5732 0.5706 0.5660
SDer 0.5589 0.5745 0.5729 0.5705

Exact Match Scores
1 2 3 4

MPT 61.49 66.76 67.05 67.91
MPP 47.07 53.15 52.48 53.38
MPD 62.39 66.76 67.91 68.48
SDer 50.45 65.62 68.19 68.77

Exact Match Scores
1 2 3 4

MPT 2.759 2.290 0 0
MPP 11.11 11.11 11.11 11.11
MPD 4.138 3.053 1.527 1.527
SDer 4.138 3.053 1.527 1.527

Table 6.8: Results for French to English DOT translation experiments
which compare ranking strategies over each link depth for each
metric where partial and complete translations are evaluated
separately.

than consistent decreases. For MPP ranking, all three metrics show highest accuracy at

link depth 3 but Bleu and NIST show small increases as link depth goes from 1 to 2 while

F-score shows a decrease. The three measures all show the same trend for SDer ranking:

highest accuracy is at link depth 2 and decreases are seen as fragment link depth goes

from 2 to 3 and again from 3 to 4. Thus, contrary to the situation for English to French

translation, the evidence does suggest that increasing fragment depth can help to improve

output translation quality for some ranking methods in situations where sparse data is an

issue.

Table 6.8 shows, for each evaluation metric, how the different ranking strategies com-

pare in terms of translation accuracy at each depth. Here, the results for complete trans-

lations are inconsistent with the results achieved when all translations produced were eval-

uated. We saw in Table 6.6 that, over all translations, conflicting evidence from the four

evaluation metrics meant that we could not come to a conclusion as to which combination

of depth and ranking method gives the best result. These results do, however, show that

162

for Bleu, NIST and F-score, MPT ranking performs best (but at varying depths) whereas

SDer at link depth 4 achieves the highest exact match score and MPT ranking does not

achieve the best exact match score at any depth. In contrast, all four metrics show that

overall best performance is achieved using SDer ranking and all fragments of depth 4 or

less when complete translations are evaluated separately from partial translations. Fur-

thermore, all four metrics show that SDer ranking also performs best at link depth 3, that

MPD ranking performs best at link depth 1 and that MPT ranking performs best at link

depth 2 (except that the exact match measure ranks MPT joint best with MPD ranking

at link depth 2). When we look at the results of the evaluation over partial parses only we

see that the conflicting evidence gathered when all translations are evaluated together was

as a result of their influence. According to both NIST and F-score results, MPT ranking

performs best at all link depths when only partial translations can be produced. While

Bleu scores show that MPP ranking performs best at all link depths, it also ranks MPT

ranking in second place (above MPD and SDer ranking) at all link depths. This perfor-

mance over partial translations is clearly enough to tilt the overall balance in favour of

MPT ranking except when performance is considered in terms of exact match accuracy. As

partial translations are, in fact, invalid according to the DOT model, we consider that the

results over complete translations only constitute a more accurate characterisation of the

model. Accordingly, we conclude that, for French to English translation, best performance

is achieved using SDer ranking at link depth 4.

6.5 Discussion

6.5.1 Does DOT improve over SMT on the HomeCentre corpus?

In order to provide a baseline against which we can assess the performance of the DOT

model and, thus, put our results into context, we ran SMT experiments over the same

training and test data.8 For each split x we trained on the same training data trainx (but

8Training was carried out using Giza++ (Och and Ney, 2003) downloaded from
http://www.fjoch.com/GIZA++.html. Translations were generated using the ISI ReWrite Decoder
(Germann et al., 2001; Germann, 2003) downloaded from http://www.isi.edu/licensed-sw/rewrite-
decoder/ and the CMU-Cambridge Statistical Language Modeling toolkit (Clarkson and Rosenfeld, 1997)
downloaded from http://mi.eng.cam.ac.uk/ prc14/toolkit.html.

163

ENGLISH TO FRENCH TRANSLATION

Bleu Score NIST Score F-score Exact(%)
SMT 0.2686 4.984 0.6203 22.29

DOT (WORST) 0.4168 6.105 0.6513 25.62
DOT (BEST) 0.5386 7.067 0.7257 42.29

FRENCH TO ENGLISH TRANSLATION

Bleu Score NIST Score F-score Exact(%)
SMT 0.3076 5.819 0.6554 29.79

DOT (WORST) 0.4316 6.358 0.6832 36.46
DOT (BEST) 0.5494 7.075 0.7463 50.42

Table 6.9: Results for SMT translation experiments both from English to
French and from French to English.

using sentence pairs rather than tree pairs) and then tested on the test data testx and

evaluated the output translations. We scored the SMT output exactly as before, using the

exact match, Bleu, NIST and F-score metrics and averaging the scores over all splits.

We present the evaluation of SMT translation quality both when translating from

English to French and from French to English in Table 6.9. For each metric, we compare

the SMT score against both the best and worst DOT scores, regardless of which link

depth and ranking strategy was used to achieve these best and worst scores. Even the

worst DOT score (i.e. the combination of fragment depth and ranking method scoring

lowest) for each metric scores better than the SMT system when trained and tested on the

same data. Furthermore, the best DOT score for each metric scores significantly better

than the SMT system. Examples where the DOT model generated better translations

(relative to the reference translations) than the SMT model for the same input strings are

given in Table 6.10. None of the SMT translations produced were of higher quality than

the corresponding DOT translations, although translations of similar quality (again, with

respect to the reference translations) were observed.

The SMT system translations score surprisingly well given that so little training data

is available. This indicates that the data provided yields rich statistical information. How-

ever, comparison against the DOT translation scores shows that incorporating syntactic

information, phrasal alignments and arbitrary translational dependencies results in a sig-

nificant improvement in performance. Thus, we observe that the information elicited from

equally small (but richly-annotated) training sets by the DOT model, combined with the

164

ENGLISH TO FRENCH TRANSLATION

Source setting printer options

Reference configuration de les options de impression

DOT configuration de les options de impression

SMT configuration options imprimante

Source checking the status of your pending print jobs

Reference vérification de l’ état de les travaux en file d’attente de impression

DOT vérification de l’ état de les travaux de impression en attente

SMT vérification de l’ état de par attente travaux de impression

Source what do the buttons and lights do ?

Reference rôle de les boutons et de les voyants

DOT rôle de les boutons et des voyants

SMT courant procédez les boutons et voyants

FRENCH TO ENGLISH TRANSLATION

Source modification de les options de impression enregistrées dans un fichier de préréglages

Reference editing the printer options defined in a preset file

DOT editing the printer options defined in a preset file

SMT changing printer editing a preset file in options

Source sélection de le HomeCentre comme imprimante par défaut

Reference choosing the HomeCentre as your default printer

DOT choosing the HomeCentre as your default printer

SMT specifying HomeCentre as default choose the printer

Source vous pouvez à présent imprimer une page de test pour vous assurer que l’ imprimante

fonctionne et pour vérifier la qualité d’impression .

Reference you can print a test page to check the print quality and test the printer .

DOT now you can print a test page to make sure the printer work and for check print quality .

SMT you can work supported to you print a test page sure maintain printer and building to quality

the print .

Table 6.10: Examples of differing translations produced by the DOT and
SMT models for the same input string. (All DOT translations
given here were produced by searching for the MPT using
fragments of link depth 4 or less.)

165

DOT approach to generating and ranking translations, yields greater translation accuracy.

Finally, as DOT makes use of available syntactic information whereas the SMT model used

does not, we would like in the future to compare DOT performance to SMT systems which

also exploit syntactic information, such as those described by Yamada and Knight (2001)

and Charniak et al. (2003).

6.5.2 Do we improve on previous DOT experiments?

Meaningful comparison of the results published by Poutsma (2003) for the DOT model

– described in section 5.1.2 – with the results presented here is difficult for a number

of reasons. Firstly, bilingual treebanks of differing languages, text types and dimensions

are used in each set of experiments. Secondly, Poutsma does not state how exactly he

calculates the depth of each fragment so we do not know if he meant source subtree depth,

target subtree depth or some middle ground. Thirdly, Poutsma’s evaluation predates the

development of the automatic evaluation metrics we have used to assess translation quality

so his scoring methods (with the exception of the exact match metric) do not correspond to

ours. Finally, much of Poutsma’s discussion as to the quality of the translations produced

by the DOT model centers around comparison with the translations output by the Systran

machine translation system for the same sets of test sentences. We do not feel that such

a comparison is appropriate for our experiments as our test data is domain-specific and

uses specialised terminology, whereas Systran is a general purpose system.

The only possible comparison of results is on exact match accuracy over complete

translations only produced using MPT ranking. Poutsma’s results show that exact match

figures for experiments from English to German are 16%–19% and 13%–15% from Ger-

man to English. As he states that he assigns sentences for which no translation was

produced to a none category (Poutsma, 2003):349 but the published tables of results do

not indicate how many sentences fell into this category (Poutsma, 2003):350, we assume

that the scores given are based on a distribution from which untranslated sentences were

excluded. Consequently, the corresponding scores in our evaluation are those calculated

over complete translations only. Our results are significantly better, showing that the ap-

propriate exact match figures for experiments from English to French are 45.50%–60.90%

166

ALL ENGLISH TRANSLATIONS ALL FRENCH TRANSLATIONS
CPU seconds/sentence

MPT MPP MPD SDer
1 1.39 1.33 0.29 0.30
2 2.06 1.55 0.57 0.58
3 3.05 2.28 1.40 1.41
4 12.8 11.9 11.3 11.1

CPU seconds/sentence
MPT MPP MPD SDer

1 0.72 3.73 3.12 3.13
2 1.16 3.85 3.53 3.58
3 2.32 4.96 4.62 4.64
4 18.9 21.5 21.1 20.8

Table 6.11: Average time taken to translate each sentence for all link
depths and ranking strategies, and both translation direc-
tions.

and 61.49%–67.91% from French to English.

6.5.3 Ranking algorithms: efficiency vs. accuracy

As discussed in section 3.2.5, algorithms such as the Monte Carlo method which approxi-

mate an NP-hard search problem are generally not adopted if a deterministic alternative

can be found which does not introduce an unacceptable degradation in performance. We

have presented experiments where four ranking strategies are compared; two of these

strategies – MPT and MPP – use random sampling to approximate the search space

whereas the other two – MPD and SDer – use the Viterbi algorithm. In this section, we

look at how these ranking strategies compare in terms of efficiency.

Table 6.11 gives the average number of seconds required to translate each sentence at

each depth and using each of the four ranking strategies – times for English to French

translation are given on the left and times for French to English translation are given on

the right. The times given represent full processing time for each sentence, i.e. the time

taken to apply the two-phase analysis algorithm in order to determine the translation

space and the time taken to select the best output translation.9 Table 6.12 gives, for MPT

and MPP ranking, the average number of samples taken when disambiguating at each

fragment depth – again the left table refers to English as source language and the right to

French as source language.

Focussing firstly on the average times over all translations given in Table 6.11, we see

that – not surprisingly – the time taken to translate each sentence increases as fragment

link depth increases, with a large increase from link depth 3 to link depth 4. The extra time

9We do not give separate disambiguation times as parsing and disambiguation are inextricably linked
for the MPD and SDer ranking methods.

167

ALL ENGLISH TRANSLATIONS ALL FRENCH TRANSLATIONS
samples/sentence
MPT MPP

1 206.3 273.1
2 166.9 260.2
3 134.3 214.2
4 106.7 197.9

samples/sentence
MPT MPP

1 56.1 160.9
2 39.2 95.7
3 34.6 91.6
4 30.3 93.1

Table 6.12: Average number of samples taken when selecting an output
translation for MPT and MPP ranking, for all link depths
and both translation directions.

taken for each sentence at greater depths is spent building the translation space (which

contains increasing numbers of fragments) rather than ranking the output translations. In

fact, we see from Table 6.12 that fewer samples are taken per sentence for both MPT and

MPP ranking as fragment depth increases; as seen for parsing in section 3.2.5, as more

contextual information is introduced it becomes easier to determine which translation (for

MPT) and representation (for MPP) is most probable.

Again looking at Table 6.11 but this time comparing ranking algorithms, we observe

that for English to French translation at each depth, MPT ranking takes longest, followed

by MPP ranking and MPD, and SDer rankings are fastest but the difference between the

fastest and slowest at link depth 4 is just 1.7 seconds. The opposite, however, holds for

French to English translation: MPP ranking is slowest, followed by MPD and SDer, and

MPT ranking is consistently fastest. (Again, the difference in time taken between fastest

and slowest at link depth 4 is small.) This allows us to conclude that not only do the

ranking methods which require random sampling not take significantly longer to process

each sentence than our ranking strategies based on the Viterbi algorithm, but in some

instances they actually arrive at a solution more quickly. In order to investigate why this

is the case, we look more closely at the differences in times taken by the MPT and MPP

ranking methods.

For English to French translation, calculating the MPT takes longer than calculating

the MPP at each depth whereas, for French to English translation, the opposite holds.

There are two issues at play here. Firstly, we see from Table 6.12 that more samples

per sentence are required to determine the MPP than the MPT. It is sometimes the case

that although more than one pair of analyses can be generated for a given input string,

all of those analyses yield the same target translation. In this situation, sampling is

168

required to determine the most probable analysis but not to determine the most probable

translation. Clearly, this has an effect on the average numbers of samples taken for each

strategy and, consequently, the average sentence processing times. However, while this

explains why, for French to English translation, searching for the MPT is faster, it does

not explain why the opposite holds for English to French translation. Recall that one

of the factors upon which the decision to stop sampling is based is the total number of

items that are being ranked, i.e. when ranking according to translation probability, we

consider the total number of translations possible, and when ranking according to (paired)

analysis probability we consider the total number of analyses possible. However, while the

total number of analyses possible can be computed efficiently during construction of the

translation space, computing the total number of translations possible is more costly as

the combination of terminal symbols and frontier substitution sites yielded by each target

language fragment in the translation space must be considered. Whether or not the time

invested in determining exactly how many translations there are for each string is time

well spent depends on whether ranking according to translation probability gives higher

quality output than ranking according to analysis probability. Looking back to the results

for complete translations only given in Tables 6.3 and 6.7, we see that MPT ranking

significantly outperforms MPP ranking for both translation directions at all depths and

for all metrics. Thus, we conclude that, if choosing between MPT and MPP ranking,

determining the number of possible translations for each string is time well spent.

In sections 6.3 and 6.4 we looked at the accuracy achieved when complete transla-

tions (i.e. translations which, according to the training data, are fully grammatical) are

evaluated separately from partial translations (i.e. translations which, according to the

training data, are incomplete and/or ungrammatical), and found that not distinguishing

between complete and partial translations distorts the evidence as to which system con-

figuration gives higher translation accuracy. We now turn our attention to the differences

in efficiency over complete and partial translations. Table 6.13 gives the average seconds

per sentence where full translations were generated and the average seconds per sentence

where only partial translations were generated for English as source language (in the left

column) and French as source language (in the right column). Table 6.14 gives the average

169

FULL ENGLISH TRANSLATIONS FULL FRENCH TRANSLATIONS
CPU seconds/sentence

MPT MPP MPD SDer
1 0.73 1.09 0.19 0.18
2 1.63 1.10 0.38 0.41
3 2.44 1.81 0.99 1.00
4 9.10 11.5 7.59 7.51

CPU seconds/sentence
MPT MPP MPD SDer

1 0.44 3.76 1.49 1.45
2 0.83 3.94 1.78 1.81
3 1.83 4.97 2.69 2.67
4 15.5 21.5 16.2 16.0

PARTIAL ENGLISH TRANSLATIONS PARTIAL FRENCH TRANSLATIONS
CPU seconds/sentence

MPT MPP MPD SDer
1 2.65 3.26 0.47 0.52
2 2.96 5.15 0.97 0.94
3 4.32 6.02 2.27 2.25
4 20.5 15.4 19.0 18.7

CPU seconds/sentence
MPT MPP MPD SDer

1 1.38 3.36 6.88 7.03
2 2.02 2.64 8.18 8.31
3 3.60 4.83 9.75 9.86
4 27.8 21.2 34.2 33.8

Table 6.13: Average time taken to translate each sentence for all link
depths and ranking strategies, and both translation direc-
tions, where we distinguish between complete and partial
translations.

FULL ENGLISH TRANSLATIONS FULL FRENCH TRANSLATIONS
samples/sentence
MPT MPP

1 67.7 226.9
2 44.3 170.2
3 25.3 113.2
4 21.5 106.3

samples/sentence
MPT MPP

1 28.2 138.0
2 18.4 82.9
3 13.8 67.5
4 13.4 69.4

PARTIAL ENGLISH TRANSLATIONS PARTIAL FRENCH TRANSLATIONS
samples/sentence
MPT MPP

1 471.0 637.4
2 424.1 970.7
3 362.9 1011.0
4 285.3 920.6

samples/sentence
MPT MPP

1 120.5 442.9
2 94.8 254.1
3 90.0 388.1
4 75.4 385.6

Table 6.14: Average number of samples taken when selecting an output
translation for MPT and MPP ranking, for all link depths
and both translation directions, where we distinguish between
complete and partial translations.

samples per sentence (for MPT and MPP ranking) where full translations were generated

and, separately, where partial translations were generated; again, results for English as

source language are given in the left column and for French as source language in the right

column.

Table 6.13 indicates clearly that sentences for which only partial translations can be

generated take significantly longer to process at all depths than those for which full trans-

lations can be generated for both translation directions; the exception to this is MPP

ranking for French to English translation where we see that times are similar for both.

However, as was the case over all translations, processing times for MPT ranking over com-

170

plete translations are slightly higher than MPD and SDer ranking for English as source

language and slightly lower for French as source language. Although the times taken are

significantly longer, similar trends are observed for the processing of sentences for which

only partial translations are generated. We see from Table 6.14 that while, as before,

sample sizes decrease as fragment depth increases, significantly more samples are taken

when generating partial translations; this is in accordance with the increased time taken

to process these translations.

Given that the time taken to generate partial translations is longer than to generate

complete translations, that the quality of those translations is significantly poorer and

that they are, in any case, assigned zero probability by the DOT model, whether or not

we should attempt to generate such translations at all is debatable. It is important to

point out, however, that much of the time required to process these sentences is spent in

determining that they cannot be translated grammatically by the model, so not outputting

such translations may not save us a great deal of time. Furthermore, we note that while

partial translations are not of as high quality as complete translations, they still receive

reasonable evaluation scores. Thus, we conclude that generating translations which are

ill-formed with respect to the model and training data is worthwhile.

We looked in detail in sections 6.3 and 6.4 at the accuracy of each system configuration

and concluded that, overall, the highest quality translations were produced by searching

for the shortest derivation and using all fragments of link depth 4 or less. Having also

considered the efficiency of each configuration and observed that for the configurations

which give the best accuracy (MPT and SDer at link depth 4), there is little difference

in efficiency – MPT takes, on average, 1.7 seconds per sentence longer than SDer when

translating from English to French but SDer takes 1.9 seconds per sentence longer when

translating from French to English. Thus, for the DOT model over the HomeCentre

corpus, we conclude that there is no need to sacrifice accuracy for efficiency as the most

accurate model – SDer at link depth 4 – is as efficient as its closest competitor.

171

FULL ENGLISH TRANSLATIONS FULL FRENCH TRANSLATIONS
Exact Match Scores

1 2 3 4
MPT 45.40 56.00 59.08 60.92
MPP 33.57 40.85 42.72 43.66
MPD 45.40 54.46 57.54 60.31
SDer 38.10 56.00 60.92 62.15

Exact Match Scores
1 2 3 4

MPT 61.49 66.76 67.05 67.91
MPP 47.07 53.15 52.48 53.38
MPD 62.39 66.76 67.91 68.48
SDer 50.45 65.62 68.19 68.77

Table 6.15: Exact match accuracy for complete translations only.

6.5.4 How come MPP ranking performs so poorly?

The results presented in Tables 6.4 and 6.8, which illustrate translation accuracy over

complete translations only, show that MPP ranking gives significantly lower quality trans-

lations than the other three ranking methods. For example, if we focus in on the exact

match scores, which we have repeated in Table 6.15 for the sake of convenience, we see

that for English as source language the MPP score is, at best, 11.83% lower than the best

score and, at worst, 18.49% lower than the best score. The situation for French as source

language is similar: the MPP score is, at best, 13.61% lower than the best score and, at

worst, 15.71% lower.

In order to ascertain why this is the case, we look more closely at the ranking imposed

by searching for the MPP. Recall that this method ranks representations rather than

translations, where each representation comprises a source-language parse tree along with

a target-language parse tree, the terminals of which constitute the output translation.

The MPD and SDer methods also rank representations rather than translations, MPD

according to derivation probability and SDer according to derivation length (backing off to

derivation probability). Thus, we can also look at the quality of the parse tree assigned to

each input string by each of these three methods in order to determine analysis accuracy.10

Accordingly, in Table 6.16 we present an evaluation of the source-language parse trees

assigned to each input string which received a full translation where the F-score and exact

match scores were calculated as described in section 3.2.2. These results show that the

quality of the source-language parses selected by each method is very similar at each depth

– the biggest divergence in accuracy is for French parses on the exact match metric at link

depth 3 where the MPP score is 5.26% lower than the best score. Furthermore, overall

10Note that, as the MPT method ranks strings rather than representations and these strings may have
been yielded by more than one representation, this method does not select any single representation as the
best representation for the input string. Thus, we cannot evaluate parse accuracy for MPT ranking.

172

FULL ENGLISH TRANSLATIONS FULL FRENCH TRANSLATIONS
F-Score

MPP MPD SDer
1 98.17 97.65 97.13
2 98.69 98.56 98.95
3 98.95 98.56 98.56
4 98.95 98.95 98.56

F-Score
MPP MPD SDer

1 93.96 93.96 94.72
2 95.92 95.58 95.41
3 95.75 95.92 96.09
4 96.43 96.43 96.60

Exact Match
MPP MPD SDer

1 90.38 88.46 86.54
2 94.23 94.23 96.15
3 96.15 94.23 94.23
4 96.15 96.15 94.23

Exact Match
MPP MPD SDer

1 67.92 67.92 73.58
2 78.95 77.19 75.44
3 75.44 78.95 80.70
4 84.21 84.21 85.96

Table 6.16: Exact match accuracy for complete translations only.

parse quality for each of these methods is extremely high.

We have observed that the number of samples decreases at each link depth for MPP

ranking, meaning that it becomes easier to discern which representation is more likely as

depth increases. We have observed that MPP parse accuracy either increases or stays the

same as depth increases and we have observed that MPP parse accuracy is similar to that

of MPD and SDer ranking. Thus, the only explanation for poor translation performance

using this method seems to be that ranking translations for the input string according to

representation probability is simply not the most appropriate way of selecting the best

translation.

6.5.5 Does the DOP Hypothesis also apply to DOT?

The DOP Hypothesis states that parse accuracy improves as larger fragments are included

in the fragment base. As discussed in section 3.2.5, our parsing experiments on the English

and French sections of the HomeCentre corpus do not uphold the DOP Hypothesis due

to the bias in the parameter estimation method which means that, although it becomes

easier to tell which parse is best as fragment depth increases (as evidenced by sample sizes),

parse accuracy deteriorates. Thus, in section 3.2.5 we concluded that we were, indeed,

establishing correctly which parse was most probable according to the DOP model, but

the bias in favour of larger fragments meant that the most probable parse corresponded

to the best parse less frequently as fragment size increased.

In order to illustrate the problem fully, we presented information on the size of the

fragment base at each link depth, showing how the proportion of fragment space occupied

173

ENGLISH TO FRENCH FRAGMENT SETS

depth 1 depth 2 depth 3 depth 4
Fragments per training set: 6,140 29,081 148,165 1,956,786

CPU seconds to compile fragment set:† 30.8 34.0 37.8 263.2

FRENCH TO ENGLISH FRAGMENT SETS

depth 1 depth 2 depth 3 depth 4
Fragments per training set: 6,197 29,355 150,460 2,012,632

CPU seconds to compile fragment set:† 31.3 33.5 38.8 690.0

†We have included the information on the time taken to compile each fragment set in
order to (i) illustrate the relative increase in time required to compile increasingly larger
fragment sets and (ii) be as comprehensive as possible in documenting our experiments.
However, the absolute values are not informative as this module has not been optimised
for speed.

Table 6.17: Comparison of training set details in terms of the number of
fragments at each link depth and the time taken to compile
each fragment set at each link depth.

ENGLISH TO FRENCH FRENCH TO ENGLISH

%(d=1) %(d=2) %(d=3) %(d=4)
d ≤ 1 100 - - -
d ≤ 2 17.43 82.57 - -
d ≤ 3 3.35 15.86 80.79 -
d ≤ 4 0.29 1.36 6.92 91.43

%(d=1) %(d=2) %(d=3) %(d=4)
d ≤ 1 100 - - -
d ≤ 2 20.62 79.38 - -
d ≤ 3 3.33 15.78 80.89 -
d ≤ 4 0.28 1.34 6.84 91.54

Table 6.18: Comparison of the proportion of the fragment set occupied by
each fragment depth (d) as overall fragment depth increases.

by the maximum fragment link depth increased as link depth increased. In Tables 6.17

and 6.18, we present the corresponding information for the bilingual DOT fragment sets.

These tables show that the numbers of fragments and the distributions they occupy are

very similar to those shown for parsing. As we also establish fragment probabilities in the

same way as for parsing (i.e. by calculating their relative frequencies), we expect to see

the same deterioration in output quality as we did for our parsing experiments.

Contrary to expectations, however, our evaluation of translation accuracy does ac-

tually show that the DOP Hypothesis, for the most part, holds for DOT. The output

translations given in Table 6.19 illustrate how translation quality can differ depending on

the dimensions of the fragment base. For English to French translation, evaluations over

all translations and over complete translations only and for all ranking algorithms and

metrics show that translation accuracy increases as fragment size increases. For French

to English translation, the results are not quite so consistent: evaluations over complete

translations show that translation accuracy improves as depth increases for all ranking

174

NP

N PP

VPv configuration P NPdet

V NPzero de D NPpp

setting N N les N PP

printer options options P N

de impression

NP NPdet

D N D N

the software le logiciel

fragment (a) fragment (b)

Figure 6.4: link depth(a) = 2, link depth(b) = 2

algorithms and metrics translation except for MPT ranking at link depth 3. Evaluation

over all translations produced show consistent increases for SDer ranking over all metrics,

consistent increases for MPD and MPP ranking over all metrics except Bleu and consistent

increases for MPT ranking only using the exact match metric.

We believe that the observed improvements in translation accuracy as fragment depth

increases – which we have achieved despite the known bias in our probability estima-

tion method – are due to the combination of the constraints imposed on the fragment

set by the presence of translational links and how we calculate the depth of bilingual

fragments. Firstly, as discussed in section 5.2.2, the source-language subtrees and target-

language subtrees extracted according to the DOT fragmentation definition are subsets

of the source-language subtrees and target-language subtrees extracted according to the

DOP fragmentation definition. This is because the translational links themselves act as a

pruning method on the set of DOT fragments extracted by effectively specifying that only

some of the nodes in each tree can be designated root nodes and substitution sites. Thus,

from a DOP perspective, we do not use all possible fragments at each depth. Secondly, as

fragment depth is defined in terms of link depth as described in section 5.2.1, the notion of

depth for DOT fragments is not the same as for DOP fragments. As illustrated in Figure

6.4 – where fragments (a) and (b) have the same link depths despite being of very different

dimensions – the actual size of the DOT subtrees comprising fragments of the same link

depth can be radically different and, consequently, the amount of contextual information

captured by each fragment can also be radically different. This is in marked contrast to the

DOP situation, where controlling fragment depth essentially means exerting strict control

over the amount of contextual information which can be expressed by each fragment.

175

ENGLISH TO FRENCH TRANSLATION

Source in the print dialog box [see next page] , choose the options you want and click OK

Reference dans la bôıte de dialogue Impression [voir page suivante] , sélectionnez les options voulues

et cliquez sur OK .

link depth 1 lorsque les bôıte de dialogue de Imprimer se affiche [déterminer suivante page] ,

choisissez les options voulues et cliquez sur OK ;

link depth 2 lorsque les bôıte de dialogue de Imprimer se affiche [déterminer suivante page] ,

choisissez les options voulues et cliquez sur OK ;

link depth 3 lorsque la bôıte de dialogue Impression se affiche [voir page suivante] , sélectionner

les options voulues et cliquez sur OK

link depth 4 dans la bôıte de dialogue Impression [voir page suivante] , sélectionner les options voulues

et cliquez sur OK

Source on the Pagis tool bar , click Copy .

Reference sur la barre d’outils de Pagis , cliquez sur Copier .

link depth 1 sur le barre d’outils de Pagis , cliquez sur Copier .

link depth 2 sur le barre d’outils de Pagis , cliquez sur Copier .

link depth 3 dans la barre d’outils de Pagis , cliquez sur Copier .

link depth 4 sur la barre d’outils de Pagis , cliquez sur Copier .

FRENCH TO ENGLISH TRANSLATION

Source débranchez le cordon d’alimentation de la prise murale .

Reference unplug the power cord from the wall outlet .

link depth 1 disconnect your power supply of the wall socket .

link depth 2 disconnect the power cord of the wall outlet .

link depth 3 disconnect the power cord from the wall socket .

link depth 4 disconnect the power cord from the wall outlet .

Source dans la bôıte de dialogue Impression , cliquez sur Propriétés .

Reference in the print dialog box , click Properties [or Setup] .

link depth 1 to the print dialog box click properties [or Setup] .

link depth 2 in the print dialog box click properties [or Setup] .

link depth 3 in the print dialog box , click properties [or Setup] .

link depth 4 in the print dialog box , click properties [or Setup] .

Table 6.19: Examples showing how DOT output translations can differ
depending on the dimensions of the fragment base.

176

We suggest, therefore, that the improved parameter estimation methods developed

for DOP and described in section 2.6 should also be applied to DOT. We conjecture

that, although the DOT model does not suffer the same deterioration in accuracy as the

DOP model due to the probability estimation bias, better estimation of the fragment

probabilities will, nevertheless, lead to further improvements in accuracy as the fragment

set increases in size. Furthermore, we hypothesise that searching for the most probable

translation may yield higher translation accuracy than searching for the shortest derivation

if parameter estimation is improved.

6.5.6 Which translation direction is more difficult for DOT?

Looking at the average times per sentence and the average numbers of samples taken per

sentence as shown in Tables 6.11 and 6.12, it appears that it is more difficult to trans-

late from French to English than from English to French. This seems reasonable as the

DOP experiments presented in section 3.2.5 showed that parsing the French section of the

HomeCentre corpus was more difficult than parsing the English section. Looking, how-

ever, at translation accuracy, we see that translating from French to English also produces

higher quality translations. For example, over all translations for all ranking strategies

and at all fragment depths, the highest exact match score for French to English transla-

tion was 50.42% whereas the highest exact match score for English to French translation

was 42.49%. This outcome illustrates a weakness of the DOT model, namely that it finds

phenomena such as determiner-noun agreement, determiner-adjective-noun agreement and

subject-verb agreement difficult to model – examples of translations produced which con-

tain agreement errors are given in Table 6.20. Thus, it is not surprising that translating

into French, for which these types of agreements are very common, proves more difficult

than translating into English, for which they are less prevalent.

177

Source in Windows 95 , click the Xerox Document HomeCentre button on the taskbar .

Reference sous Windows 95 , cliquez sur le bouton Xerox Document HomeCentre figurant

sur la barre des tâches .

DOT sous Windows 95 , cliquez sur le Xerox Document HomeCentre bouton figurant

sur le barre des tâches .

Source in the Save As dialog box , type a name in the preset name box and click OK .

Reference dans la bôıte de dialogue Enregistrer sous , tapez un nom dans

la zone Nom préréglage et cliquez sur OK .

DOT dans le bôıte de dialogue Enregistrer sous , type un nom dans le bôıte qui contient

la nom préréglage et cliquez sur OK .

Table 6.20: Examples of translations produced by the DOT model which
contain agreement errors.

6.6 Acquisition of sub-structurally aligned bilingual tree-

banks

Our evaluation of the DOT model has shown that it achieves high levels of translation

accuracy. However, the problem of data acquisition constitutes a serious bottleneck as

DOT requires that parsed sentence pairs be aligned at sentential and sub-structural levels.

Manually establishing sub-structural alignments – as was done for the data used in the

experiments presented thus far – is impractical because it is time-consuming and requires

considerable expertise of both source and target languages as well as how they are related;

clearly, automation of this process is essential.

Groves et al. (2004) present an algorithm which automatically induces sub-structural

alignments between context-free phrase structure trees in a fast and consistent fashion.

This algorithm starts by finding lexical correspondences between the source and target

trees and then proceeds from the aligned lexical terminal nodes in a bottom-up fashion,

using a mixture of node label matching and structural information to link source and

target node pairs within the trees.

In order to assess the performance of the DOT model when translational links are

inserted automatically rather than manually, we present parallel DOT experiments (also

presented in (Groves et al., 2004)). We took two identical copies of a set of 605 English-

French sententially-aligned tree pairs from the HomeCentre corpus and aligned one of these

copies manually (Cm) and the other (Ca) automatically. We then randomly extracted 8

178

(A) (B)

BLEU F-Score
Auto Man Auto Man

1 0.0605 0.2627 0.3558 0.5506
2 0.1902 0.3018 0.4867 0.5870
3 0.1983 0.3235 0.4957 0.6045
4 0.2140 0.3235 0.5042 0.6069

BLEU F-Score
Auto Man Auto Man

1 0.6118 0.6591 0.7900 0.8090
2 0.7519 0.7144 0.8751 0.8446
3 0.7790 0.7610 0.8887 0.8688
4 0.7940 0.7611 0.8930 0.8736

Table 6.21: Results of English to French translation experiments using
automatic and manual alignments; table (A) gives results
over all translations and table (B) gives results for those sen-
tences translated using both types of alignments.

different training/test splits from Cm and Ca such that Ci
m and Ci

a contained the same

test sentences and training trees. As the only difference between the DOT experiments

run over splits C1
m–C8

m and C1
a–C8

a is in the translational links between source and target

training trees, this was the only possible reason for differences in translation accuracy.

Thus, examination of the output translations allows us to establish the consequences of

using automatic rather than manual alignments.

We present the results of these experiments in Table 6.21. Looking firstly at (A), we see

that using the manually linked fragment base results in significantly better overall perfor-

mance at all link depths than using the automatic alignments. However, the comparatively

poor scores achieved using the automatically induced alignments reflect the fact that these

alignments give poorer coverage at all depths than those determined manually (47.71%

vs. 66.46% at link depth 1, 56.39% vs. 67.92% at link depths 2 - 4). The results in (B)

– where we evaluated only the subset of sentences for which translations were produced

both when the manually aligned fragment bases were used and when the automatically

linked ones were used – show that the translations generated using automatic alignment

are actually of comparable quality to those generated using manual alignments.

While the alignment algorithm used in these experiments is quite basic, our evaluation

indicates clearly that using such an algorithm is a viable alternative to manual alignment.

Furthermore, we believe that the development of a more sophisticated algorithm will yield

even greater returns in terms of translation coverage and quality. Consequently, we feel

that automatic acquisition of the resources required by the DOT model is a real possibility

and deserves further attention.

179

6.7 Summary

Using the DOT system described in chapter 5, we have carried out a more detailed study

of the performance of the DOT model of translation than presented heretofore. In this

chapter, we have described our experiments in terms of the data used and the evalua-

tion metrics upon which our assessment of the performance of the DOT model is based.

Our evaluation shows firstly that, for DOT, translation accuracy is very high according

to all evaluation metrics used. Even the worst DOT score (i.e. the combination of frag-

ment depth and ranking method scoring lowest) for each metric is better than the score

achieved using an SMT system trained and tested on the same data. Furthermore, the best

DOT score for each metric scores significantly higher than the SMT system. In addition,

translation times are faster than might have been assumed. Interestingly, the ‘simplicity’

model proposed for DOP does extremely well for DOT, outperforming the standard MPT

model. We hypothesise that further improvements may well be gained by combining the

two models, as was the case for DOP (Bod, 2003a). Finally, preliminary work on auto-

matic resource acquisition for DOT has proved promising. This will be crucial if DOT

systems are to be scaled up further.

The DOT model evaluated here operates solely on the level of syntactic structure. Con-

sequently, many of the errors in translation output center around linguistic phenomena

such as determiner-noun agreement, determiner-adjective-noun agreement and subject-

verb agreement. However, the data-oriented approach to translation in general is not

limited in terms of linguistic description to context-free phrase-structure trees. DOT

models can also be defined for representations corresponding to more sophisticated lin-

guistic formalisms. We discuss one such model, which assumes the representations of

Lexical-Functional Grammar, in chapter 8.

180

Chapter 7

A richer DOP model: LFG-DOP

All DOP models assume a corpus of utterances which have been annotated with linguistic

representations conforming to a particular grammar formalism, from which a set of frag-

ments can be extracted and the probabilities of those fragments estimated. Consequently,

the DOP output for any input string is an analysis which also conforms to the same gram-

mar formalism used to annotate the corpus – if the corpus annotations are context-free

phrase structure trees, as is the case for the Tree-DOP model described in chapter 2,

then the analysis assigned to any input string will also be a context-free phrase structure

tree. While experimental results show that the Tree-DOP model achieves excellent parse

accuracy (e.g. (Bod, 2001, 2003a)), the expressive power of this model is nevertheless

limited by the corpus representations it assumes. It is known that these representations,

which reflect surface syntactic phenomena only, do not adequately describe many aspects

of human language.

The LFG formalism (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001), on

the other hand, is known to be beyond context-free. As its representations encode gram-

matical features (such as number, case and tense) and identify the grammatical functions

of constituents (such as subject, object and complement) in the context in which they

occur, they are powerful enough to express linguistic phenomena occurring at levels other

than surface structure. Thus, there is clear motivation for the development of parsing

models which output this type of linguistic analysis. A DOP model which assumes LFG

representations was proposed by Bod and Kaplan (1998) and further refinements to the

181

model, as well as empirical evaluations, were published in (Bod, 2000a,b; Bod and Kaplan,

2003).

In section 7.1 of this chapter, we describe the proposed LFG-DOP model while in

section 7.2 we outline the available details of the LFG-DOP implementation which has

been built and give the results achieved using this system. In section 7.3, we discuss

some of the implications of how LFG-DOP fragments have been defined and propose

an alternative method of specifying fragment constraints. In section 7.4, we show how

parameter re-estimation techniques developed for Tree-DOP using back-off can also be

applied in the LFG-DOP model. Furthermore, we describe how the back-off relationships

between fragments can be used to achieve robustness in an efficient manner. Finally, in

section 7.5 we discuss the application of efficient Tree-DOP parsing and disambiguation

strategies to the implementation of the LFG-DOP model.

7.1 The LFG-DOP Model

As for Tree-DOP, providing a specification of the LFG-DOP model means we must specify

four elements: the type of representation we expect to find in the example base, how

fragments are to be extracted from those representations, how extracted fragments are

to be recombined when parsing new input strings and how the resulting parses are to be

ranked. In the following sections, we provide details of each of these elements for the

LFG-DOP model.

7.1.1 Representations

The representations found in the LFG-DOP example base are <c,φ,f> triples compris-

ing c-structure, φ-links and f-structure which correspond to LFG theory – an example

LFG representation is given in Figure 7.1. The c-structures take the form of context-free

phrase-structure trees, while the f-structures are attribute-value matrices. The φ-links

are mappings between c-structure nodes and f-structure values. F-structure values can be

either simple or complex, where a complex value is an f-structure unit. For example, the

outer f-structure unit f1 in Figure 7.1 comprises six attributes; the value associated with

the SUBJ attribute is a complex value, whereas the values associated with all the other

182

S

NP VPaux

D NPadj Aux V

the A N is flashing

yellow LED f1

























































PRED ‘flash〈SUBJ〉’

MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

f3

































PRED ‘LED’

CASE nom

NUM sg

PERS 3

SPEC-FORM the

SPEC-TYPE def

ADJUNCT







f5

[

PRED ‘yellow〈SUBJ〉’

SUBJ f3

]































































































Figure 7.1: An example LFG representation for the string the yellow LED
is flashing.

attributes are simple values.

For an f-structure to be well-formed according to LFG theory, each attribute must

have exactly one value – this stipulation is called the uniqueness condition. Simple values

comprising lemmas use argument lists to encode subcategorisation information about the

c-structure terminals to which they correspond, i.e. they specify the grammatical func-

tions required by the lexeme. For example, the value of the PRED attribute in f-structure

unit f1 of the example in Figure 7.1 stipulates that flash subcategorises for a subject only.

According to the completeness condition, in order for the f-structure to be well-formed,

a SUBJ attribute must also be present in the f-structure unit local to this surface form,

i.e. unit f1. Furthermore, the coherence condition requires that all governable attributes

local to an f-structure unit must be subcategorised for by the surface form local to that

f-structure unit. The representations in example (7.1) below are examples of ill-formed

LFG representations: representation (a) violates the uniqueness condition as it contains

two values for the feature NUM, representation (b) violates the completeness condition

as the SUBJ required by leave is missing and representation (c) violates the coherence

condition as the governable attribute OBJ is not subcategorised for by leave. The unique-

ness and coherence conditions are monotonic, meaning that they will be unsatisfied for a

superstructure if they are unsatisfied for any of its substructures. Completeness, on the

other hand, is non-monotonic, i.e. completeness may be unsatisfied for a substructure but

satisfied for any of its superstructures.

183

(a) S

NP VP

Mary left
f1





























PRED ‘leave〈SUBJ〉’

NUM sg

NUM pl

PERS 3

SUBJ
f2

[

PRED ‘Mary’

]





























(b) S

NP VP

Mary left

f1













PRED ‘leave〈SUBJ〉’

NUM sg

PERS 3













(c)

S

NP VP

Mary left
f1































PRED ‘leave〈SUBJ〉’

NUM sg

PERS 3

OBJ
f3

[

NUM sg

]

SUBJ
f2

[

PRED ‘Mary’

]































(7.1)

7.1.2 Fragmentation

The fragmentation operators for LFG-DOP are extensions of those used in Tree-DOP as

we wish to extract exactly the same set of generalised c-structure fragments as before.

However, we also wish to extract the corresponding f-structure fragment to go with each

c-structure. Consequently, the original root and frontier operators must be extended to

take f-structure into account. Many different extensions can be envisaged; those defined

in (Bod and Kaplan, 1998, 2003; Bod, 2000a,b), are as follows:

Root Given a copy of the example-base representation <c,φ,f> named <ccopy,φcopy,fcopy>:

1. select a node in ccopy to be root and delete all nodes except this node and the nodes

it dominates;

2. delete all links in φcopy which link deleted c-structure nodes to fcopy;

3. delete all f-structure units in fcopy which are not φ-accessible from ccopy;

4. delete all semantic forms in fcopy which are local to f-structure units corresponding

to erased c-structure terminals.

Frontier Given a representation of the form <ccopy,φcopy,fcopy> created by the root

operation:

1. select a (possibly empty) set of nodes in ccopy to be frontier nodes and delete all

nodes dominated by these newly-created frontier nodes;

184

2. delete all links in φcopy which link deleted c-structure nodes to fcopy;

3. (delete all f-structure units in fcopy which are not φ-accessible from ccopy;)

4. delete all semantic forms in fcopy which are local to f-structure units corresponding

to erased c-structure terminals.

Step 3 of the frontier operation (shown in brackets above) is given here for the sake

of completeness; as a consequence of the definition of φ-accessibility given in (Bod and

Kaplan, 1998, 2003; Bod, 2000a,b) and described below, the root node of ccopy (selected

during the root operation) accesses all f-structure units in fcopy regardless of which nodes

are selected by the frontier operation. This definition of φ-accessibility is as follows:

φ-accessibility An f-structure unit f is φ-accessible from c-structure node n if and only

if

1. n is φ-linked to f , i.e. φ(n) = f , or

2. n is φ-linked to fx and f contains fx i.e. there is a chain of attributes leading from

f to fx.

The fragmentation process is illustrated in Figure 7.2 where, through the application

of root and frontier, representation R1 yields fragments f1 – f6. Consider, for example,

the extraction of fragment f6: during step 1 of the root operation, node N was selected to

be root and all nodes not dominated by this node were deleted; during step 2 all φ-links

specifying the deleted nodes VPv and V were deleted; during step 3 the f-structure units

1 and 2 were deleted as they were no longer φ-accessible from the c-structure and during

step 4 no changes were made as there were no remaining lemmas corresponding to deleted

c-structure terminal symbols. As step 1 of the frontier operation selected the empty set, no

further representation elements were deleted during the application of frontier operation

steps 2 – 4. In contrast, deletion of f-structure elements occurs solely during application

of the frontier operation when extracting fragment f4: during step 1 of the root operation,

node VPv was selected as root, meaning that application of root steps 2 – 4 effected no

changes to the f-structure. During step 1 of the frontier operation, nodes V and N were

185

(A) A sample LFG representation :

(R1)

VPv

V N

scanning documents

1































PRED ‘scan〈SUBJ,OBJ〉’

NUM sg

PERS 3

SUBJ
2

[

PRED ‘pro’
]

OBJ

3











PRED ‘documents’

CASE acc

NUM pl

PERS 3









































(B) The LFG-DOP fragments which can be extracted from representation R1 using root and frontier :

(f1) (f2)

VPv

V N

scanning documents

1































PRED ‘scan〈SUBJ,OBJ〉’

NUM sg

PERS 3

SUBJ
2

[

PRED ‘pro’
]

OBJ

3











PRED ‘documents’

CASE acc

NUM pl

PERS 3









































VPv

V N

scanning
1



























PRED ‘scan〈SUBJ,OBJ〉’

NUM sg

PERS 3

SUBJ
2

[

PRED ‘pro’
]

OBJ

3







CASE acc

NUM pl

PERS 3

































(f3) (f4)

VPv

V N

documents
1



























NUM sg

PERS 3

SUBJ
2

[

PRED ‘pro’
]

OBJ

3











PRED ‘documents’

CASE acc

NUM pl

PERS 3





































VPv

V N

1























NUM sg

PERS 3

SUBJ
2

[

PRED ‘pro’
]

OBJ

3







CASE acc

NUM pl

PERS 3





























(f5) (f6)

V

scanning

1



























PRED ‘scan〈SUBJ,OBJ〉’

NUM sg

PERS 3

SUBJ
2

[

PRED ‘pro’
]

OBJ

3







CASE acc

NUM pl

PERS 3

































N

documents 3











PRED ‘documents’

CASE acc

NUM pl

PERS 3











(C) The LFG-DOP fragments which can be extracted from fragment f6 using discard :

(f7) (f8) (f9)

N

documents
3







PRED ‘documents’

NUM pl

PERS 3







N

documents
3







PRED ‘documents’

CASE acc

PERS 3







N

documents
3







PRED ‘documents’

CASE acc

NUM pl







(f10) (f11) (f12)

N

documents

3

[

PRED ‘documents’

CASE acc

]

N

documents

3

[

PRED ‘documents’

NUM pl

]

N

documents

3

[

PRED ‘documents’

PERS 3

]

(f13) N

documents

3

[

PRED ‘documents’
]

Figure 7.2: The LFG-DOP fragmentation process: application of the
root and frontier operations to treebank representation T1

yields the 6 fragments f1–f6; application of the discard oper-
ation to fragment f6 yields fragments f7–f13.

186

selected to be frontiers and the subtrees they dominate deleted; during step 2, no φ-links

are deleted as the only c-structure nodes deleted were terminal symbols; however, during

step 4, the semantic forms corresponding to those deleted terminal symbols were erased

from the f-structure.

The extended root and frontier operations for LFG-DOP yield precisely the same

c-structures as are yielded by the root and frontier operations defined for Tree-DOP.

However, it is also possible to extract further fragments from each fragment yielded by the

root and frontier operations through use of the discard operation. Discard is used to delete

attribute-value pairs from the f-structure whose values are not φ-linked to remaining nodes

in the c-structure and are not surface-forms corresponding to c-structure terminals. Thus,

when discard is applied to any fragment <c,φ,f>, a new fragment <c,φ,fdx
> is extracted;

the c-structure and φ-links are unchanged but fdx
differs from f in that all attribute-value

pairs in fdx
are also in f but the reverse does not hold, i.e. it is not the case that all

attribute-value pairs in f are also in fdx
.

Fragments f7 to f13 in Figure 7.2(C) were extracted from fragment f6 in Figure 7.2(B)

using the discard operation. Fragment f7, for example, was extracted by deleting the

CASE attribute and its value, meaning that this noun fragment can now appear in any

sentence position rather than being restricted to those positions taking accusative case.

Fragment f13 was extracted by deleting all eligible attribute-value pairs – the attribute

PRED is not eligible for deletion as its value corresponds to the c-structure terminal doc-

uments – and is, thus, the least specific f-structure which can be extracted from this frag-

ment. The number of fragments DF extracted using discard from the fragment <c,φ,f> is

exactly the number of ways attribute-value pairs can be deleted from f without violating

the φ-links. This can be calculated using the formula given in (7.2) below where m is the

number of attribute-value pairs in the outermost f-structure unit of f whose values are

simple and not lemmas (including values which are indices referencing complex values),

fx is the complex value of an attribute-value pair in the outermost f-structure unit of f

which is not linked to a c-structure node and fy is the complex value of an attribute-value

pair in the outermost f-structure unit of f which is linked to a c-structure node. (We

subtract 1 to adjust for the fact that the fragment base already contains a fragment where

187

no attribute-value pairs have been deleted from the f-structure and thus we do not allow

discard to return a fragment to which no deletions have been made.)

DF (f) = 2m
∏

fx

(DF (fx) + 1)
∏

fy

DF (fy) − 1 (7.2)

For example, according to this formula the discard operation extracts a further 95 frag-

ments from fragment f1 in Figure 7.2(B), each of which has the same c-structure and

φ-links as fragment f1 but differs with regard to the constraints imposed in its f-structure.

Hence, the number of discard fragments which can be extracted from the set of fragments

in Figure 7.2(B) is 482 and the total number of root, frontier and discard fragments which

can be extracted from representation R1 is 488.

7.1.3 Composition

The LFG-DOP composition operation involves two stages: leftmost substitution over c-

structure and recursive unification over f-structure such that the φ-links are not broken.

This process is illustrated in Figure 7.3. C-structure composition is defined exactly as for

Tree-DOP: derivation sequence der1 in Figure 7.3(C), involving the composition of the

c-structures of fa and fb, requires the substitution of fb at the leftmost substitution site of

fa provided that the root node of fb and the leftmost substitution site of fa are of the same

category. This is followed by recursive unification of fb’s f-structure with the f-structure

unit of fa to which the leftmost substitution site in fa was linked according to the φ-links.

Any sequence of composition operations yielding a complete derivation (i.e. one which

contains no open c-structure substitution sites) is only valid if that derivation’s f-structure

adheres to the LFG well-formedness conditions described in section 7.1.1. However, the

presence in the fragment base of discard-generated fragments means that many apparently

ill-formed input strings can also be parsed. This process is illustrated in derivations der2

– der4 in Figure 7.3(C) where fragments formed using root and frontier only (i.e. fa, fb

and fc) and fragments formed using root, frontier and discard (i.e. fd and fe) can be used

unrestrictedly in deriving analyses of the ill-formed input an LEDs. The formation of an

analysis by composing fragments fa and fc yields an f-structure which is invalid due to

188

(A) A sample fragment base generated using root and frontier :

(fa) (fb) (fc)

NPdet

D N

LEDs
1















PRED ‘LEDs’

CASE nom

NUM pl

PERS 3

SPEC []















D

the 1









CASE nom

PERS 3

SPEC
[

SPEC-FORM ‘the’
]









D

an
1













CASE nom

NUM sg

PERS 3

SPEC
[

SPEC-FORM ‘a’
]













(B) Some discard fragments which can be generated from (A) :

(fd) (fe)

NPdet

D N

LEDs 1











PRED ‘LEDs’

CASE nom

PERS 3

SPEC []











D

an 1









CASE nom

PERS 3

SPEC
[

SPEC-FORM ‘a’
]









(C) Some composition sequences using fragments from (A) and (B) :

der1 : fa ◦ fb = NPdet

D N

the LEDs
1

















PRED ‘LEDs’

CASE nom

NUM pl

PERS 3

SPEC
[

SPEC-FORM ‘the’
]

















der2 : fa ◦ fe = NPdet

D N

an LEDs
1

















PRED ‘LEDs’

CASE nom

NUM pl

PERS 3

SPEC
[

SPEC-FORM ‘a’
]

















der3 : fd ◦ fc = NPdet

D N

an LEDs
1

















PRED ‘LEDs’

CASE nom

NUM sg

PERS 3

SPEC
[

SPEC-FORM ‘a’
]

















der4 : fd ◦ fe = NPdet

D N

an LEDs 1













PRED ‘LEDs’

CASE nom

PERS 3

SPEC
[

SPEC-FORM ‘a’
]













Figure 7.3: Fragments fd and fe were extracted using discard from the
root and frontier fragments fa and fc. The ungrammatical
input an LEDs can be assigned analyses using discard frag-
ments from which the attribute-value pairs causing clashes
have been deleted.

189

the presence of two values for the attribute NUM as fa is plural whereas fc is singular. In

der2, however, fragment fe – extracted by deleting the NUM attribute from fragment fc

– is composed with fa to yield a plural analysis for the input, and in the second, fragment

fd – extracted by deleting the NUM attribute from fragment fa – is composed with fc

to yield a singular analysis. The third derivation, in which fragments fd and fe – both of

which are generated by deleting NUM attributes – are composed, yields an analysis for

the input in which NUM is not specified.

Thus, the use of discard fragments gives a robust system as analyses can be provided

for many input strings perceived to be ungrammatical. The notion of grammaticality is

retained, however, through the following definition (Bod and Kaplan, 2003):

A sentence is grammatical with respect to the corpus if and only if it has at

least one valid representation with at least one derivation without generalised

fragments.

Thus, strings which can only be parsed using one or more discard-generated fragments

are deemed ungrammatical with respect to the corpus; this accounts for both ill-formed

strings and strings which are well-formed but beyond the scope of the training data.

7.1.4 The Probability Model

In the Tree-DOP model, valid derivations are constructed by composing fragments such

that the category-matching condition is fulfilled. Each valid derivation is assigned a proba-

bility by calculating the product of the probabilities of the fragments used in the construc-

tion of that derivation. The probabilities of all valid derivations which can be constructed

from a given DOP grammar for all of the strings which it recognises sums to 1.

Each LFG-DOP derivation probability is also calculated as the product of the probabil-

ities of the fragments used in the construction of that derivation. In the LFG-DOP model,

however, we have seen that valid derivations are constructed by composing fragments

such that the category-matching, uniqueness, completeness and coherence conditions are

fulfilled. If we calculate LFG-DOP fragment probability distributions in the same way

as we did for Tree-DOP – i.e. define distributions over root node category – then the

probabilities of all derivations for all the strings recognised by the grammar which adhere

190

to the category-matching condition will sum to 1. However, it is not the case that all of

these derivations are valid according to the LFG-DOP model as they may not fulfil the

uniqueness, completeness and coherence conditions. Consequently, the probabilities of all

valid derivations which can be constructed from a given LFG-DOP grammar for all of

the strings which it recognises no longer sums to 1 and, therefore, does not constitute a

probability distribution. In other words, the LFG-DOP model ‘leaks’ probability mass by

assigning non-zero probabilities to derivations which are not actually valid.

In order to present the LFG-DOP probability model proposed by (Bod and Kaplan,

1998, 2003) (under which the probabilities of all valid derivations of all recognised strings

sums to 1), it is helpful to restate the Tree-DOP probability model as follows. Building

a Tree-DOP derivation can be viewed as a top-down stochastic branching process. A

fragment whose root node corresponds to the start category is selected at random to start

the derivation. Further fragments are successively chosen to combine with the leftmost

open substitution site of the derivation; these fragments are chosen at random from the

set of fragments competing for selection at each substitution site. Thus, the competition

probability (CP) of selecting a fragment at random to participate in a derivation is the

likelihood with which it is drawn from the competition set (CS), i.e. its probability over

the total probability mass assigned to the CS as given in equation (7.3).

CP (f) =
P (f)

∑

f ′∈CS P (f ′)
(7.3)

The only criterion which fragments must meet in order to belong to a given competition set

is that their root nodes are of the same syntactic category as the leftmost substitution site

in question. Consequently, the distribution of the competition sets corresponds exactly to

the distribution of fragments in the fragment base, and dividing by the total probability

mass assigned to each competition set is unnecessary in practice.

As many Tree-DOP derivations can yield the same parse tree, the probability of a

parse is the sum of the probabilities of the derivations which yield that parse conditioned

on the total probability mass assigned to those randomly-selected derivations which yield

191

valid parses as given in equation (7.4).

P (T |T is valid) =
P (T)

∑

T ′ is valid P (T ′)
(7.4)

Again, as the only condition imposed on fragment combinations is that of category match-

ing, all random derivations yield valid parse trees and it is unnecessary in practice to

normalise by dividing by the probability mass assigned to valid parses.

Bod and Kaplan (1998, 2003) make the observation that the process of building an

LFG-DOP derivation can also be viewed as a top-down stochastic branching process but

this process differs from that of Tree-DOP in two crucial ways. Firstly, not all fragments

whose root nodes correspond to the leftmost substitution site category of a partial deriva-

tion are members of the competition set and, therefore, eligible for composition with the

derivation at hand as, as previously stated, the category-matching condition is not the

only well-formedness condition for LFG-DOP. This means that the probability distribu-

tion of each competition set is no longer the same as the distribution of fragments in the

fragment base and we must condition fragment selection probability on the competition

set probability mass as in equation (7.3). Recall, however, that the completeness condition

is non-monotonic. This means that no partial derivation can be checked for completeness,

i.e. a derivation can only be judged for completeness when it contains no open substitution

sites and, therefore, no further fragments can be composed with it. This characteristic

of LFG derivations results in the second crucial difference between the LFG-DOP and

Tree-DOP models, namely that the stochastic branching process by which derivations

are constructed does not necessarily yield valid representations even when the other well-

formedness conditions have been verified during fragment selection. Consequently, it is

necessary to normalise in terms of the probability mass assigned to valid derivations only

as specified in equation (7.4).

While the completeness condition must be enforced after sampling, the uniqueness and

coherence conditions can be enforced either during or after sampling. Accordingly, three of

the many possible probability models – M1, M2 and M3 – corresponding to three different

competition set definitions are described by Bod and Kaplan (1998, 2003).

192

Model M1 Model M1 is the simplest model as it is a straightforward extension of

the Tree-DOP model. That is, only the category matching condition is enforced during

sampling; after sampling, each derivation is checked for uniqueness, completeness and

coherence and deemed either valid or invalid accordingly. Therefore, having completed

derivation step Di−1, the next competition set CSi is the set of fragments whose root

nodes match the leftmost substitution site LSS of Di−1. The competition sets for Model

M1 are thus calculated according to the definition given in (7.5).

CSM1 = {f : root(f) = LSS(Di−1)} (7.5)

Model M2 Model M2 defines the competition sets so that the uniqueness condition is

checked at each sampling step. Only fragments with the appropriate root node and which

unify successfully (i.e. without introducing clashes) with the current partial derivation are

included in the competition set; after sampling, each completed derivation is checked for

completeness and coherence and deemed either valid or invalid accordingly. The competi-

tion set for Model M2 having completed derivation step Di−1 is thus calculated according

to the definition given in (7.6).

CSM2 = {f : root(f) = LSS(Di−1) ∧ unique(Di−1 ◦ f)} (7.6)

Model M3 Model M3 defines the competition sets such that both the uniqueness

and coherence conditions are checked each time a fragment is composed with the current

subderivation. Consequently, only fragments with the appropriate root node and which

unify without violating either the uniqueness or coherence conditions are included in the

competition set. Again, the completeness condition is verified only after the full derivation

has been sampled. The competition set for Model M3 having completed derivation step

Di−1 is calculated according to the definition given in (7.7).

CSM3 = {f : root(f) = LSS(Di−1) ∧ unique(Di−1 ◦ f) ∧ coherent(Di−1 ◦ f)} (7.7)

193

Estimating fragment probabilities Each of the models M1 – M3 described above

requires an initial estimate for the probability of each LFG-DOP fragment. One possible

way to estimate the probability of a Tree-DOP fragment is to take its empirical frequency

conditioned on root node. This estimator can also be applied to LFG-DOP fragments – it

is termed ‘simple relative frequency’ or ‘simple RF’ by Bod and Kaplan (2003). However,

this estimator draws no distinction between fragments generated by the root and frontier

operators and discard-generated fragments. If the number of fragments which can be

extracted from a treebank using the root and frontier operations is generally very large, the

number of discard-generated fragments which can be extracted from the set of fragments

generated by root and frontier is far larger again. Recall that application of the root and

frontier operators to the representation R1 in Figure 7.2 yielded 6 fragments in contrast to

the 482 fragments yielded by discard. In other words, almost 99% of the fragment space

is occupied by those fragments generated by the discard operation. As the simple RF

estimator treats all fragments equally regardless of how they were generated, this means

that almost 99% of the probability mass is also given to these fragments. Fragments

generated by discard effectively relax the constraints specified in the f-structure to allow

the fragment to be used in a wider variety of contexts and so are very useful in constraint-

based DOP parsing. Intuitively, however, they should only be considered when no parse

can be produced which satisfies all relevant constraints, i.e. they should be used only when

the input is ill-formed. Consequently, this estimator does not seem entirely appropriate.

Bod and Kaplan (2003) present an alternative method – termed ‘discounted RF’ – of

estimating fragment probabilities whereby root and frontier fragments are treated as seen

events and discard fragments as unseen events. The fragment set is partitioned using this

distinction and two separate probability distributions induced. The probabilities of seen

events are estimated by their relative frequencies as before. However, these probabilities

are then discounted and the discounted mass distributed amongst the unseen events. The

amount of probability mass to be discounted from seen events is calculated using the Good-

Turing estimator which computes the probability mass to be discounted as n1
N

where n1 is

the number of fragments occurring just once in the set of seen events and N is the total

number of seen events. Thus, the total probability mass assigned to seen fragments is

194

reduced from 1 to 1− n1
N

as shown in equation (7.8) and the unseen fragments are assigned

probabilities proportional to the remaining mass n1
N

as shown in equation (7.9).

P (f : f ∈ seen) = (1 − n1

N
)

|f |
∑

f ′∈seen |f ′| (7.8)

P (f : f ∈ unseen) = (
n1

N
)

|f |
∑

f ′∈unseen |f ′| (7.9)

As the discount RF estimator assigns a fixed amount of probability mass to the discard-

generated fragments, the fact that the number of discard fragments is far greater than the

number of root and frontier fragments no longer affects their probabilities.

Discussion

In order to ensure that the probabilities of all valid LFG-DOP derivations which can be

constructed for a given LFG-DOP grammar for all of the strings which it recognises sums

to 1, models M1 – M3 specify that fragment probabilities are normalised. Each fragment

probability is conditioned on the probability mass of the set of valid fragments from which

it is selected to participate in the derivation at hand and the resultant probability of each

derivation produced is conditioned on the probability mass of the set of valid derivations.

This normalisation procedure would appear to rectify the problem of probability mass

being assigned to invalid representations by ensuring a proper probability distribution

over valid derivations. However, Abney (1997) observes that normalisation serves only to

mask the fact that, unlike for the context-free case, establishing probabilities for grammars

encoding context-sensitive dependencies using relative frequency estimation does not yield

the best weights. Bod and Kaplan (2003) note that neither of the methods they propose

for estimating fragment probabilities – simple RF and discounted RF – address this issue,

and that determining what kind of estimator is the true one will form part of future

research.

195

7.2 LFG-DOP in practice

Empirical evaluations of the LFG-DOP model have been carried out with two LFG-

annotated corpora, both of which were annotated at Xerox PARC. These are the Verbmobil

corpus, which comprises 540 parses, and the English HomeCentre corpus which comprises

980 parses. Each corpus was split randomly into 90% training sets and 10% test sets in

10 different ways such that all words in the test set were also contained in the training

set. The sentences in each test set were then parsed using the representations in the cor-

responding training set according to the LFG-DOP model. Due to memory constraints

the fragments extracted from each training set were limited to those of depth 4 or less.

In this section, we present these evaluations of the LFG-DOP model (Bod, 2000a,b; Bod

and Kaplan, 2003) in terms of parsing architecture (section 7.2.1), evaluation methodology

(section 7.2.2) and results achieved (section 7.2.3).

7.2.1 Parsing with LFG-DOP

As LFG representations comprise context-free phrase-structure trees (c-structure) associ-

ated with sets of constraints (f-structure) on the contexts in which these trees may occur,

it is the c-structures which drive the parsing process for any input string. Consequently,

the Tree-DOP parsing algorithms described in section 2.4 can be used to build the c-

structure parse space for LFG-DOP. Cormons (1999) describes a method to assign an

index to each node in each c-structure such that the index refers to the corresponding

φ-linked f-structure unit; using this method, retrieval of the f-structure associated with

each c-structure in the parse space is easily accomplished.

The LFG-DOP parser evaluated in (Bod, 2000a,b; Bod and Kaplan, 2003) uses the

Tree-DOP method described in section 2.4.1 (whereby each fragment is converted to a

rewrite rule of the form root(f) −→ frontier1(f) ... frontiern(f)) to compute the c-

structure parse space for each input string, and then uses Cormons’ indexing method to

retrieve the corresponding f-structures.

Random sampling of derivations, as described in section 2.5.1, is used to approximate

the LFG-DOP MPP, although the exact method of computing sampling probabilities is not

given. However, the architecture employed corresponds to model M3 as described in section

196

7.1, i.e. category-matching is enforced during parse-space computation and uniqueness and

coherence during disambiguation. Consequently, fragments chosen to compose with any

sub-derivation are selected from the set of fragments which can be composed with that

sub-derivation without violating these conditions. (Bod, 2000a,b; Bod and Kaplan, 2003)

state that as derivations are sampled in top-down, left-to-right order, “the competition sets

of composable fragments are computed on the fly ... by grouping the f-structure units that

unify and that are coherent with the subderivation built so far”. As each derivation can

only be deemed incomplete once the entire derivation has been seen, incomplete derivations

and their probabilities are simply not included in the sampling distribution. The number

of samples to be taken is calculated according to the method described in section 2.5.1

and the maximum number of samples is set to 10,000.

7.2.2 Evaluating LFG-DOP output

Parser output is generally evaluated by comparing the analysis assigned by the parser to

each test string to the reference parse provided for that test string in the annotated corpus.

Parser output taking the form of context-free phrase-structure trees can be scored using

the exact match metric – parses score 1 if they are identical to the reference parse and

0 otherwise – as well as by precision, recall and f-score metrics. These metrics compare

the constituents present in the output parse with those present in the reference parse. A

constituent is a syntactic category label occurring in a parse tree which spans a consecutive

sequence of words in the input string and a constituent is correct if there is a corresponding

node in the reference parse with the same syntactic category label spanning the same

consecutive sequence of input string words. Precision, recall and f-score are calculated

according to equations (3.5), (3.6) and (3.7) on page 71.

As observed by (Bod, 2000a,b; Bod and Kaplan, 2003), it is not immediately obvious

how to best extend this metric to evaluate LFG representations. They chose a simple

extension of the notion of ‘correct constituent’ which results in quite a harsh evaluation

metric: a constituent in P is correct if there exists a constituent in T which has the

same node label, spans the same sequence of input tokens and φ-corresponds to the same

f-structure unit.

197

7.2.3 Current LFG-DOP performance

Empirical evidence supports the decision to estimate the probability distributions of root

and frontier fragments and the distributions of discard fragments separately using the ‘dis-

counted RF’ approach (as opposed to the ‘simple RF’ method where no distinction is made

between fragment types). Exact match accuracy on the Verbmobil corpus jumped from

1.1% to 35.9% and from 2.7% to 38.4% on the HomeCentre corpus when the discounting

method was used; precision and recall also increased dramatically. This indicates that

treating generalised fragments (i.e. discard-generated fragments) in the same way proba-

bilistically as ungeneralised fragments (i.e. root and frontier fragments) is harmful. Bod

and Kaplan (2003) also observe that the inclusion of discard fragments in the parse space

results in only a very slight increase in parse accuracy; of course, they remain crucial when

parsing sentences which are ungrammatical with respect to the corpus. All further exper-

iments outlined here include discard fragments in the parse space and estimate fragment

probabilities using the discounted RF method.

Experiments assessing the impact of limiting the size of the LFG-DOP fragment base

(Bod, 2000a,b) show that the DOP hypothesis holds for LFG-DOP: as larger fragments

are included in the parse space, parse accuracy increases. Accuracy increased significantly

as input was parsed using fragments of depth 1, 2 or less, 3 or less and 4 or less for both

the Verbmobil and HomeCentre corpora. Exact match, precision and recall increased from

30.6%, 74.2% and 72.2% respectively at depth 1 to 35.9%, 75.5% and 76.4% at depth 4 for

the Verbmobil corpus and from 31.3%, 75.0% and 71.5% respectively at depth 1 to 38.4%,

80.0% and 78.6% at depth 4 for the HomeCentre corpus. This is an important result

because, given the relative linguistic sophistication of the representations, it could have

been the case that maximal parse accuracy was achieved using only depth 1 fragments.

The usefulness of the presence of functional information when predicting correct tree

structures was measured by evaluating the c-structures output by the LFG-DOP parser

and comparing the results to the output of a Tree-DOP parser on the same data (Bod,

2000a,b; Bod and Kaplan, 2003). Evaluation was based on exact match and the precision,

recall and f-score metrics standardly used when evaluating tree structures, described in

section 3.2.2. The results indicate that the accuracy of the output tree structures improves

198

when functional information is also available. Tree structure accuracy on the Verbmobil

corpus increased from 46.6% to 50.8% for exact match, 88.9% to 90.3% for precision and

86.7% for to 88.4% recall. Similarly, tree structure accuracy on the HomeCentre corpus

increased from 49.0% to 53.2% for exact match, 93.4% to 95.8% for precision and 92.1%

to 94.7% for recall.

7.3 On the nature of LFG-DOP fragments

The definitions of the root and frontier operations for LFG-DOP are identical to those for

Tree-DOP in terms of c-structure fragment extraction; the LFG-DOP operators must also,

however, associate an f-structure fragment with each c-structure fragment extracted. Bod

and Kaplan (2003) specify f-structure fragments in terms of φ-accessibility as described in

section 7.1.2 above. Using the notion of φ-accessibility to determine the set of constraints

associated with each c-structure fragment is problematic for two reasons. Firstly, it does

not adequately describe how circular and re-entrant structures – which occur frequently

in real data – are to be handled and, secondly, it results in the retention of attribute-value

pairs not warranted by the corresponding c-structure. In this section, we discuss each

of these issues in turn and provide an alternative specification for LFG-DOP fragment

extraction which addresses these issues.

Circular structures occur frequently in LFG representations. Consider, for example,

the representation in Figure 7.4, where the noun LED is modified by the adjective yellow.

In the f-structure, we see that yellow functions as an adjunct to LED while LED functions

as the subject of yellow. This is indicated by co-indexation: the value of the SUBJ attribute

in f-structure unit f3 is the index of the outer f-structure unit, f2. By selecting c-structure

node A to be root using the root operation and the empty set of frontier nodes, we arrive

at the depth 1 c-structure fragment representing A −→ yellow. However, the definition

of φ-accessibility given does not indicate unambiguously exactly which f-structure units

correspond to this fragment. Recall that f-structure unit fx is retained if it is φ-linked

to a node in the c-structure. Thus, for the fragment with root node A, f-structure unit

f3 is retained. Furthermore, the definition also states that if f is φ-linked to a node in

the c-structure and f contains fx then fx is also retained, i.e. if a chain of attributes

199

S

NP VPaux

D NPadj Aux V

the A N is flashing

yellow LED f1

























































PRED ‘flash〈SUBJ〉’

MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

f2

































PRED ‘LED’

CASE nom

NUM sg

PERS 3

SPEC-FORM the

SPEC-TYPE def

ADJUNCT







f3

[

PRED ‘yellow〈SUBJ〉’

SUBJ f2

]































































































Figure 7.4: An example LFG representation for the string the yellow LED
is flashing.

leads from f to fx then fx is retained. However, where circular f-structures are concerned,

these two statements – intended to be unambiguous – are, in fact, contradictory. Clearly,

unit f3 in Figure 7.4 does not contain f-structure unit f2. However, a chain of attributes

does lead from f3 to f2: the value of f3’s SUBJ attribute is f2. Thus, using the definition

of φ-accessibility given by Bod and Kaplan (2003), we cannot establish the f-structure

corresponding to fragment A −→ yellow.

Precisely the same issue arises for re-entrant structures. Consider, for example, the

LFG representation given in Figure 7.5, where the SUBJ attribute and its value, subcat-

egorised for by the infinitival verb tomber, are not contained within the same f-structure

unit as the PRED attribute whose value is the lemma ‘tomber’. Here, by selecting the c-

structure node V dominating tomber to be root using the root operation and the empty set

of frontier nodes, we arrive at the depth 1 c-structure fragment representing V −→ tomber.

As before, the definition of φ-accessibility given does not indicate unambiguously exactly

which f-structure units correspond to this fragment.

The definition of φ-accessibility also leads to the retention of f-structure units in LFG-

DOP fragments for which it is questionable as to whether there is sufficient c-structure

evidence to warrant their inclusion. Every f-structure unit in each representation is φ-

accessible from the outermost f-structure unit because a chain of attributes leads from

this outermost unit to every other unit in the f-structure. Consequently, all c-structure

fragments containing at least one node which is φ-linked to the outermost f-structure

200

S

NP VP

Jean V V’

vient COMP V

de tomber f1











































SUBJ

f2







PRED ‘Jean’

NUM sg

PERS 3







PRED ‘venir〈SUBJ,XCOMP〉’

TNS pres

FIN +

XCOMP

f3











PRED ‘tomber〈SUBJ〉’

DE +

FIN –

SUBJ f2





















































Figure 7.5: An example LFG representation for the French string Jean
vient de tomber, which translates into English as John just
fell, taken from (Way, 2001).

unit access all f-structure units. Thus, the fragment given in Figure 7.6(a), yielded by

the representation in Figure 7.4, specifies that the subject of the verb flashing must have

an adjunct. Furthermore, the constraints imposed on the depth 1 fragment with root

node S are almost identical, only differing in that the PRED corresponding to the verb

flashing is deleted. This fragment is shown in Figure 7.6(b). We believe that imposing

such constraints is inappropriate given the evidence presented in the c-structure.

An alternative method of specifying which f-structure units are appropriate to each

c-structure fragment, based on the notion of support, is discussed in (Bod and Kaplan,

1999) and (Way, 2001). According to this definition, all f-structure units supported by one

or more c-structure nodes are retained. The definition of support is given in (7.10):

F-structure unit u is supported by node n if and only if:

(a) u is φ-linked to n, or

(b) u′ is φ-linked to n and

u is the value of a grammatical-function attribute in u′, or

(c) u′ is supported by n and

u is the value of a non-grammatical-function attribute in u′ and

u is not φ-linked.

(7.10)

This definition of support facilitates the correct extraction of fragments comprising

circular f-structure units. Consider the extraction of the fragment with root node A from

the representation Figure 7.4. According to clause (b) of the support definition in (7.10), as

201

(a)

V

flashing

f1











































PRED ‘flash〈SUBJ〉’

MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

f2



















CASE nom

NUM sg

PERS 3

SPEC-TYPE def

ADJUNCT

{

f3

[

SUBJ f2

]

}





























































(b)

S

NP VPaux

f1







































MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

f2



















CASE nom

NUM sg

PERS 3

SPEC-TYPE def

ADJUNCT

{

f3

[

SUBJ f2

]

}

























































Figure 7.6: LFG-DOP fragments extracted from the LFG representation
given in Figure 7.4 where the constraints present in the f-
structure are determined using the accessibility criterion.

f-structure unit f2 is the value of the grammatical-function attribute SUBJ in f3 and f3 is

φ-linked to node A, unit f2 is also supported. Thus, the LFG-DOP fragment corresponding

to A −→ yellow, given in (7.11)(b), specifies that the adjective yellow must occur as the

modifier of a singular noun of nominative case such as the one given in (7.11)(a).

(a) (b)

f2





































PRED ‘LED’

CASE nom

NUM sg

PERS 3

SPEC-TYPE def

ADJUNCT

{

f3

[

SUBJ f2

]

}





































NPadj

A N

LED

A

yellow

f2



































CASE nom

NUM sg

PERS 3

SPEC-TYPE def

ADJUNCT















f3







PRED ‘yellow〈SUBJ〉’

SUBJ f2























































(7.11)

The definition of support does not, however, handle re-entrant structures in a satis-

factory manner. By selecting the c-structure node V dominating tomber to be root using

the root operation and the empty set of frontier nodes from the representation in Figure

7.5, we arrive at the depth 1 c-structure fragment representing V −→ tomber. Using the

202

definition of support given in (7.10), we arrive at the LFG-DOP fragment given in example

(7.12). These f-structure units do not specify the appropriate context in which tomber can

occur as it is not clear which outer f-structure unit f2 must unify with.

V

tomber





































f2







NUM sg

PERS 3







f3



















PRED ‘tomber〈SUBJ〉’

DE +

FIN –

SUBJ f2























































(7.12)

Furthermore, the definition of support, again, does not always remove f-structure in-

formation unwarranted by the c-structure fragment. Consider, for example, the frag-

ments shown in Figure 7.7; they have identical c-structures to those shown in Figure 7.6

but the corresponding f-structures were determined using the notion of support rather

than φ-accessibility. Looking firstly at Figure 7.7(a), we see that the c-structure frag-

ment does not explicitly require an adjunct to the subject. The value of the SUBJ at-

tribute (f3) is supported according to clause 2 because this attribute is specified by the

f-structure unit f2 linked to the c-structure fragment. However, within unit f3 the values

of the non-grammatical-function attributes are supported (according to clause 3) but the

grammatical-function attributes are not. Hence, the adjunct to the subject is not spec-

ified. Intuitively, this is as desired because the ADJUNCT attribute is an ungovernable

grammatical function and is not subcategorised for by any element of the c-structure.

Consider, however, the fragment in Figure 7.7(b). Here, the ADJUNCT attribute is sup-

ported because f-structure unit f2 is φ-linked to c-structure node NP . However, we do

not see that the requirement that the subject of any sentence be modified by an adjunct

is warranted, given the evidence in the c-structure.

We suggest an alternative method of determining precisely the f-structure associated

with each c-structure fragment. This method differentiates between governable and non-

governable grammatical functions and proceeds as follows.

1. Determine a c-structure fragment using the root and frontier operations as for Tree-

DOP (as before) but retain the full f-structure which appeared in the original rep-

resentation.

203

(a)

V

flashing

f1



































PRED ‘flash〈SUBJ〉’

MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

f2











CASE nom

NUM sg

PERS 3

SPEC-TYPE def













































(b)

S

NP VPaux

f1







































MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

f2



















CASE nom

NUM sg

PERS 3

SPEC-TYPE def

ADJUNCT

{

f3

[

SUBJ f2

]

}

























































Figure 7.7: LFG-DOP fragments extracted from the LFG representation
given in Figure 7.4 where the constraints present in the f-
structure are determined using the support criterion.

2. Delete all f-structure units (and the attributes with which they are associated) which

are not φ-linked from one or more remaining c-structure nodes unless that unit is

the value of an attribute subcategorised for by a PRED value whose corresponding

terminal is dominated by the current fragment root node in the original representa-

tion.

(a) Where we have floating f-structure units – i.e. a fragment is associated with

f-structure units fx and fy such that fx does not contain fy and fy does not

contain fx – then we also retain the minimal f-structure unit which contains

them both. By minimal unit we mean the unit comprising the attribute with

value fx and the (nested sequence of minimal units containing) attribute with

value fy.

3. Delete all semantic forms (including PRED attributes and their values) not associated

with one of the remaining c-structure terminals.

Example (7.13) shows the LFG-DOP fragment yielded by the representation given in

Figure 7.5 for V −→ tomber using this new definition of LFG-DOP fragment extraction.

204

Here, we see that the appropriate contextual information is specified: tomber must function

as an XCOMP and its subject must correspond to the subject of the sentential unit which

immediately dominates it.

V

tomber





































SUBJ

f2







NUM sg

PERS 3







XCOMP

f3



















PRED ‘tomber〈SUBJ〉’

DE +

FIN –

SUBJ f2























































(7.13)

The distinction drawn between governable and non-governable attributes is also impor-

tant. F-structure units which are the values of non-governable attributes such as adjuncts

are automatically deleted unless φ-linked to remaining c-structure nodes. Consider, for

example, LFG-DOP fragment (a) in Figure 7.8 which was again extracted from the LFG

representation given in Figure 7.4. As A is the only node linked to the value of the

ADJUNCT attribute and this node is not present in the c-structure, both the ADJUNCT

attribute and its value are deleted. Fragment (b) in Figure 7.8, however, illustrates the

importance of distinguishing between governable and non-governable attributes: although

no remaining c-structure node is linked to the value of the SUBJ attribute, this attribute-

value pair is retained as it is subcategorised for by the PRED value ‘flash<SUBJ>’. This

example also illustrates the importance of not deleting lemmas until the appropriate f-

structure units have been established. We do not know that all features of attributes

which are subcategorised for are determined by the terminal corresponding to the PRED

value – in this case, the auxiliary verb is carries crucial information regarding the subject of

the sentence. This subject information is retained because the PRED value ‘flash<SUBJ>’

is not deleted until after the required f-structure units have been identified.

7.4 Parameter estimation for LFG-DOP

As discussed in section 2.6, computing fragment probabilities for Tree-DOP by estimating

their relative frequencies in the fragment base introduces a bias towards larger parse trees.

For LFG-DOP, two parameter estimation methods – described in section 7.1.4 – have been

proposed. The first method estimates fragment relative frequencies without differentiating

205

(a)

S

NP VPaux

f1





























MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

f2











CASE nom

NUM sg

PERS 3

SPEC-TYPE def







































(b)

VPaux

Aux V

is f1





























MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

f2











CASE nom

NUM sg

PERS 3

SPEC-TYPE def







































Figure 7.8: LFG-DOP fragments extracted from the LFG representation
given in Figure 7.4 where the constraints present in the f-
structure are determined by distinguishing between govern-
able and non-governable attributes.

between fragments generated by root and frontier and fragments generated by discard.

The second method distinguishes these two different types of fragments and estimates

their relative frequencies separately. Furthermore, it involves placing a strict limit on

the proportion of the probability mass assigned to discard-generated fragments as they

are considered to be unseen events. Both of these estimation methods are, however, still

based on the relative frequency estimator (where conditioning is on the root node of each

c-structure) and, thus, still induce a bias in favour of larger parse trees just as for Tree-

DOP. Here, we show how the structured approach to probability estimation developed

for Tree-DOP can also be applied in the LFG-DOP model. Furthermore, we describe

how the back-off relationships between fragments can be used to motivate the inclusion of

discard-generated fragments in the parse space in an efficient manner.

7.4.1 Probability re-estimation using Back-off: LFG-DOPbkf

In section 2.6.4, we described the definition of a parameter estimation method which

takes into account the relationships between overlapping fragments given by Sima’an and

Buratto (2003). Essentially, this approach involves organising the fragment base into a

206

hierarchically-structured space of correlated events according to the back-off relationship

and re-estimating fragment probabilities according to this hierarchy. In (Hearne and

Sima’an, 2003), we show that this methodology is also appropriate to the computation of

LFG-DOP fragment probabilities and that, furthermore, it provides a natural solution to

some of the difficulties of employing discard-generated fragments when parsing ill-formed

input.

Back-off parameter estimation can be applied to LFG-DOP fragments generated by

the root and frontier operations exactly as described for Tree-DOP, using a directed acyclic

graph to represent the partial order between them. A directed edge points from a frag-

ment <cx, φx, fx> to a pair of fragments <<cy, φy, fy>,<cz, φz, fz>> if <cy, φy, fy> and

<cz, φz, fz> compose to give <cx, φx, fx>, as expressed in equation (7.14):

<cx, φx, fx> ≥bkf <cy, φy, fy> ◦ <cz, φz, fz> (7.14)

Composition of these fragments involves both leftmost substitution over the c-structures

and unification over the f-structures.

The production of LFG-DOP fragments via discard involves generating all possible

f-structure fragments for each fragment produced via root and frontier while keeping c-

structure and φ-links constant. Therefore, the back-off relation is defined in terms of f-

structure unification rather than fragment composition. For discard-generated fragments,

a directed edge points from a fragment <c, φ, f> to a pair of fragments <<c, φ, fy>,<c, φ, fz>>

if f-structures fy and fz unify to give f and f 6= fy 6= fz; this is expressed in equation

(7.15):

<c, φ, f> ≥bkf <c, φ, fy ∪ fz> (7.15)

The probability of the derivation <c, φ, fy ∪ fz> is given in (7.16):

P (<c, φ, fy ∪ fz>|Rc) =

P (c, φ|Rc)P ({fy ∪ fz}|c, φ) =

P (c, φ|Rc)P (fy|c, φ)P (fz|c, φ, fy) ≈

P (c, φ|Rc)P (fy|c, φ)P (fz|c, φ)

(7.16)

207

Thus, the derivation <c, φ, fy ∪ fz> embodies an independence assumption realised by

the approximation P (fz|c, φ, fy) ≈ P (fz|c, φ). This approximation constitutes a back-off,

hence the derivation <c, φ, fy ∪ fz> is said to be a back-off of fragment <c, φ, f>. Here,

the back-off relationship is used to organise the set of discard-generated fragments into a

back-off graph and this graph can then be used to re-estimate fragment probabilities by

transferring probability mass from more specific fragments to their back-offs in a stepwise

fashion.

7.4.2 Applying discard in practice

Empirical experience makes clear the need to address the problem of estimating the prob-

abilities of discard-generated fragments as, in practice, these fragments occupy a dispro-

portionately large amount of probability mass. The ‘discount RF’ parameter estimation

method of Bod and Kaplan (2003) successfully masks this problem by treating discard-

generated LFG-DOP fragments as second-rate fragments to be used only when no parse

can be produced without them. However, the difficulty in estimating the probabilities

of discard-generated fragments stems from the bias introduced by using the relative fre-

quency estimator and the discount RF method does not address this issue. In contrast, the

back-off estimation method structures and estimates these parameters such that a kind of

‘soft’ probabilistic back-off is realised and non-discard fragments are preferred naturally

(Hearne and Sima’an, 2003).

Allowing the probability model to naturally select the most specific parse by assigning

little probability mass to analyses derived using discard-generated fragments is attractive

in theory. Such large numbers of discard-generated fragments are possible, however, that,

in practice, we are unlikely to have the luxury of including all fragments in the parse space

for each string and simply letting the probabilities decide. Furthermore, experiments

show that where a parse can be produced without using discard-generated fragments,

the inclusion of such fragments does not significantly improve parse accuracy (Bod and

Kaplan, 2003). This suggests that discard-generated fragments should only be included in

the parse space where it is not possible to generate at least one parse without them. Way

(2001) also observes that discard should be used to derive fragments only where absolutely

208

necessary. He suggests that there must be a countable number of cases – such as subject-

verb agreement, relative clause agreement and movement phenomena – in which unification

fails and discard should be applied. He proposes that the process of generating and

including discard-generated fragments should be triggered by the occurrence of unification

failure and controlled by the type of failure that occurred.

We suggest that the ordering of the fragment base specified by the back-off graph could

also be used to motivate the phased addition of discard-generated fragments to the parse

space (Hearne and Sima’an, 2003). For example, fragments can be added to the parse space

layer by layer, starting with the most specific and working towards the least specific. As

soon as at least one parse can be produced, no more fragments are introduced and the

most probable parse is determined, thus favouring parses with more complete f-structures.

This approach accounts for the fact that, where one or more parses can be produced using

discard fragments but none without, these parses can be considered to occupy a spectrum

ranging from most specific to least specific, depending on the number of attribute-value

pairs discarded from the fragments used to derive them. Other configurations can also be

envisaged. For example, following from the proposals in Way (2001), the fragment space

could be partitioned based on the type (as opposed to number) of simple attribute-value

pairs which have been discarded from each fragment.

7.5 Implementing LFG-DOP

The LFG-DOP parser implementation described by Bod and Kaplan (2003) uses the

rewrite rule technique of Bod (1998) described in section 2.4.1 to compute the LFG-DOP

parse space. Here, we discuss the application of the Tree-DOP algorithms of Sima’an

(1995a, 1999) and Goodman (1996a, 1998, 2003) to the LFG-DOP model. Building the

LFG-DOP parse space is, in fact, analogous to building the Tree-DOT translation space

and, correspondingly, adaptation of Sima’an’s algorithm is straightforward. Furthermore,

the similarity of the LFG-DOP fragments to the Tree-DOT fragments also allows direct ap-

plication of the compact fragment representation methodology described in section 3.1.2.

Use of Goodman’s algorithm is, however, problematic, as is the computation of exact

sampling probabilities during disambiguation.

209

7.5.1 Computing the LFG-DOP parse space

PCFG-reduction for LFG-DOP

Applying the PCFG-reduction method of (Goodman, 1996a, 1998, 2003) to the implemen-

tation of LFG-DOP is problematic, not just because the PCFG-reduction must charac-

terise fragments which comprise f-structures as well as phrase-structure trees, but because

it is not clear how to apply the Maximum Constituents Parse disambiguation strategy

(discussed in section 2.5.6) to select LFG-DOP output. Thus, we do not currently see a

way to adapt this parsing methodology for computation of the LFG-DOP parse space.

Two-phase analysis for LFG-DOP

Implementing any of the LFG-DOP models M1, M2 and M3 requires that the parse space

be constructed on the basis of the category-matching condition only as the other LFG

wellformedness conditions are verified either during or after disambiguation. Consequently,

Sima’an (1995a, 1999)’s two-phase analysis methodology can be applied to the construction

of the LFG-DOP parse space in a straightforward manner. Firstly, the parse space is

approximated using the CFG underlying the c-structures present in the fragment base.

Then, correspondences between these rules and the c-structure fragments in which they

occur allows for the retrieval of all c-structure fragments – and, correspondingly, f-structure

fragments – relevant to the parse space. Disambiguation techniques can then be applied

to this LFG-DOP parse space as described in section 7.5.3.

7.5.2 Compact LFG-DOP fragment representations

As for Tree-DOP, using the two-phase algorithm to compute the LFG-DOP parse space for

each input string requires only an indication as to which fragments each underlying CFG

rule appears in. Therefore, we need to store only the LFG representations themselves,

and can establish the fragment set on the fly. This is accomplished in exactly the same

manner as for Tree-DOP as described in section 3.1.2 by introducing annotations at each c-

structure node. Establishing LFG-DOP fragment frequencies is also straightforward: two

intermediate representations Ix and Iy encode duplicate LFG-DOP fragments if connected

210

portions of those c-structures which start at their root nodes are identical and those

connected portions specify identical f-structure constraints.

7.5.3 Monte Carlo sampling for LFG-DOP

Firstly, we look at application of the exact sampling technique of Chappelier and Rajman

(2003) to LFG-DOP disambiguation. We would like to be able to use this methodology

because it allows precise control over the number of samples to be taken. However, we

find that computation of the exact probability of sampling each LFG-DOP fragment is

not possible due to the global effect of fragment composition on every sub-derivation.

We then turn our attention to the computation of re-scored sampling probabilities, which

successfully avoids this problem.

Computing exact sampling probabilities for LFG-DOP fragments

Recall that, as given in equation (2.27) in section 2.5.1, computing the exact probability

of sampling Tree-DOP fragment f from parse space position [i][j] requires multiplication

of the Tree-DOP probability of f , PDOP (f), with the total probability mass available at

each of its substitution sites.

n

...

(j + 1)

j

A

B[i][k] C[k+1][j]

... ...

(j − 1)

...

(1)

1...(i − 1) i (i + 1)...n

(7.17)

For example, the probability of sampling the fragment with root node A from the parse

space given in (7.17) is its DOP probability by the total probability mass at B[i][k] and by

the total probability mass at C[k+1][j]; this probability is then divided by the sum over the

probabilities of all fragments with root node A at chart position [i][j]. Thus, assuming a

211

sufficiently large sample set, if the Tree-DOP probability of parse P given the input string

is
np

Np
(where Np is the sum over the probability mass assigned to each valid parse for the

input string) and the frequency of parse P in the set of sampled parses is ns

Ns
(where Ns

is the total number of samples taken) then
np

Np
= ns

Ns
.

If we wish also to sample LFG-DOP derivations such that the relative frequency of

each LFG-DOP parse in the sampled set equals the LFG-DOP probability of that parse

(conditioned on the total probability mass of all valid parses for the input string), then we

must compute the exact probability of sampling each LFG-DOP fragment as is done for

Tree-DOP. However, we find that computing these probabilities for LFG-DOP fragments

is simply not possible due to the global effect of the f-structure constraints imposed by

each possible composition. Consider, again, the parse space given in (7.17) but, this time,

assume that all fragments are associated with constraints encoded in φ-linked f-structures.

In order to establish exactly the probability of selecting the given fragment with root

node A at position [i][j], we must multiply its DOP probability by the total probability

mass assigned to the set of fragments competing for selection at each of its substitution

sites. However, we cannot know exactly which fragments are eligible for composition with

substitution site C[k+1][j] until a fragment has been composed at substitution site B[i][k]

and there are no remaining open substitution sites dominated by B[i][k]. Thus, we cannot

accurately compute the probability of selecting any fragment with more than one open

substitution site at any chart position.

Computing rescored sampling probabilities for LFG-DOP fragments

The single greatest advantage in sampling using the exact sampling probabilities of Chap-

pelier and Rajman (2003) is the control it gives over the number of samples taken when

disambiguating each parse space. Because the relative frequencies of the sampled parses

correspond exactly to their DOP probabilities, we can check after every sample is taken

whether or not enough samples have been seen to be sure that the most frequent parse is

also the most probable one. Nevertheless, DOP fragments can also be sampled such that,

while the relative frequencies of sampled parses in the sample set do not correspond to

their DOP probabilities, rescoring factors can be applied to these relative frequencies such

212

that the correct distribution is induced. Here, we examine the calculation of LFG-DOP

fragment probabilities and rescoring factors according to the method given by Hoogweg

(2000) for Tree-DOP which was described in section 2.5.1.

Using Hoogweg (2000)’s methodology, the probability of sampling any given fragment

f is the DOP probability of f conditioned on the sum of the DOP probabilities of all

fragments in its competition set. This competition set is established on the basis of the

sub-derivation seen so far. Thus, this method does not take into consideration the sampling

probability mass available at each of f ’s substitution sites and, consequently, does not

face the difficulties of computing exact sampling probabilities which we identified above.

Furthermore, the rescoring factor which must be applied to each sampling frequency –

calculated for each derivation as the product of the competition set probability masses for

each fragment involved in building that derivation – can be computed without difficulty as

each derivation is sampled. Thus, this method can be applied in a straightforward manner

when performing LFG-DOP sampling.

7.6 Summary

In the first two sections of this chapter, we described the work which has been carried out

to date on the LFG-DOP parsing model, including the available implementation details

and the results achieved using this system. We then went on to highlight two specific issues

which arise as a result of how the fragment extraction process is defined – namely, the han-

dling of circular and re-entrant structures, and the retention of non-governable attributes

for which there is no c-structure evidence – and addressed these issues by proposing an

alternative definition for fragment extraction. As LFG-DOP also suffers from the bias

towards larger parses exhibited by the Tree-DOP model when fragment probabilities are

defined using the relative frequency estimator, we discussed an alternative method for

parameter estimation which extends the back-off re-estimation methodology described for

Tree-DOP. We highlighted how this method not only provides a possible solution to the

model bias but also provides a natural solution to the difficulty of incorporating robustness

into the LFG-DOP model. (We note, however, that this method of assigning probabilities

to fragments does not address the issue of ‘leaked’ probability mass raised by Abney (1997)

213

discussed in section 7.1.4.) Finally, we looked at the application of efficient algorithms de-

veloped for Tree-DOP to parsing with the LFG-DOP model. We described why Goodman

(1996a, 1998, 2003)’s PCFG-reduction method for computing the parse space appears un-

suitable LFG-DOP parsing and also outlined the difficulties of calculating exact sampling

probabilities over the LFG-DOP parse space. However, we showed that Sima’an (1995a,

1999)’s two-phase analysis method can be used to construct the LFG-DOP parse space

in a straightforward manner, and that re-scored sampling probabilities can be computed

over this parse space such that the sample set distribution corresponds to the distribution

of parses for the input string according to the LFG-DOP model.

214

Chapter 8

A richer DOT model: LFG-DOT

The motivations for merging the Tree-DOT model of translation with the LFG-DOP

parsing model are clear. The constraints expressed in the LFG f-structures allow a more

linguistically-precise description of how translations should be formed than the simple

phrase-structure fragments used in Tree-DOT. Furthermore, although these functional

descriptions embody a greater degree of complexity than phrase-structure trees, the trans-

lation process is still driven by the c-structures with which they are associated. This means

that the algorithms adapted to Tree-DOT and LFG-DOP can also be applied to fragmen-

tation, analysis and disambiguation for the LFG-DOT model.

In section 8.1 of this chapter, we present the LFG-DOT models of translation described

by Way (2001) and in section 8.2, we present an alternative LFG-DOT translation model.

We outline the application of the implementation methodologies described for Tree-DOT

and LFG-DOP to the LFG-DOT model in section 8.3. We then go on in section 8.4 to

discuss the relationship between translational equivalence and limited compositionality

for Tree-DOT and LFG-DOT, and show how they differ depending on the representations

assumed to underlie the model. Finally, we hypothesise as to how the feature sets for

LFG-DOT fragments might be pruned in section 8.5.

8.1 The LFG-DOT models of Way (2001)

In this section, we describe the four different LFG-DOT models proposed by Way (2001).

The first three models vary in terms of how the translation relation is stated, while the

215

fourth augments the third through an extension to the discard operation.

8.1.1 LFG-DOT Model 1

LFG-DOT Model 1 is a simple, linear model. The source-language input string is parsed

using the LFG-DOP model which yields an LFG representation for that string, i.e. a

context-free phrase-structure tree, an attribute-value matrix and the links between them.

The phrase-structure tree is discarded and the attribute-value matrix, or f-structure, from

this representation is passed into a rule-based transfer component which yields a target-

language f-structure. This f-structure is then passed to a target-language LFG-DOP gen-

eration model which outputs the most likely string. This architecture is summarised in

(8.1).

source target
f-structure f-structure

source
string

LFG-DOP
RULE-BASED

TRANSFER
LFG-DOP target

string

(8.1)

This model essentially corresponds to a typical rule-based system architecture, despite the

fact that the analysis and generation components are data-driven. It does not require that

any correspondences be drawn between the source-language representations assumed by

the parser and the target-language representations assumed by the generation component.

Thus, the characteristics of the Tree-DOT model are not inherited by this model. Further-

more, Way (2001) observes that the probability model associated with this architecture

embodies the undesirable assumption that the target string is generated from the target-

language f-structure independently of the source string. This model is given in equation

(8.2).

P (t|s) =
∑

Rs,t

P (Rs|s) P (Rt|Rs) P (t|Rt) (8.2)

While the probability of the target f-structure generated clearly depends on the source

string as this source string is contained within the source representation, the probability

of the target string generated by the monolingual language model is not influenced by the

source string and its representation.

216

8.1.2 LFG-DOT Model 2

LFG-DOT Model 2 is more complex than Model 1 in that both rule-based and data-driven

translation components are employed in parallel. In this model, translational correspon-

dences are assumed between both the source and target c-structures and (independently of

the c-structure links) between the source and target f-structures. The linked c-structures

are used in a Tree-DOT model while the f-structure links yield the set of rules which com-

prise the transfer component. As for Model 1, the source-language input string is parsed

using an LFG-DOP parser, resulting in an LFG representation for that string. In this

model, however, both the tree and the f-structure yielded by the parser are used in the

translation process: the tree is input to the Tree-DOT translation model which yields a set

of ranked translations and, simultaneously, the f-structure is input to the rule-based trans-

fer component which yields a target-language f-structure. The target f-structure is then

passed to a target-language LFG-DOP generation model which outputs a set of ranked

translations. The sets of ranked translations yielded by the Tree-DOT component and

linear application of the rule-based and LFG-DOP components are then merged and the

most probable translation determined. This architecture is summarised in (8.3).

source
f-structure

target
f-structure

ranked
translations

RULE-BASED

TRANSFER
LFG-DOP

source
string

LFG-DOP RE-RANKING
target
string

TREE-DOT

TRANSLATION
source
tree

ranked
translations

(8.3)

The probability model given in (Way, 2001) for LFG-DOT Model 2, given in (8.4) below,

corresponds to the intuition that the translation probability is the sum over the proba-

bilities of all paired bilingual LFG representations that yield both the source and target

strings.

P (t|s) =
∑

Rs,t

P (Rs,t) (8.4)

However, it is not clear how these probabilities should be computed given the model

architecture. As the target c-structure and target f-structure representations are never

combined to form a single representation and, furthermore, the two need not necessarily

217

be in correspondence, it is difficult to see how overall representation probabilities can be

established. In addition, no methodology is given to combine the ranked sets of transla-

tions output by tree translation and f-structure translation in order to determine which

translation is the most probable overall.

8.1.3 LFG-DOT Model 3

LFG-DOT Model 3 assumes a bilingual LFG-annotated corpus with translational links be-

tween source and target c-structures only. Way (2001) describes this model as an extension

of the Tree-DOT model whereby the f-structures are used for monolingual filtering and

play little part in the translation process itself. Essentially, the f-structures exert mono-

lingual constraints over the source representations and target representations which can

be formed and, therefore, ensure that the translations generated are grammatical. Impor-

tantly, these constraints can be relaxed using discard so that input which is ungrammatical

with respect to the corpus can also be handled. The architecture of Model 3 is summarised

in (8.5).

<c,φ,f> <c,φ,f>
source target

source
string

LFG-DOT target
string

(8.5)

Clearly, this model improves over the Tree-DOT model as ungrammatical target-language

strings are filtered out. However, Way (2001) also shows – using examples of complex

translation cases and combinations of exceptions – that this architecture improves over

LFG-DOT Model 1, where translation takes place over f-structure rather than c-structure.

He indicates that this is due to the arbitrary size of the c-structure fragments used in the

translation model in combination with the additional linguistic information available in

the f-structures which allows ungrammatical translations to be ruled out.

The probability model given in (Way, 2001) for LFG-DOT Model 3, given in (8.6)

below, again corresponds to the intuition that the translation probability is the sum over

the probabilities of all paired bilingual LFG representations that yield both the source and

218

target strings.

P (t|s) =
∑

Rs,t

P (Rs,t) (8.6)

Here, however, he specifies the following components:

1. P (Rs): the probability of the source-string LFG representations, and

2. P (Rt|Rs): the Tree-DOT transfer probability.

He states that the probability of the source representation P (Rs) is calculated according to

the source-language LFG-DOP probability model. The Tree-DOT translation probability

P (Rt|Rs), on the other hand, is estimated by dividing the probability of the linked source

and target LFG representations by P (Rs). As the target string is read from the leaf nodes

of the target c-structure, no further calculation is required. However, it is not clear how

these probability calculations should proceed, given the model architecture.

8.1.4 LFG-DOT Model 4

Way (2001) observes that Tree-DOT fragments suffer from ‘limited compositionality’,

meaning that some of them can be used to build derivations only under very limited

circumstances where no further generalisation is possible. For example, the fact that the V

nodes dominating the terminals fell and tomber in the linked subtree pair in example (8.7)

are not linked means that no fragment can be extracted which captures the generalisation

just Vs −→ vient de Vt.

VP

ADV V

just fell

VP

V V’

vient COMP V

de tomber

(8.7)

This link does not exist because fell and tomber are not considered translationally equiv-

alent due to the fact that the verb form fell is in the past tense whereas the verb form

tomber is in the infinitive.

LFG-DOT Model 3 inherits this characteristic from Tree-DOT, as the links between

the assumed representations correspond exactly to Tree-DOT links. In LFG-DOT Model

219

4, however, Way (2001) proposes to extend the discard operation in order to address this

issue. In example (8.8), we show the LFG-DOT fragment corresponding to the Tree-

DOT fragment given in (8.7). Again, no link exists between the subtrees V −→ fell and

V −→ tomber. Here, however, the features contained in the f-structure overtly indicate

why these two nodes are not linked by explicitly stating their tense features.

sf1







































SUBJ

sf2







NUM sg

PERS 3







PRED ‘fall〈SUBJ〉’

TNS past

FIN +

SADJ

{

sf3

[

PRED ‘just’

]

}







































VP

ADV V

just fell

VP

V V’

vient COMP V

de tomber

tf1

























































SUBJ

tf2







NUM sg

PERS 3







PRED ‘venir〈SUBJ,XCOMP〉’

TNS pres

FIN +

XCOMP

tf3



















PRED ‘tomber〈SUBJ〉’

DE +

FIN –

SUBJ tf2











































































(8.8)

Recall that discard is used to delete attribute-value pairs from the f-structure whose values

are not φ-linked to remaining nodes in the c-structure and are not surface forms corre-

sponding to remaining c-structure terminals. Way (op. cit) suggests that if the tense

features of these verbs are deleted using discard and their c-structure realisations lemma-

tised then these verbs can be linked, as shown in example (8.9) below. From this fragment,

we can establish the required generalisation just Vs −→ vient de Vt.

sf1







































SUBJ

sf2







NUM sg

PERS 3







PRED ‘fall〈SUBJ〉’

///////TNS //////past

//////FIN ///+

SADJ

{

sf3

[

PRED ‘just’

]

}







































VP

ADV V

just FALL

VP

V V’

vient COMP V

de TOMBER

tf1

























































SUBJ

tf2







NUM sg

PERS 3







PRED ‘venir〈SUBJ,XCOMP〉’

TNS pres

FIN +

XCOMP

tf3



















PRED ‘tomber〈SUBJ〉’

DE +

//////FIN //–

SUBJ tf2











































































(8.9)

Way (op. cit) suggests that verb forms only should be subject to lemmatisation. Fur-

thermore, he suggests that no discard-generated fragments should be introduced into the

translation space until it has been established that no translation can be produced without

them.

220

8.2 A new LFG-DOT model

In this section, we provide an alternative LFG-DOT model which corresponds exactly to

the architecture of the LFG-DOT Model 3 of (Way, 2001) but differs in how the fragments

are extracted and how the probabilities are computed.

As always when specifying a data-oriented model of natural language, we specify the

underlying representations assumed, how fragments are to be extracted from those repre-

sentations, how those fragments are to be recombined to form output for previously-unseen

input strings and, finally, the probability model to be used to rank the output. Here, our

specification essentially involves merging the sets of specifications described for Tree-DOT

in section 4.2.1 and LFG-DOP in section 7.1.

8.2.1 Representations

The representations assumed by the LFG-DOT model comprise pairs of LFG <c, φ, f>

triples which have been aligned at sub-structural level by placing links denoting trans-

lational equivalence between source and target c-structure nodes. Thus, they resemble

Tree-DOT representations in that they comprise linked source and target phrase-structure

trees but they also resemble LFG-DOP representations in that each of these source and

target phrase-structure trees is linked to an attribute-value matrix. An example LFG-

DOT representation is given in Figure 8.1 – the dotted lines represent φ-links associating

c-structure nodes with f-structure units and the dashed lines represent translational links

denoting source and target sub-structures which are translations of each other. If we take

away the dotted lines and attribute-value matrices, we are left with Tree-DOT represen-

tations and, conversely, if we take away the dashed lines we are left with monolingual

LFG-DOP representations.

8.2.2 Fragmentation

In order to define how fragments should be extracted from LFG-DOT representations, we

merge the fragment extraction definitions given for Tree-DOT and LFG-DOP. In other

words, fragmentation respects both the links denoting translational equivalence and the

221

S

NP VPaux

D NPadj Aux V

the A N is flashing

green LED sf1

























































PRED ‘flash〈SUBJ〉’

MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

sf2

































PRED ‘LED’

CASE nom

NUM sg

PERS 3

SPEC-FORM the

SPEC-TYPE def

ADJUNCT









sf3

[

PRED ‘green〈SUBJ〉’

SUBJ sf2

]



































































































S

NPdet VP

D NPap clignote

le N A

voyant vert
tf1

























































PRED ‘clignoter〈SUBJ〉’

PERF -

AUX-SELECT avoir

TENSE pres

SUBJ

tf2





































PRED ‘voyant’

CASE nom

NUM sg

PERS 3

GEND masc

SPEC-FORM le

SPEC-TYPE def

ADJUNCT









tf3

[

PRED ‘vert〈SUBJ〉’

SUBJ tf2

]







































































































Figure 8.1: An example aligned bilingual LFG representation where the
dotted lines show LFG φ-links while the dashed lines denote
translational equivalences.

222

links denoting c-structure and f-structure correspondences. Thus, fragmentation proceeds

as follows.1

1. Extract a c-structure fragment pair from an LFG-DOT representation using the root

and frontier operations as for Tree-DOT – that is, select a pair of linked nodes to be

root, deleting all nodes not dominated by them, and then select a (possibly empty)

set of paired linked nodes to be frontiers and delete all that they dominate – but

associate with both of these c-structure subtrees the full f-structures with which they

are associated in the original representation.

2. For the source and target representations in turn, delete all f-structure units (and

the attributes with which they are associated) which are not φ-linked from one

or more remaining c-structure nodes unless that unit is the value of an attribute

subcategorised for by a PRED value whose corresponding terminal is dominated by

the current fragment root node in the original representation.

(a) Where we have floating f-structure units – i.e. a fragment is associated with

f-structure units fx and fy such that fx does not contain fy and fy does not

contain fx – then we also retain the minimal f-structure unit which contains

them both. By minimal unit we mean the unit comprising the attribute with

value fx and the (nested sequence of minimal units containing) attribute with

value fy.

3. For the source and target representations in turn, delete all semantic forms (in-

cluding PRED attributes and their values) not associated with one of the remaining

c-structure terminals.

Figure 8.2 gives examples of LFG-DOT fragments extracted from the LFG-DOT repre-

sentation given in Figure 8.1. Consider, for example, fragment (a) in Figure 8.2. This

fragment was extracted by selecting the linked c-structure node pair <VPaux,VP> to be

the root node pair and deleting all c-structure nodes not dominated by this node pair. As

this root node pair does not dominate any further linked node pairs, the frontier operation

1We establish the attribute-value pairs to be retained for each fragment according to the new definition
for LFG-DOP fragments given in section 7.3 on page 199.

223

(a)

sf1



































PRED ‘flash〈SUBJ〉’

MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

sf2











CASE nom

NUM sg

PERS 3

SPEC-TYPE def













































VPaux

Aux V

is flashing

VP

clignote

tf1



































PRED ‘clignoter〈SUBJ〉’

PERF -

AUX-SELECT avoir

TENSE pres

SUBJ

tf2















CASE nom

NUM sg

PERS 3

GEND masc

SPEC-TYPE def

















































(b)

sf1





























MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

sf2











CASE nom

NUM sg

PERS 3

SPEC-TYPE def







































S

NP VPaux

S

NPdet VP

tf1





























PERF -

AUX-SELECT avoir

TENSE pres

SUBJ

tf2















CASE nom

NUM sg

PERS 3

GEND masc

SPEC-TYPE def











































(c)

sf2

























PRED ‘LED’

CASE nom

NUM sg

PERS 3

SPEC-TYPE def

ADJUNCT

{

sf3

[

SUBJ sf2

]

}

























NPadj

A N

LED

NPap

N A

voyant
tf2





























PRED ‘voyant’

CASE nom

NUM sg

PERS 3

GEND masc

SPEC-TYPE def

ADJUNCT

{

tf3

[

SUBJ tf2

]

}





























(d)

sf2

























CASE nom

NUM sg

PERS 3

SPEC-TYPE def

ADJUNCT









sf3

[

PRED ‘green〈SUBJ〉’

SUBJ sf2

]



































A

green

A

vert

tf2





























CASE nom

NUM sg

PERS 3

GEND masc

SPEC-TYPE def

ADJUNCT









tf3

[

PRED ‘vert〈SUBJ〉’

SUBJ tf2

]







































Figure 8.2: Example LFG-DOT fragments extracted from the represen-
tation in Figure 8.1.

224

must select the empty set. This c-structure fragmentation procedure thus corresponds to

fragmentation clause (1) above. Selection of the f-structure units corresponding to the

source and target tree-structures proceeds according to clause (2). As units sf1 and tf1

are linked to c-structure nodes, all simple attribute-value pairs which are members of these

units are retained. Units sf2 and tf2 are not linked to c-structure nodes, but as their at-

tributes are subcategorised for by the source and target PRED values ‘flash<SUBJ>’ and

‘clignoter<SUBJ>’, these units are also retained. Units sf3 and tf3, however, are neither

linked to c-structure nodes nor subcategorised for, and so these units, along with their

attributes, are deleted. Finally, following clause (3) above, semantic forms corresponding

to deleted c-structure terminals are deleted. Thus, fragment (a) expresses the fact that

if is flashing is to be translated as clignote then, for example, both source and target

sentences are in the present tense and must have nominative subjects. Furthermore, as

the value of the non-governable ADJUNCT attribute is no longer linked to a c-structure

node in either the source or target sides of the representation, it is not a requirement that

these subjects be modified; this is also the case for fragment (b).

Fragment (c) in Figure 8.2 was extracted by selecting the linked c-structure node pair

<NPadj,NPap> to be the root node pair and deleting all c-structure nodes not dominated

by this pair. The frontier operation then selected a set of linked node pairs comprising

only the pair <A,A> and deleted the subtrees dominated by these nodes. Again, this

c-structure fragmentation procedure thus corresponds to (1) above and, again, selection

of the f-structure units corresponding to the source and target tree-structures corresponds

to (2). As f-structure units sf2, tf2, sf3 and tf3 are all linked to c-structure nodes, they

are automatically retained. In contrast, the outer f-structure units sf1 and tf1 are neither

linked to nor subcategorised for, and so all other attribute-value pairs in these units are

themselves deleted. Finally, following (3) above, remaining semantic forms corresponding

to deleted c-structure terminals are deleted. Thus, fragment (c) states not only that the

noun LED translates as the noun voyant when both are modified by an adjective, but also

that those source and target adjectives must be in agreement with the nouns in question.

The converse translational relationship is stated in fragment (d), where we see that the

f-structures associated with the source and target fragments specify the types of nouns

225

each adjective can modify. For example, the target side of the fragment specifies that the

modified noun must be a singular masculine noun. This distinguishes the surface form

specified in the c-structure from the other possible surface realisations of the lexeme vert,

i.e. the masculine plural form verts, the feminine singular form verte and the feminine

plural form vertes.

8.2.3 Composition

The definition of LFG-DOT fragment composition merges the composition procedures for

Tree-DOT and LFG-DOP. As for Tree-DOT, each unlinked c-structure frontier node is

a terminal symbol and each linked c-structure frontier node is a syntactic category. In

composition terms, each pair of linked frontier nodes constitutes an open substitution

site, and fragments whose linked source and target root nodes are of the same syntactic

category as the linked source and target substitution site categories can be considered

for substitution at these frontiers. However, as for LFG-DOP, the f-structures associated

with each c-structure being substituted must unify with the f-structures of the current

sub-derivation. For LFG-DOT, this requirement applies to both the source and target

fragments – that is, the source f-structure of the fragment being substituted must unify

with the current source sub-derivation f-structure and the target f-structure of the fragment

being substituted must unify with the current target sub-derivation f-structure.

Consider, for example, the topmost fragment in Figure 8.3, where the leftmost open

source substitution site and its target linked counterpart are of category <NP,NPdet>.

All fragments whose linked c-structure root node categories are also <NP,NPdet> are

considered for substitution. However, only fragments whose source and target f-structures

unify successfully with the f-structures of this fragment – such as the one directly beneath

it in Figure 8.3 – can actually be selected for substitution. Note that, although our

definitions of LFG-DOT and LFG-DOP fragments is less restrictive than those of Bod

and Kaplan (2003) and Way (2001) in that we do not specify an adjunct to the subject,

the constraints specified are nevertheless quite restrictive. For example, the fragment

with root node <S,S> specifies that any subject noun phrase combined with it must be

third person singular and, in the case of the French noun phrase, of masculine gender.

226

sf1





























MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

sf2











CASE nom

NUM sg

PERS 3

SPEC-TYPE def







































S

NP VPaux

S

NPdet VP

tf1





























PERF -

AUX-SELECT avoir

TENSE pres

SUBJ

tf2















CASE nom

NUM sg

PERS 3

GEND masc

SPEC-TYPE def











































◦

sf4



















PRED ‘LED’

CASE nom

NUM sg

PERS 3

SPEC-FORM the

SPEC-TYPE def



















NP

D N

the LED

NPdet

D N

le voyant tf4























PRED ‘voyant’

CASE nom

NUM sg

PERS 3

GEND masc

SPEC-FORM le

SPEC-TYPE def























=

sf1







































MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

sf2



















PRED ‘LED’

CASE nom

NUM sg

PERS 3

SPEC-FORM the

SPEC-TYPE def

























































S

NP VPaux

D N

the LED

S

NPdet VP

D N

le voyant

tf1







































PERF -

AUX-SELECT avoir

TENSE pres

SUBJ

tf2























PRED ‘voyant’

CASE nom

NUM sg

PERS 3

GEND masc

SPEC-FORM le

SPEC-TYPE def





























































◦

sf7



































PRED ‘flash〈SUBJ〉’

MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

sf8











CASE nom

NUM sg

PERS 3

SPEC-TYPE def













































VPaux

Aux V

is flashing

VP

clignote

tf9



































PRED ‘clignoter〈SUBJ〉’

PERF -

AUX-SELECT avoir

TENSE pres

SUBJ

tf11















CASE nom

NUM sg

PERS 3

GEND masc

SPEC-TYPE def

















































=

sf1











































PRED ‘flash〈SUBJ〉’

MOOD indicative

PERF -

PROG +

TENSE pres

SUBJ

sf2



















PRED ‘LED’

CASE nom

NUM sg

PERS 3

SPEC-FORM the

SPEC-TYPE def





























































S

NP VPaux

D N AUX V

the LED is flashing

S

NPdet VP

D N clignote

le voyant tf1











































PRED ‘clignoter〈SUBJ〉’

PERF -

AUX-SELECT avoir

TENSE pres

SUBJ

tf2























PRED ‘voyant’

CASE nom

NUM sg

PERS 3

GEND masc

SPEC-FORM le

SPEC-TYPE def

































































Figure 8.3: Example derivation using LFG-DOT fragments and the LFG-
DOT composition operation.

227

Thus, although the fragment shown in example (8.10) below meets the category-matching

criterion, unification with this <S,S>–rooted fragment fails because both the source and

target noun phrases specify number plural and, in addition, the target noun phrase specifies

gender feminine.

sf5

































PRED cartridge

CASE nom

NUM pl

PERS 3

SPEC-FORM the

SPEC-TYPE def

































NP

D N

the cartridges

NPdet

D N

les cartouches

tf5







































PRED cartouche

CASE nom

NUM pl

PERS 3

GEND fem

SPEC-FORM le

SPEC-TYPE def







































(8.10)

Note that the labels identifying f-structure units do not play any part in the composition

process. Rather, it is the φ-links that indicate at which units unification is to take place.

For example, source f-structure unification when composing the top two fragments in

Figure 8.3 is dictated by the φ-link indicating that the substitution site NP corresponds

to f-structure unit sf2. Therefore, the source f-structure of the fragment substituted at

node NP must compose with unit sf2, irrespective of its label.

As for all previous data-oriented models presented, a derivation is complete only when

no open substitution sites remain. Thus, the sub-derivation yielded by the composition of

the top two fragments in Figure 8.3 is incomplete as linked substitution site <VPaux,VP>

remains. Composition of the fragment representing the paired strings is flashing and

clignote with this sub-derivation does, however, yield a complete derivation.

8.2.4 The probability model

As for Tree-DOT, the LFG-DOT probability model requires that we sum over the prob-

abilities of all valid derivations yielding a given translation in order to determine which

translation is the most probable. Thus – in theory, at least – we generate all possible

bilingual representations for the input string and establish the target string probabilities

accordingly. As for LFG-DOP, however, not all derivations are valid as some may be in

violation of the LFG uniqueness, completeness and coherence well-formedness conditions.

Thus, we must remove all invalid derivations from the probability space and condition

228

our final probabilities on the total valid probability mass only. Although LFG-DOP mod-

els M1 and M2 can also be used, the probability model we describe here corresponds to

LFG-DOP Model M3.

Again, building an LFG-DOT derivation can be viewed as a top-down stochastic

branching process. A fragment whose root node pair corresponds to the start category pair

is selected at random to start the derivation. Further fragments are successively chosen

to combine with the leftmost open substitution site of the derivation; these fragments are

chosen at random from the set of fragments competing for selection at each substitution

site. Thus, the competition probability of selecting a fragment at random to participate in

a derivation is the likelihood with which it is drawn from the competition set (CS), i.e. its

probability over the total probability mass assigned to the CS as given in equation (8.11).

CP (f) =
P (f)

∑

f ′∈CS P (f ′)
(8.11)

As we choose to enforce the LFG uniqueness and coherence conditions during this sam-

pling process, the set of fragments eligible for substitution at each site must have the

appropriate root node pair and be unifiable with both the source and target f-structures

without violating either the uniqueness or coherence conditions. This specification of the

competition set is given in (8.12).

CS = {f : root(f) = LSS(Di−1) ∧ unique(Di−1 ◦ f) ∧ coherent(Di−1 ◦ f)} (8.12)

Of course, as the LFG completeness criterion can only be verified once each sample deriva-

tion is completed, some derivations sampled may still be invalid. Therefore, final transla-

tion probabilities are calculated only over valid derivations, as given in equation (8.13).

P (t|s) =
∑

R yields s,t

P (R)
∑

R′ is valid P (R′)
(8.13)

The probabilities of discard-generated fragments can be calculated using the method de-

scribed for LFG-DOP in section 7.1.4. We note, however, that this method of assigning

probabilities to fragments does not address the issue of ‘leaked’ probability mass raised

229

by Abney (1997); this is precisely the same problem as discussed for LFG-DOP in section

7.1.4.

The crucial difference between this probability model and the one specified by Way

(2001) for LFG-DOT Model 3 is that we assume each bilingual LFG-DOT fragment to be a

single unit of information and, correspondingly, each bilingual representation generated for

the input string to be a single representation. Thus, we do not break the representation

into separate source and target entities for the purposes of probability calculation. In

fact, the LFG-DOT model can be viewed as a parser which assigns analyses to the input

string such that those analyses happen – due to the underlying representations assumed

by the model – to incorporate a target-language string which constitutes a translation

of the input. When viewed from this perspective, the only difference between the LFG-

DOP and LFG-DOT models is in the probability model: the LFG-DOP probability model

maximises representation probability whereas the LFG-DOT probability model maximises

target string probability.

8.3 Implementing LFG-DOT

The LFG-DOT model discussed in section 8.2 merges the Tree-DOT and LFG-DOP mod-

els. Both the underlying fragments and representations constructed for each input string

resemble Tree-DOT representations in that they comprise linked source and target phrase-

structure trees and resemble LFG-DOP representations in that each of these source and

target phrase-structure trees is linked to an attribute-value matrix. However, the imple-

mentation methods applicable to LFG-DOP are fewer than for Tree-DOT. We propose

that Sima’an (1999)’s two-phase algorithm be used to build the LFG-DOP parse space

as discussed in section 7.5.1. Extension to handle bilingual rather than monolingual frag-

ments is straightforward, as discussed in section 5.2.2. Furthermore, while both exact and

re-scored sampling probabilities are computable from the Tree-DOT translation space as

discussed in section 5.2.4, only re-scored sampling probabilities are computable from the

LFG-DOP parse space, as discussed in section 7.5.3. Thus, implementation of the LFG-

DOT model necessitates the combination of two-phase analysis to compute the translation

space for the input string and re-scored sampling to select the most probable translation

230

from that space according to the model. In addition, the compact fragment representations

and frequency calculations described for Tree-DOT and LFG-DOP fragments described in

sections 5.2.3 and 7.5.2 respectively can be readily applied to LFG-DOT fragments.

8.4 Translational equivalence and limited compositionality

Way (2001)’s LFG-DOT Model 4 extends discard with lemmatisation of c-structure ter-

minals in order to address the issue of limited fragment compositionality inherited by the

LFG-DOT model from Tree-DOT. We suggest that, in fact, the differences between the

contextual information captured by Tree-DOT and LFG-DOT representations allows us

to express different sets of translational dependencies between the same pairs of strings.

In order to show how these differences impact on the issue of limited fragment composi-

tionality for the Tree-DOT and LFG-DOT models, we discuss the factors which allow us

to decide whether or not two sub-structures are translationally equivalent.

Translational equivalence in Tree-DOT Consider the example Tree-DOT fragment

given in example (8.7) and repeated for convenience as example (8.14). We stated that,

because no link exists between the V nodes dominating the terminals fell and tomber in

the linked subtree pair, no fragment can be extracted which captures the generalisation

just Vs −→ vient de Vt. Furthermore, we stated that the reason this link does not exist

is because fell and tomber are not considered translationally equivalent as the verb form

fell is in the past tense whereas the verb form tomber is in the infinitive.

VP

ADV V

just fell

VP

V V’

vient COMP V

de tomber

(8.14)

However, this is not entirely accurate: the substrings fell and tomber clearly are transla-

tionally equivalent, but only in extremely limited contexts.

If we assume Tree-DOT representations, then our only means of signalling context is

through syntactic structure and surrounding terminals. For example, if we choose to link

231

the nodes dominating fell and tomber then we can extract the two extra fragments (a) and

(b) shown in (8.15) but the only constraint on the contexts in which these fragments can

be used is in terms of syntactic category.

(a) (b)

VP

ADV V

just

VP

V V’

vient COMP V

de

V

fell

V

tomber

(8.15)

Thus, any pair of linked substrings with root node pair <V,V> can be composed with

fragment (a) regardless of how they are tensed. For example, if we have a linked, tensed

verb pair <arrived,arriva> then we can generate the ill-formed translation vient de ar-

riva. Similarly, we can substitution fragment (b) into any sub-derivation where the leftmost

source substitution site and its target linked node are of category V, thereby generating

such ill-formed translations as Martin tomber for Martin fell. Clearly, syntactic category

alone does not signal the appropriate context for this particular translation pair. If we are

limited to Tree-DOT representations, our only other way of signalling context is through

the surrounding terminals and the syntactic structure describing them. Thus, the appro-

priate context is specified by not linking the nodes dominating fell and tomber, as in the

representation given in (8.14) above. In other words, given the representations available

to us, this is the most generalised fragment we can extract which still retains enough

information to be able to correctly signal the extremely limited context in which fell and

tomber are translationally equivalent.

Translational equivalence in LFG-DOT Way (2001) states that the translation re-

lation between LFG-DOT representations is stated only at the level of surface structure

and, therefore, the f-structure constraints operate monolingually. We, however, view each

LFG-DOT fragment as a single unit of translation information, meaning that the con-

straints are also translational. (In fact, in both DOT and LFG-DOT we claim that there

are no monolingual dependencies modeled at all, rather the only dependencies modeled

are translational.) For example, the LFG-DOT fragments given in example (8.16) below

232

express the translational relationship “green Xs −→ Xt vert when Xs −→ Xt and Xt is

masculine whereas green Xs −→ Xt verte when Xs −→ Xt and Xt is feminine”.

sf1























NUM sg

PERS 3

ADJUNCT















sf2







PRED ‘green〈SUBJ〉’

SUBJ sf1











































NP

A N

green

NP

N A

vert

tf1





























NUM sg

PERS 3

GEND masc

ADJUNCT















tf2







PRED ‘vert〈SUBJ〉’

SUBJ tf1

















































sf1























NUM sg

PERS 3

ADJUNCT















sf2







PRED ‘green〈SUBJ〉’

SUBJ sf1











































NP

A N

green

NP

N A

verte

tf1





























NUM sg

PERS 3

GEND fem

ADJUNCT















tf2







PRED ‘vert〈SUBJ〉’

SUBJ tf1

















































(8.16)

Taking the viewpoint that each LFG-DOT fragment comprises a single unit of trans-

lational information means that we now have an additional way of signalling context: as

well as using syntactic structure and surrounding terminals, as for Tree-DOT, we can

now constrain fragment composition through the functional and grammatical information

provided in the f-structures. We now consider the implications of inserting a transla-

tional link between the nodes immediately dominating fell and tomber in the LFG-DOT

representation where just fell translates as vient de tomber, as shown in (8.17).

sf1







































SUBJ

sf2







NUM sg

PERS 3







PRED ‘fall〈SUBJ〉’

TNS past

FIN +

SADJ

{

sf3

[

PRED ‘just’

]

}







































VP

ADV V

just fell

VP

V V’

vient COMP V

de tomber

tf1

























































SUBJ

tf2







NUM sg

PERS 3







PRED ‘venir〈SUBJ,XCOMP〉’

TNS pres

FIN +

XCOMP

tf3



















PRED ‘tomber〈SUBJ〉’

DE +

FIN –

SUBJ tf2











































































(8.17)

Here, we see that the f-structure corresponding to the verb fell explicitly states that this

form is tensed whereas the f-structure corresponding to tomber states that this form is in

the infinitive. This information is also present in the two extra fragments which can now

be extracted from this representation thanks to the presence of the additional translational

233

link. These two fragments are shown as (a) and (b) in example (8.18).

sf1































SUBJ

sf2







NUM sg

PERS 3







TNS past

FIN +

SADJ

{

sf3

[

PRED ‘just’

]

}































VP

ADV V

just

VP

V V’

vient COMP V

de

tf1

















































SUBJ

tf2







NUM sg

PERS 3







PRED ‘venir〈SUBJ,XCOMP〉’

TNS pres

FIN +

XCOMP

tf3













DE +

FIN –

SUBJ tf2





























































(a)

sf1



























SUBJ

sf2







NUM sg

PERS 3







PRED ‘fall〈SUBJ〉’

TNS past

FIN +



























V

fell

V

tomber

tf1





































SUBJ

tf2







NUM sg

PERS 3







XCOMP

tf3



















PRED ‘tomber〈SUBJ〉’

DE +

FIN –

SUBJ tf2























































(b)

(8.18)

Clearly, these LFG-DOT fragments are far more constrained than their Tree-DOT coun-

terparts. For example, in order for a pair of translationally equivalent source and target

verbs to be considered for composition with fragment (a), the source f-structure must

agree that the source verb is finite and in the past tense whereas the target f-structure

must agree that the verb is the infinitive and functions as an XCOMP. Correspondingly,

in order for fragment (b) to be composed with any sub-derivation, the source f-structure

of (b) must unify with the source sub-derivation f-structure, meaning that the source sub-

derivation must allow a past tense verb. Furthermore, the target sub-derivation must allow

a verb in the infinitive to function as an XCOMP in order for it to be unifiable with the

target f-structure of fragment (b). Thus, we conclude that the LFG-DOT representations

incorporate sufficient contextual information to allow us to link these nodes.

One might wonder how useful such fragments will actually be for real translation tasks,

given that, even in very large corpora, we are likely to see few fragments which did not

occur in exactly this context originally (in which case less generalised fragments will yield

the correct translation) and yet still conform to these very restrictive contexts. However,

fragments which do not exactly match the required context can still prove useful through

application of discard where no alternative presents itself. For example, the fragment in

example (8.19) can compose with fragment (8.18)(a) once the tense features in the target

234

f-structure have been deleted.

sf1



























SUBJ

sf2







NUM sg

PERS 3







PRED ‘arrive〈SUBJ〉’

TNS past

FIN +



























V

arrived

V

arriva

tf1



























SUBJ

tf2







NUM sg

PERS 3







PRED ‘arriver〈SUBJ〉’

///////TNS //////past

//////FIN ///+



























(8.19)

This yields the ungrammatical translation vient de arriva for the string just arrived. How-

ever, as this translation was produced using discard fragments it can be flagged as un-

grammatical with respect to the corpus. Furthermore, the substring associated with the

deleted features can also be flagged as potentially problematic. Finally, the representa-

tion associated with this translation can also be returned; this representation contains

the lemma(s) corresponding to the ill-formed substring along with the features needed to

generate the correct form.

We note that every case of limited fragment compositionality is not solved by adopt-

ing LFG-DOT representations. However, some translation examples embody such complex

mappings between source and target strings that overgeneralisation becomes a real con-

cern. Therefore, we conclude that, for such cases, retention of highly-specific fragments is

desirable in order to correctly signify context and avoid overgeneralisation.

8.5 Learning features which predict good solutions

In section 7.3, we provided an alternative definition for LFG-DOP (also used for LFG-

DOT) as to which f-structure units correspond to c-structure fragments. The difference

between this definition and the ones provided by (Bod and Kaplan, 1999, 2003) is that

it differentiates between governable and non-governable arguments, only retaining non-

governable attributes and their values where those values are φ-linked to one or more

c-structure fragment nodes. However, once an argument is subcategorised for by a PRED

value corresponding to a terminal dominated by the fragment root node in the original

tree, the f-structure information for this argument is retained. In the fragment given in

(8.20), for example, the NUM and PERS features for the object noun phrase are retained

235

even though the terminal they describe has been deleted.

sf1











































SUBJ

sf2













PRED ‘Mary’

NUM sg

PERS 3













PRED ‘see〈SUBJ,OBJ〉’

TNS pres

OBJ

sf3







NUM sg

PERS 3

















































S

NP VP

Mary V NP

sees

(8.20)

In order to compose a noun phrase of number plural – such as the girls, for example –

with this fragment, the number feature will have to be discarded from either the object

f-structure unit in (8.20) or the plural noun phrase fragment being composed.

The purpose of the discard operation is to allow constraint relaxation where either

the input is ill-formed or the evidence in the treebank is insufficient to fully analyse the

input. While the input string Mary sees the girls is well-formed, if the only fragments in

the fragment base relevant to this input string lead to the sub-derivation in (8.20) and,

therefore, we must use discard to generate an analysis, then the treebank evidence must

be considered insufficient with respect to this input string. We question, however, whether

it is really the case that the treebank evidence is insufficient or whether we are, in reality,

using discard to compensate for the fact that our f-structure fragments impose unwarranted

constraints. In other words, as English does not exhibit object-verb agreement, placing

constraints on the features of the expected object in fragment (or sub-derivation) (8.20)

seems counter-intuitive.

Given that the LFG-DOP model is not specialised for use in any particular application,

we assume that, along with disambiguation, the objective for each input string is to output

the most informative parse possible. Suppose, however, that we wanted to use our LFG-

DOP parser only to predict the best tree for the input string. In other words, we do not

output an f-structure but rather use the f-structure constraints on each fragment to rule

out bad parse trees and better estimate the relative likelihoods of good parse trees. In

this situation, retaining all possible constraints in each fragment f-structure is not only

unnecessary but may be counter-productive. Therefore, we suggest that it would be more

useful to learn which fragment constraints help to differentiate between good and bad

236

parse trees and, correspondingly, which constraints do not help with the task at hand. We

could then simply delete those constraints deemed not useful.

It is important to note that we envisage deleting constraints from LFG-DOP fragments

rather than the underlying LFG representations. Consider, for example, the representation

for the string Mary sees John in (8.21)(a) below. If we extract LFG-DOP fragment (b),

where the subject and object NP positions are open substitution sites, we can delete

the constraints on the object NP – which correspond to the terminal John in (a) – as

shown. However, when we extract LFG-DOP fragment (c) representing NP −→ John we

must retain these attribute-value pairs as we do not know which grammatical functions

this fragment will fulfill in any unseen input sentences. Thus, learning which features to

retain and which to delete must take place over the LFG-DOP fragment set rather than

the LFG-DOP representations. Furthermore, we emphasise that feature selection should

ideally take the form of a data-driven learning process so that the language-independent

nature of the LFG-DOP model is not compromised.

(a)

sf1

















































SUBJ

sf2













PRED ‘Mary’

NUM sg

PERS 3













PRED ‘see〈SUBJ,OBJ〉’

TNS pres

OBJ

sf3













PRED ‘John’

NUM sg

PERS 3





























































S

NP VP

Mary V NP

sees John

(b)

sf1































SUBJ

sf2







NUM sg

PERS 3







PRED ‘see〈SUBJ,OBJ〉’

TNS pres

OBJ
sf3

[]































S

NP VP

V NP

sees

(c)

sf1













PRED ‘John’

NUM sg

PERS 3













NP

John
(8.21)

This type of LFG-DOP parser, which uses f-structure constraints to determine the

best parse, is unlikely to be used for many real applications because LFG representations

are generally considered to be more useful than representations which simply describe

syntactic structure. This parsing model is, however, analogous to the LFG-DOT model

237

which uses f-structure constraints to determine the best translation. As the LFG-DOT

representations for the source and target strings are internal to the model, we do not

seek to build the most informative representations possible. Rather, we are interested in

making use of only those constraints which will help to rule out bad translations and to

better establish the relative likelihoods of good translations. Thus, we expect application

of this strategy in the LFG-DOT model to help both translation speed and translation

accuracy.

As the source sides of the LFG-DOT fragments extracted are a subset of those which

would be extracted from the source side of the bilingual data according to the LFG-DOP

model, and the same for the target sides, we suggest that the appropriate features could be

learned on a monolingual basis. Consider, for example, fragments (a) – (d) in (8.22) below.

We would hope to have learned that, for English, the surface form of the adjective green

does not reflect whether the noun it modifies is singular or plural, i.e. both the green leaves

and the green leaf are grammatically correct. Conversely, we would hope to have learned

that, for French, the surface form of the adjective vert reflects both the number and gender

features of the noun it modifies, meaning that this adjective has four possible surface forms.

However, although no constraints are expressed in any of the f-structures corresponding

to green other than that it must have a subject, the links between the English and French

fragments in (8.22) express translational constraints. Thus, it is not the case that there are

no constraints on the set of English adjective-noun pairs which can be analysed using each

of these fragments. Rather, these constraints are translational rather than monolingual.

For example, fragment (d) can only be used when the English word modified by green

238

translates as a French word with number plural and gender feminine.

(a)

sf1









ADJUNCT















sf2







PRED ‘green〈SUBJ〉’

SUBJ sf1





























A

green

A

vert

tf1























NUM sg

GEND masc

ADJUNCT















tf2







PRED ‘vert〈SUBJ〉’

SUBJ tf1











































(b)

sf1









ADJUNCT















sf2







PRED ‘green〈SUBJ〉’

SUBJ sf1





























A

green

A

verte

tf1























NUM sg

GEND fem

ADJUNCT















tf2







PRED ‘vert〈SUBJ〉’

SUBJ tf1











































(c)

sf1









ADJUNCT















sf2







PRED ‘green〈SUBJ〉’

SUBJ sf1





























A

green

A

verts

tf1























NUM pl

GEND masc

ADJUNCT















tf2







PRED ‘vert〈SUBJ〉’

SUBJ tf1











































(d)

sf1









ADJUNCT















sf2







PRED ‘green〈SUBJ〉’

SUBJ sf1





























A

green

A

vertes

tf1























NUM pl

GEND fem

ADJUNCT















tf2







PRED ‘vert〈SUBJ〉’

SUBJ tf1











































(8.22)

While we have described feature pruning with respect to an LFG-DOP system which

uses f-structure constraints to predict the best parse tree and to the LFG-DOT model

which uses them to predict the best translation, it can also be applied where we wish

to output the most informative LFG representation possible for the input string. In this

situation, we determine those features which are helpful for disambiguation and mark

them as constraining features. However, rather than deleting those features which do not

appear to be helpful, we mark them as being informative rather than constraining. Thus,

where a clash occurs during unification between values where one attribute-value pair has

been identified as constraining and the other as informative, we can allow the constraining

feature to take precedence and drop the feature which is merely informative. Furthermore,

this representation can still be considered well-formed. This is in contrast to the current

model, which offers no motivated way to decide which clashing feature should be deleted,

and so deletes features indiscriminately and marks all resulting representations as ill-

formed. Finally, in the situation where a clash occurs between two constraining equations

and no representation can be generated without such clashes, discard can be applied as

239

before and the string flagged as ungrammatical with respect to the corpus.

8.6 Summary

In the first section of this chapter, we described the work which has been carried out to

date on the LFG-DOT model of translation which augments Tree-DOT with LFG func-

tional information. We then proposed an alternative LFG-DOT model which is based

on Way (2001)’s LFG-DOT Model 3 but incorporates a different probability model and

fragmentation procedure. We proposed that the implementation of this model follow the

implementation of the LFG-DOP model, with the extension to handle paired source and

target representations treated exactly as in Tree-DOT. We highlighted the differences be-

tween the contextual information captured by Tree-DOT and LFG-DOT representations

and showed how these differences allow us to express different sets of translational depen-

dencies between the same pairs of strings. Furthermore, we discussed how these differences

impact on the issue of limited fragment compositionality for the Tree-DOT and LFG-DOT

models. Finally, we discussed how both the LFG-DOP and LFG-DOT models could be

improved by learning which attribute-value pairs contribute to the prediction of good

solutions.

240

Chapter 9

Conclusions

In this thesis, we have provided a comprehensive description of the work carried out to

date for tree-based Data-Oriented Parsing in terms of the model itself, pruning strategies,

disambiguation techniques, parameter estimation methods and algorithms for improved

efficiency. Furthermore, we have discussed in detail the algorithms used to implement each

major component of our Tree-DOP parser. In addition, we have presented an empirical

study of the characteristics of the Tree-DOP model when applied to parsing the English

and French sections of the HomeCentre corpus. This investigation showed for this data

that:

• DOP improves over the basic PCFG parsing model;

• highest parse accuracy is achieved by searching for the most probable parse rather

than the most probable derivation or shortest derivation;

• it is no more time-consuming to find the most probable parse than to find the most

probable or shortest derivations;

• overall, DOP modelled our English data better than it modelled our French data;

• the bias induced by the relative frequency parameter estimation method manifests

itself as a contradiction of the DOP Hypothesis, i.e. as fragment depth increases, it

becomes easier to determine which parse is most probable according to the model

but the parses selected are of decreasing quality.

241

We have also presented the theoretical characteristics of the Data-Oriented Translation

model, situating it as a hybrid model of MT which is unique in that it interweaves the

philosophies of the rule-based, example-based and statistical approaches in an integrated

framework. This model has the capacity to combine the linguistic sophistication of rule-

based models of translation with the robustness and adaptability of data-driven methods

and, thus, appears worthy of further research. However, previous attempts to evaluate

the empirical characteristics of this model were hampered by unsuitable data and a lim-

ited implementation. Thus, we have presented the implementation details of our novel

DOT system, which was inspired by the innovative algorithms developed for DOP, and

have documented larger-scale, more translationally-complex experiments than heretofore.

Contrary to previous findings, our results show that the model lives up to its theoretical

promise. This empirical evaluation showed for the English-French HomeCentre corpus

that:

• the DOT model performs significantly better than suggested by the previous evalu-

ation;

• the DOT model outperforms the SMT system we trained and tested on the same

data;

• highest translation accuracy is achieved by searching for the shortest derivation

rather than the most probable translation, most probable parse or most probable

derivation;

• the bias induced by the relative frequency parameter estimation method is less harm-

ful to the DOT model than to DOP due to constrained fragmentation and pruning

by link depth, but we still expect improved translation accuracy when satisfactory

estimation techniques are applied to DOT;

• automated data-acquisition for DOT is a real possibility and is deserving of further

attention.

The expressive power of the DOP model is limited by the corpus representations it as-

sumes, and phrase-structure trees reflect surface syntactic phenomena only. We presented

242

the theoretical and practical work which has been carried out to date for the LFG-DOP

model – which allies DOP with LFG representations – and summarised the empirical find-

ings. We proposed an alternative definition for fragment extraction for this model, which

addresses the handling of circular and re-entrant constraints and the (undesirable) reten-

tion of non-governable attributes for which there is no c-structure evidence. We discussed

an alternative method for parameter estimation which extends the back-off re-estimation

method described for Tree-DOP, highlighting not only how this approach addresses the

model bias towards larger parse trees but also how it provides a motivated way to apply

discard-generated fragments. Finally, we discussed how the LFG-DOP probability model

limits the choice of implementation methodologies which can be employed.

Way (1999, 2001) investigated the possibility of merging the DOT model of translation

with LFG representations. We have described the LFG-DOT models he proposed, and

presented an alternative model which incorporates the novel definition we proposed for

LFG-DOP fragment extraction and a different probability model. We suggested how this

model might best be implemented, based on our findings with regard to the implementation

of the DOT and LFG-DOP models. Furthermore, we explored the relationship between

translational equivalence and limited generalisation reusability for both the tree-based and

LFG-based DOT models, focussing on how this relationship differs depending on which

formalism is assumed. Finally, we hypothesised as to how the constraints used to predict

both good parses and good translations might be pruned in a motivated fashion.

9.1 Future work

Our empirical evaluation of the Tree-DOP model demonstrates the harmful effects of

the bias induced by use of the relative frequency parameter estimation method. While

this bias appears to be less harmful for the Tree-DOT model, we hypothesise that the

application of parameter re-estimation using back-off will lead to further improvements in

translation quality. Thus, we propose that experiments assessing the impact of applying

this methodology to the Tree-DOT model be carried out in order to verify our hypothesis.

Our evaluation of Tree-DOT has shown that this model achieves high levels of transla-

tion accuracy. However, the problem of data acquisition constitutes a serious bottleneck as

243

the model requires that parsed sentence pairs be aligned at sentential and sub-structural

levels. Manually establishing sub-structural alignments is impractical because it is time-

consuming and requires considerable expertise of both source and target languages as

well as how they are related. We have presented preliminary results which indicate that

high-quality translations can also be achieved using automatically-induced alignments.

Consequently, we feel that automatic acquisition of the resources required by the DOT

model is a real possibility and deserves further attention.

While we have discussed LFG-DOP and LFG-DOT implementation possibilities, em-

pirical evaluation of these models was beyond the scope of this thesis. While LFG-DOP

experiments have already been documented in the literature, practical assessment of the

LFG-DOT model of translation remains outstanding. We suggest that an empirical com-

parison of translation performance be carried out for the Tree-DOT and LFG-DOT models.

We would also like to assess how the novel fragmentation methodology we have proposed

impacts on the accuracy and efficiency of the LFG-based models of both parsing transla-

tion, particularly with regard to the handling of sentences involving circular and re-entrant

structures. We would like to evaluate the back-off parameter estimation technique pro-

posed for LFG-DOP, paying particular attention to how structuring the space of discard

fragments helps to find accurate solutions more quickly. We hypothesise that this method

of estimating fragment probabilities is also applicable to LFG-DOT. Finally, we propose

that a learning method to distinguish between constraining and informative fragment fea-

tures for both LFG-DOP and LFG-DOT be developed, and experiments carried out to

establish the impact this has on accuracy and efficiency.

244

Bibliography

Abeillé, A., Schabes, Y., and Joshi, A. K. (1990). Using Lexicalized Tags for Machine

Translation. In Proceedings of the 13th International Conference on Computational

Linguistics (COLING’90), pages 1–6, Helsinki, Finland.

Abney, S. (1997). Stochastic Attribute-Value Grammars. Computational Linguistics,

23(4):597–618.

Aho, A. and Ullman, J. (1972). The Theory of Parsing, Translation and Compiling.

Volume 1: Parsing. Prentice-Hall, Englewood Cliffs, NJ.

Bod, R. (1992). A Computational Model of Language Performance: Data Oriented Pars-

ing. In Proceedings of the 15th[sic] International Conference on Computational Linguis-

tics (COLING’92), pages 855–859, Nantes, France.

Bod, R. (1995a). Enriching Linguistics with Statistics: Performance Models of Natural

Language. PhD thesis, Institute for Logic, Language and Computation, University of

Amsterdam.

Bod, R. (1995b). The Problem of Computing the Most Probable Tree in Data-Oriented

Parsing and Stochastic Tree Grammars. In Proceedings of the 7th Conference of the

European Chapter of the Association for Computational Linguistics (EACL’95), pages

104–111, Dublin, Ireland.

Bod, R. (1996). Monte Carlo Parsing. In Bunt, H. and Tomita, M., editors, Recent Ad-

vances in Parsing Technology, pages 255–280. Kluwer Academic Publishers, Dordrecht,

The Netherlands.

245

Bod, R. (1998). Beyond Grammar: An Experience-Based Theory of Language. Stanford

CA: CSLI Publications.

Bod, R. (1999). Extracting Stochastic Grammars from Treebanks. In Proceedings of the

ATALA Workshop on Treebanks, Paris, France.

Bod, R. (2000a). An Empirical Evaluation of LFG-DOP. In Proceedings of the 19th Inter-

national Conference on Computational Linguistics, pages 62–68, Saarbrucken, Germany.

Bod, R. (2000b). An Improved Parser for Data-Oriented Lexical-Functional Analysis. In

Proceedings of the 38th Conference of the Association for Computational Linguistics,

pages 61–68, Hong Kong.

Bod, R. (2000c). Combining Semantic and Syntactic Structure for Language Modeling.

In Proceedings of the Sixth International Conference on Spoken Language Processing

(ICSLP 2000), volume 3, pages 106–109, Beijing, China.

Bod, R. (2000d). Context-Sensitive Spoken Dialogue Processing with the DOP Model.

Natural Language Engineering, 5(4):309–323.

Bod, R. (2000e). Parsing with the Shortest Derivation. In Proceedings of the 18th Inter-

national Conference on Computational Linguistics (COLING’00), pages 69–75, Saar-

bruecken, Germany.

Bod, R. (2001). What is the Minimal Set of Fragments that Achieves Maximal Parse Accu-

racy? In Proceedings of the 39th Annual Meeting of the Association for Computational

Linguistics (ACL’01), pages 66–73, Toulouse, France.

Bod, R. (2002). A Unified Model of Structural Organisation in Language and Music.

Journal of Artificial Intelligence Research, 17:289–308.

Bod, R. (2003a). An Efficient Implementation of a New DOP Model. In Proceedings

of the 10th Conference of the European Chapter of the Association for Computational

Linguistics (EACL’03), pages 19–26, Budapest, Hungary.

Bod, R. (2003b). Do All Fragments Count? Natural Language Engineering, 9(4):307–323.

246

Bod, R. (2003c). Extracting Stochastic Grammars from Treebanks. In Abeillé, A., edi-

tor, Treebanks: Building and Using Parallel Corpora, pages 333–350. Kluwer Academic

Publishers.

Bod, R. and Kaplan, R. (1998). A Probabilistic Corpus-Driven Model for Lexical-

Functional Analysis. In Proceedings of the 17th International Conference on Computa-

tional Linguistics and 36th Conference of the Association for Computational Linguistics,

pages 145–151, Montreal, Canada.

Bod, R. and Kaplan, R. (1999). A Probabilistic Corpus-Driven Approach to Lexical-

Functional Representations. Unpublished manuscript.

Bod, R. and Kaplan, R. (2003). A DOP model for Lexical-Functional Grammar. In Bod,

R., Scha, R., and Sima’an, K., editors, Data-Oriented Parsing, pages 211–232. Stanford

CA: CSLI Publications.

Bod, R., Scha, R., and Sima’an, K., editors (2003). Data-Oriented Parsing. Stanford CA:

CSLI Publications.

Bond, F. and Shirai, S. (2003). A Hybrid Rule and Example-Based Method for Machine

Translation. In Carl, M. and Way, A., editors, Recent Advances in Example-Based Ma-

chine Translation, pages 211–224. Kluwer Academic Publishers, Dordrecht, The Nether-

lands.

Bonnema, R., Buying, P., and Scha, R. (2000). Parse Tree Probability in Data Oriented

Parsing. In Proceedings of the Conference on Intelligent Text Processing and Computa-

tional Linguistics, pages 219–232, Mexico City, Mexico.

Bonnema, R. and Scha, R. (2003). Reconsidering the Probability Model for DOP. In Bod,

R., Scha, R., and Sima’an, K., editors, Data-Oriented Parsing, pages 25–42. Stanford

CA: CSLI Publications.

Bresnan, J. (2001). Lexical-Functional Syntax. Blackwell, Oxford.

Brown, R. D. (2003). Clustered Transfer-Rule Induction for Example-Based Translation.

247

In Carl, M. and Way, A., editors, Recent Advances in Example-Based Machine Trans-

lation, pages 59–82. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Carroll, G. and Rooth, M. (1998). Valence induction with a head-lexicalized PCFG. In

Proceedings of the 3rd Conference on Empirical Methods in Natural Language Processing

(EMNLP 3), pages 36–45, Granada, Spain.

Chappelier, J.-C. and Rajman, M. (2003). Parsing DOP with Monte-Carlo Techniques.

In Bod, R., Scha, R., and Sima’an, K., editors, Data-Oriented Parsing, pages 83–106.

Stanford CA: CSLI Publications.

Charniak, E., Knight, K., and Yamada, K. (2003). Syntax-based Language Models for

Machine Translation. In Proceedings of the Ninth Machine Translation Summit, pages

40–46, New Orleans, USA.

Clarkson, P. and Rosenfeld, R. (1997). Statistical Language Modeling Using the CMU–

Cambridge Toolkit. In Proceedings of the 5th biennial European Conference on

Speech Communication and Technology (EUROSPEECH’97), pages 2707–2710, Rhodes,

Greece.

Collins, M. and Duffy, N. (2001). Convolution Kernels for Natural Language. In Advances

in Neural Information Processing Systems 14. MIT Press.

Cormons, B. (1999). Analyse et Disambiguation: Une approche purement à base de corpus

(Data-Oriented Parsing) pour le formalisme des Grammaires Lexicales Fonctionelles.

PhD thesis, Université de Rennes, France.

Daelemans, W. (1999). Memory-Based Language Processing. Journal for Experimental

and Theoretical Artificial Intelligence, 11(3):287–467.

Dalrymple, M. (2001). Lexical-Functional Grammar. Academic Press, San Diego, CA;

London.

de Pauw, G. (2003). An Approximation of DOP through Memory-Based Learning. In

Bod, R., Scha, R., and Sima’an, K., editors, Data-Oriented Parsing, pages 147–167.

Stanford CA: CSLI Publications.

248

Doddington, G. (2002). Automatic Evaluation of Machine Translation Quality Using N-

gram Co-Occurrence Statistics. In Human Language Technology: Notebook Proceedings,

pages 128–132, San Diego, CA.

Earley, J. (1970). An Efficient Context-Free Parsing Algorithm. Communications of the

ACM, 6(8):451–455.

Finch, A., Watanabe, T., and Sumita, E. (2003). Data-Oriented Paraphrasing. In Proceed-

ings of the International Conference on Recent Advances in Natural Language Processing

(RANLP’03), pages 153–157, Borovets, Bulgaria.

Frank, A. (1999). LFG-based syntactic transfer from English to French with the Xerox

Translation Environment. In Proceedings of the ESSLLI’99 Summer School, Utrecht,

The Netherlands.

Germann, U. (2003). Greedy Decoding for Statistical Machine Translation in Almost

Linear Time. In Proceedings of the Joint Meeting of the Human Language Technol-

ogy Conference and the North American Chapter of the Association for Computational

Linguistics (HLT-NAACL 2003), pages 72–79, Edmonton, Canada.

Germann, U., Jahr, M., Knight, K., Marcu, D., and Yamada, K. (2001). Fast Decoding and

Optimal Decoding for Machine Translation. In Proceedings of the 39th Annual Meeting

of the Association for Computational Linguistics (ACL’01), pages 228–235, Toulouse,

France.

Goodman, J. (1996a). Efficient Algorithms for Parsing the DOP model. In Proceedings of

the 1st Conference on Empirical Methods in Natural Language Processing (EMNLP 1),

pages 143–152, Philadelphia, PA.

Goodman, J. (1996b). Parsing Algorithms and Metrics. In Proceedings of the 34th Annual

Meeting of the Association for Computational Linguistics (ACL’96), pages 177–183,

Santa Cruz, CA.

Goodman, J. (1998). Parsing inside-out. PhD thesis, Harvard University, MA.

249

Goodman, J. (2003). Efficient Parsing of DOP with PCFG-Reductions. In Bod, R., Scha,

R., and Sima’an, K., editors, Data-Oriented Parsing, pages 125–146. Stanford CA: CSLI

Publications.

Groves, D., Hearne, M., and Way, A. (2004). Robust Sub-Sentential Alignment of Phrase-

Structure Trees. In Proceedings of The 20th International Conference on Computational

Linguistics (COLING’04), pages 1072–1078, Geneva, Switzerland.

Hearne, M. and Sima’an, K. (2003). Structured Parameter Estimation for LFG-DOP using

Backoff. In Proceedings of the International Conference on Recent Advances in Natural

Language Processing (RANLP’03), pages 184–191, Borovets, Bulgaria.

Hearne, M. and Way, A. (2003). Seeing the Wood for the Trees: Data-Oriented Trans-

lation. In Proceedings of the Ninth Machine Translation Summit, pages 165–172, New

Orleans, USA.

Hearne, M. and Way, A. (2004). Data-Oriented Parsing and the Penn Chinese Treebank.

In Proceedings of the 1st International Joint Conference on Natural Language Processing

(IJCNLP’04), pages 406–413, Hainan Island, China.

Hoogweg, L. (2000). Extending DOP1 with the insertion operation. Master’s thesis,

University of Amsterdam, The Netherlands.

Hutchins, J. and Somers, H. (1992). An Introduction to Machine Translation. Academic

Press, London.

Johnson, M. (1999). PCFG models of linguistic tree representations. Computational

Linguistics, 24(4):613–632.

Johnson, M. (2002). The DOP estimation method is biased and inconsistent. Computa-

tional Linguistics, 28(1):71–76.

Kaplan, R. and Bresnan, J. (1982). Lexical Functional Grammar, a Formal System for

Grammatical Representation. In Bresnan, J., editor, The Mental Representation of

Grammatical Relations, pages 173–281. MIT Press, Cambridge, MA.

250

Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R., Bies, A., Ferguson, M., Katz,

K., and Schasberger, B. (1994). The Penn Treebank: Annotating Predicate Argument

Structure. In Proceedings of the ARPA Workshop on Human Language Technology,

pages 110–115, Princeton, NJ.

Melamed, I. D. (2004). Statistical Machine Translation by Parsing. In Proceedings of the

42nd Annual Meeting of the Association for Computational Linguistics (ACL’04), pages

653–660, Barcelona, Spain.

Melamed, I. D., Green, R., and Turian, J. P. (2003). Precision and Recall of Machine

Translation. Technical Report 03-004, New York University, NY.

Menezes, A. and Richardson, S. D. (2003). A Best-First Alignment Algorithm for Ex-

traction of Transfer Mappings. In Carl, M. and Way, A., editors, Recent Advances

in Example-Based Machine Translation, pages 421–442. Kluwer Academic Publishers,

Dordrecht, The Netherlands.

NIST (2002). Automatic Evaluation of Machine Translation Quality Using N-gram Co-

Occurrence Statistics. Technical report.

Och, F. J. and Ney, H. (2003). A Systematic Comparison of Various Statistical Alignment

Models. Computational Linguistics, 29(1):19–51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2001). BLEU: a Method for Auto-

matic Evaluation of Machine Translation. Technical report, IBM T.J. Watson Research

Center.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a Method for Auto-

matic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics (ACL’02), pages 311–318, Philadelphia,

PA.

Poutsma, A. (1998). Data-Oriented Translation. In Ninth Conference of Computational

Linguistics in the Netherlands, Leuven, Belgium.

251

Poutsma, A. (2000). Data-Oriented Translation: Using the Data-Oriented Parsing frame-

work for Machine Translation. Master’s thesis, University of Amsterdam, The Nether-

lands.

Poutsma, A. (2003). Machine Translation with Tree-DOP. In Bod, R., Scha, R., and

Sima’an, K., editors, Data-Oriented Parsing, pages 339–357. Stanford CA: CSLI Publi-

cations.

Sato, S. (1995). MBT2: a method for combining fragments of examples in example-based

translation. Artificial Intelligence, 75:31–49.

Scha, R. (1990). Language Theory and Language Technology: Competence and Perfor-

mance. Computertoepassingen in de Neerlandistiek, pages 7–22.

Sima’an, K. (1995a). An optimized algorithm for Data Oriented Parsing. In Proceedings of

International Conference on Recent Advances in Natural Language Processing, Tzigov

Chark, Bulgaria.

Sima’an, K. (1995b). Computational Complexity of Probabilistic Disambiguation by

means of Tree-Grammars. In Proceedings of the 15th International Conference on Com-

putational Linguistics (COLING’96), pages 1175–1180, Copenhagen, Denmark.

Sima’an, K. (1999). Learning Efficient Disambiguation. PhD thesis, University of Ams-

terdam, The Netherlands.

Sima’an, K. (2003). Computational Complexity of Disambiguation under DOP1. In Bod,

R., Scha, R., and Sima’an, K., editors, Data-Oriented Parsing, pages 63–81. Stanford

CA: CSLI Publications.

Sima’an, K. and Buratto, L. (2003). Backoff Parameter Estimation for the DOP Model. In

Proceedings of the 14th European Conference on Machine Learning (ECML’03), pages

373–384, Cavtat-Dubrovnik, Croatia.

Stolcke, A. (1995). An Efficient Probabilistic Context-Free Parsing Algorithm that Com-

putes Prefix Probabilities. Computational Linguistics, 21(2):165–201.

252

Turcato, D. and Popowich, F. (2003). What is Example-Based Machine Translation? In

Carl, M. and Way, A., editors, Recent Advances in Example-Based Machine Translation,

pages 59–82. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Turian, J. P., Shen, L., and Melamed, I. D. (2003). Evaluation of Machine Translation

and its Evaluation. Technical Report 03-005, New York University, NY.

Vauquois, B. (1968). A Survey of Formal Grammars and Algorithms for Recognition and

Transformation in Machine Translation. In IFIP Congress-68, pages 254–260, Edin-

burgh.

Way, A. (1999). A Hybrid Architecture for Robust MT using LFG-DOP. Journal of

Experimental and Theoretical Artificial Intelligence, 11:441–471.

Way, A. (2001). LFG-DOT: A Hybrid Architecture for Robust MT. PhD thesis, University

of Essex, Colchester, UK.

Way, A. and Gough, N. (2003). wEBMT: Developing and Validating an Example-Based

Machine Translation System using the World Wide Web. Computational Linguistics:

Special Issue on the Web as Corpus, 29(3):421–458.

Wu, D. (1997). Stochastic Inversion Transduction Grammars and Bilingual Parsing of

Parallel Corpora. Computational Linguistics, 23(3):377–404.

Yamada, K. and Knight, K. (2001). A Syntax-Based Statistical Translation Model. In

Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics

(ACL’01), pages 523–530, Toulouse, France.

Younger, D. (1967). Recognition and parsing of context-free languages in time n3. Infor-

mation Control, 10(2):189–208.

253

