
A LATEX Package for CSLI
Collections

Edie Tor and Ed Itor (eds.)

June 29, 2001

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION

Contents

1 Efficient parsing of DOP with PCFG-reductions –
DRAFT 1
Joshua Goodman

References 21

v

1

Efficient parsing of DOP with
PCFG-reductions – DRAFT
Joshua Goodman

Joshua Goodman
Microsoft Research
One Microsoft Way
Redmond, WA 98052
joshuago@microsoft.com
http://www.research.microsoft.com/˜joshuago

1.1 Introduction
While the Data-Oriented Parsing (DOP) approach has produced some
extremely interesting and promising results (Bod 2000a, Bod 2000c,
Bod 2000b, Bod 2001), its computational complexity has deterred its
wider use, and made experiments with it more difficult. In particular, in
its original form, sometimes called DOP-1 (Bod 1995a), the DOP model
calls for using all possible subtrees in a training corpus. This leads to
exponentially many trees, and thus both exponential time and space
requirements. On top of this, the typical optimization criterion, most
probable parse, is NP-complete to solve for, leading to an exponentially
hard problem of exponential size. The solution has typically been various
approximations, such as sampling from the set of all trees, to reduce the
size of the grammar, or sampling from the set of all parses – Monte Carlo
approximations – to reduce the difficulty of the search. In this chapter,
we present two alternate solutions. The first removes the exponentiality
of the grammar size, making it instead linear in the training data size,

1

A LATEX Package for CSLI Collections.
Edie Tor and Ed Itor (eds.).
Copyright c© 2001, CSLI Publications.

2 / Joshua Goodman

while producing an identical distribution over parse trees. The second
removes the exponentiality of the search, making it instead O(n3), by
changing slightly the search criterion, to one which is much easier, but
gives almost identical performance. Our two new techniques can be used
either separately, or together. Overall, together these techniques lead to
a 500 times speedup over conventional DOP parsing.

1.1.1 Overview

In Section 1.2 we will show how to build a Probabilistic Context Free
Grammar (PCFG) equivalent to the classic DOP model. Our model will
only be linear in the size of each training tree, instead of the classic
use of all possible subtrees, which produces a grammar that is typically
exponential in the size of each training tree. Despite this drastically
smaller size, we prove that the two models produce the same probabil-
ity distributions over parse trees. This can lead to substantially faster
parsing times. The grammars produced can be used with most of the
typical parsing algorithms used for DOP, including an n-best parser; a
monte-carlo parser; or the new parser introduced in this chapter.

We then continue more speculatively, showing variations on this ef-
ficient PCFG construction that have other desirable properties. For in-
stance, we can build models that limit subtree depth, or that give a
smaller weight to larger trees, or that give the same weight to each piece
of training data, or that when parsed, return the shortest derivation.
Our construction makes it easy to do a wide variety of experiments.

Next, we describe a different maximization criterion. The usual max-
imization criterion for DOP models is the most probable parse criterion,
which selects the parse tree that has the highest probability of producing
the sentence. However, finding the most probable parse is NP-hard. In-
stead, we argue for finding the maximum constituents parse, which can
be done in O(n3) time. Theoretically, the maximum constituents parse
performs at least as well as the most probable parse on measures like
precision and recall, since it optimizes the number of correct pieces of a
tree. We show that in practice, it also works as well as a Monte-Carlo
parser on the exact match metric. We also describe some speedups for
Monte-Carlo parsing, just in case someone wanted to use that technique.

Finally, we conclude with our own opinions about the usefulness of
these techniques, and the prospects for DOP. While we think our tech-
niques should be very useful for DOP research, we admit to skepticism
about the overall potential of DOP.

Efficient parsing of DOP with PCFG-reductions – DRAFT / 3

S

!!! """

NP
!!""

pn pn

VP
!! ""

V NP
!!""

det n

FIGURE 1 Training corpus tree for DOP example

1.1.2 The DOP-1 model
The DOP-1 model (Bod 1995a) was the first version of DOP, and most
other versions of DOP are variations on it. We thus concentrate on that
model. The model itself is extremely simple and can be described as
follows: for every sentence in a parsed training corpus, extract every
subtree. In general, the number of subtrees will be very large, typically
exponential in sentence length. Now, use these trees to form a Stochastic
Tree Substitution Grammar (STSG). Each tree is assigned a number of
counts, one count for each time it occurred as a subtree of a tree in the
training corpus. Each tree is then assigned a probability by dividing its
number of counts by the total number of counts of trees with the same
root nonterminal.

Given the tree of Figure 1, we can use the DOP model to convert it
into the STSG of Figure 2. The numbers in parentheses represent the
probabilities. To give one example, the tree

NP
!!""

det n

is assigned probability 0.5 because the tree occurs once in the training
corpus, and there are two subtrees in the training corpus that are rooted
in NP , so 1

2 = 0.5. The resulting STSG can be used for parsing.
In theory, the DOP model has several advantages over other models.

In the conventional use of PCFGs (although not the use shown in this
chapter), only a very small context is captured – perhaps a parent and
its children. DOP’s use of trees allows capturing large contexts, making
the model more sensitive. Since every subtree is included, even trivial
ones corresponding to rules in a conventional PCFG, novel sentences
with unseen contexts may still be parsed.

Because every subtree is included, the number of subtrees is huge;
therefore Bod (1995a) randomly samples 5% of the subtrees, throwing
away the rest. This 95% reduction in grammar size significantly speeds
up parsing.

4 / Joshua Goodman

NP (1
2)

!!""
det n

VP (1
2)

!! ""
V NP

VP (1
2)

!! ""
V NP

!!""
det n

NP (1
2)

!!""
pn pn

S (1
6)

!! ""
NP VP

S (1
6)

!! ""
NP VP

!! ""
V NP

S (1
6)

!!! """
NP VP

!! ""
V NP

!!""
det n

S (1
6)

!! ""
NP

!!""
pn pn

VP

S (1
6)

!!! """
NP

!!""
pn pn

VP
!! ""

V NP

S (1
6)

!!! """

NP
!!""

pn pn

VP
!! ""

V NP
!!""

det n

FIGURE 2 Sample STSG Produced from DOP Model

1.1.3 Different Criteria
Before our research, there were two existing ways to parse using the DOP
model. First, one can find the most probable derivation. That is, there
can be many ways a given sentence could be derived from an STSG.
Using the most probable derivation criterion, one simply finds the most
probable way that a sentence could be produced. Figure 3 shows a simple
example STSG. For the string xx, what is the most probable derivation?
The parse tree

S
!!""

A

x

C

x

has probability 3
9 of being generated by the trivial derivation containing

a single tree. This tree corresponds to the most probable derivation of
xx.

One could try to find the most probable parse tree. For a given
sentence and a given parse tree, there are many different derivations
that could lead to that parse tree. The probability of the parse tree is
the sum of the probabilities of the derivations. Given our example, there
are two different ways to generate the parse tree

Efficient parsing of DOP with PCFG-reductions – DRAFT / 5

S (3
9)

!!""
A

x

C

x

S (2
9)

!!""
A

x

D

x

S (2
9)

!!""
E

x

B

x

S (2
9)

!!""
E

x

B
B (1)

x

FIGURE 3 Simple Example STSG

S
!!""

E

x

B

x

each with probability 2
9 , so that the parse tree has probability 4

9 . This
parse tree is most probable.

Bod (1993b) shows how to approximate this most probable parse us-
ing a Monte Carlo algorithm. The algorithm randomly samples possible
derivations, then finds the tree with the most sampled derivations. Bod
shows that the most probable parse yields better performance than the
most probable derivation on the exact match criterion.

Sima’an (1996b, 1999) has discussed other ways of speeding up DOP
parsing, mostly by limiting the sets of trees used, such as by limiting the
number of substitution sites for the trees. Sima’an (1996a) shows that
computing the most probable parse of a STSG is NP-Complete.

In Section 1.3 we will discuss a different way to speed up DOP pars-
ing. We will show that there is a third criterion, in addition to the most
probable parse and the most probable derivation, that can be used for
parsing. In particular, we will find the parse with the largest number of
expected correct parts: the maximum constituents parse. This criterion
turns out to be much faster to maximize than the most probable parse:
it can be found in time O(n3), instead of being NP-complete. As we will
show, when tested on the ATIS corpus, it performs just as well. corpus.

1.2 Equivalent Grammar
1.2.1 PCFG for DOP-1
The classic reduction to a STSG is extremely expensive, even when
throwing away 95% of the grammar. However, it is possible to find an
equivalent PCFG that contains at most eight PCFG rules for each node
in the training data; thus it is size O(n). Because this reduction is so
much smaller, we do not discard any of the grammar when using it. The
PCFG is equivalent in two senses: first it generates the same strings with
the same probabilities; second, using a homomorphism defined below, it

6 / Joshua Goodman

S@1

!!! """
NP@2
!!""

pn pn

VP@3
!! ""
v NP@4

!!""
det n

FIGURE 4 Example tree with addresses

generates the same trees with the same probabilities, although one must
sum over several PCFG trees for each STSG tree.

To show this reduction and equivalence, we must first define some
terminology. We assign every node in every tree a unique number, which
we will call its address. Let A@k denote the node at address k, where A
is the non-terminal labeling that node. Figure 4 shows the example tree
augmented with addresses. We will need to create one new non-terminal
for each node in the training data. We will call this non-terminal Ak.
We will call non-terminals of this form “interior” non-terminals, and the
original non-terminals in the parse trees “exterior.”

Let aj represent the number of nontrivial subtrees headed by the
node A@j. Let a represent the number of nontrivial subtrees headed by
nodes with non-terminal A, that is a =

∑
j aj .

Consider a node A@j of the form:

A@j
!! ""

B@k C@l

How many nontrivial subtrees does it have? Consider first the possibili-
ties on the left branch. There are bk non-trivial subtrees headed by B@k,
and there is also the trivial case where the left node is simply B. Thus
there are bk + 1 different possibilities on the left branch. Similarly, for
the right branch there are cl +1 possibilities. We can create a subtree by
choosing any possible left subtree and any possible right subtree. Thus,
there are aj = (bk + 1)(cl + 1) possible subtrees headed by A@j. In our
example tree of Figure 4, both noun phrases have exactly one subtree:
np4 = np2 = 1; the verb phrase has 2 subtrees: vp3 = 2; and the sentence
has 6: s1 = 6. These numbers correspond to the number of subtrees in
Figure 2.

We will call a PCFG subderivation homomorphic to a STSG elemen-
tary tree if the subderivation begins with an external non-terminal, uses
internal non-terminals for intermediate steps, and ends with external
non-terminals. Figure 5 gives an example of an STSG elementary tree

Efficient parsing of DOP with PCFG-reductions – DRAFT / 7

S

!!!
"""

NP
!! ""

PN PN

V P
!!""

V NP

S (external)

!!!
"""

NP@1
!! ""

PN PN

V P@2 (internal)
!! ""

V NP (external)

STSG elementary homomorphic PCFG
tree subderivation

FIGURE 5 STSG elementary tree homomorphic to a PCFG subderivation

taken from Figure 2, and a homomorphic PCFG subderivation.
We will give a simple small PCFG with the following surprising prop-

erty: for every subtree in the training corpus headed by A, the gram-
mar will generate a homomorphic subderivation with probability 1/a.
In other words, rather than using the large, explicit STSG, we can use
this small PCFG that generates homomorphic derivations, with identical
probabilities.

The construction is as follows. For a node such as
A@j

!! ""
B@k C@l

we will generate the following eight PCFG rules, where the number in
parentheses following a rule is its probability.

Aj → BC (1/aj) A → BC (1/a)
Aj → BkC (bk/aj) A → BkC (bk/a)
Aj → BCl (cl/aj) A → BCl (cl/a)
Aj → BkCl (bkcl/aj) A → BkCl (bkcl/a)

(1.1)

Theorem 1 Subderivations headed by A with external non-terminals at
the roots and leaves and internal non-terminals elsewhere have probabil-
ity 1/a. Subderivations headed by Aj with external non-terminals only at
the leaves and internal non-terminals elsewhere, have probability 1/aj.

Proof The proof is by induction on the depth of the trees. For
trees of depth 1, there are two cases:

A
!! ""

B C

A@j
!! ""

B C

Trivially, these trees have the required probabilities.
Now, assume that the theorem is true for trees of depth n or less. We

show that it holds for trees of depth n + 1. There are eight cases, one

8 / Joshua Goodman

PCFG derivation
4 productions

S

!!!!
""""

NP@3
!! ""

PN PN

V P@1
!!! """

V NP
!! ""

DET N

STSG derivation
2 subtrees

S

!!!!
""""

NP
!! ""

PN PN

V P

!!! """
V NP

NP
!! ""

DET N

FIGURE 6 Example of Homomorphic Derivation

for each of the eight rules. We show two of them. Let
B@k

...
represent a

tree of at most depth n with external leaves, headed by B@k, and with
internal intermediate non-terminals. Then, for trees such as

A@j
!! ""

B@k
...

C@l
...

the probability of the tree is 1
bk

1
cl

bkcl
aj

= 1
aj

. Similarly, for another case,
trees headed by

A
!! ""

B@k C

the probability of the tree is 1
bk

bk
a = 1

a . The other six cases follow trivially
with similar reasoning. !

We call a PCFG derivation homomorphic to a STSG derivation if for
every substitution in the STSG there is a corresponding subderivation in
the PCFG. Figure 6 contains an example of homomorphic derivations,
using two subtrees in the STSG and four productions in the PCFG.

We call a PCFG tree homomorphic to a STSG tree if they are identi-
cal when internal non-terminals are changed to external non-terminals.

Theorem 2 This construction produces PCFG trees homomorphic to
the STSG trees with equal probability.

Proof If every subtree in the training corpus occurred exactly
once, the proof would be trivial. For every STSG subderivation, there

Efficient parsing of DOP with PCFG-reductions – DRAFT / 9

would be a homomorphic PCFG subderivation, with equal probability.
Thus for every STSG derivation, there would be a homomorphic PCFG
derivation, with equal probability. Thus every STSG tree would be pro-
duced by the PCFG with equal probability.

However, it is extremely likely that some subtrees, especially trivial
ones like

S
!! ""

NP V P

will occur repeatedly.
If the STSG formalism were modified slightly, so that trees could oc-

cur multiple times, then our relationship could be made one-to-one. Con-
sider a modified form of the DOP model, in which the counts of subtrees
which occurred multiple times in the training corpus were not merged:
both identical trees would be added to the grammar. Each of these trees
will have a lower probability than if their counts were merged. This would
change the probabilities of the derivations; however the probabilities of
parse trees would not change, since there would be correspondingly more
derivations for each tree. Now, the desired one-to-one relationship holds:
for every derivation in the new STSG there is a homomorphic derivation
in the PCFG with equal probability. Thus, summing over all derivations
of a tree in the STSG yields the same probability as summing over all the
homomorphic derivations in the PCFG. Thus, every STSG tree would
be produced by the PCFG with equal probability.

It follows trivially from this that no extra trees are produced by the
PCFG. Since the total probability of the trees produced by the STSG
is 1, and the PCFG produces these trees with the same probability, no
probability is “left over” for any other trees. !

1.2.2 PCFGs for Other Versions of DOP
Since the time when this work was originally done, many variations on
DOP have been introduced. While we have not performed experiments
on any of these versions, we note that the techniques of this chapter
can be used, sometimes quite easily, to produce similar or equivalent
results for these variations. In particular, Bod has shown improved re-
sults both by limiting subtree depth (Bod 2001) and by using counting
(Bod 2000c), rather than probabilities. We will show how to emulate
both of these efficiently. We will also discuss interesting alternatives that
could be tried, such as giving smaller weights to larger trees, or giving
the same weight to each piece of training data, rather than each tree.
We speculate that these techniques might also be helpful.

10 / Joshua Goodman

Most experiments in DOP have limited the subtree depth. This
was originally done for efficiency, although more recent experiments
(Sima’an 1999) have also shown improved accuracy. Ironically, limit-
ing subtree depth using our model naively actually makes the grammar
larger, by up to a factor of the maximum depth, but is still more efficient
than the direct approach. The trick is to associate depth numbers with
each new node we generate, keeping a count of how deep we are.

Assume we want to model subtrees of depth at most d. We use a
variation on our previous technique. Let ae

j represent the number of
nontrivial subtrees headed by the node A@j of depth at most e. Let ad

represent the number of nontrivial subtrees of depth at most d headed
by nodes with non-terminal A, that is ad =

∑
j ad

j .
As before, consider a node A@j of the form:

A@j
!! ""

B@k C@l

We now compute ae
j . Following similar reasoning as before, there are

be−1
k non-trivial subtrees of depth at most e − 1 headed by B@k, plus

the case where the left node is just B, leading to be−1
k + 1 different

possibilities on the left branch. Similarly, for the right branch there are
ce−1
l + 1 possibilities. So, ae

j = (be−1
k + 1)(ce−1

l + 1).
The construction with limited depth trees is as follows, similar to our

previous construction, but with roughly d/2 times as many rules. For a
node such as

A@j
!! ""

B@k C@l

we will generate the following rules:

A → BC (1/ad)
A → Bd−1

k C (bd−1
k /ad)

A → BCd−1
l (cd−1

l /ad)
A → Bd−1

k Cd−1
l (bd−1

k cd−1
l /ad)

(1.2)

Now, for each 1 ≤ e < d we need the following rules:

Ae
j → BC (1/ae

j)
Ae

j → Be−1
k C (be−1

k /ae
j)

Ae
j → BCe−1

l (ce−1
l /ae

j)
Ae

j → Be−1
k Ce−1

l (be−1
k ce−1

l /ae
j)

(1.3)

We leave the proof of correctness to the reader; it follows the same
reasoning as before.

Efficient parsing of DOP with PCFG-reductions – DRAFT / 11

Notice that if two nodes A@j and A@k have exactly the same sub-
trees of depth at most e, then the productions for Ae

j and Ae
k can be

merged. For large trees, this is unlikely, but when the subtree depth is
limited, this may be very common. (The set of all subtrees will be the
same if and only if the trees are identical down to depth e. This can be
detected efficiently with a good hash table.) Also, if a tree A@j is of
depth e, then for all f > e, the productions Ae

j can be merged with the
productions for Af

j .
These ideas can be extended even further. Sima’an (1999, page 133)

notes that a variety of techniques can be used to limit the number of
subtrees used: the depth, the number of substitution sites, the number of
terminals, and the number of adjacent terminals. The first three can all
be easily incorporated into our reduction technique, simply by adding
limits analogous to the depth limit. There is also nothing to prevent
these limits from also being used in combination. We could probably
also apply the last technique, limiting the number of adjacent terminals,
but it would be somewhat harder to do this, and probably not worth
the effort.

Bod (2000c) shows that excellent results can be gotten from using
the shortest derivation – smallest number of trees in the derivation –
rather than the most probable parse. We can easily emulate this crite-
rion, by simply giving the rules of Equation 1.1 headed by an external
nonterminal a probability of 0.5, and internal nonterminal headed rules a
probability of 1. The resulting grammar will, of course, not be a PCFG
since the probabilities will sum to more than 1 – it might be better
to think of these as weights, rather than probabilities – but the most
probable derivation using this grammar has the following property: the
probability of the parse is equal to 0.5k where k is the number of exter-
nal nonterminals used, which is exactly the number of trees that would
be used in the corresponding STSG derivation. The highest probabil-
ity parse will be the one corresponding to the shortest derivation. Bod
(2000c) gives a moderately complex ranking technique to distinguish be-
tween ties; it would be necessary to use a different ranking technique in
order to use our equivalence, or to break ties after the parsing step.

Bonnema et al. (1999) observes that one problem with the DOP
model is that it provides more probability to nodes with more subtrees.
The amount of probability given to two different training nodes depends
critically on how many subtrees they have, and, given that the number of
subtrees is an exponential function, this means that some training nodes
could easily get hundreds or thousands of times the weight of others, even
if both occur exactly once. We can easily fix this in a number of ways.

12 / Joshua Goodman

For instance, Bonnema et al. suggest using

P (α) = 2−N(α)f(α)/F (α)

where α represents a tree, N(α) represents the number of non-root non-
terminals in α, f(α) represents the number of times α occurs in the
training data, and F (α) represents the number of times the root non-
terminal of α occurs in the training data.

It turns out that we can create a PCFG equivalent to this model.
Set a equal to the number of times nonterminals of type A occur in the
training data, and use

Aj → BC (1/4) A → BC (1/4a)
Aj → BkC (1/4) A → BkC (1/4a)
Aj → BCl (1/4) A → BCl (1/4a)
Aj → BkCl (1/4) A → BkCl (1/4a)

(1.4)

This grammar assigns the same probabilities to subtrees as the model
of Bonnema et al. Bonnema et al. reduce the probability of a tree by a
factor of two for each non-root non-terminal it contains. This is equiv-
alent to reducing the probability of a tree by a factor of four for each
pair of non-terminals it contains, which is exactly what we do. Note that
Bod (2001) achieves excellent results while using a sampling technique
that has the effect of assigning roughly equal weight to each node in the
training data and very roughly exponentially less probability for larger
trees, so techniques along these lines seem very promising.

Of course, there are many variations on these techniques that could
be explored. For instance, an alternative that gives equal weight to each
training data node, and equal weight to each subtree is:

Aj → BC (1/aj) A → BC (1/aja)
Aj → BkC (bk/aj) A → BkC (bk/aja)
Aj → BCl (cl/aj) A → BCl (cl/aja)
Aj → BkCl (bkcl/aj) A → BkCl (bkcl/aja)

(1.5)

While the only equivalence we have actually implemented is the first
one (Equation 1.1), we find it very encouraging that so many interesting,
different forms of DOP can all be transformed to PCFGs using varia-
tions on our technique. Since these transformations are so much smaller
than the direct approach, we assume that others will be very interested
in using them. Note that all of these equivalences can be used with either
the conventional most probable parse criterion, or the parsing algorithm
we describe in the next section. However, if used with the most proba-
ble derivation, they will lead to very different (and presumably worse)
results than the corresponding STSG transformation, since each STSG
derivation correspond to multiple PCFG derivations.

Efficient parsing of DOP with PCFG-reductions – DRAFT / 13

1.3 Parsing Algorithm
As we discussed in the introduction to this chapter, there are several dif-
ferent evaluation metrics one could use for finding the best parse. The
two that have been used most are the most probable derivation, which
can be found using the Viterbi algorithm, and the most probable parse,
which can be approximated by random sampling. However, finding the
most probable parse is NP-complete, and the most probable derivation
has lower accuracy. In this section, we describe a third evaluation met-
ric, the maximum constituents parse, which attempts to maximize the
number of correct parts of the parse. We will show that this criterion
can be maximized in O(n3) time, that in theory it is better for measures
like precision and recall, and, in actual experiments on the ATIS corpus,
performs at least as well as the most probable parse for precision, recall,
and the exact match criteria.

Parsers are often evaluated on criteria such as precision and recall, or
crossing brackets rate, that roughly count the number of correct parts
of a parse tree. If our performance evaluation were based on such a
measure, we would want the parse tree that was most likely to have the
largest number of correct constituents. Consider this criterion and the
example grammar of Figure 3. Here are the three best parses in this
grammar, according to different criteria:

S
!!""

A

x

C

x

S
!!""

E

x

B

x

S
!!""

A

x

B

x
Most Most Maximum

probable probable constituents
derivation parse parse

Probability 3
9 Probability 4

9 2 correct pieces

We previously analyzed the most probable derivation probability (3
9) and

the most probable parse probability (4
9). For the maximum consituents

parse, we want to know how many pieces we expect are correct. The
probability that the S constituent is correct is 1.0, while the probability
that the A constituent is correct is 5

9 , and the probability that the B
constituent is correct is 4

9 . Thus, this tree has on average 2 constituents
correct. All other trees will have fewer constituents correct on average.
Notice that this parse tree cannot even be produced by the grammar:
each of its constituents is good, but it is not necessarily good when
considered as a full tree. In practice, however, the trees produced do
tend to be both grammatical, and to score well on the exact match

14 / Joshua Goodman

criterion.
Bod (1993a, 1995a) shows that the most probable derivation does

not perform nearly as well as the most probable parse for the DOP
model. This is not surprising, since each parse tree can be derived by
many different derivations; the most probable parse criterion takes all
possible derivations into account. Similarly, the maximum constituents
parse is also derived from the sum of many different derivations. Fur-
thermore, although the maximum constituents parse should not do as
well on the exact match criterion, it should perform even better on the
percent constituents correct criterion, and presumably also work better
on closely related criteria such as precision and recall. We have previ-
ously performed a detailed comparison between the most likely parse,
and the maximum constituents parse for PCFGs (Goodman 1996b); we
showed that the two have very similar performance on a broad range
of measures, with at most a 10% relative difference in error rate (i.e., a
change from 10% error rate to 9% error rate.) We therefore think that it
is reasonable to use a maximum constituents parser to parse the DOP
model.

The parsing algorithm is a variation on the Inside-Outside algor-
ithm, developed by Baker (1979) and discussed in detail by Lari and
Young (1990). However, while the Inside-Outside algorithm is a grammar
re-estimation algorithm, the algorithm presented here is just a parsing
algorithm. It is closely related to a similar algorithm (Rabiner 1989) used
for Hidden Markov Models (HMMs) for finding the most likely state
at each time. However, unlike in the HMM case where the algorithm
produces a simple state sequence, in the PCFG case a parse tree is
produced, resulting in additional constraints.

A formal derivation of a very similar algorithm is given elsewhere
(Goodman 1996b); only the intuition is given here. The algorithm can
be summarized as follows. First, for each potential constituent, where a
constituent is a non-terminal, a start position, and an end position, find
the probability that that constituent is in the parse. After that, put the
most likely constituents together to form a parse tree, using dynamic
programming.

The probability that a potential constituent occurs in the correct
parse tree, P (X ∗⇒ ws...wt|S

∗⇒ w1...wn), will be called g(s, t, X). In
words, it is the probability that, given the sentence w1...wn, a symbol
X generates ws...wt. We can compute this probability using elements
of the Inside-Outside algorithm. First, compute the inside probabilities,
e(s, t, X) = P (X ∗⇒ ws...wt). Second, compute the outside probabilities,
f(s, t, X) = P (S ∗⇒ w1...ws−1Xwt+1...wn). Third, compute the matrix

Efficient parsing of DOP with PCFG-reductions – DRAFT / 15

for length := 2 to n
for s := 1 to n-length+1

t := s + length - 1;
for all non-terminals X

sum[X] := g(s, t, X);
loop over addresses k

let X := non-terminal at k;
let sum[X] := sum[X] + g(s,t,X_k);

loop over non-terminals X
let max_X := arg max of sum[X]

loop over r such that s <= r < t
let best_split :=

max of maxc[s,r] + maxc[r+1,t];
maxc[s,t] := sum[max_X] + best_split;

FIGURE 7 Maximum Constituents Data-Oriented Parsing Algorithm

g(s, t, X):

g(s, t, X) =
P (S ∗⇒ w1...ws−1Xwt+1...wn)P (X ∗⇒ ws...wt)

P (S ∗⇒ w1...wn)
= f(s, t, X) × e(s, t, X)/e(1, n, S)

Once the matrix g(s, t, X) is computed, a dynamic programming
algorithm can be used to determine the best parse, in the sense of max-
imizing the number of constituents expected correct. Figure 7 shows
pseudocode for a simplified form of this algorithm.

For a grammar with g nonterminals and training data of size T , the
run time of the algorithm is O(Tn2 + gn3 + n3) since there are two
layers of outer loops, each with run time at most n, and inner loops,
over addresses (training data), nonterminals and n. However, this is
dominated by the computation of the Inside and Outside probabilities,
which takes time O(rn3), for a grammar with r rules. If we use the
construction of section 1.2, there are eight rules for every node in the
training data, making the overall runtime O(Tn3).

By modifying the algorithm slightly to record the actual split used
at each node, we can recover the best parse. The entry maxc[1, n]
contains the expected number of correct constituents, given the model.

1.4 Experimental Results and Discussion
We are grateful to Bod for supplying the data that he used for his ex-

16 / Joshua Goodman

Criteria Min Max Mean StdDev
Cross Brack DOP 86.53% 96.06% 90.15% 2.65%
Cross Brack P&S 86.99% 94.41% 90.18% 2.59%
Cross Brack DOP−P&S -3.79% 2.87% -0.03% 2.34%
Zero Cross Brack DOP 60.23% 75.86% 66.11% 5.56%
Zero Cross Brack P&S 54.02% 78.16% 63.94% 7.34%
Zero Cross Brack DOP−P&S -5.68% 11.36% 2.17% 5.57%

TABLE 1 DOP versus Pereira and Schabes on Minimally Edited ATIS

Criteria Min Max Mean StdDev
Cross Brack DOP 95.63% 98.62% 97.16% 0.93%
Cross Brack P&S 94.08% 97.87% 96.11% 1.14%
Cross Brack DOP−P&S -0.16% 3.03% 1.05% 1.04%
Zero Cross Brack DOP 78.67% 90.67% 86.13% 3.99%
Zero Cross Brack P&S 70.67% 88.00% 79.20% 5.97%
Zero Cross Brack DOP−P&S -1.33% 20.00% 6.93% 5.65%
Exact Match DOP 58.67% 68.00% 63.33% 3.22%

TABLE 2 DOP versus Pereira and Schabes on Bod’s Data

Labelled Most Pereira
Recall Probable and Significant
Parse Parse Schabes

Cross Brack 90.1 90.0 90.2
0 Cross Brack 66.1 65.9 63.9
Exact Match 40.0 39.2

TABLE 3 Three way comparison on minimally edited ATIS data

Labelled Most Pereira
Recall Probable and Significant
Parse Parse Schabes

Cross Brack 97.2 97.1 96.1
√

0 Cross Brack 86.1 86.1 79.2
√

Exact Match 63.3 63.1

TABLE 4 Three way comparison on ATIS data edited by Bod

Efficient parsing of DOP with PCFG-reductions – DRAFT / 17

periments (Bod 1995b, Bod 1995a, Bod 1993b). The original ATIS data
from the Penn Tree Bank, version 0.5, is very noisy; it is difficult to
even automatically read this data, due to inconsistencies between files.
Researchers were thus left with the difficult decision as to how to clean
the data. For this paper, we conducted two sets of experiments: one us-
ing a minimally cleaned set of data, making our results comparable to
previous results; the other using the ATIS data prepared by Bod, which
contained much more significant revisions.

Ten data sets were constructed by randomly splitting minimally edit-
ed ATIS (Hemphill et al., 1990) sentences into a 700 sentence training
set, and 88 sentence test set, then discarding sentences of length > 30.
For each of the ten sets, both the DOP algorithm outlined here and the
grammar induction experiment of Pereira and Schabes (1992) were run.
Crossing brackets, zero crossing brackets, and the paired differences are
presented in Table 1. All sentences output by the parser were made bi-
nary branching (Goodman 1996a), since otherwise the crossing brackets
measures are meaningless (Magerman 1994). A few sentences were not
parsable; these were assigned right branching period high structure, a
good heuristic (Brill 1993). Note that our comparison to Pereira and
Schabes parsing is much outdated. While this was roughly state of the
art at the time this work was done, much more advanced techniques
have since become available (Charniak 2000).

We also ran experiments using Bod’s data, 75 sentence test sets, and
no limit on sentence length. However, while Bod provided us with his
data, he did not provide us with the split into test and training that he
used; as before we used ten random splits. The results are disappointing,
as shown in Table 2. Note that they are noticeably worse than some
previously reported results on this data set; elsewhere (Goodman 1996a,
Goodman 1998), we examine this discrepancy more closely and show
that the previous results are probably not reproducible.

DOP does do slightly better on most measures. We performed a sta-
tistical analysis using a t-test on the paired differences between DOP and
Pereira and Schabes performance on each run. On the minimally edited
ATIS data, the differences were statistically insignificant, while on Bod’s
data the differences were statistically significant beyond the 98’th per-
centile. Our technique for finding statistical significance is more strenu-
ous than most: we assume that since all test sentences were parsed with
the same training data, all results of a single run are correlated. Thus
we compare paired differences of entire runs, rather than of sentences or
constituents. This makes it harder to achieve statistical significance.

Notice also the minimum and maximum columns of the “DOP−P&S”
lines, constructed by finding for each of the paired runs the difference

18 / Joshua Goodman

between the DOP and the Pereira and Schabes algorithms. Notice that
the minimum is usually negative, and the maximum is usually positive,
meaning that on some tests DOP did worse than Pereira and Schabes
and on some it did better. It is important to run multiple tests, especially
with small test sets like these, in order to avoid misleading results.

1.5 Timing and Optimization
In this section, we examine the empirical runtime of our algorithm, con-
sider the run time of Monte Carlo parsing, and describe some optimiza-
tions that can be applied to a Monte Carlo parser.

It takes about 6 seconds per sentence to run our algorithm on an
HP 9000/7151, versus 3.5 hours to run a Monte Carlo parser using the
STSG construction on a Sparc 21 (Bod 1995b). Factoring in that the
HP is roughly four times faster than the Sparc, the new algorithm is
about 500 times faster. Of course, some of this difference may be due to
differences in implementation, so this estimate is fairly rough.

We also note that the run time for Monte-Carlo parsing is still ex-
ponential in the sentence length. Letting G represent grammar size, and
ε represent maximum estimation error, the Monte Carlo run time is
O(Gn2ε−2). The ε−2 parameter is important; for this algorithm to have
some reasonable chance of finding the most probable parse, the num-
ber of samples must be at least inversely proportional to the conditional
probability of that parse. For instance, if the maximum probability parse
had probability 1/50, then we need at least 50 samples to be reasonably
sure of finding that parse.

Now, we note that the conditional probability of the most probable
parse tree will in general decline exponentially with sentence length.
We assume that the number of ambiguities in a sentence will increase
linearly with sentence length; if a five word sentence has on average one
ambiguity, then a ten word sentence will have two, etc. A linear increase
in ambiguity will lead to an exponential decrease in probability of the
most probable parse.

Since the probability of the most probable parse decreases expo-
nentially in sentence length, the number of random samples needed to
find this most probable parse increases exponentially in sentence length.
Thus, when using the Monte Carlo algorithm, one is left with the un-
comfortable choice of exponentially decreasing the probability of finding
the most probable parse, or exponentially increasing the runtime. This
is a somewhat informal argument, but seems reasonable. Note that our
algorithm has true runtime O(Tn3), as shown previously.

1If you could still find one.

Efficient parsing of DOP with PCFG-reductions – DRAFT / 19

for k := 1 to n
for i := 0 to n-k
for chart-entry (i, i+k) do
for each root-node X do
select a random subderivation of root X
eliminate the other subderivations

FIGURE 8 Bottom-up Sampling Algorithm for a Random Derivation

Sample(Chart_Address, Symbol)
{

if Symbol is a terminal
return Symbol;

else
select a random Entry for Symbol at Chart_Address;
let Left := Sample(Entry’s left address,

Entry’s left symbol);
let Right := Sample(Entry’s right address,

Entry’s right symbol);
return MakeTree(Left, Right);

}

FIGURE 9 Top Down Algorithm for Sampling a Random Derivation

We present a more efficient top-down version of Monte-Carlo sam-
pling that can lead to large speedups. Bod (1995b) gives the pseudocode
in Figure 8 for how to sample a random derivation. This is essentially
a bottom up sampling scheme. For a grammar with g non-terminals, it
requires time O(gn2).2 On the other hand, a top down sampling scheme
such as Figure 9 would be faster. If we call Sample((0,n), S), it finds
a random entry for the root node, and then proceeds to recursively se-
lect random entries for each branch. Since the sampled tree will have
n−1 nodes, this algorithm is O(n). This would make Monte Carlo pars-
ing significantly faster, although still not nearly as fast as a maximum
constituents parser.

We mention another technique that can be used to potentially speed
Monte-Carlo and n-best style parsers. The normal inside algorithm can
be easily modified so that it finds only the sum of derivation probabilities

2This assumes that the selection of a random chart entry can be done in constant
time. Bod (1995b) shows how to approximate this selection, by creating a large array
with numbers of entries proportional to the probabilities.

20 / Joshua Goodman

consistent with a particular parse. While it is NP-complete to find the
most probable parse, it is only O(nP) to find the probability of any
particular parse tree, where we define P to be the maximum number of
productions consistent with a part of the tree. This means that if we
are performing sampling, either Monte-Carlo or best first, we need only
sample long enough to get a single instance of the most probable parse,
rather than long enough to accurately estimate its probability.

1.6 Conclusion
In this paper we have described a large number of potential speedups
for DOP parsing. Each of these techniques can be used either sepa-
rately, or together. Combining our two favorite speedups, our grammar
transformation, together with a maximum constituents parser, leads to
a 500 times speedup over traditional DOP parsing. Given that the heavy
resource usage of DOP is the biggest problem with the formalism, we
believe our speedups will be very valuable to those implementing DOP
models. Most of these techniques have not been widely used in the past.
We know of no reason not to use maximum constituents parsing, and
hope it will receive wide usage. The grammar transformation technique
has not been widely used because prior to this publication, it was only
available in the full form, rather than in the depth-limited form described
in Equations 1.2 and 1.3. Hopefully, it will now be more widely used.

We note that we ourselves are not pursuing the DOP formalism any
further. While there have been some promising recent results for DOP
(Bod 2000a, Bod 2000c, Bod 2001) we personally prefer other recent
techniques (Charniak 2000, Charniak 2001, Collins 2000). These other
techniques tend to be easier to implement and more efficient than DOP-
style models. Furthermore, by creating explicit probability models, the
path to improvement is clearer: one can find unmodeled correlations or
similar problems, and add these to the model. Also, we have been unable
to get important details needed to replicate some DOP results. Given
the computational complexity of DOP, even with the speedup techniques
described here, we think other techniques are more promising.

References

Baker, James K. 1979. Trainable Grammars for Speech Recognition.
In Proceedings of the Spring Conference of the Acoustical Society of
America, 547–550. Boston, MA, June.

Bod, Rens. 1993a. Data-Oriented Parsing as a General Framework for
Stochastic Language Processing. In Parsing Natural Language, ed.
K. Sikkel and A. Nijholt. The Netherlands: Twente.

Bod, Rens. 1993b. Using an annotated corpus as a stochastic grammar.
In Proceedings of the Sixth Conference of the European Chapter of
the ACL, 37–44.

Bod, Rens. 1995a. Enriching Linguistics with Statistics: Performance
Models of Natural Language. University of Amsterdam ILLC Disser-
tation Series 1995-14. Amsterdam: Academische Pers.

Bod, Rens. 1995b. The Problem of Computing the Most Probable Tree
in Data-Oriented Parsing and Stochastic Tree Grammars. In Pro-
ceedings of the Seventh Conference of the European Chapter of the
ACL. Dublin, Ireland, March.

Bod, Rens. 2000a. Combining Semantic and Syntactic Structure for
Language Modeling. In Proceedings ICSLP-2000.

Bod, Rens. 2000b. An Improved Parser for Data-Oriented Lexical-
Functional Analysis. In Proceedings ACL-2000.

Bod, Rens. 2000c. Parsing with the Shortest Derivation. In Proceedings
COLING-2000.

Bod, Rens. 2001. What is the Minimal Set of Fragments that Achieves
Maximal Parse Accuracy. In Proceedings ACL-2001.

Bonnema, R., P. Buying, and R. Scha. 1999. A new probability model
for data-oriented parsing. In Proceedings of the 12th Amsterdam
Colloquium.

Brill, Eric. 1993. A Corpus-Based Approach to Language Learning. Doc-
toral dissertation, University of Pennsylvania.

21

22 / A LATEX Package for CSLI Collections

Charniak, Eugene. 2000. A Maximum-Entropy-Inspired Parser. In Pro-
ceedings of NAACL-2000.

Charniak, Eugene. 2001. Immediate-Head Parsing for Language Models.
Available from http://www.cs.brown.edu/people/ec.

Collins, Michael. 2000. Discriminative reranking for natural language
parsing. In Proceedings ICML-2000.

Goodman, Joshua. 1996a. Efficient Algorithms for Parsing the DOP
Model. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 143–152. May. Available as cmp-
lg/9604008.

Goodman, Joshua. 1996b. Parsing Algorithms and Metrics. In Proceed-
ings of the 34th Annual Meeting of the ACL, 177–183. Santa Cruz,
CA, June. Available as cmp-lg/9605036.

Goodman, Joshua. 1998. Parsing Inside-Out. Doctoral dissertation, Har-
vard University. Available as cmp-lg/9805007 and from http://www.
research.microsoft.com/˜joshuago/thesis.ps.

Hemphill, Charles T., John J. Godfrey, and George R. Doddington. 1990.
The ATIS spoken language systems pilot corpus. In DARPA Speech
and Natural Language Workshop. Hidden Valley, Pennsylvania, June.
Morgan Kaufmann.

Lari, K., and S.J. Young. 1990. The Estimation of Stochastic Context-
Free Grammars using the Inside-Outside Algorithm. Computer
Speech and Language 4:35–56.

Magerman, David. 1994. Natural Language Parsing as Statistical Pat-
tern Recognition. Doctoral dissertation, Stanford University Univer-
sity, February. Available as cmp-lg/9405009.

Pereira, Fernando, and Yves Schabes. 1992. Inside-Outside Reestimation
from Partially Bracketed Corpora. In Proceedings of the 30th Annual
Meeting of the ACL, 128–135. Newark, Delaware.

Rabiner, L.R. 1989. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE 77(2).

Sima’an, Khalil. 1996a. Computational Complexity of Probabilistic Dis-
ambiguation by Means of Tree Grammars. In Proceedings Coling-96.
Available as cmp-lg/9606019.

Sima’an, Khalil. 1996b. Efficient Disambiguation by Means of Stochastic
Tree Substitution Grammars. In Recent Advances in NLP 1995,
ed. R. Mitkov and N. Nicolov. Current Issues in Linguistic Theory,
Vol. 136. Amsterdam: John Benjamins.

Sima’an, Khalil. 1999. Learning Efficient Disambigua-
tion. ILLC dissertation series, No. 02. Available from
http://www.hum.uva.nl/computerlinguistiek/simaan.

