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Abstract

We proposea generalization of the super-
vised DOP model tansupervised learning.
This new model, whichwe call U-DOP,
initially assigns all possible unlabeled binary
trees to a set adentences and next uses all
subtrees from (a large subset of) thbs®ry
trees to compute the most probalparse
trees. We showhow U-DOP can be
implementedby a PCFG-reduction tech-
niqgue andreport competitive results on
English (WSJ), GermarfNEGRA) and
Chinese (CTB) data. To the best otir
knowledge, this is thdirst paper which
accurately bootstrapstructure for Wall
Street Journal sentences up to wWOrds
obtaining roughly the same accuracy as
binarizedsupervised?’CFG. We showthat
previous approaches tmsupervised parsing
have shortcomings inthat they either
constrain thdexical or the structural context,
or both.

1 Introduction

How can we learn syntactic structure from unlabel

data in anunsupervised way? The importance o

unsupervised parsing is nowadays widely ackno
ledged. While supervised parsessiffer from

shortageof hand-annotated data, unsupervise

parsers operate with unlabeled raw datawhbich

% - : . S
unlimited quantities are available. During the Ias}(1
few years there has been considerable prog'ness5

unsupervised parsing. To give a brief overview: v
Zaanen (2000) achieved 39.2%labeled f-score on

ATIS word strings by a sentence-aligning technique
called ABL. Clark(2001) reports 42.0% unlabeled

f-score on the same datasing distributional
clustering, andKlein and Manning (2002) obtain
51.2% unlabeled f-score on ATIS part-of-speech
strings usinga constituent-context model called
CCM. Moreover, on Penn Wall Street Journal-p-0
s-strings< 10 (WSJ10), Klein and Manning (2002)
report 71.1% unlabeled f-score. And the hybrid
approach of Klein andvianning (2004), which
combines a constituen@nd a dependency model,
leads to a further increase of 77.6% f-score.

Although there has thus been steady
progressin unsupervised parsing, all these
approaches have shortcomings in that they either
constrain the lexical or the structu@ntext that is
takeninto account, or both. For example, the CCM
model by Klein and Manning2005) is said to
describe "all contiguous subsequences of a
sentence" (Klein and Mannirg005: 1410). While
this is a very rich lexical model, it is still limited in
that it neglects dependencigst arenoncontiguous
such as betweemore and than in "BA carried
more people than cargo Moreover, by using an
"all-substrings approach, CCM riskdo under
represenstructural context.Similar shortcomings
can be found in other unsupervised models.

In this papemwe will try to directly model
sfructural as well as lexical context without
Efonstraining any dependencies beforehand. An

pproach that may seem daptthis respect is aall-

V%ubtreeapproach (e.g Bod 200%0odman 2003;

&ollins and Duffy 2002). Subtrees camodel both
ontiguous and non-contiguolexical dependencies
ee section 2) and theyso model constituents in a
ierarchical context. Moreover, we can view the all
ubtrees approadis a generalization of Klein and
anning's all-substrings approach arah Zaanen's
ABL model.

In the currentpaper, we will use the all-
subtrees approach as proposedData-Oriented



Parsing or DOP (Bod 1998). We will generalize thpaper, we will present results both on entire corpora
supervised version of DOP to unsupervipagsing. and on 90-10 splits of such corporaa®to make
The key idea of our approacht@sinitially assign all our results comparabte asupervisedPCFG using
possible unlabeled binary trees to a seigiwen the treebank grammars of the same datd ("
sentences, antb next use counts of all subtreesPCFG").
from (a large random subset of) these binary trees to In the following we will first describeach
compute the most probable parse trees. Td#st of the three stepgiven above where we initially
of our knowledge such a model has never beefiocus on inducing trees for p-o-s strings for the
tried out. We will refer to this unsupervised DORNSJ10 (we will dealwith other corpora and the
model adJ-DOP, while the supervised DOP modelmuch larger WSJ40 isection 3). As shown by
(which uses hand-annotated trees) wilkeerred to  Klein and Manning(2002, 2004), the extension to
as S-DOP Moreover,we will continue to refer to inducing trees fowords instead of p-o-s tags is
the general approach simply ROP. rather straightforward since there exist several
U-DOP isnot just an engineering approachunsupervisedpart-of-speech taggers with high
to unsupervised learning but catso be motivated accuracy, which can be combined withsupervised
from a cognitive perspective (Bod 2006)wé& don't parsing (see e.g. Schitze 1996; Clark 2000).
have a clue which trees should be assigted
sentences ihe initial stages of language acquisitStep 1: Assign all binary trees to p-o-s strings
ion, we can just as well assurtiet initially all trees from the WSJ10
are possible. Only those (sub)trees tpattake in
computing the most probable pansees for new The WSJ10 contains 7422 sentensed0 words
sentences aractually "learned”. We have argued inafter removing empty elements and punctuatite.
Bod (2006) that suchn integration of unsupervisedassigned all possible binary trees the
and supervised methods results in an integratedrresponding part-of-speech sequences of these
model for language learning and language use.  sentences, where each root nasléabeledS and
In the following we will first explain how each internal node is labeled As an example,
U-DOP works, and how it can be approximated bgonsider the p-o-s string NNS VBD BINS, which
a PCFG-reduction technique. Next, in sectione3 may correspond for instanc® the sentence
discussa number of experiments with U-DOP andnvestors suffered heavy lossé&his string has a
compare it toprevious models on English (WSJ)total of five binarytrees shown in figure 1 -- where
German (NEGRA) and Chinese (CTB) data. To thier readability we add words as well.
best of our knowledge, this is the first paper which
bootstrapsstructure for WSJ sentences up to 40 S
words obtaining roughly the same accuracy as a / /\X
binarizedsupervisedPCFG. This is remarkable X
since unsupervised models are clearly at a PN /><\
I

S
X
disavantage compared sopervised models which NNS VEI*D JIJ NNS  NNS  VvBD JIJ NII\IS

can literally reuse manually annotated data. Invéstors sufferec heavy losse: Invelstors suf!ere( heavy losses

2 Unsupervised data-oriented parsing

S
X X
At a general level, U-DOP consists of the following /><\ />x\
S VBD J

three steps: Ni\l IJ N[I\jS NNS VBD JJ NNS

. . . Investors suf’ere( heavy losse: Invtlestors suﬂlere( heIaV) Ioslse
1. Assign all possible binary trees to a set of

sentences R
2. Convert the binary trees into a PCFG-reduction x/\x
of DOP N N

NNS VBD JJ NNS
3. Compute the most probable parse tree for each mvéstors Suﬁ'e,e( heavy losse
sentence
, _ _ Figure 1. All binary trees for NNS VBD JJ NNS
Note that in unsupervised parsing we do not need to (Investors suffered heavy losyes
split the data into a training and a test set. In this



The total numbebf binary trees for a sentence of
lengthn is given by theCatalan numbeCnp-1,

whereCp = (2n)!/((n+1)!n!). Thus while a sentence S S

of 4 words has 5 binary trees, a sentence of 8 words X X

has already 429 binatyees, and a sentence of 10

words has 486dinary trees. Of course, we can /\X X/\
represent the set of binary trees of a string \ns  veD NNS NNS

polynomial time andspace by means of a chart, |

I |
resulting in a chart-like parse forest if we alsgnVestor sufferet Investor losse:

include pointers. But if we wartb extract rules or

. . X S

subtrees from these binary trees -- as in DOP -- we

needto unpack the parse forest. And since the total X /\

number of binary treethat can be assigned to the gy X /X\

WSJ10is almost 12 million, it is doubtful whether | 33 NNS

we can apply the unrestricted U-DOP model to suclgufferes [ |

a corpus. heavy losse:
However, forlonger sentences the binary X X X

trees are highly redundant. In these larger trees, there .~ N ~

are many rules likeX - XX which bear little  NNS  VBD JJ NNS V||3D Jo

information. To make parsing with U-DQ#dssible  nvestors sufferex heIaV) Ioslse: sufferec heIaV)

we therefore applied a simple heuristic whiakes
random samples from tH&nary trees for sentences
= 7 words beforghey are fed to the DOP parser.
These samples were takéom the distribution of
all binary trees byrandomly choosing nodes and

their expansions from the chart-like parse forests ﬂfs in the supervised DOP approach (B@98), U-
the sentence@which effectively favors trees with y4p parses a sentence by combining (,ZOFpUS

more frequent subtrees). For sentenoed words subtrees from the binary tree-set by meansa of

we randomly sample 60% of the trees, and QLygst node substitution operation, indicatec as

sentences of 8, &nd 10 words we sample e :

respectively 30%, 15% and 7.5% of the trees. In t%%ﬂggagglt{h gfgr gl?;?)?littireesef ;s” %oernsgéicri] sby

Xvay,sthe set of remaining binary trees contains 8. oducing it,while the probability of a derivation is
10 trees, which we will refer t@s thebinary o, 5ted by multiplying thésmoothed) relative

tree-setAlthough itcan happen that the correct treegequencies of its subtrees. That is, fiiebability of

is deleted forsome sentence in the binary tree-sef, ¢ ires is taken as the number of occurrences

thereis enough redundancy in the tree-set such thf'ﬁt the binary tree-set,t||, divided by the total

either the correct binaryree can be generated bynumber of occurrences of asubtrees’ with the

other subtrees or that a remainingee only  ame voot label as Letr(t) return the root label df
minimally differs from the correct tree. Of course,

we may expect betteesults ifall binary trees are

Figure 2. Some subtrees from the binary trees for
NNS VBD JJ NNS given in figure 1

kept, but thisinvolves enormous computational P(t) = [t]
resources which will bepostponed to future Zt..r(t.):r(t) [t
research. '

Step 2: Convert the trees into a PCFG- The subtree probabilities are smoothedapplying
reduction of DOP simple Good-Turing to the subtree distribution (see

Bod 1998: 85-87). The probability of derivation

The underlying idea of U-DOP is to take sillbtrees 1°--°tn is computed by the product of the
from the binary tree-set to compute tmeost Probabilities of its subtrees

probable tredor each sentence. Subtrees from the

trees in figure 1 include for example the subtrees in P(tre..otn) = Ij P(t)

figure 2 (wherewe again added words for

readability).Note that U-DOP takes into accountSince there may be distinct derivations that generate
both contiguous and non-contiguous substrings. the same parse tree, thebability of a parse tre€



is the sum of the probabilities of its distinctfollowing eight PCFG rules infigure 3 are
derivations. Lettijg be thei-th subtreein the generated, wherghe number in parentheses
derivationd that produces tre€, then the probability following a rule is its probability.
of T is given by
A - BC ) A - BC (1/a)
P(T) = 2401 P(tiq) A - B (W) A - BKkC (d/a)
A - BG  (a/a) A-BC  (a/a)
As we will explain under step 3, the most probablfi ~ BKCl  (bikei/g) A - BiC (bkei/a)
parse treef a sentence is estimated by Viterbi _ _
best summing up the probabilities of derivatidimat Figure 3. PCFG-reduction of DOP

generate the same tree. _ _
It may be evident that had we only thdn this PCFG reductiori represents the number of

sentencenvestors suffered heavpssesin our Subtrees headed by the nd8@k andcj refers to
corpus, there would be rdifference in probability the number of subtrees headed by the nG@!
between the five parse trees in figure 1, and U-D@pP0dman shows by simple induction thiais
would not be able to distinguishetween the Construction produces PCFGderivations
different treesHowever, if we have a different [S0morphic to (U-)DOP derivations witequal
sentence wherd) NNS bieavy lossdsappears in a Probability (Goodman 2003: 130-133). Thigans
different context, e.g. inHeavy losses were that summing up over derivations of a tree in DOP
reported its covering subtree gets a relatively highefi€!ds the samerobability as summing over all the
frequency and the parse tree whéaxgavylosses somorphic derivations in the PCFG.
occurs as a constituent gets a higher total probabilit The PCFG-reduction for U-DOP is slightly
than alternative parse trees. Of course, it is left to tﬁénpler than in figure 3 since tr@nly labels ares
experimentalevaluation whethenon-constituents 21dX, and the part-of-speech tags. For the tree-set

(“distituents"”) such as VBD JJ will be ruled out by?f 823 * 10 binary trees generated under step 1,
U-DOP (section 3). Goodman's reductiomethod results in a total

An important feature of (U-)DOP ithatit number of 14.8 * 1B distinct PCFG rules. While it
considers counts of subtrees of a wide range IS still feasible to parse with a rule-set of this size, it
sizes: everything from counts of single-leveles to 1S €vident that our approadfan deal with longer
entire trees. A disadvantagetbe approach is that sentences only if we furtheeduce the size of our
an extremely largenumber of subtrees (andPinary tree-set . .
derivations) must be taken inécount. Fortunately, It should be kept in mind that while the
there exists a rather compact PCFG-reductibn Probabilities of allparse trees generated by DOP
DOP which can also be used fdd-DOP Sumupto1l, these_probabllltles do not conveoge
(Goodman 2003). Here we will only giveshort the "true” probabilities if the corpus grows to
summary of this PCFG-reduction. (Collins andnfinity (Johnson 2002). In fact, in Bod et al. (2003)

Duffy 2002 show how a tree kernel can be used f3f€_Showed that the most probable parse &ee
an all-subtrees representation, which wil not defined above hastendency to be constructed by

discuss here.) the shortest derivatiorfconsisting of the fewest and
Goodman's reduction method firassigns thus largest subtrees). A large subtree is overruled

every node in every tree a unique number whsch only if the combined relative frequencies of smaller

calledits address. The notatioh@k denotes the subtree_s yields a larger score. We refer to Zollmann

node at addresk where A is the nonterminal @nd Sima'an(2005) for a recently proposed

labeling that node. Aew nonterminal is created for €Stimator thats statistically consistent (thoughis

each node irthe training data. This nonterminal is"Ot yet known how this estimatperforms on the

called Ax. Letaj represent the number of subtree¥VSJ) and to Zuidema (2006) fa theoretical

headed by the node@j. Leta representhe number comparison of existing estimators for DOP.

of subtrees headed by nodesdth nonterminalA

thatisa = 2jaj. Goodman then gives a small PCFG

with the foIIJowing propertyfor every subtree in the

training corpus headed bw, the grammar will 1 _

generate an isomorphic subderivationith ~AS in Bod (2003) and Goodman (2003: 136), we

probability 14. For a nodeA@j(B@k, C@I) the additionally use a correction factor to redress DOP's
bias discussed in Johnson (2002).




Step 3: Compute the most probable parse tree  most appropriate one. Far subtle discussion on
for each WSJ10 string this issue, see Clark (2001) or Klein (2005).

While Goodman'sreduction method allows for 3 Experiments
efficiently computing the most probable derivation
for each sentence (i.e. the Viterbi parse), it does ndtl Comparing U-DOP to previous work
allow for an efficient computation ofu-)DOP's
most probable parse tresince there may be Using the method described above, our parsing
exponentiallymany derivations for each tree whosexperiment with all p-o-s strings from the WSJ10
probabilities haveo be summed up. In fact, theresults in an f-score of 78.5%. We next tested U
problem of computing the most probable tree iDOP on two additional domains from Chinese and
DOP is known tdbe NP hard (Sima'an 1996). Yet,German whichwere also used in Klein and
the PCFG reduction in figure 4 cdre used to Manning (2002, 2004)the Chinese treebank (Xue
estimate DOP's most probable pardeee by a et al. 2002) and th&lEGRA corpus (Skut et al.
Viterbi n-best search in combination with CKY  1997). The CTB10 igshe subset of p-o-s strings
parser which computes themost likely derivations from the Penn Chinese treebank containing 10
and next sums up the probabilities of the derivationgords or less after removalf punctuation (2437
producing the same tree. (Wman considerably strings). The NEGRA10 is the subset of p-o-s
improve efficiency by usingk-best hypergraph strings of the same length frothe NEGRA corpus
parsingas recently proposed by Huang and Chiangsing the supplied converson into Peneebank
2005, but this will be left to future research). format (2175 strings). Table 1 shows the results of
In this paper, we estimate the most probablg-DOP in termsof UP, UR and F1 compared to
parse tredrom the 100 most probable derivationghe results of the CCM model by Kleiand
(at least for the relativelgmall WSJ10). Although Manning (2002), theDMV dependency learning
such a heuristic does nguarantee that the mostmodel by Klein and Manning (2004dgether with
probable parse is actuallgund, it is shown in Bod their combined model DMV+CCM.
(2000) to perform at least as well as tstimation
of the most probable parse with Monte Carlo

- . ' Model Englist Germai Chinest
techniques. However, in computinge 100 most - (WSJ10 (NEGRA10 (CTB10
probable derivations byneans of Viterbi it is WP UR F1 WP UR FI UP UR FI

prohibitive to keep track of all subderivations at eacfy,;
edge in the chart. We thereforese a pruning
technique which deletes any item with a probability™"
less than 10° times of that of the best item from DMv+CCM  69.: 880 776 496 897 63¢  33% 62( 43
the Chal"[ U-DOP 708 882 785 512 905 654 36.3 64.¢ 46.¢
To make ourparse results comparable to
those of Klein and Manning (2002, 20@005), we ,
will use exactly the samevaluation metrics for 12able 1. Results of U-DOP compared to previous
unlabeled precision (UP) and unlabeled recall (UR), models on the same data
definedin Klein (2005: 21-22). Klein's definitions - .
slightly differ from the standard PARSEVAL lable 1 indicateghat our model scores slightly
metrics: multiplicityof brackets is ignored, bracketsP€tter than Klein and Manning's combined
of spanone are ignored and the bracket labels alMVY+CCM model, although thaifferences are
ignored. Thetwo metrics of UP and UR are Small (note thafor Chinese the single DMV model
combined by the unlabled f-score F1 which iﬁores better than the combined maafed slightly
defined as the harmonic mean of UP and UR: F1Retter than U-DOP). But where Klein and
2*UP*UR/(UP+URY). It should be kept in mind thatManning's combinednodel is based on both a
these evaluation metrics were clearly inspired by t}ﬁfnsmuencyand a dependency model, U-DOP is,

evaluation ofsupervisedparsing whichaims at !Iké CCM, only based on aotion of constituency.
mimicking given tree annotations as closely asComparedo CCM alone, the all-subtrees approach

possible. Unsupervised parsing is differemthis €mployedby U-DOP shows a clear improvement
respect and it is questionable whethersaluation (€Xcept perhaps for Chinese)thius seems to pay

on apre-annotated corpus such as the WSJ is tRf (0 use all subtrees rather than just all
(contiguous) substringsin bootstrapping

64.z 816 71t 48.1 855 61t 34.6 64.c 45.(
46.6 59.2 52.1 384 69.5 49F% 35.¢ 66.7 467




constituency. It would be interesting itvestigate 3.2 Testing U-DOP on held-out sets and longer

an extensionof U-DOP towards dependencysentences (up to 40 words)

parsing, which we will leave for future research. It is

also noteworthy that U-DOP does not employ g/e were also interested in U-DORjsrformance

separate class for non-constituents, so-callegh a held-out test set such that we could comihere

distituents, while CCMioes. Thus good results canmodel with asupervised®CFG treebank grammar

be obtained without keeping track of distituebt  trained and tested on the same data (S-PC#@).

by simply assigning all binary trees to th&ings started bytesting U-DOP on 10 different 90%/10%

and lettingthe DOP model decide which substringsplits of the WSJ10where 90% was used for

are most likely to form constituents. inducing thetrees, and 10% to parse new sentences
To give anidea of the constituents learnechy subtrees from the binary trees frahe training

by U-DOP for the WSJ10, table 2 shows th@ set (or actually a PCFG-reduction thereof). The

most frequentlyconstituents in the trees induced bgupervised PCFG waisght-binarized as in Klein

U-DOP together with thelO actually most and Manning (2005). The followingble shows the
frequentlyoccurring constituents in the WSJ10 angesylts.
the 10 most frequenthoccurring part-of-speech

sequences (bigrams) in the WSJ10. Model UP_ _UR F1
f f U-DOP 70.6 831 783
Rank Most frequen Most Frequer Most frequer )
U-DOP constituent  WSJ10 constituen  WSJ10 substring S-PCFG 840 79.8 818
% RLF',\‘NNP BLPNNNP B-’#m“" Table 3. Average f-scores of U-DOP compared to a
3 DT JJNN CDCD JINN supervised PCFG (S-PCFG) on 10 different 90-10
4 IN DT NN JJ NNE IN DT splits of the WSJ10
5 CD CD DT JJ NN NN IN
6 DT NNS DT NNS DT JJ _ _
7 JINNS JINN JINNS Comparing table 1 with table 84e see that on 10
g Q/JBN'\:N ICIJ\IDN'\’I\IN gg E\I:g held-out WSJ10 test sets U-DOP performs with an
- = 0 I
10 VBD NNS IN DT NN NN VBZ average f-score of 78.3¥GD=2.1%) only slightly

worse than when usinthe entire WSJ10 corpus
(78.5%). Next, note that U-DOP's resudtsme near
Table 2. Most frequently learned constituents by to the average performance of a binarizagervised
U-DOP together with most frequently occurring PCFG which achieves 81.8% unlabeled f-score
constituents and p-o-s sequences (for WSJ10) (SD=1.8%). U-DOP's unlabeletkecall is even
higher than that of the supervised PCFG. Moreover,
Note that there are no distituents among U-DOP&cording to paired-testing, the differences in f
10 mostfrequently learned constituents, whilst th&cores werenot statistically significant. (Ifthe
third column shows that distituents suchldsDT PCFG was nopost-binarized, its average f-score
or DT JJ occur very frequently as substrings in theas 89.0%.)
WSJ10. This maye explained by the fact that (the As a final test case for this paper, were
constituent) DT NNoccurs more frequently as ainterested in evaluating U-DOP on WSJ sentedces
substring in thaVSJ10 than (the distituent) IN DT, 40 words, i.ethe WSJ40, which is with almost
and therefore U-DOPisrobability model will favor 50,000 sentences a mugiore challenging test case
a covering subtree for IMT NN which consists of than the relativelgmall WSJ10. The main problem
a division into INX and DT NN rather than into IN for U-DOP is the astronomically large number of
DT and X NN, other things being equalhe same possiblebinary trees for longer sentences, which
kind reasoning can be matter a subtree for DT JJ therefore need to be even more heavily pruned than
NN where the constituent JJ NbNccurs more before.
frequently as a substring théme distituent DT JJ. We used a similar sampling heuriséis in
Of course the situation is somewhat more complesection 2. We started by taking 100% of the tfees
in DOP's sum-of-products model, butir argument sentences 7 words. Next, for longer sentences we
may illustrate why distituents like IN DT or DIJ  reducecthis percentage with the relative increase of
are not proposed amonthe most frequent the Catalan number. This effectively means that we
constituents by U-DORwhile larger constituents randomly selected the same number of trées
like IN DT NN and DT JJ NN are in fact proposed.eachsentence= 8 words, which is 132 (i.e. the



number of possible binary trees for a 7-wordperformance remains still far behind that of S-DOP
sentence). Asnentioned in section 2, our samplingand indeed of othestate-of-the-art supervised
approach favorsnore frequent trees, and trees witlparsers such @od 2003 or Charniak and Johnson
more frequent subtreehe binary tree-set obtained2005). Moreover, if S-DOP is not post-binarized, its
in this way for thewSJ40 consists of 5.11 * $0 average f-score on the WSJ40 is 90.1% -- and there
different trees. This resulted in a total of 88+ milliorare some hybrid DOP models that obtain even
distinct PCFG rulesaccording to the reduction higher scores (see Bod 2003). Our long-term goal is
technique in section 2. As this is ttegest PCFG to try to outperform S-DOP byJ-DOP. An

we have everattempted to parse with, it wasimportant advantage of U-DOP g course that it
prohibitive to estimate the most probable pdaree only needs unannotatediata of which unlimited
from 100 most probable derivations using Vitarbi quanitities are available. Thusatuld be interesting
best. Instead, we used a beam of onlym&st to test how U-DOP performs if trained on e.g. 100
probable derivations, and selectbé most probable times more data. Yet, as long as we compute -our f
parse from these. (The number 15 is admittedly scores orhandannotated data like Penn's WSJ, the
hoc, and was inspired by tiperformance of the so- S-DOP model is clearly at an advantage. We
called SL-DOP model in Bod 2002, 2003)he therefore plan to compare U-DOP and S-DOP (and
following tableshows the results of U-DOP on theother supervised parsers) incancrete application
WSJ40 using 10 different 90-10 splits, compared such as phrase-basathchine translation or as a
a supervised binarizeBCFG (S-PCFG) and alanguage model for speech recognition.
supervisedinarized DOP model (S-DOP) on the

same data. 4 Conclusions
Model F1 We have s_hown that the ge_neral DOP approac_h can
be generalized to unsupervised learning, effectively
U-DOP 64.2 leadingto a single model for both supervised and
S-PCEG 64.7 unsupervised parsind@ur new model, U-DOP,

uses all subtrees from (in principle) all bindrges
of a set of sentences to compute the npogbable
parse trees for (new) sentencédthough heavy
Table 4. Performance of U-DOP on WSJ40  pruningof trees is necessary to make our approach
_using10 different 90-10 splits, compared to a  feasible in practice, we obtained competitiesults
binarized S-PCFG and a binarized S-DOP modebn, English, German and Chinese data. Our parsing
_ results are similato the performance of a binarized
Table4 shows that U-DOP obtains about the samgpervised PCFG othe WSJ< 40 sentences. This
results asa binarized supervised PCFG on WS¢iggers the provocative question as to whethe it
sentences 40 words. Moreover, the dlffer_er)cespossime to beasupervised parsing by unsupervised
betweenU-DOP and S-PCFG were not statisticallyarsing. To cope with the problem of evaluation, we
significant. This result is important as it shows th%ropose to test U-DOP in specific applications

it is possible to parse the rather challinging WSJ iniather than on hand-annotated data.
completelyunsupervisedvay obtaining roughly the

same accuracy assapervisedPCFG. This seems References
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