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Abstract model called CCM. OPenn Wall Street Journal p-
0-s-strings< 10 (WSJ10), Klein and Manning
We investigate generalizations tfe all (2002) report71.1% unlabeled f-score with CCM.

subtrees "DOP" approach tmsupervised And the hybrid approach of Klein andanning
parsing.Unsupervised DOP models assign (2004), which combines constituency and
all possible binary trees to a set of sentences dependency models, yields 77.6% f-score.

and next use (&rge random subset of) all Bod (2006) shows that a further impreve
subtrees from these binary treesctampute ment on the WSJ10 can be achieved by an unsuper
the most probable parse trees. We will test vised generalization of thall-subtrees approach
both a relative frequency estimator for known as Data-Oriented Parsing (DOP). This
unsupervisedDOP and a maximum unsupervised DOP model, coined U-DOiRst
likelihood estimator which iknown to be assigns all possible unlabeled binary treea set of
statistically consistent. We report state-of  sentencesind next uses all subtrees from (a large
the-art results on English (WSJ), German subset of) thestrees to compute the most probable
(NEGRA) and Chines¢CTB) data. To the parse trees. Bod (2006) reports that U-D@dt
best of our knowledge this is the figgaper only outperforms previous unsuperviggarsers but
which tests a maximum likelihood estimator that its performance is as goad a binarizeguper

for DOP on the Wall Street Journal, leading visedparser (i.e. a treebank PCFG) on the WSJ.

to the surprising result thah unsupervised A possible drawback of U-DOMowever,
parsing model beats awidely used is the statistical inconsistency of its estimator
supervised model (a treebank PCFG). (Johnson 2002) which is inherited fraime DOP1
model (Bod 1998). That is, even witimlimited
1 Introduction training data, U-DOP'sstimator is not guaranteed

to converge to thecorrect weight distribution.
The problem ofbootstrapping syntactic structureJohnson (2002: 76) argues in favor of a maximum
from unlabeleddata has regained considerabldikelihood estimator for DOP whichs statistically
interest. Whilesupervised parsers suffer fromconsistent. As it happenis, Bod (2000) we already
shortageof hand-annotated data, unsupervisedeveloped such a DORodel, termed ML-DOP,
parsers operate with unlabeled rdata of which which reestimates the subtree probabilities ey
unlimited quantities are available. During the lasmaximum likelihood procedure based on
few years there has been steady progress ifidlde Expectation-Maximization.Although cross
Where van Zaanen (2000) achieved 39.2%alidation is needed to avoid overlearning, ML-DOP
unlabeled f-score on ATIS word strings, Clarkoutperforms DOP1 orthe OVIS corpus (Bod
(2001) reports 42.0% othe same data, and Klein 2000).
and Manning (2002pbtain 51.2% f-score on ATIS This raises the questiowhether we can
part-of-speech strings using @nstituent-context create amnsupervisedOP model whichis also



statistically consistent. In this paper we wshow combining subtree$rom this corpus, shown in
that an unsupervised version BfL-DOP can be figure 2.

constructed along the lines of U-DOP. We will start

out by summarizing DOP, U-DOBnd ML-DOP,

and next create aew unsupervised model called S ° NP o NP = g
UML-DOP. We report that UML-DOP not only " \_ | AN
obtains higher parse accuracy than U-DOP on thré8 vP Mary — Susai  NF VP
different domains, but that it also achieves this with /\ | /\
fewer subtrees than U-DOP. To the bexdt our v NP Mary vV NP

knowledge, this paper presents the first |

unsupervisegarser that outperforms a widely used " lkes  Susar
supervisedparseron the WSJ, i.e. a treebank
PCFG. We will raise the questiamhether the end
of supervised parsing is in sight.

Figure 2. A derivation foMary likes Susan

Other derivations may yield the same tree, e.g.:
2 DOP

° NP ° \V =

S S
The key idea of DOP ishis: given an annotated(\ | |
g /\

corpus,use all subtrees, regardless of size, to par Mary likes NP VP

new sentences. THBOP1 model in Bod (1998)

computes the probabilities of parse treas v NF Mary Vv NP
sentences from the relative frequencies of the |

subtrees. Although it is nownown that DOP1's Susa es st
relative frequency estimator isstatistically  Figure 3. Another derivation yielding same tree
inconsistent (Johnsof2002), the model yields

excellent empirical results and has been used fop1 computes the probability of a subttess the
state-of-the-art systems. Let's illustrate DOP1 with &obability of selecting among all corpus subtrees
simple example. Assume a corpaensisting of - that can be substituted on the same rasie This

only two trees, as given in figure 1. probability is computed as th@umber of
occurrences of in the corpus| t |, divided by the
/S\ /S\ total numberof occurrences of all subtre¢'swith

the same root label & Letr (t) return theroot label

NP VP NP VP .
of t. Then we may write:

John \Y2 NP Petel \Y, NP |t |

| | P(t) =
likes Mary hates Susal Z i r(t‘):r(t) |t' |

Figure 1. A corpus of two trees - o .
The probability of a derivatiotye...ctp is computed

New sentences may be derived bgmbining by the product of the probabilities of its subtrges

fragments, i.e. subtrees, from tluisrpus, by means
of a node-substitution operation indicated «as P(tre..otn) = i P(t)
Node-substitution identifies theleftmost o
nonterminal frontier node of ongubtree with the AS We have seen, themay be several distinct
root nodeof a second subtree (i.e., the secon@erivations that generate the saperse tree. The
subtree issubstitutedon the leftmost nonterminal Probability of a parse tre& is the sum of the
frontier node of the first subtree). Thus a new

sentence such dary likes Susartan be derivethy 1 This subtree probability is redressed by a simple
correction factor discussed in Goodman (2003: 136)

and Bod (2003).




probabilities of itsdistinct derivations. Letiq be the assigning all possible binary treés this string,
i-th subtree in the derivatiaththat produces tre€, where each root node is label8a@nd eachnternal

then the probability of is given by node is labeleX. Thus NNS VBDJJ NNS has a
total of five binarytrees shown in figure 4 -- where
P(T) = 2411 P(tig) for readability we add words as well.

compute the mogtrobable parse tree of a sentence. VED
A disadvantage of the approach mhg that an
extremely large numberof subtrees (and
derivations) must be considerdebrtunately there

exists a compacisomorphic PCFG-reduction of N
DOP1 whose size is linear rather than exponential in /\ /\/>\
the size of the training set (Goodman 2003). /\ P

. NNS VBD JJ
Moreover,Collins and Duffy (2002) show how a "|'° | 1 NINS
tree kernel came applied to DOP1's aII_SL’Il:)treeslnves'mﬁ su ere( heav; Iosse Investors sufferec heavy losse
representation. The currently mostccessful

Thus DOPIconsiders counts of subtrees of a wide
range of sizes: everythingom counts of single
level rules to entire trees taken into account to X/\
/\
NlNS VI|3D 1\1 NlNS

Investors sufferec heavy losse: Investor< suf!erec heavy Iosse

S

version of DOP1 uses a PCFG-reduction tiad

model with am-best parsing algorithm (Bod 2003). X/\x
7~ N

3 U_DOP NNS VI|3D JJ NNS

Investors sutterec heavy losse

U-DOP extends DOP1 to unsupervispdrsing

(Bod 20086). Itskey idea is to assign all unlabeled Figure 4. All binary trees for NNS VBD JJ NNS
binary trees to a set of sentences and to next use (in (Investors suffered heavy loses

principle) all subtrees from these binamges to

parsenew sentences. U-DOP thus proposes one ¥fhile we can efficiently represent treet of all

the richest possible models in bootstrappiregs. binary trees of a string by means of a chart, we need
Previous models like Klein and Manning's (20020 unpack the chart if we want to extract subtrees
2005) CCM model limit the dependencies tdrom this set of binarytrees. And since the total
"contiguous subsequences ofsantence". This humber of binary trees for themall WSJ10 is
means thatCCM neglects dependencies that aralmost 12 million, itis doubtful whether we can
non-contiguous such as betwegmre and thanin ~ apply the unrestricted U-DOP model to such a
"BA carried more people thacargo". Instead, U corpus. U-DOP thereforandomly samples a large
DOP's all-subtrees approach capturesboth subset from the total number of parse trees from the

contiguous anchon-contiguous lexical dependen chart (see Bod 2006) and next converts the subtrees
cies. from these parse trees into a PCFG-reduction
As with most other unsupervised parsingGoodman 2003). Since the computation of the
models, U-DOP induces trees for p-o-s string®ost probable parse tree is NP-complete (Sima‘an
rather tharfor word strings. The extension to word1996), U-DOP estimates th@ost probable tree
strings is straightforward as there exisghly from the 100 most probable derivations using
accurate unsupervised part-of-speech taggers (ev§ferbi n-best parsingWe could also have used the
Schiitze 1995) whichan be directly combined with more efficienkk-best hypergraph parsing technique

unsupervised parsers. by Huang and Chiang (2005), but Wwave not yet
To give an illustration of U-DORgonsider incorporated this into our implementation.
the WSJ p-o-s string NNS VBDJ NNS which To give an example of th#ependencies that

may correspond for instanceo the sentence U-DOP can take into accountonsider the
Investors suffered heavy lossé$-DOP starts by following subtrees in figure 5 fronthe trees in



figure 4 (where we again add words for readabilityjotal probability of the parse tree. This is equivalent
These subtrees show that U-D@Res into account to saying that there is a hidden component to the

both contiguous and non-contiguous substrings.

S S
X X
/\ X X/\
NNS VI|3D NNS NNS
I |
Investor: sufferec Investor: losse
X S
/\ X /\
X X
VBD PN
suf!ere( ‘iJ NPS
heav losses
T P N
NNS VBD JJ NNS VBD Jl

Investor sufferec heavy losse: suf!ere( heav
Figure 5. Some subtrees from trees in figure 4

Of course, if we onlyhad the sentencénvestors

model, and that DOP can be trained using an EM
algorithmto determine the maximum likelihood
estimate for the training datihe EM algorithm for
this ML-DOP model is relatetb the Inside-Outside
algorithm for context-free grammars, but the
reestimation formula isomplicated by the presence
of subtrees of depth greater than 1. To detihee
reestimation formula, it is useful to considine
state space of all possible derivations of a tree.

The derivations of a parse trdecan be
viewed asa state trellis, where each state contains a
partially constructed tree in the course of a leftmost
derivation of T. s denotesa state containing the tree
t which is a subtree of. The state trellis is defined
as follows.

The initial stategsg, is a tree with depth zero,
consisting of simply a root node labeled w8hThe
final state,sT, is the given parse trée

A statest is connected forward to adtates
st; such thatty = tet', for somet'. Here the
appropriate’ is defined to bdf — t.

A statest is connected backward to aliates

suffered heavy lossés our corpus, there would be St Such thatt = tp o t', for somet. Again, t' is
no differencein probability between the five parsedefined to be - tp,.

trees in figure 4. However, if we alslbave a
different sentence wherd&l NNS heavy losses

The construction of the statiattice and
assignment of transitioprobabilities according to

appears in a differerdontext, e.g. irHeavy losses the ML-DOP modeis called the forward pass. The

were reported its covering subtree getsrelatively
higher frequency and the parse tree whbeavy

probability ofa given stateP(s), is referred to as
a(s). The forward probability of a states; is

lossesoccurs as a constituent gets a higher totgPmputed recursively

probability.

4 ML-DOP

aw) = 2a(s,) P(t-t).
Sy

ML-DOP (Bod 2000) extends DOP with aThe backward probability of a state, referred to as
maximum likelihood reestimatiotechnique based fs), is calculated according to thillowing

on the expectation-maximization (EM) algorithmyecursive formula:
(Dempster et al. 1977) which is known to be

statistically consistent (Shat©999). ML-DOP

reestimatesDOP's subtree probabilities in an
iterative way until thechanges become negligible.
The following exposition of ML-DOP is heavily

based on previous worky Bod (2000) and
Magerman (1993).

It is important to realize that thers an
implicit assumption in DOP that alpossible

derivations of a parse tremntribute equally to the

Bs) = D Blsy) Pt 1)
Stf

where the backward probability of the goal state is
set equal to the forwangrobability of the goal state,
B(sT) = a(s).

The update formula for theount of a
subtreet is (wherer(t) is the root label df):



Blsg)a(sy )P(t]r (1) sentences and next extracts a lafgedom) set of
ct(t) = 2 o) subtrees from this tree set. It then reestiméies
Sty 5 toet=t Sgoal initial probabilities of these subtrees by ML-DOR
the sentences from a held-out part of the et
The updatedprobability distribution,P'(t | r(t)), is The trainingis carried out by dividing the tree set
defined to be into two equal parts, and reestimating the subtrees
from onepart on the other. As initial probabilities
Pt (1) = ct() we use the subtrees' relative frequencies as describe:
ct(r (t) in section 2 (smoothed by Good-Turing -- see Bod
1998), though it wouldalso be interesting to see
wherect(r () is defined as how the model works with other initial parameters,
in particular with theusage frequencies proposed by
ct(r (1) = Z ct(t') Zuidema (2006)
£ r(t)=r (1) As with U-DOP, the total number of
subtrees thatan be extracted from the binary tree

In practice, ML-DOP starts out by assigning th&€t 1S t00 large to be fully taken intaccount.
same relative frequencies to the subtmeoP1, '09¢€ther withthe high computational cost of
which are next reestimated by the formulas abov[ﬁes'”rn""t'o.n’v.e propose even more drastic pruning
We may in principle starbut with any initial than we did inBod (2006) for U-DOP. That is,

parametersincluding random initializations, but while ffor sent;]ances ! Wgrdsw((ja use all bc'lnarly
since ML estimation is known tbe very sensitive T€€S: for each sentenee8 words we randomly

to the initialization of the parametersistconvenient S@mplea fixed number of 128 trees (which
to start with parameters that aeown to perform effectively favors more frequent trees). Tiesulting
well set of trees is referred to as the binary tree set. Next,

we randomly extract for each subtree-deptfixed
subtrees from one half of the training getbe number ofsubtrees, where the depth of subtree is

trained on the other half, and vice versa. This c—ros'gle longest path from root to any leaf. This has
training is important sincetherwise UML-DOP roughly the same effect #ise correction factor used

would assign the training setees their empirical Idn Bohd (2003’200|6)' Thbat s, fo]rc_each p?jrtiCLIJIar
frequencies and assign zero weight to aher ept _We sample su tredsy first ran omly
subtrees (cf. Preschet al. 2004). The updatedselec'[Ing anode n a random tree from the b!nary
probabilities are iteratively reestimated untie tree set after Wh'(?h weelect random expansions
decrease in cross-entropyecomes negligible. from that node until a subtree of the particular depth

Unfortunately, no compact PCFG-reduction of ML 'S OPtained. For our experiments in sectione,
DOP is known. As a consequence, parsing witheP€ated this procedure 200,00fmes for each
ML-DOP is very costly and the model has hithertdjepth' Theresu_ltmg_subtrees are then given to ML-
never been tested on corpora larger than OVIBOP_S reestimation procedure. Finally, the
(Bonnema et al. 1997)et, we will show that by reestimated subtrees are used to compute 'Fhe mos
clever pruning we can extend our experiments nerobable parse trees fatl sentences using Viterbi
only to the WSJ, but also tine German NEGRA n-best, as described in section 3, where the most
and the Chinese CTB. (Zollmann and Sima'an 206%0Pable parse is estimated from the 100 most

propose a different consisteestimator for DOP, Probable derivations. .
which we cannot go into here). A potential criticism of(UYML-DOP is that

since we us@®OP1's relative frequencies as initial
5 UML-DOP parameters, ML-DOP may only find a local
maximum nearest to DOP1's estimator. Bus is

Analogous to U-DOP,UML-DOP is an of coursea criticism against any iterative ML

unsupervisedyeneralization of ML-DOP: it first appr_oach:. i; Is got?uarant_eeddthath.t_he globa}l
assigns all unlabeled binary trees to a set GfaXImumis foun (ct. 'V'f”‘””'”g” Schutze 1.999'.
401). Nevertheless we will see that our reestimation

To avoid overtraining, ML-DOP uses the



procedure leads taignificantly better accuracy than substrings (as in CCM) btd also reestimate

compared tdJ-DOP (the latter would be equal tothe subtreegrobabilities by a maximum-likelihood

UML-DOP under O iterations). Moreover, in procedure rather than using their (smoothed) relative

contrast to U-DOP, UML-DOIan be theoretically frequencies (as in U-DOP). Note that UML-DOP

motivated: it maximizes the likelihood dfie data achieves these improved results withver subtrees

using the statistically consistent EM algorithm. than U-DOP, due to UML-DOP's more drastic
pruning of subtrees. It is also noteworthy that UML

6 Experiments: Can we beat supervised by DOP, like U-DOP, does not employ a separate class

unsupervised parsing? for non-constituents, so-calledistituents, while
CCM and CCM+DMYV do. (Interestinglythe top

To compare UML-DOP to U-DOP, we startedt 10 most frequently learned constituebis UML -

with the WSJ10 corpus, which containg22 DOP were exactly the same as by U-DOP -- see the

sentencess 10 words afterremoving empty relevant table in Bod 2006).

elements and punctuatio®e used the same

evaluationmetrics for unlabe!ed p_recisipn (UP) and Model Englist Germar Chinese

unlabeled recall (UR) as defined in Klein (2005: 21 (WSJ10) (NEGRA10) (CTB10)

22). Klein's definitionsdiffer slightly from the

standard PARSEVAL metrics: multiplicityof ceM L oL 450
brackets is ignored, brackets of span one are ignored DMV 521 49.8 46.7
and the bracket labels are ignored. The tatrics DMV+CCM  77.€ 63.9 43.3
of UP and UR are combined by the unlabeled f U-DOP 78.2 65.4 46.€
score F1 whichs defined as the harmonic mean of UML-DOP 82.€ 67.C 47.2

UP and UR: F1 = 2*UP*UR/(UP+UR).
For theWSJ10, we obtained a binary tree  Taple 1. F-scores of UML-DOP compared to

set of 5.68 * 10 trees, by extracting the binary trees previous models on the same data

as described in section 5. From thisary tree set

we sampled 200,000 subtrees for eatlbtree- \we were also interested in testikL-DOP on
depth. This resulted ia total set of roughly 1.7 * onger sentences. We therefore included all WSJ
106 subtrees that were reestimated bylr sentences up to 40 words after removbrgpty
maximum-likelihood procedure. The decrease iBlements and punctuation (WSJ48pd again
cross-entropy became negligible afteritefations sampled 200,000 subtrees for each depth, using the
(for both halfs of WSJ10). After computintie  same method as before. Furthermore, we compared
most probable parse trees, UML-D@Bhieved an ypML-DOP against a supervisauinarized PCFG,
f-score of 82.9% which is 80.5% error reduction j e. 3 treebank PCEG whose simple relative
compared to U-DOP'$-score of 78.5% on the frequency estimator corresponds to maximum
same data (Bod 2006). likelihood (Chi and Geman 19983nd which we
We next tested UML-DOPon two ghal refer toas "ML-PCFG". To this end, we used
additional domains which were also used in Kleiy random 90%/10% division of WSJ40 into a
and Manning (2004) anBod (2006): the German trajning set and a test set. The ML-PCR&d thus
NEGRAIO (Skut et al. 1997) and thEhinese ccess to the Penn W&&es in the training set,
CTB10 (Xueet al. 2002) both containing 2200+hile UML-DOP had to bootstrap all structuirem
sentences 10 words after removing punctuation the fiat strings from the training séb next parse the
Tablel shows the results of UML-DOP compared gos test set -- clearly a much more challenging

to U-DOP, the CCM model by Klein and Manningask. Table 2 gives the results in terms of f-scores.

(2002), the DMV dependency learning model by The table shows that UML-DOP scores
Klein ‘and Manning (2004) as well as theirpetter than U-DOP, also for WSJ40. Our results on
combined model DMV+CCM. WSJ10 are somewhat lower thantable 1 due to

Table 1 shows that UML-DOP scorbstter  the yse ofa smaller training set of 90% of the data.

than U-DOP and Klein and Manningisodels in all - gyt the most surprising result is that UML-DOR's f
cases. It thus pays off to not only use subtrees rather



score is higher than thsupervisedbinarized tree  ML-DOP heavily depend on annotatddta whereas

bank PCFG (ML-PCFG) for both WSJ10 andJML-DOP only needs unannotated data. It would

WSJ40. In order to check whether this difference thus be interesting teee how close UML-DOP can

statistically significant, we additionally tested ®@ getto ML-DOP's performance if we enlarge the

different 90/10 divisions of th&/SJ40 (which were amount of training data.

the same splits as in Bod 2006). For these splits,

UML-DOP achieved an average f-score of 66.9%, Conclusion: Is the end of supervised

while ML-PCFG obtained an average f-score oparsing in sight?

64.7%.The difference in accuracy between UML

DOP and ML-PCFGwas statistically significant Now that we have outperformea well-known

according to pairetitesting £<0.05). Tothe best of supervisedarser by an unsupervised one, we may

our knowledge this means that we haown for raise the question as to whether the end of

the first time thatan unsupervisegarsing model supervisedNLP comes in sight. All supervised

(UML-DOP) outperforms avidely used supervised parsers are reaching an asympteted further

parsing model (a treebank PCFG) on the WSJ40 improvement does not seem t@me from more
hand-annotated data but by adding unsupervised or

Model WSJ10  WSJAC semi-unsupervised techniqugd. McClosky et al.
2006). Thus if wemodify our question as: does the
U-DOP 78.1 63.9 exclusivelysupervised approach to parsing come to
UML-DOP 82.F 66.4 an end, we believe that the answer is certainly yes.
ML-PCEG 81.F 64.6 Yet we should neither rule out the

possibility that entirely unsupervised methosi#t

in fact surpass semi-supervised methods. The main
problem is how to quantitatively compare these
different parsers, as any evaluatiam hand
annotated data (like the Penn treebankl

. . unreasonably favor semi-supervised parsers. There
We should keep in mind that (1) a treeb&RFG is thus is a quest for designing amnotation

is not state-of-the-art: its performance is med'ocriﬁdependent evaluation scheme. Since paramrs

compared to e.g. Bod (2003r McClosky et al. b . . : : o .
2o coming increasingly importairt applications like
(2006), and (2) that our treebank PCFG is IOInarIZe@ntax-basednachine translation and structural

) : ) 5
as in Klein andManning (2005) to make results -
comparable. To be sure, the unbinarizedsion of language models for speeattognition, one way to

. 0 would be tocompare these different parsing
) -
thetreebank PCFG obtains 89.0% average f Sco%fethods by isolating their contributiom improving

) -
on WSJ10 and2.3% average f-score on WSMOa concreteNLP system, rather than by testing them
Remember thathe Penn Treebank annotations ar ainstgold standard annotations which are
often exceedingly flat, and many branches have art herently theory-dependent
larger than two. It would be interesting see how The initially disaﬁpointing resultof
UML-DOP performs if we also accept ternary (an . .
wider) branches - though thetal number of ?nducmg trees entirelfrom raw text was not so

. . . uch due to the difficulty of the bootstrapping
fhoesrf;zlsgsrez;ggzgan be assigned to strings Wouprgl@roblemper se but to (1) the poverty athe initial

UML-DOP's performance stillremains models and (2)he difficulty of finding theory

. . o independent evaluation criteridhe time has come
behind that oupervisedbinarized)DOP parsers, to fuplly reappraise unsupervised parsingdels
i I @j 0 - g

:gg?e?)sn ?hcgpllo, VV\\;g\(]:ZOaSChII'teSV anfﬁl_a\éec;gge ;'cﬁlhiCh should be trained on massive amounts of

) PILS, 0 ) » W ata, and be evaluated in a concrete application.
performed sllghtlybetter with 82.1% average f There is a final question as to how far the
Score. And '.f DOP1 andVIL-DOP are no_t OP approach taunsupervised parsing can be
binarized, their average f-scores are respective

retchedln principle we can assign all possible
0, 0,
90.1% and 90.5% owSJ40. However, DOP1 andsyntactic categoriessemantic roles, argument

Table 2. F-scores of U-DOP, UML-DOP and a
supervised treebank PCFG (ML-PCFG) for a
random 90/10 split of WSJ10 and WSJ40.



structures etc. to set of given sentences and let thdohnson, M. 2002. The DOP estimation method is

statistics decide which assignments are most usefuggﬁ?eld 7‘""6”d inconsisteromputational Linguistics

in parsing new sentences. Whether suameasively ' '

maximalist approach ideasible can only be Klein, D. 2005.The Unsupervised Learning of Natural

answered by empirical investigation in due time. ~ -anguage  Structure PhD thesis, Stanford
University.

Acknowledgements Klein, D. and C. Manning 2002. A general
constituent-context model for improved grammar

Thanks to Willem Zuidema, David Tugwedind induction.Proceedings ACL 200Q2hiladelphia.

especially to three anonymousviewers whose Klein, D. and C. Manning 2004. Corpus-based

unanymous suggestions on DOP and EMinduction of syntactic structure: models of

considerably improved theriginal paper. A gggengencyll and constituenciroceedings ACL

. . ) : arcelona.
substantiapart of this research was carried out in 4 _
the context of the NWO Exact project Klein, D. and C. Manning 2005. Natural language

"Unsupervised Stochastirammar Induction from grammar induction with a generative constituent-

N ) context modelPattern Recognitior38, 1407-1419.
Unlabeled Data", project number 612.066.405. ) S
Magerman, D. 1993Expectation-Maximization for
Data-Oriented Parsing, IBM Technical Report,
Yorktown Heights, NY.

Bod, R. 1998Beyond Grammar: An Experience-BasedcClosky, D., E. Charniak and M. Johnson 2006.
Theory of LanguageCSLI Publications, distributed Effective self-training for parsind?roceedings HLT-
by Cambridge University Press. NAACL 2006, New York.

Bod, R. 2000. Combining semantic and syntactiManning, C. and H. Schitze 199Boundations of
structure for language modelinBroceedings ICSLP  Satistical Natural Language Processing. The MIT
2000 Beijing. Press.

Bod, R. 2003. An efficient implementation of a newPrescher, D., R. Scha, K. Sima'an and A. Zollmann
DOP modelProceedings EACL 200Budapest. 2004. On the statistical consistency of DOP

Bod, R. 2006. Unsupervised Parsing with U-DOP. estimatorsProceedings CLIN 20Q4.eiden.
Proceedings CONLL 200®&lew York. Schitze, H. 1995. Distributional part-of-speech

Bonnema, R., R. Bod and R. Scha, 1997. A DOp 1299ing.Proceedings ACL 199®ublin.
model for semantic interpretatiorBroceedings Shao, J. 1999Mathematical Statistics Springer
ACL/EACL 1997, Madrid. Verlag, New York.

Chi, Z. and S. Geman 1998. Estimation oSima'an, K. 1996. Computational complexity of
Probabilistic Context-Free Grammars. probabilistic disambiguation by means of tree
Computational Linguistic4, 299-305. grammarsProceedings COLING 199&openhagen.

Clark, A. 2001. Unsupervised induction of stochasti€kut, W., B. Krenn, T. Brants and H. Uszkoreit 1997.
context-free grammars using distributional An annotation scheme for free word order
clustering.Proceedings CONLL 2001 languagesProceedings ANLP 1997.

Collins, M. and N. Duffy 2002. New ranking Xue, N., F. Chiou and M. Palmer 2002. Building a
algorithms for parsing and tagging: kernels over large-scale annotated Chinese corpeoceedings
discrete structures, and the voted perceptron.COLING 2002 Taipei.

Proceedings ACL 200ZPhiladelphia. van Zaanen, M. 2000. ABL: Alignment-Based

Dempster, A., N. Laird and D. Rubin, 1977. Maximum Learning.Proceedings COLING 200®aarbriicken.
Likelihood from Incomplete Data via the EM
Algorithm, Journal of the Royal Satistical Society
39, 1-38.

Goodman, J. 2003. Efficient algorithms for the DO

References

Zollmann, A. and K. Sima'an 2005. A consistent and
efficient estimator for data-oriented parsidgurnal
of Automata, Languages and Combinatgriospress.

R, . . .
o uidema, W. 2006. What are the productive units of
ggtiegrlignlt:{e'dB;gr’siﬁl USc_ha a.pd :f'cﬁ.'ma aT: (eds}. natural language grammar? A DOP approach to the
] guniversity o ICago Fress.  automatic identification of constructions.
Huang, L. and D. Chiang 2005. Bettebest parsing.  Proceedings CONLL 200@&ew York.
Proceedings IWPT 200%ancouver.



