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WORDS &
TRANSDUCERS

How can there be any sin in sincere?
Where is the good in goodbye?
Meredith Wilson,The Music Man

Ch. 2 introduced the regular expression, showing for exanmolw a single
search string could help a web search engine find bhatbdchuckandwoodchucks
Hunting for singular or plural woodchucks was easy; theadljust tacks ason to the
end. But suppose we were looking for another fascinatingdleoa creatures; let's
say afox, and afish that surlypeccaryand perhaps a Canadianld goose Hunting
for the plurals of these animals takes more than just tackingns. The plural offox
is foxes of peccary peccaries and ofgoose geese To confuse matters further, fish
don't usually change their form when they are pléral

It takes two kinds of knowledge to correctly search for siagaiand plurals of
these formsOrthographic rules tell us that English words ending iy are pluralized
by changing they to -i- and adding ares Morphological rules tell us thatfishhas a
null plural, and that the plural @fooseis formed by changing the vowel.

The problem of recognizing that a word (likexe$ breaks down into component
morphemesfox and-eg and building a structured representation of this fact leda

MORPHOLOGIC  morphological parsing.

PARSING Parsing means taking an input and producing some sort of linguistictire
for it. We will use the term parsing very broadly throughdustbook, including many
kinds of structures that might be produced; morphologisahtactic, semantic, dis-
course; in the form of a string, or a tree, or a network. Moltpgizal parsing or
stemming applies to many affixes other than plurals; for gdlanwe might need to
take any English verb form ending iing (going, talking, congratulating and parse it

sURFACE  into its verbal stem plus théng morpheme. So given tteairfaceor input form going,
we might want to produce the parsed fofERB-go + GERUND-ing.

Morphological parsing is important throughout speech angliage processing.
It plays a crucial role in part-of-speech tagging for morpléacally complex languages
like Russian or German, as we will see in Ch. 5. It is imporfanproducing the large
dictionaries that are necessary for robust spell-checkifdg will need it in machine

1 (see e.g., Seuss (1960))
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translation to realize for example that the French wamlandaller should both trans-
late to forms of the English vergo.

To solve the morphological parsing problem, why couldn’tjus store all the
plural forms of English nouns ardng forms of English verbs in a dictionary and
do parsing by lookup? The major reason is tirag is a productive suffix; by this we
mean that it applies to every verb. Similargapplies to almost every noun. Productive
suffixes even apply to new words; thus the new wiaxdcan automatically be used in
the-ing form: faxing Since new words (particularly acronyms and proper noures) a
created every day, the class of nouns in English increasestamttly, and we need to
be able to add the plural morphersto each of these. Additionally, the plural form
of these new nouns depends on the spelling/pronunciatigheosingular form; for
example if the noun ends Hz then the plural form isesrather thans. We'll need to
encode these rules somewhere.

Finally, we certainly cannot list all the morphological iearts of every word in
morphologically complex languages like Turkish, which hasds like:

(3.1) uygarlastiramadiklarimizdanmisgsinizcasina
uygar +las +tir +ama +dik +lar +imiz +dan +mis +siniz+casina
civilized +BEC +CAUS +NABL +PART +PL +P1PL +ABL +PAST+2PL +Aslf

“(behaving) as if you are among those whom we could not zgfli
The various pieces of this word (tleorphemeg have these meanings:

+BEC “become”

+CcAUs the causative verb marker (‘cause to X’)

+NAB  “not able”

+PART past participle form

+P1PL 1st person pl possessive agreement

+2PL  2nd person pl

+ABL ablative (from/among) case marker

+Aslf derivationally forms an adverb from a finite verb

Not all Turkish words look like this; the average Turkish @dras about three
morphemes. But such long words do exist; indeed Kemal Oflazey came up with
this example, notes (p.c.) that verbs in Turkish have 40p@@8ible forms not counting
derivational suffixes. Adding derivational suffixes, susttausatives, allows a theoret-
ically infinite number of words, since causativization canrépeated in a single word
(You cause X to cause Y to ...d9.Whus we cannot store all possible Turkish words
in advance, and must do morphological parsing dynamically.

In the next section we survey morphological knowledge foglish and some
other languages. We then introduce the key algorithm fompmalogical parsing, the
finite-state transducer. Finite-state transducers are a crucial technology throug
speech and language processing, so we will return to thein egater chapters.

After describing morphological parsing, we will introduseme related algo-
rithms in this chapter. In some applications we don't neepaise a word, but we do
need to map from the word to its root or stem. For example iormftion retrieval and
web search (IR), we might want to map frdoxesto fox;, but might not need to also
know thatfoxesis plural. Just stripping off such word endings is calgtemmingin
IR. We will describe a simple stemming algorithm called Brogter stemmer.
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LEMMATIZATION

TOKENIZATION

For other speech and language processing tasks, we neealtdhat two words
have a similar root, despite their surface differencesekample the wordsang sung
andsingsare all forms of the verbing The wordsingis sometimes called the common
lemmaof these words, and mapping from all of thessittyis calledlemmatization.?

Next, we will introduce another task related to morpholagjjgarsing. Tok-
enization or word segmentationis the task of separating out (tokenizing) words from
running text. In English, words are often separated fronmexdleer by blanks (whites-
pace), but whitespace is not always sufficient; we’ll needdtice thatNew Yorkand
rock 'n’ roll are individual words despite the fact that they contain epalout for many
applications we’'ll need to separdtm into the two wordd andam

Finally, we introduce the importantinimum edit distancealgorithm, and show
how it can be used in spell-checking.

3.1 SURVEY OF (MOSTLY) ENGLISH MORPHOLOGY

MORPHEMES

STEMS
AFFIXES

Morphology is the study of the way words are built up from deraineaning-bearing
units,morphemes A morpheme is often defined as the minimal meaning-beariitg u
in a language. So for example the wdo consists of a single morpheme (the mor-
phemefox) while the wordcatsconsists of two: the morpheneatand the morpheme
-S.

As this example suggests, it is often useful to distinguish broad classes of
morphemesstemsandaffixes The exact details of the distinction vary from language
to language, but intuitively, the stem is the “main” morpleeaf the word, supplying
the main meaning, while the affixes add “additional” meariofjvarious kinds.

Affixes are further divided intprefixes suffixes infixes, andcircumfixes. Pre-
fixes precede the stem, suffixes follow the stem, circumfixebath, and infixes are
inserted inside the stem. For example, the weatsis composed of a stematand
the suffix-s. The wordunbucklels composed of a stefmuckleand the prefiun-. En-
glish doesn’t have any good examples of circumfixes, but ntthgr languages do.
In German, for example, the past participle of some verbsriméd by addinge-to
the beginning of the stem antlto the end; so the past participle of the vedyen(to
say) isgesagf(said). Infixes, in which a morpheme is inserted in the miadla word,
occur very commonly for example in the Philipine languaggalag. For example the
affix um, which marks the agent of an action, is infixed to the Tagaleg&ingi “bor-
row” to producehumingi There is one infix that occurs in some dialects of English in
which the taboo morphemes “f**king” or “bl**dy” or othersKke them are inserted in
the middle of other words (“Man-f**king-hattan”, “abso#5tly-lutely” 3) (McCawley,
1978).

A word can have more than one affix. For example, the wevdriteshas the
prefixre-, the stemwrite, and the suffixs. The wordunbelievablyhas a stemifelievg

2 | emmatization is actually more complex, since it sometimeslves deciding on which sense of a word
is present. We return to this issue in Ch. 19.

3 Alan Jay Lerner, the lyricist of My Fair Lady, bowdlerizeckthatter toabso-bloomin’lutelyin the lyric to
“Wouldn't It Be Loverly?” (Lerner, 1978, p. 60).
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plus three affixesun-, -able, and-ly). While English doesn't tend to stack more than
four or five affixes, languages like Turkish can have word$iwine or ten affixes,
as we saw above. Languages that tend to string affixes tadaétdurkish does are
calledagglutinative languages.

There are many ways to combine morphemes to create words. ofFdlbiese
methods are common and play important roles in speech amggidge processing:
inflection, derivation, compounding, andcliticization.

Inflection is the combination of a word stem with a grammatical morpherse-
ally resulting in a word of the same class as the original sterd usually filling some
syntactic function like agreement. For example, Englishthe inflectional morpheme
-sfor marking theplural on nouns, and the inflectional morpheradfor marking the
past tense on verbBerivation is the combination of a word stem with a grammatical
morpheme, usually resulting in a word ofldferentclass, often with a meaning hard
to predict exactly. For example the vetbmputerizecan take the derivational suffix
-ationto produce the noucomputerizationCompoundingis the combination of mul-
tiple word stems together. For example the ndoghousés the concatenation of the
morphemeadogwith the morpheméouse Finally, cliticization is the combination of
a word stem with alitic. A clitic is a morpheme that acts syntactically like a word,
but is reduced in form and attached (phonologically and siones orthographically)
to another word. For example the English morphéveén the wordl've is a clitic, as
is the French definite article in the wordl'opera. In the following sections we give
more details on these processes.

3.1.1 Inflectional Morphology

English has a relatively simple inflectional system; onlying, verbs, and sometimes
adjectives can be inflected, and the number of possible titfteal affixes is quite
small.

English nouns have only two kinds of inflection: an affix thatrksplural and
an affix that markpossessiveFor example, many (but not all) English nouns can either
appear in the bare stem singular form, or take a plural suffix. Here are examples of
the regular plural suffixs (also spelledes, and irregular plurals:

| | Regular Noun§ Irregular Noung

Singular| cat |thrush mouseg ox
Plural |cats thrushes || mice |oxen

While the regular plural is spelledafter most nouns, it is spelledsafter words
ending in-s (ibis/ibisey, -z (waltz/waltze} -sh (thrush/thrushes -ch (finch/finchey
and sometimes« (box/boxels Nouns ending iny preceded by a consonant change the
-y to -i (butterfly/butterflieks

The possessive suffix is realized by apostrophs for regular singular nouns
(Ilama’s) and plural nouns not ending #s (children’s) and often by a lone apostrophe
after regular plural noundldmas’) and some names ending ia or -z (Euripides’
comediek
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English verbal inflection is more complicated than nomimdleiction. First,
English has three kinds of verbmain verbs, (eat, sleep, impeag¢hmodal verbs(can,
will, should), andprimary verbs (be, have, dp(using the terms of Quirk et al., 1985).
In this chapter we will mostly be concerned with the main arichpry verbs, because
REGULAR itis these that have inflectional endings. Of these verbmye lelass areegular, that is
to say all verbs of this class have the same endings markénsgtime functions. These
regular verbs (e.gwvalk, orinspecy have four morphological forms, as follow:

Morphological Form Classes Regularly Inflected Verbs

stem walk merge |try map
-sform walks | merges|tries | maps
-ing participle walking| merging| trying | mapping
Past form oredparticiple || walked | merged|tried |mapped

These verbs are called regular because just by knowingéhe st can predict
the other forms by adding one of three predictable endingsnaaking some regular
spelling changes (and as we will see in Ch. 7, regular praation changes). These
regular verbs and forms are significant in the morphologyrajiish first because they
cover a majority of the verbs, and second because the regaks isproductive. As
discussed earlier, a productive class is one that autoatigtincludes any new words
that enter the language. For example the recently-creatddax (My mom faxedne
the note from cousin Evergtiakes the regular endingsd, -ing, -es (Note that thes
form is spelledaxesrather tharfaxs we will discuss spelling rules below).

IRREGULAR VERBS Theirregular verbs are those that have some more or less idiosyncratic forms
of inflection. Irregular verbs in English often have five difént forms, but can have as
many as eight (e.g., the vel®) or as few as three (e.gutor hit). While constituting
a much smaller class of verbs (Quirk et al. (1985) estimageetiare only about 250
irregular verbs, not counting auxiliaries), this clasdues most of the very frequent
verbs of the languageThe table below shows some sample irregular forms. Note that

PRETERITE an irregular verb can inflect in the past form (also calledpiegerite) by changing its
vowel (eat/atg, or its vowel and some consonantgich/caughy, or with no change at

all (cut/cud.
Morphological Form Classedrregularly Inflected Verbs
stem eat |catch |cut
-sform eats |catches|cuts
-ing participle eating| catching cutting
Past form ate |caught |cut
-edparticiple eaten|caught |cut

The way these forms are used in a sentence will be discussgdapters 8-12
but is worth a brief mention here. Theform is used in the “habitual present” form
to distinguish the third-person singular endighé jogs every Tuesddyom the other

4 In general, the more frequent a word form, the more likelg tbihave idiosyncratic properties; this is due
to a fact about language change; very frequent words tencesepre their form even if other words around
them are changing so as to become more regular.
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choices of person and numbefypu/we/they jog every TuesdayThe stem form is
used in the infinitive form, and also after certain other gdthl rather walk homel
want to walk homp The-ing participle is used when the verb is treated as a noun; this
particular kind of nominal use of a verb is callegjerund use: Fishing is fine if you
live near water.The-edpatrticiple is used in thperfect constructione’s eaten lunch
already) or the passive constructioiiife verdict was overturned yesterdlay

In addition to noting which suffixes can be attached to whielms, we need to
capture the fact that a number of regular spelling changesrat these morpheme
boundaries. For example, a single consonant letter is ddut®fore adding theng
and-edsuffixes peg/begging/beggégdif the final letter is “c”, the doubling is spelled
“ck” (picnic/picnicking/picnicked If the base ends in a silerg, it is deleted before
adding-ing and-ed(merge/merging/mergédJust as for nouns, theending is spelled
-esafter verb stems ending is (toss/tossgs, -z, (waltz/waltze}-sh, (wash/washgs
-ch, (catch/catchesand sometimesx (tax/taxe$. Also like nouns, verbs ending hy
preceded by a consonant change-thio -i (try/tries).

The English verbal system is much simpler than for exampdcilropean Span-
ish system, which has as many as fifty distinct verb formsdeheegular verb. Fig. 3.1
shows just a few of the examples for the varbar, ‘to love’. Other languages can have
even more forms than this Spanish example.

Present | Imperfect| Future Preterit¢ Presen{ Conditional Imperfect Future

Indicativel Indicative T Subjnct 1 Subjnct. | Subjnct.
1SG amo amaba amaré amé ame amaria amara amare
2SG amas amabas amaras amaste| ames amarias amaras amares
3SG ama amaba amara amo ame amaria amara amareme
1PL| amamos amabamqs amaremds amamo$ amemos amariamos am’aramqs amaremqs
2PL| amais amabais | amaréis | amasteis améis amariais amarais amareis
3PL| aman amaban amaran amaron| amen amarian amaran amaren

Figure 3.1  To love in Spanish. Some of the inflected forms of the \ariarin Euro-
pean SpanisHLSGstands for “first person singular”, 3PL for “third persongalli, and so
on.

3.1.2 Derivational Morphology

While English inflection is relatively simple compared thet languages, derivation
in English is quite complex. Recall that derivation is thentdnation of a word stem
with a grammatical morpheme, usually resulting in a word difeerentclass, often

with a meaning hard to predict exactly.

A very common kind of derivation in English is the formatiohrew nouns,
often from verbs or adjectives. This process is catledhinalization. For example,
the suffix-ation produces nouns from verbs ending often in the suffig (computer-
ize — computerization Here are examples of some particularly productive Ehglis
nominalizing suffixes.
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| Suffix || Base Verb/AdjectivéDerived Noun |

-ation|| computerize (V) | computerization
-ee ||appoint (V) appointee

-er kill (V) killer

-ness || fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Herexamples of a
few suffixes deriving adjectives from nouns or verbs.

| Suffix|| Base Noun/VerbDerived Adjective

-al computation (N) computational
-able ||embrace (V) |embraceable
-less || clue (N) clueless

Derivation in English is more complex than inflection for anther of reasons.
Oneis that it is generally less productive; even a nomimaiguffix like -ation, which
can be added to almost any verb endingizg, cannot be added to absolutely ev-
ery verb. Thus we can’t sayeitationor *spellation(we use an asterisk (*) to mark
“non-examples” of English). Another is that there are sulsthd complex meaning
differences among nominalizing suffixes. For exangiheerityhas a subtle difference
in meaning fronsincereness

3.1.3 Cliticization

Recall that a clitic is a unit whose status lies in betweenhdhan affix and a word. The
phonological behavior of clitics is like affixes; they terdde short and unaccented (we
will talk more about phonology in Ch. 8). Their syntactic betor is more like words,
often acting as pronouns, articles, conjunctions, or vetlitics preceding a word are
calledproclitics, while those following arenclitics.

English clitics include these auxiliary verbal forms:

| Full Form Clitic || Full Form| Clitic |

am m have ve
are re has 's
is 's had d
will "Nl would d

Note that the clitics in English are ambiguous; Tkhge’'scan mearshe isor she
has Except for a few such ambiguities, however, correctly segting off clitics in
English is simplified by the presence of the apostropheicSlitan be harder to parse
in other languages. In Arabic and Hebrew, for example, tHimite article the Al in
Arabic, hain Hebrew) is cliticized on to the front of nouns. It must bgsented off
in order to do part-of-speech tagging, parsing, or othéssta®ther Arabic proclitics
include prepositions likd ‘by/with’, and conjunctions likew ‘and’. Arabic also has
enclitics marking certain pronouns. For example the wardl by their virtueshas
clitics meaningand, by, andtheir, a stemvirtue, and a plural affix. Note that since
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Arabic is read right to left, these would actually appeareoed from right to left in an
Arabic word.

proclitic | proclitic | stem | affix | enclitic
Arabic||w b Hsn |At |hm
Gloss || and by virtue|s their

3.1.4 Non-concatenative Morphology

The kind of morphology we have discussed so far, in which advi@composed of a
string of morphemes concatenated together is often cediedatenative morphology
A number of languages have extengivm-concatenative morphologyin which mor-
phemes are combined in more complex ways. The Tagalog iitfixekample above is
one example of non-concatenative morphology, since twghmmesliingi andum)
are intermingled.

Another kind of non-concatenative morphology is caltethplatic morphol-
ogy or root-and-pattern morphology. This is very common in Arabic, Hebrew, and
other Semitic languages. In Hebrew, for example, a verb istrocted using two
components: a root, consisting usually of three conson@f@) and carrying the
basic meaning, and a template, which gives the ordering n$émuants and vowels
and specifies more semantic information about the resulinig, such as the semantic
voice (e.g., active, passive, middle). For example the elgliri-consonantal rodind,
meaning ‘learn’ or ‘study’, can be combined with the actividce CaCaC template
to produce the worthmad ‘he studied’, or the intensive CiCeC template to produce
the wordlimed ‘he taught’, or the intensive passive template CuCacC talyce the
word lumad ‘he was taught’. Arabic and Hebrew combine this templatarphology
with concatenative morphology (like the cliticization exale shown in the previous
section).

3.1.5 Agreement

We introduced the plural morpheme above, and noted thaslplimarked on both
nouns and verbs in English. We say that the subject noun amdin verb in English
have toagreein number, meaning that the two must either be both singuldroth
plural. There are other kinds of agreement processes. Bon@e nouns, adjectives,
and sometimes verbs in many languages are markegefoder. A gender is a kind
of equivalence class that is used by the language to caregibre nouns; each noun
falls into one class. Many languages (for example Romanugulages like French,
Spanish, or Italian) have 2 genders, which are referred tnasuline and feminine.
Other languages (like most Germanic and Slavic language® three (masculine,
feminine, neuter). Some languages, for example the Bangukges of Africa, have
as many as 20 genders. When the number of classes is very Weegeten refer to
them asoun classesnstead of genders.

Gender is sometimes marked explicitly on a noun; for exarBpkenish mascu-
line words often end ino and feminine words ira. But in many cases the gender is
not marked in the letters or phones of the noun itself. Inktéds a property of the
word that must be stored in a lexicon. We will see an exampthisfin Fig. 3.2.
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3.2 HNITE-STATE MORPHOLOGICALPARSING

FEATURES

LEXICON

MORPHOTACTICS

Let's now proceed to the problem of parsing morphology. Caalgvill be to take
input forms like those in the first and third columns of FigR,3roduce output forms
like those in the second and fourth column.

English I Spanish
Input Morphologically Input Morphologically Gloss
Parsed Output Parsed Output
cats cat +N +PL pavos| pavo +N +Masc +PlI ‘ducks’
cat cat +N +SG pavo pavo +N +Masc +Sg ‘duck’
cities city +N +PlI bebo beber +V +PInd +1P +Sg ‘I drink’
geese goose +N +PI canto| cantar +V +PInd +1P +Sg ‘I sing’
goose goose +N +Sg canto canto +N +Masc +Sg ‘song’
goose goose +V puse poner +V +Perf +1P +Sg ‘Il was able’
gooses goose +V +1P +Sg vino venir +V +Perf +3P +Sg ‘he/she came
merging| merge +V +PresPaft vino vino +N +Masc +Sg ‘wine’
caught catch +V +PastPart| lugar lugar +N +Masc +Sg ‘place’
caught catch +V +Past
Figure 3.2  Output of a morphological parse for some English and Spamists. Span-
ish output modified from the Xerox XRCE finite-state langusmas.

The second column contains the stem of each word as well ag@dsnorpho-
logical features These features specify additional information about teens For
example the featureN means that the word is a nourSg means it is singulat Pl
that it is plural. Morphological features will be referrexlagain in Ch. 5 and in more
detail in Ch. 13; for now, considetSg to be a primitive unit that means “singular”.
Spanish has some features that don’t occur in English; famgste the nounksigar and
pavoare marked-Masc (masculine). Because Spanish nouns agree in gender with ad-
jectives, knowing the gender of a noun will be important Bigding and parsing.

Note that some of the input forms (lilkeaught goose cantg or vino) will be
ambiguous between different morphological parses. For, mavwill consider the
goal of morphological parsing merely to list all possibleggs. We will return to the
task of disambiguating among morphological parses in Ch. 5.

In order to build a morphological parser, we'll need at lebstfollowing:

1. lexicon: the list of stems and affixes, together with basic informragibout them
(whether a stem is a Noun stem or a Verb stem, etc.).

2. morphotactics: the model of morpheme ordering that explains which claskes o
morphemes can follow other classes of morphemes inside & Wwor example,
the fact that the English plural morpheme follows the notheathan preceding
it is a morphotactic fact.

3. orthographic rules: thesespelling rules are used to model the changes that
occur in aword, usually when two morphemes combine (e.gy, th ie spelling
rule discussed above that changig + -s to citiesrather tharENDNOSPEL).
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The next section will discuss how to represent a simple garsf the lexicon
just for the sub-problem of morphological recognition,lirding how to use FSAs to
model morphotactic knowledge.

In following sections we will then introduce the finite-gatansducer (FST) as a
way of modeling morphological features in the lexicon, addrassing morphological
parsing. Finally, we show how to use FSTs to model orthogcapites.

3.3 BUILDING A FINITE-STATE LEXICON

A lexicon is a repository for words. The simplest possibbaden would consist of
an explicit list of every word of the languageveryword, i.e., including abbreviations
(“AAA") and proper names (“Jane” or “Beijing”)) as follows:

a, AAA, AA, Aachen, aardvark, aardwolf, aba, abaca, aback, .

Since it will often be inconvenient or impossible, for therigas reasons we
discussed above, to list every word in the language, cortipatd lexicons are usually
structured with a list of each of the stems and affixes of tinguage together with
a representation of the morphotactics that tells us how taeyfit together. There
are many ways to model morphotactics; one of the most commdmei finite-state
automaton. A very simple finite-state model for English neahinflection might look
like Fig. 3.3.

reg—noun plural —s

irreg—pl—-noun

iIrreg—sg—noun

Figure 3.3 A finite-state automaton for English nominal inflection.

The FSA in Fig. 3.3 assumes that the lexicon includes regulans feg-noun)
that take the regulasplural (e.g.cat, dog fox, aardvark. These are the vast majority
of English nouns since for now we will ignore the fact that gieral of words likefox
have an inserted: foxes The lexicon also includes irregular noun forms that don’t
take-s, both singulairreg-sg-noun (goose, mougeand pluralirreg-pl-noun (geese,
mice.

| reg-noun | irreg-pl-noun | irreg-sg-noun | plural |
fox geese goose -S
cat sheep sheep
aardvark mice mouse
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A similar model for English verbal inflection might look lik&g. 3.4.

irreg—past-verb—form

past (—ed)

irreg-verb-stem

Figure 3.4  Afinite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, ueeg-stem, and irreg-
past-verb-form), plus four more affix classesd past,-ed participle,-ing participle,
and third singulars):

reg-verb-| irreg-verb-| irreg-past-| past| past-part| pres-part| 3sg
stem stem verb
walk cut caught -ed -ed -ing -S
fry speak ate
talk sing eaten
impeach sang

English derivational morphology is significantly more cdaxgthan English in-

flectional morphology, and so automata for modeling Engtishivation tend to be
quite complex. Some models of English derivation, in facg based on the more
complex context-free grammars of Ch. 11 (Sproat, 1993; @rfy995).

Consider a relatively simpler case of derivation: the motphtics of English
adjectives. Here are some examples from Antworth (1990):

big, bigger, biggest, cool, cooler, coolest, coolly
happy, happier, happiest, happily red, redder, reddest
unhappy, unhappier, unhappiest, unhappily real, unreallyr

clear, clearer, clearest, clearly, unclear, unclearly

An initial hypothesis might be that adjectives can have aoapl prefix (in-),
an obligatory rootlfig, cool etc.) and an optional suffixér, -est or -ly). This might
suggest the the FSA in Fig. 3.5.

Alas, while this FSA will recognize all the adjectives in ttadble above, it will
also recognize ungrammatical forms likebig, unfast oranger, or smally. We need to
set up classes of roots and specify their possible suffidessadj-root ; would include
adjectives that can occur witm-and-ly (clear, happy andreal) while adj-root, will
include adjectives that canbig, small), and so on.
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: —er —est
un-— adj-root -ly

Figure 3.5 An FSA for a fragment of English adjective morphology: Antitds Pro-
posal #1.

This gives an idea of the complexity to be expected from Bhglerivation. As a
further example, we give in Figure 3.6 another fragment d&88A for English nominal
and verbal derivational morphology, based on Sproat (1®)er (1983), and Porter
(1980). This FSA models a number of derivational facts, sashhe well known
generalization that any verb ending-iae can be followed by the nominalizing suffix
-ation (Bauer, 1983; Sproat, 1993). Thus since there is a \iassilize we can predict
the wordfossilizationby following statesyo, g1, andgy. Similarly, adjectives ending
in -al or -able at gs (equal formal, realizablg can take the suffixity, or sometimes
the suffix-nesgo stategs (naturalnesscasualness We leave it as an exercise for the
reader (Exercise 3.2) to discover some of the individuakpXons to many of these
constraints, and also to give examples of some of the various and verb classes.

noun; —-ize/V  —ation/N

Figure 3.6  An FSA for another fragment of English derivational morpig.

We can now use these FSAs to solve the problemaiphological recognition;
that is, of determining whether an input string of letterkesaup a legitimate English
word or not. We do this by taking the morphotactic FSAs, andging in each “sub-
lexicon” into the FSA. That is, we expand each arc (e.g.réigenoun-stemarc) with
all the morphemes that make up the setegf-noun-stem The resulting FSA can then
be defined at the level of the individual letter.
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Figure 3.7 Expanded FSA for a few English nouns with their inflection.t&that this
automaton will incorrectly accept the inplatxs We will see beginning on page 19 how t
correctly deal with the inserteglin foxes

[®]

Fig. 3.7 shows the noun-recognition FSA produced by expanttie Nominal
Inflection FSA of Fig. 3.3 with sample regular and irregulatns for each class. We
can use Fig. 3.7 to recognize strings likardvarksby simply starting at the initial
state, and comparing the input letter by letter with eachdvaor each outgoing arc, and
S0 on, just as we saw in Ch. 2.

3.4 HNITE-STATE TRANSDUCERS

FST

We've now seen that FSAs can represent the morphotactictsteuof a lexicon, and
can be used for word recognition. In this section we intredie finite-state trans-
ducer. The next section will show how transducers can beieppd morphological
parsing.

A transducer maps between one representation and anofimete state trans-
ducer or FST is a type of finite automaton which maps between two sets obsysn
We can visualize an FST as a two-tape automaton which rezegor generatgsirs
of strings. Intuitively, we can do this by labeling each ardtie finite-state machine
with two symbol strings, one from each tape. Fig. 3.8 showsxample of an FST
where each arc is labeled by an input and output string, atgzhby a colon.

Figure 3.8 A finite-state transducer, modified from Mohri (1997).

The FST thus has a more general function than an FSA; wher&ArdEfines
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REGULAR
RELATIONS

INVERSION

COMPOSITION

a formal language by defining a set of strings, an FST definelaton between sets
of strings. Another way of looking at an FST is as a machinergeds one string and
generates another. Here’s a summary of this four-fold watiaking about transduc-
ers:

e FST as recognizer:a transducer that takes a pair of strings as input and outputs
acceptf the string-pair is in the string-pair language, aefgbctif it is not.

e FST as generator:a machine that outputs pairs of strings of the language. Thus
the output is a yes or no, and a pair of output strings.

e FST as translator: a machine that reads a string and outputs another string

e FST as set relater:a machine that computes relations between sets.

All of these have applications in speech and language psowesFor morpho-
logical parsing (and for many other NLP applications), wk apply the FST as trans-
lator metaphor, taking as input a string of letters and pcotuas output a string of
morphemes.

Let’s begin with a formal definition. An FST can be formallyfided with 7
parameters:

Q: afinite set ofN statexo, q1,...,0qn-1

>: afinite set corresponding to the input alphabet
A: a finite set corresponding to the output alphabet
e (p € Q: the start state

e F C Q: the set of final states

¢ 3(g,w): the transition function or transition matrix betweenetatGiven a state
g€ Q and a stringv € =¥, 8(g,w) returns a set of new stat€¥ € Q. d is thus
a function fromQ x =* to 22 (because there aré&ossible subsets @). &
returns a set of states rather than a single state becauseraigput may be
ambiguous in which state it maps to.

e 0(g,w): the output function giving the set of possible output gtsirior each

state and input. Given a stage= Q and a stringv € =*, o(q,w) gives a set of
output strings, each a strirge A*. o is thus a function fron® x * to 22"

Where FSAs are isomorphic to regular languages, FSTs areighic toreg-
ular relations. Regular relations are sets of pairs of strings, a natutehsion of the
regular languages, which are sets of strings. Like FSAs agdlar languages, FSTs
and regular relations are closed under union, although memgé they are not closed
under difference, complementation and intersection daltin some useful subclasses
of FSTsareclosed under these operations; in general FSTs that aregotented with
thee € are more likely to have such closure properties). BesidesRSTs have two
additional closure properties that turn out to be extrernsbful:

e inversion: The inversion of a transduc@r (T 1) simply switches the input and
output labels. Thus it maps from the input alphabkto the output alphab€d,
T~ maps fromOtol.

e composition If Ty is a transducer frorh to O; andT; a transducer fron®; to
Oz, thenTy o T, maps froml; to Oo.
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PROJECTION

SEQUENTIAL
TRANSDUCERS

Inversion is useful because it makes it easy to convert adsSJarser into an
FST-as-generator.

Composition is useful because it allows us to take two tracetb that run in
series and replace them with one more complex transducenp@sition works as in
algebra; applyind o T» to an input sequenc®is identical to applyingi to Sand then
T, to the result; thud; o T(S) = T2(T1(S)).

Fig. 3.9, for example, shows the compositiofab]+ with [b:c]+ to pro-
ducefa:c]+

Figure 3.9 The composition ofa:b]+  with [b:c]+ to producda:c]+

Theprojection of an FST is the FSA that is produced by extracting only one sid
of the relation. We can refer to the projection to the left pper side of the relation as
theupper orfirst projection and the projection to the lower or right side & thlation
as thelower or secondprojection.

3.4.1 Sequential Transducers and Determinism

Transducers as we have described them may be nondeterqinishat a given input
may translate to many possible output symbols. Thus usingrgeFSTs requires the
kinds of search algorithms discussed in Ch. 2, making FSite glow in the general
case. This suggests that it would nice to have an algorithorteert a nondeterministic
FST to a deterministic one. But while every non-determiniBSA is equivalent to
some deterministic FSA, not all finite-state transducensbeadeterminized.

Sequential transducers by contrast, are a subtype of transducers that are deter-
ministic on their input. At any state of a sequential trartstueach given symbol of
the input alphabeX can label at most one transition out of that state. Fig. 3it€sg
an example of a sequential transducer from Mohri (1997)e tioat here, unlike the
transducer in Fig. 3.8, the transitions out of each statelaterministic based on the
state and the input symbol. Sequential transducers candgsiton symbols in the
output string, but not on the input.

Figure 3.10 A sequential finite-state transducer, from Mohri (1997).
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SUBSEQUENTIAL
TRANSDUCER

Sequential transducers are not necessarily sequentideinautput. Mohri’'s
transducer in Fig. 3.10 is not, for example, since two digtiransitions leaving state 0
have the same output); Since the inverse of a sequential transducer may thusenot b
sequential, we always need to specify the direction of #uesisiuction when discussing
sequentiality. Formally, the definition of sequential sdncers modifies th@ ando
functions slightly:d becomes a function fro® x >* to Q (rather than to 2), ando
becomes a function frol@ x =* to A* (rather than to 2).

One generalization of sequential transducers isstitesequential transducer
(Schutzenberger, 1977), which generates an additioriplibatring at the final states,
concatenating it onto the output produced so far.

What makes sequential and subsequential transducerstanpads their effi-
ciency; because they are deterministic on input, they caprbeessed in time pro-
portional to the number of symbols in the input (they aredimia their input length)
rather than proportional to some much larger number whieHisction of the number
of states. Another advantage of subsequential transdisctrat there exist efficient
algorithms for their determinization (Mohri, 1997) and mnization (Mohri, 2000),
extending the algorithms for determinization and minirtiaof finite-state automata
that we saw in Ch. 2. also an equivalence algorithm.

While both sequential and subsequential transducers aeentiaistic and ef-
ficient, neither of them is able to handle ambiguity, sinoeytlransduce each input
string to exactly one possible output string. Since amitygisia crucial property of
natural language, it will be useful to have an extension dissequential transducers
that can deal with ambiguity, but still retain the efficieraoyd other useful properties
of sequential transducers. One such generalization okesuiesitial transducers is the
p-subsequentialtransducer. Ap-subsequentialtransducer allows fop(p > 1) final
output strings to be associated with each final state (M@B86). They can thus han-
dle a finite amount of ambiguity, which is useful for many NlaBks. Fig. 3.11 shows
an example of a 2-subsequential FST.

Figure 3.11 A 2-subsequential finite-state transducer, from Mohri {)99

Mohri (1996, 1997) show a humber of tasks whose ambiguitybealimited in
this way, including the representation of dictionaries,dbmpilation of morphological
and phonological rules, and local syntactic constraintsr dach of these kinds of
problems, he and others have shown that theypaebsequentializableand thus can
be determinized and minimized. This class of transducetades many, although not
necessarily all, morphological rules.
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3.5 FSTS FORMORPHOLOGICALPARSING

SURFACE

LEXICAL TAPE

(3-2)

(33)

FEASIBLE PAIRS

DEFAULT PAIRS

Let’s now turn to the task of morphological parsing. Givea tputcats for instance,
we'd like to outputcat +N +PI, telling us thatcatis a plural noun. Given the Spanish
input bebo(‘l drink’), we'd like to outputbeber +V +PInd +1P +Sgtelling us that
bebois the present indicative first person singular form of tharSgh vertbeber ‘to
drink’.

In thefinite-state morphologyparadigm that we will use, we represent a word
as a correspondence betwedmxcal level which represents a concatenation of mor-
phemes making up a word, and therface level, which represents the concatenation
of letters which make up the actual spelling of the word. Bid.2 shows these two
levels for (Englishatsand (Spanishpeba

Lexical% |c|a|t |+N|+PL| | | é

Suface; [cla|t [s| | | | 3

Figure 3.12 Schematic examples of the lexical and surface tapes; tbalacinsducers
will involve intermediate tapes as well.

For finite-state morphology it's convenient to view an FSThasing two tapes.
The upper or lexical tape is composed from characters from one alphabefThe
lower or surfacetape, is composed of characters from another alphiabetthetwo-
level morphology of Koskenniemi (1983), we allow each arc only to have a single
symbol from each alphabet. We can then combine the two syaipbhbets andA
to create a new alphabét, which makes the relationship to FSAs quite cledris a
finite alphabet of complex symbols. Each complex symbol imposed of an input-
output pairi : 0; one symbol from the input alphabef, and one symbab from an
output alphabeh, thusy’ C 3~ x A. 3 andA may each also include the epsilon syméol
Thus where an FSA accepts a language stated over a finitebalpbfesingle symbols,
such as the alphabet of our sheep language:

Z={b,a!}
an FST defined this way accepts a language statedpaierof symbols, as in:
={a:a b:b!:1 a:l ae e:!}
In two-level morphology, the pairs of symbolsihare also callefeasible pairs Thus
each feasible pair symbal: b in the transducer alphabEt expresses how the symbol
a from one tape is mapped to the symbain the other tape. For exampe ¢ means
that ana on the upper tape will correspond nothingon the lower tape. Just as for
an FSA, we can write regular expressions in the complex algt#. Since it's most
common for symbols to map to themselves, in two-level molgipowe call pairs like
a: adefault pairs, and just refer to them by the single letger

We are now ready to build an FST morphological parser out ofauier mor-
photactic FSAs and lexica by adding an extra “lexical” tapd the appropriate mor-
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MORPHEME
BOUNDARY

#
WORD BOUNDARY

phological features. Fig. 3.13 shows an augmentation ofF&with the nominal mor-
phological features{Sg and+Pl ) that correspond to each morpheme. The symbol ~
indicates amorpheme boundary, while the symbol# indicates awvord boundary,
The morphological features map to the empty stiéray the boundary symbols since
there is no segment corresponding to them on the output tape.

reg-noun

irreg-sg-noun‘ +N ‘ +Sg

irreg-pl-noun

Figure 3.13 A schematic transducer for English nominal number inflecTigym The
symbols above each arc represent elements of the morpbalqgirse in the lexical tape
the symbols below each arc represent the surface tape (dnt#renediate tape, to be
described later). The arcs need to be expanded by individoals in the lexicon. The
morpheme-boundary symbol = and word-boundary marker #oeiliscussed below.

In order to use Fig. 3.13 as a morphological noun parsergids#o be expanded
with all the individual regular and irregular noun stemglaging the labelseg-noun
etc. In order to do this we need to update the lexicon for thissgducer, so that irreg-
ular plurals likegeesewill parse into the correct steigoose +N +PIl . We do this
by allowing the lexicon to also have two levels. Since swfgeesemaps to lexical
goose , the new lexical entry will bed:g o:e o:e s:s ee ". Regular forms
are simpler; the two-level entry féox will now be “f:f 0:0 x:x ", but by relying
on the orthographic convention thfastands fof:f and so on, we can simply refer to
it asfox and the form fogeeseas ‘g o:e o0:e s e . Thus the lexicon will look
only slightly more complex:

| reg-noun | irreg-pl-noun | irreg-sg-noun |
fox goeoese goose
cat sheep sheep
aardvark moiiuesice mouse

The resulting transducer, shown in Fig. 3.14, will map plurauns into the
stem plus the morphological markeP! , and singular nouns into the stem plus the
morphological marke#Sg. Thus a surfaceatswill map tocat +N +Pl . This can
be viewed in feasible-pair format as follows:

c.c aa tit +N: e +PI: "s#



Section 3.6.

Transducers and Orthographic Rules 19

MORPHEME
BOUNDARY

#
WORD BOUNDARY

Figure 3.14 A fleshed-out English nominal inflection FSTJgy, expanded fronThum
by replacing the three arcs with individual word stems (anfgw sample word stems are
shown).

The symbol " indicates morpheme boundary, while the symbo¥# indicates a
word boundary,

Since the output symbols include these boundary markerwrer labels Fig. 3.14
do not correspond exactly to the surface level. Hence we tetapes with these mor-
pheme boundary markers in Fig. 3.itfermediate tapes; the next section will show
how the boundary marker is removed.

Lexical% |f |0|X |+N|+PL| | | é
2

Intermediateé |f|O|X|’\|S|#| |

Figure 3.15 A schematic view of the lexical and intermediate tapes.

3.6 TRANSDUCERS ANDORTHOGRAPHICRULES

SPELLING RULES

The method described in the previous section will succéigsfecognize words like
aardvarksand mice But just concatenating the morphemes won't work for cases
where there is a spelling change; it would incorrectly repet input likefoxesand
accept an input likdoxs We need to deal with the fact that English often requires
spelling changes at morpheme boundaries by introduspedling rules (or ortho-
graphic rules) This section introduces a number of notations for writinigts rules
and shows how to implement the rules as transducers. In gleriee ability to im-
plement rules as a transducer turns out to be useful thraugipeech and language
processing. Here’s some spelling rules:
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(3:4)

[Name | Description of Rule | Example |
Consonant | 1-letter consonant doubled beferg/-ed| beg/begging
doubling
E deletion Silent e dropped beforéng and-ed make/making

E insertion |e added afters,-z-x,-ch, -shbefore-s watch/watches
Y replacement-y changes teie before-s, -i before-ed | try/tries
Kinsertion |verbs ending wittvowel + -cadd-k panic/panicked

We can think of these spelling changes as taking as inputglesiconcatenation
of morphemes (the “intermediate output” of the lexical s@dncer in Fig. 3.14) and pro-
ducing as output a slightly-modified (correctly-spelledhcatenation of morphemes.
Fig. 3.16 shows in schematic form the three levels we arénguioout: lexical, inter-
mediate, and surface. So for example we could write an Etinseule that performs
the mapping from the intermediate to surface levels showrign3.16. Such a rule

Lexical § [T [0 [ X [«N[+p] | | 3
Intermediate | f o | x ["|s [#] | <
Suface |[f [o|[x|e|s | | | ¢

Figure 3.16 An example of the lexical, intermediate, and surface taBetween each
pair of tapes is a two-level transducer; the lexical trassdwf Fig. 3.14 between the
lexical and intermediate levels, and the E-insertion spghlule between the intermediat
and surface levels. The E-insertion spelling rule insamte @n the surface tape when th
intermediate tape has a morpheme boundary " followed by trememe:-s.

W

might say something like “insert axon the surface tape just when the lexical tape has
a morpheme ending ix(or z, etc) and the next morpheme . Here's a formalization
of the rule:
X
e—el{ sy ___s#
z

This is the rule notation of Chomsky and Halle (1968); a rdléhe forma —
b/c__d means “rewritea asb when it occurs betweeoandd”. Since the symbol
€ means an empty transition, replacing it means insertingesloimg. Recall that the
symbol "~ indicates a morpheme boundary. These boundagegedeted by including
the symbol "¢ in the default pairs for the transducer; thus morpheme bagyndarkers
are deleted on the surface level by default. The # symbolgeeial symbol that marks
a word boundary. Thus (3.4) means “insertesaifter a morpheme-finad s, or z, and
before the morphenm&. Fig. 3.17 shows an automaton that corresponds to this rule

The idea in building a transducer for a particular rule isxpress only the con-
straints necessary for that rule, allowing any other stafigymbols to pass through
unchanged. This rule is used to ensure that we can only seestpair if we are in the
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Figure 3.17 The transducer for the E-insertion rule of (3.4), extendednfa similar
transducer in Antworth (1990).

proper context. So statg, which models having seen only default pairs unrelated to
the rule, is an accepting state, agiswhich models having seeregs, orx. g, models
having seen the morpheme boundary afterztseor x, and again is an accepting state.
Stategs models having just seen the E-insertion; it is not an acogiate, since the
insertion is only allowed if it is followed by themorpheme and then the end-of-word
symbol#.

Theothersymbol is used in Fig. 3.17 to safely pass through any pangods
that don’t play a role in the E-insertion rulether means “any feasible pair that is
not in this transducer”; it is thus like a version @f: @ which is context-dependent in
a transducer-by-transducer way. So for example when |gastateqy, we go toqs
on thez, s, or x symbols, rather than following thather arc and staying imp. The
semantics obtherdepends on what symbols are on other arcs; siisenentioned on
some arcs, it is (by definition) not includedather, and thus, for example, is explicitly
mentioned on the arc frogp to qo.

Atransducer needs to correctly reject a string that apfiiesule when it shouldn't.
One possible bad string would have the correct environnmanthie E-insertion, but
have no insertion. Statg is used to ensure that tleds always inserted whenever the
environment is appropriate; the transducer reacgemly when it has seen agafter
an appropriate morpheme boundary. If the machine is in sgatnd the next sym-
bol is #, the machine rejects the string (because there is no legaition on# from
gs). Fig. 3.18 shows the transition table for the rule which ewathe illegal transitions
explicit with the “~=" symbol.

The next section will show a trace of this E-insertion trarcs running on a
sample input string.
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Staté Input S:S X:X zz “e €.e # other|

do: 1 1 1 0 - 0 0

di: 1 1 1 2 - 0 0

O2: 5 1 1 0 3 0 0

Gs 4 - - - - - -

G - - - - - of -

ds 1 1 1 2 - - 0
Figure 3.18 The state-transition table for E-insertion rule of Fig.73.@xtended from a
similar transducer in Antworth (1990).

3.7 COMBINING FST LEXICON AND RULES

CASCADE

We are now ready to combine our lexicon and rule transduoegsarsing and generat-
ing. Fig. 3.19 shows the architecture of a two-level morphglsystem, whether used
for parsing or generating. The lexicon transducer mapsdmtvthe lexical level, with
its stems and morphological features, and an intermediagt that represents a simple
concatenation of morphemes. Then a host of transducerlis,representing a single
spelling rule constraint, all run in parallel so as to mameetn this intermediate level
and the surface level. Putting all the spelling rules in l@rés a design choice; we
could also have chosen to run all the spelling rules in séags long cascade), if we
slightly changed each rule.

Lexical 3 [f Jo[x [+«N]+P] [ [ <
A

_________________

Intermediates [ Jo[x["[s [ [ [ 3
A
o PN
(FST, 1 “eee FST,
b J____r__J ______ !
Sufaces |[f [o|[x[e[s | [ | 3

Figure 3.19 Generating or parsing with FST lexicon and rules

The architecture in Fig. 3.19 is a two-levascadeof transducers. Cascading
two automata means running them in series with the outptiedfitst feeding the input
to the second. Cascades can be of arbitrary depth, and e@timight be built out of
many individual transducers. The cascade in Fig. 3.19 hagransducers in series:
the transducer mapping from the lexical to the intermedatels, and the collection
of parallel transducers mapping from the intermediatedcstirface level. The cascade
can be run top-down to generate a string, or bottom-up toeggr&ig. 3.20 shows a
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AMBIGUITY

DISAMBIGUATING

trace of the systeracceptinghe mapping fronfox”sto foxes

Lexicalg | f [o|x [+N[+P| | | <
T ©OOOQOG Q
Intermediate% flo|x|™]|s |# | é
Te—insert [E> [D [E >[‘%
Surfaceg |[f o[ x [e|s R

Figure 3.20  Acceptingfoxes The lexicon transducéligy from Fig. 3.14 cascaded with
the E-insertion transducer in Fig. 3.17.

The power of finite-state transducers is that the exact saseade with the same
state sequences is used when the machine is generatingfdeedape from the lexical
tape, or when it is parsing the lexical tape from the surfaget For example, for
generation, imagine leaving the Intermediate and Surfgpestblank. Now if we run
the lexicon transducer, givdax +N +PL , it will producefox”s#on the Intermediate
tape via the same states that it accepted the Lexical aminatkate tapes in our earlier
example. If we then allow all possible orthographic trarcgds to run in parallel, we
will produce the same surface tape.

Parsing can be slightly more complicated than generatiecalbse of the prob-
lem ofambiguity. For examplefoxescan also be a verb (albeit a rare one, meaning “to
baffle or confuse”), and hence the lexical parseféxescould befox +V +3Sg as
well asfox +N +PL . How are we to know which one is the proper parse? In fact, for
ambiguous cases of this sort, the transducer is not capabéeiming. Disambiguat-
ing will require some external evidence such as the surrounslords. Thudoxesis
likely to be a noun in the sequenksaw two foxes yesterdayut a verb in the sequence
That trickster foxes me every timalVe will discuss such disambiguation algorithms
in Chapters 8 and 17. Barring such external evidence, thedbesransducer can do
is just enumerate the possible choices; so we can trangdxigfinto bothfox +V
+3SGandfox +N +PL .

There is a kind of ambiguity that we need to handle: local @ity that occurs
during the process of parsing. For example, imagine parsiagnput verbassess
After seeingass our E-insertion transducer may propose that ¢htbat follows is
inserted by the spelling rule (for example, as far as thesttager is concerned, we
might have been parsing the waadse} It is not until we don’t see th# afterasses
but rather run into anothey that we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algoritheedrto incorporate
some sort of search algorithm. Exercise 3.8 asks the readeodify the algorithm for
non-deterministic FSA recognition in Fig?in Ch. 2 to do FST parsing.

Running a cascade, particularly one with many levels, caimingeldy. Luckily,
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we've already seen how to compose a cascade of transducsesiés into a single
more complex transducer. Transducers in parallel can bébicwa by automaton

INTERSECTION intersection. The automaton intersection algorithm just takes the Grmeproduct of
the states, i.e., for each staggn machine 1 and statg in machine 2, we create a new
stategjj. Then for any input symbad, if machine 1 would transition to statg and
machine 2 would transition to statg, we transition to statg,m. Fig. 3.21 sketches
how this intersection/X) and compositiond) process might be carried out.

4
LEXICON-FST LEXICON-FST
e e T o A LEXICON-FST
L L | \f\ L ) I I
‘ cee f } intersect
1 1
)

FST,

1 T T
| | | = compose
i I I ! ! | 2 a o

{
— FSTAESTA.A
A( FSTAFSTA.AFST)
i
:

T i f T T L
| | | [
1 1 I L I} 1__5

FST

Figure 3.21 Intersection and composition of transducers.

Since there are a number of rald=ST compilers, it is almost never necessary
in practice to write an FST by hand. Kaplan and Kay (1994) tfieemathematics that
define the mapping from rules to two-level relations, andsanth (1990) gives details
of the algorithms for rule compilation. Mohri (1997) givegarithms for transducer
minimization and determinization.

3.8 LEXICON-FREEFSTS: THE PORTER STEMMER

While building a transducer from a lexicon plus rules is tkendard algorithm for
morphological parsing, there are simpler algorithms tleattrequire the large on-line
lexicon demanded by this algorithm. These are used espeoiaiformation Retrieval
(IR) tasks like web search (Ch. 21), in which a query such asad&in combination of

kevworos  relevantkeywords or phrases, e.g.marsupial OR kangaroo OR kogleeturns docu-
ments that have these words in them. Since a document witthatthmarsupialsnight
not match the keywordharsupial some IR systems first run a stemmer on the query
and document words, Morphological information in IR is tltmmy used to determine
that two words have the same stem; the suffixes are thrown. away

STEMMING One of the most widely used sustemming algorithms is the simple and effi-
cient Porter (1980) algorithm, which is based on a seriesnople cascaded rewrite
rules. Since cascaded rewrite rules are just the sort of thiat could be easily imple-
mented as an FST, we think of the Porter algorithm as a lexiinFST stemmer (this
idea will be developed further in the exercises (Exercigg.3The algorithm contains
rules like these:

ATIONAL — ATE (e.g., relational- relate)
ING — ¢ if stem contains vowel (e.g., motorinrg motor)



Section 3.9.

Word and Sentence Tokenization 25

See Porter (1980) or Martin Porter’s official homepage ferRlorter stemmer for more
details.

Krovetz (1993) showed that stemming tends to somewhat iveptioe perfor-
mance of information retrieval, especially with smallecdments (the larger the doc-
ument, the higher the chance the keyword will occur in thecekam used in the
query). Nonetheless, not all IR engines use stemming ydaetause of stemmer er-
rors such as these noted by Krovetz:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity

3.9 WORD AND SENTENCE TOKENIZATION

TOKENIZATION

We have focused so far in this chapter on a problem of segti@mtahow words
can be segmented into morphemes. We turn now to a brief discusf the very
related problem of segmenting running text into words antdesees. This task is
calledtokenization.

Word tokenization may seem very simple in a language likeliEnghat sepa-
rates words via a special ‘space’ character. As we will séapeanot every language
does this (Chinese, Japanese, and Thai, for example, ddBuity closer examination
will make it clear that whitespace is not sufficient by itse@onsider the following
sentences from a Wall Street Journal and New York Timesl@rtiespectively:

Mr. Sherwood said reaction to Sea Containers’ proposal

has been "very positive." In New York Stock Exchange composi te
trading yesterday, Sea Containers closed a t $62.625, up
62.5 cents.

”

“l said, ‘what're you? Crazy?
can't afford to do that.”

said Sadowsky. “I

Segmenting purely on white-space would produce words liked:
cents. said, positive." Crazy?

We could address these errors by treating punctuation,ditiad to whitespace, as a
word boundary. But punctuation often occurs word integpafl examples likam.p.h
Ph.D, AT&T, cap’n, 01/02/06 andgoogle.comSimilarly, assuming that we waff.5

to be a word, we’ll need to avoid segmenting every periodiesthat will segment this
into 62 and 5. Number expressions introduce other compicags well; while com-
mas normally appear at word boundaries, commas are uselé imginbers in English,
every three digits555,500.50 Languages differ on punctuation styles for numbers;
many continental European languages like Spanish, FramchGerman, by contrast,
uses a comma to mark the decimal point, and spaces (or soesepieriods) where
English puts comma&55 500,50
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Another useful task a tokenizer can do for us is to expanit ddntractions that
are marked by apostrophes, for example convertthgt're above to the two tokens
what are andwe’re to we are This task is complicated by the fact that apostrophes
are quite ambiguous, since they are also used as genitikersdas irthe book’s over
or in Containers’above) or as quotative markers (asviat're you? Crazy?'above).
Such contractions occur in other alphabetic languagelsidimg articles and pronouns
in French ['ai, I'hommé. While these contractions tend to be clitics, not all citare
marked this way with contraction. In general, then, segingrand expanding clitics
can be done as part of the process of morphological parsegepted earlier in the
chapter.

Depending on the application, tokenization algorithms miap tokenize multi-
word expressions likBlew Yorkor rock 'n’ roll , which requires a multiword expression
dictionary of some sort. This makes tokenization intimatedd up with the task of
detecting names, dates, and organizations, which is ca#leted entity detectioand
will be discussed in Ch. 17.

In addition to word segmentatiopentence segmentatiois a crucial first step
in text processing. Segmenting a text into sentences isginbased on punctuation.
This is because certain kinds of punctuation (periods, tipresnarks, exclamation
points) tend to mark sentence boundaries. Question matkexatamation points are
relatively unambiguous markers of sentence boundariegd3eon the other hand, are
more ambiguous. The period character ‘.’ is ambiguous b&tveesentence boundary
marker and a marker of abbreviations like or Inc. The previous sentence that you
just read showed an even more complex case of this ambigwiyich the final period
of Inc. marked both an abbreviation and the sentence boundary mitdkehis reason,
sentence tokenization and word tokenization tend to beesddd jointly.

In general, sentence tokenization methods work by buildifgnary classifier
(based on a sequence of rules, or on machine learning) wieicides if a period is
part of the word or is a sentence boundary marker. In makiisgdigcision, it helps to
know if the period is attached to a commonly used abbreviatitus an abbreviation
dictionary is useful.

State-of-the-art methods for sentence tokenization asecban machine learn-
ing and will be introduced in later chapters. But a usefut ftep can still be taken via
a sequence of regular expressions. We introduce here theditsa word tokenization
algorithm. Fig. 3.22 gives a simple Perl word tokenizatilgoathm based on Grefen-
stette (1999). The algorithm is quite minimal, designedmiyatio clarify many of the
segmentation issues we discussed in previous paragraphs.

The algorithm consists of a sequence of regular expressibstitution rules.
The first rule separates unambiguous punctuation like muestarks and parentheses.
The next rule segments commas unless they are inside nuniéethen disambiguate
apostrophes and pull off word-final clitics. Finally, we tedth periods, using a (toy)
abbreviation dictionary and some heuristics for deteatitgr abbreviations.

The fact that a simple tokenizer can be build with such simgdilar expression
patterns suggest that tokenizers like the one in Fig. 3.8deeeasily implemented in
FSTs. Thisisindeed the case, and (Karttunen et al., 19¢6)Baesley and Karttunen,
2003) give descriptions of such FST-based tokenizers.
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#!/usr/bin/perl
$letternumber = "[A-Za-z0-9]";
$notletter = "["A-Za-z0-9]";
$alwayssep = "[W2IO\;A\TY
$clitic = "C|:|-'SI'D|'M|'LLI'RE|'VEIN'T|'s|'d|'m| ll're|'ve|n’t)";
$abbr{"Co."} = 1; $abbr{"Dr."} = 1; $abbr{"Jan."} = 1; $abbr {"Feb."} = 1;
while (<>){

# put whitespace around unambiguous separators

s/$alwayssep/ $& /g;

# put whitespace around commas that aren’t inside numbers

s/(["0-9])./$1 , /g;

s/,([0-9])/ , $1/g;

# distinguish singlequotes from apostrophes by

# segmenting off single quotes not preceded by letter

sI”I$& [g;

s/($notletter)'/$1 '/g;

# segment off unambiguous word-final clitics and punctuati on

s/$clitic$/ $&/g;

s/$clitic($notletter)/ $1 $2/g;

# now deal with periods. For each possible word

@possiblewords=split(\s+/,$_);

foreach $word (@possiblewords) {

# if it ends in a period,
if (($word =" /$letternumber\./)
&& !($abbr{$word}) # and isn't on the abbreviation list
# and isn't a sequence of letters and periods (U.S.)
# and doesn't resemble an abbreviation (no vowels: Inc.)
&& ($word =" /"([A-Za-z]\.([A-Za-z]\.)+|[A-Z][bcdfghj -nptvxz]+\.)$/)) {
# then segment off the period
$word =" s\.$/ \./;

# expand clitics

$word ="s/'ve/have/;

$word ="s/'m/am/;

print $word," *;
print "\n";

Figure 3.22 A sample English tokenization script, adapted from Gretfettes (1999)

and Palmer (2000). A real script would have a longer abbtievialictionary.
3.9.1 Segmentation in Chinese
We mentioned above that some languages, including Chidapanese, and Thai, do
not use spaces to mark potential word-boundaries. Altemaegmentation methods
are used for these languages.

In Chinese, for example, words are composed of charactararkmshanzi
Each character generally represents a single morphems prahiounceable as a single
syllable. Words on average are about 2.4 characters longn@lesalgorithm that does
remarkably well for segmenting Chinese, and is often usadaseline comparison for

MAXIMUM MATCHING more advanced methods, is a version of greedy search cali&inum matching or

sometimesnaxmatch. The algorithm requires a dictionary (wordlist) of the laiage.
The maximum matching algorithm starts by pointing at thef®igg of a string.
It chooses the longest word in the dictionary that matchesriput at the current posi-
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tion. The pointer is then advanced past each charactertiwthd. If no word matches,
the pointer is instead advanced one character (creating-@lwracter word). The al-
gorithm is then iteratively applied again starting from tfesv pointer position. To help
visualize this algorithm, Palmer (2000) gives an Englishlagy, which approximates
the Chinese situation by removing the spaces from the Hngiatencéhe table down
thereto produceahetabledownthereThe maximum match algorithm (given a long En-
glish dictionary) would first match the wottetain the input, since that is the longest
sequence of letters that matches a dictionary word. Sggitim the end ofhetg the
longest matching dictionary word ided, followed byownand therthere producing
the incorrect sequendketa bled own there

The algorithm seems to work better in Chinese (with suchtsiords) than
in languages like English with long words, as our failed eglarshows. Even in
Chinese, however, maxmatch has a humber of weakness,ytartonith unknown
words (words not in the dictionary) anknown genres(genres which differ a lot from
the assumptions made by the dictionary builder).

There is an annual competition (technically calledakeoff) for Chinese seg-
mentation algorithms. These most successful modern #hgasi for Chinese word
segmentation are based on machine learning from hand-ségdngaining sets. We
will return to these algorithms after we introduce probigbid methods in Ch. 5.

3.10 DeTECTING AND CORRECTINGSPELLING ERRORS

ALGERNON: But my own sweet Cecily, | have never written you any letters

CEcILY: You need hardly remind me of that, Ernest. | remember ordywell

that | was forced to write your letters for you. | wrote alwakigee times a week,

and sometimes oftener.

ALGERNON: Oh, do let me read them, Cecily?

CeciLY: Oh, | couldn’t possibly. They would make you far too coreitThe

three you wrote me after | had broken off the engagement ateeaatiful, and

so badly spelled, that even now | can hardly read them withotibg a little.
Oscar Wilde,The Importance of being Ernest

Like Oscar Wilde’s fabulous Cecily, a lot of people were #ing about spelling during
the last turn of the century. Gilbert and Sullivan providewaxamplesThe Gondo-
liers’ Giuseppe, for example, worries that his private secratitshaky in his spelling”
while lolanthés Phyllis can “spell every word that she uses”. Thorsteiblga’s ex-
planation (in his 1899 classithe Theory of the Leisure Clgssas that a main purpose
of the “archaic, cumbrous, and ineffective” English spajlisystem was to be diffi-
cult enough to provide a test of membership in the leisurescl&Vhatever the social
role of spelling, we can certainly agree that many more ofradike Cecily than like
Phyllis. Estimates for the frequency of spelling errors imrtan typed text vary from
0.05% of the words in carefully edited newswire text to 38%lifficult applications
like telephone directory lookup (Kukich, 1992).

In this section we introduce the problem of detecting andemiing spelling er-
rors. Since the standard algorithm for spelling error adioa is probabilistic, we will
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continue our spell-checking discussion later in Ch. 5 afterdefine the probabilistic
noisy channel model.

The detection and correction of spelling errors is an irglggrt of modern word-
processors and search engines, and is also important iactiog errors inoptical
character recognition (OCR), the automatic recognition of machine or hand-printed
characters, andn-line handwriting recognition, the recognition of human printed or
cursive handwriting as the user is writing.

Following Kukich (1992), we can distinguish three increay broader prob-
lems:

1. non-word error detection: detecting spelling errors that result in non-words
(like graffefor giraffe).

2. isolated-word error correction: correcting spelling errors that result in non-
words, for example correctingraffeto giraffe, but looking only at the word in
isolation.

3. context-dependent error detection and correction:using the context to help
detect and correct spelling errors even if they accidgntalbult in an actual
word of English (eal-word errors). This can happen from typographical er-
rors (insertion, deletion, transposition) which acciddéigtproduce a real word
(e.g.,therefor three), or because the writer substituted the wrong spelling of a
homophone or near-homophone (edgsserfor desert or piecefor peacs.

Detecting non-word errors is generally done by marking aoydathat is not
found in a dictionary. For example, the misspelliggiffe above would not occur in
a dictionary. Some early research (Peterson, 1986) hacesteghthat such spelling
dictionaries would need to be kept small, because larg@edaities contain very rare
words that resemble misspellings of other words. For exartip rare wordsvont
or veeryare also common misspelling @fon’t andvery. In practice, Damerau and
Mays (1989) found that while some misspellings were hiddereal words in a larger
dictionary, the larger dictionary proved more help thammay avoiding marking rare
words as errors. This is especially true with probabilispell-correction algorithms
that can use word frequency as a factor. Thus modern spetkaig systems tend to
be based on large dictionaries.

The finite-state morphological parsers described througthis chapter provide
a technology for implementing such large dictionaries. Byingg a morphological
parser for a word, an FST parser is inherently a word recegniadeed, an FST mor-
phological parser can be turned into an even more efficieAt W&rd recognizer by
using theprojection operation to extract the lower-side language graph. Sudh FS
dictionaries also have the advantage of representing ptvdunorphology like the
English-sand-edinflections. This is important for dealing with new legititeacom-
binations of stems and inflection . For example, a new stembeagasily added to
the dictionary, and then all the inflected forms are easitpgmized. This makes FST
dictionaries especially powerful for spell-checking inmplaologically rich languages
where a single stem can have tens or hundreds of possib&csddrms

5 Early spelling error detectors for English, by contrasfdy allowed any word to have any suffix — thus
Unix sPELLaccepts bizarre prefixed words likeisclamandantiundogginglyand suffixed words based on
thelike thehoodandtheness
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FST dictionaries can thus help with non-word error detecti®ut how about er-
ror correction? Algorithms for isolated-word error cotien operate by finding words
which are the likely source of the errorful form. For exammerrecting the spelling
errorgrafferequires searching through all possible words gk@affe, graf, craft, grail,
etc, to pick the most likely source. To choose among thesengiat sources we need a
distance metricbetween the source and the surface error. Intuitigghgffe is a more
likely source thargrail for graffe, becauseiraffe is closer in spelling taraffe than
grail is to graffe The most powerful way to capture this similarity intuitioequires
the use of probability theory and will be discussed in Ch. He &lgorithm underlying
this solution, however, is the non-probabilistitnimum edit distance algorithm that
we introduce in the next section.

3.11 MINIMUM EDIT DISTANCE

DISTANCE

MINIMUM EDIT
DISTANCE

ALIGNMENT

Deciding which of two words is closer to some third word inléipg is a special case of
the general problem aitring distance The distance between two strings is a measure
of how alike two strings are to each other.

Many important algorithms for finding string distance rely some version of
the minimum edit distance algorithm, named by Wagner and Fischer (1974) but in-
dependently discovered by many people; see the Historjogecthe minimum edit
distance between two strings is the minimum number of eglitiperations (insertion,
deletion, substitution) needed to transform one stringamother. For example the gap
between the wordmtentionandexecutionis five operations, shown in Fig. 3.23 as an
alignmentbetween the two strings. Beneath the aligned strings anges s# symbols
expressing awperation list for converting the top string into the bottom string; d for
deletion, s for substitution, i for insertion.

I *NTION

NTE
RN REEE
*EXECUTION
dss is

Figure 3.23 Representing the minimum edit distance between two stasgmn align-
ment. The final row gives the operation list for converting thp string into the bottom
string; d for deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of theseations. The
Levenshteindistance between two sequences is the simplest weightitay fia which
each of the three operations has a cost of 1 (Levenshtei6) 296us the Levenshtein
distance betweeimtentionandexecutioris 5. Levenshtein also proposed an alternate
version of his metric in which each insertion or deletion aasst of one, and substitu-

6 We assume that the substitution of a letter for itself, eudpssitutiont for t, has zero cost.
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(3.5)

tions are not allowed (equivalent to allowing substitutibat giving each substitution a
cost of 2, since any substitution can be represented by seetion and one deletion).
Using this version, the Levenshtein distance betwetmntionandexecutioris 8.

The minimum edit distance is computed thynamic programming. Dynamic
programming is the name for a class of algorithms, first ohiied by Bellman (1957),
that apply a table-driven method to solve problems by comgisolutions to subprob-
lems. This class of algorithms includes the most commosbealgorithms in speech
and language processing; besides minimum edit distaresg thclude th¥/iterbi and
forward algorithms (Ch. 6), and thé YK andEarley algorithm (Ch. 12).

The intuition of a dynamic programming problem is that a éapgoblem can
be solved by properly combining the solutions to variouspsablems. For example,
consider the sequence or “path” of transformed words thapeise the minimum edit
distance between the stringentionandexecutiorshown in Fig. 3.24.

delete i
substituten by e _
substitute t by x _

insert u .

t
t i

-
0O 0o B B B O

substitute n by ¢ —

o T T - o S o s
® ® ® ® O
Q B B B B 0
& & o o o B
|-
O 0O O

™ ® ® O B -

n
n

Figure 3.24  Operation list transformingtentionto executionafter Kruskal 1983)

Imagine some string (perhaps itégentiof) that is in this optimal path (what-
ever it is). The intuition of dynamic programming is thaeientionis in the optimal
operation-list, then the optimal sequence must also ircthd optimal path fronn-
tentionto exention Why? If there were a shorter path frantentionto exentionthen
we could use it instead, resulting in a shorter overall pattd the optimal sequence
wouldn’t be optimal, thus leading to a contradiction.

Dynamic programming algorithms for sequence comparisak g creating a
distance matrix with one column for each symbol in the tasgefuence and one row
for each symbol in the source sequence (i.e., target alagdttom, source along the
side). For minimum edit distance, this matrix is thait-distancematrix. Each cell
edit-distanc@,j] contains the distance between the firsharacters of the target and
the firstj characters of the source. Each cell can be computed as aedinmgtion of
the surrounding cells; thus starting from the beginnindnefratrix it is possible to fill
in every entry. The value in each cell is computed by takirgrttinimum of the three
possible paths through the matrix which arrive there:

distancdl — 1, j] + ins-cosftarge{_,)
distancdi, j] = min¢ distancéi — 1, j — 1] + subst-cogsourcg_1, target_,)
distancdi, j — 1] + del-costsourcg_1))
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The algorithm itself is summarized in Fig. 3.25, while Figg@shows the results
of applying the algorithm to the distance betwémentionandexecutiorassuming the
version of Levenshtein distance in which the insertionsdgldtions each have a cost
of 1 (ins-cost() = del-cost() = 1), and substitutions have a cost of 2 (except substitutio
of identical letters has zero cost).

function MIN-EDIT-DISTANCHEtarget, sourcg returns min-distance

n«+— LENGTH(targef
m+«— LENGTH(sourcg
Create a distance matriistance[n+1,m+1]
Initialize the zeroth row and column to be the distance frbmdmpty string
distanc40,0] =0
for each column from 1to ndo
distance[i,0}— distancé¢i-1,0] +ins-cosftargefi])
for each rowj from 1to mdo
distance]0,j}— distanc¢0,j-1] + del-costsourcgj])
for each column from 1to ndo
for each rowj from 1to mdo
distanceli, j]+ MIN( distanc§i—1,j] + ins-cosftarget_1),
distanc¢i—1,j—1] + subst-cogsourcqg_1, target 1),
distancéi,j—1] + del-cosfsourcg_1))
return distancgn,m]

Figure 3.25 The minimum edit distance algorithm, an example of the adéslynamic
programming algorithms. The various costs can either be fige. Vx, ins-costx) = 1),
or can be specific to the letter (to model the fact that sonterketire more likely to be
inserted than others). We assume that there is no cost fetitting a letter for itself (i.e.
subst-cogix, x) = 0).

Knowing the minimum edit distance is useful for algorithrkeIfinding poten-
tial spelling error corrections. But the edit distance alfpon is important in another
way; with a small change, it can also provide the minimum edighment between
two strings. Aligning two strings is useful throughout spleand language processing.
In speech recognition, minimum edit distance alignmenséeito compute word error
rate in speech recognition (Ch. 9). Alignment plays a rolenachine translation, in
which sentences in a parallel corpus (a corpus with a textenanguages) need to be
matched up to each other.

In order to extend the edit distance algorithm to producelignment, we can
start by visualizing an alignment as a path through the asliadce matrix. Fig. 3.27
shows this path with the boldfaced cell. Each boldfacedrepilesents an alignment of
a pair of letters in the two strings. If two boldfaced cell€ocin the same row, there
will be an insertion in going from the source to the target toldfaced cells in the
same column indicates a deletion.

Fig. 3.27 also shows the intuition of how to compute thisraiignt path. The
computation proceeds in two steps. In the first step, we angtihe minimum edit dis-
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n 9 8 9 10 11 12 11 10 9 8
0] 8 7 8 9 10 11 10 9 8 9
i 7 6 7 8 9 10 9 8 9 10
t 6 5 6 7 8 9 8 9 10 11
n 5 4 5 6 7 8 9 10 11 10
e 4 3 4 5 6 7 8 9 10 9
t 3 4 5 6 7 8 7 8 9 8
n 2 3 4 5 6 7 8 7 8 7
i 1 2 3 4 5 6 7 6 7 8
# 0 1 2 3 4 5 6 7 8 9
| # el x| e cf u tf i] of n
Figure 3.26 Computation of minimum edit distance betweatentionandexecution
via algorithm of Fig. 3.25, using Levenshtein distance watst of 1 for insertions or
deletions, 2 for substitutions. In italics are the initialwes representing the distance fron
the empty string.

BACKTRACE

tance algorithm to store backpointers in each cell. The jpaicker from a cell points to
the previous cell (or cells) that were extended from in éntgthe current cell. We've
shown a schematic of these backpointers in Fig. 3.27, aften#ar diagram in Gus-
field (1997). Some cells have multiple backpointers, beedlus minimum extension
could have come from multiple previous cells. In the secdap,sve perform dack-

trace. In a backtrace, we start from the last cell (at the final rod aolumn), and
follow the pointers back through the dynamic programmingdrima Each complete

path between the final cell and the initial cell is a minimurstaince alignment. Exer-
cise 3.13 asks you to modify the minimum edit distance atgorito store the pointers
and compute the backtrace to output an alignment.

nj 9 18| 19| 10| /= 11| ] 12 111 110 191 8
of 8 17| 18] 9|, 10| - 11 110 19 /81 <9
i 7 16| 7| 18| 19|10 19 /8 ~9| <10
t|| 6 15| /=16 /17| /=8| <19 /8 ~9| ~10|— 11
nj 5 14| /=15 /16| /=T 18] /=19 10| 11 10
el 4| 3| <4 -5 —6 7| 8| /9|10 19
t| 3| /14| /15 /16| /7] /18 ST 8] 9] 18
nj| 2| /13| /14| /15 /16| /17| /-8 7| 18] /7
i 1| 12| /13| /14| /=I5 /16| /17 /6 ~7] 8
#( 0O 1 2 3 4 5 6 7 8 9
# e X e c u t i o] n
Figure 3.27 When entering a value in each cell, we mark which of the 3 ri®ghg
cells we came from with up to three arrows. After the tableulsie compute aralign-
ment (minimum edit path) via dacktrace, starting at theB in the upper right corner
and following the arrows. The sequence of boldfaced digmmepresents one possiblé
minimum cost alignment between the two strings.
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There are various publicly available packages to computelistance, including
UNIX diff, and the NISTsclite  program (NIST, 2005); Minimum edit distance can
also be augmented in various ways. The Viterbi algorithmekample, is an extension
of minimum edit distance which uses probabilistic defimiS@f the operations. In this
case instead of computing the “minimum edit distance” betwsvo strings, we are
interested in the “maximum probabiliglignment” of one string with another. The
Viterbi algorithm is crucial in probabilistic tasks like spch recognition and part-of-
speech tagging.

3.12 HUMAN MORPHOLOGICALPROCESSING

FULL LISTING

MINIMUM
REDUNDANCY

PRIMED

In this section we briefly survey psycholinguistic studieshmw multi-morphemic
words are represented in the minds of speakers of Englishex@mple, consider the
word walk and its inflected formsvalks andwalked Are all three in the human lexi-
con? Or merelyalk along with-edand-s? How about the worlappyand its derived
formshappilyandhappines® We can imagine two ends of a theoretical spectrum of
representations. THell listing hypothesis proposes that all words of a language are
listed in the mental lexicon without any internal morphatag structure. On this view,
morphological structure is simply an epiphenomenon vaal, walks walked happy
andhappilyare all separately listed in the lexicon. This hypothesteidainly unten-
able for morphologically complex languages like Turkisheminimum redundancy
hypothesis suggests that only the constituent morphereespiresented in the lexicon,
and when processingalks (whether for reading, listening, or talking) we must asces
both morphemessalk and-s) and combine them.

Some of the earliest evidence that the human lexicon repiesd least some
morphological structure comes fraspeech errors also calledlips of the tongue In
conversational speech, speakers often mix up the ordeeafdinds or sounds:

if you breakit it'll drop

In slips of the tongue collected by Fromkin and Ratner (1298)Garrett (1975),
inflectional and derivational affixes can appear separéteiy their stems. The ability
of these affixes to be produced separately from their stergesig that the mental
lexicon contains some representation of morphologicatsire.

it's not only us who have screw loos@fer “screws loose”)
wordsof rule formation (for “rules of word formation”)
easy enoughlyfor “easily enough”)

More recent experimental evidence suggests that neiteduthlisting nor the
minimum redundancy hypotheses may be completely trueeddstit's possible that
some but not all morphological relationships are mentajyresented. Stanners et al.
(1979), for example, found that some derived formappinesshappily) are stored
separately from their stenhéppy, but that regularly inflected formgéuring) are
not distinct in the lexicon from their stempdur). They did this by using a repetition
priming experiment. In short, repetition priming takes aighage of the fact that a word
is recognized faster if it has been seen before (if frimmed). They found thatifting
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primedlift, andburnedprimedburn, but for exampleselectivedidn’t primeselect In a
more recent study, Marslen-Wilson et al. (1994) found spatkenderived words can
prime their stems, but only if the meaning of the derived figrolosely related to the
stem. For examplgovernmenprimesgovern butdepartmentioes not primelepart
Marslen-Wilson et al. (1994) represent a model compatilile their own findings as
follows:

-al —-ure -s
-ing

Figure 3.28 Marslen-Wilson et al. (1994) result: Derived words are didko their
stems only if semantically related.

In summary, these results suggest that morphology doesplalg in the human
lexicon, especially productive morphology like inflection

3.13 SUMMARY

This chapter introducethorphology, the arena of language processing dealing with
the subparts of words, and tfirite-state transducer, the computational device that is
important for morphology but will also play a role in many etltasks in later chapters.
We also introducedtemming, word and sentence tokenizationandspelling error
detection
Here’s a summary of the main points we covered about thess:ide
e Morphological parsing is the process of finding the constituendrphemesin
aword (e.g.cat +N +PL for catg.
e English mainly usegprefixes and suffixesto expressnflectional and deriva-
tional morphology.
e Englishinflectional morphology is relatively simple and includes person and
number agreementd) and tense markings€dand-ing).
e Englishderivational morphology is more complex and includes suffixes like
-ation, -ness-ableas well as prefixes likeo-andre-.
e Many constraints on the Englishorphotactics(allowable morpheme sequences)
can be represented by finite automata.
o Finite-state transducersare an extension of finite-state automata that can gen-
erate output symbols.
e Important operations for FSTs includemposition, projection, andintersec-
tion.
¢ Finite-state morphologyandtwo-level morphologyare applications of finite-
state transducers to morphological representation arsihggr
e Spelling rulescan be implemented as transducers.
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e There are automatic transducer-compilers that can proalti@asducer for any
simple rewrite rule.

e The lexicon and spelling rules can be combineatbgnposingandintersecting
various transducers.

e ThePorter algorithm is a simple and efficient way to dsiemming, stripping
off affixes. It is not as accurate as a transducer model tithides a lexicon,
but may be preferable for applications likdormation retrieval in which exact
morphological structure is not needed.

e Word tokenization can be done by simple regular expressions substitutions or
by transducers.

e Spelling error detection is normally done by finding words which are not in a
dictionary; an FST dictionary can be useful for this.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Despite the close mathematical similarity of finite-statasducers to finite-state au-
tomata, the two models grew out of somewhat different traiit Ch. 2 described how
the finite automaton grew out of Turing’s (1936) model of aitonic computation,
and McCulloch and Pitts finite-state-like models of the weurThe influence of the
Turing machine on the transducer was somewhat more indiredtman (1954) pro-
posed what was essentially a state-transition table to htbedehavior of sequential
circuits, based on the work of Shannon (1938) on an algebradtel of relay circuits.
Based on Turing and Shannon’s work, and unaware of Huffmaork, Moore (1956)
introduced the ternfinite automaton for a machine with a finite number of states
with an alphabet of input symbols and an alphabet of outpoib®fs. Mealy (1955)
extended and synthesized the work of Moore and Huffman.

The finite automata in Moore’s original paper, and the extenby Mealy dif-
fered in an important way. In a Mealy machine, the input/atigymbols are associated
with the transitions between states. In a Moore machinanihe/output symbols are
associated with the state. The two types of transducergjaieadent; any Moore ma-
chine can be converted into an equivalent Mealy machine medversa. Further early
work on finite-state transducers, sequential transduartsso on, was conducted by ?
(?), Schitzenberger (1977), ? (?).

Many early programs for morphological parsing usedadiix-stripping ap-
proach to parsing. For example Packard’s (1973) parsenitieat Greek iteratively
stripped prefixes and suffixes off the input word, making métthem, and then looked
up the remainder in a lexicon. It returned any root that wasgatible with the
stripped-off affixes. This approach is equivalent to bloétom-up method of parsing
that we will discuss in Ch. 12.

AMPLE (A Morphological Parser for Linguistic ExploratiofWeber and Mann,
1981; Weber et al., 1988; Hankamer and Black, 1991) is anetimty bottom-up mor-
phological parser. It contains a lexicon with all possihleface variants of each mor-
pheme (these are callalomorphs), together with constraints on their occurrence (for
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example in English theesallomorph of the plural morpheme can only occur after s,
X, Z, sh, or ch). The system finds every possible sequence igthames which match
the input and then filters out all the sequences which haiiedaionstraints.

An alternative approach to morphological parsing is cafjederate-and-testr
analysis-by-synthes&pproach. Hankamer’s (1986) keCi is a morphological pdoser
Turkish which is guided by a finite-state representation wfkigh morphemes. The
program begins with a morpheme that might match the left edfgbe word, and
applies every possible phonological rule to it, checkincha@sult against the input. If
one of the outputs succeeds, the program then follows tite-fatéte morphotactics to
the next morpheme and tries to continue matching the input.

The idea of modeling spelling rules as finite-state transediiis really based on
Johnson’s (1972) early idea that phonological rules (to iseudsed in Ch. 7) have
finite-state properties. Johnson’s insight unfortunatiédiynot attract the attention of
the community, and was independently discovered by Ronafdldt and Martin Kay,
first in an unpublished talk (Kaplan and Kay, 1981) and theallfriin print (Kaplan
and Kay, 1994) (see pad® for a discussion of multiple independent discoveries).
Kaplan and Kay’s work was followed up and most fully worked by Koskenniemi
(1983), who described finite-state morphological rulesFimmish. Karttunen (1983)
built a program called KIMMO based on Koskenniemi's modefmtworth (1990)
gives many details of two-level morphology and its applaatto English. Besides
Koskenniemi’s work on Finnish and that of Antworth (1990)Bmglish, two-level or
other finite-state models of morphology have been workedf@muimany languages,
such as Turkish (Oflazer, 1993) and Arabic (Beesley, 1996@ytds, Jr. et al. (1987)
bring up some computational complexity problems with tweel models, which are
responded to by Koskenniemi and Church (1988). Finallydeeawith further interest
in finite-state morphology should turn to the definitive tgf8eesley and Karttunen,
2003).

A number of practical implementations of sentence segnientevere available
by the 1990s. Summaries of sentence segmentation historyaious algorithms
can be found in Palmer (2000), Grefenstette (1999), and &ii{2003). Word seg-
mentation has been studied especially in Japanese andséhhile the max-match
algorithm we describe is very commonly used as a baselinghen a simple but ac-
curate algorithm is required, more recent algorithms relystochastic and machine
learning algorithms; see for example such algorithms as&@mt al. (1996), Xue and
Shen (2003), Tseng et al. (2005, inter alia).

Gusfield (1997) is an excellent book covering everythinggmuid want to know
about string distance, minimum edit distance, and so on.

Students interested in further details of the fundamenthematics of au-
tomata theory should see Hopcroft and Uliman (1979) or Lewnid Papadimitriou
(1988). Roche and Schabes (1997) is the definitive matheahatiroduction to finite-
state transducers for language applications, and togeitteMohri (1997) and Mohri
(2000) give many useful algorithms such as those for trazedminimization and de-
terminization.

Sproat (1993) gives a broad general introduction to contijpuia morphology.
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EXERCISES

3.1 Add some adjectives to the adjective FSA in F§.

3.2 Give examples of each of the noun and verb classes in FigaBdbfind some
exceptions to the rules.

3.3 Extend the transducer in Fig. 3.17 to deal wdthandch.
3.4 Write a transducer(s) for the K insertion spelling rule irgksh.
3.5 Write a transducer(s) for the consonant doubling spellidg in English.

3.6 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1878 method com-
monly used in libraries and older Census records for reptagepeople’s names. It
has the advantage that versions of the names that are gligistspelled or otherwise
modified (common, for example, in hand-written census @owill still have the
same representation as correctly-spelled names. (eratsky, Jarofsky, Jarovsky, and
Jarovski all map to J612).

a. Keep the first letter of the name, and drop all occurrencespfinitial a, e, h, i,
o,Uu,w,y
b. Replace the remaining letters with the following numbers:

b, f, p,v— 1
C,0,,kaq,s x,2-2
dt—3
| — 4
m,n—5
r—6
c. Replace any sequences of identical numbers , only if theyel&om two or
more letters that weradjacentin the original name, with a single number (i.e.,
666— 6).
d. Convertto the fornietter Digit Digit Digit by dropping digits past
the third (if necessary) or padding with trailing zeros @cessary).

The exercise: write a FST to implement the Soundex algotithm
3.7 Implement one of the steps of the Porter Stemmer as a tramsduc

3.8 Write the algorithm for parsing a finite-state transducsing the pseudo-code in-
troduced in Chapter 2. You should do this by modifying th@&atlhm ND-RECOGNIZE
in Fig. ??in Chapter 2.

3.9 Write a program that takes a word and, using an on-line diatig computes
possible anagrams of the word, each of which is a legal word.
3.10 InFig. 3.17, why is there a, s, xarc fromgs to g1?

3.11 Computing minimum edit distances by hand, figure out whedniee is closer
to brief or todivers and what the edit distance is. You may use any versiatisthnce
that you like.
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3.12 Now implementa minimum edit distance algorithm and use yamd-computed
results to check your code.

3.13 Augment the minimum edit distance algorithm to output agratient; you will
need to store pointers and add a stage to compute the bazktrac
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