
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H.
Martin. Copyright c© 2006, All rights reserved. Draft of August 19, 2006. Do
not cite without permission.

10
COMPUTATIONAL
PHONOLOGY

Recall from Ch. 7 thatphonology is the area of linguistics that describes the sys-
tematic way that sounds are differently realized in different environments, and how
this system of sounds is related to the rest of the grammar. This chapter introduces
computational phonology, the use of computational models in phonological the-COMPUTATIONAL

PHONOLOGY

ory.
One focus of computational phonology is on computational models of phono-

logical representation, and on how to use phonological models to map from surface
phonological forms to underlying phonological representation. Models in (non-
computational) phonological theory are generative; the goal of the model is to
represent how an underlying form can generate a surface phonological form. In
computation, we are generally more interested in the alternative problem ofphono-
logical parsing; going from surface form to underlying structure. One majortool
for this task is the finite-state automaton, which is employed in two families of
models:finite-state phonologyandoptimality theory .

A related kind of phonological parsing task issyllabification: the task of
assigning syllable structure to sequences of phones. Besides its theoretical interest,
syllabification turns out to be a useful practical tool in aspects of speech synthesis
such as pronunciation dictionary design. We therefore summarize a few practical
algorithms for syllabification.

Finally, we spend the remainder of the chapter on the key problem of how
phonological and morphological representations can be learned.

10.1 FINITE-STATE PHONOLOGY

Ch. 3 showed that spelling rules can be implemented by transducers. Phonological
rules can be implemented as transducers in the same way; indeed the original work
by Johnson (1972) and Kaplan and Kay (1981) on finite-state models was based
on phonological rules rather than spelling rules. There area number of different

DRAFT

2 Chapter 10. Computational Phonology

models ofcomputational phonology that use finite automata in various ways to
realize phonological rules. We will describe thetwo-level morphologyof Kosken-
niemi (1983) first mentioned in Ch. 3. Let’s begin with the intuition, by seeing the
transducer in Fig. 10.1 which models the simplified flapping rule in (10.1):

/t/→ [dx] / V́ V(10.1)

210

3other

other

V:@

V:@

V:@

V:@

t:dx

t

t

t

V:@

V:@
other

Figure 10.1 Transducer for English Flapping: ARPAbet “dx” indicates a flap, and
the “other” symbol means “any feasible pair not used elsewhere in the transducer”.
“@” means “any symbol not used elsewhere on any arc”.

The transducer in Fig. 10.1 accepts any string in which flaps occur in the
correct places (after a stressed vowel, before an unstressed vowel), and rejects
strings in which flapping doesn’t occur, or in which flapping occurs in the wrong
environment.1

We’ve seen both transducers and rules before; the intuitionof two-level mor-
phology is to augment the rule notation to correspond more naturally to transduc-
ers. We motivate his idea by beginning with the notion ofrule ordering . In a tra-
ditional phonological system, many different phonological rules apply between the
lexical form and the surface form. Sometimes these rules interact; the output from
one rule affects the input to another rule. One way to implement rule-interaction in
a transducer system is to run transducers in acascade. Consider, for example, the
rules that are needed to deal with the phonological behaviorof the English noun
plural suffix-s. This suffix is pronounced [ix z] after the phones [s], [sh], [z], [zh],
[ch], or [jh] (so peachesis pronounced [p iy ch ix z], andfaxesis pronounced [f
ae k s ix z]), [z] after voiced sounds (pigs is pronounced [p ih g z]), and [s] after
unvoiced sounds (cats is pronounced [k ae t s]). We model this variation by writ-
ing phonological rules for the realization of the morpheme in different contexts.

1 For pedagogical purposes, this example assumes (incorrectly) that the factors that influence flap-
ping are purely phonetic and are non-stochastic.

DRAFT

Section 10.1. Finite-State Phonology 3

We first need to choose one of these three forms ([s], [z], [ix z]) as the “lexical”
pronunciation of the suffix; we chose [z] only because it turns out to simplify rule
writing. Next we write two phonological rules. One, similarto the E-insertion
spelling rule of page??, inserts an [ix] after a morpheme-final sibilant and before
the plural morpheme [z]. The other makes sure that the-ssuffix is properly realized
as [s] after unvoiced consonants.

ε → ix / [+sibilant] ˆ z #(10.2)

z → s / [-voice] ˆ #(10.3)

These two rules must beordered; rule (10.2) must apply before (10.3). This
is because the environment of (10.2) includes�, and the rule (10.3) changes�.
Consider running both rules on the lexical formfox concatenated with the plural
-s:

Lexical form: f aa k ˆ z
(10.2) applies: f aa k s ˆ ix z
(10.3) doesn’t apply:f aa k sˆ ix z

If the devoicing rule (10.3) was ordered first, we would get the wrong result.
This situation, in which one rule destroys the environment for another, is called
bleeding:2

Lexical form: f aa k s ˆ z
(10.3) applies: f aa k s ˆ s
(10.2) doesn’t apply:f aa k s ˆ s

As was suggested in Ch. 3, each of these rules can be represented by a trans-
ducer. Since the rules are ordered, the transducers would also need to be ordered.
For example if they are placed in acascade, the output of the first transducer would
feed the input of the second transducer.

Many rules can be cascaded together this way. As Ch. 3 discussed, running a
cascade, particularly one with many levels, can be unwieldy, and so transducer cas-
cades are usually replaced with a single more complex transducer bycomposing
the individual transducers.

Koskenniemi’s method oftwo-level morphology that was sketchily intro-
duced in Ch. 3 is another way to solve the problem of rule ordering. Koskenniemi
(1983) observed that most phonological rules in a grammar are independent of one
another; that feeding and bleeding relations between rulesare not the norm.3 Since

2 If we had chosen to represent the lexical pronunciation of-s as [s] rather than [z], we would have
written the rule inversely to voice the-s after voiced sounds, but the rules would still need to be
ordered; the ordering would simply flip.
3 Feeding is a situation in which one rule creates the environment for another rule and so must be
run beforehand.

DRAFT

4 Chapter 10. Computational Phonology

this is the case, Koskenniemi proposed that phonological rules be run in parallel
rather than in series. The cases where there is rule interaction (feeding or bleed-
ing) we deal with by slightly modifying some rules. Koskenniemi’s two-level rules
can be thought of as a way of expressingdeclarative constraints on the well-
formedness of the lexical-surface mapping.

Two-level rules also differ from traditional phonologicalrules by explicitly
coding when they are obligatory or optional, by using four differing rule opera-
tors; the⇔ rule corresponds to traditionalobligatory phonological rules, while
the⇒ rule implementsoptional rules:

Rule type Interpretation
a:b⇐ c d a is always realized asb in the contextc d
a:b⇒ c d a may be realized asb only in the contextc d
a:b⇔ c d a must be realized asb in contextc d and nowhere else
a:b /⇐ c d a is never realized asb in the contextc d

The most important intuition of the two-level rules, and themechanism that
lets them avoid feeding and bleeding, is their ability to represent constraints on
two levels. This is based on the use of the colon (“:”), which was touchedon very
briefly in Ch. 3. The symbola:b means a lexicala that maps to a surfaceb. Thus
a:b⇔ :c meansa is realized asb after asurfacec. By contrasta:b⇔ c:
means thata is realized asb after alexical c. As discussed in Ch. 3, the symbolc
with no colon is equivalent toc:c that means a lexicalc which maps to a surfacec.

Fig. 10.2 shows an intuition for how the two-level approach avoids ordering
for the ix-insertion and z-devoicing rules. The idea is thatthe z-devoicing rule
maps alexical z-insertion to asurfaces and the ix rule refers to thelexical z.

[+sib] z

s

^ lexical level

surface levelix

[−voice]

Figure 10.2 The constraints for the
�
-insertion and�-devoicing rules both refer to

a lexical z, not asurfaces.

The two-level rules that model this constraint are shown in (10.4) and (10.5):

ε : ix ⇔ [+sibilant]: ˆ z: #(10.4)

z : s ⇔ [-voice]: ˆ #(10.5)

As Ch. 3 discussed, there are compilation algorithms for creating automata
from rules. Kaplan and Kay (1994) give the general derivation of these algorithms,

DRAFT

Section 10.1. Finite-State Phonology 5

and Antworth (1990) gives one that is specific to two-level rules. The automata
corresponding to the two rules are shown in Fig. 10.3 and Fig.10.4. Fig. 10.3 is
based on Figure 3.14 of Ch. 3; see page 78 for a reminder of how this automaton
works. Note in Fig. 10.3 that the plural morpheme is represented by z:, indicating
that the constraint is expressed about a lexical rather thansurface z.

0 2 3 41
ε^: ε

5other
#

##, other

#, other

^: ε

ε other^:

[+sib]

[+sib]
[+sib]

:ix z:
z:

s, sh

Figure 10.3 The transducer for the ix-insertion rule 10.2. The rule can be read
whenever a morpheme ends in a sibilant, and the following morpheme isz, insert
[ix].

0 2 31
^: ε

##, other

z, sh#, other

:[−vce]

:[−vce]
ε^:

z:

otherz, #,

Figure 10.4 The transducer for the z-devoicing rule 10.3. This rule might be sum-
marizedDevoice the morpheme z if it follows a morpheme-final voiceless consonant.

Fig. 10.5 shows the two automata run in parallel on the input [f aa k s ˆ
z]. Note that both the automata assumes the default mapping ˆ:ε to remove the
morpheme boundary, and that both automata end in an accepting state.

DRAFT

6 Chapter 10. Computational Phonology

Surface f

fIntermediate

0

00

00

aa k

aa k

0

^ #

0

04

0

s z

s ix z

0 2 3

1 1 1 2 0z−devoicing

ix−insertion

Figure 10.5 The transducer for the ix-insertion rule 10.2 and the z-devoicing rule
10.3 run in parallel.

10.2 ADVANCED FINITE-STATE PHONOLOGY

10.2.1 Harmony

Finite-state models of phonology have also been applied to more sophisticated
phonological and morphological phenomena. Let’s considera finite-state model
of a well-known complex interaction of three phonological rules in the Yawelmani
dialect of Yokuts, a Native American language spoken in California.4

First, Yokuts (like many other languages including for example Turkish and
Hungarian) hasvowel harmony. Vowel harmony is a process in which a vowelVOWEL HARMONY

changes its form to look like a neighboring vowel. In Yokuts,a suffix vowel
changes its form to agree in backness and roundness with the preceding stem
vowel. That is, a front vowel like��� will appear as a back vowel��� if the stem
vowel is ���. This Harmony rule applies if the suffix and stem vowels are of the
same height (e.g.,��� and��� both high,��� and��� both low): 5

High Stem Low Stem
Lexical Surface Gloss Lexical Surface Gloss

Harmony ��	
��
 → ��	��
 “tangles” 	�� �
�� → 	�� ��� “might eat”
No Harmony ���
��
 → ���� �
 “leads by the hand”��� �
�� → ��� ��� “might find”

The second relevant rule,Lowering, causes long high vowels to become low;
�� �� becomes�� �� and���� becomes�� ��, while the third rule,Shortening, shortens
long vowels in closed syllables:

4 These rules were first drawn up in the traditional Chomsky andHalle (1968) format by Kisseberth
(1969) following the field work of Newman (1944).
5 Examples from Cole and Kisseberth (1995). Some parts of system such as vowel underspecifica-
tion have been removed for pedagogical simplification (Archangeli, 1984).

DRAFT

Section 10.2. Advanced Finite-State Phonology 7

Lowering Shortening�� �� �
�� → �� �� ��� “steal, passive aorist” ����
��
 → �����
� � �� �
�� → ���� �
�� “swallow, passive aorist”���� ��
��
 → �������

The three Yokuts rules must be ordered, just as the ix-insertion and z-devoicing

rules had to be ordered. Harmony must be ordered before Lowering because the
�� �� in the lexical form��� �� �	 ��� causes the��� to become��� before it lowers in
the surface form��� �� ����. Lowering must be ordered before Shortening because
the �� �� in �
��� ��	
 �� � lowers to ���; if it was ordered after shortening it would
appear on the surface as���.

The Yokuts data can be modeled either as a cascade of three rules in series,
or in the two-level formalism as three rules in parallel; Fig. 10.6 shows the two
architectures (Goldsmith, 1993; Lakoff, 1993; Karttunen,1998). Just as in the
two-level examples presented earlier, the rules work by referring sometimes to
the lexical context, sometimes to the surface context; writing the rules is left as
Exercise 10.4 for the reader.

Lexical

t

? u: t + h i n

Rounding

Lowering

Shortening

Surface

Rounding Lowering Shortening

? t

? u: t + h i n

? o h u n o h u n

a) Cascade of rules. b) Parallel two−level rules.

Figure 10.6 Combining the rounding, lowering, and shortening rules forYawel-
mani Yokuts.

10.2.2 Templatic Morphology

Finite-state models of phonology/morphology have also been proposed for the tem-
platic (non-concatenative) morphology (discussed on page??) common in Semitic
languages like Arabic, Hebrew, and Syriac. McCarthy (1981)proposed that this
kind of morphology could be modeled by using different levels of representation
that Goldsmith (1976) had calledtiers. Kay (1987) proposed a computationalTIERS

model of these tiers via a special transducer which reads four tapes instead of two,
as in Fig. 10.7.

The tricky part here is designing a machine which aligns the various strings
on the tapes in the correct way; Kay proposed that the binyan tape could act as
a sort of guide for alignment. Kay’s intuition has led to a number of more fully

DRAFT

8 Chapter 10. Computational Phonology

lexical tape

consonantal root tape

binyan tape

vocalic morph. tape

k

a k t a ib b

t b

V C C V C V C

a i

Figure 10.7 A finite-state model of templatic (“non-concatenative”) morphology.
Modified from Kay (1987) and Sproat (1993).

worked out finite-state models of Semitic morphology such asBeesley’s (1996)
model for Arabic and Kiraz’s (1997) model for Syriac.

Kornai (1991) and Bird and Ellison (1994) show how one-tape automata (i.e.
finite-state automata rather than four-tape or even two-tape transducers) could be
used to model templatic morphology and other kinds of phenomena that are han-
dled with the tier-basedautosegmentalrepresentations of Goldsmith (1976).AUTOSEGMENTAL

10.3 COMPUTATIONAL OPTIMALITY THEORY

In a traditional phonological derivation, we are given an underlying lexical form
and a surface form. The phonological system then consists ofa sequence of rules
which map the underlying form to the surface form.Optimality Theory (OT)OPTIMALITY THEORY

OT (Prince and Smolensky, 1993) offers an alternative way of viewing phonological
derivation, based on the metaphor of filtering rather then transforming. An OT
model includes two functions (GEN and EVAL) and a set of ranked violable con-
straints (CON). Given an underlying form, the GEN function produces all imag-
inable surface forms, even those which couldn’t possibly bea legal surface form
for the input. The EVAL function then applies each constraint in CON to these
surface forms in order of constraint rank. The surface form which best meets the
constraints is chosen.

Let’s briefly introduce OT, using some Yawlemani data, and then turn to the
computational ramifications.6 In addition to the interesting vowel harmony phe-
nomena discussed above, Yawelmani has phonotactic constraints that rules out se-

6 The following explication of OT via the Yawelmani example draws heavily from Archangeli
(1997) and a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute.

DRAFT

Section 10.3. Computational Optimality Theory 9

quences of consonants; three consonants in a row (CCC) are not allowed to occur in
a surface word. Sometimes, however, a word contains two consecutive morphemes
such that the first one ends in two consonants and the second one starts with one
consonant (or vice versa). What does the language do to solvethis problem? It
turns out that Yawelmani either deletes one of the consonants or inserts a vowel in
between.

If a stem ends in a C, and its suffix starts with CC, the first C of the suffix is
deleted (“+” here means a morpheme boundary):

C-deletion: C→ ε / C + C(10.6)

For example, simplifying somewhat, the CCVC “passive consequent adjunctive”
morpheme
�� �� drops the initial C if the previous morpheme ends in a consonant.
Thus after� ��� � “guard”, we would get the form� ��� ���� ����� , “guard - passive
consequent adjunctive - locative”.

If a stem ends in CC and the suffix starts with C, the language instead inserts
a vowel to break up the first two consonants:

V-insertion: ε → V / C C +C(10.7)

For example in� is inserted into the root���� � “sing” when it is followed by the
C-initial suffix �
 ��, “past”, producing����� �
 ��, “sang”, but not when followed by
a V-initial suffix like ���, “future” in ������ “will sing”.

Kisseberth (1970) proposed that these two rules have the same function:
avoiding three consonants in a row. Let’s restate this in terms of syllable struc-
ture. It happens that Yawelmani syllables can only be of the form CVC or CV;
complex onsets or complex codas i.e., with multiple consonants, aren’t allowed.
Since CVCC syllables aren’t allowed on the surface, CVCC roots must beresyl-
labified when they appear on the surface. From the point of view of syllabification,RESYLLABIFIED

then, these insertions and deletions all happen so as to allow Yawelmani words to
be properly syllabified. Here’s examples of resyllabifications with no change, with
an insertion, and with a deletion:

underlying surface gloss
morphemes syllabification
���� ��� ��� ���� “will sing”
���� �
 �� �� ���� �
 �� “sang”
� �����
� ����� � � ��� � ��� � ���� “guard - pass. cons. adjunct. - locative”

The intuition of Optimality Theory is to try to directly represent these kind of
constraints on syllable structure directly, rather than using idiosyncratic insertion
and deletion rules. One such constraint, *COMPLEX, says “No complex onsets or
codas”. Another class of constraints requires the surface form to be identical to
(faithful to) the underlying form. Thus FAITH V says “Don’t delete or insert vow-
els” and FAITH C says “Don’t delete or insert consonants”. Given an underlying

DRAFT

10 Chapter 10. Computational Phonology

form, the GEN function produces all possible surface forms (i.e., every possible
insertion and deletion of segments with every possible syllabification) and they are
ranked by the EVAL function using these (violable) constraints. The idea is that
while in general insertion and deletion are dispreferred, in some languages and sit-
uations they are preferred over violating other constraints, such as those of syllable
structure. Fig. 10.8 shows the architecture.

/?ilk−hin/

[?i.lik.hin]

?ilk.hin ?i.lik.hin?il.khin ?il.hin ?ak.pid

GEN

EVAL (*COMPLEX, FAITHC, FAITHV)

Figure 10.8 The architecture of a derivation in Optimality Theory (after
Archangeli (1997)).

The EVAL function works by applying each constraint in ranked order; the
optimal candidate is one which either violates no constraints, or violates less of
them than all the other candidates. This evaluation is usually shown on atableauTABLEAU

(plural tableaux). The top left-hand cell shows the input, the constraints are listed
in order of rank across the top row, and the possible outputs along the left-most
column.7 If a form violates a constraint, the relevant cell contains* ; a *! indicates*

*! the fatal violation which causes a candidate to be eliminated. Cells for constraints
which are irrelevant (since a higher-level constraint is already violated) are shaded.

/���� �
 ��/ *COMPLEX FAITH C FAITH V

���� �
 �� *!
��� ��
 �� *!
��� �
 �� *!

☞ �� ���� �
 �� *
��� �� �� *!

7 Although there are an infinite number of candidates, it is traditional to show only the ones which
are ‘close’; in the tableau below we have shown the output��� ���� just to make it clear that even
very different surface forms are to be included.

DRAFT

Section 10.3. Computational Optimality Theory 11

One appeal of Optimality Theoretic derivations is that the constraints are
presumed to be cross-linguistic generalizations. That is all languages are presumed
to have some version of faithfulness, some preference for simple syllables, and so
on. Languages differ in how they rank the constraints; thus English, presumably,
ranks FAITH C higher than *COMPLEX. (How do we know this?)

10.3.1 Finite-State Transducer Models of Optimality Theory

Now that we’ve sketched the linguistic motivations for Optimality Theory, let’s
turn to the computational implications. We’ll explore two:implementation of OT
via finite-state models, and stochastic versions of OT.

Can a derivation in Optimality Theory be implemented by finite-state trans-
ducers? Frank and Satta (1998), following the foundationalwork of Ellison (1994),
showed that (1) if GEN is a regular relation (for example assuming the input doesn’t
contain context-free trees of some sort), and (2) if the number of allowed violations
of any constraint has some finite bound, then an OT derivationcan be computed
by finite-state means. This second constraint is relevant because of a property of
OT that we haven’t mentioned: if two candidates violate exactly the same number
of constraints, the winning candidate is the one which has the smallest number of
violations of the relevant constraint.

One way to implement OT as a finite-state system was worked outby Kart-
tunen (1998), following the above-mentioned work and that of Hammond (1997).
In Karttunen’s model, GEN is implemented as a finite-state transducer which is
given an underlying form and produces a set of candidate forms. For example for
the syllabification example above, GEN would generate all strings that are variants
of the input with consonant deletions or vowel insertions, and their syllabifications.

Each constraint is implemented as a filter transducer that lets pass only strings
which meet the constraint. For legal strings, the transducer thus acts as the identity
mapping. For example, *COMPLEX would be implemented via a transducer that
mapped any input string to itself, unless the input string had two consonants in the
onset or coda, in which case it would be mapped to null.

The constraints can then be placed in a cascade, in which higher-ranked con-
straints are simply run first, as suggested in Fig. 10.9.

There is one crucial flaw with the cascade model in Fig. 10.9. Recall that
the constraints-transducers filter out any candidate whichviolates a constraint. But
in many derivations, include the proper derivation of�� ���� �
 ��, even the optimal
form still violates a constraint. The cascade in Fig. 10.8 would incorrectly fil-
ter it out, leaving no surface form at all! Frank and Satta (1998) and Hammond
(1997) both point out that it is essential to only enforce a constraint if it does not
reduce the candidate set to zero. Karttunen (1998) formalizes this intuition with

DRAFT

12 Chapter 10. Computational Phonology

GEN

*COMPLEX

FAITHC

FAITHV

Figure 10.9 Version #1 (“merciless cascade”) of Karttunen’s finite-state cascade
implementation of OT.

the lenient compositionoperator. Lenient composition is a combination of reg-LENIENT
COMPOSITION

ular composition and an operation calledpriority union . The basic idea is that
if any candidates meet the constraint these candidates willbe passed through the
filter as usual. If no output meets the constraint, lenient composition retainsall of
the candidates. Fig. 10.10 shows the general idea; the interested reader should see
Karttunen (1998) for the details. Also see Tesar (1995, 1996), Fosler (1996), and
Eisner (1997) for discussions of other computational issues in OT.

GEN

*COMPLEX

FAITHC

FAITHV

/?ilk−hin/

[?i.lik.hin]

?ilk.hin ?i.lik.hin?il.khin ?il.hin ?ak.pid

GEN

*COMPLEX

?i.lik.hin
FAITHC

?i.lik.hin?il.hin ?ak.pid

FAITHV

L

L

L

Figure 10.10 Version #2 (“lenient cascade”) of Karttunen’s finite-statecascade
implementation of OT, showing a visualization of the candidate populations that
would be passed through each FST constraint.

10.3.2 Stochastic Models of Optimality Theory

Classic OT was not designed to handle variation of the kind wesaw in Sec.??,
since it assigns a single most-harmonic output for each input. Dealing with vari-
ation requires a more dynamic concept of constraint ranking. We mentioned in
that section the variationist model in sociolinguistics, in which logistic regression
is used to combine phonetic, contextual, and social factorsto predict a probability
of a particular phonetic variant. Part of this variationistintuition can be absorbed

DRAFT

Section 10.3. Computational Optimality Theory 13

into an Optimality Theory framework through probabilisticaugmentations.
One such augmentation isStochastic OT(?). In Stochastic OT, instead ofSTOCHASTIC OT

the constraints being rank-ordered, each constraint is associated with a value on
a continuous scale. The continuous scale offers one thing a ranking cannot: the
relative importance or weight of two constraints can be proportional to the distance
between them. Fig. 10.11 shows a sketch of such a continuous scale.

Figure 10.11 Continuous scale in Stochastic OT. After (Boersma and Hayes,
2001).

How can the distance between constraints play a role in evaluation? Stochas-
tic OT makes a further assumption about the values of constraints. Instead of each
constraint having a fixed value as shown in Fig. 10.11. it has aGaussian distribu-
tion of values centered on a fixed value, as shown in Fig. 10.12. At evaluation time,
a value for the constraint is drawn (aselection point) with a probability defined by
the mean and variance of the Gaussian associated with each constraint.

Figure 10.12 Three constraints in Stochastic OT which are strictly ranked; thus
non-stochastic OT is a special case of Stochastic OT. After (Boersma and Hayes,
2001).

If the distribution for two constraints is far enough apart,as shown in Fig. 10.12
there will be little or no probability of the lower ranked constraint outranking the
higher-ranked one. Thus Stochastic OT includes non-stochastic OT as a special
case.

The interesting cases arise when two constraints in Stochastic OT overlap
in their distribution, when there is some probability that alower-ranked constraint

DRAFT

14 Chapter 10. Computational Phonology

Figure 10.13 Three constraints in Stochastic OT in whichC3 will sometimes out-
rankC2. . After (Boersma and Hayes, 2001).

will override a higher-ranked constraint. In Fig. 10.13, for example, constraintC2

will generally outrankC3 but occasionally outrankC2. This allows Stochastic OT
to model variation, since for the same underlying form differing selection points
can cause different surface variants to be most highly ranked.

In addition to the advantage of modeling variation, Stochastic OT differs from
non-stochastic OT in having a stochastic learning theory, which we will return to
in Sec. 10.6.3.

We can see stochastic OT itself as a special case of the general linear models
of Ch. 6.

10.4 HARMONIC GRAMAMR

computational models of harmonic grammar

10.5 SYLLABIFICATION

Syllabification, the task of segmenting a sequence of phones into syllables,is im-SYLLABIFICATION

portant in a variety of speech applications. In speech synthesis, syllables are im-
portant in predicting prosodic factors like accent; the realization of a phone is also
dependent on its position in the syllable (onset [l] is pronounced differently than
coda [l]). In speech recognition syllabification has been used to build recognizers
which represent pronunciations in terms of syllables rather than phones. Syllab-
ification can help find errors in pronunciation dictionaries, by finding words that
can’t be syllabified, and can help annotate corpora with syllable boundaries for cor-
pus linguistics research. Syllabification also plays an important role in theoretical
generative phonology.

One reason syllabification is a difficult computational taskis that there is no

DRAFT

Section 10.5. Syllabification 15

completely agreed-upon definition of syllable boundaries.Different on-line syllab-
ified dictionaries (such as the CMU and the CELEX lexicons) sometimes choose
different syllabifications. Indeed, as Ladefoged (1993) points out, sometimes it
isn’t even clear how many syllables a word has; some words (meal, teal, seal, hire,
fire, hour) can be viewed either as having one syllable or two.

Like much work in speech and language processing, syllabifiers can be based
on hand-written rules, or on machine learning from hand-labeled training sets.
What kinds of knowledge can we use in designing either kind ofsyllabifier? One
possible constraint is theMaximum Onset principle, which says that when a seriesMAXIMUM ONSET

of consonants occur word-medially before a vowel (VCCV), asmany as possible
(given the other constraints of the language) should be syllabified into the onset of
the second syllable rather than the coda of the first syllable. Thus the Maximum
Onset principle favors the syllabification V.CCV over the syllabifications VC.CV
or VCC.V.

Another principle is to use thesonority of a sound, which is a measure ofSONORITY

how perceptually salient, loud or vowel-like it is. There are various attempts to
define asonority hierarchy; in general, all things being equal, vowels are moreSONORITY

HIERARCHY

sonorous than glides (w, y), which are more sonorous than liquids (l, r), followed
by nasals (n, m, ng), fricatives (z, s, sh, zh, v, f th, dh), andstops. The sonority con-
straint on syllable structure says that the nucleus of the syllable must be the most
sonorous phone in a sequence (thesonority peak), and that sonority decreases
monotonically out from the nucleus (toward the coda and toward the onset). Thus
in a syllable C1C2VC3C4, the nucleusV will be the most sonorous element, con-
sonantC2 will be more sonorous thanC1 and consonantC3 will be more sonorant
than consonantC4.

Goldwater and Johnson (2005) implement a simple rule-basedlanguage-
independent classifier based only on maximum onset and sonority sequencing.
Given a cluster of consonants between two syllable nuclei, sonority constrains the
syllable boundary to be either just before or just after the consonant with the lowest
sonority. Combining sonority with maximum onset, their parser predicts a syllable
boundary just before the consonant with the lowest sonority. They show that this
simple syllabifier correctly syllabifies 86-87% of multisyllabic words in English
and German.

While this error rate is not unreasonable, and there is further linguistic and
some psychological evidence that these principles play a role in syllable struc-
ture, both Maximum Onset and sonority sequencing seem to have exceptions. For
example in the English syllable-initial clusters /sp st sk/in words likespell, the
less sonorous /p/ occurs between the more sonorous /s/ and the vowel, violating
sonority sequencing (Blevins, 1995). Without some way to rule out onset clusters
that are disallowed language-specifically like /kn/ in English, the combination of

DRAFT

16 Chapter 10. Computational Phonology

sonority sequencing plus maximum onset incorrectly predicts the syllabification of
words likeweaknessto bewea.knessrather thanweak.ness. Furthermore, other
constraints seem to be important, including whether a syllable is stressed (stressed
syllables tend to have more complex codas), the presence or absence of morpho-
logical boundaries, and even the spelling of the word (Titone and Connine, 1997;
Treiman et al., 2002).

Achieving higher performance thus requires the use of thesesorts of language-
specific knowledge. The most commonly used rule-based syllabifier is based on the
dissertation of Kahn (1976), available in an implementation by Fisher (1996), The
Kahn algorithm makes use of language-specific information in the form of lists of
allowable English initial initial clusters, allowable English final clusters, and ’uni-
versally bad’ clusters. The algorithm takes strings of phones, together with other
information like word boundaries and stress if they are available, and assigns sylla-
ble boundaries between the phones. Syllables are built up incrementally based on
three rules, as sketched out in Fig. 10.14. Rule 1 forms nuclei at each syllabic seg-
ment, Rule 2a attaches onset consonants to the nucleus, and Rule 2b attaches coda
consonants.8 Rule 2a and 2b make use of lists of legal onset consonant sequences
(including e.g. [b], [b l], [b r], [b y], [ch], [d], [d r], [d w], [d y], [dh], [f], [f l], [f
r], [f y], [g], [g l], [g r], [g w], etc). and legal coda clusters. There are a very large
number of coda consonant clusters in English; some of the longer (4-consonant)
clusters include:

k s t s l f th s m f s t n d th s n k s t r k t s r p t s
k s th s l k t s m p f t n t s t n k t s r l d z r s t s

l t s t m p s t n t th s n k th s r m p th r t s t

The algorithm also takes a parameter indicating how fast or casual the speech
is; the faster or more informal the speech, the more resyllabification happens, based
on further rules we haven’t shown.

m i s i s i p i

S S S S

C1 ... Cn V −→C1 ... Ci Ci+1 ... Cn V

S S

V C1 ... Cn−→ V C1 ... Cj Cj+1 ... Cn

S S

Rule 1: Form Nuclei:
link S with each [+syl-
labic] segment

Rule 2a: Add Onsets: where
Ci+1...Cn is a permissible initial
cluster but CiCi+1...Cn is not

Rule 2b: Add Codas: where
C1...Cj is a permissible coda
cluster but C1...CjCj +1 is not

Figure 10.14 First three syllabification rules of Kahn (1976). Rule 2b maynot apply across word
boundaries.

8 Note that the fact that Rule 2a precedes Rule 2b can be seen as an implementation of Maximum
Onset.

DRAFT

Section 10.5. Syllabification 17

Instead of hand-written rules, we can apply a machine learning approach,
using a hand-syllabified dictionary as a supervised training set. For example the
CELEX syllabified lexicon discussed in Sec.?? is often used this way, select-
ing some words as a training set, and reserving others as a dev-test and test set.
Statistical classifiers can be used to predict syllabifications, including decision
trees (Van den Bosch, 1997), weighted finite-state transducers (Kiraz and Möbius,
1998), and probabilistic context-free grammars (Seneff etal., 1996; Müller, 2002,
2001; Goldwater and Johnson, 2005).

For example the Kiraz and Möbius (1998) algorithm is a weighted finite-state
transducer which inserts a syllable boundary in a sequence of phones (akin to the
morpheme-boundaries we saw in Ch. 3). Aweighted FST(Pereira et al., 1994) isWEIGHTED FST

a simple augmentation of the finite transducer in which each arc is associated with
a probability as well as a pair of symbols. The probability indicates how likely that
path is to be taken; the probability on all the arcs leaving a node must sum to 1.

The syllabification automaton of Kiraz and Möbius (1998) iscomposed of
three separate weighted transducers, one for onsets, one for nuclei, and one for co-
das, concatenated together into an FST that inserts a syllable marker after the end
of the coda. Kiraz and Möbius (1998) compute path weights from frequencies in
the training set; each path (for example the nucleus [iy]) offrequencyf is assigned
a weight of 1/ f . Another way to convert frequencies to costs is to use log proba-
bilities. Fig. 10.15 shows a sample automaton, simplified from Kiraz and Möbius
(1998). We have shown the weights only for some of the nuclei.The arcs for each
possible onset, nucleus, and coda, are drawn from a language-dependent list like
the one used in the Kahn algorithm above.

Figure 10.15 Syllabifier automaton, showing onset (o), coda (c), and nucleus arcs.
Costs on each arc shown only for some sample nucleus arcs. Thesyllable boundary
marker ‘-’ is inserted after every non-final syllable. eps stands forε. Simplified from
Kiraz and Möbius (1998).

DRAFT

18 Chapter 10. Computational Phonology

The automaton shown in Fig. 10.15 can be used to map from an input se-
quence like the phonetic representation ofweakness[w iy k n eh s] into an output
sequence that includes the syllabification marker like “-”:[w iy k - n eh s]. If
there are multiple possible legal syllabifications of a word, the Viterbi algorithm
is used to choose the most likely path through the FST, and hence the most prob-
able segmentation. For example, the German wordFenster, “window”, has three
possible syllabifications: [���
���] <74>, [��� �
��] <75>, and [���
���] <87>
(with costs shown in angle brackets). Their syllabifier correctly chooses the lowest
cost syllabification���
���, based on the frequencies of onsets and codas from the
training set. Note that since morphological boundaries also are important for syl-
labification, the Kiraz and Möbius (1998) syllabification transducer can be placed
after a morphological parsing transducer, so that syllabification can be influenced
by morphological structure.

More recent syllabifiers based on probabilistic context-free grammars (PCFGs)
can model more complex hierarchical probabilistic dependencies between syllables
(Seneff et al., 1996; Müller, 2002, 2001; Goldwater and Johnson, 2005). Together
with other machine learning approaches like Van den Bosch (1997), modern statis-
tical syllabification approaches have a word accuracy of around 97–98% correct,
and probabilistic model of syllable structure have also been shown to predict hu-
man judgments of the acceptability of nonsense words (Coleman and Pierrehum-
bert, 1997).

There are a number of other directions in syllabification. One is the use of
unsupervised machine learning algorithms (Ellison, 1992;?; Goldwater and John-
son, 2005) Another is the use of other cues for syllabification such as allophonic
details from a narrow phonetic transcription (Church, 1983).

10.6 LEARNING PHONOLOGY & M ORPHOLOGY

Machine learning of phonological structures is an active research area in compu-
tational phonology above and beyond the induction of syllable structure discussed
in the previous section. Supervised learning work is based on a training set that is
explicitly labeled for the phonological (or morphological) structure to be induced.
Unsupervised work attempts to induce phonological or morphological structure
without labeled training data. Let’s look at three representative areas of learning;
we’ve included morphological learning because of the important interactions be-
tween phonological and morphological rules.

DRAFT

Section 10.6. Learning Phonology & Morphology 19

10.6.1 Learning Phonological Rules

Let’s begin with the problem of learning phonological rules. The learning litera-
ture here is generally couched in terms of two-level phonology, or in the classic
Chomsky-Halle rule-based architecture.

Johnson (1984) gives one of the first computational algorithms for phonolog-
ical rule induction. His algorithm works for rules of the form

(10.8) a→ b/C

whereC is the feature matrix of the segments arounda. Johnson’s algorithm sets
up a system of constraint equations whichC must satisfy, by considering both the
positive contexts, i.e., all the contextsCi in which ab occurs on the surface, as
well as all the negative contextsCj in which ana occurs on the surface. Touretzky
et al. (1990) extended Johnson’s insight by using theversion spacesalgorithm
of Mitchell (1981) to induce phonological rules in theirMany Mapsarchitecture,
which is similar to two-level phonology. Like Johnson’s, their system looks at
the underlying and surface realizations of single segments. For each segment, the
system uses the version space algorithm to search for the proper statement of the
context. The model also has a separate algorithm which handles harmonic effects
by looking for multiple segmental changes in the same word, and is more general
than Johnson’s in dealing with epenthesis and deletion rules.

The algorithm of Gildea and Jurafsky (1996) was designed to induce trans-
ducers representing two-level rules of the type we have discussed earlier. Gildea
and Jurafsky’s supervised algorithm was trained on pairs ofunderlying and surface
forms. For example, they attempted to learn the rule of English flapping, (focusing
only on the phonetic context and ignoring social and other factors). The training set
thus consisted of underlying/surface pairs, either with anunderlying /t/ and surface
flap [dx], or an underlying /t/ and surface [t], as follows:

flapping non-flapping
butter /b ah t axr/ → [b ah dx axr] stop /s t aa p/→ [s t aa p]
meter /m iy t axr/ → [m iy dx axr] cat /k ae t/ → [k ae t]

The algorithm was based on OSTIA (Oncina et al., 1993), a general learning
algorithm for thesubsequential transducersdefined on page??. Gildea and Ju-
rafsky showed that by itself, the OSTIA algorithm was too general to learn phono-
logical transducers, even given a large corpus of underlying-form/surface-form
pairs. For example, given 25,000 underlying/surface pairslike the examples above,
the algorithm ended up with the huge and incorrect automatonin Fig. 10.16(a).
Gildea and Jurafsky then augmented the domain-independentOSTIA system with
learning biases which are specific to natural language phonology. For example
they added aFaithfulnessbias that underlying segments tend to be realized sim-

DRAFT

20 Chapter 10. Computational Phonology

ilarly on the surface (i.e. that all things being equal, an underlying /p/ was likely
to emerge as a surface [p]). They did this by starting OSTIA with the underlying
and surface strings aligned using Levenshtein distance. They also added knowl-
edge about phonetic features (vowel versus consonant, reduced versus non-reduced
vowel, etc). Together, adding these biases enabled OSTIA tolearn the automaton
in Fig. 10.16(b), as well as correct automatons for other phonological rules like
German consonant devoicing.

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107

108 109 110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131

132 133 134 135 136 137 138 139 140

2

0 1
V C

r C

tV

V

t : 0

V

r

V V: t
C : t C

: t #

: t rr
V : V dx

(a) (b)

Figure 10.16 Induction of a flapping rule transducer (after Gildea and Jurafsky
(1996)). The transducer in (a) is the initial attempt at learning. The transducer in (b)
is the correct transducer induced after a faithfulness bias.

This phonological learning experiment illustrates that successful learning re-
quires two components: a model which fits some empirical dataand some prior
knowledge or biases about the structure of the model. We willintroduce the
Bayesian approach to learning below, which can be viewed as aprobabilistic ver-
sion of this kind of biased learning.

There have been some more recent attempts to learn two-levelmorphology
more generally. Theron and Cloete (1997) used an augmented version of edit dis-
tance to align an underlying and surface string and discovermorpheme boundaries.
They then look for insertions, deletions, and replacementsin the alignment to find
the locus of a two-level rule, and and look for the minimal context surrounding
the rule, using extensions of the heuristics in Johnson (1984) and Touretzky et al.
(1990).

DRAFT

Section 10.6. Learning Phonology & Morphology 21

10.6.2 Learning Morphology

We discussed in Ch. 3 the use of finite-state transducers for morphological parsing.
In general, these morphological parsers are built by hand and have relatively high
accuracy, although there has also been some work on supervised machine learn-
ing of morphological parsers (Van den Bosch, 1997). Recent work, however, has
focused on unsupervised ways to automatically bootstrap morphological structure.
The unsupervised (or weakly supervised) learning problem has practical applica-
tions, since there are many languages for which a hand-builtmorphological parser,
or a morphological segmented training corpus, does not yet exist. In addition, the
learnability of linguistic structure is a much-discussed scientific topic in linguis-
tics; unsupervised morphological learning may help us understand what makes
language learning possible.

Approaches to unsupervised morphology induction have employed a wide
variety of heuristics or cues to a proper morphological parse. Early approaches
were all essentially segmentation-based; given a corpus ofwords they attempted to
segment each word into a stem and an affix using various unsupervised heuristics.
For example the earliest work hypothesized morpheme boundaries at the point in
a word where there is large uncertainty about the following letters (Harris, 1954,
1988; ?, ?). For example, Fig. 10.17 shows atrie9 which stores the wordscar,TRIE

care, cars, cares, cared, etc. Note that there there are certain nodes in the tree
in Fig. 10.17 that have a wide branching factor (aftercar and aftercare). If we
think of the task of predicting the next letter giving the path in the trie so far, we
can say that these points have a high conditional entropy; there are many possible
continuations.10 While this is a useful heuristic, it is not sufficient; in thisexample
we would need a way to rule out the morphemecar as well ascare being part of
the wordcareful; this requires a complex set of thresholds.

Another class of segmentation-based approaches to morphology induction
focuses on globally optimizing a single criterion for the whole grammar, the cri-
terion of minimum description length, or MDL . The MDL principle is widely

MINIMUM
DESCRIPTION

LENGTH

MDL used in language learning, and we will see it again in grammarinduction in Ch. 14.
The idea is that we are trying to learn the optimal probabilistic model of some data.
Given any proposed model, we can assign a likelihood to the entire data set. We
can also use the proposed model to assign a compressed lengthto this data (with

9 A trie is a tree structure used for storing strings, in which a string is represented as a path from
the root to a leaf. Each non-terminal node in the tree thus stores a prefix of a string; every common
prefix is thus represented by a node. The wordtrie comes fromretrieval and is pronounced either [t
r iy] or [t r ay].
10 Interestingly, this idea of placing boundaries at regions of low predictability has been shown to be
used by infants for word segmentation (Saffran et al., 1996).

DRAFT

22 Chapter 10. Computational Phonology

Figure 10.17 Example of a letter trie. A Harris style algorithm would insert mor-
pheme boundaries aftercar andcare. After Schone and Jurafsky (2000).

probabilistic models we can use the intuition that the compressed length of the
data is related to the entropy, which we can estimate from thelog probability). We
can also assign a length to the proposed model itself. The MDLprinciple says to
choose the model for which the sum of the data length and the model length is the
smallest. The principle is often viewed from a Bayesian perspective; If we are at-
tempting to learn the best modelM̂ out of all modelsM for some dataD which has
the maximum a posteriori probabilityP(M|D), we can use Bayes Rule to express
the best model̂M as:

M̂ = argmaxMP(M|D) = argmaxM
P(D|M)P(M)

P(D)
= argmaxMP(D|M)P(M)(10.9)

Thus the best model is the one which maximizes two terms: the likelihood of the
dataP(D|M) and the prior of the modelP(M). The MDL principle can be viewed
as saying that the prior term on the model should be related tothe length of the
model.

MDL approaches to segmentation induction were first proposed by de Mar-
cken (1996) and Brent (1999), as well as Kazakov (1997); let’s summarize from
a more recent instantiation by Goldsmith (2001). The MDL intuition can be seen
from the schematic example in Fig. 10.18 inspired by Goldsmith.

As we see in Fig. 10.18, using morphological structure makesit possible to
represent a lexicon with far fewer letters. Of course this example doesn’t represent
the true complexity of morphological representations, since in reality not every
word is combinable with every affix. One way to represent slightly more complex-
ity is to usesignatures. A signature is a list of suffixes that can appear with aSIGNATURES

particular stem. Here are some sample signatures from Goldsmith (2001):

DRAFT

Section 10.6. Learning Phonology & Morphology 23











cooked cooks cooking
played plays playing
boiled boils boiling





















cook
play
boil





















ed
s
ing











(a) Word list with no structure (b) Word list with morphological structure
Total letter count: 54 Total letter count: 18 letters

Figure 10.18 Naive version of MDL, showing the reduction in the description
length of a lexicon with morphological structure; adapted from Goldsmith (2001).

Signature Example
NULL.ed.ing.s remain remained remaining remains
NULL.s cow cows
e.ed.es.ing notice noticed notices noticing

The Goldsmith (2001) version of MDL considers all possible segmentations
of every word into a stem and a suffix. It then chooses the set ofsegmentations for
the whole corpus that jointly minimize the compressed length of the corpus and
the length of the model. The length of the model is the sum of the lengths of the
affixes, the stems, and the signatures. The length of the corpus is computed by
using the model to assign a probability to the corpus and using this probably to
compute the cross-entropy of the corpus given the model.

While approaches based solely on stem and affix statistics like MDL have
been quite successful in morphological learning, they do have a number of limi-
tations. For example Schone and Jurafsky (2000, 2001) notedin an error analysis
that MDL sometimes segments valid affixes inappropriately (such as segmenting
the wordally to all+y), or fails to segment valid but non-productive affixes (missing
the relationship betweendirt anddirty). They argued that such problems stemmed
from a lack of semantic or syntactic knowledge, and showed how to use relatively
simple semantic features to address them. The Schone and Jurafsky (2000) algo-
rithm uses a trie to come up with “pairs of potential morphological variants”, (PP-
MVs) words which differ only in potential affixes. For each pair, they compute the
semantic similarity between the words, using the Latent Semantic Analysis (LSA)
algorithm of Ch. 21. LSA is an unsupervised model of word similarity which is
induced directly from the distributions of word in context.Schone and Jurafsky
(2000) showed that using the semantic similarity alone was at least as good a pre-
dictor of morphological structure as MDL. The table below shows the LSA-based
similarity between PPMVs; in this example the similarity ishigh only for words
that are morphologically related.

DRAFT

24 Chapter 10. Computational Phonology

PPMVs ScorePPMV ScorePPMV ScorePPMV Score
ally/allies 6.5 dirty/dirt 2.4 car/cares -0.14car/cared -.096
car/cars 5.6 rating/rate 0.97 car/caring -0.71 ally/all -1.3

Schone and Jurafsky (2001) extended the algorithm to learn prefixes and cir-
cumfixes, and incorporated other useful features, including syntactic and other ef-
fects of neighboring word context (Jacquemin, 1997), and the Levenshtein distance
between the PPMVs (?).

The algorithms we have mentioned so far have focused on the problem of
learning regular morphology. Yarowsky and Wicentowski (2000) focused on the
more complex problem of learning irregular morphology. Their idea was to prob-
abilistically align an inflected form (such as Englishtookor Spanishjuegan) with
each potential stem (such as Englishtakeor Spanishjugar). The result of their
alignment-based algorithm was a inflection-root mapping, with both an optional
stem change and a suffix, as shown in the following table:

English Spanish
root inflection stem changesuffix root inflection stem changesuffix
take took ake→ook +ε jugar juega gar→eg +a
take taking e→ ε +ing jugar jugamos ar→ ε +amos
skip skipped ε→p +ed tener tienen ener→ien +en

The Yarowsky and Wicentowski (2000) algorithm requires somewhat more
information than the algorithms for inducing regular morphology. In particular it
assumes knowledge of the regular inflectional affixes of the language and a list
of open class stems; both are things that might be induced by the MDL or other
algorithms mentioned above. Given an inflected form, the Yarowsky and Wicen-
towski (2000) algorithm uses various knowledge sources to weight the potential
stem, including the relative frequency of the inflected formand potential stem,
the similarity in lexical context, and the Levenshtein distance between them. See
Baroni et al. (2002) and Clark (2002) for alternative alignment-based approaches.

10.6.3 Learning in Optimality Theory

Let’s conclude with a brief sketch of work which addresses the learning problem
in Optimality Theory. Most work on OT learning has assumed that the constraints
are already given, and the task is to learn the ranking. Two algorithms for learning
rankings have been worked out in some detail; theconstraint demotionalgorithm
of Tesar and Smolensky (2000) and theGradual Learning Algorithm of Boersma
and Hayes (2001).

TheConstraint Demotion algorithm makes two assumptions: that we knowCONSTRAINT
DEMOTION

all the possible OT constraints of the language, and that each surface form is anno-

DRAFT

Section 10.6. Learning Phonology & Morphology 25

tated with its complete parse and underlying form. The intuition of the algorithm
is that each of these surface observations gives us implicitevidence about the con-
straint ranking.

Given the underlying form, we can use the GEN algorithm to implicitly form
the set of competitors. Now we can construct a set of pairs consisting of the correct
observed grammatical form and each competitor. The learnermust find a constraint
ranking that prefers the observed learningwinnerover each (non-observed) com-
petitor loser. Because the set of constraints is given, we can use the standard OT
parsing architecture to determine for each winner or loser exactly which constraints
they violate.

For example, consider the learning algorithm that has observed Candidate 1,
but whose current constraint ranking prefers Candidate 2, as follows (this example
and the following tables are modified from Boersma and Hayes (2001)):

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation) *! ** * * *
☞ Candidate 2 (learner’s output) * * * * *

Given a set of suchwinner/loserpairs, the Constraint Demotion algorithm
needs to demote each constraint that is violated by the winner Candidate 2, until
the observed form (Candidate 1) is preferred. The algorithmfirst cancels any marks
due to violations that are identical between the two candidates:

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation)∗! ∗∗ ∗ ∗ ∗

☞ Candidate 2 (learner’s output) ∗ ∗ ∗ ∗ ∗

These constraints are pushed down in the hierarchy until they are dominated
by the constraints violated by the loser. The algorithm divides constraints into
strata, and tries to find a lower strata to move the constraints into.Here’s shows a
simplification of this intuition, asC1 andC2 get moved belowC8.

/underlying form/ C3 C4 C5 C6 C7 C8 C1 C2

☞ Candidate 1 (learning observation) * * *
Candidate 2 (learner’s output) *! *

TheGradual Learning Algorithm (GLA) of (Boersma and Hayes, 2001) isGRADUAL LEARNING
ALGORITHM

a generalization of Constraint Demotion that learns constraint rankings in Stochas-
tic Optimality Theory. Since OT is a special case of Stochastic OT, the algorithm
also implicitly learns OT rankings. It generalizes Constraint Demotion by being

DRAFT

26 Chapter 10. Computational Phonology

able to learn from cases of free variation. Recall from Sec.?? that in Stochastic
OT each constraint is associated with aranking value on a continuous scale. The
ranking value is defined as the mean of the Gaussian distribution that constitutes
the constraint. The goal of the GLA is to assign a ranking value for each constraint.
The algorithm is a simple extension to the Constraint Demotion algorithm, and fol-
lows exactly the same steps until the final step. Inside of demoting constraints to
a lower strata, the ranking value of each constraint violated by the learning obser-
vation (Candidate 1) is decreased slightly, and the rankingvalue of each constraint
violated by the learner’s output (Candidate 2) is increasedslightly, as shown below:

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation)∗!→ ∗→ ∗→

☞ Candidate 2 (learner’s output) ←∗ ← ∗

10.7 WORD SEGMENTATION

modern models of word segmentation here

10.8 SUMMARY

This chapter has introduced many of the important concepts of phonetics and com-
putational phonology.

• Transducerscan be used to model phonological rules just as they were used
in Ch. 3 to model spelling rules.Two-level morphology is a theory of
morphology/phonology which models phonological rules as finite-statewell-
formedness constraintson the mapping between lexical and surface form.

• Optimality theory is a theory of phonological well-formedness; there are
computational implementations, and relationships to transducers.

• Computational models exist forsyllabification, inserting syllable boundaries
in phone strings.

• There are numerous algorithms for learning phonological and morphological
rules, both supervised and unsupervised.

DRAFT

Section 10.8. Summary 27

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Computational phonology is a fairly recent field. The idea that phonological rules
could be modeled as regular relations dates to Johnson (1972), who showed that
any phonological system that didn’t allow rules to apply to their own output (i.e.,
systems that did not have recursive rules) could be modeled with regular relations
(or finite-state transducers). Virtually all phonologicalrules that had been formu-
lated at the time had this property (except some rules with integral-valued features,
like early stress and tone rules). Johnson’s insight unfortunately did not attract the
attention of the community, and was independently discovered by Ronald Kaplan
and Martin Kay; see Ch. 3 for the rest of the history of two-level morphology.
Karttunen (1993) gives a tutorial introduction to two-level morphology that in-
cludes more of the advanced details than we were able to present here, and the
definitive text on finite-state morphology is Beesley and Karttunen (2003). Other
FSA models of phonology include Bird and Ellison (1994).

HISTORY OF OPTIMALITY THEORY HERE, WITH EXPLANATION
OF COMPUTATIONAL ORIGINS IN HARMONIC GRAMMAR.

EARLY ORIGINS OF IDEA OF LEARNING PHONOLOGY/MORPHOLOGY
ADD RECENT PHONOLOGY TEXTBOOKS.

EXERCISES

10.1 Build an automaton for rule (10.3).

10.2 One difference between one dialect of Canadian English and most dialects
of American English is calledCanadian raising. Bromberger and Halle (1989)CANADIAN RAISING

note that some Canadian dialects of English raise���� to ���� and ���� to �� �� in
stressed position before a voiceless consonant. A simplified version of the rule
dealing only with�� �� can be stated as:

����→ ���� /

[

C
−voice

]

(10.10)

This rule has an interesting interaction with the flapping rule. In some Cana-
dian dialects the wordrider andwriter are pronounced differently:rider is pro-
nounced������� while writer is pronounced�������. Write a two-level rule and an

DRAFT

28 Chapter 10. Computational Phonology

automaton for both the raising rule and the flapping rule which correctly models
this distinction. You may make simplifying assumptions as needed.

10.3 Write the lexical entry for the pronunciation of the Englishpast tense (preterite)
suffix -d, and the two level-rules that express the difference in its pronunciation de-
pending on the previous context. Don’t worry about the spelling rules. (Hint: make
sure you correctly handle the pronunciation of the past tenses of the wordsadd, pat,
bake, andbag.)

10.4 Write two-level rules for the Yawelmani Yokuts phenomena ofHarmony,
Shortening, and Lowering introduced on page 6. Make sure your rules are capable
of running in parallel.

DRAFT

Section 10.8. Summary 29

Antworth, E. L. (1990). PC-KIMMO: A Two-level Pro-
cessor for Morphological Analysis. Summer Institute of
Linguistics, Dallas, TX.

Archangeli, D. (1984).Underspecification in Yawelmani
Phonology and Morphology. Ph.D. thesis, MIT, Cam-
bridge, MA.

Archangeli, D. (1997). Optimality theory: An introduction
to linguistics in the 1990s. In Archangeli, D. and Lan-
gendoen, D. T. (Eds.),Optimality Theory: An Overview.
Basil Blackwell, Oxford.

Baroni, M., Matiasek, J., and Trost, H. (2002). Unsuper-
vised discovery of morphologically related words based
on orthographic and semantic similarity. InProceed-
ings of ACL SIGPHON, Philadelphia, PA. Association
for Computational Linguistics.

Beesley, K. R. (1996). Arabic finite-state morphological
analysis and generation. InCOLING-96, Copenhagen,
pp. 89–94.

Beesley, K. R. and Karttunen, L. (2003).Finite-State Mor-
phology. CSLI Publications, Stanford University.

Bird, S. and Ellison, T. M. (1994). One-level phonol-
ogy: Autosegmental representations and rules as finite
automata.Computational Linguistics, 20(1).

Blevins, J. (1995). The handbook of phonological theory.
In Goldsmith, J. (Ed.),The syllable in phonological the-
ory. Blackwell, Oxford.

Boersma, P. and Hayes, B. (2001). Empirical tests of the
gradual learning algorithm.Linguistic Inquiry, 32, 45–
86.

Brent, M. R. (1999). An efficient, probabilistically sound
algorithm for segmentation and word discovery.Machine
Learning, 34(1–3).

Bromberger, S. and Halle, M. (1989). Why phonology is
different. Linguistic Inquiry, 20, 51–70.

Chomsky, N. and Halle, M. (1968).The Sound Pattern of
English. Harper and Row, New York.

Church, K. W. (1983). Phrase-Structure Parsing: A
Method for Taking Advantage of Allophonic Constraints.
Ph.D. thesis, MIT.

Clark, A. (2002). Memory-based learning of morphology
with stochastic transducers. InProceedings of ACL-02,
Philadelphia, PA, pp. 513–520.

Cole, J. S. and Kisseberth, C. W. (1995). Restricting multi-
level constraint evaluation. Rutgers Optimality Archive
ROA-98.

Coleman, J. and Pierrehumbert, J. (1997). Stochastic
phonological grammars and acceptability. InProceed-
ings of ACL SIGPHON. Association for Computational
Linguistics.

de Marcken, C. (1996).Unsupervised Language Acquisi-
tion. Ph.D. thesis, MIT.

Eisner, J. (1997). Efficient generation in primitive optimal-
ity theory. In ACL/EACL-97, Madrid, Spain, pp. 313–
320. ACL.

Ellison, T. M. (1992). The Machine Learning of Phono-
logical Structure. Ph.D. thesis, University of Western
Australia.

Ellison, T. M. (1994). Phonological derivation in optimal-
ity theory. InCOLING-94, Kyoto, pp. 1007–1013.

Fisher, W. (1996). tsylb2 software and documentation.
http://.

Fosler, E. (1996). On reversing the generation process in
optimality theory. InProceedings of ACL-96, Santa Cruz,
CA, pp. 354–356. ACL.

Frank, R. and Satta, G. (1998). Optimality theory and the
generative complexity of constraint violability.Compu-
tational Linguistics, 24(2), 307–315.

Gildea, D. and Jurafsky, D. (1996). Learning bias and
phonological rule induction.Computational Linguistics,
22(4), 497–530.

Goldsmith, J. (1976).Autosegmental Phonology. Ph.D.
thesis, MIT, Cambridge, MA.

Goldsmith, J. (1993). Harmonic phonology. In Goldsmith,
J. (Ed.),The Last Phonological Rule, pp. 21–60. Univer-
sity of Chicago Press, Chicago.

Goldsmith, J. (2001). Unsupervised learning of the mor-
phology of a natural language.Computational Linguis-
tics, 27, 153–198.

Goldwater, S. and Johnson, M. (2005). Representational
bias in unsupervised learning of syllable structure. In
Proceedings of the Conference on Computational Natu-
ral Language Learning (CoNLL-2005).

Hammond, M. (1997). Parsing in OT. Alternative title
“Parsing syllables: Modeling OT computationally”. Rut-
gers Optimality Archive ROA-222-1097.

Harris, Z. (1988).Language and Information. Columbia
University Press, New York.

Harris, Z. S. (1954). Distributional structure.Word, 10,
146–162. Reprinted in J. Fodor and J. Katz, The structure
of language: Readings in the philosophy of language,

DRAFT

30 Chapter 10. Computational Phonology

Prentice-hall, 1964 and in Z. S. Harris, Papers in struc-
tural and transformational linguistics, Reidel, Dordrecht,
1970, 775–794.

Jacquemin, C. (1997). Guessing morphology from terms
and corpora. InSIGIR 1997, Philadelphia, PA, pp. 156–
165.

Johnson, C. D. (1972).Formal Aspects of Phonological
Description. Mouton, The Hague. Monographs on Lin-
guistic Analysis No. 3.

Johnson, M. (1984). A discovery procedure for certain
phonological rules. InCOLING-84, Stanford, CA, pp.
344–347.

Kahn, D. (1976). Syllable-based Generalizations in En-
glish Phonology. Ph.D. thesis, MIT.

Kaplan, R. M. and Kay, M. (1981). Phonological rules
and finite-state transducers. Paper presented at the An-
nual meeting of the Linguistics Society of America. New
York.

Kaplan, R. M. and Kay, M. (1994). Regular models of
phonological rule systems.Computational Linguistics,
20(3), 331–378.

Karttunen, L. (1993). Finite-state constraints. In Gold-
smith, J. (Ed.),The Last Phonological Rule, pp. 173–
194. University of Chicago Press.

Karttunen, L. (1998). The proper treatment of opti-
mality in computational phonology. InProceedings of
FSMNLP’98: International Workshop on Finite-State
Methods in Natural Language Processing, Bilkent Uni-
versity. Ankara, Turkey, pp. 1–12.

Kay, M. (1987). Nonconcatenative finite-state morphol-
ogy. InProceedings of the Third Conference of the Euro-
pean Chapter of the ACL (EACL-87), Copenhagen, Den-
mark, pp. 2–10. ACL.

Kazakov, D. (1997). Unsupervised learning of naı̈ve mor-
phology with genetic algorithms. InECML/Mlnet Work-
shop on Empirical Learning of Natural Language Pro-
cessing Tasks, Prague, pp. 105–111.

Kiraz, G. A. (1997). Compiling regular formalisms with
rule features into finite-state automata. InACL/EACL-97,
Madrid, Spain, pp. 329–336. ACL.

Kiraz, G. A. and Möbius, B. (1998). Multilingual syllab-
ification using weighted finite-state transducers. InPro-
ceedings of 3rd 3rd ESCA Workshop on Speech Synthe-
sis, Jenolan Caves, pp. 59–64.

Kisseberth, C. W. (1969). On the abstractness of phonol-
ogy: The evidence from Yawelmani.Papers in Linguis-
tics, 1, 248–282.

Kisseberth, C. W. (1970). On the functional unity of
phonological rules.Linguistic Inquiry, 1(3), 291–306.

Kornai, A. (1991).Formal Phonology. Ph.D. thesis, Stan-
ford University, Stanford, CA†.

Koskenniemi, K. (1983). Two-level morphology: A gen-
eral computational model of word-form recognition and
production. Tech. rep. Publication No. 11, Department
of General Linguistics, University of Helsinki.

Ladefoged, P. (1993).A Course in Phonetics. Harcourt
Brace Jovanovich, Inc. Third Edition.

Lakoff, G. (1993). Cognitive phonology. In Goldsmith, J.
(Ed.),The Last Phonological Rule, pp. 117–145. Univer-
sity of Chicago Press, Chicago.

McCarthy, J. J. (1981). A prosodic theory of non-
concatenative morphology.Linguistic Inquiry, 12, 373–
418.

Mitchell, T. M. (1981). Generalization as search. In Web-
ber, B. L. and Nilsson, N. J. (Eds.),Readings in Artificial
Intelligence, pp. 517–542. Morgan Kaufmann, Los Al-
tos.

Müller, K. (2001). Automatic detection of syllable
boundaries combining the advantages of treebank and
bracketed corpora training. InProceedings of ACL-01,
Toulouse, France. ACL.

Müller, K. (2002). Probabilistic context-free grammars for
phonology. InProceedings of ACL SIGPHON, Philadel-
phia, PA, pp. 70–80. Association for Computational Lin-
guistics.

Newman, S. (1944). Yokuts Language of California.
Viking Fund Publications in Anthropology 2, New York.

Oncina, J., Garcı́a, P., and Vidal, E. (1993). Learning
subsequential transducers for pattern recognition tasks.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 15, 448–458.

Pereira, F., Riley, M. D., and Sproat, R. (1994). Weighted
rational transductions and their applications to human
language processing. InARPA Human Language Tech-
nology Workshop, Plainsboro, NJ, pp. 262–267. Morgan
Kaufmann.

Prince, A. and Smolensky, P. (1993). Optimality theory:
Constraint interaction in generative grammar. Tech. rep.
CU-CS-696-93, Department of Computer Science, Uni-
versity of Colorado at Boulder, and RuCCs Tech. rep.
TR-2, Cognitive Science Center, Rutgers University. [to
appear, MIT Press, Cambridge, MA].

DRAFT

Section 10.8. Summary 31

Saffran, J. R., Newport, E. L., and Aslin, R. N. (1996).
Word segmentation: The role of distributional cues.Jour-
nal of Memory and Language, 35, 606–621.

Schone, P. and Jurafsky, D. (2000). Knowlege-free induc-
tion of morphology using latent semantic analysis. In
Proceedings of the Conference on Computational Natu-
ral Language Learning (CoNLL-2000).

Schone, P. and Jurafsky, D. (2001). Knowledge-free in-
duction of inflectional morphologies. InProceedings of
the Second Meeting of the North American Chapter of
the Association for Computational Linguistics (NAACL-
2001).

Seneff, S., Lau, R., and Meng, H. (1996). ANGIE: A
new framework for speech analysis based on morpho-
phonological modelling. InICSLP-96.

Sproat, R. (1993).Morphology and Computation. MIT
Press, Cambridge.

Tesar, B. (1995).Computational Optimality Theory. Ph.D.
thesis, University of Colorado, Boulder.

Tesar, B. (1996). Computing optimal descriptions for opti-
mality theory grammars with context-free position struc-
tures. InProceedings of ACL-96, Santa Cruz, CA, pp.
101–107. ACL.

Tesar, B. and Smolensky, P. (2000).Learning in Optimal-
ity Theory. MIT Press, Cambridge, MA.

Theron, P. and Cloete, I. (1997). Automatic acquisition of
two-level morphological rules. InProceedings of ANLP,
Washington, D.C. ACL.

Titone, D. and Connine, C. M. (1997). Syllabification
strategies in spoken word processing: Evidence from
phonological priming. Psychological Research, 60(4),
251–263.

Touretzky, D. S., Elvgren, III, G., and Wheeler, D. W.
(1990). Phonological rule induction: An architectural
solution. InCOGSCI-90, pp. 348–355.

Treiman, R., Bowey, J., and Bourassa, D. (2002). Segmen-
tation of spoken words into syllables by english-speaking
children as compared to adults.Journal of Experimental
Child Psychology, 83, 213–238.

Van den Bosch, A. (1997).Learning to Pronounce Written
Words: A Study in Inductive Language Learning. Ph.D.
thesis, University of Maastricht, Maastricht, The Nether-
lands.

Yarowsky, D. and Wicentowski, R. (2000). Minimally
supervised morphological analysis by multimodal align-
ment. InProceedings of ACL-00, Hong Kong, pp. 207–
216. ACL.

