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COMPUTATIONAL
10 PHONOLOGY

Recall from Ch. 7 thaphonologyis the area of linguistics that describes the sys-
tematic way that sounds are differently realized in différenvironments, and how
this system of sounds is related to the rest of the grammas.chapter introduces

compoTinoNey - computational phonology, the use of computational models in phonological the-
ory.

One focus of computational phonology is on computationad@mof phono-
logical representation, and on how to use phonological tssadenap from surface
phonological forms to underlying phonological represtote Models in (non-
computational) phonological theory are generative; thal @b the model is to
represent how an underlying form can generate a surfaceopgoal form. In
computation, we are generally more interested in the atemproblem ophono-
logical parsing; going from surface form to underlying structure. One majal
for this task is the finite-state automaton, which is empdoiretwo families of
models:finite-state phonologyandoptimality theory .

A related kind of phonological parsing task sgllabification: the task of
assigning syllable structure to sequences of phones. &eggitheoretical interest,
syllabification turns out to be a useful practical tool inesp of speech synthesis
such as pronunciation dictionary design. We therefore sarize a few practical
algorithms for syllabification.

Finally, we spend the remainder of the chapter on the keyl@nolof how
phonological and morphological representations can bedea

10.1 HNITE-STATE PHONOLOGY

Ch. 3 showed that spelling rules can be implemented by tteresd. Phonological
rules can be implemented as transducers in the same wagriride original work
by Johnson (1972) and Kaplan and Kay (1981) on finite-statdetsovas based
on phonological rules rather than spelling rules. Thereaanember of different
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models ofcomputational phonologythat use finite automata in various ways to
realize phonological rules. We will describe tin-level morphologyof Kosken-
niemi (1983) first mentioned in Ch. 3. Let’s begin with theuitibn, by seeing the
transducer in Fig. 10.1 which models the simplified flappulg in (10.1):

W— [dx]/V —V

Figure 10.1 Transducer for English Flapping: ARPAbet “dx” indicatesapfland
the “other” symbol means “any feasible pair not used elsea/frethe transducer”.
“@" means “any symbol not used elsewhere on any arc”.

The transducer in Fig. 10.1 accepts any string in which flaggsioin the
correct places (after a stressed vowel, before an unstregseel), and rejects
strings in which flapping doesn’t occur, or in which flappingcors in the wrong
environment.

We've seen both transducers and rules before; the intuiticwo-level mor-
phology is to augment the rule notation to correspond motrerally to transduc-
ers. We motivate his idea by beginning with the notiomwé ordering. In a tra-
ditional phonological system, many different phonolobicdes apply between the
lexical form and the surface form. Sometimes these rulesant; the output from
one rule affects the input to another rule. One way to implgmae-interaction in
a transducer system is to run transducers ¢gascade Consider, for example, the
rules that are needed to deal with the phonological behafitiie English noun
plural suffix-s. This suffix is pronounced [ix z] after the phones [s], [sk], [zh],
[ch], or [jh] (so peachess pronounced [p iy ch ix z], antaxesis pronounced [f
ae k s ix z]), [z] after voiced soundpifisis pronounced [p ih g z]), and [s] after
unvoiced soundscétsis pronounced [k ae t s]). We model this variation by writ-
ing phonological rules for the realization of the morphemalifferent contexts.

1 For pedagogical purposes, this example assumes (indgjrtt the factors that influence flap-
ping are purely phonetic and are non-stochastic.
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We first need to choose one of these three forms ([s], [z], ]>ag the “lexical”
pronunciation of the suffix; we chose [z] only because it $upnt to simplify rule
writing. Next we write two phonological rules. One, similar the E-insertion
spelling rule of pag®?, inserts an [ix] after a morpheme-final sibilant and before
the plural morpheme [z]. The other makes sure thatgkaffix is properly realized
as [s] after unvoiced consonants.

(10.2) € — ix/[+sibilant] " __ z #

(10.3) z — s/[-voice] " __#

These two rules must berdered rule (10.2) must apply before (10.3). This
is because the environment of (10.2) includesand the rule (10.3) changes
Consider running both rules on the lexical fofox concatenated with the plural
-S.

Lexical form: faak”z
(10.2) applies: faaks ixz
(10.3) doesn't apply:faa k s” ix z

If the devoicing rule (10.3) was ordered first, we would getwrong result.
This situation, in which one rule destroys the environmentanother, is called
bleeding?

Lexical form: faaks "z
(10.3) applies: faaks”s
(10.2) doesn't apply:faaks”s

As was suggested in Ch. 3, each of these rules can be repedgna trans-
ducer. Since the rules are ordered, the transducers waddekd to be ordered.
For example if they are placed ircascadethe output of the first transducer would
feed the input of the second transducer.

Many rules can be cascaded together this way. As Ch. 3 desgussining a
cascade, particularly one with many levels, can be unwjeldgt so transducer cas-
cades are usually replaced with a single more complex traesdycomposing
the individual transducers.

Koskenniemi’s method ofwo-level morphology that was sketchily intro-
duced in Ch. 3 is another way to solve the problem of rule andeiKoskenniemi
(1983) observed that most phonological rules in a gramnesindiependent of one
another; that feeding and bleeding relations between autesot the norm.Since

2 |f we had chosen to represent the lexical pronunciatiors e [s] rather than [z], we would have
written the rule inversely to voice the after voiced sounds, but the rules would still need to be
ordered; the ordering would simply flip.

3 Feeding is a situation in which one rule creates the enviemirfor another rule and so must be
run beforehand.
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this is the case, Koskenniemi proposed that phonologidakoe run in parallel
rather than in series. The cases where there is rule ink@madeeding or bleed-
ing) we deal with by slightly modifying some rules. Koskeemii’s two-level rules
can be thought of as a way of expressihgclarative constraints on the well-
formedness of the lexical-surface mapping.

Two-level rules also differ from traditional phonologiaalles by explicitly
coding when they are obligatory or optional, by using fodfeding rule opera-
tors; the < rule corresponds to traditionabligatory phonological rules, while
the=- rule implementoptional rules:

Rule type \ Interpretation

a: b <c__d |aisalwaysrealized a® in the context __ d

:b=c__d |amay be realized dsonly in the contexc __d

: b < c__d |amust be realized asin contextc __ d and nowhere else
: b /<= c__d|aisneverrealized ad in the contextc __d

The most important intuition of the two-level rules, and thechanism that
lets them avoid feeding and bleeding, is their ability toresent constraints on
two levels This is based on the use of the colon (*:”), which was touchedery
briefly in Ch. 3. The symbch:b means a lexicah that maps to a surfade Thus
alb < :c_ meansais realized a® after asurfacec. By contrast:b < c:
means thada is realized a® after alexical c. As discussed in Ch. 3, the symlol
with no colon is equivalent to:c that means a lexical which maps to a surfaae

Fig. 10.2 shows an intuition for how the two-level approagbids ordering
for the ix-insertion and z-devoicing rules. The idea is ttheg z-devoicing rule
maps dexical z-insertion to asurfaces and the ix rule refers to tHexical z.

D O D

lexical level

iX surface level

Figure 10.2 The constraints for theinsertion and:-devoicing rules both refer tg
alexical z, not asurfaces.

The two-level rules that model this constraint are showrlh4) and (10.5):
(10.4) €:ix & [+sibilant]: © __ z: #
(10.5) z:s & [-voice]: T __ #
As Ch. 3 discussed, there are compilation algorithms foatarg automata
from rules. Kaplan and Kay (1994) give the general derivatibthese algorithms,
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and Antworth (1990) gives one that is specific to two-levéésu The automata
corresponding to the two rules are shown in Fig. 10.3 and¥g!. Fig. 10.3 is
based on Figure 3.14 of Ch. 3; see page 78 for a reminder of lievatitomaton
works. Note in Fig. 10.3 that the plural morpheme is repriskby z:, indicating
that the constraint is expressed about a lexical ratherdheace z.

Figure 10.3 The transducer for the ix-insertion rule 10.2. The rule carrdad
whenever a morpheme ends in a sibilant, and the followingoimeme isz, insert

[ix].

Figure 10.4 The transducer for the z-devoicing rule 10.3. This rule rigghsum-
marizedDevoice the morpheme z if it follows a morpheme-final vogset®nsonant.

Fig. 10.5 shows the two automata run in parallel on the inpata[k s ~
z]. Note that both the automata assumes the default mappirtg femove the
morpheme boundary, and that both automata end in an acgebéite.
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Intermediateé f laalk | s | ~

ix-insertion % %D >

z-devoicing <q <H @ @ < @4@ @

Surfaceé f laal k | s |ix|z | f

#| 3

Figure 10.5 The transducer for the ix-insertion rule 10.2 and the z-i#wg rule

10.3 run in parallel.

10.2 ADVANCED FINITE-STATE PHONOLOGY

VOWEL HARMONY

10.2.1 Harmony

Finite-state models of phonology have also been applied dee mophisticated
phonological and morphological phenomena. Let's consadénite-state model
of a well-known complex interaction of three phonologiaales in the Yawelmani
dialect of Yokuts, a Native American language spoken infGadia’

First, Yokuts (like many other languages including for exdarrurkish and
Hungarian) hasowel harmony. Vowel harmony is a process in which a vowel
changes its form to look like a neighboring vowel. In Yokuéssuffix vowel
changes its form to agree in backness and roundness withrédoeding stem
vowel. That is, a front vowel likgi/ will appear as a back vowét] if the stem
vowel is /u/. ThisHarmony rule applies if the suffix and stem vowels are of the
same height (e.g/u/ and/i/ both high,/o/ and/a/ both low):

High Stem Low Stem
Lexical Surface Gloss Lexical Surface Gloss
Harmony |dub+hin — dubhun “tangles” bok’+al — bok’ol “might eat”
No Harmony xil+hin — xilhin  “leads by the handxat’+al — xat’al “might find”

The second relevant rulepwering, causes long high vowels to become low;
/u:/ becomesgo:] and/i:/ becomedge:], while the third rule Shortening, shortens
long vowels in closed syllables:

4 These rules were first drawn up in the traditional ChomskyHaite (1968) format by Kisseberth
(1969) following the field work of Newman (1944).

5 Examples from Cole and Kisseberth (1995). Some parts oésystich as vowel underspecifica-
tion have been removed for pedagogical simplification (Arafeli, 1984).
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TIERS

Lowering Shortening
fuit’+it — ?oit’ut  “steal, passive aorist” |s:ap+hin  — saphin
mitk’+it — meik’+it “swallow, passive aorist’sudutk+hin — sudokhun

The three Yokuts rules must be ordered, just as the ix-iogesihd z-devoicing
rules had to be ordered. Harmony must be ordered before lrmgvbecause the
/u:/ in the lexical form/?u:t’+it/ causes th¢i/ to becomdu] before it lowers in
the surface form?o:t’ut]. Lowering must be ordered before Shortening because
the /u:/ in /sudutk+hin/ lowers to[o]; if it was ordered after shortening it would
appear on the surface ps.

The Yokuts data can be modeled either as a cascade of theseimueries,
or in the two-level formalism as three rules in parallel; .Fi§.6 shows the two
architectures (Goldsmith, 1993; Lakoff, 1993; Karttun&@98). Just as in the
two-level examples presented earlier, the rules work bgrriglg sometimes to
the lexical context, sometimes to the surface context;ingrithe rules is left as
Exercise 10.4 for the reader.

Lexical ¢ [? |Jw [t [+ [h]i [n] ¢ ¢ [?2[uw[t[+]h]i[n] ¢
3
" "Rounding | S A::::,“::::J___ﬂ
i Low?ering i iRoundingI iLoweringI iShortening|
| Shortening | B O S
i T |l
ki
sufacegy [? [0t [hfufn] | 3 ¢ [?[oft[hJuln] [+
a) Cascade of rules. b) Parallel two-level rules.
Figure 10.6  Combining the rounding, lowering, and shortening rulesYawel-
mani Yokuts.

10.2.2 Templatic Morphology

Finite-state models of phonology/morphology have alsmipeeposed for the tem-
platic (non-concatenative) morphology (discussed on g&yeommon in Semitic
languages like Arabic, Hebrew, and Syriac. McCarthy (198bposed that this
kind of morphology could be modeled by using different lsvet representation
that Goldsmith (1976) had calleiers. Kay (1987) proposed a computational
model of these tiers via a special transducer which readgdpes instead of two,
asin Fig. 10.7.

The tricky part here is designing a machine which aligns #r@us strings
on the tapes in the correct way; Kay proposed that the bingpe tould act as
a sort of guide for alignment. Kay'’s intuition has led to a raenof more fully
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AUTOSEGMENTAL

binyan tape

vocalic morph. tape é ‘ a 3

Figure 10.7 A finite-state model of templatic (“non-concatenative”)npiaology.
Modified from Kay (1987) and Sproat (1993).

worked out finite-state models of Semitic morphology suctBassley’s (1996)
model for Arabic and Kiraz’s (1997) model for Syriac.

Kornai (1991) and Bird and Ellison (1994) show how one-tap®mata (i.e.
finite-state automata rather than four-tape or even twe-teansducers) could be
used to model templatic morphology and other kinds of phesmarthat are han-
dled with the tier-basedutosegmentalrepresentations of Goldsmith (1976).

10.3 CGCOMPUTATIONAL OPTIMALITY THEORY

OPTIMALITY THEORY
oT

In a traditional phonological derivation, we are given amlentying lexical form
and a surface form. The phonological system then consisissefjuence of rules
which map the underlying form to the surface for@ptimality Theory (OT)
(Prince and Smolensky, 1993) offers an alternative way @ivirig phonological
derivation, based on the metaphor of filtering rather thangiorming. An OT
model includes two functions (GEN and EVAL) and a set of rahkelable con-
straints (CON). Given an underlying form, the GEN functicwguces all imag-
inable surface forms, even those which couldn’t possibla lbegal surface form
for the input. The EVAL function then applies each constr&anCON to these
surface forms in order of constraint rank. The surface forictv best meets the
constraints is chosen.

Let’s briefly introduce OT, using some Yawlemani data, arehtturn to the
computational ramificatiors.In addition to the interesting vowel harmony phe-
nomena discussed above, Yawelmani has phonotactic cotstii@at rules out se-

6 The following explication of OT via the Yawelmani exampleadts heavily from Archangeli
(1997) and a lecture by Jennifer Cole at the 1999 LSA Lingulsstitute.
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(10.6)

(10.7)

RESYLLABIFIED

guences of consonants; three consonants in a row (CCC) ealoveed to occur in
a surface word. Sometimes, however, a word contains twcecotise morphemes
such that the first one ends in two consonants and the secenstants with one
consonant (or vice versa). What does the language do to Hub/@roblem? It
turns out that Yawelmani either deletes one of the conserarinserts a vowel in
between.

If a stem ends in a C, and its suffix starts with CC, the first Chefguffix is
deleted (“+” here means a morpheme boundary):

C-deletion: C—e¢/C+_C

For example, simplifying somewhat, the CCVC “passive cqoset adjunctive”
morphemehne:l drops the initial C if the previous morpheme ends in a consbna
Thus afterdiyel “guard”, we would get the formliyel-ne:l-aw, “guard - passive
consequent adjunctive - locative”.

If a stem ends in CC and the suffix starts with C, the languastead inserts
a vowel to break up the first two consonants:

V-insertion: ¢ -V/C_C+C

For example ini is inserted into the rootilk- “sing” when it is followed by the
C-initial suffix -hin, “past”, producing?ilik-hin, “sang”, but not when followed by
a V-initial suffix like -en, “future” in ?ilken “will sing”.

Kisseberth (1970) proposed that these two rules have the $anction:
avoiding three consonants in a row. Let's restate this ims$eof syllable struc-
ture. It happens that Yawelmani syllables can only be of tienfCVC or CV;
complex onsets or complex codas i.e., with multiple constmaaren’t allowed.
Since CVCC syllables aren't allowed on the surface, CVCQgmoust beresyl-
labified when they appear on the surface. From the point of view odbifltation,
then, these insertions and deletions all happen so as te #iwelmani words to
be properly syllabified. Here’s examples of resyllabifieat with no change, with
an insertion, and with a deletion:

underlying  surface gloss
morphemes syllabification

tilk-en ?il.ken “will sing”
?ilk-hin ?i.lik.hin “sang”

diyel-hnil-aw di.yel.ne:.law “guard - pass. cons. adjunct. - locative”

The intuition of Optimality Theory is to try to directly regsent these kind of
constraints on syllable structure directly, rather thaingigdiosyncratic insertion
and deletion rules. One such constraint,OMPLEX, says “No complex onsets or
codas”. Another class of constraints requires the surfaoa to be identical to
(faithful to) the underlying form. ThusA&THV says “Don’t delete or insert vow-
els” and FRAITHC says “Don’t delete or insert consonants”. Given an undegly
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TABLEAU

form, the GEN function produces all possible surface forires, (every possible

insertion and deletion of segments with every possiblabification) and they are

ranked by the EVAL function using these (violable) consitsi The idea is that

while in general insertion and deletion are dispreferrediome languages and sit-
uations they are preferred over violating other constsasuch as those of syllable
structure. Fig. 10.8 shows the architecture.

[?ilk=hin/

otn

?ilk.hin ?il.khin ?il.hin  ?ak.pid ?i.lik.hin

W

EVAL (*COMPLEX, FAITHC, FAITHV)

[2i.lik.hin]

(1)

Figure 10.8 The architecture of a derivation in Optimality Theory (aft
Archangeli (1997)).

The EVAL function works by applying each constraint in radlerder; the
optimal candidate is one which either violates no consisaiar violates less of
them than all the other candidates. This evaluation is lysghbwn on aableau
(pluraltableaux). The top left-hand cell shows the input, the constraingsliated
in order of rank across the top row, and the possible outdotggahe left-most
column! If a form violates a constraint, the relevant cell containa*! indicates
the fatal violation which causes a candidate to be elimaha@ells for constraints
which are irrelevant (since a higher-level constraintieady violated) are shaded.

| Nilk-hin/ [[*CoMPLEX|FAITHC|FAITHV |

?ilk.hin *
?il.khin *
?ilhin *

O ?ilik.hin *
?ak pid *

7 Although there are an infinite number of candidates, it iditianal to show only the ones which
are ‘close’; in the tableau below we have shown the outpktpid just to make it clear that even
very different surface forms are to be included.
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One appeal of Optimality Theoretic derivations is that tlo@straints are
presumed to be cross-linguistic generalizations. Thdtlisrmyuages are presumed
to have some version of faithfulness, some preference rigplsi syllables, and so
on. Languages differ in how they rank the constraints; thogligh, presumably,
ranks FAITHC higher than *@MPLEX. (How do we know this?)

10.3.1 Finite-State Transducer Models of Optimality Theory

Now that we've sketched the linguistic motivations for @mality Theory, let's
turn to the computational implications. We’ll explore twimplementation of OT
via finite-state models, and stochastic versions of OT.

Can a derivation in Optimality Theory be implemented by &rstate trans-
ducers? Frank and Satta (1998), following the foundatiamek of Ellison (1994),
showed that (1) if GEN is a regular relation (for example asisg the input doesn’t
contain context-free trees of some sort), and (2) if the remoballowed violations
of any constraint has some finite bound, then an OT derivaigonbe computed
by finite-state means. This second constraint is relevacduse of a property of
OT that we haven’t mentioned: if two candidates violate #ygbe same number
of constraints, the winning candidate is the one which hasthallest number of
violations of the relevant constraint.

One way to implement OT as a finite-state system was worketyHiart-
tunen (1998), following the above-mentioned work and thaiammond (1997).
In Karttunen’s model, GEN is implemented as a finite-staa@gducer which is
given an underlying form and produces a set of candidatedoffor example for
the syllabification example above, GEN would generate afigs that are variants
of the input with consonant deletions or vowel insertioms] #heir syllabifications.

Each constraint is implemented as a filter transducer ttepéess only strings
which meet the constraint. For legal strings, the transdiines acts as the identity
mapping. For example, *@vPLEX would be implemented via a transducer that
mapped any input string to itself, unless the input string e consonants in the
onset or coda, in which case it would be mapped to null.

The constraints can then be placed in a cascade, in whickighked con-
straints are simply run first, as suggested in Fig. 10.9.

There is one crucial flaw with the cascade model in Fig. 10.8caR that
the constraints-transducers filter out any candidate wiahates a constraint. But
in many derivations, include the proper derivation?ofik.hin, even the optimal
form still violates a constraint. The cascade in Fig. 10.&ancorrectly fil-
ter it out, leaving no surface form at all! Frank and Satte9@)%and Hammond
(1997) both point out that it is essential to only enforce ast@int if it does not
reduce the candidate set to zero. Karttunen (1998) foremlizis intuition with
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LENIENT
COMPOSITION

|
GEN

o
*COMPLEX
o
FAITHC
o
FAITHV

{

Figure 10.9 Version #1 (“merciless cascade”) of Karttunen'’s finitetsteascade
implementation of OT.

the lenient compaosition operator. Lenient composition is a combination of reg-
ular composition and an operation callpdority union . The basic idea is that
if any candidates meet the constraint these candidatedbevilassed through the
filter as usual. If no output meets the constraint, leniemposition retaingll of
the candidates. Fig. 10.10 shows the general idea; theestésl reader should see
Karttunen (1998) for the details. Also see Tesar (1995, 1 906sler (1996), and
Eisner (1997) for discussions of other computational issnéT.

i 12ilk=hin/
GEN GEN
oL ?ilk.hin ?il.khin ?il.hin ?ak.pid ?i.lik.hin
*COMPLEX *COMPLEX
FAI'?'LHC ?il.hin  ?ak.pid ?i.lik.hin
o FAIILI?C
?i.lik.hin
FAITHV EAITHVY
1 [2i.lik.hin]
Figure 10.10 Version #2 (“lenient cascade”) of Karttunen's finite-statscade
implementation of OT, showing a visualization of the camadidpopulations that
would be passed through each FST constraint.

10.3.2 Stochastic Models of Optimality Theory

Classic OT was not designed to handle variation of the kindsawe in Sec??,
since it assigns a single most-harmonic output for eachtinpealing with vari-
ation requires a more dynamic concept of constraint rankMf& mentioned in
that section the variationist model in sociolinguistiaswihich logistic regression
is used to combine phonetic, contextual, and social fa¢ctopsedict a probability
of a particular phonetic variant. Part of this variationiguition can be absorbed
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STOCHASTIC OT

into an Optimality Theory framework through probabilistisggmentations.

One such augmentation &ochastic OT(?). In Stochastic OT, instead of
the constraints being rank-ordered, each constraint msceged with a value on
a continuous scale. The continuous scale offers one thirgking cannot: the
relative importance or weight of two constraints can be pridpnal to the distance
between them. Fig. 10.11 shows a sketch of such a continwailes. s

Cc C C

1 2 3

' '

high ranked low ranked

Figure 10.11 Continuous scale in Stochastic OT. After (Boersma and Hayes
2001).

How can the distance between constraints play a role in atrah? Stochas-
tic OT makes a further assumption about the values of cantrdnstead of each
constraint having a fixed value as shown in Fig. 10.11. it h@sassian distribu-
tion of values centered on a fixed value, as shown in Fig. 1&12valuation time,
a value for the constraint is drawngalection poin) with a probability defined by
the mean and variance of the Gaussian associated with eastraint.

Cc Cc Cc

high ranked low ranked

Figure 10.12 Three constraints in Stochastic OT which are strictly rahkbus
non-stochastic OT is a special case of Stochastic OT. ABeefsma and Hayes|
2001).

If the distribution for two constraints is far enough apagshown in Fig. 10.12
there will be little or no probability of the lower ranked iraint outranking the
higher-ranked one. Thus Stochastic OT includes non-sthich@®T as a special
case.

The interesting cases arise when two constraints in Stbch@$ overlap
in their distribution, when there is some probability thabaer-ranked constraint
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high ranked low ranked

Figure 10.13 Three constraints in Stochastic OT in whi€hwill sometimes out-
rankC,. . After (Boersma and Hayes, 2001).

will override a higher-ranked constraint. In Fig. 10.13; é@ample, constrair€,
will generally outrankC3 but occasionally outrank,. This allows Stochastic OT
to model variation, since for the same underlying form diffg selection points
can cause different surface variants to be most highly nke

In addition to the advantage of modeling variation, Stoth&3T differs from
non-stochastic OT in having a stochastic learning theohiclwwe will return to
in Sec. 10.6.3.

We can see stochastic OT itself as a special case of the ¢jéneea models
of Ch. 6.

10.4 HarRMONIC GRAMAMR

computational models of harmonic grammar

10.5 SrLLABIFICATION

SYLLABIFICATION

Syllabification, the task of segmenting a sequence of phones into syllables;
portant in a variety of speech applications. In speech sgigh syllables are im-
portant in predicting prosodic factors like accent; thdization of a phone is also
dependent on its position in the syllable (onset [] is pramzed differently than
coda [l]). In speech recognition syllabification has beesdu® build recognizers
which represent pronunciations in terms of syllables rathan phones. Syllab-
ification can help find errors in pronunciation dictionayibyg finding words that
can't be syllabified, and can help annotate corpora wittablél boundaries for cor-
pus linguistics research. Syllabification also plays anartgmt role in theoretical
generative phonology.

One reason syllabification is a difficult computational tasthat there is no
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completely agreed-upon definition of syllable boundarigifferent on-line syllab-

ified dictionaries (such as the CMU and the CELEX lexiconshetimes choose
different syllabifications. Indeed, as Ladefoged (1993h{soout, sometimes it
isn’t even clear how many syllables a word has; some word=s(, teal, seal, hire,
fire, hour) can be viewed either as having one syllable or two.

Like much work in speech and language processing, syllabifen be based
on hand-written rules, or on machine learning from hanelkedb training sets.
What kinds of knowledge can we use in designing either kingytabifier? One

waximumonser — possible constraint is thdaximum Onset principle, which says that when a series

of consonants occur word-medially before a vowel (VCCV)pasy as possible
(given the other constraints of the language) should balsjikd into the onset of
the second syllable rather than the coda of the first syllableus the Maximum
Onset principle favors the syllabification V.CCV over thdlayifications VC.CV
or VCC.V.

SONORITY Another principle is to use thgonority of a sound, which is a measure of
how perceptually salient, loud or vowel-like it is. Theres afarious attempts to

norily - define asonority hierarchy; in general, all things being equal, vowels are more
sonorous than glides (w, y), which are more sonorous thamdsg(l, r), followed
by nasals (n, m, ng), fricatives (z, s, sh, zh, v, fth, dh), stoghs. The sonority con-
straint on syllable structure says that the nucleus of tHaldg must be the most
sonorous phone in a sequence (domority peak), and that sonority decreases
monotonically out from the nucleus (toward the coda and tdwle onset). Thus
in a syllable GC,VC3C4, the nucleus/ will be the most sonorous element, con-
sonantC, will be more sonorous tha@; and consonarts; will be more sonorant
than consonart,.

Goldwater and Johnson (2005) implement a simple rule-bémeglage-
independent classifier based only on maximum onset and isos@quencing.
Given a cluster of consonants between two syllable nuabgiosty constrains the
syllable boundary to be either just before or just after thesonant with the lowest
sonority. Combining sonority with maximum onset, theirgarpredicts a syllable
boundary just before the consonant with the lowest sonofibey show that this
simple syllabifier correctly syllabifies 86-87% of multigfic words in English
and German.

While this error rate is not unreasonable, and there is darihguistic and
some psychological evidence that these principles playleainosyllable struc-
ture, both Maximum Onset and sonority sequencing seem t® éeseptions. For
example in the English syllable-initial clusters /sp st iskivords like spell the
less sonorous /p/ occurs between the more sonorous /s/ anawrel, violating
sonority sequencing (Blevins, 1995). Without some way te aut onset clusters
that are disallowed language-specifically like /kn/ in Esigl the combination of
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sonority sequencing plus maximum onset incorrectly ptedie syllabification of
words like weaknesgo be wea.knessather tharweak.ness Furthermore, other
constraints seem to be important, including whether alsigls stressed (stressed
syllables tend to have more complex codas), the presendesenee of morpho-
logical boundaries, and even the spelling of the word (Etand Connine, 1997,
Treiman et al., 2002).

Achieving higher performance thus requires the use of thets of language-
specific knowledge. The most commonly used rule-basedoififiais based on the
dissertation of Kahn (1976), available in an implementaby Fisher (1996), The
Kahn algorithm makes use of language-specific informatioimé form of lists of
allowable English initial initial clusters, allowable Higi final clusters, and 'uni-
versally bad’ clusters. The algorithm takes strings of @soriogether with other
information like word boundaries and stress if they arelalée, and assigns sylla-
ble boundaries between the phones. Syllables are builtarprimentally based on
three rules, as sketched out in Fig. 10.14. Rule 1 forms natkach syllabic seg-
ment, Rule 2a attaches onset consonants to the nucleus usm@iRattaches coda
consonant§. Rule 2a and 2b make use of lists of legal onset consonant iseegie
(including e.g. [b], [b 1], [br], [by], [ch], [d], [dr], [d w} [d y], [dh], [f], [f 1] [f
r, [fyl, [9], [9 11, [g r], [g w], etc). and legal coda clustsr There are a very large
number of coda consonant clusters in English; some of thgelo-consonant)
clusters include:

ksts |fths mfst ndths nkst rkts rpts
ksths Ikts mpft ntst nkts ridz rsts
Itst mpst ntths nkths rmpth rest

The algorithm also takes a parameter indicating how fasasual the speech
is; the faster or more informal the speech, the more redfitation happens, based
on further rules we haven’t shown.

mis‘is‘ip‘i Cl...Cn\‘/écl...QCprl...CnV \‘/Cl...cn—>VC1...CjCj+l...Cn

S SS S S S S S
Rule 1: Form Nuclei: Rule 2a: Add Onsets: where Rule 2b: Add Codas: where
link S with each [+syl- Cit11...G, is a permissible initial C:..Gj is a permissible coda
labic] segment cluster but @Ci,1...G, is not cluster but G...C;Cj + 1 is not
Figure 10.14 First three syllabification rules of Kahn (1976). Rule 2b nmept apply across word
boundaries.

8 Note that the fact that Rule 2a precedes Rule 2b can be seenmplamentation of Maximum
Onset.
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WEIGHTED FST

Instead of hand-written rules, we can apply a machine legrapproach,
using a hand-syllabified dictionary as a supervised trgisiet. For example the
CELEX syllabified lexicon discussed in Se2? is often used this way, select-
ing some words as a training set, and reserving others as-testesind test set.
Statistical classifiers can be used to predict syllabificestj including decision
trees (Van den Bosch, 1997), weighted finite-state trargduiraz and Mobius,
1998), and probabilistic context-free grammars (Senedl.etL996; Muller, 2002,
2001; Goldwater and Johnson, 2005).

For example the Kiraz and Mobius (1998) algorithm is a wegdHinite-state
transducer which inserts a syllable boundary in a sequehpkames (akin to the
morpheme-boundaries we saw in Ch. 3)wAighted FST(Pereira et al., 1994) is
a simple augmentation of the finite transducer in which eaclisaassociated with
a probability as well as a pair of symbols. The probabilitfioates how likely that
path is to be taken; the probability on all the arcs leaving@emust sum to 1.

The syllabification automaton of Kiraz and Mobius (1998t @nposed of
three separate weighted transducers, one for onsets, onedei, and one for co-
das, concatenated together into an FST that inserts a leylisdrker after the end
of the coda. Kiraz and Mobius (1998) compute path weigldmffrequencies in
the training set; each path (for example the nucleus [iyfyefuencyf is assigned
a weight of ¥ f. Another way to convert frequencies to costs is to use logaro
bilities. Fig. 10.15 shows a sample automaton, simplifiedhfiKiraz and Mobius
(1998). We have shown the weights only for some of the nuclee arcs for each
possible onset, nucleus, and coda, are drawn from a langleggndent list like
the one used in the Kahn algorithm above.

Figure 10.15 Syllabifier automaton, showing onset (0), coda (c), andeuschrcs.
Costs on each arc shown only for some sample nucleus arcssyllable boundary
marker ‘-’ is inserted after every non-final syllable. epansts fore. Simplified from

Kiraz and Mdbius (1998).
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The automaton shown in Fig. 10.15 can be used to map from an §&
guence like the phonetic representatiomeiaknes$w iy k n eh s] into an output
sequence that includes the syllabification marker like iy k - n eh s]. If
there are multiple possible legal syllabifications of a wdta Viterbi algorithm
is used to choose the most likely path through the FST, andehttTe most prob-
able segmentation. For example, the German viemkter “window”, has three
possible syllabifications: f§ns-te] <74>, [fen-ste] <75>, and fenst-e] <87>
(with costs shown in angle brackets). Their syllabifier eotlly chooses the lowest
cost syllabificationfens-te, based on the frequencies of onsets and codas from the
training set. Note that since morphological boundaries ate important for syl-
labification, the Kiraz and Mobius (1998) syllabificatiamrisducer can be placed
after a morphological parsing transducer, so that syllztifin can be influenced
by morphological structure.

More recent syllabifiers based on probabilistic contezefgrammars (PCFGSs)
can model more complex hierarchical probabilistic depenigs between syllables
(Seneff et al., 1996; Muller, 2002, 2001; Goldwater andndoim, 2005). Together
with other machine learning approaches like Van den Bosega7q)l modern statis-
tical syllabification approaches have a word accuracy afirrstd®7-98% correct,
and probabilistic model of syllable structure have alsonb&®own to predict hu-
man judgments of the acceptability of nonsense words (Careamd Pierrehum-
bert, 1997).

There are a number of other directions in syllabification.e@nthe use of
unsupervised machine learning algorithms (Ellison, 199Zoldwater and John-
son, 2005) Another is the use of other cues for syllabificatioch as allophonic
details from a narrow phonetic transcription (Church, 1983

10.6 LEARNING PHONOLOGY & M ORPHOLOGY

Machine learning of phonological structures is an activseagch area in compu-
tational phonology above and beyond the induction of sidiakructure discussed
in the previous section. Supervised learning work is based waining set that is
explicitly labeled for the phonological (or morphologitatructure to be induced.
Unsupervised work attempts to induce phonological or malggical structure

without labeled training data. Let’s look at three repreéatve areas of learning;
we've included morphological learning because of the irtgoarinteractions be-
tween phonological and morphological rules.
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10.6.1 Learning Phonological Rules
Let’'s begin with the problem of learning phonological rul@he learning litera-
ture here is generally couched in terms of two-level phoggl@r in the classic
Chomsky-Halle rule-based architecture.

Johnson (1984) gives one of the first computational algmstfor phonolog-
ical rule induction. His algorithm works for rules of the for

(10.8) a—b/C

whereC is the feature matrix of the segments aroandohnson’s algorithm sets
up a system of constraint equations whigimust satisfy, by considering both the
positive contexts, i.e., all the contex@s in which ab occurs on the surface, as
well as all the negative contex@ in which ana occurs on the surface. Touretzky
et al. (1990) extended Johnson’s insight by using waesion spaceglgorithm
of Mitchell (1981) to induce phonological rules in théfany Mapsarchitecture,
which is similar to two-level phonology. Like Johnson’sgithsystem looks at
the underlying and surface realizations of single segmdfas each segment, the
system uses the version space algorithm to search for tipepstatement of the
context. The model also has a separate algorithm which éamdirmonic effects
by looking for multiple segmental changes in the same ward,ia more general
than Johnson’s in dealing with epenthesis and deletiorsrule

The algorithm of Gildea and Jurafsky (1996) was designeddade trans-
ducers representing two-level rules of the type we haveudised earlier. Gildea
and Jurafsky’s supervised algorithm was trained on paiumdérlying and surface
forms. For example, they attempted to learn the rule of Ehdlapping, (focusing
only on the phonetic context and ignoring social and othetofa). The training set
thus consisted of underlying/surface pairs, either withiaaherlying /t/ and surface
flap [dx], or an underlying /t/ and surface [t], as follows:

flapping non-flapping
butter /b ah t axr/ — [b ah dx axr]|stop /staa p/— [staap]
meter /miytaxr/ — [miydx axr]|cat /kaet/ — [kaet]

The algorithm was based on OSTIA (Oncina et al., 1993), argétearning
algorithm for thesubsequential transducerslefined on pag@?. Gildea and Ju-
rafsky showed that by itself, the OSTIA algorithm was toogahto learn phono-
logical transducers, even given a large corpus of undepdfenm/surface-form
pairs. For example, given 25,000 underlying/surface pikieghe examples above,
the algorithm ended up with the huge and incorrect automettdfig. 10.16(a).
Gildea and Jurafsky then augmented the domain-indepe@®ntA system with
learning biases which are specific to natural language pbgno For example
they added daithfulnessbias that underlying segments tend to be realized sim-
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ilarly on the surface (i.e. that all things being equal, adertying /p/ was likely
to emerge as a surface [p]). They did this by starting OSTI#whe underlying
and surface strings aligned using Levenshtein distancey also added knowl-
edge about phonetic features (vowel versus consonangeddersus non-reduced
vowel, etc). Together, adding these biases enabled OSTiata the automaton
in Fig. 10.16(b), as well as correct automatons for othemphagical rules like
German consonant devoicing.

s

KON
NS

(b)

Figure 10.16 Induction of a flapping rule transducer (after Gildea andafhky
(1996)). The transducer in (a) is the initial attempt athéay. The transducer in (b
is the correct transducer induced after a faithfulness bias

This phonological learning experiment illustrates thatcassful learning re-
quires two components: a model which fits some empirical dathsome prior
knowledge or biases about the structure of the model. Weimtilbduce the
Bayesian approach to learning below, which can be viewedpastabilistic ver-
sion of this kind of biased learning.

There have been some more recent attempts to learn tworemghology
more generally. Theron and Cloete (1997) used an augmeantsir of edit dis-
tance to align an underlying and surface string and discov@pheme boundaries.
They then look for insertions, deletions, and replacemientse alignment to find
the locus of a two-level rule, and and look for the minimal testh surrounding
the rule, using extensions of the heuristics in Johnson4)188d Touretzky et al.

(1990).
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10.6.2 Learning Morphology

We discussed in Ch. 3 the use of finite-state transducersdgsimlogical parsing.
In general, these morphological parsers are built by hadchame relatively high
accuracy, although there has also been some work on sug@mviachine learn-
ing of morphological parsers (Van den Bosch, 1997). Recemkvwhowever, has
focused on unsupervised ways to automatically bootstragpinatogical structure.
The unsupervised (or weakly supervised) learning problempgractical applica-
tions, since there are many languages for which a hand+hoilphological parser,
or a morphological segmented training corpus, does notist dn addition, the
learnability of linguistic structure is a much-discussetkstific topic in linguis-

tics; unsupervised morphological learning may help us tstded what makes
language learning possible.

Approaches to unsupervised morphology induction have eyegl a wide
variety of heuristics or cues to a proper morphological @arBarly approaches
were all essentially segmentation-based; given a corpu®als they attempted to
segment each word into a stem and an affix using various unsgs@e heuristics.
For example the earliest work hypothesized morpheme boi@sdat the point in
a word where there is large uncertainty about the followigttets (Harris, 1954,
1988; ?, ?). For example, Fig. 10.17 showsia® which stores the wordsar,
care cars cares cared etc. Note that there there are certain nodes in the tree
in Fig. 10.17 that have a wide branching factor (aftar and aftercare). If we
think of the task of predicting the next letter giving thelpat the trie so far, we
can say that these points have a high conditional entropye thre many possible
continuationg® While this is a useful heuristic, it is not sufficient; in tigsample
we would need a way to rule out the morpheoas as well ascare being part of
the wordcareful this requires a complex set of thresholds.

Another class of segmentation-based approaches to mogyhatduction
focuses on globally optimizing a single criterion for theoldgrammar, the cri-
terion of minimum description length, or MDL . The MDL principle is widely
used in language learning, and we will see it again in graningarction in Ch. 14.
The idea is that we are trying to learn the optimal probaislimodel of some data.
Given any proposed model, we can assign a likelihood to thieeethata set. We
can also use the proposed model to assign a compressed lerigit data (with

9 A trie is a tree structure used for storing strings, in which a gtisnrepresented as a path from
the root to a leaf. Each non-terminal node in the tree thugsta prefix of a string; every common
prefix is thus represented by a node. The woiel comes fronretrie val and is pronounced either [t

riy]or [tray].

10 Interestingly, this idea of placing boundaries at regidisw predictability has been shown to be
used by infants for word segmentation (Saffran et al., 1996)
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(10.9)

SIGNATURES

Figure 10.17 Example of a letter trie. A Harris style algorithm would ins@or-
pheme boundaries aftear andcare. After Schone and Jurafsky (2000).

probabilistic models we can use the intuition that the casped length of the
data is related to the entropy, which we can estimate fronboth@robability). We
can also assign a length to the proposed model itself. The Jiciple says to
choose the model for which the sum of the data length and tldehtength is the
smallest. The principle is often viewed from a Bayesian pectve; If we are at-
tempting to learn the best moddl out of all modelsM for some datd which has
the maximum a posteriori probabilifg(M|D), we can use Bayes Rule to express
the best modelll as:

M = argmax; P(M|D) = argmax w = argmaxyP(D|M)P(M)

Thus the best model is the one which maximizes two terms:ikbéHood of the
dataP(D|M) and the prior of the modét(M). The MDL principle can be viewed
as saying that the prior term on the model should be relatedetdength of the
model.

MDL approaches to segmentation induction were first proppdisede Mar-
cken (1996) and Brent (1999), as well as Kazakov (1997) mimmarize from
a more recent instantiation by Goldsmith (2001). The MDluitibn can be seen
from the schematic example in Fig. 10.18 inspired by Goltlsmi

As we see in Fig. 10.18, using morphological structure makesssible to
represent a lexicon with far fewer letters. Of course thanegle doesn’t represent
the true complexity of morphological representationsceim reality not every
word is combinable with every affix. One way to representgligmore complex-
ity is to usesignatures A signature is a list of suffixes that can appear with a
particular stem. Here are some sample signatures from @ali§2001):
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cooked cooks cookin cook ed

played plays playing play S

boiled boils boiling boil ing
(a) Word list with no structure (b) Word list with morpholegi structure
Total letter count: 54 Total letter count: 18 letters

Figure 10.18 Naive version of MDL, showing the reduction in the descopti
length of a lexicon with morphological structure; adaptexhf Goldsmith (2001).

Signature Example

NULL.ed.ing.s remain remained remaining remains
NULL.s COW COwS

e.ed.es.ing notice noticed notices noticing

The Goldsmith (2001) version of MDL considers all possitdgraentations
of every word into a stem and a suffix. It then chooses the ssgghentations for
the whole corpus that jointly minimize the compressed lergjtthe corpus and
the length of the model. The length of the model is the sum efi¢hgths of the
affixes, the stems, and the signatures. The length of thausdgpcomputed by
using the model to assign a probability to the corpus andguiis probably to
compute the cross-entropy of the corpus given the model.

While approaches based solely on stem and affix statiskesMiDL have
been quite successful in morphological learning, they de lmanumber of limi-
tations. For example Schone and Jurafsky (2000, 2001) motad error analysis
that MDL sometimes segments valid affixes inappropriatelyck as segmenting
the wordally to all+y), or fails to segment valid but non-productive affixes (nmgs
the relationship betweetirt anddirty). They argued that such problems stemmed
from a lack of semantic or syntactic knowledge, and showed thause relatively
simple semantic features to address them. The Schone aafgdkjuf2000) algo-
rithm uses a trie to come up with “pairs of potential morplgidal variants”, (PP-
MVs) words which differ only in potential affixes. For eachipéhey compute the
semantic similarity between the words, using the Latent&#in Analysis (LSA)
algorithm of Ch. 21. LSA is an unsupervised model of word Enity which is
induced directly from the distributions of word in contex@chone and Jurafsky
(2000) showed that using the semantic similarity alone wésagt as good a pre-
dictor of morphological structure as MDL. The table belowwsk the LSA-based
similarity between PPMVs; in this example the similarityhigh only for words
that are morphologically related.
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PPMVs Scor¢PPMV  Scor¢ PPMV  Scord PPMV  Score
ally/allies 6.5 |dirty/dirt 2.4 |car/cares -0.14car/cared -.096
car/cars 5.6 |rating/rate 0.97|car/caring -0.71ally/all -1.3

Schone and Jurafsky (2001) extended the algorithm to le@fixps and cir-
cumfixes, and incorporated other useful features, inctudymtactic and other ef-
fects of neighboring word context (Jacquemin, 1997), aad_#venshtein distance
between the PPMVs (?).

The algorithms we have mentioned so far have focused on titdgon of
learning regular morphology. Yarowsky and Wicentowskig@0focused on the
more complex problem of learning irregular morphology. ifidea was to prob-
abilistically align an inflected form (such as Engligiok or Spanishuegar) with
each potential stem (such as Englisike or Spanishjugar). The result of their
alignment-based algorithm was a inflection-root mappinigh Wwoth an optional
stem change and a suffix, as shown in the following table:

English Spanish
root | inflection| stem changgsuffix || root |inflection|stem changesuffix
take| took ake—ook |+e jugar|juega gar—eg +a
take/taking |e—e€ +ing ||jugar|jugamos |ar— e +amos
skip| skipped |e —p +ed |/tener{tienen |enerien |+en

The Yarowsky and Wicentowski (2000) algorithm requires satmat more
information than the algorithms for inducing regular marsjggy. In particular it
assumes knowledge of the regular inflectional affixes of #mguage and a list
of open class stems; both are things that might be inducetdDL or other
algorithms mentioned above. Given an inflected form, theowaky and Wicen-
towski (2000) algorithm uses various knowledge sourcesdight the potential
stem, including the relative frequency of the inflected faand potential stem,
the similarity in lexical context, and the Levenshtein @iste between them. See
Baroni et al. (2002) and Clark (2002) for alternative aliggmiabased approaches.

10.6.3 Learning in Optimality Theory

Let’'s conclude with a brief sketch of work which addresseslgarning problem

in Optimality Theory. Most work on OT learning has assumext the constraints
are already given, and the task is to learn the ranking. Tgorghms for learning
rankings have been worked out in some detail;dbestraint demotion algorithm

of Tesar and Smolensky (2000) and Bedual Learning Algorithm of Boersma
and Hayes (2001).

CONSTRANT TheConstraint Demotion algorithm makes two assumptions: that we know

all the possible OT constraints of the language, and thdt sadace form is anno-
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tated with its complete parse and underlying form. The ti@niof the algorithm
is that each of these surface observations gives us imeliience about the con-
straint ranking.

Given the underlying form, we can use the GEN algorithm tdlicityy form
the set of competitors. Now we can construct a set of pairsisting of the correct
observed grammatical form and each competitor. The leannst find a constraint
ranking that prefers the observed learnimigner over each (non-observed) com-
petitorloser. Because the set of constraints is given, we can use theasth@I
parsing architecture to determine for each winner or losactty which constraints
they violate.

For example, consider the learning algorithm that has ebseCandidate 1,
but whose current constraint ranking prefers Candidats flepws (this example
and the following tables are modified from Boersma and Ha2e61)):

H /underlying form/ H Cl ‘ Cz ‘ C3 ‘ C4 ‘ C5 ‘ Cs ‘ C7 ‘ Cg H
Candidate 1 (learning observation) *! | ** | * * *
[l Candidate 2 (learner’s output) S I * *

Given a set of suchvinner/loserpairs, the Constraint Demotion algorithm
needs to demote each constraint that is violated by the wi@aadidate 2, until
the observed form (Candidate 1) is preferred. The algorfttsncancels any marks
due to violations that are identical between the two candgda

H /underlying form/ H Cl ‘ C2 ‘ C3 ‘ C4 ‘ C5 ‘ Cs ‘ C7 ‘ Cg H
Candidate 1 (learning observation) ! | s | * *
U Candidate 2 (learner’s output) s | * | % * e

These constraints are pushed down in the hierarchy unyilaleedominated
by the constraints violated by the loser. The algorithm d#igi constraints into
strata, and tries to find a lower strata to move the constraints id&re’s shows a
simplification of this intuition, a€; andC, get moved belovCsg.

[ Junderlying form/ [C3]C4|C5|Cs|Cr[Cs| Ca|Co]
[l Candidate 1 (learning observation * i
Candidate 2 (learner’s output) *| *

GRADUAL LEARNING TheGradual Learning Algorithm (GLA) of (Boersma and Hayes, 2001) is
a generalization of Constraint Demotion that learns cairgtrankings in Stochas-
tic Optimality Theory. Since OT is a special case of Stoghd3T, the algorithm
also implicitly learns OT rankings. It generalizes Constr&emotion by being
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able to learn from cases of free variation. Recall from $&ahat in Stochastic
OT each constraint is associated withaaking value on a continuous scale. The
ranking value is defined as the mean of the Gaussian distwbthat constitutes
the constraint. The goal of the GLA is to assign a rankinge/&u each constraint.
The algorithm is a simple extension to the Constraint Deomcgigorithm, and fol-
lows exactly the same steps until the final step. Inside ofaliely constraints to
a lower strata, the ranking value of each constraint vidlaethe learning obser-
vation (Candidate 1) is decreased slightly, and the rankahge of each constraint
violated by the learner’s output (Candidate 2) is increadigtitly, as shown below:

| funderlying form/ | C1 [ Co|C3] Cs| Cs| Cs |Cr[Cs]
Candidate 1 (learning observation)«!— |« — * —
[l Candidate 2 (learner’s output) — % — %

10.7 WORD SEGMENTATION

modern models of word segmentation here

10.8 SUMMARY

This chapter has introduced many of the important concdgiBanetics and com-
putational phonology.

e Transducerscan be used to model phonological rules just as they were used
in Ch. 3 to model spelling rules.Two-level morphology is a theory of
morphology/phonology which models phonological rules misdfistatevell-
formedness constraintson the mapping between lexical and surface form.

e Optimality theory is a theory of phonological well-formedness; there are
computational implementations, and relationships tosulacers.

e Computational models exist feyllabification, inserting syllable boundaries
in phone strings.

e There are numerous algorithms for learning phonologicdlranrphological
rules, both supervised and unsupervised.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Computational phonology is a fairly recent field. The ideat fphonological rules
could be modeled as regular relations dates to Johnson ) 2®@%2 showed that
any phonological system that didn't allow rules to applytieit own output (i.e.,
systems that did not have recursive rules) could be modeibdregular relations
(or finite-state transducers). Virtually all phonologicales that had been formu-
lated at the time had this property (except some rules witdtgnal-valued features,
like early stress and tone rules). Johnson’s insight umhately did not attract the
attention of the community, and was independently disaxéry Ronald Kaplan
and Martin Kay; see Ch. 3 for the rest of the history of twcelemnorphology.
Karttunen (1993) gives a tutorial introduction to two-leweorphology that in-
cludes more of the advanced details than we were able torjgresee, and the
definitive text on finite-state morphology is Beesley andtiGaen (2003). Other
FSA models of phonology include Bird and Ellison (1994).

HISTORY OF OPTIMALITY THEORY HERE, WITH EXPLANATION
OF COMPUTATIONAL ORIGINS IN HARMONIC GRAMMAR.

EARLY ORIGINS OF IDEA OF LEARNING PHONOLOGY/MORPHOLOGY

ADD RECENT PHONOLOGY TEXTBOOKS.

EXERCISES

10.1 Build an automaton for rule (10.3).

10.2 One difference between one dialect of Canadian English avet dialects
cavioiavraisne — Of American English is calle€€anadian raising. Bromberger and Halle (1989)
note that some Canadian dialects of English rdis¢ to [a1] and /au/ to [au] in
stressed position before a voiceless consonant. A singph@sion of the rule
dealing only with/a1/ can be stated as:
—voice

(10.10) Jar/ — [a] [C ]

This rule has an interesting interaction with the flappirig.rin some Cana-
dian dialects the wordider andwriter are pronounced differentlyrider is pro-
nouncedrarra| while writer is pronouncedraira|. Write a two-level rule and an
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automaton for both the raising rule and the flapping rule witiorrectly models
this distinction. You may make simplifying assumptions asaed.

10.3 Write the lexical entry for the pronunciation of the Englfsdst tense (preterite)
suffix -d, and the two level-rules that express the difference inriigpnciation de-
pending on the previous context. Don’t worry about the gpgliules. (Hint: make
sure you correctly handle the pronunciation of the paseten§the wordadd, pat,
bake andbag)

10.4 Write two-level rules for the Yawelmani Yokuts phenomenaHairmony,
Shortening, and Lowering introduced on page 6. Make sure iybes are capable
of running in parallel.
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