Speech and Language Processing: An introduction to natural |anguage processing,
conputational |inguistics, and speech recognition. Daniel Jurafsky & Janes H. Martin.
Copyright © 2006, Al rights reserved. Draft of Novenber 6, 2006. Do not cite

wi t hout perm ssion.

COMPUTATIONAL
19 LEXICAL SEMANTICS

He was white and shaken, like a dry martini.
P.G. Wodehousé& ocktail Time(1958)

This chapter introduces a series of topics related to coimgputith word meanings,
or computational lexical semantics Roughly in parallel with the sequence of topics
in Ch. 18, we'll introduce computational tasks associat@ti word senses, relations
among words, and the thematic structure of predicate-hgarords.

We begin withword sense disambiguationthe task of examining word tokens
in context and determining which sense of each word is beggglu WSD is a task
with a long history in computational linguistics, and as wi#é see, is a non-trivial un-
dertaking given the somewhat elusive nature of many wordeserNevertheless, there
are robust algorithms that can achieve high levels of acgugiven certain reasonable
assumptions.

We next look at algorithms for computing relationships testw words, with
a particular focus omword similarity , and thehypernym, hyponym, andmeronym
WordNet relations introduced in Ch. 18. Relations such eselplay important roles in
applications such as question answering, natural langgegeration, automatic essay
grading and plagiarism detection.

Finally, we describe algorithms f@emantic role labeling also known agase
role or thematic role assignment These algorithms generally use information ex-
tracted from parses of the kind introduced in Ch. 12 to assegnantic roles such as
AGENT, THEME andINSTRUMENT to the phrases in a sentence with respect to particu-
lar predicates.

19.1 WORD SENSEDISAMBIGUATION: OVERVIEW

Our discussion of compositional semantic analyzers in Ghpretty much ignored
the issue of lexical ambiguity. It should be clear by now tiiég is an unreasonable
approach. Without some means of selecting correct sensdésefevords in an input,
the enormous amount of homonymy and polysemy in the lexicomavwuickly over-
whelm any approach in an avalanche of competing interpoetat

The task of selecting the correct sense for a word is called sense disam-

Chapter 19. Computational Lexical Semantics

WORD SENSE
DISAMBIGUATION
WSD

LEXICAL SAMPLE

ALL-WORDS

biguation, or WSD. Disambiguating word senses has the potential to improvgyma
natural language processing tasks. As we'll see in Ch.nZdchine translation is
one area where word sense ambiguities can cause severemsybdthers include
question-answering information retrieval , andtext classification The way that
WSD is exploited in these and other applications varies lyidased on the particu-
lar needs of the application. The discussion presentedigeoees these application-
specific differences and focuses on the implementationzaldation of WSD systems
as a stand-alone task.

In their most basic form, WSD algorithms take as input a warddntext along
with a fixed inventory of potential word senses, and retuendbrrect word sense for
that use. Both the nature of the input, and the inventory afeg depends on the
task. For machine translation from English to Spanish, #mse tag inventory for an
English word might be the set of different Spanish transtei If speech synthesis is
our task, the inventory might be restricted to homograplis differing pronunciations
such asdassandbow: If our task is automatic indexing of medical articles, tease
tag inventory might be the set of MeSH (Medical Subject Hagslj thesaurus entries.
When we are evaluating WSD in isolation, we can use the setrafes from a dictio-
nary/thesaurus resource like WordNet or LDOCE. Fig. 19dwshan example for the
the wordbass which can refer to a musical instrument or a kind of fish.

WordNet| Spanish Roget

Sense Translation Category Target Word in Context

bas$ lubina FISH/INSECT| ...fish as Pacific salmon and stripeassand. ..

bas$ lubina FISH/INSECT| ...produce filets of smokeaassor sturgeon. ..

basg bajo MUSIC ... exciting jazzdbassplayer since Ray Brown. .|

basg bajo MUSIC ... playbassbecause he doesn't have to solo.}| .
Figure 19.1 Possible definitions for the inventory of sense tagdfss

It is useful to distinguish two variants of the generic WSBktaln thelexical
sampletask, a small pre-selected set of target words is choseamg &lih an inventory
of senses for each word from some lexicon. Since the set oflsvand the set of
senses is smalkupervised machine learningapproaches are often used to handle
lexical sample tasks. For each word, a number of corpusrinsta(context sentences)
can be selected and hand-labeled with the correct sense d¢arhet word in each.
Classifier systems can then be trained using these labededes. Unlabeled target
words in context can then be labeled using such a trainedifitas Early work in
word sense disambiguation focused solely on lexical sataples of this sort, building
word-specific algorithms for disambiguating single wori#e line, interest or plant

In contrast, in thall-words task systems are given entire texts and a lexicon with
an inventory of senses for each entry, and are required sondigjuate every content
word in the text. The all-words task is very similar to paftspeech tagging, except
with a much larger set of tags, since each lemma has its owA seinsequence of this

1 The WordNet database includes 8 senses; we have arbitsalirted two for this example; we have
also arbitrarily selected one of the many possible Sparashes for fishes which could be used to translate
Englishsea-bass

Section 19.2. Supervised Word Sense Disambiguation 3

larger set of tags is a serious data sparseness problem;ishamlikely to be adequate
training data for every word in the test set. Moreover, gitrennumber of polysemous
words in reasonably-sized lexicons, approaches basedamintg one classifier per
term are unlikely to be practical.

In the following sections we explore the application of eais machine learning
paradigms to word sense disambiguation. We begin with sigeet learning, followed
by a section on how systems are standardly evaluated. Wetdherno a variety of
methods for dealing with the lack of sufficient fully-supised training data, include
dictionary-based approaches and bootstrapping techsique

Finally, after we have introduced the necessary notionsisifidutional word
similarity in Sec. 19.7, we return in Sec. 19.10 to the problef unsupervised ap-
proaches to sense disambiguation.

19.2 SUPERVISEDWORD SENSEDISAMBIGUATION

If we have data which has been hand-labeled with correct wenges, we can use a
supervised learningapproach to the problem of sense disambiguation. In this efy
approach, we use the hand-labeled data to extract a treseinguitable for use with
standard machine learning classifier systems. More spaltyfieve extract features
from the text that are helpful in predicting particular sesysand then train a classifier
to assign the correct sense given these features. The aitpassifier training is thus
a classifier system capable of assigning sense labels tbalathwords in context.
Forlexical sampletasks, there are various labeled corpora for individuadspr
consisting of context sentences labeled with the corretsesdor the target word.
These include thine-hard-servélLeacock et al., 1993) corpus containing 4,000 sense-
tagged examples dine as a nounhard as an adjective anserveas a verb, and the
interest(Bruce and Wiebe, 1994) corpus with 2,369 sense-taggedmrarafinterest
as a noun. TheENSEVAL project has also produced a number of such sense-labeled
lexical sample corporasENSEVAL-1 with 34 words from theHECTOR lexicon and
corpus (Kilgarriff and Rosenzweig, 2000; Atkins, 1993k (SEVAL-2 and -3 with 73
and 57 target words, respectively (Palmer et al., 2001;a£iiff, 2001)).

R CiTC For trainingall-word disambiguation tasks we usesamantic concordancea
corpus in which each open-class word in each sentence iethbth its word sense
from specific dictionary or thesaurus. One commonly usedu®is SemCor, a subset
of the Brown Corpus consisting of over 234,000 words whicheamanually tagged
with WordNet senses (Miller et al., 1993; Landes et al., 3998 addition, sense-
tagged corpora have been built for tRENSEVAL all-word tasks. TheSENSEVAL-3
English all-words test data consisted of 2081 tagged comterd tokens, from 5,000
total running words of English from the WSJ and Brown corg@&almer et al., 2001).

19.2.1 Extracting Feature Vectors for Supervised Learning

The first step in supervised training is to extract a usefubbteatures that are predic-
tive of word senses. As Ide and Véronis (1998b) point owd,itisight that underlies
all modern algorithms for word sense disambiguation wasditsculated by Weaver

Chapter 19. Computational Lexical Semantics

FEATURE VECTOR

COLLOCATION

COLLOCATIONAL
FEATURES

(19.1)

(19.2)

BAG-OF-WORDS

(1955) in the context of machine translation:

If one examines the words in a book, one at a time as througpagque mask
with a hole in it one word wide, then it is obviously impossilib determine, one
at a time, the meaning of the words. [...] But if one lengthdéresslit in the
opaque mask, until one can see not only the central word istiqurebut also say
N words on either side, then if N is large enough one can unguobisly decide
the meaning of the central word. [...] The practical questso: “What minimum
value of N will, at least in a tolerable fraction of casesdiéa the correct choice
of meaning for the central word?”

To extract useful features from such a window, a minimal amatf process-
ing is first performed on the sentence containing the windbkis processing varies
from approach to approach but typically includes partyudech tagging, lemmatiza-
tion or stemming, and in some cases syntactic parsing tak@virmation such as
head words and dependency relations. Context featuremrel® the target word that
capture information relevant to the task can then be exdddficom this enriched input.
A simplefeature vectorconsisting of numeric or nominal values can easily encoée th
most frequently used linguistic information, and is appiage for use in most learning
algorithms.

Two classes of features are generally extracted from theiglinoring contexts:
collocational features and bag-of-words featuregofocationis a word or phrase in
a position-specific relationship to a target word (i.e.,atlyaone word to the right, or
exactly 4 words to the left, and so on). Thagdlocational featuresencode information
aboutspecificpositions located to the left or right of the target word. itgbfeatures
extracted for these context words include the word itse, oot form of the word,
and the word’s part-of-speech. Such features are effegtigacoding local lexical and
grammatical information that can often accurately isotatgven sense.

As an example of this type of feature-encoding, considesitu@ation where we
need to disambiguate the wadndssin the following WSJ example:

An electric guitar andbassplayer stand off to one side, not really part of the scene,
just as a sort of nod to gringo expectations perhaps.

A collocational feature-vector, extracted from a windowwb words to the right and
left of the target word, made up of the words themselves agid tespective parts-of-
speech, i.e.,

Wi—2,POS_2,Wi—1,POS_1,Wi;1,POS:1,Wi2,POS, 2]
would yield the following vector:
[guitar, NN1, and, CJIC, player, NN1, stand, VVB]

The second type of feature consistshafg-of-wordsinformation about neigh-
boring words. Abag-of-wordsmeans an unordered set of words, ignoring their exact
position. The simplest bag-of-words approach represéetsantext of a target word
by a vector of features, each binary feature indicating e vocabulary worev
does or doesn't occur in the context. This vocabulary isogiby preselected as some
useful subset of words in a training corpus. In most WSD apgibns, the context
region surrounding the target word is generally a small sgtimfixed size window
with the target word at the center. Bag-of-word featureseffiective at capturing the

Section 19.2.

Supervised Word Sense Disambiguation 5

NAIVE BAYES
CLASSIFIER

(19.3)

(19.4)

general topic of the discourse in which the target word hasiwed. This, in turn,
tends to identify senses of a word that are specific to cedamains. We generally
don’t use stop-words as features, and may also limit thedfagerds to only consider
a small number of frequently used content words.

For example a bag-of-words vector consisting of the 12 mesfuent content
words from a collection dbasssentences drawn from the WSJ corpus would have the
following ordered word feature set:

[fishing, big, sound, player, fly, rod, pound, double, runayjpig, guitar, banyi

Using these word features with a window size of 10, examp®el(lwould be
represented by the following binary vector:

[0,0,0,1,0,0,0,0,0,0,1, 0]

We'll revisit the bag-of-words technique in Ch. 21 where h&2e that it forms
the basis for nearly all modern search engines.

Most approaches to sense disambiguation use both cotboehtand bag-of-
words features, either by joining them into one long veatorby building a distinct
classifiers for each feature type, and combining them in soarener.

19.2.2 Naive Bayes and Decision List Classifiers

Given training data together with the extracted featuneg sapervised machine learn-
ing paradigm can be used to train a sense classifier. We wiflice our discussion
here to the naive Bayes and decision list approaches, $irgehtive been the focus of
considerable work in word sense disambiguation.

Thenaive Bayes classifieapproach to WSD is based on the premise that choos-
ing the best senseout of the set of possible sensgfor a feature vectof amounts to
choosing the most probable sense given that vector. In atbets:

§ = argma(s|f)

seS
As is almost always the case, it would be difficult to collextsonable statistics for this
equation directly. To see this, consider that a simple Fibag of words vector defined
over a vocabulary of 20 words would havé® Dossible feature vectors. It's unlikely
that any corpus we have access to will provide coverage tquadely train this kind
of feature vector. To get around this problem we first refdataiour problem in the
usual Bayesian manner as follows:

« P(fls)P(s)
§=argmax—————

scS P(f)

Even this equation isn't helpful enough, since the datalavks that associates
specific vectors with each senssis also too sparse. However, what is available in
greater abundance in a tagged training set is informationtdbdividual feature-value
pairs in the context of specific senses. Therefore, we carenakindependence as-
sumption that gives this method its name, and that has ses/eell in part-of-speech
tagging, speech recognition, and probabilistic parsingaivaly assume that the fea-
tures are independent of one another. Making this assumftat the features are

Chapter 19. Computational Lexical Semantics

(19.5)

(19.6)

(19.7)

(19.8)

conditionally independent given the word sensgields the following approximation
for P(fls):
n

P(fls) ~ [P(fils)

j=1
In other words, we can estimate the probability of an entreter given a sense by the
product of the probabilities of its individual featuresgivthat sense. Sin¢¥ f) is the
same for all possible senses, it does not effect the finalimgrf senses, leaving us
with the following formulation:

n

§=argma(s) [[P(fjls)

seS i=1

Given this equatiortraining a naive Bayes classifier consists of estimating each
of these probabilities. (19.6) first requires an estimatetfe prior probability of each
senseP(s). We get the maximum likelihood estimate of this probabiliom the sense-
tagged training corpus by counting the number of times theesgoccurs and dividing
by the total count of the target wowg; (i.e. the sum of the instances of each sense of
the word). That is:

__counts,w;)
P(s) = couni{wj)J

We also need to know each of the individual feature probissIP(fj[s). The
maximum likelihood estimate for these would be:
countfj,s)

counts)

Thus, if a collocational feature such as; [, = guitar] occurred 3 times for
sense bads and sense basitself occurred 60 times in training, the MLE estimate
is P(fj|s) = 0.05. Binary bag-of-word features are treated in a similar meanwe
simply count the the number of times a given vocabulary itepresent with each of
the possible senses and divide by the count for each sense.

With the necessary estimates in place, we can assign senaesds in context
by applying 19.6. More specifically, we take the target waradtontext, extract the
specified features, compuggs) H'j‘:l P(fj|s) for each sense, and return the sense as-
sociated with the highest score. Note that in practice, tiobabilities produced for
even the highest scoring senses will dangerously low dubdovaérious multiplica-
tions involved; mapping everything to log-space and irdtearforming additions is
the usual solution.

Of course, the use of a simple maximum likelihood estimagésults in most
features having counts of zero. In practice, this meansdhiang testing as soon as
a target word cooccurs with a word that it did not cooccur viittiraining, all of its
senses will receive a probability of zero. Smoothing iseffene essential to the whole
enterprise. Naive Bayes approaches to sense disambigugin@rally use the simple
Laplace (add-one or add-k) smoothing discussed in Ch. 4.

One problem with the naive Bayes and other statistical agres is that the
classifiers, and the reasons for their resulting decisiaresfairly opaque. That is, it's

P(fjls) =

Section 19.2. Supervised Word Sense Disambiguation 7

Rule Sense
fishwithin window = bass
striped bass = bass
guitar within window = basg
bass player = bas$
pianowithin window = basg
tenorwithin window = basg
sea bass = bass
play/V bass = bas$
river within window = bass
violin within window = basg
salmonwithin window = bass
on bass = bas$
bass are = bass
Figure 19.2 An abbreviated decision list for disambiguating the fishsganf bass from
the music sense. Adapted from Yarowsky (1997).

hard for humans to examine their workings and understariddieisions. Decision
lists and decision trees are somewhat more transparertagpes that lend themselves
DECRIONEST to inspectionDecision list classifiersare equivalent to simple case statements in most

programming languages. In a decision list classifier, a secgi of tests is applied to
each target word feature vector. Each test is indicative préicular sense. If a test
succeeds, then the sense associated with that test isgétufrihe test fails, then the
next test in the sequence is applied. This continues urietid of the list, where a
default test simply returns the majority sense.

Figure 19.2 shows a portion of a decision list for the taskistriminating the
fish sense obassfrom the music sense. The first test says that if the vistdoccurs
anywhere within the input context théxass is the correct answer. If it doesn’t then
each of the subsequent tests is consulted in turn until coensetrue; as with case
statements a default test that returns true is includeceagrid of the list.

Learning a decision list classifier consists of generatimfj@dering individual
tests based on the characteristics of the training datareTée a wide number of
methods that can be used to create such lists. In the appusadtby Yarowsky (1994)
for binary homonym discrimination each individual featwadue pair constitutes a
test. We can measure how much a feature indicates a partseuiae by computing the
log-likelihood of the sense given the feature. The ratiovee the log-likelihoods of
the two senses tells us how discriminative a feature is batvgenses:

(199) Abs(Log (%))

The decision list is then created from these tests by simplgring the tests in the
list according to the log-likelihood ratio. Each test is cked in order and returns the
appropriate sense. This training method differs quite drbih standard decision list
learning algorithms. For the details and theoretical naditbn for these approaches see
Rivest (1987) or Russell and Norvig (1995).

8

Chapter 19. Computational Lexical Semantics

19.3 WSD E/ALUATION , BASELINES, AND CEILINGS

IN VIVO

IN VITRO

MOST FREQUENT
SENSE

TAKE THE FIRST
SENSE

Evaluating component technologies like WSD is always a dmaed affair. In the
long-term, we're primarily interested in the extent to whibey improve performance
in some end-to-end application such as information redtjeyuestion answering or
machine translation. Evaluating component NLP tasks enhxbth end-to-end appli-
cations is sometimes calléd vivo evaluation, orend-to-end evaluation. It is only
with this kind of evaluation that we can tell if a technologych as WSD is working in
the sense of actually improving performance on some rekal tas

In vivo evaluations are much more difficult and time-consugrio implement,
however, since they require integration into complete \waylsystems. Furthermore,
an in vivo evaluation may only tell us something about WSDha tontext of the
application, and may not generalize to other applications.

For these reasons, WSD systems are typically developedvahehéedn vitro ,
i.e., as if they were stand-alone systems operating inabgpely of any given applica-
tion. In this style of evaluation, systems are evaluatdueeitising exact matchccu-
racy: the percentage of words that are tagged identically wighhthnd-labeled sense
tags in a test set; or with standard precision and recall nreasf systems are permit-
ted to pass on labeling some instances. In general, we ¢gaisiag held out data from
the same sense-tagged corpora that we used for traininig,asuthe SemCor corpus
discussed above, or the various corpora produced bgehseVAL effort.

Many aspects of sense evaluation have been standardizee$sNSEVAL/'SEMEVAL
efforts (Palmer et al., 2006; Kilgarriff and Palmer, 2000his framework provides a
shared task with training and testing materials along withse inventories for all-
words and lexical sample tasks in a variety of languages.

Whichever WSD task we are performing, we ideally need twatamthl mea-
sures to assess how well we're doing: a baseline measur# tséchow well we're
doing as compared to relatively simple approaches, andiagt tell us how close we
are to optimal performance. Two commonly used baselinemast frequent sense
discussed here, and thesk algorithm, discussed in the next section. The simplest
baseline is to choose tmost frequent sensdor each word (Gale et al., 1992b) from
the senses in a labeled corpus. For WordNet, this correspinthetake the first
senseheuristic, since senses in WordNet are generally ordemed fmost-frequent to
least-frequent. WordNet sense frequencies come from ti€C8esense-tagged corpus
described above.

Unfortunately, many WordNet senses do not occur in SemQCmse unseen
senses are thus ordered arbitrarily after those that do. f@lreWordNet senses of
the nourplant, for example, are as follows:

Freq Synset Gloss

338 plant, works, industrial plantbuildings for carrying on industrial labor

207 plant, flora, plant life a living organism lacking the power of locomotion

2 plant?’ something planted secretly for discovery by another

0 planf1 an actor situated in the audience whose acting is reheatged b

seems spontaneous to the audience

The most frequent sense baseline can be quite accurates #meréfore often

Section 19.4.

WSD: Dictionary and Thesaurus Methods 9

PSEUDOWORDS

used as a default, to supply a word sense when a supervisattlaig has insufficient
training data.

Human inter-annotator agreement is generally consideseal eeiling, or up-
per bound, for sense disambiguation evaluations. Humageagent is measured by
comparing the annotations of two human annotators on the skata given the same
tagging guidelines. The ceiling (inter-annotator agrestyfer many all-words corpora
using WordNet-style sense inventories seems to range foout& 5% to 80% (Palmer
et al., 2006). Agreement on more coarse grained, often Yisanse inventories is
closer to 90% (Gale et al., 1992b).

While using hand-labeled test sets is the best current rddtvevaluation, la-
beling large amounts of data is still quite expensive. Fgesvised approaches, we
need this data anyhow for training so the effort to labeldaagnounts of data seems
justified. But for unsupervised algorithms like those wel @iscuss in Sec. 19.10, it
would be nice to have an evaluation method that avoided hatmelihg. The use of
pseudowordsis one such simplified evaluation method (Gale et al., 1992auetze,
1992). A pseudoword is an artificial word created by concatfag two randomly-
chosen words together (e.dpananaanddoor to createbanana-door) Each occur-
rence of the two words in the test set is replaced by the newatenation, creating a
new ‘word’ which is now ambiguous between the sertsmsanaanddoor. The ‘cor-
rect sense’ is defined by the original word, and so we can amppiydisambiguation
algorithm and compute precision as usual. In general, mseoidis give an overly
optimistic measure of performance, since they are a bieetsdisambiguate than av-
erage ambiguous words. This is because the different sefiseal words tend to be
similar, while pseudowords are generally not semanticaityilar, acting like homony-
mous but not polysemous words (Gaustad, 2001). Nakov andsH@#H03) shows
that it is possible to improve the accuracy of pseudowortuet@mn by more carefully
choosing the pseudowords.

19.4 WSD: DCTIONARY AND THESAURUSMETHODS

LESK ALGORITHM

SIMPLIFIED LESK

Supervised algorithms based on sense-labeled corporaeatsest performing algo-
rithms for sense disambiguation. However, such labeleditrg data is expensive and
limited and supervised approaches fail on words not in theitrg data. Thus this sec-
tion and the next describe different ways to get indirecesvigion from other sources.
In this section, we describe methods for using a dictionamhesaurus as an indirect
kind of supervision; the next section describes bootsirgpapproaches.

19.4.1 The Lesk Algorithm

By far the most well-studied dictionary-based algorithm $ense disambiguation is
theLesk algorithm, really a family of algorithms that choose the sense whostodi
nary gloss or definition shares the most words with the tangetl’s neighborhood.
Fig. 19.3 shows the simplest version of the algorithm, ofi@ied theSimplified Lesk
algorithm (Kilgarriff and Rosenzweig, 2000).

10

Chapter 19. Computational Lexical Semantics

(19.10)

function SIMPLIFIED LESK(word, sentendereturns best sense aoford

best-sense- most frequent sense farord
max-overlap— 0
context— set of words irsentence
for each sensen senses ofvord do
signature— set of words in the gloss and examplesehse
overlap— CoMPUTEOVERLAP(Signature contexy
if overlap> max-overlaphen
max-overlap— overlap
best-sense- sense
end
return (best-sensge

Figure 19.3 The Simplified Lesk Algorithm. The GuPUTEOVERLAP function returns
the number of words in common between two sets, ignoringtfomevords or other words
on a stop list. The original Lesk algorithm defines toatextin a more complex way. The
Corpus Leslalgorithm weights each overlapping wondby its —logP(w), and includes
labeled training corpus data in te@nature

As an example of the Lesk algorithm at work, consider disgdaiing the word

bankin the following context:

Thebank can guarantee deposits will eventually cover future taitosts because it
invests in adjustable-rate mortgage securities.

given the following two WordNet senses:

bank | Gloss: a financial institution that accepts deposits and chanhelsroney into
lending activities
Examples] “he cashed a check at the bank”, “that bank holds the mortgagay
home”
bankK | Gloss: sloping land (especially the slope beside a body of water)
Examples] “they pulled the canoe up on the bank”, “he sat on the bankefitrer
and watched the currents”

Senseank! has two (non-stop) words overlapping with the context in 109

depositsandmortgage while sense barfkhas zero, so sensank! is chosen.

There are many obvious extensions to Simplified Lesk. Thgiraal Lesk al-
gorithm (Lesk, 1986) is slightly more indirect. Instead ohgparing a target word’s
signature with the context words, the target signature ispared with the signatures
of each of the context words. For example, consider Leskésnpte of selecting the
appropriate sense @bnein the phrasgine conegiven the following definitions for
pineandcone

Section 19.4.

WSD: Dictionary and Thesaurus Methods 11

CORPUS LESK

INVERSE DOCUMENT
FREQUENCY

IDF

(19.11)

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or iliness
cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees
In this example, Lesk’s method would seleoné as the correct sense since two of the
words in its entryevergreerandtree, overlap with words in the entry fqine whereas
neither of the other entries have any overlap with words endgfinition ofpine In
general Simplified Lesk seems to work better than originakLe
The primary problem with either the original or simplifiedpepaches is that the
dictionary entries for the target words are short, and mayravide enough chance of
overlap with the contex@.One remedy is to expand the list of words used in the classi-
fier to include words related to, but not contained in thedividual sense definitions.
But the best solution, if any sense-tagged corpus data kkeCr is available, is to
add all the words in the labeled corpus sentences for a wargesato the signature
for that sense. This version of the algorithm, erpus Lesk algorithm is the best-
performing of all the Lesk variants (Kilgarriff and Roserayg, 2000; Vasilescu et al.,
2004) and is used as a baseline in siESEVALcompetitions. Instead of just counting
up the overlapping words, th@orpus Lesk algorithm also applies a weight to each
overlapping word. The weight is theverse document frequencyor IDF, a standard
information-retrieval measure that measures how mangmifit ‘'documents’ (in this
case definitions and examples) a word occurs in (Ch. 21). $&Fway of discounting
function words the IDF weight of function words likbe, of, etc, is very low, since
they occur in many documents, while the IDF of content wosdsigh. Corpus Lesk
thus uses IDF instead of a stoplist. The IDF of a waris estimated as- logP(w),
whereP(w) is the percentage of ‘documents’ (glosses and examplesjdh&ainw.
Finally, it is possible to combine the Lesk and supervisqat@gches, by adding
new Lesk-like bag-of-words features. For example, thesgiesand example sentences
for the target sense in WordNet could be used to compute hergised bag-of-words
features instead of (or in addition to) the words in the Sentdatext sentence for the
sense (Yuret, 2004).

19.4.2 Selectional Restrictions and Selectional Prefereas

One of the earliest knowledge-sources for sense disamtimglia the notion okelec-
tional restrictions defined in Ch. 18. For example the ver@itmight have a restriction
that itsTHEME argument bé¢ +FOOD] . In early systems, selectional restrictions were
used to rule out senses that violate the selectional réstricof neighboring words
(Katz and Fodor, 1963; Hirst, 1987). Consider the followjrair of WSJ examples of
the worddish,

“In our house, everybody has a career and none of them inglwdshinglishes” he
says.

2 Indeed, Lesk (1986) notes that the performance of his sysesms to roughly correlate with the length
of the dictionary entries.

12

Chapter 19. Computational Lexical Semantics

(19.12)

(19.13)

(19.14)

SELECTIONAL
PREFERENCE
STRENGTH

RELATIVE ENTROPY

KULLBACK-LEIBLER
DIVERGENCE

(19.15)

SELECTIONAL
ASSOCIATION

In her tiny kitchen at home, Ms. Chen works efficiently, $tying several simple
dishes including braised pig’s ears and chicken livers with grpeppers.

These correspond to WordNeish! (a piece of dishware normally used as a
container for holding or serving food), with hypernyms ligifact, anddish?: (a
particular item of prepared food) with hypernyms liked

The fact that we perceive no ambiguity in these examples eatttibuted to the
selectional restrictions imposed ashandstir-fry on their THEME semantic roles.
The restrictions imposed byash(perhaps [wASHABLE]) conflict with dish?. The
restrictions orstir-fry [+EDIBLE] conflict with dish!. In both cases, in early systems,
the predicate selects the correct semdéean ambiguous argument by eliminating the
sense that fails to match one of its selectional restristiddut such hard constraints
have a number of problems. The main problem is that seleddtiestriction violations
often occur in well-formed sentences, either because tteegegated as in (19.13), or
because selectional restrictions are overstated as ih4)t9.

But it fell apart in 1931, perhaps because people realizedcgo’teatgold for lunch if you're
hungry.

In his two championship trials, Mr. Kulkarmaite glass on an empty stomach, accompanied only
by water and tea.

As Hirst (1987) observes, examples like these often reauthé elimination
of all senses, bringing semantic analysis to a halt. Modeodets thus adopt the
view of selectional restrictions as preferences, rattean tigid requirements. Although
there have been many instantiations of this approach oeeyé¢lars (Wilks, 1975c,
1975b, 1978, e.g.,), we'll discuss a member of the populavglilistic or information-
theoretic family of approaches: Resnik’s (1997) moddealéctional association

Resnik first defines thselectional preference strengttas the general amount
of information that a predicate tells us about the semardigscof its arguments. For
example, the verbattells us a lot of information about the semantic class of iitsad
object, since they tend to be edible. The vbeh by contrast, tells us less about its
direct objects. The selectional preference strength catebeed by the difference in
information between two distributions: the distributiohexpected semantic classes
P(c) (how likely is it that a direct object will fall into class) and the distribution of
expected semantic classes for the particular Rédiv) (how likely is it that the direct
object of specific verly will fall into semantic class). The greater the difference
between these distributions, the more information, theatioe verb is telling us about
possible objects. This difference can be quantified byréfetive entropy between
these two distributions, d€ullback-Leibler divergence (Kullback and Leibler, 1951).
The selectional preferen@g(v) expresses how much information, in bits, the verb
expresses about the possible semantic class of its argument

K(v) = D(P(clv)[|P(c))
- gp(qmog PFE

clv)
(©

Resnik then defines theelectional associatiof a particular class and verb as

Section 19.5. Minimally Supervised WSD: Bootstrapping 13

the relative contribution of that class to the general s&lpal preference of the verb:

1 P(clv)
(19.16) Ag(v,C) S0) P(c|v)log PO
The selectional association is thus a probabilistic measfithe strength of as-
sociation between a predicate and a class dominating thanengf to the predicate.
Resnik estimates the probabilities for these associatiyngarsing a corpus, count-
ing all the times each predicate occurs with each argumerd,vemd assuming that
each word is a partial observation of all the WordNet coreephtaining the word.
The following table from Resnik (1996) shows some samplé kigd low selectional
associations for verbs and their direct objects.

Verb || Direct Object semantic class Assjddirect Object Semantic class Assoc

read || WRITING 6.80 | ACTIVITY -.20
write || WRITING 7.26 | COMMERCE 0
see ||ENTITY 5.79 | METHOD -0.01

Resnik (1998) shows that these selectional associationbeased to perform
a limited form of word sense disambiguation. Roughly spegkine algorithm selects
as the correct sense for an argument the one that has theshégiectional association
between one of its ancestor hypernyms and the predicate.

While we have presented only the Resnik model of selectipredérences, there
are other more recent models, using probabilistic methadsusing other relations
than just direct object; see the end of the chapter for a Breimary. In general,
selectional restriction approaches perform as well asrathgupervised approaches at
sense disambiguation, but not as well as Lesk or as supdmgmoaches.

19.5 MINIMALLY SUPERVISEDWSD: BOOTSTRAPPING

Both the supervised approach and the dictionary-basedapipto WSD require large
hand-built resources; supervised training sets in one tage dictionaries in the other.
BootsTRaPPING \We can instead udaeootstrapping algorithms, often calledemi-supervised learning
or minimally supervised learning, which need only a very small hand-labeled training
set. The most widely emulated bootstrapping algorithm f@Ms the Yarowsky
JEQueKY algorithm (Yarowsky, 1995).
The goal of the Yarowsky algorithm is to learn a classifierddarget word (in
a lexical-sample task). The algorithm is given a small sesidy of labeled instances
of each sense, and a much larger unlabeled covpus he algorithm first trains an
initial decision-list classifier on the seed-g&f. It then uses this classifier to label
the unlabeled corpug. The algorithm then selects the example¥grhat it is most
confident about, removes them, and adds them to the traieir(ga! it nowA1). The
algorithm then trains a new decision list classifier (a nevetriles) on\1, and iterates
by applying the classifier to the now-smaller unlabeled/sg¢xtracting a new training
set/\, and so on. With each iteration of this process, the trainoerges grows and the
untagged corpus shrinks. The process is repeated until soffi@ently low error-rate
on the training set is reached, or until no further examplemfthe untagged corpus
are above threshold.

14 Chapter 19. Computational Lexical Semantics

-~ 7 ey ~ T ;
- v T,or.r Ty T rart T lildiy 171 1
AR =y T ar YTt [2aet et
T T r 17 7
*Ta Tkl 1 ’r:"f"’ wr L Ya '1,,7'
h,e 1 et Vet et 7
¥ ,” ; £ ,-,1” - ' 13 %
" et H
vy et Ban gl T ey BT e e, 0 - N Lreteg ?
r 71 7 pocie ’
SRR AN LI R R R AR T %
LR S 71
FEEAL e !:' iy ‘,77',"'f,’v:, 1 0 WT""”?”
r ? 13 13 1 T L] rr L 3 Y
7 wig vr’r,,”' » JEJ * 21 ,1,”?’,:””,“., T
» 1)

oAty b
1p ? Tt T T e ey, Ty
I . ¥1 r vy ety Teg *? ¥ RN T AN
G SRR TR A SR SR S S
+ Thapa? tr 1 7.1 T b g gt ' 1
pit gttt rEral Yary A L Tarrgr wrptramal bana i B1.n l Lt et
2t Ty 1 T radcy) » pargio Pty SRS parcel y Trar

R I R T T R P T e, Tttt k2

LT R L L R) ! ;
® iy N N T atra gty
bl B R e i e A R R R

1 v T
1 L) Tty L LS BT
Eiip s 1'_,:_1‘7 e ,;"" 1yt 2Tt g
gty 2N N ey e T,
’ To £ # ’ 3T
v

ER T Tt sty
iy ‘,vrv"yv1 2
5 ot ey
iy Ty, s

L
Pt el
A

Figure 19.4 PLACEHOLDER FIGURE TO BE REPLACED. The Yarowsky algorithirtlae initial stage (a),
with only seed sentences labeled by collocates, at an intermediate state(b), where mollocates have begn
discovered and more instances/rave been labeled and movedtpand at a final stage (c).

The key to any bootstrapping approach lies in its abilityreate a larger training
set from a small set of seeds. This requires an accuratalisét of seeds and a good
confidence metric for picking good new examples to add tortinihg set. The confi-
dence metric used by Yarowsky (1995) is the measure deslceddier in Sec. 19.2.2,
the log-likelihood ratio of the decision-list rule that stified the example.

We need more good teachers — right now, there are only a halz@ndvho carplay the
freebasswith ease.

An electric guitar andbass player stand off to one side, not really part of the scene, just|as
a sort of nod to gringo expectations perhaps.

When the New Jersey Jazz Society, in a fund-raiser for therisare Jazz Hall of Fame,
honors this historic night next Saturday, Harry Goodman, Koodman'’s brother and
bass plar at the original concert, will be in the audience with otfaenily members.
The researchers said the worms spend part of their life @yadechfish as Pacific salmon
and stripeassand Pacific rockfish or snapper.

And it all started wherfishermen decided the stripdxssin Lake Mead were too skinny.

Though still a far cry from the lake’s record 52-poubdssof a decade ago, “you could
fillet thesefish again, and that made people very, very happy,” Mr. Paulsgs. sa

Figure 19.5 Samples obasssentences extracted from the WSJ using the simple cofre-
latesplay andfish

One way to generate the initial seeds is to hand-label a seabf examples
(Hearst, 1991). Instead of hand-labeling, it is also pdedibuse a heuristic to auto-
ONESENSEFER matically select accurate seeds. Yarowsky (1995) use@tieeSense per Collocation
heuristic, which relies on the intuition that certain woodghrases strongly associated
with the target senses tend not to occur with the other séfasewsky defines his seed
set by choosing a single collocation for each sense. Asustritltion of this technique,

Section 19.6.

Word Similarity: Thesaurus Methods 15

ONE SENSE PER
DISCOURSE

consider generating seed sentences for the fish and musisasobass Without too
much thought, we might come up witishas a reasonable indicatorlmiss, andplay

as a reasonable indicator bdsg. Figure 19.5 shows a partial result of such a search
for the strings “fish” and “play” in a corpus @fassexamples drawn from the WSJ.

We can also suggest collocates automatically, for exanxptaating words from
machine readable dictionary entries, and selecting sesidg uollocational statistics
such as those described in Sec. 19.7 (Yarowsky, 1995).

The original Yarowsky algorithm also makes use of a secondisigc, called
One Sense Per Discoursebased on the work of Gale et al. (1992c), who noticed
that a particular word appearing multiple times in a text iscdurse often appeared
with the same sense. Yarowsky (1995), for example, showeddarpus of 37,232
examples that every time the wadbdssoccurred more than once in a discourse, that it
occurred in only thdishor only themusiccoarse-grain sense throughout the discourse.
The validity of this heuristic depends on the granularitytlé sense inventory and
is not valid in every discourse situation; it seems to be mastly for coarse-grain
senses, and particularly for cases of homonymy rather thbs@my (Krovetz, 1998).
Nonetheless, it has still been useful in a number of unsigpethand semi-supervised
sense disambiguation situations.

19.6 WORD SIMILARITY : THESAURUSMETHODS

WORD SIMILARITY
SEMANTIC DISTANCE

We turn now to the computation of various semantic relattbashold between words.
We saw in Ch. 18 that such relations include synonymy, amtgynyyponymy, hyper-
nymy, and meronymy. Of these, the one that has been most ¢atigmally developed
is the idea of wordsynonymy. Synonymy is a binary relation between words; two
words are either synonyms or not. For most computationgdgses we use instead a
looser metric ofvord similarity or semantic distance Two words are more similar if
they share more features of meaning, or are near-synonymeswords are less simi-
lar, or have greater semantic distance, if they have fewemoon meaning elements.
Although we have described them as relations between weytsnymy, similarity,
and distance are actually relations between veettsesFor example of the two senses
of bank we might say that the financial sense is similar to one of émses ofund
while the riparian sense is more similar to one of the senkskpe In the next few
sections of this chapter, we will need to compute theseioslsiover both words and
senses.

The ability to compute word similarity is a useful part of gdanguage under-
standing applications. limformation retrieval or question answeringwe might want
to retrieve documents whose words have similar meanindsetquery words. Imat-
ural language generationand machine translation, we need to know whether two
words are similar to know if we can substitute one for the pthgarticular contexts.
In language modelingwe can use semantic similarity to cluster words for claessed
models. One interesting class of applications for word Isinty is automatic grading
of student responses. For example algorithmsafdomatic essay gradinguse word
similarity to determine if an essay is similar in meaning tooarect answer. We can

16

Chapter 19. Computational Lexical Semantics

WORD
RELATEDNESS

also use word-similarity as part of an algorithmtédke an exam, such as a multiple-
choice vocabulary test. Automatically taking exams is ulieftest designs in order to
see how easy or hard a particular multiple-choice questi@xam is.

There are two classes of algorithms for measuring word aitityjl This section
focuses orthesaurus-basedalgorithms, in which we measure the distance between
two senses in an on-line thesaurus like WordNet or MeSH. Bxésection focuses on
distributional algorithms, in which we estimate word similarity by findingsds that
have similar distributions.

The thesaurus-based algorithms use the structure of thauhes to define word
similarity. In principle we could measure similarity usiagy information available
in a thesaurus (meronymy, glosses, etc). In practice, hexvévesaurus-based word
similarity algorithms generally use only the hypernym/agpm (s-aor subsumption)
hierarchy. In WordNet, verbs and nouns are in separate hypehierarchies, so a
thesaurus-based algorithm for WordNet can thus only coenpatin-noun similarity, or
verb-verb similarity; we can’t compare nouns to verbs, oadgthing with adjectives
or other parts of speech.

Resnik (1995) and Budanitsky and Hirst (2001) draw the irtgoardistinction
betweenword similarity andword relatedness Two words are similar if they are
near-synonyms, or roughly substitutable in context. Wetdtedness characterizes a
larger set of potential relationships between words; ante for example, have high
relatedness, but low similarity. The wordar andgasolineare very related, but not
similar, while car andbicycleare similar. Word similarity is thus a subcase of word
relatedness. In general, the five algorithms we describleisnsection do not attempt
to distinguish between similarity and semantic relatedné&s convenience we will
call themsimilarity measures, although some would be more appropriately descri
as relatedness measures; we return to this question in $&c. 1

currency money Richter scale

coinage fund

N\

budget

kel dime

Figure 19.6 A fragment of the WordNet hypernym hierarchy, showing pathgths
from nickelto coin (1), dime(2), money(5), andRichter scalg7).

The oldest and simplest thesaurus-based algorithms aegl loasthe intuition
that the shorter thpath in the thesaurus hierarchy between two words or senses, the
more similar they are. Thus a word/sense is very similarg@é#rents or its siblings,

Section 19.6.

Word Similarity: Thesaurus Methods 17

(19.17)

(19.18)

INFORMATION
CONTENT

and less similar to words that are far away in the network.s Hation can be oper-
ationalized by measuring the number of edges between thedweept nodes in the
thesaurus graph. For WordNet, which has 11 unique-begioags rather than a sin-
gle root, we’'ll need to add a special root node to make sunetisea path between
any two concepts (senses or synsets). Fig. 19.6 shows ationfuhe conceptlime
is most similar tonickel and coin, less similar frommoney and even less similar to
Richter scale Formally, we specify path length as follows:

pathlerfcy,c2) = the number of edges in the shortest path in the thesaurus
graph between the sense nodgandc;

Path-based similarity can be defined just as the path lehgthlwe most often apply a
log transform (Leacock and Chodorow, 1998):

simpath(cl,cz) = —log pathlericy, cz)

For most applications, we don't have sense-tagged datathaisdve need our
algorithm to give us the the similarity between words rattan between senses or
concepts. For any of the thesaurus-based algorithms, wepaioximate the correct
similarity (which would require sense disambiguation) bstjusing the pair of senses
for the two words that results in maximum sense similariilpfving Resnik (1995):
wordsimwi,wp) = max sim(cg,Cp)

c1€SENSEE;)
CHESENSEBI,)

The basic path-length algorithm makes the implicit assionghat each link in
the network represents a uniform distance. In practice absumption is not appropri-
ate. Some links (for example those that are very deep in thelMéd hierarchy) often
seem to represent an intuitively narrow distance, whileolihks (e.g., higher up in the
WordNet hierarchy) represent an intuitively wider distanEor example, in Fig. 19.6,
the distance fronmickelto money(5) seems intuitively much shorter than the distance
from nickelto an abstract wordtandard the link betweermedium of exchangand
standardseems wider than that between, sayjin andcoinage

It is possible to refine path-based algorithms with nornadilns based on depth
in the hierarchy (Wu and Palmer, 1994), but in general wéd &n approach which
lets us represent the distance associated with each edggeindently.

A second class of thesaurus-based similarity algorithresrgits to offer just
such a fine-grained metric. Theisdormation content similarity algorithms still rely
on the structure of the thesaurus, but also add probabiligtrmation derived from a
corpus.

Using similar notions to those we introduced earlier to definft selectional
restrictions, let’s first defin®(c), following Resnik (1995), as the probability that a
randomly selected word in a corpus is an instance of concéipe., a separate ran-
dom variable, ranging over words, associated with eacheqathc This implies that
P(root) = 1, since any word is subsumed by the root concept. Intuytitbe lower
a concept in the hierarchy, the lower its probability. Waeartrdnese probabilities by
counting in a corpus; each word in the corpus counts as arrmecae of each con-
cept that contains it. For example, in Fig. 19.6 above, aniweace of the wordlime

18

Chapter 19. Computational Lexical Semantics

(19.19)

(19.20)

LOWEST COMMON
SUBSUMER

LCS

RESNIK SIMILARITY

(19.21)

would count toward the frequency obin, currency standard etc. More formally,
Resnik computeB(c) as follows:

B Zwewords(c) count(w)
N N
where wordéc) is the set of words subsumed by concendN is the total number
of words in the corpus that are also present in the thesaurus.

Fig. 19.7, from Lin (1998b), shows a fragment of the WordNetaept hierarchy
augmented with the probabiliti€Xc).

P(c)

enTty 0.395

inanimate-object 0.167

naturalTbject 0.0163

geological-for&tion 0.00176

0.000113 11atura171€vation shore 0.0000836

0.0000189 hill coast 0.0000216

Figure 19.7 PLACEHOLDER FIGURE: A fragment of the WordNet hierarchypsh
ing the probabilityP(c) attached to each content, from Lin (1998b)

We now need two additional definitions. First, following lzasformation the-
ory, we define the information content (IC) of a conceps:

IC(c) = —logP(c)
Second, we define tHewest common subsumepr LCS of two concepts:

LCS(c1,c2) = the lowest common subsumer, i.e., the lowest node in the
hierarchy that subsumes (is a hypernym of) bmthndc,

There are now a number of ways to use the information contfeatnmde in a
word similarity metric. The simplest way was first proposgdResnik (1995). We
think of the similarity between two words as related to tremmon information;
the more two words have in common, the more similar they aesniR proposes to
estimate the common amount of information byitifermation content of the lowest
common subsumer of the two nodesMore formally, theResnik similarity measure
is:

SiMpegnik(C1, C2) = —10gP(LCS(cy, C2))

Lin (1998b) extended the Resnik intuition by pointing owtta similarity metric
between objects A and B needs to do more than measure the aofauiormation in
common between A and B. For example, he pointed out that iftiaddthe more
differencesbetween A and B, the less similar they are. In summary:

Section 19.6.

Word Similarity: Thesaurus Methods 19

(19.22)

(19.23)

(19.24)

LIN SIMILARITY

(19.25)

(19.26)

JIANG-CONRATH
DISTANCE

(19.27)

EXTENDED GLOSS
OVERLAP

EXTENDED LESK

e commonality: the more information A and B have in common, the more similar
they are.

o difference: the more differences between the information in A and B,ldss
similar they are

Lin measures the commonality between A and B as the infoonatbntent of
the proposition that states the commonality between A and B:

IC(Common(A,B))

He measures the difference between A and B as

IC(description(A,B))- IC(common(A,B))

where description(A,B) describes A and B. Given a few adddl assumptions about
similarity, Lin proves the following theorem:

Similarity Theorem: The similarity between A and B is measlby the ratio
between the amount of information needed to state the comlitypof A and B
and the information needed to fully describe what A and B are:

. logP(common(A,B)
SiMjin (A.B) = logP(description(A,B)

Applying this idea to the thesaurus domain, Lin shows (inghsimodification of
Resnik’s assumption) that the information in common betw®e concepts is twice
the information in the lowest common subsumer L&S$Scy). Adding in the above
definitions of the information content of thesaurus congetbte finalLin similarity
function is:

2 x |OgP(LCS(C1,C2))
logP(cy) + logP(c)

For example, using sifp, Lin (1998b) shows that the similarity between the
concepts ofill andcoastfrom Fig. 19.7 is:

2 x logP(geological-formation
logP(hill) +logP(coas})

A very similar formulaJiang-Conrath distance(Jiang and Conrath, 1997) (al-

though derived in a completely different way from Lin, angeessed as a distance

rather than similarity function) has been shown to work af arebetter than all the
other thesaurus-based methods:

distjc(C1,C2) = 2 x logP(LCS(cy,C2)) — (logP(cy) +logP(c2))

disﬁC can be transformed into a similarity by taking the reciptoca

Finally, we describe dictionary-basedmethod, an extension of the Lesk algo-
rithm for word-sense disambiguation described in Sec..19We call this a dictionary
rather than a thesaurus method because it makes use ofgjlodseh are in general
a property of dictionaries rather than thesauri (althougitdMet does have glosses).
Like the Lesk algorithm, the intuition of thiExtended Gloss Overlap or Extended
Lesk measure (Banerjee and Pedersen, 2003) is that two corsmsss in a thesaurus
are similar if their glosses contain overlapping words. Ng2gin by sketching an
overlap function for two glosses. Consider these two cotss@yth their glosses:

e drawing paper:paperthat isspecially preparetbr use in drafting

simLin (01,02) =

simp i (hill,coasy = =0.59

20

Chapter 19. Computational Lexical Semantics

(19.28)

e decal: the art of transferring designs frospecially prepared papés a wood or glass or
metal surface.

For eachn-word phrase that occurs in both glosses, Extended Lesk iadals
score ofn? (the relation is non-linear because of the Zipfian relatigmbetween
lengths of phrases and their corpus frequencies). Hereuwbdapping phrases are
paperandspecially preparedfor a total similarity score of4+ 22 = 5.

Given such an overlap function, when comparing two concépissets), Ex-
tended Lesk not only looks for overlap between their glosbas also between the
glosses of the senses which are hypernyms, hyponyms, nmaspiayd other relations
of the two concepts. For example if we just considered hypmgnd hypernyms,
and defined gloss(hypo(A)) as the concatenation of all thesgis of all the hyponym
senses of A, the total relatedness between two concepts B amght be:

similarity(A,B) = overlap(gloss(A), gloss(B)) + overlag¢ss(hypo(A)),

gloss(hypo(B))) + overlap(gloss(hyper(A)), gloss(hy({3))

Let RELS be the set of possible WordNet relations whose gkage compare;
assuming a basic overlap measure as sketched above, wescatetine the Extended
Lesk overlap measure as:

SiMeLeskC1,C2) =) overlagglosgr(ci)), glosgg(cz)))

rgeRELS
simpath(cl,cz) = —log pathlerics, cy)
SiMResnikC1,C2) = —logP(LCS(cy,¢z))

2 x logP(LCYcy,C2))
logP(c1) + logP(cy)

1
2 x logP(LCS(c1,¢2)) — (logP(c1) + logP(cy))
simg eskC1,C2) =) overlafiglosgr(cy)),glosgg(cz)))
rgeRELS

Simp iy (C1,C2) =

simjc(cl,cz) =

Figure 19.8 Five thesaurus-based (and dictionary-based) similarigsares.

Fig. 19.8 summarizes the five similarity measures we haveritbesl in this
section The publicly availabldr dnet : : Si ni | ari ty package implementing all
these and other thesaurus-based word similarity measleséribed in Pedersen et al.
(2004).

Evaluating Thesaurus-based Similarity Which of these similarity measures is best?
Word similarity measures have been evaluated in two ways. r@ethod is to compute
the correlation coefficient between word similarity scdresn an algorithm and word
similarity ratings assigned by humans; such human ratiage been obtained for 65
word pairs by Rubenstein and Goodenough (1965), and 30 waird by Miller and

Section 19.7.

Word Similarity: Distributional Methods 21

Charles (1991). Another method is to embed the similaritasnee in some end ap-
plication like detection omalapropisms (real-word spelling errors) (Budanitsky and
Hirst, 2006; Hirst and Budanitsky, 2005), or other NLP apgtions like word-sense
disambiguation (?; McCarthy et al., 2004) and evaluataitssict on end-to-end perfor-
mance. All of these evaluations suggest that all the abowasuores perform relatively
well, and that of these, Jiang-Conrath similarity and EdtghLesk similarity are two
of the best approaches, depending on the application.

19.7 WORD SIMILARITY : DISTRIBUTIONAL METHODS

(19.29)

VECTOR

The previous section showed how to compute similarity betwany two senses in a
thesaurus, and by extension between any two words in thauheshierarchy. But of
course we don’t have such thesauri for every language. Eordariguages where we
do have such resources, thesaurus-based methods have arrofrfitmitations. The
obvious limitation is that thesauri often lack words, esalicnew or domain-specific
words. In addition, thesaurus-based methods only workckf hyponymy knowledge
is present in the thesaurus. While we have this for nounspimm information for
verbs tends to be much sparser, and doesn’t exist at all fectacs and adverbs.
Finally, it is more difficult with thesaurus-based methaalsampare words in different
hierarchies, such as nouns with verbs.

For these reasons, methods which can automatically estyaonyms and other
word relations from corpora have been developed. In this@ewe introduce such
distributional methods, which can be applied directly to supply a word eelaéss
measure for NLP tasks. Distributional methods can also bd @ automatic the-
saurus generatiorfor automatically populating or augmenting on-line thesaas like
WordNet with new synonyms and, as we will see in Sec. 19.8) uiiter relations like
hyponymy and meronymy.

The intuition of distributional methods is that the meanaig word is related
to the distribution of words around it; in the famous dictuffrith (1957), “You shall
know a word by the company it keeps!”. Consider the followéxgmple, modified by
Lin (1998a) from (?):

A bottle oftezgiinois on the table.
Everybody likegezgdiino.

Tezdlino makes you drunk.

We maketezgiino out of corn.

The contexts in whichezgdlino occurs suggest that it might be some kind of
fermented alcoholic drink made from corn. The distributibmethod tries to capture
this intuition by representing features of the contextexdiino that might overlap
with features of similar words likbeer, liquor, tequila and so on. For example such
features might beccurs beforelrunk or occurs aftetottle or is the direct object of
likes

We can then represent a wondas avector of these features, just as we saw
with the bag-of-words features in Sec. 19.2. For examplaepsse we had one binary
featuref; representing each of the¢ words in the lexicon. The feature means

22

Chapter 19. Computational Lexical Semantics

occurs in the neighborhood of wowg and hence takes the value ifandv; occur in
some context window, and 0 otherwise. We could represemht®ning of wordv as
the vector

W: (fla f27f37"'7fN)

If w=tezglino, vi=bottle v,=drunk andvz=matrix, the co-occurrence vector for
w from the corpus above would be:

W= (151707)

Given two words represented by such sparse feature veetersan apply a
vector distance measure and say that the words are simils fivo vectors are close
by this measure. Fig. 19.9 shows an intuition about vectoilaiity for the four words
apricot, pineapple digital, andinformation Based on the meanings of these four
words, we would like a metric that showapricotandpineappleto be similar,digital
andinformation to be similar, and the other four pairings to produce lowilsirity.
For each word, Fig. 19.9 shows a short piece (8 dimensioneofbinary) word co-
occurrence vectors, computed from words that occur withinaline context in the
Brown corpus. The reader should convince themselves tieavehtors forapricot
and pineappleare indeed more similar than those of, sagricot and information
For pedagogical purposes we've shown the context wordsatteaparticularly good
at discrimination. Note that since vocabularies are quaitgd (10,000-100,000 words)
and most words don’t occur near each other in any corpusyeetdrs are quite sparse.

arts | boil | data | function | large | sugar | summarized | water
apricot 0 1 0 0 1 1 0 1
pineapple 0 1 0 0 1 1 0 1
digital 0 0 1 1 1 0 1 0
information 0 0 1 1 1 0 1 0

Figure 19.9 Co-occurrence vectors for four words, computed from thenBroorpus,
showing only 8 of the (binary) dimensions (hand-picked fedagogical purposes to shoy
discrimination). Note thafarge occurs in all the contexts aratts occurs in none; a real
vector would be extremely sparse.

Now that we have some intuitions, let's move on to examinedttails of these
measures. Specifying a distributional similarity measerpiires that we specify three
parameters: (1) how the co-occurrence terms are definedvi&t counts as a neigh-
bor), (2) how these terms are weighted (binary? frequenayt2iahinformation?) and
(3) what vector distance metric we use (cosine? Euclidestamtie?). Let's look at
each of these requirements in the next three subsections.

19.7.1 Defining a Word’s Co-occurrence Vectors

In our example feature vector, we used the featureccurs in the neighborhood of
word vj. That is, for a vocabulary siz, each wordw hadN features, specifying
whether vocabulary elememf occurred in the neighborhood. Neighborhoods range
from a small window of words (as few as one or two words on eitlide) to very

Section 19.7.

Word Similarity: Distributional Methods 23

STOPWORDS
STOPLIST

(19.30)

large windows ott500 words. In a minimal window, for example, we might have two
features for each word in the vocabularyword vk occurs immediately before word
w andword vk occurs immediately after wond.

To keep these contexts efficient, we often ignore very fragwerds which tend
not to be very discriminative, often function words suclagam, the, of, 1, 2, and so
on. These removed words are calltdpwordsor thestoplist.

Even with the removal of the stopwords, when used on verelaogpora these
co-occurrence vectors tend to be very large. Instead ofjuesiary word in the neigh-
borhood, Hindle (1990) suggested choosing words that ao@mme sort oframmat-
ical relation or dependencyto the target words. Hindle suggested that nouns which
bear the same grammatical relation to the same verb mightiiais For example, the
wordstea, water, andbeerare all frequent direct objects of the vatbink. The words
senate congresspanel andlegislatureall tend to be subjects of the verbensider
vote andapprove

Hindle’s intuition follows from the early work of Harris (88), who suggested
that:

The meaning of entities, and the meaning of grammaticatioela among
them, is related to the restriction of combinations of thersiities relative
to other entities.

There have been a wide variety of realizations of Hindlegaidince then. In general,
in these methods each sentence in a large corpus is parseddep@ndency parse is
extracted. We saw in Ch. 11 lists of grammatical relatiorslpced by dependency
parsers, including noun-verb relations like subject, ohjmdirect object, and noun-
noun relations like genitive, ncomp, and so on. A senterezthe following would
result in the set of dependencies shown here:

| discovered dried tangerines:

discover (subject I) | (subj-of discover)
tangerine (obj-of discover) tangerine (adj-mod dried)
dried (adj-mod-of tangerine)

Since each word can be in a variety of different dependeraioas with other
words, we’'ll need to augment the feature space. Each feaurew a pairing of a
word and a relation, so instead of a vectoMbfeatures, we have a vector bfx R
features, wher® is the number of possible relations. Fig. 19.10 shows anrsatie
example of such a vector, taken from Lin (1998a), for the waelll As the value of
each attribute we have shown the frequency of the featuiecuarring withcell; the
next section will discuss the use of what values and weightisé for each attribute.

Since full parsing is very expensive, it is common to use ankbuor shallow
parser of the type defined in S&2, with the goal of extracting only a smaller set of
relations like subject, direct object, and prepositior@éat of a particular preposition
(Curran, 2003).

19.7.2 Measures of Association with Context

Now that we have a definition for the features or dimensiorswbrd’s context vector,
we are ready to discuss the values that should be associdtethese features. These

24 Chapter 19. Computational Lexical Semantics
28
El8| 2 ol|lQ <
o o S| El= 2| = < @©
= | = = Q o c “ | © = =
o|la|® =) cC|l |5 X o | = =
0| c|c R olc| =2 [&] £ o Q| >|lo
SR8 [£|E] |SIS|S] |E|T|s|e |§|E]E
| | e %— %— || ©T|o|O|T olala
ol Il 2 | S 5[5 | T SIEls|s o|T|T
& |&l&] [28]8|8| |8|8|2]|8 31838
S| S| S o | o E|E|E o|lg|lo|la E|IE|E
n || ®n a|a c|c|c|...|]©o|o|0o|© c|lc|c
cell|1 |1 |1 16| 30 3/18]|1 6 /11113 |2 3122
Figure 19.10 Co-occurrence vector for the woegll, from Lin (1998a), showing gram-|
matical function (dependency) features. Values for eatfbate are frequency counts
from a 64-million word corpus, parsed by an early version ¢NNPAR.

ASSOCIATION

(19.31)

(19.32)

(19.33)

values are typically thought of ageights or measures ofissociationbetween each
target wordw and a given featurd. In the example in Fig. 19.9, our association
measure was a binary value for each feature, 1 if the relevart had occurred in the
context, O if not. In the example in Fig. 19.10, we used a ri@ssociation measure,
the relative frequency with which the particular contexdttee had co-occurred with
the target word.

Frequency, or probability, is certainly a better measurassbciation than just a
binary value; features that occur often with a target wordrapre likely to be good
indicators of the word’s meaning. Let's define some ternadgyglfor implementing
a probabilistic measure of association. For a target wagrdach element of its co-
occurrence vector is a featufe consisting of a relation and a related word/; we
can sayf = (r,w). For example, one of the features of the weoadl in Fig. 19.10 is
f = (r,w) =(obj-of, attack. The probability of a featuré given a target worav is
P(f|w), for which the maximum likelihood estimate is:

count f,w
P(f[w) = W
Similarly, the maximum likelihood estimate for the joinorability P(f,w) is:
count f,w)
> weountf,w))
P(w) andP(f) are computed similarly.

Thus if we were to define simple probability as a measure af@ason it would
look as follows:

P(f,w) =

assogrob(w, f) =P(f|w)

It turns out, however, that simple probability doesn’t wakwell as more so-
phisticated association schemes for word similarity.

Why isn’'t frequency or probability a good measure of astamiabetween a
word and a context feature? Intuitively, if we want to knowawkinds of contexts are
shared byapricotandpineapplebut not bydigital andinformation we’re not going to
get good discrimination from words likihe it, or they, which occur frequently with
all sorts of words, and aren’t informative about any patticword. We'd like context

Section 19.7.

Word Similarity: Distributional Methods 25

COLLOCATIONS

MUTUAL
INFORMATION

(19.34)

POINTWISE MUTUAL
INFORMATION

(19.35)

(19.36)

LIN ASSOCIATION
MEASURE

(19.37)

words which are particularly informative about the targetrav We, therefore, need
a weighting or measure of association which asks how mucle mften than chance
that the feature co-occurs with the target word. As Curré@®® points out, such a
weighting is what we also want for finding goedllocations and so the measures of
association used for weighting context words for semaritilarity are exactly the
same measure used for finding a word’s collocations.

One of the most important measures of association was fipged by Church
and Hanks (1989, 1990) and is based on the notianwiial information . Themu-
tual information between two random variablésandy is

_ P(x.y)

Thepointwise mutual information (Fano, 1968 is a measure of how often two
eventsx andy occur, compared with what we would expect if they were indeleat:

P(x.y)
I(x,y) =log, ———=*~
0¥ =10% Bpyy)

We can apply this intuition to co-occurrence vectors, byrdegj the pointwise
mutual information association between a target werhd a featurd as:

B P(w,)
assopp(w, f) = OQZW

The intuition of the PMI measure is that the numerator teishow often we
observed the two words together (assuming we compute pilitpalsing MLE as
above). The denominator tells us how often we woesgectthe two words to co-
occur assuming they each occurred independently, so thahiapilities could just be
multiplied. Thus the ratio gives us an estimate of how muchentize target and feature
co-occur than we expect by chance.

Sincef is itself composed of two variablesandw/, there is a slight variant on
this model, due to Lin (1998a), that breaks down the expedatd forP(f) slightly
differently; we’ll call it theLin association measureassog,, not to be confused with
the WordNet measure sjiy, that we discussed in the previous section:

P(w, f)
P(r|w)P(wW|w)

assogin (w, f) = log, W)

For both assqgs), and assog,, we generally only use the featufdor a word
w if the assoc value is positive, since negative PMI valuegpling things are co-
occurringless ofterthan we would expect by chance) tend to be unreliable uniess t
training corpora are enormous (Dagan et al., 1993; Lin, 2998 addition, when
we are using the assoc-weighted features to compare twet tarayds, we only use
features that co-occur with both target words.

Fig. 19.11 from Hindle (1990) shows the difference betwean frequency
counts and PMI-style association, for some direct objefctiseoverbdrink.

One of the most successful association measures for woithstgnattempts to

26 Chapter 19. Computational Lexical Semantics
|Object | Count] PMlassod| Object | Count| PMIassod
bunch beert 2 12.34 wine 2 9.34
tea 2 11.75 water 7 7.65
Pepsi 2 11.75 anything 3 5.15
champagne 4 11.75 much 3 5.15
liquid 2 10.53 it 3 1.25
beer 5 10.20 <SOME AMOUNT>| 2 1.22
Figure 19.11 Objects of the verldrink, sorted by PMI, from Hindle (1990).

T-TEST

(19.38)

(19.39)

capture the same intuition as mutual information, but usestest statistic to measure
how much more frequent the association is than chance. Té&suane was proposed
for collocation-detection by Manning and Schitze (1998a@er 5) and then applied
to word similarity by Curran and Moens (2002), Curran (2003)

The t-test statistic computes the difference between gbdemd expected means,
normalized by the variance. The higher the valug tfie more likely we can reject the
null hypothesis that the observed and expected means asartine

When applied to association between words, the null hysighs that the two
words are independent, and heriid,w) = P(f)P(w) correctly models the relation-
ship between the two words. We want to know how different ttieial MLE prob-
ability P(f,w) is from this null hypothesis value, normalized by the vaci&anNote
the similarity to the comparison with the product model ie M| measure above.
Manning and Schiitze (1999) show that the variastcean be approximated by the
expected probability?(f)P(w). IgnoringN (since it is constant), the resulting t-test
association measure from Curran (2003) is thus:

P(w, f) — P(W)P(f)
P(T)P(w)

See the history section for a summary of various other weighactors that
have been tested on word similarity.

assogtesfW, f) =

19.7.3 Defining similarity between two vectors

From the previous sections we can now compute a co-occw@nesaior for a target
word, with each co-occurrence feature weighted by an asocimeasure, giving us
a distributional definition of the meaning of a target word.

To define similarity between two target wordaindw, we need a measure for
taking two such vectors and giving a measure of vector siitjlédPerhaps the simplest
two measures of vector distance are the Manhattan and Eadlidistance. Fig. 19.12

3 Fano actually used the phrasautual informationto refer to what we now cafpointwise mutual infor-
mation and the phrasexpectation of the mutual informatidar what we now calimutual information the
termmutual informationis still often used to meapointwise mutual informatian

Section 19.7.

Word Similarity: Distributional Methods 27

MANHATTAN
DISTANCE
LEVENSHTEIN
DISTANCE

L1 NORM
(19.40)

L2 NORM

(19.41)

BINARY VECTOR
DOT PRODUCT
INNER PRODUCT

(19.42)

shows a graphical intuition for Euclidean and Manhattatadise between two two-
dimensional vectord andb. The Manhattan distance, also known as evenshtein
distanceor L1 norm, is

N
distancgqanhattaf®.¥) = D _ % — Vil
i—1

TheEuclidean distance also called thé2 norm, was introduced in Ch. 9:

Euclidean(a,b) = L2(a,b) ... __"___,‘_.,..-Manhattan(?i,lg) =L1(a,b)

Q

\/

a b

1 1

Figure 19.12 The Euclidean and Manhattan distance metrics for veetersas, ay),
andb = (by,b2), shown as an intuition; these are generally not used for woniarity.
See Ch. 9 for more on distance metrics.

Although the Euclidean and Manhattan distance metricsigeavnice geometric
intuition for vector similarity and distance, these measuare rarely used for word
similarity. This is because both measures turn out to besamgitive to extreme values.
Instead of these simple distance metrics, word similagtpased on closely related
metrics frominformation retrieval and frominformation theory. The information
retrieval methods seem to work better for word similarityyee’ll define a number of
these in this section.

Let's begin with the intuition for a similarity metric in Fidl9.9, in which the
similarity between two binary vectors was just the numbefeatures the two words
had in common. If we assume a feature vectorlgnary vector, we can define such
a similarity metric as follows, using theot product or inner product operator from
linear algebra:

N
SiMgot-product?: W) = V-W= > vixw
i—1

In most cases, though, as we saw in the previous sectionathes/of our vector
are not binary. Let's assume for the rest of this section thatentries in the co-
occurrence vector are tlssociationvalues between the target words and each of the

28

Chapter 19. Computational Lexical Semantics

(19.43)

VECTOR LENGTH

(19.44)

NORMALIZED DOT
PRODUCT

COSINE

(19.45)

JACCARD
TANIMOTO
MIN/MAX

(19.46)

DICE

features. In other words, let's define the vector for a tavgmtd W with N features
f1..fN as.

W = (asso¢w, f1),asso¢w, f2),assogw, f3),...,assoew, fy))

Now we can apply sigjot-producto vectors with values defined as associations,
to get the dot-product similarity between weighted valdéss raw dot-product, how-
ever, has a problem as a similarity metric: it favlnsg vectors. Thersector lengthis
defined as:

A vector can be longer because it has more non-zero valudgaoause each dimen-
sion has a higher value. Both of these facts will increasedtiteproduct. It turns
out that both of these can occur as a by-product of word frecueA vector from
a very frequent word will have more non-zero co-occurrergsoaiation values, and
will probably have higher values in each (even using astiooiaveights that control
somewhat for frequency). The raw dot product thus favorgpieat words.

We need to modify the dot product to normalize for the veatogth. The sim-
plest way is just to divide the dot product by the lengths cheaf the two vectors. This
normalized dot product turns out to be the same as tbasineof the angle between
the two vectors. The cosine or normalized dot product shijlanetric is thus:

v-w ZiNzlvi X W

. . v’—' = .ﬂ =
SiMeosind Vs W) || || \/ZiN:lv?\/Zi'\':lWiz

Because we have transformed the vectors to unit lengthpgiaemetric, unlike
Euclidean or Manhattan distance, is no longer sensitiveng lvectors from high-
frequency words. The cosine value ranges from 1 for vectonstipg in the same
direction, through 0 for vectors which are orthogonal (shao common terms), to
-1 for vectors pointing in opposite directions, althougipiractice values tend to be
positive.

Let’s discuss two more similarity measures derived fronoiinfation retrieval.
TheJaccard(Jaccard, 1908, 1912) (also calléghimoto or min/max (Dagan, 2000))
measure was originally designed for binary vectors. It waeraled by Grefenstette
(1994) to vectors of weighted associations as follows:

SO, min(vi, w)
SOy max(vi,w)

The numerator of the Grefenstette/Jaccard function ugamih function, essen-
tially computing the (weighted) number of overlapping teas (since if either vector
has a zero association value for an attribute, the resulbwikero). The denominator
can be viewed as a normalizing factor.

A very similar measure, thBice measure, was similarly extended from binary
vectors to vectors of weighted associations; one extetigdom Curran (2003) uses the

SiMyaccard: W) =

Section 19.7.

Word Similarity: Distributional Methods 29

(19.47)

KL DIVERGENCE

(19.48)

JENSON-SHANNON
DIVERGENCE

(19.49)

Jaccard numerator, but uses as the denominator normatifatitor the total weighted
value of non-zero entries in the two vectors.

2x EiN:lmin(vi,wi)

Simpjce(V, W) =

S (Vi wh)
assogrob(w, f) = P(f|w) (19.33)
w, f
assopp(w, f) = Iog2 W (>f) (19.36)
P(w,
assogjn(w,f) = |092p WP ((\W)—Ig(w’\w) (19.37)
— Pwf)-PwP(f)
assogtestw, f) = “ORT) (19.39)
; - VW ZiNzlviXWi
SiMeosind VW) = T = . . (19.45)
VO
. N ElNlmln(Vi W)
simyaccard? W) = —Nizl et) (19.46)
o . _ ZXE min(vi,wj)
sim3g(V||w) = (W*W}+D(|%%) (19.50)
Figure 19.13 Defining word similarity: measures of association betwetarget word
w and a featurd = (r,w’), and measures of vector similarity between word co-ocogee
vectorsv andw.

Finally, there is a family of information-theoretic digittational similarity mea-
sures, (Pereira et al., 1993; Dagan et al., 1994, 1999; 19%9)1 also based on the
conditional probability association measi®€f |w). The intuition of these models is
that two vectorsi andw are similar to the extent that their probability distritmrts
P(flw) andP(f|v) are similar. The basis of comparing two probability digitibns
P andQ is theKullback-Leibler divergence or KL divergence or relative entropy
(Kullback and Leibler, 1951) :

D(P||Q) ZP Iog

Unfortunately, the KL-dlvergence is undefined wh@(x) = 0 andP(x) # 0,
which is a problem since these word distribution vectorgiareerally quite sparse. One
alternative (Lee, 1999) is to use thenson-Shannon divergencevhich represents the
divergence of each distribution from the mean of the two,doekn’t have this problem
with zeros:

P10 P+Q

JSPQ) = D(P[——)+D(Q——)

Rephrased in terms of vectoTandw,

Chapter 19. Computational Lexical Semantics

(19.50) simjg(¥[W) = D(¥] V%V) 4+ D(W V%V)

Fig. 19.13 summarizes the measures of association and whns#milarity that
we have designed. See the history section for a summary ef edttor similarity
measures.

Finally, let's look at some of the results of distributiomadrd similarity. The fol-
lowing are the ten most similar words to the different paftspeech ohopeandbrief,
derived using the online similarity tool (?); this tool definthe co-occurrence vector
using all minipar grammatical relations, uses the asgpmeasure of association, and
a vector similarity metric from Lin (1998a).

e hope (N):optimism 0.141338, chance 0.136681, expectation 0.13¢B6Spect
0.125597, dream 0.119079, desire 0.117939, fear 0.116##8f 0.111264,
confidence 0.109136, promise 0.108269

e hope (V): would like 0.157988, wish 0.139532, plan 0.139349, say &788,
believe 0.135058, think 0.132673, agree 0.129985, wond@eJ 09, try 0.127047,
decide 0.125387,

e brief (N): legal brief 0.139177, affidavit 0.103401, filing 0.0982686étition
0.0864875, document 0.0835244, argument 0.0831851r, 2685654, rebut-
tal 0.077766, memo 0.0768226, article 0.0758248

e brief (A): lengthy 0.256242, hour-long0.191421, short 0.17356 &reded 0.163085,
frequent 0.162555, recent 0.15815, short-lived 0.154888longed 0.149289,
week-long 0.149128, occasional 0.146385

19.7.4 Evaluating Distributional Word Similarity

Distributional similarity can be evaluated in the same wagshesaurus-based sim-
ilarity; we can compare to human similarity scores, or we eaaluate it as part of
end-to-end applications. Besides word sense disambayuatid malapropism detec-
tion, similarity measures have been used as a part of sydtertie grading of exams
and essays(Landauer et al., 1997), or taking TOEFL muitihlsice exams (Landauer
and Dumais, 1997; Turney et al., 2003).

Distributional algorithms are also often evaluated in athwvay: by comparison
with a gold-standard thesaurus. This comparison can betduith a single thesaurus
(Grefenstette, 1994, Lin, 1998a) or by using precision awhlf measure against an
ensemble of thesauri (Curran and Moens, 2002). 3.be the set of words that are
defined as similar in the thesaurus, by being in the same syargeerhaps sharing the
same hypernym, or being in the hypernym-hyponym relati@t SLbe the set of words
that are classified as similar by some algorithm. We can defieeision and recall as:

(19.51) precision= ISLg'recallz SnS|
' S| IS

Curran (2003) evaluated a number of distributional alfong using comparison
with thesauri and found that the Dice and Jaccard methodisrpeed best as measures
of vector similarity, while t-test performed best as a measf association. Thus the

Section 19.8.

Hyponymy and other word relations 31

best metric weighted the associations with t-test, and tisex either Dice or Jaccard
to measure vector similarity.

19.8 HYPONYMY AND OTHER WORD RELATIONS

Similarity is only one kind of semantic relation between dar As we discussed in
Ch. 18, WordNet and MeSH both inclutgponymy/hypernymy, as do many the-
sauruses for other languages, such as CiLin for Chinese/8jdNet also includes
antonymy, meronymy, and other relations. Thus if we want to know if two senses are
related by one of these relations, and the senses occur idN&bior MeSH, we can
just look them up. But since many words are not in these ressulit is important to
be able to learn new hypernym and meronym relations autoaikti

Much work on automatic learning of word relations is based &gy insight first
articulated by Hearst (1992), that the presence of cergilcd-syntactic patterns can
indicate a particular semantic relationship between twango Consider the following
sentence extracted by Hearst from an encyclopedia (?):

(19.52) Agar is a substance prepared from a mixture of red algae,au@elidium, for
laboratory or industrial use.

Hearst points out that most human readers will not know v@eidiumis, but
that they can readily infer that it is a kind of kgponym of) red algage whatever that
is. She suggests that the followilexico-syntactic pattern

(19.53) NPy such as NP{,NP;... (andor)NPR;},i > 1
implies the following semantics
(19.54) VYNP,,i > 1 hyponyn{NP;,NPg)
allowing us to infer
(19.55) hyponyn{Gelidiumred alga¢
NP{,NP} «{,} (andor) otherNPy ...temples, treasuries, and other important civic bugdin
NP such as{NP,}* (or|and)NP red algae such as Gelidium
suchNPy as{NP,}* (or|jand)NP works by such authors as Herrick, Goldsmith, and Shakespea
NP4 {.} including {NP,}* (or|and)NP All common-law countries, including Canada and England
NPy {,} especially{NP,}* (or|and)NP ... most European countries, especially France, EnglamtiSaain
Figure 19.14 Hand-built lexico-syntactic patterns for finding hyperrs/(hearst, 1992, 1998)

Fig. 19.14 shows the 6 patterns Hearst (1992, 1998) sughtstferring the
hyponym relation; we've showNPy as the parent/hyponym. There are a number of
other attempts to extract different WordNet relations gsinch patterns; see the history
section for more details.

Of course, the coverage of such pattern-based methodsiteditny the number
and accuracy of the available patterns. Unfortunatelyedhe obvious examples have
been found, the process of creating patterns by hand becdi#ficult and slow pro-
cess. Fortunately, we've already seen the solution to thi$ &f problem. We can find

32

Chapter 19. Computational Lexical Semantics

(19.56)

(19.57)

SUPERSENSES

new patterns usingootstrapping methods that are common in information extraction
(Riloff, 1996; Brin, 1998), and are also key to the Yarowskgthod described earlier
in Sec. 19.5.

The key insight for the use of bootstrapping in relationatgra discovery is
that with a large corpus we can expect that words involved iielation to show up
with many different patterns that express that same relaticherefore, in theory at
least, we need only start with a small number of precise pett® acquire a set of
seed words involved in a given relation. These words canlearsed to query a large
corpus for sentences containing both terms in some kind pémigency relation; new
patterns can then be extracted from these new sentencegprddess can be repeated
until the pattern set is large enough.

As an example of this process, consider the terms “red algaé™Gelidium”
discovered earlier using Hearst's simple pattern set. Agrtbe results of a simple
Google search using these as query terms is the followingpbea

One example of a red algae is Gelidium.

Removing the seed words from such a sentence and replaengtfith simple
wildcards is the crudest kind of pattern generation. In tiaise, submitting the pattern
“One example of a * is *” to Google currently yields nearly 5000 hits, including the
following example:

One example of a boson is a photon.

We can also extract slightly more sophisticated patternsaoging the extracted
sentences and putting wildcards into the parse tree.

The key to the success of bootstrapping approaches is td tnegemantic drift
that tends to occur as part of repeated applications of traptsing. The further we
get from the original set of seed words or patterns the miedylit is that we’ll come
across patterns with meanings quite different from whatet@st to discover.

Despite this kind of drift, and the low precision of each patt the combina-
tion of a very large number of weak bootstrapped patternspecawve very powerful.
Snow et al. (2005), for example, automatically discovembtof thousands of weak
hyponym patterns and combined them by treating them asrésatn a logistic re-
gression classifier. The resulting classifier achieved gmarbrmance at hypernym
classification.

Another way to view thénypernym problem is as choosing the place to insert
unknown words into an otherwise complete hierarchy. It issige to do this with-
out using lexico-syntactic patterns. For example, we canaisimilarity classifier
(using distributional information, or morphological imfoation) to find the words in
the hierarchy that are most similar to an unknown word, usingpproach like K-
Nearest-Neighbors, and insert the new word there (Tser@g)2@r we can treat the
task of hypernym labeling as a labeling task like namedhetagging. Ciaramita and
Johnson (2003) take this approach, using as tagsipérsensesfrom the 26 broad-
category ‘lexicographer class’ labels from WordNe¢ison location, evenf quantity,
etc). They use features such as surrounding part-of-spgagshword bigram and tri-
gram features, spelling and morphological features, aptyapmulticlass perceptron
classifier.

Section 19.9. Semantic Role Labeling 33

Findingmeronymsseems to be harder than hyponyms; here are some examples
from Girju et al. (2003):

(19.58) The car’s mail messenger is busy at work in #RART>mail cax/ PART> as the
<WHOL E>train</ WHOLE> moves along.

(19.59) Through the operPART>side doox/ PART> of the <WHOLE>car/ WHOLE>, moving
scenery can be seen.

Meronyms are hard to find because the lexico-syntactic ppatthat character-
ize them are very ambiguous. For example the two most comratiarps indicating
meronymy are the English genitive constructions{PNP,] and [NP's NP,], which
also express many other meanings suchasessio(Girju et al., 2003, 2006).

Learning individual relations between words is an impdrtmponent of the

THEURSS general task ahesaurus induction In thesaurus induction, we combine our estimates
of word similarity with our hypernym or other relations toilouan entire ontology or
thesaurus. For example the two-step thesaurus inductionitiim of Caraballo (1999,
2001) first applies a bottom-uglustering algorithm to group together semantically
similar words into an unlabeled word hierarchy. Recall fr8est. 19.10 that in ag-
glomerative clustering, we start by assigning each wordwis cluster. New clusters
are then formed in a bottom-up fashion by successively mgrtjie two clusters that
are most similar; we can use any metric for semantic sinylasuch as one of the
distributional metrics described in the previous sectiimthe second step, given the
unlabeled hierarchy, the algorithm uses a pattern-basealiyyn classifier to assign a
hypernym label to each cluster of words. See the history@etdr more recent work
on thesaurus induction.

19.9 SEMANTIC ROLE LABELING

The final task we'll discuss in this chapter links word measimwith sentence mean-
SEMANTICROLE ings. This is the task afemantic role labeling sometimes callethematic role label-

ing, case role assignmentr evenshallow semantic parsing Semantic role labeling
is the task of automatically finding thieematic rolesfor each predicate in a sentence.
More specifically, that means determining which constitaéma sentence are seman
tic arguments for a given predicate, and then determiniagfipropriate role for each
of those arguments. Semantic role labeling has the poltémtiaprove performance in
any language understanding task, although to date its priagplications have been
in question answering and information extraction.

Not surprisingly, most current approaches to semantic leddeling are based
on a supervised machine learning paradigm and, hence, reegcéess to adequate
amounts of training and testing materials. Over the lastyfears, both the FrameNet
and PropBank resources discussed in Ch. 18 have playedthisThat is, they have
been used to specify what counts as a predicate, to definetlod les used in the
task, as well as to provide training and test data. $h&SEVAL-3 evaluation used
Framenet, while the CONLL evaluations in 2004 and 2005 wased on PropBank.

The following examples show the different representatfom® the two efforts.
Recall that FrameNet (19.60) employs a large number of frapeeific frame elements

34

Chapter 19. Computational Lexical Semantics

(19.60)

(19.61)

as roles, while PropBank (19.61) makes use of a smaller nuoflggeneric argument
labels.

[You] can't [blame] [the program] [for being unable to cartly identify a processor]
COGNIZER TARGET EVALUEE REASON

[The San Francisco Examiner] issued [a special editionpyad noon yesterday]
ARGO TARGET ARGl ARGM-TMP

A simplified semantic role labeling algorithm is sketchedrig. 19.15. Follow-
ing the very earliest work on semantic role analysis (Simsn&@73), most work on se-
mantic role labeling begins by parsing the sentence. Rylali@ilable broad-coverage
parsers (such as Collins (1996) or Charniak (1997)) are#ipiused to assign a parse
to the input string. Fig. 19.16 shows a parse of (19.61) abdwee resulting parse
is then traversed to find all predicate-bearing words. Fohed these predicates the
tree is again traversed to determine which role, if any, eamistituent in the parse
plays with respect to that predicate. This judgment is madiér&t characterizing the
constituent as a set of features with respect to the predicatclassifier trained on
an appropriate training set is then passed this featurensetreakes the appropriate
assignment.

function SEMANTICROLEL ABEL(words returns labeled tree

parse— PARSEwordg
for each predicatein parsedo
for each nodein parsedo
featurevector— EXTRACTFEATUREYnode predicate parse
CLAssSIFYNODE(node featurevectarparse

Figure 19.15 A generic semantic role labeling algorithm. TheASsIFYNODE com-
ponent can be a simple 1-of-N classifier which assigns a s@enanbe (or NONE for
non-role constituents). IASsIFYNODE can be trained on labeled data such as FrameNet
or PropBank.

Let’s look in more detail at the simple set of features sutggkby Gildea and
Jurafsky (2000, 2002), which have been incorporated intstmade-labeling systems.
We'll extract them for the firsNP in Fig. 19.16, theNP-SBJconstituenthe San Fran-
cisco Examiner

e The governingredicate, in this case the verissued For PropBank, the pred-
icates are always verbs; FrameNet also has noun and adjgcédicates. The
predicate is a crucial feature, since both PropBank and &xanlabels are de-
fined only with respect to a particular predicate.

e Thephrase typeof the constituent, in this ca$¢P (or NP-SBJ. This is simply
the name of the parse node which dominates this constitnehti parse tree.
Some semantic roles tend to appeal®s, others a§or PP, and so on.

Section 19.9. Semantic Role Labeling 35

__ s

—
—~ ~
- ~

NP-SBJ= ARGO - >VP

D‘T Nl‘\lP NI‘\IP Nl\‘IP ,
/

The San Francisco Examirer

VBD =TARGET NP=ARG1 PP-TMP=ARGM-TMP

issued DT 31 NN IN NP

a special edition around NN NP-TMP

noun yesterday

Figure 19.16 Parse tree for a PropBank sentence, showing the PropBaoknary labels. The dotted line
shows thepath feature NRS|VP|VBD for ARGO, the NP-SBJ constituettte San Francisco Examiner

e The head word of the constituentExaminer The head word of a constituent
can be computed using standard head rules, such as thoseigi@h. 11 in
Fig. ??. Certain head words (e.g. pronouns) place strong contgraim the
possible semantic roles they are likely to fill.

e Thehead word part-of-speechof the constituentNNP.

e The path in the parse tree from the constituent to the predicate. paih is
marked by the blue dotted line in Fig. 19.16. Following (@#dand Jurafsky,
2000), we can use a simple linear representation of the p&t5|VP|VBD. |
and| represent upward and downward movement in the tree resplyctirhe
path is very useful as a compact representation of many ldhdsammatical
function relationships between the constituent and thdipage.

e Thevoice of the clause in which the constituent appears, in this catee

(as contrasted witipassivg. Passive sentences tend to have strongly different

linkings of semantic roles to surface form than active ones.

e The binarylinear position of the constituent with respect to the predicate, either

before or after.

e The sub-categorizationof the predicate. Recall from Ch. 11 that the subcat-

egorization of a verb is the set of expected arguments thagapin the verb
phrase. We can extract this information by using the phrasetsre rule that
expands the immediate parent of the predicdi;— NP PPfor the predicate in
Fig. 19.16.

Many other features are generally extracted by semanticlabeling systems,
such as named entity tags (it is useful to know if a constitieaLOCATION or PER-
SoN, for example), or more complex versions of the path feat(thesupward or down-

Chapter 19. Computational Lexical Semantics

ward halves, whether particular nodes occur in the patk),ridhtmost or leftmost
words of the constituent, and so on.

We now have a set of observations, each with a vector of fest{recall that
many observations will have the value NONE rather than arRyz0):

ARGO, [issued, NP, Examiner, NNP, NB|VP|VBD, active, before, VP— NP
PP]

Just as we saw for word sense disambiguation, we can divide thbservations
into a training and a test set, use the training examples ynsapervised machine
learning algorithm, and build a classifier. SVM and Maximunirépy classifiers have
yielded good results on this task on standard evaluationsce@rained, the classi-
fier can be used on unlabeled sentences to propose a rolectoiceastituent in the
sentence. More precisely, an input sentence is parsed aratedure similar to that
described earlier for training is employed.

Instead of training a single stage classifier, some rolelitagp@algorithms do
classification in multiple stages for efficiency:

e Pruning: to speed up execution, some constituents are eliminateddomsid-
eration as possible roles, based on simple rules

¢ Identification: a binary classification of each node as/®© to be labeled or a
NONE.

o Classification: a one-of-N classification of all the constituents that wateeled
asARG by the previous stage.

There are a number of complications that all semantic rddeliag systems
need to deal with. Constituents in FrameNet and PropBankeayaired to be non-
overlapping. Thus if a system incorrectly labels two ovgpiag constituents as argu-
ments, it needs to decide which of the two is correct. Addaity, the semantic roles
of constituents are not independent; since PropBank daeslow multiple identical
arguments, labeling one constituent asx&®0 would greatly increase the probability
of another constituent being labeledG1. Both these problems can be addressed by
the two-stage approaches based on lattidd-best rescoring discussed in Ch. 9: hav-
ing the classifier assign multiple labels to each constifwesch with a probability, and
using a second global optimization pass to pick the best &dupience.

Instead of using parses as input, it is also possible to dasgorole label-
ing directly from raw (or part-of-speech tagged) text, amentapplying the chunking
techniques used for named entity extraction or partialipgrsSuch techniques are
particularly useful in domains such as bioinformatics vetieis unlikely that syntactic
parsers trained on typical newswire text will perform well.

Finally, semantic role labeling systems have been geezadiluated by requir-
ing that each argument label must be assigned to the exactigat word sequence or
parse constituent. Precision, recall, and F-measure eanlie computed. A simple
rule-based system can be used as a baseline, for exampiegalg first NP before
the predicate asrRGO and the first NP after the predicatesass1, and switching these
if the verb phrase is passive.

Section 19.10. Advanced: Unsupervised Sense Disambaguati 37

19.10 ADVANCED: UNSUPERVISEDSENSE DISAMBIGUATION

It is expensive and difficult to build large corpora in whickch word is labeled for its
word sense. For this reason, unsupervised approachesse dmsambiguation are an
exciting and important research area.

In unsupervised approaches, we don’t use human-definedseogks. Instead,
the set of ‘senses’ of each word are created automaticaliy the instances of each
word in the training set. Let’s introduce a simplified versad the methods of Schiitze’s
(Schitze, 1992, 1998) on unsupervsed sense disambigudtioSchitze’s method,
we first represent each instance of a word in the training gedistributional con-
text feature-vectors that are a slight generalization efffature vectors we defined in
Sec. 19.7. (ltis for this reason that we turned to unsupedvéense disambiguation
only after introducing word similarity.)

As in Sec. 19.7 we will represent a wondas a vector based on frequencies of
its neighboring words. For example for a given target woyg€) w, we might select
1000 words that occur most frequently within 25 words of amstance ofwv. These
1000 words become the dimension of the vector. Let's deffit@ mean the frequency
with which wordi occurs in the context of wond. We define the word vectav (for a
given token (observation) of) as:

W= (f1, f2, f3,---, f1000)

So far this is just a version of the distributional context sev in Sec. 19.7.
We can also use a slightly more complex version of the digfidbal context. For
example Schuetze defines ttmntext vectorof a wordw not as this first-order vector,
but instead by itsecond order co-occurrenceThat is, the context vector for a word
w is built by taking each word in the context ofw, for eachx computing its word
vectorX, and then taking the centroid (average) of the vectors

Let's see how we use these context vectors (whether firgramdsecond-order)
in unsupervised sense disambiguation of a warth training, we’ll need only 3 steps:

1. For each tokemw; of wordw in a corpus, compute a context vector

2. Use alustering algorithm to cluster these word token context vectd@mto a
predefined number of groups or clusters. Each cluster dedisense oiv.

3. Compute therector centroid of each cluster. Each vector centrgjds asense
vector representing that sensewf

Since this is an unsupervised algorithm we won’t have namesdch of these
‘senses’ ofw; we just refer to thgth sense ofv.
Now how do we disambiguate a particular tokeof w? Again we have three
steps:
1. Compute a context vectdifor t as discussed above.
2. Retrieve all sense vectassfor w.
3. Assignt to the sense represented by the sense vectbat is closest to.
All we need is a clustering algorithm, and a distance meti&sveen vectors.

Fortunately, clustering is a well-studied problem with al@wnumber of standard al-
gorithms that can be applied to inputs structured as veofaramerical values (Duda

38

Chapter 19. Computational Lexical Semantics

AGGLOMERATIVE
CLUSTERING

and Hart, 1973). A frequently used technique in languagdicgjons is known as
agglomerative clustering In this technique, each of thé training instances is ini-
tially assigned to its own cluster. New clusters are themfd in a bottom-up fashion
by successively merging the two clusters that are mostaimihis process continues
until either a specified number of clusters is reached, oesgisbal goodness measure
among the clusters is achieved. In cases where the numbairmhy instances makes
this method too expensive, random sampling can be used aorigieal training set
(Cutting et al., 1992) to achieve similar results.

How can we evaluate unsupervised sense disambiguatiooagm@s? As usual,
the best way is to dn vivo evaluation, in which the WSD algorithm is embedded in
some end-to-end system. Component evaluation can alsehd,ubough, if we have
some way to map the automatically derived sense classesadnte hand-labeled gold
standard set, so that we can compare a hand-labeled testlset set labeled by our
unsupervised classifier. One way of doing this mapping isdp pach sense cluster to
a pre-defined sense by choosing the sense that (in somagraiet) has the most word
tokens overlapping with the cluster. Another is to consallgpairs of words in the test
set, testing for each whether both the system and the héetidg put both members
of the pair in the same cluster or not.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Word sense disambiguation traces its roots to some of thiestaapplications of dig-
ital computers. We saw above Warren Weaver's (1955) suiggetsi disambiguate
a word by looking at a small window around it, in the contextnadichine transla-
tion. Other notions first proposed in this early period ideduhe use of a thesaurus for
disambiguation (Masterman, 1957), supervised trainir@ggyfesian models for disam-
biguation (Madhu and Lytel, 1965), and the use of clusteningiord sense analysis
(Sparck Jones, 1986).

An enormous amount of work on disambiguation has been cdedusithin
the context of early Al-oriented natural language processystems. Most natural
language analysis systems of this type exhibit some forrxa¢al disambiguation ca-
pability, however, a number of these efforts made word sdissenmbiguation a larger
focus of their work. Among the most influential efforts wehe tefforts of Quillian
(1968) and Simmons (1973) with semantic networks, the wéWitks with Pref-
erence Semanticd/ilks (1975c, 1975b, 1975a), and the work of Small and Rieger
(1982) and Riesbeck (1975) on word-based understandirigrsgs Hirst'sABSITY
system (Hirst and Charniak, 1982; Hirst, 1987, 1988), whisbd a technique based
on semantic networks called marker passing, representadlseadvanced system of
this type. As with these largely symbolic approaches, moshectionist approaches
to word sense disambiguation have relied on small lexicdtislvand-coded represen-
tations (Cottrell, 1985; Kawamoto, 1988).

Considerable work on sense disambiguation has been cauircthe areas
of Cognitive Science and psycholinguistics. Appropriatiough, it is generally de-
scribed using a different name: lexical ambiguity resolutiSmall et al. (1988) present

Section 19.10.

Advanced: Unsupervised Sense Disambaguati 39

a variety of papers from this perspective.

The earliestimplementation of a robust empirical apprdaac®ense disambigua-
tion is due to Kelly and Stone (1975) who directed a team thaatdkcrafted a set of
disambiguation rules for 1790 ambiguous English wordskl(#886) was the first to
use a machine readable dictionary for word sense disamiguaVilks et al. (1996)
describe extensive explorations of the use of machine bdadiéctionaries. The prob-
lem of dictionary senses being too fine-grained or lacking@propriate organization
has been addressed in the work of Dolan (1994) and Chen anthGh898).

Modern interest in supervised machine learning approatchdsambiguation
began with Black (1988), who applied decision tree learninthe task. The need for
large amounts of annotated text in these methods led totigatisns into the use of
bootstrapping methods (Hearst, 1991; Yarowsky, 1995).pFbblem of how to weigh
and combine disparate sources of evidence is explored imNd.ae (1996), McRoy
(1992), and Stevenson and Wilks (2001).

Among the semi-supervised methods, more recent modeldemftiomal prefer-
ence include Li and Abe (1998), Ciaramita and Johnson (2006 arthy and Carroll
(2003), Light and Greiff (2002). Diab and Resnik (2002) giveemi-supervised al-
gorithm for sense disambiguation based on aligned parakglora in two languages.
For example, the fact that the French waeetastrophemight be translated as English
disasterin one instance antftagedyin another instance can be used to disambiguate
the senses of the two English words (i.e. to choose sensksa$terand tragedy
that are similar). Abney (2002, 2004) explores the mathealafoundations of the
Yarowsky algorithm and its relation to co-training. The mfsequent-sense heuristic
is an extremely powerful one, but requires large amountsipérrised training data.
McCarthy et al. (2004) propose an unsupervised way to autoally estimate the
most frequent sense, based on the thesaurus similaritjcdéfined in Sec. 19.6.

The earliest attempt to use clustering in the study of wondsg is due to Sparck
Jones (1986). Zernik (1991) successfully applied a stahidésrmation retrieval clus-
tering algorithm to the problem, and provided an evaluatiased on improvements
in retrieval performance. More extensive recent work orstelting can be found in
Pedersen and Bruce (1997) and Schutze (1997, 1998).

A few algorithms have attempted to exploit the power of miyudisambiguat-
ing all the words in a sentence, either by multiple passedlyldad Stone, 1975) to
take advantage of easily disambiguated words, or by pasalbech (Cowie etal., 1992;
Veronis and Ide, 1990).

Recent work has focused on ways to use the web for training fdatword
sense disambiguation, either unsupervised (Mihalcea aiddvan, 1999) or by using
volunteers to label data (Chklovski and Mihalcea, 2002).

Agirre and Edmonds (2006) is a comprehensive edited volufmehassumma-
rizing the state of the art in WSD. (Resnik, 2006) describatemtial applications of
WSD. Ide and Veronis (1998a) provide a comprehensive regfaive history of word
sense disambiguation up to 1998. Ng and Zelle (1997) proazideore focused re-
view from a machine learning perspective. Wilks et al. ()®scribe dictionary and
corpus experiments, along with detailed descriptions of early work.

The models of distributional word similarity we discusseds& out of research
in linguistics and psychology of the 1950's. The idea thatnieg was related to

40

Chapter 19. Computational Lexical Semantics

WEIGHTED MUTUAL
INFORMATION

distribution of words in context was widespread in lingigistheory of the 1950's; even
before the well-known Firth (1957) and Harris (1968) dictudiscussed earlier, Joos
(1950) stated that

the linguist’s ‘meaning’ of a morpheme...is by definitiorethet of conditional

probabilities of its occurrence in context with all othernploemes’

The related idea that the meaning of a word could be modeled @Ent in
a Euclidean space, and that the similarity of meaning betvee words could be
modeled as the distance between these points, was propogsythology by Osgood
et al. (1957). The application of these ideas in a computatitramework was first
made by Sparck Jones (1986), and became a core principléoofiation retrieval,
from whence it came into broader use in speech and languagegsing.

There are a wide variety of other weightings and methods fandvsimilarity.
The largest class of methods not discussed in this chapgethar variants to and
details of theinformation-theoretic methods like Jensen-Shannon divergence, KL-
divergence and-skew divergence (Pereira et al., 1993; Dagan et al., 19990;1 ee,
1999, 2001); there are also other metrics from Hindle (1899@)Lin (1998a). Alterna-
tive paradigms include theo-occurrence retrievalmodel (Weeds, 2003; Weeds and
Weir, 2005). Manning and Schiitze (1999, Chapter 5 and & gocation measures
and other related similarity measures. A commonly used hiiig is weighted mu-
tual information (Fung and McKeown, 1997) in which the pointwise mutual infier
tion is weighted by the joint probability. In informationtreeval the TF/IDF weight is
widely used, as we will see in Ch. 21. See Dagan (2000), Mohaarand Hirst (2005),
Curran (2003), Weeds (2003) for good summaries of disiobat similarity.

There is a wide variety of recent literature on other lexieddtions and thesaurus
induction. The use of distributional word similarity forebaurus induction was ex-
plored systematically by Grefenstette (1994). A wide wgrad distributional cluster-
ing algorithms have been applied to the task of discoverivggings of semantically
similar words, including hard clustering (Brown et al., 299soft clustering (Pereira
etal., 1993), as well as new algorithms liR&istering By Committee (CBC) (Lin and
Pantel, 2002). For particular relations, Lin et al. (2003)l&ed hand-crafted patterns
to find antonyms with the goal of improving synonym-detection. The disttibnal
word similarity algorithms from Sec. 19.7 often incorrgcdissign high similarity to
antonyms. Lin et al. (2003) showed that words appearingémtitterngrom X to Y
or either X or Ytended to be antonyms. Girju et al. (2003, 2006) show imprerds
in meronym extraction by learning generalizations about the semanferclasses of
the two nouns. Chklovski and Pantel (2004) used hand-baitems to extract fine-
grained relations between verbs suckstiength. Much recent work has focused on
thesaurus induction by combining different relation estoas. Pantel and Ravichan-
dran (2004), for example, extend Caraballo’s algorithmdmmbining similarity and
hyponymy information, while Snow et al. (2006) integrateltiple relation extractors
to compute the most probable thesaurus structure.

While not as old a field as word similarity or sense disambiigmasemantic role
labeling has a long history in computational linguisticheTearliest work on semantic
role labeling (Simmons, 1973) first parsed a sentence usiij &l parser. Each verb
then had a set of rules specifying how the parse should be edappsemantic roles.
These rules mainly made reference to grammatical functgugect, object, comple-

Section 19.10.

Advanced: Unsupervised Sense Disambaguati 41

ment of specific prepositions), but also checked constitirgarnal features such as

the animacy of head nouns.

Statistical work in the area revived in 2000 after the Fraete&hd PropBank
project had created databases large enough and consisteigfeto make training and
testing possible. Many popular features used for role iabelre defined in Gildea and
Jurafsky (2002), Surdeanu et al. (2003), Xue and Palmed(2@0adhan et al. (2003,

2005).

42 Chapter 19. Computational Lexical Semantics

Abney, S. (2002). Bootstrapping. Rroceedings of ACL-02 Church, K. W. and Hanks, P. (1990). Word association norms,
Abney, S. (2004). Understanding the Yarowsky algorithm. Mutual information, and lexicographyComputational Lin-

Computational Linguistics30(3), 365—395. guistics 16(1), 22-29.
Agirre, E. and Edmonds, P. (Eds.). (2008Yord Sense Disam- Ciaramita, M. and Johnson, M. (2000). Explaining away am-
biguation: Algorithms and Applicationluwer. biguity: learning verb selectional preference with Bagasi

Atkins, S. (1993). Tools for computer-aided corpus lexicog N€Works. INCOLING-0Q pp. 187-193. ACL.
raphy: The Hector projectActa Linguistica Hungarica4l, Ciaramita, M. and Johnson, M. (2003). Supersense tagging of
5-72. unknown nouns in WordNet. IRMNLP-2003 pp. 168-175.
Banerjee, S. and Pedersen, T. (2003). Extended gloss pserla ACL.

as a measure of semantic relatedness]@AI 2003 pp. 805— Collins, M. J. (1996). A new statistical parser based onasigr
810. lexical dependencies. roceedings of ACL-9&anta Cruz,
Black, E. (1988). An experiment in computational discrimsin California, pp. 184-191. ACL.

tion of English word senseslBM Journal of Research and cgurell G. W. (1985). A Connectionist Approach to Word
Development32(2), 185-194. Sense DisambiguatiorPh.D. thesis, University of Rochester,

Brin, S. (1998). Extracting patterns and relations from the Rochester, NY. Revised version published in the same title b
World Wide Web. InProceedings World Wide Web and Pitman in 1989.

Databases International Workshop, Number 1590 in LNCSCOWie J., Guthrie, J. A., and Guthrie, L. M. (1992). Lexical
pp. 172-183. Springer. o ny P :

-) disambiguation using simulated annealing. GOLING-92
Brown, P. F., Della Pietra, V. J., deSouza, P. V., Lai, J. 6d a Nantes, France, pp. 359-365.

Mercer, R. L. (1992). Class-baseegram models of natural
language Computational Linguistics18(4), 467—-479.

Bruce, R. and Wiebe, J. (1994). Word-sense disambiguaten u)
ing decomposable models. Rroceedings of the 32nd ACL Curran, J. R. and Moens, M. (2002). Improvements in au-
Las Cruces, NM, pp. 139-145. ACL. tomatic thesaurus extraction. Rroceedings of the ACL-02

Budanitsky, A. and Hirst, G. (2001). Semantic distance in workshop on Unsupervised Lexical Acquisiti®thiladelphia,

WordNet: An experimental, application-oriented evalomti PAfLY S9-CoRE".

of five measures. IProceedings of the NAACL 2001 Work- Cutting, D., Karger, D. R., Pedersen, J. O., and Tukey, J. W.

shop on WordNet and Other Lexical Resourceittsburgh, ~ (1992). Scatter/gather: A cluster-based approach to limgws

PA. large document collections. BIGIR-92 Copenhagen, Den-
Budanitsky, A. and Hirst, G. (2006). Evaluating wordneséad ~ Mark, pp. 318-329. ACM.

measures of lexical semantic relatedné&smputational Lin- Dagan, |. (2000). Contextual word similarity. In Dale, R.,

guistics 32(1), 13-47. Moisl, H., and Somers, H. (Eds.A Handbook of Natural
Caraballo, S. (1999). Automatic construction of a hypernym Language Processing: Techniques and applications for the

labeled noun hierarchy from text. BCL-99 College Park, Processing of language as teMarcel Dekker.

MD. ACL. Dagan, |., Lee, L., and Pereira, F. (1999). Similarity-llase
Caraballo, S. (2001).Automatic Acquisition of a hypernym- models of cooccurrence probabilitiesMachine Learning

labeled noun hierarchy from textPh.D. thesis, Brown Uni- 34(1-3), 43-69.

versity. Dagan, |., Marcus, S., and Markovitch, S. (1993). Contdxtua
Charniak, E. (1997). Statistical parsing with a contegefr word similarity and estimation from sparse data.Pioceed-
grammar and word statistics. WAAI-97, Menlo Park, pp. ings of the 31st ACLColumbus, Ohio, pp. 164-171. ACL.

SO5ERAAAI Press.)) Dagan, |., Pereira, F., and Lee, L. (1994). Similarity-bast-
Chen, J.N.and Chang, J. S. (1998). Topical clustering of MRD mation of word cooccurrence probabilities. Fmoceedings of
senses based on information retrieval techniquésmputa- the 32nd ACL Las Cruces, NM, pp. 272-278. ACL.

tional Linguistics 24(1), 61-96. . .]

ona |‘ngms . _4() L Diab, M. and Resnik, P. (2002). An unsupervised method for
Chklovski, T. and Mihalcea, R. (2002). Building a sense @39 54 sense tagging using parallel corporaPiaceedings of

corpus with open mind word expert. KCL-02 Workshop on ACL-02 pp. 255-262. ACL.

Word Sense Disambiguation: Recent Successes and Future)))

Directions pp. 116-122. Dolan, W. B. (1994). Word sense ambiguation: Clustering
Chklovski, T. and Pantel, P. (2004). Verb ocean: Mining the fgll_ted senses. 160LING-94 Kyoto, Japan, pp. 712-716.

Web for fine-grained semantic verb relations. BMVNLP '

2004 pp. 25-26. Duda, R. O. and Hart, P. E. (1973pattern Classification and
Church, K. W. and Hanks, P. (1989). Word association norms, Sc€ne Analysislohn Wiley and Sons, New York.

mutual information, and lexicography. Froceedings of the Fano, R. M. (1961)Transmission of information; A statistical

27th ACL Vancouver, B.C., pp. 76-83. ACL. theory of communicationMIT Press, Cambridge, MA.

Curran, J. R. (2003)From Distributional to Semantic Similar-
ity. Ph.D. thesis, University of Edinburgh.

Section 19.10. Advanced: Unsupervised Sense Disambaguati 43

Firth, J. R. (1957). A synopsis of linguistic theory 1930589 Hirst, G. (1988). Resolving lexical ambiguity computatdin
In Studies in Linguistic AnalysisPhilological Society, Ox- with spreading activation and polaroid words. In Small, S. L
ford. Reprinted in Palmer, F. (ed.) 1968. Selected Papeis of Cottrell, G. W., and Tanenhaus, M. K. (Edsbgxical am-
R. Firth. Longman, Harlow. biguity resolution: Perspectives from psycholinguistiosu-

Fung, P. and McKeown, K. (1997). A technical word and term ropsychology, and artificial intelligencg@p. 73—108. Morgan
translation aid using noisy parallel corpora across laggua <aufmann, San Mateo, CA.
groups.Machine Translation12(1-2), 53-87. Hirst, G. and Budanitsky, A. (2005). Correcting real-word

Gale, W. A., Church, K. W., and Yarowsky, D. (1992a). Work spelling errors by restoring lexical cohensioNatural Lan-
on statistical methods for word sense disambiguation. In guage Englneerlng.ll, 87148
Goldman, R. (Ed.)Proceedings of the 1992 AAAI Fall Sym- H|r_st, G.‘and ‘Charnlak, E. (1982). Word sense and case slot
posium on Probabilistic Approaches to Natural Language ~ disambiguation. IiAAAI-82 pp. 95-98.

Gale, W. A., Church, K. W., and Yarowsky, D. (1992b). Esti-!de, N. M. and Veronis, J. (Eds.). (1998a)Computational
mating upper and lower bounds on the performance of word- Linguistics: Special Issue on Word Sense Disambiguation
sense disambiguation programs. Rroceedings of the 30th ~ Vol. 24. MIT Press, Cambridge, MA.

ACL, Newark, DE, pp. 249-256. ACL. Ide, N. M. and Véronis, J. (1998b). Introduction to the splec

Gale, W. A., Church, K. W., and Yarowsky, D. (1992c). One i_ssue on word sense disambiguati@omputational Linguis-
sense per discourse. Rroceedings DARPA Speech and Nat- 1icS 24(1), 1-40.
ural Language Workshgmpp. 233-237. Morgan Kaufmann. Jaccard, P. (1908). Nouvelles recherches sur la disivibuid-

Gaustad, T. (2001). Statistical corpus-based word sersse di rale. Bulletin de la Société Vaudoise des Sciences Naturelles

ambiguation: Pseudowords vs. real ambiguous words. In44 223-23¢
ACL/EACL 2001 — Student Research Workshmp 255-262. Jaccard, P. (1912). The distribution of the flora of the alpin

ACL. zone.New Phytologist11, 37-50.

Gildea, D. and Jurafsky, D. (2000). Automatic labeling of se Jiang, J. J. and Conrath, D. W. (1997). Semantic similarity
mantic roles. IProceedings of ACL-Q®Hong Kong, pp. 512— based on corpus statistics and lexical taxonomROCLING
520. X, Taiwan.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of se J00S, M. (1950). Description of language desigpurnal of the
mantic roles.Computational Linguistic28(3), 245-288. Acoustical Society of America2, 701-708.

Girju, R., Badulescu, A., and Moldovan, D. (2006). Autoroati Katz, J. J. and Fodor, J. A. (1963). The structure of a semanti
discovery of part-whole relation€omputational Linguistics ~ the0ry-Language39, 170-210.
31(1). Kawamoto, A. H. (1988). Distributed representations of am-
Girju, R., Badulescu, A., and Moldovan, D. (2003). Learn- biguous words and their resolution in connectionist neksor

ing semantic constraints for the automatic discovery of-par :_n S'm?”A S.b_L.,_tCoétrell,I Gt W., ajr_];i5nggnl'll\;sllus, M.K(Edfs.),
whole relations. IrProceedings of HLT-NAACL-QEdmon- exical Ambiguity Resolutionpp. —<<8. Morgan Raut-

ton, Canada, pp. 1-8. ACL. man, San Mateo, CA.

Grefenstette, G. (1994)Explorations in Automatic Thesaurus Kelly, E F. and Stone, P. J. (1975Fomputer Recognition of
- English Word Sense#orth-Holland, Amsterdam.
Discovery Kluwer, Norwell, MA.

Harris. Z. (1968) Math ical S fL h Kilgarriff, A. (2001). English lexical sample task desecrip
arris, - (). Mathematical Structures of Languagaohn tion. In Proceedings of Senseval-2: Second International
Wiley, New York.

Workshop on Evaluating Word Sense Disambiguation Sys-
Hearst, M. A. (1991). Noun homograph disambiguation. In tems Toulouse, France, pp. 17-20.

Proceedings of the 7th Annual Conference of the Universit)k"garriﬂ A.and Palmer, M. (Eds.). (2000Computing and the
of Waterloo Centre for the New OED and Text Reseafbk Humanities: Special lssue on SENSEVMG. 34. Kluwer.

ford, pp. 1-19. . . .
PP Kilgarriff, A. and Rosenzweig, J. (2000). Framework and re-

Hearst, M. A. (1992). Automatic acquisition of hyponymsifro gyits for English SENSEVAL.Computers and the Humani-
large text corpora. ICOLING-92 Nantes, France. ties, 34(1-2).

Hearst, M. A. (1998). Automatic discovery of wordnet rela- Krovetz, R. (1998). More than one sense per discourse. In
tions. In Fellbaum, C. (Ed.)Vordnet: An Electronic Lexical Proceedings of the ACL-SIGLEX SENSEVAL Workshop
DatabaseMIT Press, Boston, MA. Kullback, S. and Leibler, R. A. (1951). On information and

Hindle, D. (1990). Noun classification from predicate-angunt sufficiency. Annals of Mathematical Statistic2, 79-86.
structures. IfProceedings of the 28th ACRittsburgh, PA, pp. Landauer, T. K. and Dumais, S. T. (1997). A solution to Pkato’
268-275. ACL. problem: The Latent Semantic Analysis theory of acquisitio

Hirst, G. (1987).Semantic Interpretation and the Resolution of induction, and representation of knowledg@sychological
Ambiguity Cambridge University Press, Cambridge. Review 104, 211-240.

44 Chapter 19. Computational Lexical Semantics

Landauer, T. K., Laham, D., Rehder, B., and Schreiner, M. EMcCarthy, D., Koeling, R., Weeds, J., and Carroll, J. A. (200
(1997). How well can passage meaning be derived without Finding predominant word senses in untagged text.Prin
using word order: A comparison of latent semantic analysis ceedings of ACL-Q4op. 279—-286.

and humans. IlCOGSCI-97 Stanford, CA, pp. 412-417. \cRoy, S. (1992). Using multiple knowledge sources for word
Lawrence Erlbaum. sense discriminatiorComputational Linguisticsl8(1), 1-30.

Landes, S., Leacock, C., and Tengi, R. I. (1998). Buil.ding S€Mihalcea, R. and Moldovan, D. I. (1999). An automatic method
mantic concordances. In Fellbaum, C. (E®jordNet: An ¢, qonerating sense tagged corporaPtaceedings of AAAI
Electronic Lexical Databasepp. 199-216. MIT Press, Cam- pp. 461466
bridge, MA.) '

9 Miller, G. A. and Charles, W. G. (1991). Contextual corresat

Leacock, C. and Chqdqroyv, M. (1998). Com_blnm_g Iogal €ON" ot semantics similarity.Language and Cognitive Processes
text and WordNet similarity for word sense identificatiom. | 6(1), 1-28
Fellbaum, C. (Ed.\Wordnet: An Electronic Lexical Database "' ']
pp. 265-283. MIT Press, Boston, MA. Miller, G. A., Leacock, C., Tengi, R., and Bunker, R. T. (1993

A semantic concordance. Froceedings ARPA Workshop on

Leacock, C., Towell, G., and Voorhees, E. (1993). Corpus- Human Language Technolagyp. 303-308. ACL.

based statistical sense resolutionPhoceedings of the ARPA
Human Language Technology Workshpp. 260—265. ACL. Mohammad, S. and Hirst, G. (2005). Distributional measures

Lee, L. (1999). Measures of distributional similarity. ACL- as proxies for semantic relatedness. Submitted.
99, pp. 25-32. Nakov, P. I. and Hearst, M. A. (2003). Category-based pseu-

Lee, L. (2001). On the effectiveness of the skew divergence d0Words. InProceedings of HLT-NAACL-03dmonton,
for statistical language analysis. Atificial Intelligence and Canada. ACL.
Statistics pp. 65—72. Ng, H. T. and Lee, H. B. (1996). Integrating multiple knowl-

Lesk, M. E. (1986). Automatic sense disambiguation using ma edge sources to d|samb|guate word senses: An exemplar-
chine readable dictionaries: How to tell a pine cone from an based approach. Rroceedings of ACL-9&anta Cruz, CA,

ice cream cone. IRroceedings of the Fifth International Con- PP 40-47. ACL.

ference on Systems Documentatidoronto, CA, pp. 24-26. Ng, H. T. and Zelle, J. (1997). Corpus-based approaches to

ACM. semantic interpretation in NLRAI Magazine 18(4), 45-64.

Li, H. and Abe, N. (1998). Generalizing case frames using @sgood, C. E., Suci, G. J., and Tannenbaum, P. H. (196%.
thesaurus and the MDL principl€omputational Linguistics Measurement of MeaningUniversity of lllinois Press, Ur-
24(2), 217-244. bana, IL.

Light, M. and Greiff, W. (2002). Statistical models for the i Palmer, M., Fellbaum, C., Cotton, S., Delfs, L., and Dang,
duction and use of selectional preferendgegnitive Scienge ~ H. T. (2001). English tasks: All-words and verb lexical

87, 1-13. sample. InProceedings of Senseval-2: Second International
Lin, D. (1998a). Automatic retrieval and clustering of dami ~ Workshop on Evaluating Word Sense Disambiguation Sys-
words. INCOLING/ACL-98 Montreal, pp. 768-774. tems Toulouse, France, pp. 21-24.

Lin, D. (1998b). An information-theoretic definition of silar- ~ Palmer, M., Ng, H. T., and Dang, H. T. (2006). Evaluation
ity. In ICML '98: Proceedings of the Fifteenth International of wsd systems. In Agirre, E. and Edmonds, P. (Ed&9rd
Conference on Machine Learnin@an Francisco, pp. 296— Sense Disambiguation: Algorithms and Applicatiakiiwer.

304. Pantel, P. and Ravichandran, D. (2004). Automaticallyllage
Lin, D. and Pantel, P. (2002). Concept discovery from temt. | semantic classes. Proceedings of HLT-NAACL-08oston,
COLING-02 pp. 1-7. MA.
Lin, D., Zhao, S., Qin, L., and Zhou, M. (2003). Identifying Pedersen, T. and Bruce, R. (1997). Distinguishing wordesens
synonyms among distributionally similar words.|}CAI-03 in untagged text. IfProceedings of the Conference on Empir-
pp. 1492-1493. ical Methods in Natural Language Processing (EMNLP;97)

Madhu, S. and Lytel, D. (1965). A figure of merit technique Providence, RI.
for the resolution of non-grammatical ambiguityechanical ~ pedersen, T., Patwardhan, S., and Michelizzi, J. (2004ydwo
Translation 8(2), 9-13. Net::Similarity — Measuring the relatedness of concepts. |
Manning, C. D. and Schiitze, H. (199%oundations of Statis- Proceedings of HLT-NAACL-04
tical Natural Language ProcessingMIT Press, Cambridge, pereira, F., Tishby, N., and Lee, L. (1993). Distributioniais-

MA. tering of English words. IProceedings of the 31st ACL
Masterman, M. (1957). The thesaurus in syntax and semantics Columbus, Ohio, pp. 183-190. ACL.
Mechanical Translatiop4(1), 1-2. Pradhan, S., Hacioglu, K., Ward, W., Martin, J., and Jusgfsk

McCarthy, D. and Carroll, J. (2003). Disambiguating nouns, D. (2003). Semantic role parsing: Adding semantic strgctur
verbs, and adjectives using automatically acquired seleit to unstructured text. IRroceedings of the International Con-
preferencesComputational Linguistic29(4), 639-654. ference on Data Mining (ICDM-2003)

Section 19.10. Advanced: Unsupervised Sense Disambaguati 45

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., and Jusafsk Small, S. L. and Rieger, C. (1982). Parsing and comprehend-
D. (2005). Semantic role labeling using different syntacti ing with Word Experts. In Lehnert, W. G. and Ringle, M. H.
views. InProceedings of ACL-Q%Ann Arbor, MI. ACL. (Eds.), Strategies for Natural Language Processimp. 89—

Quillian, M. R. (1968). Semantic memory. In Minsky, M. (Ed.) ~ 147- Lawrence Erlbaum, Hillsdale, NJ. _
Semantic Information Processingp. 227-270. MIT Press, Snow, R., Jurafsky, D., and Ng, A. Y. (2005). Learning syntac
Cambridge, MA. tic patterns for automatic hypernym discovery. In Saul, L. K

Resnik, P. (1995). Using information content to evaluateae :\,/IVIGEII'SS’ g egd Bbo_t(tjou, k/iA(Eds'NIPS 17 pp. 1297-1304.
tic similarity in a taxanomy. Iiinternational Joint Conference ress, Lamoriage,)
for Artificial Intelligence (IJCAI-95)pp. 448-453. Snow, R., Jurafsky, D., and Ng, A. Y. (2006). Semantic taxon-
Resnik, P. (1996). Selectional constraints: An informatio omy induction from heterogenous evidence. Proceedings
theoretic model and its computational realizati@ognition of COLING/ACL 2008) i
61, 127-159. Sparck Jones, K. (1986)Synonymy and Semantic Classifica-

])) tion. Edinburgh University Press, Edinburgh. Republication
Resnik, P. (1997). Selectional preference and sense disamg; 1964 PhD Thesis.

biguation. InProceedings of ACL SIGLEX Workshop on Tag-) . .
ging Text with Lexical Semanticgévashington, D.C., pp. 52— Stevensopgly and Wilks, . (2091)' The |nt_eract|on of know
57. ACL edge sources in word sense disambiguati@mmputational

Linguistics 27(3), 321-349.

%urdeanu, M., Harabagiu, S., Williams, J., and Aarseth, P.
(2003). Using predicate-argument structures for inforomat
extraction. InProceedings of ACL-Q3p. 8-15.

Resnik, P. (2005)‘ Word sense disambiguation in nip apIOp"Tseng, H. (2003). Semantic classification of Chinese unknow
cations. In Agirre, E. and Edmonds, P. (Ed$ord Sense) 1o InProceedings of ACL-Q3p. 72-79. ACL.

Disambiguation: Algorithms and Applicationkluwer. . .
]] Turney, P., Littman, M., Bigham, J., and Shnayder, V. (2003)
Riesbeck, C. K. (1975). Conceptual analysis. In Schank,.R. C combining independent modules to solve multiple-choice

(Ed.),Conceptual Information Processingp. 83—-156. Amer- synonym and analogy problems. Rroceedings of RANLP-

Resnik, P. (1998). Wordnet and class-based probabilitie
In Fellbaum, C. (Ed.),WordNet: An Electronic Lexical
DatabaseMIT Press, Cambridge, MA.

ican Elsevier, New York. 03, Borovets, Bulgaria, pp. 482—489.
Riloff, E. (1996). Automatically generating extractiontigans Vasilescu, F., Langlais, P., and Lapalme, G. (2004). Evislga
from untagged text. IMAAI-96 pp. 117-124. variants of the lesk approach for disambiguating words. In
Rivest, R. L. (1987). Learning decision listsachine Learn- Proceedings of the Fourth International Conference on Lan-
ing, 2(3), 229-246. guage Resources and Evaluation (LREC200#&bon, Portu-

Rubenstein, H. and Goodenough, J. B. (1965). Contextual cor gal, _pp' 633-636. ELRA.)]
relates of synonymy.Communications of the ACM(10), Ve_ronls_, J. and Ide, N. M. (1990). Word sense dlsamb|g‘ua-
627—633. tion with very large neural networks extracted from machine

. .) readable dictionaries. IBOLING-9Q Helsinki, Finland, pp.
Russell, S. and Norvig, P. (1995)Artificial Intelligence: A 389-394.

Modern Approach Prentice Hall, Englewood Cliffs, NJ.)
Weaver, W. (1949/1955). Translation. In Locke, W. N. and

Schuetze, H. (1992). Context space. In Goldman, R. (Bdo}, Boothe, A. D. (Eds.)Machine Translation of Languagesp.
ceedings of the 1992 AAAI Fall Symposium on Probabilistic 15_p3 M|T Press, Cambridge, MA. Reprinted from a mem-

Approaches to Natural Language orandum written by Weaver in 1949,

Schitze, H. (1992). Dimensions of meaningPloceedings of - weeds, J. (2003Measures and Applications of Lexical Distri-
Supercomputing '92op. 787-796. IEEE, IEEE Press. butional Similarity Ph.D. thesis, University of Sussex.

Schiitze, H. (1997)Ambiguity Resolution in Language Learn- Weeds, J. and Weir, D. (2005). Co-occurrence retrieval:na ge
ing: Computational and Cognitive ModelsCSLI Publica- eral framework for lexical distributional similarityfComputa-
tions, Stanford, CA. tional Linguistics 31(4), 439-476.

Schutze, H. (1998). Automatic word sense discriminationWilks, Y. (1975a). An intelligent analyzer and understanadle
Computational Linguistic24(1), 97-124. English. Communications of the ACM8(5), 264-274.

Simmons, R. F. (1973). Semantic networks: Their computaWilks, Y. (1975b). Preference semantics. In Keenan, E. L.
tion and use for understanding English sentences. In Schank(Ed.), The Formal Semantics of Natural Language. 329-
R. C. and Colby, K. M. (Eds.;omputer Models of Thought ~350. Cambridge Univ. Press, Cambridge.
and Languagepp. 61-113. W.H. Freeman and Co., San Franiilks, Y. (1975c). A preferential, pattern-seeking, setien
cisco. for natural language inferenceArtificial Intelligence 6(1),
Small, S. L., Cottrell, G. W., and Tanenhaus, M. (Eds.). @98 93-74.
Lexical Ambiguity ResolutiorMorgan Kaufman, San Mateo, Wilks, Y. (1978). Making preferences more activArtificial
CA. Intelligence 11(3), 197-223.

46 Chapter 19.

Computational Lexical Semantics

Wilks, Y., Slator, B. M., and Guthrie, L. M. (1996)Electric
Words: Dictionaries, Computers, and MeaninddIT Press,
Cambridge, MA.

Wu, Z. and Palmer, M. (1994). Verb semantics and lexical se-
lection. InProceedings of the 32nd ACLas Cruces, NM, pp.
133-138. ACL.

Xue, N. and Palmer, M. (2004). Calibrating features for sema
tic role labeling. INEMNLP 2004

Yarowsky, D. (1994). Decision lists for lexical ambiguity
resolution: Application to accent restoration in Spanisdd a
French. InProceedings of the 32nd ACLas Cruces, NM,
pp. 88—95. ACL.

Yarowsky, D. (1995). Unsupervised word sense disambigua-
tion rivaling supervised methods. Rroceedings of ACL-95
Cambridge, MA, pp. 189-196. ACL.

Yarowsky, D. (1997). Homograph disambiguation in text-to-
speech synthesis. In van Santen, J. P. H., Sproat, R. We,Oliv
J. P,, and Hirschberg, J. (Ed$xogress in Speech Synthesis
pp. 157-172. Springer, New York.

Yuret, D. (2004). Some experiments with a Naive Bayes WSD
system. InSenseval-3: Third International Workshop on the
Evaluation of Systems for the Semantic Analysis of Text

Zernik, U. (1991). Trainl vs. train2: Tagging word senses in
corpus. InLexical Acquisition: Exploiting On-Line Resources
to Build a Lexiconpp. 91-112. Lawrence Erlbaum, Hillsdale,
NJ.

