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WORD CLASSES AND
PART-OF-SPEECH
TAGGING

PARTS-OF-SPEECH

TAGSETS

POS

Conjunction Junction, what's your function?
Bob Dorough Schoolhouse Rock, 1973

There are ten parts of speech, and they are all troublesome.
Mark Twain, The Awful German Language

Dionysius Thrax of Alexandriac{ 100 B.c.), or perhaps someone else (exact au-
thorship being understandably difficult to be sure of witktgeof this vintage), wrote
a grammatical sketch of Greek (#ethre”) which summarized the linguistic knowl-
edge of his day. This work is the direct source of an astonisproportion of our
modern linguistic vocabulary, including among many otherds,syntax diphthong
clitic, andanalogy Also included are a description of eigbarts-of-speech noun,
verb, pronoun, preposition, adverb, conjunction, pateiand article. Although ear-
lier scholars (including Aristotle as well as the Stoicsil ltlaeir own lists of parts-of-
speech, it was Thrax’s set of eight which became the baspgéatically all subsequent
part-of-speech descriptions of Greek, Latin, and most geso languages for the next
2000 years.

Schoolhouse Rock was a popular series of 3-minute musiaakded clips first
aired on television in 1973. The series was designed torapils to learn multipli-
cation tables, grammar, and basic science and history. Tam@ar Rock sequence,
for example, included songs about parts-of-speech, thingibg these categories into
the realm of popular culture. As it happens, Grammar Rock neasarkably tradi-
tional in its grammatical notation, including exactly eigongs about parts-of-speech.
Although the list was slightly modified from Thrax’s originaubstituting adjective
and interjection for the original participle and articleetastonishing durability of the
parts-of-speech through two millenia is an indicator oftbthte importance and the
transparency of their role in human language.

More recent lists of parts-of-speech fagsety have many more word classes;
45 for the Penn Treebank (Marcus et al., 1993), 87 for the Broarpus (Francis,
1979; Francis and Kucera, 1982), and 146 for the C7 tagses{@ et al., 1997).

The significance of parts-of-speech (also knowrP&S, word classes mor-
phological classesor lexical tag9 for language processing is the large amount of
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information they give about a word and its neighbors. Thislésarly true for major
categories,\erb versusnoun), but is also true for the many finer distinctions. For
example these tagsets distinguish between possessiveuym®imy, your, his, her,
its) and personal pronounk fou he, mg. Knowing whether a word is a possessive
pronoun or a personal pronoun can tell us what words areyltkabccur in its vicinity
(possessive pronouns are likely to be followed by a noursgred pronouns by a verb).
This can be useful in a language model for speech recognition

Aword’s part-of-speech can tell us something about how thiehis pronounced.
As Ch. 8 will discuss, the wordonten; for example, can be a noun or an adjective.
They are pronounced differently (the noun is pronoun€@Ntentand the adjective
conTENY. Thus knowing the part-of-speech can produce more ngtuoalunciations
in a speech synthesis system and more accuracy in a speeghitem system. (Other
pairs like this includeOBject (noun) andobJECT (verb), DIScount(noun) anddis-
COUNT (verb); see Cutler (1986)).

Parts-of-speech can also be used in stemming for informaltietrieval (IR),
since knowing a word’s part-of-speech can help tell us wiichiphological affixes it
can take, as we saw in Chapter 3. They can also enhance anllBatipp by selecting
out nouns or other important words from a document. Autorresignment of part-
of-speech plays a role in word-sense disambiguation dlgos, and in class-based
N-gram language models for speech recognition, discuss€thi 4. Parts-of-speech
are used in shallow parsing of texts to quickly find namesgsinaates, or other named
entities for the information extraction applications dissed in Ch. 17. Finally, cor-
pora that have been marked for parts-of-speech are veryldsefinguistic research.
For example, they can be used to help find instances or freipseaf particular con-
structions.

This chapter focuses on computational methods for asgigrants-of-speech to
words part-of-speech tagging. Many algorithms have been applied to this problem,
including hand-written rulesgle-based tagging, probabilistic methodsHMM tag-
ging andmaximum entropy tagging), as well as other methods such@ssformation-
based taggingand memory-based tagging We will introduce three of these algo-
rithms in this chapter: rule-based tagging, HMM taggingd &ransformation-based
tagging. But before turning to the algorithms themselvetss begin with a summary
of English word classes, and of various tagsets for fornm@ilying these classes.

5.1 (MosTLY) ENGLISH WORD CLASSES

Well, every person you can know,
And every place that you can go,
And anything that you can show,

You know they’re nouns.
Lynn Ahrens,Schoolhouse Rock973

Until now we have been using part-of-speech terms fikan andverb rather
freely. In this section we give a more complete definitionhwdse and other classes.
Traditionally the definition of parts-of-speech has beeseldaon syntactic and morpho-
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CLOSED CLASS
OPEN CLASS

FUNCTION WORDS

NOUN

PROPER NOUNS
COMMON NOUNS

COUNT NOUNS
MASS NOUNS

VERB

AUXILIARIES

logical function; words that function similarly with resgteo what can occur nearby
(their “syntactic distributional properties”), or withgpect to the affixes they take (their
morphological properties) are grouped into classes. Widel classes do have ten-
dencies toward semantic coherence (houns do in fact oftgride “people, places or
things”, and adjectives often describe properties), thigit necessarily the case, and in
general we don’t use semantic coherence as a definitionation for parts-of-speech.

Parts-of-speech can be divided into two broad supercatsgariosed class
types andpen clasdypes. Closed classes are those that have relatively fixetbse
ship. For example, prepositions are a closed class bedaaigeis a fixed set of them
in English; new prepositions are rarely coined. By contreins and verbs are open
classes because new nouns and verbs are continually cairedrowed from other
languages (e.g., the new vexbfaxor the borrowed noufuton). It is likely that any
given speaker or corpus will have different open class wdydsall speakers of a lan-
guage, and corpora that are large enough, will likely sHegaet of closed class words.
Closed class words are also generdligction words like of, it, and, or you, which
tend to be very short, occur frequently, and often have ttring uses in grammar.

There are four major open classes that occur in the languafgéee world;
nouns verbs, adjectives andadverbs It turns out that English has all four of these,
although not every language does.

Noun is the name given to the syntactic class in which the wordsnfost peo-
ple, places, or things occur. But since syntactic claskeslbun are defined syntac-
tically and morphologically rather than semantically, owords for people, places,
and things may not be nouns, and conversely some nouns mag mairds for people,
places, or things. Thus nouns include concrete termsslii@andchair, abstractions
like bandwidthandrelationship and verb-like terms likgpacingas inHis pacing to
and fro became quite annoyingVhat defines a noun in English, then, are things like
its ability to occur with determiners(goat, its bandwidth, Plato’s Repubjjdo take
possessivedBM's annual revenug and for most but not all nouns, to occur in the
plural form (oats, abadi

Nouns are traditionally grouped inpyoper nounsandcommon nouns Proper
nouns, likeRegina Coloradg andIBM, are names of specific persons or entities. In
English, they generally aren’t preceded by articles (&hg.book is upstairdutRegina
is upstairg. In written English, proper nouns are usually capitalized

In many languages, including English, common nouns areldivintocount
nouns and mass nouns Count nouns are those that allow grammatical enumera-
tion; that is, they can occur in both the singular and plugdaf/goats, relation-
ship/relationshipsand they can be countedr(e goat, two goajs Mass nouns are
used when something is conceptualized as a homogeneoys @gowvords likesnow,
salt, andcommunisnare not counted (i.e*two snowsor *two communisms Mass
nouns can also appear without articles where singular coouhs cannot§now is
white but not*Goat is white.

The verb class includes most of the words referring to actions andgeses,
including main verbs likelraw, provide differ, andgo. As we saw in Ch. 3, English
verbs have a number of morphological forms (non-3rd-pesgpgal, 3rd-person-sg
(eat9, progressivedating), past participledaten). A subclass of English verbs called
auxiliaries will be discussed when we turn to closed class forms.



Chapter 5. Word Classes and Part-of-Speech Tagging

ADVERBS

LOCATIVE
DEGREE

MANNER
TEMPORAL

PREPOSITIONS

PARTICLE

While many researchers believe that all human languagesthawcategories of
noun and verb, others have argued that some languages, s&®tawalndonesian and
Tongan, don’t even make this distinction (Broschart, 1¥vgns, 2000; Gil, 2000).

The third open class English form is adjectives; semaiyithis class includes
many terms that describe properties or qualities. Mostuaggs have adjectives for
the concepts of colomthite black), age 6ld, young, and value §ood bad), but there
are languages without adjectives. In Korean, for example vtords corresponding
to English adjectives act as a subclass of verbs, so what Bglish an adjective
‘beautiful’ acts in Korean like a verb meaning ‘to be beaultifEvans, 2000).

The final open class fornadverbs is rather a hodge-podge, both semantically
and formally. For example Schachter (1985) points out thea sentence like the
following, all the italicized words are adverbs:

Unfortunately John walkechome extremely slowly yesterday

What coherence the class has semantically may be solelgabhtof these words
can be viewed as modifying something (often verbs, hencenéime “adverb”, but
also other adverbs and entire verb phrasB&ectional adverbs or locative adverbs
(home here downhill) specify the direction or location of some actidiegree adverbs
(extremely very, somewh3atspecify the extent of some action, process, or property;
manner adverbs (slowly, slinkily, delicately describe the manner of some action or
process; antemporal adverbsdescribe the time that some action or event took place
(yesterdayMonday). Because of the heterogeneous nature of this class, soragbad
(for example temporal adverbs likdonday) are tagged in some tagging schemes as
nouns.

The closed classes differ more from language to language dibathe open
classes. Here's a quick overview of some of the more impoxthrsed classes in
English, with a few examples of each:

e prepositions: on, under, over, near, by, at, from, to, with
e determiners: a, an, the

e pronouns: she, who, I, others

e conjunctions: and, but, or, as, if, when

e auxiliary verbs: can, may, should, are

e particles: up, down, on, off, in, out, at, by,

e numerals: one, two, three, first, second, third

Prepositionsoccur before noun phrases; semantically they are reldtiofian
indicating spatial or temporal relations, whether litéaad it, before thenby the houske
or metaphoricaldn time with gustq beside herself But they often indicate other
relations as welllflamlet was written byshakespearand [from Shakespearephd |
did laugh_sansntermission an hour byis dial’). Fig. 5.1 shows the prepositions of
English according to the CELEX on-line dictionary (Baayerak, 1995), sorted by
their frequency in the COBUILD 16 million word corpus of Eigl. Fig. 5.1 should
not be considered a definitive list, since different dictinas and tagsets label word
classes differently. Furthermore, this list combines psi#ons and particles.

A particle is a word that resembles a preposition or an adverb, and &iaose
combination with a verb. When a verb and a particle behavesagée syntactic and/or
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PHRASAL VERB

DETERMINERS
ARTICLES

of 540,085 through 14,964 worth 1,563 pace 12
in 331,235 after 13,670 toward 1,39( nigh 9
for 142,421 between 13,274 plus 750 re 4
to 125,691 under 9,525 till 686 mid 3
with 124,965 per 6,515 amongst 524 o'er 2
on 109,129 among 5,09( via 351 but 0
at 100,169 within 5,030 amid 222 ere 0
by 77,794 towards 4,70( underneath 164 less 0
from 74,843 above 3,056 versus 113 midst 0
about 38,424 near 2,026 amidst 67 o’ 0
than 20,210 off 1,695 sans 20 thru 0
over 18,071 past 1,575 circa 14 vice 0
Figure 5.1 Prepositions (and particles) of English from the CELEX mldictionary.
Frequency counts are from the COBUILD 16 million word corpus

semantic unit, we call the combinatiorphrasal verb. Phrasal verbs can behave as a
semantic unit; thus they often have a meaning that is notigtedale from the separate
meanings of the verb and the particle. Thus downmeans something like ‘reject’,
rule outmeans ‘eliminate’find outis ‘discover’, andyo onis ‘continue’; these are not
meanings that could have been predicted from the meanirige wérb and the particle
independently. Here are some examples of phrasal verbsThareau:

So lwent onfor some days cutting and hewing timber. ..
Moral reform is the effort tahrow offsleep. ..

Particles don't always occur with idiomatic phrasal vermaatics; here are
more examples of particles from the Brown corpus:

...she had turned the papmrer.
He arose slowly and brushed himseff.
He packedup his clothes.

We show in Fig. 5.2 a list of single-word particles from Quaétial. (1985). Since
it is extremely hard to automatically distinguish partligom prepositions, some
tagsets (like the one used for CELEX) do not distinguish thand even in corpora
that do (like the Penn Treebank) the distinction is very difito make reliably in an
automatic process, so we do not give counts.

aboard aside besides forward(s) opposite through

about astray between home out throughput

above away beyond in outside together

across back by inside over under

ahead before close instead overhead underrjeath

alongside behind down near past up

apart below east, etc. off round within

around beneath eastward(s),etc. on since without
Figure 5.2  English single-word particles from Quirk et al. (1985).

A closed class that occurs with nouns, often marking thertrégg of a noun
phrase, is theleterminers. One small subtype of determiners is #mticles: English
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CONJUNCTIONS

COMPLEMENTIZERS

PRONOUNS
PERSONAL
POSSESSIVE

WH

AUXILIARY

has three articles, an, andthe. Other determiners includhis (as inthis chaptejand
that (as inthat pag8. A andan mark a noun phrase as indefinite, whihe can mark
it as definite; definiteness is a discourse and semantic gyoibat will be discussed
in Ch. 20. Articles are quite frequent in English; indabd is the most frequently
occurring word in most corpora of written English. Here at@BLILD statistics,
again out of 16 million words:

the: 1,071,676 a: 413,887 an: 59,359

Conjunctions are used to join two phrases, clauses, or sentences. Catingin
conjunctions likeand, or, andbut, join two elements of equal status. Subordinating
conjunctions are used when one of the elements is of som®fsembedded status.
For exampldhatin “I thought that you might like some milkis a subordinating con-
junction that links the main claus¢houghtwith the subordinate claug®u might like
some milk This clause is called subordinate because this entirseligLthe “content”
of the main verithought Subordinating conjunctions likat which link a verb to its
argument in this way are also calledmplementizers Ch. 11 and Ch. 13 will discuss
complementation in more detail. Table 5.3 lists Englishjgnations.

and 514,944 yet 5,040/| considering 174 forasmuchas 0
that 134,773| since 4,843| lest 131)| however 0
but 96,889 where 3,952| albeit 104|| immediately 0
or 76,563|| nor 3,078|| providing 96|| inasfaras @
as 54,608 once 2,826/ whereupon 8% insofaras (0
if 53,917 unless 2,20% seeing 63| inasmuch as D
when 37,974 why 1,333|| directly 26|| insomuch as
because 23,626 now 1,290/| ere 12|| insomuchthat (
S0 12,933| neither 1,120| notwithstanding 3 like 0
before 10,720 whenever 913 according as neither nor a
though 10,329, whereas 867 asif 0 now that 0
than 9,511 except 864| aslongas ¢ only 0
while 8,144 till 686 as though 0| providedthat @
after 7,042| provided 594| both and Q| providingthat O
whether 5,978 whilst 351|| butthat 0|| seeingas
for 5,935|| suppose 281 butthen 0| seeingashow 0
although 5,424 cos 188|| but then again ] seeing that @
until 5,072|| supposing 184 eitheror without 0
Figure 5.3 Coordinating and subordinating conjunctions of EnglismftCELEX. Fre-
quency counts are from COBUILD (16 million words).

Pronounsare forms that often act as a kind of shorthand for referringame
noun phrase or entity or evenPersonal pronounsrefer to persons or entitiegdu,
she 1, it, me etc.). Possessive pronounare forms of personal pronouns that indicate
either actual possession or more often just an abstratioreletween the person and
some objectrqy, your, his, her, its, one’s, our, thgir Wh-pronouns (what, who,
whom, whoev@iare used in certain question forms, or may also act as congplézers
(Frieda, who | met five years ago )..Table 5.4 shows English pronouns, again from
CELEX.

A closed class subtype of English verbs areahgiliary verbs. Crosslinguistically,
auxiliaries are words (usually verbs) that mark certainaio features of a main verb,
including whether an action takes place in the present,qdsiture (tense), whether
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COPULA
MODAL

it 199,920|| how 13,137| yourself 2,437 noone 106
| 198,139|| another 12,553 why 2,220/ wherein 58
he 158,366 where 11,857 little 2,089 double 39
you 128,688| same 11,841 none 1,992 thine 30
his 99,820 something 11,754 nobody 1,684 summat 22
they 88,416 each 11,32Q1 further 1,666| suchlike 18
this 84,927 both 10,930| everybody 1,474 fewest 15
that 82,603 last 10,814| ourselves 1,428 thyself 14
she 73,966 every 9,788 mine 1,426| whomever 11
her 69,004| himself 9,113| somebody 1,322 whosoever 1q
we 64,846| nothing 9,024| former 1,177 whomsoever g
all 61,767| when 8,336 past 984 wherefore 6
which 61,399| one 7,423| plenty 940|| whereat 5
their 51,922 much 7,237 either 848| whatsoever 4
what 50,116| anything 6,937| yours 826|| whereon 2
my 46,791 next 6,047 neither 618| whoso 2
him 45,024|| themselves 5,990 fewer 536|| aught 1
me 43,071 most 5,115| hers 482| howsoever 1
who 42,881 itself 5,032 ours 458| thrice 1
them 42,099 myself 4,819| whoever 391| wheresoever L
no 33,458| everything 4,662 least 38¢| you-all 1
some 32,863 several 4,306 twice 382 additional 0
other 29,391| less 4,278| theirs 303|| anybody 0
your 28,923| herself 4,016 wherever 289| each other 0
its 27,783 whose 4,008 oneself 239| once 0
our 23,029/ someone 3,755 thou 229|| one another

these 22,697 certain 3,348/ 'un 227 overmuch q
any 22,664| anyone 3,31 ye 192|| such and such 0
more 21,873 whom 3,22 thy 191| whate'er 0
many 17,343| enough 3,19 whereby 176| whenever 0
such 16,880/ half 3,065| thee 166| whereof 0
those 15,819 few 2,933|| yourselves 148 whereto 0
own 15,741 everyone 2,81 latter 142|| whereunto q
us 15,724 whatever 2,57 whichever 121 whichsoever @

Figure 5.4  Pronouns of English from the CELEX on-line dictionary. Rreqcy counts
are from the COBUILD 16 million word corpus.

it is completed (aspect), whether it is negated (polaréypy whether an action is nec-
essary, possible, suggested, desired, etc. (mood).

English auxiliaries include theopulaverbbe, the two verbglo andhave along
with their inflected forms, as well as a classmbdal verbs Beis called a copula
because it connects subjects with certain kinds of preglivatinals and adjectivedé
is a duck. The verbhaveis used for example to mark the perfect tenddmyegone
I had gond, while beis used as part of the passiv&/g wererobbed, or progressive
(We areleaving constructions. The modals are used to mark the mood assdeiéh
the event or action depicted by the main verb. caaindicates ability or possibility,
mayindicates permission or possibilityjustindicates necessity, and so on. Fig. 5.5
gives counts for the frequencies of the modals in Englishaddition to the perfect
havementioned above, there is a modal védve(e.g.,| haveto go), which is very
common in spoken English. Neither it nor the modal vddne, which is very rare,
have frequency counts because the CELEX dictionary doedistimguish the main
verb sensel(havethree orangesHe daredme to eat thei from the modal sense
(There_hago be some mistak®are | confront him?, from the non-modal auxiliary
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INTERJECTIONS

NEGATIVES
POLITENESS
MARKERS

verb sensel(havenever seen that

can 70,930 might 5,580 shouldn’t 858
will 69,206 couldn’t 4,265 mustn’t 332
may 25,802 shall 4,118 'll 175
would 18,448 wouldn’t 3,548 needn’t 148
should 17,760 won't 3,100 mightn’t 68
must 16,520 'd 2,299 oughtn’t 44
need 9,955 ought 1,845 mayn’t 3
can't 6,375 will 862 dare, have 7?7
Figure 5.5 English modal verbs from the CELEX on-line dictionary. Fregcy counts
are from the COBUILD 16 million word corpus.

English also has many words of more or less unique functimtydinginterjec-
tions (oh, ah, hey, man, alas, uh, ymegativegno, no), politeness markers(please,
thank you, greetings(hello, goodbyg and the existentighere (thereare two on the
table) among others. Whether these classes are assigned artiamhes or lumped
together (as interjections or even adverbs) depends orutipege of the labeling.

5.2 TAGSETS FORENGLISH

The previous section gave broad descriptions of the kindyofactic classes that En-
glish words fall into. This section fleshes out that sketcdéscribing the actual tagsets
used in part-of-speech tagging, in preparation for theowsrtagging algorithms to be
described in the following sections.

There are a small number of popular tagsets for English, mé&which evolved
from the 87-tag tagset used for the Brown corpus (Francig9;1Brancis and Kucera,
1982). The Brown corpus is a 1 million word collection of sdegpfrom 500 writ-
ten texts from different genres (newspaper, novels, ndioficacademic, etc.) which
was assembled at Brown University in 1963—-1964 (KuCeraraadcis, 1967; Francis,
1979; Francis and KucCera, 1982). This corpus was taggddpaitts-of-speech by first
applying the BGGIT program and then hand-correcting the tags.

Besides this original Brown tagset, two of the most commaisigd tagsets are
the small 45-tag Penn Treebank tagset (Marcus et al., 1898)the medium-sized
61 tag C5 tagset used by the Lancaster UCREL project's CLAWS Constituent
Likelihood Automatic Word-tagging System) tagger to tag British National Corpus
(BNC) (Garside et al., 1997). We give all three of these tegsere, focusing on the
smallest, the Penn Treebank set, and discuss difficulthggigcisions in that tag set
and some useful distinctions made in the larger tagsets.

The Penn Treebank tagset, shown in Fig. 5.6, has been applithé Brown
corpus, the Wall Street Journal corpus, and the Switchboardus among others;
indeed, perhaps partly because of its small size, it is ontefnost widely used
tagsets. Here are some examples of tagged sentences frétarthélreebank version
of the Brown corpus (we will represent a tagged word by plgdhe tag after each
word, delimited by a slash):

Word Classes and Part-of-Speech Tagging
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| Tag Description Example | Tag Description Example |
CcC Coordin. Conjunction and, but, or SYM Symbol +,%, &
CD Cardinal number one, two, threg; TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VBD Verb, past tense ate
IN Preposition/sub-conj of, in, by VBG Verb, gerund eating
JJ Adjective yellow VBN Verb, past participle eaten
JIR Adj., comparative bigger VBP  Verb, non-3sg pres eat
JJS Adj., superlative wildest VBZ \Verb, 3sg pres eats
LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass llama WP$ Possessive wh- whose
NNS  Noun, plural llamas WRB Wh-adverb how, wherg
NNP  Proper noun, singular|IBM $ Dollar sign $
NNPS Proper noun, plural Carolinas # Pound sign #
PDT  Predeterminer all, both “ Left quote (for®
POS  Possessive ending s R Right quote (Cor”
PRP  Personal pronoun |, you, he ( Left parenthesis (L4 <
PRP$ Possessive pronoun your, one’s ) Right parenthesis (1% >
RB Adverb quickly, never|| , Comma ,
RBR  Adverb, comparative faster . Sentence-final punc (. !?)
RBS  Adverb, superlative fastest : Mid-sentence punc  (: ;... —-)
RP Particle up, off
Figure 5.6  Penn Treebank part-of-speech tags (including punctuation
(5.1) The/DT grand/JJ jury/NN commented/VBD on/IN a/DT numbéx/dF/IN other/JJ
topics/NNS ./.
(5.2) There/EX are/VBP 70/CD children/NN#ere/RB
(5.3)  Although/IN preliminary/JJ findings/NNS were/VBi2ported/VBN more/RBR

than/IN a/DT year/NN ago/IN ,/, the/DT latest/JJS resiéS appear/VBP in/IN
today/NN’s/POSNew/NNP England/NNP Journal/NNP of/IN Medicine/NNP ,/,

Example (5.1) shows phenomena that we discussed in theopesection; the
determinerghe anda, the adjectivegirand andother, the common noungiry, num-
ber, andtopics the past tense vedommentedExample (5.2) shows the use of the EX
tag to mark the existentighereconstruction in English, and, for comparison, another
use oftherewhich is tagged as an adverb (RB). Example (5.3) shows thaeeg-
tion of the possessive morpherseand shows an example of a passive construction,
‘were reported’, in which the veneportedis marked as a past participle (VBN), rather
than a simple past (VBD). Note also that the proper ndaw Englands tagged NNP.
Finally, note that sinc&lew England Journal of Medicirie a proper noun, the Tree-
bank tagging chooses to mark each noun in it separately asiNdl&dingjournal and
medicine which might otherwise be labeled as common nouns (NN).

Some tagging distinctions are quite hard for both humansreahines to make.
For example prepositions (IN), particles (RP), and advéRB) can have a large over-
lap. Words likearoundcan be all three:



10

Chapter 5. Word Classes and Part-of-Speech Tagging

(5.4)
(5.5)
(5.6)

(5.7)
(5.8)

(5.9)
(5.10)

(5.11)
(5.12)
(5.13)

(5.14)
(5.15)

(5.16)
(5.17)

Mrs./NNP Shaefer/NNP never/RB got/VBibound/RP to/TO joining/VBG
All/DT we/PRP gotta/VBN do/VB is/VBZ go/VBaround/IN the/DT corner/NN
Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

Making these decisions requires sophisticated knowledgsymtax; tagging
manuals (Santorini, 1990) give various heuristics that lvalp human coders make
these decisions, and that can also provide useful feataremutomatic taggers. For
example two heuristics from Santorini (1990) are that pséfmms generally are asso-
ciated with a following noun phrase (although they also maydilowed by preposi-
tional phrases), and that the woatbundis tagged as an adverb when it means “ap-
proximately”. Furthermore, while particles often can eitlprecede or follow a noun
phrase object, as in the following examples:

She told off/RP her friends

She told her friends off/RP.

prepositions cannot follow their noun phrase (* is used b@rmark an ungrammatical
sentence, a concept which we will return to in Ch. 11):

She stepped off/IN the train

*She stepped the train off/IN.

Another difficulty is labeling the words that can modify neurSometimes the
modifiers preceding nouns are common nounsdikonbelow, other times the Tree-
bank tagging manual specifies that modifiers be tagged astadje (for example if
the modifier is a hyphenated common noun likeome-taxand other times as proper
nouns (for modifiers which are hyphenated proper nounGilkeenm-Rudman
cotton/NN sweater/NN
income-tax/JJ return/NN
the/DT Gramm-Rudman/NP Act/NP

Some words that can be adjectives, common nouns, or propesnare tagged
in the Treebank as common nouns when acting as modifiers:

Chinese/NN cooking/NN
Pacific/NN waters/NNS

A third known difficulty in tagging is distinguishing pastnpiaiples (VBN) from
adjectives (JJ). A word likenarried is a past participle when it is being used in an
eventive, verbal way, as in (5.16) below, and is an adjeatikien it is being used to
express a property, as in (5.17):

They were married/VBN by the Justice of the Peace yesterdaya.
At the time, she was already married/JJ.

Tagging manuals like Santorini (1990) give various helgfiteria for deciding
how ‘verb-like’ or ‘eventive’ a particular word is in a spéicicontext.

The Penn Treebank tagset was culled from the original 8%agget for the

Brown corpus. This reduced set leaves out information that e recovered from
the identity of the lexical item. For example the originabBmn and C5 tagsets include
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(5.18)

(5.19)

(5.20)

a separate tag for each of the different forms of the veib&.g. C5 tag “VDD” for
did and “VDG” for doing), be andhave These were omitted from the Treebank set.

Certain syntactic distinctions were not marked in the PereeBank tagset be-
cause Treebank sentences were parsed, not merely taggesh anme syntactic in-
formation is represented in the phrase structure. For elantme single tag IN is
used for both prepositions and subordinating conjunctsinse the tree-structure of
the sentence disambiguates them (subordinating confunsctilways precede clauses,
prepositions precede noun phrases or prepositional @jrasest tagging situations,
however, do not involve parsed corpora; for this reason grenFreebank set is not
specific enough for many uses. The original Brown and C5 tagfs example, dis-
tinguish prepositions (IN) from subordinating conjunao(CS), as in the following
examples:

after/CS spending/VBG a/AT few/AP days/NNS at/IN the/AT Brown/NFdae/NN
Hotel/NN

after/IN a/AT wedding/NN trip/NN to/IN Corpus/NP Christi/NP ./.

The original Brown and C5 tagsets also have two tags for threl v in Brown
the infinitive use is tagged TO, while the prepositional usé\a

to/TO give/VB priority/NN to/IN teacher/NN pay/NN raises/NNS

Brown also has the tag NR for adverbial nouns lik@me west Monday and
tomorrow Because the Treebank lacks this tag, it has a much lessstemtspolicy
for adverbial nounsMonday Tuesdayand other days of the week are marked NNP,
tomorrow west andhomeare marked sometimes as NN, sometimes as RB. This makes
the Treebank tagset less useful for high-level NLP tasks file detection of time
phrases.

Nonetheless, the Treebank tagset has been the most widsalyingvaluating
tagging algorithms, and so many of the algorithms we desdsélow have been eval-
uated mainly on this tagset. Of course whether a tagset faldeea particular appli-
cation depends on how much information the application seed

5.3 PRT-OF-SPEECHTAGGING

TAGGING

Part-of-speech tagging (or jusigging for short) is the process of assigning a part-
of-speech or other syntactic class marker to each word irrguso Because tags are
generally also applied to punctuation, tagging requirasttie punctuation marks (pe-
riod, comma, etc) be separated off of the words. Ttokenization of the sort de-
scribed in Ch. 3 is usually performed before, or as part @ffélyging process, separat-
ing commas, quotation marks, etc., from words, and disanaltigg end-of-sentence
punctuation (period, question mark, etc) from part-of-dvpunctuation (such as in
abbreviations likee.g.andetc)

The input to a tagging algorithm is a string of words and a figeltagset of the
kind described in the previous section. The outputis a sibgbt tag for each word. For
example, here are some sample sentences from the ATIS aafrgiadogues about air-



12

Chapter 5. Word Classes and Part-of-Speech Tagging

Tag Description Example
( opening parenthesis G
) closing parenthesis )]
* negator not n't
, comma ,
- dash -

sentence terminator 5?0
: colon :
ABL pre-qualifier quite, rather, such
ABN | pre-quantifier half, all,
ABX | pre-quantifier, double conjunction|| both
AP post-determiner many, next, several, last
AT article a the an no a every
BE/BED/BEDZ/BEG/BEM/BEN/BER/BEZ || be/were/was/being/am/been/arelis
CcC coordinating conjunction and or but either neither
CD cardinal numeral two, 2, 1962, million
CS subordinating conjunction that as after whether before
DO/DOD/DOZ || do, did, does
DT singular determiner, this, that
DTI singular or plural determiner some, any
DTS | plural determiner these those them
DTX determiner, double conjunction either, neither
EX existential there there
HV/HVD/HVG/HVN/HVZ || have, had, having, had, has
IN preposition of in for by to on at
JJ adjective

JIR comparative adjective
JJs semantically superlative adj.
JJT morphologically superlative adj.

MD modal auxiliary
NN (common) singular or mass noun
NN$ | possessive singular common nouf

NNS | plural common noun
NNS$| possessive plural noun
NP singular proper noun

NP$ | possessive singular proper noun
NPS | plural proper noun
NPS$| possessive plural proper noun

NR adverbial noun

NR$ | possessive adverbial noun
NRS | plural adverbial noun

oD ordinal numeral

PN nominal pronoun

PN$ | possessive nominal pronoun

PP$ possessive personal pronoun
PP$$ | second possessive personal pron
PPL singular reflexive personal pronou

H
{

better, greater, higher, larger, lower
main, top, principal, chief, key, foremost
best, greatest, highest, largest, latest, wo
would, will, can, could, may, must, should
time, world, work, school, family, door
father’s, year’s, city’s, earth’s
years, people, things, children, problems
children’s, artist's parent’s years’
Kennedy, England, Rachel, Congress
Plato’s Faulkner’s Viola’s
Americans Democrats Belgians Chinese $
Yankees’, Gershwins’ Earthmen’s
home, west, tomorrow, Friday, North,
today’s, yesterday’s, Sunday’s, South’s
Sundays Fridays
second, 2nd, twenty-first, mid-twentieth
one, something, nothing, anyone, none,
one’s someone’s anyone’s
his their her its my our your

umine, his, ours, yours, theirs

n myself, herself

PPLS| plural reflexive pronoun ourselves, themselves
PPO | objective personal pronoun me, us, him
PPS 3rd. sg. nominative pronoun he, she, it
PPSS| other nominative pronoun I, we, they
QL qualifier very, too, most, quite, almost, extremely
QLP | post-qualifier enough, indeed
RB adverb
RBR comparative adverb later, more, better, longer, further
RBT superlative adverb best, most, highest, nearest
RN nominal adverb here, then
Figure 5.7 First part of original 87-tag Brown corpus tagset (Franoid ucera, 1982).

50X
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Tag Description Example
RP adverb or particle across, off, up
TO infinitive marker to
UH interjection, exclamation well, oh, say, please, okay, uh, goodbye
VB verb, base form make, understand, try, determine, droq
VBD verb, past tense said, went, looked, brought, reached kept
VBG verb, present participle, gerund getting, writing, increasing
VBN verb, past participle made, given, found, called, required
VBZ verb, 3rd singular present says, follows, requires, transcends
WDT wh- determiner what, which
WP$ possessive wh- pronoun whose
WPO objective wh- pronoun whom, which, that
WPS nominative wh- pronoun who, which, that
WQL how
WRB wh- adverb how, when
Figure 5.8  Rest of 87-tag Brown corpus tagset (Francis and Kucer&2)198
travel reservations that we will discuss in Ch. 11. For eaethawe shown a potential
tagged output using the Penn Treebank tagset defined in.Bigngage 9:
(5.21) Book/VB that/DT flight/NN ./.
(5.22) Does/VBZ that/DT flight/NN serve/VB dinner/NN ?/.

AMBIGUOUS

RESOLVE

DISAMBIGUATION

RULE-BASED

The previous section discussed some tagging decisionardifficult to make
for humans. Even in these simple examples, automaticafligaing a tag to each
word is not trivial. For exampleyookis ambiguous That is, it has more than one
possible usage and part-of-speech. It can be a verb (asakthat flightor to book
the suspegtor a noun (as itnand me that boglor a bookof matchel Similarly that
can be a determiner (as Does_thafflight serve dinnér, or a complementizer (as in
thought thatyour flight was earlie)y. The problem of POS-tagging is tesolvethese
ambiguities, choosing the proper tag for the context. Bagpeech tagging is thus one
of the manydisambiguationtasks we will see in this book.

How hard is the tagging problem? The previous section desdsome difficult
tagging decisions; how common is tag ambiguity? It turnstioat most words in En-
glish are unambiguous; i.e., they have only a single tag nfarty of the most common
words of English are ambiguous (for exampbacan be an auxiliary (‘to be able’), a
noun (‘a metal container’), or a verb (‘to put something inlsa metal container?)). In
fact, DeRose (1988) reports that while only 11.5% of Englisind types in the Brown
corpus are ambiguous, over 40% of Brown tokens are ambigubigs 5.10 shows
the number of word types with different levels of part-oeeph ambiguity from the
Brown corpus. We show these computations from two versidiiseotagged Brown
corpus, the original tagging done at Brown by Francis andefa(1982), and the
Treebank-3 tagging done at the University of PennsylvaNiate that despite having
more coarse-grained tags, the 45-tag corpus unexpectasiinbre ambiguity than the
87-tag corpus.

Luckily, it turns out that many of the 40% ambiguous tokereseasy to disam-
biguate. This is because the various tags associated withrchave not equally likely.
For examplea can be a determiner, or the leteetperhaps as part of an acronym or an
initial). But the determiner sense ais much more likely.

Most tagging algorithms fall into one of two classesie-basedtaggers and
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Tag Description Example
AJO adjective (unmarked) good old
AJC comparative adjective better, older
AJS superlative adjective best, oldest
ATO article the a, an
AVO adverb (unmarked) often, well, longer, furthest
AVP adverb particle up, off, out
AVQ wh-adverb when, how, why
cJC coordinating conjunction and, or
CJs subordinating conjunction although, when
CcJT the conjunctiorthat
CRD cardinal numeral (excepinée 3, twenty-five 734
DPS possessive determiner your, their
DTO general determiner these, some
DTQ wh-determiner whose, which
EXO existentialthere
ITJ interjection or other isolate oh, yes, mhm
NNO noun (neutral for number) aircraft, data
NN1 singular noun pencil, goose
NN2 plural noun pencils, geese
NPO proper noun London, Michael, Mars
ORD ordinal sixth, 77th, last
PNI indefinite pronoun none, everything
PNP personal pronoun you, them, ours
PNQ wh-pronoun who, whoever
PNX reflexive pronoun itself, ourselves
POS possessivés or’
PRF the prepositiorof
PRP preposition (excepbf) for, above, to
PUL punctuation — left bracket (or[
PUN punctuation — general mark -7
PUQ punctuation — quotation mark L
PUR punctuation — right bracket )or]
TOO infinitive markerto
UNC unclassified items (not English)
VBB base forms obe (except infinitive) am, are
VBD past form ofbe was, were
VBG -ing form of be being
VBI infinitive of be
VBN past participle obe been
VBZ -s form ofbe is,’s
VDB/D/G/I/N/Z form of do do, does, did, doing, to do, ett.
VHB/D/G/I/N/Z  form of have have, had, having, to have, efc.
VMO modal auxiliary verb can, could, will, ’ll
VVB base form of lexical verb (except infir}) take, live
VVD past tense form of lexical verb took, lived
VVG -ing form of lexical verb taking, living
VVI infinitive of lexical verb take, live
VVN past participle form of lex. verb taken, lived
VVvZ -s form of lexical verb takes, lives
XX0 the negativenotor n't
270 alphabetical symbol A, B,c,d

Figure 5.9 UCREL's C5 tagset for the British National Corpus (Garsitlale 1997).

SToCHASTIC  stochastic taggerdaggers. Rule-based taggers generally involve a largédasgaof
hand-written disambiguation rules which specify, for exdanthat an ambiguous word
is a noun rather than a verb if it follows a determiner. Thetsextion will describe
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HMM TAGGER

BRILL TAGGER

Original Treebank
87-tag corpus 45-tag corpus
Unambiguous (1 tag) 44,019 38,857
Ambiguous (2—7 tags) 5,490 8844
Details: 2tags 4,967 6,731
3 tags 411 1621
4 tags 91 357
5 tags 17 90
6 tagsg 2 (well, bea) 32
7 tags 2 (still, down 6 (well, set round open fit,
down)
8 tagyg 4 (s, half, back a)
9 tagsg 3 (that, morg in)
Figure 5.10  The amount of tag ambiguity for word types in the Brown corgdusm
the ICAME release of the original (87-tag) tagging and theebank-3 (45-tag) tagging.
Numbers are not strictly comparable because only the Tréebegmentss. An earlier
estimate of some of these numbers is reported in DeRose)1988

a sample rule-based taggEngCG, based on the Constraint Grammar architecture of
Karlsson et al. (1995b).

Stochastic taggers generally resolve tagging ambiguitiassing a training cor-
pus to compute the probability of a given word having a givamnih a given context.
Sec. 5.5 describes the Hidden Markov ModeHiM tagger.

Finally, Sec. 5.6 will describe an approach to tagging daletransformation-
based taggeror theBrill tagger, after Brill (1995). The Brill tagger shares features
of both tagging architectures. Like the rule-based tadgyés,based on rules which
determine when an ambiguous word should have a given tag. thik stochastic tag-
gers, it has a machine-learning component: the rules aoereically induced from a
previously tagged training corpus.

5.4 RULE-BASED PART-OF-SPEECHTAGGING

ENGCG

The earliest algorithms for automatically assigning mdrspeech were based on a two-
stage architecture (Harris, 1962; Klein and Simmons, 1@88ene and Rubin, 1971).
The first stage used a dictionary to assign each word a lisbteipial parts-of-speech.
The second stage used large lists of hand-written disarabaurules to winnow down
this list to a single part-of-speech for each word.

Modern rule-based approaches to part-of-speech taggirgehsimilar architec-
ture, although the dictionaries and the rule sets are viastigr than in the 1960's. One
of the most comprehensive rule-based approaches is theér@ioh&rammar approach
(Karlsson et al., 1995a). In this section we describe a tabgsed on this approach,
theEngCG tagger (Voutilainen, 1995, 1999).

The EngCG ENGTWOL lexicon is based on the two-level morpgphbescribed
in Ch. 3, and has about 56,000 entries for English word stéfaikkila, 1995), count-
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SUBCATEGORIZATION
COMPLEMENTATION

ing a word with multiple parts-of-speech (e.g., nominal aedbal senses diit) as
separate entries, and not counting inflected and many deforens. Each entry is
annotated with a set of morphological and syntactic featufey. 5.11 shows some se-

lected words, together with a slightly simplified listingtbgir features; these features
are used in rule writing.

Word POS Additional POS features
smaller ADJ COMPARATIVE
entire ADJ ABSOLUTE ATTRIBUTIVE
fast ADV SUPERLATIVE
that DET CENTRAL DEMONSTRATIVE SG
all DET PREDETERMINER SG/PL QUANTIFIER
dog’s N GENITIVE SG
furniture N NOMINATIVE SG NOINDEFDETERMINER
one-third NUM SG
she PRON PERSONAL FEMININE NOMINATIVE SG3
show \Y, PRESENT -SG3 VFIN
show N NOMINATIVE SG
shown PCP2 SVOO SVO sV
occurred PCP2 )Y
occurred Vv PAST VFIN SV
Figure 5.11 Sample lexical entries from the ENGTWOL lexicon described/outi-
lainen (1995) and Heikkila (1995).

Most of the features in Fig. 5.11 are relatively self-explamy; SG for singular,
-SG3 for other than third-person-singular. ABSOLUTE meaas-comparative and
non-superlative for an adjective, NOMINATIVE just meansrgenitive, and PCP2
means past participle. PRE, CENTRAL, and POST are ordelitg for determiners
(predeterminersafl) come before determinerth@): all the president's mén NOIN-
DEFDETERMINER means that words lifarniture do not appear with the indefinite
determinera. SV, SVO, and SVOO specify trmubcategorizationor complementa-
tion pattern for the verb. Subcategorization will be discussedh. 11 and Ch. 13, but
briefly SV means the verb appears solely with a subjeath(ing occurredt SVO with
a subject and an objedtghowed the filry) SVOO with a subject and two complements:
She showed her the ball

In the first stage of the tagger, each word is run through tleeléwel lexicon
transducer and the entries for all possible parts-of-dpaee returned. For example
the phrasdPavlov had shown that salivation . .would return the following list (one
line per possible tag, with the correct tag shown in boldface

Paviov PAVLOV N NOM SG PROPER
had HAVE V PAST VFIN SVO
HAVE PCP2 SVO
shown SHOW PCP2 SVOO SVO SV
that ADV
PRON DEM SG
DET CENTRAL DEM SG
CS
salivation N NOM SG
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EngCG then applies a large set of constraints (as many ag 8gf¥straints in
the EngCG-2 system) to the input sentence to rule out incbparts-of-speech. The
boldfaced entries in the table above show the desired résulthich the simple past
tense tag (rather than the past participle tag) is appliéétband the complementizer
(CS) tag is applied téhat The constraints are used in a negative way, to eliminate
tags that are inconsistent with the context. For exampleconstraint eliminates all
readings othat except the ADV (adverbial intensifier) sense (this is thesedan the
sentencd isn’t that odd). Here’s a simplified version of the constraint:

ADVERBIAL-THAT RULE
Given input: “that”
if
(+1 A/ADVIQUANT); / * if next word is adj, adverb, or quantifiér/
(+2 SENT-LIM); / * and following which is a sentence boundaty,
(NOT -1 SVOC/A);/ * and the previous word is not a verb liké
/ * ‘consider’ which allows adjs as object complemehts
then eliminate non-ADV tags
elseeliminate ADV tag

The first two clauses of this rule check to see thatttieg directly precedes a
sentence-final adjective, adverb, or quantifier. In all ptsses the adverb reading is
eliminated. The last clause eliminates cases precededrbg ke consideror believe
which can take a noun and an adjective; this is to avoid tagtja following instance
of thatas an adverb:

| consider that odd.

Another rule is used to express the constraint that the commgahtizer sense of
thatis most likely to be used if the previous word is a verb whichents a complement
(like believe think, or show), and ifthatis followed by the beginning of a noun phrase,
and a finite verb.

This description oversimplifies the EngCG architecture;dfstem also includes
probabilistic constraints, and also makes use of otheistiatinformation we haven't
discussed. The interested reader should consult Karlssbn(#995b) and Voutilainen
(1999).

5.5 HMM PART-OF-SPEECHTAGGING

The use of probabilities in tags is quite old; probabiliiesagging were first used by
Stolz et al. (1965), a complete probabilistic tagger witteki decoding was sketched
by Bahl and Mercer (1976), and various stochastic taggere Wweilt in the 1980s
(Marshall, 1983; Garside, 1987; Church, 1988; DeRose, 1988s section describes
a particular stochastic tagging algorithm generally knasthe Hidden Markov Model
or HMM tagger. Hidden Markov Models themselves will be markyfintroduced and
definedin Ch. 6. Inthis section, we prefigure Ch. 6 a bit byrgj\an initial introduction
to the Hidden Markov Model as applied to part-of-speechitamg
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BAYESIAN
INFERENCE

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

Use of a Hidden Markov Model to do part-of-speech-taggisgya will define
it, is a special case dBayesian inference a paradigm that has been known since
the work of Bayes (1763). Bayesian inference or Bayesiassiflaation was applied
successfully to language problems as early as the late 1880sding the OCR work
of Bledsoe in 1959, and the seminal work of Mosteller and §¢all(1964) on applying
Bayesian inference to determine the authorship of the éidepapers.

In a classification task, we are given some observation(spanjob is to deter-
mine which of a set of classes it belongs to. Part-of-spesgding is generally treated
as a sequence classification task. So here the observatiseguence of words (let’s
say a sentence), and it is our job to assign them a sequenegtaffgspeech tags.

For example, say we are given a sentence like

Secretariat is expected tace tomorrow.

What is the best sequence of tags which corresponds to tiuesee of words?
The Bayesian interpretation of this task starts by consideall possible sequences
of classes—in this case, all possible sequences of tags.ofQhts universe of tag
sequences, we want to chose the tag sequence which is mbabpgr@iven the obser-
vation sequence afwordsw}. In other words, we want, out of all sequences tdigs
t] the single tag sequence such tRét'|w]) is highest. We use the hat notatidrto
mean “our estimate of the correct tag sequence”.

£ — argmasP (i)
A

The function argmaxf (x) means “thexsuch thatf (x) is maximized”. Equation
(5.24) thus means, out of all tag sequences of lemgtive want the particular tag
sequence; which maximizes the right hand side. While (5.24) is guazedtto give
us the optimal tag sequence, it is not clear how to make thatenuoperational; that
is, for a given tag sequentg and word sequencef, we don’t know how to directly
computeP(t]|w}).

The intuition of Bayesian classification is to use Bayeséttal transform (5.24)
into a set of other probabilities which turn out to be easiezdmpute. Bayes’ rule is
presented in (5.25); it gives us a way to break down any cmmdit probabilityP(x]y)
into three other probabilities:

P(y[XP(x)
P(xly) =
(xy) Py
We can then substitute (5.25) into (5.24) to get (5.26):
P(WI [t P(t])
fl = argmax—= 112
LR PW)

We can conveniently simplify 5.26 by dropping the denonon&(wy). Why
is that? Since we are choosing a tag sequence out of all taggsees, we will be
Computingpm':l;‘tl)P(tl) for each tag sequence. BR{w]) doesn’t change for each tag
sequence; we are always asking about the most likely tageseguor the same obser-
vationw}, which must have the same probabilRywy). Thus we can choose the tag
sequence which maximizes this simpler formula:

' = argmaP(wi|t7)P(t)
Gy
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PRIOR PROBABILITY
LIKELIHOOD

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

To summarize, the most probable tag sequdfiagiven some word string/]
can be computed by taking the product of two probabilitiesfch tag sequence, and
choosing the tag sequence for which this product is grealids two terms are the
prior probability of the tag sequence(t])), and thelikelihood of the word string
POWIILD):

likelihood prior

——

{7 = argmaxP(Wj|t]) P(t])
tn

1
Unfortunately, (5.28) is still too hard to compute directyMM taggers there-
fore make two simplifying assumptions. The first assumpisahat the probability of
a word appearing is dependent only on its own part-of-spiggthat it is is indepen-
dent of other words around it, and of the other tags around it:

Pit]) ~ JP(wit)
i=1

The second assumption is that the probability of a tag apmeés dependent
only on the previous tag, th@gram assumption we saw in Ch. 4:

Pt)) ~ J[Piti-1)
i=1

Plugging the simplifying assumptions (5.29) and (5.30) i{%.28) results in the
following equation by which a bigram tagger estimates thetpoobable tag sequence:

n
f = argmaP(tf|wh) ~ argmax] [ P(wi[ti)P(t[ti 1)
f A

Equation (5.31) contains two kinds of probabilities, taansition probabilities
and word likelihoods. Let's take a moment to see what thesbahilities represent.
The tag transition probabilitie®(ti|ti_1), represent the probability of a tag given the
previous tag. For example, determiners are very likely ezpde adjectives and nouns,
as in sequences likhat/DT flight/NNandthe/DT yellow/JJ hat/NNThus we would
expect the probabilitieB(NN|DT) andP(JJDT) to be high. But in English, adjectives
don’t tend to precede determiners, so the probatf{T|JJ ought to be low.

We can compute the maximum likelihood estimate of a tag iiangprobability
P(NN|DT) by taking a corpus in which parts-of-speech are labeled andting, out
of the times we see DT, how many of those times we see NN agddih That is, we
compute the following ratio of counts:

C(ti—1,t)
C(ti—1)

Let’s choose a specific corpus to examine. For the examptéssichapter we'll
use the Brown corpus, the 1 million word corpus of Americaglish described earlier.
The Brown corpus has been tagged twice, once in the 1960ismat87-tag tagset, and
again in the 1990's with the 45-tag Treebank tagset. Thisam#kiseful for comparing
tagsets, and is also widely available.

P(tilti—1) =
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(5.33)

(5.34)

(5.35)

In the 45-tag Treebank Brown corpus, the tag DT occurs 1X6tibes. Of
these, DT is followed by NN 56,509 times (if we ignore the feages of ambiguous
tags). Thus the MLE estimate of the transition probabibltgalculated as follows:
C(DT,NN) 56,509 49

C(DT) 116454

The probability of getting a common noun after a determidé, is indeed quite
high, as we suspected.

The word likelihood probabilitieR(w;|t;), represent the probability, given that
we see a given tag, that it will be associated with a given wbod example if we were
to see the tag VBZ (third person singular present verb) amdgthe verb that is likely
to have that tag, we might likely guess the vé&bsince the verlio beis so common
in English.

We can compute the MLE estimate of a word likelihood probatike P(is|VBZ)
again by counting, out of the times we see VBZ in a corpus, hamynof those times
the VBZ is labeling the words. That is, we compute the following ratio of counts:
C(ti,wi)

C(t)

In Treebank Brown corpus, the tag VBZ occurs 21,627 timed,\&BZ is the
tag foris 10,073 times. Thus:
C(VBzZis) 10,073

C(VBZ) 21,627

For those readers who are new to Bayesian modeling notehisalikelihood
term is not asking “which is the most likely tag for the wdsd. That is, the term
is not P(VBZ|is). Instead we are computing(is|VBZ). The probability, slightly
counterintuitively, answers the question “If we were exjgra third person singular
verb, how likely is it that this verb would be?”.

We have now defined HMM tagging as a task of choosing a tageseguwith the
maximum probability, derived the equations by which we wdlimpute this probability,
and shown how to compute the component probabilities. lrvfachave simplified the
presentation of the probabilities in many ways; in latetiseas we will return to these
equations and introduce the deleted interpolation alg@rfor smoothing these counts,
the trigram model of tag history, and a model for unknown vgord

But before turning to these augmentations, we need to int@dhe decoding
algorithm by which these probabilities are combined on fmehoose the most likely
tag sequence.

P(NN|DT) =

P(wilt) =

P(isVB2) = 47

5.5.1 Computing the most-likely tag sequence: A motivatingx-
ample

The previous section showed that the HMM tagging algorittooses as the most
likely tag sequence the one that maximizes the product oféwus; the probability of
the sequence of tags, and the probability of each tag gémgeatvord. In this section
we ground these equations in a specific example, showingdartecular sentence how
the correct tag sequence achieves a higher probabilitydharof the many possible
wrong sequences.
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We will focus on resolving the part-of-speech ambiguityta tvordrace, which
can be anoun or verb in English, as we show in two examplesfiraddiiom the Brown
and Switchboard corpus. For this example, we will use th&8Brown corpus tagset,
because it has a specific tag foy TO, used only wheto is an infinitive; prepositional
uses oto are tagged as IN. This will come in handy in our exaniple.

In (5.36)raceis a verb (VB) while in (5.37yaceis a common noun (NN):

(5.36)  Secretariat/NNP is/BEZ expected/VBN to/Tace/VB tomorrow/NR

(5.37)  People/NNS continue/VB to/TO inquire/VB the/AT reason/fiWIN the/AT
race/NN for/IN outer/JJ space/NN

Let's look at howrace can be correctly tagged as a VB instead of an NN in
(5.36). HMM part-of-speech taggers resolve this ambigulitpally rather than locally,
picking the best tag sequence for the whole sentence. Themany hypothetically
possible tag sequences for (5.36), since there are otheigaitids in the sentence
(for exampleexpectedtan be an adjective (JJ), a past tense/preterite (VBD) ost pa
participle (VBN)). But let’s just consider two of the pot@itsequences, shown in
Fig. 5.12. Note that these sequences differ only in one plahether the tag chosen
for raceis VB or NN.

PAgagd

Secretariat is expected to race tomorrow
§ ’@
Secretariat is expected to race tomorrow

Figure 5.12 Two of the possible sequences of tags corresponding to theet&eat
sentence, one of them corresponding to the correct sequengkichraceis a VB. Each
arc in these graphs would be associated with a probabilitye that the two graphs diffe
only in 3 arcs, hence in 3 probabilities.

Almost all the probabilities in these two sequences aretidaln in Fig. 5.12
we have highlighted in boldface the three probabilitieg thfier. Let's consider two

1 The 45-tag Treebank-3 tagset does make this distinctioharStvitchboard corpus but not, alas, in the
Brown corpus. Recall that in the 45-tag tagset time advekesdmorroware tagged as NN; in the 87-tag
tagset they appear as NR.
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of these, corresponding ®(ti|ti_1) and P(wilti). The probabilityP(ti|ti_1) in Fig-
ure 5.12a i9(VB|TO), while in Figure 5.12b the transition probabilityP§NN|TO).

The tag transition probabiliti€d(NN|TO) andP(VB|TO) give us the answer to
the question “How likely are we to expect a verb (noun) givenprevious tag?” As we
saw in the previous section, the maximum likelihood esterfat these probabilities
can be derived from corpus counts.

Since the (87-tag Brown tagset) tag TO is used only for theiiinfe markerto,
we expect that only a very small number of nouns can follow tharker (as an exer-
cise, try to think of a sentence where a noun can follow thaitife marker use oto).
Sure enough, a look at the (87-tag) Brown corpus gives usitlening probabilities,
showing that verbs are about 500 times as likely as nounsciar adter TO:

P(NN|TO) = .00047
P(VB|TO) = .83

Let's now turn toP(w;|t;), the lexical likelihood of the wordacegiven a part-of-
speech tag. For the two possible tags VB and NN, these camegp the probabilities
P(racdVB) andP(racéNN). Here are the lexical likelihoods from Brown:
P(racéNN) = .00057
P(racévB) = .00012
Finally, we need to represent the tag sequence probalalithé following tag (in this
case the tag NR faomorrow):
P(NR|VB) = .0027
P(NR|NN) = .0012

If we multiply the lexical likelihoods with the tag sequermm®babilities, we see
that the probability of the sequence with the VB tag is higlied the HMM tagger

correctly tagsaceas a VB in Fig. 5.12 despite the fact that it is the less likelyse of
race

.00000027
.00000000032

P(VB|TO)P(NR|VB)P(racdVB)
P(NN|TO)P(NR|NN)P(racéNN)

5.5.2 Formalizing Hidden Markov Model taggers

Now that we have seen the equations and some examples ofrepttes most probable
tag sequence, we show the formalization of this problem aisidd# Markov Model.
The HMM is an extension of the finite automata of Ch. 3. Redsll & finite
automaton is defined by a set of states, and a set of trarsshiemveen states that are
taken based on the input observationsvé@ighted finite-state automatoris a simple
augmentation of the finite automaton in which each arc iscaataa with a probability,
indicating how likely that path is to be taken. The probapitin all the arcs leaving
a node must sum to 1. Markov chain is a special case of a weighted automaton
in which the input sequence uniquely determines which stiite automaton will go
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through. Because they can't represent inherently ambigpmblems, a Markov chain
is only useful for assigning probabilities to unambiguoegiences.

While the vanilla Markov Model is appropriate for situatgowhere we can see
the actual conditioning events, it is not appropriate in4odispeech tagging. This is
because in part-of-speech tagging, while we observe thdsaworthe input, we doot
observe the part-of-speech tags. Thus we can’t conditigrpasbabilities on, say, a
previous part-of-speech tag, because we cannot be cotypdetgain exactly which
tag applied to the previous word. Aidden Markov Model (HMM ) allows us to talk
about botlobservedvents (like words that we see in the input) &ididenevents (like
part-of-speech tags) that we think of as causal factorsiipmbabilistic model.

An HMM is specified by a set odtatesQ, a set oftransition probabilities A,

a set of observation likelihood® a definecdstart state andend state(s) and a set of
observation symbolsO, which is not drawn from the same alphabet as the sta®.set

In summary, here are the parameters we need to define an HMM:

e states:a set of stateQ = q102...0n

e transition probabilities: a set of probabilities = ap1@02. .. an1 . .. ann. Eacha;
represents the probability of transitioning from steatie statej. The set of these
is thetransition probability matrix

e observation likelihoods: a set of observation likelihoodd= bj(ot), each ex-
pressing the probability of an observatiarbeing generated from a stdte

In our examples so far we have used two “special” states{emitting stateg
as the start and end state; it is also possible to avoid theftisese states by specifying
two more things:

e initial distribution: an initial probability distribution over stater, such thatr
is the probability that the HMM will start in staie Of course some statésnay
haver; = 0, meaning that they cannot be initial states.

e accepting states:a set of legal accepting states

As was true for the weighted automata, the sequences of dgnitad are input
to the model (if we are thinking of it as recognizer) or whica produced by the model
(if we are thinking of it as a generator) are generally callexbbservation sequence
referred to a® = (010203...07).

An HMM thus has two kinds of probabilities; thetransition probabilities, and
the B observation likelihoods, corresponding respectivelyhmgrior andlikelihood
probabilities that we saw in equation (5.31). Fig. 5.13silfates the prior probabilities
in an HMM part-of-speech tagger, showing 3 sample statesame of theA transition
probabilities between them. Fig. 5.14 shows another vieandfiIMM part-of-speech
tagger, focusing on the word likelihoods Each hidden state is associated with a
vector of likelihoods for each observation word.

5.5.3 The Viterbi Algorithm for HMM Tagging

For any model, such as an HMM, that contains hidden variatiegask of determin-
ing which sequence of variables is the underlying sourcemfessequence of observa-
tions is called thelecodingtask. TheViterbi algorithm is perhaps the most common
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Figure 5.13 The weighted finite-state network corresponding to thedndstates of the
HMM. The A transition probabilities are used to compute the prior phility.

2

P(“aardvark’ | TO) '
i':"(“race" | TO)
P(‘the” | TO)
P(“t0” | TO)
i'-.‘.("zebra" 1 TO)

P(“aardvark’ | VB) P(“aardvark” | NN)
P(“race” | VB) P(“race” | NN)
P(“the” | VB) P(“the” | NN)
P(“to” | VB) P(“to” | NN)
P(“zebra | VB) P(“zebra” | NN)

Figure 5.14 TheB observation likelihoods for the HMM in the previous figureadh
state (except the non-emitting Start and End states) isi@ssd with a vector of probabil-
ities, one likelihood for each possible observation word.

decoding algorithm used for HMMs, whether for part-of-sgetgging or for speech
recognition. The ternViterbi is common in speech and language processing, but this
is really a standard application of the clasgimamic programming algorithm, and
looks a lot like theminimum edit distance algorithm of Ch. 3. The Viterbi algorithm
was first applied to speech and language processing in thiextaf speech recogni-
tion by Vintsyuk (1968), but has what Kruskal (1983) calls@emarkable history of
multiple independent discovery and publication’; see tligtdy section at the end of
Ch. 6 for more details.

The slightly simplified version of the Viterbi algorithm thae will present takes
as input a single HMM and a set of observed wobds (010203...0) and returns the
most probable state/tag sequefke (010203. - - 0t ), together with its probability.
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Let the HMM be defined by the two tables in Fig. 5.15 and Fig65Hig. 5.15
expresses the;; probabilities, thearansition probabilities between hidden states (i.e.
part-of-speech tags). Fig. 5.16 expressedif®) probabilities, theobservatiorlike-
lihoods of words given tags.

VB TO NN PPSS
<s> .019 .0043 .041 .067
VB .0038 .035 .047 .0070
TO .83 0 .00047 0
NN .0040 .016 .087 .0045
PPSS .23 .00079 .0012 .00014

Figure 5.15 Tag transition probabilities (th@array, p(ti|ti_1)) computed from the 87-
tag Brown corpus without smoothing. The rows are labeled #ie conditioning event;
thusP(PPS$VB) is .0070. The symboks> is the start-of-sentence symbol.

| want to race
VB 0 .0093 0 .00012
TO 0 0 .99 0
NN 0 .000054 0 .00057
PPSS 37 0 0 0

Figure 5.16 Observation likelihoods (thé array) computed from the 87-tag Brown

corpus without smoothing.

Fig. 5.17 shows pseudocode for the Viterbi algorithm. TheMi algorithm
sets up a probability matrix, with one column for each obatont and one row for
each state in the state graph. Each column thus has a cetldbrstatey; in the single
combined automaton for the four words.

The algorithm first create + 2 or four state columns. The first column is an
initial pseudo-word, the second corresponds to the obsenvaf the first wordi, the
third to the second wordiant the fourth to the third wordo, and the fifth to a final
pseudo-observation. We begin in the first column by usingrepls version of that
vector in which we set the probability of tiseartstate to 1.0, and the other probabilities
to O (left blank for readability); the reader should find timig=ig. 5.18.

Then we move to the next column; for every state in column O¢c@rapute the
probability of moving into each state in column 1. The valiterbis,t] is computed
by taking the maximum over the extensions of all the pathlétzal to the current cell.
An extension of a path from a stateat timet — 1 is computed by multiplying these
three factors:

1. theprevious path probability from the previous ceNiterbi[s,t — 1],
2. thetransition probability a;j from previous state' to current stats, and

3. theobservation likelihood bs(o;) that current state matches observation sym-
bol o.
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function VITERBI(observation®f len T,state-graph returns best-path

num-states— NUM-OF-STATEYState-graph
Create a path probability matrizsiterbijnum-states+2,T+2]
viterbi[0,0]— 1.0
for each time stepfrom 1to T do
for each statsfrom 1 to num-statesio
viterbi[s, ] — max [ viterbi[s',t —1] * ags| * bs(or)
1 < < num-states :
back-pointefs,t]«  argmax [ viterbi[g,t — 1] ag_s}
1 < ¢< num-states '

Backtrace from highest probability state in final columrvitérbi[] and return path

Figure 5.17  Viterbi algorithm for finding optimal sequence of tags. Givan observa-
tion sequence of words and an HMM (as defined byaladb matrices), the algorithm
returns the state-path through the HMM which assigns maxirtikelinood to the obser-
vation sequenceals’, g is the transition probability from previous stateto current state
s, andbs(oy) is the observation likelihood of giveno;. Note that states 0 and N+1 arp
non-emitting start and end states.

5 end
.041*1.0%0= |
4 NN 0
3 TO .0043*1.0*0=0-. |, 3
g UVIAX
5 VB .019*1.0*o=0w§f =.000051

1 PPSS .067*1.0 '37=£g§/%trace

0 start | 1.0

# | want to race #

0 1 2 3 4 5
MAX( 0*.0040, 0*.83, 0*.0038,.025*.23) = .025".23 = .0055. Then .0055*.0093 = .000051

Figure 5.18 The entries in the individual state columns for the Viteldgioaithm. Each
cell keeps the probability of the best path so far and a potetéhe previous cell along
that path. We have only filled out columns 0 and 1 and one celblfmn 2; the rest is left
as an exercise for the reader. After the cells are filled inktracing from theendstate,
we should be able to reconstruct the correct state sequenS&SR/B TO VB.

In Fig. 5.18, each cell in the column for the wdrés computed by multiplying
the previous probability at the start state (1.0), the itemsprobability from the start
state to the tag for that cell, and the observation likelthobthe wordl given the tag
for that cell. As it turns out, three of the cells are zerodsithe word can be neither
NN, TO nor VB). Next, each cell in thezantcolumn gets updated with the maximum
probability path from the previous column. We have showry ¢iné value for the VB
cell. That cell gets the max of four values; as it happensi& ¢hse, three of them
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(5.38)

(5.39)

(5.40)

(5.41)

are zero (since there were zero values in the previous cqlubhie remaining value is
multiplied by the relevant transition probability, and tttevial) max is taken. In this
case the final value, .000051, comes from the PPSS state @tietvieus column.

The reader should fill in the rest of the table in Fig. 5.18, backtrace to recon-
struct the correct state sequence PPSS VB TO VB.

5.5.4 Extending the HMM algorithm to trigrams

We mentioned earlier that HMM taggers in actual use have abenof sophistications
not present in the simplified tagger as we have described farsoOne important
missing feature has to do with the tag context. In the taggsciibed above, we
assume that the probability of a tag appearing is depenaénoa the previous tag:

Pt)) ~ J[Piti-1)
i=1

Most modern HMM taggers actually use a little more of thedrigtletting the
probability of a tag depend on the two previous tags:

n
P(t)) ~ JP@lti-1.t2)
i1

In addition to increasing the window before a tagging decisstate-of-the-art
HMM taggers like Brants (2000) let the tagger know the lamatof the end of the
sentence by adding dependence on an end-of-sequence fioatket. This gives the
following equation for part of speech tagging:

n
= arggnaP(tﬂv\/l‘) ~argmax [TPwilt)P(tifti-1.ti2) | P(tasaltn)
1 1 i=1

In tagging any sentence with (5.40), three of the tags useldercontext will
fall off the edge of the sentence, and hence will not matchleggvords. These tags,
t_1, to, andty.1, can all be set to be a single special ‘sentence boundaryvtagh
is added to the tagset. This requires that sentences pasetagger have sentence
boundaries demarcated, as discussed in Ch. 3.

There is one large problem with (5.40); data sparsity. Angipaar sequence
of tagsti_»,ti_1,ti that occurs in the test set may simply never have occurreldn t
training set. That means we cannot compute the tag trigraninghility just by the
maximum likelihood estimate from counts, following Equatb.41:
Clti—2,ti-1,t) .

C(ti—2,ti-1)

Why not? Because many of these counts will be zero in anyitigiset, and we will
incorrectly predict that a given tag sequence will neveuocevhat we need is a way
to estimateP(tj|ti_1,ti_2) even if the sequende »,t_1,t never occurs in the training
data.

The standard approach to solve this problem is to estimateihbability by
combining more robust, but weaker estimators. For exanifple’'ve never seen the

P(tilti—1,ti—2) =
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tag sequence PRP VB TO, so we can't com®R(fEO|PRP,VB) from this frequency,
we still could rely on the bigram probabili®(TO|VB), or even the unigram probabil-
ity P(TO). The maximum likelihood estimation of each of thesebgaiuilities can be
computed from a corpus via the following counts:

. 5 C(ti-2,ti-1,4)
5.42 Trigrams P(tj|ti_1,ti 2) = —————
(5.42) g (tifti-1,t-2) Cltat 1)
. ~ C(ti,l,ti)
5.43 Bigrams P(ti|ti-1) = ———=
( ) g (tilti—1) Clt1)
(5.44) Unigrams P(t) = _C,(\:i)
How should these three estimators be combined in order itna&st the trigram
probability P(titi_1,ti_2)? The simplest method of combination is linear interpotatio
In linear interpolation, we estimate the probabiRti|ti_1ti_2) by a weighted sum of
the unigram, bigram, and trigram probabilities:
(545)  P(tilti1ti2) = MP(tilti-1ti2) +A2P(tifti—1) +AsP(t)
We require\1+ A2+ A3 =1, insuring that the resulting P is a probability distribu-
Rk tion. How should thesgs be set? One good waydeleted interpolation, developed

by Jelinek and Mercer (1980). In deleted interpolation, wecsssively delete each
trigram from the training corpus, and choose Nseso as to maximize the likelihood
of the rest of the corpus. The idea of the deletion is to sehthim such a way as to
generalize to unseen data and not overfit the training cofigs5.19 gives the Brants
(2000) version of the deleted interpolation algorithm fag trigrams.

Brants (2000) achieves an accuracy of 96.7% on the Penn dmketith a tri-
gram HMM tagger. Weischedel et al. (1993) and DeRose (198& llso reported
accuracies of above 96% for HMM tagging. (Thede and Har@&9}offer a number
of augmentations of the trigram HMM model, including thead# conditioning word
likelihoods on neighboring words and tags.

The HMM taggers we have seen so far are trained on hand-tatggadKupiec
(1992), Cutting et al. (1992), and others show that it is glsssible to train an HMM
tagger on unlabeled data, using the EM algorithm that weimtiibduce in Ch. 6. These
taggers still start with a dictionary which lists which tagsn be assigned to which
words; the EM algorithm then learns the word likelihood fiimie for each tag, and
the tag transition probabilities. An experiment by Mer@m(d994), however, indicates
that with even a small amount of training data, a tagger é@ion hand-tagged data
worked better than one trained via EM. Thus the EM-traineatépHMM” tagger is
probably best suited to cases where no training data isadlajl for example when
tagging languages for which there is no previously handé¢dglata.
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function DELETED-INTERPOLATIONCOrpuUg returns Aq,A2,A3

A0
A0
A3—0
foreach trigramty, tp, t3 with f(t1,tp,t3) >0
dependingon the maximum of the following three values

C(ty,to,tz) -1, .
case%. incrementAs by C(ty, t, t3)

Cété’zt)sil: increment\, by C(ty,tp,13)

C(ts)—1. ;
ﬁfll s increment\; by C(ty,tp,t3)

case

case
end
end
normalizeh,A2, A3
return Aq,A2,A3

Figure 5.19 The deleted interpolation algorithm for setting the wesgfor combining
unigram, bigram, and trigram tag probabilities. If the daimmator is O for any case, we
define the result of that case to be 0. N is the total numberkef® in the corpus. After
Brants (2000).

5.6 TRANSFORMATION-BASED TAGGING

Transformation-Based Tagging, sometimes called Brilgiag, is an instance of the
TRANSFORMATION.  Transformation-Based Learning (TBL) approach to machine learning (Brill, 1995),
and draws inspiration from both the rule-based and stochtasigers. Like the rule-
based taggers, TBL is based on rules that specify what tamsddste assigned to
what words. But like the stochastic taggers, TBL is a machéaening technique,
in which rules are automatically induced from the data. Lskene but not all of the
HMM taggers, TBL is a supervised learning technique; it agssia pre-tagged training
corpus. _
Samuel et al. (1998) offer a useful analogy for understamttia TBL paraligm,
which they credit to Terry Harvey. Imagine an artist paigtimpicture of a white house
with green trim against a blue sky. Suppose most of the monas sky, and hence
most of the picture was blue. The artist might begin by usinvgry broad brush and
painting the entire canvas blue. Next she might switch toraesehat smaller white
brush, and paint the entire house white. She would just doltre whole house, not
worrying about the brown roof, or the blue windows or the grgables. Next she
takes a smaller brown brush and colors over the roof. Nowadkestup the blue paint
on a small brush and paints in the blue windows on the housell¥fishe takes a very
fine green brush and does the trim on the gables.
The painter starts with a broad brush that covers a lot of #mvas but colors
a lot of areas that will have to be repainted. The next lay&redess of the canvas,
but also makes less “mistakes”. Each new layer uses a finshbhat corrects less of
the picture, but makes fewer mistakes. TBL uses somewhaiaime method as this
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(5.46)

(5.47)

(5.48)

TEMPLATES

painter. The TBL algorithm has a set of tagging rules. A cerisuirst tagged using
the broadest rule, that is, the one that applies to the masiscarhen a slightly more
specific rule is chosen, which changes some of the origigal tdext an even narrower
rule, which changes a smaller number of tags (some of whighitrbe previously

changed tags).

5.6.1 How TBL Rules Are Applied

Let’s look at one of the rules used by Brill's (1995) taggeef@e the rules apply, the
tagger labels every word with its most-likely tag. We gesthenost-likely tags from a
tagged corpus. For example, in the Brown corpaseis most likely to be a noun:

P(NN|racg = .98
P(VB|racg = .02

This means that the two examplesra€ethat we saw above will both be coded
as NN. In the first case, this is a mistake, as NN is the incotagc

is/VBZ expected/VBN to/TO racBN tomorrow/NN
In the second case thiaceis correctly tagged as an NN:
the/DT racelNN for/IN outer/JJ space/NN

After selecting the most-likely tag, Brill's tagger ap@iis transformation rules.
As it happens, Brill's tagger learned a rule that appliescdyao this mistagging of
race

ChangeNN to VB when the previous tag iFO

This rule would changeace/NNto race/VBin exactly the following situation,
since it is preceded bp/TO.

expected/VBN to/TO race/NN- expected/VBN to/TO race/VB

5.6.2 How TBL Rules Are Learned

Brill's TBL algorithm has three major stages. It first labelsery word with its most-
likely tag. It then examines every possible transformatiemd selects the one that
results in the most improved tagging. Finally, it then rgstéhe data according to this
rule. The last two stages are repeated until some stoppitegion is reached, such as
insufficient improvement over the previous pass. Note ttagjestwo requires that TBL
knows the correct tag of each word; that is, TBL is a supedvisarning algorithm.

The output of the TBL process is an ordered list of transfdiona; these then
constitute a “tagging procedure” that can be applied to a ceyus. In principle the
set of possible transformations is infinite, since we comlddine transformations such
as “transform NN to VB if the previous word was “IBM” and the wb‘the” occurs
between 17 and 158 words before that”. But TBL needs to cengdery possible
transformation, in order to pick the best one on each passigifirthe algorithm. Thus
the algorithm needs a way to limit the set of transformatidrtss is done by designing
a small set ofemplates(abstracted transformations). Every allowable transédiom
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The preceding (following) word is tagged
The word two before (after) is tagged
One of the two preceding (following) words is tagged
One of the three preceding (following) words is tagged
The preceding word is taggedand the following word is tagged.
The preceding (following) word is taggedand the word
two before (after) is tagged.

Figure 5.20  Brill's (1995) templates. Each begins wit@hange taga to tagb when:
...". The variables, b, z, andw range over parts-of-speech.

is an instantiation of one of the templates. Brill’s set ahf#ates is listed in Fig. 5.20.
Fig. 5.21 gives the details of this algorithm for learningsformations.

At the heart of Fig. 5.21 are the two functionE GBEST.TRANSFORMATION
and GET_BEST.INSTANCE. GET_BEST.TRANSFORMATION is called with a list of
potential templates; for each template, it callETGBEST_INSTANCE. GET_BEST.-
INSTANCE iteratively tests every possible instantiation of eachpiate by filling in
specific values for the tag variablasb, z, andw.

In practice, there are a number of ways to make the algoritlorerefficient.
For example, templates and instantiated transformatiansbe suggested in a data-
driven manner; a transformation-instance might only beyested if it would improve
the tagging of some specific word. The search can also be made efficient by
pre-indexing the words in the training corpus by potenti@hsformation. Roche and
Schabes (1997) show how the tagger can also be speeded up\mrtory each rule
into a finite-state transducer and composing all the tracesdu

Fig. 5.22 shows a few of the rules learned by Brill's origitedger.

5.7 BEVALUATION AND ERRORANALYSIS

The probabilities in a statistical model like an HMM POSgagcome from the corpus
itis trained on. We saw in Se@?that in order to train statistical models like taggers or
N-grams, we need to set asidéraining corpus. The design of théraining corpus
needs to be carefully considered. If the training corpusasspecific to the task or do-
main, the probabilities may be too narrow and not generalgéto tagging sentences
in very different domains. But if the training corpus is toengral, the probabilities
may not do a sufficient job of reflecting the task or domain.

For evaluatingN-grams models, we said in Se2? that we need to divide our
corpus into a distinct training set, test set, and a secastdsét called a development
test set. We train our tagger on the training set. Then we hisddvelopment test

DEVELOPMENTTEST  set(also called alevtestset) to perhaps tune some parameters, and in general decide
peviest  what the best model is. Then once we come up with what we tisitka best model,
we run it on the (hitherto unseen) test set to see its perfocmaWwe might use 80%
of our data for training, and save 10% each for devtest artd YWy do we need a
development test set distinct from the final test set? Becdwge used the final test
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function TBL(corpug returns transforms-queue

INTIALIZE -WITH-MOST-LIKELY -TAGSCOrpug

until end condition is metlo
templates— GENERATE-POTENTIAL-RELEVANT-TEMPLATES
best-transform— GET-BEST TRANSFORMcOrpustemplatey
APPLY-TRANSFORMbest-transformcorpug
ENQUEUHbest-transform-rulgtransforms-queye

end

return (transforms-queue

function GET-BEST-TRANSFORMcorpustemplatesreturns transform
for eachtemplatein templates
(instancescorg « GET-BEST-INSTANCHcorpustemplaté
if (score> best-transform.scojehen best-transform— (instancescore
return (best-transform

function GET-BESTINSTANCHcoOrpus templateyeturns transform
for from-tag— from tag; to tag, do
for to-tag«+ from tag; to tag, do
for pos— from 1to corpus-sizelo
if (correct-tagpog ==to-tag&& current-tagpog == from-tag
num-good-transfornfsurrent-tagpos—1))++
elseif (correct-tagpog==from-tag&& current-tagpog==from-tag
num-bad-transforn{surrent-tagpos—1))++
end
best-Z— ARGMAXt(num-good-transforngf - num-bad-transforn{s))
if (num-good-transforngbest-Z - num-bad-transforn{best-3
> best-instance.scoygéhen
best.rule—“Change tag fromfrom-tagto to-tagif prev tag is best-Z
best.score- num-good-transfornfbest-7 - num-bad-transforn{best-2
return (bes)

procedure APPLY-TRANSFORM(transform corpug
for pos— from 1to corpus-sizelo
if (current-tagpog==best-rule-fron
& ( current-tagpos—1)==best-rule-prey)
current-tagdpos < best-rule-to

Figure 5.21 The TBL algorithm for learning to tag. & _BEST_INSTANCEwould have
to change for transformation templates other thahange tag from X to Y if previous tag
is Z". After Brill (1995).

set to compute performance for all our experiments durirrgleuelopment phase, we
would be tuning the various changes and parameters to thi®©sefinal error rate on
the test set would then be optimistic: it would underestantie true error rate.
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Change tags
From| To | Condition Example
NN VB Previous tag is TO to/TO race/NN— VB

VBP | VB One of the previous 3 tags is M
NN VB One of the previous 2 tags is M
VB NN One of the previous 2 tags is D]
VBD | VBN | One of the previous 3 tags is VB

might/MD vanish/VBP— VB
might/MD not reply/NN— VB

OO WN RPI#H
N YU U

Figure 5.22  The first 20 nonlexicalized transformations from Brill (B)9

The problem with having a fixed training set, devset, andsteiss that in order to
save lots of data for training, the test set might not be largrugh to be representative.
Thus a better approach would be to somehowalkeur data both for training and

crossvaLiDaTion  test. How is this possible? The idea is to usessvalidation In crossvalidation, we
randomly choose a training and test set division of our dedién our tagger, and then
compute the error rate on the test set. Then we repeat wiffeaatit randomly selected
training set and test set. We do this sampling process 1&tiamel then average these
crossvaLlsisR 10 runs to get an average error rate. This is calleédold crossvalidation

The only problem with cross-validation is that becausetal data is used for
testing, we need the whole corpus to be blind; we can’t exarainy of the data to
suggest possible features, and in general see what’s goiri8um looking at the corpus
is often important for designing the system. For this reds@common to create a
fixed training set and test set, and then to do 10-fold crdisateon inside the training
set, but compute error rate the normal way in the test set.

Once we have a test set, taggers are evaluated by compaeindatbeling of
the test set with a human-label&bld Standard test set, based oaccuracy. the
percentage of all tags in the test set where the tagger ar@dldestandard agree. Most
current tagging algorithms have an accuracy of around 9%-®¥ simple tagsets like
the Penn Treebank set. These accuracies are for words antliption; the accuracy
for words only would be lower.

How good is 97%? Since tagsets and tasks differ, the perfucenaf tags can be

BASELNE  compared against a lower-boubdselineand an upper-bourzkiling. One way to set
ceune  a ceiling is to see how well humans do on the task. Marcus €t 893), for example,
found that human annotators agreed on about 96—97% of théntége Penn Treebank
version of the Brown corpus. This suggests that the Golddstahmay have a 3-4%
margin of error, and that it is meaningless to get 100% acgui@odeling the last
3% would just be modeling noise). Indeed Ratnaparkhi (1886yved that the tagging
ambiguities that caused problems for his tagger were gx#tlones that humans had
labeled inconsistently in the training set. Two experirsdmy Voutilainen (1995, p.
174), however, found that when humans were allowed to déstags, they reached
consensus on 100% of the tags.

Human Ceiling: When using a human Gold Standard to evaluate a classification
algorithm, check the agreement rate of humans on the st@ndar

The standardbaseline suggested by Gale et al. (1992) (in the slightly different
context of word-sense disambiguation), is to chooseauttigram most-likely tag for
each ambiguous word. The most-likely tag for each word candmputed from a
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hand-tagged corpus (which may be the same as the trainipgséor the tagger being
evaluated).

Unigram Baseline: Always compare a classifier against a baseline at least as
good as the unigram baseline (assigning each token to the itlaccurred in
most often in the training set).

Tagging algorithms since Harris (1962) incorporate thisftaquency intuition.
Charniak et al. (1993) showed that this baseline algoritbimmesres an accuracy of 90—
91% on the 87-tag Brown tagset; Toutanova et al. (2003) stidkgg a more complex
version, augmented with an unknown word model, achieve@98.on the 45-tag
Treebank tagset.

When comparing models it is important to use statisticatistémtroduced in
any statistics class or textbook for the social sciencesletermine if the difference
between two models is significant. Cohen (1995) is a usefateace which focuses
on statistical research methods for artificial intelligenBietterich (1998) focuses on
statistical tests for comparing classifiers.

5.7.1 Error Analysis

In order to improve any model we need to understand whererit weong. Analyzing
the error in a classifier like a part-of-speech tagger is doae confusion matrix,

or contingency table A confusion matrix for arN-way classification task is aN-
by-N matrix where the cellx,y) contains the number of times an item with correction
classificatiorx was classified by the model gsFor example, the following table shows
a portion of the confusion matrix from the HMM tagging expeeints of Franz (1996).
The row labels indicate correct tags, column labels inditla¢ tagger's hypothesized
tags, and each cell indicates percentage of the overalinigggror. Thus 4.4% of
the total errors were caused by mistagging a VBD as a VBN. Comaetrrors are
boldfaced.

IN JJ NN NNP RB VBD VBN
IN - 2 7
JJ 2 - 3.3 21 1.7 2 2.7
NN 8.7 - 2
NNP 2 3.3 4.1 - 2
RB 2.2 2.0 5 -
VBD 3 5 - 4.4
VBN 2.8 2.6 -

The confusion matrix above, and related error analysesanZ§1996), Kupiec
(1992), and Ratnaparkhi (1996), suggest that some majbigyrs facing current tag-
gers are:

1. NN versus NNP versus JJ:These are hard to distinguish prenominally. Dis-
tinguishing proper nouns is especially important for infiation extraction and
machine translation.

2. RP versus RB versus IN:All of these can appear in sequences of satellites
immediately following the verb.
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3. VBD versus VBN versus JJ:Distinguishing these is important for partial pars-
ing (participles are used to find passives), and for corrdahieling the edges of
noun-phrases.

Error analysis like this is a crucial part of any computagildmguistic application. Er-
ror analysis can help find bugs, find problems in the trainatg dand, most important,
help in developing new kinds of knowledge or algorithms te imssolving problems.

5.8 ADVANCED ISSUES INPART-OF-SPEECHTAGGING

5.8.1 Practical Issues: Tag Indeterminacy and Tokenizatio

Tag indeterminacy arises when a word is ambiguous betwedtiptattags and it is
impossible or very difficult to disambiguate. In this casans taggers allow the use
of multiple tags. This is the case in both the Penn Treebadkrathe British National
Corpus. Common tag indeterminacies include adjectiveugepseterite versus past
participle (JJ/VBD/VBN), and adjective versus noun as preimal modifier (JJ/NN).
Given a corpus with these indeterminate tags, there are 8 twajeal with tag indeter-
minacy when training and scoring part-of-speech taggers:

1. Somehow replace the indeterminate tags with only one tag.

2. Intesting, count a tagger as having correctly tagged @etémminate token if it
gives either of the correct tags. In training, somehow chamdy one of the tags
for the word.

3. Treat the indeterminate tag as a single complex tag.

The second approach is perhaps the most sensible, althoosftprevious published
results seem to have used the third approach. This thircbapprapplied to the Penn
Treebank Brown corpus, for example, results in a much laageret of 85 tags instead
of 45, but the additional 40 complex tags cover a total of dr#l§ word instances out
of the million word corpus.

Most tagging algorithms assume a process of tokenizatisbdan applied to the
tags. Ch. 3 discussed the issue of tokenization of periaddi$tinguishing sentence-
final periods from word-internal period in words liktéc. An additional role for tok-
enization is in word splitting. The Penn Treebank and th&driNational Corpus split
contractions and th's-genitive from their stems:

would/MD n't/RB
children/NNS 's/POS

Indeed, the special Treebank tag POS is used only for the mearg’'s which
must be segmented off during tokenization.

Another tokenization issue concerns multi-part words. Treebank tagset as-
sumes that tokenization of words likéew Yorkis done at whitespace. The phrase
a New York City firmis tagged in Treebank notation as five separate woedBT
New/NNP York/NNP City/NNP firm/NNhe C5 tagset, by contrast, allow prepositions
like “in terms of to be treated as a single word by adding numbers to each ¢ag, a
in/l131 terms/1132 of/1133
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HAPAX LEGOMENA

(5.49)

5.8.2 Unknown Words

All the tagging algorithms we have discussed require aahietiy that lists the possible
parts-of-speech of every word. But the largest dictionaity still not contain every
possible word, as we saw in Ch. 7. Proper names and acrongsaated very often,
and even new common nouns and verbs enter the language grisisgrrate. There-
fore in order to build a complete tagger we cannot always udietenary to give us
p(wilti). We need some method for guessing the tag of an unknown word.

The simplest possible unknown-word algorithm is to pretiévad each unknown
word is ambiguous among all possible tags, with equal pritibabThen the tagger
must rely solely on the contextual POS-trigrams to sugdmesptoper tag. A slightly
more complex algorithm is based on the idea that the prababiktribution of tags
over unknown words is very similar to the distribution of $agver words that oc-
curred only once in a training set, an idea that was suggéstdabth Baayen and
Sproat (1996) and Dermatas and Kokkinakis (1995). Thesdsitbat only occur once
are known adapax legomeng(singularhapax legomenoi). For example, unknown
words andhapax legomenare similar in that they are both most likely to be nouns,
followed by verbs, but are very unlikely to be determinersnterjections. Thus the
likelihood P(wi|t;) for an unknown word is determined by the average of the igtri
tion over all singleton words in the training set. This idéaising “things we've seen
once” as an estimator for “things we've never seen” will graxseful in the Good-
Turing algorithm of Ch. 4.)

Most unknown-word algorithms, however, make use of a mucrerpowerful
source of information: the morphology of the words. For eglaywords that end irs
are likely to be plural nouns (NNS), words ending witldtend to be past participles
(VBN), words ending withable tend to be adjectives (JJ), and so on. Even if we've
never seen a word, we can use facts about its morphologinal to guess its part-
of-speech. Besides morphological knowledge, orthograifiormation can be very
helpful. For example words starting with capital letters bkely to be proper nouns
(NP). The presence of a hyphenis also a useful feature; mgtbe words in the Tree-
bank version of Brown are most likely to be adjectives (J#lisTrevalence of JJs is
caused by the labeling instructions for the Treebank, whjdrified that prenominal
modifiers should be labeled as JJ if they contained a hyphen.

How are these features combined and used in part-of-spaggérs? One method
is to train separate probability estimators for each featassume independence, and
multiply the probabilities. Weischedel et al. (1993) bgilich a model, based on four
specific kinds of morphological and orthographic featur€hey used 3 inflectional
endings {ed -s, -ing), 32 derivational endings (such 4sn, -al, -ive, and-ly), 4 values
of capitalization depending on whether a word is sentenitidi (+/- capitalization, +/-
initial) and whether the word was hyphenated. For each featiuey trained maximum
likelihood estimates of the probability of the feature givetag from a labeled training
set. They then combined the features to estimate the piabaiiian unknown word
by assuming independence and multiplying:

P(wi|ti) = p(unknown-wordt; ) x p(capitalt;) « p(endings/hypft;)
Another HMM-based approach, due to Samuelsson (1993) aadt8(2000),
generalizes this use of morphology in a data-driven wayhigmapproach, rather than
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pre-selecting certain suffixes by hand, all final letter szapes of all words are con-
sidered. They consider such suffixes of up to ten letters penimg for each suffix of
lengthi the probability of the tag given the suffix:

(5.50) P(ti||n7i+l---|n)

These probabilities are smoothed using successivelyestanrt shorter suffixes.
Separate suffix tries are kept for capitalized and uncap#@ords.

In general, most unknown word models try to capture the faat tnknown
words are unlikely to be closed-class words like prepasitidBrants models this fact
by only computing suffix probabilities from the training $et words whose frequency
in the training set is< 10. In the HMM tagging model of Thede and Harper (1999),
this fact is modeled instead by only training on open-classis.

Note that (5.50) gives an estimate pftj|w;); since for the HMM tagging ap-
proach we need the likelihoga(wi|t;), this can be derived from (5.50) using Bayesian
inversion (i.e. using Bayes rule and computation of the tri@rpP(t;) andP(ti|In_it1 . .. In))-

In addition to using capitalization information for unknoewords, Brants (2000)
also uses capitalization information for tagging known @by adding a capitaliza-
tion feature to each tag. Thus instead of compuR(Igti_1,t_2) as in (5.43), he actu-
ally computes the probabilit(ti, i |ti_1,Ci—1,t—2,Ci—2). This is equivalent to having
a capitalized and uncapitalized version of each tag, dsfigrdoubling the size of the
tagset,.

A non-HMM based approach to unknown word detection was thitith (1995)
using the TBL algorithm, where the allowable templates vaerfined orthographically
(the firstN letters of the words, the labt letters of the word, etc.).

A third approach to unknown word handling, due to Ratnapafk®96), uses
the maximum entropy approach. The maximum entropy apprisashe of a family
of loglinear classifiers in which many features are compidethe word to be tagged,
and all the features are combined in a regression-like mdd®leach word, the Rat-
naparkhi (1996) model includes as features all prefixes afitkas of length< 4 (i.e.

8 total prefix and suffix features), plus three more featurdating whether the word
contains a number, contains a hyphen, or contains an upgerietter. The model
ignored all features with counts less than 10.

A more recent loglinear model, Toutanova et al. (2003) augetktthe Ratna-
parkhi features with an ‘all-caps’ feature, as well as adsafor words that are capi-
talized and have a digit and dash (since words like CFC-1@tiebe common nouns).
But the most significant unknown word improvement of the &oatva et al. (2003)
model is a simple company name detector, which marks ceggithivords followed
within 3 words by a word like Co. or Inc.

Loglinear models have also been applied to Chinese taggingskng et al.
(2005). Chinese words are very short (around 2.4 chargoéersnknown word com-
pared with 7.7 for English), but Tseng et al. (2005) found tharphological features
nonetheless gave a huge increase in tagging performanaakaown words. For ex-
ample for each character in an unknown word and each POShigatided a binary
feature indicating whether that character ever occurréid that tag in any training set
word. There is also an interesting distributional differeim unknown words between
Chinese and English. While English unknown words tend torbpgr nouns (41% of
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(5.51)

unknown words in WSJ are NP), in Chinese the majority of umkmeords are com-
mon nouns and verbs (61% in the Chinese TreeBank 5.0). Thées are similar to
German, and seem to be caused by the prevalence of compguwsdinmorphological
device in Chinese and German.

5.8.3 Part-of-Speech Tagging for Other Languages

As the previous paragraph suggests, part-of-speech gagdgorithms have all been
applied to many other languages as well. In some cases, thedsawvork well without
large modifications; Brants (2000) showed the exact sanfempeance for tagging on
the German NEGRA corpus (96.7%) as on the English Penn Tn&elBaut a number
of augmentations and changes become necessary when deififitdghly inflected or
agglutinative languages.

One problem with these languages is simply the large numieoals, when
compared to English. Recall from Ch. 3 that agglutinativiglaages like Turkish (and
to some extent mixed agglutinative-inflectional langudi@sHungarian) are those in
which words contain long strings of morphemes, where eaalph@ne has relatively
few surface forms, and so it is often possible to clearly Beertorphemes in the surface
text. For example Megyesi (1999) gives the following typeeample of a Hungarian
word meaning “of their hits”:

talalataiknak

talal  -at -a - -k -nak
hit/find nominalizerhis poss.plurtheir dat/gen
“of their hits”

Similarly, the following list, excerpted from Hakkani-T&t al. (2002), shows a
few of the words producible in Turkish from the raotu- 'sleep”:

uyuyorum ‘I am sleeping’ uyuyorsun ‘you are sleeping’

uyuduk  ‘we slept’ uyumadan ‘without sleeping’

uyuman  ‘your sleeping’ uyurken ‘while (somebody) is sleepi
uyutmak  ‘to cause someone to sleep’ uyutturmak ‘to causeesomto cause another

person to sleep’

These productive word-formation processes result in &laogabulary for these
languages. Oravecz and Dienes (2002), for example, shawa tpaarter-million word
corpus of English has about 19,000 different words (i.e. daMgpes); the same size
corpus of Hungarian has almost 50,000 different words. Pprelem continues even
with much larger corpora; note in the table below on Turkismf Hakkani-Tur et al.
(2002) that the vocabulary size of Turkish is far bigger thizat of English and is
growing faster than English even at 10 million words.

Vocabulary Size
Turkish English
1M words |106,547 33,398
10M words (417,775 97,734

The large vocabulary size seems to cause a significant detgrach tagging per-
formance when the HMM algorithm is applied directly to adglative languages. For

Corpus Size
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example Oravecz and Dienes (2002) applied the exact same lddtvare (called
‘TnT’) that Brants (2000) used to achieve 96.7% on both Emgind German, and
achieved only 92.88% on Hungarian. The performance on keovds (98.32%) was
comparable to English results; the problem was the perfocean unknown words:
67.07% on Hungarian, compared to around 84-85% for unknoasrdswvith a compa-
rable amount of English training data. Haji¢ (2000) notesg¢ame problem in a wide
variety of other languages (including Czech, Slovene, iiiatg and Romanian); the
performance of these taggers is hugely improved by addirigtimdary which essen-
tially gives a better model of unknown words. In summary, difficulty in tagging
highly inflected and agglutinative languages is taggingrinown words.

A second, related issue with such languages is the vast ambinformation
that is coded in the morphology of the word. In English, Idteformation about syn-
tactic function of a word is represented by word order, oghboring function words.
In highly inflectional languages, information such as theecgnominative, accusative,
genitive) or gender (masculine, feminine) is marked on thedathemselves, and word
order plays less of a role in marking syntactic function.c8itagging is often used a
preprocessing step for other NLP algorithms such as pagsimjormation extraction,
this morphological information is crucial to extract. Thigans that a part-of-speech
tagging output for Turkish or Czech needs to include infdfameabout the case and
gender of each word in order to be as useful as parts-of-Byeifirout case or gender
are in English.

For this reason, tagsets for agglutinative and highly itifteal languages are
usually much larger than the 50-100 tags we have seen foridbnglfags in such
enriched tagsets are sequences of morphological tags rthée a single primitive
tag. Assigning tags from such a tagset to words means thatenjeiatly solving the
problems of part-of-speech tagging and morphologicalndisguation. Hakkani-Tur
et al. (2002) give the following example of tags from Turkigshwhich the wordzin
has three possible morphological/part-of-speech tagsrteaanings):

1. Yerdekiizin temizlenmesi gerek. iz Noun+A3sg+Pnon+Gen

The trace on the floor should be cleaned.

2. Uzerinde parmakzin kalmis
Your fingerprint is left on (it).

iz +Noun+A3sg+P2sg+Nom

3. Igeri girmek icinizin alman gerekiyor.
You need germissionto enter.

Using a morphological parse sequence INM@un+A3sg+Pnon+Gen as the
part-of-speech tag greatly increases the number of p&tperch, of course. We can
see this clearly in the morphologically tagged MULTEXT-Easerpora, in English,
Czech, Estonian, Hungarian, Romanian, and Slovene (Qiwatet al., 1998; Erjavec,
2004). Haji¢ (2000) gives the following tagset sizes fadh corpora:

izin Noun+A3sg+Pnon+Nom

Language Tagset Size

English 139
Czech 970
Estonian 476
Hungarian 401
Romanian 486

Slovene 1033
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With such large tagsets, it is generally necessary to perfoorphological anal-
ysis on each word to generate the list of possible morpho#b¢hg sequences (i.e. the
list of possible part-of-speech tags) for the word. The ojlthe tagger is then to dis-
ambiguate among these tags. The morphological analysisecdane in various ways.
The Hakkani-Tur et al. (2002) model of Turkish morpholaj@nalysis is based on the
two-level morphology we introduced in Ch. 3. For Czech aredMWJLTEXT-East lan-
guages, Haji¢ (2000) and Hajic and Hladka (1998) use alfesgernal dictionary for
each language which compiles out all the possible formsdi @srd, and lists possi-
ble tags for each wordform. The morphological parse alsoialy helps address the
problem of unknown words, since morphological parsers cae@t unknown stems
and still segment the affixes properly.

Given such a morphological parse, various methods for thgirg itself can be
used. The Hakkani-Tur et al. (2002) model for Turkish uskkekov model of tag se-
guences. The model assigns a probability to sequencesdikagzi n+Noun+A3sg+Pnon+Nom
by computing tag transition probabilities from a trainirgy.Other models use similar
techniques to those for English. Haji¢ (2000) and Hajid &tladka (1998), for ex-
ample, use a log-linear exponential tagger for the MULTEE&St languages, Oravecz
and Dienes (2002) and Dzeroski et al. (2000) use the TnT Hitér (Brants, 2000),
and so on.

5.8.4 Combining Taggers

The various part-of-speech tagging algorithms we haveritest can also be com-
bined. The most common approach to tagger combination isrtanultiple taggers
in parallel on the same sentence, and then combine theiupuwjther by voting or
by training another classifier to choose which tagger ta frua given context. Birill
and Wu (1998), for example, combined unigram, HMM, TBL, arakimum-entropy
taggers by voting via a higher-order classifier, and showswhall gain over the best
of the four classifiers. In general, this kind of combinati®only useful if the taggers
have complementary errors, and so research on combindtamlzegins by checking
to see if the errors are indeed different from different &xgg Another option is to
combine taggers in series. Haji¢ et al. (2001) apply thisoopfor Czech, using the
rule-based approach to remove some of the impossible taihides for each word,
and then an HMM tagger to choose the best sequence from tlaniagtags.

5.9 ADVANCED: THE NoOISY CHANNEL MODEL FORSPELLING

The Bayesian inference model introduced in Sec. 5.5 foritaghgas another inter-
pretation: as an implementation of theisy channelmodel, a crucial tool in speech
recognition and machine translation. In this section weohice this noisy channel
model and show how to apply it to the task of correcting spglérrors.

We saw in Sec?? that candidate corrections for some spelling errors coald b
found by looking for words that had a smallit distanceto the misspelled word. The
Bayesian models we have seen in this chapter, and the nasyehmodel, will give
us a better way to find these corrections.
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NOISY CHANNEL

BAYESIAN

Vv

(5.52)

(5.53)

guess at
PECODER 5 original
word

SOURCE word

Figure 5.23  The noisy channel model.

The intuition of thenoisy channelmodel (see Fig. 5.23) is to treat the misspelled
word as if a correctly-spelled word had been ‘distorted’ binlg passed through a noisy
communication channel. This channel introduces “noisghaform of substitutions
or other changes to the letters which makes it hard to rezeghe “true” word. Our
goal is then to build a model of the channel. Given this modelthen find the true
word by taking every word of the language, passing each waaligh our model of
the noisy channel, and seeing which one comes the closést tnisspelled word.

This noisy channel model, like the HMM tagging architectwesaw earlier, is
a special case ddayesian inference We see an observatidd (a misspelled word)
and our job is to find the word/ which generated this misspelled word. Out of all
possible words in the vocabula¥ we want to find the wordv such thatP(w|O) is
highest, or:

W = argmaxP(w|O)

weV

As we saw for part-of-speech tagging, we will use Bayes utarn the problem
around (and note that, as for tagging, we can ignore the digrabon):

W= argmaxw = argmax(O|w) P(w)

weV P(O) weV

To summarize, the noisy channel model says that we have somemnderly-
ing wordw, and we have a noisy channel which modifies the word into sarasiple
misspelled surface form. The probability of the noisy chammoducing any particular
observation sequen€2is modeled byP(O|w). The probability distribution over pos-
sible hidden words is modeled B®(w). The most probable word given that we've
seen some observed misspell@gan be computed by taking the product of the word
prior P(w) and the observation likelihodd(O|w) and choosing the word for which
this product is greatest.

Let’s apply the noisy channel approach to correcting nondvgpelling errors.
This approach was first suggested by Kernighan et al. (189€};program¢or r ect ,
takes words rejected by the Ursypel | program, generates a list of potential correct
words, ranks them according to Eq. (5.53), and picks thedsghanked one. We'll
apply the algorithm to the example misspelliagress The algorithm has two stages:
proposing candidate correctiorsdscoring the candidates

In order to propose candidate corrections Kernighan et akenthe reasonable
(Damerau, 1964) simplifying assumption that the correatwill differ from the mis-
spelling by a single insertion, deletion, substitutionfransposition. The list of can-
didate words is generated from the typo by applying any sitiginsformation which
results in a word in a large on-line dictionary. Applying pdissible transformations to
acresgyields the list of candidate words in Fig. 5.24.
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(5.54)

Transformation
Correct Error Position

Error Correction Letter Letter (Letter #) Type
acress actress t - 2 deletion
acress cress - a 0 insertion
acress caress ca ac 0 transpositior
acresy access c r 2 substitution
acress across o] e 3 substitution
acress acres - 2 5 insertion
acress acres - 2 4 insertion

Figure 5.24 Candidate corrections for the misspelliagress together with the trans-

formations that would have produced the error (after Kdraiget al. (1990)). “—" repre-

sents a null letter.

The second stage of the algorithm scores each correctiombgtien 5.53. Let
t represent the typo (the misspelled word), anctleinge over the s& of candidate
corrections. The most likely correction is then:

likelihood prior

—~= =
¢=argmax P(t|lc) P(c)

ceC

The prior probability of each correctid?(c) is the language model probability
of the wordc in context; for now let's make the simplifying assumptiomttlthis is
the unigram probability?(c). Let's use the corpus of Kernighan et al. (1990), which
is the 1988 AP newswire corpus of 44 million words. Since iis ttorpus the word
actressoccurs 1343 times out of 44 million, the woadres2879 times, and so on, the
resulting unigram prior probabilities are as follows:

c freq(c) p(c)

actress 1343 .0000315
cress O .000000014
caress 4 .0000001
access 2280 .000058
across 8436 .00019
acres 2879 .000065

How can we estimat®(t|c)? It is very difficult to model the actual channel
perfectly (i.e. computing the exact probability that a waritl be mistyped) because
it would require knowing who the typist was, whether they eviaft-handed or right-
handed, and many other factors. Luckily, it turns out we cenagpretty reasonable
estimate ofp(t|c) just by looking at simple local context factors, becausertiost
important factors predicting an insertion, deletion, swsition are the identity of the
correct letter itself, how the letter was misspelled, arelgbrrounding context. For
example, the lettersh andn are often substituted for each other; this is partly a fact
about their identity (these two letters are pronouncedaitgiand they are nextto each
other on the keyboard), and partly a fact about context (lmethey are pronounced
similarly, they occur in similar contexts). Kernighan et(@990) used a simple model
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CONFUSION MATRIX

(5.55)

of this sort. They estimated e.@(acressacrosg just using the number of times that
the lettere was substituted for the letterin some large corpus of errors. This is repre-
sented by @onfusion matrix, a square 2826 matrix which represents the number of
times one letter was incorrectly used instead of anotharekample, the cell labeled
[0,€] in a substitution confusion matrix would give the count aféis thae was substi-
tuted foro. The cell labeledt, 5 in an insertion confusion matrix would give the count
of times thatt was inserted aftes. A confusion matrix can be computed by coding
a collection of spelling errors with the correct spellinglahen counting the number
of times different errors occurred (Grudin, 1983). Kerragtet al. (1990) used four
confusion matrices, one for each type of single error:

o delx,y] contains the number of times in the training set that theadtarsxy in
the correct word were typed as

¢ ing)x,y] contains the number of times in the training set that theadtarx in the
correct word was typed ag.

¢ subjx,y] the number of times thatwas typed ay.

e trangx,y] the number of times thaty was typed agx

Note that they chose to condition their insertion and deteirobabilities on the
previous character; they could also have chosen to conditidhe following character.
Using these matrices, they estimat#tlc) as follows (where, is thepth character of
the wordc):

delicy_1.c . X
ﬁi’%{—li’%, if deletion
—t—(':%%cr’]’:f’j] , if insertion
—t—gggtrﬁgg]] , if substitution
g—ﬂﬁcﬁ , if transposition

Fig. 5.25 shows the final probabilities for each of the pa&mbrrections; the
unigram prior is multiplied by the likelihood (computed mgiEquation (5.55) and the
confusion matrices). The final column shows the “normalizetentage”.

This implementation of the Bayesian algorithm predéstsesas the correct word
(at a total normalized percentage of 45%), anttessas the second most likely word.
Unfortunately, the algorithm was wrong here: The writerigention becomes clear
from the context:...was called a “stellar and versatilacresswhose combination
of sass and glamour has defined het..The surrounding words make it clear that
actressand notacreswas the intended word. Seeing whether a bigram model of
correctly solves this problem is left as Exercise 5.10 ferrbader.

The algorithm as we have described it requires hand-aretbtita to train the
confusion matrices. An alternative approach used by Kaamget al. (1990) is to
compute the matrices by iteratively using this very spgliémror correction algorithm
itself. The iterative algorithm first initializes the mates with equal values; thus any
character is equally likely to be deleted, equally likelyo® substituted for any other
character, etc. Next the spelling error correction algamiis run on a set of spelling
errors. Given the set of typos paired with their correctjdhs confusion matrices can

P(t|c) =
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lc [ frea©] p(c) | p(tlo) | p(ope) [ % |
actresg 1343 .0000315 .000117 3.69x107° 37%
cress 0 .000000014  .00000144 |  2.02x 1074 0%
caress 4 .0000001 .00000164 1.64x 10713 0%
access 2280 .000058 .000000209 1.21x 101! 0%
across 8436 .00019 .0000093 1.77x107° 18%
acres 2879 .000065 .0000321 2.09x 10°° 21%
acres 2879 .000065 .0000342 2.22x10°° 23%
Figure 5.25 Computation of the ranking for each candidate correctionteNhat the
highest ranked word is nactressbutacres(the two lines at the bottom of the table), since
acrescan be generated in two ways. Tthel], ing[], sulf], andtrandg] confusion matrices
are given in full in Kernighan et al. (1990).

now be recomputed, the spelling algorithm run again, andnsoltis clever method
turns out to be an instance of the import&M algorithm (Dempster et al., 1977) that
we will discuss in Ch. 6.

It is also possible to apply a similar approach to detect anwdectreal-word
spelling errors, errors that result in an actual word of English. This can leapjpom
typographical errors (insertion, deletion, transponititat accidentally produce a real
word (e.g.,therefor threg, or because the writer substituted the wrong spelling of
a homophone or near-homophone (edgssertfor deserf or piecefor peacg. The
task of correcting these errors is callsghtext-sensitive spelling error correction A
number of studies suggest that between of 25% and 40% ofrgpelirors are valid
English words (Kukich, 1992); some of Kukich’s exampleduie:

They are leaving in about fifteaninuetsto go to her house.
The desigran construction of the system will take more than a year.
Can theylavehim my messages?

We can extend the noisy channel model to deal with real-wpetling errors by
generating a&andidate spelling sd€or every word in a sentence (Mays et al., 1991).
The candidate set includes the word itself, plus every Bhgliord that would be gen-
erated from the word by either typographical modificatidesi€r insertion, deletion,
substitution), or from a homophone list. The algorithm tlciooses the spelling for
each word that gives the whole sentence the highest prayaBihat is, given a sen-
tenceW = {w,Wo,...,W,...,Wn}, wherewy has alternative spelling,, w/, etc., we
choose the spelling among these possible spellings thaimmimes P(W), using the
N-gram grammar to compui(W).

5.10 SUMMARY

This chapter introduced the ideadrts-of-speechandpart-of-speech tagging The
main ideas:

e Languages generally have a relatively small setlobed classwords, which
are often highly frequent, generally actfagction words, and can be very am-
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biguous in their part-of-speech tags. Open class wordsrgkyanclude various
kinds ofnouns verbs, adjectives There are a number of part-of-speech coding
schemes, based dagsetsof between 40 and 200 tags.

o Part-of-speech taggings the process of assigning a part-of-speech label to each
of a sequence of words. Rule-based taggers use hand-wtitesrto distinguish
tag ambiguity. HMM taggers choose the tag sequence whichimizes the
product of word likelihood and tag sequence probabilitthé&imachine learning
models used for tagging include maximum entropy and ottgetiteear models,
decision trees, memory-based learning, and foamsaion-based learning.

e The probabilities in HMM taggers are trained on hand-lath&laining corpora,
combining differeniN-gram levels using deleted interpolation, and using sephis
ticated unknown word models.

e Given an HMM and an input string, the Viterbi algorithm is d¢e decode the
optimal tag sequence.

e Taggers are evaluated by comparing their output from a é&¢$bhuman labels
for that test set. Error analysis can help pinpoint areagevhdagger doesn’t
perform well.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest implemented part-of-speech assignmentitigpmay have been part of
the parser in Zellig Harris’'s Transformations and Disceuksalysis Project (TDAP),
which was implemented between June 1958 and July 1959 attiverdity of Pennsyl-
vania (Harris, 1962). Previous natural language procgssistems had used dictionar-
ies with part-of-speech information for words, but havelmetn described as perform-
ing part-of-speech disambiguation. As part of its parsinBAP did part-of-speech
disambiguation via 14 hand-written rules, whose use of-phsgpeech tag sequences
prefigures all the modern algorithms, and which were run iroter based on the
relative frequency of tags for a word. The parser/tagger nwasplemented recently
and is described by Joshi and Hopely (1999) and Karttune®9)1 9vho note that the
parser was essentially implemented (ironically in a verydera way) as a cascade of
finite-state transducers.

Soon after the TDAP parser was the Computational GrammaelQ&GC) of
Klein and Simmons (1963). The CGC had three componentsieolexa morpholog-
ical analyzer, and a context disambiguator. The small 286 lexicon included ex-
ceptional words that could not be accounted for in the simpephological analyzer,
including function words as well as irregular nouns, vedry] adjectives. The mor-
phological analyzer used inflectional and derivationalise$ to assign part-of-speech
classes. A word was run through the lexicon and morpholbgitalyzer to produce a
candidate set of parts-of-speech. A set of 500 context mwéze then used to disam-
biguate this candidate set, by relying on surrounding ddaof unambiguous words.
For example, one rule said that between an ARTICLE and a VERBonly allowable
sequences were ADJ-NOUN, NOUN-ADVERB, or NOUN-NOUN. The Ca@lgo-
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rithm reported 90% accuracy on applying a 30-tag tagsetiges from the Scientific
American and a children’s encyclopedia.

TheTAGGIT tagger (Greene and Rubin, 1971) was based on the Klein and Sim
mons (1963) system, using the same architecture but inngetiee size of the dictio-
nary and the size of the tagset (to 87 tags). For example ttevfng sample rule,
which states that a worlis unlikely to be a plural noun (NNS) before a third person
singular verb (VBZ):

XVBZ — notNNS

TAGGIT was applied to the Brown corpus and, according to Francidaiera
(1982, p. 9), “resulted in the accurate tagging of 77% of thwpuas” (the remainder of
the Brown corpus was tagged by hand).

In the 1970s the Lancaster-Oslo/Bergen (LOB) corpus wagdethas a British
English equivalent of the Brown corpus. It was tagged with@_AWS tagger (Mar-
shall, 1983, 1987; Garside, 1987), a probabilistic algamitvhich can be viewed as an
approximation to the HMM tagging approach. The algorithradutag bigram prob-
abilities, but instead of storing the word-likelihood ofceatag, tags were marked ei-
ther asrare (P(tagword) < .01) infrequent(P(tagword) < .10), ornormally frequent
(P(tagword) > .10),

The probabilisticcARTStagger of Church (1988) was very close to a full HMM
tagger. It extended the CLAWS idea to assign full lexicabatailities to each word/tag
combination, and used Viterbi decoding to find a tag sequerdee the CLAWS
tagger, however, it stored the probability of the tag givesword:

(5.56) P(tagword) x P(tagpreviousn tagy
rather than using the probability of the word given the tagaa HMM tagger does:
(5.57) P(word|tag)  P(tagpreviousn tagg

Later taggers explicitly introduced the use of the Hidderrkda Model, often
with the EM training algorithm (Kupiec, 1992; Merialdo, 199Weischedel et al.,
1993), including the use of variable-length Markov mod8ist(iitze and Singer, 1994).

Most recent tagging algorithms, like the HMM and TBL appioas we have
discussed, are machine-learning classifiers which esithatbest tag-sequence for a
sentence given various features such as the current waghbwing parts-of-speech
or words, and unknown word features such as orthographiaargphological fea-
tures. Many kinds of classifiers have been used to combirsetfeatures, includ-
ing decision trees (Jelinek et al., 1994; Magerman, 1998ximum entropy models
(Ratnaparkhi, 1996), other log-linear models (Franz, }98&mory-based learning
(Daelemans et al., 1996), and networks of linear separé&NOW) (Roth and Ze-
lenko, 1998). Most machine learning models seem to achigegively similar per-
formance given similar features, roughly 96-97% on the Baed 45-tag tagset on the
Wall Street Journal corpus. As of the writing of this chaptbe highest performing
published model on this WSJ Treebank task is a log-lineaygatiat uses information
about neighboring words as well as tags, and a sophistieatkdown-word model,
achieving 97.24% accuracy (Toutanova et al., 2003). Magt suodels are supervised;
unsupervised models are considerably less developed (B37), for example, gives
an unsupervised version of the TBL algorithm.
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Readers interested in the history of parts-of-speech dhmarsult a history of
linguistics such as Robins (1967) or Koerner and Asher (,9g&ticularly the article
by Householder (1995) in the latter. Sampson (1987) andicaes al. (1997) give a
detailed summary of the provenance and makeup of the Brodotuer tagsets. More
information on part-of-speech tagging can be found in valdren (1999).

Algorithms for spelling error detection and correction daxisted since at least
Blair (1960). Most early algorithm were based on similakiys like the Soundex
algorithm discussed in the exercises on p&3qOdell and Russell, 1922; Knuth,
1973). Damerau (1964) gave a dictionary-based algorithmeifimr detection; most
error-detection algorithms since then have been basedatiomiries. Damerau also
gave a correction algorithm that worked for single errorsshblgorithms since then
have relied on dynamic programming, beginning with WagmerEischer (1974). Ku-
kich (1992) is the definitive survey article on spelling erdetection and correction.
Modern algorithms are based on statistical or machine ilegragorithm, following
e.g., Kashyap and Oommen (1983) and Kernighan et al. (19R8%ent approaches
to spelling include extensions to the noisy channel modeill(8nd Moore, 2000;
Toutanova and Moore, 2002) as well as many other machinaiteparchitectures
such as Bayesian classifiers, (Gale et al., 1993; Golding7;1&olding and Sch-
abes, 1996), decision lists (Yarowsky, 1994), transfoiomalbased learning (Mangu
and Brill, 1997) latent semantic analysis (Jones and Mat887) and Winnow (Gold-
ing and Roth, 1999).

EXERCISES

5.1 Find one tagging error in each of the following sentencesdtatagged with the
Penn Treebank tagset:

a. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

b. Does/VBZ this/DT flight/NN serve/VB dinner/NNS

c. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

d

. What/WDT flights/NNS do/VBP you/PRP have/VB from/IN Milwkee/NNP
to/IN Tampa/NNP

e. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/Nghtis/NNS

5.2 Use the Penn Treebank tagset to tag each word in the follogéntences from
Damon Runyon'’s short stories. You may ignore punctuatimm&of these are quite
difficult; do your best.

a. Itis a nice night.

b. This crap game is over a garage in Fifty-second Street. ..

C. ...Nobody ever takes the newspapers she sells . ..
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(5.58)

(5.59)

d. He is a tall, skinny guy with a long, sad, mean-looking kiss&d a mournful
voice.

e. ...l amsitting in Mindy’s restaurant putting on the gedilfish, which is a dish |
am very fond of, ...

f. When a guy and a doll get to taking peeks back and forth atetheh, why there
you are indeed.

5.3 Now compare your tags from the previous exercise with ongvorftiend’s an-
swers. On which words did you disagree the most? Why?

5.4 Now tag the sentences in Exercise 5.2 using the more detailadn tagset in
Fig. 5.7.

5.5 Implement the TBL algorithm in Fig. 5.21. Create a small nemaf templates
and train the tagger on any POS-tagged training set you cdn fin

5.6 Implement the “most-likely tag” baseline. Find a POS-tadjgaining set, and
use it to compute for each word the tag which maximip&gw). You will need to
implement a simple tokenizer to deal with sentence bouada6tart by assuming all
unknown words are NN and compute your error rate on known akdawn words.
Now write at least 5 rules to do a better job of tagging unknawnds, and show the
difference in error rates.

5.7 Recall that the Church (1988) tagger is not an HMM taggeresinimcorporates
the probability of the tag given the word:

P(tagword) « P(tagpreviousn tagg

rather than using the likelihood of the word given the tagaaHMM tagger
does:

P(word|tag)  P(tagpreviousn tagg

As a gedanken-experiment, construct a sentence, a settpteition probabil-
ities, and a set of lexical tag probabilities that demoneteaway in which the HMM
tagger can produce a better answer than the Church tagger.

5.8 Build an HMM tagger. This requires (1) that you have implertedrthe Viterbi
algorithm from Ch. 3 or Ch. 6, (2) that you have a dictionarthvgpart-of-speech infor-
mation and (3) that you have either (a) a part-of-speecbetdgorpus or (b) an imple-
mentation of the Forward Backward algorithm. If you havelzlad corpus, train the
transition and observation probabilities of an HMM taggieectly on the hand-tagged
data. If you have an unlabeled corpus, train using Forwaak®ard.

5.9 Now run your algorithm on a small test set that you have habeied. Find five
errors and analyze them.

5.10 Compute a bigram grammar on a large corpus and reestimatpehimg correc-
tion probabilities shown in Fig. 5.25 given the correct sEaee. . . was called a “stellar
and versatileacresswhose combination of sass and glamour has defined herDoés
a bigram grammar prefer the correct warctres®
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