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9
AUTOMATIC SPEECH
RECOGNITION

When Frederic was a little lad he proved so brave and daring,
His father thought he’d ’prentice him to some career seafaring.
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice to apilot —
A life not bad for a hardy lad, though surely not a high lot,
Though I’m a nurse, you might do worse than make your boy a pilot.
I was a stupid nurs’rymaid, on breakers always steering,
And I did not catch the word aright, through being hard of hearing;
Mistaking my instructions, which within my brain did gyrate,
I took and bound this promising boy apprentice to apirate.

The Pirates of Penzance, Gilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’s long indenture as a pirate
and, due to a slight complication involving 21st birthdays and leap years, nearly
led to 63 extra years of apprenticeship. The mistake was quite natural, in a Gilbert-
and-Sullivan sort of way; as Ruth later noted, “The two wordswere so much alike!”
True, true; spoken language understanding is a difficult task, and it is remarkable
that humans do as well at it as we do. The goal ofautomatic speech recognition
(ASR) research is to address this problem computationally by building systems
that map from an acoustic signal to a string of words.Automatic speech under-
standing (ASU) extends this goal to producing some sort of understanding of the
sentence, rather than just the words.

The general problem of automatic transcription of speech byany speaker in
any environment is still far from solved. But recent years have seen ASR technol-
ogy mature to the point where it is viable in certain limited domains. One major
application area is in human-computer interaction. While many tasks are better
solved with visual or pointing interfaces, speech has the potential to be a better
interface than the keyboard for tasks where full natural language communication
is useful, or for which keyboards are not appropriate. This includes hands-busy or
eyes-busy applications, such as where the user has objects to manipulate or equip-
ment to control. Another important application area is telephony, where speech
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recognition is already used for example for entering digits, recognizing “yes” to
accept collect calls, finding out airplane or train information, and call-routing (“Ac-
counting, please”, “Prof. Regier, please”). In some applications, a multimodal in-
terface combining speech and pointing can be more efficient than a graphical user
interface without speech (Cohen et al., 1998). Finally, ASRis being applied to
dictation, that is, transcription of extended monologue bya single specific speaker.
Dictation is common in fields such as law and is also importantas part of aug-
mentative communication (interaction between computers and humans with some
disability resulting in the inability to type, or the inability to speak). The blind Mil-
ton famously dictatedParadise Lostto his daughters, and Henry James dictated his
later novels after a repetitive stress injury.

Before turning to architectural details, let’s discuss some of the parameters
and the state of the art of the speech recognition task. One dimension of variation
in speech recognition tasks is the vocabulary size. Speech recognition is easier if
the number of distinct words we need to recognize is smaller.So tasks with a two
word vocabulary, likeyesversusno detection, or an eleven word vocabulary, like
recognizing sequences of digits, in what is called thedigits task, are relatively easy.DIGITS

On the other end, tasks with large vocabularies, like transcribing human-human
telephone conversations, or transcribing broadcast news,tasks with vocabularies
of 64,000 words or more, are much harder.

A second dimension of variation is how fluent, natural, or conversational the
speech is.Isolated word recognition, in which each word is surrounded by someISOLATED WORD

sort of pause, is much easier than recognizingcontinuous speech, in which wordsCONTINUOUS
SPEECH

run into each other and have to be segmented. Continuous speech tasks themselves
vary greatly in difficulty. For example, human-to-machine speech turns out to be
far easier to recognize than human-to-human speech. That is, recognizing speech
of humans talking to machines, either reading out loud inread speech(which sim-READ SPEECH

ulates the dictation task), or conversing with speech dialogue systems, is relatively
easy. Recognizing the speech of two humans talking to each other, in conver-
sational speechrecognition, for example for transcribing a business meeting orCONVERSATIONAL

SPEECH

a telephone conversation, is much harder. It seems that whenhumans talk to ma-
chines, they simplify their speech quite a bit, talking moreslowly and more clearly.

A third dimension of variation is channel and noise. Commercial dictation
systems, and much laboratory research in speech recognition, is done with high
quality, head mounted microphones. Head mounted microphones eliminate the
distortion that occurs in a table microphone as the speakershead moves around.
Noise of any kind also makes recognition harder. Thus recognizing a speaker dic-
tating in a quiet office is much easier than recognizing a speaker dictating in a noisy
car on the highway with the window open.

A final dimension of variation is accent or speaker-class characteristics. Speech
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is easier to recognize if the speaker is speaking a standard dialect, or in general one
that matches the data the system was trained on. Recognitionis thus harder on
foreign-accented speech, or speech of children (unless thesystem was specifically
trained on exactly these kinds of speech).

Table 9.1 shows the rough percentage of incorrect words (theword error
rate, or WER, defined on page 39) from state-of-the-art systems (mainly the CU-
HTK but also Sphinx 4 and Sonic systems) on a range of different ASR tasks.

Task Vocabulary Error Rate %

TI Digits 11 (zero-nine, oh) .55
Wall Street Journal read speech 5,000 3.0
Wall Street Journal read speech 20,000 <6.6
Broadcast News 64,000+ 9.9
Conversational Telephone Speech
(CTS)

64,000+ 20.7

Figure 9.1 Word Error rates (% of words misrecognized) reported around2005
for ASR on various tasks; the error rates for Broadcast News and CTS are based on
particular training and test scenarios and should be taken as ballpark numbers; error
rates for differently defined tasks may range up to a factor oftwo.

Variation due to noise and accent increases the error rates quite a bit. The
word error rate on strongly Japanese-accented or Spanish accented English has
been reported to be about 3 to 4 times higher than for native speakers on the same
task (Tomokiyo, 2001). And adding automobile noise with a 10dB SNR (signal-
to-noise ratio) can cause error rates to go up by 2 to 4 times.

In general, these error rates go down every year, as speech recognition perfor-
mance has improved quite steadily. One estimate is that performance has improved
roughly 10 percent a year over the last decade (Deng and Huang, 2004), due to a
combination of algorithmic improvements and Moore’s law.

While the algorithms we describe in this chapter are applicable across a wide
variety of these speech tasks, we chose to focus this chapteron the fundamentals of
one crucial area:Large-Vocabulary Continuous Speech Recognition(LVCSR).LVCSR

Large-vocabulary generally means that the systems have a vocabulary of roughly
20,000 to 60,000 words. We saw above thatcontinuousmeans that the words are
run together naturally. Furthermore, the algorithms we will discuss are generally
speaker-independent; that is, they are able to recognize speech from people whoseSPEAKER­

INDEPENDENT

speech the system has never been exposed to before.
The dominant paradigm for LVCSR is the HMM, and we will focus on this

approach in this chapter. Previous chapters have introduced most of the core algo-
rithms used in HMM-based speech recognition. Ch. 7 introduced the key phonetic
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and phonological notions ofphone, syllable, and intonation. Ch. 5 and Ch. 6
introduced the use of theBayes rule, the Hidden Markov Model (HMM ), the
Viterbi algorithm, and the Baum-Welch training algorithm. Ch. 4 introduced the
N-gram language model and theperplexity metric. In this chapter we begin with
an overview of the architecture for HMM speech recognition,offer an all-too-brief
overview of signal processing for feature extraction, and an overview of Gaussian
acoustic models. We then continue with Viterbi decoding, and talk about the use of
word error rate for evaluation. In advanced sections, we introduce advanced search
techniques like A∗ andN-best decoding and lattices, context-dependent triphone
acoustic models and dealing with variation.

Of course the field of ASR is far too large even to summarize in such a short
space; the reader is encouraged to see the suggested readings at the end of the
chapter for useful textbooks and articles.

9.1 SPEECHRECOGNITION ARCHITECTURE

The task of speech recognition is to take as input an acousticwaveform and produce
as output a string of words. HMM-based speech recognition systems view this task
using the metaphor of the noisy channel. The intuition of thenoisy channelmodelNOISY CHANNEL

(see Fig. 9.2) is to treat the acoustic waveform as an “noisy”version of the string
of words, i.e.. a version that has been passed through a noisycommunications
channel. This channel introduces “noise” which makes it hard to recognize the
“true” string of words. Our goal is then to build a model of thechannel so that we
can figure out how it modified this “true” sentence and hence recover it.

The insight of the noisy channel model is that if we know how the channel
distorts the source, we could find the correct source sentence for a waveform by
taking every possible sentence in the language, running each sentence through our
noisy channel model, and seeing if it matches the output. We then select the best
matching source sentence as our desired source sentence.

Implementing the noisy-channel model as we have expressed it in Fig. 9.2
requires solutions to two problems. First, in order to pick the sentence that best
matches the noisy input we will need a complete metric for a “best match”. Be-
cause speech is so variable, an acoustic input sentence willnever exactly match
any model we have for this sentence. As we have suggested in previous chapters,
we will use probability as our metric. This makes the speech recognition problem
a special case ofBayesian inference, a method known since the work of BayesBAYESIAN

(1763). Bayesian inference or Bayesian classification was applied successfully to
language problems as early as the late 1950s, including the OCR work of Bled-
soe in 1959, and the seminal work of Mosteller and Wallace (1964) on applying
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NOISY CHANNEL

noisy
sentence

guess at
original
sentence

If music be the 
    food of love... If music be the 

    food of love...

DECODER

?Every happy family...

...

source
sentence

?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

Figure 9.2 The noisy channel model. We search through a huge space of potential
“source” sentences and choose the one which has the highest probability of generating
the “noisy” sentence. We need models of the prior probability of a source sentence
(N-grams), the probability of words being realized as certainstrings of phones (HMM
lexicons), and the probability of phones being realized as acoustic or spectral features
(Gaussian Mixture Models).

Bayesian inference to determine the authorship of the Federalist papers. Our goal
will be to combine various probabilistic models to get a complete estimate for the
probability of a noisy acoustic observation-sequence given a candidate source sen-
tence. We can then search through the space of all sentences,and choose the source
sentence with the highest probability.

Second, since the set of all English sentences is huge, we need an efficient
algorithm that will not search through all possible sentences, but only ones that
have a good chance of matching the input. This is thedecodingor searchproblem,
which we have already explored with the Viterbi decoding algorithm for HMMs in
Ch. 5 and Ch. 6. Since the search space is so large in speech recognition, efficient
search is an important part of the task, and we will focus on a number of areas in
search.

In the rest of this introduction we will introduce the probabilistic or Bayesian
model for speech recognition (or more accurately re-introduce it, since we first
used the model in our discussions of part-of-speech taggingin Ch. 5). We then
introduce the various components of a modern HMM-based ASR system.

We now turn to our probabilistic implementation of the noisychannel intu-
ition, which should be familiar from Ch. 5. The goal of the probabilistic noisy
channel architecture for speech recognition can be summarized as follows:

“What is the most likely sentence out of all sentences in the language
L given some acoustic input O?”

We can treat the acoustic inputO as a sequence of individual “symbols” or
“observations” (for example by slicing up the input every 10milliseconds, and
representing each slice by floating-point values of the energy or frequencies of that
slice). Each index then represents some time interval, and successiveoi indicate
temporally consecutive slices of the input (note that capital letters will stand for
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sequences of symbols and lower-case letters for individualsymbols):

O = o1,o2,o3, . . . ,ot(9.1)

Similarly, we treat a sentence as if it were composed of a string of words:

W = w1,w2,w3, . . . ,wn(9.2)

Both of these are simplifying assumptions; for example dividing sentences
into words is sometimes too fine a division (we’d like to modelfacts about groups
of words rather than individual words) and sometimes too gross a division (we
need to deal with morphology). Usually in speech recognition a word is defined by
orthography (after mapping every word to lower-case):oak is treated as a different
word thanoaks, but the auxiliarycan (“can you tell me. . . ”) is treated as the same
word as the nouncan(“i need a can of. . . ” ).

The probabilistic implementation of our intuition above, then, can be ex-
pressed as follows:

Ŵ = argmax
W∈L

P(W|O)(9.3)

Recall that the function argmaxx f (x) means “the x such that f(x) is largest”.
Equation (9.3) is guaranteed to give us the optimal sentenceW; we now need to
make the equation operational. That is, for a given sentenceW and acoustic se-
quenceO we need to computeP(W|O). Recall that given any probabilityP(x|y),
we can use Bayes’ rule to break it down as follows:

P(x|y) =
P(y|x)P(x)

P(y)
(9.4)

We saw in Ch. 5 that we can substitute (9.4) into (9.3) as follows:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
(9.5)

The probabilities on the right-hand side of (9.5) are for themost part easier
to compute thanP(W|O). For example,P(W), the prior probability of the word
string itself is exactly what is estimated by then-gram language models of Ch. 4.
And we will see below thatP(O|W) turns out to be easy to estimate as well. But
P(O), the probability of the acoustic observation sequence, turns out to be harder
to estimate. Luckily, we can ignoreP(O) just as we saw in Ch. 5. Why? Since
we are maximizing over all possible sentences, we will be computing P(O|W)P(W)

P(O)

for each sentence in the language. ButP(O) doesn’t change for each sentence!
For each potential sentence we are still examining the same observationsO, which
must have the same probabilityP(O). Thus:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L

P(O|W)P(W)(9.6)
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To summarize, the most probable sentenceW given some observation se-
quenceO can be computed by taking the product of two probabilities for each
sentence, and choosing the sentence for which this product is greatest. The general
components of the speech recognizer which compute these twoterms have names;
P(W), theprior probability , is computed by thelanguage model. while P(O|W),LANGUAGE MODEL

theobservation likelihood, is computed by theacoustic model.ACOUSTIC MODEL

Ŵ = argmax
W∈L

likelihood
︷ ︸︸ ︷

P(O|W)

prior
︷ ︸︸ ︷

P(W)(9.7)

The language model (LM) priorP(W) expresses how likely a given string of
words is to be a source sentence of English. We have already seen in Ch. 4 how
to compute such a language model priorP(W) by usingN-gram grammars. Recall
that anN-gram grammar lets us assign a probability to a sentence by computing:

P(wn
1)≈

n∏

k=1

P(wk|wk−1
k−N+1)(9.8)

This chapter will show how the HMM we covered in Ch. 6 can be used to
build an Acoustic Model (AM) which computes the likelihoodP(O|W). Given
the AM and LM probabilities, the probabilistic model can be operationalized in a
search algorithm so as to compute the maximum probability word string for a given
acoustic waveform. Fig. 9.3 shows a rough block diagram of how the computation
of the prior and likelihood fits into a recognizer decoding a sentence.

Figure 9.3 A block diagram of a speech recognizer decoding a single sentence,
showing the integration ofP(W) andP(O|W).

We can see further details of the operationalization in Fig.9.4, which shows
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the components of an HMM speech recognizer as it processes a single utterance.
The figure shows the recognition process in three stages. In thefeature extraction
or signal processingstage, the acoustic waveform is sampled intoframes (usually
of 10, 15, or 20 milliseconds) which are transformed intospectral features. Each
time window is thus represented by a vector of around 39 features representing
this spectral information as well as information about energy and spectral change.
Sec. 9.3 gives an (unfortunately brief) overview of the feature extraction process.

In theacoustic modelingor phone recognitionstage, we compute the likeli-
hood of the observed spectral feature vectors given linguistic units (words, phones,
subparts of phones). For example, we use Gaussian Mixture Model (GMM) classi-
fiers to compute for each HMM stateq, corresponding to a phone or subphone, the
likelihood of a given feature vector given this phonep(o|q). A (simplified) way
of thinking of the output of this stage is as a sequence of probability vectors, one
for each time frame, each vector at each time frame containing the likelihoods that
each phone or subphone unit generated the acoustic feature vector observation at
that time.

Finally, in the decoding phase, we take the acoustic model (AM), which
consists of this sequence of acoustic likelihoods, plus an HMM dictionary of word
pronunciations, combined with the language model (LM) (generally anN-gram
grammar), and output the most likely sequence of words. An HMM dictionary, as
we will see in Sec. 9.2, is a list of word pronunciations, eachpronunciation repre-
sented by a string of phones. Each word can then be thought of as an HMM, where
the phones (or sometimes subphones) are states in the HMM, and the Gaussian
likelihood estimators supply the HMM output likelihood function for each state.
Most ASR systems use the Viterbi algorithm for decoding, speeding up the decod-
ing with wide variety of sophisticated augmentations such as pruning, fast-match,
and tree-structured lexicons.

9.2 APPLYING THE HIDDEN MARKOV MODEL TO SPEECH

Let’s turn now to how the HMM model is applied to speech recognition. We saw
in Ch. 6 that a Hidden Markov Model is characterized by three parameters:

• states:a set of statesQ = q1q2 . . .qN

• transition probabilities: a set of probabilitiesA = a01a02. . .an1 . . .ann Each
ai j represents the probability of transitioning from statei to statej.

• observation likelihoods: a set of observation likelihoodsB = bi(ot), each
expressing the probability of an observationot being generated from a statei
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Figure 9.4 Schematic architecture for a (simplified) speech recognizer decoding
a single sentence. A real recognizer is more complex since various kinds of pruning
and fast matches are needed for efficiency. This architecture is only for decoding; we
also need a separate architecture for training parameters.

Furthermore, the chapter introduced theViterbi algorithm for decoding HMMs,
and theBaum-Welch or Forward-Backward algorithm for training HMMs.

All of these facets of the HMM paradigm play a crucial role in ASR. We
begin here by discussing how the states, transitions, and observations map into
the speech recognition task. We will return to the ASR applications of Viterbi
decoding in Sec. 9.6. The extensions to the Baum-Welch algorithms needed to
deal with spoken language are covered in Sec. 9.4 and Sec. 9.7.

Recall the examples of HMMs we saw earlier in the book. In Ch. 5, the hid-
den states of the HMM were parts-of-speech, the observations were words, and the
HMM decoding task mapped a sequence of words to a sequence of parts-of-speech.
In Ch. 6, the hidden states of the HMM were weather, the observations were ‘ice-
cream consumptions’ or ‘sightings of umbrellas’, and the decoding task was to
determine the weather sequence from a sequence of ice-creamconsumption. For
speech, the hidden states are phones, parts of phones, or words, each observation
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is information about the spectrum and energy of the waveformat a point in time,
and the decoding process maps this sequence of acoustic information to phones
and words.

The observation sequence for speech recognition is a sequence of acoustic
feature vectors. Each acoustic feature vector represents information suchas the
amount of energy in different frequency bands at a particular point in time. We
will return in Sec. 9.3 to the nature of these observations, but for now we’ll simply
note that each observation consists of a vector of 39 real-valued features indicating
spectral information. Observations are generally drawn every 10 milliseconds, so
1 second of speech requires 100 spectral feature vectors, each vector of length 39.

The hidden states of Hidden Markov Models can be used to modelspeech in a
number of different ways. For small tasks, likedigit recognition, (the recognitionDIGIT RECOGNITION

of the 10 digit wordszero throughnine), or for yes-norecognition (recognition
of the two wordsyesandno), we could build an HMM whose states correspond
to entire words. For most larger tasks, however, the hidden states of the HMM
correspond to phone-like units, and words are sequences of these phone-like units.

Let’s begin by describing an HMM model in which each state of an HMM
corresponds to a single phone (if you’ve forgotten what a phone is, go back and
look again at the definition in Ch. 7). In such a model, a word HMM thus consists
of a sequence of HMM states concatenated together.

In the HMMs described in Ch. 6, there were arbitrary transitions between
states; any state could transition to any other. This was also in principle true of
the HMMs for part-of-speech tagging in Ch. 5; although the probability of some
tag transitions was low, any tag could in principle follow any other tag. Unlike in
these other HMM applications, HMM models for speech recognition usually do
not allow arbitrary transitions. Instead, they place strong constraints on transitions
based on the sequential nature of speech. Except in unusual cases, HMMs for
speech don’t allow transitions from states to go to earlier states in the word; in
other words, states can transition to themselves or to successive states. This kind
of feed-forward HMM structure is called aBakis network.BAKIS NETWORK

The most common model used for speech is even more constrained, allowing
a state to transition only to itself (self-loop) or to a single succeeding state. The use
of self-loops allows a single phone to repeat so as to cover a variable amount of
the acoustic input. Phone durations vary hugely, dependenton the phone identify,
the the speaker’s rate of speech, the phonetic context, and the level of prosodic
prominence of the word. Looking at the Switchboard corpus, the phone [aa] varies
in length from 7 to 387 milliseconds (1 to 40 frames), while the the phone [z]
varies in duration from 7 milliseconds to more than 1.3 seconds (130 frames) in
some utterances! Self-loops thus allow a single state to be repeated many times.
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Fig. 9.5 shows a schematic of the structure of a basic phone-state HMM, with
self-loops and forward transitions, for the wordsix.

Figure 9.5 An HMM for the wordsix, consisting of four emitting states and two
non-emitting states, the transition probabilities A, the observation probabilitiesB, and
a sample observation sequence.

For very simple speech tasks (recognizing small numbers of words such as
the 10 digits), using an HMM state to represent a phone is sufficient. In general
LVCSR tasks, however, a more fine-grained representation isnecessary. This is be-
cause phones can last over 1 second, i.e., over 100 frames, but the 100 frames are
not acoustically identical. The spectral characteristicsof a phone, and the amount
of energy, vary dramatically across a phone. For example, recall from Ch. 7 that
stop consonants have a closure portion, which has very little acoustic energy, fol-
lowed by a release burst. Similarly, diphthongs are vowels whose F1 and F2 change
significantly. Fig. 9.6 shows these large changes in spectral characteristics over
time for each of the two phones in the word “Ike”, ARPAbet [ay k].

To capture this fact about the non-homogeneous nature of phones over time,
in LVCSR we generally model a phone with more than one HMM state. The most
common configuration is to use three HMM states, a beginning,middle, and end
state. Each phone thus consists of 3 emitting HMM states instead of one (plus two
non-emitting states at either end), as shown in Fig. 9.7. It is common to reserve the
word model or phone modelto refer to the entire 5-state phone HMM, and useMODEL

PHONE MODEL the wordHMM state (or just state for short) to refer to each of the 3 individual
HMM STATE subphone HMM states.

To build a HMM for an entire word using these more complex phone mod-
els, we can simply replace each phone of the word model in Fig.9.5 with a 3-
state phone HMM. We replace the non-emitting start and end states for each phone
model with transitions directly to the emitting state of thepreceding and following
phone, leaving only two non-emitting states for the entire word. Fig. 9.8 shows the
expanded word.

We have now covered the basic structure of HMM states for representing
phones and words in speech recognition. Later in this chapter we will see further
augmentations of the HMM word model shown in Fig. 9.8, such asthe use of tri-
phone models which make use of phone context, and the use of special phones to
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Figure 9.6 The two phones of the word ”Ike”, pronounced [ay k]. Note the con-
tinuous changes in the [ay] vowel on the left, as F2 rises and F1 falls, and the sharp
differences between the silence and release parts of the [k]stop.

Figure 9.7 A standard 5-state HMM model for a phone, consisting of threeemit-
ting states (corresponding to the transition-in, steady state, and transition-out regions
of the phone) and two non-emitting states.

Figure 9.8 A composite word model for “six”, [s ih k s], formed by concatenating
four phone models, each with three emitting states.

model silence. First, though, we need to turn to the next component of HMMs for
speech recognition: the observation likelihoods. And in order to discuss observa-
tion likelihoods, we first need to introduce the actual acoustic observations: feature
vectors. After discussing these in Sec. 9.3, we turn in Sec. 9.4 the acoustic model
and details of observation likelihood computation. We thenre-introduce Viterbi
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decoding and show how the acoustic model and language model are combined to
choose the best sentence.

9.3 FEATURE EXTRACTION

THIS SECTION STILL TO BE WRITTEN. IT WILL START FROM DIGITIZA-
TION AND WAVE FILE FORMATS AND GO THROUGH PRODUCTION OF
MFCC FILES.

9.4 COMPUTING ACOUSTIC L IKELIHOODS

The last section showed how we can extract MFCC features representing spectral
information from a wavefile, and produce a 39-dimensional vector every 10 mil-
liseconds. We are now ready to see how to compute the likelihood of these feature
vectors given an HMM state. Recall from Ch. 6 that this outputlikelihood is com-
puted by theB probability function of the HMM. Given an individual stateqi and
an observationot , the observation likelihoods inB matrix gave usp(ot |qi), which
we calledbt(i).

For part-of-speech tagging in Ch. 5, each observationot is a discrete symbol
(a word) and we can compute the likelihood of an observation given a part-of-
speech tag just by counting the number of times a given tag generates a given
observation in the training set. But for speech recognition, MFCC vectors are
real-valued numbers; we can’t compute the likelihood of a given state (phone)
generating an MFCC vector by counting the number of times each such vector
occurs (since each one is likely to be unique).

In both decoding and training, we need an observation likelihood function
that can computep(ot |qi) on real-valued observations. In decoding, we are given
an observationot and we need to produce the probabilityp(ot |qi) for each possible
HMM state, so we can choose the most likely sequence of states. Once we have
this observation likelihoodB function, we need to figure out how to modify the
Baum-Welch algorithm of Ch. 6 to train it as part of training HMMs.

9.4.1 Vector Quantization

One way to make MFCC vectors look like symbols that we could count is to build
a mapping function that maps each input vector into one of a small number of
symbols. Then we could just compute probabilities on these symbols by counting,
just as we did for words in part-of-speech tagging. This ideaof mapping input
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vectors to discrete quantized symbols is calledvector quantization or VQ (Gray,VECTOR
QUANTIZATION

V 1984). Although vector quantization is too simple to act as the acoustic model in
modern LVCSR systems, it is a useful pedagogical step, and plays an important role
in various areas of ASR, so we use it to begin our discussion ofacoustic modeling.

In vector quantization, we create the small symbol set by mapping each train-
ing feature vector into a small number of classes, and then werepresent each class
by a discrete symbol. More formally, a vector quantization system is characterized
by acodebook, aclustering algorithm, and adistance metric.

A codebookis a list of possible classes, a set of symbols constituting avocab-CODEBOOK

ularyV = {v1,v2, ...,vn}. For each symbolvk in the codebook we list aprototype
vector, also known as acodeword, which is a specific feature vector. For examplePROTOTYPE VECTOR

CODEWORD if we choose to use 256 codewords we could represent each vector by a value from
0 to 255; (this is referred to as 8-bit VQ, since we can represent each vector by a
single 8-bit value). Each of these 256 values would be associated with a prototype
feature vector.

The codebook is created by using aclustering algorithm to cluster all theCLUSTERING

feature vectors in the training set into the 256 classes. Then we chose a represen-
tative feature vector from the cluster, and make it the protoype vector or codework
for that cluster.K-means clusteringis often used, but we won’t define clusteringK­MEANS

CLUSTERING

here; see Huang et al. (2001) or Duda et al. (2000) for detailed descriptions.
Once we’ve built the codebook, for each incoming feature vector, we com-

pare it to each of the 256 prototype vectors, select the one which is closest (by
somedistance metric), and replace the input vector by the index of this prototype
vector. A schematic of this process is shown in Fig. 9.9.

The advantage of VQ is that since there are a finite number of classes, for
each classvk, we can compute the probability that it is generated by a given HMM
state/sub-phone by simply counting the number of times it occurs in some training
set when labeled by that state, and normalizing.

Both the clustering process and the decoding process require adistance met-
ric or distortion metric, that specifies how similar two acoustic feature vectorsDISTANCE METRIC

are. The distance metric is used to build clusters, to find a prototype vector for
each cluster, and to compare incoming vectors to the prototypes.

The simplest distance metric for acoustic feature vectors is Euclidean dis-
tance. Euclidean distance is the distance in N-dimensional spacebetween the twoEUCLIDEAN

DISTANCE

points defined by the two vectors. In practice what we refer toas Euclidean dis-
tance is actually the square of the distance. Thus given a vector x and a vectory of
length D, the (square of the) Euclidean distance between them is defined as:

deuclidean(x,y) =
D∑

i=1

(xi −yi)
2(9.9)
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Figure 9.9 Schematic architecture of the (trained) vector quantization (VQ) pro-
cess for choosing a symbolvq for each input feature vector. The vector is compared
to each codeword in the codebook, the closest entry (by some distance metric) is
selected, and the index of the closest codeword is output.

The (squared) Euclidean distance described in (9.9) (and shown for two di-
mensions in Fig. 9.10) is also referred to as the sum-squarederror, and can also be
expressed using the vector transpose operator as:

deuclidean(x,y) = (x−y)T(x−y)(9.10)

Figure 9.10 Euclidean distance in two dimensions; by the Pythagorean theorem,
the distance between two points in a planex = (x1,y1) andy = (x2,y2) d(x,y) =
√

(x1−x2)2 +(y1−y2)2.

The Euclidean distance metric assumes that each of the dimensions of a fea-
ture vector are equally important. But actually each of the dimensions have very
different variances. If a dimension tends to have a lot of variance, then we’d like
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it to count less in the distance metric; a large difference ina dimension with low
variance should count more than a large difference in a dimension with high vari-
ance. A slightly more complex distance metric, theMahalanobis distance, takesMAHALANOBIS

DISTANCE

into account the different variances of each of the dimensions.
If we assume that each dimensioni of the acoustic feature vectors has a vari-

anceσ2
i , then the Mahalanobis distance is:

dmahalanobis(x,y) =
D∑

i=1

(xi −yi)
2

σ2
i

(9.11)

For those readers with more background in linear algebra here’s the general
form of Mahalanobis distance, which includes a full covariance matrix (covariance
matrices will be defined below):

dmahalanobis(x,y) = (x−y)TΣ−1(x−y)(9.12)

In summary, when decoding a speech signal, to compute an acoustic like-
lihood of a feature vectorot given an HMM stateq j using VQ, we compute the
Euclidean or Mahalanobis distance between the feature vector and each of the N
codewords, choose the closest codeword, getting the codeword indexvk. We then
look up the likelihood of the codeword indexvk given the HMM statej in the
pre-computedB likelihood matrix defined by the HMM:

b̂ j(ot) = b j(vk) s.t. vk is codeword of closest vector toot(9.13)

Since VQ is so rarely used, we don’t use up space here giving the equations
for modifying the EM algorithm to deal with VQ data; instead,we defer discus-
sion of EM training of continuous input parameters to the next section, when we
introduce Gaussians.

9.4.2 Gaussian PDFs

Vector quantization has the advantage of being extremely easy to compute and re-
quires very little storage. Despite these advantages, vector quantization is simply
not a good model of speech. A small number of codewords is insufficient to cap-
ture the wide variability in the speech signal. Speech is simply not a categorical,
symbolic process.

Modern speech recognition algorithms therefore do not use vector quantiza-
tion to compute acoustic likelihoods. Instead, they are based on computing ob-
servation probabilities directly on the real-valued, continuous input feature vector.
These acoustic models are based on computing aprobability density functionPROBABILITY

DENSITY FUNCTION

or pdf over a continuous space. By far the most common algorithm forcom-
puting acoustic likelihoods the use ofGaussian Mixture Models (GMMs ) pdfs,GAUSSIAN MIXTURE

MODELS

GMMS although the neural nets and, more recently, support vectormachines (SVMs), are
also sometimes used.
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Let’s begin with the simplest use of Gaussian probability estimators, slowly
building up the more sophisticated models that are used.

Univariate Gaussians

The Gaussiandistribution, also known as thenormal distribution , is the bell-GAUSSIAN

NORMAL
DISTRIBUTION curve function familiar from basic statistics. A Gaussian distribution is a function

parameterized by amean, or average value, and avariance, which characterizesMEAN

VARIANCE the average spread or dispersal from the mean. We will useµ to indicate the mean,
andσ2 to indicate the variance, giving the following formula for aGaussian func-
tion:

f (x|µ,σ) =
1√

2πσ2
exp(−(x−µ)2

2σ2 )(9.14)
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Figure 9.11 Gaussian functions with different means and variances.

Recall from basic statistics that the mean of a random variable X is the ex-
pected value ofX. For a discrete variableX, this is the weighted sum over the
values ofX (for a continuous variable, it is the integral):

µ= E(X) =
N∑

i=1

p(Xi)Xi(9.15)
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The variance of a random variableX is the squared average deviation from
the mean:

σ2 = E(Xi−E(X))2) =
N∑

i=1

p(Xi)(Xi−E(X))2(9.16)

When a Gaussian function is used as a probability density function, the area
under the curve is constrained to be equal to one. Then the probability that a ran-
dom variable takes on any particular range of values can be computed by summing
the area under the curve for that range of values. Fig. 9.12 shows the probability
expressed by the area under an interval of a Gaussian.
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Figure 9.12 A Gaussian probability density function, showing a region from 0 to
1 with a total probability of .341. Thus for this sample Gaussian, the probability that
a value on the X axis lies between 0 and 1 is .341.

We can use a univariate Gaussian pdf to estimate the probability that a partic-
ular HMM state j generates the value of a single dimension of a feature vectorby
assuming that the possible values of (this one dimension of the) observation fea-
ture vectorot are normally distributed. In other words we represent the observation
likelihood functionb j(ot) for one dimension of the acoustic vector as a Gaussian.
Taking, for the moment, our observation as a single real valued number (a single
cepstral feature), and assuming that each HMM statej has associated with it a
mean valueµj and varianceσ2

j , we compute the likelihoodb j(ot) via the equation
for a Gaussian pdf:

b j(ot) =
1

√

2πσ2
j

exp

(

−(ot −µj)
2

2σ2
j

)

(9.17)
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Equation (9.17) shows us how to computeb j(ot), the likelihood of an indi-
vidual acoustic observation given a single univariate Gaussian from statej with its
mean and variance. We can now use this probability in HMM decoding.

But first we need to solve the training problem; how do we compute this mean
and variance of the Gaussian for each HMM stateqi? Let’s start by imagining
the simpler situation of a completely labeled training set,in which each acoustic
observation was labeled with the HMM state that produced it.In such a training
set, we could compute the mean of each state just taking the average of the values
for eachot that corresponded to statei, as show in (9.19). The variance could just
be computed from the sum-squared error between each observation and the mean,
as shown in (9.19).

µ̂i =
1
T

T∑

t=1

ot s.t. qt is statei(9.18)

σ̂2
j =

1
T

T∑

t=1

(ot −µi)
2 s.t. qt is statei(9.19)

But since states are hidden in an HMM, we don’t know exactly which obser-
vation vectorot was produced by which state. What we would like to do is assign
each observation vectorot to every possible statei, prorated by the probability that
the HMM was in statei at timet. Luckily, we already know how to do this pro-
rating; the probability of being in statei at time t was defined in Ch. 6 asξt(i),
and we saw how to computeξt(i) as part of the Baum-Welch algorithm using the
Forward and Backward probabilities. Baum-Welch is an iterative algorithm, and
we will need to do the probability computation ofξt(i) iteratively since getting a
better observation probabilityb will also help us be more sure of the probability
ξ of being in a state at a certain time. Thus we give equations for computing an
updated mean and variance ˆµ andσ̂2:

µ̂i =

∑T
t=1ξt(i)ot
∑T

t=1ξt(i)
(9.20)

σ̂2
i =

∑T
t=1ξt(i)(ot −µi)

2

∑T
t=1 ξt(i)

(9.21)

Equations (9.21) and (9.21) are then used in the forward-backward (Baum-
Welch) training of the HMM. As we will see, the values ofµi andσi are first set to
some initial estimate, which is then re-estimated until thenumbers converge.

Multivariate Gaussians

Equation (9.17) shows how to use a Gaussian to compute an acoustic likelihood for
a single cepstral feature. Since an acoustic observation isa vector of 39 features,
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we’ll need to use a multivariate Gaussian, which allows us toassign a probability
to a 39-valued vector. Where a univariate Gaussian is definedby a meanµ and a
varianceσ2, a multivariate Gaussian is defined by a mean vector~µ of dimension-
ality D and a covariance matrixΣ, defined below. For a typical cepstral feature
vector in LVCSR, D is 39:

f (~x|~µ,Σ) =
1

√

2π|Σ|
exp

(

(x−µ)TΣ−1(ot −µj)
)

(9.22)

The covariance matrixΣ captures the variance of each dimension as well as
the covariance between any two dimensions.

Recall again from basic statistics that the covariance of two random variable
X andY is the expected value of the product of their average deviations from the
mean:

Σ = E[(X−E(X))(Y−E(Y)]) =
N∑

i=1

p(XiYi)(Xi−E(X))(Yi−E(Y))(9.23)

Thus for a given HMM state with mean vectorµj and covariance matrixΣ j ,
and a given observation vectorot , the multivariate Gaussian probability estimate
is:

b j(ot) =
1

√

2π|Σ j| exp
(

(ot −µj)
TΣ−1

j (ot −µj)
)

(9.24)

The covariance matrixΣ j expresses the variance between each pair of feature
dimensions. Suppose we made the simplifying assumption that features in different
dimensions did not covary, i.e., that there was no correlation between the variances
of different dimensions of the feature vector. In this case,we could simply keep
a distinct variance for each feature dimension. It turns outthat keeping a separate
variance for each dimension is equivalent to having a covariance matrix that isdi-
agonal, i.e. non-zero elements only appear along the main diagonalof the matrix.DIAGONAL

The main diagonal of such a diagonal covariance matrix contains the variances of
each dimension,σ2

1,σ2
2, ...σ2

D;
Let’s look at some illustrations of multivariate Gaussians, focusing on the

role of the full versus diagonal covariance matrix. We’ll explore a simple mul-
tivariate Gaussian with only 2 dimensions, rather than the 39 that are typical in
ASR. Fig. 9.13 shows three different multivariate Gaussians in two dimensions.
The leftmost figure shows a Gaussian with a diagonal covariance matrix, in which
the variances of the two dimensions are equal. Fig. 9.14 shows 3 contour plots
corresponding to the Gaussians in Fig. 9.13; each is a slice through the Gaussian.
The leftmost graph in Fig. 9.14 shows a slice through the diagonal equal-variance
Gaussian. The slice is circular, since the variances are equal in both the X and Y
directions.
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Figure 9.13 Three different multivariate Gaussians in two dimensions.The first
two have diagonal covariance matrices, one with equal variance in the two dimensions
[

1 0
0 1

]

, the second with different variances in the two dimensions,

[
.6 0
0 2

]

, and the

third with non-zero elements in the off-diagonal of the covariance matrix:

[
1 .8
.8 1

]

.

The middle figure in Fig. 9.13 shows a Gaussian with a diagonalcovariance
matrix, but where the variances are not equal. It is clear from this figure, and
especially from the contour slice show in Fig. 9.14, that thevariance is more than
3 times greater in one dimension than the other.
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Figure 9.14 The same three multivariate Gaussians as in the previous figure. From
left to right, a diagonal covariance matrix with equal variance, diagonal with unequal
variance, and and nondiagonal covariance. With non-diagonal covariance, knowing
the value on dimension X tells you something about the value on dimension Y.

The rightmost graph in Fig. 9.13 and Fig. 9.14 shows a Gaussian with a non-
diagonal covariance matrix. Notice in the contour plot in Fig. 9.14 that the contour
is not lined up with the two axes, as it is in the other two plots. Because of this,
knowing the value in one dimension can help in predicting thevalue in the other
dimension. Thus having a non-diagonal covariance matrix allows us to model cor-
relations between the values of the features in multiple dimensions.
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A Gaussian with a full covariance matrix is thus a more powerful model of
acoustic likelihood than one with a diagonal covariance matrix. And indeed, speech
recognition performance is better using full-covariance Gaussians than diagonal-
covariance Gaussians. But there are two problems with full-covariance Gaussians
that makes them difficult to use in practice. First, they are slow to compute. A full
covariance matrix hasD2 parameters, where a diagonal covariance matrix has only
D. This turns out to make a large difference in speed in real ASRsystems. Second,
a full covariance matrix has many more parameters and hence requires much more
data to train than a diagonal covariance matrix. Using a diagonal covariance model
means we can save room for using our parameters for other things like triphones.

For this reason, in practice most ASR systems use diagonal covariance. We
will assume diagonal covariance for the remainder of this section.

Equation (9.24) can thus be simplified to the version in (9.25) in which in-
stead of a covariance matrix, we simply keep a mean and variance for each di-
mension. Equation (9.25) thus describes how to estimate thelikelihood b j(ot) of a
D-dimensional feature vectorot given HMM state j, using a diagonal-covariance
multivariate Gaussian.

b j(ot) =
D∏

d=1

1
√

2πσ2
jd

exp

(

−1
2
[
(otd−µjd)2

σ jd
2 ]

)

(9.25)

Training a diagonal-covariance multivariate Gaussian is asimple generaliza-
tion of training univariate Gaussians. We’ll do the same Baum-Welch training,
where we use the value ofξt(i) to tell us the likelihood of being in statei at time
t. Indeed, we’ll use exactly same equation as in (9.21), except that now we are
dealing with vectors instead of scalars; the observationot is a vector of cepstral
features, the mean vector~µ is a vector of cepstral means, and the variance vector
~σ2

i is a vector of cepstral variances.

µ̂i =

∑T
t=1ξt(i)ot
∑T

t=1ξt(i)
(9.26)

σ̂2
i =

∑T
t=1ξt(i)(ot −µi)(ot −µi)

T

∑T
t=1 ξt(i)

(9.27)

Gaussian Mixture Models

The previous subsection showed that we can use a multivariate Gaussian model to
assign a likelihood score to an acoustic feature vector observation. This models
each dimension of the feature vector as a normal distribution. But a particular cep-
stral feature might have a very non-normal distribution; the assumption of a normal
distribution may be too strong an assumption. For this reason, we often model the
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observation likelihood not with a single multivariate Gaussian, but with a weighted
mixture of multivariate Gaussians. Such a model is called aGaussian Mixture
Model or GMM . Equation (9.28) shows the equation for the GMM function; theGAUSSIAN MIXTURE

MODEL

GMM resulting function is the sum ofM Gaussians. Fig. 9.15 shows an intuition of how
a mixture of Gaussians can model arbitrary functions.

Figure 9.15 Add figure here showing a mixture of 3 guassians covering a function
with 3 lumps; SHOW differences in VARIANCE, MEAN, AND WEIGHT.

f (x|µ,Σ) =
M∑

k=1

ck
1

√

2π|Σk|
exp[(x−µk)

TΣ−1(x−µk)](9.28)

Equation (9.29) shows the definition of the output likelihood functionb j(ot)

b j(ot) =
M∑

m=1

c jm
1

√

2π|Σ jm|
exp[(x−µjm)TΣ−1

jm(ot −µjm)](9.29)

Let’s turn to training the GMM likelihood function. This mayseem hard to
do; how can we train a GMM model if we don’t know in advance which mixture is
supposed to account for which part of each distribution? Recall that a single multi-
variate Gaussian could be trained even if we didn’t know which state accounted for
each output, simply by using the Baum-Welch algorithm to tell us the likelihood of
being in each statej at timet. It turns out the same trick will work for GMMs; we
can use Baum-Welch to tell us the probability of a certain mixture accounting for
the observation, and iteratively update this probability.

We used theξ function above to help us compute the state probability. By
analogy with this function, let’s defineξtm( j) to mean the probability of being
in state j at time t with the mth mixture component accounting for the output
observationot . We can computeξtm( j) as follows:

ξtm( j) =

∑

i=1Nαt−1( j)ai j c jmb jm(ot)βt( j)
αT(F)

(9.30)

Now if we had the values ofξ from a previous iteration of Baum-Welch, we
can useξtm( j) to recompute the mean, mixture weight, and covariance usingthe
following equations:

µ̂im =

∑T
t=1ξtm(i)ot

∑T
t=1
∑M

m=1ξtm(i)
(9.31)

ĉim =

∑T
t=1 ξtm(i)

∑T
t=1
∑M

k=1 ξtk(i)
(9.32)
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Σ̂im =

∑T
t=1 ξt(i)(ot −µim)(ot −µim)T

∑T
t=1
∑M

k=1ξtm(i)
(9.33)

9.4.3 Probabilities, log probabilities and distance functions

Up to now, all the equations we have given for acoustic modeling have used proba-
bilities. It turns out, however, that alog probability (or logprob) is much easier toLOGPROB

work with than a probability. Thus in practice throughout speech recognition (and
related fields) we compute log-probabilities rather than probabilities.

One major reason that we can’t use probabilities is numeric underflow. To
compute a likelihood for a whole sentence, say, we are multiplying many small
probability values, one for each 10ms frame. Multiplying many probabilities re-
sults in smaller and smaller numbers, leading to underflow. The log of a small
number like.00000001= 10−8, on the other hand, is a nice easy-to-work-with-
number like−8. A second reason to use log probabilities is computationalspeed.
Instead of multiplying probabilities, we add log-probabilities, and adding is faster
than multiplying. Log-probabilities are particularly efficient when we are using
Gaussian models, since we can avoid exponentiating.

Thus for example for a single multivariate diagonal-covariance Gaussian model,
instead of computing:

b j(ot) =
D∏

d=1

1
√

2πσ2
jd

exp

(

−1
2

(otd−µjd)2

σ2
jd

)

(9.34)

we would compute

logb j(ot) =−1
2

D∑

d=1

[

log(2π)+ σ2
jd +

(otd−µjd)2

σ2
jd

]

(9.35)

With some rearrangement of terms, we can rewrite this equation to pull out a con-
stant C:

logb j(ot) = C− 1
2

D∑

d=1

(otd−µjd)2

σ2
jd

(9.36)

where C can be precomputed:

C =−1
2

D∑

d=1

(

log(2π)+ σ2
jd

)

(9.37)

In summary, computing acoustic models in log domain means a much simpler
computation, much of which can be precomputed for speed.

The perceptive reader may have noticed that equation (9.36)looks very much
like the equation for Mahalanobis distance (9.11). Indeed,one way to think about
Gaussian logprobs is as just a weighted distance metric.
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A further point about Gaussian pdfs, for those readers with calculus. Al-
though the equations for observation likelihood such as (9.17) are motivated by
the use of Gaussian probability density functions, the values they returns for the
observation likelihood,b j(ot), are not technically probabilities; they may in fact be
greater than one. This is because we are computing the value of b j(ot) at a single
point, rather than integrating over a region. While the total area under the Gaussian
PDF curve is constrained to one, the actual value at any pointcould be greater than
one. (Imagine a very tall skinny Gaussian; the value could begreater than one at
the center, although the area under the curve is still 1.0). If we were integrating
over a region, we would be multiplying each point by its widthdx, which would
bring the value down below one. The fact that the Gaussian estimate is not a true
probability doesn’t matter for choosing the most likely HMMstate, since we are
comparing different Gaussians, each of which is missing this dx factor.

In summary, the last few subsections introduced Gaussian models for acous-
tic training in speech recognition. Beginning with simple univariate Gaussian, we
extended first to multivariate Gaussians to deal with the multidimensionality acous-
tic feature vectors. We then introduced the diagonal covariance simplification of
Gaussians, and then introduced Gaussians mixtures (GMMs).

9.5 THE LEXICON AND LANGUAGE MODEL

Since previous chapters had extensive discussions of theN-gram language model
(Ch. 4) and the pronunciation lexicon (Ch. 7), in this section we just briefly recall
them to the reader.

Language models for LVCSR tend to be trigrams or even fourgrams; good
toolkits are available to build and manipulate them (Stolcke, 2002; Young et al.,
2005). Bigrams and unigram grammars are rarely used for large-vocabulary appli-
cations. Since trigrams require huge amounts of space, however, language models
for memory-constrained applications like cell phones tendto use smaller contexts.
As we will discuss in Ch. 23, some simple dialogue applications take advantage of
their limited domain to use very simple finite state or weighted-finite state gram-
mars.

Lexicons are simply lists of words, with a pronunciation foreach word ex-
pressed as a phone sequence. Publicly available lexicons like the CMU dictionary
(CMU, 1993) can be used to extract the 64,000 word vocabularies commonly used
for LVCSR. Most words have a single pronunciation, althoughsome words such
as homonyms and frequent function words may have more; the average number of
pronunciations per word in most LVCSR systems seems to rangefrom 1 to 2.5.
Sec. 9.12.3 discusses the issue of pronunciation modeling.



DRAFT

26 Chapter 9. Automatic Speech Recognition

9.6 SEARCH AND DECODING

We are now very close to having described all the parts of a complete speech rec-
ognizer. We have shown how to extract cepstral features for aframe, and how
to compute the acoustic likelihoodb j(ot) for that frame. We also know how to
represent lexical knowledge, that each word HMM is composedof a sequence of
phones, and each of phone of set of subphone states. Finally,in Ch. 4 we showed
how to useN-grams to build a model of word predictability.

In this section we show how to combine all of this knowledge tosolve the
problem ofdecoding: combining all these probability estimators to produce theDECODING

most probable string of words. We can phrase the decoding question as: ‘Given a
string of acoustic observations, how should we choose the string of words which
has the highest posterior probability?’

Recall from the beginning of the chapter the noisy channel model for speech
recognition. In this model, we use Bayes rule, with the result that the best sequence
of words is the one that maximizes the product of two factors,a language model
prior and an acoustic likelihood:

Ŵ = argmax
W∈L

likelihood
︷ ︸︸ ︷

P(O|W)

prior
︷ ︸︸ ︷

P(W)(9.38)

Now that we have defined both the acoustic model (in this chapter) and lan-
guage model (in Ch. 4), we are ready to see how to find this maximum probability
sequence of words. First, though, it turns out that we’ll need to make a modification
to Equation (9.38), because it relies on some incorrect independence assumptions.
Recall that we trained a multivariate Gaussian mixture classifier to compute the
likelihood of a particular acoustic observation (a frame) given a particular state
(subphone). By computing separate classifiers for each acoustic frame and multi-
plying these probabilities to get the probability of the whole word, we are severely
underestimating the probability of each subphone. This is because there is a lot
of continuity across frames; if we were to take into account the acoustic context,
we would have a greater expectation for a given frame and hence could assign it a
higher probability. We must therefore reweight the two probabilities. We do this
by add in alanguage model scaling factoror LMSF , also called thelanguageLMSF

weight. This factor is an exponent on the language model probability P(W). Be-
causeP(W) is less than one and the LMSF is greater than one (between 5 and15,
in many systems), this has the effect of decreasing the valueof the LM probability:

Ŵ = argmax
W∈L

P(O|W)P(W)LMSF(9.39)

Reweighting the language model probabilityP(W) in this way requires us to
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make one more change. This is becauseP(W) has a side-effect as a penalty for
inserting words. It’s simplest to see this in the case of a uniform language model,
where every word in a vocabulary of size|V| has an equal probability1|V| . In this

case, a sentence withN words will have a language model probability of1
|V| for

each of theN words, for a total penalty of ofN|V| . The largerN is (the more words

in the sentence), the more times this1
V penalty multiplier is taken, and the less

probable the sentence will be. Thus if (on average) the language model probability
decreases (causing a larger penalty), the decoder will prefer fewer, longer words. If
the language model probability increases (larger penalty), the decoder will prefer
more shorter words. Thus our use of a LMSF to balance the acoustic model has the
side-effect of decreasing the word insertion penalty. To offset this, we need to add
back in a separateword insertion penalty:WORD INSERTION

PENALTY

Ŵ = argmax
W∈L

P(O|W)P(W)LMSFWIPN(9.40)

Since in practice we use logprobs, the goal of our decoder is:

Ŵ = argmax
W∈L

logP(O|W)+LMSF× logP(W)+N× logWIP(9.41)

Now that we have an equation to maximize, let’s look at how to decode.
It’s the job of a decoder to simultaneously segment the utterance into words and
identify each of these words. This task is made difficult by variation, both in terms
of how words are pronounced in terms of phones, and how phonesare articulated in
acoustic features. Just to give an intuition of the difficulty of the problem imagine
a massively simplified version of the speech recognition task, in which the decoder
is given a series of discrete phones. In such a case, we would know what each
phone was with perfect accuracy, and yet decoding is still difficult. For example,
try to decode the following sentence from the (hand-labeled) sequence of phones
from the Switchboard corpus (don’t peek ahead!):

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]

The answer is in the footnote.1 The task is hard partly because of coartic-
ulation and fast speech (e.g., [d] for the first phone ofjust!). But it’s also hard
because speech, unlike English writing, has no spaces indicating word boundaries.
The true decoding task, in which we have to identify the phones at the same time
as we identify and segment the words, is of course much harder.

For decoding, we will start with the Viterbi algorithm that we introduced in
Ch. 6, in the domain ofdigit recognition, a simple task with with a vocabulary
size of 11 (the numbersonethroughninepluszeroandoh).

Recall the basic components of an HMM model for speech recognition:

1 I just heard something about moving recently.
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• pronunciation lexicon: an HMM state graph structure for each word

• observation likelihoods: b j(ot)

• transition probabilities: ai j

The HMM structure for each word comes from a lexicon of word pronuncia-
tions. Generally we use an off-the-shelf pronunciation dictionary such as the free
CMUdict dictionary described in Ch. 7. Recall from page 10 that the HMM struc-
ture for words in speech recognition is a simple concatenation of phone HMMs,
each phone consisting of 3 subphone states, where every state has exactly two tran-
sitions: a self-loop and a loop to the next phones. Thus the HMM structure for each
digit word in our digit recognizer is computed simply by taking the phone string
from the dictionary, expanding each phone into 3 subphones,and concatenating
together. In addition, we generally add an optional silencephone at the end of each
word, allowing the possibility of pausing between words.

Thea andb matrices for the HMM are trained by the Baum-Welch algorithm
in the embedded training procedure that we will describe in Sec. 9.7. For now
we’ll assume that these probabilities have been trained.

Fig. 9.16 shows the resulting HMM for digit recognition; we’ve simplified by
assuming context-independent phones (monophones) ratherthan context-dependent
phones. Note that we’ve added non-emitting start and end states, with transitions
from the end of each word to the end state, and a transition from the end state back
to the start state to allow for sequences of digits. Note alsothe optional silence
phones at the end of each word.

Digit recognizers often don’t use word probabilities, since in most digit situa-
tions (phone numbers or credit card numbers) each digit has an equal probability of
appearing. But we’ve included transition probabilities into each word in Fig. 9.16,
mainly to show where such probabilities would be for other kinds of recognition
tasks. As it happens, there are cases where digit probabilities do matter, such as in
addresses (which are often likely to end in 0 or 00) or in cultures where some num-
bers are lucky and hence more frequent, such as the lucky number ‘8’ in Chinese.

Now that we have an HMM, we can use the same forward and Viterbialgo-
rithms that we introduced in Ch. 6. Let’s see how to use the forward algorithm to
generateP(O|W), the likelihood of an observation sequenceO given a sequence
of wordsW; we’ll use the single word “five”. In order to compute this likelihood,
we need to sum over all possible sequences of states; assuming fivehas the states
[f], [ay], and [v], a 10-observation sequence includes manysequences such as the
following:
f ay ay ay ay v v v v v
f f ay ay ay ay v v v v
f f f f ay ay ay ay v v
f f ay ay ay ay ay ay v v
f f ay ay ay ay ay ay ay v
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Figure 9.16 An HMM for the digit recognition task. A lexicon specifies thephone
sequence, and each phone HMM is composed of three subphones each with a Gaus-
sian emission likelihood model. Combining these and addingan optional silence at
the end of each word, results in a single HMM for the whole task. Note the transition
from the End state to the Start state to allow digit sequencesof arbitrary length.

f f ay ay ay ay ay v v v
...

The forward algorithm efficiently sums over this large number of sequences
in O(N2T) time.

Let’s quickly review the forward algorithm. It is a dynamic programming
algorithm, i.e. an algorithm that uses a table to store intermediate values as it builds
up the probability of the observation sequence. The forwardalgorithm computes
the observation probability by summing over the probabilities of all possible paths
that could generate the observation sequence. Each cell of the forward algorithm
lattice, forward[t, j] represents the probability of being in statej after seeing the
first t observations, given the automatonλ. The value of each cellforward[t, j] is
computed by summing over the probabilities of every path that could lead us to this
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cell. Formally, each cell expresses the following probability:

forward[t, j] = P(o1,o2 . . .ot ,qt = j|λ) P(w)(9.42)

Hereqt = j means “the probability that thetth state in the sequence of states
is statej”. We compute this probability by summing over the extensions of all the
paths that lead to the current cell. An extension of a path from a statei at timet−1
is computed by multiplying the following three factors:

1. theprevious path probability from the previous cell forward[t−1, i],

2. thetransition probability ai j from previous statei to current statej, and

3. theobservation likelihood b j(ot) that current statej matches observation
symbolt.

The algorithm is described in Fig. 9.17.

function FORWARD(observationsof lenT,state-graph) returns forward-probability

num-states←NUM-OF-STATES(state-graph)
Create a probability matrixforward[num-states+2,T+2]
forward[0,0]←1.0
for each time stept from 1 to T do

for each states from 1 to num-statesdo
forward[s,t]←

∑

1 ≤ s′≤ num-states

[
forward[s′,t−1] ∗ as′,s

]
∗ bs(ot)

return the sum of the probabilities in the final column offorward

Figure 9.17 The forward algorithm for computing likelihood of observation se-
quence given a word model.a[s,s′] is the transition probability from current states to
next states′, andb[s′,ot ] is the observation likelihood ofs’ givenot . The observation
likelihoodb[s′,ot ] is computed by the acoustic model.

Let’s see a trace of the forward algorithm running on a simplified HMM for
the single wordfivegiven 10 observations; assuming 10ms per frame, this comes to
100ms. The HMM structure is shown vertically along the left of Fig. 9.18, followed
by the first 3 time-steps of the forward lattice. The completelattice is shown in
Fig. 9.19, together withB values giving a vector of observation likelihoods for each
frame. These likelihoods could be computed by any acoustic model (Gaussians,
HMMs, etc); in this example we’ve hand-created simple values for pedagogical
purposes.

Let’s now turn to the question of decoding. Recall from our description of
HMMs in Ch. 6 that if we had a whole lot of time, we could do decoding by
running the forward algorithm for all possible digit sequencesW, assigning each
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Figure 9.18 The first 3 time-steps of the forward lattice computation forthe word
five. TheA transition probabilities are shown along the left edge; theB observation
likelihoods are shown in Fig. 9.19.

V 0 0 0.008 0.0093 0.0114 0.00703 0.00345 0.00306 0.00206 0.00117
AY 0 0.04 0.054 0.0664 0.0355 0.016 0.00676 0.00208 0.000532 0.000109
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06

Time 1 2 3 4 5 6 7 8 9 10

f 0.8 f 0.8 f 0.7 f 0.4 f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0.1 ay 0.1 ay 0.3 ay 0.8 ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4

B v 0.6 v 0.6 v 0.4 v 0.3 v 0.3 v 0.3 v 0.3 v 0.6 v 0.8 v 0.9
p 0.4 p 0.4 p 0.2 p 0.1 p 0.1 p 0.1 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 0.3 iy 0.6 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.19 The Forward lattice for 10 frames of the wordfive, consisting of 3 emitting states (f, ay,
v), plus non-emitting start and end states (not shown). The bottom half of the table gives part of the
B observation likelihood vector for the observationo at each frame,p(o|q) for each phoneq. B values
are created by hand for pedagogical purposes. This table assumes the HMM structure forfiveshown in
Fig. 9.18, each emitting state having a .5 loopback probability.

a probability, and then choosing the maximum. Since we don’thave a prespeci-
fied word segmentation, we would have to consider every possible segmentation
(word boundary locations) of every possible word sequence,making the problem
exponential. Instead of this, we use the Viterbi algorithm to automatically find the
most likely word sequence (or, as we will see, an approximation) in timeO(N2T).
Fig. 9.20 shows the Viterbi algorithm, repeated from Ch. 5.

Recall that the goal of the Viterbi algorithm is to find the best state sequence
q = (q1q2q3 . . .qt) given the set of observationso = (o1o2o3 . . .ot). It needs to
also find the probability of this state sequence. Note that the Viterbi algorithm is
identical to the Forward algorithm except that it takes the MAX over the previous
path probabilities where Forward takes the SUM.
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function V ITERBI(observationsof len T,state-graph) returns best-path

num-states←NUM-OF-STATES(state-graph)
Create a path probability matrixviterbi[num-states+2,T+2]
viterbi[0,0]←1.0
for each time stept from 1 to T do

for each states from 1 to num-statesdo
viterbi[s,t]← max

1 ≤ s′≤ num-states

[
viterbi[s′,t−1] ∗ as′,s

]
∗ bs(ot)

back-pointer[s,t]← argmax
1 ≤ s′≤ num-states

[
viterbi[s′,t−1] ∗ as′,s

]

Backtrace from highest probability state in final column ofviterbi[] and return path

Figure 9.20 Viterbi algorithm for finding optimal sequence of tags. Given an ob-
servation sequence of words and an HMM (as defined by thea andb matrices), the
algorithm returns the state-path through the HMM which assigns maximum likeli-
hood to the observation sequence.a[s′,s] is the transition probability from previous
states′ to current states, andbs(ot) is the observation likelihood ofs givenot . Note
that states 0 and N+1 are non-emitting start and end states.

Fig. 9.21 shows the computation of the first three time-stepsin the Viterbi
lattice corresponding to the forward lattice in Fig. 9.18. We have again used the
made-up probabilities for the cepstral observations; herewe also follow common
convention in not showing the zero cells in the upper left corner. Note that only the
middle cell in the third column differs from Viterbi to Forward. Fig. 9.19 shows
the complete lattice.

Note the difference between the final values from the Viterbiand Forward al-
gorithms for this (made-up) example. The Forward algorithmgives the probability
of the observation sequence as .00128, which we get by summing the final column.
The Viterbi algorithm gives the probability of the observation sequence given the
best path, which we get from the Viterbi matrix as .000493. The Viterbi probabil-
ity is much smaller than the Forward probability, as we should expect since Viterbi
comes from a single path, where the Forward probability is the sum over all paths.

The real usefulness of the Viterbi decoder, of course, lies in its ability to de-
code a string of words. In order to do cross-word decoding, weneed to augment
theA matrix, which only has intra-word state transitions, with the inter-word prob-
ability of transitioning from the end of one word to the beginning of another word.
The digit HMM model in Fig. 9.16 showed that we could just treat each word as in-
dependent, and use only the unigram probability. Higher-orderN-grams are much
more common. Fig. 9.23, for example, shows an augmentation of the digit HMM
with bigram probabilities.
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Figure 9.21 The first 3 time-steps of the viterbi lattice computation forthe word
five. TheA transition probabilities are shown along the left edge; theB observation
likelihoods are shown in Fig. 9.22.

V 0 0 0.008 0.0072 0.00672 0.00403 0.00188 0.00161 0.000667 0.000493
AY 0 0.04 0.048 0.0448 0.0269 0.0125 0.00538 0.00167 0.000428 8.78e-05
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06

Time 1 2 3 4 5 6 7 8 9 10

f 0.8 f 0.8 f 0.7 f 0.4 f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0.1 ay 0.1 ay 0.3 ay 0.8 ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4

B v 0.6 v 0.6 v 0.4 v 0.3 v 0.3 v 0.3 v 0.3 v 0.6 v 0.8 v 0.9
p 0.4 p 0.4 p 0.2 p 0.1 p 0.1 p 0.1 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 0.3 iy 0.6 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.22 The Viterbi lattice for 10 frames of the wordfive, consisting of 3 emitting states (f, ay,
v), plus non-emitting start and end states (not shown). The bottom half of the table gives part of the
B observation likelihood vector for the observationo at each frame,p(o|q) for each phoneq. B values
are created by hand for pedagogical purposes. This table assumes the HMM structure forfiveshown in
Fig. 9.18, each emitting state having a .5 loopback probability.

A schematic of the HMM trellis for such a multi-word decodingtask is shown
in Fig. 9.24. The intraword transitions are exactly as shownin Fig. 9.21. But now
between words we’ve added a transition. The transition probability on this arc,
rather than coming from theA matrix inside each word, comes from the language
modelP(W).

Once the entire Viterbi lattice has been computed for the utterance, we can
start from the most-probable state at the final time step and follow the backtrace
pointers backwards to get the most probable string of states, and hence the most
probable string of words. Fig. 9.25 shows the backtrace pointers being followed
back from the best state, which happens to be atw2, eventually throughwN andw1,
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Figure 9.23 A bigram grammar network for the digit recognition task. Thebi-
grams give the probability of transitioning from the end of one word to the beginning
of the next.

resulting in the final word stringw1wN · · ·w2.
The Viterbi algorithm is much more efficient than exponentially running the

forward algorithm for each possible word string. Nonetheless, it is still slow, and it
is fair to say that a great portion of modern research in speech recognition has been
on ways to speed up the decoding process. Thus in practice in large-vocabulary
recognition we do not consider all possible words when the algorithm is extending
paths from one state-column to the next. Instead, low-probability paths are pruned
at each time step and not extended to the next state column.

This pruning is usually implemented viabeam search(Lowerre, 1968). InBEAM SEARCH

beam search, at each timet, we first compute the probability of the best (most-
probable) state/pathD. We then prune away any state which is worse thanD by
some fixed threshold (beam width) θ. We can talk about beam-search in both theBEAM WIDTH

probability and negative log probability domain. In the probability domain any
path/state whose probability is less thenθ∗D is pruned away; in the negative log
domain, any path whose whose cost is greater thenθ+D is pruned. Beam search is
implemented by keeping for each time step anactive list of states. Only transitionsACTIVE LIST

from these words are extended when moving to the next time step.
Making this beam search approximation allows a significant speed-up at the

cost of a degradation to the decoding performance. Huang et al. (2001) suggest
that empirically a beam size of 5-10% of the search space is sufficient; 90-95%
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Figure 9.24 The HMM Viterbi trellis for a bigram language model. The intraword
transitions are exactly as shown in Fig. 9.21. Between words, a potential transition is
added (shown as a dotted line) from the end state of each word to the beginning state
of every word, labeled with the bigram probability of the word pair.

of the states are thus not considered. Because in practice most implementations
of Viterbi use beam search, some of the literature uses the term beam searchor
time-synchronous beam searchinstead of Viterbi.

9.7 EMBEDDED TRAINING

We turn now to see how an HMM-based speech recognition systemis trained.
We’ve already seen some aspects of training. In Ch. 4 we showed how to train
a language model. In Sec. 9.4, we saw and saw how GMM acoustic models are
trained by augmenting the EM algorithm to deal with trainingthe means, variances,
and weights. We also saw how posterior AM classifiers like SVMS or neural nets
could be trained, although for neural nets we haven’t yet seen how we get training
data in which each frame is labeled with a phone identity.

In this section we complete the picture of HMM training by showing how this
augmented EM training algorithm fits into the whole process of training acoustic
models. For review, here are three components of theacoustic model:

• pronunciation lexicon: an HMM state graph structure for each word

• observation likelihoods: b j(ot)
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Figure 9.25 Viterbi backtrace in the HMM trellis. The backtrace starts in the final
state, and results in a best phone string from which a word string is derived.

• transition probabilities: ai j

We will assume that the pronunciation lexicon, and thus the basic HMM state
graph structure for each word, is pre-specified as the simplelinear HMM structures
with loopbacks on each state that we saw in Fig. 9.8 and Fig. 9.16. In general,
speech recognition systems do not attempt to learn the structure of the individual
word HMMs. Thus we only need to train theB andA matrices.

The simplest possible training method, ishand-labeled isolated wordtrain-
ing, in which we train separate theB andA matrices for the HMMs for each word
based on hand-aligned training data. We are given a trainingcorpus of digits, where
each instance of a spoken digit is stored in a wavefile, and with the start and end
of each word and phone hand-segmented. Given such a hand-labeled database, we
can compute theB Gaussians observation likelihoods and theA transition proba-
bilities by merely counting in the training data! TheA transition probability are
specific to each word, but theB Gaussians would be shared across words if the
same phone occurred in multiple words.

Unfortunately, hand-segmented training data is rarely used in training sys-
tems for continuous speech. One reason is that it is very expensive to use humans
to hand-label phonetic boundaries; it can take up to 400 times real time (i.e. 400
labeling hours to label each 1 hour of speech). Another reason is that humans don’t
do phonetic labeling very well for units smaller than the phone; people are bad at
consistently finding the boundaries of subphones.
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For this reason, speech recognition systems train each phone HMM embed-
ded in an entire sentence, and the segmentation and phone alignment are done
automatically as part of the training procedure. This entire acoustic model training
process is therefore calledembedded training. Hand phone segmentation do stillEMBEDDED

TRAINING

play some role, however, for example for bootstrapping initial systems for discrim-
inative (SVM; non-Gaussian) likelihood estimators.

In order to train a simple digits system, we’ll need a training corpus of spoken
digit sequences. For simplicity assume that the training corpus is separated into
separate wavefiles, each containing a sequence of spoken digits. For each wavefile,
we’ll need to know the correct sequence of digit words. We’llthus associate with
each wavefile a transcription (a string of words). We’ll alsoneed a pronunciation
lexicon and a phoneset, defining a set of (untrained) phone HMMs. From the
transcription, lexicon, and phone HMMs, we can build a “whole sentence” HMM
for each sentence, as shown in Fig. 9.26.

Figure 9.26 The input to the embedded training algorithm; a wavefile of spoken digits with a corre-
sponding transcription. The transcription is converted into a raw HMM, ready to be aligned and trained
against the cepstral features extracted from the wavefile.

We are now ready to train the transition matrix A and output likelihood esti-
mator B for the HMMs. The beauty of the Baum-Welch-based paradigm for em-
bedded training of HMMs is that this is all the training data we need. In particular,
we don’t need phonetically transcribed data. We don’t even need to know where
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each word starts and ends. The Baum-Welch algorithm will sumover all possible
segmentations of words and phones, usingξ j(t), the probability of being in statej
at timet and generating the observation sequence O.

We will, however, need an initial estimate for the transition and observation
probabilitiesai j andb j(ot). The simplest way to do this is with aflat start . InFLAT START

flat start, we first set to zero any HMM transitions that we wantto be ‘structurally
zero’; transitions from later phones to earlier phones, forexample, Theγ prob-
ability computation in Baum-Welch includes the previous value of ai j , so those
zero values will never change. Then we make all the rest of the(non-zero) HMM
transitions equiprobable. Thus the two transitions out of each state (the self-loop
and the transition to the following subphone) each would have a probability of 0.5.
For the Gaussians, a flat start initializes the mean and variance for each Gaussian
identically, to the global mean and variance for the entire training data.

Now we have initial estimates for thea andb probabilities. For a standard
Gaussian HMM system, we now run multiple iterations of the Baum-Welch algo-
rithm on the entire training set. Each iteration modifies theHMM parameters, and
we stop when the system converges. During each iteration, asdiscussed in Ch. 6,
we compute the forward and backward probabilities for each sentence given the
initial A andB probabilities, and use them to re-estimate theA andB probabilities.
We also apply the various modifications to EM discussed in theprevious section to
correctly update the Gaussian means and variances for multivariate Gaussians. We
will discuss in Sec. 9.10 how to modify the embedded trainingalgorithm to handle
mixture Gaussians.

As we’ve seen above, the Baum-Welch algorithm is used repeatedly as a
component of the embedded training process. Baum-Welch computesξt(i), the
probability of being in statei at time t, by using forward-backward to sum over
all possible paths that were in statei emitting symbolot at time t. This lets us
accumulate counts for re-estimating the emission probability b j(ot) from all the
paths that pass through statej at timet.

There is an efficient approximation to Baum-Welch training that makes use
of the Viterbi algorithm. InViterbi training , instead of accumulating counts by aVITERBI TRAINING

sum over all paths that pass through a statej at timet, we approximate this by only
choosing the Viterbi (most-probable) path. Thus instead ofrunning EM at every
step of the embedded training, we repeatedly run Viterbi.

Running the Viterbi algorithm over the training data in thisway is called
forced Viterbi alignment or just forced alignment. In Viterbi training (unlike inFORCED ALIGNMENT

Viterbi decoding on the test set) we know which word string toassign to each ob-
servation sequence, So we can ‘force’ the Viterbi algorithmto pass through certain
words, by setting theai j s appropriately. A forced Viterbi is thus a simplification
of the regular Viterbi decoding algorithm, since it only hasto figure out the cor-
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rect state (subphone) sequence, but doesn’t have to discover the word sequence.
The result is aforced alignment: the single best state path corresponding to the
training observation sequence. We can now use this alignment of HMM states to
observations to accumulate counts for re-estimating the HMM parameters.

The equations for retraining a (non-mixture) Gaussian froma Viterbi align-
ment are as follows:

µ̂i =
1
T

T∑

t=1

ot s.t. qt is statei(9.43)

σ̂2
j =

1
T

T∑

t=1

(ot −µi)
2 s.t. qt is statei(9.44)

We saw these equations already, as (9.19) and (9.19) on page 19, when we
were ‘imagining the simpler situation of a completely labeled training set’.

It turns out that this forced Viterbi algorithm is also used in the embedded
training of hybrid models like HMM/MLP or HMM/SVM systems. We begin with
an untrained MLP, and using its noisy outputs as theB values for the HMM, per-
form a forced Viterbi alignment of the training data. This alignment will be quite
errorful, since the MLP was random. Now this (quite errorful) Viterbi alignment
give us a labeling of feature vectors with phone labels. We use this labeling to
retrain the MLP. The counts of the transitions which are taken in the forced align-
ments can be used to estimate the HMM transition probabilities. We continue this
hill-climbing process of neural-net training and Viterbi alignment until the HMM
parameters begin to converge.

9.8 EVALUATION : WORD ERRORRATE

The standard evaluation metric for speech recognition systems is theword errorWORD ERROR

rate. The word error rate is based on how much the word string returned by the
recognizer (often called thehypothesizedword string) differs from a correct or
reference transcription. Given such a correct transcription, the first step in com-
puting word error is to compute theminimum edit distance in words between the
hypothesized and correct strings, as described in Ch. 3. Theresult of this compu-
tation will be the minimum number of wordsubstitutions, word insertions, and
word deletions necessary to map between the correct and hypothesized strings.
The word error rate (WER) is then defined as follows (note thatbecause the equa-
tion includes insertions, the error rate can be great than 100%):

Word Error Rate= 100× Insertions+Substitutions+Deletions
Total Words in Correct Transcript
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We sometimes also talk about the SER (Sentence Error Rate), which tells us
how many sentences had at least one error:

Sentence Error Rate= 100× # of sentences with at least one word error
total # of sentences

Here is an example of thealignmentsbetween a reference and a hypothesizedALIGNMENTS

utterance from the CALLHOME corpus, showing the counts usedto compute the
word error rate:

REF: i *** ** UM the PHONE IS i LEFT THE portable **** PHONE UPSTAIRS last night
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable FORM OF STORES last night
Eval: I I S D S S S I S S

This utterance has six substitutions, three insertions, and one deletion:

Word Error Rate= 100
6+3+1

15
= 66.6%

The standard method for implementing minimum edit distanceand comput-
ing word error rates is a free script calledsclite, available from the National
Institute of Standards and Technologies (NIST) (NIST, 2005). sclite is given
a series of reference (hand-transcribed, gold-standard) sentences and a matching
set of hypothesis sentences. Besides performing alignments, and computing word
error rate, sclite performs a number of other useful tasks. For example, it gives
useful information forerror analysis, such as confusion matrices showing which
words are often misrecognized for others, and gives summarystatistics of words
which are often inserted or deleted.sclite also gives error rates by speaker (if
sentences are labeled for speaker id), as well as useful statistics like thesentence
error rate , the percentage of sentences with at least one word error.SENTENCE ERROR

RATE

Finally, sclite can be used to compute significance tests. Suppose we
make some changes to our ASR system and find that our word errorrate has de-
creased by 1%. In order to know if our changes really improvedthings, we need
a statistical test to make sure that the 1% difference is not just due to chance.
The standard statistical test for determining if two word error rates are different is
the Matched-Pair Sentence Segment Word Error (MAPSSWE) test, which is also
available insclite.

The MAPSSWE test is a parametric test that looks at the difference between
the number of word errors the two systems produce, averaged across a number of
segments. The segments may be quite short or as long as an entire utterance; in
general we want to have the largest number of (short) segments in order to justify
the normality assumption and for maximum power. The test requires that the errors
in one segment be statistically independent of the errors inanother segment. Since
ASR systems tend to use trigram LMs, this can be approximatedby defining a
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segment as a region bounded on both sides by words that both recognizers get
correct (or turn/utterance boundaries).

Here’s an example from (?) with four segments, labeled in roman numerals:
EXAMPLE TO BE REPLACED

I II III IV

REF: |it was|the best|of|times it|was the worst|of times| |it was

| | | | | | | |

SYS A:|ITS |the best|of|times it|IS the worst |of times|OR|it was

| | | | | | | |

SYS B:|it was|the best| |times it|WON the TEST |of times| |it wa

In region I, system A has 2 errors (a deletion and an insertion) and system B
has 0; in region III system A has 1 (substitution) error and system B has 2. Let’s
defineNi

A is the number of errors made on segmenti by systemA, Ni
B is the number

of errors made on segmenti by systemB, andZ = Ni
A−Ni

B, i = 1,2, · · · ,n where
n is the number of segments. For example we can see above that the sequence of
Z values is{2,−1,−1,1}. Intuitively, if the two systems are identical, we would
expect the average difference, i.e. the average of theZ values, to be zero. If we call
the true average of the differencesmuz, we would thus like to know whethermuz =
0. Following closely the original proposal and notation of Gillick and Cox (1989),
we can estimate the true average from our limited sample as ˆµz =

∑n
i=1 Zi/n.

The estimate of the variance of theZi ’s is:

σ2
z =

1
n−1

n∑

i=1

(Zi−µz)
2(9.45)

Let

W =
µ̂z

σz/
√

n
(9.46)

For a large enoughn (> 50) W will approximately have a normal distribution with
unit variance. The null hypothesis isH0 : µz = 0, and it can thus be rejected if
2∗P(Z ≥ |w|) ≤ 0.05 (two-tailed) orP(Z ≥ |w|) ≤ 0.05 (one-tailed). whereZ is
standard normal andw is the realized valueW; these probabilities can be looked
up in the standard tables of the normal distribution.

Could we improve on word error rate as a metric? It would be nice, for
example, to have something which didn’t give equal weight toevery word, perhaps
valuing content words likeTuesdaymore than function words likea or of. While
researchers generally agree that this would be a good idea, it has proved difficult
to agree on a metric that works in every application of ASR. For dialogue systems,
however, where the desired semantic output is more clear, a metric calledconcept
error ratehas proved extremely useful, and will be discussed in Ch. 23 on page??.
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9.9 ADVANCED SEARCH ALGORITHMS

There are two main limitations of the Viterbi decoder. First, the Viterbi decoder
does not actually compute the sequence of words which is mostprobable given
the input acoustics. Instead, it computes an approximationto this: the sequence of
states(i.e., phonesor subphones) which is most probable given the input. More
formally, recall that the true likelihood of an observationsequenceO is computed
by the Forward algorithm by summing over all possible paths:

P(O|W) =
∑

S∈ST
1

P(O,S|W)(9.47)

The Viterbi algorithm only approximates this sum by using the probability of the
best path:

P(O|W)≈max
S∈ST

1

P(O,S|W)(9.48)

It turns out that thisViterbi approximation is not too bad, since the mostVITERBI
APPROXIMATION

probable sequence of phones usually turns out to correspondto the most probable
sequence of words. But not always. Consider a speech recognition system whose
lexicon has multiple pronunciations for each word. Supposethe correct word se-
quence includes a word with very many pronunciations. Sincethe probabilities
leaving the start arc of each word must sum to 1.0, each of these pronunciation-
paths through this multiple-pronunciation HMM word model will have a smaller
probability than the path through a word with only a single pronunciation path.
Thus because the Viterbi decoder can only follow one of thesepronunciation paths,
it may ignore this word in favor of an incorrect word with onlyone pronunciation
path. In essence, the Viterbi approximation penalizes words with many pronuncia-
tions.

A second problem with the Viterbi decoder is that it is impossible or expen-
sive for it to take advantage of many useful knowledge sources. For example the
Viterbi algorithm as we have defined it cannot take complete advantage of any lan-
guage model more complex than a bigram grammar. This is because of the fact
mentioned earlier that a trigram grammar, for example, violates thedynamic pro-
gramming invariant . Recall that this invariant is the simplifying (but incorrect)
assumption that if the ultimate best path for the entire observation sequence hap-
pens to go through a stateqi , that this best path must include the best path up to
and including stateqi . Since a trigram grammar allows the probability of a word to
be based on the two previous words, it is possible that the best trigram-probability
path for the sentence may go through a word but not include thebest path to that
word. Such a situation could occur if a particular wordwx has a high trigram
probability givenwy,wz, but that conversely the best path towy didn’t includewz
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(i.e.,P(wy|wq,wz) was low for allq). Advanced probabilistic LMs like SCFGs also
violate the same dynamic programming assumptions.

There are two solutions to these problems with Viterbi decoding. The most
common is to modify the Viterbi decoder to return multiple potential utterances,
instead of just the single best, and then use other high-level language model or
pronunciation-modeling algorithms to re-rank these multiple outputs (?; Schwartz
and Austin, 1991; ?; Murveit et al., 1993).

The second solution is to employ a completely different decoding algorithm,
such as thestack decoder, or A∗ decoder (Jelinek, 1969; Jelinek et al., 1975). ThisSTACK DECODER

A
∗ is an example of theA∗ searchdeveloped in artificial intelligence, although stack

A
∗

SEARCH decoding actually came from the information theory literature and the link with AI
best-first search was noticed only later (Jelinek, 1976).

9.9.1 Multipass Decoding:N-best lists and lattices

In multiple-pass decodingwe break up the decoding process into two stages. In
the first stage we use fast, efficient knowledge sources or algorithms to perform a
non-optimal search. So for example we might use an unsophisticated but time-and-
space efficient language model like a bigram, or use simplified acoustic models. In
the second decoding pass we can apply more sophisticated butslower decoding
algorithms on a reduced search space. The interface betweenthese passes is an
N-best list or word lattice.

The simplest algorithm for multipass decoding is to modify the Viterbi al-
gorithm to return theN-bestsentences (word sequences) for a given speech input.N­BEST

Suppose for example a bigram grammar is used with such anN-best-Viterbi al-
gorithm to return the 1000 most highly-probable sentences,each with their AM
likelihood and LM prior score. This 1000-best list can now bepassed to a more
sophisticated language model like a trigram grammar. This new LM is used to
replace the bigram LM score of each hypothesized sentence with a new trigram
LM probability. These priors can be combined with the acoustic likelihood of each
sentence to generate a new posterior probability for each sentence. Sentences are
thus rescoredand re-ranked using this more sophisticated probability. Fig. 9.27RESCORED

shows an intuition for this algorithm.
There are a number of algorithms for augmenting the Viterbi algorithm to

generateN-best hypotheses. It turns out that there is no polynomial-time admis-
sible algorithm for finding theN most likely hypotheses (?). There are however,
a number of approximate (non-admissible) algorithms; we will introduce just one
of them, the “ExactN-best” algorithm of Schwartz and Chow (1990). In Exact
N-best, instead of each state maintaining a single path/backtrace, we maintain up
to N different paths for each state. But we’d like to insure that these paths corre-
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If music be the 
    food of love...

If music be the 
    food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple 
Knowledge
Source

speech
input Rescoring

Figure 9.27 The use ofN-best decoding as part of a two-stage decoding model.
Efficient but unsophisticated knowledge sources are used toreturn theN-best utter-
ances. This significantly reduces the search space for the second pass models, which
are thus free to be very sophisticated but slow.

spond to different word paths; we don’t want to waste ourN paths on different state
sequences that map to the same words. To do this, we keep for each path theword
history, the entire sequence of words up to the current word/state. If two paths
with the same word history come to a state at the same time, we merge the paths
and sum the path probabilities. To keep theN best word sequences, the resulting
algorithm requiresO(N) times the normal Viterbi time.

AM LM
Rank Path logprob logprob
1. it’s an area that’s naturally sort of mysterious -7193.53 -20.25
2. that’s an area that’s naturally sort of mysterious -7192.28 -21.11
3. it’s an area that’s not really sort of mysterious -7221.68 -18.91
4. that scenario that’s naturally sort of mysterious -7189.19 -22.08
5. there’s an area that’s naturally sort of mysterious -7198.35 -21.34
6. that’s an area that’s not really sort of mysterious -7220.44 -19.77
7. the scenario that’s naturally sort of mysterious -7205.42 -21.50
8. so it’s an area that’s naturally sort of mysterious -7195.92 -21.71
9. that scenario that’s not really sort of mysterious -7217.34 -20.70
10. there’s an area that’s not really sort of mysterious -7226.51 -20.01

Figure 9.28 An example 10-Best list from the Broadcast News corpus, produced
by the CU-HTK BN system (thanks to Phil Woodland). Logprobs use log10; the
language model scale factor (LMSF) is 15.

The result of any of these algorithms is anN-best list like the one shown
in Fig. 9.28. In this case the correct hypothesis is the first one, but of course the
reason to useN-best lists is that isn’t always the case. Each sentence in anN-
best list is also annotated with an acoustic model probability and a language model
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probability. This allows a second-stage knowledge source to replace one of those
two probabilities with an improved estimate.

One problem with anN-best list is that whenN is large, listing all the sen-
tences is extremely inefficient. Another problem is thatN-best lists don’t give quite
as much information as we might want for a second-pass decoder. For example,
we might want distinct acoustic model information for each word hypothesis so
that we can reapply a new acoustic model for the word. Or we might want to have
available different start and end times of each word so that we can apply a new
duration model.

For this reason, the output of a first-pass decoder is usuallya more sophisti-
cated representation called aword lattice (Murveit et al., 1993; Aubert and Ney,WORD LATTICE

1995). A word lattice is a directed graph that efficiently represents much more
information about possible word sequences. In some systems, nodes in the graph
are words and arcs are transitions between words. In others,arcs represent word
hypotheses and nodes are points in time. Let’s use this latter model, and so each
arc represents lots of information about the word hypothesis, including the start
and end time, the acoustic model and language model probabilities, the sequence
of phones (the pronunciation of the word), or even the phone durations. Fig. 9.29
shows a sample lattice corresponding to theN-best list in Fig. 9.28. Note that
the lattices contains many distinct links (records) for thesame word, each with
a slightly different starting or ending time. Such latticesare not produced from
N-best lists; instead, a lattice is produced during first-pass decoding by including
some of the word hypotheses which were active (in the beam) ateach time-step.
Since the acoustic and language models are context-dependent, distinct links need
to be created for each relevant context, resulting in a largenumber of links with the
same word but different times and contexts.N-best lists like Fig. 9.28 can also be
produced by first building a lattice like Fig. 9.29 and then tracing through the paths
to produceN word strings.

The fact that each word hypothesis in a lattice is augmented separately with
its acoustic model likelihood and language model probability allows us to rescore
any path through the lattice, using either a more sophisticated language model or a
more sophisticated acoustic model. As withN-best lists, the goal of this rescoring
is to replace the1-best utterancewith a different utterance that perhaps had a
lower score on the first decoding pass. For this second-pass knowledge source to
get perfect word error rate, the actual correct sentence would have to be in the
lattice orN-best list. If the correct sentence isn’t there, the rescoring knowledge
source can’t find it. Thus it is important when working with a lattice orN-best list
to consider the baselinelattice error rate (Woodland et al., 1995; Ortmanns et al.,LATTICE ERROR

RATE

1997): the lower bound word error rate from the lattice. The lattice error rate is
the word error rate we get if we chose the lattice path (the sentence) that has the
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Figure 9.29 Word lattice corresponding to theN-best list in Fig. 9.28. The arcs
beneath each word show the different start and end times for each word hypothesis in
the lattice; for most of these we’ve shown schematically howeach word hypothesis
must start at the end of a previous hypothesis. Not shown in this figure are the acoustic
and language model probabilities that decorate each arc.

lowest word error rate. Because it relies on perfect knowledge of which path to
pick, we call this anoracle error rate, since we need some oracle to tell us withORACLE

sentence/path to pick.
Another important lattice concept is thelattice density, which is the numberLATTICE DENSITY

of edges in a lattice divided by the number of words in the reference transcript.
As we saw schematically in Fig. 9.29, real lattices are oftenextremely dense, with
many copies of individual word hypotheses at slightly different start and end times.
Because of this density, lattices are often pruned (?, ?).

Besides pruning, lattices are often simplified into a different, more schematic
kind of lattice that is sometimes called aword graph or finite state machine,WORD GRAPH

although often it’s still just referred to as a word lattice.In these word graphs, the
timing information is removed and multiple overlapping copies of the same word
are merged. The timing of the words is left implicit in the structure of the graph.
In addition, the acoustic model likelihood information is removed, leaving only the
language model probabilities. The resulting graph is a weighted FSA, which is a
natural extension of anN-gram language model; the word graph corresponding to
Fig. 9.29 is shown in Fig. 9.30. This word graph can in fact be used as the language
model for another decoding pass. Since such a wordgraph language model vastly
restricts the search space, it can make it possible to use complicated acoustic model
which is too slow to use in first-pass decoding.
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Figure 9.30 Word graph corresponding to theN-best list in Fig. 9.28. Each word
hypothesis in the lattice also has language model probabilities (not shown in this
figure).

A final type of lattice is used when we need to represent the posterior prob-
ability of individual words in a lattice. It turns out that inspeech recognition, we
almost never see the true posterior probability of anything, despite the fact that the
goal of speech recognition is to compute the sentence with the maximum a posteri-
ori probability. This is because in the fundamental equation of speech recognition
we ignore the denominator in our maximization:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L

P(O|W)P(W)(9.49)

The product of the likelihood and the prior isnot the posterior probability of
the utterance. Why does it matter that we don’t have a true probability? The reason
is that without having true probability, we can choose the best hypothesis, but we
can’t know how good it is. Perhaps the best hypothesis is still really bad, and we
need to ask the user to repeat themselves. If we had the posterior probability of
a word it could be used as a confidence metric, since the posterior is an absolute
rather than relative measure. We’ll return to the use of confidence in Ch. 23.

In order to compute the posterior probability of a word, we’ll need to nor-
malize over all the different word hypotheses available at aparticular point in the
utterances. At each point we’ll need to know which words are competing or con-
fusable. The lattices that show these sequences of word confusions are calledcon-
fusion networks, meshes, sausages, or pinched lattices. A confusion networkCONFUSION

NETWORKS

MESHES

SAUSAGES

PINCHED LATTICES

consists of a sequence of word positions. At each position isa set of mutually
exclusive word hypothesis. The network represents the set of sentences than be
created by choosing one word from each position.

Note that unlike lattices or word graphs, the process of constructing a con-
fusion network actually adds paths that were not in the original lattice. Confusion
networks have other uses besides computing confidence. Theywere originally pro-
posed for use in minimizing word error rate, by focusing on maximizing improving
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Figure 9.31 Confusion network corresponding to the word lattice in Fig.9.29.
Each word is associated with a posterior probability. Note that some of the words
from the lattice have been pruned away. (Probabilities computed by the SRI-LM
toolkit).

the word posterior probability rather than the sentence likelihood. Recently con-
fusion networks have been used to train discriminative classifiers that distinguish
between words.

Roughly speaking, confusion networks are built by taking the different hy-
pothesis paths in the lattice and aligning them with each other. The posterior prob-
ability for each word is computing by first summing over all paths passing through
a word, and then normalizing by the the sum of the probabilities of all compet-
ing words. For further details see Mangu et al. (2000), Evermann and Woodland
(2000), Kumar and Byrne (2002), Doumpiotis et al. (2003b).

Standard publicly available language modeling toolkits like SRI-LM (Stol-
cke, 2002) (http://www.speech.sri.com/projects/srilm/) and the
HTK language modeling toolkit (Young et al., 2005) (http://htk.eng.cam.
ac.uk/) can be used to generate and manipulate lattices,N-best lists, and confu-
sion networks.

There are many other kinds of multiple-stage search, such asthe forward-
backward search algorithm (not to be confused with theforward-backward al-FORWARD­

BACKWARD

gorithm for HMM parameter setting) (Austin et al., 1991) which performs a simple
forward search followed by a detailed backward (i.e., time-reversed) search.

9.9.2 A∗ Decoding

Recall that the Viterbi algorithm approximated the forwardcomputation, comput-
ing the likelihood of the single best (MAX) path through the HMM, while the for-
ward algorithm computes the likelihood of the total (SUM) ofall the paths through
the HMM. The A∗ decoding algorithm allows us to use the complete forward prob-
ability, avoiding the Viterbi approximation. A∗ decoding also allows us to use any
arbitrary language model.

The A∗ decoding algorithm is a best-first search of the tree that implicitly de-
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fines the sequence of allowable words in a language. Considerthe tree in Fig. 9.32,
rooted in the START node on the left. Each leaf of this tree defines one sentence of
the language; the one formed by concatenating all the words along the path from
START to the leaf. We don’t represent this tree explicitly, but the stack decoding
algorithm uses the tree implicitly as a way to structure the decoding search.

Figure 9.32 A visual representation of the implicit lattice of allowable word se-
quences that defines a language. The set of sentences of a language is far too large to
represent explicitly, but the lattice gives a metaphor for exploring prefixes.

The algorithm performs a search from the root of the tree toward the leaves,
looking for the highest probability path, and hence the highest probability sentence.
As we proceed from root toward the leaves, each branch leaving a given word node
represent a word which may follow the current word. Each of these branches has
a probability, which expresses the conditional probability of this next word given
the part of the sentence we’ve seen so far. In addition, we will use the forward
algorithm to assign each word a likelihood of producing somepart of the observed
acoustic data. The A∗ decoder must thus find the path (word sequence) from the
root to a leaf which has the highest probability, where a pathprobability is defined
as the product of its language model probability (prior) andits acoustic match to
the data (likelihood). It does this by keeping apriority queue of partial paths (i.e.,PRIORITY QUEUE

prefixes of sentences, each annotated with a score). In a priority queue each ele-
ment has a score, and thepopoperation returns the element with the highest score.
The A∗ decoding algorithm iteratively chooses the best prefix-so-far, computes all
the possible next words for that prefix, and adds these extended sentences to the
queue. Fig. 9.33 shows the complete algorithm.

Let’s consider a stylized example of an A∗ decoder working on a waveform
for which the correct transcription isIf music be the food of love. Fig. 9.34 shows
the search space after the decoder has examined paths of length one from the root.
A fast match is used to select the likely next words. A fast match is one of aclass ofFAST MATCH

heuristics designed to efficiently winnow down the number ofpossible following
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function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentencesoff the queue.
If (s is marked end-of-sentence (EOS) ) outputsand terminate.
Get list of candidate next words by doing fast matches.
For each candidate next wordw:

Create a new candidate sentences+w.
Use forward algorithm to compute acoustic likelihoodL of s+w
Compute language model probabilityP of extended sentences+w
Compute “score” fors+w (a function ofL, P, and ???)
if (end-of-sentence) set EOS flag fors+w.
Inserts+w into the queue together with its score and EOS flag

Figure 9.33 The A∗ decoding algorithm (modified from Paul (1991) and Jelinek
(1997)). The evaluation function that is used to compute thescore for a sentence is
not completely defined here; possibly evaluation functionsare discussed below.

words, often by computing some approximation to the forwardprobability (see
below for further discussion of fast matching).

At this point in our example, we’ve done the fast match, selected a subset of
the possible next words, and assigned each of them a score. The wordAlice has
the highest score. We haven’t yet said exactly how the scoring works.

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P( "if" | START )

P(acoustic | "if" ) =
   forward probability

Figure 9.34 The beginning of the search for the sentenceIf music be the food of
love. At this early stageAlice is the most likely hypothesis. (It has a higher score
than the other hypotheses.)

Fig. 9.35a show the next stage in the search. We have expandedthe Alice
node. This means that theAlice node is no longer on the queue, but its children
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are. Note that now the node labeledif actually has a higher score than any of the
children ofAlice. Fig. 9.35b shows the state of the search after expanding theif
node, removing it, and addingif music, if muscle, andif messyon to the queue.

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if" ) =
   forward probability

P( "if" |START)

if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
   forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
   forward probability

muscle

messy

(a) (b)

Figure 9.35 The next steps of the search for the sentenceIf music be the food of
love. In (a) we’ve now expanded theAlice node and added three extensions which
have a relatively high score; the highest-scoring node isSTART if, which is not along
theSTART Alicepath at all. In (b) we’ve expanded theif node. The hypothesisSTART
if musicthen has the highest score.

We clearly want the scoring criterion for a hypothesis to be related to its
probability. Indeed it might seem that the score for a stringof wordswi

1 given an
acoustic stringy j

1 should be the product of the prior and the likelihood:

P(y j
1|wi

1)P(wi
1)

Alas, the score cannot be this probability because the probability will be
much smaller for a longer path than a shorter one. This is due to a simple fact
about probabilities and substrings; any prefix of a string must have a higher prob-
ability than the string itself (e.g., P(START the . . . ) will be greater than P(START
the book)). Thus if we used probability as the score, the A∗ decoding algorithm
would get stuck on the single-word hypotheses.

Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984)
f ∗(p), given a partial pathp:

f ∗(p) = g(p)+h∗(p)

f ∗(p) is theestimatedscore of the best complete path (complete sentence)
which starts with the partial pathp. In other words, it is an estimate of how well
this path would do if we let it continue through the sentence.The A∗ algorithm
builds this estimate from two components:
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• g(p) is the score from the beginning of utterance to the end of the partial path
p. This g function can be nicely estimated by the probability ofp given the
acoustics so far (i.e., asP(O|W)P(W) for the word stringW constitutingp).

• h∗(p) is an estimate of the best scoring extension of the partial path to the
end of the utterance.

Coming up with a good estimate ofh∗ is an unsolved and interesting problem.
A very simple approach is to chose anh∗ estimate which correlates with the number
of words remaining in the sentence (Paul, 1991). Slightly smarter is to estimate
the expected likelihood per frame for the remaining frames,and multiple this by
the estimate of the remaining time. This expected likelihood can be computed by
averaging the likelihood per frame in the training set. See Jelinek (1997) for further
discussion.

Tree Structured Lexicons

We mentioned above that both the A∗ and various other two-stage decoding algo-
rithms require the use of afast match for quickly finding which words in the lex-
icon are likely candidates for matching some portion of the acoustic input. Many
fast match algorithms are based on the use of atree-structured lexicon, whichTREE­STRUCTURED

LEXICON

stores the pronunciations of all the words in such a way that the computation of the
forward probability can be shared for words which start withthe same sequence
of phones. The tree-structured lexicon was first suggested by Klovstad and Mond-
shein (1975); fast match algorithms which make use of it include Gupta et al.
(1988), Bahl et al. (1992) in the context of A∗ decoding, and Ney et al. (1992) and
Nguyen and Schwartz (1999) in the context of Viterbi decoding. Fig. 9.36 shows an
example of a tree-structured lexicon from the Sphinx-II recognizer (Ravishankar,
1996). Each tree root represents the first phone of all words beginning with that
context dependent phone (phone context may or may not be preserved across word
boundaries), and each leaf is associated with a word.

9.10 ADVANCED ACOUSTICMODELS: TRIPHONES

In our discussion in Sec. 9.4 of how the HMM architecture is applied to ASR, we
showed how an HMM could be created for each phone, with its three emitting
states corresponding to subphones at the beginning, middle, and end of the phone.
We thus represent each subphone (“beginning of [eh]”, “beginning of [t]”, “middle
of [ae]”) with its own GMM.

There is a problem with using a fixed GMM for a subphone like ”beginning
of [eh]”. The problem is that phones vary enormously based onthe phones on ei-
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AX(#,B)
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EY(B,K)

EY(B,KD)

AW(B,N)

AW(B,TD)

AH(B,V)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,IX)

N(AW,DD)

TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)
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DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

Figure 9.36 A tree-structured lexicon from the Sphinx-II recognizer (after Ravis-
hankar (1996)). Each node corresponds to a particular triphone in a slightly modified
version of the ARPAbet; thus EY(B,KD) means the phone EY preceded by a B and
followed by the closure of a K.

ther side. This is because the movement of the articulators (tongue, lips, velum)
during speech production is continuous and is subject to physical constraints like
momentum. Thus an articulator may start moving during one phone to get into
place in time for the next phone. In Ch. 7 we defined the wordcoarticulation asCOARTICULATION

the movement of articulators to anticipate the next sound, or perseverating move-
ment from the last sound. Fig. 9.37 shows coarticulation dueto neighboring phone
contexts for the vowel [eh].

In order to model the marked variation that a phone exhibits in different con-
texts, most LVCSR systems replace the idea of a context-independent (CI phone)CI PHONE

HMM with a context-dependent orCD phones. The most common kind of context-CD PHONES

dependent model is atriphone HMM (Schwartz et al., 1985; Deng et al., 1990).TRIPHONE

A triphone model represents a phone in a particular left and right context. For ex-
ample the triphone[y-eh+l] means “[eh] preceded by [y] and followed by [l]”. In
general, [a-b+c] will mean “[b] preceded by [a] and followedby [c]”. In situations
where we don’t have a full triphone context, we’ll use [a-b] to mean “[b] preceded
by [a]” and [b+c] to mean “[b] followed by [c]”.

Context-dependent phones capture an important source of variation, and are
a key part of modern ASR systems. But unbridled context-dependency also intro-
duces the same problem we saw in language modeling: trainingdata sparsity. The
more complex the model we try to train, the less likely we are to have seen enough
observations of each phone-type to train on. For a phoneset with 50 phones, in
principle we would need 503 or 125,000 triphones. In practice not every sequence
of three phones is possible (English doesn’t seem to allow triphone sequences like
[ae-eh+ow] or [m-j+t]). Young et al. (1994) found that 55,000 triphones are needed
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Figure 9.37 The vowel [eh] in three different triphone contexts, in the wordswed,
yell, andBen. Notice the marked differences in the second formant (F2) atthe begin-
ning and end of the [eh] in all three cases.

in the 20K Wall Street Journal task. But they found that only 18,500 of these tri-
phones, i.e. less than half, actually occurred in the SI84 section of the WSJ training
data.

Because of the problem of data sparsity, we must reduce the number of tri-
phone parameters that we need to train. The most common way todo this is by
clustering some of the contexts together andtying subphones whose contexts fallTYING

into the same cluster (Young and Woodland, 1994). For example, the beginning of
a phone with an [n] on its left may look much like the beginningof a phone with an
[m] on its left. We can therefore tie together the first (beginning) subphone of, say,
the [m-eh+d] and [n-eh+d] triphones. Tying two states together means that they
share the same Gaussians. So we only train a single Gaussian model for the first
subphone of the [m-eh+d] and [n-eh+d] triphones. Similarly, it turns out that the
left context phones [r] and [w] produce a similar affect on the initial subphone of
following phones.

Fig. 9.38 shows, for example the vowel [iy] preceded by the consonants [w],
[r], [m], and [n]. Notice that the beginning of [iy] has a similar rise in F2 after [w]
and [r]. And notice the similarity of the beginning of [m] and[n]; as Ch. 7 noted,
the position of nasal formants vary strongly across speakers, but this speaker (the
first author) has a nasal formant (N2) around 1000 Hz.

Fig. 9.39 shows an example of the kind of triphone tying learned by the clus-
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[w iy] [r iy] [m iy] [n iy]

Figure 9.38 The wordswe, re, me, andknee. The glides [w] and [r] have similar
effects on the beginning of the vowel [iy], as do the two nasals [n] and [m].

tering algorithm. Each mixture Gaussian model is shared by the subphone states
of various triphone HMMs.

Figure 9.39 PLACEHOLDER FIGURE. Four triphones showing the result of
clustering. Notice that the initial subphone of [t-iy+n] and [t-iy+ng] is tied together,
i.e. shares the same Gaussian mixture acoustic model. From Young et al. (1994).

How do we decide what contexts to cluster together? The most common
method is to use a decision tree. For each state (subphone) ofeach phone, a sepa-
rate tree is built. Fig. 9.40 shows a sample tree from the first(beginning) state of
the phone /ih/, modified from Odell (1995). We begin at the root node of the tree
with a single large cluster containing (the beginning stateof) all triphones centered
on /ih/. At each node in the tree, we split the current clusterinto two smaller clus-
ters by asking questions about the context. For example the tree in Fig. 9.40 first
splits the initial cluster into two clusters, one with nasalphone on the left, and one
without. As we descend the tree from the root, each of these clusters is progres-
sively split. The tree in Fig. 9.40 would split all beginning-state /ih/ triphones into
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5 clusters, labeled A-E in the figure.

Figure 9.40 Decision tree for choosing which triphone states (subphones) to tie
together. This particular tree will cluster state 0 (the beginning state) of the triphones
/n-ih+l/, /ng-ih+l/, /m-ih+l/, into cluster class A, and various other triphones into
classes B-E. Adapted from Odell (1995).

The questions used in the decision tree ask whether the phoneto the left or
right has a certainphonetic feature, of the type introduced in Ch. 7. Fig. 9.41
shows a few decision tree questions; note that there are separate questions for vow-
els and consonants. Real trees would have many more questions.

How are decision trees like the one in Fig. 9.40 trained? The trees are grown
top down from the root. At each iteration, the algorithm considers each possi-
ble questionq and each noden in the tree. For each such question, it considers
how the new split would impact the acoustic likelihood of thetraining data. The
algorithm computes the difference between the current acoustic likelihood of the
training data, and the new likelihood if the models were tiedbased on splitting via
questionq. The algorithm picks the noden and questionq which give the maxi-
mum likelihood. The procedure then iterates, stopping wheneach each leaf node
has some minimum threshold number of examples.

We also need to modify the embedded training algorithm we sawin Sec. 9.7
to deal with context-dependent phones and also to handle mixture Gaussians. In
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Feature Phones
Stop b d g k p t
Nasal m n ng
Fricative ch dh f jh s sh th v z zh
Liquid l r w y
Vowel aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh uw
Front Vowel ae eh ih ix iy
Central Vowel aa ah ao axr er
Back Vowel ax ow uh uw
High Vowel ih ix iy uh uw
Rounded ao ow oy uh uw w
Reduced ax axr ix
Unvoiced ch f hh k p s sh t th
Coronal ch d dh jh l n r s sh t th z zh

Figure 9.41 Sample decision tree questions on phonetic features. Modified from
Odell (1995).

both cases we use a more complex process that involvescloning and using extraCLONING

iterations of EM, as described in Young et al. (1994).
To train context-dependent models, for example, we first usethe standard

embedded training procedure to train context-independentmodels, using multiple
passes of EM and resulting in separate single-Gaussians models for each subphone
of each monophone /aa/, /ae/, etc. We thencloneeach monophone model, i.e. make
identical copies of the model with its 3 substates of Gaussians, one clone for each
potential triphone. TheA transition matrices are not cloned, but tied together for
all the triphone clones of a monophone. We then run an iteration of EM again and
retrain the triphone Gaussians. Now for each monophone we cluster all the context-
dependent triphones which using the clustering algorithm described on page 56 to
get a set of tied state clusters. One typical state is chosen as the exemplar for this
cluster and the rest are tied to it.

We use this same cloning procedure to learn Gaussian mixtures. We first use
embedded training with multiple iterations of EM to learn single-mixture Gaussian
models for each tied triphone state as described above. We then clone (split) each
state into 2 identical Gaussians, perturb the values of eachby some epsilon, and run
EM again to retrain these values. We then split each of the twomixtures, resulting
in four, perturb them, retrain. We continue until we have an appropriate number of
mixtures for the amount of observations in each state.

A full context-depending GMM triphone model is thus createdby applying
these two cloning-and-retraining procedures in series, asshown schematically in
Fig. 9.42.
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Figure 9.42 PLACEHOLDER FIGURE. From (Young et al., 1994).

9.11 ADVANCED: DISCRIMINATIVE TRAINING

The models we have presented for training the HMM parameters(the A and B
matrices) are based on maximizing the likelihood of the training data. An alterna-
tive to thismaximumum likelihood estimation (MLE ) is to focus not on fittingMAXIMUMUM

LIKELIHOOD
ESTIMATION

MLE the best model to the data, but rather ondiscriminating the best model from all
DISCRIMINATING the other models. Such training procedures include MaximumMutual Informa-

tion Estimation (MMIE) (Woodland and Povey, 2002) the use ofneural net/SVM
classifiers (Bourlard and Morgan, 1994) as well as other techniques like Minimum
Classification Error training (Chou et al., 1993; McDermottand Hazen, 2004) or
Minimum Bayes Risk estimation (Doumpiotis et al., 2003a). We summarize the
first two of these in the next two subsections.
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9.11.1 Maximum Mutual Information Estimation

In Maximum Mutual Information Estimation (MMIE), instead of maximizing the
likelihood of an observation sequence given a training wordsequence, we maxi-
mize the mutual information between the training word sequence and the obser-
vation sequence. Consider a particular observation sequence O, and a particular
HMM model Mk corresponding to word/phone sequenceWk, out of K possible
sequence models. The MLE criterion maximizes

FMLE(φ) = Pφ(O|Mk)(9.50)

By contrast, the MMIE criterion maximizes:

FMMIE (φ) =
Pφ(O|Mk)P(Mk)

∑K
i=1 Pφ(O|Mi)P(Mi)

(9.51)

To see why this is useful, consider the fundamental equationof noisy channel
speech recognition, given that we are trying to compute the posterior probability
for the HMM modelMk corresponding to word sequenceWk:

P(Mk|O) =
P(O|Mk)P(Mk)

P(O)
(9.52)

Let’s make equation (9.52) more explicit, since we never have the actual true
probabilities but only estimates of them. Thus the correct equation needs to make
it clear that each probability depends also on theA andB parameters of our trained
HMM model, which we’ll callφ:

P(Mk|O,φ) =
P(O|Mk,φ)P(Mk,φ)

P(O,φ)
(9.53)

Now once we’ve trained a model and we’re doing decoding or classification,
φ is constant. Recall that this meant that we could ignore the denominatorP(O) in
computing the following argmax:

M̂k = argmax
k∈K

P(O|Mk)P(Mk)

P(O)
= argmax

k∈K
P(O|Mk)P(Mk)(9.54)

But wecannot make this assumption in training, becauseφ is not constant;
it depends on the HMM parameters of every possible model and is different for
different observation sequencesO. Furthermore, during training we changeφ so as
to increase the numerator likelihood of (9.53),P(O|Mk,φ). But since the denomi-
nator is also conditioned onφ, we might accidentally increase the denominator as
well.

Let’s rewrite equation (9.53) to see the implications of this; first we replace
P(O,φ) by marginalizing (summing over all sequences which could have produced
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it):

P(O,φ) =
K∑

k=1

P(O,Mk|φ) =
K∑

k=1

P(O|Mk,φ)P(Mk|φ)(9.55)

If we plug this into equation (9.53), we get:

P(Mk|O,φ) =
P(O|Mk,φ)P(Mk,φ)

∑K
k=1P(O|Mk,φ)P(Mk|φ)

(9.56)

Now if our goal is to maximizeP(Mk|O,φ), we not only need to maximize
the numerator of (9.56), but also minimize the denominator.Notice that we can
rewrite the denominator to make it clear that it includes a term equal to the model
we are trying to maximize and a term for all other models:

P(Mk|O,φ) =
P(O|Mk,φ)P(Mk,φ)

P(O|Mk,φ)P(Mk|φ)+
∑

i 6=k P(O|Mi,φ)P(Mi |φ)
(9.57)

Thus in order to maximizeP(Mk|O,φ), we need to changeφ so that it in-
creases the probability of the correct model, while simultaneously decreasing the
probability of each of the incorrect models. Notice the close resemblance between
equation (9.56) and the MMIE criterion (9.51).

There is a variant of Baum-Welch training called Extended Baum-Welch that
can be used to maximize (9.51) instead of (9.50). But it turnsout that computing
the full denominator is computationally extremely expensive, because it requires
running a full recognition pass on all the training data. Recall that in normal EM,
we don’t need to run decoding on the training data, since we are only trying to max-
imize the likelihood of thecorrectword sequence; in MMIE, we need to compute
the probabilities ofall possible word sequences. Decoding is very time-consuming
because of complex language models. Thus in practice MMIE algorithms estimate
the denominator from the set of paths in a word lattice, as an approximation to the
full set of possible paths. MMIE was first proposed in (?), butpractical implemen-
tations that actually reduced word error rate came much later; see Woodland and
Povey (2002) for details.

9.11.2 Acoustic Models based on Posterior Classifiers

Another way to think about discriminative training is to choose a classifier at the
frame level which is discriminant. Thus while the Gaussian classifier is by far
the most commonly used acoustic likelihood classifier, it ispossible to instead use
classifiers that are naturally discriminative or posteriorestimators, such as neural
networks or SVMs (support vector machines).

The posterior classifier (neural net or SVM) is generally integrated with an
HMM architecture, is often called aHMM-SVM or HMM-MLP hybrid approach
(Bourlard and Morgan, 1994).
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The SVM or MLP approaches, like the Gaussian model, estimatethe proba-
bility of a cepstral feature vector at a single timet. Unlike the Gaussian model, the
posterior approaches often uses a larger window of acousticinformation, relying
on cepstral feature vectors from neighboring time periods as well. Thus the input to
a typical acoustic MLP or SVM might be feature vectors for thecurrent frame plus
the four previous and four following frame, i.e. a total of 9 cepstral feature vectors
instead of the single one that the Gaussian model uses. Because they have such a
wide context, SVM or MLP models generally use phones rather than subphones or
triphones, and compute a posterior for each phone.

The SVM or MLP classifiers are thus computing the posterior probability
of a statej given the observation vectors, i.e.P(q j |ot). (also conditioned on the
context, but let’s ignore that for the moment). But the observation likelihood we
need for the HMM,b j(ot), is P(ot |q j). The Bayes rule can help us see how to
compute one from the other. The net is computing:

p(q j |ot) =
P(ot |q j)p(q j )

p(ot)
(9.58)

We can rearrange the terms as follows:

p(ot |q j)

p(ot)
=

P(q j |ot)

p(q j)
(9.59)

The two terms on the right-hand side of (9.59) can be directlycomputed from
the posterior classifier; the numerator is the output of the SVM or MLP, and the
denominator is the total probability of a given state, summing over all observa-
tions (i.e., the sum over allt of ξ j(t)). Thus although we cannot directly compute

P(ot |q j), we canuse (9.59) to computep(ot |qj )
p(ot)

, which is known as ascaled like-
lihood (the likelihood divided by the probability of the observation). In fact, theSCALED LIKELIHOOD

scaled likelihood is just as good as the regular likelihood,since the probability of
the observationp(ot) is a constant during recognition and doesn’t hurt us to have
in the equation.

The supervised training algorithms for training a SVM or MLPposterior
phone classifiers require that we know the correct phone label q j for each obser-
vation ot . We can use the sameembedded training algorithm that we saw for
Gaussians; we start with some initial version of our classifier and a word transcript
for the training sentences. We run a forced alignment of the training data, produc-
ing a phone string, and now we retrain the classifier, and iterate.
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9.12 ADVANCED: MODELING VARIATION

As we noted at the beginning of this chapter, variation is oneof the largest ob-
stacles to successful speech recognition. We mentioned variation due to speaker
differences from vocal characteristics or dialect, due to genre (such as spontaneous
versus read speech), and due to the environment (such as noisy versus quiet envi-
ronments). Handling this kind of variation is a major subject of modern research.

9.12.1 Environmental Variation and Noise

Environmental variation has received the most attention from the speech literature,
and a number of techniques have been suggested for dealing with environmen-
tal noise. Spectral subtraction, for example, is used to combatadditive noise;SPECTRAL

SUBTRACTION

ADDITIVE NOISE noise from external sound sources like engines or wind or fridges that is relatively
constant and can be model as a noise signal added to the speechwaveform. In
spectral subtraction, we estimate the average noise duringnon-speech regions and
then subtract this average value from the speech signal. Interestingly, speakers of-
ten compensate for high background noise levels by increasing their amplitude, F0,
and formant frequencies. This change in speech production due to noise is called
the Lombard effect, named for Etienne Lombard who first described it in 1911LOMBARD EFFECT

(Junqua, 1993).
Other noise robustness techniques likecepstral mean normalization areCEPSTRAL MEAN

NORMALIZATION

used to deal withconvolutional noise, noise introduced by channel characteris-CONVOLUTIONAL
NOISE

tics like different microphones. Here we compute the average of the cepstrum over
time and and subtract it from each frame; intuitively the average cepstrum corre-
sponds to the spectral characteristics of the microphone and the room acoustics
(?).

Finally, some kinds of short non-verbal sounds like coughs,loud breathing,
and throat clearing, or environmental sounds like beeps, telephone rings, and door
slams, can be modeled explicitly. For each of these non-verbal sounds, we create a
special phone and add to the lexicon a word consisting only ofthat phone. We can
then use normal Baum-Welch training to train these phones just by modifying the
training data transcripts to include labels for these new non-verbal ’words’ (Ward,
1989).

9.12.2 Speaker and Dialect Adaptation: Variation due to speaker dif-
ferences

Speech recognition systems are generally designed to be speaker-independent, since
it’s rarely practical to collect sufficient training data tobuild a system for a single
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user. But in cases where we have enough data to build speaker-dependent systems,
they function better than speaker-independent systems. This only makes sense;
we can reduce the variability and increase the precision of our models if we are
guaranteed that the test data will look like the training data.

While it is rare to have enough data to train on an individual speaker, we do
have enough data to train separate models for two important groups of speakers:
men versus women. Since women and men have different vocal tracts and other
acoustic and phonetic characteristics, we can split the training data by gender, and
train separate acoustic models for men and for women. Then when a test sentence
comes in, we use a gender detector to decide if it is male or female, and switch to
those acoustic models. Gender detectors can be built out of binary GMM classifiers
based on cepstral features. Suchgender-dependent acoustic modelingis used in
most LVCSR systems.

Although we rarely have enough data to train on a specific speaker, there are
techniques that work quite well at adapting the acoustic models to a new speaker
very quickly. For example theMLLR (Maximum Likelihood Linear Regres-MLLR

sion) technique (Leggetter and Woodland, 1995) is used to adapt Gaussian acous-
tic models to a small amount of data from a new speaker. The idea is to use the
small amount of data to train a linear transform to warp the means of the Gaus-
sians. MLLR and other such techniques forspeaker adaptationhave been one ofSPEAKER

ADAPTATION

the largest sources of improvement in ASR performance in recent years.
The MLLR algorithm begins with a trained acoustic model and asmall adap-

tation dataset from a new speaker. The adaptation set can be as small as 3 sentences
or 10 seconds of speech. The idea is to learn a linear transform matrix (W) and a
bias vector (ω) to transform the means of the acoustic model Gaussians. If the old
mean of a Gaussian isµ, the equation for the new mean ˆµ is thus:

µ̂= Wµ+ ω(9.60)

In the simplest case, we can learn a single global transform and apply it to each
Gaussian models. The resulting equation for the acoustic likelihood is thus only
very slightly modified:

b j(ot) =
1

√

2π|Σ j|
exp

(

−1
2
(ot − (Wµj + ω))TΣ−1

j (ot − (Wµj + ω))

)

(9.61)

The transform is learned by using linear regression to maximize the likeli-
hood of the adaptation dataset. We first run forward-backward alignment on the
adaptation set to compute the state occupation probabilities ξ j(t). We then com-
puteW by solving a system of simultaneous equations involvingξ j(t). If enough
data is available, it’s also possible to learn a larger number of transforms.

MLLR is an example of thelinear transform approach to speaker adapta-
tion, one of the three major classes of speaker adaptation methods; the other two
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areMAP adaptation andSpeaker Clustering/Speaker Spaceapproaches. See
Woodland (2001) for a comprehensive survey of speaker adaptation which covers
all three families.

MLLR and other speaker adaptation algorithms can also be used to address
another large source of error in LVCSR, the problem of foreign or dialect accented
speakers. Word error rates go up when the test set speaker speaks a dialect or accent
(such as Spanish-accented English or southern accented Mandarin Chinese) that
differs from the (usually standard) training set, Here we can take an adaptation set
of a few sentences from say 10 speakers, and adapt to them as a group, creating an
MLLR transform that addresses whatever characteristics are present in the dialect
or accent (Huang et al., 2000; Tomokiyo and Waibel, 2001; Wang et al., 2003;
Zheng et al., 2005).

Another useful speaker adaptation technique is to control for the differing vo-
cal tract lengths of speakers by usingVTLN (Vocal Tract Length Normalization )VTLN

(?).

9.12.3 Pronunciation Modeling: Variation due to Genre

We said at the beginning of the chapter that recognizing conversational speech is
harder for ASR systems than recognizing read speech. What are the causes of this
difference? Is it the difference in vocabulary? Grammar? Something about the
speaker themselves? Perhaps it’s a fact about the microphones or telephone used
in the experiment.

None of these seems to be the cause. In a well-known experiment, Weintraub
et al. (1996) compared ASR performance on natural conversational speech versus
performance on read speech, controlling for the influence ofpossible causal fac-
tors. Pairs of subjects in the lab had spontaneous conversations on the telephone.
Weintraub et al. (1996) then hand-transcribed the conversations, and invited the
participants back into the lab to read their own transcriptsto each other over the
same phone lines as if they were dictating. Both the natural and read conversa-
tions were recorded. Now Weintraub et al. (1996) had two speech corpora from
identical transcripts; one original natural conversation, and one read speech. In
both cases the speaker, the actual words, and the microphonewere identical; the
only difference was the naturalness or fluency of the speech.They found that read
speech was much easier (WER=29%) than conversational speech (WER=53%).
Since the speakers, words, and channel were controlled for,this difference must be
somewhere in the acoustic model or pronunciation lexicon.

Saraclar et al. (2000) tested the hypothesis that this difficulty with conversa-
tional speech was due to changed pronunciations, i.e., to a mismatch between the
phone strings in the lexicon and what people actually said. Recall from Ch. 7 that
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conversational corpora like Switchboard contain many different pronunciations for
words, (such as 12 different pronunciations forbecauseand hundreds forthe). Sar-
aclar et al. (2000) showed in an oracle experiment that if a Switchboard recognizer
is told which pronunciations to use for each word, the word error rate error rate
drops from 47% to 27%.

If knowing which pronunciation to use improves accuracy, perhaps we could
improve recognition by simply adding more pronunciations for each word to the
lexicon, either as a simple list for each word, or as a more complex weighted FSA
(Fig. 9.43) (Cohen, 1989; Tajchman et al., 1995; Sproat and Riley, 1996; Wooters
and Stolcke, 1994).
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Word model with coarticulation and dialect variation:

Figure 9.43 You say [t ow m ey t ow] and I say [t ow m aa t ow]. Two sample
pronunciation networks (weighted FSAs) for the wordtomato, adapted from Russell
and Norvig (1995). The top one models sociolinguistic variation (some British or
eastern American dialects); the bottom one adds in coarticulatory effects.

Recent research shows that these sophisticated multiple-pronunciation ap-
proaches turn out not to work well. Adding extra pronunciations adds more con-
fusability; if a common pronunciation of the word “of” is thesingle vowel [ax],
it is now very confusable with the word “a”. Another problem with multiple pro-
nunciations is the use of Viterbi decoding. Recall our discussion on 42 that since
the Viterbi decoder finds the best phone string, rather than the best word string, it
biases against words with many pronunciations. Finally, using multiple pronun-
ciations to model coarticulatory affects may be unnecessary because CD phones
(triphones) are already quite good at modeling the contextual effects in phones due
to neighboring phones, like the flapping and vowel-reduction handled by Fig. 9.43
(Jurafsky et al., 2001).

Instead, most current LVCSR systems use a very small number of pronunci-
ations per word. What is commonly done is to start with a multiple pronunciation
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lexicon, where the pronunciations are found in dictionaries or are generated via
phonological rules of the type described in Ch. 7. A forced Viterbi phone alignment
is then run of the training set, using this dictionary. The result of the alignment is
a phonetic transcription of the training corpus, showing which pronunciation was
used, and the frequency of each pronunciation. We can then collapse similar pro-
nunciations (for example if two pronunciations differ onlyin a single phone sub-
stitution we chose the more frequent pronunciation). We then chose the maximum
likelihood pronunciation for each word. For frequent wordswhich have multiple
high-frequency pronunciations, some systems chose multiple pronunciations, and
annotate the dictionary with the probability of these pronunciations; the probabili-
ties are used in computing the acoustic likelihood (Cohen, 1989; Hain et al., 2001;
Hain, 2002).

Finding a better method to deal with pronunciation variation remains an un-
solved research problem. One promising avenue is to focus onnon-phonetic factors
that affect pronunciation. For example words which are highly predictable, or at
the beginning or end of intonation phrases, or are followed by disfluencies, are pro-
nounced very differently (Jurafsky et al., 1998; Fosler-Lussier and Morgan, 1999;
Bell et al., 2003). Fosler-Lussier (1999) shows an improvement in word error rate
by using these sorts of factors to predict which pronunciation to use. Another
exciting line of research in pronunciation modeling uses a dynamic Bayesian net-
work to model the complex overlap in articulators that produces phonetic reduction
(Livescu and Glass, 2004; ?).

9.13 HUMAN SPEECHRECOGNITION

Humans are of course much better at speech recognition than machines; rough
estimates are machine are about five times worse than humans on clean speech,
and the gap seems to increase with noisy speech.

Speech recognition in humans shares some features with ASR algorithms.
We mentioned above that signal processing algorithms like PLP analysis (Herman-
sky, 1990) were in fact inspired by properties of the human auditory system. In
addition, three properties of humanlexical access(the process of retrieving a wordLEXICAL ACCESS

from the mental lexicon) are also true of ASR models:frequency, parallelism, and
cue-based processing. For example, as in ASR with itsN-gram language mod-
els, human lexical access is sensitive to wordfrequency. High-frequency spoken
words are accessed faster or with less information than low-frequency words. They
are successfully recognized in noisier environments than low frequency words, or
when only parts of the words are presented (Howes, 1957; Grosjean, 1980; Tyler,
1984, inter alia). Like ASR models, human lexical access isparallel: multiple



DRAFT

Section 9.13. Human Speech Recognition 67

words are active at the same time (Marslen-Wilson and Welsh,1978; Salasoo and
Pisoni, 1985, inter alia).

Finally, human speech perception iscue based: speech input is interpreted
by integrating cues at many different levels. Human phone perception combines
acoustic cues, such as formant structure or the exact timingof voicing, (Oden and
Massaro, 1978; Miller, 1994) visual cues, such as lip movement (McGurk and
Macdonald, 1976; Massaro and Cohen, 1983; Massaro, 1998) and lexical cues such
as the identity of the word in which the phone is placed (Warren, 1970; Samuel,
1981; Connine and Clifton, 1987; Connine, 1990). For example, in what is of-
ten called thephoneme restoration effect, Warren (1970) took a speech samplePHONEME

RESTORATION
EFFECT

and replaced one phone (e.g. the [s] inlegislature) with a cough. Warren found
that subjects listening to the resulting tape typically heard the entire wordlegisla-
ture including the [s], and perceived the cough as background. Inthe McGurk
effect, (McGurk and Macdonald, 1976) showed that visual input can interfereMCGURK EFFECT

with phone perception, causing us to perceive a completely different phone. They
showed subjects a video of someone saying the syllablega in which the audio sig-
nal was dubbed instead with someone saying the syllableba. Subjects reported
hearing something likeda instead. It is definitely worth trying this out your-
self from video demos on the web; see for examplehttp://www.haskins.
yale.edu/featured/heads/mcgurk.html. Other cues in human speech
perception include semanticword association(words are accessed more quicklyWORD ASSOCIATION

if a semantically related word has been heard recently) andrepetition primingREPETITION PRIMING

(words are accessed more quickly if they themselves have just been heard). The
intuitions of both these results are incorporated into recent language models dis-
cussed in Ch. 4, such as the cache model of Kuhn and de Mori (1990), which
models repetition priming, or the trigger model of Rosenfeld (1996) and the LSA
models of Coccaro and Jurafsky (1998) and Bellegarda (1999), which model word
association. In a fascinating reminder that good ideas are never discovered only
once, Cole and Rudnicky (1983) point out that many of these insights about context
effects on word and phone processing were actually discovered by William Bagley
(1901). Bagley achieved his results, including an early version of the phoneme
restoration effect, by recording speech on Edison phonograph cylinders, modi-
fying it, and presenting it to subjects. Bagley’s results were forgotten and only
rediscovered much later.2

One difference between current ASR models and human speech recognition
is the time-course of the model. It is important for the performance of the ASR
algorithm that the the decoding search optimizes over the entire utterance. This
means that the best sentence hypothesis returned by a decoder at the end of the

2 Recall the discussion on page?? of multiple independent discovery in science.
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sentence may be very different than the current-best hypothesis, halfway into the
sentence. By contrast, there is extensive evidence that human processing ison-line:ON­LINE

people incrementally segment and utterance into words and assign it an interpreta-
tion as they hear it. For example, Marslen-Wilson (1973) studiedclose shadowers:
people who are able to shadow (repeat back) a passage as they hear it with lags as
short as 250 ms. Marslen-Wilson found that when these shadowers made errors,
they were syntactically and semantically appropriate withthe context, indicating
that word segmentation, parsing, and interpretation took place within these 250 ms.
Cole (1973) and Cole and Jakimik (1980) found similar effects in their work on the
detection of mispronunciations. These results have led psychological models of
human speech perception (such as the Cohort model (Marslen-Wilson and Welsh,
1978) and the computational TRACE model (McClelland and Elman, 1986)) to
focus on the time-course of word selection and segmentation. The TRACE model,
for example, is a connectionist interactive-activation model, based on independent
computational units organized into three levels: feature,phoneme, and word. Each
unit represents a hypothesis about its presence in the input. Units are activated in
parallel by the input, and activation flows between units; connections between units
on different levels are excitatory, while connections between units on single level
are inhibitatory. Thus the activation of a word slightly inhibits all other words.

We have focused on the similarities between human and machine speech
recognition; there are also many differences. In particular, many other cues have
been shown to play a role in human speech recognition but haveyet to be suc-
cessfully integrated into ASR. The most important class of these missing cues is
prosody. To give only one example, Cutler and Norris (1988),Cutler and Carter
(1987) note that most multisyllabic English word tokens have stress on the ini-
tial syllable, suggesting in their metrical segmentation strategy (MSS) that stress
should be used as a cue for word segmentation. Another difference is that human
lexical access exhibitsneighborhood effects(the neighborhood of a word is the set
of words which closely resemble it). Words with large frequency-weighted neigh-
borhoods are accessed slower than words with less neighbors(Luce et al., 1990).
Current models of ASR don’t general focus on this word-levelcompetition.

9.14 SUMMARY

Together with Ch. 4 and Ch. 6, this chapter introduced the fundamental algorithms
for addressing the problem ofLarge Vocabulary Continuous Speech Recogni-
tion.
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• The input to a speech recognizer is a series of acoustic waves. The wave-
form , spectrogramandspectrum are among the visualization tools used to
understand the information in the signal.

• In the first step in speech recognition, sound waves aresampled, quantized,
and converted to some sort ofspectral representation; A commonly used
spectral representation is themel cepstrumor MFCC which provides a vec-
tor of features for each frame of the input.

• GMM acoustic models are used to estimate thephonetic likelihoods (also
calledobservation likelihoods) of thesefeature vectorsfor each frame.

• Decodingor searchis the process of finding the optimal sequence of model
states which matches a sequence of input observations. (Thefact that are
two terms for this process is a hint that speech recognition is inherently inter-
disciplinary, and draws its metaphors from more than one field; decoding
comes from information theory, andsearchfrom artificial intelligence).

• We introduced two decoding algorithms: time-synchronousViterbi decoding
(which is usually implemented with pruning and can then be called beam
search) andstack or A∗ decoding. Both algorithms take as input a sequence
of cepstral feature vectors, a GMM acoustic model, and anN-gram language
model, and produce a string of words.

• Theembedded trainingparadigm is the normal method for training speech
recognizers. Given an initial lexicon with hand-built pronunciation struc-
tures, it will train the HMM transition probabilities and the HMM observa-
tion probabilities.

• Advanced acoustic models make use of context-dependenttriphones, which
are clustered.

• Acoustic models can beadapted to new speakers.

• Pronunciation variation is a source of errors in human-human speech recog-
nition, but one that is not successfully handled by current technology.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The first machine which recognized speech was probably a commercial toy named
“Radio Rex” which was sold in the 1920s. Rex was a celluloid dog that moved (via
a spring) when the spring was released by 500 Hz acoustic energy. Since 500 Hz
is roughly the first formant of the vowel in “Rex”, the dog seemed to come when
he was called (David, Jr. and Selfridge, 1962).
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By the late 1940s and early 1950s, a number of machine speech recognition
systems had been built. An early Bell Labs system could recognize any of the
10 digits from a single speaker (Davis et al., 1952). This system had 10 speaker-
dependent stored patterns, one for each digit, each of whichroughly represented the
first two vowel formants in the digit. They achieved 97–99% accuracy by choosing
the pattern which had the highest relative correlation coefficient with the input.
Fry (1959) and Denes (1959) built a phoneme recognizer at University College,
London, which recognized four vowels and nine consonants based on a similar
pattern-recognition principle. Fry and Denes’s system wasthe first to use phoneme
transition probabilities to constrain the recognizer.

The late 1960s and early 1970s produced a number of importantparadigm
shifts. First were a number of feature-extraction algorithms, include the efficient
Fast Fourier Transform (FFT) (Cooley and Tukey, 1965), the application of cep-
stral processing to speech (Oppenheim et al., 1968), and thedevelopment of LPC
for speech coding (Atal and Hanauer, 1971). Second were a number of ways of
handlingwarping; stretching or shrinking the input signal to handle differencesWARPING

in speaking rate and segment length when matching against stored patterns. The
natural algorithm for solving this problem was dynamic programming, and, as we
saw in Ch. 6, the algorithm was reinvented multiple times to address this prob-
lem. The first application to speech processing was by Vintsyuk (1968), although
his result was not picked up by other researchers, and was reinvented by Velichko
and Zagoruyko (1970) and Sakoe and Chiba (1971) (and (1984)). Soon afterward,
Itakura (1975) combined this dynamic programming idea withthe LPC coefficients
that had previously been used only for speech coding. The resulting system ex-
tracted LPC features for incoming words and used dynamic programming to match
them against stored LPC templates.

The third innovation of this period was the rise of the HMM. Hidden Markov
Models seem to have been applied to speech independently at two laboratories
around 1972. One application arose from the work of statisticians, in particular
Baum and colleagues at the Institute for Defense Analyses inPrinceton on HMMs
and their application to various prediction problems (Baumand Petrie, 1966; Baum
and Eagon, 1967). James Baker learned of this work and applied the algorithm to
speech processing (Baker, 1975) during his graduate work atCMU. Independently,
Frederick Jelinek, Robert Mercer, and Lalit Bahl (drawing from their research in
information-theoretical models influenced by the work of Shannon (1948)) applied
HMMs to speech at the IBM Thomas J. Watson Research Center (Jelinek et al.,
1975). IBM’s and Baker’s systems were very similar, particularly in their use of
the Bayesian framework described in this chapter. One earlydifference was the
decoding algorithm; Baker’s DRAGON system used Viterbi (dynamic program-
ming) decoding, while the IBM system applied Jelinek’s stack decoding algorithm
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(Jelinek, 1969). Baker then joined the IBM group for a brief time before founding
the speech-recognition company Dragon Systems. The HMM approach to speech
recognition would turn out to completely dominate the field by the end of the cen-
tury; indeed the IBM lab was the driving force in extending statistical models to
natural language processing as well, including the development of class-basedN-
grams, HMM-based part-of-speech tagging, statistical machine translation, and the
use of entropy/perplexity as an evaluation metric.

The use of the HMM slowly spread through the speech community. One
cause was a number of research and development programs sponsored by the Ad-
vanced Research Projects Agency of the U.S. Department of Defense (ARPA). The
first five-year program starting in 1971, and is reviewed in Klatt (1977). The goal of
this first program was to build speech understanding systemsbased on a few speak-
ers, a constrained grammar and lexicon (1000 words), and less than 10% semantic
error rate. Four systems were funded and compared against each other: the Sys-
tem Development Corporation (SDC) system, Bolt, Beranek & Newman (BBN)’s
HWIM system, Carnegie-Mellon University’s Hearsay-II system, and Carnegie-
Mellon’s Harpy system (Lowerre, 1968). The Harpy system used a simplified ver-
sion of Baker’s HMM-based DRAGON system and was the best of the tested sys-
tems, and according to Klatt the only one to meet the originalgoals of the ARPA
project (with a semantic error rate of 94% on a simple task).

Beginning in the mid-1980s, ARPA funded a number of new speech research
programs. The first was the “Resource Management” (RM) task (Price et al., 1988),
which like the earlier ARPA task involved transcription (recognition) of read-
speech (speakers reading sentences constructed from a 1000-word vocabulary) but
which now included a component that involved speaker-independent recognition.
Later tasks included recognition of sentences read from theWall Street Journal
(WSJ) beginning with limited systems of 5,000 words, and finally with systems of
unlimited vocabulary (in practice most systems use approximately 60,000 words).
Later speech-recognition tasks moved away from read-speech to more natural do-
mains; the Broadcast News domain (LDC, 1998; Graff, 1997) (transcription of
actual news broadcasts, including quite difficult passagessuch as on-the-street in-
terviews) and the Switchboard,CALLHOME, CALLFRIEND, and Fisher domains
(LDC, 1999; ?; Godfrey et al., 1992; ?) (natural telephone conversations between
friends or strangers) . The Air Traffic Information System (ATIS) task (Hemphill
et al., 1990) was an earlier speech understanding task whosegoal was to simulate
helping a user book a flight, by answering questions about potential airlines, times,
dates, and so forth.

Each of the ARPA tasks involved an approximately annualbake-off at whichBAKE­OFF

all ARPA-funded systems, and many other ‘volunteer’ systems from North Amer-
ican and Europe, were evaluated against each other in terms of word error rate
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or semantic error rate. In the early evaluations, for-profitcorporations did not
generally compete, but eventually many (especially IBM andATT) competed reg-
ularly. The ARPA competitions resulted in widescale borrowing of techniques
among labs, since it was easy to see which ideas had provided an error-reduction
the previous year, and were probably an important factor in the eventual spread of
the HMM paradigm to virtual every major speech recognition lab. The ARPA pro-
gram also resulted in a number of useful databases, originally designed for training
and testing systems for each evaluation (TIMIT, RM, WSJ, ATIS, BN, CALL-
HOME, Switchboard, Fisher) but then made available for general research use.

There are many new directions in current speech recognitionresearch in-
volving alternatives to the HMM model. There are many new architectures based
on graphical models (dynamic bayes nets, factorial HMMs, etc) (Zweig, 1998;
Bilmes, 2003; ?; Bilmes and Bartels, 2005; ?). There are attempts to replace
the frame-basedHMM acoustic model (that make a decision about each frame)FRAME­BASED

with segment-based recognizersthat attempt to detect variable-length segmentsSEGMENT­BASED
RECOGNIZERS

(phones) (Digilakis, 1992; Ostendorf et al., 1996; Glass, 2003). Landmark-based
recognizers and articulatory phonology-based recognizers focus on the use of dis-
tinctive features, defined acoustically or articulatorily(respectively) (Niyogi et al.,
1998; Livescu, 2005; et al, 2005; Juneja and Espy-Wilson, 2003). Attempts to
improve performance specifically on human-human speech have begin to focus on
improved recognition of disfluencies (Liu et al., 2005).

Speech research includes a number of areas besides speech recognition; we
already saw computational phonology in Ch. 7, speech synthesis in Ch. 8, and
we will discuss spoken dialogue systems in Ch. 23. Another important area is
speaker identification andspeaker verification, in which we identify a speakerSPEAKER

IDENTIFICATION

SPEAKER
VERIFICATION (for example for security when accessing personal information over the telephone)

(Reynolds and Rose, 1995; Shriberg et al., 2005; Doddington, 2001). This task is
related tolanguage identification, in which we are given a wavefile and have toLANGUAGE

IDENTIFICATION

identify which language is being spoken; this is useful for automatically directing
callers to human operators that speak appropriate languages.

There are a number of textbooks and reference books on speechrecognition
that are good choices for readers who seek a more in-depth understanding of the
material in this chapter: Huang et al. (2001) is by far the most comprehensive and
up-to-date reference volume and is highly recommended. Jelinek (1997), Gold and
Morgan (1999), and Rabiner and Juang (1993) are good comprehensive textbooks.
The last two textbooks also have discussions of the history of the field, and to-
gether with the survey paper of Levinson (1995) have influenced our short history
discussion in this chapter. Our description of the forward-backward algorithm was
modeled after Rabiner (1989), and we were also influence by another useful tuto-
rial paper, Knill and Young (1997). Research in the speech recognition field often
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appears in the proceedings of the annual INTERSPEECH conference, (which is
called ICSLP and EUROSPEECH in alternate years) as well as the annual IEEE
International Conference on Acoustics, Speech, and SignalProcessing (ICASSP).
Journals include Speech Communication, Computer Speech and Language, and
IEEE Transactions on Speech and Audio Processing.

EXERCISES

9.1 Analyze each of the errors in the incorrectly recognized transcription of “um
the phone is I left the. . . ” on page 40. For each one, give your best guess as to
whether you think it is caused by a problem in signal processing, pronunciation
modeling, lexicon size, language model, or pruning in the decoding search.

9.2 In practice, speech recognizers do all their probability computation using the
log probability (or logprob) rather than actual probabilities. This helps avoidLOGPROB

underflow for very small probabilities, but also makes the Viterbi algorithm very
efficient, since all probability multiplications can be implemented by adding log
probabilities. Rewrite the pseudocode for the Viterbi algorithm in Fig. 9.20 on
page 32 to make use of logprobs instead of probabilities.

9.3 Now modify the Viterbi algorithm in Fig. 9.20 on page 32 to implement the
beam search described on page 34. Hint: You will probably need to add in code to
check whether a given state is at the end of a word or not.

9.4 Finally, modify the Viterbi algorithm in Fig. 9.20 on page 32with more de-
tailed pseudocode implementing the array of backtrace pointers.

9.5 Implement the Stack decoding algorithm of Fig. 9.33 on 50. Pick a very
simpleh∗ function like an estimate of the number of words remaining inthe sen-
tence.

9.6 Modify the forward algorithm of Fig. 9.17 to use the tree-structured lexicon
of Fig. 9.36 on page 52.

9.7 Using the tutorials available as part of a publicly available recognizer like
HTK or Sonic, build a digit recognizer.

9.8 Take the digit recognizer above and dump the phone likelihoods for a sen-
tence. Now take your implementation of the Viterbi algorithm and show that you
can successfully decode these likelihoods.
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9.9 Many ASR systems, including the Sonic and HTK systems, use a different
algorithm for Viterbi called thetoken-passing Viterbi algorithm (Young et al.,
1989). Read this paper and implement this algorithm.



DRAFT

Section 9.14. Summary 75

Atal, B. S. and Hanauer, S. (1971). Speech analysis and
synthesis by prediction of the speech wave.Journal of
the Acoustical Society of America, 50, 637–655.

Aubert, X. and Ney, H. (1995). Large vocabulary con-
tinuous speech recognition using word graphs. InIEEE
ICASSP, Vol. 1, pp. 49–52.

Austin, S., Schwartz, R., and Placeway, P. (1991). The
forward-backward search algorithm. InIEEE ICASSP-
91, Vol. 1, pp. 697–700. IEEE.

Bagley, W. C. (1900–1901). The apperception of the spo-
ken sentence: A study in the psychology of language.
The American Journal of Psychology, 12, 80–130. †.

Bahl, L. R., de Souza, P. V., Gopalakrishnan, P. S., Na-
hamoo, D., and Picheny, M. A. (1992). A fast match
for continuous speech recognition using allophonic mod-
els. InIEEE ICASSP-92, San Francisco, CA, pp. I.17–20.
IEEE.

Baker, J. K. (1975). The DRAGON system – An overview.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-23(1), 24–29.

Baum, L. E. and Eagon, J. A. (1967). An inequality
with applications to statistical estimation for probabilis-
tic functions of Markov processes and to a model for
ecology.Bulletin of the American Mathematical Society,
73(3), 360–363.

Baum, L. E. and Petrie, T. (1966). Statistical inference
for probabilistic functions of finite-state Markov chains.
Annals of Mathematical Statistics, 37(6), 1554–1563.

Bayes, T. (1763).An Essay Toward Solving a Problem in
the Doctrine of Chances, Vol. 53. Reprinted inFacsimi-
les of two papers by Bayes, Hafner Publishing Company,
New York, 1963.

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gre-
gory, M., and Gildea, D. (2003). Effects of disfluencies,
predictability, and utterance position on word form vari-
ation in English conversation.Journal of the Acoustical
Society of America, 113(2), 1001–1024.

Bellegarda, J. R. (1999). Speech recognition experiments
using multi-span statistical language models. InIEEE
ICASSP-99, pp. 717–720. IEEE.

Bilmes, J. (2003). Buried markov models: A graphical-
modeling approach to automatic speech recognition.
Computer Speech and Language, 17(2-3).

Bilmes, J. and Bartels, C. (2005). Graphical model archi-
tectures for speech recognition.IEEE Signal Processing
Magazine, 22(5), 89–100.

Bourlard, H. and Morgan, N. (1994). Connectionist
Speech Recognition: A Hybrid Approach. Kluwer Press.

Chou, W., Lee, C.-H., and Juang, B.-H. (1993). Minimum
error rate training based onn-best string models. InIEEE
ICASSP-93, pp. 2.652–655.

CMU (1993). The Carnegie Mellon Pronouncing Dictio-
nary v0.1. Carnegie Mellon University.

Coccaro, N. and Jurafsky, D. (1998). Towards better in-
tegration of semantic predictors in statistical language
modeling. InICSLP-98, Sydney, Vol. 6, pp. 2403–2406.

Cohen, M. H. (1989).Phonological Structures for Speech
Recognition. Ph.D. thesis, University of California,
Berkeley.

Cohen, P. R., Johnston, M., McGee, D., Oviatt, S. L.,
Clow, J., and Smith, I. (1998). The efficiency of mul-
timodal interaction: a case study. InICSLP-98, Sydney,
Vol. 2, pp. 249–252.

Cole, R. A. (1973). Listening for mispronunciations: A
measure of what we hear during speech.Perception and
Psychophysics, 13, 153–156.

Cole, R. A. and Jakimik, J. (1980). A model of speech
perception. In Cole, R. A. (Ed.),Perception and Produc-
tion of Fluent Speech, pp. 133–163. Lawrence Erlbaum,
Hillsdale, NJ.

Cole, R. A. and Rudnicky, A. I. (1983). What’s new in
speech perception? The research and ideas of William
Chandler Bagley.Psychological Review, 90(1), 94–101.

Connine, C. M. (1990). Effects of sentence context and
lexical knowledge in speech processing. In Altmann, G.
T. M. (Ed.),Cognitive Models of Speech Processing, pp.
281–294. MIT Press, Cambridge, MA.

Connine, C. M. and Clifton, C. (1987). Interactive use
of lexical information in speech perception.Journal of
Experimental Psychology: Human Perception and Per-
formance, 13, 291–299.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for
the machine calculation of complex Fourier series.Math-
ematics of Computation, 19(90), 297–301.

Cutler, A. and Carter, D. M. (1987). The predominance of
strong initial syllables in the English vocabulary.Com-
puter Speech and Language, 2, 133–142.

Cutler, A. and Norris, D. (1988). The role of strong syl-
lables in segmentation for lexical access.Journal of Ex-
perimental Psychology: Human Perception and Perfor-
mance, 14, 113–121.



DRAFT

76 Chapter 9. Automatic Speech Recognition

David, Jr., E. E. and Selfridge, O. G. (1962). Eyes and ears
for computers.Proceedings of the IRE (Institute of Radio
Engineers), 50, 1093–1101.

Davis, K. H., Biddulph, R., and Balashek, S. (1952). Auto-
matic recognition of spoken digits.Journal of the Acous-
tical Society of America, 24(6), 637–642.

Denes, P. (1959). The design and operation of the me-
chanical speech recognizer at University College Lon-
don. Journal of the British Institution of Radio Engi-
neers, 19(4), 219–234. Appears together with companion
paper (Fry 1959).

Deng, L., Lennig, M., Seitz, F., and Mermelstein, P.
(1990). Large vocabulary word recognition using
context-dependent allophonic hidden Markov models.
Computer Speech and Language, 4, 345–357.

Deng, L. and Huang, X. (2004). Challenges in adopting
speech recognition..

Digilakis, V. V. (1992). Segment-based stochastic models
of spectral dynamics for continuous speech recognition.
Ph.D. thesis, Boston University.

Doddington, G. (2001). Speaker recognition based on idi-
olectal differences between speakers. InEUROSPEECH-
01, Budapest, pp. 2521–2524.

Doumpiotis, V., Tsakalidis, S., , and Byrne, W. (2003a).
Discriminative training for segmental minimum bayes-
risk decoding. InIEEE ICASSP-03.

Doumpiotis, V., Tsakalidis, S., , and Byrne, W. (2003b).
Lattice segmentation and minimum bayes risk discrimi-
native training. InEUROSPEECH-03.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000).Pattern
Classification. Wiley-Interscience Publication.

et al, M. H.-J. (2005). Landmark-based speech recogni-
tion: Report of the 2004 johns hopkins summer work-
shop. InIEEE ICASSP-05.

Evermann, G. and Woodland, P. C. (2000). Large vocabu-
lary decoding and confidence estimation using word pos-
terior probabilities. InIEEE ICASSP-00, Istanbul, Vol.
III, pp. 1655–1658.

Fosler-Lussier, E. (1999). Multi-level decision trees
for static and dynamic pronunciation models. In
EUROSPEECH-99, Budapest.

Fosler-Lussier, E. and Morgan, N. (1999). Effects of
speaking rate and word predictability on conversational
pronunciations.Speech Communication, 29(2-4), 137–
158.

Fry, D. B. (1959). Theoretical aspects of mechanical
speech recognition.Journal of the British Institution of
Radio Engineers, 19(4), 211–218. Appears together with
companion paper (Denes 1959).

Gillick, L. and Cox, S. (1989). Some statistical issues
in the comparison of speech recognition algorithms. In
IEEE ICASSP-89, pp. 532–535. IEEE.

Glass, J. R. (2003). A probabilistic framework for
segment-based speech recognition.Computer Speech
and Language,, 17(1–2), 137–152.

Godfrey, J., Holliman, E., and McDaniel, J. (1992).
SWITCHBOARD: Telephone speech corpus for research
and development. InIEEE ICASSP-92, San Francisco,
pp. 517–520. IEEE.

Gold, B. and Morgan, N. (1999).Speech and Audio Signal
Processing. Wiley Press.

Graff, D. (1997). The 1996 Broadcast News speech and
language-model corpus. InProceedings DARPA Speech
Recognition Workshop, Chantilly, VA, pp. 11–14. Mor-
gan Kaufmann.

Gray, R. M. (1984). Vector quantization.IEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
ASSP-1(2), 4–29.

Grosjean, F. (1980). Spoken word recognition processes
and the gating paradigm.Perception and Psychophysics,
28, 267–283.

Gupta, V., Lennig, M., and Mermelstein, P. (1988). Fast
search strategy in a large vocabulary word recognizer.
Journal of the Acoustical Society of America, 84(6),
2007–2017.

Hain, T. (2002). Implicit pronunciation modelling in asr.
In Proceedings of ISCA Pronunciation Modeling Work-
shop.

Hain, T., Woodland, P. C., Evermann, G., and Povey, D.
(2001). New features in the CU-HTK system for tran-
scription of conversational telephone speech. InIEEE
ICASSP-01, Salt Lake City, Utah.

Hemphill, C. T., Godfrey, J., and Doddington, G. R.
(1990). The ATIS spoken language systems pilot cor-
pus. InProceedings DARPA Speech and Natural Lan-
guage Workshop, Hidden Valley, PA, pp. 96–101. Mor-
gan Kaufmann.

Hermansky, H. (1990). Perceptual linear predictive (PLP)
analysis of speech.Journal of the Acoustical Society of
America, 87(4), 1738–1752.



DRAFT

Section 9.14. Summary 77

Howes, D. (1957). On the relation between the intelligibil-
ity and frequency of occurrence of English words.Jour-
nal of the Acoustical Society of America, 29, 296–305.

Huang, C., Chang, E., Zhou, J., and Lee, K.-F. (2000). Ac-
cent modeling based on pronunciation dictionary adapta-
tion for large vocabulary mandarin speech recognition.
In ICSLP-00, Beijing, China.

Huang, X., Acero, A., and Hon, H.-W. (2001).Spoken
Language Processing: A Guide to Theory, Algorithm,
and System Development. Prentice Hall, Upper Saddle
River, NJ.

Itakura, F. (1975). Minimum prediction residual princi-
ple applied to speech recognition.IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-32, 67–
72.

Jelinek, F. (1969). A fast sequential decoding algorithm
using a stack. IBM Journal of Research and Develop-
ment, 13, 675–685.

Jelinek, F. (1976). Continuous speech recognition by sta-
tistical methods.Proceedings of the IEEE, 64(4), 532–
557.

Jelinek, F. (1997).Statistical Methods for Speech Recog-
nition. MIT Press, Cambridge, MA.

Jelinek, F., Mercer, R. L., and Bahl, L. R. (1975). Design
of a linguistic statistical decoder for the recognition of
continuous speech.IEEE Transactions on Information
Theory, IT-21(3), 250–256.

Juneja, A. and Espy-Wilson, C. (2003). Speech segmen-
tation using probabilistic phonetic feature hierarchy and
support vector machines. InIJCNN 2003.

Junqua, J. C. (1993). The Lombard reflex and its role on
human listeners and automatic speech recognizers.Jour-
nal of the Acoustical Society of America, 93(1), 510–524.

Jurafsky, D., Ward, W., Jianping, Z., Herold, K., Xiuyang,
Y., and Sen, Z. (2001). What kind of pronunciation varia-
tion is hard for triphones to model?. InIEEE ICASSP-01,
Salt Lake City, Utah, pp. I.577–580.

Jurafsky, D., Bell, A., Fosler-Lussier, E., Girand, C., and
Raymond, W. D. (1998). Reduction of English function
words in Switchboard. InICSLP-98, Sydney, Vol. 7, pp.
3111–3114.

Klatt, D. H. (1977). Review of the ARPA speech under-
standing project. Journal of the Acoustical Society of
America, 62(6), 1345–1366.

Klovstad, J. W. and Mondshein, L. F. (1975). The
CASPERS linguistic analysis system.IEEE Transactions

on Acoustics, Speech, and Signal Processing, ASSP-
23(1), 118–123.

Knill, K. and Young, S. J. (1997). Hidden Markov Models
in speech and language processing. In Young, S. J. and
Bloothooft, G. (Eds.),Corpus-based Methods in Lan-
guage and Speech Processing, pp. 27–68. Kluwer, Dor-
drecht.

Kuhn, R. and de Mori, R. (1990). A cache-based natu-
ral language model for speech recognition.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
12(6), 570–583.

Kumar, S. and Byrne, W. (2002). Risk based lattice cutting
for segmental minimum Bayes-risk decoding. InICSLP-
02, Denver, CO.

LDC (1998). LDC Catalog: Hub4 project. University
of Pennsylvania.www.ldc.upenn.edu/Catalog/
LDC98S71.htmlorwww.ldc.upenn.edu/Catalog/
Hub4.html.

LDC (1999).LDC Catalog: Hub5-LVCSR project. Univer-
sity of Pennsylvania.www.ldc.upenn.edu/ldc/about/
chenglish.htmlorwww.ldc.upenn.edu/Catalog/Hub5-LVCSR.html

Leggetter, C. J. and Woodland, P. C. (1995). Maximum
likelihood linear regression for speaker adaptation of
HMMs. Computer Speech and Language,, 9(2), 171–
186.

Levinson, S. E. (1995). Structural methods in automatic
speech recognition.Proceedings of the IEEE, 73(11),
1625–1650.

Liu, Y., Shriberg, E., Stolcke, A., Peskin, B., Ang, J.,
Hillard, D., Ostendorf, M., Tomalin, M., Woodland, P.,
and Harper, M. (2005). Structural metadata research in
the ears program. InIEEE ICASSP-05.

Livescu, K. (2005). Feature-Based Pronuncaition Mod-
eling for Automatic Speech Recognition. Ph.D. thesis,
Massachusetts Institute of Technology.

Livescu, K. and Glass, J. (2004). Feature-based pronunci-
ation modeling with trainable asynchrony probabilities.
In ICSLP-04, Jeju, South Korea.

Lowerre, B. T. (1968). The Harpy Speech Recognition
System. Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA.

Luce, P. A., Pisoni, D. B., and Goldfinger, S. D. (1990).
Similarity neighborhoods of spoken words. In Altmann,
G. T. M. (Ed.),Cognitive Models of Speech Processing,
pp. 122–147. MIT Press, Cambridge, MA.



DRAFT

78 Chapter 9. Automatic Speech Recognition

Mangu, L., Brill, E., and Stolcke, A. (2000). Finding con-
sensus in speech recognition: Word error minimization
and other applications of confusion networks.Computer
Speech and Language, 14(4), 373–400.

Marslen-Wilson, W. D. and Welsh, A. (1978). Processing
interactions and lexical access during word recognition
in continuous speech.Cognitive Psychology, 10, 29–63.

Marslen-Wilson, W. D. (1973). Linguistic structure and
speech shadowing at very short latencies.Nature, 244,
522–523.

Massaro, D. W. (1998).Perceiving Talking Faces: From
Speech Perception to a Behavioral Principle. MIT Press.

Massaro, D. W. and Cohen, M. M. (1983). Evaluation and
integration of visual and auditory information in speech
perception. Journal of Experimental Psychology: Hu-
man Perception and Performance, 9, 753–771.

McClelland, J. L. and Elman, J. L. (1986). Interactive
processes in speech perception: The TRACE model.
In McClelland, J. L., Rumelhart, D. E., and the PDP
Research Group (Eds.),Parallel Distributed Processing
Volume 2: Psychological and Biological Models, pp. 58–
121. MIT Press, Cambridge, MA.

McDermott, E. and Hazen, T. (2004). Minimum Classi-
fication Error training of landmark models for real-time
continuous speech recognition. InIEEE ICASSP-04.

McGurk, H. and Macdonald, J. (1976). Hearing lips and
seeing voices.Nature, 264, 746–748.

Miller, J. L. (1994). On the internal structure of phonetic
categories: a progress report.Cognition, 50, 271–275.

Mosteller, F. and Wallace, D. L. (1964).Inference and
Disputed Authorship: The Federalist. Springer-Verlag,
New York. 2nd Edition appeared in 1984 and was called
Applied Bayesian and Classical Inference.

Murveit, H., Butzberger, J. W., Digalakis, V. V., and Wein-
traub, M. (1993). Large-vocabulary dictation using SRI’s
decipher speech recognition system: Progressive-search
techniques. InIEEE ICASSP-93, Vol. 2, pp. 319–322.
IEEE.

Ney, H., Haeb-Umbach, R., Tran, B.-H., and Oerder, M.
(1992). Improvements in beam search for 10000-word
continuous speech recognition. InIEEE ICASSP-92, San
Francisco, CA, pp. I.9–12. IEEE.

Nguyen, L. and Schwartz, R. (1999). Single-tree method
for grammar-directed search. InIEEE ICASSP-99, pp.
613–616. IEEE.

Nilsson, N. J. (1980).Principles of Artificial Intelligence.
Morgan Kaufmann, Los Altos, CA.

NIST (2005). Speech recognition scoring
toolkit (sctk) version 2.1. Available at
http://www.nist.gov/speech/tools/.

Niyogi, P., Burges, C., and Ramesh, P. (1998). Distinctive
feature detection using support vector machines. InIEEE
ICASSP-98. IEEE.

Odell, J. J. (1995).The Use of Context in Large Vocabu-
lary Speech Recognition. Ph.D. thesis, Queen’s College,
University of Cambridge.

Oden, G. C. and Massaro, D. W. (1978). Integration of
featural information in speech perception.Psychological
Review, 85, 172–191.

Oppenheim, A. V., Schafer, R. W., and Stockham, T. G. J.
(1968). Nonlinear filtering of multiplied and convolved
signals.Proceedings of the IEEE, 56(8), 1264–1291.

Ortmanns, S., Ney, H., and Aubert, X. (1997). A word
graph algorithm for large vocabulary continuous speech
recognition. Computer Speech and Language,, 11, 43–
72.

Ostendorf, M., Digilakis, V., and Kimball, O. (1996).
From HMMs to segment models: A unified view of
stochastic modeling for speech recognition.IEEE Trans-
actions on Speech and Audio, 4(5), 360–378.

Paul, D. B. (1991). Algorithms for an optimal A∗ search
and linearizing the search in the stack decoder. InIEEE
ICASSP-91, Vol. 1, pp. 693–696. IEEE.

Pearl, J. (1984).Heuristics. Addison-Wesley, Reading,
MA.

Price, P., Fisher, W., Bernstein, J., and Pallet, D. (1988).
The DARPA 1000-word resource management database
for continuous speech recognition. InIEEE ICASSP-88,
New York, Vol. 1, pp. 651–654. IEEE.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Mod-
els and selected applications in speech recognition.Pro-
ceedings of the IEEE, 77(2), 257–286.

Rabiner, L. R. and Juang, B. (1993).Fundamentals of
Speech Recognition. Prentice Hall, Englewood Cliffs,
NJ.

Ravishankar, M. K. (1996). Efficient Algorithms for
Speech Recognition. Ph.D. thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh. Avail-
able as CMU CS tech report CMU-CS-96-143.

Reynolds, D. and Rose, R. (1995). Robust text- inde-
pendent speaker identification using gaussian mixture



DRAFT

Section 9.14. Summary 79

speaker models.IEEE Transactions on Speech and Audio
Processing, 3(1), 72–83.

Rosenfeld, R. (1996). A maximum entropy approach to
adaptive statistical language modeling.Computer Speech
and Language, 10, 187–228.

Russell, S. and Norvig, P. (1995).Artificial Intelligence: A
Modern Approach. Prentice Hall, Englewood Cliffs, NJ.

Sakoe, H. and Chiba, S. (1971). A dynamic programming
approach to continuous speech recognition. InProceed-
ings of the Seventh International Congress on Acous-
tics, Budapest, Budapest, Vol. 3, pp. 65–69. Akadémiai
Kiadó.
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