Speech and Language Processing: An introduction to natural |anguage processing,
conputational linguistics, and speech recognition. Daniel Jurafsky & Janes H.
Martin. Copyright © 2005, Al rights reserved. Draft of August 19, 2006. Do
not cite w thout perm ssion.

AUTOMATIC SPEECH
9 RECOGNITION

When Frederic was a little lad he proved so brave and daring,
His father thought he’'d "prentice him to some career seadari
| was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice fmlat —
A life not bad for a hardy lad, though surely not a high lot,
Though I'm a nurse, you might do worse than make your boy d.pilo
| was a stupid nurs'rymaid, on breakers always steering,
And | did not catch the word aright, through being hard of regr
Mistaking my instructions, which within my brain did gyrate
| took and bound this promising boy apprentice foirate.

The Pirates of Penzanc&ilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’'glordenture as a pirate
and, due to a slight complication involving 21st birthdaysl deap years, nearly
led to 63 extra years of apprenticeship. The mistake wase qaitural, in a Gilbert-
and-Sullivan sort of way; as Ruth later noted, “The two wavgse so much alike!”
True, true; spoken language understanding is a difficult, t@sd it is remarkable
that humans do as well at it as we do. The goahwtomatic speech recognition
(ASR) research is to address this problem computationally bidimgj systems
that map from an acoustic signal to a string of wordstomatic speech under-
standing (ASU) extends this goal to producing some sort of understandiriyeo
sentence, rather than just the words.

The general problem of automatic transcription of speechrlyyspeaker in
any environment is still far from solved. But recent yeargehseen ASR technol-
ogy mature to the point where it is viable in certain limitezhthins. One major
application area is in human-computer interaction. Whiknyntasks are better
solved with visual or pointing interfaces, speech has them@l to be a better
interface than the keyboard for tasks where full naturagjleage communication
is useful, or for which keyboards are not appropriate. Timifuides hands-busy or
eyes-busy applications, such as where the user has olettsnipulate or equip-
ment to control. Another important application area isghtey, where speech

Chapter 9. Automatic Speech Recognition

DIGITS

ISOLATED WORD
CONTINUOUS
SPEECH

READ SPEECH

CONVERSATIONAL
SPEECH

recognition is already used for example for entering digiégognizing “yes” to
accept collect calls, finding out airplane or train inforiroat and call-routing (“Ac-
counting, please”, “Prof. Regier, please”). In some appiins, a multimodal in-
terface combining speech and pointing can be more effidiamt & graphical user
interface without speech (Cohen et al., 1998). Finally, ASReing applied to
dictation, that is, transcription of extended monologualsyngle specific speaker.
Dictation is common in fields such as law and is also importanpart of aug-
mentative communication (interaction between computedsrumans with some
disability resulting in the inability to type, or the inaityl to speak). The blind Mil-
ton famously dictate@aradise Losto his daughters, and Henry James dictated his
later novels after a repetitive stress injury.

Before turning to architectural details, let's discuss sawhthe parameters
and the state of the art of the speech recognition task. Onerdiion of variation
in speech recognition tasks is the vocabulary size. Spesdgnition is easier if
the number of distinct words we need to recognize is smalertasks with a two
word vocabulary, likeyesversusno detection, or an eleven word vocabulary, like
recognizing sequences of digits, in what is calleddiuits task, are relatively easy.
On the other end, tasks with large vocabularies, like tndoiesg human-human
telephone conversations, or transcribing broadcast neasks with vocabularies
of 64,000 words or more, are much harder.

A second dimension of variation is how fluent, natural, onesgational the
speech islsolated word recognition, in which each word is surrounded by some
sort of pause, is much easier than recognizingtinuous speechin which words
run into each other and have to be segmented. Continuouststzess themselves
vary greatly in difficulty. For example, human-to-machimpeach turns out to be
far easier to recognize than human-to-human speech. Thatmgnizing speech
of humans talking to machines, either reading out loue:ad speechwhich sim-
ulates the dictation task), or conversing with speech disosystems, is relatively
easy. Recognizing the speech of two humans talking to edudr,dih conver-
sational speechrecognition, for example for transcribing a business megetir
a telephone conversation, is much harder. It seems that tiwmaans talk to ma-
chines, they simplify their speech quite a bit, talking mslmevly and more clearly.

A third dimension of variation is channel and noise. Comnag¢dictation
systems, and much laboratory research in speech recognigi@one with high
quality, head mounted microphones. Head mounted micrggghetiminate the
distortion that occurs in a table microphone as the spediemd moves around.
Noise of any kind also makes recognition harder. Thus rezogna speaker dic-
tating in a quiet office is much easier than recognizing alegegictating in a noisy
car on the highway with the window open.

Afinal dimension of variation is accent or speaker-classadtaristics. Speech

is easier to recognize if the speaker is speaking a standettt] or in general one
that matches the data the system was trained on. Recogistibiis harder on
foreign-accented speech, or speech of children (unlessyiiem was specifically
trained on exactly these kinds of speech).

Table 9.1 shows the rough percentage of incorrect wordswtre error
rate, or WER, defined on page 39) from state-of-the-art systenaén{ynthe CU-
HTK but also Sphinx 4 and Sonic systems) on a range of diffehk&R tasks.

| Task | Vocabulary | Error Rate %|
TI Digits 11 (zero-nine, oh) .55
Wall Street Journal read speech 5,000 3.0
Wall Street Journal read speech 20,000 <6.6
Broadcast News 64,000+ 9.9
Conversational Telephone Speeth 64,000+ 20.7
(CTS)

Figure 9.1 Word Error rates (% of words misrecognized) reported arc2@@b
for ASR on various tasks; the error rates for Broadcast NewisGI'S are based on
particular training and test scenarios and should be tagdralipark numbers; error
rates for differently defined tasks may range up to a factowof

Variation due to noise and accent increases the error raies a bit. The
word error rate on strongly Japanese-accented or Spantgmtad English has
been reported to be about 3 to 4 times higher than for nateaksgrs on the same
task (Tomokiyo, 2001). And adding automobile noise with dBGNR (signal-
to-noise ratio) can cause error rates to go up by 2 to 4 times.

In general, these error rates go down every year, as spezmnigon perfor-
mance has improved quite steadily. One estimate is thatpeaihce has improved
roughly 10 percent a year over the last decade (Deng and Haang), due to a
combination of algorithmic improvements and Moore’s law.

While the algorithms we describe in this chapter are applecacross a wide
variety of these speech tasks, we chose to focus this ch@aptae fundamentals of

wesk one crucial arealarge-Vocabulary Continuous Speech RecognitiofLVCSR).
Large-vocabulary generally means that the systems haveabutary of roughly
20,000 to 60,000 words. We saw above tbantinuous means that the words are
run together naturally. Furthermore, the algorithms we eidcuss are generally
oy speaker-independentthat is, they are able to recognize speech from people whose
speech the system has never been exposed to before.

The dominant paradigm for LVCSR is the HMM, and we will focustbis
approach in this chapter. Previous chapters have intradonast of the core algo-
rithms used in HMM-based speech recognition. Ch. 7 intredube key phonetic

Chapter 9. Automatic Speech Recognition

and phonological notions gihone syllable, and intonation. Ch. 5 and Ch. 6
introduced the use of thBayes rule the Hidden Markov Model (HMM), the
Viterbi algorithm, and the Baum-Welch training algorithm. Ch. 4aduced the
N-gram language model and thgerplexity metric. In this chapter we begin with
an overview of the architecture for HMM speech recognitimifer an all-too-brief
overview of signal processing for feature extraction, andweerview of Gaussian
acoustic models. We then continue with Viterbi decodingl @tk about the use of
word error rate for evaluation. In advanced sections, wedhice advanced search
techniques like A andN-best decoding and lattices, context-dependent triphone
acoustic models and dealing with variation.

Of course the field of ASR is far too large even to summarizeighsa short
space; the reader is encouraged to see the suggested seatlithg end of the
chapter for useful textbooks and articles.

9.1 SPEECHRECOGNITIONARCHITECTURE

NOISY CHANNEL

BAYESIAN

The task of speech recognition is to take as input an acomuatieform and produce
as output a string of words. HMM-based speech recognitistesys view this task
using the metaphor of the noisy channel. The intuition ofribisy channelmodel
(see Fig. 9.2) is to treat the acoustic waveform as an “noisysion of the string
of words, i.e.. a version that has been passed through a nomynunications
channel. This channel introduces “noise” which makes itiharrecognize the
“true” string of words. Our goal is then to build a model of tttennel so that we
can figure out how it modified this “true” sentence and hencever it.

The insight of the noisy channel model is that if we know how tihannel
distorts the source, we could find the correct source seatfica waveform by
taking every possible sentence in the language, running s&tence through our
noisy channel model, and seeing if it matches the output. W& select the best
matching source sentence as our desired source sentence.

Implementing the noisy-channel model as we have expressad-ig. 9.2
requires solutions to two problems. First, in order to pick sentence that best
matches the noisy input we will need a complete metric forestbnatch”. Be-
cause speech is so variable, an acoustic input sentenceenér exactly match
any model we have for this sentence. As we have suggeste@viops chapters,
we will use probability as our metric. This makes the speecognition problem
a special case dBayesian inference a method known since the work of Bayes
(1763). Bayesian inference or Bayesian classification ywatiedd successfully to
language problems as early as the late 1950s, including @R Work of Bled-
soe in 1959, and the seminal work of Mosteller and Wallac&4)19n applying

Section 9.1.

Speech Recognition Architecture 5

i uess at
source noi sy gues
sentence sent ence _ DECODER original

sentence

?Alice was beginning to get.
If music be the A ?Every happy family...)
food of love... .= — e \S>— =< ?In a hole in the ground... If music be the
N 7 . ?If music be the food of love... food of love...

\V/ ?If music be the foot of dove..,
NOISY CHANNEL

Figure 9.2 The noisy channel model. We search through a huge spaceasftjzit
“source” sentences and choose the one which has the higbestility of generating
the “noisy” sentence. We need models of the prior probghilita source sentence
(N-grams), the probability of words being realized as cestings of phones (HMM
lexicons), and the probability of phones being realizedcasistic or spectral features

(Gaussian Mixture Models).

Bayesian inference to determine the authorship of the Résiepapers. Our goal
will be to combine various probabilistic models to get a ctetgestimate for the
probability of a noisy acoustic observation-sequencergaveandidate source sen-
tence. We can then search through the space of all sentemckshoose the source
sentence with the highest probability.

Second, since the set of all English sentences is huge, wkareefficient
algorithm that will not search through all possible sengsndut only ones that
have a good chance of matching the input. This igéedingor searchproblem,
which we have already explored with the Viterbi decodingatbm for HMMs in
Ch. 5 and Ch. 6. Since the search space is so large in speegnitem, efficient
search is an important part of the task, and we will focus onraber of areas in
search.

In the rest of this introduction we will introduce the probeiic or Bayesian
model for speech recognition (or more accurately re-intoedit, since we first
used the model in our discussions of part-of-speech taggirigh. 5). We then
introduce the various components of a modern HMM-based ASRB).

We now turn to our probabilistic implementation of the nothannel intu-
ition, which should be familiar from Ch. 5. The goal of the Ipabilistic noisy
channel architecture for speech recognition can be surmethas follows:

“What is the most likely sentence out of all sentences indhguage
L given some acoustic input O?”

We can treat the acoustic inpOtas a sequence of individual “symbols” or
“observations” (for example by slicing up the input every rliseconds, and
representing each slice by floating-point values of thegner frequencies of that
slice). Each index then represents some time interval, aocessiveo; indicate
temporally consecutive slices of the input (note that ehpétters will stand for

Chapter 9. Automatic Speech Recognition

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

(9.6)

sequences of symbols and lower-case letters for indivisipabols):
O =01,02,03,...,0

Similarly, we treat a sentence as if it were composed of agtf words:
W =Wy, Wo,Wa, ..., Wy

Both of these are simplifying assumptions; for examplediing sentences
into words is sometimes too fine a division (we'd like to mofdelts about groups
of words rather than individual words) and sometimes tosgm@ division (we
need to deal with morphology). Usually in speech recognitiavord is defined by
orthography (after mapping every word to lower-casakis treated as a different
word thanoaks but the auxiliarycan (“can you tell me...”) is treated as the same
word as the noucan (“i need a can of...”).

The probabilistic implementation of our intuition abovleh, can be ex-
pressed as follows:

W = argmaxP(W|O)
WeL

Recall that the function argmax(x) means “the x such that f(x) is largest”.
Equation (9.3) is guaranteed to give us the optimal sentéfice’e now need to
make the equation operational. That is, for a given sentév@nd acoustic se-
quenceO we need to computB(W|O). Recall that given any probability(x]y),
we can use Bayes’ rule to break it down as follows:

P(yx)P(X)
P(Xly) =
) = =5
We saw in Ch. 5 that we can substitute (9.4) into (9.3) as\idlo
5 P(OW)P(W)
W =argmax——————=
ey P(O)

The probabilities on the right-hand side of (9.5) are for riinast part easier
to compute tharP(W|O). For exampleP(W), the prior probability of the word
string itself is exactly what is estimated by thegram language models of Ch. 4.
And we will see below thaP(O|W) turns out to be easy to estimate as well. But
P(0O), the probability of the acoustic observation sequenc@stout to be harder
to estimate. Luckily, we can ignofe(O) just as we saw in Ch. 5. Why? Since
we are maximizing over all possible sentences, we will bepging w
for each sentence in the language. B(O) doesn’t change for each sentence!
For each potential sentence we are still examining the sésereationgO, which
must have the same probabili®(O). Thus:

W = argmaxW = argmaxP(O|W) P(W)
WeL P(O) WeL

Section 9.1.

Speech Recognition Architecture 7

LANGUAGE MODEL
ACOUSTIC MODEL

(9.7)

(9.8)

To summarize, the most probable senteWayiven some observation se-
quenceO can be computed by taking the product of two probabilitiesefach
sentence, and choosing the sentence for which this proslgotatest. The general
components of the speech recognizer which compute thestetms have names;
P(W), theprior probability , is computed by thtanguage model while P(O|W),
the observation likelihood, is computed by thacoustic model

likelihood prior

~ ——

W = argmax P(O|W) P(W)
WeL

The language model (LM) prid?(W) expresses how likely a given string of
words is to be a source sentence of English. We have alreadyiseCh. 4 how
to compute such a language model pig¥V) by usingN-gram grammars. Recall
that anN-gram grammar lets us assign a probability to a sentence ropaiing:

n
P(wWY) ~ [T P(widwi k41
k=1

This chapter will show how the HMM we covered in Ch. 6 can beduse
build an Acoustic Model (AM) which computes the likeliho®{O|W). Given
the AM and LM probabilities, the probabilistic model can hgewationalized in a
search algorithm so as to compute the maximum probabilitglstiing for a given
acoustic waveform. Fig. 9.3 shows a rough block diagram of th@ computation
of the prior and likelihood fits into a recognizer decodingeatence.

P(OIW)

Acoustic Model
+ Lexicon
Decoding

Search
Language
Model

P(W)

Feature
Extraction

Figure 9.3 A block diagram of a speech recognizer decoding a singlessent
showing the integration d?(W) andP(O|W).

We can see further details of the operationalization in gig, which shows

8 Chapter 9. Automatic Speech Recognition

the components of an HMM speech recognizer as it processegla stterance.
The figure shows the recognition process in three stagekefadture extraction
or signal processingstage, the acoustic waveform is sampled fnames (usually
of 10, 15, or 20 milliseconds) which are transformed ispectral features Each
time window is thus represented by a vector of around 39 feattepresenting
this spectral information as well as information about ggemnd spectral change.
Sec. 9.3 gives an (unfortunately brief) overview of thedieatextraction process.

In theacoustic modelingor phone recognitionstage, we compute the likeli-
hood of the observed spectral feature vectors given litiguisits (words, phones,
subparts of phones). For example, we use Gaussian MixtudeM&MM) classi-
fiers to compute for each HMM statg corresponding to a phone or subphone, the
likelihood of a given feature vector given this phop|q). A (simplified) way
of thinking of the output of this stage is as a sequence ofaiiiby vectors, one
for each time frame, each vector at each time frame contathi@ likelihoods that
each phone or subphone unit generated the acoustic feacit@r wbservation at
that time.

Finally, in the decoding phase, we take the acoustic model (AM), which
consists of this sequence of acoustic likelihoods, plus lsivHlictionary of word
pronunciations, combined with the language model (LM) &galty anN-gram
grammar), and output the most likely sequence of words. ArvHdlictionary, as
we will see in Sec. 9.2, is a list of word pronunciations, epanunciation repre-
sented by a string of phones. Each word can then be thougbktasf BEMM, where
the phones (or sometimes subphones) are states in the HMMhanGaussian
likelihood estimators supply the HMM output likelihood fttion for each state.
Most ASR systems use the Viterbi algorithm for decodinggesipgg up the decod-
ing with wide variety of sophisticated augmentations suslpraining, fast-match,
and tree-structured lexicons.

9.2 APPLYING THEHIDDEN MARKOV MODEL TO SPEECH

Let’s turn now to how the HMM model is applied to speech rectigm We saw
in Ch. 6 that a Hidden Markov Model is characterized by thraeameters:
e states:a set of state® = qi102. .. O

e transition probabilities: a set of probabilitie®\ = ag1892...an1 . .. ann Each
ajj represents the probability of transitioning from stiatie state;.

e observation likelihoods: a set of observation likelihoodd = bj(o;), each
expressing the probability of an observatigrbeing generated from a state

Section 9.2.

Applying the Hidden Markov Model to Speech

eoe L L L L L L L veo
vy vy

T

v
Cepstral Feature Extraction I
VYYYYYOYOYYy

- D - ey

\ Gaussian Acoustic Model I

TYYTYYYOYvvy

‘ HMM Lexicon I

V V V V V V V V V V
Viterbi Decoder r‘ N-gram Grammar I

YYYYYYYOVYY
| [|
if music be

Figure 9.4 Schematic architecture for a (simplified) speech recogmeeoding

a single sentence. A real recognizer is more complex singeusakinds of pruning
and fast matches are needed for efficiency. This architedwnly for decoding; we
also need a separate architecture for training parameters.

Furthermore, the chapter introduced ¥igerbi algorithm for decoding HMMs,
and theBaum-Welch or Forward-Backward algorithm for training HMMs.

All of these facets of the HMM paradigm play a crucial role iISR. We
begin here by discussing how the states, transitions, asdredtions map into
the speech recognition task. We will return to the ASR apiims of Viterbi
decoding in Sec. 9.6. The extensions to the Baum-Welch ithiges needed to
deal with spoken language are covered in Sec. 9.4 and Sec. 9.7

Recall the examples of HMMs we saw earlier in the book. In Chhé hid-
den states of the HMM were parts-of-speech, the obsensati@ne words, and the
HMM decoding task mapped a sequence of words to a sequenee®fgs-speech.
In Ch. 6, the hidden states of the HMM were weather, the olbsiens were ‘ice-
cream consumptions’ or ‘sightings of umbrellas’, and theadling task was to
determine the weather sequence from a sequence of ice-c@masumption. For
speech, the hidden states are phones, parts of phones, d@s,wach observation

10

Chapter 9. Automatic Speech Recognition

DIGIT RECOGNITION

BAKIS NETWORK

is information about the spectrum and energy of the wavefatran point in time,
and the decoding process maps this sequence of acoustimatfon to phones
and words.

The observation sequence for speech recognition is a segudacoustic
feature vectors Each acoustic feature vector represents information asdhe
amount of energy in different frequency bands at a partigodant in time. We
will return in Sec. 9.3 to the nature of these observationsfdr now we’ll simply
note that each observation consists of a vector of 39 rdaksideatures indicating
spectral information. Observations are generally dravarye®0 milliseconds, so
1 second of speech requires 100 spectral feature vectatsyeator of length 39.

The hidden states of Hidden Markov Models can be used to nspeeich in a
number of different ways. For small tasks, li#®it recognition, (the recognition
of the 10 digit wordszerothroughnineg), or for yes-norecognition (recognition
of the two wordsyesandno), we could build an HMM whose states correspond
to entire words. For most larger tasks, however, the hiddates of the HMM
correspond to phone-like units, and words are sequencées# phone-like units.

Let’'s begin by describing an HMM model in which each state mf-ivM
corresponds to a single phone (if you've forgotten what anghis, go back and
look again at the definition in Ch. 7). In such a model, a wordMikhus consists
of a sequence of HMM states concatenated together.

In the HMMs described in Ch. 6, there were arbitrary traosgi between
states; any state could transition to any other. This was ialprinciple true of
the HMMs for part-of-speech tagging in Ch. 5; although thebability of some
tag transitions was low, any tag could in principle followyasther tag. Unlike in
these other HMM applications, HMM models for speech recigmiusually do
not allow arbitrary transitions. Instead, they place gjroanstraints on transitions
based on the sequential nature of speech. Except in unuases,cHMMs for
speech don't allow transitions from states to go to earliates in the word; in
other words, states can transition to themselves or to ssiseestates. This kind
of feed-forward HMM structure is called &akis network.

The most common model used for speech is even more constyait@ving
a state to transition only to itself (self-loop) or to a seaglicceeding state. The use
of self-loops allows a single phone to repeat so as to covariable amount of
the acoustic input. Phone durations vary hugely, deperaiettie phone identify,
the the speaker’s rate of speech, the phonetic context, entevel of prosodic
prominence of the word. Looking at the Switchboard corplues phone [aa] varies
in length from 7 to 387 milliseconds (1 to 40 frames), while thhe phone [z]
varies in duration from 7 milliseconds to more than 1.3 sdsof130 frames) in
some utterances! Self-loops thus allow a single state tejpeated many times.

Section 9.2. Applying the Hidden Markov Model to Speech 11

Fig. 9.5 shows a schematic of the structure of a basic phiate{dMM, with
self-loops and forward transitions, for the waie.

Figure 9.5 An HMM for the wordsix, consisting of four emitting states and two
non-emitting states, the transition probabilities A, theervation probabilitieB, and
a sample observation sequence.

For very simple speech tasks (recognizing small numbersoofisvsuch as
the 10 digits), using an HMM state to represent a phone iscgesifi. In general
LVCSR tasks, however, a more fine-grained representatioedsssary. This is be-
cause phones can last over 1 second, i.e., over 100 frantetbebl00 frames are
not acoustically identical. The spectral characteristica phone, and the amount
of energy, vary dramatically across a phone. For exampballrfom Ch. 7 that
stop consonants have a closure portion, which has very éttbustic energy, fol-
lowed by a release burst. Similarly, diphthongs are vowéisse F1 and F2 change
significantly. Fig. 9.6 shows these large changes in sgedti@acteristics over
time for each of the two phones in the word “Ike”, ARPAbet [dy k

To capture this fact about the non-homogeneous nature efgshover time,
in LVCSR we generally model a phone with more than one HMMest@ihe most
common configuration is to use three HMM states, a beginmiriddle, and end
state. Each phone thus consists of 3 emitting HMM statesanisbf one (plus two
non-emitting states at either end), as shown in Fig. 9.8.dommon to reserve the

wobe. word model or phone modelto refer to the entire 5-state phone HMM, and use
pronenonel the wordHMM state (or just state for short) to refer to each of the 3 individual
mmsae subphone HMM states.

To build a HMM for an entire word using these more complex ghorod-
els, we can simply replace each phone of the word model in&gwith a 3-
state phone HMM. We replace the non-emitting start and eatdssfor each phone
model with transitions directly to the emitting state of ghreceding and following
phone, leaving only two non-emitting states for the entioedv Fig. 9.8 shows the
expanded word.

We have now covered the basic structure of HMM states foresegting
phones and words in speech recognition. Later in this chaygewill see further
augmentations of the HMM word model shown in Fig. 9.8, sucthasuse of tri-
phone models which make use of phone context, and the usecisphones to

12

Chapter 9. Automatic Speech Recognition

5000+

Frequency (Hz)

{11

0
0.48152 ay k 0.937203
Time (s)

Figure 9.6 The two phones of the word "Ike”, pronounced [ay k]. Note toba-c
tinuous changes in the [ay] vowel on the left, as F2 rises dnfhlis, and the sharp
differences between the silence and release parts of tistdj]

Figure 9.7 A standard 5-state HMM model for a phone, consisting of tkemé-
ting states (corresponding to the transition-in, steadtestind transition-out regions
of the phone) and two non-emitting states.

Figure 9.8 A composite word model for “six”, [s ih k s], formed by concaéding
four phone models, each with three emitting states.

model silence. First, though, we need to turn to the next @mapt of HMMs for
speech recognition: the observation likelihoods. And itkeorto discuss observa-
tion likelihoods, we first need to introduce the actual atowbservations: feature
vectors. After discussing these in Sec. 9.3, we turn in Sdcth@ acoustic model
and details of observation likelihood computation. We thesntroduce Viterbi

Section 9.3. Feature Extraction 13

decoding and show how the acoustic model and language maglebmbined to
choose the best sentence.

9.3 FEATURE EXTRACTION

THIS SECTION STILL TO BE WRITTEN. IT WILL START FROM DIGITIZA
TION AND WAVE FILE FORMATS AND GO THROUGH PRODUCTION OF
MFCC FILES.

9.4 (COMPUTING ACOUSTICLIKELIHOODS

The last section showed how we can extract MFCC featuregsepting spectral
information from a wavefile, and produce a 39-dimensionatareevery 10 mil-
liseconds. We are now ready to see how to compute the likadilod these feature
vectors given an HMM state. Recall from Ch. 6 that this outixatiihood is com-
puted by theB probability function of the HMM. Given an individual statg and
an observatiom, the observation likelihoods iB matrix gave ug(ot|q;), which
we calledb (i).

For part-of-speech tagging in Ch. 5, each observatjas a discrete symbol
(a word) and we can compute the likelihood of an observativenga part-of-
speech tag just by counting the number of times a given tagrgts a given
observation in the training set. But for speech recognitighrCC vectors are
real-valued numbers; we can’'t compute the likelihood of \egistate (phone)
generating an MFCC vector by counting the number of time$ each vector
occurs (since each one is likely to be unique).

In both decoding and training, we need an observation likell function
that can comput@(o;|g;) on real-valued observations. In decoding, we are given
an observatiom; and we need to produce the probabilt§o; |g;) for each possible
HMM state, so we can choose the most likely sequence of st@tese we have
this observation likelihood function, we need to figure out how to modify the
Baum-Welch algorithm of Ch. 6 to train it as part of trainingyINIs.

9.4.1 \Vector Quantization

One way to make MFCC vectors look like symbols that we coulshtds to build
a mapping function that maps each input vector into one of allsmumber of
symbols. Then we could just compute probabilities on thge#sls by counting,
just as we did for words in part-of-speech tagging. This ideanapping input

14

Chapter 9. Automatic Speech Recognition

VECTOR
QUANTIZATION
\

CODEBOOK

PROTOTYPE VECTOR

CODEWORD

CLUSTERING

K-MEANS
CLUSTERING

DISTANCE METRIC

EUCLIDEAN
DISTANCE

(9.9)

vectors to discrete quantized symbols is calledtor quantization or VQ (Gray,

1984). Although vector quantization is too simple to acthesdcoustic model in
modern LVCSR systems, it is a useful pedagogical step, ays pin important role
in various areas of ASR, so we use it to begin our discussi@tadistic modeling.

In vector quantization, we create the small symbol set bymmagpeach train-
ing feature vector into a small number of classes, and therepresent each class
by a discrete symbol. More formally, a vector quantizatigstem is characterized
by acodebook aclustering algorithm, and adistance metric

A codebookis a list of possible classes, a set of symbols constitutiarab-
ularyV = {vi,Vvs,...,vh }. For each symboly in the codebook we list prototype
vector, also known as aodeword, which is a specific feature vector. For example
if we choose to use 256 codewords we could represent eaatr \ca value from
0 to 255; (this is referred to as 8-bit VQ, since we can represach vector by a
single 8-bit value). Each of these 256 values would be aatamtivith a prototype
feature vector.

The codebook is created by usinglaistering algorithm to cluster all the
feature vectors in the training set into the 256 classesn Thechose a represen-
tative feature vector from the cluster, and make it the pymeovector or codework
for that cluster.K-means clusteringis often used, but we won'’t define clustering
here; see Huang et al. (2001) or Duda et al. (2000) for detd#scriptions.

Once we've built the codebook, for each incoming featurgoreeve com-
pare it to each of the 256 prototype vectors, select the onielwh closest (by
somedistance metrig, and replace the input vector by the index of this prototype
vector. A schematic of this process is shown in Fig. 9.9.

The advantage of VQ is that since there are a finite numberases, for
each classy, we can compute the probability that it is generated by angiisiM
state/sub-phone by simply counting the number of timesdticcin some training
set when labeled by that state, and normalizing.

Both the clustering process and the decoding process esagiistance met-
ric or distortion metric, that specifies how similar two acoustic feature et
are. The distance metric is used to build clusters, to findotopmpe vector for
each cluster, and to compare incoming vectors to the pragsty

The simplest distance metric for acoustic feature vecwEuclidean dis-
tance Euclidean distance is the distance in N-dimensional spateeen the two
points defined by the two vectors. In practice what we refasduclidean dis-
tance is actually the square of the distance. Thus giventaneand a vectoy of
length D, the (square of the) Euclidean distance between ibelefined as:

D
deuclideart®y) = >_ (X —¥i)?
i1

Section 9.4. Computing Acoustic Likelihoods 15

Codebook of 256

(MM 1
M 2
(TN 3
Input Feature Vector 4
(AR
(AR
(AR
(I 1 44—»1 44
Compare to Codebook [T
b
M ©* ©est vector
(R

Output index

Figure 9.9 Schematic architecture of the (trained) vector quantrafVQ) pro-
cess for choosing a symbuw for each input feature vector. The vector is compared
to each codeword in the codebook, the closest entry (by sastende metric) is
selected, and the index of the closest codeword is output.

The (squared) Euclidean distance described in (9.9) (aodrsifor two di-
mensions in Fig. 9.10) is also referred to as the sum-squared and can also be
expressed using the vector transpose operator as:

(9.10) deuclidearqxay) = (X_y)T(X_y)

A
y
Y,
d(x,y)
X
X
2
XY, -
Figure 9.10 Euclidean distance in two dimensions; by the Pythagoreaorém,
the distance between two points in a plane (x1,yl) andy = (x2,y2) d(x,y) =
V(X —%2)2+ (y1— ¥2)%.

The Euclidean distance metric assumes that each of the diomsnof a fea-
ture vector are equally important. But actually each of timethsions have very
different variances. If a dimension tends to have a lot ofavee, then we'd like

16

Chapter 9. Automatic Speech Recognition

MAHALANOBIS
DISTANCE

(9.11)

(9.12)

(9.13)

PROBABILITY
DENSITY FUNCTION

GAUSSIAN MIXTURE
MODELS

GMMS

it to count less in the distance metric; a large differenca @imension with low
variance should count more than a large difference in a dsroarwith high vari-
ance. A slightly more complex distance metric, Mahalanobis distance takes
into account the different variances of each of the dimerssio
If we assume that each dimensiioof the acoustic feature vectors has a vari-
ancec?, then the Mahalanobis distance is:
D

(x5 —yi)?
dmahalanobi§Y) = D o2 I
i—1 i

For those readers with more background in linear algebrashtre general

form of Mahalanobis distance, which includes a full covaciamatrix (covariance
matrices will be defined below):

dmahalanobi€tY) = (x=y) = 1 (x~Y)

In summary, when decoding a speech signal, to compute arstacdile-
lihood of a feature vecton; given an HMM statey; using VQ, we compute the
Euclidean or Mahalanobis distance between the featur@waod each of the N
codewords, choose the closest codeword, getting the cadenaexvy. We then
look up the likelihood of the codeword index given the HMM statej in the
pre-computed likelihood matrix defined by the HMM:

Bj (o) = bj(w) s.t. v is codeword of closest vector tp

Since VQ is so rarely used, we don’t use up space here givingdhations
for modifying the EM algorithm to deal with VQ data; insteade defer discus-
sion of EM training of continuous input parameters to thetrsection, when we
introduce Gaussians.

9.4.2 Gaussian PDFs

Vector quantization has the advantage of being extremealy ®acompute and re-
quires very little storage. Despite these advantagespvgciantization is simply
not a good model of speech. A small number of codewords idfiognt to cap-
ture the wide variability in the speech signal. Speech iplimot a categorical,
symbolic process.

Modern speech recognition algorithms therefore do not eséov quantiza-
tion to compute acoustic likelihoods. Instead, they areethasn computing ob-
servation probabilities directly on the real-valued, aanbus input feature vector.
These acoustic models are based on computipgobability density function
or pdf over a continuous space. By far the most common algorithntdon-
puting acoustic likelihoods the use Gfaussian Mixture Models (GMMs) pdfs,
although the neural nets and, more recently, support vetdehines (SVMs), are
also sometimes used.

Section 9.4.

Computing Acoustic Likelihoods 17

GAUSSIAN
NORMAL
DISTRIBUTION
MEAN

VARIANCE

(9.14)

(9.15)

Let’s begin with the simplest use of Gaussian probabilitynestors, slowly
building up the more sophisticated models that are used.

Univariate Gaussians

The Gaussiandistribution, also known as theormal distribution , is the bell-

curve function familiar from basic statistics. A Gaussiastribution is a function

parameterized by mean, or average value, andwariance, which characterizes
the average spread or dispersal from the mean. We wilitiséndicate the mean,
ando? to indicate the variance, giving the following formula foGaussian func-
tion:

2

exp(_(X—u)

F(XL0) = ——)
ho)= /2102 202

14F ------ m=-1,s=0.2| |

0.8

0.6

0.4

0.2

Figure 9.11 Gaussian functions with different means and variances.

Recall from basic statistics that the mean of a random arighis the ex-
pected value oX. For a discrete variabl¥, this is the weighted sum over the
values ofX (for a continuous variable, it is the integral):

N
M=E(X)=>_p(X)X
i=1

18

Chapter 9. Automatic Speech Recognition

(9.16)

(9.17)

The variance of a random variab¥is the squared average deviation from
the mean:

N
?=E(X—E(X))%) =Y p(X)(X —E(X))?
i=1

When a Gaussian function is used as a probability densitgtifum the area
under the curve is constrained to be equal to one. Then tlmpildy that a ran-
dom variable takes on any particular range of values can igoted by summing
the area under the curve for that range of values. Fig. 9.@@slthe probability
expressed by the area under an interval of a Gaussian.

0.4

o
w
@

« P(shaded region) = .341

Probability Density

o o
o = o o o
= (52 N o1 w

o
o
a

o

I I
-3 -2 -1 0 1 2 3 4

|
IS

Figure 9.12 A Gaussian probability density function, showing a regiammf O to
1 with a total probability of .341. Thus for this sample Gaassthe probability that
a value on the X axis lies between 0 and 1 is .341.

We can use a univariate Gaussian pdf to estimate the prababdt a partic-
ular HMM statej generates the value of a single dimension of a feature vbgtor
assuming that the possible values of (this one dimensioh&)fdbservation fea-
ture vectoro; are normally distributed. In other words we represent treeplation
likelihood functionbj(o;) for one dimension of the acoustic vector as a Gaussian.
Taking, for the moment, our observation as a single realechhumber (a single
cepstral feature), and assuming that each HMM sjatas associated with it a
mean valugy; and variancejjz, we compute the likelihoot;(o;) via the equation
for a Gaussian pdf:

0~ e -C0)

\ /21'[0]-2 20 12

Section 9.4. Computing Acoustic Likelihoods 19

Equation (9.17) shows us how to compis¢o), the likelihood of an indi-
vidual acoustic observation given a single univariate Gaimsfrom statg with its
mean and variance. We can now use this probability in HMM diap

But first we need to solve the training problem; how do we camfius mean
and variance of the Gaussian for each HMM stgt® Let's start by imagining
the simpler situation of a completely labeled training setyhich each acoustic
observation was labeled with the HMM state that producedhitsuch a training
set, we could compute the mean of each state just taking #ragw of the values
for eacho, that corresponded to stateas show in (9.19). The variance could just
be computed from the sum-squared error between each otiseraad the mean,
as shown in (9.19).

14 . .
9.18 i = = S.t. IS Sstatd
(918) f = T t;ot Ok

(9.19) &

—N

1¢ . .
=T > (o —w)? s.t.q is statei
t=1

But since states are hidden in an HMM, we don't know exactljclviobser-
vation vectoro; was produced by which state. What we would like to do is assign
each observation vectoy to every possible staieprorated by the probability that
the HMM was in state at timet. Luckily, we already know how to do this pro-
rating; the probability of being in staieat timet was defined in Ch. 6 a&(i),
and we saw how to computg(i) as part of the Baum-Welch algorithm using the
Forward and Backward probabilities. Baum-Welch is an fiegaalgorithm, and
we will need to do the probability computation &f(i) iteratively since getting a
better observation probability will also help us be more sure of the probability
¢ of being in a state at a certain time. Thus we give equationsdmputing an
updated mean and variang@ido?:

o Ethlzt(i)Ot
9.20 | = ——
O20 W = T e
021 &2 — &)@ —pw)?
! S &)

Equations (9.21) and (9.21) are then used in the forwarévisad (Baum-
Welch) training of the HMM. As we will see, the values|gfando; are first set to
some initial estimate, which is then re-estimated untilitbebers converge.

Multivariate Gaussians

Equation (9.17) shows how to use a Gaussian to compute astaclikelihood for
a single cepstral feature. Since an acoustic observatiarvéstor of 39 features,

20

Chapter 9. Automatic Speech Recognition

(9.22)

(9.23)

(9.24)

DIAGONAL

we’ll need to use a multivariate Gaussian, which allows ussign a probability
to a 39-valued vector. Where a univariate Gaussian is debgeaimeanu and a
varianceo?, a multivariate Gaussian is defined by a mean vegtoi dimension-
ality D and a covariance matrix, defined below. For a typical cepstral feature
vector in LVCSR, D is 39:

F0L2) = (o W o)

The covariance matriX captures the variance of each dimension as well as
the covariance between any two dimensions.

Recall again from basic statistics that the covariance oframdom variable
X andY is the expected value of the product of their average dewiatfrom the
mean:

Z=E[X—EX))(Y-EM)]) =>_ p(¥)(X —E(X))(Y —E(Y))
|

Thus for a given HMM state with mean vectgy and covariance matrix;,
and a given observation vectoy, the multivariate Gaussian probability estimate
is:
by (@) = — == exp((& 1) "%}~)

i 25| i) & Hj

The covariance matriX; expresses the variance between each pair of feature
dimensions. Suppose we made the simplifying assumptidrieth@res in different
dimensions did not covary, i.e., that there was no coraiabetween the variances
of different dimensions of the feature vector. In this cage,could simply keep
a distinct variance for each feature dimension. It turnstioat keeping a separate
variance for each dimension is equivalent to having a camag matrix that isli-
agonal i.e. non-zero elements only appear along the main diagurtae matrix.

The main diagonal of such a diagonal covariance matrix casithe variances of
each dimensiong?,03, ...03;

Let’s look at some illustrations of multivariate Gaussiaftcusing on the
role of the full versus diagonal covariance matrix. We'lpete a simple mul-
tivariate Gaussian with only 2 dimensions, rather than @ehat are typical in
ASR. Fig. 9.13 shows three different multivariate Gaussisntwo dimensions.
The leftmost figure shows a Gaussian with a diagonal covegiamatrix, in which
the variances of the two dimensions are equal. Fig. 9.14 st®waontour plots
corresponding to the Gaussians in Fig. 9.13; each is a $ifcaigh the Gaussian.
The leftmost graph in Fig. 9.14 shows a slice through theatiagequal-variance
Gaussian. The slice is circular, since the variances aral é@gtoth the X and Y
directions.

N
=1

Section 9.4.

Computing Acoustic Likelihoods 21

@) (b) (©)

Figure 9.13 Three different multivariate Gaussians in two dimensioRise first
two have diagonal covariance matrices, one with equalneeiin the two dimensions

[cl) 2] , the second with different variances in the two dimensi{ng, g] , and the

third with non-zero elements in the off-diagonal of the aisace matrix:{ ;L; f } .

The middle figure in Fig. 9.13 shows a Gaussian with a diagoorianc
matrix, but where the variances are not equal. It is cleanfthis figure, an

e
d

especially from the contour slice show in Fig. 9.14, thatwheance is more than

3 times greater in one dimension than the other.

2
|
0 .O
-
2|

(@) (b) ()

Figure9.14 The same three multivariate Gaussians as in the previougfiguom
left to right, a diagonal covariance matrix with equal vade, diagonal with unequa|
variance, and and nondiagonal covariance. With non-dialgmyvariance, knowing
the value on dimension X tells you something about the vatudimension Y.

The rightmost graph in Fig. 9.13 and Fig. 9.14 shows a Gausgit a non
diagonal covariance matrix. Notice in the contour plot ig.FH.14 that the conto
is not lined up with the two axes, as it is in the other two pld&cause of thi

ur
Su

knowing the value in one dimension can help in predictingvilee in the other

dimension. Thus having a non-diagonal covariance matiixval us to model co
relations between the values of the features in multiplesdisions.

r-

Chapter 9. Automatic Speech Recognition

A Gaussian with a full covariance matrix is thus a more poularfodel of
acoustic likelihood than one with a diagonal covariancerimafnd indeed, speech
recognition performance is better using full-covariancugsians than diagonal-
covariance Gaussians. But there are two problems wittcu&riance Gaussians
that makes them difficult to use in practice. First, they dwe/$o compute. A full
covariance matrix ha®? parameters, where a diagonal covariance matrix has only
D. This turns out to make a large difference in speed in real &gfems. Second,
a full covariance matrix has many more parameters and heqgcéres much more
data to train than a diagonal covariance matrix. Using aaiabcovariance model
means we can save room for using our parameters for othestlike triphones.

For this reason, in practice most ASR systems use diagonatieace. We
will assume diagonal covariance for the remainder of thisice.

Equation (9.24) can thus be simplified to the version in (Pi@Svhich in-
stead of a covariance matrix, we simply keep a mean and wa&ritor each di-
mension. Equation (9.25) thus describes how to estimatkkétidood bj(o;) of a
D-dimensional feature vectax given HMM statej, using a diagonal-covariance
multivariate Gaussian.

D .
©25) bj(o) =] #exp<—}[w]>

d=1 /210% 2

Training a diagonal-covariance multivariate Gaussianssrgple generaliza-
tion of training univariate Gaussians. We’'ll do the same rBalfelch training,
where we use the value &f(i) to tell us the likelihood of being in staieat time
t. Indeed, we’'ll use exactly same equation as in (9.21), exitepp now we are
dealing with vectors instead of scalars; the observatiois a vector of cepstral
fgatures, the mean vectfris a vector of cepstral means, and the variance vector

0?7 is a vector of cepstral variances.

0 Ethlf.t(i)Ot
9.26 2 &(o
U S A
(9.27) 6?7 = S &) (o —) (o —)T
| Y1 &)

Gaussian Mixture Models

The previous subsection showed that we can use a multiegBatissian model to
assign a likelihood score to an acoustic feature vectorrg@gen. This models
each dimension of the feature vector as a normal distributBut a particular cep-
stral feature might have a very non-normal distributior dksumption of a normal
distribution may be too strong an assumption. For this rease often model the

Section 9.4.

Computing Acoustic Likelihoods 23

GAUSSIAN MIXTURE
MODEL

GMM

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

observation likelihood not with a single multivariate Gsias, but with a weighted
mixture of multivariate Gaussians. Such a model is call€éslaassian Mixture
Model or GMM . Equation (9.28) shows the equation for the GMM functiore th
resulting function is the sum &fl Gaussians. Fig. 9.15 shows an intuition of how
a mixture of Gaussians can model arbitrary functions.

Figure 9.15 Add figure here showing a mixture of 3 guassians covering etiom
with 3 lumps; SHOW differences in VARIANCE, MEAN, AND WEIGHT

M

X“J'v Z \/W (X_ uk)Tzil(X_ Uk)]

k=
Equatlon (9.29) shows the definition of the output likelildanctionb; (o)

Z Cim————eXH(X~ kjm) " Zjn (@ — Hjm)]
\/ 27T|ij‘

Let’s turn to training the GMM likelihood function. This maeem hard to
do; how can we train a GMM model if we don’t know in advance vihigixture is
supposed to account for which part of each distribution?aR#tat a single multi-
variate Gaussian could be trained even if we didn’t know Wisiiate accounted for
each output, simply by using the Baum-Welch algorithm tbugkhe likelihood of
being in each statgat timet. It turns out the same trick will work for GMMSs; we
can use Baum-Welch to tell us the probability of a certaintarix accounting for
the observation, and iteratively update this probability.

We used the function above to help us compute the state probability. By
analogy with this function, let's defin&mn(j) to mean the probability of being
in state | at timet with the mth mixture component accounting for the output
observatiorn;. We can computé&;m(j) as follows:

Eunl) = 2i=1Nat-1(J)aij Cimbjm(0t) Bt ()
ar(F)

Now if we had the values df from a previous iteration of Baum-Welch, we
can use&m(j) to recompute the mean, mixture weight, and covariance ubieg
following equations:

G, — _2=1&m()o
>t Yom1 &m(i)
& > &m(i)

TS g

24 Chapter 9. Automatic Speech Recognition
T : T
R T2 (i) (0 — L U
033 Sy = St&0)O —pm) (@ —pn)
>t—12_k=1&tm(i)
9.4.3 Probabilities, log probabilities and distance funabns
Up to now, all the equations we have given for acoustic maddiiave used proba-
oerros bilities. It turns out, however, thatlag probability (or logprob) is much easier to
work with than a probability. Thus in practice throughouéesph recognition (and
related fields) we compute log-probabilities rather thasbpbilities.

One major reason that we can't use probabilities is numearderflow. To
compute a likelihood for a whole sentence, say, we are nyiligp many small
probability values, one for each 10ms frame. Multiplyingnygrobabilities re-
sults in smaller and smaller numbers, leading to underflolwe bg of a small
number like.00000001= 108, on the other hand, is a nice easy-to-work-with-
number like—8. A second reason to use log probabilities is computatispaéd.
Instead of multiplying probabilities, we add log-probiti#k, and adding is faster
than multiplying. Log-probabilities are particularly eftnt when we are using
Gaussian models, since we can avoid exponentiating.

Thus for example for a single multivariate diagonal-coaace Gaussian model,
instead of computing:

D 2
1 1 (0g — Ui
we would compute
12 Owd — Mja)?
(9.35) logbj(or) = —édz [Iog(Zn) +0%+ %
=1 J
With some rearrangement of terms, we can rewrite this egu#di pull out a con-
stant C:
1~ (0 — Mig)?
(9.36) logbj(o) =C— 5;07%
= i
where C can be precomputed:
1 D
©37) C=-3> (log(2m) + o%y)

d=1
In summary, computing acoustic models in log domain meanschrsimpler
computation, much of which can be precomputed for speed.
The perceptive reader may have noticed that equation (2863 very much
like the equation for Mahalanobis distance (9.11). Indea&, way to think about
Gaussian logprobs is as just a weighted distance metric.

Section 9.5.

The Lexicon and Language Model 25

A further point about Gaussian pdfs, for those readers watbutus. Al-
though the equations for observation likelihood such as7(9are motivated by
the use of Gaussian probability density functions, the ealiney returns for the
observation likelihoodp; (o), are not technically probabilities; they may in fact be
greater than one. This is because we are computing the valy¢op) at a single
point, rather than integrating over a region. While theltataa under the Gaussian
PDF curve is constrained to one, the actual value at any pointl be greater than
one. (Imagine a very tall skinny Gaussian; the value couldreater than one at
the center, although the area under the curve is still 1f0)jelwere integrating
over a region, we would be multiplying each point by its width which would
bring the value down below one. The fact that the Gaussiamatst is not a true
probability doesn’'t matter for choosing the most likely H\VBtate, since we are
comparing different Gaussians, each of which is missirgdrifactor.

In summary, the last few subsections introduced Gaussiateisifor acous-
tic training in speech recognition. Beginning with simplavariate Gaussian, we
extended first to multivariate Gaussians to deal with theidioensionality acous-
tic feature vectors. We then introduced the diagonal camag simplification of
Gaussians, and then introduced Gaussians mixtures (GMMs).

9.5 THE LEXICON AND LANGUAGE MODEL

Since previous chapters had extensive discussions d¢fipe@m language model
(Ch. 4) and the pronunciation lexicon (Ch. 7), in this settiee just briefly recall
them to the reader.

Language models for LVCSR tend to be trigrams or even fourgragood
toolkits are available to build and manipulate them (SteJck002; Young et al.,
2005). Bigrams and unigram grammars are rarely used foetangabulary appli-
cations. Since trigrams require huge amounts of space Jeswanguage models
for memory-constrained applications like cell phones tienalse smaller contexts.
As we will discuss in Ch. 23, some simple dialogue applicetitake advantage of
their limited domain to use very simple finite state or wegghfinite state gram-
mars.

Lexicons are simply lists of words, with a pronunciation &ach word ex-
pressed as a phone sequence. Publicly available lexidanthe CMU dictionary
(CMU, 1993) can be used to extract the 64,000 word vocalmsadmmonly used
for LVCSR. Most words have a single pronunciation, althoggime words such
as homonyms and frequent function words may have more; grag® number of
pronunciations per word in most LVCSR systems seems to rioge 1 to 2.5.
Sec. 9.12.3 discusses the issue of pronunciation modeling.

26

Chapter 9. Automatic Speech Recognition

9.6 SEARCH AND DECODING

DECODING

(9.38)

LMSF

(9.39)

We are now very close to having described all the parts of goteta speech rec-
ognizer. We have shown how to extract cepstral features foarae, and how
to compute the acoustic likelihodnj (o) for that frame. We also know how to
represent lexical knowledge, that each word HMM is compasfes sequence of
phones, and each of phone of set of subphone states. Final. 4 we showed
how to useN-grams to build a model of word predictability.

In this section we show how to combine all of this knowledgeatve the
problem ofdecoding combining all these probability estimators to produce the
most probable string of words. We can phrase the decodingfiqueas: ‘Given a
string of acoustic observations, how should we choose tirgsbf words which
has the highest posterior probability?’

Recall from the beginning of the chapter the noisy channalehfor speech
recognition. In this model, we use Bayes rule, with the rethialt the best sequence
of words is the one that maximizes the product of two factarnguage model
prior and an acoustic likelihood:

likelihood prior
~ ——
W = argmax P(O|W) P(W)

WeL

Now that we have defined both the acoustic model (in this @nppnd lan-
guage model (in Ch. 4), we are ready to see how to find this maxiprobability
sequence of words. First, though, it turns out that we’lichimemake a modification
to Equation (9.38), because it relies on some incorrectpiedéence assumptions.
Recall that we trained a multivariate Gaussian mixturesifi@s to compute the
likelihood of a particular acoustic observation (a fram&jeg a particular state
(subphone). By computing separate classifiers for eachsticdtame and multi-
plying these probabilities to get the probability of the @whavord, we are severely
underestimating the probability of each subphone. Thiseabse there is a lot
of continuity across frames; if we were to take into accouetdcoustic context,
we would have a greater expectation for a given frame andehemald assign it a
higher probability. We must therefore reweight the two pdoibties. We do this
by add in alanguage model scaling factoror LMSF, also called théanguage
weight. This factor is an exponent on the language model probalft(itV). Be-
causeP(W) is less than one and the LMSF is greater than one (between 55and
in many systems), this has the effect of decreasing the wliiee LM probability:

W = argmaxP(O|W)P(W)-MSF
WweL

Reweighting the language model probabilR§W) in this way requires us to

Section 9.6.

Search and Decoding 27

WORD INSERTION
PENALTY

(9.40)

(9.41)

make one more change. This is becaB$é/) has a side-effect as a penalty for
inserting words. It's simplest to see this in the case of éoum language model,
where every word in a vocabulary of sipé| has an equal probabilit?&—l. In this

case, a sentence withh words will have a language model probability éf for
each of theN words, for a total penalty of oﬁ The largemN is (the more words

in the sentence), the more times tl\i;ispenalty multiplier is taken, and the less
probable the sentence will be. Thus if (on average) the lagguodel probability
decreases (causing a larger penalty), the decoder witipiiver, longer words. If
the language model probability increases (larger pendty) decoder will prefer
more shorter words. Thus our use of a LMSF to balance the dicongdel has the
side-effect of decreasing the word insertion penalty. Teatfthis, we need to add
back in a separateord insertion penalty:

W = argmaxP(O|W)P(W)-MSFwpN
Werl

Since in practice we use logprobs, the goal of our decoder is:

W = argmadogP(O|W) + LMSF x logP(W) + N x logWIP
WeLl

Now that we have an equation to maximize, let’s look at how ¢oadle.
It's the job of a decoder to simultaneously segment the anie into words and
identify each of these words. This task is made difficult byateon, both in terms
of how words are pronounced in terms of phones, and how playeesticulated in
acoustic features. Just to give an intuition of the diffizwt the problem imagine
a massively simplified version of the speech recognitiok, t@swvhich the decoder
is given a series of discrete phones. In such a case, we wool kwhat each
phone was with perfect accuracy, and yet decoding is sffitdit. For example,
try to decode the following sentence from the (hand-lahe¢eduence of phones
from the Switchboard corpus (don't peek ahead!):

[aydihshherdsahmthihngaxbawmuhvihngrihsenlih]

The answer is in the footnofe.The task is hard partly because of coartic-
ulation and fast speech (e.g., [d] for the first phongust). But it's also hard
because speech, unlike English writing, has no spacesiiutijcword boundaries.
The true decoding task, in which we have to identify the pkatethe same time
as we identify and segment the words, is of course much harder

For decoding, we will start with the Viterbi algorithm thaevintroduced in
Ch. 6, in the domain ofligit recognition, a simple task with with a vocabulary
size of 11 (the numbemnethroughnine pluszeroandoh).

Recall the basic components of an HMM model for speech ratiogn

1 1just heard something about moving recently.

28

Chapter 9. Automatic Speech Recognition

e pronunciation lexicon: an HMM state graph structure for each word
e observation likelihoods: bj (o)
e transition probabilities: &

The HMM structure for each word comes from a lexicon of wordrmcia-
tions. Generally we use an off-the-shelf pronunciatioriioiary such as the free
CMuUdict dictionary described in Ch. 7. Recall from page 1& tthe HMM struc-
ture for words in speech recognition is a simple concatenaif phone HMMs,
each phone consisting of 3 subphone states, where evemhstaexactly two tran-
sitions: a self-loop and a loop to the next phones. Thus thé&Htducture for each
digit word in our digit recognizer is computed simply by tadgithe phone string
from the dictionary, expanding each phone into 3 subphosmed,concatenating
together. In addition, we generally add an optional silgrtoene at the end of each
word, allowing the possibility of pausing between words.

Thea andb matrices for the HMM are trained by the Baum-Welch algorithm
in the embedded training procedure that we will describe in Sec. 9.7. For now
we’ll assume that these probabilities have been trained.

Fig. 9.16 shows the resulting HMM for digit recognition; we’simplified by
assuming context-independent phones (monophones) thimecontext-dependent
phones. Note that we've added non-emitting start and enesstaith transitions
from the end of each word to the end state, and a transition fhe end state back
to the start state to allow for sequences of digits. Note #isooptional silence
phones at the end of each word.

Digit recognizers often don’t use word probabilities, gime most digit situa-
tions (phone numbers or credit card numbers) each digitihagaal probability of
appearing. But we've included transition probabilitiemisach word in Fig. 9.16,
mainly to show where such probabilities would be for otherdki of recognition
tasks. As it happens, there are cases where digit proliedbitio matter, such as in
addresses (which are often likely to end in O or 00) or in cekuwhere some num-
bers are lucky and hence more frequent, such as the luckyemsilbn Chinese.

Now that we have an HMM, we can use the same forward and Visdglo-
rithms that we introduced in Ch. 6. Let's see how to use thedod algorithm to
generateP(O|W), the likelihood of an observation sequer@egiven a sequence
of wordsW; we’ll use the single word “five”. In order to compute thisdikhood,
we need to sum over all possible sequences of states; agsfineihas the states
[f], [ay], and [v], a 10-0observation sequence includes mseguences such as the
following:

f ayayayay v v v v
f ay ay ay ay v v v
f f f ay ay ay ay v
f ay ay ay ay ay ay v
f ay ay ay ay ay ay ay

—h —h —h —h
< <<<<

Section 9.6.

Search and Decoding 29

Lexicon
one w ahn
two tuw
three thriy
four faor
five fayv Phone HMM
six sihks
seven sehvaxn
eight eyt O O N
nine nayn
Zero ZierW . @ @ @ ‘
oh ow hAA]

Figure 9.16 An HMM for the digit recognition task. A lexicon specifies thbone
sequence, and each phone HMM is composed of three subphactesigh a Gaus-
sian emission likelihood model. Combining these and addimgptional silence at
the end of each word, results in a single HMM for the whole t&$kte the transition
from the End state to the Start state to allow digit sequeatasbitrary length.

f f ay ay ay ay ay v. v v

The forward algorithm efficiently sums over this large numbkesequences
in O(N2T) time.

Let’'s quickly review the forward algorithm. It is a dynamicogramming
algorithm, i.e. an algorithm that uses a table to store imeliate values as it builds
up the probability of the observation sequence. The forvedgdrithm computes
the observation probability by summing over the probabgiof all possible paths
that could generate the observation sequence. Each cék dbtward algorithm
lattice, forward]t, j] represents the probability of being in stgtafter seeing the
firstt observations, given the automatdnThe value of each cefbrwardft, j] is
computed by summing over the probabilities of every pathdbald lead us to this

30

Chapter 9. Automatic Speech Recognition

(9.42)

cell. Formally, each cell expresses the following prolighbil
forwardt, j] = P(01,02...0t,Gt = j|A) P(w)

Hereq; = j means “the probability that th¢h state in the sequence of states
is statej”. We compute this probability by summing over the extensiohall the
paths that lead to the current cell. An extension of a patim facstate at timet — 1
is computed by multiplying the following three factors:

1. theprevious path probability from the previous cell forwarft— 1,i],

2. thetransition probability a; from previous statéto current statg, and

3. theobservation likelihood bj(o;) that current statg matches observation
symbolt.

The algorithm is described in Fig. 9.17.

function FORwWARD(observation®f len T,state-graphreturns forward-probability

num-states—- NUM-OF-STATES(State-graph
Create a probability matriforward[num-states+2,T+2]
forward[0,0]— 1.0
for each time stepfrom 1to T do
for each stats from 1to num-stateslo
forwards,t] — > [forwards,t —1] + ags] * bs(a)
1 < < num-states
return the sum of the probabilities in the final columnfofward

Figure 9.17 The forward algorithm for computing likelihood of obserieat se-
quence given a word moded|s, §] is the transition probability from current statéo
next states’, andb[s, o] is the observation likelihood &f giveno;. The observation
likelihoodbls, o] is computed by the acoustic model.

Let's see a trace of the forward algorithm running on a sifigaliHMM for
the single wordivegiven 10 observations; assuming 10ms per frame, this cames t
100ms. The HMM structure is shown vertically along the Iéfig. 9.18, followed
by the first 3 time-steps of the forward lattice. The complatéce is shown in
Fig. 9.19, together witB values giving a vector of observation likelihoods for each
frame. These likelihoods could be computed by any acoustidain(Gaussians,
HMMs, etc); in this example we've hand-created simple valfg pedagogical
purposes.

Let's now turn to the question of decoding. Recall from ousdaiiption of
HMMs in Ch. 6 that if we had a whole lot of time, we could do deiogdby
running the forward algorithm for all possible digit seqoesW, assigning each

Section 9.6. Search and Decoding 31

Figure 9.18 The first 3 time-steps of the forward lattice computationtfer word

five TheA transition probabilities are shown along the left edge;Bhabservation
likelihoods are shown in Fig. 9.19.

\% 0 0 | 0.008| 0.0093] 0.0114| 0.00703| 0.00345| 0.00306| 0.00206| 0.00117
AY 0 0.04 | 0.054| 0.0664| 0.0355| 0.016 | 0.00676| 0.00208| 0.000532 0.000109
F 0.8 | 0.32] 0.112| 0.0224| 0.00448 0.000894 0.000179 4.48e-05 1.12e-05 2.8e-06
Time]] 1] 2 [3] 4] 5 | 6 | 7 | 8 | 9 | 10 |

f 0.8f 0.8f 0.7 f 04f 0.4 f 0.4 f 0.4 f 0.5| f 0.5| f 0.5
ay 0.1ay 0.1ay 0.3ay 0.8ay 0.§ay 0.8 ay 0.8ay 0.gay 0.5 ay 0.4
B v 0.gv 0.6v 04v 0.3v 0.3v 0.3v 0.3v 0.6 v 0.8v 0.9

p 04p 04p 02p 04p 0.1p 0.1p 0.1p 0.1p 0.3p 0.3
iy 0.1]iy 0.1jiy 0.3/iy 0.6/iy 0.6 iy 0.6] iy 0.6| iy 0.5| iy 0.5| iy 0.4

Figure 9.19 The Forward lattice for 10 frames of the wdiide, consisting of 3 emitting state§ @y,
V), plus non-emitting start and end states (not shown). Theimohalf of the table gives part of the
B observation likelihood vector for the observatiomt each framep(o|q) for each phone). B values

are created by hand for pedagogical purposes. This tablenassthe HMM structure fdiive shown in
Fig. 9.18, each emitting state having a .5 loopback protigbil

a probability, and then choosing the maximum. Since we doave a prespeci-
fied word segmentation, we would have to consider every plessegmentation
(word boundary locations) of every possible word sequenaking the problem
exponential. Instead of this, we use the Viterbi algoritlimagtomatically find the
most likely word sequence (or, as we will see, an approxonitin timeO(N2T).
Fig. 9.20 shows the Viterbi algorithm, repeated from Ch. 5.

Recall that the goal of the Viterbi algorithm is to find the t&site sequence
g = (010203..-G) given the set of observatiors= (010203...0;). It needs to
also find the probability of this state sequence. Note thaMiterbi algorithm is
identical to the Forward algorithm except that it takes th&Xvbver the previous
path probabilities where Forward takes the SUM.

32

Chapter 9. Automatic Speech Recognition

function VITERBI(observation®f len T,state-graphreturns best-path

num-states—- NUM-OF-STATESstate-graph
Create a path probability matrisiterbi[num-states+2,T+2]
viterbi[0,0] —1.0
for each time stepfrom 1to T do
for each statsfrom 1to num-stateslo
viterbi[s, t] «— max [viterbi[s,t —1] * ags] * bs(or)
1 < ¢< num-states ’
back-pointefs,tj— argmax | viterbi[s,t — 1] « ag |
1 < ¢ < num-states

Backtrace from highest probability state in final columwibérbi[] and return path

Figure 9.20 Viterbi algorithm for finding optimal sequence of tags. Givan ob-
servation sequence of words and an HMM (as defined by taedb matrices), the
algorithm returns the state-path through the HMM which grissimaximum likeli-
hood to the observation sequenegs’, g is the transition probability from previous
states' to current state, andbs(oy) is the observation likelihood afgiveno;. Note
that states 0 and N+1 are non-emitting start and end states.

Fig. 9.21 shows the computation of the first three time-siegbe Viterbi
lattice corresponding to the forward lattice in Fig. 9.18e Wave again used the
made-up probabilities for the cepstral observations; heralso follow common
convention in not showing the zero cells in the upper lefhear Note that only the
middle cell in the third column differs from Viterbi to Fornéh Fig. 9.19 shows
the complete lattice.

Note the difference between the final values from the Vitarlal Forward al-
gorithms for this (made-up) example. The Forward algorigives the probability
of the observation sequence as .00128, which we get by sugrtirerfinal column.
The Viterbi algorithm gives the probability of the obserwatsequence given the
best path, which we get from the Viterbi matrix as .000493e Vhierbi probabil-
ity is much smaller than the Forward probability, as we sti@xpect since Viterbi
comes from a single path, where the Forward probabilityessiim over all paths.

The real usefulness of the Viterbi decoder, of course, hatsiability to de-
code a string of words. In order to do cross-word decodingnee to augment
the A matrix, which only has intra-word state transitions, wkk inter-word prob-
ability of transitioning from the end of one word to the begirg of another word.
The digit HMM model in Fig. 9.16 showed that we could just treach word as in-
dependent, and use only the unigram probability. HighdedX-grams are much
more common. Fig. 9.23, for example, shows an augmentafitreaigit HMM
with bigram probabilities.

Section 9.6. Search and Decoding 33

Figure 9.21 The first 3 time-steps of the viterbi lattice computation ttoe word

five TheA transition probabilities are shown along the left edge;Bhabservation
likelihoods are shown in Fig. 9.22.

\% 0 0 | 0.008| 0.0072| 0.00672 0.00403| 0.00188| 0.00161| 0.000667 0.000493
AY 0 0.04 | 0.048| 0.0448| 0.0269| 0.0125 | 0.00538| 0.00167| 0.000428 8.78e-05
F 0.8 | 0.32] 0.112| 0.0224| 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06
Tme][1 | 2| 8] 4 | 5 | 6 | 7 | 8 | 9 | 10 |

f 0.8f 0.8f 0.7 f 04f 0.4 f 0.4 f 0.4|f 0.5| f 0.5| f 0.5
ay 0.1ay 0.1ay 0.3ay 0.8ay 0.§ay 0.8 ay 0.8ay 0.qay 0.5 ay 0.4
B v 0.6v 0.6v 04v 0.3v 0.3v 0.3v 0.3v 0.6 v 0.8v 0.9

p 04p 04p 02p 04p 0.1p 0.1p 0.1p 0.1p 0.3p 0.3
iy 0.1/iy 0.1]iy 0.3/iy 0.6/iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.22 The Viterbi lattice for 10 frames of the woffile, consisting of 3 emitting state§ @y,
V), plus non-emitting start and end states (not shown). Theimohalf of the table gives part of the
B observation likelihood vector for the observatiomt each framep(o|q) for each phone). B values

are created by hand for pedagogical purposes. This tablenaessthe HMM structure fdiive shown in
Fig. 9.18, each emitting state having a .5 loopback protigbil

A schematic of the HMM trellis for such a multi-word decoditagk is shown
in Fig. 9.24. The intraword transitions are exactly as showrig. 9.21. But now
between words we've added a transition. The transition gividty on this arc,
rather than coming from th& matrix inside each word, comes from the language
modelP(W).

Once the entire Viterbi lattice has been computed for theraice, we can
start from the most-probable state at the final time step alhoWf the backtrace
pointers backwards to get the most probable string of statat hence the most
probable string of words. Fig. 9.25 shows the backtracetesrbeing followed
back from the best state, which happens to b&aeventually throughvy andws,

34

Chapter 9. Automatic Speech Recognition

BEAM SEARCH

BEAM WIDTH

ACTIVE LIST

p(one | one)

p(one | zero)

p(zero | zero)

Figure 9.23 A bigram grammar network for the digit recognition task. Tiie
grams give the probability of transitioning from the end aEavord to the beginning

of the next.

resulting in the final word stringriwy - - - Wo.

The Viterbi algorithm is much more efficient than expondhtieunning the
forward algorithm for each possible word string. Nonethg]ét is still slow, and it
is fair to say that a great portion of modern research in $peszognition has been
on ways to speed up the decoding process. Thus in practi@gga-Vocabulary
recognition we do not consider all possible words when tgerighm is extending
paths from one state-column to the next. Instead, low-foitibapaths are pruned
at each time step and not extended to the next state column.

This pruning is usually implemented vileam search(Lowerre, 1968). In
beam search, at each timewe first compute the probability of the best (most-
probable) state/patD. We then prune away any state which is worse tBaloy
some fixed thresholdbgam width) 8. We can talk about beam-search in both the
probability and negative log probability domain. In the lpability domain any
path/state whose probability is less th@aD is pruned away; in the negative log
domain, any path whose whose cost is greater @eD is pruned. Beam search is
implemented by keeping for each time stepaative list of states. Only transitions
from these words are extended when moving to the next tinpe ste

Making this beam search approximation allows a significpeed-up at the
cost of a degradation to the decoding performance. Huanfj €081) suggest
that empirically a beam size of 5-10% of the search spacefii€isat; 90-95%

Section 9.7. Embedded Training 35

Q ° °)
w, ®)
XD 3 L
K
w, QO
Q
K
W QO
D
0 1 2 3 T
Time
Figure 9.24 The HMM Viterbi trellis for a bigram language model. The atrord
transitions are exactly as shown in Fig. 9.21. Between war@stential transition is
added (shown as a dotted line) from the end state of each wdhe teginning state
of every word, labeled with the bigram probability of the wquair.

of the states are thus not considered. Because in practiseimplementations
of Viterbi use beam search, some of the literature uses thelieam searchor
time-synchronous beam searclinstead of Viterbi.

9.7 BEMBEDDED TRAINING

We turn now to see how an HMM-based speech recognition sysenained.
We've already seen some aspects of training. In Ch. 4 we ghdwe to train
a language model. In Sec. 9.4, we saw and saw how GMM acousiielsare
trained by augmenting the EM algorithm to deal with trainiihg means, variances,
and weights. We also saw how posterior AM classifiers like /& neural nets
could be trained, although for neural nets we haven't yat $esv we get training
data in which each frame is labeled with a phone identity.

In this section we complete the picture of HMM training by wiay how this
augmented EM training algorithm fits into the whole procesgaining acoustic
models. For review, here are three components oatimeistic model

e pronunciation lexicon: an HMM state graph structure for each word
e observation likelihoods: bj (o)

36

Chapter 9. Automatic Speech Recognition

Time

Figure 9.25 Viterbi backtrace in the HMM trellis. The backtrace startshie final
state, and results in a best phone string from which a wointhsis derived.

e transition probabilities: &

We will assume that the pronunciation lexicon, and thus #®dHMM state
graph structure for each word, is pre-specified as the siimgar HMM structures
with loopbacks on each state that we saw in Fig. 9.8 and Fig. 9ln general,
speech recognition systems do not attempt to learn thetgteuof the individual
word HMMs. Thus we only need to train tiBzandA matrices.

The simplest possible training methodhesnd-labeled isolated wordtrain-
ing, in which we train separate ttzand A matrices for the HMMs for each word
based on hand-aligned training data. We are given a tragurgus of digits, where
each instance of a spoken digit is stored in a wavefile, anid tvé start and end
of each word and phone hand-segmented. Given such a haglddadatabase, we
can compute th& Gaussians observation likelihoods and #heansition proba-
bilities by merely counting in the training data! THhetransition probability are
specific to each word, but tH® Gaussians would be shared across words if the
same phone occurred in multiple words.

Unfortunately, hand-segmented training data is rarely usdraining sys-
tems for continuous speech. One reason is that it is verynsiygeto use humans
to hand-label phonetic boundaries; it can take up to 400gireal time (i.e. 400
labeling hours to label each 1 hour of speech). Another resshat humans don't
do phonetic labeling very well for units smaller than the péopeople are bad at
consistently finding the boundaries of subphones.

Section 9.7. Embedded Training 37

For this reason, speech recognition systems train eacteghbtivi embed-
ded in an entire sentence, and the segmentation and phgmenaiit are done
automatically as part of the training procedure. This erdizoustic model training

EMBEDDER process is therefore calleinbedded training Hand phone segmentation do still
play some role, however, for example for bootstrappingahslystems for discrim-
inative (SVM; non-Gaussian) likelihood estimators.

In order to train a simple digits system, we’ll need a tragniorpus of spoken
digit sequences. For simplicity assume that the trainingu®is separated into
separate wavefiles, each containing a sequence of spokits &igr each wavefile,
we’'ll need to know the correct sequence of digit words. Willls associate with
each wavefile a transcription (a string of words). We'll alg®d a pronunciation
lexicon and a phoneset, defining a set of (untrained) phond/BIMFrom the
transcription, lexicon, and phone HMMs, we can build a “véheéntence” HMM
for each sentence, as shown in Fig. 9.26.

Transcription Nine four oh two two Wavefile

Y v
one wahn

PI{'VO tUWI L_H__H__H__H__H__H__f
ree thriy T

Lexicon | ™
eight eyt '
nne nayn
zero0 ziyrow
oh ow

Feature Extraction

TTYYTYYTOYYY

\ naynfaorowtuwtuw

w b3S S00848 (T

Figure 9.26 The input to the embedded training algorithm; a wavefile akgm digits with a corre
sponding transcription. The transcription is converted mraw HMM, ready to be aligned and trained
against the cepstral features extracted from the wavefile.

We are now ready to train the transition matrix A and outpkelihood esti-
mator B for the HMMs. The beauty of the Baum-Welch-based gigma for em-
bedded training of HMMs is that this is all the training data meed. In particular,
we don't need phonetically transcribed data. We don't evedrto know where

38

Chapter 9. Automatic Speech Recognition

FLAT START

VITERBI TRAINING

FORCED ALIGNMENT

each word starts and ends. The Baum-Welch algorithm will suen all possible
segmentations of words and phones, usjj(g), the probability of being in statg
at timet and generating the observation sequence O.

We will, however, need an initial estimate for the transitemd observation
probabilitiesa;; andbj(o;). The simplest way to do this is with féat start. In
flat start, we first set to zero any HMM transitions that we warte ‘structurally
zero'’; transitions from later phones to earlier phones,efcample, They prob-
ability computation in Baum-Welch includes the previousueaof a;j, so those
zero values will never change. Then we make all the rest ofrtbe-zero) HMM
transitions equiprobable. Thus the two transitions outamhestate (the self-loop
and the transition to the following subphone) each woulcereaprobability of 0.5.
For the Gaussians, a flat start initializes the mean andnaifor each Gaussian
identically, to the global mean and variance for the enta@ing data.

Now we have initial estimates for treeandb probabilities. For a standard
Gaussian HMM system, we now run multiple iterations of themaNelch algo-
rithm on the entire training set. Each iteration modifieskhM parameters, and
we stop when the system converges. During each iteratiotisagssed in Ch. 6,
we compute the forward and backward probabilities for eastience given the
initial A andB probabilities, and use them to re-estimate ArendB probabilities.
We also apply the various modifications to EM discussed irptkgious section to
correctly update the Gaussian means and variances fovandtie Gaussians. We
will discuss in Sec. 9.10 how to modify the embedded traimilggrithm to handle
mixture Gaussians.

As we've seen above, the Baum-Welch algorithm is used redbats a
component of the embedded training process. Baum-Welclpe@sé, (i), the
probability of being in state at timet, by using forward-backward to sum over
all possible paths that were in statemitting symbolo; at timet. This lets us
accumulate counts for re-estimating the emission proibali| (o) from all the
paths that pass through stgtat timet.

There is an efficient approximation to Baum-Welch trainihgttmakes use
of the Viterbi algorithm. InViterbi training , instead of accumulating counts by a
sum over all paths that pass through a sjadetimet, we approximate this by only
choosing the Viterbi (most-probable) path. Thus insteacuohing EM at every
step of the embedded training, we repeatedly run Viterbi.

Running the Viterbi algorithm over the training data in thay is called
forced Viterbi alignment or justforced alignment In Viterbi training (unlike in
Viterbi decoding on the test set) we know which word string$sign to each ob-
servation sequence, So we can ‘force’ the Viterbi algoritbrpass through certain
words, by setting thejjs appropriately. A forced Viterbi is thus a simplification
of the regular Viterbi decoding algorithm, since it only hadigure out the cor-

Section 9.8. Evaluation: Word Error Rate 39

rect state (subphone) sequence, but doesn’t have to disttevevord sequence.
The result is dorced alignment the single best state path corresponding to the
training observation sequence. We can now use this alignof¢iMM states to
observations to accumulate counts for re-estimating thévHdrameters.

The equations for retraining a (non-mixture) Gaussian feokiterbi align-
ment are as follows:

. 1 . .
9.43 i = —= S.t. IS statd
(943 f = T t;ot Gk

T
(9.44) & = %;(o[—)? s.t.q is statei

We saw these equations already, as (9.19) and (9.19) on Rageh&n we
were ‘imagining the simpler situation of a completely lamktraining set’.

It turns out that this forced Viterbi algorithm is also usedtfie embedded
training of hybrid models like HMM/MLP or HMM/SVM systems. &\begin with
an untrained MLP, and using its noisy outputs asBhalues for the HMM, per-
form a forced Viterbi alignment of the training data. Thiggament will be quite
errorful, since the MLP was random. Now this (quite errgridkerbi alignment
give us a labeling of feature vectors with phone labels. Weths labeling to
retrain the MLP. The counts of the transitions which are tiaikethe forced align-
ments can be used to estimate the HMM transition probaslitiVe continue this
hill-climbing process of neural-net training and Viterligament until the HMM
parameters begin to converge.

9.8 EVALUATION: WORD ERRORRATE

worperrOR The standard evaluation metric for speech recognitioregystis theword error
rate. The word error rate is based on how much the word stahgmed by the
recognizer (often called thieypothesizedword string) differs from a correct or
referencetranscription. Given such a correct transcription, the tep in com-
puting word error is to compute theinimum edit distance in words between the
hypothesized and correct strings, as described in Ch. 3ré&sudt of this compu-
tation will be the minimum number of worsubstitutions, word insertions, and
word deletions necessary to map between the correct and hypothesizedsstrin
The word error rate (WER) is then defined as follows (note lleaiuse the equa-
tion includes insertions, the error rate can be great th@#a)0

Insertionst Substitutionst- Deletions
Total Words in Correct Transcript

Word Error Rate= 100x

40

Chapter 9. Automatic Speech Recognition

ALIGNMENTS

Sentence Error Rate= 100x

We sometimes also talk about the SER (Sentence Error Rat&@hvells us
how many sentences had at least one error:
of sentences with at least one word error
total # of sentences
Here is an example of trignmentsbetween a reference and a hypothesized
utterance from the CALLHOME corpus, showing the counts usetbmpute the
word error rate:

REF: | ** * UM the PHONE IS i LEFT THE portable *** PHONE UPSTRAIRS last night
HYP: i GOT IT TO the **** FULLEST i LOVE TO portable FORM OF ST®ES last night

Eval: |

S D S S S | S S

SENTENCE ERROR
RATE

This utterance has six substitutions, three insertiond ome deletion:

Word Error Rate= 100%;1 = 66.6%

The standard method for implementing minimum edit disteanue: comput-
ing word error rates is a free script called!| i t e, available from the National
Institute of Standards and Technologies (NIST) (NIST, 20G&1 i t e is given
a series of reference (hand-transcribed, gold-standardesces and a matching
set of hypothesis sentences. Besides performing aligrsnant computing word
error rate, sclite performs a number of other useful tasks. eikample, it gives
useful information forerror analysis, such as confusion matrices showing which
words are often misrecognized for others, and gives sumstatistics of words
which are often inserted or deletesic| i t e also gives error rates by speaker (if
sentences are labeled for speaker id), as well as usefigtisglike thesentence
error rate , the percentage of sentences with at least one word error.

Finally, scl i t e can be used to compute significance tests. Suppose we
make some changes to our ASR system and find that our wordrateohas de-
creased by 1%. In order to know if our changes really imprabéngs, we need
a statistical test to make sure that the 1% difference is uit ue to chance.
The standard statistical test for determining if two worntberates are different is
the Matched-Pair Sentence Segment Word Error (MAPSSWE)véch is also
available inscl it e.

The MAPSSWE test is a parametric test that looks at the difiez between
the number of word errors the two systems produce, averagedsaa number of
segments. The segments may be quite short or as long as en @tdrance; in
general we want to have the largest number of (short) segneotrder to justify
the normality assumption and for maximum power. The testireg that the errors
in one segment be statistically independent of the erroasiather segment. Since
ASR systems tend to use trigram LMs, this can be approximbyedefining a

Section 9.8.

Evaluation: Word Error Rate 41

(9.45)

(9.46)

segment as a region bounded on both sides by words that batbnigers get
correct (or turn/utterance boundaries).

Here’s an example from (?) with four segments, labeled inammumerals:
EXAMPLE TO BE REPLACED

| Il 111 IV
REF: |it was|the best|of|[times it|was the worst|of tines| |it was

I I I I I (.
SYS A |ITS |the best|of|tines it|IS the worst |of times|ORlit was

| | | | | [
SYS B:|it was|the best| |times it|WON the TEST |of tinmes| |it wa

In region I, system A has 2 errors (a deletion and an ins@réod system B
has 0; in region Ill system A has 1 (substitution) error anstay B has 2. Let's
defineN‘A is the number of errors made on segridayt systemA, N} is the number
of errors made on segmenby systemB, andZ = N,k— N,g,i =1,2,---,nwhere
nis the number of segments. For example we can see above ¢hsgqlience of
Z values is{2,—1,—1,1}. Intuitively, if the two systems are identical, we would
expect the average difference, i.e. the average of tredues, to be zero. If we call
the true average of the differenamsy,, we would thus like to know whethenu, =
0. Following closely the original proposal and notation afick and Cox (1989),
we can estimate the true average from our limited sampig asy"" ; Zi/n.

The estimate of the variance of tHgs is:
2 1 7 2
—) i — Mz
2= _:1(W)

(9]

Let

Hz
az/v/n

For a large enough (> 50) W will approximately have a normal distribution with
unit variance. The null hypothesis 4 : 4, = 0, and it can thus be rejected if
2% P(Z > |w|) < 0.05 (two-tailed) orP(Z > |w|) < 0.05 (one-tailed). wheré& is
standard normal and is the realized valugV; these probabilities can be looked
up in the standard tables of the normal distribution.

Could we improve on word error rate as a metric? It would be nfor
example, to have something which didn't give equal weiglemMery word, perhaps
valuing content words likduesdaymore than function words lika or of. While
researchers generally agree that this would be a good ideas iproved difficult
to agree on a metric that works in every application of ASR.dfalogue systems,
however, where the desired semantic output is more cleaetacnealledconcept
error rate has proved extremely useful, and will be discussed in Chn23age??.

W=

42

Chapter 9. Automatic Speech Recognition

9.9 ADVANCED SEARCHALGORITHMS

(9.47)

(9.48)

VITERBI
APPROXIMATION

There are two main limitations of the Viterbi decoder. Fitke Viterbi decoder
does not actually compute the sequence of words which is probable given
the input acoustics. Instead, it computes an approximatiohis: the sequence of
states(i.e., phonesor subphoneswhich is most probable given the input. More
formally, recall that the true likelihood of an observatieegquencd® is computed
by the Forward algorithm by summing over all possible paths:
P(OW) =) P(O,SW)

se]
The Viterbi algorithm only approximates this sum by using grobability of the
best path:

P(O|W) ~ maxP(O, W)
55

It turns out that thisviterbi approximation is not too bad, since the most
probable sequence of phones usually turns out to correspahé most probable
sequence of words. But not always. Consider a speech remogei/stem whose
lexicon has multiple pronunciations for each word. Suppbsecorrect word se-
guence includes a word with very many pronunciations. Stheeprobabilities
leaving the start arc of each word must sum to 1.0, each oétphasnunciation-
paths through this multiple-pronunciation HMM word modell\wave a smaller
probability than the path through a word with only a singlerpmciation path.
Thus because the Viterbi decoder can only follow one of theseunciation paths,
it may ignore this word in favor of an incorrect word with ordye pronunciation
path. In essence, the Viterbi approximation penalizes swiith many pronuncia-
tions.

A second problem with the Viterbi decoder is that it is implolesor expen-
sive for it to take advantage of many useful knowledge sauré®r example the
Viterbi algorithm as we have defined it cannot take compldt@atage of any lan-
guage model more complex than a bigram grammar. This is beaaiuthe fact
mentioned earlier that a trigram grammar, for example atésd thedynamic pro-
gramming invariant. Recall that this invariant is the simplifying (but incocte
assumption that if the ultimate best path for the entire olag®n sequence hap-
pens to go through a statg, that this best path must include the best path up to
and including statej. Since a trigram grammar allows the probability of a word to
be based on the two previous words, it is possible that thietbhgsm-probability
path for the sentence may go through a word but not includéeise path to that
word. Such a situation could occur if a particular wargd has a high trigram
probability givenwy,w;, but that conversely the best pathwp didn't includew,

Section 9.9.

Advanced Search Algorithms 43

STACK DECODER

A*

A™ SEARCH

N-BEST

RESCORED

(i-e., P(wy|wg, W;) was low for allg). Advanced probabilistic LMs like SCFGs also
violate the same dynamic programming assumptions.

There are two solutions to these problems with Viterbi dezpdThe most
common is to modify the Viterbi decoder to return multipletgodial utterances,
instead of just the single best, and then use other high-language model or
pronunciation-modeling algorithms to re-rank these mldtoutputs (?; Schwartz
and Austin, 1991; ?; Murveit et al., 1993).

The second solution is to employ a completely different dawpalgorithm,
such as thetack decoder or A* decoder (Jelinek, 1969; Jelinek et al., 1975). This
is an example of th&* searchdeveloped in artificial intelligence, although stack
decoding actually came from the information theory litaratand the link with Al
best-first search was noticed only later (Jelinek, 1976).

9.9.1 Multipass Decoding:N-best lists and lattices

In multiple-pass decodingwe break up the decoding process into two stages. In
the first stage we use fast, efficient knowledge sources oritigs to perform a
non-optimal search. So for example we might use an unsagdtest but time-and-
space efficient language model like a bigram, or use simglg@oustic models. In
the second decoding pass we can apply more sophisticatesloer decoding
algorithms on a reduced search space. The interface betivesa passes is an
N-best list or word lattice.

The simplest algorithm for multipass decoding is to modifg Witerbi al-
gorithm to return theN-bestsentences (word sequences) for a given speech input.
Suppose for example a bigram grammar is used with sudN-bast-Viterbi al-
gorithm to return the 1000 most highly-probable senteneash with their AM
likelihood and LM prior score. This 1000-best list can nowdassed to a more
sophisticated language model like a trigram grammar. Thi8 hM is used to
replace the bigram LM score of each hypothesized sentertteaniew trigram
LM probability. These priors can be combined with the adoustelihood of each
sentence to generate a new posterior probability for eauteisee. Sentences are
thusrescored and re-ranked using this more sophisticated probabiliig. %27
shows an intuition for this algorithm.

There are a number of algorithms for augmenting the Vitelgporithm to
generateN-best hypotheses. It turns out that there is no polynonmad-tadmis-
sible algorithm for finding théN most likely hypotheses (?). There are however,
a number of approximate (non-admissible) algorithms; weimtroduce just one
of them, the “ExaciN-best” algorithm of Schwartz and Chow (1990). In Exact
N-best, instead of each state maintaining a single pathttzexek we maintain up
to N different paths for each state. But we'd like to insure thaise paths corre-

44

Chapter 9. Automatic Speech Recognition

Simple Smarter
Knowledge Knowledge
Source Source
'. : N-Best List
isnppeuﬁch | N-Best ;éiif%vzlwaaspgi:fg]mn::;g.._tz get?
. ?In a hole in the ground... A .
S :) Decoder ?If music be Ihef%od of love... Rescorlng :
If TA‘?&CO??OU]: ' 2If music be the foot of dove..,

1-Best Utterance

i, If music be the
vy # food Of love...

Figure 9.27 The use ofN-best decoding as part of a two-stage decoding mogdel.

Efficient but unsophisticated knowledge sources are useetton theN-best utter-
ances. This significantly reduces the search space for tlemdgass models, which

are thus free to be very sophisticated but slow.

spond to different word paths; we don’t want to wasteMyraths on different state
sequences that map to the same words. To do this, we keepcfopath thevord
history, the entire sequence of words up to the current word/stédtevol paths
with the same word history come to a state at the same time, evgenthe paths
and sum the path probabilities. To keep thdest word sequences, the resulting

algorithm requireO(N) times the normal Viterbi time.

AM LM
Rank Path logprob logproh
1 it's an area that's naturally sort of mysterious -7193.53 -20.25
2 that's an area that’s naturally sort of mysterious -7282. -21.11
3 it's an area that's not really sort of mysterious -7221.68 -18.91
4, that scenario that’s naturally sort of mysterious -7189. -22.08
5. there’s an area that’s naturally sort of mysterious -71398 -21.34
6 that's an area that's not really sort of mysterious -7220. -19.77
7 the scenario that's naturally sort of mysterious -72P5.4 -21.50
8 so it's an area that’s naturally sort of mysterious -7995. -21.71
9. that scenario that’s not really sort of mysterious -7347. -20.70
10. there’s an area that’s not really sort of mysterious 6/22 -20.01

by the CU-HTK BN system (thanks to Phil Woodland). Log
language model scale factor (LMSF) is 15.

Figure 9.28 An example 10-Best list from the Broadcast News corpus, yced

prolse Uog0; the

The result of any of these algorithms is Biabest list li

ke the one shown

in Fig. 9.28. In this case the correct hypothesis is the fingt, dout of course the
reason to usé\-best lists is that isn’t always the case. Each sentence iN-an
best list is also annotated with an acoustic model proliglaihid a language model

Section 9.9.

Advanced Search Algorithms 45

WORD LATTICE

LATTICE ERROR
RATE

probability. This allows a second-stage knowledge sowaeplace one of those
two probabilities with an improved estimate.

One problem with amN-best list is that whem is large, listing all the sen-
tences is extremely inefficient. Another problem is tRdbest lists don’t give quite
as much information as we might want for a second-pass dec&de example,
we might want distinct acoustic model information for eacbravhypothesis so
that we can reapply a new acoustic model for the word. Or wéntwigint to have
available different start and end times of each word so tleatan apply a new
duration model.

For this reason, the output of a first-pass decoder is usaatipre sophisti-
cated representation calledrerd lattice (Murveit et al., 1993; Aubert and Ney,
1995). A word lattice is a directed graph that efficiently regents much more
information about possible word sequences. In some systeoaes in the graph
are words and arcs are transitions between words. In otaers,represent word
hypotheses and nodes are points in time. Let's use this laibelel, and so each
arc represents lots of information about the word hypothescluding the start
and end time, the acoustic model and language model prithithe sequence
of phones (the pronunciation of the word), or even the phamatibns. Fig. 9.29
shows a sample lattice corresponding to Nwbest list in Fig. 9.28. Note that
the lattices contains many distinct links (records) for aene word, each with
a slightly different starting or ending time. Such lattiGag not produced from
N-best lists; instead, a lattice is produced during firssp#ecoding by including
some of the word hypotheses which were active (in the beamddat time-step.
Since the acoustic and language models are context-degenidginct links need
to be created for each relevant context, resulting in a lawmeber of links with the
same word but different times and contexXtsbest lists like Fig. 9.28 can also be
produced by first building a lattice like Fig. 9.29 and theating through the paths
to produceN word strings.

The fact that each word hypothesis in a lattice is augmergpdrately with
its acoustic model likelihood and language model probghélilows us to rescore
any path through the lattice, using either a more sophtstickanguage model or a
more sophisticated acoustic model. As witkbest lists, the goal of this rescoring
is to replace thel-best utterancewith a different utterance that perhaps had a
lower score on the first decoding pass. For this second-passi&dge source to
get perfect word error rate, the actual correct sentencddamave to be in the
lattice orN-best list. If the correct sentence isn't there, the rescpkinowledge
source can't find it. Thus it is important when working withadtice orN-best list
to consider the baseliriattice error rate (Woodland et al., 1995; Ortmanns et al.,
1997): the lower bound word error rate from the lattice. Tdiide error rate is
the word error rate we get if we chose the lattice path (théeser) that has the

46

Chapter 9. Automatic Speech Recognition

ORACLE

LATTICE DENSITY

WORD GRAPH

SO IT'S
—

IT'S

TH.@. NATURALLY

THAT'S
=

NOT . SORT

; | og=—=ag .,

LRyl = REALLY
SCENARIO - 'MYSTERIOUS

[——
es—————ge

THE
N,
THAT

*——e

Figure 9.29 Word lattice corresponding to thé-best list in Fig. 9.28. The arcs
beneath each word show the different start and end timesitdr word hypothesis in
the lattice; for most of these we've shown schematically leawh word hypothesis
must start at the end of a previous hypothesis. Not shownsfiigfure are the acoustiq
and language model probabilities that decorate each arc.

lowest word error rate. Because it relies on perfect knogdedf which path to
pick, we call this aroracle error rate, since we need some oracle to tell us with
sentence/path to pick.

Another important lattice concept is thadtice density, which is the number
of edges in a lattice divided by the number of words in thereafee transcript.
As we saw schematically in Fig. 9.29, real lattices are ofteinemely dense, with
many copies of individual word hypotheses at slightly dif& start and end times.
Because of this density, lattices are often pruned (?, ?).

Besides pruning, lattices are often simplified into a défer more schematic
kind of lattice that is sometimes calledveord graph or finite state machine
although often it’s still just referred to as a word latti¢e.these word graphs, the
timing information is removed and multiple overlapping Espof the same word
are merged. The timing of the words is left implicit in theustiure of the graph.

In addition, the acoustic model likelihood information ésrroved, leaving only the
language model probabilities. The resulting graph is a htey FSA, which is a
natural extension of aN-gram language model; the word graph corresponding to
Fig. 9.29 is shown in Fig. 9.30. This word graph can in fact eduas the language
model for another decoding pass. Since such a wordgrapbdgegmodel vastly
restricts the search space, it can make it possible to usplimatted acoustic model
which is too slow to use in first-pass decoding.

Section 9.9.

Advanced Search Algorithms 47

(9.49)

CONFUSION
NETWORKS

MESHES
SAUSAGES

PINCHED LATTICES

AN AREA THAT"S NATURALLY

THAT .’—J

SCENARIO

SORT

.F%ALLY

OF MYSTERIOUS

Figure 9.30 Word graph corresponding to tiebest list in Fig. 9.28. Each word
hypothesis in the lattice also has language model protiabil{not shown in this
figure).

A final type of lattice is used when we need to represent theegos prob-
ability of individual words in a lattice. It turns out that speech recognition, we
almost never see the true posterior probability of anythilegpite the fact that the
goal of speech recognition is to compute the sentence wathmdximum a posteri-
ori probability. This is because in the fundamental equatibspeech recognition
we ignore the denominator in our maximization:

W= argmaxW = argmaxP(O|W) P(W)
WeL P(O) WeL

The product of the likelihood and the priornst the posterior probability of
the utterance. Why does it matter that we don’t have a truegtritity? The reason
is that without having true probability, we can choose thst bgpothesis, but we
can’'t know how good it is. Perhaps the best hypothesis isratlly bad, and we
need to ask the user to repeat themselves. If we had the ipogiesbability of
a word it could be used as a confidence metric, since the pasig@n absolute
rather than relative measure. We’'ll return to the use of denite in Ch. 23.

In order to compute the posterior probability of a word, Wwa#ed to nor-
malize over all the different word hypotheses available paidicular point in the
utterances. At each point we’ll need to know which words amgeting or con-
fusable. The lattices that show these sequences of wordsion§ are calledon-
fusion networks, meshes sausagesor pinched lattices A confusion network
consists of a sequence of word positions. At each positian dst of mutually
exclusive word hypothesis. The network represents thefsgtrdences than be
created by choosing one word from each position.

Note that unlike lattices or word graphs, the process of ttocisng a con-
fusion network actually adds paths that were not in the oalgiattice. Confusion
networks have other uses besides computing confidence.Wiéreyoriginally pro-
posed for use in minimizing word error rate, by focusing onximmézing improving

Chapter 9. Automatic Speech Recognition

.98

NATURALLY SORT OF MYSTERIOUS

007 THAT

Figure 9.31 Confusion network corresponding to the word lattice in Eig9.

Each word is associated with a posterior probability. Nbt some of the wordg
from the lattice have been pruned away. (Probabilities agagpby the SRI-LM
toolkit).

the word posterior probability rather than the sentenceliibod. Recently con-
fusion networks have been used to train discriminativesdiass that distinguish
between words.

Roughly speaking, confusion networks are built by taking different hy-
pothesis paths in the lattice and aligning them with eachrotfhe posterior prob-
ability for each word is computing by first summing over althmpassing through
a word, and then normalizing by the the sum of the probadsliof all compet-
ing words. For further details see Mangu et al. (2000), Exermand Woodland
(2000), Kumar and Byrne (2002), Doumpiotis et al. (2003b).

Standard publicly available language modeling toolkike ISRI-LM (Stol-
cke, 2002) it t p: / / www. speech. sri . com projects/sril m)andthe
HTK language modeling toolkit (Young et al., 2005X ¢ p: / / ht k. eng. cam
ac. uk/) can be used to generate and manipulate lattNddsest lists, and confu-
sion netwaorks.

There are many other kinds of multiple-stage search, sut¢hedserward-

somend backward search algorithm (not to be confused with foeward-backward al-
gorithm for HMM parameter setting) (Austin et al., 1991) athperforms a simple
forward search followed by a detailed backward (i.e., tirreersed) search.

9.9.2 A" Decoding

Recall that the Viterbi algorithm approximated the forwammputation, comput-
ing the likelihood of the single best (MAX) path through th&IMI, while the for-
ward algorithm computes the likelihood of the total (SUMMpdifthe paths through
the HMM. The A’ decoding algorithm allows us to use the complete forwart{pro
ability, avoiding the Viterbi approximation. Adecoding also allows us to use any
arbitrary language model.

The A* decoding algorithm is a best-first search of the tree thaliaitlp de-

Section 9.9.

Advanced Search Algorithms 49

PRIORITY QUEUE

FAST MATCH

fines the sequence of allowable words in a language. Cortsidéree in Fig. 9.32,
rooted in the START node on the left. Each leaf of this treemdsfione sentence of
the language; the one formed by concatenating all the wdotg ahe path from
START to the leaf. We don't represent this tree explicitlyf the stack decoding
algorithm uses the tree implicitly as a way to structure theodling search.

. . to
intention
| s bequeath my
the d not
want

1S can't—— helieve
ANV

W7 underwriter\
‘.1((typically lives

STARTx

Figure 9.32 A visual representation of the implicit lattice of allowablord se-
guences that defines a language. The set of sentences ofiadgng far too large tq
represent explicitly, but the lattice gives a metaphor fqriering prefixes.

The algorithm performs a search from the root of the tree tdilze leaves,
looking for the highest probability path, and hence the égjiprobability sentence.
As we proceed from root toward the leaves, each branch lgagiven word node
represent a word which may follow the current word. Each ekébranches has
a probability, which expresses the conditional probabiit this next word given
the part of the sentence we've seen so far. In addition, weusé the forward
algorithm to assign each word a likelihood of producing sqae of the observed
acoustic data. The Adecoder must thus find the path (word sequence) from the
root to a leaf which has the highest probability, where a pativability is defined
as the product of its language model probability (prior) &sdicoustic match to
the data (likelihood). It does this by keeping@ority queue of partial paths (i.e.,
prefixes of sentences, each annotated with a score). In @typGoeue each ele-
ment has a score, and thepoperation returns the element with the highest score.
The A" decoding algorithm iteratively chooses the best prefifaspeomputes all
the possible next words for that prefix, and adds these esterdntences to the
queue. Fig. 9.33 shows the complete algorithm.

Let's consider a stylized example of ari Aecoder working on a waveform
for which the correct transcription I§ music be the food of lovd=ig. 9.34 shows
the search space after the decoder has examined paths if ¢eregfrom the root.
A fast matchis used to select the likely next words. A fast match is oneabdiss of
heuristics designed to efficiently winnow down the numbepadsible following

50

Chapter 9. Automatic Speech Recognition

function STACck-DECODING() returns min-distance

Initialize the priority queue with a null sentence.

Pop the best (highest score) sentesof the queue.

If (sis marked end-of-sentence (EOS)) outpand terminate.

Get list of candidate next words by doing fast matches.

For each candidate next wond
Create a new candidate sentesgew.
Use forward algorithm to compute acoustic likelihdodf s+w
Compute language model probabilRyf extended sentenser w
Compute “score” fos+ w (a function ofL, P, and ??7?)
if (end-of-sentence) set EOS flag f&+ w.
Inserts+ w into the queue together with its score and EOS flag

Figure 9.33 The A* decoding algorithm (modified from Paul (1991) and Jelinek
(1997)). The evaluation function that is used to computesttoze for a sentence is
not completely defined here; possibly evaluation functamesdiscussed below.

words, often by computing some approximation to the forwamabability (see
below for further discussion of fast matching).

At this point in our example, we've done the fast match, selta subset of
the possible next words, and assigned each of them a scoeewditd Alice has
the highest score. We haven't yet said exactly how the sgaviorks.

P(acoustic | "if") =
forward probability

If
P("if" | START) 30
Alice
A
(none) Every
1 24
P(in|START)
In
4

Figure 9.34 The beginning of the search for the sentetfaausic be the food of
love. At this early stagéilice is the most likely hypothesis. (It has a higher scgre
than the other hypotheses.)

Fig. 9.35a show the next stage in the search. We have expdheddice
node. This means that thdice node is no longer on the queue, but its children

Section 9.9.

Advanced Search Algorithms 51

are. Note that now the node labeliédactually has a higher score than any of the
children ofAlice. Fig. 9.35b shows the state of the search after expanding the
node, removing it, and addingmusic if muscle andif messyon to the queue.

P(acoustics| "if") =
forward probability

P(acoustic | music) =
forward probability

|f was P(music | if
P(if" 30

(i |START) 29 P(acoustic | whether) =

forward probabilit

wants _
L 24 P("if" | START)
(none) Every walls
1 24 2
In
4

(@) (b)

Figure 9.35 The next steps of the search for the sentdhasusic be the food of]
love In (a) we've now expanded th&lice node and added three extensions which
have a relatively high score; the highest-scoring no&T&RT if which is not along
theSTART Aliceath at all. In (b) we've expanded tifeode. The hypothes8TART
if musicthen has the highest score.

We clearly want the scoring criterion for a hypothesis to éated to its
probability. Indeed it might seem that the score for a strjhg;/ordsvv‘l given an
acoustic string/J1 should be the product of the prior and the likelihood:
P(yjIwy)P(w)

Alas, the score cannot be this probability because the piltlyawill be
much smaller for a longer path than a shorter one. This is dwedimple fact
about probabilities and substrings; any prefix of a stringtiave a higher prob-
ability than the string itself (e.g., P(START the ...) wik lgreater than P(START
the book)). Thus if we used probability as the score, thed@coding algorithm
would get stuck on the single-word hypotheses.

Instead, we use the *Aevaluation function (Nilsson, 1980; Pearl, 1984)
f*(p), given a partial patip:

f*(p) =a(p) +h*(p)

f*(p) is theestimatedscore of the best complete path (complete sentence)
which starts with the partial patp. In other words, it is an estimate of how well
this path would do if we let it continue through the sententle A* algorithm
builds this estimate from two components:

52

Chapter 9. Automatic Speech Recognition

TREE-STRUCTURED
LEXICON

e g(p) is the score from the beginning of utterance to the end of aéntgb path
p. Thisg function can be nicely estimated by the probabilitypogiven the
acoustics so far (i.e., 8 O|W)P(W) for the word stringV constitutingp).

e h*(p) is an estimate of the best scoring extension of the partidl fmathe
end of the utterance.

Coming up with a good estimate bf is an unsolved and interesting problem.
A very simple approach is to chose lainestimate which correlates with the number
of words remaining in the sentence (Paul, 1991). Slightlarsen is to estimate
the expected likelihood per frame for the remaining franaesl multiple this by
the estimate of the remaining time. This expected likelthoan be computed by
averaging the likelihood per frame in the training set. S@dk (1997) for further
discussion.

Tree Structured Lexicons

We mentioned above that both thé And various other two-stage decoding algo-
rithms require the use offast match for quickly finding which words in the lex-
icon are likely candidates for matching some portion of tbeustic input. Many
fast match algorithms are based on the use tee-structured lexicon, which
stores the pronunciations of all the words in such a way tlecbmputation of the
forward probability can be shared for words which start wiith same sequence
of phones. The tree-structured lexicon was first suggestéddystad and Mond-
shein (1975); fast match algorithms which make use of itudel Gupta et al.
(1988), Bahl et al. (1992) in the context of Mlecoding, and Ney et al. (1992) and
Nguyen and Schwartz (1999) in the context of Viterbi decgdifig. 9.36 shows an
example of a tree-structured lexicon from the Sphinx-llogrizer (Ravishankar,
1996). Each tree root represents the first phone of all woedénhing with that
context dependent phone (phone context may or may not berpegsacross word
boundaries), and each leaf is associated with a word.

9.10 ADVANCED ACOUSTICMODELS. TRIPHONES

In our discussion in Sec. 9.4 of how the HMM architecture igligl to ASR, we
showed how an HMM could be created for each phone, with itsetf@mitting
states corresponding to subphones at the beginning, maiaieend of the phone.
We thus represent each subphone (“beginning of [eh]”, ‘t@gg of [t]”, “middle
of [ae]”) with its own GMM.

There is a problem with using a fixed GMM for a subphone likegihaing
of [eh]”. The problem is that phones vary enormously basetherphones on ei-

Section 9.10.

Advanced Acoustic Models: Triphones 53

COARTICULATION

CI PHONE
CD PHONES
TRIPHONE

DD(N,#) | ABOUND

BAKING

BAKERY

Figure 9.36 A tree-structured lexicon from the Sphinx-1l recognizdt€aRavis-
hankar (1996)). Each node corresponds to a particularamiplin a slightly modified
version of the ARPAbet; thus EY(B,KD) means the phone EY gdec by a B and
followed by the closure of a K.

ther side. This is because the movement of the articulatorgye, lips, velum)
during speech production is continuous and is subject tsipalyconstraints like
momentum. Thus an articulator may start moving during onenpho get into
place in time for the next phone. In Ch. 7 we defined the wmarticulation as
the movement of articulators to anticipate the next sounggeoseverating move-
ment from the last sound. Fig. 9.37 shows coarticulationtdureighboring phone
contexts for the vowel [eh].

In order to model the marked variation that a phone exhihitifferent con-
texts, most LVCSR systems replace the idea of a contexpartient Cl phone)
HMM with a context-dependent @D phones The most common kind of context-
dependent model is @iphone HMM (Schwartz et al., 1985; Deng et al., 1990).
A triphone model represents a phone in a particular left eyttt context. For ex-
ample the triphongy-eh+l] means “[eh] preceded by [y] and followed by [I]”. In
general, [a-b+c] will mean “[b] preceded by [a] and followlad[c]". In situations
where we don'’t have a full triphone context, we'll use [a-dhtean “[b] preceded
by [a]” and [b+c] to mean “[b] followed by [c]".

Context-dependent phones capture an important sourceaiafiva, and are
a key part of modern ASR systems. But unbridled context-dagecy also intro-
duces the same problem we saw in language modeling: trad@tagsparsity. The
more complex the model we try to train, the less likely we arkave seen enough
observations of each phone-type to train on. For a phoneset5® phones, in
principle we would need 50or 125,000 triphones. In practice not every sequence
of three phones is possible (English doesn’t seem to alliplidne sequences like
[ae-eh+ow] or [m-j+t]). Young et al. (1994) found that 5500fiphones are needed

54

Chapter 9. Automatic Speech Recognition

TYING

5000

Mi

(i

Frequency (Hz)

‘
0 1.19175
Time (s)

WED YELL BEN

Figure 9.37 The vowel [eh] in three different triphone contexts, in therdswed
yell, andBen Notice the marked differences in the second formant (F#)ebegin-

ning and end of the [eh] in all three cases.

in the 20K Wall Street Journal task. But they found that or8y500 of these tri-
phones, i.e. less than half, actually occurred in the Sl8d@eof the WSJ training
data.

Because of the problem of data sparsity, we must reduce ttmewof tri-
phone parameters that we need to train. The most common wéy tiois is by
clustering some of the contexts together &idg subphones whose contexts fall
into the same cluster (Young and Woodland, 1994). For exantipt beginning of
a phone with an [n] on its left may look much like the beginngf@ phone with an
[m] on its left. We can therefore tie together the first (begig) subphone of, say,
the [m-eh+d] and [n-eh+d] triphones. Tying two states thgemeans that they
share the same Gaussians. So we only train a single Gaussagi far the first
subphone of the [m-eh+d] and [n-eh+d] triphones. Simildtlyurns out that the
left context phones [r] and [w] produce a similar affect oa thitial subphone of
following phones.

Fig. 9.38 shows, for example the vowel [iy] preceded by thesoaants [w],
[r], [m], and [n]. Notice that the beginning of [iy] has a siaririse in F2 after [w]
and [r]. And notice the similarity of the beginning of [m] afd; as Ch. 7 noted,
the position of nasal formants vary strongly across spsalkert this speaker (the
first author) has a nasal formant (N2) around 1000 Hz.

Fig. 9.39 shows an example of the kind of triphone tying ledrhy the clus-

Section 9.10.

Advanced Acoustic Models: Triphones

55

T
H‘.‘\“ |

i

' |‘\|‘ i ”
;.‘ ,ml,hkriﬁhulmu i }

Frequency (Hz)

[wiy]

| l

[riy]

Time (s)

[miy]

L. |

A bbbl e b

[niy]

3.12079

Figure 9.38 The wordswe, re, mg andknee The glides [w] and [r] have similar
effects on the beginning of the vowel [iy], as do the two naga] and [m].

tering algorithm. Each mixture Gaussian model is sharechbystibphone states
of various triphone HMMs.

t-iy+n

t-1y+ng

JoUmml

A

fiy+l

s-1y+1

ol

Il

il

.. etc

Figure 9.39 PLACEHOLDER FIGURE. Four triphones showing the result
clustering. Notice that the initial subphone of [t-iy+n]daft-iy+ng] is tied together,
i.e. shares the same Gaussian mixture acoustic model. Foamg\et al. (1994).

How do we decide what contexts to cluster together? The nmawsimn
method is to use a decision tree. For each state (subphoeerbfphone, a sepa-
rate tree is built. Fig. 9.40 shows a sample tree from the (fdexginning) state of
the phone /ih/, modified from Odell (1995). We begin at the romle of the tree
with a single large cluster containing (the beginning stétall triphones centered
on /ih/. At each node in the tree, we split the current cluster two smaller clus-
ters by asking questions about the context. For exampleadkeart Fig. 9.40 first
splits the initial cluster into two clusters, one with naghbne on the left, and one
without. As we descend the tree from the root, each of thasstesk is progres-
sively split. The tree in Fig. 9.40 would split all beginnistate /ih/ triphones into

56

Chapter 9. Automatic Speech Recognition

5 clusters, labeled A-E in the figure.
Phone /ih/
beg. state

Left nasal?

Right liquid? Left fricative?

Yes No

i ?
n-ih+l, L
ng-ihtl, Yes No
m-i}qﬂo (. ’

Yes No

Cluster B:

O O D O O O n—i_h—%—r“
55 B-5-0 mi

n-ih+w,

Figure 9.40 Decision tree for choosing which triphone states (subpptretie
together. This particular tree will cluster state O (theibeing state) of the triphones
In-ih+l/, Ing-ih+l/, /Im-ih+l/, into cluster class A, and naus other triphones intg
classes B-E. Adapted from Odell (1995).

The questions used in the decision tree ask whether the ghdhe left or
right has a certaiphonetic feature, of the type introduced in Ch. 7. Fig. 9.41
shows a few decision tree questions; note that there areadeppiestions for vow-
els and consonants. Real trees would have many more guestion

How are decision trees like the one in Fig. 9.40 trained? Tdwstare grown
top down from the root. At each iteration, the algorithm d¢dess each possi-
ble questiong and each node in the tree. For each such question, it considers
how the new split would impact the acoustic likelihood of theining data. The
algorithm computes the difference between the currentsiimlikelihood of the
training data, and the new likelihood if the models were baded on splitting via
questiong. The algorithm picks the nodeand questiorg which give the maxi-
mum likelihood. The procedure then iterates, stopping wéderh each leaf node
has some minimum threshold number of examples.

We also need to modify the embedded training algorithm weisg®ec. 9.7
to deal with context-dependent phones and also to handlireixcaussians. In

Section 9.10.

CLONING

Advanced Acoustic Models: Triphones 57
Feature Phones
Stop bdgkpt
Nasal m n ng
Fricative chdhfjhsshthvzzh
Liquid lrwy
Vowel aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh uw
Front Vowel ae ehihixiy
Central Vowel aa ah ao axrer
Back Vowel ax ow uh uw
High Vowel ih ix iy uh uw
Rounded ao ow oy uh uw w
Reduced ax axr ix
Unvoiced chfhhkpsshtth
Coronal chddhjhinrsshtthzzh
Figure 9.41 Sample decision tree questions on phonetic features. Mddifom
Odell (1995).

both cases we use a more complex process that involeeing and using extra
iterations of EM, as described in Young et al. (1994).
To train context-dependent models, for example, we firsttheestandard
embedded training procedure to train context-independwels, using multiple
passes of EM and resulting in separate single-Gaussianslsiod each subphone
of each monophone /aa/, /ae/, etc. We ttleneeach monophone model, i.e. make
identical copies of the model with its 3 substates of Gauassiane clone for each
potential triphone. Thé transition matrices are not cloned, but tied together for
all the triphone clones of a monophone. We then run an iteratf EM again and
retrain the triphone Gaussians. Now for each monophonewsésxlall the context-
dependent triphones which using the clustering algoritlestdbed on page 56 to
get a set of tied state clusters. One typical state is chaséimeaexemplar for this
cluster and the rest are tied to it.
We use this same cloning procedure to learn Gaussian mexte first use
embedded training with multiple iterations of EM to learngde-mixture Gaussian
models for each tied triphone state as described above. &kectbne (split) each
state into 2 identical Gaussians, perturb the values oflasbme epsilon, and run
EM again to retrain these values. We then split each of thentwxtures, resulting
in four, perturb them, retrain. We continue until we have pprapriate number of
mixtures for the amount of observations in each state.
A full context-depending GMM triphone model is thus creabsdapplying
these two cloning-and-retraining procedures in serieshas/n schematically in

Fig. 9.42.

58

Chapter 9. Automatic Speech Recognition

M 5

o I////\i\\\x

iy+n tiy+ng fay+ s-1y+1

ANY) NN f 91)
> BP0 (PP o m{(p(p
AN N

o ! f ' '

Figure 9.42 PLACEHOLDER FIGURE. From (Young et al., 1994).

9.11 ADVANCED: DISCRIMINATIVE TRAINING

MAXIMUMUM
LIKELIHOOD
ESTIMATION

MLE
DISCRIMINATING

The models we have presented for training the HMM paraméthesA and B
matrices) are based on maximizing the likelihood of thentrgj data. An alterna-
tive to thismaximumum likelihood estimation (MLE) is to focus not on fitting
the best model to the data, but ratherdiscriminating the best model from all
the other models. Such training procedures include MaxinMuttual Informa-
tion Estimation (MMIE) (Woodland and Povey, 2002) the usea@dral net/SVM
classifiers (Bourlard and Morgan, 1994) as well as othemtigcies like Minimum
Classification Error training (Chou et al., 1993; McDermantd Hazen, 2004) or
Minimum Bayes Risk estimation (Doumpiotis et al., 2003a)e $dmmarize the
first two of these in the next two subsections.

Section 9.11. Advanced: Discriminative Training 59

9.11.1 Maximum Mutual Information Estimation

In Maximum Mutual Information Estimation (MMIE), instead maximizing the
likelihood of an observation sequence given a training wsaguence, we maxi-
mize the mutual information between the training word segaeand the obser-
vation sequence. Consider a particular observation segu@nand a particular
HMM model My corresponding to word/phone sequeMig out of K possible
sequence models. The MLE criterion maximizes

(9.50) FMLE(®) = Po(O[My)
By contrast, the MMIE criterion maximizes:

Pyo(O[Mk)P(Mg
>i=1 Pp(O[Mi)P(M;)
To see why this is useful, consider the fundamental equafioonisy channel
speech recognition, given that we are trying to compute tetepior probability
for the HMM modelMy corresponding to word sequenég:

P(O[My)P(M)

P(O)

Let's make equation (9.52) more explicit, since we neveelthe actual true
probabilities but only estimates of them. Thus the correciagion needs to make

it clear that each probability depends also onAlendB parameters of our trained
HMM model, which we’ll call@:

P(O|Mk, @)P(Mx, 9)
P(O,9)
Now once we've trained a model and we're doing decoding asifi@ation,
@is constant. Recall that this meant that we could ignore ém@ahinato?(O) in
computing the following argmax:
(9.54) My = argmaxw = argmaxP(O|My) P(My)
keK P(O) keK
But we cannot make this assumption in training, becagsis not constant;
it depends on the HMM parameters of every possible model sudlifferent for
different observation sequend®s Furthermore, during training we changeso as
to increase the numerator likelihood of (9.5BJO|My,). But since the denomi-
nator is also conditioned op, we might accidentally increase the denominator as
well.
Let's rewrite equation (9.53) to see the implications o$tHirst we replace
P(O,) by marginalizing (summing over all sequences which coulehoduced

(9.52) P(Mk|O) =

60

Chapter 9. Automatic Speech Recognition

(9.55)

(9.56)

(9.57)

it):
K

K
P(O,@) = > P(O,My|@) = > P(O|Mk, ®)P(My|®)
k=1 k=1

If we plug this into equation (9.53), we get:

P(M[O,¢) E(O|Mk;¢)P(Mk7(P)
>k=1P(O[Mk, @)P(Mk|¢)

Now if our goal is to maximizd®(My|O, @), we not only need to maximize
the numerator of (9.56), but also minimize the denominaldotice that we can
rewrite the denominator to make it clear that it includesretequal to the model
we are trying to maximize and a term for all other models:

P(O|Mk, @)P(Mx, 9)
P09 = BT, @IPM9) -+ 514 P(OIM, GIP(MI)

Thus in order to maximiz&(Mg|O,), we need to change so that it in-
creases the probability of the correct model, while sirmdtausly decreasing the
probability of each of the incorrect models. Notice the elossemblance between
equation (9.56) and the MMIE criterion (9.51).

There is a variant of Baum-Welch training called ExtendedrBaNelch that
can be used to maximize (9.51) instead of (9.50). But it twwutsthat computing
the full denominator is computationally extremely expeasibecause it requires
running a full recognition pass on all the training data. &lethat in normal EM,
we don’t need to run decoding on the training data, since wely trying to max-
imize the likelihood of thecorrectword sequence; in MMIE, we need to compute
the probabilities o&ll possible word sequences. Decoding is very time-consuming
because of complex language models. Thus in practice MMj&ihms estimate
the denominator from the set of paths in a word lattice, agpanoximation to the
full set of possible paths. MMIE was first proposed in (?), fmatctical implemen-
tations that actually reduced word error rate came mucin; lage Woodland and
Povey (2002) for details.

9.11.2 Acoustic Models based on Posterior Classifiers

Another way to think about discriminative training is to cise a classifier at the
frame level which is discriminant. Thus while the Gaussitassifier is by far
the most commonly used acoustic likelihood classifier, jtassible to instead use
classifiers that are naturally discriminative or postedstimators, such as neural
networks or SVMs (support vector machines).

The posterior classifier (neural net or SVM) is generallyggnated with an
HMM architecture, is often calledldMM-SVM or HMM-MLP hybrid approach
(Bourlard and Morgan, 1994).

Section 9.11.

Advanced: Discriminative Training 61

(9.58)

(9.59)

SCALED LIKELIHOOD

The SVM or MLP approaches, like the Gaussian model, estithat@roba-
bility of a cepstral feature vector at a single titnéJnlike the Gaussian model, the
posterior approaches often uses a larger window of acomdtiomation, relying
on cepstral feature vectors from neighboring time periedsell. Thus the input to
a typical acoustic MLP or SVM might be feature vectors ford¢herent frame plus
the four previous and four following frame, i.e. a total ofépstral feature vectors
instead of the single one that the Gaussian model uses. 8=daey have such a
wide context, SVM or MLP models generally use phones ratiem subphones or
triphones, and compute a posterior for each phone.

The SVM or MLP classifiers are thus computing the posteri@bgbility
of a statej given the observation vectors, i.B(q;j|o;). (also conditioned on the
context, but let's ignore that for the moment). But the obagon likelihood we
need for the HMMbj (o), is P(a|q;). The Bayes rule can help us see how to
compute one from the other. The net is computing:

P(ox|d;)p(d;)

playlo) = LS

We can rearrange the terms as follows:

p(ot|a;) P(gjlar)

p(ar) p(q;)

The two terms on the right-hand side of (9.59) can be dirextiyputed from
the posterior classifier; the numerator is the output of ti&%r MLP, and the
denominator is the total probability of a given state, sungmver all observa-
tions (i.e., the sum over allof &;(t)). Thus although we cannot directly compute

P(a|q;), we canuse (9.59) to comput@%, which is known as acaled like-
lihood (the likelihood divided by the probability of the obsenreat). In fact, the
scaled likelihood is just as good as the regular likelihadce the probability of
the observatiorp(o;) is a constant during recognition and doesn’t hurt us to have
in the equation.

The supervised training algorithms for training a SVM or MpBsterior
phone classifiers require that we know the correct phond bier each obser-
vation o;. We can use the samembedded training algorithm that we saw for
Gaussians; we start with some initial version of our classdnd a word transcript
for the training sentences. We run a forced alignment ofrdiaibg data, produc-
ing a phone string, and now we retrain the classifier, andtier

62

Chapter 9. Automatic Speech Recognition

9.12 ADVANCED: MODELING VARIATION

SPECTRAL
SUBTRACTION

ADDITIVE NOISE

LOMBARD EFFECT

CEPSTRAL MEAN
NORMALIZATION

CONVOLUTIONAL
NOISE

As we noted at the beginning of this chapter, variation is ohthe largest ob-
stacles to successful speech recognition. We mentioneatioar due to speaker
differences from vocal characteristics or dialect, dueetiorg (such as spontaneous
versus read speech), and due to the environment (such gsveossis quiet envi-
ronments). Handling this kind of variation is a major subg@cmodern research.

9.12.1 Environmental Variation and Noise

Environmental variation has received the most attentiomfthe speech literature,
and a number of techniques have been suggested for dealihgemiironmen-
tal noise. Spectral subtraction, for example, is used to combatlditive noise
noise from external sound sources like engines or wind dgés that is relatively
constant and can be model as a noise signal added to the speeeform. In
spectral subtraction, we estimate the average noise daoangpeech regions and
then subtract this average value from the speech signakeltingly, speakers of-
ten compensate for high background noise levels by inargdkeir amplitude, FO,
and formant frequencies. This change in speech productiertalnoise is called
the Lombard effect, named for Etienne Lombard who first described it in 1911
(Junqua, 1993).

Other noise robustness techniques ldepstral mean normalization are
used to deal witlfconvolutional noise noise introduced by channel characteris-
tics like different microphones. Here we compute the avefghe cepstrum over
time and and subtract it from each frame; intuitively therage cepstrum corre-
sponds to the spectral characteristics of the microphodettza room acoustics
(?).

Finally, some kinds of short non-verbal sounds like coudis] breathing,
and throat clearing, or environmental sounds like beepephene rings, and door
slams, can be modeled explicitly. For each of these nonavedunds, we create a
special phone and add to the lexicon a word consisting onflgaifphone. We can
then use normal Baum-Welch training to train these phorgtsbiyimodifying the
training data transcripts to include labels for these nem+verbal 'words’ (Ward,
1989).

9.12.2 Speaker and Dialect Adaptation: Variation due to spaker dif-
ferences

Speech recognition systems are generally designed to bkesp@dependent, since
it's rarely practical to collect sufficient training datalaild a system for a single

Section 9.12.

Advanced: Modeling Variation 63

MLLR

SPEAKER
ADAPTATION

(9.60)

(9.61)

user. But in cases where we have enough data to build spdagendent systems,
they function better than speaker-independent systemss oftly makes sense;
we can reduce the variability and increase the precisioruofnwodels if we are
guaranteed that the test data will look like the trainingadat

While it is rare to have enough data to train on an individyedaker, we do
have enough data to train separate models for two importanipg of speakers:
men versus women. Since women and men have different vaaastand other
acoustic and phonetic characteristics, we can split theiigadata by gender, and
train separate acoustic models for men and for women. Themwahest sentence
comes in, we use a gender detector to decide if it is male oalisrand switch to
those acoustic models. Gender detectors can be built oinafyblGMM classifiers
based on cepstral features. Sggmder-dependent acoustic modeling used in
most LVCSR systems.

Although we rarely have enough data to train on a specifickgvethere are
techniques that work quite well at adapting the acousticeatsoth a new speaker
very quickly. For example th#LLR (Maximum Likelihood Linear Regres-
sion) technique (Leggetter and Woodland, 1995) is used to adaps&an acous-
tic models to a small amount of data from a new speaker. Treigleo use the
small amount of data to train a linear transform to warp themseof the Gaus-
sians. MLLR and other such technigues $peaker adaptationhave been one of
the largest sources of improvement in ASR performance ientegears.

The MLLR algorithm begins with a trained acoustic model asdnall adap-
tation dataset from a new speaker. The adaptation set candpeadl as 3 sentences
or 10 seconds of speech. The idea is to learn a linear transfoatrix (V) and a
bias vector) to transform the means of the acoustic model Gaussianse kbl
mean of a Gaussian |s the equation for the new mearis'thus:

p=Wp+ w

In the simplest case, we can learn a single global transfornapply it to each
Gaussian models. The resulting equation for the acouggtiibod is thus only

very slightly modified:
bj(00) = J%exp(—%m — (Wi +69)"Z) o - (Wi +)

The transform is learned by using linear regression to mizeirthe likeli-
hood of the adaptation dataset. We first run forward-backvedignment on the
adaptation set to compute the state occupation probabifit). We then com-
puteW by solving a system of simultaneous equations involgng). If enough
data is available, it's also possible to learn a larger nurob&ansforms.

MLLR is an example of thdinear transform approach to speaker adapta-
tion, one of the three major classes of speaker adaptatidhochs the other two

64

Chapter 9. Automatic Speech Recognition

VTLN

are MAP adaptation and Speaker Clustering/Speaker Spacapproaches. See
Woodland (2001) for a comprehensive survey of speaker atlaptwhich covers
all three families.

MLLR and other speaker adaptation algorithms can also be tesaddress
another large source of error in LVCSR, the problem of faredg dialect accented
speakers. Word error rates go up when the test set spealdsspdialect or accent
(such as Spanish-accented English or southern accentedaiMiarChinese) that
differs from the (usually standard) training set, Here we ke an adaptation set
of a few sentences from say 10 speakers, and adapt to thenr@spa greating an
MLLR transform that addresses whatever characteristiepggsent in the dialect
or accent (Huang et al., 2000; Tomokiyo and Waibel, 2001; §\etnal., 2003;
Zheng et al., 2005).

Another useful speaker adaptation technique is to corardghk differing vo-
cal tract lengths of speakers by usM@LN (Vocal Tract Length Normalization)

(?).

9.12.3 Pronunciation Modeling: Variation due to Genre

We said at the beginning of the chapter that recognizing @wational speech is
harder for ASR systems than recognizing read speech. Wa#haicauses of this
difference? Is it the difference in vocabulary? Grammarm&bing about the
speaker themselves? Perhaps it's a fact about the micreprmrtelephone used
in the experiment.

None of these seems to be the cause. In a well-known expdrsikfvemtraub
et al. (1996) compared ASR performance on natural convensatspeech versus
performance on read speech, controlling for the influengeoskible causal fac-
tors. Pairs of subjects in the lab had spontaneous coni@rsain the telephone.
Weintraub et al. (1996) then hand-transcribed the contiersa and invited the
participants back into the lab to read their own transcripteach other over the
same phone lines as if they were dictating. Both the naturdlread conversa-
tions were recorded. Now Weintraub et al. (1996) had two dpeerpora from
identical transcripts; one original natural conversatiand one read speech. In
both cases the speaker, the actual words, and the microptengeidentical; the
only difference was the naturalness or fluency of the speBoby found that read
speech was much easier (WER=29%) than conversational ls[f@dER=53%).
Since the speakers, words, and channel were controllethieilifference must be
somewhere in the acoustic model or pronunciation lexicon.

Saraclar et al. (2000) tested the hypothesis that this dliffievith conversa-
tional speech was due to changed pronunciations, i.e., tisrmaich between the
phone strings in the lexicon and what people actually saetalk from Ch. 7 that

Section 9.12.

Advanced: Modeling Variation 65

conversational corpora like Switchboard contain manyedght pronunciations for
words, (such as 12 different pronunciationsfecauseind hundreds fahe). Sar-
aclar et al. (2000) showed in an oracle experiment that if &acBioard recognizer
is told which pronunciations to use for each word, the wordrerate error rate
drops from 47% to 27%.

If knowing which pronunciation to use improves accuracyhpes we could
improve recognition by simply adding more pronunciatioos dach word to the
lexicon, either as a simple list for each word, or as a morepgtexnweighted FSA
(Fig. 9.43) (Cohen, 1989; Tajchman et al., 1995; Sproat dtey,R996; Wooters
and Stolcke, 1994).

Word model with dialect variation

NN

Word model with coarticulation and dialect variation:

Figure 9.43 You say [tow m eyt ow] and | say [t ow m aa t ow]. Two sample
pronunciation networks (weighted FSAs) for the wtwthatq adapted from Russel
and Norvig (1995). The top one models sociolinguistic waia(some British or
eastern American dialects); the bottom one adds in codatany effects.

Recent research shows that these sophisticated multipiespciation ap-
proaches turn out not to work well. Adding extra pronunociasi adds more con-
fusability; if a common pronunciation of the word “of” is ttengle vowel [ax],
it is now very confusable with the word “a”. Another problenittwmultiple pro-
nunciations is the use of Viterbi decoding. Recall our dis@n on 42 that since
the Viterbi decoder finds the best phone string, rather tharbest word string, it
biases against words with many pronunciations. Finallingignultiple pronun-
ciations to model coarticulatory affects may be unnecgsisacause CD phones
(triphones) are already quite good at modeling the congéeifiects in phones due
to neighboring phones, like the flapping and vowel-reductiandled by Fig. 9.43
(Jurafsky et al., 2001).

Instead, most current LVCSR systems use a very small nunflpgoounci-
ations per word. What is commonly done is to start with a mldtpronunciation

66

Chapter 9. Automatic Speech Recognition

lexicon, where the pronunciations are found in dictiorsioe are generated via
phonological rules of the type described in Ch. 7. A forcei@Nii phone alignment
is then run of the training set, using this dictionary. Thsuieof the alignment is

a phonetic transcription of the training corpus, showingcltpronunciation was
used, and the frequency of each pronunciation. We can thpse similar pro-

nunciations (for example if two pronunciations differ omtya single phone sub-
stitution we chose the more frequent pronunciation). Wa tiese the maximum
likelihood pronunciation for each word. For frequent wovdsich have multiple

high-frequency pronunciations, some systems chose reuftipnunciations, and
annotate the dictionary with the probability of these praiations; the probabili-

ties are used in computing the acoustic likelihood (Coh8891Hain et al., 2001,

Hain, 2002).

Finding a better method to deal with pronunciation variatiemains an un-
solved research problem. One promising avenue is to focasmmphonetic factors
that affect pronunciation. For example words which are lyiginedictable, or at
the beginning or end of intonation phrases, or are followedisfluencies, are pro-
nounced very differently (Jurafsky et al., 1998; Foslessiar and Morgan, 1999;
Bell et al., 2003). Fosler-Lussier (1999) shows an improseinin word error rate
by using these sorts of factors to predict which pronunmmato use. Another
exciting line of research in pronunciation modeling usegradhic Bayesian net-
work to model the complex overlap in articulators that preEiphonetic reduction
(Livescu and Glass, 2004; ?).

9.13 HUMAN SPEECHRECOGNITION

LEXICAL ACCESS

Humans are of course much better at speech recognition tla@hines; rough
estimates are machine are about five times worse than hunmaclean speech,
and the gap seems to increase with noisy speech.

Speech recognition in humans shares some features with AfaiRtlams.
We mentioned above that signal processing algorithms like &halysis (Herman-
sky, 1990) were in fact inspired by properties of the humadiitaty system. In
addition, three properties of humbaxical accesgthe process of retrieving a word
from the mental lexicon) are also true of ASR modésquency, parallelism, and
cue-based processingFor example, as in ASR with its-gram language mod-
els, human lexical access is sensitive to wiveduency. High-frequency spoken
words are accessed faster or with less information tharfleguency words. They
are successfully recognized in noisier environments tbanflequency words, or
when only parts of the words are presented (Howes, 1957;j&nms1980; Tyler,
1984, inter alia). Like ASR models, human lexical accesgaallel: multiple

Section 9.13.

Human Speech Recognition 67

PHONEME
RESTORATION
EFFECT

MCGURK EFFECT

WORD ASSOCIATION
REPETITION PRIMING

words are active at the same time (Marslen-Wilson and W&Bh8; Salasoo and
Pisoni, 1985, inter alia).

Finally, human speech perceptioncge based speech input is interpreted
by integrating cues at many different levels. Human phonegpion combines
acoustic cues, such as formant structure or the exact tiofimgicing, (Oden and
Massaro, 1978; Miller, 1994) visual cues, such as lip moveniglcGurk and
Macdonald, 1976; Massaro and Cohen, 1983; Massaro, 19883x¢nal cues such
as the identity of the word in which the phone is placed (Wart970; Samuel,
1981; Connine and Clifton, 1987; Connine, 1990). For examjpl what is of-
ten called thgophoneme restoration effect Warren (1970) took a speech sample
and replaced one phone (e.g. the [s]egislaturg with a cough. Warren found
that subjects listening to the resulting tape typicallyrdghe entire wordegisla-
ture including the [s], and perceived the cough as backgroundthémicGurk
effect, (McGurk and Macdonald, 1976) showed that visual input c#eriere
with phone perception, causing us to perceive a completébrent phone. They
showed subjects a video of someone saying the syltgdoie which the audio sig-
nal was dubbed instead with someone saying the syllahleSubjects reported
hearing something likela instead. It is definitely worth trying this out your-
self from video demos on the web; see for examiti¢ p: / / wwww. haski ns.
yal e. edu/ f eat ur ed/ heads/ ncgur k. ht ni . Other cues in human speech
perception include semantigord association(words are accessed more quickly
if a semantically related word has been heard recently)rapdtition priming
(words are accessed more quickly if they themselves havd@en heard). The
intuitions of both these results are incorporated into meé&nguage models dis-
cussed in Ch. 4, such as the cache model of Kuhn and de MorD)19hich
models repetition priming, or the trigger model of Rosef@996) and the LSA
models of Coccaro and Jurafsky (1998) and Bellegarda (1989¢h model word
association. In a fascinating reminder that good ideas ewerndiscovered only
once, Cole and Rudnicky (1983) point out that many of thesigls about context
effects on word and phone processing were actually disedvay William Bagley
(1901). Bagley achieved his results, including an earlysieer of the phoneme
restoration effect, by recording speech on Edison phopbgylinders, modi-
fying it, and presenting it to subjects. Bagley’'s resultgeviorgotten and only
rediscovered much latér.

One difference between current ASR models and human speeagmition
is the time-course of the model. It is important for the perfance of the ASR
algorithm that the the decoding search optimizes over thieeemterance. This
means that the best sentence hypothesis returned by a detatie end of the

2 Recall the discussion on pa@e of multiple independent discovery in science.

68

Chapter 9. Automatic Speech Recognition

ON-LINE

sentence may be very different than the current-best hgpghhalfway into the
sentence. By contrast, there is extensive evidence thampnocessing isn-line:
people incrementally segment and utterance into words sgidrait an interpreta-
tion as they hear it. For example, Marslen-Wilson (197 3jisticlose shadowers
people who are able to shadow (repeat back) a passage astray\ith lags as
short as 250 ms. Marslen-Wilson found that when these shexdomade errors,
they were syntactically and semantically appropriate whth context, indicating
that word segmentation, parsing, and interpretation téeegowithin these 250 ms.
Cole (1973) and Cole and Jakimik (1980) found similar e§écttheir work on the
detection of mispronunciations. These results have ledhmdggical models of
human speech perception (such as the Cohort model (Mardleon and Welsh,
1978) and the computational TRACE model (McClelland and &im1986)) to
focus on the time-course of word selection and segmentaiioa TRACE model,
for example, is a connectionist interactive-activationdelpbased on independent
computational units organized into three levels: featph@neme, and word. Each
unit represents a hypothesis about its presence in the. ikjnits are activated in
parallel by the input, and activation flows between unitsi@rtions between units
on different levels are excitatory, while connections lesw units on single level
are inhibitatory. Thus the activation of a word slightly iiits all other words.

We have focused on the similarities between human and madpaech
recognition; there are also many differences. In particuteany other cues have
been shown to play a role in human speech recognition but yetveo be suc-
cessfully integrated into ASR. The most important classhesé missing cues is
prosody. To give only one example, Cutler and Norris (1988)tler and Carter
(1987) note that most multisyllabic English word tokens éhatress on the ini-
tial syllable, suggesting in their metrical segmentatitategy (MSS) that stress
should be used as a cue for word segmentation. Another etiiferis that human
lexical access exhibitseighborhood effectgthe neighborhood of a word is the set
of words which closely resemble it). Words with large fregeyeweighted neigh-
borhoods are accessed slower than words with less neigfibars et al., 1990).
Current models of ASR don’t general focus on this word-leghpetition.

9.14 SUMMARY

Together with Ch. 4 and Ch. 6, this chapter introduced thddumental algorithms
for addressing the problem afarge Vocabulary Continuous Speech Recogni-
tion.

Section 9.14.

Summary 69

e The input to a speech recognizer is a series of acoustic waMeswave-

form, spectrogramandspectrum are among the visualization tools used to
understand the information in the signal.

In the first step in speech recognition, sound wavesanepled quantized,
and converted to some sort gpectral representation A commonly used
spectral representation is theel cepstrumor MFCC which provides a vec-
tor of features for each frame of the input.

GMM acoustic models are used to estimate pihenetic likelihoods (also
calledobservation likelihood9 of thesefeature vectorsfor each frame.

Decodingor searchis the process of finding the optimal sequence of model
states which matches a sequence of input observations. fé€héhat are
two terms for this process is a hint that speech recognisamherently inter-
disciplinary, and draws its metaphors from more than ond;figécoding
comes from information theory, arsgarchfrom artificial intelligence).

We introduced two decoding algorithms: time-synchronditsrbi decoding
(which is usually implemented with pruning and can then dieddeam
search) andstack or A* decoding. Both algorithms take as input a sequence
of cepstral feature vectors, a GMM acoustic model, andl-aram language
model, and produce a string of words.

Theembedded training paradigm is the normal method for training speech
recognizers. Given an initial lexicon with hand-built pumeiation struc-
tures, it will train the HMM transition probabilities ande¢iHMM observa-
tion probabilities.

Advanced acoustic models make use of context-deperdphones, which
are clustered.

Acoustic models can badaptedto new speakers.

Pronunciation variation is a source of errors in human-husgeech recog-
nition, but one that is not successfully handled by curreathology.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The first machine which recognized speech was probably a esomhtoy named
“Radio Rex” which was sold in the 1920s. Rex was a celluloid that moved (via
a spring) when the spring was released by 500 Hz acoustigen8imnce 500 Hz
is roughly the first formant of the vowel in “Rex”, the dog semito come when
he was called (David, Jr. and Selfridge, 1962).

70

Chapter 9. Automatic Speech Recognition

WARPING

By the late 1940s and early 1950s, a number of machine speeofnition
systems had been built. An early Bell Labs system could m@zegany of the
10 digits from a single speaker (Davis et al., 1952). Thigesyshad 10 speaker-
dependent stored patterns, one for each digit, each of wbigihly represented the
first two vowel formants in the digit. They achieved 97-99%uaacy by choosing
the pattern which had the highest relative correlation fament with the input.
Fry (1959) and Denes (1959) built a phoneme recognizer atddsity College,
London, which recognized four vowels and nine consonansgedan a similar
pattern-recognition principle. Fry and Denes’s systemthadirst to use phoneme
transition probabilities to constrain the recognizer.

The late 1960s and early 1970s produced a number of impgraaatigm
shifts. First were a number of feature-extraction algonih include the efficient
Fast Fourier Transform (FFT) (Cooley and Tukey, 1965), thglieation of cep-
stral processing to speech (Oppenheim et al., 1968), andetredopment of LPC
for speech coding (Atal and Hanauer, 1971). Second were &@ewuof ways of
handlingwarping; stretching or shrinking the input signal to handle diffezes
in speaking rate and segment length when matching agaorsidspatterns. The
natural algorithm for solving this problem was dynamic peogming, and, as we
saw in Ch. 6, the algorithm was reinvented multiple timesddrass this prob-
lem. The first application to speech processing was by Vilkg3968), although
his result was not picked up by other researchers, and waseréed by Velichko
and Zagoruyko (1970) and Sakoe and Chiba (1971) (and (198dpn afterward,
Itakura (1975) combined this dynamic programming idea wighLPC coefficients
that had previously been used only for speech coding. Thetires system ex-
tracted LPC features for incoming words and used dynamigraroming to match
them against stored LPC templates.

The third innovation of this period was the rise of the HMMdHen Markov
Models seem to have been applied to speech independentlyodaboratories
around 1972. One application arose from the work of stei#sts, in particular
Baum and colleagues at the Institute for Defense AnalysBsiimteton on HMMs
and their application to various prediction problems (Baund Petrie, 1966; Baum
and Eagon, 1967). James Baker learned of this work and dppkealgorithm to
speech processing (Baker, 1975) during his graduate w@kat. Independently,
Frederick Jelinek, Robert Mercer, and Lalit Bahl (drawingnii their research in
information-theoretical models influenced by the work o&&on (1948)) applied
HMMs to speech at the IBM Thomas J. Watson Research Centereldet al.,
1975). IBM’'s and Baker’'s systems were very similar, patdy in their use of
the Bayesian framework described in this chapter. One eliffisrence was the
decoding algorithm; Baker's DRAGON system used Viterbin@wyic program-
ming) decoding, while the IBM system applied Jelinek’s ktdecoding algorithm

Section 9.14.

Summary 71

BAKE-OFF

(Jelinek, 1969). Baker then joined the IBM group for a briefa before founding
the speech-recognition company Dragon Systems. The HMIvbapp to speech
recognition would turn out to completely dominate the figjdtee end of the cen-
tury; indeed the IBM lab was the driving force in extendingtistical models to
natural language processing as well, including the deveéop of class-basel-
grams, HMM-based part-of-speech tagging, statisticalmmacranslation, and the
use of entropy/perplexity as an evaluation metric.

The use of the HMM slowly spread through the speech commuriitge
cause was a number of research and development progransosgoiby the Ad-
vanced Research Projects Agency of the U.S. DepartmentfehBe (ARPA). The
first five-year program starting in 1971, and is reviewed iatk(1977). The goal of
this first program was to build speech understanding sysbassd on a few speak-
ers, a constrained grammar and lexicon (1000 words), asdhas 10% semantic
error rate. Four systems were funded and compared agatisiotizer: the Sys-
tem Development Corporation (SDC) system, Bolt, Beraneke&vihan (BBN)'s
HWIM system, Carnegie-Mellon University’s Hearsay-Il ®m, and Carnegie-
Mellon’s Harpy system (Lowerre, 1968). The Harpy systendussimplified ver-
sion of Baker's HMM-based DRAGON system and was the bestefdkted sys-
tems, and according to Klatt the only one to meet the origgaalls of the ARPA
project (with a semantic error rate of 94% on a simple task).

Beginning in the mid-1980s, ARPA funded a number of new speesearch
programs. The first was the “Resource Management” (RM) faske et al., 1988),
which like the earlier ARPA task involved transcription dognition) of read-
speech (speakers reading sentences constructed from -avbd@®ocabulary) but
which now included a component that involved speaker-ieddpnt recognition.
Later tasks included recognition of sentences read fron\hi Street Journal
(WSJ) beginning with limited systems of 5,000 words, andlfinaith systems of
unlimited vocabulary (in practice most systems use apprately 60,000 words).
Later speech-recognition tasks moved away from read-bpeemore natural do-
mains; the Broadcast News domain (LDC, 1998; Graff, 199&n6cription of
actual news broadcasts, including quite difficult passageh as on-the-street in-
terviews) and the Switchboard,ALLHOME, CALLFRIEND, and Fisher domains
(LDC, 1999; ?; Godfrey et al., 1992; ?) (natural telephonevecsations between
friends or strangers) . The Air Traffic Information SystenT(8) task (Hemphill
et al., 1990) was an earlier speech understanding task vguadavas to simulate
helping a user book a flight, by answering questions aboeinpiat airlines, times,
dates, and so forth.

Each of the ARPA tasks involved an approximately antadde-off at which
all ARPA-funded systems, and many other ‘volunteer’ systémm North Amer-
ican and Europe, were evaluated against each other in tefrmverd error rate

72

Chapter 9. Automatic Speech Recognition

FRAME-BASED

SEGMENT-BASED
RECOGNIZERS

SPEAKER
IDENTIFICATION

SPEAKER
VERIFICATION

LANGUAGE
IDENTIFICATION

or semantic error rate. In the early evaluations, for-proditporations did not
generally compete, but eventually many (especially IBM Afdl) competed reg-
ularly. The ARPA competitions resulted in widescale boirgvof techniques
among labs, since it was easy to see which ideas had provided@-reduction
the previous year, and were probably an important factdneretzentual spread of
the HMM paradigm to virtual every major speech recognit@aim [The ARPA pro-
gram also resulted in a number of useful databases, origitesigned for training
and testing systems for each evaluation (TIMIT, RM, WSJ, ATBN, CALL-
HOME, Switchboard, Fisher) but then made available for garresearch use.

There are many new directions in current speech recognigsearch in-
volving alternatives to the HMM model. There are many nevhiectures based
on graphical models (dynamic bayes nets, factorial HMMs) E&fweig, 1998;
Bilmes, 2003; ?; Bilmes and Bartels, 2005; ?). There aremgite to replace
the frame-basedHMM acoustic model (that make a decision about each frame)
with segment-based recognizerthat attempt to detect variable-length segments
(phones) (Digilakis, 1992; Ostendorf et al., 1996; Glag3). Landmark-based
recognizers and articulatory phonology-based recognifmaus on the use of dis-
tinctive features, defined acoustically or articulatofigspectively) (Niyogi et al.,
1998; Livescu, 2005; et al, 2005; Juneja and Espy-Wilso®3R20 Attempts to
improve performance specifically on human-human speeah Ibegin to focus on
improved recognition of disfluencies (Liu et al., 2005).

Speech research includes a number of areas besides speeghitien; we
already saw computational phonology in Ch. 7, speech sgisthie Ch. 8, and
we will discuss spoken dialogue systems in Ch. 23. Anothgromant area is
speaker identification and speaker verification, in which we identify a speaker
(for example for security when accessing personal infaonatver the telephone)
(Reynolds and Rose, 1995; Shriberg et al., 2005; Doddingt@d1). This task is
related tolanguage identification in which we are given a wavefile and have to
identify which language is being spoken; this is useful fatoaatically directing
callers to human operators that speak appropriate language

There are a number of textbooks and reference books on spsamimnition
that are good choices for readers who seek a more in-dep#rsiadding of the
material in this chapter: Huang et al. (2001) is by far the theosnprehensive and
up-to-date reference volume and is highly recommendeihede1997), Gold and
Morgan (1999), and Rabiner and Juang (1993) are good coemsife textbooks.
The last two textbooks also have discussions of the histbtheofield, and to-
gether with the survey paper of Levinson (1995) have infladraur short history
discussion in this chapter. Our description of the forwlaadkward algorithm was
modeled after Rabiner (1989), and we were also influence bthanuseful tuto-
rial paper, Knill and Young (1997). Research in the speechgeition field often

Section 9.14.

Summary 73

appears in the proceedings of the annual INTERSPEECH a@nder (which is
called ICSLP and EUROSPEECH in alternate years) as wellaarhual IEEE
International Conference on Acoustics, Speech, and Skymalessing (ICASSP).
Journals include Speech Communication, Computer Speeth.amguage, and
IEEE Transactions on Speech and Audio Processing.

EXERCISES

LOGPROB

9.1 Analyze each of the errors in the incorrectly recognizeddcaption of “um
the phone is | left the...” on page 40. For each one, give yest Quess as to
whether you think it is caused by a problem in signal procggsspronunciation
modeling, lexicon size, language model, or pruning in theodag search.

9.2 In practice, speech recognizers do all their probabilitmpatation using the
log probability (or logprob) rather than actual probabilities. This helps avoid
underflow for very small probabilities, but also makes theeNii algorithm very
efficient, since all probability multiplications can be ilemented by adding log
probabilities. Rewrite the pseudocode for the Viterbi alpon in Fig. 9.20 on
page 32 to make use of logprobs instead of probabilities.

9.3 Now modify the Viterbi algorithm in Fig. 9.20 on page 32 to imment the
beam search described on page 34. Hint: You will probably neadd in code to
check whether a given state is at the end of a word or not.

9.4 Finally, modify the Viterbi algorithm in Fig. 9.20 on page @2th more de-
tailed pseudocode implementing the array of backtracetgrain

9.5 Implement the Stack decoding algorithm of Fig. 9.33 on 50ck R very
simpleh* function like an estimate of the number of words remaininghim sen-
tence.

9.6 Modify the forward algorithm of Fig. 9.17 to use the treedstured lexicon
of Fig. 9.36 on page 52.

9.7 Using the tutorials available as part of a publicly avakabtcognizer like
HTK or Sonic, build a digit recognizer.

9.8 Take the digit recognizer above and dump the phone liketlhdor a sen-
tence. Now take your implementation of the Viterbi algamtland show that you
can successfully decode these likelihoods.

74

Chapter 9. Automatic Speech Recognition

9.9 Many ASR systems, including the Sonic and HTK systems, uséfexaht
algorithm for Viterbi called theoken-passing Viterbi algorithm (Young et al.,
1989). Read this paper and implement this algorithm.

Section 9.14. Summary 75

Atal, B. S. and Hanauer, S. (1971). Speech analysis ariBburlard, H. and Morgan, N. (1994). Connectionist
synthesis by prediction of the speech waveurnal of Speech Recognition: A Hybrid Approadkluwer Press.

the Acoustical Society of America0, 637-655. Chou, W., Lee, C.-H., and Juang, B.-H. (1993). Minimum
Aubert, X. and Ney, H. (1995). Large vocabulary con- error rate training based anbest string models. IlEEE
tinuous speech recognition using word graphsIBEE ICASSP-93pp. 2.652-655.

ICASSRVol. 1, pp. 49-52. CMU (1993). The Carnegie Mellon Pronouncing Dictio-
Austin, S., Schwartz, R., and Placeway, P. (1991). Thenary v0.1. Carnegie Mellon University.

forward-backward search algorithm. IBEE ICASSP- Coccaro, N. and Jurafsky, D. (1998). Towards better in-

91, Vol. 1, pp. 697-700. IEEE.) tegration of semantic predictors in statistical language
Bagley, W. C. (1900-1901). The apperception of the spo-modeling. InICSLP-98 Sydney, Vol. 6, pp. 2403—2406.

ken sentence: A study in the psychology of language .

. Cohen, M. H. (1989)Phonological Structures for Speech

The American Journal of Psycholadh2, 80-130. t. Recognition Ph.D. thesis, University of California,
Bahl, L. R., de Souza, P. V., Gopalakrishnan, P. S., Na-Berkeley.

hamoo, D., and Picheny, M. A. (1992). A fast match .

for continuous speech recognition using allophonic modggro?’ JP' Snd ?n':ir;ﬁto|n’(1'\g/lgégl;m$ﬁ:’elfjﬁ.(’;i;\gitgf ?null_

els. INIEEE ICASSP-925an Francisco, CA, pp. 1.17-20. - ;4o nteraction: a case study. IBSLP-98 Sydney,

IEEE. ~ \Vol. 2, pp. 249-252.
Baker, J. K. (1975). The DRAGON system — An overview.

IEEE Transactions on Acoustics, Speech, and Signaﬁme' R. A. (1973). Listening for mispronunciations: A
ProcessingASSP-2@L), 24-29 ' ' measure of what we hear during speePhrception and

\ . Psychophysigdl3, 153-156.
Baum, L. E. and Eagon, J. A. (1967). An inequality

with applications to statistical estimation for probabili C°l€: R. A. and Jakimik, J. (1980). A model of speech
tic functions of Markov processes and to a model for Perception. In Cole, R. A. (Ed.Rerception and Produc-

ecology. Bulletin of the American Mathematical Society 10N Of Fluent Speecipp. 133-163. Lawrence Erlbaum,
73(3), 360—363. Hillsdale, NJ.

Baum, L. E. and Petrie, T. (1966). Statistical inferencé=Cle; R. A.:and Rudnicky, A. 1. (1983). What's new in
for probabilistic functions of finite-state Markov chains. SP&ech perception? The research and ideas of William

Annals of Mathematical Statistic37(6), 1554—-1563. Chandler BagleyPsychological Reviey®((1), 94-101.

Bayes, T. (1763)An Essay Toward Solving a Problem in Connine, C. M. (1990). Effects of sentence context and
the Doctrine of Chances/ol. 53. Reprinted irFacsimi- lexical knowledge in speech processing. In Altmann, G.
les of two papers by Baygdafner Publishing Company, T-M. (Ed.),Cognitive Models of Speech Processipp.
New York, 1963. 281-294. MIT Press, Cambridge, MA.

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gre Connine, C. M. and Clifton, C. (1987). Interactive use
gory, M., and Gildea, D. (2003). Effects of disfluencies, Of lexical information in speech perceptiodournal of
predictability, and utterance position on word form vari- Experimental Psychology: Human Perception and Per-
ation in English conversationlournal of the Acoustical ~ formance 13, 291-299.

Society of Americel132), 1001-1024. Cooley, J. W. and Tukey, J. W. (1965). An algorithm for

Bellegarda, J. R. (1999). Speech recognition experimentdhe machine calculation of complex Fourier seridath-
using multi-span statistical language models. IBEE ~ ematics of Computatiori(90), 297-301.

ICASSP-99pp. 717-720. IEEE. Cutler, A. and Carter, D. M. (1987). The predominance of

Bilmes, J. (2003). Buried markov models: A graphical- strong initial syllables in the English vocabular@om-
modeling approach to automatic speech recognition.puter Speech and Languadg 133-142.

Computer Speech and Languagé(2-3). Cutler, A. and Norris, D. (1988). The role of strong syl-

Bilmes, J. and Bartels, C. (2005). Graphical model archi- lables in segmentation for lexical accessurnal of Ex-
tectures for speech recognitiolEEE Signal Processing perimental Psychology: Human Perception and Perfor-
Magazine 22(5), 89-100. mance 14, 113-121.

76 Chapter 9. Automatic Speech Recognition

David, Jr., E. E. and Selfridge, O. G. (1962). Eyes and eafsry, D. B. (1959). Theoretical aspects of mechanical
for computersProceedings of the IRE (Institute of Radio speech recognitionJournal of the British Institution of
Engineers)50, 1093-1101. Radio Engineersl9(4), 211-218. Appears together with

Davis, K. H., Biddulph, R., and Balashek, S. (1952). Auto- Companion paper (Denes 1959).
matic recognition of spoken digitdournal of the Acous- Gillick, L. and Cox, S. (1989). Some statistical issues
tical Society of America24(6), 637—-642. in the comparison of speech recognition algorithms. In
Denes, P. (1959). The design and operation of the me-EEE ICASSP-8%p. 532-535. IEEE.
chanical speech recognizer at University College LonGlass, J. R. (2003). A probabilistic framework for

don. Journal of the British Institution of Radio Engi- segment-based speech recognitio@omputer Speech
neers 19(4), 219-234. Appears together with companion and Language,17(1-2), 137-152.

paper (Fry 1959). Godfrey, J., Holliman, E., and McDaniel, J. (1992).
Deng, L., Lennig, M., Seitz, F., and Mermelstein, P. SWITCHBOARD: Telephone speech corpus for research

(1990). Large vocabulary word recognition using and development. IMEEE ICASSP-92San Francisco,
context-dependent allophonic hidden Markov models. pp. 517-520. IEEE.

Computer Speech and Language345-357. Gold, B. and Morgan, N. (1999%peech and Audio Signal
Deng, L. and Huang, X. (2004). Challenges in adopting Processing Wiley Press.

ép.ee(?h recognition.. . Graff, D. (1997). The 1996 Broadcast News speech and
Digilakis, V. V. (1992). Segment-based stochastic models |anguage-model corpus. Froceedings DARPA Speech

of spectral dynamics for continuous speech recognition Recognition WorkshgopChantilly, VA, pp. 11-14. Mor-
Ph.D. thesis, Boston University. gan Kaufmann.

Doddington, G. (2001). Speaker recognition based on idigray, R. M. (1984). Vector quantizationlEEE Trans-
olectal differences between speakersEBROSPEECH- actions on Acoustics, Speech, and Signal Processing

01, Budapest, pp. 2521-2524. ASSP-12), 4-29.

Doumpiotis, V., Tsakalidis, S., , and Byrne, W. (2003a).Grosjean, F. (1980). Spoken word recognition processes

Discriminative training for segmental minimum bayes- and the gating paradigniPerception and Psychophysjcs
risk decoding. INEEE ICASSP-03 28, 267—283.

Doumpiotis, V., Tsakalidis, S., , and Byrne, W. (2003b).Gupta, V., Lennig, M., and Mermelstein, P. (1988). Fast
Lattice segmentation and minimum bayes risk discrimi- search strategy in a large vocabulary word recognizer.
native training. IEUROSPEECH-03 Journal of the Acoustical Society of Americ84(6),

Duda, R. O., Hart, P. E., and Stork, D. G. (200Battern ~ 2007-2017.

Classification Wiley-Interscience Publication. Hain, T. (2002). Implicit pronunciation modelling in asr.

et al, M. H.-J. (2005). Landmark-based speech recogni-In Proceedings of ISCA Pronunciation Modeling Work-
tion: Report of the 2004 johns hopkins summer work- shop

shop. INIEEE ICASSP-05 Hain, T., Woodland, P. C., Evermann, G., and Povey, D.

Evermann, G. and Woodland, P. C. (2000). Large vocabu-(2001). New features in the CU-HTK system for tran-
lary decoding and confidence estimation using word pos-scription of conversational telephone speech. |[HREE
terior probabilities. INEEE ICASSP-0QIstanbul, Vol. ICASSP-01Salt Lake City, Utah.

IIl, pp. 1655-1658. Hemphill, C. T., Godfrey, J., and Doddington, G. R.

Fosler-Lussier, E. (1999). Multi-level decision trees (1990). The ATIS spoken language systems pilot cor-
for static and dynamic pronunciation models. In pus. InProceedings DARPA Speech and Natural Lan-
EUROSPEECH-9®Budapest. guage WorkshagpHidden Valley, PA, pp. 96-101. Mor-

Fosler-Lussier, E. and Morgan, N. (1999). Effects of 9an Kaufmann.
speaking rate and word predictability on conversationaHermansky, H. (1990). Perceptual linear predictive (PLP)
pronunciations. Speech Communicatip@9(2-4), 137— analysis of speechJournal of the Acoustical Society of
158. America 87(4), 1738-1752.

Section 9.14. Summary 77

Howes, D. (1957). On the relation between the intelligibil- on Acoustics, Speech, and Signal ProcessiA§SP-
ity and frequency of occurrence of English wordsur- 23(1), 118-123.

nal of the Acoustical Society of Ameri@, 296-305. il K. and Young, S. J. (1997). Hidden Markov Models
Huang, C., Chang, E., Zhou, J., and Lee, K.-F. (2000). Ac- in speech and language processing. In Young, S. J. and

cent modeling based on pronunciation dictionary adapta-Bloothooft, G. (Eds.),Corpus-based Methods in Lan-

tion for large vocabulary mandarin speech recognition. guage and Speech Processimpy. 27-68. Kluwer, Dor-

In ICSLP-0Q Beijing, China. drecht.

Huang, X., Acero, A., and Hon, H.-W. (2001)Spoken Kyhn, R. and de Mori, R. (1990). A cache-based natu-
Language Processing: A Guide to Theory, Algorithm, ra| |anguage model for speech recogniti®BEE Trans-
and System Developmenbrentice Hall, Upper Saddle actions on Pattern Analysis and Machine Intelligence
River, NJ. 12(6), 570-583.

Itakura, F. (1975). Minimum prediction residual princi- kymar, S. and Byrne, W. (2002). Risk based lattice cutting
ple applied to speech recognitiofeEE Transactions on ¢, segmental minimum Bayes-risk decoding |@SLP-
Acoustics, Speech, and Signal Processk§SP-3267— 02 Denver. CO.

72.
. . . . LDC (1998). LDC Catalog: Hub4 project University
Jelinek, F. (1969). A fast sequential decoding algorithm of Pennsylvaniawwy. | dc. upenn. edu/ Cat al og/

using a stack.IBM Journal of Research and Develop- LDCO8S71. ht m orwww. | dc. upenn. edu/ Cat al og/
ment 13, 675-685. Hub4 htrﬂ - - .

Jelinek, F. (1976). Continuous speech recognition by st
tistical methods.Proceedings of the IEEEB4(4), 532—
557.

Jelinek, F. (1997).Statistical Methods for Speech Recog-
nition. MIT Press, Cambridge, MA.

Ef__DC (1999).LDC Catalog: Hub5-LVCSR projedtniver-
sity of Pennsylvaniamw. | dc. upenn. edu/ | dc/ about /
chengl i sh. ht M orww. | dc. upenn. edu/ Cat al og/ Hub5- LVCSR. ht

Leggetter, C. J. and Woodland, P. C. (1995). Maximum
likelihood linear regression for speaker adaptation of

Jelinek, F., Mercer, R. L., and Bahl, L. R. (1975). Design HMMs. Computer Speech and Languag®(2), 171—
of a linguistic statistical decoder for the recognition of 186

continuous speechlEEE Transactions on Information) . .
Theory IT-21(3), 250-256. Levinson, S. E. (1995). Structural methods in automatic

Juneja, A. and Espy-Wilson, C. (2003). Speech Segmen_speech recognition.Proceedings of the IEEE/3(11),

tation using probabilistic phonetic feature hierarchy and _1625_165(_)')
Support vector machines. IaCNN 2003 Liu, Y., Shrlberg, E., StO'Cke, A., Peskln, B., Ang, J.,

Junqua, J. C. (1993). The Lombard reflex and its role onH'”ard' D., Ostendorf, M., Tomalin, M., Woodland, P".
human listeners and automatic speech recogniders- and Harper, M. (2005). Structural metadata research in

nal of the Acoustical Society of Amerj@3(1), 510-524. the ears program. IEEE ICASSP-05
Jurafsky, D., Ward, W., Jianping, Z., Herold, K., Xiuyang,'-iv?scu’ K. (2005).. Feature-Based Prppuncaition Mpd-
Y., and Sen, Z. (2001). What kind of pronunciation varia- eling for Automatic Speech Recognitiofh.D. thesis,
tion is hard for triphones to model?. IREE ICASSP-01 ~ Massachusetts Institute of Technology.
Salt Lake City, Utah, pp. 1.577-580. Livescu, K. and Glass, J. (2004). Feature-based pronunci-
Jurafsky, D., Bell, A., Fosler-Lussier, E., Girand, C., and ation modeling with trainable asynchrony probabilities.
Raymond, W. D. (1998). Reduction of English function N ICSLP-04 Jeju, South Korea.
words in Switchboard. IICSLP-98 Sydney, Vol. 7, pp. Lowerre, B. T. (1968). The Harpy Speech Recognition
3111-3114. System Ph.D. thesis, Carnegie Mellon University, Pitts-
Klatt, D. H. (1977). Review of the ARPA speech under- burgh, PA.
standing project. Journal of the Acoustical Society of | yce, p. A., Pisoni, D. B., and Goldfinger, S. D. (1990).
America 62(6), 1345-1366. Similarity neighborhoods of spoken words. In Altmann,
Klovstad, J. W. and Mondshein, L. F. (1975). The G. T. M. (Ed.),Cognitive Models of Speech Processing
CASPERS linguistic analysis systetBEE Transactions pp. 122-147. MIT Press, Cambridge, MA.

78 Chapter 9. Automatic Speech Recognition

Mangu, L., Brill, E., and Stolcke, A. (2000). Finding con- Nilsson, N. J. (1980)Principles of Artificial Intelligence
sensus in speech recognition: Word error minimization Morgan Kaufmann, Los Altos, CA.
and other applications of confusion networmputer N|ST (2005). Speech recognition scoring
Speech and Languag4(4), 373-400. toolkit (sctk) version 2.1. Available at
Marslen-Wilson, W. D. and Welsh, A. (1978). Processing http://www.nist.gov/speech/tools/.
interactions and lexical access during word recognitiomiyogi, P., Burges, C., and Ramesh, P. (1998). Distinctive
in continuous speeciCognitive Psychologyl0, 29-63. feature detection using support vector machinetE EE

Marslen-Wilson, W. D. (1973). Linguistic structure and ICASSP-98IEEE.
speech shadowing at very short latenci®dature 244, Odell, J. J. (1995).The Use of Context in Large Vocabu-
522-523. lary Speech RecognitioPh.D. thesis, Queen’s College,

Massaro, D. W. (1998) Perceiving Talking Faces: From University of Cambridge. .
Speech Perception to a Behavioral PrincipMIT Press. Oden, G. C. and Massaro, D. W. (1978). Integration of

Massaro, D. W. and Cohen, M. M. (1983). Evaluation and featgral Information in speech perceptidrsychological
integration of visual and auditory information in speech ReV|ewi_35, 172-19°,
perception. Journal of Experimental Psychology: Hu- OPpenheim, A. V., Schafer, R. W., and Stockham, T. G. J.
man Perception and Performanc® 753-771. (1968). Nonlinear filtering of multiplied and convolved
. signals.Proceedings of the IEEB6(8), 1264-1291.
McClelland, J. L. and Elman, J. L. (1986). Interactive
processes in speech perception: The TRACE modePrtmanns, S., Ney, H., and Aubert, X. (1997). A word
In McClelland, J. L., Rumelhart, D. E., and the PDP graph e.ll.gorlthm for large vocabulary continuous speech
Research Group (Edsfarallel Distributed Processing recognition. Computer Speech and Language], 43—
Volume 2: Psychological and Biological Modgjgp. 58—
121. MIT Press, Cambridge, MA. Ostendorf, M., Digilakis, V., and Kimball, O. (1996).

McDermott, E. and Hazen, T. (2004). Minimum Classi- prom HMMS to _segment models: A.l.mmed view of
S o . stochastic modeling for speech recognitiiEE Trans-
fication Error training of landmark models for real-time

continuous speech recognition. IBEE ICASSP-04 actions on Speech and Aud#t(S), 360_37.8'
K q donald ing Paul, D. B. (1991). Algorithms for an optimal*Asearch
McGurk, H. and Macdonald, J. (1976). 'Hearing lips and and linearizing the search in the stack decodelEEBE

seeing voicesNature 264, 746—748. ICASSP-91Vol. 1, pp. 693-696. IEEE.
Miller, J. L. (1994). On the internal structure of phoneticpeay| J. (1984).Heuristics Addison-Wesley, Reading,
categories: a progress repo@tognition 50, 271-275. MA.

Mosteller, F. and Wallace, D. L. (1964)Inference and Price, P., Fisher, W., Bernstein, J., and Pallet, D. (1988).
Disputed Authorship: The FederalistSpringer-Verlag, The DARPA 1000-word resource management database
New York. 2nd Edition appeared in 1984 and was called for continuous speech recognition. IEEE ICASSP-88
Applied Bayesian and Classical Inference New York, Vol. 1, pp. 651-654. IEEE.

Murveit, H., Butzberger, J. W., Digalakis, V. V., and Wein- Rabiner, L. R. (1989). A tutorial on Hidden Markov Mod-
traub, M. (1993). Large-vocabulary dictation using SRI's els and selected applications in speech recogniffro-
decipher speech recognition system: Progressive-searcheedings of the IEEF7(2), 257-286.
techniques. INEEE ICASSP-93Vol. 2, pp. 319-322. Rapiner, L. R. and Juang, B. (1993Fundamentals of
IEEE. Speech Recognition Prentice Hall, Englewood Cliffs,

Ney, H., Haeb-Umbach, R., Tran, B.-H., and Oerder, M. NJ.

(1992). Improvements in beam search for 10000-worgRavishankar, M. K. (1996). Efficient Algorithms for
continuous speech recognition. [BEE ICASSP-92San Speech RecognitionPh.D. thesis, School of Computer
Francisco, CA, pp. 1.9-12. IEEE. Science, Carnegie Mellon University, Pittsburgh. Avail-

Nguyen, L. and Schwartz, R. (1999). Single-tree method @ble as CMU CS tech report CMU-CS-96-143.
for grammar-directed search. IEREE ICASSP-99pp. Reynolds, D. and Rose, R. (1995). Robust text- inde-
613-616. IEEE. pendent speaker identification using gaussian mixture

Section 9.14. Summary 79

speaker model$EEE Transactions on Speech and AudioSproat, R. and Riley, M. D. (1996). Compilation of
weighted finite-state transducers from decision trees. In

Processing3(1), 72-83.
Rosenfeld, R. (1996). A maximum entropy approach to Proceedings of ACL-965anta Cruz, CA, pp. 215-222.
adaptive statistical language modeli@pmputer Speech
and Languaggl0, 187—-228. Stolcke, A. (2002). Srilm - an extensible language model-
Russell, S. and Norvig, P. (1995rtificial Intelligence: A |r?g toolkit. InICSLP-02 Denver, CO. o
Modern ApproachPrentice Hall, Englewood Cliffs, NJ. Tajchman, G., Fosler, E., and Jurafsky, D. (1995). Building
Sakoe, H. and Chiba, S. (1971). A dynamic programming multiple pronunciation models for novel words using ex-
approach to continuous speech recognitionPtoceed- pIorgtzoAfr;/ czozns‘lgutatlonal phonology. Burospeech-95
ings of the Seventh International Congress on Acous-PP: T ’ A)
tics, BudapestBudapest, Vol. 3, pp. 65-69. Akadéemiai Tomokiyo, L. M. (2001).Recognizing non-native speech:
Kiado. Characterizing and adapting to non-native usage in
speech recognitianPh.D. thesis, Carnegie Mellon Uni-

Sakoe, H. and Chiba, S. (1984). Dynamic programming al- .
. N " versity.
gorithm optimization for spoken word recognitidiEEE i d Waibel 200 q . h
Transactions on Acoustics, Speech, and Signal Proces-ggm0 yo, L. M. an Waibel, A. (2001). A aptation r_n_et)
ods for non-native speech. Proceedings of Multilin-

ing, ASSP-26L), 43-49. S .
guality in Spoken Language Processimalborg, Den-

Salasoo, A. and Pisoni, D. B. (1985). Interaction of knowl- mark.
fﬂdegrioioﬁgssL;nnssgkzl v;(irc()j_lzdselntlflcatloiournal of Tyler, L. K. (1984). The structure of the initial cohort: Ev-
y guages, i o) idence from gatingPerception & Psychophysic86(5),
Samuel, A. G. (1981). Phonemic restoration: Insights from 417_427.
a ngvg;meth?(iilo%);iﬁrgjl of Experimental Regghol- Velichko, V. M. and Zagoruyko, N. G. (1970). Automatic
ogy: General 11Q : recognition of 200 wordsinternational Journal of Man-

Saraclar, M., Nock, H., and Khudanpur, S. (2000). Pro- Machine Studie®, 223-234.
nunciat.ion modeling by sharing gaussian densities aCroggntsyuk, T. K. (1968). Speech discrimination by dynamic
phonetic models. Computer Speech and Language programming.Cybernetics4(1), 52-57. Russian Kiber-
14(2), 137-160. netika 4(1):81-88 (1968).

Schwartz, R. and Austin, S. (1991). A comparison ofyang, z., Schultz, T., and Waibel, A. (2003). Comparison
several approximate algorithms for finding multipN-(of acoustic model adaptation techniques on non-native
BEST) sentence hypothesesidassp9] Toronto, Vol. 1, gpeech. INEEE ICASSPVoI. 1, pp. 540-543.
pp. 701-704. IEEE. Ward, W. (1989). Modelling non-verbal sounds for speech

INHLT '89: Proceedings of the Work-

Schwartz, R. and Chow, Y.-L. (1990). The N-best algo- recognition.
rithm: An efficient and exact procedure for finding the shop on Speech and Natural Languagape Cod, Mas-

N most likely sentence hypotheses.IEEE ICASSP-90 sachusetts, pp. 47-50. Association for Computational

Vol. 1, pp. 81-84. IEEE. Linguistics.
Schwartz, R., Chow, Y.-L., Kimball, O., Roukos, S., Kras-Warren, R. M. (1970). Perceptual restoration of missing
nwer, M., and Makhoul, J. (1985). Context-dependent speech soundsSciencel67, 392—-393.

modeling for acoustic-phonetic recognition of continu-weintraub, M., Taussig, K., Hunicke-Smith, K., and Snod-
ous speech. IIEEE ICASSP-85vol. 3, pp. 1205-1208. gras, A. (1996). Effect of speaking style on LVCSR per-
IEEE. formance. INCSLP-96 Philadelphia, PA, pp. 16-19.
Shannon, C. E. (1948). A mathematical theory of commuwoodland, P. C., Leggetter, C. J., Odell, J. J., Valtchey, V.
nication.Bell System Technical Journ&7(3), 379-423. and Young, S. J. (1995). The 1994 htk large vocabulary
Continued in following volume. speech recognition system. IBEE ICASSP
Shriberg, E., Ferrer, L., adn A. Venkataraman, S. K., anéVoodland, P. and Povey, D. (2002). Large scale dis-

Stolcke, A. (2005). Modeling prosodic feature sequencescriminative training of hidden Markov models for speech
recognition. Computer Speech and Languagk6, 25—

for speaker recognitionSpeech Communicatipd6(3-
47.

4), 455-472.

80 Chapter

9.

Automatic Speech Recognition

Woodland, P. C. (2001). Speaker adaptation for con-
tinuous density HMMs: A review. In Juncqua, J.-
C. and Wellekens, C. (Eds.Proceedings of the ITRW
‘Adaptation Methods For Speech RecognitioBophia-
Antipolis, France.

Wooters, C. and Stolcke, A. (1994). Multiple-
pronunciation lexical modeling in a speaker-independent
speech understanding system.l@SLP-94 Yokohama,
Japan, pp. 1363-1366.

Young, S. J., Odell, J. J., and Woodland, P. C. (1994). Tree-
based state tying for high accuracy acoustic modelling. In
Proceedings ARPA Workshop on Human Language Tech-
nology, pp. 307-312.

Young, S. J., Russell, N. H., and Thornton, J. H. S. (1989).
Token passing: A simple conceptual model for con-
nected speech recognition systems.. Tech. rep. CUED/F-
INFENG/TR.38, Cambridge University Engineering De-
partment, Cambridge, England.

Young, S. J. and Woodland, P. C. (1994). State cluster-
ing in HMM-based continuous speech recognitiGom-
puter Speech and Languadi4), 369-394.

Young, S., Evermann, G., Gales, M., Hain, T., Ker-
shaw, D., Moore, G., Odell, J., Ollason, D., Povey, D.,
Valtchev, V., and Woodland, P. (2005The HTK Book
Cambridge University Engineering Department.

Zheng, Y., Sproat, R., Gu, L., Shafran, I., Zhou, H., Su, Y.,
Jurafsky, D., Starr, R., and Yoon, S.-Y. (2005). Accent
detection and speech recognition for shanghai-accented
mandarin. InnterSpeech 20Q4.isbon, Portugal.

Zweig, G. (1998). Speech Recognition with Dynamic
Bayesian NetworksPh.D. thesis, University of Califor-
nia, Berkeley.

