
DRAFT

Speech and Language Processing: An introduction to speech recognition, computational
linguistics and natural language processing. Daniel Jurafsky & James H. Martin.
Copyright c© 2006, All rights reserved. Draft of November 12, 2006. Do not cite
without permission.

4 N-GRAMS

But it must be recognized that the notion “probability of a sen-
tence” is an entirely useless one, under any known interpretation
of this term.

Noam Chomsky (1969, p. 57)

Anytime a linguist leaves the group the recognition rate goes up.
Fred Jelinek (then of the IBM speech group) (1988)1

Radar O’Reilly, the mild-mannered clerk of the 4077th M*A*S*H unit, had an uncanny
ability to guess the next word someone was going to say. In this chapter we take up
this idea of word prediction; what word, for example, is likely to follow:

I’d like to make a collect. . .

Hopefully most of you concluded that a very likely word iscall, or international
or phone, but probably notthe. We formalize this idea ofword prediction with prob-WORD PREDICTION

abilistic models calledN-grams, which predict the next word from the previousN−1
words. Such statistical models of word sequences are also called language modelsorLANGUAGE MODELS

LM s. Computing the probability of the next word will turn out tobe closely relatedLM

to computing the probability of a sequence of words. The following sequence, for
example, has a non-zero probability of appearing in a text:

. . . all of a sudden I notice three guys standing on the sidewalk...

while this same set of words in a different order has a very lowprobability:

on guys all I of notice sidewalk three a sudden standing the

As we will see, estimators likeN-grams that assign a conditional probability to
possible next words can be used to assign a joint probabilityto an entire sentence.

1 This wording from his address is as recalled by Jelinek himself; the quote didn’t appear in the proceed-
ings (Palmer and Finin, 1990). Some remember a more snappy version: Every time I fire a linguist the
performance of the recognizer improves.

DRAFT

2 Chapter 4. N-grams

Whether estimating probabilities of next words or of whole sequences, theN-gram
model is one of the most important tools in speech and language processing.

N-grams are essential in any task in which we have to identify words in noisy,
ambiguous input. Inspeech recognition, for example, the input speech sounds are very
confusable and many words sound extremely similar. Russelland Norvig (1995) give
an intuition fromhandwriting recognition for how probabilities of word sequences
can help. In the movieTake the Money and Run, Woody Allen tries to rob a bank with
a sloppily written hold-up note that the teller incorrectlyreads as “I have a gub”. Any
speech and language processing system could avoid making this mistake by using the
knowledge that the sequence “I have a gun” is far more probable than the non-word “I
have a gub” or even “I have a gull”.

N-gram models are also essential in statisticalmachine translation. Suppose
we are translating a Chinese source sentence and
as part of the process we have a set of potential rough Englishtranslations:

he briefed to reporters on the chief contents of the statement
he briefed reporters on the chief contents of the statement
he briefed to reporters on the main contents of the statement
he briefed reporters on the main contents of the statement

An N-gram grammar might tell us that, even after controlling forlength,briefed re-
portersis more likely thanbriefed to reporters, andmain contentsis more likely than
chief contents. This lets us select the bold-faced sentence above as the most fluent
translation sentence, i.e. the one that has the highest probability.

In spelling correction, we need to find and correct spelling errors like the fol-
lowing (from Kukich (1992)) that accidentally result in real English words:

They are leaving in about fifteenminuetsto go to her house.
The designanconstruction of the system will take more than a year.

Since these errors have real words, we can’t find them by just flagging words
not in the dictionary. But note thatin about fifteen minuetsis a much less probable
sequence thanin about fifteen minutes. A spellchecker can use a probability estimator
both to detect these errors and to suggest higher-probability correction.

Word prediction is also important foraugmentative communication(NewellAUGMENTATIVE
COMMUNICATION

et al., 1998) systems that help the disabled. People who are unable to use speech or
sign-language to communicate, like the physicist Steven Hawking, can communicate
by using simple body movements to select words from a menu that are spoken by the
system. Word prediction can be used to suggest likely words for the menu.

Besides these sample areas,N-grams are also crucial in NLP foundations like
part-of-speech tagging, natural language generation, andword similarity , as well
as applications fromauthorship identification andsentiment extraction to predic-
tive text input systems for cell phones.

DRAFT

Section 4.1. Counting Words in Corpora 3

4.1 COUNTING WORDS IN CORPORA

[upon being asked if there weren’t enough words in the English language for him]:

“Yes, there are enough, but they aren’t the right ones.”
James Joyce, reported in Bates (1997)

Probabilities are based on counting things. Before we talk about probabilities,
we need to decide what we are going to count. Counting of things in natural language is
based on acorpus (pluralcorpora), an on-line collection of text or speech. Let’s lookCORPUS

CORPORA at two popular corpora, Brown and Switchboard. The Brown Corpus is a 1 million word
collection of samples from 500 written texts from differentgenres (newspaper, novels,
non-fiction, academic, etc.), assembled at Brown University in 1963-64 (Kučera and
Francis, 1967; Francis, 1979; Francis and Kučera, 1982). How many words are in the
following Brown sentence?

(4.1) He stepped out into the hall, was delighted to encounter a water brother.

Example (4.1) has 13 words if we don’t count punctuation-marks as words, 15 if
we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as words
depends on the task. Punctuation is critical for finding boundaries of things (comma,
periods, colons), and for identifying some aspects of meaning (question marks, excla-
mation marks, quotation marks). For some tasks, such as part-of-speech tagging or
parsing or sometimes speech synthesis, we thus sometimes treat punctuation as if they
were separate words.

The Switchboard corpus of telephone conversations betweenstrangers was col-
lected in the early 1990s and contains 2430 conversations averaging 6 minutes each,
totaling 240 hours of speech and about 3 million words (Godfrey et al., 1992). Such
corpora of spoken language don’t have punctuation, but do introduce other complica-
tions with defining words. Let’s look at one utterance from Switchboard; anutteranceUTTERANCE

is the spoken correlate of a sentence:

(4.2) I do uh main- mainly business data processing

This utterance has two kinds ofdisfluencies. The broken-off wordmain- isDISFLUENCIES

called afragment. Words likeuhandumare calledfillers or filled pauses. Should weFRAGMENT

FILLERS

FILLED PAUSES

consider these to be words? Again, it depends on the application. If we are building an
automatic dictation system based on automatic speech recognition, we might want to
eventually strip out the disfluencies.

But we also sometimes keep disfluencies around. How disfluenta person is can
be used to identify them, or to detect if they are stressed or confused. Disfluencies also
often occur with particular syntactic structures, so they may help in parsing and word
prediction. Stolcke and Shriberg (1996) found for example that treatinguh as a word
improves next-word prediction (why might this be?), and so most speech recognition
systems treatuhandumas words.2

Are capitalized tokens likeTheyand uncapitalized tokens likethey the same
word? These are lumped together in speech recognition, while for part-of-speech-

2 Clark and Fox Tree (2002) showed thatuh andumhave different meanings. What do you think they are?

DRAFT

4 Chapter 4. N-grams

tagging capitalization is retained as a separate feature. For the rest of this chapter we
will assume our models are not case-sensitive.

How about inflected forms likecatsversuscat? These two words have the same
lemma cat but are different wordforms. Recall from Ch. 3 that a lemma isa set of
lexical forms having the same stem, the same major part-of-speech, and the same
word-sense. Thewordform is the full inflected or derived form of the word. ForWORDFORM

morphologically complex languages like Arabic we often need to deal with lemmati-
zation. N-grams for speech recognition in English, however, and all the examples in
this chapter, are based on wordforms.

As we can see,N-gram models, and counting words in general, requires that
we do the kind of tokenization or text normalization that we introduced in the previous
chapter; separating out punctuation, dealing with abbreviations likem.p.h., normalizing
spelling, and so on.

How many words are there in English? To answer this question we need to
distinguishtypes, the number of distinct words in a corpus or vocabulary sizeV, fromTYPES

tokens, the total numberN of running words. The following Brown sentence has 16TOKENS

tokens and 14 types (not counting punctuation):

(4.3) They picnicked by the pool, then lay back on the grass and looked at the stars.

The Switchboard corpus has about 20,000 wordform types (from about 3 mil-
lion wordform tokens) Shakespeare’s complete works have 29,066 wordform types
(from 884,647 wordform tokens) (Kučera, 1992) The Brown corpus has 61,805 word-
form types from 37,851 lemma types (from 1 million wordform tokens). Looking at
a very large corpus of 583 million wordform tokens, Brown et al. (1992a) found that
it included 293,181 different wordform types. Dictionaries can help in giving lemma
counts; dictionary entries, orboldface forms are a very rough upper bound on the
number of lemmas (since some lemmas have multiple boldface forms). The American
Heritage third edition dictionary lists 200,000 boldface forms. It seems like the larger
corpora we look at, the more word types we find. In general (?) suggest that the vo-
cabulary size (the number of types) grows with at least the square root of the number
of tokens (i.e.V > O(

√
N).

In the rest of this chapter we will continue to distinguish between types and
tokens, using “types” to mean wordform types.

4.2 SIMPLE (UNSMOOTHED) N-GRAMS

Let’s start with some intuitive motivations forN-grams; we assume that the reader has
acquired some very basic background in probability theory.Our goal is to compute the
probability of a wordw given some historyh, or P(w|h). Suppose the historyh is “the
water is so transparent that” and we want to know the probability that the next word is
the:

P(the|the water is so transparent that).(4.4)

How can we compute this probability? One way is to estimate itfrom relative frequency
counts. For example, we could take a very large corpus, countthe number of times we

DRAFT

Section 4.2. Simple (Unsmoothed)N-grams 5

seethe water is so transparent that, and count the number of times this is followed by
the. This would be answering the question “Out of the times we sawthe historyh, how
many times was it followed by the wordw”, as follows:

P(the|the water is so transparent that) =

C(the water is so transparent that the)

C(the water is so transparent that)
(4.5)

With a large enough corpus, such as the web, we can compute these counts, and
estimate the probability from Equation (4.5). You should pause now, go to the web and
compute this estimate for yourself.

While this method of estimating probabilities directly from counts works fine in
many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the
time, and we won’t always be able to count entire sentences. Even simple extensions
of the example sentence may have counts of zero on the web (such as “the water of
Walden Pond is so transparent that the”).

Similarly, if we wanted to know the joint probability of an entire sequence of
words like the water is so transparent, we could do it by asking ”out of all possible
sequences of 5 words, how many of them arethe water is so transparent?” We would
have to get the count ofthe water is so transparent, and divide by the sum of the counts
of all possible 5 word sequences. That seems rather a lot of work to estimate!

For this reason, we’ll need to introduce cleverer ways of estimating the proba-
bility of a word w given a historyh, or the probability of an entire word sequenceW.
Let’s start with a little formalizing of notation. In order to represent the probability of
a particular random variableXi taking on the value ”the”, orP(Xi = “the”), we will
use the simplificationP(the). We’ll represent a sequence ofN words either asw1 . . .wn

or wn
1. For the joint probability of each word in a sequence having aparticular value

P(X = w1,Y = w2,Z = w3, ...,) we’ll useP(w1,w2, ...,wn).
Now how can we compute probabilities of entire sequences likeP(w1,w2, ...,wn)?

One thing we can do is to use thechain rule of probability to decompose this proba-
bility:

P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1) . . .P(wn|wn−1
1)

=

n
∏

k=1

P(wk|wk−1
1)(4.6)

The chain rule shows the link between computing the joint probability of a se-
quence and computing the conditional probability of a word given previous words.
Equation (4.6) suggests that we could estimate the joint probability of an entire se-
quence of words by multiplying together a number of conditional probabilities. But
using the chain rule doesn’t really seem to help us! We don’t know any way to compute
the exact probability of a word given a long sequence of preceding words,P(wn|wn−1

1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string, because language is creative and any particular
context might have never occurred before!

DRAFT

6 Chapter 4. N-grams

The intuition of theN-gram model is that instead of computing the probability
of a word given its entire history, we willapproximate the history by just the last few
words.

Thebigram model, for example, approximates the probability of a word givenBIGRAM

all the previous wordsP(wn|wn−1
1) by the conditional probability of the preceding word

P(wn|wn−1). In other words, instead of computing the probability

P(the|The water of Walden Pond is so transparent that)(4.7)

we approximate it with the probability

P(the|that)(4.8)

When we use a bigram model to predict the conditional probability of the next
word we are thus making the following approximation:

P(wn|wn−1
1) ≈ P(wn|wn−1

n−N+1)(4.9)

This assumption that the probability of a word depends only on the previous
word is called aMarkov assumption. Markov models are the class of probabilisticMARKOV

models that assume that we can predict the probability of some future unit without
looking too far into the past. We can generalize the bigram (which looks one word into
the past) to the trigram (which looks two words into the past)and thus to theN-gramN­GRAM

(which looksN−1 words into the past).
Thus the general equation for thisN-gram approximation to the conditional prob-

ability of the next word in a sequence is:

P(wn|wn−1
1) ≈ P(wn|wn−1

n−N+1)(4.10)

Given the bigram assumption for the probability of an individual word, we can
compute the probability of a complete word sequence by substituting Equation (4.9)
into Equation (4.6):

P(wn
1) ≈

n
∏

k=1

P(wk|wk−1)(4.11)

How do we estimate these bigram orN-gram probabilities? The simplest and
most intuitive way to estimate probabilities is calledMaximum Likelihood Estima-
tion, or MLE . We get the MLE estimate for the parameters of anN-gram models by

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE taking counts from a corpus, andnormalizing them so they lie between 0 and 1.3

NORMALIZING For example, to compute a particular bigram probability of aword y given a
previous wordx, we’ll compute the count of the bigramC(xy) and normalize by the
sum of all the bigrams that share the same first wordx:

P(wn|wn−1) =
C(wn−1wn)

∑

wC(wn−1w)
(4.12)

We can simplify this equation, since the sum of all bigram counts that start with
a given wordwn−1 must be equal to the unigram count for that wordwn−1. (The reader
should take a moment to be convinced of this):

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.13)

3 For probabilistic models, normalizing means dividing by some total count so that the resulting probabili-
ties fall legally between 0 and 1.

DRAFT

Section 4.2. Simple (Unsmoothed)N-grams 7

Let’s work through an example using a mini-corpus of three sentences. We’ll
first need to augment each sentence with a special symbol<s> at the beginning of
the sentence, to give us the bigram context of the first word. We’ll also need a special
end-symbol</s>.4

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .66 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .33

P(</s>|Sam) = 1
2 = 0.5 P(<s>|Sam) = 1

2 = 0.5 P(Sam|am) = 1
2 = .5

P(do|I) = 1
3 = .33

For the general case of MLEN-gram parameter estimation:

P(wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(4.14)

Equation 4.14 (like equation 4.13) estimates theN-gram probability by dividing
the observed frequency of a particular sequence by the observed frequency of a prefix.
This ratio is called arelative frequency; the use of relative frequencies as a way toRELATIVE

FREQUENCY

estimate probabilities is one example of MLE. In Maximum Likelihood Estimation,
the resulting parameter set maximizes the likelihood of thetraining setT given the
modelM (i.e., P(T|M)). For example, suppose the wordChineseoccurs 400 times
in a corpus of a million words like the Brown corpus. What is the probability that a
random word selected from some other text of say a million words will be the word
Chinese? The MLE estimate of its probability is 400

1000000 or .0004. Now.0004 is not
the best possible estimate of the probability ofChineseoccurring in all situations; it
might turn out that in some OTHER corpus or contextChineseis a very unlikely word.
But it is the probability that makes itmost likelythat Chinese will occur 400 times in
a million-word corpus. We will see ways to modify the MLE estimates slightly to get
better probability estimates in Sec. 4.5.

Let’s move on to some examples from a slightly larger corpus than our 14-word
example above. We’ll use data from the now-defunct BerkeleyRestaurant Project,
a dialogue system from the last century that answered questions from a database of
restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some sample user
queries, lowercased and with no punctuation; a representative corpus of 9332 sentences
is on the website:

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

4 As (Chen and Goodman, 1998) point out, we need the end-symbolto make the bigram grammar a true
probability distribution. Without an end-symbol, the sentence probabilities for all sentences of a given length
would sum to one, and the probability of the whole language would be infinite.

DRAFT

8 Chapter 4. N-grams

Fig. 4.1 shows the bigram counts from a piece of a bigram grammar from the
Berkeley Restaurant Project. Note that the majority of the values are zero. In fact,
we have chosen the sample words to cohere with each other; a matrix selected from a
random set of seven words would be even more sparse.

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out ofV = 1446) in the Berkeley
Restaurant Project corpus of 9332 sentences.

Fig. 4.2 shows the bigram probabilities after normalization (dividing each row
by the following appropriate unigram counts):

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project cor-
pus of 9332 sentences.

Here are a few other useful probabilities:

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences likeI want English foodor I
want Chinese foodby simply multiplying the appropriate bigram probabilities together,
as follows:

P(<s> i want english food </s>)

= P(i|<s>)P(want|I)P(english|want)

DRAFT

Section 4.3. Training and Test Sets 9

P(food|english)P(</s>|food)

= .25× .33× .0011×0.5×0.68

= = .000031

We leave it as an exercise for the reader to compute the probability of i want
chinese food. But that exercise does suggest that we’ll want to think a bitabout what
kinds of linguistic phenomena are captured in bigrams. Someof the bigram probabili-
ties above encode some facts that we think of as strictly syntactic in nature, like the fact
that what comes aftereat is usually a noun or an adjective, or that what comes afterto
is usually a verb. Others might be more cultural than linguistic, like the low probability
of anyone asking for advice on finding English food.

Although we will generally show bigram models in this chapter for pedagogical
purposes, note that when there is sufficient training data weare more likely to use
trigram models, which condition on the previous two words rather than the previousTRIGRAM

word. To compute trigram probabilities at the very beginning of sentence, we can use
two pseudo-words for the first trigram (i.e.,P(I|<s><s>).

4.3 TRAINING AND TEST SETS

The N-gram model is a good example of the kind of statistical models that we will
be seeing throughout speech and language processing. The probabilities of anN-gram
come from the corpus it is trained on. In general, the parameters of a statistical model
are trained on some set of data, and then we apply the models tosome new data in some
task (such as speech recognition) and see how well they work.Of course this new data
or task won’t be the exact same data we trained on.

We can formalize this idea of training on some data, and testing on some other
data by talking about these two data sets as atraining set and atest set(or a trainingTRAINING SET

TEST SET corpus and atest corpus). Thus when using a statistical model of language given
some corpus of relevant data, we start by dividing the data into training and test sets.
We train the statistical parameters of the model on the training set, and then use this
trained model to compute probabilities on the test set.

This training-and-testing paradigm can also be used toevaluatedifferentN-gramEVALUATE

architectures. Suppose we want to compare different language models (such as those
based onN-grams of different orderN, or using the differentsmoothing algorithms
to be introduced in Sec. 4.5). We can do this by taking a corpusand dividing it into
a training set and a test set. Then we train the two differentN-gram models on the
training set and see which one better models the test set. Butwhat does it mean to
“model the test set”? There is is a useful metric for how well agiven statistical model
matches a test corpus, calledperplexity, introduced on page-13. Perplexity is based
on computing the probabilities of each sentence in the test set; intuitively, whichever
model assigns a higher probability to the test set (hence more accurately predicts the
test set) is a better model.

Since our evaluation metric is based on test set probability, it’s important not to
let the test sentences into the training set. Suppose we are trying to compute the prob-
ability of a particular “test” sentence. If our test sentence is part of the training corpus,

DRAFT

10 Chapter 4. N-grams

we will mistakenly assign it an artificially high probability when it occurs in the test
set. We call this situationtraining on the test set. Training on the test set introduces
a bias that makes the probabilities all look too high, and causes huge inaccuracies in
perplexity.

In addition to training and test sets, other divisions of data are often useful.
Sometimes we need an extra source of data to augment the training set. Such extra
data is called aheld-out set, because we hold it out from our training set when we trainHELD­OUT

ourN-gram counts. The held-out corpus is then used to set some other parameters; for
example we will see the use of held-out data to set interpolation weights ininterpo-
lated N-gram models in Sec. 4.6 Finally, sometimes we need to have multiple test sets.
This happens because we might use a particular test set so often that we implicitly tune
to its characteristics. Then we might need a fresh test set which is truly unseen. In such
cases, we call the initial test set thedevelopmenttest set or,devset. We will discussDEVELOPMENT

development test sets again in Ch. 5.
How do we divide our data into training, dev test, and test sets? There is a

tradeoff, since we want our test set to be as large as possible, since a small test set may
be accidentally unrepresentative. On the other hand, we want as much training data as
possible. At the minimum, we would want to pick the smallest test set that gives us
enough statistical power to measure a statistically significant difference between two
potential models. In practice, we often just divide our datainto 80% training, 10%
development, and 10% test. Given a large corpus that we want to divide into training
and test, test data can either be taken from some continuous sequence of text inside the
corpus, or we can removes smaller “stripes” of text from randomly selected parts of
our corpus and combine them into a test set.

4.3.1 N-gram Sensitivity to the Training Corpus

The N-gram model, like many statistical models, is very dependent on the training
corpus. One implication of this is that the probabilities often encode very specific facts
about a given training corpus. Another implication is thatN-grams do a better and
better job of modeling the training corpus as we increase thevalue ofN.

We can visualize both of these facts by borrowing the technique of Shannon
(1951) and Miller and Selfridge (1950), of generating random sentences from differ-
ent N-gram models. It’s simplest to visualize how this works for the unigram case.
Imagine all the words of English covering the probability space between 0 and 1, each
word covering an interval of size equal to its frequency. We choose a random num-
ber between 0 and 1, and print out the word whose interval includes the real value we
have chosen. We continue choosing random numbers and generating words until we
randomly generate the sentence-final token</s>. The same technique can be used to
generate bigrams by first generating a random bigram that starts with<s> (according
to its bigram probability), then choosing a random bigram tofollow it (again, according
to its conditional probability), and so on.

To give an intuition for the increasing power of higher orderN-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and quadrigram
models trained on Shakespeare’s works.

DRAFT

Section 4.3. Training and Test Sets 11

U
ni

gr
am

• To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
• Every enter now severally so, let
• Hill he late speaks; or! a more to leg less first you enter
• Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile
like

B
ig

ra
m

• What means, sir. I confess she? then all sorts, he is trim, captain.
•Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
•What we, hath got so she that I rest and sent to scold and naturebankrupt, nor the first
gentleman?
•Enter Menenius, if it so many good direction found’st thou art a strong upon command
of fear not a liberal largess given away, Falstaff! Exeunt

T
ri

gr
am

• Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
• This shall forbid it should be branded, if renown made it empty.
• Indeed the duke; and had a very good friend.
• Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

Q
ua

dr
ig

ra
m • King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A

great banquet serv’d in;
• Will you not tell me who I am?
• It cannot be but so.
• Indeed the short and the long. Marry, ’tis a noble Lepidus.

Figure 4.3 Sentences randomly generated from fourN-grams computed from Shake-
speare’s works. All characters were mapped to lower-case and punctuation marks were
treated as words. Output is hand-corrected for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words, nor
sentence-final punctuation. The bigram sentences have somevery local word-to-word
coherence (especially if we consider that punctuation counts as a word). The trigram
and quadrigram sentences are beginning to look a lot like Shakespeare. Indeed a care-
ful investigation of the quadrigram sentences shows that they look a little too much
like Shakespeare. The wordsIt cannot be but soare directly fromKing John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and ourN-gram probability matrices are ridiculously
sparse. There areV2 = 844,000,000 possible bigrams alone, and the number of possi-
ble quadrigrams isV4 = 7×1017. Thus once the generator has chosen the first quadri-
gram (It cannot be but), there are only five possible continuations (that, I, he, thou, and
so); indeed for many quadrigrams there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at
an N-gram grammar trained on a completely different corpus: theWall Street Jour-
nal (WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between ourN-grams for the two genres. In order to
check whether this is true, Fig. 4.4 shows sentences generated by unigram, bigram, and
trigram grammars trained on 40 million words from WSJ.

DRAFT

12 Chapter 4. N-grams

unigram: Months the my and issue of year foreign new exchange’s september were
recession exchange new endorsed a acquire to six executives
bigram: Last December through the way to preserve the Hudson corporation N. B. E. C.
Taylor would seem to complete the major central planners onepoint five percent of U.
S. E. has already old M. X. corporation of living on information such as more frequently
fishing to keep her
trigram: They also point to ninety nine point six billion dollars fromtwo hundred four oh
six three percent of the rates of interest stores as Mexico and Brazil on market conditions

Figure 4.4 Sentences randomly generated from three orders ofN-gram computed from
40 million words of the Wall Street Journal. All characters were mapped to lower-case and
punctuation marks were treated as words. Output is hand-corrected for capitalization to
improve readability.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences” there is obviously no overlap
whatsoever in possible sentences, and little if any overlapeven in small phrases. This
stark difference tells us that statistical models are likely to be pretty useless as predic-
tors if the training sets and the test sets are as different asShakespeare and WSJ.

How should we deal with this problem when we buildN-gram models? In gen-
eral we need to be sure to use a training corpus that looks likeour test corpus. We
especially wouldn’t choose training and tests from different genresof text like news-
paper text, early English fiction, telephone conversations, and web pages. Sometimes
finding appropriate training text for a specific new task can be difficult; to build N-
grams for text prediction in SMS (Short Message Service), weneed a training corpus
of SMS data. To buildN-grams on business meetings, we would need to have corpora
of transcribed business meetings.

For general research where we know we want written English but don’t have
a domain in mind, we can use a balanced training corpus that includes cross-sections
from different genres, such as the 1-million word Brown corpus of English (Francis and
Kučera, 1982) or the 100-million word British National Corpus (Leech et al., 1994).

Recent research has also studied ways to dynamicallyadapt language models to
different genres; see Sec. 4.9.4.

4.3.2 Unknown Words: Open versus closed vocabulary tasks

Sometimes we have a language task in which we know all the words that can occur,
and hence we know the vocabulary sizeV in advance. Theclosed vocabularyas-CLOSED

VOCABULARY

sumption is the assumption that we have such a lexicon, and that the test set can only
contain words from this lexicon. The closed vocabulary taskthus assumes there are no
unknown words.

But of course this is a simplification; as we suggested earlier, the number of
unseen words grows constantly, so we can’t possibly know in advance exactly how
many there are, and we’d like our model to do something reasonable with them. We
call these unseen eventsunknown words, orout of vocabulary (OOV) words. TheOOV

percentage of OOV words that appear in the test set is called theOOV rate.
An open vocabularysystem is one where we model these potential unknownOPEN VOCABULARY

DRAFT

Section 4.4. EvaluatingN-grams: Perplexity 13

words in the test set by adding a pseudo-word called<UNK>. How is this model
trained? One way is to start with a set vocabulary that is fixedin advance. We treat any
word that occurs in the training set but is not in this fixed vocabulary as an unknown
word. In a text normalization step, we convert each of these OOV words in the training
data to the token<UNK>. We can then treat<UNK> like a regular word, computing its
frequency and so on.

4.4 EVALUATING N-GRAMS: PERPLEXITY

The correct way to evaluate the performance of a language model is to embed it in
an application and measure the total performance of the application. Such end-to-
end evaluation, also calledin vivo evaluation, is the only way to know if a particularIN VIVO

improvement in a component is really going to help the task athand. Thus for speech
recognition, we can compare the performance of two languagemodels by running the
speech recognizer twice, once with each language model, andseeing which gives the
more accurate transcription.

Unfortunately, end-to-end evaluation is often very expensive; evaluating a large
speech recognition test set, for example, takes hours or even days. Thus we would
like a metric that can be used to quickly evaluate potential improvements in a lan-
guage model.Perplexity is the most common evaluation metric forN-gram language
models. While an improvement in perplexity does not guarantee an improvement in
speech recognition performance (or any other end-to-end metric), it often correlates
with such improvements. Thus it is commonly used as a quick check on an algorithm;
an improvement in perplexity can then be confirmed by an end-to-end evaluation.

The intuition of perplexity is that given two probabilisticmodels, the better
model is the one that has a tighter fit to the test data, or predicts the details of the
test data better. We can measure better prediction by looking at the probability the
model assigns to the test data; the better model will assign ahigher probability to the
test data.

More formally, theperplexity (PP) of a language model on a test set is a functionPERPLEXITY

of the probability that the language model assigns to that test set. For a test setW =
w1w2 . . .wN, the perplexity is the probability of the test set, normalized by the number
of words:

PP(W) = P(w1w2 . . .wN)−
1
N(4.15)

= N

√

1
P(w1w2 . . .wN

)

We can use the chain rule to expand the probability ofW:

PP(W) = N

√

√

√

√

N
∏

i=1

1
P(wi |w1 . . .wi−1)

(4.16)

DRAFT

14 Chapter 4. N-grams

Thus if we are computing the perplexity ofW with a bigram language model, we
get:

PP(W) = N

√

√

√

√

N
∏

i=1

1
P(wi |wi−1)

(4.17)

Note that because of the inverse in Equation (4.16), the higher the conditional
probability of the word sequence, the lower the perplexity.Thus minimizing perplexity
is equivalent to maximizing the test set probability according to the language model.
What we generally use for word sequence in Equation (4.16) orEquation (4.17) is the
entire sequence of words in some test set. Since of course this sequence will cross
many sentence boundaries, we need to include the begin- and end-sentence markers
<s> and</s> in the probability computation. We also need to include the end-of-
sentence marker</s> (but not the beginning-of-sentence marker<s>) in the total
count of word tokensN.

There is another way to think about perplexity, as theweighted average branch-
ing factor of a language. The branching factor of a language is the number of possible
next words that can follow any word. Consider the task of recognizing the digits in
English (zero, one, two,..., nine), given that each of the 10digits occur with equal
probabilityP = 1

10. The perplexity of this language is in fact 10. To see that, imagine
a string of digits of lengthN. By Equation (4.16), the perplexity will be:

PP(W) = P(w1w2 . . .wN)−
1
N

= (
1
10

N

)−
1
N

=
1
10

−1

= 10(4.18)

But now suppose that the number zero is really frequent and occurs 10 times
more often than other numbers. Now we should expect the perplexity to be lower,
since most of the time the next number will be zero. Thus although the branching
factor is still 10, the perplexity or weighted branching factor is smaller. We leave this
calculation as an exercise to the reader.

We’ll see in Sec. 4.10 that perplexity is also closely related to the information-
theoretic notion of entropy.

Finally, let’s see an example of how perplexity can be used tocompare threeN-
gram models. We trained unigram, bigram, and trigram grammars on 38 million words
(including start-of-sentence tokens) from the Wall StreetJournal, using a 19,979 word
vocabulary.5 We then computed the perplexity of each of these models on a test set of
1.5 million words via Equation (4.59). The table below showsthe perplexity of a 1.5
million word WSJ test set according to each of these grammars.

5 More specifically, Katz-style backoff grammars with Good-Turing discounting trained on 38 million
words from the WSJ0 corpus (LDC, 1993), open-vocabulary, using the<UNK> token; see later sections for
definitions.

DRAFT

Section 4.5. Smoothing 15

N-gram Order Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information theN-gram gives us about the word se-
quence, the lower the perplexity (since as Equation (4.16) showed, perplexity is related
inversely to the likelihood of the test sequence according to the model).

Note that in computing perplexities theN-gram modelP must be constructed
without any knowledge of the test sett. Any kind of knowledge of the test set can
cause the perplexity to be artificially low. For example, we defined above theclosed-
vocabulary task, in which the vocabulary for the test set is specified in advance. ThisCLOSED­

VOCABULARY

can greatly reduce the perplexity. As long as this knowledgeis provided equally to each
of the models we are comparing, the closed-vocabulary perplexity can still be useful
for comparing models, but care must be taken in interpretingthe results. In general, the
perplexity of two language models is only comparable if theyuse the same vocabulary.

4.5 SMOOTHING

words people
Never do I ever want never use —
to hear another word! could be
There isn’t one, only I
I haven’t heard! know them

Eliza Doolittle in Ishikawa
Alan Jay Lerner’s Takuboku
My Fair Lady lyrics 1885–1912

There is a major problem with the maximum likelihood estimation process we
have seen for training the parameters of anN-gram model. This is the problem of
sparse datacaused by the fact that our maximum likelihood estimate was based onSPARSE DATA

a particular set of training data. For anyN-gram that occurred a sufficient number of
times, we might have a good estimate of its probability. But because any corpus is
limited, some perfectly acceptable English word sequencesare bound to be missing
from it. This missing data means that theN-gram matrix for any given training corpus
is bound to have a very large number of cases of putative “zeroprobabilityN-grams”
that should really have some non-zero probability. Furthermore, the MLE method also
produces poor estimates when the counts are non-zero but still small.

We need a method which can help get better estimates for thesezero or low-
frequency counts. Zero counts turn out to cause another hugeproblem. Theperplexity
metric defined above requires that we compute the probability of each test sentence.
But if a test sentence has anN-gram that never appeared in the training set, the Maxi-
mum Likelihood estimate of the probability for thisN-gram, and hence for the whole
test sentence, will be zero! This means that in order to evaluate our language mod-
els, we need to modify the MLE method to assign some non-zero probability to any
N-gram, even one that was never observed in training.

For these reasons, we’ll want to modify the maximum likelihood estimates for
computingN-gram probabilities, focusing on theN-gram events that we incorrectly

DRAFT

16 Chapter 4. N-grams

assumed had zero probability. We used the termsmoothingfor such modifications thatSMOOTHING

address the poor estimates due to variability in small data sets. The name comes from
the fact that (looking ahead a bit) we will be shaving a littlebit of probability mass
from the higher counts, and piling it instead on the zero counts, making the distribution
a little less jagged.

In the next few sections we will introduce some smoothing algorithms and show
how they modify the Berkeley Restaurant bigram probabilities in Fig. 4.2.

4.5.1 Laplace (Add-One) Smoothing

One simple way to do smoothing might be just to take our matrixof bigram counts,
before we normalize them into probabilities, and add one to all the counts. This al-
gorithm is calledLaplace smoothingor add-onesmoothing, or Laplace’s Law (Lid-LAPLACE

SMOOTHING

ADD­ONE stone, 1920; ?; Jeffreys, 1948). Laplace smoothing does notperform well and is not
currently used inN-gram modeling, but we begin with it because it introduces many of
the concepts that we will see in other smoothing algorithms,and also gives us a useful
baseline.

Let’s start with the application of add-one (Laplace) smoothing to unigram prob-
abilities. Recall that the unsmoothed maximum likelihood estimate of the unigram
probability of the wordwi is its countci normalized by the total number of word tokens
N:

P(wi) =
ci

N
Add one smoothing merely adds one to each count. Since there areV words in

the vocabulary, and each one got incremented, we also need toadjust the the denomi-
nator to take into account the extraV observations?6

Paddone(wi) =
ci +1
N+V

(4.19)

Instead of changing both the numerator and denominator it isconvenient to de-
scribe how a smoothing algorithm affects the numerator, by defining anadjusted count
c∗. This adjusted count is easier to compare directly with the MLE counts, and can be
turned into a probability like an MLE count by normalizing byN. To define this count,
since we are only changing the numerator, in addition to adding one we’ll also need to
multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N+V
(4.20)

We can now turnc∗ into a probabilityp∗i by normalizing byN.
A related way to view smoothing is asdiscounting (lowering) some non-zeroDISCOUNTING

counts in order to get the probability mass that will be assigned to the zero counts.
Thus instead of referring to the discounted countsc∗, we might describe a smoothing
algorithm in terms of a relativediscount dc, the ratio of the discounted counts to theDISCOUNT

original counts:

6 What happens to ourP values if we don’t increase the denominator?

DRAFT

Section 4.5. Smoothing 17

dc =
c∗

c
Now that we have the intuition for the unigram case, let’s smooth our Berke-

ley Restaurant Project bigram. Fig. 4.5 shows the add-one-smoothed counts for the
bigrams in Fig. 4.1.

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out ofV = 1446)
in the Berkeley Restaurant Project corpus of 9332 sentences.

Fig. 4.6 shows the add-one-smoothed probabilities for the bigrams in Fig. 4.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.21)

For add-one-smoothed bigram counts we need to augment the unigram count by
the number of total word types in the vocabularyV:

P∗(wn|wn−1) =
C(wn−1wn)+1
C(wn−1)+V

(4.22)

Thus each of the unigram counts given in the previous sectionwill need to be
augmented byV = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend

i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out ofV = 1446) in the BeRP
corpus of 9332 sentences.

DRAFT

18 Chapter 4. N-grams

It is often convenient to reconstruct the count matrix so we can see how much
a smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Equation (4.23). Fig. 4.7 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(4.23)

i want to eat chinese food lunch spend

i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (ofV = 1446) in the BeRP
corpus of 9332 sentences.

Note that add-one smoothing has made a very big change to the counts.C(want to)
changed from 608 to 238! We can see this in probability space as well: P(to|want) de-
creases from .66 in the unsmoothed case to .26 in the smoothedcase. Looking at the
discountd (the ratio between new and old counts) shows us how strikingly the counts
for each prefix-word have been reduced; the discount for the bigram want to is .39,
while the discount forChinese foodis .10, a factor of 10!

The sharp change in counts and probabilities occurs becausetoo much probabil-
ity mass is moved to all the zeros. We could move a bit less massby adding a frac-
tional count rather than 1 (add-δ smoothing; (Lidstone, 1920; ?; Jeffreys, 1948)), but
this method requires a method for choosingδ dynamically, results in an inappropriate
discount for many counts, and turns out to give counts with poor variances. For these
and other reasons (Gale and Church, 1994), we’ll need use better smoothing methods
for N-grams like the ones we see in the next section.

4.5.2 Good-Turing Discounting

There are a number of much better discounting algorithms that are only slightly more
complex than add-one smoothing. In this section we introduce one of them, known as
Good-Turing smoothing.GOOD­TURING

The intuition of a number of discounting algorithms (Good Turing, Witten-Bell
discountingWitten and Bell (1991), andKneyser-Ney smoothing) is to use the countWITTEN­BELL

DISCOUNTING

KNEYSER­NEY
SMOOTHING of things you’ve seenonceto help estimate the count of things you’venever seen.

The Good-Turing algorithm was first described by Good (1953), who credits Turing
with the original idea. The basic insight of Good-Turing smoothing is to re-estimate
the amount of probability mass to assign toN-grams with zero counts by looking at
the number ofN-grams that occurred one time. A word orN-gram (or any event)
that occurs once is called asingleton, or ahapax legomenon. Thus the Good-TuringSINGLETON

DRAFT

Section 4.5. Smoothing 19

intuition is to use the frequency of singletons as a re-estimate of the frequency of zero-
count bigrams. In order to compute the frequency of singletons, we’ll need to compute
Nc, the number ofN-grams that occurc times. We refer to the number ofN-grams that
occurc times as thefrequency of frequencyc. So applying the idea to smoothing the
joint probability of bigrams,N0 is the number of bigramsb of count 0,N1 the number
of bigrams with count 1 (singletons), and so on:

Nc =
∑

b:c(b)=c

1(4.24)

The MLE count forNc is c. The Good-Turing estimate replaces this with a
smoothed countc∗, as a function ofNc+1:

c∗ = (c+1)
Nc+1

Nc
(4.25)

The Good-Turing method was first proposed for estimating thepopulations of
animal species. Let’s consider an illustrative example from this domain created by
Joshua Goodman. Suppose we are fishing, and we have seen 5 species with the follow-
ing counts: 10 carp, 3 cod, 2 tuna, 1 trout, 1 salmon, and 1 eel.What is the probability
that the next fish we catch will be a new species, i.e., one thathad a zero frequency
in our training set? The Good-Turing estimate is 3/18, because there are 3 singleton
events. What is the probability that the next fish will be another tuna? The MLE is
2/18. But the Good-Turing estimate must be lower, since we just stole 3/18 of our
probability mass to use on unseen events! We’ll need to discount each of these MLE
probabilities. The revised countsc∗ and Good-Turing smoothed probabilitiesp∗ for
species with counts 0, 1, and 2 are:

c 0 1 2
MLE p 0/18 1/18 2/18
c∗ 1× 3

1 = 3 2× 1
3 = .67 3× 1

1 = 3
GT p∗ 3

18 = .17 .67
18 = .037 3

18 = .17

Fig. 4.8 gives two examples of the application of Good-Turing discounting to
bigram grammars, one on the BeRP corpus of 9332 sentences, and a larger example
computed from 22 million words from the Associated Press (AP) newswire by Church
and Gale (1991) . For both examples the first column shows the count c, i.e., the
number of observed instances of a bigram. The second column shows the number of
bigrams that had this count. Thus 449,721 of the AP bigrams have a count of 2. The
third column showsc∗, the Good-Turing re-estimation of the count.

Good-Turing estimation assumes that the distribution of each bigram is binomial
Church et al. (1991), and assumes we knowN0, the number of bigrams we haven’t
seen. We know this because given a vocabulary size ofV, the total number of bigrams
is V2, henceN0 is V2 minus all the bigrams we have seen.

In practice, this discounted estimatec∗ is not used for all countsc. First, large
counts (wherec > k for some thresholdk) are assumed to be reliable. Katz (1987)
suggests settingk at 5. Thus we define

c∗ = c for c > k(4.26)

DRAFT

20 Chapter 4. N-grams

AP Newswire Berkeley Restaurant
c (MLE) Nc c∗ (GT) c (MLE) Nc c∗ (GT)
0 74,671,100,000 0.0000270 0 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

Figure 4.8 Bigram “frequencies of frequencies” and Good-Turing re-estimations from
the 22 million AP bigrams from Church and Gale (1991), and from the Berkeley Restaurant
corpus of 9332 sentences.

The correct equation forc∗ when somek is introduced (from Katz (1987)) is:

c∗ =
(c+1)

Nc+1
Nc

−c(k+1)Nk+1
N1

1− (k+1)Nk+1
N1

, for 1≤ c≤ k.(4.27)

Second, with Good-Turing discounting as with any other, it is usual to treatN-
grams with low counts (especially counts of 1) as if the countwere 0.

It turns out that Good-Turing discounting is not used by itself in discounting
N-grams; it is only used in combination with the backoff and interpolation algorithms
described in the next sections.

4.6 INTERPOLATION

The discounting we have been discussing so far can help solvethe problem of zero
frequencyn-grams. But there is an additional source of knowledge we candraw on.
If we are trying to computeP(wn|wn−1wn−2), but we have no examples of a particular
trigramwn−2wn−1wn, we can instead estimate its probability by using the bigramprob-
ability P(wn|wn−1). Similarly, if we don’t have counts to computeP(wn|wn−1), we can
look to the unigramP(wn).

There are two ways to rely on thisN-gram “hierarchy”,backoff and interpo-BACKOFF

lation. In backoff, if we have non-zero trigram counts, we rely solely on the trigramINTERPOLATION

counts. We only “back off” to a lower orderN-gram if we have zero evidence for a
higher-orderN-gram. By contrast, in interpolation, we always mix the probability es-
timates from all theN-gram estimators, i.e., we do a weighted interpolation of trigram,
bigram, and unigram counts.

In simple linear interpolation, we combine different orderN-gram by linearly
interpolating all the models. Thus we estimate the trigram probabilityP(wn|wn−1wn−2)
by mixing together the unigram, bigram, and trigram probabilities, each weighted by a
λ:

P̂(wn|wn−1wn−2) = λ1P(wn|wn−1wn−2)

DRAFT
Section 4.7. Backoff 21

+λ2P(wn|wn−1)

+λ3P(wn)(4.28)

such that theλs sum to 1:
∑

i

λi = 1(4.29)

In a slightly more sophisticated version of linear interpolation, eachλ weight
computed in a more sophisticated way, by is conditioned on the context. This way
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, and so we can
make the lambdas for those trigrams higher and thus give thattrigram more weight in
the interpolation. Equation (4.30) shows the equation for interpolation with context-
conditioned weights:

P̂(wn|wn−2wn−1) = λ1(w
n−1
n−2)P(wn|wn−2wn−1)

+λ2(w
n−1
n−2)P(wn|wn−1)

+ λ3(w
n−1
n−2)P(wn)(4.30)

How are theseλ values set? Both the simple interpolation and conditional inter-
polationλs are learned from aheld-out corpus. Recall from Sec. 4.3 that a held-outHELD­OUT

corpus is an additional training corpus that we use not to settheN-gram counts, but to
set other parameters. In this case we can use such data to set theλ values. We can do
this by choosing theλ values which maximize the likelihood of the held-out corpus.
That is, we fix theN-gram probabilities, and then search for the lambda values that
when plugged into Equation (4.28) give us the highest probability of the held-out set,
There are various ways to find this optimal set ofλ. One way is to use theEM algo-
rithm to be defined in Ch. 6, which is an iterative learning algorithm that converges on
locally optimalλs. (Baum, 1972; Dempster et al., 1977; Jelinek and Mercer, 1980).

4.7 BACKOFF

While simple interpolation is indeed simple to understand and implement, it turns out
that there are a number of better algorithms. One of these is backoffN-gram modeling.
The version of backoff we will describe uses Good-Turing discounting as well. It was
introduced by Katz (1987), and hence this kind of backoff with discounting is also
calledKatz backoff. In a Katz backoffN-gram model, if theN-gram we need has zeroKATZ BACKOFF

counts, we approximate it by backing off to the(N−1)-gram. We continue backing
off until we reach a history that has some counts:

Pkatz(wn|wn−1
n−N+1) =







P∗(wn|wn−1
n−N+1), if C(wn−1

n−N+1) > 0

α(wn−1
n−N+1)Pkatz(wn|wn−1

n−N+2), otherwise.
(4.31)

Equation (4.31) shows that the Katz backoff probability foranN-gram just relies
on the (discounted) probabilityP∗ if we’ve seen thisN-gram before (i.e. if we have non-
zero counts). Otherwise, we recursively back off to the Katzprobability for the shorter

DRAFT

22 Chapter 4. N-grams

history(N−1)-gram. We’ll define the discounted probabilityP∗ and the normalizing
factorα below. The trigram version of backoff might be represented as follows:

Pkatz(wi |wi−2wi−1) =











P∗(wi |wi−2wi−1), if C(wi−2wi−1wi) > 0

α(wi−1wi)P∗(wi |wi−1), else ifC(wi−1wi) > 0

α(wi)P∗(wi), otherwise.

(4.32)

Katz backoff incorporates discounting as an integral part of the algorithm. Our
previous discussions of discounting showed how a method like Good-Turing could be
used to assign probability mass to unseen events. For simplicity, we assumed that these
unseen events were all equally probable, and so the probability mass got distributed
evenly among all unseen events. Katz backoff gives us a better way to distribute the
probability mass among unseen trigram events, by relying oninformation from uni-
grams and bigrams. We use discounting to tell us how much total probability mass to
set aside for all the events we haven’t seen, and backoff to tell us how to distribute this
probability.

Discounting is implemented by using discounted probabilitiesP∗(·) rather than
MLE probabilitiesP(·) in Equation (4.31) and Equation (4.32).

Why do we need discounts andα values in Equation (4.31) and Equation (4.32)?
Why couldn’t we just have three sets of MLE probabilities without weights? Because
without discounts andα weights, the result of the equation would not be a true prob-
ability! The MLE estimates ofP(wn|wn−1

n−N+1) are true probabilities; if we sum the
probability of allwi over a givenN-gram context, we should get 1:
∑

i

P(wi |wjwk) = 1(4.33)

But if that is the case, if we use MLE probabilities but back off to a lower order
model when the MLE probability is zero, we would be adding extra probability mass
into the equation, and the total probability of a word would be greater than 1!

Thus any backoff language model must also be discounted. TheP∗ is used to
discount the MLE probabilities to save some probability mass for the lower orderN-
grams. Theα is used to ensure that the probability mass from all the lowerorder
N-grams sums up to exactly the amount that we saved by discounting the higher-order
N-grams. We defineP∗ as the discounted (c∗) estimate of the conditional probability
of anN-gram, (and saveP for MLE probabilities):

P∗(wn|wn−1
n−N+1) =

c∗(wn
n−N+1)

c(wn−1
n−N+1)

(4.34)

Because on average the (discounted)c∗ will be less thanc, this probabilityP∗

will be slightly less than the MLE estimate, which is

c(wn
n−N+1)

c(wn−1
n−N+1)

This will leave some probability mass for the lower orderN-grams, which is
then distributed by theα weights; details of computingα are in Sec. 4.7.1. Fig. 4.9
shows the Katz backoff bigram probabilities for our 8 samplewords, computed from
the BeRP corpus using the SRILM toolkit.

DRAFT
Section 4.7. Backoff 23

i want to eat chinese food lunch spend

i 0.0014 0.326 0.00248 0.00355 0.000205 0.0017 0.00073 0.000489
want 0.00134 0.00152 0.656 0.000483 0.00455 0.00455 0.00384 0.000483
to 0.000512 0.00152 0.00165 0.284 0.000512 0.0017 0.00175 0.0873
eat 0.00101 0.00152 0.00166 0.00189 0.0214 0.00166 0.0563 0.000585
chinese 0.00283 0.00152 0.00248 0.00189 0.000205 0.519 0.00283 0.000585
food 0.0137 0.00152 0.0137 0.00189 0.000409 0.00366 0.00073 0.000585
lunch 0.00363 0.00152 0.00248 0.00189 0.000205 0.00131 0.00073 0.000585
spend 0.00161 0.00152 0.00161 0.00189 0.000205 0.0017 0.00073 0.000585

Figure 4.9 Good-Turing smoothed bigram probabilities for eight words(of V = 1446) in the BeRP corpus of
9332 sentences, computing by using SRILM, withk = 5 and counts of 1 replaced by 0.

4.7.1 Advanced: Details of computingα and P∗

In this section we give the remaining details of the computation of the discounted prob-
ability P∗ and the backoff weightsα(w).

We begin withα, which passes the left-over probability mass to the lower order
N-grams. Let’s represent the total amount of left-over probability mass by the function
β, a function of theN− 1-gram context. For a givenN− 1-gram context, the total
left-over probability mass can be computed by subtracting from 1 the total discounted
probability mass for allN-grams starting with that context:

β(wn−1
n−N+1) = 1−

∑

wn:c(wn
n−N+1)>0

P∗(wn|wn−1
n−N+1)(4.35)

This gives us the total probability mass that we are ready to distribute to allN−1-
gram (e.g., bigrams if our original model was a trigram). Each individualN−1-gram
(bigram) will only get a fraction of this mass, so we need to normalizeβ by the total
probability of all theN− 1-grams (bigrams) that begin someN-gram (trigram). The
final equation for computing how much probability mass to distribute from anN-gram
to anN−1-gram is represented by the functionα:

α(wn−1
n−N+1) =

β(wn−1
n−N+1)

∑

wn:c(wn
n−N+1)=0P(wn|wn−1

n−N+2)

=
1−

∑

wn:c(wn
n−N+1)>0P∗(wn|wn−1

n−N+1)

1−∑

wn:c(wn
n−N+1)>0P∗(wn|wn−1

n−N+2)
(4.36)

Note thatα is a function of the preceding word string, that is, ofwn−1
n−N+1; thus

the amount by which we discount each trigram (d), and the mass that gets reassigned
to lower orderN-grams (α) are recomputed for everyN−1-gram that occurs in any
N-gram.

We only need to specify what to do when the counts of anN−1-gram context
are 0, (i.e., whenc(wn−1

n−N+1) = 0) and our definition is complete:

P(wn|wn−N+1
n−N+1) = P(wn|wn−N+2

n−N+1) if c(wn−1
n−N+1) = 0(4.37)

DRAFT

24 Chapter 4. N-grams

and

P∗(wn|wn−1
n−N+1) = 0 if c(wn−1

n−N+1) = 0(4.38)

and

β(wn−1
n−N+1) = 1 if c(wn−1

n−N+1) = 0(4.39)

4.8 PRACTICAL ISSUES: TOOLKITS AND DATA FORMATS

Let’s now examine howN-gram language models are represented. We represent and
compute language model probabilities in log format, in order to avoid underflow and
also to speed up computation. Since probabilities are (by definition) less than 1, the
more probabilities we multiply together the smaller the product becomes, Multiplying
enoughN-grams together would result in numerical underflow. By using log prob-
abilities instead of raw probabilities, the numbers are notas small. Since adding in
log space is equivalent to multiplying in linear space, we combine log probabilities by
adding them. Besides avoiding underflow, addition is fasterto compute than multipli-
cation. Since we do all computation and storage in log space,if we ever need to report
probabilities we just take the exp of the logprob:

p1× p2× p3× p4 = exp(logp1 + logp2 + logp3 + logp4)(4.40)

Backoff N-gram language models are generally stored inARPA format . An
N-gram in ARPA format is an ASCII file with a small header followed by a list of all
the non-zeroN-gram probabilities (all the unigrams, followed by bigrams, followed by
trigrams, and so on). EachN-gram entry is stored with its discounted log probability
(in log10 format) and its backoff weightα. Backoff weights are only necessary for
N-grams which form a prefix of a longerN-gram, so noα is computed for the highest
orderN-gram (in this case the trigram) orN-grams ending in the end of sequence token
<s>. Thus for a trigram grammar, the format of eachN-gram is:

unigram: logp∗(wi) wi logα(wi)
bigram: logp∗(wi |wi−1) wi−1wi logα(wi−1wi)
trigram: logp∗(wi |wi−2,wi−1) wi−2wi−1wi

Fig. 4.10 shows an ARPA formated LM file with selectedN-grams from the
BeRP corpus. Given such a trigram, the probabilityP(wi |wi−2wi−1) can be computed
as follows:

Pkatz(wi |wi−2wi−1) =











P∗(wi |wi−2wi−1), if trigram exists

α(wi−1wi)P∗(wi |wi−1), else if bigram exists

α(wi)P∗(wi), otherwise.

(4.41)

Toolkits There are two commonly used available toolkits for buildinglanguage mod-
els, the SRILM toolkit (Stolcke, 2002) and the Cambridge-CMU toolkit (Clarkson and
Rosenfeld, 1997). Both are publicly available, and have similar functionality. In train-
ing mode, each toolkit takes a raw text file, one sentence per line with words separated
by white-space, and various parameters such as the orderN, the type of discounting

DRAFT

Section 4.9. Advanced Issues in Language Modeling 25

\data\
ngram 1=1447
ngram 2=9420
ngram 3=5201

\1-grams:
-0.8679678 </s>
-99 <s> -1.068532
-4.743076 chow-fun -0.1943932
-4.266155 fries -0.5432462
-3.175167 thursday -0.7510199
-1.776296 want -1.04292
...

\2-grams:
-0.6077676 <s> i -0.6257131
-0.4861297 i want 0.0425899
-2.832415 to drink -0.06423882
-0.5469525 to eat -0.008193135
-0.09403705 today </s>
...

\3-grams:
-2.579416 <s> i prefer
-1.148009 <s> about fifteen
-0.4120701 to go to
-0.3735807 me a list
-0.260361 at jupiter </s>
-0.260361 a malaysian restaurant
...
\end\

Figure 4.10 ARPA format forN-grams, showing some sampleN-grams. Each is rep-
resented by alogprob, the word sequence,w1...wn, followed by the log backoff weightα.
Note that noα is computed for the highest-orderN-gram or forN-grams ending in<s>.

(Good Turing or Kneser-Ney, discussed in Sec. 4.9.1), and various thresholds. The
output is a language model in ARPA format. In perplexity or decoding mode, the
toolkits take a language model in ARPA format, and a sentenceor corpus, and pro-
duce the probability and perplexity of the sentence or corpus. Both also implement
many advanced features to be discussed later in this chapterand in following chapters,
including skipN-grams, word lattices, confusion network, andN-gram pruning.

4.9 ADVANCED ISSUES INLANGUAGE MODELING

4.9.1 Advanced Smoothing Methods: Kneser-Ney Smoothing

In this section we give a brief introduction to the most commonly used modernN-gram
smoothing method, theInterpolated Kneser-Neyalgorithm.INTERPOLATED

KNESER­NEY

Kneser-Ney has its roots in a discounting method calledabsolute discounting.
Absolute discounting is a much simpler method of computing arevised countc∗ than
the Good-Turing discount formula we saw Equation (4.25), based on frequencies-of-
frequencies. To get the intuition, Let’s revisit the Good-Turing estimates of the bigram
c∗ extended from Fig. 4.8 and reformatted below:

c (MLE) 0 1 2 3 4 5 6 7 8 9
c∗ (GT) 0.00002700.446 1.26 2.24 3.24 4.22 5.19 6.21 7.24 8.25

DRAFT

26 Chapter 4. N-grams

The astute reader may have noticed that except for the re-estimated counts for 0
and 1, all the other re-estimated countsc∗ could be estimated pretty well by just sub-
tracting 0.75 from the MLE countc! Absolute discountingformalizes this intuition,ABSOLUTE

DISCOUNTING

by subtracting a fixed (absolute) discountd from each count. The intuition is that we
have good estimates already for the high counts, and a small discountd won’t affect
them much. It will mainly modify the smaller counts, for which we don’t necessarily
trust the estimate anyhow. The equation for absolute discounting applied to bigrams
(assuming a proper coefficientα on the backoff to make everything sum to one) is:

Pabsolute(wi |wi−2wi−1) =

{

C(wi−1wi)−D
C(wi−1)

, if C(wi−1wi) > 0

α(wi)Pabsolute(wi), otherwise.
(4.42)

In practice, we might also want to keep distinct discount valuesd for the 0 and 1
counts.

Kneser-Ney discounting(Kneser and Ney, 1995) augments absolute discount-
ing with a more sophisticated way to handle the backoff distribution. Consider the job
of predicting the next word in this sentence, assuming we arebacking off to a unigram
model:

I can’t see without my reading .

The wordglassesseems much more likely to follow here than the wordFran-
cisco. But Franciscois in fact more common, and so a unigram model will prefer it to
glasses. We would like to capture the intuition that althoughFranciscois frequent, it
is only frequent after the wordSan, i.e. in the phraseSan Francisco. The wordglasses
has a much wider distribution.

Thus instead of backing off to the unigram MLE count (the number of times the
wordw has been seen), we want to use a completely different backoffdistribution! We
want a heuristic that more accurately estimates the number of times we might expect to
see wordw in a new unseen context. The Kneser-Ney intuition is to base our estimate
on thenumber of different contexts word w has appeared in. Words that have appeared
in more contexts are more likely to appear in some new contextas well. We can express
this new backoff probability, the ‘continuation probability’, as follows:

PCONTINUATION(wi) =
|{wi−1 : C(wi−1wi) > 0}|

∑

wi
|{wi−1 : C(wi−1wi) > 0}|(4.43)

The Kneser-Ney backoff intuition can be formalized as follows (again assuming
a proper coefficientα on the backoff to make everything sum to one):

PKN(wi |wi−1) =











C(wi−1wi)−D
C(wi−1)

, if C(wi−1wi) > 0

α(wi)
|{wi−1:C(wi−1wi)>0}|

∑

wi
|{wi−1:C(wi−1wi)>0}| otherwise.

(4.44)

Finally, it turns out to be better to use aninterpolated rather thanbackoff form
of Kneser-Ney. While Sec. 4.6 showed thatlinear interpolation is not as successful
as Katz backoff, it turns out that more powerful interpolated models, such as interpo-
lated Kneser-Ney, work better than their backoff version.Interpolated Kneser-NeyINTERPOLATED

KNESER­NEY

DRAFT

Section 4.9. Advanced Issues in Language Modeling 27

discounting can be computed with an equation like the following (omitting the compu-
tation ofβ):

PKN(wi |wi−1) =
C(wi−1wi)−D

C(wi−1)
+ β(wi)

|{wi−1 : C(wi−1wi) > 0}|
∑

wi
|{wi−1 : C(wi−1wi) > 0}|(4.45)

A final practical note; it turns out that any interpolation model can be represented
as a backoff model, and hence stored in ARPA backoff format. We simply do the
interpolation when we build the model, and so the ‘bigram’ probability stored in the
backoff format is really ‘bigram already interpolated withunigram’.

4.9.2 Class-based N-grams

Theclass-based N-gramor cluster N-gram is a variant of theN-gram that uses infor-CLASS­BASED
N­GRAM

CLUSTER N­GRAM mation about word classes or clusters. Class-basedN-grams can be useful for dealing
with sparsity in the training data. Suppose for a flight reservation system we want to
compute the probability of the bigramto Shanghai, but this bigram never occurs in the
training set. Instead, our training data hasto London, to Beijing, andto Denver. If we
knew that these were all cities, and assumingShanghaidoes appear in the training set
in other contexts, we could predict the likelihood of a city following from.

There are many variants of clusterN-grams. The simplest one is sometimes
known asIBM clustering , after its originators (Brown et al., 1992b). IBM clusteringIBM CLUSTERING

is a kind ofhard clustering, in which each word can belong to only one class. The
model estimates the conditional probability of a wordwi by multiplying two factors:
the probability of the word’s classci given the preceding classes (based on anN-gram-
of-classes), and the probability ofwi givenci . Here is the IBM model in bigram form:

P(wi |wi−1) ≈ P(ci |,ci−1)×P(wi|ci)

If we had a training corpus in which we knew the class for each word, the maxi-
mum likelihood estimate (MLE) of the probability of the wordgiven the class and the
probability of the class given the previous class could be computed as follows:

P(w|c) =
C(w)

C(c)

P(ci |ci−1) =
C(ci−1ci)

∑

cC(ci−1c)

ClusterN-grams are generally used in two ways. In dialog systems (Ch.23),
we often hand-design domain-specific word classes. Thus foran airline information
system, we might use classes likeCITYNAME , AIRLINE , DAYOFWEEK, or MONTH. In
other cases, we can automatically induce the classes, by clustering words in a corpus
(Brown et al., 1992b). Syntactic categories like part-of-speech tags don’t seem to work
well as classes (Niesler et al., 1998).

Whether automatically induced or hand-designed, clusterN-grams are generally
mixed with regular word-basedN-grams.

DRAFT

28 Chapter 4. N-grams

4.9.3 Language Model Adaptation and Using the Web

One of the most exciting recent developments in language modeling is language model
adaptation. This is relevant when we have only a small amountof in-domain training
data, but a large amount of data from some other domain. We cantrain on the larger
out-of-domain dataset, and adapt our models to the small in-domain set. (Iyer and
Ostendorf, 1997, 1999a, 1999b; Bacchiani and Roark, 2003; Bacchiani et al., 2004).

An obvious large data source for this type of adaptation is the web. Indeed, use
of the web does seem to be helpful in language modeling. The simplest way to apply
the web to improve, say, trigram language models is to use search engines to get counts
for w1w2w3 andw1w2w3, and then compute:

p̂web=
cweb(w1w2w3)

cweb(w1w2)
(4.46)

We can then mix ˆpweb with a conventionalN-gram (Berger and Miller, 1998;
Zhu and Rosenfeld, 2001). We can also use more sophisticatedcombination methods
that make use of topic or class dependencies, so as to find domain-relevant data on the
web data (Bulyko et al., 2003).

In practice it is difficult or impossible to download every page from the web in
order to computeN-grams. For this reason most uses of web data rely on page counts
from search engines. Page counts are only an approximation to actual counts for many
reasons: a page may contain anN-gram multiple times, most search engines round off
their counts, punctuation is deleted, and the counts themselves may be adjusted due to
link and other information. It seems that this kind of noise does not hugely affect the
results of using the web as a corpus (Keller and Lapata, 2003;Nakov and Hearst, 2005)
although it is possible to perform specific adjustments, such as fitting a regression to
predict actual word counts from page counts (Zhu and Rosenfeld, 2001).

4.9.4 Using Longer Distance Information: A Brief Summary

There are many methods for incorporating longer-distance context intoN-gram mod-
eling. While we have limited our discussion mainly to bigramand trigrams, state-of-
the-art speech recognition systems, for example, are basedon longer distanceN-grams,
especially 4-grams, but also 5-grams. Goodman (2006) showed that with 284 million
words of training data, 5-grams do improve perplexity scores over 4-grams, but not
by much. Goodman checked contexts up to 20-grams, and found that after 6-grams,
longer contexts weren’t useful, at least not with 284 million words of training data.

Many models focus on more sophisticated ways to get longer distance informa-
tion. For example people tend to repeat words they have used before. Thus if a word is
used once in a text, it will probably be used again. We can capture this fact by acacheCACHE

language model (Kuhn and de Mori, 1990). For example to use a unigram cache model
to predict wordi of a test corpus, we create a unigram grammar from the preceding part
of the test corpus (words 1 toi −1), and mix this with our conventionalN-gram. We
might use only a shorter window from the previous words, rather than the entire set.
Cache language models are very powerful in any applicationswhere we have perfect
knowledge of the words. Cache models work less well in domains where the previous
words are not known exactly. In speech applications, for example, unless there is some

DRAFT

Section 4.10. Advanced: Information Theory Background 29

way for users to correct errors, cache models tend to ’lock-in’ errors they made on
earlier words.

The fact that words are often repeated in a text is a symptom ofa more general
fact about words; texts tend to beabout things. Documents which are about particular
topics tend to use similar words. This suggests that we couldtrain separate language
model for different topics. Intopic-basedlanguage models (Chen et al., 1998; GildeaTOPIC­BASED

and Hofmann, 1999) we try to take advantage of the fact that different topics will have
different kinds of words. For example we can train differentlanguage models for each
topic t, and then mix them, weighted by how likely each topic is giventhe historyh:

p(w|h) =
∑

t

P(w|t)P(t|h)(4.47)

A very similar class of models relies on the intuition that upcoming words are
semantically similar to preceding words in the text. These models use a measure of
semantic word association such as thelatent semantic indexingdescribed in Ch. 19LATENT SEMANTIC

INDEXING

(Coccaro and Jurafsky, 1998; Bellegarda, 1999, 2000), or on-line dictionaries or the-
sauri (Demetriou et al., 1997) to compute a probability based on a word’s similarity to
preceding words, and then mix it with a conventionalN-gram.

There are also various ways to extend theN-gram model by having the previous
(conditioning) word be something other than a fixed window ofprevious words. For
example we can choose as a predictor word a word called atrigger which is not ad-TRIGGER

jacent but which is very related (has high mutual information with) the word we are
trying to predict (Rosenfeld, 1996; Niesler and Woodland, 1999; Zhou and Lua, 1998).
Or we can createskip N-grams, where the preceding context ‘skips over’ some in-SKIP N­GRAMS

termediate words, for example computing a probability suchasP(wi |wi−1,wi−3). We
can also use extra previous context just in cases where a longer phrase is particularly
frequent or predictive, producing avariable-length N-gram (Ney et al., 1994; Kneser,VARIABLE­LENGTH

N­GRAM

1996; Niesler and Woodland, 1996).
In general, using very large and rich contexts can result in very large language

models. Thus these models are often pruned, removing low-probably events. Prun-
ing is also essential for using language models on small platforms such as cellphones
(Stolcke, 1998).

Finally, there is a wide body of research on integrating sophisticated linguistic
structures into language modeling. Language models based on syntactic structure from
probabilistic parsers are described in Ch. 14. Language models based on the current
speech act in dialogue are described in Ch. 23.

4.10 ADVANCED: INFORMATION THEORY BACKGROUND

I got the horse right here
Frank Loesser, Guys and Dolls

We introduced perplexity in Sec. 4.4 as a way to evaluateN-gram models on a
test set. A betterN-gram model is one which assigns a higher probability to the test
data, and perplexity is a normalized version of the probability of the test set. Another

DRAFT

30 Chapter 4. N-grams

way to think about perplexity is based on the information-theoretic concept ofcross-
entropy. In order to give another intuition into perplexity as a metric, this section gives
a quick review of fundamental facts frominformation theory including the concept
of cross-entropy that underlies perplexity. The interested reader should consult a good
information theory textbook like Cover and Thomas (1991).

Perplexity is based on the information-theoretic notion ofcross-entropy, which
we will now work toward defining.Entropy is a measure of information, and is in-ENTROPY

valuable throughout speech and language processing. It canbe used as a metric for
how much information there is in a particular grammar, for how well a given grammar
matches a given language, for how predictive a givenN-gram grammar is about what
the next word could be. Given two grammars and a corpus, we canuse entropy to
tell us which grammar better matches the corpus. We can also use entropy to compare
how difficult two speech recognition tasks are, and also to measure how well a given
probabilistic grammar matches human grammars.

Computing entropy requires that we establish a random variable X that ranges
over whatever we are predicting (words, letters, parts of speech, the set of which we’ll
call χ), and that has a particular probability function, call itp(x). The entropy of this
random variableX is then

H(X) = −
∑

x∈χ
p(x) log2 p(x)(4.48)

The log can in principle be computed in any base; if we use log base 2, the
resulting value of entropy will be measured inbits.

The most intuitive way to define entropy for computer scientists is to think of
the entropy as a lower bound on the number of bits it would taketo encode a certain
decision or piece of information in the optimal coding scheme.

Cover and Thomas (1991) suggest the following example. Imagine that we want
to place a bet on a horse race but it is too far to go all the way toYonkers Racetrack,
and we’d like to send a short message to the bookie to tell him which horse to bet on.
Suppose there are eight horses in this particular race.

One way to encode this message is just to use the binary representation of the
horse’s number as the code; thus horse 1 would be001, horse 2010, horse 3011,
and so on, with horse 8 coded as000. If we spend the whole day betting, and each
horse is coded with 3 bits, on the average we would be sending 3bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed, and that we represent it as the prior probability of each horse as follows:

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variableX that ranges over horses gives us a lower
bound on the number of bits, and is:

H(X) = −
i=8
∑

i=1

p(i) logp(i)

DRAFT

Section 4.10. Advanced: Information Theory Background 31

= − 1
2 log 1

2−
1
4 log 1

4−
1
8 log 1

8−
1
16 log 1

16−4(1
64 log 1

64)

= 2 bits(4.49)

A code that averages 2 bits per race can be built by using shortencodings for
more probable horses, and longer encodings for less probable horses. For example, we
could encode the most likely horse with the code0, and the remaining horses as10,
then110, 1110, 111100, 111101, 111110, and111111.

What if the horses are equally likely? We saw above that if we use an equal-
length binary code for the horse numbers, each horse took 3 bits to code, and so the
average was 3. Is the entropy the same? In this case each horsewould have a probability
of 1

8. The entropy of the choice of horses is then:

H(X) = −
i=8
∑

i=1

1
8

log
1
8

= − log
1
8

= 3 bits(4.50)

Until now we have been computing the entropy of a single variable. But most of
what we will use entropy for involvessequences; for a grammar, for example, we will
be computing the entropy of some sequence of wordsW = {w0,w1,w2, . . . ,wn}. One
way to do this is to have a variable that ranges over sequencesof words. For example
we can compute the entropy of a random variable that ranges over all finite sequences
of words of lengthn in some languageL as follows:

H(w1,w2, . . . ,wn) = −
∑

Wn
1 ∈L

p(Wn
1) logp(Wn

1)(4.51)

We could define theentropy rate (we could also think of this as theper-wordENTROPY RATE

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(Wn
1) = −1

n

∑

Wn
1 ∈L

p(Wn
1) logp(Wn

1)(4.52)

But to measure the true entropy of a language, we need to consider sequences
of infinite length. If we think of a language as a stochastic processL that produces a
sequence of words, its entropy rateH(L) is defined as:

H(L) = − lim
n→∞

1
n

H(w1,w2, . . . ,wn)

= − lim
n→∞

1
n

∑

W∈L

p(w1, . . . ,wn) logp(w1, . . . ,wn)(4.53)

The Shannon-McMillan-Breiman theorem (Algoet and Cover, 1988; Cover and
Thomas, 1991) states that if the language is regular in certain ways (to be exact, if it is
both stationary and ergodic),

H(L) = lim
n→∞

−1
n

logp(w1w2 . . .wn)(4.54)

That is, we can take a single sequence that is long enough instead of summing
over all possible sequences. The intuition of the Shannon-McMillan-Breiman theorem
is that a long enough sequence of words will contain in it manyother shorter sequences,

DRAFT

32 Chapter 4. N-grams

and that each of these shorter sequences will reoccur in the longer sequence according
to their probabilities.

A stochastic process is said to bestationary if the probabilities it assigns to aSTATIONARY

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at timet is the same as the probability distribution
at time t + 1. Markov models, and henceN-grams, are stationary. For example, in
a bigram,Pi is dependent only onPi−1. So if we shift our time index byx, Pi+x is
still dependent onPi+x−1. But natural language is not stationary, since as we will
see in Ch. 11, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus our statistical models only give an
approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assump-
tions, we can compute the entropy of some stochastic processby taking a very long
sample of the output, and computing its average log probability. In the next section we
talk about the why and how;whywe would want to do this (i.e., for what kinds of prob-
lems would the entropy tell us something useful), andhow to compute the probability
of a very long sequence.

4.10.1 Cross Entropy for Comparing Models

In this section we introduce thecross entropy, and discuss its usefulness in comparingCROSS ENTROPY

different probabilistic models. The cross entropy is useful when we don’t know the
actual probability distributionp that generated some data. It allows us to use somem,
which is a model ofp (i.e., an approximation top. The cross-entropy ofm on p is
defined by:

H(p,m) = lim
n→∞

1
n

∑

W∈L

p(w1, . . . ,wn) logm(w1, . . . ,wn)(4.55)

That is we draw sequences according to the probability distribution p, but sum
the log of their probability according tom.

Again, following the Shannon-McMillan-Breiman theorem, for a stationary er-
godic process:

H(p,m) = lim
n→∞

−1
n

logm(w1w2 . . .wn)(4.56)

This means that, as for entropy, we can estimate the cross-entropy of a model
m on some distributionp by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross entropy useful is that the cross entropyH(p,m) is an upper
bound on the entropyH(p). For any modelm:

H(p) ≤ H(p,m)(4.57)

This means that we can use some simplified modelm to help estimate the true
entropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross entropyH(p,m) will be to the true entropyH(p). Thus
the difference betweenH(p,m) andH(p) is a measure of how accurate a model is.
Between two modelsm1 andm2, the more accurate model will be the one with the

DRAFT

Section 4.11. Advanced: The Entropy of English and Entropy Rate Constancy 33

lower cross-entropy. (The cross-entropy can never be lowerthan the true entropy, so a
model cannot err by underestimating the true entropy).

We are finally ready to see the relation between perplexity and the cross-entropy
we saw in Equation (4.56). Cross-entropy is defined in the limit, as the length of the
observed word sequence goes to infinity. We will need an approximation to cross-
entropy, relying on a (sufficiently long) sequence of fixed length. This approximation
to the cross-entropy of a modelM = P(wi |wi−N+1...wi−1) on a sequence of wordsW
is:

H(W) = − 1
N

logP(w1w2 . . .wN)(4.58)

Theperplexity of a modelP on a sequence of wordsW is now formally defined as thePERPLEXITY

exp of this cross-entropy:

Perplexity(W) = 2H(W)

= P(w1w2 . . .wN)−
1
N

= N

√

1
P(w1w2 . . .wN)

= N

√

√

√

√

N
∏

i=1

1
P(wi |w1 . . .wi−1)

(4.59)

4.11 ADVANCED: THE ENTROPY OFENGLISH AND ENTROPY RATE

CONSTANCY

As we suggested in the previous section, the cross-entropy of some modelm can be
used as an upper bound on the true entropy of some process. We can use this method to
get an estimate of the true entropy of English. Why should we care about the entropy
of English?

One reason is that the true entropy of English would give us a solid lower bound
for all of our future experiments on probabilistic grammars. Another is that we can use
the entropy values for English to help understand what partsof a language provide the
most information (for example, is the predictability of English mainly based on word
order, on semantics, on morphology, on constituency, or on pragmatic cues?) This can
help us immensely in knowing where to focus our language-modeling efforts.

There are two common methods for computing the entropy of English. The first
was employed by Shannon (1951), as part of his groundbreaking work in defining the
field of information theory. His idea was to use human subjects, and to construct a psy-
chological experiment that requires them to guess strings of letters; by looking at how
many guesses it takes them to guess letters correctly we can estimate the probability of
the letters, and hence the entropy of the sequence.

The actual experiment is designed as follows: we present a subject with some
English text and ask the subject to guess the next letter. Thesubjects will use their

DRAFT

34 Chapter 4. N-grams

knowledge of the language to guess the most probable letter first, the next most proba-
ble next, and so on. We record the number of guesses it takes for the subject to guess
correctly. Shannon’s insight was that the entropy of the number-of-guesses sequence is
the same as the entropy of English. (The intuition is that given the number-of-guesses
sequence, we could reconstruct the original text by choosing the “nth most probable”
letter whenever the subject tookn guesses). This methodology requires the use of letter
guesses rather than word guesses (since the subject sometimes has to do an exhaustive
search of all the possible letters!), and so Shannon computed theper-letter entropy
of English rather than the per-word entropy. He reported an entropy of 1.3 bits (for 27
characters (26 letters plus space)). Shannon’s estimate islikely to be too low, since it
is based on a single text (Jefferson the Virginianby Dumas Malone). Shannon notes
that his subjects had worse guesses (hence higher entropies) on other texts (newspaper
writing, scientific work, and poetry). More recently variations on the Shannon experi-
ments include the use of a gambling paradigm where the subjects get to bet on the next
letter (Cover and King, 1978; Cover and Thomas, 1991).

The second method for computing the entropy of English helpsavoid the single-
text problem that confounds Shannon’s results. This methodis to take a very good
stochastic model, train it on a very large corpus, and use it to assign a log-probability
to a very long sequence of English, using the Shannon-McMillan-Breiman theorem:

H(English) ≤ lim
n→∞

−1
n

logm(w1w2 . . .wn)(4.60)

For example, Brown et al. (1992a) trained a trigram languagemodel on 583 mil-
lion words of English, (293,181 different types) and used itto compute the probability
of the entire Brown corpus (1,014,312 tokens). The trainingdata include newspapers,
encyclopedias, novels, office correspondence, proceedings of the Canadian parliament,
and other miscellaneous sources.

They then computed the character-entropy of the Brown corpus, by using their
word-trigram grammar to assign probabilities to the Brown corpus, considered as a
sequence of individual letters. They obtained an entropy of1.75 bits per character
(where the set of characters included all the 95 printable ASCII characters).

The average length of English written words (including space) has been reported
at 5.5 letters (Nádas, 1984). If this is correct, it means that the Shannon estimate of
1.3 bits per letter corresponds to a per-word perplexity of 142 for general English. The
numbers we report earlier for the WSJ experiments are significantly lower than this,
since the training and test set came from the same subsample of English. That is, those
experiments underestimate the complexity of English (since the Wall Street Journal
looks very little like Shakespeare, for example)

A number of scholars have independently made the intriguingsuggestion that en-
tropy rate plays a role in human communication in general (Lindblom, 1990; Van Son
et al., 1998; Aylett, 1999; Genzel and Charniak, 2002; Van Son and Pols, 2003). The
idea is that people speak so as to keep the rate of informationbeing transmitted per
second roughly constant, i.e. transmitting a constant number of bits per second, or
maintaining a constant entropy rate. Since the most efficient way of transmitting in-
formation through a channel is at a constant rate, language may even have evolved
for such communicative efficiency (Plotkin and Nowak, 2000). There is a wide vari-

DRAFT

Section 4.11. Advanced: The Entropy of English and Entropy Rate Constancy 35

ety of evidence for the constant entropy rate hypothesis. One class of evidence, for
speech, shows that speakers shorten predictable words (i.e. they take less time to say
predictable words is shorter) and lengthen unpredictable words (Aylett, 1999; Jurafsky
et al., 2001; Aylett and Turk, 2004). In another line of research, Genzel and Charniak
(2002, 2003) show that entropy rate constancy makes predictions about the entropy of
individual sentences from a text. In particular, they show that it predicts that local mea-
sures of sentence entropy which ignore previous discourse context (for example the
N-gram probability of sentence), should increase with the sentence number, and they
document this increase in corpora. Keller (2004) provides evidence that entropy rate
plays a role for the addressee as well, showing a correlationbetween the entropy of a
sentence and the processing effort it causes in comprehension, as measured by reading
times in eye-tracking data.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The underlying mathematics of theN-gram was first proposed by Markov (1913), who
used what are now calledMarkov chains (bigrams and trigrams) to predict whether an
upcoming letter in Pushkin’sEugene Oneginwould be a vowel or a consonant. Markov
classified 20,000 letters as V or C and computed the bigram andtrigram probability that
a given letter would be a vowel given the previous one or two letters. Shannon (1948)
appliedN-grams to compute approximations to English word sequences. Based on
Shannon’s work, Markov models were commonly used in engineering, linguistic, and
psychological work on modeling word sequences by the 1950s.

In a series of extremely influential papers starting with Chomsky (1956) and in-
cluding Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued that
“finite-state Markov processes”, while a possibly useful engineering heuristic, were in-
capable of being a complete cognitive model of human grammatical knowledge. These
arguments led many linguists and computational linguists to ignore work in statistical
modeling for decades.

The resurgence ofN-gram models came from Jelinek, Mercer, Bahl, and col-
leagues at the IBM Thomas J. Watson Research Center, influenced by Shannon, and
Baker at CMU, influenced by the work of Baum and colleagues. These two labs in-
dependently successfully usedN-grams in their speech recognition systems (Baker,
1990; Jelinek, 1976; Baker, 1975; Bahl et al., 1983; Jelinek, 1990). A trigram model
was used in the IBM TANGORA speech recognition system in the 1970s, but the idea
was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of succession, and was first
applied as an engineering solution to the zero-frequency problem by Jeffreys (1948)
based on an earlier Add-K suggestion by ? (?). Problems with the Add-one algorithm
are summarized in Gale and Church (1994). The Good-Turing algorithm was first ap-
plied to the smoothing ofN-gram grammars at IBM by Katz, as cited in Nádas (1984).
Church and Gale (1991) gives a good description of the Good-Turing method, as well
as the proof.Sampson (1996) also has a useful discussion of Good-Turing. Jelinek
(1990) summarizes this and many other early language model innovations used in the

DRAFT

36 Chapter 4. N-grams

IBM language models.
A wide variety of different language modeling and smoothingtechniques were

tested through the 1980’s and 1990’s, including those we discuss as well as Witten-Bell
discounting (Witten and Bell, 1991), varieties of class-based models (Jelinek, 1990;
Kneser and Ney, 1993; Heeman, 1999; Samuelsson and Reichl, 1999), and others
(Gupta et al., 1992). In the late 1990’s, Chen and Goodman produced a very influential
series of papers with a comparison of different language models (Chen and Goodman,
1996, 1998, 1999; Goodman, 2006). They performed a number ofcarefully controlled
experiments comparing different discounting algorithms,cache models, class-based
(cluster) models, and other language model parameters. They showed the advantages
of Interpolated Kneser-Ney, which has since become one of the most popular current
methods for language modeling. These papers influenced our discussion in this chapter,
and are recommended reading if you have further interest in language modeling.

As we suggested earlier in the chapter, recent research in language modeling has
focused on adaptation, and also on the use of sophisticated linguistic structures based
on syntactic and dialogue structure.

4.12 SUMMARY

This chapter introduced theN-gram, one of the oldest and most broadly useful practical
tools in language processing.

• An N-gram probability is the conditional probability of a word given the previous
N− 1 words. N-gram probabilities can be computed by simply counting in a
corpus and normalizing (theMaximum Likelihood Estimate) or they can be
computed by more sophisticated algorithms. The advantage of N-grams is that
they take advantage of lots of rich lexical knowledge. A disadvantage for some
purposes is that they are very dependent on the corpus they were trained on.

• Smoothingalgorithms provide a better way of estimating the probability of N-
grams than Maximum Likelihood Estimation. Commonly-usedN-gram smooth-
ing algorithms rely on lower-orderN-gram counts viabackoff or interpolation .

• Both backoff and interpolation require discounting such asKneser-Ney, Witten-
Bell andGood-Turing discounting.

• N-gramlanguage modelsare evaluated by separating the corpus into atraining
setand atest set, training the model on the training set, and evaluating on the test
set. Theperplexity 2H of of the language model on a test set is used to compare
language models.

DRAFT

Section 4.12. Summary 37

EXERCISES

4.1 Write out the equation for trigram probability estimation (modifying Equation 4.13).

4.2 Write a program to compute unsmoothed unigrams and bigrams.

4.3 Run yourN-gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two corpora.
What are the differences in the most common unigrams betweenthe two? How about
interesting differences in bigrams?

4.4 Add an option to your program to generate random sentences.

4.5 Add an option to your program to do Good-Turing discounting.

4.6 Add an option to your program to implement Katz backoff.

4.7 Add an option to your program to compute the perplexity of a test set.

4.8 (Advanced) Suppose someone took all the words in a sentence and reordered
them randomly. Write a program which take as input such abag of words and pro-BAG OF WORDS

duces as output a guess at the original order. You will need toan N-gram grammar
produced by yourN-gram program (on some corpus), and you will need to use the
Viterbi algorithm introduced in the next chapter. This taskis sometimes calledbag
generation.BAG GENERATION

4.9 The field of authorship attribution is concerned with discovering the authorAUTHORSHIP
ATTRIBUTION

of a particular text. Authorship attribution is important in many fields, including his-
tory, literature, and forensic linguistics. For example Mosteller and Wallace (1964)
applied authorship identification techniques to discover who wroteThe Federalistpa-
pers. The Federalist papers were written in 1787-1788 by Alexander Hamilton, John
Jay and James Madison to persuade New York to ratify the United States Constitution.
They were published anonymously, and as a result, although some of the 85 essays
were clearly attributable to one author or another, the authorship of 12 were in dispute
between Hamilton and Madison. Foster (1989) applied authorship identification tech-
niques to suggest that W.S.’sFuneral Elegyfor William Peter might have been written
by William Shakespeare (he turned out to be wrong on this one), and that the anony-
mous author ofPrimary Colors, the roman à clef about the Clinton campaign for the
American presidency, was journalist Joe Klein (Foster, 1996)..

A standard technique for authorship attribution, first usedby Mosteller and Wal-
lace, is a Bayesian approach. For example, they trained a probabilistic model of the
writing of Hamilton, and another model of the writings of Madison, and computed the
maximum-likelihood author for each of the disputed essays.There are many complex
factors that go into these models, including vocabulary use, word-length, syllable struc-
ture, rhyme, grammar; see Holmes (1994) for a summary. This approach can also be
used for identifying which genre a text comes from.

One factor in many models is the use of rare words. As a simple approximation
to this one factor, apply the Bayesian method to the attribution of any particular text.

DRAFT

38 Chapter 4. N-grams

You will need three things: a text to test, and two potential authors or genres, with a
large on-line text sample of each. One of them should be the correct author. Train
a unigram language model on each of the candidate authors. You are only going to
use thesingletonunigrams in each language model. You will computeP(T|A1), the
probability of the text given author or genreA1, by (1) taking the language model from
A1, (2) by multiplying together the probabilities of all the unigrams that only occur once
in the “unknown” text and (3) taking the geometric mean of these (i.e., thenth root,
wheren is the number of probabilities you multiplied). Do the same for A2. Choose
whichever is higher. Did it produce the correct candidate?

DRAFT

Section 4.12. Summary 39

Algoet, P. H. and Cover, T. M. (1988). A sandwich proof of the
Shannon-McMillan-Breiman theorem.The Annals of Proba-
bility, 16(2), 899–909.

Aylett, M. and Turk, A. (2004). The smooth signal redun-
dancy hypothesis: A functional explanation for relationships
between redundancy, prosodic prominence, and duration in
spontaneous speech.Language and Speech, 47(1), 31–56.

Aylett, M. P. (1999). Stochastic suprasegmentals - relationships
between redundancy, prosodic structure and syllable duration.
In Proceedings of the International Congress of Phonetic Sci-
ences (ICPhS-99), San Francisco, California.

Bacchiani, M. and Roark, B. (2003). Unsupervised language
model adaptation. InIEEE ICASSP-03, pp. 224–227.

Bacchiani, M., Roark, B., and Saraclar, M. (2004). Language
model adaptation with MAP estimation and the perceptron al-
gorithm. InProceedings of HLT-NAACL-04, pp. 21–24.

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A maximum
likelihood approach to continuous speech recognition.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
5(2), 179–190.

Baker, J. K. (1975). The DRAGON system – An overview.
IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, ASSP-23(1), 24–29.

Baker, J. K. (1975/1990). Stochastic modeling for automatic
speech understanding. In Waibel, A. and Lee, K.-F. (Eds.),
Readings in Speech Recognition, pp. 297–307. Morgan Kauf-
mann, Los Altos. Originally appeared inSpeech Recognition,
Academic Press, 1975.

Bates, R. (1997). The corrections officer: Can John Kidd save
Ulysses.Lingua Franca. October.

Baum, L. E. (1972). An inequality and associated maximiza-
tion technique in statistical estimation for probabilistic func-
tions of Markov processes. In Shisha, O. (Ed.),Inequalities
III: Proceedings of the Third Symposium on Inequalities, Uni-
versity of California, Los Angeles, pp. 1–8. Academic Press.

Bellegarda, J. R. (2000). Exploiting latent semantic information
in statistical language modeling.Proceedings of the IEEE,
89(8), 1279–1296.

Bellegarda, J. R. (1999). Speech recognition experiments using
multi-span statistical language models. InIEEE ICASSP-99,
pp. 717–720. IEEE.

Berger, A. and Miller, R. (1998). Just-in-time language model-
ing. In IEEE ICASSP-98, Vol. II, pp. 705–708.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., Lai, J.C.,
and Mercer, R. L. (1992a). An estimate of an upper bound
for the entropy of English.Computational Linguistics, 18(1),
31–40.

Brown, P. F., Della Pietra, V. J., deSouza, P. V., Lai, J. C., and
Mercer, R. L. (1992b). Class-basedn-gram models of natural
language.Computational Linguistics, 18(4), 467–479.

Bulyko, I., Ostendorf, M., and Stolcke, A. (2003). Getting more
mileage from web text sources for conversational speech lan-
guage modeling using class-dependent mixtures. InProceed-
ings of HLT-NAACL-03, Edmonton, Canada, Vol. 2, pp. 7–9.

Chen, S. F. and Goodman, J. (1996). An empirical study of
smoothing techniques for language modeling. InProceedings
of ACL-96, Santa Cruz, CA, pp. 310–318. ACL.

Chen, S. F. and Goodman, J. (1998). An empirical study of
smoothing techniques for language modeling. Tech. rep. TR-
10-98, Computer Science Group, Harvard University, Cam-
bridge, MA.

Chen, S. F. and Goodman, J. (1999). An empirical study
of smoothing techniques for language modeling.Computer
Speech and Language, 13(359–394).

Chen, S. F., Seymore, K., and Rosenfeld, R. (1998). Topic adap-
tation for language modeling using unnormalized exponential
models. InIEEE ICASSP-98, pp. 681–684. IEEE.

Chomsky, N. (1956). Three models for the description of lan-
guage. IRI Transactions on Information Theory, 2(3), 113–
124.

Chomsky, N. (1957).Syntactic Structures. Mouton, The Hague.

Chomsky, N. (1969). Quine’s empirical assumptions. In David-
son, D. and Hintikka, J. (Eds.),Words and objections. Essays
on the work of W. V. Quine, pp. 53–68. D. Reidel, Dordrecht.

Church, K. W. and Gale, W. A. (1991). A comparison of the en-
hanced Good-Turing and deleted estimation methods for esti-
mating probabilities of English bigrams.Computer Speech
and Language, 5, 19–54.

Church, K. W., Gale, W. A., and Kruskal, J. B. (1991). Ap-
pendix A: the Good-Turing theorem. InComputer Speech
and Language(Church and Gale, 1991), pp. 19–54.

Clark, H. H. and Fox Tree, J. E. (2002). Using uh and um in
spontaneous speaking.Cognition, 84, 73–111.

Clarkson, P. and Rosenfeld, R. (1997). Statistical lan-
guage modeling using the CMU-Cambridge toolkit. In
EUROSPEECH-97, Vol. 1, pp. 2707–2710.

Coccaro, N. and Jurafsky, D. (1998). Towards better integra-
tion of semantic predictors in statistical language modeling.
In ICSLP-98, Sydney, Vol. 6, pp. 2403–2406.

Cover, T. M. and King, R. C. (1978). A convergent gambling
estimate of the entropy of English.IEEE Transactions on In-
formation Theory, 24(4), 413–421.

Cover, T. M. and Thomas, J. A. (1991).Elements of information
theory. Wiley, New York.

Demetriou, G., Atwell, E., and Souter, C. (1997). Large-
scale lexical semantics for speech recognition support. In
EUROSPEECH-97, pp. 2755–2758.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via theEM algorithm.
Journal of the Royal Statistical Society, 39(1), 1–21.

Foster, D. W. (1989).Elegy by W.S.: A Study in Attribution.
Associated University Presses, Cranbury, NJ.

Foster, D. W. (1996). Primary culprit.New York, 50–57. Febru-
ary 26.

DRAFT

40 Chapter 4. N-grams

Francis, W. N. (1979). A tagged corpus – problems and
prospects. In Greenbaum, S., Leech, G., and Svartvik, J.
(Eds.),Studies in English linguistics for Randolph Quirk, pp.
192–209. Longman, London and New York.

Francis, W. N. and Kučera, H. (1982).Frequency Analysis of
English Usage. Houghton Mifflin, Boston.

Gale, W. A. and Church, K. W. (1994). What is wrong with
adding one?. In Oostdijk, N. and de Haan, P. (Eds.),Corpus-
based Research into Language, pp. 189–198. Rodopi, Ams-
terdam.

Genzel, D. and Charniak, E. (2002). Entropy rate constancy in
text. InProceedings of ACL-02.

Genzel, D. and Charniak, E. (2003). Variation of entropy and
parse trees of sentences as a function of the sentence number.
In EMNLP 2003.

Gildea, D. and Hofmann, T. (1999). Topic-based lan-
guage models using EM. InEUROSPEECH-99, Bu-
dapest, pp. 2167–2170. http://www.cis.upenn.edu/ dg-
ildea/gildeahofmann99.ps.

Godfrey, J., Holliman, E., and McDaniel, J. (1992). SWITCH-
BOARD: Telephone speech corpus for research and devel-
opment. InIEEE ICASSP-92, San Francisco, pp. 517–520.
IEEE.

Good, I. J. (1953). The population frequencies of species and
the estimation of population parameters.Biometrika, 40, 16–
264.

Goodman, J. (2006). A bit of progress in language modeling:
Extended version. Tech. rep. MSR-TR-2001-72, Machine
Learning and Applied Statistics Group, Microsoft Research,
Redmond, WA.

Gupta, V., Lennig, M., and Mermelstein, P. (1992). A language
model for very large-vocabulary speech recognition.Com-
puter Speech and Language, 6, 331–344.

Heeman, P. A. (1999). POS tags and decision trees for lan-
guage modeling. InEMNLP/VLC-99, College Park, MD, pp.
129–137. ACL.

Holmes, D. I. (1994). Authorship attribution.Computers and
the Humanities, 28, 87–106.

Iyer, R. M. and Ostendorf, M. (1999a). Modeling long dis-
tance dependencies in language: Topic mixtures versus dy-
namic cache model.IEEE Transactions on Speech and Audio
Processing, 7.

Iyer, R. M. and Ostendorf, M. (1999b). Relevance weighting for
combining multi-domain data for n-gram language modeling.
Computer Speech and Language, 13(3), 267–282.

Iyer, R. and Ostendorf, M. (1997). Transforming out-of-
domain estimates to improve in-domain language models. In
EUROSPEECH-97, pp. 1975–1978.

Jeffreys, H. (1948).Theory of Probability. Clarendon Press,
Oxford. 2nd edn Section 3.23.

Jelinek, F. (1976). Continuous speech recognition by statistical
methods.Proceedings of the IEEE, 64(4), 532–557.

Jelinek, F. (1988). Address to the first workshop on the eval-
uation of natural language processing systems. December 7,
1988.

Jelinek, F. (1990). Self-organized language modeling for
speech recognition. In Waibel, A. and Lee, K.-F. (Eds.),Read-
ings in Speech Recognition, pp. 450–506. Morgan Kaufmann,
Los Altos. Originally distributed as IBM technical report in
1985.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of
Markov source parameters from sparse data. In Gelsema, E. S.
and Kanal, L. N. (Eds.),Proceedings, Workshop on Pattern
Recognition in Practice, pp. 381–397. North Holland, Ams-
terdam.

Jurafsky, D., Bell, A., Gregory, M., and Raymond, W. D.
(2001). Probabilistic relations between words: Evidence from
reduction in lexical production. In Bybee, J. and Hopper, P.
(Eds.),Frequency and the Emergence of Linguistic Structure,
pp. 229–254. Benjamins, Amsterdam.

Jurafsky, D., Wooters, C., Tajchman, G., Segal, J., Stolcke, A.,
Fosler, E., and Morgan, N. (1994). The Berkeley restaurant
project. InICSLP-94, Yokohama, Japan, pp. 2139–2142.

Katz, S. M. (1987). Estimation of probabilities from sparse
data for the language model component of a speech recog-
niser. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 35(3), 400–401.

Keller, F. (2004). The entropy rate principle as a predictorof
processing effort: An evaluation against eye-tracking data. In
In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Barcelona, pp. 317–324.

Keller, F. and Lapata, M. (2003). Using the web to obtain fre-
quencies for unseen bigrams.Computational Linguistics, 29,
459–484.

Kneser, R. (1996). Statistical language modeling using a vari-
able context length. InICSLP-96, Philadelphia, PA, Vol. 1,
pp. 494–497.

Kneser, R. and Ney, H. (1993). Improved clustering tech-
niques for class-based statistical language modelling. In
EUROSPEECH-93, pp. 973–976.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-
gram language modeling. InIEEE ICASSP-95, Vol. 1, pp.
181–184. IEEE.

Kučera, H. and Francis, W. N. (1967).Computational analy-
sis of present-day American English. Brown University Press,
Providence, RI.

Kuhn, R. and de Mori, R. (1990). A cache-based natural lan-
guage model for speech recognition.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(6), 570–583.

Kukich, K. (1992). Techniques for automatically correcting
words in text.ACM Computing Surveys, 24(4), 377–439.

Kučera, H. (1992). The mathematics of language. InThe Amer-
ican Heritage Dictionary of the English Language, pp. xxxi–
xxxiii. Houghton Mifflin, Boston.

LDC (1993). LDC Catalog: CSR-I (WSJ0) Complete. Univer-
sity of Pennsylvania.www.ldc.upenn.edu/Catalog/
LDC93S6A.html.

DRAFT

Section 4.12. Summary 41

Leech, G., Garside, R., and Bryant, M. (1994). CLAWS4: The
tagging of the British National Corpus. InCOLING-94, Ky-
oto, pp. 622–628.

Lidstone, G. (1920). Note on the general case of the Bayes-
Laplace formula for inductive or a posteriori probabilities.
Transactions of the Faculty of Actuaries, 8, 182–192.

Lindblom, B. (1990). Explaining phonetic variation: A sketch
of the H&H theory. In Hardcastle, W. J. and Marchal, A.
(Eds.),Speech Production and Speech Modelling, pp. 403–
439. Kluwer Academic Publishers.

Markov, A. A. (1913). Essai d’une recherche statistique sur
le texte du roman “Eugene Onegin” illustrant la liaison des
epreuve en chain (‘Example of a statistical investigation of
the text of “Eugene Onegin” illustrating the dependence be-
tween samples in chain’).Izvistia Imperatorskoi Akademii
Nauk (Bulletin de l’Académie Impériale des Sciences de St.-
Pétersbourg), 7, 153–162. English translation by Morris
Halle, 1956.

Miller, G. A. and Chomsky, N. (1963). Finitary models of lan-
guage users. In Luce, R. D., Bush, R. R., and Galanter, E.
(Eds.),Handbook of Mathematical Psychology, Vol. II, pp.
419–491. John Wiley, New York.

Miller, G. A. and Selfridge, J. A. (1950). Verbal context andthe
recall of meaningful material.American Journal of Psychol-
ogy, 63, 176–185.

Mosteller, F. and Wallace, D. L. (1964).Inference and Disputed
Authorship: The Federalist. Springer-Verlag, New York. 2nd
Edition appeared in 1984 and was calledApplied Bayesian
and Classical Inference.

Nádas, A. (1984). Estimation of probabilities in the language
model of the IBM speech recognition system.IEEE Trans-
actions on Acoustics, Speech, Signal Processing, 32(4), 859–
861.

Nakov, P. and Hearst, M. A. (2005). A study of using search en-
gine page hits as a proxy for n-gram frequencies. InProceed-
ings of RANLP-05 (Recent Advances in Natural Language
Processing), Borovets, Bulgaria.

Newell, A., Langer, S., and Hickey, M. (1998). The rôle of
natural language processing in alternative and augmentative
communication.Natural Language Engineering, 4(1), 1–16.

Ney, H., Essen, U., and Kneser, R. (1994). On structuring prob-
abilistic dependencies in stochastic language modelling.Com-
puter Speech and Language, 8, 1–38.

Niesler, T. R., Whittaker, E. W. D., and Woodland., P. C.
(1998). Comparison of part-of-speech and automatically de-
rived category-based language models for speech recognition.
In IEEE ICASSP-98, Vol. 1, pp. 177–180. IEEE.

Niesler, T. R. and Woodland, P. C. (1996). A variable-length
category-based n-gram language model. InIEEE ICASSP-96,
Atlanta, GA, Vol. I, pp. 164–167. IEEE.

Niesler, T. R. and Woodland, P. C. (1999). Modelling word-
pair relations in a category-based language model. InIEEE
ICASSP-99, pp. 795–798. IEEE.

Palmer, M. and Finin, T. (1990). Workshop on the evaluation
of natural language processing systems.Computational Lin-
guistics, 16(3), 175–181.

Plotkin, J. B. and Nowak, M. A. (2000). Language evolu-
tion and information theory.Journal of Theoretical Biology,
205(1), 147–159.

Rosenfeld, R. (1996). A maximum entropy approach to adap-
tive statistical language modeling.Computer Speech and Lan-
guage, 10, 187–228.

Russell, S. and Norvig, P. (1995).Artificial Intelligence: A
Modern Approach. Prentice Hall, Englewood Cliffs, NJ.

Sampson, G. (1996).Evolutionary Language Understanding.
Cassell, London.

Samuelsson, C. and Reichl, W. (1999). A class-based language
model for large-vocabulary speech recognition extracted from
part-of-speech statistics. InIEEE ICASSP-99, pp. 537–540.
IEEE.

Shannon, C. E. (1948). A mathematical theory of communica-
tion. Bell System Technical Journal, 27(3), 379–423. Contin-
ued in following volume.

Shannon, C. E. (1951). Prediction and entropy of printed En-
glish. Bell System Technical Journal, 30, 50–64.

Stolcke, A. (1998). Entropy-based pruning of backoff language
models. InProc. DARPA Broadcast News Transcription and
Understanding Workshop, Lansdowne, VA, pp. 270–274.

Stolcke, A. (2002). Srilm - an extensible language modeling
toolkit. In ICSLP-02, Denver, CO.

Stolcke, A. and Shriberg, E. (1996). Statistical language mod-
eling for speech disfluencies. InIEEE ICASSP-96, Atlanta,
GA, Vol. 1, pp. 405–408. IEEE.

Van Son, R. J. J. H., Koopmans-van Beinum, F. J., and Pols, L.
C. W. (1998). Efficiency as an organizing principle of natural
speech. InICSLP-98, Sydney.

Van Son, R. J. J. H. and Pols, L. C. W. (2003). How efficient
is speech?.Proceedings of the Institute of Phonetic Sciences,
25, 171–184.

Witten, I. H. and Bell, T. C. (1991). The zero-frequency prob-
lem: Estimating the probabilities of novel events in adaptive
text compression.IEEE Transactions on Information Theory,
37(4), 1085–1094.

Zhou, G. and Lua, K. (1998). Word association and MI-trigger-
based language modelling. InCOLING/ACL-98, Montreal,
pp. 1465–1471. ACL.

Zhu, X. and Rosenfeld, R. (2001). Improving trigram language
modeling with the world wide web. InIEEE ICASSP-01, Salt
Lake City, UT, Vol. I, pp. 533–536.

