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HIDDEN MARKOQOV
6 MODELS AND
LOGLINEAR MODELS

In this chapter we introduce two important classes of siegismodels for pro-
cessing text and speech, tHedden Markov Model (HMM ) and theMaximum
Entropy model (MaxEnt).

HMMs and MaxEnt are machine learning models. We have alréaaghed
on some aspects of machine learning; we briefly introducedHidden Markov
Model in the previous chapter, and we have introduced\ttugam model in the
chapter before. In this chapter we give a more completednttion to such mod-
els, in preparation for the many statistical models that Wesee throughout the
book, includingNaive Bayesdecision lists andGaussian Mixture Models

6.1 MARKOV CHAINS

The Hidden Markov Model is one of the most important mach#siing mod-
els in speech and language processing. In order to definepefy, we need to
first introduce theMarkov chain, sometimes called thabserved Markov model
Markov chains and Hidden Markov Models are both extensidrthefinite au-
tomata of Ch. 3. Recall that a finite automaton is defined byt afs#ates, and a
set of transitions between states that are taken based ampihteobservations. A
weiehten  weighted finite-state automatonis a simple augmentation of the finite automaton
in which each arc is associated with a probability, indizgtihow likely that path
is to be taken. The probability on all the arcs leaving a nodstraum to 1.
MARKOV CHAIN A Markov chain is a special case of a weighted automaton in which the
input sequence uniquely determines which states the atwmorméll go through.
Because they can't represent inherently ambiguous prahlenMarkov chain is
only useful for assigning probabilities to unambiguoususeges.
Fig. 6.1a shows a Markov chain for assigning a probabilitya tsequence
of weather events, where the vocabulary consistsi@f, cOLD, and RAINY,.
Fig. 6.1b shows another simple example of a Markov chain $sigaing a prob-
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6.2 THE HIDDEN MARKOV MODEL

HIDDEN MARKOV
MODEL

HMM

EMISSION
PROBABILITIES

A Markov chain is useful when we need to compute a probalfitya sequence of
events that we can observe in the world. In many cases, hovikeesvents we are
interested in may not be directly observable in the world. &@mple for part-of-
speech tagging (Ch. 5) we didn’t observe part of speech tatigeiworld; we saw
words, and had to infer the correct tags from the word sequeWe call the part-
of-speech taghidden because they are not observed. We will see the same thing
in speech recognition; we’ll see acoustic events in thedyanhd have to infer the
presence of ‘hidden’ words that are the underlying causaicgoof the acoustics.
A Hidden Markov Model (HMM ) allows us to talk about botbbserved events
(like words that we see in the input) ahitiden events (like part-of-speech tags)
that we think of as causal factors in our probabilistic model

To exemplify these models, we'll use a task conceived of BpdeEisner
(2002). Imagine that you are a climatologist in the year 251@@ying the history
of global warming. You cannot find any records of the weathd&altimore, Mary-
land, for the summer of 2007, but you do find Jason Eisneriydiich lists how
many ice creams Jason ate every day that summer. Our goalse tinese obser-
vations to estimate the temperature every day. We'll siimiiis weather task by
assuming there are only two kinds of days: cold (C) and hot (H)

So the Eisner task is as follows: Given a sequence of obgamgafnumbers
of ice creams eaten) we must figure out the correct ‘hiddequeece of Hand C
which caused Jason to eat ice cream.

Let’'s begin by seeing how a Hidden Markov Model differs frorMarkov
chain. AnHMM is specified by a set aftatesQ, a set oftransition probabilities
A, a set of observation likelihood3, a definedstart state andend state(s) and a
set ofobservation symbolsO, which is not drawn from the same alphabet as the
state seQ:

e states:a set of state® = ;... On

e Observations: a set of observation® = 0,0,...0y, €ach observation drawn
from a vocabulany = vy, Vs, ..., W.

e transition probabilities: a set of probabilitie®\ = ag1a92...an1 ... amn. Each
a;j represents the probability of transitioning from state statej. The set
of these is theransition probability matrix A

e observation likelihoods: a set of observation likelihoodd = bj(0;), each
expressing the probability of an observatiarbeing generated from a state
i. These are often called the HM&mission probabilities

As we noted for Markov chains, we can use two “special” sta@tea-emitting



Section 6.2. The Hidden Markov Model 5

state9 as the start and end state; or we can avoid the use of théss Bjaspeci-
fying two more things:

e initial distribution: an initial probability distribution over states, such that
T is the probability that the HMM will start in staie Of course some states
j may havert; = 0, meaning that they cannot be initial states.

e accepting states:a set of legal accepting states

Again, we have the same constraints as for a Markov chairttieatarious
probabilities must correctly sum to one:

n
Y aj=1vi
j=1

n
> m=1
i=1

As with a first-order Markov chain, a first-order Hidden Markdodel in-
stantiates two simplifying assumptions. First, the praliglof a particular state
is dependent only on the previous state:

(6.6) Markov Assumption:  P(q;i|01...0i—1) = P(di|Gi—1)

Second, the probability of an output observat@tis dependent only on the state
that produced the observatign and not on any other states or any other observa-
tions:

(6.7) Output Independence Assumption: P(0|q1...Qi...0n,01...0i...,0n) = P(0i|q)

Fig. 6.3 shows a sample HMM for the ice cream task. The twodndstates
(H and C) correspond to hot and cold weather, while the olbsiens (drawn from
the alphabeO = {1,2, 3}) correspond to the number of ice creams eaten by Jason
on a given day.
Notice that in the HMM in Fig. 6.3, there is a (non-zero) proitity of tran-
FuLlrconnecTED  Sitioning between any two states. Such an HMM is callddlig-connected or
ereoicimv  ergodic HMM . Sometimes, however, we have HMMs in which many of the tran-
LeFrToRIGHT - Sitions between states have zero probability. For examplkeft-to-right (also
sas  calledBakis) HMMs, the state transitions proceed from left to right, heven in
Fig. 6.4. In a Bakis HMM, there are no transitions going fromigher-numbered
state to a lower-numbered state (or, more accurately, angitrons from a higher-
number state to a lower-numbered state have zero prolyabiBekis HMMs are
generally used to model temporal processes like speech;iliveee more of this
in Ch. 9.
Now that we have seen the structure of an HMM, we turn to algos for
computing things with them. An influential tutorial by Rabi(1989), based on
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Figure 6.3 A Hidden Markov Model for relating numbers of ice creams pdig
Jason (the observations) to the weather (H or C, the hiddeables). Note that we
have used a special zeroth start state; we could insteadrbpresented the initia
distribution over states by using timevector,it= [.8,.2]. In general we will use the|
start state rather than timevector in the remainder of this chapter.

Figure 6.4 Two 4-state Hidden Markov models; a left-to-right (BakigylNl on
the left, and a fully-connected (ergodic) HMM on the right.the Bakis model, all
transitions not shown have zero probability.

tutorials by Jack Ferguson in the 1960s, introduced the tidieiaHidden Markov
Models should be characterized by three fundamental prabl€l) given a spe-
cific HMM, determining the likelihood of an observation seque, (2) given an
observation sequence and an HMM, discovering the best (probtible) hidden
state sequence, and (3) given only an observation sequeangng the HMM pa-
rameters. We already saw an example of problem (2) in Ch.\s;w introduce
it more formally, along with each of the other two tasks, ia tiext 3 sections.
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6.3 COMPUTING LIKELIHOOD: THE FORWARD ALGORITHM

(6.8)

(6.9)

Our first problem is to compute the likelihood of a particudaservation sequence
given a specific HMM. For example, given the HMM in Fig. 6.2bhat is the
probability of the sequencgl 3?

For a Markov chain, where the surface observations are the sa the hid-
den events, we could compute the probability3df 3 just by following the states
labeled3 1 3 and multiplying the probabilities along the arcs. For a Hiddlarkov
Model, things are not so simple. We want to determine theabibty of an ice-
cream observation sequence li&d 3, but we don’t know what the hidden state
sequence is!

Let’s start with a slightly simpler situation. Suppose weeatly knew the
weather, and wanted to predict how much ice cream Jason veatldThis is a
useful part of many HMM tasks. For a given hidden state secpiée.g.hot hot
cold) we can easily compute the output likelihood3of 3.

Let's see how. First, recall that for Hidden Markov Modelscle hidden state
produces only a single observation. Thus the sequence démidtates and the
sequence of observations has the same ledgth.

Given this one-to-one mapping, and the Markov assumptiapsessed in
Eq. 6.6, for a particular hidden state seque@ce o, 01,02, ---,0n and an observa-
tion sequenc® = 01,0, ..., 0, the likelihood of the observation sequence (using
a special start statp rather thanmt probabilities) is:

P(OIQ) = [ P(oilai) x ] P(ailai-1)
i-1 i1

The computation of the forward probability for our ice-areabservatior8 1
3 from one possible hidden state sequehaiehot hot is as follows (Fig. 6.5 shows
a graphic representation of this):

P(3 1 3hot hot cold = P(hotjstar) x P(hot/hot) x P(coldhot)
x P(3|hot) x P(1|hot) x P(3|cold)

In order to compute the true total likelihood 8fl 3, however, we need to
sum over all possible hidden state sequences (in this daseé sequencesold
cold cold, cold cold hot, and so on). For an HMM witiN hidden states and an
observation sequence ®fobservations, there ai¢’ possible hidden sequences.
For real tasks, wherdl and T are both largeNT is a very large number, and

1 There are variants of HMMs callesegmental HMMs (in speech recognition) @emi-HMMs
(in natural language processing) in which this one-to-oappmg between the length of the hidden
state sequence and the length of the observation sequeas@aiohold.
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FORWARD
ALGORITHM

+t

Figure 6.5 The computation of the observation likelihood for the iceaom events
3 13 given the hidden state sequer hot cold.

so we cannot compute the total observation likelihood bymaing a separate
observation likelihood for each hidden state sequencel@rmdumming them up.

Instead of using such an extremely exponential algorithm,use an effi-
cient algorithm called thdéorward algorithm .The forward algorithm is a kind
of dynamic programming algorithm, i.e., an algorithm that uses a table to store
intermediate values as it builds up the probability of theeslation sequence.
The forward algorithm computes the observation probgtilt summing over the
probabilities of all possible hidden-state paths that d@énerate the observation
sequence, but it does so efficiently by implicitly foldingchaf these paths into a
singleforward trellis .

Fig. 6.6 shows an example of the forward trellis for compmitime likelihood
of 31 3 given the hidden state sequeria hot cold.
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(6.10)

being in statej after seeing the firdt observations, given the automatadn The
value of each celb(j) is computed by summing over the probabilities of every
path that could lead us to this cell. Formally, each cell egpes the following
probability:
at(j) = P(01,02...0,G = j[A)

Hereq; = j means “the probability that th¢h state in the sequence of states
is statej”. We compute this probability by summing over the extensiohall the

paths that lead to the current cell. An extension of a patim facstate at timet — 1
is computed by multiplying the following three factors:

1. theprevious path probability from the previous celix;_1(i),
2. thetransition probability a;j from previous statéto current statg, and

3. thestate observation likelihoodb; (o) that current stat¢ matches observa-
tion symbolt.

Consider the computation in Fig. 6.6 ab(1), the forward probability of
being at time step 2 in state 1 having generated the partsdreation3 2. This
is computed by extending tleeprobabilities from time step 1, via two paths, each
extension consisting of the three factors abowg(1) x P(H|H) x P(1|H) and
01(2) x P(H|C) x P(1|H).

Fig. 6.7, adapted from Rabiner (1989), shows another viatan of this
induction step for computing the value in one new cell of tiedlis.

We give two formal definitions of the Forward algorithm; theepdocode in
Fig. 6.8 and a statement of the definitional recursion here:

1. Initialization:

(6.11)  aa(j) = agjbj(or) 1< <N

2. Recursion (since states 0 and N are non-emitting):

N—-1
(6.12)  ar(j) = lz at—l(i)aij] bj(o); 1<j<N1<t<T
i=1

3. Termination:

N-1
(6.13)  P(OJ]A) =at(N) = Z ar (i) an
i=2

6.4 DEeECODING. THE VITERBI ALGORITHM

For any model, such as an HMM, that contains hidden varialhestask of de-
termining which sequence of variables is the underlyinge®of some sequence
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2. thetransition probability a&; from previous state' to current stats, and
3. the observation likelihood bs(o;) of the observation symbak given the
current states.

function VITERBI(observations of len T,state-graph) returns best-path

num-states«— NUM-OF-STATESstate-graph)
Create a path probability matrixkterbi[ num-states+ 2, T+ 2]
viterbi[0,0] — 1.0
for each time stepfrom 1to T do
for each statsfrom 1to num-states do

viterbi[s,t] «— max [viterbi[s,t —1] * ags] * bs(or)
1 < ¢< num-states ’
back-pointer[s,t]«— argmax | viterbi[s,t —1] x ay |
1 < ¢ < num-states
Backtrace from highest probability state in final colummwidérbi[] and return path

Figure 6.10 Viterbi algorithm for finding optimal sequence of tags. Givan
observation sequence and an HM\= (A, B), the algorithm returns the state-path
through the HMM which assigns maximum likelihood to the aliagon sequence
Note that states 0 and N+1 are non-emitttagt andend states.

Fig. 6.10 shows pseudocode for the Viterbi algorithm. Nbtg the Viterbi
algorithm is identical to the Forward algorithm except thatkes themax over
the previous path probabilities where Forward takesstim. Note also that the
Viterbi algorithm has one component that the Forward atgoridoesn’t have:
backpointers. This is because while the Forward algorithm needs to pmdurc
observation likelihood, the Viterbi algorithm must produg probability and also
the most likely state sequence. We compute this best stqteisee by keeping
track of the path of hidden states that led to each state,gagsted in Fig. 6.11.

Finally, we can give a formal definition of the Viterbi recians as follows:

1. Initialization:

(6.15)  vi(j) = agjbj(o1) 1< j<N
(6.16) bt;j = 0
2. Recursion(recall states 0 and N are non-emitting):

617 w() = [Mduoaia b 1<j<N1<i<T

(6.18)  bt(j) = [arNg_rr%awt_l(i)aij]bj(ot); 1<j<N1<t<T
i=1
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- <

"
"~ P(CIC) * P(1IC)
N \ 6*5

V=02 v = max(.32*.15, .02*.30) = .048

3 1 3

Figure 6.11 The Viterbi backtrace. As we extend each path to a new stateuat for the next obser
vation, we keep a backpointer (shown with broken blue lineshe best path that led us to this state.

3. Termination:

(6.19) The best scor@:x

m'\‘aiva(i)
i=

(6.20)  The start of backtracgi+ = argNma>th(i)
i=1

6.5 TRAINING HMMS: THE FORWARD-BACKWARD ALGORITHM

We turn to the third problem for HMMs: learning the paramgtaian HMM, i.e.,
the A andB matrices.

The input to such a learning algorithm would be an unlabetlience of
observationgD and a vocabulary of potential hidden stat@s Thus for the ice
cream task, we would start with a sequence of observa@as{1,3,2,..., }, and
the set of hidden staté$ andC. For the part-of-speech tagging task we would start
with a sequence of observatio®s= {w;,w;,ws...} and a set of hidden statBi\,
NNS, VBD, IN,... and so on.

S TIARD, The standard algorithm for HMM training is th@ward-backward or Baum-
sumwecch — Welch algorithm (Baum, 1972), a special case of Ehgectation-Maximization
em  or EM algorithm (Dempster et al., 1977). The algorithm will lettten both the
transition probabilitie#\ and the emission probabilitigsof the HMM.

Let us begin by considering the much simpler case of traigngarkov

chain rather than a Hidden Markov Model. Since the states Mugkov chain
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(6.21)

BACKWARD
PROBABILITY

(6.22)

are observed, we can run the model on the observation sezjaedcdirectly see
which path we took through the model, and which state geseedch observation
symbol. A Markov chain of course has no emission probaédi (alternatively
we could view a Markov chain as a degenerate Hidden Markove\iathere all
the b probabilities are 1.0 for the observed symbol and O for &eosymbols.).
Thus the only probabilities we need to train are the tramsigrobability matrixA.

We get the maximum likelihood estimate of the probabidityof a particular
transition between statéand j by counting the number of times the transition was
taken, which we could caC(i — j), and then normalizing by the total count of all
times we took any transition from state

__Cli—=1))
quQC(i — Q)

We can directly compute this probability in a Markov chaicégse we know
which states we were in. For an HMM we cannot compute thesatsaiirectly
from an observation sequence since we don't know which plaghates was taken
through the machine for a given input. The Baum-Welch atgoriuses two neat
intuitions to solve this problem. The first idea isiteratively estimate the counts.
We will start with an estimate for the transition and obsgoraprobabilities, and
then use these estimated probabilities to derive bettebatidr probabilities. The
second idea is that we get our estimated probabilities bypobimy the forward
probability for an observation and then dividing that piobty mass among all
the different paths that contributed to this forward pralitgb

In order to understand the algorithm, we need to define a ugesbability
related to the forward probability, called thackward probability .

The backward probabilitf is the probability of seeing the observations from
timet 4 1 to the end, given that we are in stgtat timet (and of course given the
automaton\):

a

Be(i) = P(0t+1,0t12...07[Gh =1,A)
It is computed inductively in a similar manner to the forwatdorithm.

1. Initialization:

(6.23) Br(i) = an, 1<i<N

2. Recursion (again since states 0 and N are non-emitting):

N—-1
(6.24)  Be(i) = ajbj(o1)Ba(j) 1<i<N,0<t<T
i=1
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(6.26)

(6.27)

3. Termination:

(6.25)  P(O|A) = a7 (N) Zalj (01)B1(j)

Fig. 6.12 illustrates the backward induction step.

Bi(i)= ZJ B1() * I?-ij x b;(0,,1) ay

2

Ot41

le--

b;(041)

7 by(0y,1)

- b3(0t+12

by(0y,,)

1

itiesbj(o+1). After (Rabiner, 1989)

Figure 6.12 The computation of3;(i) by summing all the successive valugs
Bi+1(]) weighted by their transition probabilitiesand their observation probabil

We are now ready to understand how the forward and backwantghpili-
ties can help us compute the transition probab#ityand observation probability
bi(or) from an observation sequence, even though the actual ket tiarough the

machine is hidden.

Let’s begin by showing how to reestimatg. We will proceed to estimate

&j by a variant of (6.21):

o

__expected number of transitions from state statej

expected number of transitions from state

How do we compute the numerator? Here’s the intuition. Asswe had
some estimate of the probability that a given transiiier j was taken at a par-
ticular point in timet in the observation sequence. If we knew this probability for
each particular timé, we could sum over all timesto estimate the total count for

the transition — j.

More formally, let's define the probabilit§; as the probability of being in
statei at timet and statej at timet + 1, given the observation sequence and of

course the model:

E.t(lyj) = P(qt = iaqt+1 = ”07)\)
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(6.28)

(6.29)

(6.30)

(6.31)

In order to computé;, we first compute a probability which is similar &g,
but differs in including the probability of the observation

nOt_qUiteEt(ia J) = P(qt = i7q'[+1 = Jao|)\)
Fig. 6.13 shows the various probabilities that go into cotimgunot-quiteé;:
the transition probability for the arc in question, therobability before the arc,

the 3 probability after the arc, and the observation probabifitythe symbol just
after the arc.

aijbj(‘?m)

Oty2

Ot-1 Ot

Figure 6.13 Computation of the joint probability of being in statat timet and

statej at timet 4+ 1. The figure shows the various probabilities that need toope-c
bined to producé(q: =i,q+1 = j,O|A): thea and probabilities, the transition
probabilitya;; and the observation probabiliby (o, 1). After Rabiner (1989).

These are multiplied together to produss-quite-&; as follows:

not-quite (i, j) = at (i) aijb;j (0r+1)Br+1(])
In order to computé; from not-quite-¢;, the laws of probability instruct us
to divide byP(OJA), since:
P(X,Y|Z)
P(Y[Z)
The probability of the observation given the model is simiblg forward

probability of the whole utterance, (or alternatively theckward probability of
the whole utterance!), which can thus be computed in a nuwibgays:

P(X|Y,Z) =

N
P(OA) = ar(N) =Br(1) = >_o(j)Be(i)
-1
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(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

So, the final equation fd; is:
o Oe()abi(0r1)Bra(i)
Et(h J) -
ar(N)

The expected number of transitions from siatestatej is then the sum over
all t of €. For our estimate o in (6.26), we just need one more thing: the total
expected number of transitions from stat&Ve can get this by summing over all
transitions out of state Here’s the final formula foag;:

ay— i &)
=1 2j—1& (i, 1)
We also need a formula for recomputing the observation fmibtya This is
the probability of a given symbolk from the observation vocabulaky, given a
statej: Bj (vk). We will do this by trying to compute:
b (Vi) = expected number of times in stgtand observing symbak
Ik expected number of times in stgte

For this we will need to know the probability of being in stgtat timet,
which we will call y;(j):

w(J) =P(a = jIO,A)

Once again, we will compute this by including the observasequence in
the probability:

P(o = J,0A)

w(j) = T PON

As Fig. 6.14 shows, the numerator of (6.36) is just the prodtithe forward
probability and the backward probability:
o oe()Be(d)
w(i) = W

We are ready to compute For the numerator, we suma(j) for all time
stepg in which the observation; is the symboly that we are interested in. For the
denominator, we sum( j) over all time steps. The result will be the percentage of
the times that we were in stajghat we saw symboly (the notationZtT:lst,o[:vk
means "sum over atlfor which the observation at tintevasv):

Bj (Vk) _ Z;r:ls%.ot:vk'yt(”
2= W (J)

We now have ways in (6.33) and (6.38)&sestimate the transitiorA and ob-
servationB probabilities from an observation sequeassuming that we already
have a previous estimate AfandB.

These re-estimations form the core of the iterative forw@adkward algo-
rithm.
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EXPECTATION
E-STEP
MAXIMIZATION
M-STEP

- ay(j) B:()

O-1 4 Ot+1

Figure 6.14 The computation oft( ), the probability of being in statpat timet.
Note that¢ is really a degenerate case&&nd hence this figure is like a version of
Fig. 6.13 with state collapsed with staté¢. After Rabiner (1989).

The forward-backward algorithm starts with some initidiraate of the HMM
parameters\ = (A,B,m). We then iteratively run two steps. Like other cases of
the EM (expectation-maximization) algorithm the forwdrakckward algorithm has
two steps: thexpectationstep, orE-step, and themaximization step, orM-step.

In the E-step we compute the expected state occupancy gaunt the ex-
pected state transition coufjtfrom the earlieA andB probabilities. In the M-step,
we usey andg to recompute nevd, B, andTt probabilities.

Although in principle the Forward-Backward algorithm cam ecbmpletely
unsupervised learning of th& B, andTt parameters, in practice the initial condi-
tions are very important. For this reason the algorithmtsrogiven extra informa-
tion. For example, for speech recognition, in practice tidMHstructure is very
often set by hand, and only the emissi@&) &nd (non-zerop transition probabili-
ties are trained from a set of observation sequefizgSaussian functions. See?
will also discuss how initial estimates farandb are derived in speech recognition.
We will also see in Ch. 9 that the forward-backward algorittem be extended to
inputs which are non-discrete (“continuous observatiamsiies”).

6.6 LOGLINEAR MODELS

6.7 MAXIMUM ENTROPY MARKOV MODELS(MEMMS)
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state set Q) returns HMM A, B, Tt

initialize A, B, andmt
iterate until convergence

E-step

w(i) = “t((gﬁ‘;g) vtandj

. . b . .

y SteE;(I,J) _ ari)aj &?{ﬁ)ﬂ&“() Vt, i, and]

o T— Zt 1 Et |]

a” _I_z:]:lét

R _ Zt:ls.t. o=y, (i)

biM) = =T N

return A B, Tt

function FORWARD-BACKWARD (observations of len T,output vocabulary V, hidden

Figure 6.15 The forward-backward algorithm.

6.8 EVALUATION AND STATISTICS
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