Speech and Language Processing: An introduction to speech recognition, conputational
l'inguistics and natural |anguage processing. Daniel Jurafsky & James H Martin.
Copyright © 2006, Al rights reserved. Draft of Novenber 12, 2006. Do not cite

wi t hout perm ssion.

N-GRAMS

But it must be recognized that the notion “probability of anse
tence” is an entirely useless one, under any known integpict
of this term.

Noam Chomsky (1969, p. 57)

Anytime a linguist leaves the group the recognition ratesgae.
Fred Jelinek (then of the IBM speech group) (1988)

Radar O'Reilly, the mild-mannered clerk of the 4077th M*At$unit, had an uncanny
ability to guess the next word someone was going to say. hdhapter we take up
this idea of word prediction; what word, for example, is likio follow:;

I'd like to make a collect. ..

Hopefully most of you concluded that a very likely worccall, orinternational
worD PREDICTION OF phone but probably nothe We formalize this idea ofvord prediction with prob-
abilistic models calledN-grams, which predict the next word from the previoNs- 1
LanGuace MobeLs — words. Such statistical models of word sequences are allgal tanguage modelor
wm LMs. Computing the probability of the next word will turn outlie closely related
to computing the probability of a sequence of words. Theofeihg sequence, for
example, has a non-zero probability of appearing in a text:

...all of a sudden I notice three guys standing on the sidewal

while this same set of words in a different order has a veryposbability:
on guys all | of notice sidewalk three a sudden standing the

As we will see, estimators likll-grams that assign a conditional probability to
possible next words can be used to assign a joint probalidign entire sentence.

1 This wording from his address is as recalled by Jelinek hifimthes quote didn’t appear in the proceed-
ings (Palmer and Finin, 1990). Some remember a more snappione Every time | fire a linguist the
performance of the recognizer improves

Chapter 4. N-grams

AUGMENTATIVE
COMMUNICATION

Whether estimating probabilities of next words or of whobgjsences, thél-gram
model is one of the most important tools in speech and largpeacessing.

N-grams are essential in any task in which we have to identdyde in noisy,
ambiguous input. Ispeech recognitionfor example, the input speech sounds are very
confusable and many words sound extremely similar. RuasdllNorvig (1995) give
an intuition fromhandwriting recognition for how probabilities of word sequences
can help. In the movigake the Money and RuWoody Allen tries to rob a bank with
a sloppily written hold-up note that the teller incorreathads as “I have a gub”. Any
speech and language processing system could avoid makéngigtake by using the
knowledge that the sequence “I have a gun” is far more preltalain the non-word “|
have a gub” or even “I have a gull”.

N-gram models are also essential in statistioalchine translation. Suppose
we are translating a Chinese source sentdftt Il 1 & 743 1 %5 WY =9 N % and
as part of the process we have a set of potential rough Ertgdisblations:

he briefed to reporters on the chief contents of the statemen
he briefed reporters on the chief contents of the statement
he briefed to reporters on the main contents of the statement
he briefed reporters on the main contents of the statement

An N-gram grammar might tell us that, even after controlling leargth, briefed re-
portersis more likely tharbriefed to reportersandmain contentss more likely than
chief contents This lets us select the bold-faced sentence above as thieflonerst
translation sentence, i.e. the one that has the highesabpiti.

In spelling correction, we need to find and correct spelling errors like the fol-
lowing (from Kukich (1992)) that accidentally result in t&nglish words:

They are leaving in about fifteaninuetsto go to her house.
The desigran construction of the system will take more than a year.

Since these errors have real words, we can't find them by jaggiihg words
not in the dictionary. But note thah about fifteen minuets a much less probable
sequence thaim about fifteen minutedA spellchecker can use a probability estimator
both to detect these errors and to suggest higher-protyatwiirection.

Word prediction is also important faugmentative communication(Newell
et al., 1998) systems that help the disabled. People whoraieleito use speech or
sign-language to communicate, like the physicist Stevenkiteg, can communicate
by using simple body movements to select words from a mertuatieaspoken by the
system. Word prediction can be used to suggest likely wardthe menu.

Besides these sample arebdlsgrams are also crucial in NLP foundations like
part-of-speech tagging natural language generation andword similarity , as well
as applications fronauthorship identification andsentiment extractionto predic-
tive text input systems for cell phones.

Section 4.1.

Counting Words in Corpora 3

4.1 COUNTING WORDS INCORPORA

CORPUS
CORPORA

UTTERANCE

DISFLUENCIES
FRAGMENT
FILLERS
FILLED PAUSES

[upon being asked if there weren’t enough words in the Ehdéinguage for him]:
“Yes, there are enough, but they aren’t the right ones.”
James Joyce, reported in Bates (1997)

Probabilities are based on counting things. Before we tahtkuaprobabilities,
we need to decide what we are going to count. Counting of thimgatural language is
based on &orpus (plural corpora), an on-line collection of text or speech. Let’s look
at two popular corpora, Brown and Switchboard. The Browrp@Qeiis a 1 million word
collection of samples from 500 written texts from differgeires (newspaper, novels,
non-fiction, academic, etc.), assembled at Brown Univeisitl963-64 (Kucera and
Francis, 1967; Francis, 1979; Francis and Kucera, 1988} iany words are in the
following Brown sentence?

(4.1) He stepped out into the hall, was delighted to encawanteater brother.
Example (4.1) has 13 words if we don’t count punctuationksas words, 15 if

we count punctuation. Whether we treat period)(‘comma (*,"), and so on as words
depends on the task. Punctuation is critical for finding liawies of things (comma,
periods, colons), and for identifying some aspects of maa(question marks, excla-
mation marks, quotation marks). For some tasks, such asofsapeech tagging or
parsing or sometimes speech synthesis, we thus sometiea¢ptmctuation as if they
were separate words.

The Switchboard corpus of telephone conversations betateangers was col-
lected in the early 1990s and contains 2430 conversaticgraging 6 minutes each,
totaling 240 hours of speech and about 3 million words (Gaydét al., 1992). Such
corpora of spoken language don't have punctuation, but tlodace other complica-
tions with defining words. Let’s look at one utterance fromtShboard; arutterance
is the spoken correlate of a sentence:

(4.2) 1do uh main- mainly business data processing

This utterance has two kinds disfluencies The broken-off wordmain- is
called afragment. Words likeuh andumare calledillers or filled pauses Should we
consider these to be words? Again, it depends on the applicdt we are building an
automatic dictation system based on automatic speechmiioog we might want to
eventually strip out the disfluencies.

But we also sometimes keep disfluencies around. How disflupetson is can
be used to identify them, or to detect if they are stressedwiused. Disfluencies also
often occur with particular syntactic structures, so theyrhelp in parsing and word
prediction. Stolcke and Shriberg (1996) found for exampé treatinguh as a word
improves next-word prediction (why might this be?), and smstrspeech recognition
systems treath andumas words’

Are capitalized tokens likheyand uncapitalized tokens likihey the same
word? These are lumped together in speech recognitiongwibil part-of-speech-

2 Clark and Fox Tree (2002) showed thétandumhave different meanings. What do you think they are?

Chapter 4. N-grams

WORDFORM

TYPES
TOKENS

tagging capitalization is retained as a separate featurethi rest of this chapter we
will assume our models are not case-sensitive.

How about inflected forms likeatsversuscat? These two words have the same
lemma cat but are different wordforms. Recall from Ch. 3 that a lemma et of
lexical forms having the same stem, the same major pampeéch, and the same
word-sense. Thevordform is the full inflected or derived form of the word. For
morphologically complex languages like Arabic we oftendhée deal with lemmati-
zation. N-grams for speech recognition in English, however, andhalléxamples in
this chapter, are based on wordforms.

As we can seeN-gram models, and counting words in general, requires that
we do the kind of tokenization or text normalization that wiaduced in the previous
chapter; separating out punctuation, dealing with abhat®ns likem.p.h, normalizing
spelling, and so on.

How many words are there in English? To answer this questiemeed to
distinguishtypes the number of distinct words in a corpus or vocabulary Sizéom
tokens, the total numbeN of running words. The following Brown sentence has 16
tokens and 14 types (not counting punctuation):

(4.3) They picnicked by the pool, then lay back on the grass ancelbal the stars.

The Switchboard corpus has about 20,000 wordform typesn(ftbout 3 mil-
lion wordform tokens) Shakespeare’s complete works have&®wordform types
(from 884,647 wordform tokens) (Kucera, 1992) The Browmos has 61,805 word-
form types from 37,851 lemma types (from 1 million wordforakéns). Looking at
a very large corpus of 583 million wordform tokens, Brown ket(4992a) found that
it included 293,181 different wordform types. Dictionariean help in giving lemma
counts; dictionary entries, dyoldface forms are a very rough upper bound on the
number of lemmas (since some lemmas have multiple boldtacesf). The American
Heritage third edition dictionary lists 200,000 boldfacerhs. It seems like the larger
corpora we look at, the more word types we find. In general (g)gsst that the vo-
cabulary size (the number of types) grows with at least thesgroot of the number
of tokens (i.eV > O(v/N).

In the rest of this chapter we will continue to distinguishvibeen types and
tokens, using “types” to mean wordform types.

4.2 SMPLE (UNSMOOTHED) N-GRAMS

(4.4)

Let's start with some intuitive motivations fdf-grams; we assume that the reader has
acquired some very basic background in probability theOry. goal is to compute the
probability of a wordw given some historyp, or P(w|h). Suppose the histotyis “the
water is so transparent thaand we want to know the probability that the next word is
the

P(thethe water is so transparent that

How can we compute this probability? One way is to estimdtetit relative frequency
counts. For example, we could take a very large corpus, dbermtumber of times we

Section 4.2.

Simple (Unsmoothedjgrams 5

(4.5)

(4.6)

seethe water is so transparent thand count the number of times this is followed by
the This would be answering the question “Out of the times we thaistoryh, how
many times was it followed by the wow’, as follows:

P(thgthe water is so transparent that
C(the water is so transparent that the
C(the water is so transparent that

With a large enough corpus, such as the web, we can compuse tbents, and
estimate the probability from Equation (4.5). You shouldsmnow, go to the web and
compute this estimate for yourself.

While this method of estimating probabilities directly finacounts works fine in
many cases, it turns out that even the web isn’t big enouglivedous good estimates
in most cases. This is because language is creative; neensestare created all the
time, and we won't always be able to count entire sentencesn EBimple extensions
of the example sentence may have counts of zero on the web &suthe water of
Walden Pond is so transparent that the

Similarly, if we wanted to know the joint probability of an tine sequence of
words likethe water is so transparentve could do it by asking "out of all possible
sequences of 5 words, how many of them thiewater is so transpare®t We would
have to get the count dfie water is so transparerdind divide by the sum of the counts
of all possible 5 word sequences. That seems rather a lotif toe@stimate!

For this reason, we'll need to introduce cleverer ways dfresting the proba-
bility of a word w given a historyh, or the probability of an entire word sequentle
Let'’s start with a little formalizing of notation. In ordew tepresent the probability of
a particular random variabl¢ taking on the value "the”, oP(X; = “the”), we will
use the simplificatiof?(the). We’'ll represent a sequenceldfwords either asv; ... w;
orwj. For the joint probability of each word in a sequence havingsicular value
PX=wy,Y =wWp,Z=ws,....) we'll use P(wy, Wy, ..., Wp).

Now how can we compute probabilities of entire sequence®lilw, wo, ..., Wn)?
One thing we can do is to use thkain rule of probability to decompose this proba-
bility:

P(W)) = P(w1)P(wolwi)P(ws|wi)... P(wnlwi ™)
= [IPwwi™)

k=1

The chain rule shows the link between computing the joinbphility of a se-
quence and computing the conditional probability of a worgey previous words.
Equation (4.6) suggests that we could estimate the joirtbability of an entire se-
quence of words by multiplying together a number of condgioprobabilities. But
using the chain rule doesn’t really seem to help us! We dardtkany way to compute
the exact probability of a word given a long sequence of mmNords,P(wnw\/l“l).
As we said above, we can't just estimate by counting the numitmes every word
occurs following every long string, because language istore and any particular
context might have never occurred before!

Chapter 4. N-grams

BIGRAM

(4.7)

(4.8)

(4.9)

MARKOV

N-GRAM

(4.10)

(4.11)

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE

NORMALIZING

(4.12)

(4.13)

The intuition of theN-gram model is that instead of computing the probability
of a word given its entire history, we widlpproximate the history by just the last few
words.

Thebigram model, for example, approximates the probability of a wakeiy
all the previous word@(wn|vv’1“1) by the conditional probability of the preceding word
P(wWn|Wn_1). In other words, instead of computing the probability

P(the The water of Walden Pond is so transparentjthat
we approximate it with the probability
P(thdthat)

When we use a bigram model to predict the conditional prditgbif the next
word we are thus making the following approximation:
P(Wn|wWi ™) ~ P(Wn W)y 1)

This assumption that the probability of a word depends omth® previous
word is called aMarkov assumption. Markov models are the class of probabilistic
models that assume that we can predict the probability ofesfurture unit without
looking too far into the past. We can generalize the bigratri¢lvlooks one word into
the past) to the trigram (which looks two words into the past] thus to th&l-gram
(which looksN — 1 words into the past).

Thus the general equation for ttNsgram approximation to the conditional prob-
ability of the next word in a sequence is:

P(wn W5 ™) ~ P(Wh Wi 1)
Given the bigram assumption for the probability of an indixal word, we can

compute the probability of a complete word sequence by gutisgy Equation (4.9)
into Equation (4.6):

n
P(WY) ~ |] P(wk|wk 1)
k=1

How do we estimate these bigram lrgram probabilities? The simplest and
most intuitive way to estimate probabilities is callstdximum Likelihood Estima-
tion, or MLE . We get the MLE estimate for the parameters oNagram models by
taking counts from a corpus, andrmalizing them so they lie between 0 and 1.

For example, to compute a particular bigram probability af@d y given a
previous wordx, we'll compute the count of the bigra@®(xy) and normalize by the
sum of all the bigrams that share the same first word

C(Wn—1Wn)
P(Wnh|Wh_1) = =——————
(Wnl-1) = 5~ G-
We can simplify this equation, since the sum of all bigramrasuhat start with
a given wordw,_; must be equal to the unigram count for that wekd 1. (The reader
should take a moment to be convinced of this):
C(Wn_j_Wn)

P(Wn|Wn_1) = Cown)

3 For probabilistic models, normalizing means dividing byngototal count so that the resulting probabili-
ties fall legally between 0 and 1.

Section 4.2. Simple (Unsmoothedjgrams 7

Let's work through an example using a mini-corpus of thresteseces. We'll
first need to augment each sentence with a special syrgslat the beginning of
the sentence, to give us the bigram context of the first worglll\&lso need a special
end-symbok/ s>.4

<s> | am Sam </ s>
<s> Sam | am </s>
<s> | do not |ike green eggs and ham </ s>

Here are the calculations for some of the bigram probadmliiom this corpus

P(I| <s>) =2 =.66 P(Sani <s>):%:.33 Pan 1)=2%=.33
P(</s> Sam=3=05 P(<s> Sam=5=05 P(Sanjam=3=.5
P(do| I)=%=.33
For the general case of MLE-gram parameter estimation:
C(vv”n:hﬂwn)
C(WhR+1)
Equation 4.14 (like equation 4.13) estimateskigram probability by dividing
the observed frequency of a particular sequence by thewds&equency of a prefix.
rmisanE This ratio is called aelative frequency; the use of relative frequencies as a way to
estimate probabilities is one example of MLE. In Maximum élikood Estimation,
the resulting parameter set maximizes the likelihood ofttaming setT given the
modelM (i.e., P(T|M)). For example, suppose the wo@thineseoccurs 400 times
in a corpus of a million words like the Brown corpus. What is firobability that a
random word selected from some other text of say a milliondsavill be the word
Chines@ The MLE estimate of its probability isseegy, 0r -0004. Now.0004 is not
the best possible estimate of the probabilityGifineseoccurring in all situations; it
might turn out that in some OTHER corpus or cont€kinesds a very unlikely word.
But it is the probability that makes rhost likelythat Chinese will occur 400 times in
a million-word corpus. We will see ways to modify the MLE eséites slightly to get
better probability estimates in Sec. 4.5.
Let’s move on to some examples from a slightly larger corpas tour 14-word
example above. We'll use data from the now-defunct Berk&egtaurant Project,
a dialogue system from the last century that answered qusstrom a database of
restaurants in Berkeley, California (Jurafsky et al.,)9%4ere are some sample user
queries, lowercased and with no punctuation; a representatrpus of 9332 sentences
is on the website:
can you tell me about any good cantonese restaurants close by
mid priced thai food is what i'm looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are avaéabl

i'm looking for a good place to eat breakfast
when is caffe venezia open during the day

414) PWaWi k1) =

4 As (Chen and Goodman, 1998) point out, we need the end-sytmhmobke the bigram grammar a true
probability distribution. Without an end-symbol, the semte probabilities for all sentences of a given length
would sum to one, and the probability of the whole languagel#be infinite.

Chapter 4. N-grams

Fig. 4.1 shows the bigram counts from a piece of a bigram granirom the
Berkeley Restaurant Project. Note that the majority of thlies are zero. In fact,
we have chosen the sample words to cohere with each othertrix sedected from a
random set of seven words would be even more sparse.

| | i | want] to [eat | chinese| food | lunch| spend]
[5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese| 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
Figure 4.1 Bigram counts for eight of the words (out ¥f = 1446) in the Berkeley
Restaurant Project corpus of 9332 sentences.

Fig. 4.2 shows the bigram probabilities after normalizat{dividing each row
by the following appropriate unigram counts):

i want to eat chinese | food lunch spend
2533 927 2417 746 158 1093 341 278
| i | want| to | eat [chinese| food | lunch | spend |
i 0.002 0.33| 0 0.0036/ 0 0 0 0.00079
want 0.0022 | O 0.66 0.0011] 0.0065 | 0.0065 0.0054{ 0.0011
to 0.00083 0O 0.0017| 0.28 0.00083 O 0.0025| 0.087
eat 0 0 0.0027| O 0.021 0.0027| 0.056 | O
chinesg| 0.0063 | 0 0 0 0 0.52 0.0063 0O
food 0.014 0 0.014 | O 0.00092 0.0037| O 0
lunch 0.0059 | O 0 0 0 0.0029 O 0
spend || 0.0036 | O 0.0036| O 0 0 0 0
Figure 4.2 Bigram probabilities for eight words in the Berkeley Restant Project cor-
pus of 9332 sentences.

Here are a few other useful probabilities:
P(i | <s>)=0.25 P(engl i sh| want) = 0.0011
P(food| english)=05 P(</s>|food)=0.68

Now we can compute the probability of sentences likeant English foocor |
want Chinese fooly simply multiplying the appropriate bigram probabilgtigether,
as follows:

P(<s> i want english food </s>)
= P(i | <s>)P(want | |)P(engl i sh| want)

Section 4.3.

Training and Test Sets 9

TRIGRAM

P(f ood| engl i sh)P(</ s>| f ood)
= .25x.33x.0011x 0.5x 0.68
= =.000031

We leave it as an exercise for the reader to compute the pititpath i want
chinese foodBut that exercise does suggest that we’ll want to think abdut what
kinds of linguistic phenomena are captured in bigrams. Sointiee bigram probabili-
ties above encode some facts that we think of as strictlyasyictin nature, like the fact
that what comes afteyatis usually a noun or an adjective, or that what comes &fter
is usually a verb. Others might be more cultural than linteiitike the low probability
of anyone asking for advice on finding English food.

Although we will generally show bigram models in this chate pedagogical
purposes, note that when there is sufficient training datasemore likely to use
trigram models, which condition on the previous two words rathenttie previous
word. To compute trigram probabilities at the very begignifi sentence, we can use
two pseudo-words for the first trigram (i.€(] | <s><s>).

4.3 TRAINING AND TESTSETS

TRAINING SET
TEST SET

EVALUATE

The N-gram model is a good example of the kind of statistical medeat we will
be seeing throughout speech and language processing. deyilities of arN-gram
come from the corpus it is trained on. In general, the paramaeff a statistical model
are trained on some set of data, and then we apply the modsiste new data in some
task (such as speech recognition) and see how well they v@r&ourse this new data
or task won't be the exact same data we trained on.

We can formalize this idea of training on some data, andrgsih some other
data by talking about these two data sets &raiaing set and atest set(or atraining
corpus and atest corpug. Thus when using a statistical model of language given
some corpus of relevant data, we start by dividing the ddtatiaining and test sets.
We train the statistical parameters of the model on theitrgiget, and then use this
trained model to compute probabilities on the test set.

This training-and-testing paradigm can also be used#tuatedifferentN-gram
architectures. Suppose we want to compare different laggyoeodels (such as those
based orN-grams of different ordeN, or using the differensmoothing algorithms
to be introduced in Sec. 4.5). We can do this by taking a cogmasdividing it into
a training set and a test set. Then we train the two diffelkegtam models on the
training set and see which one better models the test setwBalt does it mean to
“model the test set™? There is is a useful metric for how weghan statistical model
matches a test corpus, callpdrplexity, introduced on page-13. Perplexity is based
on computing the probabilities of each sentence in the tgstrguitively, whichever
model assigns a higher probability to the test set (hence mocurately predicts the
test set) is a better model.

Since our evaluation metric is based on test set probghtlgymportant not to
let the test sentences into the training set. Suppose weyarg to compute the prob-
ability of a particular “test” sentence. If our test senteigpart of the training corpus,

10

Chapter 4. N-grams

HELD-OUT

DEVELOPMENT

we will mistakenly assign it an artificially high probabjlitvhen it occurs in the test

set. We call this situatiotraining on the test set Training on the test set introduces
a bias that makes the probabilities all look too high, andseathuge inaccuracies in
perplexity.

In addition to training and test sets, other divisions ofadate often useful.
Sometimes we need an extra source of data to augment thingraiet. Such extra
data is called &eld-out set, because we hold it out from our training set when we train
ourN-gram counts. The held-out corpus is then used to set soree pdinameters; for
example we will see the use of held-out data to set interjpolateights ininterpo-
lated N-gram models in Sec. 4.6 Finally, sometimes we need to haltipteutest sets.
This happens because we might use a particular test seesotbét we implicitly tune
to its characteristics. Then we might need a fresh test setvigtruly unseen. In such
cases, we call the initial test set tHevelopmenttest set ordevset We will discuss
development test sets again in Ch. 5.

How do we divide our data into training, dev test, and testaeThere is a
tradeoff, since we want our test set to be as large as possibée a small test set may
be accidentally unrepresentative. On the other hand, wé agamuch training data as
possible. At the minimum, we would want to pick the smallest tset that gives us
enough statistical power to measure a statistically sicanifi difference between two
potential models. In practice, we often just divide our data 80% training, 10%
development, and 10% test. Given a large corpus that we wativite into training
and test, test data can either be taken from some continequssce of text inside the
corpus, or we can removes smaller “stripes” of text from manly selected parts of
our corpus and combine them into a test set.

4.3.1 N-gram Sensitivity to the Training Corpus

The N-gram model, like many statistical models, is very depehdenthe training
corpus. One implication of this is that the probabilitieeeofencode very specific facts
about a given training corpus. Another implication is thigrams do a better and
better job of modeling the training corpus as we increasedhe ofN.

We can visualize both of these facts by borrowing the teamiof Shannon
(1951) and Miller and Selfridge (1950), of generating ramdsentences from differ-
entN-gram models. It's simplest to visualize how this works foe tunigram case.
Imagine all the words of English covering the probabilitase between 0 and 1, each
word covering an interval of size equal to its frequency. Wease a random num-
ber between 0 and 1, and print out the word whose intervalided the real value we
have chosen. We continue choosing random numbers and ¢jagesards until we
randomly generate the sentence-final tokéss>. The same technique can be used to
generate bigrams by first generating a random bigram thias stéth <s> (according
to its bigram probability), then choosing a random bigrarfottmw it (again, according
to its conditional probability), and so on.

To give an intuition for the increasing power of higher ortlegrams, Fig. 4.3
shows random sentences generated from unigram, bigragrartyj and quadrigram
models trained on Shakespeare’s works.

Section 4.3. Training and Test Sets 11

e To him swallowed confess hear both. Which. Of save on traibfe ay device and
rote life have

e Every enter now severally so, let

o Hill he late speaks; or! a more to leg less first you enter
e Are where exeunt and sighs have rise excellency took ofepSteave we. near; vile
like

e What means, sir. | confess she? then all sorts, he is trintaicap
e\Why dost stand forth thy canopy, forsooth; he is this palpdiit the King Henry. Live
king. Follow.
e\What we, hath got so she that | rest and sent to scold and rizdnfeupt, nor the firgt
gentleman?
eEnter Menenius, if it so many good direction found’st thoteastrong upon commarjd
of fear not a liberal largess given away, Falstaff! Exeunt

e Sweet prince, Falstaff shall die. Harry of Monmouth'’s grave

e This shall forbid it should be branded, if renown made it gmpt

e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sasloéparting, as they sa|
'tis done.

e King Henry. What! | will go seek the traitor Gloucester. Erésome of the watch. A
great banquet serv'd in;

e Will you not tell me who | am?

e It cannot be but so.

e Indeed the short and the long. Marry, 'tis a noble Lepidus.

Unigram

Bigram

Trigram

<

Quadrigram

Figure 4.3 Sentences randomly generated from fblugrams computed from Shake
speare’s works. All characters were mapped to lower-cadgpanctuation marks were
treated as words. Output is hand-corrected for capitéizabd improve readability.

The longer the context on which we train the model, the moheent the sen-
tences. In the unigram sentences, there is no coherenbrelztween words, nor
sentence-final punctuation. The bigram sentences have weméocal word-to-word
coherence (especially if we consider that punctuation tas a word). The trigram
and quadrigram sentences are beginning to look a lot lik&&ipeeare. Indeed a care-
ful investigation of the quadrigram sentences shows they thok a little too much
like Shakespeare. The worttscannot be but sare directly fromKing John This is
because, not to put the knock on Shakespeare, his oeuvrévsnydarge as corpora
go (N = 884,647V = 29,066), and oulN-gram probability matrices are ridiculously
sparse. There al? = 844,000,000 possible bigrams alone, and the number of possi-
ble quadrigrams i¥* = 7 x 10'7. Thus once the generator has chosen the first quadri-
gram (t cannot be byt there are only five possible continuatiottsag, I, he thou and
s0); indeed for many quadrigrams there is only one continnatio

To get an idea of the dependence of a grammar on its trainindess look at
an N-gram grammar trained on a completely different corpus: Wad Street Jour-
nal (WSJ) newspaper. Shakespeare and the Wall Street Jawenboth English, so
we might expect some overlap between dligrams for the two genres. In order to
check whether this is true, Fig. 4.4 shows sentences geadrgtunigram, bigram, and
trigram grammars trained on 40 million words from WSJ.

12

Chapter 4. N-grams

CLOSED
VOCABULARY

oov

OPEN VOCABULARY

unigram: Months the my and issue of year foreign new exchange's séygemere
recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson cdipofd. B. E. C.
Taylor would seem to complete the major central plannerspaiat five percent of U.
S. E. has already old M. X. corporation of living on infornmatisuch as more frequently
fishing to keep her

trigram: They also point to ninety nine point six billion dollars framo hundred four oh
six three percent of the rates of interest stores as MexiddBaazil on market conditions

Figure 4.4 Sentences randomly generated from three ordeksgfam computed from
40 million words of the Wall Street Journal. All charactersrermapped to lower-case and
punctuation marks were treated as words. Output is haneeated for capitalization to
improve readability.

Compare these examples to the pseudo-Shakespeare inFi§VHile superfi-
cially they both seem to model “English-like sentences’éhie obviously no overlap
whatsoever in possible sentences, and little if any ovexlegm in small phrases. This
stark difference tells us that statistical models are jikelbe pretty useless as predic-
tors if the training sets and the test sets are as differeBhakespeare and WSJ.

How should we deal with this problem when we buNegram models? In gen-
eral we need to be sure to use a training corpus that lookolikeest corpus. We
especially wouldn't choose training and tests from différgenresof text like news-
paper text, early English fiction, telephone conversatiand web pages. Sometimes
finding appropriate training text for a specific new task candificult; to build N-
grams for text prediction in SMS (Short Message Service)naed a training corpus
of SMS data. To buildN-grams on business meetings, we would need to have corpora
of transcribed business meetings.

For general research where we know we want written Englighdba't have
a domain in mind, we can use a balanced training corpus thitdas cross-sections
from different genres, such as the 1-million word Brown amrpf English (Francis and
Kucera, 1982) or the 100-million word British National @os (Leech et al., 1994).

Recent research has also studied ways to dynamiaddipt language models to
different genres; see Sec. 4.9.4.

4.3.2 Unknown Words: Open versus closed vocabulary tasks

Sometimes we have a language task in which we know all the sathiat can occur,
and hence we know the vocabulary sien advance. Thelosed vocabularyas-
sumption is the assumption that we have such a lexicon, aidth test set can only
contain words from this lexicon. The closed vocabulary thsis assumes there are no
unknown words.

But of course this is a simplification; as we suggested eatlie number of
unseen words grows constantly, so we can’t possibly knowdiralace exactly how
many there are, and we'd like our model to do something resslerwith them. We
call these unseen eventaknown words, orout of vocabulary (OOV) words. The
percentage of OOV words that appear in the test set is cillE=@O®V rate.

An open vocabularysystem is one where we model these potential unknown

Section 4.4. Evaluatiny-grams: Perplexity 13

words in the test set by adding a pseudo-word cafieilK>. How is this model
trained? One way is to start with a set vocabulary that is firedivance. We treat any
word that occurs in the training set but is not in this fixedalmgary as an unknown
word. In a text normalization step, we convert each of the®% @ords in the training
data to the tokerUNK>. We can then treatUNK> like a regular word, computing its
frequency and so on.

4.4 EBEVALUATING N-GRAMS:. PERPLEXITY

The correct way to evaluate the performance of a languageshi®do embed it in
an application and measure the total performance of thecapipin. Such end-to-

wnvvo end evaluation, also called vivo evaluation, is the only way to know if a particular
improvement in a component is really going to help the taskaad. Thus for speech
recognition, we can compare the performance of two langoaagels by running the
speech recognizer twice, once with each language modekegidg which gives the
more accurate transcription.

Unfortunately, end-to-end evaluation is often very expensvaluating a large
speech recognition test set, for example, takes hours or @éags. Thus we would
like a metric that can be used to quickly evaluate potentiglrovements in a lan-
guage modelPerplexity is the most common evaluation metric fdrgram language
models. While an improvement in perplexity does not gu&mm@in improvement in
speech recognition performance (or any other end-to-ertdayet often correlates
with such improvements. Thus it is commonly used as a quiekklon an algorithm;
an improvement in perplexity can then be confirmed by an erehtd evaluation.

The intuition of perplexity is that given two probabilistinodels, the better
model is the one that has a tighter fit to the test data, or giethe details of the
test data better. We can measure better prediction by Igakirthe probability the
model assigns to the test data; the better model will asstggteer probability to the
test data.

PERPLEXITY More formally, theperplexity (PP) of a language model on a test set is a function
of the probability that the language model assigns to thsitdet. For a test s&Y =
wiWs ... Wy, the perplexity is the probability of the test set, normadiby the number
of words:

1

(4.15) PRW) = P(Wiwa...wy) N

1
P(W]_Wz ... WN

N

We can use the chain rule to expand the probabilityvof

N

1
@i PRW) = V]5mm
i=1 !

1...Wi,1)

14

Chapter 4. N-grams

(4.17)

(4.18)

Thus if we are computing the perplexity\f with a bigram language model, we
get:

Note that because of the inverse in Equation (4.16), theenigfe conditional
probability of the word sequence, the lower the perplexityus minimizing perplexity
is equivalent to maximizing the test set probability acaogdo the language model.
What we generally use for word sequence in Equation (4.1&pomtion (4.17) is the
entire sequence of words in some test set. Since of coursesdlkjuence will cross
many sentence boundaries, we need to include the begin-rahlidemtence markers
<s> and</ s> in the probability computation. We also need to include thd-ef-
sentence market/ s> (but not the beginning-of-sentence marker>) in the total
count of word token$\.

There is another way to think about perplexity, aswieéghted average branch-
ing factor of a language. The branching factor of a language is the nuafipossible
next words that can follow any word. Consider the task of gairing the digits in
English (zero, one, two,..., nine), given that each of thedibits occur with equal
probabilityP = 1—10. The perplexity of this language is in fact 10. To see thaadime
a string of digits of lengtiN. By Equation (4.16), the perplexity will be:

P(W1W2 .. .WN)_T%[
1 N
(15)
1 -1
10

= 10

But now suppose that the number zero is really frequent andrsclO times
more often than other numbers. Now we should expect the g@etplto be lower,
since most of the time the next number will be zero. Thus alfiiothe branching
factor is still 10, the perplexity or weighted branchingttads smaller. We leave this
calculation as an exercise to the reader.

We'll see in Sec. 4.10 that perplexity is also closely reldtethe information-
theoretic notion of entropy.

Finally, let's see an example of how perplexity can be usezmbtopare thred\-
gram models. We trained unigram, bigram, and trigram graram@ 38 million words
(including start-of-sentence tokens) from the Wall Stikeirnal, using a 19,979 word
vocabulary? We then computed the perplexity of each of these models ost a¢é€of
1.5 million words via Equation (4.59). The table below shdhes perplexity of a 1.5
million word WSJ test set according to each of these grammars

PRW)

1
N

5 More specifically, Katz-style backoff grammars with Googkiig discounting trained on 38 million
words from the WSJO corpus (LDC, 1993), open-vocabulaipgihe <UNK > token; see later sections for
definitions.

Section 4.5. Smoothing 15

N-gram Ordef| Unigram| Bigram| Trigram
Perplexity 962 170 109

As we see above, the more information tiyram gives us about the word se-
quence, the lower the perplexity (since as Equation (4 i@)ed, perplexity is related
inversely to the likelihood of the test sequence accordirtgé model).

Note that in computing perplexities tié-gram modelP must be constructed
without any knowledge of the test set Any kind of knowledge of the test set can
cause the perplexity to be artificially low. For example, vedined above thelosed-

voossSSER: vocabulary task, in which the vocabulary for the test set is specifieddvaace. This
can greatly reduce the perplexity. As long as this knowlaéslgeovided equally to each
of the models we are comparing, the closed-vocabulary esitglcan still be useful
for comparing models, but care must be taken in interpretiagesults. In general, the
perplexity of two language models is only comparable if theg the same vocabulary.

4.5 SVIOOTHING

words people

Never do | ever want never use —
to hear another word! could be

There isn’t one, only |

| haven't heard! know them
Eliza Doolittle in Ishikawa

Alan Jay Lerner’s Takuboku

My Fair Ladylyrics 1885-1912

There is a major problem with the maximum likelihood estimaiprocess we
have seen for training the parameters ofNugram model. This is the problem of
searseDATA Sparse datacaused by the fact that our maximum likelihood estimate vased on
a particular set of training data. For aNygram that occurred a sufficient number of
times, we might have a good estimate of its probability. Betduse any corpus is
limited, some perfectly acceptable English word sequeacesound to be missing
from it. This missing data means that thegram matrix for any given training corpus
is bound to have a very large number of cases of putative ‘@aybability N-grams”
that should really have some non-zero probability. Furtteee, the MLE method also
produces poor estimates when the counts are non-zero lbatrsil.

We need a method which can help get better estimates for #egeeor low-
frequency counts. Zero counts turn out to cause anothergmagpdem. Theperplexity
metric defined above requires that we compute the probabilieach test sentence.
But if a test sentence has &hgram that never appeared in the training set, the Maxi-
mum Likelihood estimate of the probability for thi¢-gram, and hence for the whole
test sentence, will be zero! This means that in order to et@lour language mod-
els, we need to modify the MLE method to assign some non-zexiogbility to any
N-gram, even one that was never observed in training.

For these reasons, we’ll want to modify the maximum liketil@stimates for
computingN-gram probabilities, focusing on tHé-gram events that we incorrectly

16

Chapter 4. N-grams

SMOQTHING

LAPLACE
SMOQTHING
ADD-ONE

(4.19)

(4.20)

DISCOUNTING

DISCOUNT

assumed had zero probability. We used the temmoothingfor such modifications that
address the poor estimates due to variability in small detka §he name comes from
the fact that (looking ahead a bit) we will be shaving a littie of probability mass
from the higher counts, and piling it instead on the zero tgunaking the distribution
a little less jagged.

In the next few sections we will introduce some smoothingatgms and show
how they modify the Berkeley Restaurant bigram probabditn Fig. 4.2.

4.5.1 Laplace (Add-One) Smoothing

One simple way to do smoothing might be just to take our maifikigram counts,
before we normalize them into probabilities, and add ondlttha counts. This al-
gorithm is called_aplace smoothingor add-onesmoothing, or Laplace’s Law (Lid-
stone, 1920; ?; Jeffreys, 1948). Laplace smoothing doeperform well and is not
currently used ifN-gram modeling, but we begin with it because it introducesyrat
the concepts that we will see in other smoothing algorithans, also gives us a useful
baseline.

Let's start with the application of add-one (Laplace) srhatg to unigram prob-
abilities. Recall that the unsmoothed maximum likelihoatireate of the unigram
probability of the wordw; is its countc; normalized by the total number of word tokens
N:

Ci
P(wi) = N

Add one smoothing merely adds one to each count. Since thexéwords in
the vocabulary, and each one got incremented, we also nestjust the the denomi-
nator to take into account the exiaobservations?

ci+1

PaddonéW) = ﬁ

Instead of changing both the numerator and denominatocifisenient to de-
scribe how a smoothing algorithm affects the numeratordfiynihg anadjusted count
c*. This adjusted count is easier to compare directly with thé=Mounts, and can be
turned into a probability like an MLE count by normalizing Ny To define this count,
since we are only changing the numerator, in addition toregldne we’ll also need to
multiply by a normalization factoi%:

. N
Ci = (Ci +1)m

We can now turrc” into a probabilityp;” by normalizing byN.

A related way to view smoothing is aiscounting (lowering) some non-zero
counts in order to get the probability mass that will be assijto the zero counts.
Thus instead of referring to the discounted cowgitsve might describe a smoothing
algorithm in terms of a relativdiscount d, the ratio of the discounted counts to the
original counts:

6 What happens to oW values if we don’t increase the denominator?

Section 4.5. Smoothing 17
C*
dc = ?
Now that we have the intuition for the unigram case, let’s sthaur Berke-
ley Restaurant Project bigram. Fig. 4.5 shows the add-ormsthed counts for the
bigrams in Fig. 4.1.
| | i | want] to | eat | chinese] food | lunch | spend]|
[6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese| 2 1 1 1 1 83 2 1
food 16| 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1
Figure 4.5 Add-one smoothed bigram counts for eight of the words (oMt ef 1446)
in the Berkeley Restaurant Project corpus of 9332 sentences
Fig. 4.6 shows the add-one-smoothed probabilities for tgeams in Fig. 4.2.
Recall that normal bigram probabilities are computed bymaizing each row of
counts by the unigram count:
C(Wn—1Wn)
4.21 P(whlWh_1) = ———~
() (n| n 1) C(Wn—l)
For add-one-smoothed bigram counts we need to augmentitdp@aomcount by
the number of total word types in the vocabulary
C(Wp— 1
(4.22) P* (Wn|Wn_1) = M

C(anl) +V

Thus each of the unigram counts given in the previous segtibtmeed to be
augmented by = 1446. The result is the smoothed bigram probabilities in £if.

| want | to | eat | chinese] food | lunch | spend |

i 0.0015| 0.21 0.00025 0.0025 | 0.00025 0.00025 0.00025 0.00075
want 0.0013 | 0.00042 0.26 0.00084 0.0029 | 0.0029 | 0.0025| 0.00084
to 0.00078 0.0002q 0.0013 | 0.18 0.00078 0.0002g 0.0018 | 0.055
eat 0.0004q 0.0004q 0.0014| 0.0004 0.0078 | 0.0014 | 0.02 0.00046
chinese| 0.0012 | 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 | 0.00062
food 0.0063 | 0.00039 0.0063 | 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 | 0.00054 0.0005q 0.00056 0.0005 0.0011| 0.00054 0.00056
spend 0.0012 | 0.00058 0.0012 | 0.00058 0.00058 0.00058 0.00058 0.00058§

Figure 4.6 Add-one smoothed bigram probabilities for eight of the veofdut ofV = 1446) in the BeRP
corpus of 9332 sentences.

18 Chapter 4. N-grams
It is often convenient to reconstruct the count matrix so we see how much
a smoothing algorithm has changed the original counts. & hdgisted counts can be
computed by Equation (4.23). Fig. 4.7 shows the recongdumbunts.
. [C(Wn—1Wn) + 1] x C(Wn_1)
(4.23) C*(Wn-1Wn) = CWo 1) 1V
| | i | want] to | eat | chinesq food| lunch] spend
i 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinesg| 0.2 0.098| 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 | 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38| 0.19 | 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16/ 0.16 | 0.16

GOOD-TURING

WITTEN-BELL
DISCOUNTING
KNEYSER-NEY

SMOOTHING

SINGLETON

Figure 4.7 Add-one reconstituted counts for eight words Yof= 1446) in the BeRP
corpus of 9332 sentences.

Note that add-one smoothing has made a very big change totimsoC(want to)
changed from 608 to 238! We can see this in probability spaseedi: P(to|want) de-
creases from .66 in the unsmoothed case to .26 in the smoo#ised Looking at the
discountd (the ratio between new and old counts) shows us how strikiting! counts
for each prefix-word have been reduced; the discount for ifpeim want tois .39,
while the discount foChinese foods .10, a factor of 10!

The sharp change in counts and probabilities occurs betaaseuch probabil-
ity mass is moved to all the zeros. We could move a bit less imas&iding a frac-
tional count rather than 1 (addlsmoothing; (Lidstone, 1920; ?; Jeffreys, 1948)), but
this method requires a method for choostndynamically, results in an inappropriate
discount for many counts, and turns out to give counts withr pariances. For these
and other reasons (Gale and Church, 1994), we’'ll need user Isatoothing methods
for N-grams like the ones we see in the next section.

4.5.2 Good-Turing Discounting

There are a number of much better discounting algorithntsatteaonly slightly more
complex than add-one smoothing. In this section we intreduee of them, known as
Good-Turing smoothing.

The intuition of a number of discounting algorithms (Goodifg, Witten-Bell
discounting Witten and Bell (1991), anneyser-Ney smoothing is to use the count
of things you've seemnceto help estimate the count of things you'mever seen
The Good-Turing algorithm was first described by Good (1988)o credits Turing
with the original idea. The basic insight of Good-Turing stfong is to re-estimate
the amount of probability mass to assignNegrams with zero counts by looking at
the number ofN-grams that occurred one time. A word Mrgram (or any event)
that occurs once is calledsingleton or ahapax legomenon Thus the Good-Turing

Section 4.5.

Smoothing 19

(4.24)

(4.25)

(4.26)

intuition is to use the frequency of singletons as a re-egtmf the frequency of zero-
count bigrams. In order to compute the frequency of singetare’ll need to compute
N¢, the number oN-grams that occur times. We refer to the number bfgrams that
occurc times as thdérequency of frequencyc. So applying the idea to smoothing the
joint probability of bigramsNp is the number of bigramis of count 0,N; the number
of bigrams with count 1 (singletons), and so on:

NC:21

b:c(b)=c

The MLE count forN; is c. The Good-Turing estimate replaces this with a
smoothed count*, as a function oNc; 1:

Nc+1
Ne

The Good-Turing method was first proposed for estimatingpihygulations of
animal species. Let's consider an illustrative examplenfithis domain created by
Joshua Goodman. Suppose we are fishing, and we have seeries syittthe follow-
ing counts: 10 carp, 3 cod, 2 tuna, 1 trout, 1 salmon, and Meéeat is the probability
that the next fish we catch will be a new species, i.e., onelthdta zero frequency
in our training set? The Good-Turing estimate is 3/18, beedhere are 3 singleton
events. What is the probability that the next fish will be &eottuna? The MLE is
2/18. But the Good-Turing estimate must be lower, since gé §tole 3/18 of our
probability mass to use on unseen events! We’'ll need to disiceach of these MLE
probabilities. The revised count$ and Good-Turing smoothed probabilitips for
species with counts 0, 1, and 2 are:

c=(c+1)

c 0 1 2
MLE p ||0/18 1/18 2/18

c 1x3=3[2x3=.67[3x1=3
GTp' [[5=.17 |24 =.037 | % =17

Fig. 4.8 gives two examples of the application of Good-Tgriliscounting to
bigram grammars, one on the BeRP corpus of 9332 sentenaks, langer example
computed from 22 million words from the Associated Press)(@dRvswire by Church
and Gale (1991) . For both examples the first column shows dbete, i.e., the
number of observed instances of a bigram. The second colbpwssthe number of
bigrams that had this count. Thus 449,721 of the AP bigranae hacount of 2. The
third column shows*, the Good-Turing re-estimation of the count.

Good-Turing estimation assumes that the distribution ohdsgram is binomial
Church et al. (1991), and assumes we kndyy the number of bigrams we haven't
seen. We know this because given a vocabulary sixg tie total number of bigrams
is V2, hencelp is V2 minus all the bigrams we have seen.

In practice, this discounted estimateis not used for all counts. First, large
counts (wheree > k for some threshold) are assumed to be reliable. Katz (1987)
suggests settingat 5. Thus we define

c"=cforc>k

20

Chapter 4. N-grams

(4.27)

AP Newswire I Berkeley Restaurant

¢ (MLE) Ne c (GT) ¢ (MLE) Ne ¢ (GT)

0 74,671,100,000 0.0000210 O 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

Figure 4.8 Bigram “frequencies of frequencies” and Good-Turing réreations from
the 22 million AP bigrams from Church and Gale (1991), andiftbe Berkeley Restaurant
corpus of 9332 sentences.

The correct equation far when somek is introduced (from Katz (1987)) is:

N 1)Nes 07<k+f\,)Nk*1
= 1_C(k+1)Nk+1 1 forl<c<k
Ny
Second, with Good-Turing discounting as with any othess tisual to trealN-
grams with low counts (especially counts of 1) as if the cauerte 0.
It turns out that Good-Turing discounting is not used bylitge discounting
N-grams; it is only used in combination with the backoff angkipolation algorithms

described in the next sections.

(9]

4.6 INTERPOLATION

BACKOFF
INTERPOLATION

The discounting we have been discussing so far can help stodvproblem of zero
frequencyn-grams. But there is an additional source of knowledge wedraw on.

If we are trying to comput®(wn|wn_1Wn_2), but we have no examples of a particular
trigramwy,_2Wnh_1W,, We can instead estimate its probability by using the bigpaoip-
ability P(wn|wn_1). Similarly, if we don’t have counts to compuBéw, |wh_1), we can
look to the unigraniP(wy).

There are two ways to rely on thid-gram “hierarchy” backoff andinterpo-
lation. In backoff, if we have non-zero trigram counts, we rely ot the trigram
counts. We only “back off” to a lower ordéd-gram if we have zero evidence for a
higher-ordeiN-gram. By contrast, in interpolation, we always mix the @bty es-
timates from all théN-gram estimators, i.e., we do a weighted interpolationigfam,
bigram, and unigram counts.

In simple linear interpolation, we combine different orddéigram by linearly
interpolating all the models. Thus we estimate the trigraobpbility P(wWn|Wn_1Wn—_2)
by mixing together the unigram, bigram, and trigram proliids, each weighted by a

|5(Wn|Wn71Wn72) = AP(Wn|Wn_1Wn_2)

Section 4.7. Backoff 21

+A2P(Wn|Wn-1)
(4.28) +A3P(wn)
such that thés sum to 1:
(4.29) dai=1
I

In a slightly more sophisticated version of linear integimn, eachh weight
computed in a more sophisticated way, by is conditioned enctintext. This way
if we have particularly accurate counts for a particulardig, we assume that the
counts of the trigrams based on this bigram will be more waghy, and so we can
make the lambdas for those trigrams higher and thus giverigeam more weight in
the interpolation. Equation (4.30) shows the equationtiterpolation with context-
conditioned weights:

Iﬁ(Wn|Wn72anl) =)\1(Wnn:%)P(Wn|Wn72anl)
+A2(WH3) P(Wn|Wn-1)
(4.30) +A3(Wh~3)P(Wh)
How are thesa values set? Both the simple interpolation and conditiomair
eLpout polationAs are learned from held-out corpus. Recall from Sec. 4.3 that a held-out
corpus is an additional training corpus that we use not tthe\l-gram counts, but to
set other parameters. In this case we can use such data e 3etdlues. We can do
this by choosing th& values which maximize the likelihood of the held-out corpus
That is, we fix theN-gram probabilities, and then search for the lambda valoes t
when plugged into Equation (4.28) give us the highest pritibabf the held-out set,
There are various ways to find this optimal seiofOne way is to use thEM algo-
rithm to be defined in Ch. 6, which is an iterative learningpaidnm that converges on
locally optimalAs. (Baum, 1972; Dempster et al., 1977; Jelinek and Merc&Q)19

4.7 BACKOFF

While simple interpolation is indeed simple to understand @nplement, it turns out
that there are a number of better algorithms. One of thesacisdff N-gram modeling.
The version of backoff we will describe uses Good-Turingdisting as well. It was
introduced by Katz (1987), and hence this kind of backoffhwdiscounting is also

karzeackorr calledKatz backoff. In a Katz backoffN-gram model, if theN-gram we need has zero
counts, we approximate it by backing off to tfld — 1)-gram. We continue backing
off until we reach a history that has some counts:

o k) P (WaMHZN). It C(Wy_;.0) >0
: Pratz(WnlWn_N+1) = G(‘Af]n:h+1)Pkatz(Wn|"‘Pn:h+2)’ otherwise.
Equation (4.31) shows that the Katz backoff probabilitydoiN-gram just relies

on the (discounted) probabilig if we've seen thisN-gram before (i.e. if we have non-
zero counts). Otherwise, we recursively back off to the Kaabability for the shorter

22

Chapter 4. N-grams

(4.32)

(4.33)

(4.34)

history (N — 1)-gram. We'll define the discounted probabil®y and the normalizing
factora below. The trigram version of backoff might be representetblows:

P*(Wi |Wi—2Wi—1), if C(Wi—ZWi—lwi) >0
Pratz(Wilwi—2Wi-1) = ¢ o(Wi—awi)P* (Wi[wi_1), else ifC(wi_1w;) > 0
a(wi)P*(wi), otherwise.

Katz backoff incorporates discounting as an integral patthe algorithm. Our
previous discussions of discounting showed how a metheddikod-Turing could be
used to assign probability mass to unseen events. For sitgplve assumed that these
unseen events were all equally probable, and so the prdigahéss got distributed
evenly among all unseen events. Katz backoff gives us arbettg to distribute the
probability mass among unseen trigram events, by relyinghfmrmation from uni-
grams and bigrams. We use discounting to tell us how muchpathability mass to
set aside for all the events we haven't seen, and backoffitagé&ow to distribute this
probability.

Discounting is implemented by using discounted probaedl*(-) rather than
MLE probabilitiesP(-) in Equation (4.31) and Equation (4.32).

Why do we need discounts andsalues in Equation (4.31) and Equation (4.32)?
Why couldn’t we just have three sets of MLE probabilitieshwitit weights? Because
without discounts and weights, the result of the equation would not be a true prob-
ability! The MLE estimates oP(wn|V\f‘njh+1) are true probabilities; if we sum the
probability of allw; over a giverN-gram context, we should get 1:

Z P(Wi |WjWk) =1

But if that is the case, if we use MLE probabilities but backtofa lower order
model when the MLE probability is zero, we would be adding&xtrobability mass
into the equation, and the total probability of a word wouddgrveater than 1!

Thus any backoff language model must also be discounted.PTh& used to
discount the MLE probabilities to save some probability snfas the lower ordeN-
grams. Thea is used to ensure that the probability mass from all the lowveer
N-grams sums up to exactly the amount that we saved by disoguhe higher-order
N-grams. We defin®* as the discounted() estimate of the conditional probability
of anN-gram, (and save for MLE probabilities):

C"(Wa_ns1)
cwh—t)

n—N+1
Because on average the (discountedyvill be less tharc, this probabilityP*
will be slightly less than the MLE estimate, which is

c(Wa_n11)

Wy 1)

This will leave some probability mass for the lower ordégrams, which is
then distributed by thel weights; details of computing are in Sec. 4.7.1. Fig. 4.9
shows the Katz backoff bigram probabilities for our 8 sampteds, computed from
the BeRP corpus using the SRILM toolkit.

P (Wn|Wnn:h+1) =

Section 4.7. Backoff 23

| | i | want [to | eat | chinese | food [lunch | spend |
i 0.0014 0.326 0.00248 0.00355 0.000205 0.0017 0.00073 0.000489
want 0.00134 0.00152| 0.656 0.000483 0.00455 0.00455 0.00384; 0.000483
to 0.000512 0.00152] 0.00165 0.284 0.0005120 0.0017 0.00175 0.0873
eat 0.00101 0.00152| 0.00166| 0.00189 0.0214 0.00166{ 0.0563 0.000585|
chinese| 0.00283 0.00152] 0.00248 0.00189 0.000205 0.519 0.00283] 0.000585
food 0.0137 0.00152] 0.0137 0.00189 0.000409 0.00366| 0.00073 0.000585
lunch 0.00363 0.00152| 0.00248 0.00189 0.000205 0.00131] 0.00073 0.000585
spend 0.00161 0.00152| 0.00161] 0.00189 0.000205 0.0017 0.00073] 0.000585

Figure 4.9 Good-Turing smoothed bigram probabilities for eight wofofsV = 1446) in the BeRP corpus of
9332 sentences, computing by using SRILM, vtk 5 and counts of 1 replaced by 0.

4.7.1 Advanced: Details of computingx and P*

In this section we give the remaining details of the componedf the discounted prob-
ability P* and the backoff weights (w).

We begin witha, which passes the left-over probability mass to the lowdeor
N-grams. Let’s represent the total amount of left-over philiig mass by the function
B, a function of theN — 1-gram context. For a giveN — 1-gram context, the total
left-over probability mass can be computed by subtractiomfl the total discounted
probability mass for alN-grams starting with that context:

435 BWin.)=1- > P(wawjp.y)

Wh:c(W)_\ ., 1)>0

This gives us the total probability mass that we are readistaldute to allN — 1-
gram (e.g., bigrams if our original model was a trigram). lieadividualN — 1-gram
(bigram) will only get a fraction of this mass, so we need tonmalize3 by the total
probability of all theN — 1-grams (bigrams) that begin soriNegram (trigram). The
final equation for computing how much probability mass tdrihsite from anN-gram
to anN — 1-gram is represented by the function

BV N+1)
EWnZC(W{LNH)=O P(Wn|Wnn:%|+2)

1- an:c(w“n7N+1)>O p* (Wn|Wnn:%|+1)
1- an:c(w“n7N+1)>O p* (Wn|Wnn:%|+2)

Note thato is a function of the preceding word string, that isvéf 3, ;; thus
the amount by which we discount each trigrat), @nd the mass that gets reassigned
to lower ordeN-grams @) are recomputed for evemy — 1-gram that occurs in any
N-gram.

We only need to specify what to do when the counts oNan 1-gram context
are 0, (i.e., wher(w] "y ;) = 0) and our definition is complete:

aWh) =

(4.36) =

437) P(WaWj_NTD) = P(Wa|Wh-NT2) if c(Wy N, 1) =0

24 Chapter 4. N-grams

and

(438) P"(Wolwih,) =0 if c(Wh 1) =0
and

(439) BWi R =1 if c(Wh 1) =0

4.8 PRACTICAL ISSUES TOOLKITS AND DATA FORMATS

Let's now examine hovwN-gram language models are represented. We represent and
compute language model probabilities in log format, in otdeavoid underflow and

also to speed up computation. Since probabilities are (ffipitlen) less than 1, the
more probabilities we multiply together the smaller thedurat becomes, Multiplying
enoughN-grams together would result in numerical underflow. By gdimg prob-
abilities instead of raw probabilities, the numbers areamsmall. Since adding in

log space is equivalent to multiplying in linear space, wabme log probabilities by
adding them. Besides avoiding underflow, addition is fasteompute than multipli-
cation. Since we do all computation and storage in log spbae, ever need to report
probabilities we just take the exp of the logprob:

(4.40) P1 X P2 X p3 x ps = exp(logpy + logpz2 + log ps + log pa)

Backoff N-gram language models are generally storedRPA format. An
N-gram in ARPA format is an ASCII file with a small header folled/by a list of all
the non-zerdN-gram probabilities (all the unigrams, followed by bigrarwdlowed by
trigrams, and so on). Eadi-gram entry is stored with its discounted log probability
(in log;o format) and its backoff weightt. Backoff weights are only necessary for
N-grams which form a prefix of a long&-gram, so nax is computed for the highest
orderN-gram (in this case the trigram) bi-grams ending in the end of sequence token
<s>. Thus for a trigram grammar, the format of eddtgram is:

unigram: logo* (W) W loga(w;)
bi.gram: logp* (wi|wi_1) Wi_1Wi logo(wi—1w;)
trigram: logp* (Wi|Wi—2,Wi—1) Wi_2Wi_1W;
Fig. 4.10 shows an ARPA formated LM file with selectsdgrams from the
BeRP corpus. Given such a trigram, the probab#ity; |wi_ow;_1) can be computed

as follows:
P (W [Wi—aWi 1), if trigram exists
(4.41) Pratz(Wi[Wi2Wi—1) = ¢ o (wWi—1wi)P*(wi|wi_1), else if bigram exists
o (w;) P*(w;), otherwise.

Toolkits There are two commonly used available toolkits for buildemgguage mod-
els, the SRILM toolkit (Stolcke, 2002) and the Cambridge{CMolkit (Clarkson and
Rosenfeld, 1997). Both are publicly available, and havelairfunctionality. In train-
ing mode, each toolkit takes a raw text file, one sentencamenlith words separated
by white-space, and various parameters such as the Birdiae type of discounting

Section 4.9. Advanced Issues in Language Modeling 25

\ dat a\

ngram 1=1447
ngram 2=9420
ngram 3=5201

\ 1-grans:

-0.8679678 </ s>

-99 <s> -1. 068532
-4.743076 chowfun -0.1943932
-4.266155 fries -0.5432462
-3.175167 t hur sday -0.7510199
-1.776296 want -1.04292

\ 2-grans:

-0.6077676 <s> i -0.6257131
-0.4861297 i want 0. 0425899
-2.832415 to drink -0. 06423882
-0.5469525 to eat -0.008193135
-0.09403705 today </s>

\ 3-grans:

-2.579416 <s> i prefer

-1.148009 <s> about fifteen

-0. 4120701 to go to

-0.3735807 ne a list

-0.260361 at jupiter </ s>

-0.260361 a nmal aysi an restaurant

\ end\

Figure 4.10 ARPA format forN-grams, showing some sampegrams. Each is rep-
resented by éogprob, the word sequencey; ...wy, followed by the log backoff weight.
Note that noa is computed for the highest-orddrgram or forN-grams ending irks>.

(Good Turing or Kneser-Ney, discussed in Sec. 4.9.1), amdwsthresholds. The
output is a language model in ARPA format. In perplexity ocalting mode, the
toolkits take a language model in ARPA format, and a senten@®rpus, and pro-
duce the probability and perplexity of the sentence or cerpBoth also implement
many advanced features to be discussed later in this chexpdén following chapters,
including skipN-grams, word lattices, confusion network, adejram pruning.

4.9 ADVANCED ISSUES INLANGUAGE MODELING

4.9.1 Advanced Smoothing Methods: Kneser-Ney Smoothing

In this section we give a brief introduction to the most commigaised moderiN-gram
INEREOLATED smoothing method, thieterpolated Kneser-Neyalgorithm.
Kneser-Ney has its roots in a discounting method cadllesblute discounting
Absolute discounting is a much simpler method of computingvésed countx than
the Good-Turing discount formula we saw Equation (4.25%€eldeon frequencies-of-
frequencies. To get the intuition, Let's revisit the Goaakifig estimates of the bigram
c* extended from Fig. 4.8 and reformatted below:

c(MLE)|0 1 2 |3 |4 |5 |6 7 18 |9
c* (GT) ||0.00002700.446|1.26|2.24|3.24|4.22|5.19| 6.21| 7.24|8.25

26

Chapter 4. N-grams

The astute reader may have noticed that except for the iraatetl counts for 0
and 1, all the other re-estimated coudtsould be estimated pretty well by just sub-
DiIsABQIE tracting 0.75 from the MLE court! Absolute discountingformalizes this intuition,
by subtracting a fixed (absolute) discowhfrom each count. The intuition is that we
have good estimates already for the high counts, and a sisatiuhtd won't affect
them much. It will mainly modify the smaller counts, for whiwve don’t necessarily
trust the estimate anyhow. The equation for absolute digtaog applied to bigrams
(assuming a proper coefficiemton the backoff to make everything sum to one) is:

Cwi_iwi)-D if C(Wi_qwi) >0
(4.42) Papsolutd Wi |Wi—oWi—1) = { C(wi—1) (Wi ' i)
(Wi) Pabsolutd Wi), otherwise.

In practice, we might also want to keep distinct discountigadl for the 0 and 1
counts.

Kneser-Ney discounting(Kneser and Ney, 1995) augments absolute discount-
ing with a more sophisticated way to handle the backoff ihistion. Consider the job
of predicting the next word in this sentence, assuming wéac&ing off to a unigram
model:

| can’t see without my reading

The wordglassesseems much more likely to follow here than the wérdn-
cisca But Franciscois in fact more common, and so a unigram model will prefer it to
glasses We would like to capture the intuition that althougranciscois frequent, it
is only frequent after the wor8lan i.e. in the phras&an FranciscoThe wordglasses
has a much wider distribution.

Thus instead of backing off to the unigram MLE count (the nentf times the
wordw has been seen), we want to use a completely different badistffoution! We
want a heuristic that more accurately estimates the nunflienes we might expect to
see wordw in @ new unseen context. The Kneser-Ney intuition is to basestimate
on thenumber of different contexts word w has appearedffords that have appeared
in more contexts are more likely to appear in some new coatewell. We can express
this new backoff probability, the ‘continuation probabyilj as follows:

i—1:C(wi—1wi) >0
(4.43) PcoNTINUATION (Wi) = ZHV'\{{Wli . '(z:v(wliwlivs >}(|)}|
w [{Wi1 _

The Kneser-Ney backoff intuition can be formalized as foBdagain assuming
a proper coefficientt on the backoff to make everything sum to one):

%’ if C(Wi_1w;) >0
(4.44) Py (Wilwi-1) = (W) W1 CW1w) 0} otherwise.

Zwi [{wi—1:C(Wi—1w;)>0}|

Finally, it turns out to be better to use anterpolated rather tharbackoff form
of Kneser-Ney. While Sec. 4.6 showed thiaear interpolation is not as successful
as Katz backoff, it turns out that more powerful interpathiteodels, such as interpo-
INERELATED lated Kneser-Ney, work better than their backoff versitmterpolated Kneser-Ney

Section 4.9. Advanced Issues in Language Modeling 27
discounting can be computed with an equation like the fakgwomitting the compu-
tation of B):
C(wi—iw;) —D [{wi_1: C(wi_1w;) > 0}]
4.45 Pan (Wi [Wi_1) = ——2=17 = 4 B(w
@49 Pl = = TP Tw Cwaw) > O]

Afinal practical note; it turns out that any interpolationaebcan be represented
as a backoff model, and hence stored in ARPA backoff formae sihply do the
interpolation when we build the model, and so the ‘bigranslyability stored in the
backoff format is really ‘bigram already interpolated withigram’.

4.9.2 Class-based N-grams
CLASSEASED Theclass-based N-granor cluster N-gram is a variant of theN-gram that uses infor-

CLUSTER N-GRAM

IBM CLUSTERING

mation about word classes or clusters. Class-baksgtams can be useful for dealing
with sparsity in the training data. Suppose for a flight reatton system we want to
compute the probability of the bigratbo Shanghaibut this bigram never occurs in the
training set. Instead, our training data ltad.ondon to Beijing, andto Denver If we
knew that these were all cities, and assunfifiganghatdoes appear in the training set
in other contexts, we could predict the likelihood of a ciylédwing from.

There are many variants of clustdrgrams. The simplest one is sometimes
known asIBM clustering, after its originators (Brown et al., 1992b). IBM clustegin
is a kind ofhard clustering, in which each word can belong to only one class. The
model estimates the conditional probability of a wewdby multiplying two factors:
the probability of the word’s class given the preceding classes (based ohagram-
of-classes), and the probability wf givenc;. Here is the IBM model in bigram form:

P(wi|wi—1) ~ P(ci|,Ci—1) x P(W|ci)

If we had a training corpus in which we knew the class for eachowthe maxi-
mum likelihood estimate (MLE) of the probability of the wogd/en the class and the
probability of the class given the previous class could bamated as follows:

i =
P(cilci-1) = %

ClusterN-grams are generally used in two ways. In dialog systems 23)).
we often hand-design domain-specific word classes. Thuarfairline information
system, we might use classes liREF'YNAME, AIRLINE, DAYOFWEEK, Of MONTH. In
other cases, we can automatically induce the classes, biedhg words in a corpus
(Brown et al., 1992b). Syntactic categories like partjoéach tags don’t seem to work
well as classes (Niesler et al., 1998).

Whether automatically induced or hand-designed, clistgrams are generally
mixed with regular word-basdd-grams.

28

Chapter 4. N-grams

(4.46)

CACHE

4.9.3 Language Model Adaptation and Using the Web

One of the most exciting recent developments in languagestimuds language model
adaptation. This is relevant when we have only a small amofimtdomain training
data, but a large amount of data from some other domain. Weraemnon the larger
out-of-domain dataset, and adapt our models to the smalbimain set. (lyer and
Ostendorf, 1997, 1999a, 1999b; Bacchiani and Roark, 2088c#ani et al., 2004).

An obvious large data source for this type of adaptationéswkb. Indeed, use
of the web does seem to be helpful in language modeling. Thelest way to apply
the web to improve, say, trigram language models is to uselseagines to get counts
for wiwows andwiwowsg, and then compute:

Buvets= Cweb(W1WaW3)
T T Cuen(Wiw)

We can then mixXpyep With a conventionaN-gram (Berger and Miller, 1998;
Zhu and Rosenfeld, 2001). We can also use more sophisticatedination methods
that make use of topic or class dependencies, so as to findinloelevant data on the
web data (Bulyko et al., 2003).

In practice it is difficult or impossible to download everygeafrom the web in
order to comput®&-grams. For this reason most uses of web data rely on pagéscoun
from search engines. Page counts are only an approximataxcttal counts for many
reasons: a page may containisgram multiple times, most search engines round off
their counts, punctuation is deleted, and the counts thisasmay be adjusted due to
link and other information. It seems that this kind of noiges not hugely affect the
results of using the web as a corpus (Keller and Lapata, 208i8yv and Hearst, 2005)
although it is possible to perform specific adjustmentshsagfitting a regression to
predict actual word counts from page counts (Zhu and Rokgr#@01).

4.9.4 Using Longer Distance Information: A Brief Summary

There are many methods for incorporating longer-distanogext intoN-gram mod-
eling. While we have limited our discussion mainly to bigrand trigrams, state-of-
the-art speech recognition systems, for example, are lmaslediger distanchl-grams,
especially 4-grams, but also 5-grams. Goodman (2006) sthtives with 284 million
words of training data, 5-grams do improve perplexity ssareer 4-grams, but not
by much. Goodman checked contexts up to 20-grams, and fowaatter 6-grams,
longer contexts weren’t useful, at least not with 284 millisords of training data.
Many models focus on more sophisticated ways to get longéamiie informa-
tion. For example people tend to repeat words they have wfedd Thus if a word is
used once in a text, it will probably be used again. We canueeaphis fact by aache
language model (Kuhn and de Mori, 1990). For example to usggaam cache model
to predict word of a test corpus, we create a unigram grammar from the pregedirt
of the test corpus (words 1 ie- 1), and mix this with our conventional-gram. We
might use only a shorter window from the previous words, @athan the entire set.
Cache language models are very powerful in any applicatidrese we have perfect
knowledge of the words. Cache models work less well in domadnere the previous
words are not known exactly. In speech applications, formgda, unless there is some

Section 4.10.

Advanced: Information Theory Background 29

TOPIC-BASED

(4.47)

LATENT SEMANTIC
INDEXING

TRIGGER

SKIP N-GRAMS

VARIABLE-LENGTH
N-GRAM

way for users to correct errors, cache models tend to 'lotletirors they made on
earlier words.

The fact that words are often repeated in a text is a symptoannodre general
fact about words; texts tend to beout things. Documents which are about particular
topics tend to use similar words. This suggests that we doaid separate language
model for different topics. Inopic-basedlanguage models (Chen et al., 1998; Gildea
and Hofmann, 1999) we try to take advantage of the fact ttifrdnt topics will have
different kinds of words. For example we can train differamguage models for each
topict, and then mix them, weighted by how likely each topic is gitrenhistoryh:

p(wih) =) _ P(wlt)P(t|h)
t

A very similar class of models relies on the intuition thataming words are
semantically similar to preceding words in the text. Theselets use a measure of
semantic word association such as ldtent semantic indexingdescribed in Ch. 19
(Coccaro and Jurafsky, 1998; Bellegarda, 1999, 2000), dinendictionaries or the-
sauri (Demetriou et al., 1997) to compute a probability damea word’s similarity to
preceding words, and then mix it with a conventioNagram.

There are also various ways to extend lxgram model by having the previous
(conditioning) word be something other than a fixed windovpvious words. For
example we can choose as a predictor word a word caltedger which is not ad-
jacent but which is very related (has high mutual informatiath) the word we are
trying to predict (Rosenfeld, 1996; Niesler and Woodlar884; Zhou and Lua, 1998).
Or we can creatskip N-grams, where the preceding context ‘skips over’ some in-
termediate words, for example computing a probability sasB(w;|wi_1,wi_3). We
can also use extra previous context just in cases where atlqigase is particularly
frequent or predictive, producingvariable-length N-gram (Ney et al., 1994; Kneser,
1996; Niesler and Woodland, 1996).

In general, using very large and rich contexts can resuleiy \arge language
models. Thus these models are often pruned, removing lobgly events. Prun-
ing is also essential for using language models on smalfigotat such as cellphones
(Stolcke, 1998).

Finally, there is a wide body of research on integrating sifated linguistic
structures into language modeling. Language models bassgitactic structure from
probabilistic parsers are described in Ch. 14. Languagesiadzased on the current
speech act in dialogue are described in Ch. 23.

4.10 ADVANCED: INFORMATION THEORY BACKGROUND

| got the horse right here
Frank Loesser, Guys and Dolls

We introduced perplexity in Sec. 4.4 as a way to evalllagram models on a
test set. A betteN-gram model is one which assigns a higher probability to &sé t
data, and perplexity is a normalized version of the prolitgitif the test set. Another

30

Chapter 4. N-grams

ENTROPY

(4.48)

way to think about perplexity is based on the informatioeettetic concept ofross-
entropy. In order to give another intuition into perplexity as a netthis section gives
a quick review of fundamental facts froimformation theory including the concept
of cross-entropy that underlies perplexity. The inter@s&ader should consult a good
information theory textbook like Cover and Thomas (1991).

Perplexity is based on the information-theoretic notioeroks-entropy, which
we will now work toward defining.Entropy is a measure of information, and is in-
valuable throughout speech and language processing. bhearsed as a metric for
how much information there is in a particular grammar, fowheell a given grammar
matches a given language, for how predictive a giMegram grammar is about what
the next word could be. Given two grammars and a corpus, weusarentropy to
tell us which grammar better matches the corpus. We can aksentropy to compare
how difficult two speech recognition tasks are, and also tasuge how well a given
probabilistic grammar matches human grammars.

Computing entropy requires that we establish a random arda that ranges
over whatever we are predicting (words, letters, parts eésh, the set of which we'll
call x), and that has a particular probability function, calpik). The entropy of this
random variabl& is then
H(X) =~ p(x)log; p(x)

XEX

The log can in principle be computed in any base; if we use lagpl?, the
resulting value of entropy will be measuredits.

The most intuitive way to define entropy for computer scistis to think of
the entropy as a lower bound on the number of bits it would takencode a certain
decision or piece of information in the optimal coding sclkkem

Cover and Thomas (1991) suggest the following example. imegthat we want
to place a bet on a horse race but it is too far to go all the waptikers Racetrack,
and we'd like to send a short message to the bookie to tell Himalwhorse to bet on.
Suppose there are eight horses in this particular race.

One way to encode this message is just to use the binary ezpia¢ion of the
horse’'s number as the code; thus horse 1 woul@®E, horse 2010, horse 3011,
and so on, with horse 8 coded @80. If we spend the whole day betting, and each
horse is coded with 3 bits, on the average we would be senduitg Ber race.

Can we do better? Suppose that the spread is the actuabdigin of the bets
placed, and that we represent it as the prior probabilityachenorse as follows:

Horse 1 3—% Horse 5 &;
Horse 2 7 |Horse 6 &
Horse 3 § |Horse 7 &

1 1
Horse 4 75 |Horse 8 &

The entropy of the random variab¥that ranges over horses gives us a lower
bound on the number of bits, and is:

i=8
H(X) = . p(i)log p(i)

||
-

Section 4.10.

Advanced: Information Theory Background 31

(4.49)

(4.50)

(4.51)

ENTROPY RATE

(4.52)

(4.53)

(4.54)

— _liogl_liogl_liogl_ 1 1 1 1
= -—3logs—3logz—3logg—7510075—4(g2100¢5)

= 2 bits

A code that averages 2 bits per race can be built by using sheoddings for
more probable horses, and longer encodings for less pbabtes. For example, we
could encode the most likely horse with the c@&deand the remaining horses 48,
then110,1110,111100,111101,111110,and111111.

What if the horses are equally likely? We saw above that if e an equal-
length binary code for the horse numbers, each horse toots3dcode, and so the
average was 3. Is the entropy the same? In this case eaciwmarskhave a probability
of %. The entropy of the choice of horses is then:

i=8
H(x):_Z%Iog%:—log%:BbitS
i=1

Until now we have been computing the entropy of a single tdeiaBut most of
what we will use entropy for involvesequencedor a grammar, for example, we will
be computing the entropy of some sequence of wivds {wp, w1, W, ..., Wy}. One
way to do this is to have a variable that ranges over sequerfieesrds. For example
we can compute the entropy of a random variable that rangasativfinite sequences
of words of lengtm in some languagk as follows:

H (le\NZa R 7Wn) = Z p(Wf) |Og p(W][])
WleL
We could define thentropy rate (we could also think of this as thger-word
entropy) as the entropy of this sequence divided by the number of svord

1 1
SHOW) =—— > p(W)logp(W)
WleL

But to measure the true entropy of a language, we need todmms@quences
of infinite length. If we think of a language as a stochastimcpssl that produces a
sequence of words, its entropy rétéL) is defined as:

.1
_rlmnmﬁH(Wl’Wz"u aWn)

1
—lim =
n—oo N

H(L)

Z p(Wla s ,Wn) |Og p(Wla s ,Wn)
WelL

The Shannon-McMillan-Breiman theorem (Algoet and Cove88; Cover and
Thomas, 1991) states that if the language is regular inioesays (to be exact, if it is
both stationary and ergodic),

. 1
H(L) = Amo n logp(Wiws ... W)

That is, we can take a single sequence that is long enougdaihstf summing

over all possible sequences. The intuition of the ShanneMifan-Breiman theorem
is that a long enough sequence of words will contain in it mather shorter sequences,

32

Chapter 4. N-grams

STATIONARY

CROSS ENTROPY

(4.55)

(4.56)

(4.57)

and that each of these shorter sequences will reoccur imtiyet sequence according
to their probabilities.

A stochastic process is said to btionary if the probabilities it assigns to a
sequence are invariant with respect to shifts in the timexndn other words, the
probability distribution for words at timeis the same as the probability distribution
at timet+ 1. Markov models, and hendé-grams, are stationary. For example, in
a bigram,P, is dependent only o,_;. So if we shift our time index by, P is
still dependent orPy_1. But natural language is not stationary, since as we will
see in Ch. 11, the probability of upcoming words can be depeindn events that
were arbitrarily distant and time dependent. Thus ourstiedil models only give an
approximation to the correct distributions and entropfasatural language.

To summarize, by making some incorrect but convenient siyipd assump-
tions, we can compute the entropy of some stochastic prdmetzking a very long
sample of the output, and computing its average log proitabit the next section we
talk about the why and howyhywe would want to do this (i.e., for what kinds of prob-
lems would the entropy tell us something useful), &pwvto compute the probability
of a very long sequence.

4.10.1 Cross Entropy for Comparing Models

In this section we introduce tlegoss entropy; and discuss its usefulness in comparing
different probabilistic models. The cross entropy is ukefiien we don’t know the
actual probability distributiorp that generated some data. It allows us to use smme
which is a model ofp (i.e., an approximation t@. The cross-entropy ahon p is
defined by:

H(p,m) = lim = Z P(Wi, ..., Wn)logm(wi, ..., Wn)
WEL
That is we draw sequences according to the probabilityibigton p, but sum
the log of their probability according to.
Again, following the Shannon-McMillan-Breiman theoreror & stationary er-
godic process:

H(p,m) = r!iﬂgo—%logm(wlwz...Wn)

This means that, as for entropy, we can estimate the crdsspgrof a model
m on some distributiorp by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross entropy useful is that the cross enitt¢pym) is an upper
bound on the entroph (p). For any modein:

H(p) <H(p,m)

This means that we can use some simplified mod#& help estimate the true
entropy of a sequence of symbols drawn according to prabapil The more accurate
m is, the closer the cross entrop(p,m) will be to the true entropyH(p). Thus
the difference betweeH (p,m) andH(p) is a measure of how accurate a model is.
Between two modelsm andnp, the more accurate model will be the one with the

Section 4.11. Advanced: The Entropy of English and EntrogteRConstancy 33

lower cross-entropy. (The cross-entropy can never be |tvaar the true entropy, so a
model cannot err by underestimating the true entropy).

We are finally ready to see the relation between perplexitytha cross-entropy
we saw in Equation (4.56). Cross-entropy is defined in thé lias the length of the
observed word sequence goes to infinity. We will need an aqupiation to cross-
entropy, relying on a (sufficiently long) sequence of fixeagih. This approximation
to the cross-entropy of a model = P(wi|wWi_n+1...Wi—1) on & sequence of wordy
is:

(4.58) H(W) = —% logP(wiwz ... W)

PerrLEXTY Theperplexity of a modelP on a sequence of wordg is now formally defined as the
exp of this cross-entropy:

PerplexityW) = 2"W)
= P(W1W2...WN)_T%I
P(W]_Wz .. .WN)
N 1
4.59 = N A W —
(4.59) HP(VV.|W1...V\4,1)
4.11 ADVANCED: THEENTROPY OFENGLISH AND ENTROPY RATE
CONSTANCY

As we suggested in the previous section, the cross-entrbpgrme modein can be
used as an upper bound on the true entropy of some procesanise this method to
get an estimate of the true entropy of English. Why should are about the entropy
of English?

One reason is that the true entropy of English would give udid bwer bound
for all of our future experiments on probabilistic grammakeother is that we can use
the entropy values for English to help understand what pdridanguage provide the
most information (for example, is the predictability of Hisf mainly based on word
order, on semantics, on morphology, on constituency, oragrpatic cues?) This can
help us immensely in knowing where to focus our languageetiogl efforts.

There are two common methods for computing the entropy ofisingrhe first
was employed by Shannon (1951), as part of his groundbrgakink in defining the
field of information theory. His idea was to use human subjeard to construct a psy-
chological experiment that requires them to guess strifgetters; by looking at how
many guesses it takes them to guess letters correctly westiarage the probability of
the letters, and hence the entropy of the sequence.

The actual experiment is designed as follows: we presenbgauwith some
English text and ask the subject to guess the next letter. stibgcts will use their

34

Chapter 4. N-grams

(4.60)

knowledge of the language to guess the most probable letertfie next most proba-
ble next, and so on. We record the number of guesses it takélsefeubject to guess
correctly. Shannon’s insight was that the entropy of the Ibemof-guesses sequence is
the same as the entropy of English. (The intuition is thag¢igithe number-of-guesses
sequence, we could reconstruct the original text by chgasia ‘nth most probable”
letter whenever the subject toalguesses). This methodology requires the use of letter
guesses rather than word guesses (since the subject s@aét@® to do an exhaustive
search of all the possible letters!), and so Shannon cordgh&per-letter entropy

of English rather than the per-word entropy. He reportedraropy of 1.3 bits (for 27
characters (26 letters plus space)). Shannon’s estimékelis to be too low, since it
is based on a single texidfferson the Virginiathy Dumas Malone). Shannon notes
that his subjects had worse guesses (hence higher eniropiether texts (newspaper
writing, scientific work, and poetry). More recently vaitats on the Shannon experi-
ments include the use of a gambling paradigm where the dglyjetto bet on the next
letter (Cover and King, 1978; Cover and Thomas, 1991).

The second method for computing the entropy of English helpsd the single-
text problem that confounds Shannon’s results. This methad take a very good
stochastic model, train it on a very large corpus, and useassign a log-probability
to a very long sequence of English, using the Shannon-MantiBreiman theorem:

H (English < r!irrl)—% logm(wiwsa . .. Wy)

For example, Brown et al. (1992a) trained a trigram languragéel on 583 mil-
lion words of English, (293,181 different types) and usdd itompute the probability
of the entire Brown corpus (1,014,312 tokens). The traimiata include newspapers,
encyclopedias, novels, office correspondence, procegdirthe Canadian parliament,
and other miscellaneous sources.

They then computed the character-entropy of the Brown &ripy using their
word-trigram grammar to assign probabilities to the Browanpcis, considered as a
sequence of individual letters. They obtained an entrop. 85 bits per character
(where the set of characters included all the 95 printabl€W&haracters).

The average length of English written words (including §)d@s been reported
at 5.5 letters (Nadas, 1984). If this is correct, it mears the Shannon estimate of
1.3 bits per letter corresponds to a per-word perplexity4 fbr general English. The
numbers we report earlier for the WSJ experiments are Signifiy lower than this,
since the training and test set came from the same subsafipiglish. That is, those
experiments underestimate the complexity of English ésithe Wall Street Journal
looks very little like Shakespeare, for example)

A number of scholars have independently made the intrigsiiggjestion that en-
tropy rate plays a role in human communication in generaidhlom, 1990; Van Son
et al., 1998; Aylett, 1999; Genzel and Charniak, 2002; Van &ud Pols, 2003). The
idea is that people speak so as to keep the rate of informh#omg transmitted per
second roughly constant, i.e. transmitting a constant rurob bits per second, or
maintaining a constant entropy rate. Since the most efficigy of transmitting in-
formation through a channel is at a constant rate, languaeawen have evolved
for such communicative efficiency (Plotkin and Nowak, 2000here is a wide vari-

Section 4.11.

Advanced: The Entropy of English and EntrogteRConstancy 35

ety of evidence for the constant entropy rate hypothesise €ass of evidence, for
speech, shows that speakers shorten predictable wordsh@gtake less time to say
predictable words is shorter) and lengthen unpredictablelsv(Aylett, 1999; Jurafsky

et al., 2001; Aylett and Turk, 2004). In another line of resBaGenzel and Charniak
(2002, 2003) show that entropy rate constancy makes pieuolicabout the entropy of

individual sentences from a text. In particular, they shioat ft predicts that local mea-
sures of sentence entropy which ignore previous discowstext (for example the

N-gram probability of sentence), should increase with theesee number, and they
document this increase in corpora. Keller (2004) providédesnce that entropy rate
plays a role for the addressee as well, showing a correlagbmeen the entropy of a
sentence and the processing effort it causes in compreimeas measured by reading
times in eye-tracking data.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The underlying mathematics of tiNegram was first proposed by Markov (1913), who
used what are now callédarkov chains (bigrams and trigrams) to predict whether an
upcoming letter in PushkinBugene Onegiwould be a vowel or a consonant. Markov
classified 20,000 letters as V or C and computed the bigrarntrigmdm probability that

a given letter would be a vowel given the previous one or twieie. Shannon (1948)
appliedN-grams to compute approximations to English word sequenBased on
Shannon’s work, Markov models were commonly used in engingglinguistic, and
psychological work on modeling word sequences by the 1950s.

In a series of extremely influential papers starting with @kky (1956) and in-
cluding Chomsky (1957) and Miller and Chomsky (1963), Noamo@sky argued that
“finite-state Markov processes”, while a possibly usefujiarering heuristic, were in-
capable of being a complete cognitive model of human gramsai&nowledge. These
arguments led many linguists and computational linguisigriore work in statistical
modeling for decades.

The resurgence dfi-gram models came from Jelinek, Mercer, Bahl, and col-
leagues at the IBM Thomas J. Watson Research Center, infiddncShannon, and
Baker at CMU, influenced by the work of Baum and colleaguess€&hwo labs in-
dependently successfully usétdgrams in their speech recognition systems (Baker,
1990; Jelinek, 1976; Baker, 1975; Bahl et al., 1983; Jelid®90). A trigram model
was used in the IBM TANGORA speech recognition system in $i&0%, but the idea
was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of susices and was first
applied as an engineering solution to the zero-frequenalglem by Jeffreys (1948)
based on an earlier Add-K suggestion by ? (?). Problems WwéhAtdd-one algorithm
are summarized in Gale and Church (1994). The Good-Turopgridhm was first ap-
plied to the smoothing dfl-gram grammars at IBM by Katz, as cited in Nadas (1984).
Church and Gale (1991) gives a good description of the Gagdd method, as well
as the proof.Sampson (1996) also has a useful discussiomad-Guring. Jelinek
(1990) summarizes this and many other early language modeVations used in the

36

Chapter 4. N-grams

IBM language models.

A wide variety of different language modeling and smoothiechniques were
tested through the 1980’s and 1990’s, including those waudisas well as Witten-Bell
discounting (Witten and Bell, 1991), varieties of classdzhmodels (Jelinek, 1990;
Kneser and Ney, 1993; Heeman, 1999; Samuelsson and Ref%®),1and others
(Gupta et al., 1992). In the late 1990’s, Chen and Goodmaaiuymed a very influential
series of papers with a comparison of different languageatsq@hen and Goodman,
1996, 1998, 1999; Goodman, 2006). They performed a numbzarefully controlled
experiments comparing different discounting algorithiweche models, class-based
(cluster) models, and other language model parameters Sitmved the advantages
of Interpolated Kneser-Ney, which has since become oneeofrtbst popular current
methods for language modeling. These papers influencedsmwssion in this chapter,
and are recommended reading if you have further intereanigdage modeling.

As we suggested earlier in the chapter, recent researchgudge modeling has
focused on adaptation, and also on the use of sophistidatpddtic structures based
on syntactic and dialogue structure.

412 SIMMARY

This chapter introduced tié-gram, one of the oldest and most broadly useful practical
tools in language processing.

e An N-gram probability is the conditional probability of a woridgn the previous
N — 1 words. N-gram probabilities can be computed by simply counting in a
corpus and normalizing (thelaximum Likelihood Estimate) or they can be
computed by more sophisticated algorithms. The advanthgegrams is that
they take advantage of lots of rich lexical knowledge. A dismtage for some
purposes is that they are very dependent on the corpus theytraemed on.

e Smoothingalgorithms provide a better way of estimating the probgbdi N-
grams than Maximum Likelihood Estimation. Commonly-ubkdram smooth-
ing algorithms rely on lower-ordéd-gram counts vidackoff or interpolation.

¢ Both backoff and interpolation require discounting sucKiasser-Ney, Witten-
Bell andGood-Turing discounting.

¢ N-gramlanguage modelsre evaluated by separating the corpus inti@iming
setand atest set training the model on the training set, and evaluating erteist
set. Theperplexity 21 of of the language model on a test set is used to compare
language models.

Section 4.12. Summary 37

EXERCISES
4.1 Write outthe equation for trigram probability estimationqdifying Equation 4.13).

4.2 Write a program to compute unsmoothed unigrams and bigrams.

4.3 Run yourN-gram program on two different small corpora of your choigeu

might use email text or newsgroups). Now compare the statisf the two corpora.
What are the differences in the most common unigrams bettheetwvo? How about
interesting differences in bigrams?

4.4 Add an option to your program to generate random sentences.
4.5 Add an option to your program to do Good-Turing discounting.
4.6 Add an option to your program to implement Katz backoff.

4.7 Add an option to your program to compute the perplexity ofsh set.

4.8 (Advanced) Suppose someone took all the words in a senterttecardered
BaaoFworns them randomly. Write a program which take as input suddag of wordsand pro-
duces as output a guess at the original order. You will neeghtd-gram grammar
produced by youlN-gram program (on some corpus), and you will need to use the
Viterbi algorithm introduced in the next chapter. This taslsometimes callebag
BAGGENERATON generation

Auonst 4.9 The field ofauthorship attribution is concerned with discovering the author
of a particular text. Authorship attribution is importantrmany fields, including his-
tory, literature, and forensic linguistics. For example sttdler and Wallace (1964)
applied authorship identification techniques to discovieo wroteThe Federalispa-
pers. The Federalist papers were written in 1787-1788 byaklder Hamilton, John
Jay and James Madison to persuade New York to ratify the t&itates Constitution.
They were published anonymously, and as a result, althoogte ©f the 85 essays
were clearly attributable to one author or another, theamstiip of 12 were in dispute
between Hamilton and Madison. Foster (1989) applied asthipiidentification tech-
niques to suggest that W.SEsineral Elegyfor William Peter might have been written
by William Shakespeare (he turned out to be wrong on this,arej that the anony-
mous author oPrimary Colors the roman a clef about the Clinton campaign for the
American presidency, was journalist Joe Klein (Foster§)99

A standard technique for authorship attribution, first usg®losteller and Wal-
lace, is a Bayesian approach. For example, they trainedlzapilestic model of the
writing of Hamilton, and another model of the writings of Msah, and computed the
maximume-likelihood author for each of the disputed essay®re are many complex
factors that go into these models, including vocabularywsed-length, syllable struc-
ture, rhyme, grammar; see Holmes (1994) for a summary. Tgpsoach can also be
used for identifying which genre a text comes from.

One factor in many models is the use of rare words. As a sinpggeoximation
to this one factor, apply the Bayesian method to the atiobubf any particular text.

38

Chapter 4. N-grams

You will need three things: a text to test, and two potentighars or genres, with a
large on-line text sample of each. One of them should be thecoauthor. Train
a unigram language model on each of the candidate authons.ardonly going to
use thesingletonunigrams in each language model. You will compB{&|A;), the
probability of the text given author or genig, by (1) taking the language model from
A1, (2) by multiplying together the probabilities of all theigrams that only occur once
in the “unknown” text and (3) taking the geometric mean ofsthé.e., thenth root,
wheren is the number of probabilities you multiplied). Do the saroeA&;. Choose
whichever is higher. Did it produce the correct candidate?

Section 4.12. Summary 39

Algoet, P. H. and Cover, T. M. (1988). A sandwich proof of theChen, S. F. and Goodman, J. (1996). An empirical study of
Shannon-McMillan-Breiman theorenThe Annals of Proba- ~ smoothing techniques for language modelingPtaceedings
bility, 16(2), 899-909. of ACL-96 Santa Cruz, CA, pp. 310-318. ACL.

Aylett, M. and Turk, A. (2004). The smooth signal redun- chen, S. F. and Goodman, J. (1998). An empirical study of
dancy hypothesis: A functional explanation for relatidpsh smoothing techniques for language modeling. Tech. rep. TR-
between redundancy, prosodic prominence, and duration in10.gg, Computer Science Group, Harvard University, Cam-

spontaneous speechanguage and Speech7(1), 31-56. bridge, MA.
Aylett, M. P. (1999). Stochastic suprasegmentals - raiatigps Chen, S. F. and Goodman, J. (1999). An empirical study

IbetF\,Neen r;dundafr;ﬁy, Iprtosodtl_c strlugture and 53]{'::?:'6“1?[3; . of smoothing techniques for language modelinGomputer
n Proceedings of the International Congress of Phonetic Sci- ge00h and Language3(359-394).

ences (ICPhS-99%an Francisco, California.

Bacchiani, M. and Roark, B. (2003). Unsupervised Ianguagghe_n’ S.F., Seymore, K., a_nd Ro_senfeld, R. (1_998)' Topip-ad_a
model adaptation. IFEEE ICASSP-030p. 224-227. tation for language modeling using unnormalized expoaénti

L models. INEEE ICASSP-98pp. 681-684. IEEE.
Bacchiani, M., Roark, B., and Saraclar, M. (2004). Language o
model adaptation with MAP estimation and the perceptron alChomsky, N. (1956). Three models for the description of lan-
gorithm. InProceedings of HLT-NAACL-Qfp. 21-24. guage. IRI Transactions on Information Theqr(3), 113—

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A maximum 124
likelihood approach to continuous speech recognitiBfEE ~ Chomsky, N. (1957)Syntactic Structuregvlouton, The Hague.

'g(rg)rlsial;:éli)lnsoon Pattern Analysis and Machine Ime”'genceChomsky, N. (1969). Quine’s empirical assumptions. In Bavi
’)] son, D. and Hintikka, J. (Eds\Yords and objections. Essays
Baker, J. K. (1975). The DRAGON system — An overview. on the work of W. V. Quingp. 53-68. D. Reidel, Dordrecht.

IEEE Transactions on Acoustics, Speech, and Signal Precess .
ing, ASSP-28L), 24-29. Church, K. W. and Gale, W. A. (1991). A comparison of the en-

. . . hanced Good-Turing and deleted estimation methods for esti
Baker, J. K. (1975/1990). Stochastic modeling for automati - : .
speech understanding. In Waibel, A. and Lee, K.-F. (Eds.), mating probabilities of English bigramsComputer Speech

Readings in Speech Recogniti@p. 297-307. Morgan Kauf- and Languages, 19-54.
mann, Los Altos. Originally appeared 8peech Recognitipn Church, K. W., Gale, W. A., and Kruskal, J. B. (1991). Ap-

Academic Press, 1975. pendix A: the Good-Turing theorem. IBomputer Speech
Bates, R. (1997). The corrections officer: Can John Kidd save @"d LanguagdChurch and Gale, 1991), pp. 19-54.
Ulysses.Lingua Franca October. Clark, H. H. and Fox Tree, J. E. (2002). Using uh and um in

Baum, L. E. (1972). An inequality and associated maximiza- spontaneous speakingognition 84, 73-111.
tion technique in statistical estimation for probabistiinc- ¢|arkson. P. and Rosenfeld. R. (1997). Statistical lan-
tions of Markov processes. In Shisha, O. (Ethgqualities g,age modeling using the CMU-Cambridge toolkit. In
II: Proceedings of the Third Symposium on Inequalitiési- EUROSPEECH-9A0. 1, pp. 2707-2710.
versity of California, Los Angeles, pp. 1-8. Academic Press

Bellegarda, J. R. (2000). Exploiting latent semantic infation Coccaro, N. and Jurafsky, D. (1998). Towards better integra

) .) . tion of semantic predictors in statistical language madgli
in statistical language modelingProceedings of the IEEE |
89(8), 1279-1296. In ICSLP-98 Sydney, \Vol. 6, pp. 2403-2406.

Bellegarda, J. R. (1999). Speech recognition experimesitgu COVer, T. M. and King, R. C. (1978). A convergent gambling

multi-span statistical language models. IEEE ICASSP-99 estimate of the entropy of EnglistEEE Transactions on In-
pp. 717-720. IEEE. formation Theory24(4), 413-421.

Berger, A. and Miller, R. (1998). Just-in-time language ®led Cover, T. M. and Thomas, J. A. (199Blements of information
ing. InIEEE ICASSP-98Vol. Il, pp. 705-708. theory. Wiley, New York.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., LaiCJ, Demetriou, G., Atwell, E., and Souter, C. (1997). Large-
and Mercer, R. L. (1992a). An estimate of an upper bound scale lexical semantics for speech recognition support. In
for the entropy of EnglishComputational Linguisticsl8(1), EUROSPEECH-97p. 2755-2758.

31-40. . . Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Max-
Brown, P. ., Della Pietra, V. J., deSouza, P. V., Lai, J. 6d @ jmym jikelihood from incomplete data via tfieM algorithm.

Mercer, R. L. (1992b). Class-baseagyram models of natural j5,rnal of the Royal Statistical Socie89(1), 1-21.

language Computational Linguisticsl8(4), 467-479.
Bulyko, I., Ostendorf, M., and Stolcke, A. (2003). Gettingma

mileage from web text sources for conversational speech lan

guage modeling using class-dependent mixture®réceed- Foster, D. W. (1996). Primary culpriNew York50-57. Febru-

ings of HLT-NAACL-03Edmonton, Canada, Vol. 2, pp. 7-9. ary 26.

Foster, D. W. (1989).Elegy by W.S.: A Study in Attribution
Associated University Presses, Cranbury, NJ.

40 Chapter 4. N-grams

Francis, W. N. (1979). A tagged corpus — problems andlelinek, F. (1988). Address to the first workshop on the eval-
prospects. In Greenbaum, S., Leech, G., and Svartvik, J.uation of natural language processing systems. December 7,
(Eds.),Studies in English linguistics for Randolph Quipp. 1988.

192-209. Longman, London and New York. Jelinek, F. (1990). Self-organized language modeling for
Francis, W. N. and Kutera, H. (1982Frequency Analysis of ~ Speech recognition. In Waibel, A. and Lee, K.-F. (EdRgad-
English Usage Houghton Mifflin, Boston. ings in Speech Recognitiopp. 450-506. Morgan Kaufmann,

Los Altos. Originally distributed as IBM technical report i
1985.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estioratf
Markov source parameters from sparse data. In Gelsema, E. S.
and Kanal, L. N. (Eds.)Proceedings, Workshop on Pattern

Genzel, D. and Charniak, E. (2002). Entropy rate constamcy i Recognition in Practicepp. 381-397. North Holland, Ams-
text. InProceedings of ACL-02 terdam.

Genzel, D. and Charniak, E. (2003). Variation of entropy andjurafsky, D., Bell, A., Gregory, M., and Raymond, W. D.
parse trees of sentences as a function of the sentence numbe2001). Probabilistic relations between words: Evidemoenf
In EMNLP 2003 reduction in lexical production. In Bybee, J. and Hopper, P.
Gildea, D. and Hofmann, T. (1999). Topic-based lan- (Eds.),Frequency and the Emergence of Linguistic Strugture
guage models using EM. IFEEUROSPEECH-99 Bu- pp. 229-254. Benjamins, Amsterdam.
dapest, pp. 2167-2170. http://iwww.cis.upenn.edu/ dgdurafsky, D., Wooters, C., Tajchman, G., Segal, J., Stoleke
ildea/gildeahofmann99.ps. Fosler, E., and Morgan, N. (1994). The Berkeley restaurant

Godfrey, J., Holliman, E., and McDaniel, J. (1992). SWITCH- Proiect: INICSLP-94 Yokohama, Japan, pp. 2139-2142.
BOARD: Telephone speech corpus for research and devekatz, S. M. (1987). Estimation of probabilities from sparse

opment. INIEEE ICASSP-92San Francisco, pp. 517-520. data for the language model component of a speech recog-
IEEE. niser. IEEE Transactions on Acoustics, Speech, and Signal

Processing35(3), 400-401.
Keller, F. (2004). The entropy rate principle as a predictbr

Gale, W. A. and Church, K. W. (1994). What is wrong with
adding one?. In Oostdijk, N. and de Haan, P. (Ed30rpus-
based Research into Languag®. 189-198. Rodopi, Ams-
terdam.

Good, I. J. (1953). The population frequencies of species an

th timati f lati teBd trika 40, 16—
2§4es imation of popuation parametesometrika processing effort: An evaluation against eye-trackingdat
')] ~In Proceedings of the Conference on Empirical Methods in
Goodman, J. (2006). A bit of progress in language modeling: Natural Language Processingarcelona, pp. 317-324.
Extended version. Tech. rep. MSR-TR-2001-72, MaCh'm?(eIIer, F. and Lapata, M. (2003). Using the web to obtain fre-

Learning and Applied Statistics Group, Microsoft Research quencies for unseen bigram§omputational Linguistics29,
Redmond, WA. 459-484

Gupta, V., Lennig, M., and Mermelstein, P. (1992). A langtiag Kneser, R. (1996). Statistical language modeling usingria va
model for very large-vocabulary speech recognitioBom- aple context length. IHCSLP-96 Philadelphia, PA, Vol. 1,
puter Speech and Languads; 331-344. pp. 494-497.

Heeman, P. A. (1999). POS tags and decision trees for larkneser, R. and Ney, H. (1993). Improved clustering tech-
guage modeling. IEMNLP/VLC-99 College Park, MD, pp. niques for class-based statistical language modelling. In

129-137. ACL. EUROSPEECH-93p. 973-976.
Holmes, D. I. (1994). Authorship attributiorComputers and Kneser, R. and Ney, H. (1995). Improved backing-off for m-
the Humanities28, 87—106. gram language modeling. IfEEE ICASSP-95Vol. 1, pp.
181-184. IEEE.

lyer, R. M. and Ostendorf, M. (1999a). Modeling long dis- = . .
tance dependencies in language: Topic mixtures versus difucera, H. and Francis, W. N. (1967Fomputational analy-

namic cache modelEEE Transactions on Speech and Audio SIS Of present-day American EnglisBrown University Press,
Processing7. Providence, RI.

Kuhn, R. and de Mori, R. (1990). A cache-based natural lan-
guage model for speech recognitiofEEE Transactions on
Pattern Analysis and Machine Intelligenck(6), 570-583.

) Kukich, K. (1992). Techniques for automatically corregtin

lyer, R.. anq Ostendqrf, M. (]_.997). _Transformlng out-of- \\ ords in text. ACM Computing Survey@4(4), 377—439.
domain estimates to improve in-domain language models. IRuéera H. (1992). The mathematics of languageTHie Amer-
EUROSPEECH-9bp. 1975-1978. ican Heritage Dictionary of the English Languagap. xxxi—

Jeffreys, H. (1948).Theory of Probability Clarendon Press, xxxiii. Houghton Mifflin, Boston.

Oxford. 2nd edn Section 3.23. LDC (1993). LDC Catalog: CSR-I (WSJ0) Completeniver-

Jelinek, F. (1976). Continuous speech recognition byssizei sity of Pennsylvaniawww. | dc. upenn. edu/ Cat al og/
methods.Proceedings of the IEEB4(4), 532-557. LDC93S6A. ht m .

lyer, R. M. and Ostendorf, M. (1999b). Relevance weightimg f
combining multi-domain data for n-gram language modeling.
Computer Speech and Languad8(3), 267-282.

Section 4.12. Summary 41

Leech, G., Garside, R., and Bryant, M. (1994). CLAWS4: ThePalmer, M. and Finin, T. (1990). Workshop on the evaluation
tagging of the British National Corpus. ROLING-94 Ky- of natural language processing syster@@mputational Lin-
oto, pp. 622—-628. guistics 16(3), 175-181.

Lidstone, G. (1920). Note on the general case of the Bayedlotkin, J. B. and Nowak, M. A. (2000). Language evolu-
Laplace formula for inductive or a posteriori probabiitie tion and information theoryJournal of Theoretical Biology
Transactions of the Faculty of Actuarie® 182-192. 2051), 147-159.

Lindblom, B. (1990). Explaining phonetic variation: A skt Rosenfeld, R. (1996). A maximum entropy approach to adap-
of the H&H theory. In Hardcastle, W. J. and Marchal, A. tive statistical language modelinGomputer Speech and Lan-
(Eds.), Speech Production and Speech Modellipg. 403— guage 10, 187-228.

439. Kluwer Academic Publishers. Russell, S. and Norvig, P. (1995)Artificial Intelligence: A

Markov, A. A. (1913). Essai d’une recherche statistique sur Modern ApproachPrentice Hall, Englewood Cliffs, NJ.
le texte du roman “Eugene Onegin” illustrant la liaison dessampson, G. (1996)Evolutionary Language Understanding
epreuve en chain (‘Example of a statistical investigatién o Cassell, London.

the text of “Eugene Onegin” illustrating the dependence .be-SamueIsson, C. and Reichl, W. (1999). A class-based larguag

tween samples in chain’).lzvistia Imperatorskoi Akademii model for large-vocabulary speech recognition extractechf

Nauk (Bulletin de I'’Académie Impériale des Sciences de St Y o) -
Pétersbourg) 7, 153-162. English translation by Morris FEaIrEtEof speech statistics. IEEE ICASSP-99pp. 537-540.

Halle, 1956.

. . Shannon, C. E. (1948). A mathematical theory of communica-
Miller, G. A. and Chomsky, N. (1963)5 Finitary mzdélsl of lan- tion. Bell System Technical Journ&7(3), 379-423. Contin-

guage users. In Luce, R. D., Bush, R. R., an alanter, E'ued in following volume.

(Eds.), Handbook of Mathematical Psycholqgyol. II, pp. o)
419-491. John Wiley, New York. Shannon, C. E. (1951). Prediction and entropy of printed En-

) ; glish. Bell System Technical Journ&0, 50-64.

Miller, G. A. and Selfridge, J. A. (1950). Verbal context ehe)
recall of meaningful materialAmerican Journal of Psychol- Stolcke, A. (1998). Entropy-based pruning of backoff laag:
ogy, 63, 176-185. models. InProc. DARPA Broadcast News Transcription and

. Understanding Workshojransdowne, VA, pp. 270-274.
Mosteller, F. and Wallace, D. L. (1964pference and Disputed

Authorship: The FederalistSpringer-Verlag, New York. 2nd Stolclt_e, A. (2002). Srilm - an extensible language modeling
Edition appeared in 1984 and was callagplied Bayesian tookkit. In ICSLP-02 Denver, CO.
and Classical Inference Stolcke, A. and Shriberg, E. (1996). Statistical languagel-m

Nadas, A. (1984). Estimation of probabilities in the laage eling for speech disfluencies. IEEE ICASSP-96Atlanta,
model of the IBM speech recognition systeEEE Trans- GA, Vol. 1, pp. 405-408. |EEE.
actions on Acoustics, Speech, Signal Processigg), 859- Van Son, R. J. J. H., Koopmans-van Beinum, F. J., and Pols, L.
861. C. W. (1998). Efficiency as an organizing principle of natura

Nakov, P. and Hearst, M. A. (2005). A study of using search en- speech. INCSLP-9§ Sydney. -
gine page hits as a proxy for n-gram frequenciesPrioceed- Van Son, R. J. J. H. and Pols, L. C. W. (2003). How efficient
ings of RANLP-05 (Recent Advances in Natural Language IS speech?Proceedings of the Institute of Phonetic Sciences
Processing)Borovets, Bulgaria. 25,171-184.

Newell, A., Langer, S., and Hickey, M. (1998). The role of Witten, I. H. and Bell, T. C. (1991). The zero-frequency prob
natural language processing in alternative and augmeatati 'em: Estimating the probabilities of novel events in adapti
communication Natural Language Engineering(1), 1-16. text compressionlEEE Transactions on Information Theory

) 37(4), 1085-1094.
Ney, H., Essen, U., and Kneser, R. (1994). On structuring-pro

abilistic dependencies in stochastic language modelbogn- Zhou, G. and Lua, K. (1998). Word association and MI-trigger
puter Speech and Languagg: 1-38. based language modelling. @OLING/ACL-98 Montreal,

_ _ pp. 1465-1471. ACL.
Niesler, T. R., Whittaker, E. W. D., and Woodland., P. C. .)
(1998). Comparison of part-of-speech and automatically deZU: X- and Rosenfeld, R. (2001). Improving trigram langriag
rived category-based language models for speech reangniti Mmodeling with the world wide web. IEEEE ICASSP-01Salt
In IEEE ICASSP-98Vol. 1, pp. 177-180. IEEE. Lake City, UT, Vol. I, pp. 533-536.

Niesler, T. R. and Woodland, P. C. (1996). A variable-length
category-based n-gram language modelEIBE ICASSP-96
Atlanta, GA, Vol. |, pp. 164-167. IEEE.

Niesler, T. R. and Woodland, P. C. (1999). Modelling word-

pair relations in a category-based language modellEEE
ICASSP-99pp. 795-798. IEEE.

