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4 MACHINE TRANSLATION

The process of translating comprises in its essence theavgaakret
of human understanding and social communication.
Attributed to Hans-Georg Gadamer

TRANKIGHING This chapter introduces techniques foachine translation (MT), the use of
mT  computers to automate some or all of the process of tranglftom one language
to another. Translation, in its full generality, is a diffigifascinating, and intensely
human endeavor, as rich as any other area of human crea@atsider the following
passage from the end of Chapter 45 of the 18th-century ridweIStory of the Stone
also calleddream of the Red Chamhery Cao Xue Qin (Cao, 1792), transcribed in
the Mandarin dialect:

dai yu zi zai chuang shang gan nian bao chai. . .you ting jiaraef wai zhu shao xiang
ye zhe shang, yu sheng xi li, ging han tou mu, bu jue you di xikie

Fig. 24.1 shows the English translation of this passage byidDidawkes, in
sentences labeledi EE4. For ease of reading, instead of giving the Chinese, we have
shown the English glosses of each Chinese wardmALL CAPS. Wordsin blue
are Chinese words not translated into English, or Englishde/mot in the Chinese.
We have showralignment lines between words that roughly correspond in the two
languages.

Consider some of the issues involved in this translationstFihe English and
Chinese texts are very different structurally and lexicallhe four English sentences
(notice the periods in blue) correspond to one long Chinesteace. The word order
of the two texts is very different, as we can see by the mangsealignment lines in
Fig. 24.1. The English has many more words than the Chineseeacan see by the
large number of English words marked in blue. Many of thefferdinces are caused
by structural differences between the two languages. Famele, because Chinese
rarely marks verbal aspect or tense; the English transldtas additional words like
as turned tq andhad begunand Hawkes had to decide to translate Chirteseas
penetratedrather than sawas penetratingr had penetratedChinese has less articles
than English, explaining the large number of bthes. Chinese also uses far fewer
pronouns than English, so Hawkes had to insagandher in many places into the
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C1 DAIYU ALONE ON BED TOP THINK BAOCHAI

4+ As she lay there alone Daiyu's thoughts turned toBaochai .:

Cz AGAIN LISTEN-TO  WINDOW OUTSIDE BAMBOO TIP PLANTAIN LEAF OF ON-TOP RAIN SOUND SIGH DRIP

E, Then she listened to the insistent rustle of the rain on the bamboos and plantains outside her window .

03 CLEAR COILD PENE'II'RATE CUR'II'AIN

E, The coldness penetrated the curtains of her bed

C4 NOT FEELING FALL DOWN TEARS COME

I I

4 Almost without noticing it she had begun to cry

Figure 24.1 A Chinese passage froream of the Red Chamhewith the Chinese
words represented by English glossesSMALL CAPS. Alignment lines are drawn be-
tween ‘Chinese’ words and their English translations. \Wandblue are Chinese words|
not translated into English, or English words not in the ioidChinese.

English translation.

Stylistic and cultural differences are another source fiiicdity for the transla-
tor. Unlike English names, Chinese names are made up ofaregoihtent words with
meanings. Hawkes chose to use transliterati@eyy) for the names of the main
characters but to translate names of servants by their mgsu@Aroma, Skybright).
To make the image clear for English readers unfamiliar within€se bed-curtains,
Hawkes translatedha (‘curtain’) ascurtains of her bedThe phrasdamboo tip plan-
tain leaf although elegant in Chinese, where such four-charactasph are a hallmark
of literate prose, would be awkward if translated word-+faord into English, and so
Hawkes used simpligamboos and plantains

Translation of this sort clearly requires a deep and richeustdnding of the
source language and the input text, and a sophisticatet¢ paed creative command
of the target language. The problem of automatically penfog high-quality literary
translation between languages as different as Chinesegiiskiis thus far too hard to
automate completely.

However, even non-literary translations between suchlairtanguages as En-
glish and French can be difficult. Here is an English sentéoce the Hansards corpus
of Canadian parliamentary proceedings, with its Frenafstedion:

English: Following a two-year transitional period, the new Fooffst@rdinance for Min-
eral Water came into effect on April 1, 1988. Specificallycantains more stringent re-
quirements regarding quality consistency and purity gutees.

French: La nouvelle ordonnance federale sur les denrées alairestconcernant entre
autres les eaux minérales, entrée en vigueur le ler 2888 hprés une période transitoire
de deux ans. exige surtout une plus grande constance damslii® @t une garantie de la



pureté.

French gloss: THE NEW ORDINANCE FEDERAL ON THE STUFF FOOD CONCERNING
AMONG OTHERS THE WATERS MINERAL CAME INTO EFFECT THELST APRIL 1988
AFTER A PERIOD TRANSITORY OF TWO YEARS REQUIRES ABOVE ALL A LRGER
CONSISTENCY IN THE QUALITY AND A GUARANTEE OF THE PURITY

Despite the strong structural and vocabulary overlapséatMEnglish and French,
such translation, like literary translation, still has atlwith differences in word order
(e.g., the location of théollowing a two-year transitional perioghrase) and in struc-
ture (e.g., English uses the noteguirementswvhile the French uses the vedxige
‘REQUIRE).

Nonetheless, such translations are much easier, and a nahhen-literary
translation tasks can be addressed with current compnégatizodels of machine trans-
lation, including: (1) tasks for which @ugh translation is adequate, (2) tasks where
a humarpost-editor is used, and (3) tasks limited to smallblanguagedomains in

Y which fully automatic high quality translation (FAHQT) is still achievable.

TRANSLATON Information acquisition on the web is the kind of task wherewegh translation
may still be useful. Suppose you were at the market this mgrand saw some lovely
platanos(plantains, a kind of banana) at the local Caribbean grostame and you
want to know how to cook them. You go to the web, and find thefailhg recipe:

Platano en Naranja Para 6 personas
3 Platanos maduros 2 cucharadas de mantequilla derretida
1 taza de jugo (zumo) de naranja 5 cucharadas de azUcarami#anc

1/8 cucharadita de nuez moscada en polvo 1 cucharada diuralide naranja

1 cucharada de canela en polvo (opcional)

Pelar los platanos, cortarlos por la mitad y, luego, a lodar Engrasar una fuente o pirex con
margarina. Colocar los platanos y bafarlos con la mani#guerretida. En un recipiente
hondo, mezclar el jugo (zumo) de naranja con el azlcar,ipagnuez moscada y ralladura
de naranja. Verter sobre los platanos y hornear a 325 Los primeros 15 minutos, dejar los
patanos cubiertos, hornear 10 o 15 minutos méas destaplosdplatanos

An MT engine produces the following translation:

Banana in Orange For 6 people
3 mature Bananas 2 spoonfuls of mantequilla melted
1 cup of juice (juice) of orange 5 spoonfuls of brown or whitigar

1/8 teaspoon of nut moscada in dust 1 spoonful of ralladucaiafge

1 spoonful of dust cinnamon (optional)

Pelar the bananas, to cut them by half and, soon, along. Tadate a source or pirex with
margarina. To place bananas and to bathe them with manteguielted. In a deep container,
to mix the juice (juice) of orange with the sugar, jengibr@stada nut and ralladura of orange.
To spill on 325 bananas and to horneart-. The first 15 minutes, to leave bananas covered, to
hornear 10 or 15 minutes more opening bananas.

While there are still lots of confusions in this translat{@nit for bananas or plan-
tains? What exactly is the pot we should use? What@aatequillaandralladura?)
it's probably enough, perhaps after looking up one or twodsoto get a basic idea of
something to try in the kitchen with your new purchase!
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POST-EDITING

COMPUTER-AIDED
HUMAN
TRANSLATION

LOCALIZATION

SUBLANGUAGE

An MT system can also be used to speed-up the human tramsfaticess, by
producing a draft translation that is fixed up ip@st-editing phase by a human trans-
lator. Strictly speaking, systems used in this way are demgputer-aided human
translation (CAHT or CAT) rather than (fully automatic) machine trarigda. This
model of MT usage is effective especially for high volumegamnd those requiring
quick turn-around, such as the translation of software rabsforlocalizationto reach
new markets.

Weather forecasting is an example o$ablanguagedomain that can be mod-
eled completely enough to use raw MT output even without-pding. Weather
forecasts consist of phrases li€éoudy with a chance of showers today and Thursday
or Outlook for Friday: Sunny This domain has a limited vocabulary and only a few
basic phrase types. Ambiguity is rare, and the senses ofgaoibs words are easily
disambiguated based on local context, using word classesemantic features such
aSWEEKDAY, PLACE, or TIME POINT. Other domains that are sublanguage-like in-
clude equipment maintenance manuals, air travel quepesjatment scheduling, and
restaurant recommendations.

Applications for machine translation can also be charadiby the numberand
direction of the translations. Localization tasks likengktions of computer manuals
require one-to-many translation (from English into manyglaages). One-to-many
translation is also needed for non-English speakers arthnavorld to access web
information in English. Conversely, many-to-one trariska(into English) is relevant
for anglophone readers who need the gist of web contentanritt other languages.
Many-to-many translation is relevant for environments like European Union, where
eleven official languages need to be intertranslated.

Before we turn to MT systems, we begin in section 24.1 by surizing key dif-
ferences among languages. The three classic models fog Bbirare then presented
in Sec. 24.2: thelirect, transfer, andinterlingua approaches. We then investigate in
detail moderrstatistical MT in Secs. 24.3-24.8, finishing in Sec. 24.9 with a discus-
sion ofevaluation.

24.1 \HY IS MACHINE TRANSLATION SO HARD?

UNIVERSAL

We began this chapter with some of the issues that made ittbaranslateThe Story

of the Stondrom Chinese to English. In this section we look in more dethbut
what makes translation difficult. We’ll discuss what malkegguages similar or differ-
ent, includingsystematicdifferences that we can model in a general way, as well as
idiosyncratic and lexical differences that must be dealt with one by one.

24.1.1 Typology

When you accidentally pick up a radio program in some foréagguage it seems like
chaos, completely unlike the familiar languages of yourgday life. But there are
patterns in this chaos, and indeed, some aspects of hungrelge seem to heniver-
sal, holding true for every language. Many universals arisenftbe functional role of
language as a communicative system by humans. Every laagitagxample, seems
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TYPOLOGY

ISOLATING

POLYSYNTHETIC

AGGLUTINATIVE
FUSION

SVO

Sov
VSO

(24.1)

HEAD-MARKING

(24.2)

to have words for referring to people, for talking about wormaen, and children, eat-
ing and drinking, for being polite or not. Other universaks more subtle; for example
Ch. 5 mentioned that every language seems to have nouns géhyd ve

Even when languages differ, these differences often hastesmtic structure.
The study of systematic cross-linguistic similarities aiifterences is calletypology
(Croft (1990), Comrie (1989)). This section sketches soppelbgical facts about
crosslinguistic similarity and difference.

Morphologically, languages are often characterized along two dimensions of
variation. The first is the number of morphemes per word, irapfrom isolating
languages like Viethamese and Cantonese, in which eachgeoretrally has one mor-
pheme, tgolysynthetic languages like Siberian Yupik (“Eskimo”), in which a single
word may have very many morphemes, corresponding to a wkatemsce in English.
The second dimension is the degree to which morphemes angeségple, ranging
from agglutinative languages like Turkish (discussed in Ch. 3), in which monpae
have relatively clean boundaries, fission languages like Russian, in which a single
affix may conflate multiple morphemes, likemin the wordstolom (table SG-INSTR-
DEcL1) which fuses the distinct morphological categories instental, singular, and
first declension.

Syntactically, languages are perhaps most saliently different in thechvesid
order of verbs, subjects, and objects in simple declaralmeses. German, French,
English, and Mandarin, for example, are 8VO (Subject-Verb-Object) languages,
meaning that the verb tends to come between the subject ggxt.ddindi and Japanese,
by contrast, ar&0OV languages, meaning that the verb tends to come at the endiof ba
clauses, while Irish, Arabic, and Biblical Hebrew &80 languages. Two languages
that share their basic word-order type often have othelaiities. For exampl&VO
languages generally hapeepositionswhile SOV languages generally hapestposi-
tions.

For example in the following SVO English sentence, the \a&tbresis followed
by its argument VHistening to musicthe verblisteningis followed by its argument
PPto musi¢ and the prepositioto is followed by its argumennusic By contrast, in
the Japanese example which follows, each of these orddsmgsersed; both verbs
areprecededy their arguments, and the postposition follows its arguime

English: He adores listening to music
Japanese:kare ha ongaku wo kiku no ga daisuki desu
he music to listening adores

Another important dimension of typological variation hasib withargument
structure andlinking of predicates with their arguments, such as the differemee b
tween head-marking and dependent-marking languages (Nichols, 1986). Head-
marking languages tend to mark the relation between the &eddts dependents on
the head. Dependent-marking languages tend to mark thioretan the non-head.
Hungarian, for example, marks the possessive relation avithffix (A) on the head
noun (H), where English marks it on the (non-head) possessor

English:  the man®'s Hhouse
Hungarian: az ember Hhazfa
the man house-his
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(24.3)

VERB-FRAMED

SATELLITE-FRAMED

(24.4)

(24.5)

PRO-DROP

REFERENTIAL
DENSITY

COLD
HOT

Typological variation in linking can also relate to how trenceptual properties of an
event are mapped onto specific words. Talmy (1985) and (18&&Q that languages
can be characterized by whether direction of motion and mapinmotion are marked
on the verb or on the “satellites”: particles, prepositigptaases, or adverbial phrases.
For example a bottle floating out of a cave would be describeHriglish with the
direction marked on the particteut, while in Spanish the direction would be marked
on the verb:

English: The bottle floated out.

Spanish: La botella sali6 flotanda
The bottle exited floating.

Verb-framed languages mark the direction of motion on the verb (leavirgg t
satellites to mark the manner of motion), like Sparaskrcarse€approach’,alcanzar
‘reach’, entrar ‘enter’, salir ‘exit’ Satellite-framed languages mark the direction of
motion on the satellite (leaving the verb to mark the manrienation), like English
crawl out float off jump downwalk over tgrun after. Languages like Japanese, Tamil,
and the many languages in the Romance, Semitic, and Mayguodges families, are
verb-framed; Chinese as well as non-Romance Indo-Eurdpagnages like English,
Swedish, Russian, Hindi, and Farsi, are satellite-frariatify, 1991; Slobin, 1996).

Finally, languages vary along a typological dimensiontezldo the things they
can omit. Many languages require that we use an explicitguronvhen talking about a
referent that is given in the discourse. In other langudyasever, we can sometimes
omit pronouns altogether as the following examples fromn&teand Chinese show,
using thed-notation introduced in Ch. 20:

[El jefe] dio con un libro.0; Mostr6 a un descifrador ambulante.
[The bossjcame upon a booKHe] showed it to a wandering decoder.

CHINESE EXAMPLE

Languages which can omit pronouns in these ways are cpliedirop lan-
guages. Even among the pro-drop languages, their are mdifker@nces frequencies
of omission. Japanese and Chinese, for example, tend tofammitore than Spanish.
We refer to this dimension asferential density; languages which tend to use more
pronouns are more referentially dense than those that use meoos. Referentially
sparse languages, like Chinese or Japanese, that reqgiinedher to do more inferen-
tial work to recover antecedents are caltadd languages. Languages that are more
explicit and make it easier for the hearer are calietlanguages. (Bickel, 2003)

Each typological dimension can cause problems when tramglaetween lan-
guages that differ along them. Obviously translating frovi©Sanguages like English
to SOV languages like Japanese requires huge structurdenéngs, since all the con-
stituents are at different places in the sentence. Trangl&bm a satellite-framed to
a verb-framed language, or from a head-marking to a depémdarking language,
requires changes to sentence structure and constraintoahchioice. Languages

1 The termshotandcold are borrowed from Marshall McLuhan’s (1964) distinctiorivoeen hot media like
movies, which fill in many details for the viewer, versus coiddia like comics, which require the reader to
do more inferential work to fill out the representation.
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with extensive pro-drop, like Chinese or Japanese, cauge fmoblems for translation
into non-pro-drop languages like English, since each zagotb be identified and the
anaphor recovered.

24.1.2 Other Structural Divergences

Many structural divergences between languages are basgganogical differences.
Others, however, are simply idiosyncratic differences #ra characteristic of partic-
ular languages or language pairs. For example in Englistutimearked order in a
noun-phrase has adjectives precede nouns, but in Frenc®pamish adjectives gener-
ally follow nouns.?

Spanish bruja verde French maison bleue
witch green house blue
English “green witch” “blue house”

Chinese relative clauses are structured very differehdly English relative clauses,
making translation of long Chinese sentences very complex.

Language-specific constructions abound. English, for @@nhas an idiosyn-
cratic syntactic construction involving the wotfterethat is often used to introduce a
new scene in a story, as there burst into the room three men with gui® give an
idea of how trivial, yet crucial, these differences can hak of dates. Dates not only
appear in various formats — typically DD/MM/YY in British Etish, MM/DD/YY
in American English, and YYMMDD in Japanese—but the calesdaemselves may
also differ. Dates in Japanese, for example, are oftenveltt the start of the current
Emperor’s reign rather than to the start of the Christian Era

24.1.3 Lexical Divergences

Lexical divergences also cause huge difficulties in trdimsia We saw in Ch. 19, for
example, that the English source language wmadscould appear in Spanish as the
fish lubina or the instrumenbajo. Thus translation often requires solving the exact
same problems as word sense disambiguation, and the tws digddlosely linked.

In English the wordbassis homonymous; the two senses of the word are not
closely related semantically, and so it is natural that wald/dave to disambiguate in
order to translate. Even in cases of polysemy, however, tem dfave to disambiguate
if the target language doesn’t have the exact same kind gépoly. The English word
know for example, is polysemous; it can refer to knowing of a facproposition [
know that snow is whi)eor familiarity with a person or locatior know Jon Stewart
It turns out that translating these different senses requising distinct French verbs,
including the verbgonndtre, andsavoir. Savoiris generally used with sentential
complements to indicate knowledge or mental representafi@a fact or proposition,
or verbal complements to indicate knowledge of how to do sbmg (e.g., WordNet
2.0 senses #1, #2, #3Jonndtre is generally used with NP complements to indicate fa-

2 As always, there are exceptions to this generalizationh sisgalore in English andgros in French;
furthermore in French some adjectives can appear beforoire with a different meaningpute mauvaise
‘bad road, badly-paved road’ versoeuvaise routénrong road’ (Waugh, 1976).
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miliarity or acquaintance with a people, entities, or lémas (e.g., WordNet 2.0 senses
#4, #7). Similar distinctions occur in German, Chinese, mathy other languages:

(24.7)  English: 1 know he just bought a book.
(24.8)  French: Je sais qu'il vient d’acheter un livre.

(24.9)  English: | know John.
(24.10)  French: Je connais Jean.

The savoir/conndtre distinction corresponds to different groups of WordNet
senses. Sometimes, however, a target language will maletiaction that is not even
recognized in fine-grained dictionaries. German, for edamnyses two distinct words
for what in English would be called wall: Wandfor walls inside a building, and
Mauer, for walls outside a building. Similarly, where English agbe wordbrother
for any male sibling, both Japanese and Chinese, havedtistords forolder brother
andyounger brothe(Chinesegegeanddidi, respectively).

In addition to these distinctions, lexical divergences bargrammatical. For
example, a word may translate best to a different part-eesp in the target language.
Many English sentences involving the vdilte must be translated into German using
the adverbialgern; thusshe likes to singnaps tosie singt gerngSHE SINGS LIk-
INGLY).

In translation, we can think of sense disambiguation as d &frspecification
we have to make a vague word likaowor bassmore specific in the target language.
This kind of specification is also quite common with grammratdifferences. Some-
times one language places more grammatical constraint®ohahoice than another.
French and Spanish, for example, marks gender on adjectwesn English transla-
tion into French requires specifying adjective gender. IEhglistinguishes gender in
pronouns where Mandarin does not; thus translating a feérdon singular pronoun
ta from Mandarin to EnglishHg, she or it) requires deciding who the original referent
was. In Japanese, because there is no single word,ftire translator must choose
betweeriru or aru, based on whether the subject is animate or not.

The way that languages differ in lexically dividing up coptigal space may be
more complex than this one-to-many translation problemdileg to many-to-many
mappings. For example Fig. 24.2 summarizes some of the exitipk discussed by
Hutchins and Somers (1992) in relating Englisty, foot andpaw;, to the Frencliambe,
pied, patte etc.

LEXICAL GAP Further, one language may havéeaical gap, where no word or phrase, short
of an explanatory footnote, can express the meaning of a imdite other language.
For example, Japanese does not have a worgrigacy, and English does not have
a word for Japanesayakokoor Chinesexiao (we make do with the awkward phrase
filial piety for both).

24.2 (Q.ASSICAL MT & THE VAUQUOIS TRIANGLE

The next few sections introduce the classical pre-stagistirchitectures for machine
translation. Real systems tend to involve combinationderhents from these three
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Figure 24.2 The complex overlap between Englikg, foot, etc, and various French
translations likgpattediscussed by Hutchins and Somers (1992) .

architectures; thus each is best thought of as a point ingoritiimic design space
rather than as an actual algorithm.

In direct translation, we proceed word-by-word through the souroguage
text, translating each word as we go. Direct translatiors askarge bilingual dictio-
nary, each of whose entries is a small program with the jobamfsating one word. In
transfer approaches, we first parse the input text, and then apply toleansform the
source language parse structure into a target language gtausture. We then gener-
ate the target language sentence from the parse structuirgetlingua approaches,
we analyze the source language text into some abstract nge@gresentation, called
aninterlingua. We then generate into the target language from this ingukl repre-
sentation.

VAUQUOIS TRIANGLE A common way to visualize these three approaches is Vatlquois triangle
shown in Fig. 24.3. The triangle shows the increasing deptnalysis required (on
both the analysis and generation end) as we move from thetdipproach through
transfer approaches, to interlingual approaches. In iaddiit shows the decreasing
amount of transfer knowledge needed as we move up the teafigm huge amounts
of transfer at the direct level (almost all knowledge is &f@n knowledge for each
word) through transfer (transfer rules only for parse treethematic roles) through
interlingua (no specific transfer knowledge).

In the next sections we’ll see how these algorithms addresse of the four
translation examples shown in Fig. 24.4

24.2.1 Direct Translation

TransiRiST - In direct translation, we proceed word-by-word through the source language text,
translating each word as we go. We make use of no intermestraietures, except for
shallow morphological analysis; each source word is diyenapped onto some target
word. Direct translation is thus based on a large bilingigi@hary; each entry in the
dictionary can be viewed as a small program whose job is tskage one word. After
the words are translated, simple reordering rules can afglyexample for moving
adjectives after nouns when translating from English toEhne

The guiding intuition of the direct approach is that we ttatesby incrementally



10 Chapter 24. Machine Translation
Conceptual Conceptual
Analysis Generation
Semantic Semantic
Shallow Structure Structure Semantic
Semantic Generation
Analysis
. Syntactic
Parsing Generation
Morphological Morphological
Analysis Generation
Source Language Text Target Language Text
Figure 24.3 The Vauquois triangle.

English Mary didn't slap the green witch

= Spanish| Maria no di6 una bofetada a la bruja verde
Mary not gave a  slap to the witch green
English The green witch is at home this week

= German | Diese Woche ist die grine Hexe zu Hause.
this week is the green witch at house

English He adores listening to music
= Japanesgkare ha ongaku wo kiku no ga daisuki desu
he music to listening adores

Chinese chenglong dao xiang gang qu
Jackie Chanto  Hong Kong go

= English | Jackie Chan went to Hong Kong

Figure 24.4 Example sentences used throughout the chapter.

transforming the source language text into a target language text. Whdeptire
direct approach is no longer used, this transformationiaition underlies both modern
commercial systems like Systran and modern research sy&@sed on statistical MT.

orphological local morphological
Source language text reordering generation Target language text

Figure 24.5 Direct machine translation. The major component, inditéte size here,
is the bilingual dictionary.

lexical transfer using
bilingual dictionary

Let’s look at a simplified direct system on our first examptanslating from
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Input: Mary didn’t slap the green witch
After 1: Morphology Mary DO-PAST not slap the green witch
After 2: Lexical Transfer Maria PAST no dar una bofetada adede brujg
After 3: Local reordering Maria no dar PAST una bofetada arlgebverde
After 4. Morphology Maria no di6é una bofetada a la bruja erd

Figure 24.6  An example of processing in a direct system
English into Spanish:
(24.11)  Mary didn't slap the green witch

Maria no did una bofetadaa la bruja verde
Mary not gave a  slap to the witch green

The four steps outlined in Fig. 24.5 would proceed as show#ign24.6.

Step 2 presumes that the bilingual dictionary has the pldasena bofetada
a as the Spanish translation of Englislap. The local reordering step 3 would need
to switch the adjective-noun ordering frogreen witchto bruja verde And some
combination of ordering rules and the dictionary would dedéh the negation and
past tense in Englistiidn’t. These dictionary entries can be quite complex; a sample
dictionary entry from an early direct English-Russian egsis shown in Fig. 24.7.

function DIRECT_-TRANSLATE_.MUCH/MANY (word) returns Russian translation

if preceding word ishowreturn skol’ko
else ifpreceding word isasreturn stol’ko zhe
else ifword is much
if preceding word isveryreturn nil
else iffollowing word is a nourreturn mnogo
else /* word is many */
if preceding word is a preposition and following word is a neetarn mnogii
else return mnogo

Figure 24.7 A procedure for translatinghuchand manyinto Russian, adapted froni
Hutchins’ (1986, pg. 133) discussion of Panov 1960. Notestirélarity to decision list
algorithms for word sense disambiguation.

While the direct approach can deal with our simple Spanistmgte, and can
handle single-word reorderings, it has no parsing compisrandeed any knowledge
about phrasing or grammatical structure in the source getdanguage. It thus cannot
reliably handle longer-distance reorderings, or thoselirimg phrases or larger struc-
tures. This can happen even in languages very similar toi#ndike German, where
adverbs likeheute(‘today’) occur in different places, and the subject (edig, grine
Hex@ can occur after the main verb, as shown in Fig. 24.8.

Similar kinds of reorderings happen between Chinese (WwheaePPs often oc-
cur preverbally) and English (where goal PPs must occuivpdstlly), as shown in
Fig. 24.9.
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(24.12)

CONTRASTIVE
KNOWLEDGE

TRANSFER MODEL

\The green witch\ is\at home\ \this weel{

| Diese Woche]ist die griine Hexe| zu Hause]|

Figure 24.8 Complex reorderings necessary when translating from Emgti German.
German often puts adverbs in initial position that Englighuld more naturally put later.
German tensed verbs often occur in second position in theses causing the subject
and verb to be inverted.

| cheng long| |dao xiang gang | qu

| Jackie Chan |went [to Hong Kong |

Figure 24.9 Chinese goal PPs often occur preverbally, unlike in English

Finally, even more complex reorderings occur when we tedadtom SVO to
SOV languages, as we see in the English-Japanese exampl&dmada and Knight
(2002):
He adores listening to music

kare ha ongaku wo kiku no ga daisuki desu
he music to listening adores

These three examples suggest that the direct approachfiscioged on individ-
ual words, and that in order to deal with real examples we#adto add phrasal and
structural knowledge into our MT models. We’'ll flesh out timsuition in the next
section.

24.2.2 Transfer

As Sec. 24.1 illustrated, languages differ systematidallstructural ways. One strat-
egy for doing MT is to translate by a process of overcomingetdifferences, altering
the structure of the input to make it conform to the rules eftdrget language. This
can be done by applyingpntrastive knowledge that is, knowledge about the differ-
ences between the two languages. Systems that use theggteat said to be based
on thetransfer model.

The transfer model presupposes a parse of the source lanqratyis followed
by a generation phase to actually create the output sentefwes, on this model,
MT involves three phasesinalysis transfer, andgeneration where transfer bridges
the gap between the output of the source language parseharndput to the target
language generator.

It is worth noting that a parse for MT may differ from parseguieed for other
purposes. For example, suppose we need to tranklatesaw the girl with the binoc-
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SYNTACTIC

ularsinto French. The parser does not need to bother to figure oetterthe preposi-
tional phrase attaches, because both possibilities lethe tsame French sentence.

Once we have parsed the source language, we'll need rulggftactic transfer
andlexical transfer. The syntactic transfer rules will tell us how to modify treusce
parse tree to resemble the target parse tree.

Nominal = Nominal
Adj Noun Noun Adj

Figure 24.10 A simple transformation that reorders adjectives and nouns

Figure 24.10 gives an intuition for simple cases like adiyeehoun reordering;
we transform one parse tree, suitable for describing aniginghrase, into another
parse tree, suitable for describing a Spanish sentenceseEletactic transforma-
tions are operations that map from one tree structure to another.

TRANSFORMATIONS ; ) .

The transfer approach and this rule can be applied to our jgedviary did not
slap the green witchBesides this transformation rule, we’ll need to assumettia
morphological processing figures out tiiédn't is composed oflo-PASTplusnot, and
that the parser attaches the PAST feature onto the VP. Udxégesfer, via lookup in
the bilingual dictionary, will then remowveo, changenotto no, and turnslapinto the
phrasedar una bofetada awith a slight rearrangement of the parse tree, as suggested
in Fig. 24.11.

VP[+PAST] = VP[+PAST] = VP[+PAST]
/\
Neg VP Neg VP
| | Neg VP
noty/ NP not \//\Np |
| no
slap DT  Nominal slap DT/mninal
| Pl L~ \Y NP PP
the Adj Noun the Noun Adj | N N
L | | dar DT NN |y NP
green witch witch green | | |
una bofetada 3 pT  Nominal
| SN
la Noun Adj
| |
bruja verde

Figure 24.11 A further sketch of the transfer approach.

For translating from SVO languages like English to SOV lzamggs like Japanese,
we’ll need even more complex transformations, for movirearb to the end, chang-
ing prepositions into postpositions, and so on. An examfileeoresult of such rules is
shown in Fig. 24.12. An informal sketch of some transfersigeshown in Fig. 24.13.

Transfer systems can be based on richer structures thgnjessyntactic parses.
For example a transfer based system for translating Chindssglish might have rules
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vB VB
/N Reorder /N
PriP VB1 B2 F'PF' B2 VB1
| » |
He adores He adores
\iB TO 10 \TB
listening J\ /\ listening
to music music t|o
Figure 24.12 PLACEHOLDER FIGURE. The result of syntactic transformatdrom
English (SVO) to Japanese (SOV) for the sentdreeadores listening to musi&are ha
ongaku wo kiku no ga daisuki de3is transform would require rules for moving verhs
after their NP and VP complements, and changing prepositmpostpositions.

SEMANTIC
TRANSFER

English to Spanish: |

|
| 1.] NP — Adjective; Nournp = NP — Nourp Adjective; |
| Chinese to English: |
2. | VP — PP[+Goal] V = VP — V PP[+Goal]
English to Japanese:
3. VP — V NP = VP - NPV
4, PP— P NP = PP— NP P
5. NP — NP; Rel. Clausge = NP — Rel. Clause NPy
Figure 24.13 An informal description of some transformations.

to deal with the fact shown in Fig. 24.9 that in Chinese PPsfithéhe semantic role
GOAL (like to the storen | went to the storgtend to appear before the verb, while in
English these goal PPs must appear after the verb. In ordmriltba transformation
to deal with this and related PP ordering differences, thregaf the Chinese must
including thematic structure, so as to distinguBstNEFACTIVE PPs (which must oc-
cur before the verb) frormIRECTION andLOCATIVE PPs (which preferentially occur
before the verb) fronRECIPIENT PPs (which occur after) (Li and Thompson, 1981).
We discussed how to do this kind of semantic role labelinghnI®. Using semantic
roles in this way is generally calleskmantic transfer, a simple such transformation
is shown in Fig. 24.13.

In addition to syntactic transformations, transfer-basedems need to have lex-
ical transfer rules. Lexical transfer is generally base@dilingual dictionary, just as
for direct MT. The dictionary itself can also be used to dedhvproblems of lexi-
cal ambiguity. For example the English wdrdmehas many possible translations in
German, includinghach Haus€in the sense ofjoing homg Heim (in the sense of a
home gamg Heimat(in the sense diomelangdhome countryor spiritual homé, and
zu Hauseg(in the sense of beingt home¢. In this case, the phrasg homeis very
likely to be translatedu Hauseand so the bilingual dictionary can list this translation
idiomatically.
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Many cases of lexical transfer are too complex to deal witghavphrasal dictio-
nary. In these cases transfer systems can do disambigudatimyg the source language
analysis, by applying the sense disambiguation technigi€. 19.

24.2.3 Combining direct and tranfer approaches in classic M

Although the transfer metaphor offers the ability to deahwiore complex source
language phenomena than the direct approach, it turns euwithple SVO— SOV
rules we've described above are not sufficient. In practieeneed messy rules which
combine rich lexical knowledge of both languages with sgtitaand semantic features.
We briefly saw an example of such a rule for changilag to dar una bofetada a
For this reason, commercial MT systems tend to be combimatid the direct

and transfer approaches, using rich bilingual dictiorsariit also using taggers and
parsers. The Systran system, for example, as describeddhids and Somers (1992),
Senellart et al. (2001), has three components. First islboshanalysisstage, includ-
ing:

e morphological analysis and part of speech tagging

e chunking of NPs, PPs, and larger phrases

¢ shallow dependency parsing (subjects, passives, headiensy

Next is atransfer phase, including:

o translation of idioms,
e word sense disambiguation
e assigning prepositions based on governing verbs

Finally, in thesynthesisstage, the system:

e applies arich bilingual dictionary to do lexical transtati
e deals with reorderings
e performs morphological generation

Thus like the direct system, the Systran system relies fatnaiiits processing
on the bilingual dictionary, which has lexical, syntactind semantic knowledge. Also
like a direct system, Systran does reordering in a postgasing step. But like a
transfer system, many of the steps are informed by syntaaticshallow semantic
processing of the source language.

24.2.4 The Interlingua Idea: Using Meaning

One problem with the transfer model is that it requires atistset of transfer rules
for each pair of languages. This is clearly suboptimal fanstation systems employed
in many-to-many multilingual environments like the EurapdJnion.

This suggests a different perspective on the nature oflatms. Instead of di-
rectly transforming the words of the source language sertamo the target language,
the interlingua intuition is to treat translation as a psxef extracting the meaning
of the input and then expressing that meaning in the targgulage. If this could be
done, an MT system could do without contrastive knowledgexehy relying on the
same syntactic and semantic rules used by a standard etierpnd generator for the
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EVENT SLAPPING
AGENT MARY
TENSE PAST

POLARITY NEGATIVE

WITCH

THEME DEFINITENESS DEF

ATTRIBUTES HAS-COLOR GREEN]

Figure 24.14 Interlingual representation dary did not slap the green witch

language. The amount of knowledge needed would then be giropal to the number
of languages the system handles, rather than to the square.

This scheme presupposes the existence of a meaning refatésgrorinterlin-

INTERLINGUA  gUa, in a language-independent canonical form, like the seimagpresentations we
saw in Ch. 16. The idea is for the interlingua to represendetitences that mean the
“same” thing in the same way, regardless of the languagetthppen to be in. Trans-
lation in this model proceeds by performing a deep semanétyais on the input from
language X into the interlingual representation and gdimgrérom the interlingua to
language Y.

What kind of representation scheme can we use as an inteafth@ he pred-
icate calculus, or a variant such as Minimal Recursion séicgris one possibility.
Semantic decomposition into some kind of atomic semantiifives is another. We
will illustrate a third common approach, a simple eventdoagpresentation, in which
events are linked to their arguments via a small fixed setashtitic roles. Whether we
use logics or other representations of events, we’'ll nesgéaify temporal and aspec-
tual properties of the events, and we'll also need to reptesEn-eventive relationships
between entities, such as thas-colorrelation betweemreenandwitch. Fig. 24.14
shows a possible interlingual representationMiary did not slap the green witchis a
unification-style feature structure.

We can create these interlingual representation from thecedanguage text
using thesemantic analyzertechniques of Ch. 17 and Ch. 19; using a semantic role
labeler to discover theGENT relation betweeary and theslapevent, or theHEME
relation between theritchand theslapevent. We would also need to do disambiguation
of the noun-modifier relation to recognize that the relattip betweeigreenandwitch
is thehas-colormrelation, and we’ll need to discover that this event has tiegpolarity
(from the worddidn’t). The interlingua thus requires more analysis work than the
transfer model, which only required syntactic parsing (onast shallow thematic role
labeling). But generation can now proceed directly fromittierlingua with no need
for syntactic transformations.

In addition to doing without syntactic transformationse tinterlingual system
does without lexical transfer rules. Recall our earlierigpeon of whether to translate
knowinto French asavoiror conndtre. Most of the processing involved in making
this decision is not specific to the goal of translating interfeh; German, Spanish, and
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Chinese all make similar distinctions, and furthermoredisambiguation oknowinto
concepts such asAVE-A-PROPOSITIONIN-MEMORY andBE-ACQUAINTED-WITH-
ENTITY is also important for other NLU applications that requirertkgenses. Thus
by using such concepts in an interlingua, a larger part otrdueslation process can
be done with general language processing techniques andlespdnd the processing
specific to the English-to-French translation task can imeiehted or at least reduced,
as suggested in Fig. 24.3.

The interlingual model has its own problems. For examplegriter to trans-
late from Japanese to Chinese the universal interlingua maside concepts such
aSELDER-BROTHER and YOUNGER-BROTHER Using these same concepts translat-
ing from German-to-English would then require large amsufitunnecessary disam-
biguation. Furthermore, doing the extra work involved by ititerlingua commitment
requires exhaustive analysis of the semantics of the dommaihformalization into
an ontology. Generally this is only possible in relativeijngle domains based on a
database model, as in the air travel, hotel reservatioestaurant recommendation do-
mains, where the database definition determines the pessilities and relations. For
these reasons, interlingual systems are generally ontyinsgiblanguage domains.

24.3 SATISTICAL MT

The three classic architectures for MT (direct, transfad aterlingua) all provide
answers to the questions of what representations to use hatsteps to perform to
translate. But there is another way to approach the probféramslation: to focus on
the result, not the process. Taking this perspective, ¢tet'ssider what it means for a
sentence to be a translation of some other sentence.

This is an issue to which philosophers of translation haverga lot of thought.
The consensus seems to be, sadly, that it is impossible éntarsce in one language to
be atranslation of a sentence in other, strictly speakingekample, one cannot really
translate Hebrewadonai roi (‘the Lord is my shepherd’) into the language of a culture
that has no sheep. On the one hand, we can write somethinig ttiagr in the target
language, at some cost in fidelity to the original, somettikegthe Lord will look after
me On the other hand, we can be faithful to the original, at tbst of producing
something obscure to the target language readers, peikapisd Lord is for me like
somebody who looks after animals with cotton-like hafis another example, if we
translate the Japanese phrageaku hansei shite orimasaswe apologizewe are not
being faithful to the meaning of the original, but if we praduve are deeply reflecting
(on our past behavior, and what we did wrong, and how to avbé& groblem next
time), then our output is unclear or awkward. Problems such ag #uése not only for
culture-specific concepts, but whenever one language usesaghor, a construction,
a word, or a tense without an exact parallel in the other laggu

So, true translation, which is both faithful to the sourceglaage and natural
as an utterance in the target language, is sometimes inlpbms4f you are going to
go ahead and produce a translation anyway, you have to comg®o This is exactly
what translators do in practice: they produce translatibasdo tolerably well on both
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criteria.

This provides us with a hint for how to do MT. We can model thalgd transla-
tion as the production of an output that maximizes some Vialoetion that represents
the importance of both faithfulness and fluency. Statisiit® is the name for a class
of approaches that do just this, by building probabilistadals of faithfulness and flu-
ency, and then combining these models to choose the mosilgmtransiation. If we
chose the product of faithfulness and fluency as our qualtyin) we could model the
translation from a source language sente®tea target language sentenceas:

best-translatiofi = argma faithfulness(T,S) fluency(T)

This intuitive equation clearly resembles the Bayesiaisy channel model
we've seen for speech recognitionin Ch. 9. Let's make théogyaerfect and formal-
ize the noisy channel model for statistical machine trdimsia

First of all, for the rest of this chapter, we’'ll assume we @amslating from a
foreign language sentenée= fq, f,, ..., fy to English. For some examples we'll use
French as the foreign language, and for others Spanish nBagtdh case we are trans-
lating into English (although of course the statistical model also works fangtating
out of English). In a probabilistic model, the best Englielmtenceé =e,6,...,8
is the one whose probability(E|F) is the highest. As is usual in the noisy channel
model, we can rewrite this via Bayes rule:

E = argmaxP(E|F)
P(FIE)P(E)
P(F)
argmaxP(F|E)P(E)
We can ignore the denominate(F ) inside the argmax since we are choosing the best
English sentence for a fixed foreign senteficeand hencé’(F) is a constant. The

resulting noisy channel equation shows that we need two ooets: aranslation
TRANSLATION - model P(F|E), and alanguage modelP(E).

= argmax

(24.13)

LANGUAGE MODEL translation modelanguage model
R —— ~
(24.14) E= argmax  P(F|E) P(E)
EcEnglish

Notice that applying the noisy channel model to machinestedion requires
that we think of things backwards, as shown in Fig. 24.15. Vé¢gmd that the foreign
(source language) inpBtwe must translate is a corrupted version of some English (tar
get language) sentenée and that our task is to discover the hidden (target language
sentencé that generated our observation sentefce

The noisy channel model of statistical MT thus requiresghtemponents to
translate from a French senteriegéo an English sentende:

e A language modeko computeP(E)
e A translation model to computeP(F|E)
e A decoder, which is givenF and produces the most probakle

Of these three components, we have already introducedrtgadge moddP(E)
in Ch. 4. Statistical MT systems are based on the silrggam language models as
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GENERATIVE DIRECTION

NOISY CHANNEL
“CHANNEL SOURCE E” “CHANNEL OUTPUT F”
P(FIE)

P(E) |::> E: Mary did not slap the green witch |::> /\\/ |::> F: Maria no di6 una bofetada a la bruja verde

“SOURCE LANGUAGE SENTENCE F”

TRANSLATION
MODEL P(F|E)

BEST TARGET LANGUAGE SENTENCE E

LANGUAGE
ARGMAX <::|‘ MODEL P(E)

@l DECODING DIRECTION

Figure 24.15 The noisy channel model of statistical MT. If we are trarisa& source
language French to a target language English, we have tio ¢fiflsources’ and 'targets’
backwards. We build a model of the generation process froEnatish sentence through
a channel to a French sentence. Now given a French sentetraastate, we pretend it iS
the output of an English sentence going through the noisgratdaand search for the bes
possible ‘source’ English sentence.

X

—

speech recognition and other applications. The languagkehommponent is mono-
lingual, and so acquiring training data is relatively easy.

The next few sections will therefore concentrate on theratlve components,
the translation model and the decoding algorithm.

24.4 P(F|E): THE PHRASE-BASED TRANSLATION MODEL

The job of the translation model, given an English sentdhead a foreign sentence
F, is to assign a probability th&t generate§. While we can estimate these probabil-
ities by thinking about how each individual word is transthtmodern statistical MT
is based on the intuition that a better way to compute theslegtilities is by consid-
ering the behavior gphrases As we see in Fig. 24.16, repeated from page 12, entire
pHraseBaseD  phrases often need to be translated and moved as a unit. fliii®mof phrase-based
statistical MT is to use phrases (sequences of words) asasedingle words as the
fundamental units of translation.

\The green witch\ is\at home\ \this weeH

| Diese Woche]ist die griine Hexe| zu Hause]|

Figure 24.16 Phrasal reorderings necessary when generating GermanEngish;
repeated from Fig. 24.8.

There are a wide variety of phrase-based models; in thisoseet will sketch
the model of Koehn et al. (2003). We'll use a Spanish examgdejng how the



20

Chapter 24. Machine Translation

DISTORTION

(24.15)

(24.16)

phrase-based model computes the probabilipd{a no di6 una bofetada a la bruja
verdeéMary did not slap the green witgh

The generative story of phrase-based translation has skeps. First we group
the English source words into phraggse,...e . Next we translate each English phrase
g into a Spanish phras§. Finally each of the Spanish phrases is (optionally) re-
ordered.

The probability model for phrase-based translation relieatranslation prob-
ability and adistortion probability . The factorg(fj|e) is the translation probability
of generating Spanish phrasefrom English phrase,. The reordering of the Spanish
phrases is done by thistortion probabilityd. Distortion in statistical machine trans-
lation refers to a word having a different (‘distorted’) fam in the Spanish sentence
than it had in the English sentence; it is thus a measure ofigtance between the
positions of a phrase in the two languages. The distortiobatvility in phrase-based
MT means the probability of two consecutive English phrdmasg separated in Span-
ish by a span (of Spanish words) of a particular length. Moretlly, the distortion
is parameterized bgt(a; — bi_1), whereg; is the start position of the foreign (Spanish)
phrase generated by th English phrase;, andb;_; is the end position of the for-
eign (Spanish) phrase generated byithelth English phrase_;. We can use a very
simple distortion probability, in which we simply raise seramall constand to the
distortion.d(a; —b;_1) = a/@~%-1-1I, This distortion model penalizes large distortions
by giving lower and lower probability the larger the distort

The final translation model for phrase-based MT is:

|
P(FIE) = [ o(fi.&)d(a —bi_1)
i=1

Let’s consider the following particular set of phrases for example sentencés:

Position| 1 2 3 4 5
English | Mary did not slap the green witch
Spanish| Maria no di6 una bofetada ala brujaverde

Since each phrase follows directly in order (nothing movesiad in this exam-
ple, unlike the German example in (24.16)) the distortioesad 1, and the probability
P(F|E) can be computed as:

P(FIE) = P(Maria, Mary) x d(1) x P(nodid not) x d(1) x
P(di6 una bofetadalap x d(1) x P(algthe) x d(1) x
P(bruja verdégreen witch x d(1)
In order to use the phrase-based model, we need two moresthilvg need a
model ofdecoding so we can go from a surface Spanish string to a hidden English

string. And we need a model tfining, so we can learn parameters. We'll introduce
the decoding algorithm in Sec. 24.8. Let’s turn first to tiagn

3 Exactly which phrases we use depends on which phrases amvelisd in the training process, as de-
scribed in Sec. 24.7; thus for example if we don't see thegggeeen witchin our training data, we would
have to translatgreenandwitch independently.



Section 24.5.

Alignmentin MT 21

PHRASE ALIGNMENT

(24.17)

PHRASE
TRANSLATION TABLE

WORD ALIGNMENT

How do we learn the simple phrase-based translation priityahodel in (24.15)?

The main set of parameters that needs to be trained is thésatase translation prob-

abilities q( fi, g).

These parameters, as well as the distortion constanbuld be set if only we
had a large bilingual training set, in which each Spanishes@® was paired with an
English sentence, and if furthermore we knew exactly whiotape in the Spanish sen-

tence was translated by which phrase in the English sent®veeall such a mapping

aphrase alignment

The table of phrases above showed an implicit alignmenteptirases for this
sentence, for examplgeen witchaligned withbruja verde If we had a large training
set with each pair of sentences labeled with such a phragenaint, we could just
count the number of times each phrase-pair occurred, andaliae to get probabili-
ties:

of.8=

We could store each phrase pgir €), together with its probability(f,€), in a
largephrase translation table

Alas, we don’t have large hand-labeled phrase-aligneditrgisets. But it turns
that we can extract phrases from another kind of alignmdigdcaword alignment.
A word alignment is different than a phrase alignment, beseatshows exactly which
Spanish word aligns to which English word inside each phra§e can visualize a
word alignment in various ways. Fig. 24.17 and Fig. 24.18xshographical model
and an alignment matrix, respectively, for a word alignment

count &)
fcountf,e)

[Mary | [ did |[ not | [ slap |[ the ] [green | [ witch |

Figure 24.17 A graphical model representation of a word alignment betwibe En-
glish and Spanish sentences. We will see later how to exttaekes.

The next section introduces a few algorithms for derivingdvalignments. We
then show in Sec. 24.7 how we can extract a phrase table frawh alignments, and
finally in Sec. 24.8 how the phrase table can be used in degodin

24.5 ALIGNMENT IN MT

WORD ALIGNMENT

All statistical translation models are based on the ideawbal alignment. A word
alignment is a mapping between the source words and thet targels in a set of
parallel sentences.

Fig. 24.19 shows a visualization of an alignment betweertthglish sentence
And the program has been implemenged the French sentente programme &t
mis en applicationFor now, we assume that we already know which sentencegin th
English text aligns with which sentences in the French text.
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SPURIOUS WORDS

bofetada bruja
Maria no did una a la verde

Mary

did

not

slap

the

green

witch

Figure 24.18 An alignment matrix representation of a word alignment lsetv the
English and Spanish sentences. We will see later how toatyihmases.

1 2 3 4 5 6
[ And || the |[program|| has || been | [implemented]

v /a1=2 la2=3 / a,;=6
\ Le \ \programme\ \été\ \ mis \ m \application\

1 2 3 4 5 6 7

Figure 24.19 An alignment between an English and a French sentence, Bxitem
et al. (1993). Each French word aligns to a single Englistdwor

In principle, we can have arbitrary alignment relationshiyetween the English
and French word. But the word alignment models we will pregdBM Models 1
and 3 and the HMM model) make a more stringent requiremenighwis that each
French word comes from exactly one English word; this is test with Fig. 24.19.
One advantage of this assumption is that we can represetigamant by giving the
index number of the English word that the French word comesfr We can thus
represent the alignment shown in Fig. 24.19%as 2,3,4,5,6,6,6. This is a very
likely alignment. A very unlikely alignment, by contrastight beA=3,3,3,3,3,3,3.

We will make one addition to this basic alignment idea, whecto allow words
to appear in the foreign sentence that don't align to any vimte English sentence.
We model these words by assuming the existence of a NULL Emgbrdey at po-
sition 0. Words in the foreign sentence that are not in theliEmgentence, called
spurious words may be generated key. Fig. 24.20 shows the alignment of spurious
Spanista to English NULL#

While the simplified model of alignment above disallows maoyone or many-

4 While this particulara might instead be aligned to Englistap, there are many cases of spurious words
which have no other possible alignment site.
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Figure 24.20 The alignment of thepurious Spanish word to the English NULL word
€o.

to-many alignments, we will discuss more powerful transtatnodels that allow such
alignments. Here are two such sample alignments; in Fi@12de see an alignment
which is many-to-one; each French word does not align to glesiBnglish word, al-
though each English word does align to a single French word.

balance W aboriginal | |people

- \ reste \ \appartenalt\ \ aux \autochtones\

Figure 24.21  An alignment between an English and a French sentence, ichvagich
French word does not align to a single English word, but eawjligh word aligns to one
French word. Adapted from Brown et al. (1993).

Fig. 24.22 shows an even more complex example, in which pial&English
wordsdon’t have any monejpintly align to the French wordsont cemunis Such
phrasal alignmentswill be necessary for phrasal MT, but it turns out they camt b
directly generated by the IBM Model 1, Model 3, or HMM wordgiiment algorithms.

'have| |any| money |

'The| | poor |

\Les\ \pauvres\ \sont\ \démunis\

Figure 24.22  An alignment between an English and a French sentence, chwhére
is a many-to-many alignment between English and French svofdiapted from Brown
et al. (1993).

24.5.1 1BM Model 1

We'll describe two alignment models in this section: IBM Mad. and the HMM
model (we'll also sketch the fertility-based IBM Model 3 ihet advanced section).
Both arestatistical alignmentalgorithms. For phrase-based statistical MT, we use the
alignment algorithms just to find the best alignment for a@eece pai(F,E), in order

to help extract a set of phrases. But it is also possible tothesge word alignment
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algorithms as a translation mode(F,E) as well. As we will see, the relationship
between alignment and translation can be expressed aw$ollo

P(F|E) ZPFA|E

We'll start with IBM Model 1, so-called because it is the fiestd simplest of
five models proposed by IBM researchers in a seminal papenBet al., 1993).

Here’s the general IBM Model 1 generative story for how weagate a Spanish
sentence from an English senteiite- e, e, ..., of lengthl:

1. Choose a lengtK for the Spanish sentence, hencefdfth: fq, fo, ..., fk.

2. Now choose an alignmeit = aj,ay, ...,a; between the English and Spanish
sentences.

3. Now for each positiorj in the Spanish sentence, chose a Spanish vipid,
translating the English word that is aligned to it.

Fig. 24.23 shows a visualization of this generative pracess

Step 1: Choose [NULL | [ Mary | [ did ][ not || slap | [ the | [green | [ witch |
length of Spanish
sentence

] 0 0 T | [ [ [
Step 2: Choose \ NULL \ \ Mary \ \ did \ \ not \ \ slap \ \ the \ \ green \ \ witch \
alignment

]
Step 3: Choose [NULL | [ Mary | [ did | [ not |[ slap | [ the |[green [ witch |
Spanish words from
h aligned

E?]Zn:hl\g;;d Maria | | no | | di6 bofetada | | a | - bruja
Figure 24.23  The three steps of IBM Model 1 generating a Spanish senterttalgn-
ment from an English sentence.

Let's see how this generative story assigns a probalii{§y|E) of generating
the Spanish senten€efrom the English sentende. We'll use this terminology:

® & is the English word that is aligned to the Spanish wijrd
o t(fy,q) is the probability of translatingy, by fy (i.e. P(fx|ey)

We’'ll work our way backwards from step 3. So suppose we airéaw the
lengthJ and the alignmenA, as well as the English sourée The probability of the
Spanish sentence would be:

P(F|E,A) = Ht jles;)
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(24.19)

(24.20)

(24.21)

(24.22)

Now let’s formalize steps 1 and 2 of the generative storysTéthe probability
P(A|E) of an alignmentA (of lengthJ) given the English sentende IBM Model 1
makes the (very) simplifying assumption that each alignneeerqually likely. How
many possible alignments are there between an Englishremnte lengthl and a
Spanish sentence of lengf? Again assuming that each Spanish word must come
from one of thel English words (or the 1 NULL word), there ate+ 1)’ possible
alignments. Model 1 also assumes that the probability obsimg lengthl is some
small constanté. The combined probability of choosing a lengtland then choosing
any particular one of th@l + 1)7 possible alignments is:

P(AE) = W

We can combine these probabilities as follows:

P(F,AE) P(F|E,A) x P(AIE)

J
€
= —— | |t(fjlea
(|+1)JJ_H1 (fjlea;)
This probability,P(F, A|E), is the probability of generating a Spanish sentence

F via a particular alignment. In order to compute the totabatality P(F|E) of gen-
eratingF , we just sum over all possible alignments:

P(FIE) = Y P(F,A[E)
A

J
;mgt(meaj)

Equation (24.21) shows the generative probability modeModel 1, as it as-
signs a probability to each possible Spanish sentence.

In order to find the best alignment between a pair of senteéh@®lE, we need
a way todecodeusing this probabilistic model. It turns out there is a vangEe poly-
nomial algorithm for computing the best (Viterbi) alignnierith Model 1, because the
best alignment for each word is independent of the decidimutbest alignments of
the surrounding words:

A = argmaw(F,AE)
A

J
€
= argmax t(filea

gA (|+1)Jj1;[1(l|aj)

= argmax(fjley) 1<j<d
a
Training for Model 1 is done by the EM algorithm, which we wibver in
Sec. 24.6.
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(24.23)

(24.24)
(24.25)

(24.26)

(24.27)

24.5.2 HMM Alignment

Now that we've seen Model 1, it should be clear that it makesesceally appalling
simplifying assumptions. One of the most egregious is tiseraption that all align-
ments are equally likely. One way in which this is a bad asdiongs that align-
ments tend to preservecality; neighboring words in English are often aligned with
neighboring words in Spanish. If we look back at the Spahisglish alignment in
Fig. 24.17, for example, we can see that this locality in thiggboring alignments.
The HMM alignment model captures this kind of locality by ditioning each align-
ment decision on previous decisions. Let's see how this svork

The HMM alignment model is based on the familiar HMM model veehow
seen in many chapters. As with IBM Model 1, we are trying to pate P(F,A[E).
The HMM model is based on a restructuring of this probabilging the chain rule as
follows:

J
-1 _j-1
Pl x [ P(fi.ajlf{ a " el)
j=1

P(f7,a1le))

J
PIje) x [ [ Plajlf) a1 . e1) x P(fj| ] ".al.€))
j—1

Via this restructuring, we can think d?(F,A|E) as being computable from
probabilities of three types: a length probabiIFPyJ|e'1), an alignment probability
P(aj|f)*,al ! €)), and a lexicon probabilit(f;| f) " al &)

We next make some standard Markov simplifying assumptialiglll assume
that the probability of a particular alignmeat for Spanish word is only dependent
on the previous aligned positicsg_1. We’'ll also assume that the probability of a
Spanish word;j is dependent only on the aligned English weggat positiona;:

-1 _j-1
P(aj|f] ".a; "el) = P(ajlaj-u1)
P(fi|f " al.é) = P(fjles)
Finally, we'll assume that the length probability can be rapgmated just as
P@).
Thus the probabilistic model for HMM alignment is:
J
P(f],allé)) = PQII) x [[P(ajlaj-1,1)P(fjlea)
j=1
To get the total probability of the Spanish senteR¢E|€} ) we need to sum over
all alignments:

J
P(filey) = PQ1) x> _ [ [P(ajlaj-1,1)P(fjles))
A j=1
As we suggested at the beginning of the section, we've ciomditl the align-
ment probabilityP(aj|aj_1,1) on the previous aligned word, to capture the locality
of alignments. Let's rephrase this probability for a momasP(i|i’,1), wherei will
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JUMP WIDTH

(24.28)

(24.29)

stand for the absolute positions in the English sentencew$acutive aligned states
in the Spanish sentence. We'd like to make these probasiliependent not on the
absolute word positionsandi’, but rather on thgump width between words; the
jump width is the distance between their positidnsi. This is because our goal is to
capture the fact thdthe English words that generate neighboring Spanish waugs
likely to be nearby’ We thus don’t want to be keeping separate probabilitiegémh
absolute word position lik€(7|6,15) andP(8|7,15). Instead, we compute alignment
probabilities by using a non-negative function of the junigtiv.

i)
P11 = Shi_q i — i)

Let's see how this HMM model gives the probability of a pautar alignment of
our English-Spanish sentences; we've simplified the sestslightly.

Jjump=1 jump=0 Jump=0 jump=1 Jjump=0  jump=2 jump=-1
P(2]1,5) P(2]2,5) P(2|2,5) P(3]2,5) P(3]3,5)  P(5/3,5) P(5]4,5)

t(Maria|Mary)---»| t(di6|slapped) t(una|slapped)..

Maria dio una bofetada a la bruja verde

Figure 24.24 The HMM alignment model generating froMary slappped the green
witch, showing the alignment and lexicon components of the pritihalP(F, A|E) for this
particular alignment.

Thus the probabilityP(F, A|E) for this particular alignment of our simplified
sentencéaria did una bofetada a la bruja verds the product of:

P(F,AIE) = P(J|I) x P(Maria|Mary) x P(2|1,5) x
t(dio|slapped x P(2|2,5) x T(ungslapped x P(2/2,5) x ...

There are also more sophisticated augmentations to the Hd&M alignment
model. These include adding NULL words in the English souwh&h can be used to
align with Spanish words that don't align with English wardsconditioning the align-
ment onC(ey; , ), the word class of the preceding target woRfaj|a;—1,1,C(ey; _,))
(Och and Ney, 2003; Toutanova et al., 2002).

The main advantage of the HMM alignment model is that thezeval-understood
algorithms both for decoding and for training. For decodimg can use the Viterbi al-
gorithmintroduced in Ch. 5 and Ch. 6 to find the best (Vitealijnment for a sentence
pair (F,E). For training, we can use the Baum-Welch algorithm, as surizedin the
next section.
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24.6 TRAINING ALIGNMENT MODELS

PARALLEL CORPUS
BITEXT

HANSARDS

HONG KONG
HANSARDS

SENTENCE
SEGMENTATION
SENTENCE
ALIGNMENT

All statistical translation models are trained using adgrgrallel corpus. A parallel
corpus, parallel text, orbitext is a text that is available in two languages. For example,
the proceedings of the Canadian parliament are kept in betich and English. Each
sentence spoken in parliament is translated, producinduemeowith running text in
both languages. These volumes are calledisards, after the publisher of the British
parliamentary proceedings. Similarly, thlng Kong Hansardscorpus contains the
proceedings of the Hong Kong SAR Legislative Council in bgtiglish and Chinese.
Both of these corpora contain tens to hundreds of millionwaifds. Other parallel
corpora have been made available by the United Nationspttssible to make parallel
corpora out of literary translations, but this is less comrfar MT purposes, partly
because it is difficult to acquire the legal rights to fictitwit mainly because, as we
saw at the beginning of the chapter, translating fiction iy @éficult and translations
are notvery literal. Thus statistical systems tend to badchon very literal translations
such as Hansards.

The first step in training is to segment the corpus into sem®n This task is
called sentence segmentatiolor sentence alignment The simplest methods align
sentences based purely on their length in words or chasaetithout looking at the
contents of the words in the sentences. The intuition isithiat see a long sentence in
roughly the same position in each language of the paraltghtee might suspect these
sentences are translations. This intuition can be implésddoy a dynamic program-
ming algorithm. More sophisticated algorithms also make efsinformation about
word alignments. Sentence alignment algorithms are run parallel corpus before
training MT models. Sentences which don't align to anythtang thrown out, and the
remaining aligned sentences can be used as a training seth&end of the chapter
for pointers to more details on sentence segmentation.

Once we have done sentence alignment, the input to ourrigpadgorithm is
a corpus consisting @ sentence pair§(Fs,Es) : s=1...S}. For each sentence pair
(Fs, Es) the goal is to learn an alignmeft= a{ and the component probabilitiesfér
Model 1, and the lexicon and alignment probabilities foritidM model).

24.6.1 EM for Training Alignment Models

If each sentence pa(Fs, Es) was already hand-labeled with a perfect alignment, learn-
ing the Model 1 or HMM parameters would be trivial. For exampb get a maximum
likelihood estimates in Model 1 for the translation probitypi(verdegreen, we would
just count the number of timegreenis aligned toverde and normalize by the total
count ofgreen

But of course we don’'t know the alignments in advance; all \seehare the
probabilities of each alignment. Recall that Eq" 24.20 showed that if weaaly had
good estimates for the Modeltlparameter, we could use this to compute probabili-
tiesP(F,AJE) for alignments. GiverP(F,A|E), we can generate the probability of an
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(24.30)

alignment just by normalizing:
P(AFIE)
>_aP(AFIE)

So, if we had a rough estimate of the Model farameters, we could compute
the probability for each alignment. Then instead of estingathet probabilities from
the (unknown) perfect alignment, we would estimate thermfeach possible align-
ment, and combine these estimates weighted by the pratyadfikach alignment. For
example if there were two possible alignments, one of pritibal® and one of prob-
ability .1, we would estimate theparameters separately from the two alignments and
mix these two estimates with weights of .9 and .1.

Thus if we had model 1 parameters already, we coedstimatethe parame-
ters, by using the parameters to compute the probabilityaoheossible alignment,
and then using the weighted sum of alignments to re-estithatenodel 1 parame-
ters. This idea of iteratively improving our estimates aflpabilities is a special case
of the EM algorithm that we introduced in Ch. 6, and that we saw again for speech
recognition in Ch. 9. Recall that we use the EM algorithm whenhave a variable
that we can’t optimize directly because itiglden. In this case the hidden variable is
the alignment. But we can use the EM algorithm to estimate#rameters, compute
alignments from these estimates, use the alignments tstireate the parameters, and
so on!

Let’'s walk through an example inspired by Knight (1999bjngsa simplified
version of Model 1, in which we ignore the NULL word, and we ywnsider a
subset of the alignments (ignoring alignments for which aglish word aligns with
no Spanish word) Hence we compute the simplified probgthiliA, F|E) as follows:

Ht fjlea;)

The goal of this example is just to give an intuition of EM dpglto this task; the
actual details of Model 1 training would be somewhat differe

The intuition of EM training is that in the E-step, we compaig@ected counts
for thet parameter based on summing over the hidden variable (tpenadint), while
in the M-step, we compute the maximum likelihood estimatthet probability from
these counts.

Let’s see a few stages of EM training of this parameter on arpusoof two
sentences:

P(AE,F) =

P(A,F|E)

t he house
casa

green house
casa verde | a

The vocabularies for the two languages &e-= {green,house,theand S =
{casa,la,verde We'll start with uniform probabilities:

t(casagreen) = %] t(verdegreen) = 3 |t(lajgreen) =3
t(casahouse) = % |[t(verdehouse) =3 |t(lajhouse) =2
t(casdthe) = 3| t(verddthe) = 3| t(lathe) = 3

Now let’s walk through the steps of EM:
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E-step1: Compute the expected couriifcountt(f,e))] for all word pairs(fj, ;)

E-stepla: We first need to compute(a, f|e), by multiplying all thet probabilities, following

Eq. 24.30
green house green house the house the house
casa verde casa verde la casa la casa
P(a, fle) =t(casa,green) P(a, fle) =t(verde,green) P(a, fle) =t(la,the) P(a, fle) =t(casa,the)

x t(verde,house) X t(casa,house) X t(casa house) x t(la,house)
—1,1_1 =1y 1_1 1_1 _1,1_1
=3X3=3g =3X37% =3x3=% =3X3=3g

E-step 1b:  NormalizeP(a, f|e) to getP(ale, f), using the following:

_P(afle)
P(ale f) =
YaP@fle)

The resulting values d®?(a| f,e) for each alignment are as follows:
green house green  house the house the house
casa \/1e9rde Casa 1\9/erde la . gasa la 19casa

PEfe=35=3 Pafe=35=-% Pafe=3=3 Pafe=35-13

E-step 1c:  Compute expected (fractional) counts, by weighting eacmtbyP(ale, f)

tcount(casgreen) :% tcount(verdégreen) % tcount(ldgreen) = 0 total(green) = 1
tcount(casphouse) :%Jr% tcount(verdéhouse) % tcount(ldhouse) :% total(house) = 1
tcount(casghe) = % tcount(verdgghe) = 0| tcount(lgthe) = % total(the) = 1

M-step 1:  Compute the MLE probability parameters by normalizing tmints to sum to one.

0

t(lajgreen) =9 =
7z

t(casagreen) = == = 1| t(verdegreen) = TZ
172

t(lajhouse) =

ENTINS

t(casghouse) =3 =1 |t(verddhouse) =
1

= 2
t(casdthe) = X2 =1] t(verdéthe) = 9=

NI | Bl

0 t(lathe) = l_ —

Note that each of the correct translations have increaspubimability from the
initial assignment; for example the translaticamsafor househas increased in proba-

bility from 4 to 3.

E-step2a: We re-computd(a, f|e), again by multiplying all thé probabilities, following

Eqg. 24.30
green house green house the house the house
casa verde casa verde la casa la casa
P(a, fle) =t(casa,green) P(a, fle) =t(verde,green) P(a, fle) =t(la,the) P(a, fle) =t(casa,the)
x t(verde,house) X t(casa,house) X t(casa house) x t(la,house)
— — — _ 1 1 _1,1_1
=3X4=3 =32X271 =3x3=3 =3X4=%
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Note that the two correct alignments are now higher in prdibathan the two
incorrect alignments. Performing the second and furthendof E-steps and M-steps
is left as Exercise 24.6 for the reader.

We have shown that EM can be used to learn the parameters forpéified
version of Model 1. Our intuitive algorithm, however, res that we enumerate all
possible alignments. For a long sentence, enumerating pessible alignment would
be very inefficient. Luckily in practice there is a very eféint version of EM for Model
1 that efficiently and implicitly sums over all alignments.

We also use EM, in the form of the Baum-Welch algorithm, faariéng the
parameters of the HMM model.

24.7 SYMMETRIZING ALIGNMENTS FORPHRASE-BASED MT

SYMMETRIZING

INTERSECTION

(24.31)

The reason why we needed Model 1 or HMM alignments was to dldl alignments
on the training set, so that we could extract aligned paiphoéses.

Unfortunately, HMM (or Model 1) alignments are insufficidot extracting pair-
ings of Spanish phrases with English phrases. This is bedauthe HMM model,
each Spanish word must be generated from a single Englisti; wee cannot gen-
erate a Spanish phrase from multiple English words. The HMdi@h thus cannot
align a multiword phrase in the source language with a moltilphrase in the target
language.

We can, however, extend the HMM model to produce phrasditage align-
ments for a pair of sentencéf,E), via a method that's often callesymmetriz-
ing. First, we train two separate HMM aligners, an English-pa&sh aligner and
a Spanish-to-English aligner. We then alighK) using both aligners. We can then
combine these alignments in clever ways to get an alignnteitrhaps phrases to
phrases.

To combine the alignments, we start by takingititersection of the two align-
ments, as shown in Fig. 24.25. The intersection will contaily places where the
two alignments agree, hence the high-precision alignedisvdiVe can also separately
compute theunion of these two alignments. The union will have lots of less aataly
aligned words. We can then build a classifier to select wawta the union, which we
incrementally add back in to this minimal intersective afigent.

Fig. 24.26 shows an example of the resulting word alignmipte that it does
allow many-to-one alignments in both directions. We can hawest all phrase pairs
that are consistent with this word alignment. A consistdmwape pair is one in which
all the words are aligned only with each other, and not to atgraal words. Fig. 24.26
also shows some phrases consistent with the alignment.

Once we collect all the aligned phrases pairs from the etriiring corpus, we
can compute the maximum likelihood estimate for the phnasestation probability of
a particular pair as follows:

— count f, &)
flg— oumhbe
€)= 5 -count, g
We can now store each phrask &), together with its probability( f,€), in a
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english to spanish spanish to english
bofeta bryja Fetada :
Maria no daba una° E| ﬂﬂs la rrjverde Maria no daba u_i”j_ad: la brT]iE de
Mary Mary
did did
not not
slap slap
the the
green green
witch itk
intersection

PHRASE
TRANSLATION TABLE

bofetada bryja
Maria no dabauna T a 1la r verde

green

witch

Figure 24.25 PLACEHOLDER FIGURE, from (Koehn, 2003b). Intersection of
English-to-Spanish and Spanish-to-English alignmengsaduce a high-precision align
ment. Alignment can then be expanded with points from batinaients to produce an
alignment like that shown in Fig. 24.26.

bofetada bruja . .
Maria no di6 una a la verde (Marla, Mary), (no, did not),
Mary (slap, di6 una bofetada), (verde, green),
_ (ala, the), (bruja, witch),

e (Maria no, Mary did not),

not (no di6 una bofetada, did not slap),
slap (di6 una bofetada a la, slap the),

the (bruja verde, green witch),

(a la bruja verde, the green witch),. ..

green
witch

Figure 24.26 A better phrasal alignment for thgreen witchsentence, computed by
starting with the intersection alignment in Fig. 24.25 awdiag points from the union
alignment, using the algorithm of Och and Ney (2003). On ipltr some of the phrases

consistent with this alignment, after Koehn (2003b).

largephrase translation table The decoding algorithm discussed in the next section
can use this phrase translation table to compute the ttarsfarobability.
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24.8 DECODING FORPHRASE-BASED STATISTICAL MT

The remaining component of a statistical MT system is theodec Recall that the
job of the decoder is to take a foreign (Spanish) source seate and produce the
best (English) translatiok according to the product of the translation and language

models:
translation modelanguage model
A —N— A~
(24.32) E= argmax P(FIE) P(E)
ecEnglish

Finding the sentence which maximizes the translation amgliage model prob-
abilities is asearchproblem, and decoding is thus a kind of search. Decoders iad T
based orbest-first search a kind ofheuristic or informed search these are search
algorithms that are informed by knowledge from the problemméin. Best-first search
algorithms select a noden the search space to explore based on an evaluation fanctio
f(n). MT decoders are variants of a specific kind of best-firsteaalledA* search.

A* search was first implemented for machine translation by IBkbyn et al., 1995),
based on IBM’s earlier work onAsearch for speech recognition (Jelinek, 1969). As
we discussed in Se@?, for historical reasons Asearch and its variants are commonly

stackoecooing  called stack decodingin speech recognition and sometimes also in machine transla
tion.

Let’s begin in Fig. 24.27 with a generic version of stack dkéog for machine
translation. The basic intuition is to maintairpgority queue (traditionally referred
to as astack) with all the partial translation hypotheses, togethehuwtliieir scores.

function STACK DECODING(Source sentencegturns target sentence

initialize stack with a null hypothesis
loop do
pop best hypothestsoff of stack
if his a complete sentencesturn h
for each possible expansiolf of h
assign a score tof
pushh onto stack

Figure 24.27 Generic version of stack or*Adecoding for machine translation. A hyr
pothesis is expanded by choosing a single word or phrasanslate. We'll see a more
fleshed-out version of the algorithm in Fig. 24.30.

Let’s now describe stack decoding in more detail. While thgioal IBM sta-
tistical decoding algorithms were for word-based staizdtMT, we will describe the
application to phrase-based decoding in the publicly abél MT decodePharaoh
(Koehn, 2004).

In order to limit the search space in decoding, we don’t wargdarch through
the space of all English sentences; we only want to condigeones that are possible



Chapter 24. Machine Translation

translations foF. To help reduce the search space, we only want to considirsss
that include words or phrases which are possible translatidwords or phrases in the
Spanish sentende. We do this by searching thghrase translation table described
in the previous section, for all possible English transiadifor all possible phrases in
F.

A sample lattice of possible translation options is showrig. 24.28 drawn
from (Koehn, 2003a, 2004). Each of these options consistSplanish word or phrase,
the English translation, and the phrase translation piitityalp. We’'ll need to search
through combinations of these to find the best translatigmgst

| Maria | no daba una bofetada a | la | bruja wverde

Mary not give a slap to the witch gresn

did not a slap by green witch

no slap to the

did not give to

slap the witch

Figure 24.28 PLACEHOLDER FIGURE: The lattice of possible English tratgins
for words and phrases in a particular sentdhctaken from the entire aligned training set.
From (Koehn, 2003a)

Now let's walk informally through the stack decoding exampi Fig. 24.29,
producing an English translation dary di6 una bofetada a la bruja verdieft to
right. For the moment we’ll make the simplifying assumptibiat there is a single
stack, and that there is no pruning.

We start with the null hypothesis as the initsgdarch state in which we have
selected no Spanish words and produced no English tragrslatirds. We novexpand
this hypothesis by choosing each possible source word asptwhich could generate
an English sentence-initial phrase. Fig. 24.29a showditlsisply of the search. For
example the top state represents the hypothesis that theslEsgntence starts with
Mary, and the Spanish worldaria has been covered (the asterisk for the first word is
marked with an M). Each state is also associated with a cisstjssed below. Another
state at this ply represents the hypothesis that the Enghsislation starts with the
word No, and that Spanisho has been covered. This turns out to be the lowest-cost
node on the queue, so we pop it off the queue and push all isnsigns back on the
queue. Now the statilary is the lowest cost, so we expand Mary did notis now
the lowest cost translation so far, so will be the next to bgaexded. We can then
continue to expand the search space until we have statestfigges) that cover the
entire Spanish sentence, and we can just read off an Engdisélation from this state.

We mentioned that each state is associated with a cost wasake’ll see below,
is used to guide the search, The cost combinestient cost with an estimate of
thefuture cost. Thecurrent costis the total probability of the phrases that have been
translated so far in the hypothesis, i.e. the product of taestation, distortion, and
language model probabilities. For the set of partially stated phraseS= (F, E), this
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E: Mary did not]
[y o
COST: 730
f [ 4 E: Mary slap
E: Mary E: Mary E: Mary F: MmuB*
Fr Mreerses Fr \pereerses Fr Mrressns COST: 770
COST: 800 COST: 800 COST: 800 E: Mary gave
. - : Fr MAD**me
R E: Witch R E: Witch E: E: Witch COST: 760
F: | comrergs F: | Fo roerrege R = B
COST: 999 COST: 950 COST: 999 COST: 950 COST: 999 COST: 950
\ - E: No witch - E: No witch
SRINEE PRty
E: No E:No % COST: 805 E: No /’ OST:
SN =N S COST: 805
COST: 790 COST: 790 \ E: No slap COST: 790 \ E: No slap
Fr "N-UB™** Fr ANUB*
EA SOSTHES0 EA COST: 830
s wkJemiin PR . P
E: No sla ;
COST: 900 COST: 900 | \NF: sNDUBwwes cosT: 900 | |\\ENosiap, |
& & COST: 803 & COST: 803
a) after expanding NULL b) after expanding “No” c) after expanding “Mary”

Figure 24.29 Three stages in stack decodingMéria no di6é una bofetada a la bruja verdsimplified by

assuming a single stack and no pruning). The nodes in bluthedininge of the search space, are all on the stack,
and areopennodes still involved in the search. Nodes in gray @osednodes which have been popped off the

stack.

(24.33)

probability would be:
cos(E,F) = [ [ o(fi,&)d(a —bi_1)P(E)

ieS
The future cost is our estimate of the cost of translating tteenainingwords in the
Spanish sentence. By combining these two factors, the &ategives an estimate of
the total probability of the search path for the eventual plate translation sentence
E passing through the current node. A search algorithm basigda the current cost
would tend to select translations that had a few high-priibalvords at the beginning,
at the expense of translations with a higher overall prdibP For the future cost,
it turns out to be far too expensive to compute the true miminprobability for all
possible translations. Instead, we approximate this goigrmring the distortion cost
and just finding the sequence of English phrases which hasithienum product of
the language model and translation model costs, which caasily computed by the
Viterbi algorithm.

This sketch of the decoding process suggests that we sé&rehtire state space
of possible English translations. But we can’t possiblyoedfto expand the entire
search space, because there are far too many states; um§igeéch recognition, the
need for distortion in MT means there is (at least) a distirygtothesis for every pos-
sible ordering of the English words!

5 We saw this same kind of cost function for' Aearch in speech recognition, where we used the A
evaluation function:f*(p) = g(p) +h*(p).

6 Indeed, as Knight (1999a) shows, decoding even in IBM Modelith a bigram language model is
equivalent to the difficult class of problems knownN-complete
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BEAM-SEARCH
PRUNING

RECOMBINING
HYPOTHESES

For this reason MT decoders, like decoders for speech rétmgnall require
some sort of pruning. Pharaoh and similar decoders use onaytbeam-search
pruning, just as we saw in decoding for speech recognition and pitistabparsing.
Recall that in beam-search pruning, at every iteration veplkanly the most promising
states, and prune away unlikely (high-cost) states (thogtside the search beam’).
We could modify the search sequence depicted in Fig. 24y2priming away all bad
(high-cost) states at every ply of the search, and exparadilygthe best state. In fact,
in Pharaoh, instead of expanding only the best state, wenelxalh states within the
beam; thus Pharaoh is technicallgam searchrather tharbest-first searchor A*
search.

More formally, at each ply of the search we keep around a faadrity queue)
of states. The stack only fitsentries. At every ply of the search, we expand all the
states on the stack, push them onto the stack, order thenshykeep the bestentries
and delete the rest.

We'll need one final modification. While in speech we just used stack for
stack decoding, in MT we'll use multiple stacks, because argteasily compare the
cost of hypotheses that translate different numbers ofdareords. So we’ll usen
stacks, where stack, includes all hypotheses that covarforeign words. When we
expand a hypothesis by choosing a phrase to translate, m&dit the new state into
the correct stack for the number of foreign words coverearie’ll use beam-search
inside each of these stacks, keep amlyypotheses for each of tlestacks. The final
multi-stack version of beam search stack decoding is showigi. 24.30.

function BEAM SEARCH STACK DECODERSource sentencegturns target sentence

initialize hypothesisStack[0..nf]
push initial null hypothesis on hypothesisStack[0]
for i—0tonf-1
for each hypin hypothesisStack(i]
for each new hypthat can be derived froryp
nflnew.hypg < number of foreign words covered Imgw hyp
addnew hypto hypothesisStack[nf[nevayp]]
prune hypothesisStack[nf[netyp]]
find best hypothesisesthypin hypothesisStack[nf]
return best path that leadstesthypvia backtrace

Figure 24.30 Pharaoh beam search multi-stack decoding algorithm, adafpom
(Koehn, 2003a, 2004). For efficiency, most decoders doatesthe entire foreign and
English sentence in each state, requiring that we backtoafied the state path from the
initial to the final state so we can generate the entire Emgiiget sentence.

There are a number of additional issues in decoding that imistealt with.
All decoders attempt to limit somewhat the exponential esian in the search space
by recombining hypotheses We saw hypothesis recombination in tEract N-Best
algorithm of Sec??. In MT, we can merge any two hypotheses that are sufficiently
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similar (cover the same foreign words, have the same las&nglish words, and have
the same end of the last foreign phrase covered).

In addition, it turns out that decoders for phrasal MT optien slightly different
function than the one we presented in Eq. 24.32. In pradtitérns out that we need
to add another factor, which serves to penalize sentenciebate too short. Thus the
decoder is actually choosing the sentence which maximizes:

translation modelanguage modéfiort sentence penalty
2 T \ =N lengthEe)
(24.34) E= argmax  P(F|E) P(E) w®nad
EcEnglish

This final equation is extremely similar to the use of the wiokrtion penalty
in speech recognition in EQ?.

24.9 MT BEVALUATION

CLOZE

ADEQUACY
ADEQUACY

Evaluating the quality of a translation is an extremely satiye task, and disagree-
ments about evaluation methodology are rampant. Nevegbekvaluation is essen-
tial, and research on evaluation methodology has playethaortant role in earliest
days of MT (Miller and Beebe-Center, 1958) and in the pres@mbadly speaking,
we attempt to evaluate translations along two dimensiamrsesponding to thédelity
andfluencydiscussed in Sec. 24.3.

24.9.1 Using Human Raters

The most accurate evaluations use human raters to evahtaranslation along each
dimension. For example, along the dimensioflaéncy, we can ask how intelligible,
how clear, how readable, or how natural is the MT output (#rgdt translated text).
There are two broad ways to use human raters to answer thestaqs. One method
is to give the raters a scale, for example from 1 (totally tedligible) to 5 (totally intel-
ligible), and ask them to rate each sentence or paragraple ®1T output. We can use
distinct scales for any of the aspects of fluency, suctladty , naturalness or style
(?). The second class of methods relies less on the consémisions of the partici-
pants. For example, we can measure the time it takes for thesri® read each output
sentence or paragraph. Clearer or more fluent sentencelsl sfetaster or easier to
read. We can also measure fluency with tlezetask (?). The cloze task is a metric
used often in psychological studies of reading. The rats aa output sentence with a
word replaced by a space (for example, every 8th word migllegeted). Raters have
to guess the identity of the missing word. Accuracy at theelask, i.e. average suc-
cess of raters at guessing the missing words, generallgletes with how intelligible
or natural the MT output is.

A similar variety of metrics can be used to judge the secontedsionfidelity .
Two common aspects of fidelity which are measuredaatequacyandinformative-
ness Theadequacyof a translation is whether it contains the information #ested
in the original. We measurdequacyby using raters to assign scores on a scale. If we
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INFORMATIVENESS

EDIT COST
POST-EDITING

have bilingual raters, we can give them the source sentamtta paroposed target sen-
tence, and rate, perhaps on a 5-point scale, how much offibreriation in the source
was preserved in the target. If we only have monolinguarsatesut we have a good
human translation of the source text, we can give the mogoéhraters the human
reference translation and a target machine translatiahagain rate how much infor-
mation is preserved. Thieformativenessof a translation is a task-based evaluation
of whether there is sufficient information in the MT outpuferform some task. For
example we can give raters multiple-choice questions abeutontent of the material
in the source sentence or text. The raters answer theséansdsased only on the MT
output. The percentage of correct answers is an informas®gscore.

Another set of metrics attempt to judge the overall qualftg translation, com-
bining fluency and fidelity. For example, the typical evaloaimetric for MT output
to be post-edited is thedit costof post-editingthe MT output into a good translation.
For example, we can measure the number of words, the amotimteyfor the number
of keystrokes required for a human to correct the output tacaeptable level.

24.9.2 Automatic Evaluation: Bleu

While humans produce the best evaluations of machine a&tmisloutput, running
a human evaluation can be very time-consuming, taking dayven weeks. It is
useful to have an automatic metric that can be run relatifrelguently to quickly
evaluate potential system improvements. In order to hagle sonvenience, we would
be willing for the metric to be much worse than human evatumtas long as there was
some correlation with human judgments.

In fact there are a number of such heuristic methods, su@eas NIST, Pre-
cision and Recall and METEOR (see references at the end of the chapter). The
intuition of these automatic metrics derives from MilledaBeebe-Center (1958), who
pointed out that a good MT output is one which is very simiteathuman translation.
For each of these metrics, we assume that we already have onere human trans-
lations of the relevant sentences. Now given an MT outputesee, we compute the
translation closeness between the MT output and the hunméersses. An MT output
is ranked as better if on average it is closer to the humaslations. The metrics differ
on what counts as ‘translation closeness’.

In the field of automatic speech recognition, the metric frariscription close-
ness’ is word error rate, which is the minimum edit distarcca human transcript. But
in translation, we can't use the same word error rate mdidgcause there are many
possible translations of a source sentence; a very good Naubmight look like one
human translation, but very unlike another one. For thisseamost of the metrics
judge an MT output by comparing it to multiple human trarislas.

Each of these metrics thus require that we get human tréorsédh advance for
a number of test sentences. This may seem time-consumihthéhope is that we
can reuse this translated test set over and over again toadgalew ideas.

For the rest of this section, let's walk through one of thesrits, theBleu
metric, following closely the original presentation in Regmni et al. (2002). In Bleu we
rank each MT output by a weighted average of the numb&-gfam overlaps with
the human translations.
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Fig. 24.31 shows an intuition, from two candidate translai of a Chinese
source sentence (Papineni et al., 2002), shown with thifeeerece human transla-
tions of the source sentence. Note that Candidate 1 shargsmae words (shown in
blue) with the reference translations than Candidate 2.

Cand 1: [ltis|[a guide to action|[which][ensures that the military|[always| obeys [the |[commands][of the party|

Cand 2: to insure the troops forever hearing activity guidebook that party direct

Ref 1: \a guide to action\ \ensures that the military\ will forever heed Party
Ref 2: the guiding principle guarantees the military forces being under command
Ref 3: the practical guide for the armyto heed directions

Figure 24.31

Intuition for Bleu: one of two candidate translations of aifi@se source sentence shares more
words with the reference human translations.

moDIFIED N-GRAM
PRECISION

Let’s look at how the Bleu score is computed, starting witt unigrams. Bleu
is based on precision. A basic unigram precision metric @il to count the number
the words in the candidate translation (MT output) that o@tsome reference transla-
tion, and divide by the total number of words in the candidiaeslation. If a candidate
translation had 10 words, and 6 of them occurred in at leasbbthe reference trans-
lations, we would have a precision of 0= 0.6. Alas, there is a flaw in using simple
precision: it rewards candidates that have extra repeatedsw Fig. 24.32 shows an
example of a pathological candidate sentence composed ltipfaunstances of the
single wordthe Since each of the 7 (identical) words in the candidate ottane of
the reference translations, the unigram precision would/Be

Candidate: the the the the the

Reference 1: cat is on the mat

Reference 2: there is a cat on the mat

Figure 24.32 A pathological example showing why Bleu uses a modified giegi
metric. Unigram precision would be unreasonably high (AWdified unigram precision
is appropriately low (2/7).

In order to avoid this problem, Bleu usesmmdified N-gram precision metric.
We first count the maximum number of times a word is used in amylesreference
translation. The count of eadandidateword is then clipped by this maximurefer-
encecount. Thus the modified unigram precision in the exampledgn .32 would
be 2/7, since Reference 1 has a maximum tfe8. Going back to Chinese example in
Fig. 24.32, Candidate 1 has a modified unigram precision 48, While Candidate 2
has one of 8/14.
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(24.35)

(24.36)

We compute the modified precision similarly for higher ordegrams as well.
The modified bigram precision for Candidate 1 is 10/17, amdCandidate 2 is 1/13.
The reader should check these numbers for themselves o24=R1L.

To compute a score over the whole testset, Bleu first comgheesl-gram
matches for each sentence, and add together the clippedscower all the candi-
dates sentences, and divide by the total number of candiigtems in the testset.
The modified precision score is thus:

> Countjip(n-gram)

ce{Candidate}nN-grameC

b= > >~ Countn-gram)

c’e{Candidategn-gramec’

Bleu uses unigram, bigrams, trigrams, and often quadrigréraombines these
modifiedN-gram precisions together by taking their geometric mean.

In addition, Bleu adds a further penalty to penalize candidi@nslations that
are too short. Consider the candidate translatibthe compared with References
1-3in Fig. 24.31 above. Because this candidate is so shudtak its words appear
in some translation, its modified unigram precision is iefthto 2/2. Normally we
deal with these problems by combining precision witcall. But as we discussed
above, we can’t use recall over multiple human translatisinge recall would require
(incorrectly) that a good translation must contain corgddrts ofN-grams fromevery
translation. Instead, Bleu includes a brevity penalty ehemwhole corpus. Latbe the
total length of the candidate translation corpus. We comthgeffective reference
length r for that corpus by summing, for each candidate sentencdetigyths of the
best matches. The brevity penalty is then an exponentididnin summary:

1 if c>r
BP = {e<lr/c> it c<r

N
Bleu = BPx exp(ZIogpn>

n=1

While automatic metrics like Bleu (or NIST, METEOR, etc) kaleen very
useful in quickly evaluating potential system improvensemind match human judg-
ments in many cases, they have certain limitations thanapeitant to consider. First,
many of them focus on very local information. Consider dligimoving a phrase in
Fig. 24.31 slightly to produce a candidate likensures that the military it is a guide
to action which always obeys the commands of the partis sentence would have
an identical Bleu score to Candidate 1, although a human wateld give it a lower
score.

Furthermore, the automatic metrics probably do poorly athmgaring systems
that have radically different architectures. Thus Bleugiample, is known to perform
poorly (i.e. not agree with human judgments of translatioaliy) when evaluating the
output of commercial systems like Systran agagfram-based statistical systems, or
even when evaluating human-aided translation against imadfanslation (Callison-
Burch et al., 2006).
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We can conclude that automatic metrics are most appropwiaée evaluating
incremental changes to a single system, or comparing sgststim very similar archi-
tectures.

24.10 ADVANCED: SYNTACTIC MODELS FORMT

TRANSDUCTION
GRAMMAR

SYNCHRONOUS
GRAMMAR

INVERSION
TRANSDUCTION
GRAMMAR

The earliest statistical MT systems (like IBM Models 1, 2 &)avere based on words
as the elementary units. The phrase-based systems thatergbael in earlier sections
improved on these word-based systems by using larger uhits, capturing larger
contexts and providing a more natural unit for represertinguage divergences.

Recent work in MT has focused on ways to move even further ep/guquois
hierarchy, from simple phrases to larger and hierarchigatiegtic structures.

It turns out that it doesn’t work just to constrain each phresmatch the syn-
tactic boundaries assigned by traditional parsers (Yaraad&night, 2001). Instead,
modern approaches attempt to assign a parallel syntaeticstructure to a pair of
sentences in different languages, with the goal of traimgjdhe sentences by applying
reordering operations on the trees. The mathematical niodilese parallel structures
is known as aransduction grammar. These transduction grammars can be viewed
as an explicit implementation of tteyntactic transfer systems that we introduced on
page 13, but based on a modern statistical foundation.

Atransduction grammar (also calledynchronous grammal) describes a struc-
turally correlated pair of languages. From a generativepative, we can view a
transduction grammar as generating pairs of aligned see$an two languages. For-
mally, a transduction grammar is a generalization of thédfigtate transducers we saw
in Ch. 3. There are a number of transduction grammars andalemms used for MT,
most of which are generalizations of context-free gramrathe two-language situ-
ation. Let’s consider one of the most widely used such mddel®T, the inversion
transduction grammar (ITG).

In an ITG grammar, each non-terminal generates two sepsiratgs. There are
three types of these rules. A lexical rules like the follogtin

N — witch/bruja

generates the womditchon one stream, artatuja on the second stream. A nonterminal
rule in square brackets like:

S— [NP VR
generates two separate streams, eadtFofVP. A non-terminal in angle brackets, like
Nominal— (Adj N)

generates two separate streams, wlifferent orderings Adj N in one stream, anil
Adjin the other stream.

Fig. 24.33 shows a sample grammar with some simple rules tlat each lex-
ical rule derives distinct English and Spanish word strjtigat rules in square brackets
([) generate two identical non-terminal right-hand sidasd that the one rule in angle
brackets ()) generates different orderings in Spanish from English.
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S — [NP VR
NP — [DetNominal | Maria/Maria
Nominal — (Adj Nour)
VP — [VPP | [Negation VP
Negation — didn’t/no
V — slap/did una bofetada
PP — [PNP
P — ¢/a | from/de
Det — the/la | the/le
Adj — greeryverde
N — witch/bruja

Figure 24.33 A mini Inversion Transduction Grammar grammar for green witch
sentence.

Thus an ITG parse tree is a single joint structure which spags the two ob-
served sentences:

(24.37)  (a) [s[np Mary] [vp didn't [vp slap pp[np the [nom green witch]]]]]]
(b) [s[np Maria] [yp no [yp dio una bofetadadp a [yp la [nom bruja verdell]]]]

Each non-terminal in the parse derives two strings, onedohdéanguage. Thus
we could visualize the two sentences in a single parse, vitherangle brackets mean
that the order of thé\dj Nconstituentggreen witchandbruja verdeare generated in
opposite order in the two languages:

[s[np Mary/Maria] [yp didn’t/no [yp slap/di6 una bofetadape/a [y p the/la(yom Witch/bruja green/verdd]]]

There are a number of related kinds of synchronous gramnmetsiding syn-
chronous context-free grammars (Chiang, 2005), multgextnmars (Melamed, 2003),
lexicalized ITGs (Melamed, 2003; Zhang and Gildea, 2006) synchronous tree-
adjoining and tree-insertion grammars (Shieber and Schal#92; Shieber, 1994;
Nesson et al., 2006). The synchronous CFG system of Chidd@pj2for example,
learns hierarchical pairs of rules that capture the fadt@dnese relative clauses ap-
pear to the left of their head, while English relative claiappear to the right of their
head:

<O deld, theO thatO>

Other models for translation by aligning parallel parsesracluding (Wu, 2000;
Yamada and Knight, 2001; Eisner, 2003; Melamed, 2003; @a&iteal., 2004; Quirk
et al., 2005; Wu and Fung, 2005).
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24.11 ADVANCED: IBM M ODEL 3 FOR FERTILITY-BASED ALIGN-
MENT

The seminal IBM paper that began work on statistical MT psgabfive models for
MT. We saw IBM’'s Model 1 in Sec. 24.5.1. Models 3, 4 and 5 all threimportant
concept offertility . We’ll introduce Model 3 in this section; our descriptionres
influenced by Kevin Knight's nice tutorial (Knight, 1999lodel 3 has a more com-
plex generative model than Model 1. The generative modeh fro English sentence
E=e1,e,...,g has5 steps:

FERTILITY 1. For each English word, we choose #ertility ¢.” The fertility is the number
of (zero or more) Spanish words that will be generated fegrand is dependent
only ong,.

2. We also need to generate Spanish words from the NULL Hngliwd. Recall
SPURIOUS WORDS that we defined these earlier spgurious words. Instead of having a fertility for

NULL, we'll generate spurious words differently. Every gmve generate an
English word, we consider (with some probability) genemga spurious word
(from NULL).

3. We now know how many Spanish words to generate from eachsngord.
So now for each of these Spanish potential words, generhtetranslating its
aligned English word. As with Model 1, the translation wit based only on
the English word. Spurious Spanish words will be generatettdnslating the
NULL word into Spanish.

4. Move all the non-spurious words into their final positionghe Spanish sen-
tence.

5. Insert the spurious Spanish words in the remaining opsitipis in the Spanish
sentence.

Fig. 24.34 shows a visualization of the Model 3 generaticepss

N Model 3 has more parameters than Model 1. The most importarthan, t,

T d, andpl probabilities. The fertility probabilityp of a worde is represented by the

p  parameten. So we will usen(1|green to represent the probability that Engligkeen

pt will produce one Spanish woray(2|green is the probability that Englisigreenwill
produce two Spanish words(0|did) is the probability that Engliskid will produce
no Spanish words, and so on. Like IBM Model 1, Model 3 has astedion probability
t(fjla). Next, the probability that expresses the word positiot Braylish words end

pisTorTioN  UP in in the Spanish sentence is ttistortion probability, which is conditioned on the

English and Spanish sentence lengths. The distortion piiitigad(1, 3,6, 7) expresses
the probability that the English worgy will align to Spanish wordfs, given that the
English sentence has length 6, and the Spanish sentenclemgtf 7.

As we suggested above, Model 3 does not use fertility prdibabiike n(1/NULL),
or n(3|NULL) to decide how many spurious foreign words to generate frogli§n
NULL. Instead, each time Model 3 generates a real word, iegaes a spurious word
for the target sentence with probability. This way, longer source sentences will nat-

7 This@is not related to the that was used in phrase-based translation.
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Step 1: Choose [NULL | [Mary | [ did |[ not | [ slap | [ the |[green | [ witch |
fertility for each
English word
Step 2: Choose \ NULL \ \ Mary \ \ did \ \ not \ \ slap \ \ the \ \ green \ \ witch \
fertility for NULL % % v % ]/ U~ \[ I %

T =
Step 3: Create
Spanish words by [NULL | [ Mary ] | d|d nof [slap | [ the || green | [ witch |
translating aligned y/
English word [una] [bofetada] [1a] | verde | [bruja |
Step 4: Move the | NULL | [ Mary | d|d not | [ slap | the | [ green | [ witch |
S_pamsh words into
final slots Mar|a una ofetada erJa verde
Step 4: Move NULL | [ Mary | [ did not | \ slap \ the \green | [ witch |
spurious Spanish
words into
unclaimed slots m m H
Figure 24.34 The five steps of IBM Model 3 generating a Spanish sentencelkignt
ment from an English sentence.

urally generate more spurious words. Fig. 24.35 shows htblighnore detailed version
of the 5 steps of the Model 3 generative story using thesenpateas.

1. for eachEnglish wordg, 1 < i < I, we choose a fertilityy with probabilityn(¢i|e)
2. Using these fertilities ang;, determinep, the number of spurious Spanish words, and
hencem.
3.foreachi,0 < i < |
foreachk, 1 < k < @
Choose a Spanish wordy with probabilityt(tik, &)
4.foreachi,1 < i < |
foreachk, 1 < k < @
Choose a target Spanish positimp with probabilityd (T, i, I, J)
5.foreachk, 1 < k < @
Choose a target Spanish positiogk from one of the available Spanish slots, for a
total probability of%

Figure 24.35 The Model 3 generative story for generating a Spanish seatiom an
English sentence. Remember that we are not translating Eioglish to Spanish; this is|
just the generative component of the noisy channel modedpfedi from Knight (1999b).
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(24.38)

Switching for a moment to the task of French to English tratiwh, Fig. 24.36
shows some of thé and @ parameters learned for French-English translation from
Brown et al. (1993). Note thdhein general translates to a French article likebut
sometimes it has a fertility of 0, indicating that Englislessan article where French
does not. Conversely, note thiairmersprefers a fertility of 2, and the most likely
translations aragriculteursandles, indicating that here French tends to use an article
where English does not.

the farmers not

(o] o n@ef t(fle [ @ n@e [ f__t(fle] ¢ n(ge)
le 0.497| 1 0.746|| agriculteurs 0.442 2 0.731| ne 0.497| 2 0.735
la 0.207| 0 0.254]| les 0.418 1 0.228|| pas 0.442 0 0.154
les 0.155 cultivateurs 0.046 0 0.039(| non 0.029 1 0.107
I 0.086 producteurs 0.021 rien 0.011
ce 0.018
cette 0.017]

Figure 24.36 Examples of Model 3 parameters from the Brown et al. (1998néh-

English translation system, for three English words. Nb# bothfarmersandnot are

likely to have fertilities of 2.

Now that we have seen the generative story for Model 3, lefilslbhe equation
for the probability assigned by the model. The model needsssigns a probability
P(F|E) of generating the Spanish sentefic&om the English sentende. As we did
with Model 1, we'll start by showing how the model gives thelpability P(F,A|E),
the probability of generating senten€evia a particular alignmen. Then we’ll sum
over all alignments to get the totB(F |E).

In order to comput®(F, A|E), we’'ll need to multiply the main three factomst,
andd, for generating words, translating them into Spanish, anding them around.
So afirst pass &(F, A|E) would be:

[ J J
[In(@le) < JJt(filesy) x [T dCilay.1,3)
i=1 =1 =1

But (24.38) isn’t sufficient as it stands; we need to add fadimr generating spu-
rious words, for inserting them into the available slotg] arfactor having to do with
the number of ways (permutations) a word can align with rpldtivords. Equation
(24.39) gives the true final equation for IBM Model 3, in Knighmodification of the
original formula. We won't give the details of these additibfactors, but encourage
the interested reader to see the original presentationrawBet al. (1993) and the very
clear explanation of the equation in Knight (1999b).

generate spurious insert spurious multi-align permutations
~ =

|
J— _ 1
P(F,AE) = ( (po“"’)pé 20 o [T
: i=0
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(24.39)

(24.40)

| J J
x[[n(ale) < [ Tt(filea) x T d(ilaj1,9)
i=1 j=1 j:aj#0
Once again, in order to get the total probability of the Sglarsentence we’'ll
need to we would sum over all possible alignments:

P(F|E) ZPFA|E

We can also make it more explicit exactly how we sum over atignts (and
also emphasize the incredibly large number of possibl@al@nts) by expressing this
formula as follows, where we specify an alignment by spéeifithe aligned English
a; for each of the) words in the foreign sentence:

P(F|E) ZZ ZPFA|E

a;=0ay=0

24.11.1 Training for Model 3

Given a parallel corpus, training the translation model®&W Model 3 means setting
values for then, d, t, andp; parameters.

As we noted for Model 1 and HMM models, if the training-corpuss hand-
labeled with perfect alignments, getting maximum likebldcestimates would be sim-
ple. Consider the probability(0|did) that a word likedid would have a zero fertility.
We could estimate this from an aligned corpus just by cogritie number of timedid
aligned to nothing, and normalize by the total countlisf. We can do similar things
for the thet translation probabilities. To train the distortion probigyp d(1,3,6,7), we
similarly count the number of times in the corpus that Ergli®rde; maps to Spanish
word f3 in English sentences of length 6 that are aligned to Sparistesces of length
7. Let’s call this counting function dcount. We'll again k& normalization factor;

dcount1,3,6,7)
S°I_,dcounti,3,6,7)

Finally, we need to estimatg;. Again, we look at all the aligned sentences in
the corpus; let's assume that in the Spanish sentencesaher® total ofN words.
From the alignments for each sentence, we determine thatlaofdS Spanish words
are spurious, i.e. aligned to English NULL. This- S of the words in the Spanish
sentences were generated by real English words. SftétheseN — SSpanish words,
we generate a spurious word. The probabifityis thusS/(N — S).

Of course, we don't have hand-alignments for Model 3. Wedéd to use EM
to learn the alignments and the probability model simulbarsdy. With Model 1 and
the HMM model, there were efficient ways to do training witheuplicitly summing
over all alignments. Unfortunately, this is not true for Mb@; we actually would
need to compute all possible alignments. For a real pairmtesees, with 20 English
words and 20 Spanish words, and allowing NULL and allowingjlfées, there are a
very large number of possible alignments (determining ttecenumber of possible
alignments is left as Exercise 24.7). Instead, we approbeérbs only considering

d(1,3,6,7) =
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the best few alignments. In order to find the best alignmeiitisoart looking at all
alignments, we can use an iterative or bootstrapping approl the first step, we
train the simpler IBM Model 1 or 2 as discussed above. Then seethese Model 2
parameters to evaluaRéA|E, F), giving a way to find the best alignments to bootstrap
Model 3. See Brown et al. (1993) and Knight (1999b) for dsetail

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Work on models of the process and goals of translation goek é@least to Saint
Jerome in the fourth century (Kelley, 1979). The developneénogical languages,
free of the imperfections of human languages, for reasooargectly and for com-
municating truths and thereby also for translation, has ipeesued at least since the
1600s (Hutchins, 1986).

By the late 1940s, scant years after the birth of the elertimmputer, the idea
of MT was raised seriously (Weaver, 1955). In 1954 the firdtligicdemonstration of
a MT system prototype (Dostert, 1955) led to great excitdrimethe press (Hutchins,
1997). The next decade saw a great flowering of ideas, préfigyuarost subsequent
developments. But this work was ahead of its time — implelaggonis were limited
by, for example, the fact that pending the development dfsdisere was no good way
to store dictionary information.

As high quality MT proved elusive (Bar-Hillel, 1960), a grimg consensus on
the need for better evaluation and more basic research imethdields of formal and
computational linguistics, culminating in the famous ALPAAutomatic Language
Processing Advisory Committee) report of 1966 (Pierce gtl&l66), led in the mid
1960s to a dramatic cut in funding for MT. As MT research |lastdemic respectabil-
ity, the Association for Machine Translation and Compuwtadil Linguistics dropped
MT from its name. Some MT developers, however, perseveted]ysand steadily
improving their systems, and slowly garnering more custsm8ystran in particular,
developed initially by Peter Toma, has been continuousfyroved over 40 years. Its
earliest uses were for information acquisition, for exaentp}y the U.S. Air Force for
Russian documents; and in 1976 an English-French editienagapted by the Euro-
pean Community for creating rough and post-editable tediogis of various adminis-
trative documents. Another early successful MT system wateM which translated
weather forecasts from English to French; incidentally,dtiginal implementation
(1976), used “Q-systems”, an early unification model.

The late 1970s saw the birth of another wave of academicastén MT. One
strand attempted to apply meaning-based techniques g@dtlor story understanding
and knowledge engineering (Carbonell et al., 1981). Thereewide discussions of
interlingual ideas through the late 1980s and early 1998sj{iT1986; Nirenburg et al.,
1992; Ward, 1994; Carbonell et al., 1992) Meanwhile MT usaggincreasing, fueled
by globalization, government policies requiring the ttatisn of all documents into
multiple official languages, and the proliferation of wombpessors and then personal
computers.

Modern statistical methods began to be applied in the e@904, enabled by
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CANDIDE

EGYPT

GIZA++

PHARAOH

MOSES

(24.41)

(24.42)

(24.43)

the development of large bilingual corpora and the growtlthefweb. Early on, a
number of researchers showed that it was possible to exaastof aligned sentences
from bilingual corpora (Kay and Roscheisen, 1988; ?; Brewal., 1991; Gale and
Church, 1991, 1993; Kay and Roscheisen, 1993). The egaligsrithms made use of
the words of the sentence as part of the alignment modelewltilers relied solely on
other cues like sentence length in words or characters.

At the same time, the IBM group, drawing directly on algarith for speech
recognition (many of which had themselves been developigihaily at IBM!) pro-
posed theCandide system, based on the IBM statistical models we have destribe
(Brown et al., 1990, 1993). These papers described the bilatie model and the
parameter estimation procedure. The decoding algorithenneaer published, but it
was described in a patent filing (Brown et al., 1995). The IBbtkhad a huge impact
on the research community, and by the turn of this centungmar most academic
research on machine translation was statistical. Prograssmade hugely easier by
the development of publicly-available toolkits, partaty tools extended from the
EGYPT toolkit developed by the Statistical Machine Translatiearh in during the
summer 1999 research workshop at the Center for Languageme®th Processing at
the Johns Hopkins University. These include @i&A++ aligner, developed by Franz
Josef Och by extending the GIZA toolkit (Och and Ney, 2003)iclv implements IBM
models 1-5 as well as the HMM alignment model.

Initially most research implementations focused on IBM Miag| but very quickly
researchers moved to phrase-based models. While thestahi@se-based translation
model was IBM Model 4 (Brown et al., 1993), modern models\defiom Och’s (?)
work on alignment templates Key phrase-based translation models include Marcu
and Wong (2002), ? (?). Venugopal et al. (2003), Koehn e28D38), Tillmann (2003)
Och and Ney (2004), Deng and Byrne (2005), and Kumar and B§zao@5), A fur-
ther extension to the EGYPT tools discussed above is a pyhbliailable phrase-based
stack decodePHARAOH , developed by Philipp Koehn (Koehn, 2004, 2003b), which
extended thé\* decoders of (Och et al., 2001) and Brown et al. (1995), anddineer
MOSES open-source MT toolkit (?).

While statistical MT was first based on the noisy channel madeuh recent
work combines the language and translation models in oritegw models, in which
we directly search for the sentence with the highest pastprobability:

E = argmaP(E|F)
E

This is done by modelin@(E|F) via a set ofM feature function$i,(E,F), each of
which has a parametay,. The translation probability is then:

eXp[ZL\rLl)\mhm(EaF)]
> e XA g Amhm(E', F)]
The best sentence is thus:
E = argEma>P(E|F)

P(E|F) =

M
= argEma>equ Amhm(E, F)]

m=1
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In practice, the noisy channel model factors (the languageti@nslation mod-
els), are still the most important feature functions in thg-linear model, but the ar-
chitecture has the advantage of allowing for arbitrary ofbatures as well. See Fos-
ter (2000), Och and Ney (2002, 2004) for details. Log-lineadels for MT can be
trained using the standard maximum mutual informatioredon. In more recent sys-
tems, however, the log-linear models are instead traindadatly optimize evaluation
metrics like Bleu (Och, 2003).

Other work on MT decoding includes th& decoders of Wang and Waibel
(1997) and Germann et al. (2001), and the polynomial-tinceder for binary-branching
stochastic transduction grammar of Wu (1996).

Modern research continues on sentence and word alignmesiasnore recent
algorithms include Moore (2002, 2005), Fraser and Marc0%2Callison-Burch et al.
(2005), Liu et al. (2005).

Research on evaluation of machine translation began qaitg. eMiller and
Beebe-Center (1958) proposed a number of methods drawingpdain psycholin-
guistics. These included the use of cloze and Shannon taskedsure intelligibility,
as well as a metric of edit distance from a human translatf@intuition that under-
lies all modern automatic evaluation metrics like Bleu. Fd?AC report included an
early evaluation study conducted by John Carroll that waemely influential (Pierce
etal., 1966, Appendix 10). Carroll proposed distinct meestor fidelity and intelligi-
bility, and had specially trained human raters score thdmjestively on 9-point scales.
More recent work on evaluation has focused on coming up witbraatic metrics, in-
clude the work on Bleu discussed in Sec. 24.9.2 (Papineni,e2@02), as well as
related measures liK8IST (Doddington, 2002)Precision and Recall(Turian et al.,
2003), andMETEOR (Banerjee and Lavie, 2005).

Good surveys of the early history of MT are Hutchins (1986]J 61097). The
textbook by Hutchins and Somers (1992) includes a wealthxafngles of language
phenomena that make translation difficult, and extensigerjaions of some histori-
cally significant MT systems. Nirenburg et al. (2002) is a poemensive collection of
classic readings in MT. (Knight, 1999b) is an excellent tizldntroduction to Statisti-
cal MT.

Academic papers on machine translation appear in standardjdurnals and
conferences, as well as in the jourhd@chine Translatiorand in the proceedings of
various conferences, including MT Summit, organized byitibernational Association
for Machine Translation, the individual conferences offit®e regional divisions, (As-
sociation for MT in the Americas — AMTA, European Associatior MT — EAMT,
and Asia-Pacific Association for MT — AAMT), and the Confeceron Theoretical and
Methodological Issue in Machine Translation (TMI).

EXERCISES

24.1 Select at random a paragraph of Ch. 11 which describes alfacit &nglish
syntax. a) Describe and illustrate how your favorite foneignguage differs in this
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respect. b) Explain how a MT system could deal with this défee.

24.2 Choose a foreign language novel in a language you know. Copn the short-
est sentence on the first page. Now look up the rendition ¢stiratence in an English
translation of the novel. a) For both original and translatidraw parse trees. b) For
both original and translation, draw dependency structu@<Draw a case structure
representation of the meaning which the original and tediwsi share. d) What does
this exercise suggest to you regarding intermediate reptagons for MT?

24.3 Version 1 (for native English speakers): Consider the foilhg sentence:

These lies are like their father that begets them; gross asuatain, open, pal-
pable.
Henry IV, Part 1, act 2, scene 2

Translate this sentence into some dialect of modern velaa&mnglish. For
example, you might translate it into the style of a New Yorkn&s editorial or an
Economist opinion piece, or into the style of your favoréevision talk-show host.

Version 2 (for native speakers of other languages): Tramstee following sen-
tence into your native language.

One night my friend Tom, who had just moved into a new apartmsaw a
cockroach scurrying about in the kitchen.

For either version, now:

a) Describe how you did the translation: What steps did yatop@? In what
order did you do them? Which steps took the most time? b) Cauldvrite a program
that would translate using the same methods that you did? aWiaghy not? c) What
aspects were hardest for you? Would they be hard for a MT sy What aspects
would be hardest for a MT system? are they hard for people g)o®hich models
are best for describing various aspects of your processditransfer, interlingua
or statistical)? f) Now compare your translation with thgeeduced by friends or
classmates. What is different? Why were the translatioffisrdnt?

24.4 Type a sentence into a MT system (perhaps a free demo on theandlsee
what it outputs. a) List the problems with the translatior). Rank these problems
in order of severity. ¢) For the two most severe problemsgeagthe probable root
cause.

24.5 Build a very simple direct MT system for translating from sstanguage you
know at least somewhat into English (or into a language irctvlyiou are relatively
fluent), as follows. First, find some good test sentencesisthirce language. Reserve
half of these as a development test set, and half as an uresteset. Next, acquire a
bilingual dictionary for these two languages (for many laages, limited dictionaries
can be found on the web that will be sufficient for this exexri&¥our program should
translate each word by looking up its translation in youtiditary. You may need
to implement some stemming or simple morphological anslylliext, examine your
output, and do a preliminary error analysis on the develoyrtest set. What are
the major sources of error? Write some general rules forecting the translation
mistakes. You will probably want to run a part-of-speechytgn the English output,
if you have one. Then see how well your system runs on theéeést s
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24.6 Continue the calculations for the EM example on page 29ppmihg the sec-
ond and third round of E-steps and M-steps.

24.7 (Derived from Knight (1999b)) How many possible Model 3 aligents are
there between a 20-word English sentence and a 20-word S$ps@ntence, allowing

for NULL and fertilities?
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