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5
WORD CLASSES AND
PART-OF-SPEECH
TAGGING

Conjunction Junction, what’s your function?
Bob Dorough,Schoolhouse Rock, 1973

There are ten parts of speech, and they are all troublesome.
Mark Twain,The Awful German Language

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (exact au-
thorship being understandably difficult to be sure of with texts of this vintage), wrote
a grammatical sketch of Greek (a “techn̄e”) which summarized the linguistic knowl-
edge of his day. This work is the direct source of an astonishing proportion of our
modern linguistic vocabulary, including among many other words,syntax, diphthong,
clitic, andanalogy. Also included are a description of eightparts-of-speech: noun,PARTS­OF­SPEECH

verb, pronoun, preposition, adverb, conjunction, participle, and article. Although ear-
lier scholars (including Aristotle as well as the Stoics) had their own lists of parts-of-
speech, it was Thrax’s set of eight which became the basis forpractically all subsequent
part-of-speech descriptions of Greek, Latin, and most European languages for the next
2000 years.

Schoolhouse Rock was a popular series of 3-minute musical animated clips first
aired on television in 1973. The series was designed to inspire kids to learn multipli-
cation tables, grammar, and basic science and history. The Grammar Rock sequence,
for example, included songs about parts-of-speech, thus bringing these categories into
the realm of popular culture. As it happens, Grammar Rock wasremarkably tradi-
tional in its grammatical notation, including exactly eight songs about parts-of-speech.
Although the list was slightly modified from Thrax’s original, substituting adjective
and interjection for the original participle and article, the astonishing durability of the
parts-of-speech through two millenia is an indicator of both the importance and the
transparency of their role in human language.

More recent lists of parts-of-speech (ortagsets) have many more word classes;TAGSETS

45 for the Penn Treebank (Marcus et al., 1993), 87 for the Brown corpus (Francis,
1979; Francis and Kučera, 1982), and 146 for the C7 tagset (Garside et al., 1997).

The significance of parts-of-speech (also known asPOS, word classes, mor-POS

phological classes, or lexical tags) for language processing is the large amount of
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information they give about a word and its neighbors. This isclearly true for major
categories, (verb versusnoun), but is also true for the many finer distinctions. For
example these tagsets distinguish between possessive pronouns (my, your, his, her,
its) and personal pronouns (I, you, he, me). Knowing whether a word is a possessive
pronoun or a personal pronoun can tell us what words are likely to occur in its vicinity
(possessive pronouns are likely to be followed by a noun, personal pronouns by a verb).
This can be useful in a language model for speech recognition.

A word’s part-of-speech can tell us something about how the word is pronounced.
As Ch. 8 will discuss, the wordcontent, for example, can be a noun or an adjective.
They are pronounced differently (the noun is pronouncedCONtentand the adjective
conTENT). Thus knowing the part-of-speech can produce more naturalpronunciations
in a speech synthesis system and more accuracy in a speech recognition system. (Other
pairs like this includeOBject (noun) andobJECT(verb), DIScount(noun) anddis-
COUNT(verb); see Cutler (1986)).

Parts-of-speech can also be used in stemming for informational retrieval (IR),
since knowing a word’s part-of-speech can help tell us whichmorphological affixes it
can take, as we saw in Chapter 3. They can also enhance an IR application by selecting
out nouns or other important words from a document. Automatic assignment of part-
of-speech plays a role in word-sense disambiguation algorithms, and in class-based
N-gram language models for speech recognition, discussed in Ch. 4. Parts-of-speech
are used in shallow parsing of texts to quickly find names, times, dates, or other named
entities for the information extraction applications discussed in Ch. 17. Finally, cor-
pora that have been marked for parts-of-speech are very useful for linguistic research.
For example, they can be used to help find instances or frequencies of particular con-
structions.

This chapter focuses on computational methods for assigning parts-of-speech to
words (part-of-speech tagging). Many algorithms have been applied to this problem,
including hand-written rules (rule-based tagging), probabilistic methods (HMM tag-
gingandmaximum entropy tagging), as well as other methods such astransformation-
based taggingandmemory-based tagging. We will introduce three of these algo-
rithms in this chapter: rule-based tagging, HMM tagging, and transformation-based
tagging. But before turning to the algorithms themselves, let’s begin with a summary
of English word classes, and of various tagsets for formallycoding these classes.

5.1 (MOSTLY) ENGLISH WORD CLASSES

Well, every person you can know,
And every place that you can go,
And anything that you can show,
You know they’re nouns.

Lynn Ahrens,Schoolhouse Rock, 1973

Until now we have been using part-of-speech terms likenoun andverb rather
freely. In this section we give a more complete definition of these and other classes.
Traditionally the definition of parts-of-speech has been based on syntactic and morpho-
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logical function; words that function similarly with respect to what can occur nearby
(their “syntactic distributional properties”), or with respect to the affixes they take (their
morphological properties) are grouped into classes. Whileword classes do have ten-
dencies toward semantic coherence (nouns do in fact often describe “people, places or
things”, and adjectives often describe properties), this is not necessarily the case, and in
general we don’t use semantic coherence as a definitional criterion for parts-of-speech.

Parts-of-speech can be divided into two broad supercategories: closed classCLOSED CLASS

types andopen classtypes. Closed classes are those that have relatively fixed member-OPEN CLASS

ship. For example, prepositions are a closed class because there is a fixed set of them
in English; new prepositions are rarely coined. By contrastnouns and verbs are open
classes because new nouns and verbs are continually coined or borrowed from other
languages (e.g., the new verbto faxor the borrowed nounfuton). It is likely that any
given speaker or corpus will have different open class words, but all speakers of a lan-
guage, and corpora that are large enough, will likely share the set of closed class words.
Closed class words are also generallyfunction words like of, it, and, or you, whichFUNCTION WORDS

tend to be very short, occur frequently, and often have structuring uses in grammar.
There are four major open classes that occur in the languagesof the world;

nouns, verbs, adjectives, andadverbs. It turns out that English has all four of these,
although not every language does.

Noun is the name given to the syntactic class in which the words formost peo-NOUN

ple, places, or things occur. But since syntactic classes like noun are defined syntac-
tically and morphologically rather than semantically, some words for people, places,
and things may not be nouns, and conversely some nouns may notbe words for people,
places, or things. Thus nouns include concrete terms likeshipandchair, abstractions
like bandwidthand relationship, and verb-like terms likepacingas inHis pacing to
and fro became quite annoying. What defines a noun in English, then, are things like
its ability to occur with determiners (a goat, its bandwidth, Plato’s Republic), to take
possessives (IBM’s annual revenue), and for most but not all nouns, to occur in the
plural form (goats, abaci).

Nouns are traditionally grouped intoproper nounsandcommon nouns. ProperPROPER NOUNS

COMMON NOUNS nouns, likeRegina, Colorado, andIBM, are names of specific persons or entities. In
English, they generally aren’t preceded by articles (e.g.,the book is upstairs, butRegina
is upstairs). In written English, proper nouns are usually capitalized.

In many languages, including English, common nouns are divided intocount
nouns and mass nouns. Count nouns are those that allow grammatical enumera-COUNT NOUNS

MASS NOUNS tion; that is, they can occur in both the singular and plural (goat/goats, relation-
ship/relationships) and they can be counted (one goat, two goats). Mass nouns are
used when something is conceptualized as a homogeneous group. So words likesnow,
salt, andcommunismare not counted (i.e.,*two snowsor *two communisms). Mass
nouns can also appear without articles where singular countnouns cannot (Snow is
whitebut not*Goat is white).

The verb class includes most of the words referring to actions and processes,VERB

including main verbs likedraw, provide, differ, andgo. As we saw in Ch. 3, English
verbs have a number of morphological forms (non-3rd-person-sg (eat), 3rd-person-sg
(eats), progressive (eating), past participle (eaten)). A subclass of English verbs called
auxiliaries will be discussed when we turn to closed class forms.AUXILIARIES
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While many researchers believe that all human languages have the categories of
noun and verb, others have argued that some languages, such as Riau Indonesian and
Tongan, don’t even make this distinction (Broschart, 1997;Evans, 2000; Gil, 2000).

The third open class English form is adjectives; semantically this class includes
many terms that describe properties or qualities. Most languages have adjectives for
the concepts of color (white, black), age (old, young), and value (good, bad), but there
are languages without adjectives. In Korean, for example, the words corresponding
to English adjectives act as a subclass of verbs, so what is inEnglish an adjective
‘beautiful’ acts in Korean like a verb meaning ‘to be beautiful’ (Evans, 2000).

The final open class form,adverbs, is rather a hodge-podge, both semanticallyADVERBS

and formally. For example Schachter (1985) points out that in a sentence like the
following, all the italicized words are adverbs:

Unfortunately, John walkedhome extremely slowly yesterday

What coherence the class has semantically may be solely thateach of these words
can be viewed as modifying something (often verbs, hence thename “adverb”, but
also other adverbs and entire verb phrases).Directional adverbs or locative adverbsLOCATIVE

(home, here, downhill) specify the direction or location of some action;degree adverbsDEGREE

(extremely, very, somewhat) specify the extent of some action, process, or property;
manner adverbs(slowly, slinkily, delicately) describe the manner of some action orMANNER

process; andtemporal adverbsdescribe the time that some action or event took placeTEMPORAL

(yesterday, Monday). Because of the heterogeneous nature of this class, some adverbs
(for example temporal adverbs likeMonday) are tagged in some tagging schemes as
nouns.

The closed classes differ more from language to language than do the open
classes. Here’s a quick overview of some of the more important closed classes in
English, with a few examples of each:

• prepositions: on, under, over, near, by, at, from, to, with
• determiners: a, an, the
• pronouns: she, who, I, others
• conjunctions: and, but, or, as, if, when
• auxiliary verbs: can, may, should, are
• particles: up, down, on, off, in, out, at, by,
• numerals: one, two, three, first, second, third

Prepositionsoccur before noun phrases; semantically they are relational, oftenPREPOSITIONS

indicating spatial or temporal relations, whether literal(on it, before then, by the house)
or metaphorical (on time, with gusto, beside herself). But they often indicate other
relations as well (Hamlet was written byShakespeare, and [from Shakespeare] “And I
did laugh sansintermission an hour byhis dial”). Fig. 5.1 shows the prepositions of
English according to the CELEX on-line dictionary (Baayen et al., 1995), sorted by
their frequency in the COBUILD 16 million word corpus of English. Fig. 5.1 should
not be considered a definitive list, since different dictionaries and tagsets label word
classes differently. Furthermore, this list combines prepositions and particles.

A particle is a word that resembles a preposition or an adverb, and is used inPARTICLE

combination with a verb. When a verb and a particle behave as asingle syntactic and/or
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of 540,085 through 14,964 worth 1,563 pace 12
in 331,235 after 13,670 toward 1,390 nigh 9
for 142,421 between 13,275 plus 750 re 4
to 125,691 under 9,525 till 686 mid 3
with 124,965 per 6,515 amongst 525 o’er 2
on 109,129 among 5,090 via 351 but 0
at 100,169 within 5,030 amid 222 ere 0
by 77,794 towards 4,700 underneath 164 less 0
from 74,843 above 3,056 versus 113 midst 0
about 38,428 near 2,026 amidst 67 o’ 0
than 20,210 off 1,695 sans 20 thru 0
over 18,071 past 1,575 circa 14 vice 0

Figure 5.1 Prepositions (and particles) of English from the CELEX on-line dictionary.
Frequency counts are from the COBUILD 16 million word corpus.

semantic unit, we call the combination aphrasal verb. Phrasal verbs can behave as aPHRASAL VERB

semantic unit; thus they often have a meaning that is not predictable from the separate
meanings of the verb and the particle. Thusturn downmeans something like ‘reject’,
rule outmeans ‘eliminate’,find outis ‘discover’, andgo onis ‘continue’; these are not
meanings that could have been predicted from the meanings ofthe verb and the particle
independently. Here are some examples of phrasal verbs fromThoreau:

So Iwent onfor some days cutting and hewing timber. . .
Moral reform is the effort tothrow offsleep. . .

Particles don’t always occur with idiomatic phrasal verb semantics; here are
more examples of particles from the Brown corpus:

. . . she had turned the paperover.
He arose slowly and brushed himselfoff.
He packeduphis clothes.

We show in Fig. 5.2 a list of single-word particles from Quirket al. (1985). Since
it is extremely hard to automatically distinguish particles from prepositions, some
tagsets (like the one used for CELEX) do not distinguish them, and even in corpora
that do (like the Penn Treebank) the distinction is very difficult to make reliably in an
automatic process, so we do not give counts.

aboard aside besides forward(s) opposite through
about astray between home out throughout
above away beyond in outside together
across back by inside over under
ahead before close instead overhead underneath
alongside behind down near past up
apart below east, etc. off round within
around beneath eastward(s),etc. on since without

Figure 5.2 English single-word particles from Quirk et al. (1985).

A closed class that occurs with nouns, often marking the beginning of a noun
phrase, is thedeterminers. One small subtype of determiners is thearticles: EnglishDETERMINERS

ARTICLES
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has three articles:a, an, andthe. Other determiners includethis (as inthis chapter) and
that (as inthat page). A andan mark a noun phrase as indefinite, whilethecan mark
it as definite; definiteness is a discourse and semantic property that will be discussed
in Ch. 20. Articles are quite frequent in English; indeedthe is the most frequently
occurring word in most corpora of written English. Here are COBUILD statistics,
again out of 16 million words:

the: 1,071,676 a: 413,887 an: 59,359

Conjunctions are used to join two phrases, clauses, or sentences. CoordinatingCONJUNCTIONS

conjunctions likeand, or, andbut, join two elements of equal status. Subordinating
conjunctions are used when one of the elements is of some sortof embedded status.
For examplethat in “I thought that you might like some milk”is a subordinating con-
junction that links the main clauseI thoughtwith the subordinate clauseyou might like
some milk. This clause is called subordinate because this entire clause is the “content”
of the main verbthought. Subordinating conjunctions likethat which link a verb to its
argument in this way are also calledcomplementizers. Ch. 11 and Ch. 13 will discussCOMPLEMENTIZERS

complementation in more detail. Table 5.3 lists English conjunctions.

and 514,946 yet 5,040 considering 174 forasmuch as 0
that 134,773 since 4,843 lest 131 however 0
but 96,889 where 3,952 albeit 104 immediately 0
or 76,563 nor 3,078 providing 96 in as far as 0
as 54,608 once 2,826 whereupon 85 in so far as 0
if 53,917 unless 2,205 seeing 63 inasmuch as 0
when 37,975 why 1,333 directly 26 insomuch as 0
because 23,626 now 1,290 ere 12 insomuch that 0
so 12,933 neither 1,120 notwithstanding 3 like 0
before 10,720 whenever 913 according as 0 neither nor 0
though 10,329 whereas 867 as if 0 now that 0
than 9,511 except 864 as long as 0 only 0
while 8,144 till 686 as though 0 provided that 0
after 7,042 provided 594 both and 0 providing that 0
whether 5,978 whilst 351 but that 0 seeing as 0
for 5,935 suppose 281 but then 0 seeing as how 0
although 5,424 cos 188 but then again 0 seeing that 0
until 5,072 supposing 185 either or 0 without 0

Figure 5.3 Coordinating and subordinating conjunctions of English from CELEX. Fre-
quency counts are from COBUILD (16 million words).

Pronounsare forms that often act as a kind of shorthand for referring to somePRONOUNS

noun phrase or entity or event.Personal pronounsrefer to persons or entities (you,PERSONAL

she, I, it, me, etc.).Possessive pronounsare forms of personal pronouns that indicatePOSSESSIVE

either actual possession or more often just an abstract relation between the person and
some object (my, your, his, her, its, one’s, our, their). Wh-pronouns (what, who,WH

whom, whoever) are used in certain question forms, or may also act as complementizers
(Frieda, who I met five years ago . . .). Table 5.4 shows English pronouns, again from
CELEX.

A closed class subtype of English verbs are theauxiliary verbs. Crosslinguistically,AUXILIARY

auxiliaries are words (usually verbs) that mark certain semantic features of a main verb,
including whether an action takes place in the present, pastor future (tense), whether
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it 199,920 how 13,137 yourself 2,437 no one 106
I 198,139 another 12,551 why 2,220 wherein 58
he 158,366 where 11,857 little 2,089 double 39
you 128,688 same 11,841 none 1,992 thine 30
his 99,820 something 11,754 nobody 1,684 summat 22
they 88,416 each 11,320 further 1,666 suchlike 18
this 84,927 both 10,930 everybody 1,474 fewest 15
that 82,603 last 10,816 ourselves 1,428 thyself 14
she 73,966 every 9,788 mine 1,426 whomever 11
her 69,004 himself 9,113 somebody 1,322 whosoever 10
we 64,846 nothing 9,026 former 1,177 whomsoever 8
all 61,767 when 8,336 past 984 wherefore 6
which 61,399 one 7,423 plenty 940 whereat 5
their 51,922 much 7,237 either 848 whatsoever 4
what 50,116 anything 6,937 yours 826 whereon 2
my 46,791 next 6,047 neither 618 whoso 2
him 45,024 themselves 5,990 fewer 536 aught 1
me 43,071 most 5,115 hers 482 howsoever 1
who 42,881 itself 5,032 ours 458 thrice 1
them 42,099 myself 4,819 whoever 391 wheresoever 1
no 33,458 everything 4,662 least 386 you-all 1
some 32,863 several 4,306 twice 382 additional 0
other 29,391 less 4,278 theirs 303 anybody 0
your 28,923 herself 4,016 wherever 289 each other 0
its 27,783 whose 4,005 oneself 239 once 0
our 23,029 someone 3,755 thou 229 one another 0
these 22,697 certain 3,345 ’un 227 overmuch 0
any 22,666 anyone 3,318 ye 192 such and such 0
more 21,873 whom 3,229 thy 191 whate’er 0
many 17,343 enough 3,197 whereby 176 whenever 0
such 16,880 half 3,065 thee 166 whereof 0
those 15,819 few 2,933 yourselves 148 whereto 0
own 15,741 everyone 2,812 latter 142 whereunto 0
us 15,724 whatever 2,571 whichever 121 whichsoever 0

Figure 5.4 Pronouns of English from the CELEX on-line dictionary. Frequency counts
are from the COBUILD 16 million word corpus.

it is completed (aspect), whether it is negated (polarity),and whether an action is nec-
essary, possible, suggested, desired, etc. (mood).

English auxiliaries include thecopulaverbbe, the two verbsdoandhave, alongCOPULA

with their inflected forms, as well as a class ofmodal verbs. Be is called a copulaMODAL

because it connects subjects with certain kinds of predicate nominals and adjectives (He
is a duck). The verbhaveis used for example to mark the perfect tenses (I havegone,
I had gone), while be is used as part of the passive (We wererobbed), or progressive
(We areleaving) constructions. The modals are used to mark the mood associated with
the event or action depicted by the main verb. Socan indicates ability or possibility,
may indicates permission or possibility,mustindicates necessity, and so on. Fig. 5.5
gives counts for the frequencies of the modals in English. Inaddition to the perfect
havementioned above, there is a modal verbhave(e.g.,I haveto go), which is very
common in spoken English. Neither it nor the modal verbdare, which is very rare,
have frequency counts because the CELEX dictionary does notdistinguish the main
verb sense (I have three oranges, He daredme to eat them), from the modal sense
(There hasto be some mistake, Dare I confront him?), from the non-modal auxiliary
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verb sense (I havenever seen that).

can 70,930 might 5,580 shouldn’t 858
will 69,206 couldn’t 4,265 mustn’t 332
may 25,802 shall 4,118 ’ll 175
would 18,448 wouldn’t 3,548 needn’t 148
should 17,760 won’t 3,100 mightn’t 68
must 16,520 ’d 2,299 oughtn’t 44
need 9,955 ought 1,845 mayn’t 3
can’t 6,375 will 862 dare, have ???

Figure 5.5 English modal verbs from the CELEX on-line dictionary. Frequency counts
are from the COBUILD 16 million word corpus.

English also has many words of more or less unique function, includinginterjec-
tions (oh, ah, hey, man, alas, uh, um), negatives(no, not), politeness markers(please,INTERJECTIONS

NEGATIVES

POLITENESS
MARKERS

thank you), greetings(hello, goodbye), and the existentialthere (thereare two on the
table) among others. Whether these classes are assigned particular names or lumped
together (as interjections or even adverbs) depends on the purpose of the labeling.

5.2 TAGSETS FORENGLISH

The previous section gave broad descriptions of the kinds ofsyntactic classes that En-
glish words fall into. This section fleshes out that sketch bydescribing the actual tagsets
used in part-of-speech tagging, in preparation for the various tagging algorithms to be
described in the following sections.

There are a small number of popular tagsets for English, manyof which evolved
from the 87-tag tagset used for the Brown corpus (Francis, 1979; Francis and Kučera,
1982). The Brown corpus is a 1 million word collection of samples from 500 writ-
ten texts from different genres (newspaper, novels, non-fiction, academic, etc.) which
was assembled at Brown University in 1963–1964 (Kučera andFrancis, 1967; Francis,
1979; Francis and Kučera, 1982). This corpus was tagged with parts-of-speech by first
applying the TAGGIT program and then hand-correcting the tags.

Besides this original Brown tagset, two of the most commonlyused tagsets are
the small 45-tag Penn Treebank tagset (Marcus et al., 1993),and the medium-sized
61 tag C5 tagset used by the Lancaster UCREL project’s CLAWS (the Constituent
Likelihood Automatic Word-tagging System) tagger to tag the British National Corpus
(BNC) (Garside et al., 1997). We give all three of these tagsets here, focusing on the
smallest, the Penn Treebank set, and discuss difficult tagging decisions in that tag set
and some useful distinctions made in the larger tagsets.

The Penn Treebank tagset, shown in Fig. 5.6, has been appliedto the Brown
corpus, the Wall Street Journal corpus, and the Switchboardcorpus among others;
indeed, perhaps partly because of its small size, it is one ofthe most widely used
tagsets. Here are some examples of tagged sentences from thePenn Treebank version
of the Brown corpus (we will represent a tagged word by placing the tag after each
word, delimited by a slash):
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Tag Description Example Tag Description Example

CC Coordin. Conjunction and, but, or SYM Symbol + ,%, &
CD Cardinal number one, two, three TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VBD Verb, past tense ate
IN Preposition/sub-conj of, in, by VBG Verb, gerund eating
JJ Adjective yellow VBN Verb, past participle eaten
JJR Adj., comparative bigger VBP Verb, non-3sg pres eat
JJS Adj., superlative wildest VBZ Verb, 3sg pres eats
LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass llama WP$ Possessive wh- whose
NNS Noun, plural llamas WRB Wh-adverb how, where
NNP Proper noun, singular IBM $ Dollar sign $
NNPS Proper noun, plural Carolinas # Pound sign #
PDT Predeterminer all, both “ Left quote (‘ or “)
POS Possessive ending ’s ” Right quote (’ or ”)
PRP Personal pronoun I, you, he ( Left parenthesis ( [, (,{, <)
PRP$ Possessive pronoun your, one’s ) Right parenthesis ( ], ),}, >)
RB Adverb quickly, never , Comma ,
RBR Adverb, comparative faster . Sentence-final punc (. ! ?)
RBS Adverb, superlative fastest : Mid-sentence punc (: ; ... – -)
RP Particle up, off

Figure 5.6 Penn Treebank part-of-speech tags (including punctuation).

(5.1) The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ
topics/NNS ./.

(5.2) There/EX are/VBP 70/CD children/NNSthere/RB

(5.3) Although/IN preliminary/JJ findings/NNS were/VBDreported/VBN more/RBR
than/IN a/DT year/NN ago/IN ,/, the/DT latest/JJS results/NNS appear/VBP in/IN
today/NN’s/POSNew/NNP England/NNP Journal/NNP of/IN Medicine/NNP ,/,

Example (5.1) shows phenomena that we discussed in the previous section; the
determinerstheanda, the adjectivesgrandandother, the common nounsjury, num-
ber, andtopics, the past tense verbcommented. Example (5.2) shows the use of the EX
tag to mark the existentialthereconstruction in English, and, for comparison, another
use oftherewhich is tagged as an adverb (RB). Example (5.3) shows the segmenta-
tion of the possessive morpheme’s, and shows an example of a passive construction,
‘were reported’, in which the verbreportedis marked as a past participle (VBN), rather
than a simple past (VBD). Note also that the proper nounNew Englandis tagged NNP.
Finally, note that sinceNew England Journal of Medicineis a proper noun, the Tree-
bank tagging chooses to mark each noun in it separately as NNP, includingjournal and
medicine, which might otherwise be labeled as common nouns (NN).

Some tagging distinctions are quite hard for both humans andmachines to make.
For example prepositions (IN), particles (RP), and adverbs(RB) can have a large over-
lap. Words likearoundcan be all three:



DRAFT

10 Chapter 5. Word Classes and Part-of-Speech Tagging

(5.4) Mrs./NNP Shaefer/NNP never/RB got/VBDaround/RP to/TO joining/VBG

(5.5) All/DT we/PRP gotta/VBN do/VB is/VBZ go/VBaround/IN the/DT corner/NN

(5.6) Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

Making these decisions requires sophisticated knowledge of syntax; tagging
manuals (Santorini, 1990) give various heuristics that canhelp human coders make
these decisions, and that can also provide useful features for automatic taggers. For
example two heuristics from Santorini (1990) are that prepositions generally are asso-
ciated with a following noun phrase (although they also may be followed by preposi-
tional phrases), and that the wordaround is tagged as an adverb when it means “ap-
proximately”. Furthermore, while particles often can either precede or follow a noun
phrase object, as in the following examples:

(5.7) She told off/RP her friends

(5.8) She told her friends off/RP.

prepositions cannot follow their noun phrase (* is used hereto mark an ungrammatical
sentence, a concept which we will return to in Ch. 11):

(5.9) She stepped off/IN the train

(5.10) *She stepped the train off/IN.

Another difficulty is labeling the words that can modify nouns. Sometimes the
modifiers preceding nouns are common nouns likecottonbelow, other times the Tree-
bank tagging manual specifies that modifiers be tagged as adjectives (for example if
the modifier is a hyphenated common noun likeincome-tax) and other times as proper
nouns (for modifiers which are hyphenated proper nouns likeGramm-Rudman):

(5.11) cotton/NN sweater/NN

(5.12) income-tax/JJ return/NN

(5.13) the/DT Gramm-Rudman/NP Act/NP

Some words that can be adjectives, common nouns, or proper nouns, are tagged
in the Treebank as common nouns when acting as modifiers:

(5.14) Chinese/NN cooking/NN

(5.15) Pacific/NN waters/NNS

A third known difficulty in tagging is distinguishing past participles (VBN) from
adjectives (JJ). A word likemarried is a past participle when it is being used in an
eventive, verbal way, as in (5.16) below, and is an adjectivewhen it is being used to
express a property, as in (5.17):

(5.16) They were married/VBN by the Justice of the Peace yesterday at 5:00.

(5.17) At the time, she was already married/JJ.

Tagging manuals like Santorini (1990) give various helpfulcriteria for deciding
how ‘verb-like’ or ‘eventive’ a particular word is in a specific context.

The Penn Treebank tagset was culled from the original 87-tagtagset for the
Brown corpus. This reduced set leaves out information that can be recovered from
the identity of the lexical item. For example the original Brown and C5 tagsets include
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a separate tag for each of the different forms of the verbsdo (e.g. C5 tag “VDD” for
did and “VDG” for doing), be, andhave. These were omitted from the Treebank set.

Certain syntactic distinctions were not marked in the Penn Treebank tagset be-
cause Treebank sentences were parsed, not merely tagged, and so some syntactic in-
formation is represented in the phrase structure. For example, the single tag IN is
used for both prepositions and subordinating conjunctionssince the tree-structure of
the sentence disambiguates them (subordinating conjunctions always precede clauses,
prepositions precede noun phrases or prepositional phrases). Most tagging situations,
however, do not involve parsed corpora; for this reason the Penn Treebank set is not
specific enough for many uses. The original Brown and C5 tagsets, for example, dis-
tinguish prepositions (IN) from subordinating conjunctions (CS), as in the following
examples:

(5.18) after/CS spending/VBG a/AT few/AP days/NNS at/IN the/AT Brown/NP Palace/NN
Hotel/NN

(5.19) after/IN a/AT wedding/NN trip/NN to/IN Corpus/NP Christi/NP ./.

The original Brown and C5 tagsets also have two tags for the word to; in Brown
the infinitive use is tagged TO, while the prepositional use as IN:

(5.20) to/TO give/VB priority/NN to/IN teacher/NN pay/NN raises/NNS

Brown also has the tag NR for adverbial nouns likehome, west, Monday, and
tomorrow. Because the Treebank lacks this tag, it has a much less consistent policy
for adverbial nouns;Monday, Tuesday, and other days of the week are marked NNP,
tomorrow, west, andhomeare marked sometimes as NN, sometimes as RB. This makes
the Treebank tagset less useful for high-level NLP tasks like the detection of time
phrases.

Nonetheless, the Treebank tagset has been the most widely used in evaluating
tagging algorithms, and so many of the algorithms we describe below have been eval-
uated mainly on this tagset. Of course whether a tagset is useful for a particular appli-
cation depends on how much information the application needs.

5.3 PART-OF-SPEECHTAGGING

Part-of-speech tagging (or justtagging for short) is the process of assigning a part-TAGGING

of-speech or other syntactic class marker to each word in a corpus. Because tags are
generally also applied to punctuation, tagging requires that the punctuation marks (pe-
riod, comma, etc) be separated off of the words. Thustokenization of the sort de-
scribed in Ch. 3 is usually performed before, or as part of, the tagging process, separat-
ing commas, quotation marks, etc., from words, and disambiguating end-of-sentence
punctuation (period, question mark, etc) from part-of-word punctuation (such as in
abbreviations likee.g.andetc.)

The input to a tagging algorithm is a string of words and a specified tagset of the
kind described in the previous section. The output is a single best tag for each word. For
example, here are some sample sentences from the ATIS corpusof dialogues about air-
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Tag Description Example
( opening parenthesis (, [
) closing parenthesis ),]
* negator not n’t
, comma ,
– dash –
. sentence terminator . ; ? !
: colon :
ABL pre-qualifier quite, rather, such
ABN pre-quantifier half, all,
ABX pre-quantifier, double conjunction both
AP post-determiner many, next, several, last
AT article a the an no a every
BE/BED/BEDZ/BEG/BEM/BEN/BER/BEZ be/were/was/being/am/been/are/is
CC coordinating conjunction and or but either neither
CD cardinal numeral two, 2, 1962, million
CS subordinating conjunction that as after whether before
DO/DOD/DOZ do, did, does
DT singular determiner, this, that
DTI singular or plural determiner some, any
DTS plural determiner these those them
DTX determiner, double conjunction either, neither
EX existential there there
HV/HVD/HVG/HVN/HVZ have, had, having, had, has
IN preposition of in for by to on at
JJ adjective
JJR comparative adjective better, greater, higher, larger, lower
JJS semantically superlative adj. main, top, principal, chief, key, foremost
JJT morphologically superlative adj. best, greatest, highest, largest, latest, worst
MD modal auxiliary would, will, can, could, may, must, should
NN (common) singular or mass noun time, world, work, school, family, door
NN$ possessive singular common noun father’s, year’s, city’s, earth’s
NNS plural common noun years, people, things, children, problems
NNS$ possessive plural noun children’s, artist’s parent’s years’
NP singular proper noun Kennedy, England, Rachel, Congress
NP$ possessive singular proper noun Plato’s Faulkner’s Viola’s
NPS plural proper noun Americans Democrats Belgians Chinese Sox
NPS$ possessive plural proper noun Yankees’, Gershwins’ Earthmen’s
NR adverbial noun home, west, tomorrow, Friday, North,
NR$ possessive adverbial noun today’s, yesterday’s, Sunday’s, South’s
NRS plural adverbial noun Sundays Fridays
OD ordinal numeral second, 2nd, twenty-first, mid-twentieth
PN nominal pronoun one, something, nothing, anyone, none,
PN$ possessive nominal pronoun one’s someone’s anyone’s
PP$ possessive personal pronoun his their her its my our your
PP$$ second possessive personal pronounmine, his, ours, yours, theirs
PPL singular reflexive personal pronoun myself, herself
PPLS plural reflexive pronoun ourselves, themselves
PPO objective personal pronoun me, us, him
PPS 3rd. sg. nominative pronoun he, she, it
PPSS other nominative pronoun I, we, they
QL qualifier very, too, most, quite, almost, extremely
QLP post-qualifier enough, indeed
RB adverb
RBR comparative adverb later, more, better, longer, further
RBT superlative adverb best, most, highest, nearest
RN nominal adverb here, then

Figure 5.7 First part of original 87-tag Brown corpus tagset (Francis and Kučera, 1982).
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Tag Description Example
RP adverb or particle across, off, up
TO infinitive marker to
UH interjection, exclamation well, oh, say, please, okay, uh, goodbye
VB verb, base form make, understand, try, determine, drop
VBD verb, past tense said, went, looked, brought, reached kept
VBG verb, present participle, gerund getting, writing, increasing
VBN verb, past participle made, given, found, called, required
VBZ verb, 3rd singular present says, follows, requires, transcends
WDT wh- determiner what, which
WP$ possessive wh- pronoun whose
WPO objective wh- pronoun whom, which, that
WPS nominative wh- pronoun who, which, that
WQL how
WRB wh- adverb how, when

Figure 5.8 Rest of 87-tag Brown corpus tagset (Francis and Kučera, 1982).

travel reservations that we will discuss in Ch. 11. For each we have shown a potential
tagged output using the Penn Treebank tagset defined in Fig. 5.6 on page 9:

(5.21) Book/VB that/DT flight/NN ./.
(5.22) Does/VBZ that/DT flight/NN serve/VB dinner/NN ?/.

The previous section discussed some tagging decisions thatare difficult to make
for humans. Even in these simple examples, automatically assigning a tag to each
word is not trivial. For example,book is ambiguous. That is, it has more than oneAMBIGUOUS

possible usage and part-of-speech. It can be a verb (as inbookthat flightor to book
the suspect) or a noun (as inhand me that book, or a bookof matches). Similarly that
can be a determiner (as inDoes thatflight serve dinner), or a complementizer (as inI
thought thatyour flight was earlier). The problem of POS-tagging is toresolvetheseRESOLVE

ambiguities, choosing the proper tag for the context. Part-of-speech tagging is thus one
of the manydisambiguation tasks we will see in this book.DISAMBIGUATION

How hard is the tagging problem? The previous section described some difficult
tagging decisions; how common is tag ambiguity? It turns outthat most words in En-
glish are unambiguous; i.e., they have only a single tag. Butmany of the most common
words of English are ambiguous (for examplecancan be an auxiliary (‘to be able’), a
noun (‘a metal container’), or a verb (‘to put something in such a metal container’)). In
fact, DeRose (1988) reports that while only 11.5% of Englishword types in the Brown
corpus are ambiguous, over 40% of Brown tokens are ambiguous. Fig. 5.10 shows
the number of word types with different levels of part-of-speech ambiguity from the
Brown corpus. We show these computations from two versions of the tagged Brown
corpus, the original tagging done at Brown by Francis and Kuˇcera (1982), and the
Treebank-3 tagging done at the University of Pennsylvania.Note that despite having
more coarse-grained tags, the 45-tag corpus unexpectedly has more ambiguity than the
87-tag corpus.

Luckily, it turns out that many of the 40% ambiguous tokens are easy to disam-
biguate. This is because the various tags associated with a word are not equally likely.
For example,a can be a determiner, or the lettera (perhaps as part of an acronym or an
initial). But the determiner sense ofa is much more likely.

Most tagging algorithms fall into one of two classes:rule-based taggers andRULE­BASED
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Tag Description Example
AJ0 adjective (unmarked) good, old
AJC comparative adjective better, older
AJS superlative adjective best, oldest
AT0 article the, a, an
AV0 adverb (unmarked) often, well, longer, furthest
AVP adverb particle up, off, out
AVQ wh-adverb when, how, why
CJC coordinating conjunction and, or
CJS subordinating conjunction although, when
CJT the conjunctionthat
CRD cardinal numeral (exceptone) 3, twenty-five, 734
DPS possessive determiner your, their
DT0 general determiner these, some
DTQ wh-determiner whose, which
EX0 existentialthere
ITJ interjection or other isolate oh, yes, mhm
NN0 noun (neutral for number) aircraft, data
NN1 singular noun pencil, goose
NN2 plural noun pencils, geese
NP0 proper noun London, Michael, Mars
ORD ordinal sixth, 77th, last
PNI indefinite pronoun none, everything
PNP personal pronoun you, them, ours
PNQ wh-pronoun who, whoever
PNX reflexive pronoun itself, ourselves
POS possessive’s or ’
PRF the prepositionof
PRP preposition (exceptof) for, above, to
PUL punctuation – left bracket ( or [
PUN punctuation – general mark . ! , : ; - ? ...
PUQ punctuation – quotation mark ‘ ’ ”
PUR punctuation – right bracket ) or ]
TO0 infinitive markerto
UNC unclassified items (not English)
VBB base forms ofbe(except infinitive) am, are
VBD past form ofbe was, were
VBG -ing form of be being
VBI infinitive of be
VBN past participle ofbe been
VBZ -s form ofbe is, ’s
VDB/D/G/I/N/Z form of do do, does, did, doing, to do, etc.
VHB/D/G/I/N/Z form of have have, had, having, to have, etc.
VM0 modal auxiliary verb can, could, will, ’ll
VVB base form of lexical verb (except infin.) take, live
VVD past tense form of lexical verb took, lived
VVG -ing form of lexical verb taking, living
VVI infinitive of lexical verb take, live
VVN past participle form of lex. verb taken, lived
VVZ -s form of lexical verb takes, lives
XX0 the negativenot or n’t
ZZ0 alphabetical symbol A, B, c, d

Figure 5.9 UCREL’s C5 tagset for the British National Corpus (Garside et al., 1997).

stochastic taggerstaggers. Rule-based taggers generally involve a large database ofSTOCHASTIC
TAGGERS

hand-written disambiguation rules which specify, for example, that an ambiguous word
is a noun rather than a verb if it follows a determiner. The next section will describe
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Original Treebank
87-tag corpus 45-tag corpus

Unambiguous (1 tag) 44,019 38,857
Ambiguous (2–7 tags) 5,490 8844
Details: 2 tags 4,967 6,731

3 tags 411 1621
4 tags 91 357
5 tags 17 90
6 tags 2 (well, beat) 32
7 tags 2 (still, down) 6 (well, set, round, open, fit,

down)
8 tags 4 (’s, half, back, a)
9 tags 3 (that, more, in)

Figure 5.10 The amount of tag ambiguity for word types in the Brown corpus, from
the ICAME release of the original (87-tag) tagging and the Treebank-3 (45-tag) tagging.
Numbers are not strictly comparable because only the Treebank segments’s. An earlier
estimate of some of these numbers is reported in DeRose (1988).

a sample rule-based tagger,EngCG, based on the Constraint Grammar architecture of
Karlsson et al. (1995b).

Stochastic taggers generally resolve tagging ambiguitiesby using a training cor-
pus to compute the probability of a given word having a given tag in a given context.
Sec. 5.5 describes the Hidden Markov Model orHMM tagger .HMM TAGGER

Finally, Sec. 5.6 will describe an approach to tagging called thetransformation-
based taggeror theBrill tagger , after Brill (1995). The Brill tagger shares featuresBRILL TAGGER

of both tagging architectures. Like the rule-based tagger,it is based on rules which
determine when an ambiguous word should have a given tag. Like the stochastic tag-
gers, it has a machine-learning component: the rules are automatically induced from a
previously tagged training corpus.

5.4 RULE-BASED PART-OF-SPEECHTAGGING

The earliest algorithms for automatically assigning part-of-speech were based on a two-
stage architecture (Harris, 1962; Klein and Simmons, 1963;Greene and Rubin, 1971).
The first stage used a dictionary to assign each word a list of potential parts-of-speech.
The second stage used large lists of hand-written disambiguation rules to winnow down
this list to a single part-of-speech for each word.

Modern rule-based approaches to part-of-speech tagging have a similar architec-
ture, although the dictionaries and the rule sets are vastlylarger than in the 1960’s. One
of the most comprehensive rule-based approaches is the Constraint Grammar approach
(Karlsson et al., 1995a). In this section we describe a tagger based on this approach,
theEngCG tagger (Voutilainen, 1995, 1999).ENGCG

The EngCG ENGTWOL lexicon is based on the two-level morphology described
in Ch. 3, and has about 56,000 entries for English word stems (Heikkilä, 1995), count-
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ing a word with multiple parts-of-speech (e.g., nominal andverbal senses ofhit) as
separate entries, and not counting inflected and many derived forms. Each entry is
annotated with a set of morphological and syntactic features. Fig. 5.11 shows some se-
lected words, together with a slightly simplified listing oftheir features; these features
are used in rule writing.

Word POS Additional POS features
smaller ADJ COMPARATIVE
entire ADJ ABSOLUTE ATTRIBUTIVE
fast ADV SUPERLATIVE
that DET CENTRAL DEMONSTRATIVE SG
all DET PREDETERMINER SG/PL QUANTIFIER
dog’s N GENITIVE SG
furniture N NOMINATIVE SG NOINDEFDETERMINER
one-third NUM SG
she PRON PERSONAL FEMININE NOMINATIVE SG3
show V PRESENT -SG3 VFIN
show N NOMINATIVE SG
shown PCP2 SVOO SVO SV
occurred PCP2 SV
occurred V PAST VFIN SV

Figure 5.11 Sample lexical entries from the ENGTWOL lexicon described in Vouti-
lainen (1995) and Heikkilä (1995).

Most of the features in Fig. 5.11 are relatively self-explanatory; SG for singular,
-SG3 for other than third-person-singular. ABSOLUTE meansnon-comparative and
non-superlative for an adjective, NOMINATIVE just means non-genitive, and PCP2
means past participle. PRE, CENTRAL, and POST are ordering slots for determiners
(predeterminers (all) come before determiners (the): all the president’s men). NOIN-
DEFDETERMINER means that words likefurniture do not appear with the indefinite
determinera. SV, SVO, and SVOO specify thesubcategorizationor complementa-SUBCATEGORIZATION

tion pattern for the verb. Subcategorization will be discussed in Ch. 11 and Ch. 13, butCOMPLEMENTATION

briefly SV means the verb appears solely with a subject (nothing occurred); SVO with
a subject and an object (I showed the film); SVOO with a subject and two complements:
She showed her the ball.

In the first stage of the tagger, each word is run through the two-level lexicon
transducer and the entries for all possible parts-of-speech are returned. For example
the phrasePavlov had shown that salivation . . .would return the following list (one
line per possible tag, with the correct tag shown in boldface):

Pavlov PAVLOV N NOM SG PROPER
had HAVE V PAST VFIN SVO

HAVE PCP2 SVO
shown SHOW PCP2 SVOO SVO SV
that ADV

PRON DEM SG
DET CENTRAL DEM SG
CS

salivation N NOM SG
. . .
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EngCG then applies a large set of constraints (as many as 3,744 constraints in
the EngCG-2 system) to the input sentence to rule out incorrect parts-of-speech. The
boldfaced entries in the table above show the desired result, in which the simple past
tense tag (rather than the past participle tag) is applied tohad, and the complementizer
(CS) tag is applied tothat. The constraints are used in a negative way, to eliminate
tags that are inconsistent with the context. For example oneconstraint eliminates all
readings ofthat except the ADV (adverbial intensifier) sense (this is the sense in the
sentenceit isn’t that odd). Here’s a simplified version of the constraint:

ADVERBIAL -THAT RULE

Given input: “that”
if

(+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier*/
(+2 SENT-LIM); /* and following which is a sentence boundary,*/
(NOT -1 SVOC/A);/* and the previous word is not a verb like*/

/* ‘consider’ which allows adjs as object complements*/
then eliminate non-ADV tags
elseeliminate ADV tag

The first two clauses of this rule check to see that thethat directly precedes a
sentence-final adjective, adverb, or quantifier. In all other cases the adverb reading is
eliminated. The last clause eliminates cases preceded by verbs likeconsideror believe
which can take a noun and an adjective; this is to avoid tagging the following instance
of thatas an adverb:

I consider that odd.

Another rule is used to express the constraint that the complementizer sense of
that is most likely to be used if the previous word is a verb which expects a complement
(like believe, think, or show), and if that is followed by the beginning of a noun phrase,
and a finite verb.

This description oversimplifies the EngCG architecture; the system also includes
probabilistic constraints, and also makes use of other syntactic information we haven’t
discussed. The interested reader should consult Karlsson et al. (1995b) and Voutilainen
(1999).

5.5 HMM PART-OF-SPEECHTAGGING

The use of probabilities in tags is quite old; probabilitiesin tagging were first used by
Stolz et al. (1965), a complete probabilistic tagger with Viterbi decoding was sketched
by Bahl and Mercer (1976), and various stochastic taggers were built in the 1980s
(Marshall, 1983; Garside, 1987; Church, 1988; DeRose, 1988). This section describes
a particular stochastic tagging algorithm generally knownas the Hidden Markov Model
or HMM tagger. Hidden Markov Models themselves will be more fully introduced and
defined in Ch. 6. In this section, we prefigure Ch. 6 a bit by giving an initial introduction
to the Hidden Markov Model as applied to part-of-speech tagging.
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Use of a Hidden Markov Model to do part-of-speech-tagging, as we will define
it, is a special case ofBayesian inference, a paradigm that has been known sinceBAYESIAN

INFERENCE

the work of Bayes (1763). Bayesian inference or Bayesian classification was applied
successfully to language problems as early as the late 1950s, including the OCR work
of Bledsoe in 1959, and the seminal work of Mosteller and Wallace (1964) on applying
Bayesian inference to determine the authorship of the Federalist papers.

In a classification task, we are given some observation(s) and our job is to deter-
mine which of a set of classes it belongs to. Part-of-speech tagging is generally treated
as a sequence classification task. So here the observation isa sequence of words (let’s
say a sentence), and it is our job to assign them a sequence of part-of-speech tags.

For example, say we are given a sentence like

(5.23) Secretariat is expected torace tomorrow.

What is the best sequence of tags which corresponds to this sequence of words?
The Bayesian interpretation of this task starts by considering all possible sequences
of classes—in this case, all possible sequences of tags. Outof this universe of tag
sequences, we want to chose the tag sequence which is most probable given the obser-
vation sequence ofn wordswn

1. In other words, we want, out of all sequences ofn tags
tn
1 the single tag sequence such thatP(tn

1|w
n
1) is highest. We use the hat notationˆ toˆ

mean “our estimate of the correct tag sequence”.

t̂n
1 = argmax

tn1

P(tn
1|w

n
1)(5.24)

The function argmaxx f (x) means “thex such thatf (x) is maximized”. Equation
(5.24) thus means, out of all tag sequences of lengthn, we want the particular tag
sequencetn

1 which maximizes the right hand side. While (5.24) is guaranteed to give
us the optimal tag sequence, it is not clear how to make the equation operational; that
is, for a given tag sequencetn

1 and word sequencewn
1, we don’t know how to directly

computeP(tn
1|w

n
1).

The intuition of Bayesian classification is to use Bayes’ rule to transform (5.24)
into a set of other probabilities which turn out to be easier to compute. Bayes’ rule is
presented in (5.25); it gives us a way to break down any conditional probabilityP(x|y)
into three other probabilities:

P(x|y) =
P(y|x)P(x)

P(y)
(5.25)

We can then substitute (5.25) into (5.24) to get (5.26):

t̂n
1 = argmax

tn1

P(wn
1|t

n
1)P(tn

1)

P(wn
1)

(5.26)

We can conveniently simplify 5.26 by dropping the denominator P(wn
1). Why

is that? Since we are choosing a tag sequence out of all tag sequences, we will be

computing
P(wn

1|t
n
1)P(tn1)

P(wn
1)

for each tag sequence. ButP(wn
1) doesn’t change for each tag

sequence; we are always asking about the most likely tag sequence for the same obser-
vationwn

1, which must have the same probabilityP(wn
1). Thus we can choose the tag

sequence which maximizes this simpler formula:

t̂n
1 = argmax

tn1

P(wn
1|t

n
1)P(tn

1)(5.27)
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To summarize, the most probable tag sequencet̂n
1 given some word stringwn

1
can be computed by taking the product of two probabilities for each tag sequence, and
choosing the tag sequence for which this product is greatest. The two terms are the
prior probability of the tag sequenceP(tn

1)), and thelikelihood of the word stringPRIOR PROBABILITY

LIKELIHOOD P(wn
1|t

n
1):

t̂n
1 = argmax

tn1

likelihood
︷ ︸︸ ︷

P(wn
1|t

n
1)

prior
︷ ︸︸ ︷

P(tn
1)(5.28)

Unfortunately, (5.28) is still too hard to compute directly. HMM taggers there-
fore make two simplifying assumptions. The first assumptionis that the probability of
a word appearing is dependent only on its own part-of-speechtag; that it is is indepen-
dent of other words around it, and of the other tags around it:

P(wn
1|t

n
1) ≈

n∏

i=1

P(wi |ti)(5.29)

The second assumption is that the probability of a tag appearing is dependent
only on the previous tag, thebigram assumption we saw in Ch. 4:

P(tn
1) ≈

n∏

i=1

P(ti |ti−1)(5.30)

Plugging the simplifying assumptions (5.29) and (5.30) into (5.28) results in the
following equation by which a bigram tagger estimates the most probable tag sequence:

t̂n
1 = argmax

tn1

P(tn
1|w

n
1)≈ argmax

tn1

n∏

i=1

P(wi |ti)P(ti |ti−1)(5.31)

Equation (5.31) contains two kinds of probabilities, tag transition probabilities
and word likelihoods. Let’s take a moment to see what these probabilities represent.
The tag transition probabilities,P(ti |ti−1), represent the probability of a tag given the
previous tag. For example, determiners are very likely to precede adjectives and nouns,
as in sequences likethat/DT flight/NNandthe/DT yellow/JJ hat/NN. Thus we would
expect the probabilitiesP(NN|DT) andP(JJ|DT) to be high. But in English, adjectives
don’t tend to precede determiners, so the probabilityP(DT|JJ) ought to be low.

We can compute the maximum likelihood estimate of a tag transition probability
P(NN|DT) by taking a corpus in which parts-of-speech are labeled and counting, out
of the times we see DT, how many of those times we see NN after the DT. That is, we
compute the following ratio of counts:

P(ti |ti−1) =
C(ti−1,ti)
C(ti−1)

(5.32)

Let’s choose a specific corpus to examine. For the examples inthis chapter we’ll
use the Brown corpus, the 1 million word corpus of American English described earlier.
The Brown corpus has been tagged twice, once in the 1960’s with the 87-tag tagset, and
again in the 1990’s with the 45-tag Treebank tagset. This makes it useful for comparing
tagsets, and is also widely available.
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In the 45-tag Treebank Brown corpus, the tag DT occurs 116,454 times. Of
these, DT is followed by NN 56,509 times (if we ignore the few cases of ambiguous
tags). Thus the MLE estimate of the transition probability is calculated as follows:

P(NN|DT) =
C(DT,NN)

C(DT)
=

56,509
116,454

= .49(5.33)

The probability of getting a common noun after a determiner,.49, is indeed quite
high, as we suspected.

The word likelihood probabilities,P(wi |ti), represent the probability, given that
we see a given tag, that it will be associated with a given word. For example if we were
to see the tag VBZ (third person singular present verb) and guess the verb that is likely
to have that tag, we might likely guess the verbis, since the verbto beis so common
in English.

We can compute the MLE estimate of a word likelihood probability like P(is|VBZ)
again by counting, out of the times we see VBZ in a corpus, how many of those times
the VBZ is labeling the wordis. That is, we compute the following ratio of counts:

P(wi |ti) =
C(ti ,wi)

C(ti)
(5.34)

In Treebank Brown corpus, the tag VBZ occurs 21,627 times, and VBZ is the
tag for is 10,073 times. Thus:

P(is|VBZ) =
C(VBZ, is)
C(VBZ)

=
10,073
21,627

= .47(5.35)

For those readers who are new to Bayesian modeling note that this likelihood
term is not asking “which is the most likely tag for the wordis”. That is, the term
is not P(VBZ|is). Instead we are computingP(is|VBZ). The probability, slightly
counterintuitively, answers the question “If we were expecting a third person singular
verb, how likely is it that this verb would beis?”.

We have now defined HMM tagging as a task of choosing a tag-sequence with the
maximum probability, derived the equations by which we willcompute this probability,
and shown how to compute the component probabilities. In fact we have simplified the
presentation of the probabilities in many ways; in later sections we will return to these
equations and introduce the deleted interpolation algorithm for smoothing these counts,
the trigram model of tag history, and a model for unknown words.

But before turning to these augmentations, we need to introduce the decoding
algorithm by which these probabilities are combined on lineto choose the most likely
tag sequence.

5.5.1 Computing the most-likely tag sequence: A motivatingex-
ample

The previous section showed that the HMM tagging algorithm chooses as the most
likely tag sequence the one that maximizes the product of twoterms; the probability of
the sequence of tags, and the probability of each tag generating a word. In this section
we ground these equations in a specific example, showing for aparticular sentence how
the correct tag sequence achieves a higher probability thanone of the many possible
wrong sequences.
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We will focus on resolving the part-of-speech ambiguity of the wordrace, which
can be a noun or verb in English, as we show in two examples modified from the Brown
and Switchboard corpus. For this example, we will use the 87-tag Brown corpus tagset,
because it has a specific tag forto, TO, used only whento is an infinitive; prepositional
uses ofto are tagged as IN. This will come in handy in our example.1

In (5.36)race is a verb (VB) while in (5.37)race is a common noun (NN):

(5.36) Secretariat/NNP is/BEZ expected/VBN to/TOrace/VB tomorrow/NR

(5.37) People/NNS continue/VB to/TO inquire/VB the/AT reason/NNfor/IN the/AT
race/NN for/IN outer/JJ space/NN

Let’s look at howrace can be correctly tagged as a VB instead of an NN in
(5.36). HMM part-of-speech taggers resolve this ambiguityglobally rather than locally,
picking the best tag sequence for the whole sentence. There are many hypothetically
possible tag sequences for (5.36), since there are other ambiguities in the sentence
(for exampleexpectedcan be an adjective (JJ), a past tense/preterite (VBD) or a past
participle (VBN)). But let’s just consider two of the potential sequences, shown in
Fig. 5.12. Note that these sequences differ only in one place; whether the tag chosen
for race is VB or NN.

Figure 5.12 Two of the possible sequences of tags corresponding to the Secretariat
sentence, one of them corresponding to the correct sequence, in which race is a VB. Each
arc in these graphs would be associated with a probability. Note that the two graphs differ
only in 3 arcs, hence in 3 probabilities.

Almost all the probabilities in these two sequences are identical; in Fig. 5.12
we have highlighted in boldface the three probabilities that differ. Let’s consider two

1 The 45-tag Treebank-3 tagset does make this distinction in the Switchboard corpus but not, alas, in the
Brown corpus. Recall that in the 45-tag tagset time adverbs like tomorroware tagged as NN; in the 87-tag
tagset they appear as NR.



DRAFT

22 Chapter 5. Word Classes and Part-of-Speech Tagging

of these, corresponding toP(ti |ti−1) and P(wi |ti). The probabilityP(ti |ti−1) in Fig-
ure 5.12a isP(VB|TO), while in Figure 5.12b the transition probability isP(NN|TO).

The tag transition probabilitiesP(NN|TO) andP(VB|TO) give us the answer to
the question “How likely are we to expect a verb (noun) given the previous tag?” As we
saw in the previous section, the maximum likelihood estimate for these probabilities
can be derived from corpus counts.

Since the (87-tag Brown tagset) tag TO is used only for the infinitive markerto,
we expect that only a very small number of nouns can follow this marker (as an exer-
cise, try to think of a sentence where a noun can follow the infinitive marker use ofto).
Sure enough, a look at the (87-tag) Brown corpus gives us the following probabilities,
showing that verbs are about 500 times as likely as nouns to occur after TO:

P(NN|TO) = .00047

P(VB|TO) = .83

Let’s now turn toP(wi |ti), the lexical likelihood of the wordracegiven a part-of-
speech tag. For the two possible tags VB and NN, these correspond to the probabilities
P(race|VB) andP(race|NN). Here are the lexical likelihoods from Brown:

P(race|NN) = .00057

P(race|VB) = .00012

Finally, we need to represent the tag sequence probability for the following tag (in this
case the tag NR fortomorrow):

P(NR|VB) = .0027

P(NR|NN) = .0012

If we multiply the lexical likelihoods with the tag sequenceprobabilities, we see
that the probability of the sequence with the VB tag is higherand the HMM tagger
correctly tagsraceas a VB in Fig. 5.12 despite the fact that it is the less likely sense of
race:

P(VB|TO)P(NR|VB)P(race|VB) = .00000027

P(NN|TO)P(NR|NN)P(race|NN) = .00000000032

5.5.2 Formalizing Hidden Markov Model taggers

Now that we have seen the equations and some examples of choosing the most probable
tag sequence, we show the formalization of this problem as a Hidden Markov Model.

The HMM is an extension of the finite automata of Ch. 3. Recall that a finite
automaton is defined by a set of states, and a set of transitions between states that are
taken based on the input observations. Aweighted finite-state automatonis a simpleWEIGHTED

augmentation of the finite automaton in which each arc is associated with a probability,
indicating how likely that path is to be taken. The probability on all the arcs leaving
a node must sum to 1. AMarkov chain is a special case of a weighted automatonMARKOV CHAIN

in which the input sequence uniquely determines which states the automaton will go
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through. Because they can’t represent inherently ambiguous problems, a Markov chain
is only useful for assigning probabilities to unambiguous sequences.

While the vanilla Markov Model is appropriate for situations where we can see
the actual conditioning events, it is not appropriate in part-of-speech tagging. This is
because in part-of-speech tagging, while we observe the words in the input, we donot
observe the part-of-speech tags. Thus we can’t condition any probabilities on, say, a
previous part-of-speech tag, because we cannot be completely certain exactly which
tag applied to the previous word. AHidden Markov Model (HMM ) allows us to talkHIDDEN MARKOV

MODEL

about bothobservedevents (like words that we see in the input) andhiddenevents (like
part-of-speech tags) that we think of as causal factors in our probabilistic model.

An HMM is specified by a set ofstatesQ, a set oftransition probabilities A,
a set of observation likelihoodsB, a definedstart state andend state(s), and a set of
observation symbolsO, which is not drawn from the same alphabet as the state setQ.

In summary, here are the parameters we need to define an HMM:

• states:a set of statesQ = q1q2 . . .qN

• transition probabilities: a set of probabilitiesA= a01a02. . .an1 . . .ann. Eachai j

represents the probability of transitioning from statei to statej. The set of these
is thetransition probability matrix
• observation likelihoods: a set of observation likelihoodsB = bi(ot), each ex-

pressing the probability of an observationot being generated from a statei

In our examples so far we have used two “special” states (non-emitting states)
as the start and end state; it is also possible to avoid the useof these states by specifying
two more things:

• initial distribution: an initial probability distribution over states,π, such thatπi

is the probability that the HMM will start in statei. Of course some statesj may
haveπ j = 0, meaning that they cannot be initial states.

• accepting states:a set of legal accepting states

As was true for the weighted automata, the sequences of symbols that are input
to the model (if we are thinking of it as recognizer) or which are produced by the model
(if we are thinking of it as a generator) are generally calledtheobservation sequence,
referred to asO = (o1o2o3 . . .oT).

An HMM thus has two kinds of probabilities; theA transition probabilities, and
theB observation likelihoods, corresponding respectively to theprior andlikelihood
probabilities that we saw in equation (5.31). Fig. 5.13 illustrates the prior probabilities
in an HMM part-of-speech tagger, showing 3 sample states andsome of theA transition
probabilities between them. Fig. 5.14 shows another view ofan HMM part-of-speech
tagger, focusing on the word likelihoodsB. Each hidden state is associated with a
vector of likelihoods for each observation word.

5.5.3 The Viterbi Algorithm for HMM Tagging

For any model, such as an HMM, that contains hidden variables, the task of determin-
ing which sequence of variables is the underlying source of some sequence of observa-
tions is called thedecodingtask. TheViterbi algorithm is perhaps the most commonDECODING

VITERBI
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Figure 5.13 The weighted finite-state network corresponding to the hidden states of the
HMM. The A transition probabilities are used to compute the prior probability.

Figure 5.14 TheB observation likelihoods for the HMM in the previous figure. Each
state (except the non-emitting Start and End states) is associated with a vector of probabil-
ities, one likelihood for each possible observation word.

decoding algorithm used for HMMs, whether for part-of-speech tagging or for speech
recognition. The termViterbi is common in speech and language processing, but this
is really a standard application of the classicdynamic programming algorithm, and
looks a lot like theminimum edit distance algorithm of Ch. 3. The Viterbi algorithm
was first applied to speech and language processing in the context of speech recogni-
tion by Vintsyuk (1968), but has what Kruskal (1983) calls a ‘remarkable history of
multiple independent discovery and publication’; see the History section at the end of
Ch. 6 for more details.

The slightly simplified version of the Viterbi algorithm that we will present takes
as input a single HMM and a set of observed wordsO = (o1o2o3 . . .ot) and returns the
most probable state/tag sequenceQ = (q1q2q3 . . .qt), together with its probability.
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Let the HMM be defined by the two tables in Fig. 5.15 and Fig. 5.16. Fig. 5.15
expresses theai j probabilities, thetransition probabilities between hidden states (i.e.
part-of-speech tags). Fig. 5.16 expresses thebi(ot) probabilities, theobservationlike-
lihoods of words given tags.

VB TO NN PPSS
<s> .019 .0043 .041 .067
VB .0038 .035 .047 .0070
TO .83 0 .00047 0
NN .0040 .016 .087 .0045
PPSS .23 .00079 .0012 .00014

Figure 5.15 Tag transition probabilities (thea array,p(ti |ti−1)) computed from the 87-
tag Brown corpus without smoothing. The rows are labeled with the conditioning event;
thusP(PPSS|VB) is .0070. The symbol<s> is the start-of-sentence symbol.

I want to race
VB 0 .0093 0 .00012
TO 0 0 .99 0
NN 0 .000054 0 .00057
PPSS .37 0 0 0

Figure 5.16 Observation likelihoods (theb array) computed from the 87-tag Brown
corpus without smoothing.

Fig. 5.17 shows pseudocode for the Viterbi algorithm. The Viterbi algorithm
sets up a probability matrix, with one column for each observation t and one row for
each state in the state graph. Each column thus has a cell for each stateqi in the single
combined automaton for the four words.

The algorithm first createsN + 2 or four state columns. The first column is an
initial pseudo-word, the second corresponds to the observation of the first wordi, the
third to the second wordwant, the fourth to the third wordto, and the fifth to a final
pseudo-observation. We begin in the first column by using a simple version of theπ
vector in which we set the probability of thestartstate to 1.0, and the other probabilities
to 0 (left blank for readability); the reader should find thisin Fig. 5.18.

Then we move to the next column; for every state in column 0, wecompute the
probability of moving into each state in column 1. The valueviterbi[s,t] is computed
by taking the maximum over the extensions of all the paths that lead to the current cell.
An extension of a path from a states′ at timet−1 is computed by multiplying these
three factors:

1. theprevious path probability from the previous cellviterbi[s′,t−1],

2. thetransition probability ai j from previous states′ to current states, and

3. theobservation likelihood bs(ot) that current states matches observation sym-
bol ot .
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function V ITERBI(observationsof lenT,state-graph) returns best-path

num-states←NUM-OF-STATES(state-graph)
Create a path probability matrixviterbi[num-states+2,T+2]
viterbi[0,0]←1.0
for each time stept from 1 to T do

for each states from 1 to num-statesdo
viterbi[s,t]← max

1 ≤ s′≤ num-states

[
viterbi[s′,t−1] ∗ as′,s

]
∗ bs(ot)

back-pointer[s,t]← argmax
1 ≤ s′≤ num-states

[
viterbi[s′,t−1] ∗ as′,s

]

Backtrace from highest probability state in final column ofviterbi[] and return path

Figure 5.17 Viterbi algorithm for finding optimal sequence of tags. Given an observa-
tion sequence of words and an HMM (as defined by thea andb matrices), the algorithm
returns the state-path through the HMM which assigns maximum likelihood to the obser-
vation sequence.a[s′,s] is the transition probability from previous states′ to current state
s, andbs(ot ) is the observation likelihood ofs given ot . Note that states 0 and N+1 are
non-emitting start and end states.

Figure 5.18 The entries in the individual state columns for the Viterbi algorithm. Each
cell keeps the probability of the best path so far and a pointer to the previous cell along
that path. We have only filled out columns 0 and 1 and one cell ofcolumn 2; the rest is left
as an exercise for the reader. After the cells are filled in, backtracing from theendstate,
we should be able to reconstruct the correct state sequence PPSS VB TO VB.

In Fig. 5.18, each cell in the column for the wordI is computed by multiplying
the previous probability at the start state (1.0), the transition probability from the start
state to the tag for that cell, and the observation likelihood of the wordI given the tag
for that cell. As it turns out, three of the cells are zero (since the wordI can be neither
NN, TO nor VB). Next, each cell in thewantcolumn gets updated with the maximum
probability path from the previous column. We have shown only the value for the VB
cell. That cell gets the max of four values; as it happens in this case, three of them
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are zero (since there were zero values in the previous column). The remaining value is
multiplied by the relevant transition probability, and the(trivial) max is taken. In this
case the final value, .000051, comes from the PPSS state at theprevious column.

The reader should fill in the rest of the table in Fig. 5.18, andbacktrace to recon-
struct the correct state sequence PPSS VB TO VB.

5.5.4 Extending the HMM algorithm to trigrams

We mentioned earlier that HMM taggers in actual use have a number of sophistications
not present in the simplified tagger as we have described it sofar. One important
missing feature has to do with the tag context. In the tagger described above, we
assume that the probability of a tag appearing is dependent only on the previous tag:

P(tn
1) ≈

n∏

i=1

P(ti |ti−1)(5.38)

Most modern HMM taggers actually use a little more of the history, letting the
probability of a tag depend on the two previous tags:

P(tn
1) ≈

n∏

i=1

P(ti |ti−1,ti−2)(5.39)

In addition to increasing the window before a tagging decision, state-of-the-art
HMM taggers like Brants (2000) let the tagger know the location of the end of the
sentence by adding dependence on an end-of-sequence markerfor tn+1. This gives the
following equation for part of speech tagging:

t̂n
1 = argmax

tn1

P(tn
1|w

n
1)≈ argmax

tn1

[
n∏

i=1

P(wi |ti)P(ti |ti−1,ti−2)

]

P(tn+1|tn)(5.40)

In tagging any sentence with (5.40), three of the tags used inthe context will
fall off the edge of the sentence, and hence will not match regular words. These tags,
t−1, t0, andtn+1, can all be set to be a single special ‘sentence boundary’ tagwhich
is added to the tagset. This requires that sentences passed to the tagger have sentence
boundaries demarcated, as discussed in Ch. 3.

There is one large problem with (5.40); data sparsity. Any particular sequence
of tagsti−2,ti−1,ti that occurs in the test set may simply never have occurred in the
training set. That means we cannot compute the tag trigram probability just by the
maximum likelihood estimate from counts, following Equation 5.41:

P(ti |ti−1,ti−2) =
C(ti−2,ti−1,ti)
C(ti−2,ti−1)

:(5.41)

Why not? Because many of these counts will be zero in any training set, and we will
incorrectly predict that a given tag sequence will never occur! What we need is a way
to estimateP(ti |ti−1,ti−2) even if the sequenceti−2,ti−1,ti never occurs in the training
data.

The standard approach to solve this problem is to estimate the probability by
combining more robust, but weaker estimators. For example,if we’ve never seen the
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tag sequence PRP VB TO, so we can’t computeP(TO|PRP,VB) from this frequency,
we still could rely on the bigram probabilityP(TO|VB), or even the unigram probabil-
ity P(TO). The maximum likelihood estimation of each of these probabilities can be
computed from a corpus via the following counts:

Trigrams P̂(ti |ti−1,ti−2) =
C(ti−2,ti−1,ti)
C(ti−2,ti−1)

(5.42)

Bigrams P̂(ti |ti−1) =
C(ti−1,ti)
C(ti−1)

(5.43)

Unigrams P̂(ti) =
C(ti)

N
(5.44)

How should these three estimators be combined in order to estimate the trigram
probabilityP(ti |ti−1,ti−2)? The simplest method of combination is linear interpolation.
In linear interpolation, we estimate the probabilityP(ti |ti−1ti−2) by a weighted sum of
the unigram, bigram, and trigram probabilities:

P(ti |ti−1ti−2) = λ1P̂(ti |ti−1ti−2)+ λ2P̂(ti |ti−1)+ λ3P̂(ti)(5.45)

We requireλ1+λ2+λ3 = 1, insuring that the resulting P is a probability distribu-
tion. How should theseλs be set? One good way isdeleted interpolation, developedDELETED

INTERPOLATION

by Jelinek and Mercer (1980). In deleted interpolation, we successively delete each
trigram from the training corpus, and choose theλs so as to maximize the likelihood
of the rest of the corpus. The idea of the deletion is to set theλs in such a way as to
generalize to unseen data and not overfit the training corpus. Fig. 5.19 gives the Brants
(2000) version of the deleted interpolation algorithm for tag trigrams.

Brants (2000) achieves an accuracy of 96.7% on the Penn Treebank with a tri-
gram HMM tagger. Weischedel et al. (1993) and DeRose (1988) have also reported
accuracies of above 96% for HMM tagging. (Thede and Harper, 1999) offer a number
of augmentations of the trigram HMM model, including the idea of conditioning word
likelihoods on neighboring words and tags.

The HMM taggers we have seen so far are trained on hand-taggeddata. Kupiec
(1992), Cutting et al. (1992), and others show that it is alsopossible to train an HMM
tagger on unlabeled data, using the EM algorithm that we willintroduce in Ch. 6. These
taggers still start with a dictionary which lists which tagscan be assigned to which
words; the EM algorithm then learns the word likelihood function for each tag, and
the tag transition probabilities. An experiment by Merialdo (1994), however, indicates
that with even a small amount of training data, a tagger trained on hand-tagged data
worked better than one trained via EM. Thus the EM-trained “pure HMM” tagger is
probably best suited to cases where no training data is available, for example when
tagging languages for which there is no previously hand-tagged data.
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function DELETED-INTERPOLATION(corpus) returns λ1,λ2,λ3

λ1←0
λ2←0
λ3←0
foreach trigramt1,t2,t3 with f (t1,t2,t3) > 0

dependingon the maximum of the following three values

caseC(t1,t2,t3)−1
C(t1,t2)−1 : incrementλ3 by C(t1,t2,t3)

caseC(t2,t3)−1
C(t2)−1 : incrementλ2 by C(t1,t2,t3)

caseC(t3)−1
N−1 : incrementλ1 by C(t1,t2,t3)

end
end
normalizeλ1,λ2,λ3
return λ1,λ2,λ3

Figure 5.19 The deleted interpolation algorithm for setting the weights for combining
unigram, bigram, and trigram tag probabilities. If the denominator is 0 for any case, we
define the result of that case to be 0. N is the total number of tokens in the corpus. After
Brants (2000).

5.6 TRANSFORMATION-BASED TAGGING

Transformation-Based Tagging, sometimes called Brill tagging, is an instance of the
Transformation-Based Learning (TBL) approach to machine learning (Brill, 1995),TRANSFORMATION­

BASED LEARNING

and draws inspiration from both the rule-based and stochastic taggers. Like the rule-
based taggers, TBL is based on rules that specify what tags should be assigned to
what words. But like the stochastic taggers, TBL is a machinelearning technique,
in which rules are automatically induced from the data. Likesome but not all of the
HMM taggers, TBL is a supervised learning technique; it assumes a pre-tagged training
corpus.

Samuel et al. (1998) offer a useful analogy for understanding the TBL parādigm,
which they credit to Terry Harvey. Imagine an artist painting a picture of a white house
with green trim against a blue sky. Suppose most of the picture was sky, and hence
most of the picture was blue. The artist might begin by using avery broad brush and
painting the entire canvas blue. Next she might switch to a somewhat smaller white
brush, and paint the entire house white. She would just colorin the whole house, not
worrying about the brown roof, or the blue windows or the green gables. Next she
takes a smaller brown brush and colors over the roof. Now she takes up the blue paint
on a small brush and paints in the blue windows on the house. Finally she takes a very
fine green brush and does the trim on the gables.

The painter starts with a broad brush that covers a lot of the canvas but colors
a lot of areas that will have to be repainted. The next layer colors less of the canvas,
but also makes less “mistakes”. Each new layer uses a finer brush that corrects less of
the picture, but makes fewer mistakes. TBL uses somewhat thesame method as this
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painter. The TBL algorithm has a set of tagging rules. A corpus is first tagged using
the broadest rule, that is, the one that applies to the most cases. Then a slightly more
specific rule is chosen, which changes some of the original tags. Next an even narrower
rule, which changes a smaller number of tags (some of which might be previously
changed tags).

5.6.1 How TBL Rules Are Applied

Let’s look at one of the rules used by Brill’s (1995) tagger. Before the rules apply, the
tagger labels every word with its most-likely tag. We get these most-likely tags from a
tagged corpus. For example, in the Brown corpus,race is most likely to be a noun:

P(NN|race) = .98

P(VB|race) = .02

This means that the two examples ofrace that we saw above will both be coded
as NN. In the first case, this is a mistake, as NN is the incorrect tag:

(5.46) is/VBZ expected/VBN to/TO race/NN tomorrow/NN

In the second case thisrace is correctly tagged as an NN:

(5.47) the/DT race/NN for/IN outer/JJ space/NN

After selecting the most-likely tag, Brill’s tagger applies its transformation rules.
As it happens, Brill’s tagger learned a rule that applies exactly to this mistagging of
race:

ChangeNN to VB when the previous tag isTO

This rule would changerace/NNto race/VBin exactly the following situation,
since it is preceded byto/TO:

(5.48) expected/VBN to/TO race/NN→ expected/VBN to/TO race/VB

5.6.2 How TBL Rules Are Learned

Brill’s TBL algorithm has three major stages. It first labelsevery word with its most-
likely tag. It then examines every possible transformation, and selects the one that
results in the most improved tagging. Finally, it then re-tags the data according to this
rule. The last two stages are repeated until some stopping criterion is reached, such as
insufficient improvement over the previous pass. Note that stage two requires that TBL
knows the correct tag of each word; that is, TBL is a supervised learning algorithm.

The output of the TBL process is an ordered list of transformations; these then
constitute a “tagging procedure” that can be applied to a newcorpus. In principle the
set of possible transformations is infinite, since we could imagine transformations such
as “transform NN to VB if the previous word was “IBM” and the word “the” occurs
between 17 and 158 words before that”. But TBL needs to consider every possible
transformation, in order to pick the best one on each pass through the algorithm. Thus
the algorithm needs a way to limit the set of transformations. This is done by designing
a small set oftemplates(abstracted transformations). Every allowable transformationTEMPLATES
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The preceding (following) word is taggedz.
The word two before (after) is taggedz.
One of the two preceding (following) words is taggedz.
One of the three preceding (following) words is taggedz.
The preceding word is taggedz and the following word is taggedw.
The preceding (following) word is taggedz and the word

two before (after) is taggedw.

Figure 5.20 Brill’s (1995) templates. Each begins with“Change taga to tagb when:
. . . ” . The variablesa, b, z, andw range over parts-of-speech.

is an instantiation of one of the templates. Brill’s set of templates is listed in Fig. 5.20.
Fig. 5.21 gives the details of this algorithm for learning transformations.

At the heart of Fig. 5.21 are the two functions GET BEST TRANSFORMATION

and GET BEST INSTANCE. GET BEST TRANSFORMATION is called with a list of
potential templates; for each template, it calls GET BEST INSTANCE. GET BEST -
INSTANCE iteratively tests every possible instantiation of each template by filling in
specific values for the tag variablesa, b, z, andw.

In practice, there are a number of ways to make the algorithm more efficient.
For example, templates and instantiated transformations can be suggested in a data-
driven manner; a transformation-instance might only be suggested if it would improve
the tagging of some specific word. The search can also be made more efficient by
pre-indexing the words in the training corpus by potential transformation. Roche and
Schabes (1997) show how the tagger can also be speeded up by converting each rule
into a finite-state transducer and composing all the transducers.

Fig. 5.22 shows a few of the rules learned by Brill’s originaltagger.

5.7 EVALUATION AND ERROR ANALYSIS

The probabilities in a statistical model like an HMM POS-tagger come from the corpus
it is trained on. We saw in Sec.?? that in order to train statistical models like taggers or
N-grams, we need to set aside atraining corpus. The design of thetraining corpus
needs to be carefully considered. If the training corpus is too specific to the task or do-
main, the probabilities may be too narrow and not generalizewell to tagging sentences
in very different domains. But if the training corpus is too general, the probabilities
may not do a sufficient job of reflecting the task or domain.

For evaluatingN-grams models, we said in Sec.?? that we need to divide our
corpus into a distinct training set, test set, and a second test set called a development
test set. We train our tagger on the training set. Then we use the development test
set (also called adevtestset) to perhaps tune some parameters, and in general decideDEVELOPMENT TEST

SET

DEVTEST what the best model is. Then once we come up with what we think is the best model,
we run it on the (hitherto unseen) test set to see its performance. We might use 80%
of our data for training, and save 10% each for devtest and test. Why do we need a
development test set distinct from the final test set? Because if we used the final test
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function TBL(corpus) returns transforms-queue
INTIALIZE -WITH-MOST-LIKELY -TAGS(corpus)
until end condition is metdo
templates←GENERATE-POTENTIAL-RELEVANT-TEMPLATES

best-transform←GET-BEST-TRANSFORM(corpus, templates)
APPLY-TRANSFORM(best-transform,corpus)
ENQUEUE(best-transform-rule, transforms-queue)

end
return (transforms-queue)

function GET-BEST-TRANSFORM(corpus, templates) returns transform
for each templatein templates

(instance,score)←GET-BEST-INSTANCE(corpus, template)
if (score> best-transform.score) then best-transform← (instance,score)

return (best-transform)

function GET-BEST-INSTANCE(corpus, template)returns transform
for from-tag← from tag1 to tagn do
for to-tag← from tag1 to tagn do

for pos← from 1 to corpus-sizedo
if (correct-tag(pos) == to-tag&& current-tag(pos) == from-tag)

num-good-transforms(current-tag(pos−1))++
elseif(correct-tag(pos)==from-tag&& current-tag(pos)==from-tag)

num-bad-transforms(current-tag(pos−1))++
end
best-Z←ARGMAX t(num-good-transforms(t) - num-bad-transforms(t))
if (num-good-transforms(best-Z) - num-bad-transforms(best-Z)

> best-instance.score) then
best.rule← “Change tag fromfrom-tagto to-tag if prev tag is best-Z”
best.score←num-good-transforms(best-Z) - num-bad-transforms(best-Z)

return (best)

procedure APPLY-TRANSFORM(transform,corpus)
for pos← from 1 to corpus-sizedo
if (current-tag(pos)==best-rule-from)

&& ( current-tag(pos−1)==best-rule-prev))
current-tag(pos)←best-rule-to

Figure 5.21 The TBL algorithm for learning to tag. GET BEST INSTANCEwould have
to change for transformation templates other than“Change tag from X to Y if previous tag
is Z” . After Brill (1995).

set to compute performance for all our experiments during our development phase, we
would be tuning the various changes and parameters to this set. Our final error rate on
the test set would then be optimistic: it would underestimate the true error rate.
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Change tags
# From To Condition Example
1 NN VB Previous tag is TO to/TO race/NN→ VB
2 VBP VB One of the previous 3 tags is MD might/MD vanish/VBP→ VB
3 NN VB One of the previous 2 tags is MD might/MD not reply/NN→ VB
4 VB NN One of the previous 2 tags is DT
5 VBD VBN One of the previous 3 tags is VBZ

Figure 5.22 The first 20 nonlexicalized transformations from Brill (1995).

The problem with having a fixed training set, devset, and testset is that in order to
save lots of data for training, the test set might not be largeenough to be representative.
Thus a better approach would be to somehow useall our data both for training and
test. How is this possible? The idea is to usecrossvalidation. In crossvalidation, weCROSSVALIDATION

randomly choose a training and test set division of our data,train our tagger, and then
compute the error rate on the test set. Then we repeat with a different randomly selected
training set and test set. We do this sampling process 10 times, and then average these
10 runs to get an average error rate. This is called10-fold crossvalidation.10­FOLD

CROSSVALIDATION

The only problem with cross-validation is that because all the data is used for
testing, we need the whole corpus to be blind; we can’t examine any of the data to
suggest possible features, and in general see what’s going on. But looking at the corpus
is often important for designing the system. For this reasonit is common to create a
fixed training set and test set, and then to do 10-fold crossvalidation inside the training
set, but compute error rate the normal way in the test set.

Once we have a test set, taggers are evaluated by comparing their labeling of
the test set with a human-labeledGold Standard test set, based onaccuracy: the
percentage of all tags in the test set where the tagger and theGold standard agree. Most
current tagging algorithms have an accuracy of around 96–97% for simple tagsets like
the Penn Treebank set. These accuracies are for words and punctuation; the accuracy
for words only would be lower.

How good is 97%? Since tagsets and tasks differ, the performance of tags can be
compared against a lower-boundbaselineand an upper-boundceiling. One way to setBASELINE

CEILING a ceiling is to see how well humans do on the task. Marcus et al.(1993), for example,
found that human annotators agreed on about 96–97% of the tags in the Penn Treebank
version of the Brown corpus. This suggests that the Gold Standard may have a 3-4%
margin of error, and that it is meaningless to get 100% accuracy, (modeling the last
3% would just be modeling noise). Indeed Ratnaparkhi (1996)showed that the tagging
ambiguities that caused problems for his tagger were exactly the ones that humans had
labeled inconsistently in the training set. Two experiments by Voutilainen (1995, p.
174), however, found that when humans were allowed to discuss tags, they reached
consensus on 100% of the tags.

Human Ceiling: When using a human Gold Standard to evaluate a classification
algorithm, check the agreement rate of humans on the standard.

The standardbaseline, suggested by Gale et al. (1992) (in the slightly different
context of word-sense disambiguation), is to choose theunigram most-likely tag for
each ambiguous word. The most-likely tag for each word can becomputed from a
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hand-tagged corpus (which may be the same as the training corpus for the tagger being
evaluated).

Unigram Baseline: Always compare a classifier against a baseline at least as
good as the unigram baseline (assigning each token to the class it occurred in
most often in the training set).

Tagging algorithms since Harris (1962) incorporate this tag frequency intuition.
Charniak et al. (1993) showed that this baseline algorithm achieves an accuracy of 90–
91% on the 87-tag Brown tagset; Toutanova et al. (2003) showed that a more complex
version, augmented with an unknown word model, achieved 93.69% on the 45-tag
Treebank tagset.

When comparing models it is important to use statistical tests (introduced in
any statistics class or textbook for the social sciences) todetermine if the difference
between two models is significant. Cohen (1995) is a useful reference which focuses
on statistical research methods for artificial intelligence. Dietterich (1998) focuses on
statistical tests for comparing classifiers.

5.7.1 Error Analysis

In order to improve any model we need to understand where it went wrong. Analyzing
the error in a classifier like a part-of-speech tagger is donevia a confusion matrix,
or contingency table. A confusion matrix for anN-way classification task is anN-
by-N matrix where the cell(x,y) contains the number of times an item with correction
classificationxwas classified by the model asy. For example, the following table shows
a portion of the confusion matrix from the HMM tagging experiments of Franz (1996).
The row labels indicate correct tags, column labels indicate the tagger’s hypothesized
tags, and each cell indicates percentage of the overall tagging error. Thus 4.4% of
the total errors were caused by mistagging a VBD as a VBN. Common errors are
boldfaced.

IN JJ NN NNP RB VBD VBN
IN - .2 .7
JJ .2 - 3.3 2.1 1.7 .2 2.7
NN 8.7 - .2
NNP .2 3.3 4.1 - .2
RB 2.2 2.0 .5 -
VBD .3 .5 - 4.4
VBN 2.8 2.6 -

The confusion matrix above, and related error analyses in Franz (1996), Kupiec
(1992), and Ratnaparkhi (1996), suggest that some major problems facing current tag-
gers are:

1. NN versus NNP versus JJ:These are hard to distinguish prenominally. Dis-
tinguishing proper nouns is especially important for information extraction and
machine translation.

2. RP versus RB versus IN:All of these can appear in sequences of satellites
immediately following the verb.
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3. VBD versus VBN versus JJ:Distinguishing these is important for partial pars-
ing (participles are used to find passives), and for correctly labeling the edges of
noun-phrases.

Error analysis like this is a crucial part of any computational linguistic application. Er-
ror analysis can help find bugs, find problems in the training data, and, most important,
help in developing new kinds of knowledge or algorithms to use in solving problems.

5.8 ADVANCED ISSUES INPART-OF-SPEECHTAGGING

5.8.1 Practical Issues: Tag Indeterminacy and Tokenization

Tag indeterminacy arises when a word is ambiguous between multiple tags and it is
impossible or very difficult to disambiguate. In this case, some taggers allow the use
of multiple tags. This is the case in both the Penn Treebank and in the British National
Corpus. Common tag indeterminacies include adjective versus preterite versus past
participle (JJ/VBD/VBN), and adjective versus noun as prenominal modifier (JJ/NN).
Given a corpus with these indeterminate tags, there are 3 ways to deal with tag indeter-
minacy when training and scoring part-of-speech taggers:

1. Somehow replace the indeterminate tags with only one tag.
2. In testing, count a tagger as having correctly tagged an indeterminate token if it

gives either of the correct tags. In training, somehow choose only one of the tags
for the word.

3. Treat the indeterminate tag as a single complex tag.

The second approach is perhaps the most sensible, although most previous published
results seem to have used the third approach. This third approach applied to the Penn
Treebank Brown corpus, for example, results in a much largertagset of 85 tags instead
of 45, but the additional 40 complex tags cover a total of only121 word instances out
of the million word corpus.

Most tagging algorithms assume a process of tokenization has been applied to the
tags. Ch. 3 discussed the issue of tokenization of periods for distinguishing sentence-
final periods from word-internal period in words likeetc.. An additional role for tok-
enization is in word splitting. The Penn Treebank and the British National Corpus split
contractions and the’s-genitive from their stems:

would/MD n’t/RB
children/NNS ’s/POS

Indeed, the special Treebank tag POS is used only for the morpheme’s which
must be segmented off during tokenization.

Another tokenization issue concerns multi-part words. TheTreebank tagset as-
sumes that tokenization of words likeNew Yorkis done at whitespace. The phrase
a New York City firmis tagged in Treebank notation as five separate words:a/DT
New/NNP York/NNP City/NNP firm/NN. The C5 tagset, by contrast, allow prepositions
like “ in terms of” to be treated as a single word by adding numbers to each tag, as in
in/II31 terms/II32 of/II33.
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5.8.2 Unknown Words

All the tagging algorithms we have discussed require a dictionary that lists the possible
parts-of-speech of every word. But the largest dictionary will still not contain every
possible word, as we saw in Ch. 7. Proper names and acronyms are created very often,
and even new common nouns and verbs enter the language at a surprising rate. There-
fore in order to build a complete tagger we cannot always use adictionary to give us
p(wi |ti). We need some method for guessing the tag of an unknown word.

The simplest possible unknown-word algorithm is to pretendthat each unknown
word is ambiguous among all possible tags, with equal probability. Then the tagger
must rely solely on the contextual POS-trigrams to suggest the proper tag. A slightly
more complex algorithm is based on the idea that the probability distribution of tags
over unknown words is very similar to the distribution of tags over words that oc-
curred only once in a training set, an idea that was suggestedby both Baayen and
Sproat (1996) and Dermatas and Kokkinakis (1995). These words that only occur once
are known ashapax legomena(singularhapax legomenon). For example, unknownHAPAX LEGOMENA

words andhapax legomenaare similar in that they are both most likely to be nouns,
followed by verbs, but are very unlikely to be determiners orinterjections. Thus the
likelihood P(wi |ti) for an unknown word is determined by the average of the distribu-
tion over all singleton words in the training set. This idea of using “things we’ve seen
once” as an estimator for “things we’ve never seen” will prove useful in the Good-
Turing algorithm of Ch. 4.)

Most unknown-word algorithms, however, make use of a much more powerful
source of information: the morphology of the words. For example, words that end in-s
are likely to be plural nouns (NNS), words ending with-ed tend to be past participles
(VBN), words ending withable tend to be adjectives (JJ), and so on. Even if we’ve
never seen a word, we can use facts about its morphological form to guess its part-
of-speech. Besides morphological knowledge, orthographic information can be very
helpful. For example words starting with capital letters are likely to be proper nouns
(NP). The presence of a hyphen is also a useful feature; hyphenated words in the Tree-
bank version of Brown are most likely to be adjectives (JJ). This prevalence of JJs is
caused by the labeling instructions for the Treebank, whichspecified that prenominal
modifiers should be labeled as JJ if they contained a hyphen.

How are these features combined and used in part-of-speech taggers? One method
is to train separate probability estimators for each feature, assume independence, and
multiply the probabilities. Weischedel et al. (1993) builtsuch a model, based on four
specific kinds of morphological and orthographic features.They used 3 inflectional
endings (-ed, -s, -ing), 32 derivational endings (such as-ion, -al, -ive, and-ly), 4 values
of capitalization depending on whether a word is sentence-initial (+/- capitalization, +/-
initial) and whether the word was hyphenated. For each feature, they trained maximum
likelihood estimates of the probability of the feature given a tag from a labeled training
set. They then combined the features to estimate the probability of an unknown word
by assuming independence and multiplying:

P(wi |ti) = p(unknown-word|ti)∗ p(capital|ti)∗ p(endings/hyph|ti)(5.49)

Another HMM-based approach, due to Samuelsson (1993) and Brants (2000),
generalizes this use of morphology in a data-driven way. In this approach, rather than
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pre-selecting certain suffixes by hand, all final letter sequences of all words are con-
sidered. They consider such suffixes of up to ten letters, computing for each suffix of
lengthi the probability of the tagti given the suffix:

P(ti |ln−i+1 . . . ln)(5.50)

These probabilities are smoothed using successively shorter and shorter suffixes.
Separate suffix tries are kept for capitalized and uncapitalized words.

In general, most unknown word models try to capture the fact that unknown
words are unlikely to be closed-class words like prepositions. Brants models this fact
by only computing suffix probabilities from the training setfor words whose frequency
in the training set is≤ 10. In the HMM tagging model of Thede and Harper (1999),
this fact is modeled instead by only training on open-class words.

Note that (5.50) gives an estimate ofp(ti |wi); since for the HMM tagging ap-
proach we need the likelihoodp(wi |ti), this can be derived from (5.50) using Bayesian
inversion (i.e. using Bayes rule and computation of the two priorsP(ti) andP(ti |ln−i+1 . . . ln)).

In addition to using capitalization information for unknown words, Brants (2000)
also uses capitalization information for tagging known words, by adding a capitaliza-
tion feature to each tag. Thus instead of computingP(ti |ti−1,ti−2) as in (5.43), he actu-
ally computes the probabilityP(ti ,ci |ti−1,ci−1,ti−2,ci−2). This is equivalent to having
a capitalized and uncapitalized version of each tag, essentially doubling the size of the
tagset,.

A non-HMM based approach to unknown word detection was that of Brill (1995)
using the TBL algorithm, where the allowable templates weredefined orthographically
(the firstN letters of the words, the lastN letters of the word, etc.).

A third approach to unknown word handling, due to Ratnaparkhi (1996), uses
the maximum entropy approach. The maximum entropy approachis one of a family
of loglinear classifiers in which many features are computedfor the word to be tagged,
and all the features are combined in a regression-like model. For each word, the Rat-
naparkhi (1996) model includes as features all prefixes and suffixes of length≤ 4 (i.e.
8 total prefix and suffix features), plus three more features indicating whether the word
contains a number, contains a hyphen, or contains an upper-case letter. The model
ignored all features with counts less than 10.

A more recent loglinear model, Toutanova et al. (2003) augmented the Ratna-
parkhi features with an ‘all-caps’ feature, as well as a feature for words that are capi-
talized and have a digit and dash (since words like CFC-12 tend to be common nouns).
But the most significant unknown word improvement of the Toutanova et al. (2003)
model is a simple company name detector, which marks capitalized words followed
within 3 words by a word like Co. or Inc.

Loglinear models have also been applied to Chinese tagging by Tseng et al.
(2005). Chinese words are very short (around 2.4 charactersper unknown word com-
pared with 7.7 for English), but Tseng et al. (2005) found that morphological features
nonetheless gave a huge increase in tagging performance forunknown words. For ex-
ample for each character in an unknown word and each POS tag, they added a binary
feature indicating whether that character ever occurred with that tag in any training set
word. There is also an interesting distributional difference in unknown words between
Chinese and English. While English unknown words tend to be proper nouns (41% of
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unknown words in WSJ are NP), in Chinese the majority of unknown words are com-
mon nouns and verbs (61% in the Chinese TreeBank 5.0). These ratios are similar to
German, and seem to be caused by the prevalence of compounding as a morphological
device in Chinese and German.

5.8.3 Part-of-Speech Tagging for Other Languages

As the previous paragraph suggests, part-of-speech tagging algorithms have all been
applied to many other languages as well. In some cases, the methods work well without
large modifications; Brants (2000) showed the exact same performance for tagging on
the German NEGRA corpus (96.7%) as on the English Penn Treebank. But a number
of augmentations and changes become necessary when dealingwith highly inflected or
agglutinative languages.

One problem with these languages is simply the large number of words, when
compared to English. Recall from Ch. 3 that agglutinative languages like Turkish (and
to some extent mixed agglutinative-inflectional languageslike Hungarian) are those in
which words contain long strings of morphemes, where each morpheme has relatively
few surface forms, and so it is often possible to clearly see the morphemes in the surface
text. For example Megyesi (1999) gives the following typical example of a Hungarian
word meaning “of their hits”:

(5.51) találataiknak

talál
hit/find

-at
nominalizer

-a
his

-i
poss.plur

-k
their

-nak
dat/gen

“of their hits”

Similarly, the following list, excerpted from Hakkani-Tür et al. (2002), shows a
few of the words producible in Turkish from the rootuyu-, ’sleep’:

uyuyorum ‘I am sleeping’ uyuyorsun ‘you are sleeping’
uyuduk ‘we slept’ uyumadan ‘without sleeping’
uyuman ‘your sleeping’ uyurken ‘while (somebody) is sleeping’
uyutmak ‘to cause someone to sleep’ uyutturmak ‘to cause someone to cause another

person to sleep’

These productive word-formation processes result in a large vocabulary for these
languages. Oravecz and Dienes (2002), for example, show that a quarter-million word
corpus of English has about 19,000 different words (i.e. word types); the same size
corpus of Hungarian has almost 50,000 different words. Thisproblem continues even
with much larger corpora; note in the table below on Turkish from Hakkani-Tür et al.
(2002) that the vocabulary size of Turkish is far bigger thanthat of English and is
growing faster than English even at 10 million words.

Vocabulary Size
Corpus Size Turkish English
1M words 106,547 33,398
10M words 417,775 97,734

The large vocabulary size seems to cause a significant degradation in tagging per-
formance when the HMM algorithm is applied directly to agglutinative languages. For
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example Oravecz and Dienes (2002) applied the exact same HMMsoftware (called
‘TnT’) that Brants (2000) used to achieve 96.7% on both English and German, and
achieved only 92.88% on Hungarian. The performance on knownwords (98.32%) was
comparable to English results; the problem was the performance on unknown words:
67.07% on Hungarian, compared to around 84-85% for unknown words with a compa-
rable amount of English training data. Hajič (2000) notes the same problem in a wide
variety of other languages (including Czech, Slovene, Estonian, and Romanian); the
performance of these taggers is hugely improved by adding a dictionary which essen-
tially gives a better model of unknown words. In summary, onedifficulty in tagging
highly inflected and agglutinative languages is tagging of unknown words.

A second, related issue with such languages is the vast amount of information
that is coded in the morphology of the word. In English, lots of information about syn-
tactic function of a word is represented by word order, or neighboring function words.
In highly inflectional languages, information such as the case (nominative, accusative,
genitive) or gender (masculine, feminine) is marked on the words themselves, and word
order plays less of a role in marking syntactic function. Since tagging is often used a
preprocessing step for other NLP algorithms such as parsingor information extraction,
this morphological information is crucial to extract. Thismeans that a part-of-speech
tagging output for Turkish or Czech needs to include information about the case and
gender of each word in order to be as useful as parts-of-speech without case or gender
are in English.

For this reason, tagsets for agglutinative and highly inflectional languages are
usually much larger than the 50-100 tags we have seen for English. Tags in such
enriched tagsets are sequences of morphological tags rather than a single primitive
tag. Assigning tags from such a tagset to words means that we are jointly solving the
problems of part-of-speech tagging and morphological disambiguation. Hakkani-Tür
et al. (2002) give the following example of tags from Turkish, in which the wordizin
has three possible morphological/part-of-speech tags (and meanings):

1. Yerdekiizin temizlenmesi gerek. iz +Noun+A3sg+Pnon+Gen
The traceon the floor should be cleaned.

2. Üzerinde parmakizin kalmiş iz +Noun+A3sg+P2sg+Nom
Your fingerprint is left on (it).

3. Içeri girmek içinizin alman gerekiyor. izin +Noun+A3sg+Pnon+Nom
You need apermission to enter.

Using a morphological parse sequence likeNoun+A3sg+Pnon+Gen as the
part-of-speech tag greatly increases the number of parts-of-speech, of course. We can
see this clearly in the morphologically tagged MULTEXT-East corpora, in English,
Czech, Estonian, Hungarian, Romanian, and Slovene (Dimitrova et al., 1998; Erjavec,
2004). Hajič (2000) gives the following tagset sizes for these corpora:

Language Tagset Size
English 139
Czech 970
Estonian 476
Hungarian 401
Romanian 486
Slovene 1033
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With such large tagsets, it is generally necessary to perform morphological anal-
ysis on each word to generate the list of possible morphological tag sequences (i.e. the
list of possible part-of-speech tags) for the word. The roleof the tagger is then to dis-
ambiguate among these tags. The morphological analysis canbe done in various ways.
The Hakkani-Tür et al. (2002) model of Turkish morphological analysis is based on the
two-level morphology we introduced in Ch. 3. For Czech and the MULTEXT-East lan-
guages, Hajič (2000) and Hajič and Hladká (1998) use a fixed external dictionary for
each language which compiles out all the possible forms of each word, and lists possi-
ble tags for each wordform. The morphological parse also crucially helps address the
problem of unknown words, since morphological parsers can accept unknown stems
and still segment the affixes properly.

Given such a morphological parse, various methods for the tagging itself can be
used. The Hakkani-Tür et al. (2002) model for Turkish uses aMarkov model of tag se-
quences. The model assigns a probability to sequences of tags likeizin+Noun+A3sg+Pnon+Nom
by computing tag transition probabilities from a training set. Other models use similar
techniques to those for English. Hajič (2000) and Hajič and Hladká (1998), for ex-
ample, use a log-linear exponential tagger for the MULTEXT-East languages, Oravecz
and Dienes (2002) and Džeroski et al. (2000) use the TnT HMM tagger (Brants, 2000),
and so on.

5.8.4 Combining Taggers

The various part-of-speech tagging algorithms we have described can also be com-
bined. The most common approach to tagger combination is to run multiple taggers
in parallel on the same sentence, and then combine their output, either by voting or
by training another classifier to choose which tagger to trust in a given context. Brill
and Wu (1998), for example, combined unigram, HMM, TBL, and maximum-entropy
taggers by voting via a higher-order classifier, and showed asmall gain over the best
of the four classifiers. In general, this kind of combinationis only useful if the taggers
have complementary errors, and so research on combination often begins by checking
to see if the errors are indeed different from different taggers. Another option is to
combine taggers in series. Hajič et al. (2001) apply this option for Czech, using the
rule-based approach to remove some of the impossible tag possibilities for each word,
and then an HMM tagger to choose the best sequence from the remaining tags.

5.9 ADVANCED: THE NOISY CHANNEL MODEL FORSPELLING

The Bayesian inference model introduced in Sec. 5.5 for tagging has another inter-
pretation: as an implementation of thenoisy channelmodel, a crucial tool in speech
recognition and machine translation. In this section we introduce this noisy channel
model and show how to apply it to the task of correcting spelling errors.

We saw in Sec.?? that candidate corrections for some spelling errors could be
found by looking for words that had a smalledit distanceto the misspelled word. The
Bayesian models we have seen in this chapter, and the noisy channel model, will give
us a better way to find these corrections.
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NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.23 The noisy channel model.

The intuition of thenoisy channelmodel (see Fig. 5.23) is to treat the misspelledNOISY CHANNEL

word as if a correctly-spelled word had been ‘distorted’ by being passed through a noisy
communication channel. This channel introduces “noise” inthe form of substitutions
or other changes to the letters which makes it hard to recognize the “true” word. Our
goal is then to build a model of the channel. Given this model,we then find the true
word by taking every word of the language, passing each word through our model of
the noisy channel, and seeing which one comes the closest to the misspelled word.

This noisy channel model, like the HMM tagging architecturewe saw earlier, is
a special case ofBayesian inference. We see an observationO (a misspelled word)BAYESIAN

and our job is to find the wordw which generated this misspelled word. Out of all
possible words in the vocabularyV we want to find the wordw such thatP(w|O) isV
highest, or:

ŵ = argmax
w∈V

P(w|O)(5.52)

As we saw for part-of-speech tagging, we will use Bayes rule to turn the problem
around (and note that, as for tagging, we can ignore the denominator):

ŵ = argmax
w∈V

P(O|w)P(w)

P(O)
= argmax

w∈V
P(O|w)P(w)(5.53)

To summarize, the noisy channel model says that we have some true underly-
ing wordw, and we have a noisy channel which modifies the word into some possible
misspelled surface form. The probability of the noisy channel producing any particular
observation sequenceO is modeled byP(O|w). The probability distribution over pos-
sible hidden words is modeled byP(w). The most probable word ˆw given that we’ve
seen some observed misspellingO can be computed by taking the product of the word
prior P(w) and the observation likelihoodP(O|w) and choosing the word for which
this product is greatest.

Let’s apply the noisy channel approach to correcting non-word spelling errors.
This approach was first suggested by Kernighan et al. (1990);their program,correct,
takes words rejected by the Unixspell program, generates a list of potential correct
words, ranks them according to Eq. (5.53), and picks the highest-ranked one. We’ll
apply the algorithm to the example misspellingacress. The algorithm has two stages:
proposing candidate correctionsandscoring the candidates.

In order to propose candidate corrections Kernighan et al. make the reasonable
(Damerau, 1964) simplifying assumption that the correct word will differ from the mis-
spelling by a single insertion, deletion, substitution, ortransposition. The list of can-
didate words is generated from the typo by applying any single transformation which
results in a word in a large on-line dictionary. Applying allpossible transformations to
acressyields the list of candidate words in Fig. 5.24.
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Transformation
Correct Error Position

Error Correction Letter Letter (Letter #) Type
acress actress t – 2 deletion
acress cress – a 0 insertion
acress caress ca ac 0 transposition
acress access c r 2 substitution
acress across o e 3 substitution
acress acres – 2 5 insertion
acress acres – 2 4 insertion

Figure 5.24 Candidate corrections for the misspellingacress, together with the trans-
formations that would have produced the error (after Kernighan et al. (1990)). “–” repre-
sents a null letter.

The second stage of the algorithm scores each correction by Equation 5.53. Let
t represent the typo (the misspelled word), and letc range over the setC of candidate
corrections. The most likely correction is then:

ĉ = argmax
c∈C

likelihood
︷ ︸︸ ︷

P(t|c)

prior
︷︸︸︷

P(c)(5.54)

The prior probability of each correctionP(c) is the language model probability
of the wordc in context; for now let’s make the simplifying assumption that this is
the unigram probabilityP(c). Let’s use the corpus of Kernighan et al. (1990), which
is the 1988 AP newswire corpus of 44 million words. Since in this corpus the word
actressoccurs 1343 times out of 44 million, the wordacres2879 times, and so on, the
resulting unigram prior probabilities are as follows:

c freq(c) p(c)
actress 1343 .0000315
cress 0 .000000014
caress 4 .0000001
access 2280 .000058
across 8436 .00019
acres 2879 .000065

How can we estimateP(t|c)? It is very difficult to model the actual channel
perfectly (i.e. computing the exact probability that a wordwill be mistyped) because
it would require knowing who the typist was, whether they were left-handed or right-
handed, and many other factors. Luckily, it turns out we can get a pretty reasonable
estimate ofp(t|c) just by looking at simple local context factors, because themost
important factors predicting an insertion, deletion, transposition are the identity of the
correct letter itself, how the letter was misspelled, and the surrounding context. For
example, the lettersm andn are often substituted for each other; this is partly a fact
about their identity (these two letters are pronounced similarly and they are next to each
other on the keyboard), and partly a fact about context (because they are pronounced
similarly, they occur in similar contexts). Kernighan et al. (1990) used a simple model
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of this sort. They estimated e.g.p(acress|across) just using the number of times that
the letterewas substituted for the lettero in some large corpus of errors. This is repre-
sented by aconfusion matrix, a square 26×26 matrix which represents the number ofCONFUSION MATRIX

times one letter was incorrectly used instead of another. For example, the cell labeled
[o,e] in a substitution confusion matrix would give the count of times thatewas substi-
tuted foro. The cell labeled[t,s] in an insertion confusion matrix would give the count
of times thatt was inserted afters. A confusion matrix can be computed by coding
a collection of spelling errors with the correct spelling and then counting the number
of times different errors occurred (Grudin, 1983). Kernighan et al. (1990) used four
confusion matrices, one for each type of single error:

• del[x,y] contains the number of times in the training set that the charactersxy in
the correct word were typed asx.
• ins[x,y] contains the number of times in the training set that the characterx in the

correct word was typed asxy.
• sub[x,y] the number of times thatx was typed asy.
• trans[x,y] the number of times thatxy was typed asyx.

Note that they chose to condition their insertion and deletion probabilities on the
previous character; they could also have chosen to condition on the following character.
Using these matrices, they estimatedp(t|c) as follows (wherecp is thepth character of
the wordc):

P(t|c) =







del[cp−1,cp]

count[cp−1cp]
, if deletion

ins[cp−1,tp]

count[cp−1]
, if insertion

sub[tp,cp]

count[cp]
, if substitution

trans[cp,cp+1]

count[cpcp+1]
, if transposition

(5.55)

Fig. 5.25 shows the final probabilities for each of the potential corrections; the
unigram prior is multiplied by the likelihood (computed using Equation (5.55) and the
confusion matrices). The final column shows the “normalizedpercentage”.

This implementation of the Bayesian algorithm predictsacresas the correct word
(at a total normalized percentage of 45%), andactressas the second most likely word.
Unfortunately, the algorithm was wrong here: The writer’s intention becomes clear
from the context:. . . was called a “stellar and versatileacresswhose combination
of sass and glamour has defined her. . .”. The surrounding words make it clear that
actressand notacreswas the intended word. Seeing whether a bigram model ofP(c)
correctly solves this problem is left as Exercise 5.10 for the reader.

The algorithm as we have described it requires hand-annotated data to train the
confusion matrices. An alternative approach used by Kernighan et al. (1990) is to
compute the matrices by iteratively using this very spelling error correction algorithm
itself. The iterative algorithm first initializes the matrices with equal values; thus any
character is equally likely to be deleted, equally likely tobe substituted for any other
character, etc. Next the spelling error correction algorithm is run on a set of spelling
errors. Given the set of typos paired with their corrections, the confusion matrices can
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c freq(c) p(c) p(t|c) p(t|c)p(c) %

actress 1343 .0000315 .000117 3.69×10−9 37%
cress 0 .000000014 .00000144 2.02×10−14 0%
caress 4 .0000001 .00000164 1.64×10−13 0%
access 2280 .000058 .000000209 1.21×10−11 0%
across 8436 .00019 .0000093 1.77×10−9 18%
acres 2879 .000065 .0000321 2.09×10−9 21%
acres 2879 .000065 .0000342 2.22×10−9 23%

Figure 5.25 Computation of the ranking for each candidate correction. Note that the
highest ranked word is notactressbutacres(the two lines at the bottom of the table), since
acrescan be generated in two ways. Thedel[], ins[], sub[], and trans[] confusion matrices
are given in full in Kernighan et al. (1990).

now be recomputed, the spelling algorithm run again, and so on. This clever method
turns out to be an instance of the importantEM algorithm (Dempster et al., 1977) that
we will discuss in Ch. 6.

It is also possible to apply a similar approach to detect and correctreal-word
spelling errors, errors that result in an actual word of English. This can happen fromREAL­WORD ERROR

DETECTION

typographical errors (insertion, deletion, transposition) that accidentally produce a real
word (e.g.,there for three), or because the writer substituted the wrong spelling of
a homophone or near-homophone (e.g.,dessertfor desert, or piecefor peace). The
task of correcting these errors is calledcontext-sensitive spelling error correction. A
number of studies suggest that between of 25% and 40% of spelling errors are valid
English words (Kukich, 1992); some of Kukich’s examples include:

They are leaving in about fifteenminuetsto go to her house.
The designanconstruction of the system will take more than a year.
Can theylavehim my messages?

We can extend the noisy channel model to deal with real-word spelling errors by
generating acandidate spelling setfor every word in a sentence (Mays et al., 1991).
The candidate set includes the word itself, plus every English word that would be gen-
erated from the word by either typographical modifications (letter insertion, deletion,
substitution), or from a homophone list. The algorithm thenchooses the spelling for
each word that gives the whole sentence the highest probability. That is, given a sen-
tenceW = {w1,w2, . . . ,wk, . . . ,wn}, wherewk has alternative spellingw′k, w′′k , etc., we
choose the spelling among these possible spellings that maximizesP(W), using the
N-gram grammar to computeP(W).

5.10 SUMMARY

This chapter introduced the idea ofparts-of-speechandpart-of-speech tagging. The
main ideas:

• Languages generally have a relatively small set ofclosed classwords, which
are often highly frequent, generally act asfunction words, and can be very am-
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biguous in their part-of-speech tags. Open class words generally include various
kinds ofnouns, verbs, adjectives. There are a number of part-of-speech coding
schemes, based ontagsetsof between 40 and 200 tags.

• Part-of-speech taggingis the process of assigning a part-of-speech label to each
of a sequence of words. Rule-based taggers use hand-writtenrules to distinguish
tag ambiguity. HMM taggers choose the tag sequence which maximizes the
product of word likelihood and tag sequence probability. Other machine learning
models used for tagging include maximum entropy and other log-linear models,
decision trees, memory-based learning, and transf̄or m̄ātion-based learning.

• The probabilities in HMM taggers are trained on hand-labeled training corpora,
combining differentN-gram levels using deleted interpolation, and using sophis-
ticated unknown word models.

• Given an HMM and an input string, the Viterbi algorithm is used to decode the
optimal tag sequence.

• Taggers are evaluated by comparing their output from a test set to human labels
for that test set. Error analysis can help pinpoint areas where a tagger doesn’t
perform well.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest implemented part-of-speech assignment algorithm may have been part of
the parser in Zellig Harris’s Transformations and Discourse Analysis Project (TDAP),
which was implemented between June 1958 and July 1959 at the University of Pennsyl-
vania (Harris, 1962). Previous natural language processing systems had used dictionar-
ies with part-of-speech information for words, but have notbeen described as perform-
ing part-of-speech disambiguation. As part of its parsing,TDAP did part-of-speech
disambiguation via 14 hand-written rules, whose use of part-of-speech tag sequences
prefigures all the modern algorithms, and which were run in anorder based on the
relative frequency of tags for a word. The parser/tagger wasreimplemented recently
and is described by Joshi and Hopely (1999) and Karttunen (1999), who note that the
parser was essentially implemented (ironically in a very modern way) as a cascade of
finite-state transducers.

Soon after the TDAP parser was the Computational Grammar Coder (CGC) of
Klein and Simmons (1963). The CGC had three components: a lexicon, a morpholog-
ical analyzer, and a context disambiguator. The small 1500-word lexicon included ex-
ceptional words that could not be accounted for in the simplemorphological analyzer,
including function words as well as irregular nouns, verbs,and adjectives. The mor-
phological analyzer used inflectional and derivational suffixes to assign part-of-speech
classes. A word was run through the lexicon and morphological analyzer to produce a
candidate set of parts-of-speech. A set of 500 context ruleswere then used to disam-
biguate this candidate set, by relying on surrounding islands of unambiguous words.
For example, one rule said that between an ARTICLE and a VERB,the only allowable
sequences were ADJ-NOUN, NOUN-ADVERB, or NOUN-NOUN. The CGC algo-
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rithm reported 90% accuracy on applying a 30-tag tagset to articles from the Scientific
American and a children’s encyclopedia.

TheTAGGIT tagger (Greene and Rubin, 1971) was based on the Klein and Sim-
mons (1963) system, using the same architecture but increasing the size of the dictio-
nary and the size of the tagset (to 87 tags). For example the following sample rule,
which states that a wordx is unlikely to be a plural noun (NNS) before a third person
singular verb (VBZ):

x VBZ → notNNS

TAGGIT was applied to the Brown corpus and, according to Francis andKučera
(1982, p. 9), “resulted in the accurate tagging of 77% of the corpus” (the remainder of
the Brown corpus was tagged by hand).

In the 1970s the Lancaster-Oslo/Bergen (LOB) corpus was compiled as a British
English equivalent of the Brown corpus. It was tagged with the CLAWS tagger (Mar-
shall, 1983, 1987; Garside, 1987), a probabilistic algorithm which can be viewed as an
approximation to the HMM tagging approach. The algorithm used tag bigram prob-
abilities, but instead of storing the word-likelihood of each tag, tags were marked ei-
ther asrare (P(tag|word) < .01) infrequent(P(tag|word) < .10), ornormally frequent
(P(tag|word) > .10),

The probabilisticPARTS tagger of Church (1988) was very close to a full HMM
tagger. It extended the CLAWS idea to assign full lexical probabilities to each word/tag
combination, and used Viterbi decoding to find a tag sequence. Like the CLAWS
tagger, however, it stored the probability of the tag given the word:

P(tag|word)∗P(tag|previousn tags)(5.56)

rather than using the probability of the word given the tag, as an HMM tagger does:

P(word|tag)∗P(tag|previousn tags)(5.57)

Later taggers explicitly introduced the use of the Hidden Markov Model, often
with the EM training algorithm (Kupiec, 1992; Merialdo, 1994; Weischedel et al.,
1993), including the use of variable-length Markov models (Schütze and Singer, 1994).

Most recent tagging algorithms, like the HMM and TBL approaches we have
discussed, are machine-learning classifiers which estimate the best tag-sequence for a
sentence given various features such as the current word, neighboring parts-of-speech
or words, and unknown word features such as orthographic andmorphological fea-
tures. Many kinds of classifiers have been used to combine these features, includ-
ing decision trees (Jelinek et al., 1994; Magerman, 1995), maximum entropy models
(Ratnaparkhi, 1996), other log-linear models (Franz, 1996), memory-based learning
(Daelemans et al., 1996), and networks of linear separators(SNOW) (Roth and Ze-
lenko, 1998). Most machine learning models seem to achieve relatively similar per-
formance given similar features, roughly 96-97% on the Treebank 45-tag tagset on the
Wall Street Journal corpus. As of the writing of this chapter, the highest performing
published model on this WSJ Treebank task is a log-linear tagger that uses information
about neighboring words as well as tags, and a sophisticatedunknown-word model,
achieving 97.24% accuracy (Toutanova et al., 2003). Most such models are supervised;
unsupervised models are considerably less developed. Brill (1997), for example, gives
an unsupervised version of the TBL algorithm.
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Readers interested in the history of parts-of-speech should consult a history of
linguistics such as Robins (1967) or Koerner and Asher (1995), particularly the article
by Householder (1995) in the latter. Sampson (1987) and Garside et al. (1997) give a
detailed summary of the provenance and makeup of the Brown and other tagsets. More
information on part-of-speech tagging can be found in van Halteren (1999).

Algorithms for spelling error detection and correction have existed since at least
Blair (1960). Most early algorithm were based on similaritykeys like the Soundex
algorithm discussed in the exercises on page?? (Odell and Russell, 1922; Knuth,
1973). Damerau (1964) gave a dictionary-based algorithm for error detection; most
error-detection algorithms since then have been based on dictionaries. Damerau also
gave a correction algorithm that worked for single errors. Most algorithms since then
have relied on dynamic programming, beginning with Wagner and Fischer (1974). Ku-
kich (1992) is the definitive survey article on spelling error detection and correction.
Modern algorithms are based on statistical or machine learning algorithm, following
e.g., Kashyap and Oommen (1983) and Kernighan et al. (1990).Recent approaches
to spelling include extensions to the noisy channel model (Brill and Moore, 2000;
Toutanova and Moore, 2002) as well as many other machine learning architectures
such as Bayesian classifiers, (Gale et al., 1993; Golding, 1997; Golding and Sch-
abes, 1996), decision lists (Yarowsky, 1994), transformation based learning (Mangu
and Brill, 1997) latent semantic analysis (Jones and Martin, 1997) and Winnow (Gold-
ing and Roth, 1999).

EXERCISES

5.1 Find one tagging error in each of the following sentences that are tagged with the
Penn Treebank tagset:

a. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

b. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
c. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

d. What/WDT flights/NNS do/VBP you/PRP have/VB from/IN Milwaukee/NNP
to/IN Tampa/NNP

e. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

5.2 Use the Penn Treebank tagset to tag each word in the followingsentences from
Damon Runyon’s short stories. You may ignore punctuation. Some of these are quite
difficult; do your best.

a. It is a nice night.

b. This crap game is over a garage in Fifty-second Street. . .

c. . . . Nobody ever takes the newspapers she sells . . .
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d. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a mournful
voice.

e. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which is a dish I
am very fond of, . . .

f. When a guy and a doll get to taking peeks back and forth at eachother, why there
you are indeed.

5.3 Now compare your tags from the previous exercise with one or two friend’s an-
swers. On which words did you disagree the most? Why?

5.4 Now tag the sentences in Exercise 5.2 using the more detailedBrown tagset in
Fig. 5.7.

5.5 Implement the TBL algorithm in Fig. 5.21. Create a small number of templates
and train the tagger on any POS-tagged training set you can find.

5.6 Implement the “most-likely tag” baseline. Find a POS-tagged training set, and
use it to compute for each word the tag which maximizesp(t|w). You will need to
implement a simple tokenizer to deal with sentence boundaries. Start by assuming all
unknown words are NN and compute your error rate on known and unknown words.
Now write at least 5 rules to do a better job of tagging unknownwords, and show the
difference in error rates.

5.7 Recall that the Church (1988) tagger is not an HMM tagger since it incorporates
the probability of the tag given the word:

P(tag|word)∗P(tag|previousn tags)(5.58)

rather than using the likelihood of the word given the tag, asan HMM tagger
does:

P(word|tag)∗P(tag|previousn tags)(5.59)

As a gedanken-experiment, construct a sentence, a set of tagtransition probabil-
ities, and a set of lexical tag probabilities that demonstrate a way in which the HMM
tagger can produce a better answer than the Church tagger.

5.8 Build an HMM tagger. This requires (1) that you have implemented the Viterbi
algorithm from Ch. 3 or Ch. 6, (2) that you have a dictionary with part-of-speech infor-
mation and (3) that you have either (a) a part-of-speech-tagged corpus or (b) an imple-
mentation of the Forward Backward algorithm. If you have a labeled corpus, train the
transition and observation probabilities of an HMM tagger directly on the hand-tagged
data. If you have an unlabeled corpus, train using Forward Backward.

5.9 Now run your algorithm on a small test set that you have hand-labeled. Find five
errors and analyze them.

5.10 Compute a bigram grammar on a large corpus and reestimate thespelling correc-
tion probabilities shown in Fig. 5.25 given the correct sequence. . . was called a “stellar
and versatileacresswhose combination of sass and glamour has defined her. . . ”. Does
a bigram grammar prefer the correct wordactress?
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