
Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H.
Martin. Copyright c© 2006, All rights reserved. Draft of November 21, 2006.
Do not cite without permission.

6
HIDDEN MARKOV
MODELS AND
LOGLINEAR MODELS

In this chapter we introduce two important classes of statistical models for pro-
cessing text and speech, theHidden Markov Model (HMM) and theMaximum
Entropy model (MaxEnt).

HMMs and MaxEnt are machine learning models. We have alreadytouched
on some aspects of machine learning; we briefly introduced the Hidden Markov
Model in the previous chapter, and we have introduced theN-gram model in the
chapter before. In this chapter we give a more complete introduction to such mod-
els, in preparation for the many statistical models that we will see throughout the
book, includingNaive Bayes, decision lists, andGaussian Mixture Models.

6.1 MARKOV CHAINS

The Hidden Markov Model is one of the most important machine learning mod-
els in speech and language processing. In order to define it properly, we need to
first introduce theMarkov chain , sometimes called theobserved Markov model.
Markov chains and Hidden Markov Models are both extensions of the finite au-
tomata of Ch. 3. Recall that a finite automaton is defined by a set of states, and a
set of transitions between states that are taken based on theinput observations. A
weighted finite-state automatonis a simple augmentation of the finite automatonWEIGHTED

in which each arc is associated with a probability, indicating how likely that path
is to be taken. The probability on all the arcs leaving a node must sum to 1.

A Markov chain is a special case of a weighted automaton in which theMARKOV CHAIN

input sequence uniquely determines which states the automaton will go through.
Because they can’t represent inherently ambiguous problems, a Markov chain is
only useful for assigning probabilities to unambiguous sequences.

Fig. 6.1a shows a Markov chain for assigning a probability toa sequence
of weather events, where the vocabulary consists ofHOT, COLD, and RAINY ,.
Fig. 6.1b shows another simple example of a Markov chain for assigning a prob-

4 Chapter 6. Hidden Markov Models and Loglinear Models

6.2 THE HIDDEN MARKOV MODEL

A Markov chain is useful when we need to compute a probabilityfor a sequence of
events that we can observe in the world. In many cases, however, the events we are
interested in may not be directly observable in the world. For example for part-of-
speech tagging (Ch. 5) we didn’t observe part of speech tags in the world; we saw
words, and had to infer the correct tags from the word sequence. We call the part-
of-speech tagshidden because they are not observed. We will see the same thing
in speech recognition; we’ll see acoustic events in the world, and have to infer the
presence of ‘hidden’ words that are the underlying causal source of the acoustics.
A Hidden Markov Model (HMM) allows us to talk about bothobserved eventsHIDDEN MARKOV

MODEL

(like words that we see in the input) andhidden events (like part-of-speech tags)
that we think of as causal factors in our probabilistic model.

To exemplify these models, we’ll use a task conceived of by Jason Eisner
(2002). Imagine that you are a climatologist in the year 2799studying the history
of global warming. You cannot find any records of the weather in Baltimore, Mary-
land, for the summer of 2007, but you do find Jason Eisner’s diary, which lists how
many ice creams Jason ate every day that summer. Our goal is touse these obser-
vations to estimate the temperature every day. We’ll simplify this weather task by
assuming there are only two kinds of days: cold (C) and hot (H).

So the Eisner task is as follows: Given a sequence of observations (numbers
of ice creams eaten) we must figure out the correct ‘hidden’ sequence of H and C
which caused Jason to eat ice cream.

Let’s begin by seeing how a Hidden Markov Model differs from aMarkov
chain. AnHMM is specified by a set ofstatesQ, a set oftransition probabilitiesHMM

A, a set of observation likelihoodsB, a definedstart state andend state(s), and a
set ofobservation symbolsO, which is not drawn from the same alphabet as the
state setQ:

• states:a set of statesQ = q1q2 . . .qN

• observations:a set of observationsO = o1o2 . . .oN , each observation drawn
from a vocabularyV = v1,v2, ...,vV .

• transition probabilities: a set of probabilitiesA = a01a02. . .an1 . . .ann. Each
ai j represents the probability of transitioning from statei to statej. The set
of these is thetransition probability matrix A

• observation likelihoods: a set of observation likelihoodsB = bi(ot), each
expressing the probability of an observationot being generated from a state
i. These are often called the HMMemission probabilities.EMISSION

PROBABILITIES

As we noted for Markov chains, we can use two “special” states(non-emitting

Section 6.2. The Hidden Markov Model 5

states) as the start and end state; or we can avoid the use of these states by speci-
fying two more things:

• initial distribution: an initial probability distribution over states,π, such that
πi is the probability that the HMM will start in statei. Of course some states
j may haveπ j = 0, meaning that they cannot be initial states.

• accepting states:a set of legal accepting states

Again, we have the same constraints as for a Markov chain thatthe various
probabilities must correctly sum to one:

n
∑

j=1

ai j = 1 ∀i

n
∑

i=1

πi = 1

As with a first-order Markov chain, a first-order Hidden Markov Model in-
stantiates two simplifying assumptions. First, the probability of a particular state
is dependent only on the previous state:

Markov Assumption: P(qi|q1...qi−1) = P(qi|qi−1)(6.6)

Second, the probability of an output observationoi is dependent only on the state
that produced the observationqi, and not on any other states or any other observa-
tions:

Output Independence Assumption: P(oi|q1 . . .qi . . .qn,o1 . . .oi . . . ,on) = P(oi|qi)(6.7)

Fig. 6.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, while the observations (drawn from
the alphabetO = {1,2,3}) correspond to the number of ice creams eaten by Jason
on a given day.

Notice that in the HMM in Fig. 6.3, there is a (non-zero) probability of tran-
sitioning between any two states. Such an HMM is called afully-connected orFULLY­CONNECTED

ergodic HMM . Sometimes, however, we have HMMs in which many of the tran-ERGODIC HMM

sitions between states have zero probability. For example,in left-to-right (alsoLEFT­TO­RIGHT

calledBakis) HMMs, the state transitions proceed from left to right, as shown inBAKIS

Fig. 6.4. In a Bakis HMM, there are no transitions going from ahigher-numbered
state to a lower-numbered state (or, more accurately, any transitions from a higher-
number state to a lower-numbered state have zero probability). Bakis HMMs are
generally used to model temporal processes like speech; we will see more of this
in Ch. 9.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on

6 Chapter 6. Hidden Markov Models and Loglinear Models

Figure 6.3 A Hidden Markov Model for relating numbers of ice creams eaten by
Jason (the observations) to the weather (H or C, the hidden variables). Note that we
have used a special zeroth start state; we could instead haverepresented the initial
distribution over states by using theπ vector,π = [.8, .2]. In general we will use the
start state rather than theπ vector in the remainder of this chapter.

Figure 6.4 Two 4-state Hidden Markov models; a left-to-right (Bakis) HMM on
the left, and a fully-connected (ergodic) HMM on the right. In the Bakis model, all
transitions not shown have zero probability.

tutorials by Jack Ferguson in the 1960s, introduced the ideathat Hidden Markov
Models should be characterized by three fundamental problems: (1) given a spe-
cific HMM, determining the likelihood of an observation sequence, (2) given an
observation sequence and an HMM, discovering the best (mostprobable) hidden
state sequence, and (3) given only an observation sequence,learning the HMM pa-
rameters. We already saw an example of problem (2) in Ch. 5; now we introduce
it more formally, along with each of the other two tasks, in the next 3 sections.

Section 6.3. Computing Likelihood: The Forward Algorithm 7

6.3 COMPUTING L IKELIHOOD : THE FORWARD ALGORITHM

Our first problem is to compute the likelihood of a particularobservation sequence
given a specific HMM. For example, given the HMM in Fig. 6.2b, what is the
probability of the sequence3 1 3?

For a Markov chain, where the surface observations are the same as the hid-
den events, we could compute the probability of3 1 3 just by following the states
labeled3 1 3 and multiplying the probabilities along the arcs. For a Hidden Markov
Model, things are not so simple. We want to determine the probability of an ice-
cream observation sequence like3 1 3, but we don’t know what the hidden state
sequence is!

Let’s start with a slightly simpler situation. Suppose we already knew the
weather, and wanted to predict how much ice cream Jason wouldeat. This is a
useful part of many HMM tasks. For a given hidden state sequence (e.g.hot hot
cold) we can easily compute the output likelihood of3 1 3.

Let’s see how. First, recall that for Hidden Markov Models, each hidden state
produces only a single observation. Thus the sequence of hidden states and the
sequence of observations has the same length.1

Given this one-to-one mapping, and the Markov assumptions expressed in
Eq. 6.6, for a particular hidden state sequenceQ = q0,q1,q2, ...,qn and an observa-
tion sequenceO = o1,o2, ...,on, the likelihood of the observation sequence (using
a special start stateq0 rather thanπ probabilities) is:

P(O|Q) =
n

∏

i=1

P(oi|qi)×
n

∏

i=1

P(qi|qi−1)(6.8)

The computation of the forward probability for our ice-cream observation3 1
3 from one possible hidden state sequencehot hot hot is as follows (Fig. 6.5 shows
a graphic representation of this):

P(3 1 3|hot hot cold) = P(hot|start)×P(hot|hot)×P(cold|hot)

×P(3|hot)×P(1|hot)×P(3|cold)(6.9)

In order to compute the true total likelihood of3 1 3, however, we need to
sum over all possible hidden state sequences (in this case, the 8 sequencescold
cold cold, cold cold hot, and so on). For an HMM withN hidden states and an
observation sequence ofT observations, there areNT possible hidden sequences.
For real tasks, whereN and T are both large,NT is a very large number, and

1 There are variants of HMMs calledsegmental HMMs (in speech recognition) orsemi-HMMs
(in natural language processing) in which this one-to-one mapping between the length of the hidden
state sequence and the length of the observation sequence does not hold.

8 Chapter 6. Hidden Markov Models and Loglinear Models

Figure 6.5 The computation of the observation likelihood for the ice-cream events
3 1 3 given the hidden state sequencehot hot cold.

so we cannot compute the total observation likelihood by computing a separate
observation likelihood for each hidden state sequence and then summing them up.

Instead of using such an extremely exponential algorithm, we use an effi-
cient algorithm called theforward algorithm .The forward algorithm is a kindFORWARD

ALGORITHM

of dynamic programming algorithm, i.e., an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence.
The forward algorithm computes the observation probability by summing over the
probabilities of all possible hidden-state paths that could generate the observation
sequence, but it does so efficiently by implicitly folding each of these paths into a
singleforward trellis .

Fig. 6.6 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequencehot hot cold.

Section 6.4. Decoding: The Viterbi Algorithm 9

being in statej after seeing the firstt observations, given the automatonλ. The
value of each cellαt(j) is computed by summing over the probabilities of every
path that could lead us to this cell. Formally, each cell expresses the following
probability:

αt(j) = P(o1,o2 . . .ot ,qt = j|λ)(6.10)

Hereqt = j means “the probability that thetth state in the sequence of states
is statej”. We compute this probability by summing over the extensions of all the
paths that lead to the current cell. An extension of a path from a statei at timet−1
is computed by multiplying the following three factors:

1. theprevious path probability from the previous cellαt−1(i),
2. thetransition probability ai j from previous statei to current statej, and
3. thestate observation likelihoodb j(ot) that current statej matches observa-

tion symbolt.

Consider the computation in Fig. 6.6 ofα2(1), the forward probability of
being at time step 2 in state 1 having generated the partial observation3 2. This
is computed by extending theα probabilities from time step 1, via two paths, each
extension consisting of the three factors above:α1(1)× P(H|H)× P(1|H) and
α1(2)×P(H|C)×P(1|H).

Fig. 6.7, adapted from Rabiner (1989), shows another visualization of this
induction step for computing the value in one new cell of the trellis.

We give two formal definitions of the Forward algorithm; the pseudocode in
Fig. 6.8 and a statement of the definitional recursion here:

1. Initialization:

α1(j) = a0 jb j(o1) 1≤ j ≤ N(6.11)

2. Recursion (since states 0 and N are non-emitting):

αt(j) =

[

N−1
∑

i=1

αt−1(i)ai j

]

b j(ot); 1 < j < N,1 < t < T(6.12)

3. Termination:

P(O|λ) = αT (N) =
N−1
∑

i=2

αT (i)aiN(6.13)

6.4 DECODING: THE V ITERBI ALGORITHM

For any model, such as an HMM, that contains hidden variables, the task of de-
termining which sequence of variables is the underlying source of some sequence

12 Chapter 6. Hidden Markov Models and Loglinear Models

2. thetransition probability ai j from previous states′ to current states, and
3. the observation likelihood bs(ot) of the observation symbolot given the

current states.

function V ITERBI(observations of len T,state-graph) returns best-path

num-states←NUM-OF-STATES(state-graph)
Create a path probability matrixviterbi[num-states+2,T+2]
viterbi[0,0]←1.0
for each time stept from 1 to T do

for each states from 1 to num-states do
viterbi[s,t]← max

1 ≤ s′≤ num-states

[

viterbi[s′,t−1] ∗ as′,s
]

∗ bs(ot)

back-pointer[s,t]← argmax
1 ≤ s′≤ num-states

[

viterbi[s′,t−1] ∗ as′,s
]

Backtrace from highest probability state in final column ofviterbi[] and return path

Figure 6.10 Viterbi algorithm for finding optimal sequence of tags. Given an
observation sequence and an HMMλ = (A,B), the algorithm returns the state-path
through the HMM which assigns maximum likelihood to the observation sequence.
Note that states 0 and N+1 are non-emittingstart andend states.

Fig. 6.10 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the Forward algorithm except thatit takes themax over
the previous path probabilities where Forward takes thesum. Note also that the
Viterbi algorithm has one component that the Forward algorithm doesn’t have:
backpointers. This is because while the Forward algorithm needs to produce an
observation likelihood, the Viterbi algorithm must produce a probability and also
the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. 6.11.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1(j) = a0 jb j(o1) 1≤ j ≤ N(6.15)

bt1 j = 0(6.16)

2. Recursion(recall states 0 and N are non-emitting):

vt(j) =

[

N−1
max
i=1

vt−1(i)ai j

]

b j(ot); 1 < j < N,1 < t < T(6.17)

btt(j) =

[

N−1
argmax

i=1
vt−1(i)ai j

]

b j(ot); 1 < j < N,1 < t < T(6.18)

Section 6.5. Training HMMs: The Forward-Backward Algorithm 13

� � � � �

�

� � �

�

�

�

�

�
� 	
� �
 � � � � � � � � � � � �
� � �

� �

� � � � � � � � � � � � �
 ! � "

� � # � # � � � � � � # �
 $ � %

& ' () * + , & ' -) (+. / , . 0
1 2 3 4 5 6 7

1 2 8 4 3 6
9 : 7 9;

< = > ? @ A B C A D E < = F ? > D
G H E G I

J K L M N

J K L O N

J K P Q R S L M N T L U V W L O N T L O X Y K L O V V Z

J K P Q R S L M N T L U [W L O N T L M O Y K L O V Z

Figure 6.11 The Viterbi backtrace. As we extend each path to a new state account for the next obser-
vation, we keep a backpointer (shown with broken blue lines)to the best path that led us to this state.

3. Termination:

The best score:P∗ =
N

max
i=1

vT (i)(6.19)

The start of backtrace:qT∗ =
N

argmax
i=1

btT (i)(6.20)

6.5 TRAINING HMM S: THE FORWARD-BACKWARD ALGORITHM

We turn to the third problem for HMMs: learning the parameters of an HMM, i.e.,
theA andB matrices.

The input to such a learning algorithm would be an unlabeled sequence of
observationsO and a vocabulary of potential hidden statesQ. Thus for the ice
cream task, we would start with a sequence of observationsO = {1,3,2, ...,}, and
the set of hidden statesH andC. For the part-of-speech tagging task we would start
with a sequence of observationsO = {w1,w2,w3 . . .} and a set of hidden statesNN,
NNS, VBD, IN,... and so on.

The standard algorithm for HMM training is theforward-backward orBaum-FORWARD­
BACKWARD

Welch algorithm (Baum, 1972), a special case of theExpectation-MaximizationBAUM­WELCH

or EM algorithm (Dempster et al., 1977). The algorithm will let ustrain both theEM

transition probabilitiesA and the emission probabilitiesB of the HMM.
Let us begin by considering the much simpler case of traininga Markov

chain rather than a Hidden Markov Model. Since the states in aMarkov chain

14 Chapter 6. Hidden Markov Models and Loglinear Models

are observed, we can run the model on the observation sequence and directly see
which path we took through the model, and which state generated each observation
symbol. A Markov chain of course has no emission probabilitiesB (alternatively
we could view a Markov chain as a degenerate Hidden Markov Model where all
the b probabilities are 1.0 for the observed symbol and 0 for all other symbols.).
Thus the only probabilities we need to train are the transition probability matrixA.

We get the maximum likelihood estimate of the probabilityai j of a particular
transition between statesi and j by counting the number of times the transition was
taken, which we could callC(i→ j), and then normalizing by the total count of all
times we took any transition from statei:

ai j =
C(i→ j)

∑

q∈QC(i→ q)
(6.21)

We can directly compute this probability in a Markov chain because we know
which states we were in. For an HMM we cannot compute these counts directly
from an observation sequence since we don’t know which path of states was taken
through the machine for a given input. The Baum-Welch algorithm uses two neat
intuitions to solve this problem. The first idea is toiteratively estimate the counts.
We will start with an estimate for the transition and observation probabilities, and
then use these estimated probabilities to derive better andbetter probabilities. The
second idea is that we get our estimated probabilities by computing the forward
probability for an observation and then dividing that probability mass among all
the different paths that contributed to this forward probability.

In order to understand the algorithm, we need to define a useful probability
related to the forward probability, called thebackward probability .BACKWARD

PROBABILITY

The backward probabilityβ is the probability of seeing the observations from
time t +1 to the end, given that we are in statej at timet (and of course given the
automatonλ):

βt(i) = P(ot+1,ot+2 . . .oT |qt = i,λ)(6.22)

It is computed inductively in a similar manner to the forwardalgorithm.

1. Initialization:

βT (i) = aiN , 1 < i < N(6.23)

2. Recursion (again since states 0 and N are non-emitting):

βt(i) =
N−1
∑

i=1

ai jb j(ot+1)βt+1(j) 1 < i < N,0 < t < T(6.24)

Section 6.5. Training HMMs: The Forward-Backward Algorithm 15

3. Termination:

P(O|λ) = αT (N) = βT (1) =
N−1
∑

j=1

a1 jb j(o1)β1(j)(6.25)

Fig. 6.12 illustrates the backward induction step.

� � � �� �

�

�

�

�

�

� �

� �

� �

� 	

 � �

 � �

 � 	

 � �

�
 � � � �
 �

� � � � � � � � � � � � � � �
 � � � � � � � ! � "
� # � � � �
 �

� $ � � � �
 �

� % � � � �
 �

Figure 6.12 The computation ofβt(i) by summing all the successive values
βt+1(j) weighted by their transition probabilitiesa and their observation probabil-
ities b j(ot+1). After (Rabiner, 1989)

We are now ready to understand how the forward and backward probabili-
ties can help us compute the transition probabilityai j and observation probability
bi(ot) from an observation sequence, even though the actual path taken through the
machine is hidden.

Let’s begin by showing how to reestimateai j. We will proceed to estimate
âi j by a variant of (6.21):

âi j =
expected number of transitions from statei to statej

expected number of transitions from statei
(6.26)

How do we compute the numerator? Here’s the intuition. Assume we had
some estimate of the probability that a given transitioni→ j was taken at a par-
ticular point in timet in the observation sequence. If we knew this probability for
each particular timet, we could sum over all timest to estimate the total count for
the transitioni→ j.

More formally, let’s define the probabilityξt as the probability of being in
statei at time t and statej at time t + 1, given the observation sequence and of
course the model:

ξt(i, j) = P(qt = i,qt+1 = j|O,λ)(6.27)

16 Chapter 6. Hidden Markov Models and Loglinear Models

In order to computeξt , we first compute a probability which is similar toξt ,
but differs in including the probability of the observation:

not-quite-ξt(i, j) = P(qt = i,qt+1 = j,O|λ)(6.28)

Fig. 6.13 shows the various probabilities that go into computing not-quite-ξt :
the transition probability for the arc in question, theα probability before the arc,
theβ probability after the arc, and the observation probabilityfor the symbol just
after the arc.

� � � �� � � �

� � � � 	

� �
 � � �

� �
 �
 � � � � � �
� � � �

� � � � � � 	

Figure 6.13 Computation of the joint probability of being in statei at timet and
state j at timet +1. The figure shows the various probabilities that need to be com-
bined to produceP(qt = i,qt+1 = j,O|λ): the α andβ probabilities, the transition
probabilityai j and the observation probabilityb j(ot+1). After Rabiner (1989).

These are multiplied together to producenot-quite-ξt as follows:

not-quite-ξt(i, j) = αt(i)ai jb j(ot+1)βt+1(j)(6.29)

In order to computeξt from not-quite-ξt , the laws of probability instruct us
to divide byP(O|λ), since:

P(X |Y,Z) =
P(X ,Y |Z)

P(Y |Z)
(6.30)

The probability of the observation given the model is simplythe forward
probability of the whole utterance, (or alternatively the backward probability of
the whole utterance!), which can thus be computed in a numberof ways:

P(O|λ) = αT (N) = βT (1) =
N

∑

j=1

αt(j)βt(j)(6.31)

Section 6.5. Training HMMs: The Forward-Backward Algorithm 17

So, the final equation forξt is:

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1(j)

αT (N)
(6.32)

The expected number of transitions from statei to statej is then the sum over
all t of ξ. For our estimate ofai j in (6.26), we just need one more thing: the total
expected number of transitions from statei. We can get this by summing over all
transitions out of statei. Here’s the final formula for ˆai j:

âi j =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1

∑N
j=1ξt(i, j)

(6.33)

We also need a formula for recomputing the observation probability. This is
the probability of a given symbolvk from the observation vocabularyV , given a
statej: b̂ j(vk). We will do this by trying to compute:

b̂ j(vk) =
expected number of times in statej and observing symbolvk

expected number of times in statej
(6.34)

For this we will need to know the probability of being in statej at time t,
which we will call γt(j):

γt(j) = P(qt = j|O,λ)(6.35)

Once again, we will compute this by including the observation sequence in
the probability:

γt(j) =
P(qt = j,O|λ)

P(O|λ)
(6.36)

As Fig. 6.14 shows, the numerator of (6.36) is just the product of the forward
probability and the backward probability:

γt(j) =
αt(j)βt(j)

P(O|λ)
(6.37)

We are ready to computeb. For the numerator, we sumγt(j) for all time
stepst in which the observationot is the symbolvk that we are interested in. For the
denominator, we sumγt(j) over all time stepst. The result will be the percentage of
the times that we were in statej that we saw symbolvk (the notation

∑T
t=1s.t.Ot=vk

means ”sum over allt for which the observation at timet wasvk):

b̂ j(vk) =

∑T
t=1s.t.Ot=vk

γt(j)
∑T

t=1 γt(j)
(6.38)

We now have ways in (6.33) and (6.38) tore-estimate the transitionA and ob-
servationB probabilities from an observation sequenceO assuming that we already
have a previous estimate ofA andB.

These re-estimations form the core of the iterative forward-backward algo-
rithm.

18 Chapter 6. Hidden Markov Models and Loglinear Models

� � � �

� � � � �

� � 	 � � �

 �

� � � � �

Figure 6.14 The computation ofγt(j), the probability of being in statej at timet.
Note thatξ is really a degenerate case ofξ and hence this figure is like a version of
Fig. 6.13 with statei collapsed with statej. After Rabiner (1989).

The forward-backward algorithm starts with some initial estimate of the HMM
parametersλ = (A,B,π). We then iteratively run two steps. Like other cases of
the EM (expectation-maximization) algorithm the forward-backward algorithm has
two steps: theexpectationstep, orE-step, and themaximization step, orM-step.EXPECTATION

E­STEP

MAXIMIZATION

M­STEP

In the E-step we compute the expected state occupancy countγ and the ex-
pected state transition countξ, from the earlierA andB probabilities. In the M-step,
we useγ andξ to recompute newA, B, andπ probabilities.

Although in principle the Forward-Backward algorithm can do completely
unsupervised learning of theA, B, andπ parameters, in practice the initial condi-
tions are very important. For this reason the algorithm is often given extra informa-
tion. For example, for speech recognition, in practice the HMM structure is very
often set by hand, and only the emission (B) and (non-zero)A transition probabili-
ties are trained from a set of observation sequencesO. Gaussian functions. Sec.??
will also discuss how initial estimates fora andb are derived in speech recognition.
We will also see in Ch. 9 that the forward-backward algorithmcan be extended to
inputs which are non-discrete (“continuous observation densities”).

6.6 LOGLINEAR MODELS

6.7 MAXIMUM ENTROPY MARKOV MODELS (MEMM S)

Section 6.8. Evaluation and Statistics 19

function FORWARD-BACKWARD (observations of lenT,output vocabulary V, hidden
state set Q) returns HMM A, B, π

initialize A, B, andπ
iterate until convergence

E-step

γt(j) = αt(j)βt(j)
P(O|λ) ∀ t and j

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1(j)

αT (N) ∀ t, i, and j
M-step

âi j =
∑T−1

t=1 ξt(i, j)
∑T−1

t=1

∑N
j=1 ξt(i, j)

b̂ j(vk) =

∑T
t=1s.t. Ot=vk

γt(j)
∑T

t=1 γt(j)
return A, B, π

Figure 6.15 The forward-backward algorithm.

6.8 EVALUATION AND STATISTICS

BIBLIOGRAPHICAL AND HISTORICAL NOTES

20 Chapter 6. Hidden Markov Models and Loglinear Models

Baum, L. E. (1972). An inequality and associated max-
imization technique in statistical estimation for proba-
bilistic functions of Markov processes. In Shisha, O.
(Ed.), Inequalities III: Proceedings of the Third Sympo-
sium on Inequalities, University of California, Los An-
geles, pp. 1–8. Academic Press.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via theEM
algorithm.Journal of the Royal Statistical Society, 39(1),
1–21.

Eisner, J. (2002). An interactive spreadsheet for teaching
the forward-backward algorithm. InProceedings of the
ACL Workshop on Effective Tools and Methodologies for
Teaching NLP and CL, pp. 10–18.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Mod-
els and selected applications in speech recognition.Pro-
ceedings of the IEEE, 77(2), 257–286.

