

Achieving Software
Quality through Teamwork

For a listing of recent titles in the Artech House Computing Library,
turn to the back of this book.

Achieving Software
Quality through Teamwork

Isabel Evans

Artech House
Boston • London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
Evans, Isabel

Achieving software quality through teamwork.—(Artech House computing library)
1. Computer software—Quality control 2. Computer software—Development—Management
3. Teams in the workplace
I. Title
005.1’0684

ISBN 1-58053-662-X
Cover design by Yekaterina Ratner

© 2004 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

The following are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University: Capability Maturity Model

,

CMM

, and CMMI


. CMM Integration

SM
, CMMI

SM
, Personal Software Process

SM
, PSP

SM
, Team Software Process

SM
, and TSP

SM
are serv-

ice marks of Carnegie Mellon University; Capability Maturity Model


and CMM


are registered in the U.S. Patent and Trademark

Office.

Special permission to reproduce “Quotations from the SEI website (www.sei.cmu.edu), “2003, “Pathways to Process Maturity:

The Personal Software Process and Team Software Process”  2000 and “A Framework for Software Product Line Practice

Version 4.1” 2003 by Carnegie Mellon University, is granted by the Software Engineering Institute. No warranty. This Carnegie Mel-

lon University and Software Engineering Institue material is furnished on an “as is” basis. Carnegie Mellon University makes no war-

ranties of any kind, either expressed or implied as to any matter including, but not limited to, warranty of fitness for purpose or

merchantability, exclusivity or results obtained from use of the material. Carenegie Mellon University does not make any warranty of

any kind with respect to freedom from patent, trademark, or copyright infringement.

All material related to the EFQM model is Copyright © 1999–2003 by the European Foundation for Quality Management and is

reproduced here by permission of EFQM. Information about use of the EFQM Model is on the EFQM Web site http://www.efqm.org.

Crown copyright material is reproduced with the permission of the Controller of HMSO and the Queen’s Printer for Scotland.

Extracts from the “McCartney report” are under licence C02W0003641.

Extracts from DISC PD 0005: 1998 have been reproduced with the permission of BSI under license number 2003DH0297. British

Standards can be obtained from BSI Customer Services, 389 Chiswick High Road, London, W4 4AL. Tel +44 (0)20 8996 9001. E-mail:

cservices@bsi-global.com.

MBTI


and Myers-Briggs Type Indicator


are registered trademarks of Consulting Psychologists Press Inc. Oxford Pyschologists

Press Ltd. has exclusive rights to the trademark in the UK. Extracts describing the MBTI are reproduced from the Team Technology

Web site by permission of Team Technology.

TPI


is a registered trademark of Sogeti Netherland B.V.

Appendix A, Table A.1: Belbin


is a registered trademark of Belbin Associates. Belbin Team Roles, from the work of Dr. Meredith

Belbin, are reproduced by permission of Belbin Associates and are © e-interplace, Belbin Associates, UK 2001. Reproducedby permis-

sion of Belbin Associates.

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any

form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval sys-

tem, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech

House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any

trademark or service mark.

International Standard Book Number: 1-58053-662-X

10 9 8 7 6 5 4 3 2 1

For my brother, James, statistician, rock climber, mountaineer, 1958–2003.
You encouraged me to write this book.

.

Contents

Forward xv

Preface xvii

Acknowledgments xxiii

1 Software Quality Matters 1

1.1 Defining software quality 1

1.2 Fundamental concepts of excellence 5

1.3 EFQM Excellence Model 7

1.3.1 Enablers 7

1.3.2 Results 9

1.3.3 Excellence, the EFQM Excellence Model, the Malcolm Baldrige model,
1.3.3 and other related models 10

1.4 ISO 9000:1994 and ISO 9000:2000 10

1.5 IT maturity models—CMM and relations 11

1.6 Team Software Process and Personal Software Process 12

1.7 Bringing the models together 13

References 15

Selected bibliography 16

2 Defining the Software Team 17

2.1 Teams in disunity 17

2.2 Defining the team 19

2.2.1 People who are customers and users of software 20

2.2.2 People who manage software projects 20

2.2.3 People who build software 21

2.2.4 People who measure software quality 21

2.2.5 People who provide the support and infrastructure for the project
2.2.5 and the deployment of software 22

vii

2.3 Interaction between the groups and within each group 22

2.3.1 Differences in quality viewpoints 22

2.3.2 Intergroup relationships in CMM and Personal and Team Software
2.3.2 Processes 24

2.3.3 Intergroup relationships and excellence frameworks—
2.3.3 the EFQM Excellence Model 25

References 28

Selected bibliography 28

3 Roles and Quality: Customers 31

3.1 Introducing the customers 31

3.2 Who could be in this group? 32

3.2.1 In-house customer 33

3.2.2 Third-party custom-made system customer 35

3.2.3 Third-party package or commercial off-the-shelf (COTS) customer 36

3.2.4 The IT specialist as customer 38

3.3 Quality viewpoint 38

3.4 Quality framework using the EFQM Excellence Model 39

3.4.1 The EFQM Excellence Model and the customer organization 39

3.4.2 EFQM Excellence Model enablers for customers 40

3.4.3 EFQM Excellence Model results for the customers 43

3.5 Communication between the customers and other groups 45

3.6 Summary of the group 47

References 49

Selected bibliography 49

4 Roles and Quality: Managers 51

4.1 Introducing the managers 51

4.2 Who could be in this group? 52

4.3 Quality viewpoint 53

4.4 Quality framework using the EFQM Excellence Model 54

4.4.1 The EFQM Excellence Model and the manager 54

4.4.2 EFQM Excellence Model enablers for the managers 57

4.4.3 EFQM Excellence Model results for the managers 65

4.5 Communication between the managers and other groups 68

4.5.1 Managers and communication cycles 68

4.5.2 The reporting process 70

4.6 Summary of the group 73

References 74

Selected bibliography 75

viii Contents

5 Roles and Quality: Builders 77

5.1 Introducing the builders 77

5.2 Who could be in this group? 79

5.3 Quality viewpoint 80

5.4 Quality framework using the EFQM Excellence Model 86

5.4.1 The EFQM Excellence Model and the builders 86

5.4.2 EFQM Excellence Model enablers for builders 87

5.4.3 EFQM Excellence Model results for the builders 92

5.5 Communication between the builders and other groups 95

5.6 Summary of the group 96

References 97

Selected bibliography 98

6 Roles and Quality: Measurers 101

6.1 Introducing the measurers 101

6.1.1 Why do we need QA and QC? 101

6.1.2 Just measurers or also improvers of quality? 102

6.1.3 Defect prevention 103

6.1.4 The Hawthorne effect 105

6.2 Who could be in this group? 106

6.3 Quality viewpoint 106

6.4 Quality framework using the EFQM Excellence Model 113

6.4.1 The EFQM Excellence Model and the measurers 113

6.4.2 EFQM Excellence Model enablers for the measurers 114

6.4.3 EFQM Excellence Model results for the measurers 123

6.5 Communication between the measurers and other groups 125

6.6 Summary of the group 128

References 129

Selected bibliography 129

7 Roles and Quality: Supporters 131

7.1 Introducing the supporters 131

7.2 Who could be in this group? 133

7.3 Quality viewpoint 134

7.4 Quality framework using the EFQM Excellence Model 136

7.4.1 The EFQM Excellence Model and the supporter 136

7.4.2 Enablers for the supporters 138

7.4.3 Results for the supporters 143

7.5 Communication between supporters and other groups 146

7.6 Summary of the group 147

Contents ix

7.7 Summary of all the groups 148

References 150

Selected bibliography 151

8 The Life Span of a Software System 153

8.1 Life span or life cycle? 153

8.1.1 Start-up 155

8.1.2 Development 155

8.1.3 Delivery 156

8.1.4 Postdelivery 156

8.2 Entry and exit criteria between stages 157

8.3 Changes in quality viewpoints across the life span of a system 158

References 159

9 Start-Up for a Software-Development Project . . 161

9.1 Start-up—description 161

9.2 Start-up viewpoints 163

9.3 Entry criteria for start-up 164

9.4 Start-up—typical activities 165

9.4.1 Understanding the problem/idea 165

9.4.2 Decide whether the problem/idea is worth solving 168

9.4.3 Set general constraints and parameters for the solution 170

9.4.4 Agree on next stage 170

9.4.5 Contract for work 171

9.5 Exit from start-up stage 178

References 179

Selected bibliography 180

10 Software-Development Life Cycle 181

10.1 Software-development life cycle—description 181

10.1.1 Types of software acquisition project 182

10.1.2 Identifying the software products 183

10.1.3 SDLC task summary 183

10.2 SDLC viewpoints 184

10.3 Entry criteria for SDLC 186

10.3.1 Entry criteria following a detailed start-up 186

10.3.2 When no entry criteria have been defined 187

10.3.3 When entry criteria have not been met 187

10.3.4 Tailoring entry criteria 189

10.3.5 When no start-up stage took place 190

x Contents

10.4 SDLC—typical activities 190

10.4.1 Planning and monitoring 190

10.4.2 Managing change 191

10.4.3 Requirements 192

10.4.4 Design 193

10.4.5 Build 193

10.4.6 Testing 194

10.5 Entry and exit points within the SDLC 195

10.6 SDLC models 195

10.6.1 Waterfall model (big bang or phased) 196

10.6.2 Spiral, incremental, and iterative models 199

10.6.3 Evolutionary model 203

10.6.4 V-model 203

10.6.5 Advantages and disadvantages of the models 204

10.7 Quality views and the models—why we might wish
10.7 to combine models 204

10.8 Exit from the SDLC 208

10.8.1 Exit criteria following a detailed acceptance test 208

10.8.2 When no exit criteria have been defined 209

10.8.3 When exit criteria have not been met 210

10.8.4 Tailoring exit criteria 210

10.8.5 When no acceptance criteria have been set 210

10.9 Conclusion 211

References 212

Selected bibliography 213

11 Delivery and Support When Going Live 215

11.1 Delivery—description 215

11.1.1 Delivery considerations 215

11.1.2 Identifying the delivery 217

11.2 Delivery viewpoints 218

11.3 Entry criteria for delivery 221

11.4 Delivery—typical activities 221

11.4.1 Person buys PC and software for self-installation 223

11.4.2 Single-site delivery of software 224

11.4.3 Multisite rollout of new software to existing infrastructure 224

11.4.4 Data migration project software and hardware changes 225

11.5 Exit from delivery 226

11.6 Conclusion 226

References 227

Selected bibliography 227

Contents xi

12 The Life of a System Postdelivery 229

12.1 Postdelivery—description 229

12.1.1 Postdelivery for different types of software acquisitions 230

12.2 Delivery viewpoints 231

12.3 Entry criteria for postdelivery 233

12.4 Postdelivery—typical activities 233

12.4.1 Use of the system 233

12.4.2 IT infrastructure and service management activities 234

12.4.3 Making changes to an existing system 236

12.4.4 Monitoring and evaluation 241

12.5 Exit from postdelivery 244

12.6 Conclusion 244

References 246

Selected bibliography 247

A Techniques and Methods 249

A.1 Communication, team dynamics, and meeting behavior 249

A.1.1 Belbin Team Roles 250

A.1.2 De Bono’s Six Thinking Hats 251

A.2 Communication styles 253

A.2.1 Myers-Briggs Type Indicators 253

A.2.2 Honey and Mumford Learning Styles 254

A.2.3 Kirton adaptors and innovators 255

A.2.4 Motivation studies 256

A.2.5 Transactional analysis 257

A.3 Techniques to identify and classify problems and
A.3 assess ideas for solutions 259

A.3.1 Cause–effect, root cause, and solution analysis 259

A.3.2 Prototyping and ideas modeling 261

A.3.3 Assessing whether an idea is worth pursuing 262

A.4 Understanding aims and objectives 265

A.5 Review techniques 266

A.6 Improving graphics in reporting 267

A.7 Useful sources and groups 269

References 270

Selected bibliography 272

B Quality Planning Documents and Templates . . 273

B.1 The document family 273

B.2 Why we use document templates 275

xii Contents

B.3 Using the document standards to provide your own templates 278

B.4 Auditing considerations 278

B.5 The team’s information needs 278

B.6 Adapting templates 279

B.7 Keep it brief—do not repeat or copy information 279

B.8 Do you need a document at all? 279

B.9 Simple project audit plan and report templates 280

References 282

About the Author 283

Index 285

Contents xiii

.

Foreword

If you are in IT, you probably think of yourself as a technical person. Often
the emphasis is very much on the “technical” rather than the “person.” Yet,
as Isabel points out, the majority of problems in IT are due to people prob-
lems, not technical ones. Yes, producing quality software is a technical activ-
ity, but software is produced by people, complete with talents and abilities,
but also personalities, idiosyncracies, foibles, and emotions, and these peo-
ple produce IT systems in teams, where the roles and perspectives of each
team can differ significantly, especially about what constitutes quality.

If every person has a different view of what quality is, and the people
involved don’t communicate well, is it any wonder that major problems
arise? What is the solution? Is it better processes? That has been tried. Is it a
maturity model? That has been tried. Yet problems still abound, and people
are still surprised by the fact that there are still problems with people!

Isabel sprinkles this book with numerous “overheard conversations”
within IT organizations. Why do customers find developers arrogant? Why
do developers lack appreciation of business issues? Why do support staff feel
left out? Why do managers not appreciate the value of testing? I frequently
find myself in conversation with IT people, particularly testers and test man-
agers, and I hear them saying many of the things that Isabel describes. This
book not only explains what is going on, but also shows how things can be
improved, bringing the ideas to life through Isabel’s rich source of anec-
dotes. Reading this book will help you understand the viewpoint of the very
people you often complain about!

The use of the EFQM Excellence Model as a framework to structure the
book gives a solid foundation for comparing different models of quality and
shows where the different roles of the people involved fit together in a soft-
ware development project and the life of that system. From a technical per-
spective, the book gives useful guidance on achieving quality; Appendix B
includes a summary of quality documents.

The project advice contained in the start-up section in Chapter 9 alone
could be worth the price of this book; it could save you a lot of time, money,
and mistakes and is an aspect frequently overlooked and underemphasized.
Appendix A is also a useful handbook on its own—a concise summary of

xv

people- and teamwork-related techniques and methods and where to go for
further information.

This book will increase your understanding of the people with whom
you work. It may cause a wry smile or two as you recognize the behavior
described “to a T” of a colleague. Then you may find yourself thinking, “So
that’s what they’re thinking, that’s why they do that; I never realized.” Per-
haps you will even recognize yourself and realize why other people don’t
seem to understand your view of quality.

This book is a rare breed. It explains why people issues are important, yet
it does so in a way that will appeal to technical people.

Dorothy Graham
Senior Consultant
Grove Consultants

Macclesfield, United Kingdom
May 2004

xvi Foreword

Preface

The cost of failed IT projects in the United States was recently estimated at
$84 billion in just 1 year [1], so software quality matters more now than it
ever has, and it matters to you and me because we use that software. For all
of us, our reliance on software is increasing year by year whether we realize
it or not. More of us are using software for more tasks than ever before,
in information technology (IT), information systems (IS) for businesses,
embedded systems in consumer goods such as phones, and, of course, across
the Internet [2]. The risks associated with software failure have increased
with the use of software; these include greater exposure for organizations
when software fails or is unsatisfactory, and greater disappointment or loss
for individuals when they are let down by software.

Meanwhile, pressures on modern organizations, including businesses,
have increased in recent years. Pressures on organizations—the importance
of time to market, cost reduction, value for money, increased expectation
and knowledge of customers, global communications, constant change, and
the need to find new markets—become pressures on software teams to pro-
duce more software, more quickly, with increased expectations of what that
software can deliver as benefits.

Why is IT so often disappointing? Why isn't software built correctly?
One reason is quite simple: IT systems are built by people, and people make
mistakes. This is true for any human activity, but in IT we have a number of
exacerbating circumstances:

◗ IT systems are often built by teams of people other than those who
will use them. In these circumstances, any poor communication
between people and teams increases the chances of mistakes.

◗ IT is relatively new, and we are working on a continuous learning
curve. Both the suppliers and users of software rarely have time to con-
solidate knowledge before they face yet more change.

◗ IT departments are notorious for their failure to align the software they
produce with the culture, processes, or objectives of the business for
which the software is intended.

xvii

◗ IT systems are complex, and are becoming increasingly so in them-
selves and in their intercommunications with other systems.

Only one of these (the last) is a technical problem, yet most of the
emphasis for IT groups seeking improvement is on technical processes. All
the other points in the list have to do with people, their ability to communi-
cate well and understand each other, and their ability to learn from each
other and from experience.

We need a framework for IT projects that addresses the issues of soft-
ware quality through an emphasis on teamwork and communication set in
a framework aligned with the customers, their organizations, and their
goals. To help achieve this goal, Achieving Software Quality through Teamwork
answers the following questions:

◗ Who should be involved in the development and deployment of soft-
ware? People are going to work in teams to provide the software, so
we need the right teams.

◗ What are the differences and similarities between these people, espe-
cially in their assumptions about quality? To achieve quality, the team
needs to agree on what quality is.

◗ What are the ways of understanding communication preferences and
how conflict can arise from differences between these preferences?
Teamwork requires mutual understanding and tolerance in
communication.

◗ How can that understanding be improved? By providing opportunities
for communication within and around the IT and organizational
processes, teamwork and communication are encouraged so that qual-
ity is achieved.

◗ How can IT suppliers understand the goals of their client organiza-
tions, whether nonprofit or commercial businesses, and how they
measure success? IT suppliers must have an understanding of the
quality framework used by their customers in order to produce qual-
ity software. IT teamwork means including the customers.

This book was written in response to a number of people with whom I
have worked over the years. It is for you if you, like they, have ever said
things like:

◗ We’ve improved the processes, so why are the customers still
unhappy?

◗ I just can’t talk to the people in the business units (or IT, or manage-
ment, and so forth). How can we understand each other?

◗ Why do they keep sending e-mails to me when I’d rather talk face-to-
face?

◗ How can I provide quality if the managers just talk about costs?

xviii Preface

◗ How can I align my goals with what the customer really needs?

◗ Why do the IT people always deliver the wrong thing?

◗ What do the managers really do?

◗ I have just started as a team leader. What do I need to think about?

◗ Who needs to be involved at this stage?

◗ Why don’t the people in my team get along?

◗ Why do we always end up having an argument?

◗ We could get on with this if people stopped arguing!

◗ We’ve done some process improvements, and we’ve still got problems.

◗ I can’t stand all this touchy-feely people stuff. Can’t you just give me
a process?

◗ Why do the IT people always cringe when I want to do a team-
building exercise?

I hope you enjoy yourself!
As I wrote, I imagined you reading this book. One colleague who reviewed
some chapters said to me, “I want to imagine that we are sitting by the fire
with a glass of wine, sharing ideas and experiences,” and that is what I
wanted the atmosphere of the book to be like. I have used experience-based
anecdotes rather than scientifically gathered evidence. The stories I tell
include lessons I have learned (and am still learning!) from my own mis-
takes, situations I have observed, and anecdotes from colleagues and clients,
and I hope that when you read them you will respond with “Oh, yes! That
reminds me of when.…”

So enjoy this book; feel free to browse and dip into it as well as read it
through. A key message from it is that there is more than one way of think-
ing, and we are sensible to acknowledge them all, however strange they
seem to us. So bring your own ideas to the book and read interactively!

This is a huge subject
This book is for you if you need an overview of a huge subject in one book,
and the chance to find out more about the details that particularly interest
you. I have covered the whole life of a software system, together with
describing all the people involved, so this is a sketchbook of what you need
to consider, with extensive references to further information.

As you are busy, when you want further information you will need to get
to it quickly and easily. To help you, wherever possible I have given several
references whenever possible to newer publications, including Web sites,
short books or papers, or books that I have been able to locate in a library
rather than have to order, so that you can get the next level of detail quickly

I hope you enjoy yourself! xix

and easily. I have also provided original book or paper citations, either in the
references or in the selected bibliography in each chapter, so that if you just
need a little more information you can get it easily, but you can also find
more depth when you need it.

In Appendix A, I have given some suggested Internet search words for
each technique that I describe, as some of the references, especially for Web
sites, may change. I have also provided a list of useful organizations from
which you will be able to find more information.

Remember, this book is an overview and as a result there are many ref-
erences, techniques, standards, methods, and frameworks that I have not
covered, but that should not inhibit you from considering them for your
own situation. If you prefer a different method at a particular point, simply
incorporate it into your recipe for success.

Finding your way around this book
Three of the chapters in the book provide overviews of ideas presented in
the chapters that follow them:

◗ Chapter 1 provides an overview of quality concepts used throughout
the book.

◗ Chapter 2 provides an overview of the groups discussed in Chapters 3
to 7.

◗ Chapter 8 provides an overview of the software life span described in
Chapters 9 to 12.

Chapter 1 sets out some ideas and definitions that are used throughout
the book. Read this chapter first, as the ideas introduced are used through-
out the book. I describe five definitions of quality and a number of quality or
excellence frameworks that provide the basis for the discussion in the rest of
the book. Each definition of quality provides a different viewpoint about
quality—what it is and how we might measure it. Some of the frameworks
are organizational—the business will use them to set and check its direction.
Others are IT-specific. I show how the organizational and IT standards can
fit together.

Chapter 2 provides an overview of the groups of people who are
involved in software, whether as producers or users. I have divided people
into five groups: customers, managers, builders, measurers, and supporters.
I am not suggesting that an individual is assigned a role within a group, or
always stays within one group. Instead, I show how the five groups fit with
particular quality viewpoints, and that many people move between groups.

Chapters 3 to 7 each describe one of the groups in detail. Most readers
will find that they fit most closely into one of the groups, but spend some
time in the other groups. Read these chapters to get an overview of what
each group does and what its viewpoints are, so that you understand each
other better. Each of these chapters provides an overview of that group,

xx Preface

based on the organizational framework and the quality viewpoints
described in Chapter 1:

◗ Chapter 3 describes the customers and users of software systems.

◗ Chapter 4 describes the people who manage software projects and
services.

◗ Chapter 5 describes people who build products, not just the developers
but also technical authors, training providers, business analysts, and
designers.

◗ Chapter 6 describes people who measure the quality of products and
processes: the testers, inspectors, document reviewers, and auditors.

◗ Chapter 7 describes the people who support the software during its
development and deployment, by providing infrastructure for the
software and tools used to build and test it, as well as supporting the
people who build, test, deliver, service, and use the system.

Chapter 8 gives an overview of the life of a piece of software or a system
from the moment it is conceived as an idea, through the software develop-
ment life cycle, as it is installed or delivered, throughout its deployment as a
live or production system, its maintenance and updating, and, finally, its
decommissioning. It introduces Chapters 9 to 12, in which I discuss how
communication needs to be considered and improved by all the groups
throughout the life of a software system. I have only described the tech-
niques applied by particular groups when they have an effect on communi-
cation and teamwork; the chapters are not intended to explain everything
about software projects but to highlight some aids to mutual understanding.
For example, quality gates, or entry and exit criteria, between stages in a
project are important for process definition, and reviews are important for
identifying defects in products but they are both also important communica-
tion points between the groups described in Chapters 2 to 7.

◗ Chapter 9 discusses what happens before we start to build soft-
ware—we realize we have a problem to solve or an opportunity to
grab, and we must decide whether we need software or something
else to solve our problem. It covers problem and solution analysis, risk
analysis, and setting the contract for the software development life
cycle, describing how to improve communication and understanding
in order to launch the right project.

◗ Chapter 10 describes the software development life cycle and provides
an overview of some models for software development, comparing and
contrasting the models’ effect on effective communication and team-
work between groups.

◗ Chapter 11 describes the point of implementation of the software, types
of delivery, and what information is needed by different groups at this
point.

Finding your way around this book xxi

◗ Chapter 12 describes the life of software once it is in use, and discusses
the importance of continued communication for evaluation of the
previous stages and for maintenance and optimization of the
software.

Throughout these chapters I refer to a number of techniques for under-
standing other people’s communication styles. In Appendix A, I provide a
summary of these techniques and sources for more detailed information. In
Appendix B, I provide more information about tailoring standards and
documents for a project based on published national and international
standards.

References

[1] Smith, K., “The Software Industry’s Bug Problem,” Quality Digest, reproduced on
http://www.qualitydigest.com, April 2003.

[2] Sol, E. -J., “The Embedded Internet—Towards 100 Billion Devices,” EuroSTAR
Conference, Stockholm, Sweden, 2001.

xxii Preface

Acknowledgments

Naturally, a book like this is only built on other people’s work and efforts,
and you will see from the references that many practitioners and authors
have supported me by being earlier writers in the same areas of thought.
This book weaves together threads that others have spun. I thank them all
for their inspiration over the years.

Many people helped me while I was writing this book, by their encour-
agement, discussing ideas, providing support, and reviewing material. Col-
leagues and clients have contributed with enormous generosity, discussing
and challenging ideas, commenting and reviewing material and drafts, sug-
gesting additional references, and providing valuable insights into the sub-
ject. They encouraged me to continue; their comments, stories, and ideas
have improved the book immeasurably. I wish to thank, among others, Rick
Craig, Dorothy Graham, Frank Johnstone, Mike Bowdon, Stuart Reid , Paul
Gerrard, Richard Warden, Tom Gilb, Julian Harty, David Hayman, Mike Hol-
combe, Brenda Hubbard, John Smith, Norman Hughes, Kai Gilb, Jane Jeffs,
Simon Mitchley, Fiona Powell, Lloyd Roden, Mike Smith, Jayne Weaver,
Graham Thomas, Geoff Thompson, Neil Thompson, Erik van Veenendaal,
John Watkins, Steve Allott, Jayne Weaver, Clive Bates, Mark Fewster, Pat
Myles, and Ian Bennett. I could not have completed this without the help of
Barbara Eastman, who encouraged me, proofread drafts, and pursued per-
missions. Richard Delingpole’s graphic design expertise turned my rough
ideas into elegant figures. Tiina Ruonamaa, Tim Pitts, and the team of editors
at Artech House supported me throughout the project and kept me on track.

It is an honor for me that Dorothy Graham has written the foreword
to this book. Thank you, Dorothy, for your help, encouragement, and
friendship.

My family has supported my writing during a bad year for us
all—thank you. Finally, my partner, Dave, has been an unfailing support
throughout—thank you, Dave, for everything you have done.

My thanks to all of you for your help; the book would not have been
possible without you. As I am human, there will be mistakes in the book;
the mistakes, of course, are my own.

xxiii

.

Software Quality Matters

In this chapter I shall:

◗ Demonstrate that there is no universal definition of quality:
it varies with people and situation;

◗ Offer several definitions of quality;

◗ Show why it is necessary for all stakeholders in the software to
agree on what they mean by “quality”;

◗ Introduce some models for managing quality;

◗ Show how you can integrate these models.

The developers are always so enthusiastic about the wonderful

new software when they hand it over for me to develop the train-

ing. Then the “buts” start … they tell me that when I demonstrate

the software I need to keep away from this transaction because of

the outstanding defects, and to watch out for the finance director

who’s still sore about the budget overrun. They tell me the inter-

face the users wanted wasn’t feasible and preparation of user

manuals has been de-scoped to a postlaunch activity. Once, on the

morning of the first course, the company announced that the new

software would “enable moving 40% of jobs overseas.” “Negative

trainees” would be an understatement!

—Trainer pointing out some forgotten aspects of quality

1.1 Defining software quality
Let us start looking at quality by examining the story above.
What do the trainer’s frustrations reveal about our views of
quality?

1. The delivered software includes other products and services as
well as code; the people buying and using software do not
just need the code, they also need services and products such
as training, user guides, and support.

1

1
Contents

1.1 Defining software quality

1.2 Fundamental concepts of
excellence

1.3 EFQM Excellence Model

1.4 ISO 9000:1994 and ISO
9000:2000

1.5 IT maturity models—
CMM and relations

1.6 Team Software Process
and Personal Software
Process

1.7 Bringing the models
together

C H A P T E R

2. Quality cannot be defined by technical excellence alone—it also includes
human factors such as communication and motivation, as well as
value for money. The customer must be able to afford the products
and services, and enjoy the experience of dealing with the supplier as
well as using the products.

3. Different people will hold various views on whether quality is deliv-
ered to the customer. The developers produced a fine product, with lots
of wonderful new features, so they were rightly enthusiastic, but the
product had flaws, cost too much, did not meet the customer’s needs,
and made the lives of their colleagues in training much harder. Also,
the people losing their jobs would take a decidedly different view
about whether a quality solution had been delivered.

We will find throughout this book that different people give different
definitions if we ask them what they mean by quality. When I ask people
working with software as users or on software development projects what
quality means, all sorts of ideas emerge. Some might mention cost, time,
scope, specification, value, or standardization, whereas others talk about
perfection, expectations, relationships, feelings, and emotions. Some of this
can be accomplished by delivering code, but much is achieved from other
software products and services such as documentation and training. Some
can only be realized through less tangible things such as relationships and
expectations.

Why is this important? Because it causes difficulties when people
involved in a project have different views of quality. If people do not have
shared goals and aspirations, their view of quality is affected. It means that, if
they do not communicate their differences and negotiate a common goal,
they may work against each other, while thinking they are all pulling
together. There will be confusion about whether a delivered software prod-
uct provides quality. So many systems are delivered that are not used, or not
liked, or cannot be supported by training, documentation, and help provi-
sioning. Yet the IT project teams are either unaware of, or surprised by, the
reaction to what they have perceived as a successful project. We all believe
we have done a good job and are mortified if our work is not well received!
We commonly find a different view of whether a project has delivered a
“quality product” if we talk to the customers and to the project team.
Furthermore, we frequently find differences of opinion if we talk to the proj-
ect manager, the developers, the testers, the trainers, and other groups
within the project team. Each person may seem to hold a different view of
the quality of the product and service, and, indeed, a different underlying
assumption of how to measure quality. So I will start by defining quality
from a variety of viewpoints.

Five distinct definitions for quality can be recognized.1 The definitions I
will use are from [1]. They are the product-based, manufacturing-based,
user-based, value-based, and transcendent definitions.

2 Software Quality Matters

1. The definitions of quality in this chapter and throughout the book are based on Chapter 1 of [1], reused by

permission of UTN Publishing. These definitions are based on work by [2] and were adapted by [3].

Two definitions of quality favored by IT people are the product-based
and the manufacturing-based definitions. In projects, we favor definitions
that allow us to measure progress and success in delivery. We want to fix
quality to something that is deliverable and measurable.

◗ In the product-based definition, quality is based on a well-defined set
of software quality attributes that must be measured in an objective
and quantitative way. We can derive acceptance criteria to objectively
assess the quality of the delivered product. Example: Standards such as
ISO 9126 [4] define attributes such as reliability, usability, security, and func-
tionality, together with measures for them. “The software is 98% reliable
when running continuously over a 7-day period. Recovery time is less than 1
minute at each failure.”

◗ The manufacturing-based definition focuses on the manufacture of
software products, that is, their specification, design, and construction.
Quality depends on the extent to which requirements have been
implemented in conformance with the original requirements. We
measure faults and failures in products. Success is measured as our
ability to follow a process and deliver products against agreed specifica-
tions. We will verify (is the system correct to specification?) but if we
do not take account of the user-based definition of quality (see below),
we may forget to validate (is this the right specification?). Example:
Repeatable, auditable process with delivery that conforms to specification. “The
software was built to specification, and there are a low number of defects.”

There are two other definitions of quality that reflect the views of the
software user and purchaser. These perspectives are about supporting the
needs of the organization and its stakeholders, within the organization’s con-
straints. Because the pressures on an organization change over time, what
constitutes “quality” may change over time to match. Sometimes the
changes will be tactical—“We must cut costs this quarter!”—and sometimes they
may be strategic—“We want to be market leaders!”—and these may conflict.

◗ The user-based definition says that quality is fitness for use. Software
quality should be determined by the user(s) of a product in a specific
business situation. Different business characteristics require different
types of software products; not only to do different things, but also to
cater to how different people want to carry out their tasks. This can be
subjective and cannot be determined only on the basis of quantitative
metrics. It is the user-based definition that encourages us to validate
as well as to verify the system. Example: Fit for purpose. “I can do my work
efficiently and effectively when I use this software.”

◗ The value-based definition is focused on things that impact on the
running of the business as a whole. Software quality should always be
determined by means of a decision process on trade-offs between
time, effort, and cost aspects. This is done by communicating with all
parties involved, for example, sponsors, customers, developers, and

1.1 Defining software quality 3

producers. Example: Return on Investment (ROI). “If we release the software
now, we will spend $250,000 extra on support in the first month. If we are a
month late, it will cost the organization $1 million in fines and lost business.
Should we release or do more testing?”

Finally, we must acknowledge that we all know quality when we see it;
our knowledge is based on our experiences, taste, affections, loyalties, and
emotions. Unfortunately, this means different people will have different
reactions to a product: The transcendent definition states that quality can be
recognized easily depending on the perceptions and the affective feelings of
an individual toward a type of software product. This means that we con-
sider someone’s emotional response to a product or service. Did they enjoy it?
Did they like the people they met? Are they happy? This is not easily measurable,
but understanding this aspect of quality can be a first step toward the
explicit definition and measurement of quality. Example: Brand loyalty based
on affection. “I like using this software—it appeals to me.”

In a single project, we may have several definitions of quality in use, per-
haps inadvertently and unacknowledged by all the people in the project. It
is important to realize that there is no “right” definition of quality. How we
define “quality” for a particular product, service, or project is situational. We
say, “It depends on….” Contrast the following:

◗ Air traffic control system: We are considering using the product/manu-
facturing definitions because we need to ensure technical excellence
above all else.

◗ Package to improve usability of Web pages for the visually impaired: We are
considering using the user-based definition because we need to ensure
it is fit for the purposes of this group.

◗ Software to launch an innovative new product and achieve “first mover”
advantage: We are considering using a value-based definition because
if we spend more to get a better product we may miss the market.

For most commercial or custom-made software, the customer is best
served by balancing the definitions. In our particular project, we should ask
ourselves: What is the greatest number or level of attributes (product-based)
that we can deliver to support the users’ tasks (user-based) while giving the
best cost–benefit ratio (value-based) while following repeatable/quality-
assured processes within a managed project (manufacturing-based)?

As a colleague remarked to me, “Compromise and a balance between the
quality definitions is essential” (Frank Johnstone, personal communication,
April 18, 2003). We need to define quality and to understand which defini-
tions people buying, using, developing, testing, and supporting software use.
This prevents the conflicts between stakeholders and enables us to under-
stand why we are developing the software. In Chapters 2 to 7, we will
explore the different groups and which quality definitions they favor, and
then, in Chapters 8 to 12, we will look at how the different groups contribute

4 Software Quality Matters

throughout the life of software and systems, and the benefits that each
quality view brings.

Whichever definition(s) of quality we use—that of software users or sup-
pliers—we all want to try to avoid mistakes. One way to try and do this is to
adopt strong processes within a quality management framework. In quality
management, our concern is to decide which processes to use and to adapt
those processes appropriately for a project. During the project, we will carry
out quality assurance activities to check that the chosen process has been fol-
lowed and is suitable. Quality control processes will check the products for
defects. The processes sit within an organizational culture and framework of
management systems. Some quality management models are entirely process
driven; our task as people operating within the processes is to follow the
processes as defined. If we are lucky, we might be asked to suggest improve-
ments to the processes. Other models, specifically those described as excel-
lence models to differentiate them from process-driven quality models, are
more focused on people and their capabilities and needs; here the activities of
the project are focused on the ability of people to deliver services and prod-
ucts that satisfy the customers. Some models have a greater emphasis on
improvement cycles than others; the Deming cycle, for example, proposed by
W. Edwards Deming [5], has four stages, sometimes called the “Plan, Do,
Check, and Act” cycle, and sometimes the “Plan, Do, Review, Improve”
cycle. Here, we plan what to do and we do it. Then we review what we did.
Was it successful? Did it go as planned? What should we improve? We then
put improvements in place, and plan the next cycle of activities. We will see
through this book that this Deming improvement cycle works on a large
scale, for example, when looking at the excellence framework for an organi-
zation or for a project, but is particularly effective for making incremental
improvements as we do work, whether as a team or individually.

We need to look at these models and understand the advantages and dis-
advantages of each one.

1.2 Fundamental concepts of excellence
To compare models, I shall use the Fundamental Concepts of Excellence set
out by the European Foundation for Quality Management (EFQM) [6].
These concepts are used in a number of models, including the EFQM
Excellence Model, which is used by more than 20 member countries in the
European Union. Similar organizational models based on these concepts
have been developed in other countries. For example, Puay et al. [7] com-
pare nine schemes, including the Malcolm Baldrige model [8] and the EFQM
Excellence Model [6], in different countries (three European, two North
American, three Asian-Pacific, and one South American) against nine crite-
ria: leadership, impact on society, resource management, strategy and policy,
human resource management, process quality, results, customer manage-
ment and satisfaction, and supplier/partner management and performance.
It is these criteria that are reflected in the Fundamental Concepts of
Excellence.

1.2 Fundamental concepts of excellence 5

Other organizational quality and excellence initiatives, such as Six Sigma
and the Balanced Scorecard, also provide a way of discussing the goals of an
organization, deciding how to achieve those goals, and measuring whether
they have been achieved.

In this book, I focus on the EFQM Excellence Model, but whichever
model your organization uses, whether Baldrige or one of the others, you
should be able to map your model onto the ideas in this book. This is
because, although the different models use slightly different words and place
a different emphasis on the different criteria, the fundamentals of running a
successful organization apply, worldwide. For example, I will link the EFQM
Excellence Model to a number of other standards, specifically for use in IT. In
the same way, in [9] the authors have linked Six Sigma to IT frameworks.

The Fundamental Concepts of Excellence of the EFQM Excellence
Model [6] are:

◗ Results orientation: “Excellence is dependent upon balancing and satis-
fying the needs of all relevant stakeholders (this includes the people
employed, customers, suppliers, and society in general, as well as
those with financial interests in the organization).”

◗ Customer focus: “The customer is the final arbiter of product and service
quality, and customer loyalty, retention, and market share gain are best
optimized through a clear focus on the needs of current and potential
customers.”

◗ Leadership and constancy of purpose: “The behavior of an organization's
leaders creates a clarity and unity of purpose within the organization
and an environment in which the organization and its people can
excel.”

◗ Management by processes and facts: “Organizations perform more effec-
tively when all inter-related activities are understood and systemati-
cally managed, and decisions concerning current operations are
planned. Improvements are made using reliable information that
includes stakeholder perceptions.”

◗ People development and involvement: “The full potential of an organiza-
tion's people is best released through shared values and a culture of trust
and empowerment, which encourages the involvement of everyone.”

◗ Continuous learning, innovation, and improvement: “Organizational per-
formance is maximized when it is based on the management and shar-
ing of knowledge within a culture of continuous learning, innovation,
and improvement.”

◗ Partnership development. “An organization works more effectively when
it has mutually beneficial relationships, built on trust, sharing of knowl-
edge, and integration, with its Partners.”

◗ Public responsibility. “The long-term interest of the organization and its
people are best served by adopting an ethical approach and exceeding
the expectations and regulations of the community at large.”

6 Software Quality Matters

How can we encourage the Fundamental Concepts of Excellence and get
the best from our software teams? If you look at the Fundamental Concepts
of Excellence, you will see that process, which emphasizes manufacturing
and product-based viewpoints, is only one part we need to consider. When
we look at the concepts, we see they involve considering and working with
different groups of people, and thinking about balancing the views of differ-
ent stakeholders. To help us do this, I will use the concepts throughout the
book, to encourage a teamwork approach and allow all five quality defini-
tions. Some quality models define quality processes for an individual to use,
some are for teams, and some for organizations. The coverage of the quality
definitions and the emphasis on teamwork varies across the models. In this
book, I will use a selection of the models. They are:

◗ A framework for organizational excellence, known as the EFQM
Excellence Model [6] in Europe, which is similar to others, such as the
Malcolm Baldrige model [8], used in the United States;

◗ Two process standards—ISO 9000:1994 and ISO 9000:2000 [10];

◗ A group of IT maturity models based around CMM (Capability
Maturity Model) [11, 12] and two models for implementing CMM:
the Team Software Process (TSP) [13] and the Personal Software
Process (PSP) [14].

1.3 EFQM Excellence Model
The European Foundation for Quality Management (EFQM) Excellence
Model [6] is an organizational excellence model using a nonprescriptive
framework. It is not specifically an IT framework. It may be used with
organizations of any size and type and is intended for corporations, compa-
nies, or nonprofit organizations. Here I am using it to help discuss a “mini-
organization”: the software project. The EFQM Excellence Model provides a
framework for excellence under nine criteria; five of these are “Enablers” for
excellence and four are measures of the “Results.” These are interlinked with
a continuous improvement feedback loop known as RADAR (Results,
Approach, Deployment, Assessment, and Review) (Figure 1.1).

1.3.1 Enablers

The Enablers are Leadership, Policy and Strategy, People, Partnerships and
Resources, and Processes. The results are Customer, People, Society, and Key
Performance Results. In the following descriptions, I will first give the
description for an entire organization and then for a project as a “mini-
organization.”

1.3.1.1 Leadership

Excellence is led from the top. Leaders facilitate the achievement of the mis-
sion and vision, and develop values for success. Leaders are personally

1.3 EFQM Excellence Model 7

involved in ensuring that the management system is developed and
implemented.

Project managers provide leadership for their projects under the leader-
ship of the project board and sponsor. In the mini-organization the project
manager is the leader.

1.3.1.2 Policy and Strategy

The vision of leaders is implemented via policies and strategies. Leaders
focus policy and strategy around the needs of the stakeholders and ensure
they are reflected in policies, plans, objectives, targets, and processes.

The specific strategy for the project (including any quality strategy) is
derived from the organization’s overall policy and strategy. Additionally, it
will show where changes have been made to reflect the needs of a particular
project. The mini-organization requires its own strategies.

1.3.1.3 People

The organization manages, develops, and releases the knowledge and full
potential of its people at individual, team-based, and organization-wide lev-
els. The organization must consider how people are treated and valued.

In a project, for example, we need to consider not only who is working
on the project and the skills they bring, but also how their skills and experi-
ence are enhanced during the project. During and after the project, people
must feel that they and their contributions were valued.

1.3.1.4 Partnerships and Resources

The organization plans and manages its external partnerships and internal
resources in order to support its policy and strategy and the effective opera-
tion of its processes. The organization considers partnerships with other
organizations and how resources such as technology and information are
managed. This divides into two distinct categories. The first includes the
people outside our organization with whom we interact.

8 Software Quality Matters

Key
Performance
Results

Society
Results

Customer
Results

People
Results

Leadership Processes

Partnerships
and Resources

Innovation and learning

Policy and
Strategy

People

ResultsEnablers

Figure 1.1 EFQM Excellence Model. (From: [6]. © 1999–2003 EFQM. Redrawn by
permission of EFQM.)

In the context of the mini-organization, I mean those external to our
project. This might include how we liaise with suppliers and other projects.
The second includes the (nonhuman) resources we require in order to com-
plete our tasks, for example, management of the organization’s information,
IT infrastructure, and negotiation for scarce facilities such as develop-
ment/test environments.

1.3.1.5 Processes

The organization designs, manages, and improves its processes in order to
support its policy and strategy and fully satisfy, and generate increasing
value for, its customers and other stakeholders. In a project, we need to con-
sider which processes are appropriate. If we have experienced people and
low-risk problems to solve, we might consider a lightweight, agile method
for our IT project. If we have a high-risk project or inexperienced people, we
may find that heavy-duty processes with an audit trail may give us more
confidence. We select processes appropriate to our problem and our team.

1.3.2 Results

There are four sets of results measurements. The first three have a percep-
tion and a performance measure, whereas the fourth, key performance
results, focuses on outcomes in relation to planned performance. As in the
Enablers, I will show how the mini-organization of a project relates to the
larger organization.

1.3.2.1 Customer Results

These measure whether the organization is meeting the needs of its external
customers. Customer perception can be assessed through satisfaction sur-
veys. Performance could be monitored by tracking the number of com-
plaints and volume of repeat business. For a project team, or an IT team
undertaking a series of projects, we might measure the perception of that
team or project by its customers, the users of the software, and the manag-
ers of the purchasing organization.

1.3.2.2 People Results

Here, we measure what the organization is achieving for its people. The
organization may survey employee perception and set performance targets
for staff turnover and absence. Similarly, we could measure the motivation
of the project team, people’s attitude to working on the project, and factors
such as illness and turnover.

1.3.2.3 Society Results

Society results measure what the organization is achieving in relation to
local, national, and international society where appropriate. We can

1.3 EFQM Excellence Model 9

measure how our organization is perceived in society, for example, through
favorable press. A performance measure could be the attainment of awards,
perhaps for corporate social responsibility.

Within a project, we might measure how the project measures against
corporate targets for waste and energy management. We might also plan
for, and measure use of, time for project members to carry out activities in
the local community.

1.3.2.4 Key Performance Results

These results measure what the organization is achieving in relation to its
planned performance, including financial measures such as return on
investment, profit, and turnover, and nonfinancial outcomes such as market
share and sales success rates. For the project, indicators of its success might
include contribution to achieving increased business and decreasing costs,
but we might also want to measure how well the project delivers against its
planned budget.

1.3.3 Excellence, the EFQM Excellence Model, the Malcolm
Baldrige model, and other related models

As we might expect, the EFQM Excellence Model meets the Fundamental
Concepts of Excellence well. It is a European model, but is closely related to
other models such as the U.S. model, the Malcolm Baldrige model [8]. The
Baldrige model has the same aims and a very similar framework. In both,
organizations score points against the enablers and the results to accumu-
late a total excellence score out of 1,000. Organizations compete against
themselves—they seek to improve their score year by year. If organizations
wish, they can compete against other organizations in an award scheme.
The point of both models is to encourage the continuous improvement of
organizations, rather than to achieve a specific level.

1.4 ISO 9000:1994 and ISO 9000:2000
ISO 9000:1994 [10] is a quality assurance standard for design and manufac-
turing processes. It is rigid in its definition and interpretation of quality. A
large number of processes are defined and must be adhered to by means of
audit trails and evidence, regardless of whether these processes give the best
outcome for the customer or for the project team on a particular project. In
ISO 9000:2000 [10], there are a smaller number of defined and docu-
mented processes and a greater emphasis both on people understanding
the tasks that they have to perform and on customer satisfaction. ISO
9000:2000 includes continuous improvement and moves toward the EFQM
framework. Although the ISO 9000 standards meet some of the Funda-
mental Concepts of Excellence, there are significant gaps, especially in ISO
9000:1994. However, the standards are useful in IT projects as a guide for
auditability.

10 Software Quality Matters

1.5 IT maturity models—CMM and relations
The concept of organizational maturity and capability for an IT organization
was developed at the Software Engineering Institute (SEI) [11] to define a
better way of producing software. It regards software as an engineering
discipline and groups organizations into five levels within the Capability
Maturity Model (CMM):

◗ Level 1—Initial: Projects are ad hoc and chaotic. “Everyone has their
own process.”

◗ Level 2—Repeatable: Requirements are managed and projects are per-
formed according to documented plans. “Every team has its own
process; teams can repeat work.”

◗ Level 3—Defined: Software engineering and management processes are
stable and do not break down under stress. “Every team in the organi-
zation uses the same process; we can start to deal with change.”

◗ Level 4—Managed: The organization manages its processes quantita-
tively and measures performance and quality across all projects. “The
whole organization is measuring so we KNOW how we are doing.”

◗ Level 5—Optimizing: Continual improvement and proactive defect
resolution. “We can build on our knowledge to improve.”

Progress through these levels is measured by key process indicators
(KPIs). All the indicators at one level must be met before an organization
can be considered to be at that level. The levels and KPIs are focused on the
software development process and measurement of that process:

The CMM provides a staged approach to IT process improvement. The

underlying premise is good common sense: the IT organization needs to

walk before it runs. Sophisticated engineering and measurement processes

cannot be sustained unless they are built upon a framework of strong

basic management practices. Organizations that omit embedding Level 2

processes normally return to “ad hoc and chaotic” in periods of stress.

(Frank Johnstone, personal communication, April 18, 2003)

CMM covers software development, and considers testing as a part of
this, with explicit requirements for testing included at Level 3 and above. To
enhance this, number of testers started to develop related models specifically
for testing. These include TMM [15] and TPI [16], among others [17].
These are all process models. They differ from the Fundamental Concepts of
Excellence in that they generally focus on process and measurement of
process to the exclusion of other issues, although, as the models develop,
increasing heed is taken of the wider aspects of excellence. Difficulty with
the implementation and use of CMM gave rise to two further process
models: the Team Software Process (TSP) and the Personal Software Process
(PSP), which are described below. CMM and its relations continue to
develop. Recently the Software Engineering Institute has introduced the

1.5 IT maturity models—CMM and relations 11

CMMI (CMM Integration) and PCMM (People CMM) models, which
attempt to widen the applicability of the CMM concept to any engineering
discipline and to cover management of people. For the latest news on CMM

and its relations, please visit the Software Engineering Institute Web site
[11]. A paper comparing some test assessment and improvement processes
was given by Stuart Reid at EuroSTAR 2003 [17].

1.6 Team Software Process and Personal Software
Process

The Team Software Process (TSP) was developed at the Software Engineer-
ing Institute “to help integrated engineering teams more effectively develop
software-intensive products. This process method addresses many of
the current problems of developing software-intensive products and shows
teams and their management explicitly how to address them” [11]. The TSP
identifies that software projects fail because of teamwork problems and not
because of technical issues. In [13] Watts Humphrey identifies ineffective
leadership as a key problem for teams. The TSP requires the establishment of
goals, the definition of team roles, the assessment of risks, and the produc-
tion of a team plan. TSP permits whatever process structure makes the most
business and technical sense. Teams are self-directed; in other words, they
plan and track their own work. Managers operate by coaching and motivat-
ing the teams. In using the TSP, compliance to CMM Level 5 is expected.
We can see some common ground with the Fundamental Concepts of Excel-
lence, particularly in the areas of leadership, people, process, improvement,
and measurement. There are gaps in focus on the needs of the customer. In
addition, the assumption of CMM Level 5 means that the TSP is not so use-
ful for organizations with less mature processes.

The Personal Software Process (PSP), developed by the Software Engi-
neering Institute and based on CMM, is a process definition for software
engineers enabling them to plan and track work. PSP provides a framework
of processes for the software engineer. It emphasizes the need for individ-
ual software engineers to receive intensive training before they use the
processes. Good process is needed, but that will only work if people under-
stand and are motivated to use the process. “Seventy percent of the cost of
developing software is attributable to personnel costs; the skills, experience,
and work habits of engineers largely determine the results of the soft-
ware development process” [11]. This fits well with some aspects of the Fun-
damental Concepts of Excellence; it considers process and people’s skills.
However, the needs of the customer are not a focus for these models:

The Personal Software Process helps individual engineers to improve their

performance by bringing discipline to the way they develop software. ... It is

not a matter of creativity versus discipline, but of bringing discipline to the

work so that creativity can happen. … The PSP shows engineers how to

manage the quality of their products and how to make commitments they

can meet. It also provides them with the data to justify their plans. [11]

12 Software Quality Matters

1.7 Bringing the models together
Having briefly outlined these models, we can see how they complement
each other. CMM uses a staged approach to IT process improvement,
which prescribes processes that the organization is ready to receive. PSP and
TSP acknowledge the importance of people and teamwork in implementing
and using processes. ISO 9000 shows us how to develop auditable processes.
It is possible to fit all our organizational standards into a framework like the
EFQM Excellence Model, and the ethos of the awards scheme is to encour-
age organizations at a low level of maturity to take the first steps toward
excellence by assessment and improvement. It is possible to self assess and
work for initial improvements, but continuous improvement is encouraged
by assessment and comparison with other organizations at a regional,
national, and European level. However, it does not have an IT focus, so in
Figure 1.2 I have overlaid onto the EFQM Excellence Model the methods,
processes, and standards that have been mentioned so far. In Chapters 3–7, I
will discuss how the EFQM Excellence Model can be used as a framework to
help leadership, strategy, and policy aid individuals or teams in understand-
ing their own objectives and how they fit with their organization.

Each model has gaps and most do not encourage all the five definitions
of quality (see Table 1.1). Only the EFQM Excellence Model, with its meas-
urements of perception as well as performance, acknowledges the transcen-
dent view of quality. At present, only the EFQM Excellence Model, with its
measures of key performance results, including financial results, acknowl-
edges the value-based view of quality. PCMM performance measurement is
set against the organization’s business objectives, but not yet, as far as I can
ascertain, as a value-based quality. However, together the models have
strength; from the ISO 9000 family we can use the idea of evidence and
audit trails, from the CMM family we can use the idea of developing
maturity of process, and from the EFQM we can use the quality concepts of

1.7 Bringing the models together 13

ResultsEnablers

Le
ad

e
rs

h
ip

C
M

M
I

an
d

T
SP



Innovation and learning
TSP, CMM and related models at level 5, ISO 9000:2000

People TSP,
PSP, PCMM

Policy and
Strategy, TSP

Partnerships
and Resources
TSP

Processes
CMM ,
TSP, PSP,
ISO 9000:1994,
ISO 9000: 2000



People Results

K
ey

Pe
rf

o
rm

an
ce

R
e

su
lt

s

Customer Results
ISO 9000: 2000

Society Results

Figure 1.2 How the models fit in the EFQM Excellence Model. (After: [6].)

value and transcendent excellence. Organizations can benefit from any or
all of these models. Meeting all the requirements of a model is rarely neces-
sary or an end in itself. Organizations can select aspects of the models and
choose from the techniques suggested, to meet their specific needs. This is
an approach that I encourage throughout this book.

There are other standards that apply to software development, delivery,
and support. It is important to realize that these standards will always sit
within an organizational and cultural framework. Our choice of particular
standards will reflect how we define quality, our industry/sector, our process
maturity, and what is appropriate for our particular project. These other
standards I will cover as needed in the rest of the book. I will note here three
references that also place software standards in a framework. We have
already mentioned a paper that sets software standards within Six Sigma [9].
In addition, the Software and Systems Quality Framework (SSQF), [18]
mentions the EFQM Excellence Model and Baldrige model, Six Sigma,
CMM, and ISO 9000 as possible frameworks within which software stan-
dards might be adopted, but concentrates on ISO 9000 as the example
framework. A useful paper concentrating on testing-related standards can be
found on the Testing Standards Web site [19], although it does not mention
the EFQM Excellence Model and Baldrige model.

Finally, the move toward integrating standards together is becoming
increasingly important; organizations are moving toward integrated manage-
ment systems that integrate quality, environmental, security, and financial
management systems into one framework, and also include information
management within and beyond the IT systems. Standards for IT work
cannot stand alone; they must be part of the organization’s integrated man-
agement system in order to align with the organization’s aims. These will
align with excellence frameworks, whether these are the EFQM Excellence
Model, Baldrige model, or another framework. Frameworks for IT service
management already align with the EFQM Excellence Model and the Bald-
rige model [20]. Whether providing new technology or exploiting existing
technology, what is needed is for IT development and for project manage-
ment to share that alignment. As organizations develop new excellence and

14 Software Quality Matters

Table 1.1 Views of Quality Across the Models

Model

Quality View EFQM/Baldrige CMM and Relations ISO 9000:1994 ISO 9000:2004

ISO 9000:2000 ✓

Transcendent ✓

User ✓ ✓

Value ✓ (✓)

Product ✓ ✓

Manufacturing ✓ ✓ ✓ ✓

✓ is a primary quality view.
(✓) is a quality view that may be taken by some people in this group.

management frameworks to face their changing world, IT development and
support standards will need to follow.

References

[1] Evans, I., “Testing Fundamentals,” in The Testing Practitioner, E. van Veenendaal,
(ed.), Den Bosch, the Netherlands: Uitgeverij Tutein Nolthenius, 2002, pp.
13–30.

[2] Garvin, D., “What Does Product Quality Really Mean?” Sloan Management
Review, Vol. 26, No. 1, 1984.

[3] Trienekens, J., and E. van Veenendaal, Software Quality from a Business Perspective,
Deventer, the Netherlands: Kluwer, 1997.

[4] International Standards Organization/International Electrotechnical
Commission (ISO/IEC), DTR 9126 Software Engineering—Software Product
Quality (Parts 1–4, 2000/2001).

[5] The W. Edwards Deming Institute, “Deming’s Teachings,” http://www.deming.
org/theman/ articles/articles_gbnf04.html, November 2003.

[6] European Foundation for Quality Management, “EFQM Excellence Model” and
“Fundamental Concepts of Excellence,” http://www.efqm.org, August 2003.

[7] Puay, S. H., et al., “A Comparative Study of the National Quality Awards,” TQM
Magazine, Vol. 10, No. 1, pp. 30–39.

[8] Malcolm Baldrige model, http://www.quality.nist.gov/index.html, August
2003.

[9] Gack, G. A., and K. Robison, “Integrating Improvement Initiatives: Connecting
Six Sigma for Software, CMMI, Personal Software Process, and Team Software
Process,” Software Quality Professional, September 2003, pp. 5–13.

[10] International Standards Organization, ISO 9000:1994 and ISO 9000:2000
Quality Systems.

[11] Software Engineering Institute, “Capability Maturity Model,” http://www.sei.
cmu.\edu, July 2003.

[12] Caputo, K., CMM Implementation Guide: Choreographing Software Process
Improvement, Reading, MA: Addison-Wesley, 1998.

[13] Humphrey, W., Introduction to the Team Software Process, Reading, MA: SEI, 2000.

[14] Humphrey, W., Introduction to the Personal Software Process, Reading, MA: SEI,
1997.

[15] van Veenendaal, E., and R. Swinkels, “Testing Maturity Model,” in The Testing
Practitioner, E. van Veenendaal, (ed.), Den Bosch, the Netherlands: Uitgeverij
Tutein Nolthenius, 2002, pp. 289–300.

[16] Koomen, T., and M. Pol, Test Process Improvement, Reading, MA: Addison-
Wesley, 1999.

[17] Reid, S. C., “Test Process Improvement—An Empirical Study,” EuroSTAR
Conference paper, Amsterdam, the Netherlands 2003.

[18] British Standards Institute, PD0026:2003, Software and Systems Quality
Framework—A Guide to the Use of ISO/IEC and Other Standards for Understanding

1.7 Bringing the models together 15

Quality in Software and Systems, London, England: British Standards Institute, May
2003.

[19] Reid, S. C., “Software Testing Standards—Do They Know What They Are Talking
About?” http://www.testingstandards.co.uk/publications.htm, August 2003.

[20] IT Infrastructure Library, Best Practice for Service Delivery, Norwich, England: Office
of Government Commerce, 2002.

Selected bibliography

British Quality Foundation, How to Use the Model, London, England: British Quality
Foundation, 2002.

British Quality Foundation, The Model in Practice 2, 2nd ed., London, England: British
Quality Foundation, 2002.

Burnstein, I., T. Suwannasart, and C. R. Carlson, “Developing a Testing Maturity
Model,” CrossTalk, August/September 1996.

European Foundation for Quality Management and British Quality Foundation,
EFQM Excellence Model, London, England: British Quality Foundation; Brussels,
Belgium: European Foundation for Quality Management, 2002.

Handy, C., Understanding Organizations, New York: Penguin, 1993.

Hayes, L., “Hello Up There! Will the Sarbanes–Oxley Act Finally Catapult QA to the
Boardroom?” Sticky Minds Web site, http://www.stickyminds.com/sitewide.asp?
Function=FEATUREDCOLUMN&ObjectId=6544&ObjectType=ARTCOL&btntopic=
artcol&tt=LIMITCAT_6544_**WHERE**&tth=H, August 2003.

Kaplan, R. S., and D. P. Norton, The Balanced Scorecard, Boston, MA: Harvard Business
School Press, 1996.

Larson A., Demystifying Six Sigma, New York: AMACOM, 2003.

Mullins, L. J., Management and Organisational Behaviour, 5th ed., New York: Financial
Times/Pitman, 1999.

Seddon, J., and Vanguard Consulting, “Lean Service: Systems Thinking for Service
Organisations—The Business Excellence Model—Will It Deliver?”
http://www.lean-service.com/6-3.asp, November 2003.

Sticky Minds Web site Round Table, facilitator Craig, R., “What Is Software Quality
and How Do You Measure Its Value?” http://www.stickyminds.com/
s.asp?F=S6540_ROUND_46, August 2003.

Woodruff, W. D., “Introduction of Test Process Improvement and the Impact on the
Organisation,” Software Quality Professional, September 2003, pp. 24–32.

16 Software Quality Matters

Defining the Software Team

In this chapter I shall:

◗ Describe the stakeholder groups that make up the software
team;

◗ Discuss the mutual distrust between the team members and
how it might be overcome;

◗ Identify which definitions of quality from Chapter 1 best fit to
each group;

◗ Identify which of the quality models from Chapter 1 best fit
the groups;

◗ List techniques to help improve communication between the
groups.

It makes me wonder why senior managers don’t knock a few

heads together. After all, we are all fighting on the same side, or

should be.

—Comment from a test consultant, noting the disagreements

—between members of the software teams

2.1 Teams in disunity
Some years ago, I was working with a software team to help
them improve the quality of their delivered software. I met a
succession of people—first the testers, then the developers, then
the business analysts, and, finally, a group of project managers.
What was astounding was that each group was convinced that
they were the least respected group and that they were the
group that cared most about quality. They all described them-
selves as being “on the bottom of the heap,” and commented on
the lack of support and the grief they received from the other
three groups. They all pointed to the software user and to senior
management as “awkward customers.” What was going on?

17

2
Contents

2.1 Teams in disunity

2.2 Defining the team

2.3 Interaction between the
groups and within each
group

C H A P T E R

Each person held strong views about their own contribution and that of
other people to the project and to quality. Studies of the motivation of IT
personnel and users of IT systems have shown that people believe that their
own group enhances the project and other groups detract from it. Warden
and Nicholson, in their 1996 survey of motivation in IT staff [1], remarked:

IT is not a close-knit community of like-minded professionals. Many nega-

tive attributions are made about other groups lacking the motivation for

quality. Senior managers are accused of paying lip-service to quality, while

starving it of resources in pursuit of profit. Software developers are accused

of focusing on technical excellence, completely disregarding customers’

need for a quality product. Customers are accused of demanding levels of

quality which they are not prepared to pay for. These are among the most

common criticisms but there are many others. Each group within the pro-

fession makes negative attributions about other groups.

Table 2.1 shows that each group has a positive self-perception, but often
feels negatively about other groups. Many of you will recognize these inter-
actions and misunderstandings.

I have illustrated all the chapters in this book with anecdotes from my
own experience, and I hope that you will add stories of your own. Here are

18 Defining the Software Team

Table 2.1 Group Attitude Results

How

View Developers

IT
Infrastructure
Staff

Software
Maintainers IT Managers

Quality
Practitioners Testers Users

Developers We’re OK. Don’t listen.
Poor quality.

Will not
document.

No business
awareness or
inter-
personal
skills.

Resist
change. A
law unto
themselves.

Resent
criticism.

Computers
are difficult
to use and
unreliable.

IT
infrastructure
staff

Always
complaining.

We’re OK. Should filter
requests.

Better
customer
orientation.

Understand. Understand.

Software
maintainers

Unpleasant
job, low
status.

Long delays We’re OK. Long
delays.

Resist
change.

Resent
criticism.

IT managers Want delivery
too soon to
get quality.

Should force
developers to
attend to
users.

Want delivery
too soon to
get quality.

We’re OK. No interest,
no support.
Don’t
understand.

Don’t know
the cost of
letting bugs
through.

Quality
practitioners

Waste time.
Unrealistic.
Don’t
understand.

Understand Waste time.
Unrealistic.
Don’t
understand.

A luxury.
Only if
customers
demand it.

We’re OK. Understand.

Testers Unnecessary
—we do that!

Understand Unnecessary
—we do that!

Little skill
needed.

Understand. We’re OK.

Users Don’t know
what they
want.

Complain to
us about
software.

Ask for trivial
changes.

Will not pay
for quality
but expect it.

Will not pay
for quality
but expect it.

Understand. We don’t
want to
know about
technology.

Source: [1].

a few to start us off. Some are from colleagues and some are from my own
experiences.

◗ On one project I worked on, testers and developers were not allowed
to talk to each other because it would waste time!

◗ The testers didn’t check whether the reports they sent to the developers
were duplicates. They did not talk to other testers about what they were
reporting. It really wasted the developers’ time.

◗ When I said I had not used a PC before, he treated me like an idiot …
they are always so rude in the IT department.

◗ When I was asked to build the new software, I wanted to find out
what I should be building—there was no specification—so I went to
talk to the system users to see what they wanted. No one had told
them the system was being changed, and they were furious. They
spoke to my manager to ask what was happening. Main result: I was
reprimanded for talking to people outside the IT department.

Why don’t we get along? Maybe it’s because we should be talking to
each other and listening to each other more.

2.2 Defining the team
To help us understand how to overcome this problem of mutual distrust, let
us examine who is in the software team. I will include in “the team” all the
stakeholders for quality. This is not only people who commission, design,
build, deliver, and support the software, but also people who use or are
affected by the software. These definitions are based on my own experience
of software projects and customers.

I have divided the team into five groups of stakeholders, based upon
their main interests in the software project and, therefore, the definition of
quality that they favor. These groups do not map to skill sets or organiza-
tional functions, and the people in each group will have various job titles. A
person may be in more than one group for a particular project, or may move
between groups in different projects. We will see how each group contrib-
utes to the success of the software project in a particular way. The groups
are:

◗ People who are customers and users of software: customers;

◗ People who manage software projects: managers;

◗ People who build software: builders;

◗ People who measure software quality: measurers;

◗ People who provide the support and infrastructure for the project and
the deployment of software: supporters.

In Chapter 1, we saw that there are five definitions of quality:

2.2 Defining the team 19

◗ Product-based quality is based on a well-defined set of software qual-
ity attributes that must be measured in an objective and quantitative
way.

◗ Manufacturing-based quality focuses on the manufacture of software
products, that is, their specification, design, and construction.

◗ User-based quality is fitness for use.

◗ Value-based quality is focused on things that impact on the running of
the business as a whole.

◗ Transcendent quality can be recognized easily depending on the per-
ceptions and the affective feelings of an individual toward a type of
software product.

We will see that each group favors particular views of quality, and this is
one of the causes of disunity between the groups.

2.2.1 People who are customers and users of software

Customers include all the people who buy, use, and are affected by soft-
ware. They include the people who will pay for the software: the project
sponsor, budget holder, or purchaser. The people who will use the software
belong in this group (see “Users” in Table 2.1). I also include here the cus-
tomers of the end users—they do not use the software but are affected by it
when they interact with the end users.

When I refer to customers later in the book, I mean anyone in this
group. They are all stakeholders for the quality of software because they
commission, buy, use and, are affected by the software.

This group will hold a transcendent view of quality; as we saw in Chap-
ter 1, this includes one’s emotional reaction to a product or service. Their
primary quality viewpoint is the user view of quality, so they will want the
software to be fit for their purposes. The purchasers will also hold the
value-based view of quality, wherein quality is concerned with a product or
service being affordable and good value for money. This group is discussed
in more detail in Chapter 3.

2.2.2 People who manage software projects

Managers include all the people who control the planning and manage-
ment of the software project (see IT Managers in Table 2.1). For a particular
project there may be a hierarchy of control starting from a project/program
board. Reporting to the project board might be a program manager, one or
more project managers, and, working under them, project leaders and team
leaders. These people are stakeholders for quality because they are respon-
sible for the time and budget control of the project, and for meeting
planned delivery requirements. These are important aspects of quality: the
customer needs a product they can afford.

20 Defining the Software Team

This group will hold a transcendent view of quality. They will share with
the purchasers the value-based view of quality. They may also support
a manufacturing view of quality—an interest in process and identifying
defects—especially if they come from an IT development background.

This group is discussed in more detail in Chapter 4.

2.2.3 People who build software

Builders are the people who specify, design, and build the software and other
products. This includes the development team (see Developers in Table 2.1).
The people in this group include business and system analysts, software
architects, designers, software engineers, programmers, developers, technical
writers, and trainers. They are stakeholders for quality because they build
quality into the product, which includes not just the deliverables (for exam-
ple, code, user guides, and training material) but also the interim products
(for example, requirement definitions, designs, and specifications).

This group will hold a transcendent view of quality. Their primary qual-
ity viewpoints are the manufacturing and product-based view of quality.
The product-based viewpoint measures quality against the attributes of the
product or service; its performance and reliability characteristics, for exam-
ple. This group is discussed in more detail in Chapter 5.

2.2.4 People who measure software quality

Measurers include people who check the conformance to and suitability of
processes, as well as those who check the quality of the products, including
software (see Quality Practitioners and Testers in Table 2.1). This group
might include the quality assurance (QA) teams (e.g., audit and compli-
ance) and quality control (QC) teams (e.g., test and inspection). By QA I
mean processes and activities that check the suitability of and adherence to
processes. QC, in contrast, includes processes and activities that check prod-
ucts for completeness, correctness, suitability, and adherence to specifica-
tion. The QA activities might include process review and quality or process
audit. The QC activities include software testing, software inspection, and
product review. The membership of this group may be drawn from the
other groups or they may be specialists. Beware of believing that this group
improves the quality of products; in fact, what they do in this group is
measure quality and provide information to the other groups. The measur-
ers support decision making and quality improvement. You may be sur-
prised by this idea, but consider this: the builders build quality into the
products, the measurers measure the quality of the product. I will enlarge
on this discussion in Chapter 6. This group will hold a transcendent view of
quality. They will also favor the manufacturing and product-based views of
quality. Some people in this group work mainly in user acceptance testing
and will support the user view of quality. The group is discussed in more
detail in Chapter 6.

2.2 Defining the team 21

2.2.5 People who provide the support and infrastructure for
the project and the deployment of software

Supporters have an important part to play in achieving software quality.
They are involved in two areas. First, this group maintains the software
when it is delivered and accepted by the customers. They provide support
and infrastructure and are therefore stakeholders for quality in that they
will have requirements for the software. These relate particularly to its qual-
ity attributes: security, performance, portability, and maintainability will all
be factors for this group. Second, this group will provide the support and
infrastructure for the other groups. They will supply the environments for
the building and testing of the software and will support the tool sets used
by all the groups in their work. The group includes the IT infrastructure
team, comprising IT operations, support, and maintenance; IT security; the
help desk; service management; networking; and database administration
(see IT Infrastructure Staff and Software Maintainers in Table 2.1).

This group will hold a transcendent view of quality. Their primary focus
for quality is the product-based view of quality, and they will also hold a
user-based view of quality, especially as related to service levels. The group
is discussed in more detail in Chapter 7.

2.3 Interaction between the groups and within each
group

2.3.1 Differences in quality viewpoints

Because of the difference in quality viewpoints across the groups, and
because different groups bring different expertise, there should be interac-
tion between these five groups before, during, and after a software project.
Each person will identify with one of the groups, and, for a particular proj-
ect, may take roles drawn from one or more of the groups. If we look again
at Table 2.1, we see the evidence for mistrust between the groups. I suggest
from my own observations two possible reasons for this unfortunate state of
affairs.

First, among other differences, the groups hold different viewpoints of
quality (see Table 2.2) and so will contribute effort toward achieving their

22 Defining the Software Team

Table 2.2 Views of Quality across the Groups

Group

Quality View Customer Manager Builder Measurer Supporter

Transcendent view ✓ ✓ ✓ ✓ ✓

User view ✓ (✓) ✓

Value view ✓ ✓ (✓)

Product view ✓ ✓ ✓

Manufacturing view ✓ ✓ ✓

✓ is a primary quality view.
(✓) is a quality view which may be taken by some people in this group.

own view of quality and not value the other groups contributions and
opinions.

Second, if all the groups are not explicitly involved in the project from
inception to postdelivery, although they are all stakeholders for quality,
they do not interact and communicate effectively throughout the project.
How does this lead to unproductive conflict? We have already acknowl-
edged that each group wants to do a good job, but as each group pursues its
own definition of what a good job entails in isolation, conflict between the
groups becomes inevitable. Conflict increases as feedback between groups
becomes negative or ceases altogether:

The main cause of mistrust between groups comes from poor motivational

dynamics. People’s jobs are not designed to create constructive feedback

between groups or members of groups. Individuals usually hear only when

things go wrong and rarely get feedback to understand and learn from their

successes. The outcomes are groups that may be in conflict, or a group is

marginalized in terms of project involvement. Both are highly demotivating

and can lead to serious under-performance. (Richard Warden, personal

communication, April 24, 2003)

It is possible to address and resolve both these problems. Essentially, it is
a matter of communication. To overcome them, we need to provide the
means to improve communication between groups, so that each hears and
understands the others’ point of view. Each group will interact with all the
other groups (Figure 2.1), either by direct or indirect communication, or
because of views held from previous encounters. Some of these may be
positive viewpoints and some may be negative.

Warden and Nicholson [1] particularly noted that groups attribute prob-
lems to people outside their own team. These biased attributions of faults
are summarized in Table 2.3, based on the MIP Report, and show that “No
matter how badly my group behaves or how well the other group behaves, I
will see minor faults outside my own group before I see major faults within
it. The other side is doing the same thing” [1]. The table summarizes how
people react to others; in general we tolerate quite bad behavior from “our

2.3 Interaction between the groups and within each group 23

Measurers

SupportersBuilders

The software
project and
the software
product

Managers

Customers

Figure 2.1 Interactions between groups during a software project.

gang,” but are quicker to take offense at the behavior of other groups. This is
human nature and we must struggle to overcome it.

Each of the groups claims that they are motivated to improve perform-
ance. However, as each group has its own set of priorities and definition of
quality, each often hears the others’ views as if they were in direct opposi-
tion to their own. For example, Warden and Nicholson [1] found that infra-
structure staff measure quality as reliability and service level. They consider
the pursuit of the latest technical excellence as an attack on quality, perhaps
because use of “leading edge” technology will be more difficult to support.
At the same time, developers may see this as a demand for more primitive,
hence, less excellent, technology because they measure by product attrib-
utes, and perhaps by a transcendent view of excellence. Both sides assume
that the others’ aspirations are equivalent to their own fears.

Do the quality, process, and excellence models that we looked at in
Chapter 1 help us with this problem?

2.3.2 Intergroup relationships in CMM and Personal and
Team Software Processes

In the Personal Software Process [2], the emphasis of the process described
is on the individual software engineer (the builder). Individuals are asked to
plan and track their tasks and time in order that they can make and meet
commitments made to others. This individual self-discipline is an essential
ingredient in the success of the software project as a whole. In the Team
Software Process [3], the team is made up of software engineers, each of
whom is following the PSP, and is therefore using CMM Level 5 processes;
it has been used with “pure software teams and with mixed teams of hard-
ware, software, systems, and test professionals” [4]. The PSP and TSP do not
include the customer (see Table 2.4).

The software engineers must interact with their customers in order to
understand the requirements, budget, and timescale, but the customer is not
seen as part of the team. It is often true as well that the support group (IT
infrastructure, operations and so on) are only involved in a minimal way.

This isolation of the software engineers from other groups is very com-
mon in software project teams, but is it counterproductive? I would suggest
that it is. I have noticed that IT groups and software engineers are not well

24 Defining the Software Team

Table 2.3 Attribution of Faults and Problems Inside and Outside “My Group”

If someone in my group
behaves well,

I make a positive attribution. I attribute their good behavior to
personal goodness.

If someone outside my group
behaves well,

I look for a negative attribution. I attribute their good behavior to
ulterior motives.

If someone in my group
behaves badly,

I struggle to make a positive attribution. I make excuses for their bad
behavior.

If someone outside my group
behaves badly,

I make a negative attribution. I attribute their bad behavior to
personal badness.

regarded by many of their customers. Why is this? Partly it is the number
and effect of defects in delivered software; this is the problem that software
engineering processes such as CMM, the PSP, and the TSP are designed to
overcome.

However, there are significant problems in communication between the
groups. On occasion, I have asked software customers their view of IT
group. Typical responses are “arrogant,” “do not listen,” and “in a world of
their own.” If you ask IT people about their customers, typical responses are
“ignorant about IT,” “do not listen,” and “in a world of their own.” Do we
see a pattern here?

In my experience, the more the customers and supporters are involved
in the project, the greater the mutual understanding of the groups, the bet-
ter the project, and the more well received the software product. What is
important is the interaction between people. At the European Software
Testing and Review (EuroSTAR) Conference in 2002, one speaker remarked
that although we talk about the HCI (human–computer interface), all the
interfaces are human to human—the people who designed and built the
software and the people who use it [5].

2.3.3 Intergroup relationships and excellence
frameworks—the EFQM Excellence Model

The EFQM Excellence Model (see Chapter 1 and [6]) has four criteria that
are relevant. These are people (i.e., employees, the team doing the work),
customers, partners (i.e., second or third parties, suppliers), and society.
These are matched to the groups I suggest in Table 2.5. A similar grouping is
found in other models, for example, the Malcolm Baldrige model [7], which
is the equivalent model in the United States.

2.3 Interaction between the groups and within each group 25

Table 2.4 PSP, TSP, and the Groups

PSP TSP Matches to:

Software engineer Software engineer Builder, Measurer, Manager

Does not include Does not include Customer

Does not include Infrastructure Supporter

Table 2.5 EFQM Excellence Model and the Groups

EFQM Criteria Matches to:

People—Enabler

People—Results

Builders, managers, measurers, and supporters

Partners—Enabler Supporters (e.g., infrastructure)

Builders (e.g., third-party software house)

Measurers (e.g., third-party test services company)

Customers—Results Customers

Society—Results Customers—people affected by the software

The EFQM Excellence Model does not tell you how to organize these
groups or how to improve communication between them, but it does expect
improvement in the perceptions each has of the organization, and of the
performance measures of the organization in relation to that group.

It is important for the software team (including all five groups) to con-
sider responsibilities and ownership for tasks and problems. For example,
Obeng [8] points out that poorly focused communication between project
leaders and project sponsors can lead to a vicious circle of ineffective risk
management and increased time spent on getting projects back on track. He
suggests actions for the project owners to improve their communication and
control. Similar charts of miscommunication and improved communication
could be built for other role pairs in the project.

I am not suggesting that everyone has to agree the whole time! For
example, the groups’ different expertise and viewpoint for quality should be
welcomed, as it provides a balance. Some conflict between groups is good!

In an environment of honest dialogue, the groups constructively challenge

each other. In most software situations, the interests of the customers

are best served by balancing several definitions of quality. Unchecked, a

dominant group will follow their own definition to an extreme. In effective

software teams, the supporters ensure that the technologies the builders

favor can be maintained. The managers guard the customer’s budget by pre-

venting the developers’ overengineering and the measurers being inappro-

priately cautious. In a healthy project, the builders challenge the customers’

requirements, pointing out attributes that they haven’t considered. (Frank

Johnstone, personal communication, April 18, 2003)

What we need are ways to improve our interrelationships and commu-
nication. There are a number of techniques and tools that can help with
improving communication and fostering understanding between people.
Some of these are summarized in Table 2.6, and there is more information
in Appendix A.

These methods of improving empathy and communication between peo-
ple are vital because each of the five groups contributes to and benefits from
the software. Each group will require information from the other groups in
order to progress and make decisions, but if you are trying to introduce these
ideas, you may find resistance. Remember we can only change our own
behavior, but how we behave to others will influence how others treat us. In
the next five chapters, I will explore each of the groups in turn, suggesting
what they can contribute to the project and what they require from other
groups during the project. Then, in Chapters 8 to 12, I will look at each stage
in the software project life cycle and how each group contributes at each
stage. In these chapters, I will refer to techniques for improving and under-
standing communication, such as those in Table 2.6. I will provide more
explanation as particular techniques are demonstrated, either in later chap-
ters or in Appendix A, together with sources for further information.

26 Defining the Software Team

2.3 Interaction between the groups and within each group 27

Table 2.6 Summary of Techniques for Improving Communication Between People

Subject Area Technique Examples Brief Description (see Appendix A for more)

Motivation
measurement and
job design

MIP [1] MIP is based on the Job Characteristics Model of
Motivation [9]. The job diagnostic survey provides a
comprehensive set of motivational measures. As a
process model, it can diagnose problems with
motivational dynamics caused by poor job design.
Psychometric measurement techniques do not
provide this capability.

Team relationships
and natural roles/
team skills

Belbin team scores [10] Teams need to understand their strengths and
weaknesses as a team. A balance of roles/skills is
required in the personalities in the team. Example
roles: plants have new ideas, completer–finishers
want to finish to fine detail. Too many plants and
you will never finish anything.

Improve
communication—
Empathy with
others

MBTI [11]

Honey & Mumford
Learning Styles [12]

Kirton Adaptors
and Innovators [13]

Different people have different personalities and
communication styles. People who wave their arms
around and talk a lot can annoy people who like to
be quiet and think, and vice versa. Myers-Briggs
Type Indicator (MBTI) identifies four contrasting
type pairs (e.g., Introvert/Extrovert) leading to 16
“types” (e.g., INTJ is
Introvert-iNtuitive-Thinking-Judging).

Honey & Mumford Learning Styles Questionnaire
identifies preferred learning styles (e.g., Pragmatists
and Theorists require different experiences to learn).

Kirton identifies preferred problem-solving methods
(Adaptors versus Innovators)—do we break the rules
or work within them?

Motivation Maslow Hierarchy
of Needs [14]

Until someone’s basic needs (e.g., food, shelter) are
met, this is likely to be all they are interested in.
Once they have enough at one level, then other
motivators become more important. The cutoff point
for moving from one point in the hierarchy to
another is different for different people.

Improve
meetings

De Bono’s Six
Thinking Hats [15]

Improve meetings by setting rules for behavior. Six
“hats” are used. Everyone wears the same color hat
at the same time. Example roles: Black Hat—
pessimistic, Yellow Hat—optimistic, Red Hat—
feelings, White Hat—facts. Allows meeting members
to move outside their stereotypes and allows time for
different, sometimes difficult, types of
communication.

Helping groups
agree on goals,
aims, objectives, targets,
and indicators

Weaver
Triangle [16]

On a one-page diagram, the group identifies and
agrees on the aim of the project (why it is being
done) and associated indicators of success, then the
objectives of the project (what is to be done) and
associated targets. This helps identify where
stakeholders have different aims for the project.

Identify problems
and root causes,
find solutions

Ishikawa fishbones
[17, 18]

Use to identify problems, root causes of problems,
and solutions. On a fishbone diagram, brainstorm
problems, their possible causes, their root causes,
and, therefore, solutions to the root cause.

Walkthrough
reviews

Reviews [19] A type of review with the purpose of increasing
understanding of a document. The author introduces
the audience to the document and takes them
through it, explaining the content.

References

[1] Warden, R., and I. Nicholson, The MIP Report—Volume 2—1996 Motivational Survey
of IT Staff, 2nd ed., Bredon, England: Software Futures Ltd., 1996.

[2] Humphrey, W., Introduction to the Personal Software Process, Reading, MA: SEI,
1997.

[3] Humphrey, W., Introduction to the Team Software Process, Reading, MA: SEI, 2000.

[4] Software Engineering Institute Web site http://www.sei.cmu.edu, accessed April
2003.

[5] Hatton, L., “Quantifying Test Value: Some Examples and a Case Study,”
EuroSTAR Conference, Edinburgh, Scotland, 2002.

[6] European Foundation for Quality Management Web site, http://www.efqm.org,
accessed August 2003.

[7] Malcolm Baldrige model, http://www.quality.nist.gov/index.html, accessed
August 2003.

[8] Obeng, E., “It’s Nobody’s Baby,” Project Manager Today, Vol. XV, No. 3, March
2003.

[9] Hackman, J. R., and G. R. Oldham, The Job Diagnostic Survey: An Instrument for the
Diagnosis of Jobs and the Evaluation of Job Redesign Projects, Technical Report No. 4,
New Haven, CT: Yale University, Department of Administrative Sciences, 1974.

[10] Belbin Associates, “Belbin Team Roles,” http://www.belbin.com/belbin-team-
roles.htm, accessed October 2003; also for assessment information.

[11] Team Technology, “Articles,” http://www.teamtechnology.co.uk/articles.html,
November 2003.

[12] Honey, P., “What Are ‘Learning Styles’?” http://www.peterhoney.com/
product/learningstyles, accessed November 2003. PeterHoney.com, 10 Linden
Avenue, Maidenhead, Berks, SL6 6HB. Tel.: 01628633946. Fax: 01628633262.
E-mail: info@peterhoney.com.

[13] McHale, J., “Innovators Rule OK—Or Do They?” Training & Development, October
1986, http://www.kaicentre.com/.

[14] Gywnne, R., “Maslow’s Hierarchy of Needs,” http://web.utk.edu/~gwynne/
maslow.HTM, November 2003.

[15] de Bono, E., Six Thinking Hats, New York: Penguin, 1999.

[16] Evans, I., “The Troubled Project—Best Practice from Theory to Reality,”
EuroSTAR Conference, Stockholm, Sweden, 2001.

[17] Robson, M., Problem Solving in Groups, Hampshire, England: Gower, 1995.

[18] TQMI, Problem Solving—Tools and Techniques, Cheshire, England: TQMI, 2001.

[19] IEEE 1028™ Standard for Software Reviews, 1997.

Selected bibliography

Honey, P., and A. Mumford, The Learning Styles Helper’s Guide, Maidenhead, England:
Peter Honey Publications, 2002. PeterHoney.com, 10 Linden Avenue, Maidenhead,

28 Defining the Software Team

Berks, SL6 6HB. Tel.: 01628633946. Fax: 01628633262. E-mail: info@
peterhoney.com.

Kroeger, O., J. M. Thuesen, and H. Rutledge, Type Talk at Work: How the 16 Personality
Types Determine Your Success on the Job, New York: Bantam Doubleday Dell, 2002.

Maslow, A., Motivation and Personality, New York: Harper and Row, 1970.

Mullins, L. J., Management and Organisational Behaviour, 5th ed., New York: Financial
Times/Pitman Publishing, 1999.

Rothman, J., “Team Building at Work,” STQE, July/August 2003, p. 64.

2.3 Interaction between the groups and within each group 29

.

Roles and Quality: Customers

In this chapter I shall:

◗ Introduce the members of the customers group and their
roles and activities;

◗ Introduce their quality viewpoint;

◗ Provide a framework for customers’ activities within the
EFQM Excellence Model;

◗ Identify information flows between customers and the other
groups.

“Why do so many IT people think the world was started with a

requirements catalog? Don’t they understand there’s more to my

business than that. . . . I want them to understand what makes my

business tick. . . .” “And why are they so arrogant and rude? Per-

sonally I’d take on the guy who has fewer technical skills if I

thought he understood my world, and he treated me like a human

being.”

—Two customers for IT services compare notes on

just why they hate their IT departments

3.1 Introducing the customers
If it were not for customers, we would not build IT systems.
Software is only there to solve people’s problems and help
them carry out tasks more easily. The context for the tasks
might be in home computer use, for example, to play a game or
shop on-line. It might be a work context, for example, to
reorder stock or produce a report. The use of the computer may
be essential to the task, for example, to carry out complex cal-
culations or to control a remote robotic arm in a dangerous
environment. It may be intended to make the task easier, for
example, intraoffice communication.

31

3
Contents

3.1 Introducing the customers

3.2 Who could be in this
group?

3.3 Quality viewpoint

3.4 Quality framework using
the EFQM Excellence Model

3.5 Communication between
the customers and other
groups

3.6 Summary of the group

C H A P T E R

The customers for IT systems do not love their IT suppliers or the soft-
ware. Software is only a tool, and if it is technically excellent but not seen
as useful, it will be rejected. In one organization I visited, a staff satisfaction
survey showed that almost all the problems associated with staff dissatisfac-
tion were perceived to be caused by poor IT provision. We saw in the quote
above that customers have various reasons for dissatisfaction; the IT work
itself may be poor, and the IT people may not be liked, either. IT people are
seen as self-satisfied and arrogant; customers may feel sneered at if they do
not understand the technical jargon. The second customer in the quote
above told me that the IT support person they chose eventually for their
team was the least well qualified technically, but was the politest and the
one who was able to work as part of the team. In order that the customers
receive the software they need, they have to communicate with those who
supply the software, either directly or by representation; communication is
vital to success.

Not only do the customers observe that IT “solutions” fail to solve their
problems, they often believe that software in fact adds to them, for example,
by adding steps or by hiding information. Additionally, if IT people are
focused on providing functionality against a requirements list, they may lose
sight of why the customer wanted the software.

When I visit large IT organizations, it is easy to see who in the IT depart-
ment is well regarded by the customers; look for the queues by particular
desks and you will know that those are people who have troubled them-
selves not only to understand IT technicalities but also to understand their
customers.

In this chapter, I will examine who the customers of IT systems are, what
they want, and how the communication gap between IT people and their
customers can be bridged.

3.2 Who could be in this group?
For customers, the software is a tool, a means for them to perform tasks effi-
ciently and effectively. This group includes:

◗ People who will pay for the software, for example, the project spon-
sor, budget holder, or purchaser.

◗ People who will use the software delivered (see “users” in Chapter 2,
Table 2.1), for example, the customer service agents working at the call
center of a financial services organization also request a change to the
software they are using to match a new business process.

◗ The customers of the end users: They do not use the software but are
affected by it when they interact with the end users; for example, some-
one who contacts the call center to make a change to an investment
may comment on the services provided, and this may lead the customer
service agents to request a business process change, which leads to a
software change.

32 Roles and Quality: Customers

◗ Society and government as customers: There may be a legislative change
that requires change in business processes, supporting systems, or both.

◗ Organizational customers: Other people in the organization who need
particular outcomes; for example, the finance group may want to
reduce costs and so request streamlining changes.

◗ In IT organizations without a direct customer, for example, those com-
panies building and selling packages for commercial or home use, the
marketing or product design groups may commission software and are
customers in that sense, but they will not use the software.

◗ The IT organization itself may request changes; for example, the
operational support group may wish to improve the maintainability,
performance, or reliability of IT systems without changing the func-
tionality and usability for the customer service agents.

These people are all stakeholders for the quality of software because they
commission, buy, use, and are affected by the software.1

Let us examine some different types of customers and their relationship
with software and with other groups.

3.2.1 In-house customer

In this situation, the IT department works for the same company as the peo-
ple who will use the software and those who will pay for it. The managers,
builders, measurers, and supporters may have a captive audience of custom-
ers who must use their services, or they may need to bid for projects if the
customers choose to put work out to tender. I have seen this happen, with
the IT department bidding against external third parties, and with teams
within the IT department bidding against each other for projects.

When the customer is in-house, the relationship between the groups can
become very close. The managers, builders, measurers, and supporters have
the chance to understand the customer and the organization in enormous
detail. At best, this has the advantage that the IT people can provide a real
depth of service to the customers, who, in turn, can become involved easily
throughout the process of commissioning, building, delivering, and using
the software. Careful choice of processes and methods, as described in
Chapters 9 to 12, can allow the customers’ constantly changing business
needs to be met because all the groups are in the same organization and
should, therefore, have the same overall strategic goal. One IT customer
remarked to me:

If staff turnover in customer departments is much higher than in IT, the

builders and supporters may have more business knowledge, which enables

them to help the customers identify how software can create profitable

3.2 Who could be in this group? 33

1. The IT Infrastructure Library (ITIL) [1] differentiates customers who pay for the software, and users who

actually use the software. In this book, I have included both those groups together as customers.

opportunities. This can, however, become detrimental to the relationship if

it reaches the point where the IT people are dismissive of the customers and

feel it is their role to tell them what they want.

So we see that it can be disadvantageous if the IT people become compla-
cent about their customers, leading to the types of comments we saw at the
start of the chapter. The costs of work can be hidden; the IT work may be
seen as “free” because no invoices change hands. Alternatively, if work is
charged by a system of internal billing, with customers having a budget to
use for IT work and the IT group having charging rates to bill against the
budget, then both the customer and the other groups can monitor the cost
of the software, including the cost of changes. Communication difficulties
can arise because of the personality and cultural differences between the
groups. I am struck by how often customers complain that the others, espe-
cially IT specialists, whether managers, builders, measurers, or supporters,
are uncommunicative, arrogant and rude. Meanwhile, IT specialists com-
plain that customers do not know what they want, and also misunderstand
the communication style of their customers. In one organization, I remem-
ber the business users remarking on the difficulty of getting what they
needed from the network support specialists; the technical team would not
respond to questions, and often did not even reply if spoken to directly. One
day, I asked a member of the technical team if he thought there were com-
munication difficulties across the teams. “No,” he said, “the network has
been up 100% this week.” So, I changed my question to “Do you talk with
the business people very often? Do they come and ask you when they have
a technical problem, for example?” He said that they did come and ask if
they had problems and that he would deal with the problems, but that the
business users tended to chat, fuss, and waste his time. What I observed tak-
ing place were dialogues like the one in Table 3.1.

In truth, the people on the technical team didn’t see the need to provide
feedback at the level their customers required it. How do we deal with this
problem? The Myers-Briggs Type Indicator (MBTI) [2] seems to show that
different personality types require and give different types and amounts
of feedback during communication. This means that we need to try and

34 Roles and Quality: Customers

Table 3.1 Typical Dialogue Between a Technical Team and Its Customers in One
Organization

Tom Customer says: “Hi—how are you? I’m trying to do my e-mail and I can’t get access to
the network—it just doesn’t seem to be working and . . . ”

Ted Technical thinks: I’d better look into that.

Tom Customer thinks: Did he hear me?

Ted Technical Solves problem but does not tell anyone

Tom Customer, some time later: “Is the network available yet?”

Ted Technical replies (irritated): “Yes, of course it is.”

Ted Technical thinks: Why does this person ask me stupid questions?

Tom Customer thinks: Why is this person so rude and unhelpful?

understand other people’s communication styles. As customers, we need to
consider whether we have communicated in a way that puts our message
across, and that results in the feedback we require. The dialogue could be
managed differently (see Table 3.2). This improved dialogue allows Tom
Customer to know what is going on, while acknowledging Ted Technical’s
desire to minimize “unnecessary” conversation.

3.2.2 Third-party custom-made system customer

Here the customer asks another company to provide a software system, and
the supplying company is going to design and build the software to meet the
customer’s specific requirements. Like a custom-made suit, it will be made
to fit the particular customer rather than being bought ready-made. This
allows the customer to ask for tenders from a number of suppliers, and to
make a choice based on reputation, confidence, ease of relationship, under-
standing of the customer’s organization and needs, expertise in a particular
application or software type, standards followed, price, or whatever the key
factor is for the customer organization. This allows the customer to pick the
most suitable supplier to meet their needs and to pay them on a partnership
or contract-by-contract basis.

The third party will be keen to get repeat business and this should focus
them on making every effort to meet the customer’s changing needs; they
will not be complacent about their position as a supplier. However, if the
customer and supplier are working to a fixed-price contract, the supplier
will resist change if this means that the service or product will be delivered
at a loss. We will see in Chapter 9 how much work is required to reach the
point where we can agree on a contract for a software development life
cycle (SDLC), and the importance of involving all parties in understanding
what is required. For a third-party supplier, the risks associated with agree-
ing to a fixed-price contract when there are uncertainties are enormous, so
customers need to be consider what type of contract is best not only for
them but also for their suppliers. As one customer manager remarked to me:

A fixed-price contract that is not competitive to the supplier does not neces-

sarily make good business sense for the customer. Third parties have quit

punitive fixed price contracts, forcing the customer to reissue for tender. On

occasion, the delay caused has prevented the customer from realizing the

benefits predicted from the software.

3.2 Who could be in this group? 35

Table 3.2 Improved Dialogue Between a Technical Team Member and a Customer

Tom Customer says: “I can’t get access to the network. Will you look at it please?”

Ted Technical says: “Sure, give me five minutes to finish this reboot.”

Tom Customer says: “No problem. Give me a shout when the network is running, please.”

Ted Technical says: “Yup!”

Ted Technical Solves problem and shouts across, “OK now!”

Tom Customer says: “Thank you!”

Options for a single project might include a time and materials contract;
time and materials to a budget ceiling; a series of short investigative projects
to reach a decision about the content of and type of contract; or agreement
to use an evolutionary, iterative, or incremental approach (see Chapter 10
for an explanation) in which the budget and scope could be renegotiated on
a stage-by-stage basis.

Some customers prefer to build a partnership relationship with their
third-party suppliers, rather than working on a project-by-project basis. This
can be more satisfying for the customer and for the supplier, as relationships
build up over time; the supplier’s staff feel like real stakeholders in the
customer’s success, and they can see the outcome of their work, which
increases their satisfaction and motivation. In turn, this means that they are
happy to work with the customer, and, therefore, provide a better service to
the customer, who in turn reports increased satisfaction with the supplier.

A closely embedded relationship with a third-party supplier can lead to
similar advantages and disadvantages as the relationship with in-house IT
groups that we discussed in Section 3.2.1, but, additionally, if the customer’s
circumstances change very significantly it can be difficult to disentangle the
two organizations. Communication difficulties can arise because of cultural
differences between the organizations, as well as because of personality dif-
ferences between the groups and individuals. Often, a supplier organization
will put its most “customer-friendly” people in the jobs that require cus-
tomer contact. This improves the customer–supplier interactions, but may
have the effect of moving the dialogues in Tables 3.1 and 3.2 from the cus-
tomer organization to the supplier organization.

With third parties, one great advantage is the “fresh look”; sometimes,
an outsider can see our strengths and weaknesses and how to improve more
clearly than we can ourselves.

3.2.3 Third-party package or commercial off-the-shelf (COTS)
customer

Sometimes, instead of ordering a custom-made solution tailored to our spe-
cific problem, we may choose a “ready-made” or “off-the-shelf” product.
This is referred to as commercial off-the-shelf (COTS) software. The cus-
tomer should be able to buy, install, and run this software without any tai-
loring or changes built especially for them, although there may be options
they can set within the package. In this case, the relationship between the
customer and supplier may be quite limited or consultancy and support may
be offered as part of the purchase. It is likely that the builders and measurers
never meet the customer directly. Instead, the customer relationship is
managed via the sales, marketing, support-line, or client-management func-
tions within the supplier. For the customer, the contact is minimal, perhaps
limited only to the support line when problems arise. However, customers
can influence what is built into future versions of the package, for example,
by taking part in user groups, lobbying suppliers for change, and reporting
problems or improvement suggestions.

36 Roles and Quality: Customers

Many different types of customers will become involved with COTS soft-
ware, such as the following:

◗ Large organizations: Such customers are likely to have their own IT
departments or commission custom-made software; however, they
will probably choose COTS to automate those generic business
processes that do not give them a competitive advantage and so do
not need to be different from their competitors’ processes. We see this
in the success of some payroll and accounting packages, which are
used across many industries. In such COTS acquisitions, the large
organizations normally change their business processes to fit those
required by the package, this being seen as a more economical solu-
tion than commissioning custom-made software.

◗ Small businesses: Many small businesses do not have IT departments and
cannot afford to engage third parties to build custom-made software;
they are likely to buy COTS. Companies can get competitive advantage
from COTS by using it differently to their competitors. For example,
one colleague reported to me that several years ago that one small
importer became the first participant in the (then) niche active sports
goods market to use a stock control system that was standard in more
mature sectors. For a while, this gave the company an edge over its
rivals.

◗ Home and hobby users: These customers use software for entertainment,
socializing, pursuing a hobby, or doing chores. Sometimes they buy
COTS to change the way they do an existing activity, for example, using
e-mail to write to friends or using a spreadsheet to manage their per-
sonal finances. Most computer games are, of course, creating a new
need.

◗ The niche user: There are very specialized COTS systems [3], for exam-
ple, those used in military applications. You may see these referred to
as NOTS (niche off-the-shelf) or MOTS (military off-the-shelf).2

With COTS suppliers, one of the supplier’s problems is that sometimes
there is no clear customer group; sales, marketing, client management, and
the support line or help desk act as a proxy customer for the other groups.
The customers’ goals and requirements are found by market research, or by
looking at complaints and improvement suggestions. Market researchers
interview groups of likely or existing customers to help focus the supplier’s
understanding of the customer’s viewpoints. However, the customers will
see these immediate contacts—the sales, marketing, client-management, or
help-desk teams—as the face of the supplier, and direct any frustration with
the quality of the software at them. As a result, these contacts may become
builders by proxy!

3.2 Who could be in this group? 37

2. Definition copyrighted and used with permission of whatis.com (http://www.whatis.com) and TechTarget,

Inc.

We mentioned earlier that games programs are examples of an entirely
new product; before a computer game is invented, people do not know
they need it. What happens when a product is entirely new? We may not,
as customers, know that we need it; we have not specified requirements,
and we have not noticed a need, we do not know we have a problem. I
have seen cases in which one of the builders, a developer, or software
engineer has invented a piece of software and then asked, “What could
we use this for?” or has identified a way to solve a particular problem.
Development of the ideas will then be led by sales and marketing based
on their knowledge of the end customers’ likely buying habits, and by
market research.

3.2.4 The IT specialist as customer

Interestingly, people from all the groups become customers at some point,
because all the groups use software tools to aid them in their work. For
example:

◗ Managers use planning and reporting tools.

◗ Builders use compilers and software engineering and support tools.

◗ Measurers use test and review tools.

◗ Supporters use operational support tools and networking monitoring
tools.

It is always instructive to see members of the IT group in receipt of a soft-
ware tool, complaining about the lack of help messages, user guide, usabil-
ity, functionality, and so on, and then to look at the customer reports on
their last release. The IT specialists may also request changes to existing soft-
ware in order to make it easier to support, for example, changes to make it
more reliable or have better throughput. User and business customers must
be involved in these projects from the start-up discussions, even if they are
not the originators of the request for change. This is because any change
may have an impact on them; for example, I remember a performance
upgrade for a system that theoretically did not change the functionality but,
in practice, resulted in a complete retest of functionality because the code
had been entirely rewritten. This was decided on by the builders of the sys-
tem, but the user and support-line groups had not realized the amount of
testing that would be required from them, as they had not been involved in
the discussions at the start. As a result, the project was late in completing
because the system and acceptance tests took longer than expected and
resulted in more problems than expected.

3.3 Quality viewpoint
The customer perspective is about supporting the needs of the individual
customer, but also those of the organization and its stakeholders. These

38 Roles and Quality: Customers

needs must be met within the individual or organization’s constraints,
whether of time, money, or expertise.

The user-based definition says that quality is fitness for use. Software
quality should be determined by the user(s) of a product in a specific situa-
tion, either in a home or a business. Different customer characteristics
require different “qualities” of a software product. This can be subjective
and cannot be determined on the basis of quantitative metrics alone. It is the
user-based definition that encourages us to validate as well as verify the sys-
tem. For example, fit for purpose might mean that I can do my work effi-
ciently and effectively when I use this software.

This group may hold a transcendent view of quality. As we saw in
Chapter 1, transcendent quality is based on an emotional response to the
product. For the supplier, especially of COTS software, the transcendent
qualities will be very important. What is it that makes one software package
more appealing than another? Different customers will hold views based on
fashion, culture, prejudice, and previous experience. Customers need the
answers to these types of questions:

◗ When will I get it?

◗ Will it do what I want?

◗ Can I afford it?

◗ Can I rely on it?

◗ Will I enjoy using it?

◗ Will it make my life easier?

◗ Will it support our improvement strategy?

3.4 Quality framework using the EFQM Excellence
Model

3.4.1 The EFQM Excellence Model and the customer
organization

For a business customer, software is used to help in tasks that allow the
organization’s goals to be met. In the EFQM Excellence Model (see the
description in [4], for example) information systems come under the head-
ing of “partnerships and resources,” that is, information and information sys-
tems are resources that enable the organization to achieve its strategic goals.

Similarly, if we look at an organizational measurement system, such as
the Balanced Scorecard, information systems are seen as critically important
tools that enable employees to work effectively, so that they can contribute
to the goals of the organization. We will look at how managers use the Bal-
anced Scorecard in Chapter 4.

This means that the customer’s quality framework should influence the
quality framework used by the other groups. For example, in one software
company that provides third-party, custom-made software to its customers,
the software company’s quality manual says that a project’s standards

3.4 Quality framework using the EFQM Excellence Model 39

should always at least equal the customer’s. If the customer has processes
or practices that exceed the software company’s standards, those will be
adopted for a project, but if the customer’s processes are less rigorous than
those of the software company, then the software company’s processes will
be used.

The other groups need to be aware of the customer’s strategy and qual-
ity framework, including any measurements and targets, in order that they
can deliver services and products that help the customer meet the organiza-
tion’s quality targets. The emphasis will change, and this will change what
constitutes quality for the organization. The organization may be driven by
a need to meet a particular external standard, to keep within legislative or
regulatory bounds, to increase market share, to reduce time to market, or
to be a world leader for excellence of service. The supplier’s ability to recog-
nize and adapt to the customer’s quality framework is a critical success
factor in the effectiveness of their relationship. The framework for the cus-
tomer translates into departmental goals and, finally, into the personal
objectives and targets for an individual system user, but it also translates
into a complementary subset of the supplier’s goals and, hence, into per-
sonal objectives and targets for managers, builders, measurers, and sup-
porters. This quality framework will drive what the customer needs from
the software.

In Chapter 1, we looked at the EFQM Excellence Model and how it is
divided into nine parts: five enabling criteria and four criteria for measuring
results. In Section 3.4.2, we will look at how the EFQM Excellence Model
enablers could be interpreted for the customers of an IT project, and in Sec-
tion 3.4.3, we will look at customer results. Remember that the EFQM
Excellence Model is based on the fundamental concepts of excellence we dis-
cussed in Chapter 1, and that equivalent models such as the Baldrige model
are available.

3.4.2 EFQM Excellence Model enablers for customers

3.4.2.1 Leadership

Leadership for customers is the leadership of their organization. If the
vision and goals of the organization have not been communicated to the
specific customers who are commissioning software, then they will not
commission software that meets the quality goals of the organization. The
pressures on organizations will change the goals for the customers. Lately,
for example, issues like information security and IT governance are playing
an increasingly important role in organizations. Now, leadership in IT
governance is expected from the board of directors and the executive man-
agement, so it is integral to enterprise governance. Leadership from the top
is required to ensure that the organization’s information systems sus-
tain and extend the organization’s strategies and objectives. Leadership
from the top is also required to ensure that information and systems are
secure [5].

40 Roles and Quality: Customers

3.4.2.2 Policy and Strategy

The policies and strategies for the organization reflect the vision of the
leaders. Customers of IT software and systems need to consider the policy
and strategy for acquiring software that supports their information,
improvement and organizational goals. As customers, we implement IT
strategies to reflect organizational strategies; for example, different custom-
ers might need IT strategies to:

◗ Support the work in a particular industry sector, for example, differ-
ent strategies for supplying the avionics industry, education sector, or
home computing.

◗ Support a marketing need, for example, different strategies to support
quick time to market with new products, high market demand,
increased market share, or emphasis on a small number of high-value
customers.

◗ Support the administration of the rest of the business, for example,
accounts and payroll.

Policies are brief statements that are the basic rules for how an organiza-
tion conducts itself. As customers for IT, we want policies for obtaining IT
systems that enable us to fulfill our strategies. For example, different cus-
tomers might have policies about:

◗ Acquisition types—“We will only buy COTS.”

◗ Supplier choice—“All suppliers must have achieved at least CMM [6]
Level 3.”

◗ Supplier quality processes—“All acquired software must be designed
and built complying to standards within the BSI Software and Systems
Quality Framework (SSQF) [7].”

◗ Relating to the supplier and involvement—“We want the supplier to
use evolutionary delivery methods and to be involved at every stage.”

3.4.2.3 People

The people we are considering here are the customers themselves, because
of their part in the software team. As we will see in Chapters 8 to 12, it is
useful if customers are involved throughout the life of software, not just as
the users of software, but also during the definition, build, and testing of
the software. One of the advantages of the evolutionary delivery method,
for example, is that the feedback cycle between the customer and the
other groups is very fast. The customer is sent frequent improvements to
their software, and is also able to feed back to the supplier improvement
ideas needed to cope with changing requirements. According to Tom Gilb
(at a seminar on Evolutionary Delivery, London, September 20, 2003),
this feedback loop enhances the customer’s satisfaction with the software
delivery.

3.4 Quality framework using the EFQM Excellence Model 41

Customers can improve their contribution to the software quality and
their understanding of the software project by learning how to take part in
certain key activities. Some years ago, I worked at a software company
where I helped to introduce a number of quality processes. We had put
together an in-house document review process, based on experiences with
walkthrough and inspection methods that several of us had used in different
organizations. This process allowed us to make decisions about the type of
review based on the risks associated with the document, for example, the
value of the contract, the difficulty of the technical work, and so on. The
reviews had the general structure of:

◗ Up to 2 hours preparation before the review to identify problems and
suggestions for improvement;

◗ Up to 2 hours meeting to document those problems and identify new
ones, with no more than six people attending, and optionally the sec-
ond hour being used as a “solutions” meeting.

Time spent by each participant and the number of problems found were
logged, so we could check that people were using their time effectively and
efficiently. You will see that as a process, this does not match the rigor or
structure of, for example, the Gilb and Graham inspection [8], but it was a
vast improvement over the previous situation, which was quite unstruc-
tured. It was a good enough process. As part of an improvement program,
we then decided to invite some of the customer organizations to take part in
document review training courses. The benefit to us as supplier and to them
as customers was that when we asked customers to review contracts or
requirements, we all knew how to do it, how it was going to be organized,
how much it would cost, and the purpose of the meeting. The customers
enjoyed taking part and gained considerable satisfaction from contributing
constructive criticism and seeing it acted on. The software development life
cycle and the deliveries went far more smoothly; one of the directors com-
mented to me that he spent far less time firefighting than ever before.

This principle of training customers to contribute more effectively can be
applied to a number of activities:

◗ Training in document reviews. For basic understanding of a review
process, but also for review of particular artifacts. For example, “If you
are reviewing a use case, expect to see.…”

◗ Training in user-acceptance testing, including an understanding of why
user-acceptance testing is different from other types of testing, and what
techniques might be applied. For example, “If you are testing a Web site
you will need to consider usability and security as well as functionality.”

◗ Training in process audits and reviews, including understanding
why, during acceptance, the customer might want evidence of quality
activities and how this might be found. For example, “If you are
reviewing a supplier’s work, ask to have some tests run and review
the output from tests.”

42 Roles and Quality: Customers

3.4.2.4 Partnerships and Resources

The customer’s partners and resources for the software include all the
groups: those who are supplying the software and those who will support it
during use. The customers require a certain level of service from the soft-
ware systems, and this will form the basis for the service level agreements
(SLAs) with the supporters group. The criteria that the customers will use to
decide whether to accept the software must reflect these SLAs because, in
order that the supporters group can fulfill the SLA, the software must be
capable of delivering according to the SLA. Therefore, the customers must
work with the supporters to set acceptance criteria. We will see in Chapter 9
how to do this.

As well as partnerships with the supporters, customers will have part-
nerships with non-IT suppliers and their own customers. The software sys-
tems may need to share information, or they may need to be protected. One
of the customer’s acceptance criteria for system attributes may consider how
well the delivered software supports control of interfaces with systems out-
side the customer’s organization.

3.4.2.5 Processes

The customer’s business processes must be supported by the software and
systems. If the systems do not support and improve the organization, there
is no point having them. The business processes may be industry-specific or
general administration processes. They may also need to meet requirements
in particular quality standards, for example, ISO 9000 [9]. The business
processes should be designed to enable the customer to meet the organiza-
tion’s strategy and goals efficiently and effectively. Any software systems are
there to make the work more effective and more efficient. The other groups
need to understand the customer’s processes and standards in order to sup-
port them.

3.4.3 EFQM Excellence Model results for the customers

3.4.3.1 Customer Results

The customers of the IT systems and software have their own customers.
How does the software affect these customers? The customers need to find
out how the services they offer to their customers could be improved, and
this may include improvements to the IT systems and software. Results of
satisfaction surveys, complaints, letters of praise, and comments all indicate
where processes and, hence, systems could be improved.

3.4.3.2 People Results

Are the people in the customer group who work with the IT groups happy
to do so? Do the others in the customer group see them as representative? It
is important that the customer organization understands whether the IT

3.4 Quality framework using the EFQM Excellence Model 43

suppliers are good to work with. Look again at the quotation at the start of
this chapter. These customers are not unhappy with the technical excellence
of the work done by their IT teams, nor are they questioning the number of
coding defects. The two problems identified are lack of understanding of the
business in its essence and poor interpersonal skills. In one organization that
I visited, the staff satisfaction survey revealed that over 90% of the staff’s
complaints had to do with poor IT provision. This type of information allows
the customers to show the other groups what changes are needed. Many
authors, for example, Gilb [10] and Watkins [11], have observed that it is
the nonfunctional rather than the functional attributes that cause com-
plaints or cause people to reject a product. This fits in with my practical
experiences. Functionality is taken for granted, and is usually delivered, but
the real problems come in understanding what level of attributes such as
reliability, security, and performance are required or deliverable. For this
reason, in Chapter 9 we will focus on nonfunctional acceptance criteria.

3.4.3.3 Society Results

We have already noted in Section 3.4.2.1 that as part of the governance of
the organization, the governance of IT systems and their security is increas-
ingly important, for governments and for society as a whole. Customers
need to consider what effect their organization has on society, and the view
that society has of the organization. Consider how IT systems affect the
impact of an organization on society, both the perception that society has of
the organization and measures of how the IT systems help the organization
to perform.

There will be legislative and regulatory controls set by government that
must be obeyed. These include disability discrimination and data protection
legislation. When looking at IT systems and projects, customers should con-
sider how these support the organization in making products and services
accessible, while protecting privacy. For example, is it reasonable to use a
copy of live databases to test a new version of the software? Leaving aside all
the technical reasons why this might be a bad idea, from a data protection
and security viewpoint is it right to allow detailed access to the data to peo-
ple who would not normally see it?

It is also useful to consider the effect on society when reviewing risks. In
a financial services project, I looked at assessing the impact of problems with
a group. We scored impact from 1 to 5, with 5 as highest impact. We set a
“typical story” for each score to help us score the risks we were assessing,
rather as in Table 3.3.

3.4.3.4 Key Performance Results

Key performance results measure financial results such as profit, return on
investment, and turnover, but also measure nonfinancial results such as
market share. The customer will want to know the efficiency and effective-
ness of the IT systems in their contribution to the overall key performance

44 Roles and Quality: Customers

measures. The bottom line question is “Was it worth investing in the soft-
ware—did we get a return on investment?” We will look in Chapter 4 at
how the manager can use measures in the project that tie into the cus-
tomer’s key performance measures; the customer needs to ensure that the
manager knows what these are.

3.5 Communication between the customers and other
groups

We will see in Chapters 8 to 12 that customers are involved in the whole
life span of a piece of software, from its conception, through the software
development life cycle (SDLC), during delivery, and postdelivery until
decommissioning. We will see that some of the SDLC models encourage
customer involvement and other models do not. The advantage of having
little involvement to us as customers is that we order the software, and
while it is being built and delivered we get on with other things. Superfi-
cially, it looks as though we are being efficient with our time. The disadvan-
tage is that during the period of the SDLC, things will change; our problems
as customers will change and the solutions we require will change. This
means that by the time we get the software, it is out of date. The disadvan-
tage of SDLCs with high customer involvement is that it is time-consuming
for the customer, who also has “business as usual” to deal with as well as
the SDLC. The advantage is that it is far more likely that a useful software
solution will be delivered.

So we will see in the later chapters that communication between the
customers and the other groups is needed throughout the whole life span
and that each of the groups must communicate with all the other groups.
The customer needs to exchange information with all the other groups
(Figure 3.1).

In order to decide whether it is worth acquiring new software, for
example, the customer needs to listen to the manager’s view on cost effec-
tiveness, the builder’s knowledge of technical constraints, the measurer’s

3.5 Communication between the customers and other groups 45

Table 3.3 Assessing Impact of Risks—Effect on Society Scores High

Impact Score Description Story

5 External publicity—
external customers affected

Chief operating officer appears on a consumer affairs
program to explain why the systems have gone wrong.

4 External awareness—
external customers affected

Letters and calls of complaint, dealt with individually.

3 Internal publicity—
internal customers affected

There are system failures; the call-center staff can
work around these, but they are disruptive.

2 Internal awareness—
internal customers affected

There are some minor system failures which the call-
center staff can work round easily

1 No publicity—
no customers affected

IT department affected by failures but can prevent the
call-center staff from being affected.

experiences of likelihood of problems, and the supporter’s view of impact on
the existing systems. A risk assessment would be done at this point, and, in
particular, customers need to assess the impact on the organization or busi-
ness if the change is not made, if it goes wrong, or if it is late or over budget.
In parallel with the risk assessment, therefore, the customers start to set
constraints for cost and time. While doing this, they should be listening to
the builders, supporters, and measurers’ views about the technical risks and
the technical constraints on what is being proposed. An SDLC may be
appropriate, but it may not be the best solution. Whatever is decided on, a
contract for the work needs to be agreed on. We will see in Chapter 9 how
to reach agreement on aims, objectives, targets, and indicators, as well as
measurable acceptance criteria. There may be constraints on the accuracy
and precision of estimates, and customers should discuss this with the other
groups, and expect that estimates may have a broad range. At this stage,
particularly in the planning for an SDLC, there will be many things that are
unknown, so we would expect to see accurate ranges in the estimates,
rather than precision:

◗ “I can complete this in the next 5 to 50 days” is likely to be an accu-
rate estimate, but it is not a precise one.

◗ “I can complete this on October 23 at 2:57 p.m.” is a very precise esti-
mate, but it may not be accurate.

It is also possible that the estimate makes us realize that it is not possible
to build and test what the customer wants within time and budget con-
straints; something simpler must be agreed on. The customer must encour-
age honest estimation. Too often, I have seen the IT team attempting to
produce an estimate that is acceptable rather than one that is realistic. If
experience of the customer’s reactions in the past has taught them that they
will get praised for a low estimate and criticized for a high one, it is human
nature to produce an “acceptable” estimate now, and try to avoid the conse-
quences later. Customers should particularly watch for the situation in
which the people making the estimate are not going to be involved in the
work; their job is to get the contract, and they may not be focused on the
effect of their estimate on the project team. Also beware of fixing the overall
estimate too early; once changes are made to the requirements, whether
these arise from change in the real world, correction of budget, or correction

46 Roles and Quality: Customers

Measurers

SupportersBuilders

The software project
and the software product

Managers

Customers

Figure 3.1 Communication between the groups.

of mistakes, this may mean changes to the estimates. Customers will need to
negotiate to deal with changes to requirements, whether these have been
“set” and therefore require a contract renegotiation, or have been planned
for. We know there will be change; we just cannot always anticipate what
that change will be. Table 3.4 lists the information that customers have that
the other groups need.

Customers need information from other groups in order to understand
the constraints on delivering their wish list. Table 3.5 lists the information
that customers need from the other groups.

3.6 Summary of the group
Without customers, there would be no software; their involvement and
views are critical to the other groups’ success. Customers have a vital contri-
bution to make throughout the life of a software system. Their quality view-
point, of the system being fit for its purpose, and their world, with its
changing risks and demands, must influence how the other groups work.
managers, builders, measurers, and supporters only exist to enable the cus-
tomers to achieve the organization’s goals.

3.6 Summary of the group 47

Table 3.4 Information That Customers Have That Others Need

Before the SDLC starts
and updated
throughout the SDLC

Which problems/ideas are important to the customer/organization and why

Changes in priority, new ideas, and problems

Whether any of the proposed solutions/prototypes are suitable

Reasons why they are/are not suitable

What the customer’s own customers need from them

Business constraints (time, cost, process, legal) and why these are constraints risks
(impacts) to the organization if we fail or do not deliver the solution

Whether there are existing workarounds for this problem

Why this is important; the difference it will make

How we will measure success postdelivery

How we will accept the software (acceptance criteria)

What “fit for purpose” means in this case

During the SDLC An initial set of detailed requirements

User-acceptance testing—knowledge, business, budget, and time constraints

Changes, corrections, and refinements to requirements and acceptance criteria

Improvement suggestions for software, training, and documentation

Design of any new business processes

Delivery plan constraints and postdelivery SLA constraints

Revisions to the plans

Agreement on readiness to deliver

Authorization that the acceptance test has passed or failed

At delivery Confirmation that delivery is complete and accepted

Ready to start “real work” signal

Postdelivery Evaluation of the software in use; is it fit for its purpose?

Evaluation of the processes used; how could they be improved?

48 Roles and Quality: Customers

Table 3.5 Information That Customers Need from Others

Managers Possible solutions to problems/ideas

Cost and resource constraints and why these are constraints

Value quality viewpoint

Whether proposed aims/indicators are understood

Proposed objectives/targets for the solution

Whether proposed acceptance criteria are SMART (specific, measurable, achievable, realistic,
and time-bound)

Nontechnical risks (likelihood of this going wrong) and nontechnical constraints such as
resources, time, budget, and availability of people

Precision and accuracy of estimates, when refined estimates will be possible

Builders Possible solutions to problems/ideas

Technical constraints and why these are constraints

Why this problem/idea (for example, for a technical problem) is important and its impact on
the customers

Manufacturing/product quality viewpoint

Whether proposed aims/indicators are understood

Proposed objectives/targets for the solution

Whether proposed acceptance criteria are SMART (specific, measurable, achievable, realistic,
and time-bound)

Technical risks (likelihood of this going wrong) and technical constraints

Precision and accuracy of estimates, when refined estimates will be possible

Supporters Possible solutions to problems/ideas

Technical constraints and why these are constraints

Why this problem/idea (for example, for a technical problem) is important and the impact on
the customers

Manufacturing/product quality viewpoint

Shared user quality viewpoint

Whether proposed aims/indicators are understood

Proposed objectives/targets for the solution

Whether proposed acceptance criteria are SMART (specific, measurable, achievable, realistic,
and time-bound)

Technical risks (likelihood of this going wrong) and technical constraints

Precision and accuracy of estimates, when refined estimates will be possible

Constraints on SLAs postdelivery

Scope of supporters’ operational acceptance testing

Measurers Possible solutions to problems/ideas

Technical constraints and why these are constraints

Why this problem/idea (for example, for a technical problem) is important and the impact on
the customers

Manufacturing/product quality viewpoint

Whether proposed aims/indicators are understood

Proposed objectives/targets for the solution

Whether proposed acceptance criteria are SMART (specific, measurable, achievable, realistic,
and time-bound)

Technical risks (likelihood of this going wrong) and technical constraints

Precision and accuracy of estimates, when refined estimates will be possible

Advice on acceptance testing

Advice on review processes

Assurance that QA and QC activities have taken place

Results of those activities

References

[1] IT Infrastructure Library, Best Practice for Service Support, Norwich, England:
Office of Government Commerce, 2002, p. 7.

[2] Team Technology, “Working Out Your Myers Briggs Type,”
http://www.teamtechnology.co.uk/tt/t-articl/mb-simpl.htm, October 2003.

[3] searchCRM.com (via http://www.whatis.com), “COTS, MOTS, GOTS, and
NOTS,” http://searchcrm.techtarget.com/sDefinition/0,,sid11_gci789218,00.
html, September 2003.

[4] British Quality Foundation, The Model in Practice 2, 2nd ed., London, England:
British Quality Foundation, 2002, p. 86.

[5] Smith, M., “Govern IT,” British Quality Foundation IT & T Group Meeting, London,
England, January 29, 2003.

[6] Software Engineering Institute, “Capability Maturity Model,” http://www.
sei.cmu.edu, July 2003.

[7] British Standards Institute, PD0026:2003, Software and Systems Quality
Framework—A Guide to the Use of ISO/IEC and Other Standards for Understanding
Quality in Software and Systems, London, England: British Standards Institute,
May 2003.

[8] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley,
1993.

[9] International Standards Organization, ISO 9000:1994 and ISO 9000:2000
Quality Systems 9000.

[10] Gilb, T., “Competitive Engineering,” http://www.result-planning.com/,
September 2003 (Web site now replaced by http://www.gilb.com).

[11] Watkins, J., “How to Set Up and Operate a Usability Laboratory,” EuroSTAR
Conference, Edinburgh, Scotland, 2002.

Selected bibliography

Buttrick, B., “Effective Project Sponsorship—Turning the Vision into the Reality
of Success,” Project Manager Today, September–October 2003, pp. 12–13.

Information Systems Audit and Control Association, http://www.isaca.org.

IT Governance Institute, http://www.itgi.org/ITGI.

Kaplan, R. S., and D. P. Norton, The Balanced Scorecard, Boston, MA: Harvard
Business School Press, 1996.

The National Strategy to Secure Cyberspace, http://www.whitehouse.
gov/pcipb/.

Obeng, E., “Helping Stakeholders to Understand Requirements,” Project Manager
Today, July 2003, pp. 14–17.

3.6 Summary of the group 49

.

Roles and Quality: Managers

In this chapter I shall:

◗ Introduce the members of the managers’ group, their roles,
and activities;

◗ Introduce their quality viewpoint;

◗ Provide a framework for the managers’ activities within the
EFQM Excellence Model;

◗ Identify information flows between the managers and the
other groups.

The tester challenges the project manager: “If we go live at the

planned date, I predict there will be problems! I want to test the

software more!” The project manager replies to the tester: “No!

We go live when we planned to!”

4.1 Introducing the managers
In Chapter 3, we learned that customers want to acquire soft-
ware to help them carry out their tasks. They may have a
limited budget, among other constraints. They will want the
software delivered as soon as possible so that they can start
using it. They will need to be supported during the acquisition
and use of the software.

The people who will provide the software and the sup-
port for its use are technical experts: builders, measurers, and
supporters. They will focus on the details of the technical
solution.

In contrast, the manager’s focus is on nontechnical aspects
of the work, such as budget control, planning, and reporting.
Too often, the other groups see managers as the villains of
the software development life cycle (SDLC). For example, our
tester above will be angry that the project manager will not

51

4
Contents

4.1 Introducing the managers

4.2 Who could be in this
group?

4.3 Quality viewpoint

4.4 Quality framework using
the EFQM Excellence Model

4.5 Communication between
the managers and other
groups

4.6 Summary of the group

C H A P T E R

delay the project to allow more testing. She may say, “Surely, the manager
can see there will be problems. And, anyway, what has the project manager
contributed apart from calling meetings that no one wants to go to?” But
the tester may be wrong if the overall organizational imperatives are to
deliver early. In this chapter, I will examine what managers do, and their
value-based view of quality and why it is useful.

Managers, if they are doing their jobs well, exist to enable other people
to do what is required for the organization and the customer. They are
needed because IT projects and IT support are often complex, not just tech-
nically but organizationally, involving large numbers of people, a restricted
budget, and a tight timescale. The technical groups (builders, measurers,
and supporters) are very focused on their own activities and, naturally,
value them over other people’s work. They lose sight of the big pic-
ture, as well as the budget and time constraints. There will be conflicts
between groups and individuals, and competition for scarce resources.
Risks will be perceived differently by different groups, and, as we are find-
ing in Chapters 2 to 7, each group holds a radically different view of
quality.

So what do managers contribute? They keep everyone aligned to the
goals for the customer while keeping within the time and budget con-
straints. They will negotiate between parties to arrange sharing of scarce
resources, make decisions about how to proceed in the face of risks, listen to
complaints from all directions, and soothe, calm, coach, and motivate the
team. Yes, managers make a contribution. A good manager will hold the
team together, through thick and thin, to achieve the goal.

4.2 Who could be in this group?
Managers include all the people who control the planning and manage-
ment of software delivery and support. This will include specialist proj-
ect managers and team leaders, as well people who manage departments
or teams that provide ongoing services and support (see IT Managers in
Chapter 2, Table 2.1). For a particular project, there may be a hierarchy of
control, starting from a project/program board. Reporting to the project
board might be a program manager, one or more project managers and,
working under them, project leaders and team leaders. There may also be a
project office providing project management support. These people are
stakeholders for quality because they are responsible for the time and
budget control of the project, and for meeting planned delivery require-
ments. These are important aspects of quality: the customer needs a product
they can afford.

Of course, we all need to manage our own work. We need to plan what
we do, and manage it so, in that respect, we are all managers—it is the size
of what we manage that changes. For many of us, making the move from
managing our own time to managing our team’s time is a very difficult tran-
sition and we will look at that in this chapter.

52 Roles and Quality: Managers

4.3 Quality viewpoint
Managers tend to focus on two key measures: time and money. These two
constraints on any work are very important. If the customer spends beyond
their budget or if the software arrives too late to be of use, however techni-
cally excellent it is, we have not delivered a quality solution to the cus-
tomer’s problem. Therefore, this group favors the value-based definition of
quality.

As we saw in Chapter 1, the value-based definition is focused on things
that impact on the running of the business as a whole. Software quality is
determined by a trade-off between time, effort, and cost aspects. Managers
will measure the cost–benefit ratio and return on investment (ROI). They
will also plan and manage within a budget for time, effort, and cost. Because
of their need to contain the work within a set budget, they may also support
one aspect of the manufacturing-based views of quality, that is, delivery to
an agreed specification. They will see any change to the agreed specification
as “scope slip” and will want to avoid that. This is very important, particu-
larly for teams delivering products or services within a fixed-price contract
or to an immovable deadline. If a change in scope means additional work,
the supplying organization may take a loss. In the long term, this could
mean the collapse of the organization. Managers will support processes and
activities that provide an immediate and a long-term ROI: a win now for the
team and the customer, and long-term customer satisfaction leading to
repeat business.

Although this group may hold a view of quality which focuses on value
for money, they also hold transcendent quality views. We saw in Chapter 1
that we all “know quality when we see it”; our knowledge is based on our
experiences, taste, affections, loyalties, and emotions. For managers, this
may mean they have a strongly held view about excellence based on their
previous experience; this will vary depending on whether their premanage-
ment experience was as a customer, a builder, a measurer, or a supporter.
The “taken for granted” assumptions of managers may align particularly
with that one group. Managers find themselves wrestling with the quality
views of all the groups in conflict during negotiations. Unfortunately, as dif-
ferent people will have different assumptions, a manager, when negotiating,
needs to be particularly careful not to assume that one group is correct and
the others are wrong.

A common cliché about managers is that they will deliver anything pro-
vided they meet the budget and timescale, and they are not interested in
quality, just in meeting the plan. When we examine behavior patterns, we
can see that the managers’ drive to meet the plan is essential. In a particular
training course that I present, groups carry out a series of six risk assessment
tasks within a set time. What I have noticed is that when a group of project
managers carry out these tasks, they divide their time evenly between the
six tasks. However, a group of testers or developers given the same tasks and
timescale may only complete the first one or two tasks, although they will
have discussed and documented the risks in much more detail. The testers

4.3 Quality viewpoint 53

and developers did not see “missing the deadline” as a risk in itself, and, in
fact, asked for more time; they “overengineered” their tasks. The project
managers factored in “not meeting tight deadline” as one of the risks they
needed to manage and produced a much sketchier, but adequate, solution
to the tasks. This is an object lesson in why we need managers. As we will
see in Chapters 5 and 6, when left to themselves, builders and measurers
may pursue excellence at the expense of all other considerations. When
managers negotiate with the other groups, they need to express what they
require in a way that focuses on the other groups’ quality views. We can see
in Table 4.1 how a project manager could use the other groups’ quality
viewpoints to start putting across ideas about cost–benefit ratio and value.

Managers of IT projects are often recruited from the builders’ group, but
may also come from the customers, measurers, or supporters’ groups. The
group managers come from will tend to bias their quality viewpoint, but one
of the jobs of the manager is to negotiate a balance between the viewpoints
that is suitable for a particular situation.

4.4 Quality framework using the EFQM Excellence
Model

4.4.1 The EFQM Excellence Model and the manager

There are qualifications, standards and methodologies for project manage-
ment and for management processes in general, but I am not going to
describe those here. I am not going to recommend a particular project man-
agement methodology. What I want to do is pick out a few important aspects
of quality that are affected by management choices, and discuss these in the
context of the EFQM Excellence Model we looked at in Chapter 1. We will

54 Roles and Quality: Managers

Table 4.1 A Project Manager Considering Other Viewpoints for Quality Impacts

Group and Quality View Possible Routes In Example Questions

Customer

User quality
view

Customer’s performance
measures and indicators
of success

What are the financial and nonfinancial goals for you on
this project?

What strategic benefits do you need to realize from this
project?

Supporter

User and product
quality view

Supporters’ service-level
measures

What SLAs do you have with the business?

What support budget do you have for supporting the
products from this project?

Builder

Product and
manufacturing
quality view

Builder’s knowledge of
technical solutions

The customer needs to increase time to market for new
products without compromising the excellence of service
offered; what technical trade-offs do we need to make to
support this? Do you know a technique or tool that
would help with this?

Measurer

Product and
manufacturing
quality view

Measurer’s knowledge of
quality processes

The customer needs to decrease time to market for new
products without compromising the excellence of service
offered; what quality processes do we need to apply to
check the proposed solution? Given the limited budget,
what are your recommendations for focusing testing and
inspection processes?

see that we each need to tailor our methods in response to aspects of quality,
culture, standards, risks, and expectations that affect our circumstances.

Whichever framework managers choose to follow, it should include
some quality-management activities. The quality-management system for
an organization provides a framework of policies, standards, processes, and
procedures. Depending on the organization, these may be prescriptive and
mandatory, perhaps because of external requirements, or they might be a
framework of possible standards from which a manager chooses a suitable
process for a particular project. This latter approach allows a manager to tai-
lor the approach for a project to meet particular risks and customer expecta-
tions. I have seen it used successfully in a number of organizations. We will
see an example in Chapter 6, where I will look at auditing. This selection of
an appropriate process and controls is a quality-planning activity and should
take place as part of project planning. The plan should include not just the
schedule for the project, but also an assessment of risks and constraints, a
statement of the aims and objectives for the project, and a series of planning
documents describing the quality activities for the project (Figure 4.1).

This planning process will start during start-up (Chapter 9) and be
refined at the start of the SDLC. However, it will continue during the
SDLC and delivery (Chapters 10 and 11). Circumstances, risks, and what is
important to the customer will change continuously and the management
framework must reflect the need for managing constant change. Of course,
managers working to fixed-price contracts will have a difficult time with
this; they will either need to confine change to what can be achieved within
the fixed price, agree with the customer that the fixed price is for a small,
stable delivery, or renegotiate the contract. Some SDLC models, as we will
see in Chapter 10, provide for managing change better than others do.

Quality planning sets the processes for this specific project for
quality assurance and quality-control assessment and measurement activi-
ties, as well as setting the methods to be used for building the products.
Quality assurance (QA) activities check that the processes are suitable and
are being followed. Quality control (QC) checks the products for defects

4.4 Quality framework using the EFQM Excellence Model 55

Test
strategy

Test
plans

Audit
plan

Quality
plan

Risk
assessment

Aims and
objectives

This project

MethodsStandardsPolicies

Company standards

Planning for quality

Figure 4.1 Planning for quality.

and improvements. These activities may provide feedback suggestions for
improving processes and products. Figure 4.2 is an adaptation for planning
that I have made of Deming’s Plan–Do–Review–Improve cycle [1]. We will
examine that again in Chapter 12.

If this evaluation is left until after delivery, it will be too late to learn and
improve the product we are delivering, so it makes sense to build evaluation
into the process steps. One of the key points about an evolutionary delivery,
for example, is that it is accomplished in many small increments with a feed-
back loop in each increment, allowing continuous improvement and learn-
ing (see Chapter 10) [2].

In the EFQM Excellence Model [3], information systems come under the
heading “partnerships and resources”—information and information sys-
tems are resources that enable the organization to achieve its strategic goals.
If we look at an organizational measurement system, such as the Balanced
Scorecard, information systems are seen as a critically important tool to
enable employees to work effectively, so that they may contribute to the
goals for the organization. We will look at how managers use the Balanced
Scorecard later in this chapter.

Managers need to be aware of the customer’s strategy and quality frame-
work, including any measurements and targets, in order to deliver services
and products that help the customers meet their organizations’ quality tar-
gets. The emphasis will change, and this will change what constitutes quality
for the organization. The organization may be driven by a need to meet a
particular external standard, to keep within legislative or regulatory bounds,
to increase market share, to reduce time to market, or to be a world leader
for excellence of service. The manager’s ability to recognize and adapt to the
customer’s quality framework is a critical success factor in the effectiveness
of their relationship. The manager should refer to the customer’s goals when
setting team and project goals, translating these into personal objectives and
targets for themselves, and the builders, measurers, and supporters. This
quality framework will drive what the customer needs from the software.

In Chapter 1, we looked at the EFQM Excellence Model and how it is
divided into nine parts; five enabling criteria and four criteria for measuring
results. In Section 4.4.2 we will look at how the EFQM Excellence Model

56 Roles and Quality: Managers

Identify defects in products

Quality
evaluation

Quality
control

Quality
assurance

Quality
planning

Identify defects in process

Identify improvements in process and products
Quality management activities

Figure 4.2 A quality-management planning cycle.

enablers could be interpreted for managers, and in Section 4.4.3 we will
look at manager results. Remember that this model is based on the Funda-
mental Concepts of Excellence we discussed in Chapter 1, and that equiva-
lent models such as the Baldrige model are available.

4.4.2 EFQM Excellence Model enablers for the managers

4.4.2.1 Leadership

Managers provide leadership for their teams. In order to provide leadership,
they need leadership from their own managers and the board. The manager
will follow the lead given by the organization in matters of quality view-
point and, hence, on whether value, fitness for purpose, manufacturing
defects, or product attributes will be the leading quality viewpoint. Manag-
ers may also be torn between conflicting leads from the customer organiza-
tion and more senior management in their own organization.

The manager is often the main conduit between the customer and the
rest of the team, relaying the customer’s aims and objectives. Through lead-
ership, the effective manager communicates these to the team in a way that
creates a common vision and unity of purpose. The CMMI framework
that we discussed in Chapter 1 includes a specific management practice to
“Establish a Shared Vision” [4] for the team. A colleague commented to me:

This vital “big picture” increases commitment and enables all members of

the team to think beyond their own specialism and use alignment to the cus-

tomer’s objectives to validate their activities. Asking a selection of team

members to describe the objectives of one project resulted in a variety of

incorrect answers. The reason was that the managers believed in communi-

cating the minimum information that they thought the practitioners

needed to carry out their tasks. Unsurprisingly, commitment in the team

was low but it was also evident that a lot of activity in the team did not align

with the project’s objectives, and would have been challenged if the team

were aware of the project’s purpose.

The ability of a manager to inspire and motivate the team through
leadership cannot be underestimated. The behavior of someone the team
accepts as a leader is characterized by honesty, trustworthiness, the ability to
keep a confidence, respect for others, and enthusiasm for achieving the aims
and objectives. If the leader does not believe in the cause, no one else will. I
remember visiting one project with some colleagues to provide consultancy.
The project had been running for over a year and the team was tackling
some extremely difficult but interesting problems. When we said, “It’s diffi-
cult but we can do it—and it’ll be fun!” a team member said to me that none
of the management team leading the project to that point had indicated that
achieving the project’s aims was anything but difficult and unpleasant. If
the managers were not positive, how could the team be? When the new
management took a more robust attitude to the team’s ability to solve

4.4 Quality framework using the EFQM Excellence Model 57

problems, the project started to succeed. Of course, if managers lie about the
difficulty, they will quickly lose their team’s motivation, but part of a lead-
er’s role is to understand what is necessary and what is possible.

4.4.2.2 Policy and Strategy

Managers set policy and strategy for their own areas based on their organi-
zation’s policy and strategy. This will include policy and strategy for QA and
QC, but we also need to define how the build and support activities are
done. In Chapters 5, 6, and 7, we will see some aspects of policy and strategy
for builders, measurers, and supporters; what managers need to consider is
how the customer policy and strategy are reflected in the strategy for the
project and, hence, for the all the work done.

Policies are brief statements that are the rules for how an organization
conducts itself. Managers also need policies for management activities; these
may be documented or unwritten (“We always do it this way.”). The deci-
sion about whether or not to document policy depends on the size of the
organization. (In this case, for example, does a particular project require its
own policy document, or does everyone in the project “know the rules”? Is
the policy statement at the organization level sufficient?) Policy statements
for management might include topics such as:

◗ Authorization, for example, “documents may not be released to cus-
tomers without an authorization sign off by a team leader.”

◗ Escalation, for example, “the project manager will always be informed
of risks, issues and defects identified with an impact level of 4 or above.”

◗ Reporting, for example, “test team leaders will report progress against
plans to the test manager daily at 8:30 a.m.”

Strategies for managing show how the policies will be applied and what
approach will be taken in a particular case. One mistake I have seen inexpe-
rienced managers make is to believe that the project plan is just a schedule.
In fact, the schedule is just part of what is needed to plan and control a proj-
ect. Appendix B shows some of the documents we might need, including a
quality plan, a configuration management plan, and a risk management
plan.

On a small piece of work, these might be used as a checklist of things to
think about, or a single document might be written that combines them all.
In that case, keep it small—the size of the plan is not an indicator of its qual-
ity. One very good aspect of tailoring is to allow the manager to combine
and abbreviate documents where this is appropriate.

On a major project, we might need a whole set of documents, each of
which describes some aspect of the overall strategy for the work. Each docu-
ment may have a different author, and part of the manager’s job, with the
team, is to make sure that the documents do make up a document family,
do complement rather than contradict each other, there are no gaps, and
the overlaps are minimized. Part of the reason for defining a document

58 Roles and Quality: Managers

family is to allow child documents to just document differences and addi-
tional information. A common error in large projects is to become over-
whelmed with paperwork and electronic documents. Keep repetition across
documents to a minimum, as it saves reading and update time.

If you are following a published project management method, you will
find that there will be a set of documents defined for your use. It is worth
looking at the rules in the method to see whether it is allowable to tailor,
combine, and minimize documents.

4.4.2.3 People

Managers spend much of their time dealing with people. They are often the
hub of communication between the customer and the other groups, and
they also deal with communications up and down any hierarchies. Manag-
ers need to be good communicators, and this means that they need to:

◗ Be good at receiving information and showing they have received it.
They must read and listen well, and provide feedback.

◗ Be good at giving information and making sure people have received it.
They must speak and write clearly and elicit feedback.

◗ Understand other people and treat them fairly. They must persuade,
negotiate, empathize, and know when to compromise and when to be
firm, treating everyone fairly and taking into account their different
communication needs and quality viewpoints.

We have seen in Chapter 3 that one of reasons customers and builders
sometimes do not get on is because of a difference in communication styles,
and this is true for people in general. In Chapters 8 to 12, as we look at the
stages of work that need to be managed, I will mention some techniques
that help us improve communication.

Managers have a difficult mix of skills to acquire, and not all manag-
ers have all these skills (which of us has?). One trick I find useful is
to use a “personal improvement cycle.” As we saw in Section 4.4.1 and
will see in Chapter 12 when we look at evaluating software development
processes, we use a plan–do–review–improve cycle. On a personal level it
simply means reflecting on how we manage ourselves during communica-
tion with others and what we could do to improve the communication, not
just for ourselves, but also for the other people. Particular points to consider
are cultural differences, personality differences, and communication styles,
particularly when giving and receiving criticism [5–7].

I have noticed that one key factor in the success of a manager is consis-
tency of behavior; if people know they can trust you, they work with you. I
remember one project manager who was very hard on everyone, but this
was less of a problem for us “down the hierarchy” when we realized that he
gave the same grief “up the hierarchy” to the project board and executives.

Another key factor is not being remote. Another very good project man-
ager helped during a crisis weekend when technical staff were working

4.4 Quality framework using the EFQM Excellence Model 59

extra hours on some of the menial and housekeeping tasks to free time for
the team. This effort was much appreciated; he was seen to be in and work-
ing when the team was doing overtime, and the work he was doing at that
point contributed directly to removing some of their burden.

4.4.2.4 Partnerships and Resources

I have worked in situations where the customer chose to bring in specialists
from a variety of organizations. For example, on one project, managers
came from the customer organization and were also brought in from a spe-
cialist project-management consultancy; the builders and measurers came
from third-party organizations as well as from the in-house IT group; and
the supporters were a separate group from the IT group, reporting through a
different management structure, although they were in-house. The project
manager spent much time negotiating between these parties. All were part-
ners in the project, and were controlling different resources that were
required if the project was to be successful.

An IT manager has pointed out to me that one key skill that a good man-
ager has is political astuteness:

Managers often lead a virtual team that is united only by a shared task.

Whereas team leaders manage a group of practitioners in their own disci-

pline (such as builders or measurers), senior managers lead a matrix of spe-

cialists drawn from various functional areas (or companies), whose work

they do not understand in depth. These managers cannot depend on tradi-

tional sources of power such as the line hierarchy or resource ownership;

instead, they deploy a range of influencing tactics. They operate in two

worlds simultaneously: the rational world of budgets and schedules and the

shadowy world of organizational politics, which the specialists normally

don’t see.

Some new managers do all the things that I have recommended else-
where in this chapter and still find unexpected opponents blocking or dis-
rupting their projects. The same IT manager continued:

The experienced manager who spends all day in meetings and every even-

ing having dinner with key project stakeholders may be a joke in the team

but always gets the best people and delivers the right product.

These organizational partnerships through influence are critical to suc-
cess, and the ability to nourish them makes the difference between those of
us who pursue technical careers and those of us who follow organizational
careers. The ability to influence is not a sign of dishonesty, despite the suspi-
cion of some IT technical staff; it is a way of communicating with people
who are stakeholders and have different communication styles (see Appen-
dix A for communication styles).

60 Roles and Quality: Managers

4.4.2.5 Processes

The processes used by managers include skills such as planning, estimating
and reporting, for which there are various project management methods
and tools available. What I will do is to pick out some aspects of the mana-
ger’s processes that particularly affect teamwork and quality.

Learning to be a manager. One aspect of IT management that I have
observed over the years is that people are given their first management
responsibilities without having the role explained to them or their existing
work removed; it is as though we believe that management activities are
intuitive and take no time. In one typical instance, one of the development
team, let us call him Jeff Teamleader, was asked to team lead part way
through a major project. A few weeks later when I visited the project, Jeff
came to me in a state of some distress; he was unable to carry out any of his
work and was falling further and further behind. He could not understand
what had happened.

When we talked it through, it turned out that until Jeff had been given
the team leader role, he had a technically complex but organizationally sim-
ple role; he had never needed a to-do list or a plan of action. Now, as team
leader, he had to plan and coordinate what the team as a whole was doing,
produce some management deliverables such as estimates and reports, go to
meetings with the project manager, and negotiate and deal with conflict
inside the team and with other teams. Also, he still had his own technical
work to do. He had simply become overwhelmed and unable to do anything
as a consequence.

What was required? He needed a simple personal plan and a simple
team plan, that would enable him with his team to make the big delivery
in a few weeks time, by breaking it down into chunks. Every day, he
needed to know what he and the team had to do that day, in order to
deliver what was needed in the current week, so that the longer plan
would work.

First, we sorted out his personal plan. We made a list of everything that
he had been asked to do or thought he had to do, including all the nontech-
nical and nonproject tasks and building a plan for the team. We scored each
item on the to-do list with an urgency, importance and size score. We
quickly identified some things that he did not have to do. Then we divided
up the to-do list as in Table 4.2, by deadline, importance, and urgency, put-
ting together a day-by-day plan for the coming week, including a 5-minute
progress review at the end of each day and a 10-minute session to plan the
following week at the end of Friday.

Once Jeff had this simple plan for next few days, he could start to plan
the team’s work in the same way, and sort which parts of his own technical
role to keep and which to delegate. It was much clearer to him and to them
what really needed doing day to day. He calmed down; he could get a grip
on the situation. Why hadn’t his manager, Liz, explained this to him as he
took over? I found two reasons when I talked to her:

4.4 Quality framework using the EFQM Excellence Model 61

◗ Liz was dealing with larger and more complex problems, using project
management tools and methods that would not be appropriate. Her
attitude was that “Jeff Teamleader doesn’t need that yet.”

◗ Liz now took simple planning for granted and had forgotten that she
too had struggled with her first team leader role. She said, “Well, I’m
disappointed if he didn’t realize that he needed to plan his time; I’d
have thought it was obvious that he needed to.…”

The problem that Jeff Teamleader then had was that his plan was dis-
rupted by other people interrupting him and the team with questions and
other meetings. A plan will always change; we plan partly to have an idea of
what we need to do when, but also so that when things change we can deal
with the change more easily. Ideas I have found useful are:

◗ Knowing your highest priorities: the things that you cannot compro-
mise if the team is to meet its goal. That means you know which tasks
you can delay or even cancel.

◗ Setting aside time that cannot be interrupted for particular individuals
and for the team. This is time when people concentrate on the most
important and most difficult tasks. You can achieve this by making
appointments with yourself.

◗ Not making the plan too perfect; it just needs to be good enough to
allow you to understand progress and changes.

62 Roles and Quality: Managers

Table 4.2 Simple Personal or Team Plan Layout

This week Morning Afternoon

Monday

Tuesday

Wednesday

Thursday

Friday

Next week start:

Next week complete:

This month
complete:

Goal: by (date) have
completed
(deliverable)

To-do list

Item Importance Urgency/deadline Size

Planning and estimating for quality activities. As part of planning, we need
estimates of how long things will take to do. Estimates are really just guesses
with more or less certainty behind them. As we saw in Chapter 3, the cus-
tomers need to understand how precise and accurate our estimates are, so it
is important to provide them as a range of times, costs, and resource usage,
becoming more precise as we gain certainty and understanding. The team-
work aspects of estimating are:

◗ Listening to your team—they know how long different tasks will take
and what resources are needed

◗ Listening to your customer and manager—what constraints are there
that affect the estimate? For example, if the overall budget cannot
exceed a certain amount, then your estimation task is to show what can
be delivered for that price.

◗ Explaining to the customer the basis for the estimates—the assump-
tions made, the gaps, and the precision and accuracy of the estimates

There is a tendency to underestimate how long QA and QC tasks take,
and to forget to estimate for changes and rework following the QA or QC.
Table 4.3 suggests some tasks that you may need to include in your esti-
mates, and to get the details, as a manager you would need to consult your

4.4 Quality framework using the EFQM Excellence Model 63

Table 4.3 QA and QC Tasks to Include in Plans and Estimates

Drivers for percentage
of QA/QC activities to
cost of project

Aims and objectives for the project/business, risks to be contained, constraints, how
important are QA and QC activities for this project?

All the deliverables for the project, their importance and risk associated with faults,
what QA/QC does each need?

Acceptance criteria for the project as a whole, Acceptance criteria for each
deliverable, which QA/QC activities can measure against the acceptance criteria, and
completion criteria for those activities

QA activities—audit
and process review

Allow time, cost, resource usage for internal and external audit for:

Planning

Preparation (times number of auditors)

Audit activities, for example, meetings (times number of auditors and interviewees)

Follow-up and rework (time spent by auditor and auditee)

Evaluation and process improvement (may be at audit end, increment/phase end,
project end)

QC activities—
document review

Allow time, cost, resource usage for:

Planning, including selection of what is to be reviewed and the method to be used

Preparation (times number of reviewers)

Meeting (times number of reviewers)

Follow-up and rework

QC activities—testing Allow time, cost, resource usage for:

Planning, including deciding on the level and types of testing, setup of management
and control processes

Acquisition—include test design, data, environment, tools

Measurement—include execution, reporting

Follow-up—include rework and rerun of tests

QA and QC experts to understand which techniques would be useful for
your project. You also need to estimate what knowledge and resources you
will require, and when you will need them. Tools, environments, and spe-
cial skills may not be available to your team all the time, and there may be
conflict with other teams for use of these resources, or they may not be
available in your organization. In that case, you may need to estimate for
outsourcing or purchasing resources.

Monitoring, control, and measurement of progress. Once we have our plan
and our estimates, we need to track progress and make changes to the plan
as necessary. If, like Jeff Teamleader, our team’s work is contributing to a
part of the overall plan, we need to be careful how we manage changes, as
slippage in our work may have an effect on other people’s work; there are
dependencies between the tasks. In a large project, the overall project
schedule may be controlled on a schedule of activities and tasks which
shows these dependencies on a PERT (program evaluation review tech-
nique) chart. A PERT chart shows the length of time each task takes and the
dependencies between tasks; it is a useful planning technique. A simple
example is shown in Figure 4.3.

You can see from the figure that some tasks have to complete before oth-
ers can start, but some can take place in parallel. You will see on each task
the task name, the duration of the task, the earliest and latest days the task
could start and finish, and the slack on the task. The slack is the amount of
time you can let a task slip before it makes the subsequent, dependent tasks
slip. The path through the tasks with zero slack is the critical path, shown in
bold in the figure. If anything on this path is late, the whole project will be
late. If finishing on time is important, planning using a PERT chart to

64 Roles and Quality: Managers

0

Gather requirements

Tues

Tues

Tues

Tues

2 daysMon

Mon

Mon

Mon

Mon

Mon Mon

000

Design interfaces

1 dayWed

Wed Wed

Wed

1 day

1 day

Fri

Fri

Fri

Fri

2 days

2 days

4 days

Thurs

Thurs

Thurs

Thurs Thurs

Key:

Latest
finishSlack

Latest
start

Task name

Earliest
finish

DurationEarliest
start

Assumption:

Test products

Develop user guide

Develop training

Develop interfaces

3 days

Working days are Monday Friday
A one-day task is started at 9 a.m.
and completed at 5:30 p.m. on the same day.

−

Figure 4.3 Simple PERT chart.

understand dependencies and slack can be very useful. When monitoring,
small amounts of slippage within slack may not be important to us, but if
the slippage means that later tasks on the critical path will not complete on
time, it means we will not meet the deadline for the project. We might
report using on a red–amber–green traffic lights system:

◗ Green tasks are completing within schedule.

◗ Amber tasks are finishing within slack.

◗ Red tasks have used up slack.

We can then identify where we have time problems: “If it weren’t for
task X, we’d be a green project.” Different levels of management may
require different levels of detail in reporting. I have seen some organizations
concentrate on reporting on red and amber tasks only, whereas others only
report to the project board if the slip exceeds a certain amount. This can
cause problems with accumulated small slips. For example, if managers only
track slippage by monitoring individual slips above a certain number of
days, but there have been many small slips, they may not realize that the
real hidden slippage in the project may be much larger than documented.

There are other things to track apart from time used and time to com-
plete against estimated time. For example:

◗ Overall budget to date against spending to date.

◗ Number of deliverables completed against how many you expected to
complete by now.

◗ Cost to produce deliverables to date compared with what we expected
to spend on those deliverables.

◗ Quality of the deliverables against their acceptance criteria.

◗ Morale of the team (all groups—how happy are they now?).

◗ Delivery against targets.

◗ The organization’s objectives and the customers/supporters’ require-
ments and how these are changing; how the project is changing to
meet the changing requirements.

We will talk in Chapter 10 about changing requirements during the soft-
ware development life cycle, but here I want to discuss the use of a tracking
and reporting mechanism that is used at the organizational level and could
be adapted for an IT project: the Balanced Scorecard and its variants, some-
times referred to as the project dashboard, which we will look at below.
Another mechanism, Earned Value, is discussed in Appendix A.

4.4.3 EFQM Excellence Model results for the managers

4.4.3.1 Customer Results

The customer results for the manager to track are:

4.4 Quality framework using the EFQM Excellence Model 65

◗ Customer perception of the other groups. Managers should meet their
customers regularly, and as part of such meetings need to check how
the customer feels about things. I remember a salesman once saying
to me, “What do you think you deliver?” I came up with a number of
answers—completed audits and tests, reports, tested software, and so
on. He said, “No—what you are delivering is happiness. Is the cus-
tomer happy to see you? Are they pleased you are there?” We can
measure this right now, throughout our work, and we can adapt to
deal with any problems

◗ Customer performance results are also important; for example, do we
get repeat business or extended projects from the customer? Have we
a good reputation as a team and individually as managers? These
measures may not be apparent until too late if we have not worked on
customer perceptions during the project.

4.4.3.2 People Results

Here, we consider the measures we might apply to managers themselves.
Table 4.4 suggests some measures. The first of these are perceptions—how
the managers feel about themselves in relation to the other groups and their
work. The second group are the “harder” performance measures, staff turn-
over, for example.

4.4.3.3 Society Results

Managers have a role in ensuring that society as a whole is considered, in
line with corporate objectives. Table 4.5 shows some example results for
measurement. Quality here is not just the quality of the product itself, but
the quality of its effect on the organization and on society as a whole. Man-
agers will have a responsibility for ensuring that their own team’s work does
not breach standards in areas such as environmental management and
impact, organizational security, and corporate governance.

66 Roles and Quality: Managers

Table 4.4 People Results—Managers

Example of Possible Measures

Perceptions—surveys,
interviews, compliments,
and complaints

Has a motivational study provided positive feedback?

Are managers satisfied with their career paths, rewards?

Are the teams satisfied with their managers? Is the level of management and
control right for the individuals in the team?

Performance
indicators—internal to
managers group

Does the managers group match up with the required qualifications and
competencies? For example, do they have appropriate BCS qualifications [8]?

Are there particular signals of stress among the managers: excessive hours,
absenteeism, and sickness levels compared with other groups?

What is the level of staff turnover compared with other groups and do people
want to be recruited into this group? For example, if we advertise a team leader
role internally, do people apply?

4.4.3.4 Key Performance Results

It is important that the manager choose an appropriate set of measures for
monitoring and controlling the project. This may seem obvious, but often
we choose measures that are not appropriate—we make the mistake of
measuring what we have always measured, or what is easy to measure,
rather than what we need to know.

Within the organization as a whole, there will be a strategy with associ-
ated measures, and both commercial and nonprofit organizations are starting
to use Kaplan and Norton’s Balanced Scorecard [9–12]. This is a method to
balance different types of measure against each other. Examples might be:

◗ Long term versus short term;

◗ Financial versus nonfinancial;

◗ Leading and lagging indicators;

◗ Internal and external perspectives;

◗ Objective and subjective perspectives.

A simple example might be a balanced scorecard for a journey: We want
to get there as fast as possible, which will be expensive, but we also want to
travel as cheaply as possible, which may mean a slower journey to conserve
fuel. There is a trade-off or balance between speed and cost.

Kaplan and Norton’s scorecard typically looks something like Figure 4.4.
Financial, customer, internal, and learning measures are balanced against
each other, with balanced objectives and targets.

There are as many variations in scorecards as there are organizations
using them; [9–12] present several examples from real companies. What I
suggest is that if we know the goal and strategy for the organization, we can
build a balanced scorecard for measuring quality in an IT project by balanc-
ing the quality views against each other. Figure 4.5 shows an example.

The measures in this scorecard can:

4.4 Quality framework using the EFQM Excellence Model 67

Table 4.5 Society Results—How the Managers Relate to Society

Example of Possible Measures

Perceptions—external
to the group: surveys,
interviews, compliments,
and complaints

Are the managers seen by the organization and wider society as acting
ethically?

Do the managers ensure that the processes and systems act properly with
regard to health risks, safety, hazards, and the environment?

Performance indicators—internal
to managers group

Has the manager encouraged the team to work toward accolades, for
example, for paper- and energy-saving initiatives, in line with corporate
initiatives?

Have the managers supported the measurement group in checking
compliance with external authorities’ certification?

Has the manager ensured that the team’s work complies to standards
such as the ISO 14000 family (Environmental Management) and the ISO
17799 family (Security Management)?

◗ Reflect the organization’s strategic measures and ensure that those on
the team all understand those measures;

◗ Balance the conflict between the value, user, product, and manufactur-
ing views of quality;

◗ Be used continuously to report progress, not just against time and deliv-
erables, but against quality targets;

◗ Be kept on one page or screen so it is easy to take in and agree upon;

◗ Be backed up by other measures and detailed explanation if required
but does speak for itself.

4.5 Communication between the managers and other
groups

4.5.1 Managers and communication cycles

We will see in Chapters 8 to 12 that managers are involved in the whole life
span of a piece of software, from its conception, through the software
development life cycle (SDLC), during delivery, and postdelivery until
decommissioning.

Managers need to negotiate with others and also to control project prog-
ress. This can mean that the communication between managers and others
can be difficult. Suppose that Liz Manager is waiting for a progress report
from Jeff Teamleader. The report was due yesterday and she has heard
nothing. How should she approach Jeff? Maybe Liz is not good at confront-
ing people. She might be tempted to wait and see what happens. But as
manager, she needs to know why the report is late; there may be a problem
that she needs to resolve that Jeff is reluctant to tell her about. One manager
I worked for was quite unable to ask people for late reports. He would put a
notice on the project notice board: “Will all team leaders please ensure that
their reports are delivered on time; the following have not yet delivered this
week’s report.…” The end result of his being unable to speak to his team

68 Roles and Quality: Managers

Balanced scorecard: simple organization example

Financial measures
• Return on capital invested
• Profit

Internal process measures
• Process conformance
• Process efficiency

Customer measures
• Satisfaction survey
• Complaints
• Market share

Learning and innovation measures
• Number of new products to market
• Process improvements

Figure 4.4 Simplified typical balanced scorecard. (After: [9], p. 9.)

leaders directly to ask for their reports was that the team leaders, who did
not like the manager, did not understand the use of the reports, and who by
and large were more experienced, started to put more energy into their
“being late with the report” game. One particular old-timer said to me, “I
always write the report on time, but I’m not going to give it to him unless he
asks me himself; its an insult the way he puts those notices on the board
without speaking to me, when I sit right next to it.” I was too junior to ask
the manager for his thoughts, but my reading of his behavior was he was
frightened of the team leaders and so could not give or receive criticism suc-
cessfully. All he needed to do was go to the team leaders and ask for the
reports. I suspect that if he had done this once, they would have stopped the
game. During complicated interactions, we can only alter our own behavior,
and hope that if we behave well, others will be encouraged to behave well
[5–7, 13]. So, Liz Manager needs to ask Jeff Teamleader for his report, and
she needs to do that in a direct way. What affects Jeff’s response to the
request for the report is the manner in which it is made. Writers like Wag-
ner [7] who use transactional analysis to describe behavior say we are sev-
eral people at once—we have an internal dialogue that informs the dialogue
we have with the external world. We can choose to behave like adults and
treat others as adults, or we can behave like children or like parents. The ego
states are:

◗ Adult—deals in facts: “The report was due yesterday.”

◗ Nurturing parent—wants to help: “I see you are having problems with
the report.”

◗ Critical parent—tells people off: “Why are you always late with the
report?”

◗ Natural child—likes to play and have fun: “Let’s have lunch and think
about it afterwards!”

4.5 Communication between the managers and other groups 69

Value-based quality
• Return on investment actual versus projected
• Spend to date actual versus planned (time, money)
• Cost benefit

Balanced scorecard for quality

User-based quality
• Customer perception
• Percentage of tasks

completed using product

Improvements
• Suggested
• Implemented
• Worked

Manufacturing-based quality
• Number of defects in products
• of nonconformances

to process
Number

Product-based quality
• of acceptance criteria passed
• Attribute level achieved

Number

Figure 4.5 Quality balanced scorecard. (After: [9], p. 9.)

◗ Rebellious child—does the opposite of what others want: “I’m not
doing the report!”

◗ Compliant child—assumes the blame: “Oh, I’m hopeless. I’m late
again.”

Adult-to-adult transactions result in facts being communicated, but if
you come and speak to me as though you are my parent, and are critical
(“Why are you always late with the report?”), I may respond as a rebellious
child (“I’m not doing the stupid report. It’s a waste of time. You do it.”) This
is called a crossed communication; the unhelpful ego states feed off each
other and we build up to an argument. We could have had a more construc-
tive, uncrossed dialogue:

Adult: “Is the report ready?”
Adult: “No, but I will finish it this afternoon.”

The question is couched neutrally as a request for facts and so is
responded to with a neutral fact. Remember also that tone of voice and body
language will also speak volumes; if the questioner uses “adult” wording but
a “critical parent” tone of voice, she/he is still a “critical parent.”

Figure 4.6 shows how we can build up an expectation of poor communi-
cation with those around us; our anticipation of problems causes us to
communicate in a way that encourages a problematic response and it turns
into a vicious circle. We give out the wrong signals and we get the wrong
signals back.

4.5.2 The reporting process

One key process for all managers is the reporting process. Measurers gather
information about processes and products and the managers, including test
managers and quality managers, need to pass this on to other people in a
way that will be acceptable and understandable. Good information design is

70 Roles and Quality: Managers

Personal and
organizational
history

Repeating
communication
problems

Games and scripts
Rescuers, persecutors,
and victims
Codependent behavior

Child

Adult

Parent

Why do people not listen?
What goes wrong?

Poor communication

RCCC
NC

A

NP

CP

Figure 4.6 Cycles of poor communication—our audience and us. (After: [7].)

vital; it is easy to hide your message in your report so that it is ignored or
misinterpreted. However well you have designed your audit or test process,
however well you execute the process, if your reports are ignored, you may
as well have not bothered doing it. Reports are the managers’ deliverable to
all the other groups:

◗ They help us understand progress and priorities.

◗ They help in decision making and risk assessment (they should show
the bad news and good news!).

◗ They inform management, our colleagues, and our teams.

When deciding what to report, we need to examine the facts. First, do
we have any facts? Managers need to report measurable facts, interpretation
of those facts, and people’s perceptions, but should distinguish between
them. The measurers will provide the managers with data, which need to be
interpreted and reported, for example:

◗ “The audit found 23 critical deviations from the configuration-
management standard” is a fact.

◗ “The nature of the deviations increases the risk of failure in this project”
is an interpretation of the fact.

◗ “The project team are worried that the lack of a configuration man-
agement process means that they cannot know whether they have
completed the build” is a report of staff perception that comments on
both the fact and the interpretation.

All three provide important information which should be reported.
When deciding what to report, do not collect information for the sake of

it. One mistake many people make is reporting either on what has always
been reported without questioning why, or only reporting on information
that is easy to collect. Also, be prepared to report bad news as well as good
news. In my experience, people want to hear the bad news; what they do
not want is to get it when it is too late and without any ideas for improving
the situation. Table 4.6 gives some ideas for consideration when deciding on
measurement reporting.

4.5 Communication between the managers and other groups 71

Table 4.6 Planning Reporting—Questions

Who are our audience?
Who is interested?

Customers, managers, builders, supporters, other measurers

Internal and external bodies

Who else?

What do they need to know?
What are they interested in?

Time, money, quality (and include the different quality viewpoints),
progress toward a goal

What else?

When do they need it? Daily, weekly, monthly, yearly

When an emergency happens? As risks increase? When issues arise?

What other cycles for your audience?

Why are they interested? Making decisions, assessing risks, looking for improvements

What else?

We often use graphics to report because they reveal data, especially for
displaying complex ideas clearly, precisely, and efficiently but it is important
to remember that graphics can be abused, either by using graphics that are
not necessary or by distorting the data with the graphic [14–16]. Our eyes
interpret the representation of two- and three-dimensional images as hav-
ing area or volume, and if these are used to show one-dimensional data, we
will see it as larger than it is, as we see in Figure 4.7.

One colleague remarked to me, “But I want to exaggerate the test
results—I want the customers to be really, really worried.…” I think he was
joking, but the real point is, do you know that the graphs you produce are
accurate and will be accurately interpreted? There are some notes and other
examples in Appendix A about the measures Tufte [15] suggests for check-
ing your graphics: the lie factor, the data–ink ratio, and the data density of the
graphic.

Make sure you understand why you are using the graphic; is it for
description, exploration, tabulation, or just decoration? Make sure you
know what message you are trying to put across. We tend to overdecorate
our graphics [14–16] and thus hide what we are trying to say. Edward Tufte
[15] suggests that we use “the greatest number of ideas in the shortest time
with the least ink in the smallest space” if we want to show the data.
Many numbers in a small space encourages the eye to compare data. I
strongly recommend that you look at his work to understand good and bad
approaches to information design and reporting.

Managers need information from other groups in order to understand
the constraints on delivering their wish list. Table 4.7 lists the information
that managers need from the other groups.

Managers are conduits for information flow; they will gather informa-
tion from all the groups and communicate it back to all the groups as
reports, tactics, and decisions (Table 4.8 and Figure 4.8). They will do this at
every stage in the life of the software.

72 Roles and Quality: Managers

Number of bugs

Week

Distorted data representation
The Lie Factor

Number of bugs
shown by
area

Number of bugs
shown by
diameter

20015010050

4321

Figure 4.7 Distorted data representation. (After: [15].)

4.6 Summary of the group
Managers must communicate well with the other groups if they are to be
effective. They are responsible for planning, estimating, and controlling
work, as well as for making and enacting decisions. These are not intuitive
skills, and new managers need help as they take on the role.

Managers are the conduit for information flow through and between the
groups. Managers need to negotiate between the groups and ensure that the
optimum course is taken at each point. Use of a Balanced Scorecard will

4.6 Summary of the group 73

Table 4.7 Information That Managers Need from Others

Customers Goals, targets, strategy for the customer

Business constraints

Changes to circumstances

Acceptance criteria, set, reported on as pass or fail

Other managers Progress

Changes to circumstances

Builders Progress

Problems

Decisions required

Supporters Technical constraints

Timing constraints for delivery

Changes to circumstances

Acceptance criteria, set, reported on as pass or fail

Measurers Quality measures—number of nonconformances, defects, number of acceptance
criteria passed and failed

Progress

Problems

Decisions required

Table 4.8 Information That Managers Have That Others Need

At all stages Information gathered from each group

Experiences from previous projects

Constraints and policies

Effect of changes

Tactics and decisions based on policy, strategy, and circumstances

Managers

Builders

Supporters

MeasurersThe software project
and the software product

Customers

Figure 4.8 Communication between groups.

help in this negotiation. Use of clear reports is vital; managers need to
ensure that their reports tell the story they are intended to tell.

Managers are sometimes put in the position of being their team’s “par-
ent” and need to consider carefully how they give and receive criticism.

References

[1] The W. Edwards Deming Institute, “Deming’s Teachings,” http://www.
deming.org/theman/articles/articles_gbnf04.html, November 2003.

[2] Gilb, T., see papers on Evolutionary Delivery on http://www.gilb.com, including
“Competitive Engineering: A Handbook for Systems and Software Engineering,”
September 2003.

[3] European Foundation for Quality Management, “EFQM Excellence Model,”
http://www. efqm.org, August 2003.

[4] Software Engineering Institute, “Capability Maturity Model Integrations
(CMMI), Version 1.1,” http://www.sei.cmu.edu/pub/documents/02.reports/
pdf/02tr004.pdf, October 2003.

[5] Tannen, D., “The Power of Talk,” Harvard Business Review, September 1995,
pp. 138–148.

[6] Hathaway, P., Giving and Receiving Criticism, Los Altos, CA: Crisp Publications,
1990.

[7] Wagner, A., The Transactional Manager—How to Solve People Problems with
Transactional Analysis, Denver, CO: T.A. Communications, 1981.

[8] British Computer Society (BCS), “BCS Qualifications,” http://www1.bcs.org.
uk/link.asp?sectionID=574, September 2003.

[9] Kaplan, R. S., and D. P. Norton, The Balanced Scorecard, Boston, MA: Harvard
Business School Press, 1996.

[10] Bourne, M., and P. Bourne, Balanced Scorecard in a Week, London, England:
Hodder and Stoughton, 2000.

[11] Olve, N. G., and A. Sjöstrand, The Balanced Scorecard, Oxford, England: Capstone,
2002.

[12] British Quality Foundation and TQMI, “Using the Model and the Scorecard,”
Seminar, Kettering, United Kingdom, September 2003.

[13] Copeland, L., “Testing as Co-Dependent Behaviour,” SIGiST Conference, the BCS
Specialist Interest Group in Software Testing, London 1999.

[14] Evans, I., “Get Your Message Across!” EuroSTAR Conference, Edinburgh, Scotland,
2002.

[15] Tufte, E., Visual Display of Quantitative Information, Cheshire, CT: Graphics Press,
1983.

[16] Huff, D., How to Lie with Statistics, New York: Penguin, 1974.

74 Roles and Quality: Managers

Selected bibliography

Adair, J., Effective Teambuilding, London, England: Pan, 1986.

Adair, J., Effective Time Management, London, England: Pan, 1988.

Berne, E., Games People Play, New York: Penguin, 1970.

Boddy, D., and D. Buchanan, Take the Lead: Interpersonal Skills for Project
Managers, London, England: Financial Times Press, 1992.

Brooks, F. P., The Mythical Man Month, Reading, MA: Addison-Wesley Longman,
1995.

Burnett, K., The Project Management Paradigm, London, England: Springer,
Practitioner Series, 1998.

Chartered Management Institute (on-line checklists about management and
quality topics), http://www.managers.org.uk.

Clarkson, M., Developing IT Staff, London, England: Springer, Practitioner Series,
2001.

Crosby, P., Quality Is Free, New York: Mentor, 1980.

de Bono, E., Six Thinking Hats, New York: Penguin, 2000.

Evans, I., and I. Macfarlane, A Dictionary of IT Service Management, ITSMF, 2001.

Grove Consultants, “What Test Managers Say ... and Why Project Managers
Don’t Listen,” play presented at EuroSTAR Conference, Stockholm, Sweden,
2001.

Hadley, T., “More Than a Thank You,” UK Excellence, August/September 2003.

Handy, C., Understanding Organizations, New York: Penguin, 1993.

Macfarlane, I., and C. Rudd, IT Service Management, Reading, England: IT Service
Management Forum, 2001.

Mullins, L. J., Management and Organisational Behaviour, 5th ed., New York:
Financial Times/Pitman, 1999.

Pas, J., “Emotional Intelligence,” EuroSTAR Workshop, Stockholm, Sweden,
2001.

Project Management Today (monthly journal), http://www.pmtoday.co.uk.

Schein, E., Organizational Culture and Leadership, San Francisco, CA: Jossey-Bass,
1997.

Smith, J., How to Be a Better Time Manager, London, England: Kogan Page, 1997.

4.6 Summary of the group 75

.

Roles and Quality: Builders

In this chapter I shall:

◗ Introduce the members of the builders group, their roles, and
activities;

◗ Introduce their quality viewpoint;

◗ Provide a framework for the builders within the EFQM Excel-
lence Model;

◗ Identify information flows between the builders and the
other groups.

So I spent 2 months designing and building the new interface and

its underlying software. It’s got everything we discussed with the

users, and I added some extras that looked useful, after I’d talked

to the customer last week. You know I was here all night last

Thursday getting it finished for delivery into test on Friday. And

then at 10 o’clock on Friday morning, the tester comes up to me

and starts moaning about the interface being too complex. How

long could she have spent looking at it? I ask you! I just blew my

top. I said, “It’s my system; I designed it and I built it and I don’t

care what you think of it! It's not your business to criticize what it

does! You weren’t there when we discussed the spec.” We do all

the work and they do nothing but moan!

—Software engineer having a dramatic moment when

the tester complained (rather rudely) about the

complexity of the software interface

5.1 Introducing the builders
Of course, this group is vital to software quality—not only do
they build the products, but they build in quality. The people in
this group are wrestling with difficult problems as they create

77

5
Contents

5.1 Introducing the builders

5.2 Who could be in this
group?

5.3 Quality viewpoint

5.4 Quality framework using
the EFQM Excellence Model

5.5 Communication between
the builders and other
groups

5.6 Summary of the group

C H A P T E R

new products. Why is our software engineer so angry about the software
being criticized by the tester? There are a number of reasons:

◗ Software engineers pride themselves in doing a good job; they want to
build excellent products with few defects. In this case, the engineer
had done groundbreaking work over a long period of concentrated
effort.

◗ Once they build the product, it can be difficult to change it. In this case,
a fundamental alteration to the design of the interface was being
suggested.

◗ None of us likes having our work criticized, especially when we have
put in a huge effort and been creative. The builders group is vulnerable
to criticism by the other groups as they are responsible for the products.

◗ When we offer criticism of other’s work, we need to consider the
three points above. In this case, the tester phrased the criticism very
tactlessly. How do I know? Reader, I was that young tester and I look
back with embarrassment!

We have seen in Chapter 3 that customers need software to carry out
their tasks, and that they want to do this as effectively and efficiently as pos-
sible. We saw in Chapter 4 that managers contribute by planning and con-
trolling resources, budget, and time scales; by acting as an information
conduit for decisions, to ensure that the proper communication takes place
between people in the different groups; and by negotiating between the
groups. The builders will realize the customer’s requirements in products
and services; this means that they need direct communication with the cus-
tomers, so the managers should encourage that if it is not happening. A
large group of people with a variety of roles and skills contribute to the
build. Many people think first of the teams and individuals who design and
write the code for the software. One IT manager said to me: “Why are you
talking about ‘builders’? ‘Software engineer’ is a perfectly good term!” How-
ever, many other products need to built along with the code itself, and these
can be forgotten or neglected; remember our trainer in Chapter 1? Another
trainer’s comment is that the request for training material to be designed
and built is often made very late in the project:

I am so tired of being asked to write a training manual in two weeks, with

supporting training database, and exercises from scratch, when the software

has taken months to write, as though training development is easy to do and

takes no time. The software is wonderful; don't they want the training to do

it justice?

So, in this book, I emphasize that it is not just the code that is being built,
and not just the software engineers who are involved. You might ask, “Will
the software engineers write the training material, help guides, and opera-
tion support manuals? Those need building too!” Of course, the software

78 Roles and Quality: Builders

engineers could build all the products, but we need to ask ourselves if they
will have time and whether it is reasonable to assume that they have the
skills required. For this reason I am using the term “builders” and include in
that category all the people who build products, whether these are delivered
to customers (software systems, training, user documentation), supporters
(operations and support guides, system specifications, regression test packs),
or only intended for use during the project itself.

5.2 Who could be in this group?
Builders are the people who specify, design, and build the software and
other products. The group includes a number of specialists:

◗ Those who work on the design and build of software systems;
sometimes referred to as the development team (see developers in
Chapter 2, Table 2.1). In these roles, we find people who describe
themselves as business and system analysts, software architects,
designers, software engineers, analyst–programmers, programmers,
and developers.

◗ Those who work on the development of textual and graphical support-
ing information for the code and software system, whether this is on-
line, on paper, or delivered face to face. In these roles we find people
who work as technical writers, authors, training developers, trainers,
and graphic designers.

They are stakeholders for quality because they build quality into the
product. The products include not just the delivered products (for example,
code, user guides, training material) but also the interim products (for
example, requirement definitions, designs, and specifications).

As well as the main products—software, training material, and so
on—built by the specialists, other people will build products required to aid
in the build and support of the products; these are sometimes called infra-
structure, support, interim, or secondary products. Almost everyone
involved will build something, including plans and reports. In this sense, we
are all builders. Examples include:

◗ Supporters build supporting material, such as infrastructure and
environments.

◗ Measurers build measurement material, such as review checklists,
tests, and audit checklists.

◗ Managers build management material, such as plans and reports.

◗ Customers build inputs to the project, such as requirements and
acceptance criteria.

This means that at some point we will all be builders, and we are all
responsible for building quality into our own products. What do we mean

5.2 Who could be in this group? 79

by building quality in? To find out, let us next look at the quality viewpoint
and framework of the builders.

5.3 Quality viewpoint
Although builders can be seen as date-driven, the pressure to deliver often
comes from their managers and customers. Most builders tend to focus on
building products as well as possible. In order to support this, they favor the
manufacturing and product-based views of quality.

In Chapter 1, we saw that the manufacturing-based definition focuses on
the specification, design, and construction of software products. Quality
depends on the extent to which requirements have been implemented in
conformance with the original requirements, and our success is measured
on our ability to follow a process and deliver products against agreed specifi-
cations. Builders will adopt methods, processes, and tools that enable them
to provide technically excellent solutions and to meet agreed specifications.

A problem with the manufacturing view is that if we focus on verifying
that the system is correct to specification, we may forget to validate that we
have the right specification. For the builders, the progression through the
software development life cycle (SDLC) may move from product to product,
with each product building on a foundation of the previous product in the
stream. Once the customer’s requirements are understood, the software
design is based on those requirements. The builders use the design to
develop the code and other material such as training courses and user
manuals. If the requirements are wrong, the final products are wrong,
even though the designs were followed faithfully. Measurers also favor the
manufacturing-based quality viewpoint, as we will see in Chapter 6, so
builders and measurers can work together to ensure that verification and
validation are applied to products and defects are prevented and removed.
We will see in Chapters 9 and 10 that there are ways to overcome this prob-
lem, by preparing for the SDLC properly: by choosing our SDLC model care-
fully, and by anticipating that change will happen throughout the SDLC.

In addition to the manufacturing-based view, builders also favor a
product-based definition of quality. As we saw in Chapter 1, this is about
working to a well-defined set of software quality attributes that can be
measured in an objective and quantitative way. Builders can find customers
vague about what they want, particularly in defining the nonfunctional
attributes of a software system. This is partly because software attributes are
difficult to describe and partly because it can be difficult to know what
is possible, particularly with new technology. The supporters share the
product-based view of quality; they will be interested in product attributes,
especially nonfunctional attributes such as throughput, security, reliabil-
ity, and maintainability, which affect the operability of the delivered soft-
ware [1]. They will also be interested in the customer’s user-based or
fit-for-purpose viewpoint, because the supporters operate the help desk. We
will look at the supporters in more detail in Chapter 7. It is, therefore,

80 Roles and Quality: Builders

worthwhile for the builders and the supporters to engage in dialogue early
on and throughout the SDLC. Their product-based view pins down vague
“wants” to specific attributes. We will see in Chapter 9 how to derive accep-
tance criteria that allow objective assessment of the quality of the delivered
product, using standards such as ISO 9126. These product-based qualities or
attributes are also important to builders because the priority given to par-
ticular attributes will affect the design and build choices. For example, if
maintainability is important, the code may be structured in a particular way
to allow changes to be made easily, but if a different attribute, for example,
security or performance, is more important, the code may be structured dif-
ferently and perhaps be harder to maintain.

Builders also hold a transcendent view of quality, as everyone does,
based on their “taken for granted” assumptions; in this case, based on their
perceptions and their feelings toward a type of software product. For many
builders, their transcendent view focuses on technical excellence or use
of particular methods; for example, use of a particular SDLC model (see
Chapter 10) or use of a particular technique or tool. A clichéd observation of
builders (including my observation of my own work in training develop-
ment, authoring user guides, and, in the past, writing code) is of a group of
people who apply their expertise while obsessively pursuing technical excel-
lence at the expense of a return on investment. They enjoy their own tech-
nical innovations and yet can be reluctant to change their processes.

We have seen that the builders favor the manufacturing and product-
based views of quality. These viewpoints are shared by many measurers,
and this leads them to provide technical solutions of the highest possible
excellence; their dedication to quality cannot be overstated. However, their
enthusiasm for what they do can blind them to the real quality aspira-
tions of the customers, managers, and supporters. I discuss these groups in
Chapters 3, 4, and 7, and show how they hold two other quality viewpoints
that are quite different:

◗ The user-based definition says that quality is fitness for use. It is the
user-based definition that encourages us to validate as well as to verify
the system. The builders need to find out “Does the specification
reflect what attributes are needed to enable people do their work effi-
ciently and effectively?” This viewpoint is important to the customers
and to the supporters, the two groups most affected by the software
postdelivery (see Chapter 12).

◗ The value-based definition is focused on things that impact on the run-
ning of the business as a whole. Software quality should always be
determined by means of a decision process based on trade-offs between
time, effort, and cost aspects. The builders need to find out “What are
the budget constraints for this build and how does that affect what we
are able to deliver?” Value for money is important for managers and
anyone responsible for budgets. The ROI for the software needs to be
predicted before delivery, and scope against the budget managed care-
fully during the SDLC. It is worth noting here that employers of

5.3 Quality viewpoint 81

software engineering graduates complain that the graduates do not
have sufficient business and enterprise skills [2].

Along with acknowledging the user-based and value-based views of
quality, the builders need to understand others’ transcendent view of qual-
ity. The builders must take into account the fact that other people’s taken
for granted viewpoints may well be different from their own. One important
point here is to examine the slant that builders may put on the manufactur-
ing- and product-based quality viewpoints. Let us look at some examples.
Here are some real remarks from builders, including a developer, an author,
and an analyst:

◗ “I met the specification so there can’t be a problem,” said Alice
Developer.

◗ “If you introduce a set process, I’ll just have to lower my standards to
meet it,” said Joe Author.

◗ “The specification defects arise because the testers won't review our
specifications,” said Jenny Analyst.

These are three comments that contain a nugget of truth but which are
also flawed arguments. Let us look at them more closely.

Alice Developer is correct when she says, “I met the specification so
there can’t be a problem.” The code met the specification. Unfortunately,
specifications can be out of date, or just wrong. They are written by people,
so they will have mistakes and gaps in them. In the translation through the
different activities in the SDLC, the specification may have been worked
on by several people as it was refined and detail was added. There may
have been an initial misunderstanding that was compounded over the
SDLC. Additionally, the customer’s requirements may have changed during
the SDLC. This happens so frequently that we might almost take it as a
given—the requirements will change before delivery.

Corrections and changes will be needed, so builders, including Alice
Developer, need to expect that. This makes some people wary of document-
ing any requirements specification at all: “Why write it down if it is going to
change? We don’t have time to keep updating a specification!” But it is use-
ful to write down the original specification and changes made to it. Then we
have a record of what has changed and why. Additionally, written specifica-
tions can be checked for consistency, completeness, and correctness. To
encourage keeping specifications up to date, I like them to be as brief as they
possibly can, to encapsulate the facts and satisfy any standards or contrac-
tual requirements. There is no virtue in writing long documents for their
own sake. Some agile methods [3] suggest using media that restrict the
length of the documents, for example, A5 cards. Keeping a record is worth-
while. I have been in the situation with technical documentation, for exam-
ple, where the structure and material have changed back and forth over
time. In order to explain to the managers and customers why I was behind
time against the plan and over budget, it was useful to have a record of why

82 Roles and Quality: Builders

changes had been requested as well as how long they had taken. Before I
started keeping a written record of what changes were requested, it was
easy to get into arguments about why changes had been made and the
amount of time it had taken to get from A to B to C and back to A again.

So change is to be expected, but do we want the builders to just
make those changes? Alice Developer was working within a contract and a
budget, and had done exactly what was asked within those constraints. If
she had made the changes requested, she may have exceeded the budget
and time constraints, just as I was doing with the technical writing. We
both needed to make some improvements in our process:

◗ We needed to assess the technical impact of the change requested;
How big was it? How risky was it? How necessary was it?

◗ We needed to involve other groups in our assessment: the customers,
managers, supporters, and measurers all would be able to contribute to
the discussion about whether the change was necessary and what its
impact would be (risks, changes to budgets and estimates, effect on
other work, what would not get done if this took priority).

◗ We needed to get agreement on the change.

It is worth remembering that the impact of a change may be much larger
than the immediate obvious change. One colleague was changing a training
course recently. It looked like a simple change to combine two exercises into
one. In fact, combining the two exercises into one document was quite sim-
ple, but far more time needed to be spent on changing the references in the
slides, contents lists, tutor’s notes, printing and binding instructions, and so
on. In the same way, a one- or two-line code change can lead to changes in
training material, help messages, support and user documentation, installa-
tion guides, code comments, and other code modules.

“If you introduce a set process, I’ll just have to lower my standards to
meet it,”said Joe Author, an excellent practitioner with very high standards
of work. Why was the suggestion of introducing what measurers and man-
agers saw as a quality improvement (the use of defined, documented
processes) seen as a threat to quality? Many builders see the introduction of
standards as either a descent to the lowest common denominator, or as the
introduction of bureaucracy that will prevent them from carrying out their
work. If processes are poorly designed or badly introduced, this may be the
case. What can the builders do to get the processes they need? The best way
is to get involved in the work of the designing and implementing processes,
so that they own them. The experts who believe that introduction of stan-
dards and processes will cause them to adopt poorer methods are the very
people who design improved processes and to train others in using them.

Builders need sound processes at all stages to support them in the man-
agement of change and the development of low-defect and appropriate
products, and this includes use of QC processes on specifications to make
them as correct and complete as possible. The cost of changes to fix defects

5.3 Quality viewpoint 83

that could have been found earlier, saving rework, is a useful fact for build-
ers to offer to customers and managers when asking for improvement in the
specification of systems. Measurers can help them with this fact gathering.
We will see in Chapter 10 that there are SDLC models that provide more
opportunities both for checking that specifications are correct and complete,
and for adapting to change during the SDLC, and in Chapter 12 we will dis-
cuss the difference between fixing defects and making enhancements.

In saying “The specification defects arise because the testers won't
review our specifications,” Jenny Analyst, the builder, has misunderstood
where defects arise in products, and the tester has misunderstood that part
of their role is to help the builder. In fact, this was just one comment in a
catalogue of woe; the builders and measurers had a complete breakdown of
relationship and simply did not cooperate at all. We will return to this story
in Chapter 6.

Although measurers and builders can appear to exist on different plan-
ets, one reason that they come to loggerheads is that they are so similar.
They share a manufacturing-based view of quality, with its emphasis on
defect removal. It can happen that the testers’ glee in finding defects is
matched by the developers’ irritation at being caught. One way to improve
this is for the testers to couch their defect reports more politely. However, as
this is the builder’s chapter, let us think about what the builders can do to
help. I have seen a number of things that have helped build the relationship
between the groups:

◗ Workshops and training for the builders and the measurers together,
where they can discuss what reviews and testing are needed and how
these should be done.

◗ Clear roles and goals for reviews, as we discuss in Chapters 8–12, so that
everyone understands what needs to be reviewed and why. The meas-
urers and builders share responsibility for setting the goals and making
the plans for the reviews.

◗ Review of the measurers’ plans, test designs, and reports by the build-
ers, thus allowing a reciprocal arrangement.

◗ Builders welcoming defect reports on their products (sometimes this
might be through gritted teeth, as we all know when our own work is
reviewed). Each identified defect is a chance to improve some-
thing—this product by correcting, future products and processes by
introducing defect prevention methods, and the defect reporting
process itself.

Communication is key, as always. In a recent software testing course,
the group was an equal mix of developers and testers who worked together.
I asked the developers and the testers two questions each:

◗ What information did the developers need when the testers sent them
a defect report?

◗ What information did the testers send with a defect report?

84 Roles and Quality: Builders

◗ What information did the developers return with a completed defect
report?

◗ What information did the testers need when a completed defect
report was returned?

When we put the results up on the flip chart, there was almost no rela-
tionship between the information supplied and that actually required. As
soon as the two groups had a chance to reflect on what was happening, they
were able to see how to improve the defect resolution cycle. The important
information that each group needed was not obvious or intuitive to the
other group. The developers needed to explain to the testers what informa-
tion they required in the defect reports. The testers needed to explain to the
developers what information they needed when a defect report was
returned to them for retest.

In Table 5.1, we see how an example builder, a business analyst, might
consider other quality viewpoints. We will look at communication between
groups in Section 5.5; here, we are considering what questions about

5.3 Quality viewpoint 85

Table 5.1 Analyst Considering Other Viewpoints for Quality Impacts

Group and
Quality View Possible Routes in Example Questions

Customer

User-based
quality view

Find out the importance
of fit for purpose on
particular features,
functions and attributes

What are the goals for the product; what do you want to
achieve? What will be the impact on your work if this goes
wrong? If it is not available, can you work without it? How
much extra time would that take?

Are there alternative ways you could achieve the same results?

Supporter

User- and
product-based
quality view

Find out the importance
for operability and fit for
purpose of important
attributes

What will be the impact on your work if this goes wrong?

If this attribute is not available, can you work without it? How
much extra time would that take?

What is the minimum level of (reliability/security/and so forth)
that is acceptable?

If we delivered X, would that make your life easier or more
difficult? What information do you need to be able to support
the products? What service-level agreements do we need to
consider/support?

Other builders

Product and
manufacturing
quality view

Find out which attributes
are technically possible

What information do you need in the specification in order to
build the (code/training/support documentation/user
guide/installation guide)

How quickly do you need that?

Can you build to an early draft expecting changes?

Which attributes/technical areas will pose particular problems?

Measurers

Manufacturing
quality view

Find out what will make
the product measurable
and, hence, testable

What information do you need from me in order to review the
document/test the software/audit the process?

Which functional/nonfunctional areas have given rise to most
problems for testing and where have you identified defect hot
spots?

Manager

Value-based
quality view

Identify the cost of building
and changing the
specifications and the cost
of repair/rework

The cost to the customer and supporter of not making the
change is X, and the cost of making the change is Y. The cost
impact if we make the change and it goes wrong is Z. Can we
afford to make the change? Can we afford to not make the
change?

quality we might consider in order to understand other people’s assump-
tions about quality as a means of improving understanding.

Particular people in the builder group may have other quality views. In
my experience, trainers and technical authors may be closer to the custom-
ers in their view of quality than the developers and business analysts. More
experienced developers can often be very close in quality view to both the
supporters and measurers in their organization.

5.4 Quality framework using the EFQM Excellence
Model

5.4.1 The EFQM Excellence Model and the builders

There are a number of well-accepted process frameworks that specifically
address the work of many of the roles within the builder group and how
those roles interact. Within a particular organization or team, requirements
gathering, business analysis, systems analysis, design, and coding work may
be carried out by different people, with the work being passed from one per-
son to another; or one person may undertake several or all of the roles. We
will look at several generic SDLC models and a tailored model with roles in
Chapter 10. In this chapter, I want to set the builders in a framework based
on the EFQM Excellence Model [4].

As we saw in Chapter 1, there are a number of frameworks for software
work, including the SEI’s CMM family [5], and means of implementing its
requirements, such as TSP [6] and PSP [7]. Additionally standards bodies
such as IEEE [8] and BSI [9] provide software engineering frameworks and
standards. The IT Infrastructure Library (ITIL) has a framework for applica-
tion management [1], which includes not just application development but
also management and optimization of the application in use. This sets
application management within an EFQM framework, and also discusses
the similar Baldrige framework used in the United States. Other builders
also have standards and process frameworks; for example, there are style
guides for authors, such as The Chicago Manual of Style by the University of
Chicago Press [10].

Each organization needs to draw from these models and frameworks to
develop processes and standards in a framework appropriate for the type of
work, the risks, the experience levels, and the customer expectations of
process. For some customers, particular standards, methods or techniques
are required, as discussed by Reid in [11]. Some customers, perhaps requir-
ing an engineering approach to control risk, may demand achievement of a
particular CMM level with particular associated processes. Other customers
may face risks in achieving time to market; there may be pressure for a fast-
track process, which might lead to a different set of processes. The builder’s
quality framework must match to the customer’s quality framework so that
the delivered products are not underengineered and unfit for purpose, nor
overengineered and too expensive.

86 Roles and Quality: Builders

The builders are suppliers, and any supplier’s ability to recognize and
adapt to their customer’s quality framework is a critical success factor in the
effectiveness of their relationship. The framework for the customer trans-
lates into departmental goals and, finally, into the personal objectives and
targets for an individual system user, but it also translates into a comple-
mentary subset of the supplier’s goals, and, hence, into personal objectives
and targets for all the builders. This quality framework will drive what the
customer needs from the software.

In Chapter 1, we looked at the EFQM Excellence Model and how it is
divided into nine parts: five enabling criteria and four criteria for measuring
results. In Section 5.4.2, we will look at how the EFQM Excellence Model
enablers could be interpreted for builders, and in Section 5.4.3 we will look
at builder results. Remember that this model is based on the fundamental
concepts of excellence we discussed in Chapter 1 and that equivalent mod-
els such as the Baldrige model are available.

5.4.2 EFQM Excellence Model enablers for builders

5.4.2.1 Leadership

We saw in Chapter 2 that the Motivation Survey carried out by Warden and
Nicholson [12] showed dissatisfaction between groups. One interesting
finding is that although technical experts, for example developers, want to
organize their own work, they often feel isolated because they lack feedback
from their managers; they lack leadership. In the absence of leadership from
their managers, people will either become demotivated, or they will look
within their peer group for a leader. I have observed situations in develop-
ment teams and in authoring teams where the actual line manager is not
the natural leader of the team and may even be bypassed. I remember one
excellent developer, Dave Tech-Expert, who disliked his manager for being
weak both as a person and technically “He doesn’t understand my work and
he asks stupid questions, but he never listens and he never supports me in
meetings,” said Dave. Over the years, Dave built a strong relationship with a
specific customer team, based on mutual respect and understanding of the
technical difficulties in that customer area. The result was that, regardless of
agreed-upon project plans, both Dave and the customer bypassed the man-
ager to organize the work that actually happened in that area. The manager
continued to report against the project plan, not realizing it was irrelevant;
Dave had simply agreed to anything that would make his manager be quiet
and go away. A vicious circle was in place, with each action by the manager,
the customer, and Dave compounding the mutual suspicion (Figure 5.1).

Warden and Nicholson [12] found that the builders group needed lead-
ership, but that their leaders had to have some technical expertise and
understanding, so that the builders knew that they could trust the leader to
make intelligent decisions. If they do not trust their managers, they will
adopt unofficial leaders, sometimes known as influence leaders.

5.4 Quality framework using the EFQM Excellence Model 87

5.4.2.2 Policy and Strategy

Builders need clearly defined policies and strategies, which set down what is
expected of them and provide direction. We saw in Chapter 4 that managers
set policy and strategy based on the higher-level policy and strategy for the
organization. The builders need policies and strategies that not only state
what must be done but also why the policy and strategy has been set. We saw
in Section 5.4.2.1 that builders will work autonomously and may bypass
anything they see as unnecessary or obstructive; generally, we have here a
group of intelligent, well-educated, independently minded folk. It is best to
set the policy and strategy after consulting with these experts.

Policies will be needed to cover the basic rules for approaching build
activities, including rules for tailoring processes. Builders are often asked for
fast responses (remember our trainer in Section 5.1?), whether to deal with
an emergency, a change in circumstances, or do something that we forgot in
our earlier planning. This means that if we have a policy and strategy that
describes a normal set of build activities, we should also put together a pol-
icy and strategy for deciding when and how to provide a fast-track service,
and how to decide how the risks of choosing the fast track weigh against the
risks of using the normal approach. Of course, this might be a policy that
says “we never tailor the processes,” but that is unlikely to be successful. We
will see in Chapter 10 an example of tailoring the SDLC. In this case, the
policy might state: “A tailored SDLC with reduced steps may be used if the
risk of failure has an impact of less than X,” and the strategy would show
how to tailor the life cycle based on experience, knowledge, clarity of prob-
lem definition, speed of response, and risk of failure.

Specialist builders should put together their own framework, with the
agreement of the other groups and based on the appropriate practices and
published standards, such as those described in the BSI SSQF framework [9]
and in CMM [5].

88 Roles and Quality: Builders

Manager reports
incorrectly to customer

Customer finds
information from
manager is different
to correct information
from builder

Builder ignores manager
and conceals information
from manager

Customer trusts builder,
not manager and goes
directly to builder and
explains why...

Figure 5.1 Vicious circle of poor and undermined leadership. (After: [12].)

5.4.2.3 People

We have already noted in Sections 5.4.2.1 and 5.4.2.2 some of the charac-
teristics of builders. This group faces the major challenge of using their crea-
tivity and skills to realize the products and services, and their work is
measured and judged by the other groups.

The Motivation Survey [12] found that many IT staff want work that has
a high motivating potential score, that is, it scores highly for things like the
variety of skills required, autonomy of work, significance of the task to the
organization, and the chance to complete a task from beginning to end and
see the outcome. The survey also found that the range of work went from
roles that were excessively understimulating to work that was more com-
plex than it was possible to carry out. The latter was exacerbated by the ten-
dency of IT people to automate parts of their tasks that are repetitive and
boring, thus leaving them with only the complex parts. They are actually
making their jobs harder.

Builders need a mix of skills, and these would generally be provided
within a team rather than by a single individual. Their education, training,
and work experiences will of course include all the technical skills and
understanding of the methods, techniques, and tools for their tasks. It is
worth considering the communication and team analysis techniques, for
example, Belbin team roles and the MBTI analysis, discussed in Sections A.1
and A.2, as well as technical skills, when putting together a team. Builders’
education, training, and work experiences should also include an under-
standing of:

◗ The measurement techniques they will need to apply to their own
work and to other people’s work. Not only do builders carry out QC
activities such as reviews and testing, in which they will need train-
ing, but, in my experience, they also make excellent QA reviewers
and auditors if trained in the techniques. I noted before that builders
respect technical excellence, so having the technical experts carry
out process and product reviews across projects spreads knowledge
and increases the probability that the QA and QC processes will be
accepted as useful.

◗ The management skills they require for control of their own time and
work within a team. This is the focus of the TSP [6] and PSP [7], which
emphasize the planning, control, and reporting required by individual
software engineers and by teams.

◗ The interpersonal skills (sometimes called soft skills) to improve their
communication with all the groups, including the builders themselves.
Kent Beck [3] describes five values without which XP (eXtreme Pro-
gramming) will not work. I think they are values without which any
human endeavor will not work: good communication between people;
simplicity in choice of action; concrete feedback to aid communication
and simplicity; courage to confront and fix problems, if necessary by

5.4 Quality framework using the EFQM Excellence Model 89

discarding work and starting again; and, finally, what Beck describes as
the deeper value of respect for others.

◗ Their customer’s goals and strategy in order that they focus their tech-
nical, measurement, management, and interpersonal skills toward
solving the organization’s real problems. This is increasingly impor-
tant. For example misalignment of IT to the organizations’ goals is
cited in the McCartney report [13] as a reason for frequent IT proj-
ect failures. I recently asked a number of IT customers in different
organizations what they wanted from IT people. Although some of
the responses asked for greater engineering or technical skills, oth-
ers wanted greater business awareness. One customer said, “Per-
haps one danger I perceive in the competency-aligned improvement
model (which is generally strong) is that the focus may be ‘profes-
sional’ rather than ‘entrepreneurial.’ By that I mean more mature
business/systems analysis is seen as an end in itself, rather than a
means to doing things faster, smarter, and cheaper and making more
money for us all.”

5.4.2.4 Partnerships and Resources

As we saw in Chapter 1, partnerships cover people outside our team, our
project, or our organization with whom we need to exchange informa-
tion or cooperate with in some way. Resources are the things like IT
environments, information, and equipment that we need to carry out our
work.

Builders have partnerships with all the other groups and within the
builder group, both to exchange information and because some work may
be done by others and passed between individuals. They may also have
partnerships with builders in other organizations. Some examples of typical
partnerships might include:

◗ Between groups: with the customers and supporters to define the
problem to be resolved and share information about possible solu-
tions, risks, and the fit-for-purpose, user-based quality view;

◗ Between groups: with the measurers to define quality measures for
products, carry out QA and QC processes to improve products and
processes, and to resolve defects;

◗ Between groups: with the managers to understand constraints on
time, budget, and resources, and the impact these may have on
technical risk;

◗ Within the builders group: developers with designers and analysts to
share information and review products concerned with building code;

◗ Within the builders group: software engineers with training designers
and authors to share information and review products concerned with
building supporting material such as training courses and user guides;

90 Roles and Quality: Builders

◗ Outside the SDLC, with builders and supporters for other projects to
negotiate sharing of scarce resources such as environments and tools;

◗ Outside the organization, with third-party suppliers that the organiza-
tion has selected to outsource some of the IT work.

5.4.2.5 Processes

As we saw in Section 5.4.1, there are a number of published frameworks for
builders’ work, and these tend to be biased toward process definition rather
than to the other enablers that we looked at in Sections 5.4.2.1 to 5.4.2.4
above. The difficulty that software engineers in particular have is not finding
a process definition, but in finding the right process definition for their cir-
cumstances. I am not going to describe the candidate processes here; each
organization needs to select from those available and will undoubtedly want
to adapt the chosen model to their own circumstances. I just want to note
that we need to consider a number of factors in choosing a process. These
include:

◗ Builders’ buy-in: Do the builders understand the proposed process? Do
they need training, support, and mentoring? Will the process bring
them benefits and do they understand those benefits? If there are
parts of the process that make life more difficult for the builders, is
there a rational reason for them in terms of benefits to the organiza-
tion as a whole?

◗ Other groups’ buy-in: Do the other groups understand the process? How
much are they involved in the process? Do they need training, support,
and mentoring? Will the process bring them benefits and do they
understand those benefits? If there are parts of the process that make
life more difficult for them is there a rational reason for them in terms of
benefits to the organization as a whole?

◗ Flexibility and appropriateness of the processes: If the organization has
many types and sizes of project, is it clear and easy to tailor the
processes? Has paperwork and bureaucracy been minimized? Is there
enough documentation and not too much? Is there sufficient control
to minimize technical risk and human error, balanced against the
process not being excessively expensive to run? Is it easy to change
and update the process? Does it meet any external process require-
ments? Is it easy to identify entry and exit criteria at each step? Are
communication points where information is shared identified? Are
responsibilities and authorities identified? Does the process allow for
changes in the customer and supporter requirements, and for changes
caused by rectifying mistakes?

The choice of process needs to balance the needs of different
groups—part of the reason for having an agreed-on process is to give assur-
ance to all the stakeholders that they can trust that the right things are being

5.4 Quality framework using the EFQM Excellence Model 91

done. The different quality views of groups means that their expectations of
what should be laid down in a process will vary. For example, when the
builders design their processes, they will need buy-in from all the groups, by
showing how the process will support them:

◗ Customers need the process to help them get what they need to solve
their continuously changing problems and aspirations, and to know
how the process will meet the demands of the organization, its cus-
tomers, and society as a whole—all part of “fit-for-purpose,” user-
based quality.

◗ Managers need the process to support them in controlling budgets for
cost, time, and resources within and across projects, to see how it will
help them deal with change and offset technical against financial risks,
and for it to support improvements to future planning, estimation, and
control—all part of financial/corporate, value-based quality.

◗ Supporters need the process to include their involvement both in set-
ting requirements and acceptance criteria for product attributes. They
need assurance that the process will result in software that can be sup-
ported within the IT infrastructure and the IT service and applica-
tion management standards—all part of “fit-for-purpose,” user- and
product-based quality.

◗ Measurers need the process to acknowledge their focus on defect iden-
tification, removal and prevention. They need to agree on how meas-
urement processes (QA audits, QC reviews, and testing) are included
in the process—for example, that they take place early enough for
them to be effective and efficient—and mutual agreement on what
information needs to be communicated and when, including informa-
tion about change.

◗ Builders need to know that their tasks are included in the process,
with links to their own processes early enough for them to complete
their products, and with mutual agreement on what information
needs to be communicated and when, including information about
change.

5.4.3 EFQM Excellence Model results for the builders

5.4.3.1 Customer Results

Customer results are the measure of the effect we have on our customers.
Who are the builders’ customers? In fact, as well as the customers for the
software itself, all the groups are customers of the builders. If we look
at what the EFQM Excellence Model [4] refers to as customer percep-
tion results and customer performance indicators, we see that perception
results are measured externally; we ask people outside our group for their
views of us. Customer performance indicators measure what actually hap-
pens to our group; whether we get repeat business from a customer,

92 Roles and Quality: Builders

for example. Both measures are needed so that we see the difference
between a customer’s reported perception: “We think you are doing a great
job,” and whether the customer actually invites the builder back for future
projects. Examples of the type of results that could be measured are in
Table 5.2.

5.4.3.2 People Results

In this case, the People Results measure what the builders think about
themselves. As with the Customer Results, we measure perception and
performance.

We have already seen that this group has quite specific motivational
needs [12]. They need a stimulating environment and yet need support and
leadership so that they are not alienated.

We will discuss SDLC models in Chapter 10, but I want to note here that
some of the models encourage projects with team members involved
throughout the SDLC and with frequent feedback loops, whereas others
take a more production-line approach. I remember that in one organization,
the business analysts would be involved in the first two to six weeks of a
project to gather requirements, and after that would move on to their next
project. They never saw the outcome of the projects. One person remarked
to me, “I don’t even know if any code is built as a result of my work, let
alone whether it is delivered and worked. I don’t know if I solve people’s
problems.” This is the essence of the alienating production line—“People
frustrated by work that goes nowhere and an increasingly intrusive system
of management that means they have less and less control over what they
do” [14]. SDLC models that encourage involvement throughout the SDLC,
allow interaction and feedback between the groups, and allow the teams to
make decisions and to control their own work, will provide a better working
environment for builders. According to Tom Gilb (at a seminar on Evolu-
tionary Delivery in London in September 2003), the frequent-feedback loop
is particularly important in improving individual and group motivation. It
seems reasonable to suppose that there may be improvements in individu-
al’s motivation using models such as XP, which encourage such feedback

5.4 Quality framework using the EFQM Excellence Model 93

Table 5.2 Customer Results—What the Other Groups Think of Builders

Example of Possible Measures

Perceptions (external to the group),
surveys, interviews, compliments, and
complaints

Have the builders got a good image?

Do other groups report that they find the builders easy to deal with
(for example, helpful, flexible, honest, and proactive)?

Are the builders seen as reliable, providing good value, providing a
good service?

Performance indicators—measurement
of outcomes

Do we get asked back for additional projects?

Are people proactive in coming to us for help?

Are our products usually accepted and used over a reasonable life
span?

Do other groups complain about our work?

loops, compared with the waterfall model, which has a production-line
approach.

We mentioned in Section 5.4.2.3 that IT staff require stimulating work.
One colleague described to me what happened when his teammates got
bored; they had a competition to see who could use the most programming
constructs in their programs, not because they were needed, but just to try
them out. The result was programs that functionally did what they were
supposed to do, but did it in a very convoluted way. I am glad I am not
maintaining those programs! A measurable result of the boredom of those
people was the number of lines of unnecessary code added for fun. Exam-
ples of the type of results that could be measured are shown in Table 5.3.

5.4.3.3 Society Results

For the EFQM Excellence Model, society means society at large, and
although we might want to measure this, we could interpret “society” for a
team as only including their organization. Again, we consider perception
and performance indicators. Examples of the type of results that could be
measured are shown in Table 5.4.

94 Roles and Quality: Builders

Table 5.3 People Results—What the Builders Think of Themselves

Example of Possible Measures

Perceptions—“external” measurement
of the group viewpoints by the
organization asking for opinion through
surveys, interviews, compliments, and
complaints

Has a motivational study provided positive feedback?

Are builders satisfied with their career paths, rewards?

Performance indicators—“internal” to
builders group. Measurement of
people’s viewpoints by their actual
behavior/attributes

Does the builders group match up to the required qualifications
and competencies? For example, do they have appropriate BCS
qualifications [15]

What are absenteeism and sickness levels compared with other
groups? Are trainers showing a different absence pattern to
developers?

What is the level of staff turnover compared with other groups and
do people want to be recruited into this group? For example, if we
advertise a business analysis course internally, is it over- or
undersubscribed?

Table 5.4 Society Results—How the Builders Relate to Society

Example of Possible Measures

Perceptions—external to the
group—surveys, interviews,
compliments, and complaints

Are the builders seen by the organization and wider society as acting
ethically?

Do the auditors and testers check that the systems act properly with regard to
health risks, safety, hazards, and the environment?

Performance
indicators—internal to
builders group

Has the group won any accolades, for example, for paper- and energy-saving
initiatives, in line with corporate initiatives?

Has the group been recognized for its efforts to reduce security risks
internally and externally, including customer data confidentiality, prevention
of spam and virus attacks, and IT governance provisions?

5.4.3.4 Key Performance Results

The EFQM Excellence Model divides key performance measures into two
areas: financial and nonfinancial measures. Some examples are shown in
Table 5.5. It is important to reflect on why the organization needs an IT
group; unless software is itself the revenue-earning product of the organiza-
tion, the only reason for the software is to service the needs of the organiza-
tion, allowing its customers and users to carry out their work more easily.
For a business, this will mean that the key performance results for IT and,
hence, the builders, must reflect the commercial drivers for the organiza-
tion. For a nonprofit organization, again, the builders must support the
organization’s goals, increasing the efficiency and effectiveness of the serv-
ices and products provided.

5.5 Communication between the builders and other
groups

We will see in Chapters 8 to 12 that builders are involved in the whole life
span of a piece of software, from its conception, through the software
development life cycle (SDLC), during delivery, and postdelivery until
decommissioning.

Builders have a large responsibility in communication to and from the
other groups. They need to understand what is required, and they need to
communicate back what is possible and what has been achieved. A problem
with this is that IT people may have quite different personality types and
communication styles than their customers [16–18]. It appears that a larger
proportion of IT people tend to be introverts, working by intuition, thinking,
and judgment skills. If across the general population and, therefore, among
the builder’s customers there is a bias toward extroverted behavior and
working more by perception or emotional ways of thinking, we can see that
there will be a clash of communication styles. I have seen this particularly
where sales, marketing, or customer service staff need to work with IT. If
Phil Marketing-Mann is emoting and waving his arms around, Dave Tech-
Expert may just ignore him and, as he has brought his laptop into the meet-
ing, just get on with some other work. One comment in [18] is that whereas
many IT people prefer written communication, their customers may prefer

5.5 Communication between the builders and other groups 95

Table 5.5 Key Performance Results—Financial and Corporate

Example of Possible Measures

Financial What is the return on investment (ROI) for the software we have delivered this year
(cost of software/money saved/number of new customers/market share gained)?

Nonfinancial Number of projects/customers who request our team to carry out IT-related work, and
the size of these projects

Cycle times for responding to customer requests

Innovation by the builders (e.g., new technology to support time to market with new
products)

face-to-face communication. This alone can give rise to misunderstanding
and resentment. This is an important factor in the success of the builders:

… [P]otential weaknesses for the organization lie in the lack of feeling and

perception. These can become key issues if you need more flexibility and a

greater focus on the customer for future success. A culture biased toward

thinking and judgment is in danger of neglecting how the customer feels

about the service he or she is getting, which can be an important factor in the

decision to buy. [18]

Of course, in some builder–customer relationships the preferences may
be reversed. What is important is that the communication preferences in a
particular situation are understood. There is more about personality types
and communication in Chapters 8 to 12 and Appendix A. In Figure 5.2, I
have shown the communications between builders and the other groups.
Builders have information that others need (Table 5.6) and they also need
information from other people in order to understand the constraints on
delivering their wish list. Table 5.7 lists the information that builders need
from the other groups.

Remember, it is not just the content but also the manner of the commu-
nication that is important. All the groups need to understand that they
will favor different communication styles, and that individuals within the
groups may or may not fall into the usual pattern for the group; we must
beware of pigeonholing people. The lesson is that each builder needs to
understand their own favored communication style and to consider the
favored communication styles of other people within their own and other
groups. If you are interested in discovering your own preferred style, you
may wish to look at the Myers-Briggs Type Indicator (MBTI) and take an
MBTI quick test (see [17]).

5.6 Summary of the group
Builders are essential to the quality and success of software and systems,
and their technical skills are needed throughout the life of software. How-
ever, builders must communicate well with each other and the other groups
if they are to be effective. This means considering how they demonstrate

96 Roles and Quality: Builders

Supporters

Builders

The software project
and the software product

Managers MeasurersCustomers

Figure 5.2 Communication between groups.

that they provide results and assurance for other groups, understanding
other’s quality views and communication styles, and explaining their own
quality view and preferred communication style in a way that is under-
standable to the rest of the team. People with other communication styles
and preferences, within and outside the builders group, should also have
consideration for the builders’ preferences as individuals. This will help to
ensure that that the good communication that is essential for the builders’
success is maintained.

References

[1] IT Infrastructure Library, Best Practice for Application Management, London,
England: Office of Government Commerce, 2002.

5.6 Summary of the group 97

Table 5.7 Information That Builders Need from Others

Customers Business constraints

Business risks

Business requirements

Evaluation of quality of system when it is in use

Managers Financial, time, and resource constraints

Progress toward goal

Changes to goals and constraints

Other builders Progress with products (different builders will be responsible for different products:
specifications, designs, code, training material, and so on)

Changes to products

Supporters Technical constraints for live system

Acceptance criteria

Evaluation of quality of system when it is in use

Measurers Acceptance criteria passed

Defects and nonconformances identified

Table 5.6 Information That Builders Have That Others Need

Before the SDLC starts
and updated throughout
the SDLC

Technical constraints

Technical innovations

Technical risks

During the SDLC Results of QC done by the builders themselves

Technical risks and areas on which to focus QA and QC work

List of known problems when products are delivered to QC or go live

Progress, problems, changes to risks, changes to constraints

At delivery List of known problems

List of incomplete products

Delivery and installation requirements

Postdelivery Evaluation comments

Improvement ideas

[2] Holcombe, M., and M. Gheorgha, “Enterprise Skills in the Curriculum,” Ingenia,
Vol. 15, February/March 2003, pp. 56–61.

[3] Beck, K., Extreme Programming Explained, Reading, MA: Addison-Wesley, 2001.

[4] European Foundation for Quality Management, “EFQM Excellence Model,”
http:// www.efqm.org, August 2003.

[5] Software Engineering Institute, “Capability Maturity Model,” http://www.sei.
cmu.edu, July 2003.

[6] Humphrey, W., Introduction to the Team Software Process, Reading, MA: SEI, 2000.

[7] Humphrey, W., Introduction to the Personal Software Process, Reading, MA: SEI,
1997.

[8] IEEE standards; see Web site http://standards.ieee.org/.

[9] British Standards Institute, PD0026:2003, Software and Systems Quality
Framework—A Guide to the Use of ISO/IEC and Other Standards for Understanding
Quality in Software and Systems, London, England: British Standards Institute, May
2003.

[10] The University of Chicago Press, The Chicago Manual of Style, 15th ed., Chicago, IL:
The University of Chicago Press, 2003.

[11] Reid, S. C, “Software Testing Standards—Do They Know What They Are Talking
About?” http://www.testingstandards.co.uk/publications.htm, August 2003.

[12] Warden, R., and I. Nicholson, The MIP Report, Volume 2: 1996 Motivational Survey of
IT Staff, 2nd ed., Bredon, England: Software Futures Ltd., 1996.

[13] Cabinet Office, Successful IT: Modernising Government in Action, London, England:
HMSO, 2000.

[14] Smith, P., “Alien Resurrection,” http://www.chartist.org.uk/articles/econsoc/
jul03smith.htm, October 2003.

[15] British Computer Society Qualifications, http://www1.bcs.org.uk/link.asp?
sectionID=574, September 2003.

[16] Kroeger, O., J. M. Thuesen, and H. Rutledge, Type Talk at Work: How the 16
Personality Types Determine Your Success on the Job, New York: Bantam Doubleday
Dell, 2002.

[17] Team Technology Web site, “Working Out Your Myers Briggs Type,” http://
www.teamtechnology.co.uk/tt/t-articl/mb-simpl.htm, October 2003.

[18] Team Technology Web site, “The Mother of Strategic Systems Issues:
Personality,” http://www.teamtechnology.co.uk/tt/t-articl/news1.htm, October
2003.

Selected bibliography

Adair, J., Effective Teambuilding, London, England: Pan Books, 2003.

Adair, J., Effective Time Management, London, England: Pan Books, 2003.

Brooks, F. P., The Mythical Man Month, Reading, MA: Addison-Wesley, 1995.

Caputo, K., CMM Implementation Guide: Choreographing Software Process
Improvement, Reading, MA: Addison-Wesley, 1998.

98 Roles and Quality: Builders

Clarkson, M., Developing IT Staff, London, England: Springer Practitioner Series,
2001.

Crosby, P. B., Quality Is Free, New York: McGraw-Hill, 1979.

Detiénne, F., Software Design—Cognitive Aspects, New York: Springer-Verlag,
2001.

Fowler, M., and K. Scott, UML Distilled, Reading, MA: Addison-Wesley, 1997.

Gershuny, J., After Industrial Society, New York: Macmillan Press, 1978.

Kruchten, P., The Rational Unified Process, Reading, MA: Addison-Wesley, 1999.

Nance, R. E., and J. D. Arthur, Managing Software Quality, New York: Springer-
Verlag, 2002.

Parker, S. R., et al., The Sociology of Industry, London, England: George, Allen and
Unwin, 1978.

Schein, E., Organizational Culture and Leadership, San Francisco, CA: Jossey-Bass,
1997.

Smith, J., How to Be a Better Time Manager, London, England: Kogan Page, 1997.

5.6 Summary of the group 99

.

Roles and Quality: Measurers

In this chapter I shall:

◗ Introduce the members of the measurers group, their roles,
and activities;

◗ Introduce their quality viewpoint;

◗ Provide a framework for the measurers’ activities within the
EFQM Excellence Model;

◗ Identify information flows between the measurers and the
other groups.

I’m going to buy a magic wand, and then when the development

manager says to me, “We’ve finished the build, now can you do

the quality stuff,” I can just wave the wand and make it happen.

—Quality assurance manager complaining about the

way quality activities are regarded in projects

6.1 Introducing the measurers
6.1.1 Why do we need QA and QC?

Software projects generally include some activities such as test-
ing, to check the software before it is released for live use, and
auditing, to check that appropriate processes are followed dur-
ing the project. We need to do this because humans make mis-
takes. This includes making poor decisions and building things
with faults in them. Once we have made a mistake, it is often
difficult for us to find it, so we ask someone else to check what
we have done. A software project is generally quite complex,
with many decisions to be made and many products leading to
the final delivered software. This means that there are lots
of opportunities for people to get things wrong. They may

101

6
Contents

6.1 Introducing the measurers

6.2 Who could be in this
6.2 group?

6.3 Quality viewpoint

6.4 Quality framework using
the EFQM Excellence Model

6.5 Communication between
the measurers and other
groups

6.6 Summary of the group

C H A P T E R

misunderstand each other, or make wrong assumptions, or simply slip up in
what they are doing.

During the software-development life cycle (SDLC), testing and other
quality activities are used to identify and prevent mistakes. So why was our
quality assurance manager frustrated? The problem was that the develop-
ment manager believed that the QA and QC activities introduced quality into
the products and, therefore, that the QA manager was responsible for the
quality. As we saw in Chapter 1, quality assurance activities (QA) are used
for checking processes, and quality control (QC) for checking products. The
output from QA and QC activities is a set of measures of quality. In fact, QA
and QC activities do not change the quality of anything; all they do is to pro-
vide information about the quality of the processes and of deliverables from
those processes, in order that the processes and products can be changed.

6.1.2 Just measurers or also improvers of quality?

Someone recently commented to me that “The test group does improve the
quality by finding faults (early) in the requirements and later in the design
and code. I do not think we spend up to half of the development budget just
to measure quality,” so let us consider that point.

I would say that the test group has contributed to the quality of the deliv-
ered product by identifying faults, and the earlier they find the faults, the
greater the value of their contribution, because of the money and time
saved. But the testers have not changed the quality of the deliverable; the
deliverable does not change when the tests are run or the results analyzed.

The tests have provided information about the quality, that is, the identi-
fication of a number of faults and the areas of the product that meet their
acceptance criteria. If the products are changed or if a suitable workaround
to the defect can be provided, the tests have contributed to reducing failures
during use.

This is true also for other forms of QC, for example, document review.
The process of the review itself gathers information about the quality of the
product under review, but does not in itself change it. However, the docu-
ment reviewers contribute to the quality of the document by suggesting
improvements and by identifying defects.

As a result of the testers’ or reviewers’ measurements, the team as a
whole (customers, managers, builders, supporters and measurers) can make
a decision about how to deal with the faults; they may be removed, or
worked around, or ignored. That decision will be driven by the user-based
quality view (is it fit for purpose?), the value-based quality view (will the
cost of fixing it be less than the cost of leaving it?), and the transcendent
quality view (do we like it?), as well as the manufacturing-based quality
view (are there defects in the product?), and product-based quality view
(does the product have the agreed attributes?).

We spend a large part of the budget on testing and other QC activities to
understand all these quality views; we need information about the number
of defects in the product to give us a view of its manufacturing- and

102 Roles and Quality: Measurers

product-based quality, so that we can form what will be a decision based on
all the quality views.

Similarly, those measurers involved in looking at processes, for example,
auditors, carry out QA tasks that provide information about processes, and a
decision is then made about whether to enforce or change those processes.
QA activities measure both the appropriateness of the chosen process and
how well the process is adhered to. An audit or process review does not, in
itself, change the processes; it simply comments on them. Auditors will also
measure how closely a process adheres to standards and to legislative or
regulatory demands. We hope that by choosing processes wisely and adher-
ing to them, we will prevent people from making mistakes, and, hence, pre-
vent them from breaking mandatory requirements or building defects into
products.

Preventing defects in the products reduces the places where failure can
occur when a product is used, and the process improvement aspect of QA is
an important one. However, the people in this group, while in this group, can
only observe, measure and recommend improvements in the process. It is
the people who actually carry out the work who implement the process
improvements, thus preventing defects.

This is why, instead of calling this group the testers, or the QA group, or
the QC group, I have chosen to describe them as the measurers. This is to
emphasize that their contribution is to provide information for all the groups
by measuring the quality of the software, other products, the processes. The
measurers support decision making and quality improvement.

These measures may be negative; for example, the number of defects in
a product, or the number of times a process was not followed correctly.
Additionally, we might want positive measures; for example, the number of
requirements successfully delivered or the number of acceptance criteria
passed. In Sections 6.1.3 and 6.1.4, I will enlarge on two aspects of QA and
QC that do seem to directly affect improvement.

6.1.3 Defect prevention

QC activities need to be carefully timed. We will see in Chapters 9 to 12 how
QA and QC activities are used appropriately at each stage in the life of a soft-
ware system. Before we even start the software-development life cycle
(SDLC) we need to decide whether we need an SDLC at all. Our biggest mis-
take can be to do the wrong project or to build something we just did not
need.

We will see in Chapter 9 all the activities we need to do before we start an
SDLC and that measurers, whether QA or QC specialists, are vital to this part
of the process. Carrying out QA and QC on the processes and deliverables at
this stage, for example, on the contract for the project, helps us start the right
SDLC, which prevents us from making mistakes later on. The earlier QA and
QC are carried out, the earlier defects are removed. These early defects tend
to propagate through later deliverables; in other words, a mistake in the out-
line of the project aims and objectives, or an omission in the delivery list on

6.1 Introducing the measurers 103

the outline plan could lead to many mistakes in the project itself (Figure 6.1).
In this figure, I illustrate two paths to problems; in path one, we simply do
the wrong project; this one massive mistake leads to all the project activi-
ties and products being defective—a costly misunderstanding. In path two,
although we are working on the right project, we make some mistakes in
defining the requirements, which escalate through the SDLC.

For example, we need a periodic report from the system—(the period
may vary)—but it is documented as monthly because that is given as an
example during a meeting. This affects a number of design choices. The
report is designed to deliver the previous month’s data at the month end.
The system archive and clear-down is designed to match the reporting cycle,

104 Roles and Quality: Measurers

Defects propagation and removal

Start-up

Software
development
life cycle

Design

Test

Build

Route 2: mistakes
made at each
stage in project

Mistakes in one
design lead to
faults in several
products during
build

Product accepted for delivery but complaints.
Costs: meeting and discussion time, customer
motivation, IT team motivation, rework costs,
supplier reputation, deinstallation of system
after use

Product delivered but never used.
Costs: new acquisition project required
supplier reputation lost, customer time
wasted, reduced morale of IT and customer
staff, loss of business, missed opportunities

Route 1: problem
undefined - wrong
project started

Postdelivery

Delivery

Requirements

Figure 6.1 Defects propagation and removal.

so that the previous month's data is archived following the report; only 31
table lines are allowed on the current-month data collection fields. The
designs affect nine programs, so each of them is wrong. Early tests are based
on the requirements and design specifications, so they report no problems,
but the user-acceptance test raises defects in all the programs. The IT team
do not agree that they are defects, because the software meets specification.
The software is accepted for delivery after much argument, but there are
complaints after the first month that the reports can only be done at month
end, and that data is autoarchived following the report so it cannot be used
again. This is fixed, but when one user tries to report after three months,
which is their preferred cycle, the data table cannot hold all the data because
it is only 31 lines long. The resulting costs include meeting and discussion
time, customer motivation, IT team motivation, rework costs, supplier repu-
tation, maintenance to the system, and a recurrence of problems once the
“fix” is in place.

Errors made in defining the requirements for the software solution can
be found early on in the SDLC, by checking the requirements for defects and
omissions immediately after the requirements have been gathered. Remov-
ing defects in the requirements prevents them from being propagated into
later activities and deliverables such as design and build. We will see in
Chapter 10 how different SDLC models encourage QA and QC to be carried
out at different times, with a greater or lesser emphasis on defect prevention
and defect removal.

6.1.4 The Hawthorne effect

One problem with understanding whether our quality measurements cause
improvement or not is the Hawthorne effect. Named after the Hawthorne
works of the Western Electric Company in Chicago, where the phenome-
non was first observed, it indicates that people change behavior if they
know they are being observed, or if they know that a process change is sup-
posed to improve something. One definition of the Hawthorne effect is:

An experimental effect in the direction expected but not for the reason

expected; that is, a significant positive effect that turns out to have no causal

basis in the theoretical motivation for the intervention, but is apparently

due to the effect on the participants of knowing themselves to be studied in

connection with the outcomes measured. [1]

This means that the very act of carrying out QA or QC may change the
quality of the product or adherence to the process because people know
they are being observed. This change can be positive or negative, in my
experience, depending on the maturity of the organization and individu-
als. Some people will take a view that “someone else is going to check
this…” and let their standards slip, whereas others’ pride in their work
means that they give it extra checks themselves before submitting it to QC
or QA.

6.1 Introducing the measurers 105

6.2 Who could be in this group?
Measurers include specialists who spend all their time in this group, and
members of the other groups who take on a measurement role for a particu-
lar project, or carry out measurement tasks from time to time. Specialists in
the measurers group include:

◗ People who audit or check the conformance to and suitability of
processes; their measures are made against process standards—quality
assurance specialists (see quality practitioners in Chapter 2, Table 2.1).

◗ People who measure the quality of the products, including software,
using processes and activities to check for completeness, correctness,
suitability, and adherence to specification—quality control specialists
(see testers in Chapter 2, Table 2.1).

Although many organizations have specialists or teams focused on QA
and QC activities, for example, audit and compliance teams, it is unusual for
the measurement of quality to be left entirely to specialists. One common
reason for this is that there are not enough specialists in the organization to
carry out the work. We will also see in this chapter, and in Chapters 8 to 12,
which describe the life span of software, that different types of checks are
needed at different times. This means that, as required, the customers, man-
agers, builders and supporters may all carry out measurement activities.
These might include part-time or temporary membership in the quality
assurance (QA) teams and quality control (QC) teams:

◗ The QA teams carry out activities that check that teams have selected
suitable processes and are adhering to them. QA activities might
include process review and quality or process audit.

◗ The QC activities include software testing, software inspection, and
product review, and there may be, for example, test teams and inspec-
tion teams.

We all check our own work, and so we all measure quality; but specialist
measurers hold a particular viewpoint of quality. Let us examine that next.

6.3 Quality viewpoint
Both QA and QC tend to focus on discovering defects against specifications
or standards. This means that specialists for these activities favor the manu-
facturing view of quality. As we discussed in Chapter 1, manufacturing-
based quality focuses on the manufacture of software products, that is, their
specification, design, and construction. For specialist QA and QC people,
therefore, quality depends on the extent to which requirements have been
implemented in conformance with the original requirements.

When measurement focuses on faults and failures in products, success is
measured by our ability to follow a process and deliver products against

106 Roles and Quality: Measurers

agreed-on specifications, so the report that “the software was built to specifi-
cation and there are a low number of defects” might lead to a recommenda-
tion to release the system for live use, even if it does not do what the
customer needs.

We can see this reflected in QA standards such as ISO 9000:1994 [2],
and in QC standards, for example, BS 7925-1 [3] and BS 7925-2 [4]:

◗ An audit against ISO 9000:1994 will look for a documented process
and evidence that the documented process is followed. It is concerned
that a contract has been agreed on and met, but not whether that con-
tract describes a suitable product for the customer.

◗ In BS 7925-1, testing is defined as the “process of exercising software
to verify that it satisfies specified requirements and to detect errors.”
Using this definition, we will verify (“is the system correct to specifica-
tion?”), but if we do not take account of the user-based definition of
quality (see Chapter 3, Customers), we may forget to validate (“is this
the right specification?”).

As well as a manufacturing view, many measurers hold a product-based
view of quality. Here, quality is based on a well-defined set of software qual-
ity attributes that must be measured in an objective and quantitative way.
This quality viewpoint is particularly appealing to measurers because it pro-
vides a way of changing concepts which are often ill-defined and amorphous
into neat, measurable acceptance criteria. We can use acceptance criteria to
objectively assess the quality of the delivered product. Rather than reporting
in vague, unquantified terms that “the software appears to be reliable,” we
can measure and report clearly, “The software is 98% reliable when running
continuously over a 7-day period. Recovery time is less than 1 minute at
each failure.” We can use standards such as ISO 9126 [5] to help us define
attributes measurably. These include reliability, usability, security, and func-
tionality attributes. We will see how to do this in Chapter 9.

Most people, and that includes measurers, hold a transcendent view of
quality. As we saw in Chapter 1, this means that we “know quality when we
see it”; our knowledge is based on our experiences, taste, affections, loyal-
ties, and emotions. Unfortunately, this means different people will have dif-
ferent reactions to a product, so it is hard to agree on what is “right.” The
transcendent definition for a particular person will be based on that indi-
vidual’s “taken-for-granted” assumptions. For many specialist measurers,
their transcendent quality viewpoint is strongly attached to a taken for
granted assumption that quality is related only to specification, number
of defects, and product attributes. For these people, unless products and
services can be measured against an agreed-on standard and meet or exceed
that standard, they are inherently lacking in quality. For other specialist
measurers, their taken-for-granted assumption is that a pursuit of defects
(identification, removal, or prevention) and of product attributes (number
and level of implementations) almost regardless of cost or time, must be a
good thing.

6.3 Quality viewpoint 107

A clichéd observation of specialist measurers (and I am one myself) is
that common characteristics of people in the group are pedantry, obsessive
attention to detail, a strongly developed ability to complain, and a delight in
other people’s mistakes. As a group, we can be difficult for others to deal
with and perceived as unhelpful and focused on our own concerns (see
Chapter 2).

So the measurers favor manufacturing and product views of quality and
within those tend to focus on defects and non conformance. At its most
extreme, the quality specialists’ manufacturing-based quality view can be
rigid and not focused on the overall needs of the customers and the organi-
zation. To improve their relationship with the other groups, they must con-
sider the groups’ quality viewpoints. As we saw in Chapters 1 and 2, two
other definitions of quality reflect the views of the people using the software
and those who pay for it. These perspectives are about supporting the needs
of the organization and its stakeholders, within the organization’s con-
straints; therefore, what constitutes “quality” may change over time.

◗ The user-based definition says that quality is fitness for use. It is the
user-based definition that encourages us to validate as well as to verify
the system. The measurers need to find out, “Can people do their
work efficiently and effectively using this software?” This viewpoint is
important to the customers and to the supporters, the two groups
most affected by the software postdelivery (see Chapter 12).

◗ The value-based definition is focused on things that impact on the
running of the business as a whole. Software quality should always
be determined by means of a decision process based on trade-offs
between time, effort, and cost aspects. The measurers need to find
out, “If we release the software now, how much extra will we spend
on support in the first month? If we are a month late, what will it cost
the organization in fines and lost business? Should we release or do
more testing?” Value for money is important for managers and any-
one responsible for budgets. The ROI for the software needs to be pre-
dicted before delivery and measured postdelivery (see Chapter 12) in
order that the organization as a whole can evaluate whether the proj-
ect was worthwhile.

Along with acknowledging the user-based and value-based views of
quality, the measurers must acknowledge that the transcendent view of
quality depends on the individual. The measurers must take into account
the fact that other people’s taken-for-granted viewpoints may well be differ-
ent from their own view. One important point here is to examine the differ-
ent slant that builders and measurers may put on the manufacturing- and
product-based quality viewpoints. As we saw in Chapter 5, builders, par-
ticularly those working in software development rather than other areas of
product build, focus on technical excellence as a means for enhancing their
work. They tend to be interested in the process aspects of manufactur-
ing and in the enhancement of product attributes. They are also on the

108 Roles and Quality: Measurers

receiving end of criticism from the measurers about their processes and their
products, which can cause communication problems (Chapter 2).

Let us look at some examples, looking at one subgroup within the meas-
urers, specialist system testers. These people test software systems, often as
part of an independent group within the project but separate from the
builders. Here are three real remarks I have heard system testers make:

◗ Sam Tester: “We will not test without a written specification.”

◗ Jo Senior-Tester: “If we’re not aiming for zero defects how many do we
want?”

◗ Jim Test-Expert: “We cannot sacrifice quality to cost.”

These views are all correct, yet simultaneously wrong. Let us examine
them one at a time.

“We will not test without a written specification.” Sam Tester needs the
specification in order to draw up tests and expected results for those tests.
Without a written specification, it is difficult not just for the testers to pro-
ceed, but also for all the groups to remember what has been agreed on.
However, simply to refuse to continue until a written specification is pro-
vided is unhelpful to the other groups if they had not expected to provide a
written specification. The pragmatic approach for this occasion might be for
the tester to agree to research the expected results by interviewing the cus-
tomers. The tester then, as part of the measurement process, measures the
cost of late development of the specification, in terms of additional work
done and the number of defects in the build that could have been prevented
had there been a written specification. This can be used to persuade all the
groups to agree on improvements in process for the next project. For
improvements to be accepted, the tester must provide the information
showing how the other groups’ quality viewpoints are met. This means that
measurements must be changed into information that addresses those view-
points, to make it easy for others to buy into the suggestion for change. For
example, does the software do what the customers and supporters require,
or does it stray from a “fit-for-purpose” model? Is it missing things that are
needed? From the managers’ viewpoint, what was the cost of exceeding “fit
for purpose” by adding unnecessary things, and what was the cost and
impact of defects found late that could have been identified in a written
specification? When talking to the builders, focus on their transcendent
view of quality as technical excellence (see Chapter 5), and the aspects of
the manufacturing and product-based viewpoints that would be enhanced
by a written specification. Would a clearer definition of what is required
allow them to concentrate on building technically excellent solutions that
will be more easily accepted, thus reducing boring rework? In Chapter 9, we
will look at what we can do before we start to build software, to provide a
clearer definition of what is required. In Chapter 12 we will look at evalua-
tion of delivered systems.

“If we’re not aiming for zero defects how many do we want?” Jo Senior-
Tester is concerned that if the testing has not uncovered all the defects in the

6.3 Quality viewpoint 109

products, and that these defects have been corrected, the delivery will be of
an unacceptable quality. Also, testers know in their hearts (transcendent qual-
ity) that they want to deliver a product that is perfect. Their argument is, “If
we are not looking for perfection, how flawed is OK? With products and
services outside software, we don’t expect defects, do we?” In fact, customers
and supporters are not bothered by defects as such. What they want to avoid
is failures. By this I mean that the product not behaving as they expect it
should. They will also differentiate between high and low impact failures.
They need the products to be fit for purpose rather than perfect, and the soft-
ware defects may not lead to high impact failures. The tester needs to work
with the customer and supporter to define acceptance criteria that encapsu-
late a “fit-for-purpose” view. We will see how to do this in Chapter 9.

“We cannot sacrifice quality to cost,” explained Jim Test-Expert. This
comment is a continuation from the last one. The tester is concerned that the
other groups are only interested in the cost, at present, but that later there
will be a backlash, possibly directed at the tester, if the delivered products are
disappointing. From a manager’s viewpoint, cost and quality are inextricably
linked in the value-based view of quality. For the customers and supporters,
too, the budget they are prepared to spend must be balanced against their
wish list. Builders, conversely, can be fixated on delivering additional attrib-
utes and see that as adding value and quality. Testing these additional attrib-
utes may be a problem for the tester if it adds unplanned scope and cost. If
cost is the limiting factor in this project, the tester needs to explain what test-
ing is possible within the budget, what testing cannot be done, and the risks
associated with not doing that testing. In some projects, the goal is to deliver
the minimum that will allow the customers to proceed—quality in that case
is closely tied to fit for purpose and value for money. In other projects, the
goal may be reducing risk in a safety-critical situation—quality in that case
may be tied to product attributes such as reliability and to manufactur-
ing goals such as defect prevention and removal. If, as testers, we believe
quality will be impacted, we need to examine “what aspect of quality is
now adversely affected and could be improved by increased spending?” In
doing this, we need to not just focus on process, defects, and attributes
(manufacturing and product views) but also to provide value, user, and tran-
scendent examples of quality loss (see Table 6.1). The precise questions to
use depend on the relationships between the groups, so these are just exam-
ples. Using questions allows each group to arrive at its own conclusion, based
on its own quality view. As above, defining “fit-for-purpose” acceptance cri-
teria will help prevent this problem, and in Chapter 9 we will also see how to
arrive at a common understanding of risks and constraints across the groups.

When considering the quality costs and the impact of QA and QC
activities on the project, it is important to remember that quality activities
can in themselves damage quality. This idea surprises and offends some quality
practitioners but it must be faced. Traditional quality economics supports
the testers I described above because it assumes that all quality activities are
inherently a “good thing.” Yes, there is a trade-off between the cost of
the quality activities and the cost of the failures that they may prevent;

110 Roles and Quality: Measurers

however, the possibility that quality activities can detract from a project is
not considered. This view is now being challenged [6] and the distinction is
sometimes made between quality costs (activities that contribute to the fit-
ness for purpose) and quality losses (activities that cost money but make no
contribution to the fitness for purpose of the product). Adopting this mind-
set goes some way to wedding the value-based quality definition to those
quality viewpoints normally held by measurers. In one organization, a team
of measurers were introduced to the concept of “quality loss,” and on exam-
ining their activities found several examples of value-destroying quality
activity. All of the following are failures in efficiency and effectiveness that
colleagues and I have seen in more than one organization:

◗ Inspections and other document reviews for which participants have
not prepared. These take time but have a low defect-detection rate.
Just “having the inspection” in order to get the sign-off against the
quality policy does not improve the quality of the product.

6.3 Quality viewpoint 111

Table 6.1 Tester Considering Other Viewpoints for Quality Impacts

Group and
Quality View

Possible Routes into
a Discussion with
This Group Example Questions

Customer
User-based
quality view

Find out the
impact on fit for
purpose if things
go wrong

What is the impact on your work if this goes wrong?

If this feature is not available, can you work without it?

How much extra time would that take?

Where would you like testing to concentrate?

From what you have said, it looks like if we find problems they
will have X impact. Do you agree?

Supporter
User and
product-based
quality
view

Find out the
impact on fit for
purpose and
important
attributes if things
go wrong.

What is the impact on your work if this goes wrong?

If this attribute is not available, can you work without it?

How much extra time would that take?

Where would you like testing to concentrate?

What is the minimum level of (reliability/security/…) that is
acceptable?

What is the postdelivery support budget?

From what you have said, it looks like if we find problems they
will have Y impact. Do you agree?

Builder
Product- and
manufacturing-
based quality view

Find out the
likelihood of
different areas
going wrong

Which attributes and areas would you like testing to concentrate
on?

Which areas were hardest/easiest to build?

From what you have said, it looks like I might find it useful to
look at areas A, B, and C. Do you agree?

The software has just done this. Is that what you would expect?

How difficult would it be to make changes in this area?

Manager
Value-based quality
view

Identify the cost of
things going
wrong and the
cost of
repair/support.

What budget do we have for support after going live?

The impact of not testing these areas is X additional time (hence
cost) for the customers and Y additional time (hence cost) for the
supporters. The likelihood of them going wrong is Z, so the risk of
them going wrong (likelihood times impact) is [Z * (proportion of
X + proportion of Y)].

◗ Project audits carried out by staff who are not politically empowered.
These require significant time investments from project teams as well as
the auditors, and consistently fail to escalate significant noncon-
formances from standards. They may even make the situation worse
because the political status of the auditors may be used as a reason to
prevent measurements being taken.

◗ User-acceptance testing directly replicating the tests carried out in sys-
tem testing (at cost), while not identifying additional defects, instead of
carrying outtests at different levels, each having their own purpose and
focus.

◗ Practitioners may be trained in quality methods that they consider to
be only theoretically valid, and thus they may not implement them
on their projects. In one organization, I found that the senior manage-
ment had sent teams on a test techniques training course as a “treat.”
The view was that if they had some (any) training, this would keep
them quiet for a while and improve their motivation, but there was
no intention to allow any changes in working practice as a result of
the training. As a result, the teams were more demotivated following
their return to their desks because they were not allowed to apply the
techniques they had learned. Additionally, a large proportion of the
year’s training budget had been used.

Carrying out this type of exercise helps eliminate costly but ineffective
activities and it helps the measurers evaluate their own activities through
the value-based quality definition.

It is important to note that, because this group is so widely supple-
mented by recruits from all the other groups, many individuals hold wider
quality views. The important thing for each individual is to consider which
quality view they are favoring, and then consider the other views:

◗ Some people in this group work mainly in user-acceptance testing and
will support the user-based view of quality. They may be closer to the
customer view and need to take extra time to consider value-, prod-
uct-, and manufacturing-based views.

◗ An increasing number of measurers are test automation specialists; they
can be closer to builders in outlook. They need to make sure that they
do not forget the user- and value-based views.

◗ Quality managers and test managers may take on aspects of the manager’s
group, and be more focused on ROI and value for money, so they
should make an additional effort to remember the user-, manufactur-
ing-, and product-based views.

◗ The work of audit and compliance groups might take on aspects of the cus-
tomers and/or managers groups and consider fit for purpose and ROI as
well as compliance to standards and regulations, broadening their view
from manufacturing defects to user and value views.

112 Roles and Quality: Measurers

◗ If the testers look after the customer help desk as well as testing prod-
ucts, which does happen in some package suppliers, they become
more focused on supporter activities during installation and postdeliv-
ery, and will be trying to consider user- and product-based quality as
well as manufacturing-based quality.

6.4 Quality framework using the EFQM Excellence
Model

6.4.1 The EFQM Excellence Model and the measurers

The measurers are, almost by definition, very interested in frameworks that
include defined processes, standards, and specifications for work, includ-
ing their own. Their measurements take place against that framework
of processes, standards, and specifications. Quality assurance standards,
including the ISO 9000 series, can be used to define the QA and QC
processes as well as the organization’s overall processes. There are also spe-
cific professional bodies, standards, frameworks, and best-practice guides
for all aspects of QA and QC work. Some sources for these are listed in
Appendix A, but you should remember that there are others, specifically
country-based and industry-sector-based ones. I have chosen these exam-
ples for useful onward links as well as useful information. I would particu-
larly recommend Stuart Reid’s paper comparing test standards [7] and a
BSI paper putting a number of software standards into a Software and Sys-
tem Quality Framework (SSQF) [8]. The BSI paper sets the software and
systems standards within an organizational model taken from the ISO
9000:2000 [9] family of standards that we looked at in Chapter 1, but it
compares this to the EFQM Excellence Model [10] and other quality frame-
works, some of which are industry specific. It shows how a framework of
standards can be used for the development and delivery of software, and
places these within both a technical framework and an enterprise frame-
work. It also sets out a measurement framework, including the QA and QC
activities. For QA specialists, whether carrying out process reviews, audit-
ing or making process improvement suggestions, this paper is a useful start-
ing point. Reid’s paper concentrates on standards that particularly relate to
QC and, within that, software testing. This paper is good reading both for
QC practitioners, whether testers or reviewers, and for QA specialists who
are auditing or reviewing the test process.

When designing the quality framework for a particular set of measurers,
it is essential to consider the quality framework for the customer (Chapter
3). The customer’s goals inform their quality framework, and, in turn, this
should inform the measurers’ quality framework, and also the teams’ and
individuals’ personal objectives and targets.

In Chapter 1, we looked at the EFQM Excellence Model [10] and how it
is divided into nine parts: five enabling criteria and four criteria for measur-
ing results. In Section 6.4.2 we will look at how the EFQM Excellence

6.4 Quality framework using the EFQM Excellence Model 113

Model enablers could be interpreted for measurers, and in Section 6.4.3 we
will look at measurers’ results. Remember that this model is based on the
fundamental concepts of excellence we discussed in Chapter 1, and that
equivalent models such as the Baldrige model are available.

6.4.2 EFQM Excellence Model enablers for the measurers

6.4.2.1 Leadership

In order that the measurers are supported in their role, the organization will
require leadership. As we saw in Chapter 1, project managers provide lead-
ership to their projects, drawing on the lead they are given by the organiza-
tion’s board and management. Measurers particularly require leadership
support for their activities, for two related reasons:

◗ Because the measurers do not build products, their activities may not
be seen as “adding” anything.

◗ Because the measurers are often messengers bringing bad news, their
contribution is seen as negative.

This leads to comments like the one I heard from a programmer once: “I
don’t like testers; all they do is break things!”; and from a senior manager
talking about a colleague he hoped would leave (!), “He doesn’t contribute
anything useful—let’s put him in the quality group until he retires.” Leaders
in the organization and in the project must support the measurers’ activities:

◗ By making the measurers’ process and product measures clear to all
parties;

◗ By helping all the groups to agree on a shared quality viewpoint.

6.4.2.2 Policy and Strategy

Policy and Strategy in an organization set down what is expected. For the
measurers, an organization would need to have policies that lay down the
basic rules for approaching these activities:

◗ A QA policy, including audit and process review;

◗ A QC policy, including test, inspection, and product review.

Strategies and high-level plans would be needed for the organization
and, perhaps in more detail for particular programs of work or projects, for
both QA and QC activities. The strategies and overall plans might include:

◗ An audit plan for the organization, including the approach, responsi-
bilities, and a schedule of dates for audits;

◗ A strategy for testing for the organization or for a program, describing
the risks to be addressed by testing, the approach, the test stages
required in each project, and the completion criteria for the testing;

114 Roles and Quality: Measurers

◗ A review plan for a particular project, listing the products to be
reviewed, the type of reviews required for each product, the goal of
each review, and the entry and exit criteria for the reviews.

I have not attempted to give the full list of strategies and plans, nor have
I suggested complete contents lists. The specialist measurers should have
their framework in place, including tailored standards based on ISO and
IEEE standards (see Appendixes A and B for sources). Members of other
groups should expect to support the use of those standards.

6.4.2.3 People

Specialist and nonspecialist measurers—skill and aptitude mix. The people
who carry out measurement activities need to be selected for interest and
aptitude in the area, but will require training in the QA and QC activities.
When we examine the measurers group, as well as the specialists, we see
people entering and leaving the group, carrying out QA and QC measure-
ment activities. This means members of all groups will need training and
support in these areas (Table 6.2).

Aptitude and interest are very important, but if we list what we might
expect from people in this group, we see that it is most unlikely that a single
individual will have all the aptitudes and skills we require:

◗ IT skills, for example, analysis and design skills, data modeling,
coding;

◗ Knowledge of software engineering processes;

◗ Knowledge of QA processes, for example, audit, review, problem root-
cause analysis;

◗ Business/industry sector knowledge;

◗ Specific software package knowledge;

◗ Knowledge of QC processes, for example, test design, inspection,
review;

6.4 Quality framework using the EFQM Excellence Model 115

Table 6.2 QA and QC Training Requirements Across the Group

Group QA/QC Activities That Require Support and Training

Measurers Audit process, QA review process, document reviews (e.g., inspection, peer review,
walkthrough, test design techniques)

Builders Document reviews (e.g., inspection, peer review, walkthrough)

Tests [e.g., component-test design and execution (“programmer testing” or unit testing),
integration test design and execution]

Customers Document reviews (e.g., inspection, peer review, walkthrough)

Tests (e.g., acceptance-test design and execution

Supporters Document reviews (e.g., inspection, peer review, walkthrough)

Tests (e.g., acceptance-test design and execution)

Managers Document reviews (e.g., inspection, peer review, walkthrough)

Management reviews (e.g., plan reviews, progress reviews, examination of test-
management reports and metrics)

◗ Test tool experience;

◗ Project management, planning, scheduling;

◗ Enthusiasm;

◗ Attention to detail;

◗ Tact;

◗ Firmness;

◗ Ability to negotiate;

◗ Ability to generate ideas;

◗ Ability to work under stress.

And you can no doubt think of others!
For this reason, it is best to build up teams of people with complemen-

tary skills. For example, Lloyd Roden, in his 1999 EuroSTAR presentation
[11], identified four types of testers, with different styles of work (Table
6.3). These styles are all needed in a successful tester, but one individual is
very unlikely to exhibit all these characteristics. So the QA and QC teams,
including the test teams, need to have a mix of people.

Using the skill mix effectively. There are good reasons to organize the QA
and the QC teams to use different personality traits effectively. This is both
to allow individuals to shine in roles that allow them to use their skills and
preferences, but also to match the team members’ communication styles to
their audience. In one organization I visited, the IT quality assurance group
decided to have two groups of people in its QA review and audit team. The
first group consisted of people chosen because they were known to be
knowledgeable and experienced, and who were well liked and had a natural
tendency to be helpful. This group carried out process reviews and audits
with the project managers, agreed on lists of project risks, and reported a
set of recommended improvements to processes. They were characterized
as the “village bobbies” (old-fashioned local policemen, whose role was
to patrol, advise, and gently admonish). Their objective was to “support
projects and implement standards,” and the consultants’ unthreatening
approach meant that projects invited them in. The second group were much
fiercer, and their role was to work on projects that had refused the first
group's help and were now failing or at risk. They were charged with

116 Roles and Quality: Measurers

Table 6.3 Roden’s Tester Type Matrix (Partial)

Pragmatist Pioneer

Efficiency

Results

Tasks

Change

Risks

Involving others

Analyst Facilitator

Accuracy

Proof

Standards

Networking

Consensus

Status quo

Source: [11].

enforcing processes and escalating problems on projects at risk of failure.
The IT quality manager commented:

One of the key features of our quality approach is recognition that (a) proj-

ects are very heterogeneous, thus standards are only a template; (b) we need

to empower practitioners to optimize standards. The result is the recogni-

tion that an effective IT quality system is dynamic; this means that we recog-

nize both adherence and adaptive quality controls. In one audit, the

majority [of deviations from process] were deliberate, based upon consid-

ered assessment of the projects’ circumstances. Was the project wrong?

Absolutely not. When taking on QM, my second-highest issue was that proj-

ects are not tailoring development standards to meet their needs; rather these are

interpreted as an inflexible rulebook. This means that projects are not realizing the

risk mitigation predicted from adopting a methodology. Most of [the team’s] time

is spent selling the benefits of standards, then coaching the practitioners on

them (point of need, desk-based) … helping the teams to tailor the stan-

dards to their circumstances.

Team organization. One question I am often asked is, “How should the QA
and QC teams be organized?” Unfortunately, this is one of those questions
that does not have a single correct answer. Some possibilities are shown in
Table 6.4. Generally speaking, the greater the risks associated with things

6.4 Quality framework using the EFQM Excellence Model 117

Table 6.4 QA and QC Team Independence

Review Team Comment

Specialists—external (e.g.,
third-party testers,
third-party inspection
team, external auditors)

Effective at finding defects against defined process or specification, objective,
independent, focused on their customer (may not be project team’s customer).
Customers and managers will listen to external bodies.

May cause fear. May not know enough about the organization. May be seen as
an obstacle. Problems may be disguised or hidden.

Independent
specialists—internal (e.g.,
test team or audit
reporting to quality
director rather than
development director)

Effective at finding defects against defined process or specification, objective,
independent, focused on their customer (may not be project team’s customer),
understand the organization’s quality drivers, voice on the board.

May cause fear. May not know enough about the project. May not understand
the project’s quality drivers. May be seen as an obstacle. Problems may be
disguised or hidden. Quality may be seen as owned by the QA/QC team.

Specialists—advise peer
group teams how to carry
out QA and QC. Carry out
spot checks on the QA/QC.

Only a small group of specialists needed. Quality owned by the build teams.
Knowledge transfer.

May be not so effective or efficient as specialists have to learn new techniques.
Builders may take a less objective stance in their QA/QC activities.

Peer group (e.g.,
walkthrough or test team
reporting to the
development manager).
One project audits another
project.

Effective at finding defects against defined process, also at making process
improvement suggestions. Understand the problems, “in same boat,” allies, will
review each other.

Less objective. Less independent. Can be difficult to report defects in peer’s
work. Needs strong leadership and support from managers, and from an
independent QA/QC specialist group.

Buddy checks author’s
work; team leader checks
team following processes.

Cheaper than a team, and quicker, but less likely to find defects. Not as effective
or objective. Cheap. Team leaders should be “doing this anyway.”

Author checks own work Cheap for low-risk products but often not effective if there are any risks to
contain.

going wrong or mistakes being made, the more likely we are to use an inde-
pendent QA or QC team.

Typically, we find that different levels of independence are required
depending on circumstances:

◗ The higher the risk, the more independent and specialist QA and QC
teams will be appropriate.

◗ At different stages in the project, different levels of independence may
be useful. For example, using specialist testers to help the developers
design component tests should increase effectiveness. If the develop-
ers run the tests this keeps an efficient test run/debug cycle at this
stage, which could be followed by independent specialists running
integration and system tests.

Motivation and appreciation. When Warden and Nicholson carried out
their motivational study [12] (see Chapter 2), one of their key findings was
how very demotivated software quality practitioners were. It seemed to be,
on examining their roles and their specific job design (the task mix and the
opportunities for personal growth), that many of the interviewees had jobs
that swung between being excessively stressful and very boring. Key points
raised by Warden and Nicholson from the survey results include:

◗ Testers reported that they used a low variety of skills and could be
confined to test execution rather than being able to spend time on test
design and problem analysis.

◗ QA staff reported that they performed too many control tasks and not
enough that create improvements.

◗ QA staff reported they did not get enough direction from management.

◗ Both QA staff and testers reported they did not get feedback from their
jobs; it was difficult to tell if their efforts had made a difference.

◗ Both QA staff and testers reported that they did not get positive feed-
back from their colleagues, whether this was people from the customer,
builder, manager, or supporter groups, and this was considered to be
because they were the bringers of bad news.

◗ QA and QC staff had lower pay levels and less job security than other
IT practitioners.

This finding is borne out by the BCS Industry Structure Model [13],
which describes a career progression for various IT roles. The developer
roles have a career progression to a higher level than testing roles, yet I can-
not think of any real reason why a test specialist, provided qualifications, apti-
tude, and experience levels are equivalent to a development specialist, should not
also aspire to an IT director role. Notice, however that QA/audit roles are
shown to have a higher progression toward management than QC/testing
roles, perhaps because a QA/audit view looks at process rather than specific
products, and is focused toward improvement rather than toward defect

118 Roles and Quality: Measurers

identification. I am increasingly hearing testers talk about defect prevention,
indicating, perhaps, that there is a move toward QA and away from QC by
some individuals. Despite the career progression issues, most quality practi-
tioners I meet, whether QA or QC specialists, are passionate about their
work; they may feel unappreciated but they are filled with a belief about the
importance of what they do and what they want to achieve.

6.4.2.4 Partnerships and Resources

As we saw in Chapter 1, partnerships cover people outside our team, our
project, or our organization with whom we need to exchange information
or cooperate in some way. Resources are the things like IT environments,
information, and equipment that we need to carry out our work.

For measurers, there are partnerships with other measurement teams,
both inside and outside the organization. For example, if I am working as a
test manager, I find it useful to meet the audit and compliance teams to see
if they have particular areas of interest in the testing. Similarly, I would
want to find out what other test managers are doing. This might include dis-
cussions with testers working for other organizations on the same project to
see where they are concentrating their testing and whether we are compet-
ing for resources. I might also look at the output from inspections/reviews
and liaise with those teams in the same way. In each case, we are sharing
information to ensure that our work complements the other groups’ work
rather than repeating it.

Resources for measurers include IT resources such as tools and test envi-
ronments. These are often scarce. I remember arriving on one project at the
point at which we had intended to use a particular test environment. Hav-
ing been assured by the organization’s IT and business management that
ours was the most critical project and that nothing would stand in our way,
we were surprised to find several other projects vying for the environment,
all of whom had also been told their project was the most important. I
would recommend liaison across the organization as well as within the proj-
ect to make sure that there is no conflict.

6.4.2.5 Processes

Measurement framework. These are the processes specific to the measurers,
not the processes and products they measure. These are the tasks, tools, and
techniques that improve software quality by improving the way quality
measures are collected and analyzed, and may be divided into two groups:

◗ QA audit processes, used to check adherence to processes;

◗ QC review and test processes, used to check products such as docu-
ments and code for defects

In the BSI SSQF [8], a group of standards are noted under the measure-
ment framework, including standards for the software measurement process,

6.4 Quality framework using the EFQM Excellence Model 119

audit, software product evaluation, software product metrics, problem
resolution, process assessment, and process improvement. You will find
standards bodies listed in Appendix A. Standards are important—not only
because they should encapsulate best practice, but also because adherence to
standards should give our customers some degree of assurance about how
we have carried out work. However, they can be quite dry reading, and so
you may prefer to refer to a textbook at first. There are a number of good
books about QA and QC processes available; you will find a few of them
listed in the selected bibliography at the end of this chapter. I am not going to
explain the steps through the processes in this book, instead, I am going to
concentrate on how to carry out the processes in a way that enhances team-
work and quality.

Measurement and improvement. One key point about these measurement
processes is that they encapsulate the idea of improvement; not just of
the processes and products being measured but also of the measurement
processes themselves (Figure 6.2). Measurers must lead by acknowledging
their own mistakes and improving their own processes if their suggestions
for improvement to other people’s products and processes are to be well
received.

120 Roles and Quality: Measurers

QA process QC process

Project process

Request feedback on QC processes
Identify to QC processesimprovements

Identify product defects
Suggest product improvements
Suggest process improvements

QA of QC processes
QC of QA output

Quality measurements
Feedback

Improvements,
suggestions,
and feedback

Request feedback on QA process
Identify improvements to QA process

Identify process nonconformances
Identify process problems
Suggest process improvements

Figure 6.2 Measurement processes include improvement.

6.4 Quality framework using the EFQM Excellence Model 121

Table 6.5 Rules of Thumb for QA and QC Activities

It is the product or the process we are
assessing and measuring, not the people

Try not to make it personal; check whether you have any
personal baggage you are taking into the activity—you are
not supposed to have favorites or be out for vengeance! If
you have strong personal feelings that you cannot overcome
(such as love or hate), maybe some else should do it instead
of you.

Before the activity starts, it should be
explained to anyone who is “on the
receiving end” and not familiar with the
activity

Why, how, who, where, what?—“Hi, I just wanted to
introduce myself. Your manager may have said that I’m
auditing this project to look at configuration management
processes. What I’ll need to do is visit you sometime this
week to discuss what you do and to look at some examples.”

The goals, rules, and plan for the activity
should be clearly communicated to all
the parties

Why, how, who, where, what?—“As we agreed at the start
of the project, I’m going to be auditing your area in the next
few days, in order to check adherence to configuration
management standards. This is nothing to worry about; what
we check is whether the process you use is suitable for your
project. We will want to pick up your good ideas to share
them with other teams, and we may be able to suggest some
improvement ideas to help you. I’ll need to interview some
people and I’ll need to look at the directory contents.”

During the activity, collect and classify
information, openly

During the activity, the measurers collect information, and
this should carefully and clearly documented, differentiating
between fact, interpretation, and perception (see Chapter 4).
Typically, I make handwritten notes, or you could use a
handheld tape recorder, and enter them into the logging tool
or type them up immediately on concluding a session or each
evening, if it is a several-day activity.

Use the interviewee’s jargon, not our own An example when auditing test processes is that if you ask a
nontester, “Do you use the V-model?” they will probably say
no, but if you ask them, “Do you review requirements before
you start design?” they may well say yes. As people may not
know the names of standards and processes, ask them
questions about what they do, not what they call it. (If you
want to know about the V-model, see Chapter 10.)

Find some positive and some negative
things to say

There will always be at least one positive point you can make
but, at the same time, everyone appreciates some
constructive criticism.

After the activity, give feedback quickly After the activity, immediate feedback should be given to all
the authors and participants on the findings and they should
have a chance to comment and add facts, interpretations,
and perceptions.

Get feedback from others Feedback is requested from the authors and participants on
the activity—how could it be improved and what would
make it more useful to the authors and participants? Facts,
interpretations, and perceptions are logged about the
activity.

Make sure people know the findings This might be a detailed catalogue report, an overview
management report, or simply access to a logging tool such
as is used for test findings, but if the points logged so far are
a “good enough” report, I might not write anything extra; I
will make sure everyone who needs to know about the
finding does know.

Monitor the outcomes—what happened
as a result of the activity?

Monitor what actions were taken and why. This generally
means follow-up conversations with all the interested
parties.

Always ask other people to QA/QC
our QA and QC work

“If it’s sauce for the goose, then it’s sauce for gander,” as my
grandmother used to say. Showing that we also need help
will encourage others to receive help.

Whether we are planning to carry out QA processes such as audit or QC
processes such as document review and testing, we should remember some
simple general rules of thumb. Table 6.5 shows my rules of thumb. I do not
always keep to them (it depends on circumstance), but they are my mental
start point and checklist. The specific QA or QC process might be, for exam-
ple, a document review, executing some testing, or carrying out an audit, so
in the table I have called it the activity for brevity and to distinguish it from
the product or process being assessed.

There are times when these rules of thumb do not apply or apply differ-
ently. As we saw above, we may need to follow up some gentle advisory
reviews with a harsher audit if risks are escalating and teams are not
responding to suggestions. We would also see a difference in emphasis in
different types of QA and QC activities:

◗ In an external audit for compliance to a certification, the timing, rules,
and goals for the audit would be set by the external body, and the
conduct of the audit is very strict, with minimal feedback.

◗ In an internal audit or a QA process review, we might want to loosen
the rules and allow discussion and information exchange. I have
found this especially useful with peer reviews of processes—getting a
couple of project managers or business analysts from different areas to
talk to each other can be a great experience for both and a fine way to
share good practice. I remember that in one organization, the consen-
sus during the audit training was that just doing an ISO 9000-style
audit [2] was not helpful; what the teams wanted was to share ideas
for improvement, not just to look for compliance to an external
standard.

The reporting process. One key process for all measurers is the reporting
process. Measurers gather information about processes and products and
need to pass this to other people in a way that will be acceptable and under-
standable. Good information design is vital; it is easy to hide your message
so that it is ignored or misinterpreted. However well you have designed
your audit or test process, however well you execute the process, if your
results are ignored you may as well have not bothered doing it. Reports are
the managers’ deliverable to all the other groups, and the information that
the measurers provide is vital for making these reports an accurate reflec-
tion of the quality of services and deliverables. In Chapter 4, I look at some
aspects of report design that managers and measurers should consider when
setting up reporting for QA and QC. When deciding what to report, do not
collect information for the sake of it. One mistake many people make is
reporting either on what has always been reported without questioning
why, or only reporting on information that is easy to collect. As measurers,
we need to reflect other quality views in our reports as we saw in Table 6.1.
Also, be prepared to report bad news as well as good news. In my experi-
ence, people want to hear the bad news; what they don’t want is to get it
when it is too late and without any ideas for improving the situation.

122 Roles and Quality: Measurers

6.4.3 EFQM Excellence Model results for the measurers

6.4.3.1 Customer Results

Customer Results are the measure of the effect we have on our customers.
Who are the measurers’ customers? In fact, as well as the customers for the
software itself, all the groups are customers of the measurers: the managers,
the builders, and the supporters. Measurers should look at what the EFQM
Excellence Model [10] refers to as customer perception results and customer
performance indicators. Perception results are measured externally; we ask
the other groups for their views. Performance indicators are measured inter-
nally; what actually did other groups do? Both measures are needed so that
we see the difference between “we think you are doing a great job” and
actually being invited back for new projects. In one organization, the head of a
new QA group said to me, “I’ll know we’ve succeeded when the managers
come to me to ask for audits.” Examples of the type of results that could be
measured are shown in Table 6.6.

6.4.3.2 People Results

In this case, the People Results measure what the measurers think about
themselves. We saw in Section 6.4.2.3 that Warden and Nicholson found
two groups within the measurers to be demotivated. The use of a sophisti-
cated and proven measurement technique such as the motivational survey
process used by Warden and Nicholson allows a much greater depth of
understanding of people’s motivation and of how to improve this. As with
the customer results, EFQM Excellence Model people results are divided
into two groups: the perceptions and the performance indicators. Examples
of the type of results that could be measured are shown in Table 6.7.

6.4.3.3 Society Results

For the EFQM Excellence Model, society means society at large, and
although we might want to measure this for the organization, we could also
interpret it for a particular project as the wider organizational culture within
which the measurers work. Again, we consider perception and performance

6.4 Quality framework using the EFQM Excellence Model 123

Table 6.6 Customer Results—What the Other Groups Think of Measurers

Example of Possible Measures

Perceptions—external to the
group—surveys, interviews,
compliments, and complaints

Have the measurers got a good image?

Do other groups report that they find the measurers easy to deal with (for
example, are they helpful, flexible, honest, and proactive)?

Are the measurers seen as reliable, providing good value, providing a good
service?

Performance indicators—
measurement of outcomes

Do we get asked back in for new projects?

Are people proactive in coming to us for help?

Are our reports usually accepted?

Do other groups complain about our work?

indicators. Examples of the type of results that could be measured are
shown in Table 6.8.

6.4.3.4 Key Performance Results

The EFQM Excellence Model divides key performance measures into two
areas: financial and nonfinancial measures. There was a big debate among
delegates at the EuroSTAR Conference in 2002 about how to measure
return on investment in testing, and it quickly became apparent that nonfi-
nancial as well as financial costs and benefits needed to be measured. Exam-
ples of the type of financial and nonfinancial results that could be measured
are shown in Table 6.9. I recently asked a manager in a large IT organization
in what ways his testers could improve their services to the organization. His
response was that he wanted not just improved technical skills—“more bugs
found”—but also an improved understanding of the financial drivers for the
organization—“will this make us money?”

124 Roles and Quality: Measurers

Table 6.7 People Results—What the Measurers Think of Themselves

Example of Possible Measures

Perceptions—external to the
group—surveys, interviews,
compliments, and complaints

Has a motivational study provided positive feedback?

Are measurers satisfied with their career path, rewards?

Performance indicators—internal to
measurers group

Does the measurers group match up to the required qualifications
and competencies? For example, do they have appropriate BCS
qualifications [14]?

What are absenteeism and sickness levels compared with other
groups? Are audit staff showing a different absence pattern to
other staff?

What is the level of staff turnover compared with other groups and
do people want to be recruited into this group? For example, if we
advertise a document inspection course internally, is it over- or
undersubscribed?

Table 6.8 Society Results—How the Measurers Relate to Society

Example of Possible Measures

Perceptions—external
to the group—surveys,
interviews, compliments,
and complaints

Are the measurers seen by the organization and
wider society as acting ethically?

Do the auditors and testers check that the systems
act properly with regard to health risks, safety,
hazards, and the environment?

Performance indicators—
internal to measurers group

Has the test group won any accolades, for example,
for paper- and energy-saving initiatives, in line with
corporate initiatives?

Has the audit group checked that certification and
clearances with external authorities have been
authorized and cleared properly?

6.5 Communication between the measurers and other
groups

We will see in Chapters 8 to 12 that measurers are involved in the whole life
span of a piece of software, from its conception, through the software-
development life cycle (SDLC), during delivery, and postdelivery until
decommissioning. We will see that some of the SDLC models encourage
measurer involvement and other models do not.

First, let us think about what it is like to have your work tested,
reviewed, or audited. If we think about people’s feelings, we can see that
communication before, during, and after a QA or QC process is very impor-
tant. People are often apprehensive if their work is to be examined by other
people and, therefore, can become defensive.

Here is a story from a colleague about interrelationships between some
measurers and a group of builders.

One of the main risks that I raised was that mutual distrust between

groups—particularly business analysts and the test team—was inhibiting

productivity, and until addressed would militate against improvement. The

6.5 Communication between the measurers and other groups 125

Table 6.9 Key Performance Results—Financial and Corporate

Example of Possible Measures

Financial What is the return on investment (ROI) for the audits we have carried out this year (cost
of audits, number of noncompliances detected, predicted failure costs of noncompliances)?

What is the cost–benefit ratio of the system-testing activities, for example, cost of running
the system test team, against predicted cost of failures if testing had not been done? (The
benefit is the money saved by doing testing.) Compare with the cost–benefit ratio if testing
and other QC activities had been carried out earlier. Consider quality losses.

Nonfinancial Number of projects that request process reviews, and the size of these projects.

Cycle times for testing and for document review; how quickly do the builders get feedback
on their products and how accurate is that feedback?

Innovation by the measurers (e.g., new techniques to enable faster implementation of
systems to support time to market with new products).

Table 6.10 Some Measurers and Builders Indulge in Bad-Mouthing Each Other

Person Their Comment

Test manager “The problems in the project are caused by the poor quality specifications.”

Business analyst 1 “The specification defects arise because the testers won’t review our
specifications.”

Tester 1 “I would never speak to a business analyst!”

(When asked why she did not highlight defects in the specification.)

Tester 2 “It’s so frustrating—the analysts think we’re a waste of space. It’s the way that
others carry on.... It reflects badly on me.... They don’t see what I do.”

Business analyst 2 “The testers are the problem—we have no idea what they do. They are
over-resourced and don’t have the right skills.”

Tester 3 “The business analysts don’t do anything—they’re lazy.”

Business analyst 3 “What does the (lead tester) do? ... plan his holiday, I think.”

comments I got from interview sessions were revelatory [see Table 6.10].

Neither group had any awareness of what the other group was actually

doing; all were frustrated with the situation.

Is the test manager right? Are the problems in the project caused by poor
quality specifications? I do not think so; the poor quality of the specifica-
tions is a symptom and not a cause. The problems here are caused by dis-
trust and poor communication. Once test execution had started, my
colleague’s pessimism about the outcome proved to be well founded: “Dur-
ing test execution, 50% of UAT conditions generated an error and 50% of
these were specification defects.”

My colleague also observed that the dissonant relationships were a big
impediment to delivery:

The most amazing manifestation of this was in how defects were resolved.

The business analysts and testers sat together in an integrated team but

didn’t interact. Testers entered questions for the analysts in a spreadsheet,

for example: Is this word in the output meant to be capitalized? Once a week, the

business analysts would enter replies into the spreadsheet. As there had

been a dispute about the format of the spreadsheet (the testers “won”), sev-

eral business analysts refused to participate in the process. Directly observed

result: simple queries about the specifications took weeks to resolve, causing

the testing process to slip massively. The fascinating thing was that they had

been provided with the environment to work closely (colocated, integrated

team), but the relationships were totally broken.

What strikes me most here is how very badly both groups are behaving.
Instead of partnership, we have conflict. As we each can only alter our own
behavior and as this is a chapter about the measurers, I shall concentrate on
their behavior—what could these testers do to improve the business ana-
lysts’ view of them? Here are some ideas:

◗ Change the communication system; start talking to the business ana-
lysts instead of sending them spreadsheets.

◗ Ensure that the queries are not trivial; focus on what is important rather
than what is easy.

◗ Be polite to the analysts—they are as busy you are.

◗ Be seen to work hard and concentrate; stop the “holiday planning.”

◗ Ask the analysts what they need from you; treat them as a customer
and provide a service.

Measurers need to share information with all the groups (Figure 6.3). In
order to decide where to focus QA and QC activities, measurers need to
understand the quality views of all the groups, particularly the customer’s
goal; the risks—both the impact and the likelihood of problems; and the
budget for the project. For example, audit teams will concentrate on high-
risk projects, where failure would have a high impact.

126 Roles and Quality: Measurers

In Table 6.11, I have identified information that the measurers gather
that is needed by other parties. Some of these are measures directly made,
for example, numbers of defects; some of them are extrapolations from

6.5 Communication between the measurers and other groups 127

Measurers

Supporters
Builders

Managers

Customers

Figure 6.3 Communication between groups.

Table 6.11 Information That Measurers Have That Others Need

Before the SDLC
starts and updated
throughout the SDLC

Identification of similar problems/solutions

Identification and assessment of technical and business risks

What QA and QC is necessary to address the risks

What QA and QC is possible within budget constraints

Advice on methods, processes, and standards, generic and tailored

During the SDLC Fast and early feedback on the success of the SDLC tailoring, by audit

Reassessment of risks and consequent retailoring advice

Improvement suggestions to make activities more effective and efficient

Defect identification by review of requirements, design, specifications, code, training
material, and documentation

Defect identification by designing, executing, and following up tests of software and
processes

Advice on next steps if stage entry and exit criteria are not met

Quality measures, including number of defects, risk assessments, cost projections,
acceptance criteria passed, projected impact of leaving/repairing defects, including
cost, time, and exposure

Refinements to requirements, acceptance criteria, priorities, risks, constraints

Advice to nonspecialists and members of other groups

At delivery Known defects list

Advice on next steps if stage entry and exit criteria are not met

Quality measures, including number of defects, risk assessments, cost projections,
acceptance criteria passed, projected impact of leaving/repairing defects, including
cost, time, and exposure

Postdelivery Evaluation of risk assessment. Were all the risks identified correctly? Did we have
any surprises that we should have anticipated? If any risks were identified and did
not become problems, is this because we misjudged the likelihood or whether it just
did not happen this time?

Evaluation of QA and QC processes, efficiency, and effectiveness of quality processes

Evaluation of management, build, and support processes, improvement suggestions
for all processes

Advice on impact of change

Aid in using tools and techniques (e.g., regression test packs)

Aid in using known problem lists and workarounds

those measures, for example, projected costs of repairing the defects and the
cost of leaving them; and some are information based on experience.

Measurers need information from other groups, in order to understand
the constraints on delivering their wish list. Table 6.12 lists the information
measurers need from the other groups.

6.6 Summary of the group
Measurers must communicate well with the other groups if they are to be
effective. Indeed, many measurers will be in other groups. The contribution
of QA and QC to the success of a project can be enormous, but if the

128 Roles and Quality: Measurers

Table 6.12 Information That Measurers Need from Others

Customers Who the customers are and their real needs;

Constraints and risks for the customer;

Understanding of the customer’s user-based quality viewpoints;

Aims and objectives and acceptance criteria for the project;

Mandatory requirements;

Business view of risks (likelihood and impact);

Quality targets within the constraints;

Changes to requirements, acceptance criteria, aims, risks, and constraints;

Number and impact of defects reported during live use;

Customer satisfaction with the delivered products;

Improvement suggestions for quality processes;

Test priorities for the next release;

Evaluation of QA/QC effectiveness.

Managers Constraints and risks for managers;

Better understanding of the manager’s value-based quality viewpoints;

Understand and agree to an outline plan, including constraints such as dates and costs;

Changes to requirements, acceptance criteria, aims, risks, and constraints;

Evaluation of QA/QC efficiency from the managers.

Builders Constraints and risks for builders;

Better understanding of the builder’s manufacturing and product quality viewpoints;

Understand the technical view of risks (likelihood of errors being made in the build);

Requests for changes to requirements, acceptance criteria, aims, risks, constraints, and
changes to design, code and other products;

Evaluation of QA/QC effectiveness.

Supporters Constraints and risks for supporters;

Better understanding of the supporters’ user and product quality viewpoints;

Understand the technical and business view of risks (likelihood and impact) on existing
system;

Supporters’ requirements and acceptance criteria;

Changes to requirements, acceptance criteria, aims, risks, and constraints;

Number and impact of defects reported during live use;

Customer satisfaction with the delivered products as expressed to help desk;

Supporter satisfaction with the delivered products;

Evaluation of QA/QC effectiveness.

behavior of measurement specialists alienates the other groups, then no
benefits will be realized.

We will see in Chapters 8 to 12 how measurement, whether through QA
or QC activities is necessary throughout the life of a software system.

References

[1] Draper, S. W., “The Hawthorne Effect: A Note,” http://www.psy.gla.ac.
uk/~steve/hawth.html (March 12, 2003), September 2003.

[2] International Standards Organization, ISO 9000: 1994 Quality Systems.

[3] British Standards Institute, BS7925-1:1998, “Software Testing, Part 1:
Vocabulary.”

[4] British Standards Institute, BS7925-2:1998, “Software Testing, Part 2: Software
Component Testing.”

[5] International Standards Organization/International Electrotechnical Commis-
sion (ISO/IEC), DTR 9126, Software Engineering—Software Product Quality
(Parts 1–4, 2000/2001).

[6] Giakatis, G., T. Enkawa, and K. Washitani, “Hidden Quality Costs and the
Distinction Between Quality Cost and Quality Loss,” Total Quality Management,
Vol. 12, 2001, pp. 179–190.

[7] Reid, S. C., “Software Testing Standards—Do They Know What They are Talking
About?” http://www.testingstandards.co.uk/publications.htm, August 2003.

[8] British Standards Institute, PD0026:2003, Software and Systems Quality
Framework—A Guide to the Use of ISO/IEC and Other Standards for Understanding
Quality in Software and Systems, London, England: British Standards Institute,
May 2003.

[9] International Standards Organization, ISO 9000:2000, Quality Systems.

[10] European Foundation for Quality Management, “EFQM Excellence Model,”
http://www. efqm.org, August 2003.

[11] Roden, L., “Choosing and Managing the Ideal Test Team,” EuroSTAR Conference,
1999.

[12] Warden, R., and I. Nicholson, The MIP Report—Volume 2—1996 Motivational
Survey of IT Staff, 2nd ed., Bredon, England: Software Futures Ltd., 1996.

[13] British Computer Society, “Industry Structure Model,” http://www1.bcs.org.
uk/link.asp? sectionID=574, September 2003.

[14] British Computer Society, “BCS Qualifications,” http://www1.bcs.org.uk/
link.asp?sectionID=574, September 2003.

Selected bibliography

The American Society for Quality Web site has articles and information about
quality issues on http://www.asq.org, including a quality glossary at
http://www.aq.org/info/glossary/index.html.

6.6 Summary of the group 129

Craig, R. D., and S. P. Jaskiel, Systematic Software Testing, Norwood, MA: Artech
House, 2002.

Crosby, P, Quality Is Free, New York: Mentor, 1980.

The W. Edwards Deming Institute Web site has articles on Deming’s work at
http://www.deming.org/theman/articles/articles_gbnf04.html.

Dustin, E., Effective Software Testing, Reading, MA: Addison-Wesley, 2003.

Galin, D., “Software Quality Metrics—From Theory to Implementation,”
Software Quality Professional, June 2003, pp. 24–31.

Gerrard, P., and N. Thompson, Risk Based E-Business Testing, Norwood, MA:
Artech House, 2002.

Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley,
1993.

Kaner, C., J. Bach, and B. Pettichord, Lessons Learned in Software Testing, New
York: Wiley, 2002.

Pol, M., and E. van Veenendaal, Structured Testing of Information Systems, Deventer,
the Netherlands: Kluwer, 1998.

Spaine, S., and S. P. Jaskiel, The Web Testing Handbook, Orange Park, FL: STQE,
2001.

The Sticky Minds Web site has roundtable sessions has a continuously changing
range of articles and discussions on testing and software quality issues on
http://www.stickyminds.com .

All issues of the STQE Journal (about to become Better Software).

Watkins, J., Testing IT: An Off the Shelf Software Testing Process, Cambridge, England:
Cambridge University Press, 2001.

Wilborn, W., “Dynamic Auditing of Quality Assurance: Concept and Method,”
International Journal of Quality and Reliability Management, Vol. 7, No. 3, 1989,
pp. 35–42.

130 Roles and Quality: Measurers

Roles and Quality: Supporters

In this chapter I shall:

◗ Introduce the members of the supporters group, their roles,
and activities;

◗ Introduce their quality viewpoint;

◗ Provide a framework for the supporters activities within the
EFQM Excellence Model;

◗ Identify information flows between the supporters and the
other groups.

So the first we hear about the new system is when we are asked to

give it an operational acceptance test, just before the project team

plan to put it live, so there’s no time to do anything much. We get

delivery of the software and run a quick test of the overnight

batch; it now takes too long. Turns out the development guys and

the testers never asked Operations about what constraints are on

the time slots. That meant a last-minute fix! I didn’t realize you

didn’t know about it.… I’d have told you if I’d realized. Yeah, we

knew it was coming, but we didn’t realize the mess they’d made of

the user interface. The help desk is inundated with calls, and the

extra network traffic is way over the capacity we’d planned for it.

They should’ve come to talk to us; we’d have put them right. Now

we’ve got to pick up the pieces.

—Some supporters moan about the newly implemented software

7.1 Introducing the supporters
Once the software has been and built and delivered, the cus-
tomers will use it. This postdelivery period in the life of soft-
ware, described in Chapter 12, is the longest period in the life
of software, and its most important time; after all, if the soft-
ware does not have a postdelivery life, what use is it?

131

7
Contents

7.1 Introducing the supporters

7.2 Who could be in this
group?

7.3 Quality viewpoint

7.4 Quality framework using
the EFQM Excellence Model

7.5 Communication between
supporters and other
groups

7.6 Summary of the group

7.7 Summary of all the groups

C H A P T E R

Postdelivery, a group of IT specialists look after the software and the cus-
tomers, providing a number of support and IT infrastructure services. These
people provide the management, support, and infrastructure for the deploy-
ment, update, optimization, and use of the software. Additionally, this
group plays an important role during the software-development life cycle
(SDLC), providing the infrastructure and support within which the products
are built as well as support for specialist tools used by all the other groups.
They also keep “business as usual” going on the IT systems during the SDLC
and the delivery.

Because of their role in supporting the software, this group has a
breadth and depth of knowledge unrivaled by any of the other groups.
They see the software in use and in context with the rest of the system.
They work with the software from its delivery to its decommissioning,
supporting it and its users. They are the first to hear about its faults
from the user community, and they will be the people who fix those
faults. I have chosen to call this group the supporters because they support
all the IT-related activities of the other groups and, hence, the organi-
zation as a whole. They are critical to the success of the software and
of the organization as a whole. Why, in our story at the start of the
chapter, are the supporters so fed up? Well, you cannot provide a good
supporting service unless the software is supportable, and the delivered
software is unsupportable. They have information that would have helped
the builders and measurers deliver better software. They have service needs
that have not been met. They are on the receiving end of complaints
about the software from the customers, but they were not involved in its
designor build. They may even be subject to penalties against service-level
agreements that have been compromised by the poor performance of the
software.

Too often, in my experience, the supporters are involved too little and
too late in the SDLC. So, why have I left them until last in this group of
chapters? It is to emphasize their importance. Builders (Chapter 5) are cen-
tral to this group of chapters and to the delivery of products, including soft-
ware. They are aided in their work by managers (Chapter 4), who are
conduits for information, and by measurers (Chapter 6), who provide
information about the products and processes. All this work is done for the
customers (Chapter 3); without them we would not need or build the prod-
ucts to support them in their work. Without the supporters, the customers
might not be able to use the software. This is because customers may not
have the technical knowledge, interest, or time to support the software
themselves, for example, when:

◗ Software has to be deployed on a complex infrastructure of hardware,
communications, and systems software.

◗ Software has to be protected against infiltration, losses, and other secu-
rity risks, as does the information stored with it.

◗ Communications and on-line and batch-processing systems have to be
monitored, and sometimes nursed, day and night.

132 Roles and Quality: Supporters

◗ Software and its infrastructure require updates and changes, which
need to be deployed without adversely affecting business as usual
(BAU).

◗ Complex software is not learned quickly; the customers need the sup-
port of a help desk as they use more of the software’s features.

◗ The software is optimized during its life and use [1].

The supporters have knowledge, experience, and information that none
of the other groups have. Just like the customers, they have requirements
and acceptance criteria for the software, which will enable it not simply to
be functionally correct and provide the features the customers need, but
also to provide quality in use [2], by having appropriate attributes of per-
formance, security, reliability, and so on. So, the customer and supporter
chapters “bookend” the chapters about the people they need to inform. Just
like the customers, the supporters need to be involved right from the start of
planning the software, through the SDLC, as well as during use and deploy-
ment. Many of the points about customer contact throughout the book also
apply to supporters.

In this chapter, we will see that of all the groups, the supporters is the
one that is most mature in its understanding of the importance of IT to the
organization, and has standards that acknowledge and depend on wider
organizational excellence frameworks. We will see in Chapters 8 to 12 that
the involvement of the supporters is vital throughout the entire process of
planning and executing the SDLC, not just at the point of delivery and
after, because of this understanding of the attributes and the activities
necessary to provide the IT services required by the organization and the
customers.

7.2 Who could be in this group?
Supporters carry out all the IT service management activities required to
support the organization. Generally, these jobs will be done by specialists. It
is likely that the team that looked after the IT infrastructure, communica-
tions, and networks would be different from the team that manned the help
desk. The specialists we might encounter include:

◗ Service-support specialists, including people who deal with the serv-
ice desk, incident management, problem management, configuration
management, change management, and release management;

◗ Service-delivery specialists, including those who work in capacity
management, financial management for IT systems, availability
management, service-level management, and IT service-continuity
management;

◗ Information and communications technology (ICT) specialists, who are
specialists dealing with network-service management, operations

7.2 Who could be in this group? 133

management, management of local processors, computer installation,
and acceptance and systems management;

◗ IT security specialists, who will deal with internal and external security
of the IT systems and the information held within them;

◗ Software-maintenance specialists, including those who deal with sys-
tems and data conversion, as well as those who correct and enhance
software.

Specialist supporters are important stakeholders for quality. There are
two parts to their involvement:

◗ First, this group maintains the software when it is delivered and
accepted by the customers; they provide support and infrastructure
and are therefore stakeholders for quality in that they will have
requirements for the software, particularly in its quality attributes.
Security, performance, portability, and maintainability will all be fac-
tors for this group.

◗ Second, this group affects the quality of processes and products
because they provide the support and infrastructure for the other
groups during the SDLC. They will supply the environments for the
building and testing of the software and will support the tool sets used
by all the groups in their work. The group includes the IT infrastruc-
ture team, comprising IT operations, support, and maintenance; IT
security; the help desk; service management; networking; and data-
base administration (see IT infrastructure staff and software maintain-
ers in Chapter 2, Table 2.1).

Many of us get involved in these activities in some way. Anyone who
writes documents has to deal with change management and version control
for those documents, for example. In smaller organizations, people may
move between groups, sometimes building and supporting the software sys-
tems. Indeed, it could be argued that most software engineers work in soft-
ware maintenance rather than software development. Most projects are
about altering existing software rather than building entirely new systems.
Similarly, in some organizations there may be an overlap between the
measurers and supporters. In several organizations, I have seen the system
testers also manning the help desk. This can be useful, as the testers develop
their understanding of the customers’ real use problems, but I have seen the
situation were the team is overwhelmed by the volume of testing and help-
desk calls for which they are responsible.

7.3 Quality viewpoint
Supporters need the software to be supportable; it needs to be fit for purpose
and to have attributes that make it supportable. It needs to fit within infra-
structure constraints and operational profiles. Remember our supporters at

134 Roles and Quality: Supporters

the start of the chapter—if the batch cannot run in its assigned slot, later
processes are affected, and this may result in the on-line system not being
available on time for the customers. Supporters tend to be more aware of
organizational requirements that affect the wider organization than other IT
staff, because they come up against problems more directly. I remember see-
ing a payroll system in which the overnight batch run for the weekly paid
staff took somewhat longer than previously. It would not fit into the over-
night schedule on Wednesday night, so someone in the development group
suggested it could run in the freer Thursday night schedule. Weekly workers
were either paid into their bank accounts, or by cash. Running the batch
Thursday still left time for the head office weekly paid staff to get their cash
envelopes by lunchtime as usual. What the head-office-based, monthly sala-
ried development staff did not consider was that the manual workers for the
organization worked remotely from head office, some as many as 50 miles
away. This was why the payroll ran Wednesday; it left time to put cash into
envelopes and take it to the remote sites, to enable the manual workers to be
paid at lunchtime on Friday. If the payroll was run on Thursday, these work-
ers would not receive their money until Monday, unless the courier could
leave by 10 a.m., meaning that the cash clerks would need to start work at 7
a.m. instead of 9 a.m. every Friday. What implications does this have for the
organization? It is an unplanned change in working practices. We would
need to consider the reaction of the workforce and unions, the effect on
management and the human resources department, adverse publicity in the
press, possible strike action, and so on. Yet the IT development manager said
to me, “Why does the time the courier leaves the pay office affect us? That’s
not an IT issue!” Yes, I am afraid it is, because the working of the IT system is
affecting the organization and its staff. It was the supporters who understood
and pointed out the problem, because they knew the special provisions that
would be required if the Wednesday payroll failed in the existing system and
it had to be run as one-off process on a Thursday night.

Supporters favor the product-based definition of quality, based on a
well-defined set of software quality attributes that must be measured in an
objective and quantitative way. We can derive acceptance criteria to objec-
tively assess the quality of the delivered product. The supporters need this
objective measurement of attributes to help them ensure that they will meet
the service levels expected by their customers, the IT users, and the organi-
zation. For example, standards such as ISO 9126 [2] define quality—in-use
attributes that directly affect the supporters’ work. Typical attributes are reli-
ability, usability, security and maintainability.

Supporters also favor the user-based definition that says that quality is
fitness for use. This is because they will be using the software, as operations
teams, for example, but also because they are in the first line for dealing
with user inquiries and customer complaints. In the user-based view, soft-
ware quality is determined by the user(s) of a product in a specific business
situation. Different business characteristics require different “qualities” of a
software product. For example, the usability of the interfaces for operations
such as daily updating of security measures against virus and spam attack,

7.3 Quality viewpoint 135

running the daily batch systems, back-up and recovery, installing and dein-
stalling software, will all be of interest to the supporters, because they are
the users of those programs.

The supporters’ managers will focus particularly on service levels.
This may include a provision for the cost of supporting the systems. In
Chapter 12, we will meet a disenchanted support manager caught by
service costs rising with a new software release. Failing to meet the serv-
ice levels may incur a penalty clause. This means supporters and their
managers have an interest in the value-based view of quality, specifi-
cally whether the money saved or spent during the SDLC is justified by
savings in use of the system. We will look in Chapter 12 at evaluating
postdelivery.

This group’s transcendent view of quality—their taken-for-granted
assumptions about the systems—include notions of stability, reliability of
service levels, and long-term benefits. These assumptions about quality
reflect the supporters’ need to carry out their own work efficiently and
effectively, as well as supporting the customers’ use of the software to meet
the organization’s ends.

We can see in Table 7.1 how supporters, in this example a help-desk
team, could consider the other groups’ quality viewpoints to help them
understand the supporters’ quality requirements.

7.4 Quality framework using the EFQM Excellence
Model

7.4.1 The EFQM Excellence Model and the supporter

As I mentioned earlier, the supporters have a mature standards framework.
This is supported by a global organization, the IT Service Management
Forum (itSMF) [3] which supports an associated library of process descrip-
tions and guides, including the IT Infrastructure Library (ITIL). This library
has been developed since 1989 [4], has recently been updated, and is being
released as a series of seven guides. The ITIL books set service management
within an EFQM Excellence Model [5] framework, and also discusses the
similar Baldrige [6] framework used in the United States. The subjects in
ITIL are:

◗ Service Support—covering service desk, incident management, prob-
lem management, configuration management, change management,
and release management [7];

◗ Service Delivery—covering capacity management, financial manage-
ment for IT systems, availability management, service-level manage-
ment, and IT continuity management [8];

◗ Security Management—covering fundamentals of information
security, relationship of security management to other aspects of
service management, and security management measures [9];

136 Roles and Quality: Supporters

◗ The Business Perspective (was scheduled to be due in 2004)—covering
business relationship management, partnerships and outsourcing,
continuous improvement, and exploitation of ICT for business
advantage [10];

◗ ICT Infrastructure Management (not yet available)—covering network
services, operations, local processors, computer installation and accep-
tance, and systems management [10];

◗ Application Management—covering SDLC support, testing of IT serv-
ices, and business change [1];

◗ Planning to Implement Service Management—a “how to start”
guide [11].

Along with and aligned to ITIL, standards and qualifications are being or
have been developed [12, 13] to cover service management.

7.4 Quality framework using the EFQM Excellence Model 137

Table 7.1 Help-Desk Team Considering Other Viewpoints for Quality Impacts

Group and
Quality View

Possible Routes into a
Discussion with This Group Example Questions and Areas for Discussion

Customer

User-based
quality view

Shared viewpoint—
discuss the impact on fit
for purpose if things go
wrong

Impact on business as usual (BAU) of failure, for example,
cost of system outage to the business, work throughput
efficiency for customer.

Builder

Product- and
manufacturing-
based quality
view

Shared product view;
product attributes

Show empathy for
manufacturing view;
technical excellence and
defect likelihood.

Which nonfunctional areas has the customer discussed with
you?

These are the nonfunctional attributes that experience shows
us are important for BAU—the attributes most often
commented on by customers calling the help desk.

Volunteer to review specifications/requirements for possible
attribute problems (functional and nonfunctional).

Provide list of common help-desk issues and discuss technical
innovations that could help improve these areas.

Measurer
Product- and
manufacturing-
based quality
view

Shared product view;
product attributes

Show empathy for
manufacturing view;
defect likelihood and
impact.

Priority of tests and document reviews. These are the
nonfunctional attributes that experience shows us are
important for BAU—the attributes most often commented on
by customers calling the help desk.

Volunteer to review and comment on test designs and test
results; these are our acceptance criteria for product
attributes.

Discuss how to assign priority for defects, based on impact
and likelihood for BAU.

Provide support for setting up like-live environments for
tests; provide example tests.

Manager
Value-based
quality view

Identify the cost of things
going wrong and the cost
of repair/support.

Service-level agreements and their penalty clauses, shared
risk on penalty clauses.

Cost of support, ROI on maintenance changes.

This is the cost of system outage.

This is the cost in customer and supporter time/efficiency loss
in help-desk calls.

Supporters may provide services to the customer as in-house suppliers
or as third-party suppliers (see Chapter 3). The supporters’ ability to recog-
nize and adapt to the customer’s quality framework is a critical success fac-
tor in the effectiveness of their relationship, whether they are internal or
third- party suppliers. The framework for the customer translates into
departmental goals and, finally, into the personal objectives and targets for
an individual system user, but it also translates into a complementary sub-
set of the service management supplier’s goals and, hence, into service-
level agreements (SLAs). These will lead to personal objectives and targets
for all the supporters. This quality framework will drive what the customer
needs from the software and from the SLAs.

In Chapter 1, we looked at the EFQM Excellence Model and how it is
divided into nine parts: five enabling criteria and four criteria for measuring
results. In Section 7.4.2, we will look at how the EFQM Excellence Model
enablers could be interpreted for supporters, and in Section 7.4.3 we will
look at supporter results. Remember that this model is based on the funda-
mental concepts of excellence we discussed in Chapter 1 and that equivalent
models such as the Baldrige model are available.

7.4.2 Enablers for the supporters

7.4.2.1 Leadership

The supporters’ activities are vital to the success of the organization, not just
during BAU, but also during periods of change to the organization and IT
provisions, and in enabling the organization to deal with threats to business
continuity.

It is easy for the organization to take the supporters for granted; some-
times the only feedback they get is when things go wrong. For this reason, it
is particularly important that the organization’s leaders take account of serv-
ice management in recognition schemes as well as in reward schemes [8].
For example, if the operations staff keep the overnight batches running on
time through day-to-day problems, no one outside the group may notice,
unless their leaders can alert senior management and, hence, the organiza-
tion’s leaders that a bonus (reward) and a thank you (recognition) is needed
[14]. Supporters may also have to “pick up the pieces” after an unsuccessful
software delivery, specifically in dealing with customer complaints and in
fixing operational problems. We will meet in Chapter 12 a supporter reeling
under the strain of looking after software delivered by a different team.

Similarly, it is easy for business managers to neglect areas that do not
resolve immediate problems. Ensuring proper IT service continuity manage-
ment plans [8] requires strong leadership and a strategy agreed to at the top
level and implemented and communicated through the whole organization.

An interesting point raised by Warden and Nicholson in their motiva-
tional survey [15] is that the introduction of improved processes, for
example, the adoption of the ITIL processes, while providing a process
improvement, in some cases lowered staff motivation when jobs were
changed radically without good communication from leaders. This is an

138 Roles and Quality: Supporters

important point for leaders. My observation is that professional staff in all
groups will want and expect the adoption of appropriate recognized stan-
dards, but they do not respond to imposition of standards, especially without
suitable training.

7.4.2.2 Policy and Strategy

The organization will need policies and strategies for all aspects of service
management; these briefly set out the overall rules for the supporter team’s
work; for example, an organization might have a release policy [7] that
defines release definition (for example “major releases are numbered v1.x,
v2.x and must include significant changes to critical attributes of the sys-
tem”), required deliverables, preferred timing for implementations, or times
to avoid (for example “implementations always take place at least two
weeks before month/year ends”).

These policies must be agreed on and clearly communicated, whether
they are documented (preferable in a large organization to ensure they are
not miscommunicated) or passed on by oral tradition: “We always do it this
way.”

The policy rules will be translated into strategies for the supporter’s
activities. These will show the approach that the supporters will take to
meet the goals of the organization. The different teams within the support-
ers group—IT Infrastructure, help desk, the software maintenance teams,
and so on—will have strategies and detailed plans for their own work. Of
course, it would be easy for these strategies to become misaligned with each
other and with the strategies of the other groups, such as the builders. The
ITIL books [e.g., 7] use a nice analogy—that of tectonic plates. The areas of
interest and control overlap and demarcation lines are not clear. It is at these
overlaps that friction occurs. We have seen in Chapters 3 to 6 that the other
groups each have policies and strategies. Now, even if all the groups work
for the same organization, some considerable effort in communication is
needed to make sure each group understands the others. Policies and strate-
gies need to be discussed, agreed on, and mutually understood, the overlaps
of demarcation particularly being a focus for communication. The support-
ers’ policy and strategy must support the customers’ policy and strategy, but
they also must support the managers, builders and measurers. If some or all
of the supporters are from third-party organizations, the communication
during agreement on the contract and SLAs as well as throughout the rela-
tionship will need to be nurtured across all the groups and across organiza-
tions, as we saw in Chapter 3.

7.4.2.3 People

The supporters group includes a variety of specialists, who may be working
in different teams and through separate management structures. They may
also work in a separate management structure from the builders and meas-
urers. This isolation of teams can lead to one of the problems our supporters

7.4 Quality framework using the EFQM Excellence Model 139

at the start of the chapter experienced: poor or nonexistent communication
leads to ineffective, inefficient service delivery to the customers.

Increasing specialization also means that individual supporters may only
see part of each problem or solution—work is divided up and passed along
from one team to another. If little or no feedback is received by the support-
ers on the effectiveness of their work, this can be alienating and demotivat-
ing, just as we saw it was for the builders in Chapter 5. One finding of
Warden and Nicholson [15] was that the feedback received by supporters
was mainly negative, but was about the quality of the software—something
they typically had no control over—rather than about their own service lev-
els. Typically, an SDLC team of builders and measurers deliver the software
and other products. The customer uses them, and when things go wrong
complains to a supporter (e.g, one on the help desk). Thus, the supporter
does not get feedback on the level of service they provided but on the poor
product provided by another team. The customers do not ring up to say that
the product is good, and when there have been problems they will not be in
a mood to comment on the good aspects of the supporters’ work. The effi-
cient and effective running of the IT infrastructure, communications links,
background processes, and so on is something we tend, as computer users, to
take for granted. We only notice them when they go wrong, so the support-
ers receive poor feedback and, as a result, can become demotivated.

In addition to the problem of feedback, there can be a problem
of status. The other groups may undervalue the supporters. I remem-
ber some years ago interviewing a software engineering graduate who
explained that he did not expect to do any software support or maintenance
because that was “boring, low-skill” work. For him, software engineering
meant developing brand new systems from nothing, and then—in my view
quite, bizarrely—never needing to change them or to support the customer.
Instead, “in the unlikely event that anything was wrong with the software”
or if the customer “changed their minds about what they wanted,” a new
system would be built. We had quite a painful conversation about the real-
ity of life with software; the frequent problems and misunderstandings dur-
ing the SDLC, and the need for constant change to reflect the customers’
constantly changing world. In my own view, the work of supporters should
be seen as high status; it is not only critical but also extremely difficult,
requiring both technical and personal skills. For example, one of the central
points of application management as described by ITIL [1] is that software in
use will be optimized throughout its life. Changing software, as we will see
in Chapter 12, is very difficult; the supporters’ role in maintaining and opti-
mizing the systems in order to meet the customers’ changing needs and to
improve service to them should not be undervalued. Some SDLC mod-
els—for example, XP [16] and Evolutionary Delivery [17]—acknowledge,
indeed expect, change. We might even see these as software-maintenance
life cycles (SMLCs) rather than SDLCs, and the people delivering via these
life cycles as supporters rather than builders, software engineers as mainte-
nance staff rather than development staff. Could it just be the poor per-
ceived image of software maintenance that prevents this?

140 Roles and Quality: Supporters

A breadth and depth of technical skills are also required to understand
and be able to deal with the range of technology used by the customers, and
to assess the technical and business implications of changes in technology. A
recent example of change is the increased IT and commercial security risks
posed by organizations requiring desktop machines to have Internet access
as well as access to internal systems.

Supporters need a mix of skills. Their education, training and work
experiences will, of course, include all the technical skills and understanding
of the methods, techniques, and tools for their tasks. Just as for the builders,
it should also include an understanding of:

◗ The measurement techniques they will need to apply to their own work
and to other people’s work. For example, supporters carry out QC
activities such as reviews and testing, specifically the Operational
Acceptance Test (OAT) in which they will need training. Supporters
also employ measures that will be needed for the ongoing manage-
ment of SLAs, and toolsets for providing these. An example might be
the network traffic our supporters are discussing at the start of the
chapter. They will have an optimum traffic volume calculated and be
measuring against that. Too little traffic and we have a network that is
not cost-effective: too much and the traffic takes too long. Supporters
like the maintainers and the help desk will be interested in measures
of products on delivery. For example, we can measure code complex-
ity and use it to understand the difficulty of future maintenance,
while measures of the usability, reliability, and stability of the soft-
ware will give the help-desk team a view of how busy they may be
after delivery.

◗ The management skills they require for control of their own time and
work within a team. Supporters need the skills, experience, and sup-
port to assess risk, negotiate between parties, and manage against SLAs.
The focus of ITIL and the itSMF (for example, [1]) is on management.
The management skills of supporters need to include an understanding
of organizational issues, providing input to the business IT strategy, IT
governance, IT risk management, and management of IT and systems
to support business change. Recent publications, for example, [18, 19],
emphasize the increasing importance of these areas.

◗ The interpersonal skills (sometimes called soft skills) to improve their
communication with all the groups, including the other teams of sup-
porters, and to deal sympathetically with people reporting problems to
them. One unfortunate thing I have seen is the frustration of some
support-line engineers with what they see as stupid questions: “If they
just looked at page 123 of the manual, they would find the answer.” A
good supporter empathizes with the customer’s view—maybe if the
user can’t find the answer, the manual is too complicated or has been
written in IT jargon rather than the user’s language, or possibly has
been badly translated if the software and manual are to be used in many

7.4 Quality framework using the EFQM Excellence Model 141

countries or the supporter’s first language may not be the customer’s
first language.

◗ We said above that part of the management skills supporters need
include strategic planning; this must fit with their customer’s goals and

strategy so that they can focus their technical, measurement, manage-
ment, and interpersonal skills toward solving the organization’s real
problems. The links between the customers and the supporters should
be very strong.

7.4.2.4 Partnerships and Resources

Supporters operate in a network of partnerships within and outside the
organization. These partnerships are in place to help provide the resources
managed by the supporters, including the hardware, communications,
systems, and software, and the data and information that provide
knowledge.

Examples of supporter partnerships are:

◗ Between groups: with the builders, customers, and measurers to
define acceptance criteria for nonfunctional attributes such as
reliability, security, performance, to define the problem to be solved,
and share information about risks and the fit-for-purpose, user-based
quality view.

◗ Between groups: with the managers to discuss service-level agree-
ments, costs, and value.

◗ Between groups: with the measurers to understand how operational
acceptance criteria can be measured during testing.

◗ Between groups: with the builders and measurers to understand what
resources and environments are required during an SDLC; also with
the help-desk team and the trainers to discuss likely training needs and
training success.

◗ Within the supporters group: for example, our supporters at the start of
the chapter would benefit from sharing plans and news regularly.

◗ Outside a particular SDLC, to understand possible conflicts in resource
requirements across several projects, or conflicts between the SDLC
and BAU.

◗ Outside the organization: for example, with hardware and equipment
suppliers, to plan delivery schedules against capacity and demand
forecasts.

7.4.2.5 Processes

Many of the points made in Chapter 5 about builder’s processes also apply
to supporters. However, one advantage is that there is a globally acceptable
definition of the required processes and management for their work in the

142 Roles and Quality: Supporters

IT Infrastructure Library (ITIL) [1, 7–11]. These volumes provide process
descriptions and flowcharts, as well getting-started guides and context
descriptions of quality standards and excellence frameworks. They also
cross-reference each other well. These process descriptions need to be
adapted by particular organizations to fit their own requirements.

It is also important to realize that the introduction of new processes will
require management of that change. Introduction of new processes or
changes into existing working practice can cause motivation problems [15],
especially if imposed without consultation and training. It is always worth
asking the technical experts to design the processes, based on published
standards and their own experience of what is appropriate, then include
less-experienced people in the reviews both of the processes and of training
material for the processes.

Remember, too, that people do not always follow the processes. Some-
times this means that the process is unworkable; perhaps it cannot be fol-
lowed in the available time. Sometimes it means they have not understood
the reason for the process. I remember one place I worked in many years
ago where a small team of builders and measurers working on a minicom-
puter also had to be their own supporters in certain aspects; we took turns
carrying out the daily backup, for example. The process for this was quite
clear and written down: a number of tapes were circulated through the
daily and weekly backups so that on each day the oldest backup was over-
written. Thus, a set of backups over the previous two weeks was always
available. A log was kept of the backups, recording who had done them and
so on. I went into the machine room one day to collect something and
found the senior programmer, Simon, looking at the tapes in amazed
despair. A series of backups had been made over a number of days without
circulating tapes properly. We had lost this week. as it had been overwritten
by today. If the computer had failed before today’s backup, a week of work
would have been lost rather than just today’s work. The person who had
done the backup was not being deliberately malign, they just did not realize
the implication of what they had done. Simon ran a training session
explaining not just what must be done but why it was important to do it fol-
lowing the process. People are not stupid, and one of the ways they mani-
fest intelligence is by seeing how to “improve” processes. The problem is
that if the reason for doing something is not clear, an optimization may
remove a safeguard and increase risk beyond what is acceptable.

7.4.3 Results for the supporters

7.4.3.1 Customer Results

All the groups are customers of the supporters because they support the IT
systems and software used by all the groups. Their customers will each meas-
ure them against their own quality measures—implicit or explicit—and the
supporters need to measure their performance for their customers consider-
ing those quality viewpoints when setting service-level agreements with cus-
tomers. We are interested in both the customer perceptions and the actual

7.4 Quality framework using the EFQM Excellence Model 143

performance against service-level agreements. Table 7.2 shows some of the
possible measures.

The supporters are in a position to collect customer results not just for
their own services, but also to allow evaluation of the builders’ and measur-
ers’ work done during the SDLC. This should be agreed on and used in col-
laboration with the other groups.

7.4.3.2 People Results

Here, the supporters measure themselves. What is their own reaction to
their work and their services? Again, we will measure perception and per-
formance. There are a number of factors that make supporters roles difficult:

◗ The work can be very reactive, for example, on a help desk or support
line, and is therefore paced not by the person but by the frequency of
calls. This makes it difficult for people to plan their time and tasks.

◗ The work is divided between many interlocked and overlapping
processes, with many communication points, so it can be complex to
control, for example, with ITIL. If we look just at the Service Support
book [7] it describes 17 processes, and the Service Delivery book [8]
describes another 16 processes; these may be being carried out by one
or many teams depending on the size of the organization.

◗ The quality and attributes of products and services being supported
depend on the product delivery team, who may not be involved in the
support of the products and services. This means that the supporters do
not have control over the products’ quality and yet are affected by it.

◗ The work may involve unsocial hours and shift work because the
infrastructure and systems may be in use and need to be supported 24
hours a day. This may involve tedious waiting interspersed with
emergencies, which means that concentration cannot be allowed to
lapse. I remember visiting some computer operators in a windowless
darkened room filled with monitoring screens that had to be watched
continuously for abnormal changes in network traffic. It was not a
natural or ideal environment for a human.

144 Roles and Quality: Supporters

Table 7.2 Customer Results—What the Other Groups Think of Supporters

Example of Possible Measures

Perceptions—external to
the group—surveys,
interviews, compliments,
and complaints

Have the supporters got a good image?

Do other groups report that they find them easy to deal with (for example, are
they helpful, flexible, honest, and proactive)?

Are they seen as reliable, providing good value, providing a good service?

Performance indicators—
measures of outcomes

Have we met service-levels agreements for all aspects of service to our
customers—service availability, response times, help-line query responses,
closure rate on problems, incidents, issues, recidivist problems, service and
unavailability?

For these reasons, careful monitoring of people results for the supporters
is important, as is a related rewards and recognition scheme. Examples of
the type of results that could be measured are shown in Table 7.3.

7.4.3.3 Society Results

For the EFQM Excellence Model, society means society at large, although
we could interpret it as meaning the wider organization. Again, we consider
perception and performance indicators. Examples of the type of results that
could be measured are shown in Table 7.4.

7.4 Quality framework using the EFQM Excellence Model 145

Table 7.3 People Results—What the Supporters Think of Themselves

Example of Possible Measures

Perceptions—external to the
group—surveys, interviews,
compliments, and complaints

Has a motivational study provided positive feedback?

Are supporters satisfied with their career path, rewards?

Performance indicators—internal
to supporters group

Does the supporters group match up to the required qualifications and
competencies? For example, do they have appropriate BCS
qualifications [13]?

What are absenteeism and sickness levels compared with other groups?
Are overnight operators showing a different absence pattern than IT
security staff?

What is the level of staff turnover compared with other groups and do
people want to be recruited into this group? For example, if we
advertise a help-desk post internally, is it over- or undersubscribed by
internal applicants?

Table 7.4 Society Results—How the Supporters Relate to Society

Example of Possible Measures

Perceptions—external to the
group—surveys, interviews,
compliments, and complaints

Are the supporters seen by the organization and wider society as acting
ethically?

Do the auditors and testers check that the IT Infrastructure and systems
act properly with regard to health risks, safety hazards, and the
environment? This might include checking that the delivered IT service
complies with legislation on data protection, availability of services to
people with disabilities, or pollution control.

Performance indicators—internal
to builders group

Has the group won any accolades, for example, for paper- and
energy-saving initiatives, in line with corporate initiatives?

Has the group been recognized in its efforts to reduce security risks
internally and externally, including customer data confidentiality,
prevention of spam and virus attacks, and IT governance provisions?

Is there any consideration in the SLAs of the effect of IT on society,
environment, and people? Are there links across the organization so
that the management of IT systems, data, information, and knowledge is
part of an integrated management system that includes, for example,
the overall security, environmental, quality, and financial management?

7.4.3.4 Key Performance Results

As we have seen in earlier chapters, the EFQM Excellence Model divides
key performance measures into two areas: financial and nonfinancial meas-
ures. Some examples are shown in Table 7.5. It is important to measure the
supporter’s services against the needs of the organization. For a business,
this will mean that the key performance results must reflect the commercial
drivers for the organization. For a nonprofit organization, again, the results
must support the organization’s goals, increasing the efficiency and effec-
tiveness of the services and products provided.

7.5 Communication between supporters and other
groups

We will see in Chapters 8 to 12 that supporters are involved in the whole
life span of a piece of software, from its conception, through the software-
development life cycle (SDLC), during delivery, and postdelivery until
decommissioning. We will see that some of the SDLC models encourage
supporter involvement and other models do not.

We have seen that supporters communicate with all the other groups,
but that they are often reactive in communication by the nature of their
work. If this is the case, perhaps the supporters should instigate communi-
cations with the other groups so they can find out what is planned, and can
become part of the SDLC. As with the customers, the advantage of having
little involvement to us as supporters is that while it is being built and deliv-
ered we get on with other things. Superficially, it looks as though we are
being efficient with our time. The disadvantage is that during the period of
the SDLC, things will change; our customers’ problems will change, it may
be that the underlying infrastructure will change, and, therefore, the solu-
tions we require will change. This means by the time we get the software, it
is out of date. The disadvantage of SDLCs with high supporter involvement
is that it is time-consuming when we have business as usual to deal with as
well as the SDLC. The advantage is that it is far more likely that a useful soft-
ware solution will be delivered. So we will see in the later chapters that
communication between the supporters and the other groups is needed

146 Roles and Quality: Supporters

Table 7.5 Key Performance Results—Financial and Corporate

Example of Possible Measures

Financial What is the return on investment (ROI) for the services we have delivered this year
(cost of services/money saved/number of new customers/market share gained)?

Nonfinancial Number of projects/customers who request our team to carry out IT-related work,
and the size of these projects

Cycle times for responding to customer requests and questions

Innovation by the supporter (e.g., new technology to support time to market with
new products)

How closely have SLAs been met or exceeded?

How well did the agreed-upon SLAs match the goals of the organization?

throughout the whole life span. The supporters need to communicate with
all the other groups (Figure 7.1) because they have information that those
groups need.

We will see in Chapters 8 to 12 that from before the SDLC starts until the
software is decommissioned, the other groups need the supporters. As things
in and around the project develop and change, this may affect the SDLC. I
remember a project in which we had decided to focus much attention during
system test on performance testing, because the performance of the system
after change was assessed as the greatest risk to the success of the project.
Part way through the system test, the live environment underwent a hard-
ware upgrade that enhanced the performance of the live systems. It became
apparent that our fears about performance had been resolved by this
upgrade. We reassessed risk, and as a result discarded our strategy of per-
formance testing, concentrating our efforts on other aspects of the system
that were now at higher risk than performance. Without information from
the supporters, we measurers would not have known about the environ-
ment upgrade, as our environment was not being upgraded, so we would
have wasted effort instead of concentrating on the real risks. Table 7.6 lists
some of the information that supporter have that other groups need.

Supporters need information from other groups in order to understand
the constraints on delivering their wish list. Table 7.7 lists the information
supporters need from the other groups

At the end of the postdelivery period, during decommissioning, support-
ers will be involved to review the decommissioning plans and aid in
rehearsal of the decommissioning processes. Supporters will need to assess
what parts of the QA and QC library and other data are archived, and what
is destroyed. This includes considerations of legal issues with compliance
and with data protection.

7.6 Summary of the group
Supporters must communicate well with the other groups if they are to be
effective. They have a vital role to play in the success of the organization, in
supporting all the groups to get the best from IT. This group has a deep
understanding both of the technical risks to systems as changes are intro-
duced and of the real needs of the customer. Having worked with the

7.6 Summary of the group 147

Measurers

SupportersBuilders

The software project
and the software product

Managers

Customers

Figure 7.1 Communication between groups.

customers’ delivered software, they understand how it stands up to real use.
They have knowledge of the risks to the business of software failure and
which areas of the software are critical to the organization. They can and
must be involved throughout the life span of the software, from conception
and through the SDLC, as well as during delivery and use of the system until
decommissioning.

7.7 Summary of all the groups
All the groups are important to the success of the IT provision for an organi-
zation. We have seen in Chapters 3 to 7 that each group has information

148 Roles and Quality: Supporters

Table 7.6 Information That Supporters Have That Others Need
Before the SDLC starts
and updated
throughout the SDLC

Possible solutions to problems/ideas;

Technical constraints and why these are constraints, for example, in the
environment;

Why this problem/idea (e.g., for a technical problem) is important and the impact
on the customers for business as usual;

Whether proposed aims/indicators are understood;

Proposed objectives/targets for the solution;

Whether proposed customer acceptance criteria are SMART (specific, measurable,
achievable, realistic, and time-bound);

Identification of supporter acceptance criteria;

Technical risks (likelihood of this going wrong) and technical constraints;

Precision and accuracy of estimates, when refined estimates will be possible;

Constraints on SLAs postdelivery;

Scope of supporters’ operational acceptance testing.

During the SDLC Manufacturing/product quality viewpoint—what attributes are of most importance
and acceptance criteria for these attributes;

User quality viewpoint—the operational, fit-for-purpose view of the software, with
updated information as this changes over the SDLC;

Technical impact of proposed changes in scope;

Review and testing comments on proposed products to measure how closely they
meet acceptance criteria, especially for nonfunctional attributes;

Changes in IT infrastructure, systems, software, and other services that may affect
the SDLC plans.

At delivery Confirmation that the delivery is complete and acceptable.

Postdelivery Evaluation of the software, how it affects the SLAs, whether it is fit for purpose,
number of defects identified, improvements, and optimizations;

Evaluation of the processes used and how they could be improved;

Number of defects reported during live use;

Customer satisfaction with the delivered products;

Supporter satisfaction with the delivered products;

Efficiency and effectiveness of quality processes;

Improvement suggestions for all processes;

Advice on impact of change.

7.7 Summary of all the groups 149

Table 7.7 Information That Supporters Need from Others

Managers Organization goals and strategy;

Changes to the goals and strategy, immediate tactics;

Problems and issues;

Forecast requirements for IT and infrastructure;

Feedback on services provided;

SLA requirements;

Customer acceptance criteria.

Builders Cost and resource constraints and why these are constraints;

Value quality viewpoint;

Whether proposed aims/indicators are understood;

Proposed objectives/targets for the solution;

Whether proposed acceptance criteria are SMART (specific, measurable, achievable,
realistic, and time-bound);

Nontechnical risks (likelihood of this going wrong) and nontechnical constraints such as
resources, time, budget, and people availability;

Precision and accuracy of estimates, when refined estimates will be possible;

Feedback on services provided.

Builders Manufacturing/product quality viewpoint;

Whether proposed aims/indicators are understood;

Proposed objectives/targets for the solution;

Whether proposed acceptance criteria are SMART (specific, measurable, achievable,
realistic, and time-bound);

Technical risks (likelihood of this going wrong) and technical constraints;

Precision and accuracy of estimates, when refined estimates will be possible;

Update on progress;

Environmental requirements for the SDLC;

Environmental requirements for delivery and live use;

Feedback on services provided.

Other supporters Feedback on progress with problems, incidents, and issues;

Changes in risks;

Feedback on services provided;

Supporter acceptance criteria.

Measurers Manufacturing/product quality viewpoint;

Whether proposed aims/indicators are understood;

Proposed objectives/targets for the solution;

Whether proposed acceptance criteria are SMART (specific, measurable, achievable,
realistic, and time-bound);

Technical risks (likelihood of this going wrong) and technical constraints;

Precision and accuracy of estimates, when refined estimates will be possible;

Update on progress;

Environmental requirements for the SDLC;

Environmental requirements for delivery and live use;

Feedback on services provided;

Advice on acceptance testing;

Advice on review processes;

Assurance that QA and QC activities have taken place;

Results of those activities;

Aid in using tools and techniques (e.g., regression test packs);

Aid in using known problem lists and workarounds.

that the others need, and that this information may change throughout the
SDLC and the life of the software during use.

Customers provide a user-based, fit-for-purpose view, which changes
continuously to meet the changes in the real world. Managers understand
the nontechnical constraints on the organization and act as an information
conduit between the groups. Builders use their technical knowledge to pro-
vide solutions to the customers’ problems. Measurers provide information
that allow all groups to decide on whether the products are of an acceptable
quality for use and optimization over time. Supporters provide an under-
standing of technical risks to business as usual, together with the supporting
infrastructure for all the groups’ activities.

In Chapters 8 to 12 we will follow the life of software from its conception
to its decommissioning, and we will look at the communication methods
and techniques we can use to help these five important but disparate groups
understand each other and relate to each other’s needs and strengths.

References

[1] IT Infrastructure Library, Best Practice for Application Management, London,
England: Office of Government Commerce, 2002.

[2] International Standards Organization/International Electrotechnical Com-
mission (ISO/IEC), DTR 9126, Software Engineering—Software Product Quality
(Parts 1–4, 2000/2001).

[3] IT Service Management Forum, http://www.itsmf.com, October 2003.

[4] Quagliariello, P., “Introduction to IT Service Management, ITIL, and ITIL Capacity
Management,” http://www.pultorak.com/home/speaking_engagements/pre-
sentations/2003_03_07_cmg.pdf, October 2003.

[5] European Foundation for Quality Management, “EFQM Excellence Model” and
“Fundamental Concepts of Excellence,” http://www.efqm.org, August 2003.

[6] Malcolm Baldrige model, http://www.quality.nist.gov/index.html, August 2003.

[7] IT Infrastructure Library, Best Practice for Service Support, London, England: Office
of Government Commerce, 2002.

[8] IT Infrastructure Library, Best Practice for Service Delivery, London, England: Office
of Government Commerce, 2002.

[9] IT Infrastructure Library, Best Practice for Security Management, London, England:
Office of Government Commerce, 1999.

[10] The Stationery Office Web site, http://www.tsonline.co.uk/bookshop/
bookstore.asp?FO= 1150345, October 2003.

[11] IT Infrastructure Library, Planning to Implement Service Management, London,
England: Office of Government Commerce, 2002.

[12] IT Service Management Forum, “BS 15000 IT, Service Management,”
http://www.bs15000certification.com, October 2003.

[13] British Computer Society Qualifications, http://www1.bcs.org.uk/link.asp?
sectionID=574, September 2003.

150 Roles and Quality: Supporters

[14] British Quality Foundation, “Recognition and Reward: Keep Your Staff
Smiling,” UK Excellence, August/September 2003 (whole issue devoted to
rewards and recognition).

[15] Warden, R., and I. Nicholson, The MIP Report—Volume 2—1996 Motivational
Survey of IT Staff, 2nd ed., Bredon, England: Software Futures Ltd., 1996.

[16] Beck, K., Extreme Programming Explained—Embrace Change, Reading, MA:
Addison-Wesley, 2001.

[17] Gilb, T., papers on Evolutionary Delivery on http://www.gilb.com.

[18] The Office of Government Commerce, How to Manage Business and IT Strategies,
London, England: HMSO, 2002.

[19] The Office of Government Commerce, How to Manage Business Change, London,
England: HMSO, 2002.

Selected bibliography

IT Service Management Forum, A Dictionary of IT Service Management: Terms,
Acronyms and Abbreviations: Version I, London, England: The Stationery Office,
2001.

IT Service Management Forum, A Dictionary of IT Service Management: Terms,
Acronyms and Abbreviations: Version I (North America), London, England: The
Stationery Office, 2001.

IT Service Management Forum, IT Service Management: A Companion to the IT
Infrastructure Library: Version 2, London, England: The Stationery Office, 2001.

7.7 Summary of all the groups 151

.

The Life Span of a Software
System

In this chapter I shall:

◗ Introduce the concept of software life span;

◗ Describe the stages in a software system’s life span;

◗ Discuss where the quality definitions from Chapter 1 best fit in
the stages;

◗ Introduce the concept of entry and exit criteria between
stages;

◗ Prepare you for the detailed stage descriptions of Chapters 9
to 12.

As a business, we’re crippled by our system! My development

manager has just told me that removing the annual manage-

ment charge from our premium account is going to take 50

days’ effort. Our competitors do this sort of thing in 5 minutes.

Unbelievable!

—Chief operating officer (COO), lamenting those of us

who do not think beyond implementation

8.1 Life span or life cycle?
How do we avoid the problems upsetting the irate COO? To
help, I am suggesting that we focus on the “life span” of a soft-
ware system. The dictionary defines life span as “the length of
time for which a person or animal lives or a thing functions”
[1]. The life span of a software system begins when someone
identifies a business problem that may be solved with software,
continues through build and delivery, and, finally, ends with
its decommissioning. The life of a software system includes
what is often referred to as the software-development life cycle

153

8
Contents

8.1 Life span or life cycle?

8.2 Entry and exit criteria
between stages

8.3 Changes in quality
viewpoints across the life
span of a system

C H A P T E R

(SDLC), which includes the design, build, testing, and delivery of the sys-
tem. For most systems, the SDLC is a relatively short part of its life span.

Most systems spend the greatest part of their life span in use, being sup-
ported and maintained [2]. For example, many of you will remember the
worries before January 1, 2000, that systems would not cope with years
starting with “20” rather than “19.” Some of the systems in question were
more than 20 years old and still in use. Many organizations continue to
depend on such software. Why replace something that works? Modern sys-
tems show the same pattern of a relatively short SDLC, followed by a long
life of use and maintenance. Web sites spring to mind: After the initial
launch they are continuously used and simultaneously changed.

Thinking about the life span of a software system instead of focusing on
its development life cycle forces us to take a wider view of quality. We are
more likely to consider the value view. This is surely beneficial, as many
organizations struggle with the cost of ownership for their legacy systems.
We will also think about the user view: how the customers will deploy the
software. We may even identify the requirements of those tasked with
supporting it. Understanding the life span of software affects our interpreta-
tion of the product and manufacturing views. We may develop tactical
software intended to meet a finite need (short life span) very differently
from a core system our organization intends to use for many years (long
life span). In either case, the software is only there to support other
activities. The McCartney report emphasizes that “Delivering IT is only ever
part of the implementation of new, more effective ways of working.…
Achieving this requires a clear vision of the context in which IT is being
implemented” [3].

Because the SDLC is often loosely referred to as the software life cycle, I
have chosen to use “life span” to refer to the entire life of a software system,
in order to differentiate the initial development from the rest of the soft-
ware’s existence.1

The purpose of this chapter is to outline the four main stages I will dis-
tinguish throughout the life span of a software system. These four stages I
have called start-up, development (the SDLC), delivery, and postdelivery (when
the customers use the system until it is decommissioned). Maintenance
changes are made to the system during postdelivery. You may use different
names for these parts of the life span in your organization, or you may find
that an SDLC is defined but not start-up, delivery, or postdelivery, or that
all four stages are regarded as part of the SDLC. Do not worry about that;
the naming and organization of the stages is simply to help us manage our
work. The division into four life span stages that I am making is very simple
(see Figure 8.1).

154 The Life Span of a Software System

1. The IT Infrastructure Library refers to the “Application Management Lifecycle,” containing Application

Development (which includes the SDLC), and “Service Management” for the postdelivery activities. I have

decided that for this book, life span and life cycle are simpler and easier to differentiate [4].

8.1.1 Start-up

At this stage, members of the customer group realize that they have a prob-
lem that needs to be solved. They request the provision of a software solu-
tion. I use the word problem here; it may, of course, be an opportunity, for
example, to expand into a new marketplace; or an outside requirement, for
example, a legislative change, rather than a problem. In a healthy organiza-
tion where relationships between groups are strong, managers and builders
in IT may trigger start-up. IT can create opportunities by suggesting technical
possibilities unknown to the customers. For example, in a major supermar-
ket group, the customers knew that ordering stock for Christmas was a
nightmare, and accepted that they would overorder and run out of prod-
ucts. Surely, that is part of their business, isn’t it? The IT director identified a
software package that could manage the inventory more effectively, based
on predicted demand. The customers were unaware that this was possible,
but were delighted when the project had an almost immediate payback.

In start-up, we must understand the problem, and if we do not, explore
it more. We need to decide whether a software solution is appropriate, and,
if it is, agree on the overall constraints, acceptance criteria, and thus the type
of SDLC. If we decide to follow a software solution, we need some formal or
informal contract between the groups. This is covered in Chapter 9.

8.1.2 Development

At this stage, a software project is undertaken, through the SDLC. This
includes requirement definition, design, build and test activities to bring the
software solution from the high-level definition of the start-up stage to a
system ready for live delivery. It is important to remember that this is not
just code being built by developers. Remember our poor trainer from Chap-
ter 1. People will also be busy designing, building, and testing training,
documentation, and support materials. If the software being developed is a
package for commercial sale, the support material may include sales and

8.1 Life span or life cycle? 155

Postdelivery

Delivery

Development (SDLC)

Start-up

Entry: Criteria to judge whether we are
ready to start a stage; do we have
everything we need?

E
n

tr
y

E
n

tr
y

E
n

tr
y

E
n

tr
y

Exit: Criteria to judge whether we are
ready to complete a stage; have we
done everything we should have done?

E
xi

t

E
xi

t

E
xi

t

E
xi

t

Figure 8.1 Life span stages.

marketing material. For an in-house business system, it may include busi-
ness process manuals. These are all part of the delivered product.

The work required might include the acquisition of a commercial off-
the-shelf (COTS) system, building a custom-made system, tailoring a pack-
age, or making changes to an existing live system.

Members of all groups will be involved, directly or indirectly, but the
focus is on the builders and measurers.

There are several different life-cycle models for software development.
Some of these have been in use for many years, but new models and varia-
tions on the models have been developed over the years. The changes to the
models have been made as customer problems, perceptions of quality, and
the technologies available have evolved. I will look at the main groups of
models. We will examine their advantages and disadvantages, and consider
how to combine their best aspects to customize a life cycle. This is covered in
Chapter 10.

8.1.3 Delivery

This is the point where the completed software solution is moved to live use.
It is a time of anxiety for all the groups. The customers take delivery of the
software and start to use it. Members of all groups will support the delivery,
but their viewpoints will be quite different. The customer and supporters are
very engaged at this point. Will the system really work? Will they be able to
use it? Will the delivery go well? The builders and managers have quite a dif-
ferent reason for anxiety at this point. Will the project team be able to finish
this project and (with more or less relief) move onto a shiny new project?
For the measurers, fairly or unfairly, their efforts in assessing quality are now
under the microscope. Did they make the right assessment? At delivery,
many activities will come together at a single milestone in the project plan.
This is a short, intense period of stress, anxiety, and emotions that are a rol-
lercoaster between despair and elation. I will discuss delivery in Chapter 11.

8.1.4 Postdelivery

This is the life of the software while it is being used until it is decommis-
sioned. It is the longest part of a software system’s life span [5, 6], and is
where the benefits of the software are realized; “A project or program is only
successful if it delivers the benefits for which it was initiated” [3]. Customers
use the software while supporters maintain and support it. Although the
project team has often disbanded, all groups have an interest in quality at
this stage (see Section 8.3). Additionally, it is almost certain that the soft-
ware will undergo maintenance changes. Customers will identify new prob-
lems to be resolved and new opportunities to grasp, and will encounter new
outside requirements. The system may need to be enhanced, corrected, and
adapted to changes in its environment. To aid this, supporters may need to
change it to make future support and maintenance easier. So the system will
be subject to successive cycles of change, often with many changes taking

156 The Life Span of a Software System

place in parallel (Figure 8.2). Each maintenance change will have a start-up
(SU), development (SDLC/SMLC), and delivery (D), feeding into the post-
delivery (PD) system. Figure 8.2 shows new SDLCs, involving the whole
cast of characters from before, that could be described as SMLCs (software-
maintenance life cycles). This is covered in Chapter 12.

8.2 Entry and exit criteria between stages
Each stage has within it some entry criteria (the criteria for starting that
stage) and some exit criteria (the criteria for completing the stage). Some
people call these the “quality gates.” The entry criteria to a stage must match
the exit criteria from the previous stage, like a series of jigsaw puzzle pieces.
This may seem obvious, but I have seen projects affected badly by mis-
understandings at the hand-over points between stages as confusion arises
between people about responsibilities, authority, acceptance criteria, and
quality. The reason for entry and exit criteria is to clarify to people how and
when a handover can take place, and when it should not take place. In a
project or program with several parallel activities, a set of exit criteria may
feed more than one set of entry criteria, and a set of entry criteria may need
exits from more than one previous activity. Long stages, for example the
SDLC itself, will have entry and exit criteria to control the steps within the
stage. We will see examples of this in later chapters.

Each entry and exit point needs an owner. This is someone who has the
knowledge and authority to judge that the criteria are complete, by using a
checklist [7] or by best judgment. The former is more objective; if the check-
list is complete we move on, otherwise we do not. Using best judgment
alone can result in an argument about whether the criteria are fulfilled or
not, especially if the ownership and responsibility for the quality gates are
not clear. Sometimes, we want to ignore the criteria. For example, during

8.2 Entry and exit criteria between stages 157

PD

= PostdeliveryPD
= DeliveryD

= Development (the software
development life cycle or the
software maintenance life cycle)

SDLC/SMLC

= Start-upSU

D
D D

D

D

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SU SU

SU

SU

SU

Figure 8.2 Change cycles to a software system.

start-up the project team may want to start work before all the acceptance
criteria are set, in the belief that this will save time. If this is the case, we
need to examine why we set the criteria in a particular way and the risks we
take in not fulfilling the criteria. As we will see in Chapters 9 to 12, the pre-
cise entry and exit criteria depend on the situation, so checklists will need to
be tailored. As well as an owner, identify an escalation authority, to make
judgments in borderline cases.

Table 8.1 gives an example of simple entry and exit criteria between
stages; we will discuss them in detail within each stage. Typically some type
of review is required to check that the criteria have been fulfilled properly;
for example, [3] suggests a peer review at “project gateways.”

8.3 Changes in quality viewpoints across the life span
of a system

Software quality is important throughout the life span of a software system.
It can be built in or neglected at each stage of a system’s life span. In Chapter
1, we looked at five definitions of quality and at associated quality view-
points. Now I will consider how these viewpoints change across the life span
of the software system.

The dominant group at each stage will dictate the prevailing view (see
Table 8.2), but each group will still hold onto its preferred view, sometimes
even feeling that their view is being discounted. For example, during devel-
opment, the easiest view for the project team to use—the manufacturing
view—will mean that they concentrate on delivering to specification.

158 The Life Span of a Software System

Table 8.2 Prevailing Views of Quality Across the Life Span

Stage

Quality View Start-Up SDLC Delivery Postdelivery

Transcendent view ✓ ✓ ✓ ✓

User view ✓ (✓ late) ✓ ✓

Value view ✓ ✓

Product view ✓ ✓

Manufacturing view ✓ ✓

✓ is a primary quality view.
(✓) is a quality view that may be taken by some people in this stage.

Table 8.1 Example of Entry and Exit Criteria for Stages in the Life Span

Entry Exit

Start-up Problem identified Contract for SDLC

Development Contact for SDLC Acceptance test passed

Delivery Acceptance test passed Load to live use complete

Postdelivery Load to live use complete Decommissioning complete

However, when delivery happens, the user view will prevail. The builders
feel pleased that they have delivered to specification, and are then stunned
to find the system rejected by the customers.

This happens more often than one might suppose, either because the
specification was wrong, or because it was misinterpreted, or because the
world has changed so that the specification is out of date by the time the sys-
tem is delivered.

Once the system is in use, we can measure its effect. The managers will
be interested in measures of value for money and return on investment,
supporting the value-based view of quality. Supporters, measurers, and
builders will be interested in measures of defects reported during use, sup-
porting manufacturing- and product-based views of quality. Customers and
supporters engage with the software day to day. They hold a transcendent
view of quality (“Are we enjoying this system?”) but also the user-based
view. They will have a perception of the software as fit for purpose or
otherwise.

In the next four chapters, I will describe the quality activities at each
stage, showing what people can do as a team at each stage to build in and
measure quality, therefore achieving software quality through teamwork.

References

[1] Compact Oxford English Dictionary, 2nd ed., Oxford, England: Oxford University
Press, 2002.

[2] Hetzel, W., The Complete Guide to Software Testing, Wellesley, MA: QED, 1984.

[3] Cabinet Office, Successful IT: Modernising Government in Action, London, England:
HMSO, 2000.

[4] IT Infrastructure Library, Best Practice for Application Management, London,
England: Office of Government Commerce, 2002.

[5] Baxter, I. D., and C. W. Pidgeon, “Software Change Through Design
Maintenance,” International Conference on Software Maintenance (ICSM ’97), 1997.

[6] Yourdon, E., “Long-Term Thinking,” Computerworld, October 2000,
http://www.computerworld.com/managementtopics/management/story/0,10
801,52398,00.html, accessed January 2004.

[7] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley,
1993.

8.3 Changes in quality viewpoints across the life span of a system 159

.

Start-Up for a
Software-Development Project

In this chapter I shall:

◗ Describe the entry criteria, steps, and exit criteria for the
start-up stage;

◗ Show how to use this stage to decide whether software devel-
opment is required;

◗ Identify the quality definitions from Chapter 1 that prevail at
start-up;

◗ Identify how each of the groups identified in Chapter 2
becomes involved at start-up;

◗ Introduce techniques for analyzing problems and solutions,
setting aims and objectives, and defining acceptance criteria
and constraints.

Is that what you thought the reason is for this project? That’s not

why I want it done.…

—The development and business managers discover, several

—months into the project, that they have opposing goals

I would have thought it was obvious that we wouldn’t want this!

—Customer rejecting software on delivery

9.1 Start-up—description
We realize that we have a problem, or an opportunity (for
example, to expand into a new marketplace), or an outside
requirement such as a legislative change. We must understand
it and decide how to resolve it before we launch into delivering
a solution. Although many of us see quality as delivering a
project excellently, the most important project decision is

161

9
Contents

9.1 Start-up—description

9.2 Start-up viewpoints

9.3 Entry criteria for start-up

9.4 Start-up—typical
activities

9.5 Exit from start-up stage

C H A P T E R

ensuring that we do the right project. If the builders do not understand the
problem and the customers’ and managers’ quality views and their con-
straints, they may build software that is too costly or not fit for purpose. The
cost of making that mistake is huge compared with setting up the project
correctly in the first place: One commentator reported that the cost of failed
IT projects in the United States was estimated at $84 billion [1]. The cost of
finding our mistakes and sorting them out escalates throughout the project
[2]. The cost of doing the wrong project could be phenomenal; our biggest risk
is spending a lot of money and not resolving our problem. However, once we
identify that we have a problem, our impulse is to start doing something,
anything, to show that we are taking action. This means that we dive straight
into delivery without really knowing what we want to do. Our projects go
wrong before they have started! So, in this chapter, I am going to show you
how to make the difficult move from a complex and messy business prob-
lem to a project that is clear and structured. We will set the foundation for
future work, possibly including a software-development life cycle (SDLC)
and delivery (see Figure 9.1).

As an SDLC is costly, it is worth spending some time and effort doing this
stage well. We might decide that we cannot resolve this problem by a soft-
ware solution, or that we prefer to use a manual solution, or to do nothing.
We must:

◗ Explore the problem until we understand it.

◗ Decide whether this problem is worth solving.

◗ Set general constraints and parameters for the solution.

◗ Decide how to approach the problem; for example, a software solution
may be appropriate.

◗ Agree on a formal or informal contract of work, with constraints,
acceptance criteria, and an outline or high-level plan.

As we see in Figure 9.2, we will not just work our way down the list,
checking each off in order; we will find that we need to revisit interrelated
tasks as we investigate the problem. We cycle round, investigating the prob-
lem until we have enough information to either decide to do nothing, to
have a manual solution, or to have a software solution to the problem.

162 Start-Up for a Software-Development Project

SDLC = Software development life cycle
D = Delivery
PD = PostdeliveryStart-up

PD

D

SDLC

Figure 9.1 Life-cycle stage diagram.

9.2 Start-up viewpoints
A factor I often see contributing to the failure of software projects is that
people with useful viewpoints and information are not involved early
enough. Often, the only groups that participate in start-up are the custom-
ers and managers. Table 9.1 shows the quality views represented.

The team has a biased quality viewpoint, as it lacks either the product or
the manufacturing view. Also, because they are not involved, the builders,
measurers, and supporters are not being directly exposed to the value and
user quality views. The consequences of this can be severe. In a large transfor-
mation program in financial services, a group of consultants found that the
IT teams had little understanding of the business cases for their projects.
They did not know why they were building, so were unaware of the

9.2 Start-up viewpoints 163

Any
constraints/
parameters
for solution?

Investigate
further
(e.g., prototype)

Agree to
next stage

Understand
whether it is
worth solving

What constraints?
(budget, time, skill)

Is the
problem
worth
solving?

Do the constraints
affect the choice to
solve/leave?

Risk of doing
it versus risk of not
doing it

Understand
the problem

Entry

Contract of work
with the team

Decide not
worth solving

Decide on
nonsoftware
solution

Decide on
software solution

Exit

Figure 9.2 Task summary for start-up.

Table 9.1 Views of Quality at Start-Up: Simple View

Groups

Quality view Customer Manager

Transcendent view ✓ ✓

User view ✓

Value view ✓

Product view

Manufacturing view

organizational impact of going over budget or missing scope. They delivered
software that often failed to meet business expectations.

Table 9.2 shows that involving all the groups covers the quality view-
points and thus provides wider knowledge of the problem and potential
solutions.

Some IT people, including builders, measurers, and managers, express
frustration that the customers often do not know what they want, but we
must realize that it is difficult to understand many problems. Often, when
customers call in consultants “All [they know] is that something is not
working right and [they] need some kind of help” [3]. In some situations,
there is no clear customer group. Suppose your organization builds software
packages that are purchased by customers “off the shelf.” You may not have
direct contact with your “real” customers. Sales, marketing, or market
research people could represent the customers or involve customers via
market research. In one company producing project management packages,
the “key customers” for each release were representatives from group mar-
keting and the customer help desk.

9.3 Entry criteria for start-up
The entry criteria for a stage are the rules or reasons by which we decide we
are ready to start that stage. This might include a list of input deliverables or
a list of events that have to have happened. For the start-up stage, these are
quite simple (Table 9.3); we realize we need something—a problem solved, a
change in our processes, a new product supported. We have an idea for an
improvement or a change. This may be enough, but in some organizations it

164 Start-Up for a Software-Development Project

Table 9.2 Views of Quality at Start-Up: Teamwork View

Groups

Quality view Customer Manager Builder Measurer Supporter

Transcendent view ✓ ✓ ✓ ✓ ✓

User view ✓ (✓) ✓

Value view ✓

Product view ✓ ✓ ✓

Manufacturing view ✓ ✓

✓ is a primary quality view.
(✓) is a quality view that may be taken by some people in this group.

Table 9.3 Example of Simple Entry Criteria and Owners for Start-up Stage

Example Entry Criterion Example Owner

System or process problem identified Change control group

Legislation change identified Audit and compliance

Idea for new product identified Marketing

Process improvement identified Process owner

may be the entry into a suggestion scheme or a change process. When you
define entry criteria and steps for your start-up stage, look at your existing
scheme, and decide what ideas from this chapter you would like to add to
improve it.

9.4 Start-up—typical activities
9.4.1 Understanding the problem/idea

Once a problem or idea has been identified, we can use various methods to
analyze it. Remember that I am using “problem” as shorthand for “problem,
outside requirement, opportunity, or other reason for wanting to change
the status quo.” This step is critical, so beware underplaying it. If you get this
bit wrong, the project could already be doomed to fail! People will have pre-
conceptions about what needs to be done, even if they are using the word
“problem,” as TQMI1 [4] identifies:

◗ Solution: “our problem is that we need a new Web-based interface.”

◗ Symptom: “our problem is people keep making mistakes in data input.”

◗ Decision: “our problem is deciding which supplier to choose.”

◗ Problem: “our problem is that it isn’t working as we expected.”

Involving all groups will help prevent you from confusing the symptom
with the cause. Be radical and dig deep until you find the real problem. You
will need to consider many possible and underlying causes; for example, a
customer complaint might have one or more root causes (Table 9.4).

There are many methods for understanding problems and solutions.
Some you will find particularly useful are cause–effect or root-cause analy-
sis, solution analysis, brainstorming, and prototyping (see Table 9.5). You
will probably use cause–effect/solution (C-E/S) analysis and brainstorming
on your first pass, followed by methods such as prototyping as you start try-
ing to identify possible solutions (see Figure 9.3).

9.4 Start-up—typical activities 165

Table 9.4 Severe Customer Complaint Root Causes

Problem Severe Customer Complaint

Apparent cause Poor quality products

Possible underlying
causes

Product is badly designed/badly built/fails too quickly, and too often.

Product not matched to customer need/misadvertised/missold.

Customer expectations not managed against feasible targets/too expensive, late.

Poor quality service/customer complaints not handled well/customer passed from
person to person, multiple calls required to resolve problem.

Root cause in
this case

The customer had a minor problem that escalated as multiple calls were required to
resolve it.

Solution Improve customer complaints procedure to ensure a fast resolution to problems.

1. Reproduced by permission of TQMI Ltd., from Problem Solving—Tools and Techniques.

166 Start-Up for a Software-Development Project

Table 9.5 Summary of Techniques for Start-Up

Subject Area
Technique
Examples In 30 Seconds… (see Appendix A for more)

Identify
problems
and root causes,
find solutions

Ishikawa
fishbones
[4, 5]

Use to identify problems, root causes of problems and solutions. On a
fishbone diagram, brainstorm problems, their possible causes, their
root causes, and, therefore, solutions to the root cause. See Chapter 12
for an example.

Review
documents
and other
products

Walkthrough
[6],
inspections
[2, 6],
peer review
[6]

Walkthrough is a review with the purpose of increasing understanding
of a document. The author introduces the audience to the document
and takes them through it, explaining the content. Inspection is a
formal review with the purpose of identifying and preventing defects
and nonconformities to standards and specifications. Peer review
additionally allows discussion.

Improve
meetings
and improve
contributions

De Bono’s
Six
Thinking
Hats [7]

Improve meetings by setting rules for behavior. Six “hats” are used.
Everyone wears the same color hat at the same time: Blue Hat—
meeting structure, Black Hat—pessimistic, Yellow Hat— optimistic, Red
Hat—feelings, White Hat—facts, Green Hat—creative ideas. Allows
meeting members to move outside their stereotypes and allows time
for different, sometimes difficult types of communication.

Helping groups
agree on aims,
objectives,
targets, and
indicators

Weaver
triangle [8]

On a one-page diagram, the group identifies and agrees on the aim of
the project (why it is being done) and associated indicators of success,
then on the objectives of the project (what is to be done) and
associated targets. They identify where stakeholders have different
aims for the project.

Understand/
explore ideas

Prototyping
[9, 10]

Not an SDLC! We prototype to try out ideas or, if we are not sure what
we want, we build a model of a possible solution(s). Discuss the
prototype and review it. Two types of prototyping in software are
“lo-fi” and “hi-fi.” In hi-fi (high-fidelity), we build screens like those
the customer will see. Lo-fi (low-fidelity) prototyping uses paper/
white board. In lo-fi there is no danger of believing the prototype is the
software.

Modeling and
picturing,
stories,
metaphors
[11–13]

There are a number of modeling and picturing techniques that can be
worth exploring with lo-fi prototyping. These include Rich Picturing
and Mind Mapping. Sketching a picture of a problem, solution, or idea
can clarify it. Use stories, metaphors, and analogy as well; they can
help understanding.

Understand whether
an idea is worth
pursuing

Risk
workshop
by
brainstorming
[4, 5]

A brainstorming workshop is run to list all the possible risks people can
identify. Risks are sorted into groups, also separate risks (might happen
in the future), issues (problems right now) and constraints. Risks are
scored for impact and likelihood, and ranked to give a prioritized list.

Cost–benefit
analysis [5]

Cost–benefit analysis is done by calculating the predicted benefits of
the proposed change (time, money saved) and setting this against the
predicted cost.

Choose which
idea to pursue

Pareto
analysis [4]

The Pareto principle suggests that 80% of the problems are the result
of 20% of the causes. Gather data on the frequency of
problems/causes, and then resolve the most frequent.

Team
relationships
and natural
roles/team
skills

Belbin team
scores [14]

The SDLC can fail because of personal rather than technical factors.
Teams need to understand their strengths and weaknesses as a team. A
balance of roles/skills is required in the personalities in the team.
Example roles: plants have new ideas; completer–finishers want to
finish to fine detail. Too many plants and you will never finish
anything.

If you do not have direct access to your customers, your sales and mar-
keting group may use market research or ethnographical techniques at this
stage. This includes observing or interviewing groups of likely or existing
customers to help focus understanding of the customer’s viewpoint, with
use of prototypes. For example, Philips uses their “HomeLab” in Eindhoven
to observe how people react to new technology, because it is only by observ-
ing people living with the technology that they can identify which ideas are
good in practice, as well as in theory [18].

The output from this stage is a problem statement. This does not need to
be formal. The aim is to provide a short, clear description of your analyzed
problem. I would advise that you get others to have a peer review or a walk-
through of the problem statement before you go any further into start-up.

Do not forget that allowing different viewpoints to be heard during dis-
cussion of ideas is important. People who are disillusioned may respond
negatively to any new idea, including use of new techniques. If people say,
“Yes, but…” or “We’ve tried that and it didn’t work…,” do not dismiss them.
You will need to persist and show people that their contributions are

9.4 Start-up—typical activities 167

Idea/
problem/
opportunity/
necessity

C-E/S analysis/
brainstorming

Good
ideas

Better
ideas

Discarded
ideas

Build and
discuss hi-fi

screen prototype

paper prototype
discuss low-fi

Build and

Decide what to do:
software or manual solution
or do nothing

May
lead to...

Gather during C-E/S
analysis brainstorming

Eventually...

Gather
during prototyping

May
lead to...

Gather
during prototyping

May
lead to...

May
lead to...

May
lead to...

Gather
during prototyping

May
lead to...

May
lead to...May

lead to...

Gather
during prototyping

Gather during C-E/S
analysis brainstorming

Figure 9.3 Problem and solution analysis cycles during start-up.

Table 9.5 (Continued)
Improve
communication—
Empathy with
others

MBTI [15],
Honey &
Mumford
[16],
Kirton [17]

Different people have different personalities and communication styles.
People who wave their arms around and talk a lot can annoy people
who like to be quiet and think, and vice versa. The Myers-Briggs Type
Indicator (MBTI) identifies four contrasting type pairs, e.g.,
Introvert/Extrovert, leading to 16 “types” (e.g. INTJ is
Introvert-iNtuitive-Thinking-Judging). The Honey & Mumford Learning
Styles Questionnaire identifies preferred learning styles (e.g., Pragmatists
vs. Theorists require different experiences to learn). Kirton identifies
preferred problem-solving methods (Adaptors vs. Innovators)—do we
break the rules or work within them?

listened to seriously. People get into a habit of always reacting in the same
way; they consistently either support or condemn suggestions [3]. Using De
Bono’s Six Hats [7] helps resolve this by encouraging everyone to express
positive and negative views (see Table 9.5 and Appendix A). You may also
find, as I have, that when you bring the groups together some people are
very loud and others reticent. In certain organizational cultures, staff are
reluctant to challenge or disagree with their superiors [3]. If you find this,
then use techniques to help people express their views. For example, all
ideas or comments could be submitted anonymously in advance of the
workshop, then discussed “blind” (Frank Johnstone, personal correspon-
dence, April 24, 2003). Technology can help; some organizations use on-
line meetings and chat rooms to allow challenges to be presented safely.

Your view of the problem becomes more complete as you look at it from
different quality perspectives. Every group should participate in workshops
to identify problems and ideas, suggest solutions, build prototypes, and pro-
vide examples of similar business situations and how they were solved
(Table 9.6).

9.4.2 Decide whether the problem/idea is worth solving

We now have some understanding of our problem or idea. We need to con-
sider whether it is worth doing anything about it, and answering these
questions will help us:

◗ What benefits will we realize by solving this problem?

◗ What risks are we taking if we do not do this?

◗ What risks are we taking if we do it and it goes wrong?

◗ What benefits might we not realize if we attempt it but it goes wrong?

Both action and inaction hold risks. For some of the entry criteria
examples in Table 9.3, there is no doubt that a software project will be

168 Start-Up for a Software-Development Project

Table 9.6 Group Contributions to Understanding the Problem

Activity:

Group

C = Customer, M = Manager,

B = Builder, Me = Measurer, S = Supporter

Identify problem, idea All groups

Provide example of similar
problems and solutions

All groups

Take part in discussions and
workshops

All groups

Identify solutions and build
prototypes

All groups

Review role: C M B Me S

Review/test ideas and prototypes
against a quality viewpoint:
U = User, V = Value,
M = Manufacturing, P = Product

U

V

V M

P

M

P

U

U

P

undertaken. If a legislative change is required that affects the software sys-
tems, then the question is not “is this a good idea?” but “how shall we
change the software?” If there is a choice and there may be risks in making
changes, it might be better to accept the problem or not implement the new
idea, having assessed the risk. For example, not implementing a new
product gives us a risk of losing market share because our customers may
move to our competitors. Implementing the new product may increase our
number of customers and sales, and we should be able to predict the benefit
gained. But supposing our infrastructure (warehousing, sales support, and
so on) cannot support the increase? We may end up giving poor service to
all our customers, and so lose more business than if we had done nothing.

We also need to consider whether there are risks involved with any
expectations, for example the target date for getting the new product to
market. What is the risk if we miss that date? What is the risk that the date
will be too difficult a target for us to meet? You can see that there are two
parts to the risk: we need to consider the likelihood that something will go
wrong and the impact if it does go wrong. I have generally found that the
customers, managers, and supporters have a good understanding of the
impact of problems on the existing organization and infrastructure. Build-
ers, measurers, and supporters understand where technical problems are
likely to arise; they will understand the technical difficulties in solving the
problem and the effect of constraints. Customers and managers understand
where business complexity and constraints make problems likely.

The EFQM Excellence Model (see Chapter 1 and [19]) helps structure
the way we think about the impact of either not doing something or doing it
wrong. Consider the following:

◗ Impact on our organization’s customers—service levels, goods, expec-
tations, continuing delivery;

◗ Impact on the people in our organization—motivation, staff turnover,
attitudes, development, loss of IT infrastructure/support;

◗ Impact on our partners and resources—support of systems and
processes, damage to existing IT and other infrastructure;

◗ Impact on society—PR, attitudes, legislation, compliance;

◗ Impact on key performance results—financial, market share.

When we consider the likelihood of something going wrong if we do not
take action and if we do take action, we look at our areas of weakness:

◗ Technical constraints and difficulties, for example, complexity, lack of
knowledge of the technical aspects, limits to existing systems;

◗ Business constraints and difficulties, for example, complexity, lack of
business knowledge, product or service delivery constraints;

◗ Use of, lack of, or misuse of tools, techniques, processes, and standards;

◗ Constraints, for example, in time, budget, personnel, skill levels, or
other resources;

9.4 Start-up—typical activities 169

◗ Measurement of past experience and predictions from that.

The methods you can use were listed in Table 9.5 and are explained in
Appendix A. They include risk workshops and cost–benefit analysis. You
will probably need to consider risks and benefits along with constraints (see
Section 9.4.3) because they will affect each other; if you only have the
budget to build a family saloon car, do not expect it to be armor-plated. If
you are deciding which of a group of problems to solve to get the greatest
cost–benefit ratio, try using Pareto analysis (80% of the problems are the
result of 20% of the causes), choosing the most frequent problems/causes
to resolve [4].

9.4.3 Set general constraints and parameters for the solution

Some organizations like to keep the risk workshops, constraints definition,
and cost–benefit analysis quite separate, but I have found that the con-
straints will often come out naturally during the risk workshop. You may
want use part of the risk workshop specifically to collect constraints. The
constraints, risks, and benefits tend to interrelate. If you have a constraint
on timescale or budget, you may not be able to do as much as you wanted
to do. This might increase your risks, but the risks associated with increased
spending may be greater. Someone who took on a course of mine years
ago gave me a wonderful analogy—it is like going to buy a washing
machine:

You go into the shop, and ask the sales assistant the price of washing

machines. Suppose the assistant says that they range from $800 to $1,500.

You only have $15. The assistant will point out that for that money, you can

buy a bucket, a washboard, and some soap. You have kept within your

budget constraints and avoided the risks associated with getting into debt.

However, you are taking some additional risks—the washing will be done at

a lower temperature, so it may be not so effective, and you are going to get

soap on your skin (risk of “washerwoman’s hand”).

All the groups will be able to contribute to the discussion of constraints.
Customers and managers will know about service level, timescale, budget,
and resource and personnel constraints. Builders, measurers, and support-
ers will know about technical, knowledge, infrastructure, resources, and
skills constraints. In particular, the supporters will understand the con-
straints against current IT service delivery and capacity [20, 21]. While
examining the constraints, build prototype plans. Are any of the ideas “run-
ners” within the constraints?

9.4.4 Agree on next stage

We have identified a problem or idea and we have looked at whether it is
worth dealing with. Now we need to decide what to do. All the groups have

170 Start-Up for a Software-Development Project

a contribution to make, so consider having a walkthrough of the informa-
tion gathered so far, encouraging questions, comments, and additions. In a
walkthrough, the author of a document takes the meeting through the
document step by step, allowing them to ask questions and gather informa-
tion (see Table 9.5 and Appendix A). This promotes greater understanding
and helps find areas of ambiguity and mistakes. Display all the information
gathered so that the whole group can see it. I prefer putting everything on
the wall to allow everyone to look at it at the same time, standing and walk-
ing from chart to chart. It helps the team to discuss and think as a team. Use
a data projector and a PC, or flip charts from the workshops. If people
are geographically remote, consider on-line review and meeting tools, or
videoconferencing.

Once the team has discussed the information, they can make a decision
about what to do next. We have four options:

◗ Do nothing—decide that the problem is not worth solving. Log the
decision.

◗ Do more work on investigating the problem. Perhaps do some proto-
typing, but check that you have the time, budget, and permission to
carry on.

◗ Decide not to develop software, but to address the problem through
your people or processes. For example, the solution might include
recruitment, process change, or building a manual solution. Draw up a
contract for the work.

◗ Decide that we need a software solution. Draw up a contract for the
work.

9.4.5 Contract for work

Watts Humphrey remarked that one problem with software schedules is
that managers view them as contract-like commitments but the software
engineers (builders) do not view them as personal commitments: “Too
often, software commitments are based on little more than hope” [22]. We
need an agreement or contract between the groups. I am not (necessarily)
talking about the legal contract between a customer and third-party sup-
plier; it could be a formal or an informal contract between groups within an
organization, but it is a commitment. The Personal Software Process (PSP)
[22] and the Team Software Process (TSP) [23] emphasize the importance
of this commitment, but how do we reach it? It is vital that everyone
agrees on:

◗ The aims and the objectives for the work;

◗ The constraints for the work—dates, budget, people, resources, techni-
cal, and business;

◗ Acceptance criteria that define how we will know the work has been
completed satisfactorily.

9.4 Start-up—typical activities 171

Everyone needs to agree on what has been planned and check that it is
possible, by contributing to and reviewing the contract. This contract is the
basis for the project(s) that will deliver the solution required by the custom-
ers, perhaps including an SDLC. Sometimes, it is easy to agree the contract;
the problem or idea is well understood. Often, teams find this step difficult;
perhaps the customers are not sure what they want, or cannot define it, or
sometimes the builders and measurers are not sure they can build and test
the software within the constraints. If the team cannot agree on the aims
and objectives for the work, plus at least overall constraints and high-level
acceptance criteria, it is probably not wise to agree on a contract for an
SDLC; the problem or idea is not well enough understood to make a sensible
commitment to the work.

There may be reluctance to contribute difficult or controversial ideas in
contract negotiation meetings—“If I put my head above the parapet will I
get shot?” This is particularly true if different groups disagree about what is
possible within constraints. To prevent the loudest voice being the only one
heard, use the techniques mentioned earlier to control contributions to the
discussion.

9.4.5.1 Aims and objectives for the work

A project’s aims describe why it is being undertaken. They answer the ques-
tion, “Why are we doing this?” The answer is not “to build a Web site” but
“to increase market share.” Objectives are what you will do in order to reach
an aim: “Our aim is to increase market share, so one of our objectives is to
build a Web site.” Each aim is associated with one or more objectives, other-
wise it will not happen. Every objective must meet one or more aims, other-
wise, why do it? Indicators measure the impact that the project has on the
business. Did the project make a difference? Were the aims met? Has it real-
ized benefits or mitigated risks? Indicators enable us to assess whether the
aims have been met. Targets measure project delivery, monitoring whether
the objectives have been achieved. We know whether a requirement is
within our scope by testing to see if it aligns with the project aims and
objectives.

A useful technique to help define and agree on aims and objectives is a
Weaver triangle [8] (see Figure 9.4, Table 9.5, and Appendix A) as it
provides a picture of the project on one page. I have used a Weaver triangle
with software projects to demonstrate that key people around the project
had radically different ideas of the real aim of the project. The reason one
project was failing was that there was no agreement about why it was
being done. Each team had taken off with different aims, in a different
direction.

All the groups participate in defining and agreeing on the aims, objec-
tives, targets, and indicators, remembering to check that they are SMART
(specific, measurable, achievable, realistic and time-bound). If the team can-
not agree on SMART aims and objectives, do not set the contract. Investi-
gate the problem further.

172 Start-Up for a Software-Development Project

9.4.5.2 Constraints for the work

We have already looked at gathering the constraints. At this stage, we are
confirming that they are correct and complete, and that the project can be
delivered inside its constraints. In particular, managers will set date and
budget constraints, against value measures. These need to be checked and
agreed on by the other groups. As before, the builders, measurers, and sup-
porters identify technical constraints, for example, IT service levels and
capacity [22, 23]. These need to be understood and agreed on by the other
groups. If the team cannot identify the constraints, at least at a high level,
for example, the maximum budget, do not set the contract. Investigate the
problem further and prototype the plan to see if it is possible to deliver
within reasonable constraints. If there is some leeway in constraints, reflect
this in the contract:

◗ “This date must be met—legal requirement” is mandatory.

◗ “Marketing have planned a July launch to meet the build up for the
holiday market (November/December), latest launch is August” is
mandatory with some leeway.

◗ “Would like to complete work before March next year” is a preferred
date and could be renegotiated.

9.4 Start-up—typical activities 173

increased customer spending
decreased costs
increased profits
increased investment in new opportunities

Indicators:

To increase
customer
spending while
decreasing costs

Aim:

Objectives

To decrease
for the organization

of serving
the customer
the cost

To increase
the opportunities
for customers
to buy
from us

Specific aims:

Targets:
initial research complete (date)
on-line shop plan complete (date)
deliver stage 1 by (date)
budget for stage 1 (cost)

By improving
our warehousing
and delivery
systems to service
increased customers

By streamlining
our back office
systems to service
the increased
customers

By building a
secure,
user-friendly,
reliable
on-line shop

By researching
customer
preferred
shopping
options

Figure 9.4 Weaver triangle. (After: [8].)

9.4.5.3 Acceptance criteria

Setting acceptance criteria at this stage is very important. The acceptance cri-
teria are the means by which we know if a product or service is acceptable or
not. They describe the attributes of a product or service, and the “pass mark”
for each attribute for acceptability. If acceptance criteria are not defined or
they are vague, we are in danger of building the wrong system. Like the tar-
gets and indicators, acceptance criteria must be SMART. Many projects are
reasonably good at defining what the software should do (its functionality).
Very few customers and managers, in my experience, give much thought to
how the software should function. This is best illustrated by an example. An
ATM machine should provide cash—that is its function. How quickly should it
provide the cash—within 2 hours or within 1 minute? This is a nonfunctional
attribute—it describes how the software works. They are often taken for
granted. In the ATM example, it seems obvious that 2 hours is too long to
wait for the money. The problem is that people’s assumptions about these
attributes may differ, so that although one might assume that the nonfunc-
tional attributes are too obvious to mention, they may be interpreted differ-
ently by other people in the team. Whether the project includes an SDLC or
not, acceptance criteria will be needed, in order that we can check that the
project has delivered acceptable products and services.

Software standard ISO 9126 [24] describes attributes of software, and
measures for those attributes, but, as you will see, we could adapt some of
the attributes for nonsoftware solutions. If we use ISO 9126 to help us
define acceptance criteria, we can improve their SMARTness. This increases
the likelihood of the right software being delivered.

ISO 9126 breaks down the functional and nonfunctional attributes of
software into a series of subattributes, questions and metrics. Some exam-
ples are shown in Table 9.7.

Let us take usability as an example. People find it hard to define and
measure usability, so “give up” on trying to write acceptance criteria or try-
ing to measure whether the software is acceptable. Look at Table 9.8, and
you will see increasing refinement of one aspect of usability until we arrive
at measurable acceptance criteria. Statements 1 and 2 are impossible to
measure. No attempt is made to define “usability.” Statement 3 crudely
qualifies what usability means but it will be hard to measure, and it will,
therefore, be difficult to design and build software that meets the customers’
usability needs. Statement 4 is a little better; we know that some training
will be needed but we have no definition of a new user. Is it someone new

174 Start-Up for a Software-Development Project

Table 9.7 Examples of Attributes, Based on ISO 9126

Example Attribute Example Subattribute Example Question or Statement

Functionality Suitability Does the function perform tasks that do not conform to
specified ones in requirements specifications or user manuals?

Usability Understandability Percentage of functions evident to user

Security Access controllability Is there any failing to defend against illegal access or illegal
operation?

to this particular software or to software in general? Statement 5 (based on
ISO 9126 metrics under “Usability” for Learnability, Efficiency and Effec-
tiveness) is measurable. Having more measurable acceptance criteria means
it is easier to assess whether they meet other aspects of SMARTness.

The various nonfunctional attributes of software are of interest to differ-
ent groups, so I would expect all the groups to be involved in setting accep-
tance criteria. Table 9.9 (based on discussions in 2002–2003 between David
Hayman and me) lists attributes and groups. Remember when looking at
the table that the customer group includes executives and sponsors as well
as the software users.

9.4 Start-up—typical activities 175

Table 9.8 Making Acceptance Criteria Measurable

1. I assumed you would make it easy to use.

2. It must be user-friendly.

3. I want it to be as easy as the current system.

4. A new user must be able to use it with 30 minutes training.

5. Based on a sample of 20 typical users, at least 90% must learn to use the system in less than 30
minutes. After training, 100% of the sample users must be able to complete the standard “10 typical
tasks” sequence without help, 95% of them completing it without help in less than 5 minutes.

Table 9.9 Selection of Nonfunctional Attributes and Groups

Attribute Group Setting Acceptance Criteria and Reason

Performance (e.g.,
performance, stress,
volume, scalability)

Customers—want good response from system

Supporters—do not want bottlenecks in the infrastructure and systems

Security Customers—Government and compliance requirements, CIA model
(confidentiality, integrity, and accessibility of information)

Supporters—infrastructure and firewalls

Reliability (e.g.,
reliability, availability,
recovery)

Customers—service levels, product availability, lost sales, compliance, safety, avoid
wasted time and lost work

Supporters—reduce system restarts and help-desk calls, avoid wasted time and lost
work

Usability Customers—attractive system to use and to market, supports users at their skill
level—not too easy, not too difficult—efficiency and effectiveness for users
completing tasks, avoid wasted time, mistakes, increase productivity

Supporters—reduce help-desk calls

IT support (e.g.,
installability, portability,
compatibility,
conversion, memory
management,
maintainability)

Supporters—need to support it within the existing infrastructure (e.g., amount of
memory required, ease/cost of making changes)

Managers—cost of changes to infrastructure, cost of making changes

Attribute Group focus for reviewing acceptance criteria

All attributes reviewed Measurers: they are testable (specific and measurable)

Builders and supporters: they can be delivered within the constraints (achievable
and realistic)

Customers: they are what is required (realistic and time-bound)

Managers: they are within cost/time constraints (realistic and time-bound)

Some of these attributes are specific to software, but others could be
applied or adapted to nonsoftware projects. For example, suppose our proj-
ect is to write some manual business processes. We would still look at attrib-
utes and acceptance criteria, for example:

◗ Usability—people are able to learn and use the new processes to carry
out their tasks;

◗ Maintainability—able to update the business processes;

◗ Performance—throughput of tasks and business processes
bottlenecks.

Just as in Chapter 1, where we saw that there is no “right” definition of
quality, there is no “right” set of acceptance criteria. It is situational. Con-
trast the following:

◗ Air traffic control system—safety critical, so the emphasis is on reli-
ability, recovery, performance, and security, but usability will also be
important.

◗ Package to improve usability of Web pages for the visually impaired—it
is browser-based, so usability and maintainability will be important.

◗ Software to launch an innovative new product and achieve “first-
mover” advantage—marketing may produce a high initial demand
and a new user group so stress and usability will be important.

We might believe that in a perfect world we would have no constraints,
but this is not reality. For most commercial organizations, it would be
unnecessarily expensive to have all the attributes “at 100%.” Usually, the
customer is best served by balancing the quality viewpoints. This means
planning to deliver some attributes at a lower standard than what would be
achievable in a perfect model. This is necessary to avoid sacrificing the non-
product quality viewpoints. In our project, which of security, performance, reli-
ability, and so on are most important to us? What are we prepared to invest
in this software? The quality we want to build into the product and the proj-
ect is a negotiated compromise. In practice, this comes down to identifying
the greatest number or level of attributes (product-based quality) that:

◗ We can deliver (we have constraints of money, time, resources, and
skills);

◗ To support the users’ tasks (user-based quality);

◗ While giving best cost–benefit ratio (value-based quality);

◗ While following repeatable/quality assured processes within a managed
project with minimized defects (manufacturing-based quality).

The balance that we want to achieve between the quality viewpoints is
defined, then formalized in the acceptance criteria that we set for the func-
tional and nonfunctional attributes of the software product and project

176 Start-Up for a Software-Development Project

deliverables (for example, specifications). Our acceptance criteria will pre-
vent conflicts between stakeholders, provide guidance on how we develop
the software, and mitigate against failing to meet the customer group’s
expectations.

Customers can find nonfunctional attributes difficult to conceptualize.
As an example, in one project the customers had to set acceptance criteria
for performance and response time. Initially they considered 20 seconds
response time to be acceptable, even short. It sounds short. It is short when
one is running for a train! However, the customers found it an unacceptable
time for a Web page to load from the corporate intranet when they saw it live.
The builders and supporters must be very proactive in helping the business
define the nonfunctional acceptance criteria. Something that helped in the
example above was a performance prototype; one of the team simply stopped
the meeting for 20 seconds, allowing no speaking, no writing, and no move-
ment, to demonstrate “what 20 seconds really feels like.” You could also
build prototypes and scenarios to help develop availability requirements and
acceptance criteria.

Package vendors should note that customers often make purchases
based on nonfunctional attributes, where functionality is similar in differ-
ent products. Poor nonfunctional attributes may mean a product will be
rejected [25]. Part of the market and other research for the project should
explore this, with acceptance criteria set by the help-desk, support, sales,
and marketing teams. Because the attributes are not described in the stan-
dard in everyday language, it can be useful to translate them into question-
naires, as suggested by Trienekens and van Veenendaal [26]. For example,
asking “Have you an alternative way of carrying out your task if the soft-
ware is not available?” provides an insight into reliability acceptance crite-
ria. The weighting of replies for all the questions gives the priorities for
acceptance [27].

The team should agree on the priority for the system attributes, because
the most important attributes will be the focus for designing what is built. If
the team then cannot set SMART acceptance criteria for the high-priority
attributes, or cannot agree on the priority, try some prototyping to help gen-
erate ideas. Acceptance criteria should include the measurement of indica-
tors. Indicators (for example, “percentage increase in market share”) are
measured after the project completes, so acceptance criteria should show
which attributes contribute to the aims and, hence, to the indicators.

9.4.5.4 Outline plan

Once the aims and objectives, constraints and acceptance criteria have been
agreed on, we can build an outline plan, based on the prototype plans we
built before. The reason for doing this is to examine whether it is reasonable
to provide a solution within the constraints that meets the aims, objectives,
and acceptance criteria. This plan is unlikely to be very accurate or precise;
expect to see “ball park” figures, and an allowance for replanning during
any project.

9.4 Start-up—typical activities 177

9.4.5.5 Reviewing the contract

Any contract for further work should be reviewed by walkthrough, for
understanding, and then by an inspection or similar review to identify
defects. Whereas the walkthrough is mainly for sharing information and
understanding, the inspection is a review that is focused on finding defects
(see Table 9.5 and Appendix A) so both are needed to ensure we have the
right contract. Each group will bring a different perspective to the review
(Table 9.10). Note that a joint customer/supplier contract review is a require-
ment of ISO 9000, because the contract is the agreement and commitment to
the work. It is important that the acceptance criteria for the software are
reviewed, both for SMARTness and against the constraints, aims, objectives,
targets, and indicators. Use a peer review or an inspection (Table 9.5 and [2,
17]), and ensure that each quality view is covered in the review. If the team
cannot set, review, and agree on the contract including the acceptance crite-
ria at least at a high level, then it is too soon to set the contract.

9.5 Exit from start-up stage
The exit from start-up happens either because we have decided to do noth-
ing, or because we have a contract for further work. Examples of exit
criteria are shown in Table 9.11. The specific exit criteria you use will
depend on your organization. You may be feeding into some other planning
process at this stage or you may go straight into a project, for example
an SDLC. In some organizations, additional planning and authorization is
required depending on the likely cost or risks of a proposed project.

Different organizations use different document names depending on the
project management process. You may see the exit decision in a document
called any of project idea form, project mandate, initiation document, project
approach, or authorization to proceed. The important point is that it should
document or refer to the output from all the steps covered in this chapter.

In this chapter, I have shown you some techniques that help you decide
whether you need a SDLC and how to improve the contract for the work.

178 Start-Up for a Software-Development Project

Table 9.10 Review Perspectives at Exit from Start-Up

Group Quality Risks Constraints

Aims, Objectives,Targets,
Indicators, Acceptance
Criteria, Outline Plan

Customer User Impact on
organization

Business, service level,
time, cost

Realistic, time-bound

Managers Value Impact on other
projects

Cost, time, skills,
resources

Realistic, time-bound

Builder Manufacturing,
product

Likelihood—
technical

Technical skills,
knowledge, infrastructure

Achievable, realistic

Measurers Product,
manufacturing

Likelihood—previous
failures, predictions

Technical skills,
knowledge, infrastructure

Specific, measurable

Supporters User, product Impact on
existing systems

Technical skills,
knowledge, infrastructure

Achievable, realistic

These techniques were summarized in Table 9.5. In the next chapter, I will
describe the SDLC.

References

[1] Smith, K., “The Software Industry’s Bug Problem,” Quality Digest, 2003;
reproduced on http://www.qualitydigest.com, April 2003.

[2] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley,
1993.

[3] Schein, E. H., Process Consulting, Vol. 1: Its Role in Organizational Development,
Reading, MA: Addison-Wesley, 1988.

[4] TQMI, Problem Solving—Tools and Techniques, Frodsham, England: TQMI, 2001.

[5] Robson, M., Problem Solving in Groups, Aldershot, England: Gower, 1995.

[6] IEEE 1028™ Standard for Software Reviews, 1997.

[7] de Bono, E., Six Thinking Hats®, New York: Penguin, 1999.

[8] Evans, I., “The Troubled Project—Best Practice from Theory to Reality,”
EuroSTAR Conference, 2001.

[9] Hohmann, L., “Lo-Fi GUI Design,” Software Testing and Quality Engineering, 1, 5,
24–29, September 1999.

[10] Nance, R. E., and J. D. Arthur, Managing Software Quality, New York: Springer-
Verlag, 2002.

[11] Freeburn, G., “Mind Mapping 101 for Testers,” EuroSTAR Conference, 2002.

[12] Buzan, T., The Mind Map Book, London, England: BBC Consumer Publishing,
2003.

9.5 Exit from start-up stage 179

Table 9.11 Example of Exit Criteria for Start-Up Stage

Example Exit Criteria
Example Deliverables Documented,
Reviewed, and Agreed Upon Example Authorization Owners

1. “Understanding the
problem/idea” step complete

Problem statement, prototype
assessments

Joint sign-off by representatives of
all groups

2. “Decide whether problem/idea is
worth solving” step complete

Problem assessment, cost–benefit
analysis, risk assessment

Joint sign-off by representatives of
all groups

3. “General constraints and
parameters” step complete

Project proposal/brief Joint sign-off by representatives of
all groups

4. “Agree on next stage” step
complete

Aims and objectives, constraints,
acceptance criteria, outline plan

Joint sign-off by representatives of
all groups

5. Criteria 1, 2, 3, 4 complete with
decision to do nothing

Entry in suggestion scheme log Process owner

6. Criteria 1, 2, 3, 4 complete with
high-level contract for SDLC

Project mandate Process owner

7. Criteria 1, 2, 3, 4 complete with
authorization for system change

Initiation document Process owner

8. Criteria 1, 2, 3, 4 complete with
authorization for nonsoftware solution

Project idea form Process owner

[13] “Drawing Concerns: A Structured Rich Picturing Approach,” http://business.
unisa.edu.au/cobar/documents/richpic_colin.pdf, November 2003.

[14] Belbin Associates, “Belbin Team Roles,” http://www.belbin.com/belbin-team-
roles.htm, October 2003.

[15] Team Technology Web site, “The Mother of Strategic Systems Issues:
Personality,” http://www.teamtechnology.co.uk/tt/t-articl/news1.htm, October
2003.

[16] Honey, P., “Learning Styles,” http://www.peterhoney.co.uk/product/
learningstyles, October 2003. PeterHoney.com, 10 Linden Avenue,
Maidenhead, Berks, SL6 6HB. Tel.: 01628633946. Fax: 01628633262. E-mail:
info@peterhoney.com.

[17] McHale, J., “Innovators Rule OK—Or Do They?” Training & Development, October
1986; reproduced on http://www.kaicentre.com/, July 2003.

[18] Johnson, R., “Somebody’s Watching You” Sunday Times, May 11, 2003.

[19] European Foundation for Quality Management, “EFQM Excellence Model,”
http://www.efqm.org, August 2003.

[20] IT Infrastructure Library, Best Practice for Service Delivery, London, England: IT
Infrastructure Library, OGC/TSO, 2001.

[21] IT Infrastructure Library, Best Practice for Service Support, London, England: IT
Infrastructure Library, OGC/TSO, 2002.

[22] Humphrey, W., Introduction to the Personal Software Process, Reading, MA: SEI,
1997.

[23] Humphrey, W., Introduction to the Team Software Process, Reading, MA: SEI, 2000.

[24] International Standards Organization/International Electrotechnical Commis-
sion (ISO/IEC), DTR 9126, Software Engineering—Software Product Quality
(Parts 1–4, 2000/2001).

[25] Watkins, J., “How to Set Up and Operate a Usability Laboratory,” EuroSTAR
Conference, 2002.

[26] Trienkekens, J. J. M., and E. P. W. M. van Veenendaal, Software Quality from a
Business Perspective, Dordrecht, the Netherlands: Kluwer Bedrijfsinformatie, 1997.

[27] Hendriks, R., E. van Veenendaal, and R. van Vonderen, “Measuring Software
Quality,” in E. van Veenendaal, The Testing Practitioner, Den Bosch, the
Netherlands: Uitgeverig Tutein Nolthenius, 2002, pp. 81–92.

Selected bibliography

Belbin, R. M., Management Teams–Why They Succeed or Fail, London, England:
Butterworth Heinemann, 1981.

Boehm, B. W., Software Engineering Economics, Englewood Cliffs, NJ: Prentice-
Hall, 1981.

Obeng, E., “Helping Stakeholders to Understand Requirements,” Project Manager
Today, July 2003, pp. 14–17.

180 Start-Up for a Software-Development Project

Software-Development Life
Cycle

In this chapter I shall:

◗ Describe the entry criteria, steps, and exit criteria for the
SDLC;

◗ Outline and compare several approaches for the SDLC, espe-
cially for readers who are not software specialists;

◗ Identify the quality definitions from Chapter 1, which prevail
at this stage;

◗ Identify how each of the groups identified in Chapter 2
become involved at this stage;

◗ Identify techniques that improve teamwork during the SDLC.

The users are moaning about the software; they say it is doing the

wrong thing, but it is functioning according to the specification.

When I saw the bug report, I marked it “Not a bug.” They’re just

wasting my time!

—Irate builder, trying to get on with work

What do you mean it was not in the specification? You people

wrote the specification. It’s not my fault if you didn’t keep it up to

date!

—Irate customer trying to use the software

10.1 Software-development life
cycle—description
The builders and customers are at loggerheads. Although the
builders have developed what was specified, that is not what
the customer really needs. Both are right from their own point
of view, but they need a way to understand each other better
in order that the customer’s expectations meet the builder’s

181

10
Contents

10.1 Software-development life
10.1 cycle—description

10.2 SDLC viewpoints

10.3 Entry criteria for SDLC

10.4 SDLC—typical activities

10.5 Entry and exit points
10.1 within the SDLC

10.6 SDLC models

10.7 Quality views and the
10.1 models—why we might
10.1 wish to combine models

10.8 Exit from the SDLC

10.9 Conclusion

C H A P T E R

delivery. The project of building a software system to deliver to a customer
is controlled via a software-development life cycle (SDLC). Some SDLCs are
formally defined within methodologies. Others are informal but under-
stood by those who use them—“We always do it this way.” Regardless of
the formality of the definition, all SDLCs are intended to deliver what the
customer requires and to avoid the problems of our irate builder and
customer.

In this chapter, I will compare models to see how well they do this. I will
show you how the models used for the SDLC include detailed specification
of what is needed, design of the solution, and the building and testing of
products that will deliver what is needed.

In Figure 10.1, we see that the SDLC sits in the software life
span between start-up (covered in Chapter 9) and delivery (covered in
Chapter 11). During start-up, we identified a problem or idea, investigated
it, and decided it was worth building a software solution, so we set a formal
or informal contract of work for the SDLC. At the end of the SDLC, if we are
successful, the software is delivered. It will be used postdelivery, as it is
maintained and supported for the rest of its life span. The SDLC is not build-
ing to the moment of delivery, but to postdelivery when the software is
used.

10.1.1 Types of software acquisition project

The purpose of an SDLC is to provide a software solution to help the cus-
tomers solve the problems identified during start-up. The acquisition of the
software to resolve a particular problem might be achieved in several ways,
for example:

◗ Custom-made system: The whole software system is designed and built
to meet a specific customer’s requirements; the customer may choose
to have the software built by a third-party supplier, that is, another
organization, or to use an in-house development team consisting of
by people who work for the customer’s organization.

◗ COTS system: The customer buys a commercial off-the-shelf (COTS) sys-
tem or package, sometime referred to as shrink-wrapped software,
from a package vendor (a third party who sells COTS packages).

◗ Tailored package: The customer buys a package, but has some tailoring
done to it by the supplier; these are changes made to meet specific
requirements of the customers.

Any of these would be covered by an SDLC, but the customers will have
more or less control over the detailed content of the software depending on
the type of system chosen.

The customer may also decide to resolve their problem by requesting a
change to an existing system. We will cover these maintenance changes in
Chapter 12, but it is worth remarking that the same activities as in an SDLC

182 Software-Development Life Cycle

would take place in a maintenance change. The specification, design, build,
and test of the change may be quite small activities, or may be equivalent to
an SDLC, and, indeed, use the same life cycle model up to the point of
delivery.

10.1.2 Identifying the software products

Remember that this is not just code being built by developers; people will
also be busy designing, building, and testing training, documentation, and
support materials. If the software being developed is a package for commer-
cial sale, the support material may include sales and marketing material. For
an in-house business system, it may include business process manuals.
These are all part of the delivered product. When I talk about “software” or
“product,” I mean all of these types of deliverables. The media of delivery
might be electronic, paper, on a microchip, or by semaphore signals; it does
not matter.

10.1.3 SDLC task summary

There are several different life-cycle models for software development. In
this chapter, we are interested in how the SDLC models help us achieve
software quality, so rather than describing them fully, I am only going to
outline them and give references to further information. The life-cycle mod-
els have changed over time to reflect the changes in customer group prob-
lems, perceptions of quality, and technologies available. Generally they
have been described as development life cycles, but some of them include or
may be adapted to maintenance activities. They have a number of steps in
common. In some of the models we will see that these are performed once
and in others some or all the steps are repeated or broken down into sub-
steps. Put very simply, the fundamental steps are:

◗ Planning and monitoring—we plan what we will do and when we will
do it, then track progress against our plan.

◗ Managing change—the real world will change around the SDLC and the
deliverables required from the SDLC may need to change to reflect
reality.

10.1 Software-development life cycle—description 183

S = Start-up
SDLC = Software development life cycle
D = Delivery
PD = Postdelivery

S

PD

D

SDLC

Figure 10.1 Life span stage diagram.

◗ Requirements—we make a detailed description of what we want.

◗ Design—we design the solution, including the software to meet the
requirements.

◗ Build—we build the software based on the designs.

◗ Testing—we test to make sure that the software functions properly.

10.2 SDLC viewpoints
Just as we saw in Chapter 9 that start-up fails if the right people are not
involved, during the SDLC we can have problems if we do not make sure
that we take account of all viewpoints throughout the project. Sometimes,
the customers set the contract, order the software, and then leave the man-
agers, builders, and measurers to get on with it: “It’s obvious what we want!
Just do it!” This means that the customers are not involved in the SDLC.
Similarly, the supporters may not be involved in the SDLC, only being
“invited to the party” at delivery. If this happens, it limits the quality view-
points (see Table 10.1, the definitions in Chapter 1, and assignment to
groups in Chapter 2).

We saw in Chapter 2 that the builders and measurers tend to focus on
manufacturing and product quality, rather than value or user quality. The
manufacturing viewpoint focuses on delivering to specification and remov-
ing defects (differences between the product and its specification). The prod-
uct viewpoint focuses on attributes such as functionality, performance, and
security: how they are specified and built. Some builders and measur-
ers, especially user-acceptance testers, do empathize with the user view,
adopting a “fit-for-purpose” approach, but often these are people who are
involved late in the SDLC, sometimes too late to influence design decisions.

Both builders and measurers hold a transcendent viewpoint (“In my
heart I know what is right”) that pursues technical excellence or achieving
zero defects in software rather than cost-effectiveness or value. One col-
league, an excellent tester, said to me when we discussed the value view-
point, “But we must not sacrifice quality to cost.” He was forgetting that
although his manufacturing definition of quality focuses on removing
defects, in the value view, keeping within costs is a major contributor to
quality.

184 Software-Development Life Cycle

Table 10.1 Views of Quality During SDLC—Simple

Group

Quality View Builder Measurer

Transcendent view ✓ ✓

User view (✓ can be late in SDLC)

Value view

Product view ✓ ✓

Manufacturing view ✓ ✓

✓ is a primary quality view.
(✓) is a quality view that may be taken by some people in this group.

When delivery takes place, the user and value viewpoints will prevail.
The builders and measurers feel pleased that they have delivered to specifi-
cation, and are then stunned to find the system rejected or criticized. Per-
haps the specification was wrong, misinterpreted, or out of date. Perhaps an
overambitious solution had been built, which means that the software has
cost more or taken longer than budgeted. The customers, managers, and
supporters turn on the others: “How could they have been so careless and
extravagant?” The builders and measurers retaliate: “If you hadn’t kept
changing your minds…,” and so on.

Much of this can be avoided by a careful start-up (see Chapter 9) but
during the project some things will change (see Table 10.2 for examples)
and unless all the groups are represented on the project, the SDLC may pro-
ceed without allowing for changes that will be necessary during the SDLC.
We can deal with change in the SDLC provided we acknowledge that it is
going to happen.

Getting everyone involved in the SDLC team will stop quality views
being forgotten during the SDLC (Table 10.3) and will allow the changes in
the organization’s requirements to be reflected throughout the SDLC.

10.2 SDLC viewpoints 185

Table 10.2 Examples of Changes During the SDLC

Real-world changes The customers’ needs, hence the requirements for the software, will change to
reflect their changing environment. These might be changes in the
marketplace within which an organization operates, or legislative changes that
affect how an organization may operate. If the SDLC team are not aware of
these changes they will deliver unwanted software. As an example, the
McCartney report [1] cites a project at an insurance company in the United
States. By the time the project was finished, the company no longer sold the
product to be supported by the software being delivered.

IT infrastructure changes The hardware/network/system on which the software will be used may
change, thus changing constraints and risks for the software. In one project I
worked on, performance was a critical risk, but a hardware upgrade changed
the performance constraints, thus changing the risk focus of the project from
performance to other areas.

Existing systems (IT and
business) changes

The new system does not “plug in” as anticipated, either because the builders
were not aware of the detail of the IT environment and infrastructure or
because it changed during the SDLC. The McCartney report [1] cites a
government IT project in which changes to the existing systems during the
SDLC made integration of the new system into the existing systems difficult.

Skills changes People with expertise may leave or join the organization or the project,
changing the project’s capabilities and thus what could be delivered.

Leadership and organization
changes

The organization’s priorities may change, so the project may become more or
less critical than it was, perhaps meaning a change in timescale, budget,
people, or resources.

Risk changes Risks change over time. One mistake project teams often make is to build a
risk register at the start of the project and then never reassess the risks. Low
risks at the start of a project may grow to come back and bite you later on:
“Maybe the worst risk in a project is a lack of an ongoing risk assessment and
risk management process” (David Hayman, personal correspondence, March
2003).

Errors made during start-up We may realize we have made some mistakes during start-up—we are only
human and we may have missed something. Building the solution we
intended may be harder than we thought, we may have misunderstood an
aim, or we may realize that acceptance criteria cannot be met within targets.

10.3 Entry criteria for SDLC

10.3.1 Entry criteria following a detailed start-up

If we have done everything suggested in Chapter 9, we arrive at the start of
the SDLC with a contract and additional information gathered during
start-up, which should include:

◗ Problem/solution analysis—“What problem are we trying to solve?”

◗ Constraints analysis—“What financial, time, organizational, and tech-
nical constraints do we have?”

◗ Cost–benefit analysis—“What benefits do we expect within our
budget?”

◗ Risk analysis—“What is the likelihood that this will go wrong and the
impact if it does or if we do not do it?”

◗ Aims and objectives for the SDLC—“Why are we doing this? What dif-
ference will this project make to the organization?”

◗ Targets and indicators—“How will we measure progress and whether
the project has been worthwhile? Are we making a difference?”

◗ Acceptance criteria—“How will we know if we have succeeded?”

186 Software-Development Life Cycle

Table 10.3 Views of Quality During SDLC—Teamwork

Groups

Quality view Customer Manager Builder Measurer Supporter

Transcendent view ✓ ✓ ✓ ✓ ✓

User view ✓ (✓) ✓

Value view ✓

Product view ✓ ✓ ✓

Manufacturing view ✓ ✓

Table 10.4 Example Entry Criteria and Owners for SDLC

Example of Entry Criteria Example of Entry Documents Example of Authorization Owners

1. All start-up steps
complete, deliverables
documented, reviewed,
agreed on, and signed off

Problem statement, prototype assessments,
problem assessment, cost–benefit analysis, risk
assessment, project proposal/brief, aims and
objectives, targets and indicators, constraints,
acceptance criteria, outline plan

SDLC project sponsor, process
owner, project manager

2. Contract reviewed,
agreed, and authorized

Documents from (1) completed, contract
checklist completed, all documents received

Project manager

3. System change
authorized

Documents from (1) completed and received,
change mandate signed

IT support manager

4. Process change
authorized

Documents from (1) completed and received,
change mandate signed

Process owner

When we check the entry criteria for the SDLC, we should see all of this
information in the contract and associated documents. Table 10.4 shows
some simple examples of entry criteria for different projects. You may call
some of these things slightly different names in your organization; that does
not matter, as long as you have the information indicated.

10.3.2 When no entry criteria have been defined

If no entry criteria have been defined for an SDLC in your organization, you
may find that you start work without all the information you need. In this
situation, for your current project, whatever its size or status, I would rec-
ommend that you try to document something to describe the entry into the
SDLC, even on the smallest SDLC. The virtue lies not in the size of the docu-
mentation, but in its clear content. At a minimum, take an approach of “on
one page” to see if you can capture the essence of the problem in a checklist
form like the one in Table 10.5 to give you a basic set of entry criteria. Use
the checklist to see which areas you need to investigate more fully; for
example, do you have clear acceptance criteria and constraints?

To prevent this problem from recurring, improve the SDLC model that is
used in your organization by adding entry criteria to the model.

10.3.3 When entry criteria have not been met

Strictly, if the entry criteria have not been met, we must not start the SDLC.
In order that we can be strict, it is important that the entry criteria are:

10.3 Entry criteria for SDLC 187

Table 10.5 Checklist of Entry Criteria Form for a Small SDLC

Project name, date of form completion

Problem/solution analysis—Do we understand what problem are we trying to solve? Is that understanding
shared by all parties?

Problem statement:

Constraints analysis—Have the financial, time, organizational, and technical constraints been defined and
agreed on?

Constraints statement:

Cost–benefit analysis—Do we understand our expected benefits within our budget?

Cost–benefit statement:

Risk analysis—Have we analyzed the likelihood that this will go wrong and the impact if it does or if we do
not do it?

Likelihood:

Impact of doing it wrong:

Impact of not doing it:

Aims and objectives for the SDLC—Do we understand why are we doing this? What difference will this
project make to the organization? How will we measure progress against the aims and objectives?

Aim and objectives of the SDLC:

Targets and indicators of success:

Acceptance criteria—How will we know if we have succeeded?

Agreement

Signed

Date

Customer Builder Manager Measurer Supporter

◗ Objective;

◗ Defined in a way that is SMART (specific, measurable, achievable, real-
istic, and time-bound);

◗ Necessary rather than simply desirable.

However, there are occasions when we might decide to waive the entry
criteria. This may happen if we decide that the entry criteria are excessive
or incorrect, or if we believe we are faced with an emergency. There are
also occasions when we may wish to increase the entry criteria, for exam-
ple, if we see that the SDLC is at a higher risk than our normal projects.

10.3.3.1 We decide the entry criteria are excessive or incorrect

If the entry criteria include items that are desirable rather than necessary,
we may wish to redefine them. This requires careful thought; if you do not
have all the entry documents or you do not have an authorization to start,
what risks are you taking? If the decision is made to bypass or reduce
the entry criteria, do we understand the risks we are taking? Is the risk
acceptable? I would recommend that you document the reason for deciding
that the entry criteria can be reduced or ignored, as part of your proj-
ect documentation. This might be in the quality plan, which typically
documents the quality gates for a project. If the defined entry criteria are
incorrect, we should redocument them, again with an explanation, and,
if possible, suggest a process improvement that would prevent us from
making the same mistake again. Use the checklist in Table 10.5 to help you
do this.

10.3.3.2 It’s an emergency

As we saw in Chapter 1, in CMM [2] one of the differences between high-
maturity and low-maturity organizations is how the organization reacts to
change or crisis. A high-maturity organization holds onto processes during
change and crisis, as this helps to manage the problems. A low-maturity
organization will discard the processes during emergencies, believing that
they add bureaucracy rather than value. This is counterproductive, espe-
cially with the entry into an SDLC. The processes should be defined at a suit-
able level of control without unnecessary bureaucracy; if a metric or a piece
of paperwork does not facilitate control, do not have it in the process. With-
out clear constraints and acceptance criteria, it is difficult to know when to
stop work in the SDLC; we have nothing on which to base our exit criteria.
In an emergency, this means that we may forget to do something vital. I
would recommend that an emergency request still goes through entry crite-
ria, because in an emergency we need processes to support our decisions;
we are more likely to make mistakes if we are doing something in a hurry.
Some organizations define an emergency SDLC, which encapsulates the
spirit of the controls on a single checklist. This can be a useful approach.

188 Software-Development Life Cycle

10.3.3.3 We decide the entry criteria are insufficient

If we perceive high risk in the SDLC, we may decide that the defined entry
criteria are not stringent enough. In this case, we should add additional cri-
teria, or increase the “pass level” for the entry criteria. We can do this if we
allow tailored entry criteria.

10.3.4 Tailoring entry criteria

In several organizations I have observed, project managers have available a
number of agreed-on SDLC templates, and they select an SDLC with suit-
able entry criteria, to meet the specific risk levels for their own projects.
Suppose that a particular organization decides on the stringency of the entry
criteria for an SDLC based on three factors, the estimated cost of the work,
the estimated size in days, and the perceived risk. Each factor is assessed on
a score of 1 (low) to 3 (high). The factor scores are multiplied together to
give an overall score that will be between 1 (1 · 1 · 1) and 27 (3 · 3 · 3). The
score is used to pick entry criteria levels from a list like the one in Table 10.6.

10.3 Entry criteria for SDLC 189

Table 10.6 Example Tailored Entry Criteria

Cost · Size · Risk

Score

Example Entry Criteria

Example entry documents Example authorization owners

1–5 1. E-mail with request for change from customer, copied to
manager, builder, measurer, and supporter

2. Entry checklist in Table 10.5 completed

Deliverables: E-mail and acknowledgment, entry checklist
in Table 10.5

Customer,

builder

6–12 1. As above, plus

2. Request raised at monthly change planning meeting

3. Additional problem statement/assessment, constraints,
acceptance criteria documentation completed

Deliverables: As above, plus additional notes on problem
statement/assessment, constraints, acceptance criteria

Customer,

process owner,

builder,

manager

12–20 1. As above, plus

2. Acceptance criteria prioritized and documented with
metrics from ISO 9126

3. Solution prototyping

Deliverables: As above, plus additional work on cost–benefit
analysis, constraints, acceptance criteria documentation

Customer, process
owner, project manager

20–27 1. As above, plus

2. Additional risk management planning carried out by
process owner and project manager

3. Project authorization board has discussed and agreed to
the change and risk plan

Deliverables: As above, plus additional work on problem
statement, prototype assessments, problem assessment,
cost–benefit analysis, risk assessment, project proposal/brief,
aims and objectives, targets and indicators, constraints,
acceptance criteria, outline plan, project authorization

Project authorization board,
project sponsor, process
owner, project manager

10.3.5 When no start-up stage took place

It may well be that you are at the start of an SDLC, or even partway through
it, and you do not have a detailed start-up as described in Chapter 9. What
do you do?

◗ Start of SDLC—Large: If you are at the start of a large or high-risk
SDLC, I would recommend that you carry out the activities in Chapter
9 before proceeding, in order that you can plan the SDLC.

◗ Start of SDLC—Small: If you are at the start of or working on a very small
SDLC, you may feel you do not need formal documented entry deliver-
ables, but you will need the information content of the deliverables,
documented or in the team’s heads. You will need this to plan the proj-
ect, and to control it, especially when the going gets tough. Use the
checklist in Table 10.5 to help you decide whether you have enough
information, or whether you should investigate fully.

◗ Midway through SDLC: If you are midway through an SDLC as you read
this, you may be wondering how to apply these ideas: “Shouldn’t the
customer and manager have sorted this out when the contract was
signed?” Yes, perhaps so, but if they have not, or if the information
you have is not full enough, you may have to revisit the start-up
activities. You will need acceptance criteria in order to understand if
the software is ready for delivery, for example, and you will certainly
need to know your constraints. Use the checklist in Table 10.5 to help
you decide what you need to find out, in order to complete the project.

10.4 SDLC—typical activities

10.4.1 Planning and monitoring

It is essential to have a plan for the SDLC. The plan must be based on the
information identified during start-up. For most organizations, there will be
constraints on cost, time, resources, and skills; we will not have an infinite
budget. The acceptance criteria identified at start-up need to be met within
the constraints.

The entry criteria give us enough information to start planning. The plan
needs to describe how the SDLC will deliver within the constraints, meeting
the acceptance criteria and containing the risks, to meet the aims of the
project. We will also need to break down the plan into smaller, more
detailed plans (bite-sized chunks). One project manager I know assigns
responsibility for detailed planning of each chunk to people within the team
saying, “Tell me how you will deliver what you need to do within this
timescale.” This is very effective as it allows each team within the project to
understand their constraints and to own their own plan.

Once the plan is put together, it needs to be reviewed and agreed on. The
Team Software Process (TSP) [3] recommends a “launch” at the start of the

190 Software-Development Life Cycle

SDLC, where the team goes through the plan and commits to it. A shared
planning process followed by a launch meeting allows people to discuss the
plan, share causes for optimism and pessimism, understand each other, and
so commit to the plan and the SDLC team wholeheartedly.

The plan is used throughout the SDLC to track, measure, and control
progress. We inevitably replan during the SDLC as we learn more; it is
worth designing replan points into the SDLC and acknowledging those in
the contract of work.

Planning and control need to take place at different levels of detail for
different people; we need to understand what we do today to be on time at
the end of this week for our team, in order to meet that major project
milestone in three months. This will match with reporting requirements
between the groups, as we saw in Chapters 3 to 7. Managers carry out plan-
ning and control with the help of builders, measurers, customers, and sup-
porters. We saw in Chapter 4 that this is needed on a day-to-day basis so
that we manage our time to complete tasks today that contribute to meeting
an end date months away. We also saw how dependencies between tasks
mean they may be on the critical path—if they are not completed on time,
then the whole project becomes late. The plan will need to be reviewed; all
the groups need to agree that it is a plan to which they can deliver. In par-
ticular, there will be intergroup dependencies on the plan—everyone needs
to understand and commit to these.

10.4.2 Managing change

During the SDLC, things will change and this will affect the plan and all the
activities of the SDLC. One project manager I know regards his plan as “A
basis for making changes”; he says “The plan is a description of what will not
happen in the future.” We saw in Section 10.2 that we will have to deal
with changes in circumstance during the SDLC. These types of changes will
affect the SDLC in different ways.

We will see later in this chapter that some of the SDLC models are
more amenable to managing change than others, but here let us consider
which SDLC activities are particularly affected by different types of change.
Table 10.7 shows the most affected areas for each type of change. The
changes may affect any of the activities; for example, the plan may be

10.4 SDLC—typical activities 191

Table 10.7 Example of SDLC Activities Affected by Example Change Type

SDLC Activity

Most Affected Areas

Plan Requirements Design Build Test

Real-world changes ✓ ✓ ✓

IT infrastructure changes ✓ ✓ ✓

Existing systems (IT and business) changes ✓ ✓ ✓

Skills changes ✓ ✓ ✓ ✓

Leadership and organization changes ✓ ✓

Risk changes ✓ ✓

Errors made during start-up ✓ ✓ ✓ ✓ ✓

affected by any of the changes, and leadership changes may affect any of the
areas, but in the table I have indicated the most immediate effects. Some of
these cause a chain reaction; we can see that real-world changes may affect
the customers’ requirements; if these change, then the design, build, and
test of the software will also change. Changes to risk will affect the plan and
specifically will affect the focus for testing.

If the SDLC model we choose is very rigid, then, superficially, it can
appear easier to plan and manage it. However, the rigidity in the SDLC and
the contractual arrangements around it make it very difficult to allow
changes, whether these have arisen from errors we have made or from real
changes in circumstances around the SDLC. This means we are in danger of
delivering the wrong solution. We might deliver the wrong product attrib-
utes, or deliver solutions with manufacturing defects, at reduced value to
the organization, with reduced usefulness, damaging attitudes to the team
or the chosen solution.

A more flexible SDLC model, designed to allow for change, removes the
problem of rigidity in the solution, but is more difficult to manage because
everyone (customer, manager, builder, measurer, and supporter) needs to
allow for uncertainty and change in the plans. For example, in the TSP [3],
Watts Humphrey suggests a multiphase approach with a “relaunch” meet-
ing for the team at the start of each phase.

10.4.3 Requirements

Some statement of the customers’ requirements is needed. The supporters
and the managers will also have requirements. The basis of these is the prob-
lem/solution analysis and the acceptance criteria defined at start-up. During
requirements definition these are explored in much greater depth. The
builders will document the requirements; often, this will be done by special-
ists in analysis. The customers, managers, and supporters all contribute to
the acceptance criteria and hence to the requirements (see Chapter 9). The
requirements will need to be reviewed. The customers, managers, and sup-
porters will need to review that the builders have a correct understanding of
the requirements. The builders, who have not directly been involved in
requirements gathering need to know that the requirements have been
defined in a way that allow them to design and build the software. The meas-
urers, including testers, want to know that the requirements are testable;
that it will be possible to measure whether the requirements have been met.
The requirements will include:

◗ Software/system requirements;

◗ Infrastructure, operational, and support requirements;

◗ Training requirements (for software, support and business processes);

◗ Documentation requirements (for software, support, and business
processes);

◗ Business process requirements (manual processes, for example);

192 Software-Development Life Cycle

◗ Implementation requirements (for example, media, time constraints,
phased or big bang, ability to roll back) [4];

◗ Data transfer requirements; for a data migration this might include
the contents of databases and standing.

All of these will be needed for the solution to be implemented.

10.4.4 Design

The solution will need to be designed. The design is based on the require-
ments. Some life cycle models divide this into several design areas. You will
find that different models and methods have different names for the design
stages, but there are three main design steps. An overall business-process
design looks at the processes within which the customers will use the sys-
tem, and would include design of training, documentation, and business
processes. System architecture is the design of the overall software system.
A detailed technical design covers the design of individual programs within
the software. In this chapter, for ease of explanation, I have grouped these
together as design. Builders will carry out and document the design. These
designs will need to be reviewed. The supporters’ acceptance criteria directly
affect the design, for example, for performance, memory management, and
maintainability requirements (see Chapter 9), and so they will want to
review those designs. Customers may become involved in reviewing screen
and report designs, both functionally and for usability. Builders need to
know they will be able to build the software from the designs. Measurers
want to know that the designs are testable; that it will be possible to
measure whether the design goals have been met. Managers will want to
review the designs for cost-effectiveness and value, for example, reduction
in future maintenance costs.

The design will include:

◗ Software/system;

◗ Infrastructure, operational, and support processes and equipment;

◗ Training (for software, support, and business processes);

◗ Documentation (for software, support, and business processes);

◗ Business processes (manual processes, for example);

◗ Implementation processes, including rollout and rollback plans;

◗ Data conversion design.

10.4.5 Build

The solutions need to be built. What is built and how it is built is based on
the requirements and design. This includes writing code, but also building all
the other software products. Training material, user guides, business process
manuals, marketing material, and support manuals all need to be built.
All these software products can be reviewed against acceptance criteria.

10.4 SDLC—typical activities 193

Supporters review the code and support material. Customers review train-
ing, user, process, and marketing material. Measurers will review all the soft-
ware products for testability and to prepare for testing. Managers will review
progress and costs. Builders will take part in those reviews, to cross-check the
different types of product and to check adherence to standards.

The build will include:

◗ Software/system;

◗ Infrastructure, operational, and support processes and equipment;

◗ Training (for software, support, and business processes);

◗ Documentation (for software, support, and business processes);

◗ Business processes (manual processes, for example);

◗ Implementation processes, including rollout and rollback plans;

◗ Data conversion software.

10.4.6 Testing

The software products need to be checked. As with design, there are several
types of testing, and they are named differently in different models and in
different organizations. Typically, models allow for four levels of dynamic
testing. This is testing where code is executed. The lowest level of dynamic
testing is often called unit, program, component, or module testing; the
building blocks of the system are tested individually as they are built. Next,
the building blocks are linked or integrated together, and the links are
tested; typically, this is known as integration, link. or string testing. These
two levels of testing will be based on the design and the code. Once all the
building blocks have been integrated together, system testing takes place;
the system as a whole and the processes using it are exercised. This level of
testing is based on the requirements and the design. It may also be neces-
sary to test how this system interacts with other systems. Finally, accep-
tance testing takes place; this checks the system against the acceptance
criteria to decide whether it can be delivered. Various types of tests are run
at each level, to check functional and nonfunctional attributes (see Chapter
9). Specialist testers will be jumping up and down at this point and shout-
ing, “Testing is not just done at the end of the SDLC!” That is absolutely
true; we have opportunities to test statically as well. This is testing done
without executing the code. It includes all the review activities we did dur-
ing start-up, planning, review, design and build, plus static analysis, by
which we examine the code for flaws without executing it. These are all
measurement activities. As we saw in Chapter 6, people from any of the
groups may join the measurers group on a temporary basis. The test designs
and the test results should be reviewed. The choice of people to carry out
the review depends on the level of testing; any of the groups might be
involved.

Depending on the scope of the project, the test stages might include
testing of:

194 Software-Development Life Cycle

◗ Software/system (reviews of products, component, integration, sys-
tem, and acceptance);

◗ Infrastructure, operational and support processes and equipment
(reviews of products and operational acceptance);

◗ Training (reviews of products, trial runs, and walkthroughs);

◗ Documentation (reviews of products, trial runs, and walkthroughs);

◗ Business processes (review of products, walkthroughs, acceptance
testing);

◗ Implementation processes, including rollout and rollback plans (review
of products, walkthroughs, acceptance testing);

◗ Data conversion process and software (conversion software testing,
data checks, dry runs).

10.5 Entry and exit points within the SDLC
There are entry and exit points between the steps; sometimes, these are
called quality or project gates. Depending on the SDLC model that the proj-
ect uses, these may appear at different points. As we will see, some life-cycle
models have a strict cutoff between steps. In others, steps are omitted,
repeated, or overlapped. The strictness of the criteria depends on the level
and type of risk for the project as well as the skill set of the people on the
team. In some SDLC models, particular handover points are regarded with
significance and very formal entry and exit points are used. These are some-
times referred to as quality gates or project gates [1]. They are often used
where control of the work is handed from one team to another, to ensure
that all the deliverables have been handed over and are fit for purpose.

An example of a simple SDLC is found in Figure 10.2, showing the
minor entry and exit points, indicated by an arrow between activity rectan-
gles, and the major quality gates, indicated by the rounded rectangles. For a
simple situation, if no training material, business processes, or infrastructure
changes are required, this may be enough. Figure 10.3 shows a more
detailed SDLC. Here the major quality gates are shown, and the activities
between them explicitly include all the products and activities types, as well
as differentiation between possible exit routes—to deliver a product or can-
cel the project, for example.

10.6 SDLC models
People talk about big bang, phased, iterative, and incremental approaches,
but not everyone uses the words in the same way. In what follows, I will use
building a model village as an analogy for how the terms are used in the
descriptions below. The steps taken in building this village are set in ital-
ics. First, I will give an outline of the models, with the advantages and

10.5 Entry and exit points within the SDLC 195

disadvantages of each model listed in Table 10.8. Then I will show how to
tailor the SDLC models. The published SDLC models I have looked at in
writing these outlines are listed in Table 10.9.

10.6.1 Waterfall model (big bang or phased)

This is the most traditional of the models. It is used on either a big bang or a
phased project. The requirements are set at the start of the project, and all
subsequent designs, code, and other products are based on those defined
requirements (see Figure 10.4). Each step has a clear cut off; the require-
ments are agreed on and frozen, then the design, and so on; water only goes
one way down a waterfall. An example of a defined waterfall model SDLC
from DoD-STD-2167 is in [5].

10.6.1.1 Big bang waterfall

A project may be run with a “big bang” approach. All the work is delivered at
one time; all the houses, roads, and gardens must be ready at the same time for the
village to open.

At the start of the SDLC we can make a clear statement of what we
need. Customer: “These are our requirements.” Manager: “I will need three

196 Software-Development Life Cycle

Change
management

Planning
and
control
throughout
the
SDLC

Exit from SDLC
QUALITY GATE :
Acceptance test passed
Acceptance criteria completed: pass or fail

Acceptance test

QUALITY GATE:
Independent system test passed

Independent system test

QUALITY GATE:
Build and component/integration test passed

Build and component/integration test

Design

QUALITY GATE:
requirements definition
and acceptance test definition complete

Requirements

Entry to SDLC
QUALITY GATE:
Project authorization
Check start-up phase completed

Figure 10.2 SDLC with simple entry, exit, and quality gates.

analysts for 6 weeks, then five designers for 10 weeks, then 15 programmers
for 10 weeks, then five testers for 6 weeks.” After the requirements sign-off,
measurers, customers, and supporters do not become involved again until
testing.

10.6.1.2 Phased waterfall

In a project that has a “phased” approach, the work is grouped into separate
chunks and delivered at intervals perhaps by different teams. The village is

10.6 SDLC models 197

Delivery with no
known problems

Delivery with
known problem list

Cancel SDLC -
No delivery

Exit from SDLC
QUALITY GATE

Acceptance test passed
Acceptance criteria completed: pass or fail

User and operational acceptance test, implementation rehearsals

QUALITY GATE
Independent system test passed

Independent system test

QUALITY GATE
Build complete

Test complete/passed, review complete/passed,
test infrastructure ready

P
la

n
n

in
g

an
d

co
n

tr
o

l t
h

ro
ug

h
o

ut
th

e
SD

LC

C
h

an
g

e
m

an
ag

e
m

e
n

t

Prepare test
infrastructure
for system and
acceptance test

Build and
review/test

Build and
review/test

Build and
review/test

Build and
test

Build and
review/test

Build and
component/
integration test

System and
integration
test definitions

Business
process
design

Documentation
design

Training
design

Infrastructure
design

Implementation
design

Software
design

QUALITY GATE
Requirements definition and acceptance test definition complete

Acceptance
test definition

Business
process
requirements

Documentation
requirements

Training
requirements

Infrastructure
requirements

Implementation
requirements

Software
requirements

Overall requirements

Entry to SDLC
QUALITY GATE
Project authorization
Check start-up phase completed

Figure 10.3 SDLC with detailed entry, exit, and quality gates.

198 Software-Development Life Cycle

Table 10.8 Advantages and Disadvantages of the Models

Life Cycle Advantages Disadvantages

Waterfall—phased
or big bang

Clear-cut steps make project management
and resource management easier. Audit
trail.

ISO 9000 compliant

One chance to get it right, mistakes in
requirements and design are not found
until testing; costly to repair. Does not
allow for changing requirements.

Incremental Enables larger problems to be tackled in
small chunks by one team.

Does not, unless combined with iteration
or spiral or evolutionary, solve the
waterfall problems.

Iterative/spiral Allows for change and high customer
involvement

Can be time-boxed (value view—cut
losses if not productive).

Some practitioners say it is easy to
manage time. Allows refinement of plans
and ideas.

Testing earlier—faults found earlier. Do
important areas first.

Time for test and regression test increases.
Long time between start and going live.
Some practitioners say not so clear-cut for
management by stages, could be harder to
control time and costs, less clarity on
milestones.

Evolutionary As iterative/spiral, plus bite-sized
milestones, short time between start and
going live, deliver important areas first.

As iterative/spiral, plus risk of faults going
live sooner if insufficient testing.

V-model Easy to manage; clear contract sign-off
points, meets ISO 9000:1994. Test is
continuous and cost-effective as defects
found and fixed earlier.

Resourcing different, early weight to life
cycle can seem bureaucratic. Can feel
costly early in the life cycle.

Table 10.9 SDLC Models Referred to in This Chapter

Example of the SDLC Model Comment

Boehm’s Spiral Model [5, 6] Uses prototyping and replanning with reassessment of risks
and constraints with each prototype.

Team Software Process (TSP) [3] Emphasis on clearly defined team roles and goals, checklists of
activities, measurement, use of CMM Level 5 processes.
Phased or iterative approach.

Giddings Domain-Dependent Life Cycle [5] Waterfall model with feedback loops, and experimentation or
prototyping.

Rational Unified Process (RUP) [7] Based on the spiral model, uses iterations within increments,
with testing happening throughout the SDLC. Emphasis on
defining, building, and testing the most important parts of the
software first.

eXtreme Programming (XP) [8] Incremental approach, relies on continuous (automated)
testing by builders, on oral rather than written
communication, and close collaboration.

Dynamic Systems Development Method
(DSDM) [9]

Phased or incremental approach, with strong emphasis on
people, their skills, and their ability to work in teams.

Gilb’s Evolutionary Model [10] Incremental or phased approach with delivery at the end of
each increment.

DOD-STD-2167 Model [5] Classic waterfall model.

V- and W-model [11, 12], Component Test
Process Life Cycle [13], STEP (Systematic
Test and Evaluation Process) [11]

Life cycles that emphasize the place of and control of software
testing; these may be considered as fitting with the other life
cycles. In this chapter, I have concentrated on the V-model
and how it might fit in the SDLC models.

divided into four sectors (N, S, E, and W) that are worked on as separate projects. The
whole of a sector is delivered together as one project, but each sector might be ready on
a different date. It is possible to divide a waterfall style into phases, which run
in parallel, provided that the work can be divided into distinct chunks, each
being smaller, more manageable miniprojects with its own team.

10.6.1.3 When to use the waterfall method

The waterfall is a good model to use if:

◗ The contract for the work is complete, correct, and unambiguous.

◗ The requirements and acceptance criteria are complete, correct, and
unambiguous.

◗ The work can be completed within the constraints.

◗ No change is expected in the requirements or design—the customers’
world is static.

◗ The problem and solution are well understood and clearly defined.

◗ No one is going to make mistakes in the requirements or design.

It is very rare (I am tempted to give a probability of approaching zero) for
all these to be true for a software development; software is too complicated,
the world is constantly changing, and people are fallible. We need some-
thing better.

10.6.2 Spiral, incremental, and iterative models

There is a large family of incremental and iterative models that were devel-
oped from the 1980s onwards as a response to the problems of the waterfall
model. These include increments in miniwaterfalls and in iterative or spiral
models, as well as evolutionary models.

10.6.2.1 Incremental

In an incremental project (Figure 10.5), the work is chunked in a different
way from a phased model. The work is divided into houses, roads, and gardens.
The roads are put in place, then the houses, and, finally, the gardens. The

10.6 SDLC models 199

Live

Test

Build

Design

Requirements

Figure 10.4 Waterfall model—big bang.

incremental model is similar to the phased model, but one team can work on all the
increments, whereas in the phased model, separate teams deal with each phase in
parallel. This approach is useful if:

◗ The problem is too large for the team to tackle at one time, so building
in stages is sensible

◗ The solution must to “go live” all at once

10.6.2.2 Iterative and spiral models

In an iterative approach (see Figure 10.6), steps in the project are repeated
(iterated) allowing work to be revisited and refined. The most important roads,
with houses and gardens, are put in place first. As new houses are built, additional
roads and gardens are added, and existing structures may be altered to fit with the
new areas.

The spiral model [5, 6], as shown in Figure 10.7, uses a series of proto-
types, and through the prototyping refines our understanding of what we

200 Software-Development Life Cycle

Live

Increment 3Increment 2Increment 1

Test
1

Build
1

Design
1

Reqs
1

Test
2

Build
2

Design
2

Reqs
2

Test
3

Build
3

Design
3

Reqs
3

Figure 10.5 Incremental model.

Live

Iteration 3Iteration 2Iteration 1

Test
3+2+1

Build
3+2+1

Design
3+2+1

Reqs
3+2+1

Test
2+1

Build
2+1

Design
2+1

Reqs
2+1

Test
1

Build
1

Design
1

Reqs
1

Figure 10.6 General iterative model.

want to build, and our understanding of the risks, constraints, and so on.
With each circuit of the spiral, we refine our plans against our improved
understanding. We build a paper plan of the village, then a cardboard scale
model, then a full-scale model. As a result, we refine our understanding of what is
required in each house, garden, and road, and we are able to cater for changes in
requirements.

The iterative and spiral models are more exploratory than the other
models; they suggest that the same areas of requirements, design, build, and
test are revisited repeatedly during the project, in order to correct errors,
refine understanding, and introduce changes. However, each iteration will
take more effort and time, to ensure that changes to existing structures are
defined, made, and tested properly, and that unchanged areas have not
been adversely affected. This is known as retest and regression test. The abil-
ity to change requirements may be useful for the customer, but is difficult
for managers and builders if a fixed-price contract is agreed. As a colleague
remarked to me, “Changing requirements can be an advantage and a disad-
vantage. If you have bid a project very thinly in a competitive tender
process, the last thing you want to do us allow the customer to change
requirements. It can make the difference between making money on the
project or losing it.” In particular, the spiral model encourages the use of
prototyping (see Table 10.10 and Appendix A) as a technique to clarify what
is required and to try out different ideas. It is useful because it acknowledges
that we may not know everything we need to know, particularly about
timescales and budget, at the start of the SDLC. Additionally, validation
(does the specification describe what the customer needs?) and verification
(have we met the specification?) take place at each step. In the TSP [3], for
example, a “relaunch” of the plan is carried out at the start of each iteration.

10.6 SDLC models 201

Implementation

Test

Design validation

BuildDesign

Requirements
validation

Concept

Pro
totype

Ri
sk

an
al

ys
is

Planning cycles

Aim
s, constraints

Requirements

Figure 10.7 Spiral model. (After: [5].)

202 Software-Development Life Cycle

Table 10.10 Summary of Techniques for Teamwork During the SDLC

Subject Area Technique Examples In 30 Seconds… {see Appendix A for more)

Team
relationships
and natural
roles/team
skills

Belbin team
scores [14]

The SDLC can fail because of personal rather than technical factors.
Teams need to understand their strengths and weaknesses as a team.
A balance of roles/skills is required in the personalities in the team.
Example roles: plants have new ideas; completer–finishers want to
finish to fine detail. Too many plants and you will never finish
anything.

Improve
communication—
empathy with
others

MBTI [15] Different people have different personalities and communication
styles. People who wave their arms around and talk a lot can annoy
people who like to be quiet and think, and vice versa. The
Myers-Briggs Type Indicator (MBTI) identifies four contrasting type
pairs (e.g., Introvert/Extrovert), leading to 16 “types” (e.g., INTJ is
Introvert-iNtuitive-Thinking-Judging).

Honey &
Mumford
[16]

The Honey & Mumford Learning Styles Questionnaire identifies
preferred learning styles (e.g., Pragmatists and Theorists require
different experiences to learn).

Kirton [17] Kirton identifies preferred problem solving methods (Adaptors
versus Innovators)—do we break the rules or work within them?

Improve
meetings

De Bono’s Six
Thinking
Hats [18]

Improve meetings by setting rules for behavior. Six “hats” are used.
Everyone wears the same color hat at the same time: Blue
Hat—meeting structure, Black Hat—pessimistic, Yellow
Hat—optimistic, Red Hat—feelings, White Hat—facts, Green
Hat—creative ideas. Allows meeting members to move outside their
stereotypes and allows time for different, sometimes difficult types
of communication.

Identify problems
and root causes,
find solutions

Ishikawa
fishbones
[19, 20]

Use to identify problems, root causes of problems and solutions. On
a fishbone diagram, brainstorm problems, their possible causes, their
root causes, and, therefore, solutions to the root cause.

Review
documents
and other
products

Reviews
[21, 22]

There are five types of review: management review, technical
review, inspection, walk-through, and audit—all of which are
relevant throughout the SDLC. Specialist testers regard them as a
form of testing because they are used to find and prevent defects in
products and processes.

Understand/
explore ideas

Prototyping
[5, 23]

Not an SDLC! We prototype to try out ideas or, if we are not sure
what we want, we build a model of a possible solution(s). There are
two types of prototyping in software, “lo-fi” and “hi-fi.” In hi-fi
(high-fidelity), we build screens like those the customer will see.
Lo-fi (low-fidelity) prototyping uses paper/white board. Discuss the
prototype and review it. There is no danger of believing it is the
software.

Modeling and
picturing,
stories,
metaphors
[24–27]

There are a number of modeling and picturing techniques that can
be worth exploring with lo-fi prototyping. These include Rich
Picturing and Mind Mapping. Sketching a picture of a problem,
solution, or idea can clarify it. Use stories, metaphors, and analogy
as well; they can aid in understanding.

Understand
whether an idea
is worth
pursuing

Risk workshop
by
brainstorming
[19, 20]

A brainstorming workshop is run to list all the possible risks people
can identify. The risks are sorted into groups, separating risks (might
happen in the future) from issues (problems right now) and
constraints. The risks are scored for impact and likelihood, and
ranked to give a prioritized list.

Cost–benefit
analysis [19]

Cost–benefit analysis is done by calculating the predicted benefits of
the proposed change (time, money saved) and setting this against
the predicted cost.

Track progress Earned value
[28]

Not only is it possible to track cost against budget, but also what the
cost so far was supposed to achieve compared with what actually
has been done.

One problem that has occurred with the use of the iterative models is the
commonly held belief among managers and customers that testing is
reduced, for example, by removing test levels or by reducing the time to test.
This is not the case. A colleague notes: “The clear implication of iterative
methods is that you start testing earlier and test more often through the life
cycle, not to mention the regression testing of all the earlier work; ergo, you
do more testing.” For example, in eXtreme Programming (XP) [7], the SDLC
has two levels of testing (programmer and user) instead of four. I have
received mixed reports of how well this works; XP enthusiasts say it works
well and streamlines the project, but some testers are reporting differently:

The theory is very plausible-plan and design test before development. Sim-

plified roles and responsibilities, simplified testing phases. The reality … is

very different. In practice, testing seems to fare even worse under an XP

project than a traditional one (in terms of being neglected or done poorly).

10.6.3 Evolutionary model

We can see that the incremental, iterative, and spiral models all still suffer
from the problem of the length of time from the start of the SDLC to
delivery of software for use by the customers. The evolutionary model
(Figure 10.8) was developed, for example, by Gilb [8], because it helps to
break down the software into chunks that can be delivered earlier to the
customer; this means that the real-life problem is at least partly resolved
more quickly. According to Tom Gilb (at a seminar on Evolutionary Deliv-
ery, London, England, September 20, 2003), two characteristics that mark
an evolutionary delivery as opposed to either an incremental or a phased
delivery are the very large number of small increments and deliveries and
the emphasis on feedback loops at each delivery so that continuous
improvement is built into the SDLC. The first deliveries of the village put dirt
roads in place, plus some houses with basic rooms complete and the gardens laid to
grass, in order that the first families can move in. In the later deliveries, the roads are
asphalted, additional road furniture is installed (benches, night and security light-
ing), play and garden rooms are added, spare bedrooms fitted out in the existing
houses, and new houses are added. As deliveries progress, each provides some new
improvement: gardens are relaid according to individual requirements for flower beds
and paths, garden sheds are installed, water features and other refinements are
added to the gardens, and the kitchens are refurbished.

10.6.4 V-model

The V-model and its close relation the W-model [12] were developed
by testers who wanted to emphasize the cost-effectiveness of early test-
ing. V-model SDLCs explicitly describe review activities as early testing.
They expect that specialist testers are involved from requirements definition
onward. In the village, buildings inspectors are involved from the planning stage
onwards, as are representatives of the people who will “accept” the village as suitable

10.6 SDLC models 203

to live in. They look at and comment on the plans and decide what checks they will do
during building. At each step in the early part of the SDLC, products are built
that relate to the dynamic stages of testing. Therefore, three things can hap-
pen together, as shown in Figure 10.9. Different V- and W-models may
show these three steps in slightly different ways but, in essence, what is
happening is that:

◗ A product is built (for example, the requirements, the designs, the
code).

◗ The product is reviewed, by peer review, inspection or walkthrough, to
show it matches the products at the previous stage, to show it meets a
particular standard, and to show that it can be used as input to the next
step.

◗ Test designs are built that will be used later to run dynamic tests that
apply to this product and that demonstrate whether the product is
testable.

10.6.5 Advantages and disadvantages of the models

The models each have advantages and disadvantages. These were summa-
rized in Table 10.8.

10.7 Quality views and the models—why we might
wish to combine models

We can see in Table 10.11 that the models favor particular quality views,
because of which groups are involved in the SDLC.

204 Software-Development Life Cycle

Deliveries....................1 to 19

Delivery
cycle 7

Live

Acceptance test

19181716151413121110987654321

B B B B B B B B B B B B B B B B BB B BD D D D D D D D D D D D D D D D D D D

T T T T T T T T T T T T T T T T TT T TR R R R R R R R R R R R R R R R R R R

Test

Design Build

Requirements

Figure 10.8 Evolutionary model in incremental SDLC.

The models I have shown are generic models. You will find off-the-shelf
models and variations described in different companies’ standards as well as
in books and methodologies (see Table 10.10). You will also see variations
on the themes in the models. It is perfectly reasonable to tailor the models to
fit what your organization needs, and use published models in a “pick and
mix” fashion. However, I do recommend that having looked at the models
you settle on a tailored model and a few variations for your organization,
with suitable additional tailoring rules. No model is perfect; you will need to
use common sense and experience to tailor the model to specific projects,
but if you allow a complete free-for-all, chaos will quickly ensue. I have
seen situations in which each project is using its own terminology, methods,
and measurements, resenting any “outside” ideas. The outcome is that

10.7 Quality views and the models—why we might wish to combine models 205

Review
build

Build

Run
component
test

Design
component
test

Review
design

Write
detailed
design

Run
integration
test

Design integration test

Review
design

Write
design

Live

Run
acceptance test

Run
system
test

Design system test

Review
requirements

Write
requirements

Design acceptance test

Figure 10.9 V-model.

Table 10.11 Quality Views and the Models

Life Cycle

Quality View Waterfall
Spiral/Iterative/
Evolutionary V-Model Combined

Transcendent ✓ ✓ ✓ ✓

User view ✓ ✓

Value view ✓ ✓

Product view ✓ ✓

Manufacturing view ✓ ✓ ✓

projects cannot be compared, people cannot easily transfer between proj-
ects, hostility between projects emerges, and organizations fail to learn from
experience because projects guard their own outcomes.

Let us try an example. We look at our organization and assess that:

◗ Involvement of real customers will help us get the requirements right,
and acknowledgment of changing requirements means we want to
involve the customer right through the SDLC.

◗ Appropriate level of control and processes—we do not have very expe-
rienced people, but time to market is important so we need to have con-
trol without too much bureaucracy.

◗ Early testing to focus on areas of importance will help us deliver
against risks. Maybe static testing (static analysis and reviews) might
help us.

From this, we might choose to pick aspects of evolutionary delivery to get
important functionality to the customers early, but combine it with some
aspects of XP. Because our team is not mature, we would not use the whole
of XP, but we might adopt the principle of continuous retest by the program-
mers and continuous customer involvement. From the V-model, we could
use early reviews of requirements and designs, early test design, and static
analysis on code. This would be useful if we could involve one of our experi-
enced testers to check the requirements and design for testability, plus to set
some detailed entry and exit criteria for steps in which we know we have
particular technical weaknesses. To reduce time to market, we might take
the risk of combining test levels or removing the formal entry and exit
criteria except for high-risk steps. We now have a life cycle like the one in
Figure 10.10, tailored to the risks and constraints for our situation [29].

I have seen tailored SDLCs introduced with a marked positive effect, not
just on manufacturing quality, but across the quality definitions and groups.
For example, in one organization, a framework with entry and exit criteria
for the SDLC and for steps within the SDLC gave project teams the ability to
tailor for large and small projects. They could split or combine steps and
deliverables. The control of the SDLC was through authorization on the

206 Software-Development Life Cycle

Evolutionary delivery gives us frequent deliveries to live
V-model gives us reinstatement of test levels lost from
XP, plus entry and exit criteria at key points

Acceptance test

10987654321

Live

Deliveries...................1 to 10

Figure 10.10 Evolutionary, XP, and V-model combined.

entry and exit criteria at each mandatory quality gate within the SDLC. An
example of this is shown in Table 10.12, showing an SDLC tailored to a
one-page form that describes a particular project. The customer has made a
request for what looks like a fairly small and simple piece of work. With the
manager and a senior builder, the checklist in Table 10.5 has been com-
pleted, and an assessment of the likely cost, size, and risk has been made, to
give the Cost · Size · Risk calculation of less than nine. However, the feasibil-
ity of providing a simple enough solution is not clear, so a waterfall model
would not be suitable. The team believes it will be necessary to produce a
prototype to demonstrate that the proposed solution is possible within the
constraints of time and budget. A small team of relatively experienced peo-
ple is available. This suggests that an SDLC tailored to combine some steps is
possible, especially as some of the team members are highly experienced in
this application area. The team involved will consist of:

◗ Tom Customer (TC), who has made the request for work to be done,
will be involved throughout to help in defining requirements, test
prototypes, and test delivered software (user-acceptance test or UAT).

◗ Mary Builder (MB) (a senior software engineer) and Fred Builder (FB)
(a programmer in training) will help TC define requirements, design
the solution, build prototypes and deliverables, and carry out their own
testing during each iteration.

10.7 Quality views and the models—why we might wish to combine models 207

Table 10.12 Tailored SDLC for the XYZ Project

Iteration and Step People During Step, Delivering Exit Review Team
Authorize to
Move On

Iteration 1
planning

TC, DM—Plan for iteration 1, based on entry
checklist, C · S · R 9

TC, MB, JS, DM, JM, FM TC

Requirements/
design/build/test

TC, MB, FB—build and test prototype TC, MB, FB, JS, JM TC

MB

Iteration 2
planning

TC, DM, MB—Refined plan for iteration 2,
based on prototype, test results, actual effort,
and cost or no-go decision

TC, MB, JS, DM, JM, FM TC, DM

Requirements/
design/build/
initial test

TC, MB, FB—Refine requirements and
interface design, first build of solution. JM
builds tests, environment for independent test.

TC, MB, FB, JS, JM, FM TC, MB

Independent test JM—perform independent test of first build TC, JM, MB TC, DM

Iteration 3
planning

TC, DM, MB, JM—Refined plan for iteration 3,
based on test results, actual effort, and cost or
no-go decision

TC, MB, JS, DM, JM, FM TC,DM

Requirements/
design

TC, MB, FB—Refined requirements and
interface design, TC, JS, JM build tests, two
environments for independent tests (UAT
and OAT)

TC, MB, JS, DM, JM, FM TC, MB, JS

Build/test MB, FB—build of solution

JM—Independent test of build in environment 1

MB, FB, JM, TC, JS TC, JS, JM

Independent test TC, JS—Operational and user-acceptance test
(OAT and UAT) in like-live environment 2
leading to decision:

Solution ready for delivery to live use or
no-go decision

TC, JS, JM, MB, FB, DM TC, JS

◗ Jenny Supporter (JS) will review the design at each iteration for impli-
cations around the infrastructure and existing systems, and will run an
operational acceptance test (OAT) as part of iteration 3.

◗ Dave Manager (DM) will aid with planning and decision making, check
that the work is staying within time/budget constraints, and be an esca-
lation point for all team members.

◗ Joe Measurer (JM) is a specialist tester who will carry out reviews of the
requirements and design at each stage, review test results at each itera-
tion, and plan and carry out independent testing in iterations 2 and 3.

◗ Fiona Measurer (FM) is a quality and process specialist who will
review that the SDLC tailoring and the plans are suitable for the level
of risk, cost, and size of project.

The team decides to tailor the life cycle. They want to combine the flexi-
bility, replanning, and prototyping of the spiral model, the idea of early
tester involvement and reviewing from the V-model, and a three-iteration
SDLC. Some of the activities will not have formal exit criteria; effectively
they are combined into single steps. The entry criterion for each step is the
completion of the previous step plus any preparation activities. Exit reviews
and authorization to move on are done formally at significant points given
the size of the project.

10.8 Exit from the SDLC
10.8.1 Exit criteria following a detailed acceptance test

If the SDLC completes after an acceptance test based on SMART acceptance
criteria like those defined in Chapter 9, it is easy to make the go/no-go deci-
sion for taking the software to live use. Either the acceptance criteria have
been met or they have not. In Table 10.13, we see simplified example exit
criteria for different projects. Notice that the exit from the SDLC may be to
deliver software for use, or the SDLC may be stopped and nothing delivered
for use. The acceptance test, by which the customer and the supporter
decide whether they are prepared to run the software for real, live use may
have several outcomes:

◗ The test passes completely; no problems are identified during the test.

◗ Some tests have failed but the software is sufficiently fit for purpose that
it can be accepted and used with workarounds planned for identified
problems.

◗ The acceptance test fails and the software needs changing; these mean
the software will have to be tested again.

◗ The acceptance test fails and it is judged that the cost and risk of fixing
the problems is too great. Nothing is delivered for live use; fixing soft-
ware is difficult, and prone to cause chain-reaction problems. The
SDLC is stopped.

208 Software-Development Life Cycle

10.8.2 When no exit criteria have been defined

If you have not defined exit criteria from the SDLC, how will you know
when to stop? It might be that you make the decision to go live because you
have run out of time or budget, or because you have completed all the
planned tests, or because our manager will get angry if we do not deliver
soon. Any of these could be the right or the wrong reason for stopping. If we
think of the quality definitions and the groups, each group will have a pre-
ferred quality reason for stopping or continuing:

◗ Customers may be desperate for the new software, and they will
go with fit-for-purpose rather than perfect, or, indeed, what is in
the specification, but may be less sanguine once defective code is
delivered.

◗ Managers will be watching the time and cost of the SDLC—they want to
ensure the organization gets a proper return on investment and does
not spend excessively.

◗ Builders want to ensure that they have implemented all the features
and attributes from the specification.

◗ Measurers can become excessively focused on defect identification and
removal at the expense of time and budget constraints.

◗ Supporters will go with fit-for-purpose rather than perfect, or, indeed,
what is in the specification, but may be less sanguine once defective
code is delivered.

10.8 Exit from the SDLC 209

Table 10.13 Example of Exit Criteria for SDLC Stage

Example of

Exit Criteria

Example of Deliverables Documented,

Reviewed, and Agreed Upon

Example of

Authorization Owners

Acceptance test completed

and passed in all

aspects; software

will move to delivery.

Acceptance test summary report, including acceptance of the

implementation/rollback plan, infrastructure, training,

documentation, processes, and software.

Process owner,

support manager

Acceptance test

completed and failed;

users and supporters

willing to accept as

is with documented

work rounds.

Acceptance test summary report including acceptance or otherwise

of the implementation/rollback plan, infrastructure, training,

documentation, processes, and software.

Cost–benefit analysis

Known problem and workaround list.

Process owner,

support manager

Acceptance test

completed and failed;

rework software and

rerun tests.

Acceptance test summary report including acceptance or otherwise

of the implementation/rollback plan, infrastructure, training,

documentation, processes, and software.

Cost–benefit analysis.

Rework and rerun plan.

Process owner

Acceptance test

completed and failed;

cancel project.

Acceptance test summary report including acceptance or otherwise

of the implementation/rollback plan, infrastructure, training,

documentation, processes, and software.

Cost–benefit analysis.

Definition of alternative solution.

Process owner

If no exit criteria are defined and agreed on between the groups, the dif-
fering viewpoints will mean that the team argues about whether the soft-
ware is ready for delivery or not. If you are approaching the end of an SDLC
without agreed exit criteria, then I suggest you attempt to document and
agree on some criteria for acceptance (see Section 10.8.5). You also need to
identify the circumstances under which the software would not be accepted
and the actions to be taken in that case.

To prevent this problem from recurring, improve the SDLC model that is
used in your organization by adding exit criteria to the model.

10.8.3 When exit criteria have not been met

As with the entry criteria, if the exit criteria have not been met, we must not
exit the SDLC. In order that we can be strict, it is important that the exit cri-
teria are:

◗ Objective;

◗ Defined in a way that is SMART;

◗ Necessary rather than simply desirable.

However, there are occasions when we might decide to waive the exit
criteria. This may happen if we decide that the exit criteria are excessive or
incorrect, or if we believe this is an emergency. There are also occasions
when we may wish to increase the exit criteria, for example, if we see that
the SDLC is at higher risk than our normal projects. Exactly the same les-
sons apply as we discussed in Section 10.3.3, so I will not repeat them here.
It suffices to say that the exit from the SDLC should match to the entry to
delivery (Chapter 11).

10.8.4 Tailoring exit criteria

Exit criteria will be similar for different SDLC models, but there may be dif-
ferences for specific projects or pieces of work. As with the entry criteria, tai-
loring against cost, budget, and risk measures may help teams to choose
appropriate exit criteria for a particular project. Table 10.14 shows some
examples.

10.8.5 When no acceptance criteria have been set

However late it is in the SDLC, if we do not have acceptance criteria, we
should try to set some. For the acceptance criteria, it may well be too late to
do anything about attributes the team has not considered. Use Table 9.8 in
Chapter 9 to help you build a checklist of attributes to consider as accep-
tance criteria.

To prevent this problem from occurring in the future, improve the
process to include a detailed start-up for the SDLC.

210 Software-Development Life Cycle

10.9 Conclusion
No single SDLC model is perfect. What we choose depends on our definition
of quality, our constraints and our risks. All the life cycles have similar steps,
and we must tailor SDLC models to fit the risk level and constraints within a
particular project.

There are more deliverables that just the software systems. We must also
plan for delivery of:

◗ Infrastructure, operational, and support processes and equipment;

◗ Training (for software, support, and business processes);

◗ Documentation (for software, support, and business processes);

10.9 Conclusion 211

Table 10.14 Example of Exit Criteria Tailored to Projects

C · S · R Score

Example of Exit Criteria

Example of Exit Documents Example of Authorization Owners

1–5 1. E-mail with notification of change completion and
request to move code to live from builder to supporter,
and customer, copied to manager and measurer

Deliverables: E-mail and acknowledgment, code
standards checklist complete by builder, customer
test results

Customer, supporter

6–12 1. As above, plus

2. Request raised at monthly change management
meeting

3. Tests completed by independent tester and by
customer/supporter

Deliverables: As above, plus acceptance criteria
completion report, evidence from testing. and known
fault list

Customer, process owner,
supporter builder, manager

12–20 1. As above, plus

2. Acceptance criteria metrics from ISO 9126 completed
and reviewed

3. Separate unit, system and acceptance test stages
complete

Deliverables: As above, plus acceptance criteria
documentation, evidence from all testing stages and
known fault/workaround list

Customer, process owner,
project manager

20–27 1. As above, plus

2. Additional risk assessment on delivery carried out by
process owner and project manager

3. Implementation planning, including contingency
planning completed

4. Project authorization board has discussed and agreed
to the implementation and risk plan for delivery

Deliverables: As above, plus additional work on risk
assessment, achievement of aims and objectives, targets
and indicators, constraints, acceptance criteria,
implementation plan, project authorization to complete

Project authorization board,
SDLC project sponsor, process
owner, project manager

◗ Business and manual processes;

◗ Implementation processes, including rollout and rollback plans;

◗ Data, for example, during a data migration, both databases and stand-
ing data.

It is worth having some pretailored SDLC models, associated with differ-
ent levels of risk and different types of projects. All SDLCs need some
start-up beforehand; you cannot be successful with any SDLC unless you
have fulfilled the entry criteria. All SDLCs require good communication
between all groups. All are aimed at delivery, which we will look at in
Chapter 11.

References

[1] Reid, S. C., “Software Testing Standards—Do They Know What They Are Talking
About?” http://www.testingstandards.co.uk/publications.htm, August 2003.

[2] Software Engineering Institute, “Capability Maturity Model,” http://www.
sei.cmu.edu, July 2003.

[3] Humphrey, W., Introduction to the Team Software Process, Reading, MA: SEI, 2000.

[4] IT Infrastructure Library, Best Practice for Service Management, London, England:
Office of Government Commerce, 2002.

[5] Nance, R. E., and J. D. Arthur, Managing Software Quality, New York:
Springer-Verlag, 2002.

[6] Boehm, B. W., “A Spiral Model of Software Development and Enhancement,”
IEEE Computer, Vol. 21, No. 5, 1988, pp. 61–72.

[7] Kruchten, P., The Rational Unified Process, Reading, MA: Addison-Wesley, 1999.

[8] Beck, K., Extreme Programming Explained, Reading, MA: Addison-Wesley, 2001.

[9] DSDM, DSDM, http://www.dsdm.org, April 2003.

[10] Gilb, T., papers on Evolutionary Delivery on http://www.gilb.com, including
“Competitive Engineering: A Handbook for Systems and Software Engineering,”
http://www.gilb.com, September 2003.

[11] Craig, R. D. and S. P. Jaskiel, Systematic Software Testing, Norwood, MA: Artech
House, 2002.

[12] Gerrard, P., and N. Thompson, Risk Based E-Business Testing, Norwood, MA:
Artech House, 2002.

[13] BSI, BS7925-2:1998, Software Testing—Part 2: Software Component Testing,
BSI 1998.

[14] Belbin Associates, “Belbin Team Roles,” http://www.belbin.com/belbin-
team-roles.htm, October 2003.

[15] Team Technology Web site, “Working Out Your Myers Briggs Type,” http://
www.teamtechnology.co.uk/tt/t-articl/mb-simpl.htm, October 2003.

[16] Honey, P., “Learning Styles,” http://www.peterhoney.co.uk/product/ learning
styles, October 2003.

212 Software-Development Life Cycle

[17] Kirton, “Adaptors and Innovators Defined,” KAI Web site, http://
www.kaicentre.com/, July 2003.

[18] de Bono, E., Six Thinking Hats®, New York: Penguin, 1999.

[19] Robson, M., Problem Solving in Groups, Aldershot, England: Gower, 1995.

[20] TQMI, Problem Solving—Tools and Techniques, Frodsham, England: TQMI, 2001.

[21] IEEE 1028™ Standard for Software Reviews, 1997.

[22] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley,
1993.

[23] Hohmann, L., “Lo-Fi GUI Design,” Software Testing and Quality Engineering, Vol. 1,
No. 5, September 1999.

[24] “Drawing Concerns: A Structured Rich Picturing Approach,” http://
business.unisa.edu.au/cobar/documents/richpic_colin.pdf, November 2003.

[25] Rose, J., “Soft Systems Methodology as a Social Science Research Tool,” http://
www.cs.auc.dk/~jeremy/pdf%20files/SSM.pdf.

[26] Buzan, T., The Mind Map Book, London, England: BBC Consumer Publishing,
2003.

[27] Freeburn, G., “Mind Mapping 101 for Testers,” EuroSTAR Conference, Edinburgh,
Scotland, 2002.

[28] Pavyer, E., “An Introduction to Earned Value Management,” Project Manager
Today, Vol. 11, April 2003.

[29] Evans, I., “The Risks We Take with Testing,” British Quality Foundation IT&T
Group Meeting, February 2003.

Selected bibliography

Belbin, R. M., Management Teams—Why They Succeed or Fail, London, England:
Butterworth Heinemann, 1981.

Belbin, R. M., Team Roles at Work, London, England: Butterworth Heinemann,
1995.

Gilb, T., Principles of Software Engineering Management, Reading, MA:
Addison-Wesley, 1988.

Gnatz, M., et al., “The Living Software Quality Process,” Software Quality
Professional, June 2003, pp. 4–16.

Honey, P., and A. Mumford, The Learning Styles Helper’s Guide, Maidenhead,
England: Peter Honey Publications, 2002. PeterHoney.com, 10 Linden Avenue,
Maidenhead, Berks, SL6 6HB. Tel.: 0162863946. Fax: 01628633262. E-mail:
info@peterhoney.com.

Kroeger, O., J. M. Thuesen, and H. Rutledge, Type Talk at Work: How the 16
Personality Types Determine Your Success on the Job, New York: Bantam Doubleday
Dell, 2002.

McHale, J., “Innovators Rule OK—Or Do They?” Training & Development,
October 1986, http://www.kaicentre.com/.

Sticky Minds Web site Roundtable, facilitator Craig, R., “What Is Software
Quality and How Do You Measure Its Value?” http://www.stickyminds.
com/s.asp?F=S6540_ROUND_46, August 2003.

10.9 Conclusion 213

.

Delivery and Support When
Going Live

In this chapter I shall:

◗ Describe the entry criteria, steps, and exit criteria for
delivery;

◗ Identify the quality definitions from Chapter 1 that prevail at
this stage;

◗ Identify how each of the groups identified in Chapter 2
become involved at this stage;

◗ Introduce techniques that aid teamwork at this stage.

It’s 10 p.m. on Sunday; either we complete the implementation

and work around the defects, or we roll back now. We cannot wait

any longer, or there isn’t time to roll back and be ready for

Monday.

—Customer makes an assessment of the path of least

damage during a flawed implementation

11.1 Delivery—description
11.1.1 Delivery considerations

Delivery is the point in the life span of software after the
software-development life cycle (SDLC) has completed when
products are moved to live use. It is a (relatively) short but
anxious period of time, but it is highly importance; many
activities will come together at a single milestone in the
project plan. Delivery is not always a success; sometimes the
implementation fails and we have to roll back by removing
the software and restoring the systems to their predelivery
state. “Postponement of a system’s implementation is painful

215

11
Contents

11.1 Delivery—description

11.2 Delivery viewpoints

11.3 Entry criteria for
11.3 delivery

11.4 Delivery—typical
11.3 activities

11.5 Exit from delivery

11.6 Conclusion

C H A P T E R

and often very costly. The implementation of a poor system, however, is
much more costly and also much more painful” [1]. The roots of a failed
delivery are found in the entry and exit criteria for the SDLC, which I dis-
cussed in Chapters 9 and 10.

Delivery comes between the SDLC and the postdelivery period when the
software is used (Figure 11.1). As with the earlier stages, all the groups have
a significant contribution to make but they do not always realize their part.
In this chapter, I will discuss the activities carried out during delivery, and
how all the team can contribute to making it a success. Specific activities
need to be planned and managed leading to the delivery point if the delivery
is to be achieved without problems.

There are things to consider when planning the delivery, depending on
the type of software, the other deliverables that come with the software
solution, and the type of customer:

◗ Installation team: The installation of the software plus any other prod-
ucts may be done by the customer, or by a team from the support
group (operations or help desk) or by the build team themselves.

◗ Method of delivery: Delivery and installation of the software might be by
different media (download from Internet/intranet, by transfer within a
configuration management system, by use of removable media such as
diskettes, tapes, or CDs). Delivery of other products such as training and
support may be face to face, via documentation, or via other media such
as video and CD.

◗ Time period for installation: Delivery and installation may be a short
process, taking minutes, or it may be an extended process. In the latter
case, it may take place overnight, over a weekend, or over a longer
period. For a large installation, it may be phased in geographically or in
some other way, or there may be a pilot project.

◗ Urgency of the delivery: Sometimes, emergency changes to systems are
required, and in this case the change may require a special process in
order to speed up the delivery without losing control.

◗ Support around the delivery: A small delivery may not require particular
support; perhaps the minimum would be a release notice with a known
problem list. Larger deliveries may be supported by training, which

216 Delivery and Support When Going Live

S = Start-up
SDLC = Software development life cycle
D = Delivery
PD = Postdelivery

PD

D

SDLC

S

Figure 11.1 Life span stages.

would then be a deliverable in itself. Other support to a software deliv-
ery might include expert teams to work on support lines or with the
software users. The need for additional support depends on how trans-
parent the delivery is to the people using the IT systems.

◗ Quality measures of the deliverables: The release notice will typically list
any known problems and workarounds for the deliverables. The qual-
ity measures for the deliverables will affect the decision to make the
delivery or not. This includes an assessment of the known problems and
whether the exit criteria for the SDLC were met.

◗ Size of delivery: Different delivery strategies may be required for new
“green field” systems, small and large changes to existing systems, sin-
gle changes, and groups of changes.

11.1.2 Identifying the delivery

A delivery will consist of one or more of the following deliverables, built and
tested during the SDLC:

◗ Software;

◗ Infrastructure, for example new hardware, communications equip-
ment, systems software, plus operational and support processes;

◗ Training material and delivery of training for software, support, and
business processes;

◗ Documentation for software, support, and business processes, for
example, user and support guides;

◗ Business and other processes as well as process changes, for both man-
ual and IT processes;

◗ Implementation processes, including rollout and rollback plans;

◗ Data, for example, during a data migration, both databases and stand-
ing data.

The delivery plan should identify all the deliverables, each identified
with its version number and status, under a configuration management sys-
tem. A configuration management system is used to make sure we deliver
the right version of each deliverable; this is because as we build and test
deliverables, they will go through many revisi ons. It is an easy human error
to deliver the wrong version. The group of deliverables to be released
together may be identified with a release ID [2]. This is updated for later
deliveries of changes to an existing system so that the size and type of the
delivery is identified in the release ID: for example, if the first release into
live use is identified as “V1”:

◗ “V2” is a major release that contains significant changes to V1.

◗ “V1.1” is a minor release of small changes to V1.

◗ “V1.1.1” is an emergency fix to the system.

11.1 Delivery—description 217

In an SDLC that takes place as part of an organization or business trans-
fer, the point of delivery might also be the point at which the business is
responsible for transferred customers and staff. Although this would not
normally be considered as part of the SDLC delivery, the introduction of
these people to the new organization would need to be managed as part of
an overall business delivery process, including introductions and induction
training.

11.2 Delivery viewpoints
Each group has a view of when the point of delivery happens, and of what is
included in the delivery. For the builders, they may only be interested in the
deliverables for which they have direct responsibility. For example, within
the build group, developers will be interested in the delivery of their code,
trainers will be interested in the delivery of the training, and technical
authors in the delivery of the user guides. It is interesting to note that in
Introduction to the Team Software Process [3], the final step in the software engi-
neering project is the postmortem, which comes immediately after the system
test; the implication is that the software engineers hand over the code at this
point, before the acceptance test, so the user-acceptance test would be car-
ried out by the customers, leading into the delivery, to be carried out by cus-
tomers and supporters. From the viewpoint of the supporters, the delivery
covers code and the infrastructure to support it. For example, in the IT Infra-
structure Library (ITIL) manual Best Practice for Service Support [2] under
Release Management, the main components of a release for delivery are
identified as:

◗ Application programs, developed in-house or externally, including
packages;

◗ Utility software;

◗ Systems software;

◗ Hardware and hardware specifications;

◗ Assembly instructions and documentation, including user manuals.

Notice how this includes everything in which the supporters will be
interested, but not training or business processes, which some IT people
would regard as outside the SDLC. Yet, from the customer viewpoint, with-
out the business processes and training, it may not be possible to take deliv-
ery of the software successfully.

Thus, we see that if we take a simple view of the point of delivery, we
may forget to deliver something needed by one of the groups. Some projects
may see the delivery as being the responsibility of the customers and the
supporters, with the managers, builders, and measurers simply handing
over tested code and no other material. The managers, builders, and meas-
urers have taken the system to the end of either system test for handover to

218 Delivery and Support When Going Live

the acceptance test, or have supported it to the end of the acceptance test. At
acceptance, the project is complete. The deliverables are handed over, and
the customer and supporter proceed on their own. The supporter perhaps
carries out the installation of the software, and the customer prepares to use
it, perhaps by reading the user guide. In other projects, such as the delivery
of a commercial off-the-shelf (COTS) package, the customer may not even
have a supporter to carry out the installation. For example, in a one- or
two-person company, the acquisition of a desktop computer, with word
processing and accounting software, may only require a purchase order and
a visit to the local computer store, with the person using the PC carrying out
the entire installation themselves.

As we see in Table 11.1, if only the customer and supporter are involved,
this results in a limited quality viewpoint, which may or may not matter
depending on the size and complexity of the delivery.

If the SDLC has been carried out with a viewpoint limited to the builder,
measurer, and manager (see Table 10.1 in Chapter 10) we may quickly find
that the customer and supporter views of whether they have received a
quality system is at odds with the others’ views of whether they have deliv-
ered quality.

In many large projects, particularly for custom-made or tailored sys-
tems, the builders, measurers, and managers will aid in the delivery, and
may well have a team to support the customers and supporters as the cus-
tomers take delivery of the software and start to use it. Although members
of all groups will support the delivery, their viewpoints will be quite differ-
ent (Table 11.2):

11.2 Delivery viewpoints 219

Table 11.1 Views of Quality at Delivery—Simple

Groups

Quality View Customer Supporter

Transcendent view ✓ ✓

User view ✓ ✓

Value view

Product view ✓

Manufacturing view

Table 11.2 Views of Quality at Delivery—Teamwork

Groups

Quality View Customer Manager Builder Measurer Supporter

Transcendent view ✓ ✓ ✓ ✓ ✓

User view ✓ (✓) ✓

Value view ✓

Product view ✓ ✓ ✓

Manufacturing view ✓ ✓

✓ is a primary quality view.
(✓) is a quality view that may be taken by some people in this group.

◗ Customers are very engaged at this point. Will the system work for
real? Will they be able to use it? Will the delivery go well? From the
user quality viewpoint, will the system be fit for purpose?

◗ Supporters are also very engaged; they will be rolling out the system
and starting to support it. Their questions and viewpoint are similar to
that of the customer, with the addition of a product viewpoint that
looks at the effect of attributes in the system as a whole; for exam-
ple, how does the new software affect performance of the overall
system?

◗ Managers have quite a different reason for anxiety at this point. Will
the project team be able to finish this project and (with more or less
relief) move onto a shiny new project? Using the value quality view-
point, did the project come in within budget and time scale, and can any
delays in delivery be prevented?

◗ Builders will be pleased to have completed the project; they will want to
see a clean sign-off against the delivery. From their manufacturing and
product quality views, is the delivery defect free and does the software
have all the specified attributes?

◗ Measurers will share the builders’ views and, in addition, will be wor-
ried about their efforts in assessing quality from the manufacturing
view. They will be focused on defects identified during delivery that
were not identified earlier.

For a release of any complexity, it is likely that many people will be
involved. It may be useful to have a responsibility matrix [2] to show who is
involved and with what responsibilities for the different types of SDLC and
projects. This might be arranged by size and risk, as well as by technical
content of the delivery; for example, whether the delivery is of a bought
package, a customized package, database changes, hardware changes, or
custom-made software. For example, in contrast with our one- or two-
person company above, in a large organization, depending on its processes,
the purchase and installation of a PC with word processor and accounting
software may require involvement from a logistics group, the desktop sup-
port group, the change management team, IT security, an electrical equip-
ment safety team, and so on. The authority and responsibilities for delivery
tasks would be included in the responsibility matrix, which could be incor-
porated with the entry and exit criteria for delivery.

In particular, the support of builders and measurers will be needed to aid
in resolving any problems that arise during the delivery. Managers need to
be involved to make cost–benefit analysis for any change of plan during the
delivery.

The period around the delivery needs to be managed carefully because
change is taking place. The unfamiliar system requires a learning curve
from the customers and supporters. There also may well be “teething prob-
lems” as the system is first used. The enthusiasm for the new software may

220 Delivery and Support When Going Live

drop significantly if benefits from the delivery cannot be realized right
away. Enthusiasm for the system may not be regained until significant
benefits have been demonstrated for the system. This is referred to as the
“Silver Bullet Life Cycle” [2]. Managing the relationships and communica-
tion between the groups is vital in order that the team works through the
delivery taking account of changes in attitude and confidence as well as the
technical activities. Using the teamwork techniques listed in Table 11.3
and described in Appendix A will help to manage the communications.

11.3 Entry criteria for delivery
The entry criteria for delivery must include all the exit criteria for the
SDLC, but may include additional tasks required for the delivery into live
use, if these tasks have not been defined as part of the SDLC. Table 11.4
shows some example entry criteria for which preparation for delivery in
terms of an implementation and rollback plan has been completed within
the SDLC, but other aspects of infrastructure and service support have not
been included.

As the SDLC may not include consideration of release and rollout plans,
the entry criteria for delivery should explicitly mention completion of tasks
beyond simply the delivery of the software. The specific entry criteria will
depend on the type of organization and the type of delivery. In particular,
evidence of acceptance testing of a delivery should include testing not just
the functionality of the software, but ascertaining that it can be installed and
backed out (deinstalled) [2].

Apart from use of the software, there are a number of services that are
needed postdelivery, and I will discuss them in Chapter 12. We should not
need to carry out detailed planning and delivery of these services for every
SDLC; these activities should be in place in order that we can support soft-
ware systems. For a project in which we are acquiring a new system on a
new infrastructure, we would plan and set them up as part of the whole IT
infrastructure, so our entry criteria would include checking that all the sup-
port and infrastructure is in place to support the live system. For a project
in which we are delivering new software to an existing infrastructure, we
would need to review whether changes were needed in any of these areas
to support the delivery and use of the software. The completion of these
changes would become part of the entry criteria for delivery for that par-
ticular project. A very good description of the type of infrastructure activi-
ties required and checklists for reviewing delivery plans are in the ITIL
Service Delivery and Service Support Manuals [2, 4].

11.4 Delivery—typical activities
The activities that take place during delivery depend on the size and com-
plexity of the project. This is best illustrated by some examples.

11.3 Entry criteria for delivery 221

222 Delivery and Support When Going Live

Table 11.3 Summary of Techniques for Teamwork in Delivery

Subject Area Technique Examples In 30 seconds… (see Appendix A for more)

Delivery Pilot projects [5, 6] A limited delivery to a small area, which enables the
customers and suppliers to test delivery and use of the
proposed system before rollout to a large number of sites.

Delivery Release
management
[2, 4, 7]

“Release management builds the final customer solution,
which also includes instantiation of the developing and
testing environment. In a product-line context, release
management includes the release of core assets to product
developers. When shopping for CM tools, make sure the one
you buy can help you build releases.” [7]

Delivery Build
management
[2, 4, 7]

“Build management enables developers to create a version of
a product, which can be anything from a single component to
a complete customer solution for the purpose of testing
and/or integration.” [7]

Team relationships
and natural roles/team
skills

Belbin team
roles [8]

The SDLC can fail because of personal rather than technical
factors. Teams need to understand their strengths and
weaknesses as a team. A balance of roles/skills is required in
the personalities in the team. Example roles: plants have new
ideas; completer–finishers want to finish to fine detail. Too
many plants and you will never finish anything.

Improve
communication—
empathy with
others

MBTI [9] Different people have different personalities and
communication styles. People who wave their arms around
and talk a lot can annoy people who like to be quiet and
think, and vice versa. The Myers-Briggs Type Indicator
(MBTI) identifies four contrasting type pairs (e.g.,
Introvert/Extrovert) leading to 16 “types” (e.g., INTJ is
Introvert-iNtuitive-Thinking-Judging).

Honey &
Mumford [10]

The Honey & Mumford Learning Styles Questionnaire
identifies preferred learning styles (e.g., Pragmatists vs.
Theorists) require different experiences to learn.

Kirton [11] Kirton identifies preferred problem solving methods (Adaptors
vs. Innovators)—do we break the rules or work within them?

Improve meetings De Bono’s Six
Thinking
Hats [12]

Improve meetings by setting rules for behavior. Six “hats” are
used. Everyone wears the same color hat at the same time:
Blue Hat—meeting structure, Black Hat—pessimistic, Yellow
Hat—optimistic, Red Hat—feelings, White Hat—facts, Green
Hat—creative ideas. Allows meeting members to move
outside their stereotypes and allows time for different,
sometimes difficult types of communication.

Identify problems and
root causes, find
solutions

Ishikawa
fishbones
[13, 14]

Use to identify problems, root causes of problems and
solutions. On a fishbone diagram, brainstorm problems,
their possible causes, their root causes, and, therefore,
solutions to the root cause.

Review documents
and other products

Reviews
[15, 16]

There are five types of review: management review, technical
review, inspection, walkthrough, and audit—all
of which are relevant throughout the SDLC. Specialist testers
regard them as a form of testing, because they are used to
find and prevent defects in products and processes.

Understand whether
an idea is worth
pursuing

Risk workshop by
brainstorming
[13, 14]

A brainstorming workshop is run to list all the possible
risks people can identify. The risks are sorted into groups,
separating risks (might happen in the future) from issues
(problems right now) and constraints. The risks are scored for
impact and likelihood, and ranked to give a prioritized list.

Cost–benefit
analysis
[13, 14]

Cost–benefit analysis is done by calculating the predicted
benefits of the proposed change (time, money saved) and
setting this against the predicted cost.

11.4.1 Person buys PC and software for self-installation

The builders, measurers, managers, and supporters will work for the PC and
software vendors. They must prepare the product with everything the cus-
tomers will need to support them through delivery and into use of the sys-
tem. The level of intervention by a specialist with technical knowledge of
PCs will need to be reduced by improving the installation process itself, per-
haps by automation, but also by providing step-by-step instructions not just
for the installation of the software but including steps to take before and
after the installation. Additionally, supporting documentation should be
written in the customer’s terminology, not in IT terminology. The delivery
activities that might be typical here would be for the customer to:

◗ Check all the delivered components against a supplied parts checklist.

◗ Assemble hardware following a step-by-step guide

◗ Boot up system and follow on-screen initialization steps.

◗ Customize system.

◗ Back up system.

◗ Install purchased software package, following steps in the installation
guide.

11.4 Delivery—typical activities 223

Table 11.4 Example Entry Criteria for Delivery

Example of Entry Criteria Example of Entry Documents
Example of
Authorization Owners

1. Acceptance test completed
and passed in all aspects;
software will move to delivery

Acceptance test summary report, including acceptance
of the implementation/rollback plan, infrastructure,
training, documentation, processes, and software

Process owner,
support manager

2. Acceptance test completed
and failed; users and supporters
willing to accept as is with
documented workarounds

Acceptance test summary report, including acceptance
or otherwise of the implementation/rollback plan,
infrastructure, training, documentation, processes, and
software

Cost–benefit analysis

Known problem and workaround list.

Process owner,
support manager

3. Hardware change: Either 1 or
2 completed, plus hardware
delivery complete

Hardware implementation test complete and
accepted

Infrastructure
manager

4. Additional support line/help
desk required: Either 1 or 2
completed, plus support plan
implemented

Support policies and processes complete and
agreed on

Support line/help-desk infrastructure (hardware,
communications, and software tools) complete
and accepted

Support personnel trained and ready

Support line/
help-desk manager

5. Change to business processes
required: Either 1 or 2 complete
plus business process changes
agreed on, tested and accepted,
and business training complete

Business processes agreed on

Business personnel trained and ready

Process manager,
customer services
manager

◗ Check that the installed software works as expected.

◗ If it does work, make a backup of the system.

◗ If it does not work, deinstall following the manufacturer’s deinstalla-
tion instructions.

Of course, at the point where the customer finds that the software does
not work, they may want to take a number of actions: following the trou-
bleshooting guide supplied by the manufacturer, ringing the help line, look-
ing at on-line help, or asking for their money back [17].

11.4.2 Single-site delivery of software

For a delivery of new software or an upgrade to an existing system, the steps
within delivery need to protect processes or people using the system from
unexpected changes. The delivery steps might include:

◗ Awareness, education, and training prior to the delivery—people are
made aware that a change will be made and given any training they
will need, plus details of additional support such as additional help-
line numbers.

◗ Carry out normal day’s processing on system.

◗ Carry out end-of-day processes on system.

◗ Back up system.

◗ Overnight, install new software, following steps in the installation
procedures.

◗ Check that the installed software works as expected.

◗ If it does work, make a back up of the system and make ready to go live.

◗ If it does not work, deinstall following the deinstallation instructions
and make ready to go live with the old system.

If the installation was not successful, the team may chose to go live with
the changes anyway; the exit criteria for the delivery would need to define
the acceptance levels.

11.4.3 Multisite rollout of new software to existing
infrastructure

The steps will be similar to the single-site delivery but will be repeated at
each site, and there may be a delay in the rollout or installation to allow the
people using and supporting the system to become used to it. For a multisite
installation a phased approach is easier to manage and less prone to error
than a “big bang” approach [6]. For new software, for example taking on a
software tool that replaces manual activities with a radical change in process,
a pilot project may be useful. In fact, pilots are useful when the customer for
the delivery is the IT group itself; for example, when taking on a new testing

224 Delivery and Support When Going Live

tool, piloting the use of the tool in a small group and then rolling out to the
rest of the IT teams is generally recommended [7]. The steps might include:

◗ Choose pilot and make a draft implementation rollout plan for
remaining sites.

◗ Awareness sessions for the pilot and release plan.

◗ Implement on the pilot system, as a single-site process, including edu-
cation and training.

◗ Monitor and evaluate the pilot, confirm or update rollout plan.

◗ If proceeding, roll out to the next site, as a single-site process, including
education and training.

◗ If not proceeding, roll back.

◗ Monitor and evaluate the site, confirm or update rollout plan.

If the pilot is not successful, a decision needs to be made about how to
proceed, so the pilot needs its own acceptance and exit criteria. For a with
problems, we might decide to go ahead with the implementation rollout
anyway, or to implement it only in certain areas, or to change/rework the
software and repilot, or roll back and look for a different solution.

Once the pilot is complete, if a part of the rollout is not successful the
next move is more difficult; this means that rollback plans should be consid-
ered in detail at each stage. If the pilot and the first phase of rollout have
been accepted, but the second phase fails, should we roll back just the sec-
ond phase or to the first phase and pilot as well? Will it still be possible to
roll back if data on the systems relies on the new software? Will formats still
be compatible? The implication of rollout and rollback must be considered
in the delivery planning.

11.4.4 Data migration project software and hardware changes

In this type of project, the delivery is more complex. The project might
require making changes to the target system to ready it for the new data,
removing data from the source system, perhaps converting its format, load-
ing it to the target system, and checking that all the data has been moved.
The delivery may take place over several days, and activities on different
systems may be taking place in parallel:

◗ Prior to the migration, deliver the software and hardware changes to
the target system (see Section 11.4.3).

◗ Carry out final day’s processing on source system.

◗ Carry out end-of-day processes on source system.

◗ Back up source system.

◗ Extract source data.

◗ Final day’s processing on target system.

◗ Carry out end-of-day processes on target system.

11.4 Delivery—typical activities 225

◗ Back up target system.

◗ Convert data.

◗ Load converted data.

◗ Check that all data has loaded.

◗ If all data has loaded successfully, go live on target system.

◗ If data has not loaded successfully, restore to backup on source and
target.

If the data migration was not successful, the team may chose to go live
anyway; the exit criteria for the migration delivery would need to define the
acceptance level for the data. Migrations may be carried out as a big bang or
with a phased approach. As with the multisite approach, the delivery plan
must consider the implications of rollout and rollback.

11.5 Exit from delivery
Exit from delivery takes place when the exit criteria for delivery have been
met. This will either be:

◗ When the release activities have completed successfully and the sys-
tem is ready for live use; it will then move into the postdelivery stage
(Chapter 12);

◗ When the release is declared unsuccessful and the release has been
rolled back.

Table 11.5 lists some examples of exit criteria for delivery.

11.6 Conclusion
The delivery requires involvement of all groups, whether it results in a suc-
cessful rollout or in a rollback. There are standard IT infrastructure processes
that support the delivery.

226 Delivery and Support When Going Live

Table 11.5 Example of Exit Criteria from Delivery

Example of
Exit Criteria

Example of Deliverables Documented,
Reviewed, and Agreed Upon

Example of
Authorization Owners

Installation and release
complete, ready for live use

Delivery checklist complete and reviewed

Updated IT service

Updated configuration management system (new
software, live version)

Decommission checklist complete

Known defect list

Resolved defect list

Process owner, IT
infrastructure manager

Release rollback complete Deinstallation checklist complete and reviewed

System restore to preinstallation back up complete

Process owner, IT
infrastructure manager

References

[1] Pol, M., and van E. Veenendaal, Structured Testing of Information Systems,
Deventer, the Netherlands: Kluwer BedrijfsInformatie, 1998.

[2] IT Infrastructure Library, Best Practice for Service Support, London, England: Office
of Government Commerce, 2002.

[3] Humphrey, W., Introduction to the Team Software Process, Reading, MA:
Addison-Wesley, 2000.

[4] IT Infrastructure Library, Best Practice for Service Delivery, London: Office of
Government Commerce, 2002.

[5] Craig, R. D., and S. P. Jaskiel, Systematic Software Testing, Norwood, MA: Artech
House, 2002.

[6] Fewster, M., and D. Graham, Software Test Automation, Reading, MA:
Addison-Wesley, 1999.

[7] Software Engineering Institute, “A Framework for Software Product Line
Practice,” v4.1, Software Engineering Institute Web site, http://
www.sei.cmu.edu.

[8] Belbin Associates, “Belbin Team Roles,” http://www.belbin.com/belbin-team-
roles.htm, October 2003.

[9] Team Technology Web site, “Working Out Your Myers Briggs Type,”
http://www.teamtechnology.co.uk/tt/t-articl/mb-simpl.htm, October 2003.

[10] Honey, P., “Learning Styles,” http://www.peterhoney.co.uk/product/learning
styles, October 2003. PeterHoney.com, 10 Linden Avenue, Maidenhead, Berks,
SL6 6HB. Tel.: 01628633946. Fax: 01628633262. E-mail: info@peterhoney.com.

[11] Kirton, M. J., “Adaptors and Innovators Defined,” see KAI Web site,
http://www. kaicentre.com/, July 2003.

[12] de Bono, E., Six Thinking Hats, New York: Penguin, 1999.

[13] Robson, M., Problem Solving in Groups, Aldershot, England: Gower, 1993.

[14] TQMI, Problem Solving—Tools and Techniques, Frodsham, England: TQMI, 2001.

[15] IEEE 1028™ Standard for Software Reviews, 1997.

[16] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley,
1993.

[17] Kaner, C., Bad Software, New York: Wiley, 1998.

Selected bibliography

Belbin, R. M., Management Teams—Why They Succeed or Fail, London, England:
Butterworth Heinemann, 1981.

Honey, P., and A. Mumford, The Learning Styles Helper’s Guide, Maidenhead,
England: Peter Honey Publications, 2002. PeterHoney.com, 10 Linden Avenue,
Maidenhead, Berks, SL6 6HB. Tel.: 01628633946. Fax: 01628633262. E-mail:
info@peterhoney.com.

Kroeger, O., J. M. Thuesen, and H. Rutledge, Type Talk at Work: How the 16
Personality Types Determine Your Success on the Job, New York: Bantam Doubleday
Dell, 2002.

McHale, J., “Innovators Rule OK—Or Do They?” Training & Development,
October 1986, http://www.kaicentre.com/.

11.6 Conclusion 227

.

The Life of a System Postdelivery

In this chapter I shall:

◗ Describe the entry criteria, steps, and exit criteria for the
postdelivery stage;

◗ Identify the quality definitions from Chapter 1, which prevail
at this stage;

◗ Identify how each of the groups identified in Chapter 2
become involved at this stage;

◗ Introduce the types of support activities carried out at this
stage, especially for readers who are not support specialists,
including the different types of maintenance changes to the
delivered system;

◗ Introduce techniques that aid teamwork at this stage.

My team has been given the assignment of picking up after this

latest “wow project.” We need to run several manual batch jobs

each day and I’m getting beaten up because the support cost has

gone up by 30% since implementation. I think the project team

got a bonus for this mess!

—Cynical application maintenance manager wondering why

no one involves supporters until after delivery!

12.1 Postdelivery—description
Postdelivery covers the life of the software from when it is first
delivered and while it is being used until it is decommissioned.
It is the longest part of a software system’s life span. During this
time, customers use the software while supporters maintain
and support it. It comes after the delivery stage covered in
Chapter 11 (see Figure 12.1).

229

12
Contents

12.1 Postdelivery—description

12.2 Delivery viewpoints

12.3 Entry criteria for
12.3 postdelivery

12.4 Postdelivery—typical
12.4 activities

12.5 Exit from postdelivery

12.6 Conclusion

C H A P T E R

12.1.1 Postdelivery for different types of software
acquisitions

Postdelivery activities will be different for different types of customers, sys-
tems, and software. Let us look at some examples.

12.1.1.1 Commercial off-the-shelf (COTS) package installed by
customer

The customer installs the software and uses it. Postdelivery, if the software
does not work as expected, they might deinstall and replace it by something
else, contact the vendor’s help line for assistance, or find a workaround by
themselves. The vendor may advertise patches that fix reported bugs, and
these may be delivered to the customer on request for the customer to
install. If the vendor produces a new version of the software, with enhance-
ments, the customer may choose to install the upgrade or to continue using
the existing system without the upgrade. The postdelivery activities are:

◗ Use of the software;

◗ Customer applying patches and upgrades when they are ready, if
wanted;

◗ Deinstallation.

12.1.1.2 System developed in-house

The software system is likely to be used during office hours by the user
group (customers). There may be overnight batch processing run on behalf
of the user group by the operations team (supporters). From time to time
maintenance changes will be applied. These may be requested by the users
themselves, or they may be required by the IT infrastructure team to
improve support of the system. During the postdelivery period, the IT infra-
structure activities will include monitoring and evaluating the system, and
proposing changes. Eventually, the system will be decommissioned, and in
the lead-up to that point, data might be migrated to a new system. Activities
postdelivery include:

◗ Use of the software;

230 The Life of a System Postdelivery

S = Start-up
SDLC = Software development life cycle
D = Delivery
PD = Postdelivery

PD

D

SDLC

S

Figure 12.1 Life span stage.

◗ Development and installation of maintenance changes;

◗ Monitoring of the system infrastructure and service levels;

◗ Deinstallation and decommissioning.

12.1.1.3 Third-party developed system

The third party who developed the software will have a contract with the
customer that describes the scope of their responsibility. It may be that they
complete their responsibility when the acceptance test is complete, or when
delivery is complete, or when some agreed-on period of time has passed (a
warranty period), or they may have a long-term support contract. The
activities might be the same as the COTS package, but perhaps in a larger
organization the IT infrastructure group (supporters) would provide support
for installation and a service/support line. It might be that the source code
has been delivered and the supporters will carry out maintenance changes,
or the third-party suppliers may make the maintenance changes. The activi-
ties would include:

◗ Use of the software;

◗ Development and installation of maintenance changes;

◗ Monitoring of the system infrastructure and service levels;

◗ Deinstallation and decommissioning.

12.1.1.4 System with periodic updates

Some software is delivered with an assumption of periodic updates; a good
example is a virus checker. Here the vendor will supply upgrades at regular
intervals; for example, monthly by mail or weekly via a download to the
customer system. Typical activities include:

◗ Use of the software;

◗ Development and installation of upgrades;

◗ Deinstallation and decommissioning.

12.2 Delivery viewpoints
Once we have installed the software and it is in use, we will evaluate it. By
“we,” I mean any one who has an interest in the delivery. We ask: Does it
help the customers? Are they happy with it? However, if only the views of
the customers are considered in evaluating the software, we will find that
we have not considered all the quality views (see Table 12.1).

In fact, a true evaluation of the software can only be made by involving
all the groups, because although the project team has disbanded, all groups
have an interest in quality at this stage. It is almost certain that the software
will have maintenance changes, and these may involve work from the

12.2 Delivery viewpoints 231

original development team as well as from maintainers working within the
supporters group. Even with a COTS system installed by the customer, the
builders, measurers, managers, and supporters at the vendor will have a
view on the quality of the software.

For the evaluation, managers will be interested in measures of value for
money and return on investment, supporting the value-based view of
quality.

Supporters, measurers, and builders will be interested in measures of
defects reported during use, supporting a manufacturing- and product-
based view of quality. It is only once the software is live that we can evalu-
ate the effectiveness of our defect prevention, identification and removal
activities, including inspection, review, and testing activities. For example,
test effectiveness could be measured by comparing the number of problems
found in live use of the software with the number found during testing,
and a similar measure could be made for reviews and inspections [1, 2]. If
many more defects are found during QC processes such as testing and
review than during live use, our quality measurement processes may be
considered effective. We may additionally want to measure where we have
made mistakes and introduced defects, in order to introduce improvements
to reduce defects in future, as the fewer defects introduced, the better our
planning and build processes were. A very simple example might help:

◗ Suppose we find 30 defects during our testing and reviews. In the
first 6 months after delivery, we find another 20 defects. The total
number of defects is 50. The efficiency of our defect finding processes
is 30/50 = 60%.

◗ We analyze the 50 defects. Fifteen were introduced at the point where
we gathered the requirements and were caused by misunderstandings
between the customers and builders. We introduce some training and
process changes to improve communication between the groups dur-
ing requirement gathering, and set an expectation or target for a
reduction in these types of defects in the next project. When we ana-
lyze the defects from that project, we will measure and compare to see
if our process changes resulted in reduced defects.

232 The Life of a System Postdelivery

Table 12.1 Views of Quality at Postdelivery—Simple

Group

Quality View Customer

Transcendent view ✓

User view ✓

Value view

Product view

Manufacturing view

Of course, that is a very simplified example. You would need to take
onto account the other variables such as comparative size and complexity of
the projects, and you might want to measure the cost rather than the
number of defects. Of course, there may still be defects we have not found
yet. Perhaps we would want to measure again after 12 months. All I want to
indicate here is that it is possible to make measurements and use them to
evaluate what work has been done as well as to drive improvement initia-
tives for the future.

Customers and supporters engage with the software day to day. They
hold a transcendent view of quality (“are we enjoying this system?”) but
also the user-based view. They will have a perception of the software as fit
for purpose or otherwise. They will evaluate whether the software has
solved the problem they identified (Chapter 9) during start-up.

Involving all the groups gives a wider view of the quality of the system in
use (Table 12.2).

12.3 Entry criteria for postdelivery
Postdelivery can only be entered if the delivery itself has been successful. If
the delivery was rolled back or canceled, then the new software is not in
operation. Example entry criteria are shown in Table 12.3.

12.4 Postdelivery—typical activities
12.4.1 Use of the system

This is the whole reason for the work up to the point of delivery. A software
solution has been defined, designed, built, tested, and delivered. Finally, the

12.3 Entry criteria for postdelivery 233

Table 12.2 Views of Quality at Postdelivery—Teamwork

Groups

Quality View Customer Manager Builder Measurer Supporter

Transcendent view ✓ ✓ ✓ ✓ ✓

User view ✓ ✓ ✓

Value view ✓

Product view ✓ ✓ ✓

Manufacturing view ✓ ✓

Table 12.3 Example Entry Criteria for Delivery

Example of Entry Criteria Example of Entry Documents Example of Authorization Owners

Installation and release complete,
ready for live use

Delivery checklist complete and
reviewed, updated IT service,
updated configuration
management system (new
software, live version), known
defect list, resolved defect list

Process owner, IT infrastructure
manager

customers can use the software that will, we hope, resolve the problem or
opportunity identified during start-up. The customers will use the software
to carry out their tasks.

As we saw in Chapter 11, when software is first delivered, there may be
problems, either with the delivery or with the delivered product. These will
need to be resolved during the delivery period, either by fixing the problem
or by working around it. Additionally, the users of the system will be new to
it, and will need to learn how to use the system efficiently. This means that
during the immediate postdelivery period, the customers may feel disillu-
sioned. For example, I have recently taken delivery of a new laptop com-
puter. My pleasure in unpacking the parcel with the shiny new machine
had dissipated by two days later as I was still trying to install all the software,
migrate my data, learn a slightly different keyboard layout, and get the lap-
top settings as I wanted. I was quite ready to throw it out of the window!

Once the bedding in of the software has been accomplished and the ini-
tial learning curve has been climbed, customers should start to gain benefits
from the use of the new software. The organization as a whole will want to
monitor that the cost of the software is outweighed by the benefit of using
it. This should be measured over a period of time, taking into account the
dip in enthusiasm (Figure 12.2 and [3, 4]).

Over time, the customers will require changes to the software, to correct
problems, or to enhance the facilities available or to meet some change in
requirements. They need to make a request for a change, and the change
would be planned using the start-up activities we saw in Chapter 9. I will
discuss changes to software in Section 12.4.3.

12.4.2 IT infrastructure and service management activities

The activities postdelivery include use of the software, monitoring of the
system, evaluation of the system, maintenance and update of the system,
and infrastructure support. The activities needed to support an organiza-
tion’s IT provision are covered in a number of best-practice guides, codes of
practice, and standards, as we saw in Chapter 7; see, for example, those in
[3–12]. If we talk to the supporters, we will find typically that they carry out

234 The Life of a System Postdelivery

TIME

Enthusiasm

Benefit
Period of
blame...

Figure 12.2 Silver bullet life cycle. (From: [3]. © 1998 DISC PD 0005:1998.
Reprinted with permission.)

activities based on the recommendations of the IT Service Management
Forum [7], which is an international center of expertise for IT service man-
agement. For example, the IT Infrastructure Library (ITIL), [4, 6, 8] and BSI
Code of Practice for IT Service Management [3] identify activities for IT
infrastructure management, service support, and delivery that focus on the
customer’s access to services that support the business functions, and the
level and costs of those activities. These include:

◗ The service, support, or help desk is the customer’s first port of call if
something goes wrong; they rely on the other activities in this group.

◗ Incident management is intended to restore normal service as quickly as
possible and minimize impact.

◗ Problem management seeks to minimize the impact of incidents and pre-
vent recurrence of incidents.

◗ Configuration management identifies relationships between items that
make up a system.

◗ Change management controls changes made to the configuration.

◗ Release management controls packages of changes as identified releases.

◗ Service-level management is about understanding, agreeing on, and moni-
toring the level of service provided by the IT system, perhaps by meas-
uring against service-level agreements.

◗ IT financial management controls running costs for the IT systems, budg-
eting, accounting, and charging for services.

◗ Capacity management covers the monitoring and tuning of existing serv-
ices, plus forecasting future requirements.

◗ IT service-continuity management is a subset of business continuity and
defines a minimum set of IT provision for business continuity; for
example, looking at whether during a change or release recovery/roll-
back is possible.

◗ Availability management looks at the factors from a customer viewpoint
that are concerned with availability and reliability of the IT services.

◗ Security management defines and monitors the security of the IT systems
and the software.

◗ Infrastructure management, including network service management,
operations management, computer installation and acceptance, and
systems management will continue throughout the life of the soft-
ware and the IT system as a whole.

Note: If you are new to this subject area, or just need an overview, [9–11]
are quick guides to the subject.

During the life of the software, changes to the overall system and the
infrastructure will be needed. The supporters may need to upgrade hardware
or software components that support the software the customers actually
use. A start-up activity to analyze the problem would be needed, followed by

12.4 Postdelivery—typical activities 235

a project to provide a solution, which might be paper-based, software-based,
hardware-based, or use some other media, or a mixture of these.

Many of the techniques we discussed in Chapter 9 for identifying and
analyzing problems, for example, the Ishikawa fishbone, are specifically
mentioned in ITIL [4] as tools to use postdelivery. Figure 12.3 shows an
example of a partially completed fishbone diagram for customer complaints
about the help desk; the complaints have been grouped under suitable
headings, showing some of the underlying reasons (root causes) for the
problems. In this example, the customers have complained that the help-
desk staff are unaware of new software. During the session to discuss the
complaints and put together the fishbone diagram, the help-desk team real-
ized that they did not receive a known problem list for the new software.
They did not know that the software had been delivered!

12.4.3 Making changes to an existing system

During the life of the software postdelivery, customers will identify new
problems to be resolved and new opportunities to grasp, and will encounter
new outside requirements. The system may need to be enhanced, corrected
or adapted to changes in its environment. To accomplish this, support-
ers may need to have it changed to make future support and maintenance
easier.

When changes are made to existing software, this is called soft-
ware maintenance. It takes place in a software-maintenance life cycle
(SMLC). Most software projects are SMLCs rather than SDLCs, because soft-
ware spends most of its life in the postdelivery stage, being used and
changed. Often, when people say they are working on a SDLC, they are
actually working in software maintenance. So the system will be subject to
successive cycles of change, often with many changes taking place in paral-
lel (Figure 12.4). In fact, these are new SDLCs, involving the whole cast
of characters from before, and could be described as SMLCs (software-
maintenance life cycles).

There are four main types of maintenance changes to software systems:

◗ Corrective;

◗ Enhancement;

◗ Perfective;

◗ Adaptive.

12.4.3.1 Corrective maintenance

These are maintenance changes to rectify problems identified in products;
making fixes to software, and correcting typographical or factual errors
made in documents.

Corrections may be high-priority, even emergency, changes that need to
be done at speed. Many corrections are not high priority or emergency, and
can be built and released in groups or with other maintenance work.

236 The Life of a System Postdelivery

12.4 Postdelivery—typical activities 237

Fishbone of customer complaints about the help desk

Customer complaints
about help-desk staff

Unable to access
the frequently asked
questions Web page

FAQ Web page
only supported
on some versions
of browser; not all
customers
have that

Customer complaints
about help-desk technology

Wait too long in
phone queue

Customers unhappy
with help-desk
provision

Help desk is slow to
follow up calls

Customers forget
their call numbers
and have to start a
new call

Customer complaints
about help-desk processes

Did not have known
problems list

Help-desk staff do not
have knowledge of
newly installed
software

Help-desk
staff sound
patronizing
in their responses

Help-desk staff
give overtechnical
responses and are
hard to understand

Help-desk staff do not understand customer’s
business viewpoint/problems

Figure 12.3 Example of an Ishikawa fishbone.

PD

D D D D DD

D

D

D

D

SDLC

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SDLC/
SMLC

SU

SU

SUSUSUSU

SU

SU

SU

First phase
of delivery

System
start-up

System
decommissioned/

switched off

System closed
down to use

Corrections (bug-fixes)

Preparation for
close-down, extract
of data, and
decommissioning

Second phase
of delivery

SU = Start-up
SDLC/SMLC = the software-development life cycle or the software-maintenance life cycle
D = Delivery
PD = Postdelivery

Enhancements

Figure 12.4 Parallel changes during postdelivery.

Even emergency changes that take place overnight need to be controlled
within the life span structure I suggest. Suppose for example, that the over-
night batch run stops unexpectedly, or that the company e-commerce Web
site becomes unavailable. The maintenance to restore the service must take
place as quickly as possible.

Despite the need for speed, the emergency change will require a start-up
(problem and solution definition), some SDLC/SMLC activities, including
requirements, design, build and test, and delivery. Because it is an emer-
gency, a well-understood process with a suitable level of control and follow
up is vital; it is during an emergency that we make mistakes. An SMLC
designed as an “on one page” form with suitable checkpoints, tests, and
sign-off may well be appropriate. It is important that the actions taken are
documented. I am reminded of a notice I saw over a nurses’ station in a hos-
pital recently, “If it isn’t documented, it didn’t happen.” Once the emer-
gency is over, it is easy to forget what steps we took, and these might cause a
chain reaction, resulting in other problems. Also, following the first-aid fix
to the emergency problem, we may wish to revisit the changes, and perhaps
even rework them to improve the fix.

Nonemergency fixes may be grouped and worked on in an agreed-upon
timescale. Depending on the size of the fixes, it may be appropriate to use a
tailored rather than a full SDLC, as we saw in Chapter 10.

12.4.3.2 Enhancements

Here the change is to enhance or improve some attribute of the software,
either functional or nonfunctional. A group of minor enhancements would
lead to a minor release and one or more major enhancements may lead to a
major release, as we saw in Chapter 11. Enhancements and nonemergency
fixes are often treated together; grouped according to priority, for example,
and released in groups, in an agreed-upon timescale. Depending on the size
of the changes, it may be appropriate to use a tailored rather than a full
SDLC, as we saw in Chapter 10.

If we build and implement many small enhancements at one time, this
might in itself be a major release in terms of risk; the size of the whole set of
changes must be considered, as well as the impact of individual changes on
“business as usual” and the possible interaction of changes.

One important point to consider is that there can be critical disagree-
ment about whether changes are enhancements or correction of defects.
This can be a contractual, even a legal issue. If a supplier organization has
to absorb the cost of correcting defects within a fixed-price contract, it
may resist accepting requirements problems as defects. The relationship
between groups at this stage can deteriorate as arguments rage about
whether a required change is a correction or an enhancement. If the cus-
tomers are charged for enhancements but not for corrections, the argument
from the builders and measurers may be that the software has been deliv-
ered to meet its specification, and if the customers require a change, this
must be an enhancement. However, the customers may have interpreted

238 The Life of a System Postdelivery

the specification differently, or the specification could be wrong. If we carry
out the activities we discussed in Chapters 9 and 10, we should find that
these differences of opinion are reduced. It is also important to have an
agreement between all parties that defines what is considered a correction
and what is considered an enhancement.

12.4.3.3 Perfective maintenance

This is work done to make the software more maintainable in future. This is
important to reduce support and maintenance costs. Typical problems with
software that is changed frequently and used over a long period of time
include:

◗ The people who know the software and who know the reasons why it
has a certain structure leave, taking knowledge with them.

◗ The documentation that describes the system (requirements docu-
ments, design specifications) is not updated with the software, so it is
out of date and does not describe the software.

◗ The code becomes increasingly complicated as it is changed over time,
and, eventually, it is not possible to tell what is affected by a change.

◗ The complexity and lack of definitive information make it increasingly
difficult to test the changes to the software, especially as software
tends to become more complex as it is changed over time.

In one organization, I remember that a package had been customized for
particular clients, but each client’s software was built on some central code.
One of the programmers, in making a change to a client area of the code,
changed code that affected all the clients, without realizing it. It was so diffi-
cult to understand the code that this mistake was not surprising; the software
had grown almost organically over the years, and was not structured for easy
maintenance. It was also impossible to know that the testing had covered the
changes and the rest of the software sufficiently. The software needed to be
completely restructured to make it possible to maintain and test it.

The activities in perfective maintenance include rewriting code to
improve its structure (reengineering the code) and writing specification and
design documents that describe the existing system (retrodocumentation).

12.4.3.4 Adaptive maintenance

These maintenance changes are made to support changes in the software’s
environment; for example, it may be necessary to upgrade hardware or
systems software, or other supporting parts of the IT infrastructure. The soft-
ware may need to be changed—adapted—to work properly in its new envi-
ronment. This may include “porting” software or migrating data to a new
infrastructure, in which case the software or the data or both may need to be
adapted. An example would be my new laptop; moving my databases onto

12.4 Postdelivery—typical activities 239

the new laptop was easy—copy to and from removable media. However, in
order to use the data in the database, I had to make a choice either to allow
the upgraded database software to reformat the data, in which case I would
not be able to use it on the older laptop, or to use it as read-only. The new
software was going to carry out adaptive maintenance on the data to change
its format.

12.4.3.5 Who gets involved in a change?

All the groups have an interest in the changes made:

◗ Customer: How will this change affect me? What is its impact? What
are the implications for my normal work? Will it affect business as
usual? Will it benefit me? What are the risks? Do I want this change?

◗ Supporter: How will this change affect me? What is its impact? What are
the implications for the IT infrastructure and for service management?
Will it benefit me? What are the risks? Do I want this change?

◗ Manager: What are the cost implications of making the change and of
not making the change? Will there be a cost–benefit trade-off? If we do
this work, what other work has to be halted? What is the priority of this
change compared with others?

◗ Builder: Will I be asked to make the change? Do I want to make the
change? Do I understand the change?

◗ Measurer: Will I be asked to test the change? What else needs testing?
Can I test the change?

Whatever the size of the change we want to make, we need to involve
all the groups and go through the activities described in Chapters 9, 10, and
11. For a small change we would do a “cut-down” version of the activi-
ties—the checklist approach we have looked at in the earlier chapters. For a
large change we would take a more detailed approach. Even an emergency
fix requires involvement from the different groups, to get an understanding
of the impact of the problem and the proposed fix. In one organization, the
overnight call went not just to the analyst/programmer who would imple-
ment the change, but also to a senior business user who would assess the
impact on business as usual of the proposed fix, compared with the impact
of the problem itself.

12.4.3.6 Testing changes to software

Testing changes to existing systems is difficult. Because it is easy to make
changes that have an unexpected effect on software, we want to make sure
that the change works, and that other parts of the software have not been
changed. The assessment of the impact of any proposed changes must be
made both in terms of what products are effected—“If this screen is
changed, the user documentation and the training material also need
changing”—and also in terms of what measurement and assessment is

240 The Life of a System Postdelivery

needed—“If this screen is changed, I need to test that the change is correct
in all those products, and also to check that these other related parts of the
software and other products have not changed.” This is known as regression
testing; we need to check that we have not changed anything we should not
have changed. The need for regression testing means that changes that look
simple may be expensive; the requirements, design and build part of the
SMLC may be easy and cheap to do, but the testing, including a regression
test, may take a long time and be difficult to plan and execute. I do not want
to get into the detail of regression testing here, but it must be considered
when considering the impact of a change:

You are right to emphasize the testing task. I remember one major bank say-

ing that whenever they had made significant changes to their core banking

system, they always had to run a regression test that cost several million dol-

lars, and took several weeks to complete. (Richard Warden, personal com-

munication, July 2003)

There is no reason to suppose the burden will decrease with Web site
and e-commerce work; continuous change will mean continuous regression
testing of very public functional and nonfunctional attributes.

12.4.4 Monitoring and evaluation

During the postdelivery period, we can monitor the use of the software and
collect information that will help us measure the success of the original
SDLC and of subsequent SMLCs. We can also monitor and evaluate the
service management and infrastructure management services.

Because the postdelivery period of the software is the longest part of its
life span, we will want to look for improvements in the software itself and in
the surrounding support services. ITIL [4], for example, suggests use of the
Deming Cycle, proposed by W. Edwards Deming [13]. The cycle has four
stages, sometimes called the Plan, Do, Check, and Act cycle and sometimes
the Plan, Do, Review, and Improve cycle (see Figure 12.5). Here, we plan
what to do, and we do it. Then we review what we did. Was it successful?
Did it go as planned? What should we improve? We then put improvements
in place and plan the next cycle of activities.

12.4.4.1 Evaluation of the SDLC/SMLC

A formal evaluation of each SDLC/SMLC is important; this should involve
representatives of all the groups. The evaluation needs to be timed sensi-
tively, and may need to be a series of evaluations over a period of time. I
remember one project manager saying, “Never have the end-of-project
party until six months after the software’s been installed!” Table 12.4 shows
some possible timings for evaluation and the advantages and disadvantages
of each.

12.4 Postdelivery—typical activities 241

Evaluation meetings need to be managed carefully, so take into con-
sideration of some of the team and communication techniques we have
discussed in earlier chapters. Use the Six Hats [14] technique described in
Appendix A, for example, to help participants look for good points as well as
bad points for the evaluation (Table 12.5).

12.4.4.2 Ongoing monitoring and evaluation of software

Part of the service delivery work will include monitoring the software and
surrounding services, including numbers of problems reporting to the help
desk or support lines. These should be used to analyze whether:

◗ SDLC/SMLC software/code products could be improved, for example,
if problems are being reported that could be resolved by better design,
or might have been found with improved testing.

◗ Other SDLC/SMLC products could be improved, for example, if a task is
described in the on-line help or user guide, but customers cannot find

242 The Life of a System Postdelivery

Three cycles of improvement

PlanPlan

Plan

Cycle 3

Cycle 2

Cycle 1

Improve

Improve

Improve

Review

Review

Review

Do

Do

Do

Figure 12.5 Plan, Do, Review, and Improve cycle. (After: [13].)

Table 12.4 Timing the Postdelivery Evaluation of the SDLC/SMLC

Time After Delivery Advantage Disadvantage

Immediately Will not have forgotten the good and bad
points of the SDLC/SMLC.

Too soon to tell if the software works in
reality.

During the immediate
postdelivery period

Will not have forgotten the good and bad
points of the SDLC/SMLC.

May be too busy. May be too soon to
assess.

During low point of
period of blame
(Figure 12.2)

Will not lose information about the
problems and areas for improvement.

Will be only focused on bad points.
Evaluation meeting likely to be
unpleasant.

Six months after
delivery

Can do cost–benefit analysis against a
period of use. Successes and problems
seen against perspective of real use.

Too late to influence the following
projects. Team now focused on other
projects. May have forgotten both
problems and what was done well.

the information, it does not mean they are foolish; it means the user
guide and on-line help should be improved.

◗ SDLC/SMLC software/code and other products are not deteriorating
over time; for example, as changes are made to code, it can become
more complex, until it is far too expensive to change and test success-
fully. Tools are available for measuring software complexity, so this can

12.4 Postdelivery—typical activities 243

Table 12.5 Techniques Used to Aid Teamwork Postdelivery

Subject Area Technique Examples In 30 Seconds… (see Appendix A for more)

Team relationships
and natural
roles/team skills

Belbin Team Scores [15] Support of the software can fail because of personal rather
than technical factors. Teams need to understand their
strengths and weaknesses as a team. A balance of
roles/skills is required in the personalities in the team.
Example roles: plants have new ideas; completer–finishers
want to finish to fine detail. Too many plants and you will
never finish anything.

Improve
communication—
empathy with others

MBTI [16]

Honey & Mumford [17]

Kirton [18]

Different people have different personalities and
communication styles. People who wave their arms around
and talk a lot can annoy people who like to be quiet and
think, and vice versa. The Myers-Briggs Type Indicator
(MBTI) identifies four contrasting type pairs, e.g.,
Introvert/Extrovert, leading to 16 “types” (e.g., INTJ is
Introvert-iNtuitive-Thinking-Judging). The Honey & Mumford
Learning Styles Questionnaire identifies preferred learning
styles (e.g., Pragmatists vs. Theorists) require different
experiences to learn. Kirton identifies preferred
problem-solving methods (Adaptors vs. Innovators)—do we
break the rules or work within them?

Improve meetings De Bono’s Six Thinking
Hats [14]

Improve meetings by setting rules for behavior. Six “hats”
are used. Everyone wears the same color hat at the same
time: Blue Hat—meeting structure, Black Hat—pessimistic,
Yellow Hat—optimistic, Red Hat—feelings, White Hat—
facts, Green Hat—creative ideas. Allows meeting members
to move outside their stereotypes and allows time for
different, sometimes difficult types of communication.

Identify problems
and root causes, find
solutions

Ishikawa fishbones
[4, 19]

Use to identify problems, root causes of problems and
solutions. On a fishbone diagram, brainstorm problems,
their possible causes, their root causes, and, therefore,
solutions to the root cause.

Review processes Reviews [2, 20] For processes use audit. For checking process documents
use walkthrough, peer review, or inspection.

Understand whether
an idea is worth
pursuing

Risk workshop by
brainstorming [19, 21]

Cost–benefit analysis
[4, 21]

A brainstorming workshop is run to list all the possible
risks people can identify. The risks are sorted into groups,
separating risks (might happen in the future) from issues
(problems right now) and constraints. The risks are scored
for impact and likelihood, and ranked to give a prioritized
list.

Cost–benefit analysis is done by calculating the predicted
benefits of the proposed change (time, money saved) and
setting this against the predicted cost. An example of a
worked cost–benefit analysis for service support is in [4], a
general worked example is in [21], and there is also an
example in Appendix A.

be monitored over time. Additionally, other products can become out
of step with the code, and this can be monitored through configuration
management if it is applied to all products and not just the code.

◗ Service support and delivery could be improved. For example, if cus-
tomers find they are waiting too long for a response from the help
desk, what could be done to improve call turnaround?

12.4.4.3 Monitoring and evaluating the postdelivery processes

This can be done by carrying out process audits [20] to check that the
defined processes are being followed and that they are suitable. ITIL suggests
use of the EFQM Excellence Model or its U.S. equivalent, the Baldrige crite-
ria [4, 22, 23]. As we saw in Chapter 1, EFQM would expect evaluation of
measured performance and perceptions of the postdelivery services from
the viewpoint of the Customers. Society results measure what the organization
is achieving in relation to local, national and international society, where
appropriate—the wider customer group. It would also expect measurement
of People (those who are employed to carry out the work, in this case, the
builders, measurers, supporters, and managers). EFQM expects measure-
ment of the Key Performance Results, including financial measures such as
return on investment, which will interest the managers and customers.

12.5 Exit from postdelivery
We only exit from postdelivery when the software is deinstalled (removed)
or the system closes down. This may never happen; some software is more
than 20 years old, and if it is still working, there is no real reason to remove
it. Some systems and software are deinstalled or decommissioned. The exit
from postdelivery will generally take place when the replacement software
is available. Typically, a full SDLC (Chapter 10) and delivery will have com-
pleted successfully before the old software is removed and the old infra-
structure decommissioned. It may be that the old and new software are run
in parallel for a while; the same tasks being carried out on both until the
customers and supporters are satisfied that the new software and system has
been delivered correctly. In Table 12.6, we see examples of exit criteria for
postdelivery.

12.6 Conclusion
In Chapters 8 to 12, we have followed a software system through its life
span, from start-up, through the SDLC, into delivery, and so into the
activities of postdelivery, including repeated SMLCs. In summary the activi-
ties are:

◗ Start-up: We explore the problem until we understand it, decide
whether it is worth solving, set general constraints and parameters for

244 The Life of a System Postdelivery

the solution, decide how to approach the problem, for example, a
software solution may be appropriate, and agree on a formal or infor-
mal contract of work, with constraints and acceptance criteria and an
outline or high-level plan.

◗ SDLC: We plan the SDLC in detail and monitor the activities, we manage
change, we define the requirements in detail, we design products,
including the software code, we build the software based on the designs,
and we test to see that the software and other deliverables are OK.

◗ Delivery: We install the software and check that it has installed correctly.

◗ Postdelivery: We use the software, carry out service delivery and sup-
port activities, carry out IT infrastructure activities, make changes to
the software, and monitor and evaluate the postdelivery activities to
look for improvements.

At each stage, all the groups must contribute; at each stage customers,
managers, builders, measurers, and supporters help enable software quality
to be built into the software and to be confirmed. We saw in Chapters 3 to 7
that each group holds its own view of quality, and that all these views are
reasonable and must be considered.

No single standard will help right through the software life span. The
EFQM Excellence Model [22] will provide a framework for all activities, and
with techniques like Balanced Scorecard [24], enable a strong alignment
between the goals of IT and its customers, perhaps in one integrated man-
agement system. Within that elements of CMM [25] and its relations, such
as the Team and Personal Software Processes [26, 27], ISO 9000 [28] will
enable us to control our work during the SDLC and help us decide which
SDLC model we use, whereas the ITIL [4] will provide a structure during the
deployment and optimization of the software as it is being used and
changed.

12.6 Conclusion 245

Table 12.6 Example of Exit Criteria from Postdelivery

Example of Exit Criteria
Example of Deliverables Documented,
Reviewed, and Agreed Upon Example of Authorization Owners

System ready to decommission:
new system accepted, data
migrated

Acceptance criteria sign-off list.

Accepted new system (SDLC exit
and delivery exit).

Data migration controls sign-off.

Parallel run sign-off.

Business process owner,
infrastructure manager

System decommission complete Data migration complete.

Parallel run complete.

Software and data back up and
archive complete.

Software close-down checklist
complete.

Hardware close-down checklist
complete.

Business process owner,
infrastructure manager

Teamwork and communication is fostered by clear processes, which
encourage involvement from all the groups, and recognize their different
viewpoints. Clear entry and exit points agreed on by all the groups will help
this. I mentioned W. Edwards Deming earlier; he distilled his philosophy of
quality management into 14 points [13]. In the ITIL [4], a number of these
points are highlighted, and at the top of their list is a key point: “Break down
barriers—improve communication between departments” [4, 13].

Let me take this further: Break down barriers between people; commu-
nication and team work are key to achieving software quality. It is not my
responsibility, and it is not your responsibility. It is our responsibility,
together.

References

[1] Fewster, M., and D. Graham, Software Test Automation, Reading, MA: Addison-
Wesley, 1999, pp. 211–219.

[2] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley,
1993, pp. 386–388.

[3] British Standards Institute, DISC PD 0005:1998, Code of Practice for IT Service
Management, 1998 (PD0005).

[4] IT Infrastructure Library, Best Practice for Service Support, London, England: Office
of Government Commerce, 2002.

[5] IT Service Management Forum, “BS 15000 IT Service Management,” http://
www.bs15000certification.com, October 2003.

[6] IT Infrastructure Library, Best Practice for Service Delivery, London, England: Office
of Government Commerce, 2002.

[7] IT Service Management Forum, “IT Service Management Forum,” http://www.
itsmf.com, October 2003.

[8] IT Infrastructure Library, “IT Infrastructure Library”; see the ITIL Web site
http://www.itil.co.uk or the TSO Web site http://www.tsonline.co.uk/
bookshop/bookstore.asp?FO=1150345, October 2003.

[9] IT Service Management Forum, A Dictionary of IT Service Management: Terms,
Acronyms and Abbreviations: Version 1, London, England: The Stationery Office,
2001.

[10] IT Service Management Forum, IT Service Management: A Companion to the IT
Infrastructure Library: Version 2, London, England: The Stationery Office, 2001.

[11] IT Service Management Forum, A Dictionary of IT Service Management: Terms,
Acronyms and Abbreviations: Version 1 (North America), London, England: The
Stationery Office, 2001.

[12] British Computer Society, BCS Qualifications, http://www1.bcs.org.uk/
link.asp?sectionID=574, September 2003.

[13] The W. Edwards Deming Institute, “Deming’s Teachings,” http://www.deming.
org/theman/ articles/articles_gbnf04.html, November 2003.

[14] de Bono, E., Six Thinking Hats, New York: Penguin, 1999.

246 The Life of a System Postdelivery

[15] Belbin Associates, “Belbin Team Roles,” http://www.belbin.com/belbin-team-
roles.htm, October 2003.

[16] Team Technology Web site, “Working Out Your Myers Briggs Type,” http://
www.teamtechnology.co.uk/tt/t-articl/mb-simpl.htm October 2003.

[17] Honey, P., “Learning Styles,” http://www.peterhoney.co.uk/product/learning
styles, October 2003. PeterHoney.com, 10 Linden Avenue, Maidenhead, Berks,
SL6 6HB. Tel.: 01628633946. Fax: 01628633262. E-mail: info@peterhoney.com.

[18] Kirton, M. J., “Adaptors and Innovators Defined,” KAI Web site,
http://www.kaicentre.com/, July 2003.

[19] TQMI, Problem Solving—Tools and Techniques, Frodsham, England: TQMI, 2001.

[20] IEEE 1028™ Standard for Software Reviews, 1997.

[21] Robson, M., Problem Solving in Groups, Aldershot, England: Gower, 1995.

[22] European Foundation for Quality Management, “EFQM Excellence Model,”
http://www. efqm.org, August 2003.

[23] Malcolm Baldrige model, http://www.quality.nist.gov/index.html, August
2003.

[24] Kaplan, R. S., and D. P. Norton, The Balanced Scorecard, Boston, MA: Harvard
Business School Press, 1996.

[25] Software Engineering Institute, “Capability Maturity Model,” http://www.
sei.cmu.edu, July 2003.

[26] Humphrey, W., Introduction to the Team Software Process, Reading, MA: SEI, 2000.

[27] Humphrey, W., Introduction to the Personal Software Process, Reading, MA: SEI,
1997.

[28] International Standard Institute, ISO 9000:1994 and ISO 9000:2000 Quality
Systems.

Selected bibliography

Belbin, R. M., Management Teams—Why They Succeed or Fail, London, England:
Butterworth Heinemann, 1981.

Deming, W. E., Out of the Crisis, Cambridge, MA: MIT Press, 2000.

Honey, P., and Mumford, A., The Learning Styles Helper’s Guide, Maidenhead,
England: Peter Honey Publications, 2002. PeterHoney.com, 10 Linden Avenue,
Maidenhead, Berks, SL6 6HB. Tel: 01628633946. Fax: 01628633262. E-mail:
info@peterhoney.com.

IT Infrastructure Library, Best Practice for Application Management, London,
England: Office of Government Commerce, 2002.

IT Infrastructure Library, Best Practice for Security Management, London, England:
Office of Government Commerce, 2002.

Kroeger, O., J. M. Thuesen, and H. Rutledge, Type Talk at Work: How the 16
Personality Types Determine Your Success on the Job, New York: Bantam Doubleday
Dell, 2002.

McHale, J., “Innovators Rule OK—Or Do They?” Training & Development,
October 1986, http://www.kaicentre.com/.

Quagliariello, P., “Introduction to IT Service Management, ITIL and ITIL Capacity
Management,” http://www.pultorak.com/home/speaking_engagements/pre-
sentations/ 2003_03_07_cmg.pdf, October 2003.

12.6 Conclusion 247

.

Appendix A

Techniques and Methods

This appendix is summary of the techniques mentioned in the chapters,
with additional information and resources for you to follow up ideas that
interest you. If you start a literature or Internet search for any of these topics
you will find much more information and other related or similar tech-
niques. This appendix is intended to introduce you to ideas and resources
rather than to be a complete compendium of the techniques available.

A.1 Communication, team dynamics, and meeting
behavior

We all carry with us taken-for-granted assumptions about the world and
other people—what is normal and how people should behave—and it these
assumptions that allow us to build trust between individuals within groups
and organizations [1]. Although many taken-for-granted assumptions are
shared, there will be differences between cultures, organizations, and fam-
ily/friendship groups. Just because you “always do it that way” it does not
mean it is the right way. One of our assumptions can be that others will
share our taken-for-granted assumptions. If we discover that other people
have different core beliefs, we are surprised and may dismiss their views as
wrong—it is hard to see other people’s view. We may also assume that other
people communicate in the same way as we do, that they share our sense of
humor, use body language in the same way, and share our preference for
written, pictorial, or verbal messages. I recently had a discussion with a col-
league because we could not understand each other. It turns out that we
used two key phrases in opposite ways, both equally correct but meaning
the opposite of each other:

◗ I had used “I think” to mean “I am not sure” but my colleague had
used “I think” to mean “I am certain.”

◗ My colleague had used “I feel” to mean “I am not sure” but I had used
“I feel” to mean “I am certain.”

249

These communication differences are increased by cultural differences
between organizations, and between colleagues from different types of
organization, and from different countries. We need to be careful of our
own taken-for-granted assumption, and be aware of other people’s without
dismissing them. This section is an introduction to some of the techniques
and ideas people have developed to help understand and bridge communi-
cation gaps.

In this appendix, I will introduce a number of ways of examining com-
munication preferences. It is very important that to get the most from these
techniques, you use this as just a taster. I have suggested search words to
help you find out more from the Internet, and there are books, journals, and
Web sites in the references and selected bibliography. Be aware also that
you will not get the most from some of these techniques without the help of
specialists; psychometric tests are not to be played with.

For this section, the Internet/Web search words are: taken-for-granted
assumptions, communication skills, team work, ethnomethodology, sociol-
ogy, team dynamics, body language, transactional analysis, personality
types, culture, Garfinkel, Busco, emotional intelligence, and Goleman.

A.1.1 Belbin Team Roles

Whether teams are drawn from all the groups (customer, manager, builder,
measurer, supporter) or from a single group, work can fail to be successful if
people in the group do not understand their strengths and weaknesses as
team members. This means we may fail to deliver and support software suc-
cessfully because of personal rather than technical factors. Teams need to
understand their strengths and weaknesses as a team. Belbin [2–4] defined a
number of roles that people take when in a team. These are summarized in
Table A.1.

A balance of roles/skills is required in the personalities in the team if it is
to be successful. For example, plants have new ideas whereas completer–fin-
ishers want to finish to fine detail. If you have too many plants in the team
you will never finish anything, but if you only had completer–finishers, you
might not have so many new ideas. Each person in the team takes an assess-
ment, and this provides a picture of the strengths and weaknesses of the
team as a whole. All the roles are needed, so if one is missing, either the
team fails or some team members take on secondary roles. I have certainly
observed that people will change roles depending on the particular team,
but they may not be comfortable. Most people will score to show a mix of
the team roles.

Assessment is by a questionnaire that is administered and marked by a
Belbin assessor. Details of how to get a Belbin assessment for a team can be
found on their Web site [4]. Assessments may be on-line or by mail. They
also provide training for certification in use of Belbin assessments. It is best
to use qualified people to administer these types of tests.

The earlier work by Belbin [2] has been updated, and the latest thinking
is in [3, 4].

250 Appendix A

In this section the Internet/Web search words are: Belbin, team, team
dynamics, and team roles.

A.1.2 De Bono’s Six Thinking Hats

Sometimes in meetings, we either find that the same people always contrib-
ute the in the same way—“Joe’s always so pessimistic and negative” or
“Mary never acknowledges there might be problems”—and sometimes the
meeting dissolves into acrimonious chaos, with people no longer on speak-
ing terms. Can we do anything about this? Edward de Bono [5] decided that
we could, and the Six Thinking Hats was the result. I first came across it as
an idea for improving software projects from Jens Pas’ EuroSTAR presenta-
tion and workshop [6] as a means of introducing emotional intelligence to
rationally biased software projects; in other words, allowing fact-based peo-
ple an opportunity to also express emotional views.

Use of de Bono’s Six Hats at a meeting encourages people to take differ-
ent roles at the meeting, and to categorize their communication and thus
improve it. This means that it is acceptable to express emotion, for example,
but we separate those communications from the other communications,
such as collection of facts. The six hat colors and their meaning are summa-
rized in Table A.2.

By using the hats, we set rules for behavior. Everyone wears the same
color hat at the same time, and the hats are not associated with particular

A.1 Communication, team dynamics, and meeting behavior 251

Table A.1 Belbin Team Roles

Team Role Contribution Allowable Weakness

Plant Creative, imaginative, unorthodox

Solves difficult problems

Ignores incidentals

Too preoccupied to communicate effectively

Resource
investigator

Extrovert, enthusiastic, communicative

Explores opportunities

Develops contacts

Overoptimistic

Loses interest once initial enthusiasm has
passed

Coordinator Mature, confident, a good chairperson

Clarifies goals, promotes decision making,
delegates well

Can be seen as manipulative

Offloads personal work

Shaper Challenging, dynamic, thrives on pressure

The drive and courage to overcome obstacles

Prone to provocation

Offends people’s feelings

Monitor
Evaluator

Sober, strategic and discerning

Sees all options

Judges accurately

Lacks drive and ability to inspire others

Teamworker Cooperative, mild, perceptive and diplomatic

Listens, builds, averts friction

Indecisive in crunch situations

Implementer Disciplined, reliable, conservative and efficient

Turns ideas into practical actions

Somewhat inflexible

Slow to respond to new possibilities

Completer–
finisher

Painstaking, conscientious, anxious

Searches out errors and omissions

Delivers on time

Inclined to worry unduly

Reluctant to delegate

Specialist Single minded, self-starting, dedicated

Provides knowledge and skills in rare supply

Contributes on only a narrow front

Dwells on technicalities

people. This allows meeting members to move outside their perceived
stereotypes and allows time for different, sometimes difficult types of com-
munication. De Bono discussed the order and way the hats are used; it
depends on the meeting and the problem, as well as the team’s experience
in using the techniques. Suppose we have a meeting to discuss a design for
an interface. We might have a meeting agenda like this:

◗ Blue Hat to set the scene—why are we here and what do we want to
achieve?

◗ White Hat—what facts do we have about the design that every one can
agree on?

◗ Red Hat—do we like or dislike the design—what is our gut feel about it?

◗ Yellow Hat—what are the good things about the design?

◗ Black Hat—what disadvantages can we see in the design?

◗ Green Hat—can we identify new ideas to help us overcome the black
hat points?

◗ Red Hat—how do we feel now about this design?

◗ Blue Hat to close the meeting—what are the next steps?

The advantages that de Bono identifies [5] are:

Powerful, focused working which is

◗ Time saving because the meeting is not run as a series of confronta-
tional arguments, thus

◗ Removing of ego by removing confrontation allowing the meeting to deal
with

◗ One thing at a time.

252 Appendix A

Table A.2 Six Hats at a Meeting

Hat Color
When we ask everyone to wear this color hat, it means the meeting will
focus on

White Providing facts—what information do we have? Do we know it is fact,
or is it opinion?

Red Adding to the White Hat thinking by expressing our feeling about the
situation we are discussing and working from intuition, hunches,
opinion—what do we feel? What is our “gut reaction”? Can we
identify sensitivities?

Black Identifying what could go wrong—should we be cautious about this?
What risks are there? What have we overlooked? What if?

Yellow Looking for the positive things—what benefits are there? What new proposals
do we have? How can we make this happen? What if? Leading to …

Green Creating new ideas—supposing we tried…? We could do it this way instead!

Blue Thinking about the process of the meeting itself—was that what we meet to
cover? Which hat would be useful now? Have we spent long enough in
Black Hat?

All the ideas from all the people at the meeting at treated as parallel
rather than confrontational—once a complete picture has been arrived at
using the Six Hats then it is easier for people to agree a solution or make a
decision. We can use the hats to change the focus of the meeting: “It looks
like with the Yellow Hat thinking we have identified some real advantages
to the approach we’re discussing. Let’s just try some Black Hat think-
ing—what are the disadvantages?”

You can find more information about de Bono’s work on thinking,
including the Six Thinking Hats, on his Web site [7].

In this section the Internet/Web search words are: de Bono, Six Hats,
Meetings, and team work.

A.2 Communication styles
In order to improve communication with others, we need to understand
their points of view and communication styles. We need to empathize with
others. I do not intend to pigeonhole people by discussing these indicators
of communication styles, but I think it is useful to consider that our own
preferences are not “right”—they are just preferences. My observation
of people is that their preferences will change with mood, context, and
group mix.

A.2.1 Myers-Briggs Type Indicators

The work of Myers and Briggs, described, for example, in [8–11], suggested
that different people have different personalities and communication styles.
To put it at its simplest, people who wave their arms around and talk a lot
can annoy people who like to be quiet and think, and vice versa. Myers and
Briggs built the Myers-Briggs Type Indicator (MBTI), which identifies four con-
trasting type pairs:

◗ E and I: Extroversion (e.g., prefers social interaction) versus Introver-
sion (e.g., quiet and private)

◗ S and N: Sensing (e.g., experience and practicality) versus iNtuition
(e.g., prefers novelty and aspiration)

◗ T and F: Thinking (e.g., prefers analytic or critical approach) versus
Feeling (e.g., prefers sympathizing and appreciative approach)

◗ J and P: Judgment (e.g., prefers firmness and control) versus Percep-
tion (e.g., prefers flexibility and spontaneity).

There are other factors which make up the pairs, as you see if you look at
[8–11]. These four pairings give rise to 16 “types” (e.g., INTJ is Introvert-
iNtuitive-Thinking-Judging), as summarized in Table A.3.

We discussed briefly in Chapter 5, how these communication prefer-
ences might affect the communication between builders and other groups.
Conflicts arise between any two people, regardless of group. You can see

A.2 Communication styles 253

that if two people have preferences at different ends of the table, there is
real potential for them annoying each other.

Research [10] has shown that more IT people tend to be INTJ than in the
general population, where a larger proportion tend to be ESTJ or ESFJ:

INTJs represent just 2% of the population, yet form about 10% of computer

staff. The other main types in computing are ENTJ, ISTJ, and ESTJ. (The

latter two feature highly in many jobs, as they represent a large part of the

male population). ESTJ is a likely culture of the business units you are

supporting. [10]

The communication preferences of these groups may be radically
different.

If you are going to look at MBTI, beware of stereotyping! It is worth not-
ing that just because someone is in a particular job, it does not mean they
are a particular type, and just because someone appears to be a particular
type does not mean they will be a success in an apparently related job.
Remember, if 10% of computer staff are INTJ, then 90% are not INTJ. Simi-
larly, being a woman does not mean you cannot be an ESTJ.

As with all of these types of test, make sure it is administered by some-
one who is suitably trained and can interpret the results properly.

In this section the Internet/Web search words are: Myers-Briggs Type
Indicator and MBTI. Also try searches on particular types such as INTJ and
ESFJ, since there are Web sites and discussion groups for some of the types.

A.2.2 Honey and Mumford Learning Styles

When we want to impart new information, we design user guides, help
messages, wizards, training sessions, and presentations to help us put our
message across. We need to think about the communication styles of our
audience, and as part of that we need to understand that different people learn
in different ways and there is not one right way to teach or to learn. Honey and
Mumford’s work identified people’s preferred learning styles [12, 13]. There
are four styles identified by Honey and Mumford, and you will find the
learning styles concepts adopted by education and training organizations,
for example, [14]. The learning styles identified are:

◗ Reflectors like to collect data and think about it, reflect, and observe,
but are not so happy working spontaneously without time to prepare.

254 Appendix A

Table A.3 Myers-Briggs Type Indicators: The 16 Types

ESTJ ESTP ESFJ ESFP

ENTJ ENTP ENFJ ENFP

ISTJ ISTP ISFJ ISFP

INTJ INTP INFJ INFP

◗ Activists like to do things, work in teams, and try things out, but they
learn less from teaching by lectures or reading on their own.

◗ Theorists like new ideas and enjoy adapting and integrating observa-
tions into complex and logically sound theories, but they do not enjoy
situations that emphasize emotion and feelings, or unstructured activi-
ties with poor briefing.

◗ Pragmatists like training that is related to their immediate job or prob-
lem, where they have a model to follow, but they do not like training
with no apparent payback to the learning, or if they see the event or
learning is “all theory.”

This means that when we need to get new ideas across to people, we
need to think about two things:

◗ Who needs to know about what and can we identify their preferred
learning style? For example, not everyone will learn from a slide
presentation.

◗ Who would be good at delivering the information in that style? For
example, not everyone is comfortable with teaching a role play/group
work session.

If we are implementing a large, new system affecting many people we
may need to offer several different ways for people to learn about the sys-
tem itself, when and how it will be implemented, and how to get help and
further information. We may even want to consider how we organize QA
and QC measurement activities using these ideas; activists and pragmatists
may find that a review of a working prototype, perhaps with a role play
rehearsal, helps them to identify potential problems, and perhaps theorists
and reflectors may get more from an inspection process.

The importance of learning and creativity in management is being
increasingly recognized and other theories have been advanced, but as there
is evidence that the Honey and Mumford approach links with the MBTI we
discussed in Section A.2.1, and it is designed specifically to link to organiza-
tions and management [15], I have just described this one approach.

The Learning Styles Helper’s Guide and The Learning Styles Questionnaire 80
Item Version (containing the questionnaire) are copyrighted by and available
from Peter Honey Publications. The questionnaire is also available on-line at
http://www.peterhoney.com or from Peter Honey Publications Limited, 10
Linden Avenue, Maidenhead, Berks SL6 6HB. A description of the learning
styles is reproduced by permission of Peter Honey [13].

In this section the Internet/Web search words are: Honey, Mumford,
learning styles, reflector, activist, theorist, pragmatist, and training styles.

A.2.3 Kirton adaptors and innovators

Kirton’s work on adaptors and innovators looks at two groups of characteris-
tics that each of us have to a greater or lesser degree; we are a mix. Adaptor

A.2 Communication styles 255

characteristics are those of discipline, efficiency, and resolving problems
within the existing rule set and with an eye to maintaining the team’s cohe-
sion. Innovators challenge the rules, and may appear to adaptors to be
insensitive to needs of the team; they enjoy radical change and challenging
the accepted rules. This theory is not about ability; it assumes all people are
creative and instead asks “Will someone prefer to be creative within the
rules or by breaking the rules?” We all find ourselves somewhere on the
continuum between extreme adaptor and extreme innovator:

The beauty about the KAI is that it makes no negative evaluations about

people. Whatever point you find yourself on along the continuum, you will

find advantages and disadvantages associated with being there. Indeed,

what will be useful and appropriate (advantageous) in one situation might

cause problems in another. Armed with this insight, it then becomes possi-

ble for people to make informed choices about how they cope with the situa-

tions they find themselves in. [16]

The KAI characteristics are measured by a short test; information about
this is on the KAI Web site [17]. Again, it needs to be properly administered
and interpreted by a trained and certified KAI administrator.

In this section the Internet/Web search words are: KAI, Kirton, adaptor,
innovator, and creativity.

A.2.4 Motivation studies

“We have sent them on a training course, we have bought them new PCs
and we paid them a bonus—and they are still miserable! What’s wrong with
these people?” That director of a software company had motivational prob-
lems in his teams, and just could not solve them. What was wrong?

I have mentioned in a number of chapters the work on motivation done
by Warden and Nicholson [18], which is based on the Job Characteristics
Model of Motivation [19]. The job diagnostic survey provides a comprehen-
sive set of motivational measures. As a process model, it can diagnose prob-
lems with motivational dynamics caused by poor job design. Psychometric
measurement techniques do not provide this capability.

A number of other studies into what motivates people have been carried
out; see [11, 20] for some examples. One commonly used is based on work
by Maslow in the mid-twentieth century [21], which developed into the
Maslow Hierarchy of Needs, described in many books and Web sites, for exam-
ple, references [22–24]. Maslow’s original levels of need may be described as:

◗ Physiological—food, water, sleep;

◗ Safety—freedom from danger;

◗ Love—need to belong to a group, friendship;

◗ Esteem—reputation beyond family and friends;

◗ Self-actualization—self-fulfillment.

256 Appendix A

The model has developed over the years, by different authors, so if you
look at this, particularly by Internet searches, you may see the hierarchy
extended or detailed added to explicitly mention cognitive, aesthetic, and
spiritual needs as well as the need to help others.

Until someone’s basic needs (for example, food and shelter) are met, this
may be all they are interested in. Once they have enough at one level, then
other motivators become more important —however much more food you
give them, they will not be any happier. The cutoff point for moving from
one point in the hierarchy to another is different for different people, so for
some people “enough” at one level is different from another person’s need
at that level.

When we look at these two studies together with the personality traits
we have examined above, we can see that there may be many reasons why
our director’s teams might still be unhappy and fed up. Interestingly, this
originated as a term in falconry—when you overfeed a hawk, it sulks until it
has finished digesting; it has had enough food and is described as a fed-up fal-
con. The many people in the organization may have

◗ Conflicting communication and learning styles—they may not under-
stand each other and the director;

◗ Different needs from their jobs—some will want to follow a process,
some will want to “fly free”;

◗ Jobs that are too stressful, too boring, or just badly designed—some
people will want less stressful job, some will work best under pressure;

◗ All the fulfillment they need at a particular level, so reward and recog-
nition at that level may not work—they may prefer a sabbatical to a pay
raise, for example;

◗ Become irritated by what they see as “gestures” by the director, when
they see other causes for their problems.

Motivation is not simple. People are not simple. Each person is an
individual, with likes, dislikes, preferences, moods, and a life outside the
team.

In this section the Internet/Web search words are: motivation, Maslow,
hierarchy of needs, Motivation Improvement Programme, Mayo, Haw-
thorne, McGregor on Theory X and Theory Y, Likert on Exploitative,
Benevolent, Consultative and Participative management of organizations,
McClelland on achievement motivation, Argyris on bureaucratic, pyrami-
dal versus humanistic, and democratic organizations.

A.2.5 Transactional analysis

We discussed transactional analysis in Chapter 4, based on Wagner’s work
[25], which itself refers to earlier work by Berne, for example, [26].
Wagner’s book is useful to us here because it concentrates on work relation-
ships rather than personal relationships or family situations.

A.2 Communication styles 257

The idea of transactional analysis as described by Wagner is that we are
all six people rather than just one and that some of these six “inner people”
are effective in dealing with others, but some of the “inner people” are not
so useful. The six inner people or ego states Wagner identifies are:

◗ The natural child—an effective ego state that acts spontaneously,
expresses feelings, and has need for recognition, structure and
stimulation.

◗ The adult—an effective ego state that is logical and reasonable; it deals in
facts rather than feelings.

◗ The nurturing parent—an effective ego state that is firm with others, but
also understanding, sensitive, and caring.

◗ The critical parent—an ineffective ego state that uses body language, ges-
ture and tone of voice to “tell others off,” perhaps by sarcasm, pointing
the finger, or a raised voice.

◗ The rebellious child—an ineffective ego state that gets angry and stays
angry, is very negative, does not listen, may deliberately forget things,
or procrastinate.

◗ The compliant child—an ineffective ego state that blames itself, uses a
soft voice and whines, and is very careful and self-protective.

As we saw in Chapter 4, communication between the effective ego states
is generally useful. We can create and play if we are both in “natural child.”
We can exchange facts clearly in adult to adult communication, and our
nurturing parent ego states mean we can empathize and help each other. If
we cross into the ineffective ego states, we will argue, whine, and blame
without communicating or changing anything; in fact, we may make things
worse. We need a way to move out of the ineffective states into effective
states, and the de Bono Six Hats [5–7] that we discussed in this section
allow us to do that, by providing a formal behavior pattern that acknowl-
edges feelings as well as facts.

As Wagner discusses [25], the use of TA is not just in personal relation-
ships in the family. Looking at our own behavior whether as a manager or
in reacting to our managers and colleagues is useful, as supervising, delegat-
ing, making decisions, resolving conflict, and hiring or firing people may
allcause unexpected behavior, and this may be caused by ineffective ego
states.

A related study area is emotional intelligence. You will find
checklists on these “soft skill” areas on the Chartered Management Insti-
tute Web site.

In this section the Internet/Web search words are: transactional analysis,
“games people play,” scripts, ego states, Berne, Wagner, and emotional
intelligence.

258 Appendix A

A.3 Techniques to identify and classify problems and
assess ideas for solutions

A.3.1 Cause–effect, root cause, and solution analysis

Cause–effect analysis helps us look for the root causes of problems, using
cause and effect diagrams, sometimes called fishbone diagrams because of their
shape, or Ishikawa diagrams after the person who first developed them, but
now widely used in identifying quality and other problems [27, 28]. The
diagram is simply a means of helping us think about and classify the causes
of problems and their underlying root causes.

The first step is to draw a fishbone diagram with the effect (which is the
problem or symptom noticed) on the head of the fish. Then, label the ribs of
the fishbone to show typical areas of root cause. You can choose your labels.
Typical ones are the 4 Ms—Manpower, Machines, Materials, Methods [27],
or the “PEMPEM” labels, which gives People, Environment, Methods, Plant,
Equipment, Materials [28], or you could make up your own labels. Figure
A.1 shows a fishbone at the start of a meeting, as it was drawn up on the
whiteboard. There had been a series of complaints about the help-desk pro-
vision. These have been divided into three groups, and each group placed on
a separate arrow. A fourth arrow has been added for “other complaints” in
case we have forgotten anything.

If you were in the team discussing this, you would now use discussion
and brainstorming to generate causes for the effect. Try to group the ideas
on the fishbone to show how they relate to each other. The next step is to
allow the ideas to incubate. Robson [28] suggests putting the diagram on a
public board so other people can see, comment, and add to it, and so that
the people can suggest other causes. We discussed this example in Chapter
12, so you will see the completed fishbone in Figure 12.3.

Having identified some root causes, we may want to “reverse” the fish-
bone, to go from a problem to a solution [27, 28]. To do this, we draw the
diagram in reverse, write our proposed solution in the box, and then under
our fishbone headings discuss whether the proposed solution will work:

A.3 Techniques to identify and classify problems and assess ideas for solutions 259

Fishbone diagram before start of discussion about customer complaints

Customer unhappy
with help-desk
provision

Other customer
complaints about help desk

Customer complaints
about help-desk
technology

Customer complaints
about help-desk processes

Customer complaints
about help-desk staff

Figure A.1 Ishikawa fishbone diagram—empty at start of discussion.

◗ What actions do we require under the 4 Ms or PEMPEM or our own
titles to make sure the solution works? (Note: whichever titles you
use, make sure you have a place to look at time, money and staffing
which will all constrain the solution.)

◗ What advantages or positive effects will the solution have?

◗ What disadvantages or negatives can we identify?

TQMI [27] suggest using different color pens for the advantages and dis-
advantages, so you could match pen colors to the de Bono Six Hat’s colors,
using yellow for optimistic and black for pessimistic views (see Section
A.1.2). Figure A.2 shows an example solution analysis fishbone. We can see
here that the initial thought is that a new IT system for the help-desk staff
might solve the problems. However, the constraints of time, budget, and
staffing, as well as the observation that a new system will only solve some of
the problem, leads to rejection of a new IT system. Instead, the solution
analysis will continue by looking at possible staff training and process
changes to improve the service to customers.

260 Appendix A

Solution analysis Fishbone diagram - customer complaints
Should we implement new help-desk software?

Money, time, staff,
regulatory constraints

The changes will take more
than 6 months to implement

We don’t have
staff available to
make the changes
this year

Budget for system
is limited to $10,000

Customer complaints
about help-desk
technology

Phone queue waits will
not be addressed by
technology: need more
staff to do this?Investigate customer

browsers, support
wider range

Allow FAQs page
means to update
FAQs daily

Implement new
help-desk software?

New software not enough, does
not address staff attitude

Allow customers to access
system by their name
rather than call number,
allow customers to
browse on-line for
their problem

Customer unhappy
with help-desk provision

Security issues?

Expensive solution

Customer complaints
about help-desk processesCustomer complaints

about help-desk staff

Conclusion from discussion so far:
• A new help-desk system will not solve the problems within budget or a reasonable timescale.
• Consider another solution, for example, look at staff training and processes,with addition of a FAQs page

to the intranet this year.
• Log the other suggestions for consideration when help-desk software is upgraded in 3 years.

Figure A.2 Example of a solution analysis fishbone.

In these methods, brainstorming is a useful technique for gathering
ideas. When using brainstorming, it is worth marking the start of the brain-
storm session by agreeing or reminding ourselves of some rules [27, 28].
The precise rules may vary between organizations, so it is worth clarifying
them. Typical rules include:

◗ All ideas are allowed.

◗ All ideas are documented.

◗ There is no discussion or evaluation during ideas gathering.

◗ Be relaxed.

◗ Do not criticize other’s ideas.

In this section the Internet/Web search words are: Ishikawa fishbone,
root cause analysis, solution analysis, and brainstorm.

A.3.2 Prototyping and ideas modeling

Prototyping is not an SDLC. It is a method of exploring a problem and
potential solutions in order that the right solution can be selected. Prototyp-
ing is not just used in software; it is used in many fields to test design ideas.
For example, if you make clothes, you may choose to use ready-made pat-
terns as bought, or to alter ready-made patterns to fit your particular shape.
Alternatively, you might build clothes against a general design but meas-
ured for a specific person (for example, a custom-made suit), or you could
design your own clothes with unique patterns.

In all cases, you can use a prototype, called a muslin, toile, or form, which
you use to try out the pattern. Using a cheap material, such as muslin, you
build the garment from the pattern, in order to see if it turns out as you
expect. Does the garment fit? Does it fall well? Does it flatter you? We do
this to check our ideas and ability to understand what we need to do with-
out cutting into the expensive cloth that we will use for the final garment.

Particularly if we are designing clothes rather than using an off-the-shelf
pattern, a prototype is essential to try out new ideas.

Keen sewers will use a muslin to check out a new pattern; they are using
the prototype to try out their understanding of and adjustments to “off-the-
shelf” solutions. You only use the prototype to try out ideas—you will not be wear-
ing it in reality.

If you want to see a good example of prototyping using muslin, look at a
sewing publication, for example, Threads magazine [29], where user testing
of sewing pattern software is done by making a set of prototype patterns for
different sized and shaped people. The authors built prototypes to explore
commercial off-the-shelf pattern fitting programs and decide which one to
recommend.

In software, we can use prototypes in the same way. We can try out
ideas if we are not sure what we want. In that situation, we do not want to
build the real software. Instead we want to build a model of it, in order that
we can explore the problem and potential solutions.

A.3 Techniques to identify and classify problems and assess ideas for solutions 261

There are two types of prototyping in software, “lo-fi” and “hi-fi” [30,
31]. In hi-fi (high-fidelity) prototyping, we use software to build screens like
those the customer will see. This can lead to people believing that the proto-
type is an almost complete system. “If the screens are ready,” managers and
customers may argue, “what else can be going on in the system that is so
complicated? Why can’t we have the system now?” But, as the builders,
measurers, and supporters will tell you, the guts of the system are where the
complexity lies. This is a big problem for software development and support.
Think of our muslin; we were not expecting to wear it, so it is tacked
together relatively roughly and not in a material we were expecting to wear
or clean or alter; the muslin is not worn but thrown away. The same thing
will be true of the software; are you really expecting to use it once and
throw it away? I thought not; you will want to maintain and change it, so
the rough and ready prototype, however polished on the surface, cannot be
the system we deliver. An exception to this is the idea of evolutionary pro-
totyping [31], which means that even the early prototypes must be built to
be supportable and maintainable.

For this reason, many people prefer lo-fi (low-fidelity) prototyping.
Here we do not build a prototype in software. We might use paper and pen,
or sticky paper, or a presentation, or a whiteboard. We can still discuss the
prototype and review it, but there is no danger of believing it is the
software.

As we saw in Chapter 9, in Figure 9.3, whether we use the hi-fi or lo-fi
approach or both, prototyping involves generating and discussing ideas and
building a succession of models. As we do this, we gather good ideas and
discard bad ideas. Eventually, we can decide what we want to do: develop
some software, have a manual solution, or do nothing.

There are a number of related modeling and picturing techniques that
can be worth exploring with lo-fi prototyping. These include Rich Picturing
[32, 33] and Mind Mapping [34, 35]; both are ways of capturing ideas in an
easily communicated and condensed way. In Graham Freeburn’s workshop
on the final day of EuroSTAR 2002 [35], for example, he summarized
“What we learned at the conference” (3 days), with the participating audi-
ence contributing to one mind map on one slide, in 45 minutes. Sketch-
ing a picture of a problem, solution, or idea can clarify it. Using stories,
metaphors, and analogy also helps in understanding problems, and this is
why they are used in newer IT analysis methods such as UML [36], and
there is no reason why they should not also be useful in more traditional
approaches such as SSADM.

In this section the Internet/Web search words are: prototyping, rich pic-
turing, mind mapping, use cases, and Buzan.

A.3.3 Assessing whether an idea is worth pursuing

Not all the ideas we generate are worth pursuing. We need to decide which
are possible and cost-effective. Pareto analysis, risk analysis, and cost–bene-
fit analysis are some of the techniques that help us to decide.

262 Appendix A

Pareto analysis [27, 28] is based on the “Pareto principle,” which sug-
gests that 80% of the problems are the result of 20% of the causes. This
means that if we can identify solutions to those 20% of the problems, we
should get a better, more effective payback from our chosen solution. To
decide which problems to solve, identify which are the most frequent. To do
this, gather data on the frequency of problems and the underlying causes.
The most frequent problems and causes are candidates for resolving, so the
ideas that address those problems may be worth pursuing.

In risk analysis, we use techniques such as brainstorming to list all the
possible risks people can identify. Risks are sorted into groups, by topic area.
We may find we have identified some issues (things that are problems now)
and constraints (known limits to any solution we suggest) as well as risks.
Risks have not yet happened, but may happen (turn into an issue or prob-
lem) in the future. When we assess a risk we need to know its likelihood of
turning into a problem, as well as the impact if it does. There is therefore an
element of forecasting in risk assessment. When we are assessing possible
solutions to problems for their risk, we are asking whether the risk of pursu-
ing a solution is greater or less than the risk of an alternative solution or
doing nothing:

◗ If we do nothing, what could go wrong?

◗ If we adopt this solution and it goes as we expect what chain-reaction
problems might we have?

◗ If we adopt this solution and it goes wrong, what problems arise from
wrong delivery or nondelivery?

In each case we need to:

◗ List potential problems (risks).

◗ Identify the likelihood of each risk becoming a problem and use some
scoring system.

◗ Identify the impact of each risk if it does become a problem and use
some scoring system.

◗ Multiply impact by likelihood to get a risk score.

◗ Rank the risks.

◗ Identify what you can do to reduce risk or remove it.

◗ Decide whether the probable consequences of adopting or discarding
the solution.

You will see variations on this theme in different people’s work. For
example, Hans Schaefer’s work on risk assessment for software testing looks
at the impact of failure as criticality of system, frequency of usage, and visi-
bility of the problem [37]; whereas in TQMI’s Failure Prevention Analysis
[27], probability and consequence are used to calculate an overall rating for
each possible failure’s root cause, and these are used to rank to possible
failures.

A.3 Techniques to identify and classify problems and assess ideas for solutions 263

Cost–benefit analysis [28] is done by calculating the predicted benefits of
the proposed change and setting this against the predicted cost. The steps in
making a cost–benefit analysis, at its simplest are:

◗ Identify the financial costs of the solution—for example, direct costs
of the solution in equipment, resources, and loss of time on revenue
earning activities if staff are diverted to the project.

◗ Identify the nonfinancial costs of the solution. These may translate into
financial costs but you may find it easier to start by listing them and
then attempt to translate them. Examples might be adverse publicity,
staff dissatisfaction with the change, and customer complaints.

◗ Identify the financial benefits of the solution—money saved by effi-
ciency increases, additional sales, and customers.

◗ Identify the nonfinancial benefits of the solution. Again, these may
translate into financial benefits but you may find it easier to list them
first and put a price on them afterward. Examples might be improve-
ments to staff morale, greater effectiveness in serving the customer, and
improved image of the organization.

◗ Use this information to workout the “payback” over a number of
years (see Table A.4). We can see that with the accumulated costs of
the original implementation and support year by year, we will not get
a payback until year 6.

When you look at the cost–benefit of an idea, you will need to look at
how the benefits of the idea match to the organization’s goals. This will give
you an insight into whether the idea helps the organization’s goals—a bene-
fit—or whether it detracts from the organization’s goals—a cost. You may
well find that financial and nonfinancial targets have been set with the
goals, and your cost–benefit discussion needs to reflect these targets. For
example, if your organization uses a Balanced Scorecard, as we saw in
Chapter 4, financial goals will be balanced against customer, process, and
innovation costs and benefits. This information will help put together a
cost–benefit discussion in terms familiar to senior management showing
how their goals will be affected by your idea.

You may also wish to look at earned value management or budgeted cost of
work performed measures [38], which allow you not only to track cost and
budget, but also what the cost so far was supposed to achieve compared

264 Appendix A

Table A.4 Cost, Benefit, and Payback (in Dollars)

Year Cost This Year Benefit This Year Accumulated Cost Accumulated Benefit Benefit Minus Cost

1 100,000 0 100,000 0 −100,000

2 2,000 25,000 102,000 25,000 −77,000

3 2,000 25,000 104,000 50,000 −54,000

4 2,000 25,000 106,000 75,000 −31,000

5 2,000 25,000 108,000 100,000 −8,000

6 2,000 25,000 110,000 125,000 15,000

with what actually has been done. To put it simply, we may have saved
budget, but we have not delivered. In Table A.5, we see that although we
are apparently under budget, we are behind in delivery, and therefore in
earned value. We have, in fact, overspent compared with what we have
delivered.

In this section the Internet/Web search words are: Pareto, 80–20 rule,
failure prevention analysis, risk, impact, likelihood, probability, conse-
quence, exposure, risk tree, risk-based testing, Schaefer, cost, benefit, pay-
back period, financial planning, cash flow forecasting, profit and loss
forecasting, business financial planning, balanced business scorecard, bal-
anced scorecard, Kaplan and Norton scorecard, earned value management
(EVM), and budgeted cost of work performed (BCWP).

A.4 Understanding aims and objectives
We saw in Chapter 9 (Figure 9.4) that we need to set aims, objectives, tar-
gets, and indicators. One useful technique is the Weaver triangle. This was
originally developed by Jayne Weaver for use with nonprofit organizations,
and, with her help, I then adapted it for use in IT and business projects [39]
On a one-page diagram, the group identifies and agrees on the aim of the
project (why it is being done) and associated indicators of success, then the
objectives of the project (what is to be done) and associated targets. This
helps identify where stakeholders have different aims for the project. The
form is used to encourage teams to focus in one an overall aim or goal, and
to show pictorially how the aims and objectives fit together. Some ground
rules are:

◗ The aim should answer the questions “why are we doing this?” and
“what difference will this make?”

◗ The specific aims should break down the overall aim in some detailed
aims, but avoid having more than three to five of these, or you will get
confused.

◗ Each specific aim also answers a “why?” and “what difference?”
question.

◗ In order for the aims to be achieved, something needs to be
done—these are the objectives—so each specific aim must be associated
with at least one objective.

◗ The objectives each answer the question “What do we need to do in
order to meet the aim?”

A.4 Understanding aims and objectives 265

Table A.5 Earned Value Calculations

Budgeted Cost to Date Planned Delivery to Date Actual Costs to Date Actual Delivery to Date Earned Value

$1,000 Five documents
(earned value $200
per document)

$800 (under
budget)

Three documents
(behind schedule)

$600 (this is $400
behind the expected
earned value)

◗ There will be several objectives, which may be projects within a pro-
gram or parts of a project, depending on their size.

◗ Each objective must be focused on achieving at least one of the aims,
otherwise there is no in point doing it.

◗ Aims are measured by indicators that measure whether we are making
the difference we intended.

◗ Objectives are measured by delivery targets such as savings, number of
people affected, delivery dates, and budget.

◗ Indicator and target measures should be linked to measures used gener-
ally in the organization; for example, you could show how these meas-
ures link to the organization’s balanced scorecard.

◗ Consensus is required between the stakeholders; this is not done by
the managers and told to everyone else; it requires contributions and
discussion from all the groups.

In this section the Internet/Web search words are: target, indicator, Gilb
and Planguage, Seddon, and systems thinking, which will show alternative
views about target setting and methods. There is none for Weaver triangle,
as this is newly published.

A.5 Review techniques
There are five types of review [40]: management review, technical review,
inspection, walkthrough, and audit, all of which are relevant during
start-up, throughout the software-development life cycle (SDLC), and dur-
ing delivery, as well as during the software-maintenance life cycles (SMLC)
in the postdelivery period. Specialist testers regard them as a form of testing,
because they are used to find and prevent defects in products and processes,
but they can be used by any of the groups. Further, they may be used as an
opportunity for communication between the groups. The review types have
different purposes:

◗ The management review is carried out to check progress against
plans.

◗ The technical or peer review has the purpose of identifying confor-
mance to specification and finding defects in a document.

◗ An inspection is a formal review with the purpose of identifying and
preventing defects, based on a sample from a document.

◗ A walkthrough is a review with the purpose of increasing understand-
ing of a document.

◗ Audits are used to check process conformance rather than products.

We saw in Chapter 3 how useful taking part in reviews can be for the
customer, and that the review process need not be complicated. Gilb and

266 Appendix A

Graham provide a full description of the Inspection process, with example
forms [41], and the standard [40] provides an overview of each of the
review processes. To get the best from reviews, it is best for people to have
some training to understand how to review, and to have a process to follow.
For all the reviews, it is good to:

◗ Set a policy for reviews. Decide what must be reviewed and which
type of review is needed. Also decide what should be reviewed but
could be left in an emergency, what could be reviewed if there is time,
and what will not be reviewed, perhaps based on the risks associated
with errors in the products or processes under review.

◗ Plan to have reviews. Allow time and resource for the activities as we
saw in Chapter 4, and use a project review and audit plan structure like
the one in Appendix B.

◗ Plan each particular review—its goals, who should be involved, and
what specifically you want them to check, write, or improve the prepa-
ration checklists. An example of an audit checklist is in Appendix B.

◗ Communicate with everyone who will take part to explain what will
happen and why the review will be done.

◗ Train reviewers so they know how to prepare—it is not enough to just
read a document. Try to use it, or to match it against a related document
such as standards, policy, or another product document.

◗ Ensure that each reviewer has prepared properly—do not hold the
review unless everyone has prepared. A review where a reviewer is ill-
prepared is just a waste of time and money because you will not find so
many defects and you will not gain the same understanding.

◗ Make sure the review is of the product or process not the person—it needs
to be objective and helpful not accusing. Some of the communication
techniques in this appendix may help.

◗ Follow up the review. Improve this product and this iteration of the
process, but also put in place improvements for the future to prevent
future problems.

◗ Measure the reviews cost–benefit (time/money spent and faults
removed/failures prevented) ratio and suggest improvements to the
efficiency and effectiveness of the review process itself.

In this section the Internet/Web search words are: software review, tech-
nical review, inspection, and Fagan inspection statistical process control.

A.6 Improving graphics in reporting
I thoroughly recommend Edward Tufte’s books [42–44]. Not only are they
packed with useful information, but they are also a delight to handle and to
read, being their own example of good information design. In Chapter 4, I

A.6 Improving graphics in reporting 267

showed an example of a distorted graphic (Figure 4.7) and the equations
proposed by Tufte that allow us to measure the distortion of data in a
graphic [42].

The lie factor, which we saw shown in Chapter 4, Figure 4.7, gives a
measure of the exaggeration of data in a graphic. The data ink ratio, shown in
Figure A.3, is a measure of how much of the graphic provides information
and how much is decorative. The data density, Figure A.4, compares the
number of data items with the size of the graphic. In summary, the equa-
tions are as shown in Figure A.5.

In this section the Internet/Web search words are: Tufte, information
design, and graphics press.

268 Appendix A

0
5

10 10

0

8 8
6 6

5

15

20

25

30

35

Data density

Data density is 4/9 = 0.4
The graphic is 9 square cm

Outstanding

Fixed
The data matrix has only 4 entries:

Data density is 4/39 = 0.1
The graphic is 39 square cm

Outstanding

Fixed
The data matrix has only 4 entries:

Outstanding OutstandingFixed FixedTotal

Figure A.3 Data ink ratio in graphics. (After: [42].)

56.3

56.3

No need to have all six ways!

6 ways of telling the value from this bar

Data ink ratio - don’t repeat information...

Figure A.4 Data density in graphics. (After: [42].)

A.7 Useful sources and groups
This section is just a starting list of useful further information and groups.
There are many quality techniques and standards that I have not covered in
this book. New ideas for improving IT provision are always coming to light.
The list in Table A.6 and the following Internet/Web search words are just a
starting point for your future research.

A.7 Useful sources and groups 269

Table A.6 Some Sources for QA and QC Standards, Frameworks, and Best Practice

The National Strategy to Secure Cyberspace http://www.whitehouse.gov/pcipb/
IT Governance Institute http://www.itgi.org
Information Systems Audit and Control Association http://www.isaca.org
The Institute of Internal Auditors http://www.theiia.org/
Institute of Quality Assurance http://www.iqa.org/
American Society for Quality http://www.asq.org
Testing Standards Working Party http://www.testingstandards.co.uk
Sticky Minds http://www.stickyminds.com
BSI http://www.bsi.org.uk
ISO http://www.iso.ch
IEEE http://www.ieee.org
TickIT http://www.tickit.org/international.htm
National Institute Standards http://hissa.ncsl.nist.gov
Office of Government Commerce http://www.ogc.gov.uk
Successful IT: Modernizing Government in Action http://www.ogc.gov.uk/index.asp?docid=2632
Six Sigma and robust design http://www.isixsigma.com
Juran articles http://www.juran.com
Tufte articles http://www.edwardtufte.com
Deming articles http://www.deming.org/
Acronyms expanded http://www.acronymfinder.com/
Technical terms explained http://whatis.com
EFQM—European Foundation for Quality Management http://www.efqm.org
BQF—British Quality Foundation http://www.quality-foundation.co.uk
SEI—Software Engineering Institute http://www.sei.cmu.edu
ESI—European Software Institute http://www.esi.es/
FORTEST—formal methods and testing http://www.fortest.org.uk/
BCS Industry Structure Model http://www.bcs.org.uk
BCS Special Interest Groups http://www.bcs.org.uk
BSC Qualifications http://www.bcs.org.uk
International Software Testing Qualification Board http://www.istqb.org
Chartered Management Institute http://www.managers.org.uk
For an alternative view of quality models… http://www.lean-service.com
Balanced Score Card Group http://www.bscol.com
Software Quality Professional Journal
Better Software (previously STQE) Journal
Project Manager Today Journal

Data density =

Data ink ratio =

The Lie Factor =

area of data graphic

number of entries in data matrix

total ink used to print the graphic

data ink

size of effect in data

size of effect shown in graphic

Figure A.5 Tufte’s data graphics equations (From: [42]. © 1983 Graphics Press.
Reprinted with permission.)

In this section the Internet/Web search words are: quality, excellence,
quality improvement, governance, audit, standards, software engineering,
Crosby, Juran, Deming, CMM, TMM, process improvement, patterns,
exploratory testing, agile methods, agile manifesto, key process, software
testing, verification, validation, continuous improvement, Just In Time, Six
Sigma, Taguchi, and Sarbanes-Oxley Act.

References

[1] Busco, C., et al., “When Crisis Arises and the Need for Change Confronts
Individuals: Trust for Accounting and Accounting for Trust,” http://
www.cimaglobal.com/downloads/research_enroac_busco.pdf, November 2003.

[2] Belbin, R. M., Management Teams—Why They Succeed or Fail, London, England:
Butterworth Heinemann, 1981.

[3] Belbin, R. M., Team Roles at Work, London, England: Butterworth Heinemann,
1995.

[4] Belbin Associates, “Belbin Team Roles,” http://www.belbin.com/belbin-team-
roles.htm, October 2003.

[5] de Bono, E., Six Thinking Hats, New York: Penguin Books, 1999.

[6] Pas, J., “Emotional Intelligence as the Key to Software Quality,” EuroSTAR
Conference, Stockholm, Sweden, 2001.

[7] de Bono, E., “Edward de Bono’s Web,” http://www.edwdebono.com/, October
2003.

[8] Kroeger, O., J. M. Thuesen, and H. Rutledge, Type Talk at Work: How the 16
Personality Types Determine Your Success on the Job, New York: Bantam Doubleday
Dell, 2002.

[9] Team Technology Web site, “Working Out Your Myers Briggs Type,” http://
www.teamtechnology.co.uk/tt/t-articl/mb-simpl.htm, October 2003.

[10] Team Technology Web site,“The Mother of Strategic Systems Issues: Personality,”
http://www.teamtechnology.co.uk/tt/t-articl/news1.htm, October 2003.

[11] Mullins, L. J., Management and Organisational Behaviour, 5th ed., New York:
Financial Times/Pitman, 1999, p. 313.

[12] Honey, P., and A. Mumford, The Learning Styles Helper’s Guide, Maidenhead,
England: Peter Honey Publications, 2002, http://www.peterhoney.com.
PeterHoney.com, 10 Linden Avenue, Maidenhead, Berks, SL6 6HB. Tel.:
01628633946. Fax: 01628633262. E-mail: info@peterhoney.com.

[13] Honey, P., “Learning Styles,” http://www.peterhoney.co.uk/product/
learningstyles, October 2003. PeterHoney.com, 10 Linden Avenue,
Maidenhead, Berks, SL6 6HB. Tel.: 01628633946. Fax: 01628633262. E-mail:
info@peterhoney.com.

[14] Campaign for Learning, http://www.campaign-for-learning.org.uk/
aboutyourlearning/whatlearning.htm, October 2003.

[15] Hicks, L., “The Nature of Learning,” in L. J. Mullins, (ed.), Management and
Organisational Behaviour, 5th ed., New York: Financial Times/Pitman, 1999,
pp. 344–375.

270 Appendix A

[16] McHale, J., “Innovators Rule OK—Or Do They?” Training & Development,
October 1986, http://www.kaicentre.com/.

[17] Kirton, “Adaptors and Innovators Defined,” KAI Web site, http://www.
kaicentre.com/, July 2003.

[18] Warden, R., and I. Nicholson, The MIP Report—Volume 2—1996 Motivational
Survey of IT Staff, 2nd ed., Bredon, England: Software Futures Ltd., 1996.

[19] Hackman, J. R., and G. R. Oldham The Job Diagnostic Survey: An Instrument for the
Diagnosis of Jobs and the Evaluation of Job Redesign Projects, Technical Report No. 4,
New Haven, CT: Yale University, Department of Administrative Sciences, 1974.

[20] Accel-team.com, http://www.accel-team.com/human_relations, October 2003.

[21] Maslow, A., Motivation and Personality, New York: Harper and Row, 1954.

[22] Maslow, A., Motivation and Personality, New York: Harper and Row, 1970.

[23] Gywnne, R., “Maslow’s Hierarchy of Needs,” http://web.utk.edu/~gwynne/
maslow.HTM, November 2003.

[24] Accel-team.com, “Maslow’s Hierarchy of Needs,” http://www.accel-team.com/
human_relations/hrels_02_maslow.html, October 2003.

[25] Wagner, A., The Transactional Manager—How to Solve People Problems with
Transactional Analysis, Denver, CO: T.A. Communications, 1981.

[26] Berne, E., Games People Play, New York: Grove Press, 1964.

[27] TQMI, Problem Solving—Tools and Techniques, Frodsham, England: TQMI, 2001.

[28] Robson, M., Problem Solving in Groups, Aldershot, England: Gower, 1995.

[29] Neukam, J., and J. Sauer, “Pattern-Drafting Software,” Threads, May 2003, pp.
42–49.

[30] Hohmann, L., “Lo-Fi GUI Design,” Software Testing and Quality Engineering, Vol. 1,
No. 5, September 1999, pp. 24–29.

[31] Nance, R. E., and J. D. Arthur, Managing Software Quality, New York:
Springer-Verlag, 2002.

[32] “Drawing Concerns: A Structured Rich Picturing Approach,” http://business.
unisa.edu.au/cobar/documents/richpic_colin.pdf, November 2003.

[33] Rose, J., “Soft Systems Methodology as a Social Science Research Tool,” http://
www.cs.auc.dk/~jeremy/pdf%20files/SSM.pdf.

[34] Buzan, T., The Mind Map Book, London, England: BBC Consumer Publishing,
2003.

[35] Freeburn, G., “Mind Mapping 101 for Testers,” EuroSTAR Conference, Edinburgh,
Scotland, 2002.

[36] Fowler, M., and K. Scott, UML Distilled, Reading, MA: Addison-Wesley, 1997.

[37] Schaefer, H., “Testing—The Bad Game and the Good Game,” BCS SIGiST
Conference, Edinburgh, Scotland, 1997.

[38] Pavyer, E., “An Introduction to Earned Value Management,” Project Manager
Today, Vol. 11, April 2003.

[39] Evans, I., “The Troubled Project—Best Practice from Theory to Reality,”
EuroSTAR Conference, Stockholm, Sweden, 2001.

A.7 Useful sources and groups 271

[40] IEEE 1028™ Standard for Software Reviews, 1997.

[41] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley,
1993.

[42] Tufte, E., The Visual Display of Quantitative Information (Equations from p. 57, the
Lie Factor; p. 93, The Data Ink Ratio; p. 162, Data Density), Cheshire, CT:
Graphics Press, 1983.

[43] Tufte, E., Visual Explanations, Cheshire, CT: Graphics Press, 1990.

[44] Tufte, E., Envisioning Information, Cheshire, CT: Graphics Press, 1997.

Selected bibliography

Crosby, P., Quality Is Free, New York: Penguin, 1980.

Garfinkel, H., Studies in Ethnomethodology, Englewood Cliffs, NJ: Prentice-Hall,
1967.

Handy, C., Understanding Organizations, New York: Penguin, 1993.

Hofstede, G. H., The Game of Budget Control, London, England: Tavistock, 1968.

Humphreys, W., “Pathways to Process Maturity: The Personal Software Process
and Team Software Process,” http://interactive.sei.cmu.edu/Features/1999/
June/Background/Background.jun99.htm, August 2003.

Northcott, D., Capital Investment Decision Making, San Diego, CA: Academic Press,
1992.

Ould, M., Managing Software Quality and Business Risk, New York: Wiley, 1999.

Perry, W. E. and R. W. Rice, Surviving the Top Ten Challenges of Software Testing: A
People-Oriented Approach, New York: Dorset House, 1997.

Winant, B., “Visual Requirements,” STQE, June 2003, pp. 34–42.

272 Appendix A

Appendix B

Quality Planning Documents and Templates

B.1 The document family
As we saw in Chapter 4 (see Figure 4.1), the quality planning required for a
particular project will be based on the organization’s standards, including its
policies and chosen methods of work. Within an individual project, once the
aims, objectives, risks, and constraints for the project are understood, we
can develop a family of documents which describe how for this project we will
carry out our work. We have seen that quality planning for the SDLC
should involve all the groups. This activity should be part of project plan-
ning. There are a number of documents that might be needed; on a small
project I would have these as paragraph headings in the project plan,
whereas on a large project, you might need a series of documents, with lev-
els of detail from a strategy through detailed plans. Table B.1 lists the levels
of quality planning documents.

273

Table B.1 Quality Planning Documents

This is what we
do as an organization

Policy documents organization level, brief, part of organization QMS

This is how we will
do it as an organization

Standards and processes organization level, descriptive, steps “how to”,
organization Quality Management System (QMS) for all activities, not just
QA/QC activities

This is what we will
do for this SDLC

Project QMS or quality plan

Program/project level, documents tailoring decisions based on risk and
constraints, choice and tailoring of SDLC (see Chapter 10), may include policy,
standards, and processes, where these differ from the organization level
documents, for QA, QC, management, and build activities

This is how we carry
out QA/QC activities
for this SDLC

QA: Audit and review strategy and overall plan

QC: Document review strategy and overall plan

QC: Testing strategy and overall plan

Project/program level, responsibilities, overall approach based on tailored QMS,
which groups will contribute to which QA/QC activities

This is how we will carry
out this particular QA/QC
activity

Detailed plans for each particular audit, review, document review, test level,
stage within SDLC, specific, detailed approach, detailed task plan, specific
responsibilities

In an organization with a documented Quality Management System
(QMS) there will be a documented policy for both QA and QC activities,
describing at a high level what is expected for any SDLC. Even if the organi-
zation does not have written policies, there will be unwritten, taken-for-
granted assumptions: “We always do it this way.” The policies will be backed
up by process descriptions, procedures, and standards. Again, in some
organizations these will be documented, but in others they are based on
word of mouth, individual expertise, and training. Some important ques-
tions to think about are:

◗ Have we chosen the appropriate standards/methods/tools and tech-
niques to carry out our work?

◗ Do they need adapting for this project?

◗ Are there specific expectations or rules from our customers about how
we do the work—do we need to follow a particular standard or
method?

◗ Are we doing the right QA/QC activities bearing in mind the risks and
constraints?

◗ Are the QA and QC activities sufficient to meet any external or internal
requirements?

◗ Does everyone agree that these QA and QC activities are needed?

◗ Have they been defined in a way that will allow measurement of
product and process?

In order to allow these questions to be considered, I think it is useful to
have a written QMS that contains the policies, processes, and standards, but,
importantly, has a rule that “the processes and standards can be tailored to
suit the risks and constraints for the particular project” We have seen some
examples of tailoring in Chapter 12. In Figure B.1, we can see an example
document family. Remember this is just an example; you may choose to
have fewer documents by combining some of them.

We see in the figure that the documents we developed during start-up
(Chapter 9) plus the company policies and standard drive what appears in
the project documents. The documents in the project that address quality
include the project plan itself, the risk-management plan, the configuration-
management plan, and the quality plan. These documents—or project plan
parts in a small project—need to be developed together; they are a comple-
mentary set. Each may be the parent for a document family. In this figure,
we will develop the quality branch. The quality plan divides into three main
parts in this project: an audit plan, a plan for which documents to inspect or
review, and an overall plan for testing. Each of these branches has a similar
structure, so let us just look at the audit branch. There will be several audits,
and each will need a plan. This is not a large document; it just means that we
need to agree on the time and place for each audit, who will be involved,
book rooms and so on. It might be just a checklist or an e-mail to confirm

274 Appendix B

what the auditor and team being audited have agreed. After each audit, a
short report is needed, just the good points and areas for improvement in a
list, with priorities. Do not write much, but do share it with the team you
have audited and get their feedback. Finally, all the quality activities feed
into an overall quality report, which helps all the groups decide on the out-
come of the project, but also feeds improvements to the company standards.

B.2 Why we use document templates
We need to know which documents we have to write, why we write them,
and what their contents should be. To save everyone time deciding what is
needed, it is useful to have a set of standard document templates. There are
a number of standards that provide document templates, for example:

B.2 Why we use document templates 275

Overall SDLC
quality report

Reports on
individual
test phases

Reports on
individual
reviews

Report on
individual
audits

Plans for
test phases

Plans for
individual
reviews

Plans for
individual
audits

QC: testing
overall plan

QC: document
review overall
plan

QA: audit
overall plan

Configuration
management
plan

Risk
management
plan

Quality plan

Project plan

Methods

Standards

Policies

Company standards

Initial overall
plan (ballpark)

Acceptance
criteriaConstraints

Risk
assessment

Aims and
objectives

Contract (see Chapter 9)

Typical document family

Figure B.1 Typical document family.

◗ IEEE standards, including standards for project plans [1], quality plans
[2], test documentation [3], requirements documents [4], and user
documentation [5];

◗ BSI standards, including standards for documenting component test-
ing [6].

The standard bodies update these documents, and so it is best to consult
the standards bodies for the latest versions. For example, IEEE 829™ [3] is
the Test Documentation standard. If you look on the IEEE Web site [7], you
will see IEEE 829:1983, which is superseded, and IEEE 829:1998, which at
time of writing is the current standard, but you will also see IEEE P829,
which is a project to revise the standard by bringing it into line with current
thinking, and other, more recent standards, which will result in the 1998
version being superseded.

These standards should be your source for deciding on the content of
your own document templates, but almost inevitably, you will find that you
want to adapt the standards in some way. Tables B.2 through B.5 are delib-
erately not a complete set of documents, so that you are encouraged to find
out what the standards bodies are offering, and to obtain the latest standards
for each type of document. Sources of information are:

◗ IEEE [7];

◗ BSI [8], including the BSI Software and Systems Quality Framework
(SSQF) [9];

276 Appendix B

Table B.2 Example of a Project Plan Template

Project plan Not just the schedule. To allow discussion of whether the project is possible—using tools
and techniques like PERT (see Chapter 4), we can model the project. Loosely based on [1],
tailored over use.

Project plan
for project:

Author Date Status Version

Reference To higher level documents—do not repeat information from higher level documents in
this document; just document differences, new information, and exceptions (e.g., project
authorization, terms of reference)

Introduction Overview

Deliverables List of all the deliverables

Evolution Change control

Vocabulary Definitions and acronyms on this project

References Documents that will expand on the information in this document if required (e.g., quality
plan, configuration management plan, risk management plan)

Organization Process model, organizational structure, organization boundaries and interfaces, project
responsibilities, managerial process, objectives, and priorities

Risk Assumptions, dependencies and constraints, risk management, monitoring and controlling
mechanisms

People Staffing plan, staffing needs, staff available, training and induction plans, rewards and
recognition plans, teams, team dynamics

Methods Technical processes, methods, tools and techniques, software documentation, project
support functions

Schedule Work packages, dependencies, resource requirements, budget and resource allocation,
schedule

◗ ISO [11];

◗ Testing Standards Web site [12], including Reid’s paper comparing test-
ing standards [13];

◗ ITIL [14];

◗ itSMF [15].

B.2 Why we use document templates 277

Table B.3 Example of a Quality Plan Template

Quality plan Document approach, specifically exceptions to policy and standards, help you consider and
plan for QA/QC activities, evidence of decisions, rule book for actions, checklist for QA/QC
activities.

Loosely based on [2], tailored over experience.

Quality plan for project: Author Date Status Version

Reference To higher-level documents—do not repeat information from higher-level documents in
this document; just document differences, new information and exceptions (e.g., project
authorization, terms of reference, project plan)

Quality
objectives

Summary, list of items subject to the quality plan, features of interest, items not subject to
the quality plan, specific quality objectives

Approach General approach, selection of methods including QA/QC Methods, pass and fail criteria,
sign off procedures, suspension and resumption, corrective actions

Exceptions List of differences from policies and standards, adaptations made to templates, other
changes to normal process

QM tasks and
deliverables

QM deliverables, QM, QP, QA, QC tasks, test, inspection, examination and audit programs

Scheduling/
resourcing

Environmental needs, responsibilities and authorities, resources required and resources
available, staff and training needs, schedule, budget

Risks Specific risk areas, float available, contingency plans

Review Change control on this plan, review points on this plan

Other What else might we need to think about?

Lower-level
documents

List documents which will expand on this information if required (e.g., configuration
management plan, risk management plan, test plan)

Table B.4 Example of a Risk Management Plan Template

Risk
management
plan

Gain agreement from all parties on control of risk, define management processes for RM.

This template is experience-based; there is an IEEE standard in [10].

For Project: Author Date Status Version

Reference To project plan, risk assessment, risk register

Introduction Purpose, Scope, Definitions/mnemonics

Management Responsibilities and authorities, escalation

Activities Risk reassessment cycles—timing, responsibilities

Risk identification and assessment activities

Risk containment measures—criteria for deciding whether a risk is to be treated by
prevention, mitigation, or contingency plans, or is to be accepted

Relationship to quality plan—QA and QC activities related to risk

Review Change control on this plan, review points on this plan

Other
information

What else might we need to think about?

References Quality plans, including audit plans, review plans, test plans

Approvals Who needs to approve? Who needs to buy in? Who needs to know?

B.3 Using the document standards to provide your
own templates

Put together a set of templates as a starting point for all projects, and have
two or three “sizes”—perhaps an “emergency” template, an “agile” tem-
plate, and a “high-risk” template, as we discussed in Chapter 10—and set
the policy for projects by adapting these. Make sure these templates provide
enough information for anyone who needs to understand or take on aspects
of the work. For example, do the supporters need additional information
because they will take on the maintenance of the system after delivery?

B.4 Auditing considerations
Consider whether you will be audited, who by, and if there is an expecta-
tion that you adhere to particular documentation standards. If so, you need
to understand whether you are allowed to adapt the published standard; for
example a customer may require you to provide “test documentation writ-
ten to meet the IEEE 829 Test Documentation Standard” [3]. What does this
mean? To which date standard are they referring? Can you adapt it? If you
can adapt, document the adaptation and make it clear how it meets the
standard.

B.5 The team’s information needs
The team size and experience may affect how much you document. For a
small project team, with membership from all the groups and good

278 Appendix B

Table B.5 Example of a Configuration Management Plan Template

Configuration
management
plan

Gain agreement from all parties on control of changes, define management processes for
CM

Loosely based on [16], tailored from experience.

For Project: Author Date Status Version

Reference To higher level documents—do not repeat information from higher level documents in this
document; just document differences, new information and exceptions

Introduction Purpose

Scope

Definitions/mnemonics

Management Organizations, SCR responsibilities, Interface control, status accounting, audits, CC board

Activities Configuration identification, configuration control, configuration status accounting, audits
and reviews, tools, techniques and methodologies, supplier control, records collection and
retention

Review Change control on this plan, review points on this plan

Other
Information

What else might we need to think about?

References List documents which will expand on the information in this document if required

Approvals Who needs to approve? Who needs to buy in? Who needs to know?

communication skills, who have worked together before and who are work-
ing on a fast track project, you need to use these documents as checklist of
things to remember. Maybe you only have to document the exceptions to
rules you have previously developed. However, if you have a large team of
people, and perhaps working together for the first time, perhaps from differ-
ent organizations, you need to find a way to communicate and agree how
things will be done. Try using the document headings as an agenda for a dis-
cussion meeting. Then document and review the outcome to check that you
all have a common understanding. Remember to communicate the infor-
mation; I remember seeing a very good test strategy that was only known to
its author; no one else had read it, yet the development manager and the
operations group both needed information from that document.

B.6 Adapting templates
If you adapt document templates for a particular project, when you start
your next project, go back to the original templates. Otherwise you will for-
get why you adapted the template in a particular way, and perhaps miss
something important from the original template. Expect the document tem-
plates to change over time. When you make changes to the templates,
go back to the standards and think about why each section is there and
whether you will be missing something if you change it (see Tables B.2
through B.5).

B.7 Keep it brief—do not repeat or copy information
Try to evolve a family of documents, with the lower-level documents only
adding information, not repeating information from higher up the family
tree. An example family tree is shown in Figure B.2. You will see that we
may not need the detailed plans on all the branches of the tree.

As a general rule, just document any changes and exceptions. Discour-
age people from copying chunks from one document to another; repeated
information makes update harder.

Do not allow people to pick up completed documents, copy them, and
alter them; they may stop thinking about the content of the document and
producing it may become a chore done for no purpose. The important thing
about these documents is that they help us think and solve problems.

B.8 Do you need a document at all?
We write documents to communicate and to reach agreement. You may not
need a set of text documents on paper; that may not be the best way to com-
municate or to reach agreement. You may be better off with a Web site, a
presentation, a notice board, diagrams, a spreadsheet, a video of the discus-
sion meeting, a video of the project sponsor—you decide what is best.

B.6 Adapting templates 279

B.9 Simple project audit plan and report templates
These documents are ones I have developed based on the test and quality
documentation [2, 3], and then tailored. For each planned audit, for exam-
ple, in a spreadsheet, collect the following information, initially for planning
and then for tracking:

◗ For Planning the headings are: Topic area, Topic detail, Audit planned
month, Audit team, Audit place, Audit goal.

◗ For a Detailed plan for one audit: Audit checklist or reference to it.

◗ For Tracking against plan the headings are: Audit done date, Audit out-
come, refer to Audit report, All issues resolved?

For a particular audit, the audit detailed plan may be a checklist. An
example audit checklist that the auditor has started to develop for code
maintainability might look like Table B.6.

The report for audits may be a text report, or it could be a spreadsheet of
positive observations and areas of concern, or you may wish to log noncon-
formances to standards in the same way and place that you log inspection
and test defects—in the defect logging system—or you might wish to use the
audit primarily to identify risks, in which case log them in the risk register.
For each point identify:

280 Appendix B

Test
readiness
Test
readiness

Test
readiness
Test
readiness

Test
readiness
Test
readiness

Test
readiness
Test
readiness

Phase 3
Acceptance
test plan

Phase 3
System
test plan

Stage test
specifications

Stage test
specifications

Stage test
specifications

Stage test
specifications

Phase 3
overall test
plan

Phase 2 test
plan

Phase 1 test
plan

Test strategy

Test Document Family

Test report
and
certificates

Test report
and
certificates

Test report
and
certificates

Test report
and
certificates

Figure B.2 Typical test documentation family. (After: [3].)

◗ The specific point for example by audit name/number/date;

◗ Auditor name (person who raised the point);

◗ Review area;

◗ Reference to document or source of information;

◗ Description of area of concern or positive observation;

◗ Metric used and measurement;

◗ If this is an area of concern, identify risks associated (likelihood of prob-
lems arising and impact of those problems if they arise);

◗ If this is a reaudit, assessment of changes in risk since last audit;

◗ Prediction of outcome;

◗ Suggested resolution;

◗ Comment from audited team/team leader;

B.9 Simple project audit plan and report templates 281

Table B.6 Example of an Audit Checklist (Maintainability Audit)

For Project: Topic area Audit team Date Status Version

Code quality—
Maintainability

Logistics and
planning

Speak to team leader of the area to be audited and explaining what will happen

Identify who will be interviewed

Set times for a start meeting, interviews and a closing meeting

Book rooms if required

Review goal Establish whether the project deliverables will be acceptably maintainable

Initial
Questions

What are the maintainability acceptance criteria for the project?

Are these set at a level which meets the customer’s needs?

What analysis of maintainability is being carried out by the team?

How complex is the code?

How internally consistent and correct is the code?

Does the code have areas that cannot be executed?

How does the team check that data is defined and used correctly across interfaces?

What static analysis tools being used to support maintainability measures?

Which factors does the chosen tool address?

How easily will changes be made to the delivered code?

Metrics Number of programs checked/number of programs

For each program checked:

Program size: Lines of code or number of programs or number of objects

Code complexity: as measured using the ABC tool set

Developer assessment (perception measure) of maintenance ease: predicted number of
hours to make changes (see example of changes set), predicted number of faults,
perception of “trickiness”

Note: Check whether they are using ISO 9126 [17] for any Maintainability measures

Method Static analysis of code using tools and inspection

Interview of project members

Interview development manager

Inspect coding standards

Audit date Refer to audit report

◗ Actual resolution;

◗ Date resolved

◗ Sign-off by audited team/team leader;

◗ Sign-off by auditor/audit team leader.

References

[1] IEEE™ 1058:1998 Standard for Software Project Management Plans.

[2] IEEE™ 730:1989 Standard for Software Quality Assurance Plans.

[3] IEEE™ 829:1998 Standard for Software Test Documentation.

[4] IEEE™ 830:1998 Recommended Practice for Software Requirements
Specifications.

[5] IEEE™ 1063:2001 Standard for Software User Documentation.

[6] British Standards Institute, BS7925-2:1998 Software Testing, Part 2 Software
component testing.

[7] IEEE Web site, http://www.ieee.org.

[8] British Standards Institute Web site, http://www.bsi.org.uk.

[9] British Standards Institute, PD0026:2003, “Software and Systems Quality
Framework—A Guide to the Use of ISO/IEC and Other Standards for
Understanding Quality in Software and Systems,” May 2003.

[10] IEEE 1540-2001™ Standard for Software Life Cycle Processes—Risk
Management.

[11] International Standards Organization Web site, http://www.iso.ch.

[12] Testing Standards Working Party Web site, http://www.testingstandards.co.uk.

[13] Reid, S. C., “Software Testing Standards—Do They Know What They Are Talking
About?” http://www.testingstandards.co.uk/publications.htm, August 2003.

[14] IT Infrastructure Library, Web site http://www.itil.co.uk.

[15] IT Service Management Forum, http://www.itsmf.com, October 2003.

[16] IEEE 828:1998™ Standard for Software Configuration Management Plans.

[17] International Standards Organization/International Electrotechnical Com-
mission (ISO/IEC) DTR 9126 Software Engineering—Software Product Quality
(Parts 1–4, 2000/2001).

282 Appendix B

About the Author

Isabel Evans has 20 years of experience in the IT industry, mainly in quality
management, testing, training, and documentation. She has helped organi-
zations in the development of procedures, standards, and methods to aid in
the testing of software during development and maintenance projects. She
has managed test groups and performed testing design and development for
the acceptance and system testing of packages and bespoke systems. Ms.
Evans has also provided quality assurance support, release management,
and customer support for IT organizations. She has worked independently
since 1992, running her own company, IE Testing Consultancy Ltd. After
working closely with Testing Solutions Group (TSG) since 2002, Ms. Evans
joined the company in January 2004.

Ms. Evans writes and presents courses; for TSG, these include courses for
beginners, the ISEB Foundation, and Practitioner Certificates in Software
Testing and specialist courses in testing and quality methods. In the past she
has provided training and tutorial material in quality management, project
management, and documentation skills. While she has a sound theoretical
basis for testing and quality, her own experience as a tester and as a quality
consultant provides a practical approach and real-life experiences.

As well as presenting seminars and training courses to clients, Ms. Evans
has spoken on software quality, testing, and test management at confer-
ences in the United Kingdom, Europe, and the United States, including
EuroSTAR, PSST, Quality Forum, BCS SIGIST, and the Year 2000 and EURO
Summit. She regularly attends conferences, courses, and meetings in her
interest areas. Ms. Evans has been a member of various working parties and
groups to contribute to improvement in software quality and testing, includ-
ing the Quality Forum Testing Metrics Forum, the Customer Satisfaction
Measurement working party, and the BCS SIGIST Test Standards Working
Party, currently developing nonfunctional testing standards.

283

.

Index

A
Acceptance criteria, 174–77

maintainability, 176
measurable, making, 175
performance, 176
reliability, 177
setting, 174
SMART, 177
usability, 176

Adaptive maintenance, 239–40
Aims and objectives, 172–73, 265–66
Audits

considerations, 278
defined, 266
external, 122
internal, 122
plans, 280–82
project, 112

Availability management, 235

B
Belbin

team roles, 250–51
team scores, 27

Big bang waterfall, 196–97, 199
Budgeted cost of work performed (BCWP), 265
Builders, 77–97

buy-in, 91, 92
change involvement, 240
communication responsibility, 95
communication with other groups, 95–96
corrections and changes, 82–83
criticism, 78
customer results, 92–93
delivery and, 220
EFQM Excellence Model and, 86–87
EFQM Excellence Model enablers for, 87–92
EFQM Excellence Model results for, 92–95
group, 19, 21

group members, 79–80
group summary, 96–97
information needed by, 97
information that others need, 97
introducing, 77–79
key performance results, 95
leadership, 87–88
manufacturing-based view, 80
measurers and, 84, 125
partnerships and resources, 90–91
people, 89–90
people results, 93–94
policy and strategy, 88
processes, 83, 91–92
product-based view, 81
quality framework, 86–95
quality viewpoint, 80–86
SDLC and, 80
society results, 94
as suppliers, 87
transcendent view, 81
See also Groups

C
Capability Maturity Model (CMM), 7, 11–12

Integration
(CMMI

), 11–12
intergroup relationships, 24–25
levels, 11
People (PCMM), 12, 13
software development, 11

Capacity management, 235
Cause–effect analysis, 259–61
Change management, 183, 191–92, 235
Change(s), 236–41

adaptive maintenance, 239–40
builders and, 82–83
corrective maintenance, 236–38
cost of, 83–84
enhancements, 238–39

285

Change(s) (continued)
impact, 83
involvement in, 240
managing, 183
parallel, during postdelivery, 237
perfective maintenance, 239
testing, 240–41

Commercial off-the-shelf (COTS)
customers, 36–38

delivery, 219
home/hobby users, 37
large organizations, 37
niche users, 37
relationship management, 36
small businesses, 37
See also Customers

Communication(s)
builders and other groups, 95–96
customers and other groups, 45–47
fostering, 246
improvement techniques, 26, 27
managers and other groups, 68–73
measurers with other groups, 125–28
poor, cycles of, 70
supporters with other groups, 146–47

Communication styles, 253–58
Honey and Mumford learning styles, 254–55
Kirton adaptors and innovators, 255–56
motivation studies, 256–57
Myers-Briggs Type Indicator (MBTI), 253–54
transactional analysis, 257–58

Corrective maintenance, 236–38
Cost–benefit analysis, 264
Critical paths, 64
Customer results

for builders, 92–93
for customers, 43
defined, 9
for managers, 65–66
for measurers, 123
for supporters, 143–44
See also Results

Customers, 2, 31–48
“awkward,” 17
change involvement, 240
communication with groups, 45–47
complaint root causes, 165
customer results, 43
delivery and, 220
EFQM Excellence Model and, 39–40
EFQM Excellence Model enablers for, 40–43
EFQM Excellence Model results for, 43–45
of end users, 32
focus, 6
group, 19, 20

information needed by other groups, 47
information needed from other groups, 48
in-house, 33–35
introducing, 31–32
IT specialists as, 38
IT system, 32
key performance results, 44–45
leadership, 40
organizational, 33
partnerships and resources, 43
people, 41–42
people results, 43–44
policy and strategy, 41
processes, 43
quality framework, 39–45
quality viewpoint, 38–39
results, 9
society and government as, 33
society results, 44
third-party custom-made system, 35–36
third-party package/COTS, 36–38
types of, 32–33
See also Groups

Custom-made system customers, 35–36

D
Data migration delivery, 225–26
De Bono’s Six Thinking Hats, 251–53

advantages, 252–53
colors, 252
defined, 27, 215
use of, 251

Defects
analyzing, 232
found, 232
prevention, 103–5
propagation and removal, 104

Delivery, 156
activities, 221–26
conclusion, 226
considerations, 215–17
COTS package, 219
data migration, 225–26
description, 215–18
entry criteria, 221
entry criteria example, 223
exit criteria example, 226
exit from, 226
identifying, 217–18
in life span stage diagram, 216
method, 216
multisite, 224–25
planning, 216–17
quality measures, 217
release for, 218

286 Index

self-installation, 223–24
single-site, 224
size, 217
support around, 216–17
teamwork techniques summary, 222–23
urgency, 216
viewpoints, 218–21
See also Software system life span

Deming cycle, 5, 56
Design, 184

defined, 193
elements, 193
See also Software development life

cycle (SDLC)
Development stage. See Software development

life cycle (SDLC)
Distorted data representation, 72
Document templates, 275–78

adapting, 279
configuration management plan example,

278
creating, 278
project plan example, 276
quality plan example, 277
risk management plan example, 277
See also Quality planning documents

E
Earned value management (EVM), 264, 265
EFQM Excellence Model, 7–10, 13–15

builders and, 86–87
continuous learning, innovation,

improvement, 6
customer focus, 6
custom organization and, 39–40
defined, 5, 7
enablers, 7–9
enablers for builders, 87–92
enablers for customers, 40–43
enablers for managers, 57–65
enablers for measurers, 114–22
enablers for supporters, 138–43
as framework, 13
fundamental concepts, 6–7
illustrated, 8
intergroup relationships, 25–26
key performance results, 10
leadership, 6, 7–8
management by processes and facts, 6
measurers and, 113–14
models in, 13–15
partnership development, 6
people development and involvement, 6
public responsibility, 6
results, 9–10

results for builders, 92–95
results for customers, 43–45
results for managers, 65–68
results for measurers, 123–25
results for supporters, 143–46
results orientation, 6
supporters and, 136–38

Ego states, 258
Enablers, 7–9

for builders, 87–92
for customers, 40–43
leadership, 7–8, 40, 57–58, 87–88, 114,

138–39
for managers, 57–65
for measurers, 114–22
partnerships and resources, 8–9, 43, 60,

90–91, 119, 142
people, 8, 41–42, 59–60, 89–90, 115–19,

139–42
policy and strategy, 8, 41, 58–59, 88,

114–15, 139
processes, 9, 43, 61–65, 91–92, 119–22,

142–43
for supporters, 138–43
See also EFQM Excellence Model

Enhancements, 238–39
European Foundation for Quality Management.

See EFQM Excellence Model
Evaluation

SDLC/SMLC, 241–42
timing, 242

Evolutionary model, 198
advantages/disadvantages, 198
defined, 203
illustrated, 204
See also SDLC models

Excellence concepts, 5–7
EXtreme Programming (XP), 203

F
Fed-up falcon, 257
Feedback

MBTI, 34
personality types and, 34
supporter problem, 140
for testers, 118

G
Games programs, 38
Graphics

data density, 268
data ink ratio, 268
equations, 269
improving, 267–69

Index 287

Graphics (continued)
lie factor, 268

Groups
attitudes, 18
builders, 19, 21, 77–97
customers, 19, 20, 31–48
EFQM Excellence Model and, 25–26
interaction between, 22–27
intergroup relationships, 24–26
list of, 19
managers, 19, 20–21, 51–74
measurers, 19, 21, 101–26
motivation, 24
nonfunctional attributes and, 175
organization, 26
problems attributed to people outside, 23–24
quality views across, 22
summary, 148–50
supporters, 19, 22, 131–50
See also Teams

H
Hawthorne effect, 105
Help-desk team, 137
Honey and Mumford

learning styles, 254–55
Learning Styles Helper’s Guide, 255
Learning Styles Questionnaire, 27, 255

I
ICT specialists, 133–34
Ideas

modeling, 261–62
pursuing, 262–65
start-up and, 165–70

Incident management, 235
Incremental model, 199–200

advantages/disadvantages, 198
defined, 199–200
example, 198
illustrated, 200
See also SDLC models

Influence leaders, 87
Infrastructure management, 235
In-house customers, 33–35

group relationships, 33
technical team dialog, 34
See also Customers

Inspections, 266
Inspectors, 111
Installation

self, 223–24
team, 216
time period for, 216

See also Delivery
Ishikawa fishbones, 237

defined, 27, 259
diagram illustration, 259
solution, 260

ISO 9000:1994, 10
ISO 9000:2000, 10
ISO 9126, 174
Iterative/spiral model, 200–203

advantages/disadvantages, 198
examples, 198
exploratory nature of, 201
iterative, illustrated, 200
spiral illustrated, 201
use problems, 203
See also SDLC models

IT Infrastructure Library (ITIL), 136–37
IT service–continuity management, 235
IT Service Management Forum, 235
IT specialists

as customers, 38
security, 134

K
Key performance results

for customers, 44–45
defined, 10
for managers, 67–68
for measurers, 124–25
for supporters, 146
See also Results

Kirton adaptors and innovators, 255–56
characteristics, 256
defined, 27

L
Leadership, 6, 7–8

for builders, 87–88
for customers, 40
defined, 6
influence, 87
for managers, 57–58
for measurers, 114
poor/undetermined, circle of, 88
for supporters, 138–39
See also Enablers

Lie factor, 72, 268

M
Maintainability, 176
Maintenance

adaptive, 239–40
corrective, 236–38

288 Index

enhancements, 238–39
perfective, 239
types of, 236
See also Change(s)

Malcolm Baldrige model, 5, 10, 14
Management review, 266
Managers, 51–74

change involvement, 240
cliché, 53
communication cycles and, 68–70
communication with other groups, 68–73
consistency of behavior, 59
customer results, 65–66
customer strategy awareness, 56
delivery and, 220
EFQM Excellence Model and, 54–57
EFQM Excellence Model enablers, 57–65
EFQM Excellence Model results, 65–68
focus, 51
group, 19, 20–21
group summary, 73–74
information needed from others, 73
information others need from, 73
inspiration ability, 57
introducing, 51–52
key performance results, 67–68
leadership, 57–58
learning to be, 61–62
monitoring, control, measurement of

progress, 64–65
negotiations, 68
partnerships and resources, 60
people, 59–60
people results, 66
people who are, 52
planning/estimating for quality activities,

63–64
policy and strategy, 58–59
processes, 61–65
quality framework, 54–68
quality viewpoint, 53–54
reporting process, 70–73
society results, 66–67
as villains of SDLC, 51
See also Groups

Manufacturing-based quality view
builders, 81
definition, 3
measurers, 107

Maslow Hierarchy of Needs, 256
defined, 27
list of, 256

Measurement(s)
framework, 119–20
improvement and, 120–22

processes, 120
reporting process, 122
techniques, 141

Measurers, 101–29
builders and, 84, 125
change involvement, 240
clichéd observation, 108
communication with other groups, 125–28
customer results, 123
defect prevention, 103–5
delivery and, 220
EFQM Excellence Model and, 113–14
EFQM Excellence Model enablers for,

114–22
EFQM Excellence Model results for, 123–25
fault/failure focus, 106–7
group, 19, 21
group members, 106
group summary, 128–29
as improvers of quality, 102–3
information needed from others, 128
information that others need, 127
introducing, 101–5
key performance results, 124–25
leadership, 114
manufacturing-based view, 107
measurement framework, 119–20
motivation and appreciation, 118–19
nonspecialist, 115–16
partnerships and resources, 119
people, 115–19
people results, 123
policy and strategy, 114–15
processes, 119–22
product-based view, 107
quality framework, 113–25
quality impacts, 111
quality viewpoint, 106–13
reporting process, 122
society results, 123–24
specialist, 115–16
team organization, 117–18
transcendent view, 107
types of, 116
See also Groups

Mind Mapping, 262
MIP, 27
Monitoring/evaluation, 241–44

evaluation timing, 242
ongoing software, 242–44
process, 244
SDLC/SMLC evaluation, 241–42
See also Postdelivery

Motivation studies, 256–57
Motivation Survey, 87

Index 289

Multisite delivery, 224–25
Myers-Briggs Type Indicator (MBTI), 253–54

16 types, 254
contrasting pair types, 253
defined, 27
feedback, 34
See also Communication styles

N
Nonfunctional attributes, 174

delivery planning, 176
importance of, 175
selection of, 175

O
Operational Acceptance Test (OAT), 141
Organization, this book, xx–xxii
Outline plan, 177

P
Partnerships

development, 6
organizational, 60

Partnerships and resources, 8–9
for builders, 90–91
for customers, 43
defined, 8–9
for managers, 80
for measurers, 119
for supporters, 142
See also Enablers

People, 8
for builders, 89–90
communication improvement techniques,

26, 27
for customers, 41–42
defined, 8
for managers, 59–60
for measurers, 115–19
for supporters, 139–42
See also Enablers

People CMM (PCMM), 12, 13
People results

for builders, 93–94
for customers, 43–44
defined, 9
for managers, 66
for measurers, 123
for supporters, 144–45
See also Results

Perfective maintenance, 239
Performance, 176

acceptance criteria, 176

prototype, 177
See also Key performance results

Personal Software Process (PSP), 11, 12
defined, 12
development, 12
intergroup relationships, 24–25
process emphasis, 24

PERT charts, 64
Phased waterfall, 197–99
Policies

building activities, 88
defined, 58
managers setting, 58
rules translation, 139

Policy and strategy
for builders, 88
for customers, 41
defined, 8
for managers, 58–59
for measurers, 114–15
for supporters, 139
See also Enablers

Postdelivery, 156–57, 229–46
activities, 233–44
change making, 236–41
conclusion, 244–46
COTS package (customer installation), 230
defined, 229
description, 229–31
entry criteria, 233
entry criteria example, 233
exit criteria example, 245
exit from, 244
IT infrastructure and service management

activities, 234–36
in life span stage diagram, 230
monitoring/evaluation, 241–44
system developed in-house, 230–31
system with periodic updates, 231
teamwork techniques, 243
third-party developed system, 231
viewpoints, 231–33
See also Software system life span

Problem management, 235
Problems

analysis cycle, 167
group contributions to understanding,

168–70
likelihood, 169
sketching pictures of, 262
solution decision, 168–70
solutions parameters/constraints, 170
statements, 167
understanding, 165–68
view of, 168

290 Index

Processes
for builders, 91–92
for customers, 43
defined, 9
for managers, 61–65
for measurers, 119–22
for supporters, 142–43
See also Enablers

Product-based quality view
builders, 81
definition, 3
measurers, 107
supporters, 135

Project audits, 112
Prototyping, 261–62

types of, 262
uses, 261

Q
Quality

activities damaging quality, 110
builder viewpoint, 80–86
costs, 110
customer viewpoint, 38–39
defining, 1–5
delivery viewpoints, 219–21
human factors and, 2
impacts, 85
importance, 1–15
improvers of, 102–3
management, 5, 56
managers, 112
manager viewpoint, 53–54
manufacturing-based definition, 3
measurers viewpoint, 106–13
planning for, 55
postdelivery viewpoints, 231–33
product-based definition, 3
SDLC viewpoints, 184–86
stakeholders for, 79
start-up views, 163
supporters viewpoint, 134–36
transcendent view, 13
user-based view, 3
value-based view, 3–4, 13
viewpoint differences, 22–24
views of, 14

Quality assurance (QA)
activities, 55
carrying out, 103, 105
experts, 64, 103
external audit, 122
internal audit, 122
need for, 101–2
rules of thumb, 121

sources, 269
tasks, 63, 103
team independence, 117
teams, 21, 106
training requirements, 115

Quality control (QC)
activity timing, 103
carrying out, 103, 105
checks, 55
experts, 64, 103
forms of, 102
need for, 101–2
processes, 5
rules of thumb, 121
sources, 269
tasks, 63
team independence, 117
teams, 21, 106
training requirements, 115

Quality framework
builders, 86–95
customers, 39–45
managers, 54–68
measurers, 113–25
supporters, 136–46

Quality Management System (QMS), 274
Quality planning documents, 273–75

brevity, 279
families, 275
list of, 273
templates, 275–78
test, 280

R
Reliability, 177
Reporting

graphics, improving, 267–69
planning, 71
process, 70–73, 122
templates, 280–82
See also Communications

Requirements
definition errors, 105
QA/QC training, 115
SDLC, 184, 192–93

Responsibility matrix, 220
Results, 9–10

for builders, 92–95
customer, 9, 43, 92–93, 123, 143–44
for customers, 43–45
key performance, 10, 44–45, 95, 124–25,

146
for managers, 65–68
for measurers, 123–25
people, 9, 43–44, 93–94, 123, 144–45

Index 291

Results (continued)
society, 9–10, 44, 94, 123–24, 145
for supporters, 143–46
See also EFQM Excellence Model

Return on investment (ROI), 53
Reviews

audits, 266
guidelines, 267
inspection, 266
management, 266
technical/peer, 266
techniques, 266–67
training, 267
walkthrough, 27, 266
work contract, 178

Rich Picturing, 262

S
Scorecards

defined, 67
illustrated, 68
measures, 67–68
quality balanced, 69
variations, 67

SDLC entry criteria, 186–90
checklist, 187
excessive, 188
incorrect, 188
insufficient, 189
not defined, 187
not met, 187–89
tailoring, 189
See also Software development life cycle

(SDLC)
SDLC exit criteria, 208–11

example, 209
following detailed acceptance test, 208
not defined, 209–10
not met, 210
not set, 210
tailored, example, 211
tailoring, 210
See also Software development life cycle

(SDLC)
SDLC models, 195–204

advantages/disadvantages, 198
evolutionary, 198
examples, 198
incremental, 199–200
iterative/spiral, 200–203
quality views and, 204–8
V-model, 203–4
waterfall, 196–99
W-model, 198, 204

See also Software development life cycle
(SDLC)

Security management, 235
Self-installation, 223–24
Service-delivery specialists, 133
Service-level agreements (SLAs), 138
Service-level management, 235
Silver bullet life cycle, 234
Single-site delivery, 224
SMART acceptance criteria, 177
Society results

for builders, 94
for customers, 44
defined, 9–10
for mangers, 66–67
for measurers, 123–24
for supporters, 145
See also Results

Software
acquisition of, 182
deployment, 132
games, 38
optimization, 133
products identification, 183
protection, 132
purpose of, 31
supportable, 134–35
as tool, 32
updates/changes, 133

Software and Systems Quality Framework
(SSQF), 14, 113

Software development life cycle (SDLC),
35, 155–56, 181–212

activities, 190–95
build, 184, 193–94
builders and, 80
change examples, 185
change management, 183, 191–92
conclusion, 211–12
customer involvement and, 45
defined, 154, 181–82
definition of, 182
description, 181–84
design, 184, 193
entry/exit points within, 195
evaluating, 241–42
exit from, 208–11
in life span stage diagram, 183
managers as villains, 51
no start-up stage and, 190
planning and monitoring, 183, 190–91
purpose, 182
requirements, 184, 192–93
in software system life span, 154
task summary, 183–84

292 Index

teams, 185, 191
teamwork techniques, 202
testing, 102, 184, 194–95
viewpoints, 184–86
See also SDLC entry criteria; SDLC exit

criteria; SDLC models
Software engineers. See Builders
Software-maintenance life cycles (SMLCs),

140, 236
evaluating, 241–42
software projects as, 236

Software-maintenance specialists, 134
Software quality. See Quality
Software system life span, 153–59

change cycles, 157
delivery, 156, 215–26
development, 155–56, 181–212
entry/exit criteria between stages, 157–58
postdelivery, 156–57, 229–46
quality importance, 158
quality viewpoint changes across, 158–59
stages, 154
stages illustration, 155
start-up, 153, 155, 161–79

SSADM, 262
Start-up, 153, 155, 161–79

activities, 165–78
constraints/parameters setup, 170
description, 161–63
entry criteria, 164–65
exit criteria, 179
exit from, 178–79
in life-cycle stage diagram, 162
next stage agreement, 170–71
problem/idea solution decision, 168–70
problem/idea understanding, 165–68
task summary, 163
teamwork view, 164
techniques summary, 166–67
viewpoints, 163–64
work contracting, 171–78
See also Software system life span

Strategies
for managers, 58
for measurers, 114–15
See also Policy and strategy

Supporters, 131–50
change involvement, 240
communication with other groups, 146–47
customer results, 143–44
delivery and, 220
EFQM Excellence Model and, 136–38
EFQM Excellence Model enablers for,

138–43
EFQM Excellence Model results for, 143–46

group, 19, 22
group composition, 133–34
group summary, 147–48
information for other groups, 148
information needed by others, 149
interpersonal skills, 141–42
introducing, 131–33
key performance results, 146
knowledge, 132
leadership, 138–39
management skills, 141
measurement techniques, 141
partnerships and resources, 142
people, 139–42
people results, 144–45
policy and strategy, 139
problem view, 140
processes, 142–43
product-based view, 135
quality framework, 136–46
quality viewpoint, 134–36
service-support specialists, 133
skills, 141
society results, 145
too little involvement, 132
transcendent view, 136
user-based view, 135–36
See also Groups

T
Taken-for-granted assumption, 249
Teams

defining, 19–22
in disunity, 17–19
help-desk, 137
information needs, 278–79
installation, 216
organization, 117–18
personalities, 250
plan layout, 62
QA, 21
QC, 21
roles, 250–51
SDLC, 185, 191
strengths/weaknesses, 250

Team Software Process (TSP), 7, 11, 12
defined, 12
development, 12
intergroup relationships, 24–25

Teamwork
fostering, 246
start-up view, 164
techniques during SDLC, 202
techniques in delivery, 222
techniques to aid postdelivery, 243

Index 293

Technical/peer review, 266
Test automation specialists, 112
Testers

feedback for, 118
skill variety, 118
types of, 116
See also Measurers

Testing, 102
changes, 240–41
code execution, 194
elements, 195
SDLC, 184, 194–95
user-acceptance, 112
without written specification, 109

Test managers, 112
Third-party customers, 35–38

custom-made system, 35–36
package/COTS, 36–38

TQMI, 165, 260
Transactional analysis, 257–58

defined, 258
ego states, 258

U
Usability, 176
User-acceptance testing, 112
User-based quality view

builders and, 81
definition, 3, 81
measurers and, 108
supporters, 135–36

V
Value-based quality view

builders and, 81–82
definition, 3–4, 81–82
measurers and, 108

V-model, 203–4
advantages/disadvantages, 198
defined, 203
example, 198
illustrated, 205
See also SDLC models

W
Walkthroughs, 27, 266
Waterfall model, 196–99

advantages/disadvantages, 198
big bang, 196–97, 199
examples, 198
phased, 197–99
when to use, 199
See also SDLC models

Weaver triangle
defined, 27
illustrated, 173
uses, 172

W-model, 198, 204
Work

acceptance criteria, 174–77
aims/objectives, 172
constraints for, 173
contracting, 171–78
contract review, 178
outline plan, 177

294 Index

Recent Titles in the Artech House
Computing Library

Achieving Software Quality through Teamwork, Isabel Evans

Action Focused Assessment for Software Process Improvement, Tim Kasse

Advanced ANSI SQL Data Modeling and Structure Processing, Michael M. David

Advanced Database Technology and Design, Mario Piattini and Oscar Díaz, editors

Agent-Based Software Development, Michael Luck, Ronald Ashri,
and Mark d’Inverno

Building Reliable Component-Based Software Systems, Ivica Crnkovic
and Magnus Larsson, editors

Business Process Implementation for IT Professionals and Managers,
Robert B. Walford

Data Modeling and Design for Today’s Architectures, Angelo Bobak

Developing Secure Distributed Systems with CORBA, Ulrich Lang
and Rudolf Schreiner

Discovering Real Business Requirements for Software Project Success,
Robin F. Goldsmith

Future Codes: Essays in Advanced Computer Technology and the Law,
Curtis E. A. Karnow

Global Distributed Applications with Windows® DNA, Enrique Madrona

A Guide to Software Configuration Management, Alexis Leon

Guide to Standards and Specifications for Designing Web Software, Stan Magee
and Leonard L. Tripp

Implementing and Integrating Product Data Management and Software
Configuration, Ivica Crnkovic, Ulf Asklund, and Annita Persson Dahlqvist

Internet Commerce Development, Craig Standing

Knowledge Management Strategy and Technology, Richard F. Bellaver
and John M. Lusa, editors

Managing Computer Networks: A Case-Based Reasoning Approach, Lundy Lewis

Metadata Management for Information Control and Business Success, Guy Tozer

Multimedia Database Management Systems, Guojun Lu

Practical Guide to Software Quality Management, Second Edition, John W. Horch

295

Practical Insight into CMMI®, Tim Kasse

Practical Process Simulation Using Object-Oriented Techniques and C++,
José Garrido

A Practitioner’s Guide to Software Test Design, Lee Copeland

Risk-Based E-Business Testing, Paul Gerrard and Neil Thompson

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Software Fault Tolerance Techniques and Implementation, Laura L. Pullum

Software Verification and Validation for Practitioners and Managers, Second
Edition, Steven R. Rakitin

Strategic Software Production with Domain-Oriented Reuse, Paolo Predonzani,
Giancarlo Succi, and Tullio Vernazza

Successful Evolution of Software Systems, Hongji Yang and Martin Ward

Systematic Process Improvement Using ISO 9001:2000 and CMMI®, Boris Mutafelija
and Harvey Stromberg

Systematic Software Testing, Rick D. Craig and Stefan P. Jaskiel

Systems Modeling for Business Process Improvement, David Bustard,
Peter Kawalek, and Mark Norris, editors

Testing and Quality Assurance for Component-Based Software, Jerry Zeyu Gao,
H. -S. Jacob Tsao, and Ye Wu

User-Centered Information Design for Improved Software Usability,
Pradeep Henry

Workflow Modeling: Tools for Process Improvement and Application
Development, Alec Sharp and Patrick McDermott

For further information on these and other Artech House titles,

including previously considered out-of-print books now available through our

In-Print-Forever® (IPF®) program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630-0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at:
www.artechhouse.com

296

	Achieving Software Quality Through Teamwork
	Contents
	Forward
	Preface
	Acknowledgments
	1 Software Quality Matters
	1.1 Defining software quality
	1.2 Fundamental concepts of excellence
	1.3 EFQM Excellence Model
	1.3.1 Enablers
	1.3.2 Results
	1.3.3 Excellence, the EFQM Excellence Model, the Malcolm Baldrige model, and other related models

	1.4 ISO 9000:1994 and ISO 9000:2000
	1.5 IT maturity models-CMM and relations
	1.6 Team Software Process and Personal Software Process
	1.7 Bringing the models together
	References
	Selected bibliography

	2 Defining the Software Team
	2.1 Teams in disunity
	2.2 Defining the team
	2.2.1 People who are customers and users of software
	2.2.2 People who manage software projects
	2.2.3 People who build software
	2.2.4 People who measure software quality
	2.2.5 People who provide the support and infrastructure for the project and the deployment of software

	2.3 Interaction between the groups and within each group
	2.3.1 Differences in quality viewpoints
	2.3.2 Intergroup relationships in CMM? and Personal and Team Software Processes
	2.3.3 Intergroup relationships and excellence frameworks-the EFQM Excellence Model

	References
	Selected bibliography

	3 Roles and Quality: Customers
	3.1 Introducing the customers
	3.2 Who could be in this group?
	3.2.1 In-house customer
	3.2.2 Third-party custom-made system customer
	3.2.3 Third-party package or commercial off-the-shelf (COTS) customer
	3.2.4 The IT specialist as customer

	3.3 Quality viewpoint
	3.4 Quality framework using the EFQM Excellence Model
	3.4.1 The EFQM Excellence Model and the customer organization
	3.4.2 EFQM Excellence Model enablers for customers
	3.4.3 EFQM Excellence Model results for the customers

	3.5 Communication between the customers and other groups
	3.6 Summary of the group
	References
	Selected bibliography

	4 Roles and Quality: Managers
	4.1 Introducing the managers
	4.2 Who could be in this group?
	4.3 Quality viewpoint
	4.4 Quality framework using the EFQM Excellence Model
	4.4.1 The EFQM Excellence Model and the manager
	4.4.2 EFQM Excellence Model enablers for the managers
	4.4.3 EFQM Excellence Model results for the managers

	4.5 Communication between the managers and other groups
	4.5.1 Managers and communication cycles
	4.5.2 The reporting process

	4.6 Summary of the group
	References
	Selected bibliography

	5 Roles and Quality: Builders
	5.1 Introducing the builders
	5.2 Who could be in this group?
	5.3 Quality viewpoint
	5.4 Quality framework using the EFQM Excellence Model
	5.4.1 The EFQM Excellence Model and the builders
	5.4.2 EFQM Excellence Model enablers for builders
	5.4.3 EFQM Excellence Model results for the builders

	5.5 Communication between the builders and other groups
	5.6 Summary of the group
	References
	Selected bibliography

	6 Roles and Quality: Measurers
	6.1 Introducing the measurers
	6.1.1 Why do we need QA and QC?
	6.1.2 Just measurers or also improvers of quality?
	6.1.3 Defect prevention
	6.1.4 The Hawthorne effect

	6.2 Who could be in this group?
	6.3 Quality viewpoint
	6.4 Quality framework using the EFQM Excellence Model
	6.4.1 The EFQM Excellence Model and the measurers
	6.4.2 EFQM Excellence Model enablers for the measurers
	6.4.3 EFQM Excellence Model results for the measurers

	6.5 Communication between the measurers and other groups
	6.6 Summary of the group
	References
	Selected bibliography

	7 Roles and Quality: Supporters
	7.1 Introducing the supporters
	7.2 Who could be in this group?
	7.3 Quality viewpoint
	7.4 Quality framework using the EFQM Excellence Model
	7.4.1 The EFQM Excellence Model and the supporter
	7.4.2 Enablers for the supporters
	7.4.3 Results for the supporters

	7.5 Communication between supporters and other groups
	7.6 Summary of the group
	7.7 Summary of all the groups
	References
	Selected bibliography

	8 The Life Span of a Software System
	8.1 Life span or life cycle?
	8.1.1 Start-up
	8.1.2 Development
	8.1.3 Delivery
	8.1.4 Postdelivery

	8.2 Entry and exit criteria between stages
	8.3 Changes in quality viewpoints across the life span of a system
	References

	9 Start-Up for a Software-Development Project
	9.1 Start-up-description
	9.2 Start-up viewpoints
	9.3 Entry criteria for start-up
	9.4 Start-up-typical activities
	9.4.1 Understanding the problem/idea
	9.4.2 Decide whether the problem/idea is worth solving
	9.4.3 Set general constraints and parameters for the solution
	9.4.4 Agree on next stage
	9.4.5 Contract for work

	9.5 Exit from start-up stage
	References
	Selected bibliography

	10 Software-Development Life Cycle
	10.1 Software-development life cycle-description
	10.1.1 Types of software acquisition project
	10.1.2 Identifying the software products
	10.1.3 SDLC task summary

	10.2 SDLC viewpoints
	10.3 Entry criteria for SDLC
	10.3.1 Entry criteria following a detailed start-up
	10.3.2 When no entry criteria have been defined
	10.3.3 When entry criteria have not been met
	10.3.4 Tailoring entry criteria
	10.3.5 When no start-up stage took place

	10.4 SDLC-typical activities
	10.4.1 Planning and monitoring
	10.4.2 Managing change
	10.4.3 Requirements
	10.4.4 Design
	10.4.5 Build
	10.4.6 Testing

	10.5 Entry and exit points within the SDLC
	10.6 SDLC models
	10.6.1 Waterfall model (big bang or phased)
	10.6.2 Spiral, incremental, and iterative models
	10.6.3 Evolutionary model
	10.6.4 V-model
	10.6.5 Advantages and disadvantages of the models

	10.7 Quality views and the models-why we might wish to combine models
	10.8 Exit from the SDLC
	10.8.1 Exit criteria following a detailed acceptance test
	10.8.2 When no exit criteria have been defined
	10.8.3 When exit criteria have not been met
	10.8.4 Tailoring exit criteria
	10.8.5 When no acceptance criteria have been set

	10.9 Conclusion
	References
	Selected bibliography

	11 Delivery and Support When Going Live
	11.1 Delivery-description
	11.1.1 Delivery considerations
	11.1.2 Identifying the delivery

	11.2 Delivery viewpoints
	11.3 Entry criteria for delivery
	11.4 Delivery-typical activities
	11.4.1 Person buys PC and software for self-installation
	11.4.2 Single-site delivery of software
	11.4.3 Multisite rollout of new software to existing infrastructure
	11.4.4 Data migration project software and hardware changes

	11.5 Exit from delivery
	11.6 Conclusion
	References
	Selected bibliography

	12 The Life of a System Postdelivery
	12.1 Postdelivery-description
	12.1.1 Postdelivery for different types of software acquisitions

	12.2 Delivery viewpoints
	12.3 Entry criteria for postdelivery
	12.4 Postdelivery-typical activities
	12.4.1 Use of the system
	12.4.2 IT infrastructure and service management activities
	12.4.3 Making changes to an existing system
	12.4.4 Monitoring and evaluation

	12.5 Exit from postdelivery
	12.6 Conclusion
	References
	Selected bibliography

	A Techniques and Methods
	A.1 Communication, team dynamics, and meeting behavior
	A.1.1 Belbin Team Roles
	A.1.2 De Bono's Six Thinking Hats

	A.2 Communication styles
	A.2.1 Myers-Briggs Type Indicators
	A.2.2 Honey and Mumford Learning Styles
	A.2.3 Kirton adaptors and innovators
	A.2.4 Motivation studies
	A.2.5 Transactional analysis

	A.3 Techniques to identify and classify problems and assess ideas for solutions
	A.3.1 Cause–effect, root cause, and solution analysis
	A.3.2 Prototyping and ideas modeling
	A.3.3 Assessing whether an idea is worth pursuing

	A.4 Understanding aims and objectives
	A.5 Review techniques
	A.6 Improving graphics in reporting
	A.7 Useful sources and groups
	References
	Selected bibliography

	B Quality Planning Documents and Templates
	B.1 The document family
	B.2 Why we use document templates
	B.3 Using the document standards to provide your own templates
	B.4 Auditing considerations
	B.5 The team's information needs
	B.6 Adapting templates
	B.7 Keep it brief-do not repeat or copy information
	B.8 Do you need a document at all?
	B.9 Simple project audit plan and report templates
	References

	About the Author
	Index

