

n

G COMPUTED

VIC-20 and Commodore 64

Tool Kit:
Kemal

Dan Heeb

n COMPUTE! Publicationsjnc.^3
■- ' One of the ABC Publishing Companies ^^

Greensboro, North Carolina .

u

u

u

u

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

The author and publisher have made every effort in the preparation of this book to insure the ac

curacy of the programs and information. However, the information and programs in this book are / j
sold without warranty, either express or implied. Neither the author nor COMPUTE! Publica- !)
tions, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, in

cidentally, or consequentially by the programs or information in this book.

Printed in the United States of America

10 98765432

ISBN 0-942386-33-7 5 j

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is one of the ABC Publishing Companies, and is not associated with any » j

manufacturer of personal computers. Commodore 64 and VIC-20 are trademarks of j i
Commodore Electronics Limited. COMPUTE! Publications assumes no liability for

errors in this book.

u

n

n Contents

LJ Foreword v

f] Preface vii

Chapter 1. Interrupts and System Reset 1

Chapter 2. System Reset 15

Chapter 3. NMI Interrupts 31

Chapter 4. IRQ Interrupts 43

Chapter 5, Kernal Routines 63

Chapter 6. Miscellaneous Routines Ill

Chapter 7. Screen Routines 121

Chapter 8. Serial I/O Routines 181

Chapter 9. RS-232 I/O Routines 225

Chapter 10. Tape I/O Routines 269

p-1 Appendices

'—I A: Commodore 64 and VIC I/O and Video
Control Registers 399

H
B: Index of Kernal Routines by Address 407

f] C: Cross Reference of Kernal Routines by Chapter . . 421

n

Foreword

!-_! COMPUTEl's VIC-20 and Commodore 64 Tool Kit: The Kernal is
the first detailed description of the built-in programs that run

r—j the 64 and VIC. It's everything you need to know to under-

; .. * stand and use the operating system of your computer.

COMPUTERS VIC-20 and Commodore 64 Tool Kit: The

Kernal explains routines in groups, so that related routines are

usually discussed within the same chapter. By grouping

routines together, the book enables you to learn more than

just what each section of code does—you'll see how several

routines work together.

If you know the 6502/6510 machine language instruc

tions, but programming with them is still a mystery to you,

Tool Kit: The Kernal can help. Instead of simply listing cryptic

assembly language code, it describes what is happening in

each routine in easy-to-understand English. You can learn ma

chine language tricks just by looking at the way the pro

fessional programmers designed the ROMs in the VIC and 64.

And, as with all COMPUTE! books, the explanations are clear

and concise.

If you are a machine language programming expert, Tool

Kit: The Kernal is a valuable source book. You'll be able to

quickly find the routine you are interested in and follow the

logic of the code. The author doesn't waste your time with un

necessary details, and his no-nonsense approach allows you to

get the information you want as quickly as possible.

Tool Kit: The Kernal is the sequel to COMPUTERS VIC-20

j—| and Commodore 64 Tool Kit: BASIC (which documents the Com-

' ! modore BASIC ROM routines), and is an excellent companion
to other COMPUTE! books (like Mapping the VIC, Mapping the

n Commodore 64, Programming the VIC, and Programming the

Commodore 64). Armed with these guides and a ROM listing,

you'll discover all the secrets of your VIC or 64.

H

n Preface

n
The subject of this book is the part of the Commodore 64 and

VIC-20 called the Kernal. Some people think of the Kernal as

| I only the standard jump vector table, which is correctly called

the Kernal Jump Table. But the Kernal is actually larger. It is

the section of ROM that handles the input/output (I/O) and

system management routines such as the interrupt handlers.

The remaining part of ROM that makes up the BASIC lan

guage is covered in COMPUTERS VIC-20 and Commodore 64

Tool Kit: BASIC

The 6502 chip is the microprocessor in the VIC-20, while

the Commodore 64 has the 6510. Both chips use the same ma

chine language (ML) instruction set. While it is not absolutely

essential that you know 6510/6502 machine language to read

this book, it would help. Numerous books on 6510/6502 ma

chine language are available, so this book does not attempt to

teach ML programming.

Due to copyright restrictions, a commented disassembly of

the code for the Kernal is not presented in this book. Using any

machine language monitor, you should be able to view the

disassembled Kernal on your screen and follow along with the

comments about the code that are found here. At least two

books are available that contain printed listings of the Kernal

instructions, if you find it easier to read rather than view them

on the screen. These are The Anatomy of the Commodore 64

(from Abacus Software) and Inside the Commodore 64 (by Mil

ton Bathurst).

r"| The main purpose of the Kernal is to allow communica

tion with the various I/O devices—the screen, keyboard, and

cassette drive, as well as RS-232-C devices, disk drives, and

p~j printers. The interrupt routines are crucial in the functioning

of I/O handling, as interrupts allow an I/O device to notify

the 6510/6502 that it needs servicing.

P"] The information in this book applies to both the Com

modore 64 and the VIC-20. When an address differs, the ad

dresses are specified with a slash between two numbers; the

fl number on the left gives the Commodore 64 address and the

right gives the VIC-20. For example, EA31/EABF refers to

location EA31 hexadecimal on the 64 and EABF hex on the

n
vii

VIC-20. Whenever a hex number represents an address, it is

written simply as the number (say, EA31), while an absolute

hex number used by the accumulator or one of the registers is

preceded by a dollar sign (for example, $25). When an address

appears in parentheses, it refers to a two-byte pointer, or vec

tor, consisting of the address in parentheses and the following

location. For example, (FFFC) means the two-byte vector

consisting of locations FFFC and FFFD. Decimal numbers are

usually indicated by the word decimal following in paren

theses. The slash symbol is also used when referring to reg

isters or timers that differ on the two machines. For example,

Timer A/Timer 1 means that the description applies to Timer

A on the Commodore 64 and Timer 1 on the VIC-20. This is

also why the microprocessors are referred to as 6510/6502.

The meaning of the few exceptions to these rules should be

obvious from the context.

While most routines in the Kernal are described in one

section that applies to both the 64 and the VIC, there are

some routines that are so different that they require individual

descriptions.

This book is best used in conjunction with Mapping the

VIC, by Russ Davies, and Mapping the Commodore 64, by Shel

don Leemon, both from COMPUTE! Books. Since we will gen

erally just hop right into the details of a topic, consult the

memory map to get a general summary of a routine, and then

come back here for the details. The cross reference of routines

in sequential address order to page numbers in Appendix A

should be useful in this respect.

I want to express my special thanks to Russ Davies for his

help and many suggestions. And I appreciate the help given

by Stephen Levy, Sheldon Leemon, James Doody, Larry

Speth, and Larry Paxman.

This book is dedicated to Grandma Hilda.

Vlll

n

Chapter 1
n ^^^—

n

n Interrupts

and System Reset

n

n

n

n

n

Interrupts and
n System Reset

R Starting and Stopping
One of the most important tasks a computer's operating sys

tem must be able to handle is startup. When you turn on the

computer, you need to be assured that everything is in order.

That way, if you make a mistake while programming and

cause a lockup (where the keyboard will no longer respond),

you know you can simply turn the computer off and back on

and all will be well again. This is called resetting the com

puter. It is also important to be able to signal the computer to

perform some special function, instead of continuing its nor

mal routine. One way to stop the computer's ordinary process

ing is with an interrupt.

When the VIC-20 or Commodore 64 is turned on, cir

cuitry within the computer generates a RESET signal (which is

low, or zero voltage) that is sent to the RESET pins of the

6510/6502 and the I/O chips (the 6526/6522 and the 6581).

When power is first applied, the state of the registers in the

I/O chips is random. The RESET signal to the 6526 performs

the following initialization sequence: All data port pins are set

as inputs, data port registers are cleared to zero, timer control

registers are set to disable the timers, timer control latches are

changed to all ones, and all other registers are cleared to zero,

thus disabling the interrupt output line.

The RESET signal to the 6522 resets the chip as follows:

All data port pins are set as inputs, data port registers are

cleared to zero, the timers and interrupt output line are dis

abled. RESET to the 6581 sets all registers to zero and turns

off the audio output. Thus, all I/O chips except the VIC chip

are placed in a known state with interrupts disabled.

The RESET signal to the 6510/6502 starts the

microprocessor's internal reset sequence. After six clock cycles

for system initialization, the I flag of the status register is set

to disable IRQ interrupts. Then the program counter is loaded

from (FFFC), the 6510/6502 RESET vector. On the 64, the

program counter is set to FCE2, while the VIC-20 program

u
Interrupts and System Reset

U

counter is set to FD22. These values point to the RESET j i

routines that will be executed on startup. I—I
The system reset software at FCE2/FD22 then disables

IRQ interrupts (not really required according to the data sheet j i

since the I flag should already be set to 1); initializes the stack I—'
pointer; checks whether an autostart cartridge is present-

initializes memory, the RAM Kernal vectors, and the I/O reg- j i

isters (6526/6522, 6567/6560-6561, 6581); sets timer A/timer LJ
1 values and enables interrupts for CIA #1 timer A/VIA #2

timer 1; enables IRQ interrupts; and jumps to a warm start of

BASIC. This reset sequence cannot be interrupted since IRQ

interrupts have been disabled and since the source of NMI

interrupts from CIA #2/VIA #1 has been disabled.

Once the reset sequence ends, the program that receives

control (either the built-in BASIC ROM or an autostart car

tridge) executes instruction after instruction in its program. If

this program execution were all that happened, the results of

the program could never be sent to an output device and the

program could never receive data from an input device. The

I/O interrupt system solves this problem of no communication

between the 6510/6502 and the I/O devices such as the key

board, printer, disk drive, tape drive, and video screen. This

chapter discusses general concepts about interrupts. To see

how the VIC-20 and 64 NMI and IRQ interrupt handlers ac

tually function, see the detailed descriptions later in the book.

Interrupt Levels
Large mainframe computers typically have several classes of

interrupts such as program check, machine check, I/O, restart,

and supervisor call. If you try to execute a program on an IBM

System/370 machine and use an undefined opcode, you get a

program check interruption for an operation exception. If you

try to execute a program on the 6510/6502 with an undefined

opcode, the results are not guaranteed. Commodore includes a

disclaimer on the data sheets for 6510/6502 stating that they

cannot assume liability for the use of undefined opcodes. A

few articles and letters have explored these undefined opcodes,

such as "Extra Instructions" by Joel Shephard in COMPUTE!

(October 1983), a letter from Henry Gibbons in COMPUTE!

(January 1983), and an article by Gary Cordelli, "6502 MPU

Hybrid" in Commander (December 1982). Programming the

Interrupts and System Reset

,—* Commodore 64 by Raeto Collin West (from COMPUTE! Books)

i I also has a table of quasi-opcodes in the appendix.
Whenever an I/O device needs attention, it generates an

,—, interrupt. The 6510/6502 recognizes the interrupt, saves infor-

I I mation about the status of the program currently being exe

cuted, passes control to the interrupt service routine which

t—t services the device which caused the interrupt, and then re-

i 1 turns control to the interrupted program. This description is a

very general overview of the interrupt-driven Commodore 64

and VIC-20.

x The 6510/6502 chips have two interrupt input lines, IRQ

and NMI. IRQ and NMI recognize interrupt signals differently.

Whenever the IRQ input line is pulled low, the 6510/6502

completes execution of the current instruction. Then the inter

rupt mask flag (I) of the status register is examined. If I is set

to 1, IRQ interrupts are disabled and the IRQ interrupt is ig

nored. If I is cleared to 0, IRQ interrupts are enabled and the

IRQ interrupt sequence begins. The program counter (high

byte then low byte) and the status register are pushed onto

the stack. Then the interrupt mask flag (I) in the status register

is set to 1 to disable further IRQ interrupts so that the IRQ ser

vice routine is not itself interrupted by the same IRQ signal.

Then the program counter is loaded from the two-byte pointer

at (FFFE), the 6510/6502 IRQ vector. The IRQ interrupt han

dler must clear the source of the interrupt on the I/O chip that

produced it before enabling IRQ interrupts again, or the same

interrupt would be serviced again. IRQ interrupts for the

6510/6502 are re-enabled (I is cleared to 0) by either the CLI

instruction or the RTI instruction. RTI restores the status reg

ister to its state at the time the IRQ interrupt was recognized.

_, Since IRQ interrupts had to be enabled for the interrupt to be

I I recognized, the RTI thus re-enables IRQ interrupts.
When the microprocessor's NMI (nonmaskable interrupt)

p_ input line has a high-to-low transition, an NMI interrupt oc-

I I curs. As the name implies, NMI responses cannot be disabled
on the 6510/6502. When an NMI interrupt is recognized, the

r—j 6510/6502 pushes the program counter and the status register

< \ onto the stack. Then the I flag of the status register is set to 1

to disable IRQ interrupts; thus the NMI service routine cannot

,-_, be interrupted by a signal on the IRQ line. The program

! \ counter is then loaded from the two-byte pointer at (FFFA),

the 6510/6502 NMI vector. For another NMI interrupt to be

LJ
Interrupts and System Reset

recognized, the NMI input must go high and then back low. t

Thus, the signal that caused the NMI interrupt is only serviced Lj
once. The NMI interrupt handler routine should clear the

source of the interrupt on the I/O chip. When the RTI opcode ;

is executed, IRQ interrupts are either enabled or disabled to j J

the same status as when the NMI interrupt occurred.

The time it takes for the 6510/6502 to respond to the ,

NMI or IRQ interrupt signal depends on which instruction is j j
being executed and where in the instruction cycle the interrupt

signal occurs. If the last cycle of an instruction is being exe

cuted, then the next cycle recognizes the interrupt (no delay).

The slowest response to an interrupt occurs with a seven-cycle

instruction such as LSR $2005,X. If the interrupt occurs during

the first cycle, this leaves six more instruction cycles to execute

before recognizing NMI or IRQ.

Servicing Interrupts
To service an interrupt once it is detected, you must know

what caused the interrupt. A method known as polling is used

to determine which device caused the interrupt. The NMI and

IRQ interrupt handlers interrogate the interrupt flags on the

I/O chips to determine which device caused the interrupt. The

interrupt handlers check for the interrupt sources in a specific

sequence, and thus certain devices or conditions have a higher

priority than others and will be serviced first by the interrupt

handler. The NMI interrupt handler should make sure all pos

sible sources of the NMI interrupt are serviced before execut

ing RTI. If the NMI interrupt handler does not check all

sources (for example, if it services the first source and then

does RTI), then if one of the unchecked sources was generat

ing an NMI low signal when RTI is executed the NMI signal is t

still low. Since NMI must go high and then low for another | j
NMI interrupt to be recognized, you can in effect disable all

further NMI interrupts if you don't service all possible sources ,

of NMI. LJ
The IRQ interrupt handler does not have to check all

possible sources of IRQ low signals. When the IRQ interrupt { }

handler executes RTI, IRQ interrupts are re-enabled. If one of | J

the active sources of IRQ interrupts was not serviced by the

IRQ interrupt handler, this unchecked source will still be hold- s }

ing the IRQ line low upon RTI and thus will cause another LJ

IRQ interrupt. The various I/O chips that are polled by the

Interrupts and System Reset

interrupt handlers mostly have edge-sensitive inputs (this

j[means they detect transitions in voltage) from the I/O devices.
When the I/O device or another I/O chip register requests an

fmmmm> interrupt, the interrupt condition is latched into an interrupt

|] flag register to allow polling by the NMI or IRQ interrupt han

dler. If interrupts are enabled for the device or I/O chip reg-

tmmn ister, the output IRQ signal is brought low. This output IRQ

j J signal can be connected to either the NMI or IRQ input pins of

the 6510/6502. The NMI or IRQ interrupt handler is then

responsible for clearing the interrupt flag during its polling se

quence, thus allowing the I/O IRQ output line to return to

high. The X register, Y register, and accumulator should be

saved by the interrupt service routine upon entry and restored

before exiting the handler.

Interrupts from I/O devices or I/O chip registers can oc

cur and set an interrupt flag in the I/O chip interrupt flag reg

ister. Rather than have this interrupt passed on to the IRQ or

NMI interrupt handler routines by bringing the I/O chip's IRQ

output line low, you can write your own interrupt handler that

polls the I/O device interrupt flag register. The serial I/O rou

tine uses this technique of having its own polling subroutine

for timer interrupts to detect the times for various handshake

conditions during serial data transfer. Program 1-1 (for the

Commodore 64) also demonstrates this method by polling

timer A interrupts from the CIA #1 interrupt data register

rather than allowing the timer A interrupt to generate an IRQ

interrupt itself.

The 6510/6502 BRK instruction (opcode 00) can be used

to generate an IRQ interrupt from a program, rather than from

an I/O device. BRK increments the program counter by two

and sets the break flag in the status register to 1. The just-

}| modified program counter and status register are then pushed
onto the stack, and the program counter is loaded with the

IRQ vector at (FFFE). The Kernal interrupt service routine on

il the 64 and VIC-20 examines the break flag in the copy of the
status register that has been pushed onto the stack to detect

whether a BRK instruction caused the IRQ interrupt.

Interrupt Sources
(mmmi Figures 1-1 and 1-2 show the sources of NMI and IRQ inter-

i 1 rupts on the VIC-20 and the order in which the interrupt

handlers service the possible sources.

Interrupts and System Reset

Figure 1-1. VIC-20 NMI Interrupts

I/O Interrupt

Flag Register

91 ID bit 1

911Dbit6

911Dbit5

911Dbit4

Source

VIA#1 CA1 from

RESTORE key

VIA#1 Timer 1

VIA#1 Timer 2

VIA#1 CB1

Order of

Service

1

2

3

4

Comments

Test for autostart

cartridges;

if STOP key is pressed

then execute BRK routine

RS-232 send

RS-232 receive

RS-232 receive

Figure 1-2. VIC-20 IRQ Interrupts

I/O Interrupt

Flag Register

912D bit 6

912D bit 5

912D bit 1

912D bit 6

912D bit 5

Source

VIA#2 Timer 1

VIA#2 Timer 2

VIA#2 CA1

VIA#2 Timer 1

VIA#2 Timer 2

Comments

Normal IRQ handler; called

every 1/60 sec. to scan

keyboard, update jiffy clock,

blink cursor, etc.

Tape IRQ handler, tape write

Tape IRQ handler; tape read

Tape IRQ handler; tape read

Used by serial I/O

Only one of the timer 1, timer 2, or CB1 interrupts is

serviced by any one execution of the VIC-20 NMI interrupt

handler. The potential problem mentioned earlier of an

unserviced NMI interrupt keeping NMI low and thus disabling

further NMI interrupts does not occur, though. Rather, another

problem appears. The interrupt enable register is temporarily

cleared when servicing either timer 1, timer 2, or CB1 inter

rupts, resulting in the NMI output line from the VIA going

high. So, the next NMI low would cause another interrupt.

This interrupt could occur after clearing the timer 1 interrupt

flag, but before executing the RS-232 send routine. It could

also occur after clearing the timer 2 interrupt flag, but before

executing the RS-232 receive routine. Thus nested NMI inter

rupts for timer 1 and timer 2 could occur and disrupt the RS-

232 send/receive timing sequences. Apparently in recognition

LJ

LI

U

LJ

U

LJ

U

LJ

LJ

n

Interrupts and System Reset

of this problem, the NMI interrupt handler was redesigned on

the Commodore 64.

Figures 1-3 and 1-4 show the sources of NMI and IRQ

interrupts on the Commodore 64 and the order in which the

interrupt handlers service the possible sources.

Figure 1-3, Commodore 64 NMI Interrupts

I/O Interrupt

Flag Register

DDOD bit 0

DDOD bit 1

DDOD bit 4

DDOD bit 1

DDOD bit 4

Connected

directly to

6510 NMI line

Source

CIA#2 timer A*

CIA#2 timer B*

CIA#2 FLAG1*

CIA#2 timer B+

CIA#2FLAG1 +

RESTORE key

Order of

Service

1

2

3

4

5

6

Comments

RS-232 send

RS-232 receive

RS-232 receive

RS-232 receive

RS-232 receive

Test for autostart cartridge;

if STOP key is pressed

execute BRK routine

H

n

Figure 1-4. Commodore 64 IRQ Interrupts

I/O Interrupt

Flag Register

DCOD bit 0

D019 bit 0

DCOD bit 1

DCOD bit 4

DCOD bit 0

DCOD bit 1

Source

CIA#1 Timer A

6567 raster

compare

CIA#1 Timer B

CIA#1 FLAG1

CIA#1 Timer A

CIA#1 Timer B

Comments

Normal IRQ handler; called

every 1/60 sec. to scan key

board, update jiffy clock, blink

cursor, etc.

Determines whether PAL or

NTSC video format is being used

(called during system reset)

Tape IRQ handler; tape write

Tape IRQ handler; tape read

Tape IRQ handler; tape read

Used by serial I/O

Figure 1-5 shows possible NMI and IRQ interrupt sources

that are not serviced by the Kernal's NMI and IRQ interrupt

handlers. In order to use these, you must change the vectors

to the interrupt handlers, test for the source of the interrupt,

and process accordingly.

Interrupts and System Reset

Figure 1-5. Interrupts Not Serviced or Enabled by

Kernal Routines on Commodore 64 or VIC-20,

I/O Interrupt

Flag Register

D019 bit 1

D019 bit 2

D019 bit 3

DCOD bit 3

DCOD bit 2

DCOD bit 4

DDOD bit 3

91 ID bit 0

91 ID bit 3

91 ID bit 2

912D bit 0

912D bit 2

912D bit 3

912D bit 4

Type

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ

NMI

NMI

NMI

NMI

IRQ

IRQ

IRQ

IRQ

Comments

Commodore 64

6567 sprite-to-background collision

6567 sprite-to-sprite collision

6567 light pen trigger

CIA#1 serial port full/empty

CIA#1 TOD clock alarm

CIA#1 serial bus SRQ in (DCOD bit 4 is

serviced for tape read)

CIA2 serial port full/empty

VIC-20

VIA#1 CA2 tape motor

VIA#1 CB2

VLA#1 Shift Register

VIA#2 CA2 serial clock out

VIA#2 Shift Register

VIA#2 CB2 serial data out

VIA#2 CB1 serial SRQ in

u

u

LJ

LJ

U

An IRQ Application
Program 1-1 illustrates the technique of adding a routine to

the beginning of the Commodore 64's normal IRQ interrupt

handler. This program fixes the problem that occurs on some

older 64s when you are entering characters at the bottom of

the screen, press delete, and thus lock up the keyboard. To see

if your 64 has the version of the Kernal which includes this

bug, go to the bottom of the screen, enter one line of charac

ters and when the cursor wraps to the next line enter a second

line of characters. Stop entering characters as soon as the sec

ond line scrolls and the cursor returns to the bottom left cor

ner. Then press DEL. The word LOAD is displayed and if a

program is in memory it runs. In either case, the keyboard

locks up.

Since this lockup apparently is due to destroying the con

tents of the CIA registers that are located in memory immedi

ately past color RAM, Program 1-1 does not rely on the

10

LJ

U

LJ

U

U

n
Interrupts and System Reset

i t

I \

n

n

contents of the CIA registers. Thus, the timer A interrupt that

normally drives the 1/60 second IRQ interrupt is not used. In

stead Program 1-1 uses the raster scan interrupt that occurs at

twice the normal timer A interrupt rate (120 times per second).

This new IRQ wedge (so-called because it is inserted into the

normal interrupt execution) then checks the timer A bit in the

CIA #1 interrupt data register to see if the keyboard should be

scanned and the jiffy clock updated. Thus the routine does not

rely on the timer A interrupt, which could be corrupted if the

keyboard lockup occurs.

With the safe raster scan interrupt always occurring, the

wedge can check to see if any registers in the CIA that should

always contain one fixed value have been modified. If they

have, then it is likely that the keyboard lockup has occurred,

and in this case the routine that reinitializes the CIA registers

is called. The program demonstrates that your Commodore 64

can be driven by IRQ interrupts from the VIC chip rather than

from IRQ interrupts from timer A on the CIA chip. Jim

Butterfield's article "Son of Split Screens" in COMPUTED First

Book of Commodore 64 is an excellent model on which this pro

gram is based.

Program 1-1. Keyboard Unlock Routine

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

.OPT NOERRORS,LIST,GENERATE

PROGRAM TO SETUP THE NEW IRQ

INTERRUPT HANDLER

TO EXECUTE THIS PROGRAM EITHER

SYS 52752 FROM BASIC OR

G CE10 FROM ML MONITOR

AFTER THE PROGRAM IS LOADED

* = $CE10

SEI

LDA #$00

STA $0314 ;

LDA #$CF

STA $0315 ?

LDA #$7F ?

STA $DC0D

LDA $D011 ;

AND #$7F

STA $D011 ;

LDA #$01 ;

RESET IRQ

VECTOR (0314)

TO $CF00

TURN OFF TIMER A INTERRUPTS

TURN OFF HIGH

BIT OF RASTER

SCAN REGISTER

SET RASTER

11

Interrupts and System Reset

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

12

STA $D012

LDA $D01A

ORA #$81

STA $D01A

CLI

RTS

7 REGISTER TO 1

7 INTERRUPT ENABLE REGISTER

FOR 6567

; ENABLE 6567 RASTER INTERRUPT

; WHEN RASTER COUNT = RASTER REG

7 RETURN TO CF00 NEXT IRQ

LJ

LJ

U

LJ

Li

FOLLOWING IS THE NEW IRQ INTERRUPT

HANDLER AT CF00 THAT USES THE RASTER INTERRUPTS

RATHER THAN TIMER A INTERRUPTS

TO DRIVE IRQ INTERRUPT PROCESSING

THIS INTERRUPT HANDLER RECOVERS

FROM A KEYBOARD LOCKUP

BY CHECKING FOR THE WIPEOUT OF

THE CIA REGISTERS THAT OCCURS

DURING KEYBOARD LOCKUP AND

THEN RESTORES THE CIA REGISTERS

BACK TO THEIR CORRECT SETTINGS

* = $CF00

LDA #$01

STA $D019 ;

LDA $DC00 ;

CMP #$7F ;

BNE LOCKUP

LDA $DC02 ;

CMP #$FF ;

BNE LOCKUP

IF THE KEYBOARD

THEN SEE A TIMER

OCCURRED AND SET

LDA $DC0D ;

AND #$01 ;

BEQ NOTA ;

JMP $EA31 7

CLEAR RASTER LATCH

CHECK CIA 1 DATA PORT A

FOR CORRECT COLUMN SETUP

ALSO CHECK DATA DIRECTION OF

PORT A

SHOULD BE ALL OUTPUTS

IS NOT LOCKED UP

A INTERRUPT HAS

LATCH IN INTERRUPT DATA REGISTER

CIA 1 INTERRUPT DATA REG

LEAVE ONLY TIMER A BIT

BEQ IF NO TIMER A INTERRUPT

IF TIMER A THEN DO NORMAL IRQ

u
; RECOVER FROM KEYBOARD LOCKUP

LOCKUP JSR $FF84 ; IOINIT - BUT RENABLES

; TIMER A IRQ

LDA #$7F ; SO TURN OFF TIMER A AGAIN

u

n
Interrupts and System Reset

n

1780 STA $DC0D

1790 ;

1800 ; IP NO TIMER A INTERRUPT OR IF

1810 7 KEYBOARD LOCKED UP

1820 NOTA PLA ; RESTORE REGISTERS

1830 TAY ; SAVED AT ENTRY

1840 PLA ; TO IRQ

1850 TAX

1860 PLA

1870 RTI

1880 .END

H

H

n 13

n

n

n

Chapter 2

System

Reset

n

System Reset

' ! This chapter is a detailed look at the reset routine in the 64
and VIC, which is activated when the power is turned on.

1 \ System Reset
FCE2/FD22-FD01/FD3E

Called by:

The program counter loads the two-byte RESET vector at

(FFFC) when RESET input to the 6510/6502 goes low. This

routine controls the software reset, and calls subroutines to

perform some aspects of initialization. From this routine, con

trol is passed to either BASIC'S cold start routine or to the cold

start routine of an autostart cartridge, if one is present.

Entry conditions:

IRQ interrupts are disabled by hardware. I/O chips should

have accepted the system RESET signal and performed their

own internal reset functions.

Operation:

1. Disable IRQ interrupts.

2. Initialize stack pointer to $FF. Page one of RAM

(0100-01FF) is the stack, thus the stack pointer points to

01FF.

3. Clear the decimal flag in the status register so that addi

tion and subtraction operations produce proper binary

results.

4. JSR FD02/FD3F to check for autostart cartridge. Return

jj with Z (zero) bit of status register set to 1 if an autostart
cartridge is present and has proper autostart character

sequence.

; j 5. If status register Z flag was set to 0 following the check for

an autostart cartridge (step 4), then BNE to step 7.

t 6. If Z=l then an autostart cartridge was found. In this case,

; (immediately pass control to the autostart cartridge cold

start routine by JMP(8000)/JMP(A000).

H

n

LJ
System Reset

LJ

The following steps 7-13 apply only to the 64: \ /

7. If the autostart sequence was not found, then store the X {—'
register (which now has a value from 1-5) into DO16, the

VIC chip control register, thus forcing bit 5, the reset bit, \ /

to be set to 0. LJ
8. JSR FDA3 to initialize the CIA registers, the 6510 built-in

I/O port and data direction registers, and SID registers; j

start CIA #1 timer A, and set the serial clock output line w->

high.

9. JSR FD50 to initialize memory pointers.

10. JSR FD15 to initialize the Kernal RAM vectors that start at

(0314).

11. JSR FF5B to initialize the VIC-II chip registers, set the

PAL/NTSC flag and set timer A to a value based on this

flag.

12. Enable IRQ interrupts.

13. JMP(AOOO) to BASIC'S Cold Start routine.

The following steps 7-12 apply only to the VIC-20:

7. JSR FD8D to initialize memory pointers.

8. JSR FD52 to initialize the Kernal RAM vectors that start at

(0314).

9. JSR FDF9 to initialize the 6522 registers.

10. JSR E518 to initialize the VIC chip registers. (See chapter 7).

11. Enable IRQ interrupts.

12. JMP(C000) to BASIC'S cold start routine.

Test for Autostart Cartridge

FD02/FD3F-FD0F/FD4C

Called by:

JSR at FCE7/FD27 in System Reset, JSR at FE56/FD3F in NMI ^ ,

Interrupt Handler. i—I
This routine checks for the characters CBM80 at location

8004 on the 64 or the characters A0CBM at location A004 on] ,

the VIC-20. In both of these sequences, the "CBM" characters I—t
have the most significant bit set to 1. If this sequence is not

found, then the status register Z flag is set to 0 for a sub- , .

sequent BNE. If the sequence is found, then Z is set to 1 and 1—>
the system reset routine or the NMI interrupt handler will

JMP(8000)/JMP(A000). , ,

18 U

System Reset

n

n Operation:

1. Initialize X register to 5.

2. Load accumulator with the value at FD0F+X/FD4C+X.

<—■» 3. Compare this value loaded into the accumulator with the

I - J value at address 8003+X/A003+X. The compare sets the Z
flag to 0 if the values are not equal.

pj 4. If not equal, then RTS with the Z bit set to 0 (BNE

' } condition).

5. If equal, then decrement X register.

6. If X register is now 0, then the autostart sequence characters

exist; return with the Z bit of status register set to 1.

7. If X register is not yet 0, then branch to step 2.

Initialize Memory Pointers (64)

FD50-FD9A

Called by:

JSR at FCF5 in System Reset, JMP from Kernal RAMTAS vec

tor at FF87.

This routine initializes memory locations in pages 0, 2,

and 3 of memory and sets pointers to the start of RAM, the

end of RAM + 1, and the start of the tape buffer.

Operation:

1. For Y = $0-FF, store 0 at address 0002+Y, 0200+Y, and

0300+Y, thus storing zero into locations 0002-0101,

0200-03FF. Note that STA $0002,Y (absolute addressing in

dexed with Y) is used to clear zero page. If STA $02,X (zero

page addressing indexed with X) had been used, then loca

tions 0 and 1 would also have been cleared.

2. Set pointer to tape buffer (B2) to the value $033C.

r~[3. Set RAM test pointer (Cl) to start at 0400. Set Y register to

1 ' $00. The Y register is used during RAM test to increment
through each page of memory.

p—t 4. Save the current contents of the RAM location in the X reg-

L. ! ister. Store $55 into this RAM location and then compare
the contents of the location to $55. If not equal, then this is

nnotRAM, so branch to step 6. If this test succeeds, then

_ ROL, store the accumulator contents (now $AA) at the same

location and compare to $AA to see if this is a RAM loca-

r—* tion. If this test of RAM fails, branch to step 6.

n 19

u
System Reset

u

5. After each successful test of a RAM location, restore the , ,

original contents that have been saved in the X register and I I
increment the Y register. When the Y register rolls over to

zero, then increment C2, the page being tested. Loop to s ,

step 4. i I
6. When the first non-RAM location is found, note its location.

TYA and TAX to set the X register with the offset within the s ,

page of memory, and LDY C2 retrieves the page of memory. ^ 1
7. CLC and JSR FE2D to set the pointer to the end of RAM +

1 in (0283).

8. Set the pointer to the start of RAM, (0281), to $0800.

9. Set the screen memory page number pointer at 0288 to $04.

Initialize Memory Pointers (VIC-20)

FD8D-FDFD

Called by:

JSR at FD2F in System Reset.

This routine initializes memory in pages 0, 2, and 3. It

also tests for the start and end of RAM. RAM must start be

tween 0400 and 1000 inclusive, and RAM must not end before

2000. If these requirements are not met, then the initial

BASIC-bytes-free message does not appear. Instead, the screen

remains blank white with a blue border. No particular error

message is written to the screen.

Screen memory is located in different areas depending on

how much RAM the system contains. If the end of RAM + 1

>= 2100, then the screen memory page is initialized to $10;

otherwise, the screen memory page is initialized to $1E.

The pointer to the tape buffer (B2) is initialized to 033C.

Exit from this routine is made by a JMP to the routine to

set the top of memory pointer which then does an RTS. If j !
RAM is not located at the expected areas, then this routine ' *
does not exit: an infinite loop of initializing the VIC chip reg

isters is executed.]

Operation:

1. For X = 0 to $FF, store 0 at address 00+X, 0200+X, and s (

0300+X; thus pages 0, 2, and 3 are initialized to all zeros. ! 1
2. Set pointer to tape buffer (B2) to 033C.

3. Set RAM test pointer (Cl) to start its test at 0400. ,

4. Increment the RAM test pointer. ! j

20 U

H
System Reset

pn 5. JSR FE91 to test the location pointed to by (Cl) to see if it

f] is a RAM location. Upon finding the first RAM location,
see if the start of RAM is < 1100. If not, display the blank

—> error screen in an infinite loop. The infinite loop is: FDEB

I J JSR E5C3; FDEE JMP FDEB.
6. If the location was non-RAM, fall through to step 7. If

f—*> RAM, loop to step 4.

i. > 7. Upon falling through (non-RAM), see if this first non-
RAM location is < 2000.

8. If so, then display the error screen in the infinite loop

mentioned in step 5.

9. Was the end of RAM + 1 >= 2100?

10. If no, then set screen memory page pointer (0288) to 1E00,

then JMP FE7B to set the top of memory + 1 (0283) to

1E00 and RTS.

11. If the end of RAM + 1 was >= 2100, then set the screen

memory page pointer (0288) to 1000, reset the pointer to

the start of memory (0282) to 1200, and set the pointer to

the end of memory + 1 (0283) to the first non-RAM loca

tion found.

Test for RAM Byte (VIC-20)

FE91-FEA8

Called by:

JSR at FDB5 in Initialize Memory Pointers.

A byte of memory is tested to see if it is RAM by attempt

ing to store a value in the byte. If the value can be stored,

then this byte is RAM. The status register carry flag is clear on

exit if this byte is non-RAM, while the carry flag is set if the

byte is RAM. The RAM test is nondestructive since the orig-

fj inal value of the byte to be tested is saved on entry to the rou
tine and restored on exit. By trying to store two different

_^ values into the byte being tested, you not only perform a bet-

"""] ter validation that the memory element is functioning prop
erly, but you also protect yourself from setting the pointers

^ incorrectly if by rare chance the values in a ROM location

• | matched exactly with the value you were trying to store.

Operation:

nl. Load accumulator with the value in the byte of memory to

be tested.

H

u
System Reset

u

2. TAX to temporarily store the original value. ;

3. Store $55 in the byte. LJ
4. Compare the value of the byte to $55 to see if $55 was ac

tually stored. v ,

5. If not, then clear the carry and branch to step 9. ! I
6. If it was stored, then rotate right (ROR) into the carry ($55

rotated right sets the carry). ,- .

7. Store value in accumulator into the byte of memory being J 1
tested once again.

8. Is the value stored equal to the accumulator? If not, then

clear the carry.

9. Restore original value of the byte from the X register.

10. RTS with carry clear if non-RAM or carry set if RAM.

Initialize Kernal RAM Vectors

FD15/FD52-FD2F/FD6C

Called by:

JSR at FCF8/FD32 in System Reset, JSR at FE66/FED2 in BRK

Interrupt Handler, JMP from Kernal RESTOR vector at FF8A;

alternate entry at FD1A/FD57 by JMP from Kernal Vector at

FF8D.

This routine initializes the Kernal vectors at (0314)-(0332).

The vector table in ROM at FD30/FD6D is used for the Kernal

vectors when the routine is entered from the System Reset,

BRK, or RESTOR routines.

If you enter this routine at the alternate entry point and

with the status register carry bit clear, then the vectors from

(0314)-(0322) will instead be loaded from memory beginning

at the address specified by the contents of the X and Y reg

isters. This allows you to create your own vector table. If you

want to use your own I/O routines instead of the system de- 1 j
faults for any of the routines with RAM vectors at 0314-0332,

you must change the vector either directly or through using

the Kernal Vector routine. You must reset your own vectors \
after each RESET or NMI interrupt caused by the RESTORE

key, as the default vectors are reloaded in these situations.

This routine can also be used to copy the contents of the ^J
Kernal RAM vectors. If you enter the routine at the alternate

point with the carry bit set, the contents of (0314)-(0332) are

stored at the location specified by the contents of the X and Y * {
registers.

22 LJ

n
System Reset

H '

f-! Entry requirements (for FD1A/FD57):

L.J The carry bit should be set or clear, depending on the function

desired:

p* Set the carry bit to store the RAM vectors at (0314)-(0332)

' J at the location pointed to by the X and Y registers. X should
hold the low byte of the storage address and Y should hold

p the high byte.

''. ' Clear the carry bit to load the RAM vectors at (0314)-(0332)
from the location pointed to by the X and Y registers. X should

hold the low byte of the storage address and Y should hold

the high byte.

Exit conditions:

The default settings for the vectors are established as shown

below:

Default Kernal RAM Vectors

n

Vector

(0314)

(0316)

(0318)

(031A)

(031C)

(031E)

(0320)

(0322)

(0324)

(0326)

(0328)

(032A)

(032C)

(032E)

(0330)

(0332)

64

EA31

FE66

FE47

F34A

F291

F20E

F250

F333

F157

F1CA

F6ED

F13E

F32F

FE66

F4A5

F5ED

VIC

EABF

FED2

FEAD

F40A

F34A

F2C7

F309

F3F3

F20E

F27A

F770

F1F5

F3EF

FED2

F549

F685

Function

IRQ interrupt handler

BRK interrupt handler

NMI interrupt handler

OPEN

CLOSE

Set input device

Set output device

Reset default I/O

Input from device

Output to device

Test STOP key

Get from keyboard

Close files

Unused (points to BRK handler)

LOAD

SAVE

Operation:

1. FD15/FD52: Load X and Y with the address of the default

vector table, FD30/FD6D, and clear the carry.

2. Store X and Y at (C3), the base address of the vector table.

3. If carry is clear then use the table addressed by (C3) and

load the RAM vectors at (0314)-(0332) from this table.

4. If carry is set, then read the RAM vectors at (0314)-(0332)

and store them at the location address by (C3).

23

u
System Reset

l I

Initialize I/O Chips (64) \ /

FDA3-FDF8 and FF6E-FF80 ^

Called by:

JSR at FCF2 in System Reset, JSR at FE69 in BRK Interrupt |_[
Handler, JMP from Kernal IOINIT vector at FF84; alternate en

try at FDDD by JMP at FF6B in Initialize VIC Chip and Set

PAL/NTSC Flag, JSR at FCA5 in Reset I/O Registers and Re- jj
store IRQ Vector.

This routine initializes the two CIA chips, the SID chip,

and the 6510 I/O port; starts CIA #1 timer A (which is used

to trigger the system IRQ every 1/60 second); and sets the se

rial bus clock output line. The alternate entry point is used to

set the correct value in timer A based on the PAL/NTSC flag.

Operation:

1. Store $7F in DCOD, CIA #1 interrupt control register, thus

clearing all interrupt masks to disable interrupts from CIA #1.

2. Store $7F in DDOD, CIA #2 interrupt control register, thus

clearing all interrupt masks to disable interrupts from CIA #2.

3. Store $7F in DC00, CIA #1 data port A to set the key

board column values for the keyboard scan.

4. Store $08 in DCOE, CIA #1 control register A, and in

DDOE, CIA #2 control register A, to set the values shown

below for both CIA chips:

Initial CIA Control Register A Settings

Bit 7 = 0: Time-of-day clock frequency, 60 Hz

Bit 6 = 0: Serial port I/O mode is input

Bit 5 = 0: Timer A counts system cp2 clock pulses

Bit 4 = 0: Don't force a load of timer A

Bit 3 = 1: Timer A run mode is one-shot

Bit 2 = 0: Timer A output mode to PB6 is pulse i j

Bit 1 = 0: No timer A output on PB6 I—I
Bit 0 = 0: Stop timer A

5. Store $08 to DC0F, CIA #1 control register B, and to j [

DD0F, CIA #2 control register B, to set the values shown '—'
below for both CIA chips:

Initial CIA Control Register B Settings [J

Bit 7 = 0: Set time-of-day clock

Bits 6-5 = 00: Timer B counts system cp2 clock pulses

Bit 4 = 0: Don't force a load of timer B J j

Bit 3 = 1: Timer B run mode is one-shot

Bit 2 = 0: Timer B output to PB7 is pulse

24 U

n
System Reset

n ■

;—1 Bit 1 = 0: No timer B output on PB7

L_J Bit 0 = 0: Stop timer B

6. Store $00 in DC03, CIA #1 data direction register, for port

r-j B and in DD03, CIA #2 data direction register for port B.

' -(This defines all bits in DC01, CIA #1 data port B, and
DD01, CIA #2 data port B, as inputs.

p! 7. Store $00 in D418, a 6581 SID chip register, to turn the

[output volume off so that the chip will be silent following
initialization.

8. Store $FF in DC02 CIA #1 data direction register for port

A, thus setting all bits in DC00, CIA #1 data port A, as

outputs.

9. Store $07 in DD00, CIA #2 data port A, and $3F in DD02,

CIA #2 data direction register for port A, to initialize port

A for the functions shown below:

Initial CIA #2 Data Port A Definitions

Bit 7 = 0: Serial bus data input

Bit 6 = 0: Serial bus clock input

Bit 5 = 0: Serial bus data output

Bit 4 = 0: Serial bus clock output

Bit 3 = 0: Serial bus attention signal output

Bit 2 = 1: RS-232 data output

Bits 1-0 = 11: VIC chip memory bank select

10. Store $E7 in 01, the 6510's built-in I/O port, and $2F in

00, the data direction register for that port, to initialize the

port for the functions shown below:

Initial 6510 I/O Port Values

bit 7 = 1: Set for input, but no corresponding 6510 pin ex

ists

bit 6 = 1: (In) Set for input, but no corresponding 6510 pin

r™[exists
bit 5 = 1: Tape motor control output (1 = motor on)

bit 4 = 0: Tape button sense input line

p"*> bit 3 = 0: Tape write output line

-1 bit 2 = 1: CHAREN output—select character ROM or I/O
devices at D000-DFFF (1 = I/O devices)

_ bit 1 — 1: HIRAM output—controls whether the 64 sees

i J RAM or Kernal ROM in address space E000-FFFF (1 =
Kernal; if RAM is selected here, then BASIC ROM is also re

placed by RAM)

P"j bit 0 = 1: LORAM output—controls whether the 64 sees
RAM or BASIC ROM in address space A000-BFFF (1 =

BASIC)

n 25

LJ
System Reset

LJ

11. FDDD: See if 02A6, the PAL/NTSC flag, is 0 (NTSC) or 1 , ,

(PAL). If 02A6 indicates PAL, then initialize timer A on !—(
CIA #1 by writing $25 to DC04, timer A low byte latch,

and $40 to DC05, timer A high byte latch, thus setting a \ I

latch value of $4025 for timer A.]—I
If 02A6 indicates NTSC, then initialize timer A on

CIA #1 by writing $95 to DC04, timer A low byte latch, , .

and $42 to DC05, timer A high byte latch, thus setting a I—1
latch value of $4295 for timer A.

12. JMP to FF6E for the remainder of this routine.

13. FF6E: Store $81 to the write-only DCOD CIA #1 interrupt

control register, enabling interrupts and setting the mask

for CIA #1 timer A interrupts (bit 0). Thus, timer A inter

rupts will now generate an interrupt request in the read

only interrupt control data register at DCOD and will also

set the timer A latch in the read-only data register.

14. Load accumulator from DCOE, CIA #1 control register A.

AND with $80, setting all bits to zero except for bit 7. Bit 7

is left unchanged to maintain the setting for the frequency

of the time-of-day clock, 50 Hz(l) or 60 Hz(0). Then ORA

$11 to force the timer A latch values to be loaded into the

timer A counter and to start timer A countdown. Store the

accumulator contents back into DCOE to initiate the

process.

15. JMP EE8E to load accumulator from DD00, CIA #2 data

port A, then ORA $10, and store the accumulator back

into DD00. This sets the serial bus clock output line to 1.

The output line then goes through an inverter so the ac

tual voltage on the CLK line at the serial port is low.

Initialize VIA Registers (VIC-20) , ,

FDF9-FE48 LJ

Called by:

JSR at FD35 in System Reset; JSR at FED5 in BRK Interrupt j |
Handler; alternate entry at FE39 from JSR at FCE3 in Reset '
I/O Registers and Restore IRQ Vector.

This routine initializes the registers of the 6522 VIA chips J i
in the VIC, and sets the CB1 and CB2 control lines. It also sets W
data direction for ports A and B, and disables all interrupts

from the VIAs except for timer 1 interrupts on VIA #2 (used to J j

trigger the system IRQ interrupt every 1/60 second). Timer 1

on VIA #2 is initialized to 17,033 (decimal).

26 • LJ

n
System Reset

n Operation:

1. Disable all interrupts from VIA #1 and VIA #2 by storing

$7E in 91 IE and 912E, the interrupt control registers.

— 2. Store $40 in the auxiliary control registers for VIA #1,

L i 91 IB, and VIA #2, 912B, setting the values shown below:
Initial Auxiliary Control for VIA Chips

j-—* Bits 7-6 = 01: Timer 1 in continuous free-running mode, with

' * output on PB7 disabled
Bit 5 = 0: Timer 2 is interval timer in one-shot mode

Bits 4-2 = 000: Shift register disabled

Bit 1 = 0: Data port B reflects pin values, not latched values

Bit 0 = 0: Data port A reflects pin values, not latched values

3. Store $FE in 911C, VIA #1 peripheral control register,

giving the values in the table below:

Initial VIA #1 Peripheral Control

Bits 7-5 = 111: CB2 is output, held high

Bit 4 = 1: CB1 interrupt flag is set on a low-to-high transition of

CB1 input

Bits 3-1 = 111: CA2 is output, held high

Bit 0 = 0: CA1 interrupt flag is set on a high-to-low CA1 input

transition

4. Store $DE in 912C, VIA #2 peripheral control register,

giving the values listed here:

Initial VIA #2 Peripheral Control

Bits 7-5 = 110: CB2 is output, held low

Bit 4 = 1: CB1 interrupt flag is set on a low-to-high transition of

CB1 input

Bits 3-1 = 111: CA2 is output, held high

Bit 0 = 0: CA1 interrupt flag is set on a high-to-low CA1 input

transition

P"j 5. Store $00 in 9112, VIA #1 port B data direction register, to

set all bits in port B as inputs.

6. Store $FF in 9122, VIA #2 port B data direction register, to

j~| set all bits in port B as outputs.
7. Store $00 in 9123, VIA #2 port A data direction register,

to set all bits in port A as inputs.

PI 8. Store $80 in 9113, VIA #1 port A data direction register,

to set bits 0-6 in port A as inputs and bit 7 as an output.

9. Store $00 into 91 IF to clear the nonhandshaking data port

I""] A for VIA #1.
10. JSR EF84 to set VIA #2 peripheral control register to hold

CA2 low on VIA #2.

n 27

u
System Reset

Ll

11. Store $82 in 911E, VIA #1 interrupt enable register, to en- (

able interrupts from CA1 for VIA #1 (the RESTORE key LJ
interrupt).

12. JSR EF8D to set VIA #2 peripheral control register to hold , ,

the CA2 high on VIA #2 (the serial bus clock output line). l_|
Since interrupts are not enabled for a CA2 active transition

on VIA #2, this change on CA2 of VIA #2 does not cause . ,

an interrupt. ! |

13. FE39: Enable timer 1 interrupts on VIA #1 by storing $C0

in 912E, VIA #2 interrupt enable register. Thus, the 1/60-

second IRQ interrupts from timer 1 are now enabled.

14. Initialize timer 1 on VIA #2. Store $89 in 9124, timer 1

low latch during a write. Store $42 in 9125, timer 1 high

latch. This store into the timer 1 high latch also triggers

the following operations: timer 1 high latch is transferred

to timer 1 high counter; timer 1 low latch is transferred to

timer 1 low counter. Timer 1 interrupt flag is reset. Since

timer 1 is in continuous or free-running mode, it is already

counting, and this operation resets the count to $4289.

Since timer 1 interrupts are enabled, when timer 1 counts

down to zero, a timer 1 interrupt is generated. Instead of

continuing to count down from zero after an interrupt, the

contents of the timer 1 latches (which have been set to

$4289 by this step) are transferred to the timer 1 low count

and high count bytes, and the countdown continues from

this latched value. Thus, timer 1 is set to always produce

an IRQ interrupt at the same time interval. The concept of

latches and counters is difficult to grasp, but essential if

you try to use the timers in your own programs.

Initialize VIC-II Chip and Set PAL/NTSC Flag (64) . .

FF5B-FF6D LJ

Called by:

JSR at FCFB in System Reset. | j

This is an interesting routine that allows the 64 to detect '—

whether its VIC-II chip's output is set up for PAL or NTSC

video format, allowing software adjustment of any values that j |

must be modified on the two systems. This routine is only **-J

found in the ROMs of newer 64s.

LJ

28 U

H
System Reset

H

_ 1. JSR E518 (see Screen section) to set VIC-II chip registers,

i i blank the screen, set the cursor pointers, and initialize the
screen line link table.

_ 2. Load accumulator from DO12, thus reading the raster reg-

I _ I ister (eight low order bits of raster line).
3. If accumulator is nonzero, branch to step 2. Loop until the

,_, raster count goes through zero one time.

I \ 4. Load accumulator from DO19, the VIC chip interrupt flag

register.

5. AND $01 to use setting of raster compare IRQ flag.

6. Store accumulator into 02A6, the PAL/NTSC flag. This

stores a 0 if the 64 is using NTSC video, or stores a 1 for

PAL video. Bit 7 of the raster register DO11 and bits 0-7 of

D012 were initialized to $0137 (311 decimal). Since NTSC

video generates only 262 raster lines while PAL video gen

erates 312 raster lines, this raster compare value is reached

(and the IRQ raster interrupt flag set) only if using PAL

video.

7. JMP FDDD to set CIA #1 timer A value based on the

PAL/NTSC flag in 02A6.

n

n

n

n

n

n

Chapter 3
n r

h NMI
Interrupts

n

n

n

n

n

n NMI Interrupts

< ! The two-byte NMI interrupt vector is located at (FFFA). This is
a design feature of the 6510/6502 microprocessor. Whenever

nanNMI interrupt occurs, the address contained in FFFA and

FFFB in low byte, high byte format is loaded into the program

counter. In \£I£ and 64 ROM, the value is FE43/FEA9, and,

when this routine is executed, IRQ interrupts are disabled, fol

lowed by JMP (0318). The default values loaded into locations

318 and 319 during system initialization are FE47/FEAD, which

redirect the routine immediately back to the NMI handler in

ROM. The indirect jump through the RAM vector allows you

to wedge into the NMI handling process by changing the values

in 318 and 319 if you wish to add your own NMI routines.

The 64 routine determines whether the interrupt was

caused by the RESTORE key, FLAG line, timer A, or timer B.

For the VIC, it determines whether the interrupt was

caused by the RESTORE key, timer 1, timer 2, or CB1.

If any of these interrupts has occurred, specific interrupt

handling for that condition is performed.

The discussion of RS-232-C routines also treats NMI

interrupts, since one main function of NMI interrupts on the

64 and VIC is to handle RS-232-C input/output.

The 64 NMI interrupt handler is considerably rewritten

from the VIC version. The VIC allows nested NMI interrupts

to occur, which you generally don't want in your NMI inter

rupt handler.

One somewhat unimportant fact about NMI interrupts is

1 that holding down the RESTORE key is all that is needed to

! I pass control to an autostart cartridge, while both RESTORE
and RUN/STOP must be held down to pass control to BASIC.

! NMI Interrupt Handler Jump

FE43/FEA9-FE46/FEAC

H Called by:
Program counter loads NMI vector when the 6510/6502 NMI

line goes from high to low.

[H Whenever an NMI interrupt occurs, the NMI vector in

(FFFA), which points to FE43/FEA9, is loaded into the pro-

n 33

u
NMI Interrupts

u

gram counter, which causes the routine to be executed. First, , .

IRQ interrupts are disabled so that NMI handling will not be I—I
interrupted by IRQ interrupts. Then JMP (0318) to the NMI

interrupt handler, whose default is FE47/FEAD. , -.

Operation:

1. Disable IRQ interrupts.

2. JMP (0318), with a default of FE47/FEAD. [J

NMI Interrupt Handler (64)

FE47-FEC1

Called by:

Indirect JMP through (318) at FE44 in NMI Interrupt Handler

Jump.

On the 64, NMI interrupts can be caused by a high-to-low

transition on the NMI line from pin D of the expansion port,

from the IRQ output of CIA #2 as the result of five possible

interrupt conditions on that chip (FLAG, shift register, time-of-

day clock alarm, timer B, or timer A), or from the RESTORE

key. The handler routine tests only FLAG, timer B, timer A,

and the RESTORE key (checking for the presence of an

autostart cartridge). To service the shift register or TOD alarm

from CIA #2, you must check these conditions yourself, pos

sibly by modifying the RAM vector to execute your NMI rou

tine which checks for the TOD alarm interrupt or the shift

register interrupt before returning to the normal NMI interrupt

handler in ROM.

The timer A, timer B, and FLAG interrupts are used in

RS-232-C communications. Timer A interrupts control RS-232-C

transmission. Timer B interrupts control reception of each bit

for RS-232-C. FLAG interrupts detect when reception is to be- j ,

gin and initiate the input for each byte, initializing timer B and I I
enabling the timer B interrupt while disabling further FLAG

interrupts while the byte is being received. ,

Operation: '—

1. Save the accumulator, X register, and Y register on the

stack. . j 1

2. Store $7F into DDOD, CIA #2 interrupt control register,

thus clearing all mask bits in the register and disabling all

further interrupts from CIA #2. J I

34 LJ

NMI Interrupts

f—] 3. Load Y register from DDOD to determine the source of the

f ' NMI interrupt.
4. BMI to step 10 if there were interrupts from CIA #2. Bit 7

f! in DDOD is 1 if an interrupt occurred and the mask for

' - that interrupt was enabled.

5. If CIA #2 was not the source of the interrupt, then the

f^ source is the RESTORE key or the NMI line from the

f ■ expansion port. The RESTORE key on the 64 passes

through a timer chip directly to the NMI line to the 6510,

unlike the RESTORE key on the VIC which goes to a VIA

chip.

JSR FD02 to test for an autostart cartridge, and if one

is present (or if the identifier bytes are found) then JMP

(8002) to the cartridge's warm start routine.

6. JSR F6BC to scan the keyboard. The 64, unlike the VIC,

does not increment the jiffy clock during an NMI

interrupt.

7. JSR FFE1 to test for the STOP key.

8. If the STOP key was detected, then fall through to step 9;

otherwise, branch to step 10.

9. FE66: This is also the BRK routine.

JSR FD15 to initialize the Kernal RAM vectors.

JSR FDA3 to initialize the I/O chips.

JSR E518 to initialize the VIC chip register, blank the

screen, and create the screen line link table.

JMP(A000) to do a warm start of BASIC.

10. FE72: Step 10 is reached if one of the following is true: the

interrupt is from a CIA #2 source; the interrupt is due to

RESTORE, but not STOP-RESTORE, being pressed; or the

interrupt is from the expansion port and no autostart car-

ntridge is present.

Transfer the contents of the Y register, which con

tains the value from DDOD, CIA #2 interrupt control reg-

j—> ister, reflecting the source of an NMI interrupt on CIA #2,

' to the accumulator.
11. AND 02A1, the RS-232-C activity flag.

rn 12. TAX.

' . I 13. AND $01. 02A1 has bit 0 on if transmission has started,
and DDOD bit 0 = 1 if a timer A interrupt occurs.

r—i 14. If not transmitting or if no timer A interrupt, branch to

L .* step 23.

35

NMI Interrupts

u

15. If RS-232-C transmission is active and a timer A interrupt i j

has occurred, then: '—>
LDA DDOO, CIA #2 data port A.

AND $FB to clear bit 2, the RS-232-C data output, i]

to 0. L—J
ORA B5, which contains the next bit to be

transmitted. C |

STA DDOO, thus transmitting the next bit through >—'

CIA #2 data port A.

16. TXA to restore the AND of DDOD and 02A1.

17. AND $12 to test for FLAG or timer B interrupt.

BEQ to step 21 if neither a FLAG or timer B interrupt

is pending. Thus, the 64 correctly checks the various pos

sible sources of NMI interrupts, rather than just servicing

the first one and then exiting.

18. If either a timer B or a FLAG interrupt occurred, then

AND $02 to test for a timer B interrupt. BEQ to step 20 if

not a timer B interrupt, which means the branch is taken if

a FLAG interrupt is pending.

19. If timer A and B interrupts occurred at the same time, then

the interrupt handler correctly services both interrupts.

JSR FED6 to read the next RS-232-C input bit and to

add the bit to the current byte being received, or to see if

the bit is a start, stop, or parity bit.

JMP FE9D to step 21.

20. For a FLAG interrupt:

JSR FF07 to set timer B and to reverse 02A1 bits 1

and 4.

21. For either timer B or FLAG interrupt, JSR EEBB to prepare

the next bit to transmit.

22. JMP FEB6 to step 27. , ,

23. Branch here from step 14 if this NMI interrupt was from i—I
CIA #2, but either RS-232-C transmission was not active

or a timer A interrupt did not occur. { ,

See if the NMI interrupt was due to timer B interrupt. »—I
If not, branch to step 25.

24. For a timer B interrupt, JSR FED6 to read the next RS- j (

232-C input bit, and to add the bit to the current byte >—i

being received, or to see if the bit is a start, stop, or parity

bit. . ,

JMP FEB6 to step 27. LJ

36 LJ

n
NMI Interrupts

r* 25. See if the NMI interrupt was due to a FLAG interrupt. If

not, branch to step 27.

26. For a FLAG interrupt, JSR FF07 to set timer B.

f—| 27. FEB6: LDA 02A1 then STA DDOD thus resetting the CIA

' interrupt control register to enable the same interrupts that

were enabled at entry to the NMI interrupt handler (unless

! ? a FLAG interrupt occurred, in which case timer B inter-

{] rupts are now enabled and FLAG interrupts disabled).
28. Restore Y register, X register, and accumulator from the

stack.

29. RTI to return from the interrupt handler.

NMI Interrupt Handler—Timer B Service (64)

FED6-FF06

Called by:

JSR at FE94 and FEA8 in NMI Interrupt Handler.

Operation:

1. LDA DD01, which contains the RS-232-C data bit received

in bit 0.

AND $01.

STA A7 to save the received bit.

2. Reset timer B latches from the current value of timer B, mi

nus $1C, plus the bit time in (0299). Store $11 in DDOF to

force a load of timer B and to start timer B.

3. Restore DDOD, CIA #2 interrupt control register, from

02A1, thus restoring all interrupts that were enabled upon

entry to the NMI interrupt handler.

4. Reset timer B latches DD06 and DD07 to $FFFF, which does

not affect the timer B countdown already in progress.

j—I 5. JMP EF59 to either store the bit received (held inbit 0 of

f A7) as a data bit in the current byte being received, or to

test for a start, stop, or parity bit.

n
1 NMI Interrupt Handler—Start Timer B for FLAG NMI

(64)

H FF07-FF2D

Called by:

i—I JSR at FE9A and FEB3 in NMI Interrupt Handler.

37

u
NMI Interrupts

LJ

Operation: I »

1. Store the contents of 0295 in DD06 and the contents of LJ
0296 in DD07, thus setting the latches for timer B. Loca

tions 0295 and 0296 were set from the baud rate tables j ,

when the RS-232-C channel was opened. (—I
2. Store $11 in DDOF to force a load of timer B from the

latched values and to start timer B. s .

3. EOR 02A1 with $12 and store the result in 02A1, thus Lj
reversing the values in the FLAG and timer B bits of 02Al,

since now the receiving edge for RS-232-C reception has

been handled.

4. Reset the latches for timer B, DD06 and DD07, to $FFFF.

5. Store the number of bits to send or receive plus one, held in

0298, into A8.

NMI Interrupt Handler (VIC-20)

FEAD-FF5B

Called by:

JMP at FEAA in NMI Interrupt Handler Jump.

On the VIC, NMI interrupts can be triggered by a high-to-

low transition on the NMI line from pin W of the expansion

port,, or from seven conditions on VIA #1. But only the

following VIA #1 interrupt conditions are checked for in the

NMI interrupt handler: CB1, timer 1, timer 2, RESTORE key,

and autostart cartridge. To service other NMI sources from

VIA #1, you must check these conditions yourself, possibly by

modifying the RAM vector to execute your NMI routine before

returning to the normal NMI interrupt handler in ROM.

The VIA #1 timer 1, timer 2, and CB1 interrupts are used

for RS-232-C communications. Timer 1 interrupts control RS-

232-C transmission. Timer 2 interrupts control reception of | j
each bit for RS-232-C. CB1 interrupts detect when reception is

to begin and initiates the input for each byte, setting initial

values for timer 2, enabling the timer 2 interrupt, and dis- I i

abling further CB1 interrupts while the byte is being received. ' '
The VIC NMI interrupt handler allows nested NMI inter

rupts to occur. While this does not appear to prevent success- j j
ful operation of RS-232-C I/O, it is more common for an NMI

interrupt handler to service all possible causes of the NMI

interrupt in one execution of the interrupt handler rather than j j

to allow nested interrupts to occur.

38 LJ

n
NMI Interrupts

n

n Operation:

1. Save the accumulator, X register, and Y register on the

stack.

P_* 2. Test bit 7 of VIA #1 interrupt flag register, 911D, to see if

I I the NMI interrupt occurred as a result of an interrupt on
VIA #1. Branch to step 37 if bit 7 is 0 to restore the reg-

,—, isters and RTL Thus, exit if an NMI interrupt occurred

' I from the expansion port. Remember that on the VIC-20
the RESTORE key connects to VIA #1.

3. Mask out all but the active interrupts by ANDing the

interrupt flag register and the interrupt enable register.

Save the result of 91 ID AND 91 IE in the X register.

4. Test for a RESTORE key interrupt, which appears as a CA1

interrupt, since the CA1 input line on VIA #1 comes from

the RESTORE key. If this is not a RESTORE key interrupt,

then branch to step 12.

5. If this is a RESTORE key interrupt, test for an autostart

cartridge by JSR FD3R

6. If an autostart cartridge is present, pass control to the car

tridge warm start routine by JMP (A002).

7. Clear the RESTORE key interrupt using BIT 9111 (the port

A VIA #1 data register.

8. JSR F734 to increment the jiffy clock and scan the key

board. Thus, by continually hitting the RESTORE key on

the VIC you can cause the jiffy clock to become incorrect

since it should only be updated 60 times a second by the

IRQ interrupt handler.

9. JSR FFE1 to see if the STOP key is down.

10. If the STOP key is not down, branch to step 12.

11. If STOP and RESTORE are down, fall through to the BRK

,—. interrupt handler routine which does the following:

M JSR FD52 to initialize Kernal RAM vectors.

JSR FDF9 to initialize 6522 registers and enable VIA

#2 timer 1 interrupts.

JSR E518 to initialize VIC chip registers, blank the

screen, and set up the screen line link table.

JMP (C002) to BASIC'S warm start.

M 12. LDA 91 IE, the VIA #1 interrupt enable register, ORA $80,
and save this value on the stack.

r_ 13. Store $7F in 91 IE to disable all interrupts from VIA #1.

M This allows the IRQ output from VIA #1 to go high,

preparing the 6502 to receive another NMI interrupt.

n 39

n

NMI Interrupts

u

14. Reload accumulator from X register, which has the active

interrupts from VIA #1.] (
15. Was this NMI interrupt caused by a VIA #1 timer 1

interrupt?

16. If not, branch to step 22. j j
17. If yes, then RS-232-C transmission is active. Set 911C, the

peripheral handshaking control register to $CE (1100 1110)

and OR with B5, which contains the next RS-232-C bit to |_|
be transmitted in bit 5. Thus, a next bit of 1 causes the

CB2 line to be held high (1), while a next bit of 0 causes

the CB2 line to be held low (0). Since CB2 is the transmit

ted data line, the bit has now been transmitted.

18. Clear VIA #1 timer 1 interrupt flag by LDA 9114.

19. Pull the interrupt enable register (that was ORed with $80)

from the stack and store this value in 91 IE, thus re-

enabling any interrupts that were active when the NMI

interrupt occurred. Thus, the timer 1 interrupt is now re-

enabled. (It's possible that timer 2 and CB1 interrupts are

also now re-enabled.)

20. JSR EFA3 to the RS-232-C send routine.

21. JMP FF56 to restore the registers and RTI.

22. Reload accumulator with the cause of the interrupt.

23. Was the interrupt caused by a VIA #1 timer 2 interrupt?

24. If no, branch to step 31.

25. If yes, then RS-232-C reception of individual bits for a

byte is active. LDA 9110, then AND $01 to retrieve the

value from PB0, the received data bit. This read of port B

also clears the interrupt flag set by the previous CB1

interrupt.

26. Store this PB0 value into bit 0 of A7, the RS-232-C re

ceiver input bit temporary storage location.

27. Reset timer 2 to a value based on the baud rate; clear timer j j
2 interrupt.

28. Restore accumulator with interrupt enable register (that

was ORed with $80) from the stack and store into the j j
interrupt enable register, thus restoring the NMI interrupts

that were enabled at entry. Timer 2 interrupts are now
enabled. J j

29. JSR F036 to the RS-232-C receive routine.

30. JMP FF56 to restore registers and RTI.

31. Reload the accumulator with the cause of the NMI j j
interrupt.

40 jj

n
NMI Interrupts

n

rn 32. Was the interrupt a CB1 interrupt, the receive edge signal

i I for RS-232-C? Note that opening an RS-232-C channel for
input enables CB1 interrupts.

_ 33. If not, then branch to step 37.

I I 34. If yes, then a new byte is being received from the RS-232-C
interface. Set timer 2 value from the baud rate table.

f^ 35. Enable timer 2 interrupts to allow timer 2 to control the

f \ sampling for the individual bits in this byte being received.

Also disable CB1 interrupts.

36. Load number of bits to be sent or received from 0298 and

store in A8.

37. Restore Y register, X register, and accumulator, then RTI.

n

n

n «

n

n
Chapter 4

n r

IRQ
Interrupts

n

1 I

n IRQ Interrupts

n
1 .! The IRQ interrupt vector for the 6510/6502 is located at (FFFE).

Whenever the microprocessor's IRQ input line is pulled low

pi and IRQ interrupts are enabled, the address in (FFFE), which

' [is FF48/FF72, is placed in the program counter. At FF48/FF72
a routine determines whether the interrupt was caused by an

IRQ interrupt or by a BRK instruction. This routine then jumps

to the address specified in either the IRQ interrupt handler

vector at (0314) or in the BRK interrupt handler vector at

(0316). The default addresses for these are EA31/EABF for the

IRQ interrupt handler, and FE66/FED2 for the BRK interrupt

handler. Since these vectors are in RAM, they can be changed.

The tape I/O routines change the IRQ vector to FC6A/FCA8

for a tape header write, FBCD/FCOB for tape write, and

F92C/F98E for tape read.

Normally, IRQ interrupts are produced every 1/60 second

by timer A of CIA #1 (64) or timer 1 of VIA #2 (VIC). The fre

quency with which the IRQ interrupts occur can be modified

by changing the CIA #1 timer A latches/VIA #2 timer 1

latches. However, by lowering the values in these latches, you

do not increase the instruction execution speed of your 64 or

VIC. You only increase the frequency with which IRQ inter

rupts are serviced. If you lower the timer latches too much,

you might find yourself just servicing IRQ interrupts and not

doing anything else.

The functions executed by the IRQ interrupt handler in

clude updating the jiffy clock, testing for the STOP key, and

r—I scanning the keyboard.

IRQ/BRK Interrupt Switch

-p] FF48/FF72-FF5A/FF84

Called by:

The program counter loads the IRQ vector at (FFFE) when the

!i IRQ input line is pulled low and IRQ interrupts are enabled.

Whenever a hardware- or software-generated IRQ inter-

t rupt occurs, the status register is pushed onto the stack. For a

| | BRK instruction (software interrupt) the status register is first

modified by setting the break flag (bit four of the status reg

ister) before it is pushed onto the stack. The routine then

U ■ 45

u
IRQ Interrupts

examines the status register that has been pushed onto the j j

stack to determine whether this IRQ interrupt was caused by a

BRK instruction or by a hardware IRQ interrupt. If the BRK

flag is set, then the processor executes a JMP (0316) to the j j

BRK interrupt handler. If not set, it performs a JMP (0314) to L-j
the IRQ interrupt handler. The default for the BRK handler

vector at (316) is FE66/FED2. The default for the IRQ handler) |

vector at (314) is EA31/EABR This routine also saves the *—'

accumulator, X register, and Y register on the stack.

Let's examine in detail how this routine checks for the

BRK flag in the status register on the stack. The 6510/6502

hardware automatically pushes the high order byte of the pro

gram counter, the low order byte of the program counter, and

the status register onto the stack when an IRQ interrupt oc

curs. This routine then pushes the accumulator, X register, and

Y register onto the stack.

Since the stack pointer points to the address in the stack

that is one less than the bottom of the stack (the Y register is

at the bottom of the stack), the status register is located four

bytes above the location pointed to by the stack pointer. A

TSX instruction transfers the stack pointer to the X register

after all the registers are pushed onto the stack. Then, to re

trieve the status register from the stack and place it into the

accumulator, the routine executes a LDA $0104,X (to load the

byte that is four locations above the stack pointer). The stack,

which builds downward, is located at 0100-0IFF, with 01FF

the initial top of the stack. The table below illustrates how this

operation works using some arbitrary address locations on the

stack.

Saved Stack Contents on IRQ Interrupt j

Stack Address Stack Contents

0110 not yet used (stack pointer contains $10; points here)

0111 Y register | (

0112 X register j—'

0113 Accumulator

0114 Status register j ,

0115 Program counter low byte i—J

0116 Program counter high byte

TSX moves $10 into X register) j

LDA $0104,X loads accumulator with value of byte at $0104 *—'

LJ

H
IRQ Interrupts

n

pi + X = $0104 + $10 = $0114. At location 0114 you find the

- - saved value for the status register.

Operation:

} I 1. Push accumulator, X register, and Y register onto the stack

to allow restoratidn when the IRQ interrupt handler ter-

minates. This allows the restoration of the register values of

) I the program in execution when the IRQ interrupt is finished.
2. Load accumulator with the status register that has been

pushed onto the stack by TSX and LDA $0104,X.

3. See if the BRK flag was set in the saved status register.

4. If the BRK flag was set then JMP (0316) to the BRK inter

rupt handler at FE66/FED2.

5. If the BRK flag was not set then JMP (0314) to the IRQ

interrupt handler at EA31/EABR

BRK Interrupt Handler

FE66/FED2-FE71/FEDD

Called by:

Indirect JMP through (0316) at FF55/FF77 in IRQ/BRK Inter

rupt Switch; fall through from FE64/FED0 in NMI Interrupt

Handler if STOP-RESTORE is pressed.

Whenever the STOP and RESTORE keys are held down

(and no autostart cartridge is present), or when a BRK instruc

tion executes, this routine is called.

This routine initializes the Kernal RAM vectors and

6526/6522 registers, enables CIA#1 timer 1/VIA#2 timer 1

interrupts, initializes the VIC-II/VIC chip registers, then jumps

to BASIC'S warm start.

Operation:

M 1. JSR FD15/FD52 to initialize the Kernal RAM vectors.

2. 64: JSR FDA3 to initialize the 6526 registers, 6510 I/O and

rn data direction registers, 6581 SID chip registers, start CIA#1

j | timer A and enable timer A interrupts, and set serial clock

line high.

^ VIC: JSR FDF9 to initialize 6522 registers and enable

i | VIA #2 timer 1 interrupts.

3. JSR E518 to initialize the VIC-II 6567/VIC 6560-6561 chip

registers, clear the screen, and initialize the screen line link

jl table.
4. JMP (A002)/(C002) to warm start BASIC. The warm start of

fmtmf BASIC begins at E37B/E467.

I- ' 47

IRQ Interrupts

u

IRQ Interrupt Handler I

EA31/EABF-EA86/EB1D LJ

Called by:

Indirect JMP through (0314) at FF58/FF82 in IRQ/BRK Inter- [_
rupt Switch.

The IRQ interrupt handler is entered whenever the system

detects an IRQ interrupt. On the 64, timer A in CIA #1 gen- ^ j
erates IRQ interrupts, while on the VIC, timer 1 in VIA #2

generates them.

Numerous other sources can generate IRQ interrupts in

addition to timer A/timer 1, but usually only the timer inter

rupts are enabled. This interrupt handler specifically clears

only the interrupt flags for the timer.

The IRQ interrupt handler first updates the jiffy clock at

A2-A0. It scans the STOP key column of the keyboard for any

key value in this column and stores the value into the STOP

key flag, 91.

Next, it checks to see if the cursor blink is enabled. If it

isn't enabled, characters are in the keyboard queue, so skip the

remainder of the operations described in the next paragraph.

If the cursor blink flag is enabled and it is time to blink

the cursor, the routine determines whether the cursor blink

flag indicates that the character under the cursor is reversed. If

it is not reversed, the character under the cursor is in normal

mode, so the program resets the cursor blink flag to indicate

the character is reversed. The ASCII character under the cursor

is saved at location CE, and the current color nybble is saved

at 0287. The routine reverses the character under the cursor

and displays this reversed character at the same screen loca

tion. When the character is in reverse mode, the opposite

blinking action occurs. j !
The IRQ handler then checks to see if any tape buttons

are down, if the tape motor interlock switch is set, and if timer

A/timer 1 interrupts are enabled. If timer A/timer 1 interrupts j j
are disabled, a tape button is down, and the tape interlock

switch is zero, then the tape motor can be turned on. On the

VIC 911C, the peripheral control register for VIA #1 must [_J
have the correct value to turn on the tape motor.

The routine scans the keyboard, and if a key is pressed it

places its ASCII value in the keyboard buffer, clearing the j j
interrupt flag for timer A/timer 1.

48 u

IRQ Interrupts

n

PI Finally, it restores the Y register, the X register, and the

'• accumulator from the stack and does an RTI.

_ Operation:

HI 1. JSR FFEA to the Kernal UDTIM routine. This routine in
crements the jiffy clock at A2-A0 and saves the scan value

p^ for the STOP key column in 91, the STOP key flag.

i (2. If the cursor blink switch at location CC is nonzero,
branch to step 13 so that the cursor doesn't flash when

characters are in the keyboard queue.

3. Decrement the countdown to the blink of the cursor,

location CD, and if the result is not zero then branch to

step 13.

4. Reset the blink countdown to $14 if CD did reach zero.

5. Retrieve the character under the cursor and the color for

this character. (Dl) points to the start of the screen line

the cursor is on, and D3 is the column of the cursor in the

screen line.

6. If the cursor blink status flag at CF is 1, indicating re

versed character under the cursor, then branch to step 11.

The test for a value of 1 is to LSR CF and then BCS.

7. Set cursor blink status flag, CF, to 1 to indicate reversed

character under cursor. Save the character under the cursor

atCE.

8. JSR EA24/EAB2 (see chapter 7) to set pointer for color

nybble to correspond to the start of the screen line.

9. Load the value of the color for the character under the

cursor and save at 0287.

10. Retrieve the color of the nybble from 0286 and ASCII

value of character from CE.

11. EOR the accumulator (which contains the ASCII value of

(1 the character) with $80, flipping the high order bit. Each
time this EOR is executed, the character is reversed since,

r_ai by turning bit 7 on, characters from $80-$FF (the reverse

i I character set) are displayed.

12. JSR EA1C/EAAA (see chapter 7) to store the character and

^ the color on the screen.

I \ 13. See if any tape buttons (rewind, fast forward, play) are

down. If so, branch to step 16.

^ The 64 test is LDA 01, AND $10, BEQ EA71. Loca-

r"| tion 0001 bit 4 is the tape switch sense, and a value of 0
means a button is down.

n 49

u
IRQ Interrupts

The VIC test is LDA 911F, AND $40, BEQ EB01. j j

Location 91 IF bit 6 is tape switch sense, and a value of 0 [—'

means a button is down.

14. If no buttons are down, set the tape motor interlock j j

switch, CO, to zero. Since the IRQ interrupt occurs 60 f—'
times a second, CO is continually reset to zero if no tape

buttons are down. \ \

15. Prepare to hold the output line to the tape motor high, <—t

and thus to turn off the tape motor if no buttons are down.

On the 64, LDA 01, ORA $20, and branch to step 19. On

the VIC, LDA 911C, ORA $02, and branch to step 18. On

the VIC, the state of the CA2 line used for tape motor con

trol is determined by bits 3-1 of location 911C. Bits 3 and

2 must both be 1 for the 1 in bit 1 to hold CA2 out high.

16. Come here from step 13 if a tape button is down. See

if CO, the tape motor interlock, is zero. If not, branch to

step 20.

Fall through to step 17 if a tape button is down and

CO is zero. Thus a nonzero CO value prevents turning on

the tape motor during the normal IRQ interrupt handler.

17. 64: LDA 01, AND $1F (0001 1111 binary), thus forcing bit

5 tape motor contol to 0.

VIC: LDA 911C, AND $FD (1111 1101 binary), thus

forcing bit 1 to zero, which will hold CA2 output low if

bits 2 and 3 are both 1.

18. VIC only: If VIA #1 timer 1 interrupts (RS-232-C timing)

are enabled, branch to step 20.

19. 64: STA 01. Either turn tape motor on or off.

VIC: STA911C.

Step 19 should either turn on the tape motor (if en

tered after step 17 has been executed) or turn off the tape . ,

motor (if entered after step 15 has been executed). Because ; !—1
CA2 control is determined by three bits on the VIC, it is

possible that the other two bits in 911C, bits 2 and 3, may <

have been modified and thus will not turn the tape on or !—
off as expected.

20. JSR EA87/EB1E to do the keyboard scan. , (

21. 64: LDA DC0D to clear any CIA #1 interrupt flags and to Lj
allow the CIA #1 IRQ output to go high.

VIC: BIT 9124 to clear the timer 1 interrupt. . ,

22. Restore Y register, X register, and accumulator from the i I
stack.

50 u

n
IRQ Interrupts

H

r—t 23. RTI. Pull the status register and the low and high order

I ' bytes of the program counter from the stack.

r-i Jiffy Clock Update—STOP Key Scan

1 F69B/F734-F6DC/F75F

Called by:

J \ JSR from Kernal UDTIM vector at FFEA (called by JSR at

EA31/EABF during the IRQ Interrupt Handler), JSR at FECA

in NMI Interrupt Handler (VIC only); alternate entry at F6BC

by JSR at FE5E in NMI Interrupt Handler (64 only), JSR at

F8CA in Reset IRQ Vector and Set Interrupt Enable Register

(64 only).

The jiffy clock at A2-A0 is incremented. If the jiffy clock

has reached a value equal to 24 hours, then the jiffy clock is

reset to zero. The 64 NMI interrupt handler, unlike the VIC's,

uses an alternate entry point into this routine which does not

increment the jiffy clock.

Next, the keyboard column that contains the STOP key is

scanned and the value of the keyboard row for the column is

stored in the STOP key flag, location 91. If the STOP key is

down, the value stored is $7F (64), or $FE (VIC). Also, in

checking for the STOP key on the VIC, the CA1 interrupt flag

is cleared.

Exit conditions:

Jiffy clock incremented; reset to 0 if value reaches 24 hours.

The possible values for the STOP key flag, 91, are shown

below:

STOP Key Flag Values

H

n

! \

(\

Value in

Location 91

(hex)

FF

FE

FD

FB

F7

EF

DF

BF

7F

64

no key pressed

1

Back arrow

CTRL

2

Space

Commodore

Q
STOP

VIC

no key pressed

STOP

Left SHIFT

X

V

N

/
Cursor down

51

IRQ Interrupts
u

u

Operation: ,

1. Increment the three-byte jiffy clock at A2-A0. If AO rolls 1 |
over from $FF to $00 then increment Al. If Al rolls over

from $FF to $00 then increment A2. As a result, with the

value at AO updated every 1/60 second (.01667 sec), Al ^J
is updated every 4.2667 seconds, and A2 every 18.2044

minutes. . ,

2. Test to see if the jiffy clock has reached a value equal to |_]
24 hours. If it has, all three bytes of the jiffy clock are re

set to 0.

3. VIC: Load accumulator from VIA #2 port A data register

at 912F, compare against itself to debounce the key, and

then store the result in the STOP key flag at 91. If the

STOP key was pressed, the value $FE is stored.

Steps 3-10 below apply only to the 64.

3. F6BC: Load accumulator from DC01, CIA #1 data port B

(keyboard row values) and compare against itself until

equal to debounce (stabilize) the key.

4. Transfer accumulator to X register.

5. If the high order bit is on, then branch to step 10. The

STOP key value in 91 is $7F, and so it has its high order

bit off. Thus, branch if the STOP key was not detected.

6. Load X register with $BD and store in DC00, CIA #1 port

A keyboard column output.

7. Load X register from DC01, CIA #1 port B (keyboard row)

and compare against itself until equal to make it stabilize.

8. Store accumulator (which still has the same value as in

step 4) in DC00, the CIA #1 port A keyboard column

output.

9. Increment the X register. If not equal to zero, skip step 10

and branch to the RTS instruction to exit the routine. The « ;

X register would have been $FF (and thus the INX would I—/
have made it zero) if no key was held down. If the STOP

key (or any other key) was still held down, fall through to ,

step 10. LJ
10. Store accumulator in 91, the flag for the STOP key.

u

52 LJ

n
IRQ Interrupts

n Keyboard Scan

EA87/EB1E-EB47/EBDB

Called by:

]} JSR at EA7B/EB12 in IRQ Interrupt Handler, JMP from Kernal
SCNKEY vector at FF9R

This routine scans the keyboard to detect a keypress. If no

f""J key is pressed it exits. It finds which key has been pressed by
scanning one column at a time, starting with column 0, until a

column is found in which a key is being pressed. Each time a

row is scanned, the Y register is incremented; the Y register is

used as an index into whichever keyboard table is used. Once

64 keys have been scanned (eight rows by eight columns), a

routine at EB48/EBDC sets up the keyboard table being used,

based on the value in the shift control flag. This shift control

flag is also updated in the keyboard scan routine if the key

held down has a value of 1 (SHIFT), 2 (Commodore key), or 4

(CTRL).

The scan of rows and columns is completed only when all

eight columns by eight rows have been scanned. Thus, a value

could be stored for a SHIFT, Commodore, or CTRL key and

for one of the other keys on the keyboard during one scan of

the keyboard. Also, if you hold two keys down at the same

time, only the key with the higher matrix value is detected.

Once the routine finds the matrix value for the key and

selects the keyboard character set, it finds the ASCII value of

the key.

Next, it tests to see if all keys, no keys, or normal keys re

peat. SPACE, DELete, INSerT, and the cursor keys are con

sidered the normal repeat keys.

If the key is a repeat key and the delay before the initial

j| repeat of a key has not yet reached zero, the program exits this
routine. Once the initial repeat flag, 028C, is decremented to

. zero, then subsequent scans of the keyboard with the same

j j key held down cause the flag for subsequent key repeats,

028B, to be decremented. When 028B reaches zero, the routine

places the ASCII value of the key in the keyboard buffer, if the

ij keyboard buffer contains one or no ASCII key values. If the

buffer contains two or more ASCII key values, the program ex

its. 028B is reset to $4 after each time it decrements to 0. 028C

P~} is reset to $10 only when a different key is detected in this
scan of the keyboard as compared to the last keyboard scan.

n 53

u
IRQ Interrupts

u

Thus, the initial repeat of a key takes longer than subsequent > ,

repeats because the initial repeat has to wait for 028C to dec- LJ
rement to zero while subsequent repeats don't have as long a

delay. , ,

If no keys are repeating, the routine saves the key just I—i
pressed as the value of the last key pressed, C5, and saves the

shift pattern as the old shift pattern, 028E. Then, if the num- < .

ber of characters in the keyboard buffer is less than the maxi- < >

mum allowed, it stores the ASCII value of this key in the

buffer and increments the number of characters in the buffer.

If the keyboard buffer is full, the ASCII key value is dis

carded. Finally, the program resets the column being scanned

to column 7/column 3 to allow the scan for the STOP key,

and exits.

The JMP (028F) at EADD/EB71, which calls the keyboard

table setup at EB48/EBDC, returns from the keyboard table

setup by way of a JMP EAE0/EB74 at EB76/EC43.

One programming trick is to set (F5), the pointer to the

keyboard table being used, to an address where you have de

fined your own ASCII keyboard table. To do this, simply

change the vector at (028F) to point to a routine where you

load the address of your table into (F5).

As mentioned, the organization of the 64 and VIC key

boards is based on a matrix of eight columns and eight rows.

On the 64, the column number (output) is written to DC00

CIA #1 port A, and the row value read from DC01, CIA #1

port B. On the VIC, the column number (output) is written to

9120 VIA#2 port B, and the row value read from 9121 VIA#2

port A.

Reverse logic is used in detecting when a key is down in

that 0 indicates a key is down. The location where both the col- , (

umn is 0 and the row is 0 indicates which key in the matrix is I—i
pressed.

Figure 4-1 shows the keyboard matrix for the 64 and fig- > ,

ure 4-2 shows the keyboard matrix for the VIC. Each key's LJ
matrix value is shown next to the key in parentheses. In the

figures, PA7-PA0 correspond to bits 7-0 of data port A and , j

PB7-PB0 correspond to bits 7-0 of data port B. LJ

u

u

n
IRQ Interrupts

H

n

H

Figure 4-1. Commodore 64 Keyboard Matrix

Column Number (Output)

CIA #1 Port A-DCOO

Id
go

(7F) PB7

(BF) PB6

(DF)PB5

(EF) PB4

(F7) PB3

(FB) PB2

(FD) PB1

(FE) PBO

(7F)

_J
RUN

STOP

(3F)

(BF)

/
(37)

Q
(3E)

(DF

(2F)

T

(36)

a
(3D)

) (EF)

N

(27)

- @ .
(2E)

(35)

Space

(3C)

-

(F7)

V

(IF)

o

(26)

(2D)

Right

SHIFT -

(34)

2

(3B)

-

(FB)

X

(17)

u

(IE)

K

(25)

(2C)

CLR

HOME -

(33)

CTRL

(3A)

-

(FD)

Left

- SHIFT

(F)

T

(16)

H

(ID)

M

(24)

(2B)

/

(32)

(39)

-

(FE

Cursor

Down

(7)

E

(E)

F

(15)

B

(1C)

0

(23)

L

(2A)

*

(31)

1

(38)

-

£5

(6)

S

(D)

c

(14)

8

(IB)

. J
(22)

\

P

(29)

£

(30)

-

f3

(5)

z

(C)

6

(13)

G

(1A)

I

(21)

+

(28)

-

-

fl

(4)

4

(B)

D

(12)

Y

(19)

9

(20)

-

-

(7

(3)

A

(A)

R

(ii)

7

(18)

-

Cursor

Right

(2)

W

(9)

5

(10)

-
RETURN

(1)

3

(8)

-

INST
DEL

(0)

n

n

The number in parentheses below each key is that key's matrix

value (in hex).

A value of $FF in DCOl means no key pressed.

The matrix pictured here is for unshifted keys.

55

IRQ Interrupts

u

u

Figure 4-2. VIC-20 Keyboard Matrix.

Column Number (Output)

VIA#2 Port B-9120

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

|(7F) |(BF) |(DF) |(EF) | (F7) | (FB) | (FD) | (FE)

(7F) PA7
i7

OF)

(BF) PA6

f5

(37)

£3

(2F)

fl

(27)

Cursor

Down

(IF)

CLR

HOME

(3E)

t

(36)

(DF)PA5

(3D)

(2E)

@
(35)

(26)

(2D)

Cursor

Right

(17)

RETURN

(F)

/
(IE) (16)

(25) (ID)

S^ (EF)PA4-

U
Z ^ (F7) PA3 •

(FB) PA2 ■

0

(3C)

o

(34)

K

(2C)

8

(3B)

u

(33)

6

(3A)

M

(24)

H

(2B)

T

(32)

INST

DEL

(7)

(E)

£

(6)

L

(15)

N

P

(D)

J
(14)

+

(5)

I

(C)

B

(23)

F

(2A)

V

(IB)

c

(22)

G

(13)

X

(1A)

9

(4)

Y

(B)

7

(3)

D

(12)

R

(A)

5

(2)

(FD)PAl

(FE) PAO

4

(39)

E

(31)

2

(38)

s

(29)

Q
(30)

-

z

(21)

a
(28)

-

-

Left

SHIFT

(19)

SPACE

(20)

A

(ii)

-

w

(9)

RUN
STOP

(18)

CTRL

(10)

-

-

3

(i)

(8)

-

1

(0)

The number in parentheses below each key is that key's matrix

value (in hex).

A value of $FF in 9121 means no key pressed.

The matrix pictured here is for unshifted keys.

u

u

u

u

56 u

H
IRQ Interrupts

n —~

P Throughout most of the 64/VIC keyboard reading rou-

- tines, only one column is brought low at a time, while the rest

remain high. This column that is brought low is reset by all

n routines that modify the column to $7F/$F7 before the exiting.

1 —' This restored column value is the column used to scan for the

STOP key.

\\ Operation:

1. Initialize the shift control flag, 028D, to zero to indicate

that the SHIFT, Commodore, or CTRL key is not pressed.

2. Initialize the current key pressed flag, CB, to $40 to in

dicate none pressed.

3. 64: Store $00 in DC00, CIA #1 data port A, the keyboard

column. VIC: Store $00 in 9120, VIA #2 data port B. This

brings all output columns low.

4. Read the keyboard row, DC01/9121. If the value read is

$FF, no key in the matrix has been pressed. Branch to step

51 if no key is pressed to save the last key pressed, the last

shift pattern, and exit.

5. Store $FE in DC00/9120 to bring column 0 low to start

the scan of individual keyboard columns.

6. Initialize the index into the ASCII keyboard table (the Y

register) to zero.

7. Set a default ASCII keyboard table of EB81/EC5E (upper

case normal) in (F5).

8. Set the number of times to shift the keyboard row values

to eight, using the X register for this count. On the 64, also

PHA, saving the current column to scan on the stack.

9. Read the keyboard row port DC01/9121. Stabilize

(debounce) the key by comparing the current and last val

ues read from the port until these values are equal.

f""j 10. LSR to shift the keyboard row being examined into the
carry bit.

11. If this LSR sets the carry, then a 1 was shifted in, which

; | means that particular row was not the row on which a key

was pressed. BCS to step 20.

12. If the carry was clear, that row was the one on which the

PI key was pressed. The column for this key is also a zero.
The matrix counter indicates which key is pressed.

13. PHA, pushing the current row status onto the stack.

P"j 14. LDA (F5),Y to retrieve the value of the key pressed from
the normal character set.

57

IRQ Interrupts

u

LJ

15. Is this key's ASCII value >= 5 or = 3? If it is, then i j

branch to step 18. '—'

16. If not, then its value must be either 1, 2, or 4. A value of 1

indicates the SHIFT key, 2 is the Commodore key, and 4 is | I

the CTRL key. ORA this value with the shift control flag at '—'
028D.

17. Branch to step 19.) }

18. Store the current value of the Y register at CB, the matrix '—}

coordinate of the current key pressed (the index into the

keyboard table). Note that this is when a row was found

with a 0, and the column was also 0.

19. PLA to restore the row inspection status.

20. Increment the Y register, the index into the keyboard

character set.

21. Is Y register >= $41 (65 decimal)? If it is, all eight rows

by eight columns have been scanned.

22. If all rows and columns have been scanned, branch to

step 25.

23. If the entire keyboard has not been scanned, decrement

the X register, which is the number of times to shift the

keyboard row.

24. If the number of times to shift the row is not equal to zero,

branch to step 10 to examine the next row of key values.

25. If the number of times to shift the row is zero, set the

carry in preparation for a ROL.

26. 64: PLA then ROL and STA DC00.

VIC: ROL 9120.

This rotates the keyboard column left through the

carry. By setting the carry before the ROL, a 1 is rotated

into bit 0, thus leaving the keyboard column still contain

ing just one bit that is zero. (j

27. BNE to step 8. This branches as long as Z flag is clear. The <—'
Z flag is set to 1 when a zero is rotated back into bit 0, in

dicating all columns have been scanned. j i

28. JMP (028F) with a default of EB48/EBDC to the keyboard LJ
table setup routine.

29. The keyboard setup routine has a common exit that jumps « |

back to the instruction immediately following the JMP '—*
(028F) in step 28.

30. Load the Y register index into the character set from CB, j i

the matrix key value. '—I

58 U

n
IRQ Interrupts

n

n31. Load the ASCII value of the key pressed, pointed to by

(F5),Y.

32. Was this Y index the same as the last time? C5 holds the

j—j last matrix value. If yes, then branch to step 34.

'I 33. If not, then set the delay before the key repeat of $10 in
028C and branch to step 51.

p 34. Steps 34-50 handle the key repeat logic.

' I AND $7F with accumulator, which contains the
ASCII value of the key pressed.

35. BIT 028A, the key repeat flag. 028A holds $80 if all keys

repeat, $40 if none repeat, $00 for normal repeat keys.

36. If all keys repeat, BMI to step 41.

37. If no keys repeat, BVS to step 63.

38. If normal keys repeat then fall through to step 39.

39. If the key value was $FF—which after the AND in step 34

is now $7F—meaning no key down, then branch to step
c? j. •

40. If the key is not the space key, one of the cursor keys, the

INSerT key, or the DELete key, then branch to step 63.

41. LDY 028C, the delay before the initial repeat of a key.

42. If zero, branch to step 45.

43. If not zero, delay = delay - 1 (DEC 028C).

44. Is delay, 028C, now zero? If no, branch to step 63.

45. If yes, then decrement 028B, the delay before following re

peats if the key is still held down.

46. If 028B is now zero, continue; if not, branch to step 63.

47. Reset the delay before following repeats of the key, 028B,

to 4. Second and subsequent repeats of a key are faster

than the first repeat because on subsequent repeats 028C

has already counted down to 0.

n48. LDY with the number of characters in the keyboard

buffer, C6.

49. DEY.

n50. If Y register is >= 0, indicating the keyboard buffer con

tains two or more key values, branch to step 63.

51. LDY with the index of the key just pressed from CB.

I—| 52. STY C5, the index of the key last pressed.

L I 53. Load the current shift pattern, 028D.

54. Save as the last shift pattern, 028E.

— 55. Was the value of the key $FF (no key pressed)?

I j 56. If yes, then branch to step 63.

59

IRQ Interrupts

u

u

57. Restore accumulator with ASCII key value saved in X . .

register. I—>
58. Load number of characters in keyboard buffer from C6.

59. Is the number of character >= the maximum number al- , |

lowed in 0289? I—I
60. If yes, branch to step 63. In effect, discard all keys typed as

long as the keyboard buffer is full. . ,

61. Save the ASCII value of the key pressed in the keyboard !—I
buffer at the location one byte past the last ASCII value in

the buffer.

62. Increment C6, the number of characters in the keyboard

buffer.

63. Set DC00 to $7F/9120 to $F7, thus setting the column

value for scanning the STOP key.

Keyboard Table Setup

EB48/EBDC-EB78/EC45

Called by:

Indirect JMP through (028F) at EADD/EB71 in Keyboard Scan.

The value in the shift control flag, 028D, determines

which keyboard character set is used. If this flag is 3, both the

SHIFT and Commodore keys were held down. If the current

shift pattern in this scan of the keyboard, 028D, is the same as

the previous pattern in the SHIFT keys, 028E, the routine

ends, leaving the keyboard table unchanged.

If the shift patterns are different and the SHIFT keys are

enabled (bit 7 of 0291 = 0), EOR bit 1 of D018/9005, flipping

the character set between upper- or lowercase character sets.

If the value in 028D was not 3, shift the value left one bit

(ASL). Entry from the keyboard scan routine makes the only

permissible values at entry in 028D to be 0, 1, 2, 3, 4, 5, 6, or I!

7 (the values for SHIFT, Commodore, or CTRL keys, or —'
combinations thereof). The ASL thus results in a value of 0, 2

(SHIFT), 4 (Commodore key), 8 (CTRL key), or a value greater j|

than 8 if a combination of keys (remember that the original

value of 3 was already checked for).

Compare to see if after the ASL the value is less than 8. If (I

so, that value is used as an index into the keyboard table L^J
character set select. However, if the value is > = 8, then the

index is reset to 6 (the index for the CTRL key character set). j I

60

n

n

IRQ Interrupts

n

n

nThus, 6 is the index for the CTRL character set, 4 is the

index for the Commodore key character set, 2 is the index for

the SHIFT character set, and 0 is the index for normal charac

ter set.

This routine exits by jumping back into the keyboard scan

routine. The VIC version of this routine contains numerous

NOP instructions and extra unused keyboard table values and

an extra unused keyboard character set. The 64 version is

considerably cleaned up.

Operation:

1. See if Commodore and SHIFT keys are both down.

2. If no, branch to step 7.

3. If yes, see if the last shift pattern, 028E, is the same as this

shift pattern.

4. If the patterns are the same, then exit. If the patterns are

different, see if SHIFT keys are enabled, which is indicated

by a 0 in bit 7 of 0291.

5. If SHIFT keys are disabled, exit.

6. If SHIFT keys are enabled, then flip the current character

set, whether it is normal or reversed, to

uppercase/graphics if it is lowercase/uppercase, and to

lowercase/uppercase if it is uppercase/graphics; exit.

7. SHIFT key flag, 028D, is in the accumulator now. ASL this

SHIFT key value.

8. Is accumulator < 8. If yes, branch to step 10.

9. If no, then reset accumulator to 6.

10. TAX to set X register to keyboard table index.

11. Use X as index into character set using table at

EB79/EC46, and save address of the table in (F5).

n

n

n

n

n si

n

n

n

n

n

Chapter 5

Kernal
Routines

Kernal Routines

f \ A section of the Kernal from FF81/FF8A through FFF5 con

tains JMP instructions for the 39/36 routines that have been

rn defined by Commodore as the user-callable Kernal routines.

I I Note that there are three more for the 64 than for the VIC.

These JMP instructions are intended to allow you to write

programs that use any of these Kernal functions without hav

ing to wonder if they will still work on later Commodore

computers or if the Kernal ROM is modified on the 64 or VIC.

Thus, if a routine moves to a different memory location, you

need not be concerned if you just JSR to the Kernal entry

which is in the JMP instruction table.

Another reason to use the standard jump instruction table

is that you don't have to be concerned with the internal work

ings of the routines. Rather, you just provide the information

that is needed by the routine. The routines execute the func

tion you request, returning information if that is part of the

function and providing a means of error detection, either

through the carry flag and the accumulator or the status byte,

location 90.

Since these jump instructions are a standard feature of

Commodore Kernal ROMs (at least on the VIC and 64), you

may wonder why anyone would not use the jump instructions.

Some reasons follow. If the jump vector does an absolute JMP

(such as at FFB1, where there is a JMP ED0C/EE17 for the

send-listen-with-attention-to-serial-device function), you can

not modify this serial function if you use the standard jump

fmmmm> entry.

! | If you want to provide an additional feature that precedes

or follows the standard routine, you may find using the Kernal

(jump instructions awkward.

! | For the jump table entries that jump indirectly, such as

CHRIN, which does a JMP (0324), you can just change the

vector at 0324 to point to your own routine. However, not all

PI the jump instructions use indirect JMPs. See the table below
for details of which use indirect jumps and which use absolute

jumps. Perhaps the reason Commodore doesn't use indirect

I j jumps for all the vectors is the lack of free space in pages 0, 2,

and 3.

R ' 65

Kernal Routines

LJ

A jump vector that appears unused is the SETTMO rou- i .

tine. Also, the RAM vector at (032E) is not called. LJ
The following list compares the Kernal RAM vector table

starting at 031A to the way this function is called from the ^ ,

Kernal jump instruction table. I i

Kernal RAM Vectors and Kernal Jump Table Usage

UVector

(031A)

(031C)

(031E)

(0320)

(0322)

(0324)

(0326)

(0328)

(032A)

(032C)

(032E)

(0330)

(0332)

Function

OPEN

CLOSE

CHKIN

CHKOUT

CLRCHN

CHRIN

CHROUT

STOP

GETIN

CLALL

USRCMD

LOAD

SAVE

Jump Instruction

JMP (031A)

JMP (031C)

JMP (031E)

JMP (0320)

JMP (0322)

JMP (0324)

JMP (0326)

JMP (0328)

JMP (032A)

JMP (032C)

Not called

JMP F49E/F542

JMP F5DD/F675

This chart shows that only LOAD and SAVE do not exe

cute a JMP indirect through a vector upon entering the Kernal

table. Both LOAD and SAVE jump to routines which perform

some setup operations before doing the JMP indirect through

their vectors. LOAD sets the vector at (C3) as the starting ad

dress for the LOAD from the X and Y registers before doing a

JMP (0330). SAVE sets (AE) to the end of the save area +1

from the X and Y registers, and (Cl) to the start of the save

area from a page 0 location whose address is in the accu

mulator, then SAVE does a JMP (0332). If you modify LOAD

or SAVE, be aware of this preparation. There seems to be little

reason why Commodore doesn't just do a jump indirect for j j
SAVE and LOAD as they do for the other functions that have

a RAM vector. If you are writing your own LOAD or SAVE,

and you're still doing the JMP FFD5 for LOAD and JMP FFD8 i i

for SAVE, you may not want (C3), (AE), or (Cl) modified ^
before they get control.

Another reason for not using the Kernal jump instruction jj

is if it points to a routine that functions incorrectly. For ex

ample, the Kernal jump instructions for CHROUT and CHRIN

that can be used for RS-232 operations do not function cor- ! j
rectly for RS-232 x-line handshaking on the VIC. "^

66 ! J

n
Kernal Routines

n

n

n

n

n

A third reason not to use the jump instruction tables is

if you want to use a section of Kernal ROM that doesn't have

a Kernal table entry. For example, you can create autoload/

autostart machine language tapes, but only by directly calling

the Kernal ROM routines, since there are no JMP vectors to the

necessary routines. Another example is if you want to use the

screen editor routines from your machine language program,

which are not available through the Kernal jump vectors.

In summary, the Kernal jump instructions do have a pur

pose, and you should use them when appropriate. However,

the jump instructions cannot or should not always be used,

and after reading the rest of this book you may find Kernal

ROM routines that you want to use directly without using the

jump instructions.

Commodore intends the jump instructions to provide you

with a bridge to a different version of a Kernal ROM without

your having to rewrite your machine language program. While

this jump instruction compatibility is true for VTC-to-64

translations, it is not true for 64-to-VIC translations because

there are three new 64 jump instructions that are not provided

in the VIC.

The alphabetical table of jump instructions below should

be useful when you are programming. The Operand column

lists the place to which the JMP transfers control, either an ab

solute location or a location pointed to by an indirect vector.

Default gives the address found in the RAM indirect vector if it

has not been modified.

Kernal Jump Table

Description

Get a byte from serial bus

Open channel for input

Open channel for output

Get a byte from input channel

Send a byte to output channel

Send a byte to serial bus

Initialize screen editor

Close all channels and files

Close logical file

Reset I/O channels

Retrieve character from

channel

Return base address of I/O

registers

Initialize I/O devices

Send listen with attention to

serial devices

Name

ACPTR

CHKIN

CHKOUT

CHRIN

CHROUT

CIOUT

CINT

CLALL

CLOSE

CLRCH

GETIN

IOBASE

IOINIT

LISTEN

Address

FFA5

FFC6

FFC9

FFCF

FFD2

FFA8

FF81

FFE7

FFC3

FFCC

FFE4

FFF3

FF84

FFB1

Operand

EE13/EF19

(031E)

(0320)

(0324)

(0326)

EDDD/EEE4

FF5B (64 only)

(032C)

(031C)

(0322)

(032A)

E500

FDA3 (64 only)

ED0C/EE17

Default

F203/F2C7

F250/F309

F157/F20E

F1CA/F27A

F32F/F3EF

F291/F34A

F333/F3F3

F13E/F1F5

67

Kernal Routines

Name

LOAD

MEMBOT

MEMTOP

OPEN

PLOT

RAMTAS

RDTIM

READST

RESTOR

SAVE

SCNKEY

SCREEN

SECOND

SETLFS

SETMSG

SETNAM

SETTIM

SETTMO

STOP

TALK

TKSA

UDTIM

UNLSN

UNTLK

VECTOR

Address

FFD5

FF9C

FF99

FFCO

FFFO

FF87

FFDE

FFB7

FF8A

FFD8

FF9F

FFED

FF93

FFBA

FF90

FFBD

FFDB

FFA2

FFE1

FFB4

FF96

FFEA

FFAE

FFAB

FF8D

Operand

F49E/F542

FE34/FE82

FE25/FE73

(031A)

E50A

FD50 (64 only)

F6DD/F760

FE07/FE57

FD15/FD52

F5DD/F675

EA87/EB1E

E505

EDB9/EEC0

FED0/FE50

FE18/FE66

FDF9/FE49

F6E4/F767

FE21/FE6F

(0328)

ED09/EE14

EDC7/EECE

F69B/F734

EDFE/EF04

EDEF/EEF6

FD1A/FD57

Default Description

LOAD/VERIFY to RAM

Read or set the start-of-

memory pointer

Read or set the end-of-

memory pointer

F34A/F40A Open logical file

Read or set cursor location

Memory initialization

Read jiffy clock into registers

Read or reset status

Reset RAM vectors to default

Save contents of memory to

device

Detect keyboard entry

Return number of columns

and rows

Send secondary address after

llSicil IU serial

Set logical file number, device

number, and secondary

address

Set message control

Establish filename

Set jiffy clock from registers

Set IEEE time-out

F6ED/F770 Test for STOP key

Send talk with attention to

serial devices

Send secondary address after
talk fo coriallalK IU serial

Increment jiffy clock

Send unlisten to serial

Send untalk to serial

Read or set RAM vectors

The following sections discuss the above jump instruc

tions. Some routines used by these jump instructions are in

cluded here, if they are not discussed elsewhere. For example,

the LOAD and SAVE routines that are jumped to are dis

cussed here, since these routines can be used for both serial

devices and tape. The specific parts of LOAD and SAVE that

apply to serial or to tape are discussed in those sections.

Routines, such as those jumped to by TALK, SECOND, or

TKSA, that are specific to one device or topic are discussed in

those sections.

ACPTR

FFA5

Called by:

None.

68

u

u

u

U

LJ

U

u

n
Kernal Routines

n

n Setup routines:

TALK TKSA

The vector is JMP EE13/EF19. At EE13/EF19 the com-

r—j puter goes through a handshake sequence with the serial bus.

' I During this sequence, the EOI handshake is performed if the
serial clock input line does not go low within 250 micro-

ri seconds as expected. If the EOI handshake sequence is per-

I formed, the routine sets the EOI status in the I/O status word,
location 90. It can set the time-out status in the status word if

serial clock in fails to go low within a certain time range.

If the preparation to receive handshaking signals detects

no problems, and if the eight bits are received without

handshaking error, the routine returns the byte received in the

accumulator.

Exit conditions:

The accumulator contains the byte received from the serial

bus.

CHKIN

FFC6

Called by:

JSR at E11E/E11B in BASIC'S Set Input Device.

Setup routines:

OPEN

Entry Requirements:

The X register should contain the logical file number.

JMP (031E) with a default of F20E/F2C7. If the logical file

is in the logical file number table, the routine obtains the de-

(—I vice number and secondary address for this logical file from

'- ' the corresponding entries in the device number and secondary
address tables. If the logical file is not in the logical file num-

r—j ber table, it displays FILE NOT OPEN, and returns with carry

!■ ■ I set and accumulator set to 3.
If the current device is the screen or the keyboard, the

f—| routine stores 0 for the keyboard or 3 for the screen in 99, the

1 ' location holding the device number of the current input de
vice. You don't have to use OPEN and CHRIN to input from

nthe keyboard.

If the current device is the tape, the routine also checks

the secondary address. If the current secondary address is not

H 69

Kernal Routines

$60, the routine displays the NOT INPUT FILE message, and i i

returns with carry set and accumulator set to 6. If the current *—»

secondary address is $60, then location 99 is set to 1 to make

tape the current input device. OPEN does an ORA $60 of the \ [

secondary address. I—I
If the current device is a serial device, it opens the input

channel by sending a TALK command to the device, and send- t i

ing the secondary address if the value for secondary address (—'
held in B9 is < 128 (decimal). If the serial device does not re

spond, it displays the DEVICE NOT PRESENT error message

and returns with carry set and accumulator set to 5. Other

wise, it stores the serial device number in 99.

If the current device is RS-232, the routine opens an RS-

232 input channel. This RS-232 routine sets the current input

device, location 99, to 2 for RS-232, then handles either the 3-

line handshaking or the x-line handshaking opening sequence.

CHKIN Execution

F20E/F2C7-F236/F2EF

Called by:

Indirect JMP through (031E) from Kernal CHKIN vector at

FFC6.

If the current logical file passed in the X register is in the

logical file number table, obtain its corresponding device num

ber and secondary address from the device number and

secondary address tables. If it is not in the logical file number

table, exit with FILE NOT OPEN error message.

If the device is the screen or the keyboard, set location 99,

the current input device number, from BA, the current device

number, and exit.

If the current device is an RS-232 device, JMP to the j j
Open RS-232 Device routine.

If the current device is a serial device, JMP to the Open

Serial Input Channel routine. I j
If the current device is tape, see if the secondary address

indicates reading from tape. If not, JMP to display the NOT

INPUT FILE message. [_|

Store the current device number in the input device num

ber, 99, CLC, and exit.

u

70

Kernal Routines

n Operation:

1. JSR F30F/F3CF to see if the logical file number in the X

register exists. If the logical file passed in the X register is

not in the logical file number table, JMP F701/F784 to FILE

NOT OPEN error message, set accumulator to 3, set the

carry, and exit.

2. JSR F31F/F3DF to set the current logical file number in B8,

the current device number in BA, and the current secondary

address in B9 from the tables for the logical file, device

number, and secondary address.

3. If the current device, BA, is the keyboard (0), or the screen

(3), branch to step 8.

4. If the current device number is > 3, the current device is a

serial device; branch to F237/F2F0 to open a logical file for

a serial device.

5. If the current device is an RS-232 device, JMP F04D/F116

to open an RS-232 logical file as an input channel.

6. If the current device is tape, see if the secondary address is

$60. If the secondary address is $60, branch to step 8. The

secondary address of $60 is set during the OPEN Execution

routine when the secondary address is ORed with $60.

7. If the secondary address is not $60, JMP F70A/F78D to dis

play the NOT INPUT FILE message and exit with the accu

mulator set to 6 and the carry set.

8. STA (the current device number is in the accumulator) into

99, the input device number.

9. CLC and RTS.

CHKOUT

FFC9

Called by:

JSR at E4AE/E115 in BASIC'S Set Output Device.

Entry requirements:

Set X register to logical file number.

JMP (0320) with default of F250/F309. If the logical file is

in the logical file number table, obtain the device number and

secondary address for this logical file from the corresponding

entries in the device number and secondary address tables. If

the logical file is not in the logical file number table, display

the FILE NOT OPEN message, and return with carry set and

accumulator set to 3.

LI
Kernal Routines

LJ
If the current device is the keyboard, display the NOT

OUTPUT FILE message, and return with carry set and accu- j j
mulator set to 7.

If the current device is the screen, just set 9A, the current

output device, to 3, and exit. You do not have to call OPEN j j
and CHROUT to display on the screen.

If the current device is tape, also check the secondary ad

dress. If the secondary address is not $61, display the NOT J J
OUTPUT FILE message, and return with carry set and accu

mulator set to 7. If the current secondary address is $61, set

9A to 1 for tape. Note: OPEN does an ORA $60 of the

secondary address.

If the current device is a serial device, open the output

channel for a serial device. Do this by commanding the cur

rent device to listen. Then for secondary addresses < 128, set

the serial attention output line high. If the serial device does

not handshake as expected, display DEVICE NOT PRESENT,

and return with carry set and accumulator set to 5. Otherwise,

set 9A to the serial device number.

If the current device is RS-232, then open an RS-232 out

put channel. This routine sets 9A to 2, and then it handles the

3-line or x-line handshaking sequence.

CHKOUT Execution

F250/F309-F278/F331

Called by:

Indirect JMP through (0320) from Kernal CHKOUT vector at

FFC9.

If the logical file number passed in the accumulator at en

try is not in the logical file table, display the FILE NOT OPEN

error message. | j

If the logical file is in the file number table, obtain the 1—'

current device number and secondary address for this logical

file. j (

If the device is the keyboard, display the NOT OUTPUT '—'

FILE error message.

If the device is the screen, store the device number in the | |

output device number, 9A, and exit. *—'

If the device is a serial device, branch to Open Serial Out

put Channel. i

72 LJ

Kernal Routines

) | If the device number is 2 (RS-232), jump to Open RS-232

! 1 Output Channel.

If the device is tape, the secondary address must not be

_ $60 because this indicates read from tape. If $60 is found, dis-

i | play the NOT OUTPUT FILE error message. If the secondary

address is legal, set the output device number, 9A, to the

^_ value 1.

' Operation:

1. JSR F30F/F3CF to see if the logical file number passed in

the X register is in the logical file number table. If not, JMP

F701/F784 to display the FILE NOT OPEN error message

and return with 3 in accumulator and carry set, then exit.

2. JSR F31F/F3DF to obtain the current device number and

the current secondary address from their respective tables.

3. If the current device is the keyboard, JMP F70D/F790 to

display the NOT OUTPUT FILE error message, set accu

mulator to 7, set carry, and exit.

4. If the current device is the screen, store the device number

in 9A, the output device number, then CLC, and exit.

5. If the current device is a serial device, branch to F279/F332

to Open Serial Output Channel.

6. If the current device is an RS-232 device, JMP EFE1/F0BC

to Open RS-232 Output Channel.

7. If the current device is tape, the secondary address must not

be $60 (read tape). If the secondary address is $60, JMP to

NOT OUTPUT FILE error, set accumulator to 7, set carry,

and exit. If the secondary address is legal, set the output de

vice number, 9A, to 1 (tape).

8. CLC and RTS.

n CHRIN

I pFCF

^ Called by:

J 1 JSR at E112/E10F in BASIC'S Input a Character.

Setup routines:

{—] OPEN, CHKIN (not required in retrieving from keyboard).

' ' JMP (0324) with default of F157/F20E.
If the current input device, 99, is tape, then return the

i~i next byte from the tape buffer. Also, read one byte ahead to

73

u
Kernal Routines

~~ LJ
see if the next byte is zero, indicating end of file, and if true, . ,

set end-of-file status in 90. 1 |
If the current input device, 99, is a serial device, the accu

mulator returns the byte received over the serial bus. How-

ever, if there are any I/O status errors, return with j |
accumulator set to $0D

If the current input device, 99, is RS-232, return with the s

next character from the RS-232 receive buffer. However, if the ; j

receive buffer is empty, the RS-232 routine on the VIC just

loops until the receive buffer contains a character. The VIC

can hang in an infinite loop if the RS-232 receive buffer never

gets another character. If the receive buffer is empty on the 64,

the routine returns with $0D in the accumulator.

If the current input device is the keyboard, each character

typed (except for control characters such as the cursor keys) is

displayed on the screen until the unshifted RETURN is en

tered. Once an unshifted RETURN is typed, reset the input

routine to retrieve a character from this screen line. After each

character is retrieved from the screen line, increment the

pointer to the character being retrieved in this logical line. The

screen POKE code is converted to the equivalent ASCII code,

which is returned in the accumulator. If the end of the screen

line has been reached, then return $0D, the ASCII code for a

carriage return. The screen editor routines limit the size of a

logical line to 80/88 characters. The way this CHRIN from the

keyboard is typically used is to fill a buffer as BASIC does.

BASIC calls the CHRIN routine to fill the BASIC input buffer

at 0200. The BASIC routine keeps putting characters in the

buffer until CHRIN retrieves a carriage return (ASCII $0D).

If the current input device, 99, is the screen, then return

the ASCII code for the screen character in the current logical

line pointed to by D3, the column the cursor is on. D3 is then I j
incremented to point to the next character in the line. If D3

has reached the end of the line, return $0D signifying carriage

return, and set DO to 0 to force the next CHRIN to come from I j
the keyboard.

When doing CHRIN from the keyboard, the keyboard

routine uses this CHRIN from the screen once the carriage re- j j
turn has been entered. After processing the screen characters,

the screen CHRIN then resets a flag at DO to 0 to force input

from the keyboard for the next CHRIN. |_j

74

n
Kernal Routines

r—» Exit conditions:

- - Accumulator holds byte returned from channel.

r—? Determine Input Device

1 l F157/F20E-F178/F22F

^ Called by:

! ! Indirect JMP through (0324) from Kernal CHRIN vector at

FFCR

Call the appropriate character input routine based on the

input device number, 99.

Operation:

1. If 99 is set to 0 (keyboard), save D3 in CA, save D6 in C9,

and JMP E632/E64F (see chapter 7) to receive a character

from the keyboard.

2. If 99 is set to 3 (screen), store 3 in DO, save D5 in C8, and

JMP E632/E64F (see chapter 7) to receive a character from

the screen.

3. If 99 is set to 2 (RS-232), branch to F1B8/F26F (see chapter

9) to receive a character from the RS-232 device.

4. If the value in 99 > 3 (serial), branch to F1AD/F264 (see

chapter 8) to receive a character from the serial device.

5. If 99 is set to 1 (tape), fall through to F179/F230 to receive

a character from tape.

CHROUT

FFD2

Called by:

JSR at E10C/E109 in BASIC'S Output a Character, JSR at

F135/F1EC in Display Kernal Message, JSR at F5C9/F661 in

Display Filename, JSR at F726/F7A9 in Error Message

Handler, JSR at F759/F7DC in Find Next Tape Header.

r~[Setup routines:

- (OPEN, CHKOUT (not required if output device is the screen).

__, Entry requirements:

! I Accumulator should contain the character to be output, in

CBM ASCII. JMP (0326) with a default of F1CA/F27A.

^ If 9A, the current output device, is the screen (3), the

M ASCII code is displayed on the screen unless the ASCII code is

a screen control function (cursor key, DELete, INSerT, and so

n

75

Kernal Routines
u

LJ

on). If the character is a control code, the routine performs the \ j

action. If the ASCII code is a valid screen display code, the I I
code is displayed on the screen at the current cursor position

and then the cursor is advanced to the next position on the i ,

screen. ! I
If the current output device, 9A, is a serial device, (> 3),

then JMP EDDD/EEE4 to send the character to all open serial (.

devices. When sending a character to a serial device, a one- LJ
byte buffer, 95, is maintained. If this buffer is empty, the

character to be output is simply stored in the buffer. If the

buffer already contains a character, the routine sends the

character from the buffer onto the serial bus and stores the

character to be output in the buffer. When the serial file is

closed or the serial device is commanded to unlisten, the final

byte in the buffer is sent.

If the current output device, 9A, is RS-232 (2), the charac

ter to be output is stored in the RS-232 transmit buffer, and

transmission is started if this is the first byte to be sent.

If the current output device, 9A, is tape (1), store the

character in the currently available position in the tape buffer

and increment the index to the available position in the tape

buffer. Once the index is set to 192, write the tape buffer to

tape. Then set the first byte of the tape buffer to 2 (identifica

tion for a data buffer) and reset the index to point to the sec

ond byte of the tape buffer.

Although the character to be output is in ASCII code for

output to the screen, this is not the case for RS-232, serial, or

tape. For example, if you are storing bytes to tape containing a

code other than ASCII, CHROUT will send them to the tape

buffer. For the screen, though, the 64/VIC screen editor is set

up to convert ASCII codes to screen codes or screen functions, , ,

and would not function well if you did not use ASCII. I 1

Determine Output Device , ,

F1CA/F27A-F1E4/F28E LJ

Called by:

Indirect JMP through (0326) from Kernal CHROUT vector at) I

FFD2. L-J
Call the appropriate character output routine based on the

output device number, 9A. j |

76 LJ

n
Kernal Routines

n

Operation:

1. If the output device is the screen, JMP E716/E742 (see

chapter 7) to output a character to the screen.

2. If the output device is a serial device, JMP EDDD/EEE4 (see

chapter 8) to output a character to the serial device.

3. If the output device is an RS-232 device, branch to

F208/F2B9 (see chapter 9) to output a character to an RS-

232 device.

4. If the output device is tape, fall through to F1E5/F28F (see

chapter 10) to handle CHROUT to tape.

CINT (64 only)

FF81

Called by:

None.

JMP FF5B to initialize the VIC-II (6567) chip registers,

clear the screen, set the cursor pointer, initialize the screen line

link table, set the PAL/NTSC flag, set value for CIA #1 timer

A, enable interrupts for CIA #1 timer A, and start timer A.

This Kernal jump instruction is only available on the 64.

The nearest equivalent on the VIC is to JSR E518 to set the

VIC (6560-6561) chip registers, clear the screen, set the cursor

pointers, and initialize the screen line link table. The 6560 and

6561 chips are, respectively, the NTSC and PAL versions of

the VIC's video chip. The VIC equivalent of CINT for enabling

the IRQ timer interrupt is to JMP FE39 to enable VIA #2 timer

1 interrupts and to set a timer 1 value.

Thus, a VIC version might be something like this:

r-| JMP 02A1

I .1 02A1 JSR E518
02A4 JSR FE39

— 02A7 RTS

II CINT, or its VIC equivalent, is only needed if you write

an autostart cartridge program and need to use the screen edi-

f—j tor or IRQ timer A/timer 1 interrupts. If no autostart cartridge

'--J exists, the 64/VIC performs the actions in CINT during system
reset.

n

1 -1 77

Kernal Routines

u

CIOUT) I

FFA8 ^

Called by:

None.

Setup routines:

LISTEN, SECOND (if serial device requires a secondary

address)

Entry requirements:

Accumulator should contain character to output. JMP EDDD/

EEE4 to execute the Send Serial Byte Deferred routine.

When sending a character to a serial device, the routine

maintains a one byte buffer at 95. If this buffer is empty, the

character to be output is simply stored in the buffer. If the

buffer already contains a character, the character from the

buffer is sent onto the serial bus and the character to be out

put is stored in the buffer. When the serial file is closed or the

serial device commanded to unlisten, the final byte in the

buffer is sent. The character is sent to all open devices on the

serial bus.

CLALL

FFE7

Called by:

JSR at A660/C660 in BASIC'S CLR.

JMP (0322) with a default of F32F/F3EF.

Set 98, the number of currently open files, to 0.

If the current output device is a serial device, send an

UNLISTEN command on the serial bus.

If the current input device is a serial device, send an j j
UNTALK command on the serial bus.

Set 99, the current input device, to be the keyboard.

Set 9A, the current output device, to be the screen.

Reset to No Open Files

F32F/F3EF-F332/F3F2 LJ

Called by:

Indirect JMP through (032C) from Kernal CLALL vector at

FFE7.

78 u

n
Kernal Routines

n

p-[Reset location 98, the number of open files, to zero and

L-J fall through to F333/F3F3 to reset any open serial channels
and reset the default device numbers.

j"""j Operation:
1. Set 98, the number of open files, to 0.

2. Fall through to F333/F3F3, Clear Serial Channels and Reset
jj Default Devices routine.

CLOSE

FFC3

Called by:

JSR at E1CC/E1C9 in BASIC'S CLOSE

Entry requirements:

Accumulator should contain the number of the logical file to
be closed.

JMP(031C) with a default of F291/F34A.

If the logical file number in the accumulator is found in

the logical file number table, also retrieve the current device

number from the device number table and the secondary ad

dress from the secondary address table.

Then, execute the appropriate CLOSE routine for this cur
rent device.

If accessing a serial device, for secondary addresses < 128

(decimal), command the current device to LISTEN, send a

CLOSE secondary address, and command the serial device to

UNLISTEN. For secondary addresses > 128, this close se

quence is omitted.

For an RS-232 device, bring the transmitted data line

high, which is the idle state for RS-232 communications. Also,

reset the pointers to the end of memory by reclaiming the

space used for the RS-232 transmit and receive buffers.

When closing a logical tape file, determine whether writ-

ing to or reading from tape. If writing to tape then store a final

byte of 0 in the tape buffer and write the buffer to tape.

For all types of devices, a common CLOSE exit is used.

The number of open files, 98, is decremented, and the entry for

this logical file is deleted from the logical file number table, the

device number table, and the secondary address table.

79

Kernal Routines
LJ

Determine Device for CLOSE 1 f

F291/F34A-F2AA/F363 LJ

Called by:

Indirect JMP through (031C) from Kernal CLOSE vector at jl
FFC3.

Upon entry, the accumulator contains the logical file num

ber to be closed. First, it calls a routine to determine if the j |
logical file number is in the logical file number table. If the

number is not in the table, then it will exit with carry clear. If

the number is in the table, then it will retrieve the current de

vice number and secondary address corresponding to this file.

Push the current index into the tables corresponding to

the logical file number onto the stack. Determine the type of

device the logical file is using and branch to the appropriate

routine for closing screen, keyboard, serial, or tape devices, or

fall through to following code for closing RS-232 devices.

Entry requirements:

Accumulator should contain the number of the logical file to

be closed.

Operation:

1. JSR F314/F3D4 to see if the logical file number is in the

logical file number table. Return with X as the index into

table corresponding to this logical file if it exists; return with

Z = 1 (detected with BEQ) if the logical file is found.

2. If the file is not found CLC and RTS.

3. If the file is found, then JSR F31F/F3DF to retrieve the cur

rent device number, BA, the current secondary address, B9,

and the current logical file number, B8, from the tables for

these with entries corresponding to the location of current

logical file number in the logical file number table. ! 1

4. Transfer index into tables to accumulator and push on stack '—'
for later retrieval by the individual CLOSE routines for RS-

232 and serial devices. { [

5. If current device is the keyboard or screen, branch to v—

F2F1/F3B1 to decrement number of open files and remove

current file entry from the three tables. J J

6. If current device is a serial device, branch to F2EE/F3AE for l—'
a JMP to the routine to close a serial device.

7. If current device is tape, branch to F2C8/F38D to close tape j j

files. L~J

80 LJ

H
Kernal Routines

P"| 8. If current device is RS-232, fall through to the routine at

— F2AB/F364 to close an RS-232 device.

j—1 Common Exit for Close Logical File Routines

- F2F1/F3B1-F30E/F3CE

j-*-i Called by:

1, \ Falls through after JSR to Close Logical File for Serial Device
at F2EE/FEAE, BEQ at F29F/F358 and F2A3/F35C in Deter

mine Device to Close, BEQ at in F2CC/F391 Close Logical File

for Tape, BNE at F2E4/F3A4 in Close Logical File for Tape ,

JMP at F2EB/F3AB in Close Logical File for Tape; alternate en

try at F2F2/F3B2 by JSR at F2AC/F365 in Close Logical File

for RS-232 Device.

The index into the file tables for the current logical file is

retrieved from the stack (except for the alternate entry from

RS-232 which has already pulled it from the stack).

The number of open files, 98, is decremented and com

pared to the index into the file tables. If equal, the current

logical file is the last entry in the file table. In this case, there

is no need to delete the actual entries in the tables since the

pointer to the tables will now cause the next OPEN to over

write these entries.

If the current logical file index is not equal to the number

of open files (after the decrement), replace the current entries

of the logical file number, device number, and secondary ad

dress tables with the last entries in the table. As the order

within a particular table is unimportant, this rearrangement

effectively deletes the current entries for the logical file, de

vice, and secondary address.

fj Entry conditions:

Index into file tables for current logical file is pulled from the

stack at entry.

[i Operation:
1. Pull index into file tables for current logical file from stack.

-—, 2. Transfer the index into the tables to X register.

I I 3. Decrement the number of open files (plus one), location 98.
4. If X register equals the value in 98, the logical file being

_ closed is the last entry in the tables. Since 98 points to the

I J next available space in the tables, the next OPEN will over
write the entries for this current logical file. Thus, just CLC

_ andRTS.

i t
81

Kernal Routines

u

u

5. If the number of open files (plus one) after decrement is not | j

equal to the value in the X register, the current logical file '—'
being closed is not the last entry in the table. In this case,

move the last entries in the three tables (device number, j j

secondary address, logical file number) to the current logical '—■

file entries. Before this move,the last entry is pointed to by

98 and the current entry by the X register. (j

6. CLC and RTS. ^

CLRCHN

FFCC

Called by:

JSR at A447/C447 in BASIC'S Error Message Handler, JSR at

ABB7/CBB7 in BASIC'S INPUT*, JSR at E37B/E467 in BA-

SlC's Warm Start, JSR at F6F4/F777 in Test for STOP Key, JSR

at F716/F799 in Error Message Handler.

JMP(0322) with a default of F333/F3F3.

If the current output device is a serial device, send an

UNLISTEN command on the serial bus. If the current input

device is a serial device, send an UNTALK command on the

serial bus.

Set 99, the current input device, to be the keyboard.

Set 9A, the current output device, to be the screen.

Clear Serial Channels and Reset Default Devices

F333/F3F3-F349/F409

Called by:

Indirect JMP through (0322) from Kernal CLRCHN vector at

FFCC, fall through from F331/F3F1 in Reset to No Open Files.

Operation: I—
1. If the current output device is a serial device, JSR

EDFE/EF04 to command the serial device to unlisten. * j

2. If the current input device is a serial device, JSR Lj
EDEF/EEF6 to command the serial device to untalk.

3. Reset 9A, the current output device, to the screen (3). f

4. Reset 99, the current input device, to the keyboard (0). 1—i

u

82

n

) i

Kernal Routines

<—, GETIN

< J FFE4

Called by:

[""{ JSR at El21 in BASIC'S Get a Character.

Setup routines:

rn OPEN, CHKIN

i ? JMP(032A) with a default of F13E/F1F5.
When retrieving characters from the keyboard, if any

characters are in the keyboard buffer, the first character (an

ASCII value) in the buffer is returned in the accumulator, and

the rest of the characters are moved up one position in the

buffer. If no characters are in the keyboard buffer, return with

accumulator cleared to 0.

You would use GETIN to retrieve the first character in the

keyboard buffer. Contrast this to CHRIN, which does not re

trieve anything until RETURN is entered, then returns a

character from the logical screen line.

If retrieving from device 2, RS-232, see if the RS-232 re

ceive buffer contains any characters. If it is empty, return with

accumulator set to 0. If it contains characters, return with

accumulator containing next character in the receive buffer and

increment the pointer into the receive buffer.

If retrieving from channel 3 (the screen), channels >= 4

(serial devices), or channel 1 (tape), do the same routines for

GETIN that CHRIN does for these devices.

For screen GETIN, return the ASCII code for the screen

character in the current logical line pointed to by D3, the col

umn the cursor is on. D3 is then incremented to point to the

next character in the line. If D3 is on the end of the line, re-

p-, turn the ASCII code $0D for return.

' j For serial GETIN, the accumulator returns the byte re
ceived over the serial bus. However, if any I/O status errors

n occur, return with accumulator containing $0D.

For tape GETIN, return the next byte from the tape buffer.

Also, read one byte ahead to see if the next byte is zero, in-

r-i dicating end of file, and if true, set end-of-file status in 90.

n

83

u
Kernal Routines

LJ

GETIN Preparation

F13E/F1F5-F14D/F204 UJ

Called by:

Indirect JMP through (032A) from Kernal GETIN vector at J

FFE4. L-J
This routine first determines if the current input device is

the keyboard. If not, GETIN falls through to F14E/F205 for an { [

RS-232 device or branches to F166/F21D for other devices '—'
using the same routines as are used by CHRIN.

If the current input device is the keyboard and if the key

board buffer contains characters, JMP E5B4/E5CF to retrieve

the first character from the keyboard buffer.

Operation:

1. If 99, the current input device, is not 0 (the keyboard),

branch to step 5.

2. If 99 is 0 for the keyboard, see if any characters are in the

keyboard buffer as indicated by C6, the number of charac

ters in the keyboard buffer.

3. If no characters are in the keyboard buffer, just CLC and

RTS, thus returning with the accumulator set to 0.

4. If characters do exist in the keyboard buffer, disable IRQ

interrupts and JMP E5B4/E5CF to retrieve the first character

from the keyboard buffer and exit.

5. If the current input device, 99, is 2 for RS-232, fall through

to F14E/F205 for the routine to get characters from RS-232.

6. If the current input device is neither 0 nor 2, branch to

F166/F21D to get a character from other devices. F166/F21D

is located in the Determine Input Device routine used by

CHRIN; thus, other devices (tape, screen, serial) perform

the same routines for both GETIN and CHRIN. ,

IOBASE ^
FFF3 u

Called by:

JSR at E09E/E09B BASIC'S in RND

JMP E500. [J

This routine returns (to the X and Y registers) the address

of the start of the I/O registers that control the 6526

CIA/6522 VIA chips. You can write programs that refer to the t j

I/O registers without knowing the exact address of the I/O

84 LJ

Kernal Routines

register. To write a program in this manner, you would call

IOBASE to get the starting address of the I/O registers and

add an index to the particular I/O register to which you are

p—* referring.

I ! IOBASE for the VIC returns with X register set to $10 and
Y register set to $91 (the address of the first register of VIA #1

p-i is 9110). IOBASE for the 64 returns with X register set to $00

! . > and Y register set to $DC (the address of the first register of
CIA #1 is DC00). By calling IOBASE, you can determine both

the starting address of the I/O registers and which computer

the program is running on. Thus, your program could test

which computer it is running on and read or write to the

appropriate I/O register for this computer, giving you the abil

ity to write one program that works on both the 64 and the

VIC. You still will have to know what the CIA/VIA registers

do and how to modify them, since what works for a VIA reg

ister does not necessarily work the same way on the

corresponding CIA register.

BASIC'S RND uses this routine to access the CIA/VIA

timer registers in generating a random number.

IOINIT (64 only)

FF84

Called by:

None.

JMP FDA3 to initialize the CIA registers, the 6510 I/O

data registers, the SID chip registers, start CIA #1 timer A, en

able CIA #1 timer A interrupts, and set the serial clock output

line high.

The closest equivalent to this routine on the VIC is JMP

("1 FDF9 to initialize the 6522 registers, set VIA #2 timer 1 value,
start timer 1, and enable timer 1 interrupts.

Since these routines are called during system reset, the

P] main use for IOINIT is for an autostart cartridge that wants to

use the same I/O settings that the Kernal normally uses.

P| LISTEN
FFB1

p—I Called by:

1 < None.
JMP ED0C/EE17.

H 85

Kernal Routines
u

u

At ED0C/EE17 the accumulator, which contains the de- , (

vice number, is ORed with $20, turning on bit 5 to prepare to LJ

send a LISTEN command on the serial data output line. The

device number should be 0-31 (decimal). (If you specify a , ,

value > 31, you mess up the high nybble which is used for < I

sending commands on the serial bus.)

RS-232 interrupts are disabled. < (

Finally, the LISTEN command for this device is sent on s 1

the serial bus. To send the LISTEN, the 64/VIC brings the se

rial attention output line low to cause all devices on the serial

bus to listen for a command coming on the bus.

LOAD

FFD5

Called by:

JSR at E175/E172 in BASIC'S LOAD/VERIFY.

Setup routines:

SETLFS, SETNAM

Entry requirements:

Accumulator should be set to 0 for LOAD; accumulator set to

1 for VERIFY.

If relocatable load desired: Set X register to the low byte

of load starting address, and Y register to the high byte of load

starting address.

JMP F49E/F542 to store the X register and Y register in

(C3), the starting address of the load, and then JMP(0330)

with a default of F4A5/F549.

At F4A5/F549, determine the device. The keyboard,

screen, and RS-232 are illegal devices.

For a serial device you must specify a filename. If you j 1

don't, the MISSING FILE NAME error message is displayed.

With a valid filename, the computer commands the current se

rial device to listen and sends the secondary address of $60, 1 j

indicating a load, followed by the filename. Then it tells the

device to unlisten. Next, it tells the current serial device to

talk, sends the current secondary address of $60, and receives l, |

a byte from the serial bus. If the I/O status word indicates the

86 . LJ

n
Kernal Routines

p—r byte was not returned fast enough, a read time-out has oc-

' curred and the FILE NOT FOUND error message is displayed.
The first two bytes received from the serial device are used as

<-*1 a pointer to the start of the load area (AE). However, if a

1 J secondary address of 0 is specified at entry to load, the X and
Y registers stored in (C3) at entry are used as the starting ad-

r-j dress of the load—thus providing for a relocatable load. Then

' > it receives bytes from the serial bus and stores or verifies them
until the EOI status is received. Once the EOI status is re

ceived, the serial device is commanded to untalk, and the se

rial device sends the last buffered character. The serial device

then is sent a CLOSE and told to untalk.

For tape LOAD/VERIFY, the LOAD routine first checks if

the tape buffer is located in memory >= 0200. If so, it loads

the tape buffer with a header retrieved from the tape. If a file

name has been specified, a specific header with this filename

is loaded; if there is no filename, it loads the next header on

the tape. Only tape headers with tape identifiers of 1 or 3 are

acceptable for LOAD/VERIFY. A tape identifier of 5 indicates

an end-of-tape header, and in this case the routine will exit

with carry set and accumulator set to 5. Tape identifiers of 2 or

4 are for sequential files.

A tape identifier of 3 causes a nonrelocatable load even if

you have specified values in the X and Y registers at entry and

a secondary address of 0. That is, you can't override a tape

identifier of 3—it forces a nonrelocatable load.

A tape identifier of 1 allows a relocatable load. If the tape

identifier is 1 and the secondary address is 0, the X and Y reg

ister values at entry are used to determine the starting address

for the load.

j—j For a nonrelocatable load, the starting address for the load

-* is taken from the tape header. The ending address for the load

(in both relocatable and nonrelocatable loads) is determined

j—j by adding the length of the program to the starting address.

1 ' After determining whether to do a relocatable or non-
relocatable load, it loads RAM from the next two program

r—| blocks on tape (two blocks are used for error correcting pur-

' - ' poses; they should be identical copies of each other).

n

87

u
Kernal Routines

U

Jump to LOAD Vector I j

F49E/F542-F4A4/F548 L—'

Called by:

JMP from Kernal LOAD vector at FFD5. LJ
The starting address for a possible relocatable load, speci

fied in the X and Y registers at entry, is stored in (C3), fol

lowed by JMP (0330) with the default vector of F4A5/F549. j_j

Operation:

1. STX C3.

2. STY C4.

3. JMP(0330).

Determine Device for LOAD

F4A5/F549-F4B7/F55B and F533/F5CA-F538/F5D0

Called by:

Indirect JMP through (0330) at F4A2/F546 in Jump to LOAD

Vector.

This routine determines which device is being used for

the load. Invalid devices are the screen, keyboard, or RS-232.

Valid devices are serial devices or tape, and for these the rou

tine passes control to the appropriate serial or tape load

routine.

Operation:

1. STA 93, thus setting the LOAD/VERIFY flag to 0 for LOAD

or to 1 for VERIFY.

2. Reset 90, the I/O status, to 0.

3. LDA from BA, the current device number.

4. If the current device is the keyboard (0) or the screen (3),

JMP F713/F796 to display the ILLEGAL DEVICE NUMBER <j

error message. —'

5. If the current device number is less than 3, branch to step 7.

6. If the current device number is greater than 3, it's a serial j j

device. Fall through to F4B8/F55C to load from a serial i—'
device.

7. If the current device is RS-232, JMP F713/F0B9 to display j j

ILLEGAL DEVICE NUMBER. l—j
8. If the current device number is not 2 (RS-232), the only

number left is 1 (tape). Fall through to F539/F5D1 to load j I

from tape.

88 LJ

Kernal Routines

n

r-i MEMBOT

I I FF9C

, Called by:

j | JSR at E403/E3E5 in BASICs Cold Start.

Entry requirements:

<—i Carry should be set or clear, depending on function desired:

1 Set carry to read bottom of memory.

Clear carry to set bottom of memory. The X register is the

low byte of the address of the bottom of memory, and the Y

register is the high byte of the address of the bottom of

memory.

JMP FE34/FE82.

If the carry is clear at entry, set the pointer to bottom of

memory (0281) from X and Y registers.

If the carry is set at entry, load X and Y registers from

(0281), the pointer to the bottom of memory.

The initial values of (0281) are 1000 for an unexpanded

VIC, 0400 for a VIC with 3K expansion, 1200 for a VIC with

8K or more expanded, and 0800 for the 64.

MEMBOT Execution

FE34/FE82-FE42/FE90

Called by:

JMP from Kernal MEMBOT vector at FF9C.

If the carry is clear at entry, set (0281), the pointer to the

bottom of memory, from the X and Y registers. If carry is set at

entry, load X and Y registers from (0281).

Operation:

j—j 1. If carry is clear, branch to step 3.

2. Load X and Y registers from pointer to bottom of memory

(0281), and fall through to step 3.

p] 3. Set (0281) from values in X and Y registers.

1 4. RTS.

H MEMTOP

FF99

— Called by:

i I JSR at E40B/E3ED in BASIC'S Cold Start.

89

u
Kernal Routines

u

Entry requirements: < .

Carry should be set or clear, depending on function desired: 1—I
Set carry to read end of memory.

Clear carry to set end of memory. The X register contains » (

the low byte of the address of the start of memory, and the Y I 1
register contains the high byte of the address of the start of

memory. I (

JMP FE25/FE73. LJ

If carry is clear at entry, set pointer to top of memory

(0283) from X and Y registers.

If carry is set at entry, load X and Y registers from (0283),

the pointer to the top of memory.

MEMTOP Execution

FE25/FE73-FE33/FE81

Called by:

JMP from Kernal MEMTOP vector at FF99; alternate entry at

FE27/FE75 by JSR at F2B2/F377 in Close Logical File for RS-

232, JSR at F468/F527 in Open RS-232 Device; alternate entry

at FE2D/FE7B by JMP at F480/F53F in Open RS-232 Device,

JMP at FDCF in Initialize Memory Pointers (VIC only).

If entering at FE25/FE73, the carry flag determines

whether the top of memory is being set or read. If the carry

bit is clear, or if the routine is entered at FE2D/FE7B, the top

of memory pointer (0283) is set from the X and Y register val

ues. If the carry is set, or if the routine is entered at

FE27/FE75, the X and Y registers are set from the top of

memory pointer (0283).

Operation:

1. FE25/FE73: If carry is set, branch to step 3. i I

2. FE27/FE75: Load X and Y registers from pointer to top of I—I
memory (0283), and fall through to step 3.

3. FE2D/FE7B: Set (0283) from values in X and Y registers. i (

4. RTS. l—J

OPEN | j

FFC0 ^

Called by: . ,

JSR at E1C1/E1BE in BASIC'S OPEN. LJ

90 U

n
Kernal Routines

n

n
Setup routines:

SETLFS, SETNAM

JMP(031A) with a default of F34A/F40A.

nOPEN checks whether another logical file can be opened.

Another logical file can be opened if the logical file number is

not 0 and if fewer than ten logical files are already open.

j—j OPEN exits if trying to open to the screen or keyboard, as

<_.._.» these devices do not use files.

For a serial device, OPEN commands the serial device to

listen and then sends a secondary address for OPEN to this

serial device.

For tape, OPEN checks for a tape header of a sequential

file if reading, or writes a tape header for a sequential file if

writing.

The RS-232 OPEN initializes various RS-232 lines and

creates two 256-byte buffers at the top of memory. RS-232

OPEN handles the x-line handshaking opening sequence in

correctly on the VIC.

OPEN Execution

F34A/F40A-F3D4/F494

Called by:

Indirect JMP through (031A) from Kernal OPEN vector at

FFCO.

OPEN creates a logical file that can be used by Kernal

I/O routines.

OPEN first checks if the logical file number specified is 0.

If it is 0, jump to the display the NOT INPUT FILE message

and exit, as a logical file number of 0 is not permitted.

If the number of files already open is less than ten and

P""| the logical file specified is not yet open, create entries in the
logical file number table, device number table, and secondary

address tables for this file. If a file already exists that uses the

{"""[specified file number, the FILE OPEN error message is dis
played. If there are already ten open files, the TOO MANY

FILES message is displayed.

|""™| If the device is the screen or keyboard, exit as these de
vices do not use files. For RS-232-C, serial, or tape devices,

jump or branch to their respective OPEN routines.

n 91

u
Kernal Routines

u

Operation: I

1. If the logical file number is 0, JMP F70A/F78D to set error !—I
message number of 6 (NOT INPUT FILE) and exit.

2. JSR F30F/F3CF to see if the logical file number in B8, the « ,

current logical file, is already present in the logical file I—I
number table.

3. If the logical file number is in the logical file number table, < (

JMP F6FE/F781 to set the error message number of 2 LJ

(FILE OPEN) and exit.

4. LDX 98 to get the number of open files.

5. If less than ten open files exist, continue with step 6. If ten

files are already open, JMP F6FB/F77E to set error mes

sage number of 1 (TOO MANY FILES).

6. Increment the number of open files, 98.

7. Store the current logical file number in the logical file

number table, using the X register value from step 4 as an

index into the table at 0259.

8. LDA B9, the secondary address, then ORA $60 in case a

secondary address is to be sent to a serial device. Store

this value in the secondary address table entry that corre

sponds to the entry for this file in the logical file number

table.

9. Store the current device number, BA, in the device number

table entry that corresponds to the entry for this file in the

logical file number table.

10. If the current device is the keyboard or the screen, CLC

and RTS as there is no need to open files to these devices.

11. If the current device is 1 or 2, branch to step 14. For de

vices > 3, fall through to step 12.

12. JSR to F3D5/F495 to send secondary address in B9 to the

current device on the serial bus. The secondary address is ■ > .

ORed with $F0 before sending to provide the secondary 1 I
address for OPEN. Return with carry clear if the serial de

vice was present and the secondary address was sent with- . ,

out errors. No error routine is called from OPEN if this I (

sequence fails.

13. If the carry is clear on return from the JSR in step 12, exit , ,

with carry clear. However, if the routine does not return Lj
the carry clear to indicate the device was present and re

sponded in time, OPEN does not branch to any error rou- . ,

tine. This appears to be why you can open nonexistent I I

92 u

n
Kernal Routines

n. ~—
— devices without getting an error until you actually try to

i I send or receive data for the device.
14. If the device number is 2 (RS-232), JMP F409/F4C7 to

_ open an RS-232 device and RTS upon completion of the

I ! RS-232 OPEN.
15. If the device number is none of the above, it must be 1

I - (tape). Branch to F38B/F44B to open a logical file to tape.

PLOT

FFFO

Called by:

JSR at AAE9/CAE9 in BASIC'S Tab to Column for PRINT, JSR

at AAFA/CAFA in BASIC'S TAB and SPC, JSR at B39F/D39F

in BASIC'S POS.

Entry requirements:

Carry bit should be set or clear, depending on function desired:

Set carry to read cursor location (X register = row, and Y

register = column).

Clear carry to set cursor location (X register = row, and Y

register = column).

JMP E50A (see screen routines in chapter 7).

If the carry bit is clear at entry, move the cursor to the

specified location. The contents of the the X register determine

the new cursor row andthe contents of the Y register deter

mine the new cursor column.

If the carry bit is set at entry, read the cursor location and

place the row value for the current cursor location into the X

register and column value for the current cursor location into

the Y register.

nTherow number indicates the physical line, while the col

umn number indicates the column within a logical line. Valid

physical line numbers in decimal are 0-24 (64) and 0-22

n(VIC). Valid logical column numbers in decimal are 0-79 (64)

and 0-87 (VIC).

P-, RAMTAS (64 only)

I FF87

Called by:

|~] None.
JMP FD50 to the Initialize Memory Pointers routine on

the 64.

H 93

u
Kernal Routines

u

At FD50 the routine stores $00 in locations 02-0101 and (

0200-03FF; sets the pointer to the tape buffer, (B2), to 033C; I I
sets the pointer to the end of RAM + 1 in (0283), sets the

pointer to the start of RAM in (0281), sets the screen memory . .

page to $04. | |
Although the VIC does not have a RAMTAS Kernal vec

tor, the corresponding operation on the VIC is done by JMP

FD8D. At FD8D the routine stores $00 in 00-FF and 0200- | |
03FF; sets pointer to tape buffer, (B2), to 033C; sets the pointer

to the end of RAM + 1 in (0283); sets the pointer to the start

of RAM in (0281); sets the screen memory page to $1E or $10

depending on where RAM ends.

The RAMTAS routine would mainly be used by an auto

start cartridge since the RAMTAS functions are normally exe

cuted during system reset.

RDTIM

FFDE

Called by:

JSR at AF84/CF84 in BASIC'S TI and TI$.

JMP F6DD/F760.

This routine reads the jiffy clock (A2-A0) into the accu

mulator, X register, and Y register.

A0 is updated every 1/60 second. When the jiffy clock

reaches a value equal to 24 hours, it is reset to 0.

Exit conditions:

Accumulator holds high byte of jiffy clock. X register holds

middle byte of jiffy clock. Y register holds low byte of jiffy

clock.

RDTIM/SETTIM Execution LJ
F6DD/F760-F6EC/F76F

Called by: LJ
JMP from Kernal RDTIM vector at FFDE; alternate entry at

F6E4/F767 by JMP from Kernal SETTIM vector at FFDB. < .

From the RDTIM entry point, this routine reads the jiffy I—I
clock at A2-A0 into the accumulator, X register, and Y reg

ister, and then falls through to the following routine at . i

F6E4/F767. LJ

94 LJ

Kernal Routines

r—| If entering at the SETTIM entry point at F6E4/F767, set

' ' the jiffy clock at A2, Al, and AO from the accumulator, X reg
ister, and Y register.

f~] Operation:
1. F6DD/F760: SEI to disable interrupts.

2. LDA from A2, LDX from Al, and LDY from AO.

1 i 3. F6E4/F767: SEI to disable interrupts (which has no effect if
interrupts were already disabled in step 1).

4. STA at A2, STX at Al, and STY at AO.

5. CLI to enable interrupts, then RTS.

READST

FFB7

Called by:

JSR at ABDD/CBDD in BASIC'S INPUT, JSR at AF9A/CF9A

in BASIC'S STATUS, JSR at E180/E17D E195 in BASIC'S

LOAD/VERIFY.

JMP FE07/FE57 to read the I/O status word, 90, return

ing the value in the accumulator. This value reflects certain

conditions during serial or tape I/O.

The 64/VIC Programmer's Reference Guides contain some

errors:

First, when VERIFYing for a serial device, a VERIFY error

can occur.

Second, for the VIC you cannot read the RS-232 status

register, 0297, by calling this routine. READST for RS-232 al

ways returns zero on the VIC. If you want to read the RS-232

status on the VIC, read 0297 directly; don't call this routine.

This error in READST is corrected in the 64.

r—| Third, detecting an end-of-tape header allows BASIC to

1 ' display the DEVICE NOT PRESENT error message, but the
Kernal routines for OPEN or LOAD/VERIFY do not set loca-

|—j tion 90. Thus, READST will not return the end-of-tape status

1 ! condition following OPEN or LOAD/VERIFY. You can check
end-of-tape status upon return from OPEN or LOAD/VERIFY

r—; by checking for the carry bit set and the accumulator set to 5,

'] which are the conditions that indicate end-of-tape.

The table below shows the possible values returned by

rn READST:

95

Kernal Routines

READST Values

Hex Tape Read/

Value Bit Serial I/O LOAD/VERIFY RS-232 (64 only)

$80 7 Device not present Break detected

$40 6 EOI status End of file DSR signal missing
$20 5 Checksum error

$10 4 VERIFY error Unrecoverable read error CTS signal missing

$08 3 Long block Receiver buffer empty
$04 2 Short block Receiver buffer overrun \ j
$02 1 Read timeout Framing error i i

$01 0 Write timeout Parity error

Status Terms

Long Block: Tape read is trying to read data bytes after the

first block has already completed.

Short Block: Tape read is reading leader bits between blocks

while the byte action routine is still expecting to be reading

bytes from the block.

Unrecoverable Read Error: During tape read and

LOAD/VERIFY, more than 31 errors were detected in block 1.

This is also set if read or VERIFY errors for the same byte oc

curred in both blocks 1 and 2.

Checksum Error: Computed parity for the loaded area is not

the same as the final byte of tape block 2 (the parity computed

during the SAVE of the second block).

End of File: This status is set when doing CHRIN from tape

for a sequential file and the read-ahead byte in the tape buffer

is 0.

VERIFY Error: The byte retrieved from the serial device does

not match the byte in memory.

EOI (End or Identify): This is set during the Receive Byte

from Serial Device routine when the EOI handshake is per

formed. Set during serial read to indicate the last byte has i |

been sent from the serial device. The unusual term EOI is a L-j
holdover from the IEEE-488 bus definitions used on older

PET/CBM computers; you may find it simpler just to remem- i |

ber this as End of File for disk. 1—>
Device Not Present: Device does not respond with the proper

handshake sequence during OPEN, LOAD, VERIFY, or SAVE v ,

operations. '—]
Read Timeout, Write Timeout: Read or write timeouts are set

when the serial device doesn't handshake within the allocated | ,

time. '—'

96 i—J

n
Kernal Routines

<—| Break Detected: This is set if the check for a stop bit finds a 0

' I rather than a 1, and the data bits received so far are all O's.
Framing Error: This is set if the check for a stop bit finds a 0

r—| and the data bits received so far included some bits set to 1.

1 I DSR Signal Missing: The 64 can't detect the Data Set Ready
signal from the RS-232 device during x-line handshaking.

rn CTS Signal Missing: The 64 can't detect the Clear To Send

'. ; signal from the RS-232 device during x-line handshaking.

Parity Error: The parity bit indicates an error in transmission

of this byte.

Receiver Buffer Empty: Nothing is in the RS-232 input

buffer. This allows routines to test the status so they don't

loop waiting for data.

Receiver Buffer Overun: The RS-232 input buffer is full and

another byte has been received.

Read/Set Status and Set Message Control

FE07/FE57-FE20/FE6E

Called by:

JMP from Kernal READST vector at FFB7; alternate entry at

FE18/FE66 by JMP from Kernal SETMSG vector at FF90;

alternate entry at FE1C/FE6A by JSR at EDB2/EEB9 in Set

Status Word, JSR at EE4F/EF4D in Receive Byte from Serial

Device, JSR at F18A/F241 in CHRIN from Tape, JSR at

F518/F5AF in Load/Verify from Serial Device, JSR at

FA81/FACE in Determine Action for Byte, JSR at FAC6/FB13

in Test for Short Block, JSR at FB35/FB82 in Flag Unrecov

erable Read Error, JSR at FB8B/FBCC in Reset Vectors and

Compute Checksum.

If entering at FE07/FE57, determine the device number.

j | For an RS-232 device, the VIC always stores 0 in the RS-232
status word, 0297, and returns with accumulator set to 0,

while the 64 correctly returns with the accumulator holding

I I the value from 0297, and also stores 0 in 0297. For other de
vices, return with the value from 90, the I/O status, in the

accumulator.

I j If entering at FE18/FE66, store the contents of the accu

mulator in 9D, the Kernal message control flag. $80 sets

Kernal control messages on, $40 sets Kernal error messages

I j on, $C0 sets both Kernal control and error messages on, and

97

u
Kernal Routines

LJ

$00 turns off all Kernal messages. Exit with the accumulator , ,

containing the value from 90, the I/O status word. I 1
If entry at FE1A/FE6A, then set 90, the I/O status, by

ORing the accumulator with the current value of 90. The I >

routines that call this entry point set the accumulator to a I I
value for an I/O status.

Operation: ; I

1. FE07/FE57: If the device number, BA, is not 2, branch to '—
step 4.

2. If device number is 2 (RS-232): LDA 0297, PHA (64 only),

LDA $00, STA 0297, PLA (64 only), RTS.

3. FE18/FE66: Store accumulator in 9D, the Kernal message

control flag.

4. LDA 90, the I/O status.

5. FE1C/FE6A: ORA 90. Thus, if the routine continues from

the instructions above, 90 is not changed. However, if the

alternate entry point of FE1C/FE6A is used, a new value

will result from this ORA.

6. STA 90, updating the I/O status word if the alternate entry

point of FE1C/FE6A was used.

RESTOR

FF8A

Called by:

None.

JMP FD15/FD52 to execute the routine to initialize the

Kernal RAM vectors. This RAM vector initialization is also

done during system reset.

Calling this routine restores the vectors at (0314)-(0332)

to their default values from the table at FD30/FD6D. j j

SAVE

FFD8 j_

Called by:

JSR at E15F/E15C in BASIC'S SAVE.

Setup routines: —*
SETLFS, SETNAM (not required for saving to tape)

Entry requirements: I j

The accumulator should contain the offset within zero page to

98 LJ

n
Kernal Routines

pi a two-byte pointer to the start of the area to be saved. The X

register should hold the low byte of the address of the end of

the area to be saved + 1. Y register should hold the high byte

r**j of the address of the end of the area to be saved + 1.
JMP F5DD/F675 to save memory to a serial device or to

tape. Saves to the screen, keyboard, or RS-232 are not permitted.

P1] If saving to tape from the VIC, only the contents of mem-

'■ -> ory locations 0-7FFF may be saved. This restriction does not
apply when saving to tape from the 64.

A filename is required (through SETNAM) when saving

to serial devices; a filename is optional when saving to tape.

At F5DD/F675 , the routine loads the pointer to the end

of the save area + 1, (AE), from the X and Y registers. (End +

1 denotes the fact that you must load X and Y to point to the

location just past the end of the save area, since the save

routines consider the save complete when the pointer to the

save area equals the value of the pointer (AE).) It also sets

» (Cl), the pointer to the start of the save area, from the zero

page pointer indexed by the accumulator, and then performs

an indirect JMP through the vector at (0332), which defaults to

F5ED/F675.

For a serial save, the routine commands the current serial

device to listen with attention, then sends a secondary address

of $61 to indicate a SAVE operation. If the device is present,

the filename and the starting address are sent to the serial de

vice. Next, the routine sends all the bytes from the save area

over the serial bus. When the save is complete, it sends a

secondary address of $E1 to indicate the CLOSE command

and commands the serial device to unlisten.

For tape save, it is important that you specify the second-

pi ary address correctly. For an even secondary address, the

header for the saved program will have a identifier byte of 1,

indicating a relocatable program. An odd secondary address

[—j produces a header identifier byte of 3, indicating a non-

relocatable program. Also, if you have bit 1 on in the second

ary address ($02 or $03 would set bit 1), then an end-of-tape

J—! header with a identifier byte of 5 is written following the

-' saved program.

The tape save operation first writes a header to tape. This

PI tape header contains the identifier byte, the starting address

' and ending address + 1 of the save area, and the filename (if

a filename is used). Then data from the save area is written to
r—i

i j 99

u
Kernal Routines

u

tape. If bit 1 of the secondary address is 1, an end-of-tape j [

header is also written following the data from the save area.

Two identical copies of the tape header(s) and the program are

written to tape to allow for error checking and correction dur- j j

ing tape loading. L—i

Jump to SAVE Vector i |

F5DD/F675-F5EC/F684 ^

Called by:

JMP from Kernal SAVE vector at FFD8.

Set the pointer to the end of the save area + 1, (AE),

from the X and Y registers.

The accumulator value at entry is transferred to the X reg

ister and is used as an index into page zero for the location of

two bytes that specify the starting address for the save. Set the

pointer to the start address of the save area, (Cl), from these

two page-zero bytes.

Jump to the address in the vector at (0322), normally

F5ED/F685.

Operation:

1. STX AE, the low byte of the address of the end of the save

area + 1.

2. STY AF, the high byte of the address of the end of the save

area + 1.

3. TAX and LDA 00,X to get the low byte of the address of the

start of the save area, and STA in Cl.

4. LDA 01,X to get the high byte of the address of the start of

the save area, and STA in C2.

5. JMP (0322) to the save routine. The default address in the

vector is F5ED/F685. [_j

Determine Device for SAVE

F5ED/F685-F5F9/F691 LJ

Called by:

Indirect JMP through (0322) at F5EA/F682 in Jump to SAVE j j

Vector. 1—i
If the current device is the keyboard or the screen, load

the accumulator with 9 and set the carry bit to display the IL- i j

LEGAL DEVICE NUMBER message, then exit. LJ

100 u

n
Kernal Routines

n ~~

p"[If the current device is either tape (1) or RS-232 (2),

'- - ' branch to Control Routine for Tape Save (which treats RS-232
as an illegal device).

r~* If the current device is a serial device, fall through to the

Save to Serial Device routine.

Operation:

} \ 1. If the current device is the keyboard or the screen, JMP

F713/F796 to display the ILLEGAL DEVICE NUMBER er

ror message, set accumulator to 9, set carry, and exit. The

keyboard or the screen is not a valid device for saves.

2. If the current device is RS-232 or tape, branch to

F659/F6F1, a routine that determines whether the save is to

RS-232 or tape. If RS-232 is specified, the ILLEGAL DE

VICE NUMBER message is displayed. If the device is a tape

device, the tape save routines are executed.

3. If the device is none of the above, its device number must

be >= 4; thus, it's a serial device. Fall through to Save to

Serial Device routine at F5FA/F692.

SCNKEY

FF9F

Called by:

None.

JMP EA87/EB1E to the Keyboard Scan routine (see chap

ter 4) to check for a keypress. If a valid key is found down and

the keyboard buffer is not full, the ASCII code value for the

key is placed in the buffer.

SCNKEY is useful if you have written a machine language

program that runs with IRQ interrupts disabled, but you still

f—"I want to scan the keyboard.

SCREEN

p| FFED

Called by:

r-« None.

it JMP E505 to return the number of columns on the stan
dard display screen in the X register and the number of rows

— in the Y register. On the 64, the routine returns 40 in X and 25

! I in Y. The VIC routine returns 22 in X and 23 in Y

101

u
Kernal Routines

u

A definitive way to let a program know whether it's run- i j

ning on the VIC or the 64 is to JSR to SCREEN and test the I—I
values returned.

SECOND LJ
FF93

Called by: LJ
None.

Setup routines:

LISTEN

JMP EDB9/EEC0 to send the byte in the accumulator on

the serial bus as a secondary address command with the serial

attention output line set low. After this command is sent, the

serial attention output line is brought high, the setting for

transmitting normal data bytes.

You must ORA the secondary address with $60 before

calling this routine to convert the secondary address to a rec

ognized IEEE secondary address command. See page 378 of

Raeto Collin West's Programming the PET/CBM for a detailed

chart of the IEEE command groups.

SETLFS

FFBA

Called by:

JSRs at E1DD/E1DA, E1F0/E1ED, and E1FD/E1FA in BA-

SIC's Set LOAD/VERIFY/SAVE Parameters; JSRs at

E22B/E228, E23F/E23C, and E24E/E24B in BASIC'S Handle

Parameters for OPEN and CLOSE.

Entry requirements: | |

The accumulator should hold the logical file number, the X '—!
register should hold the device number, and the Y register

should hold the secondary address. i i

JMP FE00/FE50 to set the logical file number, device ^
number, and secondary address for a subsequent open, load,
or save. j |

The logical file number can be 1-255. '—'
The device numbers can be 0-31. Assigned device num

bers include 0 for the keyboard, 1 for tape, 2 for RS-232, 3 for j I

the screen, and 4-31 for serial bus devices. By convention, se- '—'

102 LJ

Kernal Routines

H

«—i rial device numbers 4 and 5 are usually used for printers and

! ..! 8-11 for disk drives.
See the comments in the paragraphs on SAVE and LOAD

*—I routines about secondary addresses. An even secondary ad-

' i dress gives a identifier byte of 1 for a relocatable program tape

header. An odd secondary address gives a tape identifier of 3

nfor a nonrelocatable program tape header. A secondary ad

dress that has bit 1 on (e.g., $02 or $03) produces an end-of-

tape header with an identifier byte of 5.

Secondary addresses >= 128 (decimal) will not be sent

on the serial bus. For reading from serial, use an even second

ary address. For writing to serial, use an odd secondary ad

dress. Valid secondary addresses for serial devices are 0-31

(decimal). If you specify a higher value, you may be sending a

command other than what you intended, since secondary ad

dresses greater than 31 are used to represent commands to se

rial devices.

Set Logical File Number, Device Number, Secondary

Address

FE00/FE50-FE06/FE56

Called by:

JMP from Kernal SETLFS vector at FFBA.

In preparation for other Kernal I/O routines, this sets the

logical file number, device number, and secondary address.

Device numbers should range only from 0-31 (decimal).

Serial commands such as OPEN, TALK, LISTEN, CLOSE, and

others use bits 5-7 of the secondary address to specify the

type of command. The commands do this ORA of the com

mand high nybble with the device number. Thus, a device

j| number greater than 31 might result in an invalid command
after the ORA.

Also, if you specify a device number > 31, you do not get

["""[a device error until you actually try to send the device data (or
retrieve data from it). This quirk is due to OPEN not checking

_ ^ for an invalid carry status after opening for a serial device.

j"""[Normally, a secondary address >= 128 (decimal) in
dicates no secondary address is desired. However, for tape op

erations, 255 (or any odd value > 128) is the same as a

f"j secondary address of 3. See " Block SAVE and LOAD" by
Sheila Thornton in COMPUTERS Second Book of VIC from

^ COMPUTE! Books.

i I 103

u
Kernal Routines

u

Operation:

1. STA B8, the logical file number. | |
2. STX BA, the device number.

3. STY B9, the secondary address.

SETMSG

FF90 j (

Called by: ;—'
JSR at A47D/C47D in BASIC'S Enable Kernal Control Mes

sages, JSR at A874/C874 in BASIC'S Disable Kernal Control

Messages.

Entry requirements:

Accumulator should contain the value used to set message

control: $80 allows Kernal control messages; $40 allows Kernal

error messages; $C0 allows both Kernal control and error mes

sages; $00 disallows all Kernal messages.

JMP FE18/FE66. This routine is called to determine which

messages will be displayed in response to control or error con

ditions. The accumulator value at entry determines the setting

of the message control status.

Thanks to Russ Davies for pointing out that bits 6 and 7

are reversed in describing how to set message control in the

64 and VIC Programmer's Reference Guides.

SETNAM

FFBD

Called by:

JSR at E1D6/E1D3 in BASIC'S Set LOAD/VERIFY/SAVE

Parameters, JSRs at E21B/E218 and E261/E25E in BASIC'S

Handle Parameters for OPEN and CLOSE. j j

Entry requirements:

Accumulator should contain the length of the filename. The X | »

register should hold the low byte of the starting address of the ! !
filename. The Y register should hold the high byte of the file

name address. The filename may be stored at any addressable j >

memory location. i I

JMP FDF9/FE49 to prepare a filename for subsequent

OPEN, LOAD/VERIFY, or SAVE processing. The accumulator , ,

value, the length of the filename, is stored in B7. The pointer I I
to the filename from the X and Y registers is stored in (BB).

104 LJ

Kernal Routines

n

«—» Although you could create a filename that is 255 (deci-

! . I mal) characters long (the accumulator can hold a maximum
value of $FF or decimal 255), not all of this maximum file-

<—, name size can be used.

I i For tape, the filename is stored in the tape buffer, which
is 192 bytes long. However, 5 bytes are taken for the identifier

p-, and the starting and ending addresses, which leaves 187 bytes

> 1 that can be used for the filename.
One quirk with the serial devices is that if the secondary

address you specify in SETLFS is larger than 128, the filename

is not sent for OPEN, LOAD, or SAVE.

Set Filename Location and Number of Characters

FDF9/FE49-FDFF/FE4F

Called by:

JMP from Kernal SETNAM vector at FFBD.

The location of the filename is placed in a pointer at (BB),

and the number of characters in the filename is placed in B7.

This routine sets filename information for later use of the

Kernal routines OPEN, SAVE, and LOAD. If no filename is

needed for these routines, load the accumulator with zero .

before calling this routine. However, loading or saving to a se

rial device requires that a filename be present.

Operation:

1. STA B7, the number of characters in the filename.

2. STX BB, the low byte of the address of the filename.

3. STY BC, the high byte of the address of the filename.

SETTIM

pi FFDB

Called by:

^ JMP at AA1A/CA1A in BASIC'S TI$.

J Entry requirements:
The accumulator should hold the high byte to be stored in the

f—* jiffy clock. The X register should hold the middle byte to be

L ! stored in the jiffy clock. The Y register should hold the low
byte to be stored in the jiffy clock.

I—i JMP F6E4/F767 to set the three-byte jiffy clock at A2-A0

1 _. I from the values in the accumulator, X register, and Y register.

105

Kernal Routines
u

SETTMO , f

FFA2 LJ

Called by:

None. LJ
JMP FE21/FE6F to store accumulator in 0285. The VIC-20

Programmer's Reference Guide refers to this routine as setting a

serial timeout flag and the Commodore 64 Programmer's Ref- j j
erence Guide refers to it as setting a flag for IEEE timeout.

However, neither BASIC nor the Kernal refers to this vector.

Since 0285 is not a register for an I/O chip and it is never re

ferred to, it's hard to see how it can be used to enable or dis

able timeouts.

STOP

FFE1

Called by:

JSR at A82C/C82C in BASIC'S Test for STOP Key, JSR at

F4F9/F590 in Load/Verify from Serial Device, JSR at

F62E/F6C6 in Save to Serial Device; JSR at F8D0/F94B Test

for STOP Key During Tape I/O; JSR at FE61/FECD in NMI

Interrupt Handler (to find STOP and RESTORE).

JMP (0328) with a default of F6ED/F770. At F6ED/F770,

test 91 for the value $7F/$FE. Location 91 contains the key

switch value of the STOP key column (column seven/three) of

the keyboard scan. If $7E/$FE is found, set the Z flag of the

status register to 1, call FFCC to reset I/O channels, and set

C6, the number of characters in the keyboard buffer, to 0.

If $7E/$FE is not found, the Z flag will be 0 on exit (BNE

condition). In this case, the accumulator can still be tested for

the keys shown below using the value shown following it. i i

STOP Routine Return Values

Commodore 64 Key Accumulator
^i j tfrn-f

u

If no key is down in the STOP column, the routine returns $FF '—'
in the accumulator (64 and VIC).

106 . LJ

1

Left arrow

CTRL

2

Space

Commodore

Q

$FE

$FD

$FB

$F7

$EF

$DF

$BF

VIC-20 Key

Cursor down

/
/

N

V

X

Left SHIFT

Accumulator

$7F

$BF

$DF

$EF

$F7

$FB

$FD

n
Kernal Routines

H "

ri Test for STOP Key

1 ' F6ED/F770-F6FA/F77D

Called by:

fj Indirect JMP through (0328) from Kernal STOP vector at FFE1.
This routine is called to test whether the STOP key is be-

~ ing held down. When the STOP key is found down, this rou-

il tine exits with the Z status flag set to 1, allowing the calling
routine to test for this result with BEQ.

Location 91 has the value of the keyboard scan for the

STOP key column during the last IRQ or NMI interrupt.

Operation:

1. LDA 91.

2. Check for the value that indicates the STOP key is pressed,

$7F/$FE.

3. If STOP key is not pressed, then branch (BNE) to step 7 to

RTS with the accumulator containing last value in $91.

4. If STOP key is pressed, then JSR FFCC (the Kernal

CLRCHN vector) to clear serial I/O and reset default input

and output devices, returning with accumulator cleared to 0.

5. STA C6, the number of characters in the keyboard buffer,

thus clearing the buffer.

6. Restore the status of the comparison from step 2, thus

restoring Z to 1 (BEQ condition).

7. RTS.

TALK

FFB4

Called by:

P*. None.

Entry requirements:

Accumulator should hold the serial device number (4-31

r*1 decimal).
1 —-1 JMP ED09/EE14 where the accumulator is ORed with $40

to set the value for a talk command to the device. Send this

f—| command over the serial data bus while the serial attention

—' output line is held low.

n

107

LJ
Kernal Routines

U

TKSA j |

FF96 u

Called by:

None. LJ

Setup routines:

TALK. | I

Entry requirements:

Accumulator should hold the secondary address 0-31 (deci

mal) ORed with $60.

JMP EDC7/EECE to send the secondary address after the

TALK command and to do the TALK-LISTEN turnaround

where the serial device becomes the talker and the 64/VIC

(and other devices on the serial bus) become the listener.

The IEEE convention is that $6X and $7X represent

secondary addresses. The 0-31(decimal) that you ORA with

$60 before calling TKSA results in $6X if the accumulator

holds 0-15 (decimal) and $7X if the accumulator holds 16-31

(decimal). The VIC-1541 User's Manual states that the second

ary addresses can be 2-15 with 15 the command channel and

0 and 1 reserved for load and save.

UDTIM

FFEA

Called by:

JSR at EA31/EABF in IRQ Interrupt Handler.

JMP F69B/F734 to update the jiffy clock at A2-A0 and

store a value from the keyboard row for column number

seven/three (which contains the STOP key) in 91 if a key in

that row is detected. j |

Normally, this routine is called by the IRQ interrupt han- '—'
dler (64 and VIC) or by the NMI interrupt handler (VIC only).

However, if you run a program with IRQ interrupts disabled, j j

you should call this routine if you want the jiffy clock in- '-—J
cremented and the STOP key column value saved in 91.

UNLSN LJ
FFAE

Called by: LJ
None.

108 ■ LJ

D
Kernal Routines

n .~~

r~j JMP EDFE/EF04 to send $3F, the command for UNLISTEN,

1 - over the serial bus. Serial devices that are listening should rec
ognize the command and terminate their connection to the se-

fn rial bus.

UNTALK

H FFAB

Called by:

None.

JMP EDEF/EEF6 to send $5F, the command for UNTALK,

over the serial bus. Serial devices that are talking should quit

talking and terminate their connection to the serial bus.

VECTOR

FF8D

Called by:

None.

Entry requirements:

Carry should be set or clear, depending on the function

desired:

Set the carry bit to store the RAM vectors at

(0314)-(0332) at the location pointed to by the X and Y

registers.

Clear the carry bit to load the RAM vectors at

(0314)-(0332) from the location pointed to by X and Y.

JMP FD1A/FD57 (see chapter 2).

Store X and Y at (C3), the base address of where the vec

tor table will be read from or stored to.

<—i If the carry is set, store the RAM vectors at (0314)-(0332)

!. ' to the location pointed to by the X and Y registers.
If the carry is clear, load the RAM vectors at

/—i (0314)-(0332) from the location pointed to by X and Y.

H

109

H

Miscellaneous
n Routines
n ^—

H Set I/O Defaults and Home Cursor
E59A/E5B5-E59F/E5BA

Called by:

None.

This routine is not called by any other Kernal or BASIC

routines. However, if you call it from a program, it calls a rou

tine to reset the default input device to be the keyboard, the

default output device to be the screen, homes the cursor, and

resets the screen line link tables.

Operation:

1. JSR E5A0/E5BB to reset default input device, 9A, to 3 (the

screen), and the default output device, 99, to 0 (the

keyboard).

2. JMP E566/E581 to home the cursor and reset the screen

line link table.

Display Kernal Messages

F12B/F1E2-F13D/F1F4

Called by:

JMP at F5DA/F672 in Display LOADING/VERIFYING Mes

sage; alternate entry at F12F/F1E6 by JSRs at F5B5/F64D and

F5BE/F656 in Display SEARCHING FOR Message, JSR at

PI F695/F72E in Display SAVING Filename Message, JSR at

- ' F71F/F7A2 in Error Message Handler, JSR at F752/F7D5 in
Find Next Tape Header, JSR at F81E/F89B and JMP at

[—| F82B/F8A8 in Display Tape Button Messages.

This routine uses the index passed in the Y register to re

trieve a message from the Kernal message table at

f| F0BD/F174-F12A/F1E1 and to display this message using

'-j CHROUT.
At the entry point F12B/F1E2, it tests 9D, the Kernal mes-

{—I sage control flag. If the high bit is 0, it doesn't display the

messages for loading or verifying.

At the entry point F12F/F1E6, this check of 9D is not

H made' 113

u
Miscellaneous Routines

u

Entry requirements: \ i

The Y register should contain the index into the Kernal mes- 1—1
sage table for the starting character of the desired message.

Operation: | I
1. If 9D, the Kernal message control flag, has its high bit

cleared to 0, branch to step 10 to CLC and RTS.

2. F12F/F1E6: LDA with character from message table at \^j
F0BD/F174 indexed by Y register.

3. Save the accumulator contents from step 2 on the stack.

4. Mask off the most significant bit in the character loaded.

This only affects the last character in a message, which

has its most significant bit on to indicate end of message.

5. JSR FFD2 (CHROUT) to send this character to the current

output channel (defaults to the screen).

6. INY, the index into the message.

7. Restore accumulator value saved in step 3 from the stack.

8. If LDA loaded a byte that has its high bit off, the end of

the message has not been reached. Branch to step 2.

9. If LDA loaded a byte that has its high bit on, the end of

the message has been reached, continue with step 10.

10. CLC and RTS.

See If Logical File Exists

F30F/F3CF-F31E/F3DE

Called by:

JSR at F20E/F2C7 in CHKIN Execution, JSR at F250/F309

CHKOUT Execution, JSR at F351/F411 OPEN Execution; alter

nate entry at F314/F3D4 by JSR at F291/F34A in Determine

Device for CLOSE.

First, clear the I/O status word, 90. . i

Next, test to see if the logical file number passed in the X LJ
register is already in the logical file number table that starts at

0259. If the logical file is in the table, exit with Z set to 1 (BEQ i

condition). If the logical file is not in the table, exit with Z set 1—
to 0 (BNE condition).

Entry requirements: j j
The X register should hold the logical file number. Locations

0259-0262 comprise the logical file number table. Location 98

indicates the number of open files. t I

114

n
Miscellaneous Routines

n

n Operation:

— 1. Set 90, the I/O status, to 0.

2. TXA, thus accumulator now contains the logical file

n number.

3. F314/F3D4: LDX 98, the number of open files.

4. DEX. If X is now negative, either there are no open files, or

nail the open file numbers have been compared and none

match the current file number. If X is negative, branch to

step 8.

5. Compare the accumulator to the logical file number at 0259,

indexed by the X register.

6. If comparison is not equal, branch to step 4. If this branch is

taken, the Z flag is 0.

7. If comparison is equal, the Z flag is 1. Fall through to step

8.

8. RTS.

Extract Logical File Number, Device Number, and

Secondary Address from Tables

F31F/F3DF-F32E/F3EE

Called by:

JSR at F216/F2CF in CHKIN Execution, JSR at F258/F311 in

CHKOUT Execution, JSR at F298/F351 in Determine Device

for CLOSE.

The X register value at entry is used as an index to the

logical file number table (B8), the device number table (BA),

and the secondary address table (B9).

Operation:

1. Retrieve the logical file number from the logical file number

p—] table at 0259 indexed by X register and store this value at

f l B8.
2. Retrieve the device number from the device number table at

fl 0263 indexed by X register and store this value at BA.

1 } 3. Retrieve the secondary address from the secondary address

table at 026D indexed by X register and store this value at B9.

H
1 Display LOADING/VERIFYING Message

F5D2/F66A-F5DC/F674

H Called by:
JSR at F5A2/F63A in Control Routine for Tape Load, JMP at

R 115

u
Miscellaneous Routines

u

F4F0/E4CC in Load/Verify from Serial Device. .

This routine displays either LOADING or VERIFYING LJ
depending on whether 93, the LOAD/VERIFY flag is 0

(LOAD) or 1 (VERIFY).

Operation:

1. LDY $49 to index to LOADING message.

2. If 93, the LOAD/VERIFY flag, is 0, branch to step 4. j |

3. If 93, the LOAD/VERIFY flag, is 1, LDY $59 to index to ^
VERIFYING.

4. JMP F12B/F1E2 to display the message.

Display SAVING Filename Message

F68F/F728-F69A/F733

Called by:
JSR at F608/F6A0 in Save to Serial Device, JSR at F669/F702

in Control Routine for Tape SAVE

This routine displays SAVING and the filename for the

file being saved.

If 9D, the Kernal message control, has its high bit off, no

messages are displayed.

Operation:

1. If 9D, the Kernal message control, has its high bit off, RTS.

2. LDY $51 to index to the SAVING message.

3. JSR F12F/F1E6 to display SAVING message.

4. JMP F5C1/F659 to display name of file being saved and

RTS.

Error Message Handler

F6FB/F77E-F72B/F7AE

Entry Points: 1 |
F6FB/F77E for I/O ERROR #1 (too many open files) by JMP

at F35F/F41F in OPEN Execution.

F6FE/F781 for I/O ERROR #2 (file already open) by JMP at LJ
F356/F416 in OPEN Execution.

F701/F784 for I/O ERROR #3 (file not open) by JMP at

F255/F30E in CHKOUT Execution, JMP at F213/F2CC in LJ
CHKIN Execution.

F704/F787 for I/O ERROR #4 (file not found) by JMP at .

F3AC/F46C OPEN Execution, JMP at F530/F5C7 in LJ

Load/Verify from Serial Device.

116 1 '

n
Miscellaneous Routines

n

P^ F707/F78A for I/O ERROR #5 (device not present) by JMP at

I.J F24D/F306 in Open Serial Input Channel, JMP at
F28E/F347 in Open Serial Output Channel, JMP at

nF3F3/F4AF in Prepare Serial Device for Open, Load, or

Save.

F70A/F78D for I/O ERROR #6 (file is not an input file) by

I—, JMP at F230/F2E9 in CHKIN Execution, JMP at

I __J F34E/F40E in OPEN Execution.

F70D/F790 for I/O ERROR #7 (file is not an output file) by

JMP at F25F/F318 in CHKOUT Execution.

F710/F793 for I/O ERROR #8 (file name is missing) by JMP

at F4BC/F560 in Load/Verify from Serial Device, JMP at

F602/F69A in Save to Serial Device.

F713/F796 for I/O ERROR #9 (illegal device number) by JMP

at F390/F450 in Determine If Open Is for Reading or

Writing, JMPs at F4A5/F553 and F536/F0B9 in Determine

Device for LOAD, JMP at F53E/F5D6 in Control Routine

for Tape Load, JMP at F5F1/F689 in Determine Device for

SAVE.

This routine is called to handle Kernal error messages. If

the Kernal message control flag, 9D, allows error messages,

the message I/O ERROR is displayed followed by the number

of the I/O error.

This routine is never called by BASIC, which has its own

error messages for all the conditions above. BASIC'S Display

READY routine writes $80 to location 9D to disable the Kernal

error messages.

Exit conditions:

The routine exits with the carry set and the accumulator

containing the number of the error message.

I ' Operation:
1. LDA with $01-$09, depending on the entry point. See the

rn entry points above for the values loaded for the various

'.- ' conditions.
2. Through the use of BIT instructions, all the other entry

j—1 points in the routine are bypassed.

1 ' 3. PHA, storing the I/O error number on the stack.
4. JSR FFCC (CLRCHN) to close serial channels and to reset

f—| the default input device to be the keyboard and the default

1 J output device to be the screen.

n

u
Miscellaneous Routines

u

5. If 9D has bit 6 off, branch to step 8. , ,

6. With Y register loaded as 0, JSR F12F/F1E6 to display mes- LJ

sage I/O ERROR #.

7. Pull the I/O error number from the stack, and then push it ((

back onto the stack again. However, also ORA $30 to con- I I
vert it to an ASCII character and JSR FFD2 (CHROUT) to

display the I/O error number. ^ .

8. PLA, so that accumulator again contains the I/O error (|
number.

9. SEC and RTS.

Display SEARCHING FOR Message

F5AF/F647-F5C0/F658

Called by:

JSR at F39E/F45E in Open Logical File for Reading from Tape,

JSR at F546/F5DE in Control Routine for Tape Load, JMP at

F4C1/E4BE in Load/Verify from Serial Device.

This routine displays SEARCHING. If B7, the number of

characters in the filename, is nonzero (indicating a filename

exists), then also display FOR and fall through to the following

routine which displays the filename. If, however, B7 is zero

(indicating no filename exists), display SEARCHING and exit.

Also, if 9D, the Kernal message control flag, has its high

bit off, no messages are displayed.

Operation:

1. If 9D, the Kernal message control, has its high bit off, RTS.

2. LDY $0C as an index to SEARCHING message and JSR

F12F/F1E6 to display the message.

3. If B7, the number of characters in the filename, is 0, RTS.

4. If B7 is nonzero, indicating a filename exists, LDY $17 as an , ,

index to the FOR message and JSR F12F/F1E6 to display * I
the message.

5. Fall through to F5C1/F659 to display the filename. . ,

LJ
Display Filename

F5C1/F659-F5D1/F669 I »

Called by:

JMP at F698/F731 in Display SAVING Filename Message, fall

through from F5BE/F656 in Display SEARCHING FOR |_j
Message.

118 LJ

Miscellaneous Routines

nlfa filename exists, this routine displays the filename that

is part of a SEARCHING FOR or SAVING message.

Operation:

[~~j 1. LDY B7, the number of characters in the filename.

2. If B7 contains zero, indicating no characters in the filename,

branch to step 9 to RTS.

H 3. LDY $00.
1 4. LDA with the next character in the filename; (BB) points to

the start of the filename, and the Y register is used as an in

dex through the filename.

5. JSR FFD2 (CHROUT) to display the character from the

filename.

6. INY.

7. CPY to B7, the number of characters in the filename.

8. If not equal, branch to step 4; if equal, fall through to step

9, as all characters from the filename have been displayed.

9. RTS.

n

n

n

n

n 119

f I

I 1

Chapter 7

Screen
Routines

n

< I

n

Screen Routines
n

1 ' Screen Routines Overview
The Kernal screen editor routines are also used by BASIC to

J~j fill the BASIC input buffer at 0200. The screen editor routines

allow you to use the cursor control keys to move the cursor to

any line on the screen and edit that line.

Two screen-related routines that are not used directly by

BASIC are the routine to return the number of columns and

rows in the screen and the routine to set or read the cursor

location. The latter routine to read the cursor location is called

by the BASIC POS command. Although the tape, RS-232, and

serial routines do not directly call these screen editor routines,

the Main Screen Editor routine is called from CHROUT, and

the CHRIN from Keyboard or Screen routine is called by

CHRIN.

This section covers the process of typing a line on the

screen (with editing characters explained), displaying this line

on the screen, and storing the line in the buffer at 0200 when

the RETURN key is pressed. The descriptions in this section

do not explain how to use bitmapped graphics on the screen.

Although the normal screen size on the VIC is 22 col

umns by 23 lines and on the 64, 40 columns by 25 lines, the

screen editor routines for the two computers are the same. The

differences in the routines are:

• Size of the screen line link table—24 entries on the VIC, 26

on the 64.

• Number of physical lines per logical line—1-4 on the VIC,

H 1-2 on the 64.
• Maximum number of characters per logical line—88 on the

VIC, 80 on the 64.

j I • Addition of 22 characters per physical line (VIC) or 40
characters per physical line (64) when using the routines that

add or subtract physical line length (such as the Advance

j] Cursor to Next Screen Line routine).

Two kinds of lines are used by the screen editor: a phys-

nical line is one line of 40 (64) or 22 (VIC) characters that phys

ically extends across the screen; a logical line is made up of

1-2/1-4 physical lines. The screen line link table contains one

!"l ■ 123

u
Screen Routines

LJ

byte that corresponds to each physical screen line. The table | i

for the VIC has 24 entries and a twenty-fifth which holds $FF <—>

to distinguish bottom of screen, while the 64 has 26 entries

and a twenty-seventh holding $FF to indicate the bottom of j j

the screen. Although the VIC normally uses only 23 lines, you '—)
can change the display registers to allow 24 lines. Any phys

ical screen line that has the high bit on in its link table entry j j

denotes a physical line that is the start of a logical line. Phys- (—'
ical screen lines that have the high bit off in the link table en

try are continuations of a logical line. For the VIC, there can

be up to three continued physical screen lines for a logical

line, while for the 64 there can be only one continued line.

The screen line link table bytes also indicate in which

page of memory the screen memory is located. The screen is a

memory-mapped I/O device, which means that writing to a

screen memory location directly changes the screen display,

and reading from a screen memory location shows exactly

what is at that location on the screen.

You can easily determine the location of any character on

the screen. The link byte for that line is used to determine the

page (or high byte) of memory in which the screen is located.

Another table contains the low bytes of the screen memory

addresses. This latter table returns the low byte which is com

bined with the high byte to determine the start of the line in

screen memory. The column within the logical screen line is

then used to retrieve a particular screen address (which typi

cally is the location of the cursor on the screen).

The screen editor keeps track of which line the cursor is

on and whether this physical line is a complete logical line or

just one physical line in a logical line. When BASIC detects a

RETURN, the logical line is placed in the BASIC input buffer | j

at 0200. This logical line can be either a direct mode or a pro- <—>

gram mode line. You edit logical lines, not physical lines.

Although the screen editor is designed for BASIC, you I j

could use the screen editor routines in your own machine Ian- I—>
guage programs by treating the screen in the same manner as

BASIC does. You are limited to the 40 column by 25 line/22 i j

column by 23 line size screen if you use the screen editor I—>
without modification. See the BASIC routine at A560/C560

for an example of how to set up a machine language routine i (-

to use the screen editor routines to fill an input buffer. If you I—)

124 LJ

n
Screen Routines

n ~~

r—| were implementing another language on the VIC, you could

' ' make use of the existing screen editor to fill the buffer at 0200
and then process the buffer when RETURN is pressed.

pi The VIC and 64 Programmer's Reference Guides cover the

1 ' control keys and how to edit the screen so there's no need to
repeat that information here. See the detailed descriptions in

r-| the Main Screen Editor routine for comments about how each

'] key actually functions.
The 64/VIC has a full screen editor, which allows

changes at any location on the screen, rather than just on one

particular line as did some old-fashioned line editors.

An interesting project would be to write a program to

convert the VIC to a 40 column by 25 line screen editor or the

64 to an 80 column by 25 line screen editor all under software

control. In fact, some products for the 64 do provide for an 80-

column screen through software routines.

Because of the limitation of the number of pixels on the

VIC , it is impossible to have an 80 column screen without

making hardware modifications or adding cartridges with

hardware to handle an 80-column screen. (On the VIC, 22 col

umns by 8 pixels per column = 176 total horizontal pixels. If

you tried to convert to 80 columns that would leave only 2.2

pixels per character—not enough with which to form charac

ters.) However, the 40 column screen is possible (176/40 =

4.4 pixels per character in a 40 column screen). On the 64,

software simulation of 80 columns is possible since with 320

pixels per line you have 4 pixels per character.

In some older 64s (version 2 of the Kernal), a bug in the

screen editor can hang up your system on occasion. For ex

ample, when you enter a full logical line at the bottom of the

p—| screen, the line scrolls, and you hit the delete key, the system

1 ' locks up. When this occurs, the CIA registers are overwritten
by the screen editor as it writes past the end of color RAM

r—| that immediately precedes the CIA registers. Program 1-1

'■ '• demonstrates one solution to the lockup problem. Also, refer
to COMPUTEl's Gazette, May 1984, page 108, for a couple of

'—j other fixes to the lockup problem. This bug has been corrected

1 ' in version 3 of the Kernal, found in more recent 64s.
The screen editor routines make use of the following

r—| variables:

125

Screen Routines

Screen Variables

Hex Location Description

99

9A

(AC)

(AE)

C7

C8

C9

CA

CC

CD

CE

CF

DO

(Dl)

D3

D4

D5

D6

D7

D8

D9-F2/F1

(F3)

0286

0287

0288

0291

0292

Default input device

Default output device

Temporary pointer for moving screen lines

Temporary pointer for moving color lines

Flag for reverse-video characters

Length of logical line for input

Logical line number for input

Logical column number for input

Cursor blink switch

Cursor blink countdown

Character under cursor

Cursor blink status

Keyboard/screen input switch

Pointer to current logical line

Position of cursor in logical line

Flag for quote mode

Length of current Logical line

Physical line number

Character to be displayed

Number of inserts outstanding

Screen line link table

Pointer to current color memory line

Current character color

Color under cursor

Current screen memory page

Character set switch

Downward scroll switch

u

LJ

LJ

LJ

1 (

Clear Screen Line Cursor Is On

E9FF/EA8D-EA12/EAA0

Called by:

JSR at E560/E57B in Set VIC Chip Registers, Clear Screen,

Home Cursor, Set Screen Line Link Table, JSR at E9A6/EA2C

in Insert Blank Line ; JSR at E913/E99D in Scroll Screen. LJ
For all 40/22 columns of the current physical line, this

routine puts spaces into every position and sets each of these t

spaces to the color indicated by background color register 0 1 j

(64 with version 2 of the Kernal), to the current foreground

color indicated by 0286 (64 with version 3 of the Kernal), or to

white (VIC). In effect, the current screen line is blanked out. | j

126 u

n
Screen Routines

n Entry requirements:

The X register should hold the number (0-24/22) of the phys

ical screen line to be cleared. The value will be used as an in-

r—i dex into the ROM screen line link table for the low byte of the

I I starting address of the line to be retrieved, and into the RAM
screen line link table in page zero for the high byte of the

r—-j address.

Exit conditions:

The current screen line is blanked. (Dl) is the pointer to the

start of the screen line the cursor is on. (F3) is the pointer to

the color nybble corresponding to the starting location of the

current screen line.

Operation:

1. JSR E9F0/EA7E to set (Dl), the pointer to the start of the

screen line the cursor is on.

2. JSR EA24/EAB2 to set (F3), the pointer to the color nybble

corresponding to the start of the current screen line.

3. 64: For all 40 columns of the current physical screen line,

store a space of the color indicated by background color

register 0 (version 2 of the Kernal) or to the current fore

ground color indicated in 0286 (version 3 of the Kernal).

VIC: For all 22 columns in the current physical screen

line, store a white space.

Set Pointers to Screen Line Cursor Is On

E9F0/EA7E-E9FE/EA8C

Called by:

JSR at E990/EA17 in Insert Blank Line, JSR at EA01/EA8F in

Clear Screen Line Cursor Is On, JSR at E900/E98A in Scroll

P] Screen, JMP at E6F4/E720 in Advance Cursor and Scroll or
Insert Blank Lines.

The value in the X register at entry is used as an index

P| into the screen line link table in ROM for the low byte of the
pointer to the start of the screen line the cursor is on.

The X register value also serves as an index into the

Pj screen line link table at D9, used to set the high byte of the
pointer to the start of the screen line the cursor is on.

As an example of how this routine functions (on the VIC),

p consider what happens if the value in the X register at entry is
2 and if the screen memory starts at 1000 (as is normally the

n 127

Screen Routines

screen line the cursor is on, D2.

u

LJ

case when 8K or more expansion memory is installed). The . ,

low byte retrieved from the ROM table at EDFD + X = EDFF LJ
will be $2C (44 decimal), which is saved in Dl, the low byte

of the pointer to the current screen line. i ,

Then a value is retrieved from the page zero screen line I »
link table at D9 + X = DB, which in this case will be $90.

That value is ANDed with $03 to mask off all but the two low , (

bits, resulting in zero. This result is ORed with the contents of I j
0288, the screen memory page, which will contain $10. The

end result is stored in the high byte of the pointer to the cur

rent screen line, D2. Thus, (Dl) holds $102C, which points to

the start of the third line on the screen.

You could use this routine in a machine language game

program, for example, to determine the start of the screen

memory line the cursor is on after calling the Kernal routine

PLOT to determine the current row of the cursor. PLOT will

put the row number into the X register, as required by this

routine.

Entry requirements:

Location 0288 must contain the value of the current screen

memory page number (default of $O4/$1E or $10). The X reg

ister contents will determine the index into the screen line link

table and the ROM table of low byte values for the pointer

into screen memory.

Exit conditions:

(Dl) points to the start of the screen line the cursor is on.

Operation:

1. Get the low byte of the offset into screen memory from the

table at ECF0/EDFD, indexed by the X register.

2. Save as the low byte of the pointer to the start of the line I j

the cursor is on, Dl. '—}
3. Get a byte from the screen line link table at D9, indexed by

the X register.] j

4. AND with $03 to mask out all but the two lowest bits. '—'
5. ORA with the contents of 0288, the screen memory page.

6. Save as the high byte of the pointer to the start of the j I
crrppn lino fho rnrcnr 10 rvn fS9 * '

u

128 LJ

Screen Routines

H

p-1 Set VIC Chip Registers, Clear Screen, Home Cursor,

1 ' Set Screen Line Link Table
E518-E599/E5B4

i | Called by:
JSR at FF5B in Initialize VIC-II Chip and Set PAL/NTSC Flag

^ (64), JSR at FD38 in System Reset (VIC), JSR at FE6C/FED8 in

j \ BRK Interrupt Handler; alternate entry at E544/E55F (Clear

Screen) by JSR at E86F/E8B5 in Main Screen Editor; alternate

entry at E566/E581 (Home Cursor) by JSR at E790/E7BB in

Main Screen Editor, JSR at E59E/E5B8 in Set I/O Defaults

and Home Cursor; alternate entry at E56C/E587 (Set Screen

Line Link Table) by JSR at E511/E510 in Read/Plot Cursor

Location, JSR at E70F/E73A in Move Cursor to Previous

Screen Line, JSRs at E848/E88E and E88F/E8D5 in Advance

Cursor to Next Screen Line.

Set the screen as the output device and the keyboard as

the input device, and initialize VIC chip registers.

VIC: The VIC chip registers that specify the screen mem

ory location (bit 7 of 9002 and bits 4-6 of 9005) are set based

on the value in the screen memory page, 0288, which was set

when memory was initialized.

64: 0288 is initialized to $04 during system initialization

to set the default screen memory location to start at 0400.

The flag to allow character set switching by holding down

the SHIFT and Commodore keys together is enabled, the

cursor blink flag is set to indicate that the character under the

cursor is not reversed, and the pointer to the Keyboard Table

Setup routine, (028F), is set to EB48/EBDC. The maximum

number of characters in the keyboard buffer is set to $0A (10

decimal). The delay before the first repeat of a key is also set

I | to $0A. The current character color is initialized to $0E (light
blue)/$06 (blue). The delay before repeats of a key following

f_} the first repeat is set to $06. The count before blink of the

J | cursor is set to $0C (12 decimal).

Clear Screen entry point: For the VIC, the routine initializes

fmmmi the screen line link table values to $9E or $9F if screen mem-

i | ory page is $1E, or to $90 or $91 if screen memory page is

$10. For the 64 with the default screen at 0400, the values are

$84 and $85. All 25/23 lines of the screen are then blanked

I I out, working up from the bottom of the screen.

129

u
Screen Routines

"""" u
Home Cursor entry point: Set the cursor position for cur- . ,

rent physical screen line to 0 and the cursor position within I I
the line to 0.

Set Screen Line Link Pointer entry point: Set the position of , .

the cursor within this logical screen line, D3, by adding 40/22 | !
to the initial cursor location within the physical screen line un

til all previous physical lines for this logical line have been . ,

scanned. Set the pointer to the start of the logical screen line ! [
the cursor is on, (Dl), based on which screen line (current

physical screen line or any previous) has its high bit on in that

line's screen line link table entry. A high bit on in a line link

table entry indicates the corresponding screen line is a starting

line, while a high bit off indicates the corresponding screen

line is a continued line. If no lines have the high bit on in the

table entry, set the pointer to the start of the screen line to the

address of the start of screen memory (0400/1E00 or 1000).

Find the start of the current logical screen line, then scan

down the screen for the first line that has its screen line link

table entry with the most significant bit on. Each line scanned

in this downward search adds 40/22 to the initial value of

39/21; this value is then stored as the maximum logical length

of this line.

If you change the location of screen memory, you must

notify the screen editor by changing 0288 (648 decimal) to the

starting page of screen memory.

Possible values of screen line link tables for the two nor

mal screen memory locations are:

On the 64, screen memory at 0400: $84, $85, $86, or $87

if the physical line is the start of a logical line, $04, $05, $06,

or $07 if the physical line is the continuation of a logical line.

On the VIC, screen memory at 1E00 (unexpanded VIC): ,

$9E or $9F if the physical line is the start of a logical line, $1E J !
or $ IF if the physical line is the continuation of a logical line.

On the VIC, screen memory at 1000 (VIC with 8K or ,

more expansion): $90 or $91 if the physical line is the start of 1
a logical line, $10 or $11 if the physical line is the continu

ation of a logical line. , ^

Operation: —l
1. JSR to E5A0/E5BB to set input device to keyboard, output

device to screen, and initialize VIC-II/VIC chip registers. J j

2. VIC only: Load screen memory page from 0288. Mask out

130 LJ

Screen Routines

H

r—) bit 1, then ASL twice (to multiply the value by 4). Then

I t turn on bit 7 and store this value in 9005 as bits 10-13 of
the screen address. Also, by clearing the low nybble that is

r—i stored into 9005, the character set at 8000 (uppercase/

I i graphics) is selected for the screen characters. If screen
memory page bit 1 is on (for example, if the page value is

r^ $1E), set the high bit of 9002, which is bit 9 of the address

I 1 of the screen, to 1.

As an example, consider the calculations for screen

memory at 1E00, or page $1E.

$1E = 0001 1110

Mask bit 1 1111 1101

0001 1100

ASL

ASL

0111 0000

ORA $80 1000 0000

1111 0000

Bits 4-7 now become bits 10-13 of the screen mem

ory address. Bit 9 of the screen memory address is taken

from the high bit of 9002, which has been set to 1 because

the screen memory page, 0288, has its bit number 1 on. Bit

13 of the screen address must be 1.

Thus, the address generated is:

Bit: 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value: 11111000000000

Bits 14 and 15 are not used in decoding the address to

retrieve contents of character ROM, screen RAM, or color

nROM, as only 13 address lines are connected to these

chips.

3. Store $00 in 0291 to enable the flag for character set

n switching. When enabled, this flag allows holding the

Commodore and SHIFT keys down together to switch to

the alternate character set.

<—■j 4. Set cursor blink flag at CF to 0, indicating nonreversed

'• ' character under cursor.
5. Set the pointer to Keyboard Table Setup routine at (028F)

p toEB48/EBDC.

L ! 6. Set the maximum number of characters in keyboard buffer,
0289, to $0A (10 decimal).

* i 131

Screen Routines

u

7. Set the delay before the initial repeat of a key, 028C, to

$0A also. LJ
8. Set the current character color, 0286, to $0E (light

blue)/$06 (blue).

9. Set the delay before following repeats of a key, 028B, to j (
$04.

10. Set the count before blink of cursor, CD, to $0C (12 deci

mal). Also store the $0C in CC, which turns off the cursor j |
since any nonzero value in CC disables cursor blinking.

11. E544/E55F (Clear Screen entry point): Set screen line link

table values at D9-F2/F1 based on 0288, the screen mem

ory page. For the unexpanded VIC, where the screen

memory page is $1E, D9-E4 = $9E and E5-F0 = $9F. For

the VIC with 8K or more expansion, where the screen

memory page is $10, D9-E4 = $90 and E5-F0 = $91. For

the 64, where the screen memory page is $04,, D9-DF =

$84, E0-E5 = $85, E6-EC = $86, and ED-F2 = $87. The

routine then sets the byte following the table, F3/F1, to

$FF.

The maximum number of table entries for the VIC is

25, including the ending $FF. For the 64, the maximum

number of entries is 27, including the ending $FF. How

ever, the ending $FF serves no purpose in the 64, and it is

overwritten by screen routines that use (F3) as a pointer

into color memory.

12. LDX with the value for the bottom line of the screen, then

JSR to E9FF/EA8D (Clear Screen Line Cursor Is On) blank

out the current line. Next, DEX and loop to the JSR to

blank out the current line until all 25/23 lines of the

screen are erased.

13. E566/E581, Home Cursor entry point: Set D3, cursor col

umn, and D6, current physical screen line cursor is on, to j j
0. Column 0 of line 0 is the upper left corner of the screen,

the home position.

14. E56C/E587, Set Screen Line Link Table entry point: LDX [J
with the value from D6, the physical screen line the cursor

is on LDA with the value from D3, the column in the cur

rent physical screen line the cursor is on. j J

15. LDY with an entry from the screen line link table at D9,

using the line value in X as an index. If the high bit of this

entry is on, branch to step 18, as this line is not a continu- j j
ation of the previous line.

132 .) /

Screen Routines

| f 16. Add $28/$ 16 (40/22 decimal) to D3, the logical cursor po-

i t sition within the line.

17. DEX. If X >= 0, branch to step 15. If X < 0 (i.e., if X was

0 before the DEX, indicating that top line has been

jj reached), fall through to step 18. This step prevents the
routine from attempting to search beyond the start of the

^ table.

J | 18. LDA with the entry from the screen line link table at D9

indexed by X; AND with $03 to mask out all but bits 0

and 1, then ORA with the contents of 0288, the screen

memory page. The resulting value is the high byte of the

address of the start of the current logical screen line.

19. STA in D2, the high byte of the pointer to the start of this

logical screen line.

20. Set the low byte of the pointer to the start of this logical

screen line, Dl, from the table of low byte offsets at

ECF0/EDFD, indexed by X. (Version 3 of the 64 Kernal

accomplishes steps 18-20 with a JSR E9F0, which per

forms the same steps).

21. Now search downward in the table for the end of the cur

rent logical screen line, which is indicated by a line link ta

ble entry with its high bit on. Each line scanned in this

downward search adds $28/$ 16 (40/22 decimal) to the

initial current screen line length of $27/$15 (39/21 deci

mal). The final total is then stored in D5, the length of the

current logical line.

22. (Version 3 of 64 Kernal ROM only): JMP EA24 to set (F3)

to point to the color memory location corresponding to the

start of the logical screen line (Dl).

Set Default Device Numbers

H E5A0/E5BB-E5A7/E5C2

Called by:

r~l JSR at E518 Set VIC Chip Registers, Clear Screen, Home

1 Cursor, Set Screen Line Link Table, JSR at E59A/E5B5 in Set
I/O Defaults and Home Cursor.

pi The default device for output, 9A, is set to $03 to make

f the screen the current output device; the default device for in
put, 99, is set to $00 to make the keyboard the current input

pi device. The routine then falls through to the following routine

to initialize VIC chip registers.

n 133

I I

Screen Routines —'

LI

Operation:

1. Set 9A, the output device number to $03. j j
2. Set 99, the input device number to $00.

3. Exit by falling through to following routine, E5A8/E5C3 to

initialize VIC chip registers.

Initialize VIC Chip Registers

E5A8/E5C3-E5B3/E5CE |_J

Called by:

Falls through from E5A7/E5C2 in Set Default Device Num

bers, JSR at FDEB in Initialize Memory Pointers (VIC).

The VIC chip registers for the VIC are loaded from values

in a table at EDE4; the VIC-II chip registers are loaded from

table values at ECB9 for the 64.

Operation:

VIC: For each of the 16 values in the table, load the table

value and store this value into the corresponding VIC chip

register at 9000-900F. See the table below for the VIC register

settings.

VIC 6560-6561 Initial Register Settings

9000 0000 0101 Interlaced mode off; horizontal screen

origin = 5

Vertical screen origin = $19 (25 decimal)

Screen address VA9 = 1; 22 columns

Raster value = 0; 23 video rows; 8X8

character size

Raster value = 0

Screen address VA13-10 = 1011; character

address VA13-10 = 0000

Light pen horizontal position

Light pen vertical position t i

Paddle X digitized value I >
Paddle Y digitized value

Bass voice off .

Alto voice off]
Soprano voice off

Noise source off

Audio volume off; auxiliary color black j
White background; normal (nonreversed)

characters; cyan border

64: For each of the 47 values in the table, load the table [J
value and store this value into the corresponding VIC-II chip

9001

9002

9003

9004

9005

9006

9007

9008

9009

900A

900B

900C

900D

900E

900F

0001

1001

0010

0000

1011

0000

0000

0000

0000

0000

0000

0000

0000

0000

0001

1001

0110

1110

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

1011

134
U

Screen Routines

n

n

n

n

n

i i

n

register at D000-D02E. See the table below for the 64 register

settings.

VIC-II 6567 Register Initial Settings

D000-D00F 0000

D010

D011

D012

0000

1001

0000

0000

1011

0011 0111

D013

D014

D015

D016

D017

D018

D019

D01A

D01B

D01C

D01D

D01E

D01F

D020

D021

D022

D023

D024

D025

D026

D027

D028

D029

D02A

D02B

D02C

D02D

D02E

0000

0000

0000

0000

0000

0001

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0100

0000

0000

0000

1000

0000

0100

mi

0000

0000

0000

0000

0000

0000

1110

0110

0001

0010

0011

0100

0000

0001

0010

0011

0100

0101

0110

0111

1100

X and Y coordinates = 0 for all sprites

MSB of X coordinate = 0 for all sprites

Raster register bit 8; disable extended

color mode; disable bit map; don't blank

screen; 25 screen rows; smooth scroll to Y

dot position 3

Raster register bits 7-0 (raster register

8-0 = 1 0011 0111 = $0137, 311

decimal)

Light pen horizontal position

Light pen vertical position

Disable all sprites

Reset = 0 for normal display; disable

multicolor mode; 40 column screen;

smooth scroll to X dot position 0

No vertical expansion for any sprite

Video matrix VA13-VA10 = 0001; charac

ter set VA13-VA11 = 010

Clear any pending VIC chip interrupts

Disable VIC chip interrupts

All sprites have display priority over

background

Disable multicolor mode for all sprites

No horizontal expansion for any sprite

Sprite to sprite collision detection register

Sprite to background collision detection

register

Border color = light blue

Background color 0 = blue

Background color 1 = white

Background color 2 = red

Background color 3 = cyan

Sprite multicolor 0 = purple

Sprite multicolor 1 = black

Sprite 0 color = white

Sprite 1 color = red

Sprite 2 color = cyan

Sprite 3 color = purple

Sprite 4 color = green

Sprite 5 color = blue

Sprite 6 color = yellow

Sprite 7 color = medium gray

135

Screen Routines

u
CHRIN from Keyboard or Screen

F157/F20E-F172/F229 ij

Called by:

Indirect JMP through (0324) from Kernal CHRIN Vector at i [

FFCF; alternate entry at F166/F21D by BNE at F144/F203 in LJ
GETIN Preparation.

If the current input device is the keyboard, set CA, the i i

current physical line, and C9, the current cursor location, from 1—>
D6 and D3, respectively. Then JMP to E632/E64F to input

characters until a carriage return is encountered.

If the current input device is the screen, set DO to 3 to in

dicate input from screen and set C8, the pointer to the end of

line for input, from D5, the maximum logical length of this

line. Then JMP E632/E64F to input characters from the screen

until a carriage return is detected.

Entry requirements:

Location 99 should hold the number of the current input de

vice. Location D3 should hold the cursor position within the

current logical line and D6 holds the current physical screen

line the cursor is on. Location D5 holds the length of the cur

rent logical line (21, 43, 65, or 87 for the VIC; 39 or 79 for the

64).

BASIC calls CHRIN to fill the BASIC input buffer at 0200.

Operation:

1. If 99, the current input device, is nonzero, branch to step 5.

If the input device is 0 (keyboard), fall through to step 2.

2. Set C9 to the value in D3, which is the cursor position

within the current logical line.

3. Set CA to the value in D6, the current physical screen line

the cursor is on. 11

4. JMP E632/E64F to retrieve characters from the keyboard I—»
buffer and display them on the screen until a carriage re

turn is retrieved from the buffer. Exit with the accumulator i j

containing the ASCII value of the carriage return or of the I—*

last key pressed.

5. For CHRIN from the screen, first set DO, a flag indicating « j

whether input is from the screen or keyboard (3 represents Lj
screen input).

6. Set C8, pointer to end of line for input, to 39 or 79 for the \ ,

64 or to 21, 43, 65, or 87 for the VIC, based on the value in U
D5, the length of the current logical line.

136 LJ

Screen Routines

H

^ 7. JMP E632/E64F to retrieve characters from screen until a

| \ carriage return is retrieved. Exit with the accumulator

~ containing the ASCII value of the carriage return or the

character under the cursor.

H
Get Character from Keyboard or Screen

^ E632/E64F-E683/E6B7

-■ ' Called by:
JMPs at F163/F21A and F170/F227 in CHRIN from Keyboard

or Screen; alternate entry at E63A/E657 by BMI at E61D/E638,

BNE at E626/E641, and BCC at E62E/E64B in Get Characters

Until RETURN Key Detected; alternate entry at E65D/E691

by BCS at E630/E64D in Get Characters Until RETURN Key

Detected.

CHRIN calls this routine to retrieve a character from the

current input device. Characters that are typed on the keyboard

are displayed on the screen, and the screen display codes are

converted back to ASCII characters to be returned to CHRIN.

This somewhat odd sequence of converting the keyboard

entries to screen codes, displaying them on the screen, reading

the screen line and converting screen codes to ASCII equiva

lents is there for a good reason. The sequence allows you to

hit RETURN at any location on the current logical screen line

and have the entire logical line placed into the BASIC input

buffer. Changes made anywhere on the line are picked up no

matter where the cursor is within the logical line when RE

TURN is entered.

If the input device as indicated by DO is the keyboard,

branch to E5CD/E5E8 to retrieve characters from the key

board queue until RETURN is entered. Return to this routine

f8"*) from the keyboard routine either at E63A/E657 or E65D/E691.

1 Once the keyboard routine retrieves a RETURN character from
the keyboard buffer, it considers the logical line complete and

p~? resets DO, the flag for input from screen or keyboard, to a

nonzero value, returning to this routine at E63A/E657 or

E65D/E691. The next time this routine is called to return a

p"j character for CHRIN, it finds the input device flag DO has

been set to this nonzero value, and thus just falls through to

input only from the screen. Following calls repeat this process

!—j until finally the end of the screen line is reached, at which

■ - time the input flag DO is reset to 0 to allow input from the

keyboard.

n 137

Screen Routines '—

u
If the input device is the screen, just retrieve the character

from the current logical screen line indexed by the column the } [
cursor is on within the logical line. The routine also retrieves a

character from the current screen line upon returning from the

call to the keyboard routine. This return occurs when a RE- M
TURN has been entered when either this screen line is a

continuation line or the cursor for this screen line is located

before the end of the line. j I

Convert this screen code to the corresponding ASCII ' '
code. If the column this screen code is taken from is equal to

the end of the line, reset DO (input from keyboard/screen) to

0. If the input device is the screen JSR E716/E742 to echo the
character to the screen.

If the column from which this screen code is taken is

equal to the end of the line, set the ASCII value of the last key

pressed to the value for the RETURN key.

If the column from which this screen code is taken is not

equal to the end of the line, store the converted screen code

into the ASCII character for the key last pressed at D7.

Finally, if the screen code is $DE, which is the screen code

for the symbol %, set the ASCII value of the last key pressed

to $FR Three different ASCII values represent the n key.

The actual character code used is Commodore's eight-bit

version of ASCII, rather than the industry-standard seven-bit

code.

To convert the screen code to the equivalent ASCII value,

this routine performs the manipulations shown below:

Screen Code to CBM ASCII Conversion

Screen code (decimal) Modification

0-31 or 128-159 ORA $40 (no change if within quotation

marks) , ^

32-63 or 160-191 No change LJ
64-127 or 192-255 ORA $80

If you design your own routine to convert screen codes to \ i

ASCII codes, you could use the instructions from E63E/E672 LJ
through E656/E686 as a model. Copy these instructions to

your own routine for screen-code-to-ASCII conversion, and I (

place the screen code value in the accumulator before jumping UJ

into the routine. The equivalent ASCII code will be returned

in the accumulator. , i

138 u

Screen Routines

n

P^ Entry requirements:

j_i Location will determine DO whether input is from keyboard
(0) or screen (nonzero). D3 should indicate the cursor position

within the logical screen line. (Dl) should point to the start of

M the logical screen line the cursor is on. D4 will indicate if the

characters being retrieved are within quotes: 0 if not in quote

mode, 1 if in quote mode. C8 should contain the length of the

) i logical line.

Exit conditions:

D7 holds the ASCII value of the last key pressed. If the cur

rent input device is the keyboard, D7 should return with a

value of $0D for RETURN key. If the current input device is

the screen, D7 returns with value of either $0D for RETURN

key or the ASCII equivalent of the screen code currently under

the cursor.

D3, the cursor position within the logical screen line, is

incremented if the cursor was not already on the end of the

line.

DO indicates whether input is from the keyboard (0) or

screen (3). It is set to 0 if the end of the current logical line is

reached, as indicated by a RETURN key ASCII value being re

turned in D7.

The carry flag is clear on exit.

Operation:

1. Save Y and X registers on stack.

2. If DO is 0, indicating input from keyboard, branch to

E5CD/E5E8 (see Get Characters from Keyboard Until RE

TURN Key Detected routine) to retrieve characters from

keyboard queue until RETURN is entered. Program execu-

tion eventually returns to this routine at E63A/E657, step

fj 4, or E65D/E691, step 12.
3. If DO is nonzero, input is from the screen, so fall through

to step 4.

(j 4. E63A/E657: LDY from D3, the cursor position within this

~ ' logical screen line. (Possible values of 0-79/0-87.)

5. LDA (D1),Y. (Dl) points to the start of this logical line in

j| screen memory; add the cursor position within this logical
line; load accumulator with the screen code of the charac-

ter under the cursor.

6. Store this screen code in D7.
i t

H . ■ 139

Screen Routines

7. Convert the screen code to an ASCII equivalent. Bit 7 of

the original screen code is ignored in this conversion. j j
Thus, reversed screen characters are converted to the same

ASCII values as the corresponding unreversed screen code.

First, AND $3F to set bits 6 and 7 of ASCII code be- |_j
ing built to 0.

Next, if bit 6 of the original screen code = 1, ORA

$80. Thus, for screen codes of xlxx xxxx (64-127 and 192- j_J
255), the equivalent ASCII code is obtained by ORA $80.

If quote mode is on, indicated by a nonzero value in

D4, branch around the next step of ORA $40.

If quote mode is off and the original bit 5 of the

screen code = 0, ORA $40. This catches codes with the bit

pattern xlOx xxxx (codes from 64-95 or 192-223) or x00x

xxxx (codes from 0-31 or 128-159).

If quote mode is on, the screen codes from 0-31 or

128-159 are left as is, thus allowing the control characters

within quotes to be converted to ASCII.

If bit 6 was 0 and bit 5 was 1 (pattern oi xOlx xxxx

for screen codes from 32-63 or 160-191), leave the screen

code unchanged as the screen codes for these ranges are

the same code as the equivalent ASCII code.

As an example, consider the screen code number for

Z, which is $1A = 0001 1010. AND $3F does not affect

this code because the two highest bits are already 0. Be

cause bit 6 is 0, we don't ORA $80. Because bit 5 is 0, we

ORA $40 to set it to 0101 1010, $5A, the ASCII code for Z.

Another example is the conversion process for

changing the representation on the screen for the WHT

(CTRL-2) key within quotes, which is the reversed E, to

the ASCII value of 5, which is interpreted when sent to

the screen as a command to change the character color to

white. The screen code for a reversed E is 1000 0101.

AND $3F changes this to 0000 0101. Since bit 6 is 0, the

ORA $80 is not done. Since this reversed E would appear jl
within quotes (quote mode flag on), no ORA $40 is done.

Thus, the ASCII value is 0000 0101 or 5.

8. Increment the cursor location within the logical line, D3, [_J
since this routine returns a character from the position un

der the cursor.

u

140
u

n
Screen Routines

H

n

9. JSR E684/E6B8 to see if the character under the cursor

was the quote character. If so, flip the value in the quote

flag, D4.

10. CPY C8. The Y register contains the column the cursor

was on in the logical screen line. If the input device is the

screen, C8 was set from D5, the current logical line length

(64: 39 or 79; VIC: 21, 43, 65, or 87). If the input device is

the keyboard, C8 will be set to the value of the length of

the current logical line, D5, minus the number of spaces at

the end of the line + 1.

11. If the above comparison evaluates as equal, the end of the

screen line has been reached, so fall through to step 12. If

the above result is not equal, the end of the screen line has

not yet been reached, so branch to step 17.

12. E65D/E691: Once the end of the screen line is reached, re

set DO, the flag indicating whether input is from screen or

keyboard, to 0 for keyboard input.

13. If 99, the device number of the current input device, con

tains $03 (screen input), branch to step 15.

14. If 9A, the device number of the current output device, con

tains $03 (screen output), branch to step 16.

15. JSR E716/E742 to echo this character on the screen if cur

rent input is from the screen.

16. LDA $0D, ASCII value for the RETURN key. If the end of

the line has been reached, the line is followed by a

RETURN.

17. STA D7, ASCII value of the last key pressed. Either store

the $0D for RETURN if falling through from step 16, or

store the ASCII character for the screen code under the

cursor if branching here from step 11, when the end of the

line has not yet been reached.

18. Restore the X and Y registers from stack.

19. Load accumulator with the value from D7.

20. If accumulator is now equal to $DE, which is an ASCII

code for n, substitute $FF, another ASCII code for n, in the

accumulator.

21. CLC and RTS.

u
Screen Routines

u
Get Characters Until RETURN Key Detected

E5CA/E5E5-E631/E64E U

Called by:

Normal entry point is E5CD/E5E8 by BEQ at E638/E655 in Ij

Get Character from Keyboard or Screen.

This routine handles CHRIN from the keyboard, looping

until characters are in the keyboard queue, and testing each } j

character received to see if it is the RETURN key. If it is not y—'
the RETURN key, display the character on the screen. If it is

the RETURN key, the keyboard entry or editing is complete.

These loops for characters in the keyboard buffer and for

the RETURN key are the reason that CHRIN can loop infinitely.

When the current line is complete, the routine determines

the actual number of characters in the current line. This index

to the end of the characters + 1 is stored in C8. Thus, C8

contains the number of characters in the line (including the

RETURN). Location DO is reset to indicate input from screen,

screen scrolling is enabled, the cursor column is set to 0, and

the quote mode flag is turned off. Then, if the cursor is not at

the end of the logical screen line, it branches to E63A/E657 to

read from the screen. The branch to E63A/E657 is also taken

if the current physical line is different than it was when this

routine was called, most likely being a continuation line. If the

cursor is at the end of the logical screen line, the routine

branches to E65D/E691 to reset DO to input from keyboard,

and considers the current line complete.

If the left SHIFT and RUN/STOP keys are held down to

gether, the routine puts LOAD [RETURN] RUN [RETURN] in

the keyboard buffer.

The SHIFTed RETURN is not the same as the RETURN

without SHIFT as far as this routine is concerned. SHIFTed j I

RETURN does not close the logical screen line as the '—'
unSHIFTed RETURN does.

Operation: LJ

1. LDA C6, the number of characters in the keyboard buffer.

2. STA in CC and 0292. Thus, when no characters are in the

keyboard queue, cursor blinking and screen scrolling are j^J
enabled. When characters are in the keyboard queue,

cursor blinking flag is disabled as is screen scrolling.

3. If there are no characters in the keyboard queue, branch to lJ

142 u

Screen Routines

nstep 1. Fall through to step 4 when there are characters in

the keyboard queue.

4. Disable IRQ interrupts.

<—? 5. If CF, cursor blink status, is nonzero, indicating the charac-

L_! ter under the cursor is reversed, restore the original
character under the cursor, restore its color, reset the

f—I cursor blink status to zero, and store the un-reversed

\ J character to the screen.
6. JSR E5B4/E5CF to retrieve the next character from the

keyboard queue. This routine also enables IRQ interrupts.

7. If the ASCII value retrieved from the keyboard queue is

$83 (when the left SHIFT and RUN/STOP keys are held

down together), put the characters LOAD [RETURN] RUN

[RETURN] (where [RETURN] indicates $0D, the ASCII

character for RETURN) into the keyboard queue. The

characters are taken from a table at ECE7/EDF4. Then

branch to step 1.

8. If the ASCII value retrieved was not $0D (RETURN key),

branch to E5CA/E5E5. At E5CA/E5E5, JSR E716/E742 to

the Main Screen Editor routine to display the ASCII

character retrieved from the keyboard queue on the screen.

Upon return from this JSR, continue with step 1 of this

routine.

9. If the ASCII value retrieved was $0D (RETURN key), con

tinue with step 10. Thus keyboard entry of RETURN does

not cause a display on the screen; rather, it causes the end

of editing for this logical line.

10. LDY D5, the current screen line logical length (21, 43, 65,

or 87 for VIC; 39 or 79 for 64).

11. STY DO. By setting DO to this nonzero value, the next time

*—. the routine to get a character from screen or keyboard is

L ' called, the nonzero value forces the routine to get the

character from the screen, once the entire keyboard line

n framed by the RETURN has been displayed on the screen.

12. Retrieve characters from the current logical screen line,

working backwards from the end of the logical line until a

|—! character is found that is not a space. Each time the pre-

_J vious character is examined, DEY. When the nonspace

character at the end of the logical screen line is found, the

nYregister equals the number of characters in the screen

..._ line (counting from 0).

143

Screen Routines

u

13. INY to point to one position past the last nonspace charac- . ,

ter on the line, and store this in C8, the number of charac- i I
ters in the line, including the RETURN.

14. Set 0292, the screen scroll flag, to zero (scrolling enabled). ,

15. Set D3, cursor position within the logical line, to zero. I
16. Set D4, quote mode flag, to zero, indicating that characters

currently being processed are not within quotes. . j

17. If C9, the physical line number the cursor was on at entry j \
to CHRIN, has its high bit on, BMI to E63A/E657 in the

Get Character from Keyboard or Screen routine. If C9 =

$FF, the physical line has changed. Since we know the

physical line has changed, the remaining steps are un

necessary. C9 could have its high bit on (could be $FF) if

C9 was 0 and the screen was scrolled. Or, C9 could have

become 0 because of several cursor downs.

18. LDX D6, the current physical screen line cursor is on.

19. JSR E6ED/E719 to set (Dl) to point to the start of the logi

cal line the cursor is on. (Version 3 of 64 ROM only: JSR

E591. At E591, JMP E6ED if the current physical screen

line is not the same physical line as when the routine was

entered. Thus, (Dl) is reset only if the physical line

changes.)

20. If the current physical screen line (after RETURN has been

entered) is not the same physical line as when this routine

was called, branch to E63A/E657.

21. If the current physical screen line (after RETURN has been

entered) is the same physical line as when this routine was

called, set D3 from CA .

22. Compare CA to C8, the current screen line length.

23. If CA, the current cursor column, is less than C8, branch to

E63A/E657 to read the screen line. Thus, CA is used to ,

determine whether any new characters were typed on this | j
line and need to be reconverted from screen code to

ASCII. f--,

24. If CA, current cursor column, is greater than or equal to i^J,

C8, branch to E65D/E691 to reset DO to indicate input

from the keyboard and to exit. For example, if changes are , ,

made to a line but RETURN is never entered on that line, j }

it disregards the changes made in that line.

u

144

Screen Routines

H

|—| If Quote Key Detected Then Flip Quote Flag

'--! E684/E6B8-E690/E6C4

_ Called by:

M JSR at E657/E68A in Get Character from Keyboard of Screen,
JSR at E740/E76B in Main Screen Editor.

^ Compare the character passed in the accumulator to $22,

J ! the code both for an ASCII quote key and for the screen quote
character. If the character is a quote ("), flip the flag at D4 that

indicates quote mode status. A resulting D4 value of 0 in

dicates normal mode and a value of 1 indicates quote mode.

Operation:

1. Compare the accumulator to $22, which is the code for an

ASCII quote key and for the screen quote character.

2. If not equal, branch to step 5.

3. If equal, Exclusive OR D4 with $01, thus flipping its value

from 0 to 1 or from 1 to 0.

4. Restore accumulator to value of $22.

5. RTS.

Set Color and Store Character on Screen

EA13/EAA1-EA1B/EAA9

Called by:

JSR at E5E5/E5FF in Get Characters Until RETURN Key De

tected, JSR at E6A3/E6D6 in Display Screen Code.

Operation:

1. TAY to save the accumulator during this procedure.

2. Set CD to 2. The IRQ interrupt handler checks CD to deter

mine when to blink the cursor.

J j 3. JSR EA24/EAB2 to set the pointer to the color nybble for

— this screen byte.

4. TYA to restore the accumulator to its value at entry.

p| 5. Fall through to EA1C/EAAA.

Display Byte in Accumulator on Screen

H EA1C/EAAA-EA23/EAB1

Called by:

f—j JSR at EA5F/EAEC in IRQ Interrupt Handler; fall through

L_! from Set Color and Store Character on Screen.

H 145

Screen Routines
u

u

Display the screen code from the accumulator at the cur- , ,

rent screen location of the cursor, and set the color of the I—I
corresponding nybble in color memory to the color of this

byte. u

Entry requirements:

The accumulator should contain the screen code for the

character to be displayed on screen. The X register should con- \ \

tain the value for the foreground color for this character. (Dl) ' '
should point to the start of the logical screen line the cursor is

on. D3 should hold the cursor position within the logical

screen line. (F3) should point to the start of the line in color

memory that corresponds to this logical screen line.

Operation:

1. LDY from D3, the cursor position within this logical line.

2. STA (Dl), Y. Put the screen code into screen memory and

thereby display the character on the screen.

3. Store the X register value into (F3),Y. The color nybble loca

tion for this screen byte is thus set.

4. RTS.

Set Pointer to Color Nybble

EA24/EAB2-EA30/EABE

Called by:

JSRs at E75F/E78B and E807/E84E in Main Screen Editor, JSR

at E9E0/EA6E in Set Color Memory Pointers for Moving Line,

JSR at EA04/EA92 in Clear Screen Line Cursor Is On, JSR at

EA18/EAA6 in Set Color and Store Character on Screen; JSR

at EA4F/EADD in IRQ Interrupt Handler.

The pointer to the color nybble corresponding to the first

character of the screen line the cursor is on, (F3), is set based [|
on the pointer to the current screen line and the starting ad

dress of color memory.

Consider two examples of how this procedure works (using ! I

the VIC in these examples):

If (Dl), pointer to current screen line, is 102C, then F3 is

set to $2C (the low byte of the pointer value), while the value I 1

for F4 is calculated as follows: $10 (the high byte of the ^
pointer value) is ANDed with $03, then it is ORAed with $94

for a result of $94. So (F3) is $942C. |J

146

H
Screen Routines

p| If (Dl) is 1E2C, then F3 is set to $2C, while F4 is cal-

1 -l culated as follows: $1E is ANDed with $03 (this leaves a bit
value of 0000 0010), then ORAed with $94 (a bit value of

p] 1001 0100) for a result of $96. Thus, (F3) is $962C.

Operation:

1. Get the low byte of the pointer to the line the cursor is on,

n di-
2. Save in F3, the low byte of the pointer to color nybble

corresponding to the start of current screen line.

3. Get the high byte of the pointer to the current screen line

the cursor is on, D2.

4. AND $03 to mask out all but the two lowest bits.

5. 64: ORA $D8, the start of color memory (D800 is the first

nybble of color memory). VIC: ORA $94, the start of color

memory (9400 is the first nybble of color memory).

6. STA in F4, the high byte of the pointer to the color nybble

corresponding to the current screen line.

Retrieve Character from Keyboard Queue

E5B4/E5CF-E5C9/E5E4

Called by:

JSR at E5E8/E602 in Get Characters Until RETURN Key De

tected, JMP at F147/F1FE in GETIN Preparation.

The two routines that call this routine both check C6, the

number of characters in the keyboard queue, before doing the

call. If C6 is 0, indicating there are no characters in the key

board buffer, this routine is not called. C6 is incremented by

the Keyboard Scan routine each time the ASCII value for a

key is stored in the keyboard queue. When this routine is

f—I called, the keyboard queue contains a character since C6 is

1 ' nonzero.
Retrieve the ASCII value of the character at the start of

rn the keyboard queue, at location 0277, and return this value in

; the accumulator.
Since the first entry in the keyboard queue has now been

F"! removed, move all the remaining values in the queue one byte

1 toward the start of the queue. Also, decrement C6 to reflect

the fact that one less value is now in the keyboard queue.

{""j Operation:
^ 1. LDY with the first character in the keyboard queue, from

j location 0277.

!) 147

Screen Routines

u

u

2. Set X register to 0. j |

3. LDA with 0278,X. LJ
4. STA 0277,X. Thus, move the character from position 0278

+ X to the previous position in the keyboard buffer. In a i j

move like this, where the move overlaps, it is important to »—'
move characters in the correct direction as is done here. If

you instead initialized X to the current character count C6 ^ j

and decremented X after each LDA-STA sequence, you <—>

would just propagate the last character in the buffer

through all previous characters in the buffer.

5. INX, thus pointing the X register to the next higher ad

dress character in the buffer to be moved.

6. If the X register is now equal to C6, all characters have

been moved; in this case fall through to step 7. If not

equal, more characters remain to be moved, so branch

back to step 3.

7. Decrement C6, the count of the number of characters in

the keyboard buffer.

8. TYA. The accumulator now contains the ASCII character

that was retrieved from the start of the keyboard buffer.

9. Enable IRQ interrupts.

10. CLC and RTS.

Main Screen Editor

E716/E742-E87B/E8C2

Called by:

JSR at E5CA/E5E5 in Get Characters Until RETURN Key De

tected, JSR at E670/E6A3 in Get Character from Keyboard or

Screen, JMP at F1D2/F282 in Determine Output Device.

This routine controls the flow of action for the screen edi- {

tor, and it is also used by CHROUT. It determines whether the (j

ASCII character passed to it in the accumulator is a valid

screen code or a screen control character. ^ (

Screen control characters tested for are: INST, DEL, the j [

cursor keys, the color keys, RVS ON, RVS OFF, CLR, HOME,

Commodore/SHIFT keys together (switch case, lower to upper

or upper to lower), CHR$(8) (disable Commodore/SHIFT), Lj
and CHR$(9) (enable Commodore/SHIFT). If one of these

control keys is detected and the two conditions mentioned be-

low are not in effect, this routine either performs the indicated (f

function or calls another routine to perform the function.

148 LJ

H
Screen Routines

f—j Two other conditions also cause special action to be taken.

If the character is a quotation mark ("), the current setting of

the quote flag at D4 is reversed, and the quotation mark is dis-

p"j played on the screen. Location D4 is also important, though,
in determining whether to treat the normal control characters

as control characters or to display them on the screen. If D4 is

j—I 1, indicating quote mode, only the DEL (delete) and RETURN

keys are treated as valid control characters. Other control

characters are displayed on the screen using the reversed ver

sion of the ASCII character for the indicated screen code.

The other special condition is when there are remaining

inserts. Each time the INST key is entered, the count of

outstanding inserts is incremented. This routine first checks for

and processes a RETURN keypress. Otherwise, it calls the

INST key handler. Thus, you can have more than one insert.

Next, it checks to see if there are any outstanding inserts. If

there are, it stores the ASCII value passed in the accumulator

to the screen in the space opened up by the insert. Then it

checks to see if an INST key was entered. Since the check for

outstanding inserts is made before the check for the DEL key,

the DEL key can be included in the screen line (if there are

outstanding inserts). To display the DEL key (reverse video T),

you must enter it before hitting RETURN for the line. This dis

play of the DEL key as reverse T works either within or out

side of quotes. However, if you leave the reverse T in a line

without surrounding quotes, you get a syntax error for that

line.

This routine does not display characters on the screen.

Rather, it calls other routines to display them and to convert

between screen and ASCII codes. The computer tests the

I—I ASCII values to determine what range the code is in and what

1 conversion the ASCII code must go through to become a
screen code. The other function of this routine, as mentioned

pn above, is to take action for the control keys.

Operation:

1. Push character to be displayed from the accumulator onto

I i the stack, and save it in D7 as well.

2. Save the contents of the X and Y registers on the stack.

3. Set DO to 0, indicating input from keyboard the next time

I | the Get Character from Keyboard or Screen routine is
executed.

" . 149

Screen Routines

u

u

4. Load Y register from D3, the cursor position within the 1 j

logical line. '—
5. Load accumulator from the value that was stored into D7

in step 1. j j

6. If the value in the accumulator has its high bit off (ASCII '—'
key value < 128), branch to step 8.

7. If the value in the accumulator has its high bit on (ASCII j I

key value >= 128), jump to step 43 to handle the ASCII '—>
values 128-255.

8. If the accumulator contains $0D, the ASCII value for RE

TURN, JMP E891/E8D8 to handle the RETURN key.

9. If the accumulator value < $20, branch to step 16. ASCII

characters under $20 are normally considered control

characters.

10. If the accumulator value < $60, branch to step 13 to handle

ASCII characters from $20-$5F (32-95).

11. If the accumulator value >= $60 and < $80, AND $DF,

turning off bit 5. For example, for ASCII code 115 (heart),

the following conversion would be performed:

115 decimal 0111 0011

AND #$DF 1101 1111

0101 0011

The result is $53 (decimal 83), the screen code for the heart

symbol.

12. BNE to step 14. This should be an unconditional branch

since no keys in the Commodore keyboard decoding

routines return the ASCII value of 0.

13. Branch here to handle ASCII characters from $20-$5F

(32-95). AND $3F, turning off the two high bits. For ex

ample, the ASCII code 57, which represents the character i j

9, is converted by: LJ

57 decimal 0011 1001

AND$3F 0011 1111 M

0011 1001

This yields $39 (decimal 57), the screen code for 9. < i

Another example for the character A, ASCII code 65, LJ
is as follows:

65 decimal 0100 0001 i j

AND $3F 0011 1111 L—J

0000 0001

u

n
Screen Routines

H '

rn This produces $01 (decimal 1), the screen code for A.

I ' 14. Branch here for ASCII keys >= $60 and < $80; also fall
through from step 13 for ASCII keys from $20-$5R JSR

|—| E684/E6B8 to test for the quote character and flip the

' ! quote flag if the quote character is found.
15. JMP E693/E6C7 to display the converted ASCII character

rn on the screen.

II 16. Branch here from step 9 to handle ASCII keys with values
under $20, normally ASCII control keys.

17. LDX D8, which contains the number of outstanding in

serts. If there are no outstanding inserts, branch to step 19.

18. JMP E697/E6CB if outstanding inserts exist. If an

outstanding insert is pending, ASCII characters with values

under $20 are displayed on the screen in the next out

standing insert position. To display an ASCII character,

first ORA $80 so that its reversed value is displayed. ASCII

values under $20 normally produce some action on the

screen display or on the cursor. For example, the ASCII

value for the WHT key is 5, or 0000 0101. ORA this value

with $80 to produce the screen code 1000 0101 ($85),

which is displayed on the screen as reverse E.

The ORA $80 is actually done by the routine for

ASCII characters 0-31. If there are outstanding inserts, the

ASCII code is ORed with $80 to display it as the reverse of

the screen codes for 0-31.

Since the test for the RETURN key occurs before the

test for outstanding inserts, the RETURN key is one con

trol key that cannot be displayed on the screen in the

outstanding insert area.

19. If accumulator doesn't hold a RETURN and no inserts are

r~| outstanding, test for other control key values.

' ' The next value compared is $14, the ASCII value for
the DEL (delete) key.

I—j If the current value is not a DEL keypress, branch to

1 step 37. If a DEL key, continue with following action in
steps 20-36.

|—| 20. TYA. The Y register contains the value of D3 (the column

' ' the cursor was on within the current logical screen line) on

entry to the routine. If Y is nonzero (if the cursor is not on

[—1 the first column of the logical screen line), branch to step

{ ! 23. Remember that the leftmost column of the screen line
is 0.

H

u
Screen Routines

u

21. If the column the cursor was on was 0, JSR E701/E72D to I i

see if the current physical screen line is 0. If it is 0, it is '—'
impossible to retreat to the previous physical screen line,

so exit from the routine. If the physical screen line is not | I

zero, the subroutine decrements the physical screen line '—'
length, resets the screen line link pointers and the length

of the current logical screen line, and resets D3 to the

length of the current logical line. '—'
22. JMP to step 36 to insert a space character at the end of the

current logical line.

23. Branch here if cursor column was not zero.

DEY and STY D3, thus decrementing the indicator of

the cursor position within the logical screen line.

JSR EA24/EAB2 to set the address for the start of the

line that the cursor is on in color memory, (F3).

24. INY to point to the next character in current logical screen

line to be moved.

25. LDA (Dl), Y to load this next character in the current logi

cal screen line.

26. DEY, thus backing up to the previous character position.

27. STA (D1),Y, thus shifting the character just loaded one po

sition to the left on screen.

28. INY to prepare for retrieving the color for the character

just moved in step 27.

29. Load the color of the character just moved with LDA

(F3),Y.

30. DEY to point to the character just moved one position to

the left on the screen.

31. STA (F3),Y to restore the color for the moved character.

32. INY to point to the next character on the line to be

overwritten (deleted). This INY points to the next position j j

to be overwritten, while the INY in step 24 points to the '—'
character to move to this position.

33. CPY D5 to see if it is now pointing to the end of the logi- i i

cal screen line. '—'
34. If not, it isn't finished moving all characters one position

to the left, so branch back to step 24. i j

35. If equal, all characters from the place where the cursor was '—'
when the DEL key was entered to the end of the logical

screen line have been shifted one position to the left. i i

36. Branch here from step 22, or fall through from step 35. '—'
Store a space at the last position in the logical screen line,

u

n
Screen Routines

!"""! using the current foreground color value, 0286. From here

' ' BPL E7CB/E7F7. This should be an unconditional branch,
since the color value loaded into the accumulator should

f^ always be less than 128. At E7CB/E7F7, JMP E6A8/E6DC

f ' to exit from the routine without displaying any character
on the screen.

fH 37. Branch here from step 19 if the DEL key was not pressed.

' (See if D4 = zero, indicating not in quote mode. If not in
quote mode, branch to step 38.

If D4 is nonzero, indicating quote mode is active,

JMP E697/E6CB. With quote mode on, the ASCII value in

the accumulator at entry (now limited to one of the follow

ing keys: RVS ON, HOME, CRSR right, CRSR down,

WHT, RED, GRN, BLU) is displayed as described above.

See the explanation in step 18 for handling outstanding in

serts to see an example of the conversion from control

character to screen code.

38. If the character is not within quotes, test for a value of

$12, the RVS ON key. If not equal, branch to step 39. If

equal, set C7 to $12 to indicate characters are to be dis

played on the screen with the high bit on in the screen

code, thus producing a reversed character.

39. Test for a value of $13, the HOME key. If not equal,

branch to step 40. If equal, JSR E566/E581 to move cursor

to top left of screen.

40. Test for a value of $1D, the cursor right key. If not equal,

branch to step 41.

If equal, INY. Since the Y register contained the col

umn the cursor was on in this logical screen line, this

pointer now points to the next position to the right in the

<—-| logical screen line. JSR E8B3/E8FA to see if D3, which

/ ' contained the column the cursor was on before this ad
vance of the Y register, indicates the cursor is positioned at

[—j the end of a physical screen line (not the end of a logical

' ' screen line). If it is positioned at the end of a physical
screen line, increment D6, the current physical screen line,

r~\ unless the current line was already line 25/23, in which

1] case just exit without changing D6.

After the JSR E8BB/E8FA, reset D3 to the value from

r—; the Y register, thus incrementing D3 to indicate that the

1 s cursor has moved one position to the right on the logical
screen line.

r—>

1 ' . 153

■u
Screen Routines

u

Now DEY and compare Y to D5, the current logical t j

line length. This D5 value was unchanged by E8BB/E8FA. '—>
If the Y register (location of cursor before cursor right) <

D5, branch to E7AA/E7D6. I j

However, if the above comparison shows that the '—'

cursor was located at the end of a logical screen line,

merely moving the cursor to the next physical screen line i j

is not adequate. Rather, DEC D6 to indicate the physical {—'

screen line change taken above is nullified, and JSR

E87C/E8C3 which resets D6. The action taken in

E87C/E8C3 depends on whether the cursor is already lo

cated on physical screen line 25/23. If it is already on that

line, scroll one logical screen line off the top of the screen,

and scroll noncontinued physical screen lines in at the bot

tom of the screen. The number of physical screen lines

scrolled in is equal to the number of physical lines in the

logical screen line scrolled off the top. Finally, E87C/E8C3

resets D6 to equal the number of the next noncontinued

logical screen line. Upon returning from the JSR to

E87C/E8C3, reset D3 to zero, pointing the cursor to the

first column of this newly obtained logical screen line.

E7AA/E7D6: Branch here if cursor right is detected

and the cursor is not at the end of a logical screen line.

Also fall through to E7AA/E7D6 after obtaining the next

logical screen line if the cursor was positioned at the end

of the logical screen line when the routine was entered.

JMP E6A8/E6DC to exit from the screen editor routines

without displaying any character, as the cursor right key is

a nondisplayable character unless within quotes or within

outstanding inserts.

41. Test for $11, the cursor down key. If not equal, branch to i (

step 42. L—'
If a cursor down key is detected, add $28/$16 (40/22

decimal) to the current cursor location within the logical i j

screen line. Store this value in the Y register. I—>
INC D6, the physical screen line the cursor is on.

Now compare the value obtained by adding 40/22 to i j

the current cursor location to D5 (the length of the current i—)
logical line). If the current cursor location within the logi

cal line + 40/22 is less than or equal to the end of the (,

logical line, there is no need to move to the next logical t.—>

154 LJ

n
Screen Routines

n

j—| screen line, so branch to E7A8/E7D4 to STY D3, the

cursor position within the logical line, and then JMP

E6A8/E6DC to exit from the screen editor routines.

ri If adding 40/22 to the current cursor location results

f in a value greater than the current logical line length, nul
lify the previous addition by subtracting $28/$16 (40/22

f"| decimal) from the calculated value of the current cursor

' ' location and storing the result in D3, and nullify the change

to D6, the physical screen line with DEC D6. Then, JSR

E87C/E8C3 to reset D6 to the next noncontinued logical

screen line, and to scroll the screen if necessary. Finally,

JMP E6A8/E6DC to exit from the screen editor routines.

42. JSR E8CB/E912 to test for one of the color keys (BLK,

WHT, etc.) and set 0286 to a foreground color if a valid

color key code is found. The accumulator value is tested by

comparing it to values in the the table of valid color codes

atE8DA/E921.

JMP EC44/ED21 to test for ASCII values for switch

ing to the lowercase character set, switching to the upper

case character set, disabling character set switching, or

enabling character set switching. If any of these values are

found, perform the indicated action, then JMP E6A8/E6DC

to exit from the screen editor routines without displaying

any character on the screen.

43. Branch here from step 7 (or fall through from step 42) to

handle ASCII characters from 128-255. (VIC only: NOP

instructions appear from E800 to the next significant

instruction at E815.)

44. Turn off the high bit in the accumulator.

45. Test for the value $7F. If so, the original value was $FF,

<—| the ASCII value for n. Substitute the other ASCII value for

r ' n, $5E ($DE with high bit on). Although there are two
ASCII codes for n, only one is sent to the screen editor.

46. If the accumulator contains a value under $20, branch to

step 48 to handle the ASCII control characters from

128-159.

47. If the accumulator >= $20, a displayable character is in

the accumulator. JMP E691/E6C5 to ORA $40 and display

the screen code on the screen. As an example, consider the

ASCII code 161:

n

n 155

u
Screen Routines

u

161 1010 0001 1 j

AND $7F 0111 1111 LJ-

0010 0001

ORA $40 0100 0000 j_j

0110 0001

The result is $61, 97 decimal, which is the screen code for)

the left half-block graphics character. j [
48. Test for a value of $0D. (Remember in the following

comparisons that the original high bit has been turned off.)

If not equal to $0D, branch to step 49. If equal to $0D

(SHIFT-RETURN), JMP E891/E8D8 to handle the RE

TURN key.

49. Test D4 to see if quote mode is on (if the character cur

rently being processed is within quotes). If quote mode is

on, branch to step 57 to ORA $40 and display the character

on the screen. If quote mode is off, fall through to step 50.

50. Test for a value of $14, the INST key. If not equal, branch

to step 56.

51. If the INST key was detected, LDY D5, the length of the

logical line. Then LDA (D1),Y to retrieve the last character

in this logical line. (Dl) is the pointer to the start of the

logical line the cursor is on.

52. See if this last character on the logical line is a space. If

not, branch to step 53. If the last character is a space, see if

the cursor is on the last character in the line. If it is, com

pare the current logical screen line length to $4F/$57

(79/87 decimal) to see if it is trying to insert at the very

end of the maximum length of a logical line. If the cursor

is not on column 79/87 in the logical screen line, JSR

E965/E9EE to open up a blank screen line following this

logical screen line to allow inserts. However, if the current j t

length of the logical screen line is already 79/87, no fur

ther insertions can be made. Branch to step 55, which

jumps to exit from the screen editor routines without j I

displaying anything to the screen.

53. If the cursor was not on the end of the current logical

screen line, branch here. Also, fall through to here if the I j

cursor was on the end, but another physical line could be

added to the logical screen line.

LDY with the current logical screen line length from D5. |)

JSR EA24/EAB2 to set the pointer to the location in

156 . I !

n

n .
Screen Routines

n

p—» color memory that corresponds to the start of the screen

' ! line in screen memory, (F3).
The following sequence shifts characters (from the

p-> end of the screen line back to the current location of the

' ' cursor) one position to the right on the screen:
DEY. Y now points to the character to be shifted one

position to the right.

LDA (D1),Y. Retrieve this character.

INY. Y now points one position to the right of the

character just loaded.

STA (D1),Y. Store the character in this position one

location to the right of where it was taken.

Do the corresponding move for the color of this char

acter, using (F3) to point to the location in color memory:

DEY. Y now points to the color of the character to be

shifted one position to the right.

LDA (F3),Y. Retrieve the color.

INY. Y now points one position to the right of the

color of the character just loaded.

STA (F3),Y. Store the color of the character in this

position one location to the right of where it was taken.

DEY, so that the Y register now points to the position

from which the character was just moved. Compare this

location to the cursor location upon entry to this routine,

stored in D3. If not equal, more characters need to be

shifted to the right, so branch to the DEY at the beginning

of this loop.

If Y register is equal to the cursor location, store the

screen code for a space character at this location. Thus, if

INST is entered, a space character is displayed on the

screen. Color the space using the value for the current

foreground color, 0286.

54. Increment D8, the number of outstanding inserts.

I—| 55. JMP E6A8/E6DC to exit from the screen editor without

< I displaying anything on the screen.
Since quote mode is checked for before checking for

nanINST key, if quote mode is active, a space will not be

inserted. Rather, the reverse of the screen code equivalent

to $94 (the ASCII code for INST) is displayed. When in

<—, quote mode, $94 AND $7F, which is $14, ORAed with

I I $40, yields a screen code of $54 (decimal 84), which is a

thin vertical-line graphics character.

.n ■ 157

n

Screen Routines
u

If quote mode is not active, multiple inserts can be » .

made. Each time an INST is detected, another space is in- I 1
serted at the cursor location. The limit on the number of

insertions is the difference between the current length of i >

the logical line and its maximum length (80/88 characters). ! I
After an insertion is performed, the cursor does not

move one space to the right, but rather stays where it was j >

when INST was typed. i \

56. Test D8 to see if there are any outstanding insertions to be

made. If not, branch to step 58. If outstanding inserts re

main, fall through to step 57.

57. Branch here from quote mode or fall through if outstand

ing inserts remain. ORA $40 to convert an unprintable

control code to a displayable screen code.

JMP E697/E6CB, which does ORA $80 to display the

code as a reverse video character.

58. Test for a value of $11, the cursor up key. If not, branch to

step 63. If it was, LDX D6, the current physical screen line

the cursor is on. If the cursor is on line 0, it is impossible

to move the cursor up any higher on the screen, so exit the

screen editor.

59. If the cursor is not on line 0, DEC D6, the current physical

screen line.

60. LDA D3, the column the cursor is on in this logical screen

line, and subtract $28/$16 (40/22 decimal). If carry is

clear after this subtraction, a borrow was required, mean

ing that the cursor was on the first physical line in a logi

cal screen line. Branch to step 62 if carry is clear.

61. If the carry was set, a borrow was not required, meaning

that the cursor was originally on physical screen line 2 (64)

or 2, 3, or 4 (VIC) of the logical screen line. After >

subtracting 40/22, the cursor now points to the same col-) (
umn in the previous physical screen line—1 (64) or 1, 2,

or 3 (VIC). BPL to E871/E8B8, which jumps to ,

E6A8/E6DC to exit. This should be an unconditional LJ
branch, as the accumulator should not be greater than

39/65, the length of 1/3 physical screen line(s), and the . ,

high bit is thus 0. U
62. If the cursor up moves the cursor out of physical line 1 of

a logical screen line, JSR E56C/E587 which resets the (

screen line link table, establishes the pointer to the start of 1 j

158 LJ

n
Screen Routines

n

p—j the previous logical screen line, and adjusts the cursor col-

' umn value and the length of the current screen line.
E56C/E587 checks for noncontinued screen lines,

j~} starting with the current location of the physical screen

' ' line pointed to by D6 and working backward until it finds
an uncontirtued screen line. Each time it moves up a phys-

nical screen line, 40/22 is added to the column the cursor is

on. Here's an example for the VIC: If E587 is called with

the cursor pointing to column 5 of physical line 10, and if

the previous noncontinued line is line 8 (the start of the

previous logical line), add 22 to 5 to reset the cursor

pointer to 27, pointing correctly to the sixth column

(remember offset from 0) of physical line 9, which is the

second physical screen line of the previous logical line.

What if none of the previous physical screen lines

have their high bit on, indicating a noncontinued line (the

start of a logical line). This condition should not occur, but

conceivably it could happen. If this condition did exist,

E56C/E587 would keep looking for a logical screen line

until it reached physical screen line 0, at which point it

would exit the search for a logical screen line. While doing

this search, though, it would have added 40/22 to the cur

rent cursor position D3 each time it moved up another

physical screen line. You could use a test for D3 being

greater than 79/87 to make certain that the screen editor

routines for cursor up have not gone awry. The Kernal

does not make such a check.

After the JSR E56C/E587, exit the screen editor

routines.

63. Test for a value of $12, the RVS OFF key. If it is found, re-

r—» set C7 to 0, indicating that screen codes are to be dis-

i I played in their normal, nonreversed mode. Whether or not
RVS OFF is found, continue with step 64.

n64. Test for a value of $ ID, indicating a cursor left key. If not

equal, branch to $E8B1, step 67. If a cursor left key is de

tected, see if the current cursor column is column 0 of this

n logical screen line. If so, branch to step 66. If not, continue

with step 65.

65. JSR E8A1/E8E8 to see if the column the cursor is on is the

i—i first column (40/22, 44, or 66) of a physical screen line

I I (line 2/line 2, 3, or 4) within this logical screen line. If so,
DEC D6, the current physical screen line.

r—)

I I 159

Screen Routines

u

u

DEY and store in D3, thereby decrementing the col- j j

umn the cursor is on. •—'

JMP E6A8/E6DC to exit from the screen editor

routines without displaying anything on the screen. /

66. Branch here if the cursor was on column 0 of the logical <—»

screen line. JSR E701/E72D, which first examines whether

the cursor is on physical screen line 0 and exits if it is. If i i

the cursor is not on physical screen line 0, decrement the <—1
physical screen line, D6, and JSR E56C/E587 to reset the

screen line link table and the current logical line length,

and to adjust D3 to the current logical line length. D3, the

current cursor location, now points to the last character in

the previous screen line. JMP E6A8/E6DC to exit.

67. Test for a value of $13, the CLR key. If the keypress is not

CLR, branch to step 68. If it is a CLR, JSR E544/E55F to

clear the screen and reset the screen line link pointers. JMP

E6A8/E6DC to exit.

68. If the key value in the accumulator was not one of the

control codes, ORA $80, which restores the accumulator to

its original value before the AND $7F in step 44.

69. JSR E8CB/E912 to test whether the key value is one used

for changing the foreground color.

70. JMP EC4F/ED30 to see if the character indicates switching

to the uppercase character set, disabling character set

switching, or enabling character set switching. If so, per

form the requested action, if currently allowed by the edi

tor. Exit by jumping to E6A8/E6DC.

Display Screen Codes

E691/E6C5-E6A7/E6DB

Called by: [J
JMP at E7E0/E827 in Main Screen Editor; alternate entry at

E693/E6C7 by JMP at E743/E76E in Main Screen Editor;

alternate entry at E697/E6CB by JMP at E74A/E775, M
E783/E7AE, and E830/E876 in Main Screen Editor.

This routine is called by the Main Screen Editor routine

after an ASCII key value has been detected. Any conversion of | j
ASCII codes to screen codes may be handled either by the

Main Screen Editor or by entering this routine at the appro

priate point. ! I

160 LJ

n

Screen Routines

This routine tests for the reverse mode flag. If it is on, the

character passed to it (entry points E691/E6C5 or E697/E6CB)

is displayed as the reverse screen character. If called with in

serts outstanding, the count of outstanding inserts is

decremented.

Finally, the routine calls other routines to display the

screen code and to advance the cursor to the next position in

this logical line, or to advance the cursor to the next logical

line if necessary.

Entry requirements:

The accumulator should hold the screen code, or a partially

converted ASCII code, for the character to be displayed on the

screen. D8 holds the number of outstanding inserts. C7 should

be 0 if characters are to be displayed without reversing them;

it should contain a nonzero value (18 is typical) if codes are to

be displayed reversed. 0286 should hold the current fore

ground color.

Operation:

1. E691/E6C5: ORA $40. See comments in the description of

the Main Screen Editor routine for the reason this is

necessary.

2. E693/E6C7: See if the reverse flag, C7, is on (nonzero). If

not, branch to step 4. If so, fall through to step 3.

3. E697/E6CB: ORA $80 to set the high bit of the screen code

to 1 and display the screen code character in reverse video.

All screen codes >128 appear as reverse video.

4. If D8 is zero, indicating there are no outstanding inserts,

branch to step 6.

5. DEC D8 if outstanding inserts remain, since the character is

being displayed in insert mode.

6. LDX 0286 the current foreground color. This color will be

used in displaying the screen code.

7. JSR EA13/EAA1 to set the color memory pointer to the

screen code and display the screen code on the screen with

this color.

8. JSR E686/E6EA to advance the cursor on the screen.

9. Fall through to E6A8/E6DC, Exit from Screen Editor

Routines.

161

Screen Routines
LJ

U

Exit from Screen Editor Routines .

E6A8/E6DC-E6B5/E6E9 LJ

Called by:

Main Screen Editor routine to exit after any of these ASCII I I
keys are detected: INST, CLR, cursor right, down, or left; also ' '
called for all exits from the Test for Character Set Switch

routine. I J
This exit routine is called by several routines in the screen

editor that handle control keys or in situations where no

character is to be displayed on the screen. The routine pops

off the registers that were saved on the stack at entry to the

Main Screen Editor routine. To maintain a correct stack, this

routine must be called from screen editor routines even if no

character is to be displayed. The routine that displays charac

ters to the screen also falls through to this exit routine after

displaying the character and advancing the cursor.

This routine also checks to see if any outstanding inserts

remain, and if so, it makes certain that the quote mode is

turned off. So, insert mode has priority over quote mode.

However, during the Main Screen Editor routine, the quote

mode is checked before the insert mode. Thus, if you are in

quote mode, you can't insert spaces, and if you have outstand

ing inserts, you can't be in quote mode.

Finally, the carry is cleared and interrupts enabled before

exit.

Operation:

1. Restore Y register from stack.

2. Test D8 for outstanding inserts, and if there are, reset D4 to

0 to turn off quote mode if it was on.

3. Restore X register and accumulator from stack. < ,

4. CLC, enable interrupts, and RTS. LJ

Advance Cursor and Scroll or Insert Blank Lines I j

E6B6/E6EA-E700/E72C (VIC: also ED5B-ED68) LJ

Called by:

JSR at E6A5/E6D9 in Display Screen Codes; alternate entry at] I
E6DA/E70E by JMPs at E97F/EA05 and E9C3/EA46 in Insert

Blank Line.

Advance the pointer to the cursor location within the logi-] j

cal screen line. If the cursor has not reached the end of the
logical line, exit.

162 LJ

PI

Screen Routines

However, if advancing the cursor moves it to the end of

the logical screen line, try to move the cursor to column 0 of

the next physical screen line.

If the current logical line has not already reached its maxi-

mum length, make this next physical screen line a continu

ation line for the current logical line. Certain special conditions

are checked for in getting the next physical screen line. For ex-

ample, if location 0292 contains a 0, the editor allows the last

physical screen line to be removed from the screen if another

physical screen line is to be added to the current logical line.

If the current logical screen line has reached its maximum

length, reset the pointer to the next physical screen line and

reset the logical line length to 0. If the next physical screen

line is 25/23, scroll the screen.

Operation:

1. JSR E8B3/E8FA to see if the current location of the cursor

is on the end of physical line I/line 1, 2 , or 3 of a logical

line. If the cursor is on the final column of a physical

screen line, as long as the physical screen line is not on

line 25/23, increment the physical screen line location,

D6.

2. Increment the column the cursor is on within this logical

line, D3.

3. If the current logical line length, D5, is greater than or

equal to this new cursor location within the logical

line, D3, branch to step 23 to RTS.

4. If, however, the column the cursor is on is greater than the

current length of the logical screen line, continue with step

5.

5. If the current logical screen line length is 79/87, branch to

step 19; otherwise, fall through to step 6.

6. LDA 0292.

7. If 0292 is 0, indicating that screen scrolling is allowed,

branch to step 9; otherwise, continue with step 8.

8. JMP E967/E9F0. The routine at E967/E9F0 will either find

a noncontinued line between the current physical line and

the bottom of the screen and reset the line to be a continu-

ation line, or if it reaches line 24/22 without finding a

noncontinued line, it will scroll the screen. RTS from the

JMP to exit this routine.

9. Test D6 to see if the current physical screen line is now

line 25/23. If < 25/23, branch to step 13.

163

Screen Routines

screen.

u

u

10. JSR E8EA/E975 to scroll a logical line off the top of the , >

screen and to scroll a logical line in on the bottom of the LJ

11. Decrement the current physical screen line, D6. . >

12. LDX D6. The X register will be used as an index into the U
screen line link table in step 13.

13. E6DA/E70E: Using the X register as an index and D9 as , ,

the base of the screen line link table, shift the table entry (I
addressed by D9,X left one bit to shift out the high bit,

and then shift it right one bit, shifting a 0 back into the

high bit. These two shifts make the table entry indicate

that the corresponding screen line is a continuation line,

since the byte now has its high bit off.

14. VIC only: JMP ED5B, which is a patch area. At ED5B, con

tinue with step 15.

15. Now increment the X register, retrieve the next byte in the

screen line link table pointed to by D9,X, turn on its high

bit with ORA $80, making this next physical screen line a

noncontinued line. DEX so that now the X register points

back to the continued screen line. LDA D5, the current

screen line logical length, and CLC.

VIC only: JMP E715 to return to the main routine at

step 16.

16. Increase D5, the current logical screen line, by $28/$16

(40/22 decimal), as another physical screen line has been

added to this logical screen line.

17. Now determine which physical screen line is the start of

this logical screen line by working back up through the

screen line link table from the current location pointed to

by the X register. Once a noncontinued line is found, that

physical screen line is also considered the start of the logi- .
cal screen line. j [

18. JMP E9F0/EA7E to reset the pointer to the current logical

screen line, (Dl), using the X register value just obtained.

RTS from the JMP to exit the routine. LJ
19. Branch here from step 5. Decrement D6, the pointer to the

start of the current physical screen line.

20. JSR E87C/E8C3 to see if the next physical screen line is LJ
line 25/23. If it is, scroll the screen. Set D6, the current

physical screen line, from the value in the screen line link

table indicating the next noncontinued line, and then reset | j

164 jj

Screen Routines

n ~~
nthescreen line link table and the current logical screen line

length.

21. Reset D3, the pointer to the cursor location within the

i—i logical screen line, to 0.

I I 22. RTS.

n
Move Cursor to Previous Screen Line

E701/E72D-E715/E741

Called by:

JSRs at E754/E77F and E865/E8AB in Main Screen Editor.

Whenever a DEL or cursor left key is entered when the

cursor is positioned on column 0 of a logical screen line, this

routine is called.

The routine first tests to see if the current physical screen

line is line 0. If so, it exits, since it is impossible to move the

cursor to a previous line.

If the current physical screen line is not 0, the current

physical screen line is decremented. Next, JSR E56C/E587 to

reset the screen line link pointers, reset the pointer to the start

of the logical screen line (Dl) to point to the start of the pre

vious noncontinued line, and reset the current logical line

length D5. Upon return from the JSR, reset D3, the cursor

location within the logical screen line, to be equal to D5, thus

pointing to the end of the previous logical screen line.

Operation:

1. If the current physical screen line, D6, is not 0, branch to

step 3.

2. If the current physical screen line, D6, is 0, set D3 to 0, pull

the top two bytes off the stack to remove the return address

!*-i of this routine, and then branch to E6A8/E6DC to exit the

I I screen editor routines without displaying anything on the
screen.

I—i 3. Decrement D6, so that it points to the previous physical

I I screen line.
4. JSR E56C/E587 to reset the screen line link table, the

n pointer to the start of the logical screen line (Dl), and the

logical screen line length, D5.

5. Upon returning from the JSR in step 4, store D5 into D3,

r—*, thus setting the cursor position within the logical screen line

I j to the end of the logical screen line.

n 165

u
Screen Routines

u

Advance Cursor to Next Screen Line , ,

E87C/E8C3-E890/E8D7 U

Called by:

JSR at E6FA/E725 in Advance Cursor and Scroll or Insert j j
Blank Lines, JSRs at E7A4/E7CF and E7C9/E7F4 in Main UJ
Screen Editor, JSR at E89C/E8E2 in Handle RETURN Key.

This routine is called when any of the following con- I

ditions occur: the cursor moves to the next screen line because ' '
the cursor has moved past the end of the logical screen line

(in the routine which advances the cursor on the screen after

displaying a character); the cursor moves to the next screen

line because the cursor right key has moved the cursor past

the end of the logical screen line; the cursor down key is en

tered, moving the cursor down one line; the RETURN key (or

SHIFT-RETURN) is entered.

D6 is changed to point to the next logical screen line (the

next physical screen line that is noncontinued, which has a

link with its high bit on). If a noncontinued screen line is not

found upon reaching line 25/23, the scroll routine is called to

scroll the screen. Exit this routine by jumping to reset the

screen line link table, the length of the current logical line,

and the pointer to the start of the current logical line.

This routine also does a LSR C9, the location that holds

the logical line number on entry to CHRIN. Each time there is

a cursor down, RETURN, SHIFT-RETURN, cursor right past

the end of the logical line, or display on the screen past the

end of the logical line, this LSR takes place. Consider the case

where the cursor is positioned on physical screen line 9, which

is the first of two lines that make up one logical line. C9 con

tains 8 when it is positioned on the ninth physical line (offset

from 0) after pressing RETURN on the previous line. After an- j |

other RETURN, if you examine C9 it will hold a value of 10 L-J
(pointing to the eleventh physical screen line). However, by

examining location C9 during the RETURN key process, it ap- j I

pears that in this example C9 is reset to 4 before becoming 10. '—'
The sequence of change does make sense, since there is an

LSR C9, and 8 decimal (binary 0000 1000) shifted right yields j |

4 decimal (binary 0000 0100). The next call of CHRIN then re- '—>
sets C9 to the current physical screen line, the value of which

is stored in D6. C9 is also decremented when the screen is) (

scrolled—thus possibly setting C9 to $FF after successive calls L—'

166 U

n

H

Screen Routines

of the routine have done enough LSRs to make C9 = 0 (after

several cursor downs, for example). C9 is tested for having its

high bit on, which could be the case if the screen has scrolled.

Operation:

1. LSR C9. (See the discussion above.)

2. LDX from D6, the current physical screen line.

3. INX, thus preparing to move the cursor to the next physical

screen line.

4. If X is not equal to 25/23, branch to step 6.

5. If X is equal to 25/23, JSR E8EA/E975 to scroll the screen.

6. Retrieve the byte from the screen line link table that starts

at D9, indexed by X register.

7. If this screen link byte has its high bit off, this next line is a

continued line, in which case branch to step 3 as this rou

tine is attempting to advance the cursor to the next logical

line, not the next physical line.

8. If the screen link byte has its high bit on, indicating the

start of the next logical screen line, STX D6, resetting the

current physical screen line to the next logical screen line.

9. JMP E56C/E587 to reset the screen line link table entries,

the pointer (Dl) to the start of this logical screen line, and

the current logical line length D5.

Handle RETURN Key

E891/E8D8-E8A0/E8E7

Called by:

JMPs at E72E/E75A and E7E7/E82 in Main Screen Editor.

Whenever the Main Screen Editor routine detects the RE

TURN key or the SHIFTed RETURN key, this routine is called

to perform the following actions: set the number of outstand

ing inserts to 0, turn reverse mode off, turn quote mode off,

and set the current cursor column to 0. The routine to advance

the cursor to the next logical screen line is then called. Finally,

jump to the Exit from Screen Editor routine.

Operation:

1. Store 0 into the following locations: D8, the number of

outstanding inserts; C7, flag to indicate whether characters

are displayed in normal or reverse mode; D4, flag to in

dicate whether or not characters are within quotes; D3, the

cursor position within the logical screen line.

167

Screen Routines

u

2. JSR E87C/E8C3 to reset the pointer to current physical

screen line to point to the next logical screen line.] I
3. JMP E6A8/E6DC to exit from the screen editor routines.

Decrement Screen Line Pointer If Cursor Moves Left [_|
to New Line

E8A1/E8E8-E8B2/E8F9 ! (

Called by: "—J
JSRs at E759/E785 and E85B/E8A2 in Main Screen Editor.

This routine is called from the Main Screen Editor routine

when a DEL or a cursor left key is detected and the cursor is

not currently on column 0 of the logical line. This path then

tests to see if the cursor position indicated by D3 is 22, 44, or

66 (VIC) or 40 (64). If it is, the cursor is on the first column of

physical line 2, 3, or 4 (VIC) or 2 (64) of the current logical

screen line. Therefore, decrement D6, the pointer to the phys

ical screen line, to indicate that the impending leftward move

ment of the cursor will carry it up to the previous physical

line. On return to the Main Screen Editor routine, the cursor

location within the logical screen line will be reset.

If the cursor was on column 0, the Main Screen Edit rou

tine instead calls the routine to move the cursor to the end of

the previous logical screen line.

Operation:

1. LDX $02/$04. Index of number of comparisons to be made.

2. LDA $00. Entry value to start comparison with. However,

since Main Screen Edit checks for D3 = 0 before calling

this routine, no match for 0 should ever occur here.

3. CMP D3, thus comparing the cursor location within this

logical screen line to 0, 22, 44, and 66 (VIC) or 0 and 40

(64). LJ
4. If current value of accumulator is equal to D3, branch to

step 9.

5. Add $28/$16 (40/22 decimal) to the accumulator in j_J
preparation for the next comparison.

6. DEX.

7. If X register is not yet 0, branch to step 3. Example for VIC: |__
The X register now contains 3 if the comparison with 0 was

just made, 2 if the comparison with 22 was just made, 1 if

the comparison with 44 was just made, or 0 if the compari- \ j
son with 66 was just made.

168
U

H
Screen Routines

8. If X register is 0, RTS as the cursor is not at the start of

M physical screen line 2, 3, or 4 (VIC) or 2 (64) of this logical

screen line.

r-t 9. If the cursor is at the start of a physical line within the logi-

i | cal line, decrement D6, the current physical screen line the

cursor is on, then RTS.

PI Increment Screen Line Pointer If Cursor Moves Right
to New Line

E8B3/E8FA-E8C1/E911

Called by:

JSR at E6B6/E6EA in Advance Cursor and Scroll or Insert

Blank Lines, JSR at E798/E7C3 in Main Screen Editor.

This routine tests to see if the cursor position indicated by

D3 is 21, 43, 65, or 87 (VIC) or 39 or 79 (64). If it is, the

impending rightward movement will carry the cursor onto the

next physical screen line. Therefore, increment D6, the current

physical line the cursor is on, unless D6 contains 25/23, in

dicating that the cursor is already on the bottom line of the

screen. On return to the Main Screen Editor routine, the cursor

location within the logical screen line will be reset.

Operation:

1. LDX $02/$04. Index of the number of comparisons to be

made.

2. LDA $27/$ 15. Entry value to start the comparison with is

39/21, the end of the first physical screen line within a

logical screen line.

3. CMP D3, thus comparing the cursor location within this

logical screen line with 39 or 79/21, 43, 65, or 87.

ffc^ 4. If current value of the accumulator is equal to D3, branch to

j I step 9.

5. Add $28/$ 16 (40/22 decimal) to the accumulator in

^^ preparation for next comparison.

i_ I 6. DEX.

7. If the X register is not yet 0, branch to step 3. For the VIC:

The X register will contain 3 if the comparison with 21 was

just performed, 2 if the comparison with 43 was just done,

1 if the comparison with 65 was just made, or 0 if the

comparison with 87 was just completed. For the 64: The X

register is 1 after the comparison with 39, or 0 after the

comparison with 79.

169

Screen Routines

u
8. If the X register is 0, RTS as the cursor is not on the end of

physical screen line 1 or 2/screen line 1, 2, 3, or 4 of the j I

current logical screen line.

9. Branch here from step 4 if the cursor is at the end of one of

the physical lines within the current logical line. If D6 is I j
25/23, the cursor is already on the last physical line of

screen, and thus it can't move down a line, so branch to

step 11 to RTS. [I

10. Increment D6, the current physical screen line the cursor is

on.

11. RTS.

Test for Color Key

E8CB/E912-E8D9/E920

Called by:

JSRs at E7CE/E7FA and E876/E8BD in Main Screen Editor.

Test to see if the current key value is BLK, WHT, RED,

CYN, PUR, GRN, BLU, or YEL. For the 64, also check if the

value is the Commodore key plus a color key, for the addi

tional colors orange, brown, light red, dark grey, medium grey,

light green, light blue, and light grey. If the current key is a

color key, set 0286, the current foreground color, to the proper

value for that color.

Operation:

1. LDX $0F/$07 to prepare for 16 possible comparisons on the

64 or 8 comparisons on the VIC. X is used to index the

color code key table; when the match is found, the X reg

ister value is the color code for that key.

2. Compare the entry from the color code table at

E8DA/E921, indexed by X, with the value in the

accumulator. j I
3. If equal, branch to step 7.

4. If not equal, DEX.

5. If the X register is not 0, branch back to step 2, thus j [
comparing the entries in the table from the end of the table

to the start.

6. If the X register is 0, RTS, as no color key was detected. j^J
7. If a match has been found, STX 0286. Location 0286 now

contains the color value indicated by the color key.

170 u

n
Screen Routines

r-i Scroll Screen

LJ E8EA/E975-E964/E9ED

Called by:

""] JSR at E6D3/E707 in Advance Cursor and Scroll or Insert
Blank Lines, JSR at E885/E8CC in Advance Cursor to Next

Screen Line, JSR at E975/E9FD in Insert Blank Line.

I™""! This scroll routine moves one or more physical lines off

the top of the screen until an entire logical line has been

moved off the top of the screen, while moving the remaining

physical lines all up one line.

The routine also resets the screen line link table to cor

rectly reflect which lines are continued on the screen after the

scroll.

The last line on the screen, line 25/23, is made a

noncontinued line and is cleared. It is possible that more than

one physical line will be scrolled in at the bottom of the

screen; the number scrolled in is equal to the number of phys

ical lines scrolled off the top.

The routine also zeros the byte that indicates the number

of characters in the keyboard queue, effectively emptying it,

and exits with the X register containing the current physical

screen line, D6.

Operation:

1. Push AC, AD, AE, and AF onto the stack to preserve the

values from these locations.

2. Set the X register to $FF in preparation for step 4.

3. Decrement D6 (the current physical screen line), C9 (the

saved physical line number at entry to CHRIN), and

02A5/F2 (the screen line link table temporary save value).

nEach time a physical screen line is scrolled off the top of

the screen, these values are decremented.

4. INX. X will contain 0 after the first time through, and

n 1-24/1-22 on following passes.

5. JSR E9F0/EA7E to set the pointer to the start of the logical

screen line, (Dl), based on the current value of the X

r-j register.

L I 6. If the X register value is greater than or equal to 24/22,
branch to step 11, as the first 24/22 lines have been

n moved up one physical line on the screen, with the initial

hil l d

p py

top physical line removed.

Screen Routines

u

7. LDA ECF1/EDFE, indexed by X, retrieving the low byte of

the address of this screen line, and then save it in AC.] [
Examples: On the VIC, for X = 0 this retrieves $16, and

for X = 1 it returns $2C ; on the 64, for X = 0 this yields
$28, and for X = 1 it returns $50. Thus, the value re- [_J
trieved is actually the low byte of the starting address of

the next physical screen line.

8. LDA DA, X thus retrieving the high byte of the j_j
corresponding address from the screen line link table.

9. JSR E9C8/EA56 to convert the value in the accumulator to

the high byte of the address of the screen line to be

moved, set the pointer to the color memory start of this

line, (F3), and then move all 40/22 columns of this phys

ical screen line to the previous physical screen line.

10. BMI to step 4. This is an unconditional branch as the rou

tine at E9C8/EA56 only exits when the BMI condition is
true.

11. JSR E9FF/EA8D to clear the physical screen line the cursor

is on, thus clearing physical screen line 25/23.

12. LDX $00, preparing to index the screen lines from the top
to the bottom.

13. LDA D9,X to retrieve the next entry from the screen line

link table. AND $7F to turn off the high bit of the entry.

14. LDY DA,X to retrieve the entry following the one loaded

in step 13.

15. If the entry for the following line (from step 14) has its

high bit off (if the physical line is a continuation line),

branch to step 17.

16. If the entry has its high bit on to indicate a noncontinued

line, ORA $80 to set the high bit of the accumulator value

as well.

17. STA D9,X. Update the first line link entry, making it either [_J
continued line or noncontinued line based on value in the

following link table entry.

The following diagram illustrates the action this por- J [
tion of the routine performs in resetting the link table val

ues to indicate continued or noncontinued line for one

particular screen map (for the VIC): \^J

u

172 U

n

H

H

H

n

Screen Scrolling

Physical Line

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Screen Routines

(VIC example)

Original Link Values

continued

noncontinued

noncontinued

continued

continued

continued

noncontinued

continued

noncontinued

continued

noncontinued

noncontinued

continued

continued

continued

noncontinued

continued

noncontinued

continued

noncontinued

noncontinued

continued

noncontinued

After Move

noncontinued

noncontinued

continued

continued

continued

noncontinued

continued

noncontinued

continued

noncontinued

noncontinued

continued

continued

continued

noncontinued

continued

noncontinued

continued

noncontinued

noncontinued

continued

noncontinued

noncontinued

18. INX to prepare to update link byte for next line.

19. If X is not equal to $18/$16 (24/22 decimal, for line

25/23, since offsets are from 0), branch back to step 13 to

adjust the next link table entry; otherwise, fall through to

step 20.

20. Set line 25/23 to a noncontinued value.

21. Test the first line of the screen now to see if it is

noncontinued. If it is a continuation line, branch back to

step 2 to again scroll a physical line off the top of the

screen. Thus, this scroll routine scrolls physical lines off

the top of the screen until an entire logical line has been

scrolled off the top.

22. If the first line is noncontinued, an entire logical line has

been scrolled off the top; increment D6, the pointer to the

current physical screen line, and also increment 02A5/F2,

the temporary screen link byte. Since C9 is not in

cremented, a test for it being not equal to D6 can be used

as an indication that the screen has been scrolled, although

173

Screen Routines

u

u

these two values being unequal is also an indication that , »

the cursor has moved to a different physical screen line 1—>
than it was on at entry to CHRIN.

23. Reset the keyboard scan column to $7F/$FB to scan for the i i

CTRL key. LJ
24. If the row value from the keyboard scan is $FB, indicating

that the CTRL key was pressed, execute a delay loop; t i

otherwise, reset the value for the keyboard scan to I—!
$7F/$F7 (the default value for detecting the STOP key)

and branch to step 26. This added delay loop if the CTRL

key is pressed makes it possible to use the CTRL key to

slow screen scrolling during listings, etc.

25. Reset the number of characters in the keyboard buffer, C6,

to 0.

26. Load X register with the current physical screen line

number, D6.

27. Restore the original contents of locations AF, AE, AD, and

AC from the stack and RTS.

Insert Blank Line

E965/E9EE-E9C7/EA55

Called by:

JSR at E802/E849 in Main Screen Editor; alternate entry at

E967/E9F0 by JMP at E6CA/E6FE in Advance Cursor and

Scroll or Insert Blank Lines.

This routine is called to insert a blank line on the screen

at the first noncontinued line following the cursor location,

and then to make the blank line a continued line. The follow

ing lines on the screen are moved down one line.

If the next noncontinued line on the screen is not reached

before line 25/23, the screen is scrolled and the bottom logical j j
line inserted is the blank continued line.

Operation: i /

1. LDX D6, the current physical screen line the cursor is on. *—-■

2. E967/E9F0: INX. If entering at E967/E9F0, the X register

holds either 0 if cursor is not on last column of a logical i j

line, or D6—1 if the cursor is on the last column of the ^J
logical line.

3. Using the X register as an index into the screen line link <, \

table, search downward in the table for the first line that is '—1

174 [J

H
Screen Routines

n

r—I noncontinued (the first line for which the high bit of the

' ' table entry is set to 1). Once one is found, fall through to

step 4.

r—» 4. Save the noncontinued line number from the X register in

' .! 02A5/F2 as the first noncontinued line past the current
location of the cursor.

n5. If this line number is less than or equal to 24/22, branch

to step 10.

6. If not, we have reached line 25/23, so JSR E8EA/E975 to

scroll the screen.

7. LDX 02A5/F2, thus reloading the X register with the value

of the first noncontinued line, which is 25/23 in this case.

8. DEX and DEC D6 to point to the previous physical screen

line (24/22).

9. JMP E6DA/E70E to make line 25/23 a continued line, and

RTS to exit from the routine.

10. If the first noncontinued line past the cursor location is

less than or equal to 24/22, continue here by first pushing

the contents of locations AC, AD, AE, and AF onto the

stack to preserve their current values.

11. LDX $19/$17 (25/23 decimal), to prepare to index the

screen from the bottom up.

12. DEX. Start with X = 24/22.

13. JSR E9F0/EA7E to set (Dl) to point to the start of this

screen line.

14. If X is less than or equal to 02A5/F2, the saved value of

the first noncontinued line, branch to step 18.

15. If X is greater than 02A5/F2, set AC, low byte of the

screen line starting address, from the screen line link table

at ECFO/EDFD. However, AC is set by LDA ECEF,X/

t—I EDFC,X. Thus, the value stored in AC is the low byte of

i . i the address of the previous screen line. Similarly, retrieve

the high byte of the address from the screen line link table,

r- starting at D8 rather than D9.

! J 16. JSR E9C8/EA56 to convert the value in the accumulator
into the proper high byte of the address in AD and move

r—^ the screen line pointed to by (AC) to the screen line

fI__ * pointed to by (Dl), thus moving the screen line physically
down one position on the screen. This direction of move-

nment is why the index of the screen for this move must

work from the bottom of the screen upwards.

H 175

u
Screen Routines

LJ

17. Branch to step 12 to handle the next screen line until all , ,

screen lines up to 02A5/F2 (but not including the line i—I
pointed to by 02A5/F2) have been moved down one phys

ical line. I ,

18. JSR E9FF/EA8D to clear the screen line pointed to by Lj
02A5/F2. Thus, a blank line has now been inserted into

the screen. , ,

19. Now change the screen line link table entries for the < I
screen lines past 02A5/F2 in a manner similar to that used

for resetting the screen line link table in steps 13-19 of the

Screen Scroll routine. The difference here is that the accu

mulator is loaded with DA,X and the Y register with D9,X

and updated value is DA,X. Thus, work upwards from the

bottom of the screen in resetting the link table.

20. LDX 02A5/F2, thus the X register now points to the

noncontinued blank line that has just been inserted.

21. JSR E6DA/E70E to make the line a continuation of the

current logical line.

22. VIC: Restore the original values of locations AF, AE, AD,

and AC from the stack and RTS.

64: JMP E958 to restore AF-AC from the stack and

RTS.

Move Screen Line

E9C8/EA56-E9DF/EA6D

Called by:

JSR at E90E/E998 in Scroll Screen, JSR at E9A1/EA27 in In

sert Blank Line.

The screen line pointed to by (AC) is moved to the screen

line pointed to by (Dl), along with the corresponding colors

from the original line. At entry to this routine, the accumulator [_j
contains a value from the screen line link table. This value is

converted to the high byte of a screen memory address by

ANDing with $03 and ORAing with the screen memory page. j j
Although the Kernal does not use any alternate entry

points, if you want to use this routine yourself for moving

screen lines, you can set (AC) to point to the line to be moved, j i
(Dl) to point to the destination, and then JSR E9CF/EA5D. If

you want to save an image of the screen memory in another

area of memory, you can set (AC) to point to the start of the j j
screen, (Dl) to point to the start of your save area, initialize

176 ' LJ

n
Screen Routines

(—| the X register to 0, and then call this alternate entry point.

1 After each execution of the routine, add $28/$16 (40/22 deci

mal) to (AC) and (Dl), and repeat this loop until the X register

|—| = 25/23; all 25/23 lines of the original screen will be saved

1 ■' in your temporary save area.

Operation:

[""] 1. The accumulator contains the value of the high byte of the
screen line link table (for example, $9E).

2. AND $03 to drop all but the two low bits. For example, $9E
AND $03 = $02.

3. ORA 0288, the high byte of the address of the start of

screen memory. For example, $02 ORA $10 = $12.

4. STA AD, thus setting the high byte of (AC), the pointer to

the address of the line to be moved.

5. JSR E9E0/EA6E to set (AE), the pointer to the color mem

ory address corresponding to the start of the source screen

line, and (F3), the pointer to the color memory location

corresponding to the destination screen line.

6. Using the X register as an index, and starting with an initial

value of $27/$15 (39/21 decimal), move all 40/22 bytes

from the original screen line to the destination screen line.

Also move the corresponding color memory nybbles from

origin to destination.

Set Color Memory Pointers for Moving Line

E9E0/EA6E-E9EF/EA7D

Called by:

JSR at E9CE/EA5D in Move Screen Line.

Entry requirements:

(1 (Dl) should point to the destination screen line. (AC) should
point to the original screen line.

*—*j Exit conditions:

'- ' (F3) points to color memory for the destination screen line.
(AE) points to color memory for the original screen line.

PI Operation:
1. JSR EA24/EAB2 to set (F3) to point to the color memory

location for (Dl).

!""| 2. Set (AE) to point to the color memory location for (AC). The
low byte of the address is the same. The high byte of the

n ' 177

Screen Routines

u

address is obtained by masking off all but the two lowest i i

bits then ORAing with $D8/$94, the value for the starting >—'
page of color memory.

Test for Character Set Switch LJ
EC44/ED21-EC77/ED5A

Called by: LJ
JMP at E7D2/E7FD in Main Screen Editor; alternate entry at

EC4F/ED30 by JMP at E879/E8C0 in Main Screen Editor.

When entered at EC44/ED21, this routine checks to see if

the SHIFT and Commodore keys are held down together. If

the key value of $0E (14) is found, it switches to the lowercase

character set, then exits from the screen editor routines. When

entered at EC4F, this routine checks for key values of $8E

(switch to uppercase character set), $08 (disable character set

switching), and $09 (enable character set switching). If one of

these values is found, that action is taken.

Operation:

1. Compare the value in the accumulator to $0E to test for

switching to lowercase. If the current key value is not $0E,

branch to step 3.

2. If the value $0E is found, reset bits in the VIC chip register

at DO18/9005 to display the lowercase character set, then

JMP E6A8/E6DC to exit from the screen editor routines

without displaying a character on the screen.

3. EC4F/ED30: Compare the key value in the accumulator to

$8E, the value for switching to uppercase. If the value $8E

is not found, branch to step 5.

4. If $8E is found, reset bits in the VIC chip register at

DO18/9005 to switch the display to the uppercase character i I

set. Then JMP E6A8/E6DC to exit from the screen editing '—'
routines without displaying a character.

5. Compare the key value in the accumulator with $08, the \ j

value to disable character set switching. If $08 is not found, '—'
branch to step 7.

6. If $08 is found, set the high bit of location 0291 to 1. i j

This will disable character set switching with the SHIFT- w

Commodore key combination, since the Keyboard Scan rou

tine will not act on this combination if the value in 0291 i i

> = 128. This does not, however, disable character set '—'
switching caused by the $0E and $8E key values.

178 LJ

n
Screen Routines

i

r—j 7. Compare the key value in the accumulator to $09, the value

' J to enable character set switching. If $09 is not found,

branch to a JMP E6A8/E6DC instruction to exit the screen

p*! editor without displaying anything on the screen.

1 J 8. If $09 is found, set the high bit of location 0291 to 0.
This will enable character set switching with the SHIFT-

Commodore key combination, since the Keyboard Scan rou

tine responds to this key combination if the value in 0291 <

128. Exit from the routine with a JMP E6A8/E6DC to leave

the screen editor routines without displaying anything on

the screen.

Return Number of Columns and Rows in Screen

E505-E509

Called by:

JMP from Kernal SCREEN vector at FFED.

This routine returns the number of rows and columns in

the display screen. The 64 screen has 40 columns and 25

rows; the VIC screen has 22 columns and 23 rows.

Operation:

1. LDX with the number of columns, $20/$16.

2. LDY with the number of rows, $19/$17.

3. RTS.

Read/Plot Cursor Location

E50A-E517

Called by:

JMP from Kernal PLOT vector at FFF0.

_- Depending on the value of the status register carry flag on

! I entry to the routine, either read the cursor location or set the
cursor location.

P"! Entry requirements:

1 Set the carry bit to read the cursor location and return row
and column values in the X and Y registers, respectively.

r~j Clear the carry bit to move the cursor to a specified location.

The X register should contain the line number for the desired

cursor position, and the Y register should hold the column

|—"j number for the desired cursor position.

179

Screen Routines

u

u

Exit conditions: ; ;

X will contain the line the cursor is on. Y will contain the col- '—I
umn the cursor is on. If the carry flag is clear on entry, the

cursor is positioned based on the X and Y values on exit. { i

Operation:

1. If carry is set, branch to step 6.

2. If the carry is clear, store the X register in D6, the current j |
physical screen line the cursor is on.

3. Store the Y register in D3, the current cursor position within

the logical screen line.

4. JSR E56C/E587 to reset the screen line link pointers.

5. LDX D6, the current physical screen line the cursor is on.

6. LDY D3, the cursor position within the logical screen line.

7. RTS.

u

u

u

180 : ' LJ

n

n

n

H

n

Chapter 8

Serial

I/O Routines

n

_ Serial I/O

Routines

P
1 J Serial I/O refers to the I/O (input/output) operations that oc

cur over the serial bus. The serial port connects the 64 and

VIC to the serial bus. Several I/O devices such as disk drives

and printers can be connected to the serial bus. Each I/O de

vice is an intelligent device that contains its own microprocessor

and ROM control program that allows the device to know

how to respond to the commands it receives over the serial

bus from the 64/VIC.

During serial I/O, data is transmitted one bit at a time

over the serial bus with the series of bits normally represent

ing a byte of data or a command. RS-232 communications also

occur in a bit by bit serial manner, but it uses separate lines

for transmitting and receiving, while serial I/O only uses one.

Two other lines on the serial bus, the serial clock line and the

serial attention line, are also used during serial I/O. Within

the 64 and VIC, the data and clock lines are both divided into

separate lines for incoming and outgoing signals: serial data

input, serial data output, serial clock input, and serial clock

output. Only a serial attention output line is connected from

64/VIC hardware to the serial bus attention line. The unused

serial attention input line is connected to pin 9 of the user

port. The serial bus has one additional signal line: serial ser

vice request input. However, the Kernal serial I/O routines do

r—< not make use of this line

i I Another difference between RS-232 and serial I/O is in

the number of bits that make up a discrete unit of trans-

,—> mission. With RS-232, a unit can be less than eight bits, while

I \ in serial I/O a unit is always eight bits. Each byte of serial
data is transmitted and received from the low bit to high bit

p-! direction. For example, ASCII A with a bit value of 0100 0001

i \ is transmitted in this sequence: 10000010.

The tables below show which CIA data port bits are used

n in serial I/O for the 64 and which VIA data port bits are used

!j in serial I/O for the VIC.

183

u
Serial I/O Routines

Commodore 64 Serial Port CIA Map J j

DDOO: CIA #2 Data Port A '—
Bit 3 Serial attention output

Bit 4 Serial clock output I !

Bit 5 Serial data output L—i
Bit 6 Serial clock input

Bit 7 Serial data input i ,

DCOD: CIA #1 Interrupt Control Register '—'
Bit 4 FLAG IRQ—serial service request input (not used by Kernal

serial I/O routines)

VIC-20 Serial Port VIA Map

91 IF: VIA #1 Data Port A (without handshaking)

Bit 0 Serial clock input

Bit 1 Serial data input

Bit 7 Serial attention output

9120: VIA #2 Data Port B

CB1 Serial service request input (not used by Kemal serial I/O

routines)

CB2 Serial data output

9121 VIA #2 Data Port A (with handshaking)

CA2 Serial clock output

The following table shows the serial I/O line functions as

viewed from the serial port.

Serial Port I/O Lines

Pin Function

1 Serial service request input

2 Ground

3 Serial attention input/output

4 Serial clock input/output

5 Serial data input/output i)

6 Reset I—I

The serial I/O lines are connected to all serial devices and

each serial device should have a unique address. The serial J {

I/O lines are active low (meaning that the lines remain at +5 —'

volts while inactive, and bus activity is indicated by pulling a

line to zero voltage). Any serial device (including the 64/VIC) I J

can bring the clock or data lines low. The serial attention line L^
is used to tell serial devices that a command is coming. No in

coming signals on the attention line of the serial port are rec- I j

ognized by the CIA/VIA chip—there's no serial attention c—'

184 LJ

n
Serial I/O Routines

_ input line connected to the CIA/VIA—so any attempt by an-

L J other serial bus device to bring the serial attention line low
will not be acknowledged by the 64/VIC. The 64/VIC is the

_ only device that controls the serial attention line. Thus, the

! I 64/VIC is the only controller of the serial bus. The TALK, LIS
TEN, UNTALK, and UNLISTEN commands are sent from the

_ 64/VIC to one particular serial device at a time. When the se-

) | rial attention line is brought low by the 64/VIC, the serial de
vices should then prepare for a command to arrive over the

serial bus. The first five bits (the low five bits) of the com

mand contain the address of the serial device to which this

command is directed, and the last three bits specify the actual

command to the serial device. With five bits, 32 possible serial

devices can be addressed. However, see the caution by Michael

G. Peltier in the 1541 Single Drive Floppy Disk Maintenance

Manual about the maximum number of devices (five) that

should be connected to the serial bus at any one time.

Serial I/O can be performed either through BASIC com

mands or by calling Kernal routines. The Kernal serial I/O

routines are described later in this chapter. No examples of

serial I/O programs are included here. See the chapter on

"Using Disk Storage" in Raeto Collin West's Programming the

Commodore 64 and Programming the VIC for some examples of

using machine language programs for serial disk I/O.

Serial I/O is not interrupt-driven like I/O to tape or to

an RS-232 device. Tape I/O is performed by the specific tape

IRQ interrupt handling routines, and RS-232 I/O occurs from

within the NMI interrupt handler. Instead of using interrupts

to determine when to send data out or to sample data in, the

Kernal serial I/O routines use interrupts (from timer B on CIA

#I/timer 1 on VIA #2) to detect timeouts during the attention-

f I response handshake when a device is not present, to know
when to perform the EOI handshake during serial receive, to

detect read timeouts, and to detect timeouts during the frame

f""| handshake at the end of each byte sent or received. So serial
I/O operates on the theory that everything is going to proceed

fmmtmt in a timely fashion, that the serial device is going to respond

; j within a prescribed time period, and the interrupts are used to

enforce these time limits. During these detections of timeouts

and timing of EOI, IRQ interrupts are disabled on the 64/VIC.

I Thus the timer B/timer 2 interrupt that occurs just sets the

interrupt flag register at DC0D/912D to indicate a timer

n '

u
Serial I/O Routines

u

B/timer 2 timeout has occurred. The serial routines that check (.

for timeouts check the interrupt flag in DC0D/912D rather than | j
letting the actual IRQ interrupt from the CIA/VIA occur. In

deed, the IRQ Interrupt Handler routine has no check for these . .

timer B/timer 2 interrupts. Thus, the use of interrupts is quite 1 j
different with serial I/O than it is with tape or RS-232 I/O.

Kernal Jump Table routines that specifically send or re-

ceive data to or from the serial bus (ACPTR, CHRIN, [_!
CHROUT, CIOUT) on a byte-by-byte basis, or LOAD/SAVE

routines that handle multiple byte transfers, are used to initi

ate and control serial I/O.

Although both the 64 and VIC Programmer's Reference

Guides state that bringing the serial service request (SRQ) line

low results in the 64/VIC servicing the device that brought

SRQ low, no Kernal routines check for this condition. Of

course, you could write your own routine to enable SRQ inter

rupts and then handle any that occurred.

Another interesting item in serial I/O is that CHRIN from

a serial device seems to function almost like ACPTR.

CHROUT and CIOUT are also very similar. One difference be

tween the routines is that a filename is only sent during the

OPEN sequence. Another difference between these routines is

that by using the OPEN sequence you are limited to secondary

addresses 0-15 and device numbers 4-30. By using the TALK,

TKSA, ACPTR or LISTEN, SECOND, CIOUT sequences, it

should be possible to use secondary addresses from 0-31 and

device numbers 0-30. The following tables compare some of

the serial input and output routine sequences available on the

64/VIC.

Serial Kernal Jump Table Input Routine Similarities

TALK-TKSA-ACPTR Sequence . ,

TALK: JSR ED09/EE14 to send $4* (TALK) to the serial device. LJ
TKSA: JSR EDC7/EECE to send a secondary address command and

do TALK-LISTEN turnaround. « ,

ACPTR: JMP EE13/EF19 to get the byte from the serial data input I I
line.

OPEN-CHKIN-CHRIN Sequence j |

OPEN: JSR ED0C/EE17 to command the current serial device to —*
LISTEN; JSR EDB9/EEC0 to send $Fz command, the secondary ad

dress for OPEN, and send the filename; JMP EDFE/EF04 to send an

UNLISTEN command to the serial device. '—

186 LJ

n
Serial I/O Routines

H

n

n

n

CHKIN: The X register contains the logical file number at entry. JSR

ED09/EE14 to send the TALK command to the serial device. JSR

EDC7/EECE to the send secondary address and do the

TALK-LISTEN turnaround. Store BA in 99, the current input device.

CHRIN: If location 99 contains a value greater than 3, this is a serial

device. If the device is not present, it returns $0D. JMP EE13/EF19

to get byte from the serial data input line.

Serial Kernal Jump Table Output Routine Similarities

LISTEN-SECOND-CIOUT Sequence

LISTEN: JMP ED0C/EE17 to send $2x (LISTEN) to the serial device.

SECOND: JMP EDB9/EEC0 to send a secondary address command
to the serial device.

CIOUT: JMP EDDD/EEE4 to send the buffered character on the se

rial data output line.

OPEN-CHKOUT-CHROUT Sequence

OPEN: JSR ED0C/EE17 to command the current serial device to

LISTEN; JSR EDB9/EEC0 to send $Fx command, the secondary ad

dress for OPEN, and send the filename; JMP EDFE/EF04 to send an

UNLISTEN command to the serial device.

CHKOUT: The X register contains the logical file number at entry.

JSR ED0C/EE17 to send the LISTEN command to the serial device.

JSR EDB9/EEC0 to send the secondary address. Store BA in 9A, the

current output device.

CHRIN: If 9A contains a value greater than 3, this is a serial device.

JMP EDDD/EEE4 to send the buffered character on the serial data

output line.

While the serial attention line is held low, bytes sent are

considered to be commands. The 64 and VIC use the com

mand values shown in the table below.

Serial Commands

$2* OOld dddd LISTEN

$3F 0011 1111 UNLISTEN all devices

$4* OlOd dddd TALK

$5F 0101 1111 UNTALK all devices

$6* Oils ssss Secondary address

$Ex 1110 aaaa Secondary address for CLOSE

$Fs 1111 aaaa Secondary address for OPEN

$F1 1111 0001 SAVE memory to serial device*

$F0 1111 0000 LOAD memory from serial device*

aaaa = Secondary address (0-15) for OPEN/CLOSE

J I s ssss = Secondary address (0-31)
d dddd = Device address (0-30) for LISTEN and TALK. Device 31 is pre

empted by use for UNLISTEN and UNTALK.

n 187

n

n

H

u
Serial I/O Routines

u

* As the 1541 disk drive manual states, channel numbers (secondary ad- , ,

dresses) 0 and 1 are reserved for operating system loads and saves, 2-14 are j j
available, and 15 is the error channel.

As the above table indicates, you cannot send UNTALK or ,

UNLISTEN commands just one serial device: these commands I
are sent to all serial devices. The secondary address can range

from 0-31 (decimal). Notice also that there are no specific . .

OPEN or CLOSE commands. Instead OPEN and CLOSE are LJ
combinations of commands. OPEN is a LISTEN (possible de

vices 4-30), followed by the $Fx OPEN secondary address, fol

lowed by the filename, followed by an UNLISTEN to all

devices. CLOSE is a LISTEN (possible devices 4-30), followed

by the $Ex CLOSE secondary address. Notice that OPEN for

any device in its final step automatically causes all serial de

vices to unlisten. It seems that only devices 0-30 are valid for

LISTEN and TALK, and 4-30 for OPEN, because device 31 is

preempted for indicating the UNLISTEN and UNTALK com

mands, and devices 0-3 are screened by the 64/VIC Kernal

routines for OPEN to indicate the keyboard, tape, screen, and

RS-232 devices. The TALK and LISTEN routines do not screen

for device numbers 0-3. Notice that you can use a secondary

address of 0-31 for TKSA and SECOND, while you are lim

ited to 0-15 for OPEN and CLOSE.

The Kernal serial routines also apparently prevent second

ary addresses >= 128 decimal, $80, from being sent for serial

OPEN, LOAD, or SAVE.

Where to Get More Information
Serial I/O is a topic that could easily fill an entire book. This

chapter discusses the Kernal serial I/O routines, but doesn't

get into specific details about disk drives and printers. The . ,

Commodore 1541 disk drive is extensively covered in Inside | j
Commodore DOS by Immers and Neufeld and in The Anatomy

of the 1541 Disk Drive from Abacus Software, which contains

an interesting program that allows spooling of files directly j [
from the disk to the printer while your 64/VIC is busy doing

other things. The program essentially commands the printer to .

listen and the disk to talk. The hardware aspects of the 1541 | j
are covered in the 2542 Single Drive Floppy Disk Maintenance

Manual by Michael G. Peltier. Also see the chapters about disk

I/O in Raeto Collin West's Programming the VIC and Program- | J
ming the Commodore 64, both from COMPUTE! Books. The

188 . LJ

n

n

n

n

n

H

n

n

n

n

Serial I/O Routines

Commodore VIC-1541 User's Manual and VIC-1525 User's

Manual are also occasionally useful. Also, the Commodore 64

Programmer's Reference Guide contains diagrams and timings of

serial I/O functions on pages 364-65.

The following table illustrates how the various values for

the serial attention, clock, and data lines may be set or read.

These values indicate the actual setting of the line to high or

low at the serial data port.

Reading and Setting the Serial Clock, Data, and Attention Lines

Line

Attention Out

Clock In

Data In

Clock Out

Data Out

Logic Value at

Serial Port

High = False = 1

Low = True = 0

High = False = 1

Low = True = 0

High = False = 1

Low = True = 0

High = False = 1

Low = True = 0

High = False = 1

Low = True = 0

Where Set or

Read: 64

DDOO bit 3 =

DDOO bit 3 =

DDOO bit 6 =

DDOO bit 6 =

DDOO bit 7 =

DDOO bit 7 =

DDOO bit 4 =

DDOO bit 4 =

DDOO bit 5 =

DDOO bit 5 =

VIC

0 911Fbit7 = 0

1 911Fbit7=l

1 911FbitO = 1

0 911Fbit0 = 0

1 911F bit 1 = 1

0 911F bit 1 = 0

0 CA2 control = 110

1 CA2 control =111

0 CB2 control =110

1 CB2 control =111

In examining the serial I/O routines, just looking at the

code without referring to other sources is not very enlighten

ing. Jim Butterfield's article "How the VIC/64 Serial Bus

Works" (COMPUTE!, July 1983, pages 178-84) helps make the

serial I/O logic comprehensible. Also, Raeto Collin West's

Programming the PET/CBM (like subsequent volumes on the

VIC and 64) clarifies the active low principle in which true is

low (0), while false is high (1).

The serial I/O routines perform various handshaking se

quences between the controller (the 64/VIC), the talker (either

the 64/VIC or a serial device), and the listeners (either the

64/VIC or serial devices). Whenever the controller needs to

send a command to a serial device, it brings the serial atten

tion line low. The actual transmission of a byte of data and the

handshaking sequences that occur for the data byte transfer

are discussed in this chapter; see the Send Serial Byte: Com

mand or Data routine and Figure 8-3. The EOI handshake se

quence is also covered there, and illustrated in Figure 8-2. The

EOI sequence when the 64/VIC is the listener is also covered

in the Receive Byte from Serial Device routine. The sequence

called the TALK-LISTEN turnaround that converts the 64/VIC

into a listener and a serial device into the talker is described in

Figure 8-4.

189

u
Serial I/O Routines

u

Bring Serial Bus Attention Line High . ,

EDBE/EEC5-EDC6/EECD U

Called by:

Falls through from EDBB/EEC2 in Send Secondary Address M
After LISTEN, JSR at EDD0/EED7 in Send Secondary Address

After TALK and Do TALK-LISTEN Turnaround, JSR at

EF03/EF09 in Send UNLISTEN Command, JSR at F281/F33A jj
in Open Serial Output Channel.

This routine brings the serial bus attention line high. The

serial attention output line from the CIA/VIA chip passes

through an inverter before reaching the serial port. Thus, set

ting the CIA/VIA pin low (0) brings the serial attention line

high at the serial port.

No separate routine exists for the converse function of

bringing the serial attention output line low. However, see the

code at EDF3/EEF9 in Send UNTALK Command for a sample

of how to bring the serial attention output line low.

Operation:

64: AND the contents of the CIA register at DD00 with $F7

and store the result back into DD00, thus turning off bit 3 in

CIA #2 data port A. Bit 3 is the serial attention output line

from the CIA chip.

VIC: AND the contents of the VIA register at 91 IF with

$7F and store the result back into 91 IF, thus turning off bit 7

in VIA #1 data port A. Bit 7 is the serial attention output line

from the VIA chip.

Bring Serial Bus Data Line High

EE97/E4A0-EE9F/E4A8

Called by: [_
JSRs at ED24/EE2E and ED3A/EE43 in Do Attention Hand

shake with Serial Device, JSRs at ED41/EE4A and

ED7A/EE88 in Send Serial Byte: Command or Data, JSR at |_J
EE2A/EF26 in Receive Byte from Serial Device, JMP at

EE10/EF16 in Send UNLISTEN Command.

This routine brings the serial bus data line high. The serial | j
data output line from the CIA/VIA chip passes through an in

verter before reaching the serial port. Thus setting the

CIA/VIA pin low (0) brings the serial data line high at the se- j |
rial port.

190 . LJ

n
Serial I/O Routines

n "
—- Operation:

I! 1. 64 :LDA DDOO (CIA #2 data port A). VIC: LDA 912C (VIA
#2 peripheral handshaking control register).

rn 2. AND $DF (binary 1101 1111) to turn off bit 5.

I j 3. 64: STA DDOO to set bit 5 of the port, serial data out, to 0.
VIC: STA 912C to hold the CB2 handshaking line low. Data

p- port bit 5 of CIA #1 of the 64 or the CB2 line of VIA #2 of

) J the VIC then passes through an inverter to reach the serial
port data output line.

Bring Serial Bus Data Line Low

EEA0/E4A9-EEA8/E4B1

Called by:

JSR at ED75/EE83 in Send Serial Byte: Command or Data, JSR

at EDCD/EED4 in Send Secondary Address After TALK and

Do TALK-LISTEN Turnaround, JSRs at EE47/EF45 and

EE76/EF75 in Receive Byte from Serial Device.

This routine brings the serial bus data line low. The serial

data output line from the CIA/VIA chip passes through an in

verter before reaching the serial port. Thus setting the

CIA/VIA pin high (1) brings the serial data line low at the se

rial port.

Operation:

1. 64: LDA DDOO (CIA #2 data port A). VIC: LDA 912C (VIA

#2 peripheral handshaking control register).

2. ORA $20 (binary 0010 0000) to turn on bit 5.

3. 64: STA DDOO to set bit 5 of the port, serial data out, to 1.

VIC: STA 912C to hold the CB2 handshaking line high.

— Bring Serial Bus Clock Line High

1 J EE85/EF84-EE8D/EF8C

Called by:

j] JSR at ED2B/EE35 in Do Attention Handshake with Serial De
vice, JSRs at ED49/EE53 and ED7D/EE8B in Send Serial Byte:

Command or Data, JSR at EDD3/EEDA in Send Secondary

H Address After TALK and Do TALK-LISTEN Turnaround, JSR
at EE0D/EF13 in Send UNLISTEN Command, JSR at EE18/

EF1E in Receive Byte from Serial Device, JSR at FE2E in Sys-

j| tern Reset (VIC).

n 191

Serial I/O Routines

u

This routine brings the serial bus clock line high. The se

rial clock output line from the CIA/VIA chip passes through j (
an inverter before reaching the serial port. Thus, setting the

CIA/VIA pin low (0) brings the serial clock line high at the se

rial port. I I

Operation:

1. 64: LDA DD00 (CIA #2 data port A). VIC: LDA 912C (VIA i i

#2 peripheral handshaking control register). '—'
2. 64: AND $EF (binary 1110 1111) to turn off bit 4. VIC:

AND $FD (binary 1111 1101) to turn off bit 1.

3. 64: STA DD00 to set bit 4 of the port, serial clock out, to 0.

VIC: STA 912C to hold the CA2 handshaking line low.

Bring Serial Bus Clock Line Low

EE8E/EF8D-EE96/EF95

Called by:

JSR at ED37/EE40 in Do Attention Handshake with Serial De

vice, JSR at ED5F/EE6C in Send Serial Byte: Command or

Data, JSR at EDF0/EEF6 in Send UNTALK Command, JSR at

FF36 in System Reset (VIC).

This routine brings the serial bus clock line low. The serial

clock output line from the CIA/VIA chip passes through an

inverter before reaching the serial port. Thus, setting the

CIA/VIA pin high (1) brings the serial clock line low at the se

rial port.

Operation:

1. 64: LDA DD00 (CIA #2 data port A). VIC: LDA 912C (VIA

#2 peripheral handshaking control register).

2. 64: ORA $10 (binary 0001 0000) to turn on bit 4. VIC: ORA

$02 (binary 0000 0010) to turn on bit 1. II

3. 64: STA DD00 to set bit 4 of the port, serial clock out, to 1. 1—1
VIC: STA 912C to hold the CA2 handshaking line high.

Read Serial Data In and Serial Clock In ^
EEA9/E4B2-EEB2/E4BB

Called by: LJ
JSRs at ED44/EE4D, ED50/EE5A, ED55/EE60, ED5A/EE66,

and EDA6/EEAC in Send Serial Byte: Command or Data, JSR , ,

at EDD6/EEDD in Send Secondary Address After TALK and 1 1

192 [J

H
Serial I/O Routines

[~| Do TALK-LISTEN Turnaround, JSRs at EE1B/EF21 and
EE37/EF35 in Receive Byte from Serial Device.

On the 64, this routine first forces CIA #2 data port A,

P"] DDOO, to stabilize, then loads the accumulator from DDOO and
does an ASL. This ASL leaves the bit from the serial data in

put line in the carry flag of the status register and the bit from

"*"""! the serial clock input line in the high bit of the accumulator.
On the VIC, this routine first forces VIA #1 data port A,

91 IF, to stabilize, then loads the accumulator from 91 IF and

does a LSR. This LSR leaves the bit from the serial clock input

line in the carry flag of the status register and the bit from the

serial data input line in the low bit of the accumulator.

The serial data and clock input lines from the serial port

to the CIA/VIA chips do not pass through any inverters.

Thus, reading a value of 1 indicates the corresponding serial

line is high, and reading a value of 0 indicates the correspond

ing serial line is low.

Operation:

1. Wait for DD00/911F to stabilize by loading its value into

the accumulator and comparing this value to the current

value in DD00/911F until the two are the same.

2. 64: ASL to shift the bit for the serial data input line into the

carry bit and the bit for the serial clock input line into the

high bit of the accumulator.

VIC: LSR to shift the bit for the serial data input line

into the low bit of the accumulator and the bit for the serial

clock input line into the carry bit.

Send LISTEN Command to Device

,-, ED0C/EE17-ED10/EE1B

'■■■' Called by:
JMP from Kernal LISTEN vector at FFB1, JSR at F648/F6E0 in

I I Send Secondary Address for CLOSE, JSR at F27A/F333 in

Open Serial Output Channel, JSR at F3E3/F49F in Send

OPEN, LOAD, or SAVE Command to Device, JSR at F60D/

["I F6A5 in Save to Serial Device.

This routine prepares the accumulator, which contains the

device number, to send a LISTEN command to the device.

P11 The device number should be 0-30. RS-232 interrupts are dis-

1 abled, then this routine falls through to the Send Serial Con
trol Character routine.

1 ' 193

Serial I/O Routines

LJ

U

Operation: I I

1. The accumulator, which contains the current device number

in the low five bits, is ORed with $20 (binary 0010 0000) to

set bits 5-7 to 001 to indicate a LISTEN command. j j

2. JSR F0A4/F160 to disable RS-232 interrupts. L-J
3. Fall through to ED11/EE1C , which is the routine to send a

serial command. II

Do Attention Handshake with Serial Device

ED11/EE1C-ED3F/EE48

Called by:

Fall through from ED10/EE1B after Send TALK Command to

Device or Send LISTEN Command to Device, JSR at EE00/

EF06 in Send UNTALK Command or Send UNLISTEN Com

mand; alternate entry at ED36/EE40 by JSR at EDBB/EEC2 in

Send Secondary Address After LISTEN, JSR at EDC9/EED0 in

Send Secondary Address After TALK and Do TALK-LISTEN

Turnaround.

If the serial deferred flag indicates that a character is buff

ered to be sent on the serial bus, the end-or-identify (EOI)

handshake and the buffered character are sent on the bus

before the command (control character) is sent. Also, the serial

deferred flag and the EOI flag are then turned off.

The command in the accumulator at entry, which had

been temporarily saved on the stack, is stored in 95, the serial

buffered character. This buffered character is used later in the

Send Serial Byte routine when it is sent as a command with

the serial attention line held low.

Next, the attention request sequence in Figure 8-1 is per

formed by the controller (the 64/VIC) to inform the serial de- , .

vices that a command is coming. I 1
If the routine is entered at the alternate point,

ED36/EE40, from the routines to send a secondary address \ \

after TALK or LISTEN, only steps 3, 4, and 5 in Figure 8-1 are LJ
performed, since the serial attention line should still be low.

Once step 5 in Figure 8-1 is finished, this routine falls i i

through to the Send Serial Byte routine at ED40/EE49 where <—I
the Send Serial Byte routine expects to find that a serial device

has responded to the attention request by bringing the serial i i

data line low. If it doesn't find this condition, it assumes the '—»
device is not present.

j (
194 LJ

n

H

n

n

H

n

n

n

n

n

Serial I/O Routines

Figure 8-1. Attention Request from 64/VIC

2
High-

Attention

Low

High

I

3
I

Clock

Low

High

Data

Low
1000 [isec.

1. Allow serial data line to go high.

2. Bring serial attention line low.

3. Bring serial clock line low.

4. Allow serial data line to go high.

5. Delay one millisecond. Listening devices must bring the data line low

within this period to be recognized as present on the bus.

One interesting question about the routine on the VIC is

why the delay of one millisecond is done with IRQ interrupts

enabled (the SEI is not until EE49). Although it probably is

unlikely an interrupt would occur between the one millisecond

delay and the following instruction, it is possible and could

force a false device-not-present condition. Indeed, on the 64

this oversight is corrected by inserting the SEI before the one

millisecond delay and also before bringing the clock line low

and allowing the data out to go high.

If this routine is entered from falling through from the se

rial send TALK command or the serial send LISTEN com

mand, the TALK or LISTEN command is placed in the serial

buffered character location to be sent on the serial data output

195

u
Serial I/O Routines

u

line. Bringing the serial attention line low causes all devices on I i

the serial bus to listen for a command. Valid device addresses '—■
for the command are 0-30. The listening devices on the serial

bus can check the first five bits of the command to see if they j j

are the device to which this command is being sent. If the de- '—'
vice number is 31, all serial devices are being addressed for an

UNLISTEN or UNTALK command. The serial device that rec- i i

ognizes its address then reads the command from the three '—'
high bits of the command.

For the alternate entry points for sending a secondary ad

dress after LISTEN or TALK, the serial device should still be

listening under attention and should read a secondary address

of 0-31 from the lower five bits and read the secondary ad

dress command identifier in the three high bits.

Operation:

1. If the serial output deferred flag, 94, has its high bit off,

branch to step 5.

2. If the serial output deferred flag, 94, has its high bit on,

the Send Serial Byte Deferred routine at EDDD/EEE4 has

been executed to set this flag. The flag indicates a charac

ter is waiting to be sent. If the serial device is currently

listening, the flag will be set. Set the high bit of the end-

or-identify (EOI) flag, A3, to 1.

3. JSR ED40/EE49 to send to the serial bus the EOI hand

shake and the buffered character.

4. Clear the high bits of 94 and A3 to indicate no character is

awaiting transmission and the EOI handshake is not to be

done.

5. Store the value from the accumulator on entry to this rou

tine in 95, the serial buffered character.

6. 64: Disable IRQ interrupts. M

7. JSR EE97/E4A0 to bring the 64/VIC serial data output

line high. This will allow the serial bus data line to go

high. [J

8. The BNE at ED29/EE33 is an unconditional branch be-

cause the previous JSR EE97/E4A0 ANDs the accumulator

with $DF (binary 1101 1111). Thus, a value of $3F (0011 M

1111) could never remain in the accumulator upon return

from the JSR, and hence the CMP $3F is never equal to

the accumulator. Both the 64 and the VIC have this appar- j [
ent bug. It is unclear what condition Commodore was try-

196 LJ

n
Serial I/O Routines

H ■

r-j ing to check for with this comparison for $3F, but if a

1 ' match would have been found, a JSR EE85/EF84 to allow
the serial clock line to go high would have been executed.

rn 9. Set the 64/VIC serial attention output line low to bring

! ' the serial bus attention line low. On the 64, store a 1 in bit
3 of DDOO, the serial attention output line. On the VIC,

[—| store 1 in bit 7 of 91 IF, the serial attention output line.

'---' Remember that the lines from the CIA/VIA chip go
through an inverter before reaching the serial port.

10. ED36/EE40: Disable IRQ interrupts on the 64 only. JSR

EE8E/EF8D to bring the serial clock output line low.

11. JSR EE97/E4A0 to bring the 64/VIC serial data output

line high, allowing the serial bus data line to go high.

12. JSR EEB3/EF96 to delay one millisecond (1000 micro

seconds). On the VIC, VIA #2 timer A is used to generate

an interrupt after counting one millisecond. On the 64, a

delay loop of instructions that takes one millisecond to

execute is used.

13. Fall through to the Send Serial Byte: Command or Data

routine at ED40/EE49.

Send Serial Byte: Command or Data

ED40/EE49-EDAC/EEB3

Called by:

JSR at ED19/EE24 and fall through from ED3D/EE46 in Do

Attention Handshake with Serial Device, JSR at EDE7/EEEE

in Send Serial Byte Deferred.

This routine is called to send either a command or a data

byte on the serial data output line. The data output line is

from bit 5 of DDOO CIA #2 data port A on the 64, and from

ft the CB2 handshaking line of VIA #2 port B on the VIC.
The 64/VIC first makes sure that it is not holding the

data line low. The routine then tests the data line, and if it is

ll not low, the addressed serial device is not responding and is
considered not present.

If the data line is low, the device has responded and a

PH byte can be sent to it. If the EOI flag, A3, has its high bit on,
indicating this will be the last data byte to be sent, the EOI

handshake shown in Figure 8-2 is performed before sending

the buffered character.

197

Serial I/O Routines

Figure 8-2. EOI Handshake Sequence

High

Attention

Low

Clock

Low

Data

High

Low

200 jxsec

(min.)

1. The talker allows the clock line to go high when ready to send.

2. The listener allows the data line to go high when ready to receive.

3. If the talker has not brought the clock line low within 200 usec, the lis

tener assumes this is an EOI handshake. To confirm this, the listener

brings the data line low again for 60 usec, then brings it high again.

4. To confirm the EOI handshake, the talker must not bring the clock line

low within 60 usec.

u

u

LJ

U

u

Rather than the talker bringing the clock line low as it

does when it is ready to transmit normal bytes of data, the

talker just loops waiting for the data line to go high. The data

line goes high when the listener is ready to receive data. The

listener can hold off indefinitely allowing the data line to go

high until it is finally ready to receive data. The listener must

monitor the clock line, and if the talker does not bring the

clock line low within 200 microseconds, it is notifying the lis

tener that the EOI sequence is to be performed and that the

next byte is the last byte of the file. The listener confirms the

EOI sequence by bringing the data line low for at least 80

microseconds (for an external listener) or 60 microseconds (if

the 64/VIC is the listener), then allowing the data line to go

high again. This routine for the 64/VIC watches for this se

quence of data line low, data line high to complete the EOI

198

u

u

u

u

u

n

n

n

n

n

Serial I/O Routines

handshake. Then the final data byte is transmitted in normal

fashion, as shown in Figure 8-3.

Figure 8-3. Serial Byte Transmission and Handshake

High

Attention

Clock

Data

Low

High

Low ■

High

Low

repeat for bits 2-6

1000 nused

(max.)

Bit 0 Bit 1 Bit 7

1. The talker allows the clock line to go high when ready to send.

2. The listener allows the data line to go high when ready to receive. If the

talker does not respond within 200 usec, perform EOI handshake (see Fig

ure 8-2).

3. The talker brings the clock line low to signal the start of transmission.

4. The talker sets the data line low for a bit value of 0 or high for bit value

of 1.

5. The talker then brings the clock line high to alert the listener that a valid

bit is present on the data line. The listener must read the data line before

the talker pulls the clock line low again to set the next bit value.

6. The talker brings the clock line low and the data line high between bits.

7. After all eight data bits have been sent, the listener must bring the data

line low within 1000 usec to assure the talker that the byte was success

fully received.

The talker brings the clock line low after the listener has

signaled it is ready to receive data by bringing the data line

high. The talker brings the clock line low within 200 micro

seconds if the EOI handshake is not to be done. If the EOI

199

u
Serial I/O Routines

handshake has been sent, the talker brings the clock line low

within 60 microseconds after the listener has brought the data '—

line high to complete the EOI handshake. When the talker

brings the clock line low, either for EOI or non-EOI, the talker i i

is ready to send the actual bits for this byte of data. I—I
The routine then sets the serial byte data transfer counter,

A5, to 8. The byte is sent one bit at a time from low to high . « j

The data output line is set high for a bit value of 1 and low for I—1
a bit value of 0. Each bit has a set up time of around 70

microseconds during which time the clock line is held low by

the talker. Once the talker is ready to send the bit, it releases

the clock line to high to signal to the listener that the listener

should sample the data line for the value of this bit. The lis

tener typically samples the data line within 20 microseconds.

However, if the listener is the 64, the 6567 VIC-II chip's cycle

stealing for video matrix access or sprite access requires that a

minimum of 60 microseconds be allowed for the 64 to sample

the data line. Between each bit the data line should be high

and the clock line held low. If the serial data input line is low

between bits, this routine branches to the read/write timeout

status routine.

For each bit that is sent, the serial data transfer counter,

A5, is decremented. It continues sending bits until all eight

bits have been sent or unless a read/write timeout occurs.

Once the A5 counter reaches zero, indicating all eight bits

have been sent, the computer sets CIA #1 timer B/VIA #2

timer 2 to $0400. Then it loops, waiting for the serial data in

put line to go low. The serial data input line is brought low by

the listener to indicate it has accepted the byte. If the serial

data input line does not go low within this countdown of

$0400 (1000 microseconds), the timer B/timer 2 interrupt that . >

occurs indicates a read/write timeout called a frame error for I—I
this byte. If the serial data input line goes low within 1000

microseconds, the listener has accepted the data. In this accep- i ,

tance case, the computer will enable IRQ interrupts and RTS. I—I
During this routine IRQ interrupts are disabled. When

IRQ interrupts are disabled, any IRQ interrupt that occurs will { ,

not be serviced by the IRQ interrupt handler. However, by i—I
checking the flag of the interrupt status register, you can still

detect if a timer B/timer 2 interrupt occurred. By this method, , ,

even though IRQ interrupts are disabled, interrupts can still I—I
occur and be serviced.

200 LJ

n
Serial I/O Routines

Operation:

1. Disable IRQ interrupts.

2. JSR EE97/E4A0 to bring the serial data output line high.

This will allow the serial bus data line to go high.

3. JSR EEA9/E4B2 to sample the status of the serial data in

put line. If the serial data input line has not been brought

low by the listener, BCS to EDAD/EEB4 to set the status

word, 90, to indicate a device not present error condition.

4. JSR EE85/EF84 to bring the serial clock output line high.

5. If A3, the EOI flag, has its high bit off, branch to step 8. If

the high bit is on, perform the EOI handshake (see Figure

8-2) as this byte to be sent will be the last data byte for a

file.

6. Loop until the serial data input line is brought high by the

listener.

7. Loop until the serial data input line is brought low by the

listener.

8. Loop until the serial data input line is brought high by the

listener.

9. JSR EE8E/EF8D to set the serial clock output line low.

10. Set the serial byte data transfer counter, A5, to $08.

11. Force DD00 (CIA #2 data port A)/911F (VIA #1 data port

A) to stabilize.

12. If the serial data input line is low (0) between data bits,

branch to EDB0/EEB7 to set read/write timeout status.

13. ROR 95, the serial buffered character, rotating the low bit

into the carry.

14. If the carry is clear after the ROR, JSR EEA0/E4A9 to send

a 0 by holding the serial data output line low.

15. If the carry is set after the ROR, JSR EE97/E4A0 to send a

1 by holding the serial data output line high.

16. JSR EE85/EF84 to set the serial clock output line high.

Then delay for four NOP instructions (about eight micro-

seconds). When you combine the time required for these

NOP instructions with the time for the following LDA

DD00/912C, AND $DF, ORA $10/$02, STA DD00/912C,

you see that the serial clock output line is held high for

about 20 cycles. These 20 cycles (20 microseconds) give

the listener time to sample the data line.

17. Use the instructions just mentioned in step 16 to bring the

serial clock output line low and the serial data output line

high.

n 201

Serial I/O Routines

18. Decrement the serial byte transfer counter, A5. ■ I /

19. If all the bits in this byte are not yet sent (if A5 is not 0), 1—j
branch to step 11 to check for a timeout between bits (and

to send the next bit if no timeout occurred). | ,

20. After all eight bits have been sent, set CIA #1 timer B/VIA LJ

#2 timer 2 to $0400 to set a delay of approximately 1

millisecond or 1000 microseconds. For the VIC, storing the . ,

$04 in 9129, the high byte of the latch value for timer 2, i_J
will load the counter from the latch values, clear the VIA

interrupt register, and start the timer countdown. However,

for the 64 you must separately order timer B to load its

counter from the latches and start counting by storing $19

into DC0F, the control register for timer B. Also, it is nec

essary to LDA DC0D to clear any pending timer B

interrupts.

21. If a timer B/timer 2 interrupt occurs (determined by look

ing at DC0D/912D, the interrupt flag register), branch to

EDB0/EEB7, the Set Status Word routine, to indicate a

frame error condition.

22. If the serial data input line stays high, loop to step 21.

23. If the listener brings the serial data line low before the

timer B/timer 2 interrupt occurs (i.e., within one milli

second), then it is acknowledging that the byte has been

received, so CLI and RTS.

Send OPEN, LOAD, or SAVE Command to Device

F3D5/F495-F408/F4C6

Called by:

JSR at F37F/F43F in OPEN Execution, JSR at F4C8/F56A in

Load or Verify from Serial Device, JSR at F605/F69D Save to

Serial Device. j j
For OPEN, LOAD, or SAVE operations to a serial device,

the current device is commanded to listen, then the secondary

address and the filename are sent on the serial bus. Finally, all |_j
devices on the serial bus are commanded to unlisten.

The secondary address must be less than 128 (decimal)

and the filename must contain at least one character. j j
Before sending the secondary address, this routine ORs

the secondary address with $F0. Thus, only secondary ad

dresses of 0-15 are valid for OPEN, LOAD, or SAVE. A |_J
secondary address of 0 indicates a LOAD operation, and a

202 l_j

Serial I/O Routines

j—| secondary address of 1 specifies a SAVE. Secondary addresses

' (2-15 are available for OPEN.

r__^ Entry requirements:

; j B9 should hold the current secondary address. B7 should hold

the number of characters in filename. BA should hold the cur-

rent device number. (BB) should point to the current filename.

j ; (These values can be established using the Kernal SETLFS and

SETNAM routines.)

Operation:

1. If B9, the current secondary address, >= $80 (128 deci

mal), branch to step 12. Only secondary addresses < $80

(128) are acceptable for OPEN, LOAD, or SAVE.

2. If there are no characters in the filename, branch to step

12. B7 contains the number of characters in the filename.

3. 64: Store 0 in 90 to clear the I/O status indicator.

4. LDA BA, the current device number.

5. JSR ED0C/EE17 to send a LISTEN command to the cur

rent device. The serial attention output line is brought low

to send the LISTEN command, and it will remain low

upon return.

6. LDA B9, the secondary address, then ORA $F0 to prepare

to send the secondary address for OPEN, SAVE, or LOAD.

7. JSR EDB9/EEC0 to send the secondary address to the de

vice. The attention line is still low from step 5 when the

subroutine is called. However, the serial attention output

line will be set high upon return. Thus, the following file

name is sent as regular bytes of data, not as a command.

(This is contrary to the information about how filenames

are sent as commands in the article "How the VIC/64 Se-

|—I rial Bus Works" by Jim Butterfield, COMPUTE! 1983.)

' I 8. Test bit 7 of 90, the I/O status word. If bit 7 is set to 1,
the preceding subroutine detected that the specified device

r—i is not present. In this case, pull the current return address

! i from the stack so that the JMP to F707/F78A to display
the DEVICE NOT PRESENT error message will RTS to the

i—| routine that called for the OPEN, SAVE, or LOAD.

I I 9. If the device is present, see if there are any characters in
the filename. If not, branch to step 11.

203

Serial I/O Routines

LJ

10. If the filename contains characters, go through a loop that < i

gets the next character in the filename and outputs this I—>
character on the serial bus until all characters in the file

name have been transmitted. JSR EDDD/EEE4 to send , >

each character as a byte of data. i 5
11. JMP F654/JSR EF04. At F654 (on the 64), do a JSR EDFE.

These instructions on the 64 and the VIC command all de- ^ ,

vices on the serial bus to unlisten. l_J
12. CLC and RTS.

Send Secondary Address After LISTEN

EDB9/EEC0-EDBD/EEC4

Called by:

JMP from Kernal SECOND vector at FF93, JSR at F286/F33F

Open Serial Output Channel, JSR at F3EA/F4A6 in Send

OPEN, LOAD, or SAVE Command to Device, JSR at F612/

F6AA in Save to Serial Device, JSR at F651/F6E9 in Send

Secondary Address for CLOSE.

This routine stores the secondary address passed in the

accumulator in 95, the serial buffered character, and does a

JSR to ED36/EE40 to send the secondary address to the serial

bus as a command. Finally, it falls through to EDBE/EEC5 to

bring the serial attention output line high, the setting for

transmitting normal data bytes.

Entry requirements:

The accumulator should hold the secondary address to be

sent.

Operation:

1. STA 95, saving the secondary address in the serial buffered

character location. j j

2. JSR ED36/EE40 to bring the serial clock output line low to

indicate the talker is ready to send another byte, delay one

millisecond, and send the character in 95 to the serial data [j
output line. The serial attention output line should be set

low when calling the subroutine, so that the character in 95,

the secondary address, will be considered to be a serial j j
command.

3. Fall through to the routine at EDBE/EEC5 to bring the se

rial attention output line high. j j

204 . [J

Serial I/O Routines

Send Serial Byte Deferred

EDDD/EEE4-EDEE/EEF5

Called by:

JMP from Kernal CIOUT vector at FFA8, JSR at F3FE/F4BA in

Send OPEN, LOAD, or SAVE Command to Device, JSRs at

F61C/F6B4, F621/F6B9, and F62B/F6C3 in Save to Serial De-

vice, JMP at F1D8/F288 in Determine Output Device.

This routine to send a character to the serial bus main

tains a one-byte buffer, 95. The character to be sent is stored

in this buffer.

This routine first tests a flag, 94, which indicates whether

the buffer, 95, already contains a character. If the buffer con

tains a character, first it sends the buffered character in 95 to

the serial bus. Then it stores the current byte in the buffer, 95.

If the buffer is empty at entry, it simply stores the character to

be sent in the buffer, 95.

Operation:

1. See if the high bit of the serial deferred flag, 94, is set. If so,

branch to step 3.

2. If no character is in the buffer, set the high bit of 94 by set

ting the carry and rotating the carry into bit 7 (ROR 94).

Then branch to step 6.

3. Push the byte to be buffered onto the stack.

4. JSR ED40/EE49 to send the byte in 95, the serial deferred

character, over the serial data output line.

5. Pull the byte to be buffered from the stack.

6. Store the byte in 95, the serial deferred character.

7. CLC and RTS.

Set Status Word

EDAD/EEB4-EDB8/EEBF

Called by:

BCS at ED47/EE51 in Send Serial Byte: Command or Data;

alternate entry at EDB0/EEB7 by BCC at ED6F/EE7D and

BNE at EDA4/EEAA in Send Serial Byte: Command or Data;

alternate entry at EDB2/EEB9 by JMP at EE44/EF42 Receive

Byte from Serial Device.

Set 90, the I/O status word, to indicate an error condition.

The condition indicated depends on the entry point:

205

u
Serial I/O Routines

LJ

EDA0/EEB4: device not present. j

EDB0/EEB7: read or write timeout. '—•
EDB2/EEB9: read timeout.

Clear the carry, enable IRQ interrupts, bring the serial I j
attention output line high, the serial clock line output line

high, and the serial data output line low.

Operation: I—>
1. EDAD/EEB4: LDA $80 and fall through to step 3 by using

a dummy BIT instruction.

2. EDB0/EEB7: LDA $03.

3. EDB2/EEB9: JSR FE1C/FE6A to set the I/O status word

with ORA 90, STA 90.

4. Enable IRQ interrupts and clear the carry.

5. Branch to EE0E/EF09 to bring the serial attention output

line high, enter a short delay loop, bring the serial clock

output line high, and bring the serial data output line low.

Delay One Millisecond

EEB3/EF96-EEBA/EFA2

Called by:

JSR at ED3D/EE46 in Do Attention Handshake with Serial

Device.

For the 64, a series of instructions is executed that takes

approximately one millisecond.

For the VIC, timer 2 of VIA #2, the timer count, is initial

ized to $0400. From this initial value, timer 2 takes approxi

mately one millisecond to countdown to zero and generate an

interrupt.

Operation: I »

For the 64: LJ
1. TXA (2 cycles).

2. LDX $B8 (2 cycles). i j

3. DEX (2 cycles X 184 times = 368 cycles). LJ
4. BNE to step 3 (3 cycles X 184 times = 552 cycles).

5. TAX (2 cycles). i (

6. RTS (6 cycles). LJ

The JSR to call this routine also takes 6 cycles. Thus, for

the 64 the total number of cycles is 6 + 2 + 2 + 368 + 552 I]

+ 2 + 6 = 938 cycles, which when divided by the 64's clock

206 u

Serial I/O Routines

I _)

j""] frequency of 1,022,370 cycles per second is 917 microseconds,
or approximately one millisecond.

,—, For the VIC:

I I l.LDA$04.

2. STA 9129, VIA #2 high byte of timer 2 counter. When this

I—j STA is done, the timer 2 interrupt flag for VIA #2 is cleared,

) 1 the low latch of the counter is transferred to the low
counter, and the counter begins decrementing at the system

clock rate.

3. LDA 912D, VIA #2 interrupt flag register.

4. AND $20.

5. BEQ to step 3 as long as the timer 2 flag has not been set.

6. RTS.

A timer 2 value of $0400 counts down at the system clock

rate. $0400 = 1024 decimal, and 1024 cycles divided by

1,022,370 cycles per second is 1001 microseconds, approxi

mately 1 millisecond.

Save to Serial Device

F5FA/F692-F641/F6D9

Called by:

Falls through from Determine Device for SAVE routine at

F5ED/F685.

To save to a serial device, a filename must be specified. If

no filename is given, jump to the error routine to display the

MISSING FILE NAME error message and exit.

Send the LISTEN command to the current serial device,

send the secondary address command of $61 to indicate a

rn SAVE operation. Then, if the device is present, send all the

j (characters in the filename. If the device is not present, exit

with the DEVICE NOT PRESENT error message.

Set the pointer to the current byte to save, (AC), from the

P"! starting address of the memory to be saved. This starting ad
dress is then sent over the serial bus, first AC and then AD.

The address in (AC) is incremented after each byte is sent to

["""I the serial device. When the address in these bytes equals the
address in (AE), the pointer to the end of the memory being

saved + 1, the save is complete.

P"J When the save is complete, command all serial devices to
unlisten and fall through to the routine at F642/F6DA to send

I \
207

u
Serial I/O Routines

\ I

the secondary address for a CLOSE command to the serial j j
device.

The actual operation for saving each byte is to LDA with

the next byte from the save area, using (AC) as a pointer, and j j
then send this byte over the serial bus. The routine also

checks to see if the keyboard STOP key has been pressed, and

if it has, the save is halted and the routine falls through to the | I
routine to send the CLOSE command to the device. If the ' *
STOP key has not been pressed, (AC), the pointer to the save

area, is incremented. If the high byte of the pointer is $00,

save is halted and the routine falls through to the routine to

send the CLOSE command. Thus, you can't wrap your save

from FFFF to 0000.

Entry requirements:

B7 should hold the number of characters in filename. BA

should hold the current device number. (Cl) should point to

start of the save area. (AE) should point to the end of the save

area + 1.

Operation:

1. LDA $61 and STA B9 to set the secondary address to $61

indicating a SAVE.

2. If the filename does not contain any characters (if B7 con

tains a 0), JMP F710/F793 to display the MISSING FILE

NAME error message, set the accumulator to 8, set the

carry bit to 1, and exit.

3. JSR F3D5/F495 to send the LISTEN command, send the

secondary address of $61, send all the characters in the

filename, and then send the UNLISTEN command.

4. JSR F68F/F728 to display SAVING and the filename.

5. JSR ED0C/EE17 to send the LISTEN command to the cur- 1 I

rent device, BA. Then JSR EDB9/EEC0 to send the (—
secondary address of $61 to the device.

6. JSR FB8E/FBD2 to set the pointer to the start of the save M

area, (AC), from (Cl). (Cl) was set from two bytes in page

zero during the Jump to SAVE Vector routine (see chapter 5).

7. Send the low byte of the starting address of the save area,) (

AC, to the serial bus by JSR EDDD/EEE4. ^
8. Send the high byte of the starting address of the save area,

AD, to the serial bus by JSR EDDD/EEE4. J (

9. JSR FCD1/FD11 to compare (AC) to (AE) to see if (AC), L"J
the pointer to the save area, is greater than or equal to the

pointer to (AE), the end of the save area +1. If

208 LJ

Serial I/O Routines

H ■

,—» 10. If (AC) >= (AE), branch to step 16.

! I 11. LDA (AC),Y to get the next byte from the save area. The Y
register is zero.

,—, 12. Send this byte onto the serial bus with JSR EDDD/EEE4.

) i 13. JSR FFE1 (the Kernal STOP vector) to see if the STOP key
on the keyboard has been pressed. If it has, fall through to

p~j the routine at F633/F6CB to send the CLOSE command to

[(the serial device, load the accumulator with 0, set carry,
and exit.

14. If the STOP key has not been pressed, branch to

F63A/F6D2 to skip the CLOSE command, then increment

the pointer to the save area, (AC), by JSR FCDB/FD1B.

15. If this pointer's high byte, AD, is 0, fall through to step 16;

otherwise, branch to step 9.

16. JSR EDFE/EF04 to send the UNLISTEN command to all

serial devices.

17. Fall through to the routine at F642/F6DA to send the LIS

TEN command to this device, send the secondary address

command of $E1 to indicate a CLOSE for a SAVE. Then

command all serial devices to unlisten.

Stop Load or Save

F633/F6CB-F639/F6D1

Called by:

JMP at F4FE/F595 in Load or Verify from Serial Device, falls

through from F632/F6CA in Save to Serial Device.

This routine is executed if the keyboard STOP key is de

tected during a load or save for a serial device.

JSR F642/F6DA to do the following: send the LISTEN

command to this device, send secondary address command for

P| CLOSE ($E0 for LOAD, $E1 for SAVE), send the UNLISTEN

command to all devices, clear the carry, and RTS.

After the JSR returns, load the accumulator with 0, set the

P| carry, and exit.

Operation:

r-, 1. JSR F642/F6DA to send the CLOSE command for SAVE or

I I LOAD ($E1 or $E0 respectively), send UNLISTEN, CLC,
and RTS.

^ 2. LDA $00.

I (3. SEC.

4. RTS.

H 209

LJ
Serial I/O Routines

LJ

Send Secondary Address for CLOSE

F642/F6DA-F658/F6F0 U

Called by:

Falls through from F641/F6D9 in Save to Serial Device, JSR at j (

F2EE/F3AE in Close Logical File for Serial Device, JSR at LJ
F52B/F5C2 in Load or Verify from Serial Device, JSR at

F633/F6CB in Stop Load or Save; alternate entry at F6F4 by] |

JMP at F406 in Send OPEN, LOAD, or SAVE Command to v—j

Device (64).

If the current secondary address < $80 (128 decimal),

send the LISTEN command to the serial device, send the

secondary address for a CLOSE command of $Ex (x varies

depending on what called this routine), send the UNLISTEN

command to all serial devices, clear carry, and RTS.

If the current secondary address >= $80 (128 decimal),

just CLC and RTS.

Operation:

1. If the current secondary address >= $80, branch to step 6.

2. JSR ED0C/EE17 to send the LISTEN command to the cur

rent serial device.

3. LDA B9, the current secondary address. Then AND $EF

(1110 1111 binary) to clear bit 4 and ORA $E0 to set bits

5-7 to 1. Thus, the command for CLOSE is produced—$E*,

where x is the secondary address option. The x will be 0 for

a CLOSE following LOAD, 1 for a CLOSE following SAVE,

and 2-15 for a CLOSE following OPEN.

4. JSR EDB9/EEC0 to send the secondary address command to

the current device.

5. JSR EDFE/EF04 to command all serial devices to unlisten.

6. CLC and RTS.

LJ
Load or Verify from Serial Device

F4B8/F55C-F532/F5C9

Called by: Lj
Falls through from F4B7/F55B in Determine Device for LOAD.

When loading from a serial device, you must specify a) I

filename. *—'
The routine displays SEARCHING FOR and the filename.

It sends the LISTEN command to the current serial device, a | f

secondary address of $60 indicating a LOAD, and the file- (—'

210 U

Serial I/O Routines

H

nname. It then sends the UNLISTEN command to all serial

devices.

Next, it sends the TALK command to the current serial de-

<__> vice and the current secondary address of $60, and then re-

I i ceives a byte from the serial bus. Sending the TALK secondary
address command of $60 performs the TALK-LISTEN turn-

p-^ around sequence where the serial device becomes the talker

I \ and the 64/VIC becomes the listener. If the I/O status word

indicates the byte was not returned fast enough, a read

timeout has occurred and FILE NOT FOUND is displayed.

The first two bytes received from the serial device are

used as the pointer to the starting address of the load/verify

area in (AE). However, if you set the secondary address to 0

and call the load routine, the X and Y registers at entry to load

are used to set the pointer to the start of the load/verify area

in (AE). After initializing (AE), the routine displays the mes

sage for LOADING or VERIFYING.

Next, the following loop is executed until the status word,

90, indicates EOI (end of file):

• Turn off the status word read error bit.

• See if the STOP key is down. If so, send the LISTEN com

mand to the serial device, the CLOSE command secondary

address of $E0, and the UNLISTEN command, then exit.

• Receive a byte from the serial device; bytes being received

now are actual data values loaded into memory (or verified

against memory).

• If the current operation is a VERIFY, compare the byte re

ceived against the byte pointed to by (AE). If no match, set

the verify mismatch bit in the status word.

• If the current operation is a LOAD, store the byte received in

r—| memory location pointed to by (AE).

'-- ' • Increment the pointer to the load/verify area, (AE).

Once the EOI status is received from the serial device, the

["""[load/verify is considered complete and (AE) points to the end

of the load area + 1. Any bytes sent by the device after it has

indicated EOI are discarded by the 64/VIC. For EOI, the

f"] 64/VIC sends the UNTALK command to all serial devices,
which thus forces the serial device to send its last buffered

character. After UNTALK, the LISTEN command is sent to the

r™| serial device, followed by the CLOSE secondary address of

$E0, and the UNLISTEN command to all serial devices.

u
Serial I/O Routines

The final location of the pointer (AE), indicating the end , ,

of the load area + 1, is loaded into X from AE and into Y I 1
from AF, and the routine exits.

Entry requirements: J f

B7 should hold the number of characters in filename. (C3)

should point to the starting address for LOAD. 93, the

LOAD/VERIFY) flag, should indicate the operation: 0 for) |

LOAD or 1 for VERIFY. 90, I/O status word, should have a (—}

value of 0.

Operation:

1. If there are no characters in the filename, JMP F710/F793

to display the MISSING FILE NAME message, set the

carry, set the accumulator to 8, and exit.

2. 64: LDX with the current secondary address, B9. VIC: JSR

to a patch area at E4BC to LDX B9.

3. JSR F5AF/JMP F647 (from the patch area at E4BE on the

VIC) to display SEARCHING FOR and the filename.

Set the current secondary address, B9, to $60.

4. JSR F3D5/F495 to send the LISTEN command to the cur

rent device, the secondary address of $60, the characters

of the filename, and to send the UNLISTEN command to

all serial devices.

5. JSR ED09/EE14 to command the current device, BA, to

talk.

6. JSR EDC7/EECE to send the current secondary address in

B9 of $60 and to do the TALK-LISTEN turnaround. Now

the serial device is the talker, and the 64/VIC (and pos

sibly other serial devices) is the listener.

7. JSR EE13/EF19 to receive a byte from the serial bus, with

the byte received returned in the accumulator.

8. STA AE, since the first byte received should be the low j j
byte of the pointer to the end of the load area + 1.

9. If the I/O status word, 90, indicates a read timeout,

branch and JMP F704/F787 to display the FILE NOT LJ
FOUND error message, set accumulator to 4, set carry, and

exit.

10. JSR EE13/EF19 to receive a byte from the serial bus, with j_j
the byte received returned in the accumulator .

11. STA AF, since the second byte received should be the high

byte of the pointer to the end of the load area + 1. j (

212 jj

Serial I/O Routines

n ■

nl2. 64: See if the secondary address specified when the load

was called is 0. This secondary address was saved in the X

register at entry to this routine. If it is 0, the starting ad-

r«) dress for the load is taken from the setting of the X and Y

!..] registers at the time load was called. If the secondary ad
dress is 0, the X and Y values (found now in C3 and C4)

r, are stored in AE and AF. Thus, a secondary address of 0

\ for a load allows a relocatable load. After this, JSR F5D2 to

display the LOADING or VERIFYING message.

VIC: A patch is used for this test of the secondary

address. JSR E4C1 to test the secondary address in the

same manner as the 64 did, and then JMP F66A to display

the LOADING or VERIFYING message.

13. Clear the I/O status word read error bit.

14. JSR FFE1 (the Kernal STOP vector) to test for the STOP

key. If the STOP key is detected, JSR F633/F6CB to send a

LISTEN command to this serial device, send the CLOSE

secondary address command of $E0, send the UNLISTEN

command to all serial devices, LDA $00, SEC, and exit.

15. JSR EE13/EF19 to receive a byte from the serial device.

16. If the status word, 90, indicates read timeout, branch to

step 13. Thus, a read timeout for the individual bytes of

data does not abort the entire load or verify.

17. If this is a LOAD operation, branch to step 19.

18. If this is a VERIFY operation, see if the last byte received

from the serial device is the same as the byte pointed to by

(AE). If not, set the verify mismatch bit in the I/O status

word with LDA $10, JSR FE1C/FE6A. Then use a dummy

BIT instruction to skip to step 20.

19. For a LOAD operation, store the byte received from the se-

_ rial device at the current location pointed to by (AE).

M 20. Increment (AE), the pointer to the load/verify area.
21. See if the I/O status word indicates EOI. If not, branch to

_ step 13.

R 22. If EOI has been detected, JSR EDEF/EEF6 to send the
UNTALK command to all serial devices, JSR F642/F6DA

^ to send the LISTEN command to this serial device, send

I 1 the CLOSE secondary address command of $E0, and send

the UNLISTEN command to all serial devices.

23. Clear the carry, LDX from AE, LDY from AF, and RTS.

n

213

u
Serial I/O Routines

u

Send TALK Command to Device I .

ED09/EE14-ED10/EE1B Li

Called by:

JMP from Kernal TALK vector at FFB4, JSR at F238/F2F1 in [J
Open Serial Input Channel, JSR at F4CD/F56F in Load or

Verify from Serial Device.

The accumulator, which contains the device number, is | I
ORed with $40, turning on bit 6 to indicate a TALK command.

RS-232 interrupts are disabled. The routine then falls through

to ED11/EE1C, the Do Attention Handshake with Serial De

vice routine, to send the serial TALK command.

Operation:

1. ORA $40. Use a BIT instruction to fall through to step 2,

bypassing the Send LISTEN Command to Device routine's

entry point at ED0C/EE17.

2. JSR F0A4/F160 to disable RS-232 interrupts.

3. Fall through to the routine to send a serial command at

ED11/EE1C.

Send Secondary Address After TALK and Do

TALK-LISTEN Turnaround

EDC7/EECE-EDDC/EEE3

Called by:

JMP from Kernal TKSA vector at FF96JSR at F245/F2FE in

Open Serial Input Channel, JSR at F4D2/F574 Load or Verify

from Serial Device; alternate entry at EDCC/EED3 by JSR at

F23F/F2F8 in Open Serial Input Channel.

For the normal entry point, store the secondary address in

the serial buffered character location at 95 and send the buffered

character as a command (with the serial attention line held j [
low) on the serial bus. From this point on, the normal and

alternate entry points perform the same functions.

Disable IRQ interrupts. Then perform the TALK-LISTEN j_J
turnaround sequence shown in Figure 8-4.

Once this turnaround is complete, the device is now the

talker and the 64/VIC is the listener. The talker is holding the [_]
clock low and allowing the data to go high. The listener

(64/VIC) is holding the data line low.

After these operations, the talker brings the clock line [_J
high to indicate it is ready to send data, just as the 64/VIC

214 LJ

H

n

n

n

n

n

n

Serial I/O Routines

Figure 8-4. TALK-LISTEN Turnaround Sequence

2

Attention

Clock

Data

High

i

Low

High

Low

High

Low
1

1. After the desired device has been commanded to talk, the 64/VIC brings

the data output line low. This causes no immediate change because the

device will already be holding the data line low.

2. The 64/VIC brings the attention line high.

3. The 64/VIC brings the clock line high and waits for the clock line to go

low again.

4. To acknowledge the turnaround, the serial device must bring the clock

line low and release the data line to go high. The data line will remain

low, however, because the 64/VIC is holding its data output line low.

5. The serial device is now the talker and the 64/VIC is now the listener.

Transmission of bytes will proceed as shown in Figure 8-3.

does when it is the talker and is ready to send data.

The talker (the serial device) then sends the data to the

listener (the 64/VIC and any other listening serial devices) as

shown in Figure 8-3.

The routine enables IRQ interrupts and then exits.

If the secondary address >= $80 (128 decimal) when

opening a serial channel, the secondary address is not sent.

Entry requirements:

The accumulator should contain the secondary address.

Operation:

1. STA (the secondary address) in 95, the serial buffered

character.

215

u
Serial I/O Routines

LJ
2. JSR ED36/EE40 to send the secondary address as a com

mand on the serial data output line. | I
3. EDCC/EED3: Disable IRQ interrupts.

4. JSR EEA0/E4A9 to hold the serial data output line low.

5. JSR EDBE/EEC5 to bring the serial attention output line J_]
high.

6. JSR EE85/EF84 to bring the serial clock output line high.

7. JSR EEA9/E4B2 to read the serial clock input line. Loop un- J \
til the serial clock input line is brought low by the serial

device.

8. Enable IRQ interrupts and RTS.

Receive Byte from Serial Device

EE13/EF19-EE84/EF83

Called by:

JMP from Kernal ACPTR vector at FFA5, JSRs at F4D5/F577,

F4E0/F582, and F501/F598 in Load or Verify from Serial De

vice, JSR at F1B5/F26C in Get Character from Serial Input

Channel.

In this routine, the serial device is the talker, while the

64/VIC is the listener.

IRQ interrupts are disabled, and the serial byte data trans

fer counter is initialized to 0.

The serial clock output line is brought high. Next, loop

until the serial clock input line goes high, and then set the se

rial data output line low.

Set a timer interrupt for 250 microseconds. If the serial

clock input line does not go low within the 250 microseconds,

perform the EOI handshake, which consists of bringing the se

rial data output line low, the serial clock output line high, then

the serial data output line high.

Set the EOI status bit in the I/O status word, 90. Check j_J
again to see if the serial clock input line goes low within 250

microseconds. If it doesn't, set the read timeout status. If it

does, the listener is now ready to receive data. j j
If the serial clock input line goes low before the first 250-

microsecond delay has completed, the EOI sequence is not

executed; the 64/VIC is ready to receive data. [_j
For receiving the byte, loop until the serial clock input

line goes low and receive eight bits from the serial data input

line. As the data comes in, a series of shifts builds the serial jf
byte received into location A4. Between bits, the serial clock
output line goes low.

216 ' LJ

H
Serial I/O Routines

H '

n—I After all eight bits have been received, bring the serial

' -s data output line low. If the EOI status is true, send the
UNLISTEN command to all serial devices. Exit with the accu-

n mulator containing the byte received, the carry clear, and IRQ

1 -J interrupts enabled.
Although IRQ interrupts are disabled during this routine,

p-| the timer interrupt can occur and still be detected by looking

' 3 at the interrupt flag register in the CIA/VIA.

Operation:

1. Disable IRQ interrupts.

2. Set the serial byte data transfer counter, A5, to 0.

3. JSR EE85/EF84 to set the serial clock output line high.

This allows the serial bus clock line to go high.

4. JSR EEA9/E4B2 to read the serial clock input line. Loop

until the serial clock input line is brought high by the se

rial device, indicating it is ready to send.

5. 64: Set DC07, the high byte of CIA #1 timer B, to $01,

preparing it for a timer count of $0100. This will generate

an interrupt in about 250 microseconds. Store $19 in DC0F

to load the timer B counter from the latched value and to

start timing.

VIC: JSR E4A0 to bring the serial data output line

high indicating to the serial device that the VIC is ready to

receive data.

6. 64: JSR EE97 to bring the serial data output line high in

dicating to the serial device that the 64 is ready to receive

data. Clear any pending interrupts in CIA #1 with LDA

DC0D.

VIC: Set 9129, the high byte of VIA #2 timer 2, to

$01 to specify a timer count of $0100. This will generate

J| an interrupt in about 250 microseconds.
7. See if a timer B/timer 2 interrupt occurs by examining the

flag bit for the timer in the interrupt flag register, DC0D/

[~j 912D. If an interrupt has occurred, branch to step 10.
8. If no timer B/timer 2 interrupt occurs, JSR EEA9/E4B2 to

read the serial clock input line. If the serial clock input line

P"j is still high, branch to step 7. If the serial clock input line
is low, continue with step 9.

9. When the serial clock input line goes low before a timer

P""! B/timer 2 interrupt, the serial device is indicating that the
EOI handshake should not be performed for the byte to

follow, so branch to step 16.
r—i

) i 217

Serial I/O Routines

u

U

10. When a timer B/timer 2 interrupt occurs before the serial j j

clock input line is brought low, the serial device is as- <—'
sumed to be calling for an EOI handshake. If A5, the

transfer counter, is 0, branch to step 12. i i

11. If A5 is nonzero, this is the second time an interrupt has I—'
occurred while the clock line is high. Thus, the serial de

vice has not responded to the EOI handshake from the j |

64/VIC. Set the read timeout status with LDA $02, JMP ■—)

EDB2/EEB9, which also exits from this routine.

12. JSR EEA0/E4A9 to bring the serial data output line low for

the EOI handshake.

13. 64: JSR EE85 to allow the serial clock output line to remain

high.

VIC: JSR EFOC. At EFOC first enter a delay loop for

about 52 microseconds, then JSR.EF84 to allow the serial

clock output line to remain high and JMP E4A0 to bring

the serial data output line high.

Both the 64 and VIC acknowledge the EOI by bring

ing the data output line low for at least 60 microseconds

and then releasing the data line to high. The VIC performs

the data low/data high operations in steps 12 and 13,

while the 64 performs the data low/data high operations

in steps 13 and 6.

14. Set the EOI status bit in 90, the I/O status word, with

LDA $40 and JSR FE1C/FE6A. Increment A5, which will

now be used to indicate that if another timer B/timer 2

interrupt occurs, it is a timeout and not an EOI.

15. Loop to step 5/step 6.

16. When the serial has indicated that it is ready to send the

byte, set A5, the serial byte data transfer counter, to 8.

17. Read and stabilize the data port for the serial data input j

line, DD00 (CIA #2 port A)/91FF (VIA #1 port A). L/
18. 64: ASL to move the value of the serial clock input line to

the high bit of the accumulator and the value of the serial » i

data input line into the carry. LJ
VIC: LSR to shift the value of the serial clock input

line into the carry and the value of the serial data input , »

line into the low bit of the accumulator. LJ
19. Loop to step 17 until the serial clock input line goes high.

It is brought high by the serial device (the talker in this v .

case) when the device has completed the setup of the data Lj

line and valid data exists. The valid data that exists when

218 LJ

H
Serial I/O Routines

P"| the clock line is brought high has already been read by the

64/VICinstep 17.

20. VIC: LSR to shift the serial data input line value into the

pi carry for the following ROR.

21. ROR A4 to move the serial bit just received (now in the

carry bit) into the high bit of A4, the serial byte being

p| built.

22. Again read and stabilize DD00/91 IF.

23. 64: ASL to move the serial clock input line value to the

high bit of the accumulator.

VIC: LSR to shift the serial clock input line value into

the carry.

24. Loop to step 22 until the serial clock input line goes low.

When it does, the data is no longer considered valid as the

talker is doing the setup for the next bit.

25. Decrement A5, the serial byte transfer counter.

26. If A5 is not 0 after the decrement, branch to step 17 to

read the next bit of data.

27. If A5 is now 0, all eight bits of serial input have been re

ceived. JSR EEA0/E4A9 to bring the serial data output line

low to indicate to the talker that the 64/VIC has accepted

this byte.

28. 64: Check 90, the I/O status word to see if the EOI status

bit is set. VIC: Check 90 to see if any I/O status bits are

set. If the status is not flagged, branch to step 30.

29. If EOI (64) or any I/O status word condition (VIC) is in

dicated, JSR EE06/EF06 to first execute a delay loop of

approximately 50-60 microseconds, JSR EE85/EF84 to

bring the serial clock output line high, and then JMP

EE97/E4A0 to bring the serial data output line high.

HI 30. LDA A4 to exit with the accumulator containing the serial

byte that was built from the eight bits of serial data

received.

p-j 31. Enable IRQ interrupts, CLC, and RTS.

i J

Open Serial Input Channel

F237/F2F0-F24F/F308

Called by:

BCS at F221/F2DA in CHKIN Execution.

The current device (with a device number >= 4) is com

manded to talk.

219

Serial I/O Routines

u

If the current secondary address < $80 (128 decimal), the J I

secondary address is sent on the serial bus. However, a

secondary address that >= $80 (128 decimal) is not sent.

If the serial device is not present, the DEVICE NOT j I

PRESENT message is displayed. If the serial device is present,

the current device number, BA, is stored as the current input

device number, 99. | |

Entry requirements:

The accumulator should hold the device number. B9 should

hold the current secondary address.

Operation:

1. TAX to preserve the accumulator value in X, then JSR

ED09/EE14 to send a TALK command to the serial device

whose device number was passed in the accumulator .

2. If the secondary address >= $80, no secondary address is

sent. Instead, just JSR EDCC/EED3 to do the TALK-LISTEN

turnaround, then JMP to step 4.

3. If the current secondary address < $80, JSR EDC7/EECE to

send the secondary address and do the TALK-LISTEN turn

around. Return with the attention line set high.

4. TXA to retrieve the device number value saved in step 1,

then check bit 7 of 90, the I/O status word, which indicates

the device-not-present condition. If the specified serial de

vice is not present, JMP F707/F78A to exit with the DE

VICE NOT PRESENT error message, set the carry, and set

accumulator to 5.

5. If the serial device is present, BPL to F233/F2EC to set the

input device number, 99, from the current device number in

the accumulator.

6. CLCandRTS. j i

Get Character from Serial Input Channel

F1AD/F264-F1B7/F26E J

Called by:

BCS at F173/F22A in Determine Input Device. ,

If any I/O status errors occur, load the accumulator with ^J
$0D (ASCII carriage return) and exit from the routine.

If no I/O status errors occur, JMP EE13/EF19 to receive a

byte from the serial device. Exit with the byte in the j [
accumulator.

220 u

H
Serial I/O Routines

f*n Operation:

'-—* 1. If any I/O status errors are indicated in 90, LDA $0D, CLC,
and RTS.

r—i 2. If no I/O status errors are indicated, JMP EE13/EF19 to re-

'-—! ceive a byte from the current serial device. Exit with the
carry clear and with the accumulator containing the byte

pi received.

Open Serial Output Channel

F279/F332-F290/F349

Called by:

BCS at F266/F31F in CHKOUT Execution.

This routine opens an output channel for a serial device

for subsequent CHROUTs to the serial device. It sends a LIS

TEN command to the serial device and, if a secondary address

< 128 (decimal) was specified, the secondary address is also

sent.

Entry requirements:

The accumulator should contain the device number. B9 should

hold the current secondary address.

Operation:

1. TAX to preserve the accumulator value in X, then JSR

ED0C/EE17 to send the LISTEN command to the current

serial device.

2. If the secondary address, B9, < $80 (decimal 128), branch to

step 4.

3. If the secondary address >= $80, JSR EDBE/EEC5 to set

the serial attention output line high. Branch to step 5.

4. JSR EDB9/EEC0 to send the secondary address in B9 to the

current serial device. Return with the attention line set high.

5. TXA to retrieve the device number saved in step 1, then test

_ the I/O status register, 90. If the high bit of 90 is 1, JMP

M F707/F78A to display the DEVICE NOT PRESENT error

message, set the accumulator to 5, set the carry, and exit.

, . 6. If the device is present, BPL to F275/F32E to set 9A, the

!] current output device number, from the device number
value in the accumulator.

7. CLC and RTS.

n

221

u
Serial I/O Routines

u

Send UNTALK Command \ \

EDEF/EEF6-EE12/EF18 ^

Called by:

JMP from Kernal UNTALK vector at FFAB, JSR at F340/F400 LJ
in Clear Serial Channels and Reset Default Devices, JSR at

F528/F5BF in Load or Verify from Serial Device.

This routine performs the sequence necessary to send the] j
UNTALK command to all serial devices.

Operation:

1. JSR EE8E/EF8D to set the serial clock output line low.

2. Bring the serial attention output line low by storing a 1 in

bit 3 of DDOO/bit 7 of 91 IF.

3. LDA $5F, the command for all devices to untalk. Use a

dummy BIT instruction to fall through to EE00/EF06, step 2

of the following routine, Send UNLISTEN Command.

Send UNLISTEN Command

EDFE/EF04-EE12/EF18

Called by:

JMP from Kernal UNLSN vector at FFAE, JSR at F339/F3F9 in

Clear Serial Channels and Reset Default Devices, JSR at F4C2

in Send OPEN, LOAD, or SAVE Command to Device (VIC),

JSRs at F63F/F6D7 and F654/F6EC in Save to Serial Device;

alternate entry at EE03/EF09 by BCC at EDB7/EEBE in Set

Status Word; alternate entry at EE06/EF0C by JSRs at EF48

(VIC) and EE7D/EF7C in Receive Byte from Serial Device.

This routine performs the sequences necessary to send the

UNLISTEN command to all serial devices.

1. LDA $3F, the command for all devices to unlisten. j I

2. JSR ED11/EE1C to do the attention handshake and send '—'
the command byte in the accumulator over the serial data

output line. | j

3. EE03/EF09: JSR EDBE/EEC5 to bring the serial attention ^
output line high.

4. EE06/EF0C: TXA to preserve the X register value in the | J

accumulator, then LDX with $0A/$0B and DEX until it is *—J

zero to introduce a delay of approximately 50-60 micro

seconds. After the delay, TAX to restore the X register value. j j

5. JSR EE85/EF84 to bring the serial clock output line high. ^

222 L-J

/ J

Serial I/O Routines

n

r-l 6. JMP EE97/E4A0 to bring the serial data output line high

I .J and exit the routine.

pi Close Logical File for Serial Device

1 F2EE/F3AE-F2F0/F3B0

Called by:

M BCS at F2A5/F353 in Determine Device for CLOSE.

If the current secondary address < $80 (128 decimal),

send the CLOSE command to the serial device and command

all serial devices to unlisten.

If the current secondary address >= $80 (128 decimal),

do not send the CLOSE or UNLISTEN commands.

Fall through to the Common Exit for Close Logical File

Routines routine at F2F1/F3B1 (see chapter 5). The common

CLOSE routine decrements the number of open files and re

moves entries for this file from the secondary address, logical

file, and device number tables.

Operation:

1. JSR F642/F6DA. If the secondary address < $80 (128 deci

mal), send the LISTEN command to the current device, con

vert the secondary address to $Ex to indicate the CLOSE

command and send this secondary address. Then send the

UNLISTEN command to all serial devices.

2. Fall through to the common close logical file routine at

F2F1/F3B1.

Set Serial Timeout Value

FE21/FE6F-FE24/FE72

_ Called by:

I I JMP from Kernal SETTMO vector at FFA2.
The IEEE timeout flag, 0285, is set to the value passed in

r_^i the accumulator. However, although the purpose of this

; j Kernal routine has been described as setting a flag for timeout

conditions on the IEEE bus, nowhere in BASIC or the Kernal

is this flag read.

Operation:

1. STA 0285, the timeout flag.

2. RTS.

223

n

I I

Chapter 9

n

RS-232
I/O Routines

n

n
RS-232 I/O

n Routines

fi The 64 and VIC provide Kernal routines to handle RS-232 in

put and output (I/O). RS-232 is a recommended standard of

the Electronics Industries Association that applies to serial bi

nary data communication (of any character length and code)

between a data terminal (DTE) and data communications

equipment (DCE). The 64/VIC is the DTE. A modem is the

most common DCE, although other devices such as printers

can be used as the DCE. (The complete designation of the cur

rent standard is RS-232-C, where the C indicates the third

revision.)

The 64/VIC does not follow all of the recommendations

in the standard. For example, not all of the RS-232 pins are

implemented on the 64/VIC, and none of the RS-232 timing

signals or secondary data signals are used. The RS-232 signal

lines are accessed through the 64/VIC user port, rather than

through a standard RS-232 connector. Also, the voltage levels

for signals from the 64/VIC are TTL levels (0 to 5 volts) rather

than the true RS-232 voltage range in which a transition past

—3 volts indicates a logical 1 and a transition past +3 volts

indicates a logical 0. RS-232 interface cartridges are available

that convert the 64/VIC TTL voltage signals to true RS-232

voltages. Such interfaces are not necessary to use Com

modore's own modems with the 64 or VIC, or to use any of

the third-party modems designed specifically for the 64 or

[""I VIC. However, almost all other standard RS-232 equipment
will require the interface to work with the 64/VIC.

For a copy of the EIA RS-232-C standard, contact the

f""l Electronic Industries Association, Engineering Department,
2001 Eye Street, N.W., Washington, D.C. 20006, or phone

them at (202) 457-4966.

P] Table 9-1 shows the RS-232 signal lines provided by the

64/VIC.

n

227

RS-232 I/O Routines

EIA Circuit

Designation

AA

AB

BA

BB

BB

CA

CB

CC

CD

CE

CF

RS-232

Pin

1

7

2

3

3

4

5

6

20

22

8

64/VIC User

Port Pin

A

N

M

B

C

D

K

L

E

F

H

J

CIA #2/VIA

#lPin

GND

GND

PA2/CB2

FLAG/CB1

PBO

PB1

PB6

PB7

PB2

PB3

PB4

PB5

To/From

64/VIC

N/A

N/A

From

To

To

From

To

To

From

To

To

Line

Modes

X3

X3

X3

X3

X3

X3*

X

X

X3*

X

Function

Protective Ground

Signal Ground

Transmitted Data

Received Data

Received Data

Request to Send

Clear to Send

Data Set Ready

Data Terminal Ready

Ring Indicator

Received Line Signal

Unassigned

u

u

Table 9-1. RS-232 Circuits in the 64 and VIC ,

u

U

* Indicates held high during 3-line handshaking.

For a complete definition of what each of these RS-232

interchange circuits does, see the EIA standard. For a more

thorough introduction to RS-232, see RS-232 Made Easy by

Martin Seyer.

The 64/VIC Kernal routines have two built-in modes of

RS-232 communication: 3-line and x-line. The 3-line mode

only uses the Transmitted Data line and the two Received

Data lines with the only handshaking being that the Request

to Send and Data Terminal Ready lines are held high. The x-

line mode performs a handshaking sequence between the

64/VIC and the modem. Other modes are possible, such as

using the Ring Indicator, but these are left to the user to

implement.

X-line handshaking has potential problems on the VIC

due to two checks of the wrong VIA register for testing the

status of the Data Set Ready and Clear to Send lines. At F512

in the routine to open an RS-232 device, bit 7 of 9120 is

checked to detect Data Set Ready missing, but 9110 should

have been checked instead. It so happens that bit 7 of 9120 | |
(used for keyboard column scan) will always be 1, and thus

will always show the Data Set Ready signal as being present.

Also, at EFF4 when preparing to transmit the next byte, again i J
9120 is checked, this time for Data Set Ready and Clear to

Send. This incorrect check could explain the note in the VIC

Programmer's Reference Guide about Clear to Send not being M
implemented. These problems with x-line handshaking should ^
not occur on the 64 since DD01 is correctly checked for Clear

to Send and Data Set Ready. j j

228 [J

RS-232 I/O Routines

n

To test Clear to Send or Data Set Ready on the VIC, you

ii must write your own routine to open an RS-232 device (it

could be modeled after the Kernal routine at F4C7-F541 with

l LDA 9120 changed to LDA 9110). You would also need to

I t intercept NMI interrupts to test for timer 1 interrupts (RS-232
transmit) and test for Data Set Ready and Clear to Send before

sending the next byte.

II The RS-232 operation of the 64/VIC is a close software
emulation of the 6551 Asynchronous Communication Interface

Adapter (ACIA) chip, including emulation of the ACIA control

register at location 0293, the command register at 0294, and

the status register at 0297. Table 9-2 below shows the control,

command, and status register values.

The conventional way to use RS-232 from machine lan

guage is to first call the Kernal routines SETLFS, SETNAM,

and OPEN. The device number when calling SETLFS should

be 2 for RS-232. If you are using a printer as the RS-232 de

vice, a logical file number greater than or equal to 128 allows

line feeds after a carriage return. The secondary address is not

used when opening an RS-232 file.

If you are transmitting RS-232 data, first open an output

channel for the logical file by using CHKOUT and then use

CHROUT to send the individual bytes of data. If you are

receiving RS-232 data, first open an input channel for the logi

cal file by using CHKIN and then receive the individual bytes

of data using CHRIN.

The actual transmission of RS-232 data is driven by NMI

interrupts. CIA #2 timer A/VIA #1 timer 1 interrupts control

transmission; FLAG of CIA #2/CBl of VIA #1 and CIA #2

timer B/VIA #1 timer 2 interrupts control reception of data.

RS-232 operations use two 256 byte (one page) buffers—

I I one for transmitting and one for receiving. These buffers are
implemented as circular queues with each capable of actually

holding 255 bytes of data. Two pointers to each of the buffers

! 1 are maintained. The head points to where bytes are removed
from the buffer, and the tail points to where bytes are in-

serted. An empty buffer is indicated when the pointer to the

i{ head has the same value as the pointer to the tail; a full buffer
- is indicated when the indicator to the head is equal to the

value of the tail pointer plus one. Figure 9-1 illustrates this

I] concept.

229

j I

RS-232 I/O Routines

U

Table 9-2. RS-232 Control, Command, and Status .

Registers 1 i

Control Register (0293)

Bits 76543210 |_|
SWWUBBBB

S = stop bits. 0 = 1 stop bit, 1 = 2 stop bits. . ,

WW = word length. 00 = 8 bits, 01 = 7 bits, 10 = 6 bits, l_j
11 = 5 bits.

U = unassigned.

BBBB = baud rate. 0001 = 50 baud, 0010 = 75 baud, 0011 = 110

baud, 0100 = 134.5 baud, 0101 = 150 baud, 0110 = 300

baud, 0111 = 600 baud, 1000 = 1200 baud, 1001 = 1800

baud, 1010 = 2400 baud. For the 64, 0000 = user defined

baud rate; this feature is not implemented on the VIC, where

0000 will produce an invalid baud rate value. For the VIC,

1011 = 3600 baud (despite the indication in the Programmer's

Reference Guide that this rate is not implemented). 1011 is not

implemented on the 64, and baud rates for 1100-1111 are

not implemented on either the 64 or VIC.

Command Register (0294)

Bits 7 6 5 4 3 2 10

PPPDUUUH

PPP = parity. xxO = parity disabled, 001 = odd parity,

011 = even parity, 101 = mark parity, 111 = space parity.

D = duplex. 0 = full duplex, 1 = half duplex.

UUU = unassigned.

H = handshake. 0 = 3-line, 1 = x-line.

Status Register (0297)

Bits 7 6 5 4 3 2 10

BDUCERFP it

B = break detected.

D = DSR (Data Set Ready) signal missing.

U = Unused. I j

C = CTS (Clear to Send) signal missing. O
E = 64: Receive buffer empty; VIC: unused.

R = Receive buffer overrun.

F = Framing error.

P = Parity error.

u

230 LJ

n

n

n

RS-232 I/O Routines

Figure 9-1. Circular Transmit/Receive Buffers: Full

and Empty

Head

Tail

Tail -*>

(where

data is

inserted)

Head (where data is removed)

n

u

zs

Z3

iz

Zl

20

1 2. >* S

It 16 11 /6 IS

b

7

6

IO

II

IZ

13

14-

Empty Buffer

Head = Tail

Full Buffer

Head = Tail + 1

n

n

n

Whenever the Kernal tries to start serial I/O or tape I/O,

the Kernal first checks to see if either timer A/timer 1 or timer

B/timer 2 interrupt for CIA #2/VIA #1 is enabled. If so, tape

and serial I/O wait for both timer A/timer 1 and timer

B/timer 2 interrupts to be disabled. Thus, serial or tape I/O

cannot begin if the 64/VIC is currently transmitting or receiv

ing over the RS-232 interface. However, once the serial or tape

I/O routines get control and disable the CIA #2 timer A, timer

B, and FLAG interrupts (on the 64) or the VIA #1 timer 1,

timer 2, and CB1 interrupts (on the VIC), no RS-232 process

ing can occur until the timer A/timer 1 and FLAG/CB1 inter

rupts are reenabled in a new RS-232 session.

Also, you cannot load or save to an RS-232 device, since

the LOAD and SAVE routines consider an RS-232 device to be

invalid.

During RS-232 operations, the interrupt conditions for

timer A/timer 1, timer B/timer 2, and FLAG/CB1 of CIA

#2/VIA #1 are as follows:

231

LJ
RS-232 I/O Routines

u

Timer A/timer 1 interrupts (RS-232 transmit) are enabled , ,

initially from CHROUT when the first byte is prepared to be LJ
sent. Timer A/timer 1 interrupts are disabled only when the

RS-232 logical file is closed. ,

FLAG/CB1 interrupts (RS-232 receive new byte) are en- 1 |
abled by the routine to open an RS-232 channel for input,

which is called by the Kernal routine CHKIN. FLAG/CB1

interrupts are also enabled whenever a byte has been received [|
(whether or not in error) and when timer B/timer 2 cannot

find a start bit. FLAG/CB1 interrupts are disabled by opening

an RS-232 channel for output using x-line handshaking.

FLAG/CB1 interrupts are also disabled when the RS-232 logi

cal file is closed, and by the NMI interrupt handler when a

FLAG/CB1 interrupt occurs.

The FLAG/CB1 interrupt tells the 64/VIC that a new

byte of data is being received at the user port. It has served its

purpose then, so it turns itself off, and turns timer B/timer 2

interrupts on to receive each bit of the byte. Then when the

byte has been received and it's time to watch for another byte

coming along, the timer B/timer 2 interrupts are turned off

and FLAG1/CB1 interrupts are reenabled.

Timer B/timer 2 interrupts (RS-232 receive bits) are en

abled by the NMI interrupt handler when a FLAG/CB1 inter

rupt occurs. These interrupts are disabled whenever a byte of

data has been received or when timer B/timer 2 cannot find a

start bit. Also, timer B/timer 2 interrupts are disabled when

the logical RS-232 file is closed.

Timer A/timer 1 interrupts are serviced first by the NMI

interrupt handler. If a timer B/timer 2 interrupt or a

FLAG/CB1 interrupt should occur while the NMI interrupt

handler is servicing the timer A/timer 1 interrupt, the timer

B/timer 2 or FLAG/CB1 interrupt is still serviced. The 64 |_j
specifically checks for a timer B/timer 2 or FLAG/CB1 inter

rupt after it finishes servicing a timer A/timer 1 interrupt, but

the VIC does not. Instead, it reenables the line settings that j |
allow another NMI interrupt to occur by bringing the NMI

line high. If the VIA #1 chip has a pending timer 2 or CB1

interrupt, another execution of the NMI interrupt handler oc- j^J
curs, thus causing nested NMI interrupts. By allowing both the

transmit and receive interrupts to be serviced by the NMI

interrupt handler no matter when they occur, you can use j |
both CHROUT and GETIN to an RS-232 device without being

232 [|

n
RS-232 I/O Routines

n

r, concerned over separating the times when you are receiving

I from the times you are transmitting information.

If you want to simultaneously send and receive via RS-

p—I 232, your machine language program must open both an input

I \ channel for RS-232 and an output channel for RS-232, then do
CHROUTs and GETINs. The sequence of doing CHKIN and

— GETIN or CHKOUT and CHROUT does not seem important

I I when you have selected the 3-line handshaking mode. How
ever, in x-line handshaking, it appears that CHKOUT disables

FLAG/CB1 and timer B/timer 2 interrupts, preventing further

receiving of input through GETIN. Thus, if you are using x-

line handshaking, you should call CHKOUT before calling

CHKIN.

Also, see the NMI interrupt handler description since RS-

232 interrupts for timer A/timer 1, timer B/timer 2, and

FLAG/CB1 are discussed there. One feature that is slightly

different on the 64 is the use of a separate byte at 02A1 to in

dicate which interrupts are enabled for DDOD, CIA #2 inter

rupt control register. This separate byte is required since the

CIA interrupt control register is a write-only mask register and

a read-only data register. Thus, reading DDOD does not show

which interrupts are enabled, it only shows which enabled inter

rupts have actually occurred.

Open Logical File for RS-232 Device

F409/F4C7-F482/F541

Called by:

JMP at F388/F448 in OPEN Execution; alternate entry at

F47D/F53C by JMP at F2C5/F38A in Close Logical File for

RS-232 Device.

["I To prepare for RS-232 communications the routine per

forms the following steps:

• Sets the data direction register for port B of CIA #2/VIA #1

I I to make Data Set Ready, Clear to Send, Received Line Signal,
Ring Indicator, and Received Data input lines.

• Sets the data direction register for port B of CIA #2/VIA #1

I j to make Data Terminal Ready and Request to Send output
lines and sets the data register to bring these lines high.

• VIC: Sets the CB1 line of port B to produce an interrupt upon

I I a high-to-low transition of CB1.
• Holds CB2 line for Transmitted Data high (1).

• Clears the RS-232 status register.

M . 233

u
RS-232 I/O Routines

"""" u
The baud rate setting in the control register is used to set

the value for bit time (the time to transmit one bit). The num- j |
ber of bits to be sent or received is set to 9, 8, 7, or 6 depend

ing on the word length specified in the control register.

Next, the routine determines the type of handshaking re- j |
quested in the command register. If x-line handshaking is re

quested, a test for Data Set Ready is performed. However, on

the VIC the incorrect use of VIA #2 port B rather than VIA #1 \ |
port B for reading the Data Set Ready signal results in this

routine always showing that the data set (the modem) is

ready, whether or not it actually is.

Finally, two 256-byte buffers, one for receive and one for

transmit, are carved out of the top portion of memory, the

pointers to the end of memory are reset, and the head and tail

of each of these buffers are initialized. The transmit buffer is

located one page (256 bytes) lower in memory than the receive

buffer. See the comments in this chapter on the GETIN from

an RS-232 Device routine to determine how to increase the

size of these buffers.

For the VIC, the routine will never indicate that the Data

Set Ready signal is missing when x-line handshaking is used.

If you need this function, you could copy the routine to a loca

tion in RAM (the routine occupies F4C7-F541), change the

instruction LDA 9120 to LDA 9110, and finally, change the

OPEN vector in (031A) to point to your new location for the

routine. However, 9120 is also incorrectly used in the routine

at EFEE during RS-232 transmission.

What happens if you try to open additional RS-232 logical

files without first closing previously opened RS-232 files? Nor

mally, this routine would find that the high bytes of the point

ers to the buffers are not 0, and would exit without allocating

new buffers, leading to reusing the same buffers allocated in | |
the initial OPEN. Utter confusion would then result if more

than one logical file tried to use the same buffer. It seems pos

sible that you could open more than one RS-232 logical file if [|
you first reset the high bytes F8 and FA to 0. You would prob

ably need to save the (F7) and (F9) pointers to the first logical

file buffers so that you could switch between the buffers for j j
the logical files.

Entry requirements: . i

B7 should hold the number of characters in the filename. (BB) I—I
should be the pointer to the filename, which contains values

234 LJ

RS-232 I/O Routines

_ for the command and control registers. (These locations can be

M set using the Kernal SETNAM routine.) 029B, the tail of the

receive buffer, should normally be 0 on entry. 029E, the tail of

fmmm) the transmit buffer, should normally be 0 on entry.

1 Exit conditions:
0293, RS-232 control register, is set with values for the num-

f—i ber of stop bits, word length, and baud rate. 0294, RS-232

—] command register, is set with values for parity, duplex setting,

and handshaking mode. 0299-029A represent the bit time

(how long it takes to send a bit) for RS-232 transmission. 0298

holds the number of bits to be sent or received. 029C, the

head of the receive buffer, is initialized to the same value as in

029B. 029D, the head of the transmit buffer, is initialized to

the same value as in 029E. (F7) is the pointer to the receive

buffer base location. (F9) is the pointer to the transmit buffer

base location. (0283), the pointer to the end of memory, is re

set to a value 512 bytes below its value at entry. Also, the

carry bit will be set and the accumulator will contain $F0 upon

exit.

Operation:

1. 64: JSR F483 to initialize CIA #2 register values, then con

tinue with step 3.

VIC: Set VIA #1 port B data direction and initial val

ues as shown below:

Initial RS-232 Line Settings for VIC

Input lines with initial value of 0:

PB7, Data Set Ready

PB6, Clear to Send

PB4, Received Line Signal

PB3, Ring Indicator

j J PB0, Received Data

Output lines with initial value of 1:

PB2, Data Terminal Ready

PB1, Request to Send

2. VIC: Set VIA #1 port B I/O register CB1 line, Received

Data, to produce an interrupt upon a high to low transi-

tion on CB1. Hold the CB2 line, Transmitted Data, high.

3. Store 0 in the RS-232 status register, 0297.

4. If B7 indicates that there are no characters in the filename,

branch to step 6. When opening an RS-232 file, the file

name is used to specify values for the control and com-

235

| |

RS-232 I/O Routines

u

mand registers, and, for the 64, to specify a user-defined

baud rate. j j
5. If a filename does exist, store from one to four characters

from the name, starting at 0293. The first two characters

specify respectively the RS-232 control register, 0293, and [j
the RS-232 command register, 0294. The third and fourth

characters are stored in 0295 and 0296, the bit time value.

These values are ignored by the VIC, and will only be | j
used by the 64 if the baud rate bits in 0293 are all 0. If

only one character is used in the filename, the RS-232

command register, 0294, is not set from the filename. If

the command register is 0, it defaults to parity disabled,

full duplex, and 3-line handshaking.

6. JSR EF4A/F027 to compute the number of bits to be sent

or received per byte of data. This value is one more than

the word length, allowing for a decrement of this value to

reach zero when all bits have been sent or received. If the

word length specified in the control register is 00, return

with a value of 9; if the word length is 01, return with a

value of 8; if the word length is 10, return with a value of

7, and if the word length is 11, return with a value of 6.

Store the number of bits returned by the subroutine in

location 0298, the number of bits to be sent or received.

7. 64: If the baud rate is specified as 0, don't get any values

from the baud rate table. Instead, branch to step 8 to use

the values placed in 0295-0296 from the filename (step 5).

For nonzero baud rates specified in the lower four bits of

0293, test the PAL/NTSC flag, 02A6, to see whether the

PAL baud rate factor table or the NTSC baud rate factor

table should be used. This check is necessary because the

64's system clock frequency, which is also the counting

frequency for the CIA timers, is different for the two video j j
systems. Take the two bytes for the baud rate factor from

the table at FEC2 (NTSC) or E4EC (PAL), and store the

bytes in 0295-0296. {_}
8. 64: Multiply the value in 0295-0296 by two, and add $C8.

Store this value at 0299-029A as the time it takes to trans

mit or receive one bit. A patch area at FF2E-FF40 is used j j
for part of this calculation. No check is made for the

u

236

n-
RS-232 I/O Routines

n invalid baud rate values in 0293, so if the lower four bits

are 1100-1111, bytes from beyond the table area will be

read, resulting in bit timing values that do not correspond

nto any standard baud rate.

VIC: Use the baud rate specified in the lower four

bits of the control register, 0293, to index into the baud

I—j rate table at FF5C. Take the two bytes from the baud rate

' I table corresponding to this baud rate, multiply them by
two, and add $C8. Store this value at 0299-029A, as the

time it takes to transmit or receive one bit. No check is

made that the baud rate value specified in 0293 is valid.

Thus, if the lower four bits of that location are 1101-1111,

bytes from beyond the table area will be read, resulting in

bit timing values that do not correspond to any standard

baud rate. Also, the VIC routine does not implement the

user-defined baud rate feature, but fails to check for the

0000 bit value in 0293 that indicates this function. Specify

ing 0000 for the baud rate bits results in the routine read

ing the bytes at FF5A-FF5B (PLA and RTI opcodes) as the

baud rate factor, for a useless rate of approximately 31

baud. A superfluous BNE F4F4 appears in this section of

code.

The tables below show the baud rate factor values

(in hex) and the corresponding bit times stored in

029A-0299 (also in hex) for all implemented baud rates

for the VIC (NTSC) and 64 (PAL and NTSC tables).

Baud Rate Tables and Bit Times for VIC

n

n

n

Baud Rate

50

75

110

134.5

150

300

600

1200

1800

2400

3600

Bit

029A

4F

35

24

ID

1A

0D

06

03

02

01

01

Time

0299

EC

48

54

B0

A4

52

AA

54

38

AA

1C

Table

High

27

1A

11

0E

OC

06

02

01

00

00

00

Value

Low

92

40

C6

74

EE

45

Fl

46

B8

71

2A

237

RS-232 I/O Routines
u

Baud Rate Tables and Bit Times for 64 , .

LJ

LJ

Baud Rate

50

75

110

134.5

150

300

600

1200

1800

2400

Bit

029A

4A

35

24

ID

1A

0D

06

03

02

01

NTSC

Time

0299

50

44

52

BO

A2

52

A8

54

38

AA

Table

High

27

1A

11

0E

OC

06

02

01

00

00

Value

Low

Cl

3E

C5

74

ED

45

FO

46

B8

71

Bit

029A

4C

33

22

1C

19

OC

06

03

02

01

PAL

Time

0299

FA

50

FC

98

A8

D4

6A

36

24

9A

Table

High

26

19

11

OD

OC

06

02

01

00

00

Val

Lov

19

44

1A

E8

70

06

Dl

37

AE

69

9. If the 3-line handshake method is being used as indicated

by bit 0 of the command register, branch to step 11.

10. 64: For x-line handshaking, test bit 7 of DD01, the RS-232

Data Set Ready (DSR) signal. If the DSR bit = 1, continue

with step 11. If the DSR bit = 0, JSR FOOD to set bit 6 in

the status register, 0293, to indicate Data Set Ready

missing.

VIC: For x-line handshaking, the value of bit 7 of

9120 is tested. However, as noted earlier, location 9110

should have been used. Thus, the Data Set Ready test for

x-line handshaking on the VIC is not performed correctly.

It happens that all routines that use 9120 leave the value

$F7 in 9120 at exit. So, this step should always find bit 7

set to 1. The routine never performs the JMP F016 to in

dicate the Data Set Ready missing error. Instead, it thinks

the Data Set Ready signal is present and falls through to

step 11.

11. Next, the head of the receive buffer, 029C, is set from the II

value in 029B, the tail of the receive buffer. The head of

the transmit buffer, 029D, is set from the value in 029E,

the tail of the transmit buffer. Normally, these values are i j

all 0. If they are not 0, the head and tail pointers still func- ('
tion properly.

12. JSR FE27/FE75 to load the X register with the low byte of M

the pointer to the end of memory, and the Y register with {—
the high byte of the pointer to the end of memory.

13. If the high byte of the pointer to the RS-232 receive buffer If

base location, F8, is not 0, branch to step 15. F8 should be '

238 u

n
RS-232 I/O Routines

n ™^~

f—| 0 on the first pass through this routine. It should also be 0

if an RS-232 file has been previously closed.

14. Decrement the Y register, the high byte pointer to the end

j—j of memory, to carve out a page (256 bytes) of memory for

a receive buffer. Set the pointer to the receive buffer base

location, (F7), from the current values in the X and Y

I"—; registers.

■-] 15. If the high byte of the pointer to the transmit buffer base
location is not 0, branch to step 17.

16. Decrement the Y register, the high byte of the pointer to

the end of memory, to carve out a page (256 bytes) of

memory for a transmit buffer. Set the pointer to the trans

mit buffer base location, (F9), from the current values in

the X and Y registers.

17. F47D/F53C: Set the carry, and LDA $F0.

18. JMP FE2D/FE7B to set the pointer to the end of memory,

(0283), from the current values of the X and Y registers,

thus normally two pages (512 bytes) have been subtracted

from the top of memory for the RS-232 buffers. Then RTS

to exit the routine.

CIA Initialization for RS-232 (64)

F483-F49D

Called by:

JSR at F409 in Open Logical File for RS-232 Device, JSR at

F2AF in Close Logical File for RS-232 Device.

This routine initializes the CIA lines used for RS-232 op

erations on the 64 and also clears 02Al, the byte used to in

dicate which of the timer A, timer B, and FLAG interrupts are

^ enabled for RS-232 operations.

1 Operation:
1. Store $7F in DDOD, the CIA #2 interrupt control register, to

~| disable all interrupts from CIA #2.

2. Store $06 in DD03, the CIA #2 data direction register for

data port B, and also store $06 in DD01, CIA #2 data port

j"—j B. Steps 2 and 3 give the settings shown here:

Initial RS-232 Line Settings For 64

Input lines with initial value of 0:

1 j PB7, Data Set Ready
PB6, Clear to Send

239

RS-232 I/O Routines

LJ

U

PB4, Received Line Signal i j

PB3, Ring Indicator <—i

PBO, Received Data

Output lines with initial value of 1: j j

PB2, Data Terminal Ready *—'

PB1, Request to Send

3. ORA DDOO, port A data register, with $04 to set PA2, RS- j |

232 Transmitted Data, to 1. *—'
4. Store 0 in 02A1, the RS-232 activity register.

5. RTS.

Compute Bit Count

EF4A/F027-EF58/F035

Called by:

JSR at F41D/F4E7 Open Logical File for RS-232 Device.

Bits 6 and 5 of the RS-232 control register, 0293, specify

the length of data in each RS-232 character sent or received.

This routine uses these two bits to compute the number of bits

to be sent or received and returns this number of bits plus one

in the X register. Having a value of one greater than the

length of a data word allows the transmit and receive routines

to decrement this counter each time a bit is sent or received,

so that when the counter reaches zero all bits have been sent

or received.

Entry requirements:

0293/ the RS-232 control register, should have bits 6-5 in

dicating the data length of a character—00 for eight bits, 01

for seven bits, 10 for six bits, and 11 for five bits.

Exit conditions: . ;

The X register holds the counter for the number of bits to be I—i
sent or received.

Operation:

1. Initialize the X register to 9.

2. If bit 5 of the control register is 0, branch to step 4.

3. If bit 5 of the control register is 1, decrement the X register;

thus, if the character length is five or seven bits, the X reg

ister is now 8.

4. If bit 6 of the control register is 0, branch to step 6. J j

240 u

t \

RS-232 I/O Routines

n ~~ ■■

n5. If bit 6 is 1, the X register is decremented twice. Thus, if the

character length is six or five bits, X = X—2. The X register

is now 7 or 6.

i—> 6. RTS with the X register set to 9 for 00, 8 for 01, 7 for 10, or

I I 6 for 11.

pi Open RS-232 Channel for Input

II F04D/F116-F085/F14E

Called by:

JMP at F227/F2E0 in CHKIN Execution.

To prepare for RS-232 input, this routine must be executed.

If 3-line handshaking is being used, just see if both timer

B/timer 2 interrupts and FLAG/CB1 interrupts are enabled. If

either one is enabled, CLC and RTS. If neither one is enabled,

enable FLAG/CB1 interrupts, CLC, and RTS.

If x-line handshaking with full duplex is being used, take

the same steps.

If using half duplex x-line handshaking, first check to see

if the Data Set Ready line is high. If DSR from the RS-232 de

vice is on, also test the Request to Send (from 64/VIC). If DSR

is off, branch to indicate the Data Set Not Ready error. If DSR

and RTS are both on, wait for any RS-232 output to finish by

looping until the CIA #2 timer A/VIA #1 timer 1 interrupt is

disabled. Then turn off the Request to Send line, wait for the

Data Terminal Ready line to turn on, and enable FLAG/CB1

interrupts for receiving RS-232 data. Finally, CLC and RTS.

Since half duplex allows transmission in either direction over

the lines, but not in both directions at the same time, this x-

line and half-duplex sequence makes certain before receiving

data that the 64/VIC is not trying to send any data.

| | X-line handshaking in the half-duplex mode is performed

correctly here for the VIC since the routine uses 9110.

;—j Entry requirements:

-' The accumulator must hold 2, the device number for RS-232,
upon entry. Bit 0 of location 0294 should be set to 0 for 3-line

i—i handshaking or to 1 for x-line handshaking.

Operation:

1. Set the input device number (at location 99) to 2.

P"! 2. If 3-line handshaking is indicated by a 0 in bit 0 of 0294,
the RS-232 command register, go to step 3. If x-line

handshaking is being used, go to step 4.

I i 241

LJ
RS-232 I/O Routines

3. 64: LDA 02A1, AND $12, and BEQ to step 10. The AND , .

tests bits 0 and 4 of the RS-232 active interrupt flag byte. I 1
Bit 1 is 1 if timer B interrupts are enabled, and bit 4 is 1 if

FLAG interrupts are enabled. Thus, branch if neither of , .

these interrupts is enabled. 1 '
VIC: LDA 91 IE, AND $30, and BEQ to step 10. The

AND tests bits 4 and 5 of the RS-232 active interrupt flag (,

byte. Bit 4 is 1 if CB1 interrupts are enabled, and bit 5 is 1 i 1
if timer 2 interrupts are enabled. Branch if neither of these

interrupts is enabled.

If either timer B/timer 2 or FLAG/CB1 interrupts are

enabled, just CLC and RTS, as the interrupts for RS-232

reception are already active.

4. Test bit 4 of 0294, which indicates the duplex mode. If

using x-line handshaking and full duplex mode, branch to

step 3. If using x-line handshaking and half duplex, fall

through to step 5.

5. Test DD01/9110 to see if Data Set Ready line is on. If not,

branch to F00D/F0E8 to set the status register, 0297, to in

dicate that the DSR signal is missing. DSR is an input sig

nal to the 64/VIC from the RS-232 device.

6. Test DD01/9110 to see if Request to Send is off. If it is off,

CLC and RTS (the machine language instruction) as no

transmission is active. If it is on, continue with step 7.

7. F062 (64): LDA 02A1, LSR, BCS F062. Loop until bit 0 of

02A1 becomes 0, which indicates timer A interrupts for

RS-232 transmission have been disabled.

F12B (VIC): BIT 91 IE, BVS F12B. This code loops

until bit 6 of 91 IE becomes 0, which indicates that timer 1

interrupts for RS-232 transmission are disabled.

8. Turn off bit 1 of DD01/9110, the Request to Send signal ,

output. | I
9. Wait for the Data Terminal Ready signal to indicate the

data terminal is ready by testing bit 2 of DD01/9110 in a

loop until this bit becomes 1. J I
10. 64: LDA $90. CLC. JMP EF3B to STA DD0D, EOR 02A1,

ORA $80, STA 02A1, STA DD0D, and RTS. Thus, FLAG

interrupts are enabled, and 02A1 shows that the only ac- j j
tive RS-232 interrupt is FLAG.

VIC: LDA $90, STA 91 IE to enable CB1 interrupts,

then CLC and RTS. LJ

242 [J

n

RS-232 I/O Routines

pi CHRIN from RS-232 Device

'- ' F1B8/F26F-F1C9/F279

n

n

Called by:

BEQ at F177/F22E in Determine Input Device.

JSR to the GETIN from RS-232 Device routine at

F14E/F205, which returns with the accumulator containing

either a character from the receive buffer or 0 if the receive

buffer is empty. If the receive buffer is empty, it loops until a

character other than 0 is returned. An infinite loop is possible

on the VIC if the RS-232 receive buffer does not receive any

more characters from the Received Data line. On the 64, how

ever, the infinite loop should not occur since a return with

$0D in the accumulator occurs if the RS-232 status register in

dicates the Data Set Ready signal is missing.

Operation:

1. JSR F14E/F205 to get a character from the RS-232 receive

buffer, with 0 returned if the buffer is empty.

2. If the carry is set, branch to step 5. However, this branch

should never be taken, since the carry is cleared at exit from

the subroutine at F14E/F205.

3. 64: If the character returned was 0, also test bit 6 of 0297,

the status register, to see if the Data Set Ready signal is

missing. If the DSR missing bit is 1, LDA $0D, CLC, and

RTS. If the DSR missing bit is 0, branch to step 1. The 64

actually tests both bits 6 and 5 of 0297 with AND $60. This

works since bit 5 is unused, but the code should actually be

AND $40 to test only for the DSR missing signal.

VIC: If the character returned was 0, branch to step 1.

4. CLC.

5. RTS.

GETIN from RS-232 Device

p F14E/F205-F156/F20D

Called by:

r-i Falls through from F14C/F1F5 in GETIN Preparation, JSR at

i I F1B8/F26F in CHRIN from RS-232 Device.
This routine performs the following with a JSR to

r—* F086/F14F to get a character from the RS-232 receive buffer:

243

RS-232 I/O Routines

with zero in the accumulator. Also, on the 64 only, set bit 3

of 0297 to 1 to indicate an empty receive buffer.

u

u

• If the head of the receive buffer is equal to the tail of the re- j |

ceive buffer, indicating an empty receive buffer, return with —'
0 in the accumulator.

• If the head and tail are not equal, return the character at the] [

head of the receive buffer in the accumulator and increment '—
the head pointer.

If you want larger buffers than the 256-byte (one-page) j
buffers for transmit and receive, you can change the pointers

to the base locations for transmit (F9) and receive (F7) to point

to your buffer locations. For ease of coding, you should prob

ably maintain your buffers as exact multiples of a page. You

need either to write your own OPEN routine to do this, or set

the pointers after OPEN has completed. Also, you need to

keep track of when the head and tail pointers are incremented

from $FF to $00 and thus cross a page boundary, and to keep

pointers to the receive and transmit buffers that keep track of

what page you are in for the head and tail of both.

Operation:

1. Save the Y register in 97.

2. JSR F086/F14F to get a character from the RS-232 receive

buffer, or to get 0 if the buffer is empty.

3. Restore Y register from 97.

4. CLC and RTS.

Get Character from RS-232 Receive Buffer

F086/F14F-F0A3/F15F

Called by:

JSR at F150/F207 in GETIN from RS-232 Device.

If the head of the receive buffer is equal to the tail of the

receive buffer, indicating an empty receive buffer, return with 1 j
0 in the accumulator.

If the head and tail are not equal, return the character at

the head of the receive buffer in the accumulator. Also, in- j j
crement the head.

Operation: i j

1. LDY 029C, the head of the receive buffer. Lj
2. CPY 029B, the tail of the receive buffer.

3. If the tail and head are equal, the buffer is empty, so RTS | j

244 u

n
RS-232 I/O Routines

]"""] 4. If the tail and head are not equal, return the character from
the receive buffer head location in the accumulator. Also,

^ on the 64 only, set bit 3 of 0297 to 0 to indicate the receive

I""*] buffer is not empty.
5. Increment the head of the receive buffer, 029C. When the

head reaches the end of the receive buffer, indicated by $FF,

[**"! this increment resets the head to $00, the start of the cir
cular receive buffer.

6. RTS.

Receive RS-232 Bit: NMI Interrupt Driven

EF59/F036-EF6D/F04A

Called by:

JMP at FF04/JSR at FF26 from NMI Interrupt Handler when

NMI interrupt occurs for timer B of CIA #2/timer 2 of VIA #1.

This routine is called whenever a timer B/timer 2 inter

rupt on CIA #2/VIA #1 occurs, indicating that the time re

quired to receive a bit has passed and it is now time to sample

PBO, the Received Data line. To indicate the start of trans

mission of a byte to the 64/VIC, a FLAG/CB1 interrupt oc

curs. This interrupt then enables timer B/timer 2 interrupts

and initializes the timer B/timer 2 bit time value.

Once a start bit has been received (a start bit has a value

of 0, as opposed to the idle state of 1), reception of the data

can begin. If a start bit has not yet been received, branch to a

routine that checks for the start bit; if it doesn't find a start bit,

the routine then enables FLAG/CB1 interrupts and disables

timer B/timer 2 interrupts.

If the start bit has been received, all following bits are

p-* considered data bits until the counter for the number of bits

J received, A8, is decremented to 0.

Each of these data bits, found as bit 0 of A7 (set from PBO

p-[of DD01/9110 when a timer B/timer 2 interrupt occurs), is ro-

-.. i tated right into bit 7 of AA, the data byte being built. Each

data bit is also Exclusive ORed with AB, the parity bit in

dicator, so that an even number of ones received makes AB

zero, while an odd number of ones received makes AB one.

Whenever the counter of bits received, A8, reaches 0, in

dicating all the data bits have been received, branch to put the

byte just received into the receive buffer.

If the counter of bits received is decremented below 0,

branch to check for stop bits.

245

n

u
RS-232 I/O Routines

It appears that two variables used in this routine, A9 (the j j

receiver flag to check for a start bit) and AB (the parity bit in- '—1
dicator), are not initialized by any RS-232 routines before this

routine is called the first time. Of course, at system reset A9 j j

and AB are set to 0. These two bytes are also modified in tape >—'

operations. The lack of initialization could cause problems. For

example, if A9 is 0 the first time this routine is entered, it ap- j i

pears no check for a start bit will be made on the first byte of (—'
data received over RS-232 lines. Also, since AB is not initial

ized either before or after this routine, the last value left in it

will affect the parity indicator on future bytes received. Thus,

individual byte parity checks may be incorrect.

It seems that A9 should have been initialized to a value

other than 0 during the Open RS-232 Channel for Input rou

tine. AB should have been initialized to the correct parity set

ting during the Open Logical File for RS-232 Device routine,

and also reset to this value whenever a parity error occurs.

This is corrected in version 3 of the 64 Kernal ROM: AB is set

to $01 after each start bit has been received.

Entry requirements:

A9, check flag for start bit, should hold 0 if the start bit has

been received, and should hold $90 if the start bit has not

been received.

AB, parity bit indicator, should hold 0 if an even number

of l's have been received so far or 1 if an odd number of l's

have been received so far.

A7, receiver bit temporary storage, should have bit 0 set

to the bit received at PBO when a timer B/timer 2 interrupt

occurs.

AA, the byte being built, should contain the bits received

so far, with the bits shifted into AA from high to low direction. I I

Operation:

1. If the check for start bit flag, A9, is nonzero, branch to I ;

EF90/F068 to check for a start bit. LJ
2. If the start bit flag is zero, indicating a start bit has been re

ceived, decrement the counter for the number of bits re- j /

ceived, A8. This counter is originally set to 1 more than the LJ
number of bits in a word. Thus, it reaches 0 when all bits of

data in the word have been received. I

3. If A8 = 0, all bits of data have been received. Branch to I—
EF97/F06F to store the byte received into the receive buffer.

246 u

RS-232 I/O Routines

|—i 4. If A8 < 0, branch to EF70/F04D to check for stop bits.

- ' 5. Exclusive OR the bit received at PBO, now in bit 0 of A7,
with the parity bit indicator, AB, storing the result back into

p-| AB. An even number of l's received makes AB = 0, while

' - an odd number received makes AB =1.

6. LSR the bit received at PBO, stored in bit 0 of A7 by the

p—| NMI Interrupt Handler routine, into the carry flag.

' l 7. ROR the byte being built, AA. This shifts the bit received
into bit 7 of AA.

8. RTS.

Store Byte Received into Buffer

EF97/F06F-EFB2/F08A

Called by:

BEQ at E5F5/F03C in Receive RS-232 Bit.

If there is space left in the receive buffer, store the byte

just received at the tail of the buffer. This byte has its unused

high bits filled with 0's if its word length is less than eight.

The routine then falls through to EFB3/F08B to check the

parity for the byte just received.

If the receive buffer is full, the character just received is

discarded. Branch to EFCA/F0A2 to set the bit in the status

byte, 0297, that indicates the receive buffer is full and prepare

to receive the next byte.

With a circular queue such as the RS-232 receive buffer

on the 64/VIC, the maximum number of characters the buffer

can hold is equal to the size of the buffer minus one byte,

which for the 64/VIC is 255 (decimal). If the tail plus one

equals the head, the character cannot be stored in the last free

^ byte (the tail location). If it was, the tail pointer would be in-

J | cremented and would equal the head pointer—but this con
dition is used to determine when the buffer is empty. Thus,

you could not distinguish the empty buffer condition from the

M full buffer condition. This same approach is also used for the
RS-232 transmit buffer. If the buffer becomes full, the RS-232

fmmn status register is set to indicate it. However, no Kernal routines

) | check for this condition, thus allowing you to continue to

overrun the receive buffer.

n Operation:

1. If the tail plus one of the receive buffer (029B is the tail) is

equal to the head of the receive buffer, 029C, the buffer is

I I 247

RS-232 I/O Routines

u

u

full, so branch to EFCA/F0A2 to set the bit in the status . i

register, 0297, that indicates a receive buffer overrun error L-j
has occurred and prepare to receive the next byte.

2. If the buffer is not full, increment 029B, the tail of the I ,

buffer. LJ
3. LDA with the byte just received, AA, which still has the

bits it received left justified. I j

4. Check 0298 to see if the character length being received is <—I
less than eight. If so, shift in the correct number of high 0's

to right justify the bits in this byte.

5. Store the right justified received data byte that is now in the

accumulator into the next available position in the receive

buffer with STA (F7),Y. The two-byte pointer at (F7) points

to the base location of the receive buffer and the Y register

points to the location of the tail before the tail was in

cremented in step 2.

6. Fall through to EFB3/F08B to check the parity for this byte.

Check Parity of Received Byte

EFB3/F08B-EFC6/F09E

Called by:

Falls through from EFB1/F089 Store Byte Received into Buffer.

Once the data byte has been received and stored in the

receive buffer, this routine determines if any parity errors oc

curred. The RS-232 control register, 0294, specifies the type of

parity.

If the parity is not being used, this routine branches to

EF6E/F04B to check for stop bits (rather than checking for a

parity bit).

If mark parity or space parity is being used, just RTS, as

no parity check is performed on bytes received. However, the j I

bit just received was a parity bit, so in effect throw this parity

bit away before checking for stop bits.

If none of the above parity conditions are in effect, either j j
odd or even parity must be in use. The parity bit indicator, AB

(set to 0 if an even number of l's are transmitted as data, or

set to 1 if an odd number of l's are transmitted), is Exclusive J I
OR'd with the parity bit just received—bit 0 of A7. If the re

sult of this Exclusive OR is 0 (the total number of l's received

including the parity bit is even), then odd parity is assumed j j

and a parity error exists if even parity was used. Similarly, if

248 LJ

H
RS-232 I/O Routines

H ~~

nthe result of the Exclusive OR is 1 (the total number of l's re

ceived including the parity bit is odd), then even parity is as

sumed and a parity error exists if odd parity was being used.

*^ The 64/VIC implementation of odd and even parity is re-

!] versed from the accepted standard for parity. For even parity,
the total number of bits with value 1, including the parity bit,

r-i should be even. For odd parity, the total number of bits with

I I value 1, including the parity bit, should be odd. If you are try
ing to receive bytes from the RS-232 port using a parity check

and the transmitting device is using the correct standard defi

nitions of parity, you should set the command register to odd

parity if the transmitting device is using even parity or vice

versa. However, this problem has been corrected in version 3

of the 64 Kernal ROMs. The solution was to set AB, the parity

bit indicator, to $01 after each reception of a start bit for a

byte, so that the final Exclusive OR with A7 gives the correct

result.

Operation:

1. Test the RS-232 control register, 0294, to see what kind of

parity is being used.

2. If no parity is being used, branch to EF6E/F04B to check for

a stop bit, rather than considering the bit just received as a

parity bit.

3. If mark or space parity is being used, just RTS; the parity

bit is not checked for received bytes.

4. If none of the above parity settings is in effect, Exclusive

OR the parity bit just received, found now in bit 0 of A7,

with the parity bit indicator, AB, that contains the result of

the number of l's transmitted as data. AB is 0 if an even

number of l's have been transmitted as data or 1 if an odd

r~| number of l's have been transmitted as data.

If the result of this Exclusive OR is 0 (total number of

l's including parity is even), branch to step 6.

P"! 5. See what kind of parity is being used. If it's even, RTS by

- BVS EF6D/F04A. If odd, branch to step 7.

6. See what kind of parity is being used. If it's odd, RTS by

PI BVC EF6D/F04A. If it's even, fall through to step 7.

7. Fall through to EFC7/F09F, the Handle Errors While

Receiving from RS-232 Device routine, with a parity error

I"""! indicated.

n 249

u
RS-232 I/O Routines

u

Handle Errors While Receiving from RS-232 Device , (

EFC7/F09F-EFDA/F0B2 LJ

Called by:

Fall through from EFC6/F09E, Check Parity of Received Byte; II
alternate entry at EFCA/F0A2 by BEQ at EF9E/F076 in Store

Byte Received into Buffer; alternate entry at EFCD/F0A5 by

BEQ at EFDF/F0B7 in Check for Framing/Break Error; alter- j I
nate entry at EFD0/F0A8 by BNE at EFDD/F0B5 in Check for

Framing/Break Error.

Whenever an error occurs in the reception of RS-232 data,

this routine is called to set the RS-232 status register, 0297, to

indicate the cause of the error. The possible causes are: parity

error, receive buffer overrun error, break detected, and framing

error. The status register is set by an ORA of 0297. Thus, the

status register is cumulative; more than one error condition

can be recorded.

After setting the status register, jump to the routine to

prepare for reception of the next byte.

Operation:

1. LDA $01 (parity error). Fall through to step 5.

2. EFCA/F0A2: LDA $04 (receive buffer overrun). Fall through

to step 5.

3. EFCD/F0A5: LDA $80 (break detected). Fall through to

step 5.

4. EFD0/F0A8: LDA $02 (framing error). Fall through to step 5.

5. ORA 0297, the RS-232 status register, and store the result

back into 0297.

6. JMP EF7E/F05B to prepare to receive the next byte.

Check for Stop Bits , .

EF6E/F04B-EF7D/F05A LJ

Called by:

BEQ at EFB8/F090 in Check Parity of Received Byte; alternate j I
entry at EF7D/F04D by BMI at EF61/F0E3 in Receive RS-232

Bit.

When this routine is called, a stop bit should have been J i
received. A stop bit is represented by a 1. Thus, if the bit just

received was a 0, an error has occurred. This error is either a

break detected error or a frame error, depending on whether j j
the data byte received was 0 or not.

If a stop bit has been received, then this routine deter-

250 LJ

n
RS-232 I/O Routines

n '

f—] mines how many stop bits were specified in the RS-232 con-

'■■-- trol register and whether all the stop bits have been received.

If not all have yet been received, then exit. If all the stop bits

pi have been received, then fall through to EF7E/F05B to prepare

- ■ to receive the next byte from RS-232 transmission.

To determine whether all stop bits have been received,

|—| the stop bit indicator in bit 7 of 0293 is shifted into the carry;

• -■ ' then the accumulator is loaded with 1 and an ADC to A8 is

performed. This results in 0 if all stop bits have been received.

An illustration of how this works follows:

First Pass:

Number of stop bits = 2

Carry = 1

Accumulator = 1

A8 1

Total = + 1 (so all stop bits have not yet been received)

Second Pass:

Number of stop bits = 2

Carry = 1

Accumulator = 1

A8 = ~2

Total = 0 (so all stop bits have been received)

Similar calculations will show that this procedure correctly

calculates stop bits for one stop bit and when no parity is being

used.

Entry requirements:

Bit 7 of 0293, RS-232 control register, should contain 0 if one

stop bit is being used, and should contain 1 if two stop are

being used.

f""[A7, receiver bit temporary storage, should have bit 0
containing the last bit received on PBO.

A8, counter of the number of bits received, should hold

j"""] any one of the following values:
At entry point ED70/F04D, it will equal -1 if all data

bits have been received (the bit just received should be either

f""| the single stop bit if the one stop bit is being used, or the first
of two stop bits if two stop bits are being used).

The counter will hold —2 if two stop bits are being used,

P"] and the bit just received should be the second stop bit.
~ ~~ At entry point EF6E/F04B when no parity is being used,

the counter will hold a 0.

1 ! 251

RS-232 I/O Routines

U

U

Exit conditions:

A8, the receiver bit count, is decremented if entering at '—
EF6E/F04B when no parity is in effect.

Z flag of status register is 0 (BNE condition) if all stop bits \ i

have not yet been received. »—'
Z flag of status register is 1 (BEQ condition) if all stop bits

have been received. \ i

Operation:

1. Decrement the receiver bit count, A8.

2. EF70/F04D: If the bit just received on PBO was 0, a stop bit

was not received, as stop bits always have the value of 1.

Branch to EFDF/F0B3 to set either the break detected flag

or the frame error flag if a stop bit was not received.

3. If a stop bit was received, see if it was the last stop bit ex

pected. Do this by shifting the stop bit indicator in bit 7 of

0293, the RS-232 control register, into the carry, and then

adding 1 and the current receiver bit count, A8.

4. If the result of the above operation was not 0, RTS.

5. If the result of the operation in step 3 was 0, fall through to

EF7E/F05B to prepare to receive the next byte.

Check for Framing/Break Error

EFDB/F0B3-EFE0/F0B8

Called by:

BEQ at EE72/F04F in Check for Stop Bit.

If the check for a stop bit did not find a stop bit, but

rather found a 0, an error in reception has occurred. This error

is either determined to be a frame error if the data bits re

ceived included some bits set to 1, or is considered a break de

tected error if the data bits received so far were all 0's. t

Branch to the appropriate error routine for setting the RS- '—'

232 status register.

Operation: j [
1. If the byte received, AA, is nonzero, assume data bits were

transmitted and this byte is bad; a frame error has occurred.

Branch to EFD0/F0AB to indicate a frame error and then Jj
prepare to receive the next byte.

2. If the byte received, AA, was zero, assume a break was being

sent. Branch to EFCD/F0A5 to set the break detected flag j_J
and prepare to receive the next byte.

\ i

252 LJ

H
RS-232 I/O Routines

n ™

n Prepare to Receive Next Byte

EF7E/F05B-EF8F/F067

Called by:

i(Falls through from EF7D/F05A in Check for Stop Bits, , BNE
at EF92/F06A in Check for Start Bit, JMP at EFD8/F0B0 in

Handle Errors While Receiving from RS-232 Device.

[""I This routine is called whenever the computer is preparing
to receive the next byte from the RS-232 port. It is needed

whenever the previous byte has been received successfully,

when the previous byte has a receive error of any kind, or

when the check for a start bit does not find one.

This procedure enables FLAG/CB1 interrupts and disables

timer B/timer 2 interrupts on CIA#2/VIA#1. The receiver flag

for checking for a start bit, A9, is set to $90, indicating that

RS-232 receive is to check for a start bit.

Operation (64):

1. LDA $90.

2. STA DDOD, CIA #2 interrupt control register, thus enabling

the interrupt mask for FLAG, RS-232 received data.

3. ORA 02A1, STA 02A1 to turn on bits 7 and 4, indicating

that the FLAG interrupt is enabled.

4. STA A9, setting the receiver flag for checking for a start bit.

5. LDA $02. JMP EF3B to disable timer B interrupts from CIA

#2 and to indicate in 02A1 that timer B interrupts are

disabled.

Operation (VIC):

1. Enable CB1 interrupts for VIA #1.

2. Set the receiver flag for checking for a start bit, A9, to $90.

3. Disable VIA #1 timer 2 interrupts.

Check for Start Bit

EF90/F068-EF96/F06E

0 Called by:
BNE at EF5B/F038 in Receive RS-232 Bit.

|—I Called when the flag for checking for a start bit indicates

' —' there should be a start bit, this routine sees if a start bit has
been received by checking the bit just received from PBO

r-j (stored in bit 0 of A7 by the NMI Interrupt Handler routine).

! - This bit will be 0 if a start bit has been received, as start bits
are always represented as 0's.

r—>

11 253

u
RS-232 I/O Routines

u

If a start bit has been received, clear the flag to check for . ,

a start bit, A9, and exit. I !
If a start bit has not been received, branch to the routine

at EF7E/F05B which prepares for the reception of the next , .

byte, and which resets the flag to check for a start bit. I I

Operation:

1. See if bit 0 of A7 indicates a start bit has been received, as j |

shown by a value of 0. ' '

2. If a start bit has not been received, branch to EF7E/F05B to

prepare to receive the next byte and to reset the flag to

again check for a start bit.

3. If a start bit has been received, set the flag to check for a

start bit located at A9 to 0 arid RTS. (For version 3 of the 64

Kernal ROM, instead JMP E4D3 to a patch area, where A9

is set to 0, AB is set to 1, and RTS.)

Open RS-232 Channel for Output

EFE1/F0BC-F013/F0EC

Called by:

JMP at F26C/F325 in CHKOUT Execution; alternate entry at

FOOD by JSR at F459 in Open Logical File for R2-232 Device

and BPL at F05E in Open RS-232 Channel for Input (64);

alternate entry at F0E8 by BPL at F127 Open RS-232 Channel

for Input (VIC).

To prepare for RS-232 output, this routine must be exe

cuted. The output device number, 9A, is set to 2.

If 3-line handshaking is being used, CLC and RTS.

If x-line handshaking is being used, perform a

handshaking sequence between the 64/VIC (the data terminal)

and the the data communications equipment (DCE: modem, t .

etc.). This handshaking sequence is: Data Set Ready must be I—!
on, Request to Send must be on, wait for any RS-232 input to

complete, wait for Clear to Send to turn off, turn on Request « i

to Send, test for Clear to Send to turn on. If Clear to Send is I—!
not on yet, continue to check for it as long as the Data Set

Ready is still on. If this handshake sequence fails, set RS-232 t j

status register to Data Set Ready missing. 1 I
The EIA RS-232 standard states that when the Clear to

Send, Request to Send, and Data Set Ready conditions are on, , i

any signals on circuit BA, the Transmitted Data line (CIA #2 I—I
PA2/VIA #1 CB2), will be transmitted to the communication

254 ' U

H
RS-232 I/O Routines

H

n channel. The handshaking sequence for the x-line mode sees

that these conditions are met.

Operation:

P"] 1. Set the output device number, 9A, to 2.
2. If 3-line handshaking is being used, branch to step 13.

3. If x-line handshaking is being used, continue with step 4.

[~j 4. If DD01/9110 indicates Data Set Ready (from the DCE) is
missing, branch to step 12. If Data Set Ready is on, con

tinue with step 5.

5. If DD01/9110 indicates Request to Send is on (from the

64/VIC), branch to step 13. If Request to Send is off, con

tinue with step 6.

6. 64: If 02A1 indicates timer B interrupts for RS-232 recep

tion are enabled, loop until timer B interrupts are disabled.

VIC: If 91 IE indicates interrupts are enabled for

either timer 2 interrupts on VIA #1 or CB1 interrupts on

VIA #1, loop until these interrupts are both disabled. This

loop allows any RS-232 input to complete.

7. Test DD01/9110 for Clear to Send and loop until it is

turned off by the data communications equipment.

8. Turn on Request to Send in DD01/9110.

9. If Clear to Send is on, branch to step 13. If it is off, go to

step 10.

10. If Data Set Ready is still on, branch to step 9 to loop for

Clear to Send to turn on.

11. If Data Set Ready is off, fall through to step 12.

12. FOOD (64): store $40 in 0297 to indicate Data Set Ready

missing.

F0E8 (VIC): JSR F016 to set Data Set Ready missing

in 0297, and to enable timer 1 interrupts on VIA #1.

H 13. CLC and RTS.

CHROUT to RS-232 Device

H F208/F2B9-F20D/F2C6

Called by:

r^ BCC at F1E3/BEQ at F28D in Determine Output Device.

I I A call to the Kernal CHROUT vector is routed here if the
output device is RS-232. The routine retrieves the character to

I—I be output from 9E (64) or from the top of the stack (VIC). It

i J then calls the routine to put this character in the transmit
buffer and start transmission if this is the first byte to be sent.

Fl ' 255

u
RS-232 I/O Routines

u

Entry requirements: I

64: 9E should hold the character to be output; the X and Y I I
registers should be saved on stack.

VIC: top of stack should hold the character to be output. , ,

Operation (64): ^
1. JSR F017 to put the character in the transmit buffer and to

start transmission if this is the first byte to be sent. 1 |

2. JMP F1FC to restore the Y and X registers from the stack (—'

and restore the accumulator from 9E, the character that was

output, then exit.

Operation (VIC):

1. Pull the character to be output from the stack.

2. Save X and Y registers in 97 and 9E respectively.

3. JSR FOED to store the character in the transmit buffer, and

to enable timer 1 interrupts and set the timer 1 value if

timer 1 interrupts are off.

4. Restore the X and Y registers from 97 and 9E.

5. CLC and RTS.

Store Character in Transmit Buffer

F014/F0ED-F02D/F101

Called by:

JSR at F208/F2BE CHROUT to RS-232 Device. (The actual en

try point for 64 is F017.)

If the tail plus one of the transmit buffer is not equal to

the head of the transmit buffer, continue. However, the trans

mit buffer is full if the head and tail plus one are equal, in

which case wait until they are no longer equal by having

029D, the head of the RS-232 transmit buffer, incremented

whenever a byte is sent. The character to be transmitted is ! |

then stored in the tail location of the transmit buffer. ! '
Next, if timer A/timer 1 interrupts are already enabled,

which indicates that RS-232 transmission is already in I |

progress, simply RTS. However, if timer A/timer 1 interrupts —l
are not enabled, fall through to F02E/branch to F102 to set

timer A/timer 1, enable timer A/timer 1 interrupts, and send) }

the new byte. ^
While the receive buffer loses characters coming in when

it is full, the transmit buffer just waits for a character to be II

transmitted and space to open up in the buffer; it does not

lose characters if the buffer is full.

256 U

n
RS-232 I/O Routines

n —

rn Operation:

! ' 1. F014 (64): JSR F028, step 7, to see if timer A interrupts are
enabled. If not, load the timer A bit time value from 0299-

f—| 029A, enable timer A interrupts, and send the new byte.

f ! 2. F017/F0ED: LDY with the tail of the transmit buffer, 029E.
3. INY.

I—| 4. If the Y register is now equal to the head of the transmit

' ' buffer, 029D, wait until the head of the transmit buffer is
incremented by looping to step 2. On the 64, however, loop

to F014 (step 1), which then falls through to step 2.

5. STY in 029E, the tail of the transmit buffer.

6. Store the character to be transmitted at the location of the

tail of the transmit buffer before the tail was incremented.

That is, DEY and store character at (F9),Y.

7. F028 (64): If timer A interrupts are enabled, RTS. If timer A

interrupts are not enabled, fall through to F02E to set timer

A, enable timer A interrupts, and send new byte.

FOFC (VIC): If timer 1 interrupts are not enabled,

branch to F102 to set timer 1, enable timer 1 interrupts, and

send new byte. If timer 1 interrupts are enabled, RTS.

Prepare Timer A/Timer 1 Interrupt for RS-232

Transmission

F02E/F102-F04C/F115

Called by:

Fall through from F02D/BVC at FOFF in Store Character in

Transmit Buffer.

No timer A/timer 1 interrupts for CIA #2/VIA #1 are en

abled when this routine is called, indicating that RS-232 trans-

—n mission is not taking place. This routine prepares for RS-232

i 1 transmission by setting timer A/timer 1 to the value for one
bit time and then enabling timer A/timer 1 interrupts for CIA

-_ #2/VIA #1. Finally, jump to the routine to prepare for trans-

I I mission of the next byte.

Operation:

H 1. Set timer A (DD04-DD05) of CIA #2/timer 1 (9114-9115)

1 of VIA #1 to the value in 0299-029A, which contains the
time for transmission of one bit.

|—- 2. 64: LDA $81 and JSR EF3B to enable the interrupt mask for

timer B interrupts in the CIA #2 interrupt enable register

and to indicate in 02A1 that timer B interrupts are enabled.

' 257

u
RS-232 I/O Routines

u

VIC: Set 911E, VIA #1 interrupt enable register, to en- i j

able timer 1 interrupts. '—!
3. JSR EF06/JMP EFEE to the routine to prepare to transmit

the next byte. i j

4. 64: Store $11 in DDOE to load timer A counter from its '—!
latches and to start the timer, then RTS.

Prepare to Transmit Next Byte LJ
EF06/EFEE-EF2D/F015

Called by:

JSR/JMP at F044/F113 in Prepare Timer A/Timer 1 Interrupt

for RS-232 Transmission, BEQ at EEBD/EFA5 in Transmit RS-

232 Bit: NMI Interrupt Driven.

If 3-line handshaking is being used, no check of any

handshake sequence is done.

If x-line handshaking is being used, an attempt is made to

see if the Data Set Ready and Clear To Send lines are still on.

However, again the VIC-20 refers to the wrong location, using

9120 rather than 9110, thus not accurately testing these con

ditions. The 64 does a correct check of DD01 for these

conditions.

The next bit to be sent, the B5 variable, is set to 0, as is

the parity indicator, BD. The number of bits to be transmitted

is stored in B4.

Next, test to see if the head of the transmit buffer equals

the tail of the transmit buffer, indicating the buffer is empty. If

the buffer is empty, timer A/timer 1 interrupts are disabled

since there is nothing to send.

If the transmit buffer is not empty, get the next byte to be

transmitted from the RS-232 transmit buffer and store this

byte in B6, which is the byte from which bits will be picked | }
off and transmitted. Finally, increment the head of the trans

mit buffer.

Operation: «—I

1. See if 3-line handshaking is being used, and if so branch to

step 3. I [

2. 64: For x-line handshaking, test DD01 to see if the Clear To UJ
Send and Data Set Ready lines are still on. If so, continue

with step 3. If not, branch to EF31 to set the bit in the sta- i i

tus register that indicates Clear To Send is missing, or to '—»

258 LJ

n
RS-232 I/O Routines

H -

nEF2E to set the status register bit that indicates Data Set

Ready is missing.

VIC: For x-line handshaking, test 9120 bits 7 and 6 in

nanincorrect attempt to check for Data Set Ready and Clear

To Send on. Location 9110 should have been used, as noted

throughout this chapter. Normally, though, 9120 bits 7 and

n6are always 1 as they are used in scanning the keyboard

for the STOP key. Thus, x-line handshaking on the VIC will

never detect either DSR or CTS missing. Continue with step

3 if both bits are 1.

3. Store 0 in BD, the parity indicator, and in B5, the next bit to

be transmitted.

4. Set B4, the number of bits plus one to transmit, from the

value in 0298.

5. See if the head of the transmit buffer, 029D, is equal to the

tail of the transmit buffer, 029E. If equal, the buffer is

empty, so branch to EF39/F021 to disable timer A/timer 1

interrupts for RS-232 transmission.

6. If the head and tail are not equal, retrieve the next byte

from the transmit buffer pointed to by the head of the

transmit buffer and save this byte in B6, the byte to be

transmitted.

7. Increment the head of the transmit buffer, 029D.

Handle Errors While Transmitting to RS-232 Device

EF2E/F016-EF49/F026

Called by:

BPL at EF0F/EFF7 in Prepare to Transmit Next Byte, JSR at

F0E8 in Open RS-232 Channel for Output (VIC), JMP at F518

in Open Logical File for RS-232 Device (VIC); alternate entry

R at EF31/F019 by BVC at EF11/EFF9 in Prepare to Transmit
Next Byte; alternate entry at EF39/F021 by BEQ at EF24/F00C

in Prepare to Transmit Next Byte; alternate entry at EF3B JMP

P| at EF8D in Prepare to Receive Next Byte, JSR at F041 in Pre
pare Timer A/Timer 1 Interrupt for RS-232 Transmission, and

JMP at F07A in Open RS-232 Channel for Input (64).

| | The RS-232 status register, 0297, is set to Data Set Ready
missing or to Clear To Send missing, and then timer A/timer

1 interrupts are disabled.

■[""] It appears that the entry at F019 for the VIC never occurs
due to the now familiar incorrect test of 9120 for Clear To

n 259

u
RS-232 I/O Routines

u

Send. Also, at F016 on the VIC, the only entry possible of the « i

three listed is from FOE8 since the other two entries also check I—I
9120 rather than 9110. Entry from F0E8 is made if both Clear

To Send and Data Set Ready are missing. However, only Data « i

Set Ready missing is set. Thus, Clear To Send missing is never I—I
set on the VIC.

Operation: j^J

1. Prepare to turn on bit 6 of the status register (to indicate

that the Data Set Ready signal is missing). Branch to step 3.

2. EF31/F019: Prepare to turn on bit 4 of the status register (to

indicate that the Clear To Send signal is missing). Fall

through to step 3.

3. Set status register, 0297, as indicated from step 1 or step 2.

4. F021 (VIC): Disable timer 1 interrupts on VIA #1 for RS-

232 transmit.

EF39 (64): LDA $01 to prepare to disable timer A

interrupts for CIA #2.

5. EF3B (64): STA DDOD, EOR 02A1, STA 02A1, STA DDOD.

The possible values in the accumulator at entry to step 5

are: if falling through from step 4, $01 to disable timer A

interrupts; if coming from a jump at EF8D, $02 to disable

timer B interrupts; if jumping from F07A, $90 to enable

FLAG1 interrupts; if jumping from JSR at F041, $81 to en

able timer A interrupts. The flag for interrupts enabled in

02A1 is also set.

Transmit RS-232 Bit: NMI Interrupt Driven

EEBB/EFA3-EED6/EFBE

Called by:

JSR at FE9D/FEFC in NMI Interrupt Handler; alternate entry i ,

at EED1/EFB9 by BPL at EEEC/EFD4 and BNE at EEF0/EFD8 LJ
in Prepare Parity Bit and Set Counter for Stop Bits.

Whenever an NMI interrupt occurs the NMI interrupt I i

handler checks to see what caused the interrupt. On the 64, if I—I
a timer A interrupt from CIA #2 occurs, this routine is called.

On the VIC, if a timer 1 interrupt from VIA #1 occurs, this i \

routine is called. I—I
This routine prepares the next bit to be transmitted. This

next bit will be sent when the next timer A/timer 1 interrupt j i

occurs and is serviced by the NMI Interrupt Handler routine. I—I
The bit is placed in bit 2/bit 5 of B5.

260 u

RS-232 I/O Routines

r—i

I \

P—, First, see if the count of transmitted bits for this byte has

'. I reached 0 or is less than 0. If the count is 0, branch to retrieve
the next byte from the transmit buffer and prepare it for trans-

r—i mission. If the count is less than 0, branch to send a stop bit.

' 1 If the count of bits to transmit is not yet 0, the byte being

transmitted, B6, is shifted right one bit into the carry. If the

,—I carry is set by this shift, the X register is loaded with $FF;

i i otherwise, X is $00.
If the bit shifted into the carry was a 1, EOR BD, the par

ity work byte, with either $FF or $00. Then decrement the

transmit bit counter, B4. If the counter is now 0, branch to cal

culate the parity. Since the counter is originally set to one

more than the number of bits in a word, it reaches 0 only after

all bits in the word have been transmitted.

Finally, transfer the X register to the accumulator, with

$FF indicating the bit shifted from B6 into the carry was a 1,

while $00 indicates it was 0. The accumulator is then ANDed

with $04/$20 and the result stored in B5, the next bit to be

sent when the next timer A/timer 1 interrupt occurs. ANDing

with $04/$20 sets bit 2/5 of B5. Later in the VIC NMI inter

rupt handler for timer 1 interrupts, this bit is ORed with 110

in bits 7-5 to produce the CB2 line control. Thus if bit 5 is 1,

CB2 is held high at the logic 1 level, while if bit 5 is 0, CB2 is

held low at the logic 0 level. The NMI interrupt handler for

the 64 first ANDs the accumulator with $FB (1111 1011 bi

nary) to clear bit 2, then ORA B5 to set bit 2 to 1 or 0 depend

ing on what bit value is to be sent. Then the accumulator is

stored in DD00, thus placing this bit value onto CIA #2 data

port A bit 2, which is the RS-232 data output line.

Operation:

r~] 1. If B4, the transmit bit count, is 0, branch to EF06/EFEE to

' prepare to transmit the next byte from the transmit buffer.
2. If B4 < 0, branch to EF00/EFE8 to send a stop bit.

!~1 3. Shift the byte being transmitted, B6, right one bit into the

' ' carry flag (with a 0 shifted into bit 7 of B6).
4. Set X register to $00.

J~] 5. If the shift in step 3 cleared the carry, branch to step 7.

J 6. Set X register to $FF if carry was set by shift in step 3.

7. TXA and then Exclusive OR this value with BD. Thus, if

r~j the bit shifted into the carry in step 3 was a 1, this Exclu

sive OR will flip all bits in BD, while if the bit shifted was

n 261

LJ
RS-232 I/O Routines

u

a 0, BD is left unchanged. BD is used to indicate whether

an even or odd number of bits have been sent as l's. | j
8. Decrement the transmit bit counter, B4, and if it is now 0,

branch to EED7/EFBF to calculate the parity, as all the

data bits have now been transmitted. j j
9. EED1/EFB9: TXA again, with $FF representing a 1 shifted

into the carry bit in step 3, and $00 a 0 shifted into the

carry. j j
10. AND with $04/$20 (bit 2/5 is the only bit possibly turned

on) and store in B5, the next bit to be transmitted.

11. RTS.

Prepare to Send Stop Bit

EF00/EFE8-EF05/EFED

Called by:

BMI at EEBF/EFA7 in Transmit RS-232 Bit.

A stop bit, which is a data value of 1, is prepared to be

sent as the next bit to be transmitted. The correct number of

stop bits is maintained by the transmit bit counter being set to

a value of —2 or —1 in the routine to prepare the parity bit

and set counter for stop bit (or — 1 or 0 if no parity was being

used). The counter is incremented in this routine. Whenever

the timer A/timer 1 interrupt service routine for transmitting

RS-232 bits finds B4 less than 0, branch here to send a stop

bit. This routine is executed once if one stop bit is being sent

or twice if two stop bits are being sent (or just once for two

stop bits if no parity is in effect.)

Entry requirements:

B4, transmit bit counter, should hold — 1 if one more stop bit

is to be transmitted, and should hold — 2 if two more stop bits

are to be transmitted. [_,

Exit conditions:

B4 holds 0 if this is the final stop bit to be transmitted, and | J

holds — 1 if one more stop bit is to be transmitted. The X reg- '—'
ister holds $FF to prepare to send a stop bit value of 1.

Operation: L>
1. Increment B4.

2. LDX $FF to prepare for a stop bit value of 1.

3. Branch to EED1/EFB9 (step 9 of the Transmit RS-232 Bit LJ
routine) to set the next bit to be transmitted.

262 LJ

RS-232 I/O Routines

r-n Prepare Parity Bit and Set Counter for Stop Bits

I EED7/EFBF-EEF1/EFE7

Called by:

i""j BEQ at EECF/EFB7 in Transmit RS-232 Bit.
This routine is called once all the data bits in a word have

been sent. It determines the type of parity in effect—no parity,

j"""] even parity, odd parity, mark parity, or space parity—and cal
culates a value for the parity bit in accordance with the type of

parity being used. It also prepares a counter for the number of

stop bits to be sent to allow the interrupt service routine to

know how many stop bits to transmit.

If no parity is being used, the data line is set to 1, its idle

state, and the number of stop bits is calculated.

If even or odd parity is being used, the parity work byte,

BD, is tested to see if it is 0, indicating an even number of

data bits have been transmitted with the value of 1. If odd

parity is in effect, the parity bit is set to cause an odd number

of l's (including the parity bit) to be sent. Therefore, if odd

parity is used and the parity work byte shows that an even

number of bits have been sent with a value of 1, the parity bit

transmitted will be a 1 to add up to an odd number of parity

bits sent with a value of 1. Even parity works the same except

that an even number of bits are sent with the value of 1. No

tice that the 64/VIC uses the normal definition of even and

odd parity when transmitting, in contrast to their use when

receiving.

If mark parity is in effect, a parity bit of 1 is transmitted.

If space parity is in effect, a parity bit of 0 is transmitted.

Also, this routine checks the number of stop bits specified

in the RS-232 control register and sets the transmit bit counter,

("""[B4, such that the correct number of stop bits will be sent.

Exit conditions:

nThe X register contains $FF if a parity bit of 1 is to be

transmitted, and $00 for a parity bit of 0.

B4, the transmit bit counter, is — 1 if one stop bit is to be

n transmitted, —2 if two stop bits are to be transmitted, 0 if one

stop bit is used and parity is not generated, and — 1 if two

stop bits are used without parity.

[""I Operation:

1. Test the parity setting of the RS-232 command register,

0294, bits 7-5.

PI 263

LJ
RS-232 I/O Routines

u

2. If parity is not being used, branch to step 11.

3. If the parity check is disabled, branch to step 13 (for mark j '
or space parity).

4. If even parity is being used, branch to step 12.

5. For odd parity if the parity indicator work byte, BD, is not ' |

0 (indicating an odd number of bits were transmitted as

l's), branch to step 7.

6. Decrement the X register, thus the X register is now $FF, j |
indicating a parity bit of 1 will be sent.

7. Decrement the transmit bit counter, B4. It should now be

— 1 (unless parity is not being used, in which case B4

should equal 0 now).

8. See how many stop bits are specified in the RS-232 con

trol register. If one stop bit is used, branch to EED1/EFB9,

a point in the interrupt service routine (Transmit RS-232

Bit) that prepares the next bit to be transmitted from the

current value of the X register.

9. If two stop bits are to be transmitted, decrement B4, the

transmit bit counter. B4 should now be —2 (or — 1 if no

parity is being used).

10. Branch to EED1/EFB9 (see step 8).

11. If parity is not being used, increment the transmit bit

counter, B4, so that it is now 1. This setting results in no

parity bit being sent; rather, a stop bit is sent (or two if

specified in the control register). Then branch to step 6 to

prepare to send a 1 (the value for a stop bit).

12. If even parity is being used, see if the parity indicator work

byte, BD, is 0. If so, branch to step 7 (to send a 0 as a par

ity bit) as an even number of l's have already been sent. If

not 0, branch to step 6 to send a 1 as an odd number of

l's have already been sent.

13. If space parity is being used, branch to step 7 to transmit a j j
0 as a parity bit.

14. If mark parity is being used, branch to step 6 to send a 1

as a parity bit. j j

Close Logical File for RS-232 Device

F2AB/F364-F2C7/F38C LJ

Called by:

Fall through from F2AA/F363 in Determine Device for i j

CLOSE. ^

264 LJ

H
RS-232 I/O Routines

/ I

r^ Whenever a CLOSE for an RS-232 file is performed, this

> J routine is executed.

First, call another routine, which decrements the number

p-^ of open files and removes the entry for this file from the logi-

) 1 cal file table, device number table, and secondary address

table.

,__ Next, disable interrupts for VIA #1 for all conditions ex-

I I cept the RESTORE interrupt (VIC) or disable interrupts for all

conditions on CIA #2 (64).

On the VIC, the Request to Send and Data Terminal

Ready conditions are set on. Then the VIC also holds the trans

mitted data line high, which is the idle state for RS-232 I/O.

Finally, reset the pointers to the end of memory to include

these two 256-byte buffers.

A couple of notes about CLOSE: Both VIC Revealed and

the VIC Programmer's Reference Guide recommend that you

check that all data is transmitted before doing a CLOSE; both

references also recommend that you check bit 6 of 91 IF for a

value of 1, indicating that data is still being transmitted. While

these recommendations may be valid, bit 6 has no

documented use for RS-232 I/O in the VIC schematic. The

schematic does show that this bit is connected to pin 8 of the

user port, but pin 8's use is not defined. The Commodore 64

Programmer's Reference Guide recommends checking ST for a

value of 0 or 8 (the latter indicates an empty receive buffer)

before closing the RS-232 device.

Entry requirements:

The top of the stack should contain an index into the logical

file number table for this file.

_ Operation:

j I 1. Pull the index into the logical file number table for this file
from the stack.

^ 2. JSR F2F2/F3B2 to decrement the number of open files and

) i to remove the entry for this file from the logical file num

ber table, the device number table, and the secondary ad-

^^ dress table.

I 1 3. 64: JSR F483 to disable all interrupts from CIA #2 and

store 0 in 02A1. Continue with step 6.

{ , VIC: Set 91 IE, the VIA #1 interrupt enable register,

i i to disable interrupts for all conditions except the RESTORE

key interrupt.

PI 265

RS-232 I/O Routines

u

4. VIC: Set 9110 for Data Terminal Ready and Request to | ■

Send on. | j
5. VIC: Set 911C to hold CB2, Transmitted Data, high.

6. JSR FE27/FE75 to LDX from the low byte of the pointer to ,

the top of memory, and to LDY from the high byte of the | j
pointer to the top of memory.

7. If the high byte of the pointer to the RS-232 receive

buffer, F8, is not 0, an RS-232 receive buffer is still allo- {_)

cated. In this case, INY. The Y register holds the pointer to

the high byte of the end of memory. This INY reclaims

one page (256 bytes) of storage from the receive buffer.

8. If the high byte of the pointer to the RS-232 transmit

buffer, FA, is not 0, an RS-232 transmit buffer is still allo

cated, in which case INY to reclaim that page (256 bytes)

of storage from the transmit buffer. Thus, if both buffers

were still active, two pages (512 bytes) have been re

claimed from the buffers for user memory.

9. Reset the high bytes of the pointers to the receive and

transmit buffers to 0, indicating they are no longer allocated.

10. JMP F47D/F53C to reset the pointer to the end of memory

(0283) from the current values of the X and Y registers.

Also, exit with the carry set and the accumulator contain

ing $F0.

Disable RS-232 During Serial or Tape I/O

F0A4/F160-F0B6/F173

Called by:

JSR at ED0E/EE19 in Send TALK or LISTEN Command to Se

rial Device, JSR at F88A/F8FC in Common Tape Read and

Write.

If RS-232 interrupts are enabled, wait for the RS-232 op- [|

eration that set these interrupts to finish, then disable all RS-

232 interrupts. Thus, this routine prevents RS-232 operations

from interfering with the tape or serial operations which call I I

this routine. It also makes sure that RS-232 operations have ' '
first priority and are completed before tape or serial I/O

begins. [J

Operation:

l.PHA.

2. LDA from 02A1/911E. LJ

266 LJ

RS-232 I/O Routines

H

r—, 3. If the accumulator is 0, indicating no interrupt conditions

{ 1 for RS-232 are enabled, branch to step 10.
4. LDA from 02A1/911E.

,—, 5. 64: AND $03 (binary 0000 0011). Bit 0 is the timer A

I i interrupt enabled status, and bit 1 is the timer B interrupt

enabled status.

r-, VIC: AND $60 (binary 0110 0000). Bit 6 is the timer

I) 1 interrupt enabled status, and bit 5 is the timer 2 inter

rupt enabled status.

6. BNE to step 4 until timer B/timer 2 and timer A/timer 1

interrupts are both disabled. Timer A/timer 1 interrupts

for RS-232 transmit are disabled when the logical file is

closed. Timer B/timer 2 interrupts for RS-232 receive are

disabled after each byte is received.

7. LDA $10.

8. STA DD0D/911E to disable FLAG/CB1 interrupts.

9. 64: Store 0 in 02A1 to indicate no RS-232 interrupts are

enabled.

10. PLA.

11. RTS.

n

n

n

n

267

Chapter 10

n TaPe
I/O Routines

n

n

Tapel/O

Routines

' J With the cassette tape unit on the 64/VIC you can store and
retrieve sequential data. This data can be programs (BASIC

and machine language) or the contents of contiguous areas of

memory. The stored information can also be sequential files

where the data has been sent character by character to a 192-

byte buffer which is dumped to tape when full or when the

file is closed.

Each file of information on tape is preceded by block of

data called a header, which contains information about the file.

A tape identifier is the first byte for a header. The identifier

byte indicates whether the following block is sequential data, a

program, or an end-of-tape marker. Sequential files start with

a header that has an identifier byte of 4, followed by 192-byte

blocks of saved data, each starting with an identifier byte of 2.

Program files contain headers with identifier bytes of 1 or 3,

followed by the program data (without any tape identifier).

Both program and sequential files are optionally followed by

an end-of-tape header with a tape identifier of 5. When stor-

ing data to tape, if you use BASIC'S SAVE or the Kernal's

SAVE routine, the stored data will be in program format.

When retrieving data from tape, program data will normally

J be retrieved through BASIC'S LOAD or the Kernal's LOAD
routine. Data recorded in sequential format will usually be re-

(—, trieved in through BASIC'S OPEN, GET# or INPUT#, and

J i CLOSE or the Kernal's OPEN, CHRIN, and CLOSE routines.
You can, however, treat the program data as a sequential

— file and use BASIC'S OPEN, GET# or INPUT#, and CLOSE or

j I the Kernal's OPEN, CHRIN, and CLOSE routines to read the
data. Normally, you wouldn't try to retrieve data stored in

P_, sequential file format with BASIC'S LOAD or the machine lan-

1 i guage LOAD routine.

When sequential files are used, the bytes that are sent to

r^ tape are first collected in the 192-byte cassette buffer at 033C;

)_ 1 each time the buffer fills it is dumped to tape and when the

file is closed the last partially filled buffer is dumped to tape.

H 271

Tape I/O Routines

u

u

Data stored as a sequential file thus appears on tape as a if

ten-second leader followed by a 192-byte header that contains '—»
a tape identifier of 4, the starting and ending address of the

the tape buffer, and the filename of the sequential file. (A t t

leader is just the tape section preceding a block of data; the I—I
leader contains recorder pulses used in adjusting the software

tape reading mechanism. The header is stored twice in two t »

identical blocks—except for block countdown characters). *—'

Following this header are the seqeuential data areas—192-byte

buffers that have been dumped to tape.

Each 192-byte buffer is stored as two identical blocks with

a short interblock gap between them (in the same format as

the header for the sequential or program files, with block

countdown characters and a checksum for each of the two

blocks that make up the buffer). Between one two-block 192-

byte buffer and the next is another leader, however it is only

about three seconds long. When the tape file is closed, the

buffer is dumped to tape with its partially filled contents fol

lowed by a byte with a value of zero. A sequential file can

also be followed by an end-of-tape header.

Data stored in program format is stored on tape in a dif

ferent general format than sequential data, although the in

dividual bytes are written in the same manner. A header is

stored on the tape followed by the program. The header gives

the starting and ending address of the following program. The

header also contains as its first byte a tape identifier that in

dicates whether the program that follows is relocatable (tape

identifier of 1) or non-relocatable (tape identifier of 3). A tape

identifier of 5 is also used as an end-of-file header. This end-

of-file header has exactly the same information as the one at

the start of the program except for the identifier. It is used to i ,

prevent loads from going beyond this point on the tape. The 1 1
header also contains the filename, if any, of the program that

follows. j /

When doing a BASIC SAVE or using the Kernal SAVE l_i
routine, if you specify an even-numbered secondary address,

the tape identifier which is placed on the tape is 1 (relocatable t i

program file). If the secondary address is odd, the tape identi- I >
fier is 3 (nonrelocatable program file). If the secondary address

specified (which is contained in B9) has bit 1 set to 1 (for ex- , ,

ample, this would be true for a secondary address of 2 or 3), (i
the end-of-file header with a tape identifier of 5 is written

272 u

Tape I/O Routines

r—•j following the program (or the sequential file). A relocatable

I. ! program tape refers is one for which you may specify the
starting address in the X and Y registers when you do a load.

i—i Just because you can relocate a program to a different area

! l than it was saved in does not necessarily mean the program
will execute correctly in this new area—if it is a machine lan-

r—; guage program, it must not have any absolute address ref-

^ \ erences to the area from which it was saved, for example.
A nonrelocatable program tape is one that can't be re

located to a different starting area when you do a load, no

matter what you specify in the X and Y registers or in the

secondary address. Indeed, if you want to create a non-

relocatable program tape, save it with an odd secondary ad

dress, thus writing a tape identifier of 3. Thus you make

certain that upon load the program will be loaded back to the

correct location and that no secondary address is needed for

the load. Even supposedly nonrelocatable tapes can be loaded

back to a different area than the program was saved from,

though. For example, you can specify your own load addresses

for a program after loading the header, then jump to the por

tion of the tape load routine that loads the program. Similarly,

if you understand how the tape routines work, you can do

such things as save program data to tape without headers, cre

ate tapes that upon loading begin execution immediately, save

to tape from memory beginning at or above location 8000 (on

the VIC, saves above 8000 are normally prohibited), and vari

ous other unusual effects.

Figure 10-16 (page 318) illustrates the format of program

tape storage. Both the header and the program are each re

corded twice, as two identical blocks separated by an

n interblock gap. Leaders precede the various blocks on the tape;

about a ten second leader precedes the first header block; a

leader less than one second long appears between header

n blocks one and two and between program blocks one and two;

and about a three second leader separates the header from the

first program block.

r--} In addition to the actual data stored in that block, each

t \ contains control characters. At the front of each block are nine
block countdown characters. The countdown characters that

,—») precede block one have their high bits on; those before block

i J two have their high bits off. The tape load routines examine

the block countdown characters when they encounter a new

I I 273

Li
Tape I/O Routines

block to make sure that the block matches what the routines

expect at that point. For example, if the tape routines have just j [
completed reading program block one, the next block the

routines expect is program block two, which would have block

countdown characters with their high bits off. If the block ([
countdown characters do not match what is expected at that

particular point, the tape load routines keep searching through

the tape to try to find the block countdown characters that J j
match.

Another control character for each block is a checksum

that is recorded as the last byte of each block. This checksum

is the parity of all bytes that were saved for this block. When

loading blocks, a checksum is also computed over all the bytes

loaded. (This is done for both the header and the program.)

The checksum for the header computed during the load is

compared to the last byte of header block two, the header's

checksum during the save. If not equal, a checksum error is

flagged. Similarly, the checksum for the program computed

during the load is compared to the last byte of program block

two, the program's checksum during the save, and if they are

not equal, a checksum error is indicated. It appears possible

that a checksum error could occur on an otherwise perfect

load where the loaded area is exactly the same as the saved

area. If block two contained parity errors during its save op

eration, its checksum would differ from the error-free loaded

combination of save blocks one and two. Also, while quite

rare, double bit errors (an even number of bits in a byte are

incorrect) occuring in bytes in both save block one and two

could result in a load where the load checksum matched the

save checksum but the loaded area is actually different than

the saved area.

Looking Closer L-J
The above discussion talks about how tapes are recorded

when you just view their format from the level of headers, I (

blocks, interblock gaps, and leaders. Tape storage can be

viewed on the bit level as well. When writing to tape the sig

nal to the tape write line is reversed, which causes the polarity Jl
of the signal being written to tape to reverse. Figure 10-1

shows this model of tape magnetization.

u

274 ;. U

n

n

Tape I/O Routines

Figure 10-1. Model of Magnetic Tape Magnetization

One direction Opposite direction

of magnetic flux of magnetic flux

I on tape I on tape

\/

z\
Direction of magnetization on tape

i \

Corresponding square wave representation

Each bit that is written to tape is broken up into four of

these cycles, of original polarity/reversed polarity/original

polarity/reversed polarity. Four of these cycles make a bit,

whether that bit is a 0, a 1, a leader bit, or a word marker bit.

The first two cycles make up the first dipole (literally, two

poles), while the second two cycles make up the second di

pole. To differentiate between leader bits, 0 bits, 1 bits, and

word marker bits, the cycles are written for varying durations.

For the particular U.S. NTSC VIC we have tested, leader (or

leader-0) cycles were of approximately 174 microseconds, 0

cycles were of approximately 169 microseconds, 1 cycles were

of approximately 247 microseconds, and word marker cycles

were of approximately 332 or 328 microseconds. The way

these times were derived is explained later. When writing the

four cycles for a bit to tape, the cycles are broken up into two

dipoles of two cycles each. For a leader bit the tape write

routines put out all leader-0 cycles, or two leader dipoles. For

a 0 data bit, the routines output two 0 cycles followed by two

1 cycles (a 0 dipole followed by a 1 dipole). For a 1 data bit,

the routines put out a 1 dipole followed by a 0 dipole. For a

word marker bit, a word marker dipole followed by a 1 dipole.

275

Tape I/O Routines

While tapes are thus written in cycles, they are read in di-

poles, where each negative (high-to-low) transition on the

FLAG/CA1 tape read line frames a dipole. Figure 10-2 illus

trates the meanings of the terms cycle, dipole, and bit as ap

plied to tape.

Figure 10-2. Cycle, Dipole, and Bit

u

LJ

U

u

Cycle

Dipole

Bit

Various techniques allow for some variation in the speed

at which tape is recorded and read back. The tape read

routines are treated in much more extensive detail later in this

chapter.

You may wonder why it is not normally possible to save

to tape on the VIC at addresses greater than or equal to 8000

(32768 decimal). The reason is that during tape saves AC-AD

is the pointer to the area being saved, and the high byte of the

pointer (AD) is also used as an indication that a block has been

completely saved. When all the bytes in a block have been

saved and the checksum has also been saved, AD has its high

bit turned on. The save routine checks AD to see if this high

bit is on. When it detects the high bit on, the tape save then

writes the leader between blocks 1 and 2, or turns off the tape

motor if it just finished block 2. Having the high bit on in AD

means that its value is at least $80. Thus, a save with (AC) of

greater than or equal to 8000 looks the same as the end of

block flag, and when trying to save from such an area only the

header is written, followed by the leader between the header

and the expected program (which is not recorded) followed by

the leader between blocks 1 and 2. Figure 10-3 illustrates a

tape saved from greater than or equal to 8000 on the VIC.

276

u

LJ

U

u

Tape I/O Routines

n
Figure 10-3. Saving to Tape Above 8000 on the VIC

Seconds

into tape ->

after record

and play

pressed

0 1 2 3 4 5 6

Leader

7 8 9 10 11 12 13

Header

(valid)

14 15 16

Leader

n

This prevention of saving to tape from greater than or

equal to 8000 is not carried over into the Commodore 64. The

64 will save to tape from above 8000 since it no longer uses

AD for two conflicting purposes.

Here are a couple of questions you also might have about

the tape routines:

Can you record on both sides of a cassette tape? Yes, sepa

rate tracks are used, as recording on the back side does not

wipe out the programs on the front side.

On the subject of errors during tape loads, experiments

with creating even just a one second dropout for program

block one caused more than 31 errors and thus produced an

unrecoverable read error. The maximum amount of time al

lowed for the total amount of dropouts should be 31 times the

length of time to read a byte (832.4 X 9 [8 data bits + parity

bit] + 1154.7 for word marker bit = 7491.6 + 1154.7 =

8646.3 microseconds per byte X 31 = .268 second maximum

dropout).

Can machine language programs be loaded from BASIC? Yes.

If you don't want your machine language programs to relocate

upon loading by BASIC, you can guarantee they will be

nonrelocatable by saving the machine language program with

an odd secondary address to create a tape identifier of 3.

However, if you are loading a machine language tape and are

not sure what kind of tape identifier it has, you can also as

sure a nonrelocatable tape load by specifying a nonzero value

for your secondary address, like LOAD "TEST",1,1.

Program Examples

Following are examples of some ways in which to use the tape

routines from machine language and from BASIC.

I i
277

Tape I/O Routines

Figure 10-4 shows how you might do a machine language

save; Figure 10-5 shows how to do a nonrelocatable machine

language load; Figure 10-6 shows how to do a relocatable ma

chine language load; Figure 10-7 shows how to write to

sequential files using machine language; Figure 10-8 shows

how to read from sequential files using machine language; Fig

ure 10-9 shows how to save BASIC programs to tape; Figure

10-10 shows how to load a BASIC program from tape; Figure

10-11 shows how to verify a program from BASIC; Figure 10-

12 shows how to write to a sequential file from BASIC; and

Figure 10-13 shows how to read from a sequential file from

BASIC.

Figure 10-4. Machine Language Save

LDA $01 ; logical file number

LDX $01 ; device number for tape

LDY $01 ; odd secondary address for nonrelocatable file, even

for relocatable

JSR FFBA ; SETLFS

LDA $09 ; number of characters in name

LDX $40 ; X and Y contain address of

LDY $04 ; filename, in this case at 0440

JSRFFBD ;SETNAM

LDX $FE

LDA $00 ; low address of start of save

STA $00,X ; zero page location (FE)

LDA $20 ; high address of start of load, in this case 2000

STA 01,X ; zero page location

TXA ; accumulator has pointer to zero page location of start

of save

LDX $50 ; low byte of ending address + 1 of save area

LDY $25 ; high byte of ending address + 1 of save area, in this

case 2550

JSRFFD8 ;SAVE

LJ

LJ

U

LJ

LJ

U

278

U

LJ

U

D

n

Tape I/O Routines

Figure 10-5. Machine Language Load (Nonrelocatable)

LDA $01 ; logical file number

LDX $01 ; device number for tape

LDY $01 ; nonzero secondary address for nonrelocatable load
JSR FFBA; SETLFS

LDA $09 ; number of characters in name

LDX $40 ; X and Y contain address of

LDY $04 ; filename, in this case at 0440

JSR FFBD; SETNAM

LDA $00 ; 0 for load/1 for verify

JSR FFD5; LOAD

Figure 10-6. Machine Language Load (Relocatable)

LDA $01 ; logical file number

LDX $01 ; device number for tape

LDY $00 ; secondary address of zero for relocatable load (tape

identifier byte must be 1, identifier of 3 will

force nonrelocatable load)

JSR FFBA ; SETLFS

LDA $09 ; number of characters in name

LDX $40 ; X and Y contain address of

LDY $04 ; filename, in this case at 0440

JSR FFBD ; SETNAM

LDA $00 ; 0 for load/1 for verify

LDX $00 ; low byte of address of start of load

LDY $60 ; high byte of address of start of load, in this case 6000

JSRFFD5 ;LOAD

279

U
Tape I/O Routines

LJ

Figure 10-7. Writing Sequential Files from Machine j }

Language '—'

OPEN for sequential file:

LDA $01 ; logical file number j_j
LDX $01 ; device number for tape

LDY $01 ; secondary address of 1 indicates tape write

JSRFFBA ;SETLFS | i

LDA $09 ; number of characters in name

LDX $40 ; X and Y contain address of

LDY $04 ; filename, in this case at 0440

JSRFFBD ;SETNAM

JSRFFC0 ;OPEN

Write to sequential file:

LDA $20 ; sample value to write to file

JSRFFD2 ;CHROUT

CLOSE the sequential file:

LDA $01 ; logical file number

JSRFFC3 ; CLOSE

Figure 10-8. Reading Sequential Files from Machine

Language

OPEN for sequential file:

LDA $01 ; logical file number

LDX $01 ; device number for tape

LDY $00 ; secondary address of 0 indicates tape read

JSRFFBA ;SETLFS

LDA $09 ; number of characters in name

LDX $40 ; X and Y contain address of

LDY $04 ; filename, in this case at 0440

JSRFFBD ;SETNAM i >

JSRFFC0 ;OPEN LJ

Read 256 (decimal) bytes from sequential file and store at an

area starting at 0500: \ (

LOOPLDX $00 ; X register not changed by CHRIN 1—'
JSR FFCF ; CHRIN

STA 0500,X] (

INX L—>
BNE LOOP

CLOSE the sequential file:

LDA $01 ; logical file number

JSRFFC3 ; CLOSE

280 -

Tape I/O Routines

1 \

pi Figure 10-9. Saving BASIC Program to Tape

SAVE "filename"

P^ Optional format:

- J SAVE "filename", device number, secondary address

Device number is 1 for tape.

/ [Secondary address is odd for tape identifier of 3 a to indicate a

nonrelocatable program.

Secondary address is even for tape identifier of 1 to indicate a

relocatable program.

Secondary address has bit 1 on (address is 2, 3, 6, 7, etc.) to

write an end-of-tape header following the program.

Figure 10-10. Loading BASIC Program from Tape

LOAD "filename"

Optional format:

LOAD "filename", device number, secondary address

Device number is 1 for tape.

Secondary address is zero to allow a program with an identi

fier byte of 1 to be relocated (normally you won't be able to

specify the X and Y registers from BASIC, though, so the

secondary address is usually not specified as zero).

Secondary address is nonzero to force a tape to be

nonrelocatable no matter what its tape identifier (this nonzero

value is recommended if loading machine language tapes for

which you don't know the tape identifier).

["7 Figure 10-11. Verifying BASIC Program from Tape

VERIFY "filename"

n

281

Tape I/O Routines

u

Figure 10-12. Writing to Sequential Files from BASIC

OPEN the file: wJ
OPEN logical file number, device number, secondary

address/'filename" \ j

Device number is 1 for tape.

Secondary address has bit 0 on (address is 1, 3, 5, etc.) for j

writing to tape ,J^J

Secondary address has bits 0 and 1 on (address is 3, 7, 11,

etc.) for writing to tape followed by an end-of-tape marker.

Writing a character to the file:

PRINT#logical file number, variables

CLOSE the file:

CLOSE logical file number

Figure 10-13. Reading Sequential Files from BASIC

OPEN the file:

OPEN logical file number, device number, secondary address,

"filename"

Device number is 1 for tape.

Secondary address is 0 for reading from tape.

Retrieve a character from the file:

GET#logical file number, variable

Or, to retrieve a variable from the file:

INPUT#/og/ca/ file number, variable

CLOSE the file:

CLOSE logical file number ■

CMD can also be used to write to tape. See Russ Davies' <—'
COMPUTERS Mapping the VIC for a way to use BASIC'S SAVE

to save areas of memory to tape other than the normal BASIC •, /

program. ^-i

Variables Used in Tape Routines v ,
92 U
0/1 timebase fluctuation (per bit read). The difference between

the actual time between FLAG/CA1 interrups for the first di- \ :

pole just read (see the description of the routine at F926/F98E W

for what dipole means) and the adjustable baseline time that

282 U

n
Tape I/O Routines

n

n

n

determines whether a dipole is to be considered to have a

value of 0 or 1, plus the difference between the actual time for

the second dipole just read and the 0/1 adjustable baseline

time. 92 is reset to 0 after each bit has been read.

Figure 10-14 demonstrates what is meant by adjustable

baseline time and gives the typical equivalent times (for U.S.

VIC's with NTSC video) for the various baselines at the start

of reading a tape. (The chart is not drawn to scale.)

Figure 10-14. Adjustable Baseline Concept

Noise Dipole time

in this range

isAO

Dipole time

in this range

is A 1

Dipole time

in this range is

a word marker

Dipole Time

in this range

is an error

Time 0 240

(in microseconds) Noise/0

adjustable

baseline

432

0/1

adjustable

baseline

584

1/wm

adjustable

baseline

760

wm/error

adjustable

baseline

If the resulting value in 92 after reading a bit is greater

than or equal to $80 (128) then for the next bit read, B0 is in

cremented to add more time to each of the adjustable

timebases.

The 0/1 adjustable timebase and the other adjustable

timebases are increased if the two dipoles balance to higher

value than the 0/1 timebase, while the timebases are de

creased if the two dipole balance to a lower value than the

0/1 timebase. (Or the 0/1 timebase line — 76 microseconds if

reading leader bits.)

Thus, through comparing the actual time it takes to read a

bit to the time the tape routines expect it would take to read

this bit, the tape routines are able to make adjustments to their

predictions for what values are to be considered noise, 0, 1, or

283

Tape I/O Routines
u

a word marker for the next bit. Through this method, the . f

64/VIC tape casette unit can read tapes that were recorded at LJ

slightly different speeds than the speed the casette tape unit is

reading. There are limits in tape speed variation beyond which .

this correction mechanism will not work. i 1

Let's see how this correction might actually work. When

reading the all 0 dipoles in the leader (specifically in the lead- }

er before the header) the VIC we tested seemed to read a di- I)
pole time equivalent to 348 microseconds. Since we're only

reading 0 dipoles, we read a dipole of 348 and then another

dipole of 348. When computed in F999/F9F3, the resulting

value of 92 is $0C, and thus for the next bit BO is decremented

for less basetime with the 0/1 adjustable timebase equivalent

to 428 microseconds. Due to the mathematics involved, loca

tion 92 seems to eventually force the adjustable 0/1 timebase

value to stalibilize to a range of 404-412 microseconds.

However, if the tape is running slow, the adjustable

timebases will again stabilize, but this time at higher values.

93

During tape read, this flag is read to determine whether a tape

load (0) or a verify (1) is being done.

96

Indicates during tape load:

If 0, either leader the preceding block has not yet been rec

ognized, or the block has been recognized and now the rou

tine is actually reading data from the block.

If 16-126 (decimal), we have read at least 16 leader bits

during read of the tape leader either before the first block (of

header or program) or between blocks 1 and 2, and now we're

waiting for the word marker at the end of the leader. j]

9B

This is the parity work byte during tape load and save, with -

bit 0 used to calculate parity. Odd parity is used, where the {^J

parity bit is calculated such that the total number of l's (for all

8 data bits and the parity bit) is an odd number. ,

9C LJ
During tape load:

1 when a byte has been completely received. j i

0 when waiting for next byte or receiving current byte. ^

284 LJ

H
Tape I/O Routines

n

n 9E

I. i Tape save: temporary storage for tape identifier header.
Tape load: Pass 1 error index value; if nonzero then this is

r"S two times the number of errors. Indexes into stack where error

1 I addresses are stored. 9E limited to maximum value of $3D,
resulting in stack locations 0100-013D possibly used for error

i*-j storage, a maximum of 31 possible errors.

1 \ Tape header load: Index into filename during comparison

of filename from tape header to file name specified in LOAD.

Holds the character to be output during CHROUT to tape.

9F

Tape load: Pass 2 error correction index, indexes through stack

error location addresses. Limited to value no greater than the

pass 1 error correction index.

Tape header load: Index into tape buffer during compari

son of filename from tape header to file name specified in

LOAD.

A3

Count of bits remaining to be written for a byte (during tape

write) or bits remaining to be read for a byte (during tape

read). Initialized to 8 before each byte. Decremented after each

bit is written or read.

During tape write, when A3 is decremented to 0, then it's

time to set up the parity bit to be written, and when A3 is

decremented to — 1, it's time to prepare the next byte to be

written, so reset A3 to 8.

During tape read, when A3 is decremented to — 1, then

the parity bit has just been read and it's time to see if the par

ity bit just read indicated a parity error. After this it's time to

f*-*j read next byte, so reset A3 to 8.

'-J A4
During tape save: flag to indicate which dipole has been writ-

p"| ten. After writing a dipole A4 is equal to 1 if we just wrote the

— first half of the dipole, while it's 0 if we wrote read the second

half of the dipole.

P"} During tape load: flag to indicate which dipole has been

read. After reading a dipole A4 is equal to 1 if we just read the

first half of the dipole, while it's 0 if we just read the second

f—! half of the dipole.

285

Tape I/O Routines
Li

U

A5 • , ,

During tape save, counter for block countdown characters that LJ

are written to tape before each block's data actually begins.

Initialized to 9 for each block, so each block contains 9 block (,

countdown characters. For the first block, the countdown I—I
characters have their high bit on, while they don't for the sec

ond block. Later, during tape load operations, the block count- . j

down characters can be used to determine whether block 1 or <—1
block 2 is being read.

A6

During CHROUT or CHRIN to tape, A6 is a counter of the

number of bytes that have been read from or written to the

tape buffer.

A7

When writing leader dipoles to tape, A7 is used as a counter

for an inner loop that must be decremented to 0 each time the

loop is performed before the outer loop for writing leader di

poles has its counter decremented. Results in a total of A7's

value x AB's value + 1 leader dipoles being written. Set to 0

before writing leader for header or program. Set to 80 (deci

mal) before writing leader between blocks.

During tape load operations, indicates which block is cur

rently being loaded. If A7 contains 2, then the first block is

being loaded; if A7 contains 1, second block is being loaded;

and if A7 contains 0 then all blocks have been loaded.

A8

During tape save: switch for word marker write. If A8 contains

0, then write the long time for a word marker dipole. If A8

contains 1 then the long time for a word marker dipole has

been written already. \ !

During tape load if nonzero then the byte just read is

considered in error. (For example, if a parity error occurs.)

A9 . U
During tape save: Switch for writing word marker. If A9 con

tains 0, then write a word marker dipole. If A9 contains 1 then , >

the word marker dipole has been written already. LJ
During tape load: 0/1 balanced counter. Each time a 0 di

pole is read, this value is incremented. Each time a 1 dipole is , ,

read, this value is decremented. 1 I

286 LJ

H
Tape I/O Routines

n ■ ~~
nWhenreading the all 0 leader dipoles and this value

reaches 16 (decimal), then 96 is set. The maximum value A9

can be incremented to is 126 (decimal).

nWhen actually reading data bytes, A9 is initialized to 0

before each byte. Since each data bit contains one dipole that

is a 0 and the other dipole is a 1, after each bit is read, this

r—} counter should be 0 at the end of each bit. If it is not 0, then

' \ the byte error flag, B6, is set for this byte.

AA

During tape load this location indicates the action to be taken

for the byte just read:

If AA contains 0, then we're waiting for the first block

countdown character to arrive. Note: AA is initialized to 0

before read of first header block and before read of first pro

gram block.

If AA is from 1-63 (decimal), then block countdown

characters are being read.

If AA contains $40, then valid block countdown charac

ters have arrived, and this byte received is to be treated as a

valid data byte.

If AA contains $80, then the first block has been loaded

and we're waiting for the second block.

AB

When writing leader dipoles to tape, AB is used as a counter

for an outer loop that must be decremented to — 1 before the

routine will quit writing leader dipoles. Results in a total of A7

value x AB value +1 leader dipoles being written. Set to 105

(decimal) before writing leader for header, 20 (decimal) before

writing leader for program, and 0 for leader between blocks.

^ During tape load, once both blocks have been read and

/ I the load is considered complete, then compute the parity over
^~ all bytes loaded. This parity or checksum should be the same

— as the checksum that has just been read as the last byte of the

I (tape program or header which was similarly computed over all
bytes saved to tape. If not equal, then set a checksum error

_ status. This checksum computation is done both for the header

L] an<3 the program.
The checksum that was recorded during the save at the

_ end of the first block does not appear to be used during the

)] tape load.

287

Tape I/O Routines
li

u

(AC) , (

During tape save, this pointer (AC) is initialized to the start of I)
the save area, which is (Cl), and then after each byte saved it

is incremented. fv ,

However, each time before a byte is written to tape (right x I
after the word marker long dipole has been written to tape), a

check is made to see if AD is greater than or equal to $80. , .

There are two ways that AD can be greater than or equal to < |

$80 on the VIC, while just one way on the 64.

One way (both 64 and VIC) is that once the save area and

the checksum have been written for a block the high bit is set

on for AD through a SEC, ROR AD sequence.

AD

The other way on the VIC is if you originally specified that

you wanted to saVE from an area greater than or equal to

8000, which would have set (AC) to a value greater than

greater than or equal to 8000 and AD greater than or equal to

$80.

When AD is found with its high bit on, then write the

interblock leader to tape if the first block was just finished, or

turn off the tape motor if the second block was just finished.

Thus, a save from greater than or equal to 8000 on the

VIC causes, after a valid header has been written to tape, lead

er dipoles to be written, specifically it appears the interblock

leader would be written, then the tape motor turned off.

Through this dual use of AD on the VIC (both as block

end indicator and as the high byte of the save area), it is

impossible to save areas on the VIC from greater than or equal

to 8000 through the normal tape save routines.

During tape load, this pointer (AC) is initialized to the

start of the load area, which is (Cl), and then after each byte [I

loaded it is incremented. ^

(AE) , ,

Pointer to the end + 1 of the save area. Since when (AC) = ^J
(AE) the save is considered complete for this block, and the

checksum written, (AE) should be specified as one more than , ,

the last byte you want to save. For example, to save the contents LJ
of 2000-2500, you should specify a save area of 2000-2501.

Pointer to the end of the load area. LOAD is considered (

complete for this block when (AC) = (AE). LJ

288 LJ

Tape I/O Routines

n

n BO
'__ \ During tape load, BO is a factor used in computing what val

ues to set for the adjustable baseline times for the next bit

nread (see 92 for what adjustable baseline times means).

If BO > 0, then more time is added to the adjustable base

line times.

rn If BO < 0, then time is subtracted from the adjustable

! \ baseline times.

If BO = 0, then no change is made in the adjustable base

line times.

Bl

During tape load: value equivalent to the tape dipole time mi

nus the time between reading timer B/timer 2 and resetting

timer B/timer 2. Bl is a one byte field that the two byte timer

B/timer 2 value has been compressed into; bits 2-9 of timer

B/timer 2 value since timer 2 was last set are stored into bits

0-7 of Bl

Temporary variable during timer A/timer 1 set up.

(B2)

The pointer to the start of the tape buffer with a default of

033C.

B4

During tape load, is set to nonzero when tape load routines

are ready to receive data bytes.

Is reset to zero between blocks.

B5

During tape load, indicates where tape load routine is cur

rently reading from.

fmmm^ If nonzero, then tape load is before block of data waiting

I ! for word marker at the end of the leader bits.

If zero, then actually reading bytes from the block. Set to

zero once word marker has been received after 96 has been set.

' l B6
During tape load, this flag is set to nonzero if the byte just

[—"5 read was considered in error—either parity error, dipole mis-

■- - match, too long dipole, or verify error.

64: During tape save, set to 9 when preparing to write

r—| block countdown. During tape load, the end-of-block flag.

n 289

Tape I/O Routines

U

B7 , j

During tape save: number of characters in filename. 1 i

B9

During tape save: if even, then tape identifier recorded is 1 j j

(relocatable program); if odd, then tape identifier recorded is 3

(nonrelocatable program). If bit 1 is on, tape identifier is set to

5 for an end-of-tape header. ! I

During tape load: if reading a tape with tape identifier 3

(nonrelocatable), then secondary address not used as tape is

definitely nonrelocatable. If reading a tape with tape identifier

1 (relocatable) then a 0 secondary address allows a relocatable

load, a nonzero forces a nonrelocatable load.

BD

During tape save, the byte that is being saved to tape. After

one bit is written to tape, the byte is shifted right one bit, and

this procedure is repeated until all 8 bits have been written.

During tape load, once the byte has been read it is stored

in BD for passing to the byte action routine that handles the

byte just read.

BE

During both save and load, the block count.

If BE contains 2, then two blocks remaining to save/load.

If BE contains 1, then one block remaining to save/load.

If BE contains 0, then both blocks have been

saved/loaded.

BF

During tape load, the bits read from tape are rotated into BF

high to low to build a byte. Once eight bits have been re

ceived the byte is considered complete. (

CO ^
Tape motor interlock switch. A nonzero value in CO, which is

only possible if some tape buttons are down (as the normal j J

IRQ interrupt handler resets CO to 0 if no buttons are down), ^
prevents any change of tape motor switch as long as the de

fault IRQ interrupt handler is active. j I

During tape load or tape save, CO is set to nonzero once a ^
tape button has been pressed. CO will be reset to zero once

tape load or save are done. i /

A zero in CO, which is possible with or without buttons down, '—"

290 LJ

H
Tape I/O Routines

n possibly allows the tape motor to be turned on within the nor

mal IRQ interrupt handler. Possibly allows is used because to

turn the tape motor on for the VIC 911C must have bits 2 and

r*S 3 set to 1 at entry to the IRQ interrupt handler.

' I For the VIC, I found that you could turn off the tape mo
tor (outside of the tape routines) by POKE 37148 with any

r—, value from 0-7 or 10-11, even if CO is 0.

I \ For example, try this:

1. Press the Play button on the tape casette unit. The tape mo

tor is now on.

2. PRINT PEEK(192) displays 0.

3. POKE 37148,0 turns off the tape motor, so CO (192 decimal)

contained a zero, but you can turn the tape motor off and it

stays off.

(Cl)

Pointer to the start of the area to be saved or to be loaded.

When loading the header, (Cl) is set to point to the start

of the tape buffer (B2).

When loading the program, (Cl) is set to the same as

(C3).

(C3)

During tape load, contains pointer to the start of the area for a

program to be loaded.

If tape identifier of 3 was found in the tape header loaded

for this program, then (C3) is taken from the second and third

bytes of the tape, (nonrelocatable tape)

If tape identifier of 1 was found in the tape header loaded

for this program, then (C3) is taken form the second and third

bytes of the tape only if secondary address B9 is nonzero.

jTl If secondary address is zero with tape identifier of 1, then

f ■ (C3) is set based on the values in the X and Y registers when
SAVE was called, (relocatable tape).

H D7
During tape save, the parity over all bytes saved for a block.

During tape load, the value 0 or 1 that the first dipole

I I read represents.

(029F)

r[Save area for the IRQ vector during tape load or tape

save.

291

Tape I/O Routines

u
Open Logical File for Writing to Tape

F3B8/F478-F3D4/F494 [_

Called by:

BNE at F397/F457 in Determine if Open Is for Read or Write. \ >

When opening a logical file for writing to tape, first >—'

prompt for the tape Record and Play buttons to be pressed if

no tape buttons were already down. j j

Prepare a tape identifier of 4, then write to tape a tape t—I
buffer with this tape identifier of 4, the starting and ending

address of the save area, and the filename.

Then put 2 into the first byte of the tape buffer so that the

next buffer written will have the have a tape identifier of 2, in

dicating a data buffer. Set A6 , count of characters in tape

buffer, to 0.

Operation:

1. JSR F838/F8B7 to see if any tape buttons are down. If none

are down, then display the PRESS RECORD & PLAY ON

TAPE message.

2. If the keyboard stop key is pressed, then exit by BCS to step

6.

3. LDA $04 and then JSR F76A/F7E7 to write to tape a tape

buffer containing the tape identifier of 4 indicating a data

file, the starting and ending addresses of the tape buffer,

and the filename.

4. With a nonzero (low nybble) secondary address in B9 in

dicating a write to tape, LDA $02 and STA in the first byte

of the tape buffer. Then set A6 to zero to indicate no

characters yet in tape buffer.

5. CLC.

6. RTS.

CHROUT to Tape ^
F1DC/F28F-F207/F2B8 (

Called by: ^J
Fall through from F1DB/F28E, Determine Output Device;

alternate entry at F1DD/F290 by JSR at F2D4/F398 in Close j j

Logical File for Tape. ^

Character to be written to tape buffer is temporarily

stored in 9E. j j

Increment the count of the number of characters in the '—'

292 \Jj

n
Tape I/O Routines

n
tape buffer, A6. Compare to 192 (decimal) to see if the tape

I"""] buffer is full.
If the tape buffer is full, then set the start and end of the

tape buffer from the current pointer to the tape buffer (start)

r"1 and this value + 192 for the end. Then write the tape buffer
to tape. After setting the start and end of the tape buffer put 2

into the first byte of the tape buffer so that the next buffer

HI written will have the tape identifier of 2, identifying the buffer

as a data buffer. Set A6 to 1.

After dumping the full buffer to tape, or if the buffer was

not full and thus not dumped yet, then store the character in

9E in the next available location in the tape buffer and RTS.

Both the 64 and VIC test to see whether the device is RS-

232 (2) or tape (1).

Entry conditions:

A6 contains the number of characters in the tape buffer. (B2)

is the pointer to the tape buffer.

Exit conditions:

A6 is incremented if the tape buffer does not yet contain 191

characters. If tape buffer did contain 192 characters, then the

buffer dumped to tape and A6 is reset to 1.

The character to be output is placed in next location in the

tape buffer.

Operation:

1. Pull the character to be placed in the tape buffer from the

stack.

2. F1DD/F290: STA 9E; temporary storage of character to be

placed in tape buffer.

3. Save Accumulator, X register, and Y register on stack.

I—[4. JSR F80D/F88A to increment A6, the count of the number

i I of characters in the tape buffer.
5. If there are not yet 192 characters in the tape buffer

pjN (including the tape identifier), then branch to step 8.

; I 6. If there are 192 characters in the tape buffer, then JSR
F864/F8E3 to write the tape buffer to tape. If the STOP

i—1 key on the keyboard is pressed, then branch to step 11

' >s- with the carry set.

7. Store 2 in the first byte of the tape buffer and reset A6 to 1.

r—i 8. LDA 9E, retrieving the character to be placed in the tape

I j buffer.

R 293

Tape I/O Routines LJ

U

9. STA in the current location in the tape buffer pointed to

byA6. LJ
10. CLC.

11. Restore accumulator, X register, and Y register from the

stack. • j \

12. BCC to step 14, thus branching if the STOP key on the

keyboard had not been pressed.

13. LDA $00. If the STOP key is pressed, then exit with accu- |_|
mulator holding 0.

14. RTS.

Increment Count of Characters in Tape Buffer

F80D/F88A-F816/F893

Called by:

JSR at F199/F250 in CHRIN from Tape, JSR at F1E5/F297 in

CHROUT to Tape.

Increment the count of the number of characters in the

tape buffer, A6. Compare to 192 to see if the tape buffer is

full. Return with Z = 0 (BNE condition) if A6 is not equal to

192.

Operation:

1. JSR F7D0/F84D which loads X and Y registers with address

of tape buffer and sees if the tape buffer starts below $0200.

However, it appears this JSR is wasted since nothing is done

with the results returned and the subroutine itself does

nothing that is used in the CHROUT to tape routines.

2. Increment A6, the count of the number of characters in the

tape buffer.

3. Compare A6 to 192. If equal, then Z flag of status register is

set to 1 (BEQ condition). If not equal, then Z flag of status

register is set to 0 (BNE condition). \ }

Set Pointers to Start and End of Buffer and Write r ,

Buffer LJ
F864/F8E3-F866/F8E5

Called by: t i
JSR at F2D7/E4CF in Close Logical File for Tape, JSR at ^
F1EA/F29C CHROUT to Tape.

Set the start of the tape buffer to be saved to tape (Cl) j j
from the current pointer to the tape buffer (B2), and set the

294 . {J

Tape I/O Routines

end of the area to be saved (AE) from the start of the tape

ft buffer + 192.
Fall through to F867/F8E6 to write the tape buffer to tape.

r—[Entry conditions:

1 ' (B2) is the pointer to tape buffer starting address.

Exit conditions:

H (Cl) = (B2). (AE) = (B2) + 192.

Operation:

1. JSR F7D7/F854 to set the start and end pointer for the save

area from the tape buffer address (B2) for the start and (B2)

+ 192 for the end.

2. Fall through to F867/F8E6 to write the tape buffer to tape.

Close Logical File for Tape

F2C8/F38D-F2ED/F3AD

Called by:

BNE at F2A9/F362 in Determine Device for Close.

Close the logical file for the tape.

If the secondary address is not zero, then we have done a

tape write, so do the following:

Store a final byte of 0 in the tape buffer, then write the fi

nal tape buffer to tape. Then check to see if the secondary ad

dress has bit 1 on, and if so, then write an end-of-tape header

with tape identifier of 5.

For either tape read or tape write, then close out the logi

cal file from the file number tables.

Operation:

1. If secondary address is zero, then doing a read, in which

rn case branch to F2F1/F3B1. Otherwise continue with step 2.

1 ! 2. JSR F7D0/F84D to get the tape buffer address. Again, it
appears the results of this subroutine are not used. The 64

P*j also does a SEC which appears unnecessary.

3. LDA $00, preparing to output a 0 to the tape buffer so

that the final byte of a sequential tape file will contain a 0.

J—1 4. JSR F1DD/F290 to dump the tape buffer if full and then

' (store 0 as the last byte of the tape buffer.
5. VIC: JMP E4CF.

j—i 6. 64: JSR F864 to write this final tape buffer to tape.

1 ' VIC: At E4CF JSR F8E3 to write this final tape buffer to
tape.

R 295

Tape I/O Routines '—'

LJ
7. If STOP key pressed then load accumulator with 0.

8. VIC: JMP F39E (step 9) to return control from the patch M

area back to the main routine.

9. If carry set then stop key was pressed, just RTS.

10. If secondary address has bit 1 on, then LDA $05 for a tape I }

identifier of 5 and then JSR F76A/F7E7 to write an end-of- —

tape header.

11. JMP F2F1/F3B1 to close out this logical file in the file I j

tables. L-J

Control Routine for Tape Save

F659/F6F1-F68E/F727

Called by:

BCC at F5F8/F690 in Determine Device for SAVE.

This routine controls the tape save operations, calling the

routines that write the tape header, the program, and (op

tionally) an end-of-tape header.

First, check if the device is an RS-232 device, and if it is

then jump to the error routine to display illegal device

number.

Check if any tape buttons are down (either play, rewind,

or fast forward) and if none are down then prompt with mes

sage to PRESS RECORD & PLAY.

Display the message SAVING filename.

Determine from the secondary address B9 what type of

tape is being created, relocatable or nonrelocatable, and set the

tape identifier accordingly. An even secondary address in B9

results in a tape identifier of 1 for a relocatable program tape,

while an odd secondary address in B9 results in a tape identi

fier of 3 for a nonrelocatable program.

Jump to subroutine at F76A/F7E7 to fill the tape buffer | i

first with all spaces ($20), then insert the tape identifier, the I—I
starting and ending addresses of the save area, and the file

name into the tape buffer. This subroutine at F76A/F7E7 then i »

actually calls the routines that write the tape buffer to tape. I—I
Jump to subroutine at F867/F8E6 to actually write the

save area onto tape; first, a short leader (about 3 seconds long) , i

is written onto tape followed by the save area in the format of I t
two identical blocks separated by a short interblock leader.

Finally, if the secondary address has bit 1 on, (e.g., B9 i i

contains $02 or $03),then again call the subroutine at 1—I

296
u

H
Tape I/O Routines

n

F76A/F7E7 to fill the tape buffer with the tape identifier,

I I starting and ending addresses of the save , and the filename.
As before, write this buffer to tape. However, this time the

tape identifier used is 5, signifying that this is an end-of-tape

| | header. The tape load routines will not read past an end-of-
tape header.

To save a program to tape without having the program

(1 preceded by a header, you can JSR to F67C/F715 which will
just JSR to F867/F8E6 to write the program to tape, and after

the program has been written an end-of-file header can be

written if the secondary address in B9 has bit 1 on. If you

don't want an end-of-file header or don't want to be con

cerned about specifying a secondary address, you can just JSR

to F867/F8E6.

Entry conditions:

The accumulator contains the current device number. (Cl)

contains the starting address of save area. (AE) contains end

ing address+1 of save area. B9 contains the secondary address

(set by SETLFS). B7 contains the number of characters in the

filename and (BB) contains the address of the filename (set by

SETNAM).

Operation:

1. Is current device number (passed in accumulator) = 2?

2. If not, branch to step 4.

3. If yes, then JMP to error routine at F713/F796, which

loads accumulator with $09 (illegal device error) , sets the

carry, and RTS.

4. JSR F7D0/F84D to compare the low address of the tape

buffer to $02. (See if tape buffer starting address is below

0200).

1 [5. If low address is less than $02, then branch to F5F1/F689
which then JMPs to F713/F796 to load accumulator with

$09 (illegal device error), sets the carry, and RTS.

| | 6. If tape buffer low address is greater than or equal to $02,
continue.

7. JSR F838/F8B7 to check tape button status. If neither play,

|~"| fast forward, or rewind buttons are down on the cassette,
then display PRESS RECORD & PLAY message.

8. Branch to step 27 (RTS) if keyboard STOP key was

l~"| pressed.
9. JSR F68F/F728 to display SAVING and filename.

PI ' 297

Tape I/O Routines '—'

u
10. LDX $03 to set a possible nonrelocatable tape identifier.

11. LDA with current secondary address in B9. I I

12. AND $01. This AND leaves accumulator holding 0 if an

even secondary address was specified, while it leaves the

accumulator holding 1 if an odd secondary address was | |

specified.

13. BNE to step 15; thus branching if the secondary address

was odd, leaving the X register containing $03, which re- M

suits in a tape identifier of 3 for a nonrelocatable program

tape.

14. LDX $01. If secondary address was even then X register

now contains $01, which results in a tape identifier of 1

for a relocatable program tape.

15. TXA. The accumulator now contains the tape identifier to

put as the first byte of the tape buffer.

16. JSR F76A/F7E7 to fill the tape buffer with the tape identi

fier, starting and ending addresses of the area to be saved,

and the name of the file, then write this tape buffer to

tape.

17. If keyboard stop key is down then branch to step 27 (RTS).

18. JSR F867/F836 to write the program to tape.

19. If keyboard stop key is down then branch to step 27 (RTS).

20. LDA with the current secondary address in B9.

21. AND $02 to determine bit 1 setting.

22. If bit 1 of B9 was 0, then branch to step 25. For example, a

secondary address of 1 would cause this path to be taken.

23. If bit 1 of B9 was 1 (for example, secondary address of $03

or $02), then LDA $05 for a tape identifier of 5 indicating

this tape header will be an end-of-tape header.

24. JSR F76A/F7E7 to fill the tape buffer with the tape identi

fier, starting and ending addresses of the area to be saved,

and the name of the file, then write this tape buffer to I I

tape.

25. Fall through (using a BIT dummy instruction) to step 27.

26. CLC (also part of BIT dummy instruction) I I

27. RTS.

LJ

U

298 [_J

/ 1

Tape I/O Routines

nLoad and Check Tape Buffer Address

F7D0/F84D-F7D6/F853

Called by:

f"! JSR at F2CE/F393 in Close Logical File for Tape, JSR at
' "J F3B8/F44B in Open Logical File for Writing to Tape, JSR at

F539/F5D1 in Control Routine for Tape LOAD, JSR at

j j F65F/F6F8 in Control Routine for Tape SAVE, JSR at

— F76C/F7E9 in Prepare Header and Write Buffer to Tape, JSR

at F7D7/F854 in Set Start and End of Tape Buffer, JSR at

F80D/F88A in Increment Count of Characters in Tape Buffer.

The X register is loaded with the low byte of the address

of the tape buffer. The Y register is loaded with the high byte

of the address of the tape buffer. Then, to determine whether

this address for the tape buffer is valid, the Y register is com

pared to $02, which results in the carry clear if the tape buffer

high byte address is less than $02, or the carry set if the tape

buffer high byte address is greater than or equal to $02. The

routines that call this routine then can check the carry upon

return, and consider it an error if the buffer address is less

than 0200.

Entry conditions:

(B2) contains the address of the tape buffer.

Operation:

1. LDX with the low address of the tape buffer from B2.

2. LDY with the high address of the tape buffer from B3.

3. Compare this high addresses just loaded into the Y register

with $02; as a result of the compare, the carry is clear if

high address less than $02, while the carry is set if high ad

dress is greater than or equal to $02.

P
1 Set Start and End of Tape Buffer

F7D7/F854-F7E9/F866

i J Called by:
JSR at F7B7/F834 in Prepare Header and Write to Tape, JSR at

i—| F847/F8C6 in Read Tape Header into Buffer, JSR at

I J F754/F8E3 in Find Next Tape Header.
JSR to F7D0/F84D to retrieve the tape buffer address in

,—j the X and Y registers. Save this address in (Cl). Add 192 to

'. I this address in (Cl) and store the result in (AE) as the end of
the tape buffer to be saved or loaded.

H 299

u
Tape I/O Routines

u

Operation:

1. JSR F70D/F84D to retrieve the tape buffer address in the X [_j
and Y registers; with X containing the low address and Y

the high address.

2. TXA. [_j
3. STA in Cl, the low address of the start of the area to be

saved or loaded.

4. Add 192 to low address in Cl and store in AE as the low j j
address of the end of the load/save area.

5. TYA.

6. STA in C2, the high address of the start of the area to be

saved or loaded.

7. ADC $00 (so if adding 192 sets the carry above then 1 will

be added here).

8. STA in AF, the high address of the end of the load/save

area.

9. RTS.

Prepare Header and Write to Tape

F76A/F7E7-F7CF/F84C

Called by:

JSR at F2E8/F3A8 in Close Logical File for Tape, JSR at

F3BF/F47F in Open Logical File for Writing to Tape, JSRs at

F677/F710 and F689/F722 in Control Routine for Tape SAVE.

Fill the tape buffer, pointed to by (B2) with tape identifier,

start and end address of area to be saved, and filename.

Temporarily (for this routine only) reset (Cl) to the start

of the tape buffer and (AE) to the start of the tape buffer + 192.

JSR F86B/F8EA to write a 10 second leader onto the tape,

then write the tape buffer onto the tape in the format of two

identical blocks separated by a short inter-block leader. j j

Entry Conditions:

The accumulator contains the tape identifier byte. (B2) con

tains address of tape buffer. (Cl) contains the starting address j j
of the save area. (AE) contains the ending address + 1 of the

save area.

j i

Operation: I—*

1. STA in 9E, temporary storage for the tape identifier.

2. JSR F7D0/F84D to obtain tape buffer address. On return, j ;

check to see if the tape buffer starting address is less than '—*

300 [J

Tape I/O Routines

i—)
f I

(, 0200, and if the buffer is less than 0200 then BCC

((F7CF/F84C to RTS.
3. Save (Cl), the starting address for the save of the pro-

f-^ gram, and (AE), the ending address for the save of the

I I program, on the stack for later restoration. (Cl) and (AE)

are temporarily reset during this save of the header.

(4. Fill all 192 bytes of the tape buffer, which starts at (B2),

I) with spaces ($20).
5. Retrieve the tape identifier from 9E and put the tape

identifier in the first byte of the tape buffer.

6. Put the low address of the start of the save area, Cl, in

the second byte of the tape buffer.

7. Put the high address of the start of the save area, C2, in

the third byte of the tape buffer.

8. Put the low address of the end of the save area, AE, in the

fourth byte of the tape buffer.

9. Put the high address of the end of the save area, AF, in

the fifth byte of the tape buffer.

10. Set 9F, to be used as index into tape buffer, to 5. Set 9E, to

be used as index into filename, to 0.

11. LDY 9E and compare to B7, the number of characters in

the filename, and if equal, then branch to step 14 . This

branch will occur either if the filename contains no charac

ters or when all characters in the filename have been put

in the buffer.

12. Get next character of filename and store this character in

the next position of the tape buffer.

13. Increment 9E, pointer to filename, and 9F, the pointer to

the tape buffer. If 9F has not wrapped around to zero,

then branch to step 11. Thus, the limit of the size of a file-

name is 256 — 5, or 251 characters that could be placed in

! (the tape buffer. A maximum size filename would overlap
into the area past the tape buffer.

14. JSR F7D7/F854 to set the start of the save area (Cl) to be

I \ the same as (B2), the start of the tape buffer. Set the end

of the save area (AE) = (Cl) + 192.

rn 15. Set AB, the counter for the outer loop during write of the

(| tape leader, to $69 (decimal 105).

16. JSR F86B/F8EA to write a 10 second leader to tape fol-

lowed by the header in two identical blocks (except for the

I | block countdown characters).

n 301

u
Tape I/O Routines

U

17. Restore (Cl) and (AE) from the stack to the start of the , ;

save area and end of the save area of the program. I 1
18. RTS.

Prepare to Write Program to Tape ! I
F867/F8E6-F86A/F8E9

Called by: M

Fall through from F866/F8E5 in Set Pointers to Start and End

of Buffer and Write Buffer, JSR at F67C/F715 in Control Rou

tine for Tape SAVE.

Set the outer loop counter for tape leader write, AB, to

$14 (decimal 20). Setting the outer loop counter to this value

will cause a total of 21 X 256 cycles of tape leader to be writ

ten. Fall through to F86B/F8EA.

Operation:

1. LDA $14.

2. STA in AB, the outer loop counter for tape leader write.

3. Fall through to F86B/F8EA.

Prepare IRQ Vector and Timer Interrupts for Tape

Write

F86B/F8EA-F874/F8F3

Called by:

Fall through from F86A/F8E9 in Prepare to Write Program to

Tape, JSR at F7BE/F83B in Prepare Header and Write to Tape.

Prepare X register for enabling CIA #1 timer B/VIA #2

timer 2 interrupts and accumulator to reset IRQ vector to

FC6A/FCA8 for tape write.

Operation: j j

1. JSR F838/F8B7 to check tape status line for any tape but- '—'
tons down. If none are down then display the PRESS

RECORD & PLAY message. t i

2. If keyboard STOP key is down, then BCS to F8DC/F957 to t_l
reset 02A0, the saved IRQ vector, to 0, then RTS.

3. Disable IRQ interrupts. j)

4. LDA $82/$A0 to prepare for enabling CIA #1 timer B/VIA I—'
#2 timer 2 interrupts in routine at F875/F8F4.

5. LDX $08 to prepare for indexing into IRQ vector table in j j

routine at F875/F8F4 to reset IRQ vector to FC6A/FCA8. <—'

302 U

I \

Tape I/O Routines

H

<—) 6. Fall through to F875/F8F4 to set IRQ vector and enable

' J timer B/timer 2 interrupts.

I—i Reset IRQ Vector and Set Interrupt Enable Register

s F875/F8F4-F8CF/F94A

Called by:

Jj Fall through from F874/F8F3 in Prepare IRQ Vector and Timer
Interrupts for Tape Write, BNE at F862/F8F4 in Load Next

Two Blocks to Load Area.

Disable all IRQ interrupts from CIA #1/VIA #2.

If called during save for tape, enable timer B CIA

#l/timer 2 VIA #2 interrupts and reset IRQ vector to

FC6A/FCA8.

If called during load for tape, enable CIA #1 FLAG/VIA

#2 CA1 interrupts and reset IRQ vector to F92C/F98E.

Set BE to 2, the number of blocks to be saved or loaded.

Turn on the tape motor.

CLI so that the next IRQ interrupt will pass control to

either FC6A/FCA8 or F92C/F98E.

Loop in the remainder of this routine between IRQ inter

rupts, testing for the keyboard STOP key and updating the

jiffy clock, until the IRQ vector is reset to its value at entry to

this routine.

When the next IRQ interrupt occurs after the vector has

been reset, then the execution will continue from that new

IRQ vector location. Thus, the actual tape save activity starts

at FC6A/FCA8, and the actual tape load activity starts at

F92C/F98E.

Operation:

i—| 1. Disable all interrupts from CIA#1/VIA #2.

' I 2. Store value of accumulator at entry into DCOD, the CIA
#1 interrupt control register/912E, the VIA #2 interrupt

n enable register. Thus if the accumulator contains $82/$A0,

timer B/timer 2 interrupts are enabled, while if the accumu

lator contains $90/$82, FLAG/CA1 interrupts are enabled,

i—i 3. 64: LDA DCOE, ORA $19, STA DCOF to force timer B to

(' load its counter from its latched value, set one-shot mode,
and start timer B.

f—i 4. 64: AND $91, STA 02A2 to set CIA #2 interrupt log to'in-

' ' dicate that both timer A and FLAG interrupts are enabled.

H - 303

U
Tape I/O Routines

u

It seems that something might be slightly in error here, ,

that this step should have actually appeared after step 2 to I l
correctly reflect which interrupts are enabled for tape I/O.

5. JSR F0A4/F160 to wait for any interrupts from CIA (,

#2/VIA #1 to be serviced and then disabled. Thus, no RS- I

232 interrupts will interrupt the tape routines.

6. 64: Set bit 4 of DO11 to 0, blanking the screen for the tape (

load or save operation to prevent the VIC-II chip cycle i

stealing from interfering with the timing of tape I/O.

7. Save the IRQ vector value at entry to this routine (typi

cally EA31/EABF), into (029F), the save area for the IRQ

vector during tape processing.

8. JSR FCDB/FCFB to change the IRQ vector based on the X

register value. If the X register contains $08, the new IRQ

vector is FC6A/FCA8 for tape leader write; if the X reg

ister contains $0E, the new IRQ vector is F92C/F98E for

tape read; if the X register contains $0A, the new IRQ vec

tor is FBCD/FCOB for tape write; and if the X register con

tains $0C, the IRQ vector is reset to its normal value of

EA31/EABF.

9. Set BE to 2, indicating the number of blocks to saved or

loaded.

10. JSR FB97/FBDB to intialize tape variables: A3 = 8, A4 =

0, A8 = 0, 9B = 0, A9 = 0.

11. Turn the tape motor on.

64: LDA 01, AND $1F, STA 01, to set bit 5 to zero,

turning the tape motor on.

VIC: Set bit 1 of 911C, VIA #1 peripheral control

register, to 0, and bits 2 and 3 to 1.

Also, set CO to this same nonzero value to prevent

any change of tape motor setting during default IRQ

processing. j j
12. Execute a delay loop for about .32 seconds to allow the

tape motor to gather speed. The loop is as follows (show

ing the VIC addresses): [j

Cycles

2 i >
2 LJ
2

Location

F921

F923

F925

F926

F928

F929

Instruction

LDX $FF

LDY $FF

DEY

BNE F925

DEX

BNE F923

304 [J

Tape I/O Routines

n ~~

'—I For each time the X register is decremented, F925 and

'■ - F926 are executed 256 times and F923, F928, and F929 are
executed once. F921 is only executed once before the entire

fl loop. The loop to F923 is executed 255 times. Total num-

' ; ber of cycles is 255 X ((256 X 5) + 7), or a total of
328,185 cycles. The 328,185 cycles divided by 1,022,370

f—| cycles per second on NTSC VIC's gives a total delay of .32

' ' seconds.

13. VIC: Store a value into 9129, the high byte of the VIA #2

timer 2 count, clearing any outstanding timer 2 interrupts.

14. CLI. IRQ interrupts are enabled again now, and the next

one will go to FC6A/FCA8 if saving to tape or F92C/F98E

if reading from tape. Between execution of the IRQ inter

rupt handlers for tape I/O steps 15-20 below are executed.

These steps continue executing until the IRQ vector has

been restored to its value at entry to this routine.

15. LDA 02A0, the low byte of the temporary save area for

the IRQ vector during tape save. Now compare this value

to the low byte of the currently active IRQ vector in 0315.

16. If 02A0 = 0315, then the tape save or tape load is com

plete and has reset the default IRQ vector, in which case

branch to F8DC/F957 to reset 02A0 to zero and RTS.

17. JSR F8D0/F94B to test for the STOP key and exit if it is

detected.

18. VIC: If 02A0 is not equal to 0315, then check VIA #2

interrupt flag register, 912D, to see if any timer 1 interrupts

have occured. If none have occurred, branch to step 15.

19. 64: JSR F6BC to scan the keyboard for the STOP key.

VIC: If a timer 1 interrupt has occurred, then JSR

F734 to increment jiffy clock and test for for the keyboard

f1 STOP key being down.

' 20. Branch to step 15.

rn Reverse Tape Write Line and Set Timer for Next

[Interrupt

FBA6/FBEA-FBC7/FC05

/ I Called by:

JSR at FBF0/FC2E in Write Data Bit to Tape; alternate entry at

r^ FBAD/FBFl by JSR at FBE7/FC25 in Write a Word Marker Bit

! I (this is the entry point for writing a medium dipole); alternate

entry at FBAF/FBF3 by JSR at FC6C/FCAA in Write a Leader

r—i

i ! 305

u
Tape I/O Routines

~ u
Bit to Tape; alternate entry at FBB1/FBF5 by JSR at , ,

FBD5/FC13 in Write a Word Marker Bit (this is the entry point LJ
for writing the word marker dipole).

Flip the tape write line, causing the polarity being written . ,

to tape to reverse. Depending on the entry point into the rou- i (
tine set various values for timer B/timer 2 for causing the next

timer B/timer 2 IRQ interrupt to occur and flip the tape write , ,

line. [>

Entry conditions:

If entered at FBA6/FBEA: bit 0 of BD, the byte that is being

saved to tape, contains the next bit that is to be saved.

If entered at FBAF/FBF3: The accumulator contains $78

(120 decimal).

If entered at FBB1/FBF5: The accumulator contains $10

and the X register contains $01.

Exit conditions:

If the tape write line is 1 at exit, set Z = 0 (BNE condition).

If the tape write line is 0 at exit, set Z = 1 (BEQ

condition).

Operation:

1. FBA6/FBEA: LDA BD, the current byte being written to

tape. Then LSR to shift bit 0 of this current byte to the

carry.

2. LDA $60, value if carry is clear, if the next bit to be saved

is 0.

3. BCC to step 5, if bit 0 of BD was 0.

4. FBAD/FBF1: LDA $B0. If writing a data bit of 1 or if writ

ing the second dipole of a word marker, then accumulator

will be $B0.

5. FBAF/FBF3: LDX $00. This entry point from tape leader I >

write has the accumulator set to $78 before the JSR '—'
FBAF/FBF3.

6. FBB1/FBF5: If entry at this point from JSR at FBD5/FC13 j j

when writing the first dipole of the word marker, then accu

mulator is set to $10 and X register is set to $01.

STA in DC06/9128, the low byte for timer B/timer 2. ! (

7. STX in DC07/9129, the high byte of timer B/timer 2. For '—]
the VIC, storing this value in 9129, starts timer 2 counting

down again. This also resets the timer 2 interrupt flag. For j /

the 64, timer B must be started by storing $19 in DC0F, LJ

306 LJ

n
Tape I/O Routines

n which also forces a load of timer B and sets one-shot run

ning mode. Also on the 64, LDA DCOD to clear CIA #1

interrupt data register.

^ 8. 64: LDA 01, the 6510 I/O port. EOR $08, STA 01 to flip the

I i value of the tape write.

VIC: LDA 9120, port B I/O register for VIA #2, then

r—, EOR $08 and STA $9120, in effect flipping the value of the

i \ tape write line.

9. AND $08 so that the status register will have Z = 0 (BNE

condition) if the tape write line is 1, or Z = 1 (BEQ

condtion) if the tape write line is 0.

Write Leader Bit to Tape and Reset IRQ Interrupt

FC6A/FCA8-FC92/FCCE

Called by:

IRQ interrupt (caused by timer B of CIA #1/timer 2 of VIA

#2) after the IRQ vector has been reset to FC6A/FCA8.

Write leader cycles to tape. Two cycles (one dipole) are

written for each decrement of the inner loop counter A7. Later

in this section I discuss how long a cycle lasts. Each time A7

decrements to 0, then decrement the outer loop counter AB.

The total number of dipoles written is (A7 X AB) + 1. For the

leader before a tape header, approximately a 10 second leader

is written. For the leader before a program approximately a 3

second leader is written, and between blocks a very short (less

than 1 second) leader is written. The leader cycles that are

written are very close to the length of time of the values writ

ten for 0 data cyles, and two leader cycles are indeed consid

ered a 0 dipole when reading data back from the tape during

tape load.

f"~| Reset the IRQ vector to FBCD/FC0B and CLI so that the
next IRQ interrupt caused by timer B/timer 2 goes to the ac

tual tape data write routine.

P"| However, before this next interrupt occurs, do the follow
ing two steps:

First, test BE to see if both blocks have been saved. If

f"j true, then reset the IRQ vector to the default IRQ vector. The
way this test to see if both blocks have been saved works is

that the tape write routine decrements BE after writing each

p] block, and then resets the IRQ vector to FC6A/FCA8. Thus, at
the end of each block, we have a chance to see if we're done

with the save.

i ! 307

Tape I/O Routines

Second, set A5 to indicate we are to write 9 block count

down characters before actually writing the data from the save

area onto tape, and then BNE FC16/FC54, jumping right into

the middle of the tape write routine to write these block

countdown characters.

To determine how many microseconds each leader cycle is

written to tape before the polarity reverses (tape write line

flipped) for the next cycle, the following calculations were per

formed. These were based on the VIC but there should be lit

tle difference for the 64. There may be some error in these

calculations but they should not be too far off. Refer to Figure

10-15 in this discussion.

u

LJ

U

LJ

U

Figure 10-15. Leader Cycle

ABC

Timer B/2 IRQ interrupt

j Timer B/2 reset

j Flip tape write line

DEF

Flip tape write line

1 Timer B/2 reset

Timer B/2 IRQ interrupt

This figure is not drawn to scale

A = occurrence of timer B/timer 2 interrupt

B = reset of timer B/timer 2 to 120

C = flip of tape write line (timer B/timer 2 now 110)

P = occurrence of next timer B/2 interrupt

E = reset of timer B/timer 2 to 120

F = flip of tape write line (timer B/timer 2 now 110)

u

u

u

u

308

I i

H

Tape I/O Routines

) i

n

n

n

The time between flips of the tape write line (C-F in Fig

ure 10-15) is equal to the time it takes the current value in

timer B/timer 2 (at point C) to countdown to zero (C-D in

Figure 10-15), plus the time (D-F in Figure 10-15) between

timer B/timer 2 reaching zero and causing an IRQ interrupt

and the IRQ interrupt service routine flipping the tape write

line. When the tape write line is flipped, timer B/timer 2 has

already decremented by 10 for the 10 cycles of instructions be

tween setting the timer and flipping the tape write line.

To summarize the calculations below: a leader cycle takes

174.9 microseconds, and a.leader dipole takes 349.8

microseconds.

From the occurrence of the IRQ timer 2 interrupt to the

flip of the tape write line the following instructions are

executed:

Location

FF72

FF73

FF74

FF75

FF76

FF77

FF78

FF7B

FF7D

FF82

FCA8

FCAA

FBF3

FBF5

FBF8

FBFB

FBFE

FC00

Instruction

PHA

TXA

PHA

TYA

PHA

TSX

LDA $0104,X

AND #$10

BEQ $FF82

JMP ($0314)

LDA #$78

JSR $FBF3

LDX #$00

STA $9128

STX $9129

LDA $9120

EOR #$08

STA $9120

Cycles

3

2

3

2

3

2

4

2

3

_5

29 cycl

2

6

2

4

_4

18 cycl

4

2

4

n

10 cycles

Also, there is a fixed 7 cycle delay for IRQ bookkeeping

tasks when an IRQ interrupt occurs, plus a variable number of

cycles (1-6) for the current instruction to complete (Jim

Butterfield, COMPUTE! September 1982, p. 156).

309

Tape I/O Routines

u

u

Thus, the total number of cycles from the occurrence of j j

the IRQ interrupt to the flip of the tape write is 7 + 29 + 18 I—>
+ 10 = 64 cycles (time A-C in Figure 10-15), and 64 cycles

X 1.022370 microseconds/cycle = 65.4 microseconds. To this . j

65A microseconds add the time it takes for timer 2 to count- I—i
down to 0 and cause the interrupt. Remember that timer 2's

original setting of 120 has already decremented to 110 (time \

B-C in Figure 10-15) when the tape write line was flipped. f—'

Thus, (110 + 2)/l,022,370 = 109.5 microseconds (the time

C-D in Figure 10-15). The total time for one cycle of a leader

from these calculations should be 109.5 + 65.4 = 174.9

microseconds. For a leader dipole (2 cycles) the time should be

174.9 X 2 = 349.8 microseconds.

When I compared this predicted time of a leader dipole of

349.8 microseconds to the actual time I observed upon loading

a tape, I found very close agreement as the tape load seemed

to be reading leader dipoles of 348 microseconds.

One question that occurs when dealing with the IRQ ser

vice routine was the effect of the instruction cycles executed

between flipping the tape write line and executing an RTI.

Looking at these instructions (from FC03-FCB8, FBDB-FBE9,

FC92, and FF56-FF5B on the VIC-20) you can observe that the

total number of cycles of the interrupt service routine will not

exceed the number of cycles in timer 2, thus allowing the IRQ

interrupt service routine to complete and RTI before the next

IRQ interrupt caused by timer 2 reaching zero occurs. Thus,

nesting of interrupts does not occur.

Entry conditions:

A7 contains 00 before the first block of header or program is

written, or 80 (decimal) before the second block is written. AB

contains 105 (decimal) before the first block of header is writ- j j
ten, 20 (decimal) before the first block of program is written,

and 00 before the second block of header or program is written.

Operation: I—I
1. LDA $78, then JSR FBAF/FBF3 to set timer B/timer 2 to

$0078, and to flip the tape write line. By always setting { ,

timer B/timer 2 to the same value when writing the leader, I—)

the leader cycles that are written are of the same duration.

2. If the tape write line is 1 then branch to FC54/FC92, , ,

which jumps to EEBC/FF56 to restore registers and RTI. I !
Thus, the tape write line is 1 then 0 before each decrement

310 u

j

Tape I/O Routines

H

r—) of the inner loop counter, or one positive and one negative

LJ cycle before each decrement.
3. Decrement the inner loop counter A7.

*—I 4. If A7 has not reached zero, then branch to FC54/FC92,

! i restoring registers and RTI.
5. JSR FB97/FBDB to initialize tape variables, A3 = 8, A4 =

P^ 0, A8 = 0, A9 = 0, 9B = 0.

/) I didn't see why this JSR was put inside the loop

rather than after step 7, although it doesn't do any dam

age here.

6. Decrement the outer loop counter AB.

7. If AB is greater than or equal to 0 then branch to

FC54/FC92 to restore registers and RTI. Thus AB must be

— 1 to fall through to step 8. For each decrement of AB,

A7 is decremented 256 times. The exception to this

decrementing of A7 256 times occurs when writing the

leader between blocks. After decrementing to —1, AB is

incremented, leaving AB = 0 at FC82/FCC0. Thus, be

tween blocks, since AB is not explicitly set to a value as it

is before block 1 of the header or program, the first dec

rement of AB results in it being — 1 and thus falling

through to step 8. When this between block leader is writ

ten, A7 has been set to 80 (decimal), resulting in only 80

dipoles of tape leader values written.

Before the first block of the header, AB contains 105.

Thus, 106 X 256 = 27,136 leader dipoles will be written,

and 27,136 leader dipoles x .000349 seconds/leader dipole

= about a 9.47 second leader before the first block of the

header.

Before the first block of the program is written, AB

j—| contains 20. Thus, 21 X 256 = 5,376 leader dipoles will

1 J be written, and 5,376 leader dipoles x .000349
seconds/leader dipole = about a 1.87 second leader

r—i before the first block of the program. This is also the time

1 1 for the leader before writing the first block of a sequential
buffer.

p-) 8. LDX $0A to index into IRQ vector table at FD9B/FDF1,

[J then JSR FCBD/FCFB to reset IRQ vector to FBCD/FC0B.
However, before the next timer B/timer 2 IRQ interrupt

r*) occurs and causes execution to resume at FBCD/FC0B, the

' - ' following code in steps 9, 10, 11, and 12 is performed.
9. JSR FB8E/FBD2 to reset (AC), the pointer to the current

nbyte to save, to the start of the save area, (Cl).

311

u
Tape I/O Routines

LJ

10. Set A5 to 9, indicating that 9 block countdown characters , ,

will be written to tape at the start of this block. LJ
11. 64: Set B6 to 9.

12. Branch to FC16/FC54 to start writing these block count- . .

down characters. FC16/FC54 is actually part of the routine I I
that writes the cycles to tape for each dipole.

Write Word Marker and Data Bit Cycles to Tape for LJ
One Block

FBCD/FC0B-FC69/FCA7 and

FBC8/FC06-FBCC/FCDA

Called by:

IRQ interrupt (caused by timer B/timer 2 of CIA #1/VIA #2)

when IRQ vector has been reset to FBCD/FCOB by the tape

leader write routine.

This routine is called with each CIA #1 timer B/VIA #2

timer 2 interrupt to write the cycles onto tape that make up

two dipoles for each bit to be saved. The routine also handles

writing word markers that precede each data byte written.

(During load the word markers are treated as following a byte

of data, rather than preceding it.) In describing this routine, I

have broken it down into a number of sections with each sec

tion treating a separate topic. Keep in mind that all of these

sections together make up the IRQ driven tape write routine.

Exit this routine by JMP FEBC/FF56 at FC09/FC47 to restore

registers and RTI.

The sections consist of:

FBCD/FCOB, write a word marker.

FBF0/FC2E, write a data bit value for 0 or 1.

FBF5/FC33, see which half of the dipole the tape write rou- i i

tine is in. I—/
FBFD/FC3B, prepare for writing the second dipole.

FC0C/FC4A, prepare for next bit to be written from BD. i i

FC16/FC54, see if need to write a block countdown character. I—i
FC30/FC6E, test if all bytes from save area have been written

to tape for this block. I i

FC3F/FC7D, retrieve next byte from save area and put in BD. <—t

FC4E/FC8C, compute parity bit.

FBC8/FC06, set AD to indicate all of block has been saved. , ,

FC57/FC95, handle end-of-block processing. LJ

312 u

Tape I/O Routines

f~j To determine how many microseconds each cycle is writ-

— - ten to tape before the polarity reverses (tape write line flipped)

for the next cycle, the following calculations were performed,

f—■) using the VIC although the 64 should be similar. (Refer to the

Figure 10-15 in these discussions).

The time between flips of the tape write line (C-F in the

j—> diagram) is equal to the time it takes the current value in timer

-- B/timer 2 (at point C) to countdown to zero (C-D in the di

agram), plus the time (D-F in the diagram) between timer

B/timer 2 reaching zero and causing an IRQ interrupt and the

IRQ interrupt service routine flipping the tape write line.

When the tape write line is flipped, timer B/timer 2 has al

ready decremented by 10 for the 10 cycles of instructions be

tween resetting the timer and flipping the tape write line.

Both the timer B/timer 2 value and the number of instruc

tions that are executed between the occurrence of the timer

B/timer 2 interrupt and the flip of the tape write vary when

writing data cycles of 0 or 1 or the word marker cycle. Note: I

am using the word cycle to mean two different things in this

discussion, when talking about 0, 1, or word marker cycles I

am referring to the time it takes between reversals of polarity

of the tape write line. When giving the number of cycles next

to an instruction, I am referring to the number of 6502 clock

cycles that instruction takes to execute, or the number of clock

cycles that timer B/timer 2 must decrement to reach zero.

To summarize the calculations below (for a U.S. VIC with

NTSC video), the 0 cycle takes 172.9 microseconds, the 1 cycle

takes 251.2 microseconds, and the word marker cycle takes

329.7 microseconds (for the first one) or 334.9 microseconds

(for the second one). A 0 dipole takes 345.8 microseconds, a 1

r-j dipole takes 502.4 microseconds, and a word marker dipole

J takes 664.6 microseconds.
Notice how close a 0 dipole, 345.8 microseconds, is to a

pn leader dipole, 370.2 microseconds. They are similar for a rea-

' i son. During tape load only 0 dipoles are read. When 16 of
these 0 dipoles have been consecutively read, the 0 dipoles are

r-1 considered leader dipoles. Otherwise, during the load of a

' i block these dipoles are considered the 0 dipole of a bit of data.

^ 0 or 1 Cycles

I j From the occurrence of the IRQ timer 2 interrupt to the flip of

the tape write line the following instructions are executed:

m
1 -i 313

Tape I/O Routines

Location

FF72

FF73

FF74

FF75

FF76

FF77

FF78

FF7B

FF7D

FF82

FCOB

FCOD

FC21

FC23

FC2E

FBEA

FBEC

FBED

FBEF

FBF1

FBF3

FBF5

FBF8

FBFB

FBFE

FCOO

Instruction

PHA

TXA

PHA

TYA

PHA

TSX

LDA $0104,X

AND #$10

BEQ $FF82

JMP ($0314)

LDA $A8

BNE $FC21

LDA $A9

BNE $FC2E

JSR $FBEA

LDA $BD

LSR

LDA #$60

BCC $FBF3

LDA #$B0

LDX #$00

STA $9128

STX $9129

LDA $9120

EOR #$08

STA $9120

Cycles

3

2

3

2

3

2

4

2

3

_5

29 cycles

3

3

3

3

_6

18 cycles

3

2

2 (if A = 0)

3

2 (if A = 1)

2

4

4

4

2

4

30 cycles (if A = 0)

32 cycles (if A = 1)

Also, there is a fixed 7 cycle delay for IRQ bookkeeping

tasks when an IRQ interrupt occurs, plus a variable number of

cycles (1-6) for the current instruction to complete.

Thus, the total number of cycles from the occurrence of

the IRQ interrupt to the flip of the tape write is 7 + 29 + 18

+ 30 (if 0 cycle) = 84 cycles (time A-C in the diagram). Or if

preparing to set timer 2 for a 1 cycle then 7 + 29 + 18 + 32

= 86 cycles. However, since a setting of timer 2 for a 0 cycle

may follow the second cycle of a 1 dipole, and vice versa,

once can't be sure whether the 84 or 86 cycle delay will follow

the occurrence of an IRQ interrupt when writing 0 or 1 cycles.

314

u

LJ

U

LJ

i |
(/

LJ

LJ

LJ

LJ

U

Tape I/O Routines

n ~~

r-| Thus, an average of 85 is used. 85 cycles X 1.022370 micro-

'—- seconds/ cycle = 86.9 microseconds. To this 86.9 micro
seconds add the time it takes for timer 2 to countdown to 0

<~f and cause the interrupt. Remember that timer 2's original set-

'— J ting has already decremented by 10 (time B-C in the diagram)
when the tape write line was flipped.

pi For a 0 cycle the timer 2 value set is 96. Thus, (86 +

'---* 2)/l,022,370 = 86 microseconds (the time C-D in the di

agram). (The + 2 is for the two cycles for reload of the timer

once the timer reaches 0.) The total time for one cycle of a 0

from these calculations should be 86 + 86.9 = 172.9 micro

seconds. For a 0 dipole (two cycles) the time should be 172.9

X 2 = 345.8 microseconds.

For a 1 cycle the timer 2 value set is 176. Thus, (166 +

2)/l,022,370 = 164.3 microseconds (the time C-D in the di

agram). The total time for one cycle of a 1 from these calcula

tions should be 164.3 + 86.9 = 251.2 microseconds. For a 1

dipole (two cycles) the time should be 251.2 X 2 = 502.4

microseconds.

When I compared this predicted time of a 1 dipole of

502.4 microseconds to the actual time I observed upon loading

a tape, I found fairly close agreement as the tape load seemed

to be reading 1 dipoles of 481 microseconds.

Just as was the case in writing leader dipoles, the interrupt

service routine that follows the flip of the tape write line when

writing 0, 1, or word marker cycles is not long enough to

cause nesting of IRQ timer 2 interrupts.

Word Marker Cycles

From the occurrence of the IRQ timer 2 interrupt to the flip of

the tape write line the following instructions are executed:

Location Instruction Cycles

FF72 PHA 3

FF73 TXA 2

jj FF74 PHA 3
FF75 TYA 2

3

2

4

2

3

_5

29 cycles

H 315

n
FF73

FF74

FF75

FF76

FF77

FF78

FF7B

FF7D

FF82

TXA

PHA

T\A

PHA

TSX

LDA $0104,X

AND #$10

BEQ $FF82

JMP ($0314)

Tape I/O Routines

FCOB

FCOD

FCOF

FC11

FC13

FBF5

FBF8

FBFB

FBFE

FCOO

LDA $A8

BNE $FC21

LDA #$10

LDX #$01

JSR $FBF5

STA $9128

STX $9129

LDA $9120

EOR #$08

STA $9120

3

3

2

2

_6

16

4

4

4

2

4

u

LJ

U

LJ

i I

18 cycles

The code above frames the first word marker cycle of

timer 2 being set to 272. The first time through the above

code, A8 is 0, and the flip of the tape write line frames the

previous data cycle, then exits as the tape write line should be

1. The second time through the above code flips the tape write

line, framing the cycle time for timer 2 that was set to 272,

then finds the tape line is 0, so the program execution contin

ues at FC18 by incrementing A8. Thus, the next time an IRQ

timer 2 interrupt occurs (again from a timer 2 setting of 272),

then the BNE FC21 is taken, as the code below illustrates.

Location

FF72

FF73

FF74

FF75

FF76

FF77

FF78

FF7B

FF7D

FF82

FCOB

FCOD

FC21

FC23

FC25

Instruction

PHA

TXA

PHA

TYA

PHA

TSX

LDA $0104,X

AND #$10

BEQ $FF82

JMP ($0314)

LDA $A8

BNE $FC21

LDA $A9

BNE $FC2E

JSR $FBF1

Cycles

3

2

3

2

3

2

4

2

3

_5

29 cycl

3

3

2

3

6

u

LJ

t >

17 cycles

U

316 LJ

Tape I/O Routines

n

FBF1

FBF3

FBF5

FBF8

FBFB

FBFE

FCOO

LDA #$B0

LDX #$00

STA $9128

STX $9129

LDA $9120

EOR #$08

STA $9120

2

2

4

4

4

2

4

22 cycles

Also, there is a fixed 7 cycle delay for IRQ bookkeeping tasks

when an IRQ interrupt occurs, plus a variable number of cycles

(1-6) for the current instructionto complete (Jim Butterfield,

COMPUTE! September 1982, p. 156).

Thus the total number of cycles from the occurrence of

the IRQ interrupt to the flip of the tape write is 7 + 29 + 16

+ 18 (if first word marker cycle) = 70 cycles (time A-C in the

diagram). If second word marker cycle then the number of cy

cles is 7 + 29 + 17 + 22 = 75 cycles. To calculate the length

of time required, 70 cycles X 1.022370 microseconds/cycle =

71.5 microseconds, and 75 cycles X 1.022370 microseconds/

cycle = 76.7 microseconds. To this add the time it takes for

timer 2 to countdown to 0 and cause the interrupt. Remember

that timer 2's original setting has already decremented by 10

(time B-C in the diagram) when the tape write line was

flipped.

For a word marker cycle the timer 2 value set is 272.

Thus, (262 + 2)/l,022,370 = 258.2 microseconds (the time

C-D in the diagram). The total time for the first word marker

cycle should thus be 71.5 + 258.2 = 329.7 microseconds. For

the second word marker cycle the time should be 76.7 +

258.2 = 334.9 microseconds. The total for a word marker di-

pole should thus be 329.7 + 334.9 = 664.6. This 666.6 micro-

second time for a word maker dipole compares to the time I

read for a dipole during tape load routines of 676 micro-

seconds. The word marker dipole is made up of two unequal

cycles, in contrast to 0 or 1 dipoles each of which contain two

equal cycles.

The word marker bit sets timer 2 to 172 (same value as

for a data cycle of 1) for writing the two cycles that make up

the second dipole of the word marker.

In all of these calculations it should be noted that the

clock cycle time of 1.022370 for NTSC (U.S.) VICs was used.

317

u
Tape I/O Routines

LJ

Figure 10-16 is a diagram of the typical format of a pro

gram saved on tape (viewed from the level of blocks and [{
leaders).

Figure 10-16. Typical Tape Format LJ
Seconds

Into (

Tape -» 0123456789 10 1112 13 14 15 16 17 END ;

-B—C—D*U—E—Uf—G H—

A =10 seconds of leader dipoles.

B = Header block 1; first nine bytes are block countdown characters with high bit

on; final byte is checksum.

C — Interblock gap; long bit, then 80 cycles of leader dipoles.

D = Header block 2; first nine bytes are block countdown characters with high bit

off; final byte is checksum.

E — 3 seconds of leader dipoles between second block of header and first block of

program.

F = Program block 1; first nine bytes are block countdown characters with high

order bit on; final byte is checksum.

G = Interblock gap; long bit, then 80 cycles of leader dipoles.

H = Program block 2; first nine bytes are block countdown characters with high bit

off; final byte is checksum.

Write a Word Marker Bit to Tape

FBCD/FC0B-FBEF/FC2D

Called by:

IRQ interrupt (caused by timer B/timer 2 of CIA #I/VIA #2)

when vector has been reset to FBCD/FC0B by the leader write

routine.

Write a word marker bit (which is a word marker dipole, i (

two long cycles, followed by a 1 dipole, two medium cycles. I /
Then, check B6/AD to see if the high bit is on, indicating

block save complete. If so, JMP FC57/FC95 to the end-of- , ,

block processing. This test is what prevents saves on the VIC LJ
from addresses greater than or equal to 8000, as (AC) uses AD

as the high portion of the address to be saved. However, this , j

problem has been fixed on the 64, since a separate byte B6 is L_j
used to indicate end-of-block. It this had not been fixed, then

large BASIC programs on the 64 that went past 8000 could v I

not have been saved. LJ

318

Tape I/O Routines

H

r""] Entry conditions:

'--■ A8 contains 0 if timer B/timer 2 is to be set to $0110 for the
next tape write cycle, or 1 if timer B/timer 2 has been set to

f"? $0110 twice for two word marker cycles to make up one word

— marker dipole of a word marker bit. A9 contains 0 if timer

B/timer 2 is to be set to $00B0 for next tape write cycle, or 1 if

pi timer B/timer 2 has been set to $00B0 twice for two medium

(1) cycles to make up the medium dipole of a word marker bit.

Operation:

Note: In the following instructions I have indicated by a num

ber in parenthesis which time through the routine this instruc

tion will be executed.

1. (4) (3) (2) (1)

LDA A8. A8 is reset to 0 before the write for each

byte.

2. (4) (3) (2) (1)

BNE to step 12. If timer B/timer 2 has twice been set

to 272 then A8 will be 1.

3- (2) (1)

LDA $10.

4. (2) (1)

LDX $01.

5. (2) (1)

JSR FBB1/FBF5 to set timer B/timer 2 to $0110 (272

decimal) and then reverse the polarity on the tape write

line.

6. (2) (1)

Is the tape write line = 1?

7.(1)

If the tape write line is 1, branch to FC09/FC47 to

) I restore registers and RTI.
8. (2)

rmmmi If the tape write line is 0, this routine has just flipped

I \ the tape write line at then end of the first word marker

cycle.

INC A8.

H 9. (2)

n

LDA B6/AD. B6/AD has its high bit set to 1 after a

block and its checksum have been saved to tape, indicat-

ing that this block save is complete.

319

u
Tape I/O Routines

LJ

10. BPL to FC09/FC47 to restore registers and RTI, thus , ,

branching if high bit is 0. L=J
11. (2)

JMP FC57/FC95 to end of block processing. Jump if i f

the high bit was on, if a block save has completed, or (VIC I—i

only) if trying to save from greater than or equal to 8000.

12. (3) (4) ; ,

LDA A9, the flag indicating whether the second half *.—i

of the word marker dipole has been written yet.

13. (3) (4)

BNE FBF0/FC2E. Branch if writing cycle times for ac

tual data bits rather than word marker.

14. (3) (4)

JSR FBAD/FBF1. Set timer B/timer 2 to 176, and flip

the tape write line.

15. (3) (4)

Is the tape write line =1?

16. (3)

If the tape write line is 1, branch to FC09/FC47 to

restore registers and RTI, as this routine has just flipped

the tape write line at the end of the second word marker

cycle.

17. (4)

If tape write line is 0, this routine has just flipped the

tape write line at then end of the first 1 cycle that makes

up the second dipole of the word marker.

INC A9.

18. Branch to FC09/FC47 to restore registers and RTI.

Write Data Bit to Tape

FBF0/FC2E-FBF4/FC32 LJ

Called by:

Fall through from FBEF/FC2D in Write Word Marker to Tape, j j

BNE at FBE5/FC23 in Write a Word Marker to Tape. ^
Call FBA6/FBEA to set timer B/timer 2 to 176 if writing a

1 or 96 if writing a 0, then flip the tape write line, with the j i

tape polarity cycle time for this flip of the tape write line ^—^
determined by the previous setting of timer B/timer 2. Exit

from the tape write routines through an RTI if the tape write j j

320 LJ

Tape I/O Routines

/—j line is on, which it is the first time through. Thus, two tape

'._! polarity cycles of the same time duration are written for each

dipole, although the second cycle is actually framed by a flip

r—> of tape write line for the next timer B/timer 2 interrupt.

Entry conditions:

A8 contains 1 if timer B/timer 2 has been set to $0110 twice

f""| for two word marker cycles to make up one word marker di
pole of a word marker bit.

A9 contains 1 if timer B/timer 2 has been set to $00B0 twice

for two medium (1) cycles to make up the medium dipole of a

word marker bit.

Bit 0 of BD contains the next bit to be written to tape. When

writing the second dipole for this bit, the value in bit 0 has been

reversed, as each bit is represented by dipoles of 0-1 or 1-0.

Operation:

1. JSR FBA6/FBEA. FBA6/FBEA shifts bit 0 of BD into the

carry. If the carry is clear, then a 0 cycle is being written for

the next tape polarity cycle, in which case set timer B/timer

2 to 96. If the carry is set, then a 1 cycle is being written for

the next tape polarity cycle, consequently, set timer B/timer

2 to 176.

Then reverse the polarity being written to tape by

Exclusive OR of the tape write line, bit 3 of 01/9120.

2. On return from the JSR, if the tape write line is 1, then

branch to FC09/FC47to restore registers and RTI. If the

tape write line is 0, then fall through to FBF5/FC33.

Determine Which Part of Dipole Tape Write Routine

Is Executing

P| FBF5/FC33-FBFC/FC3A

Called by:

_, Falls through from FBF4/FC32 in Write Data Bit to Tape.

' j See which half of the dipole the tape write routine is
executing. If A4 contains 0 at entry then we have just finished

r-^ writing the first dipole, in which case reset A4 to 1, then fall

' .i through to FBFD/FC3B to prepare for second half of dipole. If

A4 contains 1 at entry, then we have just finished writing the

n

321

Tape I/O Routines
u

second dipole (completed a bit), in which case reset A4 to 0, ,

the branch to FC0C/FC4A to prepare for writing the next bit. Lj

Operation:

1. LDA A4, then EOR $01 and store the result back in A4.] f

Thus, if A4 was 0 at entry to step 1, A4 contains 1 at exit

from step 1, indicating the first dipole has been written. If

A4 was 1 at entry to step 1, A4 contains 0 at exit from step j j

1 as the second dipole has been written (bit completed). A4 *—J
is initialized to zero before writing each byte.

2. BEQ FC0C/FC4A. If A4 contains 0 at exit from step 1, then

tape write routines are finished writing the tape polarity cy

cles for this bit; it's time to move on to the next bit. This

test of A4 makes certain that each bit has both a tape polar

ity on, tape polarity off sequence.

3. If A4 is not zero at exit from step 1, then fall through to

FBFD/FC3B to prepare for writing the second dipole for this

bit.

Prepare to Write Second Dipole for this Bit

FBFD/FC3B-FC0B/FC49

Called by:

Falls through from FBFC/FC3A in Determine Which Part of

Dipole Tape Write Routine Is Executing.

Prepare for writing the second dipole for this bit. Exclu

sive OR (flip) the value of the bit just written (bit 0 of BD) to

force the second dipole to write a tape polarity that is the

reverse of the first dipole polarity. For example, if the first di

pole wrote cycles for values of 1-1, then for the second dipole

the tape routines write cycles of 0-0. Conversely, if the first

dipole contained cycles of 0-0, then the second dipole con- . •,

tains cycles of 1-1. Thus, a bit value of 1 is represented by J 1
four cycles of 1-1-0-0, a 0 is represented by four cycles of

0-0-1-1, and a leader by 0-0-0-0. Bits are written to tape , (

with four cycles of alternating tape polarity, while bits are read i^j

from tape as two dipoles.

Operation: \ '

1. LDA BD, then EOR $01 and store the accumulator back into u-7
BD, thus flipping the value that will be written for the sec

ond dipole. I |

2. AND $01 so only bit 0 is signficant. ^

322] /

n
Tape I/O Routines

n

f I 3. EOR 9B and STA 9B. The parity work byte, 9B is set to zero

[_\ before writing each byte. Steps 2 and 3 of this routine ad

just the current parity work byte by an exclusive or of the

^ current state of the parity byte 9B with the reverse of the

i__ i current bit being written. Odd parity (total number of bits

including parity bit that have value of 1 is odd) is used in

both writing and reading tape for the 64 and VIC.

4. JMP FEBC/FF56 to restore registers and RTI.n

Prepare to Write Next Bit and Decrement Bit Counter

FC0C/FC4A-FC15/FC53

Called by:

BEQ at FBFB/FC39 in Determine Which Part of Dipole Tape

Write Routine Is Executing.

Shift BD right one bit, moving the next bit to be sent into

bit position 0.

Decrement and test A3. If ready to do parity bit then exe

cute FC4E/FC8C. If done with all 8 data bits and the parity

bit, then prepare for the next byte to send by falling through

to FC16/FC54 to reset variables and counters. If A3 is greater

than 0 after being decremented, then more bits remain to be

written from the current byte, in which case just restore reg

isters and RTI.

Operation:

1. LSR BD, shift the next bit to be written in bit position 0.

2. Decrement A3.

3. If A3 is equal to 0 then all 8 data bits have been written to

tape for this byte; BEQ FC4E/FC8C to calculate the parity

bit to be written.

r-~ 4. If A3 is greater than 0 then more bits from this byte remain

M to be written to tape. Just branch to FC09/FC47 to restore

registers and RTI.

i—, 5. If A3 is less than 0 then all 8 data bits and the parity bit

[.. i have been written to tape for this byte, so fall through to
FC16/FC54 to prepare for the next byte to be written.

n

1—1

323

LJ
Tape I/O Routines

Prepare Counters for Next Byte and Test if Writing

Block Countdown Characters uJ
FC16/FC54-FC2F/FC6D

Called by: \ J

Fall through from FC15/FC53 in Prepare to Write Next Bit

and Decrement Bit Counter, BNE at FC91/FCCD in Write

Leader Bit to Tape and Reset IRQ Interrupt. I I

Reset the counters and variables for the next byte to be

saved to tape.

Test A5 to see if any more block countdown characters are

to be written for this block. If so, then write the current block

countdown character to tape with its high bit turned on if this

is the first block, or turned off if this is the second block.

Entry conditions:

A5 contains 0 when all block countdown characters have been

written for this block, or 9-1 when writing block countdown

characters for this block.

Operation:

1. JSR FB97/FBDB to reset counters and variables used when

writing bytes to tape: A3 = 8, A4 = 0, A8 = 0, A9 = 0,

9B = 0.

2. CLI. During this IRQ interrupt service routine if another

IRQ interrupt occurs past FC19/FC57, then that interrupt

will be serviced and the current one being executed will be

nested. Nesting of interrupts should not occur as the

FBCD/FCOB tape write interrupt service routine takes less

cycles to execute than the number of cycles for which timer

B/timer 2 has to count down to zero and cause an interrupt.

3. LDA A5, the counter for block countdown characters.

4. If A5 = 0, branch to FC30/FC6E, as all block countdown It

characters have already been written for this block. —'
5. If A5 is not zero, first reset D7 to 0 for computing the

checksum for this block. Then determine which block is be- i (

ing written. If block one, then the accumulator (which con- ^
tains value of A5) is ORA $80 to turn on the high bit. If

block 2 is being written, the high bit remains zero. Later, j i

during tape load, the high bit is checked to determine ^
which block is being loaded.

6. Finally, STA BD to prepare for writing this block countdown I I

character to tape, then restore registers and RTI. ^

324 jj

Tape I/O Routines

Check for End of Tape Save

n FC30/FC6E-FC3E/FC7C

Called by:

f^l BEQ at FC1C/FC5A in Prepare Counters for Next Byte and

- - Test if Writing Block Countdown Characters.

See if all bytes from save area have been written to tape.

p[If not, then branch to FC3F/FC7D.

■ If the last character from the save area was just written to

tape, then now (AC) = (AE). Store the checksum D7 into BD

as the last byte to be written to tape for this block.

If all bytes from the save area and the checksum have

been written to tape, then branch to FBC8/FC06 to handle

end of block processing.

Entry conditions:

(AC) < (AE) if more bytes remain to be written to tape from

the save area.

(AC) = (AE) if all byte have been written from the save area,

but the checksum has not yet been written.

(AC) > (AE) if all bytes from the save area and the checksum

have been written to tape.

Exit conditions:

If (AC) = (AE) at entry, AD incremented and D7 stored in BD.

Operation:

1. JSR FCD1/FD11 to subtract (AE) from (AC).

2. If carry is clear (borrow generated during subtraction), then

(AE) > (AC) and more bytes remain to be saved. Branch to

FC3F/FC7D.

3. If carry is set (no borrow generated during subtraction) on

f.^ return, then also check to see if (AC) = (AE). If not equal,

/ I then the checksum has been written to tape and AD in-

~ cremented; branch to FBC8/FC06 to do end of block

t processing.

i \ The first time that the carry is set on return from JSR

FCD1/FD11, these two pointers (AC) and (AE) should be

equal. If the pointers are equal, then fall through to step 4.

I] 4. All of the bytes from the save area have been written to
tape. Now it's time to prepare the checksum to be written,

and to set AD so that at the end of writing the checksum

jj step 3 will branch to the end of block processing.

325

Tape I/O Routines

u
Increment AD, the low address of the save area, so

that the next time the JSR FCD1/FD11 is executed in step 1 jij

the carry status will return with the carry set, and will also

return with Z = 0 (the BNE condition).

Transfer D7 to BD to prepare for having the checksum (j j

be the last byte written for this block.

5. Branch to FC09/FC47 to restore registers and RTI.

I I

Move Next Byte from Save Area and Increment

Pointer

FC3F/FC7D-FC4D/FC8B

Called by:

BCC at FC33/FC71 in Check for End of Tape Save.

Load the next byte from the save area and store this byte

into BD, the next byte to be written to tape.

Exclusive or this byte with the value of the checksum D7

and store the result back into D7. Thus parity over all bytes

saved for a block is calculated.

Increment the pointer to the save area, (AC).

Operation:

1. Load next byte from save area pointed to by (AC) into accu

mulator, then store the accumulator into BD, the next byte

to be written to tape.

2. Exclusive OR the accumulator with D7, storing this value

back into D7 to update the parity over all bytes saved.

3. JSR FCDB/FD1B to increment the pointer to the save area

(AC).

4. Branch to FC09/FC47 to restore registers and RTI.

Prepare Parity Bit for this Byte j !

FC4E/FC8C-FC56/FC94 UJ

Called by: i ,

BEQ at FC12/FC50 in Prepare to Write Next Bit and Dec- L&j

rement Bit Counter.

Compute the parity bit for the byte just written and store , j

in bit 0 of BD to allow the parity bit for the this byte to be l^

written to tape.

Let's work through an example. . .

If a byte to be written was $25, then the binary value is LJ
00100101. However, the parity work byte is computed from

326 j f

Tape I/O Routines

r^ the flipped value of the bit for the second dipole. Thus the ac-

| j tual values in the accumulator that will be Exclusive ORed

with 1 (EOR $01) will be: 11011010.

t,-,^ 9B is initialized to zero before each byte. Thus, for a data byte

; ; of $25, the parity bit is calculated as follows:

Accumulator: 11011010

_ 9B: 0 1001001

I \ Accumulator EOR 9B 10 0 10 0 11

Thus, the final result in 9B after eight data bits is 1.

To compute the parity bit:

LDA 9B 1

EOR $01 1

Accumulator 0

Finally, STA BD, the parity bit for this byte.

Thus for this byte of $25, a total of three ones (including

the parity bit) are stored on tape. Thus the parity bit calcula

tion makes certain that an odd number of ones will be written

for a byte, including the parity bit. On loading a tape, if the

tape read routines find an even number of ones, then a parity

error has occurred.

Entry conditions:

9B, the parity work byte, contains the value of the parity bit

computed for the 8 data bits.

Operation:

1. LDA 9B, the parity bit calculation for the eight data bits.

2. EOR $01 to insure that odd parity is being used.

3. STA BD. Store the parity bit into bit position 0, to be the fi

nal bit to be written to tape for this byte.

r^ 4. FC54/FC92: JMP FEBC/FF56 to restore registers and RTI.

Indicate Block Save Complete

f-i FBC8/FC06-FBCC/FC0A

Called by:

BNE at FC35/FC73 in Check for End of Save.

f~] Set B6/AD to have its high bit on to indicate the end of
block has been reached.

fl 327

Tape I/O Routines '—^

u
Operation:

1. SEC. ! |

2. ROR B6/AD. This ROR rotates the carry into the high bit, L^
and since the carry was just set, a 1 will be rotated into this

high bit.) |

3. BMI FC09/FC47 to restore registers and RTI. !—[

Handle End-of-Block Processing and Reset IRQ Vector I I

FC57/FC95-FC69/FCA7 ^

Called by:

JMP at FBE0/FC1E in Write Word Marker Bit to Tape.

When a block has been saved (or if trying to save from

greater than or equal to 8000 on the VIC) then this routine is

executed.

If the second block was just saved, then turn off the tape

motor. If the first block was just saved, write a word marker

dipole and then 80 leader cycles.

Reset the IRQ vector to FC6A/FCA8, thus passing control

back to FC6A/FCA8 at the end of saving each block.

If you do try to save from greater than or equal to 8000

on the VIC, then it will appear externally from the screen mes

sages and the tape movement that something is being saved to

tape. All that is being saved is the header, which correctly

points to the save area greater than or equal to 8000, but then

this is followed by leader cycles.

Entry conditions:

BE contains 2 if the first block of header or program was just

saved, or 1 if the second block of header or program was just

saved.

Exit conditions: » ,

BE contains 1 if the first block of header or program was just LJ
saved, or 0 if the second block of header or program was just

saved. (0314), the IRQ interrupt vector, is reset to FC6A/FCA8. i j

The tape motor is turned off if the second block of header or ^j

program was just saved.

Operation: i I

1. Decrement BE. w
2. If BE is nonzero after the decrement then the first block of

the header or the program was just saved; branch to step 4. I j

328 I /

n
■■—' Tape I/O Routines

n '
3. If BE is zero after the decrement then the second block of

f~f the header or the program was just saved; JSR FCCA/FD08
to turn off the tape motor. With the tape motor off the lead

er cycles written in step 4 can't be written after the second

ri block.

4. Set A7 to 80, for 80 cycles of leader dipoles between blocks.

5. Disable IRQ interrupts to prevent an interrupt from occur-

rn ring while the IRQ vector is being reset.

' 6. JSR FCBD/FCFB to reset the IRQ interrupt to FC6A/FCA8.
Thus, at the end of each block, control returns to FC6A/FCA8.

7. Branch to FC54/FC92 to restore registers and RTI.

Check for Tape Button Down

F82E/F8AB-F837/F8B6

Called by:

JSRs at F817/F894 and F824/F8A1 in Display PRESS PLAY

ON TAPE, JSR at F838/F8B7 in Display PRESS RECORD &

PLAY ON TAPE; alternate entry at F836/F8B5 by BEQ/JSR at

F81A/F897 in Display PRESS PLAY ON TAPE, BEQ/JSR at

F83B/F8BA in Display PRESS PLAY & RECORD ON TAPE.

Check bit 4 of 01/bit 6 of 91 IF, the tape switch line, to

see if any tape buttons (Fast Forward, Play, or Rewind) are

down.

Return with Z = 0 (BNE) if no tape buttons are down, or

with Z = 1 (BEQ) if a tape button is down.

If you press Play rather than Play and Record, the tape

save routines won't be able to tell that Record is not down and

will act as if everything is okay. However, since 10 seconds of

leader are written to tape before the header is saved, the tape

save works as long as you press Record in time to allow

j—I enough zero dipoles to be written to tape to allow the tape

(J load to function correctly. That is, if you specify a tape save

and accidentally just press Play rather than Play and Record,

|—j go ahead and press Record rather that starting the save all

' „s over. Just press Record in enough time to write at least 16

leader diples (that's within about 9.5 seconds, or 16 leader di-

r-i poles of 349 microseconds/dipole).
(\

~" Operation:

1. LDA $10/$40 to prepare to test bit 4 of 01/bit 6 of 911F.

(""] 2. BIT 01/91 IF to test the tape switch line.

329

I I

Tape I/O Routines '—'

U
3. If tape switch line was 1 (no tape buttons down) then

branch to step 5, with Z = 0 (BNE condition).) I

4. If bit 6 was 0 (tape buttons down), then BIT 01/91 IF to ^
again set Z = 1 (BEQ condition). I do not see why the BIT

01/91 IF instruction is repeated, since the carry is cleared in I J

step 5 in either case and the Z bit of the status register will

be set the same for this second BIT. Only if the tape button

is released in the very short time between steps 2 and 4 will \ I

the second BIT return a different value than the first BIT. i—'
5. F836/F8B5: CLC.

6. RTS.

Display PRESS PLAY ON TAPE

F817/F894-F82D/F8AA

Called by:

JSR at F399/F459 in Open Logical File for Reading from Tape,

JSR at F541/F5D9 in Control Routine for Tape LOAD, JSR at

F84A/F8C9 in Load Next Two Blocks; alternate entry at

F81E/F89B by BNE at F83F/F8BE in Display PRESS RECORD

& PLAY ON TAPE.

See if any tape buttons are down. If none are down then

display either PRESS PLAY ON TAPE if entered at

F817/F894, or PRESS PLAY & RECORD ON TAPE if entered

at F81E/F89B.

If any tape buttons are down, then branch to just CLC

and RTS.

If no buttons are down, check if the keyboard STOP key is

pressed, and if it is, then RTS.

Again check if any tape buttons are down. If none are

down, then branch to the previous step to check the keyboard

STOP key. If any tape buttons are down, then display OK and \ i

exit. I—I

Operation:

1. JSR F82E/F8AB to test the tape switch line to determine if 1}
any tape buttons are down. If Play, Fast Forward, or Rewind

are down, then BEQ to F836/F8B5 to CLC and RTS.

2. If no tape buttons are down, then LDY $1B to index the)]
message PRESS PLAY ON TAPE. ■

3. F81E/F89B: JSR F12F/F1E6 to display the message indexed

by the Y register. J j

330

H
Tape I/O Routines

n '
4. JSR F8D0/F94B to see if the keyboard STOP key is down. If

!| so, RTS from this routine.
5. JSR F82E/F8AB to test the tape switch line to determine if

^ any tape buttons are down. If none are down, then branch

! t to step 4.

6. If any tape buttons are down, then LDY $6A and JSR

F12F/F1E6 to display message OK.

Display PRESS RECORD & PLAY ON TAPE

F838/F8B7-F840/F8BF

Called by:

JSR at F3B8/F478 in Open Logical File For Writing To Tape,

JSR at F664/F6FD in Control Routine for Tape Save, JSR at

F86B/F8EA in Prepare IRQ Vector and Timer Interrupts for

Tape Write.

JSR to F82E/F8AB to see if any tape buttons are down. If

any are down, then CLC and RTS.

If no tape buttons are down, then display PRESS

RECORD & PLAY ON TAPE , wait for a tape button to be

pressed, and display OK.

Operation:

1. JSR F82E/F8AB to see if any tape buttons are down.

2. If any tape buttons are down, then BEQ to F836/F8B5 to

CLC and RTS.

3. If no tape buttons are down, then LDY $2E to index the

message PRESS RECORD & PLAY ON TAPE.

4. Branch to F81E/F89B to display the message, test for tape

buttons down or keyboard STOP key pressed, and display

OK if tape button pressed.

R Check Keyboard STOP Key During Tape I/O
F8D0/F94B-F8E1/F95C

rn Called by:
JSR at F821/F89E in Display PRESS PLAY ON TAPE, JSR at

F8C7/F938 in Reset IRQ Vector and Set Interrupt Enable

p"j Register.

See if the keyboard STOP key is pressed. If it is not down,

then just RTS.

H] If the STOP key is down, then JSR FC93/FCCF to restore

■- certain CIA #1/VIA #2 registers and reset the IRQ vector at

i I

Tape I/O Routines

(0314) to the value that was saved in (029F). Then store zero

in 02A0. U
The carry is set on exit from routine if the STOP key is

down.

If the STOP key is down, then rather than doing a normal | j
RTS, the current return address is pulled from the stack. Thus,

when the RTS for this routine occurs, control returns not to

the routine that called F8D0/F94B, but to the routine that |_j
called the routine that called F8D0/F94B. Thus, control does

not return to the instruction following the JSR F8D0/F94B, but

to the instruction following the previous JSR.

Operation:

1. JSR FFE1, the Kernal STOP vector, to test the STOP key,

which JMPs (0328) to the default test STOP key routine at

F6ED/F770. If the STOP key is pressed, then the Z = 1

(BEQ condition) on return.

2. CLC in case the STOP key is not pressed.

3. BNE to step 8 to RTS if the STOP key is not pressed.

4. If the STOP key is pressed, then JSR FC93/FCCF to restore

CIA #1/VIA #2 registers and reset IRQ vector.

5. SEC to indicate the stop key is pressed; carry flag can be

tested on return to see if STOP key pressed.

6. Pull the next two bytes off the stack, thus removing the cur

rent return address and forcing the previous two bytes to be

used as the return address for the following RTS.

7. Reset 02A0, high byte of IRQ vector temporary storage, to

zero.

8. RTS.

Reset Pointer to Start of Load/Save Area

FB8E/FBD2-FB96/FBDA \\

Called by:

JSR at F617/F6AF Save to Serial Device, JSR at FABl/FAFE in ^ ,

Check for Last Block Countdown Character, JSR at M

FB6B/FBAF in Tape Load Completed, JSR at FC88/FCC6 in

Write Leader Bit to Tape and Reset IRQ Interrupt.

Reset the pointer to the current byte for the load or save ^J
area (AC) from the value in (Cl), the pointer to the start of the

save area or the start of the load area.

Operation: '—'
1. Store value from (Cl) into (AC), then RTS. ^

332 [j

n
Tape I/O Routines

n

— Reset Counters and Variables for Tape I/O

1 J FB97/FBDB-FBA5/FBE9

Called by:

J-] JSR at F8A8/F912 in Reset IRQ Vector and Set Interrupt En
able Register, JSR at FA60/FAAD in Determine Action to Take

for this Byte, JSR at FC16/FC54 in Prepare Counters for Next

M Byte and Test if Writing Block Countdown Characters, JSR at

FC75/FCB3 in Write Leader Bit to Tape and Reset IRQ

Interrupt.

Reset counters and variables used in writing or reading a

byte during tape I/O.

Operation:

1. Set A3 to 8.

2. Set A4, A8, 9B, and A9 to 0.

Reset CIA/VIA Registers and Restore IRQ Vector

FC93/FCCF-FCB7/FC5F

Called by:

JSR at F8D6/F951 in Check Keyboard STOP Key During Tape

I/O, JSR at FB68/FBAC in Tape Load Completed, JSR at

FCB8/FCF6 in Set IRQ Vector.

Now that tape I/O operations are complete, turn off the

tape motor. Disable IRQ interrupts. Reset CIA #1 interrupt

control register/VIA #2 interrupt enable register to disable all

CIA #1/VIA #2 interrupts. For the VIC, reset keyboard scan

for column 3 and set the VIA #2 auxiliary control register to

default of $40. Enable CIA #1 timer A/VIA #2 timer 1 inter

rupts and reset CIA #1 timer A value/VIA #2 timer 1 value. If

02A0, high byte of IRQ vector temporary storage, is nonzero

| j then reset (0314) from (029F). On the 64, make the screen vis
ible again.

/—i Operation:

' 1. Save status register on stack.
2. Disable IRQ interrupts.

(—I 3. 64: Store $10 in D011, VIC-II chip control register, to turn

' ^ . off the blank screen bit, making the screen visible again.

4. JSR FCCA/FD08 to turn off tape motor.

j—i 5. 64: Store $7F in DCOD to disable all CIA #1 interrupts.

» _ J VIC: Set VIA #2 interrupt enable register to disable
all VIA #2 interrupts.

H 333

u
Tape I/O Routines

u

6. VIC: Reset 9120 Port B I/O Register to scan for column 3.

7. VIC: Set 912B VIA #2 Auxiliary Control Register to $40: LJ
output to PB7 disabled, free running mode for timer 1,

one-shot interval mode for timer 2, shift register disabled, f

no latching for I/O Ports A and B. |_J
8. 64: JSR FDDD to enable timer A interrupts for CIA #1, re

set the timer A value, and start the timer.

VIC: JSR FE39 to enable timer 1 interrupts for VIA |_j
#2 and to reset timer 1 value.

9. If 02A0 is nonzero, indicating that (0314) has not yet been

reset, then reset (0314), the IRQ vector, from the value in

(029F).

10. Pull status register from stack and RTS.

Set IRQ Vector

FCB8/FCF6-FCC9/FD07

Called by:

BEQ at FC86/FCC4 in Write Leader Bit to Tape and Reset IRQ

Interrupt; alternate entry at FCBD/FCFB by JSR at F8A1/F90B

in Reset IRQ Vector and Set Interrupt Enable Register, JSR at

FC65/FCA3 in Handle End-of-Block Processing and Reset IRQ

Vector, JSR at FC7E/FCBC in Write Leader Bit to Tape and Re

set IRQ Interrupt.

If normal entry point, then just JSR FC93/FCCF to restore

CIA #1 registers/VIA #2 registers and set (0314) from value in

(029F). On the 64also make the screen visible again. Then exit

by branch to FC54/FC92 to restore registers and RTI.

If entry at FCBD/FCFB, then set the IRQ vector (0314)

from a table at FD9B/FDF1, with the table entry indexed off

of the base of FD93/FDE9, FD94/FDEA using the X register

as an index. I »

Exit condtions:

(0314) = F92C/F98E if X register = $0E.

(0314) = FC6A/FCA8 if X register = $08. LJ

(0314) = FBCD/FC0B if X register = $0A.

Operation: j >

1. JSR FC93/FCCF to restore CIA #1/VIA #2 registers and set ^

IRQ vector (0314) from (029F) if it hasn't already been

reset. i i

2. Since FC93/FCCF routine does not affect the status register, '—'

334 |J

n
Tape I/O Routines

H

nthe BEQ that was true when step 1 was called is still true,

so BEQ FC54/FC92 to restore registers and RTI.

3. FCBD/FCFB: Use FD93/FDE9 as base and X register as in-

r^ dex to retrieve the low address of the new IRQ vector and

I i store this in 0314.
4. Use FD94/FDEA as base and X register as index to retrieve

, | the high address of the new IRQ vector and store this in 0315.

! I 5. RTS.

Turn Off Tape Motor

FCCA/FD08-FCD0/FD10

Called by:

JSR at FC5B/FC99 in Handle End-of-Block Processing and Re

set IRQ Vector, JSR at FC9D/FCD1 in Reset CIA/VIA Reg

isters and Restore IRQ Vector.

For the 64, set bit 5 of 01, 6510 I/O port, to 1 to turn off

tape motor. For the VIC, set bits 3-1 of 911C, VIA #1 periph

eral handshaking control register,to 1, turning the tape motor

off by holding CA2 high.

Operation (64):

1. LDA 01, 6510 I/O port.

2. ORA $20.

3. STA 01.

Operation (VIC):

1. LDA 911C, VIA #1 peripheral handshaking control register.

2. ORA $0E.

3. STA$911C.

Compare Pointer to Current Byte with Pointer for End

PI of Load/Save
FCD1/FD11-FCDA/FD1A

n Called by:

' l JSR at F624/F6BC in Save to Serial Device, JSR at FACE/FB1B

Check for End of Tape Load, JSR at FB78/FBBF Tape Load

n Completed, JSR at FC30/FC6E Check for End of Tape Save.

1] Subtract (AE), the pointer to the end of the load/save
area from (AC), the pointer to the current byte being

n loaded/saved. If a borrow is required because (AE) is greater

I --' than (AC) then the carry will be clear at exit. If a borrow is not

H 335

u
Tape I/O Routines

u

required because (AE) is less than or equal to (AC) then the j ,

carry will be set at exit. The carry status can then be checked 1 I
by the calling routine to determine if the load/save is

complete. I ,

Entry conditions:

(AE) is the pointer to the end+1 of the load/save area. (AC)

is the pointer to the current byte being loaded/saved. j I

Exit conditions:

Carry clear if (AE) is greater than (AC) (save/load not yet

done).

Carry set if (AE) is less than or equal to (AC) (save/load

complete).

Operation:

1. SEC.

2. LDA AC, the low byte of the pointer to the current byte

being saved/loaded.

3. SBC AE, the low byte of the pointer to the end of the

save/load area.

4. LDA AD, the high byte of the pointer to the current byte

being saved/loaded.

5. SBC AF, the high byte of the pointer to the end of the

save/load area.

6. RTS.

Increment Pointer to Current Byte

FCDB/FD1B-FCE1/FD21

Called by:

JSR at F63A/F6D2 in Save to Serial Device, JSR at FB43/FB90

in Load Byte and Increment Pointer to Load Area, JSR at i .

FB78/FBBC in Tape Load Completed, JSR at FC49/FC87 in LJ
Move Next Byte from Save Area and Increment Pointer.

The pointer to the current byte being loaded or saved, j {

(AC), is incremented. I—'

Operation:

1. INC AC, the low pointer to the current byte being i j

saved/loaded.

2. If AC is not equal to zero after the increment then no page

boundary was crossed, so branch to step 4 to RTS.] j

336 u

n
Tape I/O Routines

n

i—I 3. If AC is zero then a page boundary was crossed so in-

' ' crement AD the high pointer to the current byte being
saved/loaded.

m 4. RTS.

Determine If Open Is for Read or Write

pj F38B/F44B-F398/F458

Called by:

BNE at F386/F446 in OPEN Execution.

First, check the tape buffer address in (B2) to make sure

the tape buffer does not start below 0200. If it does start below

0200, then display Illegal Device Number message and RTS.

Next, determine whether the secondary address B9 in

dicates a read (secondary address of 0) or a write (nonzero

secondary address) to tape.

Branch to F3B8/F478 if writing to tape. Fall through to

F399/F459 if reading from tape.

Operation:

1. JSR F7D0/F84D to determine if tape buffer address (B2) is

greater than or equal to 0200. If not, then JMP F713/F796

to display Illegal Device Number message if kernal control

messages flag is on, then RTS from this routine.

2. LDA B9, the current secondary address.

3. Mask off the high nybble as the Open since serial routines

have placed a $6 in the high nybble.

4. If the value remaining in the accumulator is nonzero, then

we're doing an open for tape write; branch to F3B8/F478

5. If the value remaining in the accumulator is zero, then we're

doing an open for tape read; fall through to F399/F459.

' Open Logical File for Reading from Tape
F399/F459-F3D4/F494

H Called by:
Falls through from F398/F458 in Determine If Open Is for

nRead or Write.

Display the PRESS PLAY ON TAPE message if no tape

buttons are down. If the keyboard STOP key is down then

n exit
I 1 Display the SEARCHING. If a filename has been speci

fied, then also display the filename.

' ' 337

Tape I/O Routines

u

u

If no characters are in the filename, then just load the . .

next header. I I
If the filename does contain characters, then load the

specified filename. I *

On return from loading the header if an end-of-tape I i
header (tape identifier of 5) was loaded, then RTS with the

accumulator containing 5 and carry set, allowing BASIC to dis- ,- (

play the DEVICE NOT PRESENT message. LJ
If the STOP key was pressed, then display FILE NOT

FOUND error message if using machine language, returning

with 4 in the accumulator and carry set. BASIC displays the

error message 7BREAK if the STOP key is pressed.

If indeed a header with an identifier of 1, 3, or 4 was

found, then set A6 to 191 characters in the tape buffer and

RTS. Setting A6 to 191 forces the first CHRIN for this tape file

to load the buffer again with the first 192 byte data area

following on tape.

It appears that tape identifiers of 1 or 3, normally asso

ciated with program tapes, can function the same as tape

headers of 4 when loading a sequential file. Of course, when

writing a sequential file, a tape identifier of 4 is used for the

header.

Entry conditions:

B9 contains current secondary address with low nibble == 0 for

a tape read. B7 contains number of characters in filename.

Operation:

1. JSR F817/F894 to see if any tape buttons are down. If

none are down, then display PRESS PLAY ON TAPE and

then display OK when one is pressed. If the keyboard

STOP key is pressed then BCS to F3D4/F494 to RTS. , .

2. JSR F5AF/F647 to display SEARCHING. If a filename is LJ
being used, then also display FOR and the filename.

3. LDA B7, the number of characters if the filename. , ,

4. If no characters in the filename then branch to step 9. I I
5. If characters in the filename, then JSR F7EA/F867 to load

the header containing this filename into the tape buffer. , |

6. BCC to step 13. Carry is clear on return from step 5 if I I
header with tape identifier of 1, 3, or 4 is found that con

tains the filename specified. I >

7. BEQ to step 17 to RTS. Z = 1 (BEQ condition) if header I I
with tape identifier of 5 indicating end-of-tape was loaded.

338 LJ

H
Tape I/O Routines

r \

p-j RTS with accumulator holding 5 and carry set. (Carry is

1 --' set on a compare that is equal).
8. If carry set, but Z = 0, then the keyboard STOP key was

t—) pressed and detected. JMP F704/F787 to set error number

' - J of 4, display the message FILE NOT FOUND, and close
any open files. Since BASIC uses its own messages, this

r-j FILE NOT FOUND message is not displayed from BASIC.

!-J Rather, 7BREAK ERROR is displayed.
9. Branch here from step 4 if no filename is specified. In this

situation just load the next header by JSR F72C/F7AF.

10. BEQ to step 17 to RTS. Z = 1 (BEQ condition) if header

with tape identifier of 5 indicating end-of-tape was loaded.

RTS with accumulator holding 5 and carry set. (Carry is

set on a compare that is equal).

11. BCC to step 13. Carry is clear on return from step 5 if

header with tape identifier of 1, 3, or 4 is found.

12. If carry set, but Z = 0, then the keyboard STOP key was

pressed and detected. Branch to step 8.

13. F3C2/F482: LDA $BF (decimal 191).

14. See if secondary address indicates a read, which it should.

Branch to F3D1/F491, step 15.

15. STA A6, setting it to 191.

16. CLC.

17. RTS.

CHRIN from Tape

F179/F230-F198/F24F

Called by:

Fall through from F178/F22F in Determine Input Device.

Return the next byte from the tape buffer in the accu-

f I mulator. Also, read one byte ahead to see if the next byte is
zero, indicating end-of-file, and if true then set end-of-file sta-

| tus in 90.

/j Since the X register is saved at entry to this routine, and

restored at exit, it can be used as an index register in the rou-

, , tine that calls CHRIN.

' s Operation:
1. STX in 97 to allow X register to be restored to its entry

p value upon exit from routine.

1] 2. JSR F199/F250 to increment the pointer to the tape buffer
A6. If A6 contains 192 after the increment, then load the

r—?

* [339

Tape I/O Routines
u

tape buffer from tape again, and reset A6 to 0. i i

If A6 was reset to zero, then the A6 is again in- '—*
cremented (resulting in a value of 1). Thus, the tape identi

fier is skipped during CHRIN. j >

Return the byte pointed to by A6 after it was I—I
incremented.

If the keyboard STOP key was pressed, then branch to i i

step 5 to restore X register from 97, then RTS. 1—I
3. PHA, storing the byte just returned from the tape buffer.

4. Now read one byte ahead in the tape buffer to determine if

end-of-file status in 90 should be set. End-of-file is set if the

next byte is a zero. You can check the end-of-file status

from your BASIC or machine language program.

To read one byte ahead, again JSR F199/F250, return

ing the next byte from the tape buffer in the accumulator.

If the keyboard STOP key was pressed, then branch to

F193/F24A to PLA to keep the stack in proper order, then

restore X register from 97 and RTS.

If the byte from the read ahead is 0, then JSR

FE1C/FE6A to set end of file status in 90 of $40.

Finally, decrement A6, as it was incremented in this

one byte look-ahead step.

5. Restore the X register that was saved in 97.

6. PLA to restore from the stack the byte returned from the

tape buffer.

7. RTS.

Return Byte from Tape Buffer

F199/F250-F1AC/F263

Called by:

JSRs at F17B/F232 and F181/F238 in CHRIN from Tape. |_j
Increment the counter/pointer to the tape buffer, A6.

If A6 is not 192 then no need to read another tape buffer,

just return the byte from the tape buffer pointed to by A6. J J
If A6 is 192, then load the next tape buffer. Reset A6 to 0,

then branch to the start of this routine again, thus increment

ing A6 past the tape identifier to return the second byte from j j
the tape buffer.

No check appears to be made when loading the next tape

buffer that the buffer contains a tape identifier of 2 indicating | j
a data buffer. Rather, the next 2 blocks are loaded. However, it

340 • [J

Tape I/O Routines

rn does appear that long block or short block status will be set if

' * a program file is loaded as if it were a data file, and your pro
gram could check the status for the long or short block status.

f—} Long block status should be set if the program is longer than

' -l 192 bytes long; if program if under 192 bytes long then short
block status should be set.

(] Operation:
1. JSR F80D/F88A to Increment Count of Characters In Tape

Buffer. Also compare this pointer to 192 to see if at the end

of the buffer.

2. If A6 is not equal to 192 then branch to step 7 to return the

next byte from the tape buffer.

3. If A6 is equal to 192, then JSR F841/F8C0 to load the next

header into the tape buffer.

4. If the keyboard STOP key is pressed, then branch to step 9

to RTS.

5. Reset A6 to zero.

6. Branch to step 1. Thus, upon loading a new tape buffer, A6

is incremented to a value of 1, bypassing the tape identifier.

7. LDA (B2),Y. Load accumulator with the next byte from the

tape buffer. The Y register is set from value in A6 after A6

was incremented.

8. CLC.

9. RTS.

Control Routine for Tape Load

F539/F5D1-F5AE/F646

Called by:

BCS/BNE at F534/F5CC in Determine Device for LOAD.

(—J If the tape buffer address is greater than or equal to 0200,

then load the tape buffer with a header from the tape, either a

specific one if a filename is given or the next one if no file-

r™[name is used. However, only tape headers with tape identifi-

' > ers of 1 or 3 are acceptable for use. A tape identifier byte of 5
indicates end-of-tape header in which case this routine just

r~j exits with the accumulator containing 5 and the carry set. If a

tape identifier of 2 or 4 is read, the tape header is not used as

these tape identifiers are used for sequential files; search for

— the next tape header with tape identifier of 1, 3, or 5 in this

^ case.

; ' 341

u
Tape I/O Routines

u

After loading the header, the tape identifier is examined. i i

A tape identifier of 3 causes a nonrelocatable load during *>—'

which the starting address is taken from the second and third

bytes of the tape buffer. A tape identifier of 1, along with a i j

secondary address of 0, allows a relocatable load with the val- I—»
ues in the X and Y registers at entry to the load used as the

starting address for the load. However, a tape identifier of 1 i i

and a nonzero secondary address force a nonrelocatable load. '—'
The length of the program to be loaded is determined by

subtracting the starting address in the tape buffer from the

ending address in the tape buffer. This length is then added to

the actual starting address to obtain the ending address of

where to load the program. The actual starting address is

taken from the starting address in the tape buffer unless a re

locatable load is specified.

Then, the LOADING or VERIFYING message is displayed,

and the next two program blocks are loaded into the load area.

Finally, at exit from the program load, (AE) contains the

address of the end of the load.

While an end-of-tape header is detected and returned to

BASIC as the value of 5 in the accumulator and the carry set,

allowing BASIC to display the message DEVICE NOT

PRESENT error message, the Kernal routine for load does not

explicitly set 90, the status byte, to indicate this error. This is

contrary to the table displayed for READST in the 64 and VIC

Programmer's Reference Guides. Other tape error conditions of

short block, long block, unrecoverable read error, and

checksum are flagged in 90. To test for end-of-file from a ma

chine language program, it appears you have to examine the

carry status and/or the accumulator on return from the JSR

FFCO for load. The carry is set and accumulator contains 5 if j i

end-of-tape. Also, carry is set and accumulator contains 4 if I—I
the STOP key was pressed. READST (JSR FFB7) does not re

turn the status for end-of-tape following an load. j j

When loading a program tape, either the program is I—'
loaded back into the same area it was saved from or it it is re

located to a different area of memory. Two factors determine i |

whether a tape will be loaded back into the same place it was I—>
saved from. First, however, let's define the terms used here. A

relocatable program tape is one that has been saved in such a j »

manner that it is possible (though not required) to load it into I—'
a different area of memory than the area from which it was

) 1
342 L_»

Tape I/O Routines

r~| saved. A nonrelocatable program tape only allows the pro-

' gram to be loaded back into exactly the same memory loca

tions from which it was saved. The first factor that determines

p"*! whether a program tape is relocatable or nonrelocatable is the

■ ' tape identifier that is the very first byte of data in the tape
header. If this identifier is 3, then then the program tape is

r-j nonrelocatable. If the identifier is 1, then the program tape is

' ' relocatable. However, the second factor of the secondary ad
dress in B9 enters into consideration with a program tape

whose header tape identifier is 1. Although a program with a

tape identifier of 1 is relocatable, it is only relocated if you use

a secondary address of zero. The area to which it is relocated

is specified in the X and Y registers before JSR FFD5 to the

kernal routine load. A nonzero secondary address causes a

program tape with tape identifier of 1 to be nonrelocatble.

When a tape is nonrelocatable, it retrieves the location

where the tape is to be loaded from bytes 2 and 3 of the tape

buffer, which contain the starting address from which the pro

gram tape was saved.

A tape identifier of 1 is written on a tape during tape save

when an even secondary address is specified. A tape identifier

of 3 is written during tape save when an odd secondary ad

dress is specified.

Because the tape load operation is really a two-part step

in which the header is loaded and then the program, you

could execute each step individually and modify the starting

address and ending address for the program after the header

has been loaded.

Entry conditions:

B9 contains the secondary address. (C3) contains the starting

p address for save from the X and Y registers if this is a re
locatable load. (B2) contains the address of the tape buffer.

r—j Exit conditions:

' ' (AE) contains ending address of program loaded.

Operation:

P| 1. JSR F7D0/F84D to see if the tape buffer starts greater than
or equal to 0200. If it does not, then exit with ILLEGAL

DEVICE error message.

PI 2. JSR F817/F894 to see if any tape buttons are down. If
none are down, then display the PRESS PLAY ON TAPE

I i 343

Tape I/O Routines

message. Test for a button depressed and display OK

when one is detected down. If the keyboard STOP key was

pressed then RTS.

3. JSR F5AF/F647 to display SEARCHING and if a filename

was specified then also display FOR and the filename.

4. A loop is now performed to look for the next tape header

until a header with a tape identifier of 1 or 3 is found. t ,

First, LDA B7 to see if there are any characters in the I 1
filename. If there aren't, then branch to step 9.

5. If there are characters in the filename, then JSR

F7EA/F867 to load the header containing this filename

into the tape buffer.

6. BCC to step 13. Carry is clear on return from step 5 if

header with tape identifier of 1, 3, or 4 is found that con

tains the filename specified.

7. BEQ to RTS. Z = 1 (BEQ condition) if header with tape

identifier of 5 indicating end-of-tape was loaded. RTS with

accumulator holding 5 and carry set.

8. If carry set, but Z = 0, then the keyboard STOP key was

pressed and detected. BCS F530/F5C7 which JMPs F704/

F787 to set error number of 4, display message FILE NOT

FOUND, and close any open files. Since BASIC uses its

own messages, this FILE NOT FOUND message is not dis

played from BASIC. Rather, 7BREAK ERROR is displayed.

9. Branch here from step 4 if no filename is specified. In this

situation just load the next header by JSR F72C/F7AF.

10. BEQ to RTS. Z = 1 (BEQ condition) if header with tape

identifier of 5 indicating end-of-tape was loaded. RTS with

accumulator holding 5 and carry set.

11. If carry set, but Z = 0, then the keyboard STOP key was

pressed and detected. BCS F530/FC57 which JMPs to , .

F704/F787 to set error number of 4, display message FILE LJ
NOT FOUND, and close any open files.

12. If carry is clear on return from step 9, then header with , ,

tape identifier of 1, 3, or 4 is found. I '
13. Before proceeding further, check 90 to see if an unrecov

erable read error occurred during load of the header. If so, . >

then branch to step 32 to RTS. I 1
14. Since only program headers with tape identifiers of 1 or 3

are wanted, tape identifiers of 4 will be rejected and a , ,

search for the next header is performed. I j

344 u

Tape I/O Routines

I—i 15. CPX $01. The X register contains the tape identifier byte. If

'■ ' this compare is equal, then a tape identifier of 1 for a re
locatable program tape has been found. Branch to step 21.

*.—> 16. CPX $03. If not equal (if a tape identifier byte of 4 for ex-

' ' ample), then branch to step 4 to load another header.
17. If the X register contains 3, then a tape identifier byte for a

nnonrelocatable program file has been loaded; continue

with step 18.

18. Load the second byte in the tape buffer (the low byte of

the address of the program area that was saved) and store

the value in C3.

19. Load the third byte in the tape buffer (the high byte of the

address of the program area that was saved) and store the

value in C4.

(C3) now contains the starting address of the program that

was saved to tape.

20. BCS to step 23. When a comparison is equal, such as X =

3 or X = 1 then the carry status is set. Thus, this branch is

unconditional.

21. Branch to this step from step 15 if a tape identifier of 1

was found. LDA B9, the secondary address.

22. If the secondary address is nonzero, then a nonrelocatable

load has been specified, so branch to step 18. If a zero

secondary address has been specified, then a relocatable

load is requested. The values in the X and Y registers at

entry to the load are stored in (C3).

23. Now compute the length of the program to be loaded.

LDA with the fourth byte from the tape buffer,

which is the low byte of the address of the end of the pro

gram that was saved. Subtract the second byte in the tape

i—> buffer from the accumulator; the second byte is the low

' * byte of the address of the start of the program that was
saved.

p-] Transfer the results to the X register for temporary

'. ' storage.
24. LDA with the fifth byte from the tape buffer, which is the

r-n high byte of address of the end of the program that was

' ' saved.

Subtract the third byte in the tape buffer from the

r—| accumulator; the third byte is the high byte of the address

'. » of the start of the program that was saved.
Transfer the results to Y register for temporary storage.

H • 345

Tape I/O Routines

25. Now that the length is known, add the length to the start- , .

ing address (either relocatable from X and Y registers or 1)
nonrelocatable from the second and third bytes in tape

buffer) to obtain the ending address for the load. » ,

26. Transfer X register back to accumulator. Add C3, the low I

byte of the address of the start of the program, either from

the tape buffer or if relocatable then from X register value . ,

at entry to load. Store the result in AE, the low byte of the \ 1
address of the end of the program.

27. Transfer the contents of the Y register back to the accu

mulator. Add C4, the high byte of the address of the start

of the program, either from the tape buffer or if relocatable

then from the Y register value at entry to load. Store the

result in AF, the high byte of the address of the end of the

program.

28. Set (Cl) from (C3).

29. JSR F5D2/F66A to display either LOADING or

VERIFYING.

30. JSR F84A/F8C9 to load the program from the two pro

gram blocks following the header.

31. At completion of program load, load the X register from

AE, the low byte of the address of the end of the program

loaded, and load the Y register from AF, the high byte of

the address of the end of the program loaded.

32. RTS.

Find Specified Tape Header

F7EA/F867-F80C/F889

Called by:

JSR at F3A5/F465 in Open Logical File for Reading from

Tape, JSR at F54D/F5E5 in Control Routine for Tape Load. |_|
Load headers (tape identifiers of 1, 3, or 4) until a header

is found whose name matches the filename specified in the

OPEN or LOAD. Stop the search when an end-of-tape header j \
is found or if the keyboard STOP key is pressed and detected.

While the maximum length of a filename in a tape buffer

or a tape header is 187 bytes, this routine to find a specified j {
header allows a filename of up to 256 bytes to be compared to

the filename in the tape buffer. However, it should always

find a mismatch if a filename over 187 bytes is specified un- j j
less you somehow filled the area past the tape buffer with

bytes equal to the characters in the filename past position 187.

346 LJ

Tape I/O Routines

H

pi Exit conditions:

' * Carry set if STOP key pressed or if an end-of-tape header

with matching filename was loaded (also, if end-of-tape found

^ ■ the Z = 1 flag of status register (BEQ condition) is set).

1 Carry clear if the specified header is found.

If a header is found that matches the filename specified, then

j—? the tape buffer contains this header.

Operation:

1. JSR F72C/F7AF to load the next tape header with a tape

identifier of 1, 3, 4, or 5 into the tape buffer.

2. If a tape header with a tape identifier of 5 indicating an

end-of-file header is loaded, then branch to step 12 to RTS

with the accumulator holding 5 and the carry set. Also, if

the STOP key was pressed then BCS to step 12.

3. Set 9F, the index into the tape buffer, to 5.

4. Set 9E, the index into the filename, to 0.

5. Compare 9E to B7, the number of characters in the file

name. If equal then branch to step 11 to CLC and RTS.

6. Load the next character from the filename.

7. Compare this character to the next character from the tape

buffer.

8. If not equal, then branch to step 1 to get the next tape

header.

9. If equal, then increment 9E and 9F.

10. If 9E is not $00 then branch to step 5. If 9E = $00 then

fall through to step 11. However, it is unlikely 9E will roll

over to zero. Since this routine was executed because B7

was nonzero, then 9E should eventaully match B7.

11. CLC.

,—, 12. RTS.

n
Find Next Tape Header

r-* F72C/F7AF-F769/F7E6

1 Called by:
JSR at F3AF/F46F in Open Logical File for Reading from Tape,

PI JSR at F556/F5EE in Control Routine for Tape LOAD, JSR at
F7EA/F867 in Find Specified Tape Header.

Load the next two tape blocks into the tape buffer.

("""(If the keyboard STOP key was pressed, then exit with
carry set.

347

Tape I/O Routines
u

If the first byte in the tape buffer is 5, indicating an end- i ,

of-file header was loaded, then exit with accumulator holding I i
5 and carry set.

If the first byte in the tape buffer is 1, 3, or 4 then con- . .

sider this buffer an acceptable tape header. Display FOUND I I
and the filename from the tape buffer, then exit.

If the first byte in the tape buffer is not 1, 3, 4, or 5 then . ,

repeat this entire sequence of searching for the next header. ()

Exit conditions:

Carry set if keyboard STOP key was pressed and detected, or

if end-of-file header was loaded. (Also, if end-of-file header

was loaded, then Z = 1 , the BEQ condition).

Carry clear if header with tape identifier of 1,3, or 4 was

found.

The tape buffer is loaded with the header from tape.

Operation:

1. Save the LOAD/VERIFY flag, 93, on the stack.

2. JSR F841/F8C0 to read the next two blocks on tape into

the tape buffer.

3. Restore 93 from the stack.

4. If STOP key was pressed and detected, then BCS to step

15 to RTS with accumulator holding 0 or 1.

5. Load the first byte of the tape buffer.

6. If this first byte is 5, then an end-of-tape header was just

loaded. In this case branch to step 15 to RTS with accu

mulator containing 5 at exit and carry set.

7. If first byte in tape buffer is 1, 3, or 4, then continue with

step 8.

8. Branch to step 1 if first byte of tape buffer is not 1, 3, 4, or

5. j |

9. TAX, transferring the first byte from the tape buffer to X 1—»

register.

10. If 9D, the Kernal message control, has its high bit off, i j

branch to step 13. '—»

11. JSR F12F/F1E6 to display the FOUND message.

12. Starting from the tape buffer + 5, at the start of the file- j j

name in the tape buffer, output the next twenty characters 1—>
from the tape buffer to the output device, typically the

screen. i i

13. CLC. <-J

348 LJ

Tape I/O Routines

f—i 14. DEY. Thus Y will hold 19 (hex $14) on exit. I do not see

' ' the purpose of this instruction.
15. RTS.

1 l Read Tape Header into Buffer
F841/F8C0-F849/F8C8

H Called by:
JSR at F19E/F255 in CHRIN from Tape, JSR at F72F/F7B2 in

Find Next Tape Header. This is the entry point for reading a

tape header (reading whatever next two blocks occur into tape

buffer).

JSR F7D7/F854 to set start and end of tape buffer, setting

the starting and ending addresses for the load. The starting

address for the load (Cl) is set from (B2) the tape buffer

pointer. The ending address for the load (AE) is the starting

address + 192.

Fall through to F84A/F8C9 to load the next two blocks

into the load area.

Operation:

1. Set 90, status byte to 0. Also set 93, the LOAD/VERIFY flag

to 0 indicating a load.

2. JSR F7D7/F854 to use tape buffer address as starting ad

dress for load (Cl), and tape buffer address + 192 as end

ing address for load (AE).

3. Fall through to F84A/F8C9 to load the next two blocks

from tape into the tape buffer.

Load Next Two Blocks

F84A/F8C9-F863/F8E2

H Called by:
Falls through from F847/F8C6 in Read Tape Header into

^ Buffer, JSR at F5A2/F63D in Control Routine for Tape

I 1 Load.

Prepare variables and counters for tape load.

_ Prepare X register and accumulator for changing IRQ vec-

j 1 tor to F92C/F98E for tape read and for enabling FLAG/CA1
interrupts.

_ Branch to F875/F8F4 to make this vector change and en-

f (able the FLAG/CA1 interrupt.

349

Tape I/O Routines

Operation:

1. JSR F817/F894 to see if any tape buttons are down. If none

are down then display the PRESS PLAY ON TAPE. Then

check that a button is down and display OK. If the key

board STOP key is pressed and detected, branch to set 02A0

to 0, then RTS.

2. Initialize counters and variables as follows: « ,

AA = 0, B4 = 0, BO = 0, 9E = 0, 9F = 0, 9C = 0. ^
3. LDA $90/$82 in preparation for setting the CIA #1 inter

rupt enable register/VIA #2 interrupt enable register to en

able FLAG/CA1 interrupts for tape read.

4. LDX $0E to prepare to index into table of IRQ vectors to re

trieve the vector F92C/F98E for reading from tape.

5. Branch to F875/F8F4 to change the IRQ vector, enable

FLAG/CA1 interrupt, and make other preparations for the

tape load.

Tape Read Overview

Whenever a FLAG/CA1 Interrupt occurs for the tape read

routines, then the IRQ interrupt service routine at F92C/F98E

is executed. However, this IRQ interrupt service routine can be

thought of as two separate sections. In one section at

F92C/F98E-FA5F/FAAC the individual bits are read from the

tape. Once this section has found a leader and the following

word marker and thus prepared the various flags for receiving

data bytes, another section comes into consideration. This

other section at FA60/FAAD-FB67/FBAB is passed a byte

when the first routine concludes it has received enough bits to

make a byte (eight data bits and a parity bit). The second sec

tion then determines what to do with the byte it just re

ceived—for example, whether to treat it as a block countdown j j
character or as a valid data byte to be loaded into the load

area.

No one method seemed adequate for describing these two j
sections as the flow of control in each section is by no means

straightforward.

I ended up describing these two sections in this manner: j I
instructions are grouped together by function with each func

tion labeled. These groups are listed sequentially if that

seemed reasonable. The Called by section will list the reasons j j
this routine is called. While these groups are not separate sub-

350 u

Tape I/O Routines

n

(—| routines that can be branched to and returned from by an

- ' RTS, the groups do seem to serve separate functions.
If you are not already familiar with the tape routines, it

r—> will probably take several readings of these two sections to

' ' understand how the tape read works, as tape read seems much
more complex than the tape write routines.

nAtopic that deserves treatment is the speed as which

tapes are saved and loaded on the 64/VIC and the reliability

of the saves and loads.

The following calculation shows a maximum rate of writ

ing to tape for the VIC. A bit is written to tape in 345.8 micro

seconds for a 0 dipole and 502.4 microseconds for a 1 dipole,

or a total of 848.2 microseconds. One second divided by 848.2

microseconds/bit =1179 bits/second maximum recording

speed to casette. However, due to the leaders, the recording of

two blocks, block control characters, etc., the actual number of

bits/second recording speed is much less than this maximum.

Commodore has left the tape save and load routines

virtually unchanged from the PET to the VIC to the Com

modore 64. The reliability of the tape routines is excellent, as

there are two levels of error checking on the load: parity for

each byte and parity (or checksum) over all bytes loaded.

Along with the parity check for each byte is the possibility of

correcting errors in the first block by the corresponding byte

from the second block.

Along with this reliability of the tape routines comes the

fact that by keeping the tape routines the same tapes can be

loaded on any of the Commodore computers. Thus, even if a

faster or more reliable set of tape save/load routines is avail

able, switching to a different set of tape save/load routines

n would introduce the problem of compatibility of the old for

mat tapes with the new format tape save/load routines. Un

less the new tape load/save routines could routinely handle

nthe old format tapes, either both routines would have to be

provided or the old format tapes could no longer be loaded.

The only obvious place to speed up the tape load routine

p-i appears to be the section at the end of loading the first block.

1 \ If no errors are observed during the first block load, then the
checksum could be computed at this point. If the computed

n checksum matches the checksum from the save, then the load

could be considered complete, although this would leave the

tape physically positioned at the tape head between the first

!—I
I l 351

Tape I/O Routines
u

Li

and second blocks that were saved for the program. This \ i

positioning of the tape would make such a modification in- I !
compatible with sequential files, rather the modification could

only be used when loading program files. I »

Programs are available for the 64/VIC that provide faster I i
tape routines, such as the Rabbit and the Arrow. Without

examining the actual code in the Rabbit, just listening to a . ,

tape recorded in Rabbit format on a standard audio casette it (/

sounded to me as if only one block is used rather than two,

that the leader time is much shorter, and that the time per bit

is shorter. I did not have time to see how the Rabbit actually

worked. The Rabbit does support both normal format VIC

tapes and the fast Rabbit tapes. If you are not concerned about

exchanging tapes with other users and only concerned about

speeding up the save/load routines for your own programs or

sequential files, either the Rabbit or the Arrow might be a

worthwhile investment if you use tape a lot and don't have a

disk drive.

Determine Time Between FLAG/CA1 Interrupts for

This Dipole

F92C/F98E-F939/F99B

Called by:

Occurrence of IRQ interrupt (normally a FLAG/CA1 interrupt,

but a timer A/timer 1 interrupt is also possible).

The time between FLAG/CA1 interrupt occurrences is

determined for this dipole. This dipole time is later used to

determine whether the dipole just read is to be considered

noise, 0, 1, or a word marker.

What is a dipole? See Figure 10-2 for a pictoral repre

sentation of a dipole. j j
The positive and negative voltages that are recorded onto

the tape result in two different poles—just like a magnet with

a north pole and a south pole. This recording onto the tape j__j
can be represented as a square wave as shown in Figure 10-1.

A dipole (literally two poles) time is the time for two poles

(two square wave cycles). j [
Two dipoles make up a bit. Leader dipoles are all of a

short-0 time length, two 0 cycles. Data bits are either a

short-0 dipole followed by a medium-1 dipole, representing a] |
0 data bit, or a medium-1 dipole followed by a short-0 dipole,

352 LJ

Tape I/O Routines

n representing a 1 data bit. Word marker bits (used to signify the

end of the leader cycles and the end of each byte) are a

long-word marker dipole followed by a medium-1 dipole. I

f—» use the term word marker both in referring to a data bit and to

' j the dipole that makes up the first half of this data bit. Whether
I am referring to the dipole or the bit is hopefully obvious

r**-) from the context.

/ i Short-0, Medium-1, and Long-Word Marker refer to the
relative times for the dipoles; these times can vary slightly. See

the description of the variable 92 for some representative val

ues with which the tape routines start.

I sometimes interchange the way I refer to these dipoles,

that is sometimes I use short, other times 0. Similarly, at times

medium is used, while other times 1. The same interchange

applies to long-word marker.

The BNE F92C/F98E at F938/F99A limits the maximum

timer B/timer 2 read error to 14 cycles rather than a possible

256 if this BNE was not here.

Figure 10-17 displays the number of cycles each instruc

tion in this routine takes on the VIC.

Figure 10-17. Tape Read: Limiting Timer B/Timer 2

Error

Location

F98E

F991

F993

F994

F997

F99A

Instruction

LDX 9129

LDY $FF

TYA

SBC 9128

CPX 9129

BNE F98E

Cycles

4

2

2

4

4_

16 cycl

Now if the high byte of timer 2 in 9129 has changed at

F997 from its value at entry point F98E then at F98E the low

byte of timer 2 was within 16 cycles of decrementing through

zero, and thus decrementing the high byte of the counter.

For example, if the first time through this routine at F98E

timer 2 has a value of $2504, then at F997 timer 2 will be

$2504 - $10 (decimal 16), or $24F4. The CPX at F997 would

find X register of $25 but 9129 of $24, and thus branch to

F98E to read the timer again, and thus introduce an error into

the timer 2 reading of 16 cycles. Since the two low bits of the

353

u
Tape I/O Routines

timer are thrown away anyway, this is not enough error to af- (

feet the tape read routines in determining whether the dipole { |
just read was noise, 0, 1, or word marker.

However, consider what would happen without this BNE.

At exit from F997 the X register would contain $25 rather than) '
the value of $24. Since this is the high byte of the timer count,

and a 1 is equivalent to 256 cycles of the timer, the value in {

the X register could be up to 256 cycles in error. This error in j ;
the X register would be large enough to affect the readings for

the dipole.

On the 64, timer B is set to run in one-shot mode. In one-

shot mode the timer counts down to zero, generates an inter

rupt, reloads the latched value, and stops. However, it seems

that the interrupt would have to be serviced before the latched

value is loaded into timer B and timer B stops or else this rou

tine would be reading the latched value in the count and not

the count that reflects the timer B was started. The 6526 data

sheet does not define the one-shot mode in enough detail to

know if this is what is actually done.

Entry conditions:

IRQ interrupt has occurred.

Exit conditions:

The X register contains high byte of timer B/timer 2 count.

The accumulator contains $FF — low byte of timer B/timer 2

count. The Y register contains $FF.

Operation:

1. Load X register with the high byte of the timer B/timer 2

count. Timer 2 decrements continuously, and when reaching

zero, just rolls over and starts counting again from $FFFF.

Timer B is running in one-shot mode, but see the previous] |

comments. '—*
2. Load Y register with $FF.

3. TYA. | j

4. SBC DC06/9128. This SBC (which clears the timer 2 inter- l—r
rupt flag on the VIC) leaves in the accumulator the low byte

of the timer count since timer B/timer 2 was last set to 1 i

$FFFF. Timer B/timer 2 was last set to $FFFF during the LJ
routine immediately following this one, at F940/F9A2.

5. CPX DC07/9129. See if the high byte of timer B/timer 2 I" j

has changed from its value at entry step 1. If so, then the <—}

354 u

Tape I/O Routines

H

|—7 low byte of timer B/timer 2 was within 16 cycles of

LJ rollover.
6. If the compare is not equal in step 5, indicating the high

«-—• counter has changed, then branch to step 1 to read timer

!. .1 B/timer 2 again, thereby preventing the large timer B/timer
2 error that could affect the accuracy of dipole readings.

' N Convert Time Between Interrupts into One-Byte Value
F93A/F99C-F95A/F9AF

Called by:

Falls through from F939/F99B whenever an IRQ interrupt

occurs.

The time since timer B/timer 2 was set $FFFF minus the

value of timer B/timer 2 read in the previous routine is con

verted into a one-byte value in Bl by dropping the two low

bits and the six high bits from this value of $FFFF — timer

B/timer 2.

This value in timer B/timer 2 that is converted to the one-

byte value in Bl is approximately equal to the time value of a

dipole. Indeed, if you add the 20 cycles (20.4 microseconds)

between the read of timer B/timer 2 to the reset of timer

B/timer 2 to $FFFF to this value of ($FFFF - timer B/timer 2),

you obtain the exact time for the dipole just read.

Entry conditions:

The X register contains the high byte of timer B/timer 2 count.

The accumulator contains $FF — low byte of timer B/timer 2

count. The Y register contains $FF.

Exit conditions:

_ Bl contains value representing in one byte the two-byte value

] 1 of $FFFF — timer B/timer 2 read in previous routine.

Operation:

p"| 1. STX Bl, saving the value of the high byte of the timer

• B/timer 2 high count read in previous routine.

2. TAX. Transfer the accumulator, which contains $FF — low

r*| byte of timer B/timer 2 count, to the X register for tem
porary storage.

3. Reset timer B latches/timer 2 counters to $FFFF by storing

r^-l the Y register containing $FF into DC06/9128 and DC07/

—- 9129. For the VIC, storing the value in 9129, the high byte

H 355

LJ
Tape I/O Routines

u
of the timer count, clears the timer 2 interrupt flag, transfers

the latched value for the low byte to the low byte of the j
counter, and starts timer 2 counting down from $FFFF. On

the 64, it is necessary to store $19 in DCOF to load the k

timer B latches into the timer B counter, set one-shot run |_j

mode, and start timer B. Also LDA DCOD to clear any timer

B interrupt flag.

4. TYA. Accumulator now contains $FF. j)
5. Subtract Bl; Bl contains the high byte of the counter value

for timer B/timer 2.

6. STX Bl. Put $FF - low byte of timer B/timer 2 count into Bl.

As a result, Bl now contains $FF — low byte of timer

B/timer 2 count, and the accumulator contains $FF — high

byte of timer B/timer 2 count.

7. Now the two low bits of Bl are dropped and the two low

bits of accumulator shifted into bits 7-6 of Bl, as illustrated

in Figure 10-18 (each dot represents a bit).

Figure 10-18. Converting Two-Byte Timer Value to

One-Byte Indicator

LSR

ROR $B1

LSR

ROR $B1

Accumulator

A7

• A7••••

• • A7 • • •

• AO

•Al

• A2

Carry

•

AO

BO

Al

Bl

B7"«

A0B7

• • • • BO

Bl

Bl Al A0B7""B2

Thus, at exit from this series of shifts and rotates Bl con- .

tains bits 1 and 0 of the accumulator and bits 7-2 of the start-) I
ing value of Bl.

What values can Bl represent now? .

Figure 10-19 pictures timer B/timer 2 and the bits used j [
from it, along with the maximum value:

Figure 10-19. Maximum Value for Bl |_J

High byte Low Byte

x x x x x x T9 T8 17 T6 T5 T4 T3 T2 x x t j

000000 1111111100= $03FC (1020 l—i
decimal)

356 LJ

H
Tape I/O Routines

n

! t

Timer 2 of 1022 (1020 + 2 cycles for reset when it hits 0)

divided by 1,0222,370 is equal to 999.6 microseconds maxi

mum value that timer 2 can represent once it is shifted into

the one-byte Bl. This time is adequate to frame any 0, 1, or

word marker dipole. However if a dipole went above 999

microseconds, then the timer B/timer 2 reading for it would

not be correct as only up to 999 microseconds can be uniquely

determined.

When doing a tape load, you can stop the tape and exam

ine Bl to see the value obtained in reading the last dipole.

This value just represents the time between the last setting of

timer B/timer 2 to $FFFF and the read of timer B/timer 2. To

obtain the total time for the dipole, the time between read of

timer B/timer 2 and reset to $FFFF of 20.4 microseconds must

be added to the time that Bl represents. Bl can be converted

to a time value by shifting it left two bits (or multiplying by 4)

and then dividing this value by 1,022,370.

Figure 10-20 illustrates why it is necessary to add the

timer B/timer 2 read to timer B/timer 2 reset time to the time

represented by Bl to obtain a value for the dipole time:

Figure 10-20. Reading Dipoles

Jc Read-to-reset

Actual

dipole time

A FLAG/CA1 interrupt

B Timer B/2 read

C Timer B/2 reset

357

F997

F99A

F99C

F99E

F99F

F9A2

CPX 9129

BNE F98E

STXB1

TAX

STY 9128

STY 9129

Tape I/O Routines '—'

The read-to-reset time consists of the instructions (on the

VIC starting at F997 and ending at F9A2) of: [_

Location Instruction Cycles

3 U
3

2

4] I
^4 ^—'

20 cycles

The 20 cycles total X 1.022370 microseconds/cycle gives 20.4
microseconds between read of timer 2 and reset of timer 2.

The tape read routines read dipoles while the tape write
routines write cycles (or half dipoles).

Determine If Dipole Time Represents Noise, 0,1, or

Word Marker

F959/F9B0-F98A/F9E4

Called by:

Falls through from F958/F9AF, Convert Time Between

FLAG/CA1 Interrupts into One-Byte Value.

Determine if the dipole time just read is noise, 0, 1, or a

word marker. Clear the interrupt flag set by the casette read.

Once the first dipole of a word marker bit (word marker di

pole) signifies end of. byte and sets 9C to nonzero, the second

dipole of the word marker bit (1 dipole) causes a jump to

FA60/FAAD to handle the byte just received.

If a bit is received that has a dipole time for a word

marker dipole, then JMP FA10/FA60. Normally, this dipole is

the one following a group of leader bits. Also, JMP

FA10/FA60 if A3 has its high bit on, indicating the previous j I
parity bit has been received. This jump if the parity bit has

been received usually occurs for the read of the first dipole of

the word marker bit at the end of a byte. Thus, the dipole j (
following a parity bit is not checked for the various time

ranges (except to check that it is longer than noise).

Entry conditions: LJ
B0 contains a value (initially zero) used in setting time limits,

referred to as adjustable baselines for what are considered i j

noise, 0, 1, and word marker dipoles. A B0 value below 0 <—>

358 LJ

Tape I/O Routines

^ (255, 254, 253, etc. in decimal) decreases the adjustable base-

I \ line time, while a BO value above 0 (1, 2, 3, etc.) increases the

adjustable baseline times. Bl contains a value corresponding

to the time of the dipole just read from tape (minus the time

> | between reading timer B/timer 2 and resetting timer B/timer

2, but this read-reset time is small enough that it can be ig

nored in the comparisons). A3, the count of bits remaining to

l\ be read for a bit, is initialized to 8 before each byte, and

decremented after each bit is read. When decremented to — 1,

then the parity bit has just been read. 9C contains 0 when

waiting for the next byte or when receiving current byte, or 1

when a byte has been completely received (but before it is

processed by the byte handler routine).

Exit conditions:

The interrupt flag for tape read is cleared.

Operation:

1. LDA BO, which is used to adjust baselines.

CLC

ADC $3C. Add time for setting limit of what is

considered noise, the noise/0 adjustable baseline.

CMP Bl. Compare this time limit for noise to the cur

rent time for this dipole.

BCS F9AC/FA06 If the time for current dipole is less

than the noise/0 adjustable baseline, then it must be noise.

At F9AC/FA06 usually branch to F9D2/FA22 to JMP to

FEBC/FF56 to restore registers and RTI.

Let's look at some values that are placed in the accu

mulator as the result of the LDA BO, CLC, ADC$3A for

various values of BO.

Values of BO and corresponding value in accumulator

ff (converted to a time value by shifting left two bits and
dividing by 1,022,370) that represents the noise/0 adjust

able baseline are shown in Figure 10-21.

I \

Figure 10-21. Noise/0 Adjustable Baseline Times

P^ BO: 252 253 254 255 0 1 2

L ! Noise/0 adjustable baseline 224 228 232 236 240 244 248
time: (in microseconds)

2. LDX 9C. During tape load, 9C is 0 when waiting for the

next byte or when receiving the current byte, 9C is 1 when

359

Tape I/O Routines

U
a byte (8 data bits and parity bit) have been completely

received. j j
BEQ F9C9/F9C3. Branch to step 3 if 9C is 0, indicating that a

byte has not yet been completely received.

If 9C is nonzero, then a byte has been completely re- K /
ceived. The word marker action routine sets 9C to nonzero

once the first dipole of a word marker has been received at the

end of a byte. If 9C is nonzero then the second dipole in the 1 !
word marker should find 9C is nonzero and thus JMP V"~J
FA60/FAAD to process this byte just read.

3. LDX A3, the count of the number of bits remaining to be

read. If -1 ($FF) then the parity bit for this byte has al

ready been received.

BMI F988/F9E2 which JMPs to FA10/FA60, the word

marker action routine. Branch if the parity bit has been re

ceived and thus set high bit on in A3. The branch to

F988/F9E2 should occur after the word marker dipole in the

word marker bit.

4. See if dipole time is 0:

LDX $00. Default dipole value of 0.

ADC $30. Add limit for 0 dipole. Before the ADC the

accumulator still contains the value from step 1.

ADC B0. The time adjustment value.

CMP Bl. Compare value in accumulator to current di

pole time.

If the dipole is in the 0 range then BCS F993/F9ED if

accumulator is greater than current dipole time to increment

A9, the counter of 0/1. X register is 0.

Again, following in Figure 10-22 are some values of

B0 and corresponding value in accumulator (converted to a

time value by shifting left two bits and dividing by

1,022,370) that represents the 0/1 adjustable baseline. [J

Figure 10-22. 0/1 Adjustable Baseline Times

B0: 252 253 254 255 0 1 2 [J
0/1 adjustable baseline 404 412 420 428 432 440 448

time: (in microseconds) . ,

LJ
5. See if a dipole time is a 1:

INX. The X register now 1 for a 1 dipole. I i

ADC $26. Add limit for 1 range. I—I

360 M

Tape I/O Routines

H ■

nADCBO. Add time adjustment.

CMP Bl. Compare to current dipole time.

BCS F997/F9F1. If the accumulator is greater than Bl,

— a 1 dipole has been read. Branch to F997/F9F1 to dec-

' j rement the 0/1 counter, A9.

Again, following in Figure 10-23 are some values of

r-_ BO and corresponding value in accumulator (converted to a

I \ time value by shifting left two bits and dividing by
1,022,370) that represents the 1/WM adjustable baseline.

Figure 10-23. I/Word Marker Adjustable Baseline

Times

B0: 252 253 254 255 0 1 2

1/WM adjustable baseline 544 556 568 580 584 596 608

time: (in microseconds)

6. Test for word marker dipole:

ADC $2C. Add limit for word marker.

ADC B0. Add time adjustment.

CMP Bl. Compare to current dipole time.

BCC F98B/F9E5. If current time for dipole is greater

than the maximum time for a word marker, then this dipole

is too long to be considered a 0, 1, or word marker. Branch

to F98B/F9E5 to handle this error.

JMP FA10/FA60. If Bl is less than or equal to the

value in the accumulator then have read a dipole that is

considered a word marker. JMP FA10/FA60 to process this

word marker.

Again, following in Figure 10-24 are some values of

B0 and corresponding value in accumulator (converted to a

time value by shifting left two bits and dividing by

1,022,370) that represents the WM/error adjustable

baseline.

Figure 10-24. Word Marker/Error Adjustable Baseline

Times

B0: 252 253 254 255 0 1 2

WM/Error adjustable base- 708 724 740 756 760 776 792

line time: (in microseconds)

361

Tape I/O Routines '—'

u
Set A8 If Bytes Are Being Received

F98B/F9E5-F992/F9EC [j

Called by:

BCC at F986/F9E0 in Determine if Dipole Time Represents i /

Noise, 0, 1, or Word Marker, BNE at F9D0/FA20 if the final •—'
parity value in 9B is not zero, then there is a parity error, BNE

at F9E9/FA39 if the two dipoles just read were 1, then an er- | i

ror has occurred—there should never be two consecutive 1 ^—'

dipoles.

If bytes are currently being received, as indicated by a

nonzero in B4, set A8 to this same nonzero value. In either

case (bytes being received or not), branch to F9AC/FA06

which if B4 is nonzero checks to see if this IRQ interrupt was

caused by a timer A/timer 1 timeout.

Entry conditions:

B4 contains 0 if bytes are not currently being received (for ex

ample, if reading a leader), or a nonzero value if bytes are cur

rently being received.

Exit conditions:

If B4 is nonzero at entry, then A8 is set to this same nonzero

value.

Operation:

1. LDA B4.

2. If B4 contains 0, branch to F9AC/FA06.

3. If B4 is nonzero then STA A8, indicating either a parity er

ror, mismatch of dipole error, or a too-long dipole error has

occurred for this byte.

4. Branch to F9AC/FA06.

Increment or Decrement the 0/1 Balanced Counter

F993/F9ED-F998/F9F2 \ I

Called by:

BCS at F975/F9CF if a 0 dipole was read; alternate entry at

F997/F9F1 by BCS at F97E/F9D8 if a 1 dipole was read, LJ
JMP/BPL at FA1C/FA6A if a word marker dipole was just

read, but A3 indicates it is not expecting a word marker yet,

then treat the dipole as a 1. j j
Either increment or decrement the 0/1 balanced counter

A9 depending on whether the dipole just read was a 0 dipole

or a 1 dipole. |_J

362
u

n
Tape I/O Routines

/. 1

r_ When reading the all leader dipoles (which are 0 dipoles)

I] this counter is incremented to 16 the tape read routines rec
ognize that a leader is being read.

^ When reading bytes, this counter should balance at zero

1 (after every is bit read, as each bit should have a 0 dipole and

a 1 dipole if a 0 data bit or a 1 dipole and a 0 dipole if a 1

_ data bit.

Entry conditions:

A9 contains relative count of number of 0 and 1 dipoles read.

Exit conditions:

A9 incremented if a 0 dipole was read, or decremented if a 1

dipole was read.

Operation:

1. If the normal entry point then a zero dipole was just read.

Increment A9, then branch to F999/F9F3.

2. F997/F9F1: A one dipole was just read. (Or a word marker

dipole within a byte). Decrement A9, then fall through to

F999/F9F3.

Determine Value to Adjust Baseline Times

F999/F9F3-F9A1/F9FB

Called by:

Fall through from F997/F9F1 if a 1 dipole was just read, BCS

at F995/F9EF if a 0 dipole was just read.

What this routine appears to be doing is determining for

each dipole how much the dipole ranges from the 0/1

timebase that determines whether dipoles read are a 0 or a 1.

If the net variation between dipole values read and the

^_ 0/1 timebase line falls below the 0/1 timebase line, 92 is set

1 _ f to a positive value at the end of reading the two dipoles, and
later used in the Adjust BO routine to decrease the 0/1

„_ timebase line and the other timebase lines for the next bit to

! ! be read.
If the net variation between dipole values read and the

r-n 0/1 timebase line falls above the 0/1 timebase line, 92 is set

to a negative value (high bit on) at the end of reading the two

dipoles, and later used in the Adust B0 routine to increase the

0/1 timebase line and the other timebase lines for the next bit

to be read.

363

Tape I/O Routines

u

During reads of data bits when you get first a 0 or 1 di

pole and then just the opposite dipole, the above description is M
true. However, when reading all 0 dipoles such as are found

in the leader, the tape read is not actually comparing the net

variation to the 0/1 timebase line. L (

When reading leader dipoles, the reading for each dipole

is compared to the 0/1 timebase line — 76 microseconds. If

the total variation for the two leader dipoles falls below this I I
line, 92 is set positive to provide for a decrease fai the ' '
timebase lines for the next dipole. If the total variation for the

two leader dipoles falls above this line, 92 is set negative (high

bit on) for an increase in the timebase lines for the next bit.

To arrive at this value of 76 microseconds variation from

the 0/1 timebase line, just convert $13, the value in the SBC

$13 instruction, to its equivalent time in microseconds. Thus

$13 = 0001 0011, shift left two bits = 0100 1100 = $004C =

76 (decimal) = 78/1022370 = 76.2 microseconds.

When reading the data bits, this 76 microseconds is sub

tracted from the 0/1 timebase line when reading a 0 dipole,

and from the I/word marker timebase line when reading a 1

dipole. Normally, at the start of tape read, the I/word marker

timebase line is 584 microseconds, while the 0/1 timebase line

is 432 microseconds. 584 — 432 = 152, which is equal to 76

X 2. Thus, the actual baseline compared to when reading data

bits is the 0/1 timebase line. See the description in the vari

able 92 for some typical values for the time base lines.

This routine is executed twice for each bit read. Before

reading the first dipole 92 has been reset to 0. Thus the total

time in 92 at the end of each bit is just the differences for the

two dipoles for this bit.

Here are a few examples of how this routine works:

If reading leader dipoles, at the start of the tape read the I I
0/1 timebase line is 432 microseconds.

432 microseconds

— 76 microseconds \j

356 microseconds

— 347 expected time for leader dipole

9 U
The value 9 (decimal) stored in 92 at end of first dipole.

The second dipole for the leader would similarly obtain a dif- j |

ference of 9, for a total difference of 18 (decimal) in 92 for the s—]

364 LJ

n
Tape I/O Routines

n ""™"

p—^ bit, which would result in a decreased 0/1 timebase line for

< _.J the next bit read. Specifically, the 0/1 timebase line for the
next bit would be 428 microseconds. Thus, the timebase lines

f*S are adjusted until finally the total for both dipoles in 92 gives

1 I a negative values.
For example, if the 0/1 timebase line was 404 micro-

,—, seconds, then

- * 404 microseconds

— 76 microseconds

328 microseconds

— 347 expected time for leader dipole

— 19

Repeating this for the second dipole, the total at the end

of reading the bit is —38, or $DA, which has the high bit on

and would thus cause a BMI.

Entry conditions:

92 contains 0 before read of first dipole. After reading the first

dipole, 92 contains the baseline time for dipole — 76 — time

just read for dipole. The accumulator contains the current

baseline time (0/1 baseline or I/word marker baseline) for the

dipole just read. Bl contains a value equivalent to the time for

dipole just read.

Exit conditions:

After reading both dipoles (a bit), 92 contains (baseline time

for first dipole read — 76 — time for first dipole) + (baseline

time for second dipole read — 76 — time for second dipole).

Operation:

1. At entry the accumulator contains current baseline time

n(0/l baseline or I/word marker baseline) for the dipole just

read.

2. SEC.

p-1 3. SBC $13 (equivalent to 76 microseconds).

f » 4. ADC 92. Will be zero when processing the first dipole. Will
contain (baseline — 76 microseconds — first dipole time)

pr\ when processing the second dipole.

s1 ! 5. STA 92.
6. Fall through to F9A2/F9FC.

365

u
Tape I/O Routines

Flip Dipole Indicator Switch . >

F9A2/F9FC-F9A9/FA03 LJ

Called by:

Falls through from F9A1/F9FB for each dipole read. |_J
Flip the indicator for which dipole has been read. After

the flip, the indicator A4 is equal to 1 if we just read the first

dipole, while it's equal to 0 if we just read the second dipole. I i

Entry conditions:

A4 contains 0 if the first dipole was just read, or 1 if the sec

ond dipole was just read.

Exit conditions:

A4 contains 1 if the first dipole was just read, or 0 if the sec

ond dipole was just read.

Operation:

1. LDA A4.

2. EOR$01.

3. STA A4, thus now A4 has been flipped in value.

4. BEQ F905/FA25. Branch if the result in A4 is zero indicat

ing the second dipole just read.

5. Fall through to F9AA/FA04 to store the value of the dipole

just read as the value of this bit if the first dipole was read.

Store Dipole Value as Bit

F9AA/FA04-F9AB/FA05

Called by:

Falls through from F9A9/FA03 after reading first dipole.

Save the value of the first dipole, which is also taken to

be the value of the bit, in B7.

i !
Entry conditions: I—»

The X register contains the value of the dipole just read, either

0 or 1. i j

Exit conditions:

The dipole value is stored in B7.

\ I
Operation: LJ'

1. STX D7. Fall through to F9AC/FA06.

u

366 ■ LJ

H
Tape I/O Routines

i—i Check Possible Error and See If Receiving Bytes

! J F9AC/FA06-F9AF/FA09

Called by:

|j Fall through from F9AA/FA04, Store Dipole Value as Bit, BCS
at F960/F9BA if dipole just read is considered noise, BEQ at

F98B/F9E7 if an error occurred (too long dipole, mismatched

j"""| dipoles, or parity error) and not receiving bytes, BNE at
F991/F9EB if an error occurred (too long dipole, mismatched

dipoles, or parity error) and receiving bytes, BMI at

F9ED/FA3D if two consecutive zero dipoles were just read and

A9 is $80 or more, setting limit on number of leader dipoles

counted, BCC at F9F1/FA41 if leader dipoles are being read,

but 16 of them have not yet been read, BCC at F9F5/FA45 if

leader dipoles are being read, and 16 or more have now been

read.

If B4 is zero, indicating that the tape read routines are be

tween blocks or before the first block, branch to F9D2/FA22.

If B4 is nonzero, indicating that the tape read routines are

ready to receive bytes, fall through to F9B0/FA0A to see if this

interrupt was caused by timer A/timer 1.

Operation:

1. LDA B4.

2. BEQ F9D2/FA22.

3. Fall through to F9B0/FA0A if B4 is nonzero.

Determine If Interrupt Was Caused by Timer A/Timer

1 Timeout

F9B0/FA0A-F9C8/FA18

Called by:

I 1 Falls through from F98E/FA08 after an error has occurred
while reading a byte.

^ An interrupt has occurred while reading a byte that is an

j_ [error, either a too long dipole, mismatched dipoles, or parity

error. Test if the interrupt was caused by a timer A/timer 1

timeout. If not, just restore registers and RTI. If the interrupt

v \ was caused by a timer A/timer 1 timeout, consider the read of

this bit complete. Then process the bit either as a normal data

bit by branching to F9F7/FA47 or as a word marker by

H branching to F988/F9E2 which JMPs to FA10/FA60.

367

u
Tape I/O Routines

u

Timer A/timer 1 is set to a value by the routine that set l {

timer A/timer 1 to a value to lag behind the FLAG/CA1 inter- I 1
rupt. Timer A/timer 1 interrupts are enabled after the word

marker following a group of leader dipoles is read. If the nor- , (

mal FLAG/CA1 interrupt does not occur when reading the 1 I
tape before timer A/timer 1 counts down to zero, the timer

A/timer 1 timeout will cause the interrupt. Thus, timer , ,

A/timer 1 is used to allow possible recovery when reading I |

bytes if for some reasons a FLAG/CA1 interrupt does not oc

cur as expected.

Also reset A4 to zero to indicate the next dipole read is

the first dipole of a bit.

Exit conditions:

A4 contains 0, indicating the next dipole read is the first di

pole of a bit.

Operation:

1. 64: See if 02A3, CIA #1 interrupt log, has bit 0 = 1, in

dicating a timer A interrupt occurred. If bit 0 = 1 then

branch to step 2. If bit 0 = 0, indicating no timer A inter

rupt, also test 02A4 to see if either FLAG or timer A inter

rupts are enabled. If either FLAG or timer A interrupts are

enabled then restore the register and RTI. If neither FLAG

nor timer A interrupts are enabled, fall through to step 2.

VIC: BIT 912D to test bit 6 of VIA #2 interrupt flag

register. Bit 6 is the timer 1 flag.

If no timer 1 interrupt occurred then branch to FA22

which jumps to FF56 to restore registers and RTI.

2. Set A4 to 0.

3. 64: Set 02A4 to 0.

4. LDAA3. { ,

5. Branch if A3 greater than or equal to 0 indicating data bits (|
still being read.

6. If A3 = —1, parity bit has been received. Treat value just , (

read as a word marker. i_J

Determine If Parity for Byte Read Is Correct ; ,

F9C9/FA19-F9D4/FA24 ^J

Called by:

BMI at FA02/FA52 if decrementing A3 leaves it = -1, in- j_J
dicating parity bit just read; alternate entry at F9D2/FA22

368 . LJ

n
Tape I/O Routines

i—| branched to by several instructions which use it to JMP to

' FEBC/FF56 to restore registers and RTI. These instructions are
located at F9AE/FA08, F9FE/FA4E, and F9BA/FA0D.

|—| Determine if the parity for the byte just read is correct. If

! -1 the final parity value in 9B, the parity work byte, is zero then

parity is correct, else indicate an error. Odd parity is used,

pi where the total number of ones including the parity bit is odd.

' -J The second half of the dipole is actually used in computing
the parity on the tape read.

Also, set timer A/timer 1 value for next dipole.

Follow this example to see how parity is calculated and

has to be zero at end of byte read to be correct.

If data byte written on tape was the value 3, the first dipole

bit pattern looks like this:

parity bit

Data byte 000001110

Second dipole 111110 0 0 1

9B 000000000

(note: 9B initialized to 0 before reading each byte)

accumulator 11111000 (from the second dipole for the bit)

EOR 9B 0 10 10 111

STA9B 10 10 1111

The parity bit (for second dipole) is 1, thus 1 EOR 9B (now 1), gives

the final result in 9B of zero.

Remember when doing these parity calculations for tape

read that the second dipole is the actual value used for the

Exclusive OR with 9B.

A double bit error (where an even number of bits have

been transposed in value) can occur during read of a byte. If

such an error occurs, the parity calculation will not show any

II error, as the total number of l's is still odd. Thus a byte can

be loaded that is in error, and it will not be corrected in the

^. second block read as no error was flagged for it during the

j] first block. However, you are notified of the error in the
checksum computation at the end of the load which does an

—m Exclusive OR for the entire area loaded.

1 * Entry conditions:

9B contains 0 if the parity calculated for the byte just read is

n correct, or 1 if the parity calculated for the byte just read is in
ovrnverror.

369

Tape I/O Routines

u

u

Exit conditions: . ,

Timer A/timer 1 is reset and timer A/timer 1 interrupts are I—i
enabled.

Operation: j j
1. LDX $A6 , prepare value used in setting timer A/timer 1

2. JSR F8E2/F95D to set CIA #1 timer A/VIA #2 timer 1

value. { I
3. LDA 9B. ■—*
4. If 9B is nonzero then a parity error has occurred. Branch to

F98B/F9E5 to handle this error.

5. If 9B is zero, this byte was read without any parity errors.

6. F9D2/FA22: JMP FEBC/FF56 to restore registers and RTI.

Set Adjustable Baseline Values for Next Bit

F9D5/FA25-F9E3/FA33

Called by:

BEQ at F9A8/FA02 in Convert Time Between FLAG/CA1

Interrupts into One-Byte Value.

If 92 has its high bit on, indicating a need for more base

line time, increment BO.

Conversely, if 92 does not have its high bit on, indicating

a need for less baseline time, decrement BO .

If 92 is 0, don't adjust the baseline time as it was a perfect

match for the last bit read.

Following are two charts in Figures 10-25 and 10-26 that

show how from an initial value of BO, the current value in the

accumulator representing the adjustable baseline time for this

dipole, and the calculated value in 92, that the tape read

routines determine whether to increment, decrement or leave

unchanged BO for the next bit to be read. Figure 10-25 illus- . j

trates how this works when reading leader dipoles (all 0) I—1
while Figure 10-2 illustrates this when reading normal data

bits, (containing a 1 dipole and a 0 dipole or a 0 dipole and a j ~^

1 dipole). LJ
These values are computed using the values for NTSC

VICs which are available in the U.S. See F999/F9F3- ^ i

F9A1/F9FB for the actual instructions that calculate 92 for J—I
each bit. The values in the accumulator were derived by the

following instructions: i i

370 u

n
Tape I/O Routines

n

P-1 LDA $B0

I I CLC
ADC #$3C Noise/0 Adjustable Baseline

ADC #$30

I | ADC $B0 0/1 Adjustable Baseline
ADC #$26

ADC $B0 I/Word Marker Adjustable Baseline

|—| ADC #$2C

-> ADC $B0 Word Marker/Error Adjustable Baseline

The values in the accumulator can be converted to an

equivalent time in microseconds by shifting the values left two

bits, adding 2, and dividing by 1,022,370. The values in Bl

were actual values observed during tape load operations.

As an example of how to convert Bl to a time value: Bl

for $54 can be converted to a time value by: 0101 0100 00 =

01 0101 0000 = $0150 = 336 decimal + 2 = 338/1,022,370

= 330.6 microseconds + 19.4 microseconds = 350.0 micro

seconds (vs. 349.8 predicted from tape write for leader dipole.)

The calculations in the chart are in hex, and for final B0,1

show whether B0 is incremented or decremented.

Figure 10-25. Reading Leader Bits

Initial B0 Check for Accumulator Bl 92 Final B0

0 Dipole or

1 Dipole

1

0

-1 ($FF)

-2 ($FE)

-3 ($FD)

0

0

0

0

0

$6E

$6C

$6B

$69

$67

$54

$54

$54

$54

$54

$10

$0C

$0A

$06

$02

DEC

DEC

DEC

DEC

DEC

|""j -4 ($FC) 0 $65 $54 $FC INC

Thus, when reading leader dipoles, B0 should stabilize be-

!"—[tween $FD (253 decimal) and $FC (252 decimal). When I

i » stopped tape loads by hitting the keyboard STOP key and
examined B0 during the 10 second leader that precedes the

I—i header, I found that B0 had actually stabilized at 252-253, just

' i as predicted by the calculations above.

For a VIC using the PAL European standard clock, B0

i—i may stabilize to a different value, but it definitely should

stablize to one or two values. These values should also be

close to those on the 64 NTSC.

371

u
Tape I/O Routines

u

BO can only be incremented or decremented to certain , ,

limits before the arithmetic involved in calculating 92 causes I I
the adjustable baseline times to no longer be valid.

For example, the limit on incrementing BO seems to be , ,

$10 (16 decimal). If an initial value of $11 is used to calculate i I
the adjustable baseline times, you arrive at baseline times of

$4D $8E $25 $02 for the noise/0, 0/1, I/word marker, and ,

word marker/error baselines respectively. Since the I/word I I
marker baseline is less than the 0/1 baseline these baselines

are obviously invalid. Correspondingly, if you decrement BO to

$D0 you get invalid baseline times of $0C, $0D, $04, $01 for

the same respective baselines as mentioned above.

Figure 10-26 shows calculations when reading data bits.

The values in Bl were actual values observed in tape load

operations. $54 is equivalent to 350 microseconds for a 0 di-

pole (vs. 345.8 predicted during tape write). For the 1 dipole

the equivalent time is 484.0 microseconds (vs. 502.4 predicted

during tape write). This 484.0 microseconds is derived by $76

= 0111 0110 after shifting left two bits = 01 1101 1000 =

$1D8 = 472 + 2 = 474/1,022,370 = 463.6 microseconds +

20.4 microseconds = 484.0 microseconds.

Figure 10-26. Reading Data Bits

Initial B0 Check for Accumulator Bl 92 Final BO

0 Dipole or

1 Dipole

1

0

-1 ($FF)

-2 ($FE)

-3 ($FD)

0

1

0

1

0

1

0

1

0

1

$6E

$95

$6C

$92

$6B

$91

$69

$8E

$67

$8B

$54

$76

$54

$76

$54

$76

$54

$76

$54

$76

$15

$10

$0E

$09

$04

DEC

DEC

DEC

DEC

DEC

u

u

-4 ($FC) 0 $65 $54 $FD INC j j
1 $88 $76

Thus, again B0 stabilizes at 252-253 when reading data
bits. i_J

372

H
Tape I/O Routines

H

n Entry conditions:

92 contains 0 if the last bit read exactly matched the predicted

time of the bit (both dipoles) from the adjustable baselines,

i—I adjustable baselines do not need to be adjusted. 92 has its

• • high bit on if, during last bit read, the values read for the two

dipoles were greater than the current 0/1 adjustable baseline.

n(Note: If two leader dipoles were greater than 0/1 adjustable

baseline X 2 — 152 microseconds.) 92 has its high bit off if

during last bit read, the values read for the two dipoles was

less than the current 0/1 adjustable baseline. (Note: If two

leader dipoles were less than 0/1 adjustable baseline X 2 —

152 microseconds.) BO contains 0 if the tape load is just start

ing, or a factor used in computing the adjustable baseline

times for the last bit read if the load is already in progress.

Exit conditions:

92 contains 0. B0 is incremented if more baseline time is

needed for next bit, is decremented if less baseline time

needed for next bit, or remains same if the previous baseline

times matched the times for the bit just read.

Operation:

1. LDA 92. See F999/F9F3-F9A1/F9FB for how this value is

calculated.

2. If 92 contains 0 branch to step 5.

3. If 92 has its high bit off, decrement B0, and branch to step

4. If 92 has its high bit on, increment B0, and fall through to

step 5.

5. Reset 92 to 0 in preparation for the next bit read.

6. Fall through to F9E4/FA34.

I I Determine If Two Dipoles Are Data, Error, or Leader
Bit

|—I F9E4/FA34-F9F6/FA46

Called by:

Fall through from F9E3/FA33 in Set Adjustable Baseline Val-

I I ues for Next Bit.
See if the two dipoles just read represent different values

(First dipole a 0, the second a 1, or vice versa). If the dipoles

j j are different, a valid data bit has been received, so branch to
F9F7/FA47 to process it. If the two dipoles are the same, the

M 373

Tape I/O Routines

u

u

values for the two dipoles must be 0 or else the bit is consid- i \

ered to be in error, since two 1 dipoles are never expected. '—'
If the two dipoles are O's, we have just read what is

considered a leader bit. Once 16 of these leader bits are re- i i

ceived, set 96 to the same value that is in A9 to indicate we I—I
are either before or between blocks.

96 has to be reset to a nonzero value between blocks to i i

allow at FA46/FA91 the resetting of B5 to nonzero, which in- I—I
dicates that the tape load routine is before a block waiting for

the word marker at the end of the leader bits.

Entry conditions:

The X register contains the value of the second dipole read for

this bit. D7 contains the value of the first dipole read for this

bit. A9 contains the relative count of the number of 0 and 1

dipoles read. If leader (0) dipoles are being read, A9 will be

incremented for each 0 dipole read.

Exit conditions:

96 contains 0 if the leader is not yet recognized or if data is

being read from the block. 96 contains 16-126 (decimal) once

16 leader bits read. Once 16 leader bits have been read, each

successive leader bit causes 96 to be incremented up to a

maximum value of 126.

Operation:

1. CPX D7. At entry to this routine X register contains the

value of the second dipole and D7 contains the value of the

first dipole.

2. If above comparison is not equal, indicating for this bit the

two dipoles have different values, branch to F9F7/FA47 as

this bit is a valid data bit.

3. If above comparison is equal, the two dipoles must either be j [

1 or they must be 0.

If X register is nonzero (1), two 1 dipoles have been

read. Two 1 dipoles are an error, as the tape write routines j j

never purposely write two consecutive 1 dipoles for a bit.

Branch to F98B/F9E5 to process this error. If leader is being

read, the error is just ignored. However, if data from a block j [

is being read, an error flag is set in A8.

4. If two 0 dipoles have been read, this bit just read is consid

ered a leader bit. | I
If A9 has its high bit on, which it would if 128 (deci

mal) leader bits have been read, branch to F9AC/FA06 as

u

n
Tape I/O Routines

["—[maximum value that can be stored in 96 is 127, although

f ' the maximum observed in 96 when PEEKing it during tape
load was only 126

|—| 5. If less than 16 of these leader bits have been read, branch

1 l to F9AC/FA06.
6. If 16 or more of these leader bits have been received, store

p—I the count of leader bits, the 0/1 balanced counter A9 in 96,

'] thus indicating the tape read routines recognize that a lead

er is being read. Then branch to F9AC/FA06.

Process Data or Parity Bit

F9F7/FA47-FA0F/FA5F

Called by:

BPL at F9C5/FA15 if bit received as a result of timer 1 inter

rupt; BNE at F9E6/FA36 if valid bit read.

Process the data bit just received. First, Exclusive OR the

second dipole value with the parity working byte, 9B. Dec

rement the bit counter, A3, and if now — 1 then the all 8 data

bits have been received so branch to F9C9/FA19 to determine

if parity is ok for this byte. If 8 data bits have not yet been re

ceived, rotate the bit just received into the high bit of BF, the

byte being built.

Finally, JSR F8E2/F95D to reset timer A/timer 1, exit by

JMP FEBC/FF56 to restore registers and RTI.

A byte is physically stored in low-to-high sequence on

tape: bit 0 is followed by bit 1 which is followed by bit 3, and

so on up to bit 8, which is followed by the parity bit and a

word marker.

Entry conditions:

I"I . ^4 is nonzero 0 if reading real data from a block, 0 if currently

'] between blocks or before first block. D7 contains 0 or 1,

depending on the value of the first dipole of the bit just read.

f—| BF contains the byte being built for the tape read.

Exit conditions:

9B is Exclusive ORed with the value of the second dipole. BF

t j contains the byte being built for the tape read. If a data bit

was received, that data bit has been rotated into the high bit

" of BE

375

Tape I/O Routines
u

Operation: I ;

1. TXA. X register contains value for second dipole I)

EOR9B

STA 9B. Update parity work byte. , ,

2. If B4 is 0 , indicating between blocks or before first block, 1 I
branch to F9D2/FA22 which JMPs to FEBC/FF56 to restore

registers and RTI. ^ ,

3. If B4 is nonzero, indicating reading data from a block, i 1

continue.

4. Decrement A3, the counter of the number of bits remaining

to be read for this byte.

5. If A3 is now —1, the bit just read is the parity bit, in which

case branch to F9C9/FA19 to determine if parity is ok for

this byte.

6. If A3 is 0-7, LSR D7, shifting the value for first dipole read

for this bit into the carry flag of the status register.

7. ROR BF, thus rotating this bit from the carry flag into the

high bit of BF.

8. LDX $DA and JSR F8E2/F95D to set timer A/timer 1 value.

9. JMP FEBC/FF56 to restore registers and RTI.

Process Word Marker Dipole

FA10/FA60-FA1E/FA6B

Called by:

JMP at F988/F9E2 if word marker dipole was read (most likely

the word marker dipole at the end of leader bits), after first di

pole read following reception of a parity bit, or if a timer

A/timer 1 interrupt occurs after a parity bit has been received.

Once the first dipole of a word marker is read, this routine

is executed. It is also called after the first dipole that is read

following a parity bit. I I

If the word marker is one following a group of leader bits,

branch to FA1F/FA6C to set 9C to 1 indicating a byte is com

plete (or a new byte is next), 96 to 0 indicating block rec- jj

ognized and now ready to read data, B4 to nonzero indicating

the tape read routines are ready to receive bytes, and B5 to 0

indicating that the tape read routines are actually reading LJ

bytes of data from a block.

If the word marker is one following a byte of data, in

FA53/FAA0 the byte just received in BF is stored in BD to [_J

allow passing of this byte to the byte action routine.

376 LJ

Tape I/O Routines

r—j Entry conditions:

f ' 96 contains 0 if no block recognized yet, or if actually reading
data from the block. 96 is nonzero if at least 16 leader bits

r—) have been read and the tape is either in the leader before the

- ' first block (of header or program) or between blocks 1 and 2
(of header or program). B4 contains 0 if between blocks or

j—i before the first block. B4 is nonzero when the tape load

1 \ routines are ready to receive data bytes. A3, the count of the
bits remaining to be read for a data byte, is nonnegative if

reading data bits, or — 1 if a parity bit has been read.

Exit conditions:

During this routine no variables or counters are modified.

Operation:

1. LDA 96.

2. If 96 is 0, indicating no block recognized yet or actually

reading data from the block, branch to step 5.

3. If 96 is nonzero then at least 16 leader bits have been read

and the tape is either in the leader before the first block (of

header or program) or between blocks 1 and 2 (of header or

program).

LDA B4.

4. If B4 contains 0 (between blocks or before the first block),

branch to FA1F/FA6C to set flags indicating at the end of a

leader and ready to start reading data from a block.

If B4 is nonzero (the tape load routines are ready to

receive data bytes), just fall through to step 5.

5. LDA A3.

6. If A3 is nonnegative (reading data bits), jump/branch to

F997/F9F1 and consider this word marker dipole to be a 1

ndipole.

7. If A3 is -1 (parity bit has been read), branch to FAlF/fall

through to FA6C as this is a word marker dipole following a

f—I parity bit.

Word Marker Action

r-, FA1F/FA6C-FA43/FA90

Called by:

BEQ at FA16/FA64 If 96 is nonzero (at least 16 leader bits

j] have been read and the tape is either in the leader before the
first block or between blocks 1 and 2) and B4 = 0 (between

1 I 377

Li
Tape I/O Routines

u

blocks or before the first block); BMI at FAlA/fall through , ^

from FA6A. If B4 is nonzero (the tape load routines are ready I >
to receive data bytes) and A3 is — 1 (parity bit has been read),

since this is a word marker dipole following a parity bit. I ,

Take action now that a word marker dipole has been re- I I
ceived. Set 9C to 1 to indicate a byte has been received. If

bytes are not being received (if inside a leader), set flags to in- ((

dicate the end of the leader has been reached and block data i 1

is now expected for the next byte read.

Entry conditions:

9C contains 0 (waiting for next byte or receiving of current

byte). B4 contains 0 if between blocks or before the first block,

or a nonzero value when the tape load routines are ready to

receive data bytes.

96 contains 0 if no block recognized yet, or if actually reading

data from the block. 96 contains a nonzero value if at least 16

leader bits have been read and the tape is either in the leader

before the first block (of header or program) or between blocks

1 and 2 (of header or program).

Exit conditions:

9C contains 1 (byte has been completely received). If B4 con

tains 0 and 96 is nonzero, A8 is set to a nonzero value, 96 is

set to 0, timer A/timer 1 is set and timer A/timer 1 interrupts

are enabled, and B4 is set to a nonzero value. Also, when fall

ing through to the following routine B5 will be set to 0.

Operation:

1. JSR F8E2/F95D to set timer A/timer 1 value.

2. Increment 9C to indicate byte has been completely

received.

3. LDA B4. ! I
4. Branch if B4 is nonzero to FA44/FA91 (the tape load —'

routines are ready to receive data bytes).

5. If B4 is zero then between blocks or before the first block, j j

continue with step 6.

6. LDA 96.

7. If 96 is zero (no block recognized yet, or actually reading I j

data from the block) BEQ FA5D/FAAA which JMPs to UJ
FEBC/FF56 to restore registers and RTI.

8. If 96 is nonzero (at least 16 leader bits have been read and j j

the tape is either in the leader before the first block or be

tween blocks 1 and 2), continue with step 9.

378 ' [J

H
Tape I/O Routines

n9. STA A8, setting A8 to a nonzero value.

10. Set 96 to 0.

11. Enable timer A/timer 1 interrupts for CIA #1/VIA #2.

f—1 12. Set B4 to a nonzero value, indicating ready to receive data

1 ' bytes from a block.
13. Fall through to FA44/FA91.

r—>

' * Determine If Dipole Is in Block or Leader
FA44/FA91-FA52/FA9F

Called by:

BNE at FA31/FA7E if B4 is nonzero. This way of entry is the

one used to reset B5 to nonzero (before block of data waiting

for word marker at end of leader bits) and B4 to zero (between

blocks). Between blocks one and two, once 16 leader bits have

been read 96 is set to nonzero. B4 is still nonzero when 96 is

reset to nonzero. Then this branch at FA31/FA7E takes us to

this routine which finds 96 nonzero, and thus stores a nonzero

value in B5 and zero in B4.

Also, execution falls through from FA42/FA8F when a

word marker dipole has been received at the end of a group of

leader bits or at the end of a data byte. In this way of entry,

96 is always zero, and thus this routine sets B5 to zero (ac

tually reading bytes of data from the block) and then branches

to FA53/FAA0 to prepare to pass the byte read to the byte ac

tion routines.

This routine performs:

If between blocks, now reset B4 and B5 to indicate block

data is not expected, that a leader is being read.

If inside a block of data, branch to FA53/FAA0 to prepare

to pass the byte read in to the byte action routines.

Entry conditions:

96 is nonzero if reading leader bits between blocks one and

two, or zero if the word marker dipole at the end of leader bits

or end of a data byte has been read.

Exit conditions:

If 96 is zero, B5 is set to zero also, indicating actually reading

bytes of data from a block.If 96 is nonzero, B5 is also set to a

nonzero value (reading leader bits and waiting for word

marker dipole at end of leader bits), B4 is set to zero (between

blocks one and two), and timer A/timer 1 interrupts are dis

abled for CIA #1/VIA #2.

379

n

Tape I/O Routines
U

U

Operation: I -,

1. LDA 96. I_J
2. STA B5.

3. If 96 is 0, branch to FA53/FAA0 to prepare for passing the (,

byte just received to the byte action routines. ! I
4. If 96 is nonzero, continue with step 5.

5. Set B4 to 0. { ,

6. Disable timer 1 interrupts for CIA #1/VIA #2. (1
7. Fall through to FA53/FAA0.

Store Byte Received and Check Error Flags

FA53/FAA0-FA5F/FAAC

Called by:

BEQ at FA48/FA95 if 96 is 0 (word marker dipole at end of

byte just read), Falls through from FA50/FA9D if 96 is non

zero, indicating reading leader bits.

Store the byte just read, contained in BF, into BD. The

byte action routine can thus handle this byte when the second

dipole for the word marker bit is read and passes control to

the byte action routine.

Set B6 to nonzero if any tape errors occurred during the

read of this byte.

Entry conditions:

BF contains byte just read. A8 is nonzero if a parity error, long

dipole error, or two 1 dipoles within a bit were encountered;

or zero if none of these errors occurred. A9 should be zero if a

balanced number of 0 and 1 dipoles were read for this byte;

otherwise an error in dipole reading occurred.

Exit conditions:

BD contains the byte built in BF. B6 is zero if no errors oc- I j

curred during read of this byte, or nonzero if any errors

occurred.

Operation: LJ
1. Store byte received from BF into BD.

2. Test for any errors during read of byte and set B6 to non- , l

zero if errors. Lj
LDA A8.

ORAA9. . ,

STA B6. LJ

3. JMP FEBC/FF56 to restore registers and RTI.

380

Tape I/O Routines

j—I Determine Action to Take for this Byte

1 l FA60/FAAD-FA85/FAD2 and
FA8D/FADA-FA90/FADD

M Called by:

JMP at F966/F9C0 After reading the second dipole of a word

marker at the end of a data byte.

) \ First reset flags to prepare for the next byte to be received

and set A7 to indicate which block we are currently reading,

block 1 or block 2. Then determine the action to be taken for

this byte.

If AA contains 0, we're waiting for the first block count

down character to arrive. Fall through to FA91/FADE.

If AA is from 1-15 (decimal), block countdown characters

are being read. Branch to FAA9/FAF6.

If AA contains $40, valid block countdown characters

have arrived, and this byte received is to be treated as a valid

data byte. Branch to FAC0/FB0D.

If AA contains $80, the fist block has been loaded, and

we're waiting for the second block. Branch to FA86/FAD3.

AA is initialized to 0 before starting to read the first

header block, and again before starting to read the first pro

gram block.

Entry conditions:

AA indicates the action to be taken with this as just described.

Exit conditions:

A3 contains 8. A4 contains 0. A8 contains 0. 9B contains 0. A9

contains 0. 9C contains 0. Timer A/timer 1 of CIA #1/VIA #2

is set to count value. If BE is nonzero, A7 is set to value from

BE, thus A7 = 2 if first block being read, A7 = 1 if second

/ \ block being read. 90, status byte, is set to indicate a long block

error if the routine is still trying to read data bytes after all of

< load area has been loaded from first block.

■' Operation:
1. JSR FB97/FBDB to reset counters and variables as follows:

r—> A3 = 8, A4 = 0, A8 = 0, 9B = 0, A9 = 0.

I { 2. Set 9C toO.
3. LDX $DA and JSR F8E2/F95D to set value for timer

/—n A/timer 1 of CIA #I/VIA #2.

1 . 1 4. LDA BE.
5. If BE contains 0, branch to step 7.

i i 381

LJ
Tape I/O Routines

U

6. Set A7 from value in BE; 2 if this is first block, 1 if this is « ,

the second block. I 1
7. See if AA's high bit is on. If not, branch to FA8D/FADA,

step 11. . [i

8. If AA's high bit is on, (AA = $80), the first block load is LJ
complete. Continue with step 9.

9. If B5 is nonzero, the tape load routine is reading the tape . .

from the leader between blocks one and two. Branch to I 1
FA86/FAD3 to reset AA to 0 to start looking for block

countdown characters and then JMP FEBC/FF56 to restore

registers and RTI.

10. If B5 is zero, actually reading data bytes. LDX BE, dec

rement X register. If result is nonzero branch to FA8A/FAD7

to restore registers and RTI.

11. However, if the BE minus 1 is zero (which it would be

after first block has been loaded), the tape read routine is

trying to read data bytes after the first block has already

completed. In this case JSR FE1C/FE6A to set the status

for a long block, branch to FA8A/FAD7 to restore registers

and RTI.

12. FA8D/FADA: Branch here from step 7 if AA < $80.

If AA contains $40 then BVS FAC0/FB0D as actually

receiving a valid data byte.

13. If AA's low nybble is nonzero (from 1-15), branch to

FAA9/FAF6 as the byte just received is a block countdown

character.

14. If AA is 0, we are still looking for the first block count

down character, so fall through to FA91/FADE to look for

the first block countdown character.

Check for Valid Block Countdown Characters , ,

FA91/FADE-FAA4/FAF1 and FABA/FB07-FABF/FB0C Li

Called by:

Fall through from FA90/FADD if AA = 0. | |

Test the byte received to see if it's what we're expecting at l *
this point, which is a block countdown character. For block

one a countdown character should have its high bit on, while I j

for block two the high bit should be off. If the block count

down character doesn't correspond to this block that is ex

pected, reset AA to $80 to indicate between blocks. If the J i

block countdown character is ok, set AA to the value in its low '
nybble, which should be 9.

382 |_]

n

n
Tape I/O Routines

H

n Entry conditions:

B5 contains 0 if bytes are being read from the block. B5 con

tains a nonzero value while waiting for a word marker at end

r—-> of leader bits. B6 is nonzero if an error occurred during read of

' I this byte. AA contains 0 to indicate that the routine is looking
for block countdown characters. A7 contains 2 if the first block

is being read or 1 if the second block is being read. BD is the

byte just read.

Exit conditions:

AA contains $80 if the byte read doesn't match the block

countdown character pattern expected for this block. The byte

just read is stored in AA if this byte was a valid block count

down character.

Operation:

1. LDA B5. If B5 is nonzero, indicating tape read routine is

waiting for the word marker at the end of leader bits, just

branch to FA8A/FAD7 to restore registers and RTI. B5 is re

set to nonzero only between blocks 1 and 2 (of header or

program).

2. However, if B5 is zero, a word marker has been received at

the end of leader bits, and this byte received is actual data

from the block (most likely the first block countdown

character). Continue with step 3.

3. Test B6 to see if the byte just read was in error. If so,

branch to FA8A/FAD7 to restore registers and RTI.

4. If no errors for byte just read, through a somewhat con

voluted section of code, see if the character just read can be

considered a block countdown character for the first block

with its high bit on, or for the second block with its high

bit off.

5. The way this check for block countdown character

corresponding to block expected at this point is done is as

follows:

A7 is loaded into the accumulator and then shifted

right into the carry. Now, A7 contains 2 if this is the first

block (0000 0010) or 1 if this is the second block (0000

0001). Thus, the shift will leave the carry clear if this is the

first block, or the carry set if this is the second block.

Load the byte just received, BD, into the accumulator

and BMI to see whether its high bit is set. If the high bit is

383

n

n

u
Tape I/O Routines

' u
1, the carry should also be clear (first block). If the high bit

is 0, the carry should also be set (second block). J [
If the carry status does not agree with the high bit sta

tus of BD, this block countdown character is considered to

be in error, in which case branch to FABA/FB07 to reset AA ' j
to $80 to indicate still between blocks, branch to FA8A/

FAD7 to restore registers and RTI. [

If the carry status does agree with the high bit, the (I

first valid block countdown character for this block has been

read. Fall through to FAA9/FAF6.

Last Block Countdown Character

FAA5/FAF2-FAB9/FB0C

Called by:

BNE at FA8F/FADC if AA is not $80, $40, or 0, as tape read

routines are reading block countdown characters, fall through

from FAA7/FAF4 after an initial valid block countdown

character has been received.

For each block countdown character, see if it is the last

one (it is if it's 1). when the final block countdown character

arrives, set AA to $40 to indicate the next byte read will be an

actual data byte to be loaded into the load area. Also JSR

FB8E/FBD2 to reset the pointer to the load area (AC) to the

start of the load area (Cl).

Entry conditions:

AA contains 0 if the initial block countdown character has not

yet been recognized. The low nybble of AA will contain 1-15

after the initial block countdown character is recognized

(should actually be equal to 8-7-6-5-4-3-2 and finally 1, at

which point all the block countdown characters have been re- » j

ceived). (Cl) points to the start of the load area. I i

Exit conditions:

AA is decremented. If AA contains 0 after decrement, reset I j

AA to $40 to indicate ready to receive data. If AA has been re

set to $40, set (AC) from (Cl) and set AB to 0.

Operation: Lj
1. Mask off the high nybble of the byte just received (to get

rid of the high bit if it is set), and then store this byte in AA. , ,

2. Decrement AA. 1 |

384

n
Tape I/O Routines

n

3. If AA is not yet zero, still receiving block countdown

characters, so branch to FA8A/FAD7 to restore registers and

RTI.

4. If AA is now decremented to zero, all of the block count-

down characters have been read, and now the next byte

read will be a valid data byte to be loaded into the load

area.

Set AA to $40 to indicate ready to receive actual data

bytes.

5. JSR FB8E/FBD2 to reset the pointer (AC) from (Cl).

6. Set AB to zero. This step is really unnecessary as AB is

again zeroed before the checksum is computed for the load.

7. Branch to FA8A/FAD7 to restore registers and RTI.

Look for Initial Block Countdown Character

FA86/FAD3-FA8C/FAD6

Called by:

BNE at FA78/FAC5 If AA = $80 (first block load is complete)

and B5 is nonzero (tape read routine is reading leader bits be

tween blocks 1 and 2).

The tape read routines are between the first and second

blocks and have read at least 16 leader bits if this routine is

called. Reset AA to 0 to again start looking for the initial block

countdown character.

Entry conditions:

AA contains $80 (load of first block is complete). B5 is non

zero (tape read routine has read at least 16 leader bits between

blocks 1 and 2).

Exit conditions:

AA contains 0 (to look for the initial block countdown charac

ter for the second block).

Operation:

1. Set AA to 0.

2. Fall through to FA8A/FAD7 to JMP FEBC/FF56 to restore

registers and RTI.

385

u
Tape I/O Routines

LJ

Common Exit Point for RTI i (

FA8A/FAD7-FA8C/FAD9 LJ

This instruction is used as a common exit point for

routines in the byte action section. Branch here to then JMP ' j
FEBC/FF56 to restore register and RTI.

Operation: i i

1. JMP FEBC/FF56. l_)

Valid Data Byte Received; Test for Short Block

FAC0/FB0D-FACD/FB1A

Called by:

BVS at FA8D/FADA if AA = $40 indicating reading valid

data bytes.

A valid data byte has been received. Test if a short block

error has occurred, where the block has ended and leader bits

are being read, and if so then set the short block status error.

Entry conditions:

AA contains $40 (receiving valid data bytes). B5 contains 0 if

actually reading data bytes from a block, or a nonzero value if

the tape is between blocks waiting for the word marker at the

end of the leader bits.

Exit conditions:

If B5 is nonzero, set 90 to indicate short block status; prepare

for reset of AA to 0 to start looking for the initial block count

down character of the next block.

Operation:

1. LDA B5.

2. If B5 contains 0 (reading data from a block) branch to i ?

FACE/FB1B. Lj
3. If B5 is nonzero then reading leader bits between blocks

when actually the byte action routine is still expecting to be] i

reading bytes from the block. JSR FE1C/FE6A to set short LJ
block status in $90, prepare for setting AA to zero (look for

initial block countdown character) and JMP FB4A/FB97 to i /

do end of block processing. I—i

u

386 LJ.

H
Tape I/O Routines

n

rn Check for End of Load

L t FACE/FB1B-FAD5/FB22

Called by:

P| BEQ at FAC2/FB0F if AA = $40 (reading data bytes) and if B5

= 0 (reading bytes of data from a block).

See if the pointer to the location for the byte being loaded

0 has reached the intended end of the load area. If so, jump to
FB48/FB95 to do end of block processing. If not, branch to

FAD6/FB23 to see which block is being loaded.

Entry conditions:

(AC) points to the location for the byte currently being loaded.

(AE) points to the end of the load area + 1.

Exit conditions:

Carry set if (AC) greater than or equal to (AE) (all bytes have

been loaded).

Carry clear if (AC) less than (AE) (bytes remain to be loaded).

Operation:

1. JSR FCD1/FD11 to compare (AC) to (AE).

If (AC) greater than or equal to (AE) then carry will be

set on return.

If (AC) less than (AE), carry will be clear on return.

2. BCC FAD6/FB23. If not done loading all bytes for this

block branch.

3. JMP FB48/FB95. Do end of block processing if final byte

has been loaded.

Determine Block Being Read

FAD6/FB23-FADA/FB27

H Called by:
BCC at FAD1/FB1E in Check Whether All Bytes Have Been

Loaded to (branch if still loading data bytes for this block).

1 (See which block is being loaded. If block one, fall through

to FADB/FB28. If block two, branch to FB08/FB55.

p-j Entry conditions:

'- -J A7 contains 2 if loading first block, or 1 if loading second
block.

387

Tape I/O Routines

Li

Operation:

1. LDX A7. LJ
2. DEX.

3. If result in X register is 0 (A7 —1 = 0, which it would oc

cur is A7 = 1 indicating second block being loaded), branch j j
to FB08/FB55.

4. If result in X register is nonzero, loading first block, in

which case fall through to FADB/FB28. j_J

Load/Verify for Block One of Header or Program

FADB/FB28-FB07/FB54

Called by:

Fall through from FAD9/FA26 if A7 indicates block one is

being loaded.

If 93 indicates we're doing a verify, just compare the byte

read to the memory location pointed to by (AC). If not equal,

set B6 to 1 to indicate a verify error.

If doing a load, first check B6 to see if any errors for the

byte just read. If no errors for the byte, branch to FB3A/FBB7.

If an error is indicated for the byte just read, store the ad

dress of where the byte is to be loaded onto the stack and in

crement (by 2) the pass one error index, 9E.

Entry conditions:

BD contains the byte just read. 93 contains 0 if this is a load,

or 1 if this is a verify. For load, B6 contains 0 if no errors oc

curred for the byte just read.

Exit conditions:

B6 contains 1 if an error was detected during a verify. If this is

a load and B6 was nonzero at entry (indicating an error during

the read of this byte), store (AC), address of byte being loaded, | (

on the stack, indexed by 9E. 9E is then incremented by two. '—'

Operation:

1. Test 93 to see if doing a load or a verify. If doing load,] [
branch to step 5. If doing verify, fall through to step 2.

2. LDA BD, the byte just read, and compare to byte in mem

ory pointed to by (AC) . j)
3. If comparison is equal then this byte read verifies ok,

branch to step 5.

4. If comparison is not equal, set B6 to 1 to flag this verify j j
error, fall through to step 5.

388 .. [J

p—I

Tape I/O Routines

^ 5. LDA B6.

j j 6. If B6 is zero indicating no error occurred during read (for

tape load) or verify of this byte BD, branch to FB3A/FB87.

(| At FB3A/FB87 load the byte if doing a load, and in-

f""| crement the pointer to the load area (for either load or
verify).

7. If B6 is nonzero, indicating either a read error during tape

j] load or a verify error, first see how many addresses of error
locations have already been stored on the stack (storing

upward from 0100).

8. If 31 error addresses have already been stored for 31 read

(load) or verify errors, branch to FB3A/FB80 to set the sta

tus 90 to indicate an unrecoverable read error for load/

verify.

9. If less than 31 errors have been encountered, store address

of current byte being loaded/verified on the stack> with

the low byte of the address stored on the stack sequen

tially before the high byte of the address. Memory loca

tions 0100-013D are used to hold the read error addresses,

with two bytes for the address of each byte considered in

error.

The instructions which store the error address on the

stack are:

LDX 9E ; index into stack for block 1 errors

LDA AD ; high byte of address of current byte

STA 0101,X ; save in stack

LDA AC ; low byte of address of current byt

STA 0100,X ; save in stack above high byte of address.

10. After storing the address of the byte in error on the stack

then increment by two 9E so that it will index to next

r available location on stack in which to store the next error.

M 11. JMP FB3A/FB87 to go ahead and load this byte that is

considered in error.

II Block Two Processing

FB08/FB55-FB32/FB7F

P] Called by:

BEQ at FAD9/FB26 if A7 indicates second block is being read.

See if all errors have already been corrected that were

p"] flagged in the first block. If so, just increment (AC) as all er

rors flagged in pass 1 have been corrected. If 31 errors have

r*l 389

Tape I/O Routines '—*

been corrected, no more will be corrected as that is the limit of

errors that can be flagged in reading block 1. This situation of I I
reaching the maximum flagged in block 1 also results in just (}
incrementing (AC).

If more errors remain to be corrected, see if the next byte I I

to be loaded has the same address as the next address stored

on the stack. If not, just increment (AC). However, if they do

match, a byte has been read that matches one that was consid- I (

ered in error during the read of block 1. Attempt correction if

a match occurs, increment by two the pointer to the stack for

error correction 9R

If trying to correct for verify, just see if the current byte

loaded matches the one pointed to by (AC). If not, again set

B6 to a verify error and then set status to unrecoverable read

error.

If trying to correct for load, check B6 for a read error for

the byte just read. If no errors for the byte, branch to

FB3A/FB87 to load this byte. If any errors for this byte, set

status to unrecoverable read error.

Entry conditions:

BD contains the byte just read. 93 contains 0 if this is a load,

or 1 if this is a verify. For a load, B6 contains 0 if no errors oc

curred while this byte was being read. (AC) points to the ad

dress of the byte being loaded/verified. 9E contains a count of

the number of error addresses stored on stack during block 1

(actually, 2 X number of errors). The maximum number of er

rors allowed for block 1 is 31. 9F is the index into the stack

during block 2 for the pointer to the next address to be cor

rected when reading block 2.

Exit conditions:

If address pointed to on stack by 9F matches the address in I |

(AC), the current memory location being loaded/verified, —'

then:

If no errors occurred during the verify or read (load) of

the byte, the byte in error pointed to by (AC) is replaced by —'
the byte just read, BD.

If any errors occurred during the verify or read of the cur-] (

rent byte, location 90 is set to indicate and unrecoverable read —•*
error.

9F incremented by two.) ;

390

u

Tape I/O Routines

/ i

n

Operation:

1. See if second block error index, 9F is equal to 9E.

2. If equal then branch to FB43/FB90 to increment the pointer

to the load area (AC). 9E and 9F could be equal under three

possible conditions: both are 0 (no errors during first block),
9E did not reach its limit during block 1 (all errors have

been corrected), or 9E reached its limit of 31 errors and

could not handle the next error (all errors corrected but not

all errors were recorded during block 1).

3. If not equal, 9F is still less than 9E, indicating that more er

rors occurred during block 1 load that need to be corrected;

continue with step 4.

4. See if next error address on the stack matches the address

in (AC), and if not, branch to FB43/FB90 to increment (AC).

Instructions that do this compare of addresses are:

X register already contains value of 9F.

LDA AC ; low byte of address of current byte (AC)

CMP 0100,X ; low byte of error address

BNE FB90

LDA AD ; high byte of address of current byte (AC)

CMP 0101,X ; high byte of error address

BNE FB90

5. If the error location address is the same as (AC) then the

byte just read is one that was considered in error during

block 1. Increment 9F by two as another error address from

the stack has been processed.

6. If 93 indicates a verify, compare the byte just loaded to the

byte in memory pointed to by (AC). If equal, branch to step 7.

If not equal, set B6 to 1 which will later cause an un

recoverable read error to be recorded. Continue with step 7.

7. LDA B6. If a verify error was just flagged or if a read error

occurred (for a load), fall through to FB33/FB80 to record

an unrecoverable read error.

8. If B6 contains 0, indicating no errors in verify or read for

this byte, branch to FB3A/FB87, which (if doing a load)

loads this byte from the second block into the memory loca

tion pointed to by (AC) that was considered in error during

the load for block 1.

391

LJ
Tape I/O Routines —'

Flag Unrecoverable Read Error

FB33/FB80-FB39/FB86 LJ

Called by:

Fall through from FB32/FB7F during attempt at error correc- J ;

tion for a byte flagged in error for block 1 if a read error also !—!
occurs for the same byte in block 2, BCC at FAF3/FB40 in

Load/Verify for Block One of Header Or Program (if more j |

than 31 errors detected during read of block 1). *—]

If more than 31 errors occurred while loading block 1, 90

is set to $10 to indicate an unrecoverable read error.

During block 2 processing, if (AC) matches the address on

the stack of the next byte in error from pass 1, see if this byte

was read without error for block 2. If an error occurred during

the read of this byte for block 2, also set 90 to $10 to indicate

an unrecoverable read error.

Exit conditions:

90 contains $10 (actually $10 is ORed with 90).

Operation:

1. LDA $10, then JSR FE1C/FE6A to set 90 by ORing $10

with current value in 90.

2. Branch to FB43/FB90 to increment pointer to the load area.

Load Byte and Increment Pointer to Load Area

FB3A/FB87-FB47/FB94

Called by:

BEQ at FAED/FB3A if the byte read during load for block 1

did not contain any errors, BEQ at FB31/FB7E if the memory

location considered in error during block 1 is to be reloaded

from byte read in block 2, JMP at FB05/FB87 if the byte read

during load for block 1 did contain errors, store it anyway;

alternate entry at FB43/FB90 by BEQ at FB0C/FB59 if 9E =

9F, BNE at FB13/FB60 if the next error location on stack

doesn't match AC, BNE at FB1A/FB67 if the next error loca

tion on stack doesn't match AD, BEQ at FB2A/FB77 as the re

sult of a successful verify during block 2 correction, BNE at

FB38/FB85 in Flag Unrecoverable Read Error.

If doing a load then store the byte just read, BD, at loca

tion pointed to by (AC).

Then (for either load or verify) increment (AC).

392

Tape I/O Routines

Entry conditions:

93 contains 0 if this is a load, or 1 if this is a verify. BD is the

byte just read. (AC) points to the memory location to which

this byte is to be loaded.

Operation:

1. Test 93 to see if doing a verify or a load. If doing a verify,

branch to step 4.

2. LDA BD, the byte just read.

3. STA in memory location pointed to by (AC).

4. FB43/FB90: JSR FCDB/FD1B to increment pointer to load

area (AC).

5. Branch to FB8D/FBCF which jumps to FEBC/FF56 to re

store registers and RTI.

End-of-Block Processing

FB48/FB95-FB67/FBAB

Called by:

JMP at FAD3/FB20 if (AC) is greater than or equal to (AE);

alternate FB4A/FB97: JMP at FACB/FB18 if short block status

is signaled.

End of block has been determined by (AC) becoming

equal to (AE). Set AA to $80 to indicate between blocks.

See if A7 indicates we just finished reading block 2. If so,

we're all done, so branch to FB68/FBAC.

If we just finished reading block one, see if 9E indicates

any errors during load of block one. If no errors during block

one, set BE to 0. Setting BE to 0 prevents any long block er

rors from being flagged, but the load for block 2 is not

skipped.

One way to speed up tape loads would be to stop the

tape load if block 1 is loaded without any errors. If block 1 is

loaded without errors, block 2 is read anyway to make sure

the tape positions correctly at the end of the second block

upon completion of the load, reducing the likelihood of writ

ing over the second block during a subsequent save.

Also, this read of block 2 is necessary when reading

sequential files.

However, when reading a program tape, if block one com-

pletes with no read errors, you could branch to FB68/FBAC to

compute the checksum for block one. If this computed

checksum matches the checksum at the end of the first block

393

u
Tape I/O Routines —'

LI

saved on tape, this load would be considered a complete suc

cess. This method would cut the time for tape load almost in i /
half, although the tape would be left positioned after the first

block.

Entry conditions: i 1
BE contains 2 if finished reading block one, 1 if finished read

ing block two, or 0 if finished reading block 2 after reading a t >

block 1 that had no errors. A7 contains 2 if finished reading < \

the first block, 1 if finished reading the second block.

Exit conditions:

AA contains $80. BE is decremented from 2 to 1 or from 1 to

0. A7 is decremented from 2 to 1 or from 1 to 0. BE is set to 0

if finished reading block one and no errors were detected.

Operation:

1. LDA $80.

2. FB4A/FB97: STA AA to set AA to $80 between blocks or to

$00 if short block error.

3. 64: Disable interrupts for CIA #1 timer A.

4. See if just finished reading block 2 and possibly decrement

BE. Following code shows the sequence for the VIC.

Possible Values of BE

LDX

DEX

BMI

STX

FBA0 DEC

BE

FBA0

BE

A7

2

1

1

Possible

2

1

1 0

0 -1

0

values of A7

1

0

BEQ FBAC. If finished with read of block 2, branch to

FBAC. (>

5. LDA 9E. LJ
6. If nonzero, errors occurred during block 1 read. Branch to

FB8D/FBCF to jump to FEBC/FF56 to restore registers and , .

RTI. LJ
7. If zero, reset BE to 0. It seems the function of this setting BE

to 0 is to prevent long block errors. , I

8. Branch to FB8B/FBCF to jump to FEBC/FF56 to restore reg- lJ
isters and RTI.

U

394 U

n
Tape I/O Routines

H
Tape Load Completed

FB68/FBAC-FB8D/FBD1

Called by:

BEQ at FB5E/FBA2 in End-of-Block Processing, if A7 dec-

rements to 0, indicating second block read complete.

Both blocks have been processed. Reset the IRQ vector to

its normal default setting. Then compute a checksum (or par-

ity) over all the bytes that were just loaded. This checksum

should be equal to the checksum that was just read as the last

byte of block 2. If not equal, set status to indicate checksum

error.

Entry conditions:

BD contains the checksum read from the second block.

Operation:

1. JSR FC93/FCCF to:

disable IRQ interrupts,

turn off tape motor,

disable all CIA #1/VIA #2 interrupts,

VIC reset keyboard column scan to column 3,

VIC Set 912B for free running time,

Enable CIA #1 timer A/VIA #2 timer 1 interrupts

Set timer A/timer 1.

64: Make screen visible again.

Restore saved IRQ vector (029F) to active IRQ vector

(0314)

2. Compute checksum.

Restore (AC) to start of load area (Cl) by JSR

FB8E/FBD2.

Clear checksum workbyte, AB. Load each byte from

the load area, tnen EOR AB, STA AB for each byte loaded.

JSR FCDB/FD1B to increment pointer to load area and

JSR FCD1/FD11 to see when (AC) = (AE).

The final checksum AB computed over the load area

should be the same as the one loaded from block 2 of the

tape, now held in BD.

3. Compare checksums:

LDA AB. Checksum over area loaded

EOR 9B. Checksum from block 2

The result of this Exclusive OR is nonzero if the two

checksums are different, or zero if they are the same.

395

Tape I/O Routines '—'

u
If checksums are different then JSR FE1C/FE6A to OR

the status 90 with $20, indicating a checksum error. 1 i

4. JMP FEBC/FF56 to restore registers and RTI.

Set Timer A/Timer 1 Value to Lag Behind FLAG/CA1 |_J

Interrupt

F8E2/F95D-F92B/F98D

Called by: LJ
JSR at F9CB/FA1B in Determine If Parity for Byte Read Is Cor

rect (first dipole), JSR at FA0A/FA5A in Process Data or Parity

Bit (after second dipole of each data bit), JSR at FA2A/FA77 in

Word Marker Action (after reading a word marker dipole), JSR

at FA67/FAB4 in Determine Action to Take for this Byte (after

reading the second dipole of a word marker bit—byte complete).

Set timer A/timer 1 of CIA #1/VIA #2 to a value to limit

the amount of time the tape can be read before an IRQ inter

rupt occurs. The apparent purpose of setting this timer

A/timer 1 value, which lags behind the normal FLAG/CA1

interupt, is to make certain an IRQ interrupt occurs within a

set period of time just in case of errors during tape read such

as dropouts.

Following is an example of the calculations (for the VIC)

for what value would be stored in timer 1 if BO was 252 at en

try. (BO was 252-253 when examined during actual tape

loads.) This example shows the calculation of a value for timer

1 following reception of the second dipole of a word maker

when a byte is considered complete.

LDA BO 1111 1100 (252, $FC)

ASL

ASL

1111 0000 j I.
ADC $B0 1111 1100 ^

1110 1100 (and carry set)

CLC LJ

U

u

396 ! I

Tape I/O Routines

n

,—, For this example use the JSR from FAB4 with X register =

L.! $DA (which is stored in Bl)

ADC Bl 1101 1010

;—; stabi noooiio

'~ LDA $00
BIT B0 1111 1100

PI BMI F972 (Branch would occur.)
F972 ASL Bl 1011 0100 (C = 1)

ROL (accumulator = 0000 0001)

ASL Bl 0110 1000 (C = 1)

ROL (accumulator = 0000 0011)

Thus, the accumulator now contains $03 and Bl contains $68.

TAX

F979 LDA 9128

CMP $15

BCC F979

The carry will be set when the routine falls through.

Now that the accumulator and Bl have been converted

into an equivalent two-byte time, add this time to the current

value in timer 2. Timer 2 contains $FFFF — time since timer 2

was last set to $FFFF. For this JSR from FAB4 about 168 cycles

have been executed since the setting of timer 2 and this read

of Timer 2. Thus subtract 168 (hex $A8) from $FFFF to arrive

at the current value of timer 2 , or $FFFF - $00A8 = $FF57.

Now add the value in Bl to the low timer value and the value

that was stored in the X register above to the high timer.

Thus, $FFF7

+ 1 (for carry set)

$FFF8

m + $0368

'- ' $02A0 (or decimal 672)
And 674/1,022,370 = 659 microseconds.

P"{ Thus timer 1 is set to a value that will cause an interrupt
in 659 microseconds from now. Since the 1 dipole of the word

marker is expected to about 526 microseconds, this provides

enough time for a 1 dipole to be recognized, but then prevents

the tape read from continuing without an interrupt once 659

microseconds have passed.

397

{

u
Tape I/O Routines

L!

Entry conditions: . ,

BO is a factor used in computing what values to be set for the i !
adjustable baseline times for the next bit read. The X register

contains: ■

$A6 on entry from JSR at F9CB/FA1B. LJ

$DA on entry from JSR at FA0A/FA5A.

$DA on entry from JSR at FA67/FAB4 .

((Bl - $93) + BG) X 2) on entry from JSR at FA77. U
Timer B (DD06-DD07)/timer 2 (9128-9129) contains $FFFF

minus time since timer B/timer 2 last reset to $FFFF at the

start of the interrupt service routine for this tape read.

Exit conditions:

Timer A/timer 1 set to value based on value of X register, BO,

and timer B/timer 2 at entry to routine.

Operation:

1. STX Bl. X register value at entry contains one factor used in

calculating value for timer A/timer 1.

2. See the previous discussion for an example of what the

instructions in this routine do in calculating a value for

timer A/timer 1.

It appears that Bl is set to a value ((BO X 4) + BO) +

X register at entry).

But then Bl is shifted two bits left with the two high

bits being shifted into the two low bits of the accumulator.

Bit 2 of the accumulator can also be set if BO had its

high bit on.

3. Now that accumulator and Bl contain a value representing

a time, add these two values to the current values in timer

B/timer 2. Timer B/timer 2 is set to a value equal to $FFFF

— time since it was last set to $FFFF, which was at the start

of this IRQ interrupt service routine. To determine how long j \
this has been, you can actually add up the cycle times for

the instructions that led to the point where the JSR to this

routine was executed. [_J
4. Store the result of adding accumulator — Bl to timer

B/timer 2 in timer A/timer 1, thus setting timer 1 to a value

that will cause a timeout in a certain period of time, \^r
preventing the tape read routine from going without an

interrupt beyond this time limit.

5. 64: Store value from 02A2 into 02A4 if DCOD does not jj
have the FLAG interrupt bit set then JMP FF43 to execute

the IRQ interrupt handler and then return control here.

398 LJ

n

Appendix A

i i

_ Commodore 64 and

VIC-20 I/O and Video

Control Registers

H

:,
)
3

d
n

J
3

3
3

3

C
I
A
#
1
(
C
o
m
m
o
d
o
r
e

6
4
)

H
E
X

A
O
O
R
E
S
S

C
I
A

#
1

'

D
C
O
O

I
/
O
D
A
T
A

P
O
R
T

A

O
C
O
1

I
/
O
O
A
T
A

P
O
R
T

B

*
-
D
A
T
A

D
I
R
E
C
T
I
O
N

F
O
R

P
O
R
T

A
I
S
G
I
V
E
N

O
N
L
Y

F
O
R

K
E
Y
B
O
A
R
D

•
•

-
D
A
T
A

D
I
R
E
C
T
I
O
N

F
O
R

P
O
R
T

B
I
S
G
I
V
E
N

O
N
L
Y

F
O
R

K
E
Y
B
O
A
R
D

F
L
A
G
1

I
N
T
E
R
R
U
P
T

I
S

F
R
O
M

T
A
P
E

R
E
A
D
.

D
C
O
2

D
A
T
A

D
I
R
E
C
T
I
O
N

P
O
R
T

A
•

D
C
O
3

D
A
T
A

D
I
R
E
C
T
I
O
N
P
O
R
T

B
•
*

D
C
0
4

T
I
M
E
R

A
L
O
W
C
O
U
N
T
/
L
A
T
C
H

D
C
O
S

T
I
M
E
R

A
H
I
G
H
C
O
U
N
T
/
L
A
T
C
H

D
C
0
6

T
I
M
E
R

B
L
O
W
C
O
U
N
T
/
L
A
T
C
H

D
C
O
7

T
I
M
E
R

B
H
I
G
H

C
O
U
N
T
/
L
A
T
C
H

D
C
O
8

T
O
D
C
L
O
C
K

-
1
/
1
0

S
E
C
O
N
D
S

0
C
0
9

T
O
O

C
L
O
C
K

-
S
E
C
O
N
D
S

D
C
O
A

T
O
D

C
L
O
C
K

-
M
I
N
U
T
E
S

D
C
O
B

T
O
D

C
L
O
C
K

-
H
O
U
R
S

D
C
O
C

S
E
R
I
A
L

I
/
O
B
U
F
F
E
R

D
C
O
O

I
N
T
E
R
R
U
P
T

D
A
T
A
(
R
)

R
E
G
I
S
T
E
R

D
C
O
O

I
N
T
E
R
R
U
P
T

M
A
S
K
(
W
)

R
E
G
I
S
T
E
R

D
C
O
E

C
O
N
T
R
O
L

R
E
G
I
S
T
E
R

A

D
C
O
F

C
O
N
T
R
O
L

R
E
G
I
S
T
E
R

B

B
I
T

7.
|
B
I
T

6
|
B
I
T

5

K
B
R
D

C
7
|
K
B
R
D

C
6

P
A
D
D
L
E

S
E
L
E
C
T

0
1
-
P
O
R
T
*

S
E
L
E
C
T

1
0
-
P
O
R
T
B

S
E
L
E
C
T

K
B
R
O

R
7

T
I
M
E
R

B

P
U
L
S
E
/

T
O
G
G
L
E

0

K
B
R
D

R
6

T
I
M
E
R

A

P
U
L
S
E
/

T
O
G
G
L
E

1
0

K
B
R
D

C
S

K
B
R
D

R
5

0

I
|

I
|

I

|
B
I
T

4

K
B
R
D

C
4

J
0
Y
2

F
I
R
E

K
B
R
D

R
4

J
0
Y
1

F
I
R
E

1
I

N
O
T
E
:

W
R
I
T
E

T
O

L
A
T
C
H
;

R
E
A
D

F
R
O
M

|
B
I
T

3

K
B
R
D

C
3

J
0
Y
2

R
T

P
A
D
D
L
E
2

F
I
R
E

K
B
R
D

R
3

J
0
Y
1

R
T

P
A
D
D
L
E
2

F
I
R
E

|
I

C
O
U
N
T

1
/
6
0
S
E
C
O
N
D

I
R
O

I
N
T
E
R
R
U
P
T

F
O
R

K
E
Y
B
O
A
R
D

C
L
O
C
K

U
P
O
A
T
E

;
A
L
S
O

F
O
R

T
A
P
E

R
E
A
D
;

A
L
S
O

N
O
T
E
:

W
R
I
T
E

T
O

L
A
T
C
H
;

R
E
A
D

F
R
O
M

C
O
U
N
T

T
A
P
E

W
R
I
T
E

T
I
M
I
N
G
;

A
L
S
O

U
S
E
D

I
N

S
E
R
I
A
L

|
B
I
T

2
|
B
I
T

1

K
B
R
D

C
2

J
O
Y
2

L
F

P
A
D
O
L
E

1

F
I
R
E

K
B
R
D

R
2

J
0
Y
1

L
F

P
A
D
D
L
E

1

F
I
R
E

K
B
R
D

C
1

J
O
Y
2

D
N

K
B
R
D

R
1

J
0
Y
1

O
N

1
I

1
I

R
E
A
D

A
N
D

J
I
F
F
Y

U
S
E
D

F
O
R
B
A
S
I
C

I
/
O

T
I
M
I
N
G

|
B
I
T

O

K
B
R
D

C
C

J
O
Y
2

U
P

K
B
R
D

R
C

J
0
Y
1

U
P

|
I

5
R
N
D

U
S
E
D

B
Y

B
A
S
I
C
'
S

R
N
D

N
O
T

U
S
E
D

B
Y

K
E
R
N
A
L

N
O
T

U
S
E
D

B
Y

K
E
R
N
A
L

I
R
O

F
L
G
|

|

M
A
S
T
E
R

0
-
4

T
O
D

C
L
K

F
R
E
O

1
-
S
O
H
Z

0
-
6
0
H
Z

S
E
T

1
-
A
L
A
R
M

O
-
T
O
O

C
L
O
C
K

S
E
R
I
A
L

P
O
R
T

M
O
D
E

1
-
O
U
T

O
-
I
N

T
I
M
E
R

A

C
O
U
N
T
S

1
-
C
N
T

S
I
G
N
A
L
S

0
-
0
2

C
L
O
C
K

T
I
M
E
R

B
M
O
D
E

C
O
U
N
T

S
E
L
E
C
T

0
0
-
0
2

P
U
L
S
E
S

0
1
-
P
O
S
I
T
V
E

C
N
T

T
R
A
N
S
I
T
I
O
N
S

1
0
-
T
I
M
E
R

A

U
N
D
E
R
F
L
O
W

T
R
A
N
S
I
T
I
O
N
S

1
1
-
T
I
M
E
R

A

U
N
D
E
R
F
L
O
W
S

W
I
T
H

C
N
T

P
O
S
I
T
I
V
E

F
L
A
G
1

F
L
A
G
1

M
A
S
K

F
O
R
C
E

L
O
A
D

T
I
M
E
R

A

F
R
O
M

L
A
T
C
H
E
S

I
F

1

F
O
R
C
E

L
O
A
D

T
I
M
E
R

B

F
R
O
M

L
A
T
C
H
E
S

I
F

1

S
E
R
I
A
L

S
E
R
I
A
L

M
A
S
K

T
I
M
E
R

A

R
U
N

M
O
D
E

1
-
O
N
E
-

S
H
O
T

O
-
C
O
N
T
.

T
I
M
E
R

B

R
U
N

M
O
D
E

f
-
O
N
E
-

S
H
O
T

O
-
C
O
N
T
.

T
O
D

C
L
K
|
T
I
M
E
R

B
|
T
I
M
E
R

A

T
O
D

C
L
K

M
A
S
K

T
I
M
E
R

B

M
A
S
K

T
I
M
E
R

A
l
T
I
M
E
R

A

O
U
T
P
U
T

(
O
U
T
P
U
T

M
O
D
E

O
N

O
N

P
B
6

P
B
6

|
i
-
Y
E
S

1
-
T
O
G
G
L
E

0
-
N
O

O
-
P
U
L
S
E
|

T
I
M
E
R

B

O
U
T
P
U
T

M
O
O
E

O
N

P
B
7

1
-
T
O
G
G
L

O
-
P
U
L
S
E

T
I
M
E
R

B

O
U
T
P
U
T

O
N

P
B
7

1
-
Y
E
S

0
-
N
O

T
I
M
E
R

A

M
A
S
K

T
I
M
E
R

A

1
-
S
T
A
R
T

0
-
S
T
O
P

T
I
M
E
R

B

1
-
S
T
A
R
T

0
-
S
T
O
P

o K
>

C
I
A
#
2
(
C
o
m
m
o
d
o
r
e

6
4
)

F
L
A
6
1

I
N
T
E
R
R
U
P
T

H
E
X

A
D
D
R
E
S
S

C
I
A

0
2

D
D
O
O

I
/
O
D
A
T
A

P
O
R
T

A

D
O
O
I

I
/
O

D
A
T
A

P
O
R
T

B
(
R
S
-
2
3
2
)

D
O
O
2

D
A
T
A

D
I
R
E
C
T
I
O
N

P
O
R
T

A

0
D
O
3

D
A
T
A

D
I
R
E
C
T
I
O
N

P
O
R
T

B

D
D
0
4

T
I
M
E
R

A
L
O
W

C
O
U
N
T
/
L
A
T
C
H

D
D
O
S

T
I
M
E
R

A
H
I
G
H

C
O
U
N
T
/
L
A
T
C
H

D
D
O
6

T
I
M
E
R

B
L
O
W

C
O
U
N
T
/
L
A
T
C
H

D
O
O
7

T
I
M
E
R

B
H
I
G
H

C
O
U
N
T
/
L
A
T
C
H

D
0
0
8

T
O
D

C
L
O
C
K

-
1
/
1
0

S
E
C
O
N
D
S

D
0
0
9

T
O
D

C
L
O
C
K

-
S
E
C
O
N
D
S

D
O
O
A

T
O
D

C
L
O
C
K

-
M
I
N
U
T
E
S

D
O
O
B

T
O
D

C
L
O
C
K

-
H
O
U
R
S

D
D
O
C

S
E
R
I
A
L

I
/
O

B
U
F
F
E
R

D
D
O
O

I
N
T
E
R
R
U
P
T

D
A
T
A
(
R
)

R
E
G
I
S
T
E
R

I
S

F
R
O
M

R
S
-
2
3
2

R
E
C
E
I
V
E O
O
O
D

I
N
T
E
R
R
U
P
T

M
A
S
K
(
W
)

R
E
G
I
S
T
E
R

D
D
O
E

C
O
N
T
R
O
L

R
E
G
I
S
T
E
R

A

D
D
O
f

C
O
N
T
R
O
L

R
E
G
I
S
T
E
R

B

B
I
T

6
|
B
I
T

5
|
B
I
T

4
B
I
T

2
|
B
I
T

S
E
R
I
A
L

I
S
E
R
I
A
L

I
S
E
R
I
A
L

I
S
E
R
I
A
L

I
S
E
R
I
A
L

l
R
S
-
2
3
2

I
V
1
D
E
0
I
V
I
D
E
O

D
A
T
A

C
L
O
C
K

D
A
T
A

C
L
O
C
K

A
T
T
N

D
A
T
A

A
D
D
R
E
S
S

A
D
D
R
E
S
S

I
N

|
I
N

IO
U
T

IO
U
T

|
O
U
T

|
O
U
T

|
1
5

O
U
T

|
1
4

O
U
T

C
T
S
|
P
I
N
J
|
R
C
D
L
I
N
E
|
R
I

D
T
R
I
R
T
S
|
R
C
D
D
A
T
A

I
I

R
S
-
2
3
2

S
E
N
D

N
O
T
E
:

W
R
I
T
E

T
O

L
A
T
C
H
.

R
E
A
D

F
R
O
M

C
O
U
N
T

R
S
-
2
3
2

R
E
C
E
I
V
E

N
O
T
E
:

W
R
I
T
E

T
O

L
A
T
C
H
.

R
E
A
D

F
R
O
M

C
O
U
N
T

N
O
T

U
S
E
D

B
Y

K
E
R
N
A
L

N
O
T

U
S
E
D

B
Y

K
E
R
N
A
L

I
R
Q

F
L
G

M
A
S
T
E
R

0
-
4

T
O
D

C
L
K

F
R
E
O

1
-
5
0
H
Z

O
-
6
O
H
Z

S
E
T

1
-
A
L
A
R
M

0
-
T
O
O

C
L
O
C
K

1

S
E
R
I
A
L

P
O
R
T

M
O
D
E

1
-
O
U
T

O
-
I
N

.

T
I
M
E
R

A

C
O
U
N
T
S

1
-
C
N
T

S
I
G
N
A
L
S

0
-
0
2

C
L
O
C
K

T
I
M
E
R

B
M
O
D
E

C
O
U
N
T

S
E
L
E
C
T

0
0
-
0
2

P
U
L
S
E
S

0
1
-
P
O
S
I
T
V
E

C
N
T

T
R
A
N
S
I
T
I
O
N
S

1
O
-
T
I
M
E
R

A

U
N
D
E
R
F
L
O
W

T
R
A
N
S
I
T
I
O
N
S

1
1
-
T
I
M
E
R

A

U
N
D
E
R
F
L
O
W
S

W
I
T
H

C
N
T

P
O
S
I
T
I
V
E

F
L
A
G
1

F
L
A
G
1

M
A
S
K

F
O
R
C
E

L
O
A
O

T
I
M
E
R

A

F
R
O
M

L
A
T
C
H
E
S

I
F

1

F
O
R
C
E

L
O
A
D

T
I
M
E
R

B

F
R
O
M

L
A
T
C
H
E
S

I
F

1

S
E
R
I
A
L

S
E
R
I
A
L

M
A
S
K

T
I
M
E
R

A

R
U
N

M
O
D
E

1
-
O
N
E
-

S
K
O
T

0
-
C
O
N
T
.

T
I
M
E
R

B

R
U
N

M
O
D
E

1
-
O
N
E
-

S
H
O
T

0
-
C
O
N
T
.

T
O
D

C
L
K
|
T
I
M
E
R

B
|
T
I
M
E
R

A

T
O
D

C
L
K

M
A
S
K

T
I
M
E
R

A

O
U
T
P
U
T

M
O
D
E

O
N

P
B
6

T
I
M
E
R

B

M
A
S
K

T
I
M
E
R

A

O
U
T
P
U
T

O
N

P
B
6

1
-
Y
E
S

1
-
T
O
G
G
L
E

0
-
N
O

O
-
P
U
L
S
E

T
I
M
E
R

B

O
U
T
P
U
T

M
O
D
E

O
N

P
B
7

1
-
T
O
G
G
L

O
-
P
U
L
S
E

T
I
M
E
R

B

O
U
T
P
U
T

O
N

P
B
7

1
-
Y
E
S

0
-
N
O

T
I
M
E
R

A

M
A
S
K

T
I
M
E
R

A

1
-
S
T
A
R
T

0
-
S
T
O
P

T
I
M
E
R

B

1
-
S
T
A
R
T

0
-
S
T
O
P

c
c

c
c

c
c
e
c
u

1
3

3
3

3
1
3

3
3

3

V
I
A
#
1

(
V
I
C
-
2
0
)

H
E
X

A
D
D
R
E
S
S

V
I
A

M
i

9
1
1
0

I
/
O

D
A
T
A

P
O
R
T

B
(
R
S
-
2
3
2
)

9
1
1
1

I
/
O

D
A
T
A

P
O
R
T

A

9
1
1
2

D
A
T
A

D
I
R
E
C
T
I
O
N

P
O
R
T

B

9
1
1
3

D
A
T
A

D
I
R
E
C
T
I
O
N

P
O
R
T

A

9
1
1
4

T
I
M
E
R

1
L
O
W

9
1
1
5

T
I
M
E
R

1
H
I
G
H

R
S
-
2
3
2

9
1
1
6

T
I
M
E
R

1
L
O
W

S
E
N
D

9
1
1
7

T
I
M
E
R

1
H
I
G
H

9
1
1
8

T
I
M
E
R

2
L
O
W

9
1
1
9

T
I
M
E
R

2
H
I
G
H

R
S
-
2
3
2

R
E
C
E
I
V
E

9
1
1
A

S
H
I
F
T

R
E
G
I
S
T
E
R

9
1
I
B
A
U
X
I
L
I
A
R
Y

C
O
N
T
R
O
L

9
1
1
C

P
E
R
I
P
H
E
R
A
L

C
O
N
T
R
O
L

9
1
I
D

I
N
T
E
R
R
U
P
T

F
L
A
G

9
1
I
E

I
N
T
E
R
R
U
P
T

E
N
A
B
L
E

B
I
T

7
|
B
I
T

6
|
B
I
T

5
|
B
I
T

4
|
B
I
T

3
|
B
I
T

2
|
B
I
T

1
|
B
I
T

O

D
S
R

C
T
S
|
U
N
U
S
E
D

|
R
C
D
L
I
N
E
|

D
T
R

|
R
T
S
[
R
C
O
D
A
T
A

S
E
R

A
T
N
|
T
A
P
E

S
W
|
L
P

F
I
R
E
|
J
O
Y
L
|
J
O
V

D
W
N
|

J
O
Y

U
P
|
S
E
R
D
A
T
A
|
S
E
R

C
L
K

I

I

W
R
I
T
E
-
L
A
T
C
H

R
E
A
D
-
C
O
U
N
T
E
R

A
N
D

R
E
S
E
T

T
1

I
N
T
E
R
R
U
P
T

F
L
A
G

W
R
I
T
E
-
L
A
T
C
H
/
C
O
U
N
T
E
R
.

T
R
A
N
S
F
E
R

L
O
W

L
A
T
C
H

T
O

L
O
W

C
O
U
N
T
E
R

A
N
D

E
S
E
T

T
1

I
N
T
E
R
R
U
P
T

F
L
A
G
.

R
E
A
D
-
C
O
U
N
T
E
R
.

W
R
I
T
E
-
L
A
T
C
H

(
D
O
E
S

N
O
T

A
F
F
E
C
T

C
O
U
N
T
-
D
O
W
N

I
N
P
R
O
G
R
E
S
S
)
;
R
E
A
D

L
A
T
C
H

W
R
I
T
E
-
L
A
T
C
H

(
D
O
E
S

N
O
T

A
F
F
E
C
T

C
O
U
N
T
-
D
O
W
N

I
N
P
R
O
G
R
E
S
S
)

A
N
D

R
E
S
E
T

T
1

I
N
T
E
R
R
U
P
T

F
L
A
G
;

R
E
A
D

L
A
T
C
H

W
R
I
T
E
-
L
A
T
C
H
;

R
E
A
D
-
C
O
U
N
T

A
N
D

R
E
S
E
T

T
2

I
N
T
E
R
R
U
P
T

F
L
A
G
.

W
R
I
T
E
-
C
O
U
N
T
E
R
.

T
R
A
N
S
F
E
R

L
O
W

L
A
T
C
H

T
O

L
O
W

C
O
U
N
T
E
R
,

R
E
S
E
T

T
2

I
N
T
E
R
R
U
P
T

F
L
A
G
;

R
E
A
D
-
C
O
U
N
T

-
N
O
T

U
S
E
D

B
Y

K
E
R
N
A
I

T
I
M
E
R

1
M
O
D
E

I
T
I
M
E
R

2
1

S
H
I
F
T

R
E
G
I
S
T
E
R

M
O
D
E

M
O
D
E

I
P
O
R
T

B
I
P
O
R
T

A

IL
A
T
C
H

L
A
T
C
H

C
O
N
T
R
O
L

C
O
N
T
R
O
L

<
-
—

C
B
2

M
O
D
E
-

-
>
|
C
B
1
M
0
D
E
|
<
-
-

C
A
2

-
>
|
C
A
1
M
0
D
E

»
(
T
I
M
E
R

1
1
T
I
M
E
R

2
I
C
B
1

|
C
B
2

I
S

S
T
A
T
U
S

|
T
I
M
E
O
U
T

IT
I
M
E
O
U
T
|

T
R
A
N
S

|
T
R
A
N
S

|
C
O
M
P
L
E
T
E

T
R
A
N
S

|
T
R
A
N
S

I
S
H
I
F
T

|
C
A
1

M
A
S
T
E
R

I
T
I
M
E
R

1
1
T
I
M
E
R

2
I
C
B
1

C
O
N
T
R
O
L

I
F
O
R

O
-
6
I

I

9
1
I
F

I
/
p

D
A
T
A

P
O
R
T

A

(
N
O
H
A
N
D
S
H
A
K
I
N
G
O
N

C
A
1
.

C
A
2
)

C
B
1

-
R
S
-
2
3
2

R
E
C
E
I
V
E
D

D
A
T
A

C
B
2

-
R
S
-
2
3
2

T
R
A
N
S
M
I
T
T
E
D

D
A
T
A

C
A
1

-
R
E
S
T
O
R
E

K
E
Y

S
E
R

A
T
N
|
T
A
P
E

S
W
|
L
P

F
I
R
E
|
J
O
Y
L
|
J
O
Y

D
W
N
|

J
O
Y

U
P
|
S
E
R
O
A
T
A
|
S
E
R

C
L
K

H

S

V
I
A
#
2

(
V
I
C
-
2
0
)

H
E
X

A
D
D
R
E
S
S

V
I
A

0
2

9
1
2
0

I
/
O

D
A
T
A

P
O
R
T

B

9
1
2
1

I
/
O

D
A
T
A

P
O
R
T

A

9
1
2
2

D
A
T
A

D
I
R
E
C
T
I
O
N

P
O
R
T

B

9
1
2
3

D
A
T
A

D
I
R
E
C
T
I
O
N

P
O
R
T

A

9
1
2
4

T
I
M
E
R

1
L
O
W

1
/
6
0

S
E
C
.

I
R
Q

9
1
2
5

T
I
M
E
R

1
H
I
G
H

I
N
T
E
R
R
U
P
T

F
O
R

K
E
Y
B
O
A
R
D

S
C
A
N

9
1
2
6

T
I
M
E
R

1
L
O
W

A
N
D

J
I
F
F
Y

C
L
K

9
1
2
7

T
I
M
E
R

1
H
I
G
H

:
T
A
P
E

R
E
A
D

9
1
2
B

T
I
M
E
R

2
L
O
W

T
A
P
E

W
R
I
T
E
;

9
1
2
9

T
I
M
E
R

2
H
I
G
H

S
E
R
I
A
L

I
/
O

9
1
2
A

S
H
I
F
T

R
E
G
I
S
T
E
R

9
1
2
B

A
U
X
I
L
I
A
R
Y

C
O
N
T
R
O
L

9
1
2
C

P
E
R
I
P
H
E
R
A
L

C
O
N
T
R
O
L

9
1
2
D

I
N
T
E
R
R
U
P
T

F
L
A
G

9
1
2
E

I
N
T
E
R
R
U
P
T

E
N
A
B
L
E

9
1
2
F

I
/
O
D
A
T
A

P
O
R
T

A

(
N
O
H
A
N
D
S
H
A
K
I
N
G

O
N

C
A
1
.

C
A
2
)

C
B
1

-
S
E
R
I
A
L

S
R
O

I
N

(
N
O
T

U
S
E
D

B
Y

K
E
R
N
A
L
)

C
B
2

-
S
E
R
I
A
L

D
A
T
A

O
U
T

C
A
1

-
T
A
P
E

R
E
A
D

C
A
2

-
S
E
R
I
A
L

C
L
O
C
K

O
U
T

N
O
T
E
:

K
B
R
D

C
X

-
M
E
A
N
S

K
E
Y
B
O
A
R
O

C
O
L
U
M
N

X

K
B
R
D

R
X

-
M
E
A
N
S

K
E
Y
B
O
A
R
D

R
O
W

X

K
B
R
D

J
O
Y
O
I

K
B
R
D 1

C
7

I
)

R
7

K
B
R
D

K
B
R
D

I

C
6
I
K
B
R
D

R
6
|
K
B
R
D

|
I

O
S

R
5

K
B
R
D

K
B
R
D

I

c
4
i
k
b
r
d

c
3
i
k
b
r
d

|
t
a
p
e
w
r
t
|

R
4
|
K
B
R
D

|
I

R
3
|
K
B
R
D

1
l

2
1
B
I
T

K
B
R
D

R
2
|
K
B
R
D

1
I

1 C
1

R
1

|
B
I
T

I
K
B
R
D

|
K
B
R
O

|
I

O C
O

R
O

W
R
I
T
E
-
L
A
T
C
H

R
E
A
D
-
C
O
U
N
T
E
R

A
N
D

R
E
S
E
T

T
1

I
N
T
E
R
R
U
P
T

F
L
A
G

W
R
I
T
E
-
L
A
T
C
H
/
C
O
U
N
T
E
R
.

T
R
A
N
S
F
E
R

L
O
W

L
A
T
C
H

T
O

L
O
W

C
O
U
N
T
E
R

A
N
D

R
E
S
E
T

T
1

I
N
T
E
R
R
U
P
T

F
L
A
G
.

R
E
A
D
-
C
O
U
N
T
E
R
.

W
R
I
T
E
-
L
A
T
C
H

(
D
O
E
S

N
O
T

A
F
F
E
C
T

C
O
U
N
T
-
D
O
W
N

I
N
P
R
O
G
R
E
S
S
)
;
R
E
A
D

L
A
T
C
H

W
R
I
T
E
-
L
A
T
C
H

(
D
O
E
S

N
O
T

A
F
F
E
C
T

C
O
U
N
T
-
D
O
W
N

I
N
P
R
O
G
R
E
S
S
)

A
N
D

R
E
S
E
T

T
1

I
N
T
E
R
R
U
P
T

F
L
A
G
;

R
E
A
D

L
A
T
C
H

W
R
I
T
E
-
L
A
T
C
H
;

R
E
A
D
-
C
O
U
N
T

A
N
D

R
E
S
E
T

T
2

I
N
T
E
R
R
U
P
T

F
L
A
G
.

W
R
I
T
E
-
C
O
U
N
T
E
R
.

T
R
A
N
S
F
E
R

L
O
W

L
A
T
C
H

T
O

L
O
W

C
O
U
N
T
E
R
.

R
E
S
E
T

T
2

I
N
T
E
R
R
U
P
T

F
L
A
G
;

R
E
A
D
-
C
O
U
N
T

-
N
O
T

U
S
E
D

B
Y

K
E
R
N
A
L

[
T
I
M
E
R

2
1

S
H
I
F
T

R
E
G
I
S
T
E
R

M
O
D
E

M
O
D
E

I
P
O
R
T

B
I
P
O
R
T

A

L
A
T
C
H

L
A
T
C
H

IC
O
N
T
R
O
L
I
C
O
N
T
R
O
L

<
-
-
-

C
B
2

M
O
D
E

>
|
C
B
1
M
0
D
E
|
<
-
-

C
A
2

-
>
|
C
A
1
M
0
D
E

I
R
Q

I
T
I
M
E
R

I
I
T
I
M
E
R

2
I
C
B
1

|
C
B
2

I
S
H
I
F
T

|
C
A
1

|
C
A
2

S
T
A
T
U
S

I
P
O
P

I
P
O
P

I
T
R
A
N
S

|
T
R
A
N
S

J
C
O
M
P
L
E
T
E

T
R
A
N
S

|
T
R
A
N
S

i
S
T
E
R

I

C
O
N
T
R
O
L

F
O
R

0
-
6
|

K
B
R
D

R
7
|
K
B
R
D

R
6
|
K
B
R
D

R
S
|
K
B
R
D

R
4
|
K
B
R
D

R
3
|
K
B
R
D

R
2
|
K
B
R
D
R
1
|
K
B
R
D
R
O

if I X

c
c:

c
c
-

c
r
:

c

1
3

J
J

3
3

3
3

3

V
I
C
-
2
0
C
o
n
t
r
o
l
R
e
g
i
s
t
e
r
s

A
U
X
I
L
I
A
R
Y

C
O
N
T
R
O
L

R
E
G
I
S
T
E
R

M
O
O
E
S

T
I
M
E
R

1
M
O
D
E
S
:

A
C
R
7

A
C
R
6

O
O

O
N
E
-
S
H
O
T

M
O
D
E
:

P
B
7

O
U
T
P
U
T

O
I
S
A
B
L
E
D

0
1

F
R
E
E
-
R
U
N
N
I
N
G

M
O
D
E
;

P
B
7

O
U
T
P
U
T

D
I
S
A
B
L
E
D

1
O

O
N
E
-
S
H
O
T

M
O
O
E
;

P
B
7

O
U
T
P
U
T

E
N
A
B
L
E
D

1
1

F
R
E
E
-
R
U
N
N
I
N
G

M
O
O
E
;

P
B
7

O
U
T
P
U
T

E
N
A
B
L
E
D

E
S
:

T
I
M
E
R

2
I

A
C
R
5

0
I
N
T
E
R
V
A
L

T
I
M
E
R

I
N
O
N
E
-
S
H
O
T

M
O
D
E

1
C
O
U
N
T
S

P
U
L
S
E
S
O
N

P
B
6

S
H
I
F
T

R
E
G
I
S
T
E
R

M
O
D
E
S
:

A
C
R
4

A
C
R
3

A
C
R
2

3
2

7
6

O
O

1
O

1
1

1
1

O
O
O

S
H
I
F
T

R
E
G
I
S
T
E
R

D
I
S
A
B
L
E
D

O
O

1
S
H
I
F
T

I
N

-
C
O
N
T
R
O
L
L
E
D

B
Y

T
I
M
E
R

2

O
1

O
S
H
I
F
T

I
N

-
C
O
N
T
R
O
L
L
E
D

B
Y

0
2

C
L
O
C
K

0
1

1
S
H
I
F
T

I
N

-
C
O
N
T
R
O
L
L
E
D

B
Y

E
X
T
E
R
N
A
L

D
E
V
I
C
E

1
O

O
S
H
I
F
T

O
U
T

-
F
R
E
E

R
U
N
N
I
N
G

R
A
T
E

T
H
R
U

T
I
M
E
R

2

1
O

1
S
H
I
F
T

O
U
T

-
C
O
N
T
R
O
L
L
E
D

B
Y

T
I
M
E
R

2

1
t

O
S
H
I
F
T

O
U
T

-
C
O
N
T
R
O
L
L
E
D

B
Y

O
2

C
L
O
C
K

1
1

1
S
H
I
F
T

O
U
T

-
C
O
N
T
R
O
L
L
E
D

B
Y

E
X
T
E
R
N
A
L

D
E
V
I
C
E

P
O
R
T

B
L
A
T
C
H

C
O
N
T
R
O
L
:

A
C
R
1

0
I
N
P
U
T

L
A
T
C
H
I
N
G
D
I
S
A
B
L
E
D

-
L
A
T
C
H
E
S

R
E
F
L
E
C
T

D
A
T
A

O
N

T
H
E

I

1
I
N
P
U
T

L
A
T
C
H
I
N
G

E
N
A
B
L
E
D

P
E
R
I
P
H
E
R
A
L

C
O
N
T
R
O
L

R
E
G
I
S
T
E
R

M
O
D
E
S

1
B
I
T
S

O
F

P
C
R

F
O
R

C
A
2

M
O
D
E
S

C
A
2

-
C
B
2

M
O
D
E
S

5
B
I
T
S

O
F

P
C
R

F
O
R

C
B
2

M
O
D
E
S

0
S
E
T

C
A
2
/
C
B
2

I
N
T
E
R
R
U
P
T

F
L
A
G
O
N
H
I
G
H
-
T
O
-
L
O
W

T
R
A
N
S

O
F

C
A
2
/
C
B
2

I
N
P
U
T
.

C
L
E
A
R

F
L
A
G
O
N

R
/
W

T
O

P
O
R
T

A
/
B
.

1
S
E
T

C
A
2
/
C
B
2

I
N
T
E
R
R
U
P
T

F
L
A
G
O
N
H
I
G
H
-
T
O
-
L
O
W

T
R
A
N
S

O
F

C
A
2
/
C
B
2

I
N
P
U
T
.

C
A
N
'
T

C
L
E
A
R

F
L
A
G

B
Y

R
/
W

T
O

P
O
R
T

A
/
B
.

0
S
E
T

C
A
2
/
C
B
2

I
N
T
E
R
R
U
P
T

F
L
A
G
O
N

L
O
W
-
T
O
-
H
I
G
H

T
R
A
N
S

O
F

C
A
2
/
C
B
2

I
N
P
U
T
.

C
L
E
A
R

F
L
A
G

B
Y

R
/
W

T
O

P
O
R
T

A
/
B
.

1
S
E
T

C
A
2
/
C
B
2

I
N
T
E
R
R
U
P
T

F
L
A
G
O
N

L
O
W
-
T
O
-
H
I
G
H

T
R
A
N
S

O
F

C
A
2
/
C
B
2

I
N
P
U
T
.

C
A
N
'
T

C
L
E
A
R

F
L
A
G

B
Y

R
/
W

T
O

P
O
R
T

A
/
B
.

0
S
E
T

C
A
2
/
C
B
2

L
O
W
O
N

W
R
I
T
E

T
O

P
O
R
T

A
/
B
.

R
E
S
E
T

C
A
2
/
C
B
2

H
I
G
H

W
I
T
H

C
A
1
/
C
B
1

T
R
A
N
S
I
T
I
O
N
.

1
S
E
T

C
A
2
/
C
B
2

L
O
W

F
O
R

O
N
C
E

C
V
L
E

A
F
T
E
R

A
W
R
I
T
E

T
O

P
O
R
T

A
/
B
.

0
H
O
L
D

C
A
2
/
C
B
2

O
U
T
P
U
T

L
O
W
.

1
H
O
L
D

C
A
2
/
C
B
2

O
U
T
P
U
T

H
I
G
H
.

C
A
1

-
C
B
1

M
O
D
E
S
:

4
B
I
T

O
F

P
C
R

F
O
R

C
B
1

M
O
D
E
S

O
B
I
T

O
F

P
C
R

F
O
R

C
A
1

M
O
D
E
S

0
C
A
1
/
C
B
1

I
N
T
E
R
R
U
P
T

F
L
A
G

S
E
T

B
Y

H
I
G
H
-
T
O
-
L
O
W

T
R
A
N
S
I
T
I
O
N

O
F

C
A
1
/
C
B
1

I
N
P
U
T

S
I
G
N
A
L

A
N
D

C
L
E
A
R
E
D

B
Y

R
E
A
D

O
R

W
R
I
T
E

T
O

P
O
R
T

1
C
A
1
/
C
B
1

I
N
T
E
R
R
U
P
T

F
L
A
G

S
E
T

B
Y

L
O
W
-
T
O
-
H
I
G
H

T
R
A
N
S
I
T
I
O
N

O
F

C
A
1
/
C
B
1

I
N
P
U
T

S
I
G
N
A
L

A
N
D

C
L
E
A
R
E
D

B
Y

R
E
A
D

O
R

W
R
I
T
E

T
O

P
O
R
T

P
O
R
T

A
L
A
T
C
H

C
O
N
T
R
O
L
:

A
C
R
O

0
I
N
P
U
T

L
A
T
C
H
I
N
G
D
I
S
A
B
L
E
D

-
L
A
T
C
H
E
S

R
E
F
L
E
C
T

O
A
T
A

O
N

T
H
E

P
I
N
S

1
I
N
P
U
T

L
A
T
C
H
I
N
G

E
N
A
B
L
E
D

o

n

n

Appendix B

n

n Index of

Kernal Routines

by Address

/ \

n

n

Index of Kernal
Routines by
Address

Is \

n

Commodore 64

E505-E509, Return Number of Columns and Rows in Screen, p. 179

E50A-E517, Read/Plot Cursor Location, p. 179

E518-E599, Set VIC Chip Registers, Clear Screen, Home Cursor, Set

Screen Line Link Table, p. 129

E59A-E59F, Set I/O Defaults and Home Cursor, p. 172

E5A0-E5A7, Set Default Device Numbers, p. 133

E5A8-E5B3, Initialize VIC Chip Registers, p. 134

E5B4-E5C9, Retrieve Character from Keyboard Queue, p. 147

E5CA-E631, Get Characters Until RETURN Key Detected, p. 142

E632-E683, Get Character from Keyboard or Screen, p. 137

E684-E690, If Quote Key Detected Then Flip Quote Flag, p. 145

E691-E6A7, Display Screen Codes, p. 160

E6A8-E6B5, Exit from Screen Editor Routines, p. 162

E6B6-E700, Advance Cursor and Scroll or Insert Blank Lines, p. 162

E701-E715, Move Cursor to Previous Screen Line, p. 165

E716-E87B, Main Screen Editor, p. 148

E87C-E890, Advance Cursor To Next Screen Line, p. 166

E891-E8A0, Handle RETURN Key, p. 167

E8A1-E8B2, Decrement Screen Line Pointer If Cursor Moves Left to New

Line, p. 168

E8B3-E8C1, Increment Screen Line Pointer If Cursor Moves Right to New

Line, p. 169

E8CB-E8D9, Test for Color Key, p. 170

E8EA-E964, Scroll Screen, p. 171

E965-E9C7, Insert Blank Line, p. 174

E9C8-E9DF, Move Screen Line, p. 176

E9E0-E9EF, Set Color Memory Pointers for Moving Line, p. 177

E9F0-E9FE, Set Pointers to Screen Line Cursor Is On, p. 127

E9FF-EA12, Clear Screen Line Cursor Is On, p. 126

EA13-EA1B, Set Color and Store Character on Screen, p. 145

EA1C-EA23, Display Byte in Accumulator on Screen, p. 145

EA24-EA30, Set Pointer to Color Nybble, p. 146

EA31-EA86, IRQ Interrupt Handler, p. 48

EA87-EB47, Keyboard Scan, p. 53

EB48-EB78, Keyboard Table Setup, p. 60

EC44-EC4E, Test for Character Set Switch, p. 178

ED09-ED10, Send TALK Command to Device, p. 214

ED0C-ED10, Send LISTEN Command To Device, p. 193

409

Appendix B

LJ

ED11-ED3F,

ED40-EDAC,

EDAD-EDB8,

EDB9-EDBD,

EDBE-EDC6,

EDC7-EDDC,

EDDD-EDEE,

EDEF-EE12,

EDFE-EE12,

EE13-EE84,

EE85-EE8D,

EE8E-EE96,

EE97-EE9F,

EEA0-EEA8,

EEA9-EEB2,

EEB3-EEBA,

EEBB-EED6,

EED7-EEF1,

EF00-EF05,

EF06-EF2D,

EF2E-EF49,

EF4A-EF58,

EF59-EF6D,

EF6E-EF7D,

EF7E-EF8F,

EF90-EF96,

EF97-EFB2,

EFB3-EFC6,

EFC7-EFDA,

EFDB-EFEO,

EFE1-F013,

F014-F02D,

F02E-F04C,

F04D-F085,

F086-F0A3,

F0A4-F0B6,

F12B-F13D,

F13E-F14D,

F14E-F156,

F157-F178,

F157-F172,

F179-F198,

F199-F1AC,

F1AD-F1B7,

F1B8-F1C9,

F1CA-F1DB,

F1DC-F207,

F208-F20D,

410

Do Attention Handshake With Serial Device, p. 194

Send Serial Byte: Command or Data, p. 197

Set Status Word, p. 205

Send Secondary Address After LISTEN, p. 204

Bring Serial Bus Attention Line High, p. 190

Send Secondary Address After TALK and Do TALK-LISTEN

Turnaround, p. 214

Send Serial Byte Deferred, p. 205

Send UNTALK Command, p. 222

Send UNLISTEN Command, p. 222

Receive Byte from Serial Device, p. 216

Bring Serial Bus Clock Line High, p. 191

Bring Serial Bus Clock Line Low, p. 191

Bring Serial Bus Data Line High, p. 266

Bring Serial Bus Data Line Low, p. 191

Read Serial Data In and Serial Clock In, p. 192

Delay One Millisecond, p. 206

Transmit RS-232 Bit: NMI Interrupt Driven, p. 260

Prepare Parity Bit and Set Counter for Stop Bits, p. 263

Prepare to Send Stop Bit, p. 262

Prepare to Transmit Next Byte, p. 258

Handle Errors While Transmitting to RS-232 Device, p. 259

Compute Bit Count, p. 240

Receive RS-232 Bit: NMI Interrupt Driven, p. 245

Check for Stop Bits, p. 250

Prepare to Receive Next Byte, p. 253

Check for Start Bit, p. 253

Store Byte Received into Buffer, p. 247

Check Parity of Received Byte, p. 248

Handle Errors While Receiving from RS-232 Device, p. 250

Check for Framing/Break Error, p. 252

Open RS-232 Channel for Output, p. 254

Store Character in Transmit Buffer, p. 256

Prepare Timer A/Timer 1 Interrupt for RS-232 Transmission,

p. 257

Open RS-232 Channel for Input, p. 241

Get Character from RS-232 Receive Buffer, p. 244

Disable RS-232 During Serial or Tape I/O, p. 266

Display Kernal Messages, p. 113

GETIN Preparation, p. 84

GETIN from RS-232 Device, p. 243

Determine Input Device, p. 76

CHRIN from Keyboard or Screen, p. 136

CHRIN from Tape, p. 339

Return Byte from Tape Buffer, p. 340

Get Character from Serial Input Channel, p. 220

CHRIN from RS-232 Device, p. 243

Determine Output Device, p.76

CHROUT to Tape, p. 292

CHROUT to RS-232 Device, p. 255

LJ

LJ

U

i

I J

LJ

n

n

Appendix B

n

n

F20E-F236, CHKIN Execution, p. 70

F237-F24F, Open Serial Input Channel, p. 219

F250-F278, CHKOUT Execution, p. 72

F279-F290, Open Serial Output Channel, p. 221

F291-F2AA, Determine Device for CLOSE, p. 80

F2AB-F2C7, Close Logical File for RS-232 Device, p. 264

F2C8-F2ED, Close Logical File for Tape, p. 295

F2EE-F2F0, Close Logical File for Serial Device, p. 223

F2F1-F30E, Common Exit for Close Logical File, p. 81

F30F-F31E, See if Logical File Exists, p. 113

F31F-F32E, Extract Logical File Number, Device Number, And Secondary

Address from Tables, p. 115

F32F-F332, Reset to No Open Files, p. 78

F333-F349, Clear Serial Channels And Reset Default Devices, p. 82

F34A-F3D4, OPEN Execution, p. 91

F38B-F398, Determine If Open Is for Read or Write, p. 337

F399-F3D4, Open Logical File for Reading from Tape, p. 337

F3B8-F3D4, Open Logical File for Writing to Tape, p. 292

F3D5-F408, Send OPEN, LOAD, or SAVE Command to Device, p. 202

F409-F482, Open Logical File for RS-232 Device, p. 233

F483-F49D, CIA Initialization for RS-232 (64), p. 239

F49E-F4A4, Jump to LOAD Vector, p. 88

F4A5-F4B7, Determine Device for LOAD, p. 88

F4B8-F532, Load or Verify from Serial Device, p. 210

F533-F538, Determine Device for LOAD, p. 88

F539-F5AE, Control Routine for Tape Load, p. 341

F5AF-F5C0, Display SEARCHING FOR Message, p. 118

F5C1-F5D1, Display Filename, p. 118

F5D2-F5DC, Display LOADING/VERIFYING Message, p. 115

F5DD-F5EC, Jump to SAVE Vector, p. 100

F5ED-F5F9, Determine Device for SAVE, p. 100

F5FA-F641, Save to Serial Device, p. 207

F633-F639, Stop Load or Save, p. 209

F642-F658, Send Secondary Address for CLOSE, p. 210

F659-F68E, Control Routine for Tape Save, p. 296

F68F-F69A, Display SAVING Filename Message, p. 116

F69B-F6DC, Jiffy Clock Update and STOP Key Scan, p. 51

F6DD-F6EC, RDTIM/SETTIM Execution, p. 94

F6ED-F6FA, Test for Stop Key, p. 107

F6FB-F72B, Error Message Handler, p. 116

F72C-F769, Find Next Tape Header, p. 347

F76A-F7CF, Prepare Header and Write to Tape, p. 300

F7D0-F7D6, Load and Check Tape Buffer Address, p. 299

F7D7-F7E9, Set Start and End of Tape Buffer, p. 299

F7EA-F80C, Find Specified Tape Header, p. 346

F80D-F816, Increment Count of Number of Characters in Tape Buffer,

p. 294

F817-F82D, Display PRESS PLAY ON TAPE, p. 330

F82E-F837, Check for Tape Button Down, p. 329

F838-F840, Display PRESS RECORD & PLAY ON TAPE, p. 331

411

Appendix B
u

F841-F849,

F84A-F863,

F864-F866,

F867-F86A,

F86B-F874,

F875-F8CF,

F8D0-F8E1,

F8E2-F92B,

F92C-F939,

F93A-F95A,

F959-F98A,

F98B-F992,

F993-F998,

F999-F9A1,

F9A2-F9A9,

F9AA-F9AB,

F9AC-F9AF,

F9B0-F9C8,

F9C9-F9D4,

F9D5-F9E3,

F9E4-F9F6,

F9F7-FA0F,

FA10-FA1E,

FA1F-FA43,

FA44-FA52,

FA53-FA5F,

FA60-FA85,

FA86-FA89,

FA8A-FA8C,

FA8D-FA90,

FA91-FAA4,

FAA5-FAB9,

FACO-FACD,

FACE-FAD5,

FAD6-FADA,

FADB-FB07,

FB08-FB32,

FB33-FB39,

FB3A-FB47,

FB48-FB67,

FB68-FB8D,

FB8E-FB96,

FB97-FBA5,

412

Read Tape Header into Buffer, p. 349

Load Next Two Blocks, p. 349

Set Pointers to Start and End of Buffer and Write Buffer,

p. 294

Prepare to Write Program to Tape, p. 302

Prepare IRQ Vector and Timer Interrupts for Tape Write,

p. 302

Reset IRQ Vector and Set Interrupt Enable Register, p. 303

Check Keyboard STOP Key During Tape I/O, p. 331

Set Timer A/Timer 1 Value to Lag Behind Flag/CAl Inter

rupt, p. 396

Determine Time Between Flag/CAl Interrupts for this Dipole,

p. 352

Convert Time Between Interrupts into One-Byte Value, p. 355

Determine If Dipole Time Represents Noise, 0, 1, or Word

Marker, p. 358

Set A8 If Bytes are Being Received, p. 362

Increment or Decrement the 0/1 Balanced Counter, p. 362

Determine Value to Adjust Baseline Times, p. 363

Flip Dipole Indicator Switch, p. 366

Store Dipole Value as Bit, p. 366

Check Possible Error and See if Receiving Bytes, p. 367

Determine if Interrupt Was Caused by Timer A/Timer 1

Timeout, p. 367

Determine if Parity for Byte Read is Correct, p. 368

Set Adjustable Baseline Values for Next Bit, p. 370

Determine If Two Dipoles Are Data, Error, or Leader Bit,

p. 373

Process Data or Parity Bit, p. 375

Process Word Marker Dipole, p. 376

Word Marker Action, p. 377

Determine if Dipole Is in Block or Leader, p. 379

Store Byte Received and Check Error Flags, p. 380

Determine Action to Take for this Byte, p. 381

Look for Initial Block Countdown Character, p. 385

Common Exit Point For RTI, p. 386

Determine Action to Take for this Byte, p. 381

Check for Valid Block Countdown Characters, p. 382

Last Block Countdown Character, p. 384

Valid Data Byte Received; Test for Short Block, p. 386

Check for End of Load, p. 387

Determine Block Being Read, p. 387

Load/Verify for Block One of Header or Program, p. 388

Block Two Processing, p. 389

Flag Unrecoverable Read Error, p. 392

Load Byte and Increment Pointer to Load Area, p. 392

End-of-Block Processing, p. 393

Tape Load Completed, p. 395

Reset Pointer to Start of Load/Save Area, p. 332

Reset Counters and Variables for Tape I/O, p. 333

f i

u

u

u

u

n
Appendix B

! \

n

n

i i

FBA6-FBC7, Reverse Tape Write Line and Set Timer for Next Interrupt,

p. 305

FBC8-FBCC, Indicate Block Save Complete, p. 327

FBCD-FBEF, Write a Word Marker Bit to Tape, p. 318

FBF0-FBF4, Write Data Bit to Tape, p. 320

FBF5-FBFC, Determine Which Part of Dipole Tape Write Routine Is

Executing, p. 321

FBFD-FCOB, Prepare to Write Second Dipole for This Bit, p. 322

FC0C-FC15, Prepare to Write Next Bit and Decrement Bit Counter, p. 323

FC16-FC2F, Prepare Counters for Next Byte and Test If Writing Block

Countdown Characters, p. 324

FC30-FC3E, Check for End of Tape Save, p. 325

FC3F-FC4D, Move Next Byte from Save Area and Increment Pointer, p. 326

FC4E-FC56, Prepare Parity Bit for This Byte, p. 326

FC57-FC69, Handle End-of-Block Processing and Reset IRQ Vector, p. 328

FC6A-FC92, Write Leader Bit to Tape and Reset IRQ Interrupt, p. 307

FC93-FCB7, Reset CIA/VIA Registers and Restore IRQ Vector, p. 333

FCB8-FCC9, Set IRQ Vector, p. 334

FCCA-FCDO, Turn Off Tape Motor, p. 335

FCD1-FCDA, Compare Pointer to Current Byte with Pointer for End of

Load/Save, p. 335

FCDB-FCE1, Increment Pointer to Current Byte, p. 336

FCE2-FD01, System Reset, p. 17

FD02-FD0F, Test for Autostart Cartridge, p. 18

FD15-FD25, Initialize Kernal RAM Vectors, p. 22

FD50-FD9A, Initialize Memory Pointers, p. 19

FDA3-FDF8, Initialize I/O Chips, p. 24

FDF9-FDFF, Set File Name Location And Number Of Characters, p. 105

FE00-FE06, Set Logical File Number, Device Number, Secondary Address,

p. 103

FE07-FE20, Read/set Status-set Message Control, p. 97

FE21-FE24, Set Serial Timeout Value, p. 223

FE25-FE33, Memtop Execution, p. 90

FE34-FE42, Membot Execution, p. 89

FE43-FE46, NMI Interrupt Handler Jump, p. 33

FE47-FEC1, NMI Interrupt Handler, p. 34

FE66-FE71, BRK Interrupt Handler, p. 47

FED6-FF06, NMI Interrupt Handler-Timer B Service, p. 37

FF07-FF2D, NMI Interrupt Handler-Start Timer B for FLAG NMI, p. 37

FF48-FF5A, IRQ/BRK Interrupt Switch, p. 45

FF5B-FF6D, Initialize VIC-II Chip And Set PAL/NTSC Hag, p. 28

FF6E-FF80, Initialize I/O Chips, p. 24

FF81, CINT, p. 77

FF84, IOINIT, p. 85

FF87, RAMTAS, p. 93

FF8A, RESTOR, p. 98

FF8D, VECTOR, p. 109

FF90, SETMSG, p. 104

FF93, SECOND, p. 102

FF96, TKSA, p. 108

413

Appendix B

u

FF99, MEMTOP, p. 89 , ,

FF9C, MEMBOT, p. 89 | j
FF9F, SCNKEY, p. 101

FFA2, SETTMO, p. 106

FFA5, ACPTR, p. 68

FFA8, CIOUT, p. 78

FFAB, UNTALK, p. 109

FFAE, UNLSN, p. 108

FFB1, LISTEN, p. 85 M
FFB4, TALK, p. 107 —'
FFB7, READST, p. 95

FFBA, SETLFS, p. 102

FFBD, SETNAM, p. 104

FFCO, OPEN, p. 90

FFC3, CLOSE, p. 79

FFC6, CHKIN, p. 69

FFC9, CHKOUT, p. 71

FFCC, CLRCHN, p. 82

FFCF, CHRIN, p. 73

FFD2, CHROUT, p. 75

FFD5, LOAD, p. 86

FFD8, SAVE, p. 98

FFDB, SETTIM, p. 105

FFDE, RDTIM, p. 94

FFE1, STOP, p. 106

FFE4, GETIN, p. 83

FFE7, CLALL, p. 78

FFEA, UDTIM, p. 108

FFED, SCREEN, p. 101

FFF0, PLOT, p. 93

FFF3, IOBASE, p. 84

VIC-20

E4A0-E4A8, Bring Serial Bus Data Line High, p. 190

E4A9-E4B1, Bring Serial Bus Data Line Low, p. 191

E4B2-E4BB, Read Serial Data In And Serial Clock In, p. 192

E505-E509, Return Number Of Columns And Rows In Screen, p. 179 < »

E50A-E517, Read/Plot Cursor Location, p. 179 |)
E518-E5B4, Set Vic Chip Registers, Blank Screen, Set Cursor Pointers, Set

Screen Line Link Table, p. 129

E5B5-E5BA, Set I/O Defaults And Home Cursor, p. 113) (

E5BB-E5C2, Set Default Device Numbers, p. 133 <—'

E5C3-E5CE, Initialize Vic Chip Registers, p. 134

E5CF-E5E4, Retrieve Keyboard Queue Character, p. 147 v

E5E5-E64E, Get Characters Until Return Key Detected, p. 142 j j
E64F-E6B7, Get Character From Keyboard Or Screen, p. 137

E6B8-E6C5, If Quote Key Detected Then Flip Quote Flag, p. 145

E6C5-E6DB, Display Screen Codes, p. 160 I j

E6DC-E6E9, Exit From Screen Editor Routines, p. 162 I)
E6EA-E72C, Advance Cursor And Scroll Lines Or Insert Blank Lines If

Needed, p. 162

414 LJ

n

n

Appendix B

H

H

H

E72D-E741, Move Cursor To Previous Physical Screen Line, p. 165

E742-E8C2, Main Screen Editor, p. 148

E8C3-E8D7, Advance Cursor To Next Screen Line, p. 166

E8D8-E8E7, Handle RETURN Key, p. 167

E8E8-E8F9, Decrement Screen Line Pointer If Cursor Moves Left to New

Line, p. 168

E8FA-E911, Increment Screen Line Pointer If Cursor Moves Right to New

Line , p. 169

E912-E920, Test for Color Key, p. 170

E975-E9ED, Scroll Screen, p. 171

E9EE-EA55, Insert Blank Line, p. 174

EA56-EA6D, Move Screen Line, p. 176

EA6E-EA7D, Set Color Memory Pointers for Moving Line, p. 177

EA7E-EA8C, Set Pointers to Screen Line Cursor Is On, p. 127

EA8D-EAA0, Clear Screen Line Cursor Is On, p. 126

EAA1-EAA9, Set Color and Store Character On Screen, p. 145

EAAA-EAB1, Display Byte In Accumulator On Screen, p. 145

EAB2-EABE, Set Pointer to Color Nybble, p. 146

EABF-EB1D, IRQ Interrupt Handler, p. 48

EB1E-EBDB, Keyboard Scan, p. 53

EBDC-EC45, Keyboard Table Setup, p. 60

ED21-ED2F, Test For Character Set Switch, p. 178

EE14-EE1B, Send TALK Command to Device, p. 214

EE17-EE1B, Send LISTEN Command To Device, p. 193

EE1C-EE48, Do Attention Handshake With Serial Device, p. 194

EE49-EEB3, Send Serial Byte: Command or Data, p. 197

EEB4-EEBF, Set Status Word, p. 205

EEC0-EEC4, Send Secondary Address After LISTEN, p. 204

EEC5-EECD, Bring Serial Bus Attention Line High, p. 190

EECE-EEE3, Send Secondary Address After TALK and Do TALK-LISTEN

Turnaround, p. 214

EEE4-EEF5, Send Serial Byte Deferred, p. 205

EEF6-EF18, Send UNTALK Command, p. 222

EF04-EF18, Send UNLISTEN Command, p. 222

EF19-EF83, Receive Byte from Serial Device, p. 216

EF84-EF8C, Bring Serial Bus Clock Line High, p. 191

EF8D-EF95, Bring Serial Bus Clock Line Low, p. 192

And Serial Clock in.

EF96-EFA2, Delay One Millisecond, p. 206

EFA3-EFBE, Transmit RS-232 Bit: NMI Interrupt Driven, p. 260

EFBF-EFE7, Prepare Parity Bit and Set Counter for Stop Bits, p. 263

EFE8-EFED, Prepare to Send Stop Bit, p. 262

EFEE-F015, Prepare to Transmit Next Byte, p. 258

F016-F026, Handle Errors While Transmitting to RS-232 Device, p. 259

F027-F035, Compute Bit Count, p. 240

F036-F04A, Receive RS-232 Bit: NMI Interrupt Driven, p. 245

F04B-F05A, Check for Stop Bits, p. 250

F05B-F067, Prepare to Receive Next Byte, p. 253

F068-F06E, Check for Start Bit, p. 253

F06F-F08A, Store Byte Received into Buffer, p. 247

415

Appendix B

u

F08B-F09E,

F09F-F0B2,

F0B3-F0B8,

FOBC-FOEC,

FOED-F1O1,

F102-F115,

F116-F14E,

F14F-F15F,

F160-F173,

F1E2-F1F4,

F1F5-F204,

F205-F20D,

F20E-F22F,

F20E-F229,

F230-F24F,

F250-F263,

F264-F26E,

F26F-F279,

F27A-F28E,

F28F-F2B8,

F2B9-F2C6,

F2C7-F2EF,

F2F0-F308,

F309-F331,

F332-F349,

F34A-F363,

F364-F38C,

F38D-F3AD,

F3AE-F3B0,

F3B1-F3CE,

F3CF-F3DE,

F3DF-F3EE,

F3EF-F3F2,

F3F3-F409,

F40A-F494,

F44B-F458,

F459-F494,

F478-F494,

F495-F4C6,

F4C7-F541,

F542-F548,

F549-F55B,

F55C-F5C9,

F5CA-F5D0,

F5D1-F646,

F647-F658,

F659-F669,

F66A-F674,

416

Check Parity of Received Byte, p. 248

Handle Errors While Receiving from RS-232 Device, p. 250

Check for Framing/Break Error, p. 252

Open RS-232 Channel for Output, p. 254

Store Character in Transmit Buffer, p. 256

Prepare Timer A/Timer 1 Interrupt for RS-232 Transmission,

p. 257

Open RS-232 Channel For Input, p. 241

Get Character From RS-232 Receive Buffer, p. 244

Disable RS-232 During Serial or Tape I/O, p. 266

Display KERNAL Messages, p. 113

Getin Preparation, p. 84

GETIN from RS-232 Device, p. 243

Determine Input Device, p. 75

CHRIN from Keyboard Or Screen, p. 136

CHRIN from Tape, p. 339

Return Byte from Tape Buffer, p. 340

Get Character From Serial Input Channel, p. 220

CHRIN from RS-232 Device, p. 243

Determine Device For CHROUT, p. 76

CHROUT to Tape, p. 292

CHROUT to RS-232 Device, p. 255

CHKIN Work, p. 118

Open Serial Input Channel, p. 219

CHKOUT Execution, p. 120

Open Serial Output Channel, p. 221

Determine Device for CLOSE, p. 80

Close Logical File for RS-232 Device, p. 264

Close Logical File for Tape, p. 295

Close Logical File For Serial Device, p. 223

Common Exit For Close Logical File Routines, p. 81

See If Logical File Exists, p. 114

Extract Logical File Number, Device Number, And Secondary

Address From Tables, p. 115

Reset To No Open Files, p. 78

Clear Serial Channels And Reset Default Devices, p. 82

OPEN Execution, p. 91

Determine If Open Is for Read Or Write, p. 337

Open Logical File for Reading From Tape, p. 337

Open Logical File for Writing to Tape, p. 292

Send OPEN, LOAD, or SAVE Command to Device, p. 202

Open Logical File for RS-232 Device, p. 233

Jump To LOAD Vector, p. 88

Determine Device for LOAD, p. 88

Load or Verify from Serial Device, p. 210

Determine Device for LOAD, p. 88

Control Routine for Tape Load, p. 341

Display SEARCHING FOR Message, p. 118

Dispaly Filename, p. 118

Display LOADING/VERIFYING Message, p. 115

LJ

LJ

LJ

LJ

U

LJ

U

n
Appendix B

H

n

F675-F684, Jump to SAVE Vector, p. 100

F685-F691, Determine Device For SAVE, p. 100

F692-F6D9, Save To Serial Device, p. 207

F6CB-F6D1, Stop Load or Save, p. 209

F6DA-F6F0, Send Secondary Address for CLOSE, p. 210

F6F1-F727, Control Routine for Tape Save, p. 296

F728-F733, Display SAVING Filename Message, p. 116

F734-F75F, Jiffy Clock Update and STOP Key Scan, p. 51

F760-F76F, RDTIM/SETTIM Execution, p. 94

F770-F77D, Test For STOP Key, p. 107

F77E-F7AE, Error Message Handler, p. 116

F7AF-F7E6, Find Next Tape Header, p. 347

F7E7-F84C, Prepare Header and Write to Tape, p. 300

F84D-F853, Load and Check Tape Buffer Address, p. 299

F854-F866, Set Start and End of Tape Buffer, p. 299

F867-F889, Find Specified Tape Header, p. 346

F88A-F893, Increment Count of Number of Characters in Tape Buffer,

p. 294

F894-F8AA, Display PRESS PLAY ON TAPE, p. 330

F8AB-F8B6, Check for Tape Button Down, p. 329

F8B7-F8BF, Display PRESS RECORD & PLAY ON TAPE, p. 331

F8C0-F8C8, Read Tape Header into Buffer, p. 349 ". •

F8C9-F8E2, Load Next Two Blocks, p. 349

F8E3-F8E5, Set Pointers to Start and End of Buffer and Write Buffer,

p. 294

F8E6-F8E9, Prepare to Write Program to Tape, p. 302

F8EA-F8F3, Prepare IRQ Vector and Timer Interrupts for Tape Write,

p. 302

F8F4-F94A, Reset IRQ Vector and Set Interrupt Enable Register, p. 303

F94B-F95C, Check Keyboard STOP Key During Tape I/O, p. 331

F95D-F98D, Set Timer A/Timer 1 Value to Lag Behind Flag/CAl Inter

rupt, p. 396

F98E-F99B, Determine Time Between Flag/CAl Interrupts for this Dipole,

p. 352

F99C-F9AF, Convert Time Between Interrupts into One-Byte Value, p. 355

F9B0-F9E4, Determine If Dipole Time Represents Noise, 0, 1, or Word

Marker, p. 358

F9E5-F9EC, Set A8 If Bytes are Being Received, p. 362

F9ED-F9F2, Increment or Decrement the 0/1 Balanced Counter, p. 362

F9F3-F9FB, Determine Value to Adjust Baseline Times, p. 363

F9FC-FA03, Flip Dipole Indicator Switch, p. 366

FA04-FA05, Store Dipole Value as Bit, p. 366

FA06-FA09, Check Possible Error and See if Receiving Bytes, p. 367

FA0A-FA18, Determine if Interrupt Was Caused by Timer A/Timer 1

Timeout, p. 367

FA19-FA24, Determine if Parity for Byte Read is correct, p. 368

FA25-FA33, Set Adjustable Baseline Values for Next Bit, p. 370

FA34-FA46, Determine If Two Dipoles Are Data, Error, or Leader Bit,

p. 373

FA47-FA5F, Process Data or Parity Bit, p. 375

417

Appendix B
LJ

FA60-FA6B,

FA6C-FA90,

FA91-FA9F,

FAAO-FAAC,

FAAD-FAD2,

FAD3-FAD6,

FAD7-FAD9,

FADA-FADD,

FADE-FAF1,

FAF2-FB0C,

FBOD-FB1A,

FB1B-FB22,

FB23-FB27,

FB28-FB54,

FB55-FB7F,

FB80-FB86,

FB87-FB94,

FB95-FBAB,

FBAC-FBD1,

FBD2-FBDA,

FBDB-FBE9,

FBEA-FC05,

FC06-FC0A,

FC0B-FC2D,

FC2E-FC32,

FC33-FC3A,

FC3B-FC49,

FC4A-FC53,

FC54-FC6D,

FC6E-FC7C,

FC7D-FC8B,

FC8C-FC94,

FC95-FCA7,

FCA8-FCCE,

FCCF-FC5F,

FCF6-FD07,

FD08-FD10,

FD11-FD1A,

FD1B-FD21,

FD22-FD3E,

FD3F-FD4C,

FD52-FD6C,

FD8D-FDFD,

FDF9-FE48,

FE49-FE4F,

418

Process Word Marker Dipole, p. 376

Word Marker Action, p. 377

Determine if Dipole Is in Block or Leader, p. 379

Store Byte Received and Check Error Flags, p. 380

Determine Action to Take for this Byte, p. 381

Look for Initial Block Countdown Character, p. 385

Common Exit Point for RTI, p. 386

Determine Action to Take for this Byte, p. 381

Check for Valid Block Countdown Characters, p. 382

Last Block Countdown Character, p. 384

Valid Data Byte Received; Test for Short Block, p. 386

Check for End of Load, p. 387

Determine Block Being Read, p. 387

Load/Verify for Block One of Header or Program, p. 388

Block Two Processing, p. 389

Flag Unrecoverable Read Error, p. 392

Load Byte and Increment Pointer to Load Area, p. 392

End-of-Block Processing, p. 393

Tape Load Completed, p. 395

Reset Pointer to Start of Load/Save Area, p. 332

Reset Counters and Variables for Tape I/O, p. 333

Reverse Tape Write Line and Set Timer for Next Interrupt,

p. 305

Indicate Block Save Complete, p. 327

Write a Word Marker Bit to Tape, p. 318

Write Data Bit to Tape, p. 320

Determine Which Part of Dipole Tape Write Routine Is

Executing, p. 321

Prepare to Write Second Dipole for This Bit, p. 322

Prepare to Write Next Bit and Decrement Bit Counter, p. 323

Prepare Counters for Next Byte and Test If Writing Block

Countdown Characters, p. 324

Check for End of Tape Save, p. 325

Move Next Byte from Save Area and Increment Pointer, p. 326

Prepare Parity Bit for This Byte, p. 326

Handle End-of-Block Processing and Reset IRQ Vector, p. 328

Write Leader Bit to Tape and Reset IRQ Interrupt, p. 307

Reset CIA/VIA Registers and Restore IRQ Vector, p. 333

Set IRQ Vector, p. 334

Turn Off Tape Motor, p. 335

Compare Pointer to Current Byte with Pointer for End of

Load/Save, p. 335

Increment Pointer to Current Byte, p. 336

System Reset, p. 17

Test for Autostart Cartridge, p. 18

Initialize KERNAL Ram Vectors, p. 22

Initialize Memory Pointers, p. 20

Initialize VIA Registers, p. 26

Set Filename Location And Number Of Characters, p. 105

u

LJ

LJ

U

u

u

u

Appendix B

*■—■} FE50-FE56, Set Logical File Number, Device Number, Secondary Address,

i 1 p. 103
FE57-FE6E, Read/Set Status and Set Message Control, p. 97

FE6F-FE72, Set Serial Timeout Value, p. 223

f] FE73-FE81, MEMTOP Execution, p. 90
■ ' FE82-FE90, MEMBOT Execution, p. 89

FE91-FEA8, Test For RAM Byte, p. 21

j—> FEA9-FEAC, NMI Interrupt Handler Jump, p. 33

j \ FEAD-FF5B, NMI Interrupt Handler, p. 38
FED2-FEDD, BRK Interrupt Handler, p. 47

FF72-FF84, IRQ/BRK Interrupt Switch, p. 45

FF8A, RESTOR, p. 98

FF8D, VECTOR, p. 109

FF90, SETMSG, p. 104

FF93, SECOND, p. 102

FF96, TKSA, p. 108

FF99, MEMTOP, p. 89

FF9C, MEMBOT, p. 89

FF9F, SCNKEY, p. 101

FFA2, SETTMO, p. 106

FFA5, ACPTR, p. 68

FFA8, CIOUT, p. 78

FFAB, UNTALK, p. 109

FFAE, UNLSN, p. 108

FFB1, LISTEN, p. 85

FFB4, TALK, p. 107

FFB7, READST, p. 95

FFBA, SETLFS, p. 102

FFBD, SETNAM, p. 104

FFC0, OPEN, p. 90

FFC3, CLOSE, p. 79

FFC6, CHKIN, p. 69

FFC9, CHKOUT, p. 71

FFCC, CLRCHN, p. 82

FFCF, CHRIN, p. 73

FFD2, CHROUT, p. 75

■—, FFD5, LOAD, p. 86

j I FFD8, SAVE, p. 98
FFDB, SETTIM, p. 105

FFDE, RDTIM, p. 94

?—? FFE1, STOP, p. 106

' 1 FFE4, GETIN, p. 83
FFE7, CLALL, p. 78

FFEA, UDTIM, p. 108

j [FFED, SCREEN, p. 101

FFF0, PLOT, p. 93

FFF3, IOBASE, p. 84

n 419

Appendix C

Cross-Reference of

Kernal Routines

by Chapter

r*?

n Cross Reference of
h Kernal Routines
n by Chapter

Chapter 2. System Reset

System Reset, FCE2/FD22-FD01/FD3E, p. 17

Test for Autostart Cartridge, FD02/FD3F-FD0F/FD4C, p. 18

Initialize Memory Pointers (64), FD50-FD9A, p. 19

Initialize Memory Pointers (VIC), FD8D-FDFD, p. 20

Test for RAM Byte (VIC), FE91-FEA8, p. 21

Initialize Kernal RAM Vectors, FD15/FD52-FD2F/FD6C, p. 22

Initialize I/O Chips (64), FDA3-FDF8 & FF6E-FF80, p. 24

Initialize VIA Registers (VIC), FDF9-FE48, p. 26

Initialize VIC-II Chip and Set PAL/NTSC Flag (64), FF5B-FF6D, p. 28

Chapter 3. NMI Interrupts

NMI Interrupt Handler Jump, FE43/FEA9-FE46/FEAC, p. 33

NMI Interrupt Handler (64), FE47-FEC1, p. 34

NMI Interrupt Handler-Timer B Service (64), FED6-FF06, p. 37

NMI Interrupt Handler-Start Timer B for FLAG NMI (64), FF07-FF2D, p. 37

NMI Interrupt Handler (VIC), FEAD-FF5B, p. 38

Chapter 4. IRQ Interrupts

IRQ/BRK Interrupt Switch, FF48/FF72-FF5A/FF84, p. 45

BRK Interrupt Handler, FE66/FED2-FE71/FEDD, p. 47

IRQ Interrupt Handler, EA31/EABF-EA86/EB1D, p. 48

Jiffy Clock Update and STOP Key Scan, F69B/F734-F6DC/F75F, p. 51

Keyboard Scan, EA87/EB1E-EB47/EBDB, p. 53

Keyboard Table Setup, EB48/EBDC-EB78/EC45, p. 60

p-j- Chapter 5. Kernal Routines

' i ACPTR, FFA5, p. 68
CHKIN, FFC6, p. 69

, , CHKIN Execution, F20E/F2C7-F236/F2EF, p. 70

(I CHKOUT, FFC9, p. 71

CHKOUT Execution, F250/F309-F278/F331, p. 72

CHRIN, FFCF, p. 73

p-j Determine Input Device, F157/F20E-F178/F22F, p. 75

I t CHROUT, FFD2, p. 75
Determine Output Device, F1CA/F27A-F1E4/F28E, p. 76

CINT (64), FF81, p. 77

~7 CIOUT, FFA8, p. 78
1 \ CLALL, FFE7, p. 78

-7 423

u
Appendix C

Reset to No Open Files, F32F/F3EF-F332/F3F2, p. 78

CLOSE, FFC3, p. 79) (
Determine Device for CLOSE, F291/F34A-F2AA/F363, p. 80 *—'

Common Exit For Close Logical File Routines, F2F1/F3B1-F30E/F3CE, p. 81

CLRCHN, FFCC, p. 82 v ,

Clear Serial Channels and Reset Default Devices, F333/F3F3-F349/F409, [\
p. 82

GETIN, FFE4, p. 83

GETIN Preparation, F13E/F1F5-F14D/F204, p. 84 I J

IOBASE, FFF3, p. 84 <—>

IONINIT (64), FF84, p. 85

LISTEN, FFB1, p. 85

LOAD, FFD5, p. 86

Jump to LOAD Vector, F49E/F542-F4A4/F548, p. 88

Determine Device for LOAD, F4A5/F549- F4B7/F55B &

F533/F5CA-F538/F5D0, p. 88

MEMBOT, FF9C, p. 89

MEMBOT Execution, FE34/FE82-FE42/FE90, p. 89

MEMTOP, FF99, p. 89

MEMTOP Execution, FE25/FE73-FE33/FE81, p. 90

OPEN, FFCO, p. 90

OPEN Execution, F34A/F40A-F3D4/F494, p. 91

PLOT, FFFO, p. 93

RAMTAS (64), FF87, p. 93

RDTIM, FFDE, p. 94

RDTIM/SETTIM Execution, F6DD/F760-F6EC/F76F, p. 94

READST, FFB7, p. 95

Read/Set Status and Set Message Control, FE07/FE57-FE20/FE6E,p. 97

RESTOR, FF8A, p. 98

SAVE, FFD8, p. 98

Jump to SAVE Vector, F5DD/F675-F5EC/F684, p. 100

Determine Device for SAVE, F5ED/F685-F5F9/F691, p. 100

SCNKEY, FF9F, p. 101

SCREEN, FFED, p. 101

SECOND, FF93, p. 102

SETLFS, FFBA, p. 102

Set Logical File Number, Device Number, Secondary Address,

FE00/FE50-FE06/FE56, p. 103 j j

SETMSG, FF90, p. 104 '—'
SETNAM, FFBD, p. 104

Set Filename Location and Number of Characters, FDF9/FE49-FDFF/FE4F,

p. 105, [J
SETTIM, FFDB, p. 105,

SETTMO, FFA2, p. 106,

STOP, FFE1, p. 106,) |

Test for STOP Key, F6ED/F770-F6FA/F77D, p. 107, I I
TALK, FFB4, p. 107,

TKSA, FF96, p. 108,

UDTIM, FFEA, p. 108, I |
UNLSN, FFAE, p. 108, L^J

424 u

L!
Appendix C

n
UNTALK, FFAB, p. 109,

VECTOR, FF8D, p. 109,

Chapter 6. Miscellaneous Routines
f—f Set I/O Defaults and Home Cursor, E59A/E5B5-E59F/E5BA, p. 113,

L-! Display Kernal Messages, F12B/F1E2-F13D/F1F4, p. 113
See If Logical File Exists, F30F/F3CF-F31E/F3DE, p. 114

n Extract Logical File Number, Device Number, and Secondary Address from

Tables, F31F/F3DF-F32E/F3EE, p. 115

Display LOADING/VERIFYING Message, F5D2/F66A-F5DC/F674, p. 115

Display SAVING Filename Message, F68F/F728-F69A/F733, p. 116

Error Message Handler, F6FB/F77E-F72B/F7AE, p. 116

Display SEARCHING FOR Message, F5AF/F647-F5C0/F658, p. 118

Display Filename, F5C1/F659-F5D1/F669, p. 118

Chapter 7. Screen Routines
Clear Screen Line Cursor Is On, E9FF/EA8D-EA12/EAA0, p. 126

Set Pointers to Screen Line Cursor Is On, E9F0/EA7E-E9FE/EA8C, p. 127

Set VIC Chip Registers, Clear Screen, Home Cursor, Set Screen Line Link

Table, E518-E599/E5B4, p. 129

Set Default Device Numbers, E5A0/E5BB-E5A7/E5C2, p. 133

Initialize VIC Chip Registers, E5A8/E5C3-E5B3/E5CE, p. 134

CHRIN from Keyboard or Screen, F157/F20E-F172/F229, p. 136

Get Character from Keyboard or Screen, E632/E64F-E683/E6B7, p. 137

Get Characters Until RETURN Key Detected, E5CA/E5E5-E631/E64E, p. 142

If Quote Key Detected Then Flip Quote Flag, E684/E6B8-E690/E6C4, p. 145

Set Color and Store Character on Screen, EA13/EAA1-EA1B/EAA9, p. 145

Display Byte in Accumulator on Screen, EA1C/EAAA-EA23/EAB1, p. 145

Set Pointer to Color Nybble, EA24/EAB2-EA30/EABE, p. 146

Retrieve Character from Keyboard Queue, E5B4/E5CF-E5C9/E5E4, p. 147

Main Screen Editor, E716/E742-E87B/E8C2, p. 148

Display Screen Codes, E691/E6C5-E6A7/E6DB, p. 160

Exit from Screen Editor Routines, E6A8/E6DC-E6B5/E6E9, p. 162

Advance Cursor and Scroll or Insert Blank Lines, E6B6/E6EA-E700/E72C

(VIC: also ED5B-ED68), p. 162

Move Cursor to Previous Screen Line, E701/E72D-E75/E741, p. 165

-^ Advance Cursor To Next Screen Line, E87C/E8C3-E890/E8D7, p. 166

J ! Handle RETURN Key, E891/E8D8-E8A0/E8E7, p. 167
Decrement Screen Line Pointer If Cursor Moves Left to New Line,

E8A1/E8E8-E8B2/E8F9, p. 168

[—[Increment Screen Line Pointer If Cursor Moves Right to New Line,

. _J E8B3/E8FA-E8C1/E911, p. 169
Test for Color Key, E8CB/E912-E8D9/E920, p. 170

Scroll Screen, E8EA/E975-E964/E9ED, p. 171

] ; Insert Blank Line, E965/E9EE-E9C7/EA55, p. 174

Move Screen Line, E9C8/EA56-E9DF/EA6D, p. 176

Set Color Memory Pointers for Moving Line, E9E0/EA6E-E9EF/EA7D,

<—» p. 177

I J Test for Character Set Switch, EC44/ED21-EC77/ED5A, p. 178
Return Number of Columns and Rows in Screen, E505-E509, p. 179

Read/Plot Cursor Location, E50A-E517, p. 179

M 425

u
Appendix C —'

Chapter 8. Serial I/O Routines
Bring Serial Bus Attention Line High, EDBE/EEC5-EDC6/EECD, p. 190) i
Bring Serial Bus Data Line High, EE97/E4A0-EE9F/E4A8, p. 190 '—'
Bring Serial Bus Data Line Low, EEA0/E4A9-EEA8/E4B1, p. 191

Bring Serial Bus Clock line High, EE85/EF84-EE8D/EF8C, p. 191

Bring Serial Bus Clock Line Low, EE8E/EF8D-EE96/EF95, p. 192

Read Serial Data In and Serial Clock In, EEA9/E4B2-EEB2/E4BB, p. 192

Send LISTEN Command to Device, ED0C/EE17-ED10/EE1B, p. 193

Do Attention Handshake with Serial Device, ED11/EE1C-ED3F/EE48, p. 194

Send Serial Byte: Command or Data, ED40/EE49-EDAC/EEB3, p. 197

Send OPEN, LOAD, or SAVE Command to Device, F3D5/F495-F408/F4C6,
p. 202

Send Secondary Address After LISTEN, EDB9/EEC0-EDBD/EEC4, p. 204

Send Serial Byte Deferred, EDDD/EEE4-EDEE/EEF5, p. 205

Set Status Word, EDAD/EEB4-EDB8/EEBF, p. 205

Delay One Millisecond, EEB3/EF96-EEBA/EFA2, p. 206

Save to Serial Device, F5FA/F692-F641/F6D9, p. 207

Stop Load or Save, F633/F6CB-F639/F6D1, p. 209

Send Secondary Address for CLOSE, F642/F6DA-F658/F6F0, p. 210

Load or Verify from Serial Device, F4B8/F55C-F532/F5C9, p. 210

Send TALK Command to Device, ED09/EE14-ED10/EE1B, p. 214

Send Secondary Address After TALK and Do TALK-LISTEN Turnaround,

EDC7/EECE-EDDC/EEE3, p. 214

Receive Byte from Serial Device, EE13/EF19-EE84/EF83, p. 216

Open Serial Input Channel, F237/F2F0-F24F/F308, p. 219

Get Character from Serial Input Channel, F1AD/F264-F1B7/F26E, p. 220

Open Serial Output Channel, F279/F332-F290/F349, p. 221

Send UNTALK Command, EDEF/EEF6-EE12/EF18, p. 222

Send UNLISTEN Command, EDFE/EF04-EE12/EF18, p. 222

Close Logical File for Serial Device, F2EE/F3AE-F2F0/F3B0, p. 223

Set Serial Timeout Value, FE21/FE6F-FE24/FE72, p. 223

Chapter 9. RS-232 I/O Routines
Open Logical File for RS-232 Device, F409/F4C7-F482/F541, p. 233

CIA Initialization for RS-232 (64), F483-F49D, p. 239

Compute Bit Count, EF4A/F027-EF58/F035, p. 240

Open RS-232 Channel for Input, F04D/F116-F085/F14E, p. 241

CHRIN from RS-232 Device, F1B8/F26F-F1C9/F279, p. 243) I
GETIN from RS-232 Device, F14E/F205-F156/F20D, p. 243 '—'
Get Character from RS-232 Receive Buffer, F086/F14F-F0A3/F15F, p. 244

Receive RS-232 Bit: NMI Interrupt Driven, EF59/F036-EF6D/F04A, p. 245 , ,

Store Byte Received into Buffer, EF97/F06F-EFB2/F08A, p. 247 j I
Check Parity of Received Byte, EFB3/F08B-EFC6/F09E, p. 248

Handle Errors While Receiving from RS-232 Device, EFC7/F09F-

EFDA/F0B2, p. 250 j (

Check for Stop Bits, EF6E/F04B-EF7D/F05A, p. 250 I—»
Check for Framing/Break Error, EFDB/F0B3-EFE0/F0B8, p. 252

Prepare to Receive Next Byte, EF7E/F05B-EF8F/F067, p. 253

Check for Start Bit, EF90/F068-EF96/F06E, p. 253 I (
Open RS-232 Channel for Output, EFE1/F0BC-F013/F0EC, p. 254

426

Appendix C

, r CHROUT to RS-232 Device, F208/F2B9-F20D/F2C6, p. 255

J f Store Character in Transmit Buffer, F014/F0ED-F02D/F101, p. 256
Prepare Timer A/Timer 1 Interrupt for RS-232 Transmission, F02E/F102-

F04C/F115, p. 257

f—1 Prepare to Transmit Next Byte, EF06/EFEE-EF2D/F015, p. 258

'.. J Handle Errors While Transmitting to RS-232 Device, EF2E/F016-
EF49/F026, p. 259

Transmit RS-232 Bit: NMI Interrupt Driven, EEBB/EFA3-EED6/EFBE, p. 260

/""? Prepare to Send Stop Bit, EF00/EFE8-EF05/EFED, p. 262
1 Prepare Parity Bit and Set Counter for Stop Bits, EED7/EFBF-EEF1/EFE7,

p. 263

Close Logical File for RS-232 Device, F2AB/F364-F2C7/F38C, p. 264

Disable RS-232 During Serial or Tape I/O, F0A4/F160-F0B6/F173, p. 266

Chapter 10. Tape I/O Routines
Open Logical File for Writing to Tape, F3B8/F478-F3D4/F494, p. 292

CHROUT to Tape, F1DC/F28F-F207/F2B8, p. 292

Increment Count of Characters in Tape Buffer, F80D/F88A-F816/F893,

p. 294

Set Pointers to Start and End of Buffer and Write Buffer, F864/F8E3-

F866/F8E5, p. 294

Close Logical File for Tape, F2C8/F38D-F2ED/F3AD, p. 295

Control Routine for Tape Save, F659/F6F1-F68E/F727, p. 296

Load and Check Tape Buffer Address, F7D0/F84D-F7D6/F853, p. 299

Set Start and End of Tape Buffer, F7D7/F854-F7E9/F866, p. 299

Prepare Header and Write to Tape, F76A/F7E7-F7CF/F84C, p. 300

Prepare to Write Program to Tape, F867/F8E6-F86A/F8E9, p. 302

Prepare IRQ Vector and Timer Interrupts for Tape Write, F86B/F8EA-

F874/ F8F3, p. 302

Reset IRQ Vector and Set Interrupt Enable Register, F875/F8F4-F8CF/F94A,

p. 303

Reverse Tape Write Line and Set Timer for Next Interrupt, FBA6/FBEA-

FBC7/FC05, p. 305

Write Leader Bit to Tape and Reset IRQ Interrupt, FC6A/FCA8-

FC92/FCCE, p. 307

Write a Word Marker Bit to Tape, FBCD/FC0B-FBEF/FC2D, p. 312

rmm> Write Data Bit to Tape, FBF0/FC2E-FBF4/FC32, p. 320

I I Determine Which Part of Dipole Tape Write Routine Is Executing,
FBF5/FC33-FBFC/FC3A, p. 321

Prepare to Write Second Dipole for this Bit, FBFD/FC3B-FC0B/FC49, p. 322

Prepare to Write Next Bit and Decrement Bit Counter, FC0C/FC4A-

FC15/FC53, p. 323

Prepare Counters for Next Byte and Test if Writing Block Countdown

Characters, FC16/FC54-FC2F/FC6D, p. 324

Check for End of Tape Save, FC30/FC6E-FC3E/FC7C, p. 325

Move Next Byte from Save Area and Increment Pointer, FC3F/FC7D-

FC4D/FC8B, p. 326

Prepare Parity Bit for this Byte, FC4E/FC8C-FC56/FC94, p. 326

Indicate Block Save Complete, FBC8/FC06-FBCC/FC0A, p. 327

Handle End-of-Block Processing and Reset IRQ Vector, FC57/FC95-

FC69/FCA7, p. 328

427

u
Appendix C

Check for Tape Button Down, F82E/F8AB-F837/F8B6, p. 329

Display PRESS PLAY ON TAPE, F817/F894-F82D/F8AA, p. 330 i
Display PRESS PLAY & RECORD ON TAPE, F838/F8B7-F840/F8BF, p. 331 —'
Check Keyboard Stop Key During Tape I/O, F8D0/F94B-F8E1/F95C, p. 331

Reset Pointer to Start of Load/Save Area, FB8E/FBD2-FB96/FBDA, p. 332 i »

Reset Counters and Variables for Tape I/O, FB97/FBDB-FBA5/FBE9, p. 333 I i
Reset CIA/VIA Registers and Restore IRQ Vector, FC93/FCCF-FCB7/FC5F,

p. 333

Set IRQ Vector, FCB8/FCF6-FCC9/FD07, p. 334 I t

Turn Off Tape Motor, FCCA/FD08-FCD0/FD10, p. 335 l—>
Compare Pointer to Current Byte with Pointer for End of Load/Save,

FCD1/FD11-FCDA/FD1A, p. 335

Increment Pointer to Current Byte, FCDB/FD1B-FCE1/FD21, p. 336

Determine If Open Is for Read or Write, F38B/F44B-F398/F458, p. 337

Open Logical File for Reading From Tape, F399/F459-F3D4/F494, p. 337

CHRIN from Tape, F179/F230-F198/F24F, p. 339

Return Byte from Tape Buffer, F199/F250-F1AC/F263, p. 340

Control Routine for Tape Load, F539/F5D1-F5AE/F646, p. 341

Find Specified Tape Header, F7EA/F867-F80C/F889, p. 346

Find Next Tape Header, F72C/F7AF-F769/F7E6, p. 347

Read Tape Header into Buffer, F841/F8C0-F849/F8C8, p. 349

Load Next Two Blocks, F84A/F8C9-F863/F8E2, p. 349

Determine Time Between FLAG/CA1 Interrupts for this Dipole,

F92C/F98E-F939/F99B, p. 352

Convert Time Between Interrupts into One-Byte Value, F93A/F99C-

F95A/F9AF, p. 355

Determine If Dipole Time Represents Noise, 0, 1, or Word Marker,

F959/F9B0-F98A/F9E4, p. 358

Set A8 If Bytes are Being Received, F98B/F9E5-F992/F9EC, p. 362

Increment or Decrement the 0/1 Balanced Counter, F993/F9ED-F998/F9F2,

p. 362

Determine Value to Adjust Baseline Times, F999/F9F3-F9A1/F9FB, p. 363

Flip Dipole Indicator Switch, F9A2/F9FC-F9A9/FA03, p. 366

Store Dipole Value as Bit, F9AA/FA04-F9AB/FA05, p. 366

Check Possible Error and See if Receiving Bytes, F9AC/FA06-F9AF/FA09,

p. 367

Determine if Interrupt Was Caused by Timer A/Timer 1 Timeout,

F9B0/FA0A-F9C8/FA18, p. 367) }

Determine if Parity for Byte Read is Correct, F9C9/FA19-F9D4/FA24, p. 368 !—'
Set Adjustable Baseline Values for Next Bit, F9D5/FA25-F9E3/FA33, p. 370

Determine If Two Dipoles Are Data, Error, or Leader Bit, F9E4/FA34- , t

F9F6/FA46, p. 373] \
Process Data or Parity Bit, F9F7/FA47-FA0F/FA5F, p. 375

Process Word Marker Dipole, FA10/FA60-FA1E/FA6B, p. 376

Word Marker Action, FA1F/FA6C-FA43/FA90, p. 377 j J

Determine if Dipole Is in Block or Leader, FA44/FA91-FA52/FA9F, p. 379 W

Store Byte Received and Check Error Flags, FA53/FAA0-FA5F/FAAC, p. 380

Determine Action to Take for this Byte, FA60/FAAD-FA85/FAD2 and

FA8D/FADA-FA90/FADD, p. 381 [_|

428 {J

t 1

Appendix C

Check for Valid Block Countdown Characters, FA91/FADE-FAA4/FAF1

and FABA/FB07-FABF/FB0C, p. 382

Last Block Countdown Character, FAA5/FAF2-FAB9/FB0C, p. 384

Look for Initial Block Countdown Character, FA86/FAD3-FA89/FAD6,

p. 385

Common Exit Point for RTI, FA8A/FAD7-FA8C/FAD9, p. 386

Valid Data Byte Received; Test for Short Block, FAC0/FB0D-FACD/FB1A,

p. 386

* Check for End of Load, FACE/FB1B-FAD5/FB22, p. 387

Determine Block Being Read, FAD6/FB23-FADA/FB27, p. 387

Load/Verify for Block One of Header or Program, FADB/FB28-FB07/FB54,

p. 388

Block Two Processing, FB08/FB55-FB32/FB7F, p. 389

Flag Unrecoverable Read Error, FB33/FB80-FB39/FB86, p. 392

Load Byte and Increment Pointer to Load Area, FB3A/FB87-FB47/FB94,

p. 392

End-of-Block Processing, FB48/FB95-FB67/FBAB, p. 393

Tape Load Completed, FB68/FBAC-FB8D/FBD1, p. 395

Set Timer A/Timer 1 Value to Tag Behind FLAG/CAl Interrupt,

F8E2/F95D-F92B/F98D, p. 396

H

429

COMPUTE! Books
Ask your retailer for these COMPUTEI Books or order

directly from COMPUTEI.

Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P.O. Box 5058,

Greensboro, NC 27403.

Quantity Title Price" Total

All About the Commodore 64, Volume 1 $12.95

{""I COMPUTED First Book of Commodore 64 $12.95
COMPUTED Second Book of Commodore 64 $12.95

COMPUTED First Book of Commodore 64

Sound 8c Graphics $ 12.95

COMPUTEI's Reference Guide to

Commodore 64 Graphics $ 12.95

COMPUTED Beginner's Guide to
Commodore 64 Sound $12.95

COMPUTED First Book of

Commodore 64 Games $ 12.95

COMPUTED Second Book of
Commodore 64 Games $12.95

Commodore 64 Games for Kids $12.95

COMPUTERS Commodore Collection, Volume 1 $12.95

Commodore Peripherals: A User's Guide $ 9.95

Creating Arcade Games on the

Commodore 64 $14.95

Machine Language Routines for the

Commodore 64 $14.95

Mapping the Commodore 64 $14.95

The VIC and 64 Tool Kit: BASIC $16.95

Machine Language for Beginners $14.95

The Second Book of Machine Language $14.95

•Add $2.00 per book for shipping and handling.
Outside US add $5.00 air mail or $2.00 surface mail.

Shipping & handling: $2.00/book
, | Total payment

All orders must be prepaid (check, charge, or money order).

^ All payments must be in US funds.

j \ NC residents add 4.5% sales tax.
□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

U Acct. No Exp. Date

Name_

Address

City State Zip_

•Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon reauest.

4573373

H

I If you've enjoyed the articles in this book, you'll find the

same style and quality in every monthly issue of COM

PUTE! Magazine. Use this form to order your subscription

i i to COMPUTE!.

p| For Fastest Service

Call Our Toil-Free US Order Line

- 800-334-0868
1 In NC call 919-275-9809

COMPUTE!
P.O. Box 5058

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ TI-99/4A □ Timex/Sinclair □ VIC-20 □ PET
□ Radio Shack Color Computer □ Apple □ Atari □ Other
□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada and Foreign Surface Mail
□ $65 Foreign Air Delivery

Name

Address

City State Zip

Country

P"] Payment must be in US funds drawn on a US bank, international
money order, or charge card.

□ Payment Enclosed □ Visa

p] □ MasterCard □ American Express

Acct. No. Expires /
I""? (Required)

I™] Your subscription will begin with the next available issue. Please
allow 4-6 weeks for delivery of first issue. Subscription prices subject

to change at any time.
f^S 457199

n

i , If you've enjoyed the articles in this book, you'll find

i_i the same style and quality in every monthly issue of

COMPUTEI's Gazette for Commodore.

n
For Fastest Service

r-. Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTED Gazette
P.O. Box 5058

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other

□ $24 One Year US Subscription

D $45 Two Year US Subscription

□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada
□ $65 Air Mail Delivery

□ $30 International Surface Mail

Name

Address

City State Zip

Country

n Payment must be in US funds drawn on a US bank, international

money order, or charge card. Your subscription will begin with the

next available issue. Please allow 4-6 weeks for delivery of first issue.

P^ Subscription prices subject to change at any time.

! \ □ Payment Enclosed □ Visa
□ MasterCard □ American Express

I ! Acct. No. Expires /
(Required)

H
The COMPUTEI's Gazette subscriber list is made available to carefully screened

organizations with a product or service which may be of interest to our readers. If you

p—> prefer not to receive such mailings, please check this box a

! \ 457199

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order

directly from COMPUTE!.

Call toll free (in US) 800-334-0868 (in NC 919-275-

«—» 9809) or write COMPUTE! Books, P.O. Box 5058,

I I Greensboro, NC 27403.

'. * Quantity Title Price* Total
Machine Language for Beginners (11-6) $14.95

The Second Book of Machine Language (53-1) $14.95

COMPUTED Guide to Adventure Games (67-1) $12.95

Computing Together: A Parents 8c Teachers
Guide to Computing with Young Children (51-5) $12.95

Personal Telecomputing (47-7) $12.95

BASIC Programs for Small Computers (38-8) $12.95

Programmer's Reference Guide to the
Color Computer (19-1) $12.95

Home Energy Applications (10-8) $14.95

The Home Computer Wars:
An Insider's Account of Commodore and Jack Tramiel

Hardback (75-2) $16.95

Paperback (78-7) $ 9.95

The Book of BASIC (61-2) $12.95

Every Kid's First Book of Robots and Computers

(05-1) $ 4.95t

The Beginner's Guide to Buying a

Personal Computer (22-1) $ 3.95t

The Greatest Games: The 93 Best Computer

Games of all Time (95-7) $ 9.95

• Add $2.00 per book for shipping and handling.

t Add $1.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

| | Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

r~| All payments must be in US funds.

L ' ■ NC residents add 4.5% sales tax.
D Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

L I • Acct. No. Exp. Date
(Required)

Name —

["""} Address.

City . State Zip.

'Allow 4-5 weeks for delivery.

Prices and availability subject 1

Current catalog available upon request.

| Prices and availability subject to change.

4573373

	tool kit kernal - left.jpg
	tool kit kernal - right.jpg
	Untitled

