

H COMPUTES's

o THIRD
n BOOK

OF
COMM
64

u

n

COMPUTE!'Publications,lnc(
One of the ABC Publishing Companies

Greensboro, North Carolina

The following article was originally published in COMPUTE! magazine, copyright
1983, COMPUTE! Publications, Inc.:

"Machine Language Saver" (June).

The following articles were originally published in COMPUTE! magazine, copyright

1984, COMPUTE! Publications, Inc.:

"64 Hi-Res Graphics Editor" (May); "Programming 64 Sound" (June and July—orig

inally tided "Programming 64 Sound, Part 1" and "Programming 64 Sound, Part 2");
"64 Paintbox" (December).

The following^articles were originally published in COMPUTERS Gazette magazine,

copyright 1983, COMPUTE! Publications, Inc.:

"Word Match" (October); "Connect The Dots" (November).

The following articles were originally published in COMPUTERS Gazette magazine,

copyright 1984, COMPUTE! Publications, Inc.:

"Making More Readable Listings" (March); "Variable Storage: A Beginner's Tour of

BASIC RAM" (April—originally titled "Variable Storage: A Beginner's Tour of BASIC

RAM for VIC and 64"); "Sound Sculptor" (May—originally titled "Sound Sculptor for

the 64"); "One-Touch Keywords" (June—originally titled "Power BASIC: One-Touch

Keywords"); "Word Scramble" (June); "Mystery at Marple Manor" (September); "Disk

Surgeon" (September—originally titled "Disk Tricks"); "Screen-80: 80 Columns for

the 64" (September—originally titled "80 Columns for the 64"); "Screen Headliner"

(September); "Autoload" (November—originally titled "Disk Auto Load");

"Supertank" (November); "Turtle Graphics Interpreter" (October)

The following article was originally published in COMPUTE! magazine, copyright

1983, Jim Butterfield:

"BASIC Style: Program Evolution" (May 1984)

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Sec

tions 107 and 108 of the United States Copyright Act without the permission of the

copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-72-8 i (

10 9 8 7 6 5 ^

The authors and publisher have made every effort in the preparation of this book to insure the ac

curacy of the programs and information. However, the information and programs in this book are \ (
sold without warranty, either express or implied. Neither the authors nor COMPUTE! Publica- w^
tions, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly/ in

cidentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of 1 j
COMPUTE! Publications, Inc. ^^

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403 (919) ,

275-9809 is one of the ABC Publishing Companies and is not associated with any I j
manufacturer of personal computers. Commodore 64 is a trademark of Commodore

Electronics Limited.

u

H

G Contents

i i Foreword v
i V

Chapter 1. BASIC Programming 1

p] BASIC Style: Program Evolution

1 -' Jim Butterfield 3
Variable Storage: A Beginner's Tour of BASIC RAM

Pete Marikle 9

Making More Readable Listings

Brent Dubach 20

Chapter 2. Recreations and Applications 27

Mystery at Marple Manor

John R. Prager 29

Screen-80: 80 Columns for the 64

Gregg Peele and Kevin Martin 41

Screen Headliner

Todd Heimarck 69

Reversi

Keith Day 75

Family Tree

Mark Haney 82

Supertank

Boris Litinsky 93

Moving Message

Robert F. Lambiase 101

Chapter 3. Education 109

Word Match

Andy VanDuyne Ill

R Connect the Dots

Janet Arnold 118

Word Scramble

Mike Salman 127

Turtle Graphics Interpreter

Irwin Tillman 131

r*"| Chapter 4. Sound and Graphics 151
Programming 64 Sound

John Michael Lane 153

n Sound Sculptor

_ Todd Touris 176

n

n

u

64 Hi-Res Graphics Editor . ,

Gregg Peek 192 j f
HiSprite

Michael /. Blyth 207

64 Paintbox \ j
Chris Metcalf 226 w

Three Handy Graphics Utilities for the Commodore 64:

Colorfill, Underline, and Realtime Clock \ j

Christopher J. Newman 243 <—'

Chapter 5. Utilities 247

Programming Without the Keyboard:

Joystick Enchanced Programming

George Leotti 249

One-Touch Keywords

Mark Niggemann 265

Autoload

Dan Cannichael 269

Crunch

Mike Tranchemontagne 274

Disk Surgeon

Gerald E. Sanders 278

Machine Language Saver

John O. Battle 289

Appendices
A: A Beginner's Guide to Typing In Programs 295

B: How to Type In Programs 297

C: The Automatic Proofreader

Charles Brannon 299

D: Using the Machine Language Editor: MLX

Charles Brannon 303

Index 311

u

L)

U

LJ

n

n

rt Foreword

n

r*-| In the two and a half years since the Commodore 64 was first

1 ' introduced, it's become the home computer of millions of peo
ple. And its popularity shows no sign of decreasing. COM

PUTE! Publications has supported the 64 from the time of its

introduction at the Summer 1982 Consumer Electronics Show,

extending that tradition with a wide variety of books dedicated

to the 64.

COMPUTE's Third Book of Commodore 64 is now part of

that tradition. With the same high-quality programs and con

cise writing that people have come to expect from COM

PUTE!, this book follows in the path of the best-selling First

and Second Book of Commodore 64. Filled with articles and pro

grams from COMPUTE! magazine and COMPUTED Gazette,

many enhanced or extensively revised, as well as several

never before published, this book presents the best programs

from a strong group. It wasn't always an easy choice; there are

always more to choose from than can fit in one book.

You'll find a variety of programs and articles here. Some,

like "Screen-80" and "HiSprite," are sophisticated programs

that allow you to display 80 columns on your monitor or con

trol all aspects of sprites. Others, such as "BASIC Style: Pro

gram Evolution" and "Programming 64 Sound" are tutorials

that show you how to write cleaner programs or how to get

the most out of your 64's SID chip. Graphics and sound

n applications let you paint on a high-resolution screen, turn

your 64 into an Atari-like graphics computer, and even

manipulate sound parameters. Utilities enlarge your pro-

<-*■*> grammer's toolkit with routines like "Crunch," "Machine Lan-

1 guage Saver," "Autoload," and "One-Touch Keywords." And
"Programming Without the Keyboard," COMPUTEJ's first 64

j—-| programming utility designed for the physically handicapped,

* allows joystick-controlled BASIC programming.

Games, always a strength of the Commodore 64, are not

n forgotten. "Mystery at Marple Manor" puts you in a house

filled with potential suspects, possible murder weapons, and a

n

u

u

trail that can lead to only one conclusion. "Supertank" sets j\

you in a modern armored battle, and "Reversi" lets you dem- i—'
onstrate your strategic planning and execution skills.

There are even programs that insure error-free typing of (, /

both BASIC and machine language programs. uJ

From new owners to experienced programmers, everyone

who has a Commodore 64 will find that COMPUTERS Third < ,

Book of Commodore 64 contains valuable information, tested I—J
programs, and clear explanations.

VI

u

u

u

LI

LI

H

n

n BASIC Style
H Program Evolution

Jim Butterfield

jI Sometimes you see programs that are so crisp and
neat that you wonder how the programmer's

mind can be so orderly. The statements come out

in an elegant, incisive style. Every line does ex

actly the right thing. But can you learn to pro

gram like that?

How does a programmer develop an elegant style? Why can't

you write like that? Sometimes you can feel inferior after look

ing at such immaculate programming style. Yet the program

you see is often a matter of evolution—rewriting and tidying

up. Just as a story or a novel isn't usually published after only

one draft, a computer program may go through an entire se

ries of revisions.

I've been accused of writing "squeaky clean" programs.

That's not the way they start. Like most other programmers'

work, my murky first attempts get reworked and tightened up

into their final version. In fact, programming style often isn't

what you write (at least at first)—it's knowing what to look

for when you clean up. Since showing is better than just

describing, how about taking a look at the evolution of one of

my programs?

' - A Simple Lister
I needed to do an almost trivial job: list a sequential file from

r—J disk to the printer. I had a minor extra feature to add: I

wanted individual pages, so that the lines needed to be counted;

I needed a title on each page; and at the end of the run, for the

sake of neatness, I wanted the printer to eject the page.

It wasn't a demanding task, but I'd like to show you how

I went about it. Even a simple job like that can be revised and

tightened up extensively.

1 BASIC Programming •—'

U

(Note: If you want to use this program yourself, remem

ber that it's only for listing sequential files, not program files.) (|
Here's my first program: I'll talk my way through the

listing.

100 OPEN 4,3 LJ

Open file number four to the screen. Why? So I can send the

program's output to the screen and see that it's working right. | |

After the program looks good, I'll change the above line to '—'
OPEN 4,4

105 OPEN 1,8,3,"CONTROL"

CONTROL is my input file to be listed.

110 REM START OF PAGE

120 FOR J=l TO 2:PRINT#4:L=L+1:NEXT J

130 PRINT#4,"{5 SPACES}TITLE{3 SPACES}":L=L+1
140 PRINT#4:L=L+1

This prints the page title. I know the program will come back

here for each new page, so I'm placing a REM statement to

mark the place. I make sure that the program adds 1 to the

line count, L, each time a line is printed.

150 INPUT#1,A$:SW=ST

170 PRINT#4,A$:L=L+1

Here's where I input from disk and output (to the screen first,

later to the printer). I have the program save the value of ST

(the status variable) so that later it can check to see if this is

the last line from the file. ST will be changed by the PRINT*

command, so its input value is saved in variable SW.

180 IF L<62 GOTO 250

190 IF L=66 THEN L=0:GOTO 250

200 PRINT#4:L=L+1:GOTO 190

If the program has printed the maximum number of lines de- I—1
sired, I want it to eject the paper by printing until the line count,

L, equals 66. Since each page has 66 lines, if L is greater than i i

that, the next page has started and L can be set back to zero. I—I

250 IF SW<>0 GOTO 300

260 IF L=0 GC

270 GOTO 150

260 IF L=0 GOTO 110] I

If the program finds the end of the input file (SWoO), it will go

to line 300 and wind things up. Otherwise, I want it to go back. | |
Lines 260 and 270 contain a cute touch—perhaps too cute

« ' LJ

n
BASIC Programming 1

,—- for some tastes. Variable L can be equal to zero only if a page

I ! has just been ejected. If so, I want the routine to go back to
110 and print a new title. If not, I want it to get another line

r-*) from the input file starting at line 150.

f I 300 IF L<>0 GOTO 190
Here's a supercute trick. I pondered using this for a while,

!~! since it's almost too clever; that sort of thing can trip up your

(' logic. Here's what I was thinking of: If the program's finished,
but the paper hasn't been ejected, go back to line 190 and eject

the paper. The program will branch back here again, but then

L will be zero and everything can be wrapped up by closing

the files with the next two lines.

310 CLOSE 1

320 CLOSE 4

That's it. It's really rather messy. It works, and for a tem

porary job that's all we would need.

But it doesn't feel right. The code feels sloppy; it seems to

jump around, and I don't get a feeling of smoothness in the

program. If that feeling comes to you, you're telling yourself

it's time to pick at the program. I listened to that instinct and

began revising.

First Revision

The first awkward spot is around lines 190 and 200. The rou

tine to eject the paper works but looks clumsy. Besides, it's

called twice (once when the paper's at 62 lines, and again at

the end of the file).

I have other ideas about this part of the program, too. It's

a unit to do a particular job. I think it would be better to move

r—| it to a separate subroutine where it can stand out as an identi-

f ' fiable action. Sometimes I even create a subroutine out of
some lines in the middle of the program and then move it

r"! back later; it helps me identify the modules that make up the

* program. Let's move the paper ejecting routine to a subroutine
at line 500, clean up the program a bit, and see what we get.

It might look something like this:

100 OPEN 4,3

105 OPEN 1, 8, 3 /'CONTROL11

110 REM START OF PAGE

120 FOR J=l TO 2:PRINT#4:L=L+1:NEXT J

130 PRINT#4,"{5 SPACES}TITLE{3 SPACES}":L=L+1

1 BASIC Programming

u

140 PRINT#4:L=L+1

150 INPUT*1,A$:SW=ST , ,

170 PRINT#4,A$:L=L+1 LJ
180 IF L<62 GOTO 250

190 GOSUB 500:GOTO 250

250 IF SW<>0 GOTO 300

260 IF L=0 GOTO 110

270 GOTO 150

300 IF L<>0 GOTO 190

310 CLOSE 1 I
320 CLOSE 4

330 END

500 FOR J=L TO 66:PRINT#4:NEXT J

510 L=0:RETURN

You can see that the GOTO 250 in line 190 is redundant since

the program will go there anyway. But we have other things to

do. We're still trimming the program and have a ways to go yet.

Digging Deeper

Around lines 250 to 270, the program jumps around a lot. It

has one jump forward to 300 and two jumps back to 110 and

150. The logic seems scattered.

I have a thing about loops: I like to see them neatly

nested, with short jumps entirely within longer jumps. It

might even be summarized as a rule of thumb: Where pos

sible, make short jumps as short as possible.

Using this rule, I want to get the loop which returns to

150 into logical order. That's first. Then I'll work on the longer

loop to 110. Finally, I'll fix the forward branch to 300. We'll

need to expand the logic using an AND operator, but that's

not too hard.

As the routine is written, certain logical things start to fall

together. For example, we don't have to GOTO forward to line

300. When we're finished writing the two loops, the program j j

will fall into 300 naturally. (Naturally seems to be a key word in '—1
how programs seem to come together as you tighten them up.)

We can also tighten up the page-eject conditions. If we j i

write line 180 correctly, there'll be no need to go back to get a *—'
page ejection. One option would be to call the subroutine at

500 twice. But if we think of what our objective really is at line (j

180, we can do it all correctly the first time through. Inverting '—'
the logic and adding an OR connective does the trick nicely.

Look at how far the original program has come: j j

u

n

n

n

BASIC Programming 1

l00 OPEN 4,4

105 OPEN 1,8,3/'CONTROL"

110 REM START OF PAGE

120 FOR J=l TO 2:PRINT#4:L=L+1:NEXT J

[""I 130 PRINT#4,"{5 SPACES}TITLE{3 SPACES}":L=L+1
f] 140 PRINT#4:L=L+1

150 INPUT*1,A$:SW=ST

I—, 170 PRINT#4,A$:L=L+1

/ | 180 IF L>61 OR SW<>0 THEN GOSUB 500

250 IF SW=0 AND L>0 GOTO 150

260 IF SW=0 GOTO 110

310 CLOSE 1

320 CLOSE 4

330 END

500 FOR J=L TO 66:PRINT#4:NEXT J

510 L=0:RETURN

This is pleasing, but we can do even more. The repeated

SW=0 test in lines 250 and 260 still irks me a little: It seems

clumsy. The whole business is tied up in whether a title

should be printed. Is there a better way? Could the test of L>0

be somehow shuttled to the top of the loop instead of sitting

at the bottom?

The Header Module

While we're thinking about it, that whole business of printing

a header is really a module—we must do the whole thing, title

and all, or nothing. If we move it out to a subroutine, we

might see the logic flow more clearly. Let's do it and work on

the logic flow. We'd end up with this:

100 OPEN 4,3

105 OPEN 1,8,3,"CONTROL"

110 IF L=0 THEN GOSUB 600

150 INPUT#1,A$:SW=ST

\\ Hid PRINT#4,A$:L=L+1

1 180 IF L>61 OR SW<>0 THEN GOSUB 500
260 IF SW=0 GOTO 110

310 CLOSE 1

320 CLOSE 4

330 END

500 FOR J=L TO 66:PRINT#4:NEXT J

510 L=0:RETURN

600 FOR J=l TO 2:PRINT#4:L=L+1:NEXT J

610 PRINT#4,"{5 SPACES}TITLE{3 SPACES}":L=L+1

620 PRINT#4:L=L+1

630 RETURN

H

1 BASIC Programming

Look at that main section from lines 100 to 330. It now seems ,

tight and concise, like a finely constructed poem. That's not a *)

bad simile, for just as every word should count for something

in a poem, so should every line in a program work towards {)

the final result. | |

Both subroutines—at lines 500 and 600—are called only

once. If it seemed important, we could put them back into the { (

main program stream. But I'm happy to see them as clearly (j
isolated modules. At this stage I would add comments (for in

stance, REM PAGE EJECT at line 499 and REM PAGE TITLE

at line 599) to make the program even neater.

Moral

First, what you see published is not always the first idea that

popped into the author's head. The programmer is not always

smarter than you. Time and thought have been taken to

groom the program into its final shape. When many people

are going to read your code, you like to take a few extra pains

with its appearance.

Second, don't be afraid to revise your programs, even if

they work correctly. Sure, a one-shot program might not war

rant picking over; use it and forget it. But sometimes, the ex

ercise can reveal, almost accidentally, powerful and effective

programming methods.

Third, style isn't an inborn talent that some people have

and others don't. You learn it as you go. Some things you'll

discover for yourself, and others you'll pick up by looking at

other people's programs.

The odd thing is that we instinctively recognize better

writing when we have written it. It's the same with program

ming. You may not know exactly why, but you often feel good

about a certain program. Usually, it's because it has style. j j

u

u

u

n

H

n Variable Storage
n A Beginner's Tour of BASIC

RAM
' ' Pete Marikle

You can simplify the search for program bugs if

you take a short tour through BASIC RAM and

use this subroutine that displays variable values.

Normally, you don't need to know what happens to your pro

gram when you type RUN. The BASIC interpreter takes over,

leaving you free to use the computer to figure your income

tax, write a letter, or save the galaxy.

When your program crashes, though, or gives you an in

correct result, you have to switch hats. You're not just a com

puter user then; you have to be a programmer who can locate

the bug and fix it. Debugging is easier if you can look at the

values of your variables and arrays while the program is run

ning, to insure that loops are being completed and data is put

in the right place at the right time.

Programs 1 and 2, listed at the end of this article, are ex

panded and condensed versions of a subroutine that displays

the current values of all program variables. By inserting STOP

statements in any line where you suspect a problem, you can

freeze the action and GOTO the subroutine to check your

logic, statement by statement.

A Quick Tour of RAM

Before we examine the subroutine, let's take a short sightsee

ing tour through BASIC RAM to see where your Commodore

64 stores programs and variables, how it tells a string from an

integer variable, and how you might use less memory. You

don't have to take this descriptive tour to use the subroutine,

but it will give you a better idea of how the subroutine works.

First, type in this short BASIC program. It lets you peek

into the computer's memory.

9

1 BASIC Programming

u
10 S=256SPRINT"{CLR}START ADDRESS":INPUTZ

20 s$="**********************":T$="

30 FORX=ZTO(PEEK(55)+S*PEEK(56)) :PRINTCHR$(144)X,P

EEK(X)SPC(2)CHR$(PEEK(X)) \)

31 Y=X+1 I 1

35 U=PEEK(45)+S*PEEK(46):V=PEEK(47)+S*PEEK(48):W=P

EEK(49)+S*PEEK(50)

40 IPY=UORY=VORY=WTHEN PRINTS$ I I
45 IFX>=UANDY<VTHENT=T+1:GOTO47 '—'
46 T=0

47 IFT THEN IFT/7-INT(T/7)<.01THENPRINTT?
50 WAIT 197,32:NEXT

60 REM END OF PROGRAM APPROACHING

(If you want to use this program again, you should save it to

tape or disk.)

Now enter these two lines in direct mode (without using

line numbers):

AB=12.34:CD= -12.34:AB$='HELLO":AB%=1983:AB(1)=1

-lll:AB%(l)=1024

AB$(1)="BYE"

Hit RETURN after each line, and enter some more:

DIMCD$(3/5,5):CD$(1,0,0)=//SEE//:CD$(2/0/0)=//YOU//:CD$(1/

1,1)="LATER"

Hit RETURN again, and your computer will have at least one

example of every type of variable stored in RAM. Now type

GOTO 10 and press RETURN. Do not type RUN (it resets all

variables). You'll see a prompt at the top of the screen; re

spond with 2250.

The Program Looks at Itself

The space bar is your one-touch control. Every time you press j '
it, a line of infomation appears in black on the screen. Hold it

down until the screen is nearly full, then sit back and take a

look. You're looking at the middle of the tour program; the J j
memory addresses are on the left, memory contents in the

middle, and some interesting characters on the right.

Some of those characters are meaningless, because a j }
CHR$ interpretation of the contents of a memory location is

invalid and out of context if the location contains a keyword,

line link, line number, and so on. But many of the characters j j

10 u

n
BASIC Programming 1

n

Rare valid, recognizable translations of what you put into the

program. These are the ones well look at.

Use the space bar to move through another hundred or so

r—j bytes, to address 2377. You're looking for the end of the

f I BASIC program, represented by three consecutive zeros in the

center column beside addresses 2377-2379. It's not hard to

nfind with the REM billboard (created by line 60) and neat bor

ders in place. Now look at the first address after the three ze

ros. It should be 2380, the address produced by

PEEK(45)+256*PEEK(46). Line 35 in the above routine sets U

equal to that address. Hold the space bar down until 2380 is

near the top of the screen.

Scanning Variable Storage

You're now in the area where strings and variables are stored.

Everything in this area is in seven-byte clusters, which have

been neatly separated with dashes for easy viewing. Find the

characters A and B, followed by five more bytes (the cluster is

in addresses 2380-2386). This first seven-byte cluster is the

variable AB. The first two bytes are the variable name. The

next five bytes contain the value you gave AB, but in floating

point arithmetic notation. Don't worry about how the math

works. The decimal value is neatly tucked away in those five

bytes.

Note that the next variable, CD (addresses 2387-2393),

has a similar structure. Remember that you put the same num

bers in CD as you did in AB, but you included a minus sign to

make it negative. Take a close look at the five bytes following

CD, and you'll see that the values are almost identical to those

in the bytes following AB. The only difference is that the

fourth byte's value is 128 greater than the corresponding byte

/(in AB. You can check this for yourself by subtracting 128 from
the byte in CD; you should get the value in the corresponding

byte in AB. The high-order bit (bit 7) in that particular byte is

i I used as a sign indicator: 0 for positive numbers and 1 for neg
ative. Since that bit is on (set at 1) for variable CD, the byte's

rn decimal value is 128 (27) higher. Your computer ignores that

/ I bit in reconstructing the value of CD, but uses the bit when

the time comes to determine the sign of the number.

P""| String Variables
Press the space bar and look at the next cluster, representing

H

1 BASIC Programming

U

the string variable AB$. The A is clear enough, but where did

the B go? Here's the secret: The second character of a string j)
variable name is stored after adding 128 to the normal CHR$

value for that character. It's the high-order bit trick again.

By checking to see if this high-order bit is 1 or 0, your | (
computer can tell whether this is a string or floating-point

variable. Memory address 2395 has a value of 194—subtract ^ .

128 from it and you have 66, which just happens to be the j |
CHR$ value for the letter B in AB$. Your computer now

knows that the next byte (which has a value of 5 in the exam

ple) is the length of AB$ and the next two bytes give it the ad

dress where it can find the actual characters you designated

for the string. The address is in standard low byte/high byte

order (LB+256*HB=decimal address). The computer will start

at that address, select a number of characters equal to the

value (5) in the length byte, and then go on to do whatever

you asked it to do with the string.

The final two bytes of the cluster both hold 0; they're put

in to fill up the seven bytes.

That address for the string character can point to one of

two very different areas of memory. If the string is assigned in

the direct mode, the string characters themselves are stored at

the top of free BASIC RAM. If the string is assigned by the

program, the address points to the place in the program where

the string values are assigned to the variable name. Since the

characters must be stored as part of the program anyway, your

computer doesn't waste RAM by repeating the characters in

the variable storage area.

An Unreadable Name

Let's continue the tour. In the next cluster, notice that the vari

able name is unreadable. The symbols are a spade and a verti- j [
cal bar, displayed in addresses 2401 and 2402 respectively.

The values in those two bytes are 193 and 194. Subtract 128

from each and you'll find the CHR$ values for the letters A j j
and B of the integer variable AB%.

When both characters in the variable name are greater

than 127, your computer knows this is an integer variable, j |
that only the next two bytes need to be looked at to obtain its

value, and that the last three bytes of the cluster will be filled

with zeros. As you can see, this cluster is in that format. I {
Those value bytes contain a signed binary number, a dif-

12 u

BASIC Programming 1

n

n
ferent form than you saw with the floating-point variables.

Again, don't worry about the details of the math. The more

compact method of storing integer variables doesn't do much

i—* for you until you start using them in arrays. Integer arrays can

1 1 cut your memory consumption considerably (two bytes versus
five per entry).

i—. As long as we're talking about arrays, let's look at them in

\ I more detail. Hold down the space bar to pass by several clus
ters where the variables in this tour program are stored.

You're approaching the address found by

PEEK(47)+256*PEEK(48). That's the beginning of array stor

age. You'll know you're there when you see the borderline

and the A and B characters in the right column. The memory

address right beneath the border should be 2478.

How Arrays Are Stored

There are three kinds of arrays, paralleling the three normal

variable types: floating-point arrays, integer arrays, and string

arrays. Each can be multidimensional, but we'll cover that last.

Your 64 allows you to use arrays with up to 11 elements

(numbers 0-10) without a DIMension statement, but it does

not reserve space for the array until you assign a value to one

of the array elements. As soon as you do, it sets up an 11-

element array, even if you used only one or two elements. Of

course, you can dimension (with a DIM statement) for more or

fewer elements if you wish. (For more information on arrays,

take a look at "How to Use Arrays" in COMPUTERS Second

Book of Commodore 64.)

Each one-dimensional array begins with a seven-byte

definition cluster followed by the 11-element clusters (or more

or less according to the DIM statement).

I 1 The seven-byte cluster holds the array name in the first

two bytes, following the same general rules you saw for sim-

pie variables, depending on the type of array. The next two

1 bytes contain a link address to the next array set. The fifth

byte tells you (and your computer) the number of dimensions

_, in this array. The sixth and seventh bytes will show the total

number of elements in the array set (11 for our unDIMed

examples). These two bytes store the total in reverse high

byte/low byte order.

The element clusters that follow the definition cluster will

be five bytes long for floating-point arrays, two bytes long for

13

1 BASIC Programming

LJ

integer arrays, or three bytes long for string arrays. These clus- . »

ters contain the same kind of information held in the I 1
corresponding simple variables, but without the trailing zeros

or repeated label bytes needed in variable storage. , .

Unused Elements Contain Zeros

Hold down the space bar until the first array, AB, nearly fills { (

the screen. See the seven-byte cluster in memory addresses J_j
2478-2484? It's followed by five zeros only because AB(0), the

first element of this array, has a zero value. The next five

bytes represent the value you gave to AB(1). The following

sets of zeros represent the remaining unused elements through

AB(10). Use the space bar to look at the CD array, then con

tinue to the AB% integer array.

Both begin with a seven-byte definition cluster, followed

this time by 11-element clusters of two bytes each. The lesson

in saving memory with integer arrays is dramatic.

Next, note the seven-byte cluster for the AB$ array and its

11 three-byte clusters, each containing the string length byte

and the address of the string characters.

The Three-Dimensional Array

If you move even further into the tour, you'll reach the sample

multidimensional array. Things get a bit tricky here. The defi

nition cluster will now be more than seven bytes long. Add

two bytes for each extra dimension. Remember, you can set up

two, three, four, or more dimensions of any size if you have

the memory capacity to handle them. The number of dimen

sions for each array set is held in the fifth byte (address 2675)

of the definition cluster. The very next two bytes hold the

number of elements in the nth dimension (n=number of

dimensions); the next two contain the number of elements in j I
the (n—l)th dimension, and so on until finally the first dimen

sion is structured. You should see a 0 and a 6 in 2676 and

2677, another pair in 2678 and 2679, and a 0 and a 4 in ad- j j
dresses 2680 and 2681. The 6, 6, and 4 represent, in reverse

order, the fact that you dimensioned CD$ as 3, 5, 5 (remember

that arrays always start with 0). j j
Immediately following the definition cluster, the array ele

ments will troop by in orderly formation. In this example,

where you DIMed CD$(3,5,5), the order of the three-byte clus- | j
ters will be: CD$(0,0,0), CD$(l,0,0)...CD$(3,0,0), CD$(0,l,0),

14 ■ U

H
BASIC Programming 1

H

p-| CD$(l,l,0)...CD$(3,l,0), and so on until CD$(3,5,5) is reached.

' ' As you pass through this area, you'll see that the clusters
for CD$(i,0,0) and CD$(2,0,0) are occupied. If you count,

r~t you'll find that the position for CD$(1,1,1) is also occupied, as

' ! you directed. As with any string, the characters themselves are
stored elsewhere.

nlfyou race through the rest of this array, you'll cross the

PEEK(49)+256*PEEK(50) border into the area of unused

RAM. Don't be surprised if you recognize some of it. You may

find remnants from other programs which have been NEWed,

or even CLRed variables.

To end the tour, just hold down the RUN/STOP key and

hit the space bar.

The Variable Dump Utility

Now let's try out the promised subroutine. Because it takes all

the values stored in a section of memory and sends them to

an output device, our subroutine is called a dump utility. Type

NEW to get rid of the tour program, type in Program 1, and

save it to tape or disk. The dump utility has high line numbers

because it's designed as an easy add-on to existing programs.

Type in a few sample variables in direct mode. You can

enter the samples you used for the tour if you like. Again, do

not type RUN; enter GOTO 44444 and press RETURN. Your

variables should be displayed; the program won't show the ar

rays until you press the space bar. Note that the dump utility

doesn't list the contents of multidimensional arrays. It's not

hard to do, just time-consuming. The routine will simply tell

you which multidimensional arrays have been implemented

and what their dimensions and element sizes are.

M Pointer Settings Affect the Utility
Now CLR your variables, enter this new temporary program

PI step, and run the program again:

10 A$="HELLO":A=1983:AB$(2)=MHELLO AGAIN"

,_ Not much happens, because it ends at line 44443, the sub-

fj routine protector. Type GOTO 44444 and hit RETURN to
view your variables as before. Now for a surprise—when you

_ type GOTO 44444 and hit RETURN one more time, you'll see

lj a display of the variables used in the dump utility.

n 15

1 BASIC Programming
u

LJ

This happens because, on the first pass through the rou- |

tine, line 44444 reads the pointers before they are changed to s—

make room for the routine's own internal variables. On the

second pass, the new pointer values include the storage areas . j

for the new variables. If you don't ever want to see the in- I I
ternal variables, just modify line 44543 to read:

IF PEEK(ZZ)=90 THEN RETURN j \

Tailor the Utility for Your Needs
You can customize the routine to fit your needs. For example,

if you don't need the array and integer variable features, just

delete lines 44465, 44525, and everything from 44700 on.

That'll leave you with a much trimmer 800-byte package that

will still dump all normal string and floating-point variables. If

you delete one of the simple variable subroutines, though, you

should also delete the corresponding array variable type.

Eliminate REMs and spaces and you'll end up with a tidy util

ity well under 600 bytes that'll still fill most needs. Program 2

is this condensed version.

To use your dump utility as a debugging tool, simply in

sert STOP statements at desired points in your program, type

GOTO 44444, analyze variable values, and then type CONT

to continue to the next break. Add the appropriate printer

commands, and the program will even dump to the printer.

Program 1, Variable Utility, Expanded Version
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C,

with the next two programs.

44440 REM{3 SPACES}DUMP ... :rem 164

44441 REM***START WITH GOTO 44444 :rem 106 I (
44443 END:REM PROTECT SUBROUTINE :rem 41 i—*
44444 ZB=PEEK(47)+256*PEEK(48)-7:ZA=PEEK(45)+256*P

EEK(46) :rem 185 (

44450 PRINT "STRINGS &{2 SPACES }VARIABLES:": PRINT'1* , }
********************** :rem 114

44460 FOR ZZ=ZA TO ZB STEP 7 :rem 39

44465 IF PEEK(ZZ)>127 THEN GOSUB 44710:GOTO44520:R j (
EM INT VAR :rem 171 l—'

44470 IF PEEK(ZZ+1)<128 THEN GOSUB 44543:GOTO 4452

0:REM FP VAR : rem 177 . .

I I

16 u

H

BASIC Programming 1

1 \

*—■t

i I

n

44475

44480

44485

44490

44495

44500

44510

44520

44525

44530

44540

44543

44545

44550

44560

44570

44575

44580

44590

44600

44700

44710

44720

44730

44740

44750

44760

44800

44805

44806

44810

44815

44820

REM*****STRING**************VARIABLE :rem 39

GOSUB44485:GOTO44520 :rem 255

PRINTCHR$(144)CHR$(PEEK(ZZ))CHR$(PEEK(ZZ+1)-

128)CHR$(36)CHR$(61); :rem 76

ZY=PEEK(ZZ+3)+256*PEEK(ZZ+4):ZX=PEEK(ZZ+2):R

EM STRINGADDRESS AND LENGTH :rem 56

IF ZY=0 THEN 44510 :rem 230

FOR Z0=1TOZX:PRINTCHR$(PEEK(ZY));:ZY=ZY+1:NE

XTZ0 :rem 234

PRINT:RETURN :rem 165

NEXTZZ :rem 242

GOSUB 44805:REM DO ARRAYS NOW :rem 0

PRINT:PRINTCHR$(144)",...ALL DONEM:END

:rem 75

REM***FLOAT PT************VARIABLE :rem 187

IFPEEK(ZZ)=90 AND(PEEK(ZZ+1)=65 OR PEEK(ZZ+1

)=66)THEN RETURN :rem 148

PRINTCHR?(144)CHR$(PEEK(ZZ))CHR$(PEEK(ZZ+1))
CHR$(61); :rem 198

Zl=2t(PEEK(ZZ+2)-129) :rem 251
Z2=128:Z3=256:Z4=1 :rem 62

Z5=PEEK(ZZ+3): IF Z5>=128 THEN Z5=Z5-128:Z4=

-1 :rem 123

J=PEEK(ZZ+4):K=PEEK(ZZ+5):L=PEEK(ZZ+6)

:rem 179

Z9=Zl+Z5*Zl/Z2+J*Zl/Z2/Z3+K*Zl/Z2/Z3t2+L*Zl/

Z2/Z3t3 :rem 145
PRINTZ9*Z4 :rem 222

RETURN :rem 222

REM***INTEGER***************VARIABLE :rem 43

PRINTCHR$(144)CHR$(PEEK(ZZ)-128)CHR$(PEEK(ZZ

+1)-128)CHR$(37)CHR$(61); :rem 12

Z4=l:Z7=PEEK(ZZ+2):Z8=PEEK(ZZ+3) :rem 29

IF Z7 >127THENZ7=255-Z7:Z8=256-Z8:Z4= -1

:rem 25

Z9=Z7*256+Z8:REMNOTE REVERSE HIBYTE-LOBYTE S

EQUENCE :rem 114

PRINTZ9*Z4 :rem 220

RETURN :rem 229

REM*** ARRAY***************VARIABLES:rem 240

IFZQ=0THENZA=0:GOSUB44550:ZA%=0:GOSUB44720:Z

R=2:ZQ=2:ZX=2:ZY=2:Z0=2 :rem 84

REM ABOVE DUMMIES NEEDED TO STABILIZE

{3 SPACES}POINTER TO ARRAYS :rem 240
ZZ=PEEK(47)+256*PEEK(48):IFZZ=PEEK(49)+256*P

EEK(50)THEN RETURN :rem 32

PRINT"SPACEBAR WHEN READY{3 SPACES}FOR ARRAY

S":WAIT197,32 :rem 25

IF PEEK(ZZ+4)<>1THENGOSUB45110:GOTO44820:REM

MULTI-D ARRAY :rem 125

17

1 BASIC Programming
U

44825 IF PEEK(ZZ)>127 THEN GOSUB 44900:GOTO44820:R

EM INT ARRAY :rem 69

44828 IF PEEK(ZZ+1)>127 THEN GOSUB 45010:GOTO44820

:REM STRING ARRAY :rem 137

44829 REM*****FLOAT PT ************ARRAY :rem 82

44830 ZQ=ZZ:ZZ=ZZ+7 :rem 224

44840 FOR ZR=0 TO PEEK(ZQ+6)+256*PEEK(ZQ+5)-1:REM*

*DIM :rem 70

44850 PRINTCHR$(144)CHR$(PEEK(ZQ))CHR$(PEEK(ZQ+1))

CHR$(40)ZRCHR$(41)CHR$(61); :rem 204

44860 ZZ=ZZ-2:GOSUB44550:ZZ=ZZ+2 :rem 2

44870 ZZ=ZZ+5 :rem 12

44880 NEXTZR:IFZZ=PEEK(49)+256*PEEK(50)THEN RETURN

:rem 108

44890 GOTO44820 : rem 68

44900 REM****INTEGER************ARRAYS :rem 101

44910 ZQ=ZZ:ZZ=ZZ+7 :rem 223

44920 FOR ZR=0 TO PEEK(ZQ+6)+256*PEEK(ZQ+5)-l:REM*

*DIM :rem 69

44930 PRINTCHR$(144)CHR$(PEEK(ZQ)-128)CHR$(PEEK(ZQ

+1)-128)CHR$(37)CHR$(40); :rem 251

44940 PRINTZRCHR$(41)CHR$(61)7 :rem 233
44950 ZZ=ZZ-2:GOSUB44720:ZZ=ZZ+2 :rem 1

44960 ZZ=ZZ+2 :rem 9

44970 NEXTZR:IFZZ=PEEK(49)+256*PEEK(50)THEN GOTO 4

4530 :rem 197

44980 RETURN :rem 233

45000 REM****STRING*************ARRAYS :rem 80

45010 ZQ=ZZ:ZZ=ZZ+7 :rem 215

45020 FOR ZR=0 TO PEEK(ZQ+6)+256*PEEK(ZQ+5)-1:REM*

*DIM :rem 61

45030 PRINTCHR?(144)CHR$(PEEK(ZQ))CHR$(PEEK(ZQ+1)-

128)CHR$(36)CHR$(40); :rem 42

45040 PRINTZRCHR$(41)CHR$(61); :rem 225

45050 ZZ=ZZ-2:GOSUB44490:ZZ=ZZ+2 :rem 253

45060 ZZ=ZZ+3 :rem 2

45070 NEXTZR:IFZZ=PEEK(49)+256*PEEK(50)THEN GOTO 4

4530 :rem 189

45080 RETURN :rem 225

45100 REM**MULTI-D****************ARRAYS :rem 160

45110 ZX=2:ZY=2:PRINTCHR$(43)PEEK(ZZ+4)"DIMENSIONA

LARRAY:":PRINTTAB(5); :rem 16

45120 IF PEEK(ZZ)<127THENPRINTCHR$(PEEK(ZZ));:GOTO

45140 :rem 111

45130 PRINTCHR$(PEEK(ZZ)-128);:ZX=1 ;rem 99

45140 IFPEEK(ZZ+1)=0THEN45170 :rem 176

45145 IFPEEK(ZZ+1)=128THEN ZY=1:GOTO45170 :rem 180

45150 IF PEEK(ZZ+1)<127THENPRINTCHR$(PEEK(ZZ+1));:

GOTO45170 :rem 45

45160 PRINTCHR$(PEEK(ZZ+1)-128);:ZY=1 :rem 195

18

u

H

H

n

n

n

H

H

n

BASIC Programming 1

45170 IF ZX=1 AND ZY=1THENPRINT"%";:GOTO45190

:rem 122

45180 IF ZY=1 THENPRINT"?11; :rem 17

45190 PRINTCHR$(40); :rem 129

45200 Z9=PEEK(ZZ+4) :rem 84

45210 FORZ8=Z9TOlSTEP-l:Z7=PEEK(ZZ+4+2*Z8)+(PEEK(Z

Z+4+2*Z8-l))*256-l :rem 254

45220 PRINTZ7; :rem 86

45230 IFZ8=1THENPRINTCHR$(41):GOTO45250 :rem 115

45240 PRINTCHR$(44);:NEXTZ8 :rem 140

45250 PRINT :rem 141

45260 ZZ=ZZ+PEEK(ZZ+2)+PEEK(ZZ+3)*256:IF ZZ=PEEK(4

9)+256*PEEK(50)THEN44530 :rem 107

45270 RETURN :rem 226

Program 2, Variable Utility, Condensed Version

44443

44444

END:REM MINIDUMP FPVAR & $:rem 36

ZB=PEEK(47)+256*PEEK(48)-7:ZA=PEEK(45)+256*P

EEK(46) :rem 185

44460 FORZZ=ZATOZBSTEP7 :rem 39

44470 IFPEEK(ZZ+1)<128THENGOSUB44543:GOTO44520

:rem 20

44480 GOSUB44485:GOTO44520 :rem 255

44485 PRINTCHR?(144)CHR$(PEEK(ZZ))CHR$(PEEK(ZZ+1)-

128)CHR$(36)CHR$(61); :rem 76

44490 ZY=PEEK(ZZ+3)+256*PEEK(ZZ+4):ZX=PEEK(ZZ+2)

:rem 168

44495 IFZY=0THEN44510 :rem 230

44500 FOR Z0^1TOZX:PRINTCHR$(PEEK(ZY));:ZY=ZY+1:NE

XTZ0 :rem 234

44510 PRINT:RETURN :rem 165

44520 NEXTZZ :rem 242

44530 END :rem 215

44543 IFPEEK(ZZ)=90TP1ENRETURN : rem 114

44545 PRINTCHR?(144)CHR$(PEEK(ZZ))CHR$(PEEK(ZZ+1))

CHR$(61); :rem 198

44550 Zl=2f(PEEK(ZZ+2)-129) .rem 251

44560 Z2=128:Z3=256:Z4=1 :rem 62

44570 Z5=PEEK(ZZ+3):IFZ5>=128THENZ5=Z5-128:Z4=-1

irem 123

44575 J=PEEK(ZZ+4):K=PEEK(ZZ+5):L=PEEK(ZZ+6)

:rem 179

44580 Z9=Zl+Z5*Zl/Z2+J*Zl/Z2/Z3+K*Zl/Z2/Z3t2+L*Zl/
Z2/Z3T3 :rem 145

44590 PRINTZ9*Z4 :rem 222

44600 RETURN :rem 222

19

Making More

Readable Listings
Brent Dubach

Have you ever tried to find a key subroutine or

loop in a long BASIC listing? If you have, you

know how tedious it can be. This tutorial dem

onstrates some very sneaky BASIC editing tech

niques that you can use for more readable listings.

A few carefully chosen variable names can help make the dif

ference between a readable program and an unintelligible

mess. But BASIC does not make these choices easy. Did you

ever want to use a BASIC keyword like TO or FN within a

variable name, such as LET TOP=10 or PRINT FN$?

Commodore BASIC won't allow it. But by fooling a cou

ple of BASIC routines, you can use these illegal variable

names and do even more to improve the appearance of your

listings. Let's see how to use this technique and then consider

what makes it work.

Illegal Variable Names

The key is to use graphics characters where they normally

don't belong. You're probably used to seeing a graphics

character as the last character in the abbreviation of a BASIC

keyword. For example, if you type a P followed by a SHIFTed j [
O, you'll see the letter P, followed by a graphics character.

BASIC, however, understands that you mean POKE. But how

will BASIC handle a graphics character in the middle of a J j
variable name?

10 LET NJUMBER = 50 | j

20 PRINT NJUMBER J '*

To get the graphics character between N and U, type a

SHIFTed J. You can use any graphics character that will not j [
result in an abbreviation of a BASIC keyword. (For example,

20 U

n
BASIC Programming 1

H

H

j—1 an N and a SHIFTed E combine to form the keyword NEXT.)

■ Now list the two-line program, and you should see the

following on the screen:

10 LET NUMBER = 50

20 PRINT NUMBER

Now run it, and this appears:

n so
READY.

Nothing too impressive. All you have is a program that lists

and runs exactly as it would if you had left out the graphics

characters. Now let's do something that's downright illegal.

10 LET TOP = 65

20 LET BOTTOM = 90

30 PRINT BOTTOM - TOP + 1

If you enter and run this program, you'll get a syntax error.

The sequence TO may not appear anywhere within a variable

name as it does here in TOP and in BOTTOM. It's reserved as

a BASIC keyword (as in FOR J=l TO 5).

Let's try to fool BASIC. You can place a graphics character

(the SHIFTed J) just before the character that completes the

BASIC keyword—that is, before the O in each TO.

10 LET TJOP = 65

20 LET BOTTJOM = 90

30 PRINT BOTTJOM - TJOP + 1

Here's what you see when you list it:

10 LET TOP = 65

20 LET BOTTOM = 90

30 PRINT BOTTOM - TOP + 1

These lines appear identical to the illegal program you entered

just a moment ago. Now run the program with the embedded

graphics characters. You should see:

26

READY.

It works, with an illegal variable name in every line. Try it

with variable names such as LETTER, FN$, EFFORT, SEND,

or your own favorite forbidden name.

A word of caution, though. ST, TI, and TI$ are reserved

variable names, not keywords like LET, PRINT, and other

BASIC commands or functions. You'll not be able to use vari

able names whose first two letters match these (like START or

n

H

n

n 21

u
1 BASIC Programming

LJ

TIME) even with the technique described in this article. Since i »

they are just variable names/however, you may embed them l~j

elsewhere within longer names of your own (FIRST and AT

TIC, for example, will work) without any special editing tricks. « ,

1 I
Indented Listings and Blank Lines

Besides preventing the selection of certain variable names, (,

BASIC also seems to prevent the entry of blank lines and j)

spaces at the beginning of a line. Thus, it's not possible to

neatly frame the blocks of code—loops or IF-THEN options or

subroutines—that occur in a program. If you've programmed

only in BASIC, you may not be concerned about this. But any

one who has used a computer language like Pascal appreciates

being able to.see a listing like this:

1 TO 10

"WE INDENT EVERY STATEMENT"

"THAT LIES WITHIN"

"THE FOR-NEXT 'BLOCK'"

10

20

30

40

50

60

70

FOR I =

PRINT

PRINT

PRINT

NEXT I

PRINT ""AND LEAVE A BLANK LINE BETWEEN BLOCKS"

Try entering and listing the program above on your 64. Here's

what you should see on the screen:

10 FOR I = 1 TO 10

20 PRINT "WE INDENT EVERY STATEMENT'

30 PRINT "THAT LIES WITHIN"

40 PRINT 'THE FOR-NEXT 'BLOCK'"

50 NEXT I

70 PRINT "AND LEAVE A BLANK LINE BETWEEN BLOCKS"

The blank line and all the indentations have disappeared. Of

course, Commodore BASIC lets you place a single colon at the

start of each line and then indent as much as you wish. But j {
that's not quite the same as a nice, clean blank line.

Once again, you can type an extra graphics character and

fool BASIC. When entering a program, many people type a |_J
space after the line number for readability. But instead of the

space, you can type the SHIFTed J. Reenter the preceding pro

gram this way: |_J

10JFOR I = 1 TO 10

20J PRINT "WE INDENT EVERY STATEMENT"

30J PRINT "THAT LIES WITHIN"

40J PRINT "THE FOR-NEXT ' BLOCK' " ^"^

22 ■' . LJ

BASIC Programming 1

50JNEXT I

70JPRINT "AND LEAVE A BLANK LINE BETWEEN BLOCKS"

Now when you type LIST, you see an indented format identi-

P"| cal to the one you first tried to enter.
Fooling BASIC into giving you a blank line is a little trick

ier. A single SHIFTed J will not do the job. If you add a line

P"| 99, say, to your program and put only the graphics character
on that line, line 99 will still not show up in the a listing. But

try entering this (note the space between the two SHIFTed Js):

99 JJ

Now type LIST and you'll see a blank line 99.

Paying the Price

There is a price to pay for all this. The most obvious is mem

ory consumption. Long variable names and indentation gobble

up a lot of bytes. A final version of a routine, though, can be

condensed by a good list-crunching program (such as

"Crunch," found elsewhere in this book), while the original

remains a very readable version for later examination or re

vision. And with the Commodore 64, most times you don't

have to worry about memory limitations.

Another penalty is simply the bother of remembering to

type extra characters. Be careful whenever you try to edit a

line. To preserve any indentation, you must enter a SHIFTed J

in place of the space following the line number each time you

change the line. And it's easy to forget to convert a variable

name this way by inserting a graphics character within an

embedded BASIC keyword. If you do forget, you'll be re

minded when you get a syntax error in the program. So watch

r—j your editing steps carefully.

- i If you're a hunt-and-peck typist, you might find entering
all these extra characters a nuisance. But a little irritation can

nlead to a lot of satisfaction when you get a more readable pro

gram listing.

<—, How Does It Work?

I J There are BASIC routines that run and list a program. If
you've experimented with the short listings here, or with your

r-j own, you've already proved that the RUN command appar-

' .(ently doesn't mind using keywords in variable names, and
that the LIST command seems to accept leading spaces in

'- * 23

1 BASIC Programming

indented lines. If these key routines are so tolerant, what is it

that requires us to be so sneaky in achieving these results? The

answers lie in the behavior of several other parts of BASIC.

Are They Really Illegal?

First, let's consider illegal variables and a BASIC routine we'll

call TOKENIZE.

We usually think of BASIC commands as words like IN

PUT or LET or GOTO. But the RUN routine does not see it

that way. By the time RUN sees a program, BASIC keywords

have been replaced by single-byte numeric codes, or tokens.

TOKENIZE is the part of BASIC that translates the keywords

you enter into these codes. For example, when you type the

word INPUT, TOKENIZE collects the characters in that word

from the five bytes of memory they occupy, matches them

with a word in the computer's list of BASIC keywords, and

then replaces them with the token for INPUT (the number

133), which takes up only one byte. This saves space in

BASIC memory.

But TOKENIZE also discards any out-of-place graphics

characters as it crunches a BASIC command into the comput

er's memory. This is what allows us to enter forbidden vari

able names. When you insert a graphics character (like the

SHIFTed J) in the middle of what would otherwise be a

keyword, imagine how TOKENIZE must react. Does it ever

find the word INPUT? Not quite. As it is collecting characters,

it's interrupted before finding a perfect match with the BASIC

word INPUT. The match is a failure, but the character which

foiled it is eventually discarded. When RUN gets at the pro

gram, it now finds a plain INPUT (five bytes worth) instead of

the single-byte token that represents the INPUT command.

Any such character string is treated as a variable name.

Our illegal variable names, then, are not illegal at all. You

just have to be sneaky enough in entering and editing them to

prevent TOKENIZE from doing its job.

Finding the Right Routine

And what of the graphics character used at the beginning of

an indented line?

TOKENIZE is involved again, this time because it does

just what you want done: It keeps spaces right where you put

them. Some other parts of BASIC use a routine that discards

24 u

H

BASIC Programming 1

pi spaces. One of these is the part that translates the characters

L] in a line number you type to the numeric form in which it is
stored. Try leaving a space between two digits in a line num-

p-j ber. No problem—the spaces are discarded and the line num-

L i ber appears in a listing just as if you had not inserted them.
BASIC continues to throw away spaces until a nondigit

n character which eliminates all indented lines is found. The rest

of the line is turned over to the TOKENIZE routine. But by

then it is too late: All indentations have already been stripped.

Our strategy must be to place a character immediately

after the line number so that the following spaces will be han

dled by the right routine for our purposes—by TOKENIZE. A

graphics character, first recognized as a nondigit character in

the collection of a line number and then neatly discarded by

TOKENIZE, is the perfect choice.

Guarding the Blanks

Finally, you may recall that in order to create a blank line (but

which still has a line number), you needed first a graphics

character, then a space, then a second graphics character. The

reason for the first was just discussed. A space is needed so

there will be something on the line for TOKENIZE to accept.

Remember that entering a completely blank line just results in

its elimination from the program. But what of the second

graphics character? If TOKENIZE doesn't mind spaces, why

shouldn't it accept a whole line full of them following the ini

tial graphics character?

In the first place, you probably want only one space—just

enough to create a blank line. And second, TOKENIZE never

gets to look at those trailing spaces anyway. The very first part

of BASIC involved in handling a new line, the part that col

lects characters off the screen, discards these spaces. Both

graphics characters are needed to protect lone blanks from the

n space-killing habits in a couple of parts of BASIC. If you want

blank lines with a lot of spaces, though, there is no reason

why you couldn't enter one with, say, 70 of them. Just be sure

j—> they have graphics "bodyguards" on either end.

n

n 25

Recreations

and Applications

< \

n

Mystery at Marple

Manor
John R. Prager

You've been summoned to Marple Manor on a

dark and stormy night to investigate the un

expected demise of one of the dinner guests. Clues

are everywhere, but can you discover who did it,

to whom, how, and where? A mystery text-

adventure for one to six players.

Searching through the study, you find a duelling pistol hidden

under a cushion. Later, you discover the cook cowering in a

closet. The greenhouse door is locked, but you have the key.

And there, concealed in the potted ferns, is the body of the

Duchess.

Your job is to find out "whodunit," and how, before the

other detectives crack the case. They're a shifty lot, who might

hide vital clues or steal the evidence you've accumulated, just

to throw you off the track. There are over 15,000 possible

solutions, but only one correct answer. A different mystery is

chosen each time the program runs. It's a race against your

fellow sleuths to find that unique answer.

"Mystery at Marple Manor" may be a departure from the

computer games you're used to playing. Patient strategy is

P"| more important than quick reflexes for the successful detec-
™J tive. In many ways, the game resembles computer text-

adventures, as well as familiar board games of logic and

; \ deduction.

For Sleuths Only

r—* Type in and save Mystery at Marple Manor. Use "The Auto-

i i matic Proofreader" (Appendix C) to insure an error-free copy
of the program the first time. Although the program is a bit

r—} long, much of it is in the form of PRINT statements, which

tL J should be easier to enter than other BASIC program statements.
In order to solve the case, you must correctly identify the

H 29

2 Recreations and Applications

murderer, the victim, the weapon used, and the room where

the heinous deed was done. Before you arrived, the manor { (
held ten people and twelve possible weapons; however, the

murderer has fled to parts unknown with the weapon he or

she used, leaving behind the body of the victim, eight poten- } j
tial witnesses, and only eleven weapons.

As you travel through the mansion, use paper and pencil

to keep a careful record of all suspects and weapons you see. | j
When you've located all the objects that remain in the house,

use the process of elimination to identify the murderer and

weapon used. The victim's body is also in one of the rooms;

once you find it, you can record the victim's identity and the

scene of the crime.

It sounds simple, but there are complications. At the out

set, many of the suspects and weapons will be hidden in the

various nooks and crannies of the manor. You and your fellow

detectives may have to search each room thoroughly, possibly

several times, before all the concealed items are discovered.

The detectives can even pick up and move items from room to

room in the course of play. Suspects and the body of the vic

tim cannot be moved, but they can be hidden by detectives in

the same room.

Marple Manor is a house of 14 rooms. Part of the fun of a

game like this is to discover the floor plan. (If you really want

help in the form of a map, you can refer to the September

1984 issue of COMPUTERS Gazette, where this game originally

appeared.) Up to six people can play, and all players begin the

game in the foyer at the southern end of the house. Detectives

alternate turns until one correctly solves the mystery, or until

all have made incorrect guesses and, consequently, have been

eliminated from the game. Although each player takes a sepa

rate turn, the game works just as well if the players form Ij

teams of equal size. This allows two or three teammates to

travel through the house independently, yet share their

discoveries and arrive at a solution together. ji

Passwords and Locked Doors

The game begins with a title screen and a thunderclap. This ||
gives detectives time to assign player numbers, organize teams

(if desired), and ready their notepads. Type a number from 1

to 6 to enter the number of players, and the game begins. \ {
At this point, all players except the first should position ^^

30 I i

n

Recreations and Applications 2

<r-| themselves so they can't see the screen. After all, each player

(_J will be acquiring information in the course of the game that he
or she wishes to keep secret from the others for as long as

/"S possible. To help preserve secrecy, you'll be asked to enter a

' j password code on your first turn. This password can be any

two characters from the keyboard—numerals, letters, spaces,

special symbols, or even function keys. Be sure to choose a

code that you can recall easily, and bear in mind that the com

puter will recognize shifted keys and unshifted keys as dif

ferent entries. On later turns, you must enter your secret code

before going on. This prevents other players from illegally us

ing your turn to gather information for themselves.

After you type in your password, the computer reminds

you of your current location and asks if you wish to move. If

you answer yes, the computer lists all available exits. Type in

the appropriate compass direction (N, S, E, or W) to move to a

new room. If you try to move in a direction that doesn't have

a matching door—for example, if you try to move south from

the foyer—your move will be blocked.

Your move may also be blocked if you attempt to move

through a locked door. Eleven doors in Marple Manor can be

fastened shut, and at the start of the game, most of these

doors are locked. To move through a locked door, you must

possess a key which matches the lock; for example, the bed

room key will open any door that adjoins the bedroom. All of

these keys are initially placed in the pantry. One special key,

the skeleton key, can open any locked door but is powerless to

lock doors; its starting location will vary from game to game.

Whether or not you move to a new room, the computer

describes your surroundings. It tells you the room you're in;

notes what item you carry, if any; lists all suspects, weapons,

and keys in view; and names all the other players in the room.

Searching for Clues

Following the description, you'll see a list of choices. Select

from these options by pressing the appropriate key. One op

tion is to take no action; this allows you to end your turn and

readies the computer for the next player.

Searching is the most popular option. At the start of play,

^ many suspects and items are hidden in various rooms.

j» Additionally, players may use the Hide option to stash away

even more clues. Searching is the only way to find these

H

2 Recreations and Applications
u

u

hidden objects. Each time a player searches in a given ,■ {>

room, there's a 50 percent chance of finding each item hidden <)
in that area. For this reason, a room may be searched several

times before all the objects it contains are revealed. A search- ,

ing player does not automatically take any item he finds. i }

The Hide option is the logical counterpart to the Search.

You may choose to hide any one object in the room you oc- , ,

cupy. This object may be a weapon, a suspect, a key, or the L^
corpse. You may even hide the object you're carrying. But you

can't hide yourself or another player. Hiding items makes it

more difficult for your opponents to locate the clues they need

in order to win. Don't forget, of course, to record each clue in

your notes before you hide it. Hidden objects may be sub

sequently discovered by any player searching in the room.

The Take option allows you to pick up a weapon or key in

the room you occupy. You may carry only one item at any

time. If you choose the Take option while holding an object,

you automatically drop the object you're holding. Alter

natively, the Drop option allows you to discard an item with

out taking another. The usefulness of the Take option cannot

be overstated: Carrying keys allows you to pass through

locked doors, while weapons in your possession cannot be

discovered by players who search. However, the Pilfer option

allows a player to steal from another player in the same room.

The pilfering player drops any item carried, and takes the ob

ject the other player had held.

When you're certain you have the solution to the case, se

lect the Accuse option. You'll be asked to identify the mur

derer, the victim, the weapon, and the scene of the crime from

lists of the possibilities. An incorrect guess eliminates you from

further play. Give the correct solution, though, and you win

the game. l^J

Mystery at Marple Manor
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix C. ! i

9 POKE53280,1:POKE53281,0:S=54272:FORJ=0TO24:POKES

+J,0:NEXT:POKES+24,15 :rem 35

12 PRINT"{CLR}{6 DOWN}MTAB(7)"g8§{RVS}g*3{4 RIGHT} i 1
£" :rem 121 x^

13 PRINTTAB(7)"{RVS} g*§{2 RIGHT}£ ":PRINTTAB(7)"

{RVS} {2 SPACES }(<*!£{ 2 SPACES} {OFF} YSTERY" ,

:rem 238 k

32 u

Recreations and Applications 2

15 PRINTTAB(7)"{RVS} B {2 SPACES}B "sPRINTTAB(7)"

{RVS} B{2 SPACES}B ":PRINT"{3 UP}"TAB(21)CHR$(1

42); :rem 153

24 GOSUB1713:PRINT"AT" :rem 82

27 PRINT"{DOWN}"TAB(12)"g5§{RVS}g*H4 RIGHT}£":PR

INTTAB(12)"{RVS} g*l{2 RIGHT }£ " :rem 42

28 PRINTTAB(12)"{RVS}{2 SPACES}g*}£{2 SPACES}
{OFF} ARPLE" :rem 102

30 PRINTTAB(12)"{RVS} B{2 SPACES}B ":PRINTTAB(12)"

{RVS} B{2 SPACES}B " :rem 129

33 PRINT"TUP}"TAB(17T"E4!{RVS}i*H4 RIGHT}£" : PRIN
TTAB(17)"{RVS} g*|{2 RIGHT }£ ":PRINTTABTl7)"
{RVS} {2 SPACES }£*§£{ 2 SPACES} {OFF} ANOR"

:rem 167

36 PRINTTAB(17)"{RVS} B { 2 SPACES}B ":PRINTTAB(17)"

{RVS} B{2 SPACES}B " :rem 145

39 GOSUB1713 :rem 184

42 FORJ=1TO1000:NEXT :rem 226

45 POKES+5,15sPOKES+6,0:POKES+4,129 :rem 57

50 J=1:FORI=1TO15:POKE53281,J:POKE53280,1-J:rem 31

51 POKES+1,INT(RND(l)*20)+5 :rem 254

53 J=l-JsFORP=lTO30:NEXT:NEXT :rem 110

56 POKES+4,0 :rem 168

100 DEFFNR(X)=INT(RND(l)*X)+lsJ=RND(-TI) :rem 108

103 DIMP%(50),S$(22),R$(14),C$(6),V$(3),V(3),D%(10

,2) :rem 56

112 FORJ=1TO10:P%(J)=FNR(11)+3:NEXT :rem 46

115 FORJ=11TO22:P%(J)=FNR(13)+1:NEXT :rem 101

118 FORJ=24TO31:P%(J)=4:NEXT :rem 169

121 P%(23)=FNR(8)+6 :rem 204

124 J=FNR(10):P%(35)=J:P%(34)=P%(J):P%(J)=0:rem 16

127 J=FNR(10):IFP%(J)=0THEN127 :rem 200

130 P%(32)=J:P%(J)=0:J=FNR(12):P%(33)=J:P%(J+10)=0

:rem 136

133 FORJ=1TO22:IFRND(1)<=.75THENP%(J)=-P%(J)

:rem 56

<—1 136 READS$(J) :NEXT : rem 65

1 { 139 FORJ=1TO14:READR$(J):NEXT :rem 36
142 FORJ=0TO10:READD%(J,1),D%(J,2):IFRND(1)<.9THEN

r_ D%(J,0)=-1 srem 122

) [143 NEXT srem 215

145 FORJ=0TO3:READV$(J):NEXT :rem 242

148 P=2049:I=0:FORJ=4000TO7000STEP1000 :rem 188

r0"*} 151 IFJ=PEEK(P+2)+PEEK(P+3)*256THENDA(I)=P:I =I+l:G
> \ OTO157 :rem 54

154 P=PEEK(P)+PEEK(P+1)*256:GOTO151 :rem 11
157 NEXT srem 220

, (172 PRINT"{HOME}{21 DOWN}{BLK}{6 SPACESjHOW MANY P
LAYERS (1-6) ?" srem 218

175 GETA$sIFA$<"l"ORA$>"6"THEN175 srem 75

n 33

2 Recreations and Applications

178 I=VAL(A$):P%(49)=I :rem 178

181 FORJ=1TOI:P%(35+J)=1:NEXT :rem 233

190 PRINT"{CLR}{2 DOWN}g43ALL PLAYERS EXCEPT £LAYE

R #1 MUST LEAVE"CHR$(14) :rem 7

192 PRINT"THE ROOM AT THIS POINT.":PRINT"{DOWN}

{3 SPACES}PLAYER # 1: PRESS {RVS} RETURN {OFF}
:rem 152

193 PRINT"{7 SPACESjTO BEGIN THE GAME!" :rem 146

194 GETA$:IFA$<>CHR$(13)THEN194 :rem 14

196 POKE53280,12:POKE53281,15:Q=1 :rem 87

200 PRINT"{CLR}{2 DOWN}{BLK}PLAYER #"Q"

&4§{D0WN}" :rem 120

203 IFC$(Q)<>""THEN212 :rem 175

206 PRINT"PRESS ANY TWO KEYS TO ESTABLISH YOUR"

:rem 37

207 PRINT"J5ECRET CODE. WITH THIS CODE, NO OTHER"

:rem 211

209 PRINT"PLAYER CAN STEAL YOUR TURN!":PRINT"

{DOWN}ENTER YOUR CODE NOW!" :rem 214
210 GOSUB1700:C$(Q)=A$:GOTO218 :rem 206

212 PRINT" {DOWN}ENTER YOUR J3ECRET CODE! " :GOSUB1700

:rem 72

215 IFC$(Q)<>A$THENI=0:GOSUB1710:GOTO200 :rem 124

218 PRINT" {CLR} {2 DOWN} {BLK}PLAYER #"Q"

£43{DOWN}" :rem 129

221 R=P%(35+Q):PRINT"YOU ARE IN THE "R$(R)".H

:rem 49

224 PRINT"DO YOU WISH TO LEAVE THIS ROOM [Y/N] ?"
:rem 6

227 GETA$:IFA$=IIN"THENPRINT"NO":GOTO330. :rem 3

230 IFA$o"Y"THEN227 : rem 106

233 I=1:J=R:GOSUB1730:FORJ=0TO3:READV(J):NEXT

:rem 85

236 PRINT"YES":PRINT"{DOWN}DOORS FROM THIS ROOM AR

E FOUND TO THE:" :rem 187

239 FORJ=0TO3:IFV(J)O0THENPRINTTAB(4) ;V$(J)

:rem 222

242 NEXT:PRINT"{DOWN}TYPE {RVS}{BLK} N {OFF} ,

{RVS} S {OFF} , {RVS} E {OFF} ,g4]I*OR {RVS}
{BLK} W {OFF}g43 TO MOVE!":I=3 :rem 227

245 GETA$:IFA$=""THEN245 :rem 89

248 A=ASC(A$)OR128:I=0:IFA<197ORA>215THEN245

:rem 62

251 IFA=ASC(V$(I))THEN260 :rem 168

254 1=1+1 :IFK4THEN251 :rem 15

257 GOTO245 :rem 114

260 PRINT"GO "V$(I) :rem 147

261 IF V(lT<lTHENPRINT"NO DOOR THIS WAY. YOU CAN'T
MOVE. ":GOTO1910 : rem 154

34

Recreations and Applications 2

H

~> 263 IFV(I) <100THENR=V(I) :PRINT"MOVING TO NEW ROOM.

LJ ":FORI=1TO1000:NEXT:GOTO330 :rem 166
266 Z=V(I)-100:IFD%(Z,0)=0THEN300 :rem 75

-^_ 269 PRINT"THAT DOOR IS LOCKED" :GOSUB1760 :rem 45

f| 270 IFA=0THENPRINT"YOU DON'T HAVE A MATCHING KEY."
:PRINT"NO MOVE.":GOTO1910 :rem 65

272 PRINT"YOUR KEY OPENS THE DOOR.":GOSUB1770:PRIN

RT"MOVING TO NEW ROOM." :rem 200

300 I=D%(Z,1):IFI=RTHENI=D%(Z,2) :rem 82

303 R=I:GOSUB1760:IFA<>1THEN330 :rem 112

306 PRINT"DO YOU WANT TO LOCK THIS DOOR BEHIND

{4 SPACES}YOU{2 SPACES}[Y / N] ?" :rem 96

309 GETA$:IFA$="N"THENPRINT"NO":GOTO330 :rem 4

312 IFA$o"Y"THEN309 : rem 108

315 PRINT"YES":GOSUB1770:PR1NT"DOOR LOCKED. ":rem 3

330 P%(Q+35)=R:PRINT"{DOWN}{CLRT{5 DOWNjYOU ARE IN
THE "R$(R)"." " :rem 43

333 PRINT"YOU CARRY ";:I=P%(Q+41):GOSUB1780:PRINT"

." :rem 205

336 J=0:PRINT"YOU SEE THE FOLLOWING HERE:":rem 168

339 FORI=lTO31:IFP%(I)=RTHENJ=J+l:PRINT"t3 SPACES}

";:GOSUB1780:PRINT"." :rem 16

342 NEXT:FORI=1TO6:IFK>QANDP%(35+I)=RTHENPRINT"

{3 SPACES}PLAYER #"I".":J=J+1 :rem 252

345 NEXT:IFP%(34)=RTHENPRINT"{3 SPACES}THE BODY OF

THE "S$(P%(35))".":J=J+1 :rem 180

348 IFJ=0THENPRINT"NOTHING OF INTEREST." :rem 173

351 PRINT"{DOWN}PRESS {RVS}{BLK} RETURN

{SHIFT-SPACET{OFF}i43 FOR OPTIONS ":rem 158
354 GETA$:IFA$<>CHR$(13)THEN354 :rem 10

375 PRINT"{CLR}" :rem 3

376 PRINT"{4 DOWN}{BLK}{3 SPACES}>>>>> TURN
{SHIFT-SPACE}OPTIONS <<<<<{2 DOWN}":PRINT" g4§
{RVS}A{OFF} ACCUSE THE MURDERER1" :rem 129

377 PRINT"{SHIFT-SPACE}{RVSTD{OFF} DROP AN ITEM.":
PRINT" {RVS}H{OFF} HIDE AN ITEM OR SUSPECT."

*"") :rem 224
'- -- 379 PRINT" {RVS}N{OFF} NO ACTION." :PRINT" {RVS}P

{OFF} PILFER FROM ANOTHER PLAYER." :rem 240
r—, 381 PRINT" {RVS}§{OFF} ^EARCH THE ROOM FOR HIDDEN

{SPACE}ITEMS.":PRINT" {RVS}T{OFF} TAKE AN ITEM
•" :rem 143

384 PRINT"{2 DOWN}ENTER LETTER FOR ACTION DESIRED 1
{3 DOWN}" srem 89

387 GETA$:IFA$<"A"ORA$>"T"THEN387 :rem 131

390 PRINT"{CLR}":A=ASC(A$):ONA-64GOTO700,375,375,8

00 :rem 30

393 IFA$="H"THEN970 :rem 43

396 IFA$<"NMTHEN375 :rem 50

400 ONA-77GOTO450,375,880,375,375,930,820 :rem 154

35

2 Recreations and Applications
u

u

450 PRINT"{2 DOWNjPRESS {RVSjfBLKj RETURN {OFF}g4l ,

TO END YOUR TURN!" : rem 119 J (
453 GETA$:IFA$<>CHR$(13)THEN453 :rem 10

456 1=0:PRINT"{BLK}{CLR}{4 DOWN}PLAYER #"Q"=======

===== END TURN":GOSUB1710 :rem 142 \ >

459 Q=Q+1:IFQ>P%(49)THENQ=1 :rem 86 t—'

462 IFP%(Q+35)=0THEN459 :rem 19

465 GOTO200 :rem 106 .

700 PRINT"{CLR}{DOWN}{BLK}{3 SPACES}***** MAKE AN \\
{SPACE}ACCUSATION *****{DOWN}g4l":I=1 :rem 112

703 FORJ=1TO10:PRINTJ"{LEFT}:"TAB(5)"THE ";S$(J)M.
11: NEXT :rem 163

706 PRINT"{3 DOWNjENTER NUMBER OF MURDER VICTIM ";
:INPUTJ :rem 231

709 IFJ<>P%(35)THENI=0 :rem 6

712 GOSUB1900 :rem 228

715 FORJ=1TO10:PRINTJ" {LEFT }:"TAB(5) "THE "?S$(J)".
":NEXT :rem 166

718 PRINT"{3 DOWNjENTER NUMBER OF MURDERER ";:INPU

TJ :rem 53

721 IFJ<>P%(32)THENI=0 :rem 253

724 GOSUB1900 :rem 231

727 FORJ=1TO12:PRINTJ"{LEFT}:"TAB(5)"THE "S$(J+10)
".":NEXT ~ :rem 252

730 PRINT"{3 DOWNjENTER NUMBER OF MURDER WEAPON ";
:INPUTJ :rem 226

733 IFJ<>P%(33)THENI=0 :rem 1

736 GOSUB1900 :rem 234

739 FORJ=1TO14:PRINTJ"{LEFT}:"TAB(5)"THE "R$(J)m."

:NEXT :rem 116

742 PRINT"{3 DOWNjENTER NUMBER OF MURDER ROOM ";:I

NPUTJ :rem 88

745 IFJ<>ABS(P%(34))THENI=0 :rem 44

746 PRINT"{CLRj{5 DOWNJSUMMONING THE POLICE TO MAK

E AN": PRINT "ARREST " : rem 244

748 POKES+14, 5 : POKES+18 ,16 : POKES+3 ,1: POKES-f24,143 :

POKES+6,240:POKES+4,65:A=5389 :rem 163 j {

751 FORJ=1TO200:R=A+PEEK(S+27)*3.5:POKES#RAND255:P ^—}
OKES+l#INT(R/256):NEXT :rem 131

754 FORJ=0TO24:POKES+J,0:NEXT:POKES+24,15 :rem 44 , ;

757 FORJ=1TO2500:NEXT :rem 37 . j

760 IFI=0THEN772 :rem 177 ^^
763 1=3 .-PRINT"YOUR SOLUTION IS CORRECT I " :GOSUB1710

:rem 2 i \

769 PRINT"{2 DOWNj£LAYER #"Q"HAS CRACKED THE CASE I O
":GOTO787 :rem 158

772 I=2:PRINT"NO!...THAT WAS A FALSE ARREST 1"xGOSU

B1710 :rem 232)\
775 GOSUB1800:P%(35+Q)=0:P%(50)=P%(50)+1:PRINT"YOU

■RE OUT OF THE GAME!" :rem 85

36 ' U

n
Recreations and Applications 2

n

778 IFP%(50)<P%(49)THEN450 :rem 151

781 RESTORE:GOSUB1713:FORJ=1TO500:NEXT:GOSUB1713

:rem 90

784 PRINT"{DOWN}ALL PLAYERS HAVE GIVEN INCORRECT":

PRINT"SOLUTIONS TO THE CRIME!!" :rem 85

785 PRINT"{DOWN}NOBODY WINS !" :rem 51

787 PRINT"HERE IS THE CORRECT SOLUTION:":PRINT"THE

"S$(P%(32)) :rem 192

789 PRINT"KILLED THE "S$(P%(35)):PRINT"IN THE "R$(

ABS(P%(34)))"," :rem 19

791 PRINT"USING THE "S$(P%(33)+10)".{2 DOWN}":END
:rem 254

800 PRINT"{2 DOWN}{BLK}{3 SPACES}*** DROP AN ITEM

{SPACE}***B4§":GOSUB1800 :rem 36

803 IFI=0THENPRINT"{DOWN}YOU WEREN'T CARRYING ANYT

HING 1":GOTO450 :rem 88

806 PRINT"{DOWN}YOU DROP ";:GOSUB1780:PRINT".":GOT

0450 :rem 60

820 PRINT"{2 D0WN}{BLK}{3 SPACES}*** TAKE AN ITEM

{SPACE}***B4§":J=1:PRINT"{DOWN}THESE ITEMS ARE

AVAILABLE:" :rem 175

823 FORI=11TO31:IFP%(I)<>RTHEN829 :rem 233

826 PRINTJ": ";:GOSUB1780:PRINT".":POKE900+J,I:J=J

+1 :rem 70

829 NEXT:IFJ=1THENPRINT"NO ITEMS.":GOTO450 :rem 60

832 PRINT"{DOWN}ENTER NUMBER TO TAKE AN ITEM# OR":

PRINT"ENTER ZERO TO TAKE NOTHING." :rem 111

835 INPUT"WHAT ITEM DO YOU WANT";A:IFA<0ORA>=JTHEN

835 :rem 137

838 IFA=0THENPRINT"{DOWN}NO ITEM TAKEN.":G0T0450

:rem 234

841 GOSUB1800:IFK>0THENPRINT"YOU DROP ";:GOSUB178

0:PRINT"." :rem 82

I=PEEK(900+A):P%(I)=100+Q:P%(Q+41)=I :rem 155

PRINT"YOU TAKE ";:GOSUB1780:PRINT".":GOTO450

:rem 30

PRINT"{2 D0WN}{BLK}{3 SPACES}*** PILFER FROM A

NOTHER ***g4§":J=0 :rem~46"

PRINT"{DOWN}THESE PLAYERS ARE ALSO IN THE ROOM

..." :rem 226

FORI=1TO6:IFP%(35+I) =RANDK>QTHENPRINT"

{3 SPACES}PLAYER #"I".":J=J+1 :rem 141
NEXT:IFJ=0THENPRINT"NO OTHER PLAYERS ARE IN TH

E ROOM!":GOTO450 :rem 222

PRINT"{DOWN}WHICH PLAYER WILL YOU STEAL FROM ?

11 :rem 108
890 PRINT"ENTER NUMBER, OR PRESS ZERO." :rem 1

892 INPUT"PILFER FROM PLAYER #";A:IFA<0ORA>P%(49)T

HEN889 srem 250

893 IFA=0THENPRINT"NO THEFT.":G0T0450 :rem 179

37

H

n

H

844

845

880

881

883

886

889

u
2 Recreations and Applications

u

895 IFA=QTHENPRINT"YOU CAN'T STEAL FROM YOURSELF I" < j

:GOTO892 :rem 43 i J

898 IFP%(35+A)<>RTHENPRINT"PLAYER #"A"IS NOT HERE

{SPACE}l":GOTO889 :rem 129

901 GOSUB1800:IFK>0THENPRINT"YOU DROP "; :GOSUB178 \ j

0:PRINT"." :rem 79 ^
904 I=P%(A+41):IFI=0THENPRINT"PLAYER #"A"CARRIED N

O ITEMi":GOTO450 :rem 33 v }

907 P%(Q+41)=I:P%(A+41)=0:P%(I)=100+Q :rem 158 ^
908 PRINT"YOU TAKE ";:GOSUB1780:PRINT".":GOTO450

:rem 30

930 PRINT"{2 DOWN}{BLK}{3 SPACES}*** SEARCH THE RO

OM ***g4§":J=0:PRINT"{DOWN}YOU FIND THE FOLLOW

ING:" :rem 125

933 FORI=1TO31:IFP%(I)<>-RTHEN942 :rem 227

936 IFRND(1)>.5THEN942 :rem 6

939 J=J+1:PRINTTAB(4);:GOSUB1780:PRINT".":P%(I)=R

:rem 203

942 NEXT:IFP%(34)o-RORRND(l)> .5THEN948 : rem 73

945 J=1:PRINT"{4 SPACES}THE BODY OF THE "S$(P%(35)

)".":P%(34)=R :rem 200

948 IFJ=0THENPRINT"{2 SPACES} NOTHING I"

:rem 177

951 GOTO450 :rem 113

970 PRINT"{2 DOWN}{BLK}{3 SPACES}*** HIDE ITEM OR

{SPACE}SUSPECT ***&4l":J=l :rem 57

971 PRINT"{DOWN}THESE CAN BE HIDDEN:" :rem 187

973 FORI=1TO31:IFP%(I)<>RTHEN979 :rem 196

976 PRINTJ": ";:GOSUB1780:PRINT".":POKE900+J,I:J=J

+1 :rem 76

979 NEXT:I=P%(Q+41):IFI=0THEN985 :rem 163

982 PRINTJ": ";:GOSUB1780:PRINT" (YOU CARRY IT).":

POKE900+J,Q+41:J=J+1 irem 77

985 IFP%(34)=RTHENPRINTJ": THE BODY OF THE "S$(P%(

35))".":POKE900+J,34:J=J+1 :rem 211

988 IFJ=1THENPRINT"NOTHING HERE CAN BE HIDDEN1":GO

TO450 :rem 221 I I
991 PRINT"{DOWN}ENTER NUMBER OF ITEM TO HIDE, OR": V

PRINT"ENTER ZERO TO HIDE NOTHING." :rem 101

994 INPUT"WHAT WILL YOU HIDE";A:IFA<0ORA>=JTHEN994 ,,• ,

:rem 235 Jj

997 IFA=0THENPRINT"NOTHING HIDDEN.":GOTO450:rem 99 ^^
1000 I=PEEK(900+A):IFI>34THEN1009 :rem 114

1003 P%(I)=-R:IFI=34THENPRINT"YOU HIDE THE BODY.": j 1

GOTO450 :rem 37 ^^

1006 PRINT"YOU HIDE ";:GOSUB1780:PRINT".":GOTO450

"" :rem 57

1009 I=P%(Q+41):PRINT"YOU HIDE THE OBJECT YOU CARR *j
Y....II:GOSUB1780:PRINT".M :rem 42

1012 P%(Q+41)=0:P%(I)=-R:GOTO450 :rem 233

1700 GETA$:IFA$=IIMTHEN1700 :rem 179 ^ ,

38 ^—'

Recreations and Applications 2

n

H

rn
t 1

n

1703

1706

1710

1713

1716

1719

1722

1730

1733

1736

1760

1763

1766

1769

1770

1773

1780

1783

1786

1789

1800

1803

1900

1910

2000

2005

2020

2025

3000

3005

3010

3015

3020

3025

GETB$:IFB$=""THEN1703 :rem 187

A$=A$+B$:RETURN :rem 128

J=1:GOSUB1730 :rem 6

READW,I,J xPOKES+2,1:POKES+3,J:READI,J:POKES+5

,I:POKES+6,J :rem 129

READZ:IFZ<0THENRETURN :rem 227

POKES+1,INT(Z/256):POKES,ZAND25 5:READZ:POKES+
4,W :rem 61

FORJ=lTOZ*100:NEXT:POKES+4/0:GOTO1716 :rem 85

P=DA(I):IFJ=1THEN1736 :rem 248

FORI=1TOJ-1:P=PEEK(P)+PEEK(P+1)*256:NEXT

:rem 209

P=P-1:POKE66,INT(P/256):POKE65,PAND255:RETURN
:rem 62

A=0:I=P%(41+Q) :IFK23ORI>31THENRETURN 2 rem 49

IFI=23THENA=-1:RETURN :rem 112

1=1-172lFI=D%(Z,l)ORI=D%(Z,2)THENA=1 :rem 111

RETURN :rem 183

IFD%(Z,0)=0THEND%(Z,0)=-1:RETURN :rem 143

D%(Z,0)=0:RETURN :rem 201

IFI=0THENPRINT"NO ITEM";:RETURN :rem 54

IFK23THENPRINT"THE "S$ (I) ; :RETURN :rem 147

IFI=23THENPRINT"THE SKELETON KEY";:RETURN

:rem 212

PRINT"THE "R$(I-17)" KEY";rRETURN 2rem 50

I=P%(Q+41)2lFI=0THENRETURN 2rem 132

R=P%(Q+35)2P%(I)=R:P%(Q+41)=02RETURN :rem 69

PRINT"{CLR}{DOWN}{BLK}{3 SPACES}***** MAKE AN

ACCUSATION *****{DOWN}i43n2RETURN 2rem 204

FORI=1TO2200 2NEXT2GOTO330 2rem 82

DATA17#0,0,0,240,14435,1,12860,1,14435,7,0,4

2rem 122

DATA12860,1,11457,1,10814,1,9634,1,9094,6,963

4,8,0,8,-1 :rem 196

DATA17,0,0,0,240,7217,1,6430,1,7217,8,0,7

2rem 236

DATA5407,6,5728,6,4547,6,4817,24,-1 2rem 247

DATA"COOK","BUTLER","GARDENER","CHAUFFER","DU

KE","DUCHESS","NANNY" srem 131

DATA"OPERA J3TAR" , "AMBASSADOR" , "PRIME MINISTER

", "CARVING KNIFE "^ROPE" 2 rem 9

DATA"BOX OF WEED KILLER","ANTIQUE MACE","DUEL

LING PISTOL","FENCING FOIL" 2rem 216

DATA"ICE PICK", "PLASTIC J3AG", "CHAIN SAW","HED

GE TRIMMERS", "POLO MALLET" 2rem "208

DATA "GARDEN J3PADE ", "ENTRY FOYER" , "CORRIDOR" ,"

HALL","PANTRY","DINING ROOM" 2rem 97

DATA"KITCHEN","£TUDY","BEDROOM","BATHROOM","C

LOSET""", "GREENHOUSE " , "GARDEN " 2 rem 18 7

39

2 Recreations and Applications
u

u

3030 DATA"£00L","GARAGE",2,13,2,14,3,7,3,8,3,11,7, (

9,8,9,8,10,11,12,12,13,13,14 :rem 163 j f

3035 DATA"NORTH","EAST","SOUTH","WEST" :rem 7

4000 DATA33,0,0,88,89,1804,6,2025,3,2145,6,2703,3

:rem 149 \ '

4005 DATA2408,1,2551,1,2408,1,2551,1,2408,1,2551,1 U
,2408,1,2551,1,2703,8,-1 :rem 81

5000 DATA5,3,0,2 : rem 45

5005 DATA4,1,101,100 :rem 240 j
5010 DATA104,103,102,1 : rem 81 l—
5015 DATA0,6,2,0 :rem 49

5020 DATA6,0,1,0 :rem 44

5025 DATA0,0,5,4 :rem 51

5030 DATA102,105,0,0 :rem 239

5035 DATA0,107#106,103 :rem 94

5040 DATA106,0,0,105 :rem 244

5045 DATA0,0,0,107 :rem 148

5050 DATA0,0,104,108 : rem 246

5055 DATA0,108,109,0 :rem 0

5060 DATA109,100,0,110 :rem 86

5065 DATA101,110,0,0 :rem 242

6000 DATA65,255,0,9,0,1804,6,1804,4.4,1804,1.5,180

4,6,2145,4.5,2025,1.5 :rem 202

6005 DATA2025,4.5,1804,1.5,1804,4.5,1804,1.5,1804,

12,-1 :rem 177

7000 DATA33,0,0,88,89,2408,4,3215,12,3608,1.33,240

8,1.33,3608,1.33 :rem 223

7005 DATA4050,4,4050,4,4050,4,4050,1.33,4291,1.33,

3215,1.33 :rem 116

7010 DATA4050,6,3608,2,3215,8,-1 :rem 77

I f

40

n

n

n Screeiv80
n 80 Columns for the 64

n
Gregg Peele and Kevin Martin

Did you ever wish for an 80*column screen?

"Screen*80" transforms your 64 into an 80*

column machine without affecting the normal

screen-editing keys. We've also included "Custom-

80," which allows you to create your own 80*

column character set with a joystick.

"Screen-80" offers a full 80-column screen and gives you the

ability to use your Commodore 64 to write, edit, and even run

BASIC programs (including some commercial software), all

with an 80-column display. You can even use all the cursor

controls of the normal screen editor. It runs concurrently with

the normal system, allowing a quick switch between 40- and

80-column modes.

Best of all, little memory is used by Screen-80. The pro

gram consists of approximately 3K of machine language which

goes into RAM "underneath" ROM. Another 43 bytes are

placed in a little-used area of RAM (locations 710-753). Since

the bulk of Screen-80 uses the same memory locations as the

operating system, and the locations of the 43 bytes used from

RAM are normally unused anyway, Screen-80 works without

#-*s any apparent loss of programming space.

Enter and Sign In
j-w Like many machine language programs in COMPUTE! books,

i > Screen-80 is listed in MLX format. MLX makes it much sim

pler to type in machine language programs, and virtually in-

_ sures a working copy the first time. Before you begin entering

< I Screen-80, then, you must first type in the MLX program
found in Appendix D. You'll want to have a copy of MLX,

__. since it's used to enter machine language programs in COM-

i! PUTE! books, COMPUTE! magazine, and COMPUTED Gazette.

n 41

2 Recreations and Applications
u

u

MLX even has a built-in numeric keypad to ease the burden of . /

typing all those numbers. i—I
If you're using tape to store programs, you must make

one slight change to MLX before you save it. This change is j ,

only for MLX, and is only necessary when you type in Screen-80. ! I

Change line 763 of MLX to read:

POKE780,1:POKE781,DV:POKE782,0:SYS65466 j (

The only change is that the POKE782,1 in the original listing

has been altered to a POKE782,0. Save this version of MLX

for entering Screen-80. When you've typed in, saved, and

tested Screen-80, you can change the POKE782 back to its

original form so that you can use MLX to enter other machine

language programs from this book. Remember, this change is

only for tape users.

After you've loaded and run MLX, you'll be asked for the

starting and ending addresses of Screen-80. Those addresses are:

Starting address: 49152

Ending address: 52811

As soon as you've provided those addresses, you can be

gin typing in Program 1. Just follow the directions in Appen

dix D, and you shouldn't have any problems. You can even

enter the program in several sessions if you want. Once

you've completed the typing and saved the program to tape or

disk, turn your computer off and then on again.

Now load the program from disk or tape using the normal

format for loading BASIC programs:

LOAD "filename",* (for disk)

LOAD "filename" (for tape)

Notice that you can load the program without the ,1 that gen

erally accompanies ML programs. If the program loaded cor- j j

rectly, you can list it. You should see one line, line 0, with a ^
SYS command (SYS 2061). Simply type RUN and you'll have

Screen-80. To disable the program and return to normal 40- j \

column mode, press RUN/STOP-RESTORE; typing SYS 710 ^
and pressing RETURN will reenable Screen-80.

You can make a backup copy of the program by simply \ \

saving it as you would any BASIC program: ^

SAVE "filename",* (for disk)

SAVE "filename" (for tape) |_j

To begin programming in 80 columns, just type NEW.

42 U

n

n
Recreations and Applications 2

H

P") Screen-80 is still in memory, but now the bothersome line 0

1 you saw earlier has been erased.

r—j Using 80 Columns

Once you enter 80-column mode, the first thing you're likely

to notice is the smaller size characters. Since increasing the

size of the screen is impossible, adding 40 more columns to

the 64 makes it necessary to halve the size of each character.

Some televisions may not produce a clear enough picture to

make these smaller characters readable, so you may find it

difficult to read text in 80 columns. We recommend using a

video monitor with the color turned off. You may want to

change the character set to suit your personal taste or needs.

"Custom-80" (discussed later in the article) is designed to let

you do just that.

Screen-80 provides a different cursor than does the nor

mal 40-column mode. Rather than a blinking block, it uses an

underline character; like the normal cursor, it can move any

where on the screen. In fact, you can use all the cursor control

keys, just as you would normally, to insert or delete, home the

cursor, clear the screen, or create BASIC program lines.

Both uppercase/graphics and lower/uppercase modes are

supported in Screen-80, but you cannot toggle between these

modes with the SHIFT-Commodore key combination. Instead,

you can put the screen editor in lower/uppercase mode by

pressing the CTRL and N keys simultaneously, or by printing

CHR$(14). (You can do this either through a program, or in

direct mode. Simply type PRINT CHR$(14) in direct mode and

the display changes to lower/uppercase.) To return to

uppercase/graphics mode, print CHR$(142) to the screen,

again either through a program or in direct mode. These

methods affect only characters printed after these commands.

Thus, you may have both sets (for example, graphics and

p-i lowercase) on the screen at the same time for increased

t i programming flexibility.

You can change the color of the background, text, or bor-

j—I der by simply POKEing the appropriate color number into

1 i location 53281 (for the background), location 646 (for text), or

location 53280 (for the border). Changing text color changes

nthe color of all text on the screen. If you want to change the

background or text color during program mode, print a

CHR$(13) after POKEing the appropriate location. Since color

n „

n

u
2 Recreations and Applications

u

memory is fixed on the 64, it's impossible to have true 80- i j

column color. Therefore, Screen-80 does not recognize color 1—I
codes in PRINT statements as being any different from other

graphics characters. All printing to the screen uses the color (|

specified in location 646. 1 I

Graphics and Sound Routines , ,

Screen-80 can be used with sprites, high-resolution graphics, I I
and sound—just like the normal Commodore 64 screen. Since

this program actually uses a hi-res screen, you can also use it

for other graphics displays. You can even have text and hi-res

graphics on the screen at the same time. (Check your Com

modore 64 Programmer's Reference Guide for more detailed

information on how to plot points on the hi-res screen.)

To plot points (or do anything else) to the hi-res screen,

it's important to know how to POKE and PEEK to the screen.

The hi-res screen for Screen-80 is located at 57344 ($E000).

Since this screen memory shares addresses with ROM, you

may POKE graphics safely to the screen, but attempting to

PEEK from the screen will give you values from the ROMs.

To get the equivalent of PEEKing these screen locations, type

in and run the following routine. Make sure Screen-80 is al

ready in memory.

10 FORT= 49152TO49175:READE:POKET,E:NEXT:POKE785,0

:POKE786,192

20 DATA 32,247,183,120,162,53,134,1,160,0

30 DATA 177,20,162,55,134,1,88,168,169,0

40 DATA 32,145,179,96

Instead of using the normal PRINT PEEK (location), use:

PRINT USR (location)

The value returned is the content of the specified screen loca- Lj
tion. Technical note: This routine is completely relocatable. Sim

ply change the range of the FOR-NEXT loop and the values , (

POKEd into addresses 785 and 786 in line 10 to match the LJ
routine's new location. Notice that the values POKEd into 785

and 786 are in low byte/high byte format , >

Using sprites in Screen-80 requires that all sprite data be —I
kept within the same 16K block as the hi-res screen. Locations

49152 ($C000) to 53247 ($CFFF) are perfect places to put i i

sprite data. The sprite pointers for Screen-80 are located at *—f
53248 + 1016 (54264) to 53248+1023 (54271). To cause sprite

0 to get its data from 49152 ($C000), put a zero into location | t

44 ^

H
Recreations and Applications 2

I I

|—| 53248+1016 (54264). Since POKEs to this area of memory are

' normally intercepted by the I/O chip, you must disable inter

rupts and I/O to put a value into these locations. The follow-

r—i ing lines will put a sprite onto the 80-column screen. Type it

' I in and run it to see the effect

n

g p p

in and run it to see the effect.

10 V=53248

20 POKE V,100:POKE V+1,100

30 POKE V+39,2

40 POKE 56334,PEEK(56334)AND254

50 POKE 1,PEEK(1)AND251

60 POKE 53248+1016,0

70 POKE 1,PEEK(1)OR4

80 POKE 56334,PEEK(56334)OR1

90 POKE V+21,1

Creating sound from within Screen-80 is done exactly the

same way as from the normal screen. In fact, since you POKE

the information to the SID chip (in the I/O area) to create

sound, you don't have to disable interrupts or do any bank

switching, as was necessary for hi-res graphics or sprites. The

normal POKEs will do.

Using Other Programs with Screen*80

This program is designed to intercept any calls to the normal

Kernal PRINT routine ($FFD2). Software which bypasses this

routine or POKEs directly to the screen will not work correctly

with Screen-80. An example of a program which bypasses the

PRINT vector is the DOS wedge program (on the TEST/DEMO

disk which comes with Commodore's 1541 disk drives). Fortu

nately, this problem can easily be fixed by changing all

PRINTs to pass through the standard vector. The routine be

low, when used in place of the normal DOS boot program

("C-64 Wedge"), changes these references.

10 IF A=0 THEN A=1:LOAD"DOS 5.1",8,1

20 FOR 1=1 TO 7:READ A:POKEA,210:POKE A+1,255:NEXT

r~| 30 DATA 52644,52650,52712,52726,52752,52765,53075
11 40 SYS 52224

With these changes, the DOS support program will work with

| f Screen-80.

H

n

n

2 Recreations and Applications
u

u

Programs which depend on sprites should be avoided, as c \

should programs which move screen memory or otherwise I—'

change the normal configuration of the 64.

SpeedScript, COMPUTERS popular word processing pro- i i

gram, does not use the PRINT vector at $FFD2 to update the I—I
screen, so it's incompatible with Screen-80. Sorry.

Custom*80: Creating Your Own Character Set I I
Program 2, Custom-80, allows you to create your own charac

ter set for use with Screen-80. It's easy to use and requires a

joystick plugged into port 2.

Custom-80 "borrows" the character set from Screen-80

and then moves it to a safe location in memory for editing.

After editing, you can return the custom characters to the

Screen-80 program, or save your new character set to disk or

tape. Like Screen-80, it's in MLX format. After you've loaded

and run the MLX program, enter these two numbers for start

ing and ending addresses:

Starting address: 49152

Ending address: 51245

Then begin typing in Program 2. Once you're finished, save a

copy to tape or disk, turn your computer off, then on again.

To load Custom-80, type:

LOAD"CUSTOM-80",8,1 (for disk)

LOAD"CUSTOM-80",1,1 (for tape)

(This assumes you used CUSTOM-80 for the filename. Note

that Custom-80 requires the ,1 notation, unlike Screen-80.)

After loading Custom-80 into memory, type NEW to reset

the BASIC pointers. Next, load Screen-80 into memory and

type SYS 49152. This puts you in Custom-80 and, at the same ,

time, accesses the character set included with Screen-80. 1 I
The Screen-80 character set is displayed in the lower half

of the screen, where the character being edited is framed by a (-,

yellow cursor. In the upper-left corner of the screen, the 1 f
character is enlarged for editing; brief instructions are provided

to the right. j ,

Customizing Characters

You can choose which character you want to edit by moving

the yellow cursor around the bottom display using either the] |
joystick or the cursor keys. The cursor keys are faster. The

46 G

n
Recreations and Applications 2

["""I flashing blue square in the upper-left display indicates the cur

rent pixel in the character you are editing. To set the pixel,

press the fire button on the joystick. If it was blank, it be-

1"—I comes filled. Hitting the fire button again blanks the pixel.

Press SHIFT and CLR/HOME to clear all the pixels in the

character you're editing. (This will not affect the characters

f""j previously edited.) To home the cursor to the first character,

1 ' press CLR/HOME without pressing SHIFT.
You can copy a character from one position to another, by

pressing the f1 key to store the current character into the

buffer. Move the yellow cursor to the new position of the

character and press f7 to retrieve it from the buffer.

Pressing the S key saves the character set to tape or disk

as a short program file. It can be loaded back into memory by

hitting the the L key. When loading or saving, you'll first be

asked for the name of the file, then asked to press T for tape

or D for disk. If an error occurs during a disk operation, the

program will display the message.

If you wish to make the new character set a permanent

part of Screen-80, press X. This puts the redefined character

set back into Screen-80 and exits to BASIC. You can then save

the new version of Screen-80 to disk with the redefined

characters already in the program by entering:

SAVE"filename",* (for disk)

SAVE"filename",1 (for tape)

where filename is your new name for Screen-80. (You'll prob

ably want to scratch the old version of Screen-80 to prevent

any possible confusion.) The next time you run Screen-80,

you'll have your new character set in the program.

_ If you wish to use various character sets with Screen-80,

]J you should save the character sets to tape or disk with

Custom-80's S option, then load the individual character sets

rn by using Program 3 while in Screen-80. This program loads

(I the new character set into Screen-80 after it's activated. When

the program prompts you for the name of the character set

_ you want to load, enter the filename, comma, and the number

f I of the device you want to load the character set from. Use 8

for disk, 1 for tape.

One important note: You cannot SYS to Custom-80 from

[j Screen-80. You must press RUN/STOP-RESTORE to leave
Screen-80 before typing SYS 49152 to run Custom-80.

I I 47

u
2 Recreations and Applications

How It Works i |

First, Custom-80 performs a block memory move of the '—J
character set data from Screen-80 to location 12288 ($3000 in

hex). This is done to make it easier to display the character set j i

at the bottom of the screen. ^—'

Next, a raster interrupt splits the screen to show both the

redefined character set and the normal character set. The t i

instructions and the enlarged character are printed on the top *—'

half of the screen. The enlarged character is a 4 X 8 matrix of

reverse SHIFT-Os. Before entering the main loop, all variables

are initialized.

The main loop has two major routines. The first one

checks the joystick and keyboard. If a key is pressed, the

appropriate flag is set. Pressing X sends the program to the

routine that moves the character set back into Screen-80. The

S key saves a character set, while the L key loads a character

set.

The second routine prints the enlarged character on the

screen. If any flags were set, this routine handles them. It

takes care of the save-to-buffer routine, the get-from-buffer

routine, the clear-character routine, and the routine that han

dles the flashing of the blue cursor in the enlarged character.

Program 1. Screen*80
For easy entry of the next two machine language programs, be sure to use "The Machine

Language Editor: MIX," Appendix D.

49152 :011,008,000,000,158,050,227

49158 :048,054,049,000,000,000,157

49164 :160,044,185,065,008,153,115

49170 :198,002,136,192,255,208,241

49176 :245,160,000,169,160,133,123

49182 :252,132,251,169,008,133,207 ,

49188 :254,169,109,133,253,177,107 j j
49194 :253,145,251,200,208,249,068

49200 :165,252,201,173,240,007,062

49206 :230,254,230,252,076,042,114 } i

49212 -.008,076,198,002,169,054,055 (—>

49218 :133,001,032,000,160,169,049

49224 :055,133,001,096,072,169,086

49230 :054,133,001,104,032,028,174 ji

49236 :162,072,169,055,133,001,164

49242 :104,096,072,169,054,133,206

49248 :001,104,032,148,161,072,102 j j

49254 :169,055,133,001,104,096,148 1—1
49260 :169,090,141,250,255,169,158

49266 :169,141,251,255,173,002,081 {

48 . U

n

n

n

Recreations and Applications 2

n

n

n

n

49272 :221,009,003 ,141,002 ,221, 205

49278 :169,252,045,000,221,141,186

49284 :000,221,169,032,013,017,072

49290 :208,141,017,208,169,072,185

49296 :141,024,208,169,000,141,059

49302 :244,173,169,011,141,134,254

49308 :002,169,000,141,243,173,116

49314 :133,212,141,236,173,169,202

49320 :015,141,033,208,169,015,237

49326 :141,032,208,032,244,160,223

49332 :032,003,164,169,210,141,131

49338 :038,003,169,002,141,039,066

49344 :003,169,226,141,036,003,002

49350 :169,002,141,037,003,032,070

49356 :099,160,096,160,000,185,136

49362 :116,160,141,227,173,032,035

49368 :042,162,200,192,129,208,125

49374 :242,096,147,013,029,029,010

49380 :029,029,029,029,029,029,146

49386 :029,029,029,029,029,029,152

49392 :029,029,029,029,029,029,158

49398 :029,029,029,029,056,048,210

49404 :032,067,079,076,085,077,156

49410 :078,083,032,070,079,082,170

49416 :032,084,072,069,032,067,108

49422 $079,077,077,079,068,079,217

49428 :082,069,032,054,052,017,070

49434 .-017,157,157,157,157,157,060

49440 :157,157,157,157,157,157,206

49446 :157,157,157,157,157,157,212

49452 :157,157,157,157,157,066,127

49458 :089,032,071,082,069,071,208

49464 :071,032,080,069,069,076,197

49470 :069,017,017,157,157,157,124

49476 :157,157,157,157,157,157,242

49482 :157,157,157,157,157,157,248

49488 :065,078,068,032,075,069,211

49494 :086,073,078,032,077,065,241

49500 :082,084,073,078,160,000,057

49506 :173,033,208,041,015,170,226

49512 :173,134,002,010,010,010,187

49518 :010,141,237,173,138,013,054

49524 :237,173,032,058,169,153,170

49530 :000,208,153,000,209,153,077

49536 :000,210,200,008,032,074,140

49542 :169,040,208,216,160,231,134

49548 :032,058,169,153,000,211,251

49554 :032,074,169,136,192,255,236

49560 :208,242,096,072,169,001,172

49566 :141,244,173,104,032,042,126

49

2 Recreations and Applications

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

49806

49812

49818

49824

49830

49836

49842

49848

49854

49860

49866

:162

:165

:180

:162

:230

:208

:208

:169

:145

:079

:177

:136

:160

:165

:133

:176

:165

:173

:190

:102

:169

:145

:062

:165

:169

:215

:006

:009

:208

:032

:132

:169

:166

:166

:032

:074

:104

:208

:072

:004

:213

:152

:032

:104

:173

:208

:173

:032

:076

,229,

,009,

,236,

,247,

,209,

,177,

,251,

,132,

,209,

,208,

,000,

,202,

,211,

,094,

,009,

,133,

,161,

,241,

,177,

,251,

,161,

,208,

,164,

,032,

,215,

,128,

,004,

,074,

,230,

,000,

,153,

,154,

,042,

,169,

,168,

,002,

,165,

,104,

,241,

,072,

,235,

,068,

,170,

,227,

,006,

,096,

,144,

,194,

000,141

240,252

201,131

120,134

157,118

240,228

160,007

251,077

032,074

208,032

201,032

244,200

132,211

048,060

197,200

165,153

133,202

201,133

032,074

160,007

251,077

032,074

152,072

240,230

211,177

074,169

036,215

144,004

112,002

169,230

196,200

133,208

224,003

224,003

162,169

133,215

165,215

169,255

154,201

076,042

072,141

138,072

173,032

168,032

104,168

173,032

169,001

173,227

003,076

162,201

,244,173,029

,120,032,153

,208,016,117

,198,189,226

,002,202,109

,201,013,051

,032,058,106

,223,173,252

,169,160,019

,058,169,128

,208,003,030

,132,200,070

,132,212,059

,165,202,060

,144,052,161

,208,014,040

,173,222,140

,214,076,172

,169,076,206

,032,058,110

,223,173,074

,169,076,013

,138,072,185

,032,058,211

,209,133,091

,041,063,140

,016,002,042

,166,212,221

,009,064,219

,211,032,062

,208,026,056

,169,013,018

,240,006,124

,240,003,128

,013,032,050

,104,170,215

,201,222,175

,024,096,116

,003,208,171

,162,076,094

,227,173,191

,169,000,245

,070,162,205

,146,168,012

,104,096,150

,132,230,121

,141,235,176

,173,201,209

,097,162,198

,096,176,083

u

u

u

u

u

u

u

u

50

n

n

n

n

n

Recreations and Applications 2

n

n

n

n

n

49872 :023,201,064,176,003,076,239

49878 :174,162,201,128,240,082L111

49884 :056,173,227,173,233,064,122
49890 :141,227,173,076,174,162,155

49896 :201,127,144,009,240,044,229

49902 :201,160,144,060,076,149,004
49908 :162,056,173,227,173,233,244

49914 :032,141,227,173,076,174,049
49920 :162,201,192,176,012,056,031

49926 :173,227,173,233,064,141,249
49932 :227,173,076,174,162,024,080

49938 :173,227,173,105,128,141,197
49944 ;227,173,173,243,173,240,229

49950 :004,206,243,173,096,173,157
49956 :241,173,208,005,169,000,064

49962 :141,242,173,096,173,243 f 086

49968 :173,005,212,240,035,173,118

49974 :227,173,201,032,176,041,136

49980 :201#013,240,110,201,020,077

49986 :240,004,165,212,208,013,140

49992 :173,243,173,208,008,169,022

49998 :001,141,235,173,076,078,014
50004 :163,076,028,163,173,241,160

50010 :173,208,005#169,000,141,018

50016 :242,173,076,066,163,173,221

50022 :227,173,201,141,240,066,126

50028 :201,148,208,012,165,212,030

50034 :208,008,169,001,141,240,113

50040 :173,076,066,163,056,173,059

50046 :227,173,233,064,141,227,167

50052 :173,076,028,163,173,243,220

50058 :173,208,017,169,000,141,078

50064 :243,173,165,212,208,011,132

50070 :169,000,141,242,173,076,183

50076 :058,163,206,243,173,169,144

50082 :001,141,242,173,169,000,120

50088 :141,235,173,076,186,163,118

50094 :169,001,141,235,173,169,038

50100 :000,141,240,173,133,212,055

50106 :173,227,173,201,032,176,144

50112 :102,201,008,208,005,160,108

50118 :128,140,145,002,201,009,055

50124 :208,005,160,000,140,145,094

50130 :002,201,013,208,005,072,199

50136 .-032,053,165,104, 201,014,017

50142 :208,005,160,001,140,236,204

50148 :173,201,017,208,008,238,049

50154 .-222,173,072,032,206,164,079

50160 :104,201,018,208,008,160,171

50166 .-001,140,242,173,140,241,159

51

2 Recreations and Applications

50172 :173,201,019,208,017,160,006

50178 :000,132,009,140,222,173,166

50184 :072,032,206,164,169,240,123

50190 :141,223,173,104,201,029,117

50196 :208,007,230,009,072,032,066

50202 :210,164,104,201,020,208,165

50208 :005,072,032,092,165,104,246

50214 :096,201,141,208,005,072,249

50220 :032,053,165,104,201,142,229

50226 :208,005,160,000,140,236,031

50232 :173,201,145,208,008,206,229

50238 :222,173,072,032,206,164,163

50244 :104,201,146,208,008,160,127

50250 :000,140, 242,173,140, 241, 242

50256 :173,201,147,208,005,072,118

50262 :032,003,164,104,201,148,226

50268 :208,005,072,032,080,166,143

50274 :104,201,157,208,007,198,205

50280 :009,072,032,210,164,104,183

50286 :096,032,058,169,169,000,122

50292 :133,251,169,224,133,252,254

50298 :169,000,141,225,173,141,203

50304 :226,173,141,036,164,169,013

50310 :224,141,037,164,169,000,101

50316 :170,168,138,153,255,255,255

50322 :136,208,249,238,037,164,154

50328 :173,037,164,201,255,208,166

50334 :239,160,064,169,000,153,175

50340 :000,255,136,016,250,169,222

50346 :000,133,009,141,222,173,080

50352 :169,240,141,223,173,173,015

50358 :244,173,240,006,160,007,244

50364 :169,240,145,251,162,024,155

50370 :024,189,196,169,105,212,065

50376 :141,107,164,189,170,169,116

50382 :141,106,164,169,032,160,210

50388 :079,153,255,255,136,192,002

50394 :255,208,248,202,224,255,074

50400 :208,224,032,210,164,032,070

50406 :074,169,096,169,000,141,111

50412 :226,173,165,009,074,010,125

50418 :046,226,173,010,046,226,201

50424 :173,010,046,226,173,141,249

50430 :225,173,172,222,173,185,124

50436 :118,169,133,251,024,185,116

50442 :144,169,109,226,173,133,196

50448 :252,024,173,225,173,101,196

50454 :251,133,251,169,000,101,159

50460 : 252,133, 252,02.4,165,252,082

50466 :105,224,133,252,165,009,154

u

u

u

u

u

u

u

52

Recreations and Applications 2

n

n

! i

50472 :041,001,240,008,169,015,002

50478 :141,223,173,076,205,164,004

50484 :169,240,141,223,173,096,070

50490 :169,255,133,202,165,009,223

50496 :133,211,048,014,201,080,239

50502 :144,021,169,000,133,009,034

50508 :238,222,173,076,241,164,166

50514 :230,009,206,222,173,048,202

50520 :024,169,079,133,009,173,163

50526 :222,173,133,214,048,013,129

50532 :201,025,144,012,206,222,142

50538 :173,032,135,167,076,008,185

50544 -.165,238,222,173,169,001,056

50550 :141,234,173,173,244,173,232

50556 :240 ,015,160,007,032,058,124

50562 :169,177,251,077,223,173,176

50568 :145,251,032,074,169,174,213

50574 :222,173,189,170,169,133,174

50580 :209,024,189,196,169,105,016

50586 :212,133,210,032,168,168,053

50592 :096,238,222,173,169,000,034

50598 :133,009,141,243,173,141,238

50604 :242,173,141,241,173,032,150

50610 :210,164,173,033,208,041,239

50616 :015 ,205 ,246,173 , 240,003 ,042

50622 :032, 244,160,173,033, 208,016

50628 :141,246,173,096,032,058,174

50634 :169,169,001,141,244,173,075

50640 :165,009,208,003,076,066,223

50646 :166,160,007,177,251,077,028

50652 :223,173,145,251,056,165,209

50658 :251,233,008,133,253,165,245

50664 :252,233,000,133,254,165,245

50670 :009,041,001,208,025,160,170

50676 :007,177,251,041,240,074,010

50682 :074,074,074,141,228,173,246

50688 :177,253,041,240,013,228,184

50694 :173,145,253,136,016,233,194

50700 :172,222,173,200,024,185,220

50706 :144,169,105,224,141,238,015

50712 :173,056,185,118,169,233,190

50718 :001,141,230,173,173,238,218

50724 :173,233,000,141,231,173,219

50730 :169,008,141,229,173,160,154

50736 :004,173,230,173,141,222,223

50742 :165,173,231,173,141,223,136

50748 :165,056,169,080,229,009,000

50754 :074,105,000,170,024,008,191

50760 :040,046,255,255,008,056,220

50766 :173,222,165,233,008,141,252

53

2 Recreations and Applications

50772

50778

50784

50790

50796

50802

50808

50814

50820

50826

50832

50838

50844

50850

50856

50862

50868

50874

50880

50886

50892

50898

50904

50910

50916

50922

50928

50934

50940

50946

50952

50958

50964

50970

50976

50982

50988

50994

51000

51006

51012

51018

51024

51030

51036

51042

51048

51054

51060

51066

54

:024,165,254,105,224,133,091

:254,160,007,177,253,041,084

:015,240,003,076,116,167,071

: 136,016,244,160,007,177,200

u

u

u

LJ

U

n

n

H

i

I 1

\

n

n

[t

n

51072

51078

51084

51090

51096

51102

51108

51114

51120

51126

51132

51138

51144

51150

51156

51162

51168

51174

51180

51186

51192

51198

51204

51210

51216

51222

51228

51234

51240

51246

51252

51258

51264

51270

51276

51282

51288

51294

51300

51306

51312

51318

51324

51330

51336

51342

51348

51354

:251,

:010,

:041,

:253,

:251,

:177,

:245,

:005,

:032,

:174,

:133,

:105,

:079,

:177,

:136,

:169,

:169,

:074,

:080,

:096,

:141,

:105,

:000,

:255,

:167,

:167,

:000,

:200,

:000,

:248,

:133,

:133,

:169,

:196,

:167,

:249,

:105,

:008,

:153,

:238,

:202,

:170,

:189,

:030,

:153,

:208,

:127,

:220,

51360

51366 :160,

041,015

141,228

015#013

177,251

136,016

251,077

173,173

173,245

210,164

222,173

253,024

212,133

229,009

253,200

202,224

032,164

000,141

169,173

240,003

032,058

158,167

001,141

185,064

200,208

238,158

201,255

160,000

208,250

255,136

056,165

251,165

252,162

141,246

169,105

202,189

167,024

212,141

160,000

255,255

247,167

208,238

169,141

196,169

168,169

255,255

248,032

141,000

201,251

000,220

000,234

,173,

,228,

,041,

,227,

,223,

,244,

,173,

,032,

,189,

,189,

,254,

,170,

,145,

,255,

,009,

,234,

,243,

,238,

,169,

,024,

,155,

,255,

,247,

,167,

,208,

,153,

,160,

,192,

,251,

,252,

,001,
,167,

,212,

,170,

,189,

,250,

,185,

,200,

,238,

,162,

,029,

,105,

,032,

,136,

,074,

,220,

,008,

,040,

,202,

Recreations and Applications 2

010,010,209

177,253,092

173,145,243

240,145,229

160,007,181

173,141,176

173,240,132

145,251,138

058,169,073

170,169,255

196,169,128

056,169,099

160,078,157

253,136,090

208,244,201

145,253,222

173,032,205

173,201,239

243,173,189

169,224,222

169,224,107

167,160,215

153,000,149

238,155,033

173,155,050

234,169,232

000,254,083

192,153,173

255,208,062

233,064,039

233,001,063

189,170,197

024,189,232

141,247,116

169,141,090

196,169,052

167,162,101

255,255,189

208,247,138

250,167,133

024,189,111

168,024,051

212,141,112

160,079,000

192,255,102

169,169,018

173,001,042

169,127,106

208,009,010

208,252,198

55

Z
I

Z
I

Z
I

Z
I

Z
l

Z]
Z
I

Z
J

Z
I

Z
l

a
,

•
r
r
)
0
)
r
«
*
»
H
^
'
i
n
^
i
O
N
O
O
B
)
r
o
^
*

»
r
o

^
*
r
o

o
n
m

c
o

o
n
^
*

r*»
o
n

i
s

i—i
i—i

c
o

i
H

v
o
o
n
g
o

»
h

_
.

_
.

_
.
^
.
.

.
.
.

.
.

.
j
c
>
J
r
-
c
M
i
a
^
^
v
o
r
^
c
M
G
>
c
N
^
B
)
c
o
(
a
o
N
v
o
(
s
>
i
^

ctf
o
n

o
n
i
s
c
o

^
^

'sj*
^
*
c
o
o
n

o
n
g
o
c
o

c
o

c
o

is)
o
o

c
^
^
*

^j*
IS)

i
n
"
^

^J1
c
o

c
o

5
)

^
*

c
o

c
o

o
o

r*^
o
o
i
n

i
^

c
o
^
*

c
o
i
n
o
i

c
o

i
n

c^i
^l*

c
o

^
*

o
n
^
*

caj
o
j

v
o

^
^
^
a
o
^
^
n
o
(
N
a
)
f
o
^
a
o
^

^
^

O
»

i
l
l
^
Q

C
^
l
^
T
1
^

\
9
9

«
•
#
C
W

"
f

^
T

I
I
I
U
)

w
"

^
5
}
^
y

C
^
|

\
\
|

Q
j
f
^
^
U
)

I
»
^

•
^
v

^
^

I
I
I

I
U

I
1
^
1

^
9
l

I
^
A
C
^
"

*
^
*

I
"
^
'

^
1

1
\
d
l

\
«
r
w
*

^
|

•
*

I
W

*
^

\
A
^

*
*

\
d
v

^
^*

*
^
3

^
^
c
^

^
4
^
n

o
n

r**
(S)

c
o
^
*
c
o

v
o

^
h

^
h

o
n

v
o

c
^
o

c
^
t
s
i
n

r***
^
*

^i*
c
o
?
s

i
s

o
n

i
n

o
n

r**
S
)

^
*
c
o
i
s

c
o

r*^
v
o

c^j
c
^

^
o
o

o
n

(
s

o
n

c^j
^
*

S
)

c^J
o
n

o
\

fi
^
*
c
o
^
*
^
*

v
o
^
^

^
h

c
o

^
h

c
o

f*»
(S)

(
s

v
o

^
h

c
o

c
o

c
o
v
o
S
)

f***
c^i

r**
p**

^
*

^
^

v
o

S
)

^
*
S
)

^?l*
c
o

r**
^
*

^
^

^
J

*~^
^
^
^
*

v
o

i
n

v
o

c^j
v
o

r**
^
^

o
j

t*^
v
o

v
o

d
C
^

(
S
6
)

r
H

^
H
C
^

(S)
^
^
S
)

r
^

S
)

r
^

^
H

*~4
IS)

S
)

C
^

IS)
^
H

IS)
^
H

O
)

IS)
r
^

C^)
S
)

*
^

IS)
tS)

S
)

CA]
C^)

i-H
C^J

n
H
O
J

(S>
f^J

C
N

^
H

IS)
^
H

C
N

^
H

(S)
S
)

C^l
vS)

r
H

»
^

J
S

0
0
^
C
0
l
O
0
0
C
0
^
^
<
X
)
C
0
^
C
>
J
i
H
^
C
X
)
C
0
^
V
O
0
N
(
S
0
0
^
^
0
0
l
f
)
O
C
0
0
0
i
n
C
N
C
0
^
r
H
C
0
O
J
r
^

C^
V
O
C
O

t***
O
N
m

C
O
0
0

0
0
C
O

i
H

r
H
O
N

O
N

C
N

C
O

^
*

^
*

^
*
C
O
C
O

r
H
C
O

0
0
i
H

r
H

C
O

0
0

C
O

C
O
C
O
^
*

C
O

^
*

C
N

C
O
0
0

r
H

C
O

IS)
O
N

C
O
C
^
l
C
O
^
*
^
*
i
H
f
—
I
O
I
O
N

C
N

0
)

I
0
0

^
*
5
)

v
O

C
^

C
O

^
*

S
)

V
O

C
^
0
0

^J*
(S)

V
O
<
N

0
0
^

5
)

V
O

C^J
0
0

^
*

S
)

V
O

C^l
0
0
^
*

(S)
v
O

i
O
N
Q
r
H
»
H
C
>
J
C
N
l
C
0
r
t
l
^
i
n
i
n
v
O
f
^
r
^
0
0
C
0
O
N
S
)
S
)
r
H
i
H
C
v
j
C
0
C
0
^
'
^
'
i
n
v
O
V
O

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

v
£
)

i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n

m

•
C
M
^
C
M
C
M
C
M
C
M
O
O
V
O
C
N

|
C
O
G
>
C
N
^
*
G
>
C
N
V
O
G
)
O
N

170,104,169,032,

064,064,104,168,:104,

192,128,064,192,:128,

064,192,128,064,:000,

192,128,064,000,192,

064,

006,

000,192,128,064,:000,

003,002,001,:000,

013,012,011,010,008,:007,

021,
'030

018,017,016,:015,

028,027,
'930

023,:022,

240,160,080,031,:030,

208,128,048,224,144,:064,

176,
'960

016,

144,064,240,

CMG>ONVOiHrH
112,:032,

080,:000,

000,128,048,:224,

002,001,001,001,000,

i
004,003,003,003,,002,:002,

005,005,005,004,:004,

007,007,007,006,:006,

138,138,174,170,170,:068,

200,,168,,170,196,,000,:106,

168,

,000,

,206,196,,170,:168,
'903'

,168,168,,174,

138,,138,,234,136,138,:228,

228,164,,164,174,000,:132,

042,,234,
'000'

174,164,:164,

,000,,074,,170,042,,044,:042,

138,

,170,

,138,,138,142,,142,:138,

,170,,170,
'903

,000,:234,

,170,,196,,000,174,,170,:170,

,002,,132,

,162,,162,

138,,202,:170,

168,,168,
'861:

,074,,074,074234,000,:172

,170,,170,,000,

,000,,074,,174

,074,:074

,170,

,164,

,068,

074,,170,:170

,036230,000,:164

,162,,070,,000230,,132,:068

,000,,230,130130,,194,:130

,034,,036,,047,036,,114,

,004,,004,,004,004,,032,

,170,,160,
'000'

004,,000,:004,

,000,
'000'

,010,
,232,,036,,228,

,010,:014,

,226,:074,

,064,,164,,162,
'990

,000,:074

,068,

,000,

,016096,,160,:160

,068130rl30,:130

rl60,r068r238
890

rl60,:000

r014.r000,000000
'000'

:000

r001,r001,064032
'960'

C
N
(
B
^
G
>
V
O
C
N
C
J
0
^
G
,
V
O
C
N
G
0
^
G
>
v
O
C
M
(
D
t
*
G
>
V
O
C
N
(
»
^
G
>
V
O
C
M
(
B
5
*
®

^
^
(
D
O
^
o
^
Q
Q
H
(
^
J
N
(
n
f
o
^
l
n
l
n
v
o
v
o
^
c
o
c
)
O
o
^
o
^
Q
H
H
C
^
J
c
>
^
n
^
^
l
n
l
n
v
o
^
^
(
X
)
a
)
C
^
Q
Q
H
H
(
^
I
^
o
^
o
^
^
l
n
o
^

v
o
v
o
v
o
v
o
v
o
r
>
t
^
r
^
i
^
t
^
c
^
f
^
r
^
t
^
t
^
i
^
r
>
t
^
r
^
r
^
r
^
r
^
c
x
)
<
B
o
o
c
o

i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n

c
:
d

c
f:

c
.
d

c
ri:

t:

2 Recreations and Applications

51972

51978

51984

51990

51996

52002

52008

52014

52020

52026

52032

52038

52044

52050

52056

52062

52068

52074

52080

52086

52092

52098

52104

52110

52116

52122

52128

52134

52140

52146

52152

52158

52164

52170

52176

52182

52188

52194

52200

52206

52212

52218

52224

52230

52236

52242

52248

52254

52260

52266

58

:002,006,004,008,072,000,096

:068,172,164,164,164,164,138

:078,000,078,162,036,066,180

:130,138,228,000,174,168,092

:238,034,034,042,038,000,158

-.078,162,130,196,164,168,164

:072,000,068,170,170,070,078

:162,164,072,000,000,000,188

:068,000,000,068,004,008,200

:016,032,078,128,078,032,166

:016,000,132,074,034,020,084

:036,064,132,000,004,004,054

:014,254,010,004,014,000,116

:032,032,032,047,032,032,033

:032,032,000,015,240,000,151

:000,000,000,000,004,004,102

: 004,004,004,004,244,004,108

:032,032,032,044,038,034,062

:034,034,034,034,054,028,074

:000,000,000,000,136,136,134

:132,132,130,130,129,241,250

.-031,024,040,040,072,072,153
:136,136,240,016,022,031,205
:031,022,016,016,000,009,236

:015,015,015,006,240,000,183

:064,064,064,065,067,066,032

:066,066,144,144,102,105,019

:105,102,144,144,098,098,089

:146,146,098,098,242,002,136

.-002,066,066,239,226,066,075

:066,002,066,130,066,130,132

:066,130,066,130,015,007,092

:023,099,163,163,161,001,038

:012,012,012,012,012,012,018

:012,012,015,000,000,000,247

:240,240,240,240,008,008,166

:008,008,008,008,00&,248,252

:161,081,161,081,161,081,184

:161,081,015,014,012,012,015

:172,088,168,088,050,050,086

.-050,051,050,050,050,050,033

:002,002,002,003,048,048,099

:048,048,000,000,000,2 24,064

:032,032,047,047,002,002,168

:002,063,032,032,032,032,205

:002,002,002,254,034,034,090

:034,034,140,140,140,140,140

:140,140,140,140,063,063,204

: 048,048,048,048,048,048,068

: 240, 240, 240,000,000,015,009

u

LJ

U

u

LJ

LJ

U

u

n

n

H

n

Recreations and Applications 2

n

H

H

52272 :015,015,016,016,016,016,142

52278 :028,028,028,252,050,050,234

52284 :050,062,000,000,000,000,172

52290 :204,204,204,204,003,003,120

52296 :003,003,064,160,172,162,124

52302 :142,138,110,000,128,128,212

52308 :198,168,168,168,198,000,216

52314 :032,032,100,170,174,168,254

52320 :102,000,032,064,068,234,084

52326 :074,070,066,004,128,132 ,064

52332 :192,164,164,164,164,000,188

52338 :008,040,010,042,044,042,044

52344 :170,064,192,064,074,078,250

52350 :078,074,234,000,000,000,000

52356 .-196,170,170,170,164,000,234

52362 :000,000,198,170,170,198,106

52368 :130,130,000,000,206,168,010

52374 :142,130,142,000,000,064,116

52380 :234,074,074,074,078,000,178

52386 :000,000,170,170,174,174,082

52392 :074,000,000,000,170,170,070

52398 :070,162,162,012,006,004,078

52404 :228,036,068,132,230,000,106

52410 :070,162,130,194,130,130,234

52416 :230,000,032,114,036,047,139

52422 :036,034,032,032,004,004,084

52428 :004,004,004,000,004,000,220

52434 sl60,170,014,010,014,010,076

52440 :000,000,074,226,132,228,108

52446 :036,232,074,000,066,162,024

52452 :164,064,160,160,096,016,120

52458 :040,068,130,130,130,068,032

52464 :040,000,000,160,068,238,234

52470 :068,160,000,000,000,000,218

52476 :000,014,000,096,032,064,202
5 2482 :001,001,002,006,004,008,024

52488 :072,000,068,172,164,164,136

52494 :164,164,078,000,078,162,148

52500 :036,066,130,138,228,000,106

52506 :174,168,238,034,034,042,204

52512 :038,000,078,162,130,196,124

52518 :164,168,072,000,068,170,168

52524 :170,070,162,164,072,000,170
52530 :000,000,068,000,000,068,186

52536 :004,008,016,032,078,128,066
52542 :078,032,016,000,132,074,138

52548 :034,020,036,064,132,000,098
52554 :004,010,010,254,010,010,116

52560 :010,000,196,170,168,200,056
52566 :168,170,196,000,206,168,226

59

2 Recreations and Applications

52572 :168,174,168,168,206,000,208

52578 :228,138,136,234,138,138,086

52584 :132,000,174,164,164,228,198

52590 :164,164,174,000,234,042,120

52596 :042,044,042,170,074,000,232

52602 z138,142,142,138,138,138,190

52608 :234,000,206,170,170,170,054

52614 :170,170,174,000,196,170,246

52620 :170,202,138,138,132,002,154

52626 :198,168,168,196,162,162,176

52632 :172,000,234,074,074,074,012

52638 :074,074,078,000,170,170,212

52644 :170,170,174,174,074,000,158

52650 :170,170,074,068,068,164,116

52656 :164,000,226,034,066,079,233

52662 :066,130,226,002,066,130,034

52668 :066,130,066,130,066,130,008

52674 :082,169,084,162,089,164,176

52680 :082,169,012,012,012,012,243

52686 :012,012,012,012,015,000,013

52692 :000,000,240,240,240,240,148

52698 :008,008,008,008,008,008,010

52704 :008,248,161,081,161,081,196

52710 :161,081,161,081,004,009,215

52716 :002,004,169,082,164,089,234

52722 :050,050,050,051,050,050,031

52728 :050,050,002,002,002,003,101

52734 :048,048,048,048,000,000,190

52740 :000,224,032,032,047,047,130

52746 .-002,002,002,063,032,032,143

52752 :032,032,002,002,002,254,084

52758 :034,034,034,034,140,140,182

52764 :140,140,140,140,140,140,100

52770 :063,063,048,048,048,048,096

52776 :048,048,240,240,240,000,088

52782 :000,015,015,015,000,032,123

52788 :032,032,172,108,044,012,196

52794 :050,050,050,062,000,000,014

52800 :000,000,204,204,204,204,112

52806 :003,003,003,003,000,013,095

Program 2

49152 :169

49158 :132

49164 :179

49170 :018

49176 :253

49182 :000

49188 :208

Custom

,000,032

,133,178

,169,075

,133,252

,169,048

,177,251

,249,230

80

,144,255

,169,003

,133,251

,169,000

,133,254

,145,253

,252,230

,169,001

,133,242

,169,220

,133,211

,160,017

,200,032

,254,179

u

u

60

H

n

n

n

n

Recreations and Applications 2

H

n

n

H

49194

49200

49206

49212

49218

49224

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

49302

49308

49314

49320

49326

49332

49338

49344

49350

49356

49362

49368

49374

49380

49386

49392

49398

49404

49410

49416

49422

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

:003,160,003,169,132,153 , 2 J4

:064,003,200,200,200,192,223

:026,144,246,032,073,199,090

.-032,159,192,032,198,194,183

>,207,032,210,255,173,042

2,195,041,004,240,005,161

>,001,076,039,193,169,167

:i0K>0, 232,032,146,193,141,014

:134,002,169,207,032,210,030

:255,173,162,195,041,002,110

:240,005,169,001,076,06 5,100

:169

:000

:134

:193

:193

:032

:041

61

K
>
t
O
M
Q
G
)
V
O
v
O
0
0
^
^
O
N
O
N
c
^

N
i
M
G
l
H
^
G
i
Q
M
M
M

n
>
l
H
>
l
W
W
P
O
O
W
W
U
l
Q
W
H
Q
U
l
H
l
O
t
O
U
l
W
v
O
t
O
^

P

Q
G
)
t
O
G
i
t
O
G
>
G
i
M
M
M
M
M
M
Q
M
Q
M
M

Q
*

G
a
t
O
W

S

Q
Q
G
i
t
O
M
W
M
M
M
M
M
M
M
Q
t
O
M

P
Q
(
S
^
v
O
O
J
O
O
J
^
H
H
U
V
O
0

3

Q
G
*
t
O
M
M
W
M
M

^

C
O
M
0
^

^

t
O
G
i
G
l
W
M
Q
M
W
M
Q
M
M
M
Q
M
M

P
?

Q
O
^
t
O
^

P

Q
M
Q
i
a
M
H
i
a
S
I
H
H
H
Q
B
I
H
H
Q
Q
H
H
G
I
I
O

O

U
1
®

C
D

c
c

c
c;

n
c

c
c

c

n
Recreations and Applications 2

H

n

n

n

n

H

49794

49800

49806

49812

49818

49824

49830

49836

49842

49848

49854

49860

49866

49872

49878

49884

49890

49896

49902

49908

49914

49920

49926

49932

49938

49944

49950

49956

49962

49968

49974

49980

49986

49992

49998

50004

50010

50016

50022

50028

50034

50040

50046

50052

50058

50064

50070

50076

50082

50088

:060,003,206,160,195,173,159

:060,003,201,004,208,008,108

:169,000,141,060,003,238,241

: 160,195,173,061,003,201,173

:255,208,014,169,007,141,180

:061,003,173,160,195,056,040

: 233 ,064,141,160,195,173 ,108

:061,003,201,008,208,014,155
:169,000,141,061,003,173,213

:00b,Ib9,001,141,172,195,00b

:096,201,136,208,006,169,144

:001,141,173,195,096,201,141
• fflQQ OI7IQ aOlA OnO IOC 1Q7 O/C

:252,230,254,165,252,201,224

:023,208,239,000,000,000,114

:000,000,000,000,000,000,162

:000,000,000,000,000,000,168

63

2 Recreations and Applications

50094

50100

50106

50112

50118

50124

50130

50136

50142

50148

50154

50160

50166

50172

50178

50184

50190

50196

50202

50208

50214

50220

50226

50232

50238

50244

50250

50256

50262

50268

50274

50280

50286

50292

50298

50304

50310

50316

50322

50328

50334

50340

50346

50352

50358

50364

50370

50376

50382

50388

64

:158,029,029,029,029,029,221

:029,029,029,029,029,029,098

:029,029,029,029,029,067,142

:085,083,084,079,077,045,133

:056,048,013,144,029,029,005

:029,029,029,029,067,076,207

:082,082,069,078,084,032,137

:067,072,065,082,065,067,134

:084,069,082,013,029,029,028
.moo «oo oioo moo fl7 0 0I7Q ot;i

:032,067,079,078,084,082,110

:079,076,083,032,067,085,116

.•082,083,079,082,032,077,135

u

u

u

u

u

u

3
□

3
G

3
3

J
3

Z
]

3

u
i
c
n
u
i

t
O
H
H
G
Q
S
t
O
H
Q
H
t
O
H
H
H
H
H
H
l
S
i
O

Q
&
t
O
M
G
l
M
t
O
I
-
'
M
H
'
S
M
l
-
'
G
l
G
t
G
l
G
l
G
k
Q
Q
G

(
S
Q

G
)

<S
)
Q
Q

5
1

O
U
1
<
^
0
\
U
}
Q
Q
U
1
(
M
j
G
>
U
J
(
^
U
)
(
^
V
O
O
[
)
0
>
i
^
h

v
O
C
*
*
C
n
O
N
W
<
y
i
O
J
^
O
O
v
O
S
l
^
J
V
O
U
)
'
J
O
O
<
^
U
)
0
^
t
O
<
^
C
y
>
<
^
0
0
<
>
J
t
o
O
O
'
J

Q
t
O
t
O
U
i
V
O
t
O
t
O
G
)
Q
U
i
t
O
t
O
V
O
^
(
S
U
)
V
O
v
O
^
V
O
Q
(
J
i
O
N
t
O
L
n
t
O
t
O
V
O
^
Q
v
D
O
O
Q
^
O
O
t
O

W
Q
H

N
)
t
O
H
<
^
Q
(
A
)
v
O
v
O
(
^
Q
0
0
D
O
M
-
l
0
0
<
S
U
i
0
0
O
N
0
0
^
O
J
V
O
v
O
O
\
O
O
O
O
O
O
U
i
t
O
t
O
H
l
O
O
i
^
O
O
v
O
O
O
t
J
U
i
V
O
O
O
<
>
J
t
O
Q
C
n
v
O
O
J
O
N

I
t
O
M
Q
M
Q
t
O
Q
M
t
O
M
Q
Q
l
-
i
i
-
'
M
M
M
Q
t
O
l
O
I
O
G
l
H
l
O
H
Q
S
l
H
H
H
H
Q
H
l

v
O
>
l
Q
U
)
H
Q
a
M
n
(
S
)
i
^
Q
>
]
O
O
U
}
a
}
Q
O
t
O
H
O
>
^
N
l
O
M
J
t
O
>
J

O
O
C
^
M
t
O
C
^

a
S
S
l
S
B
l
l

M
O
I
f
l
0
O
l
O
I
(
S
l
t
O
M
J
Q
»
^
W
V
O
W
^
l
g
J

., I
O
N

U
n

~
3

ZJ
U

I
]

Z
)

Z
3

Zl
D

§8

f
n
c
*
v
o
c
*
^
r
H
O
O
C
N
C
*
c
o
G
>
^

H
^
^
S
H
O
n
n
^
^
r
v
o
i
^
r
o
Q
v
O
H
n
r
o
c
o
r
o
^
^
i
a
v
O
H
r
o
c
n
H
c
o
O
>
Q
H
i
n
(
N
<
>
i
(
N
i
n
H
h
»
c
O
Q
H
v
o
^
H
^
v
o

G
t
r
H
G
J
C
N
C
N
C
N
r
H
G
t
H
G
t
G
J
G
t
r
H
r
H
C
N
C
N
G
t
G
t
G
)
r
H
C
N
G
t
r
H
G
t
G
)
i
H
G
»
C
N
r
H
G
t
C
N
i
H
G
*
C
N
C
N
C
N
G
)
C
N
r
H
r
H

C
M

C
O

G
t

^V
O
r
^

O
N

V
O
HG
t
G
t
G
i

0
0
C
M

C
M

r
H

G
t

C
M

C
M

C
M

C
O

G
t

C
M

G
t

0
0
C
O

r
H

c
m
i
n

v
o

i
n

^
*
C
M

i
n

C
M

G
t
r
H

C
M

i
n

r
H

G
t

r
H

<
?
G
t
r
H

0
0

V
O
r
H

i
n

mC
M

G
t
^
*

r
H

G
t

C
M
C
M

G
t

C
N

i
n

C
O

G
t
C
N

r
H

G
t
C
N

C
O

C
M

G
>

C
N

G
t
G
t

G
t

G
t

C
M

<
?
C
O

G
t

r
H

G
t
C
N

C
M

^
*
G
t

■
H

C
M

C
O

G
t

,
_
,

C
D
C
M

i
n

v
o

G
t

G
t

C
M

C
O

r
H

G
>

C
M

C
M

C
O

C
M

C
N

V
O

r
-

r
-
i

0
0
C
M

r
H

f
i

G
t

C
M

0
0
O
N

r
H

O
N

O
N

r
H

i
n

r
H

O
N

r
H

C
M

G
>

C
M

r
-
V
O

C
M

C
M

r
H

G
t

G
t
r
H

C
M

C
M

C
O

G
t

i
n

HO
N

V
O
r
H

C
M

G
t

C
M
C
O

C
M

O
N

V
O
r
H

i
n

i
n

C
M

G
t

r
H

C
M

C
M

C
O

G
t

^G
t
r
H

i
n

i
n

C
M

r
H

G
t

V
O

G
t

i
n

i
n

O
N

v
o

c
o

O
N

r
-
\

G
)

C
M

C
M

G
t
r
H

C
N

C
M

C
O

G
t

^
t
v
o

■"*

G
t
G
t

G
t

<3*
C
M

C
M

0
0

O
N

r
H

C
N

C
O

G
t

O
N

V
O

i
n

i
n

C
N

G
t
r
H

C
N

C
M

C
M
C
M

C
O
G
t

G
t
C
M

i
n

r
H

O
N

v
o

t
H

i
n

i
n

C
M

G
t

C
O

r
H

G
t
C
M

i
n

r
H

C
M

C
O

G
t

i
n

i
n

C
M

G
t
r
H

C
M

C
M

C
O

G
t

i
n

i
n

C
N

G
t
r
H

C
M

V
O

G
i

G
t
V
O
r
H

m
o
o

i
n

C
M

G
t

C
M

C
M

C
O

G
t

<tf
v
o

O
N

V
O
r
H

O
N

r
H

i
n

r
—
|

C
N

C
N
^
»

r
-
\

0
0
O
N

<
?
r
H

G
t

G
t

C
M

C
M

C
O

G
t

*tf
C
M

G
t

r
H

r
-
\

G
t

C
M

V
O

G
t
G
t
G
t

C
M

C
O

«
a

C
M

C
O

I
S

O
N

v
o
r
H

r
^

t
H

<
S

C
N

V
O

i
n

i
n

C
M

G
t

i
n

C
N

0
0

C
M

C
N

G
t
C
M

i
n

i
n

G
t
r
H

C
N

G
t
V
O

r
H

V
O
O
N

G
t

r
H

G
>
G
t

0
0
G
t

C
M

0
0
O
N

i
n

r
H

C
M

G
>

C
M

C
M

C
O

G
t

C
M

G
t

r
H

r
-
A

0
0
O
N

r
-
k

V
O
r
H

C
M

O
N

0
0

r
-
i

G
t
G
>

G
t

G
t

C
M

V
O

G
t
G
t
G
t

C
M

V
O

i
n

i
n

C
M

0
0
r
H

G
t

^C
M

C
M

C
M

C
O

C
M

i
n

i
n

C
M

G
t
r
H

C
M

C
M

C
O

G
t40, C

M

i
n

i
n

C
M

0
0
C
M

C
M

C
N
C
O

G
t

i
n

C
M

0
0
G
t

C
M

G
t

C
M

O
N

G
t

G
>

G
t

C
M

0
0
v
o

r
H

G
t

C
M

r
H

i
n

C
M

v
o

G
t

§G
>

v
o
mG
t

C
O

^
*

C
M

0
0
G
t

C
M

^0
0
G
t

G
t
G
t
G
t

G
t
V
O

0
0
G
t

G
t

<tf

i
n

i
n

C
M

G
t

^
*

C
M

C
M

G
t

r
-
i

C
M

C
M

C
O

G
t

C
N

C
O
C
O

G
t

<
?

C
M

C
N

G
t

0
0
O
N

C
N
f
^

r
H

G
t

r
H

r
H

G
t

C
M

V
O

G
t

O
N

V
O

r
H

r
^

r
H

G
t

C
N

V
O

r
H

V
O
O
N

G
t

G
t
^
*
G
t

G
t
i
n

C
M

0
0
G
t
C
N

C
N

G
t
C
M

i
n

i
n

C
M

0
0

i
n

G
t

O
N

v
o

G
t

r
^

G
t

i
n

v
o
G
t

0
0

G
t

O
N

i
n

r
H

G
t
G
t
G
t

G
t
G
t

G
t

§G
t

G
t
I
S

G
t

G
t

G
t

G
>

i
n

i
n

r
H

G
>
G
t
G
t

G
t
G
t
G
t

G
>
G
t
G
t

G
t
G
t

G
t

G
t
G
t
G
t

G
t
G
t

G
t

G
t

G
t
G
t

G
t
G
t

G
t

G
t
G
t
G
t

G
t
G
t
G
t

G
)

G
t

G
t
G
t
G
t

G
>

0
0

i
n

v
o

v
o

r
H

0
0

G
t

0
0
r
H

C
O

i
n

r
H

0
0
r
H

G
t

C
M

C
O

G
t

C
M

0
0
G
t

O
N

G
t

C
N
C
O

G
t

O
N

V
O

G
t

C
O

v
o

G
t

i
n

G
t

C
O

0
0

C
O

G
t

V
O

0
0

V
O
G
t

0
0
G
t

C
M

r
H

O
N

r
H

r
H

G
t

mi
n

C
M

C
O

0
0
f
H

C
M

C
O

G
t

G
t
G
t

G
t

v
o
r
H

r
H

G
t

C
M

V
O
r
H

V
O
O
N

G
t

r
H

G
t

G
t

0
0
•
H

G
t

O
N

V
O

i
n

i
n

C
M

G
t

5J1

C
N

C
M

C
O

G
t

^C
M

G
>

C
M

C
O

G
t

G
t

i
n

r
H

O
N

V
O

r
H

i
n

i
n

C
M

G
t
r
H

C
M

C
M

C
O

G
t

O
N

0
0
r
H

C
M

C
O

®G
t
G
t
G
t

O
N

V
O
r
H

i
n

i
n

C
M

G
t
r
H

G
t

V
O

t
-
i

0
0

G
t

C
M

V
O
r
H

i
n

p
—
1

G
t

O
N
V
O
r
H

i
n

i
n

C
M
C
M

C
M

O
N

r
H

C
M

C
O

G
t

i
n

i
n

C
M

v
o
0
0

r
-
i

C
M

C
O

G
t

i
n

r
H

G
t

i
n

i
n

C
M

0
0
O
N

C
N

C
O

G
t

i
n

i
—
i

G
t

C
N

V
O
r
H

i
n

i
n

C
M

i
n
i
n

i
n
r
H

C
N
G
t

G
t
O
N

r
H
V
D

C
M
r
H

C
M
V
O

C
O
<
t

G
t
C
M

i
n
o
o

i
n
G
t

C
M
C
N

r
-
c
o

G
t
r
H

C
N
G
t

C
M
r
H

C
O
G
t

G
t
C
M

i
n

i
n

C
M

<
*
G
t

C
M

C
N

C
O

G
t

i
n

i
n

C
M

i
n

C
M

V
O

t
-
\

O
N

O
N

G
t

V
O
r
H

C
M

G
>
G
t

O
N

O
N

V
O

t
-
i
r
H

C
M

C
O

G
t

V
O

O
N

G
t

c

1K
C
3
0
^
G
)
V
O
C
M
<
X
)
^
G
>
V
O
C
N
C
J
O
^
G
)
V
O
C
M
O
O
^
G
i
V
O
(
N
<
X
)

»
G
)
r
H
C
M
C
M
r
o
c
o
^
i
n
i
n
v
o
v
o
r
^
o
o
o
o
c
^
c
^

)
<
x
)
o
o
(
X
)
o
o
c
x
)
C
D
c
o
o
o
o
o
o
o
o
o
o
^

S
S
S
G
S
Q
t
S
G
G
O
G
G
Q
O
O
O
t
S
G
>
Q
G
}
t
S
*
S
t
S
l
S
l
S
<
S
l
S
Q
<
S
t
S
*
S

S
S
5
S
O
S
O
O
G
t
t
S
O
S
^
K
>
®
S
G
t
S
>
S
i
S
G
>
S
Q
S
G
>
G
>
G
)
G
t
Q
O
O
S
Q
G
}
S
S
S
S
S
S
S

v
o

i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
^

v
o

n

n
Recreations and Applications 2

!
!_ -J

H

H

n

n

n

50994

51000

51006

51012

51018

51024

51030

51036

51042

51048

51054

51060

51066

51072

51078

51084

51090

51096

51102

51108

51114

51120

51126

51132

51138

51144

51150

51156

51162

51168

51174

51180

51186

51192

51198

51204

51210

51216

51222

51228

51234

51240

:071

:168

:032

:195

:169

:001

:003

:141

:021

:003

:255

:252

:251

:200

: 121

:169

:133

:212

:004

:145

:208

:040

:000

:105

:105

:208

• 141

:013

:003

:169

:169

:032

:021

:002

:146

:018

:208

:104

:169

:021
• 141

:000

,032,189,255,169,015,013

,162,008,032,186,255,099

,192,255,169,015,032,245

,255,096,073,048,120,087

,127,141,013,220,169,145

,141,026,208,173,060,177

,141,018,208,169,027,140

,017,208,169,199,141,199

,003,169,250,141,020,190

,088,169,147,032,210,241

,160,000,169,195,133,254

,169,174,133,251,177,248

,240,011,032,210.255,097

,208,246,230,252,076,060

,199,169,008,133,251,247

,006,133,252,165,251,092

,253,165,252,024,105,054

,133,254,162,000,160,049

,138,145,251,169,000,097

,253,232,200,192,036,198

,243,165,251,024,105,142

,133,251,165,252,105,098

,133,252,165,253,024,241

,040,133,253,165,254,114

,000,133,254,224,128,014

,211,096,120,169,000,2 36

,026,208,169,255,141,122

,220,169,049,141,020,056

,169,234,141,021,003,021

,000,141,021,208,088,083

,147,032,210,255,096,115

,073,199,169,001,141,083

,208,169,004,141,136,153

,096,17 3,018,208,201,178

,208,021,169,000,141,171

,208,169,028,141,024,080

,169,001,141,025,208,250

,168,104,170,104,064,218
,146,141,018,208,169,105

,141,024,208,169,001,080

,025,208,076,049,234,255
,000,000,000,000,000,040

67

2 Recreations and Applications

u

u

Program 3. Custom Character Loader j j
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. —

10 INPUT"FILENAME:II;N$,D :rem 205

20 F$=N$:ZK=PEEK(53)+256*PEEK(54)-LEN(F$):POKE 782 I j

,ZK/256 :rem 180 1—1
25 POKE781,ZK-PEEK(782)*256:POKE780,LEN(F$):SYS654

69 :rem 39

30 POKE780,1:POKE781,D:POKE782,0:SYS65466 :rem 177] j
40 POKE780,0:POKE781,222:POKE782,169:SYS65493

:rem 115

50 CLOSE1:PRINT:PRINT"{CLR}MCHR$(142) :rem 90

68

u

u

u

u

n

n Screen Headliner
1 ! Todd Heimarck

.. This short machine language routine expands a

I \ letter to four times its normal size. The large

character can then be used in a headline or for a

variety of other purposes. The program is compat

ible with Commodore printers and can even be

used with "Screen-80," the 80*column program

which precedes this article.

Oversized characters can be useful—on a title screen, in a chil

dren's alphabet or math program, or for visually impaired

computer users. Finding the right combination of graphics

characters usually takes time; you have to experiment. And

creating a whole alphabet can use up a lot of memory.

The simplest method for displaying huge letters without

experimenting or wasting memory is to PEEK the character

generator in ROM and print a solid block (reverse space) for

each bit that is on. If the bit is off, you print a space. The one

major disadvantage to this method is that each character ex

pands to eight times its normal size. Very little space remains

on the screen—your 64 would suddenly turn into a five-

column screen. But by keeping in mind the idea of reading

character ROM, we can sidestep this problem with some spe

cial Commodore characters.

H
f ! The Quarter-Square Solution

Hold down the Commodore key and type IKBVDCR These

p*l seven characters, plus a blank space, make up half of the

' ' quarter-square graphics set. The other half is accessed by typ

ing the same keys while reverse is turned on. There are 16 dif-

rn ferent characters, one for each combination of quarter squares

turned on or off.

Quarter squares enable you to set up what amounts to a

p—] medium-resolution screen. It's less complicated to program

-] than a high-resolution screen, and has better resolution than
the usual low-resolution character set. Instead of making

n
69

u
2 Recreations and Applications

characters turn on and off, you control big pixels (each of ! j

which is one-fourth of a character). A Commodore 64 sud

denly has the capability to address 80 X 50 big pixels.

The 16 characters are the starting point for the "Screen ! j

Headliner." The basic idea is to read the character ROM,

translate each bit into a big pixel, and print the equivalent

quarter-square graphics character. You can do it in BASIC with | 1

a lot of PEEKs and POKEs, but machine language is faster and '—

more elegant.

The program is easy to use. After entering and saving it,

type RUN. A short machine language program is POKEd into

memory. To make it work, you need two POKEs and a SYS:

POKE 249,0: POKE 250,1: SYS 828

You should see a large capital A, four characters wide and

four deep. Now simultaneously press the Commodore and

SHIFT keys to switch to the upper/lowercase set. Cursor up to

the POKEs, press RETURN, and you'll see a large lowercase a.

Now try putting a 129 into location 250; the result is the same

character printed in reverse.

If you've saved a copy of Headliner, type NEW to erase

the BASIC loader program. (It won't affect the ML program,

which is safely tucked into the cassette buffer.) Now type this in:

1 MK=7

5 PRINT" {CLR}11 ;

10 FORX=0TO255

20 Y=(XANDMK)*4:POKE249,Y

25 IFXANDMKTHENPRINT"{4 UP}";

30 POKE250,X:SYS828.

40 NEXT

(Note: Tape users should not save this example program;

tape operations erase Headliner from the cassette buffer.) Type \ j
RUN, and the whole Commodore character set will parade

down the screen.

u
Making Letters ^^
The top of the large character is printed wherever the cursor

happens to be when you SYS. The POKE to 249 determines (J
how far the cursor spaces over before it begins. The number

must be between 0 and 35.

Next, POKE the letter's screen code into 250. Ignore the [_J
ASCII value, you want the screen code—the number you use

when POKEing a character to the screen. Numbers 1 through

70 ^

n
Recreations and Applications 2

n

j—t 26 are the letters A-Z, 48-57 are the characters 0-9, and so

on. To get a reversed character, add 128 to the screen code. (You

can find a list of screen codes in Appendix E of the Commodore

|—I 64 User's Guide, the manual that came with your computer.)

1 After you've POKEd into 249 and 250, enter SYS 828.
The oversize character appears almost instantly.

! Three Bonuses and a Drawback
The original version of this routine (used in two programs

published in COMPUTERS Gazette magazine—"Aardvark At

tack" a year ago, and more recently "Campaign Manager")

figured out the shape of the large character and POKEd the

appropriate quarter-square graphics to the screen. But Head-

liner now PRINTs (using the Kernal PRINT routine at $FFD2)

instead of POKEing. It's necessary to turn reverse on and off

repeatedly to get all the quarter squares, which is a little

cumbersome. But there are some major advantages to sending

everything through $FFD2.

The first advantage is that you can send large characters

to a Commodore printer, although you need to change one

value to print spaces instead of cursor-rights (see line 951 of

the program listing at the end of the article). Enter this to

make a printout:

OPEN 4,4: CMD4: POKE 249,**: POKE 250,1/1/: SYS 828

Remember to replace xx with the location where you want to

print, and substitute the screen code for yy. If you can, adjust

your printer's line spacing to zero—so there's no extra space

between the characters. When you're finished printing,

PRINT#4:CLOSE4 properly closes the file to the printer. Un

fortunately, printers do not allow cursor up movements;

|} you're limited to one large character per line. To get around
this limitation, you could manually move the paper back, or

. use a screen dump program, or (if you're feeling ambitious)

I | use CMD to send output to a tape or disk file and then read
the data back into an array for dumping to the printer.

The figure below illustrates some of the large characters

< I created by a Commodore printer. The first two columns show
upper- and lowercase letters, while the third column shows

the large letters expanded by the printer.

n 71

u
2 Recreations and Applications

u

Normal and Expanded Samples

A
]

a

b
c

d
e

O

E>

(j

Another bonus of PRINTing rather than POKEing is that

Screen Headliner is completely compatible with "Screen-80"

(the 80-column program which appears in the article immedi

ately preceding this); you can use large letters, up to 19 per line,

in combination with 80-column text on your Commodore 64.

Finally, the flexibility of the PRINT command is at your

fingertips: You can print almost anywhere on the screen, in

any color you like (just change the cursor color). You can even

mix large uppercase, lowercase, and graphics characters on the

same screen.

A slight drawback is that each line has to be followed by

a carriage return, which means you cannot put a character at

the right edge of the screen. Nor can you print the large charac

ter at the bottom of the screen (it always scrolls up one line).

How It Works
There are two sets of POKEs in the BASIC loader program. j I

The first loop (688 to 703) contains the modified ASCII values L-l
of the quarter-square graphics characters. Since there is no

such thing as an ASCII value of a reversed character, the re- j j

verse flag has to be turned on and off. Bit 6 of each character '—'
is used to signal whether or not the character is reversed; the

number is then ANDed with $BF (191) to turn off bit 6 before j j

the character is printed. ^
The second loop (828 to 1006) is the machine language

routine. It goes into the cassette buffer, but is written to be I j

relocatable—if you need the cassette buffer for another ML '—'
program, or if you are using a Datassette, you can move the

72 U

n

n

n

n

n

n

n

n

n

n

Recreations and Applications 2

routine anywhere else in memory (the first loop has to stay

where it is, however). If you put it in BASIC RAM, you'll have

to protect it from being overwritten.

If you're interested in machine language, here's a brief

explanation of how Headliner works. The main routine first

checks which character set is being used and sets a zero page

pointer accordingly. The screen code number is then mul

tiplied by eight and added to the pointer. Once the pointer is

set, the bytes from character ROM are loaded in two by two.

By alternately shifting left the bytes (ASL) and rotating left the

accumulator (ROL), a number from 0 to 15 is generated. This

is used as an offset to look up the appropriate quarter-square

graphics character in the table at 688. Bit 6 is checked (if set,

reverse is turned on), and finally, a JSR to $FFD2 prints the

character. The program then loops back to get the next set of

bits.

Screen Headliner
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix C.

5 PRINT"{CLR}PLEASE WAIT A MOMENT" :rem 153

10 T=0:FORJ=688TO703:READK:T=T+K:POKEJ,K:NEXT

:rem 134

15 IFT<>3078THENPRINT"ERROR IN DATA STATEMENTS":ST

OP :rem 88

20 T=0:FORJ=828TO1006:READK:T=T+K:POKEJ,K:NEXT

:rem 176

25 IFT<>20306THENPRINT"ERROR IN DATA STATEMENTS":S

TOP

30 POKE249,0

688 DATA32,188,190,226,172,225,191,251

696 DATA187,255,161,236,162,254,252,96

828 DATA 169,208,133,004,173,024

834 DATA 208,041,002,240,004,169

840 DATA 216,133,004,169,000,162

846 DATA 003,006,250,042,202,208

852 DATA 250,024,101,004,133,004

858 DATA 165,250,133,003,173,014

864 DATA 220,041,254,141,014,220

870 DATA 165,001,041,251,133,001

876 DATA 169,000,133,250,169,005

882 DATA 133,002,160,000,177,003

888 DATA 133,005,230,003,177,003

894 DATA 133,006,230,003,198,002

900 DATA 240,028,162,004,169,000

906 DATA 006,006,042,006,006,042

912 DATA 006,005,042,006,005,042

73

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

: rem

130

141

148

158

46

32

31

28

19

40

27

23

46

26

36

36

28

25

20

2 Recreations and Applications

u

u

918 DATA 164,250,153,048,002,230 :rem 38 i i

924 DATA 250,202,208,232,240,210 :rem 26 I—I
930 DATA 165,001,009,004,133,001 :rem 20

936 DATA 173,014,220,009,001,141 :rem 28

942 DATA 014,220,160,000,166,249 :rem 33 I |
948 DATA 240,008,169 :rem 229

951 DATA 029:REM 032 IF USING A PRINTER :rem 129

952 DATA 032,210 :rem 14 , ,

954 DATA 255,202,208,250,169,004 :rem 45 | |
960 DATA 133,006,185,048,002,170 :rem 38

966 DATA 189,176,002,133,005,041 :rem 46

972 DATA 064,240,005,169,018,032 :rem 43

978 DATA 210,255,165,005,041,191 :rem 46

984 DATA 032,210,255,169,146,032 :rem 47

990 DATA 210,255,200,198,006,208 :rem 43

996 DATA 221,169,013,032,210,255 :rem 43

1002 DATA 192,016,208,196,096 :rem 153

74

U

U

u

u

LJ

n Reversi
Keith Day

This nineteenth-century game of strategy can be

learned in minutes, but becoming an expert at it

is another matter. You can play against another

person or against the computer. You can even sit

back and watch the computer wage a strategic

battle against itself. One joystick required.

Reversi, originally a board game for two players, was first

published in London about 1888. It's as popular today as it

was then. In fact, national and international competitions are

held each year where thousands of players compete for fame

and glory.

The attraction of Reversi is that, although the rules are

few and easy to learn, and play is very simple, the strategy

and thought that go into a game can be quite involved. And

this computer version makes the rules even easier to learn.

The computer just won't let you break them! Illegal moves are

not allowed; it's as simple as that. If you don't know if a move

is legal, simply try it. If it's allowed, the computer executes it.

If not, nothing happens. The question of which move is best,

however, is left entirely up to you.

One or Two Players

Type in and save the game, using "The Automatic Proof

reader" program you'll find in Appendix C. The Proofreader

makes it almost impossible to mistype "Reversi."

After loading the game program from tape or disk, enter

RUN. The screen clears and you're asked if you want to play

against the computer. Answer Y for a computer opponent or N

to play against another person. If you want to watch the com

puter play against itself, press the C key instead.

As soon as you select your opponent, you'll see the game

screen. It's divided into 64 squares—an 8X8 grid. The object

of Reversi is to strategically place discs on the squares so that

75

2 Recreations and Applications
u

u

more discs of your color are on the screen at the end of the « ,

game than your opponent's color. I I

Flipping Discs

Black always moves first. The moves are made by using a joy- LJ

stick plugged into port 1. If you're playing another person,

you'll have to share the joystick. When the computer plays ^ }

against itself, of course, you don't need to plug in a joystick. [j

The first four discs are automatically placed on the screen

at the beginning of the game. You place your discs by moving

the cursor (black or white) to the square of your choice and

then pressing the fire button. The computer will allow only

legal moves. This means that at least one of your opponent's

discs must be "outflanked" as a result.

After you place your disc, the fun begins. The computer

flips (reverses the color) all your opponent's discs that have

been outflanked. (Outflanked discs are those that lie in a line

between the disc just placed and another disc of the same

color, so long as there is not a break in the line.) A disc may

outflank any number of opposing pieces in vertical, horizontal,

or diagonal lines.

If you're unable to set a piece anywhere on the screen,

you have to forfeit the turn. That's done by pressing the space

bar. You can tell there are no legal moves available when the

computer won't place a disc no matter what square you have the

cursor on. If you're playing the computer, and it's the computer's

turn, it will hand over control to you if it has no move.

White's score is displayed in the upper left corner of the

screen, while black's is in the upper right corner. The score is

updated after each turn.

At the end of the game, the computer will ask if you want {

to play again. Enter Y to play again or N to exit the program. { |

The Program

Even though this program has a very graphic "feel," it was { j
written entirely without the help of sprite graphics or other

special graphics routines. Only the graphic characters found

on the Commodore keyboard are used. In fact, the program is j J
a very good demonstration of what can be done in BASIC

with just the keyboard graphics and a little imagination. ,

A quick inspection of the program also reveals that the j j
GOSUB command is used extensively. That's because the logic

76 LJ

n
Recreations and Applications 2

H

n

n

n

n

n

of the game seems to be an exercise in doing the same thing

over and over, with only slight changes. For example, only

one subroutine or section of the program is used to flip the

discs. Variables are preset to indicate which disc is to be

flipped and which color to flip it to. Once these variables are

set, a subroutine is called with the GOSUB command and the

disc changes color. The same single subroutine logic is also

applied to performing the other tasks in the program, such as

moving the cursor or reading the joystick.

Playing Tips

The best squares to occupy are the edges, since they can't be

outflanked on all sides. The corners, in fact, seem to be the

best squares to take, because they can't be outflanked from

any direction. The best strategy, therefore, seems to be one of

controlling the corners and edges. Be careful, though; even

when you are way ahead, a few moves by your opponent can

dramatically change the outcome of the game.

That's why Reversi is such a popular game. It's fast,

enjoyable, and full of changes in fortune. And since the com

puter does the tedious work of flipping the discs, you can con

centrate on strategy, working toward that ingenious move to

turn several discs at once.

Reversi
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

100 DATA 1,8,7,1,8,7,1,8,7,4,5,1 :rem 9

110 DATA 4,5,1,1,8,7,1,8,7,3,6,3 :rem 6

120 DATA 3,6,3,1,8,7,3,6,3,3,6,1 :rem 3

130 DATA 4,5,1,3,6,3,1,8,7,2,7,5 :rem 6

140 DATA 2,7,5,1,8,7,3,6,1,2,7,5 :rem 9

150 DATA 2,7,5,3,6,1,2,7,5,2,7,5,0 :rem 100

160 DIM G(10,9):GOTO 1240 :rem 9

170 POKE S1+X+40*Y,P:POKE C1+X+40*Y,C:RETURN

:rem 87

180 P=98:C4=C:Vl=X:V2=Y:X=X*4+l:Y=Y*3-2 :rem 60

190 P3=PEEK(S1+X+40*Y):C5=PEEK(C1+X+40*Y):GOSUB 17

0 :rem 169

200 Y=Y+1:P=P+128 :rem 186

210 P4=PEEK(S1+X+40*Y):C6=PEEK(C1+X+40*Y):GOSUB 17

0 :rem 164

220 X=Xl*4+l:Y=Yl*3-2 :rem 130

230 P=P1:C=C2:GOSUB 170 :rem 36

240 Y=Y+1:P=P2:C=C3:GOSUB 170 :rem 172

77

2 Recreations and Applications

250 X1=V1 :Y1=V2 :P1=P3 :P2=P4 :C2=C5 :C3=C6 :X=V1 :Y=V2 :

C=C4: RETURN :rem 40

260 V1=X:V2=Y:X=X*4:Y=Y*3-2:P=233:GOSUB 170rrem 39

270 X=X+1:P=224:GOSUB 170 :rem 147

280 X=X+1:P=223:GOSUB 170 :rem 147

290 X=X-2rY=Y+lrP=95 :GOSUB 170 :rem 243

300 X=X+1:P=224:GOSUB 170 :rem 141

310 X=X+1:P=105:GOSUB 170 :rem 140

320 X=V1:Y=V2 :rem 9

330 IF C=l THEN WS=WS+1rG(X,Y)=l :rem 15

340 IF C=0 THEN BS=BS+1:G(X,Y)=-1 :rem 18

350 IF FL=1 AND C=l THEN BS=BS-1 :rem 159

360 IF FL=1 AND C=0 THEN WS=WS-1 :rem 201

370 RETURN : rem 122

380 PRINT"{HOME}{DOWN}{3 SPACES}{3 LEFT}{WHT}";WS:
:rem 139

390 PRINTII{HOME}{DOWN}II;TAB(36);"{3 SPACES}

{3 LEFT }{BLK}fl;BS: RETURN :rem 45

400 IFBS+WS=64ORBS=0ORWS=0THEN1150 :rem 133

410 IF C=0 0R{2 SPACES}CO$=MN"THEN GOSUB 450

:rem 66

420 IF C=l AND CO$="Y"THEN GOSUB 870 :rem 135

430 IF CO$="C"THEN GOSUB 870 :rem 238

440 GOTO 400 :rem 101

450 JV=PEEK(56321):FR=JVAND16:JV=15-(JVAND15)
:rem 170

460 IF JV=0 THEN 510 :rem 251

470 IF JV=1 THEN Y=Y-1rGOTO 540 :rem 192

480 IF JV=2 THEN Y=Y+1:GOTO 540 :rem 192

490 IF JV=4 THEN X=X-1:GOTO 540 :rem 195

500 IF JV=8 THEN X=X+1rGOTO 540 :rem 189
510 X$="":GETX$:IF X$=M "THEN GOSUB 700 :rem 53

520 IF FR<>16ANDG(X,Y)=0 THEN GOSUB 590 :rem 161

530 RETURN rrem 120

540 IF Y<1 THEN Y=8 : rem 235

550 IF Y>8 THEN Y=l :rem 238

560 IF X<0 THEN X=9 :rem 235

570 IF X>9 THEN X=0 :rem 238

580 GOSUB 180:RETURN :rem 208

590 HX=X:HY=Y:OK=0 :rem 133

600 XD=-1:YD=-1:GOSUB 740 :rem 148

610 XD=0:GOSUB 740 :rem 245

620 XD=1:GOSUB 740 rrem 247

630 YD=0:GOSUB 740 :rem 248

640 YD=1:GOSUB 740 rrem 250

650 XD=0:GOSUB 740 rrem 249

660 XD=-lrGOSUB 740 rrem 40

670 YD=0rGOSUB 740 rrem 252

680 IF OK=0 THEN RETURN rrem 67

u

u

u

u

78

n

n
Recreations and Applications 2

n

n

n

n

n

n

690 GOSUB 380:P1=160:P2=160:GOSUB 700:RETURN

:rem 68

700 IF G(X,Y)=1 THEN C2=1:C3=1 :rem 57

710 IF G(X,Y)=-1THEN C2=0:C3=0 :rem 101

720 IF TN=-1THEN TN= 1:C=1:X=0:Y=3:GOSUB 180:RETUR

N :rem 254

730 IF TN= 1THEN TN=-1:C=0:X=9:Y=3:GOSUB 180:RETUR

N :rem 7

740 FL=0:BR=0 irem 213

750 IF X<1 OR X>8 THEN GOTO 820 :rem 97

760 IF Y<1 OR Y>8 THEN GOTO 820 2rem 100

770 X=X+XD:Y=Y+YD :rem 67

780 IF FL=1 AND G(X,Y)=-TN THEN GOSUB 260:GOTO 770

:rem 218

790 IF G(X,Y)=-TN THEN BR=1:GOTO 770 :rem 242

800 IF G(X,Y)=TN AND BR=1 AND OK=0 THEN GOSUB 830

:rem 116

810 IF G(X,Y)=TN AND BR=1 THEN OK=1:FL=1:BR=2:X=HX

:Y=HY:GOTO 770 :rem 240

820 X=HX:Y=HY:RETURN :rem 90

830 SX=X:SY=Y:X=HX:Y=HY :rem 55

840 IF C=l AND CO$="YMTHEN GOSUB 1030 :rem 178

850 IF CO$="C"THEN GOSUB 1030 :rem 25

860 GOSUB 260:X=SX:Y=SY:RETURN :rem 198

870 OK=0:Z=0:RESTORE :rem 5

880 IF(WS+BS)>8{2 SPACES}THEN 900 :rem 40

890 FOR TM=1 TO 30:READ Q:NEXT :rem 189

900 READ Nl :rem 52

910 IF N1=0 THEN GOSUB 720:RETURN :rem 119

920 READ N2,N3,N4,N5,N6 :rem 241

930 IF RND(0)>.5 THEN SW=N1:N1=N2:N2=SW:N3=-N3

:rem 131

940 FOR Y=N1 TO N2 STEP N3 :rem 121

950 IF RND(0)>.5 THEN SW=N4:N4=N5 :N5=SW:N6=-N6

:rem 151

960 FOR X=N4 TO N5 STEP N6 :rem 131

970 REM:GOSUB 180 :rem 215

980 IF G(X,Y)=0 THEN GOSUB 590 :rem 95

990 IF OK=1 THEN GOTO 1020 :rem 100

1000 NEXT:NEXT :rem 121

1010 GOTO 900 :rem 148

1020 RETURN :rem 163

1030 Q2=X:R2=Y:Y=Y1 :rem 138

1040 IFQ2-XK>0THENXA=(Q2-X1)/ABS(Q2-X1) : rem 85

1050 IF C=1ANDQ2=1 THEN GOTO 1090 :rem 252

1060 IF C=0ANDQ2=8 THEN GOTO 1090 :rem 3

1070 X3=X1+XA :rem 221

1080 FORX=X3TOQ2-XASTEPXA:GOSUB180:NEXT :rem 93

1090 IF Y1=R2 THEN GOSUB 180:GOTO1120 :rem 35

1100 YA=(R2-Y1)/ABS(R2-Y1) :rem 182

79

2 Recreations and Applications

1370 NEXT X :rem 98

1380 PRINT"{3 SPACES}iZ3***iEl***EE§***iEl***iE§**
^gEl^^gElj^gEij^lxI"; "ITem 25"

1390 X=11:Y=6:P=87:GOSUB 170 :rem 82

1400 X=27:GOSUB 170 :rem 21

1410 Y=18:GOSUB 170 irem 23

1420 X=11:GOSUB 170 :rem 16

1430 Y=6:GOSUB 170 :rem 230

1440 X=4:Y=4:C=1:GOSUB 260 :rem 211

1450 X=5:Y=4:C=0:GOSUB 260 :rem 212

u

u

1110 FOR Y=Y1TOR2STEPYA:GOSUB 180 :NEXT :rem 147 \ j
1120 X=Q2:Y=R2 :rem 48 '—'
1130 FOR TM=1 TO 400:NEXT TM :rem 12

1140 RETURN :rem 166 : ,

1150 PRINT"{HOME}|7§{3 RIGHT}11; :rem 215 | j
1160 IF CO$="Y" AND WS<BS THEN PRINT"THAT WAS TOUG

H.";:GOTO 1210 :rem 120

1170 IF CO$="Y" AND WS>BS THEN PRINT"THAT WAS A BR | |

EEZE. '•; :GOTO 1210 :rem 242 <—'

1180 IF BS>WS THENPRINT"BLACK WINS.4*; :rem 221

1190 IF WS>BS THENPRINT"WHITE WINS."; :rem 2

1200 IF BS=WS THENPRINT"A TIE I A TIE I"; :rem 145

1210 PRINT" PLAY AGAIN? Y/N"; :rem 123

1220 GETX$:IFX$o"Y"ANDX$<>"N"THEN 1220 : rem 204

1230 IF X$="N" THEN PRINT"{CLR}{HOME}";:END

:rem 146

1240 X1=0:Y1=0:BS=0:WS=0:S1=1024:C1=55296:C=14:FL=

0:PRINT"{CLR}{HOME}" :rem 60

1250 FOR X=l TO 10:FOR Y=l TO 9 :rem 61

1260 G(X,Y)=0 :rem 171

1270 NEXT:NEXT :rem 130

1280 PRINT"PLAY AGAINST COMPUTER?{2 SPACES}Y/N "

:rem 93

1290 GET CO$:rem 98

1300 IF CO$<>"Y"ANDCO$<>"N"ANDCO$<>"C" THEN GOTO 1

290 :rem 115

1310 PRINT"{CLR}{HOME}"; :rem 119

1320 PRINT"{3 SPACES}EA3***gRl***ERl***ERl***gR3**

Tf Trim 2TT
1330 FOR X=l TO"Tr~ :rem 79

1340 PRINT"{3 SPACES}-{3 SPACES}z{3 SPACES}-
{3 SPACES}z{3 SPACES}z{3 SPACES}-{3 SPACES}-
{3 SPACES}-{3 SPACES}z" :rem *94

1350 PRINT"{3 SPACES}-{3 SPACES}z{ 3 SPACES}-
{3 SPACES}-{3 SPACES}-{3 SPACES}-{3 SPACES}-
{3 SPACES }z{ 3 SPACES}-" " :rem "95 , ,

1360 IF X<8 THEN PRINT"{3 SPACES}gQ3***+***+***+** j |
»»»»»»»»»»»»»g|n :rem 128

u

n
Recreations and Applications 2

n 1460 X=5:Y=5:C=1:GOSUB 260 :rem 215

1470 X=4:Y=5:C=0:GOSUB 260 :rem 214

1480 GOSUB 380 :rem 232

1490 P1=96:P2=96:C2=6:C3=6 :rem 168

1500 X=9:Y=3:P=98:C=0:TN=-1:GOSUB 180 :rem 131

1510 GOTO 400 :rem 148

n

n

n

n

n

u

LJ

Family Tree u
Mark Haney | I

Your computer is the perfect tool for keeping

records. Storing and retrieving information, J j
displaying it on the screen (or on paper), and let

ting you easily change the data are some of the

most efficient uses of your Commodore 64* And

genealogy is just a mass of information: names,

dates, and relationships. With "Family Tree,"

you can use the 64's record-keeping power to trace

your family's roots. For tape or disk users.

Have you ever tried to create a family tree? Usually, you have

to create a diagram-like chart and then write each name down

in the proper blank. Adding or changing the chart can be al

most impossible without redoing it all. That's one of the dis

advantages of paper and pencil.

Your Commodore 64 can help you trace your ancestors,

without all the trouble of constantly redrawing charts. "Family

Tree," a sophisticated record-keeping program for the 64, lets

you enter names, dates of birth, and relationships. You can

save the information to tape or disk, allowing you access to

your genealogy at any time. Changing or deleting entries is

done with a keypress or two. Adding more names is just as

simple. And you can even create a copy of the chart if you

have a printer. (If you have a Commodore MPS 801 printer, j j

see page 92.) <—]

A family tree is a very personal piece of history. Your fa

ther's version neglects half your heritage, your son's includes | j

people of only academic interest to you. Some first cousins '—'
you see several times in a year, others you may never recall

meeting. i |

This is not to say that you would wish to purge anyone '—'
from your family tree. But given the limitations of printed

genealogy charts, it's difficult to make any sense of a docu- | j

ment containing anything more than perhaps a few score of '—l

n
Recreations and Applications 2

n

n
names. And the task of maintaining or copying such a record

is formidable indeed.

n Tracing

Family Tree has two functions, maintenance and display, that

operate together at all times. Storage and retrieval are taken

ncare of by the LOAD and SAVE commands, as the program is

self-modifying.

Type in and save Family Tree to tape or disk. It's much

easier to enter the program if you use "The Automatic Proof

reader," found in Appendix C. You can insure an error-free

copy of the program if you use the Proofreader.

When you first run Family Tree, you'll see a screen with

instructions. The letters at the top indicate keys to press when

you create the chart. We'll talk about them in a moment. After

a short wait while the program initializes variables, you'll be

asked to enter the filename of the tree you want to display. If

this is your first time using Family Tree, then just hit the RE

TURN key. Press any key and the initial entry message ap

pears at the bottom of the screen.

This is where you start. It may be worthwhile, before you

begin, that you have an idea of how you're going to trace your

genealogy. Begin with your name, and then work backwards

to your distant ancestors? Or start with a great-great-great-

grandmother and work towards your closer relatives?

Whatever you decide, type in the initial entry. First name,

last name, and birth year need to be separated with commas.

If you don't know the year of birth, you can leave it out, but

you still need the comma after the last name. Later, when you

determine the birth year, you can return to the entry and put

—■, it in.

) 1 As soon as you hit the RETURN key, the screen scrolls up

and a shortened version of the name appears in the middle

p— left of the display. There should be two large blinking cursors

I I bracketing the name. At the bottom, in reverse video, will ap
pear the full name, as well as birth year.

,_. (When you've created a family tree file, saved it, then

M later loaded it back into memory, the bracketed name and full

entry is what you'll first see on the screen.)

PI Relative Spots
The current person is noted by the cursor. Now you're ready to

n

I. J 83

2 Recreations and Applications
u

enter and display relatives of the current person by pressing

the following keys:

[" "

After the initial entry appears, then you can type in that

person's relatives by pressing one of the above keys. Hit the

M key, for instance, and enter the current person's mother's

name and birth year. Take care that you place commas be

tween the three items. (If you suddenly decide you don't want

to make an entry, hit the RETURN key and the cursors move

back to the last entry.) The mother then becomes the current

person, as indicated by the cursors. You can continue to enter

more names and birth years in this way.

Backtracking, say to the initial entry, can be done in one

of two ways. You can use the cursor keys on the Commodore

keyboard to move the blinking cursors to that name. Or you

can press the correct key from the table above. Let's say you

have three names on the screen: the initial entry, and his or

her mother and father. To move back to the initial entry,

assuming the cursor is on the father's name, all you have to

do is press the C (for Child) key and the cursors return to the

first name.

Don't worry about going off the screen as you enter sev

eral names. The display moves as necessary.

Existing Trees

If you've already created and saved a family tree file, and then

want to modify it later, all you have to do is specify the

filename when you see the first screen display. Make sure the

disk or tape with the file is in the drive or cassette, and type

in the file's name. You have to specify tape or disk by entering

T or D. The file will load into memory and you'll see only the

initial entry on the screen. Don't worry, the rest is there. You

just have to hit a few keys to display it.

84

LJ

LJ

U

LJ

U

LJ

n

n

n

n

n

n

Recreations and Applications 2

The initial entry is on the screen. What now? Just press

the correct keys from the Relative table and the names appear

in the chart. For example, if you earlier entered the initial en

try, plus that person's father, mother, and spouse, pressing F,

M, and S (interrupted with some cursor movements) makes the

three names display.

Saving and Loading Trees

Once you've created a tree that you want to save, just press Q.

If you change your mind, you can hit the RETURN key and

the screen appears as before. Press the Y key, however, and a

prompt asking for a new filename shows at the bottom of the

screen. You can save out a tree only if you've made changes.

That's logical—why else would you want to save a file?

As already discussed, to load a previously created tree

file, all you have to do is enter its name in the first screen dis

play. It will load as soon as you've pressed T or D.

More Keys

Several other useful keys are:

The cursor controls operate normally.

Quit

When you decide to quit the program and hit the Q key, there

are two possibilities: The tree has merely been displayed, or

changes have been made. In the latter case, new DATA state

ments must be created. It's essential that you wait for this pro

cess to occur and save the program after its completion.

Otherwise, no record will be made of your changes.

I've used Family Tree to create a tree of 360 names. One

suggestion for larger families is the creation of separate trees

representing different family branches. An estimate of memory

85

2 Recreations and Applications

u

requirements is given by 8000 + 77*n for n entries. This de- j j
pends on name length and whether birth years are in all cases

included.

Family Tree
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. : j

1 PRINTCHR$(147)"{12 RIGHT}THE FAMILY TREE":PRINT

:rem 230

2 PRINT"M--MOTHER" :PRINT"F«FATHER" :PRINT"S—SPOUS

E":PRINT"P—PREVIOUS SIBLING" :rem 175

3 PRINT"N--NEXT SIBLING" :PRINT"C—CHILD" :PRINT

:rem 198

4 PRINT"[CLR]—CLEAR SCREEN":PRINT"[DEL]—DELETE E

NTRY FROM SCREEN" :rem 74

5 PRINT"[Fl]—DELETE ENTRY FROM TREE" :rem 56

6 PRINT"O—OUTPUT SCREEN":PRINT"Q—QUIT":PRINT"D—

CHANGE DATA" :rem 195

7 PRINT"CURSOR CONTROLS NORMAL":PRINT :rem 234

9 PRINT"PLEASE WAIT FOR INITIALIZATION":GOTO400

:rem 15

10 GOSUB500:IFA$=""THEN10 :rem 181

12 GOSUB550 :rem 125

15 ONJGOSUB110,120,130,140,150,160,170,180,190,200

,210,220,230,240,250,260 :rem 186

20 GOTO10 :rem 252

110 IFY<MYTHENY=Y+1:N=SC(X,Y):GOSUB650 :rem 180

111 RETURN :rem 115

120 IFY>1THENY=Y-1:N=SC(X,Y):GOSUB650 :rem 68

121 RETURN :rem 116

130 IFX<MXTHENX=X+1:N=SC(X,Y):GOSUB650 :rem 178

131 RETURN :rem 117

140 IFX>1THENX=X-1:N=SC(X,Y):GOSUB650 :rem 67

141 RETURN :rem 118

150 M1=1:T1=1:T2=2:GOSUB850:RETURN :rem 79 |

160 M1=2:T1=2:T2=1:GOSUB850:RETURN :rem 81 I—r

170 M1=3:T1=3:T2=1:GOSUB800:RETURN :rem 79

180 M1=6:T1=4:T2=4:GOSUB800:RETURN :rem 87

190 M1=4:T1=5:T2=3:GOSUB800:RETURN :rem 86 [

200 IFN=0THENRETURN :rem 235 '
201 N=FT%(SC(X,Y),6):IFN=0THENM1=5:GOSUB950:IFN=0T

HENN=LN:GOSUB650:RETURN :rem 150 i j

202 IFOS%(N)<>0THENX=INT(OS%(N)/10):Y=OS%(N)-10*X: Lj
GOSUB650:RETURN :rem 222

203 TN=FT%(LN,6) :rem 128

204 IFOS%(TN)O0THENX=INT(OS%(TN)/10):Y=OS%(TN)-10 j (
*X:N=TN:GOSUB650:RETURN :rem 67 *—'

86 LJ

Recreations and Applications 2

205 IFFT%(TN,5)<>0THENTN=FT%(TN,5):GOTO204 :rem 13

206 IFX=lTHENMl=4:GOSUB700:D=-2:GOSUB600:RETURN

:rem 224

207 IFSC(X-1,Y)<>0THENGOSUB900:RETURN :rem 86

208 X=X-1:D=-2:GOSUB600:RETURN :rem 105

210 FORJ=1TOMY:FORK=1TOMX:SC(K,J)=0:NEXT:NEXT

:rem 222

211 FORJ=1TOMN:OS%(J)=0:NEXT :rem 243

212 PRINTCHR$(19);:FORJ=1TONR:PRINTBL$:NEXT:rem 39

213 X=1:Y=4:D=0:GOSUB600:RETURN :rem 181

220 GOSUB350:PRINTD$:A$="":INPUT"QUIT/Y, NO/CR";A$

:IFA$="Y"THEN222 :rem 206

221 N=LN:G0SUB650:RETURN :rem 41

222 IFFL=0THENGOSUB350:PRINTD$:END :rem 171

223 GOSUB350:PRINTD$:PRINT"CHANGES HAVE BEEN MADE"

:rem 55

224 INPUT"NEW FILE NAME";N$:INPUT"TAPE OR DISK";A$

:rem 232

225 IFLEFT$(A$,1)="T"THENOPEN1,1,1,N$:GOTO227

:rem 87

226 OPEN1,8,2,N$+",SEQ,W" :rem 100

227 PRINT#1,MN:FORJ=1TOMN:PRINT#1,N$(J,0)R$N$(J,1)

:rem 234

228 FORK=1TO6:PRINT#1,FT%(J,K):NEXT:PRINT#1,DT%(J)

:NEXT:CLOSE1:END :rem 176

230 GOSUB350:PRINTD$:A$="":INPUT"OUTPUT/O OR CR";A

$:IFA$=""THENGOSUB350:RETURN :rem 95

231 OPEN4,4,4:CMD4:PRINTCHR$(27);CHR$(109);CHR$(4)

; :rem 163

232 FORJ=0TONR-3:FORK=0TONC-2:T1=PEEK(SC+NC*J+K)

:rem 242

233 IFT1=64THENPRINTCHR$(133);:GOTO239 :rem 68

234 IFT1=93THENPRINTCHR$(134);:GOTO239 :rem 72

235 IFT1=107THENPRINTCHR$(132);:GOTO239 :rem 115

236 IFT1=115THENPRINTCHR$(131);:GOTO239 :rem 114

237 IFT1=32THENPRINTCHR$(32);:GOTO239 :rem 17

238 PRINTCHR$(Tl+64); :rem 209

239 NEXT:PRINT:NEXT:PRINT#4:CLOSE4:RETURN :rem 57

240 FL=1:M1=8:GOSUB785:IFN1$=""THENRETURN :rem 29

241 GOSUB775:GOSUB650:RETURN :rem 41

250 TP=SC+X*8+Y*120-169:FORJ=0TO3:FORK=0TO8:POKETP

+J*40+K,32:NEXT:NEXT :rem 108

252 OS%(SC(X,Y))=0:SC(X,Y)=0:N=0:GOSUB650:RETURN

c—■■? :rem 177

I I 260 GOSUB350:PRINTD$:A$="":INPUT"DELETE FROM TREE/
Y# NO/CR";A$:rem 217

261 IFA$o"Y"THENN=LN:GOSUB650: RETURN : rem 103

1 | 262 FL=1:IFFT%(FT%(N,1),6)ONANDFT%(FT%(N,2),6)ON
THEN264 :rem 236

n

n

n 87

2 Recreations and Applications

u

u

263 TN=FT%(N,5):FT%(FT%(N, 1) ,6)=TN:FT%(FT%(N,2) ,6) i i

=TN :rem 198 j |
264 FT%(FT%(N,4),5)=FT%(N,5):FT%(FT%(N,5),4)=FT%(N

,4):FT%(FT%(N,3),3)=0 :rem 254

265 TN=FT%(N,6) :rem 60 j I
266 IFTN=0THENN=0:GOTO250 :rem 48 '—1
267 IFFT%(TN,1)=NTHENFT%(TN#1)=0:TN=FT%(TN,5):GOTO

266 :rem 176 .

268 FT%(TN,2)=0:TN=FT%(TN,5):GOTO266 :rem 90 [_
350 PRINTD$:PRINTBL$:PRINTBLCHR(145):RETURN

:rem 133

400 POKE51,200:POKE55,200:POKE52,PEEK(52)-1:POKE56

,PEEK(56)-1:CLR :rem 9
401 X=1:Y=4:N=1:A$=IIM:T1=0:T2=0:T3=0:T4=0:D=0:DR=0

:M1=0:J=0:K=0:TN=0 :rem 164

402 MX=5:MY=8:NR=25:NC=40:LE=7:LM(1)=800:LM(2)=800

:LM(3)=912:LM(4)=912 :rem 225

403 SC=256*PEEK(648):MS=1000 :rem 33

404 T5=255:T6=256:U8=128:P1=0:P2=0:P3=0:P4=0

:rem 221

405 DIMFT%(MS#6)#OS%(MS)#DT%(MS),N$(MS#1)#SC(MX+1#

MY+1),QP$(16) :rem 24

406 FORJ=1TO8:READTP$(J):NEXT :rem 70

407 DATAMOTHER,FATHER,SPOUSE,NEXT,CHILD,PREVIOUS,I

NITIAL ENTRY,NEW DATA : rem 17

408 FORJ=1TO16:READOP$(J):NEXT :rem 114

409 REM [DOWN],[UP],[RIGHT],[LEFT],,,,,,,[CLR],,,[

DEL],[F1] :rem 164

410 DATA"{DOWN}H,"{UP}", "{RIGHT}11,"{LEFT}",M,F,S,P

,N,C,"{CLR}",Q,O,D,"{DEL}","{F1}" :rem 82
411 FR(1)=SC+LM(1):FR(2)=SC+3*NC:FR(3)=SC+LE+1:FR(

4)=SC+LM(4) :rem 190

415 TG(1)=SC+LM(1)+3*NC:TG(2)=SC:TG(3)=SC:TG(4)=SC

+LM(4)+LE+1 :rem 206

420 T1=PEEK(55)+T6*PEEK(56):FORJ=T1TOT1+45:READT2:

POKEJ,T2:NEXT :rem 155

421 DATA160,0,177,251,145,253,24,165,251,101,142,1 j I
33,251,165,252,101,143,133 :rem 183 '—}

422 DATA252,24,165,253,101,142,133,253,165,254,101

,143,133,254,165,140,208 :rem 95 { ,

423 DATA4,198,141,48,5,198,140,24,144,211,96 J j
:rem 177

425 MN=0:N$(0,0) = IIEMPTY":N$(0,1) = "SPOT" :rem 141

426 PRINT:N$="":INPUT"FAMILY TREE FILE NAME \ I

{2 SPACES}(CR IF NONE)";N$ 2rem 233 '—'
427 IFN$=M"THEN433 :rem 232

428 INPUT"TAPE OR DISK";A$:rem 8

429 IFLEFT$(A$,1)="T"THENOPEN1,1,0,N$:GOTO431 !_]
:rem 89

88 u

Recreations and Applications 2

n

n
430 OPEN1,8,2,N$+",SEQ,RM :rem 92

431 INPUT#1,MN:FORJ=1TOMN:INPUT#1,N$(J,0),N$(J,1)

:rem 163

432 FORK=1TO6:INPUT#1,FT%(J,K):NEXT:INPUT#1,DT%(J)

i"""] :NEXT: CLOSE1 :rem 162
433 PRINT:PRINTMPRESS ANY KEY WHEN READY

{10 SPACES}" :rem 55

!—■» 434 GETA$:IFA$=nllTHEN434 : rem 89

I I 435 IFMN=0THENM1=7:GOSUB950 :rem 172
436 D$=CHR$(19):FORJ=1TONR-3:D$=D$+CHR$(17):NEXT

:rem 31

437 BL$=IIII:FORJ=1TONC-1:BL$=BL$+" " :NEXT:R$=CHR$(1

3) :rem 162

438 CH$(1)=CHR$(125):CH$(2)=CHR$(96):CH$(3)=CHR$(1

71):CH$(4)=CHR$(179) :rem 148

440 FORJ=1TONR:PRINTBL$:NEXT:GOSUB600:GOTO10

:rem 144

500 P1=SC+(X-1)*(LE+1)+(Y-1)*3*NC:P2=P1+LE-1:P3=P2

+NC-LE+1:P4=P3+LE-1 :rem 76

501 GETA$:IFA$<>""THENRETURN :rem 214

505 T1=PEEK(P1):T2=PEEK(P2):T3=PEEK(P3):T4=PEEK(P4

) :GETA$:IFA$oM"THENRETURN :rem 178

510 POKEP1,T1+U8:POKEP2,T2+U8:POKEP3,T3+U8:POKEP4,

T4+U8 :rem 180

515 FORJ=1TO50:GETA$:IFA$=""THENNEXT :rem 222

520 POKEP1,Tl:POKEP2,T2:POKEP3,T3:POKEP4,T4

:rem 213

525 IFA$=""THENFORJ=1TO50:GETA$:IFA$=""THENNEXT

:rem 131

530 RETURN :rem 120

550 FORJ=1TO16:IFA$<>OP$(J)THENNEXT :rem 183

551 RETURN :rem 123

600 GOSUB650:PRINTLEFT$(D$,(Y-l)*3+l)TAB((LE+1)*(X

-1))LEFT$(N$(N,0),LE) :rem 206

601 PRINTTAB((LE+1)*(X-1))LEFT$(N$(N#1)#LE)

:rem 134

rn 605 SC(XfY)=N:OS%(N)=10*X+Y :rem 46
' s 610 IFABS(D)<>2THEN620 :rem 4

615 PRINTLEFT$(D$,(Y-l)*3+2)TAB((LE+1)*(X+(D>0))-l

—)CH$(ABS(D))? :rem 138

J | 616 PRINTCHR$(145)CHR$(157)CH$(ABS(D)):RETURN
:rem 138

620 PRINTLEFT$(D$#3*(Y-(D>0))-3)TAB((LE+l)*(X-l)+2
)CH$(ABS(D))CH$(ABS(D)) :rem 186

625 RETURN :rem 125

650 GOSUB350:LN=N:PRINTD$:PRINTCHR$U8)N$(Nf0)M

{2 SPACES}"N$(N,1)M{2 SPACES}HDT%(N):RETURN
:rem 156

700 GOSUB350:POKE140#LM(M1)ANDT5:POKE141,LM(M1)/T6

:rem 233

89

2 Recreations and Applications
u

u

701 POKE142,1:POKE143,0:IFFR(M1)<TG(M1)THENPOKE142 » ,

,T5:POKE143,T5 :rem 78 | |
702 POKE251,FR(M1)ANDT5:POKE252,FR(M1)/T6 :rem 157

703 POKE253,TG(Ml)ANDT5:POKE254,TG(Ml)/T6:SYS(PEEK
(55)+T6*PEEK(56)) :rem 210 I j

705 ONM1GOTO710,715,720,725 :rem 224 !—'
710 FORJ=1TOMX:FORK=1TOMY-1:OS%(SC(J,K))=OS%(SC(J,

K))+1:NEXTK :rem 23 ,

711 OS%(SC(J,MY))=0:NEXTJ : rem 228 j j
712 FORJ=MYTO1STEP-1:FORK=1TOMX:SC(K,J)=SC(K,J-1):

NEXT:NEXT :rem 85

713 PRINTCHR$(19)BL$:PRINTBL$:PRINTBL$:RETURN

:rem 162

715 F0RJ=lT0MX:F0RK=2T0MY:0S%(SC(J,K))=0S%(SC(J,K)

)-l:NEXTK :rem 193

716 OS%(SC(J,1))=0:NEXTJ :rem 116

717 FORJ=1TOMY:FORK=1TOMX:SC(K,J)=SC(K,J+1):NEXT:N

EXT :rem 190

718 PRINTLEFT$(D$,3*(MY-1))BL$:PRINTBL$:PRINTBL$:R

ETURN :rem 209

720 F0RJ=lT0MY:F0RK=2T0MX:0S%(SC(K,J))=0S%(SC(K,J)

)-10:NEXTK :rem 237

721 OS%(SC(1,J))=0:NEXTJ :rem 112

722 FORJ=1TOMY:FORK=1TOMX:SC(K,J)=SC(K+1,J):NEXT:N

EXT :rem 186

723 PRINTCHR$(19);:FORJ=1TO3*MY-1:PRINTTAB(NC-LE-1

)LEFT$(BL$,LE):NEXT :rem 33

724 FORJ=SC+NC-1TOSC+NC-1+NR*NCSTEPNC:POKEJ,32:NEX

T: RETURN :rem 56

725 FORJ=1TOMY:FORK=1TOMX-1:OS%(SC(K,J))=OS%(SC(K,

J))+10:NEXTK :rem 77

726 OS%(SC(MX,J))=0:NEXTJ :rem 233

727 P0RJ=lT0MY:F0RK=MXT01STEP-l:SC(K,J)=SC(K-l,J):

NEXT:NEXT :rem 91

728 PRINTCHR$(19);:FORJ=1TO3*MY-1:PRINTLEFT$(BL$,L

E+1):NEXT :rem 173

729 FORJ=SC+NC-1TOSC+NC-1+NR*NCSTEPNC:POKEJ,32:NEX \ I

T: RETURN : rem 61 u—)
750 TN=LN:N=MN+1:MN=N:GOSUB775 :rem 142

751 IFFT%(TN,5)<>0THENTN=FT%(TN,5):GOTO751 :rem 26

755 PT%(TN,A)=N:IFFT%(TN,4)<>0THENTN=FT%(TN,4):GOT j I
0755 :rem 4 * '

760 FT%(N,3)=FT%(TN,B):FT%(N,6)=TN:IFFT%(TN,B)O0T

HENFT%(FT%(TN,B),3)=N :rem 108 \ |

761 RETURN :rem 126 LJ
775 N$(N,0)=N1$:N$(N,1)=N2$:DT%(N)=DT%:RETURN

:rem 35

785 G0SUB350:PRINTD$:PRINT:PRINT"TYPE FIRST NAME,) \
{SPACE}LAST NAME, BIRTH YEAR11; :rem 58 *—'

90

n

n

n

n

n

Recreations and Applications 2

790 PRINTCHR?(145)CHR$(145):PRINTTP?(Ml);:N1$="":D
T%=0:INPUTN1$,N2$,DT%:RETURN :rem 160

800 IFN=0THENRETURN :rem 241
802 N=FT%(SC(X,Y),T1):IFN=0THENGOSUB950:IFN=0THENN

=LN:G0SUB650:RETURN :rem 194

805 IFOS%(N)<>0THENX=INT(OS%(N)/10):Y=OS%(N)-X*10:

GOSUB650:RETURN :rem 231

807 DR=1:IFT1=4ORT1=3ANDY<5THENDR=-1 :rem 245

810 IFSC(X,Y+DR)=0AND(Y+DR)>0AND(Y+DR)<MY+1THENY=Y
+DR:D=T2*-DR:GOSUB600:RETURN :rem 185

815 IFSC(X,Y-DR)=0AND(Y-DR)>0AND(Y-DR)<MY+1THENY=Y

-DR:D=T2*DR:GOSUB600:RETURN :rem 153

820 IFY=1THENM1=1:GOSUB700:D=T2:G0SUB600:RETURN

:rem 7

825 IFY=8THENM1=2:GOSUB700:D=-T2:GOSUB600:RETURN

:rem 65

830 GOSUB900:RETURN :rem 206

850 IFN=0THENRETURN :rem 246

852 N=FT%(SC(X,Y),T1):IFN=0THENGOSUB950:IFN=0THENN

=LN:G0SUB650jRETURN :rem 199

855 IFOS%(N)<>0THENX=INT(OS%(N)/10):Y=OS%(N)-10*X:

GOSUB650:RETURN :rem 236

860 TX=INT(OS%(FT%(SC(X,Y),T2))/10):TY=OS%(FT%(SC(

X,Y),T2))-10*TX:IFTX=0THEN870 :rem 199

865 IFTY=10RTY=MY0RSC(TX,TY-1)=0ORSC(TX,TY+1)=0THE

NX=TX:Y=TY:GOSUB170:RETURN :rem 133

870 IFX=MXTHENM1=3:GOSUB700:D=2:GOSUB600:RETURN

:rem 45

875 IFSC(X+1,Y)<>0THENGOSUB900:RETURN :rem 95

880 X=X+1:D=2:GOSUB600:RETURN : rem 64

900 GOSUB350:PRINTDCHR(17)"INSUFFICIENT SPACE ON

SCREEN" :rem 46

905 PRINT"SHOULD CLEAR OR DELETE"CHR$(145):RETURN

:rem 255

950 IFMN<MS-1THEN952 :rem 209

951 GOSUB350:PRINTD$:PRINT"INSUFFICIENT MEMORY":FO

RJ=1TO1000:NEXT:RETURN :rem 33

952 GOSUB785:IFN1$=""THENRETURN :rem 192

955 FL=1:ONM1GOTO956,960,965,970,975,980,990

:rem 168

956 A=1:B=2:GOSUB750:RETURN :rem 174

960 A=2:B=1:GOSUB750:RETURN :rem 169

965 TN=LN:N=MN+1:MN=N:GOSUB775 :rem 150

966 FT%(TN,3)=N:FT%(N,3)=TN:FT%(N,6)=FT%(TN,6):IFF
T%(N#6)=0THENRETURN :rem 103

967 TN=FT%(N,6):A=1:IFFT%(FT%(N,6),2)=0THENA=2
:rem 113

968 FT%(TN,A)=N:TN=FT%(TN#5):IFTN<>0THEN968

:rem 104

969 RETURN : rem 136

91

2 Recreations and Applications
u

u

970 TN=LN:N=MN+1:MN=N:GOSUB775 :rem 146 , ,

971 FT%(N,1)=FT%(TN,1):FT%(N,2)=FT%(TN,2):FT%(N,4) j j
=TN:FT%(TN,5)=N:RETURN :rem 180

975 TN=LN:N=MN+1:MN=N:GOSUB775 :rem 151

976 IFFT%(TN,6)<>0THENA=2+(FT%(FT%(TN,6),1)=TN):GO j j

TO978 :rem 201 '—»
977 GOSUB350:PRINTDCHR(17)CHR$(17)"GENDER OF PAR

ENT; MOTHER/1, FATHER/2"; :rem 166)

978 PRINTDCHR(17)N$(LN,0);:INPUTA:B=2+(A=2) [__\
:rem 109

979 FT%(N,A)=TN:FT%(N,B)=FT%(TN,3):FT%(TN,6)=N:FT%

(FT%(TN,3),6)=N:RETURN :rem 226

980 TN=LN:N=MN+1:MN=N:GOSUB775 :rem 147

981 FT%(N,1)=FT%(TN,1):FT%(N,2)=FT%(TN,2):FT%(N,5)

=TN:FT%(TN,4)=N :rem 155

982 T3=FT%(TN,1):IFT3<>0THENFT%(T3,6)=N :rem 35

983 T3=FT%(TN,2):IFT3<>0THENFT%(T3,6)=N :rem 37

984 RETURN :rem 133

990 MN=MN+1:N=MN:GOSUB775:RETURN :rem 72

NOTE:

In order for this program to work with a Commodore MPS

801 printer, change the following lines.

231 OPEN4,4:CMD4 :rem 158

233 IFT1=64THENPRINTCHR$(96);:GOTO239 :rem28

234 IFT1=93THENPRINTCHR$(125);:GOTO239 :rem 72

235 IFT1=107THENPRINTCHR$(171);:GOTO239 :rem 118

236 IFT1=115THENPRINTCHR$(179);:GOTO239 :rem 126

u

u

92 U

n Supertank
PI Boris Litinsky

In this unusual action game, your goal is to pre-

vent hostile tanks from crossing your territory. By

aiming carefully and avoiding direct hits, you

may make it to the rank of Marshal Joystick

required.

Your orders are to stop the enemy tanks. But in the back of

your mind, you know there's more to it than just following or

ders. You know that if you don't stop them, they'll stop you.

Your goal is simply to survive.

Your commander has been kind enough to give you a

choice of three different tanks. The Tiger has strong armor,

which is great for helping you survive, but it moves slug

gishly. The T-34 has moderate armor and speed, but lacks

firepower. If you choose the Sherman, you'll have a quick

tank with a good cannon, but almost no defense (armor). If

you're a new recruit, you might want to choose the T-34 be

cause of its defensive capabilities. Advanced players who are

sure of their abilities may prefer the Sherman, although a sin

gle hit by the enemy can be devastating.

Controlling the Tank

Using "The Automatic Proofreader" (found in Appendix C),

—. type in and save "Supertank." Load and run it, and in a few

I ..I moments you'll see the tank outfitting display. Notice the dif
ferent strengths and weaknesses each tank has. Pressing the

—^ appropriate key (1 for Tiger, 2 for T-34, or 3 for a Sherman)

! 1 begins the game.
Your tank quickly moves onto the battlefield. Enemy

n tanks move across the screen from left to right. Using a joy-

_ stick plugged into port 1, you can control the crosshairs of

your cannon. Get the enemy tank in your sights and press the

nfire button to fire a salvo. Remember that it takes time for the

shots to travel; you'll have to adjust accordingly, shooting

slightly in front of your target.

H 93

2 Recreations and Applications

u

After pressing the fire button, you'll see the shot fly (from j /

the left edge of the screen). If it misses, nothing will happen. i—I
But if it hits the target, the enemy tank explodes and the

screen changes color to simulate new terrain and new r j

weather. You score ten points for each successful shot. I I
If you miss, you become the target. The enemy tank will

turn toward you and fire. The enemy rarely misses—and , »

you'll lose one armor point when you get hit. In the upper I I
right-hand corner is a status indicator which displays how

many points you've scored and how much armor you have

left. When your defenses reach zero, your tank is destroyed.

The viewport cracks, and the tank is reduced to scrap.

Sometimes, if you fire often enough, you can force the en

emy tank to vanish at the right side of the screen. It's fled un

der your bombardment, without firing a shot. Unfortunately,

another one immediately takes its place on the left. However,

this can give you some breathing space, especially if you're

using the Tiger, whose turret swings around so slowly.

Extra Chances

Losing a tank is not a total catastrophe, however. You manage

to escape by the skin of your teeth, and make your way back

to headquarters. You are awarded a rank, based on your

performance, from Private (less than 50 points scored) to Mar

shal (over 1000). But if no points are scored, you're branded a

Trainee. Whatever your rank, you're given another chance to

do battle. Choose another tank and the game begins again;

you may yet earn the exalted rank of Marshal.

Supertank
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 PRINT"{CLR){HOME}":RESTORE:V=5 3248:POKEV+32,0:P jI
OKEV+33,1:POKEV+17,PEEK(V+17)AND247 :rem 174 '—

15 PRINTTAB(53)"{BLU}{RVS}W*E*L*C*O*M*E1":PRINTTAB
(59)"{RED}{RVS}TOM :rem 147 s \

17 PRINTTAB(55)"{RED}{RVS}SUPERTANK1":PRINT 1 l

:rem 158

20 FORQ=lTO4:PRINTTAB(14)"g5§BN3":NEXT :rem 50

22 PRINTTAB(14)"iN3{RVS}£{8 SPACES}g*l":PRINTTAB(ji
14)"{RVS}£ Q Q{2 SPACES}QQQ g*3{OFF}g2 Hg8 03 ^
g3 13" :rem 209

24 PRINTTAB(13)"{RVS}£{2 SPACES}Q Q{3 SPACES}M [i

{3 SPACES}{OFF}g2 U3g8 Y§&3 uT" :rem 207 I—I

94 LJ

n

n

Recreations and Applications 2

«—) 26 PRINTTAB(13)"{RVS}{3 SPACES}QQQ{2 SPACES}QQQ
I } {2 SPACES} {OFF}11 : rem 79

28 PRINT"{3 SPACES}{RVS}£{30 SPACES}g*l{OFF}"

:rem 103

P"J 30 PRINT" {2 SPACES}{RVS}£{32 SPACES} g* 3 {OFF }"

:rem 96

32 PRINT"{GRN}g2 +§g5§{RVS}{34 SPACES}{OFF}{GRN}

, , g3 +1" :rem 236

I I 34 PRINT"83 +§g5§M W{RVS}£ 8*J{OFF}W{RVS)£ g*3
{OFF}W{RVS}£ g^3TOFF}wTRVS}£ g*iTOFF}wTRVS}£
g*I{OFF}w{RVS}£ g*§{OFF}w{RVS}£ g*|{OFF}WN
{GRN}g4 +1" :rem 255

36 PRINT"g4 +§g5lM {RVS} Q {OFF} {RVS} Q {OFF}
{RVS} Q {OFF} TRVS} Q TOFF} {RVS} Q TOFF} {RVS}
Q {OFF} {RVS} Q {OFF}N{GRN}g5 +1" :rem 148

38 PRINT"85 +ig5lM?*3{RVST {OFF}£Wg*l{RVS} {OFF}
£Wg*HRVS} {OFF}£Wg*HRVS} {OFF}£Wg*§ {RVS}
ToFF}£wg*l{Rvs} Toff}£wg*l{rvs} Toff}£{grn}
g6 +§ir" :rem 31

40 PRINT"g6 +§g5§g26 Y§{GRN}g7 +1" :rem 239

42 FORQ=1TO2:PRINT"g39 +S":NEXT :rem 175

43 GOSUB800 :rem 127

48 S=54272:FORL=STOS+24:POKELr0:NEXT :rem 14

50 PRINT"{CLR} {HOME} {WHT}fl :POKEV+32# 1 :POKEV+33 ,0:P

RINTTAB(120) :rem 187

52 GOSUB1000 :rem 168

60 PRINT"{CLR}{HOME}{WHT}":PRINTTAB(90)"TANK SPECI

FICATIONS" :rem 192

62 PRINTTAB(49)"{RVS}{GRN} STRONG {OFF}{3 SPACES}
{RVS}{YEL} MEDIUM {OFF}{2 SPACES}{RVS}{WHT} WEA
K {OFF}" :rem 65

64 PRINTTAB(40)"{GRN}{RVS}1.TIGER{OFF}{4 SPACESjAR
MOR{5 SPACES}{YEL}FIRE{5 SPACES}{WHT}SPEED"

:rem 30

66 PRINTTAB(40)"{YEL}{RVS}2.T-34{OFF}{5 SPACES}

{GRN}SPEED{5 SPACES}{YEL}ARMOR{4 SPACES}{WHT}FI
RE " : rem 44

68 PRINTTAB(40)"{WHT}{RVS}3.SHERMAN{OFF}{2 SPACES}

{GRN}FIRE{6 SPACES}{YEL}SPEED{4 SPACES}{WHT}ARM

OR":PRINTTAB(120) :rem 62

70 PRINT:INPUT"{HOME}{15 DOWN}{3 SPACES}WHICH TANK

DO YOU CHOOSE ";TA :rem 214

72 IFTA<1ORTA>3THEN80 :rem 56

78 PRINT"{4 DOWN}{13 SPACESjGET READY 1":FORQ=1TO5

00STEP.5:NEXT:GOTO85 :rem 10

80 PRINT"{HOME}{15 DOWN}{10 SPACES}YOU CAN'T DO TH
ATI{4 SPACES}":GOSUB1300:GOTO70 :rem 210

85 V=53248:GOSUB1100 :rem 130

90 PRINT"{CLR}{HOME}":POKEV+32,0:POKEV+33,1:rem 56

95

2 Recreations and Applications

U

92 PRINTTAB(7)M{RVS}g5i£i*3{OFF}{4 SPACES}{RVS}£ j (

i*l{0FF}{7 SPACES}{RVS}£g*§{OFF}{4 SPACES} j 1
{RVS}£g*l{OFF}{4 SPACESTtRVS}{BLK}SCOREfl : rem 1

94 PRINTir{2 SPACES}{RVS}g5§£g*3{OFF}{2 SPACES}

{RVS}£{2 SPACES}{OFF}{3 SPACES}{RVS}£ j I
{2 SPACES}g*l{OFF}{5 SPACES}{RVS}£{2 SPACES} '—!
g*§{OFF}{2 SPACES}{RVS}£{2 SPACESTg*§{OFF}
{2 SPACES}{BLK}";SC :rem 52 , ,

96 PRINT" {RVS}g5§£{2 SPACES}g*3£{3 SPACES}g*§ | j
{OFF}{2 SPACESJTRVS}{4 SPACESTg*3{OFF}
{2 SPACES}{RVS}£{5 SPACES}{OFF} {RVS}£
{4 SPACES}g*§{OFF}{2 SPACES}{RVS}{BLKTARMOR"

:rem 171

98 PRINT"{RVS}g53£{9 SPACES}g*3£{5 SPACES}g*§£
{6 SPACES}£{6 SPACES}g*l{OFFTtBLK}";AR :rem 29

100 FORQ=lTO17:PRINT"{RVS}{GRN}g39 +1":NEXT:rem 64

110 PRINT"{RVS}g5jgQ§CCCCCCCCCgW3{RIGHT}£

{13 SPACES}g*HRIGHT)gQ3CCCCCCCCCgWjlr :rem 65
112 PRINT"{RVS}g53gQJCCCCCCCCCEW3117 SPACES}gQJCCC

CCCCCCgWJ" :rem 129

114 GOSUB420 :rem 172

120 CB=1:TI$=M000000" :rem 34

150 POKEV+21,15:POKE2040,13:POKEV+39#0:POKEV,170:P

OKEV+1,150:Y=170:X=150:SH=0 :rem 27

151 POKE2042,193 xPOKEV+41,11:RF=0:UT=110:POKEV+42,

0:POKE2043#195 :rem 206

152 POKE2041,14:POKEV+40,0:POKEV+2,XI:POKEV+3,Y1

:rem 109

180 S=NOTPEEK(56321)AND15:U=SAND1:D=SAND2:L=SAND4:

R=SAND8:Y1=0:X1=0 :rem 165

182 POKEV+23#0:POKEV+29,0 :rem 189

185 IFUTHENX=X-M1:IFX<110THENX=X+M1 :rem 253

187 IFDTHENX=X+M1:IFX>180THENX=X-M1 :rem 247

189 IFRTHENY=Y+M1:IFY>245THENY=Y-M1 :rem 14

191 IFLTHENY=Y-M1:IFY<90THENY=Y+M1 :rem 205

200 POKEV,Y:POKEV+1,X :rem 59

210 J=NOTPEEK(56321)AND16:IFJ=16THENGOSUB245 j |

:rem 189 <—'

230 BO=BO+.5:GOSUB310:GOTO180 :rem 220

245 SH=SH+1:X1=X:MR=Y:HH=Y/2:GOSUB400 :rem 64

247 FORDD=DDTOHHSTEP5:POKEV+2,DD:POKEV+3,XI:GOSUB3 j \
30:NEXT :rem 224

250 POKE2041915:FORDD=DDTOMRSTEP5:POKEV+2,DD:POKEV

+3,X1:GOSUB330:NEXT :rem 171 i i

251 IF(PEEK(V+30)AND4)>0THENIF(PEEK(V+30)AND4)>0TH LJ
ENGOSUB253 :rem 110

252 X1=0:DD=0:Y1=0:POKEV+2,X1:POKEV+3,MR:POKE2041,

14:RETURN :rem 131

253 POKE2041f192:POKEV+23,2:POKEV+29,2 :rem 184

96

Recreations and Applications 2

n

n

n

n

n

n

n

n

254 POKEV+3,X1-10:POKEV+2,DD-12:GOSUB410:GOSUB495

:rem 204

258 FORRE=1TO500:NEXT:POKEV+23,0:POKEV+29,0

:rem 152

260 X1=0:DD=0:Y1=0 2POKEV+2,XI:P0KEV+3,MR:POKE2041,

14: RETURN :rem 130

310 RF=RF+5:IFRF>215THEN350 :rem 95

315 POKEV+4,RF:POKEV+5,UT:RETURN :rem 79

330 RF=RF+1.8:IFRF>215THENRF=0 :rem 48

333 IFRF=0THEN340 :rem 243

335 P0KEV+4,RF:P0KEV+5,UT:RETURN :rem 81

340 RF=0:UT=110:RS=INT(RND(0)*60):UT=UT+RS:GOTO330

:rem 61

350 F1=RF:F2=UT:POKE2042,194:POKEV+6,F1:POKEV+7,F2

:GOSUB400 :rem 77

355 FORQ=F2TO150STEP.4:POKEV+7,Q:NEXT:POKEV+29,8:P

OKEV+23,8:POKEV+6,F1-12 :rem 55

360 F2=150:FORQ=F2TO230STEP.6:POKEV+7,Q:NEXT:GOSUB

410 :rem 73

390 POKEV+6,0:POKEV+7,0:POKEV+4,0:POKEV+5,0:RF=0:P

OKEV+23,0:POKEV+29,0 :rem 235

391 POKE2042,193:GOTO499 :rem 118

400 S=54272:FORL=STOS+24:POKEL,0:NEXT:POKES+5,9:PO
KES+6,16:POKES+24,15 :rem 70

405 POKES+4,129:POKES+1,34:POKES,75:RETURN :rem 91
410 S=54272:FORL=STOS+24:POKEL,0:NEXT:P0KES+5,11:P

OKES+6,16:POKES+24,15 :rem 112

415 POKES+4,129:POKES+1,54:POKES,111:RETURN

:rem 133

420 S=54272:FORL=STOS+24:POKEL,0:NEXT:POKES+5,11:P

OKES+6,56:POKES+24#15 :rem 117

425 POKES+4,129:POKES+1,51:POKES,97:RETURN :rem 96

495 SC=SC+10:CB=0:RN=INT(RND(0)*15):CB=CB+RN:GOTO5

00 :rem 95

499 AR=AR-1 :rem 103

500 V=53248:PRINT11 {HOME } " :POKEV+32 ,0:POKEV+33, CB

:rem 248

501 RF=0:UT=110:RS=INT(RND(0)*60):UT=UT+RS:RF=RF+1

•5: :rem 211

502 PRINTTAB(7)H{RVS}i5l£g*l{OFF}{4 SPACES}{RVS}
£i*H0FF}{7 SPACES} {RVS}£|*3{OFF} {4 SPACES}
TRVS}£|*1{OFF}{4 SPACES}TRVS}{BLK}SCORE"

:rem 45

504 PRINT"{2 SPACES}{RVS}g53£i*l{OFF}{2 SPACES}
{RVS}£{2 SPACES}{OFF}{3 SPACES}{RVS}£
{2 SPACES }g*HOFF} {5 SPACES } {RVS }£{ 2 SPACES}
g*§{OFF}{2 SPACES}{RVS}£{2 SPACEST§*1{OFF}
{2 SPACES}{BLK}M;SC :rem 96

97

u
2 Recreations and Applications

u

506 PRINT11 {RVS}g5§£{2 SPACES}g*l£{3 SPACES}!*!

{OFF}{2 SPACESJlRVS}{4 SPACESTi*1{OFF} I I
{2 SPACES}{RVS}£{5 SPACES}{OFF} {RVS}£ '—'
{4 SPACES} g*HOFF} {2 SPACES}{RVS}{BLKTaRMOR"

:rem 215 , ,

508 PRINTM{RVS}g5§£{9 SPACES}g*3£{5 SPACES}g*§£ [_J
{6 SPACES}£{6 SPACES}g*§{OFFT{BLK}";AR:rem 73

509 IFAR=0THEN"549 : rem 254

510 RETURN :rem 118 j I

549 LL=18:BL=12:BB=15 : rem 169 I—I
550 PRINT"{HOME}":POKEV+32,0:POKEV+33,1 :rem 214

558 FORQ=5TO7:PRINTTAB(Q)"{BLK}M"SPC(10)"M":NEXT

:rem 41

560 PRINTTAB(7)ll{BLK}N"SPC(ll)llMllSPC(4)llNMll:rem 29

561 PRINTTAB(6) "N"SPCTl3) "M"SPCT2)"N"SPCT2) "M"
:rem 58

562 PRINTTAB(5)II{BLK}N"SPC(15)"{BLK}MNIISPC(4)MM"

:rem 177

563 PRINTTAB(5)"M"SPC(21)"N"SPC(3)"NM" :rem 142

564 PRINTTAB (6) "M"SPC (6) "NM"SPC (11)irW"SPC (3) "N"SPC
(2)"M" " :reS 136

565 PRINTTAB(7)"M"SPC(4)"N"SPC(2)"M"SPC(10)"MMSPC(

2)MN"SPC(4)nMn " " :rem 52
566 PRINTTAB(8)"MnSPC(2)llNIISPC(4)llMnSPC(10)MMNllSPC

(6)HMM :rem 139

567 PRINTTAB(9)HMNMSPC(6)IIM"SPC(17)IIN" :rem 158

568 PRINTTAB (18 J^SPC (15 J^N" :FORLB=1TO6 :PRINTTAB (
LL)"NIISPC(14)"NII:LL=LL-1:NEXT :rem 60

570 FORQ=1TO5:PRINTTAB(BL) "NMSPC(BB) "M" :BL=BL-1 :BB

=BB+2:NEXT :rem 187

580 RESTORE:POKEV+23 #0:POKEV+29 #0:POKEV+21,0:GOSUB

420:FORQ=1TO500STEP.1:NEXT :rem 66

585 S=54272:FORL=STOS+24:POKEL,0:NEXT:GOSUB1200

:rem 193

588 V=53248: BO=BO/10:XX=INT(BO) :SC=SC+XX:IFSOHST

HENHS=SC :rem 174

589 PRINT"{HOME}{CLR}M:POKEV+32,0:POKEV+33#1:POKE5 (}
3281,1 :rem 62 M

590 PRINTTAB(85)"{RVS}B23B*O*N*U*S ";XX;SPC(3)n
{RVS}SHOTS FIRED";SH:PRINTTAB(45)"{RVSjYOUR";

:rem 201 I I

591 PRINT" SCORE";SC;SPC(3)"{RVS}HIGH SCORE n;HS:P I—'
RINTTAB(49)"{RVS}YOUR RANK IS {BLK}";B$:rem 36

592 PRINTTAB(43)"{RVS}g2§YOUR TOT7VL SURVIVING TIME
";TI$:rem 114 M

593 PRINTTAB(86)"{RVS}WANT TO PLAY AGAIN? (Y/N)"

:rem 243

595 GETC$:IFC$=""THEN595 :rem 109 I]

596 SC=0:B$=II":IFC$="Y"THEN599 :rem 168 1—I
597 IFC$="N"THENSYS64738 :rem 164

98 LJ

n

H

n

Recreations and Applications 2

598 C$=*IIM:GOTO595 : rem 164

599 SH=0:SC=0:BO=0 :XX=*0 :POKEV+32,1:POKEV+33,0 xGOTO

60 :rem 172

j—I 800 S=54272:FORL=STOS+242POKEL,0:NEXT:POKES+5,9:PO

j I KES+6,0:POKES+24,15 :rem 19
801 READHF,LF,DR:IFHF=-1THENRETURN :rem 196

804 POKES+1,HF:POKES,LF:POKES+4,33:FORT=1TODR:NEXT

I I :POKES+4,32:GOTO801 :rem 168

f ! 810 DATA18,209,1024,15,210,512,18,209,512,16,195,1
024,14,24,512,11,48,512 :rem 45

811 DATA18,209,200,16,195,200,15,210,200,14,24,200

,15,210,512,22,96,512 :rem 178

812 DATA16,195,1024,11,48,1024,15,210,512,14,24,20

0,12,143,200,11,48,200 :rem 222

813 DATA10,143,200,11,48,200,12,143,200,11,48,512,

16,195,512,14,239,512 :rem 185

814 DATA11,48,512,15,210,200,15,210,200,14,24,200,

12,143,200,11,48,200 :rem 105

815 DATA10,143,200,11,48,200,12,143,200,11,48,512,

16,195,1024,22,96,512 :rem 186

816 DATA18,209,1024,15,210,512,18,209,512,16,195,1

024,14,24,512,11,48,512 :rem 51

817 DATA18,209,200,16,195,200,15,210,200,14,24,200

,15,210,512,22,96,512 irem 184

818 DATA16,195,1024,11,48,1024,15,210,512,14,24,20

0,12,143,200,11,48,200 :rem 228

819 DATA10,143,200,11,48,200,12,143,200,11,48,512,

16,195,512,14,239,512 :rem 191

820 DATA11,48,512,15,210,200,15,210,200,14,24,200,

12,143,200,11,48,200 :rem 102

821 DATA10,143,200,11,48,200,12,143,200,11,48,512,

11,48,1024,-1,0,0 :rem 210

900 DATA255,255,255,128,24,1,128,24,1,128,24,1,128

,24,1,128,24,1,128,24,1 :rem 35

905 DATA128,24,1,128,36,1,128,66,1,255,129,255,128
,66,1,128,36,1,128,24,1,128 :rem 1

910 DATA24,1,128,24,1,128,24,1,128,24,1,128,24,1,1

28,24,1,255,255,255 :rera 93

915 DATA0,

31,254,0,49,255,192,96,255 :rem 88

920 DATA240,196,127,252,206,127,255,206,127,255,19

6,127,252,96,255,240,49,255 :rem 35

925 DATA192,31,254,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

:rem 109

926 DATA0,

63,240,0,103,252,0,195,255 :rem 66

927 DATA0,219,255,192,195,255,0,103,252,0,63,240,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 207

928 DATA0,0,0,0,0,0,0,0 :rem 113

99

2 Recreations and Applications

u

u

930 DATA0,0,2,34,128,4,0,64,2,146,128,16,0,16,10,7 i i

3,32,64,0,4,17,140,96,64,0,4 :rem 2 I—(
935 DATA17,17,16,64,0,4,8,136,136,64,0,4,17,17,16,

32,0,8,8,136,128,16,0,16,2,72 :rem 80

940 DATA128,4,0,64,0,0,0 :rem 184

945 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,64,0,0,64,0,0,64

,0,0,64,0,0,126,0,0,255,255,0 :rem 221

947 DATA255,0,63,255,252,127,255,254,255,255,255,1 , -,

00,68,70,37,85,84,20,68,72 :rem 243 [|
950 DATA15,255,240,0,0,0,0,0,0,0,0,0 :rem 228
955 DATA0,2,0,0,2,0,0,2,0,0,2,0,0,58,0,0,70,0,0,18

6,0,0,130,0,0,254,0,1,255,0 :rem 128

960 DATA3,255,128,7,255,192,0,124,0,15,187,224,8,1

86,32,15,187,224,8,130,32,15 :rem 52

965 DATA131,224,0,0,0,0,0,0,0,0,0 :rem 83

970 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,0

,0,126,0,0,255,0,0,255,0,0 :rem 41

975 DATA126,0,0,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0 :rem 178

1000 FORA1=832TO894:READQ1:POKEA1,Q1:NEXT :rem 22

1010 PORA2=896TO958:READQ2:POKEA2,Q2:NEXT :rem 38

1015 FORA3=960TO1022:READQ3:POKEA3,Q3:NEXT :rem 70

1020 PORA4=12288TO12350:READQ4:POKEA4,Q4:NEXT

:rem 226

1025 FORA5=12352TO12414:READQ5:POKEA5,Q5:NEXT

:rem 228

1030 FORA6=12416TO12478:READQ6:P0KEA6,Q6:NEXT

:rem 239

1035 FORA7=12480TO12542:READQ7:POKEA7,Q7:NEXT

:rem 241

1090 RETURN :rem 170

1100 IFTA=1THENAR=5:IFTA=1THENM1=1 :rem 111

1105 IFTA=2THENAR=3:IFTA=2THENM1=2 :rem 117

1110 IFTA=3THENAR=1:IFTA=3THENM1=3 :rem 114

1150 RETURN :rem 167

1200 IFSC=0THENB$="TRAINEE" :rem 115

1201 IFSC>0ANDSC<51THENB$="PRIVATE" :rem 147 I I
1202 IFSO52ANDSC<101THENB$="SERGEANT" :rem 53 '—'
1204 IFSC>101ANDSC<201THENB$="LIEUTENANTM :rem 3

1206 IFSC>201ANDSC<401THENB$="CAPTAINM :rem 15 , ,

1208 IFSC>401ANDSC<601THENB$="MAJOR" : rem 142 | |
1210 IFSC>601ANDSC<801THENB$="COLONEL" :rem 30
1212 IFSO801ANDSC<1001THENB$="* GENERAL *"

:rem 145 I I

1214 IFSC>1001THENB$="** MARSHAL **" :rem 179 I—I
1216 RETURN :rem 170

1232 GOTO500 srem 150 , .

1300 FORI=1TO1500:NEXT:RETURN : rem 94 {_)

100 u

n

n Moving Message
Robert F. Lambiase

Scrolling messages across a screen can be used for

advertising, simple reminders, or important notices

at work and school. With "Moving Message,"

you can create, edit, save, load, and display mes

sages up to 3000 characters long.

A message scrolling across a screen can be a real attention get

ter. It has all the right ingredients: motion and the ability to

display more information than would fit on a single screen.

You could flip through multiple screens, but the speed might

be too fast or too slow for the viewer. A scrolling display

paces the viewer and continuously gives new information.

"Moving Message" lets you create and even edit a mes

sage; your Commodore 64 then scrolls that message across

your display screen.

Scrolling the 64

The 64 has both horizontal and vertical scrolling capability.

For this application, you'll only need horizontal scrolling.

The computer's screen display is made up of 320 pixel-

columns which are grouped into 40 character-columns, each

with 8 pixel-columns. The first character column starts at the

first pixel column. This can be changed, however, by altering

the three least significant bits of address 53270. Sequencing

these bits changes which pixel column (first through eighth)

will be the starting point of the first character-column, and

gives the effect of the character smoothly sliding over an entire

character column. Sequencing up moves the characters to the

right, and sequencing down moves the characters to the left.

First Scroll, Then Shift

Let's take a look at an example. Assume there is a single

character on the right side of the screen that will be scrolled to

the left. Sequencing the scroll bits from seven to zero will slide

the character over to within a single pixel column of being a

101

u
2 Recreations and Applications

full character column from where it started. To move over that | *

one additional pixel column, the scroll bits must be reset to (—'

seven, and the character must be simultaneously moved left

one screen position by altering the screen memory. \ j
I 3

Machine Language for Speed

Now it gets a little tricky. The computer can't simultaneously ^ ,

reset the scroll bits and alter the screen memory. For maxi- i—i

mum speed, the use of machine language is essential. Unfortu

nately, not even the breakneck speed of machine language is

enough. As the character scrolls across the screen, there would

be occasional flashes of the character. This occurs when the

video chip is displaying the character between the time the

scroll bits are reset and the time the characters are shifted left.

This problem can be overcome by permitting the scroll reset

and shifting to be done only when the video chip is not writ

ing on the screen. To do this, the raster register is used.

Raster Register to the Rescue

Reading the value in the raster register at location 53266

yields the current raster line being written. The machine lan

guage program used to reset the scroll bits and shift the

characters left is preceded by a small loop checking for raster

line 50. This raster line is just past where the characters are

scrolling. The speed of the machine language program is suf

ficient to finish all operations before the screen finishes scan

ning its last line.

Filling the Ends

There's just one more detail to handle. Scrolling to the left

leaves a gap on the right side to the screen. Scrolling to the

right leaves a gap on the left. This is remedied by a special | |
feature of the video chip. By resetting bit 3 of location 53270

to 0, the screen is reduced to 38 characters per line. The

spaces on either side of the screen are no longer visible since j j
they're obscured by the widened borders.

Putting It All Together [_|
Moving Message lets you create a message up to 3000 charac

ters in length, edit it, save it, recall it, and scroll it across the

screen. When the last character scrolls off the screen, the first j |
character scrolls onto the screen again. The message is stored

102 LJ

H
Recreations and Applications 2

H

f""] in consecutive memory locations starting at location 50000,

' and may consist of letters, numbers, punctuation, and spaces.
The end of the message is marked by pressing the space bar

f"j while the SHIFT key is held down. It appears as a normal

' space, but its ASCII code is 160 instead of 32, and its screen

code (used for POKEs) is 96 instead of 32.
r—)

' * Using the Program
Make sure you use "The Automatic Proofreader/' in Appendix

C, to help you type in Moving Message. The Proofreader in

sures that you'll type the program in correctly the first time.

Save it to tape or disk, then load and run it.

You're ready to enter your message. Simply type it in. As

you enter the characters (which first appear at the arrow on

the right side of the screen), the message moves to the left.

End the message with the SHIFT-space key combination. The

message automatically starts to scroll.

If you need to change anything in the message, hit any

key and the scrolling stops. Use the cursor keys to position the

arrow at the desired place in the message. The cursor-down

key shifts the message to the left, while the cursor-right key

moves the message to the right. This permits two-fingered

operation.

Change a character by positioning it over the arrow and

typing in the new character. You can even type over your pre

vious end-of-message mark (SHIFTed space), but remember to

add a new one. Characters can be inserted or deleted at the

arrow by using the f1 and f3 keys respectively.

When your editing is complete, the f5 key is used to start

the scrolling again.

' I Saving and Loading
Saving and loading of messages is possible with either tape or

ndisk. Press the f4 key to save, the f6 key to load. You'll have

to provide a filename and then press T for tape or D for disk.

The message is read into memory and then begins to scroll

I—j across the screen. (If you're using tape and loading a message,

i } sometimes you'll see unwanted characters between the end of

the message and the next time it appears on the left. To elimi

nate these characters, hit any key to return to the main menu,

then use the cursor-down key to move to the end of the mes

sage. Press the SHIFTed space combination again, and then f5

103

u
2 Recreations and Applications

LJ

to start the scroll. The message should appear as you want.) I 1

To keep up with the speed of the disk, it's saved as if it —'
were a machine language program. Since the Datassette is

slower, the data is stored byte by byte. When the tape file is] I

read in, the end is recognized when the SHlFl'ed space is seen. '—)

Enhancements \

Many enhancements of this program are possible. It's not too '—'

difficult to have two messages scrolling across the screen

simultaneously. With more modification, you should be able

to scroll large characters.

Moving Message
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix C.

140 DIMH(8):FORJ=1TO7:READH(J):NEXT :rem 165

150 DATA 17,29,133,135,140,139,138 :rem 137

160 G=53270:POKEG,8:POKE53280,6:C$=CHR$(147):N$=CH

R$(18):F$=CHR$(146):GOSUB460 :rem 143

170 IS=50000:I=IS:FORV=49960TO49999:POKEV,32:NEXT

:rem 6

180 REM{2 SPACES}LOAD MACHINE LANGUAGE PROGS.

:rem 143

190 FORJ=49152TO49193:READD:POKEJ,D:NEXT :rem 240

200 DATA162,0,189,161,4,157,160,4,232,224,39,208,2

45,96 :rem 198

210 DATA162,39,189,159,4,157,160,4,202,208,247,96

:rem 173

220 DATA173,18,208,117,50,208,249,169,7,141,22,208

,32,0,192,96 :rem 34

230 REM :rem 121

240 REM{2 SPACES}MESSAGE INPUT :rem 15

250 GETA$:IFA$=M"THEN250 :rem 81

260 A=ASC(A$):P=A+64*((A>63)AND(A<161)) :rem 45

270 IFA=140THEN1260 :rem 51

280 IF((A<32ORA>132)ANDA<>160)THENPOKEI,96:IM=I:GO

SUB320:GOTO630 :rem 123

290 POKE1223,P:POKEI,P :rem 60

300 IFA=160THENIM=I:GOSUB320:GOTO350 :rem 220

310 SYS49152:POKE1223,32:I=I+1:GOTO250 :rem 201

320 F0RJ=I+lT0I+41:P0KEJ,32:NEXT:RETURN :rem 251

330 REM :rem 122

340 REM{2 SPACES}MESSAGE SCROLLING :rem 45

350 I=IS:POKEG,7:PRINTC$:GOSUB450 :rem 78

104

H

H

n

n

n

Recreations and Applications 2

360 POKE1223,PEEK(I):I=I+1 :rem 224

370 IFPEEK(1184)=96THENI=IS :rem 106

380 FORJ=6TO0STEP-1:POKEG,J:FORK=0TO7:NEXT:NEXT

:rem 119

390 SYS49178 :rem 168

400 GETB$:TD=TD:IFB$=""THEN360 :rem 249

410 B=ASC(B$):IFB=140THEN1260 :rem 119

420 GOTO650 :rem 106

430 REM :rem 123

440 REM{2 SPACES}INSTRUCTION DISPLAY :rem 244

450 FORJ=55456TO55495:POKEJ,14:NEXT:RETURN:rem 150

460 PRINTC$;:GOSUB450 :rem 28

470 POKE55535,14:POKE1263,30 :rem 38

480 FORJ=1TO8:PRINT:NEXT:PRINTTAB(13)"MOVING MESSA

GE" :rem 194

490 PRINTTAB(83)"CHARACTERS ARE ENTERED AT THE ARR

OW" :rem 193

500 PRINTTAB(40)"USE: ";N$;"SHIFT SPACE";F$;" TO M

ARK END OF MESSAGE" :rem 146

510 PRINTTAB(5)N$;"F1";F$;" TO INSERT A CHARACTER"
:rem 82

520 PRINTTAB(5)N$;"F3";F$;" TO DELETE A CHARACTER"
:rem 51

530 PRINTTAB(5)N$;"F4";F$;" TO SAVE" :rem 227

540 PRINTTAB(5)N$;"F5";F$;" TO RESTART SCROLLING"

zrem 136

550 PRINTTAB(5)N$7IIF6";F$;11 TO LOAD" : rem 216

560 PRINTTAB(5)N$;"F8";F$;" TO EXIT" :rem 245

570 PRINTTAB(40)"CURSOR ";N$;"DOWN";F$;" & ";N$;"R

IGHT";F$;" KEYS ARE USED TO" :rem 59

580 PRINT" POSITION THE CHARACTERS OVER THE ARROW"

:rem 76

590 PRINT" FOR EDITING." :rem 136

600 RETURN :rem 118

610 REM :rem 123

620 REM{2 SPACES}MESSAGE EDITING :rem 133

630 IFA=139THEN870 :rem 17

640 IFA=136THEN1040 :rem 53

650 I=IS:POKEG,8:PRINT"{CLR}":GOSUB460 :rem 195

660 POKE1223,PEEK(I) :rem 126

670 GETA$:IFA$=""THEN670 :rem 93

680 A=ASC(A$):P=A+64*((A>63)AND(A<161)) :rem 51

690 Q=0:FORJ=1TO7:IFA=H(J)THENQ=J :rem 65

700 NEXT :rem 214

710 ONQGOTO770,800,820,350,1260,870,1040 :rem 92

720 IF(A=134ANDKIM)THEN840 :rem 72

730 IFA=134THEN670 :rem 11

740 POKE1223,P:POKEI,P :rem 60

750 IFA=160THENIM=I:GOSUB320:GOTO350 :rem 229

760 GOTO780 :rem 117

105

2 Recreations and Applications

770 IFPEEK(1223)=96THEN670 :rem 227

780 I=I+1:SYS49152:POKE1223,PEEK(I):IFI>=IMTHENIM=

IM+1 :rem 59

790 GOTO670 :rem 118

800 IFI=ISTHEN670 :rem 21

810 1=1-1:SYS49166:POKE1184,PEEK(I-39):GOTO670

:rem 212

820 FORJ=IMTOISTEP-1:POKEJ+1,PEEK(J):NEXT :rem 152

830 POKEI,32:POKE1223,32:IM=IM+1:POKEIM+40,32:GOTO

670 :rem 148

840 FORJ=ITOIM-1:POKEJ,PEEK(J+1):NEXT :rem 94

850 POKE1223,PEEK(I):POKEIM,32:IM=IM-1:GOTO670

:rem 32

860 REM :rem 130

870 REM{2 SPACES}LOAD ROUTINE : rem 201

880 INPUT"{CLR}FILE NAME";K$:rem 242

890 INPUTHTAPE (T) OR DISK (D)";A$:rem 69

900 IFA$="T"THEN970 :rem 49

910 OPEN15,8,15,"I0" :rem 17

920 OPEN3,8,0,II0:"+K$+II,P,R" : rem 157

930 INPUT#15,EN,EM$,ET,ES :rem 223

940 IFEN<>0THENPRINT;EN,EM$,ET,ES:GOTO1240:rem 152

950 POKE185,0:POKE195,40:POKE196,195:SYS62631

:rem 110

960 CLOSE15:CLOSE3:GOTO650 :rem 108

970 OPEN3,1,0,K$:rem 89

980 X=IS-40 . :rem 99

990 GET#3,A$:rem 105

1000 A=ASC(A$+CHR$(0))sPOKEX,A:X=X+l :rem 42

1010 IFAO96THEN990 :rem 76

1020 CLOSE3:GOTO340 :rem 118

1030 REM :rem 168

1040 REM{2 SPACES}SAVE ROUTINE :rem 254

1050 INPUT"{CLR}FILE NAME";K$:rem 24

1060 U=IM+42:UH=INT(U/256):UL=U-256*UH :rem 239

1070 INPUT"TAPE (T) OR DISK (D)";A$:rem 108

1080 IFA$="T"THEN1160 :rem 137

1090 OPEN15,8,15,MI0" :rem 65

1100 OPEN3,8,1,"0:"+K$+",P,W" :rem 202

1110 INPUT#15,EN,EM$,ET,ES :rem 6

1120 IFENTHENPRINT;EN,EM$,ET,ES:GOTO1240 :rem 21

1130 POKE193,40:POKE194,195 :rem 243

1140 POKE174,UL:POKE175,UH:SYS62957 :rem 115

1150 CLOSE15:CLOSE3:GOTO650 :rem 148

1160 OPEN3,1#1,K$:rem 130

1170 FORX=IS-40TOIM+40 :rem 58

1180 PRINT#3,CHR$(PEEK(X)); :rem 52

1190 NEXT:PRINT#3 :rem 39

u

u

u

u

u

106

n

n

n

Recreations and Applications 2

1200 CLOSE3:GOTO340 :rem 118

1210 CL0SE1:INPUT"DO YOU WISH TO CONTINUE (Y/N)";D

$:rem 22

1220 IFD$="Y"THEN620 :rem 93

1230 GOTO1260 :rem 200

1240 CLOSE15:CLOSE3:INPUT"DO YOU WISH TO CONTINUE

{SPACE}(Y/N)";D$:rem 49
1250 IFD$="Y"THEN620 :rem 96

1260 POKEG,8:END : rem 180

H

n

n

n

n
107

n

n

n Word Match
!"""{ Andy VanDuyne

How good is your memory? "Word Match/' a

P"? memory game for the 64, will test your children's

ability to remember short words. Suitable for

grades K through 6, it can be modified for more

difficult levels.

Loosely adapted horn the old TV show "Concentration/'

"Word Match" is designed to entertain and test the memory of

one or two players. The object is to find and match pairs of

words hidden behind rows of colored blocks.

Word Match is easy to learn. Players take turns selecting

blocks, which disappear to reveal the words they conceal. An

unsuccessful match means it's the next player's turn. Players

who successfully match a pair of words gain another turn, and

the matched blocks turn into the player's own color. To win

the game, a player must match more pairs of hidden words

than the opponent. The opponent, by the way, can be either

another person or the computer itself.

Word Match is ideal for grade-school children because all

the words are only three letters long. A total of 50 words are

included in the program, in lines 32-34. You can customize

the program with your own word list by amending those

lines. It's best if you keep the number of words at 50. Just

nmake sure that there are no spaces between the words (just as

you see in lines 32-34), and that the lines do not exceed 80

characters. To make the game suitable for older children, you

f—i may want to include some unusual three-letter words and use

I I the game for a vocabulary builder, as well as a memory game.

n Matching the Words
Type the program in and save it. You'll find "The Automatic

Proofreader" program in Appendix C an immense help in

p- entering Word Match, for the Proofreader makes it almost

) I impossible to enter a line incorrectly.
When you first run Word Match, a two-screen instruction

i I 111

3 Education
u

u

display appears. After you've read the first screen, press the i ,

RETURN key to look at the second. (If you've played the '—'
game before and don't want to be bothered with the instruc

tions, just hit the N key.) Then you'll be asked for the players' ^ j

names. After the second name is entered, the screen dears, and a j—>

message reminds you that the computer is selecting the words.

Although Word Match was designed primarily for two \ j

players, one person can compete against the computer by typ- <—'

ing 64 as a player's name when the program starts.

An interesting twist is to enter the computer's name for

both players and then watch the machine play itself. The com

puter, however, is not as smart as you might think. It picks its

blocks completely at random. A young child can have fun in

this mode without becoming discouraged by an unbeatable

opponent. Usually an out-of-memory error results after several

rounds, but sometimes the computer actually beats itself.

If you make a mistake typing in the block numbers, just

use the DEL key to erase your answer. Type in the number

you really want and press RETURN. Notice, too, that the pro

gram does not accept numbers for blocks which have already

been matched.

Word Match
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

2 POKE53280,6:POKE53281,1:PRINTCHR$(147) :rem 67

4 POKE254,0 :rem 90

5 GOTO10 :rera 207

6 FORP=1TO2E3:NEXT:RETURN :rem 187

10 DIMW$(12),W1$(6),C%(2),SQ%(12),SH%(12) :rem 41

12 FORN=1TO12:READSQ%(N):NEXT :rem 67

20 0=54272:B=827 :rem 76

22 S=54272:FORN=STO54295:POKEN,0:NEXT:POKEN,15

:rem 120 I \
24 POKES+5,15:POKES+6,255:POKES+2,0:POKES+3,8 {—'

:rem 178

25 C%(1)=2:C%(2)=5 :rem 87 < >

29 IFPEEK(254)=0THENGOSUB601 :rem 190 J 1
30 GOSUB701:PRINT"{CLR}{3 DOWNjO.K., "N$(1)m AND "

N$(2)M " :rem 106

31 PRINT"{2 DOWN}PLEASE WAIT WHILE THE SCREEN IS S I
ET UP-11 :rem 186 <—'

32 W$="CARCATBOYHATHITTOPATEEATPITPATGOTHIMHERWHYH
OWTINILLWHORUNYOUACEBEDINK :rem 193

33 W$=W$+"AIMARTTOTTIEENDDOGPENWINNEWWONNOWPIGDADM J j
OMOFFPALLAPEAREYETOECAPPAN :rem 78

112 u

Education 3

n

n34 W$=W$+"NOTTONTENDAYBID" :rem 12?

35 FORN=1TO50:POKEB+N,0:NEXT:FORN=1TO50 :rem 241

36 Z=INT(RND(l)*50)+l:IFPEEK(B+Z)<>0THEN36:rem 213

r^ 37 POKEB+Z,N:NEXT : rem 83

J(38 FORN=1TO6:W1$(N)=MID$(W$,1+(PEEK(B+N)-1)*3,3):N
EXT :rem 16

39 C%(1)=2:C%(2)=5 :rem 92

p^ 40 FORN=1TO12:POKEB+N,0:NEXT :rem 6

' 1 41 FORN=1TO11STEP2 :rem 123
42 Z=INT(RND(1)*12)+1:Y=INT(RND(1)*12)+1 :rem 227

43 IFPEEK(B+Z)<>0ORPEEK(B+Y)o0ORZ=YTHEN42:rem 138

44 POKEB+Z,N:POKEB+Y,N+1 :rem 221

45 NEXT :rem 168

47 FORN=1TO12:POKEB+N,INT((PEEK(B+N)-1)/2)+l:W$(N)

=W1$(PEEK(B+N)):NEXT :rem 117

50 GOSUB500 :rem 122

70 D$="{HOME}{19 DOWN}":SP$="{39 SPACES}11 : rem 40

100 REM GAME :rem 143

105 X=l :rem 92

110 PRINTD$"{RED}WHICH BLOCKS, mN§(X)"?" :rem 226

115 POKE53280,C%(X) :rem 5

117 IFN$(X)=M64HTHENGOSUB1000 :rem 158
120 PRINTD$"{DOWN}"SP$D$"{DOWN}{PUR}{RVS}BLOCK A?

{BLK}{OFF}";:POKE198,0 :rem 190
121 GOSUB901:I=VAL(AN$):GOSUB400:0N(I>12)+2GOTO120

,124 :rem 161

124 ON(PEEK(B+I)=0)+2GOTO120,135 :rem 12

125 PRINTD$"{2 DOWN}"SP$D$"{2 DOWN}{BLU}{RVS}BLOCK

B?{BLK}{OFF}"7:POKE198,0 :rem 105

126 GOSUB901:J=VAL(AN$):GOSUB400:ON(J>12)+2GOTO125

,129 :rem 178

129 ON(PEEK(B+J)=0)+2GOTO125,130 :rem 18

130 IFI=JTHEN125 :rem 186

131 PRINTDSPSP?SPSP;:GOTO138 :rem 240

135 FORN=lTO3:POKESQ%(I)+N+40+O,6:POKESQ%(I)+N+40,

ASC(MID$(W$(I),N,1))-64:NEXT :rem 53

P"1 136 ON(N$(X) ="64M)+2GOTO1040,125 : rem 173
138 FORN=lTO3:POKESQ%(J)+N+40+O,6:POKESQ%(J)+N+40,

ASC(MID$(W$(J),N,l))-64 :rem 194

P—, 139 NEXT :rem 220

| | 140 IFPEEK(B+I)=PEEK(B+J)THEN200 :rem 123

150 PRINTDSPD$TAB(15)II{RED} {RVS}NO MATCH-{OFF}":

POKES+4,65:FORN=1TO30:POKES+1,80 :rem 196

pH 151 POKES+l,80-2*N:NEXT:POKES+l,0:POKES+4,64

' ' :rem 126
152 GOSUB6:PRINTDSP :rem 68

_ 153 I$=STR$(I):I$=RIGHT$(1$,LEN(1$)-1):J$=STR$(J):

) \ J$=RIGHT$(J$,LEN(J$)-1) :rem 112

154 POKESQ%(I)+41,32:POKESQ%(J)+41,32:POKESQ%(I)+4

3,32:POKESQ%(J)+43,32 :rem 26

1 (113

LJ
3 Education

155 FORN=1TOLEN(I$):POKESQ%(I)+41+N,ASC(MID$(I$,N, j [
1)):P0KESQ%(I)+41+N+0,4:NEXT :rem 98 '—}

156 FORN=1TOLEN(J$):POKESQ%(J)+41+N,ASC(MID$(J$,N,

l)):P0KESQ%(J)+41+N+0,4:NEXT :rem 103 . ,

160 IFX=1THENX=2:GOTO110 :rem 231 } [
162 X=1:GOTO110 :rem 100

200 REM RIGHTANS : rem 214

205 PRINTDSPSPD"{15 SPACES}{BLK}{PUR}{RVS}MATC \ \

HlllltOFF}11 : rem 135 i—'

207 FORN=1TO5:POKES+4,65:FORZ=40TO80:POKES+1,Z:NEX

TZ,N :rem 216

210 POKES+1,0:POKES+4,64 :rem 126

211 IFX=1THENS1=S1+1 :rem 185

212 IFX=2THENS2=S2+1 :rem 189

215 GOSUB6 :rem 78

220 GOSUB802 :rem 174

235 PRINTDSP :rem 86

237 CR=CR+1:IFCR=6THEN300 :rem 242

238 POKEB+I,0:POKEB+J,0 :rem 90

240 GOTO110 :rem 97

300 FORN=1TO5:POKES+4,65:FORZ=80TO30STEP-1:POKES+1

,Z:NEXTZ,N :rem 107

302 POKES+1,0:POKES+4,64 :rem 128

305 PRINTD$"THE GAME IS OVER-":GOSUB6 :rem 193

307 IFS1>S2THENPRINTDSPDN(1)" WINSlllM:rem 159

308 IFS2>S1THENPRINTDSPDN(2)" WINS I II":rem 161

309 IFS2=S1THENPRINTDSPD$MITIS A TIE 11 I":rem 165

310 GOSUB6:PRINTD$"{DOWN}WANT ANOTHER?(Y/N)":POKE1

98,0 :rem 230

311 GETA$:IFA$=IIN"THENPRINT" {CLR} {BLU} " :POKEBK# 27 :
END :rem 37

312 IFA$="YMTHENRUN10 :rem 233

314 GOTO311 :rem 102

400 POKES+4,33:POKES+1,50:FORP=1TO20:NEXT:POKES+1,

0:POKES+4,32:RETURN :rem 71

500 REM DRAW SCREEN :rem 103 ,

501 PRINT" {CLR} 1I:FORN=1TO4:PRINTTAB(9)" {BLK} {RVS}] j
{19 SPACES}" :rem 188

502 FORZ=1TO3 :rem 28

503 PRINTTAB(9)" {RVS} {OFF}{5 SPACES}{RVS} {OFF}) |
{5 SPACES}{RVS} {OFF}{5 SPACES}{RVS} {OFF}":NE 1—>
XTZ,N :rem 167

504 PRINTTAB(9)" {RVS}{19 SPACES}":PRINT"{HOME}

{2 DOWN}{PUR}" :rem 185 I
505 FORN=1TO9STEP3 :rem 136

506 PRINTTAB(12)NSPC(3)N+lSPC(3)N+2 :rem 42

507 PRINT"{2 DOWN}":NEXT :rem 8 [j

508 PRINT"{13 RIGHT}10{4 RIGHT}ll{4 RIGHT}12" 1 I
:rem 245

509 RETURN :rem 126

114 LJ

H

n

n

Education 3

600 REM INTRO srem 6
601 FORZ=1TO12:SH%(Z)=0:NEXT:FORZ=1TO12 :rem 198

602 X=INT(RND(1)*12)+1:IFSH%(X)<>0THEN602 :rem 91

603 SH%(X)=Z:NEXTZ :rem 108

604 GOSUB501:POKES+4,65:FORZ=1TO11STEP2 :rem 190

605 I=SH%(Z):J=SH%(Z+1) :rem 20
606 X=1:Q=C%(X):C%(X)=VAL(MID$("25",INT(RND(1)*2)+

1,1)):IFQ=C%(X)THEN606 : rem 7

607 POKES+1,RND(1)*50+10:GOSUB802:POKES+1,0

:rem 240

608 NEXT :rem 221

609 I=1:J=12:C%(X)=1:GOSUB802 :rem 135

619 PRINT" {HOME} {3 DOWN}"TAB(11)"{BLK}WORD":POKES+

1,30:FORP=1TO100:NEXT :rem 132

620 PRINT"{HOME}{15 DOWN}"TAB(23)"MATCH":POKES+1,2

0 :rem 95

621 FORP=lTO100:NEXT:POKES+l,0:POKES+4,64 :rem 16

622 GOSUB6:GOSUB6:POKE254/255 :rem 12

623 PRINT"{CLR}{2 DOWNjWOULD YOU LIKE INSTRUCTIONS

? (Y/N)":POKE198,0 :rem 80

624 GETA$:IFA$="Y"THENGOSUB1501 :GOTO630 : rem 107

625 IFA$="N"THEN630 :rem 40

626 GOTO624 :rem 115

630 RETURN :rem 121

700 REM GET NAMES :rem 207

701 DIMN$(2):PRINT"{BLU}{CLR}NAMES, PLEASE I"
:rem 159

702 PRINT"{HOME}{15 DOWN}TO PLAY AGAINST THE COMPU

TER, ENTER" :rem 86

704 PRINT" '64' AS A PLAYER." :rem 244

706 PRINT"{HOME}{DOWN}":FORN=1TO2:PRINT"{DOWN}PLAY

ER"N;:INPUTN$(N):NEXT:RETURN :rem 36

800 REM PAINT SQUARES :rem 28

802 Q=SQ%(I):R=SQ%(J) :rem 184

804 FORN=1TO3 :rem 21

806 FORW=QTOQ+4:POKEW+O,C%(X):POKEW,160:NEXT:Q=Q+4

0:NEXT :rem 81

808 FORN=1TO3 :rem 25

810 FORW=RTOR+4:POKEW+O,C%(X):POKEW,160:NEXT:R=R+4

0:NEXT: RETURN : rem 106

900 REM INPUT ROUTINE :rem 51

901 POKE198,0:AN$="" :rem 53

902 GETA$:IFA$=""THEN902 :rem 89

903 IFA$=CHR$(13)THEN920 :rem 77

904 IFA$=CHR$(20)ANDLEN(AN$)>0THENGOSUB931:rem 242

905 IFLEN(AN$)>1THEN902 :rem 73

906 IFA$<"0"ORA$>"9"THEN902 :rem 206

907 PRINTA$;:AN$=AN$+A$:GOTO902 :rem 72

920 IFAN$=""THEN902 :rem 40

922 RETURN :rem 125

115

LJ
3 Education

u

930 REM DELETE KEY :rem 28 | ,

931 AN$=LEFT$(AN$,LEN(AN$)-1) :rem 77 | 1
933 PRINT"{LEFT} {LEFT}"; :rem 229
939 RETURN :rem 133

1000 REM 64 PLAYS :rem 152 \ [
1005 I=INT(RND(1)*12)+1:ON(PEEK(B+I)=0)+2GOTO1005, 1—'

135 :rem 185

1040 J=INT(RND(1)*12)+1:IFJ=ITHEN1040 :rem 100 . ,

1050 IFPEEK(B+J)=0THEN1040 :rem 227 j)
1060 PRINTDSPD$"64 PICKS"I"AND"J"{LEFT}."

:rem 204

1065 GOSUB6:GOTO138 :rem 145

1500 REM INSTRUCTIONS :rem 95

1501 PRINTCHR$(14)CHR$(147) :rem 249

1502 PRINT"{BLK}{2 SPACES}WORDS WILL BE HIDDEN BEH

IND BLOCKS" :rem 11

1503 PRINT"ON THE SCREEN. ENTER THE BLOCK NUMBER,"

:rem 69

1504 PRINT"AND THE WORD WILL BE UNCOVERED. YOU"

:rem 160

1505 PRINT"MAY UNCOVER TWO WORDS DURING EACH TURN.

:rem 127

1506 PRINT"{DOWN}{2 SPACES}IF THE TWO WORDS MATCH,

THE BLOCKS" :rem 95

1507 PRINT "WILL BE FILLED WITH YOUR COLOR, AND YOU

11 :rem 19

1508 PRINT"HAVE ANOTHER TURN. IF THEY DON'T MATCH,

:rem 137

1509 PRINT"THE WORDS ARE COVERED UP AGAIN AND THE"

:rem 169

1510 PRINT"OTHER PLAYER GETS A TURN." :rem 210

1512 PRINT"{DOWN}{3 SPACES}THE GAME IS OVER WHEN A

LL OF THE" :rem 127

1513 PRINT"BLOCKS ARE COLORED IN. THE PLAYER WHO"

:rem 26

1514 PRINT"HAS FOUND THE MOST MATCHES IS THE

{19 SPACES}{DOWN}** WINNER **" :rem 166 \
1515 GOSUB1600: " s rem'77 <—]
1516 PRINT"{CLR}{2 DOWN}{3 SPACES}TELL THE COMPUTE

R WHICH BLOCK TO" "" : rem 213

1517 PRINT "UNCOVER BY TYPING A NUMBER (1-12) AND"]_J
:rem 38

1518 PRINT "PRESSING RETURN. JEF YOU MAKE A MISTAKE,

11 :rem 190 I (
1520 PRINT"YOU MAY USE THE 'DEL' KEY TO CHANGE" ^—^

:rem 32

1521 PRINT"YOUR ANSWER. PRESS THE {RVS}RETURN{OFF}

KEY WHEN" Trim 116 j (
1522 PRINT"YOU ARE FINISHED WITH YOUR ANSWER."

:rem 67

116 u

n

n

Education 3

1523 PRINT"{2 DOWN}{4 SPACES}IF YOU CAN'T FIND ANO
THER PERSON" : rem 32

1524 PRINT"WITH WHOM TO PLAY THE GAME, YOU MAY"

:rem 248

1525 PRINT"PLAY AGAINST THE COMPUTER. JUST ENTER"

:rem 157

1526 PRINT"I64I AS ONE OF THE PLAYERS1 NAMES."
:rem 44

1527 PRINT"THE COMPUTER ISN'T VERY SMART, BUT YOU"
:rem 182

1528 PRINT"CAN HAVE FUN PRACTICING." :rem 146

1529 GOSUB1600:PRINTCHR$(147)CHR$(142):RETURN
:rem 208

1600 PRINT"{3 DOWNjTOUCH {RVS}RETURN{OFF} TO CONTI

NUE....":POKE198,0 :rem 121

1602 GETA$:IFA$<>CHR$(13)THEN1602 :rem 100

1604 RETURN : rem 171

2000 DATA1115,1121,1127,1275,1281,1287,1435,1441,1

447,1595,1601,1607 :rem 86

117

u

LJ

Connect the Dots lj
LJ

Janet Arnold

"Connect the Dots" is an entertaining graphics

program for young children who can locate num

bers and letters on the keyboard. You can even

add new drawings of your own.

As teachers at a small private school, my husband and I saw

many children anxious to get their hands on our computer

whenever we brought it to class. Unlike many adults, who are

hesitant to use it or even refuse to touch it altogether, the chil

dren jockeyed for their turn at even the dullest programs we

loaded.

I wrote "Connect the Dots" to provide my own children

and my preschool/kindergarten students with a game that

could entertain while reinforcing their skills at the same time.

Making Dots into Pictures

Here's how it works. The child is given a four-item menu from

which to choose the picture he or she wishes to draw. The

greater the number of dots, the longer it takes to complete the

picture.

A grid appears on the screen. Some of the squares contain

markings. Tell the child to look for the solid dot, because

that's what must be matched with the coordinates. When the

prompt Number? appears at the top, show the child how to

press the correct number coordinate and hit RETURN.] f
Answering the next prompt, Letter?, will probably take longer

unless the child is familiar with the keyboard.

A wrong number-letter combination is answered with a]
low "uh-oh" sound and the words Try again.

After a correct answer, the computer draws a line

connecting the dots and plays an amusing sound effect. A |_J
short timing loop delays this just long enough for the child to

look from the keyboard back to the screen to enjoy this reward.

The finished drawing is accompanied by a short tune and j (

118

Education 3

H

j—| the remark, Good job! Draw again? Hitting a Y calls up the

' menu again. An N ends the program.

r—, Working with Your Child

; i When introducing this activity to a child, a few additional
explanations may be necessary. Be sure to explain the dif-

r^ ference between the number 0—point out the slash—and the

\ 4 letters O and Q.
A tot whose visual discrimination is immature might re

verse letters. Connect the Dots can give that child enjoyable

practice in overcoming this. If you notice a child confusing 7

and L, for instance, ask, "Is that line walking on the ceiling or

on the floor?"

Of course, preschoolers and some kindergartners who are

still learning their numbers and letters will enjoy naming them

aloud to you.

Children with short attention spans should try the pic

tures with fewer dots. Even then, be prepared to help them

along or to complete it for them. This isn't necessarily bad, be

cause the time spent with children at the computer can enrich

your relationship and will tell them that their activities are im

portant to you.

There's no time limit in Connect the Dots, so don't rush

your child. This will be a welcome relief to the child who

equates computers with tense, timed, shoot-or-be-shot action.

If some children's eyes have trouble following the grid

from the dot to the coordinates, show them how to trace with

their fingers directly on the screen.

Details of the Program

^- It's important to type this program exactly as shown.

I j The fourth selection on the menu is a heart inscribed with
my children's names. Substitute your own message by chang-

,_ ing lines 780-800.

I | Following is a line-by-line program description, giving the
starting line number of each section:

(—*■; Line Function

L \ 100 Title and instructions
300 Menu

^ 370 Draw grid

i J 440 Search DATA for starting point of chosen picture

119

3 Education

490

520

550

610

650

690

730

770

830

1000

1090

1140

1200

Read four pieces of DATA per dot and POKE dot

Ask for dot's coordinates

Response for wrong answer

Response for right answer

Set up butterfly

Set up mushroom

Set up dog

Set up heart

Response for completed picture

DATA for butterfly

DATA for mushroom

DATA for horse

DATA for heart

LJ

LJ

U

LJ

LJ

Designing Your Own Pictures

Part of the fun of this program is designing your own pictures.

My five-year-old, Jonathan, contributed the mushroom found

in Connect the Dots by coloring in squares of graph paper.

To substitute a picture of your own, design one using the

accompanying grid. Remember that most of your design

should consist of a continuous line as in dot-to-dot pictures.

Anything else must be POKEd in when the picture is first set

up.

Grid for Designing Pictures

l

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ABCDEFGHIJKLMNOPQR

1155

1195

1235

1275

1315

1355

1395

1435

1475

1515

1555

1595

1635

1675

1715

1755

1795

1835

0 1 2 3 4 5 6 7 8 9 1011121314151617

LJ

LJ

U

U

120

Education 3

H

p^ For the purposes of this article, let's assume that you've

• -' drawn a clown to replace the dog in the listed program. Sub
stitute the title CLOWN for HORSE in line 330. This changes

^-» the menu to read C-CLOWN.

1 i Lines 730-750 POKE in the horse's tail and a starting
square (SQ). Use these lines to POKE in your clown's nose, for

p-> example. (Hint: Since children are always asked the co-

f I ordinates of a solid dot, use an open O or you will confuse
them.)

To compute the screen memory location of the nose, add

the four-digit row number to the left of the grid to the column

number above the grid. This same number + CD is your color

memory location.

POKE in your starting square—use screen code 160, a re

versed space—and assign SQ the value of the screen memory

location of that starting square.

Now just figure your DATA. The computer reads four

pieces of data per dot: screen memory location (A), color of

the line to be drawn (B), number-letter coordinates of the dot

(E$), and the direction that the line will travel to reach the dot

(S). Figure each as follows:

First, compute the screen memory location of the dot as

explained earlier.

The second number is the color code of the line to be

drawn. The color code is always the number of the color's

computer key minus 1 (black=0, red=l, and so on). Appen

dix G in the Commodore User's Guide, the manual that came

with your computer, lists these color values.

Third, look at your grid to find the number-letter co

ordinates of the dot. The number comes first and is found on

nthe right side of the grid. Follow this with the letter. Do not

separate the number and letter with a space.

The last number is a STEP value. This number tells the

j—, computer in which direction the line should be drawn. For in-

' j stance, a line moving from left to right travels one space at a
time, so its STEP value is 1. From right to left, the line moves

I—> backwards one space at a time, making its STEP value —1. A

(. i line traveling diagonally up to the left has a STEP value of

—41 on the Commodore 64 since the computer skips back 41

^— spaces before POKEing the next square.

LJ Use this diagram to figure STEP values.

121

3 Education

Figure each dot's DATA in the same manner. Separate

each piece of DATA with a comma. You must insert your new

DATA into the proper line numbers, so check the program

explanation listed earlier. Since you are replacing the horse

with your clown, your DATA will go in lines 1140-1180. Be

sure to leave the first piece of DATA, C, in line 1140. This is

the DATA that the computer searches for to set the DATA

pointer. Notice that the last set of DATA for every drawing is

0, 0, 0, 0. Make sure this also ends any new drawings you

may add.

Connect the Dots
For mistake-proof program entry, be sure to use ''The Automatic Proofreader," Appendix C.

100 REM TITLE PAGE : rem 20

110 PRINT"{CLR}i73":POKE53280,0:POKE53281,0:rem 31
120 PRINTSPC(10)"QQQ{3 SHIFT-SPACEjQQ

{2 SHIFT-SPACETQQQQQ{2 SHIFT-SPACE}QQM :rem 40
130 PRINTSPC(10)"Q{SHIFT-SPACE} Q{SHIFT-SPACE}Q

[2 SHIFT-SPACE}Q{2 SHIFT-SPACE} Q{SHIFT-SPACE}
{SHIFT-SPACE}QT2 SPACES}Q" " :rem 180

140 PRINTSPC(10)"Q {SHIFT-SPACE}Q{SHIFT-SPACE}Q
{2 SHIFT-SPACE}Q{2 SHIFT-SPACE} Q{SHIFT-SPACE}

{2 SHIFT-SPACETQ" " :rem 132
150 PRINTSPC(10)"Q {SHIFT-SPACE}Q{SHIFT-SPACE}Q

{2 SHIFT-SPACE}Q{2 SHIFT-SPACE} Q{SHIFT-SPACE}
{2 SPACES}{2 SHIFT-SPACE}Q" "~ :rem 133

160 PRINTSPC(10)"Q{SHIFT-SPACE} Q{SHIFT-SPACE}Q
{2 SHIFT-SPACE}Q{2 SHIFT-SPACE} Q{SHIFT-SPACE}
{2 SPACES}Q{2 SHIFT-SPACE}Q" " :rem 87

122

u

u

u

u

LJ

U

U

LJ

n
Education 3

r—-i 170 PRINTSPC(10)"QQQ{2 SHIFT-SPACE} QQ

I I {3 SHIFT-SPACST"Q {SHIFT-SPACE} T^HIFT-SPACEjQ
q" :rem 233

180 L=1114:C=55386:CD=54272:WV=54276 :rem 220

r"| 190 A$="Z":POKE54296,15:POKE54277,22:POKE54278,165
- :GOSUB840 :rem 114

200 : :rem 204

r—i 210 REM INSTRUCTIONS :rem 44

I \ 220 PRINTSPC(13)M{2 DOWN}{WHT}INSTRUCTIONS:"
:rem 22

230 PRINTSPC(9)"{DOWN}WHEN THE GRID APPEARS,":PRIN

TSPC(10)"FIND THE SOLID DOT." :rem 141

240 PRINTSPC(9)"{DOWN}TYPE THE NUMBER OF THE":PRIN

TSPC(10)"ROW AND HIT RETURN." :rem 171

250 PRINTSPC(6)"{DOWN}THEN TYPE THE LETTER OF THE"

:rem 126

260 PRINTSPC(9)"COLUMN AND HIT RETURN." :rem 109

270 PRINTSPC(10)"{2 DOWN}{RVS}HIT ANY KEY TO PLAY.

":POKE198,0 :rem 90

280 GETS$:IFS$=""THEN280 :rem 123

290 : :rem 213

300 REM DRAW SELECTION :rem 75

310 POKE53281,6:PRINT"{CLR}"SPC(6)"{5 DOWN}g33WH

AT WOULD YOU LIKE TO DRAW?" :rem 83

320 PRINTSPC(8)"i7l{3 DOWN}A - BUTTERFLY (22 DOT

S)" :rem 192

330 PRINTSPC(9)"{DOWN}B - MUSHROOM (12 DOTS)":PRIN

TSPC(11)"{DOWN}C - HORSE (20 DOTS)" :rem 82

340 PRINTSPC(10)"{DOWN}D - HEART (10 DOTS)":POKE19

8,0 :rem 73

350 GETA$:IFA$<"A"ORA$>"D"THEN350 :rem 95

360 : :rem 211

370 REM DRAW BOARD :rem 20

380 PRINT"{CLR}g33"SPC(ll)"{2 DOWN}ABCDEFGHIJKLM

NOPQR{HOME}" :rem 210

_ 390 FORRH=1TO18:FORT=1TO18:POKEL+T+RH*40,79:POKEC+

II T+RH*40,14:NEXT:NEXT :rem 170
400 PRINTSPC(ll)"g33{20 DOWNjABCDEFGHIJKLMNOPQR"

:rem 19

410 PRINT"{HOME}{3 DOWN}g7i"; :rem 129
420 FORI=1TO18:PRINTSPC(8)RIGHT$(STR$(I),2)SPC(19)

"gG3"RIGHT$(STR$(I),2):NEXT :rem 137

p— 430 : :rem 209

/[440 REM FIND DATA :rem 183

450 RESTORE :rem 189

460 READB$:IFB$<>A$THEN460 :rem 243

<—"J 470 ONASC(A$)-64GOTO650,690,730,770 : rem 139

1 J 480 FORT=1TO500:NEXT :rem 246
490 READA,B,E$fS:IFA=0THEN830 :rem 189

' } 123

H

3 Education

LJ

500 P0KEA,81:P0KEA+CD,B :rem 100) ,

510 PRINT11 {HOME} {39 SPACES}11 :rem 122 L_J
520 PRINT"g73{HOME} («) NUMBER";:GOSUB930:N$=IN

$:rem 195

530 PRINT"{HOME}"SPC(20)"(t) LETTER";:GOSUB930:L$= j \
IN$:rem 11 ^

540 IFE$=N$+L$THEN610 :rem 161

550 PRINT"{HOME}{BLK}{15 SPACES}TRY AGAIN , j

{10 SPACES}" :rem 109 LJ
560 POKECD,48:POKECD+1,11:POKEWV,33:POKEWV,32

:rem 18

570 FORT=1TO400:NEXT:POKECD,195:POKECD+1,16:POKEWV

,33:POKEWV,32 :rem 222

580 FORT=1TO400:NEXT :rem 246

590 FORT=1TO1200:NEXT:GOTO510 :rem 47

600 : :rem 208

610 FORT=1TO700:NEXT:FORT=1TO18:POKESQ,160:POKESQ+

CD,B:IFSQ=ATHEN630 :rem 146

620 SQ=SQ+S:NEXT :rem 20

630 POKEWV,17:FORZ=9TO26:POKECD+1,Z:POKECD,0:NEXT:

POKEWV,16:GOTO480 :rem 84

640 : :rem 212

650 POKE1242,77:POKE1242+CD,0:POKE1244,78:POKE1244

+CD,0 :rem 126

660 POKE1283,160:POKE1283+CD,5 :rem 166

670 SQ=1283:GOTO480 :rem 91

680 : :rem 216

690 POKE1563,160:POKE1563+CD,4:POKE1564,160:POKE15

64+CD,4 :rem 241

700 POKE1717,160:POKE1717+CD,5 :rem 165

710 SQ=1717:GOTO480 :rem 88

720 : :rem 211

730 POKE1436,74:POKE1436+CD,0:POKE1437,75:POKE1437

+CD,0 :rem 137

740 POKEi397,85:POKE1397+CD,0 :rem 130
750 POKE1208,160:POKE1208+CD,2:SQ=1208:GOTO480 (,

:rem 146 j_J
760 : :rem 215

770 PRINT"{HOME}{7 DOWN}" :rem 249

780 PRINTSPC(16)"{GRN}MATTHEW" :rem 70 j j

790 PRINTSPC(16)"{2 DOWN}g73JONATHAN" :rem 30 L-J
800 PRINTSPC(17)"{2 DOWN}E33EMILY" :rem 64

810 POKE1283,160:POKE1283+CD,2:SQ=1283:GOTO480 .

:rem 152 I)
820 : :rem 212

830 PRINT"{HOME}{10 SPACES}GOOD JOB 1 DRAW AGAIN?

{3 SPACES}" :rem 113 j |

840 READB$:IFB$<>"Z"THEN840 :rem 48 LJ
850 READPL,PH,D:IFPL=-1ANDA$="Z"THENPOKEWV,0:RETUR

N :rem 29

124 U

H

Education 3

i i

n

n

n

860 IFPL=-1THENPOKEWV,0:GOTO890 :rem 223

870 POKECD,PL:POKECD+1,PH:POKEWV,33:FORT=1TOD*75:N

EXT:POKEWV,32 :rem 85

880 GOTO850 :rem 118

890 GETY$:IFY$o"YllANDY$<>llNllTHEN890 :rem 135

900 IFY$=MY"THEN310 :rem 66

910 : :rem 212

920 PRINT11 {CLR} ";: END :rem 75

930 PRINT"? M;:IN$=MM :rem 93

940 PRINT"{RVS} {OFF}{LEFT}"; :rem 234

950 GETA$:IFA$=""THEN940 :rem 94

960 ZL=LEN(IN$):IFA$=CHR$(20)ANDZLTHENPRINTA$?:IN$

=LEFT$(IN$,ZL-1) :rem 30

970 IFA$=CHR$(13)ANDZLTHENPRINT" ":RETURN :rem 26

980 IF(A$<"0"ORA$>"R")OR(A$>"9"ANDA$<"AII)ORLEN(IN$

)=2THEN950 irem 67

990 PRINTA$;:IN$=IN$+A$:GOTO940 :rem 92

1000 : :rem 251

1010 DATA A#1403,5,7I,40,1247,2#3M,-39 :rem 119

1020 DATA 1249,2,30,1,1331,2,5Q,41,1491,2,9Q,40,15

69,2,110,39,1651,7,130,41 :rem 236

1030 DATA 1731,7,15Q,40,1770,7,16P,39,1767,7

:rem 189

1035 DATA 16M,-1,1603,7,12I,-41,1759,7,16E,39

:rem 229

1040 DATA 1756,7,16B,-1,1715,7,15A,-41,1635,7,13A,

-40,1557,7,11C,-39 :rem 69

1050 DATA 1475,2,9A,-41 :rem 115

1060 DATA 1315,2,5A,-40,1237,2,3C,-39,1239,2,3E,1,

1403,2,71,41,1683,5,141,40 :rem 216

1070 DATA 0,0,0,0 :rem 38

1080 : :rem 3

1090 DATA B,1722,5,15H,1,1562,4,11H,-40,1559,4,HE

,-1,1519,4,10E,-40 :rem 75

1100 DATA 1441,4,8G,-39 :rem 118

1110 DATA 1446,4,8L,1,1528,4,10N,41,1568,4,UN,40,

1565,4,UK,-1,1725,4,15K,40 :rem 53

1120 DATA 1730,5,15P,1,1722,5,15H,-1,0,0,0,0

:rem 118

1130 : :rem 255

1140 DATA C,1364,2,6J,39,1359,2,6E,-1,1398,2,7D,39

,1598,2,12D,40,1680,2,14F,41 :rem 111

1150 DATA 1681,2,14G,1,1641,2 :rem 154

1155 DATA 13G,-40,1600,2,12F,-41,1560,2,11F,-40,15

64,2,11J,1 :rem 168

1160 DATA 1687,2,14M,41,1688,2,14N,1,1608,2

:rem 123

1165 DATA 12N,-40,1567,2,HM,-41,1407,2,7M,-40

:rem 14

125

3 Education

u

u

1170 DATA 1329,2,50,-39f1331,0,5Q,1,1291,0,40,-40, s ,

1290,0,4P,-1,1208,2,2N,-41 :rem 244 uj
1180 DATA 0,0,0,0 :rem 40

1190 : :rem 5

1200 DATA D,1160,2,IF,-41,1157,2,1C,-1,1235,2,3A,3) (
9,1475,2,9A,40,1803,2,171,41 :rem 56 L^}

1210 DATA 1491,2,90,-39,1251,2,30,-40,1169,2,10,-4

1,1166,2,1L,-1,1283,2,41,39 :rem 47 ^ .

1220 DATA 0,0,0,0 :rem 35 | 1
1230 : :rem 0

1240 DATA Z,195,16,3, 31,21,1, 30,25,2, 135,33,2

:rem 169

1250 DATA 30,25,2, 31,21,2, 195,16,2, 31,21,2, 30,

25,3, 31,21,1 irem 233

1260 DATA 195,16,2 :rem 115

1270 DATA 143,12,2, 195,16,1 :rem 36

1280 DATA 0,0,3, 195,16,1, -1,0,0 :rem 205

u

126

u

u

n

Word Scramble
Mike Salman

Match wits with an opponent in this game as you

play against time. For two or more players.

"Word Scramble" is a bit different from other jumbling games

you might have played. Instead of the computer giving you

letters to unscramble, your opponent chooses the word you'll

be trying to piece back together. Because the players select the

words, the variety is almost limitless.

A Three-Minute Puzzle

As soon as you've typed in and saved Word Scramble (make

sure you use "The Automatic Proofreader" program, found in

Appendix C, to help you type in the game), you're ready to

try to stump your opponent. Although the game is designed

for two players, you can make up teams if there are more who

want to play. The computer asks for the players' names and

then tells player one to enter a word (maximum of ten letters).

If you enter a word longer than ten letters, a message will re

mind you that it's not allowed. Just move the blinking square

(the cursor) to the end of the word, and press the DEL key to

erase the word. Then you can type in another, this one less

than ten letters.

When the word has been scrambled, player two presses

^s— the space bar to see the jumbled letters. He or she has only

/ \ three minutes to put the letter back into order.

At the top of the screen, you'll see a display of the

elapsed time. Below the mixed-up letters, you should see a

/_ t bar. That's where you'll type the first letter of the word. If you

type the wrong letter, you hear a buzz. Type the right one and

_ you hear a beep; the letter then appears on the screen.

- i

^ A Ten-Point Penalty
j If you find the word within the three-minute time limit and

; f have made no wrong guesses, you're rewarded with 50 points.

For every wrong guess that you make, you lose ten points. A

n 127

3 Education

u

u

Scoreboard is displayed every second turn so you'll know i j

when both players have played an equal number of turns. 1~l
When you want to quit playing, just press the RUN/STOP

and RESTORE keys at the same time. \ (

Word Scramble
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. ,

1 POKE53280,6:POKE53281,1 :rem 141 ^

5 SN=54272 :rem 23

6 POKESN+24,15:POKESN+5,17:POKESN+6,240:POKESN,100

:rera 27

10 PRINT"{CLR}":PRINT"{RED}{9 DOWN}{13 RIGHTjWORD
{SPACE}SCRAMBLE" :rem 131

20 GOSUB1000:PRINT" {CLR}11 : rem 65

25 PRINT"{RED}{2 DOWN}EACH PLAYER TAKES A TURN ENT

ERING A{5 SPACES}COMMON "; :rem 247

30 PRINT"WORD (A MAXIMUM OF 10 LETTERS)." :rem 103

35 PRINT"{DOWN}THE COMPUTER WILL THEN SCRAMBLE THE

WORD"; :rem 162

40 PRINT"AND PRINT IT." :rem 96

45 PRINT"{DOWN}YOU HAVE THREE MINUTES TO FIND IT."

:rem 152

50 PRINT"{DOWN}IF FOUND WITHIN THE ALLOTTED TIME,

{SPACE}YOU" :rem 183

55 PRINT"WILL BE GIVEN 50 POINTS." :rem 227

60 PRINT"{DOWN}FOR EVERY WRONG GUESS THAT YOU MAKE
, YOUWILL LOSE 10 POINTS.{BLU}" :rem 57

65 PRINT"{3 DOWN}{7 RIGHT}{RVS}{PUR}PRESS SPACE BA
R WHEN READY{OFF}" :rem 239

70 IFPEEK(197)<>60THEN70 :rem 131

75 POKE198,0 :rem 153

80 PRINT"{CLR}{4 DOWN}{GRN}PLAYER # l'S NAME{BLU}"
:INPUTP$(0) :rem 200

85 PRINT"{3 DOWN}{PUR}PLAYER # 2'S NAME{BLUl":INPU
TP$(1) :rem 169

90 PRINT"{CLR}{16 DOWN}{RED}";P$(C);", ENTER WORD M
{SPACE}TO BE SCRAMBLED:{OFF}{BLU}" :rem 67 ^^

92 W$=il":INPUTW$:IFW$=""THENPRINT"{UP}"; :GOTO92
:rem 27 \ j

93 IFW$="QUIT" THEN 410 : rem 254 I)
94 V1=LEN(W$) :rem 220

95 IFV1>10THENPRINT"{RVS}{GRN}NO MORE THAN 10 LETT
ERS PLEASE{OFF}{BLU}":GOSUB 990:GOTO90 :rem 117 \ !

96 FOR K=l TO VI:V2$=MID$(W$,K,1):V2=ASC(V2$) w

:rem 205

97 IFV2<65ORV2>90THENPRINT"{RVS}{GRN}LETTERS ONLY « i

{SPACE}PLEASE {OFF} {BLU} ":GOSUB 990 .-GOTO 90 I I
:rem 54

128 u

n

Education 3

n
98 NEXT :rem 176

100 GOSUB200 :rem 163
110 GOSUB300 srem 165
120 T(C)=T(C)+S(C) :rem 178
130 GOSUB400:FORI=1TO10:B$(I)="":NEXT : rem 184

140 GOTO90 :rem 55
200 FORI=1TOLEN(W$) :rem 126
210 A$(I)=MID$(W$,I,1) srem 107
220 NEXT srem 211

230 C$="":FORI=1TOLEN(W$) :rem 163

240 R=INT(RND(1)*LEN(W$)+1) :rem 248

250 IFB$(R)<>MIITHEN240 :rem 178

260 B$(R)=A$(I) :rem 221

270 NEXT srem 216

271 FORI=1TOLEN(W$):C$=C$+B$(I):NEXT :rem 111

272 IFC$=W$ANDLEN(W$)<>1THENFORI=1TOLEN(W$):B$(I)=

MII:NEXT:GOTO230 srem 201

275 PRINT"{CLR}{5 DOWN}{8 SPACES}{RVS}{RED}WORD HA
S BEEN SCRAMBLED.{OFF}{BLU}" :rem 35

280 POKE 198,0:PRINT"{6 DOWN}{7 SPACES}{GRN}PRESS

{SPACE}SPACE BAR WHEN READY{BLU}" :rem 234
285 IFPEEK(197)<>60THEN285 :rem 243

290 PRINT"{CLR}{5 DOWN} {15 RIGHT}11; : rem 66

295 FORI=1TOLEN(W$):PRINT"{RED}";B$(I);:NEXT
:rem 162

298 POKE198,0:RETURN :rem 234

300 X=95:S(C)=50 :rem 89

310 TI$="000000" :rem 246

320 PRINT:PRINT:PRINT:PRINT :rem 119

325 SC=1399:CC=SC+54272 :rem 5

330 FORI=1TOLEN(W$) :rem 130

335 POKESC,99:POKECC,2 :rem 75

340 GETC$:rem 222

350 PRINT"{HOME}{RVS}{9 RIGHT}"MID$(TI$,4,1)"

{OFF}MINUTES{2 SPACES}{RVS}"RIGHT$(TI$,2)"
{OFF}SECONDS" :rem 100

355 IFTI$="000300"THENGOSUB500:GOTO390 :rem 228

360 IFC$=""THEN340 :rem 214

365 PRINT"{4 DOWN}" :rem 179

370 IFC$=A$(I)THENPRINTTAB(X)A$(I);:BY=50:LN=50:GO

SUB600:GOTO380 :rem 141

375 IFS(C)<10THENGOSUB550:GOTO390 :rem 10

378 IFC$<>A$(I)THENS(C)=S(C)-10:BY=20:LN=120:GOSUB

600:GOTO335 :rem 79

380 X=X+1:SC=SC+1:CC=CC+1:NEXT :rem 59

390 RETURN : rem 124

400 IFC<>1THENC=1:RETURN :rem 11

410 PRINT"{CLR}{5 DOWN}{17 RIGHT}{RED}{RVS}SCORES
{OFF}{BLU}" :rem 233

420 PRINT"{17 RIGHT}g6 T§" :rem 38

129

3 Education

LJ

U

430 PRINT"{DOWN}{10 RIGHT}MP$(0);TAB(25);P$(1) J j
:rem 139 i-J

440 PRINT"{9 RIGHT}"T(1);TAB(24);T(0) :rem 29

445 PRINT "{9 DOWN}{13 RIGHTjPRESS {RVS}Q{OFF} TO
{SPACEjQUIT" :rem 232 j |

447 PRINT "{6 RIGHT}OR ANY OTHER KEY TO CONTINUE"

:rem 26

450 C=0:GET R$:IF R$="" THEN 450 :rem 97 \' j

455 IF R$="Q" THEN END :rem 123 I—/
460 RETURN :rem 122

500 PRINT"{CLR}{4 DOWN}{12 RIGHT}{RVS}{RED}YOUR TI
ME IS UP{OFF}{BLU}" :rem 55

510 PRINT"{2 DOWN}{10 RIGHT}WORD WAS "W$".":S(C)=0
:rem 77

520 FORT=1TO5000:NEXT:RETURN :rem 59

550 PRINT"{RVS}{RED}{2 DOWN}{9 RIGHT}YOU RAN OUT O

F POINTS{OFF}{BLU}" :rem 185

560 PRINT"{2 DOWN}{PUR}{10 RIGHTjWORD WAS {BLU}"W$
11 •" :rem 127

570 FORT=1TO2000 :NEXT :rem 35

580 RETURN :rem 125

600 POKESN+1,BY:POKESN+4,33:FORQQ=1TOLN:NEXT:POKES

N+4,32:RETURN :rem 127

990 FOR DELAY=1 TO 500:NEXT :rem 23

1000 FORBY=50TO20STEP-1:LN=20:GOSUB600:NEXT:FORI=1

TO500:NEXT :rem 73

1010 RETURN :rem 162

130

R

n Turtle Graphics
n Interpreter
1^7 Irwin Tillman

This comprehensive three-program package gives

your 64 full turtle-graphics capabilities. It's an ex

cellent learning tool for children, and it offers a

new graphics capacity for all ages. For disk or

tape users.

Turtle geometry is fast becoming the first exposure to comput

ers for many children. Instead of printing their names on the

screen, they are more likely drawing squares and triangles.

While such facilities are generally found with specific lan

guages (such as PILOT and Logo), the concept of turtle

geometry is not unique to any single language. It can just as

easily be used with BASIC, the language of your Commodore

64. One of the reasons for turtle graphics's popularity is that

it's not only a natural introduction to computing, but also an

excellent tool to teach thinking.

If you're not familiar with turtle graphics, the basic con

cept involves moving a turtle around the screen, leaving a trail

as it goes. This is done through a series of English commands,

such as FORWARD and RIGHT. Other commands control the

color scheme, define loops, and allow you to assemble a series

of commands into procedures.

Coordinating the Turtle Programs

"Turtle Graphics Interpreter" consists of three programs de

signed originally for use with a disk drive; if you are using a

tape drive, be sure to read the appropriate section elsewhere

in this article.

Program 1, "Interpreter," does most of the work. It ac

cepts and executes the commands you enter. Program 2, "Tur

tle Data," POKEs in the shape tables for the turtle sprites and

131

u
3 Education

u

a number of machine language routines. Finally, Program 3, , ,

'Turtle Boot" runs the whole package. LJ
If you use "The Automatic Proofreader" from Appendix

C, typing in these programs will be much easier. Designed to , f

insure error-free programs, the Proofreader makes it almost [^J
impossible to enter a program incorrectly. This is important,

especially with Program 2. If you mistype that program, the

machine language routines which are part of it may crash the j 1
computer when the Interpreter is run.

Type in each program separately, saving them all on the

same disk (or tape—refer to the section later in this article for

tape use instructions). Save all three programs before you try

to run any of them. This is important: When you save Programs

1 and 2, type SAVE "TURTLE GRAPHIC 1",8 and SAVE "TUR

TLE GRAPHIC 2",8. The programs must be saved out under

those filenames for Program 3, Turtle Boot, to properly access

them. If you want to change the filenames, then make sure

lines 150 and 170 in Program 3 reflect those changes.

One final note about entering the turtle graphics pro

grams. When you type in Program 3, leave out the CHR$(31)

in line 140 until you're sure everything is working right. This

will make the operation of the Boot program visible. When

you are sure that the Boot is loading and running Turtle Data

and the Interpreter, reinsert the CHR$(31).

Once you have all three programs saved to tape or disk,

load and run the Boot program to run the whole package.

Turtle Commands

The Interpreter recognizes 30 commands, some of which can

be abbreviated. In addition, the CLR/HOME key will clear the

text portion of the screen and home the cursor (regardless of

whether the SHIFT key is pressed). Pressing the fl key I [

changes the border color; f3 alters the text-background color.

In addition, trying to move from the text window into the hi

res screen will be treated as a CLR/HOME. The Interpreter's • 1
commands (possible abbreviations are in parentheses) are:

FORWARD x (can be abbreviated as FD). Moves the tur

tle a distance of x in the direction it is pointing. The value of x I '
must be greater than zero. The turtle will normally leave a s '
trail as it moves (see PENUP, PENDOWN, PENDRAW, and

PENERASE). You cannot leave the screen. jl

RIGHT x (RT) and LEFT x (LT). Turns the turtle right

132 U

H
Education 3

H

j-*""! (clockwise) or left (counterclockwise) x degrees (x is at least

1 i zero). Because there are only eight turtle sprites, the turtle will

not always seem to be pointing in exactly the direction it

n should, but it will still draw and move properly.

SETHEADING x (SETH) and PRINTHEADING. Setting

the heading to x will turn the turtle without changing its po-

p-j sition. Headings range from 0 to 360. Straight up is 0°, and

' » the values increase clockwise. PRINTHEADING returns the

current value of the turtle's heading.

SETPOSITION x y (SETP) and PRINTPOSITION. Set

ting the position to x y moves the turtle without changing its

heading. The value of x should be between —159 and 160,

and y values range from —106 to 106. Do not separate the x

and y values with a comma, only a space. They should not be

enclosed in parentheses, either. Note that the range of y will

change if you change the "crunch factor" (see the section

"Crunching the Screen"). The turtle starts at (0,0), the center

of the screen. PRINTPOSITION returns the values of x y.

PENERASE (PE) and PENDRAW (PW). These commands

control whether the turtle will erase a trail or leave one. The

program starts in draw mode.

PENDOWN (PD) and PENUP (PU). Normally the turtle's

pen is down. PENUP raises it so the turtle cannot leave or

erase a trail. You may still set draw or erase modes, but you

will not see any effect until after you have lowered the pen

and moved forward.

PENCOLOR x (PC), BACKGROUNDCOLOR x (BC),

and TURTLECOLOR x (TC). Each of these changes the color

to x, where x is between 0 and 15. The first two will also per

form a CLR/HOME. (It's not a bug, it's a feature.) There can

nbe only one pen color on the screen at any time, so executing

the PENCOLOR command will recolor all the lines that have

already been drawn on the screen. Try a number of combina-

ntions of background and pen colors. Because of the hardware

problems in displaying isolated pixels on the screen, the same

pen color will appear as different hues at different points on

p-^ the screen. Experiment—you may like the effect, which is

known as artifacting.

SHOWTURTLE (ST) and HIDETURTLE (HT). Hiding

the turtle is useful when you want to view a finished design.

These commands have no effect on the turtle's color,

133

LJ
3 Education

u

movement, position, and so on. SHOWTURTLE returns . ,

the turtle to the screen. [f
HOME. Moves the turtle to (0,0) and sets the heading to 0°.

CLEAN. Erases the hi-res screen. Note that pressing (,

CLR/HOME will not disturb the hi-res drawings. i f

CLEARSCREEN (CS). Performs a CLEAN and a HOME.

These commands, as well as all others that the turtle , .

graphics package supports, are listed in the quick reference 1 1
chart which follows the program listings.

Combining Commands

The Intrepreter will accept lines of up to 78 characters (that

would fill up two entire lines in the text display window), and

you may include numerous commands on each line—just be

sure to use spaces between commands (no commas or colons).

Here's a simple demonstration to animate the turtle:

FORWARD 100 RIGHT 90 FORWARD 100 RIGHT 90 FORWARD

100 RIGHT 90 FORWARD 100

It could have been abbreviated as:

FD 100 RT 90 FD 100 RT 90 FD 100 RT 90 FD 100

These commands cause the turtle to draw a square. Because

the Interpreter is in BASIC, the turtle won't move at break

neck speed. (If you are extremely ambitious, you could convert

the plotting routine to machine language.)

If you're willing to give up a little more time in inter

pretive overhead, you can use the powerful REPEAT (RP)

command. You could rewrite the commands to draw a square

as:

REPEAT 4 [FORWARD 100 RIGHT 90]

u
REPEAT 4 [FD 100 RT 90]

The statements you want to be repeated should be en- , <

closed in square brackets and preceded by REPEAT x, where x i—I

is the number of times they should be repeated. REPEATS

may be nested to a depth of 255 (although procedure calls will , j

decrease this, as detailed below). For example, try the follow- <—/

ing commands:

CS REPEAT 8 [REPEAT 4 [FORWARD 100 RIGHT 90] RIGHT 45] j I

134 LJ

n
Education 3

H

n Using Procedures
The full power of turtle graphics is realized with procedures. A

procedure is like a program; it's just a series of commands

n given a specific name. That name is added to the commands

that the Interpreter will recognize.

To make up a new procedure, use the DEFINE command.

, , For example, type DEFINE BOX. You will be prompted with

II BOX?, after which you should type REPEAT 4 [FORWARD

100 RIGHT 90]. The Interpreter will respond with BOX DE

FINED. From now on, whenever you type BOX (either from

the keyboard or from within another procedure), the com

mands REPEAT 4 [FORWARD 100 RIGHT 90] will be exe

cuted. You could define the last design as 8BOXES, typing CS

REPEAT 8 [BOX RIGHT 45] after the 8BOXES? prompt

appears.

Each time you call a procedure counts as a level of nest

ing (just as a repeat loop does). One very important warning:

Don't allow a procedure to call itself (or to call another proce

dure that may eventually call the first). This will result in a

loop that you will have to break by pressing the STOP key.

When you restart the program by typing RUN, you will lose

your procedure definitions and any designs on the screen.

There are a number of commands which facilitate work

ing with procedures. NAMES will print the names of all the

current procedures (limit of 255). PRINTPROCEDURE x

(PPROC) will print the commands associated with the proce

dure named x. ERASE x will erase procedure x, and RENAME

x y will change the name of procedure x to y. ERASEALL will

erase all the current procedure definitions.

Saving and Loading Procedures

I""] Procedures may also be saved to and loaded from disk or
tape. SAVE x will save all the current procedures (a

"workspace") to a file named x.TURTLE; LOAD x will copy

["""] the procedures in x.TURTLE into memory. These will be added
to those already defined, so you can merge workspaces. Files

may be erased from the disk with SCRATCH x, which will

fj erase x.TURTLE. While these commands are operating, the
screen will seem to go awry; ignore this as it will be restored

when the operations are complete.

[""| QUIT will exit the program, but leave the machine in an
unusual state. The screen will still be split, but this may be

H 135

3 Education

u

corrected with RUN/STOP-RESTORE. Since memory is

reconfigured, you'll want to return it to its normal state. If you | [
don't want to power off and back on again, type:

POKE 2048,0: POKE 44,8: NEW , (

l_f
Crunching the Screen

Because each brand of TV and computer monitor has a dif- j i

ferent vertical aspect ratio, you may notice that your squares '—'
aren't square, circles look like eggs, and so on. If so, type:

REPEAT 180 [FORWARD 2 RIGHT 2]

If your design isn't a circle, take a centimeter ruler and

measure the diameter along the x and y axes. (These should

be easy to identify; just slide the ruler along the screen until

you get the maximum measurements in the horizontal and

vertical directions.) Divide the x value by the y value. This is

the "crunch factor." Change line 50 of Program 1 to set CR to

this value. If you're using a Commodore color monitor (mod

els 1701, 1702 or 1703), the value I've supplied in the pro

gram (.74) is appropriate. Note that changing this value

changes the scaling on the y axis. The new limits will be

±79/CR.

For Tape Users

You can modify the package to use a tape drive with the

following changes:

• Change the device number in lines 150 and 170 of Program

3 from 8 to 1.

• Change the word DISK to TAPE in line 80.

• Delete lines 7000-7100, 25000-25060, and line 1280 in Pro

gram 1. s ,

• Change these lines in Program 1: 1 I

23010 GOSUB 5000:IF WD$<>""THEN23018

23014 ER=-1:PRINT"YOU MUST SUPPLY A NAME":RETURN i ,

23018 OPEN2,1,0,WD$+".TURTLE" [_]
23060 CLOSE2:RETURN

24010 GOSUB 5000:IF WD$<>""THEN24018

24014 ER=-1:PRINT"YOU MUST SUPPLY A NAME":RETURN j [

24018 OPEN2,1,1,WD$+".TURTLE" U-J

24040 CLOSE2:RETURN

Program 3 should be saved first on the tape, followed by i i

Program 2, and then Program 1. When Program 3 is loaded I—I
and run, it will then load and run the other two programs. For

136 LJ

H

n

Education 3

_ this autoload feature to work properly, you must save the pro-

I i grams with the names shows in lines 150 and 170—TURTLE
GRAPHIC 2 for Program 2 and TURTLE GRAPHIC 1 for Pro-

gram 1. Or you could change the names in those lines to

i I match the names under which you saved the programs.
There is one additional requirement for the autoload fea-

ture to operate properly. You must leave the PLAY button de-

I I pressed after Program 3 finishes loading. If you release the
button, the PRESS PLAY message will be printed to the screen

when Program 2 is loaded, which will prevent the loading of

Program 1.

How It Works

Short of rewriting the Interpreter in machine language, there

are still a number of modifications you may wish to make to

customize the program. I've included these details to briefly

give you an idea of how the package functions.

Program 3 reconfigures memory to start loading programs

at $4000 (16384 in decimal), leaving locations $0800-$3FFF

(2048-16383) free for turtle sprite data. The LOADs and RUNs

are accomplished by printing the appropriate commands on

the screen and filling the keyboard buffer with RETURNS.

Program 2 POKEs in the 512 bytes of sprite data below

$1000 (4096), and then puts a number of machine language

routines in memory beginning at $C000 (49152). The first rou

tine is an interrupt-driven split-screen routine. It also takes

care of checking for the fl, f3, and CLR/HOME keys, and

keeps text from scrolling onto the hi-res screen. This routine is

initialized with SYS 49322. To clean the hi-res screen, use SYS

49295. SYS 49235 will clean under the hi-res screen

(1024-1823) and erase the text screen (1824-2023). The hi-res

bitmap is stored beginning at 8192.

Here are the important sections of the Interpreter (Pro

gram 1):

10-170: Initialization. Frequently used variables and

constants are created first to improve speed. Here are most of

the variables's functions:

137

3 Education

U
PE — 1 = penup, 0 = pendown

DR — 1 = pendraw, 0 = penerase 11
C conversion from degrees to radians

SC screen base

BL bytes per hi-res screen line } |

BB bytes per hi-res screen block '—'

MX MSB (Most Significant Byte) of sprite 0 x location

PX LSB (Least Significant Byte) of sprite 0 x location ,—(

PY sprite 0 y location I |
BG used for sprite x seam

CR screen crunch factor

MA mask

BA base in computer

C1-C7 constants used in determining sprite position

SP sprite image number (0-7)

H heading

CI degrees in circle

XH,XL x hi/lo values

YH,YL y hi/lo values

IX,IY initial x,y coordinates in FORWARD command

X,Y current coordinates

SS sprite spacing (45°)

HA one-half

FF used as a mask

PC procedure counter

DH delta heading

K,QQ,ZZ temporary numeric storage

T$,ZZ$ temporary string storage

SE sprite enable

PT sprite 0 pointer

D distance traveled
ER -1 = error, 0 = OK

BY byte to be POKEd

RO,CO row, column for upper-left corner of sprite

XS,YS coordinates for turtle sprite j j
WD$ current word

NU numeric input value

PN procedure number temp j I

MD$ disk read/write mode '—'
NP number of procedures in disk file

200-620: The parser routine is the most complicated part |_j
of the program. NE keeps track of the nesting level. The com

mand line typed at the keyboard is assigned to ST$(0). This

serves as a permanent copy of the command line. ST(0) is an [_J

index into this string (how much has been processed). These

138 [J

n
Education 3

n

nare copied into IN$ and IN, which is what we actually work

from. Commands are read off (and removed) from the left end

of IN$ and executed in lines 1000-1300; IN and ST(0) are con-

nstantly updated.

Whenever a repeat command is found, the nesting level is

incremented, the repetition factor is put in RP(NE), and the

i—, contents of the loop are put in a new command line, ST$(NE).

I _ i The parser then executes ST$(NE) as described. When we

reach the end of a command line, we "pop" up by

decrementing NE and continuing where we left off in the pre

vious command line. Advanced programmers may recognize

this as a stack used to simulate recursion.

Procedures are implemented in the same way. Whenever

a procedure name is encountered, we drop down a nesting

level, and treat the procedure's commands as the contents of a

repeat loop with a repetition factor of 1.

1000-1300: Identifies and executes commands. If you

choose to permanently change the name (or abbreviation) of a

command, do it here. This section also clears the error flag to

0 (false) before each command. Any command that fails will

set the error flag to — 1 (true). The parser keeps track of the

flag, and aborts all pending commands when the flag is set

true. The individual commands all have good diagnostics, and

you may assume that your commands have been successfully

executed if no message to the contrary is printed.

2000-8000: These subroutines are used by the Interpreter

in executing various commands.

9000-22000: Each of these subroutines corresponds to a

single command; consulting the variable list should help clar

ify them.

I I Sample Designs
Here are some simple designs to get you started. The names of

rn the procedures are in boldface:

RECTANGLE: RP 2 [FD 80 RT 90 FD 30 RT 90]

HEXAGON: RP 6 [FD 100 RT 60]

PENTAGON: RP 5 [FD 100 LT 72]

PENTAGRAM: RP 5 [FD 161.8 LT 144]

TWOPENTAS: SETP -60-80 SETH 90 PENTAGON LT 36

PENTAGRAM

ARROW: RECTANGLE LT 90 FD 15 LT 135 RP 2 [FD 42.4 LT 90]

LT 45 FD 15 PE FD 28 PW

139

3 Education

U

HONEYCOMB: SETP -30 30 SETH 330 RP 6 [RP 6 [FD 25 RT 60]

RT 120 PU FD 25 LT 60 PD] [_]

Program 1* Interpreter
For mistake-proof program entry, be sure to use "The Automatic Proofreader/* Appendix C, 1
to enter the following three programs. —

10 REM TURTLE GRAPHICS INTERPRETER :rem 202

30 IF PEEK(49152)<>173 THEN PRINT CHR$(150) "TURTL { i

E DATA DID NOT LOAD": END :rem 87 l 1
40 X=0: Y=0: IX=0: IY=0: D=0: NU=0: BY=0: Bl=0: XH

=160: XL=-159: C=t/180 :rem 121

50 CR=.74: YH=INT(79"7CR) : YL=-YH: BA=2: BB=8: BL=3
20: SC=8192: PE=0: DR=-1 :rem 195

60 MA=7: H=0: PX=53248: BB=8: BL=320: SC=8192: PE=

0: DR=-1: MA=7: H=0: PX=53248 :rem 33

70 PY=53249: BG=256: RO=0: CO=0: XS=0: YS=0: SP=0:

PT=2040: SE=53269: HA=.5 :rem 189

80 Cl=12: C2=40: C3=50: C4=28: C5=24: C6=3: C7=5:

{SPACE}CI=360: MX=53264: PC=0 :rem 10

90 FF=255: SS=45: SB=56: YM=79 :rem 88

100 DIM ST$(255),ST(255),RP(255),PR$(255),PN$(255)

:rem 88

110 DEF FNR(X)=INT((X+.005)*100)/100 :rem 123

120 REM INITIALIZE SCREEN AND TURTLE :rem 220

130 GOSUB 3000: POKE 2, 110: POKE 53277, 0: POKE 5

3271, 0: POKE 53287,0 :rem 146

140 SYS 49295: SYS 49235: SYS 49322: POKE SE, 1: P

OKE 53280,2: POKE53281/11 :rem 63

150 PRINT CHR$(129) "TURTLE GRAPHICS INTERPRETER"

:rem 218

170 PRINT CHR$(30) :rem 218

200 REM MAIN LOOP - GET A LINE OF COMMANDS AND PRO

CESS IT :rem 193

210 ST$(0)="": INPUT ST$(0) :rem 118

220 NE=0: ST(0)=0: RP(0)=0: ER=0 :rem 107

230 IF ST$(0)="" THEN 210 :rem 179

240 REM COPY UNEXECUTED PART OF CURRENT COMMAND ST j {
RING (NESTING LEVEL = NE) :rem 37 —'

250 REM INTO IN$ TO BE PROCESSED :rem 66

260 IN$=RIGHT$(ST$(NE), LEN(ST$(NE))-ST(NE)): IN=0 t j

:rem 51 L J
270 GOSUB 5000{2 SPACES}FILL WD$ WITH NEXT WORD FR

OM IN$:rem 106

280 IF WD$<>"" THEN 350 :rem 109 I j
290 REM IN$ IS EMPTY; WE ARE DONE WITH ALL COMMAND ^J

S IF NESTING LEVEL IS 0 :rem 140

300 IF NE=0 THEN 200 :rem 227 , }

310 REM WE HAVE COMPLETED A REPETITION OF THE CURR \ i
ENT COMMAND STRING ST$(NE) :rem 55

140 LJ

n

H

n

n

H

n

Education 3

320 REM IF NEEDED, REPEAT.{2 SPACESjELSE, POP NEST

ING LEVEL srem 156

330 RP(NE)=RP(NE)-1: IP RP(NE)>0 THEN ST(NE)=0: GO
TO 240 :rem 42

340 NE=NE-1: GOTO 240 :rem 97
350 IF (WD$="REPEAT")OR(WD$="RP") THEN 440 : rem 20

360 REM CHECK IF COMMAND IS A PROCEDURE NAME

:rem 16

370 GOSUB 6000s IF PN=0 THEN 410 :rem 120

380 REM STUFF IN$ WITH PROC STRING AS IF IT WERE A

REPEAT LOOP : rem 56

390 IN$= "[" + PR$(PN) + "]" + RIGHT$(IN$, LEN(IN$

)-IN): IN=0: NU=l :rem 28

400 ST(NE)=ST(NE)-LEN(PR$(PN))-2: GOTO 480:rem 103

410 REM IDENTIFY AND EXECUTE WD$ AS A COMMAND

:rem 78

420 GOSUB 1000: IF ER THEN 200 :rem 248

430 GOTO 270: REM WE ARE DONE CURRENT COMMAND

:rem 67

440 REM GET REPETITION FACTOR FOR REPEAT LOOP

:rem 0

450 GOSUB 4000: IN$=RIGHT$(IN$, LEN(IN$)-IN): IN=0
:rem 214

460 IF (NOT ER)AND(NU>0)AND(INT(NU)=NU) THEN 480

:rem 229

470 PRINT "I CAN'T REPEAT SOMETHING " WD$ " TIMES"

:IN$=H": GOTO 200 :rem 113

480 REM PUSH THE COMMAND STRING STACK (INCREMENT N

ESTING LEVEL) :rem 115

490 NE=NE+1: IF NE=256 THEN PRINT "NESTING TOO DEE

P": GOTO 200 :rem 191

495 RP(NE)=NU: ST(NE)=1: K=0 :rem 45

500 REM FILL ST$(NE) WITH CONTENTS OF REPEAT BRACK

ETS :rem 158

510 ST$(NE)="": QQ=0: K=0 :rem 1

520 T$=MID$(IN$, ST(NE), 1) :rem 106

530 IF T$="]" THEN K=K-1 :rem 221

540 IF K>0 THEN ST$(NE)=ST$(NE)+T$:rem 78

550 IF T$="[" THEN K=K+1: QQ=-1 :rem 82

560 IF K<=0 THEN 600 :rem 227

570 ST(NE)=ST(NE)+1 :rem 75

580 IF ST(NE)<=LEN(IN$) THEN 520 :rem 225

590 PRINT "MISMATCHED BRACKETS IN REPEAT": IN$="":

GOTO 200 :rem 112

600 IF (K<0) OR ((K=0)AND(NOTQQ)) THEN 590:rem 172

610 ST(NE-1)=ST(NE)+ST(NE-1): ST(NE)=0 :rem 142

620 GOTO 240: REM EXECUTE THE NEW COMMAND STRING

:rem 57

1000 REM IDENTIFY AND EXECUTE COMMAND :rem 230

1005 ER=0 :rem 202

141

u
3 Education

U

1010 IF (WD$=IIFORWARDII)OR(WD$="FDM) THEN GOSUB 900

0: RETURN :rem 69 j [
1020 IF (WD$="RIGHT")OR(WD$="RT") THEN GOSUB 10000

: RETURN :rem 243

1030 IF (WD$='ILEFT")OR(WD$="LT11) THEN GOSUB 11000: i .

RETURN :rem 156 1 1
1040 IF (WD$="PENUPII)OR(WD$="PU11) THEN PE=-1: RETU

RN :rem 189

1050 IF (WD$="PENDOWNH)OR(WD$=nPDM) THEN PE=0: RET I !
URN :rem 18 —'

1060 IF WD$="HOME" THEN GOSUB 12000: RETURN

:rem 123

1070 IF WD$="CLEAN" THEN SYS 49295: RETURN :rem 79

1080 IF (WD$="CLEARSCREEN")OR(WD$="CS") THEN GOSUB

12000: SYS 49295: RETURN : rem 218

1090 IF (WD$="SETHEADING")OR(WD$="SETH") THEN GOSU

B 13000: RETURN : rem 233

1100 IF (WD$="SETPOSITIONH)OR(WD$=IISETP11) THEN GOS

UB 14000: RETURN : rem 111

1110 IF (WD$="PENERASE")OR(WD$=MPEM) THEN DR=0: RE

TURN :rem 73

1120 IF (WD$="PENDRAWII)OR(WD$=IIPWM) THEN DR=-1 : RE

TURN :rem 72

1130 IF (WD$="ST")OR(WD$="SHOWTURTLE") THEN POKE S

E, 1: RETURN :rem 76

1140 IF (WD$="HIDETURTLE")OR(WD$="HT") THEN POKE S

E, 0: RETURN :rem 26

1150 IF (WD$="PENCOLOR")OR(WD$="PC") THEN GOSUB 15

000: RETURN :rem 205

1160 IF (WD$="BACKGROUNDCOLOR")OR(WD$="BC") THEN G

OSUB 16000: RETURN :rem 190

1170 IF (WD$="TURTLECOLOR")OR(WD$="TC") THEN GOSUB

17000: RETURN : rem 210

1180 IF WD$="PRINTHEADING" THEN PRINT FNR(H): RETU

RN :rem 107

1190 IF WD$="PRINTPOSITION" THEN PRINT "(" FNR(X)

{SPACE}11," FNR(Y) ")": RETURN :rem 218 , >

1200 IF WD$="DEFINE" THEN GOSUB 18000: RETURN 1 \
:rem 255

1210 IF WD$="NAMES" THEN GOSUB 19000: RETURN

:rem 202) !
1220 IF (WD$=IIPRINTPROCEDURE")OR(WD$="PPROC") THEN [—}

GOSUB 20000: RETURN :rem 140

1230 IF WD$="ERASE" THEN GOSUB 21000: RETURN , (

:rem 193 j)
1240 IF WD$="ERASEALL" THEN PC=0: PRINT "ALL PROCE

DURES ERASED": RETURN :rem 188

1250 IF WD$="RENAME" THEN GOSUB 22000: RETURN I /

:rem 12 I—1

142 LJ

Education 3

1260

1270

1280

1290

1300

2000

2010

2020

2030

2050

2060

2200

2210

2220

2230

3000

3010

3020

3030

3040

3050

3065

3070

4000

4010

4020

4030

4040

4050

5000

5010

5020

5030

5040

5050

5060

IF WD$="LOADM THEN GOSUB 23000: RETURN

:rem 118

IF WD$="SAVE" THEN GOSUB 24000: RETURN

:rem 135

IF WD$="SCRATCH" THEN GOSUB 25000: RETURN

:rem 98

IF WD$="QUIT" THEN PRINT "BYE": END :rem 207

ER=-1: PRINT "I DON'T UNDERSTAND " WD$: RETUR

N :rem 119

REM MOVE TURTLE :rem 189

RO=YM-(Y*CR): CO=X-XL :rem 15

IF (SP/BA)=INT(SP/BA) THEN XS=CO+C1: YS=RO+C2

: GOTO 2200 :rem 170

XS=CO: IF SP>C6 THEN XS=XS+C5 irem 199

IF (SP=C6)OR(SP=C7) THEN YS=RO+C4: GOTO 2200

:rem 222

YS=RO+C3 :rem 243

IF XS<BG THEN POKE PXf XS: POKE MX, 0: GOTO 2

220 :rem 67

:rem 148

:rem 118

:rem 167

:rem 61

:rem 72

:rem 144

:rem 245

:rem 160

POKE PX, XS-BG: POKE MX, 1

POKE PY, YS

RETURN

REM CHANGE HEADING

H=H+DH

IF H>=CI THEN H=H-CI: GOTO 3020

IF H<0 THEN H=H+CI: GOTO 3030

SP=(INT(H/SS+HA)) AND MA:

QQ=PEEK(SE): POKE SE, 0: POKE PT, SB+SP: GOSU

B 2000 :rem 42

POKE SE, QQ :rem 99

RETURN :rem 170

REM NUMERIC INPUT :rem 75

REM GETS NEXT WORD FROM IN$ AS A NUMBER (NU).

{2 SPACES)CHECKS FOR ERROR :rem 40

GOSUB 5000: ER=0: NU=0: IF WD$="" THEN ER=-1:

RETURN :rem 23

FOR K= 1 TO LEN(WD$): T$=MID$(WD$, K# 1)

:rem 202

IF ((T$<"0")OR(T$>"9")) AND (T$<>"-")AND(T$<>

"+")AND(T$<>".") THEN ER=-1 :rem 59

NEXT: NU=VAL(WD$): RETURN :rem 47

REM FILL WD$ WITH NEXT WORD FROM IN$:rem 53

WD$=M": IF IN$="" THEN 5070

IN$=RIGHT$(IN$, LEN(IN$)-IN): IN=0

ST(NE)=ST(NE)+1: IN=IN+1

IF IN>LEN(IN$) THEN IN=IN-1: ST(NE)=ST(NE)-1:

GOTO 5070 :rem 58

IF MID$(IN$, IN, 1)<>" " THEN WD$=WD$ + MID$(

IN$, IN, 1): GOTO 5030 :rem 187

IF (WD$="")AND(IN$<>"") THEN 5020 :rem 126

:rem 6

:rem 134

:rem 120

143

LI
3 Education

5070 RETURN :rem 172 . r

6000 REM IDENTIFY PROCEDURE :rem 175 I I
6010 REM RETURNS INDEX (PN) OF PROCNAME IN WD$; 0

{SPACE}IF NOT A PROCNAME :rem 6

6020 K=0: PN=0 :rem 197 j /

6030 K=K+1: IF K>PC THEN RETURN :rem 236 I—f
6040 IF WD$<>PN$(K) THEN 6030 :rem 232

6050 PN=K: RETURN :rem 11 f

7000 REM OPEN DISK FILE :rem 40 j ^
7010 ER=0: GOSUB 5000: IF WD$onn THEN 7030

:rem 138

7020 ER=-1: PRINT "YOU MUST SUPPLY A FILENAME": RE

TURN :rem 213

7030 OPEN 15,8,15 :rem 88

7040 OPEN 2,8,2, "0:" + WD$ + ".TURTLE,S," + MD$:

{SPACE}INPUT*15, QQ,T$,K,ZZ :rem 217

7050 IF (QQ=26)AND(MD$="W") THEN PRINT "WRITE-PROT

ECTED DISK": ER=-1: RETURN :rem 183

7060 IF (QQ=67)AND(MD$="W")AND(K=36) THEN PRINT "D

ISK IS FULL.": ER=-1: RETURN :rem 109

7070 IF (QQ=63)AND(MD$="W") THEN PRINT "FILENAME I

S USED": ER=-1: RETURN :rem 59

7080 IF (QQ=62)AND(MD$="R") THEN PRINT "NO SUCH FI

LE ON DISK": ER=-1: RETURN :rem 224

7090 IF QQ>19 THEN PRINT "I'M HAVING TROUBLE WITH

{SPACE}THE DISK": ER=-1 :rem 244

7100 RETURN :rem 168

8000 REM GET VALID COLOR NUMBER :rem 68

8010 GOSUB 4000 NUMERIC INPUT :rem 176

8020 IF ER OR (NU>15)OR(NU<0) THEN ER=-1 :rem 139

8030 RETURN :rem 171

9000 REM FORWARD COMMAND :rem 193

9010 GOSUB 4000: IF ER OR (NU<=0) THEN PRINT "I CA

N'T GO FORWARD " WD$: RETURN :rem 198

9020 IX=X: IY=Y: FOR D= 0 TO NU: X=FNR(D*SIN(H*C)+

IX): Y=FNR(D*COS(H*C)+IY) :rem 232

9030 IF X>XH THEN X=XH :rem 245 j {

9040 IF X<XL THEN X=XL :rem 252 '—;
9050 IF Y>YH THEN Y=YH :rem 251

9060 IF Y<YL THEN Y=YL : rem 2

9070 IF PE THEN 9120 :rem 239 j£
9080 BY=SC + BL*INT((YM-(Y*CR))/BB) +BB*INT((X-XL)

/BB) + ((YM-(Y*CR)) AND MA) :rem 74

9090 BI=MA - ((X-XL) AND MA) :rem 129 [[

9100 IF DR THEN POKE BY, PEEK(BY) OR BAtBI: GOTO 9 I—>

120 :rem 113

9110 POKE BY, PEEK(BY) AND (FF-BAfBI) :rem 27

9120 GOSUB 2000: NEXT: RETURN :rem 161 |(
10000 REM RIGHT COMMAND :rem 82

144

H

Education 3

10010 GOSUB 4000: IF ER OR (NU<0) THEN PRINT "I CA
N'T TURN RIGHT " WD$: RETURN :rem 205

10020 DH=NU: GOSUB 3000: RETURN :rem 246
11000 REM LEFT COMMAND :rem 0

11010 GOSUB 4000: IF ER OR (NU<0) THEN PRINT "I CA

N'T GO LEFT " WD$: RETURN :rem 200

11020 DH=-NU: GOSUB 3000: RETURN :rem 36
12000 REM HOME COMMAND :rem 255

12010 X=0: Y=0: H=0: DH=0: GOSUB 3000: RETURN

:rem 114

13000 REM SETHEADING COMMAND :rem 179

13010 GOSUB 4000: IF (NOT ER)AND(H<=360) THEN 1303

0 :rem 127

13020 ER=-1: PRINT "I CAN'T SET A HEADING OF " WD$

: RETURN :rem 84

13030 H=NU: DH=0: GOSUB 3000: RETURN :rem 233

14000 REM SETPOSITION COMMAND :rem 57

14010 GOSUB 4000: IF (NOT ER)AND(NU>=OCL) AND(NU<=XH

) THEN 14030 :rem 201

14020 ER=-1: PRINT "I CAN'T SET AN X-VALUE OF "WD$

: RETURN :rem 181

14030 QQ=NU: GOSUB 4000 :rem 248

14040 IF (NOT ER)AND(NU>=YL)AND(NU<=YH) THEN X=QQ:

Y=NU: GOSUB 2000: RETURN :rem 152

14050 ER=-1: PRINT "I CAN'T SET A Y-VALUE OF "WD$:

RETURN :rem 107

15000 REM PENCOLOR COMMAND :rem 59

15010 GOSUB 8000: IF ER THEN PRINT WD$ " IS NOT A

{SPACE}PENCOLOR": RETURN :rem 168

15020 POKE 2, (PEEK(2)AND15)+16*NU: SYS 49235: RET

URN :rem 112

16000 REM BACKGROUNDCOLOR COMMAND : rem 57

16010 GOSUB 8000: IF ER THEN PRINT WD$ " IS NOT A

{SPACE}BACKGROUNDCOLOR": RETURN :rem 166

16020 POKE 2, (PEEK(2)AND240)+NU: SYS 49235: RETUR

N :rem 16

17000 REM TURTLECOLOR COMMAND :rem 58

17020 GOSUB 8000: IF ER THEN PRINT WD$ " IS NOT A

{SPACE}TURTLECOLOR": RETURN :rem 168

17030 POKE 53287, NU: RETURN :rem 28

18000 REM DEFINE NEW PROCEDURE :rem 27

18010 GOSUB 5000:IF WD$<>"" THEN 18030 :rem 176

18020 PRINT "I NEED A PROCEDURE NAME": ER=-1: RETU

RN :rem 194

18030 IF PC=FF THEN PRINT"I CAN'T REMEMBER ANY MOR

E PROCEDURES": ER=-1: RETURN :rem 105

18040 GOSUB 6000: IF PN<>0 THEN PRINT WD$ " ALREAD

Y EXISTS": ER=-1: RETURN :rem 123

18050 PC=PC+1: PN$(PC)=WD$: PRINT WD$;: INPUT PR$(

PC) :rem 206

145

3 Education
u

18060

19000

19010

19020

19030

20000

20010

20020

20030

20040

21000

21010

21020

21030

21040

21050

22000

22010

22020

22030

22040

22050

22060

22070

22080

22090

22100

23000

23010

23020

23030

23040

23050

23060

24000

146

PRINT WD$ " IS NOW DEFINED11: RETURN

REM PRINTNAMES COMMAND

PRINT "NUMBER OF PROCEDURES:" PC

IF PC=0 THEN RETURN

FOR K= 1 TO PC: PRINT PN$(K): NEXT:

:rem 40

:rem 222

:rem 243

:rem 154

RETURN

:rem 139

:rem 11

:rem 162

REM PRINTPROCEDURE COMMAND

GOSUB 5000: IF WD$<>"" THEN 20030

ER=-1: PRINT "I NEED A PROCEDURE NAME": RETU

RN :rem 187

GOSUB 6000: IF PN<>0 THEN PRINT PR$(PN): RET

URN :rem 215

ER=-1: PRINT "THERE IS NO PROCEDURE " WD$: R

ETURN :rem 102

REM ERASE COMMAND :rem 70

GOSUB 5000: IF WD$<>"" THEN 21030 :rem 164

ER=-1: PRINT "I NEED A PROCEDURE NAME": RETU

RN :rem 188

GOSUB6000: IF PN<>0 THEN 21050 :rem 116

ER=-1: PRINT "THERE IS NO PROCEDURE " WD$: R

ETURN :rem 103

PR$(PN)=PR$(PC): PN$(PN)=PN$(PC): PC=PC-1:PR

INT WD$ " IS ERASED": RETURN :rem 145

REM RENAME COMMAND :rem 143

GOSUB 5000: IF WD$oM" THEN 22030 : rem 166

ER=-1: PRINT "I NEED TO KNOW THE OLD NAME":

{SPACE}RETURN :rem 117

GOSUB 6000 :rem 61

IF PN=0 THEN PRINT "PROCEDURE " WD$ " DOESN1

T EXIST": ER=-1: RETURN :rem 69

QQ=PN :rem 118

GOSUB 5000: IF WD$<>"" THEN22080 :rem 176

PRINT "I NEED TO KNOW THE NEW NAME": ER=-1:

{SPACE}RETURN :rem 133
GOSUB 6000 :rem 66

IF PN<>0 THEN PRINT "YOU HAVE ALREADY USED T

HAT NAME": ER=-1: RETURN :rem 0

PN$(QQ)=WD$: PRINT "RENAMING OK": RETURN

:rem 182

REM LOAD COMMAND :rem 248

MD$="R": GOSUB 7000: IF ER THEN 23060

:rem 137

INPUT#2, NP srem 166

IF (NP+PC)>FF THEN PRINT "TOO MANY PROCEDURE
S": ER=-1: GOTO 23060 :rem 251

FOR K= 1 TO NP: INPUT#2, PN$(PC+K), PR$(PC+K
): NEXT: PC=PC+NP :rem 108

PRINT NP "PROCEDURES LOADED" :rem 14

CLOSE 2: CLOSE 15: RETURN :rem 211

LJ

LJ

REM SAVE COMMAND :rem 8

u

u

u

u

LJ

n

H

Education 3

n

r—t

I. i

n

24010 MD$="W": GOSUB 7000: IF ER THEN 24040

:rem 142

24020 PRINT#2, PC: FOR K= 1 TO PC: PRINT#2, PN$(K)

: PRINT*2, PR$(K): NEXT :rem 114

24030 PRINT PC "PROCEDURES SAVED" :rem 204

24040 CLOSE 2: CLOSE 15: RETURN :rem 210

25000 REM SCRATCHFILE COMMAND :rem 2

25010 ER=0: GOSUB 5000: IF WD$<>"" THEN 25030

:rem 234

25020 PRINT "YOU MUST SUPPLY A FILENAME": ER=-1: R

ETURN :rem 5

25030 OPEN 15,8,15 :rem 136

25040 PRINT#15, "S0:" + WD$ + ".TURTLE": INPUT#15,

QQ,T$,ZZ,ZZ :rem 42

25050 IF (QQ>19)AND(QQ<>62) THEN PRINT "I'M HAVING

TROUBLE WITH THE DISK":ER=-1 :rem 25

25060 CLOSE 15: RETURN :rem 243

Program 2. Turtle Data

n

n

H

110

120

200

210

220

230

240

250

260

270

280

290

300

310

320

330

n

100 REM TURTLE DATA, FOR USE WITH TURTLE GRAPHICS

{SPACE}INTERPRETER. USE TURTLE BOOT :rem 95

REM TO LOAD. :rem 103

FOR K= 3584 TO 4095: READ J: POKE K, J: NEXT

:rem 142

REM HEADING 0 :rem 150

DATA 0,0

,0,0,0,0,0,0,0,0,0,0,24,0,0 :rem 239

DATA 60,0,0,126,0,0,255,0,1,255,128,3,255,192,

7,255,224,15,255,240,31,255 :rem 171

DATA 248,0,0,0,0,0,0,0 :rem 209

REM HEADING 45 :rem 211

DATA 0,63,255,0,31,255,0,15,255,0,7,255,0,3,25

5,0,1,255,0,0,127,0,0,63,0 :rem 90

DATA 0,31,0,0,7,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 252

DATA 0,0,0,0,0 :rem 83

REM HEADING 90 :rem 215

DATA 0,0,0,0,0,0,224,0,0,240,0,0,248,0,0,254,0

,0,255,0,0,255,128,0,255,192 :rem 163

DATA 0,255,224,0,255,224,0,255,192,0,255,128,0

,255,0,0,254,0,0,248,0,0,240 :rem 199

DATA 0,0,224,0,0,0,0,0,0,0,0,0,0,0,0 :rem 78

REM HEADING 135 :rem 2

DATA 0,0

,0,0,0,0,0,0,0,0,0,0,0,3,0,0 :rem 27

340 DATA 7,0,0,31,0,0,63,0,0,127,0,1,255,0,3,255,0

,7,255,0,15,255,0,31,255,0 :rem 76

147

3 Education

L)

U

350 DATA 63,255,0 srem 63 >

360 REM HEADING 180 : rem 6 4)
370 DATA 0,0,0,31,255,248,15,255,240,7,255,224,3,2

55,192,1,255,128,0,255,0,0 :rem 128

380 DATA 126,0,0,60,0,0,24,0,0,0,0,0,0,0,0,0,0,0,0 1 I

,0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 58 '—'
390 DATA 0,0,0,0,0,0,0,0,0 :rem 198

400 REM HEADING 235 :rem 2 , {

410 DATA 0,0 [_1
,0,0,0,0,0,0,0,0,0,192,0,0 :rem 203

420 DATA 224,0,0,248,0,0,252,0,0,254,0,0,255,128,0

,255,192,0,255,224,0,255,240 :rem 199

430 DATA 0,255,248,0,255,252,0,0 :rem 20

440 REM HEADING 270 :rem 5

450 DATA 0,0,0,0,0,0,0,0,14,0,0,30,0,0,62,0,0,254,

0,1,254,0,3,254,0,7,254,0,15 :rem 128

460 DATA 254,0,15,254,0,7,254,0,3,254,0,1,254,0,0,

254,0,0,62,0,0,30,0,0,14,0,0 :rem 159

470 DATA 0,0,0,0,0,0,0,0 :rem 105

480 REM HEADING 315 :rem 9

490 DATA 255,252,0,255,248,0,255,240,0,255,224,0,2

55,192,0,255,128,0,254,0,0 :rem 134

500 DATA 252,0,0,248,0,0,224,0,0,192,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 82

510 DATA 0,0,0,0,0,0,0,0,0,0,0,0 :rem 212

600 REM SPLITSCREEN ROUTINE :rem 236

610 FOR K= 49152 TO 49349: READ J: POKE K, J: NEXT

:rem 254

620 DATA 173,25,208,141,25,208,41,1,208,3,76,188,2

54,173,18,208,16,18,169,21 :rem 166

630 DATA 141,24,208,169,27,141,17,208,169,1,141,18

,208,76,188,254,169,25,141 :rem 178

640 DATA 24,208,169,59,141,17,208,169,209,141,18,2

08,24,165,214,105,236,16 :rem 75

650 DATA 3,32,83,192,165,197,201,4,208,3,238,32,20

8,201,5,208,3,238,33,208,32 :rem 200

660 DATA 132,192,76,49,234,165,2,162,0,157,0,4,232) /

,208,250,157,0,5,232,208,250 :rem 245 '—!
670 DATA 157,0,6,232,208,250,162,31,157,0,7,202,16

,250,169,32,162,201,157,31,7 :rem 238 , ,

680 DATA 202,208,250,24,160,0,162,20,32,240,255,96

,162,39,165,2,157,248,6,202 :rem 199

690 DATA 16,250,96,24,169,32,133,252,169,0,133,251

,168,145,251,200,208,251,230 :rem 2 i i

700 DATA 252,165,252,201,64,208,1,96,152,240,239,1 cJ
20,169,127,141,13,220,169,1 :rem 198

710 DATA 141,26,208,169,192,141,21,3,169,0,141,20,

3,169,1,141,18,208,88,96 :rem 58 I /

148 u

n

n

n

n

n

n

Education 3

f"! Program 3. Turtle Boot

' 10 REM TURTLE BOOT srem 89
20 POKE 53281, 6 :rem 246

t—| 30 PRINT CHR$(147); CHR$(154) TAB(10) "TURTLE GRAP

(I HICS BOOT": PRINT: PRINT :rem 197
40 PRINT "THIS PROGRAM WILL LOAD AND RUN THE"

:rem 134

PI 50 PRINT "TURTLE DATA AND INTERPRETER PROGRAMS.":
1 ' {SPACE}PRINT :rem 183

60 PRINT "WHILE THEY ARE LOADING, THE SCREEN WILL"
:rem 197

70 PRINT "BLANK.11: PRINT : rem 149

80 PRINT "DO NOT REMOVE THE DISK UNTIL THE" :rem 4

90 PRINT "INTERPRETER PROMPTS YOU FOR YOUR FIRST"
srem 126

100 PRINT "COMMAND.": PRINT: PRINT: POKE 198, 0
:rem 132

110 PRINT "PRESS " CHR$(18) "SPACE" CHR$(146) " WH
EN READY" :rem 51

120 GETA$: IF A$="" THEN 120 :rem 73

130 Q$=CHR$(34): D$=CHR$(17) :rem 152

140 PRINT CHR$(147); CHR$(31); D$; D$; D$ "POKE 16

384, 0: POKE 44, 64: NEW" :rem 74

150 PRINT D$; D$ "LOAD" Q$ "TURTLE GRAPHIC 2" Q$ "

,8" srem 120

160 PRINT D$; D$; D$; D$; D$ "RUN" :rem 81

170 PRINT D$; D$ "LOAD" Q$ "TURTLE GRAPHIC 1" Q$ "

,8" :rem 121

180 PRINT D$; D$; D$; D$; D$ "RUN" CHR$(19):rem 15

190 FOR K= 1 TO 7: POKE 630+K, 13: NEXT: POKE 198,

7 :rem 3

Turtle Graphics Commands Quick Reference Chart

Command Description

FORWARD x (FD) Moves turtle forward

RIGHT x (RT) Turns turtle clockwise

LEFT x (LT) Turns turtle counterclockwise

SETHEADING x (SETH) Turns turtle without changing

position

PRINTHEADING Returns current turtle heading

SETPOSITION x y (SETP) Moves turtle without changing

I | heading
PRINTPOSITION Returns current turtle coordinates

PENERASE (PE) Erase a trail

PENDRAW (PW) Draw a trail

PENDOWN (PD) Pen is down

149

3 Education

PENUP (PU)

PENCOLOR x (PC)

BACKGROUNDCOLOR x (BC)

TURTLECOLOR x (TC)

SHOWTURTLE (ST)

HIDETURTLE (HT)

HOME

CLEAN

CLEARSCREEN

REPEAT x [] (RP)

DEFINE x

NAMES

PRINTPROCEDUREx (PPROC)

ERASE x

RENAME x y

ERASEALL

SAVEx

LOADx

SCRATCH x

QUIT

Pen is up—turtle cannot erase or

draw

Changes trail color

Changes hi-res background color

Changes turtle color

Shows the turtle again after it's

been hidden

Makes the turtle invisible

Moves turtle to 0,0 and sets head

ing to 0 degrees

Erases the hi-res screen

Performs a CLEAN and a HOME

Repeats a command

Define a procedure

Prints all the names of current

procedures

Prints the commands in

procedure x

Erases procedure x

Renames procedure x with new

name y

Erases all current procedures

Saves all current procedures as

filename x.TURTLE

Loads into memory procedures

from filename x.TURTLE

Erases filename x.TURTLE from

disk

Exit the program

These are not commands, but keys you can press for the

following results:

CLR/HOME Clears the text display window

f1 Changes screen border color

f3 Changes text background color

u

u

LI

i !

150

u

LJ

U

u

u

n

H

n Programming

n 64 Sound
f""j John Michael Lane

This in-depth look at sound for the 64 provides

you with practical methods for controlling the 64's

SID chip from BASIC. Not only does it discuss

sound and music in general, but it also examines

some techniques for programming more com

plicated music.

Sight and sound are two essential components of successful

computer games. Though the methods used to produce visual

images differ from one computer to another, it's not too hard

to produce an image that looks something like what you want.

When designing space games, it's really easy, because just

about anything can look like a spaceship.

Producing sound, however, can be quite a different mat

ter. How can you produce the sound of a laser gun when

dealing with such unfamiliar concepts as frequency, wave

forms, and envelopes? (Actually lasers don't make any noise,

but you know the sound I mean.)

Without a pretty expensive test setup, it can seem impos

sible to produce exactly the sound you're looking for. The

r—| only recourse is trial and error. Still, if you understand a little

'.. .) about the physics of sound and how it relates to the sound
generator you're using, you can produce creditable results.

) \ Real Sound
Sound is produced when physical objects vibrate. Vibrations

pn are then set in motion and travel through the air as sound

! j waves to our ears. Sound, in its purest form, has only two
physical attributes, frequency and amplitude. Frequency, the

n number of vibrations per sound, is usually measured in cycles

per sound, or hertz. The higher the frequency or pitch of the

sound, the higher a note sounds to our ears.

1 153

4 Sound and Graphics
u

We've probably never heard a tone that consisted purely

of one frequency. Physical objects create vibrations at fre

quencies which are multiples of a fundamental frequency. The

presence and quantity of these overtones determine the tonal

quality, the color or timbre, of the sound. It's this tonal quality

that determines whether a noise we hear sounds like a banjo

or a drum (although there are other factors which we'll get to

in a minute).

Different instruments and objects produce these overtones

in varying amounts. Some produce overtones strong in even

multiples of the fundamental frequency. Others produce tones

rich in the odd multiples. There really is no limit to the variety

of tonal qualities that exist in the real world.

On some organs, and on some music synthesizers, you

can specify the exact amount of each overtone you want in

cluded in each sound. On the synthesizer included in the

Commodore 64, this is handled through the different types of

waveforms that can be selected. But how does a waveform re

late to tonal quality?

Waveforms

Figure 1 shows a sine wave at the fundamental frequency (all

pure tones are sine waves) and at the first overtone or second

harmonic. Notice that when we add the two waveforms to

gether, the result no longer exactly resembles a sine wave.

Figure 1. Fundamental and Sound Harmonics Combined

"FUNDAMENTAL ■-2ND HARM -TOTAL

u

u

u

LJ

154

n

Sound and Graphics 4

) 1

/ I

n

n

In Figure 2, we've continued adding sine waves of higher

harmonics. You can see that the resulting total waveshape is

beginning to resemble a sawtooth, one of the waveforms

available from the Commodore 64's Sound Interface Device

(SID). If we kept adding the higher harmonics until we

reached infinity, we would have a perfect sawtooth.

Figure 2. Adding Third and Fourth Harmonics Creates

Sawtooth

■1ST 8* 2ND

■TOTAL <SAWTOOTH>

-3RD HARM —4TH HARM

So the shape of the wave actually defines the harmonic con

tent of the sound. Since all pure tones are sine waves, the

shape of the wave generated by a sound synthesizer is ac

tually assembled from sine waves that are multiples of the

fundamental frequency.

The Commodore 64's SID has a choice of three basic

waveforms and white noise, which is a collection of random

frequencies. The three waveforms are a triangular wave, a

pulse wave, and a sawtooth wave. The pulse wave has a vari

able pulse width, or duty cycle, which allows you additional

freedom to vary the color of the sound produced. None of

these waveshapes corresponds exactly to the sound produced

by any instrument. It is also impossible to duplicate the com

plex harmonics of a real instrument simply by choosing one of

these three waveforms. They do, nevertheless, give you the

flexibility to produce a wide variety of color content, and you

can get close to the particular sound you're seeking.

155

4 Sound and Graphics

The harmonic content of the triangular wave diminishes

very quickly, and the color of the wave consists almost en

tirely of the fundamental frequency. The sawtooth wave is the

richest in terms of harmonics, and the pulse wave falls in be

tween. However, since the pulse width of the pulse wave can

be varied, it can also contain a great variety of harmonic con

tent. Figure 3 illustrates the three different waveforms avail

able through your 64's SID chip.

Figure 3*

10

8

6

4

2

A

\
#

a

a

....TRIANGLE

Waveform Shapes

*

\

a

a

\

V a

>l a

>. a

^V a

a >v

* >

a

r

*

a

a

a

a

>y a

^V %

Pulse wave has 50 percent duty cycle.

—SANTOOTH PULSE

Sound Envelopes

Earlier we said that sound consists of two qualities, frequency

and amplitude. We've discussed primary frequency and how

harmonic overtones are defined by the shape of the wave, but

what about amplitude, or loudness?

We don't mean how loud the sound is simply in the sense

of volume, but rather how quickly the sound rises to its full

strength and how quickly it dies down again to silence.

If you play an organ, you know that the sound of a note

almost immediately reaches its full strength after you press the

key and just as quickly dies down when you release the key.

To our ears, it's just about instantaneous.

This is quite different from plucking a guitar string, where

the sound quickly (but not quite instantaneously) reaches its

full height and then slowly dies down, so that the tone contin-

156

u

u

LJ

u

LJ

U

u

u

n

Sound and Graphics 4

ues several seconds after the note was struck. Violins, xylo

phones, banjos, and woodwinds are all different in the way

that the sound rises, is sustained, and then dies down. Generally,

these qualities are referred to as the envelope of the sound.

If you look at Figure 4, you'll see how a sound looks if

you could feed it into an oscilloscope. We can see the shape of

the wave. The shape of the envelope defines the characteris

tics of a sound in a manner very similar to the way that har

monic content defines a sound.

Figure 4* The Envelope Defines the Height of Individual

Waveforms

ATTACK
DECAY

SUSTAIN
TIME -->

RELEASE

The Commodore 64 uses a four-part sound envelope (see

Figure 5). The first phase, called the attack, is the length of

time it takes for the sound to reach its full volume. The second

phase is the decay. During this phase, the sound decreases

from the peak achieved during the attack phase to the level

set for the sustain phase. During the third or sustain phase, the

volume remains constant. In the final phase, the release, the

volume decreases to zero.

n

n 157

4 Sound and Graphics

Figure 5. Attack/Decay/Sustain/Release (ADSR)

Envelope

ATTACK SUSTAIN

DECAY RELEASE

Sustain level = 8

Not all sounds have this four-part volume envelope.

Some have only an attack and release phase, and some (like

the organ) have only the sustain phase. We can achieve all

these on the Commodore 64 simply by setting the other

phases to zero.

The Commodore's SID allows us to set the attack, decay,

and release phases to any one of 15 values or to zero. The

times that correspond to the 15 values can be seen in Table 1.

The times vary from milliseconds to seconds. Note that the ta

ble does not include times for the sustain phase. The SID chip

allows you to set a sustain volume level, but you must control

the length of the sustain by opening and closing a gate. That

gate is bit 0 of the fourth register in the SID chip. We'll cover

this in greater detail later.

To turn the sound on in the SID chip, you must open the

gate. As soon as the gate is opened, the sound level begins to

rise at a rate determined by the attack. Once the peak level is

reached, the sound begins to decline to the level set for the

sustain. The rate at which it declines is defined by the decay.

However, if the sustain level is set at 15 (the highest

choice), the decay phase is essentially meaningless because the

sustain level and the peak of the attack phase are the same.

Thus the decay phase has nowhere to decay to.

158

u

LJ

U

LJ

U

U

LJ

U

U

n
Sound and Graphics 4

i I

) \

Table 1.

VALUE

========

0

1

2

3

4

5

b

7

8

9

10

11

12

13

14

15

ADSR Envelope Values and 1

ATTACK

RATE

========

2 ms

8 ms

16 ms

24 ms

38 ms

56 ms

68 ms

80 ms

100 ms

.25 sec

.5 sec

.8 sec

1 sec

3 sec

5 sec

8 sec

DECAY

RATE

========

6 ms

24 ms

48 ms

72 ms

114 ms

168 ms

204 ms

240 ms

.3 sec

.75 sec

1.5 sec

2.4 sec

3 sec

9 sec

15 sec

24 sec

RELEASE

RATE

========

6 ms

24 ms

48 ms

72 ms

114 ms

168 ms

204 ms

240 ms

• 3 sec

.75 sec

1.5 sec

2.4 sec

3 sec

9 sec

15 sec

24 sec

n

Once the decay phase is complete, the sustain cycle will

continue as long as the gate is open. When the gate is closed,

the release phase begins and the volume falls from the sustain

level to zero. So, how long is the sustain phase?

Obviously, the sustain phase lasts as long as the time that

the gate is open, minus the time required for the attack and

decay phases. If you close the gate too soon, you may have no

sustain phase at all. If you close it really early, you'll cut short

the decay or the attack and decay phases as well. Figure 6 shows

several combinations of attack, decay, and release values and

how they interact with the gate to produce the sound envelope.

H

n 159

4 Sound and Graphics

Figure 6. Standard Four-Part Envelope

Figure 6a. Organlike Envelope

Attack, Decay, and Release = 0

I

—GATE —ENVELOPE

u

u

u

u

160

u

u

LJ

U

U

n

Sound and Graphics 4

i i

n

n

n

Figure 6b* Pianolike Envelope

Figure 6c. Pianolike Envelope

Sustain and Release = 0

—GATE

LONG NOTE - GATE NEED NOT CLOSE

•ENVELOPE

Programming Sound

The SID is really a quite amazing chip. It uses just 29 pro

grammable registers, and with those (you won't even use

them all) you can produce a great variety of sounds.

For our purposes, we'll consider only the first 21 registers

in the SID chip. We'll also briefly consider the twenty-fifth

register, which sets the volume (no volume, no sound).

161

4 Sound and Graphics

u

The first 21 registers break down into three groups of \ /»

seven. That's because the SID has three voices, and the seven- ±~>

register groups perform almost the same function for all three

voices. That makes it far easier—all you have to learn is how i ' ,

to program seven registers. I—)

Table 2 gives the functions of the seven register groups.

Registers 0 and 1 hold the frequency. Register 0 contains the i i

least significant byte, and register 1 the most significant byte. I—>
With two registers you can store only numbers less than

65512. That sounds pretty high, but the frequency contained

in the two registers relates to the internal oscillator (clock) of

the Commodore 64 and does not translate to the frequency we

are familiar with in terms of cycles per second (hertz). To

translate into hertz, you must multiply the frequency con

tained in the two registers by .059605. This means that the

highest frequency the SID can produce is 3904 hertz. The fre

quency can go as low as zero, but the sound system in your

TV set probably won't reproduce a frequency of less than 50

hertz (or 840 to the SID).

The easy way to load the frequency into the two registers

is to use this program segment:

100 S=54272:REM (STARTING ADDRESS OF SID CHIP)

110 F0=FR/.059605:REM FR=FREQUENCY IN CYCLES/SECON

D

120 F2=INT(F0/256):F1=F0-256*F2

130 POKE S,PI:POKE S+1,F2

If you already know the frequency in terms of the SID chip,

you can omit line 110.

The next two registers (2 and 3) contain the pulse width

of the rectangular pulse wave. This value is a 12-bit number

with the eight least significant bits stored in register 2, and the j >

four most significant stored in bits 3-0 of register 3. The four Li
remaining bits of register 3 are not used. If you are using

something other than a pulse wave, you don't have to worry i i

about doing anything with these two registers. w

The pulse width can take a value from 0 to 4095, which

corresponds to a range of 0-100 percent for the duty cycle. A ;* ,

value of 2048 implies a 50 percent duty cycle and generates a LJ
square wave. If these two registers are set to zero and the

pulse wave is selected, no sound will be produced. ,

162 u

n

n

n

n

n

Sound and Graphics 4

^-"j The following program segment can be used to set the

- pulse width:

~ 140 P0=DC*4095/100:REM DC=DUTY CYCLE IN %

}| 150 P2=INT(P0/256):P1=P0-256*P2
~ " 160 POKE S+2,P1:POKE S+3,P2

w A duty cycle of 10 percent will sound exactly the same as a

I \ duty cycle of 90 percent. For some advanced applications, the

two may sound different, but for a solitary pulse wave, there

will be no difference.

Table 2, Map of Sound Interface Device (SID) Registers
ADDRESS REG « BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

VOICE ONE

FREQUENCY REGISTERS

54272 0 C< FREQUENCY LOW ORDER BYTE >3

54273 1 C< FREQUENCY HI6H ORDER BYTE >3

PULSE WIDTH REGISTERS

54274 2 [< PULSE WIDTH LOW ORDER BYTE >3

54275 3 [< BITS 7-4 NOT USED >3C HIGHEST 4 BITS OF PULSE WIDTH]

CONTROL REGISTER

54276 4 [NOISE]CPULSE 3CSAWTH.3CTRIANS3C TEST DC RING DC SYNC 3C GATE 3

ATTACK/DECAY REGISTER

54277 5 C< ATTACK VALUE >3t<-r- DECAY VALUE >3

SUSTAIN/RELEASE REGISTER

54278 6 C< SUSTAIN LEVEL >3C< RELEASE VALUE >]

VOICE TWO

FREQUENCY REGISTERS

54279 7 C< FREQUENCY LOW ORDER BYTE >3

542S0 S C< FREQUENCY HIGH ORDER BYTE >3

PULSE WIDTH REGISTERS

542B1 9 C< PULSE WIDTH LOW ORDER BYTE >3

54282 10 C< BITS 7-4 NOT USED >3C HIGHEST 4 BITS OF PULSE WIDTH3

CONTROL REGISTER

54283 11 CNOISEKPULSE DCSAWTH. DCTRIANGDC TEST DC RING DC SYNC DC GATE 3

ATTACK/DECAY REGISTER

54284 12 C< ATTACK VALUE >3C< DECAY VALUE >3

SUSTAIN/RELEASE REGISTER

54285 13 [< SUSTAIN LEVEL >3C< RELEASE VALUE >3

VOICE THREE

FREQUENCY REGISTERS

54286 14 C< FREQUENCY LOW ORDER BYTE >3

54287 15 C< FREQUENCY HIGH ORDER BYTE >3

PULSE WIDTH REGISTERS

54288 16 C< ■?- PULSE WIDTH LOW ORDER BYTE >3

54289 17 C< BITS 7-4 NOT USED >DC HIGHEST 4 BITS OF PULSE WIDTHS

--- CONTROL REGISTER

\[54290 18 CNOISEDCPULSE DCSAWTH.DCTRIAN8DC TEST DC RING 3C SYNC DC GATE 3
j 1 ATTACK/DECAY REGISTER
—— 54291 19 C< ATTACK VALUE >3C< DECAY VALUE >3

SUSTAIN/RELEASE REGISTER

54292 20 C< SUSTAIN LEVEL >3C< RELEASE VALUE >3

VOLUME REGISTER

54296 24 C-NOT COVERED IN THIS ARTICLE-3C< VOLUHE CONTROL >3

Now that we've covered the general aspects of sound and

music programming on the 64, let's look at some more com

plicated techniques.

The Control Register

The control register (register 4 in Table 2) is the most complex

register in the chip. Each of the eight bits in this register has a

163

u
4 Sound and Graphics

has a different function. Dealing with individual bits within a] t

one-byte register is often a problem for BASIC programmers. ^
One very easy way to approach the problem is to use the

following: f j

170 B(0)=1

180 B(1)=0

190 B(2)=l (|

200 B(3)=0 I \
210 B(4)=0

220 B(5)=0

230 B(6)=0

240 B(7)=l

250 FOR 1=0 TO 7

260 Q=Q+B(I)*2tl
270 NEXT I:POKE S+4,Q

This is not a very efficient way of programming, but by

defining the bits we want (that is, B(I) where I = the bit num

ber) in terms of a 1 and those we don't want in terms of a 0,

this will work. It will be somewhat slow and cannot be used

in a loop that must execute quickly, which is usually the case

when doing musical programming.

A quicker method is to think of the bits in terms of their

values in an eight-bit binary number. Bit 0 has a value of 1,

bit 1 is 2, bit 2 is 4, bit 3 is 8, and so on, until bit 7 equals

128. In the lines above, we set bits 0, 2, and 7 on; to use the

more efficient technique of bit values, we can simply add their

values: 1+4+ 128 = 133. POKEing 133 into the register then

sets those three bits. It's much simpler, but requires you to

add up the bit values before writing the program.

The first bit of the control register, bit 0, acts as the gate

to turn the sound on and off. Remember that when the gate is

opened (when bit 0 is set to 1), the attack phase of the volume \ ;

envelope begins. When the gate is closed (bit 0 is set to 0), the w

release phase of the envelope is triggered. If the gate is closed

prematurely, the sustain, decay, and even a portion of the at- i /

tack phase may be omitted. Opening and closing the gate is LJ-
actually very easy. Just remember that POKEing an odd value

in register 4 turns the gate on and that POKEing an even value * »

turns the gate off. ±—v

Watch the Timing <

Be careful of turning the gate off by POKEing zero into the LJ
register. That will also clear the waveform bits (which we'll

164 u

n

Sound and Graphics 4

discuss in a second) and will result in your envelope having

no release phase.

The next bit, bit 1, is the sync bit. If this bit is on, the out-

put from voice 1 will be synchronized with the output from

voice 3. Sync in this case means that the output of voice 1 will

be replaced with a logical AND of the output of voice 1 and

voice 3. Another way to think of it is that voice 1 is turned on

and off with the frequency of voice 3. In order for this bit to

have any effect, voice 3 must be set to a frequency less than

voice 1. The best way to understand this effect is to listen to

it. Program 4, "Laser," contains a demonstration using the

sync bit. When using sync, the lower frequency will predomi

nate. The effect works best when the lower frequency is 10-50

percent of the higher.

The sync bit has a slightly different effect in the other two

voices. In voice 2 it produces a sync of voice 2 with voice 1,

and in voice 3 it produces a sync of voice 3 with voice 2.

The next bit, bit 2, is the ring modulation bit. When this

bit is set on, it produces nonharmonic overtones that sound

like a bell. In order for this effect to take place, the triangular

waveform must be selected for voice 1, and voice 3 must have

a frequency other than zero.

Ring modulation in the other voices works like the sync

bit; that is, for voice 2 to be ring modulated, voice 1 must

have a nonzero frequency. For voice 3, voice 2 must be non

zero. In all cases the triangular waveform must be selected for

the affected voice.

Bit 3 in the control register is the test bit. Setting the test

bit to one will turn off the sound generator. This technique will

generally be used only by machine language programmers.

Bits 4-7 are the waveform bits. Turning on bit 4 will se

lect the triangular waveform; bit 5 will select the sawtooth; bit

6 the pulse; and bit 7 white noise (like the hissing sound you

hear between stations on a radio).

At this point you must be asking yourself "What happens

if more than one bit is selected?" The answer is that the two

(or more) waveforms will be ANDed together (a logical AND

will be done on the waveforms). Commodore cautions that

selecting more than one waveform while using the white noise

waveform could cause the oscillator to go silent, so don't com

bine waveforms using the white noise waveform. Even while

avoiding the white noise waveform, it's still possible to gen-

165

u
4 Sound and Graphics

I)

erate four more waveform shapes using combinations of the] ?

sawtooth, triangular, and rectangular pulse waveforms. How- -^
ever, the volume declines significantly when combining

waveforms. j i

Register 5 contains the attack and decay values for voice l—^
l's sound envelope. (Registers 12 and 19 serve the same func

tion for voices 2 and 3 respectively.) The four-bit attack value t j

is held in bits 7-4. The four-bit decay value is held in bits 3-0. <—*

The values can be loaded like this:

300 A=13:D=5:REM ATTACK=i3,DECAY=5

310 POKE S+5,16*A+D

Register 6 contains the sustain level and the release value

for voice 1. (Again, registers 13 and 20 are used for voices 2

and 3.) As above, the sustain level is held in bits 7-4, and the

release value in bits 3-0. Program them in the following manner:

320 SU=13:R=4:REM SUSTAIN=13 ,RELEASE=4

330 POKE S+6,16*SU+R

We've covered the seven register groups and shown how

to load them. Program 1, "Twiddle/7 allows you to explore all

possible combinations using these seven registers. The pro

gram lets you set and change any of the values and then listen

to an eight-note scale governed by those values. If you sit

down and play with the program for a couple of hours, you'll

get a good understanding of how changing the SID chip

parameters affects a sound. The program is also useful for

demonstrating how to play a tune within a BASIC program.

(Note that pressing almost any key not displayed on the

screen will play the sound scale you've set up.)

From Sound to Music w-

To play actual music, you generally write a program which

will load all the parameters except the waveform and the fre- i /

quency. At this point you select the note to be played and w

POKE the appropriate values into the frequency register. Then

you POKE the waveform value plus one (16+1 = 17 for trian- (,

gular, 33 for sawtooth, 65 for pulse, and 129 for white noise) ^-^

into register 4 (the control register). Adding a 1 causes the gate

bit (bit 0) to be turned on, and the tone begins. The program \ j

waits a certain period of time and then POKEs the waveform Lj
value (16, 32, 64, or 128) into the register. By POKEing an

166 LJ

G
Sound and Graphics 4

n

f—? even number into the register we turn the gate off, and the

— note begins its release phase and gradually dies out (according

to the release value that you've set).

r—* A simple way to time the note is to use a delay loop. An

-- empty loop (like the one below) will execute 1000 cycles in

just about one second.

f"*j 400 FOR 1=1 TO 1000:NEXT'l
Therefore, each cycle is just about 1/1000 second (or a milli

second). To turn the note on and off, the program line will

look like this:

400 POKE S+4#17:FOR 1=1 TO 250:NEXT:POKE S+4,16

The above program line will play a note for about one quarter

of a second.

This technique works well for a single voice, but it may

not work at all for more than one voice. The problem is that

while the computer is timing the duration of one note, it can

not be separately timing voices 2 and 3. We could fill the

empty loop with timing routines for voices 2 and 3, but that

would change the execution time for the loop and throw the

timing off.

A second technique is to use the internal timer of the

Commodore 64 through the use of variable TI. The variable TI

is updated automatically on the Commodore 64 and increases

by a value of one every 1/60 second. We can use this timer to

time the duration of our notes:

500 T0=TI:REM INTIALIZE THE VARIABLE "T0M

510 T0=T0+D:REM INCREASE "T0" BY DURATION OF THE F

IRST NOTE - D

520 IF T0<=TI THEN GOSUB 1100:REM CHECK IF THE TIM

r—| E IS UP

J ? 525 REM IF SO SUBROUTINE 1100 WILL CHANGE NOTES

530 GOTO 520:REM IF NOT CHECK TIME AGAIN

nThekey to using this routine is to make sure that the sub

routine executes quickly, at least while using multiple voices.

Program 2, "Tune," illustrates this technique using all three

p-^ voices. But this method isn't problem-free. We want to re-

i } produce the rhythm of the original tune as accurately as pos

sible. It's physically impossible to change the frequency of all

—1 three voices at once. Using BASIC, it's somewhat difficult to

i_J change all three voices in less than 1/6 second. For that rea
son, we split all the frequencies into the higher-

n 167

u
4 Sound and Graphics

u

and lower-order bytes before the tune begins. We can then * ^

change the frequency of all three voices in about 1/10 second. W

For most tunes that will be satisfactory. However, for a fast

tempo, you might have to omit the second or third voice in ; ,

order to maintain the rapid changes of the first voice. i)

Sound Effects , f

Let's briefly explore sound effects: the noise of a firing laser, i__J.
or an explosion, siren, or any other sound we need. How can

we do it?

Unfortunately, there's no direct way. The best approach is

trial and error. Listen to the sound carefully. Most sounds in

nature cannot be duplicated simply by selecting the right

waveform and envelope. Generally, the frequency is also ac

tively changing during the sound's life. While you listen to (or

think about) the sound you want, consider what's happening

to the frequency. Is it rising or falling? How quickly?

Also consider the volume. Many volume envelopes can

not be duplicated using the attack/decay/sustain/release en

velope. You'll often have to change the volume level through

program control, using the volume register (register 24).

Programs 3 and 4, "Blast-off" and "Laser," illustrate one

approach. In Blast-off, both the frequency and volume are

modulated by the program. Laser demonstrates the sync fea

ture and modulates the frequency to produce the laser sound.

Both programs were written after much trial and error.

Many authors, when converting programs to the 64, sim

ply drop the sound effects or stop at a sound which is only

vaguely like the one they want. Be persistent; the 64 can ac

curately produce almost any sound. As you gain experience,

you'll find that the trial and error phase will decrease (

significantly. \^J,
Twiddle (Program 1) illustrates the basic methods of loading

the SID registers and lets you experiment by changing the wave

form and ADSR envelope while listening to the musical scale.

Tune (Program 2) uses the three voices to play an English

folk tune. Don't be discouraged by the long list of DATA

statements. Voice 1 repeats the same statements four times,

and there is considerable repetition in voices 2 and 3. Once

you've typed in the first few DATA statements, you can sim

ply change the line numbers with the screen editor to produce
the remainder.

168

H
Sound and Graphics 4

n

r~* Tune can be used to produce any melody by changing the

— values in the DATA statements. Each note is represented by a

pair of values. The first represents the duration of the note (in

f-^ sixtieths of a second). A value of 30-40 is appropriate for a

~ quarter note. The second value is the frequency of the note.

Appendix E in the Commodore 64 Programmer's Reference Guide

f**) offers a simple frequency table. Below are the values for the

v. -i 12-semitone scale starting at middle C.

C—4291 C#—4547

D—4817 D#—5103

E—5407

F—5728 F#—6069

G—6430 G#—6812

A—7217 A#—7647

B—8101

Notes for other octaves can be calculated by doubling or

halving these values, depending upon whether you're going

one octave up (doubling) or one octave down (halving).

It's useful to convert one measure of music to one DATA

statement if you can. This makes it easier to match the voices.

Voice 1 is the sound of a flute, voice 2 is a mandolin, and

voice 3 is a guitar.

Blast-off and Laser are supposed to produce the sound of

their titles. They're pretty straightforward.

Program 1. Twiddle
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix C,

when you type in the following four programs.

5 S=54272 irem 201 ,

7 DIM A(15),D(15) :rem 48

10 FORL=STOS+24:POKEL,0:NEXT :rem 53

15 GOSUB 1000 :rem 167

17 GOSUB 1100 :rem 170

18 GOSUB 1200 srem 172

20 PRINT"{CLR}";TAB(5);"TOUCH W FOR WAVEFORM"

:rera 5

30 PRINT TAB(5)"TOUCH A FOR ATTACK RATE" :rem 32

40 PRINT TAB(5)"TOUCH S FOR SUSTAIN LEVEL":rem 238

45 PRINT TAB(5)"TOUCH T FOR SUSTAIN TIME" :rem 171

50 PRINT TAB(5)"TOUCH R FOR RELEASE" :rem 80

60 PRINT TAB(5)"TOUCH D FOR DECAY" :rem 168

70 PRINT TAB(5)"TOUCH P FOR PULSE WIDTH" srem 88

72 PRINT TAB(5)"TOUCH B TO SET DEAD TIME" :rem 40

75 PRINT TAB(5)"TOUCH + OR - FOR FREQUENCY CHANGE"
:rem 85

169

4 Sound and Graphics

80 GET A$:IF A$=""THEN80

82 IF A$="W"THEN 200

84 IF A$="A" THEN 250

86 IF A$="S" THEN 300

88 IF A$="R" THEN 350

90 IF A$=MD" THEN 400

92 IF A$="P

94 IF A$="T

:rem 243

srem 247

:rem 232

:rem 248

:rem 254

:rem 229

:rem 248

:rem 250

:rem 131

:rem 240

:rem 140

:rem 117

:rem 59

:rem 225

:rera 79

srem 248

:rem 60

:rem 15

THEN 450

THEN 500

96 IF A$="+" THEN GOSUB 1400

97 IF A$="B" THEN 550

98 IF A$="-" THEN GOSUB 1450

100 REM

105 POKE S+24,15

110 POKE S+5,16*A+D

120 POKE S+6,16*SL+R

130 POKE S+3,INT(P/256)

140 POKE S+2,P-256*INT(P/256)

150 FOR 1=1 TO 8

160 IFINT(F(I))<=65536THENPOKE S+l,INT(F(I)/256)

srem 229

170 POKE S,F(I)-256*INT(F(l)/256) :rem 2
180 IFINT(F(I))<=65536THENPOKE S+4,2t(W+3)+l

:rem 244

185 FORJ=1TOT:NEXT :rem 173

187 POKE S+4,2t(W+3) :rem 67

188 FORJ=1TOB:NEXT :rem 158

190 NEXT I:GOTO 20 :rem 247

200 PRINT "WAVEFORM IS";11 - ";W : rem 164

202 PRINT"1=TRIANGLE" :rem 41

204 PRINT"2=SAWTOOTH" srem 79

206 PRINT"3=PULSE" srem 98

208 PRINT"4=NOISE" srem 90

210 INPUT"ENTER WAVEFORM (1-4)";W srem 193

215 IFW<1 ORW>4THEN210 srem 23

220 GOTO 100 srem 94

250 PRINT"ATTACK RATE IS";A srem 100

260 INPUT"ENTER ATTACK RATE (0-15)";A srem 94

265 IFA<0ORA>15THEN260 srem 38

270 GOTO 100 srem 99

300 PRINT"SUSTAIN LEVEL IS";SL srem 121

310 INPUT"ENTER SUSTAIN LEVEL (0-15)";SL srem 115

315 IFSL<0ORSL>15THEN310 srem 218

320 GOTO 100 srem 95

350 PRINT11 RELEASE RATE IS";R s fem 191

360 INPUT"ENTER RELEASE RATE (0-15)";R srem 185

365 IFR<0ORR>15THEN360 .rem 74
370 GOTO 100 srem 100

400 PRINT"DECAY RATE IS";D srem 18

410 INPUT"ENTER DECAY RATE (0-15)";D srem 12
415 IFD<0ORD>15THEN410 :rem 38

u

u

u

I <

170

n

n

Sound and Graphics 4

f~*) 420 GOTO 100 :rem 96

'_ j. 450 PRINT"PULSE WIDTH IS" ; 100*P/4095 : rem 86
460 INPUT"ENTER PULSE WIDTH (0-100)";P :rem 191

465 IFP<0ORP>100THEN460 :rem 115

P7 470 P=P*4095/100 :rem 52
■— 480 GOTO 100 :rem 102

500 PRINT"SUSTAIN TIME IS";T;"MILLISECONDS"

f^ 2 rein 236

J I 510 PRINT"MINIMUM TIME FOR ATTACK/DECAY CYCLE IS:"
:rem 44

515 PRINT A(A)+D(D);"MILLISECONDS" :rem 4

520 INPUT"ENTER TIME IN MILLISECONDS";T :rem 196

530 GOTO 100 ?rem 98

550 PRINT"DEAD TIME IS";B;"MILLISECONDS" :rem 198

560 INPUT"INPUT DEAD TIME IN MILLISECONDS";B
:rem 214

570 GOTO 100 :rern 102

1000 W=1:A=8:D=6:R=9:SL=12:P=2000:T=302 :rem 203

1010 RETURN :rem 162

1100 FORI=1TO8:READF(I):NEXT :rem 234

1110 DATA 4291,4817,5407,5728,6430,7217,8101,8538

:rem 155

1120 RETURN :rem 164

1200 TOR I=0TO15:READ A(I):D(I)=3*A(I):NEXT

:rem 160

1210 DATA 2,8,16,24,38,56,68,80,100,250,500,800,10

00,3000,5000,7000 :rem 186

1220 RETURN :rem 165

1400 FOR I=1TO 8:F(I)=F(I)*2:NEXT:RETURN :rem 100

1450 FOR I=1TO8:F(I)=F(I)/2:NEXT:RETURN :rem 110

2000 T0=TI :rem 32

2010 FOR I=1TO1000:NEXT :rem 62

2020 PRINT TI-T0 :rem 159

Program 2, Tune

r—I 5 DIM D(3,200),F(3,200),G(3,200) :rem 254

j. J 10 S=54272 :rem 245
20 FORI=0TO24:POKES+I,0:NEXT :rem 13

30 FORI=1TO3 :rem 215

if 40 J=l :rem 28
— - 50 READ D(I,J),F(I,J):REM GET FREQ & DURATION

:rem 15

,—, 55 G(I,J)=INT(F(I,J)/256):F(I,J)=F(I,J)-256*G(I,J)

£ V :rem 202

60 IF F(I,J)=0 AND D(I,J)=0 THEN 90 :rem 228

70 J=J+1:GOTO 50 :rem 108

r**! 90 PRINT "VOICE"; I;" ";J;" NOTES" : rem 64
]- - 100 NEXT I :rem 25

110 POKES+24,15 :rem 55

171

4 Sound and Graphics

200 REM SET VOICE ONE :rem 186

210 W1=16:REM TRIANGLE WAVEFORM :rem 154
220 POKES+5,6*16+0:REM ATTACK=6,DECAY=0 :rem 12

230 POKES+6,10*16+0:REM SUSTAIN=10,RELEASE=0
:rem 110

300 REM SET VOICE TWO :rem 211
310 W2=32:REM SAWTOOTH WAVEFORM :rem 189

320 POKES+12,0*16+9:REM ATTACK=0,DECAY=9 :rem 65
330 POKES+13,00*16+0:REM SUSTAIN=00,RELEASE=00

:rem 203

400 REM SET VOICE THREE :rem 82
410 W3=64:REM RECTANGULAR WAVE :rem 79

420 POKES+17,3:REM DUTY CYCLE 20% :rem 101

430 POKES+19,3*16+10:REM ATTACK=3#DECAY=10:rem 160

440 POKES+20,0*16+0:REM SUSTAIN=0:RELEASE=O

:rem 104

500 J=0:K=0:L=0:T1=TI:T2=T1:T3=T1 :rem 207

600 IF T1=<TI THEN GOSUB 1100 :rem 49

610 IF T2=<TI THEN GOSUB 1200 :rem 52

620 IF T3=<TI THEN GOSUB 1300 :rem 55

630 GOTO 600 :rem 104

1000 ON I GOTO 1100,1200,1300 :rem 129

1100 J=J+1:T1=T1+D(1,J) :rem 215

1115 IFD(1,J)=0 THEN POKES+4,W1:POKES+11,W2:POKES+

18,W3:END :rem 217

1117 POKES+4,W1 :rem 95

1120 POKES,F(l,J):POKES+1,G(1,J) :rem 51

1140 POKES+4,W1+1:RETURN :rem 209

1200 K=K+1:T2=T2+D(2,K) :rem 222

1210 POKE S+11,W2 :rem 136

1220 POKE S+7,F(2,K):POKES+8,G(2,K) :rem 161

1240 POKES+11,W2+1:RETURN :rem 1

1300 L=L+1:T3=T3+D(3,L) :rem 229

1310 POKES+18,W3 :rem 145

1320 POKES+14,F(3,L):POKES+15,G(3,L) :rem 2

1340 POKES+18,W3+1:RETURN :rem 10

2000 REM NOTES FOR VOICE ONE :rem 110

2010 DATA 30,4051 :rem 54

2020 DATA 30,5407,30,4051,30,6069,30,4051 :rem 215

2030 DATA 30,6430,30,6069,30,5407,30,4050 :rem 218

2040 DATA 30,5407,30,4050,30,6069,30,4050 :rem 215

2050 DATA30,6430,30,7217,30,8101,30,4050 :rem 210

2060 DATA30,5407,30,4050,30,6069,30,4050 :rem 217

2070 DATA30,6430,30,6069,30,5407,30,4050 :rem 222

2080 DATA30,5407,30,4050,30,6069,30,4817 :rem 230

2090 DATA60,5407,30,5407,30,4050 :rem 86

2120 DATA 30,5407,30,4051,30,6069,30,4051 :rem 216

2130 DATA 30,6430,30,6069,30,5407,30,4050 :rem 219
2140 DATA 30,5407,30,4050,30,6069,30,4050 :rem 216

2150 DATA30,6430,30,7217,30,8101,30,4050 :rem 211

172

u

u

u

u

u

u

i r

n
Sound and Graphics 4

2160 DATA30 , 5407 , 30 # 4050, 30,6069,30,

2170 DATA30,6430,30,6069,30,5407,30,

2180 DATA30,5407,30,4050,30,6069,30,

2190 DATA120,5407

2220 DATA 30,5407,30,4051,30,6069,30

2230 DATA 30,6430,30,6069,30,5407,30

2240 DATA 30,5407,30,4050,30,6069,30

2250 DATA30,6430,30,7217,30,8101,30,

2260 DATA30,5407,30,4050,30,6069,30,

2270 DATA30,6430,30,6069,30,5407,30,

2280 DATA30,5407,30,4050,30,6069,30,

2290 DATA120,5407

2320 DATA 30,5407,30,4051,30,6069,30

2330 DATA 30,6430,30,6069,30,5407,30

2340 DATA 30,5407,30,4050,30,6069,30

2350 DATA30,6430,30,7217,30,8101,30,

2360 DATA30,5407,30,4050,30,6069,30,

2370 DATA30,6430,30,6069,30,5407,30,

2380 DATA30,5407,30,4050,30,6069,30,

2390 DATA120,5407

2900 DATA 0,0

3000 REM NOTES FOR VOICE TWO

3010 DATA990,0

3020 DATA60,2703,60,2408

3030 DATA30,2145,30,2025,60,2145

3040 DATA60,2025,60,1804

3050 DATA30,1607,30,1517,60,1351

3060 DATA60,2703,60,2408

3070 DATA30,2145,30,2025,60,2145

3080 DATA60,2025,60,1804

3090 DATA30,1607,30,1517,60,1351

3120 DATA60,2703,60,2408

3130 DATA30,2145,30,2025,60,2145

3140 DATA60,2025,60,1804

3150 DATA30,1607,30,1517,60,1351

3160 DATA60,2703,60,2408

3170 DATA30,2145,30,2025,60,2145

3180 DATA60,2025,60,1804

3190 DATA30,1607,30,1517,60,1351

3220 DATA60,2703,60,2408

3230 DATA30,2145,30,2025,60,2145

3240 DATA60,2025,60,1804

3250 DATA30,1607,30,1517,60,1351

3260 DATA60,2703,60,2408

3270 DATA30,2145,30,2025,60,2145

3280 DATA60,2025,60,1804

3290 DATA30,1607,30,1517,60,1351

3900 DATA 0,0

4000 REM NOTES FOR VOICE THREE

4010 DATA1950,0

4050

4050

4817

,4051

,4050

,4050

4050

4050

4050

4817

,4051

,4050

,4050

4050

4050

4050

4817

:rem

:rem

:rem

:rem

: rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

218

223

231

117

217

220

217

212

219

224

232

118

218

221

218

213

220

225

233

119

113

135

220

201

:rem 73

:rem

:rem

:rem

:rem

:rem

:reni

:rem

:rem

:rem

:rem

:rem

:rem

:rem

: rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

199

i 80

205

i 77

203

l 84

202

i 74

200

i 81

206

78

204

85

203

75

201

82

207

79

205

86

114

:rem 6

:rem 10

173

4 Sound and Graphics

4020

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4160

4170

4900

DATA 60,2703

DATA 30,2703

DATA 30,2703

DATA 15,3215

DATA 45,4050

DATA 45,4050

15,3034

DATA 60,2703

DATA 30,2703

DATA 30,2703

DATA 15,3215

DATA 45,4050

DATA 45,4050

15,3034

DATA 60,2703

DATA 30,2703

DATA 60,4050

DATA 30,4050

DATA 800,0,0

,60,2408

,15,2703,

,30,2703,

,15,3215,

,15,3608,

,15,3608,

,60,2408

,15,2703,

,30,2703,

,15,3215,

,15,3608,

,15,3608,

,60,2408

,15,2703,

,60,4050

,15,4050,

,0

15,2703

30,3034

15,3215

45,4050

15,4050

15,2703

30,3034

15,3215

45,4050

15,4050

15,2703

15,4050

,60,2025

,30,3034

,15,3215

,15,3608

,15,3608

,60,2025

,30,3034

,15,3215

,15,3608

,15,3608

,60,2025

,60,4050

:rem 202

:rem 215

:rem 206

,60,3034

:rem 99

:rem 234

,15,3215,

:rem 249

:rem 208

:rem 221

:rem 203

,60,3034

:rem 96

:rem 231

,15,3215,

:rem 246

:rem 205

:rem 218

:rem 199

:rem 211

:rem 147

Program 3* Blast-off

10 S=54272 :rem 245

20 FOR I=STOS+24:POKEI,0:NEXT :rem 48

30 POKES+24,15 srem 8

40 FR=0500 :rem 254

50 A=0:D=0:SS=15:R=0 :rem 122

60 W=128:P=1024 :rem 35

70 POKES+l,INT(FR/256) :rem 17

80 POKES,FR-256*INT(FR/256) :rem 66

90 POKES+3,INT(P/256) :rem 205

100 POKES+2,P-256*INT(P/256) :rem 56

110 POKES+5,16*A+D irem 225

120 POKES+6,16*SS+R :rem 86

200 POKES+4,W+1:REM TURN SOUND ON :rem 223

210 FORI=200TO1 STEP-1 :rem 0

220 FR=FR+100:REM INCREASE FREQUENCY :rem 215

222 IF I< 45 THEN POKES+24,1/3:REM NEAR THE END TU

RN DOWN THE VOLUME :rem 98

225 F2=INT(FR/256):F1=FR-256*F2 :rem 224

230 POKES,F1:POKES+1,F2 :rem 118

240 NEXT I :rem 30

250 POKES+4,W:REM TURN SOUND OFF :rem 198

u

u

u

174 LJ

/ \

Sound and Graphics 4

/ \

Program 4* Laser

10 S=54272 :rem 245

20 FOR I=STOS+24:POKEI,0:NEXT :rem 48

30 POKES+24,143:REM VOLUME AT 15/TURN OFF VOICE TH

REE

40 F50000

50 A=0:D=8:SS=15:R=08

60 W=064:P=1024

70 POKES+l,INT(FR/256)
80 POKES,FR-256*INT(FR/256)

90 POKES+3,INT(P/256)

100 POKES+2,P-256*INT(P/256)

110 POKES+5,16*A+D

120 POKES+6,16*SS+R

130 POKES+15,75

:rem 108

:rem 46

:rem 186

:rem 34

:rem 17

:rem 66

:rem 205

:rem 56

:rem 225

:rem 86

:rem 63

155 POKES+4,W+3:REM USING W+3 TURNS ON{2 SPACESjGA

TE AND SYNC

160 FORI=1TO25

:rem 32

:rem 63

170 POKES+15,120-4*1:REM{2 SPACES}DECREASE FREQ VO

ICE THREE :rem 180

180 NEXT I :rem 33

185 P0KES+4,W :rem 2

n

n 175

LJ

Sound Sculptor u
Todd Touris

u
With formatted screens and a joystichcontrolled

pointer, "Sound Sculptor" gives you the ability to

quickly and easily create your own music and) I
save your creation.

"Sound Sculptor" uses several graphics screens to take the te

dium out of creating data for your music or sound programs.

It's not difficult to use and therefore needs little explanation; a

basic understanding of the SID chip would probably be help

ful, however. "Programming 64 Sound," an article elsewhere

in this book, is a good source of information.

Automatic LOAD

Because there are two programs which make up Sound Sculp

tor, and because the first program automatically loads the sec

ond, you need to take some care as you type them in. Make

sure you use "The Automatic Proofreader," found in Appen

dix C, as you enter Sound Sculptor. The Proofreader will help

immensely in insuring error-free copies of both programs.

If you're using tape to store Sound Sculptor, put both

Program 1 and Program 2 on the same tape. Type in Program

1 first, then save it. Next type in Program 2, saving it on the

tape immediately following Program 1. Program 1 will auto

matically load Program 2.

Much the same process must be used if you have a disk] »

drive. Both programs should be typed in and saved to the v^J

same disk. Make sure you save Program 2 with SAVE"2",8.

That's the filename Program 1 will look for. r ,

Run Program 1, press T or D (tape or disk), and wait pa- L^
tiently. You should be presented with a main menu. Press the

fl function key. (Don't worry about loading a file right now.) , \

You'll then be asked to choose a sound between 0 and 1250. i^}
Enter a number and press RETURN.

You will see a menu which allows you to set one of three . i

voices, work on the filter settings, clear the sound, choose a Lj/

176 <i o

Sound and Graphics 4

P*! new sound, change joystick speed, or quit. If you don't clear
the sound, the settings will be random and probably won't

produce any sound at all. Use the keyboard to make your

n selection and plug a joystick into port 2.

Set the Volume First

0 Before you jump to the voice settings, make sure to go to the

> filter display and set the volume control, or you won't be able
to hear anything. To change the various settings, you simply

move the sprite arrow over the appropriate display and press

the fire button. When a word or character is in reverse display,

it means that the particular setting is on, or if the display is a

scale (+ signs), it shows what value that setting contains.

Select a waveform. There are four available: sawtooth,

pulse, triangle, and noise. Although you can set more than

one at a time, it's not recommended. (See "Programming 64

Sound" for a good reason.) If you set the noise waveform

while another is on, the voice must be cleared to produce any

sound. Before you select the noise waveform, then, make sure

all the others are turned off.

If you choose a pulse waveform, you should also set the

pulse width. This adjustment changes for every pixel the ar

row passes, not just the + symbols. If you've set the volume

and the attack, decay, sustain, and release values already, you

can hear a slight difference in the background sound if you

turn your monitor's volume up to high.

Set an ADSR (attack, decay, sustain, and release) en

velope by selecting values. If you want to hear the sound

while you're experimenting, set the sustain to anything but the

leftmost +, then hit the appropriate function key (see below

r^> for triggering the voices). If you have the frequency and wave-

1 ' form set, you should hear a steady tone. Change the note, oc
tave, or waveform and listen to the difference.

f-*! Choose the frequency by setting the octave and the note.

'-W Synchronization and ring modulation are rather complex,

but they can create some interesting sounds. Experimenting

f—\ with them is probably the best way to hear how they affect

' ■ sounds. There are just a couple of things to keep in mind.

First, the voice that's using synchronization or ring modulation

j—I must be set to the triangle waveform. Second, make sure you

- ' set the frequency for the voice that's indicated in the bottom

177

4 Sound and Graphics

u

box on the display. (If you're using voice 1, for instance, you j {

need to set the frequency of voice 3.) '—'

Filters \ j

The filter display can be accessed from the main menu. (You '—'
can return from any display to the main menu just by pressing

the space bar.) Once you see the filter setting screen, you can (/

choose which type of filter to set (high pass, band pass, or low L~)

pass), the voice to be filtered (E stands for external, used if

you're routing sounds to an external speaker), and the cutoff

frequency. As with the pulse width, the cutoff frequency

changes at each pixel, not just each + symbol.

Resonance will make the frequencies around the filter cut

off area louder. The very bottom box on the screen, Voice 3

Output, will shut off voice 3 if it's set (shown by reverse

video). If in normal text, voice 3 is not affected. It's a good

idea to shut off voice 3 when using synchronization or ring

modulation with voice 1, since it will cut down on any extra

noise.

Playing Sounds

To trigger the voices, you must use the function keys (f1 for

voice one, f3 for voice two, f5 for voice three, and f7 for all

voices). If the voice is off, it should go through attack and

decay, and then remain at the sustain level; when the key is

pressed again, the sound should be released and fall to zero

volume. When pressing the function keys or switching a set

ting, you must be careful. The program is very fast and the

keys are very responsive; sometimes the voice or setting can

be triggered twice, so hit the keys sharply.

When you are finished experimenting with the various s ,

settings, press the space bar to return to the selection menu. LJ

You can continue working on more sounds, or you can press

f8 to quit. When you quit, you will get another menu with < ,

three options. s^J

Saving Sounds

The first option is to save a series of sounds on tape or disk as |j
a file (depending on your earlier selection). You need to pro

vide the beginning and ending sounds (separating the num-

bers with a comma) and then a filename. Make sure you have j j
a disk in the drive or a tape in the Datassette.

178 LJ

H
Sound and Graphics 4

H

("*) Later, you can load these sounds back into the computer

1 ■' by pressing f3 at the beginning of the program instead of go
ing right to the design/review routine. This feature allows you

r"""^ to build a library of various sounds.

1 ' Your second choice is to create DATA statements of your
sound or sounds. After pressing the f3 key, you need to re-

**-) spond with the beginning and ending number(s) for the

{/ \- sound(s) you want to make DATA statements for. As soon as
you press the RETURN key, the DATA statements appear. Hit

RETURN several times (usually just once or twice more), and

you'll see only the DATA statements on the screen. In fact, if

you type LIST, the DATA statement lines will be the only

ones in memory. If you want, you can save just the DATA

statements as another program file, ready for appending to or

merging with another program later.

With the program below, you can use these DATA state

ments to incorporate complex and fast sound effects into your

BASIC programs.

1000 FORL=0 TO 42:READ DA:POKE828+L,DA:NEXTL

1010 DATA 166,2,165,251,133,253,165,252,133,254,22

4,0,240,16,169,25,24,101

1020 DATA 253,133,253,169,0,101,254,133,254,202,20

8,240,160,0,177,253

1030 DATA 153,0,212,200,192,26,208,246,96

This is a machine language routine that's POKEd into the cas

sette buffer (starting at location 828), but it's relocatable and

can be put anywhere in free memory. To use it, you must

POKE the values from the DATA statements created by Sound

Sculptor into any free memory. For example, you could put

one sound's data into the block of free memory beginning at

r^ 49152 with:

i I 10 FORL=0 TO 24:READ SND:POKE 49152+L,SND:NEXTL

If you have more sounds, POKE the DATA into memory im-

!*") mediately following the first. Each sound created by the

1 ^rs Sculptor includes 25 valid numbers (that's why the FOR-
NEXT loop above reads FOR L=0 TO 24). The last DATA

r~\ statement (no matter how many sounds you create DATA

* ' statements for) will have extra values. These will do no harm
as long as you read only 25 values for each sound.

r—I Next, POKE the starting address of the sounds into loca-

'—- tions 251 and 252. For the example above, this would be

accomplished by:

I / 179

4 Sound and Graphics
u

20 POKE252,49152/256:POKE251,49152-256*PEEK(252) ,

Now you should have a short program which reads the values '-v-J
from the DATA statements and POKEs them into memory.

Run it and the sound's values are stored. \ •

A Fast Sound Switch

This has to be done only once. Whenever you wish to call ^ ^

upon a certain sound, just POKE the sound number into loca- <—>

tion 2. For example, POKE 2,0 selects the first sound in mem

ory. POKE 2,1 would call the second sound. Follow this with

a SYS 828 (or to whatever memory location you have re

located the machine language routine), and you now have

your sound in the SID chip. By doing this, you can switch

various sounds in and out of the SID at lightning speed.

You need to turn on the voice you're using, of course.

You can do this with a line which includes:

POKE 54272+4,PEEK(n)ORl

where n is the first location of that sound. It would be 49152

if that's where you earlier POKEd the sound's DATA values.

Turning off the sound can be done by:

POKE 54272+4,PEEK(n)AND254

The same process applies to turning on voices 2 and 3, except

you'd use 54283 and 54290 respectively instead of 54272. It's

a good idea to turn off the voice, then turn it back on, be

tween calling different sounds.

If you POKEd two sounds' values into memory, starting

at location 49152, for example, the routine to call those sounds

might look like this.

10 POKE 2,0

20 SYS 828 \ i

30 POKE 54272+4fPEEK(49152+4)OR 1 1—1
40 FOR T=0TO1000:NEXT

50 POKE 54272+4,PEEK(49152+4)AND 254

60 POKE 2,1 if
70 SYS 828 VJ
80 POKE 54272+4,PEEK(49177+4)OR 1

90 FOR T=0TO1000:NEXT < i

100 POKE 54272+4,PEEK(49177+4)AND 254 L^J

Create two sounds of your own with the Sculptor and form

the DATA statements. POKE those into memory as described i »

earlier, then type in and run the routine above. You should '—'
hear your two sounds, one after the other. (Notice that the

180 LJ

H

g

n

n

n

Sound and Graphics 4

second sound turns on voice 1 by PEEKing 49177+4. That's

the location of the control register for the second sound. You

get that location by adding 25 to the first address used to store

sound data, in this case 49152. Each additional sound can turn

the voice on and off by PEEKing the location 25 higher than

the previous sound.)

Tape users: Program 1 automatically loads Program 2. It's recom

mended that you save both on the same tape, Program 2 last.

Disk users: Save Program 2 as "2". Make sure both programs are

on the same disk.

Program 1. Sound Sculptor—ML Loader
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C,

to enter the following two programs.

50 POKE53281,11:POKE646/1:POKE53280,11 :rem 132

80 PRINT"{CLR}11:PRINT:PRINT"{6 SPACES}PLEASE WAIT

{SPACE}ONE MOMENT..." :rem 201

200 REM ML PROGRAM POKER : rem 168

210 FORL=49152TO50702 :rem 169

220 READDA:POKEL,DA:NEXT :rem 20

240 PRINT"{CLR}{13 RIGHT}{11 DOWN}{RVS}T{OFF}APE O
R {RVS}D{OFF}ISK" :rem 108

250 GETT$:IFT$=""THEN250 :rem 119

255 IFT$<>llDMANDT$onTllTHEN250 :rem 200

260 IFT$="D"THEN380 :rem 46

300 POKE631,76:POKE632,207:POKE633,13:POKE198,3

:rem 189

350 FORT=1TO1000:NEXT:GOTO1000 :rem 82

380 POKE50660,8:POKE50662,8 :rem 255

400 POKE631,76:POKE632,207:POKE633,34:POKE634,50:P

OKE635,34:POKE636,44 :rem 36

405 POKE637,56 :rem 255

410 POKE638,58:POKE639,13:POKE198,9 :rem 9

1000 REM ML DATA : rem 88

49152 DATA 32, 140, 197, 160, 0, 177 :rem 252

49158 DATA 78, 153, 0, 212, 200, 192 : rem 252

49164 DATA 25, 208, 246, 32, 92, 194 :rem 9

49170 DATA 165, 197, 201, 60, 240, 23 : rem 44

49176 DATA 169, 16, 45, 0, 220, 208 :rem 207

49182 DATA 225, 165, 2, 240, 6, 32 :rem 150

49188 DATA 86, 192, 76, 0, 192, 32 :rem 172

49194 DATA 48, 192, 76, 0, 192, 96 :rem 177

49200 DATA 162, 21, 189, 24, 197, 202 :rem 46

49206 DATA 205, 1, 208, 48, 8, 189 :rem 163

49212 DATA 24, 197, 205, 1, 208, 48 :rem 205

49218 DATA 4, 202, 16, 236, 96, 189 :rem 217

49224 DATA 48, 197, 133, 75, 232, 189 :rem 68

181

4 Sound and Graphics

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

49302

49308

49314

49320

49326

49332

49338

49344

49350

49356

49362

49368

49374

49380

49386

49392

49398

49404

49410

49416

49422

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

49494

49500

49506

49512

49518

49524

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

48, 197, 133, 76, 108, 75

0, 234, 162, 15, 189, 72

197, 202, 205, 1, 208, 48

8, 189, 72, 197, 205, 1

208, 48, 4, 202, 16, 236

96, 189, 88, 197, 133, 75

232, 189, 88, 197, 133, 76

108, 75, 0, 234, 96, 24

173, 0, 208, 233, 142, 144

247, 74, 74, 74, 74, 133

77, 234, 32, 175, 192, 76

96, 196, 96, 234, 234, 24

173, 0, 208, 233, 74, 144

245, 41, 240, 160, 3, 81

253, 41, 240, 81, 253, 145

253, 32, 175, 192, 76, 140

196, 160, 3, 177, 253, 74

74, 74, 74, 10, 170, 160

0, 189, 0, 197, 145, 253

232, 200, 189, 0, 197, 145

253, 24, 169, 8, 229, 77

234, 170, 240, 15, 177, 253

74, 145, 253, 136, 177, 253

106, 145, 253, 200, 202, 208

241, 96, 24, 173, 0, 208

233, 144, 144, 8, 169, 128

32, 32, 193, 76, 198, 195

169, 64, 32, 32, 193, 76

181, 195, 24, 173, 0, 208

233, 144, 176, 8, 169, 32

32, 32, 193, 76, 215, 195

169, 16, 32, 32, 193, 76

232, 195, 169, 4, 32, 32

193, 76, 249, 195, 169, 2

32, 32, 193, 76, 10, 196

160, 4, 81, 253, 145, 253

96, 234, 234, 24, 173, 0

208, 233, 133, 144, 245, 170

200, 177, 253, 41, 240, 72

145, 253, 138, 162, 5, 136

10, 145, 253, 200, 177, 253

42, 145, 253, 136, 177, 253

202, 208, 241, 200, 177, 253

41, 15, 145, 253, 104, 24

113, 253, 145, 253, 76, 193

194, 96, 234, 160, 5, 32

133, 193, 76, 208, 194, 160

5, 32, 138, 193, 76, 228

194, 160, 6, 32, 133, 193

:rem 14

:rem 209

zrem 254

:rem 173

:rem 206

:rem 32

:rem 79

:rem 161

:rem 49

:rem 225

:rem 16

:rem 26

:rem 249

:rem 199

:rem 45

:rem 50

:rem 12

:rem 204

:rem 216

:rem 52

:rem 222

:rem 103

:rem 112

:rem 143

:rem 210

:rem 59

:rem 25

:rem 223

:rem 11

:rem 7

:rem 3

:rem 217

:rem 207

:rem 27

:rem 211

:rem 253

:rem 211

:rem 147

:rem 209

:rem 48

:rem 54

:rem 100

:rem 110

:rem 151

:rem 254

:rem 101

:rem 213

:rem 107

:rem 221

zrem 2

L)

U

U

LJ

u

182

U

U

Sound and Graphics 4

n

n

n

n

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

49806

49812

49818

49824

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

76, 246, 194, 160, 6, 32

138, 193, 76, 10, 195, 162

240, 76, 140, 193, 162, 15

134, 251, 24, 173, 0, 208

233, 133, 144, 205, 74, 74

74, 166, 251, 16, 4, 10

10. 10. 10. 81. 253. 37

96

28, 195, 234, 24, 173, 0

208, 233, 133, 144, 225, 74

74, 74, 74, 74, 162, 1

168, 240, 6, 138, 10, 136

208. 252. 170. 138. 1<

m^ m^ s^ j mm v w j -^ w *m f -•• * * J mm * *•* f

74, 74, 160, 3, 234, 32

5, 194, 76, 68, 195, 169

64, 32, 65, 194, 76, 44

196, 169, 32, 32, 65, 194

76, 61, 196, 169, 16, 32

65, 194, 76, 78, 196, 169

128, 32, 65, 194, 76, 27

196, 160, 3, 81, 253, 145

253, 96, 24, 169, 128, 113

251, 145, 251, 136, 208, 246

173, 0, 220, 41, 16, 240

249, 96, 96, 234, 32, 228

255, 201, 133, 48, 247, 201

137, 16, 243, 201, 133, 208

4, 32, 137, 194, 96, 201

134, 208, 4. 32, 149, 194

96, 201, 135, 208, 4, 32

161, 194, 96, 32, 137, 194

32, 149, 194, 32, 161, 194

96, 169, 1, 160, 4, 81

78, 145, 78, 141, 4, 212

96, 169, 1, 160, 11, 81

78, 145, 78, 141, 11, 212

96, 169, 1, 160, 18, 81

:rem 212

:rem 64

: rem 50

:rem 255

:rem 54

:rem 154

:rem 148

:rem 63

:rem 115

:rem 48

:rem 251

:rem 11

:rem 206

:rem 103

:rem 116

:rem 253

:rem 49

:rem 16

:rem 120

:rem 49

:rem 144

:rem 62

:rem 112

:rem 215

:rem 12

:rem 108

:rem 165

:rem 241

:rem 183

:rem 17

:rem 219

:rem 38

:rem 221

:rem 11

:rem 64

:rem 152

:rem 197

:rem 24

:rem 105

:rem 99

:rem 213

:rem 14

:rem 210

:rem 77

:rem 67

:rem 111

:rem 216

:rem 160

:rem 9

:rem 170

183

4 Sound and Graphics

49830

49336

49842

49848

49854

49860

49866

49872

49878

49884

49890

49896

49902

49908

49914

49920

49926

49932

49938

49944

49950

49956

49962

49968

49974

49980

49986

49992

49998

50004

50010

50016

50022

50028

50034

50040

50046

50052

50058

50064

50070

50076

50082

50088

50094

50100

50106

50112

50118

50124

184

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

212

3, 111, 253, 76, 173, 194

169, 117, 133, 251, 169, 5

133, 252, 160, 5, 177, 253

74, 74, 74, 74, 170, 76

176, 194, 169, 157, 133, 251

169, 5, 133, 252, 160, 5

177, 253, 41, 15, 170, 76

176, 194, 169, 197, 133, 251

169, 5, 133, 252, 160, 6

177, 253, 74, 74, 74, 74

170, 76, 176, 194, 169, 237

133, 251, 169, 5, 133, 252

160, 6, 177, 253, 41, 15

170, 76, 176, 194, 169, 173

133, 251, 169, 4, 133, 252

160, 1, 177, 253, 74, 74

74, 74, 170, 76, 176, 194

169, 237, 133, 251, 169, 5

133, 252, 160, 2, 177, 253

74, 74, 74, 74, 170, 76

176, 194, 169, 181, 133, 251

169, 6, 133, 252, 160, 3

177, 253, 41. 15. 170. 76

121, 48, 3, 76, 72, 194

96, 169, 170, 133, 251,

6, 133, 252, 162, 6, 16

64, 160, 4, 76, 154, 195

169, 189, 133, 251, 169, 6

133, 252, 162, 5, 169, 128

:rem 10

:rem 212

:rem 110

:rem 170

:rem 17

:rem 55

:rem 25

:rem 65

:rem 63

:rem 184

:rem 172

:rem 219

:rem 7

:rem 176

:rem 211

:rem 227

:rem 129

:rem 53

:rem 216

:rem 128

:rem 52

:rem 222

:rem 27

:rem 74

:rem 57

:rem 181

:rem 175

:rem 215

:rem 22

:rem 105

:rem 194

:rem 91

:rem 93

:rem 248

:rem 82

:rem 65

:rem 156

:rem 65

:rem 95

:rem 93

:rem 48

:rem 98

:rem 195

:rem 158

:rem 165

:rem 98

:rem 199

:rem 202

:rem 60

:rem 43

u

u

u

u

u

u

u

I I

u

u

Sound and Graphics 4

50130

50136

50142

50148

50154

50160

50166

50172

50178

50184

50190

50196

50202

50208

50214

50220

50226

50232

50238

50244

50250

50256

50262

50268

50274

50280

50286

50292

50298

50304

50310

50316

50322

50328

50334

50340

50346

50352

50358

50364

50370

50376

50382

50388

50394

50400

50406

50412

50418

50424

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

160, 4, 76, 154, 195, 169

90, 133, 251, 169, 6, 133

252, 162, 6, 169, 32, 160

4, 76, 154, 195, 169, 109

133, 251, 169, 6, 133, 252

162, 6, 169, 16, 160, 4

76, 154, 195, 169, 153, 133

251, 169, 7, 133, 252, 162

15, 169, 4, 160, 4, 76

154, 195, 169, 113, 133, 251

169, 7, 133, 252, 162, 15

169, 2, 160, 4, 76, 154

195, 169, 45, 133, 251, 169

7, 133, 252, 162, 15, 169

128, 160, 3, 76, 154, 195

169, 201, 133, 251, 169, 4

133, 252, 162, 9, 169, 64

160, 3, 76, 154, 195, 169

25, 133, 251, 169, 5, 133

252, 162, 9, 169, 32, 160

3, 76, 154, 195, 169, 105

133, 251, 169, 5, 133, 252133, 251, 169, 5, 133, :

162, 9, 169, 16, 160, 3

76, 154, 195, 234, 162,

160, 0, 169, 95, 133, 2!

169, 4, 133, 252, 138, 145

251, 200, 200, 232, 192, 16

208, 246, 160, 1, 177, 253

162, 255, 232, 74, 208, 252

49

251

246, 194, 32, 10, 195, 76

0, 192, 234, 234, 234, 32

28, 195, 32, 48, 195, 32

86, 195, 32, 27, 196, 32

44, 196, 32, 61, 196, 32

78, 196, 32, 68, 195, 76

:rem 0

:rem 250

:rera 246

:rem 12

:rem 42

:rem 147

:rem 110

:rem 45

:rem 109

:rem 149

:rem 251

:rem 159

:rem 102

:rem 251

:rem 253

:rem 37

:rem 1

:rem 2

:rem 250

:rem 252

:rem 1

2 rem 44

:rem 152

:rem 64

:rem 252

:rem 47

: rem 81

:rem 47

:rem 104

:rem 51

:rem 88

:rem 195

:rem 37

:rem 147

:rem 84

:rem 203

:rem 212

:rem 94

:rem 6

:rem 50

:rem 57

:rem 50

:rem 1

:rem 58

:rem 7

:rem 235

:rem 211

:rem 210

:rem 209

:rem 227

185

4 Sound and Graphics

300 PRINT" B{8 SPACES}BWAVEFORMB{10 SPACES}B

:rem 177

310 PRINT" B OLOLOL JCCCCCCCCK{2 SPACES}";:rem 224

315 PRINT"NOISE{3 SPACES}B[10 SPACES}B{28 SPACES}B

11 : rem 46
320 PRINT" I3PULSE WIDTH ++++++++++++++++I3 :rem 129

330 PRINT" JCCCCCCCCCCCCCCCCCCCCCCCCCCCCK :rem 46

340 PRINT" UCCCCCCCCCCCCCCCCCCCCCCCCCCCCI :rem 56

350 PRINT" BSYNCHRONIZATION13 SPACES}USE VOICE B

srern 192

360 PRINT11 BRING MODULATION^ SPACES}#"SR".
{2 SPACES}B •rem 50

370 PRINT" JCCCCCCCCCCCCCCCCCCCCCCCCCCCCK";

~ :rem 143

380 PRINT" {HOME}11 :rem 127
390 A=(V-l)*7sS=S+A:POKE254,S/256sPOKE253,S-256*PE

EK(254) :rem 223

400 SYSVCH srem 116

410 GOTO910 :rem 104

420 PRINT"{CLR}";:POKE2,255 :rem 152

430 REM FILTER DISPLAY :rem 87

440 PRINT"{RVS}CCCCCCCCCCCCFILTER SETTINGSCCCCCCCC

CCCCC{OFF}" :rem 79

450 PRINT"UCCCCCCCCCCCIUCCCCCCCCCCCCCCCCI :rem 21

460 PRINT"BFILTER TYPEBBCUTOFF FREQUENCYB :rem 210

470 PRINT'VB{11 SPACES}BB++++++++++++++++B :rem 2

480 PRINT'VB HIGH PASS BJCCCCCCCCCCCCCCCCK :rem 235

490 PRINT"B{11 SPACES}BUCCCCCCCCCCCCCCCCI :rem 158

500 PRINT"B BAND PASS BBVOICESI 2 SPACES J FILTEREDB

:rem 176

510 PRINT"B{11 SPACES}BB l{3 SPACES}2{3 SPACES}3
{3 SPACES}E{2 SPACES}B :rem 40

520 PRINT"B LOW{2 SPACES}PASS BJCCCCCCCCCCCCCCCCK

srem 184

530 PRINT"JCCCCCCCCCCCKUCCCCCCCCCCCCCCCCI :rem 11

540 PRINT"[13 SPACES}Bt3 SPACESjRESONANCE

{4 SPACES}B :rem 106

550 PRINT"{13 SPACES}B++++++++++++++++B srem 125

560 PRINT"{13 SPACES}JCCCCCCCCCCCCCCCCK :rem 15

570 PRINT"{RVSJCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCfOFF}"; srem 196

580 PRINT"{13 SPACES}UCCCCCCCCCCCCCCCCI srem 26

590 PRINT"{13 SPACES}Bl3 SHIFT-SPACE}
{SHIFT-SPACE}VOLUME{5 SHIFT-SPACE}B srem 73

600 PRINT"{13 SPACES}B++++++++++++++++B srem 121

610 PRINT"{13 SPACES}JCCCCCCCCCCCCCCCCK srem 11

620 PRINT"{13 SPACES}UCCCCCCCCCCCCCCCCI srem 21

630 PRINT"{13 SPACES}BlRVSjVOICE #3 OUTPUT{OFF} B
srem 45

640 PRINT"{13 SPACES}JCCCCCCCCCCCCCCCCK srem 14

188

n

n

n

n

Sound and Graphics 4

650 S=S+21:POKE254,S/256:POKE253,S-256*PEEK(254):S

YSFCH:GOTO910 :rem 249

660 REM INITIALIZATION :rem 168

670 SS=9758:POKE78,30:POKE79,38:SN=0:VCH=50360:FCH

=50405:POKE53236,10 :rem 17

680 POKE53248,24:POKE53249,50:POKE51,29:POKE52,38:

POKE55,29:POKE56,38 :rem 8

690 PRINT11 {CLR}" :rem 3

700 PRINT"{11 DOWN}"TAB(7)"WELCOME TO SOUND SCULPT

OR" :rem 122

710 FORL=1TO2000:NEXT :rem 23

720 PRINT"{CLR}" :rem 253

730 PRINT"{3 DOWN}"TAB(15)"{RVS}MAIN MENU{OFF}"
:rem 110

740 PRINT"{2 DOWN}"TAB(14)"CHOOSE ONE:" :rem 60

750 PRINT"[2 DOWN}"TAB(7)"{RVS}F1{OFF} DESIGN/REVI

EW SOUNDS" :rem 228

760 PRINT:PRINTTAB(7)"{RVS}F3{OFF} LOAD SOUND FILE

:rem 122

770 GETA$:IFA$<"{F1}"ORA$>"{F3}"THEN770 :rem 241
780 ONASC(A$)-132GOTO860,1340 :rem 87

790 REM JOYSTICK SPEED :rem 101

800 PRINT"{CLR}{12 DOWN}{3 SPACES}SELECT A SPEED B
ETWEEN 0 AND 15." :rem 219

810 PRINT"{4 SPACES}0 - SLOWEST{6 SPACES}15 - FAST

EST" :rem 165

820 INPUTPS :rem 205

830 IFPS<0ORPS>15THENPRINT"NUMBER NOT ACCEPTABLE":

GOTO830 :rem 173

840 POKE53236,16-PS:GOTO910 :rem 62

850 REM SOUND DESIGN/REVIEW :rem 197

860 PRINT"{CLR}" :rem 2

870 PRINT"{11 DOWN} WHICH SOUND DO YOU WISH TO WOR

K ON?" :rem 180

880 PRINT"{2 SPACES}(NUMBER BETWEEN 0 fie 1250 PLEAS

E) :rem 75

890 INPUTSN :rem 210

900 IFSN<0ORSN>1250THENPRINT"NUMBER NOT ACCEPTABLE

":GOTO890 :rem 15

910 POKE53269,0:PRINT"{CLR}{RVS}SOUND #";SN"{OFF}

{HOME}{3 DOWN}"TAB(15)"CHOOSE ONE:" :rem 49

920 S=SS+SN*25 :rem 46

930 POKE79,S/256:POKE78,S-256*PEEK(79) :rem 183

940 PRINT:PRINTTAB(8)"{RVS}1{OFF} - DISPLAY VOICE
{SPACE}#1" :rem 119

950 PRINT:PRINTTAB(8)"{RVS}2{OFF} - DISPLAY VOICE

{SPACE}#2" :rem 122
960 PRINT:PRINTTAB(8)"{RVS}3{OFF} - DISPLAY VOICE

{SPACE}#3" :rem 125

189

4 Sound and Graphics

u

u

970 PRINT:PRINTTAB(8)"{RVS}4{OFF} - DISPLAY FILTER I J

SETTINGS11 :rem 234 1—I
980 PRINT:PRINTTAB(8)"{RVS}5{OPF} - CLEAR SOUND"

:rem 143

990 PRINT:PRINTTAB(8)"{RVS}6{OFF} - NEW SOUND NUMB |
ER" :rem 221 ^

1000 PRINT:PRINTTAB(8)"{RVS}7{OFF} - CHANGE JOYSTI

CK SPEED" :rem 72 i i

1010 PRINT:PRINTTAB(8)"{RVS}8{OFF} - QUIT" :rem 6 I)
1020 GETC$:IFC$<"1"ORC$>"8IITHEN1020 :rem 159

1030 ONVAL(C$)GOTO1040,1050,1060,1070,1080,860 ,80

0,1100 :rem 68

1040 v=l:SR=3:POKE53269,l:GOTO140 :rem 175

1050 V=2:SR=1:POKE53269,1:GOTO140 :rem 175

1060 V=3:SR=2:POKE53269,1:GOTO140 :rem 178

1070 POKE53269,1:GOTO420 :rem 102

1080 FORL=0TO24:POKES+L,0:NEXT:GOTO910 :rem 135

1090 REM QUIT zrem 241

1100 PRINT"{CLR}{7 DOWN}" :rem 157
1110 PRINT TAB(14)"CHOOSE ONE:" :rem 254

1120 PRINT:PRINTTAB(6)"{RVS}F1{OFF} - SAVE SOUND F
ILE " :rem 218

1130 PRINT:PRINTTAB(6)"{RVS}F3{OFF} - CONVERT TO D
ATA STATEMENTS" :rem 235

1140 PRINT:PRINTTAB(6)"{RVS}F5{OFF} -.END":rem 223
1150 GETA$:IFA$<"{Fl}"ORA$>"{F5}"THENil50 jrem 68
1160 ONASC(A$)-132GOTO1220 ,1170,1420 :rem 155

1170 PRINT"{CLR}{8 DOWN}" :rem 181

1180 PRINT"{2 SPACES}ENTER SOUNDS YOU WANT TO CONV

ERT" :rem 240

1190 PRINT"{6 SPACES}(START,END)"; :rem 185

1200 ER=1:GOTO110 :rem 205

1210 REM SAVE SOUNDS ROUTINE :rem 217

1220 PRINT"{CLR}{8 DOWN}" :rem 177

1230 PRINT"{2 SPACES}ENTER SOUNDS YOU WISH TO SAVE

11 :rem 251

1240 PRINT"{6 SPACES}(START,END)"; :rem 181 I j
1250 INPUTB,E:IFB<0ORE>1250ORB>ETHENPRINT"BAD INPU '—

T":GOTO1250 :rem 102

1260 S=B*25+9758:F=9758+E*25+25 :rem 97 . }

1270 POKE79,S/256:POKE78,S-256*PEEK(79):POKE254,F/ | i
256:POKE253,F-256*PEEK(254) :rem 161

1280 INPUT"{3 SPACES}WHAT DO YOU WISH TO NAME THE

{SPACE}FILE";NM$:IFNM$=""THEN1280 :rem 96 I !

1290 T=LEN(NM$)sPOKE2,T srem 103 L-J
1300 FORJ=1TOT:POKE50944-J+T,ASC(RIGHT$(NM$,J)):NE

XTJ :rem 254 i ,

1310 SYS50659:SYS.50692 :rem 12 f J

190 Li

n

n

n

n

n

Sound and Graphics 4

1320 PRINT :PRINTNM$" FILE HAS BEEN SAVED11:PRINT"TH

ANKYOUH:END : rem 53

1330 REM LOAD ROUTINE :rem 241

1340 IFPEEK(50660)=1THENPRINT"{CLR}":POKE2#0:SYS50

659:SYS50682:GOTO860 :rem 87

1360 INPUTM{8 SPACES}FILENAME";NM$:T=LEN(NM$):POKE

2,T:IFT=0THEN1360 :rem 49

1370 FORJ=1TOT:POKE50944-J+T,ASC(RIGHT$(NM$,J)):NE

XTJ :rem 5

1380 PRINT"{CLR}":SYS50659:SYS50682 :rem 176

1390 IFST=66THENPRINT"{7 RIGHTjFILE NOT FOUND11 :GOT

01350 :rera 64

1400 GOTO860 :rem 156

1410 REM END :rem 129

1420 PRINT"{CLRjTHANKYOU":END :rem 175

1430 POKE2040,11:FORL=0TO24:READSP:POKE704+L,SP:NE

XTL:POKE53287,7 :rem 11

1440 FORL=25TO63:POKE704+L,0:NEXTL:GOTO670 :rem 88

1450 DATA48,0,0,56,0,0,60,0,0,62,0,0,45,0,0,36,0,0

,4,0,0,2,0,0,2 :rem 19

H

n 191

u

u

64 Hi-Res u
Graphics Editor u
Gregg Peele j I

Just as a word processor allows you to expand

your writing skills by giving you power to manipu

late text freely, "Hi~Res Graphics Editor'9 allows

you to easily draw, erase, and edit images on the

64's hi*res screen. Once you have finished your

drawing, you can even send the results to your

1525 printer. Joystick needed.

Creating, changing, even saving intricate drawings on your

Commodore 64's hi-res screen is simple with the Editor. Using

a joystick and sprites, parts of pictures can be imprinted onto a

sprite and planted on another area of the screen. You can even

enlarge the sprite to full-screen size to edit it more precisely.

Type It In with MLX

"Hi-Res Graphics Editor" is in two parts. (Three, if you use

the optional automatic load routine. See the next section,

"Autoload," for details.) First you must type in Program 1,

"Machine Language for Hi-Res Graphics Editor," using the

MLX program found in Appendix D. MLX makes it simple to

enter machine language programs, and almost guarantees that . ,

you'll have a working copy of the Editor the first time you 1 I
type it in. Once you've typed in, saved, and then loaded MLX,

it will ask you for two numbers, or addresses. You should re- .

spond with: I »

Starting address: 49152

Ending address: 51557 I j

You don't have to type in Program 1 all in one sitting. Read '—l
Appendix D for details on how to save and later return to a

partially completed machine language program. I]

Save Program 1 to tape or disk. Turn your computer off, —'

then on again, to reset it.

192 LJ

n
Sound and Graphics 4

H

[—] Now type in Program 2, the BASIC part of Hi-Res Graph

ics Editor. You'll find "The Automatic Proofreader," Appendix

C, a great aid in entering any BASIC program, including this

r"| one. Make sure you've got a copy of the Proofreader on tape

or disk, then type in Program 2. Save it to disk or tape. If

you're using a Datassette, it's important that Program 2 is

pi saved on the same tape as Program 1; it should immediately

follow the machine language portion. If you have a disk drive,

just make sure both programs are on the same disk.

To run the Editor, first load Program 1 with this format:

UOAD"filename"fl,l (for disk)

UOAD"filename",1,1 (for tape)

Now enter this line and press RETURN:

POKE 642,128: POKE 44,128: POKE 32768,0: NEW

This moves BASIC to a safe place in memory—leaving plenty

of room for hi-res screens. You must type this line each time

before you load Program 2.

Next, load the BASIC program—Program 2. Type RUN,

press RETURN, and you are in the Editor.

Autoload

If you want to eliminate some of the steps in loading and run

ning the Editor, you can use this short program to automati

cally load the two parts of the Editor.

10 IF FL=0 THEN FL=l:LOAD"HIRES/ML",8,1

20 PRINTM{CLR}{2 DOWN}POKE642,128:POKE44,128:POKE3

2768,0:NEW"

30 PRINT"{3 DOWN}LOAD"CHR$(34)"HIRES/BAS"CHR$(34)M
8"

n 40 PRINT"{HOME}";

I (50 POKE 198,6:POKE 631,13:POKE 632,13:POKE 633,13
60 POKE 634,82:POKE 635,213:POKE 636,13

j—, The program assumes you have used the filenames

!.. I HIRES/ML for the machine language portion and HIRES/BAS
for the BASIC part. Change these names in lines 10 and 30

n above to match the names you used. To use the program with

tape, change the 8 to a 1 in lines 10 and 30.

All you have to do is load and run this short routine, and

^—. the rest is done for you. If you are using tape, save this rou-

j i tine before you save Programs 1 and 2.

n
193

4 Sound and Graphics

u

Set the Joystick Speed j

The first prompt in Hi-Res Graphics Editor is for joystick '—'
speed. Enter a number from 1 to 10 (10 is fastest). The lower

the number, the more control you have over drawing. You can j j

experiment with these numbers to find the best speed for your '—'
purposes.

Next, the screen clears and a rectangle appears in the cen- j j

ter. This is the sprite cursor. Press the letter D and the box will <—'

change into an arrow. You are now in Draw Mode. With a

joystick in port 2, you can move this arrow around the screen.

(A trackball will also work with the Editor. In fact, it seems to

give you even finer drawing and movement control.)

Pressing the fire button draws on the screen. If what you

have drawn is invisible, press B to change the background

color and F to change the foreground color. Keep pressing

these keys to step through the sequence of all possible colors.

Erasing with the Arrow

If you wish to erase what you've drawn, engage the SHIFT

LOCK key on the keyboard. Then hold down the fire button

and use the joystick to point the arrow at any pixel you want

to erase. To start over with a clean slate, just press the fl key.

This clears the screen.

Sprite Mode can be accessed by pressing the A (Add), S

(Stamp), C (Copy), or E (Erase) key. Let's explore the most in

teresting of these, hitting the letter C.

Using the joystick, move the rectangle around the screen

until it's superimposed on part of your original drawing. (If

you've cleared the screen, you can return to Draw Mode by

pressing D). Press the fire button, and the contents of the

screen under the sprite will be copied onto the sprite. I j

You can enter Add Mode at any time by pressing A. (In I—>
fact, you're automatically in Add Mode as soon as you copy

onto a sprite.) In this mode, you can move your sprite around , j

the screen and plant the image anywhere you like. (You add I—i
the image of the sprite to the images already on the screen.) If

you hold the button down while you have the sprite, the » ,

sprite's image becomes a wide brush, which you can use for I \
calligraphy and to create other interesting effects.

A Graphic Stamp I 1
Stamp Mode replaces the contents of the screen with the con-

194 LJ

n
Sound and Graphics 4

n

f-] tents of the sprite. If you put the rectangle over a filled-in

'- area, for example, and your sprite is mostly empty, it will

erase much of what's beneath the sprite.

pi If you make a mistake in your drawing, use E, Erase

1 Mode. This mode transforms the sprite cursor into a giant

eraser which clears any pixels it passes over.

1 l A Sprite Editor
You can create your own sprites by enlarging the sprite to full

screen proportions. Hold down the il key briefly. The screen

will clear and an enlarged image of the sprite will appear in

the upper left corner of the screen. To edit this sprite, press

the fire button of the joystick as you move the cursor in this

area. Erasing is simple. Just engage the SHIFT/LOCK key, and

instead of drawing to the image, you will erase parts of the

sprite. The fl key clears the sprite, just as it cleared the screen

in hi-res mode.

If you want to save or load a hi-res screen, you must do it

from this sprite definition mode. (It doesn't save the sprite

shape, only the hi-res screen you've created.) Hold the CTRL

key while you press L for LOAD, and a series of prompts will

then appear for loading from disk or tape. Likewise, holding

CTRL and S allows you to save to disk or tape.

Anytime you wish to return to hi-res mode, simply hold

il down for a moment. You can then use the sprite definition

you have just created to produce intricate pictures on the hi

res screen.

Two Graphics Screens

The Editor contains a feature which allows you to have two

p-, full screens of graphics in memory at one time. Press T to tog-

I I gle between them. When you first try this function, the screen
will fill with garbage if nothing has been created on the alter-

(—* nate screen. (There is undefined data in this area.)

(I Clear the screen (using the f1 key) to start with a new
palette. Draw a new design on this screen, and press T to re-

r—I turn to the old screen. Pressing T again takes you back to your

I _ i second creation, and so on.

fmmm) Printing Your Creation

I I Since an image created on a computer screen will last only as

long as the power is on, a hi-res screen dump is included. Just

<—-i

L I 195

4 Sound and Graphics

press the letter P, and your 1525 printer (or 1525-compatible

printer) will print the contents (minus the sprite cursors) of the

screen. Unfortunately, the new Commodore 1526 printer does

not have the dot-addressable feature of the 1525 printer, so

you won't be able to use this screen dump option if you have

the 1526.

Here's a summary of the commands in the Hi-Res Graph

ics Editor:

Key Feature

D Draw Mode

SHIFT/

LOCK on Erase draw (in sprite definition mode, erase parts of
sprite)

A Add Mode; overlay sprite with screen

C Copy screen to sprite

S Stamp Mode; replace what is onscreen with sprite

image

E Erase under sprite

F Sequence through foreground colors

B Sequence through background colors

T Toggle between screens

f1 Clear screen (hi-res and sprite definition modes)

f7 Changes from hi-res to sprite definition and vice versa

CTRL-L Load screen from disk or tape; available only from

sprite definition mode

CTRL-S Save screen from disk or tape, available only from

sprite definition mode

P Produce printout on Commodore 1525 printer

Program L Machine Language for Hi-Res Graphics

Editor
For easy entry of this machine language program, be sure to use "The Machine Language
Editor: MIX," Appendix D.

49152 :032,107,198,169,015,141,150

49158 :226,206,032,013,198,169,082

49164 :128,133,044,141,130,002,078

49170 t169,000,141,000,128,169,113

49176 :200,141,000,208,141,254,200

49182 :206,169,003,141,021,208,010

49188 :169,033,141,212,205,169,197

49194 :000,141,016,208,141,255,035

49200 :206,169,100,141,001,208,105

49206 :141,003,208,173,024,208,043

49212 :041,240,009,008,141,024,011

49218 :208,173,017,208,009,032,201

196

u

u

u

u

u

LJ

U

U

u

n

n

n

n

Sound and Graphics 4

n

n

n

49224 :141,017,208,169,000,141,236

49230 :238,002,032,182,200,032,252

49236 :107,192,032,004,194,032,133

49242 :186,197,032,239,197,032,205

49248 2186,199,032,008,201,173,127

49254 :238,002,240,230,096,169,053

49260 :032,141,248,007,169,001,194

49266 :141,039,208,238,040,208,220

49272 :173,227,205,201,003,208,113

49278 :018,169,076,141,198,205,165

49284 :169,248,141,197,205,169,237

49290 :014,141,241,002,076,160,004

49296 :192,169,063,141,198,205,088

49302 :169,228,141,197,205,169,235

49308 :025,141,241,002,173,212,182

49314 :205,141,249,007,173,000,169

49320 :220,041,015,141,253,206,020

49326 :056,169,015,237,253,206,086

49332 :141,252,206,160,000,200,115

49338 :204,252,206,208,250,152,178

49344 :010,168,185,204,192,072,255

49350 :185,203,192,072,096,002,180

49356 :194,214,193,218,193,002,194

49362 :194,226,193,230,193,237,203

49368 :193,002,194,222,193,251,247

49374 :193,244,193,002,194,169,193

49380 :050,205,001,208,176,012,112

49386 :173,001,208,056,173,001,078

49392 :208,23 3,001,141,001,208,008

49398 :096,173,197,205,205,001,099

49404 :208,144,012,173,001,208,230

49410 :024,173,001,208,105,001,002

49416 :141,001,208,096,056,173,171

49422 :254,206,237,198,205,141,231

49428 :253,206,173,255,206,233,066

49434 :001,013,253,206,144,014,145

49440 :173,198,205,141,254,206,185

49446 :169,001,141,255,206,076,118

49452 :063,193,024,173,254,206,189

49458 :105,001,141,254,206,173,162

49464 :255,206,105,000,141,255,250

49470 :206,056,173,254,206,233,166

49476 :000,141,253,206,173,255,072

49482 :206,233,001,013,253,206,218

49488 -.144,015,173,016,208,009,133

49494 :001,141,016, 208,173 , 254, 111

49500 :206,141,000,208,096,173,148

49506 :016,208,041,254,141,016,006

49512 :208,173,254,206,141,000,062

49518 :208,096,056,173,254,206,079

197

4 Sound and Graphics

49524

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

49806

49812

49818

198

:237,241,002,141,253r206,172

:173,255,206,233,000,013,234

: 253,206,176,017,056,173,241

:241,002,233,001,141,254,238

:206,169,000,141,255,206,093

:076,166,193,056,173,254,040

:206,233,001,141,254,206,169

:173,255,206,233,000,141,142

: 255,206,056,173,254,206,034

:233,000,141,253,206,173,152

: 255,206,233,001,013,253,113

:206,144,015,173,016,208,176

:009,001,141,016,208,173,224

:254,206,141,000,208,096,075

:173,016,208,041,254,141,009

:016,208,173,254,206,141,180

:000,208,096,032,227,192,199

.-096,032,247,192,096,032,145

:012,193,096,032,112,193,094

:096,032,227,192,032,112,153

:193,096,032,247,192,032,004

: 112,193,096,032,247,192,090

:032,012,193,096,032,227,072

:192,032,012,193,096,096,107

: 17 3,001,208,141,003,208,226

:173,000,208,141,002,208,230

:173,016,208,041,001,240,183

:011,169,002,013,016,208,185

:141,016,208,076,042,194,193

:169v 253,045,016,208,141,098

:016,208,056,173,254,206,185

:233,024,141,250,206,173,049

:255,206,233,000,141,251,114

:206,165,197,201,013,240,056

:023,201,010,240,030,201,001

:014,240,046,201,018,240,061

:053,201,020,240,079,201,102

:003,240,025,076,168,194,020

:169,000,141,227,205,032,094

:138,194,076,168,194,169,009

:001,141,227,205,032,138,076

:194,076,168,194,032,138,140

:194,076,180,199,076,168,237

:194,169,002,141,227,205,032

:032,138,194,076,168,194,158
:169,003,141,227,205,076,183

:168,194,169,172,141,000,212
:208,141,2 54,206,169,000,096

: 141,016,208,141,255,206,091

:169,124,141,001,208,096,125

u

u

u

u

u

u

u

LJ

U

n

n

n

Sound and Graphics 4

n

n

n

n

49824 :169,004,141,227,205,032,170

49830 :138,194,173,227,205,201,024

49836 :003,208,016,169,034,141,231

49842 :212,205,173,021,208,041,014

49848 :254,141,021,208,076,204,064

49854 :194,169,033,141,212,205,120

49860 :173,021,208,009,003,141,239

49866 :021, 208, 056,173 ,001,208,101

49872 :233,050,141,248,206,173,235

49878 :000,220,041,016,208,017,204

49884 :169,000,141,224,206,162,098

49890 :000,173,227,205,201,004,012

49896 :208,006,076,243,194,076,011

49902 :018,196,076,125,195,173,253

49908 :250,206,141,218,205,173,157

49914 :251,206,141,219,205,169,161

49920 :128,141,216,205,169,000,091

49926 :168,170,141,214,205,142,022

49932 :222,205,140,221,205,032,013

49938 :022,196,174,222,205,172,241

49944 :221,205,173,224,205,045,073

49950 :206,207,240,012,173,216,060

49956 :205,025,000,008,153,000,171

49962 :008,076,057,195,173,216,255

49968 :205,073,255,057,000,008,134

49974 :153,000,008,078,216,205,202

49980 :208,006,169,128,141,216,160

49986 .-205,200,024,173,250,206,100

49992 :105,001,141,250,206,173,180

49998 :251,206,105,000,141,251,008

50004 :206,232,224,024,208,177,131

50010 :162,000,173,218,205,141,221

50016 :250,206,173,219,205,141,010

50022 :251,206,238,248,206,162,133

50028 :000,238,214,205,173,214,128

50034 :205,201,021,144,148,169,234

50040 :001,141,227,205,096,169,191

50046 :128,141,226,206,172,224,199

50052 :206,185,000,008,045,226,034

50058 :206,240,008,169,001,141,135

50064 :228,206,076,157,195,169,151

50070 :000,141,228,206,076,157,190

50076 :195,173,227,205,201,003,136

50082 : 208,039,173 ,141,002 , 208,165

50088 :008,169,001,141,228,206,153

50094 :076,182,195,169,000,141,169

50100 :228,206,024,173,250,206,243

50106 :105,011,141,250,206,173,048

50112 :251,206,105,000,141,251,122

50118 :206,032,022,196,096,142,124

i l 199

4 Sound and Graphics

50124

50130

50136

50142

50148

50154

50160

50166

50172

50178

50184

50190

50196

50202

50208

50214

50220

50226

50232

50238

50244

50250

50256

50262

50268

50274

50280

50286

50292

50298

50304

50310

50316

50322

50328

50334

50340

50346

50352

50358

50364

50370

50376

50382

50388

50394

50400

50406

50412

50418

200

:238,224,206,232,224,003,081

:240,003,076,125,195,162,017

:000,238,248,206,056,173,143

: 250,206,233,024,141,250,076

:206,173,251,206,233,000,047

:141,251,206,172,224,206,184

:192,063,144,001,096,076,074

:125,195,173,250,206,141,086

2 250,207,173,251,206,141,230

:251,207,173,248,206,141,234

:248,207,169,000,141,249,028

:207,173,250,207,141,212,210

:207,173,251,207,141,213,218

:207,173,248,207,141,214,222

i207,173,249,207,141,215,230

:207,173,215,207,074,141,061
• 217r207.173.91A.907.ldfi.174

m «• ■ <v f mm «fe *^ g mm m* w j <m* m* -w j mm* * mm* J mm <d» %^ ^ ^* ^^ «^

.•207,173,214,207,041,007,233

:141,220,207,173,216,207,042

:010,046,217,207,010,046,188

:217,207,010,141,210,207,138

.-046,217,207,173,217,207,219

:141,211,207,173,210,207,051

:010,046,217,207,010,046,212

:217,207,109,210,207,141,005

:216,207,173,211,207,109,043

u

LJ

U

U

U

:218!

:010,

.-219,

U

U

u

u

u

Sound and Graphics 4

n

n

n

n

n

H

n

n

50424 :173,216,207,109,

50430 :141,208,207,173,

50436 :109,219,207,141,

50442 :024,173,220,207,

50448 :207,141,208,207,

50454 :109,209,207,141,

50460 :024,169,032,109,

50466 :141,209,207,173,

50472 :133,251,173,209,

50478 :252,173,212,207,

50484 :141,225,207,056,

50490 :237,225,207,141,

50496 :169,000,141,206,

50502 :173,225,207,046,

50508 :206,225,207,016,

50514 :000,173,227,205,

50520 :240,090,201,002,

50526 :201,004,208,003,

50532 :197,173,228,206,

50538 :177,251,013,206,

50544 :251,076,180,197,

50550 :205,201,001,240,

50556 :206,207,073,255,

50562 :207,177,251,045,

50568 :145,251,076,180,

50574 :251,045,206,207,

50580 :177,251,013,206,

50586 :251,076,180,197,

50592 :045,206,207,240,

50598 :206,207,073,255,

50604 :207,177,251,045,

50610 :145,251,177,251,

50616 :205,096,165,197,

50622 :208,046,169,000,

50628 :169,032,133,171,

50634 :152,145,170,056,

50640 -.233,255,141,212,

50646 :171,233,063,013,

50652 :240,016,024,165,

50658 :001,133,170,165,

50664 :000,133,171,076,

50670 :096,165,197,170,

50676 :208,008,169,015,

50682 :206,076,010,198,

50688 :208,104,169,240,

50694 :206,076,034,198,

50700 :206,173,214,206,

50706 :206,201,015,208,

50712 :214,206,041,240,

50718 :206,076,058,198,

218,207,098

217,207,127

209,207,072

109,208,183

169,000,180

209,207,080

209,207,010

208,207,155

207,133,122

041,007,170

169,007,089

225,207,020

207,056,075

206,207,110

245,160,111

201,005,125

240,064,157

076,180,254

240,010,130

207,145,081

173,227,192

018,173,188

141,206,188

206,207,199

197,177,138

240,032,099

207,145,123

177,251,006

015,173,022

141,206,230

206,207,241

141,224,087

201,004,028

133,170,148

160,000,093

165,170,036

206,165,140

212,206,088

170,105,172

171,105,203

200,197,241

201,028,071

141,212,229

201,021,194

141,212,050

238,214,204

045,212,044

035,173,088

141,214,056

024,173,253

201

N
>

u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
i
n
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
w
w
u
i
u
i
u
i
u
i
u
i
u
i
u
^

o
H
H
Q
Q
Q
Q
Q
Q
5
)
Q
Q
Q
Q
Q
Q
S
I
S
G
Q
G
l
G
)
G
I
S
Q
Q
Q
I
S
S
6
)
S
I
S
)
Q
S
Q
S
G
)
(
S
)
<
S
(
S
)
(
S
l
i
a
Q
S
<
S
)
Q
I
S
G
)
Q

^
a
>
r
O
0
N
G
>
^
(
»

i
a
M
Q
H
H
H
G
l
i
a
H
H
H
H
Q
M
M
M

U
l
O
)
H
^
P
U
1
>
J
H
^
V
o
S
Q
S
Q
Q
Q
I
S
l
Q
W
N
)
Q
U
l
W
W
W
W
W
W
W
W
W
U
l
^
U
1
^
U
l
U
l
W
M
C
\
^
Q
H

3
G
»
S
o
N
S
Q
S
S
5
M
Q
Q
Q
Q
§
Q
§
Q
§
Q
Q
S
S
G
i
S
Q
G
i
G
i
G
i
Q
G
»
G
i
^
a
>
C
X
)
U
l
U
i
O
N
U
i
Q
Q
^
^
^
O
>
O
N

Q
Q
Q
Q
^

<^
W
^
S

O^
S
S
§
.
§
§
§
Q
S
S
S
S

Ui
S
^
Q
Q
Q
Q

SI
Q
«
®
®
®
g
W
g
g
g
^
^
W
g
W
g
®
g

t
s
)
H
M
H
Q
Q
H
N

M
G
l
M
W

G
»
C
2

G
l
C
S
G
»

G
i

G
i

G
*
M
Q
Q
Q
W
M

^
J
0
0
^
Q
Q
Q
S
S
Q
S
Q
Q
Q
v
O
Q
B
l
Q
U
l
v
O
v
O
V
O
v
O
V
O
v
O
V
O
v
O
v
O
U
l
O
>
^
W
W
H
U
)
U
)
^
>
J
g
^
^
H

M
Q
W
Q
M
H
Q
Q
M
Q
K
)
S
)
W
W
W
W
W
W
W
M
Q
Q
Q
W
h
-
Q
q
V
q
S
Q
S
I
g
W
M
M
M

Gj

C
C

C
C

C
C

C
C

[I
L.

Sound and Graphics 4

n

n

n

n

H

n

n

51012

51018

51024

51030

51036

51042

51048

51054

51060

51066

51072

51078

51084

51090

51096

51102

51108

51114

51120

51126

51132

51138

51144

51150

51156

51162

51168

51174

51180

51186

51192

51198

51204

51210

51216

51222

51228

51234

51240

51246

51252

51258

51264

51270

51276

51282

51288

031,009,128,141,125

168,032,210,255,136

n 203

4 Sound and Graphics
u

u

51294

51300

51306

51312

51318

51324

51330

51336

51342

51348

51354

51360

51366

51372

51378

51384

51390

51396

51402

51408

51414

51420

51426

51432

51438

51444

51450

51456

51462

51468

51474

51480

51486

51492

51498

51504

51510

51516

51522

51528

51534

51540

51546

51552

:152

:202

:233

:251

:206

:206

:001

:024

:105

:169

:013

:200

:032

:002

:202

:002

:032

:162

:255

:032

:167

:001

:002

:189

:169

:162

:255

:240

:170

:000

:062

:003

:173

:165

:165

:024

:180

:063

:096

,032,

,204,

,205,

,006,

,206,

,206,

,201,

,200,

,173,

,250,

,000,

,199,

,032,

,169,

,231,

,160,

,208,

,174,

,186,

,172,

,169,

,032,

,002,

,032,

,162,

,255,

,000,

,255,

,096,

,001,
,169,

,133,

,160,

,003,

,173,

,064,

,170,

,171,

,165,

,165,

,056,

,200,

,013,

,013,

210,255

205,169

056,173

141,250

233,000

248,206

255,240

224,045

250,206

206,173

141,251

141,248

210,255

013,032

255,096

255,136

248,096

168,002

255,173

160,002

000,162

213,255

174,168

186,255

172,160

169,032

133,253

160,063

165,197

096,169

032,133

180,169

000,177

177,180

062,003

003,145

105,001

105,000

180,105

181,105

165,170

205,165

200,205

013,013

,169,

,000,

,250,

,206,

,141,

,173,

,003,

,176,

,105,

,251,

,206,

,206,

,076,

,210,

,174,

,208,

,173,

,160,

,169,

,032,

,000,

,096,

,002,

,173,

,002,

,133,

,169,

,032,

,201,

,000,

,171,

,096,

,170,

,141,

,145,

,170,

,133,

,133,

,001,
,000,

,233,

,171,

,144,

,013,

001,145

141,192

206,174

173,097

251,176

248,131

076,087

031,045

007,139

206,095

232,065

169,012

001,241

255,027

240,182

253,174

167,004

001,191

002,251

189,157

160,192

173,253

160,131

169,024

032,000

254,252

253,203

216,120

022,174

133,139

169,094

133,223

.141,091

,064,151

.180,096

.024,115

170,030

171,037

133,162

133,068

255,114

233,175

193,140

013,001

u

LJ

U

u

204

Sound and Graphics 4

n

j—-i Program 2, BASIC Portion of Hi-Res Graphics Editor
) J For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

5 INPUT "{CLR}JOYSTICK SPEED (1-10)M;JS$:rem 137

_ 6 IP VAL(JS$)<1OR VAL(JS$)>10 THEN5 :rem 192

I[7 POKE752,11-VAL(JS$) :rem 180
8 FOR T= 2048TO2048+64:POKET,0:NEXT :rem 22

10 SYS50624 :rem 97

p"* 11 SYS49152 :rem 102

' -. 12 GETA$:IF PEEK(197) <>3THEN12 :rem 199

13 FOR T= 1 TO 300:NEXT :rem 188

15 SYS50941 :rem 104

16 VI=53248:POKEVI+21,1:POKEVI,21:POKEVI+16,PEEK(V

1+16)OR1:POKEVI+1,100 :rem 51

17 POKE2040,32 :rem 238

20 SC= 1024:PX=0:PY=0:CN=0:OS=55296:OC=PEEK(OS)

:rem 24

30 GET A$:IF A$=M"THEN CN=CN+1 :rem 65

31 IF PEEK(197)=4 THEN FOR T=2048TO2048+64:POKET,0

:NEXf:SYS50941 :rem 196

32 IF PEEK(197)=3THENPOKE198,0:FORT=1TO300:NEXT:GO

TO11 :rem 62

33 IF A$="{L}"THEN GOSUB 300:SYS51394:GOSUB400:SYS

50941 :rem 242

34 IF A§="{HOME}"THEN GOSUB300:SYS51425:GOSUB400:S

YS50941 :rem 245

40 IF CN= 2 THEN POKE SC,PEEK(SC)OR128:CN=0

:rem 147

50 IF CN= 1 THEN POKE SC,PEEK(SC)AND127 :rem 140

60 IF(PEEK(56320)AND16)<>0 THEN 65 :rem 58

61 IF PEEK(653)THEN POKESC+54272,0:SH=1:GOSUB200:G

OTO 65 :rem 246

63 POKESC+54272,1:SH=0:GOSUB 200 :rem 72

65 IF 15-PEEK(56320)=0 THEN 79 :rem 15

66 FL=0:OC=PEEK(SC+54272):OS=SC+54272 :rem 141

70 ON 15-PEEK(56320)AND15GOSUB 80,90,95,100,120,13

0,140,150,160,170 :rem 163

72 POKESC,(PEEK(SC)OR128) :rem 243

75 SC=1024+40*Y+X xrem 155

79 GOTO 30 :rem 12

80 Y =Y+(Y>0) :RETURN xrem 180

90 Y=Y-(Y<20):RETURN :rera 231

95 RETURN : rem 78

100 X=X+(X>0):RETURN :rem 218

110 RETURN :rem 114

120 Y=Y+(Y>0):X=X+(X>0):RETURN :rem 72

130 Y=Y-(Y<20):X=X+(X>0):RETURN :rem 123

140 RETURN :rem 117

150 X=X-(X<23):RETURN :rem 20

160 Y=Y+(Y>-0):X=X-(X<23):RETURN :rem 174

205

4 Sound and Graphics
u

LJ

170 Y=Y-(Y<20):X=X-(X<23):RETURN irem 180 J

200 BO=Y*3+INT(X/8) :rem 60 | j

210 BT= 2t(7-(X-INT(X/8)*8)):P=64*PEEK(2040)+BO

: rem 49

220 IF SH=0 THENPOKEP,PEEK(P)ORBT:GOTO230 :rem 10 \ I

225 POKEP,PEEK(P)AND(255-BT):SH=0 :rem 207 1—I
230 RETURN : rem 117

300 PRINT"{BLK}{7 RIGHT}{CLR}{RVS}D{OFF}ISK OR
{RVS}T{OFF}APEM :rem 144 j

301 GET J$:IF J$=M"THEN301 :rem 93 L~^
302 IF J$<>MD"AND J$<>"T"THEN 301 :rem 170

303 INPUT "FILENAME";FI$:rem 153

305 IF LEFT$(J$,1)="D"THEN D=8:GOTO310 :rem 70 .

306 D=l :rem 75

310 FOR T= 684 TO 684+LEN(FI$)-1:POKET,ASC(MID$(FI

$,T-683,1)):NEXT :rem 150

320 POKE679,D:POKE680,D:POKE681,LEN(FI$):POKE682,1

72:POKE683,2 :rem 159

325 RETURN : rem 122

400 OPEN15,8,15:INPUT#15,A$,B$,C$,D$:PRINTA$;" ";B

$" \-C$;" II;C$;11 ";D$:rem 52

405 CLOSE15 :rem 117

410 FOR T= 1TO 3000 :NEXT :RETURN :rem 55

u

u

u

206 LJ

n

n

n

HiSprite
Michael J.Blyth

"HiSprite" is a machine language utility which

f""J gives you fast, easy control over Commodore 64}s

sprites from BASIC, including collision monitor

ing, joystick control, boundaries, and a high-

resolution "pen."

If you've ever tried to write a fast-action game program or a

complex graphic display using BASIC, Commodore 64 sprites,

and high-resolution graphics, you've probably been frustrated

by the slow speed of the program. BASIC is simply too slow

when it comes to calculating new horizontal and vertical

velocities and positions for multiple sprites, reading joysticks,

monitoring collisions, and doing all the necessary PEEKing

and POKEing for sprites and high-resolution (hi-res) graphics.

"HiSprite" is a powerful machine language utility which

handles all these low-level tasks quickly, freeing you to use

BASIC for high-level control. HiSprite allows fast, complex,

and smooth control of all eight sprites for either BASIC or ma

chine language programs. Variables define horizontal and

vertical position, velocity, acceleration, and boundaries for

each sprite. Other variables determine joystick control, hi-res

plotting, and what action to take:

• at boundaries (stop, disappear, bounce, or wrap around)

r—) • on collision with background (stop, disappear, bounce, or

' i continue)

• on collision with another sprite (stop, disappear, bounce,

j—I "stick")

' Finally, HiSprite can be used either as a subroutine (with SYS
in BASIC or JSR in machine language) or in a continuous,

P"] interrupt-driven mode.

Entering HiSprite

P"? First, you'll need to type in HiSprite, found at the end of this

1 article. The list of numbers in Program 2 is machine language.

Only with machine language can you get the speed and power

1 ' 207

u
4 Sound and Graphics

U

necessary to move sprites easily about the screen. However, j ;

machine language programs aren't as easy to type in as I—1
BASIC. To help you with all this typing, you'll find MLX

(Appendix D) an invaluable tool. Be sure to read Appendix D] ,

before you start entering HiSprite. 1—I

Type in and save the MLX program. When you're ready

to enter HiSprite, turn your computer off, then on again (this , ,

clears it out). Load MLX from tape or disk and type RUN. 1 !
MLX asks you for the starting and ending addresses. The ad

dresses are:

Starting address: 49152

Ending address: 50705

Simply follow the directions in Appendix D to enter the pro

gram. You don't have to enter it at one sitting, but can save

your work, typing HiSprite in several sessions.

How It Works

After you've entered HiSprite with MLX, you can load it with

the command LOAD "HISPRITE",8,1 for disk or LOAD

"HISPRITE",1,1 for tape. Type SYS 49152, then NEW and

CLR. If you're using the demonstration program, Program 1,

you only need to type it in (or if you've already entered it,

type LOAD "HISPRITE.DEMO",8 for disk, LOAD "HISPRITE"

for tape). If you're using HiSprite with a program of your own,

you'll first have to SYS 49152, or make sure that statement is

included in your program.

Although HiSprite is a complex program, with many vari

ables and functions, it's easy to use once you've seen this step-

by-step demonstration of its abilities.

In HiSprite, integer arrays hold the information needed

for controlling each sprite. The horizontal and vertical (X and I

Y) directions are controlled independently. The variables and '—'
their functions are:

SP%(i,0 or 1) Position of upper left corner of sprite i j j

(where i is from 0 to 7). SP%(f,0)=X position; SP%(f,l)=Y 1—>
position. Any valid integer from —32767 is OK, but the screen

shows the area from 24 to 344 horizontally and from 50 to j {

250 vertically. To position sprite 1 in the upper left corner of '—'
the screen, you could use: SP%(l,0)=24:SP%(l,l)=50.

SV%(*,0 or 1) X or Y velocity, again for sprite i. Each time] |

HiSprite is called, 1/256 of this value is added to the current '—'

208 LJ

n
Sound and Graphics 4

n

j—> position. SV%(0,l)= 128 thus means that on every other call,

'— sprite 0 will move down one dot or pixel.
SA%(*,0 or 1) X or Y acceleration. Each time HiSprite is

r*"| called, this value is added to the corresponding velocity.
1 ' SA%(3,0)= 10 means that SV%(3,0) (X velocity for sprite 3)

will be automatically increased by 10 on each call.

r—[SL%(*,0 or 1) Upper limits for X and Y position. If

' ' HiSprite detects that sprite i would move beyond its limits, it
takes appropriate action (see below).

SL%(i,2 or 3) Lower limits for X and Y position,

respectively.

SC%(i,0 or 1) Options such as joystick control and out-of-

bounds action (details below).

SC%(*,2-7) Options for action to take when sprite i col

lides with another sprite.

Now we can get started. If you don't still have HiSprite

loaded into your 64, type:

LOAD "HISPRITE",8,1 (LOAD "HISPRITE", 1,1 for tape).

Then type NEW and CLR.

Seeing Sprites Move

To begin with, enter and save Program 1, "HiSprite Demo."

Of course, you can leave out the REM statements.

Program 1. HiSprite Demo
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

5 SD=0:SE%=0:SF%=0:SG%=0:SH%=0:SI%=0:SJ%=0:SK%=0:S

L%=0:HS=49274 :rem 145

10 DIM SP%(7,1),SV%(7,1),SA%(7,1),SL%(7,3),SC%(7,9

),SR%(7) :rem 186

20 SE=0:SYS12*4096 :REM INITIALIZE :rem 16

n30 V=53248: POKE V+21,255 :REM ENABLE ALL 8 SPRITE

S :rem 17

40 FORI=0TO7: REM FOR EACH SPRITE :rem 200

50 POKE 2040+1,13 :REM MEMORY LOCATION :rem 174

P] 60 POKE V+39+I,I :REM SPRITE COLOR :rem 223
'■ 65 SP%(I,0)=60: SP%(I,1)=60: REM POSITION :rem 251

70 SV%(1,0)=50*1+5: SV%(1,1)=50*1+50: REM VELOCITY

n:rem209

_ 80 SL%(I,0)=320: SL%(I,1)=230: REM UPPER LIMITS

:rem 55

85 SL%(I,2)=24: SL%(I,3)=50: REM LOWER LIMITS

P"I :rem 222
----- 90 SC%(I,0)=1:SC%(I,1)=1: REM OPTIONS :rem 44

100 NEXT :rem 208

n 209

u
4 Sound and Graphics

u

200 PORI=832TO896: POKEI,255:NEXT :REM CREATE SPRI \ (

TE SHAPE :rem 243 LJ
210 PORI=:844TO885: POKEI, 28: NEXT: PORI=859TO867:

{SPACE}POKEI,0:NEXT :rem 197
220 POKE857,8: POKE869,8 :rem 63 | I
300 SYS HS :rem 45 i—'
400 GOTO300 :rem 96

Program Notes 1 [

• The arrays and variables in lines 5 and 10 must be the first

ones used in the program, and must be defined in the order

shown.

• Line 50 defines the location (13*64) of the shape infor

mation, which is the same for all eight sprites in this pro

gram. You could alter the shape information to create your

own sprites if you wanted. Line 60 sets a different color for

each sprite.

• Lines 200-220 put the shape information where we want it.

• Line 300 is an infinite loop calling the main part of HiSprite.

Velocities, Borders, and Acceleration

Now run the program. You'll see all eight sprites moving

downward and rightward, then bouncing against the borders

defined in lines 80 and 90 (0 and 320 horizontally; 0 and 230

vertically). The speeds vary according to the definition in line

70. When you've seen enough, press RUN/STOP. Pressing

RUN/STOP and RESTORE together erases the sprites. Let's

try some changes. First, adjust the Y velocity in line 70 by

changing SV%(I,l)=50*I+50 to SV%(I,1)=100*1+150 and

rerunning the program. You can adjust the X velocity by

changing SV%(I,0) to something similar.

Line 90 determines what happens when the borders are i I

reached. Try using values 0 through 3 for SC%(I,1) and/or j—)
SC%(I,0) and see what happens with each one. Then return to

using 1. j {

You can use the joysticks to control {gate) either the veloc- *-—'

ity or the acceleration of sprites. For example, if the vertical

velocity is gated/then the sprite will only move vertically) i

when the joystick is moved up or down. When acceleration is w

gated, the sprite moves continuously but is sped up and

slowed down by the joystick. Change line 30 and add the i i

other two lines: '—'

210 u

n
Sound and Graphics 4

n ■ ■

|—I 30 V=53248: POKE V+21,3

! -1 270 SC%(0,0)=33:SC%(0,1)=33
275 SV%(0,0)=300:SV%(0,1)=300

P"| Try it. X and Y velocities are gated by the joystick in port 2.
Now change both values of 33 to 65 in line 270, add line 280,

and rerun:

f] 280 SA%(0,0)=10:SA%(0,1)=10

Now the accelerations are gated.

Friction and Drawing

There are other options available with the control or option

variables SC%(/,0) and SC%(f,l). Unlike the other variables,

these depend on the setting of individual bits (each integer

consists of 16 bits numbered 0 to 15). For example, bits 1 and

0 control what happens at borders (01=bounce), while bit 5

controls velocity gating (l=gate). To determine the value

which will set the desired bits, start with 0, add 1 to set bit 0,

2 to set bit 1, 4 for bit 2, 8 for bit 3, and so on up to 2048 for

bit 11. Thus to bounce at borders and gate velocity, we add 1

(bounce) and 32 (gate velocity) to give 33. Take a look at Table

1 for the control option bits and values to set. Within a pro

gram you may want to set/clear given bits of SC% like this:

To set bit K: SC%(...) = SC%(...)OR2tK

To clear bit K: SC%(...)=SC%(...) AND NOT2TK

Now we can continue experimenting. Reset SC%(0,0) and

SC%(0,l) to 1 in line 270, delete 280, and add:

290 SV%(0,1)=0:POKE V+21,1

310 SA%(0,1)=120-SP%(0,1)

Run the program to see the changes in effect. Line 290 cancels

[""! sprite 0's Y velocity and for clarity disables all other sprites;
line 310 plots a sine curve by defining sprite 0's Y acceleration

in terms of its distance from 120. The sprite acts like a mass

P"! on a spring, with the tension proportional to the stretch. We
can add friction (acceleration opposite velocity) by changing

310 and rerunning:

O 310 SA%(0,1)=120-SP%(0,1)-.01*SV%(0,1)

Finally, here's a taste of hi-res graphics. Add the following line

| I and rerun:

280 SC%(0,1)=257:SYS50647:SYS50577:SYS506

15

n 211

4 Sound and Graphics

u

LJ

This line does four things: makes sprite 0 start drawing; turns I j

on the hi-res mode; clears the color information for hi-res

screen; and clears the hi-res screen itself. To get back to the

usual mode from hi-res, you can either use SYS 50679 or press | [

RUN/STOP together with RESTORE to reset the computer. s—l
To get interesting Lissajous patterns of motion, you can

make sprite 0 vibrate in its X direction as well: j I

295 A%=RND(l)*8+2:B%=RND(l)*8+2

310 SA%(0,1)=(120-SP%(0,1))/A%

320 SA%(0,0)=(120-SP%(0,0))/B%

In the next section, we'll continue with hi-res and look at

collisions, multicolor hi-res, and interrupt mode, so save what

you've done so far.

Table 1. Summary of Control Variables

BASIC Variables

SP°/o(f,0) Horizontal position

(1,1) Vertical position

SV%(i,0) Horizontal velocity (dots per 256 calls)

(f,l) Vertical velocity

SA%(/,0) Horizontal acceleration (changes in velocity per call)

(f,l) Vertical acceleration

SL%(/,0) Horizontal upper boundary

(1.1) Vertical upper boundary

(1.2) Horizontal lower boundary

(f,3) Vertical lower boundary

SC%(/,0) Horizontal control:

Bits Value Function

0-1 Action at boundary:

0 Stop s

1 Bounce (reverse direction)]_j

2 Wrap (enter at opposite boundary)

3 Disable (make sprite disappear)

2-3 Action on collision with background: I I
0 No action (ignores collision) ^
4 Bounce

8 Stop

12 Disable

4 16 Monitor sprite-sprite collisions

5 32 Gate velocity , ,

6 64 Gate acceleration I |
7 0 Joystick in port 2

128 Joystick in port 1

212 ' LJ

n

n

n

n

n

n

n

n

n

Sound and Graphics 4

SC%(U) Vertical control. Same as SC%(/,0) plus:

Bits Value Function

8 256 Pen-down (for hi-res plotting)

9-10 Pen color (multicolor mode only):

0 Screen color

512 Upper 4 bits of screen memory

1024 Lower 4 bits of screen memory

1736 Color nybble (starting at location

55296)

SC%(/,2)/(/,3) Horizontal/Vertical: stop on collision with sprite

whose corresponding bits are set

(/,4)/(f,5) Horizontal/Vertical: stick on sprite collision

(/,6)/(/,7) Horizontal/Vertical: bounce on sprite collision

(i,8)/(i,9) Horizontal/Vertical: disable on sprite collision

SR%(/) Offset (from beginning of screen) of character lying

under sprite i

SD l=move sprites on interrupt

0=Don't move sprites on interrupt

SE% Latched out of bounds flags (1 bit for each sprite)

SF% Sprite-sprite collision flags

SG% Background collision flags

SH% Latched sprite-sprite collision flags

SI% Latched background collision flags

SJ% Release switches, sprite-sprite collision

SK% Release switches, background collisions

SL% Number of jiffies (1/60 second) required per call in

interrupt mode (1-255)

Subroutine Addresses

Decimal

49152

49274

50577

50615

50644

50647

50679

Hex

cooo

C07A

C591

C5B7

C5D4

C5D7

C5F7

Function

Initialization

Main mover subroutine

Fill main screen with character in

50607 ($C5AF)

(color information in normal hi

res mode)

Clear hi-res screen

Turn on multicolor hi-res mode

Turn on standard hi-res mode

Turn off hi-res mode

Note: For the sake of speed, HiSprite does not "look up" the

location of BASIC variables and arrays, but rather depends on

their being defined in a fixed order. Therefore, any names can

be attached to them, except for SP%(...) which must be the

first array. For example, if the first program line is:

213

u
4 Sound and Graphics

LJ

A=O:B%=O:C%=O:D%=O:Fo/o=O:G°/o=O:Ho/o=O:I°/o=O , <

then A will act as SD, B% as SE%, and so on. L—'

Collision Handling j j

One of the most powerful features of HiSprite is its ability to {—

monitor and flexibly react to sprite to background and sprite to

sprite collisions. Let's deal first with the background collisions, j j

that is, a collision between a sprite and anything on the screen '—'
besides another sprite. The sprite's X and Y motion is con

trolled by bits 2-3 of SC%(f,0) and SC%(f,l), respectively:

Bit 3 Bit 2 Total

Set To

0

0

1

1

Set To

0

1

0

1

Value

0

4

8

12

Action

No action (collisions ignored)

Bounce (reverse direction)

Stop

Disable (disappear and stop

moving)

Try it out. Put a REM at the beginning of line 280 of the al

tered version of Program 1 that you saved earlier, delete lines

310 and 320, and change 270 and 290 to:

270 SC%(0,0)=9:SC%(0,1)=5

290 SV%(0,1)=200:POKE V+21,1

Clear the screen, type a few characters here and there on it,

and run the program. When sprite 0 hits a character it should

stop its horizontal motion and reverse (bounce) vertically.

Now make either SC%(0,0) or SC%(0,l)=13 and rerun. This

will cause the sprite to disappear when it hits a character. Try

out various combinations with different patterns of characters

on the screen. For example, if you make both SC%(0,0) and

SC%(0,l)=77 (that is, 1 + 12+64) and both SA%(0,0) and ,

SA%(0,l)=10, you have a game where you must maneuver) I
your sprite around obstacles. If you miss, your sprite vanishes.

Collisions between sprites are slightly more complicated (,

because we want the flexibility of acting differently on col- LJ

lisions between different sprites. When bit 4 of SC%(f,0) or

SC%(/,1) is set, sprite i is monitored for collisions with other

sprites. SC%(f,2) through SC%(f,9) determine what happens [J
when sprite i hits another:

u

214 LJ

n
Sound and Graphics 4

H

f—I Horizontal Vertical Action
f ' SC%(/,2) SC%(/,3) Stop

SC%(/,4) SC%(/,5) Stick (stay with other sprite)
pi SC%(/,6) SC%(z,7) Bounce

! I SC%(/,8) SC%(i,9) Disable

Individual bits of SC% (i,2) through SC%(/,9) select the action

r~| to take when the corresponding sprite is hit. Setting bits 0

through 7 selects the corresponding sprite against which the

action is taken. For example, bit 0 of SC%(3,2) means stop

sprite 3 horizontally on collision with sprite 0, while bit 3 of

SC%(2,5) means sprite 2 sticks vertically on collision with sprite

3. If we want sprite 0 to stick horizontally to sprites 1 and 3,

and stop vertically when it hits sprites 2 or 4, we use:

SC%(0/0)=17 (monitor collisions; bounce at borders)
SC%(0,l)=17

SC%(0,3)=20 (bits 2 and 4 set: 4+16=20)

SC%(0,4)=10 (bits 1 and 3 set: 2+8=10)

Experiment again with various combinations before continu

ing. Remember that regardless of the settings of SC%(i,2) to

(z,9), collisions are ignored if bit 4 is not set (value of 16) in

SC%(0,0) or SC%(0/l). When more than two sprites collide at
once, the results are sometimes not what you would expect.

This is because the computer only keeps track of which sprites

have collided, not between which sprites collisions have

occurred.

You may have already noticed that we need a way to free

sprites once they stop or stick. Two variables do this. Setting

bit i of SJ% or SK% releases sprite i from sprite or background

collisions, respectively. Once released, the sprite moves freely

until it is unstuck (free), then its collision monitoring is re-

F1 sumed. Thus if sprite 6 is stuck on background, you can say
SK%=SK%OR2T6 or SK%=SK%OR64 to release it.

There are a few other useful variables for collisions. SF%

[""} and SG% contain the current sprite and background collision
flags, respectively (bit i is set when sprite i collides with back

ground or any sprite). SF% and SG% should be used rather

| | than the usual PEEKs (locations 53278 and 53279), since
PEEKing the flags clears them. SH% and SI% contain latched

sprite and background collision flags; once one of these bits is

I"""! set by a collision, it remains set until you clear it. This allows
you to catch events without having to monitor each one

n

u
4 Sound and Graphics

u

constantly. Finally, SE% contains latched out-of-bounds flags; i i

bit i is set when sprite i hits one of its boundaries. >—i

High-Resolution I j

The hi-res features of HiSprite are best understood if you're I I
familiar with the principles of hi-res on the 64 as outlined in

the Programmer's Reference Guide, pages 100-105 and pages , ■■»

121-128. Briefly, the hi-res screen is an 8K area of memory I 1
where every pixel of the video screen is represented. HiSprite

can be used to draw on this screen. For starters, you need to

get the computer into the hi-res mode. With HiSprite, SYSing

50647 does this. This places the hi-res screen at location 8192.

If you need it somewhere else, as you might if you have a

large program, you must set up the hi-res mode yourself.

Try this out by typing SYS 50647 and hitting RETURN.

The screen will turn to garbage. Now type SYS 50615 and RE

TURN to clear the hi-res screen.You won't see what you're

typing; if you make a mistake, type SHIFT-RETURN and start

over. Why isn't the entire screen the same color? Because the

hi-res color information comes from the usual screen memory,

which now has miscellaneous text, including the SYS com

mands you just typed. To clear what is now the hi-res color

screen, type SYS 50577 and RETURN. This fills the color area

with whatever is in location 50607. There will be a little gar

bage at the screen bottom. Now return to the usual mode with

SYS 50679 and RETURN. You'll see most of the screen filled

with the letter L

Drawing on Hi-Res

How do you draw on the screen once you're in hi-res mode?

Setting bit eight of SC%(f,l) puts sprite i's "pen down," caus

ing a dot to be drawn near the center of the sprite (specifically, | |
the sprite's twelfth column, tenth row). A moving sprite with

its pen down draws a curve along its path. There is a limita

tion, however; the dots are drawn only in positions actually (|.
occupied by the sprite, not in any it may have passed over.

Thus velocities greater than 256 (one dot per call) will leave

discontinuous or dotted curves. Now go back to the original [J
version of Program 1, enter line 280 and rerun:

280 SC%(0,1)=257:SYS 50647: SYS 50577: SY (,

S 50615 I I

216 LJ

H
Sound and Graphics 4

in. Try playing around a little. For instance, you could change line

1 ' 280 to read FOR A=0 TO 7:SC%(A,1)=257:SYS 50647:SYS
50577:SYS 50615:NEXT, and all eight sprites will use their

n Ven> Remember that

SC%(0,l)=<anything>AND NOT256

|—-> will pick up the pen (no drawing) while

' ' SC%(0,l)=<anything>OR256

will put it down.

Pen Colors

In standard hi-res mode, the color of an on dot is taken from

the upper four bits of the corresponding screen memory loca

tion, while the color of off dots is from the lower four bits. All

on dots in each character position have the same color scheme.

If we want to set the color a sprite is drawing, we need to

know what screen memory location to use. If sprite i's pen is

down, then SR%(z) gives the character position where it is

drawing. The position is expressed as an offset from the begin

ning of the screen. To cause sprite 0 to draw light blue (color

14) on a black background (color 0), put 0+16*14 into the

locations under the sprite. For instance:

POKE 1024+SR%(0),224

If you wanted the same pen/background color everywhere,

you could use

POKE 50607,224: SYS 50577

to fill the entire color screen.

SR%(/) can also be used for other graphics modes as long

as the sprite's pen is down:

R POKE 1024+SR%(0),0:POKE55296+SR%(0),14

puts a light blue @ (character 0) where sprite 0 is. If you try

r—) this with Program 1, a light blue @ character should appear in

! J the top left-hand corner of the screen.

,—t Multicolor Hi-Res
' i In multicolor hi-res mode, the color of each dot can be set in

dependently. The tradeoff is that each dot is twice as wide, so

r—i there is only half as much horizontal resolution. SYS 50644

' I turns on multicolor hi-res mode; SYS 50679 cancels hi-res and

217

4 Sound and Graphics

Bit 10

0

0

1

1

Bit 9

0

1

0

1

Value

0

512

1024

1536

LJ

LJ

multicolor. While in multicolor mode, bits 9 and 10 of , ,

SC%(i,l) determine pen color, as follows: i—1

Source of Color Information

Background color i >

Upper four bits of screen memory I—!
Lower four bits of screen memory

Nybble from color memory {

As with the standard hi-res mode, SR%(# contains the charac- '—'
ter location offset. To put a color code, say 3, in the color

nybble under a sprite, POKE 55296+SR%(i),3.

Interrupt Mode
Ordinarily, HiSprite is active only when it's called, using SYS

49274 (see line 300 in Program 1; HS is set in line 5). In inter

rupt mode, however, HiSprite is automatically called up once

each video frame, or about 60 times per second. As long as

the array variable SP%(...) is defined, the sprites will move

even when no BASIC program is running. This is most useful

for designing and testing programs, as it allows you to

manipulate the control variables in direct mode while you

watch the results. To try this, take out line 280 again and run

Program 1. Stop the program, and enter interrupt mode by

typing in direct mode SD=1 and press RETURN. The sprites

are moving again. Now change whatever variables you want

and watch the results. Interrupt mode is turned off by SD=0.

You can put everything into slow motion by making SL%

greater than 1. SL% represents the number of video frames re

quired to trigger a call to HiSprite. In direct mode, type

SL%=5: The sprites will slow to a crawl.

There are two cautions in interrupt mode. First, since the

interrupt can occur at any time, it will (although rarely) occur { t

when BASIC has begun, but not yet finished, changing or I J

reading a variable such as acceleration. This will seldom make

any difference, but if it becomes a problem, set SD to 0 to pre- , >

vent interrupts, do your critical operations, then reset SD to 1. L_J
Second, you should avoid I/O and screen editing while in

interrupt mode. In fact, I/O may not work correctly while s t

HiSprite is active at all, so you may need to hit RUN/ i i

STOP-RESTORE first.

HiSprite may seem complex, but if you experiment with it , {

a bit at a time, you'll see how creative it is and how much you I i

can do simply by manipulating a few variables and adding a

218 . I J

n
Sound and Graphics 4

,__ little logic. For starters, a sprite that moves and draws is essen-

1 (tially a turtle, right? Sprites can easily push, pull, block, de
stroy, and bounce each other. Automatically maintained

_ velocities and accelerations make it easy to have sprites act

! I like physical objects such as balls, rockets, or molecules.

rn Using HiSprite with Machine Language

) | The only preparation required for using HiSprite from a ma

chine language program is setting up the variables to look like

BASIC variables. VARTAB ($2D-2E) and ARYTAB ($2F-$30)

should point to the storage areas of the variables and arrays

used by HiSprite. Integer array elements are two bytes long,

with the high-order byte first, in twos complement form. Ar

rays are stored with the first subscript varying fastest. Thus, if

SC%(0,0) is stored in $2000-2001, the other locations would

be:

$2002-2003 SC%(l,0)

$200E-200F SC%(7,0)

$2010-2011 SC%(1,1)

•••

Table 2 gives the required offsets from the location pointed to

by ARYTAB or VARTAB to the high-order byte of the element

shown:

n

n

n

Table 2.

Pointer

VARTAB

Offsets

Offset

(Decimal)

2

10

17

24

31

38

45

52

59

Variable/Element

SD (Interrupt mode is on if any of

low-order four bits is 1)

SE%

SF%

SG%

SH%

SI%

SJ%

SK%

SL%

219

ARYTAB* 9

50

91

132

164

205

372

SP%(0,0)

SV%(0,0)

SA%(0,0)

SL%(0,0)

SL%(0,2)

SC%(0,0)

SR%(0)

u
4 Sound and Graphics

u

u

*The first two bytes pointed to by ARYTAB must contain

$D3D0 (representing "SP%"). Otherwise no header information is

required.

Linking HiSprite to BASIC Programs

HiSprite must be loaded before a BASIC program can use it.

The most straightforward way to do this is manually, that is,

to enter

LOAD "HISPRITE",8/1 (or ...,1,1 for tape)

before running the main program(s). Another possibility is to

have the main program load HiSprite each time it runs:

10 IF S=0 THEN S=l: LOAD "HISPRITE",8,1

20 CLR

30 ... REST OF PROGRAM

If the main program is going to be run repeatedly, however,

it's pointless to load HiSprite each time. So the third approach

is to use a loader program to load HiSprite first and then the

main program:

10 IF S=0 THEN S=l: LOAD"HISPRITE",8,1

20 PRINT"{CLR}{3 DOWN}LOAD"CHR$(34)"MAIN

{SPACE}PRG"CHR$(34)",8"

30 PRINT"{HOME}":POKE 631,13:POKE 198,1:END

Program 2. HiSprite
For easy entry of this machine language program, be sure to use "The Machine Language

Editor: MIX" Appendix D.

49152 :169,127,141,013,220,173,075 LJ
49158 :021,003,205,098,196,240,001

49164 :015,141,100,196,173,020,145

49170 :003,141,099,196,173,098,216 I |

49176 :196,141,021,003,173,097,143 L-J
49182 :196,141,020,003,173,017,068

49188 :208,041,127,141,017,208,010

49194 :173,026,208,009,001,141,088 LJ
49200 :026,208,169,240,141,018,082

220

Sound and Graphics 4

n-

n

49206

49212

49218

49224

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

49302

49308

49314

49320

49326

49332

49338

49344

49350

49356

49362

49368

49374

49380

49386

49392

49398

49404

49410

49416

49422

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

49494

49500

221

4 Sound and Graphics
u

u
49506

49512

49518

49524

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

:045,

:045,

:045,

:008,

:045,

:189,

:208,

:016,

:021,

:000,

:177,

:240,

:052,

:051,

:208,

:196,

:095,

:165,

:024,

:053,

:054,

:052,

:208,

:053,

:049,

:032,

:096,

:240,

:165,

:196,

:162,

:138,

:208,

:101,

:196,

:050,

:051,

:083,

:092,

:047,

:053,

:047,

:051,

:024,

:085,

:017,

:044,

:000,

:024,

:240,

160,045,

073,255,

157#095#

104,133,

208,203,

100,196,

248,173,

208,173,

208,096,

141,094,

047,133,

025,173,

240,018,

240,097,

082,165,

208,071,

196,208,

051,041,

165,047,

165,048,

160,017,

170,160,

034,138,

208,039,

053,208,

049,053,

165,052,

192,032,

052,073,

141,136,

255,232,

010,164,

002,105,

196,133,

105,000,

177,053,

177,053,

196,144,

177,053,

145,047,

160,050,

160,206,

169,255,

096,173,

160,091,

047,240,

087,196,

041,128,

189,000,

033,042,

049,045

160,017

196,202

046,104

096,162

149,046

088,196

136,196

133,049

196,160

051,041

096,196

169,004

010,037

052,045

165,052

002,024

016,240

105,206

105,000

177,045

128,049

160,064

138,160

009,138

208,023

045,090

060,196

255,045

196,056

106,144

049,192

015,024

053,173

133,054

145,047

145,047

021,024

160,051

160,091

113,047

177,053

141,094

094,196

177,047

076,165

240,048

240,001

220,036

036,049

,145,075

,049,191

,208,245

,133,132

,008,076

,202,242

,141,164

,141,242

,169,054

(,206,181

,012,107

,036,162

,036,177

,051,150

,091,057

,044,156

,096,047

,248,193

,133,118

1,133,204

,069,228

',053,068

,049,115

(,096,162

1,160,091

,024,125

1,196,130

,096,052

,136,224

,096,069

,252,149

:,002,071

r, 109, 241

,102,030

,160,182

,160,172

,236,255

,160,180

,113,204

,177,231

,145,138

,133,096

,196,232

,208,123

,200,098

,051,196

1,162,127

,232,254

,049,136

,208,232

u

222

U

u

u

Sound and Graphics 4

n

n

n

n

n

n

49806

49812

49818

49824

49830

49836

49842

49848

49854

49860

49866

49872

49878

49884

49890

49896

49902

49908

49914

49920

49926

49932

49938

49944

49950

49956

49962

49968

49974

49980

49986

49992

49998

50004

50010

50016

50022

50028

50034

50040

50046

50052

50058

50064

50070

50076

50082

50088

50094

50100

:049,

:160,

:145,

:160,

:145,

:160,

:113,

:177,

:145,

:141,

:240,

:196,

:128,

:000,

:042,

:174,

:196,

:109,

:001,

:002,

:047,

:047,

:024,

:128,

:196,

:241,

:092,

:177,

:160,

:241,

:160,

:196,

:162,

:196,

:010,

:047,

:027,

:237,

:047,

:164,

:047,

:160,

:145,

:240,

:201,

:040,

:170,

:145,

:047,

:157,

056,160,

092,241,

047,160,

091,241,

047,076,

092,177,

047,145,

047,160,

047,160,

089,196,

027,165,

240,021,

240,001,

220,036,

036,049,

093,196,

160,051,

196,141,

160,050,

162,000,

145,047,

125,134,

096,173,

141,089,

189,109,

047,157,

196,162,

047,048,

010,177,

047,160,

009,177,

145,047,

132,169,

160,133,

241,047,

160,009,

056,162,

092,196,

160,010,

177,047,

016,001,

010,177,

045,165,

062,201,

003,240,

229,050,

200,177,

047,138,

174,093,

109,196,

051,177,

047,160,

050,177,

047,160,

192,194,

047,160,

047,160,

050,113,

050,177,

200,017,

051,044,

162,000,

232,024,

049,240,

240,045,

024,189,

113,047,

092,196,

177,047,

160,010,

160,009,

196,145,

089,196,

196,174,

196,160,

109,196,

001,160,

002,162,

047,160,

010,145,

047,253,

024,096,

000,237,

177,047,

160,132,

241,047,

164,169,

160,165,

241,047,

160,009,

096,134,

045,005,

051,041,

001,240,

074,056,

168,177,

047,160,

160,009,

196,169,

096,166,

047,170

051,131

047,012

050,141

024,076

051,091

091,013

047,010

047,048

047,118

086,047

041,100

189,004

006,003

096,222

109,249

157,194

162,116

048,221

113,191

177,079

047,194

073,157

093,077

051,163

141,159

050,191

000,228

050,146

047,198

134,078

056,124

092,102

160,189

177,089

048,136

000,168

177,111

160,011

241,150

050,214

052,069

003,076

034,154

169,125

047,099

010,158

145,044

000,085

050,186

223

4 Sound and Graphics

50106

50112

50118

50124

50130

50136

50142

50148

50154

50160

50166

50172

50178

50184

50190

50196

50202

50208

50214

50220

50226

50232

50238

50244

50250

50256

50262

50268

50274

50280

50286

50292

50293

50304

50310

50316

50322

50328

50334

50340

50346

50352

50358

50364

50370

50376

50382

50388

50394

50400

224

$173,089,

:132,240,

:208,251,

:050,076,

:160,050,

:160,091,

:047,164,

:165,052#

:196,141#

:083,196,

:009,177,

:165,052,

:196,165,

:141,088,

:006,169,

:096,160,

:000,208,

:010,170,

:240,006,

:208,096,

:157,001,

:000,160,

:051,145,

:050,241,

:047,096,

:032,064,

1000,000,

:192,049,

:201,045,

:000,032,

:165,020,

:169,255,

:049,044,

:000,255,

:080,089,

:084,032,

:089,084,

:057,056,

:032,016,

:192,192,

t003,003,

:170,189,

:176,004,

:096,056,

:007,141,

:133,054,

:053,010,

:054,024,

:144,002,

196,048

005,096

032,060

160,195

036,051

145,047

050,076

073,255

136,196

010,170

047,168

073,255

088,196

052,013

196,192

255,157

010,177

096,173

160,009

169,255

160,010

208,096

051,241

047,169

047,160

000,000

000,000

000,000

234,000

208,238

107,169

005,021

133,037

032,015

000,001

082,073

077,032

072,044

051,000

008,804

048,048

173,083

001,208

201,040

233,040

161,196

152,041

038,054

101,053

230,054

,005,224,153

,224,164,029

,196,164,085

,169,000,086

,112,002,109

,200,145,236

,160,195,146

,045,136,186

,096,173,148

,024,160,115

,208,013,100

,045,088,162

,076,027,214

,088,196,206

,001,240,104

,000,208,047

,047,157,161

,083,196,020

,177,047,099

,157,001,104

f,177,047,236

,056,169,231

,047,160,209

,000,160,128

[,050,145,255

',000,000,223

,000,000,182

,000,067,159

,240,012,057

,032,115,175

208,230,088

208,006,029

,026,036,010

,016,011,039

,067,079,024

,071,072,095

,066,076,001

,032,049,010

,128,064,002

,002,001,227

,012,012,162

,196,010,132

,201,240,167

,176,001,018

,168,041,060

,169,000,106

,248,133,199

,010,038,159

,133,053,124

,173,088,147

u

LJ

U

LJ

U

U

U

U

u

u

n

n

n

n

n

n

n

n

i I

50406

50412

50418

50424

50430

50436

50442

50448

50454

50460

50466

50472

50478

50484

50490

50496

50502

50508

50514

50520

50526

50532

50538

50544

50550

50556

50562

50568

50574

50580

50586

50592

50598

50604

50610

50616

50622

50628

50634

50640

50646

50652

50658

50664

50670

50676

50682

50688

50694

50700

Sound and Graphics 4

:196,037,052,201,001,189,138

:000,208,133,050,106,201,166

:166,176,205,201,006,144,116

:201,056,233,006,024,106,106

:024,106,024,101,053,230,024

:048,160,101,145,047,133,126

:053,165,054,105,000,133,008

:054,136,145,047,198,048,132

:160,003,006,053,038,054,080

:136,208,249,173,161,196,127

:005,053,133,053,173,017,212

:208,041,032,240,074,032,155

:120,197,024,101,054,133,163

:054,165,050,056,233,012,110

i041,007,170,160,205,177,050

:047,168,173,022,208,041,211

:016,208,010,189,162,196,083

:160,000,017,053,145,053,248

:096,152,106,106,106,106,242

:041,192,224,002,144,014,193

:134,050,202,024,106,106,204

:202,202,240,002,016,248,242

:166,050,160,000,081,053,104

:061,170,196,081,053,145,050

:053,096,173,000,221,041,190

:003,073,003,010,010,010,233

141,161,196,173,024,067

041,014,013,161,196,001

010,096,173,000,221,140

003,073,003,133,054,199

024,208,041,240,102,174

106,102,054,106,024,094

003,133,054,169,000,118

053,169,012,160,231,162

004,076,199,197,032,080

197,024,105,031,133,026

169,000,133,053,160,247

162,032,145,053,136,019

255,208,249,198,054,078

208,244,096,056,176,166

024,173,024,208,041,173

009,008,141,024,208,082

017,208,009,032,141,038

208,173,022,208,041,133

144,002,009,016,141,021

208,096,173,024,208,207

240,009,004,141,024,197

173,017,208,041,223,102

017,208,173,022,208,007

239,141,022,208,096,247

225

:010,

:208,

:010,

:041,

:173,

:054,

:105,

:133,

:162,

:120,

:054,

:063,

1192,

:202,

:001,

:240,

:173,

:017,

:239,

:022,

:041,

:208,

:141,

:041,

u

LJ

64 Paintbox u
Chris Metcalf i ,

One of the most powerful features of the Com

modore 64, its high-resolution color graphics, can . »

be difficult to use. This machine language pro- I—i
gram makes accessing this capability easy. By us

ing Atari graphics commands, you can plot points,

set colors, or draw lines with just one statement

You can even type in programs originally written

for Atari graphics modes 7 and 8 on your (A.

The Commodore 64 is an undeniably powerful computer; its

capabilities in high-resolution color graphics, for example, sur

pass those of the Atari and Apple computers. Nonetheless,

these capabilities can be difficult to access; the POKEs and

PEEKs required are slow to calculate and slow to execute. "64

Paintbox" takes Atari's far more powerful command set and

makes it available to the Commodore 64 user.

BASIC programs written for Atari graphics modes 7 and 8

are easily transferred to the Commodore 64 when this graph

ics pack is in place. You can type in the program, line by line,

adding an exclamation mark (!) before each graphics command

to let the 64 BASIC interpreter know that it is a special com

mand. Once this is done, the program will run on the 64 just

as it would on an Atari.

64 Paintbox M

To enter Program 1, 64 Paintbox, you first need to load and

run the MLX program found in Appendix D. MLX makes it

easy to type in a machine language program like 64 Paintbox | |

and insures you'll have a working copy the first time. Once '

you've run MLX, it asks for two addresses. They are:

Starting address: 49152 !_J
Ending address: 51197

Now you can begin typing in Program 1. When you're , .

through, save it to tape or disk, using the filename 64 1 I

226

n

Sound and Graphics 4

n

!"—] PAINTBOX if you want to use the autoload program described

1 ^ below.
Load 64 Paintbox by entering:

Pj LOAD"filename",8,l (for disk)
LOAD"filename",1,1 (for tape)

Then type

SYS 49152:NEW

to initialize the program and reset the pointers. You're now

ready to begin typing in any Atari program which uses graph

ics mode 0, 7, or 8.

To simplify loading the program, you may use Program 2,

"64 Boot/' the program following the listing of 64 Paintbox.

Use "The Automatic Proofreader" program in Appendix C to

type in this short autoload routine. Save it on the same disk as

64 Paintbox. (If you're using tape, 64 Boot should precede 64

Paintbox on the tape. You also need to change line 230 so that

the 8 is a 1.) Type LOAD"64 BOOT",8 (or just LOAD"64

BOOT" if you've got a Datassette) and RUN; the program will

display the command set, load in 64 Paintbox, initialize 64

Paintbox, and execute a NEW. At that point, you can start

entering Atari programs.

No matter which method you use to load 64 Paintbox, the

Atari graphics commands are easily used. Each command must

be preceded by an exclamation mark (and a colon, if following

an IF-THEN statement). The command name can be spelled

out in full, or abbreviated with a period as on the Atari. How

ever, these abbreviations are not expanded when the program

is listed. The various parameters follow the command name.

Thus a typical syntax might be:

f"j !PLOT 100,100

to plot a point at 100,100.

^_ As with normal BASIC commands, spaces are ignored,

!i whether in the command name or in the parameters.

Since the 64 Paintbox commands are not standard BASIC,

^ the IF-THEN routine will not recognize them as being legal

) i commands unless they're preceded with a colon. So, if you

want to plot a point (for example) only if there is no point

_ there already, you might have in the program:

! (ILOCATE 10,15,A : IF A = 0 THEN : ICOLOR 1 : IPLOT 10,15

n 227

u
4 Sound and Graphics

LJ

64 Paintbox Commands j /

The commands themselves are as follows (abbreviations are *—-'

enclosed within parentheses):

IGRAPHICS n, (!G.) This command mirrors the Atari { |

GRAPHICS command, and takes only one parameter, n, the '—'
graphics mode. Since only graphics modes 7 and 8 are sup

ported, all graphics commands between 1 and 6 are treated as j |

if they were 0. As with the Atari, either 7 or 8 may have 16, I—J
32, or 48 added to it. Plus 16 gives no text window; +32 does

not clear the graphics screen; and +48 combines the two.

Without any of these extra numbers (just IGRAPHICS 8, for

instance), the graphics screen will clear and a four-line text

window will be set up at the bottom. Regardless of the addi

tional numbers, however, the screens will always be reset to

standard Atari graphics colors.

Do not try to use tape or disk with the text window en

abled. For example, if you enter LOAD and hit RUN/STOP,

the interrupts will be partially disabled, and you will need to

reenter the graphics mode (with +32). Attempted disk access

will return a ?DEVICE NOT PRESENT ERROR.

The Atari does not allow plotting to the area "under" the

text window, but 64 Paintbox does, although the graphics re

main concealed until you view what you have done with a

IGRAPHICS n+48 where n is 7 or 8. Furthermore, when

working with the graphics screen in immediate mode, it does

not need a text window, as the Atari itself does.

IPLOT x,y (!P.) This is the PLOT command. X and y are

offset from the top left corner of the screen, and have a range

of 0-319 for x and 0-199 for y in graphics mode 8. In

GRAPHICS 7, the ranges are 0-159 for x and 0-99 for y. The

command is not set up to work in graphics mode 0. The PLOT j i

command plots in the current color register (see the I j
SETCOLOR and COLOR commands). PLOT also sets the

starting point for the DRAWTO command. I ,

IPOSITION x,y (!PO.) The POSITION command sets the LJ
starting point for the DRAWTO command without actually

altering the display. X and y are the same as in the PLOT * i

command. This command, like PLOT, positions the graphics * i
screen "cursor" (not the actual text cursor), regardless of the

graphics mode. , ,

IDRAWTO x,y, (!.) This command, DRAWTO, draws a LJ
line connecting the old starting point to the specified x,y, us-

228 LJ

n
Sound and Graphics 4

H

pi ing the current color register, and then sets the starting point

for the next DRAWTO to the specified x,y. The x,y parameters

have the same range as for PLOT and POSITION. This com-

!—I mand does not affect the screen in GRAPHICS 0.

' -J JSETCOLOR r,d,c2 (!S.) The SETCOLOR command
changes the specified r to hue (cl) and luminance (c2) in the

f*j range 0-15. The format is identical to that of the Atari. The

f various registers set the colors of the border, the background,

the characters, and the pixels according to the table. Note that

bit pairs (00, 01, 10, and 11) are used to define single pixels in

graphics mode 7. The number below is the graphics register r

(the first parameter).

SETCOLOR r Values

GRAPHICS 0 GRAPHICS 7 GRAPHICS 8

0 01 pair pixels

1 Characters 10 pair pixels Characters/pixels

2 Background 11 pair pixels Background

4 Border Screen color Border

An unfortunate problem with the way the 64 and the

Atari are configured is that in graphics mode 7 the 64's

character color in the window is set by SETCOLOR register 2,

not 1, and that the text window cannot be set to its own color

but takes that of the rest of the screen.

Another problem with register 2 in graphics mode 7 is

that this register is set to the background color (or white on

old 64s) whenever the screen is cleared. Thus, printing the

"clearscreen" character when in graphics mode 7 (even with

no window) must be avoided, as all the 11 pixel pairs will be

come background color: in other words, invisible. Further

more, any scrolling of the text window in GRAPHICS 7 will

scroll strange color data into the 11 pixel pairs. This is, how

ever, no problem in graphics mode 8.

You may be interested to know that executing a

ISETCOLOR 2,cl,c2 in GRAPHICS 7 or a ISETCOLOR I,cl,c2

in GRAPHICS 8 causes the character color register at 646 to

be set to colors cl,c2. Thus, previous color codes are dis

regarded when a ISETCOLOR or IGRAPHICS command is

executed (IGRAPHICS calls ISETCOLOR to set up default

colors).

The numbers (0-15) that you can use for cl and c2 in

229

4 Sound and Graphics

SETCOLOR do correspond to various hue and luminance

settings on the Atari. Take a look at the following chart to see

what values in 64 Paintbox match Atari's hue and luminance

values.

Matching Atari Hue and Luminance to 64 Paintbox

Color Codes

Hue

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

11

12

2

9

9

6

6

6

6

6

6

6

5

8

8

4

11

7

8

2

2

6

6

6

6

14

14

14

5

5

8

8

Luminance

6

11

7

8

2

2

6

6

6

6

14

14

14

8

8

8

12

7

8

2

2

4

4

14

14

14

13

10

10

12

7

8

2

2

4

4

14

14

14

5

5

13

5

10

1?

15

1

15

8

8

4

4

14

14

3

13

13

13

7

13

10

14

1

1

15

8

8

4

4

14

14

3

13

13

13

7

13

10

!COLOR r (!C.) This command specifies which color reg

ister (given above for !S.) is to be used for plotting and line

drawing. In both graphics modes, 0 has the same effect: It

erases pixels. In GRAPHICS 8, an odd number for r always

sets the computer to plot pixels. Registers 1-3 are used in

GRAPHICS 7, where register 1 sets bit pair 01, 2 sets 10, and

3 sets 11 (note that this is the SETCOLOR number plus one).

ILOCATE x,y,v (!L.) The LOCATE command returns in

floating-point variable v the pixel currently at location x,y and

sets the starting point for DRAWTO to the LOCATEd pixel.

Thus, for GRAPHICS 8, either a zero (no pixel) or a one (pixel

present) is returned. In GRAPHICS 7, a zero also indicates no

pixel, while one to three correspond to bit pairs 01, 10 and 11.

Using the LOCATE command with a non-floating-point vari

able does nonproductive (though interesting) things, so it's

best to stick to floating-point variables (that is, no % or $ sym

bol after the variable).

230

LJ

LJ

u

LJ

LJ

u

LJ

u

U

Sound and Graphics 4

!FILL x,y (!F.) This command is a more powerful version

for the Atari XIO fill command. It will fill any area, regardless

of the shape. It will stop at any on pixel, as well as at the

edges of the screen. The x and y parameters determine where

it will start and also set a begin-point for future DRAWTO

commands. Atari users, remember to draw a line at the left of

whatever you are going to fill, as this FILL needs a border to

stop at. However, it's much more flexible than the XIO

command.

!TEXT x,y,"string" (IT.) The TEXT command allows text

to be located starting at any column and row on the GRAPH

ICS 8 screen (it will execute on GRAPHICS 7 screens, but pro

duces strange multicolored characters). The "string" can be

characters enclosed in quotes, a string variable, or combina

tions of the two. An additional parameter can be passed before

the "string"; a 0 or 1 in this position determines whether the

computer will use lower/uppercase text or graphics and

uppercase. The program is initially set up to use lower- and

uppercase. No control characters will be printed, but the RVS

ON and RVS OFF characters have their usual effect of putting

the characters in-between in reverse video (or inverse video

for Atari people). Remember that the x and y parameters must

be specified for each TEXT command, although the

uppercase/graphics need be set only once to be used repeat

edly. The reverse video, however, turns off at the end of the

string.

JQUIT (!Q.) This command cuts 64 Paintbox out of the

command processing loop and removes the check on error-

message display. The program can be restarted with

SYS(49152). Calling SYS49152 repeatedly will not, by the

way, create any difficulty.

Programmer Notes

Locations 3 and 4 hold two variables used by the interrupt

that drives the text window to determine uppercase/graphics

for the window and hi-res/multicolor for the graphics. To use

location 3 to control the case in the window, POKE 3 with 21

for uppercase/graphics and with 23 for lowercase. (And note

that lowercase is required for entering commands in

lower/uppercase mode.) Register 4 is used by the program to

determine pixel plots, LOCATE returns, and so forth, and so

may be used to flip between hi-res (8) and multicolor (24).

231

u
4 Sound and Graphics

u

Other values generate interesting, and harmless, effects. v j

Memory configuration for 64 Paintbox is: I—'

Location Function

0400-07E7 Used as the text window (the bottom four lines, at I (

least) ^
0800-9FFF Unused and completely free for BASIC programs

A000-BC7F BASIC ROM with RAM underneath , ,

BC80-BFFF Used for data tables and the FILL routine stacks Lj
C000-C7FF The 2000 bytes of actual program

C800-CBFF Used as the color screen for all but 11 pixels in

GRAPHICS 8

CC00-CFFF Left free for use by the DOS Wedge or other utility

E000-FFFF Operating System ROM, with the graphics screen un

der it

Variable storage is:

Permanent: locations 3-6, 251-254 (interrupt shadows:

3=53272,4=53270)

Temporary: locations 27-42, 107-113, 158-159, 163-164,

167-170

Non-zero page storage: locations 670-699

Abbreviations for 64 Paintbox Commands

Command Abbreviation

DRAWTO !. (This takes the place of REM in Atari BASIC.)

PLOT !P.

POSITION IPO.

GRAPHICS !G.

COLOR !C.

LOCATE !L.

FILL !F.

TEXT !T.

QUIT !Q.) |

Demonstrations

Program 3 is a short program which illustrates how 64

Paintbox can be used. It draws several figures on the screen

and then waits for a keypress from you to continue. To see

this demonstration, make sure 64 Paintbox is in memory (if

you load it manually, remember to type SYS 49152 and

NEW), then load Program 3. Run it and watch the effects.

232

n
Sound and Graphics 4

n

n

n

n

n

n

Program 1. 64 Paintbox
For easy entry of this machine language program, be sure to use "The Machine Language

Editor: MIX," Appendix D.

49152 1169,054,133,001,169,224,238

49158 :141,160,188,169,000,141,037

49164 :128,188,170,189,128,188,235

49170 :024,105,064,157,129,188,173

49176 :189,160,188,105,001,157,056

49182 :161,188,232,224,024,144,235

49188 .-234,169,001,160,007,153,248

49194 :199,188,153,192,188,010,204

49200 :153,207,188,136,153,192,053

49206 :188,010,136,016,238,169,043

49212 :003,160,006,153,216,188,018

49218 :010,010,136,136,016,247,109

49224 :169,254,160,007,153,224,015

49230 :188,056,042,136,016,248,252

49236 :169,252,160,007,153,231,032

49242 :188,153,239,188,153,247,234

49248 :188,056,042,056,042,136,104

49254 :136,016,239,169,066,141,101

49260 :000,003,169,197,141,001,107

49266 :003,169,134,141,008,003,060

49272 :169,192,141,009,003,169,035

49278 :008,133,004,169,055,133,116

49284 :001,096,160,001,177,122,177

49290 :201,033,240,003,076,228,151

49296 :167,165,212,208,249,032,153
49302 :115,000,165,122,133,158,075

49308 :165,123,133,159,162,255,129

49314 :160,000,165,158,133,122,132

49320 :165,159,133,123,232,032,244
49326 :115,000,041,127,221,242,152
49332 :192,240,245,201,046,240,064

49338 :026,009,128,221,242,192,236

49344 :240,019,189,242,192,048,098
49350 :003,232,208,248,200,200,009

49356 :224,053,144,212,162,011,242

49362 :076,066,197,185,040,193,199

49368 :141,233,192,185,041,193,177

49374 :141,234,192,032,115,000,168

49380 :169,054,133,001,032,046,151

49386 :194,169,055,133,001,076,094

49392 :174,167,068,082,065,087,115

49398 :164,080,076,079,212,080,169

49404 :079,083,073,084,073,079,211

49410 :206,076,079,067,065,084,067

49416 :197,083,069,084,067,079,075

49422 :076,176,067,079,076,176,152

I \
233

4 Sound and Graphics

49428

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

49494

49500

49506

49512

49518

49524

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

234

:071,082,065,080,072,073,207

:067,211,070,073,076,204,215

:081,085,073,212,084,069,124

:088,212,138,194,046,194,142

:031,194,181,196,199,195,016

:150,196,081,193,242,197,085

:060,193,252,198,169,228,132

:141,008,003,169,167,141,179

:009,003,169,139,141,000,017

:003,169,227,141,001,003,106

:096,032,042,197,208,039,182

:138,048,036,041,015,168,020

:192,007,176,032,120,032,139

:000,194,088,169,027,141,205

:017,208,169,023,141,024,174

:208,169,008,141,022,208,098

:133,004,169,199,141,000,250

:221,208,102,076,061,197,219

:192,009,176,249,120,169,019

:059,141,017,208,169,040,000

:141,024,208,169,196,141,251

;000,221,169,008,192,007,231

:208,002,169,024,133,004,180

:141,022,208,169,023,133,086

:003,138,041,016,208,035,093

:169,127,141,013,220,169,241

:001,141,026,208,141,018,199

:208,169,198,141,038,003,171

:169,197,141,039,003,169,138

:100,141,020,003,169,197,056

:141,021,003,208,003,032,096

:000,194,088,138,041,032,187

:208,018,160,000,132,168,130

:169,000,133,170,162,224,052

:032,093,196,169,147,032,125

:210,255,169,004,133,158,135

:166,158,188,251,193,132,044

:168,032,008,196,198,158,234

:016,242,096,008,014,006,118

:009,000,169,000,141,026,087

.-208,169,129,141,013,220,116

:169,202,141,038,003,169,220

:241,141,039,003,169,049,146

:141,020,003,169,234,141,218

:021,003,096,032,228,196,092

:160,002,185,167,002,153,191

:251,000,136,016,247,096,018

:032,031,194,032,024,197,044

:240,007,230,253,032,061,107

:194,198,253,032,066,194,227

u

u

LJ

U

U

u

u

u

u

J
G

□
G

3
D
U
G

G
G

M
G
i

I
Q
W

(
O
Q
H

0
0

0
0
H
^
Q

W
(
»
Q
H
^
H
l
O
I
O
^
l
O
0
0
^
Q
Q

U
l
H
H

C
O
C
O
Q

U
l

^
G
l
Q
^
M
0
0
v
J
U
l
W
(
D
^
W
W
g
g
Q
^
W
^
^

>
J
M
H
M
V
O
H
W
^
M
(
»
^
M

M
^
Q
Q
W
M
C
0
v
O
a
)
Q
^
H
H
G
I

V
O
w
^
U
)
W
>
j
Q
U
i
V
O
Q
^
0
0
N
l
5
H
M
^
(
D
M
^

s
i
^
w
i
o
w
w
m
h
^
i
s
i
b
i
o
o

v
i
^
w
^
o
^

v
O
4
^
v
o
^

H
a
)
.
M
^
^
t
f
\
O
H
W
W

^

h
>
i
Q
w
^
^
w
m
w
>
j
>
i
q
m
v
o
w

g i 55*
h
o

O
l

4 Sound and Graphics

50028 :163,197,109,144,025,165,143

50034 :163,229,109,133,163,165,052

50040 :164,229,110,133,164,165,061

50046 :251,024,101,111,133,251,229

50052 :165,252,101,112,133,252,123

50058 :173,182,002,024,101,107,215

50064 :141,182,002,173,183,002,059

50070 :105,000,141,183,002,197,010

50076 :110,240,004,144,032,208,126

50082 .-007,173,182,002,197,109,064

50088 :144,023,173,182,002,229,153

50094 :109,141,182,002,173,183,196

50100 :002,229,110,141,183,002,079

50106 :165,253,024,101,167,133,005

50112 :253,076,057,195,076,061,142

50118 :197,032,042,197,208,248,098

50124 :224,005,176,244,138,072,039

50130 :032,035,197,138,041,015,156

50136 :010,010,133,168,032,035,092

50142 :197,138,041,015,074,170,089

50148 :240,003,074,005,168,133,083

50154 :168,074,168,185,118,196,119

50160 :176,004,074,074,074,074,204

50166 :041,015,164,168,192,003,061

50172 :208,006,224,007,208,002,139

50178 :169,001,133,168,104,170,235

50184 :224,003,240,036,160,240,143

50190 :165,168,032,024,197,208,040

50196 :028,224,000,240,023,202,225

50202 :208,005,032,082,196,240,021

50208 :031,224,001,208,005,032,021

50214 :045,196,240,032,202,202,187

50220 :202,157,032,208,096,202,173

50226 :048,012,202,048,019,240,107

50232 :025,202,032,045,196,202,246

50238 :240,237,160,015,165,168,023

50244 :010,010,010,010,133,168,153

50250 :169,204,133,170,162,200,088

50256 :208,011,162,216,169,220,042

50262 :133,170,165,168,141,134,229

50268 :002,132,006,160,000,132,012

50274 :195 , 134,196,177,195,037,008

50280 :006,005,168,145,195,200,055

50286 :208,245,232,228,170,208,121

50292 :238,096,011,207,199,113,212

50298 :040,143,146,040,153,170,046

50304 :102,068,102,068,102,238,040

50310 :102,238,100,227,110,227,114

50316 :110,093,085,093,085,215,053
50322 :136,093,136,170,032,042,243

LJ

U

U

U

LJ

u

LJ

LJ

236

n

n

n

n

n

H

n

n

50328

50334

50340

50346

50352

50358

50364

50370

50376

50382

50388

50394

50400

50406

50412

50418

50424

50430

50436

50442

50448

50454

50460

50466

50472

50478

50484

50490

50496

50502

50508

50514

50520

50526

50532

50538

50544

50550

50556

50562

50568

50574

50580

50586

50592

50598

50604

50610

50616

50622

:197

:197

:254

:208

:010

:031

:170

:001

:176

:169

:098

:004

:136

:197

:008

:064

:140

:032

:224

:002

:006

:168

:041

:096

:253

:032

:169

:164

:162

:134

:001

:240

:208

:104

:173

:169

:199

,138,

,208,

,096,

,002,

,141,
,194,

,198,

,032,

,032,

,000,

,041,

,185,

,016,

,032,

,192,

,168,

,012,

,200,

,096,

,138,

,096,

,016,

,169,

,174,

,158,

,054,

,021,

,014,

,163,

,174,

,010,
,240,

,166,

,025,

,027,

,141,

041,003

005,041

133,254

169,001

170,002

032,234

072,169

115,000

133,177

032,145

127,133

097,000

248,096

012,197

002,176

072,142

002,032

197,152

176,053

032,024

010,170

133,170

008,165

055,133

169,055

173,032

133,001

096,162

224,128

072,169

021,003

169,032

003,032

163,076

208,141

141,017

000,221

,032,

,001,
,201,

,010,
,096,

,198,

,055,

,032,

,104,

,179,

,098,

,145,

,032,

,152,

,076,

,035,

,208,

,142,

,197,

,152,

,165,

,170,

,001,
,133,

,247,

,166,

,246,

,176,

,055,

,224,

,044,

,096,

,139,

,025,

,208,

,169,

Sound and Graphics 4

024,075

133,231

000,078

010,058

032,115

032,135

133,217

139,001

168,222

165,128

160,101

071,208

042,026

240,036

224,146

002,097

197,054

057,144

169,200

240,089

042,022

004,246

040,212

032,008

001,057

183,103

020,083

154,133

027,027

133,028

197,184

017,082

193,092

227,201

208,112

169,069

023,097

:022,

:208,

:196,

:024,

:208,

:220,

:049,

:224,

:024,

208,162

048,022

141.000

017,208

208,169

142,018

041.001

234,056

021,176

032,240

117,197

197,104

,000,

,162,

,221,

,169,

,008,

,208,

,240,

,032,

,006,

,255,

,165,

,168,

173,018,195

218,169,189

169,059,154

040,141,090

141,022 ,208

173,013,148

003,076,229

240,255,008

162,021,014

165,003,129

004,141,181

104,170,060

237

4 Sound and Graphics

50628

50634

50640

50646

50652

50658

50664

50670

50676

50682

50688

50694

50700

50706

50712

50718

50724

50730

50736

50742

50748

50754

50760

50766

50772

50778

50784

50790

50796

50802

50808

50814

50820

50826

50832

50838

50844

50850

50856

50862

50868

50874

50880

50886

50892

50898

50904

50910

50916

50922

238

■ «* «s «* , «* usw , WWT| ^V^ , d ^ JL. , £m^*J f XK/A

:033,165,251,056,237,177,163

:002,133,251,165,252,233,030

:000,133,252,032,170,198,041

:240,229,165,251,024,109,024

:177,002,133,251,165,252,248
:105,000,133,252,230,253,247

:032,170,198,208,011,173,072

:176,002,208,011,032,212,183
:198,169,001,044,169,000,129

:141,176,002,198,253,198,010

:253,032,170,198,208,011,176

:173,175,002,208,011,032,167

:212,198,169,001,044,169,109

:000,141,175,002,230,253,123

:032,061,194,165,251,024,055

:109,177,002,133,251,165,171

:252,105,000,133,252,165,247

:197,201,063,240,048,165,004

:252,240,006,165,251,201,211

:064,176,005,032,170,198,003

:240,168,172,174,002,240,104

:162,053,120,134,001,049,187

:195,230,001,088,072,165,169

:170,041,007,170,104,236,152

:178,002,176,007,074,232,099

:236,178,002,144,249,201,190

:000,096,172,174,002,165,051

:251,153,000,191,165,252,204
• l RT.000.1 QW.ifiR ot;vi^ no

u

u

LJ

U

LJ

LJ

U

LJ

U

H
Sound and Graphics 4

n

n

n

n

n

H

n

n

50928

50934

50940

50946

50952

50958

50964

50970

50976

50982

50988

50994

51000

51006

51012

51018

51024

51030

51036

51042

51048

51054

51060

51066

51072

51078

51084

51090

51096

51102

51108

51114

51120

51126

51132

51138

51144

51150

51156

51162

51168

51174

51180

51186

51192

:197

:177

:032

:040

:035

:144

:197

:163

:024

:165

:196

:013

:165

:160

:247

:199

:208

:002

:136

:023

:233

:240

:002

:159

:032

:038

:038

:024

:007

:133

:136

:165

:195

:196

:173

:180

:008

:008

:201

:128

:064

,240,

,002,

,042,

,176,

,197,

,005,

,169,

,010,
,125,

,196,

,169,

,000,

,048,

,020,

,199,

,044,

,076,

,015,

,177,

,016,

,133,

,003,

,089,

,173,

,160,

,172,

,208,

,159,

,159,

,105,

,162,

,001,
,016,

,195,

,144,

,240,

,180,

,096,

,173,

,160,

,173,

,160,

,032,

,041,

,056,

002,232,

140,178,

197,208,

011,134,

208,004,

162,014,

000,133,

010,010,

128,188,

125,160,

055,133,

032,158,

025,032,

041,001,

040,208,

009,008,

049,199,

032,133,

071,153,

248,048,

022,165,

133,023,

169,000,

160,199,

199,169,

180,002,

199,144,

010,038,

133,158,

216,133,

055,169,

177,158,

249,134,

024,105,

006,230,

010,238,

002,197,

170,201,

160,199,

199,201,

160,199,

199,138,

144,010,

191,144,

096,013,

136,142,165

002,096,073

015,224,202

163,032,046

224,025,189

076,066,225

196,165,112

038,196,197

133,195,057

188,133,237

001,032,118

173,165,181

247,183,092

008,173,214

003,041,207

141,160,171

165,098,098

177,160,043

097,000,080

011,165,210

023,056,014

165,097,252

141,180,167

041,251,180

000,133,162

177,098,154

052,010,017

159,010,048

165,159,196

159,160,187

051,120,216

145,195,211

001,088,032

008,133,044

196,165,100

180,002,036

097,208,033

018,208,055

009,004,253

146,208,249

041,251,032

041,127,012

138,201,194

002,233,213

013,013,247

239

u
4 Sound and Graphics

u

Program 2. 64 Boot i i
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C, I I
when you type in the next two programs.

100 IFA=1THENSYS49152:NEW : rem 38

110 PRINT:PRINT"{CLR}{DOWN}{15 RIGHT}64 PAINTBOX" I I
:rem 80 '—'

130 PRINT"{DOWN} {YEL}IGRAPHICSg73 SELECTS GRAPHIC
S 0,7,8" :rem 123 (,

140 PRINT" {YEL}lCOLORg7i SELECTS COLOR REGISTER" 1 j

:rem 53

150 PRINT" {YEL}lSETCOLORg73 SETS THE REGISTER'S C

OLOR" :rem 169

160 PRINT" {YELjlPOSITIONg73 PLACES THE GRAPHICS C

URSOR" :rem 254

170 PRINT" {YEL}lPLOTg73 PLOTS THE POINT SET BY CO

LOR" :rem 4

180 PRINT" {YEL}lDRAWTOg7i DRAWS TO THE SPECIFIED

{SPACE}POINT" :rem 175

190 PRINT" {YEL}!LOCATEg7l PUTS THE POINT IN THE V

ARIABLE" :rem 241

195 PRINT" {YEL}lTEXTg7i PUTS TEXT ON THE SCREEN"

:rem 221

200 PRINT" {YEL}!QUITg7§ TURNS OFF 64 PAINTBOX"

:rem 69

210 PRINT"{DOWN}{RIGHT}ALL COMMANDS CAN BE ABBREVI

ATED WITH":PRINT" A PERIOD (.)" :rem 249

220 PRINT"{DOWN}{RIGHT}LOADING 64 PAINTBOX FROM 49

152 TO 51200" :rem 52

230 A=1:LOAD"64 PAINTBOX",8,1 :rem 114

Program 3. 64 Paintbox Demonstrations

100 : :rem 203

110 REM DEMOS FOR 64 PAINTBOX :rem 164

130 : :rem 206

140 GOSUB700 :rem 172

150 DATA "{WHT}SIMPLE FIGURE NUMBER 1" :rem 127 I I

160 DATA "HIT ANY KEY AFTER THIS DESIGN, AND ALL" I—«
:rem 231

170 DATA "FOLLOWING DESIGNS, ARE COMPLETE" :rem 17 ,

180 DATA "TO GO ON TO THE NEXT ONE.", :rem 204 I J
190 FORI=0TO270STEP5:IP.I,100+SIN(l/50)*100:I.319- "^

I,100+COS(I/25)*50:NEXT :rem 98

200 GETA$:IFA$=""THEN200 :rem 71

210 GOSUB700 :rem 170

220 DATA "THIS FIGURE IS DRAWN IN HI-RES THEN"

:rem 114

230 DATA "REDISPLAYED IN MULTICOLOR FOR AN":rem 64 j
240 DATA "INTERESTING EFFECT", :rem 25

u

240 U

n

n

n

n

n

n

n

n

n

n

Sound and Graphics 4

250 FORI=0TO309STEP2:IP.1,100+SIN(I/50)*100:1.1+10

,100+SIN(l/50)*50:NEXT :rem 36

260 GOSUB640:GOSUB700 :rem 3

270 DATA "HI-RES/MULTICOLOR FIGURE NUMBER 2",

:rem 193

280 FORI=0TO309STEP2:IP.I,100+COS(1/50)*100:1.1+10

,100+SIN(I/50)*50:NEXT :rem 34

290 GOSUB640:GOSUB700 :rem 6

300 DATA "SIMPLE FIGURE NUMBER 2", :rem 164

310 FORI=0TO319STEP2:IP.I,100+SIN(1/50)*100:I.319-

I,100+COS(1/50)*50:NEXT :rem 91

330 GETA$:IFA$=""THEN330 : rem 79

340 GOSUB700 :rem 174

350 DATA "SIMPLE FIGURE NUMBER 3", :rem 170

390 FORI=0TO310STEP5:lP.I,100+SIN(l/50)*100:l .319-
I,100+SIN(I/50)*50:NEXT :rem 98

420 GETA$:IFA$=""THEN420 :rem 79

430 GOSUB 700 :rem 174
440 DATA "THE NEXT IMAGE IS A CIRCLE", :rem 52
460 FORI^TO2*t.-t/l00STEPjyi00:lP.160,100:l.l60+CO

S(I)*100,100-SIN(I)*80 :rem 206

470 NEXT:C=0:I=2 :rem 182

480 IS.1,C,I:1=1+1:IFI=16THENI=2:C=C+1:IFC=16THENC

=0 :rem 61

490 GETA$:IFA$=""THEN480 :rem 92

500 DATA "THIS IS A MULTICOLOR IMAGE" :rem 117
510 DATA "CREATED WITH LINE AND FILL ROUTINES",

:rem 239

520 lG.7+16:!C.lsN=32:FORI=0TO2*t.STEPt/N :rem 170
530 IC.1:IP.80,50:1.80+COS(I)*40,50-SIN(I)*32:NEXT

:rem 160

540 N=16 :1C. 2 :FORI=0TO2*tSTEPt/N:X=80+COS (I)*50 :Y=

50-SIN(I)*40 :rem 250

550 lP.X,Y:l.80+COS(I+t/N)*50,50-SIN(I+t/N)*40:NEX

T :rem 215

560 IC.3:1P.0,0:1.159,0:1.159,99:1.0,99:1.0,0

:rem 123

590 GETA$:IFA$=""THEN590 :rem 95

620 IG.7:1G.0:END :rem 118

630 : :rem 211

640 GETA$:IFA$=""THEN640 :rem 87

650 iG.7+32+16:!S.0,2,8:JS.1,5,8:IS.2,0,14 :rem 37

660 GETA$:IFA$=""THEN660 :rem 91

670 GOTO750 :rem 114

690 : :rem 217

700 PRINT"{CLR}{DOWN}":IG.0:K=0 :rem 254

710 READN$:IFN$=""THEN730 :rem 171

241

u
4 Sound and Graphics

u

720 PRINTTAB(20-LEN(N$)/2)N$M{DOWN}lf:K=K+l:GOTO710 , j
:rem 27 I |

730 PRINTTAB(17)"§6 @§":PRINTTAB(17)"{RVS} WAIT

{UP}11 :rem 70
740 FORI=1TO350*K:GETA$:IFA$=MIITHENNEXT :rem 133 II

750 IG.8+16:1S.2,0,0:IS.1,RND(1)*15,10:IC,1:RETURN

:rem 149

u

u

u

u

u

u

H

n Three Handy
n Graphics Utilities for
n the Commodore 64

Colorful, Underline,
and Realtime Clock
Christopher J. Newman

These three utilities are shorty yet you'll find many

uses for them in your own programs. Change

screen color with a single SYS, convert the cursor

to an underline instead of a blinking square, and

display a realtime clock on the screen with these

routines. Best of all, even though two are machine

language, they're placed into memory by a

BASIC loader, so you don}t need to know any*

thing about ML to use them.

Colorfill

Program 1 fills color RAM with a single color. It has several

_ applications. For example, when it's used With a program that

M POKEs characters to the screen, the color POKE is no longer

necessary. Thus programming space can be saved if you're us-

_ ing numerous screen POKEs. This feature is also useful when

Pj converting PET programs without the emulator: You no longer
need to insert a color POKE for every screen POKE.

r_l Using "Colorfill/' you can change the color of all the

) \ characters on the screen instantly with one SYS command. In

the program listing, line 40 POKEs random colors into location

838 (SL+10). If you want just one color, replace line 40 with

!J something like:

40 POKE SL+10,1:SYSSL

'I • 243

4 Sound and Graphics

u

and all of color RAM fills with white. Any text you see on the

screen instantly turns white. Of course, you can change the [J
value POKEd into SL+10 to see other colors.

The machine language program can be relocated by

changing the value of SL in line 30 to a new starting location. { -

The machine language portion takes 25 bytes.

Underline [J
Program 2 replaces the normal blinking square cursor with an

underline, for those who prefer this kind of cursor. All the re

verse video characters are changed to underlined, normal

characters.

It's possible to switch between the standard Commodore

character set and the underline set. Once the program has

been run, the reverse-video characters can be accessed with

POKE 53272,21. You can switch back to underline mode with

POKE 53272,31.

The underlined character set is stored in memory loca

tions 14336-16383. To relocate the character set to the bottom

of memory, first run this one-line program:

10 POKE 44,16:POKE 4096,0:CLR:NEW

Then load the underline program, LIST it, delete the *7

characters in line 5, and change POKE 53272,31 in line 10 to

POKE 53272,19.

Pressing the RUN/STOP-RESTORE keys will disable the

underline cursor function. To reenable it, you'll have to rerun

the program.

Realtime Clock

Program 3 is a modification of the idea first demonstrated in

the article "Realtime Clock On Your PET Screen," which ap- | j

peared in the January 1982 issue of COMPUTE! magazine. The •—>
clock will appear in white, showing the time in tenths of sec

onds through hours. The color can be changed by changing j >

the two items of data in the last two DATA statements with '—}
the value 2 (the color code for white) to your desired color

code. \ \

If you accidentally hit RUN/STOP-RESTORE, the clock ^

disappears. You can put it back on the screen by typing

POKE 788/74:POKE 789,3 [j

244

n
Sound and Graphics 4

n

H

n

n

n

However, it will have lost time.

The program will not work with the tape cassette, as it

occupies the cassette buffer. When you access the disk drive,

the clock will briefly stop. The pause lasts only a few tenths of

a second.

Program 1. ColorfiU
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix C,

as you enter the following three programs.

10 DATA169,216,133,114,169,0,133,113,168,169,14,14

5,113,200,208,251,230,114 :rem 139

20 DATA165,114,201,220,208,241,96, :rem 169

30 SL=828:RESTORE:FORI=SLTOSL+24:READA:POKEI,A:NEX

T :rem 135

40 POKESL+10,RND(1)*16:SYSSL:GOTO40 :rem 144

Program 2* Underline

5 Q=2048*7:R=Q+1024:S=53248 :rem 206

6 FORI=0TO255:POKE1024+I,I:POKE55296+I,14:NEXT

:rem 29

10 POKE53272,31:POKE56334,PEEK(56334)AND254.-POKE1,

PEEK(1)AND251 :rem 126

20 FORI=0TO1023:POKEQ+I,PEEK(S+I):POKER+I,PEEK(S+I

):NEXT:POKEI,PEEK(1)OR4 :rem 82

30 POKE56334,PEEK(56334)OR1 :rem 16

40 FORI=7TO1023STEP8:POKER+I,255:NEXT :rem 85

Program 3, Realtime Clock

10 FORA=1TO108 :rem 51

20 READB :rem 192

30 POKE825+A,B :rem 11

40 NEXT :rem 163

100 PRINT"{CLR}{6 SPACES}HHMMSS" :rem 197

110 INPUT"TIME";A$:rem 53

120 TI$=A$:rem 246

130 FORA=1TO6 :rem 3

140 D=VAL(MID$(A$,A,1)) :rem 200

150 POKE832+A,D :rem 62

160 NEXT :rem 214

200 POKE788,74:POKE789,3 :rem 111

250 NEW :rem 129

1000 DATA10,10,6,10,6,10,10,0,0,0,0,0,0,0,87,90,16

5,162 :rem 117

1003 DATA105 ,5 ,141,73 ,3 ,169,86,141, 20,3 ,165,162 ,14

1,72,3,205,73,3,48 :rem 52

245

4 Sound and Graphics

u

1006 DATA38,105,5,237,73,3,109,72,3,141,73,3,238,7 .

1,3,162,7,189 :rem 79 (I
1009 DATA64,3,221,57,3,48,14,169,0,157,64,3,202,24

0,6,254,64,3 :rem 20

1012 DATA76,112,3,162,7,189,64,3,105,48,157,31,4,1 | /

69,1,157,31,216,202,208,240 :rem 247 1—i
1015 DATA169,58,141,31,4,169,1,141,31,216,76,49,23

4,0,0,0,0 :rem 115

I)

LJ

246

I I

n

n Programming

n Without
n the Keyboard

Joystick Enhanced

Programming
George Leotti

Using a computer's keyboard can be difficult,

even impossible for some. Physically handicapped

people who want to program on a computer may

not be able to use the keyboard. But with <(]oystick

Enhanced Programming'9 (JEP), COMPUTE'

Publications's first program dedicated to handi

capped computer users, the joystick can completely

replace the keyboard.

This program isn't only for the handicapped,

however. Young children who are not comfortable

with using the keyboard may find using the joy-

stick easier and less intimidating.

Being physically disabled myself, I know what it's like to be

11 denied access to something I want or need. So when my

friend Marc said he couldn't type for longer than 15 minutes

before fatigue became a problem, "Joystick Enhanced

/ 1 Programming" (JEP) came to mind.

Marc has MD (muscular dystrophy), which causes his

rapid fatigue. I believe JEP can be useful to other people who

; 1 thought they couldn't use a computer, because of the key

board limitations or physical disabilities.

|) I dedicate JEP to Marc Goldberg.

! \ What is JEP? To put it simply, JEP is a machine language

249

I j

5 UtUities ■

u
program that allows you to program in BASIC using a joystick

plugged into port 2. j j

Only Once at the Keyboard
Of course, to enter JEP, someone will have to type it in using j J

the keyboard. That may sound like a Catch-22 (you want to

use something besides the keyboard, but you have to use the

keyboard to be able to do that), but there's no way around it.) I

To make it easier to type in JEP, we've provided "The ' '
Machine Language Editor: MIX" Make sure you read Appen

dix D and have a copy of MLX on tape or disk before you be

gin entering JEP. (Again, someone will have to enter MLX

using the keyboard, since you have to have it before you start

typing in JEP.)

After you've loaded and run MLX, it will ask for two ad

dresses. Those are:

Starting address: 49152

Ending address: 51413

Type in Program 1, JEP. Then, using MLX's Save option, save

the program to tape or disk. To load JEP, you have to use the

following format:

UOAD"filename"fi,l (for disk)

LOAD"filename",1,1 (for tape)

Once JEP is loaded, type SYS 49152 and then NEW. The pro

gram is instantly available for your use.

Automatic Loading

Another way to load JEP would be to create an autoboot pro

gram for it. This is simple if you use the program in

"Autoload," another article in this book. After you've entered

and saved JEP, just follow the directions in Autoload and you j ;

can easily create a routine which automatically loads JEP. The '—'
boot program will even do the SYS for you.

The Menu —>

When JEP is active, the top ten lines of your screen are re

served for a menu from which you make selections to build a \ \

BASIC program. {—i

There are two cursors on the screen when the program is

active—the normal flashing cursor of the BASIC editor and a j j

nonflashing menu cursor. To prevent confusion and keep a '—'

250 LJ

n
Utilities 5

n

n clean menu display, neither cursor is permitted to cross screen

line ten. Therefore, if you try to home the editor cursor, it will

jump to the first space on line eleven.

nTomake a selection, move the menu cursor by pushing

the joystick in the appropriate direction until it's over the de

sired character, keyword, or other symbol; then press the fire

r—» button. This prints your selection at the editor cursor location.

I 1 The menu is dynamic in that it changes in response to in
put from the joystick. What follows is a line-by-line break

down of the dynamic menu:

ASCII codes. The top line contains the characters with

ASCII codes from 33 to 95. This is where the dynamic part

comes in. There are 63 characters with only 40 columns to dis

play them. But by moving the menu cursor off the left or right

end of this line, you'll cause every character to scroll, or move,

one position in the opposite direction.

An example: When you run JEP, the menu cursor is over

ASCII character 33 (the exclamation point), in the upper left-

hand corner of the screen. By pushing the joystick left once, all

the characters on the top line will move one position to the

right. The character under the menu cursor is now ASCII 95

(left arrow). If you push the stick left (or right if you're on that

end of the line), you'll get a continuous scroll.

BASIC keywords. The second line contains every BASIC

keyword in the 64's vocabulary (listed alphabetically), includ

ing the left parenthesis on words that need it: ASC(, SQR(,

LEFT$(, and so on. The number sign is included in keywords

that need it—PRINT#, GET#, and INPUT#. The reserved

variables ST, TI, and TI$ are represented with their full spell

ing (TIME$, for example).

The second line scrolls just like the top line. Since there

are more characters on this line (because of the number of

BASIC keywords), it can take some time to scroll through the

n

n entire list. To speed things up, once the scroll begins, hold

down the fire button. The words will zip by, but you can still

pick out some letters to give you an idea of where you are.

p-> If you release the stick before the button, during a speed

!. i scroll, you may get something printed that you didn't want.
That brings us to the next line.

,—, Special keys. The third line is for the special keys on the

! I 64's keyboard. The keys are: RETURN; SPACE; cursor con
trols, including up, down, left, right; CLR; HOME; INST; and

n 251

5 Utilities
u

u

DEL. These will work exactly like their keyboard equivalents, , ,

with the exception that you can't move the editor cursor above LJ
the eleventh line.

Function keys. The fourth line contains the function , ,

keys on the right side of the 64 keyboard. On this same line I !
you'll find the letters BBC The first B is for border, the second

for background, and the C for character. By putting the menu ,

cursor on any of these letters and pushing the fire button, you I 1
may change the color combinations of your entire screen.

Also on line four are the abbreviations COMDRE and

CTRL. These represent the Commodore and control keys. By

selecting either COMDRE or CTRL, then moving the menu

cursor to the top line and selecting a character, it will be

printed as if you'd pressed the Commodore or control key

first. Use these for one keystroke only.

SHIFT and AUTO. Line five displays SHIFT, LOCK,

COMDRE, CTRL, AUTO, and finally OFF. SHIFT works like

COMDRE and CTRL on line four except that a shifted charac

ter is printed.

LOCK, COMDRE, and CTRL, when selected from this

line, lock in the SHIFT, Commodore, and control keys respec

tively. When you select one of these words (LOCK, for in

stance), it will be reversed as a reminder that function is

enabled.

A program like JEP would be much less worthwhile with

out an automatic line-numbering function. AUTO gives you

this feature.

Move the menu cursor over the word AUTO. Press the

fire button, then enter a line number using the characters on

the top line. That's the last line number you will have to en

ter. When you terminate the line with RETURN (not to be .

confused with RETURN from subroutine) from the third menu j [
line, the next line number will be automatically printed for

you. The line numbers will increment by 10. .

AUTO may also be used as a multiline delete. If you want j \
to delete a range of lines, say 150 to 300, enter the number

150 using the top line. Then move the menu cursor over the (.

word RETURN on the third line, and hold down the fire fcut- j {
ton until line number 310 is printed. Don't RETURN again, or

line 310 will be erased as well. Delete the number 310 using ,

DEL (third line) and you're safe. 1 J
To turn off AUTO, move the menu cursor over AUTO

252 LJ

Utilities 5

n

nand press the fire button. The letters will revert to normal

characters, and the AUTO routine will be disengaged.

The final word on line five is OFF. Don't confuse this

nwith turning off AUTO numbers or your computer. It will,

when selected, disengage or turn off JEP. If OFF is selected by

accident, you may restart JEP by typing SYS 49152, followed

p-> by RETURN from the keyboard.

' ' Turning JEP off and on will not affect your BASIC pro
gram. In fact, it's similar to pushing the RUN/STOP and RE

STORE keys.

You may use the RUN/STOP and RESTORE keys to turn

off JEP. However, you will have to save the BASIC program

you were working on, reload JEP, and type SYS 49152:NEW if

you want to use it again. The better way is to use OFF to keep

JEP ready to run again.

System Defaults

I have the speed of the menu cursor set to where it's comfort

able for Marc. Things may move too fast or too slowly for you,

but there are ways to speed things up or slow them down.

Once you have JEP entered, save it to tape or disk. After

you have it saved, run it by typing SYS 49152. Now you may

maneuver the menu cursor with your joystick and select dif

ferent things from the menu to get a feel for the way JEP re

sponds. Here are three locations that you can POKE to change

speeds:

POKE 49292,2: This is a general location but can be used

to change left/right speeds.

POKE 49531,6: This controls up/down speed.

POKE 49603,4: This is for button response.

f*"| The numbers POKEd into these locations are the present
settings. The lower the number, the faster the response; the

higher the number, the slower the response. Note: Since these

j[locations count down to 0, 1 is the fastest setting and 0 is the
slowest.

Location 49292 will slow down or speed up all responses.

f| Set this first to a comfortable speed for left/right movement.
Then set the other locations.

When you've got everything at a comfortable speed, turn

i! JEP OFF and save it by entering SAVE"filename",8,l for disk
or SAVE"filename",l,l for tape. Now you won't have to set

things up each time.

!- •' 253

u
5 Utilities

LJ

To change the size of the increment of the AUTO line » ,

numbers, you can POKE a different increment into location I \
50415, which now contains 10. Numbers from 1 to 255 are

allowed.

During the process of writing a program, it's often de- , 1

sirable to run the program to look for errors. JEP will remain

active when a BASIC program is run, but the menu will not be , >

displayed. Even after the test run, the menu won't be dis- < 1
played unless a scroll occurred upon exiting your program.

This is to allow you to read whatever may be printed on the

screen.

There are several ways to get the menu back after a

BASIC program runs. First, if you used the menu to select

RUN, then RETURN, hold down the fire button until the

menu appears. You could also use the keyboard RETURN key,

cursor down, clear screen, and even cursor up; or the DEL key

to restore the menu.

If you would like to keep the menu on screen during a

RUN to use for input, instead of the keyboard, you must use

the following POKEs exactly:

POKE 56333,127:POKE 49275,234:POKE 49276,234:POKE 56333,129

If you make these changes in direct mode (no line num

bers), enter all four POKEs on the same line. Why? Because

the first POKE disables interrupts, which kills the keyboard

until the last POKE. The two POKEs in the middle put the

machine language instruction NOP (No OPeration) in place of

a branch instruction (BEQ) and its offset.

To return JEP to normal, enter the following on one line:

POKE 56333,127:POKE 49275/240:POKE 49276,89:POKE 56333,129

Automatic Proofreader for JEP I—)

One of the most useful programs from COMPUTE! Publica

tions, "The Automatic Proofreader/' virtually insures error- , (

free programs when you type them in. All the Commodore 64 J >
programs published in COMPUTE! magazine, COMPUTERS Ga

zette, and COMPUTE! books use the Proofreader to help you . j

type those programs in. I—1
You can use the Proofreader, or at least a variation of it,

when you use JEP. "JEProof," this modified version of the . ,

Proofreader, is included here as Program 2. Just like Program Lj
1, it's in MLX format. To enter it, make sure you use the MLX

254 LJ

! 1
Utilities 5

n

p-j program from Appendix D. You need to provide two ad-

r .' dresses, which are:
Starting address: 51500

f—! Ending address: 51667

Type in JEProof and save it to tape or disk.

If you want to use JEProof with JEP, this is the process

j[you need to follow.

• LOAD"JEP",8,1 and press RETURN

• Type NEW

• LOAD"JEPROOF",8,1 and press RETURN

• Type NEW

• SYS 49152 and press RETURN

Now you'll see the usual JEP menu at the top of the screen.

JEP is active and you can use the joystick to enter:

• SYS 51400 and press (or enter) RETURN

JEProof is enabled and ready to use. To see it at work, enter a

simple BASIC line, such as 10 REM and then RETURN. You'll

see a number in reverse video (in this case it should be 069)

just to the right of the OFF in the fifth menu line. That's the

Proofreader's checksum number. If you look at the BASIC pro

grams in this book, you'll see :rem xx (where xx is a number)

at the end of each line. That's the number you should see in

reverse video if you entered the line correctly. (For more de

tailed information about the Proofreader—JEProof works in

much the same way—read Appendix C.)

There's only one problem with JEProof. If you enter a line

at the very bottom of the screen, the reverse video number

will appear for just a brief moment, not long enough to really

r^f see. For this reason, when you're using JEProof, make sure not

I i to enter BASIC lines on the very bottom screen line. You can get
around this by scrolling the BASIC lines up the screen using

m the cursor down (D in menu line 3), then moving the cursor

j I back up to resume typing. It's a bit of a bother, but you
should get used to it rather quickly.

! j Disadvantages of JEP
You'll find difficulty when you try to use other machine lan-

_ guage enhancements with JEP in operation. You won't be able

i (to use any program, whether it's BASIC or machine language,
which uses memory locations 49152 through 51413.

'■- -l 255

u
5 Utilities

U

The DOS wedge supplied with the 1541 does work. » ,

Sorry, but JEP won't work with Simon's BASIC. I !
One other thing to be aware of. If you use a printer at

tached to the user port, deactivate JEP before using it. JEP uses

the locations that are reserved for the RS-232 I/O buffers.

I already know this program is useful to one person. I

hope this program will also extend your programming time, . .

providing you with many hours of fun (or even frustration) [S
that are part of programming.

Program 1. Joystick Enhanced Programming (JEP)
For easy entry of the two machine language programs which follow, be sure to use "The

Machine Language Editor: MLX," Appendix D.

49152 :169,147,032,210,255,169,214

49158 :000,133,172,133,173,133,238

49164 :252,133,248,133,247,133,134

49170 :249,169,004,133,250,133,188

49176 :251,141,168,002,169,006,249

49182 :141,167,002,173,048,003,052

49188 :141,112,197,173,049,003,199

49194 :141,113,197,169,102,141,137

49200 :048,003,169,197,141,049,143

49206 :003,173,050,003,141,134,046

49212 :197,173,051,003,141,135,248

49218 :197,169,124,141,050,003,238

49224 :169,197,141,051,003,173,038

49230 :164,197,133,253,173,165,139

49236 :197,133,254,032,198,195,069

49242 :120,173,020,003,072,173,139

49248 :021,003,072,173,168,197,218

49254 :141,020,003,173,169,197,037

49260 :141,021,003,104,141,169,175

49266 :197,104,141,168,197,088,241

49272 :096,165,157,240,089,024,123

49278 :165,172,101,173,240,003,212 \ i

49284 :032,198,195,198,251,208,190 Lj
49290 :059,169,002,133,251,160,144

49296 :000,162,000,173,000,220,187

49302 :074,176,003,202,144,015,252 j I
49308 :074,176,003,232,144,009,026 '—'
49314 :074,176,001,136,074,176,031

49320 :001,200,074,152,208,011,046 v j

49326 :138,208,008,176,019,032,243 Lj
49332 :188,193,076,198,192,152,155

49338 :072,032,096,196,104,168,086

49344 :032,217,192,032,096,196,189 | \

49350 :056,032,240,255,224,010,247

49356 :176,008,162,010,032,240,064

256 u

Utilities 5

H

n

I I

49362 :255,032,198,195,108,168,142

49368 :197,008,104,133,002,152,044

49374 :208,003,076,117,193,016,067

49380 :005,198,248,048,010,096,065

49386 :230,248,165,248,201,040,086

49392 :176,067,096,230,248,165,198

49398 :247,208,010,198,252,016,153

49404 :073,169,063,133,252,208,126

49410 :067,201,002,208,041,200,209

49416 :162,001,070,002,176,002,165

49422 :162,005,198,253,165,253,026

49428 :201,255,208,002,198,254,114

49434 :177,253,240,005,202,208,087

49440 -.239,240,010,173,166,197,033

49446 :133,253,173,167,197,133,070

49452 :254,076,255,195,169,039,008

49458 :133,248,096,198,248,165,114

49464 :247,208,014,230,252,164,147

49470 :252,185,170,197,208,002,052

49476 :133,252,076,233,195,201,134

49482 :002,208,035,162,001,070,040

49488 :002,176,002,162,005,230,145

49494 :253,208,002,230,254,177,186

49500 :253,240,005,202,208,243,219

49506 :240,201,173,164,197,133,182

49512 :253,173,165,197,133,254,255

49518 :208,189,169,000,133,248,033

49524 :096,206,167,002,208,036,063

49530 :169,006,141,167,002,160,255

49536 :001,138,016,027,165,247,210

49542 :208,031,160,004,024,165,214
49548 :249,105,080,133,249,165,097

49554 :250,105,000,133,250,230,090

49560 :247,230,247,136,208,236,17$

49566 :096,165,247,201,008,208,059

49572 :229,160,004,056,165,249,003

49578 :233,080,133,249,165,250,000

49584 :233,000,133,250,198,247,213

49590 :198,247,136,208,236,096,023

49596 :206,168,002,240,001,096,133

49602 :169,004,141,168,002,166,076

49608 :198,208,211,164,248,165,114

49614 :247,208,067,024,152,101,237

49620 :252,201,063,144,002,233,083
49626 :063,168,173,169,002,240,009

49632 :010,048,003,206,169,002,150

49638 :185,234,197,208,035,173,238
49644 :170,002,240,010,048,003,197

49650 :206,170,002,185,042,198,021

49656 :208,020,173,171,002,240,038

257

5 Utilities

49662

49668

49674

49680

49686

49692

49698

49704

49710

49716

49722

49728

49734

49740

49746

49752

49758

49764

49770

49776

49782

49788

49794

49800

49806

49812

49818

49824

49830

49836

49842

49848

49854

49860

49866

49872

49878

49884

49890

49896

49902

49908

49914

49920

49926

49932

49938

49944

49950

49956

258

:012

:185

:003

:002

:208

:000

:197

:010

:197

:173

:133

:253

:032

:253

:016

:253

:254

:177

:157

:002

:096

:170

:198

:192

:198

:096

:120

:016

:032

:014

:016

:033

:058

:016

:134

:197

:169

:133

:253

:165

:173

:163

:035

:048

:002

:250

:096

:169

,048,

,106,

,185,

,230,

,101,
,162,

,141,

,144,

,173,

,240,

,162,

,248,

,173,

,198,

,201,

,247,

,201,

,208,

,253,

,119,

,144,

,201,

,198,

,096,

,024,

,157,

,192,

,174,

,208,

,208,

,174,

,208,

,208,

,174,

,208,

,002,

,165,

,000,

,254,

,200,

,254,

,162,

,197,

,176,

,005,

,096,

,169,

,192,

,002,

,169,

003,206

198,208

170,197

198,096

152,024

197,165

163,197

038,240

162,197

026,144

197,237

173,164

165,197

195,164

032,240

200,198

255,208

234,166

201,032

002,232

240,202

004,208

157,119

201,006

176,009

119,002

024,208

032,208

002,162

096,192

033,208

002,162

096,192

134,002

002,162

165,253

254,141

133,253

138,160

208,251

201,220

197,133

133,254

011,173

169,001

173,171

001,141

006,176

048,235

002,096

,171,002,184

005,240,178

157,119,073

201,002,233

,101,253,093

,254,105,028

,205,167,139

,002,176,069

,205,166,191

,024,024,195

,166,197,166

,197,133,088

,133,254,221

,248,177,066

,016,136,192

,253,165,143

,238,198,167

,198,200,080

,240,010,251

,236,137,227

,134,198,014

,009,185,059

,002,230,238

,208,017,094

,185,209,169

,230,198,028

,016,208,130

,232,224,126

,000,142,184

,025,208,165

,232,224,039

,000,142,202

,026,208,185

,232,224,252

,000,142,220

,141,162,041

,163,197,051

,169,216,136

,000,145,032

,230,254,092

,208,240,246

,253,173,055

,096,192,005

,170,002,055

,141,170,028

,002,048,248

,171,002,240

,011,173,166

,169,001,142

,192,011,135

LJ

LJ

U

LJ

LJ

U

LJ

LJ

LJ

n

n

n

Utilities 5

n

n

n

49962

49968

49974

49980

49986

49992

49998

50004

50010

50016

50022

50028

50034

50040

50046

50052

50058

50064

50070

50076

50082

50088

50094

50100

50106

50112

50118

50124

50130

50136

50142

50148

50154

50160

50166

50172

50178

50184

50190

50196

50202

50208

50214

50220

50226

50232

50238

50244

50250

50256

:176,027,173,169,

:128.141,169,002,

s208,244,076,198,195,192,155

:018,176,014,173,170,002,113

:073,128,141,170,002,162,242

:006,160,011,208,223,192,116

s 023.176.014.173.171.002.137

:164,197

:165,197

:236,041

:200,232

:096,160

:041,063

:018,199

:004,185

:005,136

:039,169

:153,120

,141,014

,141,015

,063,157

,224,040

,039,185

,153,160

,041,063

,058,199

,016,231

,064,153

,004,153

,196,

,196,

,080,

,208,

,234,

,004,

,153,

,153,

,096,

,040,

,200,

173,137

208,180

004,101

225,143

198,188

185,144

240,002

064,213

160,200

004,031

004,202

259

5 Utilities
u

LJ

50262 :153,024,005,153,104,005,018

50268 :136,016,238,096,164,248,222

50274 :177,249,073,128,145,249,095

50280 :096,032,087,241,141,159,092

50286 :197,142,160,197,140,161,083

50292 :197,008,201,013,208,003,234

50298 :032,136,196,173,159,197,247

50304 :174,160,197,172,161,197,165

50310 :040,096,160,000,140,154,212

50316 :197,140,155,197,185,000,246

50322 :002,140,153,197,201,058,129

50328 :176,077,201,048,144,073,103

50334 :041,015,170,173,154,197,140

50340 :141,156,197,173,155,197,159

50346 :141,157,197,014,154,197,006

50352 :046,155,197,014,154,197,171

50358 :046,155,197,024,173,154,163

50364 :197,109,156,197,141,154,118

50370 :197,173,155,197,109,157,158

50376 :197,141,155,197,014,154,034

50382 :197,046,155,197,138,024,195

50388 :109,154,197,141,154,197,140

50394 :169,000,109,155,197,141,221

50400 :155,197,200,192,005,208,157

50406 :169,173,153,197,208,001,107

50412 :096,024,169,010,109,154,030

50418 :197,141,154,197,169,000,076

50424 :109,155,197,141,155,197,178

50430 :160,000,140,156,197,140,023
50436 :157,197,140,158,197,140,225

50442 j153,197,162,015,014,154,193

50448 :197,046,155,197,120,248,211

50454 :173,156,197,109,156,197,242

50460 :141,156,197,173,157,197,025

50466 :109,157,197,141,157,197,224

50472 :173,158,197,109,158,197,008

50478 :141,158,197,216,088,202,024

50484 :016,216,164,198,162,002,042

50490 :189,156,197,072,074,074,052

50496 :074,074,032,087,197,104,120

50502 :041,015,032,087,197,202,132

50508 :016,236,169,032,153,119,033

50514 :002,200,132,198,096,205,147

50520 :153,197,240,009,009,048,232

50526 :141,153,197,153,119,002,091

50532 :200,096,141,159,197,032,157

50538 :090,192,173,159,197,032,181

50544 :255,255,141,159,197,032,127

50550 :090,192,173,159,197,096,001

50556 :141,159,197,032,090,192,167

u

260

H
Utilities 5

i l

n

n

50562

50568

50574

50580

50586

50592

50598

50604

50610

50616

50622

50628

50634

50640

50646

50652

50658

50664

50670

50676

50682

50688

50694

50700

50706

50712

50718

50724

50730

50736

50742

50748

50754

50760

50766

50772

50778

50784

50790

50796

50802

50808

50814

50820

50826

50832

50838

50844

50850

50856

:173

:169

:173

:000

:000

:035

:041

:047

:053

:059

:065

:071

:077

:083

:089

:095

:037

:219

:033

:039

:061

:195

:201

:207

:213

:091

:129

:154

:220

:150

:041

:063

:177

:179

:093

:028

:018

:047

:156

:029

:001

:007

:013

:019

:025

:006

,159,197,032,255

,159,197,032,090

• ,000,133,172,133

,159,197,096,000

I 000,000,000,000

000,000,000,099

.,200,121,192,033

>,036,037,038,039

1,042,043,044,045

f,048,049,050,051

[,054,055,056,057

1,060,061,062,063

i,066,067,068,069

,072,073,074,075

,078,079,080,081

,084,085,086,087

1,090,091,092,093

1,000,033,034,035

',038,039,040,041

>,060,221,062,063

1,034,035,036,037

,040,041,091,093

,062,063,186,193

,196,197,198,199

,202,203,204,205

,208,209,210,211

,214,215,216,217

,169,093,255,095

M49,150,151,152

M55,041,223,166

1,062,063,048,129

1,151,152,153,154

,091,093,060,061

1,164,176,191,188

,187,165,180,162

,182,167,170,185

,178,174,163,184

•,189,183,173,091

1,255,095,000,144

1,159,156,030,031

1,042,043,044,045

,146,144,005,028

>,030,031,158,018

,060,031,062,063

,002,003,004,005

',008,009,074,075

1,014,015,016,017

1,020,021,022,023

>,026,027,028,029

,000,013,013,013

,255,177

,192,179

,173,154

,000,005

,000,154

,199,202

,034,189

,040,141

,046,183

,052,225

,058,011

,064,053

,070,095

,076,137

,082,179

,088,221

,094,007

,036,209

,192,113

,048,149

,038,207

,060,108

,194,253

,200,173

,206,215

,212,001

,218,043

,000,227

,153,158

,060,079

,149,213

,155,207

,062,218

,172,002

,181,106

,175,100

,190,126

,168,055

,005,182

,158,158

,046,096

,159,137

,027,034

,000,121

,006,159

,076,137

,018,243

,024,029

,030,071

,013,226

261

5 Utilities

50862

50868

50874

50880

50886

50892

50898

50904

50910

50916

50922

50928

50934

50940

50946

50952

50958

50964

50970

50976

50982

50988

50994

51000

51006

51012

51018

51024

51030

51036

51042

51048

51054

51060

51066

51072

51078

51084

51090

51096

51102

51108

51114

51120

51126

51132

51138

51144

51150

51156

262

:013,013

:032,032

:017,157

:147,147

:019,019

:148,020

:133,133

:134,134

:135,135

:136,136

:082,069

:032,083

:032,085

:032,082

:032,072

:073,078

:069,076

:032,070

:032,070

:032,070

:032,070

:067,032

:082,069

:076,032

:020,032

:032,003

:005,032

:032,001

:015,006

:032,032

:000,032

:032,065

:083,067

-.078,040

:036,040

:083,069

:032,067

-.079,078

:083,040

:065,032

:070,078

:032,069

:088,080

:032,070

:079,032

:032,071

:069,084

:083,085

2 084,079

:084,072

,013,032

,032,145

,157,029

,147,019

,148,148

,020,020

,137,137

,138,138

,139,139

,140,140

,084,085

,080,065

,032,068

,032,067

,079,077

,083,084

,032,032

,050,032

,052,032

,054,032

1,056,032

,067,079

,032,067

,019,008

,012,015

,015,013

,003,020

,021,020

,006,032

,032,032

,065,066

,078,068

,040,032

,032,067

,032,067

,032,067

,077,068

,084,032

,032,068

,068,069

,032,068

,078,068

,040,032

,079,082

,070,082

,069,084

,035,032

,066,032

,032,073

,069,078

,032,

,145,

,029,

,019,

,148,

,020,

,137,

,138,

,139,

,140,

,082,

,067,

,032,

,076,

,069,

,032,

,070,

,070,

,070,

,070,

,066,

,077,

,084,

,009,

,003,

,004,

,018,

,015,

,032,

,032,

,083,

,032,

,065,

,072,

,076,

,076,

,032,

,067,

,065,

,070,

,073,

,032,

,070,

,032,

,069,

,032,

,071,

,071,

,070,

,032,

032,053

017,071

147,210

019,178

148,060

133,053

134,253

135,009

136,021

000,152

078,202

069,124

076,059

082,111

032,107

068,170

049,086

051,069

053,079

-055,089

.066,104

,068,178

,082,210

,006,206

011,155

018,153

012,164

032,201

032,209

032,028

040,128

065,188

084,225

082,231

079,196

082,025

067,221

079,047

084,006

032,232

077,044

069,000

078,046

084,043

040,042

071,035

079,052

079,104

032,064

073,108

LJ

U

U

u

u

u

u

J
J

Z
)

i
n
e
n
e
n
e
n

e
n

e
n

u
i
u
»
u
«
u
i
w
u
i
u
i
u
i
u
i
u
i
u
i
u
i
w
u
i
u
j
u
i
u
i
w
u
i
u
i
u
i
u
i
u
i
w
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
u
i
t
n
u
i
y
i

Q
S
l
S
l
Q

^
Q
V
O
W

hr
t

^
^
^
O
O
O
N
^
^
(
D
C
O
C
O
^
O
O
C
^
C
D
O
O
C
O
O
N
(
X
)
C
3
0
^
C
D
O
O
C
O
C
f
t
^
^
C
O
>
j
O
N
^
^
O
O
C
^
>
4
^
C
o
a
)
O
N
^

5

,096,,032,,087,,241,

,003,-169, ,141,

,036,,003,,169,,201,

,079,,201,,169,

,078,,201,,173,

,003,,201,,077,,208,

H
Q
H
H
t
O
t
O

Q
Q
Q
Q

S
i
Q
Q
Q
Q
Q
Q
Q
Q
Q

C
^
C
O
^
C
O
O
O
C
^

v
O
W
(
»
K
)
^
a
)
V
O
C
^

Q
S
I
G
i
S
l
Q
Q
Q
Q
Q

C
^

Q
Q
Q
Q
Q
Q
Q
Q
Q

Q
Q
U
C
t
Q

c
o
c
o
o
N
©

N
)
t
O

0
0

C
O

O
N
t
O

O
N
t
O
C
O

i
O
N

5 UtiUties

51536

51542

51548

51554

51560

51566

51572

51578

51584

51590

51596

51602

51608

51614

51620

51626

51632

51638

51644

51650

51656

51662

:141,210

:140,212

:240,022

:024,109

:201,173

:201,172

:174,213

:141,000

:224,000

:173,000

:000,001

:000,141

:201,216

:176,141

:001,074

:176,141

:001,041

:000,001

:140,213

:153,096

:153,096

:240,076

,201,142,

,201,008,

,201,032,

,213,201,

,210,201,

,212,201,

,201,248,

,001,141,

,240,021,

,001,105,

,173,001,

,001,001,

,173,001,

,002,001,

,074,074,

,001,001,

,015,009,

,162,002,

,201,173,

,217,189,

,005,200,

,105,201,

211,201,162

201,013,093

240,007,066

141,213,231

174,211,250

040,096,008

169,000,097

001,001,151

202,024,071

001,141,043

001,105,165

076,128,237

001,009,241

173,000,139

074,009,214

173,000,150

176,141,047

160,000,251

134,002,027

000,001,082

202,016,104

013,013,086

LJ

U

i i

u

\ I

264

U

LJ

One-Touch

Keywords
Mark Niggemann

This powerful programming utility puts 52 of the

most common BASIC keywords at your fingertips.

The less time spent typing, the more time you have for

programming. "One-Touch Keywords" lets you use any of the

letter keys in combination with either the SHIFT or Com

modore key to instantly print a BASIC keyword on the screen.

For example, instead of typing GOSUB, you can hold down

SHIFT and press G, and GOSUB will appear as if you had

typed the whole keyword. See the table for a list of all the

keywords available.

Activating the Keywords

The program is a BASIC loader which moves the machine lan

guage from DATA statements into the upper part of free mem

ory. It also protects the machine language from interference by

BASIC.

Type in One-Touch Keywords by using "The Automatic

Proofreader" program found in Appendix C. It will save you

considerable time you might otherwise spend in checking and

rechecking your program listing.

A final checksum routine (lines 710-750) is included to

aid in finding any errors in the machine language data. After

you run the program once, type RUN 700 and the program

will check your typing. Recheck the DATA statements if you

get an error message. This final checksum is added insurance

to the line-by-line checksum provided by the Proofreader.

To activate the machine language, type SYS followed by

the number displayed on the screen as the on/off address,

then press RETURN. The one-touch keywords will remain en

abled even after the RESTORE key has been pressed. To dis

able the keywords, SYS the on/off address again.

265

5 Utilities

Keywords

Key

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

Z

w/ SHIFT

PRINT

AND

CHR$

READ

GET

FOR

GOSUB

TO

INPUT

GOTO

DIM

LOAD

MID$

INT

OPEN

POKE

TAB(

RIGHTS

STR$

IF

TAN

VERIFY

DEF

LIST

SIN

RUN

w/ Commodore

PRINT*

OR

ASC

DATA

END

NEXT

RETURN

STEP

INPUT*

ON

RESTORE

SAVE

LEN

RND

CLOSE

PEEK

SPC(

LEFT$

VAL

THEN

SQR

CMD

FN

FRE

COS

SYS

One-Touch Keywords
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

140 IP PEEK(PEEK(56)*256)<>120THENPOKE56,PEEK(56)V
1:CLR :rem 158

150 HI=PEEK(56):BASE=HI*256 :rem 47

160 PRINT11 {CLR}PATIENCE...11 :rem 206

170 FOR AD=0 TO 211: READ BY :rem 153

180 POKE BASE+AD,BY: NEXT AD :rem 88

190 : :rem 212

200 REM RELOCATION ADJUSTMENTS :rem 184

210 POKE BASE+26,HI: POKE BASE+81,HI :rem 2

220 POKE BASE+123,HI: POKE BASE+133,HI :rem 95

230 : :rem 207

231 ::IP PEEK(65532)=34 GOTO 240 :rem 135

266

u

u

u

u

u

u

u

u

n
i i

n

n

n

n

232

233

234

235

236

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

Utilities 5

::POKE BASE+9,72: POKE BASE+48,194 :rem 51

::POKE BASE+52,235: POKE BASE+92,160 :rem 139

::POKE BASE+154,72: POKE BASE+157,224 :rem 193

::POKE BASE+158,234 :rem 230
•s :rem 15

PRINT"{CLR}* ONE-TOUCH KEYWORDS *" :rera 88

PRINTMON/OFF:{3 SPACES}SYS{RVS}";BASE :rem 176

END :rem 111

DATA 120, 173, 143, 2, 201, 32 :rem 127

DATA 208, 12, 169, 220, 141, 143 :rem 239

DATA 2, 169, 235, 141, 144, 2 :rem 94

DATA 88, 96, 169, 32, 141, 143 :rem 155

DATA 2, 169,{2 SPACES}0, 141, 144, 2 :rem 237

DATA 88, 96, 165, 212, 208, 117 :rem 206

DATA 173, 141, 2, 201, 3, 176 :rem 83

DATA 110, 201, 0, 240, 106, 169 :rem 175

DATA 159, 133, 245, 169, 236, 133 :rem 49

DATA 246, 165, 215, 201, 193, 144 :rem 40

DATA 95, 201, 219, 176, 91, 56 :rem 160

DATA 233, 193, 174, 141, 2, 224 :rem 194

DATA 2, 208, 3, 24, 105, 26 :rem 245

DATA 170, 189, 159,{2 SPACES}0, 162, 0 :rem 92

DATA 134, 198, 170, 160, 158, 132 :rem 40

DATA 34, 160, 192, 132, 35, 160 :rem 187

DATA 0, 10, 240, 16, 202, 16 :rem 22

DATA 12, 230, 34, 208, 2, 230 :rem 78

DATA 35, 177, 34, 16, 246, 48 :rem 108

DATA 241, 200, 177, 34, 48, 17 :rem 147

DATA 8, 142, 211,{2 SPACES}0, 230, 198 :rem 91
DATA 166, 198, 157, 119, 2, 174 :rem 215

DATA 211,{2 SPACES}0, 40, 208, 234, 230

:rem

DATA 198, 166, 198, 41, 127, 157

DATA 119, 2, 230, 198, 169, 20

DATA 141, 119, 2, 76, 220, 235

DATA 76, 67, 236

REM *TOKENS FOR SHIFT KEY

DATA 153, 175, 199, 135, 161, 129

DATA 141, 164, 133, 137, 134, 147

DATA 202, 181, 159, 151, 163, 201

DATA 196, 139, 192, 149, 150, 155

DATA 191, 138

REM *TOKENS FOR COMMODORE KEY

131

:rem 8

:rem 146

:rem 139

:rem 127

:rem 211

:rem 202

:rem 213

:rem 56

:rem 42

:rem 37

trem 52

:rem 20

:rem 210

:rem 240

:rem 212

267

5 UtiUties

650

660

670

680

690

700

710

720

730

740

750

DATA 152, 176, 198, 131, 128, 130

DATA 142, 169, 132, 145, 140, 148

195, 187, 160, 194, 166, 200

197, 167, 186, 157, 165, 184

DATA

DATA

DATA

DATA 190, 158, 0

::REM *CHECKSUM ROUTINE

::FOR AD=0 TO 158

::CHKSUM = CHKSUM +

READ BY

BY : NEXT AD

U

u

:rem 45

:raro 43

:rem 54

:rem 72

:rem 121

:rem 11

:rem 147

:rem 13

:rem 25

:rem 166
u

::IF CHKSUM <> 20347 THEN PRINT "ERROR111

:rem 143

268

LJ

u

u

U

n

n

n Autoload
Dan Carmichael

Have you ever wanted to type WAD"*",8,1 and

have your favorite program automatically load and

run itself like commercial software packages do?

"Autoload" will create a program to do just that

When using commercial software, you've probably noticed

that typing and entering LOAD"*",8,1 will automatically load

and start a program running without having to enter RUN.

The first program loaded is known as a boot program. It's this

program that loads and executes other programs on the disk.

There are a number of different techniques that can

accomplish this, such as overwriting the stack or changing vec

tors. (A vector is a pointer to the starting location of a machine

language subroutine.) "Autoload" uses the latter method.

Manipulating the Vectors

In the Commodore 64, there's an area of unused memory

from locations 679 to 767 ($02A7-$02FF). Like the cassette

buffer, this 89-byte area is perfect for holding small machine

language programs.

Just past the end of this area of memory is a table of im

portant vectors. In the 64, these vectors are two bytes each,

using the low byte/high byte format. By changing the values

of these pointers, you can redirect the system to your own

I I programs.
The vector we'll be using for Autoload is the BASIC Warm

^ Start Vector at 770-771 ($0302-$0303). This vector points to

I j the main BASIC program loop. This one loop is executed more

often than any other routine of BASIC. It checks the keyboard

again and again, waiting for input. When a key is pressed, it

I \ prints the character on the screen. It also watches for the RE
TURN key; pressing it sends the routine into action. This

BASIC routine looks at the beginning of the line for a number

j) as well. If it finds one, it assumes you're writing a program
and enters it as a BASIC line. When no line number is found,

PI 269

5 Utilities

u

it executes the statement in direct mode. After executing the , }

program (or the statement, if there's no number), the computer 1 [

goes back to the main BASIC program loop, waiting patiently

for more from the keyboard. , i

This vector is also utilized when loading a program. After 1 j

a program is loaded into the computer, the system returns to

the BASIC program mode by looking at this pointer and .)

executing the BASIC warm start program at 42115 ($A483). | [
By changing the values in this vector, the computer can

be directed to execute any machine language program instead

of the normal BASIC warm start. In Autoload, changing the

pointer value is accomplished by loading a program (which in

cludes the new pointer values) over the pointer.

The automatic boot program that will be created (by

Autoload) and saved to disk is placed into the area between

679-750 ($02A7-$02EE). Before it's saved, the vector is

changed to point to the start of the autoboot program which is

at 679 ($02A7). Then the program and the pointer (locations

679-771, $02A7-$0303) are saved to disk as one module.

This becomes our autoboot program. Here's how it works:

The autoboot program (along with the vector with the

changed values) is loaded into memory. If it's the first pro

gram in the disk's directory, it can be loaded with the

LOAD"*",8,1 format. After the LOAD is finished, the com

puter looks at the BASIC warm start vector. Because the vector

now points to the start of the autoboot program (location 679),

that program is executed instead of the normal BASIC warm

start routine. The autoboot program, in turn, loads in and exe

cutes the program you've specified.

A Newly Created Program

Type in Autoload. It's a BASIC program that POKEs a ma- j j
chine language program into memory. When you're through,

save it to disk.

Because Autoload is in the form of a BASIC loader, you | j
can use "The Automatic Proofreader" from Appendix C to

help you type it in. Make sure you've read Appendix C and

have a copy of the Proofreader on disk before you begin j_J
entering this program. There are also two other checksums in

cluded in Autoload to verify that the DATA statements were

entered correctly. j j
If you wish to autoboot a program using the

270 LJ

n
Utilities 5

n

f™| LOAD"*",8,1 syntax, format a new disk and don't save any

1 * files on it until after you've created the autoboot program.

This will insure that the autoboot program is the first entry in

nthe disk directory.

The first prompt will ask if the program you want to be

automatically loaded and run is a BASIC or machine language

n program. Press B or M. If you press M for machine language,

you'll be asked to supply the beginning address of the ML

program. This is the SYS address that starts the ML program

running. (In the ML programs in the book, for instance, you'll

find that SYS mentioned near the beginning of the article,

where details on how to enter and run it are described.) Enter

a number, then press RETURN.

Next, enter the name of the program you want to be auto

matically loaded. The program then instructs you to insert a

newly formatted disk into the disk drive. Actually, the disk

needs to be freshly formatted only if you wish to use the

LOAD"*",8,1 syntax. Saving the autoboot program to a disk

that contains other files is fine.

Enter the name you wish to give to the autoboot program

you'll be creating. For future reference, you might want to in

dicate in the filename that it's a boot program. For example, if

you want to automatically load and run SPACEGAME, you

could name the autoboot program for that game

SPACEGAME.BOOT.

After the Autoload program has run and created the

autoboot program on the disk, turn off your 64 to reset the

system. Be sure to then save a copy of the program you wish

to have loaded and run on the same disk as the autoboot pro

gram. (It can't load and run a program that isn't there.) Be

nsure that you save the program with the same filename you

told the autoboot program to look for.

To use the autoboot program, type LOAD"filename",8,l

n where filename is the name of the autoboot program you cre

ated, not the name of the program that autoboot is to load and

run. For example, typing LOAD/'SPACEGAME.BOOT",8,1

will automatically load and run "SPACEGAME". If you've

done everything correctly, the program you specified should

automatically run.

n Remember that for every program you want to load auto

matically, you will have to create a separate autoboot pro

gram. You can't just enter LOAD"*",8,1 and expect every

H 271

n

5 Utilities

u

program on the disk to automatically load. That would be a i i

more complicated program. It wouldn't be that difficult, 1—I
though; have Autoload load and run your own boot program,

and it, in turn, could load any other programs you wanted. i i

Autoload
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix C.

5 PRINT"{CLR} PLEASE WAIT..." :rem 18 | |
10 B=679:C=767:TT=0 :rem 51
20 FORA=BTOC:READD:TT=TT+D:POKEA,D:NEXT :rem 82

25 IFTTO8554THENPRINT"CHECK DATA STATEMENTS"; B; "T

O";C:END :rem 156

30 B=7168:C=7623:TT=0 :rem 147
40 FORA=BTOC:READD:TT=TT+D:POKEA,D:NEXT :rem 84

45 IFTTO42577THENPRINT"CHECK DATA STATEMENTS"? B;"

TO";C:END :rem 209

50 PRINT "{CLR}{DOWN} AUTO-LOAD A {RVS}B{OFF}ASIC
{SPACEjOR {RVS}M{OFF}ACHINE LANGUAGE{3 SPACESjP
ROGRAM?" :rem 124

70 GETA$:IFA$=""THEN70 :rem 241

80 IFA$="M"THENGOSUB300 :rem 108

299 SYS7168:END :rem 138

300 PRINT"{CLR}{DOWN} ENTER STARTING ADDRESS OF MA

CHINE LANG. PROGRAM." :rem 24

330 INPUTN:IFN<0ORN>65535THEN300 :rem 238

340 NN=INT(N/256):POKE722,N-(NN*256):POKE723,NN:PO

KE721,32 :rem 134

345 POKE693,1 :rem 202

350 POKE718,32:POKE719,66:POKE720,166:POKE724,76:P

OKE725,116:POKE726,164:RETURN :rem 184

679 DATA169,131,141,2f3,169,164,141 jrem 245

687 DATA3,3,169,8,170,160,0,32 :rem 245

695 DATA186,255,169,2,162,239,160,2 :rem 255

703 DATA32,189,255,169,0,166,43,164 :rem 250

711 DATA44,32,213,255,32,231,255,165 :rem 25 _

719 DATA174,133,45,133,47,165,175,133 :rem 93 I I

727 DATA46,133,48,234,169,82,141,119 :rem 47 LJ
735 DATA2,169,213,141,120,2,169,13 xrem 180

743 DATA141,121,2,169,3,133,198,96 :rem 195

751 DATA0,0,0,0,0,0,0,0 :rem 107

759 DATA0,0,0,0,0,0,0,0,0 :rem 207

7168 DATA162,0,189,171,28,32,210,255 :rem 38

7176 DATA232,224,98,208,245,162,0,32 :rem 38 | |

7184 DATA207,255,201,13,240,8,157,239 :rem 87 I I
7192 DATA2,232,224,16,208,241,142,186 xrem 80

7200 DATA2,162,0,189,13,29,32,210 :rem 123

7208 DATA255,232,224,59,208,245,162,0 :rem 86

7216 DATA160,0,232,234,208,252,200,208 :rem 116 L"~J
7224 DATA249,165,197,201,64,240,250,169 :rem 195

272 LJ

I \

n

UtiUties 5

i I

n

n

7232

7240

7248

7256

7264

7272

7280

7288

7296

7304

7312

7320

7328

7336

7344

7352

7360

7368

7376

7384

7392

7400

7408

7416

7424

7432

7440

7448

7456

7464

7472

7480

7488

7496

7504

7512

7520

7528

7536

7544

7552

7560

7568

7576

7584

7592

7600

7608

7616

DATA8#170,160,255,32,186,255,

DATA167,133,251,169,2,133,252

DATA251,162,4,160,3,32,216,255

DATA32,231,255,169,131,141,2,3

DATA169,164,141,3,3,162,0,189

DATA159,29,32,210,255,232,224,41

DATA208.245.96.147.17.32.69.78

169

169

.169

255

3

DATA32,79,70,70,47,79,78,13

DATA84,79,32,82,69,83,69,84

DATA32,86,69,67,84,79,82,83

:rem 198

:rem 128

:rem 19

:rem 36

:rem 82

:rem 241

trem 143

:rem 106

:rem 149

:rem 229

:rem 226

trem 188

:rem 84

:rem 12

:rem 129

:rem 102

:rem 110

:rem 114

trem 134

:rem 136

:rem 135

:rem 107

:rem 128

:rem 97

:rem 122

:rem 147

:rem 131

xrem 130

:rem 122

irem 117

:rem 125

:rem 109

:rem 123

:rem 167

:rem 120

:rem 117

:rem 158

trem 124

:rem 125

trem 112

trem 130

trem 96

trem 124

trem 165

trem 115

trem 138

trem 108

trem 131

trem 130

n 273

u

LJ

Crunch u
Mike Tranchemontagne | /

I I

Can't decide whether to use lots of REMs and ex

tra spaces to make your program more readable, i j

or keep it tight so that it executes faster? When '—'
you have "Crunch" in your programmer's tool

box, you won't have to make that decision. This

machine language utility quickly compacts any

BASIC program, and even makes sure that vital

lines are retained.

When you program, it's almost as if you're being pulled in

two opposite directions. On the one hand, you'd like to in

clude lots of REMarks and spaces between keywords to make

the program more readable, and to make it easier to locate

sections as you debug. But on the other hand, you'd like to

use as little memory as possible. The shorter the program, the

faster it will run.

This short (264 bytes) machine language program crunches

a BASIC program in memory. It removes extra spaces and

REM statements, making the program shorter. Now you don't

have to worry about those two opposite directions; you can

write a program overflowing with REMs and spaces, save it

for documentation, and then crunch it to increase speed and

free up memory. That's the version you'll actually use.

What Gets Crunched? LJ
"Crunch" checks each BASIC program line for unnecessary

spaces (those that aren't in quotes or part of a DATA state

ment), and then removes them. j \
REM statements are handled with extra care to insure that

the BASIC program works exactly the same after crunching.

Since it's not unheard of for GOTOs and GOSUBs to refer to a |_j
line which contains only a REM, they all can't be deleted.

Therefore, any REM-only line is compacted, but not com

pletely eliminated. The line number and the REM statement j j

274 LJ

n
Utilities 5

n

p—] remain, but any text following REM is deleted. We'll call this

1 (an empty REM.
All other REMs (for instance, those included as part of a

r—"j line which contains other, non-REM statements) are entirely

' ' erased. The connecting colon (:) is also deleted in this case.
As Crunch runs, it prints a number sign (#) for each line

nof the BASIC program. Each time Crunch removes one or

more spaces, or removes part or all of a REM, you'll see a left

arrow (<-) to show that memory is being compacted. When all

BASIC program lines have been crunched, a CLR is per

formed, control returns to BASIC, and the READY prompt ap

pears. The program has been compacted and is ready to use.

Note that the spaces between a line number and the first

statement on that line are not in memory, but are printed by

the LIST command. Also, empty REMs, as described above,

take up only five bytes each. These lines are easy to spot

when you list a program; if you want to remove them, you'll

have to do it manually by typing the line number and press

ing RETURN. Make sure those empty REM lines are not target

lines for GOTO, GOSUB, or IF-THEN statements.

Entering and Running Crunch

Crunch is fully relocatable, and starts at the LOAD address.

To enter the program, use MLX, "The Machine Language Edi

tor" found in Appendix D. Unlike other methods of entering

machine language programs, MLX is easy to use and will al

most insure that you have a working copy of the program

when you finish typing it in. MLX will ask for two addresses

after you've loaded and run it. Those are:

Starting address: 50400

Ending address: 50663

Now you can type in Crunch. Save it (through the Save op

tion of MLX) to tape or disk. You can load Crunch by entering

PI LOAD"filename",8,1 for disk

or

I—1 LOAD"filename",1,1 for tape

After loading Crunch, type NEW and press RETURN to

reset BASIC'S pointers. Now you can enter or load any BASIC

f"~| program as usual. To start Crunch, type SYS 50400 and hit
RETURN. After several seconds (the time depends on how

n

n 275

5 Utilities
u

u

long the BASIC program is), the READY prompt will show. i i

You can list, save, and run the crunched BASIC program as '—J
you would any other. (It would be a good idea to first save it

to tape or disk, just in case.) I j

Crunch
For easy entry of this machine language program, be sure to use "The Machine Language

Editor: MIX," Appendix D.

50400 :165,043,133,251,165,044,001

50406 :133,252,160,001,162,000,170

50412 :177,251,240,053,169,035,137

50418 :032,210,255,160,003,200,078

50424 :177,251,201,000,240,062,155

50430 2 201,131,240,058,201,034,095

50436 :240,072,201,143,240,081,213

50442 2 201,032,208,233,152,072,140

50448 :024,101,251,133,253,169,179

50454 2000,101,252,133,254,200,194

50460 2 232,177,251,201,032,240,137

50466 2 248,208,091,133,002,165,113

50472 2045,133,047,133,049,165,100

50478 2 046,133,048,133,050,165,109

50484 2055,133,051,165,056,133,133

50490 2052,096,160,000,177,251,026

50496 2170,200,177,251,133,252,223

50502 2 134,251,240,160,208,158,197

50508 2240,170,200,177,251,201,035

50514 2 000,240,231,201,034,208,228

50520 2 245,240,156,192,006,144,047

50526 2002,136,136,152,024,105,137

50532 2001,072,101,251,133,253,143

50538 2169,000,101,252,133,254,247
50544 2200,232,177,251,201,000,149

50550 2 208,248,202,208,005,104,069

50556 2208,190,240,204,134,002,078

50562 2169,095,032,210,255,056,179 I j

50568 2165,045,229,002,133,045,243 I—)
50574 2 165,046,233,000,133,046,253

50580 2 162,000,164,002,177,253,138

50586 2129,253,024,165,253,105,059 I (
50592 2001,133,253,165,254,105,047

50598 2 000,133,254,197,046,208,236

50604 2 235,165,253,197,045,208,251

50610 2 229,165,251,072,165,252,032

276

u

LJ

U

n
Utilities 5

i—, 50616 :072,160,000,056,177,251,132

I \ 50622 :229,002,145,251,170,200,163
50628 :177,251,240,013,233,000,086

50634 :145,251,133,252,134,251,088

(—[50640 :136,240,232,208,230,170,144

f l 50646 :129,251,104,133,252,104,163
50652 :133,251,104,168,169,000,021

, , 50658 :240,154,035,005,255,013,160

n

n

277

u

u

Disk Surgeon u
Gerald E. Sanders , .

I J
Many operations with your 1540 or 1541 disk

drive can be tedious and difficult This menu-

driven program allows you to change a disk J j
name, unscratch and scratch disk files, and even

print out various lists of disk files, all with just a

few keypresses.

Have you ever needed to unscratch a program or file on a

Commodore 1540/1541 disk? Did you ever want to rename

an old disk without erasing the other files? Have you ever

saved a program to disk and then seen a funny-looking title

when you listed the directory? Or found you couldn't deter

mine the right combination of characters to scratch the un

wanted file? And then did you search the disk manual in vain

to find the commands to rescue you from your predicament?

While there are no neat, one-word commands to solve

these types of problems, all the necessary information is there

in the manual. The trouble is, it's somewhat scattered and

cryptic. It may take some time to find what you're looking for.

But by using "Disk Surgeon," a menu-driven program

that allows you to perform several disk operations, you can

avoid the disk manual and frustration altogether.

On Call
Use "The Automatic Proofreader" (from Appendix C) to help I)

you type in Disk Surgeon. The Proofreader insures that you'll —!
enter Disk Surgeon correctly the first time. Once you have it

typed in, save it to disk. Run it as you would any BASIC pro- j f

gram by entering LOAD"filename",8. —}
Simply insert the disk you want to operate on and press

any key. The disk drive will whir for a moment, and the disk's] j

name and ID will display. If this is the disk you intended

(you've got a chance to change your mind at this point), press

the Y key and the disk's directory is read into memory. It may j j

take a few moments, so be patient.

278 [|

n
Utilities 5

(—1 You'll see an eight-option menu on the screen. Now you

(^ can go to work. The program is self-explanatory for the most
part, and takes you step by step through whatever process you

j—[select, but a quick review of the options and their features

' ' may help.

rj Operations

* Once started, Disk Surgeon can be stopped only by exiting

through the main menu. The POKE 808,234 in line 10 dis

ables the RUN/STOP and RESTORE keys. This was done to

prevent leaving the program at a point where a direct access

file might be left open and a change not completed. That

could have unfortunate results. If the fact that the RUN/STOP

and RESTORE keys are disabled bothers you, just delete the

POKE from line 10.

At any time after the main menu has appeared, you can exit

an operation before it's completed by pressing the f1 key at a

Y/N prompt. Hitting the f1 key returns you to the main menu.

In the unlikely event of a disk read/write error, Disk Sur

geon won't crash, but will ask if you want to stop or restart

the program. It will restart from the very beginning.

Notice that the messages are color-coded. Blue characters

are used for general information and data. Black letters in

dicate a wait. White's used to signal you that the program is

waiting for input. Cyan characters echo your input where nec

essary, and red letters show errors or cautions.

Here are the eight operations you can perform with the

Surgeon.

Operation 1—Change disk name. To change the disk's

name, just hit the 1 key and type in the new name. Up to 16

n characters are allowed. You can use the DELete key to erase

characters if you change your mind or mistype something.

There's a check to insure the name is what you wanted; press

r—i Y if it's okay, N if it's not. Disk Surgeon then changes the

) I disk's name. You'll see the new name in the status line at the
top of the screen when the main menu again appears.

p-i Operation 2—View directory. Use this to look at the

i _ 1 disk's directory. Ten files are displayed per screen. Press any

key to continue with the viewing. Once all the files have been

m shown, you can look at them again by pressing the f7 key, or

[i even print them out (assuming you have a printer connected

to your 64) by hitting the f3 key.

M 279

u
5 Utilities

u

Operation 3—Unscratch file. Possibly the most valuable t j

operation in Disk Surgeon, this feature allows you to recover »—'

files that you previously scratched (either through Disk Sur

geon, or through the "SOfilename" method), provided that j f

DOS (Disk Operating System) has not already overwritten I—J
them with another file. Operation 3 is 100 percent effective in

recovering scratched files if you use it immediately after the i /

scratch is performed. The likelihood of success diminishes rap- (—I

idly as the number of files written to the disk after the scratch

increases.

There's another reason you should try to unscratch a file

immediately after it's been scratched. If you scratch a file, save

a different file to that same disk, then try to unscratch, you

may damage the file saved between the scratch and unscratch

operations. That's because the saved file may have used some

of the sectors freed by the earlier scratch operation. When you

try to unscratch, the program may try to retrieve those sectors,

ruining the saved file.

Pressing the 3 key sends Disk Surgeon to work. It finds

all the scratched files (all the ones not already written over)

and displays them one at a time, asking if you want to recover

each one. Answer with a Y or N keypress. If you do want to

unscratch that file, you then have to tell the Surgeon what

type of file it is. You've got a choice between sequential, pro

gram, user, or relative files. Disk Surgeon works for a moment

and then validates the disk. The validation is automatically

done (in this operation, as well as the two scratch operations)

to insure that files are not ruined. It takes a moment. You can

verify that the file is back by viewing the directory again

when you return to the main menu.

Warning: validation of a disk will de-allocate blocks allo- « (

cated for random access files. Don't use Disk Surgeon on disks 1—1
that contain random access files.

Operation 4—Scratch file—leave on directory. One of (,

the two scratch operations, this one allows you to scratch the I 1
file, but retains it on the directory. This feature can be useful,

especially when you later decide you want to unscratch it. As . ,

long as its name is still on the directory, you shouldn't have ! !
any trouble locating it. Just as in operation 3, you'll see the

filenames one at a time. Pressing the Y key begins the scratch , ,

feature; hitting the N key moves you to the next filename. 1 !
(Warning: After pressing the Y key, there is no chance to

280 LJ

1 i

Utilities 5

H

r—! change your mind. Make sure you want to scratch that file, or

■ l you'll have to unscratch it with operation 3.) Before this op
eration returns to the main menu, it validates the disk.

f—i Operation 5—Scratch file—take off directory. Identical

' - -' to operation 4, except that the scratched filename is dropped
from the directory.

(—) Operation 6—Print directory. If you have a printer con-

'-■ t nected to your Commodore 64, you can use this operation to
print the entire directory, just the valid files, only the deleted

files, or all the program files. These options are available once

you press the 6 key when the main menu is on the screen.

Operation 7—Go to another disk. Once the Surgeon is

working, you can change disks by hitting the 7 key and insert

ing the new disk you want to operate on.

Operation 8—Exit. Unless you delete the POKE 808,234

from line 10, this is the only way you can exit the Surgeon.

You'll see the READY prompt on the screen. Type RUN and

press RETURN if you've changed your mind and want to use

the Surgeon again.

Not a Medical School

This program is simply a utility. You don't have to know how

DOS works in order to use it. But if you do want more de

tailed information on DOS and how it operates, take a look at

"Disk Tricks," which I also wrote. It's in the September 1984

issue of COMPUTEl's Gazette. (In fact, Disk Surgeon is, for the

most part, a software package which includes three of the four

small programs listed in that article.)

You'll find Disk Surgeon easy to use, and best of all, a

tremendous help in several disk manipulations.

) I Disk Surgeon
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

__ 10 POKE53280,11:POKE53281,12:PRINTII{BLU}II:POKE808,

H 234 :rem 19
20 DIMF$(144,4),T$(4),M$(3) :rem 58

30 FORX=679TO718:READA2POKEX,A:NEXT :rem 6

r—| 40 T$ (0)=MDELETEDM :T$ (1)=MSEQUENT. " :T$ (2)=MPROGRAM

I I ll:T$(3)=nUSERM :rem 161
45 T$(4)=IIRELATIVE" :rem 67

50 M$(0)=M{BLK}PRINTING ENTIRE DIRECTORY...PLEASE

f~j {SPACE}WAIT." :rem 246
* 60 M$(1)=M{BLK} PRINTING VALID PILES ... PLEASE WA

IT." :rem 95

!) 281

5 Utilities

70 M$(2)="{BLK} PRINTING SCRATCHED FILES...PLEASE

{SPACE}WAIT. {BLU}" :rem 161

80 M$(3)="{BLK} PRINTING PROGRAM FILES... PLEASE WA

IT." :rem 11

90 GOTO710 :rem 58

100 INPUT#15,E,E$,ET,ES :rem 57

110 IFE<20THENRETURN :rem 19

120 PRINT"{CLR}{RED}{RVS}{10 SPACESjDISK ERROR 111
{16 SPACES} {BLU}'1:PRINT:PRINT:PRINT :rem 177

125 PRINT:PRINT :rem 236

130 PRINTE,E$:PRINTET,ES :rem 31

140 PRINT#15,"I" :rem 100

150 CLOSE8:CLOSE15 :rem 90

160 PRINT:PRINT:PRINT:PRINT"{WHT} PRESS ANY KEY TO

RESTART PROGRAM." :rem 46

170 PRINT:PRINT:PRINT:PRINT:PRINT"{RED}{4 SPACESjH

IT 'Fl1 TO QUIT." :rem 95

180 WAIT198,l:GETA$:IFA$="{Fl}"THEN2410 :rem 118

190 RUN :rem 143

200 PRINT"{BLU}{2 SPACES}MAIN MENU:" :rem 22
210 PRINT:PRINT"{2 SPACESjl. CHANGE DISK NAME"

:rem 124

VIEW DIRECTORY"

:rem 125

UNSCRATCH FILE"

:rem 90

SCRATCH FILE-LEAVE ON

:rem 165

SCRATCH FILE-TAKE OFF

:rem 157

PRINT DIRECTORY"

:rem 215

GO TO ANOTHER DISK"

:rem 12

290 PRINT:PRINT"{2 SPACES}8. QUIT PROGRAM":rem 244
300 PRINT:PRINTSPC(9)"{WHT}WHICH OPTION? (1-8)

:rem 240

310 WAIT198,1:GETA$:IFA$<"1"ORA$>"8"THEN310

:rem 169

320 RETURN :rem 117

330 OPEN15,8,15,"I":GOSUB100 :rem 40

340 OPEN8,8,8,"#":GOSUB100 :rem 167

350 PRINT#15#"U1:II87 07T;S:GOSUB100 :rem 233

360 PRINT#15,"B-P:"8;BP:GOSUB100 :rem 104

370 PRINT#8,D$;:GQSUB100 :rem 156

380 PRINT#15,"U2:"8;0;T;S:GOSUB100 :rera 237

390 CLOSE8:CLOSE15:RETURN :rem 122

400 OPEN15/8/15.J"I11 :cem 219

410 OPEN8,8,8,"#" :rem 90

420 PRINT#15,"U1:"8;0;T;S:GOSUB100 :rem 231

230 PRINT:PRINT"{2 SPACES}2,

240 PRINT:PRINT"{2 SPACES}3.

250 PRINT:PRINT"{2 SPACES}4.

DIRECTORY"

260 PRINT:PRINT"{2 SPACES}5.
DIRECTORY"

270 PRINT:PRINT"{2 SPACES}6.

280 PRINT:PRINT"{2 SPACES}1.

u

u

u

u

282

U

u

n

n

n

UtUities 5

430 GET#8,NT$:IFNT$=""THENNT$=CHR$(0) :rem 136

440 NT=ASC(NT$) srem 101
450 GET#8,NS$:IFNS$=""THENNS$=CHR$(0) :rem 135

460 NS=ASC(NS$) :rem 101
470 BL$="" :rem 206

480 FORX=1TO254 :rem 135

490 GET#8#A$:IFA$=MIITHENA$=CHR$(0) :rem 107

500 BL$=BL$+A$:rem 198

510 NEXT :rem 213

520 GOSUB100 :rem 168

530 CLOSE8rCLOSEl5:RETURN :rem 118

540 PRINT:PRINT:PRINTSPC(2)"{BLK}DISK WILL NOW BE

{SPACE}VALIDATED " :rem 21

545 PRINT: PRINT :PRINTSPC(13) "PLEASE WAIT.": rein 181

550 OPEN15,8,15,"V":CLOSE15:RETURN :rem 30

560 SYS679:IFA=5THEN1010 :rem 173
570 PRINTM$(A-1):OPEN4,4:PRINT#4:PRINT#4:PRINT#4,"

PROGRAM NAME:";CHR$(16); :rem 246

580 PRINT #4,"20TYPE:":PRINT#4:PRINT#4 :rem 11

590 FORX=0TO143 :rem 133

600 IFA=1THENIFLEFT$(F$(X,1),1)=CHR$(0)THEN660

:rem 137

610 IFA=2THENIFASC(F$(X,0))<129THEN660 :rem 206

620 IFA=3THENIFASC(F$(X,0))>128ORLEFT$(F$ (X, 1) , 1)=*

CHR$(0)THEN660 :rem 158

630 IFA=4THENIFASC(F$(X,0))<>130THEN660 :rem 8

640 P$=F$(X,1):T=ASC(F$(X,0))-128:IFT<0THENT=0

:rem 94

650 PRINT#4,P$;CHR$(16);"20";T$(T) :rem 76

660 NEXT :rem 219

670 CLOSE4:PRINTSPC(8)"{BLU}PRINTOUT COMPLETE ..."

:rem 72

680 PRINT:PRINT:PRINT:PRINT" {WHT}HIT ANY KEY TO RE

TURN TO THE MAIN MENU." :rem 14

690 PRINT:PRINT"HIT {RVS}F3{OFF}TO GO TO PRINT OPT

ION MENU." :rem 222

700 WAIT198,1:GETA$:RETURN :rem 100

710 PRINT" {CLRHRVSHBLU} {13 SPACESjDISK SURGEON

{15 SPACES}" :rem 123

720 PRINT:PRINT:PRINTSPC(5)"{BLU}PLEASE INSERT THE

DISK TO BE" :rem 72

730 PRINT:PRINTSPC(12)"OPERATED UPON." :rem 144

740 PRINT:PRINT:PRINT:PRINTSPC(6)"{WHT}PRESS ANY K

EY WHEN READY." :rem 102

750 WAIT198,1:GETA$:SYS679 :rem 46

760 PRINT:PRINT:PRINT:PRINT:PRINT :rem 70

765 PRINTSPC(1)"{BLK}READING DISK CONTENTS, PLEASE
WAIT." :rem 71

770 T=18:S=0:GOSUB400 :rem 224

780 FORX=143TO158 :rem 244

283

5 Utilities

u

790 IFMID$(BL$,X,1)=CHR$(96)THEN800 :rem 214 , .

795 IFMID$(BL$,X,1)<>CHR$(160)THENDN$=DN$+MID$(BL$ ({
,X,1) :rem 94

800 NEXT :rem 215

810 DI$=MID$(BL$,161,2):SYS679 :rem 137 if

820 PRINT"{BLU}DISK NAME: "DN$:PRINT:PRINT"DISK ID ■<—I

: MDI$:rem 59

830 PRINT:PRINT:PRINTSPC(2)"{WHT}IS THIS THE CORRE

CT DISK? (Y/N)" :rem 192 |j
840 WAIT198,1:GETA$:IFA$<>IIY"ANDA$<>"N"THEN840

:rem 163

850 IFA$="N"THENRUN :rem 132

860 SYS679:PRINT:PRINT:PRINT:PRINTSPC(4)"{BLK}READ

ING DIRECTORY INTO MEMORY." :rem 142

870 PRINT:PRINT:PRINTSPC(13)"PLEASE WAIT.":rem 182

880 T=18:S=1:R=0 :rem 142

890 GOSUB400 :rem 181

900 FORX=0TO7 :rem 31

910 F$(X+R*8,0)=MID$(BL$,X*32+1,1) :rem 242

920 F$(X+R*8,1)=MID$(BL$,X*32+4,16) :rem 45

930 F$(X+R*8,2)=CHR$(T) :rem 207

940 F$(X+R*8,3)=CHR$(S) :rem 208

950 F$(X+R*8,4)=CHR$(X*32+2) :rem 195

960 NEXT :rem 222

970 IFNT<>0ANDNS<=18THENT=NT:S=NS:R=R+1:GOTO890

:rem 41

980 IF(X+R*8)>=143THEN1010 :rem 188

990 FORZ=(X+R*8)TO144:F$(Z,0)=CHR$(0):F$(Z,1)=CHR$

(0):F$(Z,2)=CHR$(0) :rem 37

1000 F$(Z,3)=CHR$(0):F$(Z,4)=CHR$(0):NEXT :rem 219

1010 IFLEN(DN$)<16THENDN$=DN$+" ":GOTO1010 :rem 86

1020 TL$="{CLR}{RVS}{BLU} DISK NAME: "+DN$+"

{3 SPACES}ID: "+DI$+"{3 SPACES}" :rem 180
1030 PRINTTL$:rem 21

1040 GOSUB200 :rem 215

1050 SYS679:A=VAL(A$):ONAGOTO1060,1480,1670,1950,2

120,2290,2400,2410 :rem 145 j

1060 PRINT:PRINT"{BLU}INPUT NEW DISK NAME UP TO 16 « i
CHARACTERS." :rem 1

1070 PRINT:PRINTSPC(6)"{WHT}PRESS {RVS}RETURN{OFF}
WHEN FINISHED." :rem 141 I

1080 NN$="":X=0:PRINT:PRINTSPC(6)"{CYN}"; :rem 34 —'
1090 WAIT198,1:GETA$:rem 125
1100 IFA$=CHR$(13)THEN1160 :rem 160 \ i

1110 IFA$="{F1}"THEN1010 :rem 174 Lj
1120 IFA$=CHR$(20)ANDLEN(NN$)>0THENX=X-1:NN$=LEFT$

(NN$,(LEN(NN$)-1)) srem 182

1125 IFA$=CHR$(20)ANDLEN(NN$)>0THENPRINTCHR$(20);: j [
GOTO1090 :rem 199 '—!

1130 IFA$=CHR$(20)ANDLEN(NN$)=0THEN1090 :rem 211

284 [J

Utilities 5

! \

H

H

H

1140 NN$=NN$+A$:X=X+1:PRINTA$;:IFX=16THEN1160
:rem 185

1150 GOTO1090 :rem 202
1160 SYS679:PRINT"{BLU}NEW NAME: "?NN$:rem 215

1170 PRINT:PRINT:PRINTSPC(8)"{WHT}lS THIS CORRECT?

(Y/N)" :rem 232
1180 WAIT198,1 :GETA$:IFA$<>"Y"ANDA$<> MNMANDA$<>"

{F1}"THEN1180 :rem 122

1190 IFA$="N"THENSYS679:GOTO1060 :rem 156

1200 IFA$="{Fl}"THEN1010 :rem 174
1210 IFLEN(NN$)<16THENNN$=NN$+CHR$(160):GOTO1210

:rem 29

1220 SYS679:PRINT:PRINT:PRINT:PRINT:PRINTSPC(10)"

{BLK}CHANGING DISK NAME.11 :rem 114

1230 T=18:S=0:BP=144:D$=NN$:GOSUB330 :rem 75

1240 OPEN15,8,15,"I":CLOSE15 :rem 36

1250 SYS679:PRINT:PRINT:PRINT:PRINT:PRINTSPC(9)"

{BLU}NAME CHANGE COMPLETE." :rem 113

1260 DN$=NN$:FORX=0TO500:NEXT:GOTO1010 :rem 72

1480 PRINT" {BLU} VIEW DIRECTORY:11 :rem 231

1490 PRINT:PRINT" NO.","FILE TYPE","{2 SPACES}FILE
NAME{BLU}":PRINT :rem 154

1500 Z=0:POKE686,4:POKE698,200 :rem 200

1510 FORX=0TO9 :rem 79

1520 A=(ASC(F$(X+Z*10,0)))-128:IFA<0THENA=0:rem 89

1530 IF(A=0ANDF$(X+Z*10,1)="")OR(A=0AND(ASC(F$(X+Z

*10,1))=0))THEN1590 :rem 2

1540 PRINTX+(Z*10)+1,T$(A),"{2 SPACES}";F$(X+Z*10,
1) :rem 205

1550 NEXT trem 10

1560 PRINT:PRINT:PRINTSPC(3)"{WHT}PRESS ANY KEY TO
CONTINUE LIST{BLU}":WAIT198,1:GETA$

1570 IFA$="{F1}"THEN1630

1580 SYS679:PRINT:PRINT:Z=Z+1:GOTO1510

1590 PRINT:PRINT:PRINT"{BLU}LIST COMPLETE,

ESS {RVS}F7{OFF} TO VIEW AGAIN."

1600 PRINT:PRINTSPC(4)"PRESS {RVS}F3{OFF}
DIRECTORY."

1610 PRINT:PRINT" PRESS ANY KEY TO GO TO

{SPACE}MENU."

1620 WAIT198,1:GETA$

1630 POKE686,2:POKE698,40

1640 IFA$="{F7}"THENSYS679:GOTO1480
1650 IFA$="{F3}"THENSYS679:GOTO2290
1660 GOTO1010

1670 PRINT"{BLU}UNSCRATCH FILE:
,160

1680 V=0

1690

:rem 72

:rem 192

:rem 194

{WHTjPR

:rem 47

TO PRINT

:rem 135

THE MAIN

:rem 3

:rem 124

:rem 155

:rem 220

:rem 219

:rem 200

:POKE686,4:POKE698

: rem 3

rem 146

FORX=0TO143:A=(ASC(F$(X,0)))-128:IFA<0THENA=0

:rem 114

j \ 285

5 Utilities
U

u

1700 IFA>0THENGOTO1890 :rem 64 {
1710 IFA=0AND(LEFT$(F$(X,1),1)=CHR$(0)ORLEFT$(F$(X [J

,1),1)=CHR$(160))THEN1890 :rem 139

1720 SYS679:PRINT:PRINT:PRINTX+1#F$(X,1) :rem 20

1730 PRINT:PRINT:PRINTSPC(2)"{WHT}WANT TO UNSCRATC | I

H THIS FILE?{2 SPACES}(Y/N){BLU}" :rem 253 t—)

1740 WAIT198,1:GETA$:IFA$<>"Y"AND A$<>"N"ANDA$<>"

{F1}HTHEN1740 :rem 126 .

1750 IFA$="N"THEN1900 :rem 137

1760 IFA$="{Fl}"THENPOKE686,2:POKE698,40:GOTO1010

:rem 253

1770 SYS679:PRINT"{BLU}WHAT FILE TYPE?" :rem 115

1780 PRINT:PRINT"{2 SPACES}l. SEQUENTIAL" :rem 194

1790 PRINT:PRINT"{2 SPACES}2. PROGRAM" :rem 225

1800 PRINT:PRINT"{2 SPACES}3. USER" :rem 1
1810 PRINT:PRINT"{2 SPACES}4. RELATIVE" :rem 32
1820 PRINT:PRINT"{RED}{2 SPACES}5, ABORT UNSCRATCH

{BLU}" :rem 36

1830 PRINT:PRINT:PRINTSPC(10)"{WHT}WHICH TYPE? (1-

5)" :rem 160

1840 WAIT198,1:GETA$:IFA$<"1IIORA$>"5"THEN1840

:rem 24

1850 IFA$="5"THENPOKE686,2:POKE698,40:GOTO1010

:rem 173

1860 FT=VAL(A$)+128:FT$=CHR$(FT):BP=ASC(F$(X,4)):T

=ASC(F$(X,2)):S=ASC(F$(X,3)) srem 146

1870 D$=FT$:GOSUB330 :rem 131

1880 F$(X,0)=FT$:V=1 :rem 57

1890 SYS679:PRINT:PRINT:PRINTSPC(11)"{BLK}... WORK

ING ...{BLU}" :rem 141

1900 NEXT :rem 9

1910 SYS679:PRINTSPC(2)"{BLU}NO MORE DELETED FILES

ON THIS DISK." :rem 107

1920 IFV=1THENGOSUB540 :rem 103

1930 PRINT:PRINT:PRINTSPC(2)"{WHT}HIT ANT KEY TO R

ETURN TO MAIN MENU." :rem 249

1940 WAIT198fl:GETA$:POKE686,2:POKE698,40:GOTO1010) j

:rem 193 l—>
1950 PRINT"{BLU}SCRATCH FILE - LEAVE ON DIRECTORY:

":POKE686,4:POKE698,200 :rem 72 ((

1960 V=0 :rem 147 l [
1970 FORX=0TO143:A=(ASC(F$(X,0)))-128:IFA<0THEN206

0 :rem 141

1980 SYS679:PRINT:PRINT:PRINTX+1,F$(X,1) :rem 28 j 1

1990 PRINT:PRINT:PRINTSPC(2)"{WHT}WANT TO SCRATCH s—<

fSPACE}THIS FILE?{3 SPACES JXY/N) {BLU.} ":rem 98

2000 WAIT198#l:GETA$:IFA$<>"YllANDA$o"N"ANDA$<>" {

{F1}"THEN2000 :rem 106 | j
2010 IFA$="N"THEN2070 :rem 126

286 U

n
Utilities 5

I i

PI

I 1

iJ

i i

/ _ I

H

p—!

i .1

2020

2030

2040

2050

2060

2070

2080

20C0

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

< I

IFA$="{Fl}"THENPOKE686,2:POKE698,40:GOTO1010

:rem 243

BP=ASC(F$(X,4)):T=ASC(F$(X,2)):S=ASC(F$(X,3))

:rem 247

D$=CHR$(128):GOSUB330 ;rem 168

F$(X,0)=CHR$(128):V=1 :rem 94

SYS679:PRINT:PRINT;PRINTSPC(11)"{BLK} .•. WOR

KING .•.{BLU}11 :rem 131

NEXT :rem 8

SYS679:PRINTSPC(5)"{BLU}NO MORE FILES ON THIS

DISK." :rem 118

IFV=1THENGOSUB540 :rem 102

PRINT:PRINT:PRINTSPC(2)"{WHT}HIT ANT KEY TO R
ETURN TO MAIN MENU." :rem 239

WAIT198,1:GETA$:POKE686,2:POKE698,40:GOTO1010

:rem 183

PRINT"{BLU}SCRATCH FILE - TAKE OFF DIRECTORY:
":POKE686,4:POKE698,200 :rem 52

V=0 :rem 137

FORX=0TO143:A=(ASC(F$(X,0)))-128:IFA<0THEN223

0 :rem 130

SYS679:PRINT:PRINT:PRINTX+1,F$(X,1) :rem 18

PRINT:PRINT:PRINTSPC(2)"{WHT}WANT TO SCRATCH

{SPACE}THIS FILE?{3 SPACES}(Y/N){BLU}":rem 88

WAIT198,1 :GETA$: IFA$<> "Y"ANDA$< > "NIIANDA$<> "

{F1}"THEN2170 :rem 122
IFA$="N"THEN2240 :rem 133

IFA$="{Fl}"THENPOKE686,2:POKE698#40:GOTO1010
:rem 251

BP=ASC(F$(X#4)):T=ASC(F$(X,2)):S=ASC(F$(X#3))

:rem 246

D$=CHR$(0):GOSUB330 :rem 60

F$(X,0)=CHR$(0):V=1 :rem 242

SYS679:PRINT:PRINT:PRINTSPC(11)"{BLK}... WORK
ING ...{BLU}" :rem 130

NEXT :rem 7

SYS679:PRINTSPC(5)"{BLU}NO MORE FILES ON THIS
DISK." :rem 117

IFV=1THENGOSUB540 :rem 101

PRINT:PRINT:PRINTSPC(2)"{WHT}HIT ANT KEY TO R
ETURN TO MAIN MENU." :rem 247

WAIT198,1:GETA$:POKE686#2:POKE698,40:GOTO1010

:rem 191

PRINT:PRINT:PRINT"{BLU}PRINT DIRECTORY OPTION
S:" :rem 243
PRINT:PRINT"{2 SPACES}l. PRINT ENTIRE DIRECTO
RY" :rem 197
PRINT:PRINT"{2 SPACES}2. PRINT ONLY VALID FIL

ES" :rem 112

287

5 Utilities

2320 PRINT:PRINT"{2 SPACES}3. PRINT ONLY DELETED F

ILES" :rem 249

2330 PRINT:PRINT"{2 SPACES}4. PRINT ONLY PROGRAM F

ILES" :rem 28

2340 PRINT:PRINT"{2 SPACES}5. ABORT PRINT OPTION"
:rem 162

2350 PRINT:PRINT:PRINTSPC(9)"{WHT}WHICH OPTION? (1

-5)" :rem 13

2360 WAIT198,1:GETA$:IFA$<M1"ORA$>"5"THEN2360

:rem 20

2370 A=VAL(A$):GOSUB560 :rem 56

2380 IFA$="{F3}"THENSYS679:GOTO2290 :rem 220

2390 POKE686,2:POKE698,40:GOTO1010 :rem 212

2400 RUN :rem 187

2410 PRINT"{CLR}{BLU}":POKE808,237:CLOSE8:CLOSE15:
END :rem 42

2420 DATA8,72,138,72,152,72,162,2,160,0,24,32,240,

255,160,0,169,32,153,40,4 :rem 133

2430 DATA153,0,5,153,0,6,153,0,7,200,208,241,104,1

68,104,170,104,40,96 :rem 132

u

u

u

288 |_J

n

^ Machine Langu

n Saver
r-j John O. Battle

Here's an easy way to save machine language pro

grams to tape or disk from your Commodore 64.

You've just written the ultimate character movement routine

for your latest videogame, and, of course, it's written in ma

chine language for speed. Now you want to save it for future

use. (You certainly don't want to type the routine in and de

bug it again.) But how do you get it onto tape or disk? The

BASIC command SAVE works only for programs written in

BASIC. You could load in a machine language monitor pro

gram and use its SAVE feature, but perhaps you don't have a

monitor; loading the monitor might even overwrite the routine

you want to save.

SAVE and LOAD

Here's the solution. "ML Saver" is a BASIC program which

loads in a short machine language routine of its own. This

routine allows you to easily save other machine language pro

grams to tape or disk. And since it's in machine language, it's

extremely fast.

_^ Because it's in the form of a BASIC loader, you can use

l\ "The Automatic Proofreader" from Appendix C to help in typ

ing it in. The Proofreader makes it almost impossible to make

a mistake when you enter a program.

[\ Once ML Saver is typed in and saved to tape or disk, en
ter RUN. Since the numbers in the DATA statements in lines

1000-1300 make up a machine language program, they must

I (be typed in exactly, no errors allowed. (For that reason, it's an

excellent idea to save the program before you try to run it.)

■ f The program is self-prompting—simply press the letter T (for

/_ [SAVE to tape) or D (for disk) when asked. Then enter the

beginning address for the SAVE and press RETURN.

L t 289

5 Utilities

LOAD"filename",8,1 (for disk)
LOAD"'filename",1,1 (for tape)

U

LJ

The program will next ask for the final address in the , ,

block of memory to be saved. If you press RETURN without uj

entering an ending address, the program will ask instead for

the total number of bytes you wish to save (beginning with , .

the byte at the starting address). If your final address is not I)
greater than your starting address, you'll be asked to enter

both addresses again. .

Finally, the program will allow you to specify a filename 1 [
for the SAVEd program. This name can be no more than ten

characters long.

In order to load a machine language routine that was put

on tape or disk by ML Saver, use the standard BASIC com

mand LOAD, but be sure to follow the device number with a

comma and a one. For example:

The ,1 at the end of the LOAD command tells the computer to

load the routine into the same memory locations from which it

was saved. Without it, the auto-relocating feature of the 64's

LOAD command would cause the routine to be stored begin

ning at the normal start-of-BASIC location.

ML Saver
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C.

10 PRINT "{CLR}{9 DOWN}{9 RIGHT}{RVS}MACHINE LANGU

AGE SAVE{RVS}" :rem 239
70 FOR 1=7424 TO 7489 . :rem 36

80 READ X :rem 220

90 POKE I,X :NEXT I :rem 39

95 FOR 1=1 TO 3000:NEXT I :rem 52

100 PRINT"{CLR}{10 DOWN}{6 RIGHT}" :rem 77

110 PRINT "{RVS}T{OFF}APE OR {RVS}D{OFF}lSK" , ,

:rem 161 | ;
120 GET D$:IF D$="" THEN 120 :rem 79

130 IF D$="T" THEN PRINT"{UP}TAPE SELECTED":LF=1:D

N=1:SA=2 :rem 21) j
140 IF D$="D" THEN PRINT"{UP}DISK SELECTED":LF=15: >—*

DN=8:SA=15 :rem 119

150 IF D$O"T" AND D$O"D" THEN PRINT"{UP}":GOTO 1 , >

20 :rem 115 ^J

160 POKE 7661,LF :rem 88

170 POKE 7662,DN :rem 90

180 POKE 7663, SA :rem 94 1 '{
200 INPUT "STARTING ADDRESS FOR SAVE";S : rem 124 <■—^
210 Sl=INT(S/256) :rem 175

290 U

Utilities 5

n

I—"} 220 S2=S-S1*256 : rem 33

LJ 230 POKE 251,S2 :rem 13
240 POKE 252,SI :rem 14

_^ 245 A$="" :rem 129

j (250 INPUT"FINAL ADDRESS OF SAVE"?A$:rem 63

260 IF A$="" THEN 300 :rem 207

270 F=VAL(A$) :rem 181

n280 GOTO 320 :rem 104

300 INPUT "{UP}NUMBER OF BYTES TO BE SAVED";N

:rem 3

310 F=S+N-1 :rem 65

320 Fl=INT(F/256) :rem 151

330 F2=F-F1*256 :rem 252

335 IF F<S THEN PRINT"{3 UP}":GOTO 200 :rem 183

340 POKE 7659,F2 :rem 69

350 POKE 7660,Fl :rem 61

400 INPUT"PROGRAM NAME";N$:rem 78

410 NL=LEN(N$) :rem 14

420 IF NL<10 THEN 460 :rem 37

430 PRINT"NAME TOO LONG" :rem 171

440 GOTO 400 :rem 101

460 POKE 7648,NL :rem 104

470 FOR 1=1 TO NL :rem 118

480 POKE 7648+I,ASC(MID$(N$,I,l)) irem 255

490 NEXT I :rem 37

500 IF D$="D" THEN PRINT "PRESS ANY KEY TO SAVE"

:rem 129

505 IF D$="T" THEN PRINT"REWIND TAPE AND PRESS ANY

KEY" :rem 138

510 GET A$:rem 219

520 IF A$="" THEN 510 :rem 209

530 SYS 7472 :rem 107

560 END :rem 114

1000 DATA 169,192,32,144,255,173,237,29,174,238,29

,172,239,29,32,186,255,173 :rem 193

(—7 1100 DATA 224,29,162,225,160,29,32,189,255,96,234,

/ \ 234,234,234 :rem 197
1200 DATA 169,0,32,144,255,96,234,234,234,234,234,

R 234,234,234,234,234 :rem 68

1300 DATA 32,0,29,169,251,174,235,29,172,236,29,32

,216,255,32,32,29,0 :rem 66

n 291

Appendix A

J !

A Beginner's Guide

to Typing In Programs

What Is a Program?

A computer cannot perform any task by itself. Like a car with

out gas, a computer has potential, but without a program, it

isn't going anywhere. Most of the programs published in this

book are written in a computer language called BASIC. BASIC

is easy to learn and is built into all Commodore 64s.

BASIC Programs

Computers can be picky. Unlike the English language, which

is full of ambiguities, BASIC usually has only one right way of

stating something. Every letter, character, or number is signifi

cant. A common mistake is substituting a letter such as O for

the numeral 0, a lowercase 1 for the numeral 1, or an upper

case B for the numeral 8. Also, you must enter all punctuation

such as colons and commas just as they appear in the book.

Spacing can be important. To be safe, type in the listings ex

actly as they appear.

Braces and Special Characters

The exception to this typing rule is when you see the braces,

such as {DOWN}. Anything within a set of braces is a special

character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to

Appendix B, "How to Type In Programs."

About DATA Statements

Some programs contain a section or sections of DATA state

ments. These lines provide information needed by the pro

gram. Some DATA statements contain actual programs (called

machine language); others contain graphics codes. These lines

are especially sensitive to errors.

If a single number in any one DATA statement is

mistyped, your machine could lock up, or crash. The keyboard

and STOP key may seem dead, and the screen may go blank.

Don't panic—no damage is done. To regain control, you have

to turn off your computer, then turn it back on. This will erase

295

LJ
A Appendix

u

whatever program was in memory, so always save a copy of , >

your program before you run it If your computer crashes, you LJ
can load the program and look for your mistake.

Sometimes a mistyped DATA statement will cause an er- , ,

ror message when the program is run. The error message may 1 I
refer to the program line that reads the data. The error is still

in the DATA statements, though. .

Get to Know Your Machine

You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use

to store and retrieve programs from tape or disk. You'll want

to save a copy of your program, so that you won't have to

type it in every time you want to use it. Learn to use your ma

chine's editing functions. How do you change a line if you

made a mistake? You can always retype the line, but you at

least need to know how to backspace. Do you know how to

enter reverse video, lowercase, and control characters? It's all

explained in your computer's manuals.

A Quick Review

1. Type in the program a line at a time, in order. Press

RETURN at the end of each line. Use backspace or the back

arrow to correct mistakes.

2. Check the line you've typed against the line in the book.

You can check the entire program again if you get an error

when you run the program.

296

n
Appendix B

n

! i How to Type In Programs

r >

J (To make it easy to know exactly what to type when entering

one of these programs into your computer, we have estab-

^ lished the following listing conventions.

I \ Generally, Commodore 64 program listings will contain

words within braces which spell out any special characters:

{DOWN} would mean to press the cursor down key.

{5 SPACES} would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the

SHIFT key while pressing the other key), the key would be

underlined in our listings. For example, S would mean to

type the S key while holding the SHIFT key. This would ap

pear on your screen as a heart symbol. If you find an under

lined key enclosed in braces (e.g., {10 N}), you should type

the key as many times as indicated (in our example, you

would enter ten shifted N's).

If a key is enclosed in special brackets, f< >l, you should
hold down the Commodore key while pressing the key inside

the special brackets. (The Commodore key is the key in the

lower left corner of the keyboard.) Again, if the key is pre

ceded by a number, you should press the key as many times

as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed

in braces. These characters can be entered by holding down

the CTRL key while typing the letter in the braces. For exam

ple, {A} would indicate that you should press CTRL-A.

About the quote mode: You know that you can move the

cursor around the screen with the CRSR keys. Sometimes a

P[programmer will want to move the cursor under program con
trol. That's why you see all the {LEFT}'s, {HOMEj's, and

{BLU}'s in our programs. The only way the computer can tell

] I the difference between direct and programmed cursor control
~ is the quote mode.

rt^ Once you press the quote (the double quote, SHIFT-2),

; I you are in the quote mode. If you type something and then try
to change it by moving the cursor left, you'll only get a bunch

^ of reverse-video lines. These are the symbols for cursor left.

i t The only editing key that isn't programmable is the DEL key;

297

B Appendix

you can still use DEL to back up and edit the line. Once you

type another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces

into a line. In any case, the easiest way to get out of quote

mode is to just press RETURN. You'll then be out of quote

mode and you can cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color

control keys:

Press: See:

When You

Read:

£43

B 7 3

E 8 ^

{ Fl }

{ F2 }

{ F3 }

{ R }

{ F5 }

{ F6 }

{ F7 }

{ F8 }

Press:

[commodore] [Y]

[COMMODORE] [2]

[commodore] [3J

[commodore] J 4 \

[commodore] [7]

[commodore] |~T|

[commodore] [Y

I commodore] [i]

fl

See:

Li

u

u

u

Li

u

298

Appendix C

H The Automatic Proofreader
Charles Brannon

"The Automatic Proofreader" will help you type in program

listings without typing mistakes. It is a short error-checking

program that hides itself in memory. When activated, it lets

you know immediately after typing a line from a program list

ing if you have made a mistake. Please read these instructions

carefully before typing any programs in this book.

Preparing the Proofreader

1. Using the listing below, type in the Proofreader. Be

very careful when entering the DATA statements—don't type

an 1 instead of a 1, an O instead of a 0, extra commas, and so

on.

2. Save the Proofreader on tape or disk at least twice

before running it for the first time. This is very important be

cause the Proofreader erases part of itself when you first type

RUN.

3. After the Proofreader is saved, type RUN. It will check

itself for typing errors in the DATA statements and warn you if

there's a mistake. Correct any errors and save the corrected

version. Keep a copy in a safe place—you'll need it again and

again, every time you enter a program from this book, COM-

PUTEI's Gazette, or COMPUTE! magazine.

4. When a correct version of the Proofreader is run, it ac

tivates itself. You are now ready to enter a program listing. If

you press RUN/STOP-RESTORE, the Proofreader is disabled.

To reactivate it, just type the command SYS 886 and press

RETURN.

Using the Proofreader

All listings in this book have a checksum number appended to

the end of each line. An example is ":rem 123". Don't enter this

statement when typing in a program. It is just for your infor

mation. The rem makes the number harmless if someone does

type it in. It will, however, use up memory if you enter it, and

it will confuse the Proofreader, even if you entered the rest of

the line correctly.

299

u
C Appendix

When you type in a line from a program listing and press

RETURN, the Proofreader displays a number at the top of

your screen. This checksum number must match the checksum

number in the printed listing. If it doesn't, it means you typed

the line differently than the way it is listed. Immediately re-

check your typing. Remember, don't type the rem statement

with the checksum number; it is published only so you can

check it against the number which appears on your screen.

The Proofreader is not picky with spaces. It will not no

tice extra spaces or missing ones. This is for your convenience,

since spacing is generally not important. But occasionally

proper spacing is important, so be extra careful with spaces,

since the Proofreader will catch practically everything else that

can go wrong.

There's another thing to watch out for: If you enter the

line by using abbreviations for commands, the checksum will

not match up. But there is a way to make the Proofreader

check it. After entering the line, LIST it. This eliminates the

abbreviations. Then move the cursor up to the line and press

RETURN. It should now match the checksum. You can check

whole groups of lines this way.

Special Tape SAVE Instructions

When you're done typing a listing, you must disable the

Proofreader before saving the program on tape. Disable the

Proofreader by pressing RUN/STOP-RESTORE (hold down

the RUN/STOP key and sharply hit the RESTORE key). This

procedure is not necessary for disk, but you must disable the

Proofreader this way before a tape SAVE.

A SAVE to tape erases the Proofreader from memory, so

you'll have to load and run it again if you want to type an

other listing. A SAVE to disk does not erase the Proofreader.

Hidden Perils

The Proofreader's home in the 64 is not a very safe haven.

Since the cassette buffer is wiped out during tape operations,

you need to disable the Proofreader with RUN/STOP-RE

STORE before you save your program. This applies only to

tape use. Disk users have nothing to worry about.

Not so for 64 owners with tape drives. What if you type

in a program in several sittings? The next day, you come to

your computer, load and run the Proofreader, then try to load

300

u

Appendix C

the partially completed program so you can add to it. But since

the Proofreader is trying to hide in the cassette buffer, it's

wiped out!

What you need is a way to load the Proofreader after

you've loaded the partial program. The problem is, a tape

LOAD to the buffer destroys what it's supposed to load.

After you've typed in and run the Proofreader, enter the

following lines in direct mode (without line numbers) exactly

as shown:

A$="PROOFREADER.T":B$="{10 SPACES}":FORX=1TO4:A$=A

$+B$:NEXTX

FORX=886TO1018:A$=A$+CHR$(PEEK(X)):NEXTX

OPEN1,1,1,A$:CLOSE1

After you enter the last line, you will be asked to press

record and play on your cassette recorder. Put this program at

the beginning of a new tape. This gives you a new way to load

the Proofreader. Anytime you want to bring the Proofreader

into memory without disturbing anything else, put the cassette

in the tape drive, rewind, and enter:

OPEN1:CLOSE1

You can now start the Proofreader by typing SYS 886. To

test this, PRINT PEEK (886) should return the number 173. If

it does not, repeat the steps above, making sure that A$

("PROOFREADER.!1") contains 13 characters and that B$ con

tains 10 spaces.

The Proofreader will load itself into the cassette buffer

whenever you type OPEN1:CLOSE1 and PROOFREADERS is

the next program on your tape. It does not disturb the con

tents of BASIC memory.

Replace Original Proofreader

If you typed in the original version of the Proofreader from

the October 1983 issue of COMPUTED Gazette, you should re

place it with the improved version below.

Automatic Proofreader

P"^ 100 PRINT"{CLRjPLEASE WAIT...":FORI=886TO1018:READ
'--* A:CK=CK+A:POKEI#A:NEXT :rem 86

110 IF CKO17539 THEN PRINT" {DOWN}YOU MADE AN ERRO

(**1 R": PRINT "IN DATA STATEMENTS.": END : rem 115

I ! 120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVATE

D.":NEW :rem 24

n 3d

C Appendix
u

u

886 DATA 173,036,003,201,150,208 :rem 38 i .

892 DATA 001,096,141,151,003,173 :rem 36 |^_j
898 DATA 037,003,141,152,003,169 :rem 45

904 DATA 150,141,036,003,169,003 :rem 30

910 DATA 141,037,003,169,000,133 :rem 26 j (
916 DATA 254,096,032,087,241,133 :rem 50 *s
922 DATA 251,134,252,132,253,008 :rem 36

928 DATA 201,013,240,017,201,032 :rem 22 ^

934 DATA 240,005,024,101,254,133 :rem 27 \)
940 DATA 254,165,251,166,252,164 :rem 51

946 DATA 253,040,096,169,013,032 :rem 47

952 DATA 210,255,165,214,141,251 :rem 38

958 DATA 003,206,251,003,169,000 :rem 34

964 DATA 133,216,169,019,032,210 :rem 43

970 DATA 255,169,018,032,210,255 :rem 47

976 DATA 169,058,032,210,255,166 :rem 58

982 DATA 254,169,000,133,254,172 :rem 48

988 DATA 151,003,192,087,208,006 :rem 52

994 DATA 032,205,189,076,235,003 :rem 52

1000 DATA 032,205,221,169,032,032 :rem 66

1006 DATA 210,255,032,210,255,173 :rem 75

1012 DATA 251,003,133,214,076,173 :rem 75

1018 DATA 003 :rem 119

302

Appendix D

f-i

H Using the Machine

^ Language Editor: MLX
Charles Brannon

i
Remember the last time you typed in the BASIC loader for a

long machine language program? You typed in hundreds of

numbers and commas. Even then, you couldn't be sure if you

typed it in right. So you went back, proofread, tried to run the

program, crashed, went back and proofread again, corrected a

few typing errors, ran again, crashed again, rechecked your

typing. . . . Frustrating, wasn't it?

Until now, though, that has been the best way to get ma

chine language into your computer. Unless you happen to

have an assembler and are willing to tangle with machine lan

guage on the assembly level, it is much easier to enter a

BASIC program that reads DATA statements and POKEs the

numbers into memory.

Some of these "BASIC loaders" use a checksum to see if

you've typed the numbers correctly. The simplest checksum is

just the sum of all the numbers in the DATA statements. If

you make an error, your checksum does not match up with

the total. Some programmers make your task easier by includ

ing checksums every few lines, so you can locate your errors

more easily.

Now, MLX comes to the rescue. MLX is a great way to en

ter all those long machine language programs with a mini-

_ mum of fuss. MLX lets you enter the numbers from a special

f.. t list that looks similar to DATA statements. It checks your typ-
"""" ing on a line-by-line basis. It won't let you enter illegal charac-

. ters when you should be typing numbers. It won't let you

I 1 enter numbers greater than 255 (forbidden in ML). It will pre
vent you from entering the numbers on the wrong line. In

n short, MLX makes proofreading obsolete.

/J\
^ Tape or Disk Copies

^ In addition, MLX generates a ready-to-use copy of your ma-

I i chine language program on tape or disk. You can then use the

303

D Appendix
u

u

LOAD command to read the program into the computer, as <i a

with any other program. Specifically, you enter: UJ

LOAD "program name",8,l(fot disk)

°r ■ U
LOAD "program name",l,l(iot tape)

To start the program, you need to enter a SYS command that * (

transfers control from BASIC to your machine language pro- '—"
gram. The starting SYS is always listed in the article which

presents the machine language program in MLX format.

Using MLX

Type in and save MLX (you'll want to use it in the future).

When you're ready to type in the machine language program,

run MLX. MLX asks you for two numbers: the starting address

and the ending address. These numbers are given in the article

accompanying the ML program you're typing. For example,

the addresses for "Screen-80" should be 49152 and 52811

respectively.

You'll see a prompt. The prompt is the current line you

are entering from the MLX-format listing. It increases by six

each time you enter a line. That's because each line has seven

numbers—six actual data numbers plus a checksum number.

The checksum verifies that you typed the previous six num

bers correctly. If you enter any of the six numbers wrong, or

enter the checksum wrong, the 64 sounds a buzzer and

prompts you to reenter the line. If you enter the line correctly,

a bell tone sounds and you continue to the next line.

A Special Editor

You are not using the normal 64 BASIC editor with MLX. For ,

example, it will accept only numbers as input. If you make a ^

typing error, press the INST/DEL key; the entire number is ~~
deleted. You can press it as many times as necessary, back to < c

the start of the line. If you enter three-digit numbers as listed, I I
the computer automatically prints the comma and goes on to

accept the next number. If you enter less than three digits, you i ^

can press either the space bar or RETURN key to advance to ^J

the next number. The checksum automatically appears in re

verse video for emphasis. , ■

To make it even easier to enter these numbers, MLX re- iji

304 >J

n
Appendix D

n

defines part of the keyboard as a numeric keypad (lines

581-584).

f 1

When testing it, I've found MLX to be an extremely easy

way to enter long listings. With the audio cues provided, you

don't even have to look at the screen if you're a touch-typist.

Done at Last!

When you get through typing, assuming you type your ma

chine language program all in one session, you can then save

the completed and bug-free program to tape or disk. Follow

the instructions displayed on the screen. If you get any error

messages while saving, you probably have a bad disk, or the

disk is full, or you made a typo when entering the MLX pro

gram. (Sorry, MLX can't check itself!)

Command Control

You don't have to enter the whole ML program in one sitting.

MLX lets you enter as much as you want, save it, and then re

load the file from tape or disk later. MLX recognizes these

commands:

SHIFT-S: Save

SHIFT-L:Load

SHIFT-N: New Address

SHIFT-D: Display

I j Hold down SHIFT while you press the appropriate key.

MLX jumps out of the line you've been typing, so I recom-

mend you do it at a prompt. Use the Save command to store

I i what you've been working on. It will save on tape or disk as if

v you've finished, but the tape or disk won't work, of course,

. until you finish typing. Remember what address you stopped

Si on. The next time you run MLX, answer all the prompts as

you did before, then insert the disk or tape containing the

' i ^ • 305

D Appendix
u

Li

stored file. When you get the entry prompt, press SHIFT-L to i ,

reload the partly completed file into memory. Then use the UJ
New Address command (SHIFT-N) to resume typing.

New Address and Display v^j

After you press SHIFT-N, enter the address where you pre

viously stopped. The prompt will change, and you can then { ,

continue typing. Always enter a New Address that matches up i I
with one of the line numbers in the special listing, or else the

checksums won't match up. You can use the Display com

mand to display a section of your typing. After you press

SHIFT-D, enter two addresses within the line number range of

the listing. You can abort the listing by pressing any key.

Tricky Stuff

The special commands may seem a little confusing, but as you

work with MLX, they will become valuable. For example, what

if you forgot where you stopped typing? Use the Display com

mand to scan memory from the beginning to the end of the

program. When you reach the end of your typing, the lines

will contain a random pattern of numbers, quite different from

what should be there. When you see the end of your typing,

press any key to stop the listing. Use the New Address com

mand to continue typing from the proper location.

You can use the Save and Load commands to make copies

of the complete machine language program. Use the Load

command to reload the tape or disk, then insert a new tape or

disk and use the Save command to create a new copy. When

resaving on disk, it is best to use a different filename each

time you save. For example, I like to number my work and use

filenames such as ASTRO1, ASTRO2, ASTRO3, and so on. ~

One quirk about tapes made with the MLX Save com- [^j
mand: when you load them, the message FOUND program

may appear twice. The tape will load just fine, however.

I think you'll find MLX to be a true labor-saving program. lJ
Since it has been tested by entering actual programs, you can

count on it as an aid for generating bug-free machine Ian- , }

guage. Be sure to save MLX; it will be used for future applica- \J

tions in COMPUTE! books, COMPUTE! magazine, and ^
COMPUTE'S Gazette.

u

306

n
Appendix D

Machine Language Editor: MLX
For mistake-proof program entry, be sure to use "The Automatic Proofreader/' Appendix C.

10 REM LINES CHANGED FROM MLX VERSION 2.00 ARE 750

,765,770 AND 860 :rem 50

) t 20 REM LINE CHANGED FROM MLX VERSION 2.01 IS 300
:rem 147

100 PRINT"{CLR}g6l";CHR$(142);CHR$(8);:POKE53281,l

:POKE53280,1 :rem 67

101 POKE 788,52:REM DISABLE RUN/STOP :rem 119

110 PRINT"{RVS}{39 SPACES}"; :rem 176

120 PRINT"{RVS}{14 SPACES}{RIGHT}{OFF}g*l£{RVS}
{RIGHT} {RIGHT} {2 SPACES} g*| {OFF}g*3£,TRVS}£

{RVS}{14 SPACES}"; :rem 250

130 PRINT"{RVS}{14 SPACES}{RIGHT} gG§{RIGHT}
{2 RIGHT} {OFF}£{RVS}£g*J{OFF}g*§{RVS}

{14 SPACES}"; :rem 35

140 PRINT"{RVS}{41 SPACES}" :rem 120

200 PRINT"{2 DOWN}{PUR}{BLK} MACHINE LANGUAGE EDIT
OR VERSION 2.02{5 DOWN}" :rem 238

210 PRINT"g5§{2 UPjSTARTING ADDRESS?{8 SPACES}
{9 LEFT}"; :rem 143

215 INPUTS:F=1-F:C$=CHR$(31+119*F) :rem 166

220 IFS<256OR(S>40960ANDS<49152)ORS>53247THENGOSUB

3000:GOTO210 :rem 235

225 PRINT:PRINT:PRINT :rem 180

230 PRINT"g51{2 UP}ENDING ADDRESS?{8 SPACES}
{9 LEFT}";:INPUTE:F=1-F:C$=CHR$(31+119*F)

:rem 20

240 IFE<256OR(E>40960ANDE<49152)ORE>53247THENGOSUB

3000:GOTO230 :rem 183

250 IFE<STHENPRINTC$;"{RVS}ENDING < START

{2 SPACES}":GOSUB1000:GOTO 230 :rem 176
260 PRINT:PRINT:PRINT :rem 179

300 PRINT"{CLR}";CHR$(14):AD=S :rem 56
310 A=l:PRINTRIGHT$("0000"+MID$(STR$(AD),2),5);":"

; :rem 33

315 FORJ=ATO6 :rem 33

320 GOSUB570:IFN=-1THENJ=J+N:GOTO320 :rem 228
390 IFN=-211THEN 710 :rem 62

400 IFN=-204THEN 790 :rem 64

410 IFN=-206THENPRINT:INPUT"{DOWN}ENTER NEW ADDRES
SM;ZZ srem 44

415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF
/ {SPACE}RANGE":GOSUB1000:GOTO410 :rem 225

417 IFN=-206THENAD=ZZ:PRINT:GOTO310 :rem 238
420 IF No-196 THEN 480 :rem 133

r*-| 430 PRINT: INPUT "DISPLAY: FROM ";F: PRINT, "TO"; :INPUTT

1) :rem 234

n
307

n

n

D Appendix

440 IFF <SORF> EORT < SORT > ETHENPRINT "AT LEAST " ; S ; "

{LEFT}, NOT MORE THAN";E:GOTO430 :rem 159 II
450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$("0000"+MID$(S ^^

TR$(I),2),5);":"; :rem 30

451 FORK=0TO5:N=PEEK(I+K):PRINTRIGHT$("00"+MID$(ST < ;

R$(N),2),3);","; :rem 66 l^j
460 GETA$:IFA$>MIITHENPRINT:PRINT:GOTO310 :rem 25

470 NEXTK:PRINTCHR$(20);:NEXTI:PRINT:PRINT:GOTO310

:rem 50 j /

480 IFN<0 THEN PRINT:GOTO310 :rem 168 L^
490 A(J)=N:NEXTJ :rem 199

500 CKSUM=AD-INT(AD/256)*256:FORI=1TO6:CKSUM=(CKSU

M+A(I))AND255:NEXT :rem 200

510 PRINTCHR$(18);:GOSUB570:PRINTCHR$(146);:rem 94

511 IFN=-1THENA=6:GOTO315 :rem 254

515 PRINTCHR$(20):IFN=CKSUMTHEN530 :rem 122

520 PRINT:PRINT"LINE ENTERED WRONG : RE-ENTER":PRI

NTsGOSUB1000:GOTOll0 :rem 176

530 GOSUB2000 :rem 218

540 FORI=1TO6:POKEAD+I-1,A(I):NEXT:POKE54272,0:POK

E54273,0 :rem 227

550 AD=AD+6:IF AD<E THEN 310 :rem 212

560 GOTO 710 :rem 108

570 N=0:Z=0 :rem 88

580 PRINT"i£i"; :rem 81

581 GETA$:IFA$=""THEN581 :rem 95

582 AV=-(A$="M")-2*(A$="#")-3*(A$=".M)-4*(A$="J")-

5*(A$="K")-6*(A$="L") :rem 41

583 AV=AV-7*(A$="U")-8*(A$="I")-9*(A$="O"):IFA$="H

"THENA$="0" :rem 134

584 IFAV>0THENA$=CHR$(48+AV) :rem 134

585 PRINTCHR$(20);:A=ASC(A$):IFA=13ORA=44ORA=32THE

N670 :rem 229

590 IFA>128THENN=-A:RETURN :rem 137

600 IFAO20 THEN 630 :rem 10

610 GOSUB690:IFI=1ANDT=44THENN=-1:PRINT"{OFF}
{LEFT} {LEFT}";:GOTO690 :rem 62 . ,

620 GOTO570 : rem 109 i^J

630 IFA<48ORA>57THEN580 :rem 105

640 PRINTA?; :N=N*10+A-48 : rem 106

650 IFN>255 THEN A=20:GOSUB1000:GOTO600 :rem 229 j f
660 Z=Z+1:IFZ<3THEN580 :rem 71 ^
670 IFZ=0THENGOSUB1000:GOTO570 :rem 114

680 PRINT",";:RETURN :rem 240

690 S%=PEEK(209)+256*PEEK(210)+PEEK(211) :rem 149 ij
691 FORI=1TO3:T=PEEK(S%-I) :rem 67 ^^
695 IFT<>44ANDT<>58THENPOKES%-I,32:NEXT :rem 205

u

308 -LJ

n

n

Appendix D

i J

— 700 PRINTLEFT$("{3 LEFT} 'M-l); :RETURN : rem 7

i i 710 PRINT"{CLR}{RVS}*** J3AVE ***{3 DOWN}" :rem 236
715 PRINT" {2 DOWN}(J?RESS {RVS}RETURN{OFF} ALONE TO

CANCEL SAVE){DOWN}" :rem 106

720 F$="":INPUT"{DOWN} FILENAME" ;F$:IFF$=" "THENPRI

NT:PRINT:GOTO310 : rem 71

730 PRINT:PRINT"{2 DOWN} {RVS}T{OFF}APE OR {RVS}D
{OFF}ISK: (T/D)" :rem 228

740 GETA$:IFA$o"TllANDA$<>"D"THEN740 : rem 36

750 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$:OPEN15,8,
15,"S"+F$:CLOSE15 :rem 212

760 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256 :rem 3

762 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469 :rem 109

763 POKE780,l:POKE781,DV:POKE782,l:SYS65466:rem 69

765 K=S:POKE254,K/256:POKE253,K-PEEK(254)*256:POKE

780,253 :rem 17

766 K=E+1:POKE782,K/256:POKE781,K-PEEK(782)*256:SY

S65496 :rem 235

770 IF(PEEK(783)AND1)OR(191ANDST)THEN780 :rem 111

775 PRINT"{DOWN}DONE.{DOWN}":GOTO310 :rem 113

780 PRINT"{DOWN}ERROR ON SAVE.{2 SPACES}TRY AGAIN.

":IFDV=1THEN720 :rem 171

781 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTE1$;E2$:CLOS

E15:GOTO720 :rem 103

790 PRINT"{CLR}{RVS}*** LOAD ***{2 DOWN}" :rem 212
795 PRINT"{2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO

CANCEL LOAD)" :rem 82

800 F$="":INPUT"{2 DOWN} FILENAME";F$:IFF$=""THENP

RINT:GOTO310 :rem 144

810 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}D

{OFF}ISK: (T/D)" :rem 227
820 GETA$:IFA$<>llT"ANDA$o"D"THEN820 :rem 34

830 DV=1-7*(A$=IID"):IFDV=8THENF$="0:II4-F$:rem 157

840 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256 :rem 2
841 POKE781,ZK-PEEK(782)*256:POKE780#LEN(T$):SYS65

469 :rem 107

845 POKE780#l:POKE781,DV:POKE782#l:SYS65466:rem 70

850 POKE780,0:SYS65493 :rem 11

860 IF(PEEK(783)AND1)OR(191ANDST)THEN870 :rem 111

865 PRINT" {DOWN}DONE. ":GOTO310 :rem 96

870 PRINT"{DOWN}ERROR ON LOAD•{2 SPACES}TRY AGAIN.
{DOWN}":IFDV=1THEN800 :rem 172

n

n

n 309

u
D Appendix

u

880 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTE1$;E2$:CLOS

E15sGOTO800 :rem 102 | j

1000 REM BUZZER :rem 135

1001 POKE54296 ,15:POKE54277,45:POKE54278,165

:rem 207 ; /

1002 POKE54276,33:POKE 54273,6:POKE54272,5 :rem 42 O
1003 FORT=1TO200:NEXT:POKE54276,32:POKE54273,0:POK

E54272,0:RETURN :rem 202

2000 REM BELL SOUND :rem 78

2001 POKE54296,15:POKE54277,0:POKE54278,247

:rem 152

2002 POKE 54276,17:POKE54273,40:POKE54272,0:rem 86

2003 FORT=1TO100:NEXT:POKE54276,16:RETURN :rem 57

3000 PRINTC$;M{RVS}NOT ZERO PAGE OR ROM":GOTO1000

:rem 89

u

U

310 jj

H

n

n Index

n

n

I)

n

n

ADSR envelope 158-59, 177

limitations of 168

table 159

amplitude (sound) 153, 156, 168

AND, logical 165

Apple computer 226

arrays 13-14

three-dimensional 14-15

ASCII codes 103

Atari computer 226

Atari graphics commands 226-32

attack (sound) 157-59

attention span 119

"Autoload" program v, 250, 269-73

"Automatic Proofreader, The" program

299-302

background color 43

"BASIC Portion of Hi-Res Graphics Edi

tor" program 205-6

BASIC warm start vector 269-70

"Blast-off" program 169, 174

boot program 269

border color 43

changing disk name 279

character modes 43

characters, oversized 69-74

children, grade-school 111

CLOSE statement 71

CMD statement 71

collision, sprite 207, 214-16

colon 23

"Colorfill" program 243-44, 245

color memory 44

Commodore 64 Programmer's Reference

Guide 44, 169, 216

Commodore User's Guide 121

"Connect the Dots" program 118-26

control register, SID 163-64

"Crunch" program v, 274-76

cursor 43

"Custom Character Loader" program 68

"Custom-80" program 46-48, 60-68

DATA statement 122, 295-96

debugging 9

decay (sound) 157-59

definition cluster (arrays) 13-14

delay loop 167

DIM statement 13

direct mode 12

disk directory 278-81

"Disk Surgeon" program 278-88

DOS wedge 256

duty cycle 155-56

education 109-50

80-column screen 41-48

"Family Tree" program 82-92

1541 disk drive 256

files, program 4

files, sequential 4

frequency (sound) 153, 156, 166-67

gate bit 164

gate (sound) 158-59

GOSUB statement 76

GOTO statement 9, 24

graphics 153-245

high-resolution 44, 216-18, 226-32

quarter-square 69-70

graphics commands, Atari 226-32

graphics screen 195

handicapped computer users 249-56

high-resolution graphics 44, 216-18,

226-32

"HiSprite" program v, 207-25

control variables 212-13

hi-res and 216-18

interrupt mode 218-19

link to BASIC 220

machine language and 219-20

subroutine addresses 213

"HiSprite Demo" program 209-10

hue 230

illegal variable names, using 20-23

INPUT statement 24

integer variables 12-13

interrupts 44, 218-19

JEP. See Joystick enhanced programming

"JEProof" program 254, 263-64

joystick 77, 177, 194, 249-56

"Joystick Enhanced Programming" pro

gram 249-63

menu 250-53

machine language and 255-56

keywords, BASIC 20-23

"Laser" program 169, 175

LET statement 24

listings 20-25

indented 22-23

Logo computer language 131

loops 6

luminance 230

"Machine Language for Hi-Res Graphics

Editor" program 196-204

311

"Machine Language Saver" program v,

289-91

"MLX" program 41-42, 303-310

"Moving Message" program 101-7

music, programming 166-68

"Mystery at Marple Manor" program

v-vi, 29-40

"One-Touch Keywords" program v,

265-68

OPEN statement 71

page ejection 4-8

parsing 138-39

PILOT computer language 131

pitch (sound) 153

pixel 70

printer 71

PRINT# statement 71

program files 4

programming style 3-8

loops and 6

"Programming Without the Keyboard"

program v

pulse waveform 155, 177

quarter-square graphics 69-70

RAM, BASIC 9-16

program to read 10-16

raster register 102

"Realtime Clock" program 244, 245-46

registers, SID 162-69

map 163

release (sound) 157-59

REM statement 274

"Reversi" program vi, 75-81

ring modulation 177

ring modulation bit 165

RUN BASIC routine 24-25

sawtooth waveform 155

scratching disk files 280-81

"Screen Headliner" program 69-74

"Screen-80" program v, 41-59

custom character set for 46-47

DOS wedge and 45-46

graphics and 44-45

sound and 45

using 43-48

scrolling 101

sequential Hies 4

SID chip v, 155, 158, 161-69, 176

SID registers 162-69

map 163

Simon's BASIC 256

sine waves 154

"64 Hi-Res Graphics Editor" program

192-206

autoloading 193

printing 195-96

sprites and 195

"64 Paintbox" program 226-42

ICOLOR command 230

1DRAWTO command 228-29

!FILL command 231

IGRAPHIC command 228

ILOCATE command 227, 230

!PLOT command 227, 228

IPOSITION command 228

!QUIT command 231

ISETCOLOR command 229-30

!TEXT command 231

sound 153-93

theory of 153

sound effects 168-69

sound envelope 156-61

examples 160-61

Sound Interface Device. See SID

sound registers 161

"Sound Sculptor" program 176-91

sprites 44-45, 131, 195, 207

collision 207, 214-16

stack 269

STEP function 121

STOP statement 9

storage

BASIC program 10-11

direct mode and 12

string variables 11-12

variable 11

ST reserved variable 4

subroutines 5, 7

"Supertank" program vi, 93-100

sustain (sound) 157-59

sync bit 165

synchronization 177

thinking, teaching 131

TI reserved variable 21, 167

TI$ reserved variable 21

TOKENIZE BASIC routine 24-25

tokens, BASIC 24-25

triangular waveform 155

"Tune" program 169, 171-74

turtle geometry 131

"Turtle Graphics Interpreter" commands

BACKGROUNDCOLOR 133

CLEAN 134

CLEARSCREEN 134

DEFINE 135

ERASEALL 135

FORWARD 132

HIDETURTLE 133-34

HOME 134

LOAD 135

NAMES 135

PENCOLOR 133

PENDOWN 133

PENDRAW 133

u

u

u

u

u

u

u

u

u

n

n

n

n

PENERASE 133

PENUP 133

PRINTHEADING 133

PRINTPOSITION 133

PRINTPROCEDURE 135

QUIT 135-36

RENAME 135

REPEAT 134

RIGHT 132-33

SAVE 135

SCRATCH 135

SETHEADING 133

SETPOSITION 133

SHOWTURTLE 133-34

TURTLECOLOR 133

"Turtle Graphics Interpreter" program

131-50

disk and 135-36

procedures 135-36

screen crunching 136

tape and 136-37

typing in 132

"Twiddle" program 169-71

"Underline" program 244, 245

unscratching disk files 278, 280-81

user port 256

"Variable Utility" program 16-19

variables 11, 12

checking for type of 12

vector 269-70

volume (sound) 153, 156, 168

waveform 154-56, 177

pulse 155, 177

sawtooth 155

triangular 155

"Word Match" program 111-17

"Word Scramble" program 127-30

n

n

H

D

n

