

COMPUTE!9s

SECOND
BOOK

n

n
Publications,lnc<

One of the ABC Publishing Companies

Greensboro, North Carolina

Commodore 64 is a trademark of Commodore Electronics Limited.

u

u

u

u

u

The following articles were originally published in COMPUTE! magazine, copyright

1983, COMPUTE! Publications, Inc.:

"Working with SID" (October).

"SuperBASIC 64" (December).

The following articles were originally published in COMPUTERS Gazette magazine,

copyright 1983, COMPUTE! Publications, Inc.:

"VIC/64 Mailing List" (August).

"Wordspell" (August).

"Using the Function Keys" (September).

"Merging Programs on the 64" (November).

"VIC/64 Program lifesaver" (November).

"Martian Prisoner" (November).

"Munchmath" (November).

"Introduction to Custom Characters for VIC and 64" (November).

"How to Make Custom Characters on the 64" (November).

"Spike" (December).

"The Note Name Game" (December).

"Sprites Made Easy" (December).

"Educational Games: A Kid's View" (December)

"SpeedScript" January 1984).

The following article was originally published in COMPUTERS Gazette magazine, copy

right 1984, COMPUTE! Publications, Inc.: "How to Use Arrays" (February).

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sec- I J
tions 107 and 108 of the United States Copyright Act without the permission of the

copyright owner is unlawful.

Printed in the United States of America. | J

ISBN 0-942386-44-2

10 9 8 7 6 5 4 3 2 j ' j

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is one of the ABC Publishing Companies, and is not associated with any

manufacturer of personal computers. Commodore 64 is a registered trademark of , ,

Commodore Electronics Limited. [j

n

n

n

n

I—, Foreword v

Chapter 1: Recreations and Applications 1

SpeedScript

Charles Brannon 3

Spike

Eric Brandon 41

Martian Prisoner

Alan Poole 60

64 Mailing List

Joseph J. Shaughnessy 66

64 Spreadsheet

Michael Tinglof 72

Chapter 2: Kid Stuff—Educational Games 85

Educational Games: A Kid's View

Kevin Dewey 87

Wordspell

Richard Herrmann 92

Munchmath

Gerald R. Anderson 96

Chapter 3: Sound 103

Working with SID

Jerry M. Jaco 105

HI Sound Editor 64

1 Daniel L Riegal 119
SYS Sound

PI Michael Steed 126

The Note Name Game

_ JeffBehrens 132

Chapter 4: Colors, Characters, and Motion 137

f—] Introduction to Custom Characters for the 64

1 Tom R. Halfhill 139

How to Make Custom Characters on the 64

Gary Davis 146

SuperBASIC Sprite Editor

Martin C. Kees 155

Sprites Made Easy

Paul F. Schatz 166

Chapter 5: Inside Your 64 177

Using the Function Keys: A BASIC Tutorial

Charles Brannon 179

How to Use Arrays

Don Stauffer 185

Adding New Keywords to BASIC

Sheldon Leemon 194

Chapter 6: Utilities 213

SuperBASIC 64

Martin C. Kees 215

Copyfile

Gregor Larson 250

Merging Programs on the 64

John A. Winnie 253

64 Program lifesaver

Vern Buis 256

Appendices 259

A: A Beginner's Guide to Typing In Programs 261

B: How to Type In Programs 263

C: Screen Location Table 265

D: Screen Color Memory Table 266

E: Screen Color Codes 267

F: ASCII Codes 269

G: Screen Codes 273

H: Commodore 64 Keycodes 275

I: Using the Maching Language Editor: MLX

Chl B

IV

Charles Brannon 276

The Automatic Proofreader r ,

Charles Brannon 283 LJ

u

n

Forewordn

n Since its introduction in the fall of 1982, the Commodore 64

computer has become one of the most popular home comput

ers available. Hundreds of thousands of beginning and experi

enced programmers have learned to use its remarkable

graphics, sound, and game-playing capabilities. And more and

more professional programmers have been writing software

for the 64, giving users a wider choice of applications for their

computer.

COMPUTE! Books has been active in its support of the

Commodore 64. COMPUTED First Book of Commodore 64

continues to be a bestseller among computer books. Maintain

ing this tradition of presenting high quality programs and de

tailed information, COMPUTERS Second Book of Commodore 64

offers a wide range of games, applications, tutorials, and util

ities. Of the articles and programs which originally appeared

in COMPUTE! magazine or COMPUTEl's Gazette, many have

been enhanced since first published. Other articles and pro

grams appear here for the first time anywhere.

There's something for computer users at any level of

experience in this book. If you're just starting to use custom

characters, sprites, or arrays, you'll find excellent articles

which will introduce you to those techniques. If you're a more

experienced programmer, you'll enjoy the articles on how to

create new BASIC keywords, how to best use the 64's SID

chip, and how to merge, copy, or retrieve programs easily.

Do you like to write? Then "SpeedScript," a machine lan
guage word processor, is something you'll find particularly

n impressive. Interested in writing games on the 64? There are

utilities and information here which will help you as you pro

gram. From a sprite editor to a sound editor, you'll find what

nyou need in Second Book of Commodore 64.

If you like to just sit back and play arcade-quality games

on your computer, then you'll find "Spike," "Martian Pris-

r—I oner," and others well worth the time it takes to type them in.

I ! There's even a complete section of games written especially
for children. Not only are these games fun to play, but they'll

,—I teach your children something at the same time. "Wordspell"

offers practice in spelling, while "Munchmath" makes a game

out of mathematics.

No matter what your programming experience or interest,

you're certain to find that Second Book of Commodore 64 has

plenty to offer.

u

u

u

u

G

n
Recreations and Applications 1

n

H

_ Charles Brannon

"SpeedScript," is a word processing program

written entirely in machine language. Fast,

powerful and easy to use, it includes almost all

the major features found in professional word

processor programs for personal computers. It

approaches commercial-quality programs costing

$50 or more. It runs on the Commodore 64,

leaving a huge 45K free for text. SpeedScript

will considerably amplify the utility of your

computer.

A current advertising campaign extols the virtues of a ball

point pen that can erase like a pencil, dubbing it the "portable,

personal word processor." It can even plot graphics. Like a

word processor, the pen can edit, change, and erase. It can

produce flawless hard copy. And, indeed, you can draw

circles, squares, and bar graphs. But can the pen move para

graphs? Put a 100-page book on a 51/* inch disk? Turn a rough

draft into final copy with only a few changes? Can it truly edit

without a trace of correction and produce formatted, double-

spaced, automatically page-numbered text?

Maybe we're not being fair to the erasable pen, but it

should be made clear that a word processor is more than just

a computerized typewriter. Such a "word processor" would be

j™| a few lines long:

10 OPEN 1,4

20 INPUT A$

H 30 PRINT #1,A$
40 GOTO 20

|—i When RUN, the program flashes the cursor and waits for

1 I a line to be typed. When you hit RETURN, the line is sent to
the printer. You can move the cursor left and overstrike or use

nthe DEL key to make changes to the line before you hit

RETURN and print it out. But once it's on paper, it's committed.

n 3

1 Recreations and Applications

Too late to make any changes.

With a true word processor, you type everything in first,

then print the whole thing out. Before you print, you can

make as many changes as you want. A good word processor

lets you change any line, swap paragraphs, and manipulate

your text in numerous other ways. You can buy such a word

processing program for your 64 for $40 to more than $100,

depending on the features.

Or you can type in "SpeedScript." Even if you already

own a commercial word processor for your 64, you'll be pleas

antly surprised. SpeedScript offers all the standard features,

plus others you may not have seen before.

Entering SpeedScript

First, you'll need to type in SpeedScript. Programs 1 and 2

look long, but they are only about 4.5K, shorter than most

BASIC games. The mass of numbers are machine language.

Only with machine language do you get such power, speed,

and compactness. Unfortunately, machine language isn't as

easy to enter as a BASIC program. To aid with all the typing,

we've developed MLX, the machine language editor. Be sure

to read and understand Appendix I before you begin typing in

SpeedScript.

Type in and SAVE the MLX program. When you are

ready to enter SpeedScript, turn your machine off and on (to

clear it out), then enter this line before you load MLX:

POKE 44,27:POKE 6912,0:NEW

You can then load MLX from tape or disk, and enter

RUN. MLX will ask for the starting and ending addresses. The

starting address is the first number in the listing, 2049. The

ending address is the last number plus five, or 6860. After you

enter this, follow the instructions in Appendix I to enter the i"j

listing. It takes only a few hours (you can stop, save your ^
work, and continue typing in several sessions). No matter

what your typing speed is, rest assured that it will be well f j

worth your effort. '—'

Getting Started . i
After you enter SpeedScript with MLX, you can just LOAD it LJ
like a BASIC program. As a matter of fact, you can make

copies of it with the SAVE command, as usual (SAVE I ,

"SPEEDSCRIPT" or SAVE "SPEEDSCRIPT",8 for disk). After lJ

u

n

Recreations aind Applications 1

n
you LOAD, enter RUN.

nThe screen will be light gray or white with black (or dark

gray) lettering. The top line of the screen is highlighted.

The blinking cursor shows you where text will appear

nwhen you begin typing. You cannot type on the top line of the

screen. This is the command window, and is used by

SpeedScript to ask questions and display messages. When a

message is displayed, it will remain until you begin typing

again.

To get started, just begin typing. If a word you're typing

won't fit on the screen line, the word and the cursor are

moved to the next line. This is called word wrap, or parsing. It

makes your text much easier to read on the screen, as words

are never split across the margin. Another thing to notice is

that a back-arrow appears if you press RETURN. This marks

the end of a paragraph or line. It is not necessary to press

RETURN at the end of each screen line, as you must do when

reaching the end of a line on a typewriter.

Most of us, being human, are not infallible, so you may

need to correct your typing mistakes. This is a big advantage

of a word processor. You fix your errors before you print, so

there's no messy fluids or special ribbons. (Did you ever have

to manually erase on a typewriter?—ugh!)

If you want to backspace, press the INST/DEL key in the

unSHIFTed position. The cursor backs up and erases the last

letter you typed. You can press it as many times as necessary

to back up to the error, then retype the rest of the sentence.

But this is clearly not the best way to do things. Instead,

you can move the cursor nondestructively. The cursor control

keys are in the lower-right corner of the keyboard (see Figure

1: Keyboard Map). The CRSR left/right key moves the cursor

j—I to the right, and when SHIFTed moves the cursor left. Before

I i you can correct the error, you have to move the cursor to the
word in question. For example, to correct this line:

P] Now is the rime for all good nen|

The cursor is moved to the "r" (cursor-left 21 times):

Now is the Hiwe for all good Hen

The letter "t" is typed:

H Now is the tQwe for all good Men

H

1 Recreations and Applications

And the cursor is moved to the end:

Now is the tine for all good

Resume typing:

Now is the tine for all good wen to
come to the aid of they're country.

Another error! We typed "they're" instead of "their." No

problem.

In the above example, of course, you don't have to press

the cursor-left key 21 times. You can just hold down the

cursor-left key. It will repeat, and keep moving until you let

go-

English Cursor Controls

You can also move the cursor in ways that make sense in

plain English. For example, if you hold down SHIFT and press

the f1 function key, (which is how you get f2), the cursor

jumps back to the previous word. To correct the error in the

first example above, just press f2 five times. You can then

press f1 five times to go back to the end of the sentence and

resume typing. Here is a list of what the function keys do:

£1: Move cursor to next word.

f2: Move cursor to previous word.

f3: Move cursor to start of next sentence.

f4: Move cursor to start of previous sentence.

f5: Move cursor to start of next paragraph.

£6: Move cursor to start of previous paragraph.

SpeedScript recognizes a sentence by the ending punctua

tion (. or ? or !), or by a RETURN mark (back-arrow). A para

graph is any sequence of characters that ends in a RETURN

mark. (Refer to Figure 2, after the program listing, for a clip-

out function key overlay.) {_J
Since you're working with English, the cursor up-down

keys do not move up or down exactly one screen line. Instead,

they act like f3 and f4. Cursor-down moves to the next sen- [_j
tence, and cursor-up moves to the previous sentence. This is

easier to understand for many people, but it takes some get

ting used to for others. LJ
As you begin to move the cursor around, you'll notice

that you cannot move the cursor past the end of text. There is

an invisible marker, sometimes called End Of File (EOF) at the LJ

U

n

Recreations and Applications 1

n
end of the document. You can add text to the end of your

document, but you cannot move past it, since there's nothing

M there. Very rarely, you may see some text past the end of file,

but you can't move to it, so ignore it.

Many of the other keys behave predictably. The CLR/

j| HOME key in the unSHIFTed position moves the cursor to the
top of the screen. If you press it twice, it brings you to the top

of your document (in case the document is longer than one

screen). The insert key (SHIFT-INST/DEL) inserts a space at

the cursor position. You can press it as many times as nec

essary to make space for inserting a word. You can also go

into insert mode, where every letter you type is automatically

inserted. In insert mode, it is not possible to overstrike. You

enter or leave insert mode by pressing CTRL-I.

Normally when you type a key, that letter or symbol

appears. Certain keys, such as CLR/HOME, however/perform

a function. SpeedScript extends this idea and places all the

command keys in an easy-to-remember order. For example,

insert mode is turned on or off by pressing CTRL-I. (To use a

control key, hold down CTRL while you type the other key.)

When you enter insert mode, the command window

changes color to remind you. If you press CTRL-I again,

you're back in normal overstrike mode, and the command

window reverts to its usual color.

CTRL-Z moves you to the bottom of your document (end

of file). It's useful for adding text to the end. If you want to

check how much memory you have left for typing, press

CTRL and the equals (=) key. You have about 45K of text

memory on the 64. SpeedScript takes advantage of all the

available RAM on the 64.

To accommodate personal taste and video clarity, you can

change the screen and text colors to any combination you

M want. CTRL-B (think "background") changes the screen color.

You can keep pressing it until a color you like comes up.

CTRL-L ("letters") changes the text color. If you have a color

H monitor, you can get some really interesting combinations.
The RUN/STOP key is like a TAB key. It inserts five

spaces at the cursor position. You can use it for indenting, or

j] to add indentation to a paragraph previously typed.
If you want to change the case of a letter or word, po-

sition the cursor on the letter and press CTRL-A. It will switch

| I from lower- to uppercase or vice versa. CTRL-A moves the

H

u

1 Recreations and AppEcations LJ

jj
cursor to the right, so you can hold it down to change more

than one letter. Another handy command is CTRL-X, or _

Transpose. It will switch two adjacent letters. My most com- jj
mon typing mistake is to wsitch (switch) two letters while I'm

typing fast. With CTRL-X, it's easy to exchange the two letters

without overstriking (which is useful in insert mode). M

Text Deletion

With a typewriter, if you don't like what you've typed, you

can tear the paper out, crumple it up, and dunk it into "file

13." With a word processor, this satisfying act is accomplished

with but a few keystrokes.

With the DEL key, you can erase the last letter typed. If

you're in the middle of text and press it, you'll notice that the

character the cursor is sitting on is pulled on top of the pre

vious character, and the rest of the text follows along. It

sounds a little confusing, but it's easy:

The quick brown fox juunnped over!

Cursor is moved to error:

The quick brown fox juunCped over

DEL is struck twice, deleting the erroneous characters:

The quick brown fox juuCped over

The quick brown fox jumped over

If you don't want the text to be pulled back, you can

press the back-arrow key. It will just backspace and blank out

the previous character without pulling the adjacent characters

backward. Another way to delete is with CTRL-back-arrow.

The cursor does not move, but the following text is "sucked

into" the cursor. It is like a tiny black hole. Pj

If you want to strike out a whole word, sentence, or para- L-'
graph, it's time for a more drastic command: CTRL-E. When

you press CTRL-E, the command window turns red (to instill fl

fear and awe). You see the message: L-J

Erase CS,H,P): iH=tjiB^u to exit r-j

Each time you press one of the three keys, a sentence,

word, or paragraph is pulled toward the cursor and deleted.

You can keep pressing S, W, or P until all the text you want to

u

H

1 ' Recreations and Applications 1

n
remove is gone. Then press RETURN to exit the Erase func

tion and resume writing. Erase will remove text to the right of

P] the cursor. If you are at the end of a sentence, word, or para
graph, you can use Delete (CTRL-D) to erase backward. CTRL-

D displays:

! I Delete CS,H,P)

and immediately returns to the normal mode after its work is

done. CTRL-Delete is like the DEL key, and CTRL-Erase is

like CTRL-tiack-arrow.
What if you press one key too many in the Erase com

mand? What if you change your mind? Oh, no! What if you

accidentally erase the wrong paragraph? On most word

processors, you're out of luck. But with SpeedScript, you can

retrieve the crumpled-up piece of paper and "uncrumple" it.

Within certain limitations, SpeedScript remembers and stores

the text you Erase or Delete. If you change your mind, just

press CTRL-R.

Here's how it works. When you Erase text, the text is

moved from the main screen into a failsafe buffer, a reserved

area of memory. SpeedScript reserves 12K for the failsafe

buffer.

There's another valuable use for the buffer, too. You can

move text by putting it in the buffer and recalling it at the

destination. Just Erase the paragraphs, words, or sentences you

want to move, then place the cursor where you want to insert

the text and press CTRL-R (think "Restore," "Retrieve," or

"Recall"). In a flash, the text is inserted. If you want to copy

(rather than move) a word, sentence, or paragraph, you can

restore the deleted text with CTRL-R, then move the cursor

and press CTRL-R to insert the deleted text again. You can

retrieve the buffer contents as often as you like. For example, if

J—1 you use a long word or phrase often, just type it once, Erase

it, then use CTRL-R to have the computer type it out for you.

You should be aware that CTRL-E and CTRL-D will clear

|~] the previous buffer contents. When.you move one paragraph,

then go back to move another, you don't want to have both

paragraphs merged together the second time. Also, if CTRL-

|—| Delete added text to the buffer instead of replacing the buffer,

CTRL-R would insert the text entries out of order, since CTRL-

D deletes "backward."

PI If you want to move two paragraphs at the same time

1 Recreations and Applications

instead of separately, you can override the replacement and

cause CTRL-Erase to add to the end of the buffer. Just hold

down SHIFT with CTRL as you press E. If you want to force

the buffer to be cleared, you can use CTRL-K (Kill) to clear the

buffer. If you try to delete more than the length of the buffer

(12K on the 64), you'll see "Buffer Full". Stop and move the

text, or use CTRL-K to clear the buffer to erase some more.

Finally, if you really want to wipe out all your text, there

is a way. (Beware: You cannot recover from a total clear.)

Press SHIFT-CLR/HOME. You will see:

ERASE ALL TEXT: Are you sure? CY/NJ

If you really want to erase all the text, press Y. Any other

key, including N, will return you to your text unharmed. You

should use this command only when you want to start a new

document, as it is one of the few ways to lose text beyond

recovery.

Search Feature

When you are lost in the middle of a big document and want

to find a particular word or phrase, the Hunt command comes

in handy. Press CTRL-H and you'll see:

Hunt forsl

Enter the word or phrase you want to find, then press

RETURN. SpeedScript will locate the word and place the

cursor on it, scrolling if necessary. If the phrase is not found,

you'll see a "Not Found" message in the command window.

The first time you use Hunt, SpeedScript will search for

the phrase from the top of the document. Pressing CTRL-H

again will find the next occurrence of the search phrase after

the cursor position. You can search for a new phrase without

waiting to get "Not Found" for the previous phrase by hold- i ,

ing down SHIFT while you press CTRL-H. LJ
There are some tricks to using Hunt. For example, if you

search for the word "if," SpeedScript will match it with the r~j

embedded "if" in a word like "specific." Should you just want LJ
to find the word "if," search for "if" followed by a space.

Also, searching for "if" will not match with the capitalized n~j

"If." LJ

U

10

u

H

Recreations and Applications 1n

n
Saving and Loading

^ What makes a word processor truly great is that you can save

j | your typing to tape or disk. Say you're writing a term paper.

You type it in and save it to disk. Your teacher returns the

^ rough draft with suggested corrections. Without retyping the

I entire paper, you just load the original, make some changes,

and print it out. A 5V4 inch disk can hold more writing than a

briefcase! You can also write in stages: save your work as you

go along, then come back to it at another time. Saving and

loading alone elevates word processing far above any other

means of writing.

To save your work, press f8 (SHIFT-f7). You will see:

5ave:|

Enter the name you want to use for the document. Follow

the standard Commodore filename rules, such as keeping the

name to 16 characters or less. Press RETURN, then press ei

ther T or D, answering the prompt TAPE OR DISK?

After the Save is completed, you'll see NO ERRORS

(hopefully). If there was an error during the save, such as no

disk in the drive, or a disk full error, SpeedScript will read the

error channel and display the error message. You'll get the

error "file exists" if you try to save using a name that's al

ready on the disk. If you want to replace the file, prefix the

name with the characters "@:", such as y/@:Document". This

is called "Save with Replace." You can also press CTRL- It (up

arrow, explained below) and scratch the file before you save.

Press i7 to load a file. You may want to use SHIFT-CLR/

HOME to erase the current text first. The Load feature will ap

pend text starting wherever the cursor is positioned. This lets

you merge several files from tape or disk into memory. If the

cursor is not at the top of the file, the command window will

i! change color to warn you that you are performing an append.
You should add text only to the end of the file, as the end-of-

rn file marker is put wherever the load stops. Also, beware that

I you can crash SpeedScript if you try to load a file and don't

have enough room (a file longer than available memory). You

can use CTRL-= (equals sign) to check the available memory

! ! space before merging files to avoid a crash.
You can use CTRL-V to Verify a saved file. Verify works

like Load, but compares the file with what's in memory. It's

M most useful with tape, but you can use it with disk files, too.

n

1 Recreations and Applications

SpeedScript files appear on the directory as PRG, program

files. The documents certainly aren't programs, but since the

operating system has convenient Save and Load routines, the

text files are just dumped from memory. This is also more reli

able for tape. You can load files created on some other word

processors, such as WordPro or PaperClip, but you may have to

do some reformatting. If the upper- and lowercase come out

reversed, you can hold down CTRL-A to transform the entire

file.

Other Disk Commands

Use CTRL-4 (think CTRL-$, as in LOAD"$",8 from BASIC) to

look at the disk directory. You will not lose whatever text you

have in memory. While the directory is being printed on the

screen, you can press CTRL to slow down the printing, or the

space bar to freeze the listing (press the space bar again to

continue).

You can send any other disk command with CTRL- ft (up-

arrow). It may not seem easy to remember, but I think of the

arrow as pointing to the disk drive. The command window

shows a greater-than sign (>). Type in the disk command and

press RETURN. By referring to your disk drive manual, you

can do anything the commands permit, such as Initialize,

New, Copy, Rename, Scratch, etc. If you press RETURN with

out entering a disk command, SpeedScript displays the disk

error message (if any). (Table 1, near the end of this article, is

a clip-out reference card for all the editing commands.)

PRINT!

At last, we get to the whole point of word processing—the

printout. Actually, you can use SpeedScript without a printer.

If you and a friend each have a copy of SpeedScript, you can

exchange letters on tape or disk, ready to load and view. You —

can get a lot of text on one tape or disk. And if you have a U
friend with a printer and a 64, you can bring SpeedScript and

your files. (-.

Before your text can be printed, it must be formatted. The Lj

text must be broken into lines with margins, and there has to

be a way to divide the output into pages. For those with r—(

pinfeed paper, we also need to skip over the perforation. Of I I
course, it would be nice to be able to automatically number all

pages. And why not let the computer center lines for you, or n

block them edge right? You should be able to change the left LJ

12 —;

Recreations and Applications 1

and right margin anytime, as well as line spacing. Headers

and footers at the top and bottom of each page would add a

I (really nice touch.
SpeedScript does all that and more. But with that power

comes the responsibility to learn more commands. These com-

j] mands do not act directly on the text, but control how the text
is printed out. Some commands do things like change the left

margin, while others let you do things with the text like

centering or underlining, Remember, the formatting com

mands will not change how the text on the screen looks. They

affect only the hard copy (what's on paper).

Thanks to several default settings, you can print right

away without using any printer commands. If you press

CTRL-P, SpeedScript will make several assumptions and begin

to print. A few of these assumptions are: left margin of five

spaces, right margin at 75 (meaning a line length of 70 charac

ters), and double spacing. If you want to change these settings,

you'll need to use the formatting commands.

Entering Format Commands

The format commands are single letters or characters that ap

pear on the screen in reverse video. To get a reverse video let

ter, press CTRL and the English pound sign (next to the CLR/

HOME key). The command window will prompt "Key:". Now

press one of the format letters, such as "r" for right margin, or

"c" for center. That letter will appear in reverse video (within

a "box," with its colors switched). SpeedScript recognizes only

lowercase letters and some symbols as commands.

Changing Printer Variables

The printer variables are values such as left margin, right mar

gin, line spacing, top and bottom margins, and so on. They are

r-| called variables because they can change. For example, to

' quote a passage within your text, you may indent it by
increasing the left margin, and also change to single spacing to

(—i set it apart. You would then want to switch back to normal

! margins and double spacing for the rest of the paper.
To change a printer variable, just follow the reverse video

letter with a number. Do not leave a space between a letter

and a number. You can put the format commands anywhere

in text, though I prefer to group them together on a line of

their own. Here is an example setting:

H

n

13

1 Recreations and Applications

To set off these format commands, I'll show here that

they are in reverse video by enclosing them in brackets. You'll

enter them with CTRL-English pound sign.

[s] Spacing, default 2. Line spacing. This is set to 2 to des

ignate double spacing. For single spacing, enter 1, for triple

spacing, enter 3, and so on.

[1] Left margin, default 5. The left margin is the number of

spaces to indent for each line.

[r] Right margin, default 75. This must be a number less

than 80, which is the number of characters that can fit on a

line. Add the line length you want to the left margin to get

the right margin.

[t] Top margin, default 5. How many blank lines to skip

from the top of the page to the first line of printing. Should be

at least 5.

[b] Bottom margin, default 58. A number less than 66,

which is the number of lines on an 8V2 inch x 11 inch sheet of

paper or pinfeed paper. Do not use a bottom margin more

than 58
[h] Define header. The header is printed at the top of each

page, if you specify one. To define the header, begin a line

with [h], enter the header text, then press RETURN. Example:

BJAccounting Procedures*

You can embed a format [c] after the [h] to center the

header, a format [e] to block the header edge right, and a

format [#] any place you want a page number to appear.

Examples:

A centered page number with a dash on each side:

BQPage -S3-*

The header used when this article was written: M

rre3Brannon/MSpeedScr ipt/fTi*

[f] Define footer. Just like header, but appears at the bot- F j

torn of each page. A centered page number within parentheses:

09 C23J * [—j

[n] Next page. This command forces the printer to skip to

the next page, regardless of the position on the current page.

U

14

U

n

Recreations and AppEcations 1

H
Other Commands

r-, These commands do not change printer variables, so they are

i I usually embedded within a line.

[u] Underline—place on each side of a word or phrase to

fi underline. It works by backspacing and overstriking an under-

! line symbol on top of each character. Some printers, including
the VIC 1525, do not support the backspace command, so

underlining will not work on these printers.

[c] Center—place this at the start of a line you wish to

center. Remember to end the line with RETURN.

[e] Edge right—like center, but will block the line to the

edge of the right margin.

[#] Page number—When SpeedScript encounters this

symbol, it prints the current page number.

User-Definable Codes

Many printers use special so-called escape sequences to con

trol printer functions such as automatic underlining, boldface,

italics, super/subscripting, elongated, condensed, etc. These

codes are either ASCII numbers less than 32 (control codes) or

are triggered by an ESCape character, CHR$(27), followed by

a letter or symbol. For example, for the Epson MX-80 with

Graftrax, italics is turned on with ESC 4. You should study

your manuals to learn how to use these codes. Since most of

the control codes and the escape character are not available

from the keyboard, SpeedScript lets you define the format

commands 1-9.

If you enter [1] = 65, then every time the reverse video [1]

is encountered during printing, that character (65 is the letter

A in ASCII) is sent to the printer. For example, SpeedScript

uses the back-arrow for a carriage return mark, so you can't

directly cause a back-arrow to print on the printer. Instead,

j| you can look up the ASCII value of the back-arrow, which is
95. You would enter [1]=95, say, at the top of your document.

Then, any place you want to print a back-arrow, just embed a

M [1] in your text. Refer to Appendix F, "ASCII Codes", for the
ASCII values of the 64's characters and graphics symbols. The

first four numbers are predefined so that you don't have to set

i ! them, but you can change their definition:
[1]=27 (escape), [2]=14 (elongated, most printers),

[3] = 15 (elongated off), [4] = 18 (condensed).

j] A fascinating possibility is to trigger the bit graphics

15

F
i
g
u
r
e

!
♦
K
e
y
b
o
a
r
d
M
a
p

B
a
c
k
s
p
a
c
e
;

W
i
t
h
C
T
R
L

E
r
a
s
e
W
o
r
d
,

D
i
s
k

|L
et
te
re
d
C
o
m
m
a
n
d
s
E
n
t
e
r
e
d
W
i
t
h
C
T
R
L

|

I
n
s
e
r
t
M
o
d
e

S
e
n
d
D
i
s
k

I
n
s
e
r
t
(
R
e
t
r
i
e
v
e
)

O
n
/
O
f
f

C
o
m
m
a
n
d

D
e
l
e
t
e
s
C
h
a
r
a
c
t
e
r

S
e
n
t
e
n
c
e
,

D
i
r
e
c
t
o
r
y

B
u
f
f
e
r

U
n
d
e
r
C
u
r
s
o
r

P
a
r
a
g
r
a
p
h

f
/

,
H
u
n
t

(
S
e
a
r
c
h
)

U
n
S
H
B
F
T
e
d
:

U
n
S
H
I
F
T
e
d
:

T
o
p
O
f
S
c
r
e
e
n

D
e
l
e
t
e
C
h
a
r
a
c
t
e
r

w
/
S
H
I
F
T
:
^

B
e
h
i
n
d
C
u
r
s
o
r

H
o
l
d
D
o
w
n

T
o
E
n
t
e
r

C
o
n
t
r
o
l

(
C
o
m
m
a
n
d
)

.
K
e
y
s

P
h
a
n
g
e

I
n
s
e
r
t
5

S
p
a
c
e
s

U
p
p
e
r
T
o

x
»

L
o
w
e
r
,
O
r

G
o
T
o

V
i
c
e
V
e
r
s
a

E
n
d
O
f

D
o
c
u
m
e
n
t

P
a
r
a
g
r
a
p
h

C
h
a
n
g
e

L
e
t
t
e
r
i
n
g

C
o
l
o
r

E
n
d
P
a
r
a
g
r
a
p
h
,

O
r
S
k
i
p
A

L
i
n
e

U
n
S
H
I
F
T
e
d
:

N
e
x
t
S
e
n
t
e
n
c
e

w
/
S
H
B
F
T
:

G
o
T
o
P
r
e
v
i
o
u
s

S
e
n
t
e
n
c
e

U
n
S
H
I
F
T
e
d
:

C
u
r
s
o
r

R
i
g
h
t

w
/
S
H
I
F
T
:

C
u
r
s
o
r

L
e
f
t

I

C
!
□

□
C
I

C
l

cz
i

c
!

c
;
□

c
:

Recreations and Applications 1

capability of your printer. For example, you could define spe

cial characters. On the VIC 1525, you could send a graphic

PI box (for a checklist perhaps) with:

— Ikig^isralB Toothpaste

This would appear on the printer as:

□ Toothpaste

Printer Compatibility

SpeedScript works best, of course, with a standard Com

modore printer. However, we have used it with several other

printers such as the Epson MX-80, an Okidata Microline 82A,

and the Leading Edge Prowriter (NEC 8023), via an appro

priate interface. The interfaces I've used are the Cardco Card/

Prinfand the Tymac Connection. Any interface that works

through the Commodore serial port should be fine.

SpeedScript will probably not work with an RS-232 printer

attached to the modem/user port. SpeedScript may operate

with some interfaces which emulate a Centronics port on the

user port via software, as long as the software does not con

flict with SpeedScript. If you can get your printer to work fine

with CTRL-P, skip the next few paragraphs to avoid confusion.

The Commodore printers and most interfaces use a device

number of 4. (Other device numbers are 1 for the tape drive

and 8 for the disk drive). If you have more than one printer

attached with different device numbers, you can enter this

number by holding down SHIFT while you press CTRL-P.

You'll be asked to enter the device number and the secondary

address. Incidentally, you can get a rough idea of page breaks

before printing by using a device number of 3, which causes

[H output to go to the screen.

The secondary address is a command number for the

printer. For Commodore printers or interfaces which emulate

PI the Commodore printer, the secondary address should be 7,

which signifies lowercase mode. The default device number, 4,

and the default secondary address, 7, are automatic when you

r"j press CTRL-P without holding down SHIFT.

If your interface cannot even partially emulate a Com

modore printer, you will have a few problems. First of all, the

]—I numbers Commodore uses to describe characters, called

17

u

1 Recreations and Applications *—'

PETASCII by some, do not correspond with standard ASCII,

which most non-Commodore printers use. The result is usually

that upper- and lowercase come out switched. SpeedScript lets LJ
you get around this if you place a format [a] at the top of your

file.

You also need to use the [a] if you want to bypass the [J
emulation offered by the interface. You may do this to be able

to activate your printer's special function codes which are of

ten intercepted and interpreted by the interface. You will also

have to use a different secondary address. I'll have to bow out

and suggest you scrutinize both your printer's manual and

that of the interface.

Pinfeed Versus Single Sheet
The pinfeed or tractor feed is the cheapest and most common

paper delivery system for printers. Some printers, however,

have a platen like a typewriter and can accept single sheets of

paper, such as stationery or company letterhead paper. Nor

mally, SpeedScript prints continuously, skipping over the

perforation that divides continuous pinfeed paper.

If you are using single sheets of paper/you need

SpeedScript to stop at the end of each page, tell you to insert

a new sheet, then continue. If you place a reverse video [w]

(for Wait) at the top of your file (again, use CTRL-English

pound sign to do this), SpeedScript will do just that. When

you get to the end of the page, insert a new sheet, then press

RETURN to continue printing.

Table 2, after the program listing, provides a quick-

reference card for all formatting commands.

As you can tell, SpeedScript is a truly comprehensive

word processor. Although it's ultimately easy to use, it may

take you a while to master all the features and variations. I

hope your adventure will prove to be fascinating and* fruitful. !_j

SpeedScript j I

2049 :011,008,010,000,158,050,238 ^
2055 1048,054,049,000,000,000,158

2061 :032,103,009,076,193,009,179 ,—,

2067 :165,251,141,051,008,165,032 LJ
2073 :252,141,052,008,165,253,128

2079 :141,054,008,165,254,141,026

2085 :055,008,166,181,240,032,207 |J

n

n

n

n

Recreations and Applications 1

n

n

2091 :169, 000,141,195, 026,160, 222

2097 :000,185,014,039,153,01a,197

2103 :039, 200,204,195,026,208,159

2109 :244,238,052,008,238,055,128

2115 :008,224,000,240,007,202,236

2121 :208,224,165,180,208,222,000

2127 : 096,165,181,170, 005,180,108

2133 :208,001,096,024,138,101,141

2139 :252,141,123,008,165,251,007

2145 :141,122,008,024,138,101,119

2151 :254,141,126,008,165,253,026

2157 :141,125,008,232,164,180,191

2163 .-208,004,240,013,160,255,227

2169 :185,000,028,153,001,028,004

2175 :136,192,255,208,245,206,089

2181 :123,008,206,126,008,202,038

2187 :208,234,096,169,040,133,251

2193 :195,133,020,169,004,133,031

2199 .-196,169,216,133,021,173,035

2205 .-191,026,133,155,173,192,003

2211 :026,133,156,162,001,173,046

2217 :194,026,133,012,173,204,143

2223 :026,141,032,208,160,000,230

2229 :173,203,026,145,020,177,157

2235 :155,153,205,026,200,041,199

2241 :127,201,031,240,019,192,235

2247 :040,208,235,136,177,155,126

2253 :041,127,201,032,240,005,083

2259 :136,208,245,160,039,200,175

2265 :132,167,136,185,205,026,044

2271 :145,195,136,016,248,164,103

2277 :167,024,152,101,155,133,193

2283 :155,165,156,105,000,133,181

2289 :156,152,157,060,003,192,193

2295 :040,240,008,169,032,145,113

2301 :195,200,076,246,008,024,234

2307 :165,195,105,040,133,195,068

2313 :133,020,144,004,230,196,224

2319 :230,021,232,224,025,240,219

2325 :003,076,179,008,165,155,095

2331 :141,201,026,165,156,141,089

2337 :202,026,096,169,000,133,147

2343 :155,141,191,026,141,197,122

2349 .-026,133,038,169,029,133,061

2355 :156,141,192,026,141,198,137

2361 :026,133,039,169,032,162,106

2367 :179,160,255,198,156,145,132

2373 :155,200,230,156,145,155,086

2379 :200,208,251,230,156,202,042

2385 :208,246,145,155,096,133,040

19

1 Recreations and Applications

2391 :167,132,168,160,000,177,123

2397 :167,240,006,032,210,255,235

2403 :200,208,246,096,169,012,006 r ~]

2409 :141,204,026,169,038,133,048 LJ
2415 :001,169,011,141,203,026,150

2421 :032,036,009,16,9,000,141,248 _

2427 :194,026,032,115,015,169,162) (
2433 :255,141,138,002,032,245,174 ^
2439 :012,032,150,009,169,109,104

2445 :160,025,032,086,009,238,179

2451 :193,026, 096, 032,166, 009,157

2457 :169,090,160,025,032,086,203

2463 :009,169,000,141,193,026,185

2469 :096,162,039,169,032,157,052

2475 :000,004,202,016,250,169,044

2481 :019,076,210,255,072,041,082

2487 :128,074,133,167,104,041,062

2493 :063,005,167,096,160,000,168

2499 :177,038,133,002,160,000,193

2505 :177,038,073,128,145,038,032

2511 :032,142,008,032,228,255,136

2517 :208,013,165,162,041,016,050

2523 :240,245,169,000,133,162,144

2529 :076,199,009,170,160,000,071

2535 :165,002,145,038,224,095,132

2541 :208,012,032,160,011,169,061

2547 :032,160,000,145,038,076,182

2553 :193,009,173,193,026,240,059

2559 :007,138,072,032,150,009,151

2565 :104,170,138,201,013,208,071

2571 :002,162,095,138,041,127,064

2577 :201,032,144,070,224,160,080

2583 :208,002,162,032,138,072,125

2589 :173,194,026,240,003,032,185

2595 :140,014,104,032,181,009,003

2601 :160,000,145,038,032,142,046

2607 :008,056,165,038,237,197,236

2613 :026,133,167,165,039,237,052

2619 :198,026,005,167,144,014,101 ! |

2625 :165,038,105,000,141,197,199 ^
2631 :026,165,039,105,000,141,035

2637 :198,026,230,038,208,002,011 T ;

2643 :230,039,032,231,010,076,189 LJ
2649 :193,009,138,174,125,010,226

2655 :221,125,010,240,006,202,131

2661 .-208,248,076,193,009,202,013 } (

2667 -.138,010,170,169,009,072,163 L-'
2673 :169,192,072,189,162,010,139

2679 :072,189,161,010,072,096,207 r-f

2685 :035,029,157,137,133,002,106 LJ

20 r ^

n
i i

n

n

H

n

n

Recreations and Applications 1

2691 :012,138,134,020,148,004,075

2697 :019,009,147,135,139,005,079

2703 :136,140,022,145,017,159,250

2709 :018,024,026,016,028,030,035

2715 :006,001,011,008,031,003,215

2721 :150,011,159,011,170,011,161

2727 :227, 011,054,012,066,012,037

2733 :080,012,179,012,231,013,188

2739 :139, 014, 014, 014, 083, 014, 201

2745 :201,014,225,014,253,014,138

2751 :024,015,185,015,222,017,157
2757 :205,016,043,018,080,012,059

2763 :179,012,111,018,118,019,148

2769 :023,020,028,012,108,020,164

2775 :186,017,112,023,002,014,057

2781 :039,020,244,012,215,023,006

2787 :057,025,122,014,032,071,036
2793 :011,056,165,038,237,191,163

2799 :026,133,167,165,039,237,238

2805 :192-,026,005^ 167 ,J.7j6,030,073

2811 :056,173,191,026,233,000,162

2817 :133,167,173,192,026,233,157

2823 :029,005,167,240,013,165,114

2829 :038,141,191,026,165,039,101

2835 :141,192,026, 032,142,008,048

2841 :056,173,201,026,229,038,236

2847 :133,155,173,202,026,229,181

2853 :039,133,156,005,155,240,253

2859 :002,176,024,024,173,191,121

2865 :026,109,061,003,141,191,068

2871 :026,173,192,026,105,000,065

2877 :141,192,026,032,142,008,090

2883 :076,025,011,096,056,173,248

2889 :197,026,233,000,133,167,061

2895 :173,198,026,233,207,005,153

2901 :167,144,010,169,000,141,204

2907 :197,026,169,207,141,198,005

2913 :026,056,165,038,233,000,103

2919 :133,167,165,039,233,029,101

2925 :005,167,176,009,169,000,123

2931 :133,038,169,029,133,039,144

2937 :096,056,165,038,237,197,142

2943 :026,133,167,165,039,237,126

2949 :198,026,005,167,176,001,194

2955 :096,173,197,026,133,038,034

2961 :173,198,026,133,039,096,042

2967 :230,038,208,002,230,039,130

2973 :076,231,010,165,038,208,117

2979 :002,198,039,198,038,076,202

21

1 Recreations and Applications

2985 :231,010,165,03s,133,155,133

2991 :165,039,133,156,198,156,254

2997 :160,255,177,155,201,032,137 T j

3003 :240,004,201,031,208,003,106 U
3009 :136,208,243,177,155,201,033

3015 :032,240,008,201,031,240,183 _

3021 :004,136,208,243,096,132,000 If
3027 :167,056,165,155,101,167,254

3033 :133,038,165,156,105,000,046

3039 :133,039,076,231,010,160,104

3045 :000,177,038,201,032,240,149

3051 :008,201,031,240,004,200,151

3057 :208,243,096,200,240,025,229

3063 :177,038,201,032,240,247,158

3069 :201,031,240,243,024,152,120

3075 :101,038,133,038,165,039,005

3081 :105,000,133,039,076,231,081

3087 :010,173,197,026,133,038,08/5

3093 :173,198,026,133,039,076,154

3099 :013, 012,169,000,141,191,041

3105 :026,173,198,026,056,233,233

3111 .-004,201,029,176,002,169,108

3117 :029,141,192,026,032,142,095

3123 :008,076,016,012,238,204,093

3129 :026,173,204,026,041,015,030

3135 :141,204,026,096,238,203,203

3141 :026,173,203,026,041,015,041

3147 :141,203,026,076,142,008,159

3153 .-165,038,133,155,165,039,008

3159 :133,156,198,156,160,255,121

3165 :177,155,201,046,240,012,156

3171 :201,033,240,008,201,063,077

3177 :240,004,201,031,208,004,025
3183 :136,208,235,096,177,155,094

3189 :201,046,240,026,201,033,096

3195 :240,022,201,063,240,018,139

3201 :201#031,240,014#136,208,191

3207 :235,198,156,165,156,201,222

3213 :000,176,227,076,169,012,033 I j
3219 :132,167,198,167,200,240,227 ^
3225 :010,177,155,201,032,240,200

3231 :247,136,076,210,011,164,235

3237 :167,076,115,012,169,000,192 [J

3243 :133,038,169,029,133,039,200

3249 :076,231,010,160,000,177,063

3255 :038,201,046,240,029,201,170 | 1

3261 :033,240,025,201,063,240,223 uJ
3267 :021,201,031,240,017,200,137

3273 :208,235,230,039,165,039,093

3279 :205,198,026,240,226,144,222 [J

22

LJ

n

Recreations and Applications 1

j I

n

n

n

n

3285 :224,076,016,012,200,240,213

3291 :250,177,038, 201,032, 240,133

3297 :247,201,046,240,243,201,123

3303 :033,240,239,201,063,240,223

3309 :235,201,031,240,231,076,227

3315 :001,012,169,000,141,059,113

3321 :028,169,208,141,060,028,115

3327 :032,166,009,169,129,160,152

3333 :025,032,086,009,169,001,071

3339 :141,193,026,096,056,165,176

3345 :038,233,000,133,167,165,241

3351 :039,233,029,005,167,208,192
3357 :003,104,104,096,165,038,027

3363 :133,251,165,039,133,252,240

3369 :096,056,165,038,133,253,014

3375 :073,255,101,251,141,063,163

3381 .-028,165,039,133,254,073,233
3387 :255,101,252,141,064,028,132

3393 :165,251,141,065,028,165,112

3399 :252,141,066,028,165,253,208

3405 :141,067,028,133,251,165,094

3411 :254,141,068,028,133,252,191

3417 :024,173,064,028,109,060,035

3423 :028,201,255,144,020,032,007

3429 :166,009,169,144,160,025,006

3435 :032,086,009,169,001,141,033

3441 :193,026,169,000,133,198,064

3447 :096,173,059,028,133,253,093

3453 :173,060,028,133,254,173,178

3459 :063,028,133,180,024,109,156

3465 :059,028,141,059,028,173,113

3471 :064,028,133,181,109,060,206

3477 :028,141,060,028,169,000,063

3483 :141,026,208,169,032,133,096

3489 :001,032,019,008,169,038,172

3495 :133,001,169,001,141,026,126

3501 :208,173,065,028,133,251,007

3507 :173,066,028,133,252,173,236

3513 :067,028,133,253,173,068,139

3519 :028,133,254,056,173,197,008

3525 :026,229,253,133,180,173,167

3531 :198,026,229,254,133,181,200

3537 .-032,019,008,056,173,197,182

3543 :026,237,063,028,141,197,139

3549 :026,173,198,026,237,064,177

3555 :028,141,198,026,096,032,236

3561 :015,013,032,160,011,032,240

3567 :042,013,056,173,059,028,098

3573 :233,001,141,059,028,173,112

3579 :060,028,233,000,141,060,005

f I

23

u

u1 Recreations and Applications

i i
LJ

3585 :028,096,032,151,011,032,095

3591 :015,013,032,160,011,076,058

3597 :042,013,032,245,012,169,014] I

3603 :002,133,012,032,166,009,117 L-)
3609 :169,156,160,025,032,086,141

3615 :009,032,228,255,240,251,022 --
3621 :072,032,150,009,104,041,189 [J
3627 :191,201,023,208,009,032,195

3633 :015,013,032,171,011,076,111

3639 :042,013,201,019,208,009,035

3645 :032,015,013,032,081,012,246

3651 :076,042,013,201,016,208,111

3657 :009,032,015,013,032,025,199

3663 :015,076,042,013,096,056,121

3669 :165,038,237,191,026,133,107

3675 :167,165,039,237,192,026,149

3681 :005,167,240,011,173,191,116

3687 :026,133,038,173,192,026,179

3693 :133,039,096,169,000,133,167

3699 :038,169,029,133,039,076,087

3705 :231,010,160,005,140,085,240

3711 :028,032,140,014,172,085,086

3717 :028,136,208,244,076,228,029

3723 :011,024,165,038,133,251,249

3729 :105,001,133,253,165,039,073

3735 :133,252,105,000,133,254,004

3741 :056,173,197,026,229,253,067

3747 :133,180,173,198,026,229,078

3753 :254,133,181,201,255,208,121

3759 :006,169,001,133,180,230,126

3765 :181,032,080,008,160,000,130

3771 :169,032,145,038,238,197,238

3777 :026,208,003,238,198,026,124

3783 :076,013,012,173,194,026,181

3789 :073,014,141,194,026,096,237

3795 :169,171,160,025,032,086,086

3801 :009,032,228,255,240,251,208

3807 :201,089,096,169,002,133,145

3813 :012,032,166,009,169,194,043 [j
3819 :160,025,032,086,009,032,067 ^
3825 :211,014,240,003,076,150,167

3831 :009,162, 255,154,076,013,148 f ",

3837 :008,160,000,177,038,201,069 LJ
3843 :031,240,015,200,208,247,176

3849 :230,039,165,039,205,198,117

3855 :026,144,238,076,016,012,015 } j

3861 :200,076,001,012,165,038,001 ^
3867 :133,155,165,039,133,156,040

3873 :198,156,160,255,177,155,110 (-,

u

24

u

H

n

n

n

n

n

Recreations and Applications 1

3879 :201,031,240,016,136,192,087

3885 :255,208,245,198,156,165,248

3891 :156,201,029,176,237,076,158

3897 :169,012,056,152,101,155,190

3903 :133,155,169,000,101,156,009

3909 :133,156,056,165,155,229,195

3915 :038,133,167,165,156,229,195

3921 :039,005,167,208,018,132,138

3927 :167,024,165,155,229,167,226

3933 :133,155,165,156,233,000,167

3939 :133,156,076,043,015,165,175

3945 :155,133,038,165,156,133,117

3951 :039,076,231,010,120,169,244

3957 .-127,141,013,220,169,027,046

3963 :141,017,208,169,146,141,177

3969 :020,003,169,015,141,021,242

3975 :003,169,001,141,026,208,171
3981 :141,018,208,088,096,169,093

3987 :058,164,012,205,018,208,044

3933 z208,005,169,001,172,204,144

3999 :026,140,033,208,141,018,213

4005 :208,201,001,240,008,169,224

4011 :001,141,025,208,076,188,042

4017 :254,169,001,141,025,208,207

4023 :076,049,234,173,141,002,090

4029 :041,001,208,003,032,245,207

4035 :012,032,166,009,169,209,024

4041 :160,02 5,032,086,009,160,161

4047 :000,177,038,073,128,145,000

4053 :038,032,142,008,160,000,081

4059 :177,038,073,128,145,038,050

4065 :169,002,133,012,032,228,033

4071 :255,240,251,009,064,201,227

4077 :087,208,009,032,022,016,099

4083 :032,228,011,076,037,016,131

4089 :201,083,208,009,032,022,036

4095 :016,032,180,012,076,037,096

4101 :016,201,080,208,009,032,039

4107 :022,016,032,254,014,076,169

4113 :037,016,076,150,009,165,214

4119 :038,133,253,141,054,027,157

4125 :165,039,133,254,141,055,048

4131 :027,096,056,165,038,133,038

4137 :251,237,054,027,141,063,046

4143 :028,165,039,133,252,237,133

4149 :055,027,141,064,028,032,144

4155 :065,013,173,054,027,133,012

4161 :038,173,055,027,133,039,018

4167 :032,142,008,076,206,0I5,038

4173 :169,038,229,211,141,199,040

25

1 Recreations and Applications

4179 :026,169,000,141,088,028,023

4185 :160,000,169,156,032,210,048

4191 :255,169,018,032,210,255,010

4197 :169,032,032,210,255,169,200

4203 :157,032,210,255,140,200,077

4209 :026,032,228,255,240,251,121

4215 :172,200,026,133,167,169,218

4221 :146,032,210,255,169,032,201

4227 :032,210,255,169,157,032,218

4233 :210,255,169,155,032,210,144

4239 :255,165,167,201,013,240,160

4245 :046,201,020,208,015,136,007

4251 :016,004,200,076,091,016,046

4257 :169,157,032,210,255,076,036

4263 :091,016,041,127,201,032,163

4269 :144,172,204,199,026,240,134

4275 :167,165,167,153,245,026,078

4281 :032,210,255,169,000,133,216

4287 :212,200,076,091,016,032,050

4293 :210,255,169,000,153,245,205

4299 :026,152,096,032,166,009,172

4305 :169,246,160,025,032,086,159

4311 :009,032,051,017,176,031,019

4317 :169,000,133,155,169,029,108

4323 :133,156,174,197,026,172,061

4329 :198,026,169,155,032,216,005

4335 :255,176,010,032,183, 255,126

4341 :041,191,208,003,076,028,024

4347 :018,240,039,173,050,017,020

4353 :201,008,144,006,032,174,054

4359 :023,076,028,017,173,050,118

4365 :017,201,001,240,24$,032,241
4371 :166,009,169,252,160,025,032

4377 :032,086,009,032,115,015,058

4383 :169,001,141,193,026,096,145

4389 :032,166,009,169,007,160,068

4395 :026,032,086,009,076,028,044

4401 :017,008,032,077,016,240,183

4407 :024,169,038,160,026,032,248 I |

4413 :086,009,032,228,255,240,143 ^

4419 :251,162,008,201,068,240,229

4425 :012,162,001,201,084,240,005

4431 :006,032,150,009,104,104,228 M
4437 :096,142,050,017,169,001,048

4443 :160,000,032,186,255,160,116

4449 :000,224,001,240,042,185,021 f (

4455 :245,026,201,064,208,007,086 LJ
4461 :185,246,026,201,058,240,041

4467 :028,169,048,141,029,027,045

4473 :169,058,141,030,027,185,219 [J

26

U

n

n

H

n

n

H

n

n

n

Recreations and Applications 1

4479 :245,026,153,031,027,200,041

4485 :204,200,026,144,244,240,167

4491 :242,200,076;156,017,185,247

4497 :245,026,153,029,027,200,057

4503 :204,200,026,208,244,140,149

4509 :053,027,032,166,009,169,101

4515 :245,160,026,032,086,009,209

4521 :173,053,027,162,029,160,005

4527 :027,032,189,255,169,013,092

4533 :032,210,255,076,086,018,090

4539 :032,166,009,169,241,160,196

4545 :025,032,086,009,032,228,093

4551 :255,240,251,032,181,009,143

4557 :009,128,072,173,194,026,039

4563 :240,003,032,140,014,032,160

4569 :150,009,104,076,041,010,095

4575 :056,165,038,233,000,133,080

4581 :167,165,039,233,029,005,099

4587 :167,240,004,169,005,133,185

4593 :012,032,166,009,169,058,175

4599 :160,026,032,086,009,032,080

4605 :051,017,165,012,201,005,192

4611 :240,003,032,036,009,169,236

4617 :000,166,038,164,039,032,192

4623 :213,255,144,003,076,252,190

4629 :016,142,197,026,140,198,228

4635 :026,032,231,255,032,166,001

4641 1009,169,028,160,026,032,201

4647 :086,009,076,028,017,032,031

4653 .-166,009,169,064,160,026,127

4659 :032,086,009,032,051,017,022

4665 :169,001,162,000,160,029,066

4671 :032,213,255,032,183,255,009

4677 :041,191,240,211,032,166,182

4683 :009,169,015,160,026,032,230

4689 :086,009,076,028,017,120,161

4695 :169,000,141,026,208,141,004

4701 :033,208,169,049,141,020,201

4707 :003,169,234,141,021,003,158

4713 :169,255,141,013,220,088,223

4719 :096,169,147,032,210,255,252

4725 :169,013,032,210,255,032,060

4731 :086,018,032,162,018,169,096

4737 :013,032,210,255,169,072,112

4743 :160,026,032,086,009,032,224

4749 :228,255,201,013,208,249,015

4755 :032,115,015,076,150,009,032

4761 :032,204,255,169,001,032,078

4767 :195,255,096,032,231,255,199
4773 :169,001,162,008,160,000,153

27

1 Recreations and Applications

U

U

4779 :032,186,255,169,002,162,209

4785 :087,160,026,032,189,255,158

4791 :032,192,255,176,221,162,197 f j

4797 .-001,032,198,255,032,207,146 LJ
4803 :255,032,207,255,032,207,159

4809 :255,032,183,255,208,202,056

4815 :032,207,255,240,197,032,146 j f

4821 :204,255,032,228,255,201,108 L~'
4827 :032,208,005,032,228,255,211

4833 :240,251,162,001,032,198,085

4839 :255,032,207,255,072,032,060

4845 :207,255,168,104,170,152,013

4851 :160,055,132,001,032,205,060

4857 .-189,160,054,132,001,169,186

4863 :032,032,210,255,032,207,255

4869 :255,240,006,032,210,255,235

4875 :076,003,019,169,013,032,067

4881 :210,255,076,199,018,162,169

4887 :000,142,056,027,142,057,191

4893 :027,142,058,027,056,177,004

4899 :155,233,048,144,042,201,090

4905 :010,176,038,014,056,027,106

4911 :046,057,027,014,056,027,018

4917 :046,057,027,014,056,027,024

4923 :046,057,027,014,056,027,030

4929 :046,057,027,013,056,027,035

4935 :141,056,027,200,208,212,147

4941 -.230,156,076,033,019,248,071

4947 :173,056,027,013,057,027,180

4953 :240,023,056,173,056,027,152

4959 :233,001,141,056,027,173,214

4965 :057,027,233,000,141,057,104

4971 :027,238,058,027,076,083,104

4977 :019,173,058,027,216,096,190

4983 :056,173,059,028,233,000,156

4989 :141,061,028,173,060,028,104

4995 :233,208,141,062,028,013,048

5001 :061,028,208,016,032,166,136

5007 :009,169,097,160,026,032,124 j I
5013 :086,009,169,001,141,193,236 ^
5019 :026,096,024,165,038,133,125

5025 :251,109,061,028,133,253,22ft r-,

5031 :165,039,133,252,109,062,159 LJ

5037 :028,133,254,056,173,197,246

5043 :026,229,251,133,180,173,147

5049 :198,026,229,252,133,181,180 I j

5055 :024,101,254,201,207,144,098 ^
5061 :016,032,166,009,169,089,166

5067 :160,026,032,086,009,169,173 ,

5073 :001,141,193,026,096,032,186 [J

u

J
D

U
Z
]

I
D

Z
l
3

Z
J

Q
M
W
U
)
Q
U
l
W
M
O
O
v
O
W
a

^
^
W
W
>
4
Q
W
Q
^
^
W
(
J
\
I
S
l
l
O
0
0
S
l

Q
U
l
l
J
\
O
'
>
l
Q
M

O
)
i
|
5
k
a
)
C
O
W
V
O
^

M

)
v
O
W
^
W
>
J
W

W
l
^
H
H
H
^
H
^
U
l
Q
U
i
^
s
l
W
N
l

I i i

u

1 Recreations and Applications L-J

5379 :034,153,059,027,200,238,202
5385 :082,028,173,082,028,205,095

5391 :076,028,144,230,136,140,001 i j
5397 :196,026,177,155,201,032,040 LJ
5403 :240,009,206,082,028,136,216

5409 :208,244,172,196,026,140,251

5415 :196,026,152,056,101,155,213 j j

5421 :133,155,165,156,105,00^,247 L->

5427 :133,156,160,000,173,084,245
5433 ;028,201,255,208,003,032,016

5439 :236,021,032,033,022,173,068

5445 -.196,026,141,195,026,169,054

5451 :059,133,169,169,027,133,253

5457 :170,032,109,024,032,048,240

5463 :022,173,084,028,205,079,166

5469 :028,144,003,032,148,021,213

5475 :056,165,155,237,197,026,167

5481 :133,167,165,156,237,198,137

5487 :026,005,167,240,029,144,210

5493 :027,169,000,141,069,028,039

5499 :141,078,028,032,148,021,059

5505 :032,225,255,240,251,169,021

5511 :001,032,195,255,032,204,086

5517 :255,076,150,009,076,247,186

5523 :020,056,173,077,028,237,226

5529 :084,028,168,136,136,240,177

5535 :010,048,008,169,013,032,183

5541 :210,255,136,208,248,173,115

5547 :070,028,240,019,141,195,096

5553 :026,173,073,028,133,169,011

5559 :173,074,028,133,170,032,025

5565 :033,022,032,109,024,169,066

5571 :013,032,210,255,032,210,179

5577 :255,032,2i0,255,173,081,183
5583 :028,208,026,032,204,255,192

5589 .-032,166,009,169,150,160,131

5595 :026,032,086,009,032,228,120

5601 :255,240,251,032,096,020,095

5607 :162,001,032,201,255,238,096 |]

5613 :083,028,173,069,028,240,090 uJ
5619 :019,141,195,026,173,071,100

5625 :028,133,169,173,072,028,084

5631 :133,170,032,033,022,032,165 M
5637 :109,024,169,013,032,210,050

5643 :255,172,078,028,140,084,000

5649 :028,136,136,240,010,048,103 i ,

5655 :008,169,013,032,210,255,198 LJ

5661 :136,208,248,096,169,032,150

5667 :172,075,028,140,082,028,048

5673 :032,210,255,136,208,250,108 [J

o

Recreations and Applications 1

n

H

n

n

5679 :096,172,080,028,024,152,087

5685 :109,084,028,141,084,028,015

5691 :169,013,032,210,255,136,106

5697 :208,250,096,141,087,028,107

5703 :041,127,032,061,020,201,041

5709 .-049,144,007,201,058,176,200

5715 :003,076,080,023,174,158,085

5721 ;022,221,158,022,240,012,252

5727 :202,208,248,206,082,028,045

5733 :173,087,028,076,000,021,230

5739 .-202,138,010,170,140,085,084

5745 .-028,169,022,072,169,128,189

5751 :072,189,170,022,072,189,065

5757 :169,022,072,096,056,173,201

5763 :085,028,101,155,133,155,020

5769 :165,156,105,000,133,156,084

5775 :076,247,020,200,177,155,250

5781 :201,031,240,001,136,140,130

5787 :085,028,096,010,087,065,014

5793 :076,082,084,066,083,078,118

5799 :072,070,188,022,197,022,226

5805 :205,022,215,022,225,022,116

5811 :235,022,245,022,255,022,212

5817 :014,023,051,023,169,000,209

5823 :141,081,028,200,076,146,095

5829 :022,169,001,141,090,028,136

5835 :076,146,022,200,032,022,189

5841 :019,141,075,028,076,146,182

5847 :022,200,032,022,019,141,139

5853 :076,028,076,146,022,200,001

5859 :032,022,019,141,078,028,035

5865 :076,146,022,200,032,022,219

5871 :019,141,079,028,076,146,216

5877 .-022,200,032,022,019,141,169

5883 :080,028,076,146,022,140,231

5889 :086,028,032,148,021,172,232

5895 :086,028,140,085,028,076,194

5901 :146,022,056,152,101,155,133

5907 :141,071,028,165,156,105,173

5913 :000,141,072,028,032,043,085

5919 :023,056,152,237,085,028;100

5925 :141,069,028,076,146,022;007

5931 :200,177,155,201,031,208,247

5937 :249,136,096,056,152,101,071

5943 :155,141,073,028,165,156,005

5949 :105,000,141,074,028,032,185

5955 :043,023,056,152,237,085,151

5961 :028,141,070,028,076,146,050

5967 :022,200,177,155,201,061,127

5973 :240,004,136,076,101,022,152

31

u

1 Recreations and Applications

U
5979 :200,032,022,019,072,173,097

5985 :087,028,041,015,170,202,128

5991 :104,157,087,020,032,146,137) j

5997 :022,076,129,022,032,231,109 ^
6003 :255,169,000,032,189,255,247

6009 :169,015,162,008,160,015,138 ;

6015 :032,186,255,032,192,255,055 LJ

6021 :144,001,096,032,166,009,069

6027 :169,062,032,210,255,032,131

6033 :077,016,240,025,162,015,168

6039 :032,201,255,176,012,169,228

6045 :245,160,026,032,086,009,203

6051 :169,013,032,210,255,032,106

6057 :231,255,076,150,009,032,154

6063 :231,255,169,000,032,189,027

6069 :255,169,015,162,008,160,182

6075 :015,032,186,255,032,192,131

6081 :255,176,228,032,166,009,035

6087 :162,015,032,198,255,032,125

6093 :077,016,032,231,255,169,217

6099 :001,141,193,026,096,173,073

6105 :141,002,201,005,240,005,043

6111 :173,088,028,208,037,032,021

6117 :166,009,169,171,160,026,162

6123 :032,086,009,032,077,016,231

6129 :208,003,076,150,009,169,088

6135 :001,141,088,028,141,193,071

6141 .-026,169,000,133,155,169,137

6147 :029,133,156,076,022,024,187

6153 :165,038,133,155,165,039,192

6159 :133,156,160,001,076,024,053

6165 :024,160,000,162,000,189,044

6171 :245,026,032,181,009,209,217

6177 :155,240,002,162,255,200,023

6183 :208,011,230,156,165,156,197

6189 :205,198,026,240,002,176,124

6195 .-035,232,236,200,026,208,220

6201 :224,024,152,101,155,133,078

6207 :038,165,156,105,000,133,148 I j
6213 :039,056,165,038,237,200,036 ^
6219 :026,133,038,165,039,233,197

6225 :000,133,039,076,231,010,058 ,

6231 :032,166,009,169,181,160,036 L,

6237 :026,032,086,009,169,001,160

6243 :141,193,026,169,000,141,001

6249 :088,028,096,096,160,000,061 j |

6255 :204,195,026,240,248,177,177 L-J

u

G

I
V
O
i
n
v
O
^
f
r
r
^
r
H
r
H
C
N
r
H
O
N
O
N
O
N
G
&
r
H
r
^
r
^
T
*

'
Q
^
t
^
t
O
O
^
t
C
O
O
O
O
^
^
G
J
r
H
v
O
^
C
M
C
O
i
n

,020,,061,032,038,048:169

r255,

rl69,

,095,

,210,032,025:032

r010,240,028,091:173

,169,255,210,032:008

r255,
933'

,032,255,210:032

r!29,,076,104,104,005:208

rl40.r024rill,076,200:021

,061,r032,127,041,028:085

,201,r017,144

rl70,,015r041,

ONCOG)Gl
,201

CMG>
r176:058

r210,,020,087,189:202

,067,,201,r024,,154r076:255

r237,,080,r169,056:208

,075,,237,
'990'

,074r026:195,

,210,

,085,

,069,

coincN

g>cng>

ON00^voG>inrHCMrHCOVOVOvocoi>rHrHGJ
:028

:255

:028

,028,,076,,173,r056,,017:208

,075,,237,

;076,

,195:237

,168

,173,,008,
'803'

,085r201

:028,

:024

,091,

076,

:091,

:028,

174,028,,085,,140,024,:154,

,055,160,,169:083,

160,189,
'390'

,001,:132,

028,085,,172,,001,,132,:054,

028,090,,174,,024,,154,:076,

127,041,,167,,133,

091,201,,018,

:240,

:201,

041,167,,165,,170,014,:176,

133,074,,074,,128,,073,

032,096,,167,,005,138,:167,

237,

237,

000,169,056,,009,:166,

207,169,,170,:197,

001,132,055,160,
'930

132,054,160,189,:032,

026,193,141,001,169,:001,

080,

082,

211,155,

067,211,

014,:096,

069,:069,

046,049,032,084,080,:073,

032,
'680

066,032,000,:049,

069,076,082,072,:195,

078,082,194,032,

085,194,078,079,:078,

195,082,
'690

070,:070,

068,082,065,069,:076,

N
U
^
r
^

N
G
)
r
H
i
H
C
M
C
M
C
O
T
t
^
i
X
)
i
^

N
N
N
N
O
O
C
O
C
O
O
O
C
O
O
C
O
O
C
O
^
^
^
t
^
^
^
^
^
^
^

v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
V
O
v
O
v
O
v
O
v
O
v
D
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O
V
O
v
O
V
O
v
O
v
O
v
O
V
O
v
O
v
O
v
O
v
O
v
O
v
O
v
O

l
:

c
:

c
c

c
r

u

1 Recreations and Applications

U
6543 :000,194,085,070,070,069,119

6549 :082,032,198,085,076,076,186

6555 :000,196,069,076,069,084,137 j j

6561 :069,032,040,211,044,215,004 ^
6567 :044,208,041,000,058,032,038

6573 :193,082,069,032,089,079,205 r ,

6579 :085,032,083,085,082,069,103 LJ

6585 :063,032,040,217,047,206,022

6591 :041,058,000,197,210,193,122

6597 :211,197,032,193,204,204,214

6603 :032,212,197,216,212,000,048

6609 :197,082,065,083,069,032,225

6615 :040,211,044,215,044,208,209

6621 :041,058,032,018,210,197,009

6627 :212,213,210,206,146,032,222

6633 :084,079,032,069,088,073,146

6639 :084,000,203,069,089,058,230

6645 :000,211,065,086,069,058,222

6651 :000,212,065,080,069,032,197

6657 :197,210,210,207,210,000,011

6663 :211,084,079,080,080,069,098

6669 :068,000,214,069,082,073,007

6675 :070,089,032,197,082,082,059

6681 :079,082,000,206,079,032,247

6687 :069,082,082,079,082,083,252

6693 :000,147,032,018,212,146,080

6699 :065,080,069,032,079,082,194

6705 :032,018,196,146,073,083,085

6711 :075,063,000,204,079,065,029

6717 :068,058,000,214,069,082,040

6723 :073,070,089,058,000,208,053

6729 :082,069,083,083,032,018,184

6735 :210,197,212,213,210,206,047

6741 :146,000,036,048,206,079,088

6747 :032,210,079,079,077,000,056

6753 :206,079,032,084,069,088,143

6759 :084,032,073,078,032,066,212

6765 :085,070,070,069,082,046,019 ,

6771 :000,196,069,086,073,067,094 U
6777 :069,032,035,000,211,069,025

6783 :067,079,078,068,046,032,241

6789 :193,068,068,082,046,032,110 j I

6795 :035,000,208,082,073,078,103 l*J
6801 :084,073,078,071,000,206,145

6807 :069,088,084,032,083,072,067 ■

u

U

0

H

n
Recreations and Applications 1

n

n

6813 :069,069,084,044,032,018,217

6819 :210,197,212,213,210,206,131

6825 :146,000,200,085,078,084,250

6831 :032,070,079,082,058,000,240

6837 :206,079,084,032,198,079,091

6843 :085,078,068,000,000,029,191

6849 :000,000,004,104,005,029,079

6855 :036,013,192,032,011,012,239

n

n

n

n

35

Table 1. Clip-Out Quick Reference Card—Editing

Commands

n

n

H

H

CTRL-A: Change case

CTRL-B: Change background color

CTRL-D: Delete

CTRL-E: Erase

CTRL-H: Hunt

CTRL-I: Insert Mode

CTRL-K: Clear buffer

CTRL-L: Change lettering color

CTRL-P: Print

CTRL-R: Recall buffer

CTRL-V: Verify

CTRL-X: Transpose characters

CTRL-Z: End of document

CTRL-4: Disk directory

CTRL-It: Send DOS command

CTRL-£: Enter format key

CTRL-=: Free memory

fl: Next word

f2: Previous word

f3: Previous sentence

f5: Next paragraph

f6: Previous paragraph

f7: Load

f8: Save

Cursor Up: Previous sentence

Cursor Down: Next Sentence

Cursor Left/Right: As implied

SHIFT-CLR/HOME: Erase all

CLR/HOME: Top of screen/top of document

Back-arrow: Backspace

CTRL-Back-arrow: Delete character

RUN/STOP: Insert 5 spaces

37

H

n

n

n

n

Table 2. Clip-Out Quick Reference Card—Format

Commands
Format commands in column one are entered with CTRL-£.

f Cmd

{ 1

! *
: t

! b
: h

; f
! w

| a

! u

| c

| e
S s

; n

! #
| 1-9

Description

left margin

right margin

top margin

bottom margin

define header

define footer

wait for next sheet

true ASCII

underline toggle

center line

edge right

line spacing

go to next page

page number

user-definable keys

Default j

5

75 ;
5 I

58 |
none i
none !

no wait j

(see text) j

H

n

n

H

n

t
73

&
CD

II
J
II 15

1-8 It
£1
It I

A

39

n

n
Recreations and Applications 1

n

n

r
Eric Brandon

An all-machine-language game, "Spike" pits

you against deadly power spikes on the Grid as

you search for your hidden Commodore 64. The

game is fast-paced, and approaches commercial-

quality software—a game you might expect to

pay $30 or more for.

It is a dark and stormy night, and you are diligently typing

games into your Commodore 64.

Suddenly, just outside, you see a dazzling flash of light

and almost at once hear the deafening retort of thunder. The

lights dim, flicker, and wink out. A wave of dizziness over

comes you.

When you regain consciousness, you cannot recognize

your surroundings. "This isn't my computer room," you think.

A thousand theories about your situation fly through your

head, but none is even close to the terrible truth.

You are trapped inside the Power Grid.

To return to your own world, you must find and encircle

your Commodore 64 computer. It's not visible from where you

are, but you know it is hidden inside one of the many grid

nodes. Fortunately, you are carrying your pocket sonar, which

always tells you how far from the 64 you are. The shorter the

line displayed by your sonar, the closer you are to escaping.

]"H You soon discover that the Grid is a dangerous place to

be. Deadly power spikes travel up and down the wires.

Touching one of the spikes results in a terrible shock. These

|—j shocks, though powerful, are very short, so you can endure up

to four collisions with the spikes and still stand a chance to

make it home.

ri Unfortunately, should you Successfully reach your 64, you

will find that the magnetic disturbance which trapped you on

the Grid in the first place is worse than ever. You end up on

HI the Grid again, but now it is coursed by even more power

' spikes.
Is there no escape?

H 41

u

1 Recreations and Applications

0
Playing Spike

The recommended way to travel on the Power Grid is with a

joystick in port two. The joystick may seem a bit awkward at I I
first: Since the Grid is tilted 45 degrees, the four cardinal

directions (up, down, left, right) are likewise tilted. To better -~

orient yourself, it may help to turn the joystick base to the LJ
same angle.

When "Spike" first starts, you will have to make some

decisions. You must decide the speed of the game and

whether you want the Easy or Hard option. Pressing the RE

TURN key or the joystick button automatically chooses the

Hard option and a speed of 5. If you want some other option,

press the number of the speed you want (1 to 9) and the E key

for an Easy game.

Another handy feature of Spike is the pause option.

Pressing a SHIFT key pauses the action. Pressing SHIFT/

LOCK freezes the game until SHIFT/LOCK is released.

You start each game with five lives. An indicator at the

top of the screen, labeled STAMINA, keeps track of your

remaining lives, not counting the one currently in play.

Another indicator, SONAR, shows your proximity to your

invisible goal, the hidden Commodore 64 computer. The

shorter the line, the closer you are to the 64.

The LEVEL indicator displays flags to show how many

times you've found the 64 and advanced to a more difficult

power grid.

When you start a new game, the Grid is patrolled by two

power spikes. Another spike joins them on each succeeding

level, up to a maxmium of seven spikes.

To develop a winning strategy, it's vital to understand

how the scoring works. The screen is divided into 112 grid

nodes (diamond-shaped blocks). Your goal, the Commodore

64, is hidden in one of them, leaving 111 empty nodes. You LJ
gain survival points for traversing the Grid—ten points for

each new side of a node you cross. If you box in a node by

leaving your trail along all four of its sides, the node is colored LJ
blue. You'll want to box in as few nodes as possible, because

it costs you bonus points later.

When you find the Commodore 64 by locating it with | |
your sonar and encircling its node, you win bonus points and

advance to the next level. The bonus is figured by multiplying

the number of unboxed nodes times the bonus value for the | |

u

n

n
Recreations and Applications 1

H
current level. The bonus value starts at 40 for level one and

p-| increases by five for each additional level. For instance, if you

1 I find the 64 on level three after boxing in 11 nodes, you would
win 5000 bonus points (100 unboxed nodes x bonus value of

r—i 50 = 5000). This would be added to the survival points you

! 1 gained while searching the Grid.
A HIGH SCORE indicator keeps track of the best game

played during the current sitting.

Typing Spike

Unavoidably, Spike is a long program—more than 4K of pure

machine language. Normally, it is very difficult to type in such

a program without making a mistake. Also, in the past, a ma

chine language monitor was necessary to enter such a program

from a published listing in a book or magazine.

However, to make the typing as easy and as foolproof as

possible, "MLX," a machine language entry program, was

written by Program Editor Charles Brannon to greatly simplify

the task of typing ML programs from listings. It includes an

instant checksum feature which does not let you continue un

til you've typed a line correctly. It also automatically types

commas and lets you break up the job into several sittings.

Please read the directions in Appendix I for using MLX.

And be sure to save MLX, because it will be needed for other

machine language programs in this book.

You'll need to type in a POKE statement in direct mode

(without a line number) before you begin entering Spike. This

line will move down the top of memory to below the Spike

program so that BASIC will not write over Spike as you type

it in.

POKE 52,128:POKE 56,128:CLR

R You'll use this statement only while you enter Spike using

MLX. You don't need it when you enter other machine lan

guage programs.

[""] This line must be entered before you load and run MLX.

Then you can begin typing in the Spike program. If you enter

Spike in several sessions, turning the computer off in between,

[""I you must type in the above POKE statement each time you

begin entering Spike's data.

Here is the information you'll need to enter Spike with

MLX:H

n
43

1 Recreations and Applications

Starting address—32768

Ending address—37295

Once Spike is saved on disk or tape, a special procedure

is required to load the program.

For disk, enter:

LOAD"SPIKE",8,1

For tape, enter:

LOADy///,l,l

When the program is loaded, run it by entering SYS

32768.

u

u

u

u

u

Spike

32768 :169,005,141,190,

32774 :072,141,180,207,

32780 :144,169,007,141,

32786 ;169,040,141,200,

32792 :012,141,199,207,

32798 :141,039,208,162,

32804 :000,212,202,224,

32810 :248,169,070,141,

32816 :169,120,141,253,

32822 :255,141,015,212,

32828 :207,169,128,141,

32834 :169,064,141,136,

32840 :001,141,246,207,

32846 :032,210,255,169,

32852 :032,208,173,014,

32858 :254,141,014,220,

32864 :041,251,133,001,

32870 :185,000,208,153,

32876 :185,000,209,153,

32882 sl85,000,210,153,

32888 :185,000,211,153,

32894 :185,000,212,153,

32900 :185,000,213,153,

32906 :185,000,214,153,

32912 :185,000,215,153,

32918 :200,208,205,165,

32924 :004,133,001,173,

32930 :009,001,141,014,

32936 :198,141,000,221,

32942 :141,024, 208,032*,

32948 :076,219,128,120,

32954 :141,013,220,169,

32960 :026,208,169,000,

207,169,113

032,019,145

201,207,113

207,169,176

169,000,240

024,157,249

255,208,113

254,207,107

207,169,083

141,182,232

018,212,167

002,169,235

169,019,087

000,141,117

220,041,004

165,001,117

160,000,170

000,080,216

000,081,224

000,082,232

000,083,240

000,084,248

000,085,000

000,086,008

000,087,016

001,009,170

014,220,189

220,169,204

169,008,137

183,128,122

169,127,251

001,141,103

141,018,242

U

U

u

u

44

n

n

n

n

n

H

n

n

n

n

32966

32972

32978

32984

32990

32996

33002

33008

33014

33020

33026

33032

33038

33044

33050

33056

33062

33068

33074

33080

33086

33092

33098

33104

33110

33116

33122

33128

33134

33140

33146

33152

33158

33164

33170

33176

33182

33188

33194

33200

33206

33212

33218

33224

33230

33236

33242

33248

33254

:208,173,017,208,041,127,

: 020^ 003! 169^140,' 141', 021', 192
:003,088,096,032,225,128,020

:076,249,128,169,089,133,042

:252,160,000,133,251,169,169

:000,145,251,200,208,251,009

:230,252,166,252,224,128,212

:208,243,096,169,016,160,114

1000,153,000,064,153,000,110

Recreations and Applications 1

204

:255,207,024,105,020,141,058

:255,207,201,200,144,225,032

:169,010,141,255,207,174,018
• orr oci'7~ i dfA lam tx^^ ioo ici

:032,239,139,232,224,151,121

:240,005,200,192,200,208,155

:243,173,255,207,056,233,027

:020.141.255.207.201.022.224

^,105,020,141,255,207,160

,151,144,229,096,169,148

►,133,252,169,032,133,235

M60,000,133,251,133,101

»,252,224,127,208,239,148

,251,145,253,200,192,156

,208,247,032,155,139,045

,166,135,032,145,143,115

:064

:032

45

1 Recreations and Applications

33260

33266

33272

33278

33284

33290

33296

33302

33308

33314

33320

33326

33332

33338

33344

33350

33356

33362

33368

33374

33380

33386

33392

33398

33404

33410

33416

33422

33428

33434

33440

33446

33452

33458

33464

33470

33476

33482

33488

33494

33500

33506

33512

33518

33524

33530

33536

33542

33548

:169,

:030,

:000,

:001,

:240,

:253,

:076,

:201,

:130,

:207,

:207,

:207,

:030,

:138,

:240,

:000,

:206,

:141,

:173,

:037,

:032,

:201,

:207,

:254,

:252,

:173,

:008,

:240,

:253,

:173,

:012,

:207,

:207,

:160,

:208,

:144,

:029,

:008,

:032,

:076,

:041,

:199,

:143,

:032,

:140,

:207,

:141,

:169,

:207,

007,141,

208,076,

220,141,

208,043,

003,032,

207,201,

173,130,

150,208,

238,254,

173,252,

076,173,

041,002,

139,240,

173,253,

107,173,

240,100,

254,207,

249,207,

252,207,

032,050,

186,138,

030,240,

201,000,

207,206,

207,141,

130,173,

208,034,

003,032,

207,201,

254,207,

238,254,

173,252,

032,155,

000,200,

250,032,

136,032,

135,032,

032,050,

181,133,

247,129,

001,208,

207,104,

174,199,

157,040,

173,241,

207,176,

206,207,

001,141,

207,024,

021,208,

212,140,

252,207,

032,030,

186,138,

030,208,

173,254,

003,076,

207,206,

207,141,

130,173,

208,037,

003,032,

207,201,

254,207,

238,253,

173,252,

076,173,

041,004,

139,240,

173,253,

063,173,

240,056,

253,207,

249,207,

252,207,

032,050,

186,138,

200,240,

201,150,

207,238,

207,141,

139,162,

208,253,

024,136,

036,137,

030,139,

139,208,

032,217,

173,030,

001,096,

104,032,

207,232,

064,076,

207,010,

008,169,

076,011,

206,207,

105,013,

173,187

173,057

041,085

139,195

173,008

003,144

207,005

173,065

253,036

249,239

252,027

032,061

186,170

200,206

201,222

207,084

207,095

130,034

208,205

003,083

207,065

254,043

206,254

173,138

076,232

041,082

139,095

173,146

019,244

240,099

253,082

249,115

255,098

232,207

032,098

032,195

208,001

003,130

130,165

208,053

206,005

200,048

169,076

212,051

141,132

000,249

131,004

173,135

141,197

u

u

u

u

u

u

u

u

u

46

p

n

n

n

Recreations and Applications 1

n

n

n

n

n

33554

33560

33566

33572

33578

33584

33590

33596

33602

33608

33614

33620

33626

33632

33638'

33644

33650

33656

33662

33668

33674

33680

33686

33692

33698

33704

33710

33716

33722

33728

33734

33740

33746

33752

33758

33764

33770

33776

33782

33788

33794

33800

33806

33812

33818

33824

33830

33836

33842

:014,208,173,206,207,105,163

:000,024,106,106,141,206,095

:207,173,016,208,041,127,034

:013,206,207,141,016,208.059

:173,240,207,024,105,041,064

:141,015,208,169,001,141,211

:046,208,169,023,141,255,128

:067,162,254,154,173,021,123

.-208,141,205, 207,169,129,101

r141,021,208,032,081,143,186

:032,081,143,032,081,143,078

:169,000,141,202,207,169,204

:004,141,203,207,173,203,253

:207,074,144,008,169,010,196

:141,204,207,076,113,131,206

:169,020,141,204,207,173,254

:203,207,141,245,207,169,006

:010,141,244,207,032,252,238

:135,172,242,207,174,204,236
• 0911. ooia . OAOi. oai. 90ft. aan . i qo

:032,205,189,169,032,032,155

:210,255,169,146,032,210,012

:255,173,200,207,201,070,102

:240,006,024,105,005,141,035

:200,207,173,242,207,056,093

:233,010,141,242,207,141,244

:221,207,173 f 243,207,233,048

:000,141,243,207,013,221,107

47

1 Recreations and Applications

33848

33854

33860

33866

33872

33878

33884

33890

33896

33902

33908

33914

33920

33926

33932

33938

33944

33950

33956

33962

33968

33974

33980

33986

33992

33998

34004

34010

34016

34022

34028

34034

34040

34046

34052

34058

34064

34070

34076

34082

34088

34094

34100

34106

34112

34118

34124

34130

34136

:207,

:253,

:232,

:035,

:169,

:096,

:254,

:253,

:208,

:166,

:177,

:064,

:046,

:255,

:157,

:208,

:132,

:132,

:255,

:173,

:021,

:000,

:064,

:140,

:029,

:029,

:078,

:040,

:080,

:142,

:200,

:240,

:201,

:032,

:076,

8019,

:002,

:055#

:173,

sl70,

5 009,

S002,

$055,

:173,

sl70,

:208,

:134,

sl74,

:236,

240,020

160,000

208,250

134,076

000,141

133,252

160,000

177,253

249,230

252,224

253,145

208,247

208,173

067,162

120,064

248,160

153,055

153,062

208,239

205,207

208,032

174,201

238,201

159,019

029,029

029,029

085,083

060,080

170,050

217,207

032,055

093,232

002,208

055,134

173,216

168,032

208,062

134,201

217,207

173,216

168,032

208,032

134,201

217,207

032,055

009,136

201,002

217,207

241,207

,144,018,162,079

,200,208,253,112

,162,011,032,195

,034,132,234,207

,021,208,169,020

,169,032,133,133

,133,251,133,255

,145,251,200,097

,252,230,254,247

,127,208,239,046

,251,200,192,054

,169,007,141,190

,254,067,141,249

1,039,169,032,090

,202,224,007,146

,006,185,216,145

,138,185,223,014

,138,136,192,203

,032,145,143,162

,056,042,141,226

,166,135,169,139

,207,157,080,233

,207,076,212,162

,017,017,017,051

,029,029,029,118

,018,066,079,200

,032,010,030,018

,110,130,040,166

1,090,140,160,146

,140,216,207,079

,134,201,003,093

,032,055,134,004

,085,202,202,124

,201,002,208,118

,207,024,105,037

,055,134,201,107

,232,232,032,016

,002,208,053,163

,024,105,009,251

,207,024,105,161

,055,134,201,127

,200,200,032,208

,002,208,023,163

,056,233,009,185

,134,201,002,146

,136,032,055,134

,240,001,096,238

,172,216,207,251

-208,012,152,120

U

u

D

u

u

LJ

U

U

48

n

n

n

n

n

Recreations and Applications 1

n

n

n

n

n

34142

34148

34154

34160

34166

34172

34178

34184

34190

34196

34202

34208

34214

34220

34226

34232

34238

34244

34250

34256

34262

34268

34274

34280

34286

34292

34298

34304

34310

34316

34322

34328

34334

34340

34346

34352

34358

34364

34370

34376

34382

34388

34394

34400

34406

34412

34418

34424

34430

:024,105,

:208,003,

:011,032,

:133,002,

:207,141,

:207,200,

:246,207,

:201,010,

:207,076,

:207,173,

:214,207,

:217,207,

:170,202,

:236,215,

:125,133,

.:174,254,

:016,192,

:150,240,

:020,168,

:253,207,

:030,240,

1017,224,

:056,233,

:233,010,

:172,253,

:192,030,

:240,017,

:152,056,

:024,105,

:132,172,

:207,192,

:190,240,

:003,032,

:000,064,

:254,000,

:157,000,

:134,152,

:096,133,

:251,138,

:152,072,

:202,224,

:251,024,

:144,242,

:134,136,

:165,251,

:251,165,

:252,076,

:007,168,

:009,230,

,010,205,240,207,117

,076,245,130,162,156

,035,134,169,003,234

,169,255,141,246,034

214,207,172,216,251

,238,246,207,173,115

201,019,240,044,063

144,006,206,214,149

149,133,238,214,135

217,207,024,109,061

141,215,207,173,031

056,237,214,207,018

,232,032,239,139,156

,207,208,247,076,081

,096,172,253,207,140

,207,192,040,240,011

,030,240,012,224,136

,008,152,056,233,011

032,230,132,172,188

174,254,207,192,215

,021,224,000,240,201

,010,240,013,152,108

,010,168,138,056,119

,170,032,230,132,015

,207,174,254,207,225

,240,021,224,150,077

,224,140,240,013,100

233,010,168,138,245

010,170,032,230,065

253,207,174,254,180

200,240,011,192,036

007,224,150,240,051

230,132,096,189,200

201,057,240,004,090

,064,096,169,048,161

,064,202,076,035,070

,072,138,072,169,023

,252,169,000,133,075

,072,074,074,170,077

,074,074,074,168,174

,255,240,014,165,154

,105,008,133,251,088

230,252,076,078,088

192,255,240,016,045

024,105,064,133,076

252,105,001,133,247

097,134,104,041,050

136,192,255,240,094

251,208,247,230,021

49

1 Recreations and Applications

34436

34442

34448

34454

34460

34466

34472

34478

34484

34490

34496

34502

34508

34514

34520

34526

34532

34538

34544

34550

34556

34562

34568

34574

34580

34586

34592

34598

34604

34610

34616

34622

34628

34634

34640

34646

34652

34658

34664

34670

34676

34682

34688

34694

34700

34706

34712

34718

34724

:252,076,

:003,170,

:207,202,

:078,247,

:076,145,

:207,049,

:173,247,

:015,078,

:207,078,

:207,076,

:104,168,

:169,000,

:255,141,

:207,232,

:061,173,

:219,207,

:141,245,

:032,252,

:056,237,

:207,173,

:207,013,

:144,009,

:219,207,

:218,207,

:208,134,

:218,207,

:056,237,

:076,048,

:056,237,

:207,141,

:135,173,

:207,173,

:207,173,

:253,207,

:135,173,

:240,207,

:244,207,

:242,207,

-.141,222,

:109,237,

:032,198,

:074,074,

:160,157,

:255,208,

:041,007,

:153,128,

:129,064,

:101116

:231,160,

122,134,104,

169,192,141,

224,255,240,

207,078,247,

134,200,173,

251,141,221,

207,041,001,

247,207,078,

221,207,078,

168,134,104,

173,221,207,

141,220,207,

219,207,174,

236,219,207,

220,207,024,

106,141,218,

207,141,244,

135,173,242,

222,207,141,

243,207,237,

221,207,240,

173,218,207,

076,208,134,

141,220,207,

173,220,207,

096,173,241,

254,207,144,

135,173,254,

241,207,141,

244,207,032,

242,207,141,

243,207,141,

240,207,056,

144,003,076,

253,207,056,

141,245,207,

032,252,135,

024,109,236,

207,173,243,

207,141,223,

134,173,218,

074,170,168,

127,064,202,

248,173,218,

170,189,158,

064,169,032,

153,130,064,

117,097,246,

173,027,212,

041,093

247,036

009,001

207,190

247,107

207,214

208,021

247,022

221,168

170,021

096,137

169,080

220,140

240,015

109,242

207,040

207,133

207,251

221,044

223,000

026,142

141,126

173,001

076,059

141,079

207,144

003,165

207,163

245,147

252,109

236,166

237,246

237,164

088,077

237,117

141,243

173,111

207,099

207,017

207,210

207,054

169,083

224,038

207,163

135,072

153,077

096,020

234,045

041,240

u

u

u

u

u

u

u

u

D

50

n

n

n

n

n

n

n

n

n

Recreations and Applications 1

34730 -.015,201,013,176,247,024,078

34736 :105,001,141,241,207,173,020

34742 :027,212,041,007,024,105,086

34748 :001,141,245,207,169,020,203

34754 :141,244,207,032,252,135,181

34760 :173,242,207,141,240,207,130

34766 :173,241,207,041,001,208,053

34772 :009,173,240,207,056,233,106

34778 :010,141,240,207,173,241,206

34784 :207,141,245,207,169,010,179

34790 :141,244,207,032,252,135,217

34796 :173,242,207,141,241,207,167

34802 :173,240,207,024,105,030,253

34808 :141,240,207,096,169,000,077

34814 :141,242,207,162,008,078,068

34820 :245,207,144,004,024,109,225

34826 :244,207,106,110,242,207,102

34832 :202,208,240,141,243,207,233

34838 :096,096,162,006,032,086,244

34844 :136,208,049,032,106,136,183

34850 :208,044,173,027,212,201,131

34856 :064,176,008,169,014,157,116

34862 :183,207,076,080,136,201,161

34868 :128,176,008,169,013,157,191

34874 :183,207,076,080,136,201,173

34880 :192,176,008,169,011,157,009

34886 :183,207,076,080,136,169,153

34892 :007,157,183,207,202,224,032

34898 :255,208,197,096,189,055,058

34904 .-138,024,125,062,138,141, 204

34910 :250,207,008,104,041,001,193

34916 :141,251,207,076,085,139,231

34922 :189,055,138,056,253,062,091

34928 :138,144,011,141,250,207,235

34934 :169,000,141,251,207,076,194

34940 :085,139,189,062,138,056,025

34946 :253,055,138,141,250,207,150

34952 :169,000,141,251,207,076,212

34958 :085,139,238,182,207,173,142

34964 :182,207,205,181,207,240,090

34970 :001,096,169,255,141,182,230

34976 :207,162,006,189,183,207,090

34982 :041,001,208,029,189,062,184

34988 :138,201,030,208,003,076,060

34994 :030,137,189,055,138,201,160

35000 :150,208,003,076,030,137,020

35006 :254,055,138,222,062,138,035

35012 .-076,030,137,189,183,207,250

35018 :041,002,208,023,189,062,215

51

1 Recreations and Applications

35024

35030

35036

35042

35048

35054

35060

35066

35072

35078

35084

35090

35096

35102

35108

35114

35120

35126

35132

35138

35144

35150

35156

35162

35168

35174

35180

35186

35192

35198

35204

35210

35216

35222

35228

35234

35240

35246

35252

35258

35264

35270

35276

35282

35288

35294

35300

35306

35312

:138,

:055,

:254,

:076,

:041,

:138,

:055,

:222,

:076,

:041,

:138,

:254,

:202,

:162,

:207,

:059,

:010,

:138,

:207,

:144,

:016,

:105,

:104,

:170,

:255,

:024,

:170,

:074,

*247,

:080,

:035,

:173,

:008,

:076,

:248,

:067,

:173,

:249,

:157,

:249,

:241,

:120,

:248,

:000,

:120,

:224,

:185,

:200,

201,200

138,201

062,138

030,137

004,208

201,030

138,201

055,138

030,137

008,208

201,200

138,201

055,138

224,255

006,169

189,055

105,014

170,104

074,170

073,255

003,013

208,189

041,072

157,003

078,247

208,194

105,014

104,157

170,173

207,141

137,206

169,010

248,207

169,021

164,137

207,162

202,224

141,002

096,162

040,208

067,202

162,036

216,202

162,039

064,157

064,157

255,208

069,138

192,011

,240,073,

,000,240,

1,222,055,

,189,183,

,023,189,

' 240,043,

,000,240,

,222,062,

,189,183,

,020,189,

,240,013,

,150,240,

,254,062,

,208,128,

,128,141,

,138,010,

,008,072,

,157,002,

,040,173,

,045,016,

,247,207,

,062,138,

,138,010,

,208,138,

,207,202,

,076,134,

,072,138,

002,208,

016,208,

016,208,

,246,207,

,141,246,

,201,021,

,141,248,

,169,020,

,006,157,

,255,208,

201,001,

006,169,

,169,020,

,224,255,

,169,003,

,224,255,

,169,032,

,040,064,

,080,064,

,239,160,

,032,210,

,208,245,

189,225

066,146

138,065

207,024

062,247

189,055

036,146

138,063

207,054

062,022

189,225

006,040

138,157

096,119

247,121

176,049

138,188

208,193

247,134

208,102

141,059

024,203

170,108

074,006

224,200

137,082

010,215

138,125

013,006

076,253

208,192

207,178

240,210

207,176

141,095

249,167

248,092

240,164

007,101

157,169

208,117

157,198

208,149

157,249

157,186

202,141

000,034

255,099

160,232

u

u

U

u

u

u

u

u

□

52

i !

n

n

n

Recreations and Applications 1

n

n

35318

35324

35330

35336

35342

35348

35354

35360

35366

35372

35378

35384

35390

35396

35402

35408

35414

35420

35426

35432

35438

35444

35450

35456

35462

35468

35474

35480

35486

35492

35498

35504

35510

35516

35522

35528

35534

35540

35546

35552

35558

35564

35570

35576

35582

35588

35594

35600

35606

:000,185,

:255,200,

:160,007,

:000,080,

:245,200,

:210,255,

:245,160,

:032,210,

:208,245,

:142,153,

:247,173,

:030,040,

:040,080,

:160,158,

:083,079,

:126,126,

:096,096,

;076,069,

:032,032,

1032,032,

:032,032,

:032,032,

:032,032,

:032,032,

:067,079,

:048,048,

:032,032,

:072,073,

:067,079,

:048,048,

:153,019,

:077,073,

:218,218,

:207,041,

:254,207,

:247,138,

:002,208,

:206,254,

:173,249,

:009,206,

:207,076,

:207,041,

:254,207,

:155,139,

:200,208,

:032,024

:032,036

:032,030

:050,139

088,138,032,210,131

192,043,208,245,115

185,080,138,153,213

136,192,255,208,111

185,131,138,032,177

200,192,040,208,101

000,185,170,138,156

255,200,192,016,169

160,000,185,080,148

000,069,200,208,048

030,208,096,010,046

060,080,110,130,250

170,050,090,140,120

019,017,017,017,200

078,065,082,058,007

126,126,096,096,008

154,019,017,017,229

086,069,076,058,014

032,032,032,032,034

032,032,032,032,040

032,032,032,032,046

032,032,032,032,052

032,032,032,032,058

032,005,019,083,075

082,069,058,032,009

048,048,048,048,172

032,032,032,032,082

071,072,032,083,043

082,069,058,032,033

048,048,048,048,196

017,083,084,065,079

078,065,058,032,047

218,218,173,249,196

001,208,009,238,124

206,253,207,076,117

173,249,207,041,231

009,238,253,207,099

207,076,247,138,060

207,041,004,208,076

254,207,206,253,079

247,138,173,249,040

008,208,006,238,176

238,253,207,032,153

162,255,160,000,095

253,232,208,250,069

136,032,144,136,252

137,032,217,130,082

139,208,165,032,110

208,160,032,181,024

/ \

53

1 Recreations and Applications

35612

35618

35624

35630

35636

35642

35648

35654

35660

35666

35672

35678

35684

35690

35696

35702

35708

35714

35720

35726

35732

35738

35744

35750

35756

35762

35768

35774

35780

35786

35792

35798

35804

35810

35816

35822

35828

35834

35840

35846

35852

35858

35864

35870

35876

35882

35888

35894

35900

:133,

:109,

:008,

:207,

:207,

:011,

:141,

:173,

:207,

: 141,

:056,

:173,

:251,

:207,

:173,

:141,

:233,

:102,

:002,

:239,

:248,

:096,

:029,

:173,

:002,

:173,

:141,

:024,

sl73,

S016,

:002,

sl72,

:201,

:032,

:172,

:096,

:169,

:133,

:170,

:168,

:165,

:251,

:007,

:016,

:133,

:133,

:041,

:240,

:230,

096,173,

253,207,

104,041,

076,085,

056,237,

141,250,

251,207,

253,207,

141,250,

251,207,

233,010,

251,207,

207,048,

013,251,

250,207,

250,207,

000,141,

139,096,

162,159,

139,200,

202,224,

173,254,

105,015,

016,208,

009,001,

253,207,

001,208,

105,015,

016,208,

208,076,

133,002,

253,207,

001,208,

035,134,

253,207,

072,152,

096,133,

251,138,

152,072,

202,224,

251,024,

144,242,

140,136,

165,251,

251,165,

252,076,

007,168,

009,230,

252,076,

254,207,

141,250,

001,141,

139,173,

253,207,

207,169,

076,085,

056,237,

207,169,

173,250,

141,250,

233,000,

028,173,

207,240,

056,233,

173,251,

251,207,

169,002,

160,031,

192,200,

150,208,

207,010,

141,000,

041,254,

141,016,

024,105,

076,207,

141,000,

009,001,

178,139,

174,254,

032,055,

005,162,

174,254,

032,239,

072,138,

252,169,

072,074,

074,074,

255,240,

105,008,

230,252,

192,255,

024,105,

252,105,

026,140,

136,192,

251,208,

051,140,

024,147

207,177

251,074

254,212

144,132

000,068

139,195

254,226

000,026

207,031

207,217

141,075

250,033

020,020

020,027

207,067

076,008

133,003

032,170

208,040

241,141

176,046

208,146

144,234

208,037

041,213

139,188

208,171

141,232

169,220

207,212

134,043

012,041

207,038

139,250

072,072

000,039

074,224

074,104

014,085

133,186

076,189

240,226

064,143

001,175

104,005

255,079

247,215

104,145

U

u

u

u

u

u

u

u

u

54

n

n

H

n

n

Recreations and Applications 1

n

35906

35912

35918

35924

35930

35936

35942

35948

35954

35960

35966

35972

35978

35984

35990

35996

36002

36008

36014

36020

36026

36032

36038

36044

36050

36056

36062

36068

36074

36080

36086

36092

36098

36104

36110

36116

36122

36128

36134

36140

36146

36152

36158

36164

36170

36176

36182

36188

36194

• ** * r j m* jv w j m^ ^r • j ^ %^ <^ j -^ ^r -^ ^ jm ^ >k f i^ *« \^

:104,017,251,145,251,104,212

:170,104,168,104,096,173,161

:025,208,141,025,208,041,000

:041,016,208,220,162,013,

:169,032,157,040,064,232,

:224,039,208,248,173,030,
• O0IQ <a*7£ OAT 1OQ I^O Gl'iCI

:000,200,208,253,232,208,163

:250,104,168,173,000,220,239

:041,016,240,010,200,192,029

55

1 Recreations and Applications

u

u

36200

36206

36212

36218

36224

36230

36236

36242

36248

36254

36260

36266

36272

36278

36284

36290

36296

36302

36308

36314

36320

36326

36332

36338

36344

36350

36356

36362

36368

36374

36380

36386

36392

36398

36404

36410

36416

36422

36428

36434

36440

36446

36452

36458

36464

36470

36476

36482

36488

:043,

:062,

:064,

:144,

:064,

:255,

:232,

:005,

:207,

:173,

:249,

:137,

:157,

:208,

:169,

:133,

:145#

:252,

:127,

:251,

:032,

:021,

:040,

:162,

:210,

:245,

:029,

:029,

:029,

:083,

:084#

:133,

:032,

:005,

:020,

:015,

:032,

:032,

:000,

:000,

:000,

:000,

:000,

:000,

:000,

:000,

:000,

:000,

208,211,

141,162,

221,031,

021,162,

157,031,

208,245,

224,006,

189,031,

202,224,

000,220,

032,073,

162,005,

031,064,

245,169,

032,133,

251,133,

251,200,

230,254,

208,239,

200,192,

145,143,

208,141,

141,200,

199,207,

000,189,

255,232,

096,005,

029,029,

029,029,

029,029,

083,032,

079,078,

160,143,

046,046,

019,019,

020,015,

032,016,

001,007,

046,046,

000,000,

000,000,

000,000,

000,048,

000,252,

000,048,

000,000,

000,000,

000,000,

000,000,

160,000,

000,189,

064,240,

005,189,

064,202,

076,145,

208,225,

064,157,

255,208,

041,016,

145,032,

189,192,

202,224,

096,133,

254,160,

253,177,

208,249,

166,252,

177,253,

064,208,

169,007,

201,207,

207,169,

076,212,

006,142,

224,032,

019,017,

029,029,

029,029,

080,082,

066,085,

135,129,

150,133,

032,016,

032,002,

014,032,

012,001,

001,009,

032,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,000,

076,034

007,159

018,242

007,138

224,102

141,180

162,173

192,016

245,213

240,080

182,109

207,038

255,085

252,005

000,168

253,114

230,203

224,048

145,081

247,100

141,093

169,153

012,237

140,193

032,011

208,135

029,159

029,184

029,190

069,084

084,205

141,168

146,137

018,236

021,150

020,179

025,165

014,134

000,232

000,082

000,088

000,094

048,196

252,098

048,208

000,118

000,124

000,130

000,136

D

U

u

□

D

u

56

u

n

n

n

n

Recreations and Applications 1

n

n

36494 :000,000,000,

36500 :000,000,000,

36506 :000,000,000,

36512 :000,000,000,

36518 -.140,000,000,

36524 :112,000,000,

36530 :216,000,001,

36536 :000,000,000,

36542 :000,000,000,

36548 :000,000,000,

36554 :000,000,000,

36560 :000,000,000,

36566 :000,000,000,

36572 :000,000,000,

36578 1000,000,000,

36584 :000,240,000,

36590 :000,240,000,

36596 :000,000,000,

36602 :000,000,000,

36608 :000,000,000,

36614 :000,000,000,

36620 :000,000,000,

36626 :000,000,000,

36632 :000,000,000,

36638 :255,023,224,

36644 2001,035,102,

36650 :051,075,108,

36656 :102,128,000,

36662 :252,255,255,

36668 :000,000,000,

36674 1000,000,000,

36680 :000,000,000,

36686 :000,000,165,

36692 :000,157,000,

36698 :255,208,248,

36704 :024,212,169,

36710 :212,169,218,

36716 :169,150,141,

36722 :139,141,000,

36728 :141,004,212,

36734 .-000,232,208,

36740 :250,169,016,

36746 :232,208,253,

36752 :096,160,000,

36758 :000,212,200,

36764 :246,169,143,

36770 :169,008,141,

36776 :243,141,006,

36782 :141,004,212,

000,000,

000,000,

000,000,

000,000,

216,000,

112,000,

140,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,096,

001,248,

000,096,

000,000,

000,000,

000,000,

000,000,

000,000,

000,000,

000,015,

049,016,

051,102,

103,199,

014,255,

248,000,

000,000,

000,000,

000,000,

162,007,

212,202,

169,141,

005,141,

141,006,

001,212,

212,169,

160,140,

253,200,

141,004,

200,208,

169,000,

192,008,

141,024,

005,212,

212,169,

162,255,

000,142

000,148

000,154

001,161

000,010

000,140

000,023

000,ISA

000,190

000,196

000,202

000,208

000,214

000,220

000,066

000,209

000,062

000,244

000,250

000,000

000,006

000,012

000,018

255,038

000,085

219,034

254,064

255,034

000,040

000,060

000,066

000,072

169,069

224,111

141,228

005,140

212,036

169,182

017,024

162,171

208,203

212,156

250,209

153,210

208,202

212,067

169,098

129,044

142,066

57

1 Recreations and Applications

u

u

36788

36794

36800

36806

36812

36818

36824

36830

36836

36842

36848

36854

36860

36866

36872

36878

36884

36890

36896

36902

36908

36914

36920

36926

36932

36938

36944

36950

36956

36962

36968

36974

36980

36986

36992

36998

37004

37010

37016

37022

37028

37034

37040

37046

37052

37058

37064

37070

37076

58

u

u

u

u

u

G

n

n

n

n

n

37082

37088

37094

37100

37106

37112

37118

37124

37130

37136

37142

37148

37154

37160

37166

37172

37178

37184

37190

37196

37202

37208

37214

37220

37226

37232

37238

37244

37250

37256

37262

37268

37274

37280

37286

37292

:029,032,

:032,032,

1157,157,

:208,201,

:032,045,

:089,032,

:032,194,

:079,078,

:029,029,

t032,032,

:032,013,

:029,029,

:158,211,

:032,040,

*063,032,

1013,029,

:029,158,

:047,200,

:032,159,

:220,009

:169,000,

:234,141,

sl41,020,

:141,024,

:017,208,

t221,169,

*169,000,

:019,144,

:002,169,

:169,008,

:216,133,

:251,169,

:208,251,

:224,220,

:128,169,

:096,000

032,032

017,157

157,157

203,197

032,005

197,082

.082,065

013,029

029,029

032,032

013,013

029,029

080,069

049,045

159,000

029,029

197,065

065,082

000,120

129,141

141,026

021,003

003,088

208,169

169,199

004,141

141,021

169,064

198,141

141,024

.252,160

006,145

230,252

208,243

255,141

255,013

Recreations and Applications 1

,032,032,151

,157,157,008

,032,211,077

,032,146,199

,032,194,070

,073,067,020

,078,068,005

,029,029,005

,159,018,047

,032,032,208

,013,013,119

,029,029,202

,069,068,177

,057,041,048

(,013,013,070

,029,029,210

,083,089,167

,068,063,077

1,173,013,055

,013,220,040

,208,169,027

,169,049,193

,169,021,024

,027,141,042

,141,000,072

,136,002,017

,208,032,177

,141,136,029

,000,221,093

,208,169,087

1,000,132,011

,251,200,146

,166,252,233

,032,183,246

,182,207,224

,013,013,050

59

LJ

1 Recreations and Applications ^

Martian Prisoner n
Alan Poole

r \
"Martian Prisoner" is a mini-adventure game L~J
for the Commodore 64. If you've never played

an adventure game before, this is a good in

troduction. Unlike most computer games, text

adventures have no graphics and do not require

fast reflexes—instead, they test the player's

patience and cunning.

Without warning, the Martians have suddenly started a dev

astating war against Earth. They have captured you and are

holding you prisoner in a cell on a Martian space cruiser headed

toward Earth. The cruiser also carries a secret weapon that can

neutralize all of Earth's defenses. Your task is to destroy the

Martian ship and escape in a lifecraft before the Martians can

complete their sinister mission.

Like Radio Dramas

"Martian Prisoner" is a mini-adventure game, using only a lit

tle more than 3K of memory. Adventure games require you to

solve puzzles and explore a simulated world inside the com

puter. The computer will describe what you see and what

happens, and you tell the computer what you want to do.

Instead of using screen graphics, adventure games rely on text

descriptions and your imagination. It's like the difference

between old-time radio dramas and television; despite the

visual impact of video, the mind can still imagine a scene I i

more exciting than a camera can picture.

In Martian Prisoner, you start off in the prison cell of the

Martian space cruiser. Besides the cell, the cruiser contains [_l
several other rooms. It's up to you to explore the rooms and

find a way to destroy the ship. In each room, the computer

will describe your surroundings and list the objects in the M

room. The computer then waits for you to type a command,

consisting of one or two words.

For example, you would type GO NORTH to move north. jj

60

u

n

n
Recreations and Applications 1

H
If there is a book in the room, you would type GET BOOK to

-— pick it up. Type INVENTORY at any time to see a list of the

1 I objects you are carrying. All commands and nouns can be
abbreviated to the first three letters. You can list your IN-

r^ VENTORY by typing INV, for instance.

1 i The commands you can use, with the abbreviations cap

italized, are:

North

East

South

West

GO

GET

DROp

INVentory

REAd

OPEn

WEAr

EAT

KIL1

HIT

Although Martian Prisoner is a short adventure game, you

must solve several puzzles to win. It's a good way to prepare

for the more elaborate adventure games available commer

cially for Commodore 64s.

If you haven't played a text-adventure game before, it

may be a good idea to draw a map of the cruiser as you

explore its rooms. Using the map, you can easily backtrack if

you run into a dead end or want to explore a side passage

you earlier passed by.

Martian Prisoner doesn't award points for accomplishing

tasks, as some other adventure games do. Because of its short

length, you simply win by destroying the cruiser and escaping,

or lose by getting your character killed. Of course, you can

always try again!

Typing In

Take a look at the program listing for Martian Prisoner. You'll

pi notice the characters :rem xxx on the far right of each line.

J ' These are not characters you will type in. They have to do
with "Automatic Proofreader," in Appendix J, and are in effect

r—| checksums. Be sure to read Appendix J before you begin to

' ' type in Martian Prisoner. The Automatic Proofreader program
will make mistake-proof entry a snap.

n

n

_ 61

1 Recreations and Applications

Martian Prisoner

For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

10 GOSUB5000 :rem 166

100 GOSUB1000:IFR=6ANDU=0THENR=1:GOTO100 :rem 232

110 GOSUB2000:PRINT :rem 155

120 ONVGOSUB3000,3000,3000,3000,3100,3200,3300,340

0,3500,3600,3700,3800,3900 :rem 42

125 IFV=14THEN3900 :rem 26

130 GOTO100 :rem 94

1000 PRINT:ONRGOSUB1100,1200,1300,1400,1500,1600,1

700,1800 :rem 87

1003 IFW1=299THEN1010 :rem 173

1005 IFI(4)=-lANDI(6)=-lANDWl=299THENPRINTNS$

:rem 185

1010 PRINT:PRINT"{CYN}{6 RIGHT}OBJECTS:{WHT}"
:rem 240

1020 FORL=1TO8:IFI(L)=RTHENPRINT"{6 RIGHT}";N$(L)

:rem 117

1030 NEXT:PRINT:RETURN :rem 228

1100 PRINT"{6 RIGHT}YOU ARE IN A PRISON CELL."

:rem 23

1110 IFRND(1)>.25THENRETURN :rem 154

1120 G=1:PRINT"{6 RIGHTjA GUARD HAS TURNED OFF THE

FORCE{8 SPACES}FIELD "; :rem 94

1125 PRINT"AND ENTERED THE CELL." :rem 163

1130 C%(1,1)=2:RETURN :rem 149

1200 PRINT"{6 RIGHT}YOU ARE IN A N/S HALL.":RETURN

irem 40

1300 PRINT"{6 RIGHT}YOU ARE IN THE ENGINE ROOM.":R

ETURN :rem 203

1400 PRINT"{6 RIGHT}YOU ARE IN A SMALL ROOM. A LAR

GE{8 SPACES}SIGN IS ON THE WALL." :rem 42

1410 IFI(4)=-1THENPRINTNS$:rem 63

1420 IFI(6)=-1THEN4500 :rem 185

1430 RETURN :rem 168

1500 PRINT"{6 RIGHT}YOU ARE IN THE SUPPLY ROOM.":R

ETURN :rem 4 , ",

1600 PRINT"{6 RIGHT}YOU ARE IN THE NORTH{2 SPACES} Lj
SIDE OF THE{7 SPACESjHALL." :rem 8

1610 IFU=1THENPRINT"{6 RIGHT}THE GUARDS DON'T NOTI

CE YOU." :rem 184 I |
1620 IFU=0THENPRINT"{6 RIGHTjTHE GUARDS TAKE YOU B L-'

ACK TO THE{9 RIGHT}CELL.":G=0 :rem 103

1630 RETURN :rem 170 j ~;

1700 PRINT"{6 RIGHT}YOU ARE IN A LARGE ROOM.":RETU LJ

RN :rem 228

1800 PRINT"{6 RIGHT}YOU ARE IN A STRANGE GARDEN WH

ERE{7 SPACES}FOOD IS "; :rem 52 M

62

u

Recreations and Applications 1

n

n

1805 PRINTMGROWN FOR THE CREW." :rem 83

1810 IFI(4)=-1THENPRINTNS$:W1=299 :rem 230

1820 RETURN :rem 171

2000 C$="":N=0:V=0:PRINT:INPUT"{6 RIGHT }COMMAND

{GRN}";C$:PRINT"{WHT}":IFC$=""THEN2000

:rem 144

2015 P=0:IFLEN(C$)<2THEN2050 :rem 73

2020 FORL=2TOLEN(C$)-1 :rem 254

2030 IFMID$(C$,L,1)=" "THENP=L :rem 104

2040 NEXT :rem 5

2050 IFP=0THENV$=C$:N$="" :rem 141

2060 IFP>0ANDP=LEN(C$)THENV$=C$:N$="" :rern 134

2070 IFP>0ANDP<LEN(C$)THENV$=LEFT$(C$,P-1):N$=RIGH

T$(C$,LEN(C$)-P) :ren 86

2080 FORL=1TO14:IFLEFT$(V$,3)=V$(L)THENV=L :rem 23

2100 NEXT:FORL=1TO8:IFLEFT$(N$,3)=A$(L)THENN=L

:rem 55

2120 NEXT:IFN>0ANDV>0THENRETURN :rem 47

2130 IFN=0ANDV>0ANDN$=IIMTHENRETURN : rem 124

2135 IFN=0ANDV=5THENRETURN :rem 191

2140 PRINT:PRINT"{6 RIGHT}I DON'T UNDERSTAND.":GOT

02000 trem 13

3000 N$=V$:GOTO3110 :rem 36

3100 N$=LEFT$(N$,1) :rem 226

3110 IFR=1ANDN$="E"ANDG=0THENPRINT"{6 RIGHT}THE FO

RCE FIELD STOPS YOU.":RETURN :rem 230

3120 IFR<>lORN$o"E"ORG=0THEN3130 :rem 179

3125 PRINT"{6 RIGHT}AS YOU LEAVE THE CELL THE FORC

E{9 SPACES}FIELD IS ACTIVATED, "; :rem 149

3127 PRINT" TRAPPING THE{7 SPACES}GUARD." :rem 133

3130 IFR=2ANDN$="E"ANDC%(2,1)=0ANDI(8)>-1THENPRINT

"{6 RIGHT}DOOR LOCKED." :rem 173

3135 IFR=2ANDN$="E"ANDC%(2,1)=0ANDI(8)>-1THENRETUR

N :rem 255

3140 IFR<>2ORN$o"E"ORC%(2,l)>0THEN3150 :rem 186

3145 PRINT"{6 RIGHT}YOU UNLOCK THE DOOR WITH THE K

EY.":C%(2,1)=5:N$(7)="OPEN DOOR" :rem 109

3150 IFN$="N"THEND=0 :rem 121

3160 IFN$="E"THEND=1 :rem 114

3165 IFN$="S"THEND=2 :rem 134

3170 IFN$="W"THEND=3 :rem 135

3175 IFC%(R,D)=0THENPRINTCN$:RETURN :rem 210

3180 PRINT"{6 RIGHT}OK":R=C%(R,D):RETURN :rem 67

3200 IFN=1ORN=2ORN=3ORN=7THENPRINT"{6 RIGHTjYOU CA

N'T LIFT ITI":RETURN :rem 47

3203 IFI(N)<>RTHENPRINT"{6 RIGHT}IT'S NOT HERE.":R

ETURN :rem 45

3205 IFN=5THEN3720 :rem 20

3210 PRINT"{6 RIGHT}0K":I(N)=-l:RETURN :rem 182

63

u

1 Recreations and Applications ^

Li
3300 PRINT"{6 RIGHT}OK":I(N)=R:RETURN :rem 170

3400 PRINT"{6 RIGHT}YOU ARE CARRYING:11 :rem 180

3410 FORL=1TO8:IFI(L)=-1THENPRINT"{6 RIGHT}";N$(L) | |

:rem 134 ^
3420 NEXT:RETURN :rem 34

3500 IFNo30RR<>4THENPRINTCN$:RETURN : rem 126 , -

3510 PRINT"{6 RIGHTjATOMIC FUEL NEARBY. DON'T BRIN [J
G{9 SPACES}ANY RADIO-ACTIVE" :rem 46

3520 PRINT"{6 RIGHT}MATERIALS INTO THIS ROOM.":RET

URN :rem 226

3600 IFNO70RRO20RI (8) >-lTHENPRINTCN$:RETURN

:rem 144

3610 N$="E":GOTO3145 :rem 66

3700 IFI(5)<>RTHENPRINTCN$:RETURN :rem 127

3720 PRINT"{6 RIGHT}YOU ARE NOW WEARING A UNIFORM.

":I(5)=-1:U=1:RETURN :rem 107

3800 IFN<>6THENPRINTRI$:RETURN :rem 237

3810 PRINT"{6 RIGHT}YOU QUICKLY BECOME SICK AND DI

E.M:GOTO4600 :rem 79

3900 PRINT"{6 RIGHT}THE GUARD SHOOTS YOU.":GOTO460

0 :rem 231

3910 PRINTCN?:RETURN :rem 41

4500 PRINT :rem 86

4505 PRINT"{6 RIGHT}THE RADIOACTIVE PLANT EMITS EN

OUGH{6 SPACES}NEUTRONS TO START A" :rem 16

4510 PRINT"{6 RIGHTjCHAIN REACTION. THE SHIP EXPLO

DES." :rem 214

4515 PRINT"{6 RIGHT}YOU ESCAPE IN A LIFE-CRAFT."

:rem 191

4520 PRINT:PRINT"{PUR}{6 RIGHT}YOU WIN1":GOTO4610

:rem 247

4600 PRINT:PRINT"{PUR} {6 RIGHT}YOU LOSEl" :rem 253

4610 PRINT:PRINT:PRINT"{6 RIGHT}{GRN}PLAY AGAIN?"

:rem 203

4620 GETK$:IFK$="Y"THENRUN :rem 81

4630 IFK$="N"THENEND :rem 160

4640 GOTO4620 trem 211

5000 PRINT"{HOME}{CLR}":POKE36879,8:PRINT"{4 DOWN} \">
{10 RIGHT}{GRN}{RVS}MARTIAN PRISONER{OFF}":PR LJ
INT :rem 146

5080 DIMV$(14),C%(8,3),I(8),N$(8),A$(8) :rem 146

5090 R=1:FORL=1TO14:READV$(L):NEXT :rem 87 I I
5100 FORL=1TO8:READC%(L,0),C%(L,1),C%(L,2),C%(L,3)

:NEXT :rem 31

5110 FORL=1TO8:READN$(L),A$(L),I(L):NEXT :rem 97 [,

5115 CN$="{6 SPACES}YOU CAN'T":RI$="{6 SPACESjDON1 LJ
T BE SILLYI" :rem 87

5120 NS$="{6 SPACESjGEIGER COUNTER IS CLICKING.":R
ETURN ,rem 9 |J

64

LJ

n
Recreations and Applications 1

n

H

6000 DATAN,E,S,W,GO,GET,DRO,INV,REA,OPE,WEA,EAT,KI

L,HIT xrem 217

6010 DATA0,0,0,0,6,0,3,0,2,4,0,0,0,0,0,3,0,0,0,2,7

,0,2,0,0,8,6,0,0,0,0,7 xrem 103

6020 DATAFORCE FIELD,FOR,1,GUARDS,GUA,6,SIGN,SIG,4

,GEIGER COUNTER,COU,5,UNIFORM irem 13

6030 DATA UNI,5,PLANT,PLA,8,LOCKED DOOR,DOO,2,MAGN

ETIC KEY,KEY,3 xrem 151

n

n

65

u

U
1 Recreations and Applications ^

LJ

U
Joseph J. Shaughnessy

Keeping track of your mailing list (or other kinds

of files) is simple when you use this program on

your Commodore 64. One alteration lets you use

tape instead of a disk drive, and you can even

print labels from your list.

"64 Mailing List" is a modified and expanded version of a

utility program called "Addresses" from the Toronto PET

Users Group. It was originally written in Dutch by Andy

Finkel. The program has been translated into English and a

printer option added. Using a Commodore printer, it can print

the entire list or individual mailing labels.

The program is for the Commodore 64 and 1540/1541

disk drive, but it can easily be modified to operate with the

cassette recorder by changing line 500 to:

500 PRINT"{CLR}":SAVER$:END

How to Use Mailing List

Once you've typed in and SAVEd the program, RUN it. You'll

see a display of eight functions. They are:

1. Add Name. For adding new names and other informa

tion to your mailing list. After pressing the 1 key, you'll see

another display. It will take you through a step-by-step proc

ess of entering information you want. Enter the person's

name, last name first. Don't use commas to separate last name i i

from first name. Next you enter the street address, city, state, '—'
zip code, and telephone number. If the person has a place of

business, you can enter that also, along with the work tele- i ,

phone number. If any information requested is unknown, '—'
enter 0 for that category.

2. Removal. You can remove all information under one | /

name using this function. Pressing the 2 key clears the screen '—'

and then asks for the item to be removed, or erased. Enter the

data item number and the name, and all information under f \
U

66

LJ

Recreations and Applications 1

that number will disappear from your mailing list.

3. Search. Use this to search through your entire list,

! i looking for a particular name, address, zip code, or phone

number. The screen clears after you press this key, and asks

(_) for the information you want the computer to search for. If it's

i i in the mailing list, it will appear on the screen. If it's not in

the list, the message "Field Not Found" displays.

4. Examine. You can look at any name and its

accompanying information with this function. You can't

change anything (see the next function), and when you're

ready to move back to the main menu, hitting any key will re

turn you there. This function is best used to check that

information is entered correctly.

5. Change. Perhaps the function you'll use most often,

this function allows you to update any name and its informa

tion, simply by specifying the item number. (You can locate

the item number of the information you would like to change

by first using the search function. Once the item is found,

you'll see its item number at the top of the screen.) After

you've specified the item number, the information will appear

on the screen, in the order you entered the data. All you have

to do is move down to the line you want to change by hitting

the RETURN key the correct number of times. Make sure you

use the RETURN key to move the cursor down, not the cursor

control keys. If you use the latter, you may accidentally insert

unwanted characters into the data. After making your changes,

use the RETURN key to cursor down through the rest of the

data. Hitting the RETURN key when the cursor is on the last

line of data returns you to the main menu.

6. Save Update. When you're finished adding new data

items or changing existing ones, simply press the 6 key. Make

! sure that you have a tape in the Datassette or a disk in the

I \ drive before you use this function, for the program will im

mediately begin to save out to tape of disk. Your new

information is now included in the program.

jj 7. Print. If you have a printer connected to your 64, you
can use this function to print mailing labels from your list.

You'll see the screen clear after you press the 7 key, and you'll

I 1 be offered five choices, ranging from printing the entire list to
printing individual mailing labels. You can return to the main

menu by pressing the 5 key from this display.

67

1 Recreations and Applications

8. End. Pressing the 8 key ends the program, showing the

READY message on the screen. Make sure you SAVE any new

information before you use this function. lJ
Each address field is set up to receive eight items of

information, as shown in lines 120 and 130. These items can

be changed to anything you want (for instance, to set up a fil- j_|
ing system instead of a mailing list), but you are limited to

eight items because of the size of the keyboard buffer (line

230). Also, since the DATA statements are printed on the

screen as part of the procedure for adding them to the pro

gram, you must be careful not to make your items of informa

tion so wordy that printing eight DATA statements would

cause the first few lines to scroll off the screen and thereby be

lost. Also, make sure that the statement DATA"END" follows

all the name and information entries.

Search, Space, and Print

At one point, I had a version of this program that used upper-

and lowercase letters, but I found this too inconvenient when

using the "search" function. I often forgot to use appropriate

capital letters either when entering the original information or

when inputting the search value. ,

To aid in searching, names are entered and stored last

name first, but they are sent to the printer first name first. Do

not use commas when entering your mailing list items.

This program will easily fit into the 64. For instance, I

have 65 names stored, and it takes about 12K of memory. If

you need space for more names just add more DATA state

ments to the end of the program.

The program prints mailing labels in a single column. Fur

ther work could be done to print the labels two or three across

the width of the paper, and the formatting could be changed

to match the layout of adhesive labels. > I

I addressed my Christmas cards with this program (tape Lm^
version) and found it a big timesaver, even though I had to

use scissors and tape to put the labels on the envelopes.) (

A disk drive or printer will certainly enhance the pro-

gram's usefulness, but neither is essential. The program can

probably be modified to run on other computers, depending j }
on the size of the keyboard buffer. ^

u

68

u

Recreations and Applications 1

64 Mailing List
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

H 100 C=53280:REM 64 MAILING LIST PROGRAM-DISK VERSI
ON :rem 110

110 POKEC,5:POKEC+1,5:READR$,R:PORI=1TOR:READO$(I)

P! :NEXT:DATA1164{2 SPACES}MAILING{2 SPACES}LIST

1 :rem 222
120 DATA8,"NAME(LAST NAME FIRST)","STREET ADDRESS"

,"CITY","STATE","ZIPCODE" :rem 9

130 DATA"HOME PHONE NO.","COMPANY NAME","WORK PHON

E NO." :rem 0

140 PRINT"{CLR}{BLK}{9 RIGHT}gAJ *****************

♦jMcSiJ":PRINT" 19 SPACESjB "R$" -* :rem 144

150 PRINT"{9 RIGHT}gZ3 *******************gXj

:rem 244

160 PRINT"{DOWN} 1. ADD NAME":PRINT"{DOWN} 2. REMO

VAL{4 SPACES}" :rem 84
165 PRINT"{DOWN} 3. SEARCH":PRINT"{DOWN} 4. EXAMIN

E :rem 248

170 PRINT"{DOWN}{SHIFT-SPACE}5. CHANGE":PRINT"

{DOWN} 6. SAVE UPDATE" :rem 149

175 PRINT"{DOWN} 7. PRINT OPTION":PRINT"{DOWN} 8.

{SPACE}END :rem 129

180 RESTORE:PRINT"{2 DOWNjWHICH DO YOU WANT?"

:rem 102

190 GETA$:IFA$=""THEN190 :rem 87

200 IFA$<"1"ORA$>"8"THEN190 :rem 192

210 READB$:IFB$o"i-i"THEN210 :rem 160

220 A=VAL(A$):ONAGOTO240,290,320,420,490,500,520,5

10 :rem 235

230 POKE198,10:FORI=0TO9:POKE631+I,13:NEXT:END

:rem 55

240 READA$:IFA$o"i+i"THEN240 :rem 110

250 READA:PRINT"{CLR}INPUT 0 FOR UNKNOWNS{DOWN}"
_ :rem 205

|j 260 PRINT"ITEM : "A"{DOWN}":FORI=1TOR:PRINTO$(I):I
NPUTW$(I):PRINT:IFW$(1)=""THEN140 :rem 186

270 NEXT:W$(0)="XX"+CHR$(34)+","+STR$(A):Z=A*10+91

fl 0:K=0:PRINT"{CLR}{2 DOWN}" :rem 172
1 280 FORI=ZTOZ+R:PRINTI;"DATA"CHR$(34)W$(K):K=K+1:N

EXT:PRINT"RUN{HOME}":GOTO230 :rem 81

_ 290 B$="":PRINT"{CLR}WHICH ITEM TO REMOVE ":INPUTB

It $:IFVAL(B$)=0THEN140 :rem 247

300 PRINT"{CLR}{2 DOWN}":Z=VAL(B$)*10+910:PRINTZ"D

ATA"CHR$(34)"i+i"CHR$(34)"#"VAL(B$) :rem 185

310 FORI=Z+1TOZ+R:PRINTI:NEXT:PRINT"RUN{HOME}":GOT

0230 :rem 213

69

n

u

1 Recreations and Applications

U
320 INPUTM{CLR}SEARCH FOR " ;B$:IPB$=IIMTHEN140

:rem 174

330 H=0:READA$: rem 6 M
335 IFA$="END"THENPRINT"{CLR}{RIGHT}{DOWNjFIELD NO

T FOUND11 :FORT=0TO 2000:NEXT:GOTO140 :rem 65

340 IFA$="i+!"THENREADA:GOTO330 :rem 71 \ i

350 READA:FORI=1TOR:READA$(I):IFLEFT$(A$(I),LEN(B$ U
))=B$THENH=1 :rem 201

360 NEXT:IFH=0THEN330 :rem 27

370 PRINT"{CLR}ITEM :"A"{2 DOWN}M:FORI=1TOR:PRINT"

{2 SPACES}"A$(I):NEXT:IFW=1THENRETURN :rem 251

380 PRINT"{2 DOWNjHIT ANY KEY TO PROCEED" :rem 233

390 GETA$:IFA$=""THEN390 :rem 91

400 IFQ=1THENRETURN :rem 241

410 GOTO140 :rem 99

420 A$="":INPUT"{CLR}WHICH ITEM";A$:A=VAL(A$):IFA$

=""ORA<1THEN140 :rem 114

430 READA$:IFA$="END"THEN140 :rem 98

440 IFA$o"XX"THEN430 :rem 192

450 READA$:IFAOVAL(A$)THEN430 :rem 253

460 READA$(l):IFA$(l)="i+i"THEN140 :rem 56

470 FORI=2TOR:READA$(I):NEXT:Q=1:GOSUB370:Q=0:IFW=

1THENRETURN :rem 223

480 GOTO140 :rem 106

490 W=1:GOSUB420:W=0:PRINT"{HOME}{2 DOWN}":FORI=1T

OR:INPUTW$(I):GOTO270 :rem 168

500 PRINT"{CLR}":SAVE"@0:"+R$,8:END :rem 102

510 END :rem 109

520 PRINT"{CLR}{2 DOWN}{RVS}{3 SPACES}PRINTER OPTI

ONS{3 SPACES}" :rem 127

530 PRINT"{DOWN}{RVS}1{OFF} ENTIRE LIST" :rem 82

540 PRINT"{DOWN}{RVS}2{OFF} MAILING LABELS" :rem 5

550 PRINT"{DOWN}{RVS}3{OFF} INDIVIDUAL DATA"

:rem 86

560 PRINT"{DOWN}{RVS}4{OFF} SINGLE MAILING LABEL"

:rem 120

570 PRINT"{DOWN}{RVS}5{OFF} RETURN TO PROGRAM"

:rem 242 I j

580 GETZ$:IFZ$=""THEN580 :rem 143 ^
590 Z=VAL(Z$) :rem 231

600 IFZ<1ORZ>5THEN520 :rem 32 , ,

610 OPEN1,4:RESTORE :rem 184 U
620 ONZGOTO640,740,810,810 :rem 179

630 CLOSE1:GOTO140 :rem 72

640 READB$:IFB$o"i-3"THEN640 :rem 174 I j

650 READB$:IFB$="g+i"THENCLOSEl:GOTO140 :rem 81 LJ
660 IFB$="XX"THENREADA:PRINT#1#CHR$(10)CHR$(10)"IT

EM";A:GOSUB690:GOTO650 :rem 81 , (

670 PRINT#1#B$ *rem 16 LJ

u

_

Recreations and Applications 1

680 GOTO650 trem 114

690 READB$tFORI=lTO50 trem 1

700 IFMID$(B$,I,1)=M MTHENX=ItI=50 irem 96

710 NEXTI trem 32
720 N2$=LEFT$(B$,X)tNl$=RIGHT$(B$,LEN(B$)-X)tPRINT

#1 :rem 217

730 PRINT*1,N1$;W ";N2$tRETURN :rem 194

740 READB$tIFB$oHi-3"THEN740 :rem 176

750 READB$tIFB$=Mi+3MTHENCLOSEltGOTO140 trem 82

760 IFB$<>IIXX"THEN750 rrem 203
770 READA:PRINT#1,CHR$(10)tGOSUB690tGOSUB780tGOTO7

50 :rem 182

780 FORI=lTO4tREADA$(I)tNEXT trem 226

790 PRINT#l,A$(l)tPRINT#l,A$(2);H, ";A$(3)j"

{3 SPACES}W;A$(4) irem 54

800 RETURN trem 120

810 INPUT11 {CLR}{DOWN}WHICH ITEM";QtRESTORE:rem 157

820 READB$xIPB$olli-3llTHEN820 trem 174

830 READ B§ *rem 29

840 IPB$=wi+3llTHENPRINTllNO SUCH ITEM ON FILEMiPO

RX=0TO1500:NEXTX:CLOSE1:GOTO 140 trem 125

850 IPB$=HXXMTHENREADA:IPA=QTHEN870 jrem 181

860 GOTO830 *rem 114

870 PRINT#1#CHR$(10)CHR$(10)iiITEMii;AjGOSUB690

trem 90

880 IFZ=4THEN900 srem 194

890 PORX=1TO R-l:READB$:PRINT#1#B$:NEXT*CLOSEItGOT

0520 :rem 110

900 GOSUB780:CLOSE1:GOTO520 :rem 163

910 DATA-i-l" trem 212

920 DATAMXXW# 1 trem 6

921 DATAWSMYTHE RANDY trem 48

922 DATA"5000 STATE STREET trem 246

923 DATAMSOMECITY trem 71

924 DATAnSOMESTATE trem 144

925 DATAN00000 trem 204

926 DATA-111-555-5555 trem 61

927 DATA"WIDGETS INC. trem 253

928 DATA-111-555-5551 trem 59

930 DATA"i+3H, 2 trem 254

940 DATAMi+3M#3 trem 0

950 DATAMi+3H#4 trem 2

960 DATAMi+3M,5 trem 4

970 DATA"i+3M,6 trem 6

980 DATAwg+3Hf7 trem 8

990 DATAMg+i%8 trem 10

1000 DATAN!+3N,9 trem 42

1010 DATAMi+3M,10 trem 83
1020 DATAWENDW trem 248

71

Recreations and Applications

64 Spreadsheet
Michael Tinglof

Ever wanted to calculate your return on various

investments, each with several interest possibil

ities? Or tried to figure the best way to organize

your tax deductions, or even your small business

operation? If so, you'll find this spreadsheet pro

gram invaluable. And it's not expensive like

some commercial software. Tape or disk can be

used.

Spreadsheet analysis is one of the most common and useful

microcomputer applications. With this powerful tool, you

can easily evaluate your options and ask what if? questions.

VisiCalc is one of the most widely used and well known

spreadsheet programs. Many people have bought a computer

just to use this kind of program.

If your budget doesn't enable you to purchase a com

prehensive package like VisiCalc, but you'd like to do simple

financial models, then you'll find this spreadsheet program

will fit your needs. It's useful for small spreadsheet problems,

such as for a small business or the home.

Spreadsheet Analysis

What is spreadsheet analysis? Basically, it's a program that

enables you to set up a financial model in which you can

simulate your options. This usually involves setting up a table

of numbers with defined interrelationships. Once set up, you I j

can experiment with what if? questions by altering the given

values. Based on the defined relationships, the program auto

matically recalculates all the values in the table. |_j
For example, consider this model of four different

investments.

(Note that the yields of the respective options are simply |_J
approximations, and the total of the Yield column is

meaningless.)

U

u

Recreations and Applications 1

H

n

n

n

Spreadsheet Model

Passbook

Trs. Bill

U.S. Bond

All Saver

Total

Principal Ytel

$10>000 ,06

$8,000 .09

$ii,ooo ;ii

$5,000 .12

$34,000, ,a8r

* <■',' *■ 'Wlv/vwv * *" " 9Q^y / , j'Vci't-vW

n

In applying this model to the spreadsheet program, four

columns are defined (Principal, Yield, Net, and Earning), and

five rows (Passbook, Treasury Bills, U.S. Bonds, All Saver

Certificate, and Total). Several mathematical relationships are

defined as well: the Net column is defined as the product of

the Yield and the Principal, added to the Principal; the Earn

ings column is defined as the product of the Yield and Prin

cipal; and the Total row is defined as the sum of the numbers

in each column.

Once these definitions are set up, you can experiment by

simply changing the given values. The spreadsheet program

will then automatically recalculate the other values. For in

stance, if you were to change the Principal in this example,

the program would then recalculate the Earnings, the Net, and

the Totals.

Operating 64 Spreadsheet

Using the spreadsheet program is not difficult—in most cases

the program prompts you for the data it needs. The only com

plicated part is setting up the model at the start. The best way

to learn is by doing, so we'll demonstrate by setting up a

working model of the example shown in the figure.

The first step is to type in LOAD and RUN the

spreadsheet program. When run, the screen clears and a list of

commands appears at the bottom of the screen. This is the

normal operating mode. If a model were set up, it would be

displayed above the command list, and you could experiment

with it by changing values. However, if you're just starting

out, or beginning a new model, you need to program a model.

73

1 Recreations and Applications

Programming the Model. To do this you must enter the

Program mode, which is the first option in the command list.

Simply hit the P key. The screen again clears, a list of num

bers appears on the left side of the screen, and a new list of

commands appears in the bottom three rows. The list of num

bers on the side are line numbers; on these lines the definition

for the model will be stored.

To do this, use the Insert command (the first option now

on the screen) by typing 7. The computer will then ask which

line the inserted text should be placed before. Type 1—this line

now contains an END statement which should be the last

statement of the model definition. Next, the computer asks

how many lines are to be inserted; in this case, enter 22.

Row and Column. Beginning with line 1 and continuing

to line 12, the computer will prompt you for each line. In

response, type the following lines, which will be explained as

we go along.

1 NAME RA=PASSBK

(The line numbers don't have to be typed; the program

supplies them.) This line gives the first row of our example the

name PASSBK, representing passbook savings, which will be

displayed on the left side of the screen in the normal operat

ing mode. In the designation RA, the R indicates that we are

naming a row, and the A indicates the row A, or the first row.

Only six characters or less are allowed for a row name. There

are 20 rows, each designated by a single letter. Now enter:

2 NAME RB=TRSBIL

3 NAME RC=USBOND

4 NAME RD=ALSAV

5 NAME RE=TOTAL

These are the same as line 1, except they name rows B, C, , .

D, and E. To name the columns, you could begin by typing: LJ

6 NAME C1=PRNCPL,6

This names the first column, column 1, PRNCPL. In this [_J
case, the C indicates that it's a column, and the 1 indicates col

umn 1. In addition to their names, columns must also be given

a width—in this example, a width of 6. If no width is given, | j
the program defaults to five characters. Every element in the

column, including the column name itself, must have a length

equal to or less than the given width. |_J

u

Recreations and Applications 1

7 NAME C2=YIELD,5

8 NAME C3=NET,6

9 NAME C4=EARN,6

These are similar to line 6 except that they name columns

2, 3, and 4, respectively.

DEFINE. The next line might be hard to understand at

first. It's the first mathematical expression used, and its pur

pose is to set the NET column equal to the product of the

PRINCIPAL column and the YIELD column added to the

PRINCIPAL column. To understand the command, you must

understand the designations used. Enter line 10 as follows:

10 DEFINE @3=@1*@2+@1

First of all, every element in the matrix of rows and col

umns has its own designation, which is simply the element's

row letter followed by its column number. That is, element C2

is row C, column 2.

The DEFINE command then sets an element equal to an

expression containing other elements, and possibly constants

such as 2 or .56. Any of the four basic operations of addition,

subtraction, multiplication, and division can be used. How

ever, no hierarchy of operations is followed.

In a definition command, it might be useful to consider

more than one element at a time. You can use the @ symbol

to do this. It can be used to replace either the column or row

designation. For example, in the DEFINE command above,

@3 indicates all rows in column 3. Note that in the use of @,

each element will still be considered separately. The whole

statement can thus be translated to each row in column three

equals each row in column one times each row in column two,

plus each row in column one. Make sure the @ symbol precedes

_ the column number and follows the row letter.

I I When this command is processed, the element to which
the statement is being assigned is considered first. If an @ sign

nis present, a loop is executed so that each row or column,

depending on the format, is considered one at a time. For

example, when executing @3, the program takes each column

— in turn as the current column, evaluates the expression, and

! I assigns the value to the current column. On the other hand,
when an @ designation appears in the expression, it is

—I replaced by the current value. For example, if @1 appeared in

' I the expression, it would be replaced by the current column
number. Although this designation might appear complicated

n

1 Recreations and Applications

at first, it is really quite simple, yet allows complicated

mathematical relationships to be constructed easily. If you

don't understand it yet, don't worry. For now, you can make it

easier by using only absolute designations, such as A2.

11 DEFINE @4=@1*@2

12 DEFINE E@=A@+B@+C@+D@

These follow the same rules as the first definition.

If you make a mistake, don't worry. During line entry, the

delete key is functional. If you made a mistake on a previous

line, use the Change command later to replace it; if you forgot

a line, use Insert to put it in the program.

Note that the order in which elements are DEFINEd is

important because one definition statement can involve values

computed by other definitions.

To experiment with the model once it is set up, return to

the normal operating mode by using the E key, for Exit option.

The screen clears, the columns and rows named are displayed,

and zeros are printed. The next step is, of course, to replace

the zeros with applicable numbers.

Entering Data. The Change command allows you to

change any value on the screen. To use it, simply type C. The

program will then ask you for the row and column—use the

same designations used in the program mode, such as A3, and

so on. It will then ask you for the value to be entered into the

matrix.

Next, the number will be displayed in the appropriate row

and column. However, the other values are not recalculated.

Because this spreadsheet program is written in BASIC, it is not

very fast—so you can change/input as many values as nec

essary. When you are finished entering numbers and wish to

see the results, use the Redraw screen command by hitting the

R key. The spreadsheet program will then recompute all the |_

values, as expressed in the DEFINE commands.

The first step is to enter the yield values in column 2. Use

the Change command to enter .06 for row A, column 2; .09 [J

for row B, column 2; and so on until all yield values seen in

the figure have been entered. Then enter trial investment val

ues into the Principal column (column 1) for each row. [^J
Finally, type R to have the computer calculate your earnings.

You've just created your first financial model. Experiment

with it by changing values with the C command and redraw- |_J

u

Recreations and Applications 1

ing the screen. Design other models, and implement them

using the spreadsheet program.

Saving. There is one final step before you finish using the

spreadsheet—saving it. If you wish to use it again, use the

Save worksheet command to store it. At a later date you can

use the Load worksheet command to restore it.

When you want to save a worksheet, just enter a

filename, which can be up to ten characters long. You don't

have to specify the disk drive using ,8; just the filename. If

you want to load a worksheet, simply type L, and then the

filename when the prompt appears.

If you want to save and load worksheets using tape in

stead of disk, you will have to make a few changes in the 64

Spreadsheet program. Modify the following lines:

510 0PEN1,1,1,1$:rem 76

610 OPEN1,1,0,I$:IFST<>0THEN670 :rem 50

1610 OPEN1,1,1,I$:FORX=1TO100 :rem 153

1710 OPEN1,1,0,I$:IFST<>0THEN1750 :rem 148

Reference Guide

The following is a list of the instructions and a brief descrip

tion for each.

Change Value. Allows you to change the value of any

element of the screen. Uses the standard row/column designa

tion to indicate the desired element.

Redraw Screen. Clears the screen and recalculates every

value based on the DEFINE statements.

Save Worksheet. Saves the worksheet, including all en

tered data and the instructions set in program mode.

Load Worksheet. Loads a worksheet saved by the above

command.

rn Exit. Exits the program to BASIC.

I I Program Mode. Enters the program mode for which the
following commands are used:

f| • Insert—inserts a line(s) into the instruction list starting

at the line you select.

• List—lists a specified part of the program. Accepts a

H line number, clears the screen, and lists from the given line to

the given line plus 20.

• Change—accepts a line number and allows you to

fl reenter that program line.

H

1 Recreations and Applications

• Save—saves the instruction lines, but not the numbers

in the worksheet.

• Read—reads an instruction set, saved as above, into

memory.

• Exit—returns to the normal operating mode.

Instructions in Program Lines

• NAME—names a column or row, sets column length,

ex: NAME C3=TEST,4

• DEFINE—sets an element equal to an expression, ex:

DEFINE A3=C3+B1

Plus and Minus

This spreadsheet program will probably be most useful for

home and small business applications. Although limited to a

table with 20 rows and, depending on column width, 5 or 6

columns, it's a powerful tool. It allows experimentation with

financial models, and replaces error-prone and time-consuming

paper and pencil exercises. This type of experimentation and

recalculation enables you to explore various options and select

the best one.

Program Notes

This command will clear the worksheet:

• DEFINE @@=0

• Remember that constants can be used in expressions, as is

the zero in the above statement.

• The Load command in the program mode can be used to

load a program saved in the normal mode without loading

the numeric data.

• If the program exits to BASIC type 'GOTO 100' to return

without losing your data.

64 Spreadsheet
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

lid REM COMMODRE 64 SPREADSHEET jrem 61 (_j
20 REM :rem 70

30 DIMPC%(110),PC$(110),WK(20,9),RN$(20),CN$(9),CW

(9),CP(9) :rem 43 i I

40 X=0:SL=0:LL=0:L=0:CC=0:CR=0 :rem 10 I—1
45 R$(1) = IIDEFINEM:R$(2) ="NAME":R$(3) = IIENDII:PC%(1) =

3 :rem 210

50 S$=M{39 SPACES}11 :rem 93 [J

78

U

n

n

n

n

H

Recreations and Applications 1

60 C$="{HOME}{23 DOWN}" :rem 232

65 POKE53280,15:POKE53281,l:PRINT"g53M :rem 154
70 PRINT"{CLR}"LEFT$(C$,8)TAB(10)"SPREADSHEET ANAL

YSIS" :rem 159

80 REM :rem 76

90 PRINTLEFT$(C$,24)TAB(8)"HIT RETURN TO CONTINUE

{SPACE}";:GOSUB10000 :rem 230

100 GOSUB5000 :rem 214

105 GOSUB6000 :rem 220

110 PRINT"{RVS}P{OFF}ROGRAM MODE {RVS}C{OFF}HANGE

{SPACE}VALUE {RVS}R{OFF}EDRAW SCREEN" :rem 52

120 PRINT"{RVS}S{OFF}AVE WORKSHEET {RVS}L{OFF}OAD

{SPACE}WORKSHEET {RVS}E{OFF}XIT" :rem 81

130 GOSUB10000 :rem 5

160 IFX$="R"THEN100 :rem 53

170 IFX$="E"THENPRINT"{CLR}":END:GOTO100 :rem 17

180 IFX$="S"THEN500 :rem 60

190 IFX$="L"THEN600 :rem 55

200 IFX$="P"THEN1000 :rem 94

210 IFX$="C"THEN400 :rem 37

220 GOTO105 :rem 99

400 GOSUB6000:PRINT"CHANGE WHICH ROW:";:GOSUB10000

:PRINT :rem 221

410 CR=ASC(X$)-64:IFCR<1ORCR>20THEN105 :rem 8

415 PRINT"CHANGE WHICH COLUMN:";:GOSUB10000:PRINT

:rem 57

420 CC=VAL(X$):IFCC=0THEN105 :rem 138

430 PRINT"INPUT VALUE:";:I=20:GOSUB9000:WK(CR,CC)=

VAL(I$) :rem 225

440 GOSUB5700:GOTO105 :rem 237

500 GOSUB6000:PRINT"SAVE WORKSHEET AS:";:I=10:GOSU

B9000:IFI$=""THEN105 :rem 250

510 OPEN1,8,2,I$+",S,W" :rem 197

515 FORX=1TO100:PRINT#1,PC%(X)CHR$(13)CHR$(34)PC$(

X)CHR$(13); :rem 228

520 IFPC%(X)o3THENNEXT :rem 162

530 FORCR=1TO20:FORCC=1TO9:PRINT#1,WK(CR,CC)CHR$(1

3);:NEXT:NEXT :rem 220

540 PRINT#1,CHR$(13);:CLOSE1:GOTO100 :rem 124

600 GOSUB6000:PRINT"LOAD WORKSHEET:";:I=10:GOSUB90

00:IFI$=""THEN105 :rem 88

610 OPEN1,8,2,I$+",S,R":IFSTO0THEN670 :rem 167

620 FORX=1TO100:INPUT#1,X$,PC$(X):T=ST:PC%(X)=VAL(

X$):IFT<>0THEN670 :rem 88

630 IFPC%(X)<>3THENNEXT :rem 164

640 FORCR=1TO20:FORCC=1TO9:INPUT*1,X$:T=ST:WK(CR,C

C)=VAL(X$):IFST<>0THEN670 :rem 249

650 NEXT:NEXT:CLOSE1:RC=1:GOTO100 :rem 117

670 PRINT"TAPE ERROR.":PRINT"HIT ANY KEY TO CONTIN

UE ";:GOSUB10000 :rem 255

79

U

1 Recreations and Applications *—'

D
680 CLOSE1:RC=1:GOTO 100 :rem 134

1000 FL=1 :rem 193

1010 PRINT "{HOME}11; : FORX=FLTOFL+20: PRINTS$: PRINT" ["i

{UP}"X;R$(PC%(X))" "PC$(X):NEXT :rem 157 I—I
1020 GOSUB6000 :rem 9

1030 print"{rvs}i{offInsert {rvs}l{off}ist {rvs}d

{OFF}ELETE {RVS}C{OFF}HANGE {RVS}S{©FF}AVE j_j
{RVS}R{OFF}EAD"

1035 PRINT"{RVS}E{OFF}XIT"

1040 GOSUB10000

1050 IFX$="E"THENRC=1:GOTO100

1060 IFX$="I"THEN1200

1070 IFX$="L"THEN1300

1080 IFX$="D"THEN1400

1090 IFX$="C"THEN1500

1100 IFX$="S"THEN1600

1110 IFX$="R"THEN1700

1120 GOTO1020

1200 GOSUB6000:PRINT"INSERT BEFORE LINE:

90:SL=VAL(I$)

1210 IFSL=0THEN1020

1220 PRINT"NUMBER OF LINES:"?:GOSUB8990:N=VAL(I$):

N1=100-N:IFN=0THEN1020 :rem 86

1230 FORX=N1TOSLSTEP-1:PC%(X+N)=PC%(X):PC$(X+N)=PC

$(Xf:NEXT :rem 120

1235 N=N-1:FORL=SLTOSL+N:GOSUB8000:NEXT :rem 1

1240 GOTO1010 :rem 194

1300 GOSUB6000:PRINT"START AT WHICH LINE:";:GOSUB8

990 :rem 220

132Q. IFVAL(I$)=0ORVAL(I$)>80THEN1020 :rem 61

1330 FL=VAL(I$):GOTO1010 :rem 108

1400 GOSUB6000:PRINT"DELETE FROM LINE:";:GOSUB8990

:SL=VAL(I$):IFSL=0THEN1020 :rem 172

1410 PRINT"TO LINE:";:GOSUB8990:LL=VAL(I$):IFLL=0T

HEN1020 :rem 219

1420 N=LL-SL+1:FORX=SLTO100-N:PC%(X)=PC%(X+N):PC$(

X)=PC$(X+N):NEXT :rem 241

1430 GOTO1010 :rem 195 [H

1500 GOSUB6000:PRINT"CHANGE LINE NUMBER:";:GOSUB89 U
90:L=VAL(I$) :rem 27

1510 GOSUB8000:GOTO1010 :rem 68

1600 GOSUB6000:PRINT"SAVE PROGRAM AS:";:I=10:GOSUB II
9000:IFI$=""THEN1020 :rem 181

1610 OPEN1,8,2,I$+",S,W":FORX=1TO100 :rem 18

1620 PRIWT#1,PC%(X)CHR$(13)CHR$(34)PC$(X)CHR$(13); [~j

:rem 247 LJ
1630 IFPC%(X)o3THENNEXT :rem 213

1640 CLOSE1:GOTO1000 :rem 166

:rem

:rem

: rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

34

120

54

205

142

147

141

142

151

152

192

;:GOSUB89

:rem

:rem

132

81

80

U

u

H

n

n

n

Recreations and Applications 1

1700 GOSUB6000:PRINT"LOAD PROGRAM:";:I=10:GOSUB900

0:IFI$=""THEN1020 :rem 19

1710 OPEN1,8,2,I$+",S,R":IFST<>0THEN1750 :rem 9

1720 FORX=1TO100:INPUT#1,X$,PC$(X):PC%(X)=VAL(X$)

:rem 133

1730 IFPC%(X)o3THENNEXT : rem 214

1740 CLOSE1:GOTO1000 :rem 167

1750 PRINT"TAPE ERROR":PRINT"HIT ANY KEY TO CONTIN

UE ";:GOSUB10000 :rem 1

1760 CLOSE1:GOTO1000 :rem 169

4999 END :rem 182

5000 IFRC=0THEN5400 :rem 78

5005 FORX=1TO9:RN$(X) ="":CN$(X) = I1":CW(X)=0:CP(X)=0

:NEXT :rem 218

5007 FORX=10TO20:RN$(X)="":NEXT :rem 79

5010 RC=0:FORL=1TO100:IFPC%(L)=3THEN5310 :rem 93

5020 IFPC%(L)o2THEN5300 :rem 78

5030 X$=LEFT$(PC$(L),l):N$=MID$(PC$(L),2,l):rem 25

5040 IFX$="C"THEN5100 :rem 141

5050 IFX$="R"THEN5200 xrem 158

5060 GOTO5900 :rem 210

5100 FORX=4TOLEN(PC$(L)):IFMID$(PC$(L),X,1)<>","TH

ENNEXT:LN=5:GOTO5120 :rem 195

5110 LN=VAL(MID$(PC$(L),X+1)) :rem 85

5120 N=VAL(N$):IFN=0THEN5900 :rem 122

5130 CN$(N)=MID$(PC$(L),4,X-4):CW(N)=LN :rem 140

5140 GOTO5300 :rem 203

5200 N=ASC(N$)-64:IFN<1ORN>20THEN5900 :rem 147

5210 RN$(N)=MID$(PC$(L),4) :rem 107

5300 NEXTL :rem 83

5310 CP(1)=0:FORX=2TO9:CP(X)=CP(X-1)+CW(X-1)+ABS(C

W(X)>0):NEXT :rem 164

5400 PRINT"{CLR}{RVS}";:FORX=lTO9:PRINTTAB(CP(X)+8

)RIGHT$(S$+CN$(X),CW(X)); :rem 104

5410 NEXT:PRINT :rem 208

5420 FORX=1TO20:PRINT"{RVS}"LEFT$(RN$(X),6):NEXT

:rem 130

5450 FORL=1TO100:IFPC%(L)=3THEN5700 :rem 44

5460 IFPC%(L)olTHEN5690 :rem 97

5470 X$=LEFT$(PC$(L),2):AC=VAL(RIGHT$(X$,1)):IFAC<

1ORAO9THENAC=0 : rem 76

[""I 5480 AR=ASC(X$)-64:IFAR<1ORAR>20THENAR=0 irem 168
5490 CC=AC:IFAC=0THENRC=1:FORCC=1TO9 :rem 246

5495 CR=AR:IFAR=0THENRR=1:FORCR=1TO20 :rem 111

r-| 5500 IFMID$(PC$(L)#3#1)<>"="THEN5900 :rem 176

! ! 5510 X$=MID$(PC$(L)#4):OP$="+":S=1:T=0 :rem 38
5520 FORX=STOLEN(X$):N$=MID$(X$,X,1):IFN$="+"ORN$=

"-"ORN$="/"ORN$=II*"THEN5550 :rem 166

n 5540 NEXTX :rem 101

H
81

u

1 Recreations and Applications LJ

M

5550 N$=MID$(X$,S,X-S):S=X+1 :rem 74 {—l
5560 IFN$="0"ORVAL(N$)<>0THENV=VAL(N$):GOTO5610

:rem 26 r~j

5565 IFLEN(N$)o2THEN5900 :rem 175 U
5570 TR$=LEFT$(N$,1):TC$=RIGHT$(N$,1) :rem 59

5580 TR=ASC(TR$)-64:IFTR<lORTR>20THENTR=CR:rem 168

5590 TC=VAL(TC$):IFTC<10RTO9THENTC=CC : rem 155 II
5600 V=WK(TR,TC) :rem 186 L~J
5610 IFOP$="+"THENT=T+V :rem 95

5620 IFOP$="-"THENT=T-V :rem 100

5630 IFOP$="/MTHENT=T/V :rem 105

5640 IFOP$="*"THENT=T*V :rem 96

5650 IFX<LEN(X$)THENOP$=MID$(X$,X,1):GOTO5520

:rem 185

5660 WK(CR,CC)=T :rem 156

5670 IFRR=1THENNEXTCR :rem 118

5680 IFRC=1THENNEXTCC :rem 89

5690 RR=0:RC=0:NEXTL :rern 230

5700 PRINT "{HOME} {DOWN}11; :FORCR=1TO20:IFRN$(CR)=""

THEN5795 :rem 34

5710 FORCC=lTO9:PRINTTAB(CP(CC)+8); irem 123

5720 X$=MID$(STR$(WK(CR,CC)),2) :rem 220

5730 IFLEN(X$)<=CW(CC)THEN5790 :rem 248

5740 FORX=1TOLEN(X$):IFMID$(X$,X,1)<>"."THENNEXT:G

OTO5790 :rem 227

5750 N$=LEFT$(X$,X-1) :rem 126

5760 IFLEN(N$)<CW(CC)THENN$=N$+MID$(X$rX#CW(CC)-LE

N(N$)) :rem 230

5780 X$=N$:rem 255

5790 PRINTRIGHT$(S$+X$,CW(CC));:NEXTCC :rem 74

5795 PRINT:NEXTCR :rem 117

5800 RETURN :rem 173

5900 GOSUB6000:PRINT"SYNTAX ERROR IN LINE"L

:rem 155

5910 PRINT"HIT ANY KEY TO CONTINUE ";:GOSUB10000

:rem 68

5920 RETURN :rem 176

6000 PRINTLEFT$ (C$, 22) S$: PRINTS$: PRINTS$: PRINTLEFT r~{

$(C$,22); :rem 118 LJ
6010 RETURN :rem 167

8000 GOSUB6000:PRINTL; :rem 92

8010 I=35:GOSUB9000:IFI$=""THEN8000 :rem 232 I I

8020 FORX=1TOLEN(I$):IFMID$(I$#X#1)<>" "THENNEXT ^
irem 73

8030 PC$(L)=MID$(I$rX+l):PC%(L)=0 :rem 244 p.

8040 X$=LEFT$(I$#X-1):FORX=1TO3:IFX$=R$(X)THENPC%(LJ
L)=X :rem 235

8050 NEXT:RETURN :rem 38

8990 I=3:GOSUB9000 :rem 22 If

82

U

n

n

H

Recreations and Applications 1

8992 IFVAL(I$)<1ORVAL(I$)>100THENI$=IIM :rem 167

8995 RETURN :rem 191

8999 1=3 :rem 156

9000 I$="":POKE204,0:POKE205,20 :rem 160

9010 GETX$:IFX$=""THEN9010 :rem 229

9020 C=ASC(X$)sIFC=20THEN9060 :rem 152

9025 IFC=13THENPOKE204,1:PRINT" ":RETURN :rem 185

9030 IF(C>31ANDC<95)OR(O192ANDC<219)THEN9040

:rem 74

9035 GOTO9010 :rem 212

9040 IFLEN(I$)=ITHEN9010 :rem 120

9050 PRINTX$;:I$=I$+X$:GOTO9010 :rem 71

9060 IFI$=""THEN9010 :rem 69

9070 PRINTX?;:I$=LEFT$(I$,LEN(I$)-1):GOTO9010

:rem 105

10000 POKE204,0:POKE205,20 :rem 160

10010 GETX$:IFX$=""THEN10010 :rem 53

10020 POKE204,1:PRINTX$;:RETURN :rem 173

n

n

n

n

n
83

H

P
; ! Kid Stuff—Educational Games 2

n

n

n

A Kid's View

Kevin Dewey

Here's a kid's-eye view of educational computer

games—what they should do, how they should

teach, and why they should entertain. The writer

concludes his article by presenting "BLAMl," a

game for the Commodore 64 that demonstrates

his concepts. A joystick is required.

Have you ever tried to write an educational game? If you

have, chances are you found it pretty hard. Sure, it's easy to

make a simple addition and subtraction program, but educa

tion doesn't stop there.

There are many other areas to cover. I know. I'm only 12

and in the seventh grade. We have computers in our school

and a variety of educational games. But, unfortunately, some

of the games aren't too good. The main flaw that I see in

them, and a lot of my classmates agree, is that they are too

easy.

Take, for instance, a math program we had last year.

_ There was only one skill level, and it was just basic multiplica-

J| tion with zeros on the end of the numbers to make it seem
harder. The game itself had a very good concept but didn't

teach you a thing (unless you're in the third grade, and the

I I game was supposed to be sixth-grade level).

Educational Guidelines

P"| Now, if that is what comes from experts, how are ordinary
people supposed to write good educational games? Pro

grammers should keep in mind the following things:

j""] 1. You should make your game one that teaches someone

u

2 Kid Stuff—Educational Games LJ

Q
something. After you've thought of your idea, ask yourself, "Is

this truly educational or just a near miss?" This will help very

much. I |

2. Your game should have varying skill levels. It should

have levels to challenge the slowest to the fastest student.

3. Use good graphics so your game will be appealing to M

look at.

4. Have good sound effects. It's good for the player to get

a rewarding sound or song if he or she is correct.

5. Most of all, make your game interesting and fun. How

many kids want to sit and play ja boring game, no matter how

educational it is? Not many. It's" good, in some cases, to make
your game half-arcade and half-educational.

Those are the five essential elements of good educational

games. Try to include them when writing one.

Now, here's a game I've made. I call it "BLAM!" It's

educational and fun, and I hope you enjoy it.

Game Description

BLAM! is a half-arcade and half-educational game. You must

maneuver your player around a building filled with bombs,

while trying to disarm all the explosives. You move your player

with the joystick and, once you've run into a bomb, disarm it

with the keyboard.

You disarm bombs as follows: there is a number at the

top of the screen next to the time clock. When you run into a

bomb, another number appears at the bottom of the screen,

under the blue line. You subtract this number from the one at

the top and type your answer. If you're correct, the bomb dis

appears and you have one less bomb to disconnect. But if you

subtract wrong, the bomb explodes! You can survive the

explosions, but after three, the whole place falls apart. When

you give a wrong answer, the correct answer appears at the f j

top of the screen.

You get only five minutes to clear each story of bombs,

because they are time bombs. When you clear a story, you go j"j

on to the next, which has ten more bombs than the one be- LJ
fore. There are six stories in the building and, if you clear

them all, you win the game. i i

There are also variable skill levels. At the beginning of L-
the game, you choose a skill level from 1 to 100. Skill level 1

uses only numbers through 100, level 2 uses numbers through fj

88

H

n

n

n

n

Kid Stuff—Educational Games 2

200, and so on. Only very, very smart people should play on

level 100.

Ways to Change BLAM!

You can raise the possible skill levels by changing the 100's in

lines 5 and 6. You can vary the number of stories in the build

ing by changing the 70 in line 131 to the number of stories

you want multiplied by ten, plus ten. For example, to make a

four-story building, change the 70 to 50.

Blam!
For mistake-proof program entry, be sure to use "Automatic Proofreader/' Appendix J.

2 POKE53281,4:POKE53280,14 :rem 192

3 GOTO500 :rem 1

4 SC=53281:BO=53280:POKESC,1:POKEBO,10:PRINT"{CLR}

{9 DOWN} "TAB(15) "{RVS}{RED}SKILL LEVEL11 :rem 37

5 PRINT"{DOWN}"TAB(15)"(1-100) ";*INPUT A :rera 111

6 IFA<1ORA>100THEN4 :rem 135

7 PRINT"{2 DOWN}"TAB(li)"USE JOYSTICK PORT 2":PORT

=1TO2000:NEXT:Y=RND(0):B=A*100:H=10 :rem 151

8 W=54272:FORT=WTOW+24:POKET,0:NEXT:POKEW+24,15:PO

KEW+5,17:POKEW+6,241:GOTO25 :rem 75

9 J=INT(RND(1)*I):PRINT"{HOME}{22 DOWN}{9 RIGHT}("
;J;") BLAM NO. "; :rem 229

10 POKE198,0:INPUTK$:K=VAL(K$) :rem 44

11 IPK+J=ITHENPRINT"{RVS}{DOWN}{15 RIGHT}CORRECTIi

{OFF}"; :rem 46
12 IFK+JOITHENPRINT"{DOWN}{16 RIGHT} {RVS}WRONG. ..

";:GOTO80 :rem 149

13 POKEC,32:M=M+1:IFM=HTHEN110 :rem 48

14 FORT=1TO25:POKEW,71:POKEW+1,71:POKEW+4,33:FORQ=

1TO50:NEXT:POKEW+4,32:NEXT :rem 87

15 FORN=1910TO2015:POKEN,32:NEXTN :rem 29

16 GOTO38 :rem 11

25 C=1524:D=55796 :rem 126

27 PRINT"{CLR}":POKEBO,4:POKESC,l:FORF=lTOH:rem 67
28 G=INT(RND(1)*760)+40:V=PEEK(G+1024):IF(VO32)OR

(G=500)THEN28 :rem 85

29 POKEG+55296,0:POKEG+1024,66 :rem 173

30 NEXTF:PRINT"{HOME}{20 DOWN}{BLU}DODDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDD"; :rem 84

34 RESTORE :rem 139

35 FORF=1TO30:READL, Q:POKEW, L:POKEW+1,Q:POKEW+4,17

:FORT=1TO50:NEXT:POKEW+4,16 :rem 194

36 POKEW+1,L-20:POKEW# Q:POKEW+4f17:FORT=1TO50:NEXT

:POKEW+4,16:NEXT :rem 209

37 TI$="000000":I=INT(RND(1)*B):PRINT"{HOME}
{9 RIGHT}TIMER" :rem 62

89

LJ

2 Kid Stuff—Educational Games

D
38 POKED,4:POKEC,65 :rem 129

40 JS=PEEK(56320):JS=15-(JSAND15):JS=JS+1:REM READ
JOYSTK :rem 173 I (

41 KD=C:ONJSGOTO51,42,43,51,44,45,46,51,47,48,49 ^
:rem 87

42 POKEKD,32:C=C-40:D=D-40:GOTO51:REM NORTH:rem 85 r"i

43 POKEKD,32:C=C+40:D=D+40:GOTO51:REM SOUTH:rem 90 LJ
44 POKEKD,32:C=C-1:D=D-1:GOTO51:REM WEST :rem 169

45 POKEKD,32:C=C-41:D=D-41:GOTO51:REM NW irem 116

46 POKEKD,32:C=C+39:D=D+39:GOTO51:REM SW :rem 132

47 POKEKD,32:C=C+1:D=D+1:GOTO51:REM EAST :rem 146

48 POKEKD,32:C=C-39:D=D-39:GOTO51:REM NE :rem 115

49 POKEKD,32:C=C+41:D=D+41:GOTO51:REM SE :rem 103

50 POKEKD,32:C=C-40:D=D-40:REM NORTH :rem 123

51 DV=DV+1:IFDV=10THENPOKEW+4,129:POKEW+4,128:DV=0

:rem 55

52 IFPEEK(C)=68THENC=C-160:D=D-160 :rem 211

53 IF C<1064 THEN C=C+40:D=D+40 :rem 80

54 IFPEEK(C)=66THEN9 :rem 194

55 T$=RIGHT$(TI$,3):PRINT"{HOME}{15 RIGHT} " ,-T$;"

{10 RIGHT}11 ;I :rem 219
56 IFT$>"500"THEN200 :rem 74

60 GOTO38 :rem 10

80 POKEC,67:FORT=100TOlSTEP-2:POKEW+1,T:POKEW+4,12

9:POKED,2 :rem 179

81 POKED,5:NEXTT:FORTT=lTO50sNEXTTT:PRINT"{HOME}

{RVS}{2 RIGHT}CORRECT{OFF} BLAMl{RVS} NO.=";I-J

:NN=NN+1 :rem 213

82 POKEW+4,128:IFNN=3THEN200 :rem 172

83 FORT=1TO4000:NEXTT:PRINT"{HOME}{31 SPACES}"

:rem 102

84 M=M+1:IFM=HTHEN110 :rem 251

85 FORN=1910TO2015:POKEN,32:NEXTN:GOTO37 :rem 1

110 PRINT"{CLR}{DOWN}{14 RIGHT}GOOD WORKll":M=0

:rem 63

119 ER=28 :rem 217

120 FORU=0TO3:POKEW+1,ER*U:POKEW,49:POKEW+4,17:FOR

T=1TO1000:NEXT:NEXT :rem 181) j

130 POKEW+4,16:H=H+10 :rem 159 L—>
131 IFH=70THEN600 :rem 213

132 PRINT"{6 DOWN}{3 RIGHT}YOU GOT ALL THE BOMBS O r~{

UT OF THAT" :rem 246 LJ
133 PRINT"STORY, BUT THE TERRORISTS PUT EVEN MORE"

:rem 124

135 PRINT"IN THE NEXT.":PRINT"{4 DOWN}{13 RIGHT}SE | I
E YA AGAIN 1" : rem 15 L-J

139 ER=28 :rem 219

140 FORU=0TO3: POKEW+1, ER*U: POKEW, 49: POKEW+4,17:FOR ,---.

T=1TO1000:NEXT:NEXT :rem 183 LJ
145 POKEW+4,16 :rem 18

G

Kid Stuff—Educational Games 2

150 FORI=1TO3000:NEXT:GOTO25 :rem 237

200 FORT=100TO0STEP-2:POKEW+1,T:POKEW+4,129

:rem 140

202 POKESC,INT(RND(l)*16):POKEBO,INT(RND(l)*16)tPR

INT"{CLR}" :rem 175

204 NEXT:POKEW+4,128 :rem 187

210 PRINT"{CLR}M:POKEBO,0:POKESC,0:PRINT"{5 DOWN}
{11 RIGHT}{WHT}THE PLACE BLEW UP I11 :rem 130

215 PRINTTAB(14)"GAME OVERll11 :rem 142

218 PRINT"{7 DOWN}"TAB(11)"PLAY AGAIN (Y/N)?"
:rem 173

220 GETA$:IFA$=""THEN220 :rem 75

225 IF A$="Y" THEN M=0:GOTO4 :rem 247

230 SYS2048 :rem 98

400 DATA50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,50, 50, 50,

50,50,50,50,50,50,50,50 :rem 248

403 DATA50,50,50,50,50,50,50,50 :rem 13

404 DATA70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70,

68,66,64,62,60,58,56,54 :rem 67

405 DATA52,50,48,46,44,42,40,38 :rem 38

500 PRINT"{CLR}{11 DOWN}"TAB(11)"{WHT}A FEW MOMENT

S " :rem 179

505 POKE52,48:POKE56,48:CLR:POKE56334,PEEK(56334)A
ND254 :rem 210

506 POKE1,PEEK(1)AND251:FORN=0TO2047:POKEN+12288,P

EEK(N+53248):NEXTN :rem 84

510 FORF=1TO60:READX:NEXT:FORF=0TO31:READX:POKEF+1

2808,XtNEXT trem 196

520 POKE 1,PEEK(1)OR4:POKE56334,PEEK(56334)OR1

trem 134

523 POKE 53272, (PEEK($3272)AND240)+12 trem 185

525 DATA56,56,144,254,58,56,40,108,28,16,56,124,25

4,254,124,56 trem 52

535 DATA215,254,124,255,255,223,147,161 trem 184

540 DATA255,255,255,255,255,255,0,0 trem 239

560 GOTO4 :rem 8

600 REM YOU WIN1 trem 134

605 PRINT"{6 DOWN}{3 RIGHT}YOU CLEARED THE BUILDIN
G OF BOMBS." xrem 123

610 PRINT" {DOWN} {3 RIGHTjYOU ARE A VERY GREAT PERS
ON."tPRINT-{3 DOWN}-TAB(13)"PLAY AGAIN?"

trem 135

612 GETA$tIFA$a"-THEN612 trem 85

620 IF A$=-Y" THEN PRINT"{CLR}-tM=0tG0T04 trem 148

630 SYS 2048 trem 102

n 9i

2 Kid Stuff—Educational Games

Wordspell
Richard Herrmann

With your own list of words, you can use

"Wordspell" to help your children practice

spelling. This educational program for grades 1

through 9 can be used with tape or disk.

"Wordspell" makes good use of what is called the "dynamic

keyboard" technique. This allows a program to modify itself

as it is running. In Wordspell, the practice spelling words you

enter become part of the program. At the beginning of the

program, you are prompted to enter 20 words. After the words

are entered, the dynamic keyboard routine merges them into

the program as line-numbered DATA statements. This permits

you to SAVE the program with the words included so they

will not have to be reentered for the next practice session.

Once the spelling list is entered, it is presented one word

at a time. The words are quickly spelled letter by letter and

then disappear. You then type in the word, and you are told if

it is correct—or you're shown the correct spelling if it is

wfong. At the end of the program, a score is displayed, as well

as a list of the misspelled words. The user now has the option

of quitting the program, running the same words, or entering

new words.

Notes on the Program

REM statements point out major routines. p-

DATA statements are created as lines 1, 5, 9, 13, and 17. lJ
Main variables are:

A$() - DATA array M

B$() - Create word list array ^
W$() - Misspelled words array

A$ - INPUT of user spelling ji

With a little work, the program could be modified to

accept more or fewer than 20 words.

Timing loops (lines 37 and 46) for viewing letters and |_J

92

n

n

Kid Stuff—Educational Games 2

responses may be easily altered to adapt Wordspell to dif-

ferent age groups. My nine-year-old son finds the default val-

ues suitable.

Wordspell
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

0 PRINT"{CLR}":PRINTCHR$(14):POKE53280,7:POKE53281

,1:GOSUB61 :rem 202

21 PRINT"{CLR}{BLK}{4 DOWN}{3 RIGHT}{3 SPACES}CREA
TE NEW LIST":INPUT"{2 DOWN}{4 RIGHT}{2 SPACES}(

Y OR N)";R$:IFR$="Y"THEN50 :rem 103

22 IFR$o"N"THEN21 : rem 7

24 DIMA$(19),W$(19) :rem 194

25 FORP=0TO19:READA$(P):NEXT :rem 237

26 FORP=0TO19 :rem 25

27 PRINT"{CLR}" :rem 205

28 PRINT" {9 DOWN}11 :rem 212

29 PRINTTAB(INT(40-LEN(A$(P)))/2) :rem 132

30 GOSUB35 :rem 75

31 GOSUB40 :rem 72

32 NEXT :rera 164

33 GOTO71 :rem 7

34 REM PRINT OUT WORDS :rem 95

35 FORX=1TOLEN(A$(P)) :rem 238

36 PRINTMID$(A$(P),X,1); :rem 103

37 FORT=1TO300:NEXT :rem 194

38 NEXT :rem 170

39 RETURN :rem 76

40 PRINT"{CLR}":PRINT"{9 DOWN}" :rem 108
41 PRINTTAB((INT(40-LEN(A$(P)))/2)-2):INPUTA$

:rem 93

42 IFA$=A$(P)THENPRINT"{CLR}":PRINTSPC(215)"
{5 DOWN}CORRECT 1":GOSUB90:GOTO46 :rem 18

43 W$(P)="W":GOSUB81 :rem 126

44 PRINT"{CLR}":PRINT"{4 DOWN}"SPC(17);"WRONG l":P

RINT"{2 DOWN}"SPC(9)" CORRECT{SHIFT-SPACE}SPELL
ING{SHIFT-SPACE}IS:" :rem 78

45 PRINT:PRINT:PRINT:PRINTTAB(INT(40-LEN(A$(P)))/2

)A$(P):K=K+1 :rem 70

46 FORT=1TO2000:NEXT : rem 241

47 POKE 53280,7 :rem 255

48 RETURN :rem 76

49 REM CREATE WORD DATA :rem 91

50 PRINT"{CLR}":DIMB$(19) :rem 254
51 FORI=0TO19:PRINT"WORD";1+1;:INPUTB$(I):NEXT

:rem 181

52 PRINT"{CLR}{2 DOWN}{WHT}" :rem 242

53 FORI=0TO19STEP4 :rem 130

n

2 Kid Stuff—Educational Games

54 PRINT1+I;"DA"CHR$(34)B$(I)CHR$(34);","CHR$(34)B

$(I+1)CHR$(34); srem 69

55 PRINT","CHR$(34)B$(I+2)CHR$(34);","CHR$(34)B$(I
+3):NEXT :rem 113

56 PRINT"GOTO1":PRINT"{HOME}" :rem 196

57 POKE198,10 :rem 202

58 FORI=0TO5:POKE631+I,13:NEXT :rem 98

59 END :rem 69

60 REM INSTRUCTIONS :rem 255

61 PRINT"{BLK}{3 DOWN}{6 SPACES}USE THIS PROGRAM F
OR SPELLING":PRINT" PRACTICE.12 SPACES}WHEN";

:rem 110

62 PRINT" REQUESTED, ENTER THE":PRINT" SPELLING WO

RDS AND {RVS}PRESS RETURN{OFF}.{2 SPACES}WHEN"

:rem 50

63 PRINT" ALL (20) OF THE WORDS HAVE BEEN":PRINT"

{SPACE}ENTERED, THEY WILL BE PLACED"; :rem 36
64 PRINT" INTO THE":PRINT" PROGRAM AS DATA STATEME

NTS.{2 SPACES}RE-SAVE-" :rem 253
65 PRINT" ING THE PROGRAM AT THE END OF THE":PRINT

" SESSION WILL SAVE THE"; :rem 136

66 PRINT" ENTERED":PRINT" WORDS FOR USE AT THE NEX

T PRACTICE." :rem 224

67 PRINT"{5 DOWN}{12 RIGHT}{RVS}PRESS RETURN{OFF}"

:rem 0

68 GETR$:IFR$=""THEN68 :rem 33

69 IFR$=CHR$(13)THENRETURN :rem 118

70 GOTO68 :rem 14

71 PRINT:PRINT"{CLR}{RVS}MISSPELLED WORDS:{OFF}":P

RINT:REM PRINT OUT MISSPELLED WORDS,SCORE:rem 5

72 FORP=0TO19:IFW$(P)="W"THENPRINTTAB(4)A$(P)

:rem 245

73 NEXT :rem 169

74 PRINT"{HOME}{19 DOWN}{RVS}SCORE ="100-K*5

:rem 69

75 PRINT:PRINT"{3 SPACES}AGAIN ? (Y OR N) :rem 154

76 GETR$:IFR$=""THENGOTO76 :rem 88

77 IFR$="Y"THENRUN1 :rem 162))

78 IFR$o"N"THEN76 :rem 28

79 POKE36869,240:POKEV,0:POKES,0 :rem 164

80 GOTO59 :rem 15 r]

81 PRINT"{CLR}":POKE53280,2:S=54272:FORE=STOS+28:P LJ
OKEE,0:NEXT :rem 104

83 POKE54296, 15 :POKE54277, 18 :POKE54278, 242

:rem 116) (
85 POKE 54276, 33 :POKE 54273, 4 :POKE54272, 48 *—'

:rem 9

87 FORT=1TO 300 :NEXT:POKE54276, 32:FORT=1TO 400 : f]

NEXT :rem 92 lJ

94

u

H

n

2 Kid Stuff—Educational Games

n
89 RETURN:REM{14 SPACES}FORE=STOS+28:POKEE,0:NEXT:

r-| RETURN :rem 83

1 90 S=54272:FORE=STOS+28:POKEE,0:NEXT :rem 1

100 POKE54296, 15 :POKE54277# 42 :POKE54278, 250

:rem 150

R 110 POKE 54276, 33 :POKE 54273, 23 :POKE54272, 181
1 :rem 141

120 FORT=1TO 200 :NEXT:POKE54276, 32:FORT=1TO 500

{SPACE}:NEXT :rem 128

130 FORE=STOS+28:POKEE,0:NEXT :rem 94

140 RETURN :rem 117

H

95

2 Kid Stuff—Educational Games

Munchmath
Gerald R. Anderson

"Munchmath" is a math drill program that

entertains as it teaches. Because of its multiple

difficulty levels, it is suitable for a wide range

of ages.

"Munchmath" presents an arcade-style character that relies on

the player's correct answers to math problems to stay ahead of

a ghost that is trying to gobble him up.

The program begins by asking for the player's name, the

type of problems wanted (addition, subtraction, multiplication,

or division), and the starting level of difficulty. Problems are

then presented on the screen for the player to answer. Each

correct answer scores ten points and moves "Munchie" one

step closer to the power prize. The ghost, however, stays in

hot pursuit only three steps behind. After 15 correct responses,

Munchie eats the power prize and the tables are turned.

Munchie chases the ghost across the screen, eventually catch

ing him and scoring a bonus of 100 points. The difficulty level

then advances one notch higher and new problems are

presented.

The ghost moves into action when the player gives a

wrong answer. First, the correct answer is displayed for the

player to study. Then the ghost advances one step closer to

Munchie. Three incorrect answers and the ghost catches poor

Munchie and gobbles him up. This results in a loss of 50 j "j

points and a return to the next lowest level of difficulty. '—'
If a Q is typed in response to a problem instead of a num

ber, the game stops. A Scoreboard is printed which shows the j" ,

number of problems the player has been given, the number ^
answered correctly, the number answered incorrectly, and the

percentage of correct answers. The player may then choose to j"

resume the game or to end play. ' (—'
The program has been extensively tested by my six- and

eight-year-old daughters, as well as the neighborhood chil- j" j

dren, and its appeal holds up very nicely. L-j

u

n

n

n

Kid Stuff—Educational Games 2

n

Program Description

Here's a breakdown of the program:

Lines 100-170: Initialization and delay subroutines.

Lines 190-240: Answer-checking.

Lines 260-270: Print titles computer-style.

Lines 290-460: Generate problem and print it in proper

format.

Lines 480-540: Ghost catches Munchie. Generate sound

effects, subtract 50 points, and reduce difficulty level.

Lines 560-690: Munchie reaches the power prize and

chases the ghost. Bonus of 100 points, advance to next level.

Lines 700-730: Move Munchie and ghost.

Lines 740-780: Print level and score. Clear old answer

from screen.

Lines 800-880: Print Scoreboard at end of game. Restart or

end program.

Lines 900-910: Special characters created.

Lines 930-1070: Titles

Lines 1080-1280: Get player's name, choice, and level.

Lines 1300-1410: DATA statements for custom characters.

Munchmath
For mistake-proof entry, be sure to use "Automatic Proofreader," Appendix J.

100 POKE56,48:CLR:PRINT"{CLR}":SM=1073:CM=55345:L=

1:BC=3 :rem 142

110 FORI=0TO27:POKE54272+I,0:NEXT:POKE54296,15:POK

E54277,18:POKE54278,165 :rem 56

120 S$="{HOME}{21 DOWN}":SF=54272:WV=54276 :rem 67
130 J$="9999999999999999999999":P=3:GOTO900

:rem 111

140 : :rem 207

150 FORT=1TO300:NEXT:RETURN :rem 8

160 FORT=1TO40:NEXT:RETURN :rem 218

| | 170 FORT=1TO90:NEXT:RETURN :rem 224
180 : .rem 211

190 D=VAL(AN$):IFASC(AN$)=81ANDPR>lTHEN800:rem 247
f—l 200 IFINT(D)<>INT(C)THEN230 :rem 94

* I 210 P=P+1:R=R+1:M=M+1:SC=SC+10:POKESF,223:POKESF+1
,29:POKEWV,17 :rem 67

220 FORT=1TO5:NEXT:POKEWV,16:GOTO700 :rem 65
!j 23.0 M=M+1 :W=W+1: PRINTLEFT$ (S$, 10)SPC (20-LEN(C$)) "

{RVS}{RED}"C$"{5 SPACES}11 :rem 46
240 POKESF+1,8:POKESF,100:POKEWV,33:GOSUB150:POKEW

V,32:GOTO720 :rem 136

250 : :rem 209n

n 97

2 Kid Stuff—Educational Games

260 POKESF+1,40:POKEWV,17 :rem 246

270 GOSUB160:POKEWV,16:GOSUB160:RETURN :rem 196

280 : :rem 212 } (
290 PR=PR+1:A=INT(RND(1)*5*L)+1 :rem 3

300 B=INT(RND(1)*5*L)+1:IFB>ATHENA=A+B :rem 202

310 E=INT(A*B):A$=STR$(A):B$=STR$(B) :rem 23 j""j

320 IFQ=1THENC=A+B:X=43:GOTO360 :rem 130 lJ
330 IFQ=2THENC=A-B:X=45:GOTO360 :rem 136

340 IFQ=3THENC=A:C$=STR$(C):GOTO410 :rem 110

350 C=E:X=88 :rem 156

360 C$=STR$(C):PRINTLEFT$(S$,7)SPC(20-LEN(A$))"

{RVS}MA :rem 33
370 PRINTLEFT$(S$,8)SPC(18-LEN(B$))"{RVS} "CHR$(X)

BM {OFF} {DOWN} {3 LEFT}999fl :rem 176

380 PRINTLEFT$(S$,10)SPC(19-LEN(C$)):GOSUB1230:IFA

N$=""THEN380 :rem 120

390 D=VAL(AN$):GOTO190 :rem 17

400 : :rem 206

410 PRINTLEFT$(S$#12)SPC(16)"{9 SPACES}" :rem 170

420 PRINTLEFT$(S$,10)SPC(18)"{8 SPACES}11 :rem 171

430 PRINTLEFT$(S$,11)SPC(19)"7777":PRINTSPC(18)"8"

:rem 109

440 PRINTLEFT$(S$,12)SPC(18-LEN(B$))"{RVS}"B;E

:rem 70

450 PRINTLEFT$(S$,10)SPC(19-LEN(C$)):GOSUB1230:IFA

N$=""THEN450 :rem 116

460 GOTO190 :rem 109

470 : :rem 213

480 POKEWV,17:FORI=4TO33:POKESF+1,I:GOSUB160:NEXT:

POKEWV#16 :rem 54

490 POKECM+P,2:GOSUB160:POKECM+P,5:GOSUB160

:rem 172

500 POKESF+1,14:POKEWV,33:POKESM+P,69:FORI=1TO230:

NEXT :rem 154

510 POKESM+P,64:FORI=1TO250:NEXT :rem 1

520 POKESM+P,32:POKEWV,32:SC=SC-50:IFSC<0THENSC=0 '

:rem 75 . .

530 L=L-1:IFL=0THENL=1 :rem 54 M

540 P=3:M=0:PRINT"{CLR}":GOTO1210 :rem 34 —'
550 : :rem 212

560 POKESM+M-1,32:FORI=1TO6:POKECM+M,3:POKESM+M,60 r ;

:POKECM+P,5 :rem 58 U
570 POKESF+1,14:POKEWV,129 :rem 47

580 POKESM+P,62:GOSUB160:POKESM+P,58:POKECM+M,6:PO

KESM+M,61:GOSUB160 :rem 33 I (
590 POKESM+M,32:POKESM+P,32:POKEWV,128:P=P-1:M=M-1 ^^

:NEXT :rem 197

600 FORI=12TO9STEP-1:POKECM+I,5:POKESM+I,62:POKECM

+9,6:POKESM+9,60:GOSUB160 :rem 202

98

LJ

U

Kid Stuff—Educational Games 2

610 POKESF+1,14:POKEWV,129:POKECM+9,3:POKESM+I,58

:rem 252

620 GOSUB160:POKEWV,128:POKESM+I,32:NEXT :rem 19

630 FORI=1TO5:PRINT"{HOME}{RVS}{DOWN}{RED}"TAB(15)

"** 100 **":POKESF+1,15:POKEWV,33 :rem 15

640 GOSUB150:POKEWV,32 :rem 87

650 PRINT"{HOME}{DOWN}{RVS}"TAB(15)"{9 SPACES}":GO

SUB150:NEXT:L=L+1 :rem 168

660 SC=SC+100:P=3:M=0:BC=BC+1:IFBO 31THENBC=7

:rem 164

670 REM SETUP :rem 18

680 POKE53280,BC:POKE53281,1:PRINT"{CLR}{BLU}":PRI

NTLEFT$(S$,3)SPC(9)J$:rem 33

690 POKE53272#28:PRINT"{HOME}"SPC(13)"{DOWN}{PUR}?

?????????????{RVS}{RED}S>" :rem 132

700 POKESM+P-1,32:POKECM+P,5:POKESM+P,59:GOSUB150:

POKESM+P#58 :rem 48

710 IFSM+P=SM+18THEN560 :rem 125

720 POKESM+M-1, 32:POKECM+M,2:POKESM+M, 61:GOSUB150:

POKECM+M,6:POKESM+M,60 :rem 232

730 IFPEEK(SM+M)=PEEK(SM+P)THEN480 :rem 80

740 PRINTLEFT$(S$,16)SPC(16)"{RVS}{CYN}LEVEL:IIL"

{BLU}" :rem 198

750 PRINTLEFT$(S$,17)SPC(9)J$:rem 178

760 PRINTLEFT$(S$,19)"{RVS}"SPC(12)N$niS SCORE:"SC

:rem 67

770 PRINTLEFT$(S$,7)SPC(17)"{4 SPACES}":PRINTSPC(1

7)"{4 SPACES}":PRINTSPC(13)"{DOWN}{8 SPACES}"

:rem 233

780 GOTO290 :rem 115

790 : :rem 218

800 POKE53272#21:POKE53280,6:POKE53281,7 :rem 245

810 PRINT"{CLR}{DOWN}{RVS}"SPC(13-LEN(N$)/2)N$MIS

{SPACE}SCOREBOARD" :rem 255

820 PRINTSPC(14)"{2 DOWN}PROBLEMS:"PR-1 :rem 199

830 PRINTSPC(12)"{2 DOWN}{GRN}RIGHT ANSWERS:"R:PRI

NTSPC(12)"{2 DOWN}{RED}WRONG ANSWERS:"W

:rem 151

835 RP=PR-l:QQ=ABS(R/RP*100):Ql=INT(QQ+.5) :rem 2

840 PRINTSPC(14)"{2 DOWN}{BLK}GRADE:"Ql"%" :rem 67

850 PRINTSPC(12)"{2 DOWNjPLAY AGAIN (Y/N)?":POKE19

8,0 :rem 141

860 GETA$:IFA$<>"Y"ANDA?<>"N"THEN860 :rem 57

870 IFA$="Y"THENPR=0:R=0:W=0:SC=0:GOTO1100 :rem 20

880 END :rem 119

890 : :rem 219

900 FORF=55TO63:FORI=0TO7:READA:POKEF*8+I+12288#A:
NEXT:NEXT :rem 213

910 FORI=0TO7:POKE32*8+I+12288#0:NEXT :rem 186

99

2 Kid Stuff—Educational Games

920 : srem 213 L~J
930 POKE53281,2:POKE53281,7 :rem 251

940 PRINTLEFT$(S$,10)SPC(11)M{BLU}M {GRNJu{RED} N ,]
{SPACE}{BLU}C {BLK}H {GRN}M {RED}A {BLU}T U
{GRN}H" srem 207

950 POKE56334,PEEK(56334)AND254:POKE1,PEEK(1)AND25

1:Z=13312:Y=53248 srem 96 1 I

960 FORI=0TO519:POKEI+Z,PEEK(I+Y) :NEXT:FORI=664TO6 LmJ
71:POKEI+Z,PEEK(I+Y)sNEXT srem 68

970 POKE1,PEEK(1)OR4:POKE56334,PEEK(56334)OR1

:rem 143

980 POKE53272,28:PRINTLEFT$(S$,10)SPC(11)"{RVS}
{BLU}M {GRN}U{RED} N {BLU}C {BLK}H {GRN}M
{RED}A {BLU}T {GRN}Hh srem 231

990 : srem 220

1000 READF,G:IFF=-1THEN1040 srem 52

1010 POKESF+l,FsPOKESF,GsPOKEWV,33:GOSUB160sPOKEWV

,32sGOSUB160 srem 190

1020 GOTO1000 srem 189

1030 : srem 254

1040 GOSUB150 sFORI=4TO24 s PRINTLEFT$(S$,10)SPC(I)"

{SPACE}{CYN}= {RED}<{2 SPACES}{GRN}s";:GOSUB1
70 srem 7

1050 PRINTLEFT$(S$,10)SPC(I)" {BLU}< {PUR}=

{2 SPACES} {GRN};11 srem 72
1060 POKESF,195:POKESF+1,17:POKEWV,17:GOSUB170:POK

EWV,16:NEXT srem 106

1070 PRINTLEFT$(S$,10)SPC(24)M{8 SPACES}11 :rem 218

1080 POKE53280,5:POKE53281,7sPOKE53272,21 :rem 37

1090 PRINT"{CLR}IISPC(8)"{3 DOWN}{BLU}WHAT IS YOUR

{SPACE}NAME";:GOSUB260:INPUTN$:rem 60

1100 PRINTII{CLR}{BLU}"SPC(13)II{5 DOWN}WHAT WOULD Y

OU"sGOSUB260 :rem 135

1110 PRINTSPC(11)"{DOWN}LIKE TO PRACTICE,{DOWN}":G

OSUB260 :rem 224

1120 PRINTSPC(20-LEN(N$)/2)N$":":GOSUB260 :rem 92

1130 PRINTSPC(14)M{DOWN}{RED}1){GRN}ADDITION":GOSU

B260 :rem 117 j ,

1140 PRINTSPC(14)"{DOWN}{RED}2){GRN}SUBTRACTION":G LJ
OSUB260 :rem 121

1150 PRINTSPC(14)"{DOWN}{RED}3){GRN}DIVISIONM:GOSU

B260 :rem 146] i
1160 PRINTSPC(14)"{DOWN}{RED}4){GRN}MULTIPLICATION ^

{BLU}M:GOSUB260 :rem 124

1170 GETA$:Q=VAL(A$):IFQ<1ORQ>4THEN1170 :rem 82 r ,

1180 PRINTLEFT$(S$,Q*2+10)SPC(14)M{RVS}"MID$(STR$(LJ
Q),2) :rem 49

1190 PRINTLEFT$(S$,20)SPC(14)MLEVEL (1-9)?"

srem 124 ij

100 r --,

LJ

n

n

n

Kid Stuff—Educational Games 2

1200 GETA$:L=VAL(A$):IFL<1ORL>9THEN1200 :rem 60

1210 GOTO680 srem 155

1220 : :rem 255

1230 PRINT"{RVS}? ";:AN$=M":POKE198,0 :rem 248

1240 GETZA$:IFZA$=MMTHEN1240 :rem 101

1250 ZL=LEN(AN$):IFZA$=CHR$(20)ANDZLTHENPRINTZA$;:

AN$=LEFT$(AN$,ZL-1) :rem 227

1260 IFZA$=CHR$(13)THENPRINT:RETURN :rem 224

1270 IFZA$<>MQIIAND(ZA$<II0"ORZA$>II9II)ORZL=5THEN1240

:rem 132

1280 PRINTZA$;:AN$=AN$+ZA$:GOTO1240 :rem 83

1290 : :rem 6

1300 DATA 0,0,0,0,0,0,255,255 :rem 106

1310 DATA 3,3,3,3,3,3,3,3 :rem 171

1320 DATA 0,0,255,255,255,255,0,0 :rem 68

1330 DATA 24,60,110,126,126,126,60,24 :rem 10

1340 DATA 56,124,95,248,224,248,127,56 :rem 95

1350 DATA 60,126,255,219,255,255,169,169 :rem 198

1360 DATA 60,126,255,219,255,255,90,180 :rem 137

1370 DATA 120,116,30,14,30,124,120,0 :rem 201

1380 DATA 0,0,0,14,14,14,0,0 :rem 57
1390 : :rem 7
1400 DATA 16,195,22,96,28,49,33,125,33,125,33,125,

33,125 :rem 195

1410 DATA 28,49,28,49,28,49,22,96,28,49,22,96,16,1

95,-1,0 :rem 10

n

n

n

n

101

Sound 3

n

n

n

n

_ Jerry M. Jaco

! (
In this unique approach to the Commodore 64's

SID chip, the author discusses the SID chip's

anatomy and capabilities in the context of its

essential similarity to the design of music

synthesizers.

If you've decided you want to make music on your Com

modore 64, but don't know where to begin, perhaps a look at

how an analog synthesizer is used in an electronic music stu

dio will clarify many aspects of the 64's amazing sound

capabilities. Once we have covered the physical aspects of a

synthesizer, we can begin to understand some of the tech

niques used to create sounds artificially.

Electronic music studios usually have at least one analog

synthesizer. Most synthesizers have a modular design which

allows the synthesizer to be built and expanded according to

the dictates of budget, space, and ability. Each module on the

synthesizer has a different function and the builder-user is free

to duplicate or omit any of them.

Each module on the synthesizer is independent of all others.

The only way to connect them is either by a panel of fancy

selector switches or via the more common patch cords. Patch

cords are simply pieces of electrical cable of varying lengths

which have standard plugs attached on each end. Plugging

one end of a patch cord into the output socket of one module

and the other end of the patch cord into the input socket of

another module creates an electrical pathway called a patch.

If a patch leads from a source module, such as an os-

dilator, to an output module, such as a mixer, the-resulting

sound will be audible to the outside world. (See Figure 1.) The

term signal is used to describe the electrical current being

passed from one module to another. A source signal is one that

will eventually be heard as a real sound. A control signal is a

varying voltage used to electronically control another module.

It does not contain sound information per se.

105

F
i
g
u
r
e

1
.
P
r
o
c
e
s
s
i
n
g
a
S
i
n
g
l
e
S
o
u
r
c
e
S
i
g
n
a
l

S
O
U
R
C
E
S

o
u
t

M
O
D
I
F
I
E
R
S

E
N
V
E
L
O
P
E
G
E
N
.

c
o
n
t
r
o
l

o
u
t

s
i
g
n
a
l

o
u
t

F
I
L
T
E
R
S

O
U
T
P
U
T

3
-
T
O
-
l
M
I
X
E
R

.,
I

si
gn

al
>
^
/

—
-

ou
t

t
r
i
g
g
e
r

o
u
t

T
R
I
G
G
E
R

r
n
T
i
i
i
i
i
i
i
i

A
U
D
I
O

A
M
P
L
I
F
I
E
R

i

□
c

c
c

c
c

c
z

c
c

c

J
H

U
j
n

r
j

F
i
g
u
r
e

2
*
P
r
o
c
e
s
s
i
n
g
T
h
r
e
e
S
o
u
r
c
e
S
i
g
n
a
l
s

I
I
II

1
1
1
1

1
I
I
I

A
U
D
I
O

A
M
P
L
I
F
I
E
R

(
Z
)

o 1

3 Sound

A Patch for the SID Chip

In Figure 1, there is only one source signal being processed by

the mixer. A mixer can handle up to three source signals on

our hypothetical system, which it combines into one compos

ite signal that gets sent on to the speakers, and so to your

ears. (See Figure 2.) On the 64, Program 1 accomplishes exactly

what the analog synthesizer does in Figure 2.

Program 1, Three Voices—or a Chord

For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

10 FORI=0TO24:POKE54272+I,0:NEXT :rem 189

15 POKE54278,249:POKE54285#249:POKE54292,249:REM S

US/REL VALUES FOR ALL OSC'S :rem 250
20 POKE54272,37:POKE54273,17:REM OSC1 :rem 97

30 POKE54279,229:POKE54280,22:REM OSC2 :rem 151

40 POKE54286#214:POKE54287,28:REM OSC3 :rem 158

50 POKE54276,17:POKE54283,17:POKE54290,17:REM TRIA

NGLE WAVE FOR ALL OSC'S :rem 250

60 POKE 54277,17:POKE 54284,17:POKE 54291,17:REM A

TT/DECAY VALUES FOR ALL OSC'S :rem 195

70 POKE54296,15:REM MASTER VOLUME ON :rem 145

75 FORT=1TO500:NEXT:REM CHORD DURATION :rem 186

80 POKE54276,16:POKE54283,16:POKE54290,16 srem 52

90 FORT=1TO450:NEXT:REM REL. DURATION :rem 92

95 POKE54296,0:REM TURN OFF VOLUME :rem 29

96 END :rem 70

This is a very basic patch for the Sound Interface Device

(SID) chip on the 64. Lines 20, 30, and 40 set the frequencies

of the three oscillators. Line 20 POKEs the values for middle C

into voice 1. Line 30 POKEs. the values for F into voice 2, and

line 40 POKEs the values for A into voice 3. This gives us a

"chord," which is simply three notes (voices) sounding

simultaneously. Line 50 selects a triangle wave output for all j i

three voices. Line 70 is the mixer volume control. When the *—'
value 15 is POKEd into this location, the master volume con

trol is turned all the way up. When 0 is POKEd, the volume i

control is turned off, as in line 95. The other lines will become L-'
clearer as we go along.

On an analog synthesizer, pots (potentiometers) are con- i i

trols that do things such as raise and lower the volume of a LJ
sound signal or change the frequency (pitch) of an oscillator.

Pots are also the main components of game paddles and TV i j

u

H

Sound 3

volume controls. To make new sounds on an analog syn

thesizer, the user twists pots on each module and listens for

the resulting effect. When the desired sound is found, it can be

recorded on tape or the patch written down on a patch chart,

marking the pathways made by the patch cords and the po

sitions of the pots for future reference. Analog synthesizers are

very useful in this way because drastic changes in a sound can

be quickly made by simply twisting a knob or plugging a

patch cord into something else.

Turning Knobs with POKEs

A digitally-controlled synthesizer, such as our SID chip, uses

numbers POKEd into control registers to accomplish the same

things that knob-twisting and patch-cord-plugging do on an

analog synthesizer. For example, if you POKE a 16-bit value

into the first two registers of the SID chip (54272 and 54273),

you've set the frequency value for oscillator 1. POKE a four-bit

number into the high nybble of the sixth register on the chip,

and you've set the attack value of the envelope for oscillator 1.

POKEing different values into other registers will activate

them in the same way that turning the pots or setting switches

will activate the analog synthesizer modules.

Envelope Generation

Look at Figure 1 again. It shows a direct path from a voltage-

controlled oscillator (VCO1) to the mixer. If we were to break

that path, sending the output of VCO1 to the input of the am

plifier module (VGA), we would then need to send the output

of VCA to the mixer so that the sound from VCO1 could still

be heard. The patch shown in Figure 3 would be the result.

Now we can make VCO1 signal even louder by adjusting the

pot on VCA or on the mixer. The real reason for taking this

route is that the envelope generator can be brought into play,

since it directly controls the VCA.

There are four pots on the envelope generator module.

The first controls the attack time; the second, the decay time.

The third sets the sustain level, and the fourth controls the re

lease time. On the SID, two registers in high-low nybble for

mat control these functions. Perhaps the most important

function is the sustain level. It's not a timing value, but rather

the level at which the amplifier's volume control is set while

the note is being sounded. If the sustain level is zero, no

109

F
i
g
u
r
e

3
:
U
s
i
n
g
t
h
e
V
C
A

S
O
U
R
C
E
S

s
i
g
n
a
l

o
u
t

M
O
D
I
F
I
E
R
S

E
N
V
E
L
O
P
E
G
E
N
.

L
i

3
-
T
O
-
l
M
I
X
E
R

i

O
U
T
P
U
T

T
R
I
G
G
E
R

I
H
I
M
i
l
l

1
1
1

A
U
D
I
O

A
M
P
L
I
F
I
E
R

C
I
C

(
Z
C

(
Z
C

C
Z

I
Z
C

n

n Sound 3

n
sound will be heard after the attack and decay phases have

ended.

r1 The envelope generator puts out an electrical signal which
tells the amplifier when to turn up the volume and how long

it should take, as well as how high to set the volume, and

fl when to turn it all the way off again. This is why the amplifier
module in the diagrams is called "VCA." This stands for Volt

age Controlled Amplifier and means that the amplifier can be

controlled by an incoming variable voltage, such as the one

supplied by the envelope generator.

ADSR Values
On the SID chip, each voice has its own envelope generator.

Within the group of seven registers (0-6) that control the three

oscillators, register 5 contains the attack and decay values in

high-low nybble format, and register 6 contains the sustain/

release values. All values are four-bit numbers (nybbles). The

attack value determines how long the amplifier should take to

reach peak amplitude (maximum volume).

The decay value determines how long the amplifier

should take to go from peak amplitude to the level specified

by the sustain value. The release value is the time the am

plifier will use to return to the lowest amplitude level ("off")

from the sustain level.

Remember, though, that on the analog synthesizer as well

as on the SID chip, the envelope will not go into effect until it

is "triggered." The lowest order bit (bit 0), the gate bit, trig

gers each envelope on the SID chip. On the analog syn

thesizer, triggering of the envelope is accomplished through

the use of an attached keyboard module. When a key is

pushed down (and as long as it is held down), the attack,

decay, and sustain values will go into effect in order. When

H the key is released, the release phase is triggered, and the

VCA will close down the volume of the signal it is operating

on over the length of time specified by the release value.

["I Program 2 demonstrates the effect of the various ADSR
values:

n Program 2* Effects of the ADSR Values

100 FORI=0TO24:POKE54272+I,0:NEXT :rem 237

130 POKE54277,240:REM SLOW ATTACK/FASTEST DECAY RA

P| TE :rem 132

3 Sound

140 POKE54278,240:REM HIGHEST SUSTAIN LEVEL/FASTES

T RELEASE RATE : rem 207

145 POKE54272,37:POKE54273,17:REM OSC1 :rem 153

150 POKE54276,129:REM NOISE WAVE OSC1 :rem 122

155 POKE54296,15 :rem 102

160 FORT=1TO4500:NEXT:REM DURATION FOR ATTACK,DECA

Y, AND SUSTAIN :rem 0

170 POKE54276,128:REM BEGIN RELEASE CYCLE :rem 138

180 FORT=1TO4500:NEXT:REM REL. DURATION :rem 188

190 END :rem 113

In line 130, the attack value is all the way on, and the decay

value is all the way off. In line 140, the sustain value is all the

way on, and the release value is off. Each value is a four-bit

number, 0 to 15. With the attack and sustain setting, the actual

POKE value is shifted to the high nybble; thus, 240 is actually

the attack value equal to 15 (for slowest attack) multiplied by

16. The sound generated is a random noise that gradually gets

louder and then suddenly stops. It stops suddenly because we

have set the release value to 0, allowing no time for a gradual

decrease in volume.

Change the value 240 in line 140 to 255 and run the pro

gram again. The sound should slowly fade away. The high

nybble of 54278 (sustain) is now 240 and the low nybble (re

lease) 15, making a total of 255, the value we just POKEd into

54278. Try lowering the sustain value by two or three (2*16 or

3*16); that is, POKE 54278 with either 223 or 207 and see

what happens. The sound should build up as before but

should then fall off markedly. Change the decay value from 0

in line 130 to about 8 (POKE 54277,248) and hear how the

drop-off is now smoothed out. Similarly, shorten the attack

time to vary the start of the sound the same way the sustain

value was altered. The results should be vastly different from

those we started with, and we've been working with only two —

registers! LJ
Look now at line 170. Notice that we subtracted one from

the value we originally POKEd into 54276 in line 150. This ,-■■-

zeros the gate bit in 54276, and it is the same as taking your LJ
finger off the keyboard on the analog synthesizer: the release

cycle gets triggered. Of course, it works only if the VCA sus-

tain level has been previously raised high enough to hear the LJ
tone. The delay loop in line 180 is also necessary to allow the

release cycle to reach its lowest level. .

112 - _

U

n

n
' ' Sound 3

n
For more explanation about the ADSR values, as well as a

sound editor program that lets you alter the values and im-

l| mediately hear the result, take a look at "Sound Editor 64,"

another article in this book.

|—| Using Filters to Color Sound

Let's add a filter to the path in Figure 3. The path from the

VCA to the mixer is broken so that filtering the modulated sig

nal will be more easily heard. In our diagram, we have a

choice of a high-pass or low-pass filter. On the SID chip, we

can also utilize a band-pass filter.

The pot on each filter is used to adjust the cutoff fre

quency, which is the frequency above which a high-pass filter

allows frequencies in the sound spectrum to be heard and be

low which the filter suppresses them. The low-pass filter is the

opposite of the high-pass filter in that it suppresses the fre

quencies above the cutoff value and allows those below it to

sound. A band-pass filter allows frequencies to be heard

within a narrow band surrounding the cutoff frequency (called

a center frequency in this case), while suppressing all the rest.

Use of filters constitutes a technique called subtractive syn

thesis, which selectively eliminates available frequencies of the

sound spectrum, producing widely varying sound colors.

Figure 4 indicates that we've decided to filter VCO1

through a high-pass filter. VCO1 is set to produce a sawtooth

wave. The path of the patch runs out of VCO1 into the VCA,

and from the VCA into the high-pass filter. From there, the

signal heads to the mixer and out to the speaker. Program 3 is

a routine that does the same thing.

Program 3. Filtered Sound

200 FORI=0TO24:POKE54272+1,0:NEXT :rem 238

f-n 210 POKE54272,37:POKE54273,17:REM OSC1 : rem 146

! I 230 POKE54277,120:REM MED. ATTACK/MED. DECAY
:rem 255

240 POKE54278,245:REM HIGHEST SUSTAIN/MED. RELEASE

II :rem 27
245 POKE54293,40:POKE54294,5:REM CUTOFF FREQ. FOR

{SPACE}HIGH-PASS FILTER :rem 165

R250 POKE54295,129:REM MED RES'NCE AND OSC1 TO BE F

ILTERED :rem 212

253 POKE54276,33:REM SAWTOOTH WAVE OSC1 :rem 67

255 POKE 54296,79:REM FULL VOL AND CHOOSE HI-PASS

(I {SPACE}FILTER :rem 2

_ 113

F
i
g
u
r
e
4
:
U
s
i
n
g
a
H
i
g
h
-
P
a
s
s

F
i
l
t
e
r

S
O
U
R
C
E
S

R
N
D
.

G
E
N
.

•

M
O
D
I
F
I
E
R
S

E
N
V
E
L
O
P
E
G
E
N
.

s
i
g
n
a
l

i
n

H
I
P
A
S
S

O
U
T
P
U
T

-
o
u
t

I
M
I
M
i
l
l

I
I
I

A
U
D
I
O

A
M
P
L
I
F
I
E
R

T
R
I
G
G
E
R

r

C
I

C
C

C
i

C
I

I
Z
□

□

n

H

" Sound 3

n
260 FORJ=1TO250:POKE54294,J:NEXT:REM SWEEP CUTOFF

{SPACE}FREQ. UPWARDS :rem 188

!j 270 POKE54276,32:REM{2 SPACES}BEGIN RELEASE CYCLE

:rem 85

280 FORT=1TO500:NEXT:REM REL. DURATION :rem 137

290 POKE54296,0:REM TURN OFF VOLUME :rem 74

295 END :rem 119

To hear the effect of the filter, we will sweep the value of the

cutoff frequency in line 260 from low to high. This will allow

less and less of the available sound spectrum to be passed by

the filter. Listen carefully to the richness of the tone as it is

diminished. Switch the wave form to noise in line 253 by

POKEing 129, instead of 33, into 54276 to hear a different

version of the effect. Many effects are possible using filters.

Frequency Modulation
Figure 5 introduces another technique called frequency

modulation. Notice now that the signal from VCO1 is entering

the control input of VCO2, and that the signal from VCO2 is

going through the VCA and on to the mixer. The frequency of

VCO2 is now being controlled automatically by the output

voltage of VCO1 instead of manually by the pot. This is an

other example of voltage control. The envelope generator con

trolled the VCA before and an oscillator now controls a VCO

(Voltage Controlled Oscillator).

Frequency Modulation (FM), along with filtering and en

velope control, is one of the most significant techniques of

sound synthesis. Using one signal source to alter the sound

quality of another provides incredibly powerful and varied

tools for sound manipulation. Program 4 is one simple ex

ample of the FM technique.

rn Program 4. Siren

300 FORI=0TO24:POKE54272+I,0:NEXT :rem 239

305 POKE 54278,240:REM PULL SUSTAIN/FASTEST RELEAS

E RATE :rem 129

310 POKE54276,33:REM SAWTOTH WAVE OSC1 :rem 238

320 POKE54286,3:REM CONTROL FREQ. OSC3 :rem 223

330 POKE54290,16:REM TRIANGLE WAVE OSC3 :rem 27

H 340 POKE54296,175:REM FULL VOL, & SELECT BAND-PASS
& DISC. OSC3 FROM AUDIO :rem 157

350 POKE54295,1:REM NO RES'NCE & CHOOSE OSC1 FOR F

pi ILTER :rem 121

! ! 360 POKE54293,255:POKE54294,78:REM CUTOFF FREQ.
:rem 228

n

n
115

F
i
g
u
r
e
5
:
F
r
e
q
u
e
n
c
y
M
o
d
u
l
a
t
i
o
n

1
1
I
M
I
M
M
I
I

A
U
D
I
O

A
M
P
L
I
F
I
E
R

I

C
l
□

[Z
i

iz
i
□

iz
i
□

c
;

H

n

Sound 3

375 PORT=1TO300 :rem 126

380 F=20000+PEEK(54299)*20:REM ADD OSC3 OUTPUT TO

n {SPACE}BASE FREQ. :rem 84

! i 390 HF=INT(F/256):LF=F-256*HF:REM SPLIT NEW FREQ.
{SPACE}INTO HIGH/LOW BYTES :rem 120

400 POKE54272,LF:POKE54273,HF:REM SET NEW OSC1 FRE

I| Q :rem 229

410 NEXT:POKE 54276,32:POKE54296,0 :rem 165

420 END :rem 109

The third oscillator on the SID chip is our control os

cillator, as VCO1 is in Figure 5. We get access to a value

corresponding to the wave shape of oscillator 3 in register 27

(54299). If oscillator 3 is set to a triangle wave, the value in

register 27 will go up from 0 to 255 and then down from 255

to 0 in a symmetrical rhythm.

This is a nice shape for a siren sound, which is what Pro

gram 4 creates. Notice that the frequency of oscillator 3 in line

320 is very low. This value allows the tracing of the waveform

to be heard as a siren. The range of frequencies under approxi

mately 32 hertz is called the subaudio range and refers to the

fact that the actual waveform at these frequencies is discern

ible as individual pulses instead of as a continuous tone.

When oscillator 3's frequency is increased into the audio range

(above about 29), the quality of the resulting tone becomes

enjoyably less predictable.

Try POKEing 220 into 54286 at line 320 and running the

routine. Note how the information in register 27 (54299) is uti

lized in line 380. It is increased by a factor of 20 and then

added to the base frequency of 20000. Program 4 also uses a

band pass filter, but for no particular reason other than simply

to stick one in. Try a different value for the waveform in line

330. If you use 64 as your value, be sure to add a line to set
p| oscillator 3's pulse width.

pi Synthesized 64

I ! The techniques of sound manipulation described above, as
used with an analog synthesizer, have perhaps given you a

p better picture of the working of the SID chip. As you learn

! ! more about the internal registers which control other func
tions, you'll discover others just as interesting as those

r-i discussed here.

n

u

3 Sound '—

u
Get a copy of the Commodore 64 Programmer's Reference

Guide and read about ring modulation, filtering, and other ad

vanced techniques. Sound effects are the most directly useful [J
sound patches to work with at the start. Program 5 is an

example of one I used for a Hangman program: it's the sound

of nails being driven into wood. Imagine the other sound |_J
effects you can create for new game ideas.

The User's Guide and Programmer's Reference Guide have

suggested patches for you to try out. Put some FOR-NEXT

loops in, as we did in line 260 of Program 3, to have the com

puter "adjust the pots" for you, as it alters individual registers.

Once you've found a patch you like, save the register values

for future reference. As you become more acquainted with the

way that sounds can be altered, you will find yourself noticing

the subtler shades of sound color. You'll also begin to under

stand how the sounds on a TV commercial, videogame, or sci

ence fiction movie are created.

Program 5, Driving Nails into Wood

700 FORI=0TO24:POKE54272+I,0:NEXT :rem 243

710 CT=0 :rem 156

720 POKE54278,5:REM SUSTAIN/RELEASE srem 168

730 POKE54277,5:REM ATTACK/DECAY :rem 158

740 POKE54276,129:REM NOISE WAVEFORM :rem 157

750 POKE54295,241:REM RES'NCE & VOICE :rem 56

760 POKE54293#54:POKE54294,28:REM CUTOFF :rem 84

770 READA:REM INPUT HI BYTE FREQ.VALUE :rem 71

780 READB:REM INPUT LO BYTE FREQ.VALUE :rem 83

790 IFB=-1THEN900:REM BRANCH ON END OF DATA

:rem 195

800 POKE54273,A:POKE54272,B:REM SET FREQ. :rem 122

810 FORT=1TO35:POKE54296,79:NEXT:REM TURN ON VOLUM

E & FILTER srem 157

820 POKE54276,128:REM RELEASE CYCLE :rem 39 ._

830 GOTO730:REM GET NEW NOTE :rem 140 M
840 DATA17,37,19,63,21,154,22,227,25,177,28,214,32

,94,34,175,34,255 :rem 35

850 DATA -1,-1 :rem 159 i"\

900 CT=CT+1:IFCT+K6THENRESTORE:FORT=1TO100*CT:NEX lJ
T:GOTO770 :rem 67

910 POKE54296,0:REM TURN OFF VOLUME :rem 73

n

n
: Sound 3

n

n

Daniel L. Riegal

The SID chip in the Commodore 64 is certainly

versatile, but it can be confusing and difficult to

use. Here's a program that will help—"Sound

Editor 64." With it, you can experiment with

sound on the 64 and even have it write BASIC

sound routines for you.

Perhaps the most outstanding, and confusing, feature of the

Commodore 64 is the Sound Interface Device (SID). Many

sounds can be produced by the SID chip that are not possible

on other home computers, with a quality that is truly amazing.

However, it takes understanding and patience to coax just the

right sounds from the SID.

While other home computers only require settings of fre

quency and duration to produce sound or music, the Com

modore 64 has several parameters used to shape, modulate,

and filter the sound. Unless you understand the basics in

volved in setting these parameters, you can expect little more

than pops, clicks, or beeps. "Sound Editor 64" allows input of

the various parameters in a straight-forward manner so that

you will not only become familiar with them, but will also be

able to try various combinations to see the impact that each

J I has on the sound.

Attack, Decay, Sustain, and Release

H"j The SID chip has three voices which can act independently or
in combination. Sound Editor 64 uses voice 1 as its primary

sound source. There is one register, at location 54296, which

[—j controls the volume of all three voices. It must be set with a

value from 1 to 15 for sound to occur. This program uses the

maximum volume setting, 15.

P"! The volume of a sound passes through four phases, called

n

3 Sound

the envelope. These phases consist of Attack, Decay, Sustain,

and Release (ADSR). Each voice has a gate, or switch, that is

used to initiate the attack phase when set to 1, or initiate the

release phase when reset to 0. The attack rate specifies the

time allowed to reach maximum volume, as determined by the

setting at location 54296. An attack value of 0 is very short,

and 15 is very long. Explosions and percussion instruments

have a low Attack value.

The decay rate is the time allowed for the volume to fall

from the maximum to the sustain volume. As in attack, a value

of 0 is short, and 15 is long. The sustain parameter determines

the volume at which the sound is maintained until the voice

gate is reset to 0, when the release phase begins. A sustain

value of 0 is minimum volume, 8 is half of maximum volume,

and 15 is the maximum volume attained during the attack

phase. The release rate determines how fast the volume falls

to 0 from the sustain volume after the voice gate is reset to 0.

A value of 0 is fast, while a value of 15 is slow.

Duration

Duration, another parameter used with the SID chip registers,

is the amount of time between turning the voice gate on and

resetting it to 0. The values for duration used by Sound Editor

64 are intervals of 60 per second. Thus a value of 60 is 1 sec

ond and a value of 6 is .1 second (or 100 milliseconds). As

you can see, the envelope is closely related to time. Each

phase takes an amount of time as specified for each parameter.

The duration time must be long enough to allow attack and

decay to complete before the voice gate is reset. Otherwise

sound distortions may occur. For this reason, very short

sounds usually require ADSR values of attack 0, decay 0, sus

tain 15, release 0, as well as a small duration.

The SID chip can produce eight octaves (0-7) of tones. .~

Sound Editor 64 dynamically generates and stores the tone *—j

settings of octave 7 using the highest note, B, as a base. The

octave is divided into 12 tones, where each tone's frequency is r "j

2 IT (1/12) lower than the next higher tone (A#=B/2 IT (1/12)). u
The frequency of a tone is also half that of the same note in

the next higher octave (octave 6=octave 7/2). Therefore, the i j

program can generate the scale for any octave N (where N is I—'
0-7) by using the formula OCTAVE N=OCTAVE 7/2fl(7-N).

This saves memory by eliminating the need for an array of 96 f" j

120

I 1

n

H

Sound 3

frequency settings to define eight octaves of 12 tones each; in

stead, it uses one octave and an array of 12 tones to calculate

P] the settings.

Waveform

f""j A sound's waveform determines its harmonic content, or

"color." The SID chip provides triangle (17), sawtooth (33),

pulse (65), and noise (129) waveforms. These can produce

sounds of many different qualities, and the best way to learn

about them is to just experiment with Sound Editor 64. When

the Pulse waveform is selected, you also have to provide a

value for the Pulse Width (0-4095). A value of 2048 produces

a square wave, which creates a clear, hollow sound. Other val

ues produce varying degrees of "body." Waveform values 19

and 21 combine the frequencies of voices 1 and 3 to produce

more complex sounds. Value 19 synchronizes the two fre

quencies to produce complex harmonic structures, while value

21 modulates voice 1 with voice 3 to produce ringing sounds

such as bells or gongs. Sound Editor 64 uses note C for voice

3's frequency, one octave lower than that specified for voice 1.

Sound Experimentation

Sound Editor 64 operates very simply. After you've typed it in

and SAVEd it, RUN it. You'll see a title, and then the first

prompt will appear. As each parameter prompt shows on the

screen, enter the a value which falls in its range, then press

RETURN. The parameters you'll need to fill, and the range of

possible values listed in parentheses are:

Attack value (0-15)

Decay value (0-15)

Sustain value (0-15)

Release value (0-15)

|—| Octave value (0-7)

1 Duration loop value (0 on up)

Waveform (17,19,21,33,65, or 129)

P] Pulse width value (0-4095) (Only used when waveform value

1 f 65 is entered.)

When you're entering values, make sure that you only use

j""| numerals. If you use any other characters, such as letters or
other symbols on the keyboard, you'll have to start over again.

Each parameter must have a value from the stated range

j""] entered when the prompt appears.

p~s 121

u

3 Sound U

n
The duration loop value changes the speed at which the

tones are played. If you want to hear each note more clearly,

increase this value. The waveforms and their values are: jj

Triangle (17)

Synchronized voices 1 and 3 (19)

Modulated voices 1 and 3 (21) M

Sawtooth (33)

Pulse (65)

Noise (129)

After you've entered the various parameter values, you

can choose one of the four options using the appropriate func

tion key. The functions, and the appropriate keys, are:

BASIC (fl). This option will list the BASIC program lines you

would add to a program of your own to produce the sound for

note C of the octave you selected.

Change (f3). You can modify the existing parameters with this

option. After pressing f3, use the RETURN key to move to the

line you want to change. Enter the modification, making sure

you erase any unwanted numerals that may extend beyond

the value you now desire, and hit RETURN.

Scale (f5). This option plays the 12 tones of the octave you've

specified. Use this to hear what the sound is like.

Quit (f7). This terminates the program.

Sound Starts

Sound Editor 64 is best used to experiment with the various

parameters of the SID chip's registers. To begin with, try out

some of the following values. Varying the duration and octave

values will change the sound you hear, making it more or less

like the instrument listed.

u

u

D

U

Sound 3

Table 1;

Sound

Trumpet

Violin

Xylophofte

Piano

Flute

Harpsi

chord

.Organ ,

Clarinet

Chimes

*NA=Nbtt

Instrument Values

Attack

6

10

0

0

9

0

0

8

0

Decay

0

8

9

9*

10 .

9

. 0

4

11

Applicable

Sustain

8.

10

0

0

0

0

8

0

Release

0

9

0

9

0

0

0

0 :
9

Waveform

33

,33

17 ;

V 65 *

"^ 17 .'.•

33

1-7

19

■v jt - .c.^

Pulse Width*

Wa ,.';;
N/A, .;

--N/A

1060 ;

;n/a

; N/A ' ::
,N/A

Sound Editor 64
For mistake-proof program entry, be sure to use "Automatic Proofreader/' Appendix J.

100. REM SOUND EDITOR :rem 197

110 PRINT" {CLR}", "SOUND EDITOR{3 DOWN}11 : rem 233

115 DIMF(11):F(11)=64814:FORF=10TO0STEP-1:F(F)=INT

(l/2+F(F+l)/2t(l/12)):NEXT :rem 37
120 SD=54272:V=SD+24:FORI=SDTOV:POKEI,0:NEXT:POKEV

,15 :rem 111

130 DIMN$(11):N$(0)="C ":N$(1)="C#":N$(2)="D ":N$(

3)="D#":N$(4)="E ":N$(5)="F " :rem 149

140 N$(6)="F#":N$(7)="G ":N$(8)="G#":N$(9)="A ":N$

(10)="A#":N$(11)="B ":GOTO200 :rem 246

150 PRINT"{HOME}{2 DOWN}ENTER OPTION [Fl] BASIC

{2 SPACES}[F3] CHANGE" :rem 91
152 PRINTTAB(13)"[F5] SCALE{2 SPACES}[F7] QUIT"

:rem 8

153 GETOP$:IFOP$=""THEN153 :rem 17

155 IFOP$="{F7}"THENPRINT"{CLR}";:POKEV,0:END

:rem 240

160 IFOP$="{F3}"THEN200 :rem 177

165 IFOP$="{F1}"THEN500 :rem 184

168 IFOP$="{F5}"THEN400 :rem 188

170 GOTO150 :rem 103

123

3 Sound

200 INPUT"{DOWN}ENTER{2 SPACES}ATTACK VALUE (0-15)

117 A :rem 186

205 IFA<0ORA>15THENPRINT"{3 UP}":GOTO200 :rem 17

210 INPUT"ENTER{3 SPACES}DECAY VALUE (0-15)";D

srem 91

215 IFD<0ORD>15THENPRINT"{2 UP}":GOTO210 :rem 136

220 POKESD+5,A*16+D :rem 39

230 INPUT"ENTER SUSTAIN VALUE (0-15)";S :rem 45

235 IFS<0ORS>15THENPRINT"{2 UP}":GOTO230 :rem 170

240 INPUT"ENTER RELEASE VALUE (0-15)";R :rem 7

245 IFR<0ORR>15THENPRINT"{2 UP}":GOTO240 :rem 170

250 POKESD+6,S*16+R :rem 75

260 INPUT"ENTER{2 SPACES}OCTAVE VALUE{2 SPACES}(0-

7)";OC :rem 219

261 IFOC<0OROO7THENPRINT"{2 UP}":GOTO260 :rem 251

280 INPUT"ENTER DURATION LOOP{2 SPACES}VALUE"?DU

:rem 221

285 IFDU<1THENPRINT"{2 UP}":GOTO280 :rem 99

290 INPUT"ENTER WAVEFORM 17 19 21 33 65 129";W

:rem 136

294 RS=0:H3=0:L3=0:IFW=19ORW=21THENRS=1 :rem 154

295 IFRS=lTHENSC=INT(F(0)/2t(8-OC)):H3=INT(SC/256)
:L3=SC-H3*256 :rem 217

296 POKESD+15,H3:POKESD+14,L3 :rem 218

300 IFW=65THEN310 :rem 228

303 PRINT"{38 SPACES}":GOTO150 :rem 112

310 INPUT"ENTER PULSE WIDTH VALUE (0-4095)";PW

:rem 206

315 IFPW<0ORPW>4095THENPRINT"{2 UP}":GOTO310

:rem 188

320 PH=INT(PW/256):PL=PW-PH*256 :rem 95

330 POKESD+2,PL:POKESD+3#PH:GOTO150 :rem 172

400 FORF=0TOll:SC=INT(F(F)/2t(7-OC)):X=INT(SC/256)
:POKESD+1,X:POKESD,SC-256*X :rem 186

410 TD=TI+DU:POKE53280,F:PRINT"{HOME}{23 DOWN}
{3 RIGHT}";N$(F):POKESD+4,W :rem 202

420 IFTKTDTHEN420 : rem 91

430 POKESD+4,W-1:NEXT:POKESD+4,0:POKE53280,14:PRIN ",

T"{UP}{5 SPACES}":GOTO150 :rem 114 LJ
500 PRINT"{HOME}{14 DOWN}10 SD=54272:V=SD+24"

:rem 149

502 PRINT"15 FORI=SDTOV:POKEI,0:NEXT:POKEV,15" i I
:rem 163 u

504 SC=INT(F(0)/2t(7-OC)) :rem 117
505 H=INT(SC/256):L=SC-256*H :rem 82 j—(

510 PRINT"20 POKESD,";MID$(STR$(L),2);":POKESD+1," LJ

;MID$(STR$(H),2);"{4 SPACES}" :rem 129

520 PRINT"30 POKESD+5,";MID$(STR$(16*A+D),2);

:rem 239 [J

124

u

H

Sound 3

n
525 PRINTM:POKESD+6,M7MID$(STR$(16*S+R),2);"

{6 SPACES}" :rem 48

530 IFW=65THENGOSUB630 :rem 110

535 IFRS=1THENGOSUB650 :rem 137

540 PRINT"40 TD=TI+";MID$(STR$(DU),2);":POKESD+4,"

;MID$(STR$(W),2);"{9 SPACES}" :rem 144

545 PRINT" 50 IFTKTDTHEN50{17 SPACES}" : rem 104

550 PRINT"60 POKESD+4,0{20 SPACES}" :rem 82

560 PRINT"{26 SPACES}" :rem 108

600 GOTO150 :rem 101

630 PRINT"35 POKESD+2,";MID$(STR$(PL),2); :rem 78

640 PRINT":POKESD+3,";MID$(STR$(PH),2);"

{10 SPACES}":RETURN :rem 124

650 PRINT"35 POKESD+15,";MID$(STR$(H3),2); :rem 99

660 PRINT":POKESD+14,";MID$(STR$(L3),2);"

{7 SPACES}":RETURN :rem 151

n

n

n

125

u

3 Sound LJ

SYS Sound
Michael Steed __

M
POKEing the SID chip's registers produces UJ
sounds on the 64. But that can become com

plicated and discouraging, especially to the

beginning programmer. "SYS Sound" is a

machine language program that will help you

create sound in your own programs, without

using those cumbersome POKEs.

The Commodore 64 has an amazing sound chip, as you've

probably already discovered. However, to really make the SID

chip sing, you've got to go through the laborious process of

POKEing in values to various registers. If you've tried to use

sound in your own programs, you know how difficult this can

be. That is, until now. "SYS Sound" will make creating sound

much easier, and you won't have to use a single POKE.

Careful Entering

Type in Program 1, SYS Sound, taking special care as you

enter the DATA statements. It's a good idea to save a copy

before you run the program, for one error can cause it to

crash. SYS Sound includes a total checksum, which will tell

you if you've entered all the DATA correctly, as well as in

dividual line checksums if you use "Automatic Proofreader,"

found in Appendix J. You can even SAVE this program on a

machine language monitor such as "Supermon." Other mon- —

itors, such as "Micromon," will not work, however, because | J
both the program and monitor will try to use location 49152.

The program displays the directions to save it with a monitor.

After you've got a working copy of SYS Sound, type 1 I
RUN. You'll have to wait for a moment while the DATA is

loaded into the computer's memory. Now you're ready to use

SYS Sound in your own programming. < 1

U

126

H

n
Sound 3

SYSing Sounds

_. To use SYS Sound, all you need to do is type SYS 49152, fol-

I I lowed by any of several possible parameters. The parameters
must be separated by commas. The number 49152 could (and

^ probably should) be defined as a variable, such as S or

I I SOUND. You can then call SYS Sound directly from your own

program, as long as it's still in memory. Once you've turned

the computer off, however, SYS Sound disappears. You'd have

to load it again to use it.

The parameters used in SYS Sound, and their meanings

are:

• Vx, where x is the voice number used for the note (1, 2,

or 3). More than one voice may be used at the same time (see

Program 2).

• Ax, where x is the attack rate of the note. This is the

time it takes the sound to reach its highest volume. The larger

the number, the longer it takes. (See the figure for a graphic

description of attack, decay, sustain, and release.)

• Dx, where x is the decay rate of the note. This is the

time it takes the sound to soften to the sustain volume.

• Sx, where x is the sustain level of the note. The sound

remains at this volume until the release starts.

• Rjc, where x is the release rate of the note. The release

rate is the time it takes the sound to drop from the sustain

volume to silence.

• Wx[y], where x is the letter representing the waveform

used for the sound. This can be N (noise), S (sawtooth), T (tri

angle), or P (pulse). If the chosen waveform is pulse, then a

pulse rate (0 to 4095) must be entered after the waveform let

ter, such as WP2048 for a square wave.

• Fx, where x is the frequency of the note (0 to 65535).

rn Higher frequencies produce higher notes.

' ' • Lx, where x is the volume (loudness) of the note (0 to
15). Note that this is the overall volume, so all the voices will

r—| be affected by it.

f ' • C clears the sound chip. This is equivalent to the
following in BASIC:

P| 10 S=54272:FOR 1=0 TO 24:POKE S+I,0:NEXT

127

3 Sound

ADSR Envelope

^Attack^U-Decay^U-Sustain J<Release—J

LJ

U

D

U

U

Once certain parameters have been set, they need not be en

tered the next time the routine is used. For example, if all your

sound effects were going to be done with voice 1, at volume

15, with the sawtooth waveform, attack 0, decay 9, and sus

tain and release 0, you could set all these at the beginning of

your program by:

10 S=49152:SYS S,C,VI,L15,WS,D9

All parameters default to 0 initially, so A, S, and R needn't be

entered. Then all that would need to be done to play a note

would be:

20 SYS S,F5000

Any valid numeric expression may be used after the parameter

letter. Also, if a parameter is entered more than once, only the

last case will be considered. For example, SYS S,WS,WT,

A0,A6 is effectively the same as SYS S,WT,A6.

To clear up any possible confusion, Program 2, "Circus

Sounds," provides a simple example of a sound created with

SYS Sound and its various parameters.

Program 1. SYS Sound
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

100 DATA 32,121,0,208,3,76,241,192,201 :rem 52

110 DATA 44,240,3,76,67,193,32,115,0 :rem 224

120 DATA 162,8,221,76,193,240,6,202,16 :rem 68

U

□

U

u

128

n Sound 3

n

n

n

n

n

130 DATA 248,76,67,193,138,10,170,189 :rem 46

140 DATA 85,193,133,251,189,86,193,133 :rem 96

150 DATA 252,32,50,192,76,0,192,108,251 :rem 121

160 DATA 0,32,55,193,201,1,144,4,201 :rem 209

170 DATA 4,144,3,76,72,193,202,142,114 :rem 70

180 DATA 193,96,32,55,193,10,10,10,10 :rem 15

190 DATA 141,123,193,173,120,193,41,15 :rem 71

200 DATA 13,123,193,141,120,193,96,32 :rem 17

210 DATA 55,193,141,123,193,173,120,193 :rem 124

220 DATA 41,240,13,123,193,141,120,193 :rem 58

230 DATA 96,32,55,193,10,10,10,10,141 :rem 4

240 DATA 123,193,173,121,193,41,15,13 :rem 18

250 DATA 123,193,141,121,193,96,32,55 :rem 29

260 DATA 193,141,123,193,173,121,193 :rem 236

270 DATA 41,240,13,123,193,141,121,193 :rem 64

280 DATA 96,32,115,0,162,3,221,103,193 :rem 65

290 DATA 240,6,202,16,248,76,67,193,224 :rem 137

300 DATA 1,240,6,32,115,0,76,196,192 :rem 223

310 DATA 32,44,193,192,16,144,3,76,72 :rem 29

320 DATA 193,142,117,193,140,118,193 :rem 237

330 DATA 162,1,189,107,193,141,119,193 :rem 83

340 DATA 96,32,44,193,142,115,193,140 :rem 30

350 DATA 116,193,96,32,55,193,141,122 :rem 33

360 DATA 193,96,169,0,162,24,157,0,212 :rem 80

370 DATA 202,16,250,169,0,141,115,193 :rem 20

380 DATA 141,116,193,76,115,0,173,115 :rem 26

390 DATA 193,208,5,173,116,193,240,37 :rem 38

400 DATA 174,114,193,189,111,193,133 :rem 238

410 DATA 251,169,212,133,252,160,6,185 :rem 75

420 DATA 115,193,145,251,136,16,248,160 :rem 128

430 DATA 4,173,119,193,9,1,145,251,173 :rem 79

440 DATA 122,193,141,24,212,96,165,122 :rem 73

450 DATA 208,2,198,123,198,122,76,121 :rem 35

460 DATA 0,32,166,173,32,247,183,166 :rem 240

470 DATA 20,164,21,96,32,44,193,152,208 :rem 128

480 DATA 11,224,16,176,7,138,96,162,11 :rem 82

490 DATA 76,58,164,162,14,208,249,86 :rem 5

500 DATA 65,68,83,82,87,70,76,67,53,192 :rem 157

510 DATA 72,192,94,192,112,192,134,192 :rem 86

520 DATA 152,192,203,192,213,192,220 :rem 228

530 DATA 192,78,80,83,84,128,64,32,16 :rem 45

540 DATA 0,7,14,0,0,0,0,0,0,0,0,0,0 :rem 111

550 PRINT"{CLR}{DOWN}PLEASE WAIT..." :rem 136
560 FORI=49152TO49531:READJ:POKEI,J:K=K+J:PRINT"

{HOME}";SPC(54);J:NEXT :rem 247

570 IFK<>44621THENPRINT"ERROR IN DATA STATEMENTS":

STOP :rem 180

580 PRINT"{CLR}{3 DOWNjSYS SOUND"SPC(31) "g9 T5|":

Q$=CHR$(34) :rem 251

129

3 Sound

590 PRINT"TO SAVE IN MONITOR:":PRINT"{DOWN}.S HQ$"

SYS SOUNDliQ$II,01,C000,C17C :rem 85

600 PRINTSPC(15)Ilttll:PRINTSPC(15)II{DOWN}01 FOR TAP

E,M:PRINTSPC(15)"08 FOR DISK :rem 23

Program 2. Circus Sounds

100 REM *** SYS SOUND EXAMPLE *** :rem 5

110 REM PARENTHESES IN 180, 190, 200 :rem 108

120 REM ARE JUST FOR CLARITY :rem 148

130 REM :rem 120

140 REM * EXPERIMENTlll * :rem 49

150 S=49152:SYS S#C,L15:T=TIME :rem 254

160 READ D:IF D=0 THEN SYS SfC:END :rem 114

170 READ F1,F2,F3 :rem 116

180 SYS S,V1,F(F1),WS,A0,D9,S0,R0 :rem 81

190 SYS S,V2,F(F2),WS,A2,D4,S2,R2 :rem 85

200 SYS S,V3,F(F3),WT,A1,D2,S10,R10 :rem 171

210 T=T+10*D:REM DURATION :rem 246

220 IF T>TIME GOTO 220 :rem 177

230 GOTO 160 :rem 101

300 DATA 2,6430,3215,1607 :rem 201

310 DATA 2,7217,3215,1432 :rem 202

320 DATA 2,8101,4050,2408 :rem 198

330 DATA 2,8583,5728,3215 :rem 223

340 DATA 1,9094,4547,2408 :rem 222

350 DATA 1,9634,4817,2408 :rem 223

360 DATA 2,12860,8101,2864 :rem 8

370 DATA 2,3215,0,0 :rem 149

380 DATA 2,10814,8101,2864 :rem 7

390 DATA 2,9634,6430,2145 :rem 219

400 DATA 2,2145,1607,1351 :rem 200

410 DATA 2,8583,5407,1607 :rem 219

420 DATA 2,1607,1351,1607 :rem 204

430 DATA 2,2145,1072,536 :rem 155

440 DATA 2,8583,2703,1607 :rem 218

450 DATA 2,8101,2703,803 :rem 154

460 DATA 2,7217,5407,3215 :rem 214

470 DATA 2,8101,5728,2408 :rem 217

480 DATA 2,2025,1607,803 :rem 158

490 DATA 2,11457,8101,1607 :rem 7

500 DATA 2,2025,1607,803 :rem 151

510 DATA 2,3608,2864,1432 :rem 213

520 DATA 2,7217,5728,2864 :rem 226

530 DATA 2,8101,5728,4817 :rem 220

540 DATA 2,6430,3215,1607 :rem 207

550 DATA 2,7217,5407,2145 :rem 215

560 DATA 2,3215,2703,0 :rem 50

570 DATA 2,10814,3215,1607 :rem 3

u

u

Q

U

U

U

u

G

130
1 /

u

n
Sound 3

r I

n

580 DATA

590 DATA

600 DATA

610 DATA

620 DATA

630 DATA

640 DATA

650 DATA

660 DATA

670 DATA

680 DATA

690 DATA

700 DATA

710 DATA

720 DATA

730 DATA

740 DATA

750 DATA

760 DATA

770 DATA

780 DATA

790 DATA

800 DATA

810 DATA

820 DATA

830 DATA

840 DATA

850 DATA

860 DATA

870 DATA

880 DATA

890 DATA

900 DATA

910 DATA

920 DATA

930 DATA

940 DATA

2,2145,1607,1351

2,1072,536,0

1,6430,1607,0

1,6430,1607,0

2,6430,1607,0

2,6430,1607,803

2,6430,3215,1607

2,7217,3215,1432

2,8101,4050,2408

2,8583,5728,3215

1,9094,4547,2408

1,9634,4817,2408

2,12860,8101,2864

2,6430,0,0

2,10814,8101,2864

2,9634,6430,2145

2,1072,1607,1351

2,8583,5407,1607

2,1607,1351,1607

2,2145,1072,536

2,8583,2703,1607

2,8101,5728,2408

2,7647,6430,2703

2,7217,3608,2864

2,11457,7217,2408

2,10814,7217,2703

2,4817,7217,2864

2,12860,6430,803

2,10814,6430,4291

2,9634,6430,803

2,8583,4291,3215

2,9634,8101,5728

2,1607,3215,0

2,9634,5728,1804

2,2025,4050,0

6,8583,5407,1072

0

:rem 209

:rem 6

:rem 48

:rem 49

:rem 51

:rem 159

:rem 208

:rem 209

:rem 205

:rem 230

:rem 229

:rem 230

:rera 6

:rem 149

:rem 5

:rem 217

:rem 205

:rem 226

:rem 211

irem 162

:rem 225

:rem 222

:rem 217

:rem 223

:rem 11

:rem 6

:rem 229

:rem 214

:rem 9

:rem 173

:rem 227

:rem 231

:rem 50

:rem 227

:rem 45

:rem 226

:rem 231

131

3 Sound

Jeff Behrens

'The Note Name Game" is an educational pro

gram which makes learning the notes of the

musical scale easy and fun.
■■■■■■■■ ^.^. .^_.. :::.: ■ -;■:: .1

U

u

u

u

Musical notation is like anything else—it's easy once you

learn it, but learning it is not always easy.

Sight-reading of notes is vital for anyone who wants to

play a musical instrument, because instant note recognition is

a must. That's the idea behind "The Note Name Game." My

daughters, who are taking piano lessons, love playing it. Al

though it does not teach everything about musical notation, it

does help students to practice quick recognition of notes in the

treble and bass clefs.

Treble or Bass

The program begins by asking whether you want to practice

notes on the treble clef (enter a T), the bass clef (B), or a mix

ture of both (M). The program then selects a note at random

and places it on the appropriate clef.

Next, the program asks for the letter name of the note

displayed. If your response is correct, you are told so, and the

next note is displayed. If your response is wrong, the correct

answer is highlighted on the screen and the next note is j <
shown. The program constantly updates your score and dis

plays it on the screen.

Notes are shown in sets of ten. If you wish to quit before | !
finishing a set, type Q instead of the answer. Whether you fin

ish or not, the score is printed and you are asked if you want

to play again. j [

Customizing the Program

Depending on personal preference, there are some changes M

you might want to make. I find the TV picture is sharpest

u

n

Soumd 3

when the screen and border are black and the cursor blue dur-

ing the game. You may, of course, specify any screen/border

combination by substituting the appropriate number for the 0

in the POKE statement on line 185 for the background and the

value in the POKE V+32 statement in line 5 for the border

color. You can even change the background color for the title

screen by altering the POKE V+33 statement in lines 5 and

325. (See Appendix E for possible combinations).

The variables R and W, respectively, are the number of

right and wrong answers. The string variable N$(2,24) is a

string array containing the note names and the POKE values

for the sound registers.

The Note Name Game
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

5 PRINT"{CLR}":V=53248:SD=54272:POKE646,14:POKEV+3

2,0:POKEV+33,7:DIM N$(2,24):SC=0 :rem 78

6 NO%=25:POKEV+21,0 :rem 69

8 FORI=SDTOSD+28:POKEI,0:NEXTI :rem 219

10 FOR I=0TO24:READN$(0,I):NEXTI :rem 135

15 FOR I=0TO24:READN$(1,I):NEXTI :rem 141

20 FOR I=0TO24:READN$(2,I):NEXTI :rem 138

25 :::REM READ SPRITE DATA :rem 6

30 FOR I=OTO62: READQ: POKE832+I,Q: NEXTI :rem 138

35 FOR I=OTO62: READQ: POKE896+I,Q: NEXTI :rem 153

40 FOR I=OTO62: READQ: POKE960+I,Q: NEXTI :rem 141

45 :::REM TELL COMPUTER WHERE SPRITE IS :rem 137

50 POKE2042,13:POKE2043,14:POKE2044,15 :rem 116

55 :::REM POSITION SPRITE ON SCREEN :rem 165

60 POKEV+4,160:POKEV+5,70 :rem 191

65 POKEV+6,158:POKEV+7,110 :rem 250

70 POKEV+8,158:POKEV+9,171 :rem 1

75 :::REM COLOR SPRITES :rem 167

78 POKEV+41,l:POKEV+42,l:POKEV+43,1 :rem 60

80 :::REM EXPAND SPRITES :rem 228

85 POKEV+29,28:POKEV+23,28 :rem 3

90 :::REM SET SOUND PARAMETERS :rem 100

95 POKESD+24,15:POKESD+5,4:POKESD+6,170:POKESD+2 , 0

:POKESD+3,9:POKESD+12,2 :rem 164

96 POKESD+13,243:POKESD+19,0:POKESD+20,245:rem 206

100 PRINTM{CLR}{2 DOWN}";TAB(11);"{RVS}THE NOTE NA

ME GAME{OFF}" :rem 81

105 PRINT"{5 DOWN}{6 RIGHT}l WILL PLAY A NOTE FOR

{SPACE}YOU AND" :rem 79

110 PRINT"{DOWN}{3 RIGHT}THEN SHOW YOU A NOTE ON A

STAFF." :rem 47

133

u

n

3 Sound u

u
115 PRINT"{DOWN}{3 RIGHT}I WANT YOU TO TELL ME THE

NAME OFlf:PRINT"{DOWN}{3 RIGHT}THE NOTE," - ..

:rem 5 [I
120 PRINT"{3 DOWN}{4 RIGHT}INPUT{2 SPACES}{RED} ^

{RVS}B{OFF} FOR BASS, {RVS}T{OFF} FOR TREBLE,"

:rem 162 f"1

125 PRINTTAB(13);"{DOWN}OR{2 SPACES}{RVS}M{OFF} FO Lj
R MIXED." :rem 95

128 POKE198#0 :rem 200

130 GETE$:IFE$=""THEN130 :rem 83

135 IFE$o"TllANDE$o"B"ANDE$<>IIM"THEN130 irem 233

185 POKE V+33,0 :rem 16

190 FOR L=1TO10 :rem 63

200 POKEV+21,0:PRINT"{CLR}g7l{2 DOWN}{RIGHT}WHAT

{2 SPACES}NOTE":PRINT"{DOWN}{2 RIGHTjlS THIS?

{HOME}" :rem 94

205 M=25:S=0:IFE$="B"THENM=13 irem 148

210 IFE$="T"THENM=13:S=12 :rem 170

215 RN%=INT(RND(0)*M+S) :rem 48

217 IFRN%=NO%THEN215 :rem 180

218 NO%=RN% :rem 95

220 GOSUB4500 :rem 221

225 POKEV+21,28:PRINT"{HOME}{DOWN}":GOSUB750

:rem 199

230 FORZ=1TO2:PRINT"{16 RIGHT}{24 SPACES}";:NEXTZ
:rem 2

235 GOSUB750:PRINT"{HOME}" :rem 212

245 IFRN%=24THENPRINT"{HOME}{29 SPACES}***

{HOME}" :rem 248

250 IFRN%=12THENPRINTn{HOME}{l2 DOWN}{29 SPACES}

***{HOME}" :rem 189

255 IFRN%=0THENPRINT"{HOME}{23 DOWN}{30 SPACES}
***{HOME} :rem 40

260 POKE2014+54272-RN%*40,l:POKE2014-RN%*40,81

:rem 223

265 PRINT" {HOME} {20 DOWNH'Q1 TO QUIT) {HOME}"

:rem 190 r ~,

268 PRINT"{HOME}{18 DOWN}{RVS}SCORE{OFF} :";SC;" LJ
{LEFT}%{2 SPACES}{HOME}" srem 53

270 PRINT"{7 DOWN}{2 RIGHT}> "; :rem 148

273 POKE198,0 :rem 201 I [

275 GETGU$:IFGU$=""THEN275 :rem 21 '—'

280 IF(ASC(GU$)<65 OR ASC(GU$)>71)AND ASC(GU$)<>81

THENPRINT"{8 UP}":GOTO270 :rem 106 jj

285 PRINTGU$:rem 236 (J
290 IFGU$="Q"THEN 310 :rem 127

295 IFGU$=N$(0,RN%)THENGOSUB400 :rem 83

300 IFGU$<>N$(0#RN%)THENGOSUB500 :rem 132 M

134

n

n

n

n

Sound 3

305 IFR+W<>0THENSC=INT((R/(R+W))*100+•5):NEXT

:rem 156

310 POKEV+21,0: PRINT "{CLR}11 :rem 161
315 PRINT"{7 DOWN}{9 RIGHT}YOUR SCORE WAS";SC;"

{LEFT}%" :rem 174

318 POKE198,0 :rem 201

320 PRINT"{5 DOWN}{4 RIGHT}WOULD YOU LIKE TO PLAY

{SPACE}AGAIN";:INPUTY$:rem 151

325 IFLEFT$(Y$,1)="Y"THENR=0:W=0:SC=0:POKE V+33,7:

GOTO100 :rem 93

330 SYS2048:REM END OF PROGRAM :rem 5

400 :::REM CORRECT :rem 56

410 POKESD+11,129 :rem 176

420 FORI=536TO9094STEP256:PRINT"{3 DOWN}{RIGHT}
{WHT}{RVS} CORRECT {OFF}{WHT}":HI=INT(l/256):L

O=I-HI*256 :rem 71

430 PRINT"{UP}{2 SPACES}CORRECT {4 UP}g71":POKES
D+8,HI:POKESD+7,LO:NEXTI :rem 244

440 FORT=1TO10:NEXT:POKESD+11,128:FORT=1TO900:NEXT

:R=R+1:RETURN irem 59

500 :::REM INCORRECT :rem 208

505 POKESD+18,33:POKESD+16,0:POKESD+15,6 :rem 103

510 PRINT"{DOWN}SORRY, THAT'S":PRINT"{DOWN}INCORRE
CT." :rem 225

515 PRINT"{DOWN}IT WAS: ";N$(0,RN%) :rem 94
520 FORT=1TO1000:NEXT:POKESD+18,32:FORT=1TO900:NEX

T:W=W+1:RETURN :rem 117

750 FORX=1TO5 :rem 33

755 PRINT TAB(16);:FORI=1TO24:PRINT CHR$(99);:NEXT

:rem 24

760 PRINT"{16 RIGHT}{24 SPACES}";:NEXTX:RETURN

:rem 100

780 PRINT"THE NOTE WAS:";N$(0,RN%) :rem 203

785 W=W+1:RETURN :rem 5

1000 :::REM TELL COMPUTER WHERE SPRITE IS :rem 225

1005 POKE2042,13:POKE2043,14:POKE2044,15 :rem 213

1010 :::REM POSITION SPRITE ON SCREEN

1015 POKEV+4,160:POKEV+5,70

1020 POKEV+6,158:POKEV+7,110

1025 POKEV+8,158:POKEV+9,171

:::REM COLOR SPRITES

:rem 253

srem 32

:rem 82

:rem 98

:rem 255

:rem 150

1030

1035 POKEV+41,1:POKEV+42,1:POKEV+43,1

1040 :::REM EXPAND SPRITES IN BOTH DIRECTIONS
:rem 249

1045 POKEV+29,28:POKEV+23,28 :rem 96

1050 :::REM TURN ON SPRITES :rem 104

1055 POKEV+21,28 :rem 116

1999 END :rem 179

2000 PRINT:GOSUB 4970 :rem 221

135

u

Sound 3

Li
2005 FORZ=1TO2:PRINT"{16 RIGHT}{24 SPACES}";:NEXTZ

:rem 52

2010 GOSUB4970: PRINT" {HOME}11 :rem 53 [i
4500 POKE SD+1,VAL(N$(2,RN%)):POKESD,VAL(N$(1,RN%)

):POKESD+4, 65 :rem 108

4510 FORT=1TO 600 :NEXT:P0KESD+4, 64 :rem 26 | "j

4520 RETURN :rem 171 LJ
4970 PORX=1TO5 :rem 89

4980 PRINT TAB(16);: FORZ=1TO24: PRINT CHR$(99);:N

EXTZ :rem 183

4990 PRINT"{16 RIGHT}{24 SPACES}";:NEXTX:RETURN

:rem 157

5000 DATAE,F,G,A,B,C,D,E,F,G,A,B,C,D,E :rem 68

5010 DATAF,G,A,B,C,D,E,F,G,A :rera 22

5020 DATA71,152,71,12 :rem 48

5030 DATA233,97,104,143 :rem 155

5040 DATA48,143,24,210 :rem 100

5050 DATA195,209,31,96 :rem 117

5060 DATA30,49,165,135 :rem 110

5070 DATA162,62,193,60,99 :rem 12

5080 DATA5,5,6,7,7 :rem 165

5090 DATA8,9,10,11,12 :rem 47

5100 DATA14,15,16,18,21 :rem 142

5110 DATA22,25,28,31,33 :rem 144

5120 DATA37,42,44,50,56 :rem 154

5140 DATA0,224,0,0,208,0,0,216,0,0,204,0,0 :rem 5

5145 DATA206,0,0,199,0,0,199,0,0,199,0,0,206,0

:rem 238

5150 DATA0,204,0,0,216,0,0,240,0,0,224,0,1 :rem 3

5155 DATA192,0,3,192,0,6,192,0,12,192,0,24,192

:rem 248

5160 DATA0,48,192,0,96,192,0,224,192,0 :rem 121

5170 DATA48,111,128,97,248,192,195,96,96,198,96,48

,195,104,48,193 :rem 246

5175 DATA232,48,96,248,96 :rem 27

5180 DATA112,96,224,56,96,192,28,99,192,7 :rem 52

5185 DATA111,0,1,248,0,0,96,0,0,0,0,0,0,0,0,0,0

2rem 238 I I

5190 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 33 L-j
5200 DATA 0,248,0,3,6,0,6,3,128,6,0,198,3,192,198,

3,192,192,0,0,198,0,1,134,0,1 :rem 8 r ,

5210 DATA128,0,3,0,0,3,0,0,6,0,0,12,0,0,24,0,0,112 LJ
,0,1,192,0,3,0,0,0,0,0,0,0,0 :rem 142

5220 DATA0,0,0,0,0,0 :rem 223

136

H

n

n

Colors, Characters, and Motion 4

Tom R. Halfhill

What are "custom characters'? Why might you

want them? Are they hard to program? How do

they work? This introduction to the concept of

custom characters answers all these questions

and more. Another article in this book, "How to

Make Custom Characters on the 64," shows you

exactly how to program custom characters.

Perhaps you've admired the screen graphics of a favorite

arcade-style game, or the Old English letters of a Gothic text

adventure. These kinds of shapes and special characters are

not built into the computer itself. Maybe you've wondered

how these effects are achieved and if they are difficult to

program.

The secret is a technique called custom characters, also

known as redefined characters or programmable characters. The

terms are almost self-explanatory—with programming, you

can design your own shapes and special characters to display

on the TV screen. They can be almost any shapes you want:

spaceships, aliens, animals, human figures, Old English letters,

anything. In effect, you are customizing or redefining the

characters already built into the computer.

For instance, if you redefine the letter A to look like an

alien creature, every time you PRINT A on the screen you'll

get the alien instead of the letter. Animation is as easy as eras

ing the character—by PRINTing over it with a blank space—

and then PRINTing it in the next position. When this process

is repeated rapidly, the alien seems to move across the screen.

139

4 Colors, Characters, and Motion

Custom characters are especially useful to game pro

grammers, but also are fun to experiment with for anyone

interested in programming.

Character Sets

First, let's clarify exactly what a character set is. Briefly, it is

the complete set or collection of characters that a particular

computer can display on its video screen. Characters include

letters of the alphabet (both upper- and lowercase), numbers,

punctuation marks, symbols, and—on the Commodore 64—

the 64 special graphics characters that are pictured on the

front of the keys. In all, your 64 has a standard character set

of 256 characters. This is the total set of characters which the

computer is capable of displaying.

The character set is built into the computer, permanently

stored in Read Only Memory (ROM). ROMs are memory chips

that retain important information even when power is turned

off between sessions. The character set is stored in ROM as a

list of numbers. The numbers describe to the computer how

each character is formed from a pattern of tiny dots.

You may be able to see these dots if you look very closely

at your computer screen. (The dots might be too small to dis

cern on some ordinary TV sets, but they are much more vis

ible on a monitor.) All the characters in the character set are

made up of these dots. The dots for each character are part of

an 8-by-8 grid, for a total of 64 dots per grid . This method of

forming characters is familiar to anyone who has seen the

large time/temperature clocks on banks, or the scoreboards in

sports stadiums. A computer displays characters the same

way, except instead of light bulbs, the dots are very small pin

points of glowing phosphor on the TV picture tube. (Figure 1

shows the dot pattern for the letter A on a Commodore 64.)

Figure !• Dot Pattern for Character A

u

u

u

u

U

140

n

Colors, Characters, and Motion 4n

n
The character set is always kept in ROM, ready for the

computer to use. Let's say you display a character on the

|j screen—for instance, the uppercase letter A. The computer re
fers to the character set in ROM to see how it should display

the A on the screen, much as you would refer to a dictionary

| I to see how to spell a word. Once it looks up the dot pattern
for an A, the computer displays the character. The whole proc

ess takes only a few microseconds, and happens every time a

character is displayed, either by typing on the keyboard or

using a PRINT statement in BASIC.

When the computer's ROM chips are preprogrammed for

you at the factory, these dot patterns for each character are

permanently burned into the chips so the computer will al

ways display the same character set. Short of replacing the

ROM chips themselves, there is nothing you can do to change

this preprogramming. Normally, this would limit you to the

built-in character set. Indeed, on some computers there is no

alternative.

Fooling the Computer

However, on the 64—and on many other home computers—

there is a way to modify the character set to suit your own

needs. The technique requires fooling the computer.

Here's how it's done. The first obstacle to overcome is the

preprogrammed ROM chips. It's not possible to erase or

change information in ROM. But remember, there are two

types of memory chips in computers: ROM and RAM.

RAM (Random Access Memory) is temporary memory

that can be erased and changed. Programs loaded from disk or

tape, or which you write yourself, are stored in RAM while

they run. They can be changed at any time from the keyboard,

or even erased altogether by typing NEW or switching off the

j [computer. RAM is the computer's workspace.

So, the first step toward custom characters is to copy the

list of numbers representing the character set from ROM into

H RAM.

This is a relatively simple programming task. You find out

exactly where in ROM the character set is stored by looking at

f—] a memory map, a list of memory addresses inside the computer.

(Memory maps are often found in reference or owner's man

uals or magazine articles.) Once you know the beginning

PI memory address of the ROM character set, you can write a

141

u

4 Colors, Characters, and Motion LJ

short routine which reads the list of numbers in ROM and

then copies it into RAM. In BASIC, this is done with PEEKs

and POKEs within a FOR-NEXT loop. One or two program M

lines are all it takes.

Now there's a copied image of the ROM character set in

RAM. Again using POKEs, you can freely change the list of JJ

numbers to customize the characters any way you want (we'll

cover this in detail in a moment).

OK so far, but there's one catch. The computer doesn't

know you've relocated the character set. It still expects to find

the character set where it always has, in ROM. It will continue

to refer to ROM and will ignore your customized set in RAM.

That's why you have to "fool" the computer. The 64 con

tains a memory location, called a pointer, which points to the

character set in ROM. Luckily, the pointer itself is in RAM.

With a single POKE statement, you can change the number in

this location to point to your custom character set in RAM,

thereby fooling the computer into referring there for its

information instead of ROM. The computer goes through its

usual process of looking up the dot pattern for each character

and displaying it on the screen, except it looks up your modi

fied pattern instead of the pattern preprogrammed at the

factory.

Clever, eh?

Character Patterns

Basically, if you've made it this far, you've got the picture. But

there are still a few details to clean up.

For example, exactly how are characters customized?

Recall that the character set is defined by a list of num

bers which describes the dot patterns for each character, and

that each character is formed by dots within an 8-by-8 grid.

By changing these numbers, you change the shape of the dot j i

pattern, and therefore the shape of the character. '—
It helps at this point to know something about the binary

number system. Each byte of memory in your 64 is made up j i

of eight bits. These bits can be set to 1 or 0, hence the term '—'
binary. A bit that is set to 1 is often referred to as being on,

while a bit set to 0 is said to be off. The pattern of on and off i j

bits in a byte creates a particular value, ranging from 0 to 255. '—'
Within a byte, each bit has an individual value assigned

to it. The bit on the far right represents a value of 1 when it is j "j

142 _

u

n
i i

n

n

n

n

Colors, Characters, and Motion 4

on. The bit next to it, to the left, represents a value of 2 when

it is on. This pattern continues, each bit to the left represent

ing a value double that of the previous bit. Look at Figure 2 for

a moment to see this pattern.

Figure 2. Binary Number Values

Bit Number 76543210

Bit Value 128 64 32 16 8 4 2 1

= 1 byte

For instance, if the left-most and right-most bits were

both on, while all the rest were off, the byte's total value

would be 129. You arrive at that value by simply adding to

gether the on bits' values. 128+ 1 = 129. To show the pattern

of a character, whether it's a standard character or a custom

character, binary values have to be added together. It's not

difficult. Figure 3 shows the standard character A as an

example.

The eight numbers running vertically along the right side

of Figure 3 are the numbers which define the dot pattern for

an A on a Commodore 64. These are the same eight numbers

which the computer refers to when it looks up A in the

character set. They are also the numbers you must change to

customize the character. These numbers are decimal versions

of the binary dot patterns.

Figure 3* Dot Pattern for A

12864 32 16 8 4 2 1

24(16+8)

60(32+16+8+4)

102(64+32+4+2)

126(64+32+16+8+4+2)

102(64+32+4+2)

102(64+32+4+2)

102(64+32+4+2)

0

143

u

4 Colors, Characters, and Motion LJ

Along the top of Figure 3, running horizontally from right

to left, are the bit values.

Now, this is important: to understand how the numbers ! I

in the vertical column were determined, simply add up the

numbers in the horizontal row which correspond to colored

dots in the 8-by-8 grid. For example, the top row of the grid M

has two colored dots which form the peak of the A. (These are

the same dots which will be lit up when the letter is displayed

on the TV screen.) These two dots fall beneath the 8 and 16 of

the top row of numbers. Because 8+ 16=24, the number in

the right-hand column for that row is 24.

Likewise, the next number in the right-hand column is 60,

because the colored dots in the second row of the grid fall be

neath the 4, 8, 16, and 32, which add up to 60. And so on

down to the very last row, which has no colored dots. This is

represented by a 0 in the right-hand column. When the A is

displayed on the screen, no dots will be lit up on this row of

the grid. (All patterns for letters and numbers allow a blank

line for the last row, and for the extreme right and left-hand

columns, in order to keep the characters from running into

each other on the screen.)

Customizing Characters

Once you understand how character patterns work, it's easy to

customize them at will.

First, take some graph paper and mark off an 8-by-8 grid,

or draw your own grid on a blank sheet. Along the top, write

down the horizontal row of numbers as seen in Figure 3: 1, 2,

4, 8, 16, 32, 64, and 128. Be sure to list them from right to left.

Second, design your custom character by coloring in dots

on the grid. Figure 4 shows a sample design for a Space

Invaders-type creature.

Third, add up the colored dots in each row, starting from

the top. Write down each sum in a vertical column along the

right, as seen in the figures.

You have now designed your own custom character. You

can design as many of these as you'll need—up to the limit of

256 characters in the character set.

The only remaining step is to take the new series of eight

numbers for each custom character and substitute them for the

numbers in the standard character set. Remember, that's why

you relocated the character set from ROM to RAM. Now that

144

n

n Colors, Characters, and Motion 4

n

Figure 4. Dot Pattern for a Customized Character

(Space Invaders-Type Alien)

o

24 (16+8)

126 (64+32+16+8+4+2)

219 (128+64+16+8+2+1)

126 (64+32+16+8+4+2)

219 (128+64+16+8+2+1)

153 (128+16+8+1)

0

128 64 32 16 8 4 2 1

the list of numbers spelling out the patterns for the standard

character set is in RAM, it can be changed to use your own

numbers with POKE statements.

Specific Details

Up to now, this article has been fairly general in its explana

tions. The basic technique for customizing characters is the

same for almost any computer on which the character set can

be relocated and redefined. But the specific details vary for

each computer: the character set's memory address in ROM,

how to safely copy it to RAM, the memory address of the

character set pointer, the order of characters within the charac

ter set, and so on.

For these details, as well as example programs and util

ities, turn to the next article "How to Make Custom Characters

on the 64."

145

u

4 Colors, Characters, and Motion LJ

How to Make
u

u

Gary Davis

Before reading this, be sure to see "Introduction

to Custom Characters for the 64" in this book,

especially if you're unfamiliar with the concepts

of redefined characters. The following article in

cludes "Chred 64," a character-editing utility

that makes the task of customizing characters

easy and fun.

The Commodore 64 allows you to change any character in the

character set to suit your own needs. In order to understand

how this is done, it is first necessary to understand how the 64

(and most other computers) store the character set.

If you look closely at the letters the computer puts on the

screen, you'll notice that each character is made up of little

dots in an 8 x 8 grid (see the figure).

Since there are 64 possible dots, or pixels, that can be

either on or off, we need 64 "switches" for each character. This

is done by using eight memory locations for each character.

Since one memory location, or byte, is divided into eight bits,

using eight bytes gives us the 64 switches we need for each i i

character. '—'
The bytes for each character are stored consecutively, with

the first byte for each character representing the top row of i i

dots in the character, the second byte the second row of dots, '—'
and so on. For a pixel to be on, the bit at its location must be

set; for a pixel to be off, the bit must be clear. This is not as i i

complicated as it sounds. The figure shows how the bit pat- '—'
terns of sets and clears are converted into the numbers that

represent the character. When you make a series of bytes for | i

146

u

n

n

n

n

n

Colors, Characters, and Motion 4

every character and store them in a computer, you have what

is known as a character generator.

Relocating the Character Set

The character generator in most computers, including the

Commodore 64, is stored in Read Only Memory (ROM). This

way the computer is ready to display characters on the screen

as soon as it is turned on.

Unfortunately, when the character generator is in ROM,

you can't change the characters to suit your needs. When you

can't change the existing character set, the simplest way to

customize a new character set is to move it to Random Access

Memory (RAM), and then tell the computer to use your

character set rather than the one it has in ROM.

Pixel Pattern for Letter A

128 64 3216 8 4 2 1

16+8=24

32+16+8+4=60

64+32+4+2= 102

64+32+16+8+4+2=126

64+32+4+2=102

64+32+4+2=102

64+32+4+2= 102

= 0

n

H

n

H

n

Telling the Commodore 64 where the new character set is

located is relatively simple to do. Within the video controller

chip (sometimes known as the VIC-II chip) is a special mem

ory location that allows you to set a new character pointer (the

location of the first byte of your character set).

Now let's try an experiment. Type POKE 53272,19 and

press RETURN. Your screen will be filled with strange charac

ters, but don't worry. You have told the 64 to use a RAM

character generator, but you haven't supplied one yet. To re

turn your screen to normal type POKE 53272,21 and press RE

TURN. You won't be able to read what you are typing until

you press RETURN, but the computer understands. If this

doesn't work, you can always restore the screen by pressing

the RESTORE and RUN/STOP keys at the same time.

147

u

4 Colors, Characters, and Motion LJ

When you are designing a new character set, it is nice to '—'
have the normal one loaded into RAM to start with. Then you

can make changes to it. Program 1 copies the 64's character j |

set from ROM to RAM. LJ
Before you type in this program, you must enter:

POKE 8192,0: POKE 44,32: NEW LJ

This saves a place in RAM memory for your new charac

ter set and protects it from being overwritten by a BASIC

program.

Now, type in the program and RUN it. After about 45

seconds the computer will come back and say READY. Now

type POKE 53272,19 and press RETURN. Nothing appears to

happen, but the characters you are now seeing on your screen

are coming from your RAM character generator, not from

ROM as usual.

To test this, type POKE 2056,255. The top of all the letter

A's on the screen should now be a solid line. Try POKEing

different numbers into memory locations between 2048 and

6143 and watch the results on the characters.

Using a Character Editor

By sketching an 8 x 8 grid as seen in the figure, it's possible to

map out the entire character set on graph paper and convert

your new characters to numbers to POKE into memory.

This method, however can be both time-consuming and

frustrating. A far better way is to create your new characters

on the screen and let the computer do all the calculations.

With this thought in mind, I wrote a character editor called

"Chred 64." With this utility (Program 2), you can redefine

any of the text or graphics symbols and save them on tape or

disk. This can then be loaded and used with any program.

In order to reserve memory for the alternate character set,

it is necessary to set the start of BASIC pointer to 8192. This LJ
will leave you with 32K of RAM free for your BASIC program.

To do this, you must type in the following:

POKE 8192,0 LJ
POKE 44,32

NEW I,

Now the memory from 2048 to 8191 is free to hold your

new character set. You may type in or load Chred 64. After

typing Chred 64 for the first time, be sure to save it on tape or I I

148

u

n

Colors, Characters, and Motion 4

n
disk before you run it. If you have made a typing error, it is

possible that the computer will "crash" and you'll have to

(| type it all over again if you haven't saved a copy.
When you run Chred 64, the program first copies the res

ident character set from ROM to RAM and resets the character

[""] base to point to the RAM character set. The program then ex
pands the current character being edited to eight times its nor

mal size.

To edit the current character being displayed, you may

use the cursor control keys, the asterisk, and the space bar.

To turn on a pixel, position the cursor and press the as

terisk. To turn off a pixel, press the space bar. To clear the

entire character, press CLR.

To edit a different character, press fl. You will be asked

to supply a row and column. This refers to the block of

characters displayed on the lower right corner of the screen.

Just type a row number followed by the column number or

letter. The character you selected will now be displayed, ready

for you to edit.

More Editing Features

An interesting feature of the 64 is that, unlike the Commodore

PET, the reverse-field (inverse video) characters are stored as

part of the character set. This allows 256 redefined characters.

To edit a character not being displayed, press f3. This will se

lect and display the next block of 64 characters. Rest assured

that you may mix characters from any of the blocks; only 64

characters are shown at a time for the purpose of editing.

Sometimes you may wish to edit more than one character

at a time to make a larger shape. This can be easily accom

plished by pressing f5. Instead of a single character, you will

be able to edit a block of four characters. To go back to single

[""] character mode, just press f5 again.

After you have redefined several characters, the text on

the screen may become unreadable as your new characters re-

|—I place the existing ones. To restore the character set to normal,

without destroying your new character set, press f7. To return

to your new character set, press i7 again.

J—j When you are done working with a character set, you can

restore the font to the normal character set by pressing R. You

will be asked "Are you sure?" Now is your last chance to save

"I your character set. If you are really done, press Y; otherwise,

press N.

n

LJ

4 Colors, Characters, and Motion I—'

Saving and Loading

After you have gone to the effort of creating a new character

set, you will probably want to save it on disk or tape for use M

in other programs. To save your character set, press S. Follow

the directions given on the screen. After the character set is

saved, you will be returned to the editor. (When typing Chred I [

64, omit line 225 for use with tape.)

Sometimes you may wish to alter a character set that you

have already created and saved. To load another character set,

press L and follow the directions given on the screen. Be care

ful—the new character set is loaded on top of the current

character set, so be sure to save it if you want to use it later.

OK, you've developed your new character set. To use it

with another program, you will have to type POKE 8192,

0:POKE 44, 32: NEW, just as you do when you load Chred

64. To load in the character set, place the cassette containing

your new character set in the recorder, or the disk in the drive.

For tape, type LOAD " filename", 1,1 where "filename" is the

name you gave when you saved the character set. For disk,

type LOAD "filename", 8,1. To use the new character set,

POKE 53272, 19. To return to the normal character set, POKE

53272,21.

I hope you have as much fun using this program as I had

writing it.

Program 1. Character Set Transfer to RAM
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

10 POKE 56334,0:REM TURN OFF INTERRUPTS :rem 83

20 POKE 1,51:REM TURN OFF VIDEO CHIP TO EXPOSE CHA

RACTER GENERATOR :rem 220

30 FOR ADDRESS = 2048 TO 6143 :rem 204

40 POKE ADDRESS, PEEK (ADDRESS + 51200):{3 SPACES}
REM COPY CHARACTERS TO RAM :rem 32 p,

50 NEXT ADDRESS :rem 170 LJ
60 POKE 1,55:REM TURN ON VIDEO CHIP :rem 251

70 POKE 56334,129:REM TURN ON INTERRUPTS :rem 135

80 END :rem 63 M

Program 2. Chred 64

100 REM "CHRED 64" :rem 137 |_J
120 POKE53280,ll:POKE53281,0:PRINT"i53" :rem 189
130 V=53248:SC=1024:CB=2048:CC=SC+40*21+9 :rem 222

140 SZ=7:FP=0:FO=0:TP=0:TY=0:SL=0:R$="0":C$="0M | j

:rem 199

150

U

n Colors, Characters, and Motion 4

150 C0$=fl* {RIGHT} {LEFT} {DOWN} {UP} {HOME} {CLR}{F1}
{F3}{F5}{F7}SLRQ" :rem 85

|—[160 DN$=M{HOME}{17 DOWN}" xrem 2

' 170 BL$="{18 SPACES}11 :rem 203

180 NU$="0123456789ABCDEF" :rem 131

190 DEFFNA(F)=SC+62+40*CY+CX :rem 86

j! 200 DEFFNB(F)=CB+((FO+TP)*8)+TY :rem 251
210 PRINT"{CLR}{5 DOWN}{9 SPACES}{YEL}CHARACTER SE

T LOADING11 :rem 97

220 GOSUB1500 :rem 218

225 POKE 49276,8:REM ENTER THIS LINE FOR DISK ONLY

— OMIT FOR CASSETTE ;rem 94

230 SYS49152:POKEV+24,19 zrem 127

240 POKE 53281,1:PRINT"{CLR}":POKE 53281,0:GOSUB10

60 2rem 12

250 CY=0:CX=0 :rem 226

260 POKEFNA(0),PEEK(FNA(0))OR128 :rem 81

270 POKE198,0 :rem 198

280 GETCH$:IFCH$=MMTHEN280 :rem 235

290 FORCH=1TOLEN(CO$):IFMID$(CO$,CH,1)=CH$THEN310

:rem 149

300 NEXTCH:GOTO270 :rem 105

310 POKEFNA(0),PEEK(FNA(0))ANDNOT128 trem 112

320 ONCHGOTO330,370,410,430,450,470,490,500,590,77

0,800,1040,910,900,840,1020 trem 119

330 POKEFNA(0),42 :rem 173

340 GOSUB550 :rem 177

350 POKEFNB(0),PEEK(FNB(0))OR2t(ABS(TX-7)):rem 208

360 GOTO260 :rem 106

370 POKEFNA(0),32 :rem 176

380 GOSUB550 :rem 181

390 POKEFNB(0),PEEK(FNB(0))ANDNOT2t(ABS(TX-7))

:rem 247

400 GOTO260 :rem 101

410 CX=CX+1:IFCX>SZTHENCX=0 :rem 234

420 GOTO260 :rem 103

430 CX=CX-1:IFCX<0THENCX=SZ :rem 236

n440 GOTO260 *rem 105

450 CY=CY+1:IFCY>SZTHENCY=0 :rem 242

460 GOTO260 :rem 107

470 CY=CY-1:IFCY<0THENCY=SZ :rem 244

480 GOTO260 :rem 109

490 GOTO250 :rem 109
500 FORCY=0TOSZ:FORCX=0TOSZ:POKEFNA(0),32 :rem 158

510 GOSUB550 :rem 176

520 POKEFNB(0),0 srem 121

530 NEXTCX,CY :rem 58

540 GOTO250 srem 105
550 TP=FP:TX=CX:TY=CY:IFTX>7ANDTY<8THENTP=TP+1:TX=

TX-8 :rem 177

151

n

n

H

u

4 Colors, Characters, and Motion

560 IFTX<8ANDTY>7THENTP=TP+2:TY=TY-8 irem 134 l—'
570 IFTY>7ANDTX>7THENTP=TP+3:TY=TY-8:TX=TX-8

:rem 189 r i

580 RETURN :rem 125 U
590 PRINTDN$"{RVS}{YEL}ROW, COLUMN?{OFF}g5| ";

:rem 107

600 POKE198,0 :rem 195 M
610 GETR$:IFR$=""THEN610 :rem 115
620 IFVAL(R$)<>0ANDVAL(R$)<4ORR$="0IITHENR=VAL(R$):

GOTO640 :rem 165

630 GOTO600 :rem 104

640 PRINTR$","; :rem 72

650 POKE198,0 :rem 200

660 GETC$:IFC$=lllfTHEN660 :rem 95

670 IFC$=CHR$(20)THENPRINT"{2 LEFT} {2 SPACES}11; :GO

TO590 :rem 10

680 IFASC(C$)>64THENC=ASC(C$)-55:IFO15THEN600

:rem 174

690 IFVAL(C$)<>0ORC$="0"THENC=VAL(C$) :rem 118

700 IFO15THEN650 :rem 215

710 PRINTC$:rem 140

720 FP=R*16+C :rem 189

730 IFSZ=15ANDFP>60THENFP=60:C$="C":C=12 :rem 112

740 GOSUB1290 :rem 231

750 PRINTDN$;BL$:rem 204

760 GOTO250 :rem 109

770 IFFO<191THENFO=FO+64:GOTO790 :rem 215

780 FO=0 :rem 161

790 FP=0:R$="0I':C$=H0II:GOSUB1240:GOTO250 :rem 225

800 IFSZ=15THENSZ=7:GOTO830 :rem 213

810 IFFP>60THENFP=60:C$="C":C=12 :rem 76

820 SZ=15 :rem 234

830 POKE 53281,1:PRINT"{CLR}":POKE 53281,0:CX=0:CY

=0:GOSUB1060:GOTO250 :rem 160

840 PRINTDN$;"{RVS}{YEL}ARE YOU SURE? "; :rem 156

850 POKE198f0 :rem 202

860 GETCH$:IFCH$="N"THENPRINTDN$;"{OFF}g5|";BL$:

GOTO250 :rem 134 p-.

870 IFCH$<>"YHTHEN860 :rem 193 LJ
880 PRINT"YES{OFF}g53" :rem 140

890 SYS49152:GOSUB1310:PRINTDN$;BL$:GOTO250

:rem 152 I |

900 SL=1 :rem 166 L-'
910 PRINTDN$;:INPUT"{RVS}{YEL}FILE NAME";NA$:rem 5

920 POKE253,LEN(NA$) :rem 115 r .

930 IFLEN(NA$)=0THEN970 :rem 74 LJ
940 FORL=1TOLEN(NA$) :rem 196

950 POKE49359+L,ASC(MID$(NA$,L,1)) :rem 125

960 NEXT :rem 222 M

152

u

n

1 ' Colors, Characters, and Motion 4

H
970 SYS49269 :rem 173

980 PRINTDN$;BL$;DN$;"{6 UP}" :rem 167

pi 990 IFSL=0THENSYS49292:GOTO1010 :rem 170

1 ! 1000 SYS49310 :rem 193
1010 POKE 53281,1:PRINT"{CLR}g53":POKE 53281,0:G

OSUB1060:SL=0:GOTO250 :rem 32

|j 1020 POKEV+24,21 :rem 104

1030 PRINT"{CLR}{3 DOWN}":END :rem 108

1040 IFPEEK(V+24)=19 THEN POKEV+24,21:GOTO260

:rem 55

1050 POKEV+24,19:GOTO260 :rem 125

1060 PRINT"{HOME}{RVS}{YEL}CHARACTER EDITOR{OFF}"

:rem 65

1070 PRINT"{DOWN}{RVS}{YEL}F1{OFF}&55| EDIT NEW C

HAR." :rem 87

1080 PRINT"{RVS}{YEL}F3{OFF}g5i NEXT CHAR. BLOCK

:rem 227

1090 PRINT"{RVS}{YEL}F5{OFF}g55| BLOCK SIZE"

:rem 150

1100 PRINT" {RVS} {YEL}F7{OFF}fc55i FLIP CHARACTER S

ET" :rem 142

1110 PRINT"{RVS}{YEL} R{OFF}g5jj RESTORE FONT":rem27

1120 PRINT"{RVS}{YEL} S{OFF}g53 SAVE CHAR. SET"

:rem 41

1130 PRINT" {RVS} {YEL} L{OFF}g5jj LOAD CHAR. SET"
:rem 20

1140 PRINT"{RVS}{YEL} Q{OFF}fc5JJ QUIT" :rem 5

1150 PRINT"{HOME}{19 DOWN}{RVS}"TAB(21);" ";NU$;"

{SPACE}{OFF}" :rem 29

1160 FORL=1TO4:PRINTTAB(21)"{RVS}"MID$(NU$,L,1);SP

C(16):" "?NEXT :rem 164

1170 PRINTTAB(21)"{RVS}{18 SPACES}{OFF}{2 UP}"
:rem 235

1180 PRINT"{HOME}"TAB(21); :rem 116

1190 PRINT"{RVS} ";MID$(NU$,1,SZ+1);:PRINT" {OFF}"
:rem 105

1200 FORL=1TOSZ+1 :rem 16
pi 1210 PRINTTAB(21)"{RVS}"MID$(NU$#L,1);SPC(SZ+1) ;"

I I {OFF}" :rem 169
1220 NEXTL :rem 80

1230 PRINTTAB(21)"{RVS}";:FORL=0TOSZ+2:PRINT" "7:N

PI EXT:PRINT"{OFF}" :rem 82
1240 CH=FO :rem 36

1250 FORY=1TO4 :rem 77

—1 1260 FORX=1TO16 :rem 128
I 1270 POKESC+781+X+Y*40,CH:CH=CH+1 :rem 143

1280 NEXTX,Y :rem 231

1290 PRINT"{HOME}{19 DOWN}{5 SPACES}{RVS}EDITING "

?R$"#"C$"{OFF}":POKECC#FP+FO 5rem 216n
153

H

u

4 Colors, Characters, and Motion LJ

n
1300 IFSZ=15THENPOKECC+1,FP+FO+1:POKECC+40,FP+FO+2 LJ

:POKECC+41,FP+FO+3 :rem 125

1310 X=0:Y=0:CX=0:CY=0 :rem 15 :--

1320 GOSUB1390 :rem 19 LJ
1330 IFSZO15THEN1380 :rem 222

1340 X=8:Y=0:FP=FP+1:GOSUB1390 :rem 27 _

1350 X=0:Y=8:FP=FP+1:GOSUB1390 :rem 28 I j

1360 X=8:Y=8:FP=FP+1:GOSUB1390 :rem 37 t—'
1370 FP=FP-3 :rem 148

1380 RETURN :rem 172

1390 TP=FP:TX=CX:TY=CY:IFTX>7ANDTY<8THENTP=TP+1:TX

=TX-8 :rem 228

1400 IFTX<8ANDTY>7THENTP=TP+2:TY=TY-8 :rem 176

1410 IFTY>7ANDTX>7THENTP=TP+3:TY=TY-8:TX=TX-8

:rem 231

1420 TE=8*(FO+TP)+CB:REM CHAR. POINTER :rem 239

1430 POKE251,TE-INT(TE/256)*256 :rem 233

1440 POKE252,INT(TE/256) :rem 94

1450 TE=FNA(0)+X+40*Y:REM SCREEN LOC. :rem 117

1460 POKE253,TE-INT(TE/256)*256 :rem 238

1470 POKE254,INT(TE/256) :rem 99

1480 SYS49209 :rem 212

1490 RETURN :rem 174

1500 FORL=49152TO49319 :rem 232

1510 READD:POKEL,D:NEXT :rem 197

1520 RETURN :rem 168

1530 REM FONT COPIER ROUTINE trem 204

1540 DATA120,169,51,133,1,169,1,141,13,220,169,0,1

33,251,133,253,169,208,133 :rem 189

1550 DATA252,169,8,133,254,160,0,177,251,145,253,2

30,251,230,253,208,246,230 :rem 205

1560 DATA252,230,254,165,252,201,225,208,236,169,1

29,141,13,220,169,55,133,1 :rem 205

1570 DATA88,96 :rem 242

1580 REM CHAR EXPAND AND DISPLAY :rem 121

1590 DATA160,0,162,0,169,128,133,250,177,251,37,25

0,208,4,169,32,208,2,169,42 :rem 3

1600 DATA145,253,24,102,250,240,8,230,253,208,2,23 —

0,254,208,229,230,251,208,2 :rem 230 M
1610 DATA230,252,165,253,24,105,33,133,253,165,254

,105,0,133,254,232,-224,8,208 :rem 33

1620 DATA201,96 :rem 17 I i

1630 REM SAVE AND LOAD ROUTINES :rem 73 LJ
1640 DATA169,128,133,157,169,1,162,1,160,1,32,186,

255,165,253,162,208,160,192 :rem 11

1650 DATA32,189,255,96,169,0,133,251,169,8,133,252 M
,169,251,162,16,160,25 :rem 33

1660 DATA32,216,255,96 :rem 116

1670 DATA169,0,162,0,160,8,32,213,255,96 :rem 226 j~j

154

M
LJ

H

n
Colors, Characters, and Motion 4

H

>uperBASIC Sprite

Martin C. Kees

Adding sprites to your programs, especially to

games, can make them graphically impressive.

But designing the sprites and creating the nec

essary DATA statements is time-consuming if

you have to do it on graph paper. "SuperBASIC

Sprite Editor" makes designing sprites easy and

fun. Using SuperBASIC, a powerful program

that adds 41 new commands to your 64's BASIC,

this sprite editor is versatile, yet simple to use.

SuperBASIC is necessary to run this program.

Sprites, those graphics blocks that you can sculpt into any

shape you want, are a powerful feature on the Commodore

64. They're very useful when you're designing games, for they

move quickly and smoothly. It's even quite easy to create

animation using sprites. However, drawing sprite patterns on

graph paper and then calculating the DATA statements to

place in your program can be tiresome, especially when you

have several sprite patterns to create.

That's where a sprite editor comes in handy. A good edi

tor should make it easy and fun to design sprites. It should

pi allow you to change colors at will, create multicolored or sin-

i i gle colored sprites, show the sprites' final shape, and create

the DATA values you'll need later. If it's even more powerful,

nit should let you move the sprites on the screen, animate

them, and store and load them to and from tape or disk.

"SuperBASIC Sprite Editor" gives you all these functions,

nand more. It's easy to use, fast in its execution, and includes a

variety of commands.

Sprite Creation

jj Maybe you've already designed your own sprites. In that case,

u

4 Colors, Characters, and Motion '—'

0
you can type in SuperBASIC Sprite Editor and use it immedi

ately. If you're just starting to learn about sprites, however, it's

a good idea to first read another article in this book, "Sprites M
Made Easy." Included in that article is a section called "Sprite

Creation," which will explain the rudiments of sprite design.

After reading through that, you should have a good idea of j j

what a sprite is, and how its DATA numbers are calculated.

You'll be relieved to know that you won't have to calculate

those values yourself if you use SuperBASIC Sprite Editor.

The program can do that for you. All you'll have to do is type

those values into your own program.

SuperBASIC

SuperBASIC Sprite Editor is written in SuperBASIC, a power

ful addition to the BASIC in your 64 which adds 41 new com

mands and enhances 8 existing commands. You type it in and

save it as you would any other BASIC program. However to

use this editor, you first need to have a copy of SuperBASIC

loaded into your computer. SuperBASIC makes writing pro

grams like Sprite Editor easier, and makes such programs

much more powerful. If you haven't already, read the article

on SuperBASIC and type in the program before you begin

entering SuperBASIC Sprite Editor. Remember that you can't

use this program unless you've got SuperBASIC LOADed and

RUN on your 64.

As you type in SuperBASIC Sprite Editor, you'll come

across strange-looking commands, such as [DLCS or [FCOL.

Don't worry, the program listing is correct; this is how

SuperBASIC notes its new commands. Every time you see the [

symbol in the program, just press the SHIFT and colon keys

together. This will give you the bracket symbol on the screen.

Type in the rest of the command (DLCS, for instance) as you

would any other command on the 64. Typing in SuperBASIC i~|

Sprite Editor will take some time, but it will be worth the '—'
effort. Once you've entered it, SAVE it to be safe. You're now

ready to design up to 127 sprite patterns. Pi

Functions and Command Keys

Although the program is for the most part self-explanatory, P j

especially if you've used or seen other sprite editors at work, a '—'
few details may be helpful to you. Once the program is run,

it will take a few moments to set up. A menu display then M

156

U

H

H
' Colors, Characters, and Motion 4

n
appears, showing you all the functions and command keys

that SuperBASIC Sprite Editor uses. Briefly, they are:

f ! fl Selects the background color that shows on the screen.

Pressing the fl key repeatedly will cycle through all 16 colors

.—i available on the 64.

I I f2 Selects the border color of the screen. Works just as the
background color selection does.

f3 Selects the color for multicolor 0 when you're designing a

multicolor sprite. As with the previous commands, pressing

this key will cycle through all the available colors.

f4 Selects text color.

f5 Selects sprite color, either in multicolor, or normal mode.

f7 Selects multicolor 1 when the editor is in multicolor mode.

1, 2, 3 These keys set the pixel the cursor is presently on when

you're using the single-color mode. It's like setting that bit on.

When you're using the multicolor mode, the keys work a bit

differently. The 1 key sets pixels on for multicolor 0, the 2 key

sets pixels on in the sprite color, and the 3 key turns on pixels

for multicolor 1.

SPACE The space bar turns off any pixel(s) at the present

cursor position.

Cursor Keys The normal cursor keys move the blinking cursor

around the sprite pattern so that you can set and clear indivi

dual pixels. Remember that you have to use SHIFT/CRSR

DOWN to move up, and SHIFT/CRSR RIGHT to move left.

CLR/HOME You can clear an entire sprite display pattern by

pressing the SHIFT key along with this key. It's a handy com

mand if you decide to start over as you're designing a sprite

pattern.

R This key shifts the sprite pattern one pixel horizontally. You

can only move in one direction (towards the left), but it will

— wrap around if you press the key several times.

i I V This key will shift the sprite pattern one pixel vertically. It
moves upward, but will wrap around.

L You can flip the sprite pattern laterally using this key. If the

sprite points towards the right, for instance, using this key will

make it point to the left.

„ F Similar to the previous key, this flips the pattern vertically.

Jl What once pointed up will now point down.

C This key toggles the multicolor mode. Press it once, and

— you're in single-color mode; press it again, and you can design

i I multicolored sprites.

157

I i

n

u

4 Colors, Characters, and Motion LJ

jj
5 You have a choice of storing an edited sprite in any of 127

blocks. Once you've created a sprite to your satisfaction, you

can store it by pressing this key. The program will ask for the j^J

block to assign the sprite to, and you should enter a number

from 1 to 127. Note that this does not permanently store the

sprite pattern. If you turn your computer off, then on again, Q
the pattern will disappear. You need to use the O key com

mand to store a pattern to disk or tape. However, if you're

editing more than one pattern in a session, the S key com

mand is quite useful.

U You can recall any sprite pattern with this key. Again, the

program will ask for the block number; respond with a num

ber from 1 to 127. That sprite will then display on the screen.

P Using the Preview command, you can look at all the sprite

pattern blocks, one at a time, at your own leisure. Pressing the

key displays the next sprite pattern.

0 Stores the sprite pattern information permanently. You'll be

asked from which block you want to save and to which block,

the filename you'd like to call that pattern, and the device

number (1 for tape, 8 for disk). The sprite pattern will then

SAVE out to tape or disk, with your selected filename.

1 Loads previously created sprite pattern files from tape or

disk.

M This is perhaps the handiest command key, for as you learn

to use the sprite editor, you'll find yourself constantly wanting

to look at the list of command key options.

A Sprite animation is also handled by this editor. When you

use this key, you'll be asked to provide several parameters.

Start block asks for the sprite pattern block number you'd like

to begin the animation with. End block asks the last block to

animate. If you've designed three sprites to show a human fig

ure in motion, for example, you could designate Block 1 as the

starting block, and Block 3 as the ending block. As the sprite M

is animated, then, it will cycle through all three patterns. ^
Horizontal and vertical shift refer to the speed you want

the sprite to move in those directions. If you want the sprite to [I

move only horizontally, for instance, enter a value in the third

parameter, and then hit RETURN for the fourth. Placing val- _

ues in both shift parameters will move the sprite diagonally on I j

the screen. Time delay sets the speed at which the sprite is

animated. Higher values increase the animation speed. You _

can expand the sprite in the X-direction, the Y-direction, or M

158 __

i i

LJ

H
Colors, Characters, and Motion 4

both. The last two parameters ask for the starting X and Y co

ordinates of the sprite. Refer to the Commodore 64 Pro

grammer's Reference Guide for the coordinates which will show

on the screen.

D Using this command key, you can see the DATA statements

you would include in your own program. The program will

ask for the block to be displayed, and the beginning line num

ber of the DATA statement. The computer will calculate the

values you would need to create that sprite pattern. You will,

however, have to type these values into your own programs

yourself. SuperBASIC Sprite Editor does not allow you to

merge sprite DATA files with your own programs.

Drawing Sprites

The best way to discover how to use SuperBASIC Sprite Edi

tor is to simply experiment. Use it to create as many sprites as

you need, and then use the D command key to display the

DATA statement values. This eliminates much of the work

you would have to do with paper and pencil; all that remains

for you to do is to enter those lines within your own game or

program.

When you first use this program, you'll probably find that

there are sprite patterns already in each block. Use the U com

mand key to call a block, type 1 and RETURN. You're in

Block 1 now. If it's filled, use SHIFT CLR/HOME to erase the

sprite pattern. You've now got an empty pattern to work with.

If you switch from the sprite pattern display to the menu

(by pressing the M command key), and then back again to the

display (by pressing any key from the menu screen), you'll no

tice that your single-colored sprite has changed colors. To get

back to the original color, just hit the C toggle key twice.

You'll find SuperBASIC Sprite Editor a valuable addition

to your programming library. It's a utility you'll often use as

you discover the power of sprites on the 64. Moreover, it

makes creating sprites fun, instead of the chore it once was.

SuperBASIC Sprite Editor
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

1 REM SUPERBASIC SPRITE EDITOR :rem 164

2 REM EDIT SPRITES INTO BLOCKS 0-127{10 SPACES}IN

{SPACE}BANK 1 :rem 57

3 REM FILES CREATED CAN BE LOADED TO{10 SPACES}BAN

K 1 BY LOAD"NAME",8,1 :rem 85

159

u

4 Colors, Characters, and Motion

D
5 GOTO TA+10 :rem 143

10 POKE55,0:POKE56,64:CLR:CB=7*4096 :rem 11

15 DIMBP(8),FS$(1) :rem 198 I I
20 [BANK1:[DLCS0,CB:[CB2K6:[VS1K11:PRINT"{YEL} ^

{CLR} PATIENCE? {HOME}11; :rem 161

25 [BKG40,1,12,15:[ECGR1 :rem 95 r ,

30 GOSUB 5000:SYSCA:128 :rem 58 LJ
40 FORJ=0TO7:POKECB+J,96:POKECB+J+224,0:POKECB+J+2

32,0:POKECB+264+J,255:NEXT :rem 72

50 POKECB+225,255:POKECB+226, 255:POKECB+232# 96:POK

ECB+233,224:POKECB+234,224 :rem 86

60 FORJ=1TO21:PRINT"{24 SPACES}@":NEXT :rem 207

70 PRINT" ££££££££££££££££££££££££]" :rem 53

80 GOSUB2000 :rem 170

190 MC=1:[FCOL7:POKE650,128 :rem 83

195 B=0:SK=12:M0=1:M1=15:TC=7:EX=14 :rem 4

200 [VS1K11:SYSUP:MC,128:SYSCA:0:GOSUB700 :rem 91

210 R=0:C=0:SC=27648:SW=-1:GOTO220 :rem 218

215 POKESP,PEEK(SP)AND254:IFMCTHENPOKESP+1#PEEK(SP

+1)AND254 :rem 226

216 SW=-1 :rem 222

220 SP=SC+40*R+C:SW=-SW:POKESP#PEEK(SP)+SW:IFMCTHE

NPOKESP+1,PEEK(SP+1)+SW :rem 205

230 GET A$:IFA$=""THEN220 :rem 76

235 IFA$<>"P"THENPRINTII{HOME}{25 RIGHT} {11 SPACES}

11;: PL=0 : rem 2

240 IFA$="{RIGHT}"THENC=C+1+MC:IFO23THENC=0:GOTO2

15 :rem 202

250 IFA$="{LEFT}"THENC=C-1-MC:IFC<0THENC=23-MC:GOT

0215 :rem 10

260 IFA$="{DOWN}"THENR=R+1:IFR>20THENR=0:GOTO215

:rem 62

270 IFA$="{UP}"THENR=R-1:IFR<0THENR=20:GOTO215

:rem 191

280 IFA$="{HOME}"THENR=0:C=0:GOTO215 :rem 5

285 IF(A$="1"ORA$="2")ANDMC=0THENA$="3" :rem 103

290 IFA$="1"ORA$="2"ORA$="3IITHENPOKESP,VAL(A$)*64+ _

32 :rem 158

295 IFA$="1"ORA$="2"ORA$="3"ANDMCTHENPOKESP+1,VAL(

A$)*64+32 :rem 98

296 IF A$=" "ANDMCTHENPOKESP,32:POKESP+1,32:A$="

{RIGHT}":GOTO240 :rem 74

297 IF A$=" "THENPOKESP,32:A$="{RIGHT}":GOTO240

:rem 239

300 IFA$="R"ANDMCTHENPOKESP,PEEK(SP)AND254:POKESP+

lrPEEK(SP+l)AND254 :rem 232

302 IFA$="R"ANDMCTHENSYSRO:SYSRO:GOTO500 :rem 112

305 IFA$="R"THENPOKESP,PEEK(SP)AND254:SYSRO

:rem 237

160

H

H
Colors, Characters, and Motion 4

n
310 IFA$="V"ANDMCTHENPOKESP,PEEK(SP)AND254:POKESP+

1,PEEK(SP+1)AND254 irem 237

PI 313 IFA$="V"ANDMCTHENSYSVR:GOTO500 :rem 163
315 IFA$="V"THENPOKESP,PEEK(SP)AND254:SYSVR

:rem 249

r-i 320 IFA$="{CLR}"THENSYSUP:MC,128 :rem 1

' I 330 IFA$="LMANDMCTHENPOKESP,PEEK(SP)AND254:POKESP+
1,PEEK(SP+1)AND254 :rem 229

333 IFA$=ML"ANDMCTHENSYSLA:GOTO500 :rem 128

335 IFA$="L"THENPOKESP,PEEK(SP)AND254:SYSLA

:rem 214

340 IFA$="FMANDMCTHENPOKESP,PEEK(SP)AND254:POKESP+

1,PEEK(SP+1)AND254 :rem 224

342 IFA$="F"ANDMCTHENSYSFL:GOTO500 :rem 127

345 IFA$="F"THENPOKESP,PEEK(SP)AND254:SYSFL

:rem 214

350 IFA$="{F2}"THENTC=TC+1:TC=TCAND15:[FCOLTC

:rem 186

360 IFA$="{Fl}"THENB=B+l:B=BAND15:[BKGDB :rem 2

370 IFA$="{F3}"THENM0=M0+1:M0=M0AND15:GOTO600

:rem 10

380 IFA$="{F5}"THENSK=SK+1:SK=SKAND15:GOTO600

:rem 144

390 IFA$=M{F7}"THENM1=M1+1:M1=M1AND15:GOTO600

:rem 18

400 IFA$="{F4}"THENEX=EX+1:EX=EXAND15:[EXTCEX

:rem 229

410 IFA$="U"THEN610 :rem 37

420 IFA$="SMTHEN640 :rem 39

430 IFA$="P"THENPL=PL+1:PL=PLAND127:GOTO670

:rem 136

440 IFA$="C"THENMC=ABS(NOT(MC=1)):SYSUP:MC,0:C=INT

(C/2)*2:GOTO600 :rem 182

450 IFA$="O"THENGOSUB800 :rem 164

460 IFA$="I"THENGOSUB830 :rem 162

470 IFA$=nM"THEN2500 :rem 83

480 IFA$="A"THEN3000 :rem 68

R 490 IFA$="D"THEN1000 :rem 70
500 SYSCA:0:GOTO215 :rem 141

600 IFMC=0THEN[BKG4B,SK,SK,SK:GOSUB700:GOTO500

r-j :rem 173

! I 605 [BKG4B,M0,SK,M1:GOSUB700:GOTO500 :rem 182
610 PRINT"{HOME}{22 DOWN}";:INPUT"BLOCK";BL

:rem 110

n 620 PRINT" {HOME} {22 DOWN} {15 SPACES}11; :rem 45
' ' 630 SYSUP:MC#BL:GOTO500 :rem 201

640 PRINT"{HOME}{22 DOWN}";:INPUT"BLOCK";BL

r-| :rem 113

I I 650 PRINT"{HOME}{22 DOWN}{15 SPACES}"; :rem 48

—~ 161

u

4 Colors, Characters, and Motion ^

D
660 SYSCA:BL:GOTO215 :rem 242

670 PRINT"{HOME}{26 RIGHT}BLOCK";PL;"{LEFT}

{2 SPACES} ";:SYSUP:MC, PL:GOTO500 :rem 132 P~j
700 [DSPR0,0,1,1,270,60,MC,SK,M0,M1 :rem 161 1—*
705 [DSPR1,0,0,1,284,115,MC,SK,M0,Ml :rem 220

710 [DSPR2,0,1,0,270,175,MC,SK,M0,M1 irem 218

715 [DSPR3,0,0,0,284,210,MC,SK,M0,Ml :rem 218 M
720 RETURN :rem 121

800 PRINT"{HOME}{22 DOWN}";:INPUT"SAVE FROM BLOCK"

;BL :rem 210

805 PRINT"{HOME}{22 DOWN}{35 SPACES}"; :rem 50
810 PRINT"{HOME}{22 DOWN}";:INPUT"SAVE TO BLOCK";B

E :rem 59

820 PRINT"{HOME}{22 DOWN}{35 SPACES}"; :rem 47

825 IFBE<0ORBL<0THENRETURN :rem 203

830 PRINT"{HOME}{22 DOWN}";:INPUT"FILE NAME ";FS$(

1) :rem 249

835 PRINT"{HOME}{22 DOWN}{35 SPACES}"; :rem 53

840 PRINT"{HOME}{22 DOWN}";:INPUT"DEVICE NUMBER";B

P(0) :rem 6

841 PRINT"{HOME}{22 DOWN}{35 SPACES}"; :rem 50

845 IFA$="I"THEN900 :rem 39

850 FORJ=43TO46:BP(J-42)=PEEK(J):NEXT :rem 239

860 SB=4*4096:BL=64*BL+SB:BE=64*(BE+1)+SB:BP(5)=BL

AND255:BP(6)=INT(BL/256) :rem 192

865 BP(7)=BEAND255:BP(8)=INT(BE/256) :rem 17

870 POKE43,BP(5):POKE44,BP(6):POKE45,BP(7):POKE46,

BP(8) :rem 193

880 SAVEFS$(1),BP(0),1:POKE43,BP(1):POKE44,BP(2):P

OKE45,BP(3):POKE46,BP(4) :rem 246

890 RETURN :rem 129

900 TA=490:LOADFS$(1),BP(0),1 :rem 61

910 END :rem 113

999 END :rem 130

1000 [VS1K9 :rem 122

1005 INPUT"{CLR}DATA FOR BLOCK";BL :rem 98

1100 INPUT"START LINE NUMBER";X :rem 168

1105 Y=4*4096+64*BL:BL=0:NL=14:PRINT"{CLR}":rem 36 ~
1110 FORJ=0TO3:[KSPRJ:NEXT :rem 207 u

1115 PRINTX"DATA";:FORJ=1TONL:V$=STR$(PEEK(Y))

:rem 138 —

1120 PRINTRIGHT$(V$,LEN(V$)-1)",";:Y=Y+1:NEXT:X=X+

10 :rem 78

1130 PRINT"{LEFT} ":BL=BL+1 :rem 34

1140 IFBL<5THEN1115 :rem 75

1150 IFBL=5THENNL=7:GOTO1115 :rem 206

1155 GETA$:IFA$=IIMTHEN1155 :rem 187

1157 FORJ=0TO3:[ESPRJ:NEXT :rem 212

1160 [VS1K11:GOTO500 :rem 178

162

H

n
Colors, Characters, and Motion 4

H

2000

2005

2010

2020

2030

2040

2050

2060

2070

2075

2076

2080

2090

2100

2110

2115

2120

2130

2140

2150

2160

2170

2180

2185

2190

2200

2500

2510

2520

3000

3002

3005

3010

3020

3030

3040

3050

3060

3070

3080

3085

3090

OR"

PRINT

[VS1K10:[FCOL12:[BKG40,1,12,11:PRINT"{CLR}

{RVS}SPRITE{SHIFT-SPACE}EDITOR{SHIFT-SPACE}ME
NU{OFFJ " :rem 91

PRINT" FgE3 BACKGROUND COLOR " :rem 110

PRINT" FiR| BORDER COLOR " :rem 73

PRINT" FiWi SPRITE MULTI 0" :rem 160

PRINT" FgHi TEXT COLOR " :rem 212

PRINT" FgJ| SPRITE COLOR" :rem 104

PRINT" FgY| SPRITE MULTI 1" :rem 168

PRINT" 1E3 gR| EW§{2 SPACES}SETS PIXEL

{SPACE}ON" :rem 13

PRINT" SPACE CLEARS PIXEL" :rem 194

PRINT" CURSOR{SHIFT-SPACE}KEYS MOVE EDIT CURS

:rem 148

CLR/HOME CLEARS DISPLAY" :rem 41

PRINT" R HORIZONTAL SHIFT" :rem 245

PRINT" V VERTICAL SHIFT" :rem 74

PRINT" L LATERAL FLIP" xrem 144

PRINT" F VERTICAL FLIP" :rem 224

PRINT" C SINGLE/MULTICOLOR TOGGLE" :rem 26

PRINT" IS STORE EDIT SPRITE" :rem 243

PRINT" U RECALL STORED SPRITE" :rem 199

PRINT" £ PREVIEW STORED SPRITES" :rem 133

PRINT" O STORE SPRITES IN FILE" :rem 214

PRINT" £ LOAD SPRITE FILE" :rem 122

PRINT" M DISPLAY MENU" :rem 179

PRINT" A ANIMATE MODE" :rem 129

PRINT" D DATA LIST" :rem 187

GETA$:IFA$=""THEN2190 :rem 187

RETURN :rem 164

[VS1K10:[FCOL12:[BKG40,11,11,15 :rem 63

GETA$xIFA$=""THEN2510 :rem 179

[VS1K11:[BKG4B,M0,SK,M1:CFCOLTC:GOTO500

xrem 255

FORJ=0TO3x[KSPRJxNEXT xrem 207

ZZ=53265:WV=128:[VSlK9xPRINT"{CLR}";xINPUT"ST

ART BLOCK";BL xrem 22

INPUT"END BLOCK"?BE :rem 160

INPUT"HORIZ SHIFT"7HS xrem 120

INPUT"VERTICAL SHIFT";VS xrem 85

INPUT"TIME DELAY";TD xrem 11

INPUT"X EXPAND 0/1";XE xrem 27

INPUT"Y EXPAND 0/1";YE xrem 30

INPUT"X POSITION";XP xrem 77

INPUT"Y POSITION";YP xrem 80

PRINT"{CLR}" xrem 47

FORJ=0TO3x[KSPRJxNEXT xrem 220

FORJ=BLTOBE:WAITZZ,WVx[DSPR0,J,XE,YE,XP,YP,MC

,SK,M0,M1 xrem 119

163

u

4 Colors, Characters, and Motion ^

3100 XP=XP+HS:YP=YP+VS :rem 180

3110 IFXP>348THENXP=0 :rem 29

3120 IFXP<0THENXP=340 srem 20) I

3130 IFYP<0THENYP=255 :rem 28 LJ
3140 IFYP>255THENYP=0 :rem 31

3145 FORGX=1TOTD:NEXT ;rem 117 r-

3150 NEXT :rem 8 U

3160 GETA$:IFA$=HI1THEN3090 :rem 185

3165 FORJ=0TO3:[ESPRJ:NEXT:[DSPR0,0,1,1,270,60,MC,

SK,M0,M1 :rem 25

3170 [VS1K11:[FCOLTC:GOTO500 :rem 5

5000 Y=32768:RESTORE 5020:CA=Y:RO=CA+97:UP=CA+160:

VR=CA+310:LA=CA+384:FL=33221 :rem 47

5005 READV:IFV<0THENRETURN :rern 214

5010 POKEY,V:Y=Y+1:GOTO5005 :rem 146

5020 DATA32,0,192,24,169,0,162,6,6,20,42,202,208,2
50,24 :rem 168

5030 DATA105,64,133,21,173,136,2,133,79,169,0,133,
78,133,253 -rent 185

5040 DATA133, 255,160,0,162, 4, 24,177, 78, 41,128, 240,
lr56,38 :rem 35

5050 DATA2, 200, 24,177, 78, 41, 64, 240,1,56, 38, 2, 200, 2

02,208 :rem 226

5060 DATA231,132, 254,164,255,165,2,145,20,230,255,

164,254,192,24 :rem 126

5070 DATA208,213,24,165,78,105,40,133,78,144,2,230

,79,230,253 :rem 238

5080 DATA165, 253,201,21,208,192,96,173,136,2,133,7

9,133,21,169 :rem 40

5090 DATA1,133,20,169,0,133,78,133,255,162,21,160,

0,177,78 :rem 84

5100 DATA133, 2,177, 20,145, 78, 200,192, 23, 208, 247,16

5,2,145,78 :rem 188

5110 DATA24,165, 20,105,40,133, 20,144, 2, 230, 21,165,

21,133,79 :rem 105

5120 DATA165, 20,133, 78,198, 78, 202, 208, 213, 96, 32,0,

192,165,20 :rem 193

5130 DATA133,2,32,0,192,24,169,0,162,6,6,20,42,202 | |

,208 :rem 118 *—>
5140 DATA250, 24,105, 64,133, 21,173,136, 2,133, 79,169

,0,133,78 :rem 135 ,---,

5150 DATA133,254,133,251,133,252,169,0,133,253,164 LJ
,251,177,20,230 :rem 168

5160 DATA251,133, 80,165, 2, 208, 25,169,0,6, 80,42,170

,189,48 :rem 46 j j

5170 DATA129,164,252,145,78,230,252,230,253,165,25 Uj
3,201,8,208,233 :rem 184

5180 DATA240, 30,169,0,6, 80,42,6, 80, 42,170,189, 50,1 r

29,164 :rem 247 LJ

164 r I

p

Colors, Characters, and Motion 4

H
5190 DATA252,145, 78, 200,145, 78, 200,132, 252, 230, 253

,165,253,201,4 :rem 123

5200 DATA208,226,230,254,165,254,201,3,208,177,169

,0,133,252,133 :rem 122

5210 DATA254,24,165,78,105,40,133,78,144,2,230,79,

165,251,201 :rem 237

5220 DATA63,208,154,96,32,224,32,96,160,224,173,13

6,2,133,21 :rem 184

5230 DATA133,79,169,0,133,20,169,40,133,78,160,0,1

77,20,153 :rem 135

5240 DATA0,144,200,192,24,208,246,162,20,160,0,177

,78,145,20 :rem 172

5250 DATA200,192,24,208,247,165,79,133,21,165,78,1

33,20,24,105 :rem 31

5260 DATA40,133,78,144,2,230,79,202,208,225,160,0,

185,0,144 :rem 126

5270 DATA145,20,200,192,24,208,246,96,0,173,136,2,

133,21,169 :rem 182

5280 DATA0,133,20,133,2,169,0,133,251,169,23,133,2

52,164,251 :rem 170

5290 DATA177, 20,133, 253,164, 252,177, 20, 72,165, 253,

145,20,104,164 :rem 132

5300 DATA251,145,20,230,251,198,252,165,251,201,12

,208,226,24,165 :rem 166

5310 DATA20,105,40,133,20,144,2,230,21,230,2,165,2

,201,21 :rem 238

5320 DATA208,199,96,169,0,168,133,251,169,0,133,2,

133,20,173 :rem 195

5330 DATA136,2,133,21,24,105,3,133,79,169,32,133,7

8,24,165 :rem 86

5340 DATA251,101, 20,133, 20,144, 2, 230, 21, 24,165, 251

,101,78,133 :rem 200

5350 DATA78,144,2,230,79,177,20,72,177,78,145,20,1

04,145,78 :rem 160

5360 DATA24,165,20,105,40,133,20,144,2,230,21,56,1

65,78,233 :rem 120

5370 DATA40,133, 78,176, 2,198, 79, 230, 2,165, 2, 201,10

,208,216 :rem 89

5380 DATA230, 251,165, 251, 201, 24, 208,166, 96,-1

:rem 212

165

4 Colors, Characters, and Motion

U

u

u

Paul F. Schatz

[J
If you've always wanted to create sprites on

your Commodore 64, but have been put off by

all the complicated POKEs, this article is your

answer. It lets you modify BASIC to add three

new sprite commands to make the job much eas

ier. An accompanying side article also explains

the rudiments of sprite design.

One of the most powerful features of the Commodore 64 is its

sprite animation ability. Sprites, also called MOBs (for Mov

able Object Blocks), are in effect graphics blocks which you

can sculpt into any shape and move about the screen. Since

they move independently of the screen image and move more

smoothly than custom characters, they are often used when

creating games or demonstrating animation.

Sprites are accessed from BASIC by a series of POKEs.

The Video Interface Controller (VIC-II chip) holds several reg

isters which you manipulate to create and move sprites on

your screen. Manipulating these VIC-II registers can get com

plicated, however, especially for the beginning programmer,

because the routines require numerous POKEs for each sprite.

Turning on and off various sprite functions can become

confusing. Crossing the invisible seam on the 64's screen is

especially cumbersome.

A solution is to add some new commands to BASIC to r -<

control the sprites. This article provides a method for adding 1—•
three new commands to BASIC which will allow you to con

trol sprites more easily. r i

If you're unfamiliar with the methods used to design and LJ
create sprites on the 64, refer to the accompanying section,

"Sprite Creation," before you continue. r -j

Modifying BASIC

The Commodore 64 is a flexible computer and it's possible to - -

use the Random Access Memory (RAM) under the BASIC LJ

166

H

n
Colors, Characters, and Motion 4

Read Only Memory (ROM) for a modified BASIC. You make a

duplicate of BASIC, place it in RAM, and then modify "RAM

i\ BASIC" to suit your needs. The technique was outlined by Jim

Butterfield in his article "Commodore 64 Architecture," which

appeared in the January 1983 issue of COMPUTE! magazine. It

j| was also used in my article "Commodore 64 Hi-Res Graphics

Made Simple," which appeared in the August 1983 issue of

COMPUTEl's Gazette. Refer to these two articles for other uses

of this same process.

"Sprite BASIC," which I'll call my BASIC modification

program, replaces three old keywords, LET, WAIT, and

VERIFY, with three new keywords, OFF, MOVE, and SPRITE.

Notice that the new keywords are the same length as the ones

they replace. A new keyword has to be mapped exactly into

the old keyword's spot in the keyword lookup table. Program

1 is the BASIC program which moves the BASIC ROM code to

RAM, modifies it, and loads the new machine language

routines into a safe area of memory. Machine language is an

excellent method of programming sprite movements, since it is

both very fast and very efficient. (Sprite BASIC extends from

$C000 to $C0E2.)

Sprite BASIC is loaded into the Commodore 64 by typing

in and running Program 1. When typing it in, be as accurate

as possible, since an incorrect number may cause the computer

to crash when you type RUN. To clear this, you'd have to

switch it off and on again, erasing anything you'd already en

tered. To be safe, SAVE the program before running it for the

first time, and use the "Automatic Proofreader" in Appendix J.

It will take the computer a minute or so to run the pro

gram. Be patient. When the READY prompt appears again,

type in:

rn POKE 1,54

This switches on Sprite BASIC. If you want to return to

Commodore (your original) BASIC, simply type in:

fi POKE 1,55
Since you can switch from the old BASIC to Sprite BASIC

r^ within programs with these POKEs, your program can contain

' ! both the old and new BASIC command words.

Sprite BASIC is also switched off by pressing the RUN/

f—i STOP and RESTORE keys simultaneously. Because the new

1 BASIC tokenizes the new keywords, make sure you have

- 167

u

4 Colors, Characters, and Motion LJ

n
Sprite BASIC turned on as you enter your own program. The

old keywords that were replaced cannot be used unless the

old BASIC is switched back on. jj

The New Commands

After you've entered and switched on Sprite BASIC, you'll \"}

have three new commands available while you program t—*
sprites.

OFF <number>

This statement disables (turns off) the sprite designated by

the number. Sprites are numbered from 0 to 7, so a number 8

or greater will give an ILLEGAL QUANTITY ERROR.

MOVE <number>, <number>, <number>

This new keyword enables (turns on) a sprite and places

it at the desired location on the screen. The first number is the

sprite's number (0-7). The next two numbers are the X and Y

coordinates, respectively, of the sprite's upper left corner. Be

cause the sprite display area is larger than the screen area, the

X coordinate must be 24 or greater, while the Y coordinate

must be 50 or greater for the sprite to be fully visible. Allowed

values for the X coordinate range from 0 to 511, although

those greater than 344 are totally off the screen. Y values can

range from 0 to 255, but numbers greater than 250 are com

pletely off the screen. Any number greater than the accepted

range will cause an ILLEGAL QUANTITY ERROR message.

SPRITE <number>, <number>, <number>, <number>

This new statement defines a sprite. The first number is

the number of the sprite being defined. The second number is

the 64-byte data block where the values used to actually draw

the sprite are stored. This number can have values from 0 to

255. For example, sprite data stored in memory locations 832 r]

to 895 (cassette buffer) is block 13 (832/64=13). The third ^
number in this command is the color of the sprite. The color

codes are: [" |

0 Black 4 Purple 8 Orange 12 Med Gray

1 White 5 Green 9 Brown 13 Light Green -

2 Red 6 Blue 10 Light Red 14 Light Blue LJ
3 Cyan 7 Yellow 11 Dark Gray 15 Light Gray

The fourth number determines the size of the sprite. If the j 1

number is 0, the sprite is normal size. A 1 entered here doubles

168 T ~

H

1 ! Colors, Characters, and Motion 4

n
the sprite's width. If the number is 2, the sprite is doubled

_ in height. Entering a 3 doubles both the width and the

H height.

Some Sample Programs

|"""j You're now ready to enter and run a couple of simple pro
grams using Sprite BASIC. Both demonstrate how this new

BASIC can be used for easy animation. The first program ani

mates a sprite which looks like a butterfly by moving it as it

changes its shape. Actually two sprites are used. The program

displays first one, then the other, to simulate movement. To

see this, LOAD and RUN Sprite BASIC, type NEW, switch on

the new BASIC by typing POKE 1,54, and enter Program 2.

Before you run it, SAVE it on tape or disk.

A peculiarity of the Commodore 64 concerning sprites is

that there are actually two separate sections of the screen for

the X, or horizontal, coordinates. An invisible seam runs all

the way down the screen immediately after the 255th X co

ordinate. Normally, you would have to POKE a value into an

additional register each time a sprite moved across this seam.

Notice, however, that you don't have to do this when you use

Sprite BASIC. After you enter Program 2 and type RUN, it

moves the sprite smoothly across the seam from left to right.

This is one of the advantages of using something like Sprite

BASIC, for the computer does as much as possible for you.

To see a joystick-driven sprite, type in NEW and enter

Program 3. Make sure that Sprite BASIC is loaded and en

abled before you run Program 3. Plug a joystick into port 2

and you'll be able to maneuver the tie fighter-shaped sprite

across the screen.

Just Starting

pi Using Sprite BASIC, you can create and move your own

1 (sprites with much more ease than if you had to POKE each

register on your own. All you really have to do is design a

Pj sprite, calculate the DATA numbers, which allow the 64 to

1 ! display it properly, and the new BASIC does all the rest.
This lets you concentrate on creating unique sprites, or in

r"-j using them to your program's advantage. A game, for exam-

' pie, would be much easier to program, with sprites, using this
new programming tool. Try some of your own sprites, perhaps

J"! simply replacing the DATA numbers in the sample programs

! with your own sprite information.

rr 169

4 Colors, Characters, and Motion

Sprite Creation
Gregg Keizer

Drawing Sprites

Creating a sprite is much like creating a custom character—it

must be drawn. The 64 does not do this for you; you have to

place the data information within a program for the computer

to look at, and then draw the sprite on the screen.

A sprite is much larger than a custom character, consisting

of a graphics block 24 pixels wide by 21 pixels high. A custom

character is only an 8-by-8 pixel block. The information to

draw a sprite uses more memory than a custom character be

cause of its size, so fewer sprites can be displayed at a time.

Eight sprites are available to you on the Commodore 64.

Just as when you create custom characters, you can use

graph paper to design your sprites. Take a piece of graph pa

per and outline an area 24 blocks wide by 21 high. Simply fill

in the blocks in the pattern to create a sprite. Figure 1 shows a

sample sprite drawn in this way.

Figure !♦ Graphing a Sprite

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6

$i

7

id

i

8

Pi

y

if!
6$

H

|S
it

Column

910111213141516171819 20 2122 23

H

E

M
li

SI

^

n

an
i

%
%
m

m

m
m

M

H

m

P

at
$

ss

y

M

$$

mm
m

u

u

LJ

LJ

U

LJ

U

170

H
Colors, Characters, and Motion 4

n

The blocks that are filled in will be on, or displayed in the

color you later select for your sprite, while the empty blocks

will be off, or shown in the screen's background color.

Drawing sprites is not enough for the computer, however.

It cannot just look at something and display it on the screen.

Instead, it needs numbers it can refer to which tell it what to

create. You have to do this.

Bit Values
To come up with the numbers the 64 needs to draw your

sprites, you'll have to do some addition. As when creating

custom characters, to show some of a sprite's pixels on and

others off, bits have to be set. It's not as hard as it sounds. Fig

ure 2 shows you how it's done.

Figure 2. Sprite Worksheet

I \

B
i
t

g>
V
a
l
u
e
s
$

BlockABlockB 7654321076543210 IBlockC 76543210 ABlock Totals BC

This is similar to the graph paper you used to design your

sprite, only bit values have been assigned to each pixel. As in

Figure 1, there are 24 columns and 21 rows. Each box repre

sents one pixel in your sprite.

The similarity with custom characters ends here. Instead

171

4 Colors, Characters, and Motion

of only one eight-bit block in each row, a sprite has three.

These have been named Block A, Block B, and Block C in Fig

ure 2. When the 64 looks at the numbers to create a sprite, it

starts with the eight-bit block in the upper left corner, moves

across the first row, and then jumps down to the left-most

block on the next row. The last number it reads to create a

sprite represents the bottom right corner of Block C.

Calculating the bit values to show a sprite is only a matter

of adding together the values of the bits you want on. Figure 3

shows the same sample sprite, but with its bit values

computed.

Figure 3. Sprite Computation

$
S ■

U

u

u

u

u

Block A

7 6543210

£$
$M

m

m

m

&&

$\
m

Block B

76543210

§L
P-
B

g

||

lilt,

;^

PI

S^
gii

m
01

$4
'}"$

m

M

m

Hi

m

^{

W,

0

m

Si

t$

Block C

76543210

SI

Ml

B
M

Si

i

A

0

0

0

1

3

3

3

3

3

3

1

0

0

0

0

0

0

0

0

0

0

Block

Totals

B C

0

126

255

255

255

255

153

153

153

255

255

255

255

66

66

66

231

0

0

0

0

0

0

0

128

192

192

192

192

192

192

128

0

0

0

0

0

0

0

0

0

0

The first row has none of its pixels on, so the bit value for

all three bytes is 0. Row 2, however, has six bits in the Block B

byte turned on. These bits, numbers 1 through 6, have a total

bit value of 126 (2+4+ 8+ 16+32+ 64). The other two bytes,

represented by Blocks A and C, are 0, since neither has any

bits on.

Each byte is calculated in this same way. Remember that

each row of a sprite consists of three bytes, and that each

172

U

U

U

u

n
1 ' Colors, Characters, and Motion 4

must be figured separately. Figure 2 makes this simple, for

each byte has its own total column at the far right.

When you've finished computing the bit values for a

sprite, you should have 63 numbers. These are the numbers

the Commodore 64 will look at to display your sprite. Nor

mally, you would insert them in a program in several DATA

statements and have the computer READ from this table. For

instance, using the numbers for the sample sprite, the DATA

statements would look like this:

DATA 0,0,0,0,126,0,0,255,0

DATA 1,255,128,3,255,192,3,255,192

DATA 3,153,192,3,153,192,3,153,192

DATA 3,255,192,1,255,128,0,255,0

DATA 0,255,0,0,66,0,0,66,0

DATA 0,66,0,0,231,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,-1

(The -1 is used to fill up the 64-byte block each sprite occu

pies in memory. Without that additional number, you may get

an error message.)

Every sprite you design is created like this. But once you

have it designed, you have to POKE other values into the 64

to make it appear.

Normally, you would have to POKE values into the com

puter to do such things as enable the sprite (turn it on), locate

the sprite's DATA in an available memory address, set its

color, and finally, place it on the screen. This is where sprite

creation becomes tedious. By modifying BASIC, you can get

the Commodore 64 to do much of this for you. "Sprites Made

Easy" gives a detailed description on how to make sprite

control easier.

1 Program 1. Sprite BASIC
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

!""] 10 A=0: REM INITIALIZE CHECKSUM :rem 114
' 20 REM MOVE BASIC ROM TO RAM : rem 80

30 FORI=40960TO49151:POKEI,PEEK(I):NEXTI :rem 217

f—| 40 REM CHANGE LET TO OFF :rem 81

I 50 FORI=41150TO41152:READN:POKEI,N:A=A+N:NEXTI

:rem 113

60 READL,H:POKE40988,L:POKE40989,H:A=A+L+H:rem 254

jj 70 DATA 79, 70, 198, 2, 192 :rem 120

t-i 173

u

4 Colors, Characters, and Motion *—'

LJ
80 REM CHANGE WAIT TO MOVE :rem 1

90 FOR I=41189TO41192:READN:POKEI,N:A=A+N:NEXTI

:rem 133) I

100 READL,H:POKE41008,L:POKE41009,H:A=A+L+H :rem 9 LJ
110 DATA 77, 79, 86, 197, 19, 192 :rem 123

120 REM CHANGE VERIFY TO SPRITE :rem 108

130 FORI=41201TO41206:READN:POKEI,N:A=A+N:NEXTI [J
:rem 157

140 READL,H:POKE41014,L:POKE41015,H:A=A+L+H srem 7

150 DATA 83,80,82,73,84,197,96,192 :rem 163

160 REM READ IN NEW ROUTINES : rem 145

170 FORI=49152TO49384:READN:POKEI,N:A=A+N:NEXTI

:rem 189

180 IFAO30780THENPRINT"ERROR IN DATA STATEMENTS"

:rem 40

190 END :rem 113

200 DATA 80, 70, 83, 32,158,183,224, 8,176, 31,189

,219,192, 45, 21,208,141 :rem 237

210 DATA 21,208, 96, 32,158,183,224, 16,176, 14,13

4, 2, 32,253,174, 32,235 :rem 222

220 DATA183,165, 21,201, 2,144, 3, 76, 72,178,138,

72,166, 2, 32, 10,192 :rem 70

230 DATA189,219,192, 45, 16,208,141, 16,208, 70, 2

1,144, 9,189,211,192, 13 :rem 28

240 DATA 16,208,141, 16,208,138, 10,170,104,157, 1

,208,165, 20,157, 0,208 :rem 255

250 DATA166, 2,189,211,192, 13, 21,208,141, 21,208

, 96, 32,158,183,224, 8 :rem 228

260 DATA176,193,134, 2,169,248,133,251,173, 24,208

, 41,240, 9, 12,133,252 :rem 70

270 DATA173, 0,221, 73,255, 74,102,252, 74,102,252

, 32,253,174, 32,158,183 :rem 65

280 DATA138,164, 2,145,251, 32,253,174, 32,227,192

,224, 16,176,146,138,153 :rem 179

290 DATA 39,208,185,219,192, 72, 45, 29,208,141, 2

9,208,104, 45, 23,208,141 :rem 86

300 DATA 23,208, 32,253,174, 32,227,192,224, 4,176

,223,134, 2, 70, 2,144 :rem 160 f ,

310 DATA 9,185,211,192, 13, 29,208,141, 29,208, 70 U
, 2,144, 9,185,211,192 :rem 178

320 DATA 13, 23,208,141, 23,208, 96, 1, 2, 4, 8, 1

6, 32, 64,128,254,253 :rem 171 1 j
330 DATA251,247,239,223,191,127 :rem 43 L-J
340 DATA 32,158,183,164,2,96 :rem 104

u

u

LJ

n

Colors, Characters, and Motion 4

Program 2* Butterfly

pi 10 READ SB: IF SB<0 THEN 180: REM READ SPRITE DATA

! I :rem 207
20 L0= SB*64: FOR 1= 0 TO 62 :rem 69

_ 30 READ SD: POKE LO+I,SD: NEXT I :rem 19

i | 40 GOTO 10 :rem 254

50 DATA 13: REM SPRITE DATA BLOCK 13 :rem 193

60 DATA 14, 32, 0, 31, 112, 0, 63, 112, 0, 63, 186

, 0 :rem 235

70 DATA 127, 217, 128, 127, 237, 128, 63, 247, 0,

{SPACE}63, 254, 0 :rem 111

80 DATA 31, 252, 0, 15, 248, 0, 15, 240, 0, 31, 22

4, 0 :rem 31

90 DATA 31, 192, 0, 13, 128, 0, 0, 0, 0, 0, 0, 0

:rem 230

100 DATA 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 :rem 227

110 DATA 14: REM SPRITE DATA BLOCK 14 :rem 240

120 DATA 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0:rem 6

130 DATA 60, 121, 128, 127, 125, 128, 255, 191, 12

8, 255, 239, 0 :rem 48

140 DATA 255, 254, 0, 255, 252, 0, 255, 248, 0, 12

7, 240, 0 :rem 41

150 DATA 63, 224, 0, 127, 192, 0, 62, 0, 0, 28, 0,

0 :rem 189

160 DATA 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 :rem 233

170 DATA -1: REM END OF DATA :rem 180

180 PRINT"{CLR}": POKE 53281,1: REM WHITE SCREEN

:rem 37

190 X=0: Y=0: REM STARTING POSITION :rem 94

200 POKE 1,54: REM TURN ON SPRITE BASIC :rem 196

210 VERIFY 0, 13, 11, 0: REM DEFINE SPRITE:rem 178

220 WAIT 0, X, Y: REM PUT SPRITE 0 ON SCREEN

:rem 125

230 FOR T = 0 TO 100: NEXT T: REM DELAY LOOP:rem 5

pi 240 VERIFY 0, 14, 11, 0: REM REDEFINE SPRITE

1 ' :rem 77
250 FOR T = 0 TO 100: NEXT T: REM DELAY LOOP:rem 7

260 X=X+3: Y=Y+ 3*(INT(RND(1)*3)-l) :rem 66

H 270 IF X>345 THEN X=0 :rem 78
280 IF (Y<30) OR (Y>250) THEN Y=150 :rem 237

290 GOTO 210 :rem 103

175

4 Colors, Characters, and Motion

Program 3* Tie Fighter

10 READ SB: IF SB<0 THEN 120: REM READ SPRITE DATA

:rem 201

20 LO= SB*64: FOR 1= 0 TO 62 :rem 69

30 READ SD: POKE LO+I, SD: NEXT I :rem 19

40 GOTO 10 :rem 254

50 DATA 13: REM SPRITE DATA BLOCK 13 :rem 193

60 DATA 192, 0, 3, 192, 0, 3, 192, 40, 3, 192, 171

, 3 :rem 253

70 DATA 194, 171, 195, 194, 155, 195, 194, 90, 195

, 194, 90, 195 :rem 95

80 DATA 194, 106, 195, 250, 170, 235, 254, 170, 23

9, 254, 170, 255 :rem 163

90 DATA 194, 171, 195, 194, 175, 195, 195, 191, 19

5, 195, 255, 195 :rem 202

100 DATA 195, 255, 195, 192, 255, 3, 192, 60, 3, 1

92, 0, 3 :rem 8

110 DATA 192, 0, 3, -1: REM END OF SPRITE DATA

:rem 8

120 X= 184: Y= 150: REM POSITION IN MIDDLE OF SCRE

EN :rem 89

130 PRINT"{CLR}":POKE 53281,3: POKE53280,3: REM CY

AN SCREEN AND BORDER :rem 39

140 POKE 53276,1: REM MULTICOLOR SPRITE 0 :rem 87

150 POKE 53285,15: POKE 53286,11: REM AUX COLORS

:rem 59

160 POKE1,54: REM TURN ON SPRITE BASIC :rem 201

170 VERIFY 0, 13, 12, 1: REM DEFINE SPRITE 0

:rem 233

180 WAIT 0, X, Y: REM POSITION SPRITE :rem 113

190 GOSUB 300: IF J=15 THEN 190 :rem 44

200 GOTO 180:REM MOVE SPRITE :rem 144

300 REM READ JOYSTICK :rem 3

310 J= PEEK(56320) AND 15: REM PORT 2 :rem 95

320 IF (J AND 8)=0 THEN X=X+1: REM MOVE RIGHT

:rem 130

330 IF (J AND 4)=0 THEN X=X-1: REM MOVE LEFT

:rem 46

340 IF (J AND 2)=0 THEN Y=Y+1: REM MOVE UP:rem 167

350 IF (J AND 1)=0 THEN Y=Y-1: REM MOVE DOWN

:rem 60

360 IF Y<50 THEN Y=50: REM STAY IN RANGE

370 IF Y>229 THEN Y=229

IF X<24 THEN X=24380

390 IF X>295 THEN X=295

400 RETURN

:rem 175

:rem 191

:rem 78

:rem 197

:rem 116

U

U

U

U

u

176

n

n Inside Your 64 5

n

Charles Brannon

Perhaps you've pressed those function keys to

the right of the keyboard and were dismayed to

find they did nothing. Don't worry, they work

fine; they just need a program to "come alive/'

With this tutorial you'll find it's easy to write

your own programs using function keys.

One day, somebody had a good idea. There were dozens of

programs: word processors, spreadsheets, data bases, and they

all required you to press certain keys to perform the various

functions. For example, a word processor would save your text

to disk with CTRL-S (meaning to hold down a special Con-

TRoL key while you press S). The arrow keys that move the

cursor were among the first "function keys"; they replaced

various CTRL-keys that did the same thing.

Mystery Keys

So someone added a number of mysterious keys to a com

puter keyboard. Dedicated (used only for one task) word

n processors have special labelled keys to cut, paste, copy, edit,

etc. Since computers are general-purpose, the keys had to be

unlabelled so every application could do something different

nwith the keys. The idea caught on. These days, function keys

are the rage. You can hardly buy a computer without them.

Special, set-aside, unlabelled function keys are defined by

n whatever program is currently running. Frequently, pro

grammers assign powerful functions to the keys. It's a gim

mick of sorts; it would be just as easy to assign the function to

j—i the normally unused CTRL keys (and link them in an easy-to-

r-i 179

u

5 Inside Your 64 <-'

remember fashion, such as CTRL-Q for Quit, CTRL-E to Erase,

etc.). There is undeniable convenience, however, in having

your own special "programmable" keys. j_J

The Sad Truth

Fundamentally, the function keys are no different from any I I

other key on the keyboard, so it is as unrealistic to assume —'

they'll always do something as it is to think that pressing the

fire button on the joystick will always fire a shot. If you've

used the joystick, you know that it tells you only which way

the player is pushing (north, south, east, west, or diagonal)

and whether the fire button is pressed or not. Period. You

have to write (or buy) special programs that move a figure

based on the position of the joystick.

The function keys on the Commodore 64 are the same.

When you run commercial software, the keys do everything

from changing border colors to shifting the screen, selecting

difficulty, or restarting a game. But the real power of the func

tion keys comes when you understand how to use them in

your own programs.

GETting to the Point

The primary BASIC command used to read the keyboard is

GET. When you type GET followed by a variable name (GET

A$ or GET XZ), the computer looks at the keyboard and puts

whatever key is being pressed into the variable. But it looks

only once, and if you didn't press a key, the computer merrily

goes on to something else. GET will not wait for a key to be

pressed. This is a good feature; but if you do want to wait for

a key, you would do something like:

10 GET A$

20 IF A$="M THEN 10

or

10 GET N

20 IF N=0 THEN 10

The phrase: IF A$ = "" means: if A-string equals the null

string (nothing is between the quotes; it's just two quotes in a

row), then go back to line 10. So as long as no key is pressed,

line 20 will keep sending the computer back to line 10 to

check again. The second example is waiting for you to press a

number key from 1-9 (it uses 0 to mean no key pressed, so

180

n

n
Inside Your 64 5

n
pressing 0 won't make it stop waiting). This type of GET com-

_ mand used with a numeric variable (instead of a string) is

I I dangerous, though. If the user presses any other key, the pro
gram will crash (stop running and return to BASIC) with a

_ 7SYNTAX ERROR message. It's just as easy to convert a string

! I into a number with the VAL command, so the second state
ment could be rephrased:

10 GET N$

20 IF N$=M" THEN 10

30 N=VAL(N$)

It's easy to improve; if you wanted to accept only num

bers above, you could change line 20 to:

20 IF N$<"0" OR N$>"9" THEN 10

which means: if N-string has an ASCII value (a code used in

your computer to order characters—A, which has an ASCII

value of 65 is "less than" Z, which has an ASCII code of 90)

less than that of "0" or greater than that of the character "9"

then loop back to line 10.

Incidentally, the ASCII code for the null string (quote-

quote) is zero, which is less than 48, the code for "0", so the

loop will also wait for a key. If you're curious about ASCII,

check out the BASIC commands ASC and CHR$ in your man

ual. You'll also find the ASCII codes and their character

equivalents in Appendix F at the back of this book.

Strictly Logical?

So if you just want to accept a yes or no answer (Y for Yes, N

for No), then this will work just fine:

10 GET A$:IF A$o"Y" AND A$<>HN" THEN 10

Computer logic with IF-THEN, AND, OR, and NOT can get a

bit tricky, so let me explain this line. The computer will GET a

key and put it into A$. Remember that the user may not have

pressed the key yet, so A$ could be any key, or it could be the

null string (""). In the latter case, the null string is not equal

to "Y" and it is not equal to "N," so it will loop back to 10. If

you pressed "X," it will also loop. But if you pressed "Y," A$

would be equal to "Y" (meaning A$o"Y" is false) but it

would not equal "N" (A$o"N" is true). Since both con

ditions are not true, AND fails, and the program continues. A

common mistake would be:

181

5 Inside Your 64

10 GET A$:IF A$o"Y" OR A$<>"N11 THEN 10

This would loop back to line 10 no matter what key was

pressed. If either A$ did not equal "Y" or A$ did not equal

"N," then the computer would loop. The only way for the test

to fail would be for A$ to be "not equal" to "Y" and "not

equal" to "N"; in other words, it would have to be both equal

to "Y" and equal to "N." I told you it was tricky! By the way,

another common mistake is something like:

10 GET A$:IF A$OIIY" AND <>"N" THEN 10

This will give you a 7SYNTAX ERROR, but it seems to read all

right in English. It's just that the computer requires you to

repeat the variable for each symbol such as <>, <,>/.or =.

If you've tried some of the examples, you'll find that GET

only changes the value of the variable. It does not print the

key on the screen. This is also handy; you don't want a bunch

of keys printed out just to move your spaceship using the key

board. To make a simple "video typewriter," try this (remem

ber the semicolon on line 20):

10 GET X$:IF X$="" THEN 10

20 PRINT X$;:GOTO 10

On to Great Frontiers

We're nearly ready to use the function keys. Try this: press the

quote (SHIFT-2) and then press the function keys (SHIFT to

get the even-numbered keys). What magic is this? Each key

now seems to print some cryptic symbol! The computer can

read the function keys just like any other key, but PRINTing

them won't display anything unless you are in quote mode

(where you can program cursor controls into PRINT state

ments). But you can take advantage of the symbols to easily

interpret the function keys. You use GET to read them, of

course. Try this program:

10

20

30

40

50

60

70

80

90

GET

IF

IF

IF

IF

IF

IF

IF

IF

F$

F$=

F$=

F$=

F$=

F$=

F$=

F$=

F$=

:IF F$=

'{Fl}"
'{F2}"

"{F3}"
'{F4}"

■{F5}"

'{F6}"

11 {F7}'1

"{F8}11

11 tf THEN 10

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

PRINT

PRINT

PRINT

PRINT

PRINT

"FUNCTION

"FUNCTION

"FUNCTION

"FUNCTION

"FUNCTION

PRINT"FUNCTION

PRINT

PRINT

"FUNCTION

"FUNCTION

ONE"

TWO"

THREE"

FOUR"

FIVE"

SIX"

SEVEN"

EIGHT"

u

u

u

u

u

182

u

u

u

u

D

n

! I Inside Your 64 5

n
The {Fl}, {F2}, and so on, mean for you to press the

appropriate function key inside the quotes. You'll get the

[""[aforementioned symbols. See Appendix B for the symbols
printed on the screen when you press each function key.

What will you do with the function keys? It's really up to

I""] you. For example, to restart a game, you might do something
like this:

530 PRINT"PRESS Fl TO PLAY AGAIN"

540 GET A$:IF A$o"{Fl}" THEN 540

You could also organize a bunch of subroutines, one for each

key, that does something associated with the key (maybe eight

sound effects):

10 GET RQ$:IF RQ$="" THEN 10

20 IF RQ$="{Fl}" THEN GOSUB 500

90 IF RQ$="{F8}" THEN GOSUB 1000

Each function key also has a corresponding ASCII num

ber. Try this program. It prints out the ASCII (ordered) value

for any key pressed:

10 GET A$:IF A$=M" THEN 10

20 PRINT CHR$(34);A$;CHR$(34),ASC(A$)

30 GOTO 10

The CHR$(34) puts the computer in quote mode so that if

you press CLR/HOME or something, you'll see its symbol

instead of the screen clearing.

Here is a summary of the ASCII values for the function

keys:

fl: 133 f2: 137

f3: 134 f4: 138

f5: 135 f6: 139

f7: 136 f8: 140

[""J They're in order from fl-f7, and f2-f8, separately. So you
could use a statement like this to check for f6:

n342 IF F$=CHR$(139) THEN PRINT "FUNCTION SIX"

659 IF ASC(F$)=139 THEN GOSUB 4153

See how CHR$ and ASC work?

n You Take It from Here
Now that you've got the word on function keys, you can start

r—j making your programs "user friendly" too. And you can share

183

LJ

5 Inside Your 64 ^—'

a double feeling of power: not only does pressing one key

raise your garage door, put out the cat, and make coffee in the ___

morning, but you also know that you're the one that made the I I

computer do it.

u

u

u

u

u

184 _

u

n

n

n

n

Inside Your 64 5

Don Stauffer

Using arrays is a handy BASIC programming

technique. This tutorial explains what they are

and how to use them when programming on

your 64.

Arrays, sometimes called subscripted variables, are an im

portant feature of Microsoft BASIC, but there is little docu

mentation on what they are and how to use them. This is

particularly true of the 64.

Some time ago, a friend of mine, a new computer owner,

called with a programming problem. He was working on a

program in which he needed to generate random numbers for

a variable (R). However, he wanted ten different values for R

and wanted to save them for later use in the program, in state

ments where he would use these R values in calculations. I

told him that was a perfect spot to use an array. After he

looked up arrays in all the reference books he had on the ma

chine, he wasn't much better off than when he first called, so

we spent a session going over arrays. It seemed to me that the

best way to know how to use arrays was to start with the

basics.

What is an Array?

An array is a type of variable which can have a number of

values at any one time. For instance, let's look at a variable, T,

[j which might stand for the maximum temperature for a
particular day. T(l) might be the temperature of day 1, T(2)

the temperature of day 2, and so on. The number in the

jl parentheses is called the subscript. In fact, arrays are some
times called subscripted variables. Although the best way to

understand arrays is through examples, which we'll get to

jj shortly, we should first learn a little about how the computer
stores and uses arrays.

Since an array is a set of several values, it obviously takes

n
185

u

5 Inside Your 64 ^J

more memory than a normal variable. In fact, unless the com

puter knows how many values your variable will have, it does

not really know how much memory to set aside for that vari- [j
able. We tell the computer this information with a DIMension

statement:

DIM X(15),Y(20) U
In this example, we told the program we were going to

use two arrays, X and Y, and that X would have a maximum

of 16 values, and Y would have a maximum of 22. Notice that

the number of values set up is always one greater than the

number specified in the DIM statement. Although it's confus

ing, this is because the computer starts counting with 0, not 1.

To avoid confusion, some programmers simply ignore the 0

and treat X(15) as an array of 15 values. This wastes a tiny

amount of memory, but it usually doesn't matter.

With the 64, the DIMension statement is optional unless

you are going to use more than 11 values. I recommend, how

ever, that you always DIMension arrays, even if they will

have less than 11 values. It is good programming practice, and

it will save considerable memory since the computer will not

set aside unnecessary memory space. Also, the DIM statement

initially sets all array values to zero. Good programming prac

tice dictates that the array should be DIMensioned in one of

the first statements of the program, and it obviously must oc

cur before any reference to the array. The DIM statement must

not be executed more than once, however, or an error results.

A particular value of an array is called an element. Each

element is referred to by a subscript, which is why the array is

sometimes called a subscripted variable. In the following

statement:

LET X(5)= 27.3 _

element 5 of the X array is set to 27.3. Whenever the com- |_J
puter comes across a set of parentheses with a number en

closed following a variable name, it knows you are indicating - -

an array. From now on, we will call each separate value in an LJ
array an element. In our previous DIMension statement, we in

dicated that X would have 16 elements, and Y would have 21. .--

In the assignment statement, we set element 5 of the X array [_]

to 27.3.

As an example of the use of arrays, let's take a look at -

Program 1, which is part of my friend's program. LJ

u

n

n

n

n

Inside Your 64 5

Program 1. Arrays and Average Values
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

10 PRINT"{CLR}":DIM R(10) 2rem 221

100 FOR N=l TO 10 :rem 56

110 R(N)=INT(RND(1)*10+1) :rem 73

120 NEXT N :rem 32

130 REM MAIN PART OF{6 SPACES}PROGRAM FOLLOWS

2rem 167

140 GOSUB 500 :rem 170

150 PRINT2 PRINT"PRESS A KEY TO COMPUTE";2PRINT"

{3 SPACES}ANOTHER AVERAGE" 2rem 247

160 GETA$2lF A$=""THEN 160 2rem 81

170 PRINT"{CLR}"2GOTO100 2rem 0

500 REM SUBROUTINE FOR{4 SPACES}COMPUTING AVERAGE

{5 SPACES}R 2rem 115

510 SM=0 2rem 163

515 PRINT2PRINT"{RVS}ARRAY{OFF}{2 SPACES}{RVS}VALU

ES{OFF}"SPRINT 2rem 145

520 FOR N=l TO 10 2rem 62

530 SM=SM+R(N) 2rem 49

535 PRINT"R(";N;")=";R(N) :rem 130

540 NEXT N 2rem 38

550 AV=SM/10 2rem 158

560 PRINT2PRINT"AVERAGE =";{5 SPACES}AV :rem 61

570 RETURN 2rem 124

Line 10 contains the DIMension statement. Lines 100-120 as

sign ten random numbers to the ten locations or variables of

the R array. The main part of the program is irrelevant to our

discussion of arrays, but the subroutine starting at line 500

uses the array further and is a good example. The program is

written to find the average value of the ten numbers. The sum

is first set to zero in line 510. The FQR-NEXT loop (lines 520-

540) recalls the values stored previously in line 110 and com

putes the sum, which is divided by ten to compute the

average in line 550.

Two-Dimensional Arrays

rn Arrays can have more than one dimension. The arrays we've

i I seen so far are one-dimensional. We can visualize the one-

dimensional array as a line of boxes or pigeonholes, as in Fig-

ure 1, in which to place values, or a list of values like a list on

<\ a piece of paper.

n

187

5 Inside Your 64

Figure 1. One'Dimensional Array

A one-dimensional array can be thought of as a row of boxes or pigeonholes.

LJ

□

U

LJ

LJ

DIMX(S)

The one-dimensional array is probably the most common,

but the two-dimensional array is used often, too. The two-

dimensional array is often visualized as a table of rows and

columns. For instance, an array DIMensioned by the

statement:

DIM X(4,3)

would be visualized as a table of five columns by four rows, as

shown in Figure 2. Again, notice that DIM X(4,3) actually sets

up a 5x4 table because the elements are numbered starting

with 0. As with one-dimensional arrays, you may choose to

ignore the 0 column and row, spending a few bytes of mem

ory to eliminate a possible source of confusion.

Figure 2. TwcvDimensional Array

A two-dimensional array is frequently visualized as a table of rows

and columns.

Column Column Column Column Column

0 12 3 4

RowO

Rowl

Row 2

Row 3

188

X(0,0)

X(0,l)

X(0,2)

X(0,3)

X(l,0)

X(l,l)

X(l,2)

X(l,3)

X(2,0)

X<2,1)

X(2,2)

X(2,3)

X(3,0)

X(3,l)

X(3,2)

X(3,3)

X(4,0)

X(4,l)

X(4,2)

X<4,3)

LJ

U

U

□

U

n

n

n

n

n

H

n

n

n

n

Inside Your 64 5

Frequently, a particular problem can be solved by either a

one- or a two-dimensional array, and the choice is strictly a

matter of style, up to the programmer. Programs 2 and 3 illus

trate a similar problem, the first with a one-dimensional array,

and the second with a two-dimensional array.

In Program 2, the problem is to record the high tem

perature for each day, and then find the average high

temperature for the week.

Program 2. One*Dimensional Array

20 DIM TM(7) :rem 101

30 REM ENTER DATA :rem 223

40 INPUT M{CLR}ENTER DAY NUMBER";N :rem 121

50 PRINT:PRINT "ENTER HIGH TEMPERATURE FOR DAY":IN

PUT TM(N) :rem 184

60 IF N<7 THEN 40 :rem 73

70 REM :rem 75

80 REM A SUBROUTINE, NOT SHOWN HERE, WOULD STORE T

HE ARRAY TO TAPE :rem 222

100 REM :rem 117

120 GOSUB 1000 :rem 212

130 END :rem 107

1000 REM ROUTINE FOR FINDING AVERAGE HIGH TEMPERAT

URE :rem 26

1010 REM A ROUTINE FOR READING THE TAPE, NOT SHOWN

, WOULD BE INCLUDED HERE

1030 PRINT

1040 SM=0

1050 FOR N=l TO 7

1060 SM=SM+TM(N)

1065 PRINT"DAY";N;"TEMP=";TM(N)

1070 NEXT N

1080 AV=INT(SM/7)

:rem 79

:rem 81

:rem 210

:rem 67

:rem 175

:rem 113

:rem 85

:rem 223

1090 PRINT:PRINT"AVERAGE HIGH":PRINT"TEMPERATURE F

OR WEEK=";AV;" DEGREES :rem 84

1100 RETURN :rem 162

The one-dimensional array TM is DIMensioned to 7. An actual

application program would have some sort of data file

routines, but since tape or disk file handling is another subject

altogether, let's leave the storage and retrieval out. Lines 40

and 50 assign the value of the high temperature to the appro

priate box in the array. The average high temperature is then

found in the subroutine starting at line 1000, in the same

manner as in the preceding problem.

189

5 Inside Your 64

Program 3 handles a similar problem using a two-

dimensional array.

Program 3* TwcvDimensional Array

20 DIM TM(52,7) :rem 248

30 REM ENTER DATA :rem 223

40 INPUT"{CLR}ENTER WEEK NUMBER M;WK :rem 27

50 INPUT"ENTER DAY OF WEEK M;DY :rem 46

60 PRINT"ENTER HIGH TEMPERATURE":INPUT TM(WK#DY)

:rem 74

65 IF WK<52 THEN 40 :rem 210

70 REM :rem 75

80 REM SUBROUTINE 500, NOT SHOWN HERE, WOULD STORE

:rem 5

90 REM DATA ON TAPE : rem 46

100 REM GOSUB 500 TO TAPE ROUTINE HERE :rem 161

110 GOSUB 1000 . :rem 211

120 END srem 106

1000 REM READ TAPE AND COMPUTE AVERAGE :rem 214

1010 REM A TAPE READ ROUTINE, NOT SHOWN, WOULD BE

{SPACE}FOUND HERE :rem 221

1030 REM :rem 168

1040 S1=0 :rem 182

1050 FOR W=l TO 52 :rem 124

1060 S2=0 :rem 185

1070 FOR D=l TO 7 :rem 59

1080 S1=S1+TM(W,D) :rem 242

1090 S2=S2+TM(W,D) :rem 245

1100 NEXT D :rem 69

1110 WA=S2/7 :rem 131

1120 PRINTMWEEK ";W;"AVERAGE IS ";WA;"DEGREES"

:rem 186

1130 NEXT W :rem 91

1140 YA=Sl/365 :rem 238

1150 PRINT"YEARLY AVERAGE HIGH TEMP" : rem 191

1160 PRINT"IS ";YA;" DEGREES" :rem 136

1170 RETURN :rem 169

In this version, we store the temperatures week by week and

day by day in a table of 52 rows of 7 columns (line 20). We

have a column for every day of the week, and a row for every

week of the year. The first part of the program stores our data

in the array by week number and the number of the day in

the week. The subroutine starting at line 1000 again figures

the average, but with a new twist (as an advantage of using

190

LJ

U

U

U

U

U

u

u

u

u

Inside Your 64 5

the two-dimensional array). Now we can find the average

temperature for each week as well as for the year.

Another Use of Arrays

Another handy use of arrays is to relate two sets of values to

pi one another. This can easily be done if each set of values is an

' array, and these values can then be related by the subscript. A
common use of arrays for this purpose is relating a set or sets

of values to people's names. The names are held in a string ar

ray, such as N$(X), while the values are held in numeric arrays

(having the same dimensions as N$, of course). Program 4

illustrates the use of arrays in a teacher's gradebook program.

Program 4* Arrays and Grades

20 DIM N$(15),T1(15),T2(15),HW(15),FS(15) :rem 52

30 PRINT"{CLR}" :rem 199

40 REM DISPLAY MENU :rem 147

50 PRINT"{4 SPACES}{RVS}SELECT OPTION{OFF}"

:rem 115

60 PRINT:PRINT"1-ENTER NAMES IN FILE" :rem 5

70 PRINT:PRINT"2-ENTER SCORES, FIRST{3 SPACES}TEST

:rem 159

80 PRINT:PRINT"3-ENTER SCORES, SECOND{2 SPACES}TES

T" :rem 213

90 PRINT:PRINT"4-ENTER SCORES,{9 SPACE£}HOMEWORK"
:rem 71

100 PRINT:PRINT"5-COMPUTE FINAL SCORE" :rem 142

110 PRINT:INPUT"ENTER NUMBER";Q :rem 0

120 ON Q GOSUB 1000,2000,3000,4000,5000 :rem 128

130 END :rem 107

1000 REM INITIALIZE{7 SPACES}STUDENT NAME FILE

:rem 255

1010 FOR N=l TO 15 :rem 110

1020 INPUT"ENTER LAST NAME";N$(N) :rem 182

R 1030 NEXT :rera 3
! 1040 OPEN 1,1,2,"NAMES" :rem 199

1050 FOR N= 1 TO 15 :rem 114

l—i 1060 PRINT#1,N$(N) :rem 229

I 1070 NEXT N :rem 85
1080 CLOSE 1 :rem 112

1090 RETURN srem 170

P"l 2000 REM ENTER TEST SCORES :rem 51
! ! 2010 OPEN 1,1,0,"NAMES" :rem 195

2020 FOR N=l TO 15 :rem 112
r-, 2030 INPUT#1,N$(N) :rem 230

| I

191

n

5 Inside Your 64

2040 NEXT N :rem 83

2045 CLOSE 1 :rem 114

2050 REM ENTER DATA BY{5 SPACES}NAME :rem 255

2060 FOR N=l TO 15 :rem 116

2070 PRINT"ENTER SCORE FOR ";N$(N) :rem 199

2080 INPUT T1(N) :rem 126

2090 NEXT N :rem 88

2100 REM NOW SAVE Tl{7 SPACES}ARRAY AS FILE TO

{6 SPACES}TAPE :rem 79

2110 OPEN 2,1,2,"TEST1" :rem 196

2120 FOR N=l TO 15 :rem 113

2130 PRINT#2,T1(N) :rem 248

2140 NEXT :rem 6

2150 CLOSE 2 :rem 112

2160 RETURN :rem 169

3000 REM NOW WOULD{9 SPACES}FOLLOW TWO MORE:rem 38

3010 REM SUBROUTINES{7 SPACES}LIKE THE ONE

{10 SPACES}ABOVE, EXCEPT :rem 85

3020 REM REPLACE Tl{8 SPACES}WITH T2 IN SUB-

{7 SPACES}ROUTINE STARTING :rem 44

3030 REM AT LINE 3000,{5 SPACES}AND CALL THE FILE

{5 SPACES}"TEST2". :rem 42

3040 REM THEN USE HW{7 SPACES}AND FILENAME

{9 SPACES}"HMWRK" FOR THE :rem 15

3050 REM ROUTINE AT 4000 :rem 43
4000 REM HOMEWORK FILE{5 SPACES}HERE :rem 88

5000 REM READ TAPE{9 SPACES}FILES AND COMPUTE

{5 SPACES}SCORE :rem 206

5010 OPEN 1,1,0,"NAMES" :rem 198

5020 FOR N=l TO 15 :rem 115

5030 INPUT#1,N$(N) :rem 233

5040 NEXT :rem 8

5050 CLOSE 1 :rem 113

5060 OPEN 2,1,0,"TEST1" :rem 201

5070 FOR N=l TO 15 :rem 120

5080 INPUT*1,T1(N) :rem 1

5090 NEXT :rem 13

5100 CLOSE 2 :rem 110

5105 INPUT"HIT RETURN TO CONTINUE";Q :rem 248

5110 OPEN 3,1,0,"TEST2" :rem 199

5120 FOR N=l TO 15 :rem 116

5130 INPUT#3,T2(N) :rem 0

5140 NEXT :rem 9

5150 CLOSE 3 :rem 116

5155 INPUT "HIT RETURN TO CONTINUE";Q :rem 253

5160 OPEN 4,1,0,"HMWRK" :rem 228

5170 FOR N=l TO 15 :rem 121

5180 INPUT#4,HW(N) srem 31

5190 NEXT N :rem 92

U

U

D

U

U

U

u

u

192

n

n
' Inside Your 64 5

n
5200 CLOSE 4 :rem 113

5210 REM NOW COMPUTE{7 SPACES}FINAL SCORE :rem 163

n 5220 FOR N= 1 TO 15 :rem 117

1 5230 FS(N)=T1(N)+T2(N)+HW(N) :rem 28
5240 NEXT N :rem 88

_ 5250 REM NOW PRINT OUT{5 SPACES}SCORES :rem 248

j| 5260 OPEN 1,4,7 :rem 243
5270 PRINT#1,"NAME","SCORE" :rem 44

5280 FOR N = 1 TO 15 :rem 123

5290 PRINT#1,N$(N),FS(N) :rem 82

5300 NEXT N :rem 85

5310 RETURN :rem 169

For demonstration purposes, this program is not a com

plete program as it stands, and contains no error trapping or

user prompts. It could, however, be expanded into a useful

gradebook program with some fill-in work. It is instructive of

the use of arrays to relate variables. The main program, up to

line 130, creates a menu selection which sends the program to

the appropriate subroutine.

The first routine, starting at line 1000, is used at the

beginning of the school term to enter the students' names in a

string array, N$(N). The DIMension statement in line 20 of the

main program, and all of the FOR-NEXT loops, would have to

be adjusted to the actual number of students in the class. Sub

routine 2000 would be used to enter the scores of the first test.

By reading the N$ array in lines 2010 to 2045, the program

prompts the teacher with the student's name for data entry

(line 2070). A similar subroutine would be used for each test

and maybe a homework score.

Subroutine 5000 puts it all together at the end of the

term. After reading the grades from all the files, line 5230 fig

ures the grade for every student. In effect, the variable N is a

H student number which relates each element of each of the four

1 files. This illustrates how N can still be used as a separate

variable, even when you've set up a numeric array N(X) or a

|—! string array N$(X).

These examples of the use of the array are general but

easy to expand on. Arrays can be used in a variety of ways.

f—I I'm sure that after using them for a while, you can come up

1 with many more applications on your own.

H

193

u

5 Inside Your 64 LJ

u

u

u

Sheldon Leemon

There are lots of programs available which will

enhance your Commodore 64 by adding new

keyword commands to BASIC But learning how

to program these additions yourself is rarely ex

plained. This article, for programmers familiar

with machine language, includes examples and

the source code used to create five new

keywords, and shows you how to program new

BASIC commands yourself.

While Commodore 64 BASIC is a useful all-purpose language,

it does have some limitations. There are no special graphics or

sound commands to support the machine's bitmap or sprite

graphics, or its superior musical abilities. It lacks error trap

ping, so that any error causes the program to stop. In fact,

after a little thought, almost any programmer could come up

with a "wish list" of new commands that he or she would like

to see added to BASIC.

To overcome these limitations, some programmers devise

machine language subroutines which allow them to simulate 1 I

new BASIC commands. Often, however, they have problems

integrating these new routines into the framework of the exist

ing BASIC. The USR and SYS commands are most often used j_J

to add machine language routines to BASIC, but these com

mands do not easily pass values to the machine language

program (if you were creating a DRAW command for hi-res I I

graphics, for example, you would have to specify the screen

position each time you used the command). And these com

mands are not always convenient, for their syntax is often M

194

LJ

n

n
Inside Your 64 5

H
strange and their use requires you to know the address of each

r™j routine.

Wedges?

ft On the old Commodore PET machines, there was a way to

(I add new commands to BASIC using what was called a
"wedge." This is a routine that intercepts the part of the

BASIC interpreter program that reads the program text. The

wedge routine is designed to read the text before BASIC does,

and compare that text to a list of new commands (like the

short disk commands of the DOS support program). If one of

these commands is spotted, the wedge executes the new rou

tine. If not, control is handed over to the normal BASIC

routines.

There are a couple of problems with this technique, how

ever. The most important one is execution speed. Since the

BASIC routine which the wedge diverts has to read every sin

gle character of the program being executed, the time that the

wedge takes to check for each character for new commands

can drastically slow down your program. The more commands

added, the greater this slowdown. To counteract this effect,

wedge commands are often set up to execute only in direct

mode (that's why you can't call the DOS wedge from a pro

gram while it's running). Even so, a wedge as efficient as the

DOS support program still slows down program execution a

little. Another problem is that adding new commands with a

wedge is hard to do in a way so they can be used simulta

neously with DOS support and other wedge programs.

Fortunately, the 64 isn't limited to the wedge method of

adding new commands. The 64 was designed to allow the

addition of new commands which function exactly like regular

n BASIC commands, and which do not slow program execution.

To explain how this is possible, however, first requires an

explanation of how Commodore's Microsoft BASIC operates.

PI Microsoft BASIC
When you enter a line of BASIC program text, a tokenization

_ routine scans the line to see if any of the words match its list

il of command keywords. When it finds such a word (like
PRINT, for example) the routine replaces the ASCII characters

_ of the keyword with a single character, called a token. Each

I I token has a value of 128 or higher, and represents a single
BASIC command. These tokens are interpreted by BASIC

n 195

u

5 Inside Your 64

u
when the RUN or LIST command is entered. When a pro

gram is RUN, the BASIC interpreter starts to read the program .—

text. Each time it comes to a character with a value of 128 or LJ
greater (that isn't in quotes, or in a DATA or REM statement),

it tries to execute the command which corresponds to that p-

token. When you LIST the line, a detokenization routine lJ
expands the token from a single character back to its ASCII

equivalent.

Therefore, in order to add new tokenized keywords to

BASIC, and to be able to LIST and RUN them, you must have

a way of intercepting the BASIC interpreter routines that

tokenize, detokenize, and execute keywords. At first that

might seem impossible, because the BASIC interpreter is in

ROM, which cannot be changed. Nonetheless, it is possible to

gain access to these routines via the BASIC Indirect Vector

Table, which is in RAM. This table, which starts at location

768 ($300) and continues to 779 ($30B), contains the addresses

of six crucial BASIC routines. They are IERROR (768-769),

which prints BASIC error messages; IMAIN (770-771), the

main program loop of BASIC which waits for you to enter a

line after the READY prompt; ICRNCH (772-773), the rou

tine that crunches the text of keywords into single-character

tokens; IQPLOP (774-775), which expands those tokens back

into ASCII characters; IGONE (776-777), which executes

BASIC statement tokens; and IEVAL (778-779), which among

other things evaluates tokenized BASIC functions (like INT

and ASC). Whenever BASIC wants to execute one of these

routines, it does not go directly to its ROM location, but rather

jumps to the address indicated in the Indirect Vector Table. At

power-on time, these vectors are set to the addresses of the

normal ROM BASIC routines. However, it's possible to change

these vectors so that when BASIC wants to perform one of r~,

these functions, it first goes to your routine. In this way, you LJ
can create new tokenized commands with their own error

messages, and LIST or execute them. You can even change the —

function of normal BASIC commands. uJ

Making New Keywords

The first step is to design a routine to tokenize your new |_J
keywords. Since BASIC 2.0 only uses keyword tokens from

128-204, you can use numbers 205-254 for fifty new com- —

mands (255 is used for PI). If you need more than that, you'll LJ

196 «

n
Inside Your 64 5

H
have to go to a two-character token system, such as the one

j—f used by Simon's BASIC. The tokenization process is somewhat

1 ^ tricky, because you not only have to check the text input

buffer starting at location 512 for your new keywords, but you

r-> must also be sure not to tokenize those words when they

' ^ appear in a DATA statement, a REMark, or as a literal string
in quotes. The method used in Program 1, "64 Keywords,"

closely parallels the normal BASIC tokenization routine. It first

calls the regular tokenization routine, and then looks for new

keywords. Since the normal keywords will be tokenized first,

your new keywords cannot contain any of the old keywords.

For example, the new tokenization routine will not recognize

the keyword COLOR, because by the time it looks for it, the

OR will have been changed to the single-character token for

the BASIC keyword OR. Once the new tokenization routine is

installed, lines containing these new tokens will not LIST cor

rectly until a new detokenization routine is installed. The

token conversion routine used in Program 1 is also based on

the normal BASIC detokenization routine. It looks for token

numbers 204 and up, and when it finds one, it expands that

token to the ASCII equivalent. Otherwise, control is passed

back to the old tokenization routine.

Once the new tokens are in place, the method for execut

ing them is pretty straightforward. Statements such as PRINT

are executed by the routine GONE, which is pointed to by the

vector IGONE at location 776-777. That routine reads the next

character, and determines whether it is a token. If it is, it looks

up the execution address in a table, and passes control to it.

Our new execution routine needs only to check if the character

is a token numbered 204 or higher. If it is, its address is

looked up in the table, and the routine is executed. If not, con-

p* trol passes back to the old routine. Functions, like INT and

^ SGN, are evaluated by the routine EVAL, which is pointed to
by the RAM vector IEVAL at address 778-779. New functions

(—7 can be added by intercepting this routine, and checking for

' s one of our new token characters. When such a token is found,

the function is evaluated, and the result is placed in the Float-

r-> ing Point Accumulator. In all other cases, control is passed

' ^ back to the old routine. Notice that in Program 1 the way in
which numbers are passed to the new commands is modeled

r-^ on the old BASIC commands. Therefore, if your new com-

s mand needs two inputs, you can study a BASIC command

PT 197

u

5 Inside Your 64

D
such as PEEK or POKE to see how it gets its inputs.

Though it's not necessary, you can add new error mes

sages if you want. The easiest way to do this is to set locations ! I
34-35 ($22-23) as a pointer to your new error message text,

and enter the normal BASIC error handler routine at 42055

($A447) U
Program 1 gives a practical demonstration of how to

implement these new commands. After you type in and RUN

the program, the additional commands FILL, FCOL, LOOK,

PAUSE and KILL will become available. Make sure you SAVE

the program before you try to RUN it; a single error in the

DATA statements could cause the computer to lock up. If that

happens, you'll need to turn off your computer, and the pro

gram will be lost if it hasn't been SAVEd. A brief description

of the syntax of these commands follows:

FILL character,color. This command fills the entire screen

with 1000 repetitions of one character. The parameter charac

ter refers to the POKE value (0-255) of the character used to

fill the screen, and color refers to the foreground color used for

the fill character. If a character number from 256-65535 is

used, a NOT A VALID CHARACTER error message will ap

pear. If a color value from 16-256 is used, you will get a NOT

A VALID COLOR error message.

FCOL color. This command is similar to FILL, but

changes only the foreground color of text on the screen, and

not the actual characters.

LOOK(address). This is a new BASIC function. It returns

the value of the two-byte word address and address+1 (in

BASIC, the equivalent formula is PEEK(address) + 256*

PEEK(address)+ l). As with PEEK, the format should be

PRINT LOOK(address).

PAUSE jiffies. This command pauses execution of the r—

program from 0 to 65535 jiffies (each jiffy is 1/60 second). L^.
KILL. Finally, KILL disables all our new commands, and

restores the old BASIC. The new commands can be r ■.

restored with a SYS 12*4096 (49152) statement. U
After you have run Program 1, type in Program 2. This

program demonstrates the use of FILL, FCOL, and PAUSE. ^—,

Remember, the computer will not understand and tokenize i 1
these new commands until after you have installed them with

Program 1. r ,

(I

198

LJ

H

(I

n
Inside Your 64 5

Using the Source Code

r«j FILL and FCOL, though dramatic when used on the low-res

text screen, are most helpful for changing the color map of the

high-res screen. Like the other new commands presented here,

they were selected more for their brevity than their inherent

usefulness. The real purpose of Program 1 is to show how a

machine language programmer can hook in new BASIC com

mands. The source code of this program, which follows, can

be used as a framework for adding your own commands. To

do this, you must:

1) Place the text of your new keywords in the table

labeled KEYTXT. The last letter of each keyword should have

its high bit set (in other words, use the ASCII value+128).

Functions should all be put at the end of the table. Keep in

mind that the text of these words should not include any of

the old keywords. COLOR for example will not tokenize cor

rectly, because it contains OR.

2) Place the address of the routines in the order in which

their keywords appear in the KEYTXT table in the statement

vector table STVEC and the function vector table FUNVEC.

Note that the correct vector for a statement is its address

minus one.

3) If you wish to add error messages, replace the text in

the table starting with ERMSGO with your own text. As with

keywords, the last letter of each message should have the high

bit set. You can also replace the labels CHRERR and COLERR

with new labels, indicating the nature of your new error

messages.

The BASIC Indirect Vector Table gives you the power to

add new commands, or alter existing commands. This

explanation can allow machine language programmers to up

grade the capabilities of Commodore 64 BASIC to match the

rest of the machine.

Source Code for 64 Keywords

; ZERO

7

ENDCHR

COUNT

VALTYP

GARBPL

LINNUM

INDEX

PAGE EQUATES

= $08

= $0B

= $0D

= $0F

= $14

= $22

;TEMP FLAG

•TEMP FLAG

;VARIABLE TYPE FLAG

•TEMP FLAG

;UTILITY POINTER

?UTILITY POINTER

199

5 Inside Your 64

FORPNT =

JMPER =

PACHO =

FBUFPT =

CHRGET =

CHRGOT =

TXTPTR =

TIME

LDTB1 =

$49

$54 ;

$62 ;

$71 ;

$73 ;

$79 ;

$7A ;

$A0 7

$D9 7

JMP TO FUNCTION

FLOATING PT. ACC.

TEMP SAVE AREA

BASIC READS TEXT

READ TEXT AGAIN

PNTR TO CURRENT TEXT

SOFTWARE CLOCK (MSB)

LINE LINK TABLE

7 PAGE TWO EQUATES

BUF = $200 7TEXT INPUT BUFFER

HIBASE = $288 7 SCREEN MEMORY PAGE

VECSAV = $2A7 7VECTOR SAVE AREA

7 BASIC

7

IERROR

IMAIN

ICRNCH

IQPLOP

IGONE

IEVAL

7 BASIC

7

ERROR

MAIN

CRNCH

PLOOP

PRIT4

QPLOP

NEWSTT

GONE

OUTDO

FRMNUM

CHKNUM

EVAL

PARCHK

GETNUM

GETADR

FLOATC

INDIRECT VECTORS

= $300

= $302

= $304

= $306

= $308

= $30A

7 PRINT ERROR MESSAGE

7MAIN 'READY.1 LOOP

7TOKENIZE KEYWORDS

7 PRINT KEYWORDS

7 EXECUTE STATEMENTS

7EVALUATE FUNCTIONS

ROM ROUTINES

= $A437

= $A483

= $A57C

= $A6F3

= $A6EF

= $A71A

= $A7AE

= $A7E4

= $AB47

= $AD8A

= $AD8D

= $AE86

= $AEF1

= $B7EB

= $B7F7

= $BC49

7? ERROR MESSAGES

7 MAIN 'READY1 LOOP

7TOKENIZE KEYWORD

7 LIST NON-TOKEN

7 PRINT LAST CHAR

?PRINT KEYWORDS

7NEXT STATEMENT

7 EXECUTE A TOKEN

7PRINT A CHAR

7GET NEXT PARAMETER

?CHECK VAR. TYPE

7FUNC. EVALUATION

7GET VALUE IN ()

7ADR IN 14,INT IN X

7 CONVERT FP TO INT

7 CONVERT INT TO FP

7PROGRAM VARIABLES & CONSTANTS

MAXCOL = $0F

NEWTOK = $CC

DATTOK = $49

7MAXIMUM COLOR #

71ST NEW TOKEN #

7'DATA' TOKEN-'z1

200

n

n
Isiside Your 64 S

n

n

REMTOK = $55 r'REM1 TOKEN-1:1

;

* = $0000

$

7 INSTALL NEW INDIRECT VECTORS

7A SYS TO 'INSTAL1 ACTIVATES OUR

;NEW KEYWORD COMMANDS
•

INSTAL ;INSTALL NEW VECTORS

LDX #$07 ;4 TWO-BYTE VECTORS

INSTL1

LDA ICRNCH,X

STA VECSAV,X ;SAVE OLD VECTORS

LDA IVECS,X ;INSTALL NEW VECTORS

STA ICRNCH,X

DEX

BPL INSTL1 ;KEEP GOING TIL DONE

INSTL2

RTS
•

IVECS

.WORD TOKNIZ

.WORD PRTOK

.WORD EXEST

.WORD EXEFUN
•

KEYTXT ;TEXT OF KEYWORDS

.BYTE 'PAUS',$C5 ;PAUSE

.BYTE •FCO f,$CC ;FCOL

.BYTE 'PIL'^CC ;FILL

.BYTE 'KIL'^CC 7 KILL

.BYTE 'LOO',$CB ;LOOK

.BYTE 0 ;END OF TABLE

?

STVEC ;STATMENT DISPATCH VECTORS

.WORD PAUSE-1 ;PAUSE

.WORD FCOL-1 ;FCOL

.WORD FILL-1 7 FILL

.WORD KILL-1 7KILL
•

FUNVEC 7FUNCTION DISPATCH VECTORS

.WORD LOOK
•

FUNTOK = FUNVEC-STVEC/2+NEWTOK

/

7PATCH TO TOKENIZATION ROUTINE

7ALLOWS US TO TOKENIZE OUR OWN

7KEYWORDS USING THE UNUSED TOKEN

?NUMBERS 204-254

201

7 GET NEXT CHARACTER

;WRITE IF A TOKEN

5 Inside Your 64

TOKNIZ

JSR CRNCH ;TOKENIZE AS USUAL

CRUNCH 7DO 2ND TOKENIZATION

LDX #$00 ;SET READ INDEX

LDY #$04 ;SET WRITE INDEX

STY GARBFL 7CLEAR 'DATA1 FLAG

CRN1

LDA BUF#X

7BMI MOVE

CRN2

STA ENDCHR 7FOR END QUOTE TEST

CMP #$22 7 IS THIS A QUOTE?

BEQ SKQUOT 7YES, SKIP TO NEXT "

BIT GARBFL 7 IF IN 'DATA STATEMENT

BVS MOVE 7WRITE THE CHARACTER

CMP #'A' 7< THE LETTER 'A?

BCC MOVE 7YES, WRITE IT

CMP #$5B 7> THE LETTER 'Z

BCS MOVE 7YES, PASS IT THROUGH

STY FBUFPT 7 SAVE WRITE INDEX

LDY #NEWTOK-$80 ?# OF 1ST TOKEN

STY COUNT 7 SET TOKEN COUNTER

LDY #$FF

STX TXTPTR 7 SAVE READ INDEX

7TO OFF?SET THE INX

7ADVANCE WRITE INDEX

7ADVANCE READ INDEX

7GET BUFFERED CHAR

DEX

CRN3

INY

INX

CRN4

LDA BUF,X

SEC

SBC KEYTXT,Y 7= NEXT TABLE CHAR?

BEQ CRN3 7YES, KEEP GOIN1

CMP #$80 7LAST KEYWORD CHAR?

BNE NEXTKW 7NOPE, TRY NEXT WORD

ORA COUNT 7YEP, GET TOKEN NO.

CRN5

LDY FBUFPT 7 RESTORE WRITE INDEX

MOVE

INX 7ADVANCE READ INDEX

INY 7ADVANCE WRITE INDEX

STA BUF-5,Y 7WRITE CHARACTER

LDA BUF-5,Y 7 TO TEST FOR EOL

BEQ EXIT 7A ZERO ENDS THE LINE

SEC

SBC #':' 7 :STATEMENT TERMINATOR?

BEQ MOVE1 7YEP, CLEAR 'DATA FLAG

CMP #DATTOK 7TOKEN FOR 'DATA?

u

u

n

u

□

202

Inside Your 64 5

n

n

1 ' SEC

BNE MOVE2 7 DON'T CLEAR FLAG

MOVE1

STA GARBFL 7CLEAR 'DATA FLAG

MOVE2

SEC

SBC #REMTOK 7TOKEN FOR fREM?

BNE CRN1 7 NO, NEXT CHARACTER

STA ENDCHR 7YES, FALL THRU

SKIP1

LDA BUF,X 7GET NEXT CHARACTER

BEQ MOVE ?KEEP GOIN1 TIL EOL

CMP ENDCHR 7OR TERMINATOR

BEQ MOVE

SKQUOT 7 SKIP TEXT IN " "

INY 7ADVANCE WRITE INDEX

STA BUF-5#Y 7WRITE CHAR

INX 7 ADVANCE READ INDEX

BNE SKIP1 7ALWAYS—KEEP GOIN1

NEXTKW 7 TRY NEXT KEYWORD

LDX TXTPTR 7 RESTORE READ INDEX

INC COUNT 7ADVANCE KEYWORD CNTR

NEXT1

INY 7ADVANCE TABLE INDEX

LDA KEYTXT-1,Y 7GET TABLE CHAR

BPL NEXT1 7SKIP 'TIL NEXT WORD

LDA KEYTXT,Y 7GET 1ST CHAR

BNE CRN4 7TRY AGAIN

LDA BUF,X 7 END OF TABLE

BPL CRN5 7ALWAYS

EXIT

STA BUF-3,Y 7SET END OF LINE

LDA #$FF 7 RESTORE TXTPTR

STA TXTPTR 7 TO START OF BUF

RTS
•

•THIS PATCH TO THE 'LIST1 ROUTINE

7ALLOWS US TO EXPAND OUR TOKENS

7 BACK TO ASCII TEXT, SO THAT THEY

7LIST OUT CORRECTLY

7

PRTOK 7 PRINT OUR NEW TOKENS

BPL PRINT1 7<128, NOT A TOKEN

CMP £$FF 7 IS IT PI?

BEQ PRINT1 7YES, PRINT IT

BIT GARBFL 7ARE WE IN QUOTES?

BMI PRINT1 7YES, PRINT ANYTHING

CMP #NEWTOK 7 IS IT A NEW TOKEN?

BCC OLDPR 7 NO, USE OLD ROUTINE

203

5 Inside Your 64

SBC #NEWTOK-1 7GET TOKEN NUMBER

TAX ;TO USE AS INDEX

STY FORPNT ;SAVE STATEMENT INDEX

LDY #$FF

PRTOK1

DEX 7NEXT KEYWORD

BEQ PRLOOP 7 THIS IS THE ONE

PRTOK1

DEX 7NEXT KEYWORD

BEQ PRLOOP 7 THIS IS THE ONE

PRTOK2

INY 7GET NEXT LETTER..

LDA KEYTXT,Y 7 IN KEYWORD

BPL PRTOK2 7 END OF KEYWORD?

BMI PRTOK1 7NO, NEXT LETTER

PRLOOP

INY 7GET NEXT LETTER...

LDA KEYTXT,Y 7 IN KEYWORD

3MI PRINT2

JSR OUTDO

BNE PRLOOP

7

PRINT1

JMP PLOOP

PRINT2

JMP PRIT4

OLDPR

JMP QPLOP

7 END OF KEYWORD?

7NO, PRINT CHAR...

7AND REPEAT

?PRINT ONE CHARACTER

?PRINT LAST CHARACTER

7USE OLD ROUTINE

7THIS PATCH TO THE STATEMENT

?EXECUTION ROUTINE ALLOWS US TO

7 CHECK FOR OUR NEW STATEMENT

?TOKENS, AND TO EXECUTE THEM.

7

EXEST

JSR CHRGET 7GET NEXT CHARACTER

CMP #NEWTOK 7 IS IT A NEW TOKEN?

BCC OLDEXE 7NO, USE OLD ROUTINE

JSR EXE1 7 EXECUTE STATEMENT

JMP NEWSTT 7AND START OVER

7

EXE1 7 EXECUTE OUR NEW TOKEN

7(CARRY IS ALREADY SET)

SBC #NEWTOK 7GET TOKEN #

ASL A

TAY

7 2*TOKEN #

7 IS OUR INDEX TO..

LDA STVEC+1,Y 7 THE VECTOR TABLE

PHA 7 PUSH ADDRESS-1.

204

H!
Inside Your 64 5

n
LDA STVEC,Y rONTO STACK...

pha r for rts ...

JMP CHRGET ;AT END OF CHRGET
•

OLDEXE

JSR CHRGOT ;GET CHARACTER AGAIN

JMP GONE+3 ;AND USE OLD ROUTINE
•

;THIS PATCH TO THE EVALUATION

;ROUTINE ALLOWS US TO CHECK FOR

;OUR NEW FUNCTION KEYWORDS, AND

;TO EVALUATE THEM, LEAVING THE

7 RESULT IN THE FLOATING POINT

;ACCUMULATOR
•

EXEFUN

LDA #$00

STA VALTYP 7 SET TO NON-STRING

JSR CHRGET 7GET EVAL. CHAR.

CMP #$FF 7 IS IT PI?

BEQ OLDFUN 7YES, DO OLD EVAL.

CMP #FUNTOK 7 IS IT A NEW FN?

BCC OLDFUN 7NO, DO OLD EVAL.

7GET TOKEN #

SEC

SBC #FUNTOK

ASL A 7USE AS INDEX

PHA 7 SAVE ON STACK

JSR CHRGET 7GET EVAL. CHAR.

JSR PARCHK 7GET EXPRESSION IN ()

PLA 7GET INDEX BACK

TAY

LDA FUNVEC,Y

STA JMPER+1

LDA FUNVEC+1

STA JMPER+2 7 FORM POINTER

JSR JMPER 7 EVALUATE FN

JMP CHKNUM 7CHECK VAR. TYPE & RTS

;

OLDFUN

JSR CHRGOT

JMP EVAL+7 7OLD ROUTINE

7

7THIS SECTION CONTAINS MY NEW

7COMMANDS. THIS IS WHERE YOU WILL

7 INSTALL YOUR OWN CODE.
•

7LOOK (X) FUNCTION PEEKS 2 BYTES

205

u

u
5 Inside Your 64

G
LOOK 7

LDA LINNUM+1 _ .

PHA j i
LDA LINNUM ^
PHA ?SAVE LINNUM ON STACK

JSR GETADR 7 INTEGER IN 14/15=ARG

LDY #$00 7 SET INDEX

LDA (LINNUM)#Y 7GET LOW BYTE

STA FACHO+1

INY

LDA (LINNUM),Y 7GET HIGH BYTE

STA FACHO

PLA

STA LINNUM

PLA

STA LINNUM+1 7 RESTORE LINNUM

LDX #$90 7 SET EXPONENT

SEC

JSR FLOATC 7CONVERT INT TO FP

RTS

7'KILL1 DISABLES THE NEW COMMANDS

7

KILL

LDX #$07 7NUMBER OF VECTORS

KILL1

LDA VECSAV,X 7GET SAVED VECTORS

STA ICRNCH,X 7 RESTORE THEM

DEX

BPL KILL1 7 DONE?

RTS

7 IFILLI—FILL XfY FILLS THE SCREEN

7 WITH CHARACTER X IN COLOR Y

FILL

JSR GETNUM 7GET ADDR,INT IN X

LDA LINNUM+1 7CHAR >255? [_J
BNE CHRERR 7YES, ERROR

STA FACHO 7CLEAR POINTER

CPX #MAXCOL+1 7COL > 15? |' ')

BCS COLERR 7YES, ERROR LJ

TXA 7 SAVE COLOR

PHA

LDA LDTB1+23 7FORM POINTER.. jj
AND #03 7TO TOP...

ORA HIBASE 7OF SCREEN

STA FACHO+1

LDA LINNUM ?GET FILL CHAR

206 i

U

U

H
Inside Your 64 5

n
JSR FILL1

PLA ; GET COLOR

FCOL1 ;FILL COLOR RAM

LDX #$DB 7POINTER TO,.

STX FACHO+1 7 SCREEN RAM
•

7 FILL LOOP

7

FILL1

LDX #$03 7 DO 3 PAGES

LDY #$E7 7AND MOST OF 4TH

FILL2

STA (FACHO),Y 7 FILL 'ER UP

DEY 7 NEXT BYTE

BNE FILL2

STA (FACHO),Y 7DON'T FORGET ZERO

DEC FACHO+1 7 NEXT PAGE

DEX

BPL FILL2 7DONE YET?

RTS

7

7 OUR NEW ERROR MESSAGE ROUTINE

7 STARTS HERE

CHRERR

LDA #$00 7CHARACTER ERROR NO.

.BYT $2C 7 SKIP NEXT INSTRUCTION

COLERR

LDA #$01 7COLOR ERROR NO.

ASL A 7ERROR NO. * 2

TAX 7 IS USED AS AN INDEX

LDA ERRVEC,X 7TO VECTOR TABLE

STA INDEX 7 SET UP TEXT POINTER

LDA ERRVEC+1,X

STA INDEX+1

JMP ERROR+16 7 PRINT ERROR MSG
•

ERRVEC

(—} .WORD ERMSG0

.WORD ERMSG1

7

ERMSG0

.BYT 'NOT A VALID CHARACTE',$D2

ERMSG1

.BYT 'NOT A VALID COLO',$D2

n :

! \

FCOL' —FCOL X FILLS COLOR RAM

207

U

u

LJ
5 Inside Your 64

7WITH COLOR X

FCOL j I
JSR FRMNUM 7GET COLOR # ^
JSR GETADR 7 CONVERT FP TO INT

CMP #00 7COLOR>255?

BNE COLERR 7YES, ERROR

STA FACHO

CPY #MAXCOL+1 7COLOR>15?

BCS COLERR 7YES, ERROR

TYA 7COLOR TO .A

JMP FCOL1

7 ' PAUSE ' —PAUSE X PAUSES PROGRAM

7EXECUTION FOR X JIFFIES (1/60 OF

7A SECOND)

PAUSE

JSR FRMNUM ?GET # OF JIFFIES

JSR GETADR 7 CONVERT FP TO INT

TAX 7HIGH BYTE IN .X, LOW IN .Y

PAUSE1

CPY #$00 7LOW BYTE DONE?

BEQ PAUSE4 7YES, TRY HIGH BYTE

PAUSE2

DEY

LDA TIME+2 7SOFTWARE CLOCK...

PAUSE3

CMP TIME+2 7ON THE SAME JIFFY?

BEQ PAUSE3 7YES, TRY AGAIN

BNE PAUSE1 7NO, ONE JIFFY DOWN

PAUSE4

CPX #$00 7 HIGH BYTE DONE?

BEQ PAUSES 7YES, EXIT

DEX 7NO, COUNT DOWN HIGH BYTE

JMP PAUSE2 7 AND DO NEXT LOW BYTE

PAUSE5

RTS jl
7

.END

LJ
Program 1, 64 Keywords
For mistake-proof program entry, be sure to use "Automatic Proofreader/' Appendix J.

10 B=0:FOR 1=49152 TO 49685:READA:POKEI,A:B=B+A:NE

XT I :rem 78

20 IF BO64356 THEN PRINT "CHECKSUM ERROR—CHECK YO ,-■

UR TYPING":END :rem 133 [J

a

n

n

H

n

n

n

n

r—i
? i

f—j

30 SYS

49152

49158

49164

49170

49176

49182

49188

49194

49200

49206

49212

49218

49224

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

49302

49308

49314

49320

49326

49332

49338

49344

49350

49356

49362

49368

49374

49380

49386

49392

49398

49404

49410

49416

49422

49428

>4915:

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

Inside Your 64 5

30 SYS49152:PRINT"NEW BASIC COMMANDS INSTALLED"

:rem 176

:rem 113

:rem 21

:rem 102

:rem 111

:rem 172

:rem 224

:rem 180

:rem 169

:rem 157

:rem 45

:rem 190

:rem 55

:rem 202

:rem 245

:rem 39

:rem 42

irem 141

:rem 110

:rem 96

:rem 241

:rem 199

:rem 9

:rem 149

:rem 15

:rem 109

:rem 44

:rem 39

:rem 84

:rem 255

:rem 209

:rem 0

:rem 5

:rem 253

:rem 249

rrem 49

:rem 37

rrem 16

rrem 60

rrem 209

rrem 79

rrem 160

rrem 193

rrem 109

rrem 8

rrem 17

rrem 87

rrem 207

162, 7, 189, 4, 3, 157

167, 2, 189, 18, 192, 157

4, 3, 202, 16, 241, 96

58, 192, 190, 192, 243, 192

21, 193, 80, 65, 85, 83

197, 70, 67, 79, 204, 70

73, 76, 204, 75, 73, 76

204, 76, 79, 79, 203, 0

248, 193, 228, 193, 115, 193

103, 193, 71, 193, 32, 124

165, 162, 0, 160, 4, 132

15, 189, 0, 2, 133, 8

201, 34, 240, 79, 36, 15

112, 38, 201, 65, 144, 34

201, 91, 176, 30, 132, 113

160, 76, 132, 11, 160, 255

134, 122, 202, 200, 232, 189

0, 2, 56, 249, 26, 192

240, 245, 201, 128, 208, 48

5, 11, 164, 113, 232, 200

153, 251, 1, 185, 251, 1

240, 54, 56, 233, 58, 240

4, 201, 73, 208, 2, 133

15, 56, 233, 85, 208, 179

133, 8, 189, 0, 2, 240

223, 197, 8, 240, 219, 200

153, 251, 1, 232, 208, 240

166, 122, 230, 11, 200, 185

25, 192, 16, 250, 185, 26

192, 208, 180, 189, 0, 2

16, 190, 153, 253, 1, 169

255, 133, 122, 96, 16, 42

201, 255, 240, 38, 36, 15

48. 34. 201. 204. 144. 36

201, 255, 240, 38, 36, 15

48, 34, 201, 204, 144, 36

56, 233, 203, 170, 132, 7:

160, 255, 202, 240, 8, 201

185, 26, 192, 16, 250, 48

245, 200, 185, 26, 192, 41

8, 32, 71, 171, 208, 245

76, 243, 166, 76, 239, 166

76, 26, 167, 32, 115, 0

201. 204. 144. 21. 32. 0

73

200

[8

48

209

u

5 Inside Your 64

49434

49440

49446

49452

49458

49464

49470

49476

49482

49488

49494

49500

49506

49512

49518

49524

49530

49536

49542

49548

49554

49560

49566

49572

49578

49584

49590

49596

49602

49608

49614

49620

49626

49632

49638

49644

49650

49656

49662

49668

49674

49680

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

115, 0, 201, 255, 240, 33

201, 208, 144, 29, 56, 233

208, 10, 72, 32, 115, 0

32, 241, 174, 104, 168, 185

56, 192, 133, 85, 173, 57

192, 133, 86, 32, 84, 0

76. 141 . 173. 32. 191. 076, 141, 173, 32, 121, 0

76, 141, 174, 165, 21, 72

165, 20, 72, 32, 247, 183

160, 0, 177, 20, 133, 99

200. 177. 20. 133. 98. 10-

208

3, 13, 136, 2, 133, 99

165, 20, 32, 150, 193, 104

162, 219, 134, 99, 162, 3

160, 231, 145, 98, 136, 201

251, 145, 98, 198, 99, 202

16, 244, 96, 169, 0, 44

169, 1, 10, 170, 189, 187

193, 133, 34, 189, 188, 193

133, 35, 76, 71, 164, 191

193, 212, 193, 78, 79, 84

32, 65, 32, 86, 65, 76

73, 68, 32, 67, 72, 65

82, 65, 67, 84, 69, 210

78, 79, 84, 32, 65, 32

86, 65, 76, 73, 68, 32

67, 79, 76, 79, 210, 32

138, 173, 32, 247, 183, 2!

0, 208, 187, 133, 98, 192

16, 176, 181, 152, 76, 146

193, 32, 138, 173, 32, 247

183, 170, 192, 0, 240, 9

136, 165, 162, 197, 162, 240

252, 208, 243, 224, 0, 240

4, 202, 76, 4, 194, 96

201

:rem 240

:rem 47

:rem 145

:rem 104

:rem 22

:rem 163

:rem 197

irem 11

:rem 6

:rem 216

:rem 52

:rem 25

:rem 225

:rem 218

:rem 111

:rem 50

:rem 8

:rem 2

:rem 106

:rem 47

:rem 12

:rem 106

:rem 79

:rem 169

:rem 19

:rem 127

:rem 11

:rem 33

:rem 118

:rem 127

:rera 174

:rem 123

:rem 132

:rem 176

:rem 108

:rem 15

:rem 61

:rem 63

:rem 208

:rem 166

:rem 46

:rem 119

U

LJ

LJ

U

210

n
Inside Your 64 5

Program 2. FILL, FCOL, and PAUSE

P 10 POKE 53281,0 :rem 239

1] 20 FOR 1=1 TO 26 :rem 11
30 FILL I,1:PAUSE20 :rem 74

*_, 40 FCOL 15:PAUSE 20 :rem 8

! j 50 FCOL 12:PAUSE 20 :rem 6
60 FCOL 11:PAUSE 20 :rem 6

70 FCOL 0:PAUSE 20 :rem 213

80 NEXT:PAUSE 20:PRINTCHR$(147) :rem 118

H

H

i i

211

n

n
Utilities 6

SuperBASIC 64n

Martin C. Kees

n
How would you like to be able to access 41

valuable new commands when you're program

ming in BASIC? "SuperBASIC 64" adds sprite,

color, graphics, sound, and memory management

features and enhances eight BASIC commands.

It's been made even more powerful than the

version which originally ran in COMPUTE!

And it's designed to work as easily and as

quickly as any ordinary BASIC instruction. Typ

ing it into your computer is foolproof, for you'll

use the Machine Language Editor (MIX) in

Appendix I. Once you try SuperBASIC, you'll

wonder how you programmed without it—it's

an especially valuable addition to any owner's

library of programs. As a bonus, the author has

included additional sample programs which use

SuperBASIC, including "SuperBASIC Sprite Edi

tor," found in another section of this book.

"SuperBASIC 64"adds commands to BASIC using a special

technique. BASIC is automatically copied to its matching RAM

and modified to change the STOP command to a wedge vec

tor (similar to Apple's ampersand (&) wedge). The character

chosen was the left bracket ([). Then, using four-letter

mnemonics following the wedge character, you can select

which SuperBASIC command you want to execute.

These machine language routines make it very easy to

control virtually all the VIC-II chip special features. Sprites

and hi-res graphics can be controlled from BASIC without

having to POKE or use Boolean functions to enable special

graphics modes. Since BASIC was moved to RAM to imple

ment the [wedge, this made it convenient to enhance a few

BASIC commands. I added the use of variable expressions for

GOTO and GOSUB, and RESTORE by line number. These

215

u

6 Utilities

u
changes to BASIC in RAM don't slow execution as they would

have if CHRGET wedging techniques had been used. I .

SuperBASIC Command Format

The commands can be used in either direct or program mode.

The general format is [xxxx <exp>,<exp>... where xxxx repre- |)
sents the four-character mnemonic and <exp> is a number,

variable, or a valid BASIC expression. Specific syntax for each

command is listed in Table 1, "SuperBASIC Command Sum

mary." When a color is selected, use the standard value ordi

narily POKEd to the VIC chip. I've used the same coordinate

system for sprite positions as given in Commodore docu

mentation. The hi-res upper left corner is 0,0 and the lower

right is 319,199. Commands that switch a function on or off

use 0 for off and 1 for on.

SuperBASIC includes two types of changes to normal

BASIC, enhanced commands and new commands. Enhanced

commands include GOTO and GOSUB and variants with IF

and ON. You can use a line number expression for these com

mands. This can help in program readability, allowing instruc

tions such as GOTO KEY when KEY=1000. This would

transfer control to line 1000. RESTORE can also be followed

by a line number expression. RESTORE KEY would cause the

next READ to use the first DATA statements encountered at or

after line 1000. This allows DATA statements to be selected

under program control. Small files could be maintained in

DATA statements and accessed by line number. When LIST-

ing a program, the SHIFT key pauses the list until released.

The ASC function will return a value of zero for null strings.

The new commands can be divided into five categories:

sprite, sound, color control, VIC memory mapping, and graph

ics control. A convenience command [CATA is also included.

This lists to the screen all mnemonics defined in SuperBASIC.

(I use it to test if SuperBASIC is enabled.)

Loading the Program

To type in SuperBASIC 64 (Program 1) you must use the

"MLX Machine Language Entry Program," found in Appendix

I. Be sure you read the explanation in Appendix I and under

stand how to use MLX before attempting to enter

SuperBASIC.

The numbers you type in create a low memory loader for

216

n

Utilities 6

n
SuperBASIC which can be loaded and run as if it were a

—| BASIC program. Because the data for the SuperBASIC loader

• must go into the same area of memory where BASIC normally

resides, a special tactic must be used to prevent the

[—"! SuperBASIC data from overwriting MLX as it is entered. First,

' ' turn the computer off and back on to reset memory pointers to
their normal values. Next type in the following line in direct

mode (without a line number) and hit RETURN:

POKE 44,22: POKE 642,22: POKE 5632,0: NEW

This moves up the start of the memory area used by

BASIC so that all of the data for SuperBASIC will fit below

MLX without interference. Now LOAD and RUN the MLX

program in the normal manner. When MLX asks for the start

ing and ending addresses for SuperBASIC, give 2049 as the

start and 5330 for the end. When you finish typing in the data

for SuperBASIC, use the MLX Save command to store a copy

of the SuperBASIC loader on disk or tape. Be sure to give

MLX a unique name for the SuperBASIC program as it won't

replace a file. If you do not type in all the data for

SuperBASIC in one session, you must repeat the procedure for

moving up the start of BASIC before loading MLX to complete

your entry.

When you have a complete copy of the loader, you must

reset memory to its normal conditions before loading and run

ning SuperBASIC. You can do this by turning the computer

off and back on, or with the command SYS 64738. When you

run the SuperBASIC loader, it first copies BASIC from ROM

into the underlying RAM and makes modifications to certain

commands. Then it copies the machine language for the rest

of the SuperBASIC routines into memory at $C000-$CC00.

No other machine language subroutines which use memory

starting at $C000 can be used with SuperBASIC 64, but the

DOS Wedge program can be used without conflict. Some of

_ the graphics commands use memory at $02B0-$02C0 for data

I I storage. The loader erases itself from the BASIC memory area
after it is run.

_ The SuperBASIC commands will be enabled until you hit

I I RUN/STOP—RESTORE or POKE 1,55. Once loaded,
SuperBASIC can be reenabled with POKE 1,54. The programs

_ you write with SuperBASIC commands are loaded and saved

I I in the normal manner. The only conflict with normal BASIC is

fM-1 217

n

u

6 Utilities

u
the use of the STOP command. It is not available; use END

instead. When SuperBASIC commands are listed while i i

SuperBASIC is disabled, the [character will print as STOP. If LJ
the [character is printed and SuperBASIC is disabled, it indi

cates that the line was entered while SuperBASIC was not in i i

force. That command will appear correct but will produce a '—'
syntax error on execution.

Sprite Commands

[DSPR [MOVE [KSPR [ESPR [BSPP. These commands

are used in defining sprite characteristics and controlling sprite

movement. [DSPR (Define Sprite) is a general setup command

that initializes a sprite for the VIC-II chip. The ten arguments

in the parameter list (see Table 1) specify most options avail

able for sprite control. [DSPR enables the selected sprite num

bered 0-7, stores block address (blk) in current screen pointer

table, expands if xexp or yexp=l, determines initial display

position (xpos,ypos), and sets sprite color registers (sprcolor).

Multicolored sprites are selected by setting multi=l, single

color by multi=0. McO and Mcl are optional arguments in the

list which set up multicolor 0 and 1. [MOVE moves the se

lected sprite to xpos,ypos. Horizontal values greater than 255

are handled automatically. [KSPR and [ESPR kill or enable the

selected sprite respectively. [BSPP sets the background/sprite

priority for the selected sprite (sel=l sets background in front

of sprite).

Sound Commands

[SSND [PLAY. These commands access some of the fea

tures of the SID chip. [SSND (set up sound) produces a sound

from one of the three voices of the SID chip. Voice (1-3)

selects the voice, ad and sr control the attack/decay and sus

tain/release registers of the selected voice. Wave controls the

waveform, gating, and special effects functions of the sound

chip. Wave, ad, and sr use the same values that would nor

mally be POKEd to these registers. Freq controls the frequency

of the voice but is a 16-bit value in the range 0-65535. Pwidth

is the pulsewidth value for the pulse waveform and is needed

only when wave=65. Pwidth is a 12-bit value in the range 0-

4095. [SSND sets the volume register to 15. [PLAY is a short

form of [SSND that assumes AD/SR values have been set pre

viously. Waveform and voice values are coded into the first

parameter argument by wave*256+voice. Freq and Pwidth are

218

H

H
Utilities 6

n
used the same as in [SSND. [PLAY can be used to silence a

p| voice; for instance, [PLAY 1,0 would silence voice one.

VIC Color Control
■—* [BKGD [BKG4 [EXTC [FCOL. These commands control

' I background, border, and text character color. [BKGD sets the
background to the selected color. [BKG4 sets all four back

ground color registers (used in extended color and multicolor

bitmap modes). [EXTC sets the exterior border to the selected

color. [FCOL (fill color memory) fills the color memory block

with the selected color. This causes all text on the current

screen to be displayed in the selected color. [FCOL is also use

ful in multicolor bitmap mode to set multicolor pixel color.

VIC Memory Mapping

[BANK [VS1K [CB2K. The VIC-II chip views memory

differently than does the 6510 chip. VIC-II sees only 16K at a

time and maps the ROM character set into part of this 16K

bank at times. These commands allow changes to the normal

locations of the screen and character sets. [BANK selects which

one of the four banks (0-3) the VIC-II chip sees. Normally this

is bank 0. [BANK resets the pointer BASIC uses to locate the

screen. [VS1K (Video Screen IK block) determines which IK

block of the 16 available is used for the text screen.

The blocks are numbered 0-15. The BASIC screen pointer

is reset for this location. [CB2K (Character Base 2K block) con

trols which 2K block of the eight available is used for the

character set. The blocks are numbered 0-7. In banks 0 and 2

the ROM set is located at 2K blocks 2 and 3. [CB2K is also

used to select which 8K block is used for the bitmap screen.

Values 0-3 select the lower 8K block, values 4-7 select the up-

per 8K block.

!(These three commands must be used in coordination to
smoothly relocate the screen. Caution must be exercised in

selecting locations since a system crash will result if the screen

fi overwrites important RAM such as page zero. Banks 2 and 3
must be used with great care. More on bank 3 usage later.

Program 7 demonstrates relocation to PET standard loca-

! I tions for the screen and BASIC.

Graphics/Text Control

[ECGR [MCGR [BMGR. These commands select

extended color, multicolor, or bitmap graphics mode. A value of

n

LI

6 Utilities ^

u
0 turns the mode off and a value of 1 turns the mode on.

Only multicolor and bitmap work in conjunction with each —-

other to form a combined mode. When extended color and U
bitmap are both on, the screen will appear blank. This effect

might be useful for temporarily hiding the screen.

[MXGR [KMXG [CMXV. These commands set up a sim- U
pie interrupt routine that allows mixed modes to appear in

two sections of the screen. [MXGR will change the contents of

one VIC register (reg) or part of the contents (the bits OFF in

mask) each time the raster counter equals one of the two ras

ter select values (rastl and rast2). The values in vail or val2

will be stored into the selected VIC register. You must deter

mine the appropriate value for the particular register. For

example, [MXGR 33,240,152,6,252,1 will cause screen lines 49

to 151 to be displayed with background white (color=1) and

lines 152 to 250 with background blue.

The visible portion of the screen extends from raster 49 to

raster 250 (Commodore documentation says 51-251). [KMXG

will kill the interrupt and leave the selected register in an un

known state. [CMXV (Change Mixed-mode Values) allows

changing vail and val2 while mixed mode is in force. By set

ting them equal, a known state will be in effect after [KMXG.

You should not attempt tape or disk I/O while [MXGR is in

force. [MXGR mode shouldn't be used in bank 3 VIC mapping

if hi-res graphics commands are to be used.

It's possible to set up a text window at the bottom of a hi

res screen using [MXGR. The difficulty is that [MXGR only can

change one VIC register. Thus the character base pointer can't

be changed as well as the bitmap select bit by [MXGR. This

can be solved by locating the character set within the hi-res

screen, and putting a text window over the top of the charac

ter set. I—-

A six line text window at the bottom of the hi-res screen LJ
can easily be created using this technique. In bank 0, using the

upper 8K hi-res block, you would first use [CB2K 7 to select ,—,

both the upper 8K hi-res block and the seventh 2K character LJ
set block. Then clear the hi-res screen with [FBMS 0 and

download a character set to starting location 7*2048. [MXGR .-—,

17,223,0,32,201,0 will complete the setup. LJ
[SIZE [XYSC. These commands help use the smooth

scroll registers of the VIC-II chip. [SIZE selects 40 or 38 col- ,--,

umns for the text display chosen by setting colsel to 1 or 0 LJ

220 jj

n

n
Utilities 6

n
(colsel = l selects 40 columns) and sets the number of lines to

p 25 or 24 (rowsel=l selects 25 lines). [XYSC moves the entire

' text screen horizontally or vertically up to seven pixels. By set

ting xpos and ypos to a value in the range 0-7, the screen can

p be stepped up a pixel at the time to produce a smooth scroll.

I When used in conjunction with a machine language scroll rou

tine or the automatic scroll up, text can be scrolled smoothly

across or up the entire screen.

[DLCS. [DLCS (Download Character Set) assists in using

banks without ROM character set images and in designing

custom character sets. You can copy the uppercase graphics

set, upper- and lowercase set, or both by setting the set equal

to 0, 1, or 2 respectively. This is followed by the address of

the first location in memory where you wish the ROM set

copy to be positioned. This should be on a 2K boundary un

less you wish to change the order of the set. When the ad

dress is 53248, the set will be copied into the RAM beneath

the ROM set for use in bank 3.

[FBMS [FSCR. The current hi-res screen (determined by

the last [CB2K command) can be filled with any byte value

with [FBMS (Fill Bitmap Screen). [FSCR works in a similar way

with the current text screen. The entire screen is filled with a

byte value. Since the text screen is used for color control in hi

res mode, [FSCR can be used for hi-res color control.

[PLOT [FLIP [CLPX [MCPL. These commands are used

in plotting pixel points in hi-res graphics modes. The first

three plot in 320 x 200 resolution two-color mode, the last in

160 x 200 resolution four-color mode. [PLOT sets the selected

pixel on, [CLPX turns the pixel off, and [FLIP changes the

pixel to the opposite state. [MCPL (Multicolor Plot) accepts

horizontal coordinates in the range 0-159 and plots in one of

p four colors determined by sel with sel in the range 0-3. A

! ' value of 0 selects background color, 1 selects text screen low-
nybble color, 2 selects text screen high-nybble color, and 3

p selects color memory color. Before you execute any of the

plotting commands, [CB2K must be used to select the appro

priate 8K block and [BMGR 1 must be in force for the plot to

p be seen. Remember that y coordinates increase as you go

1 down the screen.

[DRAW [UNDR [FLLN [DRW2 [SETP. These commands

are used to draw and erase lines to and from the hi-res screen.

[DRAW, [UNDR, and [FLLN require a parameter list containing

221

H

6 Utilities ^

D
the start and end points of a line segment. The line is

drawn from xl,yl toward x2,y2. These commands plot the line

in three modes. [DRAW turns on the pixels of the line, [UNDR LJ
turns off the pixels of the line, and [FLLN flips the state of the

pixels of the line. The three commands also set the mode of ,

drawing for the [DRW2 command and save the last plotted LJ
point position in a pen position register. [DRW2 (Draw to)

only uses an end point in the parameter list. The starting point

is obtained from the pen position register contents set by a

previous [DRAW, [FLLN, [UNDR, or [SETP command. [DRW2

will plot, flip, or erase the line depending on which line draw

ing mode was last used. [SETP stores the given xl,yl

coordinate in the pen position register.

[HRCS [CHAR [CHRX [CODE. These commands make it

easy to put text on the hi-res screen. [HRCS (Hi-Res Character

Set) stores the address for the character set to be used. It need

not be located on a 2K boundary or even be the same set as

used on the text screen. The address supplied is of the first

byte of the set. A value of 53248 will select the ROM set

(upper/graphics). [CHAR and [CHRX plot an 8 x 8 character

to a selected position on the current hi-res screen.

The character code (char) to select which character to plot

corresponds to the screen POKE codes listed in Appendix G.

Example: [CHAR 1,100,100 would plot the letter A with po

sition 100,100 being the upper left corner of the 8 x 8 charac

ter cell. [CHAR plots the cell to the hi-res screen absolutely

while [CHRX uses the exclusive OR function to flip the cell

pixels. So [CHRX can be used to unplot a previously plotted

character. [CODE helps in translating to the screen POKE code

used by [CHAR and [CHRX in character selection.

The argument for [CODE must be the name of a defined

string variable. Upon execution, the ASCII values stored in the —,

string will be converted to screen POKE codes. The RVS ON i !
and RVS OFF control characters can be used within the string

to select the upper 128 or lower 128 characters of the set. All ,- ,

other control characters will produce unpredictable results. I I
Once the string is converted using [CODE, use the ASC func

tion and MID$ function to read the codes. The ASC function , ,

will give correct results for the 0 character of the set. Be care- LJ
ful when using strings not built to high memory because

[CODE will modify the actual string data stored within the r

BASIC text area. LJ

222

U

H

Utilities 6

H
[HRAM [LOOK [STUF. These commands make use of

pi [BANK 3 possible from BASIC. When bank 3 is selected, the

! I VIC-II chip uses RAM from $C000 to $FFFF and ignores ROM
located at the same addresses, including the ROM character

—i set. SuperBASIC allows the location of one text screen ([VS1K

I 3 located at $CC00) in bank 3. RAM from $D000 to $FFFF can
be used for character sets, sprites, and a hi-res screen.

The main problem confronting the bank 3 user is the

switching required to read and write to these RAM locations.

All plotting commands need to read, as well as write, to RAM.

These commands can be preceded by [HRAM to accomplish

this in bank 3. No embedded banks are allowed following

[HRAM and the selected mnemonic. For example,

[HRAMDRAW 1,0,100,100 would be used to draw a line to

the hi-res screen at $E000 under the Kernal ROMs. [HRAM

should be used in this manner with [PLOT, [FLIP, [CLPX,

[MCPL, [DRAW, [UNDR, [FLLN, [DRW2, [CHAR, and [CHRX

in bank 3. Using the first 3K of bank 3 will crash SuperBASIC,

so make sure the text screen is relocated by [VS1K 3. When

the transition to bank 3 is made, the IK block at $0400 can be

reclaimed for BASIC program storage. [LOOK and [STUF are

PEEK and POKE equivalents that can be used with [HRAM to

examine and change RAM. [LOOK is different from PEEK in

that a defined variable name is used in the parameter list to

return the value read from memory. [STUF works the same as

POKE and is primarily useful for storing to block $D000 RAM

(for example, [HRAMSTUF 53248,255 writes to RAM under

the VIC chip).

Using the Commands

Errors in SuperBASIC commands will give the syntax error

— message. One difficult error to detect occurs when an embed-

I I ded BASIC keyword is constructed by part of the command
mnemonic and the following parameter. [KSPR INT(X) looks

n like a valid command but BASIC will find the PRINT ([KSPR

! INT(X)) and tokenize it. Syntax errors are particularly frustrat
ing if you are in hi-res mode when the error occurs. The mes-

_ sage will appear as a set of colored blocks on the screen and

i I you will have to type blindly to get back to text mode. It helps
to include a line in your programs that restores text mode so
that you only need to type a GOTO xxx.

RUN/STOP—RESTORE will kill SuperBASIC. It can be

223

n

6 Utilities

D
reenabled with POKE 1,54 most of the time. You should be

careful when you have changed banks and screen locations. A ,—,

RUN/STOP—RESTORE will not reset the default video map U
so you might wipe out page zero or other important RAM.

SuperBASIC Creations jj

Using SuperBASIC's powerful functions, you can create com

plex programs much more easily than you thought possible.

The following programs demonstrate SuperBASIC in action.

Some, such as Programs 2 through 7, are simple BASIC pro

grams which show how you can use SuperBASIC to create

impressive graphic displays, joystick-controlled sprites which

draw patterns on the screen, or animated sprites. Another pro

gram which uses SuperBASIC, "SuperBASIC Sprite Editor," is

more complicated, and thus longer. The program is included

in another section, "Colors, Characters, and Motion." All are

worth the time it will take you to type them in.

Remember that all the following demonstration programs

will only work if SuperBASIC has already been loaded and

run. As you type these programs in, you'll come across

strange-looking commands, such as [DLCS or [FCOL. Don't

worry, the program listing is correct; this is how SuperBASIC

notes its new commands. Every time you see the [symbol, just

press the SHIFT and colon keys together. This will give you

the bracket symbol on the screen. Type in the rest of the com

mand (DLCS, for instance) as you would any other command

on the 64.

Although most of these programs can be used without

much explanation, since prompts appear frequently on the

screen, "Type 64" does need some further description to enter

and run properly. Remember, all of these programs require

SuperBASIC in memory to operate. If you haven't entered and M

saved a copy of SuperBASIC, Program 1, do that first. ^

u
Type 64
Using these two programs, you can turn your 64 into a 64-

column display. No hardware adjustment is necessary; the [J
programs create a new character set that is smaller than the

one usually seen on the 64. The letters are still easy to read,

and actually look quite nice, especially when you change the |_J
background color so that it contrasts with the new set.

224 jj

n

r—i

Utilities 6

n
This is a two-part program. Type 64, Program 8, is in

I—1 SuperBASIC, and actually loads and operates the character set.

1 I Program 9, "64SET," is the new character set which turns your
screen into a 64-column display.

r-1 First, type in Program 10. Since it's in SuperBASIC, you

1 1 shouldn't have any problem if you've read and understood
this article. In the listing, you'll come across SuperBASIC com

mands which always begin with the bracket symbol ([). When

ever you see this character, press SHIFT and the colon keys at

the same time; that will produce a [symbol on the screen. The

rest of the command (FCOL for instance) you can enter nor

mally, of course. Once you've SAVEd the program, you can

begin entering 64SET. You'll notice that it's in machine lan

guage, so you'll be using the MLX program from Appendix I

again. The starting and ending addresses for 64SET are:

Starting address: 32768

Ending address: 34819

Before you LOAD MLX and begin typing in 64SET, enter the

following line in direct mode (without line numbers). This

moves BASIC and ensures that it will not interfere with the

entry of 64SET. If you type in 64SET in several sessions, make

sure you enter this line before loading and using MLX.

POKE 56,128:CLR

Enter 64SET as you would any other program which uses MLX.

When you're through, SAVE it to disk, using the filename

64SET. Make sure that this is the filename you use (no spaces

between 64 and SET—SET in uppercase); if you name it

something else, Program 8 won't be able to load and use it. Be

sure that both Program 8 and Program 9 are on the same disk.

When both programs are on one disk, type LOAD'TYPE

[""I 64",8 and then RUN it. It will load the character set automati
cally. All you have to do is type on your new 64-column

display.

n

n

r—? 225

I !

u

6 Utilities

D
Table1. SuperBASIC Command Summary

Enhanced BASIC Commands LJ
RESTORE <exp>

GOTO <exp>

GOTO <exp> MIF <exp> GOTO <exp>

IF <exp> GOSUB <exp>

ON <exp> GOTO <expl>,<exp2>,...

ON <exp> GOSUB <expl>,<exp2>,

LIST (Shift Key halts list)

ASC(str$) returns 0 for null string

New SuperBASIC Commands

Sprite Commands

[DSPR sp^blk^p^
[MOVE spr,xpos,ypos

[KSPR spr

[ESPR spr

[BSPP spr,sel

Sound Commands

SSND voice^d^wave^req^width

PLAY 256*wave+voice,freq,pwidth

VIC Color Control

BKGD col

BKG4 0)10,0)11,0)12,0)13
EXTC col

[FCOL col

VIC Memory Mapping

[BANK sel

[VS1K sel

[CB2K sel

Graphics/Text Control

[ECGR sel

[MCGR sel

[BMGR sel _

[MXGR reg,mask,rastl/vall,rast2,val2 II
[KMXG

[CMXV vall,val2

[SIZE colsel,rowsel j i

[XYSC xpos,ypos L-J
[DLCS set,address

FBMS byte r "1

FSCR byte U
PLOT x,y

FLIP x,y —

CLPX x,y LJ

226

n

n
Utilities 6

n

n

[MCPL x,y,sel

[DRAW xhyl^yl

[UNDR xl,yl,x2,y2

[FLLN xl,yl,x2,y2

[DRW2 x2,y2

[SETP xl,yl

[HRCS address

CHAR char,x,y

CHRX char,x,y

CODE str$

LOOK address,variable

STUF address,byte

HRAM <SuperBASIC mnemonio <parameter list>

Program 1. SuperBASIC 64

n

n

2049

2055

2061

2067

2073

2079

2085

2091

2097

2103

2109

2115

2121

2127

2133

2139

2145

2151

2157

2163

2169

2175

2181

2187

2193

2199

2205

2211

2217

2223

2229

:011,008,000,000,158,050,228

:048,056,048,000,000,000,159

:000,000,000,000,000,000,013

:000,000,000,000,000,000,019

:000,000,000,000,000,000,025

:000,169,039,133,001,169,030

:000,133,020,133,078,169,058

:009,133,021,169,192,133,188

:079,162,012,160,000,177,127

:020,145,078,200,208,249,187

:230,021,230,079,202,208,007

:242,160,008,169,104,032,014

:030,171,169,013,141,119,204

:002,141,120,002,169,002,003

:133,198,169,133,141,001,092

:008,169,020,141,002,008,183

:076,120,008,000,000,000,045

:000,031,147,017,017,048,107

:017,157,082,085,078,019,035

:000,000,000,000,000,169,028

:000,133,020,169,160,133,224

:021,162,032,160,000,177,167

:020,145,020,136,208,249,143

:230,021,202,208,244,162,182

:000,160,003,185,224,160,109

:157,224,160,232,200,224,068

:190,208,244,169,003,141,088

: 161,168,169,192,141,162,132

:168,169,074,141,210,166,073

: 169,193,141,211,166,141,172

:037,160,169,084,141,036,040

227

u

6 Utilities

2235 :160,169,219,141,223,160,235

2241 :169,255,141,044,160,169,107

2247 :194,141,045,160,169,038,178 M
2253 :133,001,169,005,141,143,029

2259 :183,169,076,141,043,169,224

2265 :141,087,169,169,193,141,093 [';

2271 :045,169,141,089,169,169,237 -LJ
2277 :200,141,088,169,169,227,199

2283 :141,044,169,096,000,000,173

2289 :000,000,000,000,000,000,241

2295 :000,000,000,000,000,000,247

2301 ;000,000,000,032,115,000,144

2307 :032,158,173,032,247,183,060

2313 :096,032,139,192,032,000,244

2319 :192,165,020,166,002,157,205

2325 :248,007,032,000,192,165,153

2331 :020,162,029,032,162,192,112

2337 :032,000,192,165,020,162,092

2343 :023,032,162,192,032,097,065

2349 :192,032,000,192,165,020,134

2355 :072,162,028,032,162,192,187

2361 :032,000,192,165,020,166,120

2367 :002,157,039,208,104,240,045

2373 :117,032,000,192,165,020,083

2379 :141,037,208,032,000,192,173

2385 :165,020,141,038,208,169,054

2391 :001,162,021,032,162,192,145

2397 :096,032,139,192,032,000,072

2403 :192,165,021,072,165,020,222

2409 :072,032,000,192,165,002,056

2415 :010,170,232,165,020,157,097

2421 :000,208,202,104,157,000,020

2427 :208,104,162,016,032,162,039

2433 :192,169,000,141,030,208,101

2439 :141,031,208,096,032,000,131

2445 :192,165,020,041,007,133,187

2451 :002,170,169,001,224,000,201 _

2457 :240,004,010,202,208,252,045 M
2463 :133,078,096,164,078,201,141

2469 :000,240,006,152,029,000,080

2475 :208, 208,006,152,073,255,049 f"",

2481 :061,000,208,157,000,208,043 bJ
2487 :096,000,007,014,032,019,095

2493 :199,240,150,032,000,192,234 _

2499 :165,020,041,003,170,189,015 I i
2505 1183,192,133,078,169,212,144 L~J
2511 :133,079,032,000,192,165,040

2517 :020,160,005,145,078,032,141 fl

2523 :000,192,165,020,160,006,250 U

228 PI

n

n

n

H

H

n

n

n

2529 1145,078,032,028,193,165,098

2535 :020,133,002,160,004,145,183

2541 :078,032,037,193,169,015,249

2547 :141,024,212,096,032,000,236

2553 :192,165,020,041,003,170,072

2559 :189,183,192,133,078,169,175

2565 :212,133,079,165,021,133,236

2571 :002,169,000,160,004,145,235

2577 :078,032,037,193,165,002,012

2583 :160,004,145,078,096,169,163

2589 :000,160,004,145,078,076,236

2595 :000,192,032,000,192,165,104

2601 :021,160,001,145,078,165,099

2607 :020,136,145,078,165,002,081

2613 :201,065,208,016,032,000,063

2619 :192,165,021,041,015,160,141

2625 :003,145,078,165,020,136,100

2631 :145,078,096,173,141,002,194

2637 :208,251,076,044,168,076,132

2643 :029,168,240,251,032,003,038

2649 :192,032,019,166,056,165,207

2655 :095,233,001,164,096,176,092

2661 :001,136,133,065,132,066,122

2667 :096,032,000,192,160,000,075

2673 :177,020,133,002,032,115,080

2679 :000,032,040,175,164,002,020

2685 :169,000,032,145,179,166,048

2691 :071,164,072,032,215,187,104

2697 :096,032,000,192,165,020,130

2703 :133,078,165,021,133,079,240

2709 :032,000,192,165,020,160,206

2715 :000,145,078,096,173,014,149

2721 :220,041,254,141,014,220,027

2727 :165,001,041,253,133,001,249

2733 :169,193,072,169,184,072,008

2739 :032,115,000,076,000,195,085

2745 :165,001,009,002,133,001,240

2751 :173,014,220,009,001,141,237

2757 1014,220,096,165,101,133,158

2763 :254,104,133,002,198,254,124

2769 :208,005,165,002,076,239,136

2775 :167,032,000,192,032,121,247

2781 :000,201,044,240,237,096,015

2787 :032,121,000,201,137,208,158

2793 :003,076,055,169,201,141,110

2799 :240,249,076,050,169,032,031

2805 :115,000,076,245,196,049,158

2811 :000,000,129,000,000,077,201

2817 :079,086,069,093,192,068,076

Utilities 6

229

6 Utilities

2823 :083,080,082,101,196,083,120

2829 :083,078,068,191,192,080,193

2835 :076,065,089,246,192,066,241

2841 :075,071,068,056,195,069,047

2847 :088,084,067,065,195,075,093

2853 :083,080,082,074,195,069,108

2859 :083,080,082,084,195,066,121

2865 .-083,080,080,092,195,083,150

2871 :084,085,070,137,193,069,181

2877 :067,071,082,125,195,077,166

2883 :067,071,082,150,195,066,186

2889 :077,071,082,175,195,083,244

2895 :073,090,069,187,195,088,013

2901 :089,083,067,211,195,067,029

2907 :065,084,065,250,195,066,048

2913 :065,078,075,053,196,086,138

2919 :083,049,075,113,196,067,174

2925 :066,050,075,151,196,068,203

2931 :076,067,083,172,196,07 7,018

2937 :088,071,082,065,197,075,187

2943 :077,088,071,180,197,067,039

2949 :077,088,086,200,197,070,083

2955 :067,079,076,217,197,080,087

2961 1076,079,084,130,198,070,014

2967 :076,073,080,122,198,067,255

2973 :076,080,088,138,198,077,046

2979 :067,080,076,148,198,070,034

2985 :083,067,082,197,198,070,098

2991 :066,077,083,232,198,068,131

2997 :082,065,087,023,203,072,201

3003 :082,067,083,060,201,067,235

3009 :072,065,082,134,202,067,047

3015 :072,082,088,142,202,067,084

3021 :079,068,069,150,202,076,081

3027 :079,079,075,107,193,066,042

3033 :075,071,052,105,195,072,019

3039 :082,065,077,158,193,070,100

3045 :076,076,078,020,203,085,255

3051 :078,068,082,047,203,068,013

3057 :082,087,050,070,203,083,048

3063 :069,084,080,107,203,255,021

3069 :255,255,255,162,000,134,034

3075 :002,160,000,177,122,221,173

3081 :000,194,208,026,232,200,101

3087 :192,004,208,243,189,001,084

3093 :194,072,189,000,194,072,230

3099 :165,122,024,105,003,133,067

3105 :122,144,002,230,123,096,238

3111 :165,002,024,105,006,133,218

230

Utilities 6

n

n

n

n

n

3117 :002,170,189,000,194,201,033

3123 :255,208,206,096,000,000,048

3129 :032,000,192,165,020,141,095

3135 :033,208,096,032,000,192,112

3141 :165,020,141,032,208,096,219

3147 :032,139,192,169,000,162,001

3153 :021,076,162,192,032,139,191

3159 :192,162,021,076,162,192,124

3165 :032,139,192,032,000,192,168

3171 :165,020,162,027,076,162,199

3177 :192,162,000,134,002,032,115

3183 :000,192,165,020,166,002,144

3189 :157,033,208,232,224,004,207

3195 :208,239,096,032,000,192,122

3201 :165,020,162,017,160,064,205

3207 :032,164,192,165,020,240,180

3213 :239,169,000,162,022,160,125

3219 :016,076,164,192,032,000,115

3225 :192,165,020,162,022,160,106

3231 :016,032,164,192,165,020,236

3237 :240,214,169,000,162,017,199

3243 :160,064,076,164,192,032,091

3249 :000,192,165,020,162,017,221

3255 :160,032,076,164,192,032,071

3261 :000,192,165,020,162,022,238

3267 :160,008,032,164,192,032,015

3273 :000,192,165,020,162,017,245

3279 :160,008,076,164,192,032,071

3285 :000,192,165,020,041,007,126

3291 :133,020,173,022,208,041,048

3297 :248,005,020,141,022,208,101

3303 .-032,000,192,165,020,041,169

3309 :007,133,020,173,017,208,027

3315 :041,248,005,020,141,017,203

3321 :208,096,169,032,141,000,127

3327 :002,162,000,142,005,002,056

3333 :134,002,173,141,002,208,153

3339 :251,160,000,189,000,194,037

3345 :153,001,002,232,200,192,029

3351 :004,208,244,169,000,160,040

3357 :002,032,030,171,165,002,175

3363 .-024,105,006,133,002,170,219

3369 :189,000,194,201,255,208,064
3375 :215,032,115,000,208,251,100

3381 :096,173,002,221,009,003,045

3387 :141,002,221,032,000,192,135

3393 :165,020,041,003,072,073,183

3399 :003,133,020,173,000,221,109
3405 :041,252,005,020,141,000,024

231

6 Utilities

3411 :221,104,024,106,106,106,238

3417 :133,020,173,136,002,041,082

3423 :063,005,020,141,136,002,206

3429 :096,173,136,002,024,105,125

3435 :003,141,022,192,076,010,039

3441 :192,032,000,192,165,020,202

3447 :041,063,010,010,133,020,140

3453 :173,136,002,041,192,005,162

3459 :020,141,136,002,165,020,103

3465 :010,010,133,020,173,024,251

3471 :208,041,015,005,020,141,061

3477 2 024,208,096,173,024,208,114

3483 :041,241,133,002,032,000,092

3489 :192,165,020,041,007,010,084

3495 :005,002,141,024,208,096,131

3501 :173,014,220,041,254,141,248

3507 2 014,220,165,001,041,251,103

3513 2 133,001,032,000,192,165,196

3519 2 020,041,003,162,008,201,114

3525 2 002,208,002,162,016,160,235

3531 2 208,201,001,208,002,160,215

3537 2 216,132,079,160,000,132,160

3543 2 078,134,002,032,000,192,141

3549 2 166,002,160,000,177,078,036

3555 2 145,020,200,208,249,230,255

3561 2 021,230,079,202,208,242,191

3567 2165,001,009,004,133,001,040

3573 2 173,014,220,009,001,141,035

3579 2 014,220,096,000,000,154,223

3585 2 000,006,252,000,006,000,009

3591 2 033,240,234,234,173,006,159

3597 sl97,073,003,141,006,197,118

3603 2 170,189,250,193,141,064,002

3609 2 197,172,007,197,185,000,015

3615 2 208,045,008,197,029,00?,008
3621 2 197,153,000,208,173,017,017

3627 2 208,041,127,029,001,197,134

3633 2 141,017,208,189,000,197,033

3639 2 141,018,208,169,001,141,221

3645 2 025,208,076,129,234,120,085

3651 2 169,000,141,014,220,032,131

3657 2 000,192,165,020,141,007,086

3663 2 197,032,000,192,165,020,173

3669 2 141,008,197,032,000,192,143

3675 2 165,020,141,003,197,165,014

3681 2 021,041,001,240,002,169,059

3687 2 128,141,004,197,032,000,093

3693 2 192,165,020,141,002,197,058

3699 2 032,000,192*165,020,141,153

232

n

n

H

n

n

Utilities 6

n

n

n

n

n

3705

3711

3717

3723

3729

3735

3741

3747

3753

3759

3765

3771

3777

3783

3789

3795

3801

3807

3813

3819

3825

3831

3837

3843

3849

3855

3861

3867

3873

3879

3885

3891

3897

3903

3909

3915

3921

3927

3933

3939

3945

3951

3957

3963

3969

3975

3981

3987

3993

:000,197,165,021,

:240,002,169,128,

:197,032,000,192,

:141,005,197,173,

8 041,127,013,004,

:017,208,173,003,

:018,208,169,003,

:197,169,241,141,!

:169,011,141,020,1

:197,141,021,003,1

:120,169,049,141,!

:169,234,141,021,1

:240,141,026,208,1

:244,193,032,000,:

:020,141,002,197,1

:192,165,020,141,

:096,032,000,192,

:041,015,162,000,

• £.00

:006,253,038,254,

:038,254,165,020,

:133,253,144,002,

:024,006,253,038,

:253,038,254,006,

:101,253,133,251,

:101,254,133,252,

:002,041,192,005,

.-252,173,024,208,

:010,010,005,252,

:166,002,189,107,

:000,096,128,064,

:008,004,002,001,

:012,003,000,085,

:032,246,197,081,

:251,096,032,246,
:251,145,251,096,

:197,073,255,049,

:251,096,032,000-

:020,041,003,024

041,001,034

141,001,040

165,020,227

017,208,112

197,141,156

197,141,122

141,006,190

026,208,121

003,169,170

088,096,209

020,003,171

003,169,156

088,076,204

192,165,001

032,000,085

005,197,163

165,020,210

157,000,086

157,000,208

232,208,245

096,032,119

041,007,160

041,248,094

133,252,190

020,133,039

020,133,156

254,024,086

006,253,069

101,253,096

230,254,031

254,006,114

253,038,125

007,005,095

165,251,118

165,252,200

173,136,100

252,133,194

041,008,025

133,252,243

198,160,153

032,016,185

192,048,110

170,255,130

251,145,051

197,017,200

032,246,132

251,145,087

192,165,115

105,008,098

233

6 Utilities

3999 :133,002,006,020,038,021,123

4005 :032,255,197,133,002,032,048

4011 :000,192,165,020,041,003,080

4017 :170,189,119,198,037,002,124

4023 :133,020,165,002,073,255,063

4029 :160,000,049,251,005,020,162

4035 :145,251,096,032,000,192,143

4041 :173,136,002,133,252,169,042

4047 :000,133,251,168,162,003,156

4053 :165,020,145,251,200,208,178

4059 :251,230,252,202,208,246,072

4065 :145,251,200,192,232,208,173

4071 :249,096,032,000,192,173,205

4077 :136,002,041,192,133,252,225

4083 :173,024,208,041,008,010,195

4089 :010,005,252,133,252,169,046

4095 :000,133,251,162,032,160,225

4101 :000,165,020,145,251,200,018

4107 :208,251,230,252,202,208,082

4113 :246,096,032,121,000,208,208

4119 :001,096,104,104,076,070,218

4125 :192,169,000,141,176,002,197

4131 :141,178,002,141,179,002,166

4137 :173,167,002,013,168,002,054

4143 :208,002,056,096,162,024,083

4149 :046,176,002,046,177,002,246

4155 :046,178,002,046,179,002,000

4161 :056,173,178,002,237,167,110

4167 :002,168,173,179,002,237,064

4173 :168,002,144,006,140,178,203

4179 :002,141,179,002,202,208,049

4185 :219,046,176,002,046,177,243

4191 :002,024,096,032,000,192,185

4197 :165,020,141,193,002,165,019

4203 :021,141,194,002,032,000,241

4209 :192,165,020,141,197,002,062

4215 :032,000,192,165,020,141,157

4221 :195,002,165,021,141,196,077

4227 -.002,032,000,192,165,020,030

4233 :141,198,002,169,000,141,020

4239 :202,002,056,173,198,002,008

4245 :237,197,002,141,199,002,159

4251 :176,014,169,255,141,202,088

4257 :002,077,199,002,141,199,013

4263 :002,238,199,002,169,000,009

4269 :141,203,002,056,173,195,175

4275 :002,237,193,002,141,200,186

4281 :002,173,196,002,237,194,221

4287 :002,141,201,002,176,027,228

234

Utilities 6

n

n

n

n

4293

4299

4305

4311

4317

4323

4329

4335

4341

4347

4353

4359

4365

4371

4377

4383

4389

4395

4401

4407

4413

4419

4425

4431

4437

4443

4449

4455

4461

4467

4473

4479

4485

4491

4497

4503

4509

4515

4521

4527

4533

4539

4545

4551

4557

4563

4569

4575

4581

:169,255,141,

:200,002,141,

:255,077,201,

:002,238,200,

:238,201,002,

:204,002,173,

:200,002,169,

:002,176,076,

:208,005,141,

:105,141,177,

:002,141,167,

:002,141,168,

:141,205,002,

: 144,003,076,

:176,002,013,

:020,169,255,

:141,177,002,

:208,002,169

:002,208,049

:208,002,141,

:039,169,255,

:173,200,002,

:002,240,171,

:141,167,002,

:168,002,173,

:177,002,169,

:002,076,016,

:002,238,199,

:002,041,007,

:193,002,041,

:173,194,002,

:197,002,032,

1251,145,251,

:208,095,173,

:016,056,173,

:001,141,193,

:206,194,002,

:193,002,208,

:002,056,173,

s001,141,200,

:206,201,002,

:002,109,201,

:173,205,002,

:173,176,002,

:141,208,002,

:109,209,002,

:144,144,173,

:006,206,197,

:200,238,197,

203,002,077,020

200,002,169,149

002,141,201,062

002,208,003,100

169,000,141,204

199,002,205,244

000,237,201,018

173,199,002,099

205,002,240,022

002,173,200,025

002,173,201,175

002,169,255,232

032,030,199,110

058,201,173,162

177,002,208,091

141,176,002,026

169,000,141,155

025,141,209,029

169,000,141,106

209,002,240,089

141,204,002,103

024,109,201,008

173,199,002,092

169,000,141,187

200,002,141,003

255,141,205,016

200,238,200,061

002,173,193,142

133,002,173,211

248,133,251,215

13 3.9R9.173.024133,252,173,024

014,198,017,075

173,204,002,135

203,002,240,036

193,002,233,050

002,176,013,165

144,008,238,181

003,238,194,233

200,002,233,067

002,176,003,186

024,173,200,219

002,240,120,093

240,165,024,234

109,208,002,101

173,177,002,140

141,209,002,115

202,002,240,098

002,076,107,049

002,076,107,025

235

6 Utilities

4587 :200,173,202,002,240,006,034

4593 :206,197,002,076,250,200,148
4599 :238,197,002,206,199,002,067

4605 :240,058,173,205,002,240,147

4611 :040,024,173,176,002,109,015

4617 :208,002,141,208,002,173,231

4623 :177,002,109,209,002,141,143

4629 :209,002,144,019,173,203,003
4635 :002,240,017,056,173,193,196

4641 :002,233,001,141,193,002,093
4647 :176,003,206,194,002,076,184

4653 :107,200,238,193,002,208,225

4659 :248,238,194,002,208,243,160

4665 :096,198,122,096,032,000,089

4671 :192,165,020,141,075,201,089
4677 :165,021,141,076,201,096,001

4683 :143,183,000,169,000,141,199
4689 :193,002,141,196,002,032,135

4695 :000,192,165,020,141,197,034
4701 1002,032,000,192,169,056,032

4707 :197,020,169,001,229,021,224

4713 :176,005,169,255,141,193,020

4719 :002,165,020,041,007,133,223

4725 :002,165,020,041,248,133, 214

4731 :251,165,021,133,252,032,209

4737 1000,192,169,192,197,020,131

4743 :176,005,169,255,141,196,053

4749 :002,165,020,041,007,141,005

4755 :194,002,141,195,002,165,078

4761 :020,032,014,198,165,251,065

4767 :041,248,133,251,173,197,178

4773 :002,133,020,169,000,133,110

4779 :021,006,020,038,021,006,027

4785 :020,038,021,006,020,038,064

4791 :021,024,173,075,201,101,010

4797 :020,133,020,165,021,109,145

4803 :076,201,133,021,024,165,047

4809 :251,105,008,141,177,002,117

4815 :165,252,105,000,141,178,024

4821 :002,165,021,041,208,201,083

4827 :208,208,007,120,165,001,160

4833 :041,251,133,001,169,000,052

4839 :141,176,002,166,002,240,190

4845 :005,056,106,202,208,251,041

4851 :141,179,002,172,176,002,147

4857 :177,020,166,002,240,004,090

4863 :074,202,208,252,032,077,076

4869 :202,208,238,044,193,002,124

4875 :048,056,056,169,008,229,065

236

Utilities 6

4881

4887

4893

4899

4905

4911

4917

4923

4929

4935

4941

4947

4953

4959

4965

4971

4977

4983

4989

4995

5001

5007

5013

5019

5025

5031

5037

5043

5049

5055

5061

5067

5073

5079

5085

5091

5097

5103

5109

5115

5121

5127

5133

5139

5145

5151

5157

5163

5169

:002,13 3,002,201,008,240,091

:045,173,111,002,133,251,036

:173,178,002,133,252,169,168

:000,141,176,002,173,194,209

:002,141,195,002,173,179,221

:002,073,255,141,179,002,187

:172,176,002,177,020,166,254

:002,010,202,208,252,032,253

:077,202,208,240,169,004,197

:005,001,133,001,088,096,139

:172,195,002,044,077,201,000

:048,012,133,254,173,179,114

.-002,049,251,005,254,076,214

:099,202,081,251,145,251,100

:200,140,195,002,192,008,070

:208,017,160,064,140,195,123

:002,230,252,044,196,002,071

:016,005,169,007,141,176,121

:002,238,176,002,173,176,124

:002,201,008,096,169,000,095

:141,077,201,076,078,201,143

:169,255,141,077,201,076,038

:078,201,032,115,000,032,095

:040,175,234,234,234,234,026

:234,234,165,071,133,020,250

:165,072,133,021,160,000,206

:177,020,240,213,056,165,020

:020,233,002,133,020,176,251

:002,198,021,177,020,197,032

:069,208,196,200,177,020,037

:197,070,208,189,160,003,000

:177,020,133,251,200,111,131

:020,133,252,169,000,133,148

:253,133,002,133,254,160,126

:000,177,071,170,164,002,037

: 177, 251, 201,018, 208,007,065

:169,128,133,253,076,009,233

:203,201,146,208,007,169,149

:000,133,253,076,009,203,151

:041,191,016,002,073,192,254

:005,253,164,254,145,251,049

:230,254,230,002,202,208,109

:211,165,254,160,000,145,180

:071,096,169,081,044,169,137

:017,141,132,200,076,098,177

:199,169,049,141,132,200,153

:169,065,141,130,200,169,143

:203,141,131,200,096,032,078

:032,203,032,098,199,169,014

237

6 Utilities

5175 :014,141,130,200,169,198,139

5181 :141,131,200,096,032,014,163

5187 :198,073,255,096,173,195,033

5193 :002,141,193,002,173,196,012

5199 :002,141,194,002,173,198,021

5205 :002,141,197,002,173,132,220

5211 :200,201,049,208,009,032,022

5217 :037,203,032,119,199,076,251

5223 :054,203,076,119,199,032,018
5229 :000,192,165,020,141,195,054

5235 :002,165,021,041,001,141,230

5241 :196,002,032,000,192,165,196
5247 :020,141,198,002,096,000,072

5253 :163,020,010,000,153,034,001

5259 :154,147,083,085,080,069,245

5265 :082,066,065,083,073,067,069

5271 :032,086,051,032,048,049,193

5277 :049,048,056,052,034,000,140

5283 :187,020,015,000,153,034,060

5289 1066,089,032,077,065,082,068

5295 :084,073,078,032,067,032,029

5301 :075,069,069,083,034,000,255

5307 :208,020,020,000,153,034,110

5313 1091,067,065,084,065,034,087

5319 :058,144,067,065,084,065,170

5325 :058,162,000,000,000,013,182

Program 2* Moire Pattern
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

1 REM MOIRE TITLE PAGE DEMO :rem 85

5 [EXTC0 :rem 244

10 [CB2K4:[BMGR1:[FBMS0 :[FSCR1 :rem 193

15 FORJ=0 TO318 STEP2 :rem 177

20 [DRAWJ,198,160,100 :NEXT :rem 252

22 FORJ=0 TO318 STEP2 :rem 175

23 [DRAWJ,0,160,100 :NEXT :rem 141

24 FORJ=0 TO198 STEP2 :rem 183

25 [DRAW160,100,318,J{3 SPACES}:NEXT :rem 251

26 FORJ=0 TO198 STEP2 :rem 185

27 [DRAW161,100,0,J{3 SPACES}:NEXT :rem 146

29 [EXTC4 :rem 46
30 M$="SUPERBASIC":[HRCS53248:M$=M$+"" :rem 217

40 X=120:Y=80:GOSUB50 :rem 227
45 M$=M{RVS}BY MCSOFT11 :M$=M$+"n :X=124:Y=120:GOSUB5

0 :rem 132

47 [CHRX54,152,89:[CHRX52,160,89 :rem 86

48 FORJ=1TO800:NEXT *rem 191
49 [FSCR16:{5 SPACES}GOTO100 :rem 97

238

Utilities 6

50 [CODEM$:FORJ=1TOLEN(M$)

60 [CHRXASC(MID$(M$,J,1)),X,Y

70 X=X+8:NEXT

80 RETURN

100 GETA$:IFA$=MIITHEN100

110 [BMGR0:[CB2K2

:rem 105

:rem 186

:rem 48

:rem 72

:rem 69

:rem 14

Program 3. Stars

1 REM STAR DEMO :rem 116

10 PI=2*t_ :rem 146
20 INPUT"{CLR}STAR POINTS WANTED (0 TO END)";PW

:rem 128

21 IFPW=0THENEND :rem 12

22 INPUT"SKIP TRY VALUE CLOSE TO HALF # POINTS)";S

K :rem 33

23 INPUTlfRADIUS <100 ";R :rem 91

30 P=PI/PW :rem 95

50 [BMGR1:[CB2K4:[FBMS0:[FSCR1 :rem 197

60 X=160:Y=100-R:TL=0 :rem 185

70 FORJ=1TOPW :rem 80

80 TH=TL+SK :rem 170

90 TL=TH:TH=TH*P-(Pl/4) :rem 133

100 X2=COS(TH)*R+160 :rem 104

110 Y2=SIN(TH)*R+100 :rem 105

120 [DRAWX,Y,X2,Y2 :rem 102

130 X=INT(X2):Y=INT(Y2):NEXT :rem 255

140 GETA$:IFA$=""THEN140 :rem 77

150 [BMGR0:[CB2K2:PRINT"{CLR}":GOTO20 :rem 133

Program 4* Circles

5 REM CIRCLE DEMO :rem 240

10 INPUT"CENTER X,Y";A,B :rem 189

20 INPUTnRADIUS";R :rem 139

40 [FSCR1:[CB2K4:[BMGR1:[FBMS0 :rem 196

50 PH=0:Y1=0:X1=R :rem 237

60 PY=PH+Y1+Y1+1 :rem 170

70 PX=PY-X1-X1+1 :rem 189

80 [PLOT A+X1,B+Y1 :rem 26

90 [PLOT A-X1,B+Y1 :rem 29

100 [PLOTA+X1,B-Y1 :rem 69

110 [PLOTA-X1,B-Y1 :rem 72

120 [PLOTA+Y1,B+X1 :rem 69

130 [PLOTA-Y1,B+X1 :rem 72

140 [PLOTA+Y1,B-X1 :rem 73

150 [PLOTA-Y1,B-X1 :rem 76

160 PH=PY:Y1=Y1+1 ;rem 252

170 IFABS(PX)<ABS(PY)THENPH=PX:X1=X1-1 :rem 149

239

u

6 Utilities

180 IFX1>=Y1THEN60 :rem 75

200 GETA$sIFA$=""THEN200 : rem 71 :■--

210 [BMGR0:[CB2K2 :rem 15 LJ
220 INPUT"{CLR}CENTER X,Y";A,B :rem 131

230 INPUT"RADIUS";R :rem 190

240 [FSCRI:[CB2K4:[BMGRl:GOTO50 :rem 225 j |

Program 5. Joystick-Controlled Sprites

1 REM DOODLE :rem 204

5 GOSUB900:[DSPR1,13,0,0,160+16,100+44,0,0sGOSUB14

0 :rem 65

10 [BANK0:[CB2K4:[BMGRl:[FBMS0:[FSCRI:[BSPPl,1

srem 250

20 E=1:X=160:Y=100:C=-1:FORQ=1TO100:NEXT :rem 129

30 IFPEEK(203)=60THEN130 :rem 99

31 IFPEEK(203)=4THENE=-EsIFE>0THEN[DSPRl,13,0,0,0,

0,0,0 :rem 186

32 IFE<0THEN[DSPR1,13,0,0,X+16,Y+44,0,12:[CLPXX,Y

srem 163

35 JV=PEEK(56320):FR=JVAND16 :rem 164

40 JV=15-(JVAND15) :rem 254

50 IFJV=0ANDFR=16THEN30 :rem 162

60 IFJV=1ORJV=5ORJV=9THENY=Y-1:IFY<0THENY=199

:rem 223

70 IFJV=2ORJV=6ORJV=10THENY=Y+1:IFY>199THENY=0

:rem 10

80 IFJV>=4ANDJV<=6THENX=X-lsIFX<0THENX=319srem 208

90 IFJV>=8ANDJV<=10THENX=X+1:IFX>319THENX=0 :rem 0

100 IFFR=0ANDJV=0THENC=-CsE=lsFORQ=1TO100sNEXTsIFC

>0THEN[KSPR1:POKE53288,0 srem 226

105 IFE<0THEN[ESPRls[MOVEl,X+16,Y+44:[CLPXX,YsGOTO

30 srem 117

110 IFO0THEN[PLOTX,YsGOTO30 srem 78

120 IFC<0THEN[ESPRls[MOVEl,X+16,Y+44sGOTO30

srem 199

130 [BANK0S[BMGR0S[CB2K2s POKE198,0sPRINT"{CLR}"s[K r~i

SPRlsEND . srem 13 LJ
140 PRINT"{CLR}DOODLE 64" srem 26

150 PRINT"{DOWN}USE JOYSTICK IN PORT 2" srem 227

160 PRINT"BUTTON TURNS INK ON/OFF" srem 105 1 j

165 PRINT"F1 TURNS ERASE MODE ON/OFF" srem 188 LJ
170 PRINT"HIT A KEY TO START" srem 169

180 PRINT"HIT {RVS} SPACE {OFF} TO STOP" srem 72 ;--;

185 PRINT"THE BLACK + IS YOUR CURSOR WHEN INK=OFF" LJ
srem 205

186 PRINT"THE GREY + IS YOUR CURSOR WHEN ERASE=ON"

s[BKGDls[FCOL0 srem 191 | i

190 GETA$sIFA$=""THEN190 srem 87 L^J

240 jj

Utilities 6

200 IFA$=" "THENRETURN :rem 22

P^ 210 RETURN srem 115
! I 900 X=13*64 :rem 38

910 READY:IFY<0THENRETURN :rem 172

920 POKEX,Y:X=X+1:GOTO910 :rem 55
H 1000 DATA1,192,0,1,192,0,1,192,0,1,192,0,1,192,0

1 ' :rem 52

1010 DATA0,128,0,126,63,0,0,128,0,1,192,0,1,192,0
:rem 102

1020 DATA1,192,0,1,192,0,1,192,0,0,0,0,0,0,0
:rem 92

1030 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 :rem 22

1040 DATA0,0,0,-1 srem 81

Program 6. Sprite Animation

1 REM FALLING SHAMROCKS srem 189

2 REM HIT A KEY TO STOP PROGRAM srem 38

5 [EXTC13:[CB2K4:[BMGRl:[FSCR5:[FBMS171 :rem 47

10 X=832:V=53265:R=128 srem 201

20 READA:IFA<0THEN35 srem 204

30 POKEX,A:X=X+1:GOTO20 srem 175

35 FORJ=0TO7 srem 224

40 [DSPRJ,13,1,1,0,0,0,5+J{2 SPACES}:NEXT :rem 239
50 FORJ=1TO256:FORK=1TO8:[MOVEK-1,J+K*K,J*K+K:NEXT

:WAITV,R:[FSCRJ/2 srem 90

55 GETA$:IFA$olllfTHEN300 srem 93

56 NEXT srem 170

60 X=PEEK(8192)+1:[FBMSX:GOTO50 srem 142

100 DATA0,102,0,0,255,0,l,255,128,3,255,192:rem 81

110 DATA3,255,192,25,255,152,60,126,60,126,126,126

:rem 198

120 DATA255,60,255,255,255,255,127,255,254,255,255

,255,255 irem 112

130 DATA24,255,126,24,126,60,24,60,24,24,24,0,24,0

,0,24,0,0,0,0,0,0,0,0,0,0,-1 srem 190

p 300 [CB2K2:[BMGR0:FORJ=0TO7:[KSPRJ:NEXT :rem 89

Program 7- Simple PET Emulator

10 REM ROUTINE TO SET BASIC MEMORY AND SCREEN TO P

ET STANDARD LOCATIONS :rem 81

20 REM SCREEN AT 32768 :rem 165

30 REM BASIC 1024 TO 32767 : rem 28

40 REM ASSUME IN C-64 STANDARD MAP :rem 182

50 [FSCR 0:[VS1K 0 :[BANK 2 :PRINT"{CLR}" :rem 137

60 POKE44,4:POKE 45,3:POKE46,4 :rem 193

70 POKE55,0:POKE56,128 :rem 247

80 NEW srem 82

241

n

6 Utilities

Program 8* Type 64

2 IFA=0THENA=1:LOAD"64SET",8,1 :rem 2

3 PRINT"{CLR}USE Fl TO END PROGRAM":PRINT"HIT ANY
(SPACE}KEY TO BEGIN" :rem 86

4 GETA$:IFA$=""THEN4 :rem 139

5 POKE56,128:POKE55,0:CLR :rem 224

10 [BMGR1:[CB2K4:[FBMS0:[FSCR1 :rem 193
20 [HRCS32768 :rem 247

25 X=0:Y=0:W=5:RV=0 :rem 126

30 BL=0 :rem 94

35 FORJ=1TO30:GETK$:IFK$=""THENNEXT :rem 189

40 IFJ=31ANDBL=0THEN[CHRX160,X,Y:BL=1:GOTO35

:rem 28

42 IFJ=31THEN[CHRX160,X,Y:GOTO30 :rem 21

44 J=31:NEXT:IFBL=1THENBL=0:[CHRX160,X,Y :rem 37

50 IFK$="{CLR}"THEN[FBMS0:GOTO25 :rem 51
55 IFK$=CHR$(13)THENX=0:Y=Y+8:GOTO140 :rem 227

60 IFK$="{HOME}"THEN25 :rem 142
65 IFK$="{RVS}"THENRV=128:GOTO30 :rem 129
66 IFK$="{OFF}"THENRV=0:GOTO30 :rem 151
70 IFK$="{DOWN}"THENY=Y+8:Y=-Y*(Y<193):J=31:GOTO40

:rem 119

80 IFK$="{UP}"THENY=Y-8:Y=-Y*(Y>=0):J=31:GOTO40

:rem 204

90 IFK$="{RIGHT}"THENX=X+W:X=-X*(X<316):J=31sGOTO4
0 :rem 156

100 IFK$="{LEFT}"THENX=X-W:X=-X*(X>=0):J=3l5 GOTO4

0 :rem 27

105 IFK$="{F1}"THEN200 :rem 91
106 IFK$=" "THEN[CHAR32+RV,X,Y:GOTO120 :rem 5

110 [CODEK$:CR=ASC(K$):[CHRX CR+RV,X,Y :rem 85

120 X=X+W:X=-X*(X>=0ANDX < 316):IFX=0THENY=Y+8

:rem 228

140 Y=-Y*(Y<193) :rem 94

150 GOTO30 :rem 50

200 [BMGR0:[CB2K2:PRINT"{CLR}" :rem 172

Program 9* 64Set

32768 :000,224,176,016,208,208,064

32774 :112,000,096,240,144,240,070

32780 :144,144,144,000,224,144,044

32786 :144,224,144,144,224,000,130

32792 :096,144,128,128,128,144,024
32798 :096,000,192,160,144,144,254

32804 :144,160,192,000,240,128,132

32810 :128,224,128,128,240,000,122

32816 :240,128,128,224,128,128,000
32822 :128,000,096,144,128,176,214

242

n

n

Utilities 6

n

n

H

32828 :144,144,096,000,144,

32834 :144,240,144,144,144,

32840 :112,032,032,032,032,

32846 :112,000,048,016,016,

32852 :144,144,096,000,144,

32858 :160,192,160,144,144,

32864 :128,128,128,128,128,

32870 :240,000,144,240,240,

32876 :144,144,144,000,144,

32882 :208,208,176,176,144,

32888 :096,144,144,144,144,

32894 :096,000,224,144,144,

32900 :128,128,128,000,096,

32906 :144,144,144,096,048,

32912 :224,144,144,224,144,

32918 :144,000,096,144,128,

32924 :016,144,096,000,240,

32930 :064,064,064,064,064,

32936 :144,144,144,144,144,

32942 .-096,000,144,144,144,

32948 :144,096,096,000,144,

32954 :144,144,240,240,144,

32960 :144,144,096,096,240,

32966 :144,000,144,144,144,

32972 :096,096,096,000,240,

32978 :032,064,128,128,240,

32984 :192,128,128,128,128,

32990 :192,000,224,112,064,

32996 :064,112,224,000,048,

33002 :016,016,016,016,048,

33008 :000,096,096,240,096,

33014 :096,096,016,032,064,

33020 :064,032,016,000,000,

33026 :000,000,000,000,000,

33032 :032,032,032,032,032,

33038 :032,000,000,144,144,

33044 :000,000,000,000,112,

33050 :096,240,096,096,224,

33056 :032,096,144,192,048,

33062 :096,032,128,144,032,

33068 :144,016,000,000,224,

33074 :192,160,144,144,112,

33080 :096,192,128,000,000,

33086 :000,000,096,192,128,

33092 :128,192,096,000,192,

33098 :048,048,048,096,192,

33104 :000,144,096,240,096,

33110 :000,000,000,064,064,

33116 1064,064,000,000,000,

144,220

000,114

032,088

016,030

144,244

000,122

128,096

144,086

208,124

000,002

144,168

224,190

144,244

000,202

144,144

096,246

064,204

000,226

144,008

144,078

144,036

000,074

144,032

240,246

016,236

000,034

128,024

240,030

016,180

000,090

096,096

240,022

000,108

000,002

000,168

000,078

096,228

000,010

144,176

064,022

160,076

000,034

000,216

128,094

096,004

000,250

144,032

224,182

000,220

243

6 Utilities

33122

33128

33134

33140

33146

33152

33158

33164

33170

33176

33182

33188

33194

33200

33206

33212

33218

33224

33230

33236

33242

33248

33254

33260

33266

33272

33278

33284

33290

33296

33302

33308

33314

33320

33326

33332

33338

33344

33350

33356

33362

33368

33374

33380

33386

33392

33398

33404

33410

244

1000,

1000,

1000,

1000,

:008,

:096,

:096,

:032,

:016,

:096,

:096,

:240,

:128,

:096,

:096,

:032,

:144,

:096,

:096,

:000,

:096,

:016,

:016,

:240,

:032,

:096,

:032,

:208,

:144,

:224,

:224,

:128,

:144,

:240,

:240,

:128,

:128,

:144,

:144,

:032,

:016,

:144,

:144,

:128,

:240,

:144,

:144,

:144,

:144,

000,000,

000,000,

000,000,

096,096,

016,032,

144,176,

000,096,

032,112,

032,064,

144,016,

000,032,

032,032,

224,016,

128,128,

000,240,

032,032,

096,144,

144,144,

000,000,

096,000,

000,000,

032,064,

000,000,

000,000,

016,032,

144,016,

000,000,

208,112,

240,144,

144,144,

000,096,

144,096,

144,144,

128,128,

000,240,

128,128,

176,144,

144,144,

000,112,

032,112,

016,144,

144,160,

000,128,

128,240,

144,144,

208,208,

'000,096,

144,096,

224,128,

096,096,

240,000,

000,000,

000,000,

064,128,

144,208,

032,032,

000,096,

128,240,

096,016,

160,160,

000,240,

144,096,

224,144,

016,016,

000,096,

144,096,

112,016,

000,096,

000,000,

096,096,

128,064,

000,240,

000,128,

064,128,

032,032,

224,176,

000,096,

144,144,

224,144,

144,128,

000,192,

160,192,

224,128,

128,128,

000,096,

144,096,

240,144,

032,032,

000,048,

144,096,

192,160,

128,128,

000,144,

144,144,

208,176,

144,144,

000,224,

128,128,

192,226

000,088

000,110

000,052

000,114

144,016

032,166

144,044

000,114

144,152

160,254

128,068

000,010

144,016

032,070

144,012

000,050

016,216

000,142

000,052

192,186

032,048

000,230

064,156

000,002

000,056

016,190

240,100

000,058

144,016

128,230

160,236

000,050

128,248

224,238

144,164

000,234

144,000

032,166

016,060

000,242

144,008

128,238

240,212

000,154

176,208

144,022

144,108

000,114

U

U

LJ

U

u

i
n

C
M

,096,,144,,144,,144,,144,

VOONG)
,224,,144,,144,,224,

00Gc
,144,

'960''000'

,144,,144,:144,

,000,,096,,144,,016,
'960'

00CMrH
,064,-064,-064,r064(-064,:240,

-144,-144,-144,,144,:064,

-144,-144,

,000,,096,

<a0iG)G)
,144,:144,

,144,,144,:144,

,240,,240,,144,,144,,144,:144,

,096,
'960'

,144,,144,
'000'

:144,

,144,,144,,144,,144,:240,

,000,

,128,

,128,
VO^t00ONVOCMG)GcfH

,096,

CMCMCOONGcVOG)CMQG)
:144,

:240,

:240,

,112,,224,,192,128,:128,

,000,,224,,112,,064,,240,:064,

,016,,016,,016,,016,,016,:048,

,240,
'960'

,032,,016,

'000''000'

,096,
'960'

:048,

:096,

,000,

,000,

:064,

,032,,032,,032,,032,
'000'

G)

,144,,032,
'000'

:032,

,000,,000,
'000''000'

:144,

,096,
'960'

,240,

,192,,144,,096,

'960'

:112,

:224,

,144,,128,,032,
'960'

,144,

,000,
'000'

,016,,144,,064,:032,

,144,,144,,160,,192,,160,:224,

,000,,128,,192,,096,-000,:112,

,192,
'960'

'000'
'000'

,000,,096,,192,,128,128,:128,

,096,,048,,048,,048,
'960

:192,

,240,,096,,144,
'000

:192,

,064,
'000

144,:096,

-000,,064,

,096,

224,:064,

,240,

,000,

,000,

'000'

192,:096,

000,
'000

'960'
'960'

'000

,064,,032,,016,
'800

000,

,144,,176,,144,

,032,,096,
'000'

'000

144,

-000,,112,,032,032,032,:032,

,128,,064,,032,

096,

160,

,016,144,

144,:096,
'000

:240,

,032,
'960

144,:016,

000,032,032,240,160,

144,,016,224,128,128,:240,

<
»
^
c
S
V
D
C
M
0
0
^
G
>
V
O

^
i
i
l
v
O
v
O
i
>
l
>
0
0
C
^
C
^
G
c
G
>

c
o

c
o

c
o

c
o
c
o

c
o
c
o
c
o

c
o

c
o

c
o

c
o

c
o
c
o
c
o

c
o

c
o

c
o
c
o
c
o
c
o

c
o

c
o
c
o

c
o

c
o

c
o
c
o

c
o

c
o

c
o

c
o

c
o

c
o
c
o
c
o
c
o

c
o
c
o

c
o

c
o

c
o
c
o

c
o

c
o
c
o
c
o
c
o
c
o

C
O
C
O

C
O

C
O
C
O

C
O
C
O
C
O
C
O

C
O
C
O

C
O

C
O
C
O

C
O

C
O

C
O
C
O

C
O
C
O
C
O

C
O
C
O
C
O

C
O

C
O

C
O
C
O

C
O
C
O

C
O

C
O
C
O
C
O

C
O
C
O
C
O

C
O
C
O

C
O

C
O

C
O

C
O
C
O
C
O
C
O
C
O
C
O

C
O

c
r
:

l

6 Utilities

33710

33716

33722

33728

33734

33740

33746

33752

33758

33764

23110

33776

33782

33788

33794

33800

33806

33812

33818

33824

33830

33836

33842

33848

33854

33860

33866

33872

33878

33884

33890

33896

33902

33908

33914

33920

33926

33932

33938

33944

33950

33956

33962

33968

33974

33980

33986

33992

33998

:096,

:144,

:016,

:096,

:096,

:016,

:096,

:000,

:096,

:064,

:240,

:128,

:128,

:032,

:072,

:152,

:104,

:104,

:120,

:056,

:056,

:120,

:120,

:152,

:152,

:104,

:216,

:200,

:152,

:088,

:120,

:104,

:104,

:072,

:104,

:024,

:120#

:104#

:104f

:152,

:152,

:184#

:104#

:104#

:152,

:008,

:152,

:104,

:152f

000,096,128,

144,096,000,

032,032,032,

144,144,096,

000,096,144,

016,096,000,

000,000,096,

000,096,000,

192,016,032,

032,016,000,

000,240,000,

064,032,016,

000,096,144,

000,032,000,

232,040,040,

008,104,008,

248,024,104,

104,024,248,

120,120,104,

088,104,104,

248,008,120,

120,008,248,

024,120,120,

104,120,072,

248,104,104,

104,104,248,

216,216,216,

232,232,232,

248,104,104,

104,104,248,

120,120,120,

008,008,104,

248,104,040,

072,104,248,

104,104,104,

104,104,024,

248,152,104,

152,200,248,

024,104,104,

104,120,152,

248,008,184,

184,184,248,

104,104,104,

104,104,104,

248,104,104,

008r104,248,

152,008,104,

104,104,008,

248,008,232,

128,224,078

240,016,052

032,000,074

144,144,192

144,112,022

000,000,076

000,000,146

000,096,152

064,128,238

000,000,084

000,000,202

032,064,064

016,032,150

248,024,076

136,248,002

104,104,232

104,024,110

152,104,244

152,248,122

104,088,064

120,024,102

008,120,156

120,248,034

104,104,200

104,008,014

136,216,212

136,248,042

104,104,160

088,056,070

120,120,108

008,248,066

104,104,024

040,040,174

152,104,100

152,248,170

120,120,112

104,104,198

024,104,204

104,248,066

232,104,248

184,184,094

104,104,148

152,248,218

104,152,080

104,104,230

104,104,252

104,248,194

152,152,056

216,184,222

U

LJ

U

U

u

246

n

n
Utilities 6

n

H

n

34004

34010

34016

34022

34028

34034

34040

34046

34052

34058

34064

34070

34076

34082

34088

34094

34100

34106

34112

34118

34124

34130

34136

34142

34148

34154

34160

34166

34172

34178

34184

34190

34196

34202

34208

34214

34220

34226

34232

34238

34244

34250

34256

34262

34268

34274

34280

34286

34292

:120,

:120,

:024,

:024,

:232#

:152,

:232,

:232,

:248,

:216,

:248,

:248,

:152,

:104,

:120,

:248,

:104,

:120,

:152,

:152,

:200,

:152,

:248,

:248,

:248,

:248,

:248,

:152,

:216,

:072#

:152,

:136,

:184,

:232,

:216,

:216,

:232,

:120,

:008,

:216,

:104,

:104,

:248,

:248,

:248,

:184,

:248,

:248#

:216#

120,008,

120,120,

136,184,

248,200,

232,200,

008,152,

216,184,

248,248,

248,248,

216,216,

104,104,

248,136,

152,024,

056,200,

104,216,

248,024,

104,136,

248,248,

056,120,

248,056,

152,056,

008,152,

184,184,

248,248,

152,152,

008,248,

248,248,

248,248,

184,120,

104,040,

216,216,

248,152,

120,008,

152,232,

088,088,

248,008,

104,152,

024,104,

232,232,

248,152,

104,152,

136,232,

248,152,

248,248,

152,152,

120,184,

248,008,

248,120,

184,120,

248,056,

120,056,

008,184,

232,232,

248,248,

152,152,

008,184,

248,248,

248,216,

248,216,

248,248,

152,152,

248,216,

104,152,

184,104,

088,056,

248,152,

248,248,

120,120,

152,200,

248,248,

104,248,

024,184,

248,248,

056,248,

248,248,

248,248,

248,248,

248,152,

104,152,

216,216,

104,232,

248,152,

104,152,

088,008,

120,120,

248,152,

104,152,

216,216,

104,104,

248,152,

232,152,

248,248,

248,152,

056,232,

216,232,

248,008,

184,216,

248,152,

120,116

248,234

136,128

232,118

152,012

152,242

216,008

248,190

216,148

248,090

248,192

008,198

152,204

216,098

232,232

088,030

056,084

248,138

056,176

200,054

104,060

248,226

184,072

248,046

248,180

248,074

152,224

232,214

104,124

248,082

216,088

216,206

104,196

248,250

216,096

024,134

120,156

248,162

216,024

152,142

104,036

248,026

152,224

248,070

216,252

248,130

248,216

232,206

104,244

247

6 Utilities

34298

34304

34310

34316

34322

34328

34334

34340

34346

34352

34358

34364

34370

34376-

34382

34388

34394

34400

34406

34412

34418

34424

34430

34436

34442

34448

34454

34460

34466

34472

34478

34484

34490

34496

34502

34508

34514

34520

34526

34532

34538

34544

34550

34556

34562

34568

34574

34580

34586

:232,

:248,

:136,

:104,

:104,

:152,

:152,

:104,

:120,

:008,

:120,

:104,

:104,

:136,

:136,

:104,

:088,

:120,

:008,

:104,

:040,

:152,

:152,

:120,

:104,

:024,

:104,

:232,

:184,

:104,

:152,

:104,

:104,

:104,

:104,

:152,

:216,

:056,

:056,

:184,

:232,

:248,

:152,

:184,

:248,

:216,

:216#

:248,

:152#

216,216,

024,072,

248,152,

104,104,

024,104,

104,120,

248,056,

088,056,

024,120,

120,120,

248,152,

104,152,

008,104,

216,216,

248,200,

104,152,

056,088,

120,120,

248,104,

104,104,

040,072,

104,104,

248,024,

120,120,

104,104,

104,104,

248,152,

104,152,

184,184,

104,104,

248,104,

152,152,

104,008,

104,152,

248,104,

152,152,

184,120,

120,120,

248,024,

136,024,

232,232,

152,152,

152,232,

216,232,

248,248,

216,216,

248,248,

248,248,

008,152,

248,216

232,040

008,104

248,024

104,024

120,120

088,104

248,008

120,008

024,120

104,120

248,104

104,104

216,216

232,232

248,104

104,104

120,120

008,008

248,104

072,104

104,104

104,104

248,152

152,200

024,104

104,120

248,008

184,184

104,104

104,104

248,104

008,104

152,008

104,104

248,008

120,008

120,120

136,184

248,200

232,200

008,152

216,184

248,248

248,248

216,216

104,104

248,136

152,024

,248,090

,040,144

,008,150

,104,188

,248,114

,104,232

,104,014

,120,148

,248,170

,120,048

,072,102

,104,108

,248,226

,216,008

,232,078

,104,132

,248,010

,120,048

,104,070

,040,044

,248,178

,104,024

,024,014

,104,228

,248,026

,104,096

,152,006

,184,060

,248,050

,104,024

,104,222

,104,020

,248,250

,104,048

,008,102

,232,124

,248,082

,120,104

,008,110

,232,228

1,248,074

,152,080

,,008,166

,248,092

,248,210

,248,056

,248,158

,152,020

,248,250

u

LJ

U

u

u

u

u

u

248

u

n Utilities 6

n

n

n

34592

34598

34604

34610

34616

34622

34628

34634

34640

34646

34652

34658

34664

34670

34676

34682

34688

34694

34700

34706

34712

34718

34724

34730

34736

34742

34748

34754

34760

34766

34772

34778

34784

34790

34796

34802

34808

34814

:216,

:152,

:104,

:056,

:152,

:248,

:120,

:200,

:248,

:248,

:184,

:248,

:,248,

:248,

:248,

:248,

:152,

:152,

:216,

:232,

:152,

:152,

:008,

:120,

:152,

:152,

:216,

:104,

:152,

:152,

:248,

:152,

:232,

:232,

:008,

:216,

:152,

:216,

152,

216#

232#

088,

056,

248,

056,

200,

104,

248,

184,

248,

248,

248,

152,

232,

104,

248,

216,

216,

104,

248,

216,

024,

120,

248,

216,

152,

104,

248,

152,

248,

216,

248,

248,

232,

104,

248,

104,

120,

248,

104,

120,

152,

152,

200,

152,

248,

248,

248,

248,

248,

152,

216,

072,

152,

136,

184,

232,

216,

216,

232,

120,

008,

216,

104,

104,

248,

248,

248,

184,

248,

248,

216,

232,

013,

056,200,

104,216,

248,024,

104,136,

248,248,

056,120,

248,056,

152,056,

008,152,

184,184,

248,248,

152,152,

008,248,

248,248,

248,248,

184,120,

104,040,

216,216,

248,152,

120,008,

152,232,

088,088,

248,008,

104,152,

024,104,

232,232,

248,152,

104,152,

136,232,

248,152,

248,248,

152,152,

120,184,

248,008,

248,120,

184,120,

216,216,

013,013,

104,096

184,006

088,220

248,018

248,104

120,238

152,084

248,106

104,080

024,198

248,172

056,178

248,072

248,062

248,132

248,090

104,192

216,054

104,188

248,130

104,104

088,014

120,212

248,026

104,032

216,246

104,060

248,034

232,136

248,222

248,068

056,202

216,096

248,182

184,012

248,178

248,136

013,002

n

249

u

6 Utilities LJ

u

u
Gregor Larson

Copying files—both BASIC and machine Ian- LJ
guage programs—is simple and fast when you

use this program. A short machine language

routine, "Copyfile" allows you to make file

copies using only one disk drive.

One drawback of a single disk drive is its inability to copy

files from one disk to another. BASIC programs can be copied

by loading them into the computer, then saving them out to

another disk, but sequential files, such as user or machine lan

guage program files, can be difficult to copy with just one

drive.

"Copyfile" allows you to duplicate these files. It reads the

whole file into the machine and then waits until you press the

C key. Then it writes the entire file back to another disk. The

program is written in machine language, so it's fast. It also

makes good use of the 64's memory, and can copy a file of

more than 170 blocks.

Enter and Use

To enter Copyfile, use the MLX program in Appendix I. MLX

makes it easier to enter the sometimes complicated machine

language code. Before you begin to type in Copyfile, read

Appendix I.

Because Copyfile and MLX use some of the same memory

area on the 64, you'll have to enter a POKE statement in di- | I

rect mode (without a line number) before you use MLX to

type in Copyfile. This statement moves BASIC, and is:

POKE44,PEEK(44)+2:POKE(PEEK(44))*256,0:NEW [J

If you enter Copyfile in more than one session (which is un

likely, since it's so short), you would have to type in the . j

above statement each time before beginning to use MLX with LJ
this program.

Once you've typed in the POKE statement and loaded » .

lJ

250

u

> i Utilities 6

f i

MLX, RUN it. It will ask you for the beginning and ending

addresses of Copyfile. They are:

H Beginning address: 2049
Ending address: 2300

<—| You can then begin to type in the numbers you see in the

] ' Copyfile listing at the end of this article. Once you've finished,

SAVE it to disk or tape using the MLX program. Now you're

ready to make copies of any file.

To use Copyfile, simply LOAD it and type RUN. With the

proper disk in the drive, enter the name of the file to be

copied. The filename should be in the form:

filename for PRG (program) file

filename, S for SEQ (sequential) file

filename, U for USR (user) file

You don't need to place the filename within quotation marks,

as when you load a BASIC program. If you don't specify the

type of file using a comma and appropriate letter, Copyfile by

default will create it as a program file.

If there is any kind of error in reading the file into mem

ory, an error message will display and the program will stop.

If there is no error, the file will read into the computer. When

the drive stops, remove the source disk and place the destina

tion disk into the drive. Press the C key. The file then writes

to the destination disk, using the original name of the file. An

error at this point will show on the screen, and the program

will wait for another press of the C key to try to read the file

again, or a press of the RUN/STOP key to quit the program.

If all's gone well, you've now got a copy of your original,

ready to use.

You can even make multiple copies of the same program

I , to different disks, simply by pressing the C key again (once

I i another destination disk has been placed in the drive). Using
this function, you can make as many copies of a file as you

p_, want. Pressing the RUN/STOP key at any time stops the pro-

i cess and lets you begin copying another file. Just type RUN,

and you're ready to start again.

H Copyffle
2049 :029,008,010,000,158,050,000

f-m 2055 :048,055,057,058,040,067,076

I I 2061 :041,032,049,057,056,051,043

_ 251

u

6 Utilities U

2067 :032,067,079,077,080,085,183 v—'
2073 :084,069,033,000,000,000,211

2079 :169,054,133,001,160,000,036 I .

2085 :032,207,255,201,013,240,217 LJ

2091 :006,153,000,002,200,208,100

2097 :243,132,063,032,210,255,216

2103 :160,002,032,179,008,032,212 I I
2109 :207,008,208,065,162,002,201 LJ
2115 :032,198,255,160,000,032,232

2121 :183,255,041,064,208,012,068

2127 :032,228,255,145,251,200,166

2133 :208,002,230,252,208,237,198

2139 :132,061,165,252,133,062,128

2145 :164,063,169,044,153,000,178

2151 :002,200,169,087,153,000,202

2157 1002,200,132,063,032,207,233

2163 :008,032,240,008,032,228,151

2169 :255,201,067,240,014,201,075

2175 :003,208,245,032,240,008,095

2181 :169,055,133,001,108,002,089

2187 :160,160,001,032,179,008,167

2193 :032,207,008,208,219,162,213

2199 :002,032,201,255,160,000,033

2205 :177,251,032,210,255,200,002

2211 :208,002,230,252,196,061,088

2217 :208,242,165,062,197,252,015

2223 :208,236,240,190,169,002,196

2229 :162,008,032,186,255,165,221

2235 :063,162,000,160,002,032,094

2241 :189,255,032,192,255,169,005

2247 :249,133,251,169,008,133,118

2253 :252,096,169,008,032,180,174

2259 :255,169,111,032,150,255,159

2265 :032,165,255,201,048,240,134

2271 :015,208,003,032,165,255,133

2277 :072,032,210,255,104,201,079

2283 :013,208,244,168,096,169,109

2289 :002,032,195,255,032,231,220 , ,

2295 :255,096,013,013,013,013,138 LJ

u

u

u

u

1 i Utilities 6

r—i

n Merging Programs

n on the 64
John A. Winnie

For intermediate programmers, "Merger" allows

you to build up large programs by working on

smaller portions separately and then linking

them together later. This approach is used by

many professionals.

If you do much BASIC programming, sooner or later you'll

need to merge two short programs to form a larger one. Or

perhaps you'll need to append onto a program a series of

DATA statements—DATA for sprites, redefined characters,

sound and music, or whatever. Here is a quick and easy way

to add those DATA statements—or any other BASIC state

ments—onto the end of your programs.

Of course, various techniques for merging programs have

been around for some time. When all that is needed is a sim

ple append, however, the method presented here does the job

nicely. The program below, "Merger," is designed to merge

with any programs which are appended to it, and it allows

you to keep on appending indefinitely.

Using Merger

After typing and saving Merger, load it in the usual way.

| | Next, run Merger, and then load in your main program. Now,
as Merger instructs, POKE locations 43 and 44 with 1 and 8,

respectively. Your main program is now appended to Merger

| | and ready for any DATA statements you may want to add
later.

Remember, Merger allows you to append programs only,

not to insert them. So to prepare for using Merger later, begin

your programs with a line number greater than five. For the

same reason, all DATA statements to be added should begin

with a line number higher than those already present in the

253

u

6 Utilities L-'

u
program. When you have finished, just erase Merger by delet

ing lines 1 through 5. . .

How Merger Works

First, clear out your Commodore 64 by typing NEW and

pressing RETURN. Then enter the following simple program: j |

10REM

Press RETURN, and the one-line program is now entered

into memory beginning at address 2048 and running on up

ward. To see just how the program is stored, enter:

FOR 1=2048 TO 2056:PRINT PEEK (I):NEXT I

If all this has been done correctly, you now should see a

list of memory contents which looks like this:

0,7,8,10,0,143,0,0,0

The 0 in address 2048 is invariable: all BASIC programs

begin with zero. They also always end with a zero; in fact,

they always end with exactly three zeros—which is just what

we see here in memory locations 2054 through 2056. From

this point on in memory, BASIC will store any variables and

other information that it may need to execute the program.

In general, when a BASIC line is stored, it will end with a

single zero, not three zeros. When a new line is appended to

the program, its code begins immediately after that single

zero. So in the example above, if the line

20REM

were now added to our sample program, the (link of the) new

line would now come in at address 2055—the address of the

middle zero in the triplet; a new triplet of zeros would appear

later in memory, signaling the end of line 20 and the new end

of the program. (Try this later to see for yourself.) So, to

merge programs, we simply have to make sure that we load

the new section at the address of the middle zero (2055, in our

example) within the three zeros which signal the end of our

original program. What we need to do is raise the floor of

BASIC to this new address, load the section to be merged, and

then lower the floor to its original value (here, 2049).

Tinkering with BASIC

Raising the floor of BASIC is easy. The new address is simply

POKEd into addresses 43 and 44 in low-byte, high-byte order.

254

H

n
Utilities 6

(HI=INT (ADDRESS#/256) :LO=ADDRESS#-256*HI.) Find-

ning this new address is another matter, but fortunately, this

turns out to be easy as well.

As I mentioned above, BASIC needs to know where it is

p-s safe to begin to store its variables. In other words, BASIC

! I needs to know the first address to come after the three zeros
which end the program. Hence, the computer stores this ad

dress in a pair of memory locations in the usual low-byte,

high-byte form. In the 64, these locations are addresses 45 and

46.

To see this, enter PRINT PEEK(45),PEEK(46), and out

should come the pair 9,8. Since the address 2057 is the first

address to follow our sample program, and 2057=256*8+ 9,

we have the expected result.

Now that we have the address of the first location after

the end of the program, the rest is easy. The new program is

simply loaded into memory two places before this location. In

our example, we load at location 2055 (2057-2). And that's all

there is to it.

The basic idea behind Merger should now be clear. Every

thing of interest is packed into line 5. First, for any program

which begins with these lines, the new floor for BASIC is

computed using the contents of locations 45 and 46, as

described above. Next, the floor of BASIC is raised to the new

location. As a result, any new program now loaded will start

right at the tail end of the previous program—just where we
want it.

64 Merger
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

1 C=53280:POKEC,6:POKEC+1,8 :rem 45

2 INPUT "{BLU}{CLR}{4 DOWN}{8 RIGHTjMERGE (Y/N)m;A

(I $:rem 27
3 IFA$oMY"THENEND : rem 68

4 PRINT"{10 DOWN}{3 RIGHTjLOAD YOUR ADDITION":PRIN
I—| T"{3 RIGHT}THEN POKE 43,1 AND 44,8." :rem 18
! i 5 E=256*PEEK(46)+PEEK(45)-2:H=INT(E/256):L=E-256*H

:POKE43,L:POKE44,H:END :rem 181

255

u

6 Utilities LJ

0

u

Vern Buis

// you have ever lost a BASIC program by ac

cidentally typing NEW, then read on. This short

machine language routine for the Commodore 64

provides an easy means of recovering BASIC

programs that have been "erased"—and it loads

and executes in only ten seconds.

Sooner or later—practically every programmer does it—think

ing a program has been saved, you type NEW to clear out the

memory, and a split-second after pressing RETURN, you wind

up screaming.

But on the Commodore 64, typing NEW does not really

erase the program from memory. NEW just makes the com

puter (and the programmer) think the program is gone. As

long as you don't start typing another program or switch off

the machine, the program is still there. To get it back, all you

have to do is fool the computer into remembering where in its

memory the program begins and ends.

That's what "64 Program Lifesaver" does. By loading and

running this short machine language utility immediately after

committing the grievous error, you can save your lost pro- j |
gram, save your hours of work, and even save your sanity.

Entering the Lifesaver [J

The Lifesaver is listed as a BASIC loader, a BASIC program

that creates a machine language program. Be sure to read the

following special instructions before typing the program. The | j
procedure is somewhat different from most and requires that

certain steps be followed exactly.

First, if you are using tape instead of disk, enter line 60 as [J

follows:

u

n

n
Utilities 6

H
60 CLR:SAVE"UNNEW//,1,1

H] After typing the listing, do not RUN it. Instead, save it on

1 disk or tape with a filename such as "LIFESAVER/BASIC" or
"UNNEW/BASIC". Do not use the filename "UNNEW". This

|—| filename must be reserved.

Now enter RUN. The BASIC loader creates the machine

language program and automatically saves it on disk or tape

under the filename "UNNEW". This is what you'll actually

use to rescue lost programs; the BASIC loader can be set aside

as a backup in case you need to create another copy.

Using the Lifesaver

OK, let's say you've just typed NEW and wiped out hours of

valuable labor. (To test the Lifesaver, you can load a BASIC

program and erase it with NEW.) Recovering it is easy.

To load the Lifesaver from tape, enter:

LOAD"UNNEW",1,1

To load the Lifesaver from disk, enter:

LOAD"UNNEW",8,1

Either way, it loads pretty fast, because the program is

short. Now, to activate the Lifesaver, enter:

SYS 525 [RETURN]

CLR [RETURN]

(Incidentally, CLR means to type the keyword CLR, not to

press the CLR/HOME key.)

That's all there is to it. When you enter LIST, the BASIC

program you thought was forever lost is back, safe and sound.

The Lifesaver itself also remains in memory, but probably

not for long. It's tucked away in memory which is unprotected

(locations used by the input buffer and BASIC interpreter), so

you'll have to load it again each time you want to use it. But

unless you're either very unlucky or (shall we say) prone to

inadvertent actions, the Lifesaver isn't something you should

be needing often.

Why It Works

Instead of erasing the program in memory when you type

NEW, the 64 simply resets two key pointers in such a way

that the operating system doesn't "see" that the program is

still there. These pointers keep track of where in memory a

257

LJ

6 Utilities

u
BASIC program begins and ends. NEW moves the top-of-

program pointer down to the bottom of BASIC memory, and

the first two bytes of BASIC memory are set to zero. These LJ
first two bytes serve as a pointer to the address for the second

line of BASIC code. When they are set to zero, the operating .

system believes that no program is in memory. | |
The Lifesaver works by skipping the first two bytes of

BASIC memory (the address pointer) and the next two bytes

(BASIC line number). It scans upward for a zero byte—the

end-of-line indicator. Upon finding the zero byte, the routine

POKEs its address, plus one, into the second-line-of-BASIC

address pointer. One of the erased pointers is thereby restored.

Next, the Lifesaver scans byte-by-byte through the BASIC

memory area until it finds three consecutive zero bytes. This is

the end-of-program indicator. Once it locates these zeros, the

routine POKEs the address of the third zero, plus one, into the

top-of-BASIC/start-of-variables pointer at locations 45-46.

This completely restores the erased program.

For those who might want to relocate the Lifesaver to a

safer memory area—to preserve it for frequent use or to com

bine it with other utility routines—the machine language pro

gram is written to be fully relocatable. It uses no absolute JMP

or JSR instructions. The area used here was chosen to make it

load easily into a 64 and to minimize the danger of it loading

atop a BASIC program.

64 Program Lifesaver
For mistake-proof program entry, be sure to use "Automatic Proofreader," Appendix J.

10 1=525 :rem 131

20 READ A:IF A=256 THEN 40 :rem 54

30 POKE I,A:I=I+1:GOTO 20 :rem 130

40 POKE 43,525 AND 255:POKE 44,2:REM SET BOTTOM OF

MEMORY :rem 173 —

50 POKE 45#578 AND 255:POKE 46,2:REM SET TOP OF ME M
MORY :rem 216

60 CLR : SAVEM0:UNNEWM,8 :rem 79

70 REM FOR TAPE USE SAVEMUNNEW",1,1 :rem 3 Hi

525 DATA 160,3,200,177#43,208,251 :rem 82 LJ
532 DATA 200,200,152,160,0,145,43 :rem 64

539 DATA 165,44,200,145,43,133,60 :rem 87

546 DATA 160,0,132,59,162,0,200 :rem 231 M
553 DATA 208,2,230,60,177,59,208 :rem 45

560 DATA 245,232,224,3,208,242,200 :rem 126

567 DATA 208,2,230,60,132,45,164 :rem 37 f"]

574 DATA 60,132,46,96,256 :rem 220 LJ

u

n

Appendix A

H

A Beginnerfs Guide to

Typing in Programs

What Is a Program?
A computer cannot perform any task by itself. Like a car with

out gas, a computer has potential, but without a program, it

isn't going anywhere. Most of the programs published in this

book are written in a computer language called BASIC. BASIC

is easy to learn and is built into all Commodore 64s.

BASIC Programs

Computers can be picky. Unlike the English language, which

is full of ambiguities, BASIC usually has only one right way of

stating something. Every letter, character, or number is signifi

cant. A common mistake is substituting a letter such as O for

the numeral 0, a lowercase 1 for the numeral 1, or an upper

case B for the numeral 8. Also, you must enter all punctuation

such as colons and commas just as they appear in the book.

Spacing can be important. To be safe, type in the listings

exactly as they appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces,

such as {DOWN}. Anything within a set of braces is a special

character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to

Appendix B, "How to Type In Programs."

About DATA Statements

Some programs contain a section or sections of DATA state

ments. These lines provide information needed by the pro

gram. Some DATA statements contain actual programs (called

machine language); others contain graphics codes. These lines

are especially sensitive to errors.

If a single number in any one DATA statement is mistyped,

your machine could lock up, or crash. The keyboard and

STOP key may seem dead, and the screen may go blank.

Don't panic — no damage is done. To regain control, you

have to turn off your computer, then turn it back on. This will

261

LJ

A A' A UAppendix A

u
erase whatever program was in memory, so always SAVE a

copy of your program before you RUN it. If your computer -—-

crashes, you can LOAD the program and look for your U
mistake.

Sometimes a mistyped DATA statement will cause an error M

message when the program is RUN. The error message may

refer to the program line that READs the data. The error is still

in the DATA statements, though.

Get to Know Your Machine
You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use

to store and retrieve programs from tape or disk. You'll want

to save a copy of your program, so that you won't have to

type it in every time you want to use it. Learn to use your ma

chine's editing functions. How do you change a line if you

made a mistake? You can always retype the line, but you at

least nteed to know how to backspace. Do you know how to

enter reverse video, lowercase, and control characters? It's all

explained in your computer's manuals.

A Quick Review

1. Type in the program a line at a time, in order. Press

RETURN at the end of each line. Use backspace or the back

arrow to correct mistakes.

2. Check the line you've typed against the line in the book.

You can check the entire program again if you get an error

when you RUN the program.

262

H

H

' I Appendix B

How to Type In Programs

To make it easy to know exactly what to type when entering

one of these programs into your computer, we have estab

lished the following listing conventions.

Generally, Commodore 64 program listings will contain words

within braces which spell out any special characters: {DOWN}
would mean to press the cursor down key. {5 SPACES}
would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT

key while pressing the other key), the key would be under

lined in our listings. For example, S would mean to type the S

key while holding the SHIFT key. This would appear on your

screen as a heart symbol. If you find an underlined key en

closed in braces (e.g., {10 N}), you should type the key as

many times as indicated (in our example, you would enter ten

shifted N's).

If a key is enclosed in special brackets, [< >\, you should hold

down the Commodore key while pressing the key inside the

special brackets. (The Commodore key is the key in the lower-

left corner of the keyboard.) Again, if the key is preceded by a

number, you should press the key as many times as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed in

braces. These characters can be entered by holding down the

CTRL key while typing the letter in the braces. For example,

{A} would indicate that you should press CTRL-A.

About the quote mode: You know that you can move the

cursor around the screen with the CRSR keys. Sometimes a

programmer will want to move the cursor under program con

trol. That's why you see all the {LEFT}'s, {HOME}'s, and

{BLU}'s in our programs. The only way the computer can tell

the difference between direct and programmed cursor control

is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you

are in the quote mode. If you type something and then try to

change it by moving the cursor left, you'll only get a bunch of

reverse-video lines. These are the symbols for cursor left. The

263

Appendix B

only editing key that isn't programmable is the DEL key; you

can still use DEL to back up and edit the line. Once you type

another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces into a

line. In any case, the easiest way to get out of quote mode is

to just press RETURN. You'll then be out of quote mode and

you can cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color control

keys:

When You

Read: See:

U

U

D

U

U

264

n

H

Appendix C

Screen Location Table

Row

n
0 1024

1064

1104

1144

1184

D 1224

1264

1304

1344

io Z
1464

1504

1544

15 1624
1664

1704

1744

20 Z
1864

1904

24™

10 15 20

Column

25 30 35 39

n

H

265

Appendix D

Screen Color Memory Table

Row

0 55296
55336

55376

55416

55456

5 554%
55536

55576

55616

55656

10 556%
55736

55776

55816

1R5585610 558%

55936

55976

56016

on5605620 560%
56136

56176

56216

24 56256

u

u

u

u

u

10 15 20

Column

25 30 35 39

266

D

U

G

G

n Appendix E

Screen Color Codes

_ Value To POKE For Each Color

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Brown

Light Red

Dark Gray

Medium Gray

Light Green

Light Blue

Light Gray

Low nybble

color value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

High nybble

color value

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

Select

multicolor

color value

8

9

10

11

12

13

14

15

Where To POKE Color Values For Each Mode

n

n

Mode*

Regular text

Multicolor

text

Extended

color text

Bitmapped

Bit or

bit-pair

0

1

00

01

10

11

00

01

10

11

0

1

Location

53281

Color memory

53281

53282

53283

Color memory

53281

53282

53283

53284

Screen memory

Screen memory

Color value

Low nybble

Low nybble

Low nybble

Low nybble

Low nybble

Select multicolor

Low nybble

Low nybble

Low nybble

Low nybble

Low nybble [J]

High nybble ft]

267

u

Appendix E

D
Multicolor 00 53281 Low nybble ft]

bitmapped 01 Screen memory High nybble [J] - -

10 Screen memory Low nybble [\] LJ
11 Color memory Low nybble

* For all modes, the screen border color is controlled by I I
POKEing location 53280 with the low nybble color value.

| In extended color mode, Bits 6 and 7 of each byte of screen

memory serve as the bit-pair controlling background color. Be

cause only Bits 0-5 are available for character selection, only

characters with screen codes 0-63 can be used in this mode.

[£] In the bitmapped modes, the high and low nybble color

values are ORed together and POKEd into the same location in

screen memory to control the colors of the corresponding cell

in the bitmap. For example, to control the colors of cell 0 of

the bitmap, OR the high and low nybble values and POKE the

result into location 0 of screen memory.

268

I I

Appendix F

ASCII Codes

n
ASCII

5

8

9

13

14

17

18

19

20

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

CHARACTER

WHITE

DISABLE

SHIFT COMMODORE

ENABLE

SHIFT COMMODORE

RETURN

LOWERCASE

CURSOR DOWN

REVERSE VIDEO ON

HOME

DELETE

RED

CURSOR RIGHT

GREEN

BLUE

SPACE

i

#

$

%

&
f

(

)
*

+

-

/

0

1

ASCII

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

CHARACTER

2

3

4

5

6

7

8

9

:

<

>

7

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

269

Appendix F

ASCII

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

270

CHARACTER

S

T

U

V

w

X

Y

Z

[
£

]

r

m
B
B
□
D
D
a

□
□
D
S
0
□
a
H
□

ASCII

120

121

122

123

124

125

126

127

129

133

134

135

136

137

138

139

140

141

142

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

CHARACTER

a

m
[7FI

U

U

D

u

u

ORANGE

fl

£3

&

(7

f2

f4

f6

f8

SHIFTED RETURN

UPPERCASE

BLACK

CURSOR UP

REVERSE VIDEO OFF

CLEAR SCREEN

INSERT

BROWN

LIGHT RED

GRAY1

GRAY 2

LIGHT GREEN

LIGHT BLUE

GRAY 3

PURPLE

CURSOR LEFT

YELLOW

CYAN

SHIFTED SPACE

E

u

u

u

u

n
Appendix F

n

H

ASCII

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

CHARACTER

H
□
D
□

□

E
□

m
3
E
H

I I

H
□
n
u

a
H
ra
H
B
H

m
B
B
□

D

Asai

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

CHARACTER

□
s

o

□

□

a

SPACE

□
D
□

a

B
a
E
a

271

u

Appendix F LJ

ASQI CHARACTER
238 5]

239 y M

240 H

241 g

242 H U
243 ED

244 □

245 C

246 [1

247 n

248 H

249 y

250 □

251 fcj

252 H

253 ED
254 E
255 S

0-4, 6, 7,10-12,15,16, 21-27,128,

130-132, and 143 are not used.

G

D

LJ

G

H

n
1 ' Appendix G

n

n Uppercase and

POKE Full Graphics Set

0 @

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

9 I

10 J

11 K

12 L

13 M

14 N

15 O

16 P

17 Q

18 R

19 S

20 T

21 U

n 22 V

' ' 23 W

24 X

n 25 Y

1 ! 26 Z
27 [

n 28 . £
29]

_ 30 f

er- and

ercase

@

a

b

c

d

e

f

S

h

i

j
k

1

m

n

0

P

q
r

s

t

u

V

w

X

y
z

[

£

]

t

POKE

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Uppercase and

Full Graphics Set

4-

Lower- and

Uppercase

4—

-space-

i

"

#

$

%

&

'

(

)

*

+

-

/

0

1

2

3

4

5

6

7

8

9

;

<

=

f

it

#

$

%

&

'

(

)

*

+

-

/

0

1

2

3

4

5

6

7

8

9

;

<

=

273

Appendix G

POKE

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

274

Uppercase and

Full Graphics Set

B

m
B
B
□
□
D

B

□

D
S
0
□
□
m

□

D
□

Lower- and

Uppercase

B
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

Z

m

h

E
U

-Space-

Uppercase and Lower- and

POKE Full Graphics Set Uppercase

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

n
a

a
Q

B
a
E

B

a

H

m
D
c

□
n

a

B
B
S

□
a
□

a

a

E

ED
a

s
H

c
a

n
n
a
0
y
a

128-255 reverse video of

0-127

u

u

D

U

LJ

I i

I I

u

D

LJ

u

i I

n

H

Appendix H

n

Key

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

0

R

S

T

U

V

w

X

Y

Z

1

2

3

4

5

Keycode

10

28

20

18

14

21

26

29

33

34

37

42

36

39

38

41

62

17

13

22

30

31

9

23

25

12

56

59

8

11

16

Key

6

7

8

9

0

+

_

£

CLR/HOME

INST/DEL

@
*

T

=

RETURN

/

crsrU
CRSRZ?

fl

f3

f5

f7

SPACE

RUN/STOP

NO KEY

PRESSED

Keycode

19

24

27

32

35

40

43

48

51

0

57

46

49

54

45

50

53

1

47

44

55

7

2

4

5

6

3

60

63

64

The keycode is the number found at location 197 for the current

key being pressed. Try this one-line program:

10 PRINT PEEK (197): GOTO 10

Values Stored at Location 653

Code Key(s) pressed

0 (No key pressed)

1 SHIFT

2 Commodore

3 SHIFT and Commodore

4 CTRL

5 SHIFT and CTRL

6 Commodore and CTRL

7 SHIFT, Commodore, and CTRL

275

u

Appendix I ^

D
Using the Machine

Language Editor: MLX L

Remember the last time you typed in the BASIC loader for a

long machine language program? You typed in hundreds of

numbers and commas. Even then, you couldn't be sure if you

typed it in right. So you went back, proofread, tried to run the

program, crashed, went back and proofread again, corrected a

few typing errors, ran again, crashed again, rechecked your

typing—frustrating, wasn't it?

Until now, though, that has been the best way to get ma

chine language into your computer. Unless you happen to

have an assembler and are willing to tangle with machine lan

guage on the assembly level, it is much easier to enter a

BASIC program that reads DATA statements and POKEs the

numbers into memory.

Some of these "BASIC loaders" will use a checksum to see

if you've typed the numbers correctly. The simplest checksum

is just the sum of all the numbers in the DATA statements. If

you make an error, your checksum will not match up with the

total. Some programmers make your task easier by including

checksums every few lines, so you can locate your errors more

easily.

Now, MLX comes to the rescue. MLX is a great way to

enter all those long machine language programs with a mini

mum of fuss. It lets you enter the numbers from a special list

that looks similar to DATA statements. It checks your typing

on a line-by-line basis. It won't let you enter illegal characters

when you should be typing numbers. It won't let you enter

numbers greater than 255. It will prevent you from entering M

the numbers on the wrong line. In short, MLX will make

proofreading obsolete.

Tape or Disk Copies

In addition, MLX will generate a ready-to-use copy of your

machine language program on tape or disk. You can then use

the LOAD command to read the program into the computer,

just like a BASIC program. Specifically, you enter:

LOAD "program name", 1,1 (for tape)

or

276

Appendix I

LOAD "program name",8,1 (for disk)

f—j To start the program, you need to enter a SYS command that

' transfers control from BASIC to your machine language pro

gram. The starting SYS will always be given in the article

|—1 which presents the machine language program in MLX format.

Using MLX

Type in and SAVE MLX (you'll want to use it in the future).

When you're ready to type in the machine language program

refer to the article that presents the program. Sometimes you'll

need to enter a POKE statement in direct mode (without line

numbers) to move BASIC'S pointers. For instance, in this book,

when you enter "SpeedScript", you must first enter this line in

direct mode:

POKE 44,27:POKE 6912,0:NEW

Not all machine language programs you'll enter need a state

ment like this, but be sure to type it in if the article requests it.

If you enter the program in several sessions, you must type in

the POKE statement each time before LOADing MLX. Once

you've changed BASIC'S pointers (if it's necessary), LOAD and

RUN MLX. MLX will ask you for two numbers: the starting

address and the ending address. For each machine language

program, these addresses will be listed in the accompanying

article. For example, Speedscript's addresses should be: 2049

and 6842 respectively.

You'll then see a prompt. The prompt is the current line

you are entering from the MLX-format listing. Each line is six

numbers plus a checksum. If you enter any of the six numbers

wrong, or enter the checksum wrong, the 64 will sound a

buzzer and prompt you to reenter the entire line. If you enter

the line correctly, a pleasant bell tone will sound and you may

; | go on to enter the next line.

A Special Editor

pi You are not using the normal 64 BASIC editor with MLX. For

example, it will only accept numbers as input. If you need to

make a correction, press the INST/DEL key; the entire num-

f""! ber is deleted. You can press it as many times as necessary,

back to the start of the line. If you enter three-digit numbers

as listed, the computer will automatically print the comma and

["""] go on to accept the next number in the line. If you enter less

277

u

0
than three digits, you can press either the comma, space bar,

or RETURN key to advance to the next number. The

checksum will automatically appear in inverse video; don't | (
worry—it's high lighted for emphasis.

When testing it, I've found MLX to be an extremely easy

way to enter long listings. With the audio cues provided, you LJ
don't even have to look at the screen if you're a touch-typist.

Done at Last!

When you get through typing, assuming you type your ma

chine language program all in one session, you can then save

the completed and bug-free program to tape or disk. Follow

the instructions displayed on the screen. If you get any error

messages while saving, you probably have a bad disk, or the

disk was full, or you made a typo when entering the MLX

program. (Sorry, MLX can't check itself!)

Command Control
What if you don't want to enter the whole program in one sit

ting? MLX lets you enter as much as you want, save the com

pleted portion, and then reload your work from tape or disk

when you want to continue. MLX recognizes these few

commands:

SHIFT-S:Save

SHIFT-L:Load

SHIFT-N:New Address

SHIFT-D:Display

Hold down SHIFT while you press the appropriate key.

You'll jump out of the line you've been typing, so I recom

mend you do it at a prompt. Use the Save command to store

what you've been working on. It will write the tape or disk

file as if you've finished. Note the address you stopped on. ■ -;

The next time you RUN MLX (don't forget to first enter the LJ

POKE statement if it's required), answer all the prompts as

you did before, then insert the disk or tape containing the r f

stored file. When you get the entry prompt press SHIFT-L to i !

reload the file into memory. You'll then use the New Address

command (SHIFT-N) to resume typing. ,- ;

Lj
New Address and Display
After you press SHIFT-N, enter the address where you pre

viously stopped. The prompt will change, and you can then

278

n
'] Appendix I

continue typing. Always enter a New Address that matches up

with one of the line numbers in the special listing, or else the

checksums won't match up. You can use the Display com

mand to display a section of your typing. After you press

SHIFT-D, enter two addresses within the line number range of

the listing. You can stop the display by pressing any key.

Tricky Stuff

The special commands may seem a little confusing, but as you

work with MLX, they will become valuable. For example,

what if you forgot where you stopped typing? Use the Display

command to scan memory from the beginning to the end of

the program. When you reach the end of your typing, the

lines will contain a random pattern of numbers, quite different

from what should be there. Be careful, though; you don't want

to skip over anything you should type.

You can use the Save and Load commands to make

copies of the complete machine language program. Use Load

command to reload the tape or disk, then insert a new tape or

disk and use the Save command to create a new copy. When

resaving on disk it is best to use a different filename each time

you save. For example, I like to number my work and use

filenames such as SCRIPT1, SCRIPT2, SCRIPT3, etc.

One quirk about tapes made with the MLX Save com

mand: when you load them, the message "FOUND program"

may appear twice. The tape will load just fine, however.

Programmers will find MLX to be an interesting program

which protects the user from most typing mistakes. Some

screen formatting techniques are also used. Most interesting is

the use of ROM Kernal routines for LOADing and SAVEing

blocks of memory. To use these routines, just POKE in the

starting address (low byte/high byte) into memory locations

251 and 252 and POKE the ending address into locations 254

and 255. Any error code for the SAVE or LOAD can be found

in location 253 (an error would be a code less than ten).

You'll find MLX is truly a labor-saving program. Since it

has been tested by entering actual programs, you can count on

it as an aid for generating bug-free machine language. Be sure

to save MLX; it will be used for future applications in COM

PUTE! Books, COMPUTE! magazine, and COMPUTE'S Gazette.

279

Appendix I

u

u

Machine Language Editor (MLX) I i

100 PRINT"{CLR}E6i";CHR$(142);CHR$(8);:POKE53281 t—'
,1:POKE53280,1 :rem 67

101 POKE 788,52:REM DISABLE RUN/STOP :rem 119 | ,

110 PRINT"{RVS}{39 SPACES}"; :rem 176 U
120 PRINT"{RVS}{14 SPACES}{RIGHT}{OFF}i*|£{RVS}

{RIGHT} {RIGHT}{2 SPACES} g*5| {OFF} g*l£
{RVS}£{RVS}{14 SPACES}"; :rem 250 jI j

130 PRINTir{RVS}{l4 SPACES} {RIGHT} gG^tRIGHT} ^
{2 RIGHT} {OFF}£{RVS}£g*3{OFF}g*3{RVS}

{14 SPACES}"; :rem 35

140 PRINT"{RVS}{41 SPACES}" :rem 120

200 PRINT"{2 DOWN}{PUR}{BLK} MACHINE LANGUAGE EDIT

OR VERSION 2.00{5 DOWN}" :rem 236

210 PRINT"g53{2 UP}STARTING ADDRESS?{8 SPACES}

{9 LEFT}"; :rem 143

215 INPUTS:F=1-F:C$=CHR$(31+119*F) :rem 166

220 IFS<256OR(S>40960ANDS<49152)ORS>53247THENGOSUB

3000:GOTO210 :rem 235

225 PRINT:PRINT:PRINT :rem 180

230 PRINT"g53{2 UP}ENDING ADDRESS?{8 SPACES}
{9 LEFT}";:INPUTE:F=1-F:C$=CHR$(31+119*F)

:rem 20

240 IFE<256OR(E>40960ANDE<49152)ORE>53247THENGOSUB

3000:GOTO230 :rem 183

250 IFE<STHENPRINTC$;"{RVS}ENDING < START

{2 SPACES}":GOSUB1000:GOTO 230 :rem 176

260 PRINT:PRINT:PRINT :rem 179

300 PRINT"{CLR}";CHR$(14):AD=S:POKEV+21,0 :rem 225

310 A=l:PRINTRIGHT$("0000"+MID$(STR$(AD),2),5);":"

; :rem 33

315 FORJ=ATO6 :rem 33

320 GOSUB570:IFN=-1THENJ=J+N:GOTO320 :rem 228

390 IFN=-211THEN 710 :rem 62

400 IFN=-204THEN 790 :rem 64

410 IFN=-206THENPRINT:INPUT"{DOWN}ENTER NEW ADDRES

S";ZZ :rem 44

415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF
{SPACE}RANGE":GOSUB1000:GOTO410 :rem 225 •

417 IFN=-206THENAD=ZZ:PRINT:GOTO310 :rem 238 LJ
420 IF No-196 THEN 480 :rem 133

430 PRINT:INPUT"DISPLAY:FROM";F:PRINT,"TO";:INPUTT

:rem 234 j (

440 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAST";S;" ^
{LEFT}# NOT MORE THAN";E:GOTO4?0 :rem 159

450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$("0000"+MID$(S r .

TR$(I),2)#5);":"; :rem 30 [J
451 FORK=0TO5:N=PEEK(I+K):PRINTRIGHT$("00"+MID$(ST

R$(N),2),3);","; :rem 66

460 GETA$:IFA$>""THENPRINT:PRINT:GOTO310 :rem 25 j |

280

u

Appendix I

470 NEXTK:PRINTCHR$(20);:NEXTI:PRINT:PRINT:G0T0310

:rem 50

480 IFN<0 THEN PRINT:GOTO310 :rem 168

490 A(J)=N:NEXTJ :rem 199

500 CKSUM=AD-INT(AD/256)*256:FORI=1TO6:CKSUM=(CKSU
M+A(I))AND255:NEXT :rem 200

510 PRINTCHR$(18);:GOSUB570:PRINTCHR$(146)7:rem 94
511 IFN=-1THENA=6:GOTO315 :rem 254

515 PRINTCHR$(20):IPN=CKSUMTHEN530 :rem 122

520 PRINT:PRINT"LINE ENTERED WRONG : RE-ENTER":PRI

NT:GOSUB1000:GOTO310 :rem 176

530 GOSUB2000 ' :rem 218

540 FORI=1TO6:POKEAD+I-1,A(I):NEXT:POKE54272,0:POK

E54273,0 :rem 227

550 AD=AD+6:IF AD<E THEN 310 :rem 212

560 GOTO 710 :rem 108

570 N=0:Z=0 :rem 88

580 PRINT "fc£3"; : rem 81

581 GETA$:IFA$=""THEN581 :rem 95

582 AV=-(A$="M")-2*(A$="#")-3*(A$=".")-4*(A$="J")-

5*(A$="K")-6*(A$="L") :rem 41

583 AV=AV-7*(A$="U")-8*(A$="I")-9*(A$="O"):IFA$="H

"THENA$="0" :rem 134

584 IFAV>0THENA$=CHR$(48+AV) :rem 134

585 PRINTCHR$(20);:A=ASC(A$):IFA=13ORA=44ORA=32THE

N670 :rem 229

590 IFA>128THENN=-A:RETURN :rem 137

600 IFA<>20 THEN 630 :rem 10

610 GOSUB690:IFI=1ANDT=44THENN=-1:PRINT"{OFF}

{LEFT} {LEFT}";:GOTO690 :rem 62
620 GOTO570 :rem 109

630 IFA<48ORA>57THEN580 :rem 105

640 PRINTA$;:N=N*10+A-48 :rem 106

650 IFN>255 THEN A=20:GOSUB1000:GOTO600 :rem 229

660 Z=Z+1:IFZ<3THEN580 :rem 71

670 IFZ=0THENGOSUB1000:GOTO570 :rem 114

680 PRINT",";:RETURN :rem 240

690 S%=PEEK(209)+256*PEEK(210)+PEEK(211) :rem 149

691 FORI=1TO3:T=PEEK(S%-I) :rem 67

695 IFT<>44ANDT<>58THENPOKES%-I,32:NEXT srem 205

700 PRINTLEFT$("{3 LEFT}",I-1);:RETURN :rem 7

710 PRINT"{CLR}{RVS}*** SAVE ***{3 DOWN}" :rem 236

715 PRINT"{2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO

CANCEL SAVE){DOWN}" :rem 106

720 F$="M:INPUT"{DOWN} FILENAME";F$:IFF$=""THENPRI

NT:PRINT:GOTO310 :rem 71

730 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}D

{OFF}ISK: (T/D)" :rem 228
740 GETA$:IFA$<>"T"ANDA$o"D"THEN740 :rem 36

281

u

Appendix I LJ

750 DV=1-7*(A$="D"):IFDV=8THENF$="@0:"+F$:rem 222 *—*
760 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256 :rem 3 . -,

762 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65 Lj
469 :rem 109

763 POKE780,l:POKE781,DV:POKE782,l:SYS65466:rem 69

765 K=S:POKE254,K/256:POKE253,K-PEEK(254)*256:POKE I [

780,253 :rem 17 LJ
766 K=E+1:POKE782,K/256:POKE781,K-PEEK(782)*256:SY

S65496 :rem 235

770 IF(PEEK(783)AND1)OR(ST AND191)THEN780 :rem 111

775 PRINT"{DOWN}DONE.{DOWN}":GOTO310 :rem 113

780 PRINT11 {DOWN}ERROR ON S>AVE.{2 SPACES}TRY AGAIN.

":IFDV=1THEN720 :rem 171

781 OPEN15,8,15:INPUT#15,El$,E2$:PRINTE1?;E2$:CLOS

E15:GOTO720 :rem 103

790 PRINT"{CLR}{RVS}*** LOAD ***{2 DOWN}" :rem 212
795 PRINT"{2 DOWN}(£RESS {RVS}RETURN{OFF} ALONE TO

CANCEL LOAD)" :rem 82

800 F$="":INPUT"{2 DOWN} FILENAME";F$:IFF$=""THENP

RINT:GOTO310 :rem 144

810 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}D

{OFFjlSK: (T/D)" :rem 227

820 GETA$:IFA$<>"T"ANDA$o"D"THEN820 :rem 34

830 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$:rem 157

840 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256 :rem 2

841 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469 :rem 107

845 POKE780,l:POKE781,DV:POKE782,l:SYS65466:rem 70

850 POKE780,0:SYS65493 :rem 11

860 IF(PEEK(783)ANDl)OR(ST AND191)THEN870 5rem 111

865 PRINT"{DOWN}DONE.":GOTO310 :rem 96

870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACES}TRY AGAIN.

{DOWN}":IFDV=1THEN800 :rem 172

880 OPEN15,8,15:INPUT#15,El$,E2$:PRINTE1$;E2$:CLOS

E15:GOTO800 :rem 102

1000 REM BUZZER :rem 135 : (

1001 POKE54296,15:POKE54277,45:POKE54278,165 LJ

:rem 207

1002 POKE54276#33:POKE 54273,6:POKE54272#5 :rem 42

1003 FORT=1TO200:NEXT:POKE54276,32:POKE54273,0:POK I {

E54272#0:RETURN :rem 202 L-J
2000 REM BELL SOUND :rem 78

2001 POKE54296,15:POKE54277,0:POKE54278,247 (.

:rem 152 LJ

2002 POKE 54276,17:POKE54273#40:POKE54272#0:rem 86

2003 FORT=1TO100:NEXT:POKE54276,16:RETURN :rem 57

3000. PRINTC$;"{RVS}NOT ZERO PAGE OR ROM11:GOTO1000 | (

:rem 89 ^

282

u

Appendix J

The Automatic Proofreader

Charles Brannon

"The Automatic Proofreader" will help you type in program

listings without typing mistakes. It is a short error-checking

program that hides itself in memory. When activated, it lets

you know immediately after typing a line from a program list

ing if you have made a mistake. Please read these instructions

carefully before typing any programs in this book.

Preparing the Proofreader

1. Using the listing below, type in the Proofreader. Be

very careful when entering the DATA statements—don't type

an 1 instead of a 1, an O instead of a 0, extra commas, etc.

2. SAVE the Proofreader on tape or disk at least twice be

fore running it for the first time. This is very important because

the Proofreader erases part of itself when you first type RUN.

3. After the Proofreader is SAVEd, type RUN. It will

check itself for typing errors in the DATA statements and

warn you if there's a mistake. Correct any errors and SAVE

the corrected version. Keep a copy in a safe place—you'll need

it again and again, every time you enter a program from this

book, COMPUTEl's Gazette or COMPUTE! magazine.

4. When a correct version of the Proofreader is RUN, it

activates itself. You are now ready to enter a program listing.

If you press RUN/STOP-RESTORE, the Proofreader is dis

abled. To reactivate it, just type the command SYS 886 and

press RETURN.

Using the Proofreader
All listings in this book have a checksum number appended to

the end of each line, for example ":rem 123". Don't enter this

statement when typing in a program. It is just for your informa

tion. The rem makes the number harmless if someone does

type it in. It will, however, use up memory if you enter it, and

it will confuse the Proofreader, even if you entered the rest of

the line correctly.

When you type in a line from a program listing and press

RETURN, the Proofreader displays a number at the top of

your screen. This checksum number must match the checksum

283

LJ

Appendix J ^

LJ
number in the printed listing. If it doesn't, it means you typed

the line differently than the way it is listed. Immediately re-

check your typing. Remember, don't type the rem statement LJ
with the checksum number; it is printed only so you can check

it against the number which appears on your screen.

The Proofreader is not picky with spaces. It will not no- LJ
tice extra spaces or missing ones. This is for your convenience,

since spacing is generally not important. But occasionally

proper spacing is important, so be extra careful with spaces,

since the Proofreader will catch practically everything else that

can go wrong.

There's another thing to watch out for: if you enter the

line by using abbreviations for commands, the checksum will

not match up. But there is a way to make the Proofreader

check it. After entering the line, LIST it. This eliminates the

abbreviations. Then move the cursor up to the line and press

RETURN. It should now match the checksum. You can check

whole groups of lines this way.

Special Tape SAVE Instructions
When you're done typing a listing, you must disable the

Proofreader before SAVEing the program on tape. Disable the

Proofreader by pressing RUN/STOP-RESTORE (hold down

the RUN/STOP key and sharply hit the RESTORE key.) This

procedure is not necessary for disk SAVEs, but you must dis

able the Proofreader this way before a tape SAVE.

SAVE to tape erases the Proofreader from memory, so

you'll have to LOAD and RUN it again if you want to type

another listing. SAVE to disk does not erase the Proofreader.

Hidden Perils

The proofreader's home in the 64 is not a very safe haven.

Since the cassette buffer is wiped out during tape operations,

you need to disable the Proofreader with RUN/STOP—

RESTORE before you SAVE your program. This applies only

to tape use. Disk users have nothing to worry about.

Not so for 64 owners with tape drives. What if you type

in a program in several sittings? The next day, you come to

your computer, LOAD and RUN the Proofreader, then try to

LOAD the partially completed program so you can add to it.

But since the Proofreader is trying to hide in the cassette

buffer, it is wiped out!

284

n

n

Appendix J

What you need is a way to LOAD the Proofreader after

you've LOADed the partial program. The problem is, a tape

R load to the buffer destroys what it's supposed to load.

After you've typed in and RUN the Proofreader, enter the

following lines in direct mode (without line numbers) exactly

R as shown:

A$="PROOFREADERS": B$ = "{10 SPACES}": FOR X = 1

TO 4: A$=A$+B$: NEXTX

FOR X = 886 TO 1018: A$=A$+CHR$ (PEEK(X)): NEXTX

OPEN 1, 1,1,A$:CLOSE1

After you enter the last line, you will be asked to press

RECORD and PLAY on your cassette recorder. Put this pro

gram at the beginning of a new tape. This gives you a new

way to load the Proofreader. Anytime you want to bring the

Proofreader into memory without disturbing anything else, put

the cassette in the tape drive, rewind, and enter:

OPEN1:CLOSE1

You can now start the Proofreader by typing SYS 886. To

test this, PRINT PEEK (886) should return the number 173. If

it does not, repeat the steps above, making sure that A$

("PROOFREADERS") contains 13 characters and that B$ con

tains 10 spaces.

You can now reload the Proofreader into memory when

ever LOAD or SAVE destroys it, restoring your personal typ

ing helper.

Replace Original Proofreader

If you typed in the original version of the Proofreader from

the October 1983 issue of COMPUTE!"s Gazette, you should re

place it with the improved version below.

(~1 Automatic Proofreader

100 PRINT"{CLR}PLEASE WAIT.•.":FORI=886TO1018:READ

— A:CK=CK+A:POKEI,A:NEXT

i j 110 IP CKO17539 THEN PRINT" {DOWN}YOU MADE AN ERRO
R":PRINT"IN DATA STATEMENTS.":END

120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVATE

1 D.":NEW

1 886 DATA 173,036,003,201,150,208
892 DATA 001,096,141,151,003,173

„ 898 DATA 037,003,141,152,003,169

R 285

u

<—IAppendix J

904 DATA 150,141,036,003,169,003

910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164 j (
946 DATA 253,040,096,169,013,032 ^
952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172

988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173

1012 DATA 251,003,133,214,076,173

1018 DATA 003

u

u

u

u
286

n

Index

n

n

ADSR envelope 109,128

how generated by SID 111

relative settings for 119-20

ADSR values

demonstration program 111-13

analog synthesizers 105-7

modular design of 105

AND operator 181

arrays 185-93

defined 185-86

string arrays 191

two-dimensional 187-88

DIM statement and 186

"Arrays and Grades" program 191-93

ASC function 183

ASCII codes 183, 195

table 269-72

attack 109, 119-20

"Automatic Proofreader" 283-86

background color 157

band-pass filter 113

BANK command (SuperBASIC) 219

BASIC Indirect Vector Table 196

bit values, in sprite creation 171-73

BKGD command (SuperBASIC) 219

BKG4 command (SuperBASIC) 219

"BLAM!" 88-91

BMGR command (SuperBASIC) 219

border color 157

BSPP command (SuperBASIC) 218

"Butterfly" program (Sprite BASIC) 175

bytes, 8 make one character 146

CB2K command (SuperBASIC) 221

character patterns 142-44

character set 140-41

relocating 141-42, 147-48

CHAR command (SuperBASIC) 222

"Chred 64" program 148-54

CHR$ function 183

CHRX command (SuperBASIC) 222

"Circles" program (SuperBASIC) 239-40

"Circus Sounds" program 130-31

CLPX command (SuperBASIC) 221

CMXV command (SuperBASIC) 220

CODE command (SuperBASIC) 222

commas 68

Commodore 64 BASIC, limitations of

194-95

Commodore 64 Programmer's Reference

Guide 118

Commodore 64 User's Guide 118

control signal 105

"Copyfile" program 250-52

CTRL keys 179

custom characters 139-45

decay 109, 119-20

detokenization 197

DIM statement 186

DLCS command (SuperBASIC) 221

DRAW command (SuperBASIC) 221-22

DRW2 command (SuperBASIC) 221

DSPR command (SuperBASIC) 218

duration (sound) 120-21

dynamic keyboard 92

ECGR command (SuperBASIC) 219

educational games 87-103

criteria for good games 87-88

problems with 87

erasable pen 4

ESPR command (SuperBASIC) 218

EXTC command (SuperBASIC) 219

FBMS command (SuperBASIC) 221

FCOL command (SuperBASIC) 219

"Filtered Sound" program 113-15

filters, sound 13

FLIP command (SuperBASIC) 221

FLLN command (SuperBASIC) 221-22

frequency modulation 115-17

FSCR command (SuperBASIC) 221

function keys 179-84

ASCII values 183

CTRL keys and 179

explanation 180

get and 80

quote mode and 182-83

GET command 180

VAL and 181

high-pass filter 113

HRAM command (SuperBASIC) 223

HRCS command (SuperBASIC) 222

IF-THEN 181

interpreter, BASIC 196

inverse characters 149

jiffy 198

joystick 87, 88

"Joystick-Controlled Sprites" program

(SuperBASIC) 240-41

keycodes

table 275

keywords, adding new ones to BASIC

194-211

287

KMXG command (SuperBASIC) 220

KSPR command (SuperBASIC) 218

listing conventions 273-74

LOOK command (SuperBASIC) 223

low-pass filter 113

"Machine Language Editor." See MLX

"Martian Prisoner" 60-65

MCGR command (SuperBASIC) 219

MCPL command (SuperBASIC) 221

merging programs 253-55

Microsoft BASIC 185, 195-96

"MLX" 276-82

MOBs. See sprites

modifying BASIC 167-69

"Moire Pattern" program (SuperBASIC)

238-39

MOVE command (SuperBASIC) 218

MOVE keyword (Sprite BASIC) 167, 168

Movable Object Blocks. See sprites

multicolor mode 157

"Munchmath" 96-101

musical instruments

table of sound values for 123

MXGR command (SuperBASIC) 220

NEW command, undoing 256-58

"Note Name-Game, The" 132-36

NOT operator 181

octave 120

OFF keyword (Sprite BASIC) 168

OR operator 181

patch 105-9

patch cord 105

pixel 146

PLAY command (SuperBASIC) 218

PLOT command (SuperBASIC) 221

POKE command

inconvenient in sound programming

126

inconvenient in sprite programming

166

pot (potentiometer) 108-9

digitizing 109-11

pulse width 121

quote mode 182-83, 263-64

CHR$(34) and 183

RAM (Random Access Memory) 141,

142, 144, 145, 147, 166-67, 196

release 109, 119-20

ROM (Read Only Memory) 140, 142,

144, 145, 147, 166-67, 196

screen codes

table 273-74

screen color codes 267-68

screen color memory table 266

screen location table 265

288

SETP command (SuperBASIC) 221-22

SID chip 105, 119-20

patch program for 108, 126

"Simple PET Emulator" program

(SuperBASIC) 241

"Siren" program 115-17

"64 Keywords" program 198-211

"64 Mailing List" 66-71

"64 Merger" program 253-55

"64 Program Lifesaver" 256-58

"64set" program (SuperBASIC) 242-49

"64 Spreadsheet" 72-83

SIZE command (SuperBASIC) 220-21

skill levels, importance of in games 88

"Sound Editor 64" program 119-25

Sound Interface Device. See SID chip

source signal 105

"SpeedScript" 3-39

command charts 37-39

editing features 7-10

keyboard chart 16

program 18-35

"Spike" 41-59

spreadsheet analysis, concepts 72-73

spreadsheet model 73-76

"Sprite Animation" program

(SuperBASIC) 241

"Sprite BASIC"

discussion 167-69

enabling 167

new keywords 167-68

program 173-74

sprite creation 170-73

bit computation 172-73

SPRITE keyword (Sprite BASIC) 167, 168

sprite pattern block 158

sprites 155-176

custom characters and 170

sprite seam 166, 169

sprite worksheet 171

SSND command (SuperBASIC) 218

"Stars" program (SuperBASIC) 239

STUF command (SuperBASIC) 223

subscript 185, 191

"SuperBASIC 64" 156, 215-49

command format 216

command summary 226-27

syntax errors and 223

"SuperBASIC Sprite Editor" program

155-65

sustain 109, 119-20

"SYS Sound" program 126-31

text adventures 60

text color 157

"Tie Fighter" program (Sprite BASIC)

176

u

u

u

LJ

LJ

U

U

U

u

u

n

n

n

n

n

tokenization 195-96, 196-97 voices, on SID chip 119

tone 120 volume 119-20

two-dimensional arrays 187-91 VS1K command (SuperBASIC) 219

"Type 64" program 224-25, 242 waveform 121

typing in programs 263-64 wedge vector 215

UNDR command (SuperBASIC) 221-22 wedges, limitations of 195

VAL command 181 word processing concepts 3-4

VIC II chip (Video Interface Controller) "Wordspell" program 92-95

166 XYSC command (SuperBASIC) 220-221

n

n

n

n
- 289

n

