

COMPUTEI's
SECOND BOOK OF

Commodore

128

COMPUTE! Publicati'onsjncffl
Part of ABC Consumer Magazines, Inc. ^^
One of the ABC Publishing Companies

Greensboro, North Carolina

U

U

u

LJ

The following articles were originally published in COMPUTE! magazine, copyright

1986, COMPUTE! Publications, Inc.:

"Miami Ice" (June); "Hex War" (July); "Mozart Magic (October); "Boot 64" (October).

The following articles were originally published in COMPUTE! magazine, copyright

1986, Jim Butterfield:

"128 Machine Language" (Parts 1, 2, and 3)—August, September, October.

The following articles were originally published in COMPUTERS Gazette magazine,

copyright 1986, COMPUTE! Publications, Inc.:

"Disk Commands on the 128" (February); "SpeedScript 80 for the 128" (June);
"Artimation" (July); "CP/M Public Domain Software" (July); "A Hands-On Introduc
tion to 128 CP/M" (July); "Marquee" (July); "64 Mode Speed-Up" (July); "Sound De
signer" (July); "KeyDef" (August); "Programming the Z80" (August); "TurboDisk
128" (August); "Auto Run" (September); "Commodore 128 Hi-Res Text Manipula
tion" (September); "80-Column Character Editor" (September); "Personalizing the
128" (September); "ESCaping with the 128" (October); "Pig$ for Buck$" (October);
"Mastering 128 Sound and Music" (October, November, December).

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

10 987654321

ISBN 0-87455-077-7

The authors and publisher have made every effort in the preparation of this book to insure the ac- I j
curacy of the programs and information. However, the information and programs in this book are , J
sold without warranty, either express or implied. Neither the authors nor COMPUTE! Publica
tions, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, inci
dentally, or consequentially by the programs or information in this book. (,

The opinions expressed in this book are solely those of the authors and are not necessarily those UJ
of COMPUTE! Publications, Inc.

f COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) j j
k 275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Com- LJ

panies, and is not associated with any manufacturer of personal computers. Commo
dore 128 is a trademark of Commodore Electronics Limited. CP/M is a trademark of

Digital Research, Inc. i j

u

Contents

■ - ' Foreword v

Chapter 1. Games 1
Miami Ice / Jeff Kulczycki 3

Hex War / Todd Heimarck 36

Pig$ for Buck$ / Bruce Willis and Dave Zeigler 50
Puzzle Grid / Philip Schielke 63

Chapter 2. Applications 71
Database 128 / Allen Vaughan 73

SpeedScript-80 for the 128 / Todd Heimarck 83

Marquee / Keith Nonemaker 91

80-Column Character Editor / Harry Rivera 95

Chapter 3. Art and Music 105
Sound Designer / Mark W. Pemburn 107

Sound Parameters / Philip I. Nelson 110
Mozart Magic / James Bagley 119

Artimation / Jerry Crisci 126

Mastering 128 Sound and Music / D. C. Holmes 129

Chapter 4. CP/M 151
Programming the Z80 / Morris Simon 153

A Hands-On Introduction to 128 CP/M / Todd Heimarck 165
CP/M Public Domain Software / James Adams 175

^—j Chapter 5. Programming 181
- J SPRDEF Enhancer / Terry Roper 183

Disk Commands on the 128 / Todd Heimarck 187
p-} Commodore 128 Hi-Res Text Manipulation /
'-■ -» James R. Schwartz 198

ESCaping with the 128 / Jim Vaughan 203
r^ 128 Machine Language / Jim Butterfield 216

Chapter 6. Utilities 235
r-j TurboDisk 128 / Don Lewis 237
- > Keymaster / Bob Kodadek 245

U

u

If

KeyDef / A. F. Shephard 250

Auto Run / Kevin Mykytyn 257

64 Mode Speed-Up / Gary Lamon 260 J]
Boot 64 / Mike Tranchemontagne 263

Personalizing the 128 / Steve Stanko 267

.. LJ
Appendices
A. How to Type In Programs 277
B. The Automatic Proofreader / Philip I. Nelson 279

C. MLX, Machine Language Entry Program /

Ottis R. Cowper 283

Index 293

Disk Coupon 297

LJ

U

0

u

0
-, Foreword

You'll find collected here some of the best material from

COMPUTE! magazine and COMPUTE's Gazette, plus several

never-before-published programs. COMPUTEI's Second Book of

Commodore 128 offers dozens of programming tips, tutorials,

applications, and games that will entertain you and inform

you. No matter what your interest or computing background,

the programs included here have been chosen to make your

128 more useful than ever.

If you like games, try "Puzzle Grid"; it's trickier than you

might think (and it also gives you an opportunity to create

your own puzzles). "Hex War" is a game of thought and strat

egy rather than quick reflexes. "Miami Ice" requires a com

bination of fast action and concentration. And "Pig$ for

Buck$" will delight kids of all ages.

If programming is your interest, you'll find hints and tips

to make using your disk drive easier and take less time—time

that can be spent on programming. "Commodore 128 Hi-Res

Text Manipulation" explores some techniques for adding text

to your hi-res artwork. In "ESCaping with the 128," you'll be

shown how to access 27 new screen-editing features with

ESC-key sequences, and you'll learn how to use them in your

own programs. And there's an article on machine language

that examines some basic architectural features of the 128.

Graphics and music programs are fun to work with and
have practical applications for your programs as well.

"Artimation" is a way to use BASIC 7.0's hi-res graphics state-
pi ments to create kinetic computer art. "Mastering 128 Sound

and Music" explores the sound statements that can help you

generate high-quality musical arrangements.

p"\ The CP/M operating system offers a lot to programmers.

■ * An introduction to CP/M mode tells you how to boot CP/M,
discusses CP/M commands, and shows you how to create a

rn PROFILE program. In addition, an article on public domain

CP/M software clues you into gaining access to a whole new
world of free and inexpensive software.

r*) COMPUTEI's Second Book of Commodore 128 is also strong
- * in applications and utilities. You'll find a database program, a

u

program that continuously displays a scrolling message on the

screen, and a way to create a complete custom character set

for the 128's 80-column screen. And you'll learn how to

personalize your 128—changing the defaults so that the com

puter automatically turns on with your personal preferences of

colors, tab settings, repeating keys, and cursor modes. There

are utilities that enable you to redefine keys to print whatever

characters you choose, that speed up the 128's action in 64

mode, and that automatically load and run any 64 program

from disk when you boot your system.

Written clearly and concisely, COMPUTERS Second Book of

Commodore 128 will make your computer more valuable than

ever. All the programs have been fully tested, and "The Auto

matic Proofreader" and "MLX" will assist you in typing in

programs correctly the first time.

u

LJ

the prbgfcams in COMPUT&'s Second Book of Commodore
228 ase re^dy tQ type in and run. If you prefer not to type

fc^ orciera disj^ that in- ',

cludies all tite programs frqih the book. Call toll-free
;;jr890r^l6r6767Xin New York 1-212-887-8525), or use

irx jtie/back of the book.

I |

U

u

u

Miami Ice

Jeff Kulczycki

Here's an action game that challenges both your driving skills and
powers of concentration. A joystick is required.

Ah, Miami—sun city of the South. A sparkling metropolis
blessed with a tropical climate, palm trees, beaches, revived
art deco architecture, stylish pastels, and classy elegance. Al
most paradise.

You wake up on another bright, sunny Miami morning,
sip a glass of freshly squeezed orange juice, don your white

linen suit and sunglasses, and stroll outside—then get the
shock of your life.

What's Going On Here?

Overnight, a freak shift in the jet stream has piped a blistering
cold front down from Ohio. The weathercaster had predicted a
brief shower last evening, but that's not what happened. In
stead, the Florida peninsula has been blasted by the worst ice
storm in 400 years. The Everglades are frozen solid. The pink

flamingos are blue. And the streets of Miami are coated with a
shimmering layer of slippery ice.

As you start your car—the pampered engine coughs and
sputters in the bitter cold—you wonder what it's going to be

like driving to work. A Miami native, you've never driven on
ice before. In fact, you've never even seen this much ice since
your boss's retirement party last year, when the caterers made
that life-size ice sculpture of Ponce de Leon. You've heard the
horror stories told by tourists about winter driving conditions
up North, but never thought it could happen to you. Not here
in Miami.

The minute you pull out onto the street, your worst fears
come true. When you step on the gas pedal, the wheels spin

and the car accelerates sluggishly. When you turn the steering
wheel, the car slides all over the road. And when you step on
the brakes—well, forget it.

Chapter 1

Driving through the streets of Miami isn't easy

when they're covered with a layer of ice.

You realize, desperately, that you've got to make it to the
parking garage across town without smashing your car to

smithereens. It won't be easy. But at least there's one thing in
your favor—you've got the whole road to yourself. Everyone

else, it seems, had the good sense to stay home.

Out of Control

Using a joystick, you have to drive ypur car over ice-covered
streets to reach the safety of a garage. The joystick button is
the gas pedal, and pushing the stick right or left steers the car

in the corresponding direction.

But here's the twist: The car doesn't respond instantly to
your commands. It tends to slide in the same direction even

after you've steered it toward another direction. Then, when
you try to recover, you often overcorrect and start sliding in
yet another new direction. It's an inertial nightmare, much like

real winter driving.
When you hit a guardrail or some other obstruction, your

car cracks up. You get three cars per game. If you reach the
safety of the garage, the game isn't over. Instead, you advance
to another screen whose streets are even harder to navigate.

The number of points you score depends on how soon

you reach the garage. As an incentive to recklessness, a timer

starts counting down when you begin each new screen. If you
reach the garage, you score the number of points left on the

u

u

LJ

LJ

U

U

u

0

Games

timer. If the timer runs out, you can still reach the garage, but
^ you won't get any points. However, you will advance to the
; i next screen.

|—I How to Play

' "Miami Ice" is written completely in BASIC using BASIC 7.0's
excellent sprite commands. Plug a joystick into port 2 and
leave a disk in the drive. After each game, if your score ranks
you among the top players, the program lets you enter your

initials and then saves the high-score data to disk.

To complete each level, you merely have to steer your car
into the parking garage from any angle. There are a total of
four screens, and each screen displays the timer value in the
upper left corner. Your current score can be seen immediately
to the right.

Miami Ice

See instructions in article, and read Appendix C, "MIX" before typing in the following pro
gram listings.

Starting Address: 1C01

Ending Address: 4A40

1C01:4D 1C 0A 00 9F 32 2C 38 7E

1C09:2C 32 2C 22 48 49 2D 53 A0

1C11:43 4F 52 45 2C 53 2C 57 BB

1C19:22 3A A0 32 3A 9F 31 35 10

1C21:2C 38 2C 31 35 3A 84 31 E2

1C29.-35 2C 41 24 2C 42 24 3A 5E

1C31:8B 42 24 B3 Bl 22 46 49 6B

1C39:4C 45 20 45 58 49 53 54 24

1C41:53 22 A7 A0 31 35 3A 8D 0B

1C49:37 35 30 00 5D 1C 14 00 F3

1C51:E7 30 2C 31 36 3A E7 34 C0

1C59:2C 31 31 00 87 1C IE 00 03

I 1 1C61.-99 22 93 1C 11 11 11 11 23
1C69:11 11 11 ID ID ID ID ID 17

1C71:1D ID ID ID ID ID ID ID A9

p-\ 1C79:1D ID 12 4D 49 41 4D 49 Dl

' (1C81:20 49 43 45 22 00 AE 1C 63

1C89:28 00 99 22 IF 11 20 20 C8

,_ 1C91:20 20 20 20 20 20 20 20 C9

j] 1C99:20 4A 4F 59 53 54 49 43 B5

1CA1:4B 20 49 4E 20 50 4F 52 C8

1CA9:54 20 32 22 00 F6 1C 32 C2

r~\ 1CB1:00 99 22 90 11 90 20 20 C8
L.J 1CB9:20 20 20 20 20 20 20 20 Fl

H

u

Chapter 1 ^ ,

U
1CC1:20 5B 4C 45 46 54 5D 20 ID

1CC9.-20 54 55 52 4E 20 4C 45 C7

1CD1-.46 54 22 3A 99 22 20 20 DF J j

1CD9:20 20 20 20 20 20 20 20 12 '—i
1CE1:20 5B 52 49 47 48 54 5D 41

1CE9:20 54 55 52 4E 20 52 49 F7

1CF1:47 48 54 22 00 3D ID 3C F7 |
1CF9:00 99 22 20 20 20 20 20 C0

1D01:20 20 20 20 20 20 5B 46 D7

1D09:49 52 45 5D 20 20 41 43 42

1D11:43 45 4C 45 52 41 54 45 Al

1D19:22 3A 99 22 9E 11 20 20 El

1D21:20 20 20 20 20 20 20 20 5B

1D29:20 20 20 52 45 41 44 49 A5

1D31:4E 47 20 44 41 54 41 2E B8

1D39:2E 2E 22 00 6B ID 46 00 B6

1D41.-8D 31 38 30 30 3A 99 22 58

1D49:91 IF 20 20 20 20 20 20 FB

1D51:20 20 20 20 50 52 45 53 53

1D59:53 20 42 55 54 54 4F 4E C3

1D61:20 54 4F 20 50 4C 41 59 3C

1D69:22 00 7D ID 50 00 8B CF 9F

1D71:28 32 29 B3 Bl 31 32 38 9B

1D79:A7 38 30 00 90 ID 5A 00 49

1D81:48 59 B2 33 3A 53 43 B2 18

1D89:30 3A 53 4E B2 31 00 DC F0

1D91:1D 64 00 FE 25 3A 91 53 EB

1D99.-4E 8D 37 36 30 2C 31 30 6D

1DA1:32 30 2C 31 32 38 30 2C 98

1DA9:31 35 35 30 3A FE 26 3A C7

1DB1:99 22 13 22 A3 33 32 29 3D

1DB9:3B 22 90 4C 49 56 45 53 72

1DC1:22 3B 48 59 3A E7 30 2C 78

1DC9:31 36 3A 54 4D B2 34 30 84

1DD1:30 3A 54 B2 30 3A 58 45 C8

1DD9:B2 30 00 E6 ID 6E 00 8D 18

1DE1:35 34 30 3A 00 ID IE 78 96

1DE9:00 97 32 30 34 31 2C 36 48 j
1DF1:32 3A FE 06 32 2C 58 2C 33 U-J
1DF9:59 3A FE 07 32 2C 31 2C 90

1E01:32 2C 30 2C 30 2C 30 2C E8

1E09:31 3A 97 32 30 34 30 2C 61 1—I
1E11:35 37 3A 58 45 B2 CE 03 18

1E19:28 32 29 00 70 IE 82 00 1C

1E21:FE 06 31 2C 33 30 23 30 18 [J
1E29:3A FE 07 31 2C 31 2C 39 ED

1E31:2C 30 2C 30 2C 30 2C 31 C3

1E39:3A FE 08 31 2C 32 3A FE 04 t i

1E41:06 31 2C 34 30 2C 36 35 69 LJ

u

n

n

n

H

0

H

i \

1E49:3A 49 B2 34 3A 41 4E B2 B4

1E51:31 38 30 3A 48 54 B2 31 08

1E59:33 35 3A 54 48 B2 30 3A B0

1E61:58 45 B2 CE 03 28 32 29 A4

1E69:AA CE 03 28 31 29 00 83 43

1E71:1E 8C 00 99 22 13 12 22 ID

1E79:3B 54 4D 3B 22 9D 20 92 20

1E81:22 00 93 IE 96 00 8B CF BE

1E89:28 32 29 B2 30 A7 31 35 6E

1E91:30 00 A3 IE A0 00 8B CF 28

1E99:28 32 29 B2 33 A7 32 38 9B

1EA1:30 00 B3 IE AA 00 8B CF 8A

1EA9:28 32 29 B2 37 A7 33 31 C6

1EB1:30 00 E5 IE B4 00 8B CF 31

1EB9:28 32 29 B2 31 32 38 A7 51

1EC1:FE 06 31 2C 41 4E 23 31 A2

1EC9:3A 54 48 B2 31 3A DA 31 C5

1ED1:2C 35 30 30 30 2C 32 34 45

1ED9:2C 32 2C 31 30 30 30 2C 20

1EE1:33 2C 33 00 0F IF BE 00 9B

1EE9:97 32 30 34 30 2C 35 33 97

1EF1:AA 49 3A 8B CE 03 28 31 D9

1EF9:29 B2 33 A7 34 39 30 3A 79

1F01:D5 8B CE 03 28 32 29 AF 23

1F09:31 A7 34 32 30 00 26 IF 60

1F11:C8 00 8B 54 48 Bl 31 A7 7D

1F19:91 B6 28 54 AB 32 30 29 C7

1F21:89 34 31 30 00 30 IF D2 2C

1F29:00 54 B2 54 AA 31 00 4B 7D

1F31:1F DC 00 8B 48 54 Bl 31 17

1F39:38 30 A7 8B 48 54 AB 31 69

1F41:38 30 Bl 41 4E A7 33 36 9F

1F49:30 00 66 IF E6 00 8B 48 F4

1F51:54 Bl 31 38 30 A7 8B 48 4F

1F59:54 AB 31 38 30 B3 41 4E 77

1F61:A7 33 37 30 00 81 IF F0 5F

1F69:00 8B 48 54 B3 31 38 30 DB

1F71:A7 8B 48 54 AA 31 38 30 6F

1F79:B3 41 4E A7 33 38 30 00 01

1F81:9C IF FA 00 8B 48 54 B3 0F

1F89:31 38 30 A7 8B 48 54 AA BF

1F91:31 38 30 Bl 41 4E A7 33 5D

1F99.-39 30 00 A8 IF 04 01 54 6A

1FA1:4D B2 54 4D AB 31 00 B7 6C

1FA9:1F 05 01 8B 54 4D B3 30 01

1FB1:A7 54 4D B2 30 00 CA IF E3

1FB9:06 01 99 22 13 12 22 3B F0

1FC1:54 4D 3B 22 9D 20 92 22 BB

1FC9:00 DB IF 0E 01 8B CF 28 Cl

Games

Chapter 1 , .

u
1FD1:32 29 B3 Bl 33 A7 33 30 D3

1FD9:30 00 F6 IF 18 01 41 4E 96

1FE1:B2 41 4E AA 34 35 3A 8B B4 J j

1FE9:41 4E Bl 33 36 30 A7 41 C8 *—'
1FF1:4E B2 34 35 00 0E 20 22 78

1FF9:01 49 B2 49 AB 31 3A 8B 18 , .

2001:49 B2 30 A7 49 B2 38 3A D2 LJ
2009:89 31 39 30 00 IF 20 2C 6D

2011:01 8B CF 28 32 29 B3 Bl 80

2019:37 A7 33 34 30 00 39 20 9C

2021:36 01 41 4E B2 41 4E AB AC

2029:34 35 3A 8B 41 4E B3 30 AB

2031:A7 41 4E B2 33 31 35 00 53

2039:4A 20 40 01 8B 41 4E B2 6F

2041:33 36 30 A7 41 4E B2 30 02

2049:00 62 20 4A 01 49 B2, 49 A6

2051:AA 31 3A 8B 49 B2 39 A7 62

2059:49 B2 31 3A 89 31 39 30 68

2061:00 A4 20 54 01 8B CF 28 12

2069:32 29 B2 31 32 38 A7 DA 13

2071:31 2C 35 30 30 30 2C 32 CB

2079:34 2C 32 2C 31 30 30 30 C2

2081:2C 33 2C 33 3A 54 48 B2 C3

2089:54 48 AA 31 3A 54 B2 30 27

2091:3A 8B 54 48 Bl 31 35 A7 45

2099:54 48 B2 31 35 3A 89 31 56

20A1:39 30 00 AD 20 5E 01 89 6B

20A9:31 39 30 00 EC 20 68 01 90

20B1:48 54 B2 48 54 AA 28 28 CB

20B9:41 4E AA 28 33 36 30 AB 84

20C1:48 54 29 29 AD 31 30 29 AE

20C9:3A FE 06 31 2C 48 54 23 09

20D1.-54 48 3A 8B 48 54 B3 33 7C

20D9:36 30 A7 32 36 30 3A D5 16

20E1:3A 48 54 B2 30 3A 89 33 B7

20E9:39 30 00 12 21 72 01 48 11

20F1:54 B2 48 54 AB 28 28 48 ED

20F9:54 AB 41 4E 29 AD 31 30 EE I
2101:29 3A FE 06 31 2C 48 54 C5

2109:23 54 48 3A 89 32 36 30 50

2111:00 51 21 7C 01 48 54 B2 18 (I

2119:48 54 AB 28 28 48 54 AA 42 1—I
2121:28 33 36 30 AB 41 4E 29 36

2129:29 AD 31 30 29 3A FE 06 CA

2131:31 2C 48 54 23 54 48 3A 9A jj
2139:8B 48 54 Bl 30 A7 32 36 B3

2141:30 3A D5 3A 48 54 B2 33 B4

2149:36 30 3A 89 33 37 30 00 69 f i

2151:77 21 86 01 48 54 B2 48 B9 LJ

8

u

Games

n

n

n

n

n

2159:54 AA 28 28 41 4E AB 48 DA

2161:54 29 AD 31 30 29 3A FE 7A

2169:06 31 2C 48 54 23 54 48 25

2171*3A 89 32 36 30 00 80 21 80

2179:90 01 89 32 36 30 00 A5 B0

2181:21 9A 01 54 48 B2 54 48 5E

2189:AB 31 3A 54 B2 30 3A 8B D0

2191:54 48 B3 31 A7 54 48 B2 6B

2199:31 3A 89 32 32 30 3A D5 F3

21A1:32 32 30 00 C8 21 A4 01 A4

21A9.-97 32 30 34 30 2C 36 33 5F

21B1:3A 81 44 45 4C 41 59 B2 IB

21B9:31 A4 31 35 30 3A 82 3A E0

21C1:FE 07 20 31 2C 30 00 E7 66

21C9:21 AE 01 DA 31 2C 32 30 E4

21D1:30 30 2C 31 30 30 2C 30 9B

21D9:2C 31 30 30 30 2C 31 2C 48

21E1:33 2C 31 30 30 00 14 22 BD

21E9:B8 01 54 B2 30 3A 48 59 D2

21F1:B2 48 59 AB 31 3A 99 22 4D

21F9.-13 22 A3 33 32 29 22 4C BC

2201:49 56 45 53 22 3B 48 59 45

2209:3A 8B 48 59 B2 30 A7 34 C5

2211:36 30 00 46 22 C2 01 58 57

2219:45 B2 CE 03 28 32 29 3A 4D

2221:FE 0B 32 3A 97 32 30 34 AB

2229:30 2C 35 37 3A FE 06 31 B5

2231:2C 33 33 2C 35 35 3A 58 CC

2239:45 B2 CE 03 28 32 29 3A 6D

2241:89 31 33 30 00 76 22 CC EA

2249:01 FE 0B 32 3A 99 22 11 DF

2251:11 11 11 11 11 11 11 11 95

2259:1D ID ID ID ID ID ID ID 9D

2261:ID ID ID ID ID ID ID 12 9A

2269:90 47 41 4D 45 20 4F 56 64

2271:45 52 92 22 00 BA 22 D6 67

2279:01 9F 32 2C 38 2C 32 2C 32

2281:22 48 49 2D 53 43 4F 52 7D

2289:45 2C 53 2C 52 22 3A 84 BC

2291:32 2C 41 24 2C 42 24 3A 51

2299:A0 32 3A 8B 53 43 Bl C5 8B

22A1:28 41 24 29 A7 81 49 B2 E9

22A9:31 A4 38 3A FE 07 49 2C 2D

22B1:30 3A 82 3A 89 35 36 30 4E

22B9:00 DC 22 E0 01 8B CF 28 85

22C1:32 29 B3 Bl 31 32 38 A7 65

22C9:34 38 30 3A D5 3A 58 45 6D

22D1:B2 CE 03 28 32 29 3A 89 3A

22D9:39 30 00 07 23 EA 01 97 95

Chapter 1

u

u

u

u

22E1:35 33 32 38 30 2C 36 3A 30

22E9:FE 06 31 2C 34 30 23 30 F0

22F1:3A FE 04 22 51 47 52 47 49 |

22F9:52 47 22 3A 8B 54 4D B2 1C

2301:30 A7 35 32 30 00 19 23 E9

2309:EC 01 53 44 B2 B5 28 32 A3

2311:30 30 30 AD 54 4D 29 00 86

2319:64 23 F4 01 81 54 59 B2 CB

2321:31 A4 54 4D A9 35 3A 99 B8

2329:22 13 12 22 3B 54 4D AB IB

2331:54 59 3A 99 22 13 12 22 7C

2339:3B A3 31 33 29 3B 53 43 7F

2341:AA 54 59 3A 8B 54 4D AB B4

2349:54 59 B3 39 39 A7 8B 54 ED

2351:4D AB 54 59 Bl 39 30 A7 C3

2359:99 22 13 12 20 20 20 20 5A

2361:92 22 00 9C 23 FE 01 DA 35

2369:31 2C 33 30 30 30 AA 28 7C

2371:53 44 AC 54 59 29 2C 31 46

2379:3A 82 3A 53 43 B2 53 43 C8

2381:AA 54 4D 3A 99 22 13 12 0D

2389:20 20 30 20 92 22 3B A3 27

2391:31 33 29 3B 22 12 22 3B EE

2399:53 43 00 B7 23 08 02 FE 12

23A1:0B 31 3A 53 4E B2 53 4E 68

23A9:AA 31 3A 8B 53 4E B2 35 FF

23B1:A7 53 4E B2 31 00 C0 23 C3

23B9:12 02 89 31 30 30 00 DB EB

23C1:23 1C 02 99 22 13 12 22 IE

23C9:3B 54 4D 3B 22 13 12 22 C3

23D1:A3 31 33 29 3B 53 43 3A 17

23D9:8E 00 00 24 26 02 8F 20 22

23E1:2A 2A 2A 2A 2A 2A 2A 2A 28

23E9:2A 2A 20 48 49 20 53 43 0D

23F1:4F 52 45 20 2A 2A 2A 2A 97

23F9:2A 2A 2A 2A 2A 2A 00 43 05

2401:24 30 02 FE 04 22 4F 34 13 , ,

2409:53 43 43 46 47 42 42 41 Al LJ
2411:52 20 41 42 22 3A 99 22 26

2419:93 11 11 20 20 20 20 20 75

2421:20 20 20 20 20 20 59 4F 0B j|
2429:55 52 20 53 43 4F 52 45 2B

2431:3A 20 22 3B 53 43 3A 41 F3

2439:42 B2 36 35 3A 4F 50 B2 CB

2441:30 00 6A 24 3A 02 99 22 60

2449:20 20 20 20 20 20 20 20 91

2451:20 20 C3 C3 C3 C3 C3 C3 DE

2459:C3 C3 C3 C3 C3 C3 C3 C3 Al (
2461:C3 C3 C3 C3 C3 C3 91 22 A3

U

10
u

Games

n

n

n

n

n

2469:00 AP 24 44 02 9F 32 2C 85

2471:38 2C 32 2C 22 48 49 2D DB

2479:53 43 4F 52 45 2C 53 2C F8

2481:52 22 3A 81 49 B2 31 A4 F6

2489:31 30 3A 84 32 2C 42 24 F0

2491:28 49 29 3A 84 32 2C 41 8F

2499:24 28 49 29 3A 82 3A A0 AA

24A1:32 3A F2 22 48 49 2D 53 27

24A9:43 4F 52 45 22 00 CA 24 D0

24B1:4E 02 81 55 B2 31 A4 31 FB

24B9:30 3A 8B 53 43 Bl C5 28 E3

24C1:42 24 28 55 29 29 A7 82 4E

24C9:00 21 25 58 02 55 B2 55 A4

24D1:AB 31 3A 81 45 B2 31 A4 97

24D9:55 AB 31 3A 41 24 28 45 Bl

24E1:29 B2 41 24 28 45 AA 31 B2

24E9.-29 3A 42 24 28 45 29 B2 3B

24F1:42 24 28 45 AA 31 29 3A 64

24F9:82 3A 42 24 28 55 29 B2 38

2501:C9 28 C4 28 53 43 29 2C 7B

2509:C3 28 C4 28 53 43 29 29 7D

2511:AB 31 29 3A 41 24 28 55 86

2519:29 B2 22 2D 2D 2D 22 00 IE

2521:4D 25 62 02 54 45 B2 C3 A8

2529:28 42 24 28 55 29 29 3A FA

2531:81 50 B2 31 A4 36 AB 54 63

2539:45 3A 42 24 28 55 29 B2 DA

2541:22 30 22 AA 42 24 28 55 DF

2549:29 3A 82 00 86 25 6C 02 AA

2551:99 22 11 11 22 3A 81 45 66

2559:B2 31 30 A4 32 A9 AB 31 5A

2561:3A 99 A3 31 31 29 3B 31 8C

2569:31 AB 45 3B 22 20 20 22 87

2571:3B 41 24 28 45 29 3B 22 18

2579:20 20 20 22 3B 42 24 28 55

2581:45 29 3A 82 00 AA 25 76 93

2589:02 99 A3 31 30 29 3B 31 90

2591:30 3B 22 20 20 22 3B 41 4A

2599:24 28 31 29 3B 22 20 20 7B

25A1:20 22 3B 42 24 28 31 29 5D

25A9:00 CD 25 80 02 99 22 13 El

25B1:11 11 11 11 11 22 3A 81 03

25B9:49 B2 31 A4 31 31 AB 55 C0

25C1:3A 99 3A 82 3A 4E 4D 24 C8

25C9:B2 22 22 00 E3 25 8A 02 05

25D1:99 22 91 22 A3 31 36 AA BE

25D9.-4F 50 29 3B C7 28 41 42 5C

25E1:29 00 09 26 94 02 8B CF D7

25E9:28 32 29 B2 37 A7 41 42 42

11

u

Chapter 1 I

25F1:B2 41 42 AB 31 3A 8B 41 B3

25F9:42 B3 36 35 A7 41 42 B2 E5

2601:36 35 3A 89 36 35 30 00 7C ; I
2609:2F 26 9E 02 8B CF 28 32 88 i—'
2611:29 B2 33 A7 41 42 B2 41 39

2619:42 AA 31 3A 8B 41 42 Bl 92 ,

2621:39 30 A7 41 42 B2 39 30 9E t I
2629:3A 89 36 35 30 00 67 26 85

2631:A8 02 8B CF 28 32 29 B2 CF

2639:31 32 38 A7 4E 4D 24 B2 CE

2641:4E 4D 24 AA C7 28 41 42 DA

2649:29 3A 41 42 B2 36 35 3A 18

2651:4F 50 B2 4F 50 AA 31 3A 6E

2659:FE 0B 31 3A 8B 4F 50 B2 9E

2661:33 A7 37 30 30 00 70 26 A3

2669:B2 02 89 36 35 30 00 B3 42

2671:26 BC 02 41 24 28 55 29 E9

2679:B2 4E 4D 24 3A 9F 32 2C 7F

2681:38 2C 32 2C 22 48 49 2D EF

2689:53 43 4F 52 45 2C 53 2C 0D

2691:57 22 3A 81 49 B2 31 A4 8D

2699:31 30 3A 98 32 2C 42 24 46

26A1:28 49 29 3A 98 32 2C 41 44

26A9:24 28 49 29 3A 82 3A A0 BE

26B1:32 00 C8 26 C6 02 99 22 26

26B9:13 22 3A 81 49 B2 31 A4 93

26C1:31 38 3A 99 3A 82 00 F6 68

26C9:26 D0 02 99 22 20 20 20 29

26D1:20 20 20 20 50 52 45 53 E5

26D9:53 20 42 55 54 54 4F 4E 56

26El:20 54 4F 20 50 4C 41 59 CE

26E9:20 41 47 41 49 4E 22 3A 95

26F1:89 34 38 30 00 1C 27 E4 BD

26F9:02 8F 20 2A 2A 2A 2A 2A 4A

2701:2A 2A 20 43 4C 45 41 52 73

2709:20 48 49 2D 53 43 4F 52 0E

2711:45 53 20 2A 2A 2A 2A 2A F5 ,

2719:2A 2A 00 7A 27 EE 02 F2 9A |
2721:22 48 49 2D 53 43 4F 52 27

2729:45 22 3A 99 22 93 4D 41 BE

2731:4B 49 4E 47 20 48 49 2D 97 I j

2739:53 43 4F 52 45 22 3A 9F D7 1—I
2741:32 2C 38 2C 32 2C 22 48 4C

2749:49 2D 53 43 4F 52 45 2C A0

2751:53 2C 57 22 3A 81 49 B2 7E [_]
2759:31 A4 31 30 3A 98 32 2C 57

2761:22 30 30 30 30 30 30 22 9A

2769:3A 98 32 2C 22 2D 2D 2D 51 j I

2771:22 3A 82 3A A0 32 3A 8E 24 '—'

12

u

Games

2779x00 8F 27 F8 02 58 B2 36 2D

2781:32 3A 59 B2 31 33 35 3A C8

2789 :E7 34 2C 31 36 00 B7 27 B9

2791:02 03 99 22 93 12 1C 20 34

2799:20 20 20 20 20 20 20 20 E7

27A1:20 20 20 20 20 20 20 20 EF

27A9:20 20 20 20 20 20 20 20 F7

27B1:20 20 20 BC 22 00 EB 27 F7

27B9:0C 03 99 22 12 20 92 20 7A

27C1:20 20 20 20 20 20 20 20 10

27C9:20 20 20 20 20 20 20 20 18

27D1:20 20 20 20 20 20 20 05 05

27D9:DB DB 1C BC 12 20 20 20 CD

27E1:20 20 20 20 20 20 BC 92 DB

27E9:22 00 21 28 16 03 99 22 02

27F1:12 20 92 20 20 20 20 20 87

27F9:20 20 20 20 20 20 20 20 48

2801:20 20 20 20 20 20 20 20 51

2809:20 20 20 20 05 AB 20 20 AE

2811:20 20 20 AB DB B3 1C BC DA

2819:12 20 20 20 BC 92 22 00 F4

2821:59 28 20 03 99 22 12 20 F5

2829:92 20 20 20 20 20 20 20 B2

2831:20 20 20 20 20 20 20 20 81

2839:20 20 20 20 20 20 20 20 89

2841:20 20 20 20 20 20 20 20 91

2849:98 12 20 20 20 92 20 20 1C

2851:1C BC 12 20 20 92 22 00 B2

2859:8D 28 2A 03 99 22 12 20 89

2861:92 20 20 20 20 20 20 20 EA

2869:20 20 20 20 20 20 20 20 B9

2871:20 20 20 20 20 20 20 20 Cl

2879:20 20 20 20 20 20 20 20 C9

2881:20 20 20 20 20 20 12 20 B5

2889:20 92 22 00 Cl 28 34 03 EC

2891:99 22 12 20 BC 92 20 20 0C

2899:20 20 20 20 20 20 20 20 E9

28A1:20 20 20 20 20 20 20 20 Fl

28A9:20 20 20 20 20 20 20 20 F9

28B1:20 20 20 20 20 20 20 20 02

28B9:20 20 BC 12 20 92 22 00 6A

28C1:25 29 3E 03 99 22 12 20 80

28C9:20 20 20 20 20 20 20 20 1A

28D1:BC 92 20 20 20 20 20 20 0D

28D9:20 20 20 20 20 20 20 20 2A

28E1.-20 20 20 20 20 20 20 20 32

28E9.-20 20 20 20 20 20 20 12 2C

28F1:20 20 92 05 DB DB DB DB DE

28F9:1C 20 20 20 BC 12 20 20 F4

13

Chapter 1

2901:20 20 BC 92 20 20 20 20 0E

2909:20 20 20 20 20 20 20 20 5B

2911:20 20 20 20 20 20 20 20 63 , ,

2919:20 20 20 20 90 AB 1C 12 07 \ \

2921:20 92 22 00 61 29 48 03 AF

2929:99 22 12 20 92 05 DB DB 51

2931:DB 1C 20 20 20 20 20 05 45 II
2939:DB 1C BC 12 20 20 20 20 IB *—
2941:20 20 20 20 20 20 20 20 93

2949:20 20 20 BC 92 20 20 20 F8

2951:20 20 20 20 20 20 20 20 A3

2959:90 AB 1C 12 20 9.2 22 00 13

2961:9F 29 52 03 99 22 12 20 El

2969:92 20 20 05 DB 20 20 20 21

2971:20 20 AD DB DB 1C 12 BB 7E

2979:20 20 20 92 05 B3 20 20 68

2981:20 20 DB DB DB 1C BC 12 FF

2989:20 20 92 20 20 20 20 20 2A

2991:20 20 20 20 20 20 90 AB 50

2999ilC 12 20 92 22 00 DB 29 9D

29A1:5C 03 99 22 12 20 92 20 8E

29A9:20 20 20 20 20 20 20 20 FB

29B1:05 AB DB DB 1C 12 20 20 34

29B9:92 05 DB B3 20 20 20 20 2F

29C1:20 AB DB DB 1C BC 12 20 60

29C9:BC 92 20 20 20 20 20 20 07

29D1:20 20 20 20 AC 12 20 92 C2

29D9:22 00 19 2A 66 03 99 22 97

29E1:12 20 92 20 20 20 20 20 7B

29E9:20 20 20 20 20 05 AD BD 88

29F1:1C 12 20 92 05 DB B3 20 23

29F9:20 20 20 20 20 20 20 AB D7

2A01:DB 1C 12 20 20 92 20 20 3A

2A09:20 20 20 20 20 20 20 90 CD

2A11:AB 1C 12 20 20 92 22 00 16

2A19:55 2A 70 03 99 22 12 20 7A

2A21:92 20 20 20 20 20 20 20 AE

2A29:20 20 20 20 20 12 20 92 B7 ! (

2A31:05 B3 20 20 20 20 20 20 DC ^
2A39:20 20 20 20 AB 1C BC 12 05

2A41:20 92 20 20 20 20 20 20 32 ^ ,

2A49:20 20 20 90 AB 1C 12 20 D4 lJ
2A51:20 92 22 00 8D 2A 7A 03 AB

2A59:99 22 12 20 92 20 20 20 BC

2A61:20 20 20 20 20 20 20 20 B5 | I
2A69:20 A3 20 20 20 20 20 20 9E Vv—J
2A71:20 20 20 20 20 20 20 12 B7
2A79:20 92 20 20 20 20 20 20 6A { ,

2A81:20 20 20 90 AB 1C 12 20 0D L_j

u

Games

H

n

n

n

n

2A89:20 92 22 00 C5 2A 84 03 B9

2A91:99 22 12 20 92 20 20 20 F4

2A99:20 20 20 20 20 20 20 20 ED

2AA1:20 20 20 20 20 20 20 20 F5

2AA9:20 20 20 20 20 20 20 12 EF

2AB1:20 92 20 20 20 20 20 20 A2

2AB9:20 20 20 90 AB 1C 12 20 45

2AC1:20 92 22 00 F9 2A 8E 03 A7

2AC9:99 22 12 20 92 20 20 20 2D

2AD1.-20 20 20 20 20 20 20 20 26

2AD9:20 20 20 20 20 20 20 20 2E

2AE1:20 20 20 20 20 20 20 20 36

2AE9:20 20 20 20 20 20 20 20 3E

2AF1:20 20 BC 12 20 92 22 00 A6

2AF9:2F 2B 98 03 99 22 12 20 8D

2B01:92 20 20 20 20 20 20 20 90

2B09:20 20 20 20 20 20 20 20 5F

2B11:20 20 20 20 20 20 20 20 67

2B19:20 20 20 20 20 20 20 20 6F

2B21:20 20 20 20 20 20 90 AB E3

2B29:1C 12 20 92 22 00 65 2B 46

2B31:A2 03 99 22 12 20 92 20 45

2B39:20 20 20 20 20 20 20 20 8F

2B41:20 20 20 20 20 20 20 20 97

2B49:20 20 20 20 20 20 20 20 9F

2B51:20 20 20 20 20 20 20 20 A7

2B59:20 20 20 20 90 AB 1C 12 4B

2B61:20 92 22 00 9B 2B AC 03 96

2B69:99 22 12 20 92 20 20 20 CE

2B71:20 20 20 20 20 20 20 20 C7

2B79:20 20 20 20 20 20 20 20 CF

2B81:20 20 20 20 20 20 20 20 D7

2B89:20 20 20 20 20 20 20 20 DF

2B91:20 20 90 AB 1C 12 20 92 C8

2B99:22 00 Dl 2B B6 03 99 22 05

2BA1:12 20 92 BB 20 20 20 20 F8

2BA9:20 20 20 20 20 20 20 A4 84

2BB1.-20 20 20 20 20 20 20 20 08

2BB9:20 20 20 20 20 20 20 20 10

2BC1:20 20 20 20 20 20 20 20 18

2BC9:90 AB 1C 12 20 92 22 00 87

2BD1:0A 2C C0 03 99 22 12 20 1A

2BD9:20 92 BB 20 20 20 20 20 40

2BE1:20 20 20 20 20 12 20 92 72

2BE9:20 05 AB 20 20 20 20 20 EA

2BF1:20 20 20 20 20 20 20 20 48

2BF9:20 20 20 20 20 20 20 20 50

2C01:20 90 AB 1C 12 20 92 22 ID

2C09:00 42 2C CA 03 99 22 12 F8

15

u

Chapter 1

\ I

2C11:20 20 20 92 20 20 20 20 90

2C19:20 20 20 20 20 20 12 20 55

2C21:92 05 DB B3 20 20 20 20 9C | j

2C29:20 20 20 20 20 20 20 20 81 I—I
2C31:20 20 20 B0 20 20 20 20 92

2C39:20 20 1C AC 12 20 92 22 50

2C41:00 7C 2C D4 03 99 22 12 60 j |
2C49:20 20 20 92 BB 05 B2 B2 F0

2C51:DB AE 20 20 20 20 1C AC AF

2C59:12 20 92 05 DB DB DB 20 8B

2C61:20 20 20 20 20 20 20 20 B9

2C69:20 20 20 B0 DB B3 20 20 F6

2C71:20 20 20 1C 12 BE 20 20 93

2C79:92 22 00 B6 2C DE 03 99 8B

2C81:22 12 20 20 20 20 92 BB D7

2C89:05 DB DB DB AE 1C 20 AC 67

2C91:12 20 20 20 BC 92 05 AB E6

2C99:DB DB B2 B2 DB 20 20 20 18

2CA1:20 20 20 AB DB DB DB DB B2

2CA9:AE 20 20 1C 12 BE 20 20 13

2CB1:20 20 92 22 00 FB 2C E8 C7

2CB9:03 99 22 12 20 20 20 20 41

2CC1:20 20 20 20 20 20 20 20 1A

2CC9:20 20 20 20 20 20 20 20 22

2CD1:20 20 20 20 20 20 20 20 2A

2CD9:20 20 20 20 20 20 20 20 32

2CE1:20 20 20 92 22 3B 3A 97 89

2CE9:32 30 32 33 2C 32 32 34 A3

2CF1:3A 97 35 36 32 39 35 2C 64

2CF9:32 00 01 2D F2 03 8E 00 IF

2D01:16 2D FC 03 58 B2 32 36 A9

2D09:32 3A 59 B2 31 34 32 3A 5A

2D11:E7 34 2C 33 00 4A 2D 06 AE

2D19:04 99 22 93 81 12 20 20 0E

2D21:20 20 20 20 20 20 20 20 7B

2D29:20 20 20 20 20 20 20 20 83

2D31:20 20 20 20 20 20 20 20 8B

2D39:20 20 20 20 20 20 20 20 93 I j
2D41:20 20 20 20 20 20 92 22 82

2D49:00 87 2D 10 04 99 22 81 78

2D51:12 20 92 20 20 20 20 20 F2 j .

2D59:20 20 20 12 20 92 05 AB Fl I—I
2D61:81 12 20 92 05 C3 Bl BD 86

2D69:20 20 20 20 20 20 20 20 C3

2D71:20 20 20 20 20 20 20 20 CB [I
2D79:20 81 12 BB 20 20 20 20 24

2D81:20 20 20 92 22 00 EF 2D 3F

2D89:1A 04 99 22 12 20 92 20 9D { f

2D91:20 20 20 20 20 20 20 12 DD I—)

u

Games

2D99:20 92 05 AB 81 12 20 92 2B

2DA1:20 20 20 20 20 20 20 20 FB

2DA9:20 20 20 20 20 20 20 20 04

2DB1:20 20 20 20 20 20 20 20 0C

2DB9:20 20 20 12 B5 20 92 20 C4

2DC1:20 20 20 20 20 20 1C AC A0

2DC9:81 12 20 20 20 92 20 20 IB

2DD1:20 20 20 20 20 20 20 20 2C

2DD9:20 20 20 20 20 20 20 20 34

2DE1:20 20 20 20 20 20 20 20 3C

2DE9.-20 12 B5 92 22 00 29 2E 4A

2DF1:24 04 99 22 12 20 92 20 0B

2DF9:20 20 20 20 20 20 20 05 39

2E01:A7 20 81 12 20 92 90 AE A5

2E09:20 20 20 20 20 20 20 20 65

2E11:20 20 20 20 20 20 20 20 6D

2E19:20 20 20 20 20 20 20 20 75
2E21:20 20 81 12 B5 92 22 00 23

2E29:66 2E 2E 04 99 22 12 20 E3

2E31:92 20 20 20 20 20 20 20 C6

2E39:20 05 A7 90 C3 DB BD 20 0E

2E41:20 20 20 20 05 AB 1C 12 DC

2E49:B8 92 05 AE 20 1C AF AF B2

2E51:AF AFAFAFAFAFAFAFAD
2E59:AF AF 20 20 20 20 20 81 C2

2E61:12 B5 92 22 00 A5 2E 38 D3

2E69:04 99 22 12 20 92 20 20 3F

2E71:20 20 20 20 20 20 05 A7 IF

2E79:20 1C 12 20 92 20 20 20 A6

2E81:20 20 20 05 AB 1C 12 20 5C

2E89:81 20 20 20 20 20 20 20 96

2E91:20 20 20 20 20 20 20 92 60

2E99:1C BB 20 20 20 20 81 12 8F
2EA1.-B5 92 22 00 F3 2E 42 04 A2

2EA9:99 22 12 20 92 20 20 20 15
2EB1:20 20 20 20 20 05 A7 1C AC

2EB9:20 12 20 92 20 20 20 20 B9

2EC1:20 20 05 AB 1C 12 20 92 8D

2EC9:20 05 AB 81 12 20 92 05 40
2ED1:BD 20 AB 81 12 20 92 05 DD

[2ED9:BD 20 20 AB 81 12 20 92 03
— 2EE1:05 BD 81 12 20 90 B6 92 C4

2EE9:20 20 20 20 81 12 B5 92 B6

r—) 2EF1:22 00 3D 2F 4C 04 99 22 Cl

' .» 2EF9:12 20 92 20 20 20 20 20 9D
2F01:20 20 20 05 A7 1C 20 12 CB

2F09.-20 92 20 20 20 20 20 20 04
2F11:05 AB 1C 12 20 92 20 05 12

2F19:AB 81 12 20 92 20 20 05 4C

n

17

u

Chapter 1 I j

u
2F21:AB 81 12 20 92 20 20 20 6F

2F29:05 AB 81 20 20 12 20 92 43

2F31:90 B3 20 20 20 20 81 12 61 j j
2F39:B5 92 22 00 81 2F 56 04 D4

2F41:99 22 12 20 20 92 20 20 E4
2F49:20 20 20 20 20 20 05 B7 09 j j

2F51:1C 12 20 92 20 20 20 20 51 1—I
2F59:20 20 05 AB 1C 12 20 92 27

2F61:20 20 1C BC 20 20 05 AB 5E

2F69:20 20 20 20 1C BC 20 20 1A

2F71:81 12 20 92 90 B3 20 20 F5

2F79:20 20 81 12 B5 92 22 00 7D

2F81:C1 2F 60 04 99 22 12 20 72

2F89:92 20 20 20 20 20 20 20 21

2F91:20 20 1C 12 20 20 92 20 73

2F99:20 20 20 20 20 05 AB 1C 9E

2FA1:12 20 92 20 20 20 20 20 47

2FA9:BC 20 20 20 20 20 20 20 56

2FB1:81 12 20 92 90 B3 20 20 36

2FB9:20 20 81 12 B5 92 22 00 BD

2FC1:00 30 6A 04 99 22 12 20 53

2FC9:92 20 20 20 20 20 20 20 61

2FD1:20 20 1C 12 20 92 20 20 98

2FD9:20 20 20 1C AC C3 12 20 CE

2FE1:AC 92 20 20 20 20 20 20 23

2FE9:20 20 20 20 20 20 20 81 A9

2FF1:12 20 92 90 B3 20 20 20 3B

2FF9:20 81 12 B5 92 22 00 40 C3

3001:30 74 04 99 22 12 20 92 DC

3009:20 20 20 20 20 20 20 20 69

3011:20 1C 12 20 92 20 20 20 42
3019:20 20 20 05 AB 1C 12 20 F7

3021:92 B4 20 20 20 20 20 20 DF

3029:20 20 20 20 20 20 20 81 EA

3031:12 20 92 90 B3 20 20 20 7C
3039:20 81 12 B5 92 22 00 80 45

3041:30 7E 04 99 22 12 20 92 9F , .

3049:20 20 20 20 20 20 20 20 A9 |_j
3051:20 1C 12 20 92 20 20 20 82

3059:20 20 20 05 AB 1C 12 20 38
3061:92 B4 20 20 20 20 20 20 20 | I
3069:20 20 20 20 20 20 20 81 2B <—»
3071:12 20 92 90 B3 20 20 20 BC

3079:20 81 12 B5 92 22 00 C0 C5 , (
3081:30 88 04 99 22 12 20 92 62 j |
3089:20 20 20 20 20 20 20 20 E9
3091:20 1C 12 20 92 20 20 20 C2
3099:20 20 20 05 AB 1C 12 20 78 J j
30A1:92 B4 20 20 20 20 20 20 60 L-

18 u

Games

n

30A9:81 12 BB 20 20 20 20 20 AA

30B1:20 20 92 90 B3 20 20 20 04

(—} 30B9:20 81 12 B5 92 22 00 05 4A

' (30C1:31 92 04 99 22 12 20 90 A3

30C9:AC BB 92 20 20 20 20 20 A5

30D1:20 20 1C 12 20 92 20 20 9A

30D9:20 20 20 20 05 AB 1C 12 79

30E1:20 92 20 20 20 20 20 20 DE

30E9:20 20 20 81 12 20 IF AC 7A

30F1:BB AC 92 20 81 12 20 92 D6

30F9:90 B3 20 20 20 20 81 12 2C

3101:B5 92 22 00 4C 31 9C 04 8B

3109:99 22 12 20 9B 20 20 92 35

3111:90 A5 20 20 20 20 1C AC 91

3119:12 20 20 92 20 20 20 20 9B

3121:20 20 05 AB 1C 12 20 92 F2

3129:20 20 20 20 20 20 20 20 8B

3131:20 81 12 AC IF 20 20 20 EA

3139:92 90 AE 81 12 20 92 90 BD

3141:B3 20 20 20 20 81 12 B5 6C

3149:92 22 00 8D 31 A6 04 99 1C

3151:22 12 20 9B AC BB 92 90 11

3159:A5 20 20 20 20 20 20 20 7E

3161:20 20 20 20 20 20 05 AB 19

3169:1C 12 20 92 20 20 20 20 6D

3171:20 20 20 20 20 20 05 A3 21

3179:A3 A3 90 AD 81 12 20 92 AA

3181:90 BD 20 20 20 20 81 12 38

3189:B5 92 22 00 C9 31 B0 04 28

3191:99 22 12 20 9B 20 20 92 BD

3199:90 A5 20 20 20 20 20 20 95

31A1:20 20 20 20 20 20 1C 12 ED

31A9:20 20 20 92 20 20 20 20 33

31B1.-20 20 20 20 20 20 20 20 14

31B9:20 20 81 12 AC 92 20 20 95

31C1:20 20 20 12 B5 92 22 00 9D

31C9:03 32 BA 04 99 22 12 20 6B

pi 31D1:9B AC BB 92 90 A5 20 20 49
' 31D9:20 20 20 20 20 20 20 20 3C

31E1:20 20 1C 12 20 20 20 92 55

«—, 31E9:20 20 20 20 20 20 20 20 4C

i I 31F1:20 20 20 20 20 20 20 20 54
31F9:20 20 20 20 81 12 B5 92 CC

3201:22 00 3F 32 C4 04 99 22 0D

r~*) 3209:12 20 9B AC BB 92 05 AE 9D
1 ' 3211:20 20 20 20 20 20 20 20 75

3219:20 20 20 20 1C 12 20 96 9B

3221:D1 1C 20 92 20 20 20 20 84

3229:20 20 20 20 20 20 20 20 8Dn

n
19

LJ
Chapter 1

LJ3231:20 20 20 20 20 20 20 20 95

3239:81 12 B5 92 22 00 79 32 F8

3241:CE 04 99 22 12 20 9B AC 58

3249:BB 92 05 DB DB 20 20 20 4E j(
3251:20 20 20 20 20 20 20 20 B5

3259:1C 12 20 20 20 92 20 20 02

3261:20 20 20 20 20 20 20 20 C5 I j

3269:20 20 20 20 20 20 20 20 CD I—I
3271:20 20 81 12 B5 92 22 00 7B

3279:B6 32 D8 04 99 22 12 20 BA

3281:9B 20 20 92 05 DB DB AE E6

3289:20 20 20 20 20 20 20 20 ED

3291:20 B0 1C 12 20 96 Dl 1C Fl

3299:20 92 20 05 20 B4 20 20 3B

32A1:20 20 20 20 20 20 20 20 06

32A9:20 20 20 20 20 20 20 81 6F

32B1:12 20 92 22 00 Fl 32 E2 AA

32B9:04 99 22 12 20 9B 20 20 BB

32C1:20 20 20 92 05 C3 C3 C3 ED

32C9:C3 C3 C3 81 12 20 20 20 03

32D1:20 20 20 20 1C B7 B7 BC 40

32D9:92 20 20 20 20 20 20 20 77

32E1:20 20 20 20 20 20 20 20 46

32E9:20 20 81 12 20 92 22 00 47

32F1:36 33 EC 04 99 22 12 20 B5

32F9:20 20 20 20 20 20 20 20 5E

3301:20 20 20 20 20 20 20 20 67

3309:20 20 20 20 20 20 20 20 6F

3311:20 20 20 20 20 20 20 20 77

3319:20 20 20 20 20 20 92 22 66

3321:3B 3A 97 32 30 32 33 2C A6

3329:32 32 34 3A 97 35 36 32 8F

3331:39 35 2C 38 00 3C 33 F6 D8

3339:04 8E 00 52 33 00 05 58 66

3341:B2 32 38 30 3A 59 B2 32 66

3349:30 30 3A E7 34 2C 31 36 84

3351:00 86 33 0A 05 99 22 93 C6

3359:1E 12 20 20 20 20 20 20 3B , ,

3361:20 20 20 20 20 20 20 20 C7 LJ

3369:20 20 20 20 20 20 20 20 CF

3371:20 20 20 20 20 20 20 20 D7

3379:20 20 20 20 20 20 20 20 DF j (

3381:20 20 92 22 00 BF 33 14 ED '—'

3389:05 99 22 12 20 92 20 20 E9

3391:20 20 20 20 20 20 20 20 F7 ,

3399:20 20 20 20 20 20 20 20 FF | j
33A1:20 DF 12 20 20 20 20 92 A8

33A9:05 DD 90 Bl Bl Bl Bl Bl A0

33B1:B1 Bl Bl Bl Bl Bl Bl Bl 18 jj

20

u

Games

33B9:1E 12 20 92 22 00 F7 33 15

33C1:1E 05 99 22 12 20 92 20 24

33C9:20 20 20 20 20 20 20 20 30

33D1:20 20 20 20 20 20 20 20 38

33D9:20 20 20 20 DF 12 20 20 06

33E1:92 05 DD 20 20 20 20 20 72

33E9:20 20 20 20 20 20 20 20 50

33F1:1E 12 20 92 22 00 2F 34 BC

33F9:28 05 99 22 12 20 92 20 61

3401:20 20 20 20 20 20 20 20 69

3409:20 20 20 20 20 20 20 20 71

3411:20 20 20 20 20 12 20 20 41

3419:92 05 DD 20 20 20 20 20 AB

3421:20 20 20 20 20 20 20 20 89

3429:1E 12 20 92 22 00 69 34 6A

3431:32 05 99 22 12 20 92 20 9F

3439:20 20 20 20 20 20 20 20 Al

3441:20 20 20 20 12 A9 20 92 Dl

3449:20 20 20 20 20 20 20 DF 71

3451:12 20 92 05 DD 20 20 20 3D

3459:20 20 20 20 20 20 20 20 Cl

3461:20 20 IE 12 20 92 22 00 56

3469:A3 34 3C 05 99 22 12 20 22

3471:20 20 20 20 20 20 20 20 D9

3479:20 20 20 20 20 20 92 A9 50

3481:20 20 20 20 20 20 05 D5 69

3489:C3 IE 12 20 92 05 CB 20 FF

3491:20 20 20 20 20 20 20 20 F9

3499:20 20 20 20 IE 12 20 92 2C

34A1:22 00 DD 34 46 05 99 22 B5

34A9:12 20 20 20 20 92 A9 20 E7
34B1:20 20 20 20 20 20 20 20 1A

34B9:20 20 20 20 20 20 20 20 22

34C1:05 DD IE 12 A9 20 92 20 1C

34C9:20 20 20 20 20 20 12 20 16

34D1:92 20 20 20 20 20 20 12 65

34D9:20 92 22 00 15 35 50 05 5E

34E1:99 22 12 20 20 20 92 A9 34

34E9:20 20 20 20 20 20 20 20 52

34F1.-20 20 20 20 20 20 20 20 5A

34F9:20 12 A9 20 20 20 92 20 F4

3501:20 20 20 20 20 20 12 20 4F

3509:92 20 20 20 20 20 20 12 9E
3511:20 92 22 00 4D 35 5A 05 6D

3519:99 22 12 20 20 92 A9 20 DB

3521:20 20 20 20 20 20 20 20 8B

3529:20 20 20 20 20 20 20 20 93

3531:12 A9 20 20 20 92 A9 20 D3

3539:20 20 20 20 20 20 12 20 87

n
21

Chapter 1

3541:92 20 20 20 20 20 20 12 D6

3549:20 92 22 00 86 35 64 05 83

3551:99 22 12 20 20 92 20 20 01

3559:20 20 20 20 20 20 98 12 A6

3561:A9 IE 20 20 20 20 20 20 10

3569:20 20 20 20 20 92 A9 20 B0

3571:20 20 20 20 20 20 20 20 DB

3579:12 20 92 20 20 20 20 20 2B

3581:20 12 20 92 00 C2 35 6E 91

3589:05 99 22 12 20 92 05 DD 75

3591:1E 20 20 20 20 20 20 20 FA

3599:98 12 A9 20 20 20 20 IE EB

35A1:20 20 92 A9 20 20 20 20 F2

35A9:20 20 20 20 20 20 20 20 14

35B1:20 20 12 A9 20 92 20 20 BC

35B9:20 20 20 20 12 20 92 22 9A

35C1:00 FE 35 78 05 99 22 12 FE

35C9:20 92 05 DD IE 20 20 20 39

35D1:20 20 20 20 12 20 98 20 BC

35D9:20 20 20 IE 20 92 A9 20 01

35E1:20 20 20 20 20 20 20 20 4C

35E9:20 20 20 20 20 12 A9 20 2F

35F1:20 92 20 20 20 20 20 20 F8

35F9:12 20 92 22 00 3A 36 82 Cl

3601:05 99 22 12 20 92 05 DD EE

3609-.1E 20 20 20 20 20 20 20 74

3611:12 20 98 20 20 IE 20 20 7D

3619:92 A9 20 20 20 20 20 20 21

3621:20 20 20 20 20 20 20 20 8D

3629:12 A9 20 20 20 92 20 20 BA

3631:20 20 20 20 12 20 92 22 14

3639:00 75 36 8C 05 99 22 12 77

3641:20 92 05 DD IE 20 20 20 B2

3649:20 20 20 20 12 20 98 20 36

3651:20 IE 20 92 A9 20 20 20 B0

3659:20 20 20 20 20 20 20 20 C5

3661:20 20 20 12 A9 20 20 CD E6

3669:20 92 20 20 20 20 20 20 72 { {

3671:12 20 92 00 AF 36 96 05 C9 *—'
3679:99 22 12 20 92 05 DD IE 02

3681:20 20 20 20 20 20 20 12 DF :)

3689:20 20 20 92 A9 20 20 20 69 J)
3691:20 20 20 20 20 20 20 20 FD

3699:20 20 20 12 A9 20 20 CD IF

36A1:20 92 A9 20 20 20 20 20 DB j j

36A9:20 12 20 92 22 00 E9 36 F2 —!
36B1:A0 05 99 22 12 20 92 05 40
36B9:DD IE 20 20 20 20 20 20 84 < ,

36C1:20 12 20 20 92 A9 20 20 64 lJ

u

Games

36C9:20 20 20 20 20 20 20 20 36

36D1:20 20 20 20 12 A9 20 20 F3

36D9:CD 20 92 A9 20 20 20 20 04

36E1:20 20 20 12 20 92 22 00 IB

36E9:23 37 AA 05 99 22 12 20 F4

36F1:92 05 DD IE 20 20 20 20 68
36F9:20 20 20 12 20 92 A9 20 62

3701:20 20 20 20 20 20 20 20 6F

3709:20 20 20 20 20 12 A9 20 52

3711:20 CD 20 92 A9 20 20 20 5E

3719:20 20 20 20 20 12 20 92 Cl

3721:22 00 5D 37 B4 05 99 22 CE

3729:12 20 92 05 DD IE 20 20 13

3731:20 20 20 20 20 12 20 92 D9

3739:20 20 20 20 20 20 20 20 A7

3741:20 20 20 20 20 20 12 A9 ID

3749:20 20 20 20 92 A9 20 20 71

3751:20 20 20 20 20 20 20 12 Bl

3759:20 92 22 00 97 37 BE 05 DC

3761:99 22 12 20 92 05 DD IE EB

3769:20 20 20 20 20 20 20 20 D7

3771:20 20 20 20 20 20 20 20 DF

3779:20 20 20 20 98 12 A9 20 86
3781:1E 20 20 20 20 20 92 20 D3
3789:20 20 20 20 20 20 20 20 F7

3791:20 12 20 92 22 00 D5 37 B5

3799:C8 05 99 22 12 20 92 05 3E

37A1:CA C9 IE 20 20 20 20 20 8F

37A9:20 20 20 20 20 20 20 20 18

37B1:20 20 20 20 20 98 12 A9 6F

37B9:20 IE 20 20 20 92 05 DD F8

37C1:20 IE 12 20 92 20 20 20 81

37C9:20 20 20 20 20 20 20 12 2A

37D1:20 92 22 00 11 38 D2 05 4D

37D9:99 22 12 20 98 20 20 20 87

37E1:92 20 20 20 20 20 20 20 89

37E9:20 20 20 20 20 20 20 20 58

r~! 37F1:20 20 12 20 IE 20 20 20 8E

' * 37F9:92 20 05 AB C3 IE 12 20 EF
3801:92 20 20 20 20 20 20 20 AA

_ 3809:20 20 20 12 20 92 22 00 46

/ (3811:4D 38 DC 05 99 22 12 20 BB
3819:98 20 20 20 92 20 20 20 59

3821:20 20 20 20 20 20 20 20 91

m 3829:20 20 20 20 20 IE 12 A9 FE

f ' 3831:20 20 20 20 92 05 C3 B3 A3
3839:20 IE 12 20 92 20 20 20 FA

^ 3841:20 20 20 20 20 20 20 12 A3

/ \ 3849:20 92 22 00 8A 38 E6 05 BA

n
23

Chapter 1

3851:99 22 12 20 98 20 20 20 01 '—
3859:20 92 05 C3 C3 C3 C9 20 3C

3861:20 20 20 20 20 20 20 20 Dl } ,

3869:20 IE 12 A9 20 20 92 05 F9 ; 1
3871:20 DD 20 D5 B3 20 IE 12 37

3879:20 92 20 20 20 20 20 20 86

3881:20 20 20 20 12 20 92 22 68 [I
3889:00 CB 38 F0 05 99 22 12 E7 L~J
3891:20 98 20 20 20 20 20 20 20

3899:20 92 05 DD 20 20 20 20 IF

38A1:20 20 20 20 IE AC 12 20 18

38A9:20 20 20 92 05 C3 CB 20 4E

38B1:12 20 92 CA C3 IE 12 20 0D

38B9:92 05 C3 C3 C3 C3 C3 C3 El

38C1:C3 C3 C3 C3 IE 12 20 92 C5

38C9:22 00 10 39 FA 05 99 22 22

38D1:12 20 20 20 20 20 20 20 3B

38D9:20 20 20 20 20 20 20 20 4A

38E1:20 20 20 20 20 20 20 20 52

38E9:20 20 20 20 20 20 20 20 5A

38F1:20 20 20 20 20 20 20 20 62

38F9:92 22 3B 3A 97 32 30 32 5F

3901:33 2C 32 32 34 3A 97 35 70

3909:36 32 39 35 2C 35 00 16 E9

3911:39 04 06 8E 00 2C 39 0E FB

3919:06 58 B2 31 31 30 3A 59 26

3921:B2 31 36 35 3A E7 34 2C 59

3929:31 36 00 62 39 18 06 99 B7

3931:22 93 98 12 20 20 20 20 AF

3939:20 20 20 20 20 20 20 20 AB

3941:20 20 20 20 20 C3 C3 C3 2D

3949:C3 C3 C3 C3 C3 20 20 20 42

3951:92 B8 B8 B8 B8 B8 B8 B8 B0

3959:B8 B8 B8 B8 12 BB 92 22 BF

3961:00 94 39 22 06 99 22 B5 D2

3969:20 20 20 20 20 20 B6 B4 9D

3971:20 20 20 20 20 20 20 20 E3

3979:20 20 20 20 20 20 20 DF AB If

3981:12 20 20 20 92 20 20 20 80 <—'
3989:20 20 20 20 20 20 20 20 FB

3991:B6 22 00 C7 39 2C 06 99 84 . .

3999:22 B5 20 20 20 20 20 20 72 (j

39A1:05 BC BE 98 20 20 20 20 09

39A9:20 20 20 20 20 20 20 20 1C

39B1:20 20 20 20 DF 12 20 2D F6 i j
39B9:92 20 20 20 20 20 20 20 65 v—i
39C1:20 20 20 20 B6 00 F9 39 35

39C9:36 06 99 22 B5 20 20 20 BC {

39D1:20 20 20 20 20 20 20 20 44 LJ

24

LJ

Games

39D9:20 20 20 20 20 -20 20 20 4C

39E1.-20 20 20 20 20 20 DF 12 C5

39E9:2D 92 20 20 20 20 20 20 7F

39F1:20 20 20 20 20 B6 22 00 A2

39F9:2B 3A 40 06 99 22 B5 20 D9

3A01:20 20 20 20 20 20 20 20 75

3A09:20 20 20 20 20 20 20 20 7D

3A11:20 20 20 20 20 20 20 20 85

3A19:20 12 2D 92 20 20 20 20 D2

3A21:20 20 20 20 20 20 20 B6 2C

3A29:22 00 5D 3A 4A 06 99 22 BD

3A31.-12 20 20 20 20 20 20 20 9E

3A39:20 20 20 20 20 20 20 20 AD
3A41:20 92 BB 20 20 20 20 20 C5

3A49:20 20 20 20 20 20 20 20 BD

3A51:20 20 20 20 20 20 20 20 C5

3A59:20 B6 22 00 91 3A 54 06 F3

3A61:99 22 12 20 20 20 20 20 51

3A69:20 20 20 20 20 20 20 20 DD
3A71:20 20 20 20 92 BB 20 20 E7

3A79:20 20 20 20 20 20 20 20 ED

3A81:20 20 20 20 20 12 2D 92 4A

3A89:20 20 20 20 20 B6 22 00 3C

3A91:C7 3A 5E 06 99 22 90 Bl CC

3A99:B1 Bl Bl Bl Bl DB Bl Bl B6

3AA1:B1 Bl Bl Bl DB Bl Bl 98 4E

3AA9:12 20 20 20 92 BB 20 20 19

3AB1:20 20 20 20 20 20 20 20 26

3AB9:20 20 AC 12 20 92 20 20 A8

3AC1:20 20 20 B6 22 00 FF 3A 09

3AC9:68 06 99 22 B5 20 20 20 D7

3AD1:20 20 05 12 A2 92 20 20 DF

3AD9:20 20 20 20 12 A2 92 20 CC

3AE1:20 98 12 20 20 20 20 20 B2

3AE9:20 20 20 20 20 20 20 20 5E

3AF1:20 20 20 20 AC 92 20 20 94

3AF9:20 20 20 B6 22 00 35 3B AC

/—| 3B01:72 06 99 22 B5 20 20 20 16

' 1 3B09:20 20 20 20 20 20 20 20 7F
3B11:20 20 20 20 12 20 20 20 17

3B19:92 05 DB DB DB B3 20 20 61

l\ 3B21:20 20 20 20 20 20 20 98 10
3B29:12 BB BC 92 20 20 20 20 3A

3B31:20 B6 22 00 6B 3B 7C 06 F0

f—I 3B39:99 22 B5 20 20 20 20 20 9F

/ ' 3B41:20 20 20 20 20 20 20 20 B7
3B49:20 20 05 A3 A3 A3 20 B3 52

^ 3B51.-AD 20 20 20 20 20 20 20 8E

] | 3B59:20 20 20 98 12 BE 20 92 D3

H
25

I (
i I

Chapter 1

U

3B61:05 D5 C9 20 20 20 98 B6 74 v i

3B69:22 00 02 3C 86 06 99 22 96

3B71:B5 20 20 20 20 1C A4 A4 30

3B7 9:A4 A4 A4 A4 A4 A4 A4 98 E3 i /
3B81:20 20 20 20 20 20 20 20 F7 ' '
3B89:20 20 20 20 20 20 20 20 FF

3B91:20 20 12 20 92 IF AC 12 E0 , j

3B99:20 92 05 DD 20 20 20 98 9D LJ
3BA1:B6 B5 20 20 20 20 96 12 A7

3BA9:20 20 20 20 20 20 20 20 20

3BB1:20 92 05 B9 20 20 20 20 FA

3BB9:20 20 20 20 20 20 20 20 30

3BC1:20 20 20 20 20 98 12 20 FD

3BC9:20 20 92 05 DD 98 20 20 AC

3BD1:20 B6 B5 20 20 20 20 96 17

3BD9:12 20 BC BE BC BE BC BE FD

3BE1:BC BE 92 20 20 20 20 20 9C

3BE9:20 20 20 20 20 20 20 20 60

3BF1:20 20 20 20 20 20 20 20 68

3BF9:05 DD 98 20 20 20 B6 22 90

3C01:00 3D 3C 90 06 99 22 B5 E9

3C09:20 20 20 20 20 12 20 92 BB

3C11:9A DD 98 12 20 92 20 20 2E

3C19:20 20 20 96 12 20 C3 20 CF

3C21:C3 20 92 05 B8 20 20 20 CC

3C29:20 20 20 20 20 20 20 20 Al

3C31:20 20 20 20 DD 20 20 20 97

3C39:98 B6 22 00 77 3C 9A 06 D7

3C41:99 22 B5 20 20 20 20 20 A9

3C49:12 20 92 9A DD 98 12 20 64

3C51:92 20 20 20 20 20 12 20 E6

3C59:20 20 20 20 20 20 20 20 Dl

3C61:20 20 20 20 20 DF 92 20 BD

3C69:20 20 20 20 20 05 DD 20 F0

3C71:20 20 98 B6 22 00 Bl 3C 31

3C79:A4 06 99 22 B5 20 20 20 A9

3C81:20 20 12 20 92 9A DD 98 A9

3C89:12 20 92 20 20 20 20 20 49

3C91:20 20 20 20 20 20 20 20 0A i)

3C99:20 20 20 20 20 DF 12 20 F4

3CA1:DF 92 20 20 20 20 20 05 7B

3CA9:DD 20 20 20 98 B6 22 00 03 \ \

3CB1:1B 3D AE 06 99 22 B5 20 IE *—l
3CB9:20 20 20 20 12 20 92 9A 21

3CC1:DD 98 12 20 92 20 20 20 09

3CC9:20 20 20 20 20 20 20 20 42 LJ
3CD1:20 20 20 20 20 20 20 20 4A

3CD9:DF 12 20 DF 92 20 20 20 3E

3CE1:20 05 DD 20 20 20 98 B6 D2 1 (

26

u

Games

3CE9:B5 20 20 20 20 20 12 20 11

3CF1:9A 20 98 20 92 20 20 20 4A

3CF9.-20 20 20 20 20 20 20 20 72

3D01:20 20 20 20 20 20 20 20 7B

3D09:20 DF 12 20 92 20 20 20 45

3D11:20 05 DD 20 20 20 98 B6 04

3D19:22 00 53 3D B8 06 99 22 16

3D21:B5 20 20 20 20 20 12 20 4A

3D29:92 20 12 20 92 20 20 20 AE

3D31:20 20 20 20 20 20 20 20 AB

3D39:20 20 20 20 20 20 20 20 B3

3D41.-20 20 12 20 92 20 20 20 8D

3D49:20 90 B8 20 20 20 98 B6 7A

3D51:22 00 87 3D C2 06 99 22 25

3D59:B5 20 20 20 20 20 12 BB IE

3D61:20 20 BC 92 20 20 20 20 96

3D69:20 20 20 20 20 20 20 20 E3

3D71:20 20 20 20 20 20 20 20 EB

3D79:12 20 92 20 20 20 20 20 3B

3D81:20 20 20 B6 22 00 BB 3D 49

3D89:CC 06 99 22 B5 20 20 20 CF

3D91:20 20 20 12 BB 20 20 AF 97

3D99:AF AFAFAFAFAFAFAF14
3DA1:AF AF 20 92 20 20 20 20 EE

3DA9:20 20 20 20 12 20 92 20 98

3DB1:20 20 20 20 20 20 20 B6 C2

3DB9:22 00 ED 3D D6 06 99 22 FA

3DC1:B5 20 20 20 20 20 20 20 07

3DC9:20 20 20 20 20 20 20 20 44

3DD1.-20 20 20 20 20 20 20 20 4C

3DD9:20 20 20 20 20 20 12 20 38

3DEI:92 20 20 20 20 20 20 20 95

3DE9:20 B6 22 00 IF 3E E0 06 20

3DF1:99 22 B5 20 20 20 20 20 5C

3DF9:20 20 20 20 20 20 20 20 74

3E01.-20 20 20 20 20 20 20 20 7D

3E09:20 20 20 20 20 20 20 20 85

3E11:12 20 92 20 20 20 20 20 D4

3E19:20 20 20 B6 22 00 65 3E 37

3E21:EA 06 99 22 12 20 B8 B8 25

3E29.-B8 B8 B8 B8 B8 B8 B8 B8 A5

3E31:B8 B8 B8 B8 B8 B8 B8 B8 AD

3E39:B8 B8 B8 B8 B8 B8 B8 B8 B5

3E41:B8 B8 B8 20 20 20 20 20 43

3E49:20 20 20 20 92 22 3B 3A Bl

3E51.-97 32 30 32 33 2C 32 32 30

3E59:34 3A 97 35 36 32 39 35 E6

3E61:2C 31 32 00 6B 3E F4 06 CA

3E69:8E 00 76 3E 08 07 49 B2 81

n
27

Chapter 1

3E71:33 34 35 36 00 91 3E 12 73 '—'
3E79:07 87 20 41 3A 8B 20 41 F4

3E81.-B2 32 35 36 20 A7 20 8E 5C , ,

3E89:20 20 20 20 20 20 20 00 E5 LJ
3E91:A7 3E 1C 07 97 20 49 2C 61

3E99:41 3A 49 B2 49 AA 31 3A 2B

3EA1:89 31 38 31 30 00 CC 3E A2 I J

3EA9:26 07 83 30 30 30 2C 30 39 U-J
3EB1:30 30 2C 30 30 30 2C 30 A5

3EB9:30 30 2C 30 30 30 2C 30 AD

3EC1:30 30 2C 30 30 30 2C 30 B5

3EC9:30 30 00 Fl 3E 30 07 83 CD

3ED1:30 30 30 2C 30 30 34 2C 12

3ED9:30 30 30 2C 30 30 30 2C 12

3EE1:30 30 39 2C 30 30 30 2C 3B

3EE9:30 30 30 2C 30 34 30 00 06

3EF1:16 3F 3A 07 83 30 30 30 6E

3EF9:2C 30 30 30 2C 31 30 36 5E

3F01:2C 30 30 30 2C 30 30 30 5D

3F09:2C 30 31 38 2C 31 32 38 16

3F11:2C 30 31 36 00 3B 3F 44 EA

3F19:07 83 30 30 30 2C 31 36 CF

3F21:32 2C 30 32 30 2C 30 30 AF

3F29:30 2C 30 34 33 2C 31 33 F3

3F31:33 2C 30 30 30 2C 30 31 21

3F39:31 00 60 3F 4E 07 83 32 18

3F41:32 35 2C 30 30 30 2C 30 79

3F49:31 30 2C 32 33 32 2C 30 FF

3F51:30 30 2C 30 31 38 2C 31 70

3F59:36 38 2C 30 30 30 00 85 51

3F61:3F 58 07 83 30 32 30 2C 85

3F69:31 36 30 2C 30 30 30 2C A5

3F71:30 30 35 2C 31 32 38 2C 6C

3F79:30 30 30 2C 30 30 31 2C B5
3F81:30 30 30 00 AA 3F 62 07 48
3F89:83 30 30 30 2C 30 30 30 91

3F91:2C 30 30 30 2C 30 30 30 ED

3F99:2C 30 30 30 2C 30 30 30 F5 \ (

3FA1:2C 30 30 30 2C 30 30 30 FD <■—->

3FA9:00 CF 3F 6C 07 83 30 30 Al

3FB1:30 2C 30 30 30 2C 30 30 IF

3FB9:30 2C 30 30 30 2C 30 30 27 ;_]
3FC1:30 2C 30 30 30 2C 30 30 2F
3FC9:30 2C 30 30 30 00 F4 3F IF

3FD1:76 07 83 30 30 30 2C 30 8B { ,

3FD9:30 30 2C 30 30 30 2C 30 CF uj
3FE1:30 30 2C 30 30 30 2C 30 D7

3FE9:30 30 2C 30 30 30 2C 30 DF t

3FF1:30 30 00 19 40 80 07 83 BB |_J

28

LJ

Games

n

3FF9:30 30 30 2C 30 30 30 2C 34

4001:30 30 30 2C 30 30 30 2C 3D

4009:30 30 30 2C 30 30 30 2C 45

4011:30 30 30 2C 30 30 30 00 21

4019:3E 40 8A 07 83 30 30 30 F7

4021:2C 30 30 30 2C 30 30 30 7F

4029:2C 30 30 30 2C 30 38 34 9B

4031:2C 30 30 30 2C 30 30 30 8F

4039:2C 30 38 34 00 63 40 94 C8

4041:07 83 30 36 34 2C 30 30 72

4049:30 2C 30 31 36 2C 30 36 FE

4051:34 2C 30 31 30 2C 31 36 DA

4059:38 2C 31 37 30 2C 31 37 66

4061:31 00 88 40 9E 07 83 32 D9

4069:33 32 2C 31 37 30 2C 31 AC

4071:37 31 2C 32 33 32 2C 30 6D

4079:36 34 2C 30 31 30 2C 31 7E

4081:36 38 2C 30 36 34 00 AD E3

4089:40 A8 07 83 30 30 30 2C 3C

4091:30 31 36 2C 30 30 30 2C CE

4099:30 30 30 2C 30 38 34 2C FD

40A1:30 30 30 2C 30 30 30 2C DD

40A9:30 38 34 00 D2 40 B2 07 DA

40B1:83 30 30 30 2C 30 30 30 BB

40B9:2C 30 30 30 2C 30 30 30 18

40C1:2C 30 30 30 2C 30 30 30 20

40C9:2C 30 30 30 2C 30 30 30 28

40D1:00 F7 40 BC 07 83 30 30 FA

40D9:30 2C 30 30 30 2C 30 30 49

40E1.-30 2C 30 30 30 2C 30 30 51

40E9:30 2C 30 30 30 2C 30 30 59

40F1:30 2C 30 30 30 00 1C 41 99

40F9:C6 07 83 30 30 30 2C 30 DD

4101:30 30 2C 30 30 30 2C 30 FA

4109:30 30 2C 30 30 30 2C 30 03

4111:30 30 2C 30 30 30 2C 30 0B

4119:30 30 00 41 41 D0 07 83 B2

]] 4121:30 30 30 2C 30 30 30 2C 5F
4129:30 30 30 2C 30 30 30 2C 67

4131:30 30 30 2C 30 30 30 2C 6F

(—) 4139:30 30 30 2C 30 30 30 00 4B

i..\ 4141:66 41 DA 07 83 30 30 30 80

4149:2C 30 30 30 2C 30 30 30 A9

4151 :2C 30 30 31 2C 30 30 30 Cl

]} 4159:2C 30 30 30 2C 30 30 35 BE
4161.-2C 31 32 38 00 8B 41 E4 A5

4169:07 83 30 30 30 2C 30 32 IE

"^ 4171:30 2C 31 36 30 2C 30 30 63
! * 4179:30 2C 30 31 38 2C 32 33 42

29

Chapter 1

4181:32 2C 30 30 30 2C 30 31 F4

4189:31 00 B0 41 EE 07 83 32 9B

4191:33 32 2C 30 30 30 2C 30 8D \ j

4199:31 31 2C 31 36 31 2C 30 98 I ',
41A1:30 30 2C 30 34 32 2C 31 C4

41A9:33 33 2C 30 30 30 00 D5 33

41B1:41 F8 07 83 31 36 32 2C IF I I
41B9:30 32 30 2C 30 31 38 2C 8C

41C1:31 32 38 2C 30 31 36 2C 12

41C9:31 30 36 2C 30 30 30 2C 49

41D1:30 30 30 00 FA 41 02 08 67

41D9:83 30 34 30 2C 30 30 30 66

41E1:2C 30 30 30 2C 30 30 39 4B

41E9:2C 30 30 30 2C 30 30 30 4A

41F1:2C 30 30 34 2C 30 30 30 92

41F9:00 IF 42 0C 08 83 30 30 2C

4201:30 2C 30 30 30 2C 30 30 74

4209:30 2C 30 30 30 2C 30 30 7C

4211:30 2C 30 30 30 2C 30 30 84

4219:30 2C 30 30 30 00 44 42 16

4221:16 08 83 30 30 30 2C 30 F0

4229:30 30 2C 30 30 30 2C 30 25

4231:30 30 2C 30 30 30 2C 30 2D

4239:30 30 2C 30 30 30 2C 30 35

4241:30 30 00 69 42 20 08 83 A6

4249:30 30 30 2C 30 30 30 2C 89

4251:30 30 30 2C 30 30 30 2C 91

4259:30 30 30 2C 30 30 30 2C 99

4261:30 30 30 2C 30 30 30 00 75

4269:8E 42 2A 08 83 30 30 30 F8

4271:2C 30 30 30 2C 30 30 34 D7

4279:2C 31 36 38 2C 30 36 34 6D

4281:2C 30 30 35 2C 31 36 39 4D

4289:2C 30 36 34 00 B3 42 34 Cl

4291:08 83 30 30 35 2C 31 36 F6

4299:39 2C 30 36 34 2C 30 30 12

42A1:34 2C 31 38 34 2C 30 36 DD

42A9:34 2C 30 30 30 2C 31 38 29 j /

42B1:34 00 D8 42 3E 08 83 30 D8 ^
42B9:30 30 2C 30 30 30 2C 31 B6

42C1:38 34 2C 30 30 30 2C 30 C2 >

42C9:30 30 2C 31 36 38 2C 30 26 ^J
42D1:30 30 2C 30 30 30 00 FD 43

42D9:42 48 08 83 31 36 38 2C C9

42E1:30 30 30 2C 30 30 30 2C 22 \ >

42E9:30 33 32 2C 30 30 30 2C 2B ^J
42F1:30 30 30 2C 30 33 32 2C 42

42F9:30 30 30 00 22 43 52 08 73

4301:83 30 30 30 2C 30 33 32 19 M

30

u

Games

4309:2C 30 30 30 2C 30 30 30 6D

4311:2C 30 33 32 2C 30 30 30 F5

r-^ 4319:2C 30 30 31 2C 30 33 33 96

1 [4321:00 47 43 5C 08 83 30 30 86
4329:30 2C 30 30 31 2C 31 36 AE

!—, 4331:39 2C 30 30 30 2C 30 30 2B

I ! 4339:31 2C 30 33 33 2C 30 30 77
4341:30 2C 30 30 30 00 6C 43 91

4349:66 08 83 30 30 30 2C 30 43

4351:30 30 2C 30 30 30 2C 30 4F

4359:30 30 2C 30 30 30 2C 30 57

4361:30 30 2C 30 30 30 2C 30 5F

4369:30 30 00 91 43 70 08 83 9C

4371:30 30 30 2C 30 30 30 2C B3

4379:30 30 30 2C 30 30 30 2C BB

4381:30 30 30 2C 30 30 30 2C C3

4389:30 30 30 2C 30 30 30 00 9F

4391:B6 43 7A 08 83 30 30 30 81

4399:2C 30 30 30 2C 30 30 30 FD

43A1:2C 30 36 34 2C 30 30 30 07

43A9:2C 30 30 32 2C 30 38 30 3E

43B1:2C 30 30 30 00 DB 43 84 DD

43B9:08 83 30 31 30 2C 30 32 03

43C1:30 2C 30 30 30 2C 30 34 3B

43C9:33 2C 31 33 32 2C 30 30 21

43D1:30 2C 30 34 33 2C 32 32 A5

43D9:34 00 00 44 8E 08 83 30 8A

43El:30 30 2C 30 37 34 2C 32 2A

43E9:32 34 2C 30 30 30 2C 30 E9

43F1:38 32 2C 31 36 38 2C 30 D4

43F9:30 30 2C 30 32 30 00 25 A4

4401:44 98 08 83 31 33 38 2C FD

4409:30 30 30 2C 30 30 34 2C 55

4411:30 30 32 2C 31 33 32 2C AD

4419:30 30 30 2C 30 30 30 2C 5D

4421:31 36 39 00 4A 44 A2 08 A7

4429:83 30 30 30 2C 30 30 30 3B

Jj 4431:2C 30 34 30 2C 30 30 30 18
4439:2C 30 30 30 2C 30 39 36 B7

4441:2C 30 30 30 2C 30 30 30 A7

r—\ 4449:00 6F 44 AC 08 83 30 31 E0

L s 4451:36 2C 30 30 30 2C 30 30 CB
4459:30 2C 30 30 30 2C 30 30 D0

4461:30 2C 30 30 30 2C 30 30 D8

, • 4469:30 2C 30 30 30 00 94 44 0D

4471:B6 08 83 30 30 30 2C 30 95

4479:30 30 2C 30 30 30 2C 30 79

^ 4481:30 30 2C 30 30 30 2C 30 81
' > 4489:30 30 2C 30 30 30 2C 30 89

n

Chapter 1

4491:30 30 00 B9 44 C0 08 83 92

4499:30 30 30 2C 30 30 30 2C DD

44A1.-30 30 30 2C 30 30 30 2C E5 \ f

44A9:30 30 30 2C 30 30 30 2C ED O-*

44B1:30 30 30 2C 30 30 30 00 C9

44B9:DE 44 CA 08 83 30 30 30 0A

44C1:2C 30 30 30 2C 30 32 31 2D i_J
44C9:2C 30 30 30 2C 30 30 30 30

44D1:2C 30 32 31 2C 30 30 30 88

44D9:2C 30 30 30 00 03 45 D4 F8

44El:08 83 30 30 34 2C 30 30 3B

44E9:30 2C 30 30 31 2C 30 34 6D

44F1:32 2C 31 36 30 2C 30 30 EA

44F9:31 2C 30 34 33 2C 32 33 51

4501:34 00 28 45 DE 08 83 31 4E

4509:37 30 2C 30 34 33 2C 32 BC

4511:33 34 2C 31 37 30 2C 30 DD

4519:34 32 2C 31 36 30 2C 30 DD

4521:30 31 2C 30 30 34 00 4D 38

4529:45 E8 08 83 30 30 30 2C 98

4531:30 30 31 2C 30 32 31 2C Al

4539:30 30 30 2C 30 30 30 2C 7F

4541:30 32 31 2C 30 30 30 2C 28

4549:30 30 30 00 72 45 F2 08 94

4551:83 30 30 30 2C 30 30 30 65

4559:2C 30 30 30 2C 30 30 30 Cl

4561:2C 30 30 30 2C 30 30 30 C9

4569:2C 30 30 30 2C 30 30 30 Dl

4571:00 97 45 FC 08 83 30 30 39

4579:30 2C 30 30 30 2C 30 30 F2

4581:30 2C 30 30 30 2C 30 30 FA

4589:30 2C 30 30 30 2C 30 30 03

4591:30 2C 30 30 30 00 BC 45 88

4599:06 09 83 30 30 30 2C 30 A7

45A1:30 30 2C 30 30 30 2C 30 A3

45A9:30 30 2C 30 30 30 2C 30 AB

45B1:30 30 2C 30 30 30 2C 30 B3

45B9:30 30 00 El 45 10 09 83 86 I '
45C1:30 30 30 2C 30 30 30 2C 08 '—'
45C9:30 30 30 2C 30 31 36 2C 20

45D1:30 30 30 2C 30 30 30 2C 18 s (

45D9:30 39 36 2C 30 30 30 00 F6 wJ
45E1:06 46 1A 09 83 30 30 30 42

45E9:2C 30 34 30 2C 30 30 30 D2

45F1:2C 30 30 30 2C 31 36 39 73 \ /

45F9:2C 30 30 34 2C 30 30 32 A4 '~J
4601:2C 31 33 32 00 2B 46 24 D6

4609:09 83 30 32 30 2C 31 33 EB , (.

4611:38 2C 30 30 30 2C 30 38 98 i—)

32 , ,

uJ

Games

4619:32 2C 31 36 38 2C 30 30 56

4621:30 2C 30 37 35 2C 32 32 3B

4629:34 00 50 46 2E 09 83 30 0B

4631:30 30 2C 30 34 37 2C 31 72

4639:36 30 2C 30 30 30 2C 30 40

4641:34 32 2C 31 33 32 2C 30 F7

4649:30 30 2C 30 31 30 00 75 42

4651:46 38 09 83 30 32 30 2C 3F

4659:30 30 30 2C 30 30 32 2C A5

4661:30 38 30 2C 30 30 30 2C AB

4669:30 30 30 2C 30 36 34 2C Dl

4671:30 30 30 00 9A 46 42 09 A3

4679:83 30 30 30 2C 30 30 30 8F

4681.-2C 30 30 30 2C 30 30 30 EB

4689:2C 30 30 30 2C 30 30 30 F3

4691 :2C 30 30 30 2C 30 30 30 FB

4699:00 BF 46 4C 09 83 30 30 8A

46A1:30 2C 30 30 30 2C 30 30 ID

46A9:30 Zc 30 30 30 2C 30 30 25

46B1:30 2C 30 30 30 2C 30 30 2D

46B9:30 2C 30 30 30 00 E4 46 04

46C1:56 09 83 30 30 30 2C 30 F9

46C9:30 30 2C 30 30 30 2C 30 CD

46D1:30 31 2C 30 33 33 2C 30 3A

46D9:30 30 2C 30 30 31 2C 31 E2

46E1:36 39 00 09 47 60 09 83 B9

46E9:30 30 30 2C 30 30 31 2C 34

46F1:30 33 33 2C 30 30 30 2C 5B

46F9:30 30 30 2C 30 33 32 2C 52

4701:30 30 30 2C 30 30 30 00 IF

4709:2E 47 6A 09 83 30 33 32 D3

4711:2C 30 30 30 2C 30 30 30 7D

4719:20 30 33 32 2C 30 30 30 06

4721:2C 30 30 30 2C 30 33 32 95

4729:2C 30 30 30 00 53 47 74 33

4731:09 83 30 30 30 2C 30 33 F3

4739:32 2C 30 30 30 2C 30 30 B7

4741:30 2C 31 36 38 2C 30 30 7F

4749:30 2C 30 30 30 2C 31 38 D0

4751:34 00 78 47 7E 09 83 30 CC

4759:30 30 2C 30 30 30 2C 31 60

4761:38 34 2C 30 30 30 2C 30 6C

4769:30 34 2C 31 38 34 2C 30 D0

4771:36 34 2C 30 30 35 00 9D A4

4779:47 88 09 83 31 36 39 2C 28

4781:30 36 34 2C 30 30 35 2C D7

4789:31 36 39 2C 30 36 34 2C 17

4791:30 30 34 2C 31 36 38 2C 8C

4799:30 36 34 00 C2 47 92 09 B5

n
33

Chapter 1

47A1.-83 30 30 30 2C 30 30 30 B9 ^
47A9:2C 30 30 30 2C 30 30 30 16

47B1:2C 30 30 30 2C 30 30 30 IE l ,

47B9:2C 30 30 30 2C 30 30 30 26 v*i
47C1:00 E7 47 9C 09 83 30 30 E3

47C9:30 2C 30 30 30 2C 30 30 47

47D1:30 2C 30 30 30 2C 30 30 4F j_J
47D9:30 2C 30 30 30 2C 30 30 57

47E1:30 2C 30 30 30 00 0C 48 7E

47E9:A6 09 83 30 30 30 2C 30 4C

47F1:30 30 2C 30 30 30 2C 30 F7

47F9:30 30 2C 30 30 30 2C 30 FF

4801:30 30 2C 30 30 30 2C 30 09

4809:30 30 00 31 48 B0 09 83 6B

4811:30 30 30 2C 30 30 30 2C 5D

4819:30 30 30 2C 30 30 30 2C 65

4821:30 30 30 2C 30 32 30 2C 75

4829:30 30 30 2C 30 30 30 00 49

4831:56 48 BA 09 83 30 38 35 69

4839:2C 30 30 30 2C 30 30 31 A8

4841:2C 30 38 35 2C 30 36 34 11

4849:2C 30 30 35 2C 30 38 35 ID

4851:2C 30 38 30 00 7B 48 C4 51

4859:09 83 30 32 31 2C 30 38 4B

4861:35 2C 30 38 34 2C 30 38 0C

4869:35 2C 30 38 35 2C 30 38 1C

4871:35 2C 31 30 36 2C 31 35 CA

4879:30 00 A0 48 CE 09 83 31 8D

4881:36 39 2C 31 30 31 2C 31 E3

4889:35 30 2C 30 38 39 2C 31 79

4891:30 31 2C 31 35 30 2C 30 12

4899:38 39 2C 31 30 36 00 C5 4D

48A1:48 D8 09 83 31 35 30 2C D0

48A9:31 36 39 2C 31 30 36 2C 2D

48B1:31 35 30 2C 31 36 39 2C Fl

48B9:31 30 36 2C 31 35 30 2C 63

48C1:31 36 39 00 EA 48 E2 09 E6

48C9:83 31 30 36 2C 31 35 30 92 j '
48D1:2C 31 36 39 2C 31 30 36 DB

48D9:2C 31 35 30 2C 31 36 39 42

48E1:2C 31 30 36 2C 31 35 30 FE >

48E9:00 0F 49 EC 09 83 31 36 25 ^J>

48F1:39 2C 31 30 36 2C 31 35 4D

48F9:30 2C 31 36 39 2C 31 30 44

4901:36 2C 31 35 30 2C 31 36 FD \ I
4909:39 2C 30 30 30 00 34 49 7F ^
4911:F6 09 83 30 30 30 2C 30 9F

4919:30 30 2C 30 30 30 2C 30 23 < j

4921:30 30 2C 30 30 31 2C 30 2F t_]

34

u

Games

H

4929:30 30 2C 30 36 34 2C 30 73

4931:30 37 00 59 49 00 0A 83 21

4939:30 36 34 2C 30 36 34 2C A9

4941:30 30 37 2C 30 36 34 2C 90

4949:30 30 30 2C 30 34 39 2C B9
4951:30 30 30 2C 30 30 34 00 7B

4959:7E 49 0A 0A 83 30 30 30 CC

4961:2C 30 31 30 2C 30 33 32 F9

4969:2C 30 30 30 2C 30 31 34 DF

4971:2C 30 30 30 2C 31 32 38 Fl

4979:2C 30 30 30 00 A3 49 14 6C

4981:0A 83 30 30 32 2C 31 33 DA

4989:36 2C 31 39 32 2C 30 36 D4

4991:36 2C 30 34 32 2C 31 33 6B

4999:31 2C 30 30 30 2C 31 36 A3

49A1:38 00 C8 49 IE 0A 83 30 4E

49A9:30 30 2C 30 34 38 2C 30 F3

49B1:34 33 2C 30 33 32 2C 30 9E

49B9:30 32 2C 31 36 38 2C 30 A4

49C1:31 32 2C 30 31 36 00 ED 52

49C9:49 28 0A 83 30 33 32 2C 63

49D1:31 32 38 2C 30 30 30 2C 22

49D9:30 30 30 2C 30 34 30 2C 38

49E1:30 30 33 2C 30 30 30 2C 90

49E9:30 36 34 00 12 4A 32 0A D0

49F1:83 30 34 38 2C 30 30 30 0F

49F9:2C 30 30 30 2C 30 30 30 6A

4A01:2C 30 31 36 2C 30 31 36 FB

4A09:2C 31 33 31 2C 30 30 30 2C

4A11.-00 3B 4A 3C 0A 83 31 31 73

4A19:36 2C 31 36 30 2C 30 30 20
4A21:30 2C 31 31 36 2C 30 30 05

4A29:30 2C 30 30 30 2C 30 31 AD
4A31:36 2C 30 30 30 2C 32 35 C0

4A39.-36 00 00 00 00 00 00 00 E8

35

u

Hex War
________________________ iji

Todd Heimarck

You float high above a distant planet, controlling robot armies be- lJ
low. Can you take control of the priceless mining turf planetside, or

will your opponents robot crews prevail? To win at this thought
fully designed, engaging strategy game, you'll need foresight and
conceptual skills rather than a quick hand. A joystick is required.

"Hex War" is a two-player strategy game that can be played

five different ways, and there are limitless variations. But the

basic premise is always the same: You and an opponent move

armies on a field of hexagons, attempting to capture territory.

The goal of the first two games is simple: capture the

other player's capital city. In game 1, the capital cities are far
apart; you must devote some of your armies to defending your

own capital while attempting to breach the walls of the other

capital. Game 2 puts the capitals near each other, so offense

and defense tend to merge in this scenario. Most of the action

takes place within a small area of the battlefield.
Games 3 and 4 spread the action over a wider area. In the

third game, your objective is to occupy 8 of the 12 cities on

the game board. Six cities occupy the periphery, and 6 are in

the center of the playing field. Game 4 requires actual control

of 6 cities; you must have an army in the city, one that's not

involved in a battle, before you're credited with control (this

version will probably take the longest time to play).

Although the first four scenarios encourage a commitment

to battle, you employ different tactics in the fifth. The goal f

here is to acquire 40 of the 61 hexes, so you need some free I—/
armies to move around. As soon as you claim 40 hexes, you

win the game. , ;

Lj

Typing It In

Hex War is written in BASIC, with some important infor- ^J

mation in DATA statements. Type in the program, and be sure

to save a copy. After you've saved the game, type RUN to be

gin playing. M

36

Games

When you first run Hex War, the computer pauses to set

up the screen; then it displays a menu of five choices. The five
different games are explained in detail below. If you're new to

the game, press the 1 key to choose game 1. There will be an

other short pause while the variables are initialized, and then

you'll see a playing field with 61 hex shapes, containing four
armies on each side.

"Hex War" is an absorbing strategy game with

many variations.

Hexes and Hexadecimal

A chess board has 64 squares arranged in a rectilinear grid.

Hex War gives you a playing field of 61 hexagons (almost as

many spaces as a chess board), but they're part of a six-sided

honeycomb field. If you've played war games before, you may
recognize the hexes. Plug in the joystick before playing (use

M port 2). At first, the cursor movement may seem unusual. The

cursor travels not up-down/left-right, but northeast-southwest/

northwest-southeast. To make the movement less confusing,

Pj turn your joystick 45 degrees clockwise so that what was up
becomes northeast, and so forth.

Each hex has six neighbors, so an army can move in six

f"j possible directions. To travel left and right, you'll have to push
the joystick twice (for example, up and right on the joystick to

move one hex to the right, which counts as one movement).

n
37

Chapter 1

Army strengths are listed in hexadecimal (base 16) num- * '
bers, so the four armies labeled 40 actually have strengths of

64 (the hexadecimal value 40 equals 64 in our everyday deci- '] (

mal numbering system). At the beginning of a turn, any army v~'

has exactly three movement points. It requires one point to

move an army into a neutral or enemy-controlled zone. To I j

move through the same zone also requires a point. To move ^
into and through a friendly hex requires a total of one point.

This means you can move a single army through two neutral

or enemy hexes in any one turn, but the same army can move

through up to three friendly zones during a turn.

Select an army by moving the cursor onto it. Click the

joystick button once; then position the cursor on a neighboring

hex and click again. If you want to stop, click again. Two plus

signs (+ +) will appear, signaling that no more movement can

occur. Otherwise, position the cursor on another neighboring

hex and click.

Zones of Control

Each army controls the six contiguous hexes surrounding its

resident hex. If you enter an enemy's zone of control, you for

feit any additional moves and must prepare for battle. In addi

tion, an army that begins the turn in a zone of control cannot

move until the battle is resolved.

Robots Vs. Robots

In this game, you aren't really on the planet, but parked high

above it in a remote mothership. You've landed some robots

to explore the area, and they've encountered robots belonging

to another explorer. Your robots, or bots as you call them, fol

low your orders to advance toward the other bots. Each bot

has a mining laser which can stop or disable the other bots. j^J
Also, your bots have disruptor beams which can daze another

bot, temporarily confusing it. When two bot groups come close

to each other, they shoot lasers and disruptors until one army \^J

of bots is disabled. ^
Three things can happen to a robot that suffers a hit. If

the robot suffers a direct hit by a laser in its logic unit, it is va-] j

porized. It is destroyed forever and never reappears in play.

The second thing that can happen is injury. If the laser

beam is deflected, the robot is out of commission until it can j^J

38

u

Games

be transported back to a botspital. An injured bot is frozen in

place until the battle is finished, after which the victorious

p"*{ army carts away the injured bots to be repaired and reused.
Thus, winning a battle means you evacuate both the

friendly injured and the enemy injured. After all of the injured

P""} bots recover, they join the force in whose botspital they were
healed. In effect, injured bots eventually become members of

the army that won the battle in which they were damaged.

The third possibility is confusion: The robot is temporarily

disoriented for two turns. When that time has passed, the ro

bot is ready again.

Reprogramming Bots

Moving the cursor onto an army of robots brings up a status

window in the upper left corner of the screen. The number in

reverse video is unimportant; it's the army number (which

may change as the game progresses).

The four numbers underneath, however, are significant.

The first is the army's active strength (in decimal). The second

is the number of injured robots that will be transported to the

botspital of whichever side wins the battle. The third—on the

line below—is the number of disrupted robots who will be

available for combat in the next turn. The fourth number is

the number of robots that can join the active force two turns
from now.

If one side is able to reduce the other player's active force

to zero, two things happen. The winner sends all injured bots

away to be repaired. The winning side also collects all enemy

bots (injured or dazed) and sends them to the reinforcement

center to be reprogrammed. Eventually, all these bots will be

available to the winner of this particular battle for future
£—i engagements.

Reinforcements and Mergers

P] At the start of the game, you'll see some armies positioned
outside the hex field. These are reinforcements and reserves in
transit to the battle. Player l's reinforcements enter at the bot-

i > torn right corner; player 2's enter at the top left. The line of

new armies moves counterclockwise; the army next to the en-

r_ try point is the next to enter the battlefield.

Ij However, the reinforcements cannot enter the battlefield

n

Chapter 1

if an army (friendly or enemy) is blocking their way. Keep

your armies off your own reinforcement point, and try to

block your opponent's armies from this area if you can. If the

entry hex is owned but not occupied by your opponent, you'll

lose some reinforcements.

After completing a turn, you are credited with additional

reinforcements according to how much territory you own.

Passing over a hex allows you to claim it; the hex changes

color to indicate ownership. Each piece of property provides

enough ore and energy to build a new robot, available for use

two turns in the future. The numbers in the line of reinforce

ments are updated after you move to show additional robots

being built.

Winning a battle also provides additional armies in the

line of reinforcements. As mentioned above, a victorious army

captures any dazed enemy bots, which are reprogrammed and

available in three turns. At the same time, the winner evacu

ates injured bots of both sides. Transportation and repair take

five turns for friendly bots; seven for enemy bots. The two ad

ditional turns are needed for reprogramming the opponent's

forces.

If you're losing a battle, the number of injured robots (dis

played in the status window) will begin to rise. Remember

that, if your opponent reduces your active strength to zero, he

or she will capture all of your injured bots; they'll be repro

grammed and added to future reinforcements. To prevent this

from happening, you're allowed to bring in a second army for

merging. Simply move another army on top of the army with

which you want to merge. There's just one rule: One or both

of the armies must have a strength less than 32 decimal (IF or

less in hex).

Customizing the Scenarios

The five built-in scenarios provide plenty of variety, but if

you'd like to add more challenges, here are some suggestions.

But first, a note about the logical organization of the grid. The

variables T and B, CT and CB, and HT and HB are used to lo

cate the coordinates on the playing field (see figure). The first

number is T (or HT or CT); the second is B (or HB or CB).

These coordinates are also used in the three-dimensional MAP

array (where level 0 of the array is the army number, 1 is the

current owner, and 2 keeps track of whether or not a city is

40

Games

located there). They're also part of the ARMY array. By vary

ing the starting position, number of armies, reinforcement

strengths, and location of cities, you could simulate historic

battles.

T and B Coordinates

_.A% ^Xs _,±.,^ ^A^ ,A

j[" 4,8 "j" 5,7 "£ 6,6 "j' 7,5 "j 8,4

[\),8]I* 1,7]1] 2,6 "1] 3,5 "1^ 4,4£ 53 I 6.2£ 7,1 J 8,0]

X^XXXXXXy
T 0,6 I 1,5 1 2,4 I 3,3 I 4,2 I 5,1 f 6,0

". ." °« »a -. «» V, • '"V, -" "» »" "»

T °'5 1 W I 2'3 I 3'2 I 4'1 I 5'° J
1 0,4 J W I 2,2 J 3,1 X 4»° J

■td tt" V V Y

Note: The first number is the T coordinate; the second, the B coordinate.

To add or subtract cities from the field, change the value

of CN in line 50. You'll also have to change the DATA state

ments in lines 270 and 280. The numbers there are the T and

B coordinates of the cities.

The strengths and locations of the armies can be changed

\\ as well. The DATA statements starting at line 1540 determine

the strength (64) and T/B coordinates for the armies at the be-

^ ginning of the game. If you wish to start with more armies (or

/ (fewer), you'll have to change the inner FOR-NEXT loop (with

the index of K) in line 1500. In that same line, change NX(J) to

^ one number higher than the number of armies on each side.

>,) For example, if you want six armies apiece, change NX(J) to 7.

The subroutine at line 1600 sets up the reinforcements; if you
^^ don't like the random patterns, change the formula here.

/ J Variables defined in lines 70-90 control the play of the

n

Chapter 1

U

game. PN determines which player goes second; it can be

either zero or one. Variable ME controls the maximum merge

strength. If you'd like to be able to merge any two armies,

change it to a high value (512, for example). To remove the

merge option altogether, change ME to zero.

The movement points are defined by MM in line 80.

Movement across friendly territory takes one point; across

neutral or hostile territory, two points. Increasing MM will

give your armies greater mobility. The three variables KA, KB,

and KC affect the outcome of individual battles. KA deter

mines how many bots are vaporized, KB controls the number

injured, and KC affects how many are dazed. If you make the

fractions smaller (1/24, for example), the battles end more

quickly. The subroutine starting at line 2600 resolves current

battles.

Hex War

For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in
this program.

MM 10 IF PEEK(46)<>64 THEN GRAPHIC1:GRAPHIC0:FAST:

FORJ=0TO15:COLOR4,J+1:K=J*128:FORL=KTOK+127:

BANK14:J1=PEEK(53248+L):BANK0:POKE12288+L,Jl

:NEXTL#J

FB 20 BANK15:POKE217,4:POKE2604,28:SLOW

PD 30 DIMJ,K,HT,HB,CT,CB,J1,J2,A,B,C#D,E

PK 40 DIM ARMY(31,6,1),BTL(64,1,3),MAP(9,9,2),FQ(2

BQ 50 CN=12:DIM CIT(CN,1)

BC 60 A=RND(-Tl/97):P0$="{BLU}{OFF}g2 P§{DOWN}

{2 LEFT}g6lB*l£":Pl$=ll{YEL} {RVS}£B*1 {OFF}
{DOWN}{2 LEFT}TPUR}g2 Yl"

EP 70 PN=1:ME=31

CE 80 MM=3: REM MAX MOVES

JG 90 KA=l/48:KB=l/48:KC=l/32

BX 100 BANK15:POKE217,4:POKE2604,28 ,

SM 110 FORJ=1TO4:READA LJ
FQ 120 FORK=ATOA+7:READB:POKEK,B:NEXTK,J

RA 130 DATA 12936,240,240,63,15,3,3,3,3

AS 140 DATA 12984,15,15,252,240,192,192,192,192 \j
PP 150 DATA 12840,3,3,3,3,15,63,240,240

BJ 160 DATA 12944,192,192,192,192,240,252,15,15

RG 170 FORJ=0TO63:READK:POKE3584+J,K:NEXT i ^

CC 180 DATA0,255,0,15,195,240,63,0

KM 190 DATA252,48,0,12,48,0,12,48

AE 200 DATA0,12,48,0,12,48,0,12

GD 210 DATA48,0,12,48,0,12,48,0 [

42

LJ

Games

JA 220 DATA12,48,0,12,48,0,12,48

EG 230 DATA0,12,48,0,12,48,0,12

^ KB 240 DATA48,0,12,48,0,12,63,0

I ' BK 250 DATA252,15,195,240,0,255,0,0
PQ 260 FORJ=1TOCN:FORK=0TO1:READ CIT(J,K):NEXTK:MA

rmf P(CIT(J,0),CIT(J,1),2)=1:NEXTJ: REM T&B OF

1 | {SPACE}CITIES

ER 270 DATA 8,4,0,4,8,0,0,8,4,0,4,8

JQ 280 DATA 5,5,3,3,6,3,2,5,5,2,3,6

XK 300 GOSUB600:GOSUB3200:GOSUB600:REM GAME

JS 310 CHAR1,6,11:PRINT"{BLU}{RVS}{2 SPACES }L|<M§

{2 SPACES}X.BY§{ 2 SPACES}MN{4 SPACES} gG§gM3
{2 SPACES }NM{ 2 SPACES }OMT"2 SPACES}11

EP 320 CHAR1,6,12:PRINT"{PUR}TRVS}{2 SPACES}gG|&M§
{2 SPACES}LBPit2 SPACES}NM{4 SPACES}NM

{2 SPACES}OBM§{2 SPACES}fG§M{2 SPACEST

{HOME} I RED} I OFF]11;

SM 330 PRINTSPC(10);"PLEASE WAIT A MOMENT"

FJ 340 GOSUB1500

ME 400 DO

GR 410 POKE208,0

QX 420 GOSUB1900:GOSUB600:GOSUB1710:REM FIND BATTL

ES

QG 430 COLOR4,7-2*PN:GOSUB800:REM JOYSTICK

CG 440 FAST:COLOR4,9:GOSUB2100:REM BATTLES AGAIN

JJ 450 COLOR4,3:GOSUB2600:REM RESOLVE

EB 460 COLOR4,1:GOSUB2100:REM POST-BATTLE

AA 470 COLOR4,16:GOSUB2200:REM SPLIT PRISONERS

JP 480 GOSUB 2900:REM REINFORCEMENTS

HB 490 SLOW:COLOR4,8:GOSUB3400

HS 500 PN=1-PN

DS 510 LOOP

JA 600 COLOR4,2:COLOR0,2:COLOR5,16:SCNCLR:PRINT:PR

INT:SPRITE1,0

CB 610 FORJ=1TO5:PRINTSPC(13-2*J);:FORK=1TOJ+3:PRI

NT MER{ 2 SPACES } " ; :NEXTK:PRINT "ER"

CS 620 PRINTSPC(12-2*J);:F0RK=lT0J+4:PRINT"W

f1"] {2 SPACES }QM ; :NEXTK:PRINT:NEXTJ
'- -' QX 630 FORJ=1TO5:PRINTSPC(J*2) ; :FORK=1TO10-J:PRINT

11 R{2 SPACES }E" ; :NEXTK:PRINT

r^ SS 640 PRINTSPC(J*2+1);:FORK=1TO9-J:PRINTMQW

/ C t2 SPACES}11; :NEXTK:PRINTMQWH
PX 650 NEXTJ

^ CD 660 C$=MUI{DOWN}{2 LEFT}JKM:D$=M{RVS}gV3gC§

f\ {D0mT{2 LEFTjgFliDa71"
MJ 670 COLOR5,3:FORJ=1TO12:GOSUB710:NEXT

HQ 680 J=1:COLOR5,7:IFGN=1THENC$=D$:GOSUB710:J=2:C

OLOR5,5:GOSUB710

n

n
43

Chapter 1

RB 690 IFGN=2THENC$=D$:GOSUB710:J=3:COLOR5,5:GOSUB

710

SH 700 PRINT"{HOME}"?:RETURN

KB 710 K=CIT(J,0):L=CIT(J,l):X=(K-L)*2+19:Y=(12-(K

+L))*2+3:CHAR1,X,Y,C$:RETURN

FF 800 IFNX(PN)<2THENRETURN

AX 805 HT=4:HB=4:GOSUB1000:SPRITE1,1,1,0

KE 810 MV=0:CT=0:CB=0:PK=0:REM PICKED UP OR NOT

HS 820 K=0:FORJ=1TONX(PN)-1:IF(ARMY(J,0,PN)>0)AND(

ARMY(J,6,PN)<1)THENK=1:J=NX(PN)-1

KX 830 NEXTJ:IFK=0 THEN RETURN

SB 840 GETG$:IFG$=CHR$(13)THENRETURN
HD 850 J=JOY(2):IFJ=0THEN840:ELSE IF(JAND128)THEN1

100:ELSE IF(JAND1)=0THEN840

KK 860 J=(J-1)/2:IFJAND1THENB1=HB+J-2:T1=HT:ELSET1

=HT+1-J:B1=HB

HD 870 IF (TK0)OR(T1>8)THEN840

FP 880 IF (BK0)OR(B1>8)THEN840

KC 890 S1=T1+B1:IF(SK4)OR(S1>12)THEN840

EM 900 HB=B1:HT=T1:GOSUB1000:WINDOW1,1,8,4,1:QN=MA

P(HT,HB,0):IFQN=0THENPRINT"{2 HOME}";:GOTO8

40:ELSE Q1=MAP(HT,HB,1)-1

JF 910 COLOR5,7-2*Q1:PRINTUSING"{RVS}##";QN;:PRINT

"******{OFF}E53";

RH 920 FORJ=0TO3:PRINTUSING"####"7ARMY(QN,J,Q1);:N

EXT

DD 930 PRINT"{2 HOME}M;:GOTO840

PA 1000 SX=172+16*(HT-HB):SY=264-16*(HT+HB)

KC 1010 M0VSPR1 SX SY

SA 1020 IF MAP(HT,HB,2)=1THENSPRITE1,1,3,0:RETURN

KP 1030 SPRITE1,1,1,0:RETURN

CX 1100 IFJOY(2)O0THEN1100

FE 1110 IFPK=1THEN1200:REM PICKEDUP, CHECK IF OK

FD 1120 IF((MAP(HT,HB,1)<>PN+1)OR(MAP(HT,HB,0)=0))

THENGOTO810:REM NO ONE HOME

XE 1130 AN=MAP(HT,HB,0):IFARMY(AN,6 ,PN) O0THEN810 :

REM ARMY AN IS ENGAGED

SD 1140 PK=1:CT=HT:CB=HB:CS=ARMY(AN,0,PN):REM T&B,

CURRENT STRENGTH

DP 1150 SOUND1,5000,10

MK 1160 GOTO840

XP 1200 J=((HT=CT)AND(HB=CB))

AQ 1210 IFJAND(MV=0)THEN810

RE 1220 IFJAND(MV>0)THEN1420

MH 1230 AS=ARMY(MAP(HT,HB,0),0,PN):IF((AS>ME)AND(C

S>ME))OR((MAP(HT,HB,1)-1=1-PN)AND(AS>0)) T

HEN840

FB 1240 DT=ABS(CT-HT):DB=ABS(CB-HB):TL=DB+DT:IF NO

T((TL=1)OR((CT+CB=HT+HB)AND(DT=1)))THEN840

44

i r

H

H

Games

FS 1250 MG=MAP(HT,HB,0): IF MG=0THEN1300

AE 1260 FORJ=0TO3:ARMY(MG,J,PN)=ARMY(MG,J,PN)+ARMY

(AN,J,PN):ARMY(AN,J,PN)=0:NEXTJ
SM 1270 ARMY(MG,6,PN)=1:MAP(CT,CB,0)=0

AD 1280 CS=ARMY(MG,0,PN):AN=MG:MV=MM+l
RH 1290 GOTO 1380

FF 1300 N8=MAP(HT,HB,1)-1:MV=MV+1:IF(N8<>PN)THENMV
=MV+1

DK 1310 MAP(CT,CB,0)=0

SA 1320 MAP(HT,HB,0)=AN:MAP(HT,HB,1)=PN+1:ARMY(AN,
4,PN)=HT:ARMY(AN,5,PN)=HB:IF MV>=MMTHEN AR

MY(AN,6,PN)=1

KR 1330 K=0:FORJ=-1TO1STEP2:J1=HT+J:J2=HB+J:J3=HB-

J:IF(JK0)OR(J1>8)THEN1340:ELSE IF(MAP(J1,

HB,0)>0)THENIF(MAP(Jl,HB,1)=2-PN)THENK=1:J

=1:GOTO1360

BR 1340 IF(J2<0)OR(J2>8)THEN1350:ELSE IF(MAP(HT,J2

,0)>0)THENIF(MAP(HT,J2,1)=2-PN)THENK=1:J=1
:GOTO1360

KE 1350 IF(J3<0)OR(J3>8)OR(JK0)OR(J1>8)THEN1360:E
LSE IF (MAP (J1,J3,0)>0) THENIF (MAP (J1,J3,1)=
2-PN)THENK=l:J=l

HK 1360 NEXTJ: REM ZOC

AS 1370 IFK=1THEN ARMY(AN,6,PN)=1:MV=MM+1

EG 1380 A=PN:J=CT:K=CB:C=0:D=0:GOSUB1830

QP 1390 J=HT:K=HB:C=CS:D=ARMY(AN,6,PN):GOSUB1830
XJ 1400 CT=HT:CB=HB

MQ 1410 IFMV<MMTHEN840

HA 1420 ARMY(AN,6,PN)=1:J=HT:K=HB:C=CS:D=1:GOSUB18
30

SG 1430 GOTO810

FC 1500 RESTORE1540:FORJ=0TO1:NX(J)=5:FORK=1TO4:RE

ADA,B,C

QM 1510 ARMY(K,0,J)=A:ARMY(K,4,J)=B:ARMY(K,5,J)=C:
MAP(B,C,0)=K:MAP(B,C,1)=J+1

BJ 1520 NEXTK,J

EK 1530 REM STRENGTH, T-POS, B-POS

JD 1540 DATA 64,2,8,64,3,7,64,5,6,64,6,6:REM BLUE

QP 1550 DATA 64,2,2,64,3,2,64,5,1,64,6,0:REM VIOLE

T

JK 1600 REM SET RANDOM REINFORCEMENTS

AS 1610 FORJ=0TO1:FORK=0TO20

QM 1620 A=INT(RND(1)*K*3):FORL=1TO5:A=A+INT(RND(1)

*21-8):NEXTL:IFA<16THENA=0:ELSEA=(A+K*8)AN
D254

HA 1630 FQ(K,J)=A:NEXTK,J

RG 1640 RETURN

EH 1700 REM ARMIES->MAP

SC 1710 FORJ=0TO8:FORK=0TO8

45

Chapter 1

u

FX 1720 A=MAP(J,K,1):IFATHENA=A-1:GOSUB1800

HH 1730 NEXTK,J

PH 1740 FORA=0TO1:E=13+A*12:F=A*22:DX=2-4*A:D=0

PF 1750 FORJ=0TO8:C=FQ(J,A):GOSUB1840

HF 1760 E=E+DX*2:IFJ>3THENF=F+DX:E=E-DX

XC 1770 NEXTJ,A

CA 1780 RETURN

QC 1800 B=MAP(J,K,0)

PH 1810 C=ARMY(B,0,A)

BK 1820 D=ARMY(B,6,A)

FJ 1830 E=(J-K+10)*2-1:F=(13-J-K)*2+1: REM T&B TO

{SPACE1X/Y

SC 1840 CHAR1,E,F:IFATHENPRINTP1$:ELSEPRINTP0$

MH 1850 IFC=0THENRETURN

PP 1860 COLOR5,(7-2*A):CHAR1,E,F+A

HR 1870 PRINTCHR$(18);RIGHT$(HEX$(C),2);CHR$(146)

RD 1880 IFDTHENF=F+1-A:G=1024+E+F*40:POKEG,43:POKE

G+1,43:REM ++

XK 1890 RETURN

GC 1900 SW=0:E=NX(PN)-1:1FE <1THENRETURN

XJ 1910 FORJ=1TOE-1:IFARMY(J,0,PN)<1THENBEGIN

SE 1920 T=ARMY(J,4,PN):B=ARMY(J,5,PN):IFMAP(T,B,0)

=JTHENMAP(T,B,0)=0

BP 1930 FORK=JTOE:FORL=0TO6:ARMY(K#L,PN)=ARMY(K+1,

L,PN):ARMY(K+1,L,PN)=0:NEXTL

JQ 1940 T=ARMY(K,4,PN):B=ARMY(K#5,PN):MAP(T,B,0)=K

PH 1950 NEXTK

MA 1960 NX(PN)=NX(PN)-1:J=E:SW=1:BEND

FJ 1970 NEXTJ:IF SW THEN1900

MG 2000 FORJ=1TOE:ARMY(J,0,PN)=ARMY(J,0,PN)+ARMY(J

,2#PN)

SD 2010 ARMY(J,2,PN)=ARMY(J,3,PN):ARMY(J,3#PN)=0

QS 2020 ARMY(J,6,PN)=0

PP 2030 NEXTJ:K=NX(1-PN):FOR J=1TOK:ARMY(J#6#1-PN)

=0:NEXT

XF 2040 GOSUB2400

DS 2050 IFBP>0 THEN FORJ=0TO1:FORK=1TOBP:A=BTL(K#J
,0)2ARMY(A,6,J)=ARMY(A,6,J)+1:NEXTK,J

CA 2060 RETURN

KG 2100 GOSUB2400

BX 2110 A=NX(0):IFNX(l)>ATHENA=NX(l)

EX 2120 FORJ=0TO1:FORK=1TOA:ARMY(K,6,J) =0:NEXITK,J

GP 2130 GOSUB2050

SH 2140 RETURN

PB 2200 FORJ=0TO1:A=1-J:B=NX(J)-1

DD 2210 FORK=1TOB

EM 2220 IF ARMY(K,0,J)<1 THEN BEGIN

Lj

46

Games

JC 2230 PQ(2,A) =FQ(2,A)+ARMY(K,2,J)+ARMY(K,3,J) :IF
FQ(2,A)>255 THEN C=FQ(2,A) -255 :FQ(3,A)=FQ
(3,A)+C:FQ(2,A)=255

JX 2240 FQ(6,A)=FQ(6,A)+ARMY(K,1,J):IF FQ(6,A)>255

THEN C=FQ(6,A)-255:FQ(7#A)=FQ(7,A)+C:FQ(6
,A)=255

JQ 2250 IF (MAP(ARMY(K,4,J),ARMY(K,5,J),0)=K)AND(M
AP(ARMY(K,4,J),ARMY(K,5,J),1)=J+1) THEN MA

P(ARMY(K,4,J),ARMY(K,5,J),0)=0

RB 2260 FORL=0TO6:ARMY(K,L,J)=0:NEXTL
BB 2270 BEND

FR 2280 IF ARMY(K,6,J)<1 THEN BEGIN:REM EVACUATE I

NJURED

AE 2290 FQ(4,J)=FQ(4.J)+ARMY(K,1,J): ARMY(K,1,J)=0

DJ 2300 IF FQ(4,J)>255 THEN C=FQ(4,J)-255:FQ(5,J)=

FQ(5,J)+C:FQ(4,J)=255
KA 2310 BEND

XP 2320 NEXTK,J .-RETURN

SJ 2400 BP=0

KG 2410 FORJ=0TO8:Jl=(J-4)*(4-J>0):J2=8-(J>4)*(4-J

):FORK=J1TOJ2

JE 2420 A=MAP(J,K,0)

HQ 2430 R=MAP(J#K,1)

BG 2440 IF (A=0)OR(R=0) THEN2490

KQ 2450 IF ARMY(A,0,R-1)<1 THEN2490

DK 2460 T=J+1:B=K:GOSUB2500

HK 2470 B=B-1:GOSUB2500

BP 2480 T=T-1:GOSUB2500

RH 2490 NEXTK#J:RETURN

RR 2500 IF(T<0)OR(B<0)OR(T>8)OR(B>8)THEN RETURN

MA 2510 PA=MAP(T,B,0):IF PA=0 THEN RETURN

FG 2520 IF MAP(T,B,1)=R THEN RETURN

FX 2530 IF ARMY(PA,0,2-R)<1 THEN RETURN

MA 2540 BP=BP+1:BTL(BP,R-1,0)=A:BTL(BP,2-R#0)=PA:R
ETURN

CF 2600 IFBP=0THENRETURN

FC 2610 FORJ=1TOBP

XM 2620 FORK=0TO1:A=1-K

QX 2630 AN=BTL(J,K,0)

BF 2640 AS=ARMY(AN,0,K) :HT=ARMY(AN#6 ,K) :CT=INT(AS/
HT)+1

GH 2650 BTL(J,A,1)=INT(CT*KA+1)

JC 2660 BTL(J,A,2)=INT(CT*KB+1)

MB 2670 BTL(J,A,3)=INT(CT*KC+1)
XC 2680 NEXTK,J

MD 2700 FORJ=1TOBP:J0=BTL(J#0#0):J1=BTL(J#1#0)
BR 2710 GOSUB3100

CG 2720 ARMY(J0#0,0)=ARMY(J0,0,0)-A*BTL(J,0,1)
SK 2730 ARMY(J1,0,1)=ARMY(J1,0,1)-B*BTL(J,1,1)

47

Chapter 1

======= U

MS 2740 GOSUB3100 s—
BC 2750 OA*BTL(J,0,2):ARMY(J0,0,0)=ARMY(J0,0,0)-C

:ARMY(J0,1,0)=ARMY(J0,1,0)+C ,

FJ 2760 OB*BTL(J,1,2) :ARMY(Jl #0 ,1)=ARMY(Jl ,0 ,1)-C i *■■

:ARMY(Jl#1,1)=ARMY(Jl,1,1)+C

QD 2770 GOSUB3100

AX 2780 C=A*BTL(J,0,3):ARMY(J0,0,0)=ARMY(J0,0,0)-C I I
:ARMY(J0,3,0)=ARMY(J0,3,0)+C ^

FF 2790 C=B*BTL(J,1,3):ARMY(Jl,0,1)=ARMY(J1,0,1)-C

:ARMY(Jl,3,1)=ARMY(Jl,3,1)+C

XP 2800 NEXTJ

CB 2810 RETURN

GQ 2900 A=1-PN:B=0

GG 2910 FORJ=0TO8:FORK=0TO8

PA 2920 IFMAP(J,K,1)=PN+1THENB=B+1

KD 2930 NEXTK,J

JB 2950 FQ(1,PN)=FQ(1,PN)+B: IF FQ(1,PN)>255 THEN

{SPACE}B=FQ(1,PN)-2 55:FQ(2,PN)=FQ(2,PN)+B:

FQ(1,PN)=255

GQ 2960 T=4:B=PN*8

SJ 2970 IF MAP(T,B,0)<>0 THEN RETURN

JK 2980 IF MAP(T,B,1)=PN+1 THEN FQ(0,A)=0:FQ(l,A)=

0:GOTO3060

XS 2990 J=NX(A):IFJ>31THENRETURN

HR 3000 J1=FQ(0,A) :IF JK1 THEN3060

EP 3010 NX(A)=NX(A)+1

XE 3020 MAP(T,B,0)=J:MAP(T,B,1)=A+1

BK 3030 ARMY(J,0,A)=J1
QR 3040 FORK=1TO3:ARMY(J,K,A)=0:NEXTK

PM 3050 ARMY(J,4,A)=T:ARMY(J#5,A)=B

KH 3060 FORK=0TO19:FQ(K,A)=FQ(K+1,A):NEXTK

PK 3070 FQ(20#A)=0

BA 3080 RETURN

FS 3100 A=0:FORM=1TO6:IFRND(1)<.5THENA=A+1

AH 3110 NEXTM:B=6-A:RETURN

PS 3200 WINDOW6,7,33,16,1

EJ 3210 PRINT"E7H2 M§B2 L§{RVS}B2 KlBJ3BHiBGl SCE

FB 3220 PRINT M {LEFT JBGlBMil 2 SPACES }1> CAPTURE CAP 'k—'
ITAL/FAR{2 SPACES}BG3";

QX 3230 PRINT"BMl{2 SPACES}2> CAPTURE CAPITAL/NEAR , ,

GQ 3240 PRINT"BMl{2 SPACES}3> 0CCUPY{3 SPACES}8/12
CITIES BG§";

AR 3250 PRINTHBMl{2 SPACES}4> C0NTR0L{2 SPACES]6/1

2 CITIES BG3";
DJ 3260 PRINT"BMl{2 SPACES}5> 0CCUPY{2 SPACESJ40/6

1 HEXES{2 SPACES JBG1BM311; :PRINTSPC(26) ; "

48

i /
i—i

Games

n

SQ 3270 PRINT"g2 Mjjg2 L§{RVS}B2 3iigig§

{10 SPACES }BM3ENlEL3{ OFF }B3 K3gJig2 G§"
GE 3280 GETKEYA$:GN=VAL(A$)2lFGN<lORGN>5THEN3280

DP 3290 CHAR1,2,1+GN,"Z£":SLEEP1:PRINT"{2 HOME}11
PX 3300 RETURN

GS 3400 A=0:ON GN GOSUB 3430,3450,3480,3490,3580

JD 3410 IFA=0THENRETURN:ELSEEN$=C$:QQ=A:GOSUB600:G
OSUB1710:A=QQ

KD 3420 PRINT "{HOME} PLAYER"; A;11 WINS":PRINTEN$:PRI
NT"(PRESS ANY KEY) w :POKE208,0 :GETKEYA$: RUN

BB 3430 IF MAP(CIT(2,0),CIT(2,1),1)=1THENA=2:C$="B
LUE CAPTURED THE CAPITAL": RETURN

CR 3440 GOTO3460

SG 3450 IF MAP(CIT(3,0),CIT(3,1),1)=1THENA=2:C$="B
LUE CAPTURED THE CAPITAL": RETURN

KB 3460 IF MAP(CIT(1,0),CIT(1,1),1)=2THENA=1:C$="V
IOLET CAPTURED THE CAPITAL"

FP 3470 RETURN

BC 3480 L=8:GOTO3500

JB 3490 L=6

FG 3500 C(1)=0:C(2)=0

PK 3510 FORJ=1TO12:T=CIT(J,0):B=CIT(J,1)

MB 3520 R=MAP(T,B,1):C(R)=C(R)+1

DB 3530 IF GN=4THEN AN=MAP(T#B,0):IF R>0 THEN IF (

AN=0)OR(ARMY(AN,6,R-1)>0)THEN C(R)=C(R)-1
KJ 3540 NEXTJ

CB 3550 IF C(l) = > L THEN A=2 :C$="BLUE HAS CAPTURED

"+STR$(C(1))+" CITIES": RETURN

QF 3560 IF C(2)=> L THEN A=l:C$="VIOLET HAS CAPTUR
ED"+STR$(C(2))+" CITIES"

AB 3570 RETURN

RK 3580 C(1)=0:C(2)=0

PP 3590 FORJ=0TO8:FORK=0TO8

KM 3600 R=MAP(J,K,1):C(R)=C(R)+1

SR 3610 NEXTK,J

CE 3620 IF C(1)=>40THENA=2:C$="BLUE OCCUPIES"+STR$

(C(l))+" HEXES":RETURN

RK 3630 IF C(2)=>40THENA=1:C$="VIOLET OCCUPIES"+ST

R$(C(2))+" HEXES"

DF 3640 RETURN

H
49

u

Pig$ for Buck$

Bruce Willis and Dave Zeigler

Both children and adults will have hours of fun with this innovative

and amusing game. The object is to catch each of your squealing

and elusive pigs so that you can take them all to market And, as
you'll see, keeping your overalls clean—a must as far as meticulous
Farmer Brown is concerned—means you'll have to stay clear of the

mud puddles. A joystick is required.

As soon as we set eyes on the sprite and sound commands of

Commodore's BASIC 7.0, we wanted to see if it was possible

to write an arcade-style game almost entirely in BASIC. The

result was "Pig$ for Buck$," a nonviolent game that's fun for

children and adults. Just one word of warning: The game is

extremely habit-forming. And it's somewhat difficult: No one

has yet made it past level 11.

Farmer Brown raises pigs, and now he must catch them to

take them to market. But the price of pigs is dropping, so he

must get there quickly to insure a profit.

Farmer Brown is somewhat vain—he must have clean

overalls to wear to market. The pigsty, however, is naturally

slippery and full of mud puddles. Stepping in the mud or

touching the electric fence will certainly cause him to slip and

fall. His clean overalls will get muddy. But if he does fall, all

is not lost. His clothesline contains four clean pairs of overalls,

and he'll be able to buy up to four more pairs at the market.

Occasionally, a pig will manage to squeeze out of a hole

in the fence. Farmer Brown's assistant, positioned outside the ;

fence, will eventually catch the loose pig and return it to the] \
sty. Farmer Brown must be very cautious while leading a pig

near the fence because the helpful, but mischievous, farmhand .

loves to see his employer fall in the mud. He just might push LJ
a pig back through the fence right into Farmer Brown's path.

The object of the game is to catch all the pigs in the pen

as quickly as possible. The bank-account total is added to your j j
score, and the sooner you sell your pigs, the more profit you

make. When all of your overalls have become muddy, the ^

game ends. 1 \

50

Games

Typing It In

^ The main part of the game is written in BASIC, but also in-
l } eluded are one short machine language routine and three

sprite-definition files. (There are 24 sprites used in the game.)

.—l First, type in Program 1, which is written entirely in

I i BASIC. Be sure to save a copy when you're through typing.
"The Automatic Proofreader," found in Appendix B, will in

sure that you type it in correctly. "MLX," a machine language

entry program (Appendix C), is required to type in the four re

maining files. After loading and running MLX, you'll be asked

for a starting and ending address. Here are the correct values:

Program 2

Starting address: 1E06

Ending address: 1F05

Programs 3, 4, and 5

Starting address: 0E00

Ending address: OFFF

Be sure to save each program with its respective filename:

Program 2 PIG.ML

Program 3 PIG.SPR1

Program 4 PIG.SPR2

Program 5 PIG.SPR3

Also, be sure to save each of the five programs to the same
disk.

Note that several lines in Program 1 are packed with

commands. This was done to maintain speed during the main

program loop. The decimal points used in many commands

are not errors. They can be used in place of a zero and are

slightly faster than variables or constants. Programs 1 and 2

make use of the FAST command, which blanks the screen
during DATA POKEing and screen setup.

r"l To start play, load Program 1 and type RUN. (The ma
chine language program and sprite files will be loaded auto

matically.) Most of the screen is taken up by the pigsty. At the

p] bottom of the screen is a clothesline, the bank-account bal-
~ ance, your present score, and the high score. The current level

is displayed at the top of the screen. The selling price of a pig
p| appears at the top right when one is sold.

n

n

Chapter 1

Not an Easy Business

When your joystick is plugged into port 2, chase the pigs and , ,

catch them by pressing the fire button as contact is made. But [:
beware: If you collide with a pig while leading another pig out

of the pen, you'll trip and fall in the mud. If you see that a

collision is unavoidable, press the fire button to release the pig i j

you are leading.

Lead each pig out of the gate in the upper left corner and

go catch the next one. The selling price of a pig is set as soon

as you lead it out of the gate. The price starts at $100 at the

beginning of a round and drops $6 every ten seconds to a low

of $60. The selling price is added to your present score, along

with bonus points if the pig is caught before the selling price

hits $60.

When all the pigs have been captured, you'll automati

cally purchase as many piglets as you can afford. Piglets—in

cluding the food needed to raise them—cost $60 dollars each.

You can buy a maximum of seven per round. You'll then be

given the option to purchase overalls to replace the ones taken

from the clothesline during play. The store has four pairs in

stock at the beginning of a game, and they sell for $25 a pair.

When the last pair of pants from the clothesline gets muddy,

the game ends, even if there are more pants in stock at the

store.

When all pigs have been caught and sold, you advance to

the next level. As the levels increase, so do the size and num

ber of mud puddles on the screen. At higher levels, the speed

of the farmer will vary.

At the end of a game, you have the option to play again.

The high score for the current session of play is displayed at

the bottom right.

Program 1. Pig$ for Buck$—Main Program | j,
Be sure to save all five programs to the same disk.

For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program. \ I

SG 10 FAST:TRAP970:GRAPHIC1:GRAPHIC0 2GOTO580 L-J
MP 20 GOSUB300:FORI=2TOP:MOVSPRI,200,125:NEXT:TI$=

"000000" , ,

FE 30 SPRSAVS$(5,F1),F:SYSM1#0:MOVSPRF#24,88 LJ

ED 40 FORI=2TOP:IFI=P1THEN50:ELSEJ=RND(F)*359+F:C=

INT(J/180):SPRSAVS$(C,Fl),I:SYSM1,I-F:SPRSAV

S$(C,F3),I:SPRITEI,F,11,0:MOVSPRI,J #S j f

52

Games

AM 50 NEXT:SPRITEF,F,15,,,,F:POKE7680,F:I=BUMP(F1)

:I=BUMP(F)

PK 60 FORI=2TOP:IF(BUMP(F1)ANDF)OR((BUMP(F)ANDF)AN

DP1>.)THEN310:ELSEIFI=P1THEN90

BP 70 IFRSPPOS(I,F)<Y1THENC=F3:GOTO100:ELSEIFRSPPO

S(I,F)>Y2THENC=F4:GOTO100:ELSEIFRSPPOS(I,.)>
X2THENC=F1:GOTO100:ELSEIFRSPPOS(I,.)<X1THENC

=F:GOTO100

RB 80 GOTO130

EX 90 IFRSPPOS(P1,.)<25ORRSPPOS(P1,.)>344THEN370:E
LSE130

BK 100 J=RND(F)*160+SM(C):IFJ>360THENJ=J-360

QA 110 C=INT(J/180):SPRSAVS$(C,F1),I:SYSM1,I-F:SPR
SAVS$(C,F3),I:M0VSPRI,J #RND(F)*F1+F

MF 120 IFRND(F)>F2THENSOUNDF1,2000,5,.,100,100,F3:

SOUNDF,1300,12,.,758,19,F1,370:GOTO130
JQ 130 J=JOY(F1)

RQ 140 J1=J:IFJ>.ANDJ<9THEN180:ELSEMOVSPRF,. #.:PO

KEM2,.:IFP1>.THENMOVSPRP1,. #.

GQ 150 IFRND(F)>F2THENSOUNDF1,2000,5,.,100,100,F3:

SOUNDF,2000,10,.,600#150,F1,220:IFL>10THENF

S=RND(F)*F3+F

FX 160 IFJ>8THEN210

FQ 170 NEXT:GOTO60

DC 180 IFRSPPOS(F,.)<24ORRSPPOS(F,.)>344THENJ=O(J)
:IFRSPPOS(F,•)<400ANDRSPPOS(F,.)>25THENJ=3

XE 190 IFJ=.THEN60:ELSEMOVSPRF,A(J) #FS:POKEM2,F:I

FP1>.THENMOVSPRP1,A(J) #FS

DR 200 SPRSAVS$(J,.),F:SYSM1,.:SPRSAVS$(J,F),F:NEX

T:GOTO60

DF 210 IFP1>.THEN270:ELSEJ=BUMP(F):IF(JANDF)<>FTHE
NNEXT:GOTO60

CS 220 GOSUB280:I=F1:C=RSPPOS(F,.):J=RSPPOS(F,F)

EP 230 DOUNTILI>P:IF(ABS(C-RSPPOS(I,.))<20)AND(ABS
(J-RSPPOS(I,F))<20)THENBEGIN

HD 240 P1=I:SOUND1,7000,40,.,400,400,2,220:SPRSAVS

$(F,F1),P1:SYSM1,P1-F:SPRSAVS$(F,F3),P1:MOV
" SPRI,C+26,J-5:EXIT:BEND

AM 250 I=I+F:LOOP

KH 260 I=BUMP(F):GOTO40

j—| HA 270 P1=.:GOTO40

L.l HH 280 POKE7680, .:POKE7681, . :FORI=1TO8 :MOVSPRI, . #
.: NEXT: RETURN

CS 290 PRINTll{HOME}&2!il:FORI=lTO4:READC,J,M$:CHAR,

PI C,J,M$:NEXT:IFL=12THENCHAR, 31,6:SYS7937:RET
L J URN

QC 300 J=P*2:X1=50+J:X2=290-J:Y1=65+J:Y2=190-J:RET

j—| URN

n 53

! !
Chapter 1

\ I
DH 310 GOSUB280:P1=0:POKE2040,56:SPRSAVS$(5,2),F:V '—

OL15:SOUNDF1,9000,5,F,2000,900,F:FORI=1TO80

:NEXT:FORI=6TO8:IFI=6THENS0UNDF,9000,3 5,F,2 { ,

000,200,0 i-r-J
HA 320 SPRSAVS$(I,2),F:FORC=1TO50:NEXTC,I:SOUNDF,3

00,15,F,200,6:VOL3:SLEEPF

MG 330 IFOL=0THEN790:ELSECHAR, 2*OL-F,23,"B6:| M:CHA i |
R,2*OL-F,24,"B6§ ":OL=OL-F:GOTO30

EG 340 FORI=1TOOL:CHAR,2*1-1,2 3,"{BLU}£":CHAR,2*1

-1,24,"{BLU}<":NEXT:RETURN

PP 350 PRINT"{HOME} {RVS}{BLK}{4 SPACES}PIG$ FOR B

UCK${8 SPACES}LEVEL:";:PRINTUSINGH###";L;:P

RINT"13 SPACES}{OFF j";

AM 360 CHAR,10,24:PRINT"i2§";:PRINTUSING"#$######.

##";BA;:PRINTTAB(24);:PRINTUSING"######";PT

;:PRINTTAB(33);:PRINTUSINGM######";HS;:RETU

RN

BK 370 GOSUB280:PS=100-TI/100:IFPS<60THENPS=60

HE 380 PT=PT+INT(PS) :BA=BA-fPS: IFP1OPTHENM0VSPRP1,

RSPPOS(P,.),RSPPOS(P,F):SPRITEP,.

GK 390 SPRITEP,0:CHAR,20,0,CHR$(7)+"{RVS}{PUR}PIG

{SPACE}SOLD FOR "

RA 400 IFPS>60THENPT=PT+(10*L)

XA 410 IFPT>HSTHENHS=PT

DP 420 PRINTUSING" $#;#.##" ;PS; :PRINT" {OFF}11; :SLEEP1

:GOSUB350

KX 430 P=P-F:P1=0:IFP>1THENPOKE2040,56:SPRSAVS$(2,

0),F:MOVSPRF,24,88:GOTO40

GE 440 L=L+F:IFL<5THEN450:ELSEIF(LANDF)AND(L<12)TH

ENFS=F1:ELSEFS=F3:GOTO460

KS 450 GOSUB290

HQ 460 P=INT(BA/60):IFP>7THENP=7

AM 470 PRINT M {HOME} MCHR$ (27)"QIIM{RVS}{RED} YOU HAVE

I17:PRINTUSINGli#$#####.##II;BA;:PRINTll;YOU MU

ST BUY11 PM {LEFT} PIGS. " :BA=BA-P*60 :P=P+F:GOS

UB360:SLEEP3

XM 480 I=INT(BA/25)
SR 490 IFI=0OROL=4THEN560:ELSEPRINT"{HOME}MCHR$(27 i i

)"QIIM{RVS}{RED} PAIRS OF PANTS IN STORE= \—(
{LEFT} "OS"{LEFT}; QTY. TO BUY?{OFF)";

PX 500 GETA$:IFA$<"0"ORA$>"4"THEN500

FS 510 C=VAL(A$) I j
GE 520 IFC>ITHENPRINT"{HOME}"CHR$(27)"Q{RVS}YOU CA

N'T AFFORDMC"{LEFT} PAIRS OF PANTS I";:SLEEP

1:GOTO490 ; j

FE 530 IF0L+O4THENPRINT" {HOME}"CHR$(27)"Q{RVS}THE —J

LINE CAN'T HOLD"OL+C"{LEFT} PAIRS OF PANTS

I";:SLEEP1:GOTO490 t ;

54

Games

FX 540 IFOS-C<0THENPRINTII{HOME}IICHR$(27)IIQ{RVS]STO
RE DOESN'T HAVE"C"{LEFT} PAIRS OF PANTSi";:
SLEEP1:GOTO490

MR 550 BA=BA-25*C:OL=OL+C:OS=OS-C:GOSUB340:GOTO560
GH 560 GOSUB350:GOSUB300:GOTO20

AR 570 FORI=1TO8:SPRSAVI,S$(I,C):NEXT:RETURN
XA 580 COLOR0,14:COLOR4,6:SPRCOLOR11,10:VOL3
MQ 590 DIMF,J,J1,I,P1,C,F1,F2,F3,F4,S$(8,3),M2,M1,

FS,A(8),Y1,Y2,X1,X2,SM(4),O(8):SM(1)=15:SM(

2)=195:SM(3)=105:SM(4)=285:F=1:F1=2:M1=7870
:M2=7681:F2=.5:F3=3:F4=4

RM 600 FORI=2TO8:A(I)=(I-F)*45:NEXT

PX 610 FORI=2TO4:O(I)=3:O(I+4)=7:NEXT

MD 620 BLOADIIPIG.SPR1M:C=0:GOSUB5 70:BLOAD"PIG.SPR2

11: C=F:GOSUB5 70 :BLOAD "PIG • SPR3 " : C=2 :GOSUB5 70

XK 630 S$(0,F1)=S$(F,F1):S$(0,F3)=S$(F1,F1):S$(F,F
1)=S$(F3,F1):S$(F,F3)=S$(4,F1)

HA 640 BLOAD"PIG.ML":SYS7686:POKE54291,2:POKE54287

,20:POKE54292,0:POKE54286,0

HS 650 IFPEEK(2604)=28THEN700:ELSEBANK14
KM 660 FORI=0TO3:READC:POKE2 50+I,C:NEXT:POKE195,8:

POKE196,.:SYS7904

PH 670 BANK15:POKE2604,28

KD 680 READC:IFC=-1THEN700

JM 690 FORI=0TO7:READJ:POKE12288+C*8+I,J:NEXT:GOTO
680

JX 700 S=2:P=3:OL=4:OS=4:FS=2:L=1:PT=0:BA=0:PRINT"
{CLR}{DOWN}g23Q*********Q*********Q********

PC 710 FORI=1TO3:FORJ=1TO6:IFI=3ANDJ=6THEN7 20:ELSE
PRINT"BMTAB(39)"B";

XS 720 NEXT:IFI<>3THENPRINTIIQ"TAB(39)IIQM;
SX 730 NEXT "" ~

SH 740 PRINT"Q*********Q*********q*********q******
**q... —

HP 750 FORX=1TO8:SPRITEX#0:NEXT
FA 760 PRINT"{RED}g10 @§ {RVS}B5§{3 SPACESjBANK

t\ {6 SPACES}PRESENT{3 SPACES}HIGH{2 SPACES}
1 {OFF}11;

FK 770 PRINT"{RED}&K§{OFF}"TAB(9)"{RVS}§Kl{OFF}
{RVS}B5§{3 SPACES}ACCT.{5 SPACES}SCORE
15 SPACES}SCORE {OFF}11;

DK 780 PRINTll{RED}gK§"TAB(9)Ii{RVS}iK§{OFF}{HOME}
13 DOWN}Q{DOWN}{LEFT} {DOWN}{LEFT} {DOWN}

M {LEFT} {DOWN}{LEFT} ";:GOSUB350:RESTORE880:

GOSUB290:GOSUB290:SLOW:GOSUB340:GOTO20
EA 790 CHAR,5,9,M{RVS}{PUR}{2 SPACES }END OF GAME!

p^ {2 SPACES }PLAY AGAIN? {2 SPACES } {OFF} "

n

n
55

Chapter 1

BJ 800 POKE208,0:GETKEYA$:IFA$<>"Y"THENPRINT"{CLR}

{GRN}11; :FORC=1T08:SPRITEC,0:NEXT:END

PP 810 IFBA>HSTHENHS=BA

MQ 820 FAST:GOTO700

QE 830 DATA0,208,0,48,28,102,102,102,126,126,126,1

26,126,60,255,2 55,231,231,231,231,231,0

BP 840 DATA65,0,131,199,255,255,255,255,255,73,128

,224,248,252,252,2 54,2 54,255

KF 850 DATA74,255,127,127,63,63,31,7,1,75,255,254,

254,252,252,248,224,128

GR 860 DATA83,254,252,248,248,248,252,254,254,85,1

,7,31,63,63,127,127,255

JQ 870 DATA88,255,255,255,255,255,227,193,0,90,127

,127,63,31,31,31,63,127,-1

XF 880 DATA8,6,"UI{DOWN}{2 LEFT}ZS{DOWN}{2 LEFTjJK

",21,6,"uTTdOWN}{2 LEFT} JK",3 3,5,"UAI{DOWNj
13 LEFT}JTRVS} IOFF}K",1,19,iiI^{DOV^TTLEFT}

IRVS} IOFF}JE"

HJ 890 DATA7,14,"UI{DOWN}{2 LEFT}JK",17,12,"UI

{D0WN}{3 LEFT}U{RVS}{2 SPACES}{OFF}{DOWN}

{3 LEFT}JXK",26,14,"Ul{DOWN}{2 LEFT}£{RVS}

{SPACE}{OFF}{DOWN}{2 LEFT}JK",34,11,"UI

{DOWN}{2 LEFTjJK"
CF 900 DATA9,7,"{RVS}"^OFF}j[{DOWN}{2 LEFT }XK" , 20,5

,"UI{DOWN}{2 LEFT}J{RVS} {OFF}",32,5,"U

IRVS} {OFF}{DOWN}{2 LEFT}JX",35,11,"AI

{DOWN}{2 LEFT}{RVS} {OFFjK"

KG 910 DATA22,7,"{RVS}{2 SPACES }ToFF}j[{ DOWN}
{3 LEFT}JXK",8,13,"UI{DOWN}{2 LEFT}{RVS}

{OFF}K",T9713,"AI{DOWN}{3 LEFT}{RVS}
{2 SPACES}{OFF}K",34,12,"!Z{RVS}{2 SPACES}

{DOWN} {3 LEFT} {3" SPACES} { OFF} {DOWN} { 3 LEFT}

JXK"

PF 920 DATA1,2,"{RVS} {OFF}K{DOWN}{2 LEFT}K",18,4,

"UI{DOWN}{2 LEFT}Z{RVS}{2 SPACES}{OFF}

{DOWN}{3 LEFT}JX{RVS} {OFF}",30,5,"U{RVS}
{2 SPACES}{DOWNTl3 LEFT}{3 SPACES}{DOWN}
{3 LEFT}{OFF}JK",27,14,"AI{DOWN}{LEFT}S

{DOWN}{2 LEFTTTrVS} {OFF}K"
PH 930 DATA35,5,"AI{DOWN}{2 LEFT}XK",9,14,"{RVS}

{DOWN}{2 LEFT}{2 SPACES}{OFF}I{DOWN}

{3 LEFT}{RVS}{2 SPACES}{OFF}sTDOWN}{3 LEFT}
JXK",25,13,"U{RVS} {OFFUtDOWN } {3 LEFT}J
TWS}{2 SPACES}{OFF}",36,14,"{RVS} {OFFljC
{DOWN} {2 LEFT} {RVS} {2 SPACES} { OFF} {DOWN}

{2 LEFTjJK"
BE 940 DATA10,7,"{RVS} {OFFH {DOWN } {3 LEFT} {RVS}

{2 SPACES}{OFF}K",36,5,"{RVS} {OFF}l{DOWN}

{2 LEFT }{ RVS } {2""SPACES }{ OFF }l{ DOWN }T3 LEFT}

56

n

n

n

Games

JtRVS} {0FF}K",16,14,"{RVS}{2 SPACES}{OFF}
TdOWNJ{2 LEFT}JXXKii,28,15,"{RVS} {OFFjjE

{DOWN} {2 LEFTjXK"

SR 950 DATAll,8,"K",25,6,"Ul{DOWN}{3 LEFT}{RVS}

13 SPACES}TDOWN}{3 LEFT} lOFFjXK",6,12,"tJI
{DOWN}{2 LEFT}{RVS}{3 SPACES}{OFF}{DOWN}

{3 LEFT}J{RVS} {OFF}",34,14,"{RVS}

{2 SPACES}{DOWN}{2 LEFT}{2 SPACES}{OFF}

{DOWN}{3 LEFT}U{RVS}{2 SPACES}{OFF}X{DOWN}
{4 LEFTjJK" ""

RM 960 DATA24,27nJ{RVS} {OFF}K",1 ,19, m {RVS} {OFF}J[
{DOWN} {LEFT} {RVS} {OFF}r\16 ,15 , " {RVS}
{2 SPACES}{OFF}{DOWN}{3 LEFT}U{RVS} {OFF}S
{DOWN}{3 LEFT}J{RVS} {OFF}S{DOWN}{2 LEFT}JX
Xl{DOWN}{LEFT}Jl{DOWN}{LEFT}JI",33,17,MZ
TRVS}{2 SPACESTTDOWN} {3 LEFTTT3 SPACES}"
{DOWN}{3 LEFT}{OFF}JXK"

KK 970 PRINT" {HOME} MCHR$(27)"QIIM {WHT} {RVS}LINE "EL
"{2 SPACES}"ERR$(ER)"g2§PRESS STOP KEY";

EG 980 GOTO980

Program 2. Pig$ for Buck$—PIG.ML
See instructions in article and read Appendix C, "MIX," before typing in the following
program listings.

Starting address: 1E06

Ending address: 1F05

Filename: PIG.ML

1E06:A9 00 8D 00 IE 8D 01 IE 10

1E0E:8D 04 IE 8D 05 IE 78 A9 E9

1E16:21 8D 14 03 A9 IE 8D 15 EE

1E1E:03 58 60 AD 00 IE C9 01 E5

1E26:D0 35 EE 04 IE AD 04 IE 04

1E2E:C9 10 D0 2B A9 00 8D 04 8C

1E36:1E AD F9 07 C9 39 D0 11 82

1E3E:A2 07 18 BD F8 07 69 48 6B

1E46:9D F8 07 CA D0 F4 4C 5D 6D

1E4E:1E A2 07 38 BD F8 07 E9 70

1E56:48 9D F8 07 CA D0 F4 AD DE

1E5E:01 IE C9 01 F0 08 A9 00 E6

1E66:8D 12 D4 4C 9B IE EE 05 85

1E6E:1E AD 05 IE C9 07 D0 25 D8

1E76.-A9 00 8D 05 IE AD F8 07 2A

1E7E:C9 38 D0 0E 18 69 48 8D 2D

1E86:F8 07 A9 81 8D 12 D4 4C F8

1E8E:9B IE 38 E9 48 8D F8 07 37

1E96:A9 00 8D 12 D4 4C 65 FA 18

1E9E:00 0E 40 0E 80 0E C0 0E 13

57

Chapter 1

1EA6:00 0F 40 0F 80 0F C0 0F 70 '—'
1EAE:00 20 40 20 80 20 C0 20 23

1EB6:00 21 40 21 80 21 C0 21 80 ; ;

1EBE:85 C3 18 65 C3 AA BD 9E EA \ f

1EC6:1E 85 FA BD 9F IE 85 FB 2B

1ECE:BD AE IE 85 FC BD AF IE 0E

1ED6:85 FD A9 00 85 C3 A9 40 59 j j

1EDE:85 C4 A0 00 A6 C3 F0 0E 57 '—'
1EE6:B1 FA 91 FC C8 D0 F9 E6 21

1EEE;FB E6 FD CA D0 F2 A6 C4 B3

1EF6:F0 08 Bl FA 91 FC C8 CA 70

1EFE:D0 F8 60 00 00 00 00 00 ED

Program 3. Pig$ for Buck$—PIG.SPR1

Starting address: 0E00

Ending address: OFFF

Filename: PIG.SPR1

0E00:00 FF 00 03 FF C0 00 FF 4F

0E08:00 00 7D 00 0F 96 F0 3F C7

0E10:BE FC FF BE FF F3 BE C5 C9

0E18:F2 AA 85 F2 AA 80 52 AA DE

0E20:80 52 AA 80 02 AA 80 02 2C

0E28:AA 80 02 82 80 02 82 80 B3

0E30:0F C2 80 00 02 80 00 02 A8

0E38:80 00 03 F0 00 03 FC 00 0A

0E40:03 FF 00 0F FF C0 03 D7 AF

0E48:00 03 55 00 01 55 00 00 2D

0E50:BC 00 00 BC 00 03 BC 00 1C

0E58:0F AF 00 0F AF C0 05 AB 0F

0E60:50 05 A8 50 00 A8 00 00 A2

0E68:AA 00 00 AA 00 02 AA 00 El

0E70:02 8A 00 02 8A 00 02 8F 38

0E78:00 03 CF C0 03 F0 00 00 37

0E80:03 FF 00 0F FF C0 03 D7 EF

0E88:00 03 55 00 01 55 00 00 6D |

0E90:BC 00 00 BC 00 03 BC 00 5C) [

0E98:0F AF 00 0F AF C0 05 AB 4F

0EA0:50 05 A8 50 00 A8 00 00 E2

0EA8:AA 00 00 AA 00 02 AA 00 22 j |

0EB0:02 8A 00 02 8A 00 02 8F 78 '—!
0EB8:00 03 CF C0 03 F0 00 00 77

0EC0 203 FF 00 0F FF C0 03 D7 30

0EC8:00 03 55 00 01 55 00 00 AD j !
0ED0:BC 00 00 BC 00 03 BC 00 9C

0ED8:0F AF 00 0F AF C0 05 AB 8F

0EE0:50 05 A8 50 00 A8 00 00 23 j L
0EE8:AA 00 00 AA 00 02 AA 00 62 '—!

58

n

n

n

n

n

Games

n

n

n

n

H

0EF0:02 8A 00 02 8A 00 02 8F B8

0EF8:00 03 CF C0 03 F0 00 00 B7

0F00:00 FF 00 03 FF C0 00 D7 29

0F08:00 00 7D 00 0F 55 F0 3F C4

0F10:BE FC FF BE FF F3 BE C5 CB

0F18.-F2 AA 85 F2 AA 80 52 AA E0

0F20:80 52 AA 80 02 AA 80 02 2E

0F28:AA 80 02 82 80 02 82 80 B5

0F30:0F C2 80 00 02 80 00 02 AA

0F38:80 00 03 F0 00 03 FC 00 0C

0F40:03 FF 00 0F FF C0 03 5F 39

0F48:00 01 57 00 01 55 00 00 EE

0F50:F8 00 00 F8 00 5F FB 00 EF

0F58:5F EB C0 00 AB F0 00 A8 03

0F60:50 00 A8 50 00 A8 00 02 65

0F68:A8 00 02 A8 00 0A AA 80 A3

0F70:0A 02 A0 3A 00 A0 3F 00 CC

0F78.-28 00 00 3C 00 00 F0 00 50

0F80:03 FF 00 0F FF C0 03 5F 79

0F88:00 01 57 00 01 55 00 00 2F

0F90:F8 00 00 F8 00 5F FB 00 30

0F98:5F EB C0 00 AB F0 00 A8 43

0FA0:50 00 A8 50 00 A8 00 02 A5

0FA8:A8 00 02 A8 00 0A AA 80 E3

0FB0:0A 02 A0 3A 00 A0 3F 00 0D

0FB8:28 00 00 3C 00 00 F0 00 90

0FC0:03 FF 00 0F FF C0 03 5F B9

0FC8.-00 01 57 00 01 55 00 00 6F

0FD0:F8 00 00 F8 00 5F FB 00 70

0FD8:5F EB C0 00 AB F0 00 A8 83

0FE0:50 00 A8 50 00,A8 00 02 E5

0FE8:A8 00 02 A8 00 0A AA 80 24

0FF0:0A 02 A0 3A 00 A0 3F 00 4D
0FF8:28 00 00 3C 00 00 F0 00 D0

Program 4. Pig$ for Buck$—PIG.SPR2

Starting address: 0E00

Ending address: OFFF

Filename: PIG.SPR2

0E00:00 FF 00 03 FF.C0 00 FF 4F

0E08:00 00 7D 00 0F 96 F0 3F C7

0E10:BE FC FF BE FF 53 BE CF 51

0E18:52 AA 8F 02 AA 8F 02 AA 5C

0E20:85 02 AA 85 02 AA 80 02 EA

0E28:AA 80 02 82 80 02 82 80 B3

0E30:02 83 F0 02 80 00 02 80 F4

59

u
Chapter 1

0E38:00 0F C0 00 3F C0 00 00 2D

0E40:03 FF 00 0F FF C0 03 D7 AF

0E48:00 03 55 00 01 55 00 00 2D

0E50:BC 00 00 BC 00 03 BF D4 F6 i I
0E58:0F AF D4 3F A8 00 14 A8 8C

0E60:00 14 A8 00 00 AA 00 00 41

0E68:AA 00 00 AA 80 02 A2 80 56 I I
0E70:0A 82 80 0A 02 B0 28 03 09

0E78:F0 3C 00 00 0F 00 00 00 94

0E80:03 FF 00 0F FF C0 03 D7 EF

0E88:00 03 55 00 01 55 00 00 6D

0E90:BC 00 00 BC 00 03 BF D4 37

0E98:0F AF D4 3F A8 00 14 A8 CC

0EA0:00 14 A8 00 00 AA 00 00 81

0EA8:AA 00 00 AA 80 02 A2 80 96

0EB0:0A 82 80 0A 02 B0 28 03 49

0EB8:F0 3C 00 00 0F 00 00 00 D4

0EC0:03 FF 00 0F FF C0 03 D7 30

0EC8:00 03 55 00 01 55 00 00 AD

0ED0:BC 00 00 BC 00 03 BF D4 77

0ED8:0F AF D4 3F A8 00 14 A8 0D

0EE0:00 14 A8 00 00 AA 00 00 Cl

0EE8:AA 00 00 AA 80 02 A2 80 D6

0EF0:0A 82 80 0A 02 B0 28 03 89

0EF8:F0 3C 00 00 0F 00 00 00 15
0F00:00 FF 00 03 FF C0 00 D7 29

0F08:00 00 7D 00 0F 55 F0 3F C4

0F10:BE FC FF BE FF 53 BE CF 53

0F18:52 AA 8F 02 AA 8F 02 AA 5E

0F20:85 02 AA 85 02 AA 80 02 EC

0F28:AA 80 02 82 80 02 82 80 B5

0F30:02 83 F0 02 80 00 02 80 F6

0F38:00 0F C0 00 3F C0 00 00 2F

0F40:03 FF 00 0F FF C0 03 5F 39

0F48:00 01 57 00 01 55 00 00 EE

0F50:F8 00 00 F8 00 03 FB 00 7E

0F58:03 EB C0 0F EB C0 17 A9 36

0F60:40 14 A9 40 00 A8 00 02 81 I I

0F68:A8 00 02 A8 00 02 AA 00 03 I—I
0F70:02 8A 00 02 8A 00 03 CA 77

0F78:00 0F CF 00 00 3F 00 00 51
0F80:03 FF 00 0F FF C0 03 5F 79 | |
0F88:00 01 57 00 01 55 00 00 2F

0F90:F8 00 00 F8 00 03 FB 00 BE

0F98:03 EB C0 0F EB C0 17 A9 76 j |

0FA0:40 14 A9 40 00 A8 00 02 Cl I—I
0FA8:A8 00 02 A8 00 02 AA 00 43

0FB0:02 8A 00 02 8A 00 03 CA B7

0FB8:00 0F CF 00 00 3F 00 00 91 j

60

u

Games

0FC0:03 FF 00 0F FF C0 03 5F B9

0FC8:00 01 57 00 01 55 00 00 6F

f—i 0FD0:F8 00 00 F8 00 03 FB 00 FE

; * 0FD8:03 EB C0 0F EB C0 17 A9 B6
0FE0:40 14 A9 40 00 A8 00 02 02

„ 0FE8:A8 00 02 A8 00 02 AA 00 83

I I 0FF0:02 8A 00 02 8A 00 03 CA F7
0FF8.-00 0F CF 00 00 3F 00 00 Dl

Program 5. Pig$ for Buck$—PIG.SPR3

Starting address: 0E00

Ending address: OFFF

Filename: PIG.SPR3

0E00:00 00 00 00 00 00 00 00 ic

0E08:00 00 00 00 00 00 00 00 24

0E10:00 00 00 00 00 00 01 00 2E

0E18:00 02 00 00 03 C0 00 03 D2

0E20:40 08 03 F0 04 07 F0 05 F0

0E28:FF C0 03 FF 00 03 FF 00 E0

0E30:03 FF 00 03 FE 00 01 FE F6

0E38:00 01 FA 00 01 02 00 00 04

0E40:00 00 00 00 00 00 00 00 5C

0E48:00 00 00 00 00 00 00 00 64

0E50:01 00 00 01 00 00 01 E0 DF

0E58:00 01 A0 04 01 F8 04 03 FF

0E60:F8 05 FF C0 03 FF 00 03 61

0E68:FF 00 03 FE 00 03 FE 00 DE

0E70:01 FE 00 03 F2 00 02 0C A4

0E78:00 00 00 00 00 00 00 00 94

0E80:00 00 00 00 00 00 00 00 9c

0E88:00 00 00 00 00 00 00 00 A4

0E90:00 00 00 00 00 01 00 00 B0

0E98:00 80 00 07 80 00 05 80 D3

0EA0:00 IF 80 10 IF C0 20 03 D4

fH 0EA8:FF A0 00 FF C0 00 FF C0 B3
1 0EB0:00 FF C0 00 7F C0 00 7F 63

0EB8:80 00 5F 80 00 40 80 00 0B

_ 0EC0:00 00 00 00 00 00 00 00 DC

i . 0EC8:00 00 00 00 00 00 00 00 E4

0ED0:80 00 00 80 00 07 80 00 52

0ED8:05 80 00 IF 80 20 IF C0 0D

0 0EE0:20 03 FF A0 00 FF C0 00 59
' s 0EE8:FF C0 00 FF C0 00 7F C0 FA

0EF0:00 7F 80 00 4F 80 00 30 A9

,—, 0EF8:40 00 00 00 00 00 00 00 35

1 \ 0F00:00 FF 00 03 FF C0 00 D7 29

n
61

Chapter 1

0F08:00 00 7D 00 0F 55 F0 3F C4

0F10:BE FC FF BE FF F3 BE CF D5

0F18:F2 AA 8F F2 AA 8F 52 AA 5E

0F20:85 52 AA 85 02 AA 80 02 01

0F28:AA 80 02 82 80 02 82 80 B5

0F30:02 82 80 02 82 80 02 82 BC

0F38:80 0F C3 F0 3F C3 FC 00 E4

0F40:00 FF 00 03 FF C0 00 D7 69

0F48:00 00 7D 00 0F 55 F0 3F 05

0F50:BE FC 5F BE F5 53 BE C5 25

0F58:02 AA 80 02 AA 80 02 AA 58

0F60:80 02 AA 80 02 AA 80 02 5A

0F68:AA 80 02 82 80 02 82 80 F5

0F70:0A 00 A0 0A 00 A0 0F 00 E8

0F78:F0 3F 00 FC 00 00 00 00 AE

0F80:00 00 00 00 FF 00 53 FF 45

0F88:C5 50 D7 05 F0 7D 0F FF 84

0F90:55 FF 3F BE FC 0F BE F0 BF

0F98:02 AA 80 02 AA 80 02 AA 98

0FA0:80 02 AA 80 02 AA 80 02 9A

0FA8:AA 80 02 AA 80 0A 82 A0 F8

0FB0:3A 00 AC 3E 00 BC 3E 00 D4

0FB8:BC 00 00 00 00 00 00 00 35

0FC0:00 00 00 50 00 05 50 FF 98

0FC8:05 F3 FF CF F0 D7 0F FC 65

0FD0:7D 3F 3F 55 FC 3F BE FC 1A

0FD8:0F BE F0 02 AA 83 C2 AA FF

0FE0:80 0E AB 8C 02 BA 80 3E 3B

0FE8:AA BC FE EA BF FE AA BF 29

0FF0:FE AB BF EA EA AB FA BE DA

0FF8:AF FA FF AF 3B FF EC 00 5C

LJ

\ I

62

U

Puzzle Grid
Philip Schielke

Solving these 25-piece puzzles is not as easy as you might think.
Once you've tried your hand with the five built-in puzzles, you

might want to experiment with creating your own. Runs only in
128 mode.

The object of "Puzzle Grid" is to unscramble a 25-piece puz

zle in the time allotted. You'll have about 16 minutes. Sounds

like a job for a five-year-old? It may be harder than you think.

For one thing, the puzzle pieces are square, not irregularly

shaped like jigsaw pieces. You'll have to rely on your memory

of the picture alone and not how the shapes of the pieces fit
together.

Also, you lose 50 seconds for each piece that you place

incorrectly. You can't choose the pieces by trial and error, or

you'll quickly run out of time. And, finally, the picture of the

puzzle you're to solve is displayed for only a short time before

it disappears. You must try to remember the picture as you're

figuring out the puzzle.

The computer randomly chooses from five puzzles that

are built into the program. The same one will not be selected
twice in a row.

How to Play

After an introductory screen, a box will appear in the upper

left corner. In this box, a picture is drawn. You'll have a few

j~j seconds to study it. Then, the picture will be scrambled, and

your job is to piece it together again. Try to memorize it as the

computer scrambles it (the message Scrambling will appear on

j—1 the screen). The mixed-up puzzle pieces will then appear in
side a square grid on the right-hand side of your screen.

When the picture of the completed puzzle is erased from

rn the left-hand side of the screen, it is replaced by an empty

' s grid of small numbered blocks. This is the puzzle completion

area where you will piece the puzzle together. You're asked

(—> which block (1-25) of the empty puzzle grid you want to fill.

63

n

Chapter 1

Then you're asked which puzzle piece from the right side of

the screen fits that position. The numbers of the scrambled

pieces also range from 1 to 25, in the same pattern as the

blocks in the completion grid on the left. To make the game

more difficult, though, the scrambled pieces on the right-hand

side are not numbered. Their position numbers, however, do

match the numbered positions of the blocks in the completion

area. If you choose a piece correctly, it will vanish from the

scrambled puzzle area and appear in its correct spot in the

completion grid. If you choose a piece incorrectly, you lose 50

points (50 seconds) and must try again. Your score, or time re

maining, is constantly updated and displayed in the upper

right corner.

Solving "Puzzle Grid" will give your memory

a workout

If you complete the puzzle within the time limit, your

score will be displayed (your score is the amount of time re

maining in seconds), and you'll be asked if you want to play

again. If time runs out, you'll be told the number of pieces you

chose correctly and will also have a chance at another game.

Adding Your Own Puzzles

Puzzle Grid has five ready-made puzzles, and you can add up

to five more of your own. But, first, you need to see how the

64

u

u

LJ

LJ

U

Games

n

n

program fits together. Line 60 selects the random puzzle. In

the first part of the line is the statement

G=INT(RND(1)*5)+1

The 5 indicates the number of puzzles the computer can

choose from. Be sure to add 1 to that number for each puzzle

you add.

The program is designed to contain one puzzle every 50

lines, beginning at line 410. The last of the built-in puzzles

starts at line 610. This means that you can start your first puz

zle at line 660, and you'll have 50 lines in which to draw it.

Your next puzzle will start at line 710, and so forth. The last

line of your puzzle must be a RETURN statement, since each

puzzle is a separate subroutine. Remember, the program is

equipped to handle a maximum of ten puzzles, so line 909 is

the last line available for programming your creations.

Each of your puzzles must fit into a box which has these

parameters:

Corner Location

Upper left 12,12

Upper right 12,132

Lower left 92,12

Lower right 92,132

SSHAPE and GSHAPE

The five puzzles in the program are created with hi-res graph

ics statements like CIRCLE, BOX, DRAW, and CHAR. The heart

of Puzzle Grid, however, is the use of the graphics statements

SSHAPE and GSHAPE. (As a matter of fact, the idea for the

program sprang from reading about these two statements.)

SSHAPE takes a specified area of the hi-res graphics

screen and stores it in a string variable. Then GSHAPE places

that area onto another part of the screen. You can use

SSHAPE and GSHAPE like a stamp to copy one part of the

screen and put it anywhere else on the screen as many times

as you wish.

The syntax for SSHAPE is

SSHAPE \$,X1,Y1,X2,Y2

In this statement, A$ is the string where the shape is stored;

X1,Y1 are the x and y coordinates that form the upper left cor-

65

Chapter 1

ner of the area you want to store; and the X2,Y2 pair desig

nates the lower right corner.

GSHAPE's syntax is |_j

GSHAPE A$,X,Y,tnode

Again, A$ is the string where the shape is stored; X and Y are i j

the screen coordinates of the point where you want the shape '—'
to begin; and mode is a number from 0 through 4. When mode

0 is specified, the shape is left as it is. If 1 is chosen, the shape

will be inverted, or flipped upside-down. Options 2-4 allow

you to OR, AND, or XOR the shape (discussion of these op

tions is outside the scope of this article).

After you've typed in the program and solved the puzzles

a few times, you might enjoy designing your own. Here is the

method I followed. First, a puzzle was drawn inside the box

area discussed above. Then, with SSHAPE, it was put into ar

ray PU$(). Each puzzle piece is a 24 X 16-pixel square. A

simple scramble routine was used to scramble the pieces. And

finally, GSHAPE was used to place each piece in a different

position on the right side of the screen.

Puzzle Grid
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

GOSUB1160

GRAPHIC2,1,18:WIDTH1

SSHAPECL$,0,0,24,16

F=25:DIMPU$(F),U$(F),SC(F),XC(F),YC(F)

GOSUB1020:GOSUB950

G=INT(RND(1)*5)+1:IFG=PEEK(128)THEN60

POKE128,G

ON G GOSUB 410,460,510,560,610,660,710,760,8

10,860

FORT=1TO5:FORR=1TO5:W=(R-1)*5+T:SSHAPEPU$(W) , }

,XC(W),YC(W),T*24+12,R*16+12:NEXT:NEXT [_J
FORT=1TO4:SPRITET,0:NEXT

REM SCRAMBLE

PRINTM{CLR}{20 DOWN}{5 SPACES}SCRAMBLING I I
FORT=1TO2 5:U$(T) = MN":NEXT [—>
FORT=1TO25

G=INT(RND(1)*25)+1:IFU$(G)= IIY"THEN150 < ,

U$(G)="Y":SC(T)=G:NEXT L_J
REM PUT SCRAMBLED PUZZLE ON SCREEN

COLORI, 8

FORT=1TO5:FORR=1TO5:W=(T-1)*5+R:GSHAPEPU$(S \ (

C(W)),XC(W)+176,YC(W) (—'

u

PJ

DC

DC

MR

AF

HG

RQ

XP

XS

QQ

XQ

KS

AR

AX

AK

CC

HC

GQ

RE

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

n

Games

AP 200 SOUND1,SC(W)*1000+3000,2,,,#1:NEXT:NEXT
FP 210 FL=1:GOSUB980:FL=0:COLOR1,16:GOSUB980
EM 220 SLEEPS

BQ 230 BOX0,12,12,132,92,,1:FL=0:GOSUB910:GOSUB980
:GOSUB950

KR 240 SC=1000:CO=VAL(TI$)

RK 250 PRINT n{CLR}M:F0RPL=lT018:PRINTiNEXT
QC 260 INPUT "INPUT NUMBER OF SQUARE TO PILL"; PS

XR 270 TN=VAL(TI$)-CO:SC=SC-TN:CO=CO+TNsIFSC<=0THE
N1070

FE 280 SC$=STR$(SC):CHAR1,34,0,SC$

QM 290 IFFS<1ORFS>25THEN250

MQ 300 PRINT"{GLR}":FORPL=1TO18:PRINT:NEXT
SD 310 INPUT"INPUT NUMBER OF PUZZLE PIECE";PP

GS 320 TN=VAL(TI$)-CX):SC=SC-TN:CO=CO+TN:IFSC<=0THE
N1070

CD 330 SC$=STR$(SC):CHAR1,34,0,SC$
XA 340 IFPP<1ORPP>25THEN310

QX 350 IFSC(PP)OFSTHENGOSUB1050
GQ 360 IFSC(PP)OFSTHEN250

SX 370 PRINT"{5 SPACES}IT'S A MATCH 11111i":PC=PC+1

:GSHAPECL$,XC(PP)+176,YC(PP)

FD 380 COLOR1,8:FL=1:GOSUB980:COLOR1,16

QP 390 GSHAPEPU$(FS),XC(FS),YC(FS):IFPC=25THEN1270
HQ 400 GOTO250

PF 410 REM CIRCLE

MS 420 CIRCLE1,72,54,7,5:CIRCLE1,72,54#11#8:CIRCLE
1,72,54,22,16:CIRCLE1,72,54,27,20

FF 430 CIRCLE1,73,51,35,25:CIRCLE1,70,55,54,36:DRA
W 1,15,15 TO 130,15 TO 125,87

BB 440 RETURN

HC 460 REM TRIANGLE AND CIRCLES

MD^470 DRAW1,41,81 TO 123,81 TO 79,14 TO 41,81

CQ 480 CIRCLE1,36,36,20,18:PAINT1,36,36:CIRCLE1,84
,60,10,10:CIRCLE1,24,76,10,3

KQ 490 DRAW1,72,86 TO 79,86:WIDTH2:DRAW 1,120,22 T

0 120,54:WIDTH1:RETURN

XQ 510 CHAR1,4,2,"THIS PUZZLE":CHAR1,5,3,"USES ONL
Y" : CHAR1,3,4, "WORDS AND NO ": CHAR1,4,6,"PICT
URES OR":CHAR1,4,7,"SYMBOLS12 SPACES jOR"

EH 520 CHAR1,5,9,"DRAWINGS":CHAR1,3,10,"IN
[8 SPACES} IT"

JH 530 RETURN

XF 560 CHAR1,3,2,"THIS PUZZLE":CHAR1,2,4,"USES WOR
DS AND":CHAR1,4,6,"ALSO FISH1"

XS 570 CIRCLE 1,96,76,20,9:DRAW1,76,76 TO 62,68 TO

62,84 TO 76,76:DRAW1,116,77 TO 108,77

XC 580 WIDTH2:DRAW 1,109,73 TO 108,72:WIDTH1

67

Chapter 1

RQ 590 CIRCLE1,115,66,4,3:CIRCLE1,118,55,6,4:CIRCL

El 122 47 8 5

XA 600 CIRCLE1,36,76,12,7:DRAW1,24,76 TO 18,70 TO

{SPACE}18,82 TO 24,76:PAINT1,36,76:RETURN

DD 610 CHAR1,2,2,"CITY AT NIGHT11:CIRCLE 1,57,37,11

,9,125,330:CIRCLE1,62,33,11,9,160,285:PAINT

1,47,37

SP 620 DRAW1,17,27 TO 19,32 TO 14,29 TO 20,29 TO 1

5,32 TO 17,27:SSHAPEST$,14,27,20,32:RESTORE

650

AB 630 FORT=1TO9:READXX,YY:GSHAPEST$,XX,YY:NEXT

AH 640 FORT=1TO7:READXX,YY,XZ,YZ:BOX1,XX,YY,XZ,YZ:

NEXT

DP 645 FORT=54TO86STEP2:DRAW1,13,T TO 35,T:NEXT:PA

INT1,60,90:FORT==51TO90STEP3:DRAW1,99,T TO 1

16 , T :NEXT: RETURN

DC 650 DATA20,39,28,34,58,32,87,37,95,31,81,22,112

,36,122,30,118,42,13,52,3 5,92,3 5,64,51,92,5

1,79,72 ,92 ,72 , 60,87 ,92 ,87 ,84,99,92 ,99 ,50,11

6,92,116,85,132,92

XF 910 REM NUMBERS

DM 920 GRAPHIC2,0,18:IFFL=1THENOV=22:ELSE OV=0

AB 930 FORT=1TO5:FORR=1TO5:X=((T-l)*5)+R:X$=STR$(X

) :CHAR1,(R) *3-2+OV,(T)*2,X$:NEXT:NEXT

GA 940 RETURN

GM 950 REM BOX

FS 960 BOX1,11,11,133,93

MC 970 RETURN

MA 980 REM LITTLE BOXES

AD 990 IFFL=1THENOH=176:ELSEOH=0

RE 1000 FORT=1TO5:FORR=1TO5:X=(R-1)*5+T:BOX1,XC(X)

+OH,YC(X),T*24+12+OH,R*16+12:NEXT:NEXT

DS 1010 RETURN

XM 1020 REM SET COORDINATES ROUTINE

PB 1030 Q=12:FORT=1TO5:QQ=12:FORR=1TO5:W=(R-1)*5+T

:XC (W)=Q:YC (W)=QQ :QQ=R*16+12 :NEXT :Q=T* 24+1

2:NEXT .

DA 1040 RETURN) j
PQ 1050 PRINT"(5 SPACES}{RVS}INCORRECT{OFF) YOU LO

SE 50 POINTS11
ME 1060 SOUND1,30000,60,0,30000,0,1:FORX=1TO60:NEX [(

T:SOUND1,1500,60,0,1500,0,1:FORX=1TO60:NEX { I

T:SC=SC-50:RETURN

SP 1070 REM RAN OUT OF POINTS

AX 1080 GRAPHIC1:FORX=1TO25 1 j
EH 1090 G=INT(RND(1)*25)+1:XX=INT(RND(1)*270):YY=I

NT(RND(1)*180)
PA 1100 GSHAPEPU$(G),XX,YY:NEXT:FORX=1TO500:NEXT:G

RAPHIC0

68

u

u

Games

PR 1110 PRINT"lCLR}{2 DOWN]{5 SPACES}YOU HAVE RUN

ISPACEJOUT OF TIME":PRINT"{DOWN}(5 SPACES}

YOU GOT11;PC; "PIECES CORRECT"

FP 1120 SOUND1,30000,380,1,0,50,1:SOUND2,30000,380

,2,29000,50,1:FORX=1TO2500:NEXT

CE 1130 INPUT"WOULD YOU LIKE TO PLAY AGAIN (Y/N)11;

YN$

DX 1140 IFYN$="Y"THENRUN

JB 1150 PRINT"{DOWN}THANKS FOR PLAYING!I I":END

DF 1160 COLOR0,3:COLOR4,7:COLOR1,16:PRINT"{WHT}":R
ESTORE 1260

CS 1170 PRINT"{CLR}{2 DOWN}"SPC(15)"WELCOME TO":SL
EEP1:PRINT"{2 DOWN}"SPC(14)"{RVS}*PUZZLE G

RID*{OFF}":SLEEP1

BR 1180 SLEEP1

DH 1190 GRAPHIC1,1:CHAR1,1,0,"PUZZLE GRID"

XS 1200 FORT=1TO4:SSHAPESH$(T),4+((T-1)*23),0,4+(T
*23),20

XD 1210 SPRSAVSH$(T),T:SPRITET,1,1,1,1,1,0:MOVSPRT
,T*47#4:NEXT:GRAPHIC0

FH 1220 SLEEP3:FORT=1TO4:MOVSPRT,0#0:READF:MOVSPRT
,F,120:SOUND1,4870,2 5:SLEEP2:NEXT

XR 1230 TEMPO11:PLAY"V1O4IC"

QM 1240 PLAY"V1T8O4CV2T8O2FV1O4CV2O2FV1O3AV2O2AV1O
3AV2O2AV1O3FV2O2F"

ES 1250 RETURN

FR 1260 DATA 92,137,183,229

QP 1270 GRAPHIC0:SCNCLR:RESTORE1260

HD 1280 PRINT"{4 DOWN}"SPC(14)"{YEL}YOU HAVE WON"

BX 1290 FORT=1TO4:SPRITET,1:MOVSPRT,T*72#6:NEXT:SL
EEP3

XM 1300 FORT=1TO4:MOVSPRT,0#0:READF:MOVSPRT,F,120:

SOUND1,4870,2 5:SLEEP1:NEXT

BF 1310 TEMPO25:PLAY"V1O4QCEGO5HCO4QGO5WC"
JH 1320 PRINT"{8 DOWN}"SPC(11)"WITH A SCORE OF";SC
SX 1330 PRINT"{2 DOWN}":GOTO1130

I \

I \

n
69

'?: v

iVT^-rK* "~1>

^:

'./' .;..l-i^\

r|ft"f^0;%^|f4'^l

"'J^';'

^S^

■*?, ™-*

Database 128

Allen Vaughan

For a useful, multifunctional program that will help you manage

any information you need to store, retrieve, and manipulate, try

"Database 128." Its quick and easy to use.

Databases are useful tools for many applications. You'll find

that "Database 128" includes options for sorting alphabetically

in ascending order, searching individual fields, deleting records,

and editing records. It has a housekeeping option that allows

you to view the disk directory for entries, scratch files on

disks, and format new disks. When you save a file, the save

routine checks to see whether a file of that name already ex

ists. If it does exist, the old file is automatically renamed so

that you can refer back to it later or use it as a backup in case

something goes wrong with the save. There is also a disk error-

checking routine that keeps you informed of the disk status.

Written entirely in BASIC 7.0, and using the FAST com

mand, the program runs surprisingly fast. And because the

128 banks its memory, there are over 64,000 bits of memory

reserved for the data, allowing for a most impressive data

collection.

The Menus

Database 128 actually has three menus: the main menu ap

pears when you first run the program, the housekeeping menu

displays the disk options, and the printer menu allows you to

choose from two print formats (either mailing labels or a list).

To make a choice from either menu, or from the VIEW option,

just press the key that corresponds to your choice.

Database Options

When you first use Database 128, you will need to create a

new file. Do so with the CREATE option. The computer will

ask for the number of fields (individual units of information

within a file). Enter the number of fields that will be required

n

n

n

Chapter 2

for the file you're creating. An address file, for example, may

have four fields: One for the person's name; one for the street

address; one for the city, state, and zip code; and one for the j (
phone number.

The screen will then clear and prompt you to enter the ti

tle for each field and its maximum length. You must be sure to J J
give a maximum number of characters for each field, or you'll

get a message and will have to start from the beginning. Once

you've defined the last field, the computer will display the

maximum number of entries that particular configuration will

allow and ask if it is acceptable.

Use the ADD option to enter data into your database. To

exit this option, simply hit RETURN on the first field of the

next entry.

DELETE allows you to remove a record from memory.

The 128 prompts you to enter numbers individually (#) or to

list all (A). If you choose #, you'll need to enter the appropri

ate number of the record to be removed. The A response will

go through the entire file, and you will have the opportunity

to keep each entry or remove it.

FIND is a search routine. When you choose it, the display

clears, and the names of the different fields are shown. Select

the field you want to search. You'll be prompted to enter the

string which is to be found.

MODIFY gives basically the same prompts as DELETE,

but instead of removing an entry, you can change the data in

the file.

READ is used to retrieve data from a disk file. If data is

in memory at the time READ is selected, you are warned that

a READ command will erase that data and are asked if you

want to save that data first. Database 128 will read only disk,

files that it has written.

SORT will arrange the entries in alphanumeric order. The J j
computer displays the names of the different fields and

prompts you to select the field to be sorted. The display will

then clear because the program goes into FAST mode to speed J J
up the sort routine.

VIEW allows you to look at the entries in the file. While

you're in this option, you can advance to the next entry, back ^J
up to the last entry, print the entry onscreen, go to the FIND

routine, or exit to the main menu.

WRITE saves the file in memory to disk. It labels its files [_j

74 t ,

Applications

with a DB- prefix in front of the filename that you've assigned.

This allows the program to identify its own files during the

i s DIRECTORY and READ options.

PI The Print Option

When you select PRINT from the main menu, you are trans

ferred to the print menu. Here, you can choose either to print

a mailing list or to dump the contents of the file to the printer.

If you choose the mailing labels option, only the first three

fields are printed. However, if the list option is selected, all

fields are printed. With both options you are prompted to en

ter the starting entry number to be printed. At that time, you

can abort the print by pressing RETURN, or you can enter the

number of the first entry to be printed. If you enter a 1, the

entire file will be printed.

The Housekeeping Menu

The HOUSEKEEPING option takes you to yet another menu,

the housekeeping menu, where you'll find the following

options:

DIRECTORY displays only the files on the disk that can

be read by Database 128.

EXIT TO BASIC takes you out of the database and back

to BASIC 7.0.

FORMAT makes a disk ready for use. It assigns the disk

the name DATABASE and the ID number 40. To change

either the disk name or the ID number, list the program and

make the changes in line 410.

MAIN MENU returns you to the main menu.

SCRATCH prompts you for the filename that's to be

r-j scratched and then executes the SCRATCH command.

'. I As with all of your important files, be sure to make back
up copies of all your Database 128 files.

1 \ Database 128
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in
this program.

PI QG 10 REM DATABASE 128
JQ 12 COLOR4,1:COLOR0,1:COLOR5,6:DCLOSE:CLOSE4:GOT

068

p| MP 16 D$=CHR$(0):MR§=D$:DR$=D$:S=0:B1$=CHR$(10):PW
' ' =0:CW=0:B$=CHR$(32)

n

Chapter 2

EJ 18 NC=0:NL=0:PG=0:F1=0:F2=0:F3=0:L$=D$:RL=0:SB$

=D$:CR$=CHR$(13):HN$=D$:ID$=D$

RJ 20 A$=D$:C$=D$:T%=0:I$=D$:CK=0:I=0:J=0:K=0:L=0: \ i

M=0:N=0:RW=5:SF=0:Z=0:E$="EOF" I 1
KH 22 MEM=64249:EN=0:EM$=D$:ET=0:ES=0:A1$=D$:A2$=D

$:A3$=D$:RETURN

RF 24 DIM F$(F+1),T%(F+1),L%(F+1):RETURN j I
EJ 26 DIM REC$(R+1,F+1),ML$(9,4),PC(10),TT$(5),HC$ ^

(9),K%(R+1):RETURN

JX 28 REM *** GET ***

QJ 30 GOSUB20000

MQ 31 PRINT"{2 UP}11: GETKEY A$

MB 32 RETURN

FB 34 REM *** CREATE ***

HC 36 IFCKO0THENGOSUB394

FG 40 FAST: CLR:G0SUB16:SLOW:INPUT"ICLR}{DOWN}HOW

t SPACE }MANY FIELDS IN EACH RECORD? 0

{4 LEFTjll;F:IFF=0THEN68

CB 42 FAST: GOSUB24:SLOW:FORI=1TOF

MC 44 PRINT"{HOME}{4 DOWN}{RVS}FIELD #";I:PRINT"

{DOWN}TITLE ?{29 SPACES}"

AF 46 PRINT"LENGTH{31 SPACES}{HOME}"

MP 47 PRINT"{5 DOWN}";TAB(6);:INPUTF$(I):PRINTTAB(

6);:INPUTL%(I)

DA 48 IF F$(l)="" OR L%(l)=0 THEN PRINT "EACH FIEL

D MUST HAVE A TITLE AND LENGTH":I=F:SLEEP3:G

OTO40

QJ 49 NEXT I

HH 50 REM *** COMPUTE # RECORDS ***

MC 52 FORJ=0TOF:RL=RL+L%(J):NEXTJ:RL=RL+3*(F+l)+5:

R=INT((MEM-12*(F+1)-2100)/RL)

SG 54 PRINT"{DOWN} YOUR SELECTIONS WILL ALLOW APPR

OX"

XS 56 PRINTR;"RECORDS.{2 SPACES}{RVS}A{OFF}CCEPT O

R {RVS}R{OFF}EJECT?"

HG 58 GOSUB30:IFA$="R"THEN38

PG 60 IFA$="A"THENGOSUB26:CK=1:GOTO68

DK 62 GOTO58 | j

HG 64 REM *** MENU *** '—'
PC 68 SLOW: PRINT"{CLR} {RVS}{8 SPACES}DATABASE 12

8 MENU{14 SPACES}" , >

EP 70 PRINT"{4 DOWN}{5 SPACES}{RVS}A{OFF}DD [_j
{16 SPACES}{RVS}P{OFF}RINT"

SG 72 PRINT"{DOWN}{5 SPACES}{RVS}C{OFF}REATE

{13 SPACES}{RVS}R{OFF}EAD" \ j

DA 74 PRINT"{DOWN}{5 SPACES}{RVS}D{OFF}ELETE *—'

{13 SPACES}{RVS}S{OFF}ORT"
GH 76 PRINT"{DOWN}{5 SPACES}{RVS}F{OFF}IND , .

{15 SPACES}{RVS}V{OFF}IEW" LJ

76

u

Applications

FF

BA

EP

BF

QE

RB

CQ

EC

BJ

CB

DB

XB

SA

BC

96

98

100

102

104

106

108

110

112

116

118

120

122

124

n

BE 78 PRINT"{DOWN}{5 SPACES}{RVS}H{OFF}OUSEKEEPING

{7 SPACES}{RVS}W{OFF}RITE"

HC 80 PRINT"{DOWN}{5 SPACES}{RVS}M{OFF}ODIFY
MP 90 PRINT"{5 DOWN} {RVS}{6 SPACES}PRESS THE APPR

OPRIATE KEY{7 SPACES}"

DS 92 PRINT"{2 SPACES}THERE ARE";X;"RECORDS IN MEM
ORY"

OX 94 IF R>0THENPRINT"{2 SPACES}SPACE FOR";R-X;"MO

RE RECORDStUP}"

GOSUB30:IFA$="A"THENGOSUB350:GOTO124
IFA$="M"THENGOSUB350:GOTO244

IFA$="D"THENGOSUB350:GOTO27 2
IFA$="C"THEN36

IFA$="R"THEN170

IFA$="P"THENGOSUB350:GOSUB356 :GOTO68

IFA$="V"THENGOSUB350:GOTO192

IFA$="W"THENGOSUB350:GOTO144

IFA$="S"THENGOSUB350:GOTO304

IFA$="F"THEN218

IFA$="H"THEN460

GOTO96

REM *** ADD RECORDS ***

FORI=X+1TOR:PRINT"{CLR}{DOWN}PRESS THE
{RVS}RETURN{OFF} KEY AFTER EACH ENTRY{DOWN}

MM 126 PRINT"PRESS {RVS}RETURN{OFF} WITHOUT ANY EN
TRY TO STOP{2 DOWN}"

XX 128 PRINT"{RVSjRECORD NUMBER ";I;"{DOWN}"

FS 130 FORN=1TOF

DF 132 PRINTF$(N);"{3 SPACES}>{3 LEFT}";:INPUTREC$

(I,N):IFREC$(I,N)=""THENREC$(I,N)=">"
GQ 134 IFLEN(REC$(I,N))>L%(N)THENGOSUB140:GOTO132

BF 136 IFREC$(I,1)=">"THENX=I-1:CK=1:GOTO68

SE 138 NEXTN:K%(I)=I:NEXTI:X=R:CK=1:GOTO68

AF 140 PRINT"CANNOT EXCEED{RVS}";L%(N);" CHARACTER

S":RETURN

XA 142 REM *** SAVE ***

GF 144 PRINT"{CLR}{DOWN}ENTER NAME OF CURRENT FILE
TO BE SAVED"

SE 146 PRINT"(12 CHARACTERS MAX).{2 SPACES}ANY EXI

STING FILE"

CG 148 PRINT"WITH THE SAME NAME WILL BE SCRATCHED.
n

BX 149 PRINT"JUST PRESS {RVS}X{OFF} AND <RETURN> T

O ABORT.{2 DOWN}"

RK 150 PRINT"{2 SPACES}";NF$:INPUT"{UP}";NF$:IFNF$

="" OR LEFT$(NF$#1)="X"THEN68

MK 152 SCRATCH "DB- "+LEFT$(NF$,8)+" OLD":PRINT"

{DOWN}SCRATCHING OLD FILE"

77

a

Chapter 2 (

SA 153 RENAME "DB- M+NF$ TO "DB- "+LEFT$(NF$,8)+"

{SPACE}OLD":PRINT"{DOWN}RENAMING CURRENT FI

LE" \ I

AD 156 DOPEN#5,"DB- "+NF$ +",S ",W:PRINT "{DOWNjSAVI <—*
NG NEW FILE AS ";NF$:GOSUB414

KB 158 PRINT#5,R;CR$;F;CR$;X:FORN=1TOF:PRINT#5,F$(.

N);CR$;L%(N):NEXTN J_J
RX 160 FORI=1TOX:PRINT"{DOWN}SAVING RECORD #M;I;M

12 UP}11

XE 162 FORN=1TOF:PRINT#5,REC$(I,N) :NEXTN:NEXTI:PRI

NT

DX 164 FORI=1TOX:PRINT"{DOWN}SAVING POINTERS";I;M

{2 UP}":PRINT#5,K%(I):NEXTI

EH 166 PRINT#5,E$:PRINT#5:DCLOSE:CK=0:PRINT"

{2 DOWN}":GOSUB414:SLEEP2:GOTO 68

FK 168 REM *** LOAD ***

FA 170 IFCKO0THENGOSUB394

CQ 172 CLR:GOSUB 16:PRINT"ICLR}{DOWN}ENTER NAME OF

FILE TO BE LOADED":PRINT"PRESS <RETURN> TO

ABORT {2 DOWN}":INPUT NF$:IFNF$=""THEN68

KM 174 DOPEN#5#"DB- "+NF$+",S":GOSUB414:IF DS=62 T

HEN SLEEP1:GOTO 68

XP 176 INPUT#5,R,F,X:GOSUB24:GOSUB26:FORN=1TOF:INP

UT#5,F$(N),L%(N):NEXTN

ED 178 FORI=1TOX:PRINT"{DOWN]READING RECORD #";I;M

12 UPj"

AC 180 FORN=1TOF:INPUT#5,REC$(I,N):NEXTN:NEXTI:PRI

NT

FB 182 FORI=1TOX:PRINT"{DOWN}READING POINTERS";I;"

{2 UP}":INPUT#5,K%(I):NEXTI

FB 184 INPUT#5,E$:IF E$<>"EOF"THEN GOSUB 414

MK 186 DCLOSE:PRINT"{2 DOWN}":G0SUB414:SLEEP2:GOTO

68

HQ 190 REM *** VIEW ***

DB 192 INPUT"{CLR}{3 DOWN}VIEW STARTING WITH WHICH

RECORD";L$:I=VAL(L$):IFL$=CHR$(13)THENI=1

SJ 194 IFI=0THEN68

JX 196 IFI>XTHEN68 I

RG 198 PRINT"{CLR}{2 DOWN}{RVS}RECORD NUMBER{OFF}" '—
;I;" {RVS}IN FILE{OFF} ";NF$7"{2 DOWN}"

AR 200 FORN=1TOF:PRINT F$(N);": {RVS}";REC$(K%(I), j /

N):NEXTN (i
SG 202 PRINT"{DOWN} {RVS}N{OFF}EXT, {RVS}L{OFF}AST

, {RVS}P{OFF}RINT# {RVS}F{OFF}IND# {RVS}E

{OFF}XIT TO MENU" J|
MP 204 GOSUB30:IFA$="N"THENI=I+1:GOTO194 S
EQ 206 IFA$="L"THENI=I-1:GOTO194

BM 208 IFA$="P"THENGOSUB 600:1=1+1:GOTO194) /

u

n

n

n

n

n

n

n

H

SQ

QE

PF

EM

KD

EC

BH

SG

RJ

CK

XB

DR

JM

KX

GC

MH

PG

EJ

PB

BR

PR

BR

BM

QD

DR

GG

224

226

228

230

232

234

236

238

239

240

242

244

246

248

250

252

254

256

258

260

261

262

264

266

268

270

n

Applications

XM 210 IFA$="F"THEN218

KG 212 IFA$="E"THEN68

JB 214 GOTO204

AH 216 INPUT"{DOWN}JUMP TO RECORD NUMBER";I:GOT019
4

HG 218 PRINT"{CLR}{4 SPACES}{RVS}FIND RECORDS WITH
COMMON ITEMS {DOWN)11

BB 220 FORN=1TOF: PRINT" {RVS} " ;N; lf {OFF} ";F$(N):NE
XTN

BK 222 INPUT"{DOWN}WHICH FIELD IS TO BE SEARCHED?
{SPACE}0 {4 LEFr}H;SF:IFSF=0THEN68
IFSF<10RSF>FTHENPRINT"{3 UP}":GOTO222
PRINT"{DOWN}ENTER {RVSjCOMMON ITEM{OFF} ":P
RINT"{DOWN}(THE ENTIRE STRING IS NOT REQUIR
ED)"

PRINT"{DOWN}{RVS}";F$(SF);"{OFF} ";:INPUTT$

FORI =1TOX .-PRINT" {DOWN JSEARCHING RECORD"; I; "
{2 UP}"

IFT$=LEFT$(REC$(K%(I),SF),LEN(T$))THEN236
GOTO240

PRINT"{CLR} RECORD #";I;"{DOWN}":FORN=1TOF:
PRINTF$(N);": {RVS}";REC$(K%(I),N):NEXTN

PRINT"{DOWN} {RVS}N{OFF}EXT RECORD":PRINT"
{DOWN} {RVS}P{OFF}RINT RECORD":GOSUB30
IFA$="P"THENGOSUB1000

NEXTI:GOTO68

REM *** MODIFY ***

PRINT"{CLR}{DOWN}MODIFY WHICH RECORD? ENTER
lRVS}#{0FF}{2 SPACES}0R {RVS}A{OFF}LL

12 DOWN}":INPUTMR$:IFMR$=D$THEN68
IFMR$="A"THENMR$=D$:GOTO254
I=VAL (MR$) : MR$=D$

IFI>XTHENGOSUB244

GOSUB256:GOTO68

FORI=1TOX:GOSUB256:NEXTI:GOTO68
PRINT"{CLR}{DOWN}T0 MODIFY RECORD NUMBER";I
;", MAKE CHANGES"

PRINT"AS EACH FIELD IS DISPLAYED,THEN {RVS}
RETURN{OFF}{DOWN}"

FORN=1TOF:PRINTF$(N)":":PRINT"{3 SPACES}

{RVS}";REC$(K%(I)#N)

IF LEN(REC$(K%(I),N))>36 THEN PRINT"{UP}";
PRINT"{UP} ";:INPUTREC$(K% (I) , N)

IFLEN(REC$(K%(I),N))>L%(N)THENGOSUB140:GOTO
260

IFREC$(K%(I),N)=""THENREC$(K%(I),N)=">"
NEXTN:CK=1:RETURN

REM *** DELETE ***

79

LJ

Chapter 2 I ,

u
XS 272 PRINTM{CLR}{DOWN}DELETE WHICH RECORD? ENTER

{RVS} # {OFF} OR {RVS}A{OFF}LL{2 DOWN}11
KD 274 INPUTDR$:IFDR$=D$THEN68) (

JD 276 IFDR$=IIAIITHENDR$=D$:GOTO282 '—i
EJ 278 I=VAL(DR$):DR$=D$:IFI>XTHENGOSUB348:GOTO274

GF 280 GOSUB284:GOTO68 , «

FF 282 FORI=1TOX:GOSUB284:NEXTI:GOTO68 j j
DX 284 PRINTM{CLR}{2 DOWN }TO DELETE RECORD NUMBER11

;I;M, PRESS"

QK 286 PRINTMlRVS}SHIFr{OFF} {RVS}D{OFF}, PRESS

{RVSJSPACE BAR{OFF} TO ADVANCE{DOWN}"
CH 288 FORN=1TOF:PRINTF$(N);M{3 SPACES}{RVS}";REC$

(K%(I),N):NEXTN

RC 290 GOSUB30:IFA$="D"THEN294

XA 292 CK=1:RETURN

MP 294 PRINT"{2 DOWNjDELETING RECORD11; I: PRINT"

{DOWN} {RVS}RECORDS MAY NOW BE OUT OF ORDER11

MX 295 FORZZ=1TO1000:NEXT

JF 296 FORN=1TOF:REC$(K%(I),N)=REC$(X,N) :REC$(X,N)

=MM:NEXTN

JB 298 FORJ=1TOX:IFK%(J)=XTHENK%(J)=K%(X):K%(X)=0:

X=X-1:GOTO292

QP 299 NEXT J

HX 302 REM *** SORT ***

PH 304 PRINTM{CLR}{DOWN}{RVS}{4 SPACES}SORT RECORD

S IN ASCENDING ORDER{3 SPACES}{DOWN}"

XX 306 FOR N=1TOF:PRINT" {RVS}";N;"{OFF} ";F$(N):N

EXTN

FD 308 INPUT"{DOWN}WHICH FIELD IS TO BE SORTED? 0

{SPACE}{4 LEFT}";SF:IFSF=0THEN68

JE 310 IFSF>FTHENPRINT"{3 UP}M:GOTO 308

SR 312 M=X

DD 314 M=INT(M/2):IFM=0THENCK=1:SLOW:GOTO68

DA 315 FAST

FB 316 J=1:K=X-M

MJ 318 I=J

KB 320 L=I+M

HQ 324 IFREC$(K%(I),SF)<=REC$(K%(L),SF)THEN328] (

SB 326 T%(N)=K%(I):K%(I)=K%(L):K%(L)=T%(N):I=I-M:I {—f
FI>0THEN320

GH 328 J=J+1:IFJ>KTHEN314 | /

CP 330 GOTO318 LJ
GE 332 REM *** EXIT ***

SC 334 PRINT"{CLR}{2 DOWN} {RVS}YOU HAVE NOT SAVED

YOUR CHANGES 1" /" I
JR 336 PRINT "{2 DOWN} DO YOU REALLY WANT TO QUIT? ^

{SPACE}{RVS}Y{OFF} OR {RVS}N{OFF}

HK 338 GOSUB30:IFA$=MYM THEN344) ;

DS 340 GOTO68 LJ

80

u

n
Applications

EJ 341 PRINT"{CLR}":GOTO336

MH 344 PRINT"{CLR}{2 DOWN}DATABASE TERMINATED":END
j| MD 348 PRINT "NO SUCH RECORD EXISTS": RETURN

* PK 350 IFR>0THENRETURN
XD 352 PRINT"{CLR}{DOWN}NO FILES IN MEMORY":SLEEP

p-^ {SPACE}3:GOTO68
! 1 SE 356 REM *** PRINT MENU ***

MM 358 PRINT"{CLR}{RVS}{14 SPACES}PRINT MENU
{15 SPACES]"

QJ 360 PRINTTAB(12)"{6 DOWN}{RVS}L{OFF}1ST"

JQ 362 PRINTTAB(12)"{DOWN}{RVS}M{OFF}AILING LABELS

HF 364 PRINTTAB(12)"{DOWN}{RVS}E{OFF}XIT TO MAIN M
ENU"

DR 365 PRINT"{10 DOWN}{RVS}{39 SPACES}"
QA 366 GOSUB30:IFA$="L"THEN500
PF 368 IFA$="M"THEN 550

ER 370 IFA$="E"THEN 68

AS 372 GOTO372

DR 392 REM *** WARNING ***

SD 394 PRINT"{CLR}{DOWN}{RED}{RVS}THIS WILL DESTRO
Y THE FILE IN MEMORY1{3 SPACES}{GRN}

QR 396 PRINT"{2 DOWN}SAVE THE FILE FIRST? {RVS}Y

{OFF} OR {RVS}N{OFF}":GOSUB30:IFA$="N"THENR
ETURN

RX 398 GOTO142

MC 400 REM *** NEW DISK ***

GK 402 PRINT"{CLR}{DOWN} ARE YOU SURE? {RVS}Y{OFFj
OR {RVS}N{OFF}

BQ 404 GOSUB30:IFA$="N"THEN68
KG 406 IFA$o"Y"THEN68

pc 410 header "database",140:print" {clr} {3 down}
16 spaces Formatting "

KD 411 GOTO68

XA 412 REM *** DISK ERROR ***

MH 413 IF TT=1 THEN END

CH 414 PRINTDS$:IFDS>01ANDDS<20 THENSLEEP2:GOTO68:
/] ELSE RETURN

KF 422 PRINT"{CLR}":DIRECTORY"DB-*"

RA 456 PRINTTAB(25)"PRESS {RVS}ANY KEY{OFF}":GOSUB
f] 30:GOTO68

L J MS 460 REM *** HOUSEKEEPING MENU ***

QA 462 PRINT"{CLR} {RVS}{8 SPACES}HOUSEKEEPING MEN
r^ U{14 SPACES}"

j \ EM 464 PRINT"{4 DOWN}{5 SPACES}{RVS}D{OFFjIRECTORY
ii

SE 468 PRINT"{DOWN}{5 SPACES}{RVS}E{OFF}XIT TO BAS

T IC"

n
81

LJ

Chapter 2 , ,

LJ
SK 470 PRINT"{DOWN}{5 SPACES}{RVS}FIOFFjORMAT DISK

ii

SK 472 PRINT11 {DOWN} {5 SPACES } {RVS}M{ OFF }AIN MENU11 j f
SH 474 PRINT11 {DOWN} I 5 SPACES} {RVS }S{OFF }CRATCH FIL <—\

E"

AE 476 PRINT"{DOWN} , »
GQ 478 PRINT11 {6 DOWN} {RVS}{6 SPACES}PRESS THE APP [_j

ROPRIATE KEY{7 SPACES}M:GOSUB 30

XH 480 IF A$="DM THEN422

XG 482 IF A$="E" THENPRINT"{CLR}M:GOTO336

BH 484 IF A$="F" THEN402

QS 486 IF A$="M" THEN68

JH 488 IF A$="S" THEN525

DG 500 REM *** PRINT LIST ***

JM 505 L=0

QJ 510 INPUT"{CLR}{3 DOWN}PRINT STARTING WITH WHIC

H RECORD";L$:I=VAL(L$):IFL$=CHR$(13)THENI=1

RA 512 OPEN 4,4:PRINT#4

HG 514 IFI=0ORI>XTHENCLOSE4:GOTO68

SJ 516 FORN=1TOF:PRINT#4,REC$(K%(I),N):NEXTN:PRINT

#4:I=I+1:GOTO514

ER 525 REM *** SCRATCH FILE ***
DR 526 INPUT"{CLR}{2 SPACES}SCRATCH WHICH FILE";DF

$
ME 528 IFDF$ =""THEN 68
BF 532 PRINT"{DOWN}{RED}SCRATCH{2 SPACES}{RVS}"DF$

"{OFF} :ARE YOU SURE? {GRN}":GOSUB30

EK 533 IFA$<>"Y"THEN68

JS 534 SCRATCH "DB- "+DF$,D0 :PRINT"{DOWN}"DS$*SLE

EP 3:G0TO68

HM 550 REM *** PRINT MAILING LIST ***

QS 555 L=0
AQ 560 INPUT"{CLR}{3 DOWNjPRINT STARTING WITH WHIC

H RECORD";L$:I=VAL(L$):IFL$=CHR$(13)THENI=1

BH 562 OPEN 4,4:PRINT#4

AM 564 IFI=0ORI>XTHENCLOSE4:GOTO68

RJ 566 FORN=1TO3:PRINT#4,REC$(K%(I),N):NEXTN:PRINT

#4:PRINT#4:PRINT#4:I=I+1:GOTO564 | (

CX 600 REM *** PRINT ENTRY *** 1—''
FX 604 OPEN 4#4:PRINT#4f"{CLR}{2 DOWN} RECORD NUMB

ER ";I;"{2 SPACES}IN FILE{2 SPACES}";NF$;"

{2 DOWN}"
AE 606 FORN=1TOF:PRINT#4# F$(N);":{2 SPACES}";REC$

(K%(I),N):NEXTN:PRINT#4:CLOSE4:RETURN

QG 20000 PRINT"{BELL}":RETURN

I i

82

u

n

I \

~ SpeedScript-80 for
n the 128
n

Todd Heimarck

Now 128 owners with an 80-column monitor can run the popular
SpeedScript word processor originally written for the Commodore
64. If you already have a copy of SpeedScript, version 3.0 or
higher, very little typing is required because this program patches
into the original.

Without a doubt, the SpeedScript word processor is the most
popular program ever published by COMPUTE! Publications.
Version 1, including both a VIC and a 64 program, was

printed in the January 1984 issue of COMPUTERS Gazette. The

upgraded and improved version 2.0, with a help screen and

custom characters, was included on the inaugural Gazette Disk

in May of the same year. Version 2.1 can be found in COM-

PUTEI's Second Book of Commodore 64.

Version 3.0 (with separate programs for the 64, VIC, Ap

ple, and Atari) appeared over several months in COMPUTE!

magazine in the spring of 1985. The machine language source

code for version 3.1 was published separately in the Speed-

Script books for Commodore, Atari, and Apple. Version 3.2

was included as a bonus on the January 1986 COMPUTE! Disk.

Individual disks containing SpeedScript 2.0, 3.0, 3.1, and 3.2
are still available.

H SpeedScript for the 128
The ideal 128 version would take full advantage of the ma-

p-» chine's features: 40- or 80-column output, access to the nu-

L < meric keypad and other keys (perhaps an alternate character
set toggled by the ALT key), and two large text areas of about

r^ 60K each.

L3 As you may have guessed, the program given here is not
the full-featured 128 version. That's the bad news. The good

f*-m news is that, if you already have a copy of SpeedScript for the

/ \ 64, version 3.0 or higher (from the March 1985 COMPUTE!,

n 83

Li

Chapter 2 , .

the SpeedScript book, or the January 1986 COMPUTE! Disk),

you'll have to type in only a few hundred characters to upgrade ^

to a full 80 columns. Compare that to the roughly 7 to 8K]_J
you'd have to enter for a brand-new program.

"SpeedScript-80" patches into the main program to pro

vide an 80-column screen display. It must be run on a 128—in (_J
64 mode—because it takes advantage of the 128's 80-column

chip (yes, the 80-column screen can be accessed in 64 mode).

It won't run on standard 64s because they lack the 80-column

chip.

Installing SpeedScript-80

You'll need to begin with a working version of SpeedScript 3.

If you're not sure which version you own, look at the top

(command) line. If there's no number, you have version 1 or

2. If it says 3.0, 3.1, or 3.2, you have the correct version.

First, go into 64 mode by typing GO 64. Load and run

"MLX," the machine language entry program found in Appen

dix C, and type in the following programs (save them as five

separate files):

Patch 1

Starting address: 289E

Ending address: 2935

Patch 2

Starting address: 2A4E

Ending address: 2A5D

Patch 3

Starting address: 315D

Ending address: 31A4

Patch 4

Starting address: 3445

Ending address: 346C j j

Patch 5

Starting address: C000

Ending address: C137 [\

After saving these five programs to disk, go back into 128

mode (turn your computer off and then on). Enter the machine , ~

language monitor with the command MONITOR (or press F8). Lj
Insert the disk containing SpeedScript into your drive, and type

the following monitor load command, substituting the appro- , -

priate filename for SPEEDSCRIPT: LJ

84 • \
LJ

r—. ^ Applications

~ L "SPEEDSCRIPT",8,02801

<—*s SpeedScript will be loaded into the 128's memory at ad-
! y dress $02801. Normally, SpeedScript loads at $0801, but that

part of memory is not available for use by programs in 128
P-| mode. Now load the first four patches:

L "PATCH1",8

L "PATCH2",8

L "PATCH3",8

L "PATCH4",8

The 80-column patches are inserted into the program, and
you can now save the results:

S "TEMP",8,02801,04009

This is only a temporary file, which you can scratch when
you've finished creating SpeedScript-80. You're almost there.
Now type X (to eXit to BASIC) and enter GO 64. From 64
mode, type these lines:

LOAD "PATCH5",8,1

NEW

LOAD "TEMP",8

SYS 49152

Insert the disk on which you want to save SpeedScript-80
before entering SAVE "SPEEDSCRIPT80",8. This file is the
new 80-column version of SpeedScript; the patches are no
longer needed.

How to Run It

You have to follow specific instructions to load and run
SpeedScript-80:

1. Turn on your 128 in 128 mode.

r—i 2. Type GO 64, press RETURN, and then answer Y to the

!_] "ARE YOU SURE?" question. The computer will switch to
64 mode.

r-j 3. From 64 mode, LOAD "SPEEDSCRIPT80",8 and type RUN.
U ! 4. Switch the display from 40 to 80 columns.

Note: If you hold down the Commodore key to go

p^ straight into 64 mode when you turn on the machine, Speed
Script-80 won't work correctly. Starting out in 128 mode forces

the computer to initialize the 80-column chip. Among other

rfi"T things, the character set is loaded into 80-column memory.

n 85

Chapter 2

LJ
How It Works

A Commodore 128 in 64 mode is not a perfect replication of a

Commodore 64. It has some extra capabilities, like access to A_[
the 80-column chip.

The 8563 chip in the 128 provides the 80-column screen j

in 128 mode and has two handles in 64 mode: You can PEEK [_j
and POKE locations $D600 and $D601. Address $D600 con
trols which internal 8563 register is PEEKed or POKEd, while
$D601 contains the value read from or written to the register.

The 8563 80-column chip has its own 16K of dedicated

memory, and you can reach it only through the two memory

locations at $D600-$D601. Between the two control locations

and the 16K of memory, though, are 36 internal 8563 chip

registers. To POKE the value 1 (we'll use the A character) to

the first memory location for the 80-column screen (address

$0000 in the 8563's 16K bank), you have to perform the fol

lowing POKEs:

1. Store $12 in $D600. Register 18 ($12) holds the high byte of

the address where we'll POKE.

2. Store a 0 in $D601, which is sent to register 18 ($12), as we

set up in step 1.

3. Store $13 in $D600. Register 19 ($13) holds the low byte of

the address where we'll POKE (note that for the 8563 chip

the high byte comes before the low byte, just the opposite

of a typical 8502 machine language address).

4. Store a 0 in $D601. Now, registers $12-$13 point to loca

tion $0000. This is not $0000 in the 128's memory map; it's

a location in the 8563's private memory.

5. Store $1F in $D600. Register 31 ($1F) will hold the charac

ter to be POKEd to screen memory.

6. Finally, store a 1, the screen code of the letter we're putting

in the top left corner, in $D601. From register 31, it will be , ,

transferred to the 80-column screen memory address in reg-] I
isters $12-$13.

For machine language programmers who want to try this, \ i.

there's one more thing to keep in mind. After storing the reg- O
ister number in $D600, you have to wait for the high bit ($80)

of $D600 to be set before storing a value in $D601. This can (~ /

be done with the BIT instruction followed by a BPL. When the (—>
high bit is turned on, you can store the appropriate value in

$D601. 1 ^

86

u

Applications

Screen memory for the 80-column screen starts at $0000,
and it takes six POKEs to get a character there. SpeedScript is

p2l built to deal with a screen size of 40 X 25 characters, and a
lot of time goes to updating the screen. Theoretically, the 80-
column screen should take more time.

H
FAST 64 Mode

You can make the 128 work twice as fast as usual in 128 mode
by entering the FAST command. The 40-column screen is dis
abled, but the computer's speed doubles from 1 megahertz
(1,000,000 instruction cycles per second) to 2 megahertz

(2,000,000 instruction cycles per second).

Within 64 mode, you can access the FAST mode by sacri
ficing the 40-column screen. Since you're POKEing the 80-
column chip, this isn't a problem. The 8563 has twice as much
screen memory, so it should take twice as long to update the

display. But if the computer works twice as fast, the disad
vantage is canceled out. Twice as much screen memory slows

things down, and twice the speed returns things to normal.
From BASIC, you can go into FAST mode by typing

POKE 53296,1. To go back to normal, POKE 53296,0. This
works in both 64 mode and 128 mode (to be safe, issue a
BANK 15 statement before you use this POKE on the 128). Of
course, BASIC 7.0 has the FAST command, so the POKE isn't
really necessary in 128 mode.

Slight Changes to the Command Set

Three commands are no longer available when you run

SpeedScript-80: CTRL-L (change letter color), CTRL-B (change
background color), and CTRL-X (exchange two transposed
characters). An RGB monitor is required to see 80 columns in

[—} color. And the routine to fill attribute memory (something like
color memory, but it also controls flashing and underlining)

would have required an additional patch. The CTRL-X option
pi has been deleted because a small section of memory is needed

for one of the new 80-column subroutines.

In addition, because there is more information on the

fj screen, the disk directory command (CTRL-$) lists the file
names in two columns. This means you can see up to 50

filenames on a single screen. Unfortunately, the way the screen
^ wraps around puts half the number of blocks per file on the

n

LJ
Chapter 2

right-hand edge of the screen. To fix this would require an- ^
other patch, which would take away one more SpeedScript

command. Also, the characters have to be POKEd to 80-column

memory, so there's no easy way to scroll the screen when you

have more than 50 files on a disk. If you attempt to display a

long directory, the extra characters go past screen memory into j 1

attribute memory. Again, writing a screen scroll routine would

have meant another patch.

Apart from these four changes, all SpeedScript commands

remain the same. Documents created in 40-column SpeedScript

can be loaded, edited, and saved with SpeedScript-80. And

the printing and formatting commands are unchanged.

SpeedScript-80
See instructions in article, and read Appendix Q "MIX," before typing in the following

program listings.

Patch 1

Starting address: 289E

Ending address: 2935

289E:4C B6 08 8E 00 D6 D0 07 B0

28A6:48 A9 IF 8D 00 D6 68 2C 9A

28AE:00 D6 10 FB 8D 01 D6 60 F4

28B6:A9 00 A2 12 20 Al 08 E8 Dl

28BE:A9 50 20 Al 08 AD 11 20 4F

28C6:85 FB AD 12 20 85 FC A2 63

28CE:01 A0 00 Bl FB 99 3C 03 A4

28D6:C8 29 7F C9 IF F0 13 C0 06

28DE:50 D0 F0 88 Bl FB 29 7F 81

28E6:C9 20 F0 05 88 D0 F5 A0 A6

28EE:4F C8 84 3B A0 00 B9 3C 12

28F6:03 20 A6 08 C8 C4 3B D0 C6

28FE:F5 18 98 65 FB 85 FB A5 4D

2906:FC 69 00 85 FC E0 01 D0 C7

290E:03 8C 10 20 20 28 09 E8 A5

2916:E0 19 F0 03 4C CF 08 A5 C4 | j

291E:FB 8D IB 20 A5 FC 8D 1C 8F *—*
2926:20 60 C0 50 F0 08 A9 20 D8

292E:20 A6 08 C8 D0 F4 60 00 E2 ;

u
Patch 2

Starting address: 2A4E , ,

Ending address: 2A5D • LJ

2A4E:A9 00 A8 20 96 11 20 28 EF

2A56:09 A9 00 4C 96 11 00 00 57 < ->

uJ

88

Applications

Patch 3

Starting address: 315D

p* Ending address: 31A4

315D:A9 FD 8D 30 D0 A9 08 20 26

3165:96 11 A9 20 A2 18 20 Al E5

T 316D:08 A9 8F 20 A6 08 A0 08 D0
1 ' 3175:A9 FF A2 IE 20 Al 08 88 03

317D:D0 FA 60 29 7F C9 20 90 99

3185:0F C9 40 90 08 E9 40 C9 25

318D:20 90 02 69 IF 20 A6 08 C9

3195:60 A2 12 20 Al 08 A9 00 95

319D:E8 4C Al 08 00 00 00 00 3C

Patch 4

Starting address: 3445

Ending address: 346C

3445 :A9 FC 8D 30 D0 A9 00 4C EF

344D:96 11 20 CD BD A0 00 B9 50

3455:00 01 F0 06 20 A6 08 C8 F0

345D:D0 F5 60 30 20 A9 00 20 82

3465:96 11 A9 20 20 70 11 00 79

Patch 5

Starting address: COOO

Ending address: C137

C000:A9 12 85 FB A9 IE 85 FC 19

C008:A0 00 Bl FB 29 7F F0 14 0D

C010:C9 20 B0 02 A9 2A C9 40 7E

C018:90 0A 38 E9 40 C9 20 90 04

C020:03 18 69 20 91 FB C8 D0 37

C028:E1 A6 FC E0 20 F0 05 E8 A9

C030:86 FC D0 D6 A0 00 84 FB C5

C038:A9 08 85 FC Bl FB C9 20 42

r*l C040:F0 0F C8 D0 F7 A6 FC E8 61

t.J C048:86 FC E0 15 D0 EE 4C 76 0B
C050:C0 84 02 84 FD A5 FC 85 El

r^ C058:FE A0 01 Bl FD C9 D2 D0 4A

j < C060:10 C8 Bl FD C9 FF D0 09 2B

C068:A9 11 91 FD 88 A9 80 91 92

C070:FD A4 02 4C 42 C0 A9 4F D6
p-) C078:8D E3 14 A9 14 8D E4 14 8B

LJ C080:A9 06 8D FA 14 A9 A6 8D DB
C088:FC 14 A9 08 8D FD 14 A9 79

rm^r C090:20 8D B4 16 8D 85 18 A9 D9

■ l C098:45 8D B5 16 A9 14 8D B6 A7

n

Chapter 2

C0A0:16 A9 5D 8D 86 18 A9 11 15

C0A8:8D 87 18 A9 A6 8D 7C 09 DD

C0B0:A9 08 8D 7D 09 A0 04 A9 0F

C0B8:78 99 8B 0E 99 0A 16 A9 F9

C0C0:58 99 9B 0E 99 1A 16 88 13

C0C8:A9 EA 99 8B 0E 99 0A 16 C6

C0D0:99 9B 0E 99 1A 16 88 10 AB

C0D8:F1 A9 4F 8D B8 ID 8D 06 DB

C0E0:1E A9 14 8D B9 ID 8D 07 9B

C0E8:1E A9 22 8D 8C IB A9 16 3B

C0F0:8D 8D IB A0 0B B9 1C Cl 43

C0F8:99 24 16 88 10 F7 A0 08 45

C100:B9 28 Cl 99 E5 14 88 10 DC

C108:F7 A9 EA 8D F9 14 8D FA 5E

C110:14 A9 28 8D FC 14 A9 09 7A

C118:8D FD 14 60 B9 45 20 F0 7E

Cl20:06 20 D2 FF C8 D0 F5 60 DE

C128:A9 36 85 01 98 18 69 43 0A

C130:A8 00 00 00 00 00 00 00 08

u

Marquee

Keith Nonemaker

n

A message that scrolls across the screen can be quite an attention-
grabber. This useful program converts messages up to 250 charac
ters long into large sprite characters, which then glide smoothly
over the screen.

"Marquee" continuously displays a scrolling message on the
screen of your 128. This could prove a useful advertising

tool—you might place the screen in the window of a small

business. Or try using it as a message board at home—you
could leave messages for the others in your family.

Setting It Up

Marquee is written entirely in BASIC; type it in and DSAVE it
before running it. First, you're asked where you want the mes
sage to appear on the screen (how far from the top of the

screen). You're also prompted to input the scrolling speed. To

use the default values, simply press RETURN. Defaults may
be changed permanently by altering lines 140 and 180.

The second screen allows you to choose colors for the
message, background, and border. Again, defaults are pro
vided, but you can change them permanently by altering lines
310, 330, and 350.

The third screen asks you to type the message to be
printed. It can contain up to 250 characters. Letters, numbers,
and any punctuation mark except the asterisk can be used.
Some graphics characters will display properly, but avoid
characters that require the bottom line of the character matrix.

Next, as the sprite data is calculated, you'll see a timer
count down to zero. Data creation requires about four seconds
for each unique character, which is rather time-consuming.
However, duplicate characters are created almost instanta
neously, so don't be surprised if the timer seems to jump
ahead suddenly now and then.

Finally, the screen is cleared and the scrolling message be
gins. The message will continue until the RUN/STOP key is

91

Chapter 2

depressed. Even then, about five characters can be "caught"

and will continue to move even as you proceed with other

programming. If you want to eliminate those characters, use

the RUN/STOP-RESTORE combination.

Marquee
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

DIM C1$(256),G$(256),J(256)

PRINT"{CLR}{3 DOWN}{16 SPACES}MARQUEE"

PRINT: PRINT: PRINT: PRINT: PRINT

INPUT"ENTER DISTANCE OF DISPLAY FROM TOP

{6 SPACES}(RANGE: 50-200; DEFAULT: 100)";H$

H=VAL(H$):IF H=0 THEN H=100

IF H<50 THEN H=50

IF H>200 THEN H=200

PRINT:INPUT"ENTER SPEED{29 SPACES}(RANGE: 4

-7; DEFAULT: 5)";SP$

SP=VAL(SP$):IF SP=0 THEN SP=5

IF SP<4 THEN SP=4

IF SP>7 THEN SP=7

PRINT"{CLR}{8 SPACESjCOLOR MENU"
PRINT"{3 SPACES}1) BLACK{4 SPACES}9) ORANGE
ii

PRINT"{3 SPACES}2) WHITE{3 SPACES}10) BROWN
n

PRINT"{3 SPACES}3) RED{5 SPACES}11) LIGHT R

ED"
PRINT"{3 SPACES}4) CYAN{4 SPACES}12) DARK G

RAY"
PRINT"{3 SPACES}5) PURPLE{2 SPACES}13) MEDI

UM GRAY"
PRINT"{3 SPACES}6) GREEN{3 SPACES}14) LIGHT

GREEN"
PRINT"{3 SPACES}7) BLUE{4 SPACES}15) LIGHT

{SPACE}BLUE"

PRINT"{3 SPACES}8) YELLOW{2 SPACES}16) LIGH

T GRAY "
PRINT:INPUT"ENTER BACKGROUND COLOR

{18 SPACES}(DEFAULT 12)";CL§(0)
CL(0)=VAL(CL$(0)):IF CL(0)=0 THEN CL(0)==12
PRINT:INPUT"ENTER BORDER COLOR{22 SPACES}(D

EFAULT 14)";CL$(4)
CL(4)=VAL(CL$(4)):IF CL(4)=0 THEN CL(4)=14
PRINT:INPUT"ENTER MARQUEE COLOR{21 SPACES}(

DEFAULT 1)";CL$(2)
CL(2)=VAL(CL$(2)):IF CL(2)=0 THEN CL(2)=1
PRINT"{CLR}ENTER YOUR MESSAGE:"

QX

QM

SA

SD

BM

CM

BX

EC

DS

DH

MK

XE

HX

JM

AK

EA

JJ

RQ

RC

QJ

RK

QS

HD

PD

QM

EB

DJ

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

92

U

Applications

QB 370 PRINT "{RVS} {OFF}11;

AJ 380 GETKEY B$

p] BK 390 IF B$=CHR$(17) OR B$=CHR$(145) OR{7 SPACES}
B$=CHR$(157) OR B$=CHR$ (29)THEN 380

PH 400 PRINT "{LEFT}M;B$;

I—| JD 410 IF B$=CHR$(34) THEN PRINT CHR$(34)CHR$(20);

i I MR 420 IF B$=CHR$(13) AND A$OIIM THEN 460
RC 430 IF B$=CHR$(13) THEN 360

SH 440 IF B$<>CHR$(20) THEN A$=A$+B$:GOTO370

GC 450 L=LEN(A$):A$=LEFT$(A$,L-1):GOTO 370
KM 460 PRINT M{CLR}{2 DOWN} M;A$:A$=A$+ M {5 SPACES}11
KB 470 WINDOW 0,0,39,1,1:L=LEN(A$):BANK 14
RJ 480 A=A+1

DF 490 PRINT MICLR}COUNTDOWN . .M;4*L-4*A+4
QA 500 C$=MID$(A$,A,1)

SM 510 N=ASC(C§):IF N>64 THEN N=N-64

BA 520 IF J(N)=1 THEN 750

GK 530 CM=0:J(N)=1

QH 540 IF N=44 OR N=59 THEN CM=1

MM 550 FOR F=l TO 8

ME 560 B=PEEK(53247+8*N+F):R$=CHR$(B)
GB 570 C1$(N)=C1$(N)+R$

MK 580 NEXT F

RP 590 D$=""

AM 600 FOR D=1+CM TO 21+CM

JD 610 C2=ASC(MID$(C1$(N),D,1))

GE 620 C6=(C2 AND 1)*7+(C2 AND 2)*56/2+(C2 AND 4)*
192/4

GJ 630 IF D=6 THEN{2 SPACES}PRINT "{CLR}COUNTDOWN
{SPACE}. .M;4*L-4*A+3

FD 640 IF D=12 THEN{2 SPACES}PRINT "{CLR}COUNTDOWN
. .";4*L-4*A+2

XB 650 IF D=18 THEN{2 SPACES}PRINT "{CLR}COUNTDOWN
. .M;4*L-4*A+1

RA 660 C5=(C2 AND 4)*l/4+(C2 AND 8)*14/8+(C2 AND 1
6)*112/16+(C2 AND 32)*128/32

JX 670 C4=(C2 AND 32)*3/32+(C2 AND 64)*28/64+(C2 A
{I ND 128)*224/128

QK 680 D$=D$+CHR$(C4)+CHR$(C5)+CHR$(C6)
PX 690 NEXT D

I—■) SQ 700 E$ = IIM:F$= IIM

L...J KB 710 FOR D=1TO21 STEP 3

RC 720 E$=MID$(D$,D,3):F$=F$+E$+E$+E$
^_ KB 730 NEXT D

) (MP 740 G$(N)=F$

DD 750 IF A<L THEN 480

QB 760 COLOR 0#CL(0):COLOR 4#CL(4)
r-^ FE 770 WINDOW 0#0,39,24,1

f J XF 780 FOR K=1TO8:MOVSPR K,270#SP :NEXT K

n
93

L)

Chapter 2

KX 790 SN=0:Q=L-3 i—
BS 800 Q=Q+1:IF Q>L THEN Q=l

BD 810 N=ASC(MID$(A$,Q,1))
JS 820 IF N>64 THEN N=N-64

DX 830 SN=SN+1:IF SN>8 THEN SN=1

SX 840 S0=SN-6:IF SO<1 THEN S0=S0+8 t

JG 850 MOVSPR SN,320,H |}
KC 860 SPRSAV G$(N),SN
HS 870 IF MID$(A$,Q,1)="," OR MID$(A$,Q,1)-" ; "

{2 SPACES}THEN MOVSPR SN,+0,+6

SR 880 SPRITE SN#1 ,CL(2) # 1,1,1 :SPRITE SO,0

FC 890 FOR CT=1 TO (7-SP)*15:NEXT CT

FR 900 GOTO 800

U

G

LJ

94

U

_ 80-Column Character
Editor

Harry Rivera

Create a complete custom character set for the 128's 80-column
screen with this useful program. When you're satisfied with the
new characters, you can save them to disk to work with other pro
grams. Also included is a boot program for loading the custom
characters into memory.

The 128's 80-column screen is an enigma. The 80-column chip
has its own private 16K of memory for screen memory, color
memory, and two character sets. To change the character set,

you might think you could just find the memory and POKE

new values to it. But it's not that simple.

The 16K used by the 80-column screen is outside the
realm of the normal memory of the 128. The only way to read
or write values there is to POKE certain numbers to 80-column

chip registers via locations 54784 and 54785 ($D600 and
$D601 in hexadecimal). These two locations act as a gateway
to 80-column memory.

It's possible to design your own characters for the 80-

column screen, but it's a little more difficult than doing it in
40-column mode. Program 1, "80-Column Character Editor,"
solves the problem and lets you concentrate on creating a new
character set. When you're finished, the character set can be
stored on a disk and easily loaded into memory.

n
A Better-Looking Character Set

,—j If you hook up a 128 to a monochrome or RGBI monitor, its
! J 640 X 200 dot resolution is the same as you'll find on an IBM

PC with a color/graphics board (as a matter of fact, you can
^ use an IBM-compatible color monitor with the 128). If you

!_ t look closely at the characters of an IBM and the Commodore

128, you'll notice that they're not the same. The IBM's charac-
,*■% ters appear to be more stylish or fancier.

) \

n

Chapter 2

I originally wrote 80-Column Character Editor to create

an IBM-style character set for my 128. It's also good for add

ing foreign language characters and accents, like e and 6, or

for creating specialized graphics.

Two programs accompany this article: one in BASIC, the

other in machine language. Program 1 is the character editor,

which allows you to create, edit, and save a custom character

set. It's written in BASIC, with a machine language routine

contained in DATA statements. There are no special instruc

tions for typing it except that you should be in 128 mode. If
you use "The Automatic Proofreader," Appendix B, you'll be

able to avoid typing mistakes.

The second program, "Boot80," is a very short machine

language program. You may use the "MLX" machine language

editor, Appendix C, to enter it. Answer the prompts as

follows:

Starting address: 0C00

Ending address: 0C77

Because it's so short, you may prefer to type it in with the

built-in machine language monitor. If you do this, ignore the

final number on each line (the rightmost number is a check

sum used by MLX). After entering the numbers, save the rou

tine to disk using the monitor Save command:

S "BOOT80", 8, 00C00, 00C78

The Menu of Commands

The program is very easy to use. All command keys are listed

on the screen, so you don't have to refer back to this article if

you forget them. After you have entered and saved the pro

gram, type RUN to start the editor. The full character set, in

cluding uppercase and lowercase letters, will appear on the j j

screen along with the list of commands and a blank grid. I—/

Using the arrow keys, just move the cursor to the charac

ter you want to change. Next, press RETURN (or E for Edit) to , ,

place that character on the grid. The cursor will move to the i^J
grid. Using the space bar, you can turn any of the dots in the

grid on or off. After constructing your new character, press , ,

RETURN again to save it in the character set. LJ
If you don't like the character you make on the grid and

want to start over or move to another character, press ESC ^ ,

u

n

Applications

and that character will be discarded. Pressing the SHIFT-

CLR/HOME combination clears the grid. The B key puts that

character into a memory buffer, and pressing C retrieves the

character shape you saved to the buffer. This is useful when

you want to copy the same character design into two or more

characters.

To save the character set, press the @ (at sign) key. A

message will appear on the bottom of the screen: Pressing

ESC cancels the save; any other key saves the complete char

acter set to disk using the filename CHAR.SET. If you need to

load a character set to change or finish it, press L. The same

message will appear, and you can proceed in the same way.

Once you've made a character set, loading it into memory

is a cinch. First, you should have saved the character set on

the disk under the name CHAR.SET. You should also have a

copy of Program 2 on the same disk, saved with the name

BOOT80. To load and initialize the character set, enter

BLOAD"BOOT80" followed by SYS 3072. An even faster way

to load and SYS is simply to type BOOT "BOOT 80". It takes
just a second or two to set up the new character set.

How It Works

As mentioned above, the chip that controls the 80-column

screen is quite different from the familiar VIC-II chip of the

Commodore 64 or 128. The 80-column screen is driven by the

8563 VDC video chip, which offers a number of advanced fea

tures. First is its ability to display 80 columns and 16 colors.

It's capable of working while the 128 is in FAST mode (2

megahertz clock speed), whereas the VIC-II can work only at

1 MHz. The 8563 also allows you to have characters from

both the uppercase/graphics and lowercase/uppercase set on
the screen at the same time, as well as underlined and flashing
characters. One of the 8563's main advantages is that it has its

own video RAM and character memory (which is copied from

ROM when the computer is turned on). None of the Commo

dore's 128K of memory is used for the character set. The only

drawback is that the 16K of memory from this chip must be
addressed indirectly.

Here's a layout of the 80-column internal RAM:

$0000-$07CF Video RAM

$0800-$0FCF Attribute RAM

$2000-$3FFF Character RAM

97

Chapter 2

These addresses are in hexadecimal. We're interested in loca

tions $2000-$3FFF, where the character-set definitions are , ,

found. There are 16 bytes available for each character, even | |
though only the first eight are actually used. The question is,

How do you transfer the new character definitions into this , .

section of VDC memory? LJ

Reading and Writing

The operations of the 8563 chip are controlled by the values

in the chip's 37 internal registers. However, the chip has only

two addresses in the 128's normal memory space: 54784 and

54785 ($D600 and $D601). Remember that the 128 must be

set for a bank where the I/O space is visible, such as bank 15.

To place a value in a register, you must store the register num

ber (0-36) in $D600, then wait until bit 7 of $D600 is set to 1.

Then you store the value you want to place in the register into

$D601.

In order to write to or read from any location in the VDC

chip's memory, you must first put the address of the desired

memory location into registers 18-19 ($12-$13) in high-

byte/low-byte order (just the opposite of what you usually do

in machine language, where the low byte comes first). Then

read from or write to register 31 ($1F). When you read from

this register, the value there is the contents of the memory lo

cation addressed in locations 18-19. When you write to regis

ter 31, the value you send to the register is forwarded to the

memory location addressed in registers 18-19. This program

fragment shows the proper machine language procedure for

writing a byte.

;Tell VDC you are writing

; to register 18

;Wait until VDC is ready ^J

;High byte of address ($2000)

;Send it to register 18 J i

;Now tell the VDC you will W

; be writing to register 19

;Wait again / »

;Low byte of address

;Send it to register 19

;Now set VDC for writing 1 j
; to register 31

u

LDX

STX

WAIT1 BIT

BPL

LDA

STA

INX

STX

WAIT2 BIT

BPL

LDA

STA

LDX

STX

#$12

$D600

$D600

WAIT1

#$20

$D601

$D600

$D600

$WAIT2

#$00

$D601

#$1F

$D600

98

Applications

WAIT3 BIT $D600 ;Wait again
BPL WAIT3

LDA #byte ;Load byte to write

STA $D601 ;Store byte in VDC RAM

The procedure for reading a location is almost the same.
Just replace the last two instructions (LDA #byte: STA $D601)
with

LDA $D601 ;Read that location

Note that if you're reading or writing a sequential series
of memory locations, you have to set up the address in regis
ters 18-19 only once. Each time a value is written to or read
from register 31, the value in 18-19 is automatically incre
mented, so each successive read or write of register 31 will
read or write the next higher memory address.

This same technique could be adapted to POKE values di
rectly to screen or attribute memory (which is similar to the
VIC-II's color memory, but it also controls flashing, under
lining, and other character attributes).

Program 1. 80-Column Character Editor
For mistake-proof program entry, use "The Automatic Proofreader," Appendix B, to type in
this program. 'r

HA 10 FAST:C0L0R6,l:GRAPHICl,l:DIM B(8,8),BF(8,8):
CP=0:U$=CHR$(142)

MK 20 FORI=0TO192:READX:POKEDEC("D00")+I,X:S=S+X:N
EXT:IFS<>24972THENPRINTCHR$(14)"ERROR IN DAT
A"+CHR$(142):END:ELSESYSDEC("D46~):GOTO140

JM 30 DATA 142,0,214,44,0,214,16,251,141,1,214,96,
162,18,169,0,32,0,13,232,169,0,32,0,13,162,3
1,169,1,32,0,13,162,18,76,0,13

QP 40 DATA 134,251,132,252,162,18,165,252,32,0,13,
232,165,251,32,0,13,162,31,142,0,214,44,0,21
4,16,251,173,1,214,133,250,96

HS 50 DATA 169,0,160,208,133,218,132,219,133,250,1
69,32,133,251,160,0,162,14,169,218,32,116,25
5,145,250,200,192,8,144,242,24,165,250

HJ 60 DATA 105,8,133,250,144,2,230,251,24,165,218,
105,8,133,218,144,220,230,219,165,219,201,22
4,144,212,96

HA 70 DATA 169,0,160,32,133,218,132,219,162,18,169
,32,32,204,205,232,169,0,32,204,205,160,0,16
2,14,169,218,32,116,255,32,202,205

XC 80 DATA 200,192,8,144,241,169,0,32,202,205,136,

99

u

Chapter 2 ■ •

LJ
208,250,24,165,218,105,8,133,218,144,224,230

, 219,165,219,201,48,144,216,96
AH 90 POKEDEC("D15"),ADAND255 ! j

QS 100 POKEDEC("D0F"),AD/256 {—I
KD 110 POKEDEC("D1C"),BI

JQ 120 SYSDEC("D0C") , ,

SS 130 RETURN I |
PB 140 PRINT"{CLR}{WHT}";TAB(7)U$;"* C O M M O D O

R E{3 SPACES}1 2 8{5 SPACES}C.H A R A C T

ISPACEjE Rl3 SPACESjE D I T O R *"
BJ 150 PRINTU$;TAB(8)"{2 DOWN}g7l@ ABCDEFGH

IJKLMNOPQRSTUVWXYZ[£]

1 V

PG 160 PRINTU$;TAB(8)"{2 SPACES}! ";CHR$(34)I> # $
{SPACE}% &'()*+»--/0123456

{SPACE}7 8 9 i ; < = > ?

SQ 170 PRINTU$;TAB(8)"* A BCDEFGHWKLM
{SPACE}N OPQRSTUVWXYZ + ?-I - T
{ SPACE }I*I"

FK 180 PRINTU$;TAB(8)"{2 SPACESjgKl gl§ gT| g<33
gGl g+3 |Ml g£8 £ BN§ gQ3 gDi §Z§ |S3 gPl
BAl gEi gRl gW§~gH| gJl gLi gYi gU§ gO§ 1
{SPACEjgF§ gC3 gX§ gV§ gB§{DOWN}"

XJ 190 PRINTTAB(8)"{N}@ ABCDEFGHIJKLM

{SPACE}N OPQRSTUVWXYZ[£] t<
II

DE 200 PRINTTAB(8)Mt2 SPACES} 1 " ;CHR$ (34)" # $ % &
«()* + #../0123456789:;

{SPACE}< = > ?
FS 210 PRINTTAB(8)M^ ABCDEFGH^JKLMNO

B8 i &"*§"
NTTAB(8)^ ABCDEFGH

P Q R S T U V W X Y Z + B-8 -
T

"Q

PG 220 PRINTTAB(8)"{2 SPACTii |§ i§
B+3 EM3 i£i £ iNi Boi Ed! Ezl Bsl B
Be3 BRl Bwi"BHi BJ3 BLi By3 Bui Boi

t space)Bc§ Bx3 Bvi BBi11

FJ 230 SYS52332,,14,50

MD 240 PRINTCHRS(14)"{CYN}<ENTER> - B41SAVE CHARAC

TERM:PRINTTAB(52)H{CYN}<CLR> - B41CLEAR CHA I I

RCTER":PRINTTAB(50)"{CYNT<SPACE> - B4§TOGGL '—'
E BIT":PRINTTAB(52)M{CYN}<ESC> - B4iABORTM

MA 250 PRINTTAB (56)M {DOWN }B33Q - TREDjQUIT11 (j
FD 260 SYS52332,,14,0 L^
MX 270 PRINTCHR$(14)M{3 SPACES}{CYN}E - E43EDIT CH

ARACTERll:PRINTiI{3 SPACES} {CYNJS - B43SWITCH
CHARACTER SETS"iPRINT"{3 SPACES}{CYN}@ - j I
B41 SAVE CHARACTER SET11:PRINT11 {3 SPACES} [—'
{CYN}L - B41LOAD CHARACTER SET"

u

100 , ,

Applications

HP 280 PRINTCHR$(14)"{DOWN}{3 SPACES} {CYN}C - §4§C

OPY CHARACTER FROM BUFFER":PRINT"{3 SPACES}

{CYN}B - [C41COPY CHARACTER TO BUFFER11

EK 290 SYS52332,,13,1:FORX=1TO8:PRINTTAB(36)"{WHT}

M:NEXT:FORX=1TO8:FORY=1TO8:B(X,Y)=0
:NEXTY,X:PS=1:LN=1:CH=1:CL=1:OF=0

BH 300 IFOF=0THENSYS52332,,2+CL,6+(CH*2):ELSE SYS5
2332,,7+CL,6+(CH*2)

PRINTCHR$ (27) "F "CHR$ (27) "S " ;

GETKEYA$

IFA$="{UP}"THENCL=CL-1:IFCL<1THENCL=4
IFA$="{DOWN}"THENCL=CL+1:IFCL>4THENCL=1
IFA$="{LEFT}MTHENCH=CH-1:IFCH<1THENCH=32

IFA$=M{RIGHT}MTHENCH=CH+1:IFCH>32THENCH=1
IFA$=CHR$(13)ORA$="EMTHENGOSUB590:GOSUB540
IFA$="@"THENGOSUB6 70

IFA$=ML"THENGOSUB700

IFA$="S"THENBEGIN:IFOF=0THENOF=2048:ELSEOF=
0:BEND

IFA$="Q"THENPRINT" {17 DOWN}MU$:END

GOTO300

GETKEYA$

IFA$="{DOWN}MTHENLN=LN+1:IFLN>8THENLN=1
IFA$=W{UP}"THENLN=LN-1:IFLN<1THENLN=8
IFA$="{RIGHT}"THENPS=PS+1:IFPS>8THENPS=1
IFA$="{LEFT}"THENPS=PS-1:IFPS<1THENPS=8
IFA$=" "THEN BEGIN:IFB(PS#LN)=0 THEN B(PS,L
N)=1:PRINT"{RVS}{YEL} {OFF}{LEFT}";: ELSE B
(PS#LN)=0:PRINTll{WHT}.{LEFT}"; :BEND
IFA$=CHR$(13)THEN560

IFA$=CHR$(27)THENSYS 52332,,13,1:GOTO580

IFA$="{CLR}IITHENSYS52332##13,1:FORX=1TO8:PR
INTTAB(36)M {WHT} ":NEXT:FORX=1TO8 :FO
RY=1TO8:B(X#Y)=0:NEXTY#X:

IFA$="C"THENGOSUB790
IFA$="B"THENGOSUB730

SYS52332,#LN+12#PS+35:PRINTCHR$(27)"U";
GOT0430

BS=DEC("2000"):FD=BS+(8*(((CL-1)*32)+(CH-1)
)-1)+1+0F:F0RAD=FDT0FD+7:BT=0:RV=0:FORB=7TO
0STEP-l:IFB(8-B#AD-FD+l)>0THENBT=BT+2iB:ELS
ERV=RV+2tB

HM 570 NEXTB:POKEAD,BT:POKEAD+1024,RV:NEXTAD:SYSDE
C("D81"):SYS52332,,12,1

SJ 580 FORX=1TO8:PRINTTAB(36)"{WHT} ":NEXT:

FORX=1TO8:FORY=1TO8:B(X#Y)=0:NEXTY,X:RETURN
CM 590 IFOF>0THENBS=DEC("2000"):FD=BS+(16*(((CL-1)

*32)+(CH-1))-1)+1+OF+2048:FORY=1TO8:FORX=1T
O8:B(X,Y)=0:NEXTX,Y:GOTO610

101

QS

CF

CR

XR

PA

RS

GD

AG

BG

CM

DB

CP

DM

MR

FC

BS

CF

MS

KK

GS

EF

AE

BQ

BC

HG

FX

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

Chapter 2

CC 600 BS=DEC("2000"):FD=BS+(16*(((CL-1)*32)+(CH-1

))-1)+1+0F:FORY=1TO8:FORX=1TO8:B(X,Y)=0:NEX

TX,Y
PE 610 FORAD=FDTOFD+7:SYSDEC("D25"),,ADAND255,AD/2

56:IFPEEK(250)>0THEN630

SB 620 NEXTAD:GOTO650
PF 630 FORB=7TO0STEP-l:IF(PEEK(250)AND2tB) >0THENB

(8-B,AD-FD+l)=l

AK 640 NEXTB:GOTO620
GD 650 FORY=1TO82FORX=1TO8:SYS52332,,12+Y,35+X:IF

{SPACE}B(X,Y)=1 THEN PRINT"{RVS}{YEL} {OFF}
";: ELSE PRINT" {WHT}.11 7

BA 660 NEXTX,Y:RETURN

ME 670 SYS52332,,23,15:PRINTCHR$(14)CHR$(7)"£63PRE

SS <ESC> TO ABORT OR ANY OTHER KEY TO SAVE.

..";7gETKEYA$
RJ 680 IFA$=CHR$(27)THENSYS52332,,23,1:PRINTA$"Q";

: RETURN
SJ 690 SCRATCH"CHAR.SET":BSAVE"CHAR.SET",P8192 TO

{SPACEJP12288:SYS52332,,2 3,1:PRINTCHR$(27)"
Q";:RETURN

EG 700 SYS52332,,23,15:PRINTCTR$(14)CHR$(7)"B6!PRE

SS <ESC> TO ABORT OR ANY OTHER KEY TO LOAD.

.."; :GETKEYA$

SK 710 IFA$=CHR$(27) THEN SYS52332,#23,1:PRINTA$"Q

11; : RETURN
CC 720 BLOAD"CHAR.SET",P8192:SYSDEC("D81"):SYS5233

2,,22,1:PRINTCHR$(27)"Q";:RETURN

AK 730 IFOF=0THENBS=DEC("2000"):FD=BS+(16*(((CL-1)
*32)+(CH-1))-1)+1+OF:FORY=1TO8:FORX=1TO8:BF

(X,Y)=0:NEXTX,Y:GOTO750

BH 740 BS=DEC("2000"):FD=BS+(16*(((CL-1)*32)+(CH-l
))-l)+l+OF+2048:FORY=lTO8:FORX=lTO8:BF(X,Y)

=0:NEXTX,Y

RF 750 FORAD=FDTOFD+7:SYSDEC("D2 5"),,ADAND2 55,AD/2

56:IFPEEK(250)>0THEN770

KA 760 NEXTAD: RETURN
HX 770 FORB=7TO0STEP-1:IF(PEEK(250)AND21B) >0THENB II

F(8-B,AD-FD+1)=1

CP 780 NEXTB:GOTO760
OS 790 FORY=1TO8:FORX=1TO8:B(X,Y)=BF(X,Y):NEXTX,Y (

FQ 800 FORY=1TO8:FORX=1TO8:SYS52332,,12+Y,35+X:IFB LJ

(X,Y)=1THENPRINT"{RVS}{YEL} lOFF}";:ELSEPRI

NT"lWHT}."7

XJ 810 NEXTX,Y:RETURN | |

u

u

n

n

n

n

n

n

n

Applications

Program 2. Boot80
See instructions in article, and read Appendix C, "MIX," before typing in the following
program listing.

Starting address: 0C00

Ending address: 0C77

0C00:4C 10 0C 43 48 41 52 2E 12

0C08:53 45 54 FF 00 FF 00 FF A5

0C10:A9 0C AA 20 68 FF A9 01 EE

0C18:A2 08 A0 00 20 BA FF A9 2D

0C20:08 A2 03 A0 0C 20 BD FF AB

0C28:A9 00 A2 00 A0 20 20 D5 05

0C30:FF 20 E7 FF A9 00 A0 20 FB

0C38:85 DA 84 DB A2 12 A9 20 E8
0C40:20 CC CD E8 A9 00 20 CC 3E

0C48:CD A0 00 A2 0E A9 DA 20 86

0C50:74 FF 20 CA CD C8 C0 08 6E

0C58:90 Fl A9 00 20 CA CD 88 BA
0C60:D0 FA 18 A5 DA 69 08 85 0F

0C68:DA 90 E0 E6 DB A5 DB C9 93

0C70:30 90 D8 60 00 00 00 00 E5

103

k^^^

Sound Designer
Mark W. Pemburn

Here's an easy way to experiment with sound on your 128 and in

stantly save anything you like. Menus and a simulated audio con

trol board make this an especially efficient program.

If you've spent any time experimenting with the 128's BASIC

7.0, you've probably noticed how easy it has become to use

graphics and sound with instructions like DRAW, CIRCLE,

BOX, PLAY, FILTER, and so on. "Sound Designer" was writ

ten to illustrate the use of these and other 7.0 instructions as

well as to further simplify the use of the SOUND statement.

The SOUND statement controls the 128's Sound Interface

Device (SID) chip, a sophisticated audio synthesizer circuit

which is capable of generating a variety of sound waveforms,

filtering them, pulse modulating them, jamming, squeezing,

and otherwise manipulating them into all kinds of sounds.

SOUND has eight variable parameters, three of them es

sential (voice, frequency, and duration) and the rest optional

(direction of sweep, minimum sweep frequency, step value,

waveform, and pulse width). In the program, they're abbrevi

ated VO, FR, DU, DI, MN, SP, WF, and PW. Here are the

ranges for each of these parameters:

VO 1-3

FR 0-65535 Hz (hertz)

DU 0-32767 jiffies (1 jiffy = 1/60 second)

DI Up (0), down (1), or oscillate (2)

MN 0-65535 Hz

I I SP Any value not larger than the main frequency minus the

minimum frequency (see "Sound Parameters/' below)

WF 0 (triangle), 1 (sawtooth), 2 (square), and 3 (noise)

p"? PW 0-4095 (for use with square waves only)

This program was spawned when I was attempting to

(generate a specific sound by moving these parameters up and

]\ down using the examples found in the 128 user's manual and
elsewhere. It turned out to be a tedious trial-and-error process.

l) Numbers alone do not reflect the nature of a sound. What's

i \ needed is an analog-type display that can be tested until the

107

n

Chapter 3

desired sound is achieved. This is where the graphic instruc

tions come in handy.

Using the Program

To use Sound Designer, type it in, save a copy to disk, and

type RUN. The first time you run the program, remove the

GOTO statement in line 1 by placing a REM statement at the

beginning of the line. This will allow you to create a CATA

LOG for your sounds by executing the commands in lines 2

and 3. Then, after the program has been run once, remove the

REM from the beginning of line 1 so that it reads GOTO10.

The main menu presents these options:

+ TO VIEW THE BOARD

- TO VIEW TEXT

V TO VIEW VARIABLES

t TO VIEW CATALOG

* TO SAVE SOUND

£ TO LOAD SOUND

Q TO QUIT

CLR/HOME TO VIEW THIS MENU

PRESS SPACE BAR TO HEAR SOUND

Press V to view the variables you can use to create the

sound in your program. You may use any of these options at

any time, but bear in mind that SAVE and LOAD will prompt

you for a filename. If you decide not to enter a filename, the

RETURN key will take you back to the main menu. If you

wish to save a sound, use any valid filename, and the vari

ables will be saved to disk as a sequential file.

The control board's analog-type display lets you easily test

sounds.

The Control Board LJ
Pressing the + key whisks the menu away and displays the

control board. On the far left is a box containing the number 1 j -,

with the word VOICE displayed beneath. This is the default «—J
voice number, but it can be changed to 2 or 3. The other

seven controls allow you to change the sound parameters ^ j

within the ranges described above. Use the left- and right- <—>

cursor keys to position the green pointer over each control,

and the up- and down-cursor keys to change each of the pa- ^ »

rameters. To test each change, press the space bar. (Note that I—>

108

u

Art and Music

n

I \

you'll not hear any

sound when all con

trols are at zero, and

you'll get only a fee

ble sound when the

marker for waveform

is on the symbol for

square wave and the

value of PW, pulse

width, is zero. Other

than this, you have

a broad palette of

sounds from which

to choose.) Press — to return to the menu from the BOARD.

Saving and Loading Sounds

Once you have a sound you want to save, press the minus

(—) key to return to the text screen and the asterisk (♦) to get

the input screen. Enter an appropriate filename for the sound,

press RETURN, and that's it. To verify your save, press the

up-arrow key (?), and the catalog screen will appear and dis

play the filename. Note that the area containing the catalog ti

tles is a "window," a special screen area made possible by the

WINDOW statement. This statement defines a special area of

the screen within which all printing and scrolling will take

place after the statement is issued. If you halt the program at

this point, the window will remain in place and the text will

stay within its borders. To return to the main screen and erase

the window, press the unshifted CLR/HOME key twice.

You may call a sound that's been saved by pressing the

British pound (£) key and entering a filename. (A misspelled
filename will return the message FILE NOT FOUND ON THIS
DISK, and you'll be returned to the menu. Check the catalog
for spelling and try again.)

Remember that values saved by the SOUND program are

stored in a sequential file and, true to the name of this type of

file, these values can only be retrieved in the same order that
they went in.

By studying the listing, which is mostly in BASIC, you

can see how useful the 128's sound and graphics instructions
can be.

n
109

Sound Parameters
Philip I. Nelson

The 128's SOUND statement is extremely versatile. But its ver

satility can make it look intimidating at first, since SOUND can

take as few as three or as many as eight different parameters

(controlling values). Here's a brief explanation of what each

SOUND parameter does.

Every SOUND statement must be followed by at least three

parameters: a voice value that picks one of the 128's three

voices, a frequency value that chooses a pitch for the sound

(whether it sounds high or low), and a duration value that con

trols how long the sound lasts. Since the duration is expressed

in sixtieths of a second (or jiffies), a duration of 60 lasts for one

second, a duration of 3600 lasts one minute, and so on. Here's

a simple SOUND statement that uses only three parameters:

SOUND 1, 2000,10

This example uses voice 1, sets the frequency to

2000, and chooses a duration of 10 jiffies (1/6 second).

By including additional parameters, you can make the

sound move up or down automatically and also select

different waveforms for greater variety. All of the addi

tional parameters are optional: If you leave them out,

the 128 won't signal an error of any kind.

The fourth value in a SOUND statement repre

sents the sound's sweep direction. You have three

choices for the sweep: The sound can sweep upward

from a low pitch to a high one, it can sweep down

ward from a high pitch to a low one, or it can oscillate,

meaning that it sweeps up, then down, then back up,

and so on (like a police or ambulance siren).

Whenever you specify a sweep direction, the 128

uses the main frequency value (the second parameter)

as the upper limit of the sound sweep. To set the mini

mum or bottom limit for the sweep, you must supply a

fifth parameter, the minimum frequency. The sound
sweeps up or down between this frequency and the

main frequency. Since it sets the bottom limit, the

minimum frequency must always be smaller than the

value you choose for the main frequency.

110

The sixth parameter, step, is very important when
sound sweeps are involved. Like the STEP number in a

FOR-NEXT loop, this value controls the size of the steps
in a sound sweep. Larger values make the sweep move

faster, and smaller ones make the sweep more gradual.
Watch out for the "impossible step" error, which applies

here just as it does in FOR-NEXT loops. In order for the
sweep to work correctly, the step value must be smaller

than the difference between the main frequency and the
minimum frequency. For instance, if the main frequency

is 6000 and the minimum is 2000, the largest sensible
step value is 4000 (6000-2000).

Thus, to set up a sound sweep, you must supply

three extra values: a direction for the sweep, a minimum
frequency to set the sweep's lower limit, and a step

value to control how fast the sound warbles between the
upper and lower frequencies.

The seventh parameter, waveform, chooses one of
the 128's four basic waveforms: triangle, sawtooth,
pulse, and noise. Don't confuse waveforms with voices.
Since the SID chip has three separate voices (tone gen
erators), the 128 can make as many as three different

sounds at once, like a three-fingered piano chord. If you
don't want to produce simultaneous sounds, you don't
need to use more than one voice. The waveform deter

mines what kind of sound a given voice makes—its tim
bre. If you don't specify a waveform, the 128 chooses
one for you automatically. By supplying a waveform
value, you can change the character of the sound.

The pulse wave (often called a square wave) is dif

ferent from the other three waveforms. By changing the
width of the pulse wave, you can make it sound thin
and hollow, strong and full, or anything in between

those two extremes. The eighth parameter, pulse width,
controls the width of the pulse wave, and is meaningful
only when you choose the pulse waveform.

Though SOUND statements are very flexible, there
are certain things they can't do. For instance, SOUND

has no built-in means for using the SID filter, control
ling ring modulation or synchronization, or creating ad
vanced effects such as envelope following. You can

learn more about those subjects in COMPUTE!fs 128 Pro
grammer's Guide, available from COMPUTE! Books.

Ill

LJ
Chapter 3

M

Sound Designer
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program. / i

JR 1 GOTO10:REM FOR THE FIRST RUN, REMOVE LINE IT '—'
O CREATE A CATALOG FILE

CF 2 DOPEN#1,"CATALOG",D0,U8,W:IF DS<>0 THEN STOP ' , ,

HR 3 PRINT#1,"************":DCLOSE#1 I |
DD 10 DIM W$(5),L$(9)

GA 20 X=93:Y=163

GG 30 GOSUB2190:REM LOAD SPRITE DATA

AX 40 FAST:VO=1:FR=0:DU=0:DI=0:MN=0:SP=0:WF=0:PW=0

QM 50 GRAPHIC 1,1

QG 60 COLOR 0,1

FK 70 COLOR 1,12

CP 80 COLOR 4,12

KH 90 CIRCLE 1,82,100,2,2,270,90:CIRCLE 1,86,100,2

,2,90,270:REM * SINE *

BJ 100 DRAW 1,100,100 TO 104,98 TO 104,102 TO 107,

100:REM * SAWTOOTH *

FA 110 DRAW 1,120,100 TO 120,98 TO 123,98 TO 123,1

02 TO 126,102 TO 126,100:REM ****** SQUARE

I SPACE}*

BQ 120 DRAW 1,140,100 TO 141,102 TO 142,97 TO 143,

103 TO 144,96 TO 145,100:REM ****** NOISE *

MX 130 A=0

XB 140 FOR S=79 TO 139 STEP 20:A=A+1rSSHAPE W$(A),
S,96,S+10,104:NEXT

KE 150 CHAR 0,9,17, "FR DU DI MN SP WF PW11

EC 160 A=0:FOR S=72 TO 216 STEP 24:A=A+1:SSHAPE L$

(A),S,134,S+16,144:NEXT

ME 170 GRAPHIC 1,1

RG 180 REM * DRAW.BOARD *

FP 190 FOR B=l TO 37:DRAW 1,0,B TO 320,B:NEXT

ED 200 FOR B=154 TO 199:DRAW 1,0,B TO 320,B:NEXT

BD 210 COLOR 1,16

KM 220 DRAW 1,0,38 TO 320,38

MR 230 DRAW 1,0,142 TO 320,142

KA 240 DRAW 1,0,153 TO 320,153 |_j
SA 250 CHAR 1,25,18,"SOUND DESIGNER"

DD 260 BOX 1,22,78,32,88

GD 270 A=0:FOR S=51 TO 125 STEP 20:A=A+1 j /

GK 280 IF A>2 THEN TF=1 <—>
JQ 290 GSHAPE W$(A),250+TF,S:NEXT

JP 300 FOR SQ=70 TO 286 STEP 36

QQ 310 BOX 1,SQ,50,SQ+11,120 |_j
RF 320 NEXT

HM 330 BOX 1,68,42,298,46

RQ 340 FOR J=80 TO 188 STEP 36 \ 1

112

u

Art and Music

RD 350 IF J=152 THEN J=188

HJ 360 FOR F=55 TO 120 STEP 12

P-) AB 370 DRAW 1,J,F TO J+5,F:NEXT:NEXT

) I JG 380 DRAW 1,142,86 TO 152,86
JS 390 CHAR 1,18,8, "T"

EA 400 DRAW 1,147,101 TO 147,107

HD 410 DRAW 1,148,101 TO 148,107

EK 420 DRAW 1,145,105 TO 150,105

PX 430 DRAW 1,146,106 TO 149,106

MA 440 DRAW 1,250,51 TO 250,119

GH 450 FOR D=224 TO 296 STEP 72

JD 460 FOR E=55 TO 120 STEP 20

AG 470 DRAW 1,D,E TO D+5,E:NEXT:NEXT
EG 480 CHAR 1,1,12,"VOICE"

QR 490 CHAR 1,3,10,"1"

GA 500 A=0:FOR S=68 TO 284 STEP 36:A=A+1:GSHAPE L$
(A),S,125:NEXT

XM 510 REM * INSTALL MARKERS *
KF 520 SPRITE 1,0,6

DR 530 MOVSPR l,X+2,92

BS 540 FOR MK=2 TO 8:SPRITE MK,0,11:MOVSPR MK,X+2+
((MK-2)*36),Y:NEXT MK

AD 550 SPRITE 4,0,7,1:SPRITE 7,0,7,1

DH 560 MOVSPR 4,X+74,Y-49:MOVSPR 7,X+182,Y-62
MH 570 SLOW

DX 580 GRAPHIC 0,0

SR 590 GOSUB 1360

DB 600 REM * KEYBOARD INPUT *

FC 610 GETKEY CUR$

EC 620 IF CUR$="+" THEN BEGIN:GRAPHIC 1,0:FOR S=l
{SPACE}TO 8:SPRITE S,1:NEXT:BEND

AR 630 IF CUR$="-" THEN GOSUB 1850

KH 640 IF CUR$="V" THEN GOSUB 2170

FD 650 IF CUR$="T" THEN PRINT"{CLR}":GOSUB 1930
AB 660 IF CUR$="*" THEN GOSUB 1850:GOSUB 1530

DG 670 IF CUR$="£" THEN GOSUB 1850:GOSUB 1670
JS 680 IF CUR$="Q" THEN GOSUB 2130

[""I MD 690 IF CUR$="{HOME}" OR CUR$= "{CLR}" THEN GOSUB
' l 1360

PK 700 IF CUR$="1" THEN CHAR 1,3,10,"1":VO=1

r-, FQ 710 IF CUR$="2" THEN CHAR 1,3,10,"2":VO=2
/ \ XC 720 IF CUR$="3" THEN CHAR 1,3,10,"3":VO=3

SQ 730 LIM=(RSPPOS(l,0)-X)/36
BA 740 IF ASC(CUR$)=29 AND LIM<6 THEN MOVSPR l,+36

H '+£f •
BQ 750 IF ASC(CUR$)=157 AND LIM>1{2 SPACES}THEN MO

VSPR l,-36,+0

n-AH 760 IF ASC(CUR$)=17 THEN INC=1:GOTO 810
DF 770 IF ASC(CUR$)=145 THEN INC=-1:GOTO 810

r-n 113

LJ
Chapter 3

BK 780 IF CUR$=" " THEN GOSUB 1500 i—'
AH 790 GOTO 610

JS 800 REM * MOVE MARKERS * i \
XB 810 ON LIM+1 GOSUB 840,910,980,1060,1130,1200,1 j |

290

BG 820 GOTO 610

FA 830 REM * BASE FREQUENCY * j j
QQ 840 FY=RSPPOS(2,1)

MQ 850 FR=(FY-Y)*(-1000)
MB 860 IF FR>61500 AND INC=-1 THEN 610

DD 870 IF FR<=0 AND INC=l THEN 610

DK 880 MOVSPR 2,+0,+INC

SX 890 RETURN

XM 900 REM * DURATION *

MB 910 DY=RSPPOS(3,1)

HX 920 DU=(DY-Y)*(-6)

GH 930 IF DU>366 AND INC=-1 THEN 610

FS 940 IF DU<=0 AND INC=l THEN 610

HC 950 MOVSPR 3,+0,+INC

SD 960 RETURN

AG 970 REM * SWEEP DIRECTION *
QQ 980 IF INC=-1 AND TY>115 THEN MOVSPR 4,+0,-18

PK 990 IF INC=1 AND TY<150 THEN MOVSPR 4,+0,+18

SG 1000 TY=RSPPOS(4,1)

JK 1010 IF TY=114 THEN DI=0

RS 1020 IF TY=132 THEN DI=2

CX 1030 IF TY=150 THEN DI=1

DA 1040 RETURN

QM 1050 REM * MINIMUM SWEEP FREQ *

AF 1060 MY=RSPPOS(5,1)

GP 1070 MN=(MY-Y)*(-1000)

RS 1080 IF MN>61500 AND INC=-1 THEN 610

GK 1090 IF MN<=0 AND INC=l THEN 610

MA 1100 MOVSPR 5,+0,+INC

CE 1110 RETURN

CC 1120 REM * STEP FREQUENCY *

EQ 1130 SY=RSPPOS(6,1)

GK 1140 SP=(SY-Y)*(-250) | |
CS 1150 IF SP>15375 AND INC=-1 THEN 610 i—>

SB 1160 IF SP<=0 AND INC=l THEN 610

QM 1170 MOVSPR 6,+0,+INC , j

FM 1180 RETURN J \
JD 1190 REM * WAVE FORM *

BR 1200 IF INC=-1 AND WY>102 THEN MOVSPR 7,+0,-20
FE 1210 IF INC=1 AND WY<160 THEN MOVSPR 7,+0,+20

PE 1220 WY=RSPPOS(7,1)

BE 1230 IF WY=101 THEN WF=0
MJ 1240 IF WY=121 THEN WF=1 . .

DR 1250 IF WY=141 THEN WF=2 j j

114

LJ

Art and Music

DC 1260 IF WY=161 THEN WF=3

XB 1270 RETURN

r~> XE 1280 REM * PULSE WIDTH *
' ' CJ 1290 PY=RSPPOS(8,1)

GX 1300 PVMPY-Y)*(-66)
,—I QE 1310 IF PW>4091 AND INC=-1 THEN 610

L i DM 1320 IF PW<=0 AND INC=l THEN 610
XH 1330 MOVSPR 8,+0,+INC

QF 1340 RETURN

MG 1350 REM * MAIN MENU *

DA 1360 PRINT M{CLR}{3 DOWN)tCYN}U0 SPACES]SOUND
I SPACE } DESIGNER11

JH 1370 PRINT SPC(5)Mt2 DOWN}PRESS:"

CH 1380 PRINT SPC(10)"{DOWN}+ TO VIEW BOARD"

EF 1390 PRINT SPC(10)N- TO VIEW TEXT

GJ 1400 PRINT SPC(10)"V TO VIEW VARIABLES

JS 1410 PRINT SPC(10)"T TO VIEW CATALOG

AE 1420 PRINT SPC(10)"* TO SAVE SOUND FILE

MM 1430 PRINT SPC(10)"£ TO LOAD SOUND FILE
QD 1440 PRINT SPC(10)"Q TO QUIT

EC 1450 PRINT SPC(9)"{RVS}{DOWN}CLR {OFF} TO VIEW

{SPACE}THIS MENU"

SD 1460 PRINT SPC(9)M{RVS}HOME{OFF}"

GQ 1470 PRINT SPC(5)"{4 DOWN}PRESS {RVS}{YEL}SPACE

BAR{CYN}{OFF} TO HEAR SOUND"
GX 1480 RETURN

BC 1490 REM * PLAY SOUND *

MG 1500 SOUND VO,FR,DU,DI,MN,SP,WF,PW
PX 1510 RETURN

HX 1520 REM * SAVE SOUND *

CH 1530 PRINT "{CLR}{DOWN}"SPC(12)"* SAVE SOUND *"
:FS§=""

CQ 1540 GOSUB 1880

BQ 1550 APPEND#1,"CATALOG"

RS 1560 GOSUB 2080:IF DS THEN 2100

EX 1570 PRINT#1,FS$:GOSUB 2080:IF DS THEN 2100
CB 1580 DCLOSE#1

j| MB 1590 OPEN15,8,15/"S0:"+FS$:CLOSE15
QH 1600 DOPEN#2,(FS$)#D0,U8,W

DP 1610 GOSUB 2080:IF DS THEN 2110

j—-} MQ 1620 PRINT#2,VO:PRINT#2,FR:PRINT#2,DU:PRINT#2,D
'. * I:PRINT#2,MN

BB 1630 PRINT#2,SP:PRINT#2,WF:PRINT#2,PW:GOSUB2080
:IF DS THEN 2110

~ AF 1640 DCLOSE#2
SK 1650 RETURN

DJ 1660 REM * LOAD SOUND *

?~j CQ 1670 PRINT "{CLR}"SPC(12)"{DOWN}* LOAD SOUND *"
'. > XG 1680 GOSUB 1880

n

Chapter 3

EE 1690

QP 1700

RK 1710

DP 1720

XF 1730

SP 1740

XP 1750

AA 1760

ER 1770

PH 1780

JP 1790

HJ 1800

SX 1810

PX 1820

RC 1830

HG 1840

GE 1850

GH 1860

RB 1870

MK 1880

JM 1890

XS 1900

BK 1910

JP 1920

GE 1930

FJ 1940

EM 1950

DJ 1960

KC 1970

SK 1980

JP 1990

BK 2000

EF 2010

JB 2020

RQ 2030

JR 2040

QJ 2050

CA 2060

MA 2070

SH 2080

KF 2090

BM 2100

116

D0PEN#2,(FS$):GOSUB 2080:IF DS THEN 2110

INPUT#2,V0,FR,DU,DI,MN,SP,WF,PW

MOVSPR 2,X+2,Y-(FR/1000)+1

MOVSPR 3,X+38,Y-(DU/6)+l

IF DI=0 THEN TY=114

IF DI=2 THEN TY=132

IF DI=1 THEN TY=150

MOVSPR 4,X+74,TY

MOVSPR 5,X+110,Y-(MN/1000)+1

MOVSPR 6,X+146,Y-(SP/250)-l
WY=(WF*20)+101

MOVSPR 7,X+182,WY

MOVSPR 8,X+218,Y-(PW/67)-l

DCLOSE#2:PRINT TAB(12)"{DOWN}{RVSjFILE IS

{SPACE}LOADED{OFF j"

RETURN

REM * TEXT SCREEN *

GRAPHIC 0,0:FOR S=l TO 8:SPRITE S,0:NEXT

RETURN

REM * INPUT SCREEN *

PRINT WICYN}13 DOWN}112 SPACES}INPUT FILEN

AME:11

INPUT "{DOWN}{13 RIGHT}M;FS$

IF FS$=IIM THEN 590

RETURN

REM * DISK CATALOG *

PRINT H{CLR}{CYN}{4 DOWN}{11 SPACES}SOUND

{SPACE} CATALOG11
PRINT SPC(7)"{16 DOWN}PRESS {RVS}{YEL}SPAC

E BARlCYNHOFF} TO PAUSE11

WINDOW 12,7,25,19

DOPEN#1,"CATALOG":GOSUB 2080:IF DS THEN DC

LOSE#1:PRINTM{2 HOME}":GOTO 590

INPUT#1,FILE$

RS=ST

PRINT FILE?

GET H$

IF H$<>" " THEN 2030

GET H$:IF H$<>" " THEN 2020

IF RS=0 THEN 1970

DCLOSE#1

PRINT "12 HOME}11

RETURN

REM * DISK ERROR CHECK *

IF DS=62 THEN PRINT"{RVS}{DOWN}{YEL}FILE N
OT FOUND ON THIS DISK{OFF}{CYN}":SLEEP 2:P

RINT"{2 HOME}"

RETURN

DCLOSE*1:GOTO590

LJ

U

U

u

LJ

LJ

U

LJ

U

n

n
Art and Music

n

n

MJ 2110 DCLOSE#2:GOTO590

RH 2120 REM * QUIT SCREEN *

HB 2130 PRINT M{CLR}{5 DOWN}{4 SPACES}DO YOU WISH
{SPACE}TO EXIT TO BASIC{3 SPACES}YM

KE 2140 INPUT "{33 RIGHTj{UP}";AN$
PH 2150 IF ASC(AN$)=78 THEN 590

CC 2160 PRINT"{CLR}":END

PJ 2170 PRINT"{CLR}SOUND VARIABLES:M:PRINT"{DOWN}S
OUND"VO"{LEFT},"FR"{LEFT}#"DU"{LEFT},"DI"
{LEFT },"MN"{LEFT},"SP"{LEFT},"WF"{LEFT},HP
W

KH 2180 GOTO 610

JK 2190 PRINT"{CLR}LOADING SPRITE DATA...":BANK0:F

ORI=3584TO4095:READA:POKEI,A:X1=X1+A:NEXT
AQ 2200 IFX1O11623THENPRINT"ERROR IN DATA STATEME

NTS.":STOP

RP 2210 RETURN

JF 2220 DATA 255,192,0,127,128,0,63,0,0,30
EC 2230 DATA 0,0,0,0,0,0,0,0,0,0

HD 2240 DATA 0,0,0,0,0,0,0,0,0,0

MQ 2250 DATA 0,0,0,0,0,0,0,0,0,0

RR 2260 DATA 0,0,0,0,0,0,0,0,0,0

AR 2270 DATA 0,0,0,0,0,0,0,0,0,0

HS 2280 DATA 0,0,0,0,12,0,0,30,0,0

KH 2290 DATA 255,192,0,30,0,0,12,0,0,0

FS 2300 DATA 0,0,0,0,0,0,0,0,0,0

JX 2310 DATA 0,0,0,0,0,0,0,0,0,0

PJ 2320 DATA 0,0,0,0,0,0,0,0,0,0

SK 2330 DATA 0,0,0,0,0,0,0,0,0,0

CD 2340 DATA 0,0,0,0,0,0,0,0,12,0

JE 2350 DATA 0,30,0,0,255,192,0,30,0,0
EG 2360 DATA 12,0,0,0,0,0,0,0,0,0

FF 2370 DATA 0,0,0,0,0,0,0,0,0,0

CE 2380 DATA 0,0,0,0,0,0,0,0,0,0

XE 2390 DATA 0,0,0,0,0,0,0,0,0,0

AE 2400 DATA 0,0,0,0,0,0,0,0,0,0

DK 2410 DATA 0,0,255,192,0,255,192,0,255,192

XR 2420 DATA 0,255,192,0,255,192,0,255,192,0
PG 2430 DATA 255,192,0,255,192,0,255,192,0,0
EB 2440 DATA 0,0,0,0,0,0,0,0,0,0

BA 2450 DATA 0,0,0,0,0,0,0,0,0,0

SA 2460 DATA 0,0,0,0,0,0,0,0,0,0

XX 2470 DATA 0,0,0,0,0,0,12,0,0,30

FA 2480 DATA 0,0,255,192,0,30,0,0,12,0
FR 2490 DATA 0,0,0,0,0,0,0,0,0,0

GC 2500 DATA 0,0,0,0,0,0,0,0,0,0

DR 2510 DATA 0,0,0,0,0,0,0,0,0,0

AQ 2520 DATA 0,0,0,0,0,0,0,0,0,0

RQ 2530 DATA 0,0,0,0,0,0,0,0,0,0

n
117

Chapter 3

GG 2540

CF 2550

EK 2560

BJ 2570

SJ 2580

PP 2590

AX 2600

CC 2610

KE 2620

CF 2630

BE 2640

QE 2650

FS 2660

RX 2670

PC 2680

AA 2690

DB 2700

SB 2710

RA 2720

KG 27 30

DATA 12,0,0,30,0,0,255,192,0,30

DATA 0,0,12,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,255,192,0,255,192,0

DATA 255,192,0,255,192,0,255,192,0,255

DATA 1972,0,255,192,0,255,192,0,255,192

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,12,0

DATA 0,30,0,0,255,192,0,30,0,0

DATA 12,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0
DATA 0,127

u

u

u

u

u

u

118

u

Mozart Magic
James Bagley

» I Based on a musical game devised by Mozart himself, this delightful
program composes its own minuets in the style of the master.

"Mozart Magic" is a translation of a game by Wolfgang
Amadeus Mozart. It composes a complete, original minuet at
random. Mozart delighted in games of chance, so it was only
natural that he should combine his two interests and produce
an activity known as Musikalisches Wuerfelspiel, or musical
craps. The idea was not original with Mozart, but his effort
was the most successful.

Making Music

Type in and save the program; then run it. After playing an
introduction and initializing, the program displays a menu.
You can choose a different instrument for each voice, but most
songs sound best if you choose the same instrument for all

three voices. Some of the instruments such as the drum and
xylophone may sound strange or faint. They're included for
the sake of completeness so that you can hear what all the
128's instruments sound like.

The next menu allows you to change the tempo. Press F
to increase the speed at which the minuet is played, press S to
decrease the speed, and press E to exit the routine. The tempo
always defaults to 8. The main menu reappears after the min
uet is finished.

p The program itself is structured to reflect the composer's
original technique. Mozart set up two grids of 8 columns and
11 rows. The columns were numbered 1-8, and the rows were

p numbered 2-12. On the first throw of the dice, he scanned
down the first column to the row numbered the same as the
sum of the two dice. At this intersection would be a number.

p| He then copied down a measure of music that corresponded to
this number and repeated the process until he reached the
eighth column of the first part.

P In the eighth column of the grid, each number refers to a

tf-. 119

LJ

Chapter 3 ,

LJ
measure of music with two sets of notes. Because the music

modulates to the dominant, the lower notes serve for the first .
ending and the upper notes for the second ending. Since these j j
measures are all the same, M2$(l) is used in the program for
the first ending and M2$(2) for the second ending of the first

part of the minuet. j j

Mozart Magic
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

MF 5 PRINT CHR$(144) :VOL 15

RM 10 SCNCLR:PRINT"{9 DOWN}{RVSJI14 RIGHTJMOZART M

AGIC11
GH 20 TEMPO8:PLAY"O4QCICCCC,CSFQCRO3BIBBB$BSO4

CO3BABIARBQBIBBBBO4.CSDQESRE.FSDQCO3BO4C"
DB 30 DIMM$(7,11),M1$(8,11)#M2$(2),R(7),R1(8)

RK 40 FORI=1TO7:FORJ=1TO11:READM$(I,J):NEXT:NEXT

EH 50 FORI=1TO8:FORJ=1TO11:READM1$(I,J):NEXT:NEXT
FR 60 M2$(1)="V2O4QDV3GV1O1IGO2SGFEDM":M2$(2)="V2O

4QDV3GV1O1IGO2SBG#FEMM

GG 70 SCNCLR:FORV=1TO3

CB 80 PRINT"{HOME}{DOWN} CHOOSE AN INSTRUMENT FOR

{ SPACE }VOICE"V

PJ 90 PRINT"{DOWN} {RVS}0{OFF} PIANO
ME 100 PRINT"{DOWN} {RVS}l{OFFj ACCORDION

EF 110 PRINT"{DOWN} {RVS}2{OFF} CALLIOPE

KS 120 PRINT"{DOWN} {RVS}3{OFFj DRUM

DM 130 PRINT"{DOWN} {RVS}4{OFF} FLUTE

FR 140 PRINT"{DOWN} {RVS}5{OFF} GUITAR

EB 150 PRINT"{DOWN} {RVS}6{OFFj HARPSICHORD

DB 160 PRINT"{DOWN} {RVS}7{OFF} ORGAN

CD 170 PRINT"{DOWN} {RVS}8{OFF} TRUMPET

FE 180 PRINT"{DOWN} {RVS}9{OFF} XYLOPHONE
RD 190 GETKEYI$:IFI$<"0"ORI$>"9"THEN190

BE 200 INS=VAL(I$)
KM 210 IFV=1THENPLAY"V1 . ,

CX 220 IFV=2THENPLAY"V2 I \
PR 2 30 IFV=3THENPLAY"V3

FS 240 IFINS=0THENPLAY"T0

KD 250 IFINS=1THENPLAY"T1 | (

SA 260 IFINS=2THENPLAY"T2 ^—>

DG 270 IFINS=3THENPLAY"T3

JP 280 IFINS=4THENPLAY"T4 * >

RJ 290 IFINS=5THENPLAY"T5 LJ
FX 300 IFINS=6THENPLAY"T6

MQ 310 IFINS=7THENPLAY"T7

AG 320 IFINS=8THENPLAY"T8 M

u

H

Art and Music

PA 330 IFINS=9THENPLAY"T9
EJ 340 NEXTrSCNCLR

RQ 350 N=8:D0

AR 360 PRINT"{HOME}{DOWN} TEMPO{4 RIGHT}{3 SPACES}
{4 LEFT}"N

DC 370 PRINT"{DOWN} {RVS}F{OFP}ASTER
FF 380 PRINT" {DOWN} { RVS }S{OFF}LOWER
AQ 390 PRINT"{DOWN} {RVS}E{OFF}XIT
JF 400 GETKEYT$

XS 410 IFT$="F"THENN=N+1:IFN=>255THENN=255
JQ 420 IFT$="S"THENN=N-1:IFN=<0THENN=1
DD 430 IFT$="E"THENEXIT

FF 440 LOOP:TEMPON

MF 450 FORI=1TO7:R(I)=INT(RND(1)*11+1):NEXT
JR 460 FORI=1TO8:R1(I)=INT(RND(1)*11+1):NEXT:SCNCL

R

MP 470 PORK=1TO2:FORI=1TO7:PLAYM$(I,R(I)):NEXT:PLA
YM2$(K):NEXT

KF 480 FORK=1TO2:FORI=1TO8:PLAYM1$(I#R1(I)):NEXT:N
EXT

RF 490 GOTO70

AP 500 REM FIRST THROW

EX 510 DATA V1O2QCV3O4IECO3GM,V1O2QCV2EV3O3IGO4CEM
#V1O2QCV2EV3O4IGECM,V1O2QCV2EV3O4SCO3BO4CEO
3GO4CM,V1O2QCV2EV3O5SCO4BO5CO4GECM,V1O2QCV3
O4SEDEGO5CO4GM

BC 520 DATA V1O2QCV2EV3O4IGSFEDCM,V1O2QCV2EV3O4SEC

GEO5G04GM#V3O4lCVlO2SCV2EGMV3O3IGVlO2SCV2EG
MV3041EV102 SCV2EGM

XS 530 DATA V1O2QCV2EV3O4IGCEM,V1O2ICV2O3EV3O4CV1O
2CV2O3EV3O4CV1O2CV2O3EV3O4CM

GX 540 REM SECOND THROW

MM 550 DATA V1O2QCV3O4IECO3GM,V1O2QCV2EV3O3IGO4CEM
,V1O2QCV2EV3O4IGECM,V1O2QEV2GV3O4SCO3GO4CEO
3GO4CM

XP 560 DATA V1O2QCV2EV3O5SCO4BO5CO4GECM,V1O2QCV3O4
SEDEGO5CO4GM#V1O2QCV2EV3O4IGSFEDCM#V1O2QCV2
EV3O4SCO3GO4ECGEM

SK 570 DATA V1O2QCV2EV3O4ICO3GO4EM,V1O2QCV2EV3O4IG
CMV1O2CV2GV3O4EM#V1O2ICV2O3EV3O4CV1O2CV2O3E
V3O4CV102 CV2O3 EV3O4CM

BG 580 REM THIRD THROW

RH 590 DATA V1O1QBV2O2GV3O4SDEFDMV1O1IGV3O4CO3BM#V
1O1QGV3O3IBO4DGM#V1O1QGV3O3IBO4SDO3BAGM#V1O
2QGV2 BV304IFD03 BM

SJ 600 DATA VlOlQBV2O2DV3O4SG#rcDO3BGM,VlO2QGV2BV3
O4SFEFDCO3BM,V1O1QGV2O2GV3O3SBO4CDEMV1O1IBV
2O2GV3O4SFDM

121

7 u
Chapter 3

" 1 I

CC 610 DATA V1O2IGV2O3BV3O4DV1O2GV2O3BV3O4DV1O2GV2 L—'
O3BV3O4DM,V1O1QGV3O3SBO4CDO3BAGM,V1O1QBV3O4

IDO3BGM,V1O2QGV3O3SBABO4CDO3BM (,

QH 620 REM FOURTH THROW Lj
JS 630 DATA V1O2QCV2EV3O4SCO3BO4CEO3IGM,V1O2QCV3O4

SECO3BO4CO3IGM,V1O2QEV2GV3O4ICO3GEM,V1O2QEV

2GV3O4ICEO3GM I j
PC 640 DATA V1O2QEV2GV3O4SCO3BO4CO3GECM#V1O2QCV2EV ^

3O4ICSCDIEM,V1O2QCV2O4ICV3EV2SCV3EV2DV3FV2I

EV3GM

XP 650 DATA V1O2QEV2GV3O4ICSECO3IGM,V1O2QEV2GV3O4S

CO3GO4ECIGM,V1O2QEV2GV3O4ICSECIGM,V1O2QEV2G

V3O4SCECO3GIEM

KE 660 REM FIFTH THROW
HS 670 DATA V1O2QCV3O4I#FSA#FD#FM,V1O2ICV2O3#FV3O4

DV1O2CV2O4DV3#FV1O2CV2O4#FV3AM,V1O2QCV3O4SD

O3AO4#FDA#FM

HB 680 DATA V1O2ICV2O3#FV3O4DV1O2CV2O3#FV3O4DV1O2C

V2O3#FV3O4DM,V1O2QCV3O4IDO3SABAO4I#FM,V1O2Q

CV3O4SD#CD#FA#FM

HM 690 DATA V1O2QCV2AV3O4I#FAMV1O2CV2AV3O4DM,V1O2I

CV2#FV3O3AV1O2CV2#FV3O3SAO4DMV1O2ICV2AV3O4#

FM

QX 700 DATA V1O2ICV2O4DV3#FV1O2CV2O4DV3#FV1O2CV2O4

DV3#FM,V1O2ICV2DV3O4#FV1O2CV2DV3O4S#FDMV1O2

ICV2DV3O4AM,V1O2QCV2AV3O4S#FDO3AO4A#FDM

EM 710 REM SIXTH THROW

<2i 720 DATA V1O2IBV2O2DV3O4SG#FMV1O1IBV2O2DV3O4SGB

MV1O1IBV2O2DV3O4DM#V1O1QBV2O2DV3O4IGSBGDO3B

M#V1O1QBV2O2DV3O4IGBDM

FR 730 DATA V1O1QBV2O2GV3O3IAS#FGBO4GM,V1O1QBV2O2D

V3O4SG#FGDMV1O1IBV2O2GV3O3SBGM#V1O1QBV3O4IG

SBGDGM#V1O1QBV2O2GV3O4IDSGDO3BO4DM#V1O1QBV2

O2GV3O4IDSDGIBM

AA 740 DATA V1O1IBV2O2DV3O4SAGMV1O1IBV2O2DV3O4S#FG
MV1O1IBV2O2GV3O4DM#V1O1QBV2O2DV3O4IGSGDIBM#

V1O1QBV2O2DV3O4SGBGDO3IBM

EQ 750 REM SEVENTH THROW j [
XQ 760 DATA V1O2ICV3O4SECMV1O2IDV3O3SBAMV1O1IDV3O3 <—I

SG#FM#V1O2ICV3O3SAO4EMV1O2IDV2O3SBV3O4DV2O3

AV3O4CMV1O1IDV2O3SGV3BV2#FV3AM , (

BR 770 DATA V1O2ICV2O3SBV3O4DV2O3AV3O4CMV1O2IDV2O3 M
AV3O4CV2O3GV3BMV1O1IDV2O3SGV3BV2#FV3AM#V1O2

ICV3O4SEGMV1O2IDV3O4SDCMV1O1IDV3O3SBAM

AJ 780 DATA V1O2ICV3O3SAO4EMV1O2IDV3O4SDGMV1O1IDV3 | I
O4S#FAM#V1O2ICV3O4SEAMV1O2IDV3O4SGBMV1O1IDV U-J
3O4S#FAM#V1O2ICV3O4SCEMV1O2IDV3O4SGDMV1O1ID

V3O3SAO4#FM l >

u

Art and Music

RP 790 DATA V1O2ICV3O4SEGMV1O2IDV3O4SDGMV1O1IDV3O3

SBO4#FM,V1O2ICV3O4SECMV1O2IDV3O3SBGMV1O1IDV

3O3SA#FM,V1O2ICV3O4SEO5CMV1O2IDV3O4SBGMV1O1

IDV3O4SA#FM

DQ 800 DATA V1O2ICV3O3AV1O2DV3O4SDCMV1O1IDV3O3SBAM

HX 810 REM PART TWO FIRST THROW

XG 820 DATA V1O2QDV3O4I#FSA#FMV1O2ICV3O4SD#FM,V1O2

QDV2#FV3O4SDO3AO4D#FA#FM,V1O2IDV2AV3O4#FV1O
2DV2# FV304AV102 CV2DV304 # FM

DG 830 DATA V1O2QCV2AV3O4S#FAO5DO4AMV1O2ICV2AV3O4#

FAM,V1O2QDV3O3SD#FAO4DMV1O2ICV3O4S#FAM

PP 840 DATA V2O4IDV3#FV1O1SDO2DMV3O4Q#FV1O2S#CDCDM

,V1O2QDV2#FV3O4IA#FMV1O2CV2#FV3DM,V1O2QDV2#

FV3O5IDO4SA#FMV1O2ICV2#FV3O4SDO3AM

GC 850 DATA V1O2QDV2#FV3O4SDO3AO4ID#FM,V1O2QCV2AV3

O4S#FDO3IAMV1O2CV2AV3O4#FM,V1O2QDV2#FV3O3IA
04DMV102 CV2AV304 # FM

PD 860 REM PART TWO SECOND THROW

AG 870 DATA V1O1QBV2O2GV3O4IGSBGIDM#V3O4IGV1O1SBO2
DMV3O3IGV1O2SGDMV3O3IGV1O1SBGM,V1O1QBV3O4SG
BGBIDM

CC 880 DATA V1O1QBV2O2DV3O4SAGBGMV1O1IBV2O2DV3O4SD

GM,V1O1QBV2O2DV3O4IGSDO3BMV1O1IBV2O2DV3O3GM

JK 890 DATA V1O1QBV2O2DV3O4SGBO5DO4BMV1O1IBV2O2DV3

O4GM,V1O1QBV2O2DV3O4SGBGDO3BGM,V1O1QBV2O2DV
3O4SGDGBMV1O1IBV2O2DV3O4SGDM

DP 900 DATA V1O1QBV2O2DV3O4SGBIGMV1O1IBV2O2GV3O4DM

,V3O4IGV1O1SGBMV3O4QDV1O2IGO1BM,V1O1QBV3O4I
GSBO5DO4IDM

AF 910 REM PART TWO THIRD THROW

XJ 920 DATA V2O4ICV3EV1O2SCEMV2O4ICV3EV1O2SGEMV2O4

ICV3EV1O3SCO2CM,V1O2QEV3O4SCO3GO4CEMV1O2EV3

O4GV1O2CV2O4CV3EM,V1O2QCV2GV3O4IESGEMV1O2IC
V2DV3O4CM

XE 930 DATA V1O2QCV2GV3O4SECEGO5CO4GM,V1O2QCV2GV3O

4SEGO5CO4GMV1O2ICV2GV3O4SECM#V2O4ICV3EV1O2S
C01BMV3O4QEV1O2SCDE#FM

PM 940 DATA V3O4IEV1O2SCV2EGMV3O4ICV1O2SCV2EGMV3O3

IBV1O2SCV2EGM,V1O2QCV2GV3O4IESCEMV1O2CV2EV3
O4GO5CM

RF 950 DATA V1O2QCV2GV3O4SECIEMV1O2CV2EV3O4GM,V1O2

QCV2GV3O4SECO3IGMV1O2CV2GV3O4EM,V1O2QCV2GV3
04IEGMV102CV2 EV3 05CM

FR 960 REM PART TWO FOURTH THROW

EP 970 DATA V1O2QGV2O4ICV3EV2O3BV3O4DMV1O1GM,V1O1Q

GV2O2GV3O4SDO3BIGMV1O2GM,V1O2IGV2O4CV3EMV1O
1GV203SBV304DV203GV3BV2IGM

123

Chapter 3

JE 980 DATA V1O2QGV3O4SECDO3BIGM,V1O2IGV3O4SGEMV1O

1IGV3O4SDO3BIGM,V1O2QGV3O3SBO4DGDMV1O1IGV3O

3BM,V1O2IGV3O4SECMV1O1IGV3O3SBO4DIGM

RF 990 DATA V1O2QGV2BV3O4SDBGDO3IBM,V1O1QBV2O2GV3O

4SDO3BIGMV1O1BV2O2DV3O4GM,V3O4IDV1O2SG#FMV3

03QBV102 SGD01BGM

GA 1000 DATA V1O2QGV2O3IBV3O4DSGBMV1O2IGV3O4DM

MK 1010 REM PART TWO FIFTH THROW

MJ 1020 DATA V3O4IEV1O2SCV2EGMV3O4ICV1O2SCV2EGMV3O

3IGV1O2SCV2EGM,V3O3IGV1O2SCV2EGMV3O4ICV1O2

SCV2EGMV3O4IEV1O2SCV2EGM

AK 1030 DATA V3O4IGV1O2SCV2EGMV3O4EV1O2SCV2EGMV3O4

ICV1O2SCV2EGM,V1O2QCV2EV3O4SCO3BO4CO4EMV1O

21EV2GV3 03SG04CM

PX 1040 DATA V1O2QCV2EV3O5SCO4BO5CO4GMV1O2ICV2GV3O

4SECM,V1O2QCV2GV3O4SEDEGMV1O2ICV2EV3O5SCO4

GM,V1O2QCV2EV3O4IGSFEDCM

SQ 1050 DATA V1O2QCV2EV3O4SCO3GO4ECGEM,V3O4ICV1O2S

CV2EGMV3O3IGV1O2SCV2EGMV3O4IEV1O2SCV2EGM

XQ 1060 DATA V3O4IGV1O2SCV2EGMV3O4ICV1O2SCV2EGMV3O

4IEV1O2SCV2EGM,V1O2ICV2O3EV3O4CV1O2CV3O3EV

304CV102 CV203 EV3 04CM

GG 1070 REM PART TWO SIXTH THROW

RX 1080 DATA V3O4IEV1O2SCV2EGMV3O4ICV1O2SCV2EGMV3O

3IGV1O2SCV2EGM,V1O2QCV2EV3O3IBO4CMV1O2CV2G

V3O4EM,V3O4IGV1O2SCV2EGMV3O4IEV1O2SCV2EGMV

3O4ICV1O2SCV2EGM

BQ 1090 DATA V1O2QCV2EV3O4SCO3BO4EMV1O2ICV2EV3O3SG

O4CM,V1O2QCV2EV3O5SCO4BO5CO4GECM,V1O2QCV2G

V3O4SEDECMV1O2ICV2EV3O5SCO4GM

QH 1100 DATA V1O2QCV2EV3O4IGSFEMV1O2IEV2GV3O4SDCM,

V1O2QCV2EV3O4SCO3GO4ECGEM,V3O4ICV1O2SCV2EG

MV3O3IGV1O2SCV2EGMV3O4IEV1O2SCV2EGM

RX 1110 DATA V3O4IGV1O2SCV2EGMV3O4ICV1O2SCV2EGMV3O

4IEV1O2SCV2EGM#V1O2ICV2O3EV3O4CV1O2CV2O3EV

304CV102 CV203 EV304CM

BM 1120 REM PART TVK) SEVENTH THROW

XK 1130 DATA V1O2QFV2AV3O4SDFDFMV1O2IGV2O3DV3SBO4D

M,V1O2QFV3O4SDFAFMV1O2IGV3O4SDO3BM,V1O2QDV

3O4SDFO3AO4DMV1O2IGV3O3SBO4DM

BB 1140 DATA V1O2QFV3O4SD#CDFMV1O2IGV3O3SGBM,V1O2I

FV3O4FV1O2DV3O4DV1O2GV3O4GM#V1O2SFV3O4FV1O

2EV3O4EV1O2DV3O4DV1O2EV3O4EV1O2FV3O4FV1O2G

V3O2GM

BQ 1150 DATA V1O2SFV3O4FV1O2EV3O4EV1O2IDV3O4DV1O2G

V3O4GM#V1O2QFV3O4SFEDCMV1O2IGV3O3SBO4DM#V1

02QFV304SFD031AMV102GV3 03 BM
PF 1160 DATA V1O2QFV3O4SFAO3IAMV1O2GV3O3SBO4DM,V1O

2QFV3O3IAO4SFDMV1O2IGV3O3 SABM

124

u

\ (

u

u

n

n
Art and Music

XB 1170 REM SECOND PART EIGHTH THROW

CG 1180 DATA V3O4QCV1O2ICOIGCM,V304QCV102IC01GCMrV

3O4QCV1O2 ICOIGCM, V3O4QCV1O2 ICOIGCM, V3O4QCV

102 ICOIGCM, V3O4QCV102 ICOIGCM

CG 1190 DATA V3O4QCV1O2ICO1GCM,V3O4QCV1O2ICO1GCM,V

3O4QCV1O2ICO1GCM,V1O2QCV3O4ICO3CV1O1CM,V3O

4QCV102ICOIGCM

n

(J

H

125

Artimation

Jerry Crisci

The 128's high-resolution graphics commands can work wonders

on your screen. Here are three short programs that create some

interesting art in motion.

One of the many impressive features of the Commodore 64 is

its ability to create beautiful high-resolution graphics. Unfortu

nately, the 64's BASIC 2.0 doesn't allow programmers to ac

cess high-resolution mode very easily; you have to perform

hundreds of PEEKs and POKEs to draw a picture. When the

128 was released, several useful high-resolution graphics com

mands were included with BASIC 7.0.

Artimation is a term I coined to describe the process of

creating kinetic computer art by "animating" circles, lines, and

boxes on the screen, and allowing them to leave their image

behind. And it's done with just a few lines in BASIC.

In traditional animation, an image is drawn on the screen,

then erased, then drawn again in a different location. When

this process is repeated very quickly, the image appears to

move smoothly across the screen. If the same process is done

without erasing the image after it is drawn, the image will

leave its trail on the screen. If you also manipulate the object

as it's moved (changing its size or rotating it), the resulting

process usually creates an impressive piece of computer art.

Three short programs are included here. Program 1, "Cos

mic Objects," creates ten three-dimensional objects on the

screen in less than a minute. The images are created by using

the CIRCLE statement. Each random-sized image is placed on j^j
a random part of the screen, creating the effect of objects float

ing in space. After the program draws ten objects, it stops.

Pressing RUN/STOP-RESTORE (or blindly typing GRAPHICO) \J,
brings you back to the text screen, where you can run the pro

gram again to create another picture.

Unlike Programs 1 and 3, "The Pit" (Program 2) creates M
the same picture every time it is run. The DRAW statement is

used to draw a series of lines radiating from the center of the

screen. As a result of their varying proximity to each other (as j f

126

U

H
^ Art and Music

M
the lines travel to the edge of the screen), "interference pat

terns" develop, creating an ornate design that appears to be

p"| disappearing into a black abyss in the center of the screen.
You can create variations on the design by changing the STEP

values in lines 30-60 (changing the 2 to a 4 or 5 creates a
P"] slightly different texture).

"String Art" (Program 3) is the most exciting program to

watch. It runs in an infinite loop—creating a pattern, display
ing it for three seconds, then creating a new pattern in a dif

ferent color. The lines on the screen are made with the BOX
statement. Each box has no width, so the two sides overlap to

form a line. The angle of the box changes as it is drawn, creat
ing a pattern which gives the illusion of a line rotating in three

dimensions. RUN/STOP-RESTORE halts the program and re
turns you to the text screen.

Notes on the Programs

After you press RUN/STOP-RESTORE, the last high-resolution
screen created will still be in memory. Just type GRAPHIC 1

and press RETURN to view it. Since the Fl key is preset to

print GRAPHIC, you can also use it for a shortcut, to switch

back and forth between GRAPHICO (text) and GRAPHIC1 (hi
res). You can save the screen to disk with

BSAVE "filename",B0,F7168 TO P16383

To reload a previously saved screen, type GRAPHIC

1:GRAPHIC 0 and press RETURN to make sure that the hi-res
screen memory area has been allocated. Then enter

BLOAD "filename"

Typing GRAPHIC 1 and pressing RETURN will now dis

play the newly loaded screen.

rn If you have the program Doodle, published by Crystal

() Rose Software, you can print out your artimation on your
printer. Just follow the above procedure for saving the screen

p-|> to disk, but use a filename which starts with the letters DD.

L I For example,

BSAVE "DDfilename",B0,F7168 TO

pj P16383

You can now load your picture into Doodle (remember to

go into 64 mode first), and modify or print it.

H

127

u
Chapter 3

Program 1. Cosmic Objects
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

these programs. \ j

KK 10 REM COSMIC OBJECTS *—'
FD 20 t>2:COLOR0,l:GRAPHICl#l:COLORl,5:COIX)R4,l

HD 30 TORK=1TO10:CX=INT(RND(0)*320):CY=INT(RND(0) * , ■

200) I I
MF 40 Rl=INT(RND(0)*40)+20:R2=INT(RND(0)*40)+20

XH 50 IFC=2THENC=45:GOTO80

PM 60 IFC=45THENC=90:GOTO80

EP 70 IFC=90THENC=2

HQ 80 FORI=RlTO0STEP-(Rl/5):CIRCLE1,CX,CY,I,R2,, , ,

C:NEXT

RG 90 FORI=R2TO0STEP-(R2/5):CIRCLE1,CX,CY,R1,I,,,#

C:NEXTI,K

Program 2. The Pit

HK 10 REM THE PIT

CX 20 COLOR0,2:COLOR4,2:GRAPHIC1,1:COLOR1,1:DRAW1,

160,100

PB 30 FORI=1TO320STEP2:DRAW1,160,100TOI,0TO160,100

:NEXT

FD 40 FORI=1TO200STEP2:DRAW1,160,100TO0,ITO160,100

:NEXT

RF 50 FORI=1TO320STEP2:DRAW1,160#100TOI#200TO160#1

00:NEXT

CM 60 FORI=200TO0STEP-2:DRAW1,160#100TO320,ITO160,

100:NEXT

Program 3. String Art

DH 10 REM STRING ART

CX 20 COLOR0,1:C=2:COLOR4,1:GRAPHIC1#1:K=50:L=70:P

=5

QM 30 COLOR1,5:S=3 ! |

DM 40 A=A+5:K=K+P:IFA>=2tl6THENA=0:GOTO40 ^—'
XR 50 IFK>320THENP=-6:GOSUB80:SLEEP2:COLOR1,C:C=C+

1:GRAPHIC1#1:IFO15THENC=2

DB 60 BOX1,ABS(K),ABS(K),ABS(K),L,A:IFK<0THENP=5:G l_j
OSUB80

BF 70 GOTO40

QC 80 K=INT(RND(0)*320):L=INT(RND(1)*200):RETURN | f

128

LJ

I i,

n

Mastering 128 Sound

and Music
D. C Holmes

You don't have to be a musician to create professional-sounding
music on the 128. Five short, useful programs demonstrate how
just a few BASIC statements can make your 128 a powerful and
versatile musical instrument

I \

The Commodore 64 offers extensive music-generating capabil

ities to the patient and interested programmer. The built-in

Sound Interface Device (SID chip) has the potential for pro

ducing sophisticated electronic music, with the computer

manipulating the various parameters of three independent

voices simultaneously. Programming the SID chip is not that

easy, however. A tedious process of POKEing values into

memory locations is necessary to play even a simple musical

composition. I suspect that many a masterpiece has been

abandoned at the computer keyboard, owing to the frustration

of dealing with PEEKs and POKEs.

Enter the 128. With the new sound statements available

in BASIC 7.0, programming the SID chip is much less confus

ing and tedious. Technical understanding of memory maps

and programming details is no longer a prerequisite for com

posers and arrangers. In fact, once you become familiar with

the PLAY statement, the painstaking chore of translating a

manuscript into computer language is virtually eliminated.

You can type a score directly into the 128—straight from the

sheet music.

Default Envelopes

Let's start our exploration of the musical capabilities of the 128

by examining the default parameters for the ENVELOPE state-

ment. Then we'll take a detailed look at the TEMPO state

ment. Here are the ten default (built-in) envelopes defined in

BASIC 7.0.

_ 129

n

Chapter 3 < ,

u
Envelope Name

0 Piano

1 Accordion) I
2 Calliope

3 Drum

4 Flute i)
5 Guitar (—'
6 Harpsichord

7 Organ

8 Trumpet

9 Xylophone

You can hear how these work in the first program, a short

excerpt from Mozart's opera The Magic Flute. The computer

has been programmed to play the piece over and over again,

each time using a different default envelope. When you run

this program, you'll be able to compare the sounds of the dif

ferent envelopes. It doesn't appear that Commodore necessar

ily intended for these preset envelopes to imitate the

instruments for which they're named. More likely, the inten

tion was to provide a sampling of the various possibilities, and

the envelopes were named to facilitate identification. To sug

gest that envelope 0 really sounds like a piano or that enve

lope 8 sounds just like a trumpet stretches the imagination a

bit, but some of the envelopes do come reasonably close to the

sound of the instrument they are named after.

In particular, I think envelope 2 sounds a lot like a steam

calliope, so I selected that envelope for the second program,

"American Patrol" by R W. Meacham.

Take a look at line 30 of this program:

30 PLAY "V1T2V2T2V3T2"

Here, we've specified that all three of the SID chip's voices

(VI, V2, and V3) will play in envelope 2 (T2). Since we've not

used the ENVELOPE statement to redefine envelope 2, the | \
128 uses default envelope 2 (calliope).

When you've typed in this program and saved it, try

specifying a different envelope in line 30. To use the organ en- J_j
velope (default envelope 7), you would type

30 PLAY "V1T7V2T7V3T7" .

Or you could even get fancy and play it with a mixed combo: '—*

30 PLAY "V1T8V2T4V3T5"

u

n

-_ , Art and Music

i !
This statement specifies envelope 8 for voice 1, envelope 4 for
voice 2, and envelope 5 for voice 3. If you don't use line 30 at

t \ all, the 128 plays all three voices in the default envelope 0.

j—I The TEMPO Statement

Composers usually specify a tempo for their works. It may be
a general marking such as largo, andante, or allegro, or it may
be very specific such as J = 126, which indicates the exact
tempo (126 beats per minute in this case). The TEMPO state
ment allows you to control the tempo of your musical pro
gram. The format for this statement is

TEMPO n

where n is a variable between 1 and 255. The equivalent mu
sical notation is J = 12.49 * n, because the statement defines
the duration of a quarter note at 4.805/n seconds, or 12.49 * n
quarter notes per minute. Here are some examples of TEMPO

statements and the corresponding musical notations:

TEMPO

4j = 50
5j = 62
6,

7,

8,

9.

15 J

75

87

100

112

125

187

20 J = 250

If you don't specify a tempo, the 128 automatically sets
the value of n to 8.

In Program 1, "The Magic Flute," the TEMPO statement
pi is used in line 10:

10 TEMPO 13

i—, This defines a tempo of J = 162. In Program 2, American Pa-
/ J trol, it's found in line 20:

20 TEMPO 20

P] This defines a tempo of J = 250, which might seem to be a
very rapid tempo, but since this piece is arranged in 2:2, or cut

time, there are actually only 125 beats per minute.

131

n

Chapter 3

LJ

U

After you've typed in and saved these two programs

(found at the end of this article), try changing the value of n in
the TEMPO statements to another number between 1 and 255.

Then run the programs again and listen to the effect this

change has on the tempo.

The PLAY Statement

The sound and music statements of BASIC 7.0 have stream

lined the 128's music-programming process. The key to this

instant virtuosity is the PLAY statement. Let's see how we can

translate sheet music into BASIC program lines by using the

PLAY statement.

The format for the PLAY statement is

PLAY "Vn, Tn, On, Mn, Xn, elements, notes''

The uppercase letters (V, T, O, U, X) are characters that you

actually type in. For each of the lowercase letters, substitute an

appropriate number or character from Table 1. If you omit one

of the control characters, the 128 will use the default value.

Table 1. PLAY Statement Parameters

LJ

U

LJ

Vn

Tn

On

Un

Xn

Voice

Tonal

n

envelope n

Octave n

Volume n

Filter

Elements

Notes

n

#—sharp (jt)

$—flat (1,)

= 1-3

= 0-9

= 0-6

= 0-9

(default 1)

(default 0)

(default 4)

(default 9)

= 1 for on, 0 for off (default 0)

W—whole note (o)

H—half note (<

Q—quarter note

I—eighth note (

J)

S—sixteenth note (J^)

.—dotted note

R—rest

M—wait for enc

voice

C, D, E, F, G,

I of measure

A,B

\ !

u

132

U

n

r-j Art and Music

n
For example, to play the first five notes of a C major scale

with voice 2 and volume 6, you would use

\ PLAY "V2 U6 CDEFG"

Or you could use a string variable:

H A$ = "V2 U6 CDEFG": PLAY A$

(The spaces are optional, but they make the string a little more
readable.)

The SID chip is capable of producing three independent
voices (sounds) simultaneously. When the control character Vn

appears in a character string used in a PLAY statement, it

specifies which one of the three voices is to be programmed
by the characters that follow. The characters apply to that
voice until another Vn control character is incurred in the

string. If no voice is specified, the default VI (voice 1) is
assumed.

Tonal Envelope

The tonal quality of each of the voices used can be selected
from one of the ten envelopes discussed earlier. You can use
one of the preset envelopes, or you can create your own cus

tomized tonal envelope by using the ENVELOPE statement.

The control character Tn specifies the envelope for the voice
whose control character most recently preceded it. The SID
will continue to be tuned to that envelope for this voice until
this Vn immediately precedes another Tn.

For example, take a look at line 20 of "Minuet," Program 3:

20 PLAY "VI T6 V2 TO"

The SID is set to play voice 1 (VI) in envelope 6 (T6)—a

harpsichord sound—and voice 2 (V2) in envelope 0 (TO)—a
r—^ piano-like tone.

\ J If no envelope is specified for a voice, that voice will use
the default envelope 0.

p—, The semantics of the Tn control character are somewhat

I __t different from the other control characters in the PLAY string.
Whereas Tn always refers to only the Vn which most recently

,*_! preceded it, the other control characters (On, Un, Xn) refer to

! 1 the notes that follow, regardless of which voice is pro

grammed to play them.

n 133

u

Chapter 3 i j

U
Octave

Notes may be programmed in a six-octave range, correspond- j ,

ing roughly to the middle 72 keys of the piano. The control \—!
character On in a PLAY statement character string dictates the

octave range for all notes that follow, until another On control , t

character is encountered. If no octave is specified, the default I—I
04 is assumed.

Volume

You can control the dynamic level (volume) by using the char

acter Un in a PLAY string. The parameter n may range from 0

(no volume) to 9 (maximum volume), and it applies to all

notes that follow in all voices until another Un character ap

pears. You can't set individual volumes for the three voices,

although changing the sustain values (with ENVELOPE) can

make some sounds louder or softer than others. If Un does not

appear in a program, the default value U8 is used. Volume

may also be specified by using the VOL statement, which has

the format

VOLrf

where d is a value from 0 (off) to 15 (maximum volume).

Notice that the range of volume settings (normally 0-15

when the volume is controlled with the VOL statement or

with POKEs) is compressed in the U control character to 0-9.

Apparently the programmers who wrote the PLAY routine

didn't want to have to deal with two-digit parameter settings

(all the other PLAY control characters take only single-digit

parameters). The UO control character corresponds to VOL 0,

while U9 corresponds to VOL 15. Other volume settings are

distributed, roughly, evenly between. For example, U4 corre

sponds to medium volume (the equivalent of VOL 7). The Un j j

control character in a PLAY string allows more precise volume i—>

control than does the VOL statement. There are, however,

situations when it is more desirable to use the VOL statement \ (

and have volume control outside a character string. L-J

Filter [J

The Xn control character allows additional creative control

over the tonal quality of the 128's sound: XI turns on the filter

for a given voice, and XO turns it off. Within a composition, j j

u

n

Art and Music

H

you may use the filter on one or more voices. The SID chip

has only one filter, however, and it applies to all filtered
voices at any one time.

Notes and Elements

To sound a note, place the letter of the note you want to play

within the PLAY character string. Sharps and flats may be

played by placing the sharp (#) or flat ($) element prior to the
letter of the note. Octaves start at C and end at B, with middle
C being O4 C.

Entering Notes

>

-°—

—/

,o -

7**—

^ =

06

05

04

03

02

01

To specify the length of time the note is to be held, pre

cede it with one of the duration elements (S, I, Q, H, W).

When a dot (.) precedes a duration element, the duration value

of that element is increased by half. For example, in common

time (4:4), the elements have these values:

s

I

.1

Q

•Q
H

.H

W

.W

Sixteenth note

Eighth note

Dotted eighth note

Quarter note

Dotted quarter note

Half note

Dotted half note

Whole note

Dotted whole note

1/4

1/2

3/4

1

1-1/2

2

3

4

6

beat

beat

beat

beat

beats

beats

beats

beats

beats

n
135

Chapter 3 I j

LJ
You can include a rest in the PLAY character string by

following a duration element with the R element; for example,

QR programs a quarter rest, SR a sixteenth rest, and so on. J j
The M element in a PLAY character string instructs the

computer to wait for all voices currently playing to end the

current measure. I |

Making Music

With all this in mind, you're ready to begin writing music to

play on the Commodore 128. Let's start with the first measure

in voice 1 of Bach's "G Major Minuet" (Program 3). The first

note is a quarter note D in octave 5 (O5QD). This is followed

by eighth notes G, A, and B in octave 4 (O4IGIAIB) and

eighth note C in octave 5 (O5IC). To play only the first mea

sure of voice 1, type

PLAY "VI O5 QD O4 IG IA IB O5 IC"

Synchronizing voice 2 with voice 1 is a little trickier,

though. Voice 2 begins with a half note G in octave 3, fol

lowed by a quarter note A in the same octave (O3HGQA). We

want to program these notes in such a way that the half note

G begins at the same moment as the quarter note D in voice 1,

and the quarter note A is synchronized with the eighth note B

in voice 1.

Coordinating Voices

To understand how voice coordination works, consider the

logical way the computer reads and plays the notes in a PLAY

character string. When the 128 reads a note, it follows two

rules in determining when to start playing that note:

1. If the voice specified for this note is currently playing an- 1

other note, the new note will begin after the old note has] j

been played for the full duration specified. If this voice is

not currently playing, the note begins immediately. (Re

member that the voice is specified by the last Vn character j_J
to precede a note in a PLAY string.)

2. The computer will not proceed to the next note in a string

until the note just read has begun to be sounded (regardless ' j
of whether the notes are specified for the same, or different,

voices). ■-.

LJ

136

u

Art and Music

n
So, we list the notes in the following order to play both

voices in sync:

! \ V2O3HG V1O5QD O4IG IA IB V2O3QA V1O5IC

This measure is programmed by the character string A$ in

nline 30 of the Minuet program. I've found that the practice of

assigning a name to a string in one line, and then PLAYing

that string in another line, facilitates organizing and debugging
musical programs.

The notes of the second measure are listed in the same

manner to synchronize their playing:

V1O5QD V2O3.HB V1O4IG IR IG IR

This string is named B$, the third measure C$, and so on.

Note that this melody is written in the key of G major,

and that there is one sharp (F#) in the key signature. The 128

doesn't know what key it's playing in, so any sharp or flat

notes must be preceded by a # (sharp) or $ (flat) in the PLAY

character string, as demonstrated in C$ below.

One more important note about synchronization: The

Commodore 128 System Guide offers this advice (page 156) on

synchronizing notes of different durations: "As a rule, always

start with the note with the longer duration." This is a rule I

disagree with. If we followed this rule, we would come up

with the following PLAY strings for the first six measures of

Minuet:

A$="V2O3HG V1O5QD O4IG IA V2O3QA V1O4IB O5IC"

B$="V2O3.HB V1O5QD O4IG IR IG IR"

C$="V2O4.HC V1O5QE IC ID IE I#F"

D$="V2O3.HB V1O5QG O4IG IR IG IR"

E$="V2O3.HA V1O5QC ID IC O4IB IA"

F$="V2O3.HG V1O4QB O5IC O4IB IA IG"

If you type these in and play them, you'll find that the

I (voices gradually lose their synchronization. By the end of the
fifth measure, voice 2 is an eighth note ahead of voice 1. The

explanation is fairly simple: There is a very small but definite

} I period of time required for the computer to read and process

each note. While a whole note should play for exactly the

. same duration as two half notes, the two half notes will take

[_] slightly longer to play on the 128 than the whole note. The
reason is that there are two notes to read and process instead

^ of one. Four quarter notes, then, take longer to play than 2

n
137

LJ

Chapter 3

■ LJ

half notes; 8 eighth notes longer yet; and 16 sixteenth notes

even longer.

To overcome this inherent problem with the PLAY state- \ j

ment, I have my own rule for synchronization. To synchronize * '
two or three notes to start playing at the same time, list the

notes in the following order in the PLAY character string: | |

1. List first the note played by the last voice to stop playing

before the point of synchronization. If more than one voice

is currently playing, this voice will be the one that was last

named in a PLAY character string.

2. List second the note played by the next-to-the-last voice to

stop playing before the point of synchronization.

You can see how I've followed this rule in lines 30-190 in

Minuet. Strings B$, C$, D$, E$, and F$ all begin with voice 1,

since voice 1 was playing the last note specified in each pre

ceding string.

Once you understand these few concepts, it's fairly

straightforward to list the character strings for the rest of the

piece. Although Minuet uses only two voices, the principles of

listing and synchronizing are the same for musical arrange

ments that use all three voices.

The ENVELOPE and FILTER Statements

The frequency of a sound wave is the property that deter

mines its pitch. Our auditory sense perceives a high-frequency

sound as a "high note" and a low-frequency sound as a "low

note." The ear is sensitive to other characteristics as well, and

it can distinguish between different instruments playing the

same pitch. All of us, for example, can tell the difference be

tween middle C struck on the piano and middle C bowed on

the violin.

The peculiar properties of a sound that enable us to make } j

this differentiation include its timbre (waveform) and ampli

tude qualities (ADSR—Attack, Decay, Sustain, and Release).

Through manipulation of 11 variables related to waveform) i

and ADSR, a seemingly infinite number (actually about 70 tril

lion) of individual voice registrations are possible on the 128.

Professional synthesizer players refer to each of these com- j)

binations as a patch. Control of these variables in BASIC 7.0 is —'
achieved by using the ENVELOPE and FILTER statements.

u
The timbre of a sound is determined by its waveform, i 1

138

LJ

n

Art and Music

n ^——=

n
which is set by the ENVELOPE statement (explained below).

The 128 can produce four types of waveforms (triangle, saw-

!"""! tooth, square, and noise). Waveforms can be modified with the
FILTER statement.

The FILTER statement defines the characteristics of the

|~] SID chip's filter, allowing certain audio frequencies while sup
pressing others—similiar to the tone control on a radio or

record player which can be adjusted to boost the bass or treble

frequencies. The format for the FILTER statement is

FILTER f,lp,bp,hp,re

where:

/ = frequency (0-2047)

Ip = low-pass (on = 1, off = 0)

bp = band-pass (on = 1, off = 0)

hp = high-pass (on = 1, off = 0)

re = resonance (0-15)

There are three basic filter types: low-pass, high-pass, and

band-pass. The cutoff frequency of the filter determines which

type of filter is in use. A low-pass filter allows only sound be

low the cutoff frequency to pass. A high-pass filter passes only

sounds above the cutoff frequency, while a band-pass filter al

lows a range of frequencies centered on the given frequency to

pass unattenuated. The filter types can be used in combina

tion, yielding some unusual effects.

Defining the filter parameters is not enough, however.

The filter must also be turned on by using XI in the PLAY

statement. To turn off the filter, use X0.

FILTER 1047,1,0,143

PLAY "XI O4CDEFGFEDC'

The sound can be further altered by using the ENVE-

LOPE statement alone or in conjunction with the FILTER

1 I statement. The format for the ENVELOPE statement is

ENVELOPE n,a,drs,r,wf,pw

f—"] where:

n = envelope (0-9)

a = attack (0-15)

PI d = decay (0-15)
'— s = sustain (0-15)

r = release (0-15)

n

n
139

Chapter 3

wf = waveform (0 = triangle, 1 = sawtooth, 2 = square,

3 = noise, 4 = ring modulation)

pw = pulse width for square waveform (0-4095)

The amplitude variations throughout the duration of a

sound are described by the ADSR values. Attack is the rate at

which the volume initially rises to its peak. The volume then

decreases to a plateau (sustain). The rate at which this decrease

occurs is the decay rate. The amplitude decreases again from

the sustain level down to zero volume. The rate of this final

decay is the release rate.

These parameters are initialized to the following values in

the 128's ten default envelopes:

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

ENVELOPE

n

0,

1,

2,

3,

4,

5,

6,

7,

8,

9,

a

0

12,

0,

0,

9,

0,

0,

0,

8,

0,

d

9

0,

0,

5,

4,

9,

9,

9,

9,

9,

s

n

12,

15,

5,

4,

2,

0,

9,

4,

0,

r

0

o,

o,

0,

0,

1,

0,

o,

1,
0,

wf

7

1

0

3

0

1

2,

2,

2,

0

pw

1536

512

2048

512

Envelope Name

Piano

Accordion

Calliope

Drum

Flute

Guitar

Harpsichord

Organ

Trumpet

Xylophone

If you're unfamiliar with the sounds of the default enve

lopes, you may want to run The Magic Flute (Program 1). It

gives a sampling of the 128's preset envelopes. Once you can

distinguish the differences between these sounds, the effects of

changing the various parameters are more easily understood.

Parameter Values

Here is an explanation of the ENVELOPE values and their

effects:

a (attack, 0-15) is the rate at which a note reaches its

peak volume. Note that the value of a is initialized to zero in

the piano, calliope, drum, guitar, harpsichord, organ, and xylo

phone. The attack is instantaneous for these sounds, creating a

percussive effect. For the preset accordion, flute, and trumpet

envelopes, the attack is more gradual; the notes sneak in gently.

As the value of a increases, the attack becomes "softer."

d (decay, 0-15) describes the rate at which the volume of

a sound decreases from its peak level to its sustain level. Note

140

LJ

U

(J

u

u

u

Li

u

u

u

n

r—i __ Art and Music

n
that the value of d is initialized to zero in the accordion and

— calliope. Notes played in these envelopes maintain peak vol-

_/f ume throughout the plateau, or sustain, phase. The rest of the
preset envelopes decay at various rates to their sustain level.

ns(sustain, 0-15) is the volume level a note holds from the

end of the decay phase until the beginning of the release
phase. In the cases where the value of s is 0 (piano, harpsi

chord, and xylophone), the volume decays completely to a
zero volume level. Notes played in these envelopes have a

staccato quality, and a whole note sounds the same as a quar

ter note followed by a dotted half rest. When s is 15, as in the

preset calliope envelope, the sustain volume is the same as the

peak volume in the attack phase; there is no decay phase.

Whenever s is 15, d must be 0, or unexpected cyclical decay-
sustain effects will result.

r (release rate, 0-15) is the last phase in the duration of a

note, and it follows the sustain phase. The value of r deter

mines the rate at which the volume drops from the sustain

level to zero volume. Note that r is preset to either 0 or 1 in

all of the default envelopes. This means that the release occurs
rather rapidly, and there is a good reason always to set r to a

low value in musical programs. If a note is followed by an
other specified for the same voice, the SID chip will turn off

the first note and switch to the next at the specified moment.
If, however, a note is not followed by another, the SID turns
off the last note according to the value of r for its specific en

velope. For example, when r is set at 15, the final whole note
in a piece may linger for a surprisingly long time.

wf (waveform, 0-4) determines the timbre of the musical
sounds produced by the 128. The SID chip is capable of gen

erating sounds of four waveforms: triangle (wf = 0), sawtooth

I | (wf = I), square (wf = 2), and noise (wf = 3). The triangle
| I waveform sounds warm and muted (calliope, flute, xylo

phone). The sawtooth waveform sounds bright (accordion,

^ guitar) and is generally louder than the triangle. The sound of

r j the square waveform varies according to the pulse width (pw)

specified. The noise waveform generates a nonpitched "white

noise" sound, which can be used to mimic drums, cymbals,

(_) and other percussion instruments. If wf is set to 4, a triangle

wave is activated which is ring-modulated between voices. This

is an interesting effect, but for now it will produce unwanted

n
141

LJ

Chapter 3 i \

u
results if it's used in place of the other values of wf in our

programs. i ;

pw (pulse width, 0-4095) is specified only when the I (

square waveform (wf = 2) is used. This parameter designates

the duration of each pulse, and a variety of harmonic effects

can be produced (pw = 512 for harpsichord and trumpet; pw I
= 1536 for piano; pw = 2048 for organ).

Customizing Envelopes

Program 4, "Custom Envelope," gives you an opportunity to

adjust the ENVELOPE parameters and hear the results. Enter

values for a, d, s, r, wf (and pw if wf = 2), and select a default

(preset) envelope for comparison. The 128 plays an ascending

C scale using the preset envelope, followed by a descending

scale using your custom envelope. Then you can choose to

play it again, select a different preset envelope for comparison,

or change the parameters of your custom envelope. This

should help to acquaint you with the ADSR and waveform el

ements of sound quality.

A Piano Is a Piano Is a ...

Before the piano was invented, there was the harpsichord. It's

a wonderful sounding instrument, but it has just one sound.

Hit a key hard or touch it lightly—the sound is the same. Re

lease a key quickly or hold it down—no difference. It has the

same ADSR every time. That's why there was so much excite

ment when the piano was introduced. It's touch-sensitive, and

all aspects of ADSR are within the control of a skilled player.

The name pianoforte was coined for this instrument because

you could play dynamic levels ranging from soft (piano) to

loud (forte) and anything in-between. The name, of course, , t

has been shortened to piano over the years. I f
The 128's preset piano envelope (TO) plays with a percus

sive attack and a complete decay with no sustain. This is ap- , >

propriate for staccato phrases, but legato and sustained parts I i
aren't rendered true to the manuscript. In fact, the whole notes

decay as rapidly as the quarter notes. I 4

Program 5, "Vision Fugitive XVI," is a Prokofiev compo- I I
sition for piano which features both staccato and legato pas

sages. The custom envelope is specified in line 20: { ,

20 ENVELOPE 0,0,9,2,1,2,1536 I—J

142

n

p"] Art and Music

n
This is essentially the preset piano envelope, with the sus-

ntain level raised to 2 and the release rate changed to 1. These

changes allow you to hold the long notes for their full values.
Try entering one of your custom envelopes in line 20 and see

nhow this sounds on your "instrument/'

The Prokofiev piece has an eerie feel, although you'll find
that your 128 doesn't really sound much like a piano. You can
make some unusual and entertaining sounds on the 128, but
you'll never mistake it for a piano. If it's any consolation, re
member that Horowitz can't use his Steinway to run a spread
sheet or vaporize aliens.

Program 1. The Magic Flute
For mistake-proof program entry, use 'The Automatic Proofreader/' Appendix B, to type in
this program.

MR 10 VOL 8:TEMPO 13:PLAY"X0U9":A$="V1O5IGIFQEV2O4

QGV3QCQCV2QGV1O5QEQRQE"

FR 20 B$="V1O5QFV2O4QGV3O3QBQBV2O4QGV1O5QFQRIFIEM
AA 30 C$ = IIV1O5QDV2O4QGV3O3QBQBV2O4QGV1O5QDQRQD"

HH 40 D$="V1O5HEV2O4QGV3QCQCV2QGV1QRO5IGIF":E$="V1
O5HEV2O4HGV3HCHCV2HGV1O5QEQE"

JJ 50 F$="V1O5.QFV2O4WAV3WFV1O5IGQAQF":G$="V1O5QEV
2O4HGV1O5QEQDV2O4HGV1O5QD"

HF 60 H$="V1O5HCV2O4QCQEQCV1QR"

QR 70 FOR T=0 TO 9:PRINT USING" {CLR} {7 DOWN} {TAB}

{LEFT}THIS IS ENVELOPE NUMBER #";T

HQ 80 READ EN$(T):PRINT USING"{7 DOWN}{TAB}

{5 SPACES}##############";EN$(T);:T$=STR$(T)
JK 90 PLAY"V1T":PLAY T$:PLAY"V2T":PLAY T$:PLAY"V3T

":PLAY T$

GK 100 PLAY A$:PLAY B$:PLAY C$:PLAY D$:PLAY E$:PLA

Y F$:PLAY G$:PLAY H$:NEXT:END

BK 110 DATA "{3 SPACES}PIANO", " ACCORDION","

{2 SPACES}CALLIOPE","{4 SPACES}DRUM","

I—| {3 SPACES}FLUTE","{3 SPACES}GUITAR","HARPSI

I ' CHORD","{3 SPACES}ORGAN","{2 SPACES}TRUMPET
"," XYLOPHONE"

H
Program 2. American Patrol
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

|"™| this program.

JD 10 PRINT"{CLR}{5 DOWN}{TAB}{4 SPACES}AMERICAN P

ATROL":PRINT"{5 DOWN}{2 TAB}{3 SPACES}BY":PR

f—I INT"{5 DOWN}{TAB}{5 SPACES}F. W. MEACHAM"

! ! AJ 20 TEMPO 20:VOL 8:PLAY"X0U9":PU$="V1O4IASBO5S#C

n
143

u

Chapter 3 < i

RE 30 PLAY"V1T2V2T2V3T2M:REM ***
XJ 40 A$=MV1O5.IDV3O3QDO4S#FV2SAV1O5.IDV2SRO4SAV3S

#FSRM • I I
KX 50 B$=IIV3O3QAV1O5IDI#CIDV2O4QAV3Q#FV1O5IE"

DJ 60 C$=MV1O5.I#FV3O3QDO4S#FV2SAV1O5.I#FV2SRO4SAV

3S#FSRM j I
GA 70 D$="V3O3QAV1O5I#FIFI#FV3O4Q#FV2QAV1O5IG11 LJ
HC 80 E$="V1O5.IAV3O3QDO4S#FV2SAV1O5.IAV2SRO4SAV3S

#FSR"
QH 90 F$ =IIV3O3QAV1O5IAI#GIAV3O4Q#FV2QAV1O6ID"

CM 100 G$="V1O5HAV3O3QDQ#FV2O4SASRSASR":H$=IIV2QRV3

O3QGQ#FV2O4QAV1O5.I#FM

KG 110 I$="V3O3QAV1O5.IGV3O4Q#CV2QGV1O5IGI#FM:J$=11

V105 .IEV3O3QEO4Q#CV2QGV1O5 •IG11

DP 120 K$ =IIV3O3QDV1O5.I#FV3O4Q#FV2QAV1O5I#FIE":L$=

MV1O5.IDV3O3QAO4Q#FV2QAV1O5.I#FM

XD 130 M$="V3O4IEV1O5.IEV3O4I#FIEV2Q#GV1.IBV3IDII:N

$="V3O4Q#CV1O5 .I#CV3O3QBV2O4Q#GV1O5 .ID"
DD 140 O$=IIV3O3IAV1O5HEV3O3IBIAV2O4QGV3O3IG":P$="V

3O3Q#FQEV2O4QGV1O4IASBO5S#C11

QQ 150 W$=IIV1O5HAV3O3.IDSRO3QDV2O4QAII:X$="V3O3QEQ#

FV2O4QAV1O5.I#FM

&l 160 Y$=MV3O3QGV1O5.IBSR.IAV3O4SDV2SBSRSBV3SDSRM

:Z$=MV3O3QDV1O5.IGV3O4QGV2QBV1O5.I#FM

SK 170 AA$=MV3O3QEV1O5.IESR.IDV3O4S#GV2SBSRSBV3S#G

SRII:AB$=IIV3O3Q#GV1O5.I#CSR.IDV3O4QEV2QBM

RM 180 AC$=MV3O3QAV1O5QEI#FV3O4Q#CV2QEV1O5IGM:AD$=

MV105.I#FV3O2QAO4Q#CV2QGV1O5.IE"

PX 190 AE$=IIV3O3QDV1O5.IDV3O4QDV2Q#FV1IAIBM:AF$=IIV

1O5I#CV3O3QAV1O5IDIEV3O4QDV2Q#FV1O5I#FM

JJ 200 AG$=MV1O5.IGV3O3QAO4S#CV2SEV1O5.IGV2SRO4SEV

3S#CSR"
BB 210 AH$=MV3O3QEV1O5.IGV3O4Q#CV2QEV1O5.IGM

AR 220 AI$="V3O3QAV1O5IGI#FHGV3O4S#CV2SESRSEV3S#CS

Rll:AJ$=liV303QE04Q#CV2QAV105Q#GM

XM 230 AK$="V1O5.IAV3O3QDO4SDV2S#FV1O5.IAV2SRO4S#F

V3SDSR"

DA 240 AL$=IIV3O3QAV1O5IAIGI#FV3O4QDV2QAV1O5IGII:AM$ j)

= liV105HAV303QD04SDV2S#FSRS#FV3SDSRII:AN$=IIV3 '—'
O3Q#FO4QDV2QAV1O5Q#FM

KR 250 AV$=IIV3O3Q#FO4QDV2QAV1O5QAII:AW$=IIV1O5.IBV3O , .

3QGO4SDV2SGV1O5.IBV2SRO4SGV3SDSR" I I
SR 260 AX$=MV3O2QBV1O6.QDV3O4QDV2QGV1O5IBM

PE 270 AY$="V1O5.IAV3O3QDO4SDV2S#FV1O5.IAV2SRO4S#F

V3SDSR":AZ$=IIV3O3QAV1O5IAIG.I#FV3O4QDV2QA11 j j

BK 280 BA$="V3O3Q#FV1O5.IGV3O4SEV2S#AV1O5.IGV2SRO4 {—'
S#AV3SESRM

JB 290 BB$=MV3O3Q#CV1O5.I#CV3O4Q#FV2Q#AV1O5.IG":BC , ,

$="V3O2QBV1O5.I#FV3O4SDV2SBV1O5.I#FV2SRO4SB | |
V3SDSR"

144

u

! 1

. Art and Music

n

f \

HR 300 BD$=mV3O3Q#FV1O5I#FIE.IDV3O4Q#FV2QBV1SRmsBH
$=MV3O3Q#FV1O5IAIG.I#FV3O4QDV2QAM

•) MF 310 BI$=MV3O3QAV1O5.IGV3O4S#CV2SEV1O5.IGV2SRO4S
f ! EV3S#CSRM

AC 320 BJ$=HV3O3QEV1O5.I#CV3O4Q#CV2QAV1O5.IEM:BK§=
,—| HV3O3QDVlO5.IDV3O4S#FV2SAVlO5.IDV2SRO4SAV3S
I I #FSR"

CE 330 BL$=MV3O3QAV2O4Q#FV1O5.IDSRS#FSRS#FSRM:BM$=
IIV1O5W#FV3QRO3I#FV2O4Q#A":BN$=IIV2O4QBV3O3I#
GIRI#AV2O5Q#C"

PG 340 BO$=IIV2O5QDV3O3IBV1QRO5IDI#CII:BP$=MV1O5IDIE
I#FIGM:BQ$="V1O5WAV3QRO3IAV2O5Q#CM

JG 350 BR$ = MV2O5QDV3O3IBIRO4I#CV2O5QEII:BS$=IIV2O5Q#
FV3O4IDV1QRO5I#FI#EM:BT$=MV1O5I#FI#GIAIBH

MQ 360 BU$=IIV1O6W#CV3QRO4I#CV2O5Q#EM:BV$=IIV2O5Q#FV
3O4I#DIRI#EV2O5Q#GM:BW$="V2O5QAV3O4I#FV1QRO
5IAI#GM

KJ 370 BX$ =IIV1O5IAIBO6I#CID":BY$=MV1O6WEV3QRO4S#GV
2O6SDSRSDV3O4S#GSRII:BZ$="V3O4I#GV2O6IDIRIDV
3O4I#GIR"

AK 380 CA$ = MV3O4IAV2O6Q#CV1QEQRII:CB$=IIV1O2QAV3HAV2
HAM:CC$=IIV3O3IAV1O5IDV2O4I#FIRI#FV1O5IDV3O3
IAIRM:CD$=MV3O3IAV2O4I#FV1O5IDM

BK 390 FOR R=1TO2:PLAY PU$:PLAY A$:PLAY B$:PLAY C$
:PLAY D$:PLAY E$:PLAY F$:PLAY G$:PLAY H$

BE 400 PLAY I$:PLAY J$:PLAY K$:PLAY L$:PLAY M$:PLA

Y N$:PLAY O$:PLAY P$:Q$=A$:R$=B$:S$=C$:T$=D
$

BE 410 PLAY Q$:PLAY R$:PLAY S$:PLAY T$:U$=E$:V$=F$
:PLAY U$:PLAY V$:PLAY W$:PLAY X$:PLAY Y$:PL

AY Z$:PLAY AA$:PLAY AB$

PP 420 PLAY AC$:PLAY AD$:PLAY AE$:PLAY AF$:PLAY AG
$:PLAY AH$:PLAY AI$:PLAY AJ$:PLAY AK$:PLAY
{SPACE}AL$:PLAY AM$:PLAY AN$

PE 430 AO$=AG$:AP$=AH$:AQ$=AI$:AR$=AJ$:PLAY AO$:PL
AY AP$:PLAY AQ$:PLAY AR$:AS$=AK$:AT$=AL$:AU
$=AM$

|j CF 440 PLAY AS$:PLAY AT$:PLAY AU$:PLAY AV$:PLAY AW

$:PLAY AX$:PLAY AY$:PLAY AZ$:PLAY BA$:PLAY
{SPACE}BB$:PLAY BC$:PLAY BD$

DC 450 BE$=AW$:BF$=AX$:BG$=AY$:PLAY BE$:PLAY BF$:P
LAY BG$:PLAY BH$:PLAY BI$:PLAY BJ$:IF R=2 T
HEN480

GG 460 PLAY BK$:PLAY BL$:PLAY BM$:PLAY BN$:PLAY BO

)\ $:PLAY BP$:PLAY BQ$:PLAY BR$:PLAY BS$:PLAY
{SPACE}BT$

HJ 470 PLAY BU$:P.LAY BV$:PLAY BW$:PLAY BX$:PLAY BY

$:PLAY BZ$:PLAY CA$:VOL 15:PLAY CB$:VOL 8

HB 480 NEXT R:PLAY CC$:PLAY CD$:END

145

LJ

Chapter 3 >

LJ
Program 3. Minuet
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program. j /

CM 10 PRINT"{CLR}{5 D0WN}lTAB}{4 SPACES }MINUET (G *—»
{SPACE}MAJ0R)":PRINT{9 SPACES]"15 DOWN)
12 TAB] 13 SPACES}BY11:PRINT1115 DOWNilTAB} JOH

ANN SEBASTIAN BACH11 LJ
XP 20 TEMPO 10:VOL 6 :PLAY"X0U9M :PLAY"V1T6V2T0M
GD 30 A$=IIV2O3HGV1O5QDO4IGIAIBV2O3QAV1O5ICII:B$="V1

O5QDV2O3.HBV1O4IGIRIGIR"
EP 40 C$=IIV1O5QEV2O4.HCV1O5ICIDIEI#FII:D$=IIV1O5QGV2

03.HBV104IGIRIGIR"

DG 50 FOR R=1TO2:PLAY A$:PLAY B$:PLAY C$:PLAY D$:E
$="V1O5QCV2O3.HAV1O5IDICO4IBIA11

MA 60 F$=IIV1O4QBV2O3.HGV1O5ICO4IBIAIG":G$=IIV1O4Q#F

V2QDO3QBV1O4IGIAIBV2O3QGV1O4IG11

KE 70 H$="V1O4QBV2QDO3IDV1O4HAV2O4ICO3IBIAM:PLAY E

$:PLAY F$:PLAY G$:PLAY H$
XA 80 I$=MV2O3HBV1O5QDO4IGIAIBV2O3QAV1O5ICII:J$="V1

O5QDV2O3QGQBV1O4IGIRIGV2O3QG"

DS 90 K$=IIV2O4.HCV1O5QEICIDIEI#FII:L$="V1O5QGV2O3QB

O4ICV1O4IGIRV2O3IBIAV1O4IGIRV2O3IG":PLAY 1$:

PLAY J$:PLAY K$:PLAY L$
QC 100 M$=IIV2O3HAV1O5QCIDICO4IBV2O3Q#FV1O4IAII:N$=M

V1O4QBV2O3HGV1O5ICO4IBIAV2O3QBV1O4IG"

MR 110 O$="V1O4QAV2QCQDV1IBIAIGV2O3QDV1O4I#FII:P$=11

V1O4.HGV2O3HGO2QGM:PLAY M$:PLAY N$:PIAY 0$:

PLAY P$:NEXT R
BF 120 FOR R=1TO2:Q$=MV2O3.HGV1O5QBIGIAIBIG":R$=IIV

1O5QAV2O3.H#FV105IDIEI#FID"
CX 130 S$ =IIV1O5QGV2O3QEQGV1O5IEI#FIGV2O3QEV1O5IDM:

T$=MV1O5Q#CV2O3HAV1O4IBO5I#CO4QAV2O2QA"

BP 140 VOL 8:PLAY Q$:PLAY R$:PLAY S$:PLAY T$:U$="V
2O3.HAV1O4IAIBO5I#CIDIEI#FM:V$=MV1O5QGV2O3I

BIRO4QDV1O5Q#FQEV2O4Q#C"

KH 150 W$=IIV2O4QDV1O5Q#FO4IAV2O3I#FIRIAV1O5I#CIRM: .

X$="V1O5.HDV2O4QDO3QDO4QC":PLAY U$:VOL 10:P

LAY V$:PLAY W$:PLAY X$ 1 j
SQ 160 Y$=IIV2O3QBV1O5QDO4IGV2QDV1I#FQGV2O3QB":Z$= M '—)

V2O4QCV1O5QEO4IGV2QEV1I#FIGV2QC"

BX 170 AA$=IIV2O3QBV1O5QDQCV2O3QAQGV1O4QB":AB$="V1O (

4IAV2HDV1IGI#FIGQAM:VOL 6:PLAY Y$:PLAY Z$:P ^_j
LAY AA$:PIAY AB$

HE 180 AC$ =MV1O4IDV2O3HDV1O4IEI#FIGIAV2O3Q#FV1O4IB

11: AD$=MV1O5QCV2O3QEQGV1O4QBQAV2O3Q#FM \ '

CK 190 AE$=HV2O3QGV1O4IBO5IDO4IGV2O2IBIRO3IDV1O4I# '—'

FIRII:AF$="V1O4.HGV2O3IGIRIDIRO2IGIRM

RJ 200 PLAY AC$:VOL 8:PLAY AD$:PLAY AE$:PLAY AF$:N . }

EXT R:END |_J

146

u

n

r—I Art and Music

Program 4. Custom Envelope
fmam) For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in
, i this program.

BK 5 GOSUB 1000

_ HA 10 TEMPO 8:V0L 8:PLAY"X0U9"

I I CK 15 FOR PRESET=0 TO 9:READ N(PRESET),A(PRESET),D
(PRESET),S(PRESET),R(PRESET),W (PRESET)

GA 17 IF PRESET=0 OR PRESET=6 OR PRESET=7 OR PRESE
T=8 THEN READ P(PRESET)

CG 19 NEXT

RS 20 INPUT111CLR}{DOWN}DEFAULT ENVELOPE TO COMPARE
(0-9)";E:IF E<0 OR E>9 THEN20

EX 30 PRINT"{2 DOWN}{RVS}FOR CUSTOM ENVELOPE{OFF}

{DOWN}11: INPUT "ATTACK RATE (0-15) " ;A:IF A<0 O
R A>15 THEN30

EH 40 INPUT "DECAY RATE (0-15)";D:IF D<0 OR D>15 T
HEN40

RD 50 INPUT"SUSTAIN LEVEL (0-15)";S:IF S<0 OR S>15
THEN50

CE 60 INPUT"RELEASE RATE (0-15)";R:IF R<0 OR R>15
{SPACE}THEN60

CF 70 INPUT"WAVEFORM (0-4)";W:IF W<0 OR W>4 THEN70
FK 80 IF W<>2 THEN100

KH 90 INPUT"PULSE WIDTH (0-4095)";P:IF P<0 OR P>40
95 THEN90

KQ 100 PRINT"{DOWN}PRESS P TO PLAY AND COMPARE YOU

R CUSTOM":PRINT USING"ENVELOPE TO DEFAULT E
NVELOPE #";E

SP 110 PRINT"{DOWN}PRESS C TO CHANGE YOUR CUSTOM E

NVELOPE":PRINT"{DOWN}PRESS D TO CHANGE THE
{SPACE}DEFAULT ENVELOPE":PRINT"FOR COMPARIS
ON"

PG 115 PRINT: PRINT "PRESS Q TO QUIT"

CJ 120 GET X$:IF X$="P" THEN180

HH 130 IF X$="C" THEN PRINT" {CLR} ":GOTO30

KF 140 IF X$="D" THEN160

| | EM 145 IF X$ ="Q" THEN PRINT" {CLR}SID CLEARED. ":GOS
■- * UB 1000: END

SP 150 GOTO120

I—) PK 160 INPUT"{CLR}{DOWN}DEFAULT ENVELOPE TO COMPAR

I \ E (0-9)";E:IF E<0 OR E>9 THEN160
EP 170 GOTO100

DQ 180 GOSUB 1000:A$="V1O4QCIDIEIFIGIAIBO5WCQR":B$

■"""| ="V2O5QCO4IBIAIGIFIEIDWCQR":ENVELOPE N(E),A
] (E),D(E),S(E),R(E),W(E),P(E)

DC 190 PRINT USING"{DOWN}{OFF}{6 SPACES}THIS IS DE

r-^ FAULT ENVELOPE #";E

[\

n

u

Chapter 3 , i

U
MF 200 A$="V1T"+STR$(E)+A$:PLAY A$:GOSUB 1000:PRIN

T"{UP}16 SPACES}{RVS}THIS IS YOUR CUSTOM EN

VELOPE":ENVELOPE E,A,D,S,R,W,P] /
RJ 210 B$=MV2TM+STR$(E)+B$:PLAY B$:PRINT"{UP} *—'

134 SPACES}":GOSUB 1000:GOTO120

JM 1000 CLEAR=54272:FOR SID=CLEAR TO CLEAR+24:POKE :

SID,0:NEXT:RETURN 1 j
CK 3000 DATA 0,0,9,0,0,2,1536

SK 3002 DATA 1,12,0,12,0,1

MX 3004 DATA 2,0,0,15,0,0

SP 3006 DATA 3,0,5,5,0,3

BJ 3008 DATA 4,9,4,4,0,0

DP 3010 DATA 5,0,9,2,1,1

HP 3012 DATA 6,0,9,0,0,2,512

SS 3014 DATA 7,0,9,9,0,2,2048

DJ 3016 DATA 8,8,9,4,1,2,512

RP 3018 DATA 9,0,9,0,0,0

Program 5, Vision Fugitive XVI
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

MB 10 PRINT"{CLR}{5 DOWN}{TAB}{2 SPACES}VISION FUG

ITIVE XVI":PRINT"{5 DOWN}[2 TAB}{3 SPACES}BY
":PRINT"15 D0WNHTABH3 SPACES }SERGEI PROKOF

IEV"

JS 20 TEMPO 6:ENVELOPE 0,0,9,2,1,2,1536:PLAY"X0U9"

:PLAY"V1T0V2T0V3T0"

CC 30 A$="V1O5HEV3QRO4HEV1O5Q#DV2HFV1QDV3O4HE"

BS 40 B$="V1O5Q#CV2HEV1QCV3O4HEV1O4QBV2O5H#DV1O5IC

V3O4HEV1IB"

BS 50 C$="V1O4Q#FV2O5HDV1O4Q#GV3HEV1QAV2O5H#CV1O4I

#AV3HEV1IB"

EF 60 D$="V1O5QCV2HCV1I#CV3O4HEV1O5ID.Q#DV2O4HBV3H

EV1O5SES#G":VOL 9.-PLAY A$sPLAY B$:VOL 7 :PLAY

C$:VOL 9:PLAY D$

QK 70 E$="V1O5HEV2O4H#AV3HEV2O5HFV1Q#DQDV3O4HE":F$. ,

= "V1O5Q#CV2HEV1QCV3O4HEV1QBV2O5H#DV1ICV3O4HE |)
VI IB"

QQ 80" G$="V1O4Q#FV2O5HDV1O4Q#GV3HEV1QAV2O5H#CV1O4I

#AV3HEV1IB" \ I

FQ 90 H$ ="V1O5HCV2HCV3O4HEV2HBV1O5HEV3O4QE" '—J
KX 100 VOL 11:PLAY E$:PLAY F$:VOL 9:PLAY G$:VOL 7:

TEMPO 5:PLAY H$:TEMPO 6 , .

HS 110 I$="V3O3SEV2O4IGV1IBIRV3O3SBSRO4SFV2QDV1QAV (_j

3SRO3SBSRO2SAV1O4IEIRV3O3SFSRSBV1O4QDV3SRO3

SFSR"

u

n

n Art and Music
L.I ==============

\—j

CS 120 J$=I$:K$= "V3O3SEV1O4IEIRV3O3SBSRO4SFV1QDV3S
RO3SBSRO2SAV2O4IGV1IBIRV3O3SFSRSBV2O4QDV1QA

<—| V3SRO3SFSR"

} I QC 130 L$=MV3O3SEV1O4IEIRV3O3SBSRO4SFV1QDV3SRO3SBS
RO2SAV1O4HEV3SRO3SPSRSBSR.IFV2IR11

CB 140 VOL 5:PLAY 1$:PLAY J$:PLAY K$:PLAY L$

II AX 150 M$=MV2IRV1O4ICIRV3O3SASRO4SFV1QDV3SRO3SASRS
CV2O4IAV1O5ICIRV3O3SGSRO4SCV2QEV1QBV3SRO3SG
SR"

EA 160 N$=MV3O3SFV1O4IDIRV3O3SASRO4SGV1QEV3SRO3SAS
RSCV2O4IBV1O5IDIRV3O3SASRO4SEV2QFV1O5QCV3SR
O3SASR11

QQ 170 O$=MV3O3HBV1O4IGIRV2SESRSDV1QFV2SRICIRV1IBV
3O3QAV2O4SCSRSDV3QFV1QAV2SRIE"

MM 180 P$=MV2IRV1O4IGV3O3HBV2O4SESRSDV1QFV2SRICIRV
1IBV3O3QAV2O4SCSRSDV3QFV1QAV2SRIE11

CB 190 PLAY M$:VOL 7:PLAY N$:PLAY 0$:PLAY P$:Q$="V

2IRV1O4HGV3O3WBV2O4SCSRSDSRIEIRV1HPV2SDSRSC
SRID"

GM 200 R$ =HV2O4HDV1HGV3O3SBSRSASRSGSRSFSRHEV2O4HEH
RM

SR 210 S$=A$:T$=B$:PLAY Q$:VOL 5 :TEMPO 5 :PLAY R$:T
EMPO 6:V0L 9:PLAY S$:PLAY T$:U$=C$

BJ 220 V$ =MV1O5HCV2WCV3O4WEV1O6.HCM:W$=MV2QRO3QAV3
QDV1O4QAQGV3O3QCV2QGQFV3O2QBV1O4QF11

BH 230 X$=MV1O5HEV3O4QEHEV1O5Q#DV2HFV1QDV3O4HEM:PL
AY U$:PLAY V$:VOL 7:PLAY W$:PLAY X$

QG 240 Y$=T$:Z$=U$:AA$=V$:AB$=W$:PLAY Y$:PLAY Z$:P
LAY AA$:TEMPO 5 :PLAY AB$:AC$=X$:AD$=Y§

RS 250 AE$=MV1O4Q#FV2O5HDV1O4Q#GV3HEV1QAV2O5H#CV1O
4I#AV3QEV1IBM

CE 260 AF$=MV1O5HCV3QCO4QEQCV1O6HEV3O3QEM
ES 270 VOL 5:PLAY AC§:PLAY AD$:PLAY AE$:PLAY AF$

JK 280 AG$="V3O3WEV1O6WE": AH$=MV106 .WEV2O5 .WEV3O3 .
WE11: PLAY AG$:VOL 3:PLAY AH$:END

n

149

n

PI

_ Programming the Z80
Morris Simon

If you've already explored BASIC and 6502 machine language, the
Commodore 128 offers a brand-new and fascinating world of pro
gramming—the Z80 chip.

Are you taking full advantage of the powerful Z80 processor

in your Commodore 128? I don't mean just using CP/M mode

to run the thousands of free programs in public domain librar

ies, although that's a good start. I mean writing your own

applications in Z80 assembly language.

Why? For the same reasons that many professional pro

grammers prefer machine language (or assembly language)

over high-level languages like BASIC: speed, efficiency, maxi
mum control, and just plain fun.

With a little reading and a little money, you can convert

your 128 into an excellent Z80 CP/M development system.

All you need to start is an assembler to assemble your source

code into machine language, a loader to put your program

where it'll be running in your RAM, and a debugger—since

machine language programs don't always run the first time.

Note that I haven't mentioned an editor: Most word proces

sors will do just fine. Except for the Commodore 128, the rest
of the system can cost less than $100.

You have to start learning one of two kinds of assembly

language: either Intel's 8080 or Zilog's Z80 instruction set.

Which one? By the time you finish this article, you'll be able
— to decide for yourself.

The Transition from 6502 Machine Language

P*] If you've ever written a machine language (ML) program for
the 64 or 128, learning Z80 machine language shouldn't be
very difficult. The same ML operations found in the 6502 fam-

P| ily of chips are available in the Z80 (plus a few more), but the
Z80 uses different mnemonics. If you know what the 6502's

LDA #5 means, you'll probably recognize the Z80 instruction
^ LD A,5. The two instructions are spelled a little differently,

153

Chapter 4

but they do the same thing; they put the number 5 into the

accumulator.

You should be aware of a few differences before starting, j f
especially if you're experienced in 6502 ML. First, the Z80 has

more registers than the 6502's A, X, and Y. The Intel instruc

tions support seven registers: A, B, C, D, E, H, and L. These J J
are sometimes paired up for use as pointers to memory: BC,

DE, and HL (the memory location pointed to by HL is called

the M register, even though it's in RAM and isn't a true regis

ter). The Zilog commands include other registers, IX and IY,

for example. All of these additional registers serve a purpose:

Indirect-Y addressing, which is widely used in 6502 programs,

is not directly supported on the Z80. Instead of putting an ad

dress in a zero-page address and loading the accumulator

through the pointer there, as you would in a 6502 program,

you put the address into a register pair (HL, for example). The

register pair serves the same purpose on the Z80 as zero-page

indirect addressing does on the 6502.

There's a minor difference in hexadecimal notation as

well. When you're writing Z80 ML, it's more common to add

the letter H after a hex number instead of putting a dollar sign

in front of it. You'd substitute 400H for $0400, for example.

In Commodore 6502 ML, the Kernal routines are impor

tant; they provide common entry points, regardless of which

computer you own, for essential routines that open files, get a

character, print to the screen, close files, and so on. CP/M
uses the same idea in its Basic Disk Operating System (BDOS)

and Basic Input/Output System (BIOS) routines. The BIOS call
for getting a character from the keyboard works the same on a

128, Kaypro, Osborne, or other CP/M computer. The ma

chines are different on the hardware level, but from a software
standpoint, the operating system looks the same. If you plan
to do a Z80 program, it pays to learn how the BDOS and j I
BIOS routines work.

| !

Intel Mnemonics <—>

The Intel instruction set was designed for the Z80's precursor,

the 8080. In the early days of microcomputers, most program- ^ j

mers wrote in 8080 assembly language. Digital Research's <—>

CP/M and most of the earlier CP/M software are written in

8080 code. \ i

u

CP/M

Intel (8080) mnemonics can be confusing when you're

first learning them. For example, MOV means load, as in

MOV A,C ;LOAD REGISTER A WITH BYTE IN REGISTER C

(In machine language, anything after a semicolon is a

comment to be read and will not be processed by an assembler.)

In the example above, it might appear that the byte in

register C has been shifted to register A, but actually it's only

been copied to register A (the accumulator). Other instruction

sets, including the Zilog, use LD (for LoaD) for this operation.

Note that MOV and LD are just different ways of saying the

same thing; when the program is assembled, the object code—

the numbers in memory—will be the same.

Zilog Mnemonics

The Zilog instruction set reflects the greater power of the Z80

CPU, which has many more 16-bit registers and register pairs,

and facilities for direct input/output operations. The major im

provements over the 8080 instruction set include the following:

• Direct loading of all 16-bit registers and pairs

• Instructions for two new 16-bit index registers (IX and IY)

• Instructions to switch sets of registers

• Direct input and output addressing

• Block shift and block transfer instructions

• Enhanced jump instructions

• And a more comprehensible system of mnemonics

Obviously, Zilog's instruction set was designed to take

advantage of all the Z80 improvements over its cousin, the

pioneer 8080. In fact, if you write programs using Z80 mne

monics, you're accessing about as much power as you can

from any eight-bit processor. So why would anyone go to the

trouble of learning 8080 code when the Z80 instruction set can
be mastered just as easily? Let's look into that.

The choice between Intel and Zilog instruction sets de

pends on the assembler you're using to convert your source

code into machine language. Digital Research (the people who
invented CP/M) decided to stick with the Intel 8080 instruc-

r-| tion set for all their software, including their workhorse as-

1 (semblers, which Commodore packages for the 64 (ASM) and
the 128 (MAC and RMAC).

r—j The Z80 commands are a superset of 8080 commands, in

155

n

Chapter 4

the same way that Commodore 128 BASIC (version 7.0) is a *—'
superset of the Commodore 64's BASIC 2.0. The Z80 can do

everything the 8080 can do, plus it has many additional com- < j

mands and more registers. *—•

Even though the 128's CP/M assembler supports the Intel

mnemonics, there's an easy way to use the Zilog instruction j i

set if you want to. <—'

Macros

The Zilog set includes a very useful single instruction, DJNZ

address, which is used to control loops. (DJNZ is Decrement

and Jump if Not Zero.) To use it, simply load register B with

the number of times you want a loop to occur, follow the load

instruction with your loop subroutine, and end it with DJNZ

and the address of the beginning of the loop. The program

automatically decreases the value in register B and repeats the

loop until B equals zero.

If you want to emulate DJNZ with Intel instructions, you

have to list both components of DJNZ separately, first by DEC

B, which decreases the counter by one, and then by JNZ ad

dress, which performs the routine as long as B does not equal

zero. You might then declare the combination "DEC B" +

"JNZ loop address" as an external macro.

Not all Z80 instructions can be emulated by Intel mne

monics, however, even with complex Intel macros. That's why

you'll find a file called Z80.LIB on one of the CP/M source

disks from Commodore (these are the disks you receive when

you mail the card in the CP/M section of the System Guide;

there's also a very detailed 500+ page CP/M manual in

cluded with the disks).

To use Z80.LIB, put this line at the beginning of your

source file: t

MACLIB Z80 LJ

This tells the assembler you want to include the macro library

file called Z80. With this line at the beginning of your pro- | |

gram, you can use any or all of the Z80 command set. In a '—r

nutshell, it provides a lookup table that matches the Z80 mne

monics with the appropriate opcodes. It doesn't just emulate \ >

DJNZ by splitting it into DEC and JNZ; for example, it actually L-»

assembles the DJNZ instruction into the corresponding 8080-

style ML instruction. | \

156

u

M

n

CP/M and Assembly Language

CP/M is an operating system rather than a language. The

relationship between CP/M and machine language is very

simple. From your program, you make calls—or jumps—to

constant locations in CP/M memory anytime you need the

operating system to do something. CP/M has further instruc

tions stored at those locations and will return control to your

program when the job (whatever it is) is done.

For example, location 0000H contains a jump instruction

to the warm-boot routine in CP/M's BIOS. Therefore, anytime

you wish to exit a program you can include JP 0000H (or JP 0

since decimal 0 = OH), and the program will exit to a warm

boot at that point. This is the way to finish a program and

send the user back to the CP/M A> prompt.

Most CP/M calls are made to location 0005H, where an

other jump instruction passes control of the program to

CP/M's BDOS. Before you CALL BDOS, your program needs

to give CP/M a little more information, particularly the num

ber of the service call you wish to make. You put this number

in register C. For example, CP/M service call 9 is a print string

function which prints to the screen an ASCII string ending in

a dollar sign. BDOS must see the number 9 in register C and

the string's starting address in register pair DE. At another

place in your program, you'll define the string to be printed

with a DB (Data Byte) instruction (and end it with a $). For
example,

BDOS EQU 0005H ;THIS EQUATE WILL OCCUR EARLY

IN PROGRAM

;OTHER CODE

LD C,9 ;CP/M FUNCTION 9 NOW IN REG C

LD DE,MSG ;POINT REGS DE TO ADDRESS OF

MESSAGE

CALL BDOS /'BDOS" WAS DEFINED EARLIER AS

"0005H"

;OTHER CODE

MSG DB "This is the message to be printed.$"

Notice how the entries BDOS and MSG are defined in the

leftmost label column. A good assembly program will clearly

separate labels, instructions, operands, and comments:

LABEL INSTR OPERAND ;COMMENT

It's common practice among Z80 programmers to place

comments on nearly every line of source code.

157

u

Chapter 4

In the 128 version of CP/M (CP/M 3.0, also called

CP/M-Plus), there are more than 60 specialized CP/M service

calls you can use in your assembly language programs. To get \ f
the most out of your machine, you should begin practicing

each of the service calls in sample programs until you under

stand what they do. j j

Z80 Programming Techniques

In the examples that follow, I've used true Zilog mnemonics

simply because they take less space and are easier to understand.

Loading and Storing Registers

The Z80 allows you to load practically any register from mem

ory, from another register or by immediate loading of a value.

The basic form of a typical load instruction is

LD destination, source

The destination may be either a register or a memory location,

and source may be a register, memory location, or a value. For

example,

LD A,C ;LOAD ACCUMULATOR FROM C

Values can be loaded directly into registers:

LD C,6 ;PUT VALUE 6 DECIMAL IN REGISTER C

or indirectly from addresses in RAM:

LD A,(5973H) ;LOAD A WITH BYTE FROM ADDRESS 5973

HEX

or indirectly from addresses in registers:

LD A,(BC) ;LOAD A WITH BYTE FROM ADDRESS IN BC

Note that a value inside parentheses is an address, while

one without parentheses is a numeral. Remember that if you 1 !

want a hex number (or address) you must add the letter H;

Z80 assemblers default to decimal numbers.

Storage of data is done by the reverse procedure:] I

LD (address), register

The stack pointer (SP) is a 16-bit value in the Z80, which < ,

means you can point it to any location in memory. This is I—1
quite useful in situations where you need to clear out a section

of memory. Just set the stack pointer and PUSH a series of ze- i .

158

u

CP/M

ros onto the stack. If you wanted to save the stack pointer

first, you'd use this instruction:

LD (0A71H),SP ;LOAD STACK POINTER (A 16-BIT ADDRESS)

; INTO THE TWO-BYTE LOCATION START-

ING AT

; A71 HEX; THE LOW BYTE WILL BE STORED

; FIRST, THEN HIGH BYTE AT A72 HEX

A common application of the Z80 loading operations is to

initialize RAM locations with certain values. For example, let's

store a byte of data (BYTE) at location 500H:

LD A,BYTE ;PUT DATA BYTE INTO ACCUMULATOR

LD (0500H),A ;COPY BYTE IN REGISTER A TO 500 HEX

The same principle can be used to initialize word-length

values by sending them through the HL register pair, which

functions almost as a 16-bit accumulator:

LD HL,WORD ;PUT DATA WORD INTO HL PAIR

LD (0500H),HL ;COPY L INTO 500H & H INTO 501H

Arithmetic and Logic

The Z80 allows greater flexibility in arithmetic and logical op

erations than most other eight-bit CPUs. For a simple ex

ample, let's add a constant, NUMBER, to whatever variable

happens to be in a given location, (VAR), and then change the
variable:

LD A,(VAR) ;COPY VARIABLE INTO ACCUMULATOR

ADD A,NUMBER ;DO THE ADDITION

LD (VAR),A ;AND CHANGE THE VARIABLE AT LOCA

TION VAR

Further examples of such routines would take up too

much space, but there are good mathematical macros in most
Z80 libraries for anything you want to do. The Z80's double

(16-bit) registers make double-precision calculations a breeze.

Bit Manipulation

Most eight-bit computers have only one way to manipulate in-

dividual bits—by using logical instructions such as AND and

OR. The Z80 lets you use those, if you wish, but it also pro
vides three special bit-manipulation instructions: SET, RES (for
reset), and BIT (to test a bit). Each of these codes works the
same way:

159

Chapter 4

SET n,r ;SET BIT n OF REGISTER r

RES n,r ;CLEAR (RESET) BIT n OF REGISTER r

BIT n,r ;TEST BIT n OF REGISTER r—SET THE ZERO

; FLAG IF w=0 OR CLEAR IT IF n=l

Shift Operations

For those of you who like binary operations, the Z80 allows

you to perform shift and rotate functions on any register or

memory location.

Branching Instructions

The Z80's amazing repertoire of relative and absolute jumps

allows conditional and unconditional branching by testing sin

gle bits, individual flags, and value comparisons. You can test

a value either in a register or in memory for sign, carry, zero,

or parity/overflow, and then branch in ways that resemble

GOTO, IF, and THEN instructions in BASIC. Some common

examples:

CP LIMIT ;IS ACCUMULATOR GREATER THAN

LIMIT?

JR NC,NEXT ;NO CARRY FLAG SO GOTO NEXT

AND A ;SET ALL FLAGS TO TEST ACCUMULATOR

JP P,NEXT ;IF ACCUMULATOR IS POSITIVE GOTO

NEXT

CP KEY ;ELSE SEE IF A=KEY

JR Z,LAST ;YES, A=KEY, SO GOTO LAST

NEXT

LAST

Here's something to watch out for if you're a 6502 pro

grammer. With the 6502, you set the carry (SEC) before a sub-

tract-with-carry (SBC) operation. If the carry is still set after

the subtraction, it means the first number was larger than the

second. The Z80 is just the opposite: You clear the carry

before adding or subtracting. This also affects comparisons. In

the example above, the CP instruction compares the accumu

lator to the number called LIMIT. If there's no carry, the accu

mulator is larger than LIMIT. (On the 6502, the carry will be

set if LIMIT is smaller.)

160

H

n
CP/M

n

n

Loops

Looping with subroutines is facilitated in the Z80 by the DJNZ

instruction mentioned earlier. It's very easy to combine regis

ters B and C to use a 16-bit loop for longer executions, or to

design nested loops within loops using DJNZ.

Handling Arrays, Tables, and Indexing

The two extra index registers, plus easier access to all register
pairs, allow you to handle both indexed and unindexed arrays

neatly and quickly. One common style of array handling in

volves pointing HL to a memory location, and then loading

byte after byte from that location into DE for further process
ing. If you wish, register B can be used as a counter:

LD HL,(START) ;POINT HL TO START OF ARRAY

LD B,10 ;SET B AS A COUNTER FOR TEN

REPETITIONS

MORE LDE,(HL) ;LOW BYTE GOES INTO E
INC HL INCREMENT HL BY ONE, POINT TO

NEXT BYTE

LD D,(HL) ;HIGH BYTE INTO DE

INC HL ;POINT TO NEXT ELEMENT

CALL LOUT ;THIS MIGHT BE A ROUTINE TO OUT
PUT DE

;RETURN FROM ROUTINE, DECREASE

COUNTER,

;AND DO IT AGAIN UNTIL B=0

With indexing, a register is loaded with an offset value,

which is then added to the base of the array each time the

loop is repeated. This next example loads the accumulator

with every eighth element in an array until 20 entries have
been checked:

LD HL,(START) ;POINT HL TO START OF ARRAY

DJNZ MORE

LD B,20

LD DE,8

MORE ADD HL,DE

LD A,(HL)

CALL LOUT

DJNZ MORE

;COUNTER SET FOR 20 ENTRIES

;OFFSET - 8 DECIMAL

;OFFSET ADDED TO BASE,

STORED IN HL

;GET 8TH ELEMENT INTO

ACCUMULATOR

;AND DO SOMETHING TO IT

;RETURN AND DO IT ALL AGAIN

UNTIL B=0

n
161

u

Chapter 4

u
Block Move (LDIR) and Compare (CPIR)

These categories of instructions provide two of the more pow-

erful enhancements of the Z80 over the 8080. Logically, both 1_|
procedures are very simple and work the same way. You put the

size of a block (in bytes) in register pair BC and then point to , .

the beginning of the block with HL. If you're moving the block, j |
you put the destination starting address in register pair DE:

LD BC,128 ;SET COUNTER FOR 128 BYTES

LD DE,NEWADD DESTINATION TO START AT NEWADD

LD HL,OLDADD ;SOURCE STARTS AT OLDADD

LDIR ;MOVE IT!

If all you want to do is scan a block of data for a particu

lar byte, you can omit the destination address since the com

parison will be done in the accumulator:

LD BC,128 ;SET COUNTER FOR 128 BYTES

LD HL,START ;STARTING ADDRESS OF BLOCK IN HL

LD A,1AH ;PUT CONTROL-Z IN ACCUMULATOR

CPIR ;COMPARE HL WITH A AND INCREMENT

HL

;UNTIL EITHER AZ IS FOUND OR BC=0

Enhanced Input and Output Instructions

With the Z80, you can input or output data from either your

registers or RAM directly to and from your computer's various

ports. And you can do this by blocks. The relevant instructions

are IN, OUT, INI, IND, OUTI, OUTD, OTIR, and OTDR.

They're easy to use, simply by specifying the port in question:

IN A,(28H) ;GET A BYTE FROM PORT 28 HEX

OUT (C),B ;OUTPUT BYTE IN B VIA PORT NUMBER IN C

The block transfers (INIR, INID, OTIR, OTDR) work very

much like the block move and compare instructions described . ,

in the last section, reserving register C for the port address I)
and HL for a memory address.

Interrupt Processing i—•
Fast interrupts on the Z80 use the RST instruction plus the

destination address. For example, ^ \

RST 38H TRANSFERS CONTROL TO ADDRESS 38 HEX uJ
There will usually be a permanent jump instruction at the

destination which then sends control to a special routine, such |_J

162

u

n

R CP/M

as a graphics driver. You can also store an elaborate subpro-
<—* gram in the alternate register set and shift to it with an RST
Li jump.

P] Your Choice

Have you decided which instruction set and assembler you
want to use in your 128? If you've already bought the optional
Commodore development package, which includes MAC,
RMAC (Relocatable code MACro assembler), the SID
debugger, LINK loader, and LIB library manager, then you've
got a choice. If you include the Z80.LIB macro file, you can
use either (or both) instruction sets.

Two other fine assembler packages are Echelon's ZAS-
ZLINK and Microsoft's M80-L80 systems. Both are compatible
with the Intel-based ASM/MAC family, and ZAS can even as
semble code for the Hitachi HD64180, a new eight-bit CPU
that is upward-compatible with the Z80.

Regardless of your assembler selection, you should build
up a collection of good Z80 subroutines. The best Z80 library I
know of is SYSLIB3, a public domain version that may be on
a CP/M bulletin board near you. Echelon distributes SYSLIB3
in a set with other libraries and manuals for Z80 development
systems for under $100.

You really can't appreciate the speed and efficiency of
your Z80 until you start speaking its own language. Until

then, you'll just have to be content with running thousands of
excellent programs written by other people. Learning Z80 as
sembly language will give you even greater computing power
and will allow you to do exactly what you want to do with
your machine. To make it easier, here's a list of books and
software that will get you started.

H
Books

p-j Cortesi, David E. Dr. Dobb's Z80 Toolbox. M&T Publishing,
* I 1985.

Uses Intel instruction set; available on disks.

f? Leventhal, Lance A., and Winthrop Saville. Z80 Assembly Lan

guage Subroutines. Osborne/McGraw-Hill, 1983.

My favorite on Zilog mnemonics.

n
163

u

Chapter 4 j J

Miller, Alan. 8080/Z80 Assembly Language. Wiley, 1981.

A good introduction to both instruction sets. ^ .

Waite, Mitchell, and Robert Lafore. Soul of CP/M. Sams, 1983.

A classic on the Intel instruction set.

U
Software

Commodore 128 development package (MAC, RMAC, SID,

and so forth).
Commodore Business Machines, 1200 Wilson Dr., West

Chester, PA 19380.

Echelon development system utilities (Z-Tools), for either Intel

or Zilog programs.

Echelon, 885 N. San Antonio Rd., Los Altos, CA 94022.

Microsoft development system (M80, L80, and so on), for

either Intel or Zilog programs.

Microsoft, 10700 Northrup Way, Bellevue, WA 98004

SYSLIB3, by Richard Conn (in my opinion, the best collection

of Z80 routines).

Available in either Intel or Zilog mnemonics from Echelon

or on some bulletin boards.

LJ

164 , ,

u

n

H

Z A Hands-On
Introduction to

n 128 CP/M
Todd Heimarck

If you regard the 128's CP/M mode as a somewhat-forbidding new
territory, this article is for you. It explains some common CP/M

commands, with examples to try out, and concludes with a simple
application you can use.

If you own a Commodore 128, there's a good chance that you
previously owned a 64. You may regard 64 mode as "an old
friend" and 128 mode as a welcome upgrade—with the com
mands you already know, more memory, and some amazing
new keywords for making sound, music, graphics, and disk
operations easier.

You might see CP/M as the foreign mode of this three-
headed computer. There's a lot of software available, but how
do you use it? How do you load and run programs? How do
you format a disk and copy a program over? How does CP/M
work?

Booting CP/M

Getting into CP/M mode is relatively easy. Turn on your disk

drive and insert the CP/M disk that came with your 128.

Then turn on the television or monitor. Finally, power on the
128, which should check the disk drive for a boot sector, and

follow the instructions there. The boot sector on the CP/M

disk causes the 128 to give control over to the Z80 chip and

load CP/M. If you turn on the computer first, it will default to
128 mode. When 128 mode is active, you can type BOOT to

move into CP/M mode—assuming the disk drive is turned on

with the CP/M disk inside.

If booting doesn't seem to work, try turning the disk over.

165

/

u

Chapter 4 ___^__^_______ i |

U
The label that says System Disk, with a serial number, should

be facing up.

Before reading any further, boot CP/M, either by typing IJ
BOOT in 128 mode or by turning on the computer last. The

CP/M disk is formatted as a single-sided 1541 disk, so you

should be able to use either a 1541 or a 1571 (or compatible \ j
third-party drive). Pay attention to the 40/80 DISPLAY

switch. Working in 80 columns (with the button down and an

80-column monitor) is much easier, although 40 columns is

marginally acceptable.

Your First Command: DIR

If everything works right, you should see the BOOTING

CP/M message and some miscellaneous information about

what's being loaded. When everything's ready and running,

the A> prompt should appear. This means CP/M is waiting

for a command and disk drive A is the default drive. If you try

to run a program, it will load from drive A. If you own a sec

ond drive, which is device 9 in 64/128 mode, you can switch

to it by typing B: (the prompt should change to B>). A third

drive (device 10) would be drive C:, and so on. If you wanted

to leave drive A: as the default, but temporarily use a program

from B:, you would precede the program name with B:

(B:HELP, for example), and if you wanted a command to act

on the second drive, you would put the B: after the command

(DIR B:, for example).

Type DIR, an abbreviation for DIRectory, and the screen

will display the names of the files found on drive A. Equally

acceptable is DIR A:. If you're accustomed to pressing F3 in

128 mode to see the directory, you'll be pleasantly surprised

to find that F3 is preset to print DIR. It displays the directory

of the current drive. i j

Press F3 or type DIR to see the directory. The 80-column I—1
screen shows everything. But if you're using a television or a

40-column display, you'll see only part of the directory. Hold < j

down the CONTROL key and press the right-arrow key v_v

(above INST/DEL) to scroll the screen to the right. To move

back, hold CONTROL and the left-arrow key. Even when , >

you're working in 40 columns, the screen is 80 characters I—1
wide. You must scroll back and forth to see the whole thing.

u

u

CP/M

The constant shifting back and forth can become annoying

after a while, which is why the 80-column screen is preferable

in CP/M.

Ask for HELP

Leave the main CP/M disk in the drive and type HELP DIR,

and you'll be treated to an explanation of the DIR command.

The detailed HELP files can explain a lot when you're new to

CP/M. If you wish, enter .BUILT-IN or .WITHOPTIONS for

more details about DIR (note the period in front of the

subtopics). From the HELP> prompt, you can also type DIR

BUILT-IN or DIR WITHOPTIONS. (Be sure to place a space

between DIR and BUILT-IN; the space is a separator that di

vides the main topic and a subtopic.)

If you look at the directory, you'll see a file called

HELP.COM, which is the HELP command (or HELP pro

gram). Typing HELP starts the program running. You don't

have to type LOAD or RUN, just the name of a program that

ends with the .COM extension. When you enter HELP DIR,

you effectively tell CP/M to run the HELP program and act

on the input DIR. Some programs take optional information

like this; you might run across a sort program that requires the
following syntax:

A.SORT B:NAMES.ASC A.INORDER.ASQDIAMOND

This means use the SORT program from drive A:, make it

read the file NAMES.ASC from B:, and send the alphabetized

output to a file called INORDER.ASC on drive A:. The semi

colon and a password are sometimes required to run a pro

gram (type HELP SET for more about passwords).

A complete list of HELP topics is at your fingertips. Just
type ? or HELP at the HELP> prompt. Or type HELP HELP at

the A> prompt. Many of these topics have subordinate

subtopics and subtopics beneath subtopics. To print out the

various help files, turn on your printer and press CONTROL-

P. The files will not only print to the screen, but they'll also
be sent to the printer. You can also use the DEVICE.COM pro-
gram to set the console-out device (CONOUT:) to both screen

and printer. Type HELP DEVICE to find out more about this

program. It sometimes helps to add a space and [NOPAGE]

after the topic name to prevent the PRESS RETURN TO CON-
TINUE prompt.

167

Chapter 4

The Other Side of the Disk

Remove the CP/M disk, turn it over, and place it in your disk

drive. There's information on both sides, and you'll have to

flip the disk to read the other side. It's a good idea to press

CONTROL-C before typing DIR. CONTROL-C "logs out" a

disk; it tells the system that you're planning to switch disks. If

you don't CONTROL-C first, CP/M sometimes thinks you're

working with the same disk that was previously in the drive.

Type DIR (or press F3), and the directory of the other side

will list on the screen. Now try the unshifted CRSR-down key

(under the RETURN key), and DIR appears again. The CRSR-

down key, which is not the same as the gray down-arrow key

on the top row, allows you to repeat the last command—a

sort of do-it-again key.

While the flip-side of the disk is in the drive, try HELP

DIR again. The computer prints your command followed by a

question mark, because it doesn't know how to HELP you.

Built-in Versus Transient: Commands and Programs

The first side of the CP/M disk contains a file called

HELP.COM; the second side doesn't have this file. So the

HELP command works when the first side is in the 1541 or

1571, but it's not a legitimate command when the disk is

turned over.

HELP is a command (the .COM extension means COM-

mand), but it's on the disk; it's not part of the.operating system.

In 64 or 128 mode, there's a definite distinction between

files (programs or data on a disk) and commands (keywords

that cause the computer to do something). A 64 or 128 file is

on the disk, but a command is inside the computer. To run a

program from 64/128 mode, you must first use the LOAD or

DLOAD command (LOAD is built into the computer) to move

the program from disk into memory. When the program has

been transferred into the computer's RAM, you type RUN (an

other built-in command) to make the program start up. The
BASIC program, in turn, contains additional commands that

your 64 or 128 recognizes.

CP/M does things differently. Almost always, a command

is also a program. In CP/M, you can run the HELP program,

which could be called the HELP.COM command, or a BACK

GAMMON program (the BACKGAM.COM command), or the

168

n

CP/M

ALIEN INVADERS game (the ALINV.COM command), or the

WordStar word processor program (the WS.COM command). A

program is a disk-based command; in CP/M they're the same

thing.

In order for you to use a CP/M command, it must be on

the current disk and it must have a .COM extension. In 128

mode there are nearly 200 commands built in, but CP/M

mode offers only 6: DIR, DIRSYS, ERASE, RENAME, TYPE,

and USER. DIR prints the directory (remember to press CTRL-

P if you want it sent to the printer). DIRSYS tells you if there

are nonsystem files on the disk. ERASE scratches a file, and

RENAME changes the name of a file. TYPE prints out the con

tents of a data file; you can try to TYPE a .COM file, but you

won't see much that makes sense. USER changes the user

area, which allows you to break a disk into up to 16 separate

areas that act like subdirectories. These 6 built-in commands

are exceptions to the rule that commands are disk-based. All

commands other than these 6 are transient.

Transient commands are loaded from disk and executed,

and then they disappear. Transient commands take up mem

ory in the transient program area (TPA) while they're being

executed, but when they're done, they're gone.

Here's something that might be a little confusing: DIR is a

built-in command, but if you look at your CP/M disk on side

2, you'll see a DIR.COM file. This second DIR command is a

transient program with more features than the built-in DIR. If

you type DIR, CP/M uses the built-in command. But A:DIR

makes CP/M go to disk A: for the command.

If you'd like to look at another disk, type A:DIR E:. The

DIR command is read from disk A:, and then you're prompted

to insert another disk (press RETURN when the second disk is

in the drive).

Drive E: is a virtual drive, very useful when you own only

one disk drive. If you have a command on one disk and want

it to work on another disk, tell it to load from drive A:, but

operate on E:, and CP/M will prompt you to switch disks at

the appropriate time.

A Vulnerable Operating System

Like the disk-based commands, the entire CP/M operating

system is on a disk. If you spill a cup of coffee on your system

disk, you've lost CP/M. It's not part of your computer as 64

169

u
Chapter 4 , .

■ LJ

u
mode and 128 mode are. If you lose or ruin the disk, you no

longer have CP/M. . ,

Thus, it's very important to make a backup copy as soon] \
as possible, and then store the original CP/M disk in a very

safe place. Without the CP/M operating system, the Z80 chip ,

might as well be without sight, hearing, or speech—unable to ' |
read the keyboard, unable to recognize any peripherals, un

able to print to the screen. If the Z80 is the brain of the com

puter, CP/M is the eyes, ears, and mouth.

Before you do anything else, copy both sides of the CP/M

disk to a new double-sided disk if you own a 1571, or to two

single-sided disks if you have a 1541. Contrary to what the

System Guide says, you can't use COPYSYS to back up CP/M.

You must run a program called PIP.

First, you'll need the FORMAT.COM program. Use the

DIR command to find the FORMAT command on one side or

the other of your CP/M disk. If you don't want to look at the

whole directory, type DIR FORMAT.* to look for any files

called FORMAT.

When the proper disk is in the 1541 or 1571, type FOR

MAT (don't include the .COM extension; CP/M already

knows that it's a command). If you have two drives (with the

second set up as device 9), you can put the disk containing

FORMAT.COM in drive A (device 8) and type A:FORMAT B:,

which means use the FORMAT command from drive A: and

make it work on drive B:. If the format program is in drive B:

(device 9) and you want it to format the disk in drive A:, type

B:FORMAT A:, which means "take FORMAT from drive B:

and apply it to drive A:."

The FORMAT program can tell whether you've got a single-

or double-sided drive. If you're using a 1541, you'll have two

choices of disk format: C128 single-sided or C64 single-sided. (

Use the gray cursor keys to select one or the other, and j j
then press RETURN. The only reason you'd ever choose the

C64 option is if you're planning to use the disk with a 64 and

the discontinued CP/M 2.2 cartridge, or if you happen to M>
know someone with the 64 CP/M cartridge and want to send

him or her some files. Otherwise, you should always choose

the first (C128) option; it gives you more disk space. j j
1571 users have one more option: C128 double-sided. Al

ways choose this format for disks you'll be using yourself; it

gives you double the disk space. Of course, if you plan to give ^ j

CP/M

a CP/M disk to someone who owns a 1541, you would choose

one of the other options.

After formatting the disks, try to get a directory by press

ing F3 (or typing DIR). You should see the message NO FILE,

which means there's nothing on the disk (yet).

PIP Means Copy

Now that the disks are formatted, you can begin to make the

backup copies. Use DIR to find a program called PIP.COM,

and type PIP. You'll see an asterisk (*) prompt. To escape the

program, just press RETURN. But to use PIP, insert the source

disk that you're copying from, and type the following line

without any spaces:

e:=a:*.*

Knowing that drive E: is a virtual drive, you might be able

to figure out how this works. It tells PIP to copy to drive E:

everything from drive A: (the destination drive is always listed

first). The asterisks are wildcards meaning every filename and

every extension—in other words, everything on the disk—will

be copied to drive E:. You copy a single file like DIR by typing

PIP E:=A:DIR.COM

You'll be prompted to switch disks several times. Remem

ber that the source disk is drive A: and the destination disk is

drive E:. Press RETURN each time you swap disks. It will take

some time if you're working with a single drive.

If you have two drives, you can PIP a lot faster by typing

PIP B:=A:V

(PIP to B: everything from A:). You won't have to change

disks, which saves a lot of time.

r-1 After copying the first side of the CP/M disk, flip it over

'.-J and copy everything on the second side. When you're done,
store the master disk in a safe place.

f—\ PIP is more than just a copy program; it allows you to

'_> read from one device and write to another. You can PIP a disk

file to the printer, PIP from a modem to the screen, or PIP

(*-i from the keyboard to a disk file.

n
171

Chapter 4 , ,

u
An Introduction to Submit Files

In 64 mode, a common series of commands for loading a ma- , ,

chine language program would go something like this: ! f

LOAD "UTILITY",8,1

NEW (1

SYS 49152 LJ

You must type the three commands on separate lines, and

ydu generally have to wait for the computer to finish execut

ing the previous command before you type the next one.

Now imagine using a word processor to type the three

lines and then creating a disk data file that contains these

commands. If you could somehow tell the computer to execute

all three commands, you wouldn't have to type each line. You'd

just type something like EXECUTE "BUNCHOFCOMMANDS",

and the three lines would be read from disk and executed, one

by one. Many computers have this ability to do batch process

ing, to perform a series of commands stored in a file.

And this is exactly what the CP/M SUBMIT program

does. Before going any further, you might want to use the

HELP program to read more about SUBMIT and the editor

program called ED (type HELP SUBMIT or HELP ED).

Creating a PROFILE Program

We're now going to create a special kind of submit file named

PROFILE, which runs immediately after CP/M is booted (if

you've used an IBM, CP/M's PROFILE.SUB can be compared

to an AUTOEXEC.BAT file on an IBM).

Format a disk and copy (PIP) the following files to it:

CPM+.SYS

CCP.COM

ED.COM j ,

SUBMIT.COM LJ
DIR.COM

At the A> prompt, type ED PROFILE.SUB, which means , .

edit a file called PROFILE.SUB. The ED.COM program will LJ
load and then print NEW FILE, because there's currently no

file called PROFILE.SUB on the disk. A new file will be ere- , -,

ated. Enter the following lines at the given prompts: I—>

:*i

1 a:dir{CONTROL-Z}) (

:*e ^-1

u

n

n CP/M

The initial asterisk (*) prompt indicates that ED is ready

jB—> for a command. Typing i means insert a line and, since it's a
(\ new file, the first line is number one, which is why a 1 ap-

~" pears on the next line. The text we're adding is a:dir, because

, we're going to make the PROFILE file automatically run the

IJ DIR.COM program. Don't press RETURN (if you do, it will go
on to line 2, which would be okay if we wanted a second

command in the file, but we don't). {CONTROL-Z} marks the

end of the file. The asterisk acts as a reminder that we're back

at the command level, where typing e means "exit and write
the file to disk."

When you return to the A> prompt, type DIR to verify

that a file called PROFILE.SUB has been created. If you'd like
to read this file, enter the following line (remember, TYPE is
one of the six built-in commands):

type profile.sub

Now you're ready to test it. Hold down the CONTROL

key and press ENTER (on the numeric keypad). CONTROL-
ENTER works a lot like RUN/STOP-RESTORE in 64 or 128

mode. It forces CP/M to reboot. After CP/M loads, it will find

the PROFILE.SUB file (which requires SUBMIT.COM to work).
The text in the file (A:DIR) is printed on the screen, and the

DIR.COM program runs. An alphabetized directory of the disk
is then printed on the screen.

To run the commands in PROFILE again, type SUBMIT

PROFILE. This is just a simple example; you could add several

more commands to the PROFILE.SUB file. Or you could make

PROFILE automatically load and run a game or other pro

gram. If you decide to start time-stamping your files, you

could create a PROFILE.SUB routine that asks you for the date
and time when you first turn on CP/M. For more about time-

j—i stamps, see the HELP files on INITDIR, SET, and DATE.

!_! If you'd like to get rid of the ED file, type ERASE
ED.COM. You can shorten ERASE to ERA.

n

— Experimenting with CP/M

^ There's a lot more you can do with CP/M. Many languages
j_ j are available, including BASIC, C, COBOL, Forth, Turbo Pas

cal, and many others. If you plan to write programs, you'll
, , need a language (CP/M is an operating system, not a lan-
; j guage). To write actual .COM files such as we've been using

173

u
Chapter 4

requires either a Z80 machine language assembler or a com

piler package for the language you're using.

In addition, there are a lot of good public domain pro- | j
grams available, if you can find a local CP/M user group

(usually Kaypro or Osborne) or a local bulletin board. For

more about public domain programs, see the following article, jj
"CP/M Public Domain Software." To use a modem to down

load programs, you'll need the December 6, 1985 (or later)

version of CP/M, which is now being shipped with 128s. If

your version date is earlier (June or August, 1985), you can

download the upgrade program in 64 or 128 mode, transfer it

from a Commodore disk to a CP/M disk, and then use this

program to modify CPM+.SYS. (Instructions for upgrading to

the new version of CP/M are available on CompuServe and

QuantumLink.)

u

u

LJ

CP/M Public Domain

Software
James Adams

If you're not currently using CP/M on your 128, there's a whole

new world of software waiting for you—and a lot of it is available

at little or no cost

One evening last fall, I turned on my Commodore 128 and di

aled the bulletin board sponsored by my user group. The pub

lic messages had been scrolling past, when suddenly there was

one that piqued my curiosity: the latest of many messages

concerning the availability of the mysterious CP/M.

TO: ALL

SUBJECT: CP/M on 128

HELP, I REALLY LIKE MY 128, BUT WHERE CAN I GET SOFT

WARE FOR THE CP/M MODE? PLEASE LEAVE E-MAIL IF

YOU CAN HELP!

One of the attractive features of the 128 is its compatibil

ity with the 64 and the large base of existing 64 software. An

other selling point is 128 mode with its large and expandable

memory, the fast disk drive, and a new BASIC with a wealth

of new commands. But probably only a minority of 128 buy
ers were charmed by the 128's compatibility with CP/M. Liv

ing on the trailing edge of technology (CP/M is anything but •

new) has its advantages, however. There are thousands of

J—| CP/M programs, ready to run and waiting for the 128 user.

Free Programs

{___] For those readers who are first-time users of computers, public
domain software means programs that you can acquire at no
cost—you don't pay anything. Here's how it works: Whenever

] \ you write something original, a poem, a song, a story, or a
computer program, you own the copyright to that original

work. This is true whether or not you actually register the
\ I copyright with the Library of Congress. If you then sell your

n 175

Chapter 4

creation to a publishing company, either you or the publisher

will then own the copyright (the right to make copies), and

you're paid a royalty fee based on the number of sales of your

work. After a certain period of time, the copyright expires and

the artistic work passes into the public domain. All songs writ

ten before 1900, for example, are in the public domain; any

one can perform them without paying a fee to the composer.

So if you write a program, you own the copyright to it,

unless you choose to voluntarily put it in the public domain,

meaning that anybody can use it and distribute copies. User

groups are often an excellent source of public domain software.

Sometimes you'll pay a few dollars for postage, the cost

of the disk, or the time it takes to copy the program. And, of

course, if you download from a bulletin board system that

qualifies as a long-distance call, you'll pay the usual long

distance charges.

Commodore computer owners are used to having a large

base of public domain software as well as reasonably priced

commercial programs from which to choose. Many Commo

dore business application programs are under $50; only a few

top out above $100. The cost of a good CP/M program may

run as much as four times more than its top-of-the-line Com

modore counterpart. Commodore owners may balk at the

thought of paying these prices for their software. Fortunately,

there's an alternative for the new CP/M user: Public domain

and freeware or shareware programs are abundant.

Freeware and shareware are terms for copyrighted software

that the author distributes free of charge. Frequently, a notice

is included with the program or documentation that if you en

joy the program you might send a small donation to the au

thor. Often, you'll receive more detailed instructions or a

chance to find out about bugs or upgrades when you send the
money. Freeware and shareware are copyrighted software for |^J
which you don't have to pay if you don't want to.

\ i

Kaypro and Osborne Programs LJ

When the 128 was first announced, reviewers noted that the
new 1571 disk drive would be able to read disks formatted for , j
several different computers. These included the Kaypro and LJ
Osborne computers. There's a lot of public domain software
available for both of these computers. Find software for them, ^ >
and your 128 is in business. It should be noted that the 1571 i—f

u

CP/M

disk drive is a must because of CP/M's unique DOS format; a
j—| 1541 won't read Kaypro or Osborne disks. An 80-column dis

play monitor, like the Commodore 1902, is also a practical ne
cessity. CP/M uses 80-column display; while the 128 has the

n ability to run your programs with a 40-column screen using
the window feature and right or left scrolling, you won't want
to do this for very long.

There are several ways to get inexpensive or free CP/M
programs. Seek out computer stores in your area which carry

Kaypro equipment. Kaypro is an active company, and there's a
lot of support for their machines. Keep your eyes open for

Kaypro literature. Books and magazines may provide valuable
hints, tips, CP/M information, and software advertisements.

If you live in or near a larger city, you'll probably be close
to a Kaypro user group. Many of these groups have a public
domain library which should be a wonderful source of mate

rial. They may also have literature available or sponsor lec
tures on CP/M. Also, a FOG (First Osborne Group) chapter

may be in your area. FOG is a user group which began with
the Osborne 1 computer in 1981. The group has expanded and
now boasts a very loyal following of over 15,000 members
who use or are interested in CP/M. They have a large library,
and disks are available by mail.

While looking through CP/M-specific magazines, you'll
come across many advertisements for public domain software

collections. Many of these programs will run as is on your
128. Some of the public domain material is excellent and often
supported by well-written, yet inexpensive books.

If several disk formats are offered, choose Osborne double-
density (Osborne DD). Your second choice should be Kaypro
II or Kaypro IV. If it's necessary to "install" the software and

r—. you're given a choice of terminal types, it's usually safe to say
! I you have either an ADM-3A or an ADM-31.

p| Other Sources of Public Domain Software

Here are a couple of sources of public domain software that
you'll want to contact:

Peopletalk Associates has put together a series of public
domain disks formatted for the Kaypro. Utilities, useful busi
ness programs, games, and lots of documentation files are in

cluded. The Free Software Handbook is a valuable companion to

177

Chapter 4

the disks, providing documentation and advice on how to use

the programs. i i

Micro Cornucopia also has several public domain disks— !—f
some with the dedicated programmer in mind.

Highly Recommended

As you build your CP/M library, you might want to consider

some public domain titles that I recommend:

VDO. An acronym for Video Display Oriented text editor,

this is a very basic word processing program that takes up

only 8K. It could be a good educational tool for getting the

feel of CP/M commands. The commands are similar to those

used in WordStar (a commercial word processing program for

CP/M).
PC FILE. This is a freeware program. If you like it, you

can send the author a fee. Distribution is encouraged. This

program will handle many of your database needs.
Adventure. This classic down-in-the-cave adventure game

will access 192K at one time or another. The 500+ point ver

sion will keep you going for years as you discover new twists.

The author's humor is refreshing in frustrating situations. Ad

venture is available in the Peopletalk series.

NSWP. The acronym stands for New Sweep. It may turn

out to be the most valuable utility you'll ever own for your
CP/M system. With a single program of only UK, it replaces

other utilities that would normally take up 100K of space.
NSWP lets you copy, rename, delete, view, print, alphabetize,

count, and size up your files. Put a copy on every disk you
own; you'll use it in every session at your computer. Several
versions of this program are in the public domain; I prefer
NSWP.205. NSWP.207 offers the disk label, while NSWP.208 ^ (
offers the directory listing in alphabetical order. j j

D. This directory program is almost as fast as the DIR
command. D will list the contents of your directory along with (
the number of bytes used for each file and a brief summary of lJ
your used and unused disk space. When you begin to work
with CP/M's "user areas," D can also give you directories of
the hidden areas on your disk with a single command.

Dirf. CP/M has an abundance of directory programs.

This one will allow you to add a short description to each di
rectory entry—a feature that may be indispensable if you find

178

CP/M

yourself creating a lot of text files with a program such as VDO.

NULU. Short for New Library Utility, this utility is very

similar to NSWP. It's used with special files called libraries. Li

braries may be new even if you're a veteran Commodore user,

so you may want to explore this form of disk management.

Handy System 200. This series of files is excellent if you

have a computer on your desk at work. It's a calendar, memo

pad, appointment book, phone book, decision support system,
and more.

A Cautionary Tale

There are a few things to watch for with CP/M software. Your

128, running in CP/M mode, may do strange things, depend

ing on the setup of the computer your software was originally

configured to run on. The first version of VDO that I tried was

patched for a 1984 Kaypro. It barely ran on my 128. Luckily,

VDO and many other CP/M programs can be patched or con

figured for different machines and printers. I was able to get a

version which had been patched for a 1983 Kaypro. This ver

sion was much better, but still a bit erratic on the 128. Later, I

tried many of the two dozen patches for other computers. Sev

eral of these worked very well. Always try to get the most ge

neric version available. Try to avoid versions that use graphics
or unique screen displays.

Utility programs seem to be the most reliable on the 128.
Adventure, NSWP, D, Dirf, and NULU all run as is on my 128.

Handy System 200 (or Handy Version #2) still has some prob
lems clearing the screen. To my surprise, PC File, originally for
the Osborne 1, does not run on a friend's 1984 Kaypro, but
runs perfectly on my 128.

Programs which require a bit of explanation usually come
with a "doc" file which can be viewed easily with an NSWP-
type program. In a pinch, you can use the built-in TYPE com

mand. Many programs will contain options that will allow you
to configure the program to your individual likes and dislikes.
Be sure to copy all of the files associated with a program. You
may need several files just to run a single program.

In addition to the Free Software Handbook from Peopletalk
Associates, I should also mention one other helpful book: Free
Software, by Tony Bove, Cheryl Rhodes, and Kelly Smith,

n

u
Chapter 4

—=—^—= u

available at many computer stores. It contains a lot of CP/M-

specific information about public domain programs. The first

half of the book discusses modems, communications pro- I I

grams, and downloading programs from various user groups.

The rest of the book consists of valuable information about

using the public domain programs you've obtained. j |

Where to Write

Here are a few contacts you may wish to make to start build

ing your CP/M library (as with most publishing companies,

you're more likely to get a reply if you include a self-addressed

stamped envelope):

FOG

P.O. Box 3474

Daly City, CA 94015

Peter C. Hawxhurst

(author of Handy System 200)

705 Bayside Court

Wheeling, IL 60090

Micro Cornucopia

P.O. Box 233

Bend, OR 97709

Peopletalk Associates

P.O. Box 863652

Piano, TX 75086

u

u

u

180

u

*- r**&-'.'-

^

<:-f&mmm

\ ? >t - - V - - < >s^ V

"40^W'^$§^

n

r, p

\ '-4- i V

SPRDEF Enhancer
Terry Roper

"SPRDEF Enhancer" upgrades the 128's built-in sprite editor by

adding 11 new commands. Included are vertical and horizontal
scrolls and flips as well as facilities for changing background, sprite,
and multicolors from within sprite-definition mode. A reverse func
tion is also provided.

Written in machine language, "SPRDEF Enhancer" runs in

BANK 15 RAM from $18C1 to $1BFF, inclusive. To get started,

enter the program listing and save your work. Refer to Appen

dix C for instructions on entering machine language programs.

Thanks to the BLOAD command, it is not necessary to
load your programs in any particular order. Either BLOAD

"ENHANCER" and then load your own programs, or vice

versa, or load no other programs. In any case, type SYS 6337

and press RETURN. When you are ready to begin editing,

type SPRDEF and press RETURN. You will see the normal

editor screen. Answer the SPRITE NUMBER? prompt. SPRDEF
Enhancer is now activated.

Editing Sprites

At the upper right corner of the screen, you'll see a sprite en
closed in a box. The color within this box is the same as the
background color. Beneath the box, the status area appears:

HIRES B C

FUNC 13 5 7

H KEY# 12 3 4
MULTI B Ml C M2

rn Depending on whether the sprite is in high resolution or
r i multicolor, the lines that contain the word HIRES or MULTI

and its corresponding row of colors will be masked. Press and
hold the M key for a few seconds. Observe how the status

1) area changes. Press M until MULTI B Ml C M2 appears.
Above this line you'll see a parallel layout of keys. The top

(—? row contains the unshifted function keys. The next row con-

, \ tains the number keys 1-4. Below the number keys is a row of

n

Chapter 5

colors. The letters on the bottom line have these meanings:

Code Affected Register

B Background color $D021

Ml Sprite multicolor 1 $D025

C Unique sprite color $D027 + sprite number (0-7)

M2 Sprite multicolor 2 $D026 I

To change a color, pick a code. Then press the function

key indicated by the number in the corresponding column.

Similarly, set pixels by pressing the appropriate number keys.

Now practice a little in hi-res mode. Note that the number

keys set points exactly the same way as the regular editor.

They are displayed only as an aid. In fact, all SPRDEF func

tions work exactly as they did before with the exception of the

top row of cursor keys. Use these keys to scroll the sprite.

The last three commands are

(main keyboard)

Left arrow Horizontal flip

Up arrow Vertical flip

Asterisk Reverse

These functions are self-explanatory. You might notice, while

scrolling horizontally in multicolor mode, that it is faster than

you might expect. This is because pairs of bits, not single bits,

are scrolled. For the same reason, it is important to perform

operations on sprites in the same mode in which they were

drawn. Otherwise, you can really botch up a pattern.

All SPRDEF Enhancer commands are disengaged at

prompts which require number input. When you exit the edi
tor, press RUN/STOP-RESTORE to reactivate the function

and top cursor keys.

SPRDEF Enhancer
See instructions in article, and read Appendix C, "MIX," before typing in the following pro- { ^

gram listings. [;

18C1:A2 CC A0 18 8E 2A 03 8C BB

18C9:2B 03 60 68 48 C9 5F F0 FB ^ }

18D1:03 4C EB EE AD 4C 2D D0 CC j j
18D9:2C 78 A2 57 A0 IB 8E 3C D2

18E1:03 8C 3D 03 AD E7 IF 85 5F

18E9:68 29 F0 85 66 A5 68 0A B3 [I
18F1:0A 0A 0A 45 66 85 67 20 77 ^
18F9:30 IB 20 Al 1A A9 00 8D 2C

1901:00 FF 58 18 60 20 EB EE 0A) l

1909:85 65 A2 0A DD DD IB F0 D9 I—i

u

Programming

n

1911:05 CA 10 P8 30 2F A5 4B DE

1919 :A4 4C 85 63 84 64 A9 19 B9

1921:48 A9 33 48 BD EA IB 8D 2A

1929 :E8 IB BD F5 IB 8D E9 IB AB

1931:6C E8 IB A6 63 A4 64 86 9E

1939:4B 84 4C 20 Dl 75 20 4A AC

1941:76 A9 00 85 65 20 Al 1A 7A

1949:A5 65 18 60 A2 14 A0 02 59

1951:B1 4B 99 FA 00 88 10 F8 4D

1959:A5 FC 4A 66 FA 66 FB 66 ID

1961:FC 2C FA 12 10 09 A5 FC 8A

1969:4A 66 FA 66 FB 66 FC C8 5C

1971:B9 FA 00 91 4B C0 02 D0 8A

1979:F6 E6 4B E6 4B E6 4B CA 10

1981:10 CC 60 A2 14 A0 02 Bl FD

1989:4B 99 FA 00 88 10 F8 A5 43

1991 :FA 0A 26 FC 26 FB 26 FA C0

1999:2C FA 12 10 09 A5 FA 0A C2

19A1:26 FC 26 FB 26 FA C8 B9 13

19A9:FA 00 91 4B C0 02 D0 F6 E6

19B1:E6 4B E6 4B E6 4B CA 10 C5

19B9:CC 60 A0 3E Bl 4B 99 BE 0F

19C1:00 88 C0 3B D0 F6 Bl 4B F2

19C9:C8 C8 C8 91 4B 88 88 88 DA

19D1:88 10 F3 C8 B9 FA 00 91 A2

19D9:4B C0 02 D0 F6 60 A0 00 A9

19E1:B1 4B 99 FA 00 C8 C0 03 4A

19E9:D0 F6 Bl 4B 88 88 88 91 36

19F1:4B C8 C8 C8 C8 C0 3F D0 3A

19F9:F1 88 B9 BE 00 91 4B C0 08

1A01:3C D0 F6 60 A9 14 85 4E 63

1A09:A0 02 Bl 4B 48 88 10 FA 78

1A11:A0 02 68 2C FA 12 30 0A 70
1A19:A2 07 4A 26 4D CA 10 FA BC

1A21:30 0D A2 03 4A 08 4A 26 62

1A29:4D 28 26 4D CA 10 F5 A5 CF

1A31:4D 91 4B 88 10 DC E6 4B 6F

1A39:E6 4B E6 4B C6 4E 10 C8 9D

1A41:60 18 A5 4B 69 3C 85 4D A9
1A49:A5 4C 69 00 85 4E A2 09 44

1A51:A0 00 Bl 4B 48 Bl 4D 91 F5
1A59:4B 68 91 4D C8 C0 03 D0 74

1A61:F1 E6 4B E6 4B E6 4B C6 73

1A69:4D C6 4D C6 4D CA 10 E0 A2

1A71:60 A0 3E A9 FF 51 4B 91 CD
1A79:4B 88 10 F7 60 EE 21 D0 C8

1A81:60 2C FA 12 30 12 AE FC 95
1A89:12 18 BD 27 D0 69 01 9D C2

1A91:27 D0 60 2C FA 12 30 EE CB

n
185

Chapter 5

1A99:EE 25 D0 60 EE 26 D0 60 C0

1AA1:2C FA 12 08 08 08 AD 21 4A

1AA9:D0 29 0F 05 66 CD 19 1C 7B

1AB1:F0 21 A2 19 A0 1C 86 4D 5C

1AB9:84 4E A2 0A A0 0E 91 4D 66

1AC1:88 10 FB 48 18 A5 4D 69 9D

1AC9:28 85 4D 90 02 E6 4E 68 D6

1AD1:CA 10 E9 AA A4 68 28 10 7E

1AD9:03 A6 68 A8 8E 27 IE 8C AA

1AE1:9F IE AE FC 12 BD 27 D0 B9

1AE9:29 0F 05 66 AA A4 68 28 5E

1AF1:10 03 A6 68 A8 8E 29 IE 3A

1AF9:8C A4 IE A6 68 A4 68 28 9A

1B01:10 10 AD 25 D0 29 0F 05 99

1B09:66 AA AD 26 D0 29 0F 05 83

1B11:66 A8 8E Al IE 8C A6 IE IF

1B19:A2 0E A5 68 2C FA 12 10 E0

1B21:02 45 67 9D F9 ID 45 67 A6

1B29:9D Cl IE CA 10 EC 60 A2 A6

1B31:4C A0 IB 86 4D 84 4E A2 3D

1B39:0A A0 19 Bl 4D 20 DB 68 E5

1B41:C8 C0 28 D0 F6 18 A5 4D CE

1B49:69 0F 85 4D 90 02 E6 4E 26
1B51:E8 E0 12 D0 E4 60 C0 53 01

1B59:90 07 C0 57 B0 03 B9 8A B6
1B61UB 4C B7 C6 A2 A2 A2 A2 23

1B69:A2 A2 A2 A2 A2 A2 A2 A2 9F

1B71:A2 A2 A2 B8 B8 B8 B8 B8 54

1B79:B8 B8 B8 B8 B8 B8 B8 B8 AF

1B81:B8 B8 48 49 52 45 53 20 4E

1B89:42 20 43 20 20 20 20 20 35

1B91:20 20 20 20 20 20 20 20 C7

1B99:20 20 20 20 20 20 20 20 CF

1BA1:20 46 55 4E 43 20 31 20 26

1BA9:33 20 20 35 20 37 20 20 17

1BB1:4B 45 59 23 20 31 20 32 74

1BB9:20 20 33 20 34 20 20 20 F2
1BC1:20 20 20 20 20 20 20 20 F7 » A

1BC9:20 20 20 20 20 4D 55 4C 4B LJ
1BD1:54 49 20 42 20 4D 31 20 65

1BD9:43 20 4D 32 89 8A 8B 8C A0
1BE1:85 86 87 88 5F 5E 2A 00 BE i_j
1BE9:00 DF BB 84 4D 7E 82 94 D5
1BF1:9D 05 42 72 19 19 19 19 20
1BF9:1A 1A 1A 1A 1A 1A 1A 00 16 ^j

186

LJ

U

Disk Commands
on the 128
Todd Heimarck

Whether you have a 1541 disk drive or a new 1571, this article
will show you how to use the 128's powerful disk commands. A
number of useful hints and shortcuts are included.

The Commodore 128's BASIC 7.0 is a vast improvement over

previous Commodore BASICs. The computer has its share of

flashy new commands, the ones that give you POKEless

sprites, easy-to-program music and sound effects, and high-

resolution graphics. The glamour of these powerful keywords

can easily bewitch a new 128 owner.

Disk commands, on the other hand, are just disk com

mands. They're mundane. But if you learn about the new

ways of loading, saving, and handling files, you'll save a lot of

time, time that could be spent programming—or playing with

sprites, music, and hi-res graphics.

We'll concentrate on using the 128 disk commands, most

of which work equally well on the 1541 disk drive or the new
1571. But we'll also touch briefly on a few of the new 1571
DOS commands.

Loading BASIC Programs

As in BASIC 2.0, the LOAD command defaults to tape, so you
nmust include the device number when loading from disk. But

LOAD should never be necessary when DLOAD and RUN are
available.

i-i DLOAD is a new command; the D stands for disk, and it
/ 1 defaults to drive 0, device 8. If you own a dual drive, you can

add a comma and either DO or Dl to pick a drive for loading.
^ Unfortunately, 128 owners may never see the 1572 dual drive.
, \ As of this writing, Commodore has apparently decided not to

manufacture it. You can still add single drives to your system,
^ though. To access a second or third drive, follow DLOAD with

n

Chapter 5

A Dozen Ways to Load

If you want to load a BASIC program, you have four

choices:

1. LOAD"filename",8

2. DLOAD"filename"

3. RUN"filename"

4. Press SHIFT-RUN/STOP

For machine language or binary files:

5. LOAD7'filename",8,1

6. B\£>AWfilename"

7. BUOAD"filename", Bbank, Faddress

8. BOOT'filename"

From within the machine language monitor:

9. L"filename",8

10. \J'filename",8,address

Finally, there are two ways to start up autoboot

programs:

11. BOOT

12. Turn on or reset the computer with an autoboot disk

in the drive

a comma and U9, U10, and so forth. You can select the cur

rent device number of the 1571 by flipping switches on the
back. To change to device 9, for example, make sure it's
turned off and flip down the switch nearest the cords. This is

much simpler than what's required to modify a 1541—open

ing it up and cutting a solder trace.

The next command on the list, RUN, has been modified.

By itself, it still runs a program, but if you add a program

name, the program loads and runs. As with DLOAD and most
other disk commands, you can specify a drive number with D
or a device number with U after the program name.

In 64 mode, pressing SHIFT-RUN/STOP still loads and

runs the first program from tape. But in 128 mode, this com

bination loads and runs the first program on disk.

188

LJ

U

LJ

U

u

Programming

BLOADing Binary Files

rmmi A binary file is most often a machine language program, al-

r I though there are several other possibilities: sprite shapes, re
defined characters, function-key definitions, hi-res pictures, to

p. name just a few. With binary files it's usually important that

! ! they load into a specific area of memory.
If you're familiar with the VIC or 64, you'll recognize

LOAD"filename",8,1- It loads a file back into the part of mem
ory from which it was saved.

BLOAD does the same thing, but you don't have to in

clude the 8 and the 1. BLOAD can also send a file to a differ

ent section of memory if you append a B (Bank number) and a

P (Position). With an unexpanded 128, the only two choices

for the bank are 0 and 1. BASIC programs are stored in bank

0, variables in bank 1. The position can be any memory loca

tion in the range 0-65535.

BOOT'filename" loads a machine language program and

executes a SYS to the starting address. It's the machine lan

guage equivalent of RUN"filename" for BASIC programs.

You can also load from within the machine language

monitor with the L command. After the filename, you must

include a comma and an 8 (for device 8, the disk drive). If you
wish to relocate the program to a different section of memory,

you can include the new address as well.

Autoboot Sectors

When you first turn on a 128, the computer checks to see

whether a disk drive is attached and turned on. If so, it tries to
read track 1, sector 0, into memory (the 256 bytes of the boot

sector are read into locations $0B00-$0BFF). If the letters CBM

are found at the beginning of that disk sector, the autoboot se-
J [quence begins. You can see how this works by following this

power-on sequence:

1. Turn on your TV/monitor and disk drive, but not the 128.

; (2. Insert the CP/M disk that came with the 128 into the
1541/1571.

^ 3. Turn on the 128.

' t The CP/M disk has an autoboot sector; it's designed to

load and run CP/M automatically. An alternative to resetting
i—i the computer is to enter BOOT without a filename.

189

Chapter 5

Autoboot sectors aren't limited to CP/M. It's possible to

create disks that automatically load and run a BASIC or an ML

program. To create such a disk, load and run the AUTOBOOT M

MAKER program on the disk that comes with the 1571.

The first three bytes of track 1, sector 0 (the ASCII values

of the characters C, B, and M), are followed by the low byte of j j

the load address, the high byte, the bank number for the load,

and the number of sequential disk sectors to be loaded. These

four bytes aren't important when you're autobooting BASIC

programs, so they should usually be zeros. Starting at the

eighth byte, you put the disk name (for the BOOTING mes

sage) and end with a zero. Next is the name of the program

you want to load, again terminated by a zero. Finally, there's

machine language which will be called after the load.

Chained Programs

Commodore computers have always had problems with chain

ing, the process ofloading and running one program from

within another. The difficulties stemmed from the way vari

ables were stored in memory in previous Commodores: The

beginning of variable storage immediately followed the end of

the BASIC program.

Chaining is a snap on the 128. Since the program is kept

separate from variables, you don't need to worry about pro

gram length. To load and run another program, just follow

these rules:

1. If you want to keep the variables from the first program,

use DLOAD. The second program loads and runs. AH vari

able values are retained.

2. If you want to clear the variables, use RUN"filename",

where filename is the name of the second program.

3. To load a binary file, use either BLOAD"filename" or j (

BOOT'filename". l-J

A Shortcut [J
There's a quick and convenient way to DLOAD or RUN a pro

gram if you save it a certain way. Include this line at the be- (

ginning of the program you're working on: ({

1 REM DSAVE "01PROGRAM-

NAME {SHIFT-SPACE}: j ,

190

u

Programming

The {SHIFT-SPACE} means to hold down SHIFT and

press the space bar. Play with the spacing of the line so that

l\ pressing TAB once puts the cursor in front of DSAVE and

pressing it twice lands the cursor on the 1 in front of the pro-

r^ gram name. When you want to do a safety save of an incom-

I) plete program, LIST 1 and TAB twice. Change version number

01 to 02, and press RETURN. Now cursor up to the beginning

of the line and TAB once. Tap the ESC key (next to TAB) and

then press P. This will erase everything from the cursor to the

beginning of the line. (ESC-Q will erase everything to the end

of a line—you can remember these two ESC commands if you

"mind your p's and q's." Press RETURN, and your program is

saved to disk with the new version number.

Later, when you come back to work on the program,

press F3 to see the directory (if it goes by too fast, the Com

modore key slows it down; the NO SCROLL key temporarily

pauses it). When you see the latest version, press RUN/STOP.

Cursor up to the program name and type DLOAD or RUN.

Better yet, press F2 (DLOAD) or F6 (RUN). The SHIFT-SPACE

in line 1 puts a quotation mark between the program name

and the colon. Without the colon, DLOAD or RUN will inter

pret PRG as part of the command.

Another advantage to including the DSAVE on line 1 is

that, when you send a program listing to your printer, the ver

sion number is right there at the top of the page.

Saving

Here are a few ways to save programs:

1. SAVE"filename",8

2. DSAVK'filename"

3. BSAVE"filename", Bbank, Vstart TO Vend

) (4. From the ML monitor: S''filename",8, start, end+1

The first two, SAVE and DSAVE, are just ordinary ways to

^ save ordinary BASIC programs. BSAVE and the monitor save

) (are a little more interesting. They save a section of memory as

a binary file. Note that when you're in the monitor, you have

rmm] to add 1 to the ending address of the memory being saved.

I \ You might think these two methods would be most useful

for saving ML programs. They are good for that, of course, but

_ there are also several areas of memory you may want to
i I BSAVE for use in a BASIC program:

, 191

u

Chapter 5 ,

$OEOO-$OFFF Sprite definitions

$1000-$10FF Ten function-key definitions

$1COO-$3FFF Hi-res screen) (

The addresses are listed in hexadecimal. To convert to

decimal, use the DEC function, PRINT DEC("0E00"), for (.

example. [|
If you create several sprites with SPRDEF for a game, you

can BSAVE the sprite area to disk. In the game you would

then BLOAD them back into memory. This works a lot faster

than POKEing them into memory or reading a sequential file,

especially if you're using a 1571.

In case you're wondering about the reference above to ten

function keys, yes, there are ten redefinable keys. There are

the eight you can define with the KEY statement (labeled

F1-F8), but also SHIFT-RUN/STOP and HELP. If you go into

the monitor and do a memory display of 1000-10FF, you can

see the ten key definitions. The first ten bytes in this area list

the length of each function key. The rest are the actual charac

ters that print when you press one of them. The number 13 is

ASCII for a carriage return, the equivalent of pressing the RE

TURN key. After redefining the keys, you can BSAVE their new

values. To retrieve the previous key definitions, use BLOAD.

Handling Sequential Files

DOPEN and DCLOSE are new ways of establishing and

breaking connections with a sequential file. There's not much

to say about them; if you already know how to OPEN and

CLOSE sequential files, you'll catch on quickly. The difference

in syntax is illustrated below:

OPEN 3fiA"filename,S,W

DOPEN#3,"filename",W

Note that DOPEN doesn't need as much information as j j
OPEN. OPEN is a general-purpose command. It can set up a

logical file to a disk file, a tape file, a printer, a modem, and so ,

on. DOPEN, on the other hand, is for disk files only. So J [
OPEN needs the device number and disk channel (,8,4), but

DOPEN doesn't. The S after the filename indicates that a se

quential file will be opened. Since DOPEN defaults to sequen- | '
tial files, it too is unnecessary. Also, note that the W (Write) is

outside the quotation marks in the second example.

u

Programming

APPEND is a variation on DOPEN. It opens an already

existing disk file for a write operation. Any information writ

ten to the sequential file is added to the end. Data at the be

ginning of the file is safe and unchanged.

There aren't any new ways of reading or writing files. You

still PRINT# to send data and either INPUT# or GET# to read

a file.

Relative Files Are Much Easier

Being able to randomly access records in a file can sometimes

greatly speed up a program. With sequential files you may

sometimes have to read through 50 records just to get to the

fifty-first. A relative file allows you to obtain the information

you need almost immediately.

In BASIC 2.0, creating and maintaining a relative file re

quires sending a number of CHR$ codes. If you write pro

grams for relative files in 64 mode, you'll have to learn the

complexities of relative files. But not on the 128. In just a few

lines, you can open and write to a relative file. Let's say you

want 100 records with 20 characters in each record. Your pro

gram to set up a file will look something like this:

10 DOPEN#3,"XYZFILE",L20
20 RECORD#3,100

30 PRINT#3,"LAST RECORD''

40 RECORD#3,100

50 CLOSE3

That's all there is to it. When DOPEN is followed by an L

and a number, it opens a relative file. The length of each

record is set by L20. Records can be from 1 to 254 bytes long.

Because the record length is stored in the directory, you need

to use the L parameter only when the file is first created.

RECORD# positions the pointer to the desired record (up

to 65535 can be accessed, depending on the record length).

You must include the logical file number and the record num-

ber. A third number can be added if you want to start reading

or writing partway into the record. If this number is omitted,

you'll begin at the first byte of the record.

In line 30, we PRINT# to record number 100. Printing to

a previously nonexistent record forces the disk drive to create

that record and all previous records. Line 40 positions the

pointer again, to avoid a rare bug that sometimes corrupts

193

LJ

Chapter 5 (,

files. And then file 3 is closed. (See "Relative Files: Speed and

Economy" in the June 1985 issue of COMPUTED Gazette for

more about the 64's relative-file bug.) j [
Once the file is created, you can easily access records with

DOPEN and RECORD*. You PRINT# to write and either

GET# or INPUT* to read records. j |

Utilities

There are more new commands that help when you're pro

gramming. The F3 key is defined to print DIRECTORY. So,

with the press of a single key, you can see what's on a disk.

Two very useful reserved variables are DS (short for Disk

Status) and DS$. DS returns the disk error number, while DS$

prints out the error message. If the red light on a 1541 starts

flashing (the green light on a 1571), just enter PRINT DS$ and

you can see what went wrong. Consult your disk drive manual

for a complete list of error messages.

Within a program, DS is usually more helpful than DS$.

After a disk operation, add a line

IF DS>19 THEN 500

where line 500 is the beginning of an error-handling routine.

The variable DS will normally hold a zero if no errors oc

cur. But if DS is equal to 20 or more, something has gone

wrong. There are a few exceptions, though: Error 01 is not an

error; it's triggered after a SCRATCH operation. The error

message will be FILES SCRATCHED, followed by a comma

and the number of files that have been scratched. Error 50,

RECORD NOT PRESENT, is no matter for concern if you've

just created or expanded a relative file. If you write to a previ

ously nonexistent record in a relative file, it's added to the

disk. The record was not present before the operation and thus ,

causes the error 50. Finally, when you first turn on or reset a | ,
disk drive, you'll receive an error 73, which is simply an an

nouncement of which version of DOS is inside the drive. .

Several other new commands make file management eas- j (
ier. RENAME and SCRATCH are fairly straightforward.

SCRATCH is followed by a filename inside quotation marks.

Pattern matching—using wildcards like question marks or as- (J
terisks—is available for those times when you want to scratch

several files with similar names. To change the name of a file, v

lJ

194 , ,

n

Programming

n

n

RENAME "oUname" TO "newname". This syntax is certainly
easier to remember than

OPEN 15,8,15, "RO:newname=oldname"

which is the required syntax on the VIC or 64.

COLLECT validates the disk. It's used mostly for cleaning
up the block allocation map (BAM) to get rid of improperly
closed files. These were formerly called poison files, but the
1571 disk drive manual refers to them as splat files. They're
marked by an asterisk in the directory (*PRG, for example).

DCLEAR initializes the disk; it's the same as sending "10"
to channel 15.

CONCAT combines the contents of two sequential files.
You can use it on program files, but the result won't be a
merged program because the two zeros that mark the end of a
BASIC program get in the way.

Two disk commands designed primarily for dual drives
are COPY and BACKUP. The first copies a file from one drive
to another. But you must use a dual drive—COPY won't work
with two single drives. It can also make a copy to the original
disk (if you want to rearrange a directory, for example). BACK
UP copies a whole disk. It too requires a dual drive.

A Few Quirks

The 128 has a few annoying features—not bugs, just bother
some quirks. The most serious of these is that SHIFT-RUN/
STOP loads and runs the first file on disk. A nice feature if
that's what you want, but sooner or later, while programming,
you'll accidentally press SHIFT-LOCK and RUN/STOP or the

Commodore key and RUN/STOP. When the disk drive starts
spinning, you have only a few seconds to unlock the SHIFT-

LOCK key and press RUN/STOP to prevent the first program
from loading. If you fail to stop it, the program loads and
runs, and you've lost any part of your other program that was

not saved. To avoid this situation, you may want to put a se

quential file at the beginning of a disk. If you accidentally type

SHIFT-RUN/STOP, the computer will try to load the sequen
tial file, but it won't work. The program you're working on
will be safe if this precaution is taken.

You can also accidentally save a program. The default val

ues for F7 and F3 are LIST and DIRECTORY—very helpful

when you want to take a look at what's on a disk or what's in

195

u

Chapter 5 . .

a program. But in between these two keys is F5, which is de

fined as DSAVE. If you reach up to list a program and acci

dentally press F5 and F7, the computer will print DSAVE"LIST j_j
and begin saving your program under that name.

VERIFY and DVERIFY don't always work as you would

expect. Each line of a BASIC program contains a memory j j
pointer to the beginning of the next line. When you allocate a
graphics area, the BASIC program is moved up by 9K, and all
the line links change. Line links that don't match will lead to a
false VERIFY ERROR. You can test this by entering a one-line

program and saving it to disk. Now type

GRAPHIC1: GRAPHICO

to allocate a graphics area. List the program and use DVERIFY

to check your save. You should see an error message.

Something to remember when you're using disk com

mands is that variables must be enclosed in parentheses. The
following two examples show the right and wrong ways to use

variables:

RENAME H$ TO "FINALFINAL": REM

WRONG

RENAME (H$) TO "MOSTRECENT":

REM CORRECT

Another minor annoyance is that large relative files have

a limit of 720 disk sectors. Relative files contain up to six side

sectors, which can keep track of 120 sectors each. A formatted

1541 disk has 664 blocks free, so you'll run out of disk space

before you reach the 720-sector limit. But the 1571 formats

both sides of a disk, for 1328 blocks free. It's unfortunate that
you can't use all of that space for a relative file. You're limited

to about 180K per file. The 720-sector limit gets in the way.

How Fast Is the 1571?

If you already own a 1541 drive, you

You don't need to buy a 1571, unless

Here's how the two drives compare:

1541

9K LOAD (hi-res screen) 27 seconds

Disk format 89 seconds

(one side)

Quick format (no ID) 2.5 seconds

(one side)

can use it with a 128.

speed is important.

1571

4 seconds

43 seconds

(two sides)

3.4 seconds

(two sides)

LJ

U

1 (
i J

) r
LJ

196

U

/ .1

Programming

n

Going into 80 columns and using the FAST command to
double the speed of the microprocessor saves only a few
tenths of a second on disk operations. So the speed of the
computer is not a factor. The bottleneck is the speed at which

the data travels through the serial cable.

Note that formatting, which is handled completely within
the disk drive, is twice as fast for twice the disk capacity. This
suggests that writing operations are quicker on the 1571.

Even when you send the command to make the 1571 act
like a 1541, it's faster. A 1541 takes nearly a minute and a half
to format a disk. The 1571 in 1541 mode takes only one
minute and 12 seconds.

The "act like a 1541" command is

OPEN 15,8,15: PRINT#15, "U0>M0"

To reset to 1571 mode, use

PRINT#15, "UO>M1"

(Both of these commands can be used in 64 mode as well.)
While the 1571 is emulating the 1541, you can choose

which read/write head is used with PRINT#15, "U0>H0" or
PRINT#15, //UO>H1//. By switching heads, you can format

both sides of a disk as if they were separate disks. This isn't
an especially useful feature, but it suggests a solution for the

720-sector limit on relative files. You could format both sides

of the disk with separate names and IDs and then create a rel
ative file on each side. Within the program, you'd need to figure

out which side of the disk contains the information and switch

back and forth. You might lose some time in the head switch
ing, but you'd be able to expand a relative file to about 330K.

Another plus for the 1571 is its ability to read a variety of

CP/M formats. If you plan to do much with CP/M, the 1571

provides more flexibility. Even if you don't, it's faster and can

handle more data than the 1541.

n

_~ 197

u

u

u

u

u

Commodore 128 Hi-
Res Text Manipulation

James R. Schwartz

Drawing high-resolution screens on the 128 is reasonably easy be
cause of BASIC 7.0's powerful graphics statements. This tutorial ex
plores several interesting techniques for adding text to your hi-res

artwork.

If you load the same high-resolution picture into a Commo

dore 64 and a 128, you'll find that the two screens look ex

actly the same. This shouldn't be surprising; the two computers

use the same video chip. But the 128 (in 128 mode) has many

drawing statements that aren't available on the 64. The 128

can DRAW, CIRCLE, BOX, PAINT, and so on, whereas the 64

is limited to PEEKs and POKEs.

These graphics statements give you enormous power over

the hi-res screen. Exactly 64,000 picture elements (pixels) fit

on the screen, arranged in a grid that's 320 pixels wide and

200 deep. In the hi-res mode you have complete control over

each pixel.

You can use this power to manipulate text as well as

graphic images. The CHAR statement, for example, displays

text on the screen. In hi-res mode, you can use CHAR to add

labels to your art.

But CHAR is limited to even eight-bit boundaries. You

can use CHAR to place a character at position 0, 8, 16, 24, and

so on, but not on the pixels in between. This means you can j f

choose from 40 positions across and 25 down, the same di- '—i
mensions found on the regular text screen.

i (
Better Than CHAR ^
Using the fairly simple techniques mentioned here, you'll be

able to fine-tune the placement of text on the screen. You can ^J
even create your own special characters. And you'll be able to

write vertically on the screen, a useful feature for charts and

graphs. LJ

198

Programming

n

The first step is to create two arrays, H$ and V$, for the

horizontal and vertical character sets, respectively. Type in this

short program which draws the two character sets on the

screen. (Use "The Automatic Proofreader," found in Appendix

B, to type in these programs.)

HR 100 GRAPHIC2,l,4:FAST:FORI=35TO93:X=I-35-ABS(40

*(I>74)):Y=ABS(I>74):CHAR1,X,Y,CHR$(I)

SG 110 FORH=0TO7:FORV=0TO7:LOCATEH+X*8#V+Y*8:IFRDO

T(2)=1THENDRAW1,V+X*8,16-H+Y*8+8

FX 120 OT!XT:NEXT:NEXT:SLOW:WINDOW0,4,39,24,1

Even in FAST mode, it will still take quite a while to

run—about 45 seconds. Fortunately, however, if you save the

result as a binary file on a disk, future applications will take

only a few seconds. To do this, enter the following line in di

rect mode when the READY prompt appears:

BSAVE'HIRES CHAR//,B0/P8192 TO

P9471

Now type NEW to erase the original program and type in

part 2:

SB 100 GRAPHIC1,1

FH 110 FAST:BLOAD"HIRES CHARM,D0,U8,B0,P8192 :DIMH$

(93),V$(93):X=0:Y=0:FORI=35TO93:SSHAPEH$(I)

,X,Y,X+7,Y+7:SSHAPEV$(I),X,Y+17,X+7,Y+23:X=
X+8: IFX=320THENX=0 :Y=Y+8

BM 120 NEXT:SLOW

Here we're using the SSHAPE statement to save rectangu

lar areas of the screen into string variables. Once you've

SSHAPEd a portion of the hi-res screen, you can use GSHAPE

to place it anywhere on the screen. These two statements are

like creating a rubber stamp which can copy a shape to differ-

ent portions of the screen. In this case, the areas saved are the

size of the individual characters. For ease of operation, the

number in the array corresponds to the ASCII value of the

character in that array position. For example, H$(65) contains
the horizontal A; V$(90) contains the vertical Z, and so forth.

Writing on the Hi-Res Screen

We're now ready to manipulate text. To place a horizontal
string on the screen, use the following subroutine. You should

enter this subroutine with S$ defined as the string to be

199

Chapter 5

printed, and X and Y as the x and y coordinates of the upper

left-hand corner of the first character in that string. The x co

ordinate can be 0-319; the y coordinate can be 0-199.

SQ 1000 FOPH=1TOLEN(S$):IFASC(MID$(S$,H,1))=32THEN

1010:ELSEGSHAPEH$(ASC(MID$(S$,H,l))),X,Y-8

JX 1010 X=X+8:NEXT:RETURN

To perfectly center a line on the screen, add the following

subroutine. This time, you have to supply only S$ and Y,

since X is calculated for you.

QK 2000 X=159-LEN(S$)*4:GOTO1000

Here's an example showing the advantages of hi-res text

manipulation. Add these lines to the program you have so far:

SE 500 GRAPHIC1,1:DRAW1,119,39TO199,39TO199,71TO11

9,71TO119,39

GS 510 DRAW1,119,87TO199,87TO199,119TO119,119TO119

,87

XE 520 A$="SAMPLE":B$="CENTERING1'

PQ 530 CHARl,20-LEN(A$)/2,6,A$:CHARl,20-LEN(B$)/2#

7,B$

GH 540 S$=A$:Y=103:GOSUB2000:S$=B$:Y=lli:GOSUB2000

:SLEEP10:GRAPHIC0:END

When you type RUN, you'll see the difference between

the standard CHAR statement (top box) and hi-res text

manipulation (bottom box).

Even more fascinating is the ability to print vertically on

the screen. Add this subroutine:

BR 3000 FORV=1TOLEN(S$):IFASC(MID$(S$,V,1))=32THEN

3010:ELSEGSHAPEV$(ASC(MID$(S$,V,1))),X-8,Y

-8

CS 3010 Y=Y-8:NEXT:RETURN

In direct mode, type DELETE 500-540; then enter these

lines for a new demonstration:

FX 500 GRAPHIC0:INPUTM{CLR}STRING TO BE PRINTED" ;S

$:INPUT"X COORDINATE, Y COORDINATE11 ;X,Y
FS 510 IFX<7ORX>319ORY<LEN(S$)*8ORY>199THENPRINTMO

UT OF RANGE M: SLEEP2 :GOTO500

CD 520 GRAPHICl,!:GOSUB3000:SLEEP10:GRAPHIC0:END

200

LJ

n

H

n

Programming

Run the program. You'll be prompted to enter a string

and the appropriate coordinates. Note that line 510 makes

sure that the x and y coordinates you enter will allow the

string to fit on the screen; if not, you're returned to the

prompt.

Custom Characters in Hi-Res

Now you can create your own special characters. Suppose, for

example, that you need to create a cent sign (ct). The first step

is to find a character you will not need and replace it with

your new character. For this example, we will replace the dol

lar sign, CHR$(36), with the cent sign.

Draw an 8 X 8 grid (Figure 1). Label the vertical rows as

shown and draw your new character in the grid. Now, add up

the binary values for each horizontal row (Figure 2). Add

these numbers as DATA statements in your program, with the

following lines:

AA 200 FAST:GRAPHIC1,1:RESTORE230:FORI=8192TO8199:

READAD:POKEI,AD:NEXT

BS 210 FORH=0TO7:FORV=0TO7:LOCATEH#V:IFRDOT(2)=1TH

ENDRAW1#V+10,ABS(H-7)

DF 220 NEXT:NEXT:SSHAPEH$(36),0,0,7,7:SSHAPEV$(36)

,10,0,18,7:SLOW

BJ 230 DATA16,16,60,102,96,102,60,16

The program contains the DATA statements that make

the cent sign. Also, note that the 36 in line 220 refers to the

replacement of CHR$(36), the dollar sign that's replacing the

cent sign.

Figure 1. Grid Figure 2. Grid with Binary Values

3SS5S"

In order to output a cent sign to the hi-res screen, simply

enter any of the subroutines with a dollar sign in the place

201

u
Chapter 5

where you want a cent sign to appear. Delete lines 500-520,

and enter the following for a new demonstration:

JF 500 GRAPHIC1#1:S$="99$M:X=151:Y=100:GOSUB1000:S I \
LEEP10:GRAPHIC0:END

Type RUN to see the results. | J
You now have the basic tools to control text on the hi-res

screen exactly as you see fit. You're no longer bound by the

restraints of the CHAR command.

202

u

H

n

ESCaping with the 128
Jim Vaughan

The ESCape key makes the Commodore 128 an even more power
ful machine. With it, you can access 27 new screen-editing fea
tures. This article discusses each of the ESC-key sequences and tells
how to use them in your own programs. Two helpful demonstra
tion programs are also included.

The Commodore 128 offers a variety of editing and screen con

trol features which are accessed by using the ESC (ESCape)

key, located on the far left of the upper row of gray keys.

These features—new to Commodore machines—make Com

modore's popular full-screen editing even better.

Each of the 27 screen-editing features is accessed by first

pressing the ESC key, then releasing it and pressing another

key—either a letter from A through Z or the @ (at) sign.

Unlike when you're using control characters such as CON-

TROL-9 ({RVS}), where you hold down one key (CONTROL,

Commodore, or SHIFT) while pressing another, you should not

hold down the ESC key. Press the ESC key once, and then

press the other key. The two keystrokes together form an es

cape sequence.

You can also use the escape sequence functions within

programs by printing CHR$(27)—the character code for ESC—

followed by the appropriate letter for the sequence you wish

to use. It's purely coincidental, but there are 27 new editing

sequences for ESC, which is CHR$(27). The sequences func-

^ tion identically with shifted and unshifted letters (ESC SHIFT-

/ \ A does the same thing as ESC A), so the same techniques

work if SHIFT LOCK or CAPS LOCK is pressed. The excep-

^ tion is ESC @, since ESC SHIFT-@ does nothing.

J | The new set of commands can be broken down into three

categories: editing enhancements, screen control enhance-

i~, ments, and miscellaneous sequences.

203

u
Chapter 5

LJ
Editing Enhancements

The new editing commands allow quicker movement around

the screen and easier entry or deletion of part or all of a pro- j I
gram line. These sequences are summarized in Table 1.

UTable 1

ESC

ESC

ESC

ESC

ESC

ESC

ESC

ESC

ESC

ESC

. Editing Enhancements

A

C

D

I

J
K

0

P

Q

@

Enable auto-insert mode

Cancel auto-insert mode

Delete the current logical line

Insert a blank line

Move to the beginning of the current line

Move to the end of the current line

Cancel quote mode (ESC ESC also works)

Erase from beginning of line to cursor

Erase from cursor to end of line

Erase from cursor to end of screen

ESC A, the first sequence, puts you into auto-insert mode.

This allows you to enter text or program lines at the current

position of the cursor without the rest of the line being over

written. Auto-insert mode is most useful when you need to go

to the middle of a program line and add statements.

ESC C cancels the insert mode. (The Commodore 128

System Guide that comes with the computer erroneously states

that this sequence cancels quote mode.) Once you're finished

inserting text, it's advisable to cancel the mode with ESC C,

since printing is noticeably slower when the computer is in

auto-insert mode. Note that auto-insert mode is different from

the other kind of insert mode that appears when you hold

down SHIFT and press the INST/DEL key. With ESC A, you

don't have to open up the space first. Furthermore, auto-insert

mode doesn't act like quote mode. Control characters such as j j
RVS ON won't print in reverse video as they do in quote

mode or insert mode.

ESC D allows you to delete the program line the cursor is J I
currently on. (To delete just part of a line, see ESC P and

ESC Q below.) Be warned, however, that if the program line

extends over more than one physical screen line, this will de- 1 I

lete the entire logical line—not just the single screen row the

cursor is on.

204

u

u

n

____ Programming

ESC I allows you to insert a blank line at the current

^ cursor position. This sequence will move down one row all

j I text that is on or below the line containing the cursor. Any

thing on the bottom row will be scrolled off the screen, and

the cursor will remain on the new blank line. If you insert a

fH line in the middle of a multirow program line, the text on the
rows following the new line will still be considered part of the

program line. Before you issue this sequence, remember to put

the cursor on the screen row where you want the new line to
be added.

ESC J and ESC K allow quick movement on the program

line the cursor is on. ESC J moves the cursor to the beginning

of the program line, and ESC K moves the cursor to the posi
tion just beyond the last nonspace character in the program

line. (Again, these commands work with logical program lines,

which may consist of more than one physical screen row.) I
find these sequences the most useful when editing, since I'm

always adding statements onto the end of program lines.

Using ESC K saves me from having to hold down the cursor-

right key and wait until the cursor reaches the end of the line.

ESC O cancels quote mode. Probably every Commodore

programmer has tried editing a portion of a program line be

tween quotation marks and ended up with a collection of re

versed characters. The operating system treats editing

characters like {DOWN} and {RVS} differently when they are
typed within quotation marks. Instead of acting immediately,

they appear as reverse characters. This is fine if you're trying

to create a string to print cursor-right characters, but annoying

if you want to use the cursor-right key to move to the end of
the string.

By using ESC O, you can cancel quote mode to use the

normal editing keys without getting the reverse characters. In-

pi sert mode (which is almost identical to quote mode) is in effect
when you insert spaces with the INST/DEL key. For example,

if you insert five spaces, those five character positions behave

J-7 as if they were within quotation marks. ESC O cancels this ef

fect as well. It's not documented in the manual, but pressing

ESC twice in a row (ESC ESC) is the same as ESC O, a handy

p*j shortcut. (ESC O is erroneously defined in the System Guide as

canceling auto-insert mode. The manual has reversed ESC C

and ESC O functions.)

H

205

u

Chapter 5

= — == u

ESC P will erase everything from the beginning of a pro- 4-"J
gram line to the position of the cursor. This means that if you

put the cursor in the middle of a program line and then press 1 [

ESC P, the first half of your line (including the line number)

will be erased.

ESC Q is the complement of ESC P, meaning that it will I J

erase everything from the cursor to the end of the line. Erased UJ
positions are filled with spaces; the cursor and remaining text

do not move. As before, it's important to remember that these

sequences affect logical lines, not just screen rows. If you press

ESC P when the cursor is in the middle of the third row of a

program line that spans four screen rows, two and a half rows

will be erased—not just the row on which the cursor resides.

ESC @ is an enhanced version of ESC Q. Instead of eras

ing to the end of the current line, it erases everything from the

cursor position to the bottom right corner of the current output

window. This can be useful when you're loading a program

from the directory. Press F3 to list the disk directory, move the

cursor to the program you want to load, and type DLOAD (or

RUN) to the left of the filename. Now press TAB two or three

times, until the cursor is past the name of the program. Fi

nally, type ESC @ to clear the bottom portion of the screen,

and press RETURN to load the program.

Screen Enhancements

The following group of sequences manipulate the entire screen

area as opposed to just editing lines. These sequences are

summarized in Table 2. It's not really proper to refer to the

screen when you're talking about the 128's display, since all

screen operations actually depend on the height and width of

the currently defined output window. It's easy to forget this;

the output window is most often set to cover the entire screen, . .

but that doesn't have to be the case. The 128's windowing ca- !_j
pabilities aren't as powerful as those of a Macintosh or Amiga

(you have only one window to work with), but they do allow ((

you great flexibility in designing screen displays. i_J

ESC B and ESC T can be used to change the boundaries ^

of the output window. ESC T defines the current cursor posi- O

tion as the top left corner of the window—the home position '—'
of the output display, where the cursor will go when the

CLR/HOME key is pressed. ESC B defines the current cursor I j

206

u

Programming

Table 2. Screen Control Enhancements

ESC B Set bottom right corner of output window
ESC L Allow scrolling

ESCM Disable scrolling

ESC T Set top left corner of output window

ESC V Scroll screen up one line

ESC W Scroll screen down one line

ESC X Switch between 40- and 80-column modes

position as the bottom right corner of the window. Just move

the cursor to the desired position and use the sequence to set
the new boundary. You probably won't use these escape se

quences in a program (although you could) because the WIN

DOW command is more convenient to use.

There are many creative ways to employ windows when

you're programming. For example, you may decide you want

to look at a disk directory: Just create a window and press F3.

Whatever is outside the window will remain unchanged. You
could also compare two sections of a program by listing the
first part, setting up a window, and listing the second part.

(See "Windows on the 128/' COMPUTED Gazette, April 1986,
for more about windows.)

The window isn't cleared when it is resized, but all lines
are unlinked (the text in each row is "disconnected" from that

in any previous or following rows). The sequences are easy to

remember: ESC T for Top and ESC B for Bottom. Pressing

CLR/HOME twice in a row (HOME HOME) will reset the
window to full screen size.

ESC M and ESC L control how text is handled when

there's no more room at the bottom of the window. Normally,
fj all lines of text in the window scroll upward to add the text to

a new line at the bottom of the window (the previous top line

^ is scrolled off the screen). ESC M turns off the scrolling. When
I) scrolling is disabled and the screen is full, the next PRINT

statement will cause the text to be displayed at the top of the

^ screen, unless the PRINT statement is followed by a semicolon.

y \ When you LIST a program or directory which is longer than
the current height of the window, printing automatically
jumps back to the top of the window after a line is displayed

PI at the bottom. However, things get a bit strange when the

n 207

Chapter 5

PRINT statement ends with a semicolon. Press ESC M; then

try the following line:

FOR 1=1 TO 5000: PRINT

CHR$(INT(RND(l)*64+32));: NEXT

When the bottom line of the window fills up, the printing

will continue in the position at the lower right corner of the

screen, with each successive PRINT overwriting the previous

character in that position. This mode is useful when you're

trying to display some graphics effects that you don't want to

scroll off the screen. However, you must plan your PRINT

statements carefully when scrolling is disabled. Use ESC L to

turn the normal scrolling feature back on.

ESC V and ESC W move all lines of text in the window

up (ESC V) or down (ESC W) one row, adding a new blank

line at the bottom or top of the screen. Any text that is

scrolled off the top or bottom of the window will be lost—it's

not recovered when the window is scrolled back in the oppo

site direction.

Scrolling down produces an interesting effect which could

be exploited in an auto-racing game. You'd put the cursor on

the top line, print the two edges of the road, scroll it down,

and repeat. It would be relatively easy to add a sprite for the
automobile, a joystick movement routine, and a routine that

subtracts points when the car hits the side of the road (using

the COLLISION statement).

The 128 provides both 40- and 80-column displays, but

only one can be active at any given time. That is, only one

display can have a "live" cursor, and all printing will be sent

to that display.

ESC X allows you to switch between the two display

modes. This sequence is a toggle: Whenever you use ESC X,

the display that is currently active becomes inactive, and the .

one that was previously inactive becomes the active display. I—I
This sequence doesn't actually turn either video chip on or off;

whatever is currently displayed on the screen that becomes in- , ,

active will remain intact until the screen becomes active again LJ
(or until the RESET button or RUN/STOP-RESTORE com

bination is pressed). If you are using the same monitor for ^

both displays, you still must switch the monitor to the desired LJ

display. The 40/80 DISPLAY key has no effect on ESC X

(other than to determine which display will be active after RE- , ,

SET or RUN/STOP-RESTORE). Lj

208

u

Programming

Miscellaneous Sequences

This last set of sequences is called the miscellaneous group

simply because none of them falls into either of the other

groups. These sequences are summarized in Table 3.

Table 3. Miscellaneous Sequences

ESC E Set cursor to nonblinking mode

ESC F Set cursor to flashing mode

ESC G Turn on (enable) bell tone

ESC H Turn off (disable) bell tone

ESC N Return to normal 80-column display

ESC R Reverse 80-column character and background colors

ESC S Change 80-column cursor to block

ESC U Change 80-column cursor to underline

ESC Y Restore default tab stops

ESC Z Clear all tab stops

The 128 allows you to customize the cursor to your own

tastes. Some people find the blinking cursor irritating, so

ESC E stops cursor flashing. The cursor remains visible—it's

now a nonblinking block. ESC F will make it flash again.

Those who use the 80-column screen have an additional
choice. ESC U changes the 80-column display's cursor from a
character-sized block into a character-width underline (the 40-
column cursor is unaffected). ESC E and ESC F, respectively,
can still be used to make the underline cursor nonblinking or

flashing. ESC S changes the cursor back to a block.
The 128 has a feature that is common on most other com

puters and terminals, but which had been missing on the VIC-

20 and Commodore 64: a BELL character. Printing CHR$(7)—
or holding down the CONTROL key and pressing G—causes

j (a bell-like tone if your monitor is equipped with a speaker.
This is a handy way to generate an attention-getting sound,

^ but some programs may make excessive use of the feature.
; \ Maybe you just find the noise annoying. Whatever your rea

son for using it, ESC H disables the tone. Use ESC G to turn it
^ back on.

/_ \ The background color of the display is normally deter
mined by the value in a video chip register, and the color of

^ each character is normally determined independently by the

r*n 209

Chapter 5

value in a color memory location corresponding to the charac

ter's position on the display. On the 80-column display, this

can be reversed. After you issue the ESC R sequence, all char

acters take what was previously the background color, and the

background for each character is determined by the color

value in the corresponding color memory position. (The 40-

column display is unaffected.) Use ESC N to return the display

to normal. ESC R is useful when you have the 80-column out

put displayed on a monochrome monitor and want dark char

acters on a light background.

The two final sequences deal with tab-stop settings.

Whenever you press the TAB key or print the tab character—

CHR$(9)—the cursor moves to the next column for which a

tab stop has been set or, if there are no more tab stops, to the

right boundary of the output window. This is useful for align

ing columns of text and numbers. When the 128 is turned on

or reset, it establishes a tab stop every eight spaces.

ESC Z erases all tab stops so the cursor always goes to

the right margin of the window when you press TAB. You can

change the tab-stop setting of the column where the cursor

currently resides by pressing SHIFT-TAB (or CONTROL-TAB).

This is a toggle: If no tab stop has been previously set at the
column, one will be set there when you press SHIFT-TAB or
CONTROL-TAB. However, if a tab stop has already been set

for the column, it will be cleared.
You can get the same effect within a program by printing

CHR$(24). ESC Y resets the default tab stops (one every eight
spaces). Changing tab settings, including using ESC Y and
ESC Z, affects only the active display. Each display has its
own tab-stop table, so it's perfectly possible to have default
tab settings for the 80-column display while having tab stops
every four spaces, or no tab stops at all, for the 40-column

display. } j

Using ESC Sequences from Within a Program ^ (

As noted earlier, even though these new ESC sequences are I—,
useful for program editing and for onscreen fun, they can also
be used within a BASIC or machine language program to ^

achieve the same results. Some of the sequences may not have i_i
an obvious effect while the program is running. For example,
since the cursor is turned off when a program is running, , ^

u

Programming

changing the cursor mode won't have any immediately visible

effect except in INPUT statements. Program 1 is a short dem

onstration of how a few of these ESC codes can be used in a

BASIC program. Type in the program carefully, since it con

tains a lot of cursor control codes inside quotation marks.

(Using "The Automatic Proofreader," Appendix B, will help

you type it in correctly.)

To use these sequences in a machine language program,

print the ESC code ($1B) using the BSOUT routine ($FFD2);

then print the ASCII code for the desired function. For ex

ample, the following code will scroll the display up one line:

LDA #$1B

JSR $FFD2

LDA #$56

JSR $FFD2

A handy way to use these sequences is to include them in

programmable function-key definitions. You can use the line

KEY 1, CHR$(27)+"I"

and a blank line of text will be inserted whenever you press Fl.

If you want to have the editing definitions loaded auto

matically whenever the computer is turned on or reset, you

can write a key definition and make it an autobooting disk

file. Program 2 was written for just that purpose. It assigns an

editing function to each of the eight function keys and prints a

menu at the bottom of the display for easy reference. The out

put window is then reduced by two lines so that the menu

won't be overwritten. To make the program autobooting, use

the "Autoboot Maker" program on the 1571 Test/Demo disk

that came with your drive, or use a program like "128
Autoboot" (COMPUTEVs Gazette, March 1986).

. The key definitions included in Program 2 may not be the

i [ones that you want to use most often, but you can easily
change any of the definitions to ones that suit you. The defini-

rmm^ tions currently included in Program 2 are as follows:

I j Fl Enable auto-insert mode
F2 Cancel auto-insert mode

r0mt F3 Insert a blank line

f t F4 Delete a program line

F5 Move cursor to start of line

F6 Move cursor to end of line

I j F7 Delete to the start of line
F8 Delete to the end of line

H 211

Chapter 5

Once you start to learn the ESC sequences, you'll find

yourself using them more and more frequently.

Program 1. ESC Sequence Demo
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

CA 10 REM **
•••••a***************

FF 20 REM *{59 SPACES}*
PD 30 REM *{22 SPACES}PROGRAM l{28 SPACES}*

XG 40 REM *{5 9 SPACES}*
SQ 50 REM *{2 SPACES}DEMO PROGRAM FOR USING ESCAPE

CODES IN A BASIC PROGRAM{3 SPACES}*

KH 60 REM *{59 SPACES}*
QR 70 REM **

PF 80 REM * CHECK TO SEE IF WE ARE IN 80 COLUMNS *
RH 90 REM **

GF 100 PRINTCHR$(14);

PA 110 MD=RGR(X):IF MD<>5 THEN PRINT"{CLR}{DOWN}
{RVS}{2 SPACES}PLEASE USE 80 COLUMNS FOR TH

IS DEMO. 12 SPACES} {OFF}11: END

AF 120 REM ********************************

GP 130 REM * PRINT HEADER AND MAKE WINDOW *
JD 140 REM ********************************

EJ 150 PRINT"{HOME}{RVS}{13 SPACES}USING ESCAPE CO

DES IN A BASIC PROGRAM - EXAMPLES

{34 SPACES j":WINDOW0,1,79,24,1

XF 160 PRINT"{CLR}";
MF 170 REM *******************************

GS 180 REM * ESC D - DELETE LINE EXAMPLE *
CD 190 REM *******************************
FD 200 PRINT"{3 DOWN}{3 RIGHT}THIS LINE WON'T BE E

RASED..."
KD 210 PRINT"{3 RIGHT}THIS LINE WILL BE ERASED USI

NG ESC D {RVS}HIT ANY KEY{OFF}"
QE 220 PRINT1'{"3 RIGHT}THIS LINE WON'T BE ERASED...

BUT WILL MOVE UP ONE LINE..";
CC 230 GETKEYA$:PRINT"{UP}llCHR$(27)"Di

PK 240 REM ---^—
**

KX 250 REM * ESC Q - DELETE TO END-OF-LINE EXAMPLE

DJ 260 REM
*•

MG 270 PRINT"{2 DOWN}{3 RIGHT}THIS LINE WILL BE HA

LF ERASED USING ESC Q. ..HIT ANY KEY

{23 LEFT}";

212

u

u

u

LJ

u

u

LJ

u

u

H
Programming

MD 280 GETKEYA$:PRINTCHR$(27)IIQ11
BJ 290 REM ***************************************

AQ 300 REM * ESC P - DELETE TO START-OF-LINE EXAMP

LE *

SK 310 REM ***************************************

EP 320 PRINT11 {3 RIGHT}THIS LINE WILL BE HALF ERASE

D USING ESC P. ..HIT ANY KEY{24 LEFT}";

JA 330 GETKEYA$:PRINTCHR$(27)IIP11
HX 340 REM *********************************

DA 350 REM * ESC I - INSERT A LINE EXAMPLE *
XA 360 REM *********************************

KM 370 PRINT"{3 DOWN}{RVS}YOU COULD DEFINE THE FUN
CTION KEYS AS WORD-PROCESSING TOOLS" ""

MF 380 KEY 1,CHR$ (27)+"I " :PRINT" {RVS}WITH: KEY 1,

CHR$(27)+III{OFF}"

XF 390 PRINT"{DOWN7{3 RIGHT}THIS LINE WILL STAY HE
nn II —
XvCi ...

RR 400 PRINT"{3 RIGHT}THIS LINE WILL MOVE DOWN ONE
USING ESC I...TRVS} HIT Fl {OFF}";

XD 410 GETKEYA?lGETKEYB$:C$=A$+B?:PRINTC$;
CX 420 PRINT"{RVS}...AND I WILL INSERT THIS LINE..

.":PRINT"{2 DOWN}";
KF 430 REM ***************************************

**

AH 440 REM * ESC A - AUTOMATIC INSERT MODE EXAMPLE
*

BE 450 REM ***************************************
**

QK 460 PRINT" {DOWN}WE'LL INSERT TEXT INTO THE MIDD
LE OF THIS LINE USING ESC A ...HIT ANY KEY.

• M; ""
DX 470 GETKEY A$

RA 480 PRINT"{22 LEFT}";CHR$(27)"A";"{RVSjTHIS IS
{SPACE}INSERT MODE "

~_ SK 490 REM ***************************************

jl *****

HQ 500 REM * REMEMBER TO CANCEL INSERT MODE FOR SP

EED *

r*^ FJ 510 REM ***************************************
J) *****

EM 520 PRINTCHR$(27)"C";
XS 530 REM ***************************************

H
GS 540 REM * ESC @ - ERASE TO END-OF-SCREEN EXAMPL

E *
'""^ HJ 550 REM ***************************************
{ \ ***

n 213

u

Chapter 5 , ,

U
PH 560 PRINT" {2 DOWN}NOW WE'LL USE ESC @ TO ERASE

{SPACE}HALF OF~THE SCREEN...HIT ANY KEY";

FF 570 GETKEYA$ } i

BQ 580 PRINT"{HOME}{14 DOWN} " ;CHR$ (27) "@" ; ^
BP 590 REM ***************************************

**** , ,

XC 600 REM * ESC T Se ESC B - SET UP A WINDOW EXAMP j |
LE *

QE 610 REM ***************************************

QE 620 PRINTCHR$(27)IITII;II{30 RIGHT} {15 DOWN}";CHR$

(27)"B"
XM 630 PRINT" {CLR}THIS IS A WINDOW":PRINT "USING ES

C T AND ESC B": SLEEP 3:CATALOG

HF 640 PRINT "{DOWN}YOU CLEAR THE WINDOW": PRINT "BY

{SPACE} PRINTING 'HOME1 ": PRINT "TWICE. "

FB 650 PRINT" {DOWN}HIT ANY KEY TO END" :GETKEYA$

KD 660 PRINT "{2 HOME}";:PRINT"{CLR7TI DOWN}
{5 RIGHT}{RVS}ALL DONE 11"

QA 670 END

RA 680 PRINT "HIT ANY KEY.. ":GETKEYA$:RETURN

Program 2. ESC Sequence Function Keys
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix 8, to type in

this program.

HS 10 REM **

FF 20 REM *{44 SPACES}*
JC 30 REM *{10 SPACES}PROGRAM 2 - FUNCTION KEYS

t9 SPACES}*

XG 40 REM *{44 SPACES}*
DP 50 REM **

KF 60 REM

XH 70 REM DEMO 2 - FUNCTION KEY EDITING ASSIGNMENT

s i i
HH 80 REM »—'

MD 90 REM DEFINE KEYS:

BX 100 REM ,, ;

MX 110 KEY 1, CHR$(27)+"A" : REM INSERT MODE Jj

JD 120 KEY 2, CHR$(27)+"C" : REM CANCEL INSERT MOD

E

ED 130 KEY 3, CHR$(27)+"I" : REM INSERT A LINE \ }

JD 140 KEY 4, CHR$(27)+"D" : REM DELETE A LINE <—J
PD 150 KEY 5# CHR$(27)+"J" :REM MOVE TO START OF L

INE (. *

LJ

214

LJ

n

n

Programming

BQ 160 KEY 6, CHR$(27)+"K" :REM MOVE TO END OF LIN

E

RX 170 KEY 7, CHR$(27)+"P11 : REM ERASE TO START OF

{SPACE}LINE

GF 180 KEY 8, CHR$ (27)+"Q11 :REM ERASE TO END OF LI

NE

GG 190 REM

AM 200 REM{2 SPACES}SET UP MENU AT BOTTOM OF SCREE
N

DG 210 REM

XQ 220 PRINT"{HOME}{23 DOWN}";CHR$(27)"M";
MR 230 PRINTM{RVS}{3 SPACES}F1-INSERT{5 SPACES}F3-

INSERT LINE{5 SPACES}F5-M0VE TO START OF LI

NE{3 SPACES }F7-ERASE TO START11

JX 240 PRINTM{RVS}{3 SPACES}F2-NO INSERT{2 SPACES}

F4-DELETE LINE{5 SPACES}F6-MOVE TO END OF L

INE{5 SPACES }F8-ERASE TO END{2 SPACES}11
DK 250 REM

HG 260 REM PROTECT THE MENU WITH A WINDOW

PM 270 REM

QP 280 WINDOW 0,0,79,22,1

AR 290 PRINTM{CLR}M;CHR$(27)"LM;

i 1

215

n

128 Machine Language

Jim Butterfield

In this article well examine some basic architectural features of the I |
128, including memory banking, and look at a program that passes
information between BASIC and machine language. From there
well explore the built-in machine language monitor and look at
ways to call and link ML programs from BASIC

The Commodore 128 is truly three computers in one—a Com

modore 128 when in 128 mode, a Commodore 64 when in 64

mode, and a Z80-based CP/M computer when in CP/M

mode. We'll focus here on programming the computer in ma

chine language (ML) in 128 mode.

When in this mode, the 128's 8502 microprocessor can ex

ecute the same instructions as the Commodore 64's 6510

microprocessor. Many of the programming techniques used on

the 64 work exactly the same on the 128. This article is di

rected especially at programmers who need to make the tran

sition from 64 machine language to 128 ML programming. Of

course, if you're familiar with 6502/6510 programming, but

the 128 is your first Commodore computer, you can still bene

fit from the information presented here.

Ground Rules

Here are two simple ground rules to keep you out of trouble

on the 128:

First, it's important to stay in bank 15 when you're writ

ing programs with the computer's built-in machine language jj>

monitor (we'll explain what a bank is in a moment). This rule

is necessary because of the 128's memory architecture, which

can be confusing to a beginner. If you choose a bank number jj

lower than 12, you may end up in a machine configuration

which has no read only memory (ROM), making it impossible
for your program to call any of the computer's built-in ROM I /

routines.

Second, stay away from areas of random access memory

(RAM) which are usually safe on the 64. On the 64, for in- f !

u

Programming

stance, the cassette buffer located at 828-1019 ($033C-$03FB)

is a good place to put short ML programs, and the free RAM

block at 49152-53247 ($C000-$CFFF) is ideal for longer pro

grams. Both areas are unusable on the 128, as you'll quickly

learn if you try to put ML code there. The lower area contains
critical system vectors and subroutines; if you change their

contents, the system will crash. The higher area is covered by

Kernal ROM; you can't easily put an ML program there and
still have access to ROM routines.

Instead, the 128 has safe areas in locations 2816-3071

($0B00-$0BFF) and 4864-7167 ($13OO-$1BFF). The first area
is the 128's cassette buffer, and the second area is currently
unused by the system.

Why Bank 15?

The 128 is capable of seeing its memory as 16 different banks,
numbered from 0 through 15. The term banks is somewhat

misleading, since a bank does not represent a separate 64K

block of memory. Instead, each bank represents a different
configuration or arrangement of the various available RAM
and ROM elements. The bank number determines what the
128 sees within various areas. In some banks, the 128 sees

nothing but RAM; in others, it sees a combination of RAM

and ROM. Still other configurations include RAM, ROM,
input/output (I/O) addresses, and so on.

In fact, there are 256 possible memory configurations.
Most of these, however, are of little or no use. For example,

though you can configure the computer to see only half of its
BASIC ROM and none of its Kernal ROM, it's hard to imagine
any use for such an arrangement. Commodore has chosen 16

configurations that seem most useful, named these different
I—* configurations banks, and identified them with numbers from 0
1 I through 15.

Figure 1 illustrates the configuration for bank 15. In loca-
pn tions $0002-$3FFF there is RAM. The 128 in the computer's
L_J name means that the computer has a total of 128K of RAM,

which is arranged in two 64K blocks called RAM 0 and RAM
<—, 1. Don't confuse these blocks with banks—some RAM from
M one or both of these blocks appears in every bank, but the

amount varies.

r-j The RAM in bank 15 is from RAM 0, the block that holds
! J BASIC program text along with various buffers, vectors, and

n

Chapter 5 (
============== Lj

system variables and subroutines. For the moment, it's impor

tant to notice that a BASIC program's working values—vari

ables, arrays, and strings—are not contained in the same bank j j

as the program text itself. ' i

Figure 1. Bank 15

As you can see in Figure 1, most addresses above 16384

($4000) are seen as ROM. The BASIC interpreter alone occu

pies a hefty 28K, all the way up to 45055 ($AFFF). Above that,
we have the machine language monitor and operating system

(Kernal) interspersed with some I/O addresses and a tiny area

earmarked for the memory management unit (MMU).
In the I/O section, locations 53248-57343 ($D000-$DFFF),

all the chips from the Commodore 64 appear in the same ad
dresses. Thus, your favorite 64 POKEs to make sound effects,

and so forth, work exactly the same in 128 mode. There are
numerous extra I/O locations to do new jobs, such as control

ling the 80-column video chip and reading the extra keys on

the 128's keyboard.

At ihis point, we won't worry about the machinations of

the MMU; it's enough to learn that bank 15 provides access to

all the I/O chips as well as to the Kernal ROM.
When you put a machine language program in RAM 0, j ,

you might be tempted to issue a BANK 0 statement from i—/
BASIC before you start the program with SYS. After all, bank
0 gives you access to all the memory in RAM 0. Don't do this: < ,

It's better to stay in bank 15. Lj
Figure 2 shows the bank 0 configuration. Putting the com

puter in this configuration will certainly allow it to see your , (

ML program in RAM 0. But the computer can't see its I/O I—i
chips or Kernal ROM. The computer has lots of memory, but
no way to communicate with the outside world. v >

u

Programming

Figure 2. Bank 0

H

H

n

What's the lesson? Stay in bank 15. You are limited to

16K of RAM, but that's plenty for most applications.

If you don't specify a bank, the computer defaults to bank

15. However, it's prudent to execute a BANK 15 statement just

before any SYS from BASIC. This insures that your program will

work even if some other program has left the machine config

ured for a different bank. As a courtesy to other programmers

(and users in general), programs that use other configurations

should end by returning the machine to the default bank.

Memory Use in RAM 0

Figure 3 illustrates typical memory usage in the first 16K of

RAM 0. Note that there are several unused memory areas

available for program storage. Unless you're using a graphics

mode, BASIC program space begins at 7168 ($1COO). (While

programming in ML, you might want to avoid using an other

wise handy program known as the "DOS Shell"; it moves the

start of BASIC up to $5B01 and occupies memory above

$1AOO—memory you may want to use for your own purposes.)

Figure 3. RAM 0 Memory Usage

219

Chapter 5

Figure 3 also reveals other unused or little-used memory

zones. If you don't need to use a tape drive, the cassette buffer

at 2816-3071 ($0B00-$0BFF) is free. If you aren't using tele

communications, the RS-232 buffers in locations 3072-3583

($0C00-$0DFF) are also available. And there's a large block of

empty memory marked reserved for applications software that

stretches from 4864 to 7167 ($13OO-$1BFF), providing over 2K

of contiguous free space.

Friendlier BASIC

BASIC 7.0, the vastly improved BASIC in 128 mode, has sev

eral features that simplify the process of combining BASIC and

ML. We won't explain all of them in detail, but here is a brief

survey. (Your System Guide contains additional information.)

In addition to calling an ML routine, the SYS statement

can also pass values from BASIC to ML. The values must be

in the range 0-255 and are placed in the microprocessor's reg

isters just before the ML routine takes over. Simply tack them

onto the end of the SYS statement, separated by commas.

Conversely, the RREG command lets you read the processor's

registers from BASIC after an ML routine has finished.

The BLOAD command can bring in any ML module (or a

graphics screen, and so forth) with no fuss or bother. The file

loads into the same memory area from which it was saved,

and BASIC continues with the next command. This is much

simpler than the gyrations required in earlier versions of Com

modore BASIC.

BASIC 7.0 also makes it easy to convert numbers between

decimal and hexadecimal. The DEC function converts a hexa

decimal string into a decimal number. The HEX$ function con

verts a decimal number into a hexadecimal string.

I |

A Rudimentary Example '—'
The following program isn't particularly useful, but it may in

terest you in the 128's new features. It counts the number of 1 M
bits in any eight-bit number and prints them out in a table.
You may not be excited to learn that the number 14 (binary

00001110) contains three 1 bits, while the number 16 (binary j^J

00010000) contains only one, but the program does demon

strate how to pass information from BASIC to machine lan

guage and back again. j j

220

u

Programming

We'll explain the purpose of each program line as we go.

Here's the first one:

100 BANK 15

This statement puts the computer into bank 15, the safest con

figuration. Since the ML part of our program won't use any

Kernal routines or I/O chips, you could use bank 0. But

there's no advantage in doing so, and another time you might

not be so lucky. Remember, it's always wise to set the bank

explicitly rather than assume everyone's computer will be in

bank 15.

110 DATA 162,0,74,144,1,232,168,208,249,96

This is the short ML program, stored in the form of DATA

statements. It takes a value from the accumulator (A register),

counts the 1 bits in the value, and places the result in the X

register.

120 FOR J=2816 TO 2825

The actual ML code goes in locations 2816-2825 ($0B00-

$0B09), the bottom of the cassette buffer.

130 READ X:T=T+X

140 POKE J,X

150 NEXT J

Before the ML can be used, it has to be READ from the

DATA line and POKEd into memory. A simple additive check

sum detects most typing errors.

160 IF TO1334 THEN STOP

j—^ If the program stops at line 160, you've made a typing er-

1 ror, most likely in the DATA statements. If not, the ML code

is safely planted in memory, and you can proceed to the job of
— bit counting.
i. i

200 FOR J=0 TO 20

j | We're going to count the 1 bits in numbers from 0 to 20.

You can examine higher numbers if you like, but don't try
anything over 255.

LJ 210 SYS 2816,J

r—! 221

Chapter 5

This statement calls the ML program at its starting ad

dress of 2816 and passes the value of the variable J to the pro

cessor's A register. When the machine language program begins j j

to run, the A register will contain that value. You could also

have passed values to the X and Y registers, but this program

doesn't require them. I |

220 RREG S,T

When we reach line 220, the ML program has returned

control to BASIC. We'd like to know what values are in the

processor's registers, especially the X register, which contains

the bit count. The RREG command reads the registers and

places their values into BASIC variables. The A register goes

into variable S and the X register goes into T. Now T contains

the bit count.

230 PRINT J,T

240 NEXT J

That's all it takes. We print the value of J and the bit

count T, and then go back to do it again.

Now let's turn our attention to the 128's excellent built-in

machine language monitor.

A Monitor at Your Fingertips

Some of the earlier Commodore products had no built-in ma

chine language monitor. To work on machine language on the

VIC-20 or Commodore 64, for example, you had to load a ma

chine language monitor from tape or disk, or rely on a plug-in

cartridge. Other products had simple monitors: Many PET/CBM

models had monitors which could display and change mem

ory, save or load programs, and not much else. The built-in j ,

monitor on the Commodore 128 has many attractive features; 1—>

the best way to learn them is to try them.

Type MONITOR and press RETURN. You'll see the famil

iar register display, with values under the titles: PC (program 1—I

counter), SR (status register), AC (accumulator, or A register),

XR (X register), YR (Y register), and SP (stack pointer). They're .

all similar to what you may have met on other machines, ex- <—i

cept the value under PC looks a little odd. It has five digits in

stead of four. The extra digit at the beginning is the bank

number, and since it's an F, we're in bank 15.

222

Programming

We've already noted that bank isn't quite the right term.

We should more properly say configuration 15, since each con

figuration consists of a mixture of memory elements. Refer

back to Figures 1 and 2 to see the configurations for banks 15

(the default) and 0. You'll notice that for addresses below

$4000, both bank 0 and bank 15 use exactly the same mem

ory. Thus, the contents of address $F1000 is exactly the same

as the contents of address $01000. In fact, it's the same mem

ory. We'll see for ourselves in a few moments.

Number Conversion

You may be comfortable with hexadecimal numbers. You may

even be able to do hex-to-decimal conversions in your head

and amaze your friends. I can't, however, and I like the num

ber-conversion features that are built into the monitor. We've

talked about hexadecimal address $4000 already. Let's find its

value in decimal.

Type in the value $4000 on a line by itself and press RE

TURN. You'll see a display of this number as it appears in

various number bases. First, the hexadecimal number. The

dollar sign means hex, of course, so the monitor simply echoes

what you typed in: $4000. The next line starts with a plus sign

(+). To the 128's monitor, the plus sign means decimal. So

you can see that $4000 equals decimal 16384. The following

line starts with an ampersand (&), which means octal, a nota

tion that's rarely if ever used with Commodore machines. (Oc

tal numbers are base 8, so &40000 is equal to four times eight

raised to the fourth power.) Finally, the number that starts

with a percent sign (%) is the binary representation of $4000.

Since the computer's internal code is always binary—not deci

mal or hexadecimal—it's sometimes useful to be able to look
at a number this way.

You may also convert a decimal number to the other

bases by typing it in, leading off with a plus sign. If you like,

try entering +16384 and watch the computer figure out that

it's the same as $4000. And if you ever need to do so, you can

convert from octal or binary the same way.

Conversions are convenient, but the monitor includes an

other bonus: Any number may be entered in any base, ayiy time.

If you put in a number without a prefix, the monitor will as
sume you mean it to be hexadecimal. But you can slip in a

223

Chapter 5

decimal number anywhere by prefixing it with the plus sign.

We'll be doing this; you'll see how handy it is.

Looking at Memory

You may display memory with the command M. If you follow

M with two addresses, the monitor displays all the values be

tween them. Thus, to display the contents of addresses $1000-

$1029, just type

M 1000 1029

and press RETURN.

You'll get more than you bargained for. Depending on

whether you are on a 40-column or 80-column screen, the

monitor will display 8 or 16 memory locations at a time. Each

group of locations is on a single line, with the address of the

first item on the line showing at the left. We asked for 42 loca

tions, but we got 48, since the computer always finishes the

line it's working on.

On the right, we see the ASCII character equivalent of the

contents of the memory locations. Some locations don't hap

pen to have an alphanumeric equivalent, in which case a pe

riod is printed. If you display the addresses suggested above,

you'll see some readable text in this area. The zone of memory

we're looking at holds the function key definitions.

Just to confirm something that was said before, try using

M to display memory locations F1000-F1029. That's bank 15

instead of bank 0, but you'll see that it is in fact the same

memory. And you might like to try M +4096 +4137, which

uses decimal addresses for the same locations.

If you follow an M command with only one address,

you'll get a fixed number of memory locations. This can save

you typing, and here's a tip for browsing through large

amounts of memory: If you type M alone with no addresses,

you'll get a continuation of the last memory display.

Making Changes Directly

The simplest way to change memory is to display the area

you're interested in, then move the cursor back and type over

the values on the screen. When you press RETURN, the moni

tor enters all the values for that line. It's a bit like screen

editing in BASIC.

224

M

Programming

n

Try it. If you have displayed memory as suggested above,

_ you may see the word GRAPHIC on the right-hand side of the

i [memory display. Let's change the G stored in memory to a T
so that it says TRAPHIC. The code for a G is $47; it's found in

rn the left-hand part of that line. Move the cursor over the 47

! I and type 54, which is the code for T. Now press RETURN,

and the memory change is made.

Remember that you can't change the right-hand ASCII

side of the display. And, by the way, this is not the recom

mended way to change the function-key definitions. It's easier

(and better) to use BASIC'S KEY statement.

You can't change locations in read only memory (ROM).

Entering

M F4200 F4200

will show you part of the BASIC ROM. Move the cursor back,

type over a value, and press RETURN. You'll see from the dis

play that the original values have been restored and ROM has

not changed. Here's a note for technical types: The values from

the line have "poked through" into the RAM memory which

lies beneath ROM, but the monitor shows only the ROM.

The first character on the memory display line is the

greater-than sign (>). This is in fact a synonym for the change

memory command. On rare occasions, you might like to use

this command directly.

Here's a typical case where the greater-than sign might be

typed: You want to change a single location in an I/O chip.

Using the "display and type over" method, you'd change 8 or

16 locations at a time. Usually, that's okay, but I/O chips are

delicate, and you don't want to change other registers acci

dentally. As a simple example, you might like to change the

40-column border color to red, but you don't want to change

pn anything else. You may type

>FD020 2

,—] (remember that the I/O chips are in bank 15), and the border

/ \ will change. The monitor will display a full line of memory lo

cations, but you've changed only one. By the way, did you

notice that the address you changed does not now contain the

value 2 you put in? Funny things, I/O chips. If you're inter

ested, you might type $D020 to ask the computer what decimal

address in bank 15 you have changed. You might recognize
the answer, +53280.

225

u

Chapter 5 , ,

^=——^—=— U

i J
i 1

Writing a Simple ML Program

Let's write a short program to print a line of asterisks. We'll .]

use the built-in assembler. Here goes: I i

A 1500 LDX #0

The A means assemble. The address at which we will put this [j
instruction is 1500; it's in hexadecimal (put a dollar sign in

front if you like). The instruction itself is LDX #0, load counter

X with a value (the # character means a value, not an address)

of zero. Press RETURN, and you'll see that the line has

changed to

A 01500 A2 00 LDX #$00

The machine code in addresses 1500 and 1501 (bank 0,

but in this area that's the same as bank 15) is hex A2 00.

These two bytes have been placed in memory, and the moni

tor is ready for your next line of code; in fact, it has typed part

of it for you. Complete the next line so that it reads

A 01502 LDA #$2A

This instruction, when the program runs, will load the

ASCII code for an asterisk (hex 2A) into the A register; that's

the register we use for printing. Continue with

A 01504 JSR $FFD2

A 01507 INX

A 01508 CPX #+20

The first instruction in this group prints a character, call

ing the Kernal ROM routine usually known as BSOUT (also

known in the Commodore 64 as CHROUT). The next adds

one to the X register, which we're using as a counter. The last

instruction says, "Compare the counter with decimal 20."

Note the plus sign for decimal. When you press RETURN, the

line changes to j »

A 01508 E014 CPX #$14 ^
The value 20 has been changed to hexadecimal. Don't be

surprised; it's still the same number. Continue entering with \ j

A 0150A BNE $1504

A 0150C LDA #$0D

A 0150E JMP $FFD2 |_j

The instruction BNE $1504 sends the program back to

print again if you haven't reached 20 characters. The sequence , ,

LDA #$0D:JMP $FFD2 prints a carriage return and terminates I—>

u

Programming

the program (we know that the ROM routine at $FFD2 ends

with RTS, so we can save a little code by using that RTS to re

turn, rather than ending with the more conventional JSR

$FFD2:RTS). After typing the last line, the computer prompts

you with A 01511. Simply press RETURN to end the assembly.

If you like, you can proofread your program by entering

the command

D 1500 150C

The D command is for disassemble, which performs an activ

ity more or less the reverse of an assembly.

Starting Up

You can go to this program with a G (go) command, which

doesn't permit a return. Better, you can call it with a J (jump

subroutine) command. But first, you must think about what bank
you are in.

If you enter the command J 1500, you'll have a disaster

on your hands. Why? Because you're entering bank 0, which

contains no Kernal ROM and no I/O chips. Remember, the

program uses the Kernal ROM routine BSOUT to print each

character. If you JSR to this routine when the Kernal ROM is

absent, you'll never print those asterisks, and your program

will almost certainly fail. If you really want to call this pro

gram from the machine language monitor, invoke bank 15
with J F1500.

It's also quite simple to call the routine from BASIC. First,

find the starting address. Type $1500 and read the answer,
decimal +5376.

Back to BASIC

Return to BASIC by giving the X (exit) command. You'll see
the familiar READY response of BASIC. Now type NEW (don't
worry, your machine language program won't be harmed) and
enter the following program:

100 bank 15

110 SYS 5376

120 PRINT "THIS WORKS"

130 SYS 5376

140 PRINT "WITHOUT PROBLEMS"
150 SYS 5376

227

Chapter 5

Run the program, and you should see a row of asterisks. If

you've done these exercises, you should have a feeling for the

128's machine language monitor. It's convenient and flexible.

Now let's look at linking BASIC and machine language

programs together.

Calling and Linking
The usual way to activate a machine language program from

BASIC is with a SYS statement. Typically, you load and run a

BASIC program, and that program loads the machine language

program as needed. Sometimes the BASIC program and its ac

companying ML code are combined in a single file. When you

load such a program, the ML comes into memory along with

the BASIC program text, so all you need is the SYS. In other

cases, the BASIC program loads the ML file in a separate op

eration, a process known as overlaying.

Overlaying is a flexible technique. A BASIC program can

load more than one machine language program; it can also

load data, graphics screens, or other material. When program

ming an overlay, you must take care so that a program doesn't

self-destruct by loading something into memory which the

program itself occupies.

Where memory is limited, overlays can greatly expand the

capabilities of a computer. The program can load a machine

language program into memory and use it; then the program

can load a different program to the same part of memory, and

so on. In theory, there's no limit to how big a program might

be when it's brought into memory as a series of overlays. The

CP/M system, which can also be used by the 128, works

largely by means of overlays (in fact, when it boots in CP/M

mode, the computer loads the entire CP/M operating system

from disk).

Overlay Example

Let's write a simple machine language program and load it

into memory. The program will, on request, print a given char

acter a certain number of times, followed by a carriage return.

We'll use it to draw a simple bar graph. Type MONITOR and
press RETURN; then enter the following lines:

228

Programming

A 1400 JSR $FFD2

A 1403 DEX

A 1404 BNE $1400

A 1406 LDA #$0D

A 1408 JMP $FFD2

As you enter each line, the computer rewrites the line and

prompts you with the address for the next line. A question

mark means that you need to retype the line. After you enter

the last line, the computer displays this line:

A 0140B

To end the assembly, press RETURN on this line without

typing anything else. The line at 1400 calls the print routine,

which prints whatever character is in the A register. The value

in that register will be set by the BASIC calling routine. The

line at 1403 subtracts one from the counter value in the X reg

ister; this value is set from BASIC as well. Lines 1404-1408

say, "If the count has not hit zero, go back; otherwise, load

and print a RETURN character and return to BASIC."

After you enter the program, save it to disk with the fol

lowing command:

S "0:+ML",8,1400,140B

This command saves the program under the filename

+ML. There's nothing magical about the plus sign at the be

ginning of the filename. I prefer to put a special character at

the start of the name of any file that is not intended to be

loaded with a BASIC LOAD or DLOAD. This serves as a visual

reminder of the file's special purpose when you are scanning a

disk directory. Any legal Commodore filename can be used

when you're saving files from the ML monitor. However, the

BASIC program listed below expects to find a file named

+ML, so you should include the plus sign for this example.

After you press RETURN, you'll see the disk light come
on and hear the disk motor run. Now, for a handy feature of

the machine language monitor: We'll ask the disk whether or
not everything went well. Type the single character @ and

press RETURN. You'll get a report from the disk. There will be

a number (the error type, normally 0); a message (normally

OK); and then two more numbers, which indicate the disk
track and sector where the error occurred (in cases where that
information is relevant). If you get the OK message, your pro
gram has been saved and you're ready to proceed.

229

Chapter 5

The disk commands of the machine language monitor are

very useful. They are similar to those of the disk wedge pro

grams used in other Commodore computers. For example,

type

@,$0

and press RETURN. You'll get the directory of your disk.

Now let's destroy the program we have just written and

saved to disk. That way, we can confirm that our BASIC pro

gram will load it correctly from disk. We'll use the F (Fill)

command to store zeros in memory locations 1400-1480:

F 1400 1480 0

The BASIC Portion

Our machine language program is gone. To exit to BASIC,

type X and press RETURN. Now let's write the main program.

Type NEW; then enter this program:

100 BANK 15

110 BLOAD M+ML"

120 IF DS<>0 THEN PRINT DS$:STOP

130 V=10

140 FOR J=1986 TO 1996

150 PRINT J;:SYS 5120,42,V

160 V=V*1.1

170 NEXT J

We specify bank 15 so that Kernal ROM will be visible

when the machine language routine is executed. The BLOAD

command brings in the program. Since we don't specify a

bank, the program goes to bank 15 (which, for the addresses

concerned, is the same as bank 0). Because we don't specify a

starting address, the program loads at the address from which

it was saved.

After the load, the program checks the disk status to make

sure everything went well. The disk status reserved variable,

DS, must be zero; if not, we print the status message (DS$)
and stop. We don't want to SYS to a program that might not

be there.

The main program plots a value that grows at 10 percent

per year over 11 years. It prints each year (J) and calls the ma

chine language routine. The operation of SYS has been en

hanced in the 128's BASIC 7.0. Additional values can be

230

Programming

added after the address; these are stored in the various

microprocessor registers when the routine is executed. The

SYS in line 150 places the value 42 (the character code for an

asterisk) into the accumulator and the value of the variable V

(which starts at 10 and grows a little for each line) into the X

register. If you like, you can change the program to print a

character other than the asterisk. Simply replace the number

42 with the character code for the desired symbol. Similarly,

you can play around with the values of V. Remember, how

ever, that you can only pass values less than 256 in this

manner.

If you use overlay techniques, you may load your ma

chine language program to any free memory area. Stay below

location $4000 (decimal 16384), however, unless you're famil

iar with the fine points of the 128's banking architecture.

Don't interfere with areas containing working values. Use the

spare locations indicated earlier in Figure 3.

Liberating Memory

If you need a good deal of space and want to use the overlay

method, there's a trick that will liberate an extra 9K block of

memory up to $4000. You can easily switch BASIC so that it

starts at address $4000, leaving free space in the former

BASIC program area from $lC00 to $3FFF. Here's how to do

it. At the start of your BASIC program, add the following line:

GRAPHIC 1:GRAPHIC 0

Here's how the trick works. When the GRAPHIC 1 state

ment is executed, BASIC is moved up to make room for a

high-resolution graphics screen. BASIC now starts at location

$4001. GRAPHIC 0 returns the display to the normal text
screen, but the high-resolution screen area remains allocated,

and BASIC does not move back down. The result is lots of

empty memory for you to use (this method assumes that you

don't need high-resolution graphics, of course).

If you use this technique, you might like to deallocate the
graphics area and restore your BASIC program's original posi

tion (starting at $1CO1) when the program is finished. The
command to do this is GRAPHIC CLR.

231

Chapter 5

Joining to BASIC

If you don't like the extra disk activity that overlays require,

you might prefer a technique that is popular on many other

Commodore computers: tacking a machine language program

onto the end of a BASIC program. The advantage of this tech

nique is that a single load operation brings in both the BASIC

program and the machine language program. This technique

works equally well with disk or tape. But there are a few

points to remember.

When using this technique on other Commodore comput

ers, you must take care not to change the BASIC program once

it is in place. It's obvious when you think about it: If you add

to the BASIC program, the machine language portion moves

higher in memory in order to make room for the new program

line(s). As a general rule, you must write the BASIC program

first and refrain from changing it once it's finished.

The 128 adds another difficulty to this technique. You

can't tack something onto a BASIC program if you don't know

where the BASIC program is located. To explain, BASIC

usually starts at $1CO1, but if someone has been using graph

ics, the start of BASIC might be at $4001. It's no use writing a

program to sit behind BASIC—at, say, location $1F8O—and

then discover that it sometimes loads to $4280. Chances are

that it won't work in the new location, especially since it's

above the dreaded $4000 barrier.

There are several ways around this problem. One is to

check the start of BASIC and refuse to call the ML code if it's

wrong. Another is to begin every program with GRAPHIC

CLR in an attempt to move the program down to the desired

area. Be careful with GRAPHIC CLR, however; it has a pitfall

which we'll get to in a moment.

Sample Combining Program

Here's a small program that combines BASIC and machine

language in one package. Let's write the BASIC part first:

100 GRAPHIC CLR

110 BANK 15

120 PRINT "SPEED TYPING11

130 PRINT "TRY TO TYPE A SENTENCE"

140 PRINT "END WITH RETURN"

150 SYS XXXX

160 PRINT "FAST, HUH?"

232

Programming

Do not run this program yet; the machine language is not

in place. Now type GRAPHIC CLR to make sure the program

is situated in the right part of memory. Enter the machine lan

guage monitor with MONITOR, and then type this command:

M2D2D

The first two bytes displayed on the screen should be 01

1C. This operation confirms that BASIC does indeed start at

address $1CO1. Now enter this command to see where the

program ends:

M 1210 1211

Depending on how you typed in the BASIC program

(whether you included extra spaces, for example), you'll see a

first byte with a value of about $8D and a second byte of $1C.

Assuming this is the place where the program ends, you can

tack on machine language anywhere after about $1C8D. To

give ourselves some slack, let's pick $1CCO as our machine

language starting point. Now that you've chosen this address,

type $1CCO and press RETURN. The monitor prints +7360,

indicating that the decimal value of $1CCO is 7360. Now exit

to BASIC and change line 150 as shown here:

150 SYS 7360

Now reenter the monitor and enter the following machine

language program:

A 1CC0 JSR $FFE4

A 1CC3 CMP #$0D

A 1CC5 BEQ $1CD8

As we write this program, we'll guess at the exit address,

since we haven't got there yet. We can always come back to

correct this address if it's not correct.

A

A

1CC7

1CC9

BCC

LDX

Note that

$1CCO

+30

: the monitor changes the decimal value 30 to

$1E when you press RETURN.

A

A

A

A

A

A

A

1CCB

1CCE

1CCF

1CD1

1CD3

1CD6

1CD8

JSR

DEX

BNE

LDA

JSR

BNE

RTS

$FFD2

$1CCB

#$0D

$FFD2

$1CCO

233

Chapter 5

On the last line, we see that the exit address is $1CD8. If

you had guessed wrongly on line 1CC5, this would be the

time to go back and correct it. Now, here's the payoff. Display 1 i

the end-of-BASIC pointer with the command M 1210 1211. '—'

You'll see the same addresses as before. Move the cursor back

and change the display to read j

>01210 D9 1C

After you press RETURN, it's safe for you to save the en

tire package. When you do so, the BASIC and machine lan

guage files will be saved as one block. When you reload the

file, both programs will come in together. But there's a pitfall

which is related to the GRAPHIC CLR statement we used in

the BASIC program. When you execute GRAPHIC CLR, you

may reset the contents of locations $1210-$1211 back to their

original values. If you use GRAPHIC CLR in a program as

we've done here, be sure to save the program before you run

it. To save the program, return to BASIC and save the pro

gram with the usual DSAVE command. Run the program and

try typing a sentence; you'll be amazed to discover what a

speedy typist you've become.

LJ

LI

234

J; /' >

.', !« vl|^Vf'1 \ *•''.• s

4m, s_ .o. .*.V '-.

1 1 (' <-f < "* A

■ • '5":-t^S^^w:

-f-.S'-^'i^i

n TurboDisk 128
Don Lewis

Are you using a 1541 disk drive with your Commodore 128?

Here's a powerful utility that can reduce the time you spend wait

ing for programs to load by 300 percent or more.

If you've upgraded to a Commodore 128 from a VIC-20 or 64

and are still using a 1541 disk drive, you're probably envious

of those fellow 128 owners whose 1571 drives can load pro

grams in the blink of an eye. Perhaps you've used "TurboDisk

64" in 64 mode and wished for an equivalent speedup for 128

mode. Here's the answer: "TurboDisk 128," a new and im

proved version specifically for the 128/1541 combination.

TurboDisk 128 works only in 128 mode. And the program

works only with a 1541; it isn't useful in conjunction with a

1571. If you own a 1571 disk drive, you don't need a turbo

program while you're in 128 mode: The 128 and 1571 can use

the fast serial-transfer hardware built into both disk drive and

computer, which is as much as eight times faster than a stan

dard 1541—about twice as fast as TurboDisk.

But even if TurboDisk 128 doesn't permanently cure your

desire for a 1571, it will make your life with the 1541 more

bearable. In fact, once you start using TurboDisk, you'll won

der how you got along without it. TurboDisk turbocharges the

loading process by a factor of three times or more. In fact, the

longer the program, the more improvement you'll see. Like

TurboDisk 64, the 128 version requires no modifications to

r—j your disk drive or computer. It loads programs saved in the

'- ' usual manner; no special Turbosave is required. It works with
most BASIC and machine language programs. It does not

p*j compromise reliability. And you can switch it on or off at any

1 time by typing a single command.

P! Typing It In

Since TurboDisk is written entirely in machine language, it

,] must be entered with the 128 version of our "MLX" machine
r i language entry program, which is found in Appendix C. Be

m 237

Chapter 6

sure that you read and understand the instructions for using

MLX before you begin entering the data for TurboDisk. When
you first run MLX, you'll be asked for starting and ending ad
dresses. The correct values are

Starting address: 1300

Ending address: 16CF

Now you can begin entering the data for TurboDisk.

When you've finished entering the numbers, be sure to use
the MLX Save option to make at least one copy of the

TurboDisk data. You'll probably find TurboDisk so useful that

you'll want a copy on every disk you use. You can use the

MLX Save option repeatedly to make copies on different disks.

If you want to put a copy of TurboDisk onto a new disk at

some later date, you can use any copy program. Or load an

existing copy of TurboDisk, place the disk on which you wish

to store the new copy of TurboDisk into the drive, and use a
command of the form

BSAVE "filename",B0,F4864 TO P5839

To load TurboDisk, use a command of the form

BLOAD "TURBODISK 128":SYS DEC("1300")

(replacing TURBODISK 128 with whatever filename you used

when you stored the TurboDisk data). The message C128

TURBODISK ENABLED signals that you're ready for high

speed loading.

Turbo LOADs

Once TurboDisk is activated, no special commands are neces

sary. Just type LOAD "filename"$ or DLOAD "filename" or

VLDAD"filename" as usual. You'll be amazed at the difference.

One thing you'll notice immediately is that the red light

on the disk drive doesn't come on at all during a Turboload.

Don't panic; this is normal. It's also normal for the 40-column

screen to blank while TurboDisk works. When the program is

loaded, the screen reappears unaltered.

You may occasionally find it necessary to deactivate

TurboDisk and use a normal LOAD instead. For example,

1541 disk drives are prone to head-alignment problems, so if

you have a disk formatted on a drive other than your own,

you may find that your drive has difficulty loading programs

from it. You can switch off TurboDisk at any time without

238

Utilities

erasing it from memory by entering SYS DEC("1303") or the

equivalent SYS 4867. You should see the message C128

TURBODISK DISABLED. To be safe, it would be wise to in

clude a BANK 15 before the SYS to insure that the system is

in its normal BASIC configuration. To reactivate TurboDisk,

enter SYS DEC("1300") or the equivalent SYS 4864 (again, it

would be wise to precede this with a BANK 15). You should

see the message C128 TURBODISK ENABLED to indicate that

turboloading is now available.

You'll also find it necessary to use the SYS to reactivate

TurboDisk after pressing RUN/STOP-RESTORE, which effec

tively disconnects TurboDisk.

TurboDisk resides in the currently unused area of free

memory starting at address 4864-5839 (hex $1300-$16CF), so

it's completely safe from BASIC. However, this memory area

is rapidly becoming popular with 128 machine language pro

grammers, and you may find other programs that use these

locations. Such programs cannot be used with TurboDisk be

cause loading them will overwrite the TurboDisk program.

TurboDisk also uses the block of memory at 3072-3327

($0C00-$0CFF) as a buffer for the data read from disk. This

area is the RS-232 input buffer, but since the 128 can't turbo-

load and receive RS-232 input simultaneously, this dual usage

should cause no conflict. However, you should be aware that

some programmers use the RS-232 buffers for machine lan

guage routines. Such routines cannot be used with TurboDisk.

TurboDisk speeds up LOAD, DLOAD, BLOAD, and the

monitor's L command, but it can't speed up SAVE or VERIFY.

It also doesn't affect the speed of disk file handling with

PRINT#, GET#, and so forth. It's not compatible with certain

features of some programs and may not work with some com
mercial software.

How It Works

The machine language for TurboDisk is unusual in that only
half of it works within your computer—the rest is actually ex
ecuted within the 1541 drive itself. Commodore disk drives
are intelligent units, containing their own microprocessors,
RAM, and ROM. This means that they can be programmed for
special effects, like turboloading.

During the brief delay you notice between the time you

239

Chapter 6

enter the load command and the time the drive starts spin

ning, 464 bytes of machine language are transferred from the

computer to the drive's RAM. In the 128, this data is stored in

locations 5376-5839 ($1500-$16CF). This required transfer

before each Turboload adds a certain amount of overhead

time, which explains why TurboDisk gives less improvement

in speed for short programs.

The 128-resident portion of TurboDisk operates by chang

ing the ILOAD vector at locations 816-817 ($330-$331) to

point to itself, bypassing the normal LOAD routines in ROM.

TurboDisk first checks to see whether a disk directory or a

verify operation has been requested. In either of these cases,

control is returned to the ROM routines for normal processing.

If a program load has been requested, the routine adds the

filename to the code for the disk drive portion and then trans

fers that data to the drive's memory.

The portion of TurboDisk in the disk drive uses routines

in the drive's ROM to locate the desired program and read it

from the disk, sector by sector. To improve speed, routines

like the one that turns on the red light are omitted, and only

the essential ones are used. The 256 bytes of data from each

disk sector are sent to a 256-byte buffer within the computer.

As mentioned above, this buffer is at locations 3072-3327

($0C00-$0CFF). TurboDisk sends data over both the DATA

and CLK lines on the serial port, instead of just the DATA line

as in normal serial data transfers. Thus, TurboDisk temporarily

converts your serial bus into a two-bit parallel bus. When the

entire 256 bytes from a disk sector have been transferred into

the computer's buffer, data from the buffer is added to the

program in memory while the drive is reading the next sector

from the disk.

The Longer, the Faster

Despite a few limitations, TurboDisk is one of the most valu
able general-purpose utilities a disk user can own. To discover

exactly how fast it is, we ran some tests. The results in the ta
ble demonstrate that TurboDisk yields the most improvement

with medium to long programs. Results with different disk

drives may vary.

240

Utilities

TurboDisk Results

Program

1

2

3

4

5

Blocks

7

16

28

55

138

Normal

7

13

20

40

94

Load Turboload

(seconds)

3

4

6

10

25

Factor

2.33

3.25

3.33

4.00

3.76

Note to Readers Outside North America

High-speed TurboDisk data telm#fers rely on
the program may faU to opet^e^ti systems.
petft PAL video system tosteaiil^NoA
sysfem. Jh4 reason is rather ledHiiicai: I28$s^ipp^
:a slightly differenfmicroproce^sAr.cltcJk fy^^^j
lian reader submitted a modiflcaj^gii^o cpmpensate i
h ^h^e
128 with PAL video for

rsame inodificatipn-will work

"»$isk428 will *^;l!
^you'can.try changing

sr^tilife*'J4t;

04 D0 M>

TurboDisk 128
5ee Instructions in article, and read Appendix C, "MIX," before typing in the following
program listing.

Starting address: 1300

Ending address: 16CF

1300:4C

1308:A9

1310:29

1318:D0

1320:A9

1328:E6

1330:55

1338:20

1340:44

1348:20

1350:53

1358:45

1360:F0

IB 13 A9

F2 8D 31

13 F0 06

F5 60 A9

13 8D 31

0D 43 31

52 42 4F

44 49 53

0D 00 0D

54 55 52

4B 20 45

44 0D 00

05 A5 93

6C 8D

03 A0

20 0C

5C 8D

03 A0

32 38

44 49

41 42

43 31

42 4F

4E 41

85 93

4C 6C

30 03 0D

00 B9 D8

C0 C8 89

30 03 47

1A D0 44

20 54 87

53 4B 0C

4C 45 CE

32 38 18

44 49 84

42 4C 93

A5 93 2D

F2 A2 CA

241

u

Chapter 6 , .

u
1368:10 A9 A0 9D C0 16 CA 10 F2

1370:FA A0 00 20 AE F7 C9 24 4B

1378:F0 E8 AD 30 D0 85 FA A9 46) j
1380:0B 8D 11 D0 A9 FD 8D 30 4F 1—>

1388:D0 A0 01 20 AE F7 C9 3A 84

1390:F0 04 A0 00 F0 01 C8 A2 04 t

1398:FF E8 20 AE F7 9D C0 16 B5 | }
13A0:C8 C4 B7 90 F4 20 8E 14 B5

13A8:A5 BA 20 Bl FF A9 6F 20 15

13B0:93 FF A9 55 20 A8 FF A9 78

13B8:43 20 A8 FF 20 AE FF 78 Dl

13C0:20 4D 14 2C 00 0C 30 5D 7D

13C8:A4 C3 A6 C4 A5 B9 F0 06 4F

13D0:AC 02 0C AE 03 0C 84 AE 3A

13D8:86 AF A2 04 AD 00 0C F0 39

13E0:15 20 2F 14 20 4D 14 AD CC

13E8:00 0C 30 3C F0 06 20 2D E8

13F0:14 4C E4 13 A2 02 86 FB 28

13F8:A0 00 BD 00 0C 20 BF F7 7F

1400:C8 E6 FB A6 FB EC 01 0C Dl

1408:90 F0 BD 00 0C 20 BF F7 C4

1410:C8 20 40 14 18 A6 FA 8E CD

1418:30 D0 A2 IB 8E 11 D0 A6 93

1420:AE A4 AF 58 60 A9 04 2C 22

1428:A9 00 38 B0 E8 A2 02 86 93

1430.-FB A0 00 BD 00 0C 20 BF 8A

1438:F7 C8 E6 FB A6 FB D0 F3 E5

1440:18 98 65 AE 85 AE A5 AF 14

1448:69 00 85 AF 60 A9 FC 8D 02

1450:30 D0 A0 00 AD 00 DD 30 32

1458:FB A9 17 8D 00 DD AD 00 77

1460:DD 10 FB A9 07 8D 00 DD El

1468:A2 04 CA EA D0 FC A2 04 AE

1470:AD 00 DD 0A 08 0A 26 95 16

1478:28 26 95 CA D0 F2 A5 95 D0

1480:49 FF 99 00 0C C8 D0 CC 72

1488:A9 FD 8D 30 D0 60 A9 10 25

1490:85 FF A9 00 85 FB 85 FD D5 j (

1498 :A9 15 85 FC A9 05 85 FE C6 {—'
14A0:A5 BA 20 Bl FF A9 6F 20 0F

14A8:93 FF A5 FD A4 FE 8D F0 5C , j

14B0:14 8C Fl 14 A0 00 B9 ED EB \ >
14B8:14 20 A8 FF C8 C0 06 D0 2E

14C0:F5 A0 00 Bl FB 20 A8 FF D8

14C8:C8 C0 20 90 F6 A5 FB 69 42 j \
14D0:1F 85 FB A5 FC 69 00 85 D6 ^
14D8:FC A5 FD 69 20 85 FD A5 F7

14E0:FE 69 00 85 FE 20 AE FF 11 t >

14E8:C6 FF D0 B4 60 4D 2D 57 C3 O

242

Utilities

14F0:00 00 20 FF FF FF FF FF ID

14F8:FF FF FF FF FF FF FF FF 21

1500:20 42 D0 78 A9 15 8D 07 30

1508:1C A9 12 A0 01 8D 00 03 38

1510:8C 01 03 20 CD 05 A9 03 FB

1518:85 3C A2 00 86 4B F0 2B D6

1520:A0 00 Bl 3B 29 BF C9 82 E2

1528:D0 19 C8 C8 C8 B9 BD 06 55

1530:C9 2A F0 42 C9 3F F0 04 3D

1538:Dl 3B D0 07 C8 C0 12 F0 03

1540:35 D0 EA E6 4B A6 4B E0 71

1548:08 F0 07 BD 6E 05 85 3B 3D

1550 :D0 CE AD 00 03 F0 06 AC E0

1558:01 03 4C 13 05 A9 FF 8D DA

1560:00 03 20 96 05 A9 3A 8D 89

1568:07 1C 58 4C 45 D9 02 22 A4

1570:42 62 82 A2 C2 E2 E6 3B 79

1578:A0 00 Bl 3B 8D 00 03 C8 18

1580:B1 3B 8D 01 03 20 CD 05 4D

1588:20 96 05 AD 00 03 D0 F5 87

1590:A9 3A 8D 07 1C 60 A0 00 E3

1598:B9 00 03 85 85 A9 02 8D BC

15A0:00 18 AD 00 18 29 04 F0 E4

15A8:F9 A9 00 8D 00 18 A2 04 BC

15B0:A9 00 06 85 2A 0A 06 85 D3

15B8.-2A 0A 8D 00 18 CA D0 F0 AA

15C0:48 68 48 68 A9 00 8D 00 21

15C8:18 C8 D0 CC 60 A9 03 85 4D

15D0.-86 AC 01 03 84 07 AD 00 55

15D8:03 C5 06 08 85 06 28 F0 BC

15E0.-10 A9 B0 85 00 58 24 00 95

15E8:30 FC 78 A5 00 C9 01 D0 CD

15F0:54 A9 EE 8D 0C 1C A9 06 90

15F8:85 32 A9 00 85 33 85 30 DB

1600 :A9 03 85 31 20 5C 06 50 54

1608:FE B8 AD 01 1C 99 00 03 Fl

1610 :C8 D0 F4 A0 BA 50 FE B8 4B

1618: AD 01 1C 99 00 01 C8 D0 DE

1620:F4 20 E0 F8 A5 38 C5 47 5B

1628:F0 04 A9 22 D0 11 20 E9 1A

1630:F5 C5 3A F0 04 A9 23 D0 FC

1638:06 A9 EC 8D 0C 1C 60 C6 A0

1640:86 D0 AE F0 03 18 69 18 2C

1648:85 44 A9 FF 8D 00 03 20 10

1650:96 05 A9 3A 8D 07 1C A5 48

1658:44 4C C8 Cl 20 62 06 4C Dl

1660:9E 06 A5 12 85 16 A5 13 16

1668:85 17 A5 06 85 18 A5 07 11

1670:85 19 A9 00 45 16 45 17 FE

243

Chapter 6

1678:45 18 45 19 85 1A 20 34 90

1680:F9 A2 5A 20 9E 06 50 FE 4C

1688:B8 AD 01 1C D9 24 00 D0 8E

1690:06 C8 C0 08 D0 F0 60 CA 60

1698:D0 E9 A9 20 D0 Al A9 D0 10

16A0:8D 05 18 A9 21 2C 05 18 4E

16A8:10 9E 2C 00 1C 30 F6 AD 47

16B0:01 1C B8 A0 00 60 FF FF 07

16B8:FF FF FF FF FF FF FF FF E4

16C0:A0 A0 A0 A0 A0 A0 A0 A0 EC

16C8:A0 A0 A0 A0 A0 A0 A0 A0 F4

244

Keymaster

Bob Kodadek

This powerful utility becomes an extension of the 128's operating
system, providing full use of the extended keyboard in the 64 mode.

When the Commodore 128 was designed, a major concern

was that it should be hardware- and software-compatible with

the Commodore 64. Early reports stated that a complete 64

would be built inside the 128. Actually, the 64 mode is a 128

running in an emulation state—the 128 thinks it's a 64. This is

better than having another 64 around. In fact, it can open up
some doors for use.

Inside the 128

There are two processors inside the 128, the new 8502 and the

Z80. The 8502 chip is the main processor in the 64 and 128

modes and it is used as a coprocessor for input/output (I/O)

in the CP/M mode. In order to keep the 128 compatible with

the vast amount of 64 software, only the standard 66 keys

were made available in the 64 mode. Since the extended key

board is a most desirable feature on the 128, it would have

been pleasing to have use of the full keyboard in the 64 mode.
The VIC-II video chip, however, has two new registers, 47 and

48. Register 47 appears at location 53295 ($D02F) and is used

by the 128 to read the numeric keypad, the top row of keys
which include the cursor keys, HELP, TAB, and other special
keys. With special coding, this register can be read in the 64
mode and utilized in the same manner.

Extending the Keyboard

The accompanying program, "Keymaster/7 is an all machine
language program, with the ML in the DATA statements. It
becomes an extension of the operating system, providing full
use of the extended keyboard in the 64 mode, while still
maintaining full compatibility. The repeating numeric keypad
and the cursor keys located on the top row of keys, NO

245

Chapter 6

SCROLL, and TAB keys are programmed to perform exactly as

in 128 mode. The CAPS LOCK key is used as an aid in typing

DATA statements. When this key is depressed, the period lo- j (
cated in the keypad becomes a comma, allowing one-handed

decimal data entry.

With the exception of the 40/80 DISPLAY key, each key [J
is read and assigned a value from 65 to 88 and a CHR$ code.

When a key is pressed, the CHR$ code is put into the key

board buffer, and the keypress value is stored into two accessi

ble RAM locations as the current keypress and the last key

press. This allows each key to be read and programmed from

within a program by the use of simple PEEK or GET instruc

tions.

This tiny, yet powerful, utility program has its own

interrupt-driven scan-key routine, a wedge to operate the NO

SCROLL and TAB key functions, and a nonmaskable interrupt

(NMI) handler. The NMI handler prevents the program from

being disabled when the RUN/STOP and RESTORE keys are

pressed. The keyboard will stay active until you turn off the

computer or perform a system reset.

Using the Program

Type in and save the BASIC loader program (Program 2).

When you run it, the top-of-memory pointer will be moved

down, all variables will be cleared, and the machine code will

be POKEd into a newly protected area of BASIC RAM at

40624-40959 ($9EB0-$9FFF). I chose to place the code in

BASIC memory so that many other machine language pro

grams that you may have will be able to run with Keymaster.

Programs such as Merlin 64 and Microtnon use the area

49152-53247 ($C000-$CFFF) and can be used with the new

keyboard. (/

Keymaster actually becomes part of the operating system. w-f
Though it alters the interrupt request (IRQ) vector to point to

itself, you may still use your own interrupts as long as you re- \ \

member to save the address in 788-789 ($314-$315) and jump wJ

to it rather than the normal IRQ located at $EA31. In an emer
gency, pressing RUN/STOP-RESTORE will function as usual, (,

except the Keymaster's vectors will be reset instead of the de- O
fault vectors. The best way to disable the new keyboard is to

perform a system reset. Do this by holding down the Commo- \ ^

dore key and pressing the RESET button, or by doing a SYS Lj

u

Utilities

1
t \

n

64738. Either of these resets will return the machine to the 64
mode with no loss of memory.

After a reset, the BASIC pointers will be restored to their
default values, allowing BASIC to store variables on top of the
keyboard code. In this condition, any attempt to load or save a
program will ruin the code because the filename will be stored

there. If you want to restart Keymaster after a reset, you'll
need to do the following in direct mode:

POKE 55,175:POKE 56,158

CLR :SYS 40624

If you don't need the current BASIC program in memory, the
easiest method is to load and run the BASIC loader again.

All of the new keys can be read and used in your own

programs. Each key has been assigned a CHR$ code that is

The New Keys

Key

Pressed

None

HELP

8

5

TAB

2

4

7

1

ESC

+

—

LINE FEED

ENTER

6

9

3

ALT

0

Crsr Up

Crsr Dn

Crsr Lt

Crsr Rt

NO SCROLL

Value

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

CHR$ Code

21

56

53

22

50

52

55

49

27

43

45

10

13

54

57

51

23

48

46

145

17

157

29

24

H
247

u

Chapter 6 __ , .

U
placed in the keyboard buffer when pressed. Using the GET

command will return the code for each new key. Similar to lo

cation 197, new location 40956 returns the current new key j_j
being pressed. If no key is pressed, a 64 will be returned. New

keys will return the values 65-88. Location 40955 holds the
value of the last key that was pressed during the interrupt, [J
and it is used to initiate the pause before a key begins

repeating.

Refer to the table for a list of all the new keys and the

corresponding keypress values and CHR$ codes.

To get a better idea of how all this works, type in and run

the short BASIC demo program, Program 1, when Keymaster

is active.

Another important location, 40800, holds the number of

spaces for the TAB function. The default is 5, but you may

place any number from 0 through 9 here.

The NO SCROLL function works a little better than the

one in 128 mode. The routine is wedged into the IBSOUT vec

tor at 806-807 ($326-$327). It looks for a carriage return

before allowing you to stop a listing. Therefore, it won't stop

in the middle of a line. It will also work with a Commodore

printer to freeze printing.

Program 1. Keymaster Demo
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

FC 10 PRINT"{DOWN}{2 SPACESjPRESS ANY KEY":PRINT

BX 20 GETA$:IFA$=""THEN20

DA 30 REG=PEEK(197):EXT=PEEK(40956)

QB 50 PRINT" REGULAR KEYPRESS:"REG

ER 60 PRINT"EXTENDED KEYPRESS:"EXT

HD 70 PRINT"{7 SPACES}CHR$ CODE ="ASC(A$)
KS 80 PRINT"{7 SPACES}CHARACTER = "A$ ^ ,

KX 90 POKE 198,0:IFA$=CHR$(27)THEN END 1—\

SJ 100 GOTO10

i '

Program 2. Keymaster ^
For mistake-proof program entry, use "The Automatic Proofreader," Appendix B, to type in

this program. , }

FQ 10 POKE 55,175:POKE 56#158:CLR ^
HS 20 PRINT"READING...":ML=40624

SH 30 FOR 1=0 TO 334:READ BYTE:POKE ML+I,BYTE \ /

EQ 40 CK=CK+BYTE:NEXT I '—■>

u

n

. , Utilities

\ \

SX 50 IF CK <> 43161 THEN PRINT "DATA ERROR 1": END
SP 60 SYS ML:NEW

/—] BD 100 DATA 169,127,141,13,220,32,190,158

>.\ CS 101 DATA 169,129,141,13,220,96,162,8
GF 102 DATA 160,159,142,20,3,140,21,3

BG 103 DATA 169,226,160,158,141,24,3,140

QJ 104 DATA 25,3,162,175,160,159,142,38
GM 105 DATA 3,140,39,3,169,0,141,254
KF 106 DATA 159,96,72,138,72,152,72,169
AG 107 DATA 127,141,13,221,172,13,221,48
CR 108 DATA 20,32,188,246,32,225,255,208

KH 109 DATA 12,32,190,158,32,163,253,32
SD 110 DATA 24,229,108,2,160,76,114,254
KP 111 DATA 162,0,142,0,220,172,1,220

XE 112 DATA 192,255,208,80,169,64,141,252
FJ 113 DATA 159,162,46,165,1,41,64,208
JP 114 DATA 2,162,44,142,244,159,140,0
GX 115 DATA 220,200,140,47,208,174,1,220
XM 116 DATA 224,255,240,37,200,169,254,141
MR 117 DATA 47,208,162,8,72,173,1,220

EE 118 DATA 205,1,220,208,248,74,176,3
CP 119 DATA 140,250,159,200,192,25,176,33
QR 120 DATA 202,208,242,56,104,42,76,55
BQ 121 DATA 159,173,252,159,141,251,159,160
AC 122 DATA 5,140,253,159,169,255,141,47
CQ 123 DATA 208,169,127,141,0,220,76,49
PM 124 DATA 234,104,172,250,159,185,225,159
PR 125 DATA 170,152,24,109,252,159,141,252

HA 126 DATA 159,205,251,159,240,13,160,16
QS 127 DATA 140,140,2,141,251,159,32,52

FG 128 DATA 235,208,3,32,13,235,173,252

MB 129 DATA 159,201,68,208,15,174,253,159
RD 130 DATA 240,10,162,32,32,52,235,206

CD 131 DATA 253,159,16,241,76,100,159,201
XP 132 DATA 13,208,43,72,138,72,32,225

AQ 133 DATA 255,240,27,173,252,159,201,88
EK 134 DATA 208,15,173,254,159,73,255,141

P} KK 135 DATA 254,159,173,252,159,201,64,208
GK 136 DATA 249,173,254,159,208,224,169,0

RD 137 DATA 141,254,159,104,170,104,76,202
r^) EH 138 DATA 241,0,21,56,53,22,50,52

/ (GP 139 DATA 55,49,27,43,45,10,13,54
HA 140 DATA 57,51,23,48,46,145,17,157
RP 141 DATA 29,24,0,0,0,5,0

n

249

u

u

KeyDef "
A. F. Shephard

With this short utility, you can redefine any—or all—of the keys to | |
print whatever character you choose.

The Commodore 128 is a highly versatile and powerful ma
chine. It offers windows, high-resolution graphics, 40- or 80-

column displays, redefinable function keys, and more. But it

suffers from a few shortcomings. For example, the numeric

keypad is almost useless for DATA statements because there is

no comma. You could, of course, use the KEY statement to re

define one of the function keys as a comma, but wouldn't it
make more sense to change the period to a comma? Unfortu
nately, KEY acts only on the function keys. But "KeyDef" lets
you redefine any key on the keyboard and gives you access to

six completely different keyboards.

Scanning for a Code

To understand how this is possible, you need to understand

how the 128 determines which character to display when a

key is pressed. Here's a short synopsis: The computer inter

rupts its normal operations 60 times per second to perform
housekeeping chores. One of these chores is checking to see

whether a key is pressed. This process, called the keyscan, in

volves checking each key in sequence to see whether it is

pressed. The 88 keys are arranged electrically in a matrix as 8

rows of 11 columns. Each key has a keycode that reflects the
key's position within the matrix. Only one keycode is returned ; <

per keyscan; if more than one key is pressed, the value re- *—'

turned will be that for the key with the higher keycode.

Keycodes range from 0 to 87; if no key is pressed, the keyscan \)

routine returns the value 88. You can find the keycode for ^
most keys by running this one-line program:

10 PRINT PEEK(213): GOTO 10 [J

The accompanying table is a complete list of keycodes.

i

250

LJ

Utilities

Commodore

Key
<-

1

2

3

4

5

6

7

8

9

0

+

—

£

CLR/HOME

INST/DEL

Q
W

E

R

T

Y

U

I

O

P

@
*

t

RUN/STOP
A

S

D

F

G

H

J
K

L
:

=

128 Keycodes

Keycode

57

56

59

8

11

16

19

24

27

32

35

40

43

48

51

0

62

9

14

17

22

25

30

33

38

41

46

49

54

63

10

13

18

21

26

29

34

37

42

45

50

53

Key

RETURN

Z

X

c

V

B

N

M

/

/
CRSR up/down

CRSR left/right

Space

Fl

F3

F5

F7

ESC

TAB

HELP

LINE FEED

NO SCROLL

Cursor t

Cursor i

Cursor «-

Cursor ->

Numeric Keypad
0

1

2

3

4

5

6

7

8

9

+

—

ENTER

Keycode

1

12

23

20

31

28

39

36

47

44

55

7

2

60

4

5

6

3

72

67

64

75

87

83

84

85

86

81

71

68

79

69

66

77

70

65

78

73

74

82

76

251

Chapter 6

Translation Tables

If you're familiar with the 128's character (ASCII) codes, it will

be obvious that the keycodes don't have any direct relation- j /
ship to the character codes for the corresponding letters and

numbers on the faces of the keys, so you may be wondering {

how the 128 translates the keycode into a character code. Note |_J
that none of the shift keys (SHIFT, Commodore, CONTROL,

ALT, or CAPS LOCK) appears in the keycode table. Instead,

the keyscan routine checks these keys to select one of six

translation tables. The keycode is then used as an index to the

table to find the equivalent character code for the key being

pressed. For example, suppose SHIFT-N is pressed; the key-

scan routine will select the SHIFT translation table and read

the thirty-ninth value in the table as the value for SHIFT-N

(the keycode for N is 39).

To determine the addresses of the translation tables, the

128 maintains a set of six pointers in memory (a pointer con

sists of two consecutive memory locations that together hold

an address in the standard low-byte/high-byte format). The

pointers to the keyboard translation tables are found on page

3 of the 128's memory:

830-831 ($033E-033F) Standard (unshifted)

832-833 ($0340-0341) SHIFT

834-835 ($0342-0343) Commodore

836-837 ($0344-0345) CONTROL

838-839 ($0346-0347) ALT

840-841 ($0348-0349) CAPS LOCK

On power-up or reset, these locations are initialized to

point to tables in ROM. The pointers can be changed to point

to customized tables in RAM, however, and that's just what

KeyDef does. It copies the usual values from the ROM tables

down to a free area of RAM memory and then changes the j \
pointers to point to the new tables in RAM. By POKEing new

ASCII codes into the relocated tables, you can redefine the

keyboard. j^j
Each of the translation tables contains 89 bytes; the first

88 bytes in the table each correspond to one keycode, while

the last byte is the value returned if no key is pressed. There j |
are actually only five different tables in ROM. The ALT key
pointer starts out with exactly the same value as the unshifted
key pointer, which explains why ALT doesn't seem to do any- j_J

252

u

Utilities

thing. However, KeyDef sets up a separate table for ALT, so it

can now have definitions completely independent of the un-

shifted key definitions.

Using the Program

KeyDef is written entirely in BASIC so there are no special in

structions for typing it in. Just remember to save a copy before
running it.

After a brief pause, during which the key definitions are
copied from the translation tables in ROM down to a free area

of RAM memory, KeyDef prompts you to enter the key you

wish to redefine. Press the appropriate key. Next, you're asked
for the table in which you wish to redefine the key (unshifted,
SHIFT, Commodore, CONTROL, ALT, or CAPS LOCK). You

are then told the current ASCII (character) code value of the

key in the selected table. Finally, you're prompted to enter the
new character code for the key.

If you're unfamiliar with Commodore's character codes,

look in Appendix E of the System Guide. Unfortunately, this

table was copied verbatim from the 64 User's Guide, and some
of the character codes between 0 and 32 are incorrect. For a

more accurate list of these codes, see Appendix I. CTRL-G

(code 7), for example, produces a bell tone. It's listed in Ap
pendix I, but not in Appendix E.

There are some tricky keys that we need to mention. One

is NO SCROLL. You must press it twice for KeyDef to recog

nize it when it asks "Which Key?" After that, it functions as

you want it to. Also, the current function-key definitions are

stored and erased at the beginning of KeyDef, then restored at

the end. Thus, to keep your function-key definitions intact, do
not quit KeyDef with RUN/STOP-RESTORE. HELP and

p^ SHIFT-RUN/STOP are normally character codes 132 and 131,
respectively. These can also be moved around the keyboard.

RUN/STOP is an odd case. Press SHIFT with it if you want to
p~j redefine it.

~- Notice that the numeric keypad numbers are different

from the numbers on the top of the keyboard, even though
<~**> normally they act the same. The four cursor keys at the top of

the keyboard also have different keycodes from the pair at the
bottom, so the two sets can be independently redefined. A

p"j word of caution: Be careful about redefining the numbers on

the keyboard, especially 1-6. These numbers are used as

r-j 253

Chapter 6 ,

u
menu items in the program and if they're redefined, you'll

have problems returning them to their normal status without .

rebooting the system. l^J
If you need to recopy the standard keyboard definitions to

set things back to normal after KeyDef is first run, exit the

program and type RUN 20. Should you wish to save a set of [^J
definitions, the procedure is easy. Just enter the following

commands:

BSAVE "filenamel",B0,P588S TO P6422

BSAVE "filename2",B0,F830 TO P842

These redefinitions can be reloaded with these commands:

BLOAD "filenamel"

BLOAD "filename?'

The KeyDef program doesn't need to be present in mem

ory once you've used it to make the new definitions. The ta

bles that are BLOADed are sufficient to redefine the keyboard.

The computer automatically handles the keyscanning and

character translation. However, you must take some care when

changing the pointers to the translation tables. Before you

change the pointers, the addresses to which you redirect the

pointers must contain valid translation tables (which is why

you must BLOAD the tables before you BLOAD the vector

values). Otherwise, you won't be able to type on the keyboard

because the computer will not be able to interpret your

keypresses. In fact, you can't even use RUN/STOP-RESTORE

if the RUN/STOP key isn't defined; your only recourse will be

the RESET switch.

The area of memory set aside for the new translation ta

bles is $1700-$1915 (5888-6421)—a total of 534 bytes for the

six 89-byte tables. According to the memory map in the Sys

tem Guide, this is part of the area reserved for function-key

software. Basically, it doesn't get used by BASIC, so it's a per- I j
feet place for data like this. (Other machine language routines

may use this area, however, so you should be on the lookout

for conflicts. "TurboDisk 128," at the beginning of this chap- I^J
ter, also resides in part of this reserved area, but it uses ad

dresses lower than KeyDef, so the two programs can safely be

used together.) s (
It should be noted that KeyDef changes only the key

board behavior; the way the computer runs is unaltered. Since

the purpose of this program is not to create custom characters, j '

u

• t Utilities

the letters on the screen keep their usual shapes. Also, if you
change the letter T to Z, you've banished T from the keyboard,

f] but not from the computer. It can still print a T if you type ?
CHR$(84). The ASCII codes for the characters remain the same.

[. I A Few Suggestions
The first thing you might want to do with KeyDef is to correct
a minor, but annoying, bug. The CAPS LOCK key on the top

row works like the SHIFT LOCK key for all alphabetic keys
except for the letter Q, which still prints its unshifted form.
This is sometimes called the caps-lock-q bug, and the reason it
occurs is very simple—whoever at Commodore prepared the
CAPS LOCK key translation table put the wrong character
code value in the keycode position for Q. KeyDef allows you
to fix this bug. Just replace the value for Q in the CAPS LOCK
table with the proper value (209).

You may find the ESCape code sequences very useful
when you're programming (see Appendix I in the System
Guide for a complete list). ESC-A turns on automatic insert
mode, ESC-I inserts a blank line, ESC-Q erases to the end of a
line, and so on. But you have to reach1 up to the top left corner
to reach the ESC key, which is somewhat awkward. If you de
fined the 0 on the numeric keypad as ESC—CHR$(27)—and
the other keys on the keypad as A, 7, Q, and so on, the escape
sequences will be easier to type.

If you use a modem in telecommunications, you probably
know that certain control characters are common (CTRL-C,
CTRL-P, CTRL-S, and CTRL-Q are a few of the important
ones). You need two hands to type these keys, which is some
what inconvenient. If you predefine some keys to print the
control characters, it will simplify things a bit.

j—| Another good use, mentioned above, is redefining the pe-
J riod on the numeric keypad to be a comma. This is helpful

when you have to type in a lot of DATA statements. To make
I—| typing in DATA statements even easier, turn on automatic line

L L numbering with the AUTO command and use the KEY state
ment to change one of the function keys to print DATA.

r~*) One final suggestion: The Apple lie has a small toggle

switch above the keyboard for changing the usual keyboard

layout, which is most often called the QWERTY keyboard, to a

Dvorak keyboard. (The name QWERTY comes from the layout

i J

255

u
Chapter 6 .

of the first six letter keys on the "home" key row.) The
woman who holds the title as the world's fastest typist prefers

the Dvorak keyboard because it enables faster typing. If you'd j^J
like to experiment, you could redefine the CAPS LOCK trans- ^~*
lation table in the Dvorak layout and press CAPS LOCK to

switch between the two. [_J

KeyDef
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

HC 10 IF PEEK(7166)=175 THEN 50:ELSE POKE 7166,175

AF 20 FAST:BANK15:FORI=0 TO 5:K=I:IFI=4THENK=0:ELS

EIFI=5THENK=4

QJ 30 FORJ=0 TO 88:POKE 5888+I*89+J,PEEK(64128+K*8

9+J):NEXTJ,I

QF 40 BANK0:SLOW

EK 50 FORI=0TO9:K(I)=PEEK(4096+1):POKE4096+I,0:NEX

T:TRAP 180:DIMK$(87):FORI=0TO87:READK$(I):NE

XT

SF 60 DATA INST/DEL,RETURN,CR RT/DN,F7,F1,F3fP5,CR
DN/UP,3,W,A,4,Z,S,E,,5,R,D,6,C#F,T,X,7,Y,G,

8,B,H,U,V,9,1, J,0,M,K,£,N, + ,P,L,-,.,":"#<§*/

,0,*,;
EQ 70 DATA CLR/HOME,, = ,T,/,1,*.,2,SPACE,,Q,RUN/STO

P,HELP,8,5,TAB,2,4,7,l,ESC,+,-,LF,ENTER,6,9,

3,,0,.,CR UP,CR DN,CR LT#CR RT

JF 75 DATA NO SCROLL

FS 80 FORI=0TO5:A=5888+I*89:POKE830+I*2#AAND255:PO

KE831+I*2#A/256:NEXT

FG 90 IFRGR(0)=0 THEN COLOR0,1:COLOR4#1:COLOR5,13:

ELSE COLOR 6,1tCOLOR 5,4:FAST

CE 100 SCNCLR:PRINTCHR$(11);CHR$(14);"KEYDEF

SK 110 PRINT"{DOWN}PRESS KEY TO BE REDEFINED:";:DO

:A=PEEK(213):LOOP UNTIL A<88:PRINTK$(A):POK

E208,0

DS 120 PRINT"1> UNSHIFTED":PRINT"2> SHIFT":PRINT"3
> COMMODORE":PRINT"4> CONTROL":PRINT"5> ALT \ |

":PRINT"6> CAPS{SHIFT-SPACEjLOCK" ^—'
AX 130 PRINT"WHICH TABLE";:GETKEYT$:T=VAL(T$)-1:IF

(T<0)OR(T>5)THENPRINT:GOTO120 . i

GH 140 PRINT"IDOWN}OLD ASCII CODE="PEEK(5888+T*89+ [H
A) ~ ^

GB 150 INPUT"NEW ASCII CODE ";C: IF O255 THEN 150 :E

LSE POKE5888+T*89+A,C } 1

GE 160 INPUT"DO ANOTHER KEY{2 SPACES}Yl3 LEFT}";A$ —l
:IFA$=irY"THEN110

FQ 170 FORI=0TO9:POKE4096+I,K(I):NEXT:END T >

FK 180 IF ERR=30 THEN RESUME:ELSE PRINT:PRINT"?"ER I i
R$(ER)" ERROR IN"EL

256

u

Auto Run

Kevin Mykytyn

Here's a short utility for the 64 and 128 that makes loading and
running programs a snap. List the disk directory, move to the pro

gram you want to load, and press RETURN. After the program is
loaded, just press RETURN again to run it

You'll find "Auto Run" quite simple to use. Once it has been

installed, you can load any program by listing the directory,

cursoring to the program, and pressing RETURN. If you've

chosen a BASIC program, RUN appears on the screen after

the program is loaded. If you've selected a machine language

program, it loads, and then SYS and the appropriate starting

address are printed on the screen. Either way, you just press
RETURN to start up the program.

The Auto Run routine is written entirely in machine lan

guage, but a BASIC loader program is used to place the ma

chine language into memory. The program is written to load

at 3072. This area of memory is popular for machine language

routines. If you own another utility program that needs the

same section of memory, you can move Auto Run to a new lo

cation by changing the value of SA in line 10. The program

requires 256 bytes of memory and must begin on an even-

page boundary (a memory location evenly divisible by 256).

Good places to relocate it are the RS-232 buffers (at 3072

or 3328) or in memory between 4864 and 7167.

Running It

Once you've decided on a good place in memory and have set

the value of SA accordingly, run the program. There will be a

short delay while the machine language is POKEd into mem

ory. The 40-column screen will go blank for a moment while

the program puts the 128 into FAST mode. (This speeds up

the POKEing to memory.)

You'll also be asked whether you want to load only

BASIC programs or whether you might be loading BASIC and

machine language programs. BASIC programs start at different

257

u

Chapter 6 4

LJ
addresses on the 128, depending on whether or not a hi-res

graphics area has been allocated. Since the program uses the

starting address of the program to determine whether it is | <
BASIC or machine language, Auto Run can get confused.

Therefore, anytime you won't need to load any machine lan

guage programs, choose the first option (BASIC only). |_J
The program ends by printing the activation and deactiva-

tion addresses on the screen. Write these down for future ref

erence. SYS to the address displayed, and Auto Run is activated.

Now display the directory on the screen: Type DIREC

TORY, CATALOG, or just press the F3 function key.

Next, move the cursor up to the program you want to run

and press RETURN. The program is loaded, the screen is

cleared, and the word RUN or SYS followed by an address is

printed at the top of the screen. It's important to check whether

the SYS address displayed at the top of the screen is the actual

starting address for the program loaded. Although most likely

this is the address to SYS to, that's not always the case.

If any error occurs during the load, the appropriate error

message is printed at the top of the screen. Once the program

is loaded, you can simply press RETURN to run it or type

LIST to view the program.

Auto Run should be compatible with most programming

utilities. If you seem to have a memory conflict, just relocate

Auto Run to another portion of memory.

Auto Run
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

DS 10 FAST:SA=3072:HB=INT (SA/256) :LB=SA-256*HB

QA 20 C=0:Q=SA:FORA=1TO246:READB:C=C+B:IFB=500THEN

POKEQ,HB:GOTO50

SJ 30 IFB<0THENPOKEQ,ABS(B):Q=Q+1:POKEQ#HB:GOTO50 ^ (

RS 40 POKEQ,B \ /

GG 50 Q=Q+1:NEXT:SLOW:IFC<>30994THENPRINTM{CLR}ERR

OR IN DATA STATEMENTS M:STOP

HB 60 PRINTM{CLR}{2 DOWN} 1. BASIC11-.PRINT" {DOWN} 2) {
. BASIC AND MLH:GETKEY A$:IF A$="l" THEN POK ^/
E SA+132,0:POKESA+157,76:POKESA+158,169:POKE

SA+159,HB:GOTO 80 A

PX 70 IF A$="2" THEN 80:ELSE GOTO 60 |_S
XF 80 PRINTM{CLR}{2 DOWN} SYSMSA"TO ACTIVATE":PRIN

T"{DOWN} SYS"SA+17MT0 DEACTIVATE"

RA 180 DATA 162,1,189,4,3,157#-30 1 /

u

H

Utilities

MX 190 DATA 202,16,247,162,32,160,500,208

DK 200 DATA 6,174,-30,172,-31,142

QF 210 DATA 4,3,140,5,3,96,0,0

JQ 220 DATA 162,255,232,189,0,2,201,48

PS 230 DATA 144,4,201,58,144,244,201,32

MK 240 DATA 240,240,201,34,240,3,108,-30

GM 250 DATA 169,0,141,0,255,232,134

SD 260 DATA 252,232,240,242,189,0,2,201

CR 270 DATA 34,208,246,138,56,229,252,166

BH 280 DATA 252,160,2,32,189,255,169,1

MA 290 DATA 162,8,160,0,32,186,255,169

AJ 300 DATA 0,170,32,104,255,32,192,255

RS 310 DATA 162,1,32,198,255,32,207,255

GH 320 DATA 133,253,32,207,255,133,254,169

BG 330 DATA 1,32,195,255,32,204,255,169

JH 340 DATA 1,162,8,160,1,32,186,255

RQ 350 DATA 169,0,166,45,164,46,32,213

KH 360 DATA 255,8,169,147,32,210,255,40

RF 370 DATA 176,55,32,79,79,165,253,197

XM 380 DATA 45,208,16,165,254,197,46,208

QM 390 DATA 10,32,125,255,82,85,78,0

BE 400 DATA 24,144,15,32,125,255,83,89

HK 410 DATA 83,32,0,166,253,165,254,32

CX 420 DATA 50,142,32,125,255,13,145,0

MG 430 DATA 32,204,255,32,250,81,108,2

EP 440 DATA 3,169,15,162,8,168,32,186

KS 450 DATA 255,169,0,32,189,255,32,192

HJ 460 DATA 255,162,15,32,198,255,32,207

GX 470 DATA 255,72,32,210,255,104,201,13

AB 480 DATA 208,244,169,15,32,195,255,24

AC 490 DATA 144,206

259

u

u
64 Mode Speed-Up
Gary Lamon

Once you get used to the 128's fast mode, 64 mode seems espe

cially slow. This short program offers a way to speed things up sig

nificantly. For the 128 in 64 mode only.

The more you use a computer, the more you wonder if it

couldn't be just a bit faster, especially when it's in the middle

of a time-consuming task like alphabetizing a list of 800

names. If you own a Commodore 128, you can use the FAST

command to double the speed of programs running in 80 col

umns. Although it also works in 40 columns, the screen goes

blank. When you type GO 64, you give up access to the FAST

command, but you don't have to give up fast mode. There are

several interesting ways to squeeze more speed out of the

Commodore 128's 64 mode. First, let's look at some back

ground information.

Set the Pace

Every computer has an internal clock which paces the proces

sor. The faster the clock's speed, the more instructions the

computer can execute in a given time. A Commodore 64 con

tains a 6510 microprocessor with a clock speed of about 1

MHz (megahertz), one million cycles per second. On the other

hand, the Commodore 128 uses an 8502 microprocessor that's

compatible with the 6510, but can run at a speed of either 1 or

2 MHz. When you're using the 64 mode on your 128, the sys

tem automatically sets the speed of the 8502 so that the ma- | j
chine performs exactly like a Commodore 64.

It seems a waste that 128 users cannot make use of this

additional speed when running their old 64 programs in 64) J
mode. But there is a way. You can double the computer's ^
speed in 64 mode with a few simple POKEs:

POKE 53296,1 Double speed LJ
POKE 53296,0 Normal speed

POKE 53296,3 Double speed and screen off C,

260

u

Utilities

If you try the first or third of these POKEs in 64 mode,

you'll indeed find that your programs run at twice the normal

speed; but there's a problem. The screen fills with a flashing

checkerboard pattern (if you use the first POKE) or goes com

pletely blank (if you use the third). The regular screen is still

there, but it cannot be read. The problem is that the 40-column

video chip (the VIC-II) cannot keep up with the 8502 when

the 8502 is running at 2 MHz. The third POKE works well on

a 64 program that does, say, a great deal of number crunch

ing. With this kind of program, it's probably not important to

have video for that part of the program's execution.

There's another way to achieve a significant speed in

crease while retaining an almost normal picture. The program

"64 Mode Speed-Up" provides approximately a 20 percent

speed increase and leaves the screen readable. After typing in

the program, save a copy. While in 64 mode, load and run the

program, and then type NEW. Your machine will be 20 per

cent faster. To return to normal speed, type SYS 49236 or

press RUN/STOP-RESTORE. To get back to fast speed, type

SYS 49152. If you'd like to check this, write a short BASIC

program with a large loop (such as: 10 FOR I = 1 TO

30000:NEXT), and time it to measure the speed increase.

(Note: You should return to regular speed before all disk or tape

operations.)

How It Works

You may have noticed a flash at the top of the screen while

fast speed was in effect. This is normal. But what causes this

flash and how does the program work?

The program works by using a machine language raster

interrupt routine in locations 49152-49258. You can think of

the raster as a sort of paintbrush that paints the picture on the

video screen. The raster paints one line at a time across the

screen, starting at the top left, and then moves down one line

at a time. The program takes advantage of the fact that you

can see only raster lines 51-251. The computer is interrupted

when the raster is at line 251 (the last visible line) and told to

speed up to 2 MHz. This speed is maintained until the raster

reaches line 51 (the first line you can see) and is then reduced

to 1 MHz. While the screen is "painted," the computer is run

ning at regular speed. The result is a computer that runs

faster, and you don't have to sacrifice the screen.

261

Chapter 6

u

But what causes the flash at the top of the screen? Occa-

sionally, the computer is performing a task and does not want

to be interrupted quite yet, so a few raster lines are done at

the 2 MHz speed. (Remember what happened when you typed

POKE 53296,1?)
Two memory locations within the interrupt program can

be used to speed up the system even more:

POKE 49257 Top raster line

POKE 49258 Bottom raster line

As an example, try this with the fast mode operating

(after SYS 49152):

POKE 49257,150

You'll find that the flashing garbage will expand to fill the up

per half of the screen, but the lower half will remain normal.

The computer will now run about 1.6 times faster than a nor

mal 64. You can expand or contract the screen any way you

like with the two POKEs listed above. The more "garbage"

visible, the faster the computer. One good way to visibly

check the speed of the computer is to load a BASIC program

and LIST it at the fast speed and at regular speed. The listing

will scroll by considerably faster with the interrupt operating.

64 Mode Speed-Up
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

XB 10 PRINT M{CLR}{WHT}SPEED UP - 64 MODE ONLY"

KQ 20 FORI=49152TO49258:READX:C=C+X:POKEI,X:NEXT

BQ 30 IFC<>12470THENPRINT"DATA ERROR":END

ER 40 SYS 49152

XA 50 DATA 120,173,105,192,141,18,208,173

GX 60 DATA 17,208,41,127,141,17,208,169

RK 70 DATA 129,141,26,208,169,192,160,32

QM 80 DATA 141,21,3,140,20,3,88,96 ! j
EP 90 DATA 173,25,208,141,25,208,41,1 1—'
SQ 100 DATA 208,3,76,49,234,173,18,208

JA 110 DATA 205,106,192,176,14,172,106,192 < j

MX 120 DATA 140,18,208,169,0,141,48,208 LJ
XX 130 DATA 76,78,192,172,105,192,140,18

HP 140 DATA 208,169,1,141,48,208,104,168 ,

QD 150 DATA 104,170,104,64,120,169,234,141 l[
MB 160 DATA 21,3,169,49,141,20,3,169

EP 170 DATA 0,141,48,208,141,26,208,88

FS 180 DATA 96,50,250 I /

262

u

n

n

^ Boot 64

Mike Tranchemontagne

' • Most Commodore 128 owners know that their computer can auto
matically load and run any 128 program from disk This easy-to-use
program adds the same convenience for Commodore 64 programs
as well, allowing the 128 to load and run any 64 program auto

matically when you boot the system. A disk drive is required.

The Commodore 128 has many outstanding features, not the

least of which is its ability to run thousands of excellent Com

modore 64 programs and games. The 128 can automatically

load and run any program written for 128 mode or CP/M

mode. Although there are programs for the 64 that automati

cally run after loading from disk, it's still necessary to type in

a command like LOAD "PROGRAM",8,1 to activate the disk

drive in 64 mode. "Boot 64" automates this process so that

you can load and run any Commodore 64 program simply by

putting the disk in the drive and turning on the computer.

This feature is ideal for younger members of the family or for

infrequent computer users. Even experienced programmers

will appreciate the extra convenience it affords.

Creating an Autoboot Disk

Type in Programs 1, 2, and 3, and save copies of all three pro

grams. In order for the boot sector created by Program 2 to

work properly, you must use the filename 128BOOT64 when

_ saving Program 1. To create an autobooting disk for 64 mode,

I i follow these three steps:

1. Select the disk which will contain the 64 program you want

f~*1 to load and run automatically. Load Program 2, insert the

' » disk in the drive, and run the program. When Program 2 is
^ finished, the disk will contain a 128 boot sector that will

ri cause the computer to load and run a program named

L - 128BOOT64. (You do not need to save Program 2 on the
target disk.)

pA 2. Load Program 1 and save it on the disk. Remember, you

L .1 must save this program with the filename 128BOOT64.

n
263

u

Chapter 6 , .

u
3. Load the 64 program that you want to load and run auto

matically; then save it on the disk using the filename

BOOT64. You must save the program with this filename. j f

Once you've performed all three steps, place the disk in

the drive and reboot by turning the power off and on or by j i

pressing the RESET switch. If the computer does not load and i—I
run the desired program, check Programs 1 and 2 for typing

errors and repeat the process. Keep in mind that the process

won't work unless you use the filenames noted above.

Autobooting Machine Language Programs

With this technique, you can load and run any Commodore

64 BASIC program. The same is true of any machine lan

guage (ML) program that runs like BASIC. For instance, Speed-

Script, COMPUTEI's word processor, ordinarily starts with

LOAD"SPEEDSCRIPT",8 and RUN. To autoboot and run

SpeedScript, simply save SpeedScript to disk with the filename

BOOT64 as described in Step 3.

You can also autoboot and start a machine language pro

gram that normally loads with ,8,1 and starts with SYS instead

of RUN. Program 3 is a very short BASIC loader which loads

an ML program into memory, then activates it with SYS. As

listed, the program loads and starts DOS 5.1, the "DOS Wedge"

program supplied on the 1541/1571 Test/Demo disk. To load

a different ML program, replace the name DOS 5.1 in line 20

with the filename of your program, and replace the address

52224 in line 30 with the correct SYS address for the program.

When that's done, perform steps 1 and 2 as described earlier;

then save Program 3 on the disk with the filename BOOT64.

Of course, you must also copy the ML program to the same

disk, using the filename you specified in line 20 of Program 3.

u
How Autobooting Works

When you turn on the 128 (or reboot by pressing the RESET j i

button), the computer automatically performs several checks to ^
determine which mode it will operate in. If an autostart car

tridge is plugged into the cartridge port, the cartridge takes i i

control. If the Commodore key is pressed, the computer enters <—t
64 mode. If the RUN/STOP key is pressed, the 128 enters the

built-in machine language monitor. -"' ^
I s

u

Utilities

If none of these conditions applies, the 128 looks on sec

tor 0, track 1, of the current disk (known as the boot sector) to

see whether it contains a boot header. If no boot header is

found, the computer simply starts BASIC, which produces the

familiar READY prompt. However, if the boot header infor

mation is present, the 128 automatically loads and runs the

program indicated in the boot sector. This process works

equally well with a 1571 or 1541 disk drive.

In 128 mode, the 128 can switch to 64 mode by perform

ing the command GO64. However, there is no provision for

loading and running a program after you enter 64 mode. To

achieve the same effect, this program creates a boot sector that

tells the computer to load and run the program 128BOOT64.

That program, in turn, stores a short machine language pro

gram and cartridge-identifier bytes in the special memory area

where Commodore 64 autostarting cartridges normally reside.

The ML program causes the computer (now in 64 mode) to

perform a normal reset. When the reset occurs, the computer

detects the cartridge-identifier bytes, concludes that a cartridge

is present, and runs the ML routine found at the cartridge start

address. This program, in turn, uses the dynamic-keyboard

technique to load and run a program named BOOT64 from

disk. The process may seem complicated, but it all happens

very quickly, and you need not understand the details in order
to take advantage of it.

Program 1. 128BOOT64

For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in
these programs.

EP 10 A=32768: PRINT "(SWITCH TO 40 COLUMN DISPLAY

)"
XK 20 READ D$: IF D$="-1M THEN GO64

HR 30 POKE A,DEC(D$) :A=A+1: GOTO 20

PH 40 DATA 09,80,5E,FE,C3,C2,CD,38,30
HM 50 DATA 8E,16 ,D0,20,A3 ,FD,20,50,FD

QX 60 DATA 20,15,FD,20#5B,FF,58

QH 70 DATA 20,53,E4,20,BF,E3,20,22,E4
CQ 80 DATA A2,FB,9A

PH 90 DATA A2,00,BD,41,80,F0,06

AK 100 DATA 20,D2,FF,E8,D0,F5

HA 110 DATA A9,0D,8D,77,02,8D,78,02
FG 120 DATA A9,02,85,C6

JA 130 DATA 4C,74,A4

265

Chapter 6

BR 140 DATA 0D,4C,4F,41,44,22 ,42 ,4F,4F,54,36,34,22

2C 38

BQ 150 DATA 0D,0D,0D,0D,0D,52,55,4E,91,91,91,91,91 [i

,91,91,0,-1 LJ

Program 2. Boot Sector Maker

RJ 10 REM PROGRAM 2, CREATE BOOT SECTOR FOR 128BOO

T64

JF 20 DCLEAR: OPEN 15,8,15: OPEN 2,8,2, "#": PRINT#

15,MB-P:2,0M

RR 30 READ D$: D=DEC(D$): IF D>255 THEN 50

EE 40 PRINT# 2,CHR$(D);: GOTO 30

RJ 50 PRINT* 15,MU2;2,0,1,0"

SP 60 PRINT DS$: CLOSE 2: CLOSE 15

XG 70 DATA 43,42,4D,00,00,00,00,31,32,38,42,4F,4F,

54,36,34,00,00,A2,18

RM 80 DATA A0,0B,4C,A5,AF,52,55,4E,22,31,32,38,42,

4F,4F,54,36,34,00,100

Program 3. ML Loader

PM 10 REM C64 ML PROG LOADER EXAMPLE

KM 20 IF A=0 THEN A=l: LOAD "DOS 5.1",8,1

QE 30 SA=52224: REM START ADDRESS

KH 40 SYS SA

u

u

n

n

n

Personalizing the 128

n
Steve Stanko

Have you ever wished you could change the screen colors on your
128? Of course, there are BASIC commands to do this, but wouldn't
it be nice to have the machine default to your colors each time you
power up? How about having cursor mode, tab settings, and key
repeats set up automatically? Want a favorite utility to load and run
each time you turn on the computer? These programs can give
your computer a whole new personality. For use with a 1541 or
1571 disk drive.

How can you change the default settings of the 128? The rou
tine that specifies screen colors, tab settings, and the like,
when the computer is powered up or reset is in ROM—mem
ory that can't be modified. However, you may have noticed
that whenever the 128 is turned on or reset while the disk
drive is on, it tries to read from a disk. If there is a disk in the
drive, the 128 checks the sectors of the disk reserved for boot
information. The boot information can be a short machine lan
guage routine, a command to load another program, or both.
The key to customizing the 128 is to create an autobooting
disk with a program that sets things up the way you like.

Program 1, "Autoboot Generator/7 creates the autobooting
disk. Simply type in the program and save a copy of it on a
disk you don't plan to use for autobooting. (Deleting the REMs
in Program 1 won't hurt the program and will save a lot of
space and typing time.) After you've saved a copy, load the pro-

pi gram and type RUN. You'll be asked to insert the disk on which
1 you want the autoboot information. The boot code must be

written to a newly formatted disk; otherwise, the boot sector
r—j may use a place on the disk that other programs already occupy.

1 If you haven't formatted the disk, the program offers to
do that for you. (Before you format the disk, be sure that it

j—| doesn't contain any programs you want to save.) If you choose
! this option, be prepared for a slight delay while the disk is for

matted. The boot information will then be written to the
r-| proper sectors. If a successful transfer occurs, a message will

' appear telling you so. You now have an autobooting disk.

n 267

u

Chapter 6 i I

u
But this alone is not enough to make the computer default

to your own personal preferences. What the autoboot infor- ,
mation does is attempt to load and run a BASIC program named j—|
"Preferences" from the same disk. This program should set
the values for the features you want to change. Program 2 is a , ,
short example of the sort of preference-selection program you LJ
might write. To use Program 2, type in a copy and save it to
the autoboot disk you prepared with Program 1. For the tech
nique to work correctly, you must save Program 2 with the

filename PREFERENCES.

Have It Your Way

Program 2 selects a 40-column text screen. If you prefer to
start out with the 80-column display active, simply change the
GRAPHIC 0 statement in line 10 to GRAPHIC 5. In fact, you

can select any one of six different screen modes by changing

the statement to GRAPHIC mode, where mode has one of the

values shown in Table 1.

Table 1. Screen Modes

Mode Screen

0 40-column text

1 Bitmapped graphics (40-column)

2 Split bitmapped graphics and text (40-column)

3 Multicolor bitmapped graphics (40-column)

4 Split multicolor bitmapped graphics and text (40-column)

5 80-column text

If you want the selected screen to be cleared, change the
number following the SCNCLR statement in line 10 to the

same value as the screen mode.

Colors U
The COLOR statement can be used to specify new screen

background, border, and character colors. Line 20 of Program j i

2 selects a light-gray background and a medium-gray border. '—'
The default character color will be dark gray. (That combina

tion of colors shows up most clearly on my monochrome j \

monitor.) To choose other colors, simply modify the COLOR '—'
statements. The statements have the format

COLOR color source,color number j I

u

Utilities

Valid values for color source are given in Table 2. Table 3

shows valid color number values for the 40-column modes. The

numbers are the same for the 80-column screen, but the colors
are slightly different (see Table 4).

Table 2. Color Sources

Number Source

0 40-column background

1 40-column foreground

2 Multicolor 1

3 Multicolor 2

4 40-column border

5 Character color (40- and 80-column)

6 80-column background

Table 3. 40-Column Colors

Number

1

2

3

4

5

6

7

8

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Number

9

10

11

12

13

14

15

16

Color

Orange

Brown

light red

Dark gray

Medium gray

Light green

Light blue

Light gray

Table 4. 80-Column Colors

Number

1

2

3

4

5

6

7

8

Color

Black

White

Dark red

Light cyan

Light purple

Dark green

Dark blue

Light yellow

Number

9

10

11

12

13

14

15

16

Color

Dark purple

Dark yellow

Light red

Dark cyan

Medium gray

Light green

Light blue

Light gray

Further Enhancements

Your Preferences program can change more than just screen
colors. There are many other user-selectable options such as
tab stops, repeating keys, and cursor modes. Many of these

269

Chapter 6

are controlled by printing ESC (escape) sequences. An escape

sequence is composed of an ESC character followed by an al

phabetic character (or @). Table 5 lists the 128's escape se

quences. Note that when you use escape sequences, you

should first press the ESC key, then release it and press the

other key. Unlike when you're using control characters where

you hold down one key (CONTROL, Commodore, or SHIFT)

while pressing another, you should not hold down the ESC

key. (For more about ESC sequences, see "ESCaping with the

128," elsewhere in this book.)

Table 5. Escape Sequences

u

u

LJ

LJ

U

Function

Clear to end of screen

Enable auto-insert mode

Set bottom right corner of window

Disable auto-insert mode

Delete current line

Switch to solid (nonblinking) cursor

Switch to flashing cursor

Enable bell tone when CHR$(7) is printed

Disable bell tone

Insert a blank line

Move cursor to start of current line

Move cursor to end of current line

Enable screen scrolling

Disable screen scrolling

Set 80-column screen to normal video

Cancel quote, insert, and reverse modes

Erase to start of current line

Erase to end of current line

Set 80-column screen to reverse video

Switch to block cursor (80-column)

Set top left corner of window

Switch to underline cursor (80-column)

Scroll screen up one line

Scroll screen down one line

Switch between 40- and 80-column displays

Set default tab stops (every 8 columns)

Clear all tab stops

ESC Sequence

ESC@

ESC A

ESCB

ESCC

ESCD

ESCE

ESCF

ESCG

ESCH

ESC I

ESCJ

ESCK

ESCL

ESCM

ESCN

ESCO

ESCP

ESCQ

ESCR

ESCS

ESCT

ESCU

ESC V

ESCW

ESCX

ESC Y

ESC Z

u

u

270

U

U

Utilities

In immediate mode, simply press and release the ESC

key; then press the letter key for the function you want. To

use these sequences in a BASIC program such as Preferences,

print an ESC character, CHR$(27), followed by the letter for

the desired function. Line 30 of Program 2 uses this method to

change the cursor to a solid, nonblinking block. You can add

any other ESC sequences you want to your own Preferences

program to control the various options.

However, there is no ESC sequence for many of the fea

tures you might want to customize. For instance, there is no

ESC sequence to specify which keys repeat. In this case, the

operation is usually controlled by the value in a flag location

in RAM. For example, location 2594 controls key repeating.

The default value is 128, which allows all keys but the special

function keys to repeat if they're held down. POKEing the

value 64 into this location will prevent any keys from repeat
ing. As a former Commodore 64 owner, my preference is to

have only the space bar, INST/DEL key, and cursor keys re

peat. Storing a value of zero in location 2594 allows this. Line

40 in the example serves this purpose. There are many other

features you can control by POKEing values into other loca

tions. Refer to a detailed 128 memory map for more information.

Tab Stops

Another important option is tab settings. Although default

stops are set at every eighth column, you can change this to

any pattern you desire—even an unusual sequence of stops

such as at columns 5, 7, 19, 26, 27, and 39. You can set or

clear tab stops indirectly by printing CHR$(24), but it's often
easier to change the stops directly. Tab-stop settings are con

trolled by the values in the tab-stop bitmap, locations

852-861. Each bit in the map corresponds to a column on the
screen. You change the tab settings by POKEing new values

into the bitmap. To determine the numbers you want, let's
look at the default 40-column settings:

Location Value

852

853

854

855

856

128

128

128

128

128

271

Chapter 6

The bitmap makes more sense if you look as these values in

binary format:

1000000010000000100000001000000010000000

Bits set to 1 represent tab stops. In Program 2, tab stops are

set every ten spaces, which yields the following pattern:

0000000001000000000100000000010000000001

Or, if you group it into bytes:

00000000 01000000 00010000 00000100 00000001

When you translate the bit patterns back into decimal, the val

ues to be placed in the tab-stop bitmap locations are

0, 64, 16, 4, 1

Lines 50-60 of Program 2 set these tab stops. Tabs for an 80-

column screen are just the same, only you need five more

bytes to map out the full 80-columns.

Your Preferences program can load other utilities or a fa

vorite program that you use every time you turn on the com

puter. To load and execute another BASIC program, all you

need to do is add a line with the statement RUN "filename";

or, if you want to retain the variables created in the Prefer

ences program, add DLOAD "filename". For machine language

programs, use BLOAD "filename" followed by the SYS com

mand to start the machine language, or use BOOT "filename"

to have the program start automatically after loading.

You're no longer stuck with the decisions the 128's de

signers made. By autobooting this program, you can turn the

128 into a truly personal computer.

Custom Autoboots

Program 1 creates an autoboot disk which attempts to load a
BASIC program named Preferences. Then it executes the M
program by placing the characters RUN and a RETURN—

CHR$(13)—into the keyboard buffer by using a short machine

language program following the filename data on an auto- j j
booting disk. It's quite simple to modify Program 1 to create

an autoboot disk for any other BASIC program you want. For _

a disk to be autobooted by the 128, sector 0 of track 1 of the £_j

disk must be set up as follows:

272

n

PI Utilities

Bytes Description

f—) 0-2 The characters CBM, the autoboot flag

' ' 3-4 Load address for program to autoboot, in low-byte/high-
byte order (both bytes 0 for a BASIC program)

P^ 5 Bank number into which program should be loaded (0 for a
| I BASIC program)

6 Number of additional sectors to load (0 for a BASIC program)

In Program 1, these values are contained in the DATA
items of lines 1000-1010.

Then, starting at byte 7 of the sector, come the character
codes for the name to be displayed after the BOOTING mes

sage, followed by a zero as delimiter. Program 1 uses PREF
ERENCES, since that's the name of the BASIC program being
booted. However, there's no real requirement for using the ac
tual filename; these characters are used only for the message,
so you could substitute any other message you like by chang

ing the DATA in line 1020 of Program 1. Just remember that
the character string must end with a zero (see line 1030).

Following the zero byte come the character codes for the
filename to load, also followed by a zero byte. In this case, the
character codes are important: They must correspond exactly
to the name of the program you wish to boot from the disk.
Program 1 uses the name PREFERENCES. To change this to

another program name, modify the DATA in line 1040. Again,

remember that the filename characters must be followed by a
zero (see line 1050).

A short machine language routine can follow the file
name; it will be executed after the specified program has been

loaded. Since BASIC programs like Preferences will not run
automatically after they're loaded, Program 1 adds a routine

— that puts four characters into the keyboard buffer: R, U, N,
; 1 and RETURN. After this, a value of 4 is put into the location

which holds the number of characters in the keyboard buffer.
,_, This causes the computer to act as if you had typed RUN and

f i pressed RETURN. In Program 1, the routine is contained in

the DATA statements in lines 1060-1100.

^ To write this boot information to the disk, Program 1

/ \ frees sector 0 of track 1 so that data can be written to that

block (line 220). It then opens a buffer for the sector data (line

_ 230) and resets the buffer pointer (line 240). Lines 250-270

u

Chapter 6 II

LJ
transfer the boot information from the DATA statements (lines

1000-1100) to the buffer. When there is no more data, the er- i (

ror trapping sends the program to line 280. If an OUT OF I—>
DATA error has occurred, the program continues; otherwise,

the program prints the type of error and halts. Line 290 pads j |

the rest of the boot sector with zeros. The disk command U2 I—»
(line 300) writes the sector buffer to the disk. Line 310 closes

the disk buffer, and line 320 marks sector 0 of track 1 to make

sure that the autoboot data isn't accidentally overwritten by a

program.

Program 1. Autoboot Generator
For mistake-proof program entry, use "The Automatic Proofreader/' Appendix B, to type in

this program.

AJ 100 TRAP 280

JB 110 COLOR 4,12:COLOR 0,12:PRINT"{CLR}{DOWN}
{YEL}PLEASE INSERT DISKETTE FOR AUTOBOOT"

EC 120 PRINT"PREFERENCES TO BE WRITTEN ON. IT MUST
ii

AE 130 PRINT "BE FORMATTED TO WDRK. IF IT IS NOT,"

KM 140 PRINT"ANSWER YES TO THE PROMPT BELOW."

PK 150 INPUT"{DOWN}FORMAT DISK"?AN$

PC 160 IF LEFT$(AN$,1)O"Y" THEN 210

MG 170 PRINT "{DOWN} DISK NAME (UP TO 16 CHARACTERS)

":INPUT DN$

BM 180 INPUT"{DOWN}DISK ID (TWD CHARACTERS)";DI$
KB 190 PRINT"{DOWN}INSERT DISK AND PRESS ANY KEY":

GETKEY DL$

BM 200 OPEN 15,8,15,"N0:"+DN$+","+DI$:GOTO 220

RG 210 OPEN 15,8,15

QR 220 PRINT*15,"B-F:0,1,0":REM UN-WRITE-PROTECT T

RACK 1 SECTOR 0

BG 230 OPEN 5,8,5, "#":REM OPEN A BUFFER

JS 240 PRINT#15,"B-P:5,0":CN=0:REM SET BLOCK POINT

ER TO START OF DATA I /

FE 250 READ D:CN=CN+1 I—i
CR 260 PRINT#5,CHR$(D); :REM WRITE DATA TO BUFFER

RF 270 GOTO 250

GE 280 IF ER=13 THEN RESUME 290:ELSE PRINT ERR$(ER)j

):STOP '—
JR 290 FOR C=l TO (255-CN):PRINT#5,CHR$(0);:NEXT C

:REM SET REST OF BLOCK TO 0 t j

DP 300 PRINT#15,MU2:5,0,1,0":REM WRITE AUTOBOOT DA i ,

TA TO DISK

MA 310 CLOSE 5

SB 320 PRINT* 15, "B-A:0,1,0": REM WRITE-PROTECT TRAC j i
K 1 SECTOR 0 '

274

u

f I

_ Utilities
n

n

h

CA 330 CLOSE 15

XA 340 PRINT"{CLR}{DOWN}AUTOBOOT PREFERENCES CODE
{ SPACE }TRANSFERRED .. "

JJ 350 PRINT "IN ORDER FOR THE DISK TO BOOT YOUR"
JS 360 PRINT"PREFERENCES, YOU MUST HAVE A COPY OF"
BR 370 PRINT"THE PROGRAM 'PREFERENCES1 ON THIS DIS

K •

HP 380 PRINT "{DOWN} -REFER TO THE ARTICLE FOR DETA
ILS-"

HS 390 A$=DS§:END

GM 1000 DATA 67,66,77:REM 'CBM'

SF 1010 DATA 0,0,0,0:REM NULLS

DR 1020 DATA 80,82,69,70,69,82,69,78,67,69,83:REM
{SPACE}MESSAGE FOR BOOT 'PREFERENCES1

JH 1030 DATA 0:REM DELIMITER

DB 1040 DATA 80,82,69,70,69,82,69,78,67,69,83:REM
{SPACEJBASIC PROGRAM 'PREFERENCES'

GA 1050 DATA 0:REM DELIMITER

FX 1060 DATA 169,82,141,74,3:REM 'R'
KC 1070 DATA 169,85,141,75,3:REM 'U'
QR 1080 DATA 169,78,141,76,3:REM 'N'
AD 1090 DATA 169,13,141,77,3:REM (RETURN)

DK 1100 DATA 169,4,133,208,96:REM SET KEYBOARD BUF
FER TO 4 CHARS AND EXIT

Program 2. Preferences
For mistake-proof program entry, use "77?e Automatic Proofreader/' Appendix B, to type in
this program. ^

KQ 10 GRAPHIC 0:SCNCLR 0

MM 20 COLOR 0,16:COLOR 5,12:COLOR 4,13
PS 30 PRINT CHR$(27);"E":REM DISABLE BLINK
EVJ 40 POKE 2594,0 :REM DISABLE REPEAT

FK 50 POKE 852,0:POKE 853,64:POKE 854,16
KR 60 POKE 855,4:POKE 856,1:REM TAB BITS
QA 70 NEW: CLR

275

Appendix A

How to Type In
Programs

To make it as easy as possible for you to enter the programs

in this book, we have included two program-entry aids written

in BASIC: "The Automatic Proofreader" and "MLX," a ma

chine language entry program. You'll find them in Appendices

B and C. COMPUTE! Publications has established the follow

ing listing conventions to assist you in understanding how to
enter these programs.

Generally, BASIC program listings like the one for MLX

contain words within braces that spell out any special charac

ters. For example, {DOWN} means press the cursor-down

key; {5 SPACES} means press the space bar five times.
In our listings, an underlined key indicates that the key

should be shifted (press the key while holding down the

SHIFT key). For example, S means to press the S key while
holding down the SHIFT key. This will appear on your screen
as a heart symbol. If you find an underlined key enclosed in
braces, for example, {10 N}, you should press the key as
many times as indicated. In this case, you would enter ten
shifted N's.

If a key is enclosed within special brackets, [<>], hold
down the Commodore key while pressing the key inside the
special brackets. (The Commodore key is the key in the lower
left corner of the keyboard.) Again, if the key is preceded by a
number, press the key as many times as indicated: [<9@>]
means that you should type Commodore-@ nine times.

Refer to Figure A-l on the next page when entering cursor
and color control keys.

277

Appendix A

Figure A-1. Keyboard Conventions

When feu

Read: Press:

WhenVbu

Read:

8*8

i

i

{ Fl }

{ F2 }

{ F3 }

{ W }

{ F5 }

{ F6 }

{ F7 }

{ F8 }

A

r

Press: See:

| commodore] |T[0

I COMMODORE I IT1 B

Icommodore] [T]

| commodore] [7j

| commodore] |T]

[commodore] [T]

I commodore] [T]

I COMMODORE I [T]

| SHIFT | |~~fl~~|

| SHIFT | | ft |

| f5 |

IT

SHIFT It

278

Appendix B

The Automatic
Proofreader
Philip I. Nelson

"The Automatic Proofreader" helps you type in program list

ings without typing mistakes. It's a short error-checking pro

gram that conceals itself in memory and adheres to your

Commodore's operating system. Each time you press RETURN

to enter a program line, the Proofreader displays a two-letter

checksum in reverse video at the top of your screen. If the

checksum on your screen doesn't match the one in the printed
listing, you've typed the line incorrectly. It's that simple. You
don't have to use the Proofreader to enter printed listings, but
doing so greatly reduces your chances of making a typo.

Getting Started

First, type in the Automatic Proofreader program exactly as it

appears in the listing. Since the Proofreader can't check itself,
type carefully to avoid mistakes. Don't omit any lines, even if

they contain unfamiliar commands, or you think they don't
apply to your computer. As soon as you've finished typing the
Proofreader, save at least two copies on disk or tape before
running it the first time. This is very important because the
Proofreader erases the BASIC portion of itself when you run
it, leaving only the machine language (ML) portion in memory.

When that's done, type RUN and press RETURN. After
announcing which computer it's running on, the Proofreader
installs the ML routine in memory, displays the message
PROOFREADER ACTIVE, erases the BASIC portion of itself,
and ends. If you type LIST and press RETURN, you'll see that
no BASIC program remains in memory. The computer is ready
for you to type in a new BASIC program.

Entering Programs

Once the Proofreader is active, you can begin typing in a
BASIC program as usual. Every time you finish typing a line

279

Appendix B

and press RETURN, the Proofreader displays a two-letter

checksum (reverse-video letters) in the upper left corner of the

screen. Compare this checksum with the two-letter checksum

printed to the left of the corresponding line in the program

listing. If the letters match, it's almost certain the line was

typed correctly. If the letters don't match, check for your mis

take and correct the line.

The Proofreader ignores spaces that aren't enclosed in

quotation marks, so you can omit spaces (or add extra ones)

between keywords and still see a matching checksum. For ex

ample, these two lines generate the same checksum:

10 PRINT"THIS IS BASIC

10 PRINT 'THIS IS BASIC

However, since spaces inside quotation marks are almost

always significant, the Proofreader pays attention to them. For

instance, these two lines generate different checksums:

10 PRINT"THIS IS BASIC

10 PRINT"THIS ISBA SIC

Out of Order

A common typing mistake is transposition—typing two

successive characters in the wrong order, like PIRNT instead

of PRINT or 64378 instead of 64738. A checksum program

that adds up the values of all the characters in a line can't

possibly detect transposition errors (it can only tell whether

the right characters are present, regardless of what order

they're in). Because the Proofreader computes the checksum

with a more sophisticated formula, it is also sensitive to the

position of each character within the line and thus catches

transposition errors.

The Proofreader does not accept keyword abbreviations , ;

(for example, ? instead of PRINT). If you prefer to use abbrevi- LJ

ations, you can still check a line with the Proofreader: Simply

LIST the line after you type it, move the cursor back onto the , ,

line, and press RETURN. LISTing the line substitutes the full LJ
keyword for the abbreviation and allows the Proofreader to

work properly. The same technique works for rechecking a ^

program you've already typed in: Reload the program, LIST ()

several lines on the screen, and press RETURN at the end of

each line.

280

The Automatic Proofreader

If you're using the Proofreader on the Commodore 128 in

128 mode, do not perform any GRAPHIC statements while the

Proofreader is active. When you perform a statement like

GRAPHIC 1, the computer moves everything at the start of

BASIC program space—including the Proofreader—to another

memory area, causing the Proofreader to crash. The same thing

happens if you run any program that contains a GRAPHIC

statement. The Proofreader deallocates any graphics areas

before installing itself in memory, but you are responsible for

seeing that the computer remains in this configuration.

Though the Proofreader doesn't interfere with other

BASIC operations, it's always a good idea to disable it before

running any other program. Some programs may need the

space occupied by the Proofreader's ML routine or may create

other memory conflicts. However, the Proofreader is purposely

made difficult to dislodge: It's not affected by tape or disk op

erations, or by pressing RUN/STOP-RESTORE. The simplest

way to disable it is to turn the computer off, then on again. A

gentler method is to SYS to the computer's built-in reset rou

tine: Use SYS 65341. This reset routine erases the BASIC pro

gram currently in memory, so be sure to save the program

you're typing before entering the SYS command.

The Automatic Proofreader

10 VEC=PEEK(772)+256*PEEK(773):L0=43:HI=44

20 PRINT "AUTOMATIC PROOFREADER FOR ";:IF VEC=4236

4 THEN PRINT HC-64M

30 IF VEC=50556 THEN PRINT tlVIC-2011

40 IF VEC=35158 THEN GRAPHIC CLR:PRINT "PLUS/4 & 1

6"

50 IF VEC=17165 THEN LO=45:HI=46:GRAPHIC CLR:PRINT

M128"

60 SA= (PEEK (LO) +256*PEEK (HI)) +6:ADR=SA

70 FOR J=0 TO 166: READ BYT:POKE ADR, BYT:ADR=ADR+1:

CHK=CHK+BYT :NEXT

80 IF CHKO20570 THEN PRINT M*ERROR* CHECK TYPING

{SPACE}IN DATA STATEMENTS":END

90 FOR J=l TO 5:READ RF,LF,HF:RS=SA+RF:HB=INT(RS/2
56):LB=RS-(256*HB)

100 CHK=CHK+RF+LF+HF:POKE SA+LF,LB:POKE SA+HF,HB:N

EXT

110 IF CHK<>22054 THEN PRINT "*ERROR* RELOAD PROGR

AM AND CHECK FINAL LINE":END

120 POKE SA+149,PEEK(772):POKE SA+150,PEEK(773)

281

Appendix B

u

1 f
130 IF VEC=17165 THEN POKE SA+14,22 :POKE SA+18,23: ^

POKESA+29,224:POKESA+139,224

140 PRINT CHR$(147);CHR$(17);"PROOFREADER ACTIVE":) i

SYS SA I 1
150 POKE HI, PEEK (HI)+l:POKE (PEEK(LO)+256*PEEK(HI)

)-l,0:NEW

160 DATA 120,169,73,141,4,3,169,3,141,5,3 j I
170 DATA 88,96,165,20,133,167,165,21,133,168,169 (—'
180 DATA 0,141,0,255,162,31,181,199,157,227,3

190 DATA 202,10,248,169,19,32,210,255,169,18,32

200 DATA 210,255,160,0,132,180,132,176,136,230,180

210 DATA 200,185,0,2,240,46,201,34,208,8,72

220 DATA 165,176,73,255,133,176,104,72,201,32,208

230 DATA 7,165,176,208,3,104,208,226,104,166,180

240 DATA 24,165,167,121,0,2,133,167,165,168,105

250 DATA 0,133,168,202,208,239,240,202,165,167,69

260 DATA 168,72,41,15,168,185,211,3,32,210,255

270 DATA 104,74,74,74,74,168,185,211,3,32,210

280 DATA 255,162,31,189,227,3,149,199,202,16,248

290 DATA 169,146,32,210,255,76,86,137,65,66,67

300 DATA 68,69,70,71,72,74,75,77,80,81,82,83,88

310 DATA 13,2,7,167,31,32,151,116,117,151,128,129,

167,136,137

282

u

^^ Appendix C

MLX
Machine Language
Entry Program

128 Version by Ottis R. Cowper

"MLX" is a new way to enter long machine language (ML)

programs without a lot of fuss. MLX lets you enter the num

bers from a special list that looks similar to BASIC DATA

statements. It checks your typing on a line-by-line basis. It

won't let you enter invalid characters or let you continue if

there's a mistake in a line. It won't even let you enter a line or

digit out of sequence.

Using MLX

Type in and save some copies of MLX (you'll want to use it to

enter future ML programs from COMPUTE! Publications).

When you're ready to enter an ML program, load and run

MLX. It will ask you for a starting address and an ending ad

dress. You'll find these addresses in the article accompanying

the MLX-format program listing that you're typing.

If you're unfamiliar with machine language, the addresses

(and all other values you enter in MLX) may appear strange.

Instead of the usual decimal numbers you're accustomed to,

these numbers are in hexadecimal—a base-16 numbering sys

tem commonly used by ML programmers. Hexadecimal (hex

for short) includes the numbers 0-9 and the letters A-F. But

don't worry; even if you know nothing about ML or hex, you

should have no trouble using MLX.

After you enter the starting and ending addresses, MLX

will offer you the option of clearing the workspace. Choose

this option if you're starting to enter a new listing. If you're

continuing a listing that's partially typed from a previous ses-

sion, don't choose this option.

It's not necessary to know more about this option to use

MLX, but here's an explanation if you're interested. When you

first run MLX, the workspace area contains random values.

283

u
Appendix C

f (
Clearing the workspace fills it with zeros. This makes it easier {^sJ
to find where you left off if you enter the listing in multiple

sittings. However, clearing the workspace is useful only before I |

you first begin entering a listing; there's no need to clear it '—}
before you reload to continue entering a partially typed listing.

When you save your work with MLX, the entire contents I I

of the data buffer is stored. If you clear the workspace before ^
starting, the incomplete portion of the listing will be filled

with zeros when saved and thus refilled with zeros when re

loaded. If you don't clear the workspace when you first start,

the incomplete portion of the listing will be filled with random

data. Whether or not you clear the workspace before you re

load, this random data will refill the unfinished part of the

listing when you load your previous work. The rule, then, is

to use the clear-workspace feature before you begin entering

data from a listing and not to bother with it afterward.

At this point, MLX presents a menu of commands:

Enter data

Display data

Load file

Save file

Catalog disk

Quit

Entering a Listing

To begin entering data, press E. You'll be asked for the ad

dress at which you wish to begin entering data. (If you press E

by mistake, you can return to the command menu by pressing

RETURN.) When you begin typing a listing, you should enter

the starting address here. If you're typing in a long listing in

multiple sittings, you should enter the address where you left

off typing at the end of the previous session. In any case,

make sure the address you enter corresponds to the address of j j
a line in the MLX listing. Otherwise, you'll be unable to enter

the data correctly.

After you enter the address, you'll see that address appear j_J
as a prompt with a nonblinking cursor. Now you're ready to

enter data. Type in all nine numbers on the line, beginning

with the first two-digit number after the colon (:). Each line j^J
represents eight data bytes and a checksum. Although an

MLX-format listing appears similar to the "hex dump" ma

chine language listings you may be accustomed to, the extra] /

284

u

MLX, Machine Language Editor

checksum number on the end allows MLX to check your typ

ing. (You can enter the data from an MLX listing using the

built-in monitor if the rightmost column of data is omitted, but

we recommend against it. It's much easier to let MLX do the

proofreading and error checking for you.)

Only the numbers 0-9 and the letters A-F can be typed

in. If you press any other key (with some exceptions noted

below), you'll hear a warning buzz. To simplify typing, MLX

redefines the function keys and the + and — keys on the nu

meric keypad so that you can enter data one-handed. The fig

ure shows the keypad configuration supported by MLX:

A B C D

7

4

1

0

8

5

2

9

6

3

•

E

F

E
N
T
E
R

MLX checks for transposed characters. If you're supposed

to type in AO and instead enter 0A, MLX will catch your mis

take. To correct typing mistakes before you finish a line, use

the INST/DEL key to delete the character to the left of the

cursor. (The cursor-left key also deletes.) If you mess up a line

really badly, press CLR/HOME to start the line over.

The RETURN key is also active, but only before any data

is typed on a line. Pressing RETURN at this point returns you

to the command menu. After you type a character of data,

MLX disables RETURN until the cursor returns to the start of

a line. Remember, you can press CLR/HOME to get to a line

number prompt quickly.

285

Appendix C

Beep or Buzz

When you enter a line, MLX recalculates the checksum from

the eight bytes and the address and compares this value to the

number from the ninth column. If the values match, you'll

hear a pleasant beep to indicate that the line has been entered

correctly. The data is then added to the workspace area, and

the prompt for the next line of data appears. But if MLX de

tects a typing error, you'll hear a low buzz and see an error

message. MLX will then redisplay the line for editing.

To make corrections in a line that MLX has redisplayed

for editing, compare the line on the screen with the one

printed in the listing. Then move the cursor to the mistake

and type the correct key. The cursor-left and -right keys pro

vide the normal cursor controls. (The INST/DEL key now

works as an alternative cursor-left key.) You cannot move left

beyond the first character in the line. If you try to move be

yond the rightmost character, you'll reenter the line. During

editing, RETURN is active; pressing it tells MLX to recheck the

line. You can press the CLR/HOME key to clear the entire

line if you want to start from scratch, or if you want to get to

a line number prompt to use RETURN to get back to the

menu.

After you have entered the last number on the last line of

the listing, MLX automatically moves to the Save option.

Other MLX Functions

The second menu choice, Display Data, examines memory and

shows the contents in the same format as the program listing

(including the checksum). When you press D, MLX asks you

for a starting address. Be sure that the starting address you

give corresponds to a line number in the listing. Otherwise,

the display will be meaningless. MLX displays program lines) <

until it reaches the end of the program, at which point the *—'
menu is redisplayed. You can pause the scrolling display by

pressing the space bar. (MLX finishes printing the current line j !

before halting.) To resume scrolling, press the space bar again. i—J
To break out of the display and return to the menu before the

ending address is reached, press RETURN. V i

Two more menu selections let you save programs and ^
load them back into the computer. These options are Save File

and Load File; their operations are quite straightforward. \{

u

MLX, Machine Language Editor

When you press S or L, MLX asks you for the filename.

(Again, pressing RETURN at this prompt without entering

anything returns you to the command menu.) Next, MLX asks

you to press either D or T to select disk or tape.

You'll notice the disk drive starting and stopping several

times during a load or save. Don't panic; this is normal be

havior. MLX opens and reads from or writes to the file instead

of using the usual LOAD and SAVE commands. Remember

that MLX saves the entire workspace area from the starting

address to the ending address, so the save or load may take

longer than you might expect if you've entered only a small

amount of data from a long listing. When you're saving a par

tially completed listing, be sure to note the address where you

stopped typing so that you'll know where to resume entry

when you reload.

Error Alert

MLX reports any errors detected during the save or load and

displays the standard error messages. (Tape users should bear

in mind that the Commodore 128 is never able to detect errors

when saving to tape.) MLX also has three special load error
messages:

• INCORRECT STARTING ADDRESS. The file you're try

ing to load does not have the starting address you specified

when you ran MLX. In this case, no data will be loaded.

• LOAD ENDED AT address. The file you're trying to load
ends before the ending address you specified when you
started MLX. The data from the file has been loaded, but it
ends at the address specified in the error message.

• TRUNCATED AT ENDING ADDRESS. The file you're
trying to load extends beyond the ending address you speci

fied when you started MLX. The data from the file has been
loaded, but only up to the specified ending address.

If you see one of these messages and feel certain that
you've loaded the right file, exit and rerun MLX, being careful
to enter the correct starting and ending addresses.

If you want to check which programs are on a disk, select
the C option from the command menu to display a directory.
You can use the 128's NO SCROLL key to pause the display.
Afterward, press any key to return to the menu.

287

Appendix C

The Quit menu option has the obvious effect: It stops

MLX and enters BASIC. The RUN/STOP key is disabled, so

the Q option lets you exit the program without turning off the

computer. (Of course, RUN/STOP-RESTORE also will get

you out.) You'll be asked for verification; press Y to exit to

BASIC or any other key to return to the menu. After quitting,

you can type RUN again and reenter MLX without losing your

data, as long as you don't use the clear-workspace option.

The Finished Product

When you've finished typing all the data for an ML program

and saved your work, you're ready to see the results. The in

structions for loading and using the finished product vary

from program to program. Some ML programs are designed to

be loaded and run like BASIC programs, so all you need to

type is LOAD "filename",8 for disk or LOAD "filename" for

tape, and then RUN. (These programs usually have 1C01 as

their MLX starting address.) Others must be reloaded to spe

cific addresses with a command such as LOAD "filename",8,1

for disk or LOAD "filename",1A for tape, and then started

with a SYS to a particular memory address. In either case, al

ways refer to the article that accompanies the ML listing for

information on loading and running each program.

An Ounce of Prevention

By the time you finish typing in the data for a long ML pro

gram, you may have several hours invested in the project.

Don't take chances; use our "Automatic Proofreader" (Appen

dix B) to type MLX, and then test your copy thoroughly before

using it to enter any significant amount of data. Make sure all

the menu options work as they should. Enter fragments of the , }

program starting at several different addresses; then use the 1—!
Display Data option to verify that the data has been entered

correctly. And be sure to test the Save and Load options sev

eral times to insure that you can recall your work from disk or

tape. Don't let a simple typing error in MLX cost you several

nights of hard work.

288

MLX, Machine Language Editor

MIX

AE 100 TRAP 960:POKE 4627#128:DIM NL$,A(7)

XP 110 Z2=2:Z4=254:Z5=255:Z6=256:Z7=127:BS=256*PEE
K(4627):EA=65280

FB 120 BE§=CHR$(7):RT$=CHR§(13):DL$=CHR$(20):SP$=C
HR$(32):LF$=CHR$(157)

KE 130 DEF FNHB(A)=INT(A/256):DEF FNLB(A)=A-FNHB(A
)*256:DEF FNAD(A)=PEEK(A)+256*PEEK(A+1)

JB 140 KEY 1#MAM:KEY 3,"B":KEY 5,"C":KEY 7,"D":V0L
15:IF RGR(0)=5 THEN FAST

FJ 150 PRINT"{CLR}"CHR$(142);CHR$(8):COLOR 0,15:CO
LOR 4,15:COLOR 6,15

GQ 160 PRINT TAB(12)M{RED}{RVS}{2 SPACES}g9 @1
{2 SPACES}"RT$;TAB(12)"{RVS}{2 SPACES}{OFF}
{BLU} 128 MLX {RED}{RVS}{2 SPACES}"RT§;TAB(
12)"{RVS}{13 SPACES} {BLU}11

FE 170 PRINT11 {2 DOWN} {3 SPACES}COMPUTE i *S MACHINE
{SPACE}LANGUAGE EDIT0R{2 DOWN}11

DK 180 PRINT11 {BLK}STARTING ADDRESSg43";:GOSUB 260:
IF AD THEN SA=AD:ELSE 180

FH 190 PRINT"{BLK}{2 SPACESjENDING ADDRESSg4§";:GO
SUB 260:IF AD THEN EA=AD:ELSE 190

MF 200 PRINT11 {DOWN} {BLK}CLEAR WORKSPACE [Y/N]?g43"
:GETKEY A$:IF A$OMY" THEN 220

QH 210 PRINT"{DOWN}{BLU}WORKING ...M;:BANK 0:FOR A=
BS TO BS+(EA-SA)+7:POKE A#0:NEXT A:PRINT"DO
NEM

DC 220 PRINT TAB(10)"{DOWN}{BLK}{RVS} MLX COMMAND
{SPACE}MENU g41{DOWN}":PRINT TAB(13)"{RVS}E
{OFFjNTER DATAwRT$;TAB(13)"{RVS}D{OFF}ISPLA
Y DATA"RT$;TAB(13)"{RVS}L{OFF}OAD FILE"

HB 230 PRINT TAB(13)"{RVS}S{OFF}AVE FILE"RT$;TAB(1
3)"{RVS}C{OFF}ATALOG DISK"RT$;TAB(13)"{RVS}
Q{OFF}UIT{DOWN}{BLK}"

AP 240 GETKEY A$:A=INSTR("EDLSCQ",A$):ON A GOTO 34
0,550#640,650#930#940:GOSUB 950:GOTO 240

SX 250 PRINT "STARTING AT"; :GOSUB 260 :IF(ADO0)OR(A
$=NL$)THEN RETURN:ELSE 250

BG 260 A$=NL§:INPUT A$:IF LEN(A$)=4 THEN AD=DEC(A$

PP 270 IF AD=0 THEN BEGIN:IF A$<>NL$ THEN 300:ELSE
RETURN:BEND

MA 280 IF AD<SA OR AD>EA THEN 300

PM 290 IF AD>511 AND AD<65280 THEN PRINT BE$;:RETU
RN

SQ 300 GOSUB 950 .-PRINT" {RVS} INVALID ADDRESS
{DOWN} {BLK} ":AD=0:RETURN

RD 310 CK=FNHB(AD):CK=AD-Z4*CK+Z5*(CK>Z7):GOTO 330

289

Appendix C

u

DD 320 CK=CK*Z2+Z5*(CK>Z7)+A '—
AH 330 CK=CK+Z5*(CK>Z5):RETURN

QD 340 PRINT BE$;"{RVS} ENTER DATA ":GOSUB 250:IF i >

{SPACE}A$=NL$ THEN 220 LJ
JA 350 BANK 0:PRINT:F=0:OPEN 3,3

BR 360 GOSUB 310:PRINT HEX?(AD)+":";:IF F THEN PRI

NT L?:PRINT"{UP}{5 RIGHT}"; JJ
QA 370 FOR 1=0 TO 24 STEP 3:B?=SP?:FOR J=l TO 2:IF

F THEN B?=MID?(L?,I+J,1)
PS 380 PRINT"{RVS}"B?+LF?;:IF K24 THEN PRINT"

{OFF}";
RC 390 GETKEY A?:IF (A?>"/" AND A?<":") OR(A?>"@"

{SPACE}AND A?<"G") THEN 470

AC 400 IF A?="+" THEN A?="E":GOTO 470

QB 410 IF A?="-" THEN A?="F":GOTO 470

FB 420 IF A?=RT? AND ((1=0) AND (J=l) OR F) THEN P
RINT B?;:J=2:NEXT:I=24:GOTO 480

RD 430 IF A?="{HOME}" THEN PRINT B?:J=2:NEXT:I=24:

NEXT:F=0:GOTO 360

XB 440 IF (A?="{RIGHT}") AND F THEN PRINT B?+LF?;:

GOTO 470

JP 450 IF A?<>LF? AND A?<>DL? OR ((1=0) AND (J=l))
THEN GOSUB 950:GOTO 390

PS 460 A?=LF?+SP?+LF?:PRINT B?+LF?;:J=2-J:IF J THE

N PRINT LF?;:1=1-3

GB 470 PRINT A?; :NEXT J:PRINT SP?;
HA 480 NEXT I:PRINT:PRINT"{UP}{5 RIGHT}";:L?="

{27 SPACES}"
DP 490 FOR 1=1 TO 25 STEP 3 :GET#3,A? ,B? :IF A?=SP?

{SPACE}THEN 1=25:NEXT:CLOSE 3:GOTO 220

BA 500 A?=A?+B?:A=DEC(A?):MID?(L?,I,2)=A?:IF I<25

{SPACEjTHEN GOSUB 320:A(l/3)=A:GET#3,A?

AR 510 NEXT I:IF A<>CK THEN GOSUB 950:PRINT:PRINT"
{RVS} ERROR: REENTER LINE ":F=1:GOTO 360

DX 520 PRINT BE?:B=BS+AD-SA:FOR 1=0 TO 7:POKE B+I,

A(I):NEXT I

XB 530 F=0:AD=AD+8:IF AD<=EA THEN 360

CA 540 CLOSE 3:PRINT"{DOWN}{BLU}** END OF ENTRY ** j j

{BLK}{2 DOWN}":GOTO 650 (—'
MC 550 PRINT BE?;"{CLR}{DOWN}{RVS} DISPLAY DATA ":

GOSUB 250:IF A?=NL? THEN 220

JF 560 BANK 0:PRINT"{DOWN}{BLU}PRESS: {RVS}SPACE
{OFF} TO PAUSE, {RVS}RETURN{OFF} TO BREAK

B43{DOWN}"
XA 570 PRINT HEX?(AD)+":";:GOSUB 310:B=BS+AD-SA

DJ 580 FOR I=B TO B+7 :A=PEEK(I) :PRINT RIGHT?(HEX?(
A),2);SP?;:GOSUB 320:NEXT I

XB 590 PRINT"{RVS}";RIGHT?(HEX?(CK),2)

u

MLX, Machine Language Editor

GR 600 F=1:AD=AD+8:IF AD>EA THEN PRINT"{BLU}** END

OF DATA **M:GOTO 220

EB 610 GET A$:IF A$=RT$ THEN PRINT BE$:GOTO 220

QK 620 IF A$=SP$ THEN F=F+1:PRINT BE§;

XS 630 ON F GOTO 570,610,570

RF 640 PRINT BE$"{DOWN}{RVS} LOAD DATA ":OP=1:GOTO
660

BP 650 PRINT BE$M{DOWN}{RVS} SAVE FILE ":OP=0

DM 660 F=0:F$=NL$:INPUT"FILENAMEB4lM;F$:IF F$=NL$
{SPACE}THEN 2?20

RF 670 PRINTM{DOWN}{BLK}{RVS}T{OFF}APE OR {RVS}D
{OFFjlSK: B4§M;

SQ 680 GETKEY A$:IF A$="T" THEN 850:ELSE IF A$<>ND

" THEN 680

SP 690 PRINTMDISK{DOWN}11:IF OP THEN 760

EH 700 DOPEN#1,(F$+",P"),W:IF DS THEN A$=D$:GOTO 7
40

JH 710 BANK 0:POKE BS-2,FNLB(SA):POKE BS-1,FNHB(SA
):PRINT"SAVING ";F$:PRINT

MC 720 FOR A=BS-2 TO BS+EA-SA:PRINT*1,CHR$(PEEK(A)

);:IF ST THEN A$="DISK WRITE ERROR":GOTO 75
0

GC 730 NEXT A:CLOSE 1:PRINT"{BLU}** SAVE COMPLETED
WITHOUT ERRORS **":GOTO 220

RA 740 IF DS=63 THEN BEGIN:CLOSE 1:INPUT"{BLKJREPL

ACE EXISTING FILE [Y/N]B4§";A$:IF A$="Y" TH

EN SCRATCH(F$):PRINT:GOTO 700:ELSE PRINT"
{BLK}":GOTO 660:BEND

GA 750 CLOSE 1:GOSUB 950:PRINT"{BLK}{RVS} ERROR DU

RING SAVE: g4i":PRINT A$:GOTO 220

FD 760 DOPEN#1,(F$+",PM):IF DS THEN A$=DS$:F=4:CL0
SE 1:GOTO 790

PX 770 GET#1,A$,B$:CLOSE 1:AD=ASC(A$)+256*ASC(B$):
IF ADOSA THEN F=l :GOTO 790

KB 780 PRINT"LOADING " ;F$:PRINT:BLOAD(F$) ,B0,P(BS)
:AD=SA+FNAD(174)-BS-1:F=-2*(AD<EA)-3*(AD>EA

RQ 790 IF F THEN 800:ELSE PRINT"{BLU}** LOAD COMPL

ETED WITHOUT ERRORS **":GOTO 220

ER 800 GOSUB 950:PRINT"{BLK}{RVS} ERROR DURING LOA

D: B4§":ON F GOSUB 810,820,830,840:GOTO220
QJ 810 PRINT"INCORRECT STARTING ADDRESS (";HEX$(AD

);")":RETURN

DP 820 PRINT"LOAD ENDED AT ";HEX$(AD):RETURN
EB 830 PRINT"TRUNCATED AT ENDING ADDRESS ("HEX$(EA

)")":RETURN

FP 840 PRINT"DISK ERROR ";A$:RETURN

KS 850 PRINT"TAPE":AD=POINTER(F$):BANK 1:A=PEEK(AD
):AL=PEEK(AD+1):AH=PEEK(AD+2)

291

Appendix C

XX 860 BANK 15:SYS DEC("FF68"),0,1:SYS DEC("FFBA")
,1,1,0:SYS DEC(MFFBDM),A,AL,AH:SYS DEC(MFF9

0"),128:IF OP THEN 890 t]
FG 870 PRINT :A=SA:B=EA+1:GOSUB 920:SYS DEC("E919")

, 3 :PRINT "SAVING ";F$

AB 880 A=BS:B=BS+(EA-SA)+1:GOSUB 920:SYS DEC("EA18 j I

"):PRINT"{DOWN}{BLU}** TAPE SAVE COMPLETED I—I
{SPACE}**M:GOTO 220

CP 890 SYS DEC(WE99AM):PRINT:IF PEEK(2816)=5 THEN
{SPACEjGOSUB 950:PRINT"{DOWN}{BLK}{RVS} FIL

E NOT FOUND ":GOTO 220

GQ 900 PRINT"LOADING ...{DOWN}":AD=FNAD(2817):IF A

DOSA THEN F=1:GOTO 800:ELSE AD=FNAD(2819)-

1 :F=-2* (AD<EA) -3* (AD>EA)
JD 910 A=BS:B=BS+(EA-SA)+1:GOSUB 920:SYS DEC("E9FB

M):IF ST>0 THEN 800:ELSE 790

XB 920 POKE193,FNLB(A):POKE194,FNHB(A):POKE 174,FN

LB(B):POKE 175,FNHB(B):RETURN

CP 930 CATALOG:PRINT"{DOWN}{BLU}** PRESS ANY KEY F

OR MENU **M:GETKEY A$:GOTO 220

MM 940 PRINT BE$M{RVS} QUIT B4l";RT§;"ARE YOU SURE

[Y/N]?":GETKEY A$:IF A$<>"Y" THEN 220:ELSE

PRINT"{CLR}":BANK 15:END

JE 950 SOUND 1,500,10:RETURN

AF 960 IF ER=14 AND EL=260 THEN RESUME 300

MK 970 IF ER=14 AND EL=500 THEN RESUME NEXT

KJ 980 IF ER=4 AND EL=780 THEN F=4:A$=DS$:RESUME 8

00

DQ 990 IF ER=30 THEN RESUME:ELSE PRINT ERR$(ER);W

{SPACE}ERROR IN LINE";EL

u

u

292 | J

Index
&. See ampersand

@. See at sign

ADD 74

ADSR 138

ALT 252

"American Patrol" program 143-45

ampersand 223

amplitude 138

APPEND 193

arrays 161

assembler packages 163

at sign 203, 229, 270

attack 140

attribute memory 87

autoboot disk, creating 263, 272-74

"Autoboot Generator" program 274

"Autoboot Maker" 212-14

autobooting 189, 264, 267

"Automatic Proofreader, The" program

281-82

"Auto Run" program 258-59

background color 209

BACKUP 195

BANK 15, 219

bank number 222

banks 217-19

BASIC 227

Basic Disk Operating System. See BDOS

Basic Input/Output System. See BIOS

BASIC 7.0 220-22

batch processing 172

BDOS 154

bell tone 209

binary 223

binary file 189

BIOS 154

BIT 159

BLOAD 189, 190, 220, 239, 272

block move 162

BOOT 190, 272

boot sector 265

BOX 127, 198

branching 160

BSAVE 191

BSOUT 226

calling 228-30

calls 157

CAPS LOCK 246, 255

caps-lock-q bug 255

chained programs 190

CHAR 198, 200

CHROUT 226

CIRCLE 198

CLOSE 192

COLLECT 195

COLLISION 208

colon 191

COLOR 268

color number 269

color source 269

color sources (table) 269

comma 255

commands 168

Commodore 128 System Guide, The 136

compare 162

COMPUTEl's Second Book of Commodore

US disk vi

CONCAT 195

configuration 223

CONTROL-C 168

COPY 195

COPYSYS 170

"Cosmic Objects" program 128

CPIR 162

CP/M 165-74

booting 165

copying to disk 170, 171

CP/M public domain software 175-80

sources 177-80

CREATE 73

CTRL-$ 87

CTRL-B 87

CTRL-L 87

CTRL-X 87

cursor 209

cursor position 206

"Custom Envelope" program 147-48

cut time 131

"Database 128" 75-82

DCLEAR 195

DCLOSE 192

DEC 192, 220

decay 140

default envelopes 129-31, 140

default 40-column settings 271

default values 91

DELETE 74

destination 158

Digital Research 155

DIR 166, 169

DIRECTORY 194, 195

DIRSYS 169

disk drive 176, 177, 196, 197

DJNZ address 156

DLOAD 187, 190, 220, 229, 239, 272
dollar sign 223

DOPEN 192

"DOS Shell" 219

dot 135

DRAW 126, 198

DS194

DS$ 194

293

DSAVE 191, 196, 234

duration 107, 110

duration elements 135

DVERIFY 196

Dvorak keyboard 255

dynamic level 134

ED 172

editing commands 204

editing enhancements (table) 204-6

"80-Column Character Editor" 99-103

80-column chip 84-86, 95, 97-99

internal RAM 97

reading 98

writing 98

80-column colors (table) 269

8502 chip 245

ENVELOPE 129, 133, 138-42

ERA 173

erase 206

ERASE 169

error messages 194, 287

ESC 203

ESC @ 206

ESC A 204, 255

ESCape code sequences 255

escape key 203

escape sequence 203, 270

escape sequences (table) 270

ESC B 206

ESC C 204

ESC D 204

ESC E 209

ESC F 209

ESC G 209

ESC H 209

ESC I 205, 255

ESC J 205

ESC K 205

ESC L 207

ESC M 207

ESC N 210

ESC O 205

ESC P 206

ESC Q 206, 255

ESC R 210

ESC S 209

"ESC Sequence Demo" program 212

"ESC Sequence Function Keys"

program 214-15

ESC T 206

ESC U 209

ESC V 208

ESC W 208

ESC X 208

ESC Y 210

ESC Z 210

exit command 227

FAST 87, 197

fields 73

Hies 168

filter 134

FILTER 138, 139

FIND 74

First Osborne Group (FOG) 177

flag 271

flats 135

FOG 177

FORMAT 170

formatting a disk 170, 197, 267

40-column colors (table) 269

Free Software 179

Free Software Handbook 177

freeware 176

frequency 107, 110

function keys 192

G227

GET# 193

go command 227

GRAPHIC CLR 231, 233

graphics 126

greater-than sign 225

GSHAPE 65, 66, 199

HELP 167, 168

"Hex War" 42-49

HEX$ 220

hexadecimal number 38, 154, 192, 223,

283

hi-res mode 198-202

custom characters 201, 202

text manipulation 199-201

home position 206

IN 162

IND 162

indexing 161

INI 162

INPUT# 193

insert 205

insert mode 204

instruction sets 153

Intel 8080 instruction set 153-55

intelligent units 239

interrupt request vector 246

I/O chip 225

IRQ. See interrupt request vector

jiffies 110

jumps 157

Kaypro computer 176

KEY 192

keyboard 245

keycode 250

keycodes (table) 251

"KeyDef" program 256

u

u

u

u

u

Li

u

L_J

I ^J
LJ

294

U

n

n

"Keymaster Demo" program 248

"Keymaster" program 248
keyscan 250

L 189, 193, 239

language 173
LDIR 162

libraries 179

linking 228, 232-34

LIST 195, 207

LOAD 229, 239

loading BASIC programs 187, 188, 190
M224

machine language monitor 222-28

machine language programs
autobooting 264

writing 226

macro library file 156

"Magic Flute, The" program 143

"Marquee" program 92-94

memory

changing 224

display 224

liberating 231

memory management unit (MMU) 218

memory use 219

"Miami Ice" program 5-35

minimum sweep frequency 107, 110

"Minuet" program 146

"MLX" program 289-92

mode 66

MODIFY 74

MONITOR 84, 222, 233

"Mozart Magic" program 120-25
music 129

NMI. See nonmaskable interrupt
handler

nonmaskable interrupt handler 246

NO SCROLL 246, 248, 253

note 135

NTSC system 241

number conversion 223

octal 223

octave 134

"128BOOT64" program 265-66

128 machine language 216-34
OPEN 192

operating system 157, 173

Osborne computer 176

OTDR 162

OTIR 162

OUT 162

OUTD 162

OUTI 162

output window 206

overlaying 228

PAINT 198

PAL video system 241

patch 138

percent sign 223

period 255

piano 142

"Pig$ for Buck$" programs 52-62

PIP 170, 171

"Pit, The" program 128

pixels 198

PLAY 129, 132

PLAY statement parameters (table) 132

plus sign 223

pointers 252

poison files 195

"Preferences" 268, 275

PRINT 75, 207

PRINT# 193

processors 245

PROFILE 172

programs 168

public domain software 175

pulse wave 111

pulse width 107, 111, 142

"Puzzle Grid" 66-69

quote mode 205

QWERTY keyboard 255

RAM (random access memory) 216

raster interrupt 261

READ 74

read only memory 216. See also ROM

RECORD* 193

registers, loading and storing 158

relative file 193

release 140, 141

RENAME 169, 194

RES 159

reserved for applications software

memory 220

ring-modulated 141

ROM (read only memory) 216, 225

RREG 220

RUN 188, 190

SAVE 191, 239

saving programs 191, 234

SCNCLR 268

SCRATCH 194

screen control enhancements (table)

207

screen enhancements 206-9

screen modes (table) 268

scrolling 207, 208

semicolon 155, 207

sequences, miscellaneous (table) 209

sequential file 192

service call 157

295

SET 159

shareware 176

sharps 135

SHIFT-RUN/STOP 195

SID chip 107, 129, 133, 135

6502 machine language 153

"64 Mode Speed-Up" program 262

SORT 74

SOUND 107, 110, 111

"Sound Designer" program 112-18

sound interface device chip 107. See

also SID chip

source 158

"SpeedScript" 83

"SpeedScript-80" programs 88-90

splat files 195

"SPRDEF Enhancer" program 184-86

square wave 111

SSHAPE 65, 199

step 111

"String Art" program 128

SUBMIT 172

sustain 140, 141

sweep direction 107, 110

synchronization 136-38

SYS 220, 228

TAB 246

tab stops 271

tables 161

tab-stop settings 210

TEMPO 129, 131, 132

timbre 111, 138, 141

tonal envelope 133

tone generators 111

transient commands 169

translation tables 252-54

"TurboDisk 128"program 241-44

TYPE 169, 179

typing in programs 277

USER 169

VERIFY 196, 239

VIEW 74

virtual drive 169

"Vision Fugitive XVI" program 148-49

voice 107,110

voice coordination 136-38. See also

synchronization

VOL 134

volume 134

waveform 107, 111, 138, 141

WINDOW 109, 207

WRITE 74

X 85, 227

Z80, programming 153-64

Z80 chip 170, 245

Zilog Z80 instruction set 153-56

Li

U

LJ

U

Q

u

u

U

296

U

To order your copy of Second Book of 128 Disk, call our toll-
free US order line: 1-800-346-6767 (in NY 212-887-8525) or
send your prepaid order to:

Second Book of 128 Disk

COMPUTE! Publications

P.O. Box 5038

F.D.R. Station

New York, NY 10150

All orders must be prepaid (check, charge, or money order). NC
residents add 5% sales tax. NY residents add 8.25% sales tax.

Send copies of Second Book of 128 Disk at $12.95 per
copy.

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

a Payment enclosed

a Charge □ Visa □ MasterCard a American Express

Acct. No. . Exp. Date
(Required)

Name .

^ Address

i 1

City State Zip

/ J Please allow 4-5 weeks for delivery.

o

n 297

.«**£*

fA

More fun...More challenge...

More all new programs

each and every month.

Subscribe to COMPUTEI's Gazette

through this special money-saving in

troductory offer—and start unleashing

the full power of your Commodore

computer.

Month after month, look to

COMPUTEI's Gazette to deliver the
latest inside word on everything from

short programming tips to the best
new software. Our expert analysis and

insights mean you have more run...get

more enjoyment...more of what you

bought your computer for.
As a subscriber, you also receive

up to 20 all-new, action-packed pro

grams each month. Every big issue of

COMPUTEI's Gazette comes complete

with a steady supply of the most
useful, the most entertaining, the

Subscription
Savings Card

highest quality programs like Number
Quest, Address File, Treasure Hunt,

Castle Dungeon, Vocab Builder,

SpeedScript, and hundreds of other
educational, home finance, and game
programs.

So subscribe today—and unleash
the hidden power of your Commodore
computer. Return the card below—or
call 1-800-247-5470 (in Iowa, 1-800-

532-1272). Do it now.

COMPUTEI's

Saloon Shootout

st BAac:

Budget
Planner
Manage your rm

to terete weekly arefl
montWy income for on 1
entire year. For the
Cormwdore 128,64. a
Ptus/4.

wr „ .Bd American home may 9

i* (Tofnofflow's fltectroric "6fn8rt"
e is just around the comer.)

YES!
□ Payment enclosed □ Bill me □ Charge my VISA/MasterCard

I know a great deal
when I see one. Sign
me up for 12 big issues

of COMPUTEVs Gazette
for just $18.1 save 50%

off the newsstand price.

Credit Card #_ _Exp. Date-

Signature-

Name_

Address.

City_ -State. -Zip-

Outside U.S.A. please add $6 (U.S.) per year for postage.

SayYES nowto

COMPUTE'S

You can search far and wide and you

simply won't hnd a better magazine...a

better source of insightful, stimulating,
usable information for your Com
modore computer than COMPUTEi's

Gazette.

COMPUTE'S Gazette works

harder...digs deeper...researches

further—all to help guarantee that you

get the absolute most from your Com

modore.
Subscribe today and each and ev

ery month you'll receive up to 20 all-

new action-packed programs. That's up
to 200 programs each year—game pro

grams. . .education programs...home ap-

plications programs...personal and

budgeting programs...sorting and filing

programs.

Add it up for yourself. Where else
can you get exciting programs each

month...expert advice...insightful

analysis...up-to-the-minute software
reviews and so much more—all for

just $18.

So why wait. Subscribe now to
COMPUTEi's Gazette—and get the

most from your Commodore computer.

Return card below—or call 1-800-

247-5470 (in Iowa, 1-800-532-1272).

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 7551 DES MOINES, IA

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

COMPUTEi's Gazette
RO. Box 10775

Des Moines, IA 50347-0775

1,1,1,11 ||,,l,,ll,,.lll...l...II...I.I.I...1.11

