

u

D

D

LJ

D

U

D

D

0

D

n

MAPPING
THE

Russ Davies

n

n

n

■«?■■■>

COMPUTEr Publicationsjnc©
One of the ABC Publishing Companies ^^^

Greensboro, North Carolina

VIC-20 is a registered trademark of Commodore Electronics, Ltd.

LJ

a

a

u

u

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Sec

tions 107 and 108 of the United States Copyright Act without the permission of the j]
copyright owner is unlawful. LJ

Printed in the United States of America

ISBN 0-942386-24-8 LJ

10 98765432 1 __^

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) Li
275-9809, is one of the American Broadcasting Publishing Companies, and is not

associated with any manufacturer of personal computers. VIC-20 is a trademark of

Commodore Electronics Limited. I /

o

_ Contents
Foreword v

« Chapter 1: Memory Page 0 3

] Chapter 2: Memory Page 1 71

Chapter 3: Memory Pages 2 and 3 75

Chapter 4: Built-in and Expansion RAM Character ROM 105

Chapter 5: Video Interface Chip 121

Chapter 6: Versatile Interface Adapters VIA1 and VIA2 143

Chapter 7: Input/Output Expansion Blocks and Screen Color

Map 177

Chapter 8: BASIC ROM 185

Chapter 9: Kernal ROM 245

Appendices 293

A: Using the Binary and Hexadecimal Memory Contents of

the VIC-20 295

B: BASIC Area Pointers and Internal Storage Formats of

Variables and Lines 304

C: VIC-20 Code Chart 313

D: Device Numbers, Secondary Addresses, and Status Codes... 320

E: Automatic and User Relocation of Memory Contents 325

F: Block SAVE/LOAD Using the Kernal Routines from BASIC .. 331

G: Custom Characters and Bitmapping 334

H: Alphabetical Cross Reference to the Location of Memory

Map Labels 338

I: A Beginner's Guide to Typing In Programs 354

J: How to Type In Programs 356

^ K: Screen Location Table 358

I L: Screen Color Memory Table 359

M: ASCII Codes 360

P| N: Screen Codes 364

Index of Subjects by Topic 367

n

H

iii

u

D

D

LJ

D

U

D

D

0

D

n

Foreword
This is a memory map of the VIC-20 home computer. It's your

Pj road map to the internal architecture and operating systems of

your computer, showing you how memory is constructed, how

it's used, and how you can access it.

Mapping the VIC isn't just a listing of the computer's

memory locations. It explains the purpose of each location and

shows you how to change the contents of many of them.

You'll be able to make the computer do what you want it to.

You'll be able to understand other programmers' efforts

far more easily when you can look up the pointers, POKEs,

PEEKs, and SYS commands that they've used. Seeing how

someone else has programmed is only a step away from learn

ing new programming techniques of your own. You can use

the extensive index and label cross reference to learn about a

subject of interest, reading in-depth explanations of such

things as tape use with the VIC, or how to call BASIC or

Kernal routines from your own programs.

There are numerous programming techniques already ex

plained in this book. How to use the block SAVE/LOAD fea

ture of the VIC; how to make the VIC's screen into a

40-column display with a new character set; even how to con

trol the various connectors on the back of the VIC from within

your own programs.

If you're programming in BASIC, you'll appreciate the

easy-to-understand explanations of how to use the advanced

features of the VIC-20 in your own programs. If you're using

machine language, you'll come back to Mapping the VIC over

and over, referring to specific memory locations and routines.

^n Whether you're a beginning programmer or a veteran, you'll

have the most complete guide to the VIC-20's memory

available.

n

H

u

D

D

LJ

D

U

D

D

0

D

Introduction
A memory map is like a road map. It can show you something you

never dreamed was there, help you find the things that you always

knew were there, and show you what you've never seen. It can help

you get to a place from where you are and it's always there to

remind you of forgotten details. A memory map shows you how

things in memory are constructed, how the memory is used, who

can use it, and what it means in the larger scheme of things.

This book is designed to be a working resource as you program.

When you look at others' programs, you can refer to the memory

locations that you see PEEKed and POKEd to understand what is

being done. SYS locations aren't as mysterious when you have a

memory map that tells you what a routine is doing and how. The

manipulation of pointers within a program is understandable once

you can read what the pointer is used for and what the effect is

when it changes.

And a memory map can shed light on the methods and tech

niques used by other programmers. Understanding what their pro

grams do will make you a better programmer yourself, for you'll

learn a number of new techniques and tricks of programming. You'll

also find it easier to modify other programs once you understand

what they do and how they do it.

When you find yourself interested in a particular subject—

TAPE, for instance—you can look up the subject in the keyword

index in the back of this book. There you'll find all the locations and

routines used for that subject. By reading the description of these

locations and routines, as well as their many possibilities and some

little-known facts, you'll become knowledgeable about the subject.

These locations and routines will refer you to other related locations,

routines, and appendices. The keyword index also lists the location

of many sample programs and statements, as well as tables and

diagrams. An additional index is provided to help you locate a mem

ory location quickly once you're familiar with the mnemonic label

associated with that location.

To make full use of the memory map, you should have a work

ing knowledge of BASIC, but extensive experience isn't really nec

essary. The BASIC routine descriptions offer insights into the quirks

and peculiarities of each BASIC keyword. The Kernal routine
descriptions become more technical and describe the way the Kernal

handles the input and output tasks on the VIC-20. The Video Inter

face Chip (VIC) description is thorough and explains how to use the

computer's namesake chip to customize such things as screen colors

vu

H

u

Q

i j
and size, musical tones, and characters of your own design. Other '—
advanced features, such as multicolored characters, alternate screen

flipping, and bitmapping are also explained. The section on the Ver- j ~~j

satile Interface Adapters (VIAs) describes the various connectors on <—'

the back of the VIC-20, what these connectors are designed for, and

how to control and use them from within your own programs. -,

The ROM-based BASIC and Kernal routines can be dis- LJ
assembled with any of several available disassembler programs, and

the memory map will explain the purpose of the machine language

routines.

The program and statement examples included in the book are

designed to be straightforward and understandable, not tricky. Extra

levels of parentheses, additional spaces, and single statements per

program line can be compacted to use less of the VIC's precious

memory.

Even though the memory map is comprehensive, new tech

niques, tricks, and inventive methods will be constantly discovered.

You may find it handy to note these at the appropriate memory

locations when you discover them, insuring that this single-source

reference is always up-to-date with your knowledge of the VIC.

You'll find plenty of programming techniques in this book.

You'll learn how nonrelocatable program tapes can be relocated,

how to call BASIC and Kernal routines from a BASIC program, what

the effect of a shifted space is in a disk filename, and how the

Kernal prevents you from saving memory above a certain location to

tape. You'll also learn why x-line handshaking on RS-232 devices

doesn't work properly, how to make a custom character set that

gives the appearance of a 40-column screen, how to SAVE your data

from within a BASIC program and LOAD it wherever you want, and

other valuable programming methods. I think you'll find this book

an invaluable guide for working with your VIC-20.

I wrote this book because I needed it. The VIC-20 is a home

computer with lots of potential, but there was so little documenta

tion available at first that the only solution was to start collecting

memory location usage gems as though they were rare postage

stamps. How can you write a machine language program if you have j I

no idea where anything is in the computer? The VIC-20 Programmer's ^
Reference Guide was somewhat helpful when it became available

much later, but not to the extent that I felt necessary to effectively i j

use the VIC-20. LJ
For years I've collected, sorted, experimented, expanded upon,

and cross-referenced the VIC-20 memory locations and routines.

Every article, book, program, idea, and explanation that I could find | j
through daily trips to the computer stores and many long distance

conversations with other VIC-20 users was grist for this mill. I dis

assembled BASIC and the Kernal. Programs were written to cross- jj
reference, sort, and label the operands of that machine language

viii

u

code. Every instruction was examined and evaluated. PET literature

was pored over, and more recently Commodore 64 documentation

was digested for possible insights. No Commodore proprietary docu

mentation was available to me in this endeavor. My primary source

of information (besides the VIC-20 itself) was the manuals and
magazine articles available on the retail bookstore shelves.

Acknowledgments
The following people helped make this book possible.

I, along with so many others, owe much to Jim Butterfield for

giving out just enough information to whet our appetites, and so

encouraging us to dig the information out ourselves. A wise teacher.

Many subscribers to the CompuServe Commodore SIG provided

valuable feedback and suggestions.

Dan Heeb provided a constant flow of technical information and

advice throughout the project. His explanations of RS-232 and serial

workings are very much appreciated, and the tape routines and loca

tions descriptions are the result of months of his intensive, analytical

investigation. I highly recommend his forthcoming works on VIC-20

and Commodore 64 internals.

The excellent and captivating overview of VIC-20 architecture

was provided through the courtesy of James V. Doody.

Sheldon Leemon, a well-known COMPUTE! magazine author

and Commodore/Atari authority, provided valuable additional

information on the PET Kernal and BASIC routines, advice, sugges

tions, sample programs, timely rumors, and much needed

encouragement.

I depended heavily on the folks at Oak Ridge Microcomputers

(formerly Software To Go) for my hardware and software require

ments since the availability of both in Silicon Valley is scarce due to

_ overwhelming demand. I found it much more convenient for me to

! 1 have them ship products overnight from Tennessee than to get on a
local waiting list.

I'm indebted to the patience of many people in my personal and

P"! professional life and I thank them for their interest, understanding,
and belief in me.

The staff at COMPUTE! Publications was a joy to work with

PI and exhibited the highest level of professionalism. Special thanks go

' to Orson Scott Card and Gregg Keizer.

And finally, to Cindy King, who always encouraged, supported,

*—i soothed, beautified, understood, smiled, and believed. Without her, I

ix

n

simply couldn't have accomplished this massive task. I am in her

debt, and admire her for the strength and conviction she has shown
in the face of adversity.

VIC-20 Architecture
The main body of this book is organized by memory location for

convenience of reference. Because of this organization, you may

encounter unfamiliar terminology or concepts in the description of a
particular location.

This overview explains many of the common VIC-20 terms used

throughout the book, and gives you an idea of the VIC-20's
architecture.

If you're familiar with the architecture (at least at the level

described in the VIC-20 Programmer's Reference Guide or similar ref

erence), you may wish to skip this overview and immediately use the

memory location map. A block diagram of the unexpanded and

expanded VIC-20 memory structure follows this overview. The

diagram will be helpful to even the most knowledgeable reader as a

source of quick configuration information.

Logic elements. The primary computing logic in the VIC-20 is

implemented by the microprocessor, a single semiconductor compo

nent, or chip, designated the 6502. The 6502 is a popular

microprocessor used (in some form) in most Commodore computers,

in all Atari computers, in the Apple I and II, and in several less well-

known machines.

The 6502 microprocessor implements the VIC-20's instruction

set: the internal commands issued by machine language (ML) pro

grams. It also contains a set of registers: high-speed internal storage

locations used by most of the instructions. The most important 6502

registers for the VIC-20 programmer are:

• .A (Accumulator for arithmetic operations)

• .X (X-Index for indexed addressing)

• .Y (Y-Index for indexed addressing)

• .P (Processor status bits for conditional branching)

Two 6522 Versatile Interface Adapter (VIA) chip components pro- LJ
vide timers, shift registers, and data ports for most VIC-20 Input/

Output (I/O): the process of reading or writing data to connected

devices. A VIA interface is used for keyboard input and for I/O to |_|
the principal VIC-20 ports:

• Game port used for joysticks, paddles, and so on

• User port for modems and custom I/O devices j j
• Serial port for VIC disk drives and printers

• Tape port for the VIC Datassette

U

The registers used to control the 6522 VIA functions are

unknown to the 6502, but are mapped into memory locations for

reference by programming instructions.

Output of characters, graphics, colors, and sounds to a video

monitor (or RF modulator for a TV set) is an extremely complex

function that requires custom logic to produce the proper signals.

This logic is implemented on the Video Interface Controller (VIC): the

chip from which the computer gets its name. Two model numbers

are used for the VIC chip, depending on the video signal standards

of the country in which the VIC-20 is sold. For the United States

and Canada, the NTSC standard prevails and is supported by the

6560 VIC chip. For most European and Asian countries, the PAL

video standard requires the 6561 VIC chip. This difference has little

effect on programming, which accesses the VIC registers through

locations mapped into memory, as in the case of the VIA registers.

Memory. The 6502 microprocessor reads a memory range of

locations (address space) from location 0 to location 65535. Each

location is composed of eight bits (Binary digiTs, each containing a 1

or 0) that form a byte. Bytes are grouped into pages, each 256 bytes

long, which begin on a location that is an integral multiple of 256.

Some addresses, called pointers, are actually two bytes long. These

16-bit addresses consist of an 8-bit page address byte preceded by an

8-bit offset within that page. This format, using the least significant

byte (LSB) preceding the most significant byte (MSB), is often re

ferred to as low byte/high byte.

The terms vector, pointer, and link describe the same type of

two-byte memory location containing an address of another location

in memory. The terms have subtle differences of meaning that are of

more interest semantically and categorically than practically. Quoting

Jim Butterfield: "The term link is used when the address is normally

used to connect adjacent code; in this case, it doesn't affect the pro

gram flow until the link is broken with a new address. A vector, on

the other hand, is used as a jump point, and the normal program

jumps somewhere else through the vector. In other words, a ROM

program hits a link point and normally keeps going; it hits a vector

point and branches out."

A link is there in case you want to change where the routine

normally goes, and normally points to the next sequential instruc

tion. A vector is where the routine will be branching to. When a

particular address is referred to by one of these terms in other docu

mentation, that term is also used in this map. Therefore, you'll find

VECTOR tables, screen POINTERS and LINK address captions for

consistency's sake and to aid those readers who are familiar with

each term. Fundamentally, each is two consecutive bytes that repre

sent an address somewhere in memory.

XI

u

u

Unless otherwise noted, these two bytes are in LSB/MSB (Least *—'
Siginficant Byte/Most Significant Byte) format. As already men

tioned, this format is also referred to as low byte/high byte, but , .

there are yet other terms used, such as LB/HB, LO/HI, and displace- LJ
ment/page found in other works. If you are unfamiliar with all of

these terms, see Appendix A for an explanation of the LSB/MSB for

mat and other related number systems topics. [_J
The term offset is used to describe the distance from the begin

ning address of something in memory. The beginning has an offset

of zero, the next byte has an offset of one, and so forth. Index usu

ally means the number of an entry within a table. The first table

entry has an index of zero, the second entry has an index of one,

and so on. A table entry is typically the same length as all other

entries in the table. Tables that have variable length entries are a bit

more complicated and are explained as they occur within the VIC-20

memory.

Most eight-bit microprocessors have a similar-sized address

space (65535 / 1024 = 64K bytes). The VIC-20 is sometimes

unfairly compared to other microcomputers as having 5K of memory

in contrast to 16K, 32K, or even the 64K of its big brother, the Com

modore 64. Actually, the 64K address space on the VIC-20 is filled

with four types of memory locations:

• Random Access Memory (RAM), that can be read or written

by the program

• Read Only Memory (ROM), containing static data that can

only be read

• Input/Output (I/O) Registers, mapped into memory banks

• Expansion Banks, for accessory RAM or ROM

In the unexpanded VIC-20, there are 5K bytes of RAM, IK of

which is used by the VIC chip for screen color codes; 4K of ROM

containing pixel maps of the standard character sets; 8K of ROM for

the BASIC interpreter; and 8K of ROM for the Kernal operating sys

tem service routines. Also, 3K of memory is consumed (but not

filled) by I/O registers. This leaves empty expansion blocks of 3K,

8K+8K+8K (contiguous), and 8K (discontiguous with other expan- j j

sion blocks). Data, addressing, and control lines for all five expan- '—'
sion blocks are routed to the VIC-20 expansion port to allow the

interfacing of memory expansion boards or ROM cartridges. , ,

BASIC. If the native language, for internal purposes, of the VIC- <—'

20 is that of the 6502 microprocessor, there's no doubt that it speaks

to the rest of the world in a dialect of Microsoft BASIC. Even the .- ,

operating commands, such as LOAD, SAVE, RUN, and so on, are [I
actually BASIC statements.

A ROM-resident screen editor and BASIC interpreter are nor

mally activated when the 6502 receives a reset signal at power on. (_J

Xll

u

Control and data areas in page 0 are initialized and the keyboard is

questioned for input. Whatever you type on the keyboard is trans

lated into BASIC tokens, a process usually called tokenization. In

direct mode (entered from the keyboard as opposed to program mode,

resident within a BASIC program), the tokenized commands are

passed directly to the BASIC interpreter and executed immediately.

Keyboard-entered commands preceded by line numbers are saved

for later execution in what is usually called the BASIC program stor

age RAM (a contiguous area of memory addressed by a pointer in

page 0).

BASIC stores a command such as PRINT as a one-byte repre

sentative of that word in the BASIC program storage area. This tech

nique tends to best use program storage space and also helps BASIC

execute faster. Reducing a BASIC word to this one-byte shorthand is

called tokenization, and the one-byte character is known as a token.

When the program is LISTed, BASIC converts it back into a BASIC

keyword. See Appendix B for the description of the internal format

of BASIC statements and variables. Appendix C has a code chart

that shows the one-byte values used for BASIC tokens. Harvey Her

man in COMPUTE'S First Book of PET/CBM discusses tokens in his

article "Tokens Aren't Just for Subways." It may be something you'll

find of interest if you want further reference on tokens and

tokenization.

In program mode (when a program is executing) the screen edi

tor can be used to obtain input from the keyboard or screen, to dis

play that information, and to manage any program output going to

the screen.

A user machine language routine called a wedge can insert itself

into the vector of addresses of routines given control by the Kernal

keyboard monitor. A wedge can examine each command, decide

whether it wishes to interpret that command, and, if not, pass it on

to other wedges or the BASIC interpreter.

A final point of architectural interest implemented in the BASIC

interpreter is floating point arithmetic. The only arithmetic functions

implemented on the 6502 microprocessor are fixed-point binary and

decimal addition and subtraction. The BASIC language further

defines multiplication, division, and exponentiation and has fixed-

and floating-point binary data types. This arithmetic is simulated by

BASIC ROM routines that define floating point accumulators in low

storage. Even machine language programs frequently use these ROM

routines for arithmetic.

Kernal. Another set of ROM routines in the VIC-20 provide a

common set of services to the BASIC interpreter, user BASIC pro

grams, user machine language programs, and any other type of pro

grams that happen to be running in the computer. These Kernal

services are similar in most Commodore computers. Some are

xiii

u

LJ

addressed indirectly through vector references whose locations are also '—'
common. The pointers, control blocks, and other data areas defined

in pages 0-3 by Kernal routines are less common among Com- . j

modore machines but are quite compatible between the VIC-20 and I 1
Commodore 64.

The services provided by Kernal routines are in several cate

gories. The most obvious and most widely used is I/O device sup- j J
port. The 6522 VIA I/O functions are tedious to program, involving

a great deal of time-dependent bit manipulation, so nearly all pro

grammers take advantage of the Kernal routines to accomplish byte-

or block-oriented I/O functions. These functions are discussed later.

The screen editor used by BASIC and most user programs for

keyboard and screen output is also provided by the Kernal. On

input, the screen editor provides the familiar support for the INSert

and DELete key, the cursor positioning keys, and the RETURN key.

On output, the line-wrap feature and the interpretation of cursor and

color control characters in the output stream are the responsibility of

the screen editor. Most software uses the screen editor for character

I/O to the keyboard and screen, so you tend to be most familiar

with its functions. Exceptions for input are the BASIC GET com

mand and the use by many word processors of alternate input

editing conventions. For output, the most visible exceptions are

games and other graphic applications that generate screen output by

POKEing or otherwise updating the areas of storage that define the

display.

The Kernal also provides monitoring services for the various

kinds of interrupt conditions generated within the VIC. One of the

most significant interrupts is the IRQ JIFFY, which controls a Kernal

monitoring routine pointed to by a vector in RAM at designated time

intervals, called jiffies. Routines chained to the jiffy vector are used

for almost all asynchronous (can-happen-at-any-time) activity in

VIC-20 programming.

Other Kernal functions include: autostart of plug-in ROM car

tridges, memory initialization and management, and some screen-

oriented service routines that assist in writing portable or translatable

programs. The memory map contains a complete description of all

Kernal services.

Front-ends, Preambles, and Wedges. Many times a Kernal or

BASIC routine could perform some additional work for you, if you

could just add some instructions to it. The routines are located in

ROM and can't be changed, but by adding instructions to the begin

ning of the routine, you may be able to add to or change it. This

addition of instructions is possible when a vector in RAM points to

the beginning of the routine, and this vector is used by other BASIC

or Kernal routines to get to the routine. The vector can be changed

xiv

H
- to point to your own routines, which will perform the functions you

wish, then go on to the original ROM routines. These routines
rn placed before the standard routines are called front-ends, preambles,
' J or wedges. The VIC-20 contains vector tables for many of the BASIC

and Kernal routines. These can be modified to point to your own

n intercepting routines.

Input/Output. On the VIC-20, I/O is accomplished in many

different ways. This can be confusing, compared to architectures
which have a more regular I/O structure, but is necessary to the ef
ficient functioning of the machine.

Devices attached to the serial port, such as the Commodore disk
drives and printers, are presumed to be intelligent at implementing
high-level control functions. The Kernal routines which support the
serial port must contend with idiosyncrasies of the 6522 VIA, such as
the need to shift data in and out bit by bit, but don't need to know
anything about the device. The VIC 1540/1541 disk drives, for
example, have their own 6502 microprocessor and their own RAM
and ROM containing a high-level set of disk management logic

called DOS (Disk Operating System).
At the opposite extreme, the tape port device is an extremely

low-level analog electrical attachment. The Kernal routines which
perform tape I/O must literally detect and generate the time-
dependent changes in recording levels that represent the bits on the
tape, as well as higher level data management functions.

User port and game port I/O can have aspects of either extreme.

The only Kernal routines in direct support of the user port simulate a
6551 UART (Universal Asynchronous Receiver/Transmitter) chip's

clocking and handshaking logic and control registers in support of
devices such as modems and printer interfaces that use a protocol for

I/O similar to the RS-232 standard. The 6551 UART was not

actually included in the VIC, so the software simulation of its logic

and registers was required in the Kernal as a way of supporting the

other ROM and package software that assumed those functions.

(Note that the user port does not provide electrical compatibility with

j—, the RS-232 standard, either with voltage levels or connector pinout;

! I external drivers and connector adapters are required to attach RS-232
devices to the VIC.)

Some I/O is directed into memory in usable form by the 6522

f™| VIA. For example, switch-type joystick input can be received directly
by the program. Also, keyboard input can be directly observed while

a key is held down. Kernal IRQ routines stabilize the keyboard input

r™1 to prevent unwanted multiple keystrokes, move the key code to a

' ' low-storage location, translate the key code according to any SHIFT,
CTRL, or Commodore keys depressed, and append it to a keyboard

r-i input buffer for reference by higher-level input routines.

xv

The last I/O interface on the VIC-20, the video (and also sound)

port, is such a fundamental part of the machine that it deserves its
own section.

VIC Chip. If the 6502 microprocessor is the brains of the VIC-

20, memory its skeleton, and the 6522 VIAs its eyes and ears, the

6560/6561 VIC chip is really its heart. No understanding of the VIC-

20 architecture can be complete without some knowledge of the VIC
chip functions.

As mentioned previously, the VIC chip is responsible for gen

erating the composite video and sound signals that are sent to a

color display monitor or RF modulator for transmission to a tele

vision set. Normally, the VIC chip maps the display screen into an

array of pixels (picture elements, which are dots that are the smallest

units of video information) that is normally 176 (22 x 8) pixels wide

and 184 (23 x 8) pixels high. It also displays a border and a back

ground of designated colors.

Color, mode, and other control information is supplied to the

VIC chip via its 16 registers, which are mapped into memory loca

tions as described in the memory map. Three other memory areas,

addressed through the VIC chip registers, are used by the VIC chip

to generate character or graphic displays.

• Screen memory, sometimes called the Video Matrix, is an array

of memory with a byte for each character position on the screen

(normally 506 [22 x 23] character positions). Each byte in screen

memory contains the offset in character memory.

• Character memory (usually one of the banks of character

ROM) of the bit map of the pixels to be displayed at the correspond

ing screen position. Usually, control information in the VIC chip reg

isters has the VIC chip in single color mode. In this case, each bit in

character memory selects whether the corresponding pixel color is to

be the same as the background color (pixel invisible or off) or to be a

color selected by the code contained at a position in color memory.

• Color memory corresponding to the screen location of the

character.

Custom character sets can be designed and placed into 8 x 8 or

16 x 8 patterns in RAM addressable by the VIC chip (only built-in

RAM) and then used by selecting that RAM in the VIC chip reg

isters. What is usually called medium-resolution graphics can be

developed using the same technique, with custom characters for the

graphic images. High-resolution graphics on the VIC-20 are created

by initializing screen memory to simply point to successive locations

in a bitmap of the screen addressed as though it were character

memory by the VIC chip.

Multicolor mode uses two bits in character memory to color each

pixel, so it cannot make reasonable use of the built-in character

xvi

n

H

n
ROM. The two bits select among the background color and the

character memory color for that location, as in single color mode.

n| The border color and an auxiliary color are also defined in the VIC

L chip registers when multicolor mode is selected.

Some little-known functions of the VIC chip are the light pen

I—| position detection, which can be used by the program to determine

! [the screen position in front of a light pen and resistance value sens
ing, for use in reading up to two peripheral devices, such as game

paddles, that contain potentiometers for sensing or measuring

position. These may also contain other variable resistance-sensing

devices, such as photo-resistors or carbon microphones, for special

applications.

The final function of the VIC chip is sound. Five of the VIC chip

registers mapped into memory control sound volume, the frequency

of each of the three tone generators (voices) and the noise generator.

Common Plug-In Cartridges. A wide variety of VIC-20 soft

ware is available in plug-in cartridge form. A cartridge is simply a

means of adding memory, usually ROM, in one of the expansion

blocks. Most of the software is application programming of one kind

or another, like games, word processors, and so on, and does not af

fect the architecture. Several plug-in cartridges, though, are really in

tended as architectural extensions or supplements:

• Programmer's Aid—extensions to BASIC editing commands

• Super Expander—graphic and sound supplements to BASIC

• Machine Language Monitors—replacing the BASIC editor

• Other language monitors—that also replace BASIC

Compatibility with the Commodore 64. With attention to some vari

ations in the memory map, it's possible to write software for the

VIC-20 that can be readily translated to the Commodore 64.

This is possible because of a number of similarities between the

two machines. The 6510 microprocessor used in the 64 has the same

instruction set as the 6502. Its only significant extension is that a

memory-mapped I/O port is added. The BASIC dialect on the Com

modore 64 is identical to that on the VIC-20. Indeed, purely BASIC

P| programs, written for the VIC-20 with no PEEKs and POKEs, should
run correctly with no modifications on the 64 if statements are

restricted to 80 characters, instead of the 88 allowed on the VIC-20.

f—] The Kernal service routines are fundamentally the same on both

1 ' machines. Finally, much of the low-storage data defined in pages 0-
3 is identical, with key differences noted in the memory map.

n However, the 6560/6561 VIC chip display, graphics, and sound

functions are implemented much more elaborately on the 64 with a

6566/6567 VIC-II chip and a 6581 SID (Sound Interface Device)

music synthesizer chip. These new devices are not simply compatible
jj supersets of the VIC chip, either in function or in programming.

xvii

u

0

The VIC-II chip has much more extensive graphics capability, ^
but changes the function and location of its control registers. Pro

grams that are intended to be translated to the 64 must isolate the \

logic that manipulates the VIC chip registers. Also, the VIC-II chip LJ
defines a larger normal screen (25 lines of 40 characters), so a pro

gram that POKEs directly into screen or color memory must take ~

care to use system-defined data areas and service routines to dis- Jj
cover the location and dimension of such memory.

The SID chip provides a high degree of control over the wave

form and frequency of its several voices. However, it is quite com

plex to program compared to the VIC chip's voices. Even to

duplicate these simple sound functions takes quite a bit of program

ming, so the audio effects of game programs, for instance, probably

will need to be completely redesigned as well as reprogrammed

when translating to the 64. Again, it would be wise to attempt to

isolate the statements that control sound effects.

Actually, most programmers would agree that the incompatibil

ities in architecture introduced on the Commodore 64 were justified

by its additional functions. Other home computer vendors have

maintained more compatibility among their models but sacrificed the

opportunity to enhance function, particularly in such areas as graph

ics and sound.

Conclusion. With this understanding of the overall VIC-20

architecture, you can now jump into the memory map and its cross

reference to find out how to make the VIC-20 do amazing things for

you!

Block Diagram of AH VIC-20 Addressable Memory

No Expansion 3K Expansion 8K-32K Expansion

Differences Differences

Decimal Hex

65535 - - - $FFFF

8K Kernal ROM

57344 - - - $E000

8K BASIC ROM jj

49152 - - - $C000 49152 - - - $C000

(User Area) _

(8K Expansion) (for POKEs,ML) j j

(RAM / ROM) (if this 8K) -^
((autostarted)) (is added)

40960 --- $A000 40960---$A000 |~i

I/O EXP. B3 LJ
39936 - - - $9C00

I/O EXP. B2 ,

38912 ***** $9800 ^J

xvin

O

* Color RAM *

38400 ***** $9600

I/O EXP. BO

37888 - - -$9400

VIA 1/2

37136 - - - $9110

VIC 6560

36864 - - - $9000

Character ROM

32768 - - -$8000

(8K Expansion)

(RAM / ROM)

24576 - - - $6000

(8K Expansion)

(RAM / ROM)

16384 - - - $4000

(8K Expansion)

(RAM / ROM)

08192 ***** $2000

* Screen Area *

07680 ***** $lE00

User PGM Area

3584 RAM

04096 - - - $1000

(3K expansion)

(RAM)

01024 - - - $0400

BASIC / Kernal

IK Work Areas

00000 - - - $0000

User PGM Area

6656 RAM

01024 - - - $0400

38400 ***** $9600

* Color RAM *

37888 ***** $9400

32768 - - -$8000

(User PGM Area)

(28160 if +24K)

24576 - - - $6000

(User PGM Area)

(19967 if+16K)

16384 - - - $4000

(User PGM Area)

(11776 if +8K)

04608 ***** $1200

* Screen Area *

04096 ***** $1000

(3K non-BASIC)

(when filled)

01024 - - - $0400

Foimat of the Map Descriptions

Locations and routines in this book are presented in this format:

Decimal $Hexadedmal Label Values

(Notes)

Title of Location or Routine

Explanation of location or routine usage by all routines of

BASIC and the Kernal with suggestions for user usage or testing.

L

XIX

u
Decimal. The decimal location range (for PEEKs and POKEs). "^-l

$Hexadecimal. The hexadecimal location range preceded by $

for machine language (ML) users. j\

Label. Mnemonic label or an invented label followed by *. La

bels are easier to remember and identify than the decimal or _

hexadecimal address. A label-to-address cross reference index is ^J

included in the back of this book.

(Notes). (User Storage) indicates locations that can be used for

user storage without drastic complications. Be sure to read the com

plete description of the location for possible dependencies by BASIC

or the Kernal.
(Possible User Storage) flags locations that are available for your

use when the listed functions are not being performed by the Kernal

or BASIC.

(Handy Location) flags locations that are helpful to the BASIC or

ML programmer in obtaining information or causing actions that are

unavailable through BASIC keywords. Every memory location may

be useful to someone, for use in some particular situation. This flag

is placed on those locations that have the greatest potential for the

average user. Many of these Handy Locations include short sample

programming routines to demonstrate their use.

Values. The contents of the location on an unexpanded VIC-20

in decimal and hexadecimal. Included if the contents are predictable.

As in the rest of the book, the hexadecimal location is separated

from the decimal by parentheses.

Explanation of Location or Routine Usage. Here you'll find a

description of the purpose(s) of the location or routine, along with

any considerations, relationship with other locations or routines, tips

and hints, further information references, and sample routines to ex

plore this location more fully.

£J-

xx

u

D

D

LJ

D

U

D

D

0

D

n

n

n

n

Memory Page 0

VIC-20 memory between location 0 and location 255 is referred

to as page 0 or zero page. A page on the VIC-20 is a chunk of mem

ory 256 bytes long. Page 1 is the chunk between 256 and 511, and

correspondingly page 4 refers to locations 1024 through 1279. Since

the VIC-20 has a memory range of 0 through 65535 (a total of 65536

bytes), there are 256 pages of memory. The term page is used as a

shorthand method of referring to a range of memory, and you'll

primarily see it when page 0 or page 1 memory locations are dis

cussed. For more information about the concept of pages, see page

114 of The VIC-20 Programmer's Reference Guide.

Page 0 is an important section of memory, as many VIC-20

machine language (ML) programmers will confirm. Page 0 locations

are required by some of the handiest ML instructions, and instruc

tions can be written with shorter and faster operands when using

page 0. When bypassing the facilities of BASIC or using only a por

tion of it, many page 0 locations can be freed to be used as the ML

programmer desires.

To the BASIC programmer, page 0 is also important since both

BASIC and the Kernal store some of the most intriguing and useful

pieces of information in these memory locations. Knowing what has

been placed here and how to use this information can open up a

whole new dimension of possibilities for customization and control

of the VIC-20.

Let's begin with a look at the portion of page 0 that is free of

the Kernal and of which BASIC takes charge.

Location Range: 0-143 (S0-S8F)
BASIC Working Storage

Page 0 working storage for BASIC.

INITMEM* routine initializes this area to zeros at power-on or

reset. (Some memory expansion socket boards have a reset switch.

See location 45 for a description of how to make your own.) A fol

low-on routine (INITBA, a BASIC cold start routine) then initializes

any locations with values that BASIC needs. See the comments in

each location for initialization values.

0 $0 USRPOK 76($4C)
(possible user

storage)

The INITBA routine initializes this location during power-on/

reset.

3

Li

U

Used with USR vector at location 1-2 ($1-2). BASIC interpreta- I—I
tion of the keyword USR causes a branch to this location (via the

FUNDISP table). This JMP opcode then causes the vector in 1-2 p

($1-2) to be branched to, ending in the programmer's USR routine. | j
You may use this byte for your own purposes, but POKE 0,76 before

attempting USR.

The Commodore 64 uses location 784 ($310) for a JMP opcode, l|
and 785-786 ($311-312) for the USR vector. Locations 0-1 are wired

into the chip for memory control on the 64, while location 2 is

unused.

1-2 $1-2 ADDPRC 72/210 ($48/02)
(possible user

storage)

The USR jump vector in LSB/MSB (displacement/page) form.

Before using the USR keyword, you POKE the LSB/MSB

address of the desired ML routine in these locations. For example, if

an ML routine at 828 is the target ML routine (the tape buffer which

begins at location 828 is traditionally a favorite location) POKE

2,INT(828/256):POKEl,828-(PEEK(2)*256):X=USR(expression)

sets location 1-2 to 60/3. 60 is the Least Significant Byte, 3 the Most

Significant Byte. In hex, that's $3C/03 (normally expressed as

$033C), which is 828 decimal.

If the preceding seems mysterious to you, you may want to

review Appendix A which discusses number systems and hex/

binary/decimal conversion methods, charts, and programs.

The evaluated expression result is placed into the floating point

accumulator at location 97-102 ($61-66) in floating point format by

BASIC. When your ML routine is executed, it converts the floating

point accumulator back to a two-byte integer with a JSR to $DC9B.

Locations $61-62 then contain the two-byte integer (MSB/LSB).

When the ML routine is ready to return to BASIC, it loads the .Y

register with the LSB of the return number, and .A with the MSB.

JSR $D391 then converts these in the floating point accumulator

found at 97-102 ($61-66). When the ML routine issues the RTS ,--

instruction, BASIC assigns the floating point contents of the floating | j
point accumulator to the variable assigned by the USR statement (X

in our example). Once you have become familiar with the use of _

locations 780-783 ($30C-$30F), which are the register SAVE area (j
for SYS, this process of number conversion can be done in BASIC.

At power-on/reset, locations 1-2 are loaded with a vector that

points to the ERROR routine, the BASIC error message handler. This \~1

will cause an ILLEGAL QUANTITY error message if USR is issued w

before 1-2 have been altered by POKEs to the desired ML routine.

Once you have changed the default vector, the ILLEGAL QUAN- r -

TITY message will not appear. If the vector does not point to valid 1 1

4

u

n

n I

H

H

6502 instructions, the VIC-20 will probably hang until you reset it or

turn it off and on.

You may use locations 1-2 for your own purposes if you are not

using the USR command.

On the Commodore 64, this function has been moved to loca-

ri tions 785-786 ($311-312). Keep this in mind if you are writing pro-

I grams that are to run on both machines.
For an in-depth discussion of the potentials of USR, see "How

to Use SYS and USR," by J.C. Johnson in the November and Decem

ber 1982 issues of COMPUTE!, or "PEEK and POKE: A USR Instruc

tion Sheet," by George Gaukel in the May 1983 issue of Commander,

for a clever technique of extending language functions with the USR

command.

3-4 $3-4 ADRAY1 170/209 ($AA/Dl)
(user storage)

Vector to floating point/integer conversion routines.

Initialized during power-on/reset to routine INTIDX*, which is

at location 53674 ($D1AA). It appears that BASIC (and the Kernal)

never use this vector. Nonetheless, you may want to take advantage

of this vector and use it as a level of protection against future ROM

changes.

5-6 $5-6 ADRAY2 145/211 ($91/03)
(user storage)

Vector to the integer to floating point conversion routines, start

ing at MAKFP.

The power-on/reset routines initialize this location. No ref

erence to this location is found in BASIC or the Kernal. You can also

use this vector to protect against future ROM changes.

7 $7 CHARAC
Search-character for scanning BASIC statements.

This is a busy and critical location, used in conjunction with

P| location 8 ($8) by BASIC routines that scan the BASIC input buffer

1 at 512 ($200), looking for line ends, colons, quotes, commas, and
other special characters.

r-| Typical values here are the ASCII codes for colons commas,

I quotes, or zeros. String handling routines may use this icu?tion dur
ing the scan of BASIC statements in locations other than the BASIC

p. buffer. A pointer to that area will be set in 111 ($6F), which is used

M as a temporary string pointer holder.
Still other routines (AND, OR, DECBIN) use these locations (7-8)

for work areas for their processes, since they do not interfere with

scanning.n

n

u

§ u

8 $8 ENDCHR
Scan-quotes flag for scanning BASIC statements. _-

See the description of location 7 ($7). LJ
This is also used during the tokenization of a BASIC statement.

9 $9 TRMPOS jj
(possible user

storage)

Column that the cursor was on just before last TAB or SPG

This is a logical, not physical, column and can range between 0

and 87 since there are 88 columns on a logical line.

TAB or SPC obtains the cursor column from the Kernal, which

uses locations 211 ($D3), cursor displacement within the screen

RAM line, and 213 ($D5), logical line length. TAB or SPC stores the

cursor column at this location and uses it to calculate the target

cursor location.

This location may be used as desired between SPC and TAB

functions.

10 $A VERCHK
(possible user

storage)

Tape: 0=LOAD, 1=VERIFY

LOAD sets this byte to 0 and VERIFY sets it to 1.

LOAD and VERIFY are similar processes, handled within the

same routines, and they use this location to determine which process

is occurring.

This value is passed to the Kernal routine LOAD, which saves it

in 147 ($93), a LOAD/VERIFY switch byte, for its own use.

11 SB COUNT
Buffer index/array dimensions.

This location is used as an index into the BASIC input text

buffer at 512 ($200) for tokenization and store-the-line tasks. When ,1

the line has been fully tokenized, this location holds the length of I—*

the tokenized line, including four bytes for a line number and link

address. See the BASIC routine NEWLIN at 50332 ($C49C). —>

Array processing, such as building an array or locating an array I f
item, uses this location to calculate the size of an array descriptor. It

also calculates the number of subscripts specified when referencing

an item, and the number of dimensions in an array definition DIM. j]
For example, DIM X(5,10,15) would set this location to 3.

Both AND and OR use this location. OR sets this location to 255

($FF), while AND sets it to zero. j~j

6

u

12 $C DIMFLG
Flags for locate-or-build-array routines.

Various temporary flags are set and used by the Kernal to signal

to itself whether the variable is an array, whether it's numeric or

string, whether the array has already been DIMed, and if a new

array is to be the default size.

The coding of routine ARY5 allows redefinition of an array,

such as DIM X:X(5)=2:DIM X, without getting the REDIM'D ARRAY

error message or affecting the contents of X(5) as long as you don't

specify a different size for the array.

13 $D VALTYP
(handy location)

Type of variable: 255 ($FF)=string, 00=numeric

BASIC routines set this location to indicate the type of variable

being processed. FRMEVL (expression evaluation) routines set this

for every variable located or created.

Additional locations that are helpful when evaluating variables

are 14 ($E), 69 ($45), and 71 ($47).

14 $E 1HTFLG
(handy location)

Numeric variable type: 128 ($80)=integer, 00=floating point

This is not meaningful unless location 13 ($D) is set to zero,

indicating a numeric variable.

See Appendix B for details of the format and range of both

types of numeric variables. FRMEVL (expression evaluation) and

associated routines also maintain this location.

15 $F GARBFL
Flag byte: LIST quote/collect done/tokenize character.

LIST uses this byte as a flag to prevent detokenization of a

character string within quotes.

This location indicates that garbage collection has already been

tried while adding a new string, resulting in an OUT OF MEMORY

error message.

It is also used as a work byte while tokenizing a line in the

BASIC text buffer at 512 ($200) to prevent DATA items from being

tokenized.

16 $10 SUBFL6
Subscript or FN X flag byte.

The BASIC routine EVLVAR (locate or create a variable) uses

this byte as a flag to remind itself that parentheses () are allowed in

U-

u

the current BASIC statement. Parentheses are allowed if a '—'
subscripted variable or an FN command is in the statement.

When FN is defined, this location is set to 128 ($80) so that r~.

EVLVAR will know to create or replace a function definition. LJ
A function can be replaced by redefining it. For example:

DEF FNZZ(Q)=2*Q:X=FNZZ(66):DEF FNZZ(S)=22/X ,~,

replaces the function named ZZ.

FN redefinition never frees any memory since FN commands are

stored in the BASIC statement which includes the DEF FN, as well

as seven bytes for the descriptor pointing to them.

The name given to a function can be the same name as an exist

ing or future floating point variable. For example:

DEF FNB(A)=A/22:B=FNB(B)

is completely valid.

17 $11 INPFLG
Indicates which of READ, INPUT, or GET is active.

0=INPUT; 64 ($40)=GET; 152 ($98)=READ

This location is used by the READ routine, which includes com

mon instructions for all three keywords, to determine which sections

of code to execute. Some of the differences in these routines are:

show prompt and ? for INPUT; only obtain one character for GET;

echo back INPUT characters; and allow colon and comma as valid

data for GET but treat them as delimiters for READ and INPUT.

This location is also used to determine the appropriate message

in case of an error. For example, it will show the line number of a

DATA statement if READ data is bad; REDO FROM START or FILE

DATA ERROR will display if INPUT data is bad; and EXTRA

IGNORED or no message will show depending on the active chan

nel number specified in location 19 ($13).

18 $12 TANSGN
TAN/ SIN sign/comparison results.

SIN and TAN use this byte to determine the resultant sign. j j
The formula evaluation routine stores at this location the

returned results from math operator routines it calls.

String comparison routines also save their results here. j j

During comparison of variable A to variable B, the value saved

here is 1 if A>B, 2 if A=B, or 4 if A<B. Combinations of these val

ues may also be here, if the routine that evaluated A and B performs rn

more than one comparison. For example, if 5 was stored here, it 1—I
would indicate AoB. The AND and OR routine does not set this

location. ,

8

Q

19 $13
(handy location)

Current channel number for BASIC input/output routines.

This is a significant and active location for BASIC. Whenever

BASIC needs to talk to a device, it looks here to determine the cor

rect channel number.

See location 153 ($99), current input device number, for an

explanation of the process BASIC uses to tell the Kernal what the

input channel number should be.

Altering this location can make BASIC think that tape or disk is

the keyboard, for example.

VIC-20 devices are:

0 keyboard

1 tape

2 RS-232/user port

3 screen

4-5 printer

8-11 disk
Device numbers 4-31 could be any type of serial device.

Let's see how this location is used by BASIC, so that you can

use it to your advantage. If an error message is being displayed, the

input device number is restored to zero, indicating the keyboard, so

that error messages will appear on the screen, rather than the CMD

device, with the necessary carriage return and linefeed.

The PRINT routine uses this location to test if carriage return

and linefeed are needed.

CMD saves the new output file number here, then calls the

Kernal to open that device for output, leaving it in a listen mode.
PRINT# uses the same routine, but then closes the channel, taking

the device out of listen mode, and resets this location to zero.

DEVICE NOT PRESENT or FILE NOT OPEN may be displayed on

the screen, but READY would appear on the new output device, as

would any INPUT prompts. Hitting RUN/STOP-RESTORE while

CMD is active to the VIC 1525 printer can hang the computer.

PRINT tests this location and normally uses cursor right charac

ters for screen tabbing rather than spaces. You could alter this by

changing this location.
If INPUT data is bad, FILE DATA ERROR is shown if this loca

tion is not zero. GET, GET#, and PRINT# will restore this location

to zero when done, effectively cancelling any active CMD. INPUT#
does the same thing. INPUT will also cancel if this location is not

zero. Thus PRINT is the only I/O keyword that can be used without
cancelling the CMD device. LIST also leaves this location as it was.

INPUT also accepts a carriage return from the keyboard and

u

D

shows it as a null string, but only if this location is zero. For any- '—'
thing else, it gets the next piece of data and no prompt is printed.

READ, used for INPUT also, will print EXTRA IGNORED as an j~ (

error only if this is zero. LJ

Power-on/reset routines set this location to 0, as does RUN/

STOP-RESTORE. Here are some suggestions for using this location: —

• Tape, printer, or disk can be used as the CMD target device. i—1
The file number must be between 1 and 255.

• Remember that zero is not a valid CMD file number, and that

CMD may have a string just as PRINT# can, but needs a comma

before it. For example, OPEN4,4:CMD4/TRINT THESE WORDS".

That's because PRINT# and CMD use the same routines.

• Change this location to a number greater than zero to sup

press the EXTRA IGNORED error message when inputting from the

keyboard. This POKE will also cause INPUT to not show a ? and

will ignore a carriage-return-only entry.

• See location 153 ($99), input device number, for instructions

for reading tape as though it were the keyboard.

• Reissue CMD after GET, INPUT#, PRINT#, LOAD or RUN.

When writing your program, you could also avoid CMD-cancelling

keywords and obtain keyboard input from the keyboard buffer (see

location 631, $277) by adding a front-end to the IRQ keyboard scan

ner in location 788 ($314), or by examining location 197 ($C5) or

203 ($CB), matrix of last/current key pressed, and 653 ($28D), the

current shift pattern.

• See location 154 ($9A) for details of input/output diversion to

other devices using SYS and locations 780-783 ($30C-30F), the SYS

register SAVE area, or by using ML.

The following routine demonstrates a number of uses of this

location. This short program will suppress the question mark nor

mally displayed in an INPUT command, leaving instead the cursor

on your chosen default character. It will also ignore a null entry,

made when the user presses RETURN without entering any charac

ters, and will allow a null entry to represent an entry of the number

zero. Notice that ?FILE DATA ERROR will be displayed if string

data is entered for a numeric variable, rather than the usual message i I

?REDO FROM START. ^

Program 1-1. Prompt Suppression jj

5 REM LOCATION 19 $13 %CHANNL

10 POKE 19,88:PRINT"?A=32{2 LEFT}"; :REM ";" KEEPS _

CURSOR ON DEFAULT, IGNORES NULL ENTRY (j

15 REMOVING ";" ALLOWS A NULL ENTRY TO BE 0 UJ
20 INPUTA

30 POKE19,0 :REM CLEANUP SO CR/LF PRECEEDS PRINT —

LJ
10

u

n

H

H

35 REM PRINTCHR$(13)A : REM WITHOUT 13 WILL PRINT

{SPACE}ON SAME LINE-2 SPACES AWAY FROM END

20-21 $14-15
(handy location)

Line number integer in two-byte LSB/MSB format.

Subject line number for GOTO, LIST, ON, and GOSUB is stored
here, as well as the line number of a BASIC line to be replaced,

added, or deleted by the BASIC line editor NEWLIN at 50332

($C49C). The DECBIN routine puts the number here for all users.
By placing a BASIC line number here (LSB/MSB), SYSing to

50707, and examining the .P register in 783 ($30F), you can obtain
the address of the line's link field in 95-96 ($5F-60) if the carry flag
is set (bit 0 of .P is on). If the carry flag is not set, the line number
doesn't exist in the program. This capability would interest advanced

BASIC or ML programmers.

Here's a short program which does this:

Program 1-2. Line's Link Field Address

300 POKE 15,INT(LN/256):REM LINE NUM MSB

310 POKE 14,LN(PEEK(15)*256):REM LINE NUM LSB

320 SYS 50707: GO SEARCH

330 IF (PEEK(783)AND 1)<>1 THEN 500: REM NO LINE F

OUND

340 LA=PEEK(96*256)+PEEK(95):REM POINT TO LINE

The LIST routine saves the highest line number to be listed, or

65535 ($FFFF) for all, in this location.

GOTO and GOSUB determine which way to scan to find the

subject line by testing if the subject line number MSB is greater than
the current line number MSB. If so, it scans forward; otherwise, it

scans from the first line of the program. Try to minimize the search
time in your own programs by being aware of the scan direction that

will be used. A GOTO to the line that the GOTO is on would result

I I in the maximum search time if it were the last line of the program.
Take a look at Figure 1-1 for some examples of search patterns.

11

22

Figure 1—1. GO

GOTO/GOSUB

100

ITO/GOSUB Sc

SEARCHING

100

200 GOTO800 200
300

400

500

600

700

800

900 *

The effect of the

300

400

500

600

700

800

* 900

MSB-only check

Current line number -

Barch Patterns

100

200

300

400

k 500
GOTO500 600

700

«oo ♦
900 > GOTO900

is sometimes this*:

100

256

512

768

1024

1280

►1536

1791

1792

2048

2304

>

GOTO1791

u

u

u

u

u

*Notice that the search starts at the beginning of the program even though the subject

line number (1791) is greater than the current line number (1536). This is because the

MSB of 1791 is not greater than the MSB of 1536.

Floating point to integer conversion MADADR, using FPINT to

do the actual conversion, puts the output integer here.

PEEK saves the contents of this, uses it as a pointer to the sub

ject byte, then restores the previous contents.

POKE, WAIT, and SYS use this as a pointer to the subject mem

ory location.

25 ($19)
Pointer to available slot in temporary string stack.

The temporary string descriptor stack is at 25-33 ($19-21) and

has room for three string descriptors of three bytes each. Possible

values then are: 25 ($19) if empty and 28 ($1C), 31 ($1F), or 34

($22) if full. An example of temporary strings:

PRINT MID$("abcdefgh",3,4)+" is cdef."

In this example, cdef and cdef is cdef are both temporary strings.

12

U

u

LJ

U

43-44

See 23 ($17), the last string descriptor used, for a related

pointer.

The CLR routine resets this location back to 25 ($19), as does

power-on/reset.

When trying to save a string descriptor in the temporary stack, if

the value is 34 ($22), then the FORMULA TOO COMPLEX error

message will be displayed. For other values, the descriptor is saved

and this location's value is incremented by three.

The garbage collection routine checks this pointer to determine

if there are temporary slots that should be cleaned up.

23-24 $17-18 LASTPT 22/0 ($16/0)
Pointer to the last string descriptor used in the stack.

Possible contents are 25 ($19) and 0 if only one string descriptor

is used, 28 ($1C) and 0 if two are being used, or 31 ($1F) and 0 if all

three have been used. If none of the slots is used, location 22 ($16)

contains a value of 25 ($19).

25-33 $18-21
Descriptor stack for three temporary strings.

Each descriptor contains the length of the string, as well as the

address, in LSB/MSB format of the string's beginning in the BASIC

program line or string storage pool.

34-37 $22-25 INDEX
Miscellaneous temporary pointers and SAVE areas.

This area is used throughout BASIC to hold temporary pointers

and calculation results. It's also used as a jump vector for the math

operation routine address when formula evaluation has determined

the correct routine to be used.

38-42 $26-2A RESHO
BASIC multiplication work area.

These locations are used by BASIC multiplication and division

routines, and by array creation routines for array size computations.

43-44 $2B-2G TXTTAB 1/16 ($1/10)
Pointer to the start of the tokenized BASIC program.

If a byte containing zero does not precede the location pointed

to, a SYNTAX ERROR message will be given when RUN is typed in.

Power-on/reset routines place the zero here for you.

BASIC statements are stored internally as:

(—] LL HL LN HN/tokens-and-characters/O

' where LL HL = a pointer to the next line

13

LL= LSB of the address of the next line ^
HL= MSB of the address of the next line

If HL is zero, then this is the end of the program, since BASIC state- f ,

ments would not be in zero page. I 1

LN= LSB of the line number

HN= MSB of the line number

tokens-and-characters= the text of the BASIC line after it has been j [
tokenized. BASIC keywords, functions, and operators become one

byte each, ranging between 128 and 255. Characters, such as vari

able names and strings, are not tokenized.

0=end of the BASIC line

You can examine the address contained here by entering PRINT

PEEK(43)+PEEK(44)*256

This pointer can be raised to reserve space for ML or for other

purposes, for instance, relocating screen or character memory. See

location 55-56 ($37-$38) for a program to adjust this pointer to

reserve memory for ML routines.

A program which will calculate the number of blocks required to

store a BASIC program on disk, as well as calculate the time it will

take to save it on tape, takes only a few lines.

Program 1-3. Disk Space and Tape Time

10 REM 43

20 REM THE NUMBER OF BLOCKS REQUIRED TO STORE YOUR

BASIC PROGRAM{2 SPACES}ON DISK CAN BE

30 REM CALCULATED BY:

40 SZ=(PEEK(45)+PEEK(46)*256)-(PEEK(43)+PEEK(44)*2

56)

50 BLKS=INT((SZ/254)+.5)

60 REM EACH BLK BEGINSWITH A 2-BYTE POINTER TO THE

NEXT BLOCK

70 REM TO CALCULATE THE APPROXIMATE SECONDS REQUIR

ED TO SAVE THE PROGRAM TO TAPE:

80 SECS=SZ*2/1024*21.5+17

Be sure to (PEEK(43)+PEEK(44)*256)-1,0 and issue NEW if]j
you change this pointer.

NEW places two bytes of zeros at the location this points to,

which indicates that no more BASIC lines follow. j j

GOTO and GOSUB will start looking for the subject line from —*
where this points, unless the subject line is greater than the current

line number MSB stored in 58 ($3A). See the search direction dis- ri

cussion at location 20-21 ($14-15) LINNUM. This is why it's a good LJ
idea to put your most-used program lines at the top of the program,

with a GOSUB before them to perform any initialization. If the

LJ
14

U

43-44

most-used lines were after several lines of initialization, DATA, and

REM statements, any backward reference to a line number would

have to scan them every time.

SAVE always saves from where this points to, so you can save

from any location you want by altering this.

LOAD, if used without ,1 after the device number, causes the

load to start at the address that this location points to.

Other BASIC routines also use this pointer to scan the BASIC

statements to complete their tasks.

Note: As expansion memory is added to the VIC-20, the power-

on/reset routines change this pointer to reflect different start-of-

BASIC locations. See Appendix E for details of the effect that adding

expansion memory has on this and related pointers, and how to ad

just for this in a program. Programs can and should be written to run

in any standard memory expansion configuration.

Location 641-642 ($281-282) has a routine that you can use to

set a VIC-20 back to its unexpanded RAM size, without removing

any memory boards from the socket.

See related locations 45 ($2D) through 55 ($37), 641 ($281) and

643 ($283) for other useful techniques and programs. Appendix B

includes a diagram of the relationship between these pointers and a

BASIC program.

LOAD, without the ,1 after the device number, causes the load

to start at the address that this location points to. You can use this to

make a simple append program. It's easy to do but requires that the

program to be appended has higher line numbers than the program

to be appended to. Otherwise, you'll have problems changing or

deleting the appended lines. The program to be appended to is

loaded first. Then in direct mode enter:

AT=(PEEK(45)+PEEK(46)*256)- 2

Since 45 points one byte past the zero link bytes, you can use it to

find the end of the program. Now enter:

POKE 251,PEEK(43):POKE 252,PEEK(44)

in order to save the BASIC start address. Another line:

POKE 44,INT(AT/256):POKE 43,AT-(PEEK(44)*256)

will set the start address to the end of the program. (Another way to

do this would be to enter POKE 43,AT AND 256:POKE 44, AT/

256.) Then LOAD the program to be appended. To clean up, enter:

POKE 43,PEEK(251):POKE 44,PEEK(252)

which restores the pointer to the start of the first program. Now the

two programs have been appended. A more sophisticated technique

that allows intermixing lines based on line number is discussed at

location 153 ($99).

15

u

«=<§ u

It is possible to recover a BASIC program from an inadvertent

NEW. An automated technique is discussed in "UnNEW for the VIC

and 64," by Jim Wilcox, in the June 1983 issue of COMPUTE!. A j" i

similar program which you can also use with a disk drive was pub- «—I
lished in the November 1983 issue of COMPUTE!fs Gazette in the

article "VIC/64 Program Lifesaver," by Vern Buis.

45-48 S2D-2E VARTAB J
(handy location)

Pointer to the end of BASIC program, -start of variables.

Scalar (nonarray) variables are built in this area, from where this

pointer is set, to increasing addresses. String variables are not stored

in this area, but their descriptors are. See location 51 ($33) for

information regarding string storage and 47 ($2F) for arrays.

See 187 ($BB) for a method of pointing a string descriptor to any

characters in memory, rather than BASIC'S string pool. The format of

variables is discussed in Appendix B.

This pointer is also useful for finding the end of a BASIC pro

gram since it points to the byte past the 0,0 end-of-program link.

After an array has been defined, it is stored above the area used

for scalar variables. When creating variables in this environment, all

arrays must be moved up seven bytes, the length of all scalar vari

ables or descriptors, to accommodate the new variable. For this rea

son, it's often suggested that variables be defined before arrays, and

that it's better to define variables that never get used than to move

up large arrays. If you're concerned about conserving memory, you

may want to simply predefine only as many used variables as pos

sible. Remember that once a variable is defined, it takes up memory

space until you use a CLR command.

Defining variables in the order of their frequency of use is also

often suggested, since the variable locator and builder routine

GETPTR starts at the bottom of variable storage and works upward.

If the variable F is used the most, yet defined last, all other scalar

nonstring variables and functions have to be scanned every time F is

referenced. You may find it convenient to define variables in alpha

betical order, instead. This makes it easy to tell if a variable name l j

has already been used, even if you look at the program much later.

See location 47-48 ($2F-30), the array pointer, for more

explanation of this. j 1

Memory expansion indirectly affects this pointer, since the start '—'
of the BASIC program moves. Appendix E has details.

CLR, NEW, RUN, LOAD, or the addition or modification of a < ~j

BASIC statement resets this pointer to one byte past the end of the I J

BASIC program, effectively making any variables inaccessible. See

the description of the workings of CLR at location 50782 ($C65E).

Any existing higher numbered statements have to be moved up in j)

16

47-48

the program storage area when a statement is added or lengthened.

The BASIC MAKSPC routine opens a space for the new BASIC

statement by moving up higher numbered lines with the MOVEBL

routine at 50111 ($C3BF).

SAVE uses this pointer as the last byte+1 to save to the output

device.

<""} LOAD resets this pointer to 1 past the end of the loaded pro
gram, unless issued within the program. This allows the variables to

be shared by the shorter LOADed program.

See "The Enhanced VIC-20: Adding a Reset Switch," by Joel

Swank, in the February 1983 issue of BYTE for a description of an

ML routine to restore this pointer after a RESET has been triggered.

By ending any larger program with a LOAD command for the

following routine, you'll see a map of the order in which the

nonarray variables were defined, as well as their addresses. You

could use this map to find the variable names and their addresses

within your own programs.

Program 1-4. Nonarray Variable Names and Addresses

0 P0=5:P%=5:P$="W":DEFFNP(C)=234

1 PRINT"VARNAME ADDR"

2 PRINT" "

5 QQ=0 : REM END MARKER

10 VS=PEEK(45)+PEEK(46)*256:VE=(PEEK(47)+PEEK(48)*

256)-22

15 FORX=VSTOVESTEP7

20 X%=PEEK(X)AND128:Y%=PEEK(X+1)AND128:X1$=CHR$(PE

EK(X)AND127)

25 Y1$=CHR$(PEEK(X+1)AND 127)

30 PRINTX1$;Y1$;

40 IFX%ANDY%THENPRINT"%{4 SPACES}";:GOTO80

50 IF(NOTX%)ANDY%THENPRINT"${4 SPACES}";:GOTO80

60 IFX%AND(NOTY%)THENPRINT"(FN) ";:GOTO80

70 IF(NOTX%)AND(NOTY%)THENPRINT"{5 SPACES}";

80 IFASC(Y1$)=0THENPRINT"

90 PRINTX:NEXT:PRINT"{RVS}{2 SPACES}USED="VE-VS+1:
r-j END

47-48 S2F-30
PI (handy location)

Pointer to the end of BASIC variables, start of arrays.

Arrays are built from low to high memory, starting from where

i\ this pointer indicates. See the description of the move-up problem at
location 45 ($2D).

Just as in locations 45-46, CLR, NEW, RUN, LOAD, or the

pi addition or modification of a BASIC statement resets this pointer to

17

49-50

one byte past the end of the BASIC program, making the variables

inaccessible. See the description of the workings of CLR at location

50782 ($C65E).

Again, Appendix B describes in detail the format of the array

variables, and Appendix E shows the indirect effect on this pointer

by memory expansion.

String arrays consist of a three-byte descriptor for each element

in the array. The string itself is stored in the area pointed to by 51

($33).

Remember that the zero element of an array exists, takes up

space, and may be used.

To see a map of the order in which the variables were defined,

and their addresses, LOAD the following routine at the end of a

larger program. As with Program 1-4, you can use this to locate the

array names and sizes within your own programs.

Program 1-5. Array Names, Addresses, and Sizes

0 DIMI6(5,4,3),I%(8,9),P$(2):E(8)=9

1 AE=0:AS=0:X=0:Y=0:Z=0:X1$="":Y1$="":AL=0:X%=0:Y%

=0

2 PRINT" "

3 PRINT" ADDR ARRAY"

4 PRINT" "

10 AS=PEEK(47)+PEEK(48)*256:AE=(PEEK(49)+PEEK(50)*

256)-l:X=AS

18 X=X+AL:IFX+1>PEEK(49)+PEEK(50)*256THENPRINT"

{RVS}{2 SPACES}USED="AE-AS+1:END

19 PRINTX;

20 X%=PEEK(X)AND128:Y%=PEEK(X+1)AND128:X1$=CHR$(PE

EK(X)AND127)

25 Y1$=CHR$(PEEK(X+l)AND 127)

30 PRINTX1$;Y1$;

40 IFX%ANDY%THENPRINT"%";:GOTO60

50 IF(NOTX%)ANDY%THENPRINT"$";

60 PRINT"(";:F0RY=PEEK(X+4)*2T01STEP-2:Z=(PEEK(X+4

+Y)+PEEK(X+3+Y)*256)-l

62 PRINTMID$(STR$(Z),2,3)",";

70 NEXT:PRINT"{LEFT})"
80 AL=PEEK(X+2)+PEEK(X+3)*256

90 GOTO18

49-50 $31-32
(hapdy location)

Pointer to the end of BASIC arrays, start of free area.

Array or scalar nonstring variable definitions, as well as addi

tional BASIC program lines, move this pointer upwards.

18

55-56

When storage for a string is allocated, starting at 51 ($33) and

pointing down in memory, garbage collection is performed if the

string begins before the location of the pointer.

FRE performs garbage collection and returns the value difference

between this pointer and 51 ($33).

The BASIC routine MAKSPC at 50104 ($C3B8) pushes memory

contents upward to create room for additional or lengthened BASIC

lines or scalar variables.

The commands CLR, NEW, RUN, LOAD, or the addition or

modification of a BASIC statement resets this pointer to one byte

past the end of the program.

To calculate the free memory remaining without causing a gar

bage collection, you could use the following statement. If the amount

of memory available is insufficient, you can use the FRE command

to discard unneeded strings.

FREE=(PEEK(51)+PEEK(52)*256)-(PEEK(49)+PEEK(50)*25

6)

51-52 $33-34 FRETOP
(handy location)

Pointer to the bottom of BASIC active strings.

This pointer marks the bottom of the active strings and the top

of available free space. Strings are built from where 51 ($33) points,

downward in memory addresses.

When finding space for a new string, the string routines begin

looking at the location this pointer indicates and look downward.

Then this pointer changes to indicate the beginning of the added

string.

FRE and garbage collection routines readjust this pointer

upwards. See the explanation of garbage collection at location 54566

($D526).

Power-on/reset routines set this to the top of available RAM,

but CLR copies the pointer at location 55 ($37).

S3-S4 $35-36 FRESPC
Pointer to the most current string added or moved.

Used as a temporary pointer by string building or moving

routines.

55-56 $87-38 MEMS1Z 0/30 ($0/IE)
(handy location)

Pointer to the end of BASIC memory.

Power-on/reset routines set this pointer to the top of available

RAM.

19

55-56

This pointer is decreased by 512 bytes when an RS-232 channel

is opened to create two 256-byte buffers for input/output. A CLR is

then issued. The pointer at location 643 ($283) which points to the

top of user RAM is also lowered by 512 bytes (Note: This may destroy
any high RAM resident ML code), making it necessary to open the RS-

232 port (device 2) before defining any variables.

You can lower this pointer to reserve space for ML or any other

purpose, such as relocating screen or character memory. After chang

ing this pointer, enter a CLR which copies this pointer into location

51 ($33), preventing BASIC from using RAM above the pointer's

indication.

Here's a program that reserves space at the bottom and/or top

of BASIC. It first displays the range of BASIC and the amount of

space included. Prompts for the amount of space to be reserved

should be answered with 0 or the desired amount. The new range

for BASIC and the size will then be displayed. A NEW is issued for

you, and 0 placed in the byte before the start of BASIC.

Program 1-6. Reserving Space

100 BWAS = PEEK (44) *256 + PEEK(43)
1.10 EVfAS = PEEK (56) *256 + PEEK(55) # Pt
120 PRINT "{CLRjBASIC ="BWAS"TO"EWAS"="EWAS-BWAS

130 PRINT "RESERVE AT BOT" : INPUT BRSRV C

140 PRINT "RESERVE AT TOP" : INPUT ERSRV 0
150 BAFTER = BWAS^+ BRSRV°
160 EAFTER = EWAS^- ERSRV 0. <&> £.
170<BMSB = INT(BAFTER / 256) : BLSB = BAFTER - S

-J4SB * 256 B ft £
180^EMSB = INT(EAFTER / 256) : ELSB = EAFTER - E

MSB * 256 F £ r F ^
190 PRINT "NEW ="BAFTER"TO"EAFTER"="EAFTER-BAFTER

200 POKE 198,4 :POKE 631,78 : POKE632,69 :POKE633,

87 : POKE 634,13

210 POKE 44,BMSB :POKE 43,BLSB :POKE 56,EMSB :POKE

55,ELSB :POKEBAFTER-1,0 :END

If an RS-232 device is to be opened in the BASIC program or in

ML placed high in RAM, see the note at location 643 ($283).

Location 641-642 ($281-282) has a routine that you can use to

set a VIC-20 back to its unexpanded RAM memory, without remov

ing any memory boards from the socket.

See Appendix E for details of the effect that adding expansion

memory has on this pointer, related pointers, and how to use these

techniques in your own programs. It's a good idea to write your pro

grams so that they will run in any standard memory expansion

configuration; refer to Appendix E for an explanation of this.

20

n

n

n

n

n

57-S8 S39-3A CURLIN
(handy location)

Line number of the BASIC statement being executed, in LSB/

MSB format.

A 255 ($FF) in location 58 ($39), which would set the line num

ber above the 63999 limit, indicates a direct mode statement or that

editing of program lines is taking place. The routine MAIN sets loca

tion 58 ($3A) to 255 ($FF) when input from the keyboard is received.

The main BASIC execution routine NEWSTT updates this loca

tion as a new BASIC line is taken for execution.

Illegal BASIC keywords in direct mode check location 58 ($3A)

to see if the direct mode is active.

BREAK and any error messages show the contents of this loca

tion as the number of the line being executed, unless it's an OUT OF

DATA message, in which case the contents of location 63-64 ($3F-

40), the current DATA line, are displayed.

The values in these locations are copied to address 59 ($3B) by

the STOP and END commands, as well as when the RUN/STOP

key is pressed. The command CONT moves 59 ($3B), the previous

line number, back to here if 62 ($3E) is not zero. This indicates it is

not a syntax error. GOTO uses this to determine how to search for

its target line.

FOR and GOSUB stack this for NEXT and RETURN.

You can trace program execution, displaying this line number,

by diverting the 776 ($308) vector.

See 61 ($3D) for the address of the current line.

The routine below shows how a trace can be used to display the

area of the program being executed, with a switch to quickly disable

the function.

Program 1-7. Trace

10 REM 57

20 REM A TRACE ROUTINE CAN DISPLAY THIS LOCATION.

30 REM BY TESTING A VARIABLE IN THE ROUTINE (LINE

{SPACE}90) THE TRACE CAN BE DISABLED.

35 REM THIS IS SUPERIOR TO PRINTING A CONSTANT TIT

LE AT THE START OF A ROUTINE.

40 TRACE=1:Z=57:DEFFNL(T)=PEEK(T)+PEEK(T+1)*256

! j 50 T=FNL(Z):T$="INITIALIZING":GOSUB90

1 ! 55 REM STATEMENTS IN THE ROUTINE
60 T=FNL(Z):T$="MENU SETUP":GOSUB90

r-, 65 REM STATEMENTS IN THE ROUTINE

f ! 70 T=FNL(Z):T$="ROUTER":GOSUB90
75 REM STATEMENTS IN THE ROUTINE

80 T=FNL(Z):T$="READDATA":GOSUB90

ri 85 REM STATEMENTS IN THE ROUTINE

21

n

u

59-60 u

U
89 END

90 IP TRACE THEN PRINT"{RVS}@LINE"T;T$

95 RETURN { j

59-60 S3B-3C OLDLIN
(possible user) j
storage)

Previous BASIC line number executed, in LSB/MSB form.

You may use this location, but keep in mind that END, STOP,

and the RUN/STOP key all copy the value in location 57 ($39) to

these addresses to save the current line number for a possible

CONT. CONT returns the value to location 57 ($39).

61-62 S3D-3E OLDTXT
(handy location)

Saves TXTPTR pointer of statement being executed, fpr CON||

Not to be confused with the BASIC line number, this is the

address of the end byte of the BASIC statement that was just exe

cuted. NEWSTT saves TXTPTR here when executing a new BASIC

statement.

TXTPTR is the pointer to the character being scanned. See loca

tions 115-138 ($73-8A), which are the CHRGET routine.

END saves TXTPTR here and CONT restores from here. How

ever, CONT won't continue if 62 ($3E) is set to zero by a clear rou

tine, the LOAD command, program modifications, or error routines.

An ML tracer could print each BASIC statement before it exe

cutes by intercepting the indirect vector at 776 ($308)—(a colon in .A

means new statement; otherwise, new line)—detokenizing with

QPLOP, and continuing with the original value of 776 ($308).

See location 57 ($39) for the actual BASIC line number.

63-64 S3F-46 DATLIN
Current DATA line number in LSB/MSB form.

This location is not used by the read routines to select the line to

read data from. It is informational only.

READ routines keep this pointer current. If a problem with a

DATA statement occurs, this line number is included in the error

message by moving it to location 57 ($39). Remember that this loca

tion is the standard line number for the error routines.

You can use the following technique to display the line number

of the DATA statement currently being processed by a READ com

mand. This can be of help to you when you're debugging a program,

for you can insure that the proper DATA values are loaded and

used.

22

n

n 69-70

n

n

Program 1-8. DATA-READ Review

10 REM 63

20 REM DISPLAYS THE LINE NUMBER OF DATA BEING READ

30 READ X$:PRINT"{RVS}DATA AT"PEEK(63)+PEEK(64)*25

6

40 IFX$OMZHTHEN30

45 END

50 DATA{3 SPACES}A,B,C,D

60 DATA{3 SPACES}E,F,G,H
70 DATA{3 SPACES}I,J,K,L

80 DATA{3 SPACES}M,N,O,P

90 DATA{3 SPACES}Q,R,S,T

100 DATA{3 SPACES}U#V,W#X

110 DATA{3 SPACES}Y,Z

6S-66 $41-42
Pointer to the current BASIC data item.

The READ routine uses this location and location 67 ($43) to

track where it is currently reading data. Also see 75 ($4B).
RESTORE or CLR resets this pointer to the location the pointer

at 43 ($2B) indicates, the beginning of the BASIC program. See the

description of the workings of CLR at location 50782 ($C65E).

67-68 $43-44 1NPPTR
Pointer to source of INPUT, GET, and READ information.

A common pointer for all sources of incoming information,

whether from the BASIC input text buffer at 512 ($200) or DATA

statements. Also see location 75 ($4B).

69-70 $45-46 VARNAM
(handy location)

Current BASIC variable name with type flags.

Two characters are stored here, the second a 0 if the variable

has only a one-character name. Dollar and percent signs are not

saved as part of the name.

The high order bit of each character indicates the type of vari

able. They are:

Floating point: no high bits on

Integer: both characters have high bit on (128 is added)

String: second character has high bit on (128 is added)

Function: first character has high bit on (128 is added)

Also see locations 13 ($D) and 14 ($E).

Appendix B has a description of the variable formats in storage.

23

71-72

71-72 $47-48 VARPNT
(handy location)

Pointer to the descriptor of the current BASIC variable.

This points to the byte just after the two-character name in the
variable descriptor.

The FN routines alter this pointer so that the dependent variable

is not changed while the function is performed. For example, when

DEF FNA(B)=B/60:X=FNA(Y) is entered, the dependent variable B

must be protected from change. This pointer is changed by the FN

processing to reference an area in the FN descriptor rather than the

variable B. The area is initialized to the value of variable Y, divided

by 60, because of the given FN equation, and then assigned to the
variable X. B was never changed.

See Appendix B for the format of variable descriptors.

See 95 ($5F), the pointer to the start of the variable descriptor
used after locating or creating the variable.

The following routine shows a method of determining the

address of any BASIC variable descriptor. Once the address of AV$

has been found, the routine modifies the descriptor to point to an

error message string within BASIC ROM. You can use this same

technique in modifying descriptors for your own purposes. BV is also

modified in this routine to contain the number of the program line it
searched for.

Program 1-9. Variable Descriptor

100 REM 71

110 REM ROUTINE TO FIND THE ADDRESS OF THE CURRENT

VARIABLE DESCRIPTOR

120 REM REFERNCE THE VARIABLE BY SETTING{2 SPACES}

TO ITSELF, SUBROUTINE RETURNS THE VARIABLE

130 REM ADDRESS IN VA.

140 AV$="TEST STRING"

150 AV$=AV$:GOSUB220:PRINT"AV$@"VA"{RVS}NOW="; :POK
EVA+2,14:POKEVA+3,158:POKEVA+4,193

160 PRINT"1"AV$IM ERR MSG."

170 BV%=BV%:GOSUB220:PRINT"BV%@"VA:POKEVA+3,PEEK(5

7):POKEVA+2,PEEK(58)

180 PRINT"{RVS}NOW= MY LINE NUMBER OF"BV%

190 CV=CV:GOSUB220:PRINT"CV@"VA

200 CV(4)=CV(4):GOSUB220:PRINT"DIM CV BEGINS @"VA

210 END

220 POKE251,PEEK(71):POKE252,PEEK(72):VA=PEEK(251)

+PEEK(252)*256-2:RETURN

24

73-74 S49-4A
Pointer to BASIC variable used in FOR loop.

These locations are also used by many routines for other

purposes.

FOR saves the address of the dependent variable here, then

pushes the following onto the stack in this order:

• Address of the return line statement

• The return line number, TO value

• STEP sign, STEP value, this pointer, and a constant value 129

($81).

See the description of the stack area at location 256 ($100).

FOR also uses locations 73-74 to save the result of each STEP
increment/decrement stored in the dependent variable area. For

example, FOR C=l TO 10 STEP 2.

This location is later used by the BASIC routine SCNSTK to find

the proper FOR loop values when NEXT is encountered, since NEXT

can include variable names. If 74 ($4A) is set to 0 ($0), the first FOR

information found on the stack will be used. This occurs when

NEXT doesn't specify a variable name. For example, NEXT C has to

locate the proper stack items for the FOR C= loop, ignoring any

others.

Other routine usage of this location:

• READ/INPUT/GET use this location to point to the variable

to assign the value to. It is also used as a temporary area for the

evaluated value of the subject variable during assignment (for exam

ple, S=16*(17/3)), or the string pointer for something like

S$=A$+"ABC".

• LIST uses 73 ($49) as a temporary save area.

• WAIT uses 73 ($49) to save its second parameter and 74 ($4A)

for the third, or zero, default.

• CLOSE uses 73 ($49) to save the file number.

• LOAD and SAVE use this location to save the device number.

• RETURN uses 74 ($4A) as a flag, set to 255 ($FF), to pull the

associated GOSUB entry off the stack.

Other routines can use this area without affecting FOR because

all needed information is now stored on the stack.

75-76 S4B-4C OPPTR
Math operator displacement/INPUT TXTPTR.

These locations serve as the displacement of the current math

operator in a table during formula evaluation. The math operator

table is at location 49280 ($C080).

25

77

This location is yet another save area for TXTPTR by the READ,

INPUT, and GET commands; these are the original contents before

they are altered by READ, INPUT, or GET.

77 $4D OPMASK
Comparison desired mask.

This location's value is created by the expression evaluator rou

tine FRMVL. A value of 1 indicates a greater-than check, 2 signifies

an equals check, and 4 flags a less-than check. They may be used in

combination by adding the values.

See also location 18 ($12).

78-79 S4E-4F DEFPNT
Pointer to current FN descriptor in variable storage.

DEF FN uses this location as a pointer to the descriptor created.

During FN, this is a pointer to the FN descriptor used to save the

evaluation results. This is also a work pointer for garbage collection.

80-81 $50-51 DSCPTN
Pointer to the current string descriptor.

This location is used and set by the string assignment and han

dling routines. Location 82 ($52) is related to this location.

Length of the current BASIC string.

See location 80 ($50).

Constant, set at either 3 or 7, for garbage collection.

Used to instruct garbage collection routines whether a three- or

seven-byte string descriptor is being collected.

84-86 $54-56 JMPER
Jump opcode and vector to function routine.

The 6502 ML jump operation code is 76 ($4C), followed by the

address of the required function from the function vector table at

49234 ($C052). This is determined by the expression evaluation

routines.

85 ($55) is also used as a one-byte work area for garbage collec

tion and string substringing, such as with the LEFT$, RIGHT$, and

MID$ commands. Location 86 ($56) is used as a one-byte work area

for addition and exponentiation rounding.

26

87-96 $57-60
BASIC numeric work area.

Another busy work area for BASIC. Because so many BASIC

routines use and overlay this area, none of it can be assumed to con

tain any specific data at any one time.

• 95 ($5F) is a pointer to the variable's seven-byte descriptor, after

location or creation of the variable.

• 95-96 ($5F-60) is used by LIST as a pointer through the

BASIC program as it lists it.

• 95 ($5F) is used as a flag to indicate that a decimal point has al

ready been found when converting a string to a floating point number.

For example, VAL(+123.456).

The garbage collection routines at 54566 ($D526) GRBCOL use

this area for temporary string pointers and length counters.

Also see location 71 ($47).

97-102 $61-66
(handy location)

BASIC floating point accumulator one.

Appendix B has a full description of each of the floating point

accumulators, as well as an explanation of floating point numbers

and conversion from/to integer format.

• 97 $61 FACEXP

Exponent of the value + 128.

• 98-101 $62-65 FACHO

Normalized mantissa of the value.

• 102 $66 FACSGN

Sign: 0=positive, 128-255 ($80-FF)=negative

These locations are used by BASIC routines to perform any

mathematical processes called for by the user or by BASIC itself.

Integer numbers are converted to floating point before any computa

tions are made, then converted back to integer if needed. Strings

may be converted to floating point and vice versa.

Conversion to/from floating point is a rather involved subject to

master. Fortunately, the VIC-20 includes many efficient routines for

this process. See FAC and FAC2 in the label cross-reference index in

the appendices.

Other uses of this area include:

• For two-byte integer to floating conversion, locations 98 ($62)

and 99 ($63) are filled with the integer number, the exponent is set

to 136 ($88) or 144 ($90), part of the SGN routine initializes the rest

of FAC, and the ADD routine normalizes and converts. String

processing routines use this location to process the string descriptor,

with 100-101 ($64-65) being the descriptor address.

27

97-102

• The formula/expression evaluation routine at location 52638

($CD9E) stores its results in this location in the form of a floating

point number or a pointer to a string.

• LIST uses this location to convert integer line numbers to

floating point.

• A variety of other routines use this location as a work area.

The floating point accumulators and the BASIC routines that use

them for mathematical operations can be used in your own ML

routines to perform the BASIC operations. You can do this by storing

the operands in the appropriate accumulators, either directly or as

the result of calling integer to floating point conversion routines. You

would then branch to the desired BASIC ROM routine. The format

of the floating point numbers is discussed in more detail in Appen

dix B.

The following assembler instructions can be entered to use the

BASIC routines in your own ML routines:

• To convert an integer to floating point in FAC, you would

load the Least Significant Byte (LSB) in the Y register, load the Most

Significant Byte (MSB) in the Accumulator, and jump to location

$D391.

• To load FAC from memory location 828 (the start of the tape

buffer), you need to load the Y register with the number value of

location $3, load the Accumulator with the number value found in

location $3C, and jump to location $DBA2.

• Loading FAC2 from location 828 is identical to the process

used to load FAC, except that the jump should be to location

$DA8C.

• To move FAC2 to FAC, you only need to jump to location

$DBF6.

• To move FAC to FAC2, jump to location $DC0C.

• Storing FAC at any memory location can be done by loading

the X register with the MSB, the Y register with the LSB, and then

jumping to location $DBD7.

• To store FAC2 at any location is a bit more involved. You

need to LOAD the Accumulator with the MSB of the address, store

the Accumulator at location $49, LOAD the Accumulator with LSB

of the address, store the Accumulator at location $74, and finally

jump to location $DBC7.

• To use addition, you simply jump to location $D86A. The first

value is placed in FAC, the second in FAC2, and the final result is

stored in FAC.

• Jumping to location $D853 will give you subtraction. The sec

ond value, stored in FAC2, is subtracted from the first value, found

in FAC. The resulting value is stored in FAC.

• To use multiplication, jump to location $DA28. The values in

FAC and FAC2 are multiplied and the final result is stored in FAC.

28

H

n 105-uo

n
• To use division, jump to $DB12. The value stored in FAC2 is

divided by the value found in FAC. The result is stored in FAC.

• Exponentiation can be used by jumping to location $DF7B.

The value in FAC2 is raised by the value in FAC, and the result is

found in FAC.

• Various trigonometry functions can be used as well. However,

these operations use FAC only. SIN can be used by jumping to loca

tion $E268; TAN can be used by jumping to location $E2B1; and

COS can be used by jumping to location $E261.

• Converting FAC to an ASCII string at location $100 (until a

$00 value is found) is done by jumping to location $DDDD.
• Converting FAC to an integer at locations $64-65 is accom

plished by jumping to location $D1AA.

103 $67
BASIC series evaluation number of items.

This location is used by the mathematical formula evaluation

routine to indicate the number of evaluations to be done. A complex

formula may need several levels of evaluation of terms before the

final result can be determined. This location contains the number of

terms to be resolved.

Occasionally, this location serves as temporary storage for the

sign of FAC.

104 $68
High order FAC propagation word. Overflow.

Overflow work area byte resulting from normalization of FAC

when a floating point number is being constructed.

105-110 S69-6E FAC2
(handy location)

BASIC floating point accumulator two.

Appendix B has a full description of each of the floating point

accumulators, as well as an explanation of floating point numbers

and conversion.

• 105 $69 ARGEXP

Exponent of the value + 128

• 106-109 $6A-6D ARGHO

Normalized mantissa of the value

• 110 $6E ARGSGN

Sign: 0=positive, 128-255 ($80-FF)=negative

These locations are used by BASIC routines to perform any

mathematical processes that involve more than one value, such as
add, subtract, multiply, divide, and so on. Typical is the divide rou
tine which divides FAC by FAC2 and leaves the result in FAC. See

29

u

Ml U

the description at the end of the explanation for locations 97-102

($61-66).

These are also used in the normalization process of FAC, i i

comparing numerics, and formula evaluation. I—I

HI $6F ARISGN -
FAC to FAC2 sign comparison. U

This is used to indicate the difference or likeness of signs. 0 in

this address means FAC and FAC2 have same sign, while a value of

225 ($FF) means their signs are different.

Along with locations 112-114 ($70-72), this address is used as a

work area for string handling routines. Locations 111-112 ($6F-$70)

are also used as a pointer to a string.

112 $70
Low order of FAC mantissa for rounding.

With location 111 ($6F), this location is used by string handlers

as a pointer to string.

113-114 $71-72 FBUFPT
Series evaluation pointer.

This is a pointer to the table of constants for the trigonometric

function being evaluated by the formula evaluation routines. For

this, the location will point somewhere within the tables starting at

58171 ($E33B), 55745 ($D9C1), 57284 ($DFC4), or 58092 ($E2EC).

See the tables at these locations for further information.

The pointer is also used for saved TXTPTR for READ, GET,

INPUT, and VAL; index to the end of the BASIC line in the BASIC

text buffer at 512 ($200) during tokenization by CRNCH; string

setup pointer; TI$ assignment work area; and the work area for the
building of an array descriptor.

It's also described in various notes as the tape buffer pointer,

but I've found no reference to it for that specific purpose. See 178
($B2) for the tape buffer pointer.

115-138 S73-8A CHRGET -
(handy location)

Get-BASIC-character routine; r .

This routine is used to scan BASIC lines or any other area that a '—
calling routine desires by setting TXTPTR. Either the next character

or the current character can be retrieved, depending on the entry < i
point used. This routine, when entered from CHRGET, increments t—'
TXTPTR to point to the next possible location of a character. Notice

that this is accomplished by modifying the operand of its own LDA ,- ,
(LoaD the Accumulator) instruction. Upon entering at CHRGOT or LJ

30

a

H

n

n

n

n

115-138

falling through from the previous instruction, the routine skips

spaces, sets flags to indicate the type of character TXTPTR is point

ing at, and returns to the calling routine with the retrieved character

in .A, the accumulator.

This sequence of instructions is copied from CGIMAG at loca

tion 58247 ($E387) to page 0 at power-on/reset, or at BASIC cold

start, so that the routine runs faster, can modify its TXTPTR, and to

allow the wedging-in of user routines. The copying of this ROM to

page 0 is done by the routine INITBA at location 58276 ($E3A4).

When a new BASIC line is retrieved from BASIC program stor

age for execution, NEWSTT processes the line number and link

addresses before using CHRGET to find tokens and ASCII

characters.

The .A register holds the character at exit.

Processor status flags at exit are:

Carry Clear if digit

Carry Set if not digit

Zero Set if $00 (end-of-line) or $3A (colon)

Zero Clear if any other character

Negative Clear if the value is between $00 and $B9

Negative Set if the value is between $BA and $FF

Overflow Set if colon and Overflow was previously set

Overflow Clear otherwise

Since this is such an important routine, a disassembly listing is

provided below to give you a better understanding of how it works.

115

117

119

121

124

126

128

130

132

133

135

136

138

$73

$75

$77

$79

$7C

$7E

$80

$82

$84

$85

$87

$88

$8A

CHRGET

CHRGOT

CHRTST

INC

BNE

INC

LDA

CMP

BCS

CMP

BEQ

SEC

SBC

SEC

SBC

RTS

$7A

$79

$7B

TXTPTR

#$3A

$8A

#$20

$73

#$30

#$D0

increment TXTPTR LSB

;if LSB not 0, then skip

;next

increment TXTPTR MSB

;byte

;load byte from where

;TXTPTR points

;if $7B = 02 then direct

;mode statement

;if > 57 $39 (char 9) then

;carry set

;and exit

;if space, ignore it and

;get the next character

;if 48-57 $30-39 then digit,

;carry clear

;if < 48 $30 (char 0) then

;carry set

;carry clear if 0-9, else

;carry set

31

u

11S-138 y

A wedge can be inserted in CHRGET/CHRGOT to intercept the

interpretation of BASIC keywords or ASCII characters. Since the

locations 122-123 ($7A-7B) are referenced by ROM BASIC routines, | |

you should not change TXTPTR to another location. One wedge '—'
insertion technique is to place a JMP opcode in 115 ($73) and the

address of your wedge in 116-117 ($74-75). Your wedge should ,- »

immediately JSR to 118 ($76), which you'd have changed to a JSR to LJ
location 58247 ($E387), the ROM master copy of this routine. The

ROM copy will increment $7A and $7B for you and test the charac

ter in location $EA60. That address is frozen in the ROM version of

the $79 LDA instruction. The flags can be ignored. The RTS in the

ROM copy will return to the RAM CHRGET, which then tests the

chosen character TXTPTR is pointing to. Your wedge is reentered via

the RTS in the RAM CHRGET routine. Your wedge can process the

character before BASIC sees it. You can go back to BASIC with JMP

$79 to reset the status flags using CHRGOT, or get the next charac

ter with JSR $76.

For example:

CHRGET $73 JMP $4000 ;branch to my wedge

$76 JSR $E387 ;perform the ROM copy of routine

The rest of the routine is left as is. The first instruction in my wedge

should be JSR $76.

Another technique for wedging into CHRGET is to place the

JMP to your routine at $73-75, then in your wedge routine

increment TXTPTR. A JSR $79 lets the CHRGET routine do its nor

mal testing. When CHRGET issues RTS, your routine is reentered,

and can decide to process and then jump (JMP) to $73 or let BASIC

have it by using a JMP $79.

A wedge can be placed in the CHRGOT routine by replacing the

CMP at location $7C with a JMP to your wedge. This can then jump

to the ROM copy of the $7C CMP at location 58256 ($E390) after

your wedge determines if it wants the character. The ROM routine

RTS will return to the original routine. If your wedge processes the

character, you would JMP to $73 or $79.

CLR, NEW, and power-on/reset set TXTPTR back to the start of

the BASIC program.

Here's an example of a wedge program for you to examine, type

in, and use. It features single keystroke entry of BASIC keywords

and automatic detection of the quote mode so that strings within

quotes are left alone. It immediately displays the entire word on the

screen. The program uses the Commodore key to indicate that the

key pressed along with it is a shorthand entry.

You can change the second 2 in line 130 to 4 if you want to use

the CTRL key instead of the Commodore key for this shorthand

entry.

32

115-138

The program works with any memory configuration. The loader
relocates the ML routine at the top of memory and protects it from
BASIC. When the program requests the memory address, simply
press the RETURN key. To toggle it off/on, you can SYS

PEEK(253)*256. The function keys have been defined as direct mode
keywords, the space bar as LIST, and other keys can be pressed to
see which keywords each represents.

Program l~10. WedgB

3 REM USE C= KEY AND OTHER KEYS FOR BASIC KEYWORDS
5 REM ** WARNING, DO NOT RENUMBER LINES **
9 PRINT" {CLR}11

10 PRINT"{RVS}BUILD MLC WHERE? 0=TOP{OFF}":OPEN1,0
:INPUT#1,S$:S=VAL(S$):CLOSE1

20 L=256:LN=100

30 E=PEEK(56)*256+PEEK(55)
33 IFS=0THENS=E-L

35 P=INT(S/256):S=P*256
37 IFS<4096ANDE>7680THEN50

40 IFS<ETHENPOKE56#P:POKE55,0

50 PRINT"BUILDING...":FORI=STOS+9999:READA:IFA=888
THEN900

55 IFA=999THEN90

60 CK=CK+A:IFA=300THENA=P

70 IFA<0THENA=ABS(A)

80 POKEI,A

85 NEXT

90 RESTORE:READA:IFPEEK(S)< >ATHENPRINT"{RVS}POKED

{SPACE}TO ROM, RELOAD.{OFF}":FORX=1TO300:NEXTX:
RUN10

95 PRINT"SYS"S"TO TOGGLE.":POKE253,P:NEW

100 DATA120,173,20,3,72,173,21,3,72,173,-39,300,20

8,2,169,-41,888,1429

110 DATA141,20,3,173,-40,300,208,2,169,300,141,21,

3,104,141,-40,888,1646

120 DATA300,104,141,-39,300,88,96,0,0,72,138,72,15

2,72,234,234,888,1964

130 DATA234,234,165,212,208,17,173,141,2,201,2,208

,10,165,203,201,888,2376

140 DATA64,176,4,76,-156,300,234,165,203,72,76,-14

1,300,0,234,76,888,1683

150 DATA-147,300,138,24,105,158,133,34,144,8,160,1

93,132,35,144,6,888,1567

160 DATA176,4,160,192,132,35,160,0,162,0,132,198,1

77,34,48,12,888,1622

170 DATA200,230,198,166,198,157,119,2,176,242,144,

240,230,198,166,198,888,2864

180 DATA41,127,157,119,2,169,20,141,119,2,230,198,

234,104,141,-155,888,1649

33

LJ

139-143

U
190 DATA300,234,234,104,168,104,170,104,76,191,234

,15,234,234,234,234#888,2870

200 DATA234,170,41,128,205,-155,300,240,166,168,18 I |

9,-185,300,201,255,240,888,2497 LJ
210 DATA150,170,152,72,76,-82,300,0,0,175,181,199,

205,211,89,187,888,2085 —

220 DATA255,196,10,243,44,20,92,62,255,255,231,25, [J
133,35,238,69,888,2163

230 DATA255,255,255,28,228,6,42,102,255,111,121,23

4,158,249,151,255,888,2705

240 DATA75,255,224,3,65,51,143,107,83,217,0,139,18

4,124,56,178,888,1904

250 DATA79,255,193,202,208,214,145,255,39,0,888,15

90

260 DATA 999

900 READ A:IF A<>CK THEN PRINT"*** DATA ENTRY ERRO

R ON LINE"LN"***" :END

910 CK=0 :LN=LN+10 :1=1-1 :GOTO85

139-143 S8B-8F RNDX
BASIC RND work area, last random number, or initial seed.

This routine is initialized at power-on/reset, along with the

CHRGET routine, from a master copy in ROM. The copying of this

area to zero page is done by the routine INITBA at location 58276

($E3A4). The initial value of this location is .811635157, or

$80,4F,C7,52,58 in five-byte floating point format. RND (Random)

returns a number ranging between 0 and 1.

The sign of the argument affects the resulting random number

generated by RND. The number or variable in parentheses after

RND is called the argument. For example, in:

RND(9)

9 is the argument.

The RND routine creates the random number by exchanging the

first and fourth byte of the mantissa of the argument. The exponent

is then overlaid to insure a value ranging between zero and one. -

A positive argument is ignored by RND and the resulting ran- [_J
dom number is based on the last seed stored in this location.

Because of this, using only positive arguments for RND will cause

the same sequence of numbers to be returned from the original ROM- if
copied seed. That's not to say that running the program twice will —

give the same random numbers. The ROM seed is only copied here

at power-on/reset. It does mean that the nth RND used since power- \~\

on/reset will return the same number. In other words, the third ran- LJ
dom number will always be the same, as long as the computer has

not been turned off, then back on. This can be helpful when testing r--,
a program. j J

34

LJ

n

n

n
Location 57482 ($E08A) shows the constants used to derive this

version of RND. Once the constants have been applied to the pre-

f"l vious seed value, RND treats the resulting value the same as it

would a negative argument.

A negative argument will return the same number for a given

n argument. This happens because a negative argument replaces the

seed number in this work area. Normally, the result of the previous

random number replaces the seed, and is used in determining the

next random number. The negative argument sets the seed at that

value and so determines the future random numbers from that point

on. A particular seed value will always cause the next random num

ber to be a particular number.

RND(O) causes the values in the 6522 VIA#1 chip timer 1 at

37140-37141 ($9114-9115) and in timer 2 at 37144-37145 ($9118-

9119) to be used to derive the returned random number. The

RND(O) feature is not the best recommendation for repetitive ran

dom numbers since clock cycles may remain constant during pro

gram loops.

R=RND(—TI) is recommended as an initial seed (ignoring the

returned result in variable R), with the remainder of the program us

ing R=RND(1) whenever a random number is needed. The desired

range of integers returned (ratige=A to Z) may be insured by using

R=INT((Z-A+1)*RND(1)+A).

Location Range: 144-255 <$90-$FF)
Kernal Working Storage

Page 0 storage for the Kernal

The INITMEM routine initializes this area to zeros at power-on

or reset.

INITSK, a Kernal power-on/reset routine, then initializes any

locations with needed values. See the comments in each location for

these initialization values.

BASIC lets the Kernal manage the second half of page 0, but it

can and does examine parts of it, as well as alter other parts. You

! I can change any location with POKE or with ML instructions.

144 $90 STATUS
i"l (handy location)

ST status of I/O completion.

Kernal routines that open channels or perform input/output

P"] functions check and set this location. When BASIC examines this
status or sets the ST variable for the programmer to examine, a jump

is made to the Kernal vector CRDST. This, in turn, goes to the read-

j—| status routine at 65111 ($FE57). The BASIC syntax checker does not

' allow ST=expression.

_ 35

LJ

U

Machine language routines need to load and examine this byte, '—

rather than using the BASIC variable ST.

See Appendix D for a device, secondary address, and status (|
codes table. i I

145 $91 STKEY 255 ($FF) -
(handy location) \ |

Keyswitch PIA: bottom keyboard row scan.

Each time the jiffy clock TIME is updated by the Kernal, the

contents of VIA2PA2 (VIA 2-Port A) are copied to this location.

Every other key on the bottom row of the keyboard may be

tested for in this location, without using a GET command in BASIC.

Here's an explanation of the different values you'll find in this
location:

255 ($FF) = no key pressed

254 ($FE) = STOP key pressed; STOP routine will find and act
on

253 ($FD) = left SHIFT key pressed; this may be the most use

ful returned value. It allows the program to distinguish between left/

right SHIFT by checking location 653, then location 145, bit 1 for

left/notleft.

251 ($FB) = X key pressed

247 ($F7) = V key pressed

239 ($EF) = N key pressed

223 ($DF) = comma key pressed

191 ($BF) = slash key pressed

127 ($7F) = cursor-down/up key pressed

You can examine the values in this location when the bottom

row keys are pressed by entering and running this short program.

Program Ml. Key Values, Bottom Row

10 REM 145

20 X=PEEK(145):IFX<>255THENPRINTX;

30 POKE198,0:GOTO20

Also see location 197 ($C5), matrix coordinate of key, and loca

tion 37153 ($9121), VIA2PA1.

See location 631 ($277) for a summation of keyboard-related

RAM locations.

146 $92 SVXT
(possible user

storage)

Tape: 0/1 bit timebase fluctuation during read operations.

This location stores the difference between the actual time for

36

H

n

n

n

147

the dipole just read and the adjustable timebase. This determines

whether a dipole is considered to be 0 or 1.

The positive and negative voltages recorded onto a tape result in

two different poles, just like a magnet with a north and south pole.

Recording on tape can then be represented as a square wave, as

shown in Figure 1-2. A dipole is one square wave cycle. A dipole

tinte is the time taken to go through two poles, or one square wave

cycle, such as the one labeled A and B in Figure 1-2.

Figure 1-2. Square Wave

n

H

H

H

After a bit is read, the value in this location is used to adjust the

value in location 176 ($B0), which slides the timebase value for the

boundary between a zero and one bit dipole. By comparing the

actual time it takes to read a bit to the time the tape routines expect

it would take, the tape routines are able to make adjustments. They

adjust the value limitations to define noise, 0, 1, or a word marker

for the next bit. Through this method, tape units can read tapes

recorded at slightly different speeds than the speed at which the unit

itself is reading. This location is reset to 0 after each bit has been

read.

147 $93

Tape: 0=LOAD, 1=VERIFY

VERCK
(possible user

storage)

37

u

u

The Kernal performs LOAD and VERIFY in the same routines,

with this location used to determine which is being performed. The

Kernal LOAD routine saves the 1 or 0 value here. r~j

BASIC, on the other hand, uses location 10 ($A) for its LOAD or '—>

SAVE determination.

148 $94 C3P0 U
(possible user

storage)

Serial: output deferred character flag.

This location is used by the Kernal serial output routines to

determine when to send the buffered output serial character stored
in location 149 ($95).

149 $95 BSOUR
(possible user

storage)

Serial: output buffered character.

A value of 255 ($FF) in this location indicates that no character

is waiting for serial output.

150 $96 SYNO
(possible user

storage)

Tape: block found flag, tape leader length bit count.

This location's values indicate during tape LOAD that:

• 0: either no block is recognized yet or a block is recognized

and data is being read from that block.

• 16-126: has read at least 16 leader bits during read of the tape

leader either before the first block or between blocks 1 and 2, and is

now waiting for the word marker at the end of the leader. Leader

bits are composed of dipoles containing zeros, differing from data

dipoles which have reverse dipoles of zero then one, or vice versa.

151 $97 XSAV U
.X register SAVE area for get and put ASCII characters routines.

158 ($9E) is also used by output routines. -.

The INITEM routine uses this location to test for the start of * [
RAM and to insure that locations 0-1024 are accessible.

LDTND __
(handy location)

Number of currently open files, not to exceed ten.)

This is used as an end index for the last-used entry in the file, | J

38

U

n

n ■ ■

r-i

device number, and secondary address data tables, found at the

following locations:

H 601 ($259) LAT File number table
611 ($263) FAT Device number table

621 ($26D) SAT Secondary address table

PI Entry n in any table corresponds to entry n in the other two
tables.

CLOSE decrements this number and shifts up the table entries

to close any empty gap.

OPEN increments this number and adds the appropriate

information to the bottom of the tables.
Routine CLALL, close-all-files, sets this number to zero, empty

ing the tables.
You can cause BASIC to forget all open files by POKEing a 0

into this location. This does not CLOSE any currently open files. To
insure that no more than ten files are currently open, you could use

the following lines to begin your program:

Program 1-12. Number of Open Filee

10 REM 152

20 REM YOU CAN CAUSE BASIC TO 'FORGET1 ALL OPEN FI

LES BY POKING 0 INTO THIS LOCATION.

30 REM *NOTE* THAT THIS DOES *NOT* CLOSE ANY CURRE

NTLY OPEN FILES.

40 REM THE FOLLOWING CAN BE USED TO INSURE THAT NO

MORE THAN 10 FILES ARE OPEN:

50 IF PEEK(152)<10THEN70

60 PRINT"MAX FILES ALREADY OPEN, SPECIFY FILE NUMB

ER TO BE CLOSED?":INPUT F% :CLOSE F%

See locations 183-187 ($B7-BB) for the current file parameters.

153 $99 DFLTN
(handy location)

Device number of the current input device.

(j Used by the Kernal to determine the routines called for process
ing the received data.

r^ VIC-20 devices are:

1 0 keyboard
1 tape

f—[2 RS-232/user port

(3 screen

4-5 printer

8-11 disk

f Device numbers 4-31 could be any serial device.

39

H

BASIC passes the file number to the Kernal when INPUT# or
GET# causes an indirect jump via the vector at 798 ($31E) to 62151
($F2C7). This is the open-input-channel routine, CHKIN. The vector
at 798 ($31E) may be changed to your own front-end routine.
CHKIN stores the current input device number here. See CHKIN on
page 186 of the VIC-20 Programmer's Reference Guide. BASIC calls
CLRCHN after every input to close the channel. See CLRCHN on
page 191 of the reference guide. BASIC uses location 19 ($13)

CHANNL to save the active input device number for prompting and
screen control purposes.

SETIODEF sets the default to 0 during power-on/reset.
See Appendix D for a device, secondary address, and status

codes table.

Jim Butterfield gave directions for reading the tape as though it
were the keyboard, in the article "BASIC Program Merges: PET and
VIC," in the June 1982 issue of COMPUTE!.

1. LOAD the program or routines that you wish to later merge
into other routines or programs.

2. OPEN l,l,l,"filename": CMD 1: LIST will create a tape in

LIST format, with keywords detokenized and readable line numbers.
The LIST command could be qualified by giving a line number
range, if desired.

3. PRINT#1 : CLOSE 1 will properly finish the tape. The output
may be directed to disk instead, but the following steps work only
with tape.

4. Rewind the tape. LOAD the other program or routine that
you wish to merge to.

5. POKE 19,1 : OPEN 1 to set the current input channel number
and to bypass the tape header.

6. Clear the screen and press the cursor-down key three times.

It's very important that this be exactly three cursor-downs, preceded
by a screen clear.

7. PRINT "home" : POKE198,1 : POKE631,13 : POKE153,1.

This puts a carriage return in the keyboard buffer, indicates that one

character is in the buffer, and changes the current input device num
ber to the tape. j "j

8. Ignore any SYNTAX ERROR or OUT OF DATA messages. ^
9. CLOSE 1 to finish.

10. The program lines on the tape have now been merged. j j

Steps 1-3 may be used to obtain a detokenized LIST form of the

program in machine-readable form on either tape or disk.

Step 7 doesn't seem to work for disk. You can save the program j~~j

on tape and use the tape technique. '—»

U
40

0

n

n

Jim Butterfield also explored the subject of merging programs

from disk files. His article "Merging BASIC Programs from Com-
^"1 modore Disk " appeared in the October 1983 issue of COMPUTb!. A

I step-by-step explanation of the process is included in this article,
along with a program which merges programs. The process involves

!—} writing a BASIC program that reads lines from two program files on
1 I disk and writing a third program with the lines from both files in the

correct order. This is done by comparing the line numbers from each
program, writing the line with the lowest number, and getting the
next line from the file. This continues until both program files are
emptied. A few details are worth mentioning about this procedure.

• Open the input program files with OPEN x,8,x,"filename,P,R"
• Open the output file with OPEN y,8,y,"0:filename,P,W"

• DIM A$(2),B$(2),C$(2),N(2) can be used to contain each line

number's LSB in A$, its MSB in B$, its text line in C$, and the full
line number in N. By varying the subscript used to reference the ar
rays, you can easily select the line from file one or file two. If 1 and
2 are used as file numbers in the OPEN statement, GET# can use

the subscript value of the file number.
• The first two bytes of the input disk files (the saved-from

address) can be discarded with GET#x,A$,A$ since the correspond

ing output file's address can be set to allow a PET as well as a VIC

and Commodore 64 to load the program.

PRINT#y,CHR$(l);CHR$(4) does this.

• When reading the existing program files, the two-byte link

filed on the start of every line should be tested for an end-of-

program condition:

GET#x,A$,B$:IF A$=//// AND B$="" THEN...

The routine branched to should insure that only the other file is read

from, unless that file has also ended, meaning the output file can be

marked with the end-of-program link field (PRINT#y,CHR$(O);
CHR$(0);) and all files should be closed and the program ended.

• Since the decision of which line to output, and the file to get

r~] that line from, is based on the line number, N(x) is obtained by:

GET#x,A$(x),B$(x)

IF A$(x)="" THEN A$(x)=CHR$(0)

fl IF B$(x)="" THEN B$(x)=CHR$(0)
N(x)=ASC(A$(x))+ASC(B$(x))*256

• The actual text of the program line can be obtained with:

!< I 500C$(x)=""
510 GET#x,A$:IF A$= "" THEN 999

520 C$(x)=C$(x)+A$:GOTO 510

41

The routine at 999 is branched to when end-of-program line is
encountered.

• To write the output file, use:

PRINT#y,CHR$(l);CHR$(l);A$(x);B$(x);C$(x);CHR$(O)

where the leading ones are a dummy link field that is recalculated
by LOAD, and the ending zero signifies end of line.

• Be sure to examine the disk return codes when opening the
input and output files:

INPUT#15,E,E$,E1,E2

IF E THEN PRINT E$:CLOSE 15:END

This assumes you OPENed #15 at the start of your program.
See location 154 ($9A), output device number, for details of

input/output diversion to other devices using SYS and locations
780-783 ($30C-30F). See location 19 ($13) for a description of
BASIC device diversion.

See location 186 ($BA) for the current device number.

$9A DFLTO
(handy location)

Device number of output device.

BASIC passes the file number to the Kernal when PRINT# or

CMD causes an indirect jump via the vector at 800 ($320) to 62217

($F309), open-channel-for-output. The vector at 800 ($320) may be
changed to your own front-end routine. CHKOUT stores the current

output device number here. See the reference to CHKOUT on page

186 of the V/C-20 Programmer's Reference Guide. BASIC calls

CLRCHN after every output to close the channel. Refer to page 191

in the reference guide for details of CLRCHN.

SETIODEF sets default to 3 at power-on/reset. This location is

also used by Kernal output routines to determine the routines for

sending the data.

By using ML or SYS and the SAVE area for registers at location

780 ($30C), you can divert input/output from/to any file number.

First OPEN a file to the device. See page 196 of VIC-20 Programmer's

Reference Guide for details on the OPEN routine.

To divert input, POKE 781 or LOAD .X with the file number

and SYS or use a JSR to 65478 ($FFC6). Location 65478 ($FFC6) is

simply a vector which calls the CHKIN routine. A SYS or JSR to

location 65508 ($FFE4), the vector pointing to the GETIN routine,

will retrieve a byte from the device and place it into .A. Note that

the routine CHRIN, location 61966 ($F20E), will do the same for a

serial device. When finished, you can use another SYS or JSR to

65484 ($FFCC) to restore the keyboard and screen as the default

devices.

42

n

n

' ' To divert output, POKE 781 or LOAD .X with the file number
and then SYS or use a JSR to 65481 ($FFC9) (the vector to the

r-| CHKOUT routine) to open the output channel. Then SYS or use a
i ! JSR to 65490 ($FFD2) to output a byte that is passed in 780 (.A).

Again, a SYS or JSR to 65484 ($FFCC) CLRCHN (close-input-and-

_ output) is used to restore the default devices.

j] See location 186 ($BA) for the current device number.

1SS S9B PRTY
(possible user

storage)

Tape: character parity.

This location is used to help detect missing dropped bits in tape

data. It's also a parity work byte during tape load and save, with bit
0 used to calculate parity. Odd parity is used when the parity bits'

total number of l's, for all 8 data bits, is an odd number.
Parity is simply a way of checking data transmissions, making

sure that the data is received correctly.

156 $9C
(possible user

storage)

Tape: dipole switch/byte-received flag.

During tape load, the following values in this location mean

that:

1: a byte has been completely received.

0: the computer is waiting for the next byte or is still receiving a

byte.

157 $9D
(handy location)

Kernal message control flag.

The following values in this location signify:

128 ($80) = Kernal control messages wanted

'"■"I 64 ($40) = Kernal error messages wanted

1 ■ 192 ($C0) = Kernal control and error messages wanted
If bit 7 is off, no Kernal control messages, such as SAVING,

r-r FOUND, PRESS PLAY, and so on, will be shown on the screen.

I I If bit 6 is off, no Kernal I/O ERROR number messages will be
displayed.

_ BASIC calls SETMSG to set this location to 128 ($80) when it is

j] in the READY mode, and to 0 ($0) for RUN mode. BASIC thus pre
empts the Kernal error messages altogether. BASIC has its own error

messages, and prefers them over the Kernal message of I/O ERROR

P] followed by an error number. These error numbers correspond to

43

H

u

U

those returned by an error during a Kernal operation in the .A reg

ister. See the list of BASIC messages at location 49566 ($C19E) and

the list of Kernal messages at location 61812 ($F174). j""j

You can also refer to page 203 of the VIC-20 Programmer's Ref- ^—'
erence Guide, but notice that the significance of bits 6 and 7 is
reversed, in error. —-

You could set this location yourself with a POKE statement. I 1

158 $9E PTR1
(possible user

storage)

Tape: error log index/filename index/header I.D./out byte.

This location is used by various tape routines for several
purposes:

Tape SAVE. Temporary storage for tape I.D. header. The

header values are:

1 = relocatable

2 = user data record

3 = nonrelocatable

4 = user data header

5 = end of tape

This I.D. is the first byte of the tape header, except for 2 which is in

the first byte of every record and accounts for the fact that the 192-

byte tape buffer at 828 ($33C) can contain only 191 bytes of data.

Tape LOAD. Pass 1 error index value. If not zero, it equals

two times the number of errors. It indexes into the stack area where

error addresses are stored. The maximum value is 61 ($3D), result

ing in locations 256-317 ($0100-$013D) possibly used for error

pointers, with a maximum of 31 possible errors.

Tape header LOAD. Index into tape buffer during comparison

of filename from tape header to filename specified in LOAD. Loca

tion 187 ($BB) points to the desired filename.

Tape write from BASIC. Holds character for output during the

CHROUT ($F27A) routine's processing to tape.

LJ1S9 $9F
(possible user

storage) j j

Tape: pass 2 error pointer/tape buffer filename index. '—*

This location is also used for several tape routine operations,

such as: | I

Tape LOAD. Pass 2 error correction index, and indexes —

through stack error location address. This is limited to a value no

greater than the pass 1 error correction index. See 158 ($9E). j]

44

u

160-162

Tape header LOAD. Index into filename in the tape buffer

during comparison of filename from tape header to filename speci

fied in LOAD. Location 178 ($B2) points to the tape buffer.

160-162 SA0-A2
(handy location)

I I Jiffy clock, realtime clock.

These locations keep a count of the jiffies, one-sixtieths of a sec

ond, since power-on. They're reset to zero after 24 hours.

Tape I/O interferes with both accurate clocking and testing of

the STOP key; but serial I/O interference, from the disk drive or a

printer, for example, is negligible.

The individual locations in this routine have these functions:

160 ($A0) is incremented every 18.2044 minutes

161 ($A1) every 4.26667 seconds

162 ($A2) every .01667 second (one jiffy])

TI$ and TI are not actually variables in BASIC, since they're not

stored in the RAM variable pool. Setting TI$ in BASIC

(TI$=HOUR$+MIN$+SEC$) calls SETTIM, Assigning TI$ in

BASIC (XY$=TI$) calls RDTIM. See pages 198 and 204 of the VIC-

20 Programmer's Reference Guide.

An ML subroutine of BASIC can examine and change these

locations. Any changes will be reflected in the BASIC variable ST.

You can create a digital clock on the screen using this short

program:

Program 1-13. Digital dock

10 REM 160

20 INPUT"HRS,MIN,SEC";H$,M$,S$

25 T$=RIGHT$("0"+H$,2)

26 T$=T$+RIGHT$("0"+M$,2)

27 T$=T$+RIGHT$("0"+S$,2)

28 TI$=T$:T0=TI

30 IFTKT0+60THEN30

fl 35 T0=TI:PRINT"{CLR}{11 DOWN} "SPC(7) ;MID$ (TI$, 1, 2)
11: "MID$ (TI $, 3, 2) " : "MID$ (TI $, 5, 2)

40 GOTO30

i—[
' • The TI numeric variable may not be set, only assigned. A good

reference for this is "Timekeeping," by Keith Schleiffer. This article

_ appeared in the February 1982 issue of COMPUTE!.

' I

H

45

$A3 PGNTR
(possible user

storage)

Serial: input bit count/Tape: input/output bit count.

Serial. If the high order flag bit is on, this indicates that the
last byte has been sent to the serial device.

Tape. Count of bits remaining to be written for a byte during

tape write, or bits remaining to be read for a byte during tape read.

This location is initialized to 8 before each byte and decremented

after each bit is written or read. During tape write, it is time to set

up the parity bit to be written when this location is decremented to

0. When this location's value reaches — 1, it's time to prepare the

next byte to be written. That's when this location is reset to 8. Dur

ing tape read, when this is decremented to —1, the parity bit has

just been read and it's time to check for a parity error. Then it's

ready to read the next byte, so the location is reset to 8.

164 $A4 F1RT
(possible user

storage)

Serial: input byte/cycle counter/Tape: dipole number.

Serial. The input byte read in during a serial LOAD or

VERIFY.

Tape read/write. Flag to indicate which dipole has been pro

cessed. Set to 1 if you just processed the first half of the dipole or

to 0 if you just processed the second half.

(possible user

storage)

Tape: block sync countdown/Serial: countdown.

Tape. Countdown for block synchronization. During tape SAVE,

is a counter for block countdown characters written to tape before

each block's data begins. The location is initialized to 9 for each , j

block, so each block contains 9 countdown characters. The count- 1—>
down characters are: 9, 8, 7, 6, 5, 4, 3, 2, and 1. For the first block,

the countdown characters have their high order bit on. The high

order bit is off for the second block. Later, during tape load opera- [_J
tions, the block countdown characters can be used to determine

whether block 1 or block 2 is being read. __

Serial. Countdown from 8 to 0 of bits left in byte to be sent. j j

□

n

n

H

f"]

H

$A6 BUFPNT
(handy location)

Tape: count of characters in the tape buffer.

This location is used to count bytes when writing the tape

header, and when accumulating BASIC program output for the tape

buffer.

You can POKE 166,191 to force a 192-byte buffer to tape,

regardless of the actual amount of data in it. Refer to the tape buffer

at location 828 ($33C) for an explanation of the disparity between

the 192-byte buffer and the 191 bytes of data it contains.

You can create a tape of 100 191-byte blank records, which can

be updated later, by entering this two-line routine:

Program 1-14. Blank Record Files

10 REM 166

20 REM CREATE A TAPE FILE OF 100 191-BYTE BLANK RE

CORDS FOR LATER OVERLAYING.

30 OPEN1,1,1,"100RECS"

40 FORX=1TO100:POKE166,191:PRINT#1:PRINTX;:NEXT:CL

OSE1:END

See 178 ($B2) for the tape buffer pointer and restrictions.

167 SA7 MBIT
(possible user

storage)

Tape: write leader count/read block reverse counter.

RS-232: bit 0 is the temporary storage for input bit.

Tape. Write leader length counter.

When writing leader dipoles to tape, this location is used as a

counter for an inner loop that counts down to 0 each time the loop

is performed before the outer loop decrements its counter. This

results in a total number of leader dipoles written equal to the value

of INBIT multiplied by the value in RIPRTY, plus one. See 171

(SAB) RIPRTY for the second value.

This byte is set to 0 before writing the leader for the header or a

program. It's set to 128 ($80) before writing the leader between

blocks. See location 146 ($92) for a short description of a dipole.

Leader dipoles contain zeros, but data dipoles are reverse dipoles,

which contain a zero, then one, or vice versa.

During tape load operations, this location indicates which block

is currently being loaded. If its value is 2, then the first block is load

ing; if its value is 1, it's loading the second block; and if its value is

0, all blocks are loaded.

47

$A8 BITCI
(possible user

U

U

u

storage) j |

Tape: error flags, 0 = no errors/long word marker switch. UJ
RS-232: input byte bit count and output new byte.

Tape. During SAVE, this is a switch for word marker write. If j j

the value is 0, it's writing the long time for a word marker dipole. *—

If 1 is the value, the long time for a word marker dipole has al

ready been written.

During LOAD, if the value is not zero, the byte just read is

considered in error. An example would be if a parity error has

occurred.

RS-232. The input byte bit count is derived from location 664

($298), BITNUM.

(possible user

storage)

Tape: dipole balance counter/medium word marker switch.

RS-232: input flag for checking for a start bit.

Tape. During SAVE, this byte acts as a switch for word marker

write. If its value is 0, then write the 1 time, medium time, for a

word marker dipole. If its value is 1, the 1 time for a word marker

dipole has already been written.

During LOAD, a 0/1 means a balanced counter. Each time a 0

dipole is read, this value is incremented, and each time a 1 dipole is

read, this value is decremented. When reading the all-0 leader

dipoles, location 150 ($96) is set when this value reaches 16. The

maximum value this location can contain is 126. When actually read

ing data bytes, this location is initialized to 0 before each byte. Since

each data bit contains one dipole that is a 0 and another that is 1,

this counter should be zero after each bit is read. If not, the byte

error flag in 182 ($B6) is set.

See location 146 ($92) for a brief description of a dipole.

RS-232. A value of 144 ($90) in this byte indicates no start bit

received, while 0 means a start bit was received.

170 $A4
(possible user I—I
storage)

Tape: input status flags, sync countdown.

RS-232: byte assembly. LJ

If the SAVE starting address is greater than the ending address,

this location is set to 128 ($80), indicating invalid parameters.

lJ

48

u

H

n 172-173

Tape. During tape LOAD, the action taken for the byte just

read is:
]\ • If 0, then it's waiting for the first block countdown character

to arrive. Note: This location is initialized to 0 before reading of the

first header block and before reading of the first program block.

f'I • If 1-15, block countdown characters are being read.

' ' • If 64 ($40), valid block countdown characters have arrived,
and the byte received is treated as a valid data byte.

• If 128 ($80), the first block has been loaded and a search is

proceeding for the second block.

RS-232. This is used as a byte assembly area to be stored where

($F7) points, as well as for detecting framing error and BREAK.

See location 247 ($F7), receive buffer pointer, for additional RS-

232 related locations.

171 SAB
(possible user

storage)

Tape: write leader counter/read checksum comparison.

RS-232: input parity/checksum bit storage.

Tape. When writing leader dipoles to tape, this is used as a

counter for an outer loop that must count down to — 1 before the

routine will stop writing leader dipoles. This results in a total num

ber of leader dipoles written equal to the value of INBIT multiplied

by the value in RIPRTY, plus one. See location 167 ($A7), INBIT

for its value.

This location is set to 105 before writing the header leader, to 20

before writing a leader for the first block, and to 0 for a leader

between blocks.

During tape LOAD, once both copies of a program are read and

the load is considered complete, this byte then computes the parity

over all bytes loaded. This parity or checksum should be the same as

that just read as the last byte of the program on tape, which was

similarly computed over all bytes saved to tape. If it's not the same,

then it's set to checksum error status. This checksum computation is

P"j done both for the header and the program. The checksum that was
recorded during the save at the end of the first copy does not appear

to be used during the tape load. Only the second copy has a

r""j checksum comparison performed.

172-173 SAC-AD SAL
^-* (possible user

' ! storage)

Tape/Serial: start address for LOAD/SAVE/VERIFY.

Copied here from 193 ($C1), the pointer to start of I/O area,

this location is then used as a pointer through the data, and

49

H

u

174-175 y

incremented as the data is sent or loaded. Location 174 ($AE) con

tains the end+1 address to be attained in this pointer. These loca

tions may be pointed to any area when calling Kernal LOAD and j" j

SAVE routines. Before each byte is written to tape, right after the '—'
word marker long dipole has been written to tape, a check is made

to see if 173 ($AD) is above 127 ($7F). There are two ways that loca- ~ ,

tion 173 ($AD) can be set above 127 ($7F). LJ
Once the memory area and the checksum have been written for

a block, BLKEND at location 64518 ($FC06) is executed, which sets

the high order bit on to write an interblock leader. The second way

172 can be set above 128 is if you specify to save from an area over

32767 ($7FFF). When 173 ($AD) is found with its high order bit on,

WRTN1 ($FC95) executes to write the interblock leader to tape if the

first block has just finished, or turns off the tape motor if the second

copy is complete. Thus, a save from 32768 ($8000) causes, after a

valid header has been written to tape, interblock leader dipoles to be

written, and the tape motor to be turned off. Through this dual use

of 173 ($AD), both as block end indicator and as the high order byte

of the save area, it's impossible to save areas from 32768 ($8000) on

up.

The BASIC tape buffer at 828 ($33C) is used for BASIC LOAD,

SAVE, and VERIFY tape headers. This location is restored from the

value saved in location 193 ($C1) at the end of the operation.

Screen management routines save this pointer, use it as a work

pointer, and then restore it.

See Appendix F for a technique that you can use with BASIC to

save/load whole storage blocks. This technique does not require that

an ML routine be preloaded.

A type 3 tape header will always load where the tape's start

address specifies, no matter what a secondary address indicates. This

header I.D. is created when the secondary address was 1 or 3 when

creating the tape. If the secondary address was 0 or 2, an I.D. of 1 is

used. This is relocatable. See the explanation at locations 829-830

($33D-33E) for how to read and modify the tape header before it's

acted upon by the LOAD routine. Also see locations 193 ($C1) and

195 ($C3). jj

174-175 SAE-AF EAL
(possible user j ~~\

storage) '—*
Tape: ending address for LOAD, SAVE, and VERIFY.

Serial: loading address for LOAD/VERIFY, end address plus 1 for

SAVE.

This location is initially set by the Kernal SAVE routine from

parameters passed to it.

50

H

n 177

1 RAM saved to disk has a pointer that indicates where it was

saved from. This pointer is after the next sector pointer and is writ-

ten to disk from the start-saving pointer located at 172 ($AC). Dur-

ing a disk LOAD, the pointer at 172 ($AC) is read from the device. If

the LOAD specifies a secondary address of 1, the pointer at location

174 is used as the starting pointer for the loaded data. Otherwise,

the data is loaded wherever the parameters passed to the LOAD rou

tine are pointing. If a BASIC program is being loaded, this informa

tion is obtained from the contents of location 43-44 ($2B-2C).

This pointer is incremented as data loads, and at the load's

completion, it points to the end of the loaded RAM.

The ending address, plus one, of a tape save is stored at this

location, after the length of the loaded data is added to the value in

195 ($C3). Once the tape buffer is full, BASIC PRINT# causes the

Kernal to set this pointer to the end of the tape buffer 828 ($33C)

and write the block to tape.

Screen management routines save this pointer, use it as a work

pointer, and then restore it.

176 SBO
(possible user

storage)

Tape: dipole timing adjustment values.

Timer 1 of VIA 2 at location 37156 ($9124) is adjusted with this

value during the reading of tape.

During tape LOAD, this location is used as a factor in comput

ing the values to set the adjustable timebase for the next dipole read.

See location 146 ($92). If this location's value is greater than 0, that

amount of time is added to the timebase. If it's less than 0, that

amount of time is subtracted.

177 $B1 TEMPI
(possible user

storage)

^ Tape: dipole timing timer 2 difference.

! I Timer 1 of VIA 2 at location 37156 ($9124) is adjusted with this
value during the reading of tape.

^ During tape LOAD this location's value is equivalent to the tape

(! dipole time minus the time between reading timer 2 and resetting

timer 2.

This is also a one-byte field that the two-byte timer 2 has been

Ij compressed into. Bits 9-2 of the timer 2 value since it was last set

are stored in bits 7-0 of this location.

51

u

178-179 u

178-179 SB2-B3 TAPE1 60/3 (S3C/03) ~
(handy location)

Tape: pointer to tape buffer. j]

Initialized by power-on/reset, this location normally points to

828 ($33C). BASIC uses the tape buffer for all program tape data 1/

O. LOAD and SAVE only use the tape buffer for tape header 1 (

records. Serial devices use the buffer at 512 ($200), but filename L~j
information is sent from the location the pointer at 187 ($BB)

indicates, the length specified in 183 ($B7). RS-232 allocates its 512

bytes of buffers (256 in, 256 out) from the top of available RAM.

This pointer must contain an address greater than or equal to

512 ($200) or an ILLEGAL DEVICE NUMBER error will occur. This

error is checked in the TPBUFA routine, location 63565 ($F84D).

The TAPEH routine at 63463 ($F7E7) clears the 192 bytes of the

buffer to spaces before building the tape header, so a filename

shorter than 187 bytes is padded with blanks. A filename may con

tain an ML program after or instead of the name. See location 187

($BB).

The pointer to the tape buffer can be used as the operand of an

ML indirect JMP off of the zero page location to any ML routine that

you've stored in the buffer.

180 $B4
(possible user

storage)

Tape: miscellaneous flags/RS-232: various uses.

Tape. Nonzero means tape routines are ready to receive data

byte. This is reset to zero between blocks.

RS-232. Transmit bit count out, timer enable flag, parity, and

stop bit manipulation.

Output bit count is derived from location 664 ($298), BITNUM.

181 B5
(possible user

storage) \ j

Tape: flag for currently reading data or leader. '—'

RS-232: next bit to be sent or EOT.

During tape LOAD, this address indicates where the tape LOAD j j

routine is currently reading data. If its value is not zero, the tape is '—

before a block of data, waiting for a word marker at the end of the

leader bits. If its value is zero, then bytes of data are being read from r ",

the block. This location is set to zero once a word marker has been I—I
received after location 150 ($96) has been set.

This location is also used by RS-232 NMI routines to hold the

next value for VIA 1 control line options at location 37148 ($911C). [_j

52

u

h ;

" 182 $B6
(possible user

fl location)
• Tape: accumulator for number of read errors.

RS-232: byte disassembly area for buffer pointed to by 249 ($F9).

P This holds the byte currently being sent from the RS-232 buffer.

See location 249 ($F9) for additional related locations.

Tape. During tape LOAD, this flag is set to nonzero if the byte

just read was considered in error. This error can be a parity error, a

dipole mismatch, or a verify error.

183 $B7 FNLEN
(handy location)

Number of characters in filename.

Only the first 16 characters of a filename will show in a

FOUND message, so the message is never longer than a 22-column

line.

Disk directories allow a 16-or-less character filename. When

merging disk files, 16 can be too long since the command syntax

allows only 40 characters. Three names with delimiters must be

included in these 40 characters. Because of this, it's a good idea to

use shorter names or rename a file before merging.

If you have tape files with ML programs saved within them,

there is no corresponding method for saving ML code beyond 16

bytes in disk program headers. Disk filenames may contain a

SHIFTed space which ends the name as though a quote were placed

there. The remainder of the filename is used as comments. For

example, entering SAVE"PROGRAM.3K",8 (where . is a SHIFTed

space) causes the filename to appear as //PROGRAM"3K in the

directory. You may reference the file as PROGRAM, or as its full

name by once again including the SHIFTed space in the name. A

second file named "PROGRAM"8K+ would not be found unless the

shifted space and 8K+ were included in the name.

If OPEN, LOAD, or VERIFY tape doesn't specify a filename, this

p location will contain a zero after opening, making the filename

pointer at 187 ($BB) irrelevant. Disk always requires a full or generic

name, and this location will always be greater than zero. If a com-

npletely generic name is used for disk, for example IDAD"*",8, the
length at this location will be 1. The * is only one character.

When RS-232 is opened, there can be up to four characters in

the filename which are copied to location 659 ($293) through 662

|j ($296). These correspond to the control register, command register,
and nonstandard bit-timing values.

A value is stored here by SETNAM from .A when called.

P See related locations 187 ($BB) and 828 ($33C).

53

u

u

This location and 187 ($BB) can be used to retrieve the filename S-J
for use in a program. See the description of the technique at location
187 ($BB). ' ,-j

(By some clever manipulations, a tape filename may theoreti- i—'
cally be up to 250 bytes long. I haven't seen this done, but routine

TAPEH is the place to start investigating if you'd like to pursue the

idea.) Jj

SB8 LA
(handy location)

Current logical file number being used.

A maximum of ten files can be open at any one time. The file

number can range between 1 and 255.

If the file number is greater than 127, a linefeed character is sent

to the file following any carriage returns.

BASIC'S OPEN and the OPEN routine at location 62474

($F40A) use this number to build the file number table at location

601 ($259).

SETLFS is used to set this location, as well as locations 185

($B9), and 186 ($BA) from the contents of .A, .X, and .Y.

Whenever I/O needs to change the current channel for input or

output, the file number is passed to CHKIN or CHKOUT, unless the

device is the keyboard or screen with no other channel currently

open. This location, 185 ($B9), and 186 ($BA) are then set by pulling

the corresponding entries from:

601 ($259) LAT File number table

611 ($263) FAT Device number table

621 ($26D) SAT Secondary address table

This location serves primarily as an index into these tables so

that the secondary address and device number for a file can be

remembered by the Kernal. Devices that support multiple open files

at the same time—for example, a disk—differentiate internally

between files by the secondary address, not the file number. So,

OPEN 4,8,15 is perfectly acceptable to communicate with the disk

DOS. The file number need not be 15, except for convenience sake. \ I

See locations 152 ($98), 153 ($99), and 187 ($BB). Also see ^
Appendix D for a device, secondary address, and status code table.

U
185 $B9 SA

(handy location) . ,

Current secondary address being used,? I

The valid range of this number is 0-31 for serial devices and 0-

127 for nonserial devices. 0, 1, and 15-31 have special meanings for » ,

DOS. Use 2-14 for disk data files. U

54

u

n

1 The keyboard and screen ignore this secondary address.
A secondary address for tape signifies read (0) or write (1). EOT

f—| (2) can be added to either. This number is not the tape header I.D.
1 that is stored on the tape. See location 828 ($33C) for details of the

tape header I.D. The VIC-20 Programmer's Reference Guide has an

j—) error regarding tape secondary addresses. An odd secondary address
! i results in a nonrelocatable program; an even secondary address

results in a tape I.D. header of 1, indicating a relocatable program.

By adding two to the secondary address, an end-of-tape (EOT)

header is written at the end of the file.
For serial devices, the Kernal ORs the secondary address with 96

($60), giving a high order nybble of 0110. When listen-with-
attention is sent to these devices, the secondary address is ORed
with 32 ($20), resulting in a high order of 0010 in binary.

The disk tells which files are open by the secondary address, not

the file number. When loading a program from disk, a secondary

address of 0 is used by the Kernal, and a 1 when saving. A second
ary address of 15 for disk is the DOS communication channel.

The printer determines the character set to be used by the speci

fied secondary addresses.

See 621 ($26D) SAT secondary address table.

See 184 ($B8) for list of related fields.

186 $BA FA
(handy location)

Current device number being used.

This location is also called the primary address in some

documentation.

VIC-20 devices are:

0 keyboard

1 tape

2 RS-232/user port

3 screen

4-5 printer

f"| 8-11 disk
4-31 could also be any serial device.

See location 611 ($263) FAT device number table.

H See locations 184 ($B8), 185 ($B9), 153 ($99), and 154 ($9A),

H

SBB-BC FNADR
(handy location)

Pointer to the current filename.

If an OPEN, LOAD, SAVE, or VERIFY for tape doesn't specify a

filename, then location 183 ($B7), the length of the filename, con

tains zero, and this pointer is unpredictable. However, location 833

55

($341), which is part of the tape buffer, contains the filename after
an OPEN for input of an unspecified tape file, but not after any sub
sequent tape I/O.

Disk always requires a full or generic name, so the filename
length in location 183 ($B7) will always be greater than zero.

When RS-232 is opened, there may be up to four characters in
the filename which are copied to locations 659 ($293) through 662

($296) and correspond to the control register, command register, and
nonstandard bit fiming values.

The TAPEH routine, which builds the tape header, clears the
192 bytes of the tape buffer to spaces before creating the tape

header. Any filename shorter than 187 bytes is padded with blanks.
A filename may contain an ML program after or instead of the

name. The UNNEW technique mentioned in location 43-44 uses this

method. Another reference is "Saving Machine Language Programs

on PET Tape Headers," by Louis Sander, which appeared in the July

1981 issue of COMPUTE!. There is no corresponding method for sav

ing ML code beyond 16 bytes in disk program headers.

If a tape being read is opened without a filename specified, the

tape filename will be in the tape header at location 833 ($341) after

OPEN, but not after any subsequent tape I/O.

See related locations 183 ($B7), 178 ($B2), and 828 ($33C).

$BD ROPRTY
(possible user

storage)

RS-232: send parity calculation work byte.

Tape: byte just read or shifting byte currently being written.

During SAVE, this byte is saved to tape. After one bit is written

to tape, the byte is shifted right one bit, and the procedure repeats

until all eight bits have been written.

During LOAD, this location holds the byte that has been read

after being built in 191 ($BF).

(possible user

storage)

Tape: which copy of block remaining to read/write.

• A 2 in this location means both copies of block remain to

save/load.

• 1 in this location means that the last copy of block remains to

save/load.

• A 0 means that both copies of block are done.

56

^ 193-194

^ 191 $BF MYCH
(possible user

f—| storage)

' Tape: input byte currently being constructed.

During tape read, the bits read from tape are rotated into the

f""j high order to low order bits to build a byte. Once eight bits have
been received, the byte is considered complete.

n

n

n

(handy location)

Tape: motor interlock switch.

A nonzero value here, which is possible only if some tape but

tons are pressed down, prevents any change of tape motor switch.

The IRQ interrupt handler at location 60095 ($EABF) normally sets

this location to 0 if no tape buttons are pressed down.

During tape read or write, this is set to nonzero once a tape but

ton has been pressed and will be reset to zero once the tape action is

completed. A zero at this location, which is possible with either

some or no buttons down, allows the tape motor to be turned on.

This is done within the normal IRQ interrupt routine if location

37148 ($911C) has bits 2 and 3 on.

The effect of placing values in location 37148 ($911C) using

POKE 37148,(PEEK(37148) AND 241) OR n, where n is:

• 0,2,4,6 Stops the motor

• 8 No change

• 10 Stops the motor

• 12,14 Starts the motor

This location has no control over tape motor settings outside of

the default IRQ interrupt handler.

193-194 SCS-C2 STAL
(handy location)

Tape/Serial: pointer to the start of the I/O area.

These locations are initially set in SAVE/LOAD from param

eters passed to them.

This points to the area being loaded or saved, such as the tape

buffer or RAM address.

See location 174 ($AE) for disk LOAD. A SAVE to disk writes

this initial value as the address the RAM was saved from. No ending

address is sent.

Locations 195-196 ($C3-C4) are copied to this location after the

LOAD is completed, or before the LOAD is actually begun if a

nonrelocatable, I.D. type 3, tape header is found. Finally, this loca

tion is copied to 172-173 ($AC-AD).

57

This pointer is used by INITMEM to find the lowest RAM. The

screen memory location is determined and set up from this test.

It's also used by TESTMEM as a pointer while performing a

nondestructive test of every RAM bit's quality.

195-196 SC3-C4
(handy location)

Pointer to the RAM area being LOADed.

The start-of-LOAD address is saved at these locations by the

LOAD routine from parameters passed to it.

This is overwritten with the starting address of the saved data

from the tape header if a tape header LD. 3 is found. It is also

overwritten if the secondary address specified for LOAD was not

zero. See location 829-830 ($33D-33E) foj; a method of circumvent

ing the type 3 header LD.

Power-on/reset or the RUN/STOP-RESTORE key causes the 16

default vectors in ROM at 64877 ($FD6D) to be copied into locations

from 788 ($314) to 818 ($332). This pointer location is also used as a

base address during this process.

The VECTOR routine at 64855 ($FD57) can be used to read or

change these default vectors.

197 $C5 LSTX
(handy location)

Matrix coordinate of last key pressed. 64 if none pressed.

Used for stabilizing the current key in location 203 ($CB).

This value is set with every IRQ interrupt. The advantage of

using this location, or 203 ($CB), is that near-instantaneous recog

nition of the key and that near-simultaneous pressing of keys can be

prioritized. In an IRQ wedge preamble, this value will need to be

used since ASCII conversion of the key is done later in IRQ code.

The SCNKEY routine translates this key value into ASCII by

picking up the nth value in the table, where n is the contents of this

location with SHIFT, Commodore, and CTRL keys determining the

table used. < i

The following statement will allow an in-program pause wheri '—'
displaying more than a screenful of information to the screen.

WAIT 197,64 j j

Pressing any key other than SHIFT, RESTORE, CTRL, or the

Commodore key will halt the program until the key is released.

See also 653 ($28D) for SHIFT/CTRL/Commodore key flags, \ J

and a routine for a locking pause key. Refer to location 37153 [—

($9121) for data register contents.

The values returned for each key pressed are below: J j

58

u

n

i i-

n

n

n

Table 1-1. Keycode Values

Key

pressed

1

2

3

4

5

6

7

8

9

0

fl

f3

f5

i7

Code

8

0

56

1

57

2

58

3

59

4

60

39

47

55

63

Key

pressed

A

S

D

F

G

H

J
K

L

:

£

None

Code

17

41

18

42

19

43

20

44

21

45

22

5

61

6

64

Key

pressed

Q
W

E

R

T

Y

U

I

o

p

@

t
=

RETURN

Code

48

9

49

10

50

11

51

12

52

13

53

14

54

46

15

Key

pressed

Z

X

C

V

B

N

M

/

/
CRSRDN

CRSRRT

DEL

HOME

Space

Code

33

26

34

27

35

28

36

29

37

30

31

23

7

62

32

Values not placed in location 197 ($C5), but reserved:

Commodore 40 CTRL 16 rtSHIFT 38 ltSHIET 25

n

n

n

n

n

The STOP key is represented by a code of 24 in this location.

You would not be able to detect this in a program without disabling

the STOP key first. See the vector description at 808 ($328) for a

description on how to disable the STOP key.

The following program can be used to examine the various

representations of a character entered on the keyboard:

Program MS. Keyboard Character Values

10 PRINT"{CLR}{RVS}PRESS ANY KEY"

20 GETK$:IFK$=""THEN20

30 PRINT"KEY="K$" MATRIX="PEEK(197)"ASC="ASC(K$)"S

HIFT="PEEK(653):GOTO20

See location 631 ($277) for a summation of keyboard-related

RAM locations.

198 $C6 NDX
(handy location)

Number of characters (0-10) in the keyboard buffer at 631 ($277).

The INPUT and GET statements pull characters that haven't yet

been used from the keyboard buffer. By putting a zero in this

59

s J
location, you can cause any current contents of the keyboard buffer *—^
to be ignored.

To wait for the user to press a key to signal that the program $,

can continue, you could enter: \ |

POKE 198,0:WAIT 198,1:POKE 198,0,

The zero POKEs insure that previous keystrokes are not cur-) I

rently in the buffer, and clear out the key that was pressed to con- "—'
tinue the program.

By storing a number in this location and putting the desired

characters in the keyboard buffer, you can simulate keyboard entry.

Be sure to include the ending carriage return in this count and the

buffer.

By putting multiple carriage returns in the keyboard buffer,

clearing the screen, carefully placing messages on the screen, homing

the cursor, setting this location to the number of carriage returns,

and ending the program, the lines on the screen will be read just as

though they were entered at the keyboard. Careful placement of the

lines on the screen is crucial in using this feature. You must avoid

BASIC messages. See the sample dynamic keyboard routine at loca

tion 277 ($115)

You can iricr^se tMs TW0siB$M.$$^Mfi^^^^^-^^^j^
t^

^^ *® keyfeQ3*4 buffer specified in 64$
($289) would theri fee set to a value of 15. #

The RUN/STOP key zeros this number, clearing the keyboard

buffer. RUN/STOP-RESTORE resets 649 ($289) back to ten.

GET reads from the keyboard buffer using the GETIN routine.

OPEN 3,3:INPUT#3 will read from the current screen line up to the

end of the line or to a carriage return.

The Kernal routine LP2 at location 58831 ($E5CF) is used to get

characters from the keyboard buffer and maintain the count of

characters in the buffer.

(handy location) \ |
Flag for reversed screen characters.

If this location is set to 18 ($12), characters will appear reversed^ . .

on the screen, this is done by ORing the character with 128 ($80), ' I I
which causes the reverse character set to be used. See location 3276f

$S wO0| ^

This flag is set on entry of a RVSON (reverse on) key, and I j
cleared when a carriage return or RVSOFF (reverse off) is entered.

This location may be POKEd directly, but it may need to be

POKEd again to compensate for the factors that return it to zero. j j

60

0

n

n

" 200 SCO INDX
(handy location)

J—I Pointer to the end of line for input.

This location indicates how many columns in a logical line are

noriblank.

|""| Its value originates from the current screen line logical length in
location 213 ($D5) and is decremented to the last nonblank position

on the screen line.

See location 201 ($C9) for line/column/cursor pointer

summation.

SC9-CA LXSP
(handy location)

Current cursor INPUT logical X-Y position (line, column).

This location is used by GET and INPUT, the GETIN and

CHRIN routines, when reading the screen.

The logical line number range is from 0 to 22, while the column

number can be from 0 to 87. The logical line could contain up to

four physical lines.

The screen line link table at 217 ($D9) flags physical lines not

continued.

Here's a summation of the page 0/1 locations used by the Kernal

screen editor and other routines:

200 ($C8) End of the text on current line

201 ($C9) Logical line number

202 ($CA) Column of cursor

204 ($CC) Cursor blink switch

206 ($CE) Character under cursor

207 ($CF) Character blink status

208 ($D0) Screen length or keyboard input

209 ($D1) Pointer to start of line in screen RAM

211 ($D3) Cursor displacement with screen RAM line

213 ($D5) Logical line length

214 ($D6) Physical line number

243 ($F3) Pointer to start of line in color RAM

647 ($287) Original color under cursor

658 ($292) Screen scroll enable flag

The screen line link table at locations 217-241 ($D9-F1)

includes examples of using some of these locations.

(handy location)

Matrix coordinate of current key pressed. 64 if none,

See Table 1-1 at location 197 ($C5)>

61

SCD BLNCT
Cursor countdown before blink.

Normally set for 20 jiffies between blinks of the cursor, as

counted by the interrupt routine IRQ, this location makes the cursor

blink three times per second. Every time the cursor blinks, locations

206 ($CE) and 647 ($287) are updated. Turning the reverse on and

off for the character under the cursor causes the blinking image.

62

u

u

u
See also 653 ($28D) for SHffX/CTRL/Commodore key iag£.

See also 37153 ($9121) for the actual data register contents? i

204 $CC BLNSW -
Cursor blink switch. 0=flash, nonzero=quiet.

This location insures that the cursor won't flash when characters I I
are in the keyboard buffer.

See location 631 ($277) for a summation of keyboard-related

RAM locations.

(handy location)

Character under cursor in screen POKE code.

Screen POKE codes (?) can be converted to ASCII (A) by the

following routine, with R being set to 1 if the screen POKE code was

for a reverse character. To add this routine to a program of your

own, use a GOSUB command to line 50.

Program 1-16. Converting POKE Codes to ASCII Code
Values

50 P = PEEK(206) : R= 0

60 IF P > 127 THEN R = 1 : P = P AND 127

70 IF P < 32 OR P > 95 THEN A = P + 64 : GOTO 100

80 IF P > 31 AND P < 64 THEN A = P : GOTO 100

90 A = P + 32

100 RETURN

Remember that the values returned will be for the character

beneath the cursor. Many times this character will be the space

(ASCII value of 32), so to receive a different value the cursor will [|
have to be placed atop another character.

See Appendix C for a character code chart. Every time the

cursor is blinked, determined with location 205 ($CD), the cursor I |

countdown, this location and 647 ($287) are updated. '—'

207 SCF »«i«ipii i i
Cursor blink status. 1=reversed character, 0=nonreversed. I—I

Lf

n

n

n

n

n

n

n

n

n

This location indicates whether the current cursor blink has

reversed or unreversed the character under the cursor.

The use of some of the cursor control fields is shown in the

following routine. The cursor is turned on during a GET operation,

with a different blink rate than normal; a default multicharacter

entry is placed under the cursor; and your entry is collected until a

RETURN is pressed. The POKEs that cause the cursor to blink must

be left on the same program line as the GET statement. The value of

BS (blink speed) can be changed to obtain the correct value for your

own program.

Program 1-17. Cursor Control Fields

10 REM LOC 207 (FOR 205,204,207,211)

20 REM INPUT-LIKE GET, (EXCEPT DEL & INST) UP TO 2

55 CHARS, COMMAS OR COLONS OK

30 BS=3 :REM BLINK SPEED, ADJUST TO YOUR PROGRAM N

EEDS

40 D$="DFLT":PRINTD$;:POKE211,0: REM DEFAULT

50 POKE207,0:POKE204,0:POKE205,BS:GETK$:REM BLINK

{SPACE}FAST CURSOR

60 IFK$=CHR$(13)THEN140: REM ALL DONE WITH ENTRY

70 IFK$OCHR$(133)THEN110:REM INPUT ESCAPE IS Fl K

EY

80 POKE204,0:POKE207,0

90 X=PEEK(209)+PEEK(210)*256+PEEK(211): POKEX,PEEK

(X)AND127: REM TURN OFF ANY REVERSE

100 END

110 PRINTK$;:REM SHOW KEY

120 S$=S$+K$: REM BUILD THE ENTRY STRING

130 GOTO50: REM GET THE NEXT KEY

140 IFLEN(S$)=0THENS$=D$:GOTO160: REM USE DEFAULT

{SPACE}IF NO ENTRY

150 X=PEEK(209)+PEEK(210)*256+PEEK(211): POKEX,PEE

K(X)AND127:PRINT:REM OFF ANY REVERSE

160 PRINTII{RVS}"S$;LEN(S$) :S$="":GOTO40: REM SHOW

{SPACE}THE STRING AND GET NEXT

Flag indicating if input from screen or keyboard.

Zero in this location indicates input from the keyboard. Other

values indicate input from the screen. Possible values are 0, 21, 43,

65, or 87.

This address is also used to save the current line length from

location 213 ($D5) after a carriage return while getting it from the

keyboard buffer.

See location 631 ($277) for a summation of keyboard-related

RAM locations.

H

u

209-210 __ q

-209-210 SD1-D2
(Handy location)

Pointer to the start of the logical line that the cursor is on. / j

This pointer indicates the line in screen map RAM. When the

line is a continuation of a previous line, this pointer contains the

location of the start of the continued line. The MSB of this pointer is j I

also the screen page that the logical line is in. '—'
The line pointed to and the values in this location are:

Logical Pointer 209 ($D1) LSB value

line DEC HEX

01 00 $00

02 22 $16

03 44 $2C

04 66 $42

05 88 $58

06 110 $6E

07 132 $84

08 154 $9A

09 176 $B0

10 198 $C6

11 220 $DC

12 • 242 $F2

(Screen line 12 crosses a page boundary, so one is added to the MSB

in location 210, $D2.)

13 08 $08

14 30 $1E

15 52 $34

16 74 $4A

17 96 $60

18 118 $76

19 140 $8C

20 162 $A2

21 184 $B8

22 206 $CE

23 228 $E4 jj

See Appendix E for details of the relocatable screen map. .)
Location 213-244 <$F3"i4)is- set to the address of the; _

corresponding line in the color map. j j

Location 211 ($D3) contains the number of the column that thf
cursor is on at the time. '

See location 201 ($C9) for a line/column/cursor pointef M
iVhsiftihn •; '—Isummation.;

64

u

u

H

H

f"j

H

$D3 PNTR
(handy location)

Cursor position within the logical screen line.

The range of this location's value is 0-87 ($0-57).

This is typically used as an index added to location 209-210

($D1-D2), pointer to the start of the logical line that curspr is oil It's

also used for screen editing, input, and output routines. You can use

this location to position the cursor wherever you wish. For example:

POKE 211,18

will position the cursor on column 19. Refer to location 207 ($BF) for

a method of turning on the cursor during a GET statement.

The PLOT routine at 58634 ($E50A) will set or read this value

from/to .Y and set or read the physical line number in location 214

($D6) from/to .X. Refer to location 201 ($C9) for a line/column/

cursor pointer summation.

$D4 OTSW
(handy location)

Flag to indicate if within quote marks.

A 0 value in this location indicates not within quotes, a 1

indicates within quotes.

The QUOTECK* routine sets/unsets this flag.

A carriage return turns off the quote mode flag.

When printing to the screen, if a control character such as a

cursor down, color command, or a clear command is within quotes,

the control character is printed and not acted upon. When the string

is sent to the screen but not enclosed in quotes, the control codes are

acted upon.

A special case is the INST/DEL key: An insert stores the INST .

control in the string, but hitting the RETURN key or SHIFT and then

RETURN, followed by positioning the cursor over the original string

and using an insert, allows insertion within the string. Pressing the

RETURN or SHIFT and RETURN keys, followed by positioning the

cursor over the original string and using an insert, then a delete,

causes the DEL control to be stored in the string. Normally, DEL

deletes a character in the string and doesn't store a control for itself.

_ You can also insert control codes by entering a blank for them

I) ^ the string, pressing RETURN or SHIFT and RETURN, pressing

CTRL and RVSON together, then going back to the string and typ

ing the letter or SHIFTed letter.

f""| This flag is maintained by the routine at 59064 ($E6B8) when
reading the keyboard buffer or writing to the screen.

See location 788 ($314) for an example of modifying this loca-

f—| tion to escape from the quote mode.

65

LJ

D

M

A related location is 216 ($D8).

See location 631 ($277) for a summation of keyboard-related

RAM locations. f I

(handy location) .—.

Current screen line logical length. LJ

This location determines when to start a new screen line or

expand the current logical line with another physical line. Possible

lengths are 21, 43, 65, or 87.

Screen scrolling uses this location to scroll the entire logical line.

Some routines use this to determine the end-of-line position for

backward scanning of the line.

Location 200 ($C8) is derived from this location's value.

See location 201 ($C9) for a line/column/cursor pointer

summation.

214 SD6 TBLX
(handy location)

Cursor: current physical screen line cursor is on.

The possible positions for the cursor range from line 0 to line

22. You can place the cursor on any line, simply by entering a POKE

statement. For example:

POKE 214,7

places the cursor on line 8. See location 207 ($BF) for a way to turn

on the cursor during a GET statement.

The PLOT routine at location 65520 ($FFF0) may be used to

set/read this and location 211 ($D3).

See location 201 ($C9) for a line/column/cursor pointer

summation.

215 $D7 ASCB*
(handy location)

ASCII value of last key pressed.

Temporarily used by SCRNOUT* to hold the character going to U
the screen.

Tape. Checksum of bytes in the current block being written - -.

and the value of the first dipole being read. The value can be either j |
Oor 1.

218 $D8 INSRT n
(handy location) ^

Number of outstanding inserts remaining. >

As the INST/DEL key is pressed to indicate an insert, thej M

66

u

H
'■ i

217-241n

n

Kernal screen editor shifts the line to the right, allocates an addi

tional line if necessary and possible, updates the screen line length

in location 213 ($D5), and adjusts the screen line link table in 217

($D9).

You can POKE 216,0 within a program to turn off the insert

mode. Disabling the quote mode like this can also be done by enter-

ing a carriage return or SHIFT and RETURN.

Characters that fill an inserted space are treated as though they

were enclosed in quotes.

Refer to location 788 ($314) for an example of how to modify

this location to escape from the insert mode.

See location 631 ($277) for a summation of keyboard-related

RAM locations.

217-241 SD9-F1 LDTB1
Screen line link table.

This table contains one byte per screen line used to indicate the

page of memory in RAM that any particular screen line is in. It also

contains a flag bit that is set on when the physical line is the first or

only physical line in an up-to-four-line logical line. The byte for the

first physical line of a four-physical-line logical line would have the

high-order bit set, and the three following bytes would not be set, to

indicate continued lines.

The page number of the screen line is used in conjunction with

the displacement table of screen lines (LDTB2) to obtain the location

of any byte within the screen map in RAM. Be sure to mask out the

high order bit with PN=PEEK(X)AND127. LDTB2 is at 60925

($EDFD) and contains a byte for each screen line that is the offset

within the screen page the line starts on. Using this displacement,

the screen page, and locations 214 ($D6) and 211 ($D3), any specific

byte in the screen map RAM can be addressed.

Location 209-210 ($D1-D2), the pointer to the start of the phys

ical line that the cursor is on, is kept current using these tables.

You can use these tables to quickly determine the correct

address of a new line, last character on a line, or any particular

screen position. Besides using these tables and pointers directly, a

general-purpose routine can be used. For example, if you wanted to

place a character on the seventh physical line, in the fourth column

you could enter:

POKE 214,7-1 : REM physical line number relative to zero

POKE 211,4-1 : REM physical column number relative to zero

SYS 58759 : REM call for set of screen line pointers

The Kernal determines that line 7 is the second line of a

continued line, sets location 211 ($D3) to 25 to indicate the position

67

u

u

r i

within the logical line that starts in line 6 (21+4), and sets 209-210

($D1-D2) to point to the start of the logical line. Adding the con

tents of 211 ($D3) to 209-210 ($D1-D2) gets you to the byte you j'~j

wanted. Then the Kernal stores a value of 65 in location 213 ($D5) «—'
so that you know the logical line is 66 bytes long and includes three

lines, 7 through 9. This is the BASIC equivalent of using the PLOT —

routine, without having to load any registers for PLOT. To explore I I
how to load registers before SYS and examine them afterward, see

location 780 ($30C), the SYS register SAVE area.

SYS 60045 will clear 22 bytes of the screen to white spaces from

the location where 209-210 ($D1-D2) point.

The corresponding color map location for the byte in screen

RAM that you've located is available by SYSing 60082. This updates

the pointer at 243-244 ($F3-F4). Add the contents of it and 211

($D3) and insert the desired color code.

SYSing 58719 clears the screen, homes the cursor, and resets all

the links in this table to indicate noncontinued lines. This is the

equivalent of the CLR key.

The twenty-fourth byte of this table is used in the scrolling of

the screen, while the twenty-fifth byte marks the end of the table.

If the screen is at location 7680, the first 11 link bytes are set to

158 ($9E) and the remainder set to 159 ($9F). Continuations have

the high order bit turned off.

With the screen at location 4096, you would find the first 11

link bytes set to 144 ($90) and the rest set to 145 ($91). Continu

ations would have the high order bit off, their bytes set to 16 ($10)

or 17 ($11).

If you don't know where the screen is, using this program line

will tell you:

SP = PEEK(217) AND 127 : SCRN = SP * 256

The first 11 links will be the SP value, with 128 added if they are

not continuations of the previous lines; the remaining 12 links will

be SP plus 1. Let's approach it from the other end: If your screen is

at SCRN, then SP = INT(SCRN / 256).

One way to find the color map is:

CM = 37888 : X = SCRN / 1024 : IF INT(X) <> X THEN CM =

CM+512

This works because the color map is located at 37888 ($9400), unless

the screen is on a half 1024-byte boundary, rather than on a IK

boundary such as 1024, 2048, 3072, 4096, and so on. If it is not on a

IK boundary, the color map moves to location 38400 ($9600).

See locations 648 ($288) and 201 ($C9). Also see Appendix E for

details on screen relocation.

68

H

H 247-248

H
242 $F2

_ SAVE byte for screen line link table byte.

1 This byte is used by screen management routines to save a link

byte while a related routine updates the screen line link bytes.

_ See location 217 ($D9).

243-244 SF3-F4 USER
(handy location)

Pointer to the current physical screen lines color map area.

This location is synchronized with location 209-210 ($D1-D2)

by the COLORSYN* routine and serves as a base pointer to tl\e

appropriate color nybble for routines that store characters on the 1

screen. These routines use location 209-210 ($D1-D2) as a screen

map pointer.

You can use location 244 ($F4) as the beginning address of th^

color map by turning off the low-order bit of the page number:

CM = (PEEK(244) AND 254) * 256

See locations 209-210 ($D1-D2), 217 ($D9), and 201 ($C9) for a

line/column/cursor pointer summation. Also see Appendix E for an

explanation of screen relocation.

n

■h

245-246 SF5-F6
Pointer to keyboard table being used.

The keyboard tables are used to point to the proper character in

ROM or RAM that a key corresponds to. Location 203 ($CB) is used

as the input key number, and location 653 ($28D) is used for SHIFT

patterns. The resulting ASCII character is placed in the keyboard

buffer at 631 ($277) by the SCNKEY routine.

See location 631 ($277) for a summation of keyboard-related

RAM locations. Refer to location 653 ($28D) for a table detailing the

values of that address.

247-248 SF7-F8
(possible user

storage)

RS-232: pointer to start of receiving buffer.

The 256-byte buffer this location points to is created when

device 2 is OPENed, starting at the address in 643 ($283), minus

256. 643 ($283) is reset to that address, minus one, to protect the

buffer. The address of the receiving buffer is also stored here.

CLOSEing device 2 frees this buffer and resets 643 ($283) to

reflect the free memory.

A BASIC program should always open device 2 before assigning

69

any variables, because of the CLR that BASIC issues after device 2 is

opened.

ML programs can allocate as many buffers as needed by adjust-

ing this location, locations 643 ($283), 667 ($29B), and 668 ($29C)

properly. If the MSB byte of this pointer and/or the pointer at loca

tion 249-250 ($F9-FA) is not zero, the OPEN routine assumes that

the corresponding buffer(s) has (have) been already allocated. A zero

in the MSB at the time CLOSE is issued causes the routine to skip

the deallocation of the buffer(s).

Also see locations 249 ($F9) and 668 ($29C) and page 259 of

the VIC-20 Programmer's Reference Guide.

249-250 SF9-FA ROBUF
(possible user

storage)

RS-232: pointer to the start of the transmitting buffer.

This address points to an additional 256-byte buffer for RS-232

data.

See the description of location 247 ($F7) and related locations

182 ($B6), 669 ($29D), and 670 ($29E).

2S1-254 SFB-FE
(user storage)

Four bytes of unused page 0 space.

$FF BASZPT

BASIC temporary area for floating point to ASCII conversion.

See location 256 ($100).

70

u

u

Li

U

U

U

□

u

D

D

LJ

D

U

D

D

0

D

n

H 2S6-B1I

Memory Page 1
n

The 6502 processor chip in the VIC-20, as in other personal

computers, reserves 256 bytes beginning at location 256 ($100) for

use as a stack and provides instructions for saving and retrieving

data from this area. *

Location Range: 256-511 ($1OO-$1FF)
Stack Area

256-511 S100-IFF STACK

BASIC, the Kernal, and the 6502 processor itself use this Last In

First Out (LIFO) stack for storing and retrieving temporary informa

tion. Although this is only temporary information, important data is

kept here.

The stack is frequently compared to a stack of plates. The num

ber (or plate) placed on the stack goes to the bottom, and each

succeeding number is put on top of it. Pulling a number off the stack

gives you the last one placed on. This is called Last In First Out

(LIFO). This analogy is accurate to a point, but the stack is actually

upside down, built from 511 ($1FF) downward. The first item placed

on the stack is put at location 511, and subsequent entries stored at

consecutively lower addresses. A register in the 6502 called the stack

pointer keeps track of the next available location in the stack and, by

implication, the item next pulled from the stack.

At power-on/reset, the stack pointer is set to 255 ($FF), which is

effectively 511 ($1FF) because the 6502 chip adds 256 ($100). How

ever, NEW and CLR set the pointer to 250 ($1FA) because the JSR

return address is still on the stack. This is also done after an error

message is displayed by BASIC.

BASIC uses the stack for several purposes. It uses it to save reg

ister information temporarily while it calls another routine that uses

the register and for GOSUB return point information. The BASIC

GOSUB command uses five bytes of the stack at a time. The FOR

command uses 18 bytes of the stack for every FOR outstanding, and

complex expressions cause intermediate results to be saved on the

stack by the formula evaluation routine at location 52638 ($CD9E).

Whenever a JSR (jump to subroutine, the ML equivalent of a

BASIC GOSUB) is issued, the address of the instruction to return to,

minus one, is pushed onto the stack. Since an address takes two

bytes, this limits the nesting of JSRs to 127 levels if no other data

was in the stack. However, there will be other data placed here by

IRQ routines.
73

LJ

320-511y

n
The area that BASIC doesn't use for stacking, the last 64 bytes

at locations 256 ($100) to 319 ($13F), is used for conversion of float

ing point values to ASCII for printing, and by tape error recovery f j

routines. '—'
Here are the subareas used by BASIC as temporary work areas

in the VIC-20. f ~

256-266 S100-10A ~
Temporary floating point to ASCII work a*ea for printing

numbers.

This area is used by the routine at location 56797 ($DDDD),

which converts the floating point accumulator to TI$ or an ASCII

string.

It is also used for string-scanning purposes.

256-318 S100-I3E BAD
62 bytes of tape error log, indexes of bad data.

These indexes of erroneous data are examined during the LOAD

of the second copy of the data from tape, and the data is corrected if

possible.

320-511 S140-1FF BASTACK
Stack area used by BASIC; OUT OF MEMORY message if

exceeded.

Some BASIC commands, such as FOR-NEXT loops and GOSUB,

require many stack entries at a time. Thus, BASIC checks the stack

size, before pushing more than a few bytes onto it, and returns the

OUT OF MEMORY error message if there are less than 62 bytes left

available on the stack.

Each GOSUB command causes five bytes to be pushed onto the

stack, in the following order:

• Value of 141 ($8D); one byte

• Two-byte return line number

• Two-byte pointer to the return address for a total of five bytes

Each FOR statement causes 18 bytes to be pushed onto the stack:]^J
• Value of 129 ($81); one byte

• Pointer to the variable; two bytes

• Five-byte STEP value fj
• Sign; one byte

• Five-byte TO value

• Two-byte return line number f~~j

• Pointer to the loop return point; two bytes for a total of 18 '—'
bytes

See the article "FOR/NEXT/GOSUB/RETURN and the Stack," i~

by Jim Butterfield, in the November 1981 issue of COMPUTE!. U

74 __

D

Chapter 3

Memory

Pages 2 and 3

u

D

D

LJ

D

U

D

D

0

D

Memory Pages 2
and 3

The second and third pages of VIC-20 memory are the home of

information shared between the Kernal and BASIC. The two major

buffers used by BASIC are in this area, as well as the vector table

that can be changed to point to the user's routines rather than

default BASIC/Kernal routines. The user routine can front-end these

routines to perform any extra or alternative functions. The INITMEM

routine initializes this area to zeros during a power-on/reset. The

routines of INITVCTRS and VECTOR then initialize the vectors

stored in this page.

Location Range: 512-767 <$200-$2FF)
BASIC/Kernal Working Storage

512-600 $200-258 BUF
89-byte BASIC input^ buffer.

The screen editor allows a maximum of 88 characters in the

input line, with the eighty-ninth byte of this buffer used to contain a

0 as an end-of-line indicator. To make your programs compatible

with the Commodore 64, keep the program lines under 80

characters.

The routine FIND2 scans this buffer to find quotes, colons, and

end-of-line delimiters in BASIC statements. The CRNCH routine

tokenizes the BASIC statement from left to right, packing it in after

the two-byte integer line number and link address. The end-of-line

zero is placed after the last character of the tokenized line and the

STORLN* routine stores the new line in the BASIC program area. If

this line were entered in direct mode, then the MAIN routine would

immediately execute the statement.

This area is also used for INPUT and GET incoming data. This

is why INPUT and GET are illegal in direct mode—they require the

same buffer as the statement itself. It also explains the 88-character

limit on INPUT. GET places one byte in the first location, and a zero

in the second to indicate the end of line/data.

See related locations 7 ($7), 8 ($8), 11 ($B), 15 ($F), and 122

($7A).

Location Range: 001-030 ($250-270)
File Number, Device Number, and Secondary Address Tables

The three tables in this area can store up to ten one-byte entries,

each representing an active Input/Output file. When an I/O file is

77

L)

601-610

opened, its logical file number is placed in the table at location 601

($259), its device number in the table at location 611 ($263), and its

secondary address into the table at location 621 ($26D). The entry r -

for each file occupies the same position in each of the three tables. If 1—I
logical file number 8 is the second entry in the file number table, its

device number and secondary address will also be the second entries --

in those tables. When a device is OPENed, its information is added LJ
as the last entry in the table. The value of location 152 ($98) is

increased by one to indicate that there is one more active I/O file.

CLOSEing a device decreases location 152 ($98) by one, moving

higher entries down one position, thus eliminating that device's

entry.

601-610 $250-262 LOT
Open logical file number table. Ten one-byte entries.

The OPEN, CLOSE, FNDFLNO, and SETFLCH routines set up,

clean up, and locate information in this table.

Note that the CLALL routine simply zeros location 152 ($98) to

empty these tables.

This location corresponds entry-for-entry to the tables at 611

($263) and 621 ($26D), with location 152 ($98) usually serving as

the index.

If the file number is greater than 127, a linefeed character is sent

to the file following any carriage return.

See also locations 19 ($13), 152 ($98), and 184 ($B8).
See Appendix D for a device, secondary address, and status

codes table.

611-620 $263-266 FAT
Open device number table. Ten one-byte entries.

This table's entries correspond to those at locations 601 ($259)

and 621 ($26D). Location 152 ($98) usually is the index.

Related locations are 73 ($49), 153 ($99), 154 ($9A), 184 ($B8),

and 186 ($BA).

621-630 $260-276 SAT U
Open secondary address table. Ten one-byte entries.

This table corresponds entry for entry to the tables at 601 ($259) r ,

and 611 ($263), with 152 ($98) usually being the index. LJ
Locations 184 ($B8) and 185 ($B9) are also related.

631-640 $277-280 KEYD Q
(handy location)

Ten-byte keyboard buffet.;

The IRQ driven routine causes SCNKEY to fill this buffer as j_j

78

0

631-640

it detects keystrokes with VIA 2. The Kernal routine LP2 at location

58831 ($E5CF) empties characters from the keyboard buffer and

maintains the count of characters in the buffer. Location 198 ($C6) is

updated to contain the number of characters in the keyboard buffer

to a limit of ten. Keys pressed after the limit has been reached are

ignored, unlike PETs that started over from the beginning. GET and

INPUT retrieve data from this buffer, decrementing the count of

characters and shifting the remaining characters down. This buffer is

First-In-First-Out (FIFO).

If an INPUT or GET command is issued while characters are

already in this buffer, the characters will become part of the data

stream retrieved. You can prevent this by POKEing a zero into loca

tion 198 ($C6).

By storing the appropriate number in 198 ($C6) and placing the

desired characters in the keyboard buffer, you can program simu

lated keyboard entry. Be sure to include the ending carriage return in

the count and buffer. See the note at 649 ($289) about exceeding ten

characters.

Unfortunately, there is no pointer to the keyboard buffer, so its

location is not changeable.

See location 153 ($99), input device number, for instructions for

reading tape as though it were the keyboard. A disk doesn't work in

the method described for tape. When disk needs to be read as the

keyboard, you can either create a tape of the information or use the

dynamic keyboard method of displaying the lines on the screen and

entering a carriage return over them.

By putting multiple carriage returns in the keyboard buffer,

clearing the screen, carefully placing lines on the screen, homing the

cursor, setting 198 ($C6) to the number of carriage returns, and endM

ing the program, the lines on the screen can be read just as though

they were entered at the keyboard. Careful placement of the lines on

the screen is crucial in using this feature. You must avoid BASIC

messages.

The following program can be used to create DATA statements

from the contents of memory, or modified to perform other dynamic

[""] keyboard program functions, such as reading from disk and building
program lines to be entered. The routine is short and may be easily
appended to another program. It's handy for converting ML routines

nor custom character set pixel maps into DATA statements, as well as

serving as an excellent example of the concept and a model for fur
ther expansion. Dr. Harald Linder authored a PET version of this
routine in "Basically Useful BASIC: Automatic DATA Statements for
CBM and Atari" in COMPUTEI's October 1981 issue. I've modifiel
his routine for the VIC-20. Because of its obscurities, I've included am

explanation of each statement following the routine.

n

,n
79

631-640

U

D

0
Program 3-1. DATA Statements from Memory

1 INPUT "START ADDRESS";A : INPUT "END ADDRESS";E - -

{SPACE}: Z = 2000 [J
2 PRINT"{CLR}{2 DOWN} "Z"DATA1'17 : IF A > E THEN END

3 FOR A = A TO A+15 + (E<A+15) * (A+15-E) _

4 PRINT MID$(STR$(PEEK(A)),2)","; : NEXT j" j

5 PRINT"{LEFT} " : PRINT "A="A":E="E":Z="Z+10":GOT LJ
02{H0ME}";

6 POKE63l,l3 : POKE 632,13 : POKE 198,2 : END

Here's how this routine works:

Line Function

1 Obtains the range of memory to be stored into DATA

statements and sets the beginning line number to be

generated at 2000. It may be tailored to your own

needs.

2 The screen is cleared and the cursor positioned on the

third line. The line number and the word DATA are

printed there. If the starting address exceeds the end

ing address, the program ENDs.

3 j Insures that no more th«iiil6 numbers appear on anjL

one Di^ #a$gin^^
the ending addressmaysimtigm jfet pt&mber, Thi&jKe
may be replaced with y©u* ©w*i statement to insure?

that the logical line length of 88 is not exceeded^
4 PRINTs the number PEEKed from memory

5 When the FOR loop ends, delete the last comma, and

format the next direct statement that has all the nec

essary variables specified for reentering the program at

line 2. The lines appear such as: 2000 DATA

17,5,28,27,198,182,102,55,72,91,244,7,67,212,1,187 and

A=844:E= 857 :Z= 2010 :GOTO"home". The home

is needed to safely position the READY message BASIC

issues when the program ends.

6 Two carriage returns are entered into the keyboard ;

buffer to simulate the keyboard entry of the two direct LJ
lines just PRINTed to the screen. The count of those

(2) is put into the buffer counter. The program ends

with the cursor in the home position. BASIC displays | j
READY on the next line and puts the cursor on the

line of our DATA statement. The first carriage return

in the keyboard buffer is seen and line 2000 is stored I j

in the program area. The cursor is placed on the next

line and the second carriage return is seen and that

line is executed, causing the program to be reentered at \)

80

u

H

n

n

641-642

line 2 with the needed variables set to the correct val

ues. The process continues until the end address is

H"! reached.

Here's a summation of the RAM locations related to keyboard

processing:

; 1 145 ($91) Keyswitch PIA: bottom keyboard row scan
197 ($C5) Matrix coordinate of last key pressed

198 ($C6) Number of characters in keyboard buffer

203 ($CB) Matrix coordinate of current key pressed

204 ($CC) Cursor blink switch

208 ($D0) Flag indicating if input from screen or

keyboard

212 ($D4) Flag to indicate if within quote marks

216 ($D8) Number of outstanding inserts

245 ($F5) Pointer to keyboard table being used

—> 649 ($289) Size of keyboard buffer

650 ($28A) Keyboard repeater flags

651 ($28B) Delay before other than first repeat of key

652 ($28C) Delay before first repeat of key

653 ($28D) Current SHIFT keys pattern

654 ($28E) Previous SHIFT keys pattern

■*-» 655 ($28F) Pointer to the keyboard table setup routine

657 ($291) Flag to enable/disable SHIFT/Commodore

switch

641-642 $281-282 MEMSTR 6/16(80/16)
(handy location)

Pointer to the start of user RAM memory.

At power-on/reset, the Kernal INITMEM* routine finds the first

RAM location above address 1023 ($3FF) and saves that address

here. After BASIC has been started, by the COLDST* routine, this

location has no further use, as BASIC uses location 43 ($2B) for its

start-of-memory pointer.

n For an unexpanded VIC-20, the value here is 4096 ($1000).

With a 3K expansion, the value is 1024 ($400), and without a 3K

expansion but with 8K or more of expansion added, this location

contains 4608 ($1200).

Here's a routine that you can use in direct mode or in a program

by itself to cause the VIC-20 to think that it has no expansion mem-

_ ory available. It de-expands the VIC-20.

' ' POKE 44,16:POKE 56,30:POKE 642/16:POKE 644,30:POKE
648,30:POKE 36866,150:POKE 36869,240:POKE 4096,0:SYS 58232

fj You can then use any expansion RAM for your own purposes.

81

643-644

When you wish to re-expand the memory, use: SYS 64802.

See Appendix E for details of the effect that adding expansion

memory has on this pointer, related pointers, and how to adjust for

this in a program.

The routine MEMBOT may be used to read/set this pointer.

Reference to the MEMBOT routine is on page 195 of the VIC-20 Pro

grammer's Reference Guide.

643-644 $283-284 MEMHIGIT 6/36 (SB/IE)
(handy location)

Pointer to the end of user RAM memory plus one.

At power-on/reset, the Kernal INITMEM* routine finds the last

RAM location above 1024 ($400) and saves that address here. After

BASIC has been started, by the COLDST* routine, this location is

altered only by an OPEN or CLOSE of an RS-232 device. When that

happens, this pointer is lowered 512 bytes to create two 256-byte

buffers for Input/Output. A CLR is also issued by BASIC. Note: This

may destroy any high-RAM-resident ML code. BASIC uses location

55 ($37) or 56 ($38) for its end-of-memofy pointer. See those loca

tions for a sample program to reserve space at the beginning and/or

end of BASIC storage for ML or other uses.

The normal value for this pointer for an unexpanded VIC-20 is

7680 ($lE00).

See Appendix E for details of the effect that adding expansion

tneiEiory has on this pointer, related pointers, and how to adjust for

this in a program.

The routine MEMTOP may be used to read/set this pointer.

Refer to page 196 of the WC-20 Programmer's Reference Guide.

64S $285 TIMOUT
(user storage)

Serial: timeout enable/disable flag.

Regardless of the description on page 205 of the V/C-20 Pro

grammer's Reference Guide and the fact that SETTMO sets this loca

tion from the .A passed to it, no reference has been found to this

location. Serial timeout is determined with the serial-clock-in line

(VIA1 PA0) in the VIC-20 and this location does not disable or

enable that.
The Commodore 64 User's Guide notes that this location is used

only with the IEEE-488 expansion card.

$286 COLOR
(handy location)

Current foreground color selected by color keys.

This address is initialized to color 6 (blue) by INITSK* routine at

82

n

n
power-on/reset or RUN/STOP-RESTORE. When the Kernal is

about to put a character to the screen, this location's content is

[""] stored in the corresponding color map location.
The routine COLORSET* uses the table COLORTBL* to find the

appropriate color code to store in this location when the CTRL and

ft color keys are pressed.

'] You can POKE this location with values from 0 to 7 to change
the color of all subsequent printed characters. Valid color codes on

the VIC are:

Black 0

White 1

Red 2

Cyan 3

Purple 4

Green 5

Blue 6

Yellow 7

The multicolor bit (bit 3; add 8 ($8) to the color) may be set,

causing an interesting effect—useful when you've defined your own.

custom character sets. The color is selected in multicolor mode by bit

pair values of 00, 01, 10, or 11.

See locations 36879 ($900F) and 36878 ($900E) for additional

color setting locations.

See locations 243 ($F3), 647 ($287), 217 ($D9), and 201 ($C9)

for a line/column/cursor pointer summation. Also see Appendix E /

for details on screen and character pixel map relocation.

647 $287 GDCOL
Cursor: original color at this screen location.

Every time the cursor is blinked by the IRQ routine, location

206 ($CE) is updated and the color map code for the current screen

location is stored at this address.

See locations 243 ($F3), 646 ($286), 217 ($D9), as well as 201

r*j ($C9), for a line/column/cursor pointer summation. Also see Appen-

■ ' dix E for an explanation of screen and color map relocation. See

location 36879 ($900F) for a color code chart.

n
(handy location)

Screen map RAM page number.

This byte is set by the power-on/reset routines to the page

number of the beginning of screen RAM. You can multiply the con

tents of this location by 256 to find the current location of the screen

map RAM. On an unexpanded VIC-20, the screen is at 7680, and

83

this location contains 30 ($1E) (30*256=7680).

This location is used as a basis for the screen line link table at

location 193 ($C1) and helps to derive the screen line pointer at

209-210 ($D1-D2).

See locations 243 ($F3) and 217-241 ($D9-F1). You can also

refer to Appendices E and G for details on screen relocation.

649 $289 XMAX
(handy location)

Maximum number of characters in the keyboard buffer.

The normal value in this location is ten, the length of the key

board buffer at 631 ($277). This location is compared with location

198 ($C6), which holds the number of characters in the keyboard

buffer, in order to ignore key presses after the buffer is filled.

You can increase this number to 15 since locations 641-64^
($281-285) are not normally used after BASIC is cold started. It

be worth a try if you are programming the keyboard buffer.)

Using this line, location 198 ($C6) could be set W 15: ;

POKE 649,15 : REM 15 character keyboard buffer

If you lower this value to zero, the keyboard buffer is always

empty since no characters can be stored in zero bytes. This has the

effect of disabling the keyboard until the value is raised above zero.

RUN/STOP-RESTORE resets this address to ten.

See location 631 ($277) for a summation of the keyboard-related

RAM locations.

650 S28A
(handy location)

Keyboard repeater flags.

This location is initialized to zero, which causes only the cursor,

space bar, and INST/DEL keys to repeat. You can set this byte to:

POKE 650,128: REM ALL KEYS TO REPEAT

POKE 650,64 : REM NO KEYS TO REPEAT ;
P0&3 650,0 : REM DE1AU1T KEYS TO REPEAT

See locations 651 ($28B) and 652 ($28C) for repeat timing

values.

See location 631 ($277) for a summation of the keyboard-related

RAM locations.

Delay before other than first repeat of key.

This is initialized to 6 once 652 ($28C), the first repeat delay
counter, has been decremented to zero. Location 652 ($28C) is

84

{ \

n

n

n

reduced to zero when the same key is held down. Location 651

($28B) is then decremented once each jiffy until it reaches zero.

The key is then placed in the keyboard buffer, location 652

($28C) is allowed to remain zero, and this location is reinitialized to

4, allowing faster subsequent repeats. Therefore, the first repeat of a
key will occur in about one-third of a second, with additional repeats

occurring 15 times per second.

Delay before first repeat of key.

This address's initial value of 16 is counted down every sixtieth

of a second by each IRQ interrupt, as long as the same key is

pressed. When zero is reached, the value in 651 ($28B) is
decremented to zero on every jiffy that the key is still held down,

then the key is duplicated in the keyboard buffer by the SCNKEY

routine. The value 4 is then stored in location 651 ($28B), and this

location is left with its value as zero so that following repeats occur

rapidly.

When a different key is pressed, this location is reset to 16 ($10)
by SCNKEY and the whole repeat process begins again.

(handy location)

Current SHIFT keys pattern/

This location is used to determine which keyboard table is used

for converting the key pressed into an ASCII character. Different

SHIFT patterns cause the selection of the appropriate character table.

Location 245 ($F5) is then set as a pointer to the current table. The

values and meanings in this location are:

Tan

Dec

0

1

2

3

4

5

6

7

e o-i. wain

Binary

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

les in iiocanun ikn

Keys being pressed

none

SHIFT

Commodore key

SHIFT +

Commodore

CTRL

SHIFT + CTRL

Commodore +

CTRL

SHIFT + CTRL +

Comm.

• 19SWJ

Contents of

this location

60510

60575

60640

60510

or 60575

$EC5E

$EC9F

$ECE0

$EC5E

$EC9F

(until pressed again)

60835

60835

60835

60835

$EDA3

$EDA3

$EDA3

$EDA3

85

u

u

The Commodore/SHIFT key combination changes location

36869 ($9005) to cause the next character set in ROM or RAM to be

used, but keyboard decoding of the characters is done using the j i

same keyboard table. '—'
The left and right SHIFT keys are not uniquely flagged. This

value will be saved in 654 ($28E) for stabilization and to prevent the . ,

SHIFT/Commodore key combination from flipping back and forth I 1
between character sets without an additional pressing of those keys.

The following statement uses the SHIFT key, which may be^

locked down, as a pause key. This is handy when inany screens of /
information are to be displayed, or you want to answer the phone

during an exciting game. Simply add: 1

WAIT 653,1,11

to your program in the main loop. To resume the program, you only

need to release the SHIFT key.

The following sample program can be an aid to understanding

the CTRL codes and cursor movement key values that are placed

within quotes in a program. If you create a program file within the

parameters of line 110 below, control key codes will be printed

within brackets on the screen. You need to load this program, then

your own, to see this effect.

Program 3-2. Control Codos Displayed

100 REM PRINT CONTROL KEYS IN [] (I.E., [CLR]) FR

OM PROGRAM FILE CREATED WITH

110 REM 'OPEN 1,1,1: CMD 1: LIST: CLOSE I1

{2 SPACES}OR 'OPEN 8,8,8,"NAME,S,W": CMD 8: CL

OSE 8'

120 DIMK$(255)

130 READ K: IF K=0THEN150

140 READ K$(K):GOTO130

150 PRINT"{CLR}{2 DOWN}FILE NAME":INPUTN$

160 PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVSJd{OFF}ISK

IN?"

165 GETD$:IFD$o"D"ANDD$<>"T"THEN165

170 PRINT"{2 DOWN}{RVS}P{OFF}RTR OR {RVSJd{OFF}ISK

OUT?"

172 GETO$:IFO$o"P"ANDO$<>"D"THEN172

175 IFO$="D"THENOPEN4,8,4,N$+".LXS,S,W"

176 IFO$="P"THENOPEN4,4

180 IFD$="T"THENOPEN5,1,0,N$

190 IFD$="D" THEN OPEN15,8,15: OPEN5,8,5,N$+",S,R"

200 IF D$="D"THEN INPUT#15, E, El$, E2, E3 : IF EO0THE

N PRINT"{RVS}"E;E1$: CLOSE15: CLOSE4: END

210 GET#5,X$:ST%=ST:IFX$=CHR$(34)THENQ%=ABS(Q%-1)

220 IFX$=CHR$(13)THENQ%=0

86

n

n

n
230 IFQ%THEN IFLEN(K$(ASC(X$)))<>0THENX$=K$(ASC(X$

240 PRINT#4,X$;:IFST%=64THEN CLOSE 4: CLOSE 5: END

250 GOTO210
260 DATA5#"[WHT]"f8#"[DISABLE2]"#9#ll[ENABLE2]lM0,

"[LF]",14,"[LOWERCASE]",17,"[CRSRDN]"
270 DATA 18,"CRVSON]1M9#II[HOME]M#20#ll[DEL]'(f28#"[

RED]", 29,"[CRSRRT]",30,"[GRN]"
280 DATA 31,ll[BLU]M,131,M[LOAD/RUN]M,142,"[;iJPPERCA

SE]M44,M[BLK]",145,"[CRSRUP]"

290 DATA 146#"[RVSOFF]IM47#IICCLR]'M48,IICINST]IM

56, "[PUR]11
300 DATA 157,ll[CRSRLFT]l\158,ll[YEL]H,159,ll[CYN]llk,0

See location 36869 ($9005) for programmed SHIFT of character

sets or use the following PRINT statements:

PRINT CHR$(14) : REM lowercase/uppercase (text set)

PRINT CHR$(142) : REM uppercase/graphics (graphics set)

Also see location 657 ($291) for a flag to enable or disable com

bined SHIFT and Commodore keys.

Previous SHIFT key pattern.

This location is used in combination with location 653 ($28D) to
debounce the special SHIFT keys. This will keep the SHIFT/Com-

modore key combination from changing character sets back and

forth during a single pressing of both keys. The values in this loca

tion are saved from location 653 ($28D). See location 653 ($28D) for

the meaning of values in this location. You can also refer to location

631 ($277) for a summation of keyboard-related RAM locations.

655-656 S28F-290 KEYLOG
Pointer to the default keyboard table setup routine.

This location is used as an indirect jump pointer by the

SCNKEY routine to the routine that determines which keyboard

decoding table is used, based on the SHIFT key pattern in 653

($28D). By changing this pointer after power-on/reset, you can inter

cept the provided routine or replace it altogether. The default routine

is at location 60380 ($EBDC), which uses keyboard table vectors at

60486 ($EC46) to access the tables starting at location 60510 ($EC5E)

NORMKEYS*. You will probably want to model your routine after

the default routine, or front-end it.

The default routine in the Kernal stores the address of the table

currently in use at location 245 ($F5).

See location 631 ($277) for a summation of keyboard-related

RAM locations.

87

(handy location)

Flag to enable or disable combined SHIFT and Commodore keys^

Values in this location are 0 for enabled, 128 for disabled.

Although this location's value is initially set to 0, a value of 128

($80) here will disable the SHIFT and Commodore key combination
from switching to the alternate character set. The SHIFT, Com

modore, and CTRL keys will work normally when pressed for any
other purpose.

You can use these program lines to disable or enable character

set switching. Both a POKE statement and a PRINT statement have
been included:

POKE 657,128 : REM disable diameter set swi!teh|ni

PRINT CHR$(8): REM disable character set switcfring/
POKE 657,0 : REM enable character set switching
PRINT CHR$(9): REM enable character set switching

See location 36869 ($9005) for programmed SHIFT of character

sets or location 653 ($28D), the current SHIFT pattern, for PRINT

statements.

Screen scroll-down enabled flag.

This byte's value is set to 0 to enable the scroll-down function

when the computer is turned on. Any other value in this location

disables the scroll down.

This location flags whether the bottom logical line is dropped

off the screen to make room for another physical line added to the

current logical line.

This function is temporarily disabled while characters are in the

keyboard queue.

See location 201 ($C9) for a summation of keyboard RAM

locations.

659 $293
(possible user

storage)

RS-232: pseudo-6551 control register.

This location specifies the RS-232 baud rate (the transmit/

receive speed), the word length in bits, and the number of stop bits.

The VIC-20 emulates a 6551 UART chip with software.

When device number two is opened, you can specify up to four

characters in the filename which are copied to locations 659 ($293)

through 662 ($296) and correspond to the RS-232 control register,

command register, and nonstandard bit-timing values. Only the first

88

n

n
of the four characters is required, and typically only the first two are

_ specified.

f I If the command 6551 command register is not specified, the
defaults are: disabled parity, full duplex, and three-line handshaking.

To set this location:

R OPEN n,2,0,CHR$(o;)+CHR$(*)
where w is the value for this location, x is the value for location 660

($294), and n is the file number. Remember that a file number

greater than 127 causes a linefeed to follow any carriage returns

sent.

The meaning of the bits in this location is:

Table 3-2. Location 6S9 Bit Values

Bit Use Meaning

7 stop bits 0 = 1 stop bit, 1 = 2 stop bits

6-5 word length 00 = 8, 01 = 7, 10 = 6, 11 = 5

4 unused

3-0 baud rate 0000 = user* 0001 = 50 0010 = 75

0011 = 110 0100 = 134.5 0101 = 150

0110 = 300 0111 = 600 1000 = 1200

1001 = 1800 1010 = 2400 1011 = 3600*

1100 = 4800* 1101 = 7200* 1110 = 9600*

1111 = 19,200*

* indicates NI (not implemented). If the baud rate bits are 0000, the user

timing at location 661 ($295) was designed to be used, but this is not

implemented.

Here are the positions and values for each of the eight bits that

make up any byte.

Table 3-3. Bit Positions and Values

Table of bit positions / decimal values / hex values

Hj BIT 7 6 5 4 3 2 1 0

DEC 128 64 32 16 8 4 2 1

_ HEX $80 $40 $20 $10 $08 $04 $02 $01

For example, the statement OPEN 2,2,0,CHR$(6+32)+CHR$

M (32 + 16) sets this location to 38 (6+32). In binary, this looks like

0010 0110. Referring to Table 3-2, you can see that this sets the

baud to 300 (6) and the word length to seven bits (32), with one

I™I stop bit.

89

Bit

7-5

4

3-1

0

Use

parity

duplex

unused

handshaking

Meaning

xxO

101

0 =

0 =

= disabled

= mark

full

3 line

001

111

1 =

= odd Oil

= space

half

x line

= even

There seems to be a problem with x line handshaking in the

VIC-20. It appears that the code at 62738 ($F512) and 61428 ($EFF4)

is checking the wrong VIA port. If not otherwise set, the zero in this

location will default RS-232 to no parity, full duplex, and three-line

handshaking.

Using the example OPEN statement found in location 659

(OPEN 2,2,0,CHR$(6+32)+CHR$(32+ 16)), you can see how to set

location 660. Note that in our example, location 660 is being set to

48 (32 + 16), which is expressed as 0011 0000 in binary. This sets

this register to odd parity (32) and half duplex (16). Refer to Table 3-

3 for bit positions and values to see how the bit values translate into

these register settings.

See page 251 of the VIC-20 Programmer's Reference Guide, as

well as locations 663 ($297) and 37136 ($9110).

90

u

u

When a word length less than eight is chosen, the remaining

bits of the byte are set to zeros. ML should be used for rates over

300 baud. i i

See page 251 of the VIC-20 Programmer's Reference Guide, loca- '—'
tions 663 ($297), 660 ($294), and 37136 ($9110).

660 $294 MS1GDR LJ
(possible user

storage)

RS-232: pseudo-6551 command register.

This location specifies the RS-232 parity, for data checking;

duplex mode, to determine if talking and listening occur simulta

neously; and the handshaking protocol used, to insure that the same

protocol is used on the other end of the transmission. (If it's not the

same protocol, it's like one person extending his left hand and the

other person extending his right to shake hands.)

The VIC-20 emulates a 6551 UART chip with software.

See location 659 ($293) for a description of how this location is

set with the OPEN statement. Setting with the OPEN statement is

optional.

The bits in this location represent:

Table 3-4. Location 660 Bit Values

n

n

661-662 $895-198 MBUUB
(user storage)

f^ RS-232: nonstandard bit timing specification.

This location is used to store the user-desired baud rate.

See location 659 ($293), the RS-232 control register, for a

F"| description of how to set this location. Unfortunately, this is not

implemented in the VIC-20, since RS-232 routines never reference

this location.

663 $297
(possible user

RS-232: status register. storage)

This status register is erroneously zeroed by ST if the current

device in location 186 ($BA) is device 2.
The READST routine at location 65111 ($FE57) that is called by

the vector at 65463 ($FFB7) zeros this byte and loses its contents.

Use RS=PEEK(663):POKE 663,0 to obtain the RS-232 status.

The Commodore 64 READST Kernal routine returns the status

in .A as well as zeroing the byte, but this was overlooked in the

VIC-20. The .A returned is zeroed in the VIC.
The user is responsible for checking and taking appropriate

action for status bits 1, 2, 4, and 7. For bit 7, you'll want to stop

sending and issue a GET#2 to see what the other end is trying to

say. If bit 2 is being set, this is an indication that you're not issuing a

GET#2 fast enough to clear the buffer. Even with BASIC, you

should be able to keep up at 300 baud. Bit 2 or 1 should cause you

to send again the last PRINT#2 byte.

Here's a description of this location's bit values and their

meanings:

Table 3-5. Location 863 Bit Values

n

n! 1

mm

n

H

Bit

7

6

5

4

3

2

1

0

Decimal

128

64

32

16

8

4

2

1

Because of the

Hex

80

40

20

10

08

04

02

01

Meaning

BREAK detected

DATASET READY message missing

modem is not free for next task

unused

CLEAR TO SEND message missing

(see below)

modem is not ready for data to be

sent to it

unused

receive buffer overrun

framing error

parity error

coding problem mentioned at 660 ($294), the

clear to send missing bit will never be set.

91

(possible user

storage)

RS-232: number of bits to be sent/received.

This location is used to indicate how many zeros must be added

to the data character to pad its length to the word length specified in

location 659 ($293), the RS-232 control register.

Also see locations 180 ($B4) and 168 ($A8).

665-666 S299-29A BAUDOF
(possible user

storage)

RS-232: system clock divided by baud rate. Result is expressed in

microseconds.

This location contains the amount of time needed to send one

bit of information.

• 666 ($29A) is computed by:

INT(((CLOCK/baudrate)/2)-100)/256

• 665 ($299) is computed by:

((CLOCK/baud rate)/2) -100-(PEEK(662)*256)

where CLOCK= 1,022,730 for NTSC (USA) or

1,108,224 for PAL (European)

The OPENRS* routine performs these calculations when the RS-

232 device is OPENed. The computations are speeded by the Kernal

using the provided BAUDTBL* table.

The resulting figures are copied to locations 37140-37141

($9114-9115) and 37144-37145 ($9118-9119), which are VIA l's

timers, when needed.

(possible user

storage)

RS-232: dynamic index to the end of the receive buffer.

This pointer references a 256-byte buffer and is used to place

data in that buffer. The receive buffer is a wraparound buffer. At any

time, the starting and ending locations can be anywhere within the

256-byte buffer.

If this location and 668 ($29C) are equal, then the buffer is

empty; when this location's value is one greater than 668 ($29C), the

buffer is full.

92

[-] 671-672

n
668 $290

(possible user

f™| storage)

RS-232: dynamic index to the start of the receive buffer.

_ This pointer is used to remove data from the receive buffer.
H If location 667 ($29B) and this location contain the same value,

the buffer is empty.

This byte is added to the pointer at location 247 ($F7) when

storing data in the transmit buffer.

(possible user

storage)

RS-232: dynamic index to the start of the transmit buffer.

This pointer is used to put data into the buffer and to detect an

empty or overflow of the transmit buffer.
If this location and 668 ($29C) are equal, the buffer is empty;

when this location's value is one greater than 668 ($29C), the buffer

is full.

670 S29E
(possible user

storage)

RS-232: dynamic index to the end of the transmit buffer.

This pointer is used to remove data from the buffer.

If 669 ($29D) and this location contain the same number, the

buffer is empty.

This index is added to the pointer in location 249 ($F9) when

storing data in the transmit buffer.

671-672 S29F-2A0 IRQTMP
(possible user

storage)

Temporary SAVE area for the normal IRQ vector during tape 1/

O.

The normal vector, held in location 788-789 ($314-315) for the

IRQ routine at 60095 ($EABF), is stored here during tape reads and

writes by the TAPE routine. It's restored by the TNIF routine. The

table at 65009 ($FDF1) contains the three IRQ vectors for tape. The

vectors are at locations 63886 ($F98E), 64523 ($FC0B), and 64680

($FCA8).

The tape I/O IRQs skip the update of the clock, the STOP key

test, and other IRQ duties during the actual moving of the tape. The

tape routines call their own routine that tests for a pressed STOP

key.

93

673-767

If you've changed the IRQ vector at 788-789 ($314-315), your
vector will be restored from here after the tape I/O is completed.

The TSTOP routine, which tests for the STOP key, puts a zero

in location 672 ($2A0) if the STOP key was pressed.

673-767 S2A1-2FF USRVCTRS
(user storage)

User indirect vectors or other storage area.

Ninety-four bytes of memory are available in this area to the

user for 47 user-program indirect link addresses or for any other pur

pose. This is an excellent area to store a short ML routine without
having to alter BASIC'S pointers.

Note that locations 673-678 ($2A1-2A6) are used in the Com

modore 64, so refrain from using these if you're writing a program

meant for both the VIC-20 and the Commodore 64.

Location Range: 768-778 ($300-$30A)
BASIC Indirect Vectors

768-778 $300-$30A BVECTORS
(handy location)

Table of indirect BASIC vectors.

In these locations, BASIC provides a table of the vectors that di

rect processing to the appropriate routine. These vectors are used by

BASIC at the start of a routine. The instruction at the routine's entry

point is a jump from the address contained in the corresponding vec

tor location. This causes a branch back to the instruction following

the jump. For example, the entry point for the BASIC error message

handler is at location 50231 ($C437). The instruction at that address

is a JMP to $0300. The vector at $0300 points to location 50234

($C43A), which is the next instruction after the JMP. You can change

these vectors to replace or front-end the BASIC routines.

Here are the individual vectors, their locations, labels, and

descriptions:

768-769 $366-361
Vector to the routine to print a BASIC error message from a

table.

This vector points to the routine ERROR at location 50234

($C43A).

778-771 $382-383 IMAM
Vector to the BASIC main routine. Execute or store statement.

The routine MAIN at location 50307 ($C483) is pointed to by

this vector.

94

778-779

772-773 $304-305 IGRNGH
Vector to the BASIC tokenization routine.

This vector points to the routine CRNCH at location 50556

($C57C).

774-775 $306-307 IQPLOP
Vector to the BASIC routine that expands and prints tokens.

The vector points to the QPLOP routine at address 50970

($C71A).

776-777 $308-300 IG0NE
Vector to the BASIC routine that executes the next BASIC token.

This vector points to the routine GONE at location 51172

($C7E4).

778-770 S30A-30B IEVAL
Vector to the BASIC routine that evaluates a variable

Vector to the routine EVAL at 52870 ($CE86).

Location Range: 700-703 ($30G-$30F)
Register Save Area

The BASIC SYS command uses this area to save and load the

6502 registers between SYS statements. For example, SYS 60074
loads the values stored in this area into the appropriate registers and
then performs a jump to the target location. When the ML instruc

tions issue an RTS (return), the routine that processes the SYS state

ment stores the returned registers here, and BASIC continues with its

next statement.

This feature allows you to set up the necessary registers prior to

SYSing to a Kernal, BASIC, or ML user routine. It also lets you

examine or save the resulting registers and pass them onto another

routine via subsequent SYS commands.

Another example will clarify this. If you wanted to place the

cursor and a red dollar sign on the seventh physical line in the

fourth column, you could use the following routine:

• Position the cursor and obtain screen location

POKE 783,0 Clear the processor flag register (.P)

POKE 781,6 Select the 7th line in .X register

POKE 782,3 Select the 4th column in .Y register

SYS 65520 Call the PLOT Kernal routine vector. Kernal moved

cursor to line 7, column 4, and updated 209-210 and 211

(line-col.)

• Put the dollar sign in the screen location

LINE=PEEK (209)+PEEK(210)*256 Start of line address

95

ADDR=LINE+PEEK(211) Add column to start of line

POKE ADDR,36 Place a dollar sign on the screen

• Color the dollar sign red

SYS 60082 Call the Kernal to determine color address. Kernal
updated locations 243-244 to color address

COLOUR=PEEK (243)+PEEK(244)*256 Start of line color.

COLOUR is speeled with a u to avoid the OR command

POKE COLOUR+PEEK(211),2 Dollar sign's color address

The routine can fit in two BASIC program lines and can be gen
eralized so that you can use it as a GOSUB subroutine. Using Kernal

routines to do your work for you is both faster and easier than doing

it yourself, once you know how to pass and retrieve the needed

parameters in the 6502 registers. Suddenly all the Kernal routines

are now available to you in a BASIC program.

These are the individual registers in this area:

780

6502 .A register

781

6502 .X register

782

6502 .Y register

783

6502 .P processor status

Take a look

Table 3-6. P

Bit

at Table

1 DamSaI

$30C

$30D

$30E

$30F

register

3-6 for details

1 HefJISlisr nays

on

SARI
(handy

SXRI
(handy

SYRI
(handy

EC
location)

EG
location)

EG
location)

SPREG
(handy

interpreting the

For ML Programmers

PLP

NumDec Hex FLAG Name Sets

7 128 $80 N

6 64 $40 V

5 32 $20 -

4 16 $10 B

3 8 $08 D

2 4 $04 I]

1 2 $02 Z

0 1 $01 C

Negative

oVerflow

Break

Decimal

Interrupt

Zero

Carry

X

X

-

X

X

X

X

X

Bit

Sets

X

X

-

-

-

-

X

-

CMPTo

Sets CLEAR/SET

X

-

-

-

-

-

X

X

-/-
CLV/—

-/-
/

CLD/SED

CLI/SEI

-/-
CLC/SEC

location)

.P flags.

BRANCH

ON 0/1

BPL/BMI

BVC/BVS
—j—

—1—

—/—

—1—

BNE/BEQ

BCC/BCS

96

n

r 788-789

n
784-787 $318-313 PG3FREE

(user storage)

P] Four bytes of unused page 3 space.
On the Commodore 64, locations 785-786 are used for the USR

_ jump vector described at location 1-2 ($1-2). Location 784 contains

ij the JMP opcode. You should remember this when you're writing
programs for both machines.

Location Range: 788-818 ($314-8333)
Kernal Indirect Vectors

788-818 $314-8333
(handy location)

Table of 16 Kernal indirect vectors.

This location range contains a 32-byte table of the vectors that

direct the processing to the appropriate Kernal routine. At power-

on/reset, or when pressing the RUN/STOP-RESTORE keys, the

RESTOR routine copies the ROM copy of these vectors at VEC
TORS* into this location range. The VECTOR routine can be called
to read or load these vectors, allowing you to front-end or replace

vectored Kernal routines. See page 209 of the V/C-20 Programmer's
Reference Guide for the description of how to use the VECTOR rou

tine. Many of the routines that these vectors point to are also

described in the reference guide, beginning on page 184.

Location 195-196 ($C3-C4) is used as a base address during the

process of copying the ROM based vectors to this location range.

The 16 indirect vectors are:

788-788 $314-315 CINV
(handy location)

Vector to the IRQ interrupt routine at 60095 ($EABF).

This location is where you would put the address of your own

ML IRQ routine or front-end to be executed every jiffy. You must

end your front-end routine with a JMP to location 60095 ($EABF).

The IRQROUT* routine determines if it was entered for a RUN/

STOP-RESTORE key press or an elapsed jiffy and jumps off this

vector.

You can POKE 37166,127 to allow this location to be changed

in BASIC without being interrupted, or POKE 37166,192 to reenable

the IRQ interrupts.

The routine that first receives the IRQ interrupt, prior to the rou

tine that is vectored here, saves .A, .X, and .Y registers on the stack.

To restore these registers at the end of your routine, PLA the reg

isters and issue an RTI instruction, or proceed with the normal IRQ

routines.

97

u

788-789

To disable the timer updating and STOP-key test by the IRQ

routine, POKE 788,194. This will skip the timer update and key

board scan routines by entering IRQ after the JSR for them. To | I

reenable these functions, POKE 788,181. See the vector at 808 ($328) ^
to disable only the STOP key.

Location 671-672 ($29F-2A0) is used to save this vector during pi
tape processing and to restore this vector afterward. LJ

The following program demonstrates the use of this location to

"wedge" in your own routines in front of the normal target of a

vector.

Program 3-3. IRQ Wedge

10 REM *** SAMPLE IRQ WEDGE THAT TURNS OFF QUOTE A

ND INSERT MODE BY DETECTING Fl KEY ***

20 REM +++ ADAPTED FROM AN IDEA BY SHELDON LEEMON

{SPACE}FOR THE C64. +++
30 T=256*PEEK(56)+PEEK(55)-25 : HI%=T/256 : LO=T-H

I%*256 : REM FIND TOP OF RAM-25 (T)

40 FOR I=T TO T+24 : READ D : POKEI,D : NEXT : REM

STORE INTERRUPT WEDGE IN HIGH RAM

50 POKE 56,HI% : POKE 55,LO : REM LOWER TOP OF RAM

POINTER TO HIDE THE WEDGE ROUTINE

60 POKE 814,PEEK(788) : POKE 815,PEEK(789) : REM S

AVE OLD IRQ VECTOR FOR INDIRECT JUMP

70 POKE 37166,127 : REM DISABLE IRQ INTERRUPT WHIL

E CHANGING ITS VECTOR

80 POKE 788,LO : POKE 789,HI% : REM POINT THE IRQ

{SPACE}VECTOR TO THE WEDGE

90 POKE 37166,192 : NEW : REM ENABLE IRQ INTERRUPT

AND DISCARD THIS PROGRAM

100 DATA 165,215,201,133,208,16,162

110 DATA 0,134,212,134,199,134

120 DATA 216,232,134,198,169,20

130 DATA 141,119,2,108,46,3

140 ### ASSEMBLER CODE IN WEDGE ###

150 LDA $D7. ;LAST KEY PRESSED

160 CMP #$85 ;F1 KEYPRINT | |

170 BNE OUT{2 SPACES};EXIT IF NOT *—>

180 LDX $#00 ;TURN OFF

190 STX $D4{2 SPACES}7{2 SPACES}QUOTE MODE

200 STX $C7{2 SPACES}? {2 SPACES}REVERSE MODE j_J
210 STX $D8{2 SPACES}?{2 SPACES}INSERT COUNT

220 INX{6 SPACES};PUT A 1 IN

230 STX $C6{2 SPACES}?{2 SPACES}KBD BUFF COUNT [t

240 LDA $#14 ?AND A DELETE FOR LJ
250 STA $0277 ?THE Fl KEY

260 OUT JMP ($032E) ?BACK TO THE NORMAL ROUTINE

98

H

n
790-791 $319-317 CBINV

_ Vector to the BREAK interrupt routine at 65234 ($FED2).

1 1 When the RUN/STOP and RESTORE keys are pressed simulta
neously, or an ML BRK instruction ($00) is executed, this vector

— points to the address of the routine at location 65234 ($FED2). See

It the BREAK* routine for details of the processing performed.

792-793 $319-319
Vector to the NMI interrupt routine at 65197 ($FEAD).

The NMI (Non-Maskable Interrupt) can be caused by the RUN/

STOP-RESTORE keys and VIA timer interrupts. Multiple NMI inter

rupts and IRQ interrupts can occur while the first NMI is being pro

cessed. This entry point skips the preceding SEI instruction that

disables IRQ interrupts.

794-795 S31A-31B
Vector to the open logical file routine OPEN at 62474 ($F40A).

796-797 S31C-31D
Vector to the close logical file routine CLOSE at 62282 ($F34A).

798-799 S31E-31F IGHKIN
Vector to the open input channel routine CHKIN at 62151 ($F2C7).

899-891 $329-321 1CK0UT
Vector to the open output channel routine CHKOUT at 62217

($F309).

892-893 $322-323 ICLRCH
Vector to the reset all channels routine CLRCHN at 62451 ($F3F3).

894-995 $324-325 IBASIN
Vector to the input from device routine CHRIN at 61966 ($F20E).

n 896-897 $326-327 1BS0UT
Vector to the output to device routine CHROUT at 62074 ($F27A).

H 899-899 $329-329 I8T9P
1 ' (handy location)

Vector to the test STOP key routine STOP at 63344 ($F770).

i""| This vector points to the address of the routine that tests the

STOP key. The STOP key can be disabled by a POKE 808,100. This
does not disable the RUN/STOP-RESTORE combination, however.

f—j To reset the STOP key test, POKE 808,112.

99

u

U

810-811 S32A-32B IGET1N
Vector to the get from keyboard routine GETIN at 61941 ($F1F5).

812-813 S32G-32D ICLALL -
Vector to the abort all files routine CLALL at 62447 ($F3EF).

814-815 S32E-32F USRCMD U
(user storage)

This location seems to be a holdover from earlier PET comput

ers, when the built-in machine language monitor would JMP

through this vector when it encountered a command it did not

understand. A user vector can be placed here instead.

This vector is initialized to serve as a vector to the BREAK inter

rupt routine BREAK at location 65234 ($FED2).

816-817 $338-331 ILOAD
Vector to the load from device routine LOAD at 62793 ($F549).

818-818 $332-333 ISAVE
Vector to the Kernal save to device routine SAVE at 63109 ($F685)

826-827 S334-33B USRCMDS
(user storage)

Four user vectors or eight bytes of other data may be stored here.

828-1818 S33C-3FB TBUFFR
(handy location)

Tape buffer area, 192 bytes, for headers and BASIC file data.

This area of memory is used to read and write tape headers regard

less of the format of the tape data, and to buffer a BASIC program's

data for INPUT#, GET#, and PRINT# commands when using the

tape device. Each use of this area will be explained below.

Also, this area has traditionally been a favorite place to store

short ML routines. Of course, these routines are erased whenever

tape I/O is done. Serial devices do not use this area. f j

When the Kernal LOAD, VERIFY, and SAVE routines are called •—'
from ML or BASIC SYS statements, this area is used for the tape

header but not for the data going to or coming from the tape. When j—j

calling the Kernal LOAD or VERIFY routine, a pointer to the begin- U
ning of the area used for LOADing is stored in location 172-173

($AC-AD). When SAVE is called, an additional pointer to the end,

plus one, of data to be saved is stored in location 174-175 ($AE-AF) { j
by the Kernal. These pointers passed to the Kernal may point to any

convenient location, except when saving data from above location

32768 ($8000) to tape. See location 172 ($AC) for an explanation of [I

100 _

u

H

n

P
this limit. The contents of RAM are then saved to the tape in one

long continuous block.

rn BASIC uses the same Kernal routines in the same manner for

1 ' SAVE, LOAD, and VERIFY of a BASIC program. BASIC'S pointer at
location 43-44 ($2B-2C) is used as the starting pointer, except in the

i—^ case of a tape header type 3 LOAD or a LOAD with a secondary

\ address of 1 after the device number. In either case, the data is

stored in memory at the same location that it was saved from. SAVE

additionally uses the BASIC pointer in location 45-46 ($2D-2E) to

point to the end-plus-one of the BASIC program.

When a BASIC program issues INPUT#, GET#, or PRINT#,

BASIC puts the data into 191-byte blocks, preceded by a tape header

I.D. of 2. This is transparent to the user except for the periodic start

ing and stopping of the tape. BASIC calls the Kernal routines that in

put or output a byte of data (CHRIN or CHROUT) whenever it

determines that the current block has been completed. INPUT# and

GET# data is transferred to the BASIC buffer at 512 ($200) for

processing.

There are several locations you can refer to for more information

regarding the tape buffer. They are:

Locations 19 ($13), 158 ($9E), 159 ($9F), 160 ($A0), 166 ($A6),
167 ($A7), 170 ($AA), 172 ($AC), 174 ($AE), 178 ($B2), 183 ($B7),
185 ($B9), 187 ($BB), 192 ($C0), 193 ($C1), 195 ($C3), 256 ($100),
671 ($29F), and Appendix D, which includes a device, secondary

address, and status codes chart.

Tape Buffer for Header Data

When the tape file is opened, the Kernal checks that the tape buffer
area is not located below 512 ($200) by examining the pointer at

location 178-179 ($B2-B3). If the address in the pointer is below
that point, an ILLEGAL DEVICE NUMBER message is displayed.

828 S33G TPHDRID
(handy location)

r-j Tape header identifier byte (1-5).

' This I.D. is the first byte of the tape header, except for I.D. 2,
which is in the first byte of every record. This accounts for the tape

f-[buffer consisting of 192 bytes, even though there are only 191 bytes

1 ' of user data.
Each I.D. byte is detailed below:

_ #1 Relocatable: When the file is saved, if the secondary address

> I specified was 0 or any even number, this I.D. is used to indicate that
the program is to be loaded where the pointer at 43-44 ($2B-2C) in
dicates, unless the LOAD has a secondary address of 1 after the de-

P] vice number. RAM saved with a monitor program such as VICMON

101

i I

u

829-830q

0
will have this tape header I.D., use a secondary address of 1 to

LOAD the data to its original location, or point 43-44 ($2B-2C)

appropriately. See the explanation at location 829-830 ($33D-33E) IJ

for how to read and modify the tape header before it's acted upon

by the LOAD routine.

• 2 BASIC Program Data Block: Followed by 191 bytes of data. ~[

• 3 Nonrelocatable: When saved with a secondary address of any *■—'

odd number, this I.D. indicates that the program always loads to the

address contained in locations 829-830 ($33D-33E). Any start-of-

load pointer passed to the Kernal is ignored. This starting pointer is

obtained from location 43-44 ($2B-2C) by BASIC when the SAVE

was used.

• 4 BASIC Program Data Header: Indicates that data written by a

BASIC program follows in 192-byte blocks, each with an I.D. 2 as

the first byte.

• 5 Logical End of Tape: The Kernal will stop searching the tape

when this header is encountered. You may, however, have addi

tional files beyond this point.

829-830 S33D-33E TPHBGN
(handy location)

Starting address for tape LOAD.

One technique that can be used for loading data from tape to

any desired address is to change the pointer at 43-44 ($2B-2C)

before issuing the LOAD of a relocatable BASIC program. See the

append example at location 43-44 ($2B-2C). An alternate method,

and a method of overriding LD. 3, is to read the tape header in/

modify it to your liking, and then cause the LOAD routine to use it
to perform the function as though you had entered LOAD '"',1,1.'

First you need to call the routine FAH, which reads in the next

tape header, by SYSing 63407. The Kernal will request that the

PLAY button on the'recorder be pressed if necessary, and the name
of the file found will display. The .X register now contains the tape

header I.D., and the tape header riow sits in memory at locations

828-1019 ($33C-3FD). You can change the pointers at 829-830 r i
($33D-33E) and 831-832 ($33F-340) to indicate the starting and LJ
ending address that you want for the LOAD. SYSing 62980 finishes
the LOAD "",1,1, placing the data where you indicated. —,

Also see location 172-173 ($AC-AD) for related information. [_J

831-832 S33F-340 TPHEND*
(handy location) j]

Ending address, plus one, of tape LOAD.

See the explanation at location 829-830 ($33D-33E) for details _

LJ
102

u

n

n

n

n

833-1019

of how to read and modify the tape header before it is acted upon

by the LOAD routine.

See location 174-175 ($AE-AF).

833-1019 S34I-3FD TPHNAME
(handy location)

Filename of tape data.

Padded with blanks, these 187 bytes hold the filename that is

specified with SAVE, OPEN, or SETNAM.

See the discussions at locations 183 ($B7) and 187 ($BB).
You can have tape files with ML programs saved in them. See

the article "Saving Machine Language Programs on PET Tape Head
ers," by Louis R Sander, in the July 1981 issue of COMPUTE!.

Control codes—such as switch to lowercase (CHR$(14))—may
be embedded in the filename and will be acted upon when the

filename is displayed on the screen.

The contents of this location may be assigned to a string vari

able in a BASIC program. This is useful when you have opened a
tape file with OPEN1,1 when you don't know what the tape
filename is. Insure that NA$="" is the first variable defined in your

BASIC program. OPEN the file, then

N=PEEK(45)+PEEK(46)*256

This will set N to the location of the string descriptor for the variable
NA$ in the variable pool. POKE N+2,187 to set the string descriptor

length byte to the length of the padded-out tape filename.

POKE N+3,65:POKE N+4,3

will set the string descriptor to use the stored filename whenever
NA$ is referred to. The filename will be overlaid when further tape
I/O is done. NM$=NA$+"" will save this name for future use, if

issued before further tape I/O.

Take a look at Figure 3-1 for a moment. This illustrates a typical

tape format for program SAVEs, not BASIC data.

Figure 3-1. Tape Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 END

F G H

103

u

1020-1023D

Details of each section of the tape format are: —'
• A Ten seconds of leader dipoles

• B Header Block #1. First nine bytes are block countdown r~j

characters (987654321) with high order bit on. Final byte is . LJ
checksum.

• C Interblock Gap. Long bit, then 80 cycles of leader dipoles. —

• D Header Block #2. First nine bytes are block countdown LJ
characters with high order bit off. Final byte is checksum.

• E Three seconds of leader dipoles between second block of
header and first block of program.

• F Program Block #1. First nine bytes are block countdown

characters with high order bit on. Final byte is checksum.

• G Interblock Gap. Long bit, then 80 cycles of leader dipoles.

• H Program Block #2. First nine bytes are block countdown

characters with high order bit off. Final byte is checksum.

Tape Buffer for BASIC Program Bata

(possible user

storage)

Tape BASIC program data block identifier (2).

This I.D. is the first byte of every block and accounts for the

fact that each 192-byte tape buffer has only 191 bytes of user data.
See location 166 ($A6) for more information.

829-1019 S33D-S3FB TPBL0CK*
(possible user

storage)

Tape block of 191 user data bytes from a BASIC program.

This area is a block buffer for PRINT#, INPUT#, and GET#.

Location 178 ($B2) points to this buffer, and 166 $A6 contains
the number of characters contained in it.

1020-1023 S3FC-3FF :
(user storage) I—J

Four bytes of unused area.

D

104

Chapter 4

Built-in and

Character ROM

u

D

D

LJ

D

U

D

D

0

D

Built-in and
Expansion RAM

Charactei ROM
Location Range: 1024-4095 (S400-SFFF)
3K Expansion RAM

1024-4095 S400-FFF RAMBLKO
3072 bytes of expansion RAM area.

A VIC-20 with 3K of expansion RAM causes BASIC to start the

user's BASIC program at the start of this area. Location 43-44 ($2B-
2C) point to the start of this area and contains 00/04. An unexpanded

VIC-20 starts BASIC at location 4096 ($1000), and an 8K+
expanded VIC starts BASIC at location 4608 ($1200). Once an 8K

expansion is added to the VIC-20, this area, if filled with a 3K

expansion RAM board, is not seen by BASIC, and you may use it to

store your own information or for ML routines. The VIC chip cannot

see this area, so it cannot be used for screen or character memory.

Location 55-56 ($37-38) points to the end of continuous RAM.

Take a look at Figure 4-1, which illustrates the memory loca

tions with no expansion, with 3K expansion, and with more than 8K

expansion.

See Appendix B for details of the internal storage of BASIC and

its programs, and Appendix E for explanations of the relocatable

VIC-20 memory areas, user relocation of these areas, and memory

configuration independent programming techniques.

You can also refer to "Supercharge Your VIC," by Dan Rubis, in

the April 1983 issue of Microcomputing for details on assembling

your own 3K expansion.

Location Range: 4096-8191 ($IOOO-$1FFF)
4K Built-in RAM

4096-8191 S1000-S1FFF USRPGM3K
4096 bytes of built-in RAM.

This memory location block varies greatly with the amount of

memory expansion RAM added to the VIC-20. We'll explore the

alternatives as expansion RAM is added.

107

u

4096-8191

Figure 4-1. Unexpanded and Expanded RAM

0000

($0000)

1024

($0400)

4096

($1000)

7680

($1EOO)

8192

($2000)

No Expansion 3K Expansion 8K+ Expansion f I

BASIC/Kernal

IK Work Areas

3K Expansion

RAM

User PRM Area

3584 RAM

Screen Area

BASIC/Kernal

IK Work Areas

User PGM Area

6656 RAM

Screen Area

BASIC/Kernal

IK Work Areas

3K User Area

for POKEs, ML

Screen Area

User PGM Area

Li

4608

($1200)

i I

The VIC chip can address this area, so it's a good candidate for

screen and character maps, once the pointer at location 43-44 ($2B-

2C) has been adjusted. See that location for details. Location 55-56

($37-38) points to the end of continuous RAM.

See Appendix B for details of the internal storage of BASIC and

its programs, and Appendix E for explanations of the relocatable

VIC-20 memory areas, user relocation of these areas, and memory

configuration independent programming techniques.

108

u

G

LJ

D

n
i

n
4006-7679

n

n

The normal variations of this 4096-byte memory area are out

lined in Figure 4-2.

Figure 4-2. 4K Built-in RAM

No Expansion 3K Expansion 8K+ Expansion

($0400)

4096

($1000)

7680

($lE00)

8192

($2000)

User PGM Area

3584 RAM

Screen Area

User PGM Area

6656 RAM

When 3K Filled

Screen Area

Screen Area

User PGM Area

4608

($1200)

n

h

H

VIC-20 with no expansion added

4096-7679 S1OOO-1DFF USRPGMOK
3583 bytes of RAM for the BASIC program on an unexpanded

VIC-20.

On an unexpanded VIC-20, the BASIC program area starts here.

Location 43-44 ($2B-2C) points to the beginning of this area.

109

u

u

7680-8191 S1E00-1FFF SCREEN* -
(handy location)

Screen map RAM on VIC-20 with less than 8K expansion. r j

The screen map for both an unexpanded VIC and a VIC with 3K {—
of expansion is located in this area. On a VIC with 8K or more

expansion, the screen map RAM is located at address 4096 ($1000). Tl

See the description at that location for an 8K+ expanded VIC-20 for LJ

an extensive discussion of the screen map RAM.

VIC-20 with 3K expansion RAM added

1024-7679 S400-1DFF
Continuation of RAM for the BASIC program on a 3K expanded

VIC.

A total of 6656 BASIC program RAM bytes are available when

this expansion RAM block has been filled. Location 43-44 ($2B-2C)

points to the beginning of the BASIC area at location 1024 ($400).

7600-0101 S1E00-1FFF SCREEN*
(handy location)

Screen map RAM on VIC-20 with only 3K expansion.

VIC-20 with OK or more of expansion RAM added

4000-4007 $1OOO-11FF SCREENX
(handy location)

Screen map RAM on VIC-20 with 8K or more expansion.

Also called the video matrix, the screen map is managed by the

Kernal screen editor using the table at 217 ($D9).

The last six bytes of screen memory are not used for character

indexes and you may use them for your own purposes.

In this 512-byte area, the first $06 bytes contain indexes into the

current character maps. Each index may be in the range of 0-255.

Multiplying this index byte by eight and adding it to the address of

the character map gives you the starting address of the dot-by-dot 1 (
description of the character.

The letter C is the fourth character in the ROM character maps,

for example, so every C displayed on the screen would have 4 in the] J

index byte for that position on the screen. Normally, eight bytes of (—
the character map are used to define the character for screen display.

A character is displayed as eight dots high and eight dots wide, the f"1

first byte defining the top row, the second byte defining the second *—}

row, and so on. This is why the index is multiplied by 8 to obtain

the address within the character maps that the character begins on. (—f

LJ

110

H

_ 8K+ 4096-4607
i '

1 i The byte can also index the first byte of an 8 by 16 character
definition in the character maps. This is used when bitmapping the

p. screen and is enabled by the value stored in location 36867 ($9003).

li In this case, only the first 253 bytes of the screen map are signifi

cant, each index byte being used to obtain the 8 by 16 definition of a

double-sized character. To use this feature, you need to define a par-

!""] tial or full custom character set in RAM, pointed to by location
36869 ($9005). The double-sized character feature does not cause a

normal character to be displayed twice as large, but rather allows the

screen map to have a unique index value for every screen position,

which is not available when 506 bytes are used to describe the

screen. For more information about the character and screen maps,

see locations 36869 ($9005), 32768 ($8000), and Appendix E.

Bitmapping the screen is discussed in Appendix G, the relocatable

screen map is described in Appendix E, and the color map for the

screen is explored at location 37888-38399 ($9400-$95FF).

See location 36879 ($900F) for a background and border color

chart and location 36878 ($900E) for the valid auxiliary colors.

The value for the screen map index byte for any given character

in the ROM character maps can be derived from the ASCII code that

you wish to place on the screen. This is useful when you are

POKEing directly to the screen rather than PRINTing. See the

character code chart in Appendix C.

If the high order bit of the screen POKE code is on, the reversed

character set maps will be used for this character. If bit 6 is on, the

symbol obtained when you also press the SHIFT key is used. For
instance, a heart is seen on the screen for screen POKE code 19 (S),

when 64 (bit 6) is added to it. However, if the alternate character set

was selected, a capital S would appear. The symbol printed on the

left-hand side of the key is displayed by pressing the key and the

Commodore key simultaneously. This has its own screen code.

You can convert a character's ASCII value to its screen POKE

code (P) by using the routine below in your own program.

Program 4-1. ASCII to Screen Code Conversion

10 C = ASC(X$) : REM ASCII VALUE OF FIRST CHARACTER

20 P = C : IF C > 127 AND C < 159 THEN P=0 : GOTO

{SPACE}100
30 IF C < 64 THEN 100

40 P = C-32

50 IF C < 96 THEN P = P-32 : GOTO 100

60 IF C < 128 THEN 100

70 P = P-32

80 IF C > 191 THEN P = P-64

90 IF C = 255 THEN P = 30

100 ::::::::

111

8K+ 4096-4607

112

U

u

In order to see the values displayed on the screen, all you need 1 I
to do is add two lines:

5 FOR 1=32 TO 255:X$=CHR$(I):PRINT X$, fi

100 PRINT P:NEXT U

Hold down the CTRL key to slow down the values as they _

scroll up the screen. j (

Character codes 128-159 have no POKE codes. UJ
Routine SCRNOUT* may be examined for the techniques used,

or you may JSR to it directly after you have positioned the cursor.

See locations 780 ($30C) and 217 ($D9). Screen POKE codes (P) can

be converted to ASCII (A) in a larger program by the following rou

tine, with R being set to one if the screen POKE code was a reverse

character:

Program 4-2. Screen Code to ASCII Conversion

50 P = PEEK(206) : R = 0

60 IF P > 127 THEN R = 1 : P = P AND 127

70 IF P < 32 OR P > 95 THEN A = P + 64 : GOTO 100

80 IF P > 31 AND P < 64 THEN A = P : GOTO 100

90 A = P + 32

100 RETURN

If you want to see the values on the screen without running a

program of your own, simply insert these line in the routine above:

40 INPUT A$

50 P=PEEK(207):R=0:PRINT P

100 PRINT A:

110 GOTO 40

See Appendix C for a character code chart.

The screen on the VIC-20 is composed of 23 lines of 22

columns. If you know where you want to be on the screen, there are

several ways to determine the screen map byte to put the POKE

code in.

By using the formulas given, you can compute within a program

the address of the particular byte on the screen map. You may also \ |
make these computations external to the program and store the

values in DATA statements or variables to be used later. The latter

technique is speedier but requires knowing in advance the positions M
required. Most likely you'll find a combination useful. Using these

variables, you can calculate a byte's screen address:

SM=screen memory address . j_J
CM=color map address

SL=the desired line, expressed as 0-22

u

u

n

P 8K+ 4096-4607

SC=the desired column, expressed as 0-21

,_ CH=the character in screen POKE code

I \ CL=the desired color code (0-7)

X = SL * 22 + SC : REM calculate displacement in maps

,-. POKE SM + X, CH : REM place character on screen

; i POKE CM + X, CL : REM place color code in color map

You can then add or subtract one to move one position right or

left, and add or subtract 22 to move one position up or down.

Remember to test for the edges of the screen.

For turning a dot on or off on a high-resolution bitmapped

screen with double-sized characters, you just need to alter the RAM

custom character set byte that the dot is in. If BM is the address of

the start of your custom character set, CM is the address of the start

of the color map, X is the desired dot column minus one, and Y is

the dot line minus one, then:

REM : find the 8 x 16 character within the character map

CR = INT (X / 8) + (INT (Y / 16) * 22)

REM : find the 8 wide row within the 8 x 16 character

RW = (Y / 16 - INT (Y / 16)) * 16

REM : find the byte number of the row in the character map

BY = BM + (16 * CR) + RW

REM : find the bit number within the byte

BT = 7 - (X - (INT (X / 8) * 8))

REM : turn on the bit

POKE BY, PEEK (BY) OR (2 t BT)

REM : turn the bit yellow

POKE CM + CR, 7

REM: turn off the bit

POKE BY, PEEK (BY) AND (255 - (2 t BT))

You can also use the PLOT routine in the Kernal to position the

cursor to a given line/column. Pointers to the screen RAM and color

RAM byte will be set by this routine for your use. Locations 217

($D9) and 780 ($30C) have examples of using this and related

routines. You'll find this the fastest method of determining a screen

map position. In general, always try to use the provided, built-in ML

subroutines in BASIC and the Kernal, since they are fast, debugged,

and cost you very little previous RAM compared to programming the

routine in BASIC.

See location 32768 ($8000) for the provided character maps. For

information about creating your own character set maps, see Appen

dices E and G, and location 36869 ($9005).

See location 32768 ($8000) for a program to display or print any

number of 8 x 8 character bytes in a large graphic matrix. This pro

gram will also note the decimal numbers used to define each pixel in

each row.

113

u

8K+ 4608-8191 y

LJ
The relocatable screen map is discussed in Appendix E. Appen

dix G describes bitmapping the screen, and location 36869 ($9005)

describes changing the location of the screen map and using multiple M

screen and color maps.

Once a character map index is placed in the screen map, one

more piece of information is needed to display the character on the \ j

screen—see the color map description starting at location 37888 l—'
($9400). The relocatable color map is explained in Appendix E, and

the use of the color map for the screen is explored at location

37888-38399 ($9400-$95FF).

See location 36879 ($900F) for a chart of background and border

colors and 36878 ($900E) for the valid auxiliary colors.

4608-8191 S1200-1FFF USRPGM8K
First 3583 bytes of BASIC area on an 8K plus expanded VIC-20.

An 8K expanded VIC-20 starts BASIC at 4608 ($1200) and

extends it to the end of expansion RAM, which can be as high as

32767 ($7FFF). Location 55 ($37) points to the end of expansion

RAM.

If a 3K expansion is also present, BASIC will ignore it, so it's

available for your own use. The VIC chip cannot address it, how

ever, so screen or character maps cannot be placed there except as

temporary SAVE areas invisible to the VIC chip.

Location Range: 8192-16383 <$2000-$3FFF)
8K Expansion Block 1

8192-16383 $2000-$3FFF RAMBLK1
8K RAM expansion block 1.

When this area is filled by RAM, BASIC starts at location 4608

($1200) and any 3K expansion is ignored by BASIC. The total avail

able user program space is 11,776 bytes. This area could also be

filled with ROM, although I don't know of any cartridges now avail

able that use this area.

The DIP switch on the Commodore 8K memory expansion \ j

board should be set so that switch 4 is on to fill this area. The other '—'

three switches should be in the off position.

A description of how to build your own 16K and 3K memory r i

expansion boards can be found in Tricks for VICs. I I

Location Range: 16384-24575 ($4000-$5FFF) U

8K RAM expansion block 2.

114

u

u

n

32768-36863

I6384-24S7S $4000-$5FFF RAMBLK2
p-| 8K RAM expansion block 2.

When this area is filled by RAM and the previous block is filled

with RAM, BASIC still starts at 4608 ($1200) and any 3K expansion

is ignored by BASIC. Total available user program space is 19,967

bytes. If the previous RAM expansion block is left empty, this block

is ignored by BASIC since it stops looking for RAM as soon as it

encounters an unfilled block. This can be useful when you wish to

hide large amounts of memory from BASIC. As with block 1, this

area could be filled with ROM instead of RAM.

Turn the Commodore 8K expansion board's DIP switch 3 on for

this block.

Location Range: 24S76-32767 ($6000-$7FFF)
8K Expansion Block 3

24576-32767 $6000-$7FFF RAMBLK3
8K RAM expansion block 3.

When this area and the previous two 8K blocks are filled by

RAM, BASIC still starts at 4608 ($1200), and any 3K expansion is

ignored by BASIC. 28,160 bytes are then available for user program

space. If either of the two previous expansion blocks is empty,

BASIC ignores this block, since it stops looking for RAM as soon as

it encounters an unfilled memory block. You could use this to hide

8K blocks from BASIC. Cartridges frequently fill this area with ROM

instead of RAM. Programmer's Aid, word processors, games, and

some VICMONs may use this block. Autostart is not done for this

block. Remember that only 40960 ($A000) resident cartridges

autostart. Some cartridges reside at 40960 ($A000) and use this block

also.

The Commodore 8K and 16K expansion boards should both

have DIP switch 2 set on for this block.

Note. The Kernal prevents saving to locations above 32767

($7FFF) to tape. However, disk is not restricted. See location 172

($AC) for how the Kernal restricts tape saves to locations below

32768 ($8000)

_ Location Range: 32768-36863 <$8000-$8FFF)
R 4K ROM Character Maps

The following character pixel (picture element) maps in ROM

are the built-in character set definitions used to form characters on

115

32768-36863

the screen. This is done by pointing via an index to the appropriate

character definition. Each character is defined by an eight-by-eight

bit grid, sometimes called a character cell. For example, locations

32776-32783 ($8008-800F) define the pixel modes for the capital A
character:

Figure 4-3. The A Character Definition

Pixel Appearance Location Binary Image Dec Hex

32776

32777

32778

32779

32780

32781

32782

32783

($8008)

($8009)

($800A)

($8006)

($800C)

($800D)

($800E)

($800F)

00011000

00100100

01000010

01111110

01000010

01000010

01000010

00000000

24

36

66

126

66

66

66

0

$18

$24

$42

$7E

$42

$42

$42

$00

128 64 32 16 8 4 2 1

The DATA statement for this character, if you were using it in a

custom character set, would be:

DATA 24,36,66,126,66,66,66,0:REM capital A

Character A is composed of eight bytes, one byte for each row.

Each bit in each row represents a pixel and is set to one if the pixel

is on. The on pixel image on the left side of Figure 4-3 is formed by

the binary definitions on the right. Wherever a capital A is to appear

on the screen map, the index of 1 is placed in the screen map RAM.

2 is the index for capital B, 3 for capital C and so on. 0 is the index

for the character @. By adding the index multipied by eight to the

address of the start of the character pixel map, the definition for that

particular character can be found. Location 36869 ($9005) contains a

pointer to the current character pixel maps. The index values stored

in the screen map RAM are not the ASCII value for a character.

They are referred to as screen POKE codes, and you'll find a chart of

them in Appendix C. The ASCII code for a character can be con

verted to the screen POKE code and vice versa using the routines

given at location 4096 ($1000).

116

n

n

n

p

When using the PRINT statement in BASIC, this conversion is

done by the Kernal SCRNOUT* routine. For any device other than

nthe screen, the ASCII type character code is used.
There are two separate and nonmixable character sets on the

VIC-20: uppercase/graphics and lowercase/uppercase. Both sets are

r-) comprised of 256 characters, half of which are the reverse images of
' I the characters. Two sets of 256 characters with 8 bytes used to map

each character requires 4K (4096 bytes) of character pixel map ROM.

The keyboard can be used to determine which character pixel

map is used. Press the Commodore key and the SHIFT key to switch

between the two character sets and CTRL/RVSON or CTRL/

RVSOFF as desired. j»
A program can PRINT the CTRL/RVSON or CTRL/RVSOFF, as

well as PRINT CHR$(14) for lowercase, and PRINT CHR$(142) for

uppercase. Using this, you can select the correct character set under

program control. By using POKE 657,128 you can disable the SHIFT

and Commodore key combination from switching to the alternate

character set. The SHIFT, Commodore, and CTRL keys when

pressed for any other purpose will operate normally. To reenable the

SHIFT/Commodore combination, POKE 657,0. You can also achieve

the same effect by PRINT CHR$(8) to disable character set switching

and PRINT CHR$(9) to enable it.

The following program will display or print any number of
eight-by-eight byte character map pixel description bytes. The pro

gram will diagram the pixels onto a large graphic matrix along with

the associated decimal numbers that were used to define each pixel

in each row. To cause the output to be printed rather than displayed,

change OPEN 4,3 on line 10 to OPEN 4,4. Line 20 may be changed

from 32768 to any other desired starting point. If left as is, the entire

128 uppercase nonreversed map will be diagrammed. To start the

diagram program at a specific letter, multiply the screen POKE code

of the first character by eight and add that to the character pixel map

starting address. To diagram 12 letters starting with F, you would

change line 20 to:

FOR BEGIN = 32768 + (8 * 6) TO 32768 + (8*18) STEP 8

because 6 is the POKE code for F, and 18 is the sum of 6 and 12.

Program 4-3. Character Diagrams and Bit Values

I | 10 OPEN 4,3 :REM CHANGE 4,3 TO 4,4 FOR PRINTER OUT

PUT

20 FOR BEGIN = 32768 TO 32768 + (8 * 128) STEP 8

f—) 30 PRINT#4,"PIXEL MAP OF CHARACTER"

1 > 40 PRINT#4,"STARTING AT"BEGIN

50 PRINT#4,"76543210 DECIMAL"

60 FOR X = 0 TO 7 : Z = PEEK(BEGIN+X) : FOR Y « 7

f""| {SPACE}TO 0 STEP -0

117

u

32768-33791 u

70 W « Z AND (2tY) : IP W THEN PRINT#4*"{RVS}
{OFF}11; : ©OTO 90

80 PRINT#4#'*. "; = ,

90 NEXT Y : MlNT#4>II{3 SPACES}"Z : NEXT X s PRINT LJ
#4 : NEXT :END

Character Set I Graphic Set —

32768-33791 S80GG-83FF CASEU
Uppercase and graphics nonreversed screen character map.

This area consists of 1024 bytes describing the 128 uppercase

and graphics character set when RVSOFF is selected and no SHIFT/

Commodore key combination is in effect.

This is the default character map, used when you turn the com

puter on. The first eight-byte pixel map corresponds to screen POKE

code 0, the @ character, the second to the capital letter A, and so

on. See Appendix C for a character chart in which the 128 character

pixel maps in this area correspond to screen POKE codes 0 through

128. See the discussion at the beginning of this section for details of

how to select this character map from a user program.

33792-34815 S8400-87FF GASEURV*
Reversed uppercase and graphics screen character map.

This area contains 1024 bytes describing the 128 reversed

uppercase and graphic character set when RVSON is selected and no

SHIFT/Commodore key combination is in effect. The pixel maps are

in the same order as the character pixel maps at 32768 ($8000,) but

each bit is reversed to display the character in a dark on light back

ground pattern.

You can use this character set for individual characters by ORing

the high order bit of the screen POKE code for those screen indexes

that you wish displayed in reverse. If SP were the screen map

position you wished to reverse, POKE SP,1OR128 would cause that

one position to be a reverse capital A. The same effect is accom

plished by adding 128 to the screen POKE code. See Appendix C for

a code chart of the screen codes.

Character Set 2 Text Set

34816-35838 S8800-88FF CASEL
Lowercase and uppercase nonreversed screen character map.

This section of 1024 bytes describes the 128 lowercase and

uppercase character set when both the RVSOFF and the SHIFT/

Commodore key combination are in effect. This character set is

118

35840-36863

mutually exclusive with the first set, in that characters from the two

character sets cannot be on the screen at the same time. An excep

tion is with the raster interrupts, which are discussed at location

36868 ($9004). However, this set does include all the capital letters,

numbers, punctuation, and a few of the graphic symbols from the

first character set maps. Four additional graphic symbols are

included, one of them a check mark. The lowercase characters

(lowercase g, j, p, q, y) do not employ descenders (the part of the

letter that extends below the bottom of other characters).

35840-36863 S8C00-8FFF GA8ELRV*
Reversed lowercase and uppercase screen character map.

These 1024 bytes describe the 128 reversed lowercase and

uppercase character set when the RVSON and SHIFT/Commodore

key combination are in effect. The pixel maps are in the same order

as the character pixel maps at 34816 ($8800), but each bit is

reversed. (Previously on bits are instead set to 0, or off.)

You can use this character set for individual characters by ORing

the high order bit of the screen POKE code for those screen indexes

that you wish shown in reverse. You can also SHIFT the letter to

uppercase by ORing the sixth bit. IF SP is the screen map position

you wanted to reverse and SHIFT, POKE SP,1OR192 would cause

that one screen position to be a reverse capital A. The same effect is

accomplished by adding 192 to the screen code, as in POKE

SP,1 + 192. See Appendix C for a code chart of the screen POKE

codes, and the subject index for uppercase, lowercase, SHIFT, Com

modore, RVSON, and RVSOFF.

119

u

D

D

LJ

D

U

D

D

0

D

u

D

D

LJ

D

U

D

D

0

D

n 36864-37135

_ Video Interface
Chip

Location Range: 36864-37135 ($9000-$910F)
6560 Video Interface Chip

The 6560 Video Interface Chip, also known as the VIC chip,

provides the color, sound, character pixel screen mapping, and paddle/

light pen support for the VIC-20.

Jim Butterfield has thoroughly explored the inner workings of

the VIC chip in his series of articles entitled "Visiting the VIC-20

Video," which began with the May 1983 issue of COMPUTE!. Of

course, the VIC-20 Programmer's Reference Guide can serve as an

excellent resource as you explore the VIC chip. For a more general

exploration of the VIC chip, see The VIC-20 User Guide (not to be

confused with the manual that comes with your VIC computer).

MOS Technology publishes specification sheets for the VIC chip, and

the schematic diagram in the back of the VIC-20 Programmer's Ref

erence Guide is very useful for understanding the chip.

The VIC-20 output video signal can even be videotaped on a

home Video Cassette Recorder (VCR) since NTSC standards are fol

lowed in the VIC-20.

The VIC chip also provides the 6502 and 6522 chips with a sys

tem clock of 1.1082 megahertz. This is derived from the 14.31818

megahertz crystal in the VIC-20.

The 6566 VIC Chip Registers

The 6560 VIC chip registers are actually located in the VIC chip

itself. There is no RAM that corresponds to these registers. When

POKEing or PEEKing these locations, you are actually looking inside

the VIC chip itself.
Pressing the RUN/STOP-RESTORE keys causes these values to

be reinitialized by the INITVIC* routine from the table at VICINIT*.

You'll be looking closely at various bits in each register byte, so

for quick reference, look at Table 5-1. Bit positions and values are

outlined in this table.

n
123

H

u

LJ

Table 5-1. Bit Positions and Values ^
BIT 7 6 5 4 3 2 1 0

DEC 128 64 32 16 8 4 2 1

HEX $80 $40 $20 $10 $08 $04 $02 $01 _

u
36864 $8666 VICCRO*

(handy location)

Left edge of TV picture and interlace switch.

Bit 7: Interlace scan bit. Default value: 0.

When set to 1, this bit causes every other full sweep of the TV

to be skipped.

A TV picture is formed by 60 screen scans every second. The

screen is painted, then painted again in between the first set of lines.

Each half of these lines is painted 30 times a second, producing 30

complete frames per second. There are 525 lines in the full TV pic

ture, 262.5 lines per painting. At 30 frames per second, this means

that 15,750 lines are painted every second. Setting this bit on (1)

causes one of those halves to not paint the VIC-20 picture image.

Flicker results unless another multiplexed input to the TV is used to

create the composite pictures. This overlay effect requires special

equipment.

Some TV sets may require turning this bit on to stop picture jit

ters. Many commercial programs for the VIC-20 provide you with a

command to turn this bit on, in case your TV set shows these jitters.

To turn this bit on:

POKE 36864,PEEK(36864)OR 128

To turn bit off:

POKE 36864,PEEK(36864)AND 127

Bits 6-0: Horizontal TV picture origin. Default value: 5.

These bits can be used to adjust the position where the first

character appears on the left side of the TV picture. Possible values

in this location are between 0 and 127 (although those above 16 \ |
seem to confuse BASIC), with larger numbers moving the characters

to the right. Every increase or decrease of this number by one shifts

the TV display four pixels right or left. If this location is set to 0, col- M

umn 3 would be on the extreme left edge of the TV picture. As the

picture shifts on the TV, the border expands and contracts. Most of

the more recent software packages for the VIC-20 allow the user to) I
adjust this value for optimum centering of the picture on the TV, ^—'
usually through cursor keys or joystick action.

124

u

0

n

n :

' I To change these bits, you can POKE 36864,PEEK(36864)AND
128 OR XXX, where XXX is any value between 0 and 127. Values

r-i above 16, remember, seem to confuse BASIC.

! I Here's a sample routine to adjust bit 7 and center the TV picture
using the cursor keys. Type it in and run it to see this register's

_ effect on the TV picture.

H
Program 5-1. Centering the Picture

100 ::: REM USE CURSOR KEYS TO CENTER SCREEN

110 ::: REM USE UPARROW KEY TO TOGGLE INTERLACE
120 ::: REM USE EQUAL SIGN KEY TO RESTORE DEFAULT

{SPACE}VALUES
130 BASE=36864

140 GET A$:IF A$="" THEN 140

150 A=ASC(A$)
160 IF A$="=" THEN POKE36864,5 : POKE36865,25 : GO

TO 140

170 IF A=13 THEN 330

180 IF A<>29 AND A<>157 GOTO 250

190 H=PEEK(BASE) AND 127 : I=PEEK(BASE) AND 128
200 IF H>16 THEN H=16

210 IF H<2 THEN H=2

220 IF A=29 THEN POKEBASE,I OR (H+l) : GOTO 140

230 POKEBASE,I OR (H-l)

240 GOTO 140

250 IF A=94 AND PEEK(BASE)>127 THEN POKE(BASE),PEE

K(BASE)-128 : GOTO 140

260 IF A=94 THEN POKE(BASE),PEEK(BASE)+128 : GOTO

{SPACE}140

270 IF A<>17 AND A<>145 GOTO 140

280 V=PEEK(BASE+1)

290 IF A=17 THEN V=V+1 : IF V>136 THEN V=136

300 IF A=17 THEN POKEBASE+1,V : GOTO 140

310 V=V-1 : IF V<0 THEN V=0

320 POKEBASE+1,V : GOTO 140

330 END

36865 $9001 V1CCR1 25
(handy location)

n Bits 7-0: Vertical TV picture origin.

This location specifies where the top line of characters is dis

played on the TV. The picture can be relocated by the addition or

]■—? subtraction of one from this location; subtraction raises the picture

on the screen, and addition lowers it. Each change of one in this

value moves the TV display two pixels. A value of zero here causes

the middle of the fourth line to be at the top of the TV.

n
125

u

u

See location 36864 for a sample routine to adjust the picture I—'
centering with the cursor keys.

By entering the following, you can make the TV display a screen r- ■»

completely in the border color: I—I

POKE 36865,255

You could use this to hide the screen while you formatted it, for •—.

example. I—I
The article "VIC Memory—The Uncharted Adventure," by

David Barron and Michael Kleinert, in COMPUTEI's First Book of VIC,

is a useful reference. Simply subtract 16 from the locations listed

over 36880 and you're back to the VIC chips which perform the

functions the authors have noted.

A sample program in this article demonstrates the use of this

location to implement smooth scrolling from the bottom of the

screen upwards.

To set this byte, just POKE the desired value without adding

any ANDs or ORs.

You can try this technique of scrolling the screen by entering the

following program.

Program 5-2. Screen Scrolling

10 REM **** SCREEN SCROLLING DEMO *** 36865

70 POKE36879,0+8

71 C$="{WHT}{RED}{CYN}{PUR}{GRN}{BLU}{YEL}"

80 FORZ=1TO7:Cl$=MID$(C$,Z,1):POKE36865,132

100 PRINTC1$"{CLR}*THIS IS A DEMO OF A{2 SPACES}SC
ROLLING EFFECT USING LOCATION 36865.*"

105 PRINT"{RVS}{22 SHIFT-SPACE}"

110 PRINT"CHANGE THE VALUE AT{3 SPACES}THE END OF

{SPACE}THE 'Y1 FORLOOP IN LINE 120 TO"

115 PRINT"CONTROL SCROLL SPEED"

120 FORX=131TO24STEP-1:POKE36865,X:FORY=1TO80:NEXT

:NEXT:NEXT:GOTO80

36866 $8662 VICCR2 1S6
(handy location)] (

Number of columns displayed, part of screen map address.

Bit 7: Default value: 1. This bit serves as bit 9 of the 14-bit screen — -

map address used by the VIC chip. \ I
If this bit is set to 0, the screen map RAM is located on a 1024-

byte boundary, and the color map begins at location 37888 ($9400).

When this bit is set to 1, the screen map RAM starts on a 512-byte \ I

boundary and the color map is at location 38400 ($9600). See loca-

tion 36869 ($9005) and also Appendix E for screen relocation and

multiple screens/color maps details. \~ i

126

D

n

n

' The Kernal routine INITSK* sets this bit on at power-on/reset
and RUN/STOP-RESTORE if the screen map should be located on a

^ 512-byte boundary.

1 Bits 6-0: Default value: 22. These bits contain the number of charac
ter columns displayed on each TV display line. This value can range

J—j from 0 to 25. Although some stunning graphics can be created by

raising this value and eliminating the border, the Kernal doesn't

really want anything to do with a lengthened screen line. So avoid

PRINT, cursor movement, and the screen editor if you set this value

to anything other than 22. You'll have to use screen POKE codes,

develop your own formula for X/Y plotting, arrange for a larger

screen map in RAM, and adjust the color map accordingly.

There's also the problem of having only 256 indexes in the

screen map RAM. So when working in high resolution, there will

have to be some duplicate characters on the screen, but the screen

design can usually accommodate this. The amount of the line visible

on the TV screen can vary among makes and models, so experiment

with your TV set. Once you've seen a full-screen display, you'll

probably want to explore this further. Despite the amount of work

involved, it's worth the effort.

Lowering this value may prove handy to you. Twenty-two TV

columns seem narrow enough, but maybe an idea will occur to you.

To set this value: POKE 36866,(PEEK(36866) AND 128) OR XXX

where XXX is a value from 0 to 25.

36867 $9003 V1CCR3 174 0146
(handy location)

Number of character lines displayed, part of raster location.

Bit 7: Default value: 1/0. Raster beam location bit 0. Combine this,

as the low order bit, with location 36868 ($9004). See that location

for more information.

Bits 6-1: Default value: 46. Number of character lines displayed on

the TV picture multiplied by two. By varying this value, you can

make the border expand or shrink and use fewer or more TV lines.

The same considerations apply for these bits as for location 36866

($9002) bits 6-0, so see that location for details. The value in this

position is multiplied by two because the low order bit of this byte is

used for other purposes. Thirty to thirty-two seems to be about the

maximum useful number of screen lines.

To set these bits you can POKE 36867,(PEEK(36867)AND 129)

OR (XXX*2), where XXX is the number of lines desired.

Bit 0: Default value: 0. Character size 8 x 8, or 8 x 16 pixels
When bitmapping the screen or doing other custom character set

tasks, this bit can be set to specify the double-sized character option

127

u

u

(8 pixels wide by 16 high). The bottom of the border will drop off I—'
the TV, and you'll see only eleven and a half double-sized character

lines (unless you also adjust the vertical TV picture origin in 36865, , ,

$9001). A zero in this bit position specifies 8x8 character size, while | [
a one selects 8 x 16 characters. When double-sized characters are

used, only the first half of the screen map is significant, each POKE _,

code being used to obtain the 8 x 16 definition of a double-sized |_J
(twice as high—16—rather than 8 dots high) character to display.

To use this feature, you need to define a partial or full custom

character set in RAM, pointed to by location 36869 ($9005). The

double-sized character feature does not cause a normal character to

be displayed twice as large. Rather, it allows the screen map to have

a unique index value for every screen position, which is not avail

able when 506 bytes, with a range of 0-255 in each, are used to

describe the screen.

To set this value:

POKE 36867,PEEK(36867) OR 1

For more information about custom character sets, see locations

36869 ($9005), 32768 ($8000), and Appendix E. Bitmapping the

screen and relocating the screen map are described in Appendix G.

36868 $9004 VICCR4
-■■i-™: (handy location)

Raster beam location bits 8-1.

Bits 7-0: When combined with the high order bit of location 36867

($9003) as the low order bit, this value tracks the location of the

electron beam as it refreshes the TV picture. If you were to use only

this location to reference the raster location, you would only sense

every other TV line. This raster location is used by the light pen

sensing function of the VIC chip, and is latched into locations 36870

($9006) and 36871 ($9007).

This location contains the line number that the raster beam is

currently scanning. In an ML routine, you can test the location of the

raster at any time and execute a command when a certain point is

reached. You could switch color schemes, character map, or some r]

other effect. A public domain program called "Colortrick2" by Joe 1 I
Watson creates a rainbow border using this technique. You need to

be able to constantly intercept the refresh of the screen, demanding —

an ML loop with severe timing restrictions. Experimentation is the (_J
key. The TV picture could be segmented with different color back

grounds displaying varying types of information. The possibilities

are quite varied for using this location for TV picture customization. I I

U
128

D

36869 $9085 VICCR5* 240
(handy location)

Screen map and character map addresses.

Bits 7-4: Default value: 240. These bits serve as bits 13-10 of the

screen map address, combined with bit 7 of 36866 ($9002) to form

the 14-bit VIC chip screen map address.

Let's put together the 14-bit address as seen by the VIC chip,

using the 240 ($F0) default value in this location and the default 1 in

the high order bit of VICCR2*:

Figure 5-1.14-Bit Address

VICCR5* bits 76 54

nil
14-bit address= 01 1110 0000 0000 = $lE00 = 7680

t
VICCR2* bit 7

Notice that 7680 is the default unexpanded VIC-20 screen map

location.

Also note that the high order bit of VICCR5* was changed to

zero when it was put into the high order bit of the 14-bit address.

This is the other aspect of the screen map address that confuses

many programmers. Bit 7 of VICCR5* must always be one, but is

viewed as though it is zero. I won't even try to rationalize this; it's

just the way it works.

Remember that bit 7 of VICCR2* determines the color map

address (37888 or 38400) and, as you can now see, indicates

whether the screen map is on a 1024-byte or 512-byte boundary.

You can use the following formula to find the screen map:

rm SM=4*(PEEK(36866) AND 128)+64*(PEEK(36869) AND 112)

' I You can also use SM=PEEK(648)*256.

<—j Screen Map Available Locations
' ' (Any IK or 512-byte boundary must be selected in unexpanded

RAM, but the following locations are the unused areas.)

H

H

«— 129

Table S

Screen

Decimal

—

40#r
4608
Sill:
5632

6144

6656

716t

7680

i-2. Screen Map

Location Color

Hex

$1000i

$1200

i$140i-

$1600

$1800
$1AOO

IICQO

$lE00

Map

37888

38400

37188'

38400

37888

38400

37888

38400

Locations

36869

Bits 7-4

—

HOOF

1100.

llOtj
1101

1110

1110

11 Iff

1111

36866

t Bit 7

0

1

0

1

0

1

0

1

POKE Values

(see notes below)

-X-

192-r
192

208

208

221

224

240

240

-Y-

0

128

0

128

o:

128.

0

128

You'll note that, unfortunately, no expansion RAM locations can

be used for this map.

To set the screen address to any of the valid addresses listed

above, the value in the first POKE value column replaces X in the

statement: POKE 36869,(PEEK(36869) AND 15) OR X. The second

POKE value number replaces Y in the statement POKE

36866,(PEEK(36866) AND 127) OR Y. Finally, POKE 648,Screen

Address/256:CLR.

The second POKE (using the Y value) specifies whether the map

address starts on a IK or 512-byte boundary.

For example, to set 7680 as the screen address you would enter:

POKE 36869,(PEEK(36869) AND 15) OR 240

POKE 36866,(PEEK(36866) AND 127) OR 128

POKE 648,7680/256:CLR

An alternate method is to POKE 648,Screen Address/256:SYS

58648.

Jim Butterfield has demonstrated setting this location to binary

1000 (by using 128 as an X value above) and turning off the high
order bit of location 36866 ($9002) (by using 0 as a Y value above), to

temporarily set the screen map at location zero so that you can

observe the symbolic activity in the first two pages of memory.
On an unexpanded or 3K expanded VIC-20, the screen address

default is 7680 ($lE00), while on an 8K plus expanded VIC-20 the

screen address is set to 4096 ($1000).
Although only one screen map may be displayed at any given

moment, you may have more than one area for a screen map, with
its own color map dedicated to it. If SM is the screen map address

that you want displayed, you need to:

130

• Change the address bits here

• Change the page number in location 648

• Alter locations 217-228 ($D9-E4) to SM/256+128.

• Change locations 229-240 ($E5-F0) to SM/256+129

• And set bit 7 in location 36866 ($9002) for the screen to be

currently displayed

The screen won't flip until a carriage return is sent to it. You

may want to save the screen line link table 217-240 ($D9-F0) bytes

somewhere rather than resetting them to unlinked lines. Be sure to

pick an alternate screen address that uses the other color map. The

easiest combination is two screen addresses, with this location hav

ing the same bits 7-4 and bit 7 of 36866 ($9002) reversed. Examples

of these combinations would be 4096 and 4608; 5120 and 5632;

6144 and 6656; or 7168 and 7680. Then this location won't need to

be altered.

For example:

SM=4096 : REM select screen one

POKE 36866,(PEEK(36866) AND 127)

POKE 648,SM/256

FOR X=217 TO 228:POKE X,PEEK(648)+128:NEXT

FOR X=229 TO 240:POKE X,PEEK(648)+129:NEXT

PRINT"home": REM screen one selected

SM=4608 : REM select screen two

POKE 36866,(PEEK(36866) AND 255)

POKE 648,SM/256

FOR X=217 TO 228:POKE X,PEEK(648)+128:NEXT

FOR X=229 TO 240:POKE X,PEEK(648)+129:NEXT

PRINr'home": REM screen two selected

Related screen fields are: 209 ($D1), 217 ($D9), 243 ($F3), 648

($288), 4096 ($1000), 7680 ($lE00), and 32768 ($8000). Also see

screen and screen map in the subject index.

Bits 3-0: Default value: 0. These serve as bits 13-10 of the character

map 14-bit address. They are used to form the 14-bit VIC chip

address that points to the beginning of the current 2048-byte (2K)

character map or custom character set.

The Kernal routine SETKEYS* changes this value when the

Commodore key and SHIFT are pressed together, to make sure the

proper character map is used.

Take a look at Figure 5-2 for a moment to see the details of the

14-bit address that the VIC chip uses.

131

Figure 5-2.14—Bit Address, Character Map

VICCR5* bits 32 10

Uli

14-bit address= 00 0000 0000 0000 = $0000 = 32768

The default unexpanded VIC-20 character map location begins

at 32768, the value obtained in Figure 5-2.

You probably suspect by now that there's some special rule that

applies to this situation, since obviously the character map doesn't

begin at address zero, and because $0000 is hardly the same as

32768. Because of the way the VIC chip sees the memory in the

VIC-20, zero here means 32768 ($8000) to the VIC chip. If the

peculiar vision of the VIC chip interests you, you'll want to read Jim

Butterfield's series of articles entitled "Visiting the VIC-20 Video,"

which started in the May 1983 issue of COMPUTE! magazine. How

this all works is interesting, but you need to know how to use this

location. A few facts will help:

• The first two bits (bits 3 and 2) of these four bits specify the

address of the start of the character map in 4096-byte increments.

• The second two bits (bits 1 and 0) contain the number of

times that 1024 ($400) must be added to the value in bits 3 and 2.

• If bits 3 and 2 are both zero, 32768 ($8000) is used, plus the

settings in bits 1 and 0.

• The character map must start on a 1024-byte boundary. You

can see that there's no way to specify an amount smaller than IK.

Here's a table of the possible combinations for the character map.

Table 5-3. Character Map Locations

Bits

3210

Decimal Hex

Value Value

0

OQ10

O0|l
0100

0101

0110

0111

1000

1001

1010

1011

1110

nil

132

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

Decimal

Address

323*68

33792

34816

35840

36864

37888

38912

39936

0000

1024

2048

3072

4096

5120

6144

Hex

Address

$8000

$8400

$8800

Type of characters

$9000

$9400

$9800

$9C00

$0000

$400

$800

$C00

$1000

$1400

$1100

uppercase reversed

lowercase

lowercase reversed

don't use—VIC chip

don't use—color map

don't use—I/O block

don't use—I/O block

don't use—low RAM

can't be accessed

can't be accessed

can't be accessed

custom character set

custom character set

custom; character set

cuslopi ehaffaetef set

n

P

To set the address, you can use POKE 36869,PEEK(36869)AND

240 OR X where X is the value from the decimal column in Table

n 5"3-
You'll note that no expansion RAM locations can be used for

this map.

|—* Bit 3 can be thought of as a ROM/RAM switch. When it's on

s (set to 1), RAM is being used; otherwise, the character map is in-N

ROM.

There was a misprint for this location in the VIC-20 Pro

grammer's Reference Guide. Page 215 in the edition I have shows the

formula:

POKE 36869,PEEK(36869) AND 15 OR (X*16)

This should read: POKE 36869,PEEK(36869) AND 240 OR X.

Because of the way this pointer is used in the VIC chip, once

you set the start-of-character map pointer, the next 128 characters

are obtained from the next higher (with wrap) bits 3-0 setting. This is

a great feature of the VIC chip. You can access the next 128 charac

ters by pressing RVSON, the next by pressing RVSOFF/Commodore

key/SHIFT, and yet another by pressing RVSON again. For exam

ple, if you composed a custom character set of 128 characters at

location 7168 ($1COO) and pressed the RVSON key, the ROM upper

case/graphic set at location 32768 ($8000) would be used as long as

RVSON is in effect. Pressing RVSOFF/Commodore key/SHIFT

selects the 128 reversed uppercase/graphics. With this feature, you

can use three-quarters, one-half, one-quarter, or none of the ROM-

based character maps with your own custom character set. By setting

the start of character map bits to refer to location 4096 ($1000), you

will be able to refer to 512 of your own characters. This is the loca

tion used for the character set when bitmapping the screen.

If you need fewer than 128 custom characters, you can copy the

others that you'll need from ROM into your own set, or simply not

use the remaining characters. The latter technique is used when

composing a custom character set for location 7168 ($lC00) on an

unexpanded VIC-20, since there is only room for 64 custom charac

ters (8*64=512 bytes) before the start of the screen RAM map area.

Rather than printing the CHR$ codes for character set switching

and RVSON or RVSOFF, you can POKE this location, using the

value for the needed character set if you want to change all the

characters on the screen. Also see locations 199 ($C7) and 657

($291).

Location 32768 ($8000) contains more information about the

character map.

Refer to the color map description starting at location 37888

($9400).

See location 32768 ($8000) for a program to display or print any

133

u

Q

LJ
number of 8 x 8 character map pixel description bytes in a large

gyaphic Matrix with fheir deciMM rttmUbe^s noted.

See the appendices for additional information on bitmapping the \ /

screen, custom character sets, and relocating the screen and character '—'
maps.

36670 $0006 VICCR6 0 U
(handy location)

Light pen horizontal screen location.

This address contains the pixel location of the light pen photo

cell from the left side of the TV. It's latched here when the raster

passes the pen tip. It is the light pen that detects the beam of light

from the raster and causes the position to be latched, not the other

way around. From the values placed here, which range from 0 to

255, you can determine the pixel location by using

COL=PEEK(36870)*.69.

If your light pen has a switch on it, you will find that location

37151 ($91 IF) bit 5 is where it can be detected.

You will want to debounce this value as it is extremely sensitive

to imperceptible movement. Debouncing is accomplished by saving

this value, waiting a reasonable amount of time (maybe a half sec

ond—30 jiffies), and comparing the current value to the last-saved

value until they are equal or as equal as necessary to determine the

selected location/option.

Incidentally, light pen detection on the VIC chip is an optional

feature. Since the VIC-20 has this optional feature, the VIC chip is

technically a 6560-101. That's why there's a white spot on the chip.

You can refer to several excellent articles on the VIC's light pen

option. "A Light Pen for Under $10," by William Hale, in the

August 1982 issue of COMPUTE!; "Basics of Light Pen Operation,"

by Robert Peck, in the March 1981 issue of COMPUTE!; and "An In

expensive Light Pen for the VIC-20, C-64, and Atari," by David

Bryson, in the June 1983 issue of Micro, are three such articles.

See location 36868 ($9004) for additional information.

36871 $0007 VICCR7 0
(handy location)

Light pen vertical screen location.

This address contains the pixel location of the light pen photo

cell from the top of the TV. It's latched here when the raster passes

the pen tip.

You can determine the pixel location by using

ROW=PEEK(36871)*.722.

See location 36870 ($9006) for debouncing suggestions.

134

36872 $9008 VICCR8 2SS
(handy location)

Potentiometer X/Paddle X value.

The analog-to-digital converters in the VIC chip can convert

variable resistance to digital values ranging from 0 to 255,

incremented by one for every IK ohms of resistance. No connection

means infinite resistance, so 255 is the default value in this location.

The game port pin 9 is used for this X value, pin 5 for the Y value,

and pin 8 for a common ground.

Paddle values: right=0, left=255.

See the articles "Using the VIC Game Paddles," by David

Malmberg, in the April 1982 issue of COMPUTE!, and "$20 VIC

Digitizer," by Jeff Knapp, in the September 1982 issue of COM
PUTE!, for details on the use and construction of game paddles.

36873 $9000 VICCR0* 2SS
(handy location)

Potentiometer Y/Paddle Y value.

Paddle values: right=0, left=255.

See location 36872 ($9008) for additional information.

36874 S900A VICCRA 0
(handy location)

Relative frequency of sound oscillator 1 (bass).

Bit 7: Switch to enable (1) or disable (0) this oscillator.

By turning off the sound for this oscillator with POKE

36874,PEEK(36874) AND 127, you can leave the desired value in

this register for later use. To turn this back on, you can use POKE

36874,PEEK(36874) OR 128.

Bits 6-3: Low sound voice (sawtooth waveform).

This is the softest sound oscillator, with a range of values from 0

(no sound) to 127 (highest tone). The range of tones produced runs

from 31 to 3995 hertz. To compute the value for this location from a

given frequency, use the following line:

X=INT(128-(3995/FREQ))

where X is the value for this location.

(Use 4329 rather than 3995 if you are using the European PAL

television system.)

The octave ranges for the three VIC-20 oscillators overlap, giv

ing a combined range of five octaves, in this way:

135

Figure 5-3. Octave Range Overlap on the VIC

Location

36874 $900A octavel octave2 octave3 extra

7

36875 $900B octavel octave2 octave3 extra

7 *67 *97 *111-*127

36876 $900C octavel octave2 octave3 extra

Low notes to high notes

You can also convert particular notes to numerical values to

enter in the sound registers.

0

u

u

j I

T3DIB 9

Note

C

c#

D

D#

E

F

F#

G

G#

A

A#

B

—», musical i

Octave 1

7

15

19

23

31

35

39

47

51

55

59

63

loie id nun

Octave 2

67

71

73

75

79

81

84

87

89

91

93

95

lencai waiu

Octave 3

97

99

100

101

103

104

105

107

108

109

110

111

B

112

113

a

Too close to

distinguish

11

11

1

127

(handy location)

Relative frequency of sound oscillator 2 (alto).

Bit 7: Switch to enable (1) or disable (0) this oscillator.

By turning off the sound for this oscillator with POKE

36875,PEEK(36875) AND 127, you can leave the desired value in

this register for later use. You can turn this back on with POKE

36875,PEEK(36875) OR 128.

Bits 6-0: Medium sound voice (pulse waveform).

These bits serve as the medium sound oscillator, with a range of

values from 0 (no sound) to 127 (highest tone). Its range is from 63

to 7990 hertz. To compute the value for this location from a given

frequency, you can use:

Li

I [

—;

j j

j]

u

H

n

n X=INT(128-(7990/FREQ))

(Use 8659 rather than 7990 if you are using the European PAL tele-

r-j vision system.)

' See location 36874 ($900A) for an octave range figure and a

musical note to numerical value table.

H 36876 $8660 VICCRC 0
(handy location)

Relative frequency of sound oscillator 3 (soprano).

Bit 7: Switch to enable (1) or disable (0) this oscillator.

Using POKE 36976,PEEK(36876) AND 127 turns off the sound

for this oscillator and lets you leave the desired value in this register

for later use. To turn this back on, simply enter POKE

36876,PEEK(36876) OR 128.

Bits 6-0: High sound voice (pulse waveform).

This oscillator's values range from 0 (no sound) to 127 (highest

tone). Its range is 127-15,980 hertz. To compute the value for this

location from a given frequency, you can use:

X=INT(128-(15980/FREQ))

(Use 17320 rather than 15980 if you are using the European PAL

television system.)

See location 36874 ($900A) for an octave range figure and musi

cal note to numerical value table.

V1CRD 0
(handy location)

Relative frequency of sound oscillator 4 (noise).

Bit 7: Switch to enable (1) or disable (0) this oscillator.

You can turn off the sound for this oscillator with POKE

36877,PEEK(36877) AND 127. This will leave the desired value in

the register for use later. POKE 36877,PEEK(36877) OR 128 will turn

it back on.

Bits 6-0: Noise voice (square waveform).

rmm The sharpest sound oscillator, with values ranging from 0 (no

| sound) to 127 (highest tone), its range is from 252 to 31960 hertz.

Use the following formula to compute the value for this location

from a given frequency:

j—I X=INT(128-(31960/FREQ))
(Use 34640 rather than 31960 if you are using the European PAL

television system.)

H 36878 8866E VICCRE 0
(handy location)

n Sound volume and auxiliary color.

137

n

LJ

U

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

0

1

2

3

4

5

6

7

Orange

Lt Orange

Pink

Lt Cyan

Lt Purple

Lt Green

Lt Blue

Lt Yellow

8

9

10

11

12

13

14

15

Bits 7-4: Auxiliary color for multicolor mode. A bit ^alue oi41 i—I
selects this auxiliary color. You can use any of the 16 colors:

o

Lt Oranee 9
f6O

l*Z U
20

However, to set these four bits, you don't simply POKE the

above numbers into location 36878 ($900E). Instead, ta set the$£

bits, you'd use; POKE 36878, (PEEK(36878) AND 15) OJ^X?1#^

where X is the color value shown above, lor instance t© select

yellow (15) as the auxiliary color, yotfd POKE 36878>(PEEK(36878)-

AND 15) OR M).

Bits 3-0: Sound volume 0 (low) to 15 (high).

These four bits set the combined volume of all sound oscillators.

Turning the sound volume to zero does not turn off the

oscillators; this is done by turning bit 7. The difference between two

settings, an increment apart, of this value may be hardly noticeable

on a TV or monitor due to its limited sound system.

A stereo system, however, will demonstrate the full range of

volume and tonal control. The VIC-20 puts out a high quality mono-

phonic sound signal. Use AUX IN or TAPE IN on your sound sys

tem, not a turntable input.

36879 $900F VKCRF* 27
(handy location)

Background color, border color, inverse color switch.

Bits 7-4: Default value: 1. These four bits determine the background

color of the screen. Colors available on the VIC are:

8

u

u

In multicolor mode, this color is selected with bit values of —;
binary 00.

U
138

D

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

0

1

2

3

4

5

6

7

Orange

Lt Orange

Pink

Lt Cyan

Lt Purple

Lt Green

Lt Blue

Lt Yellow

8

9

10

11

12

13

14

15

n

H

To set the upper four bits in this location, you would POKE

36879,(PEEK (36879) AND 15) OR (X*16), where X is a color value

from the table above.

Bit 3: Default value: 1. This bit serves as the inverse color switch.

When set to one, the background and foreground colors are in their

respective places. Setting this to zero, however, inverts that scheme.

The foreground color will be used for the background and all the

characters are shaded in the background color.

This bit has no effect when multicolor mode is in effect for

individual characters.

See locations 37888-38911 ($9400-$97FF), Screen Color Maps,

and 646 ($286) for foreground color descriptions.

To set to one: POKE 36879, PEEK (36879) OR 8

To set to zero: POKE 36879, PEEK (36879) AND 247

Table 5-5. Color Codes for Location 36879

Back

ground

BLK

WHT

RED

CYAN

PUR

GRN

BLUE

YEL

ORG

L.ORG

PINK

L.CYN

L.PUR

L.GRN

L.BLU

L.YEL

BLK

8

24

40

56

72

88

104

120

136

152

168

184

200

216

232

248

WHT

9

25

41

57

73

89

105

121

137

153

169

185

201

217

233

249

RED

10

26

42

58

74

90

106

122

138

154

170

186

202

218

234

250

Border

CYAN

11

27

43

59

75

91

107

123

139

155

171

187

203

219

235

251

PUR

12

28

44

60

76

92

108

124

140

156

172

188

204

220

236

252

GRN

13

29

45

61

77

93

109

125

141

157

173

189

205

221

237

253

BLU

14

30

46

62

78

94

110

126

142

158

174

190

206

222

238

254

YEL

15

31

47

63

79

95

111

127

143

159

175

191

207

223

239

255

Back

ground

BLK

WHT

RED

CYAN

PUR

GRN

BLUE

YEL

ORG

L.ORG

PINK

L.CYN

L.PUR

L.GRN

L.BLU

L.YEL

Bits 2-0: Default value: 3. These three bits control the border color

surrounding the screen.

Available border colors are:

Black 0

White 1

Red 2

Cyan 3

Purple 4

Green 5

Blue 6

Yellow 7

See locations 36864 ($9000) through 36868 ($9004) for addi

tional information.

139

36880-37135

To set these three bits, you would enter POKE 1_1
36879,(PEEK(36879) AND 240) OR X, where X is a color value from

the list above.

If you would like an amber on black screen, for instance, you j J
would use:

POKE 36879,8:POKE646,2 (actually red) —

If you would like a black on amber screen, try: I—>

POKE 36879,136:POKE646,0

36880-37135 $9010-$910F
Future expansion RAM/ROM space.

This area of the VIC-20 contains apparent reflections of the VIC

chip registers. These reflections are not reliable and should not be

used. This area is not on RAM or ROM, and it's only because o* the

address decoding scheme used that the VIC chip registers seem to be

reflected here. This area really is available for future expansion. You

are really accessing the VIC chip registers when POKEing here, and

a PEEK to this area has a good chance of returning erroneous values.

You can use the VIC chip registers directly and avoid many

problems.

If you refer to the article "VIC Memory—The Uncharted Adven

ture," by David Barron and Michael Kleinert, in COMPUTED First

Book of VIC, subtract 16 from the locations listed over 36880. You'll

then have the VIC chips which perform the functions the authors

have noted.

140

Chapter 6

Versatile Interface

Adapters

VIA 1 and VIA 2

u

D

D

LJ

D

U

D

D

0

D

n

37136-37151

Versatile Interface

Adapters VIA 1 and

2
Location Range: 37136-37151 ($9110-$911F)
6522 Versatile Interface Adapter 1

The 6522 Versatile Interface Adapters (VIAs) provide keyboard,

tape, joystick, serial, RS-232, and user port input/output control, as

well as RUN/STOP-RESTORE key and IRQ interrupt timing facil

ities. Interrupts, timing, and input/output are keys to the successful

functioning of the VIC-20. Serial to parallel and parallel to serial

shift registers are also provided in the VIAs, but are not used on the

VIC-20. The IEEE-488 bus of the earlier PET computers has been

stripped down to the serial bus on the VIC-20. However, IEEE-488

adapters are available and allow the use of PET peripherals on the

VIC-20.

Programming the VIAs is not as simple as for the other chips in

the VIC-20. VIAs are complex, and require some study and experi

mentation before practical use can be made of them. The Kernal uses

the VIAs extensively, and you'll need to learn how to work around

the Kernal's use of the VIAs. When the function associated with each

bit is not being used by the Kernal, you're free to use that bit for

your own purposes, within the scope of the architecture of the 6522.

These locations should not be used to store user data that is unasso-

ciated with 6522 operations.

Nick Hampshire investigates the VIA and how it is used in the

VIC-20 in his book VIC Revealed. The VIC-20 Programmer's Reference

Guide includes a description, although only the first VIA is men

tioned and no relationship is shown to the actual use by the VIC-20

of the various locations. The schematic in the back of the book pro

vides many insights into the use of the 6522 chips. Programming the

PET/CBM by Raeto Collin West explains the VIA from the perspec

tive of PIAs (PETs have two PIAs and VIAs). Specification sheets for

the 6522 are available from MOS Technology. Rodnay Zaks has

explored the 6522 architecture in his 6502 series of books. Another

resource is Marvin L. Dejong's Programming and Interfacing the 6502,

with Experiments) his article "Timing and Counting with the 6522,"

in the July 1982 issue of Micro, is also something you might want to

refer to.

143

u

37136-37151 y

□
Let's get into the specifics of how the VIC-20 uses these VIAs.

The 6522 VIA chip registers are actually located in the VIA

chips themselves. No RAM locations correspond to these VIA reg- I j

isters. When POKEing or PEEKing values, you are actually accessing

the VIA chips themselves. Special rules for reading and writing bytes

may sometimes apply. pi

Power-on/reset and the RUN/STOP-RESTORE keys cause LJ
these values to be reinitialized by the INITVIA* routine.

The First 6S22 VIA Chip's Registers
This VIA's IRQ (interrupt request) line is connected to the 6502

IRQ interrupt line. The VIA generates an IRQ interrupt for many rea

sons, but the most visible is the RESTORE key. This VIA manages

most of the pins on the user port/RS-232 port. Additionally, the

tape switch and motor, most serial port pins, the light pen/fire but

ton pin, and most of the joystick pins are controlled by this VIA.

This VIA offers the most available lines for your use. When the func

tion associated with each bit is not being used by the Kernal, you're

free to use that bit for your own purposes.

The serial port pins and their associated bits in this VIA are:

Table 6-1. Serial Port Pins

Port Port VIA

Pin /bit Line Use

1 (VIA2,CB1) serial service request in

2 ground

3 serial attention in, tied to user port 9

A7 PA7 inverse serial attention out

4 A0 PAO serial lock in

(VIA2,CA2) inverse serial clock out

5 Al PA1 serial data in

(VIA2,CB2) inverse serial data out

6 reset RESET (ground this to pin 2 for a ; l

RESET SWITCH) U

The user port pins and their associated bits in this VIA are f 1

detailed in Table 6-2. LJ

U

U

144

U

n

37136-37151

Table 6-2. User Port Pins

t 1

! 1

; 1

p—■»

■)
)

n

n

Port

Pin

A

B

C

D

E

F

H

J
K

L

M

N

1

2

3

4

5

6

7

8

9

10

11

12

Port

/bit

BO

Bl

B2

B3

B4

B5

B6

B7

A2

A3

A4

A5

A6

A7

♦Because of the

VIA

Line

CB1

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

CB2

PA2

PA3

PA4

PA5

PA6

PA7

coding

will never be set in the

testing this bit]yourself.

In/

Use Out

protective ground

received data (SIN) IN

received data (SIN) IN

request to send (RTS) OUT

data terminal ready

(DTR) OUT

ring indicator (RI) IN

received line

signal (DCD) IN

unused

clear to send (CTS) * IN

data set ready (DR) IN

transmitted data (Sout)OUT

signal ground

ground

+5 volts DC

reset RESET (ground

this to pin 1, A, or 12

to cause a RESET

SWITCH function)

joy 0, also on game

port pin 1

joy 1, also on game

port pin 2

joy 2, also on game

port pin 3

light pen/fire button,

also on game port pin
f.
o

tape sense switch tied

to this pin

inverse serial attention

out

9 volts AC

9 volts AC (incorrectly

labeled GND in the

VIC-20 Programmer's

Reference Guide)

ground

problem mentioned at 660 ($294),

RS-232 status byte at 663 ($297).

X-Line

3-Line

3,X

3,X

3,X

X,3=hi

X,3=hi

X

X

X

3,X

X

the clear to

You can still

DB25

Pin

1

3

3

4

20

22

8

5

6

2

7

EIA

Name

AA

BB

BB

CA

CD

CE

CF

CB

CC

BA

AB

send missing bit

use this pin by

145

u

u

Table 6-3 details the game port pins and their associated bits in i—
this VIA.

Table 6-3. Game Port Pins -

□
Port

Pin

1

2

3

4

5

6

7

8

9

Port

/bit

A2

A3

A4

VIA

Line

PA2

PA3

PA4

(VIA2,PB7)

(see VIC chip)

A5 PA5

Use

joy 0, also on user port 4

joy 1, also on user port 5

joy 2, also on user port 6

joy 3

potentiometer Y

light pen/fire button

+5 volts DC

ground

(see VIC chip) potentiometer X

The tape port pins and their associated bits in this VIA are dis

played below in Table 6-4.

Table 6-4. Tape Port Pins

Port

Pin

A-l

B-2

C-3

D-4

E-5

F-6

Port

/bit

CA2

(see

(see

A6

VIA

Line

VIA2,CA1)

VIA2,PB3)

PA6

Use

ground

+5 volts DC

tape motor

tape read

tape write

tape switch also on user port 8

The keyboard connector pins are diagrammed in the preface to

VIA 2 at location 37152 ($9120).

The individual registers are outlined below, listed by location.

37136 $9110 V1A1PB
Port B I/O register. i j

This port is used for parallel user port data transfer, in and out.

In the VIC-20, the user port is designed for RS-232 protocol

handshaking and data transfer. j" 1

For the electronics-oriented user: This port is a push-pull type '—'
with high impedance input, with a 1 not greater than +2.4 volts;

TTL compatible, but not CMOS; supporting direct connection to ,- —

Darlington transistor switches for relays. I I
Handshaking control lines CB1 and CB2 are controlled by this

VIA port, and when reading or writing these bits, bits 4 and 3 of

LJ
146

U

n

- 37136

n
location 37149 ($91 ID) are automatically reset. Location 37148

($911C) is used to control the CB1 and CB2 status.

The RS-232 standard specifies that a logical 1 is a voltage more

negative than —3 volts, and a logical 0 is greater than +3 volts.

Since the VIC-20 uses 0 to 0.8 volts for logical 0 and 2.4 volts and

greater for a logical 1, a TTL level to RS-232 level interface of two

integrated circuit chips is needed to connect a true RS-232 device to

the VIC-20. These are commercially available as an RS-232 interface

board providing a DB25 connector for the desired RS-232 device to

plug into. United Microware Industries in Pomona, California, can be

contacted, or you can build your own. See "The Enhanced VIC-20:

Part Four/' in the May 1983 issue of BYTE magazine for details of

constructing an interface. The VIC Modem has these ICs built in,

and several other modem manufacturers include them on VIC-20

models.

A typical application for this location is an RS-232 printer. For

this type of use, be sure that Data Set Ready (DSR) from the printer

is connected to the VIC-20 Data Terminal Ready (DTR) pin so the

printer can pause the VIC-20 until the printer catches up. X-line

handshaking is needed for this type of printer use. See the article

"VIC RS-232 Printer," by Michael V. Tulloch, in the February 1983

issue of Micro, for another approach to the printer hold-off. It's a

good idea to consult your printer manual for interface cable require

ments, baud rate specifications, control characters, linefeed options,

and switch settings.

The following bits can be used as input or output, depending on

the setting of the data direction register at 37138 ($9112). At power-

on/reset, all these bits are set to the input mode. When an RS-232

device is opened or closed, DTR and RTS (Request To Send) are set

on. The direction during RS-232 use is shown below for each bit.

Bit 7: Data Set Ready (DSR) IN X-line

If set as an output line, you can optionally pulse or invert this

line when VIA timer 1 expires. This can happen continuously when

the free-running mode is selected.

See locations 37147 ($91 IB) and 37138 ($9112).

Bit 6: Clear To Send (CTS) IN X-line

Because of the coding problem mentioned at 660 ($294), the

clear to send missing bit will never be set in bit 4 of 663 ($297). You

may test this bit yourself when using the line.

If this is used as an input line, you can optionally count neg

ative pulses on this line when VIA timer 2 is in the free-running

mode.

See location 37147 ($911B) and 37138 ($9112).

Bit 5: unused

Bit 4: Data Carrier Detect (DCD) IN X-line

This is sometimes called received line signal

U7

. Li

37137 jj

Bit 3: Ring Indicator (RI) IN

Bit 2: Data Terminal Ready (DTR) OUT X-line

This bit, DTR, is always on in three-line mode. j j

Bit 1: Request To Send (RTS) OUT X-line LJ
RTS is always on in three-line mode.

Bit 0: Received Data Signal (Sin) IN X-line, 3-line j~.

By making or obtaining the proper connector, a second joystick can '—'
be plugged into the user port using:

PB1 = joy 3

PB2 = joy 0

PB3 = joy 1

PB4 = joy 2

PB5 = fire

See "Fighter Aces: Add a Second VIC Joystick," by John Parr, in

the March 1981 issue of COMPUTE!, for details.

37137 $9111 VIA1PA1
Port A I/O register.

This port is used for serial port and game port data transfer,

both in and out. In addition, the tape sense switch is controlled

through this port.

Handshaking control lines CA1 and CA2 are managed by this

port, and when reading or writing these bits, bits 1 and 0 of location

37149 ($91 ID) are automatically reset. Location 37148 ($911C) is

used to select the CA1 and CA2 status.

A mirror port A register is located at location 37151 ($91 IF) and

can be used instead of this register when you don't want to reset

CA1 and CA2 by accessing the register.

For the electronics-oriented user: This port is a pull-up type with

a resistive nature. Even in input mode, current is supplied to the

pins, and these lines represent a TTL LOAD.

The following bits can be used as input or output, depending on

the setting of the data direction register at location 37139 ($9113).

Bit 7: serial attention out.

Serial attention in is reflected on user port pin 9. J j
Bit 6: sense tape button down.

A value of 1 in this bit means that there are no tape buttons

down, while a value of 0 means that there are some down. \ I

Note that user port pin 8 is also tied to this line. (Line number) (—
IF (PEEK(37151) AND 64)=1 AND ST=0 THEN (Line number) can

be used as a method of determining if all data has been sent on the f j

RS-232 line before closing device number 2. Location 37151 ($91 IF), LJ
bit number 6, is a mirror of this bit.

Bit 5: light pen/fire button.

I I

148

o

n

h 37137

n
A value of 1 means the light pen switch or the fire button was

not pressed.

I"""j You can make your program wait for the fire button or light pen

switch to be pressed by including WAIT 37137,32,32 in the program.

If you'd like your program to wait only until the fire button is

released, you would use WAIT 37137,32 instead.

Bit 4: joy 2 (left/west).

A value of 1 means this direction was not selected.

Bit 3: joy 1 (down/south).

A value of 1 in this bit signals that this direction was not

selected.

Bit 2: joy 0 (up/north).

A 1 in this bit means that this direction was not selected.

Bit 1: serial data in.

Serial data out is reflected in VIA1 CB2.

Bit 0: serial clock in.

Serial clock out is reflected in VIA1 CA2.

H

The standard joystick reading routine for the VIC in BASIC is

shown below. Note that actual line numbers have not been included.

You can add them yourself so that you can place this routine any

where within your own program.

POKE 37154,127 : REM set data direction register,

: REM some keyboard keys ignored.

A=(PEEK(37137) AND 28) OR (PEEK(37152) AND 128)

: REM combine joystick values into variable A

POKE 37154,255 : REM reestablish keyboard scan

B=PEEK(37137) AND 32

: REM B=0 if fire button pressed

A=ABS((A-100)/4)-7

: REM reduce variable A to manageable range of values

ON A GOSUB 100,110,120,,130,140,150,,,,160,170,180

: REM go do the proper routine

100 PRINT "down-left (south-west)" : RETURN

110 PRINT "up-left (north-west)" : RETURN

120 PRINT "left (west)" : RETURN

130 PRINT "down (south)" : RETURN

140 PRINT "up (north)" : RETURN

150 PRINT "still (center)" : RETURN

160 PRINT "right (east)" : RETURN

170 PRINT "up-right (north-east)" : RETURN

180 PRINT "down-right (south-east)" : RETURN

This routine is detailed in the article "The Joystick Connection:

Meteor Maze," by Paul L. Bupp and Stephen P. Drop, in COM-

PUTEI's First Book of VIC.

149

u

u

jj
Additional joystick articles can be found in "Using a Joystick/'

by David Malmberg, in COMPUTEl's First Book of VIC; "Using Atari

Joysticks with Your VIC," by Christopher Flynn, in the June 1982 [j
issue of COMPUTE!; and the VIC-20 Programmer's Reference Guide, L-'
page 246.

37138 $9112 V1A1DDRB* U
Data direction register for port 6.

Each of these eight bits corresponds to the same-numbered bit

in port B. When a bit in this register is set to 0, the corresponding

port B bit is used for input. A 1 in a bit of this register indicates an

output function in the port B related bit. Port B is located at 37136

($9110).

Also see 37147 ($91 IB) bit 1 for port B latch enable bit. If input

latching is disabled, any input directed port B bits will, at any time,

show the current associated pin status of high or low. Latched mode

reads data only when a transition on CB1 line occurs. See location

37148 ($911C).

Power-on/reset and the RUN/STOP-RESTORE keys cause

initialization to 00 ($00), all lines input, by the INITVIA* routine.

37139 $9113 VIA1DDRA
Data direction register for port A.

Each bit in this register corresponds to the same-numbered bit

in port A. When one of these bits is set to 0, the corresponding bit in

port A is used for input; bits in this location set to 1 signify an out

put function in the port A related bit. Port A is located at 37137

($9111) and is also reflected at location 37151 ($911F).

Also see 37147 ($91 IB) bit 0 for port A latch enable bit. If input

latching is disabled, any input directed port A bits will, at any time,

show the current associated pin status of high or low. Remember

that latched mode reads data only when a transition on CA1 line

occurs. See location 37148 ($911C).

Power-on/reset and the RUN/STOP-RESTORE keys reinitialize

this register to 128 ($80) (serial attention out for output, rest for i j

input) through the INITVIA* routine. <—/

37149 $9114 V1A1T1CL
Timer 1 least significant byte (LSB) of count. LJ

This timer is used for RS-232 and user port transmit/receive and
tape write timing.

When setting this byte, the timer 1 latch at location 37142 LJ

($9116) is set with the desired value rather than this location. Refer

to location 37143 ($9117) for the sequence of loading timer 1 and

150

LJ

37143

the resulting 6522 actions. Location 37159 ($9127) details the tech

nique used to calculate the value to place in timer 1 to accomplish

the desired interval before an interrupt occurs.

37141 $9115 VIA1T1CH
Timer 1 most significant byte (MSB) of count.

This location is used with the LSB of count that was stored in

location 37140 ($9114). See the description and references at that

location. The timer may be started again without an interrupt by

storing a new value in this location.

Setting this byte of timer 1 starts the timer. See location 37143

($9117) for a description of this effect.

The OPENRS* routine calculates the values for timer 1 and

timer 2 and stores the result in location 665-666 ($299-29A) until

they're needed for timing of the RS-232 session protocol.

37142 $9116 VIA1T1LL
Timer 1 low order (LSB) latch byte.

Refer to location 37143 ($9117) for the description of this byte's

use.

37143 $9117 VIA1T1LH
Timer 1 high order (MSB) latch byte.

This timer is used by the Kernal for tape and RS-232 timing.

The INITVIA* routine disables the PB7 output mode and selects

the free-running mode.

The steps and effects involved in using timer 1 are:

• The programmer chooses the time interval desired, whether it

is to be a one-shot time interval or free-running mode, and whether

PB7 is to be pulsed when the timer expires. If PB7 output is selected,

be sure to set bit 7 of 37138 ($9112) to 1, which allows output on

PB7.

• The control register at 37147 ($91 IB) is set to the options

desired.

The interrupt enable bits are set or cleared in location 37149

($91 ID). See that location for details.

• Store the LSB of the timer period desired in 37140 ($9114).

• Store the MSB of the time period in 37141 ($9115). This

causes the VIA to also copy the value into this location, and starts

the countdown of timer 1. This is preceded by the VIA copying the

values in location 37142 ($9116) into location 37140 ($9114), the

low order latch into the low order counter. The flag register at

address 37149 ($91 ID), bit 6, is set to 0, and if the PB7 output

option was specified, the PB7 line is pulled low to 0.

151

u

• The counter in timer 1 counts down at the rate of the system <—»

clock. See the description of the clock rate at location 37159 ($9127).

• When the count in timer l's LSB and MSB reaches zero, the , (

flag in 37149 ($91 ID) bit 6 is set to 1, an NMI interrupt is signaled LJ
to the 6502 if the bits in 37150 ($91 IE) allow it, and PB7 line is

pulled high or inverted. It's inverted if this was opted for in location

37147 ($91 IB), whether or not the interrupt has been enabled in [_J
location 37149 ($91 ID).

In free-running mode, the values from the latches are reloaded

into the counter bytes automatically and the countdown starts anew,

generating an interrupt every time the count expires, and generating

a waveform on PB7 if its output was selected. A complex waveform

can be generated on PB7 by the following steps:

1. Set timer 1 count bytes with value A.

2. Set timer 1 latch bytes with value B.

3. When bit 6 of 37149 ($91 ID) is set by the VIA, load the next

desired value into the latches. This value is loaded into the counters

when the current counters expire.

4. Read the timer 1 count LSB to clear the bit 6 flag in 37149

($911D).

5. Go to step 3.

• The interrupt flag is not cleared until the timer 1 counter LSB

is read or the MSB is modified by the program.

37144 $9118 VIA1T2CL
Timer 2 low order (LSB) counter and LSB latch.

Putting a value in this byte initializes the latch component,

while reading this location obtains the value stored here and resets

the 37149 ($91 ID) interrupt flag.

See the more detailed description of this byte at location 37145

($9119).

37145 $9119 VIA1T2CH
Timer 2 high order (MSB) counter and MSB latch.

Timer 2 can be used as an interval timer or a pulse counter.

The Kernal uses timer 2 to time the receive side of RS-232 for

RS-232 NMI routines. The INITVIA* routine sets timer 2 to be an

interval timer. However, bit 5 of location 37147 ($91 IB) can select

the mode of timer 2 as either an interval timer or PB6 pulse counter.

Bit 5 of location 37149 ($91 ID) is the interrupt flag, and bit 5 of

location 37150 ($91 IE) is used to enable the interrupt generated by
timer 2.

Putting a value here initializes the latch component and stores

the LSB latch into the LSB counter component. The interrupt flag in
37149 ($91 ID) is cleared, the IRQ line is reset, and the timer is

152

37146

started. This occurs whether timer 2 is active or not, and so can be

used to retrigger it. Reading this location obtains the value stored

here.

In order to use this as an interval timer, several things need to

be done:

• Set the enable flag in bit 5 of 37149 ($91 ID), if desired.

• Set the mode for timer 2 in location 37147 ($91 IB).

• Store the desired value in the LSB byte.

• Store the MSB of the time period in location 37145 ($9119).

This begins the countdown of timer 2. First the VIA copies the low

order latch into the low order counter, and then the flag register

37149 ($91 ID) bit 5 is set to 0.

• The count in timer 2 is counted down at the rate of the system

clock. See the description of the clock rate at location 37159 ($9127).

• When the count in timer 2's LSB and MSB reaches zero, the

flag in 37149 ($91 ID) bit 5 is set to 1 and an NMI interrupt is sig

naled to the 6502 if the bits in 37150 ($91 IE) allow it.

• The counter in timer 2 is allowed to roll over and begin count

ing down from 65535 ($FFFF). This tells an interrupt routine how

long ago the interrupt occurred.

The steps are somewhat different when timer 2 is used as a PB6

pulse countdown counter:

• Set the enable flag in bit 5 of 37149 ($91 ID), if desired.

• Set the mode for timer 2 in 37147 ($91 IB).

• Set the data direction register for input on PB6.

• Determine the number of pulses to be counted. Timer 2 counts

down from this value and sets the interrupt flag at rollover from 0 to

65535. The NMI interrupt is signaled if the interrupt for this timer is

enabled at location 37150 ($91 IE).

• Store the LSB of the count desired.

• Store the MSB of the count desired. This starts the count.

• When a negative pulse is detected on PB6, the counter will be

decremented.

• The interrupt bit can be cleared by reading the LSB of the

count; the countdown can be retriggered by writing to the MSB.

Timer 2 can also be used as a shift clock for the shift register at

37146 ($911A). See the description of that location.

37146 S911A VIA1SR
Shift register for parallel/serial conversion.

The Kernal does not use this shift register.

The shift register provides a mechanism to convert between
serial and parallel data and may be used for communicating with
devices on the user port of the VIC-20. This VIA does not have a
connection from CBl and CB2 to the serial port, so this shift register

153

37147

may be used for the user port only.

Serial I/O is slower but simpler than parallel I/O. A 4040 disk

drive on an IEEE-488 card installed in the VTC-20 parallel user port

is at least eight times as fast as the serial 1540/1541 disk drive.

The shift register can also be used to perform variable frequency
pulsing of an output line.

Bit 2 of both the interrupt enable register and the interrupt flag

register corresponds to the shift register.

Bits 4-2 of the auxiliary control register at 37147 ($91 IB) are

used to select the shift register mode.

The shift register shifts out bit 7 onto the CB2 line. Storing a

value in the shift register starts the shift out. When it's used for

input, the bit from CB2 is put into bit 0.

Reading or writing the shift register starts the shift in. To shift in

the next byte of data, the value shifted into the register is read. Bits

are shifted and stored/sent whenever a pulse is detected on line

CB1. The shift register is shifted one bit to the left afterward.

This pulse can be generated in several ways. An external clock

(i.e., disk drive) can pulse the CB1 line up to 511.36 kHz. Or the

system clock can be converted to a value up to 511.36 kHz and used

to clock CB1. The LSB of timer 2 can even be used as a delay

between CB1 pulses. A shift counter counts the CB1 pulses and sets

the interrupt flag after the eighth shift. In free-running mode, the

pulse counter is not used and the bits circulate within the shift

register.

See the VIC-20 Programmer's Reference Guide, page 232, for

details of using the shift register to obtain sound from the user port.

37147 $9HB VIA1ACR
Auxiliary control register.

The auxiliary control register is used to control the options asso

ciated with timer 1, timer 2, the shift register, and the way that port

A and B are latched with data.

The Kernal initializes this register to 64 ($40) when power-on/

reset or the RUN/STOP-RESTORE keys are pressed. See the bit

descriptions below marked with an asterisk (*) for the default values.

The bits and possible values in this location are:

Bits 7-6: Timer 1 options

See the description of timer 1 starting at location 37140 ($9114)

00 single interval mode, no PB7 output pulses

*01 free-running mode, no PB7 output pulses

10 single interval mode, PB7 negative pulsed
11 free-running mode, PB7 square wave (invert last pulse)

Bit 5: Timer 2 options

See the description of timer 2 starting at location 37144 ($9118).

154

*0 single interval timing

1 countdown incoming PB6 pulses

Bits 4-2: Shift register options

See the description of the shift register starting at location 37146

($911A).

*000 shift register disabled

001 input data on line CB2 to shift register bit 0, using timer 2

LSB; output clock pulses on line CB1.

010 input data on line CB2 to shift register bit 0, using system

clock; output clock pulses on line CB1.

011 output data on line CB2 from shift register bit 7, using timer

2 LSB; recirculate bit 7 to bit 0, free running. CB2 can be connected

to an amplifier for sound.

100 output data on line CB2 from shift register bit 7, using timer

2 LSB as delay clock.

110 output data on line CB2 from shift register bit 7, using sys

tem clock

111 output data on line CB2 from shift register bit 7, using the

external clock input on CB1.

Bit 1: Port B latch enable options

Port B is located at 37136 ($9110).

*0 Port B to reflect changing values on pins

1 Port in latch mode. If used for input, port B will show the sta

tus of the lines when a CB1 interrupt occurred. Otherwise, the

changing status of the lines is not reflected in the port.

Bit 0: Port A latch enable options

Port A is located at 37137 ($9111) and 37151 ($91 IF).

*0 Port A to reflect changing values on pins

1 Port in latch mode. If used for input, port A will show the sta

tus of the lines when a CA1 interrupt occurred. Otherwise, the

changing status of the lines is not reflected in the port.

37148 $9HC VIA1PCR
Peripheral control register for handshaking.

This byte contains the options for CA1, CA2, CB1, and CB2

lines. The mirror of port A that is at location 37151 ($91 IF) can be

used instead of port A, if you do not want to affect the port A

related control line.

The following Kernal routines modify the Peripheral Control

Register (PCR):

• IRQ examines bits 3-1 to determine if the tape motor should

be turned off.

• CLOSE for an RS-232 device sets this back to initial values.

• OPENRS for an RS-232 device sets this back to initial values.

• TAPE turns on the tape motor.

155

37148

• TNOFF turns off the tape motor.

• SEROUT1* turns off bit 5 to send a 1 to the device.

• SEROUTO* turns on bit 5 to send a 0 to the device. \ I

The INITIA* Kernal routine sets this byte to the bit values

marked with an * below when power-on/reset or the RUN/STOP-

RESTORE keys are pressed. } I
Bits 7-5: CB2 line control. CB2 is used for serial data out, interrupt v—s
input, device output, or shift register input or output. In the latter

case, these bits are ignored. The interrupt flag register (IFR) is at

location 37149 ($91 ID). Bit 3 of the IFR is used for a CB2 interrupt.

000 Input mode

This value sets IFR bit 3 on a high to low transition of CB2 and

clears the IFR bit 3 when port B is read or written to.

001 Input mode

These bit values set IFR bit 3 on a high to low transition of CB2, but

do not clear IFR bit 3 when port B is read or written to. IFR bit 3 is

cleared by writing a 1 to it.

010 Input mode

This value sets IFR bit 3 on a low to high transition of CB2 and

clears IFR bit 3 when port B is read or written to.

011 Input mode

This sets IFR bit 3 on a low to high transition of CB2, but does not

clear IFR bit 3 when port B is read or written to. IFR bit 3 is cleared

by writing a 1 to it.

100 Output mode (handshake)

This sets CB2 line to low when port B is written to. CB2 will be set

high when a CB1 transition occurs.

101 Output mode (pulse)

CB2 line is set low for one cycle when port B is written to with this

bit value.

110 Output mode (manual)

This value sets CB2 to be held low.

*111 Output mode (manual)

CB2 to be held high when this value is selected. This is the default

setting for these three bits. r ,-

Bit 4: CB1 line control. CB1 is used to accept an interrupt for '*—>

received data, as a transition of voltage control line, and as output

for the shift register clocking pulses. The fourth bit of the IFR (Inter- i .

rupt Flag Register) at 37149 ($91 ID) is used to flag a CB1 interrupt. LJ
*0 IFR bit 4 is set on a high to low transition of CB1 when the

bit is set to this value. This is the default setting of this bit.

1 IFR bit 4 is set on a low to high transition of CB1. \ |
Bits 3-1: CA2 line control. CA2 is used for tape motor control.

(By VIA design, it could be used for interrupt input or device

output.) Jj

156

n

n

' The 0 bit of the IFR at 37149 ($91 ID) is used to flag a CB1 interrupt.
000 Input mode

fH This value sets IFR bit 0 on a high to low transition of CA2 and

1 clears CA2 if port A is read or written to.
001 Input mode

<—I Sets IFR bit 0 on a high to low transition of CA2, but does not clear
• I it if port A is read or written to. IFR bit 0 is cleared by writing a 1 to

it.

010 Input mode

Setting the three bits to this value sets IFR bit 0 on a low to high
transition of CA2 and clears CA2 if port A is read or written to.

011 Input mode

Sets IFR bit 0 on a low to high transition of CA2, but does not clear
it if port A is read or written to. IFR bit 0 is cleared by writing a 1 to

it.

100 Output mode (handshake)

Selecting this value sets CA2 low when port A is read or written to.

101 Output mode (pulse)

This value outputs a one-cycle pulse of 0 following a read or write of

port A.

110 Output mode (manual)

CA2 is held low with this value.

*111 Output mode (manual)

The default setting for these three bits, this holds CA2 high.

Tape motor: 12,14=on; 2,4,6,10=off

To read: 110=on; lll=off

To set: lll=on; 110=never on

lll,110=on; any non-llx=off

A nonzero value in 192 ($C0), which is possible only if some

tape buttons are down, prevents any change of tape motor switch—

within the default IRQ routine only.

During tape read or write, location 192 ($C0) is set to nonzero

once a tape button has been pressed and will be reset to 0 once the

tape action is completed. A 0 value here, which is possible with

either some buttons down or no buttons down, allows the tape

motor to be turned on within the normal IRQ routine if location

37148 ($911C) has bits 2 and 3 on. This location has no control over

tape motor settings outside of the default IRQ handler.

Bit 0: CA1 line control. This is directly wired to the RESTORE key.

A CA1 line can normally be used to generate an interrupt on a

high to low or low to high transition of CA1. Bit 1 of the IFR at

37149 ($91 ID) is used to flag a CA1 interrupt. As you realize by

now, a CA1 interrupt on VIA 1 causes an NMI interrupt on the 6502

chip. The VIA can still generate interrupts while the NMI is pro

cessed by the 6502. An NMI interrupt can interrupt a previous one,

stacking the previous interrupts information for later processing. The

157

expansion port also has a line (pin W) that connects to the 6502

NMI pin.

0 IFR bit 4 is set on a high to low transition of CB1.

*1 IFR bit 4 is set on a low to high transition of CB1.

The effect of placing values in this location, using the statement

POKE 37148,(PEEK(37148)AND 241)OR nn

where nn is:

0, 2, 4, 6 Stops the motor

8 No change

10 Stops the motor

12, 14 Starts the motor

37149 S91ID VIA1IFR*
Interrupt flag register (IFR).

This register is used to generate a VIA IRQ to the 6502 NMI line

when any of bits 1-6 are on. The corresponding bit in the interrupt

enable register (IER) at location 37150 ($91 IE) must be set at 1,

signifying an interrupt enabled, and bit 7 of the IER must also be on.

This is accomplished by the VIA tying bit 7 of this location to the

6502 NMI line. Bit 7 is turned on when any other bit in this byte is

flagged, or turned on. Note that when reading bit 7 of the IER, it

will always be presented as a one, but could in fact be a zero. It

takes an explicit write to bit 7 to insure its state.

The conditions that set and clear the interrupt flag bits are

reviewed here and are also discussed at location 37148 ($911C), but

you can also set or reset a flag by simply setting the appropriate bit

in this location.

When the NMI routine gets control, it tests for the RESTORE

key being pressed; if the STOP key is not also pressed, it ignores the

RESTORE key. It then checks for and starts any ROM at location

40960 ($A000). If no ROM is present, it checks for a timer 1, timer 2,

or RS-232 receive interrupt. If the shift register, CA2, or an RS-232

output interrupt is present, it's not handled by the NMI routines.

The interrupt flags have the following meaning:

Bit 7: IRQ (NMI)

This bit is set by any enabled interrupt flag bit being set. By

storing a 0 here, you clear all interrupts. It's also reset if all other

interrupt flags are currently set to 0.

Bit 6: Timer 1 interrupt

This bit is set by an expiration of timer 1, and reset when a read

of timer 1 LSB or a write of timer 1 MSB takes place.

Bit 5: Timer 2 interrupt

Set by expiration of timer 2, this bit is reset when a read of

timer 2 LSB or a write of timer 2 MSB occurs.

158

37150

Bit 4: CB1 transition interrupt

Bit 4 is set by the transition of the CB1 line and reset by a read

or write on port B.

Bit 3: CB2 transition interrupt

This bit is set by the transition of the CB2 line and reset by a

read or write on port B.

Bit 2: Shift register interrupt

Set by eight shifts of the shift register, this bit is then reset by a

read or write to the shift register.

Bit 1: CA1 transition interrupt

Bit 1 is set by a transition of the CA1 line and reset by a read or

write of port A.

Bit 0: CA2 transition interrupt

This bit is set by a transition of the CA2 line and reset by a read

or write of port A.

37150 $9HE VIA1IER 82
Interrupt enable register (IER).

This byte is used to indicate which interrupt flags in location

37149 ($91 ID) (the IFR) should cause a VIA IRQ to the 6502 NMI
line. The interrupt bits in the IFR are set and reset regardless of the
programmer's wish to ignore or detect a particular condition. This
byte provides the programmer with a means to control the genera

tion of the VIA IRQ.
Each bit in this byte corresponds to the same-numbered bit in

the IFR, except for bit 7, which is a control bit. If bit 7 is set to 1, all
the following bits in this byte that contain a 1 enable the

corresponding bit in the IFR. For example, if this byte contained

binary 1010 0101, then interrupt bits 5, 2, and 0 of the IFR would be
enabled. This would cause a VIA IRQ if those IFR bits were turned

on.

If bit 7 is set to 0, the remaining bits in this byte that are set to

1 indicate the correponding bits in the IFR that are to be disabled.

Binary 0101 1010 placed into this byte, for instance, would cause

bits 6, 4, 3, and 1 to be disabled in the IFR.

In practice, you would disable the bits of the IFR that you wish

to ignore, then enable those that you wish to use.

A value of binary 0111 1111 ($7F) would disable all interrupts,

while binary 1111 1111 ($FF) would enable all.

This byte must be set by POKEing a value into the location;

changing an individual bit with an AND or OR will have no effect.

Note that when reading bit 7 of the IER, it will always be presented

as a 1, but could in fact be a 0. It takes an explicit write to bit 7 to

insure its state.

See location 37149 ($91 ID) for conditions that set the VIA IRQ

flags.

159

The Kernal RS-232 routines test and set this byte extensively.
The serial and tape routines, however, leave this byte as initialized

The Kernal INITVIA* routine sets the IER so that only a RE
STORE key (CAl) interrupt is enabled. The bits and their settings are:
Bit 7: Enable/disable control bit

0 disable IFR bits corresponding to bits in this byte set to 1
1 enable IFR bits corresponding to bits in this byte set to 1
In each of the remaining bits, a 0 indicates that the function is

disabled, while a 1 signifies that the function is enabled.
Bit 6: Timer 1 interrupt

Bit 5: Timer 2 interrupt

Bit 4: CB1 interupt

Bit 3: CB2 interrupt

Bit 2: Shift register interrupt

Bit 1: CAl (RESTORE key) interrupt
Bit 0: CA2 interrupt

371S1 S9I1F VIA1PA2

This is a mirror of port A I/O register at location 37137 ($9111),
except that the CAl and CA2 control lines are not affected when
using this port A reflection. This is described at location 37148
($911C).

Location Range: 37152-37167 ($9120-$912F)
6522 Versatile Interface Adapter 2

VIA 2 is used by the VIC-20 for keyboard scanning, jiffy inter

rupt generation, serial service request interrupt detection, tape I/O,

and joystick joy 3 reading.

When timing is being performed for the tape drive, the IRQ tim

ing is suspended, thereby causing the STOP key, and the updating

of the BASIC variables TI and TI$, to be temporarily ignored.

STOP key scanning is implemented by leaving PB3 active,

which is done by setting bit 3 to 0 and all other bits to 1. When a

test for the STOP key is called for, PAO is checked for a value of 0.

The routine STOP is used to detect the STOP key and is vectored

from location 808 ($328). The BASIC routine NEWSTT calls STOP

after each BASIC statement processed during run mode. Location

145 ($91) discusses the saved result of the keyboard STOP key test

that senses other keys as a by-product.

Unlike VIA 1, VIA 2 ports are dedicated to the keyboard scan

function and only the CAl, CA2, CB1, and CB2 control lines are

accessible to the user. These are available through the serial and tape

ports. VIA 1 is the better choice for user control of VIA ports, unless

you're thinking of attaching to the keyboard connector.

Whereas VIA 1 presents a VIA IRQ to the 6502 as an NMI

160

n

37152-37167

' ' (Non-Maskable Interrupt) signal, VIA 2 IRQ use the 6502 IRQ line
which may be masked by setting the proper flag in the processor

r-. status register (.P). See location 783 ($30F) for details of setting and

i ! testing .P.

_ The Second 6S22 VIA Chip's Registers
! I The 6522 VIA chip registers are actually located in the VIA

chips themselves. No RAM corresponds to these VIA registers. When
POKEing or PEEKing values, you are actually accessing the VIA

chips themselves. Special rules for reading and writing bytes may

sometimes apply because of this.
Power-on/reset and the RUN/STOP-RESTORE keys cause

these values to be reinitialized by the INITVIA* routine. The

initialization value will be shown at each VIA 2 location.

Schematic diagrams of the various VIC-20 ports and the VIA

line connections to them are shown in the introduction to VIA 1.
VIA 2 lines are included on the diagrams. However, the keyboard

connector port is managed by VIA 2, and so is shown below in

Table 6-5.

n

n

ni i

H

"raoie

Port

Pin

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

6-a. ni

Port

/bit

B7

B6

B5

B4

B3

B2

Bl

BO

A7

A6

A5

A4

A3

A2

Al

A0

Byooara uoni

VIA

Line

(VIA1,CA1)

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PBO

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PAO

iBGtur fins

Use

ground

(KEY)

RESTORE key

+5 volts

column 7 of keyboard; also joy 3 on

game port pin 4

column 6 of keyboard

column 5 of keyboard

column 4 of keyboard

column 3 of keyboard, also tape

write on tape port E-5 left on for

STOP key scanning

column 2 of keyboard

column 1 of keyboard

column 0 of keyboard

row 7 of keyboard

row 6 of keyboard

row 5 of keyboard

row 4 of keyboard

row 3 of keyboard

row 2 of keyboard

row 1 of keyboard

row 0 of keyboard

161

Refer to location 197 ($C5) for more information on the way the

routine IRQ uses the keyboard matrix. The IRQ routine calls the

SCNKEY routine, as you can also, to perform the keyboard scan.

Location 145 ($91) STKEY discusses the saved result of the keyboard
STOP key test that senses other keys as a by-product.

37152 $9120 VIA2PB*
Port B I/O register.

This port is used for scanning the keyboard columns.

Handshaking control lines CB1 and CB2 are controlled by this

port, and when reading or writing these bits, bits 4 and 3 of 37165

($912D) are automatically reset. Location 37164 ($912C) is used to
select the CB1 and CB2 status.

The INITVIA* routine sets this port to output mode in the data

direction register at 37154 ($9122). No other routines change that
setting.

To scan a particular column, you need to turn off the bit

corresponding to that column and turn on all the other bits. Refer to

port A at location 37153 ($9121) for more information on the

mechanics of keyboard column/row scanning.

This byte normally contains 247 ($F7) (11110111 in binary),

except when SCNKEY or UDTIM is examining the keyboard.

The bits' functions are:

Bit 7: Column 7 of keyboard; also joy 3 on game port pin 4

Bit 6: Column 6 of keyboard

Bit 5: Column 5 of keyboard

Bit 4: Column 4 of keyboard

Bit 3: Column 3 of keyboard; also tape write: tape port E-5

Left on (0) for STOP key scanning.

Bit 2: Column 2 of keyboard

Bit 1: Column 1 of keyboard

Bit 0: Column 0 of keyboard

To read the joystick joy 3 switch, you could use:

POKE 37154,127 : REM set data direction register,

: REM some keyboard keys ignored.

J3=PEEK(37152) AND 128 : REM 0=on; l=off

POKE 37154,255 : REM restore the data direction

371S3 $9121
Port A I/O register.

This port is used for keyboard row scanning.

Handshaking control lines CA1 and CA2 are managed by this

port, and when reading or writing these bits, bits 1 and 0 of 37165
($912D) are automatically reset. Location 37166 ($912C) is used to

select the CA1 and CS2 status.

162

n

n

n

n

H

The INITVIA* routine sets this port to input mode in the data

direction register at 37155 ($9123). No other routines change that

setting.

A mirror port A register is located at 37167 ($912F) and can be

used instead of this register when you don't want to reset CA1 and

CS2 by accessing the register.

Here's what each bit of this location scans:

Bit 7: Row 7 of keyboard

Bit 6: Row 6 of keyboard

Bit 5: Row 5 of keyboard

Bit 4: Row 4 of keyboard

Bit 3: Row 3 of keyboard

Bit 2: Row 2 of keyboard

Bit 1: Row 1 of keyboard

Bit 0: Row 0 of keyboard

Scanning for keys pressed is a two-step process. First, a column
of keys is selected by turning on all bits of port B and turning off the
bit corresponding to the column to be examined. Column 0 is nor

mally the first column scanned. Then by examining port A, the key

pressed is detected by seeing which bit is set to 0. If no keys were

pressed in that column, port A would contain 255 ($FF). The next

column is selected and the row is again read from port A.

No more than one key per column can be sensed at the same

time. However, a key pressed on a different column can be detected,

since all eight columns are examined consecutively. The SCNKEY

routine performs this scanning of the keyboard, leaving the resulting

value in location 203 ($CB). You may call this routine yourself. It is

invoked automatically on every IRQ routine entry. The value in 203

($CB) is stored as an index value into the keyboard decoding tables

starting at NORMKEYS* 60510 ($EC5E).

The key values placed in location 203 ($CB) are listed in loca

tion 197 ($C5). Refer to the table in that location for each key's

value.

The STOP key is represented by a code of 24 in this location.

You need to disable the STOP key in a program to see this value.

See the vector description at 808 ($328) for details of how to disable

the STOP key.

The SCNKEY routine is used to translate the values in location

203 ($CB) into ASCII by picking up the nth value in the keyboard

decoding tables at NORMKEYS* 60510 ($EC5E), where n is the con
tents of 203 ($CB). SHIFT, Commodore key, and CTRL key flags at

location 653 ($28D) are also used to determine the table. The result

ing ASCII value is placed in the keyboard buffer at location 631

($277).

For STOP key testing purposes, the column in port B is always

163

left as 247 ($F7) so that a read of port A can quickly determine if

PAO is 0. The subroutine to perform this test is STOP, which sets the

zero flag in .P if the STOP key is pressed. Otherwise, it returns the
value of port A in .A, which could be another key in column 3.
Location 145 ($91) is used to save the results of the STOP routine
returned accumulator. Every other key on the bottom row of the

keyboard may be tested for in this location, without doing a GET in
BASIC.

Values in location 145 ($91) signify:

255 ($FF) no key pressed

254 ($FE) STOP key pressed, STOP routine will find and act on
253 ($FD) left SHIFT key pressed

251 ($FB) X key pressed

247 ($F7) V key pressed

239 ($EF) N key pressed

223 ($DF) comma key pressed

191 ($BF) slash key pressed

127 ($7F) cursor up key pressed

Table 6-6. Keyboard Scanning Using Port B and Port A
of VIA 2

Bit name

Decimal

Hex

Binary

PA7

127

$7F

0111

1111

PA6

191

$BF

1011

1111

ROW loaded from $9121 or

PA5

223

$DF

1101

1111

PA4

239

$EF

1110

1111

PA3

247

$F7

1111

0111

PA2

251

$FB

1111

1011

PA1

253

$FD

1111

1101

$912F

PAO

254

$FE

1111

1110

COLUMN stored in $9120

Bit Dec Hex Binary

PB7 127 $7F 0111 1111 i7 HOME 0 8

PB6

PB5

PB4

PB3

PB2

PB1

191

223

239

247

251

253

$BF

$DF

$EF

$F7

$FB

$FD

1011

1101

1110

1111

1111

1111

1111

1111

1111

0111

1011

1101

f5

f3

fl

cursor

down

cursor

right

RETURN

t

right

SHIFT

/

♦

(5)

:

L

P

O

K

M

N

J

I

U

H

B

V

G

Y

T

F

C

X

D

R

E

S

z

left

SHIFT

A

W

O

Commo

space

STOP

CTRL

PB0 254 $FE 1111 1110 DELETE £ + 9

37154 $9122 VIA2DDRB
Data direction register for port B.

Each of these eight bits corresponds to the same-numbered bit

164

H

n

n

n

n

in port B. When a bit in this location is set to 0, the corresponding

port B bit is used for input. A bit set to 1 in this address indicates an

output function in the port B related bit. Port B is located at 37152

($9120).

Power-on/reset and the RUN/STOP-RESTORE keys cause

initialization to 255 ($FF), signifying all lines as output, by the

INITVIA* routine.

To read the joystick joy 3 switch, you could use the following

routine:

POKE 37154,127 : REM set data direction register

: REM some keyboard keys ignored

J3=PEEK(37152) AND 128 : REM 0=on; l=off

POKE 37154,255 : REM restore the data direction

37155 $9123 VIA2DDRA*
Data direction register for port A.

Each of the bits in this register has a corresponding bit in port

A. When one of these bits is set to 0, the corresponding port A bit is

used for input. Setting a bit in this location to 1 indicates an output

function in the port A related bit. Port A is located at 37153 ($9121)

and is also reflected at 37167 ($912F).

Also see location 37163 ($912B) bit 0 for port A latch enable bit.

If input latching is disabled, any input directed port A bits will, at

any time, show the current associated pin status of high or low.

Latched mode will read data only when a transition on CA1 line

occurs. See location 37164 ($912C).

Power-on/reset and the RUN/STOP-RESTORE keys cause

initialization to 00 ($00) by the INITVIA* routine.

37158 $9124 VIA2T1CL
Timer 1 least significant byte (LSB) of count.

This timer is used to generate the IRQ 60 times per second and

to time the tape drive read and write functions.

Timer 1 is initialized to 17033 ($4289) by the VIA initialization

routine. See location 37159 ($9127) for the method used to deter

mine the value placed in timers which will obtain the time interval

required.

When setting this byte, the timer 1 latch at 37142 ($9126) is set

with the desired value rather than this location. See location 37143

($9117) for the sequence of loading timer 1 and the resulting 6522

actions. You can also refer to location 37159 ($9127) for the tech
nique used to calculate the value to place in timer 1 to accomplish

the desired interval before an interrupt occurs.

165

D

37157

~37157 $9125 VIA2T1CH
Timer 1 most significant byte (MSB) of count.

This timer is used to generate the IRQ 60 times per second and | |
to time the tape drive read and write functions.

The tape read and write routines replace the value used here for

the IRQ and the vector for the IRQ routine, and use timers 1 and 2 | |
for timing of the tape function. This is why time is lost in the BASIC

variable TI and TI$ during tape functions. The timer 1 jiffy IRQ

value, along with the associated vector, is replaced by the tape

routines when they have finished their task.

This byte is used with the LSB of the count stored in the timer 1

LSB byte at location 37156 ($9124). See the description and ref

erences at that location. The timer may be started again without an

interrupt (retriggered) by storing a new value in this location.

Setting this byte of timer 1 starts the timer running. See location

37143 ($9117) for a description of this effect. You'll need to adjust

the addresses mentioned in that location by adding 16 to have the

correct locations for VIA 2.

37158 $9126 VIA2T1LL
Timer 1 low order (LSB) latch byte.

Timer 1 is used to generate the IRQ 60 times a second and to

time the tape drive read and write functions.

The calculations used to determine the value for timer 1 are

explored at location 37159 ($9127).

See the description of VIA 1 timer 1 latches at 37143 ($9117) for

details of how the timer latches are associated with the timer 1

counts. Note the differences in addresses for VIA 1 and 2 locations.

371S9 $9127
Timer 1 high order (MSB) latch byte.

Timer 1 is initialized to 17033 ($4289) by the VIA initialization

routine.

The tape read and write routines replace the value used here for

the IRQ and the vector for the IRQ routine, and use timers 1 and 2 (|
for timing of the tape function, restoring the timer 1 value and the

IRQ vector when done.

In the article "Slow LIST on the VIC-20," by Ken Bowd, in the F f
June 1983 issue of COMPUTE!, the techniques described for slowing L-I
the LIST output to the screen are actually modifying the VIA 2 timer

1 located at this location. Bowd's article described the modification <—i

of location 37879 ($93F7), which is actually a reflection of this VIA LJ
timer byte, caused by the address decoding that sees the VIA reg

isters when an empty block of RAM/ROM is accessed. •—

Lj
166

Lf

n

The idea explored in the article involved changing the IRQ timer

MSB latch so that the BASIC LIST command is interrupted by the

r-i IRQ routine often enough that LIST output to the screen is slowed,
; I making the program easier to read. By using POKE 37159,0, the

cursor becomes a blur because it is flashing so rapidly. When a LIST

rn is done under this condition, it is slowed considerably.
M Holding down or locking the SHIFT key causes the lines to be

displayed at the rate of one line every one and one-half seconds. In

addition, pressing the CTRL key with SHIFT down acts as a pause

key. The CTRL key by itself will slow the LIST to one line every 13

seconds. The cursor control keys are a little difficult to control with

this technique because they move the cursor so quickly. The STOP

key can still be used to break the LIST output, the printer still prints

at the normal rate if LIST is directed to it with a CMD statement,

and RUN/STOP-RESTORE will reset the VIA timer latch byte back

to its original value of 66 ($42).
The jiffy clock is obviously not accurate if the IRQ rate is modi

fied from its original value. This technique of changing the VIA 2

timer 1 high order latch in order to speed up or slow down the IRQ

interrupt can be used in other applications as well. The slowing

down of the Super Expander cartridge in order to customize its

drawing rate for games was suggested in the article. The lower the

number put into this location, the more often the IRQ interrupts are

called, while a number higher than the original value of 66 causes

the interrupts to happen more slowly, which will speed things up.

The cursor blink rate, which speeds up as the value is lowered, also

indicates the rate of the keyboard scan. When this location's value is

changed to 255, the cursor and keyboard keys react at about one-

quarter of their normal rate.

Keep in mind that a free-running timer is reloaded from the

latches once the interrupt has been flagged in the interrupt flag reg

ister. By modifying the latch LSB/MSB, you are changing more than

just the current time interval value.

The LSB and MSB counters and latches are related to each other

and used in conjunction to accomplish the desired timing/counting

]—] function. See location 37143 ($9117) for a description of the relation-

' ships. Make sure you adjust the addresses mentioned there by add
ing 16 for the corresponding VIA 2 locations.

i-m The timers in the VIAs can be used to time an interval between

i I about 225 microseconds and 64 milliseconds. The minimum of about
225 microseconds is due to the overhead involved in processing the

interrupt request presented when the timer expires. This range of

ij time intervals may be extended by using a location in memory to
count the number of interrupts that have occurred. In a BASIC pro

gram, the variables TI and TI$ access the jiffy clock at location 160

f| ($A0). This jiffy clock is updated by the IRQ routine, and is, in

167

H

u

□

essence, a software clock that counts the timer 1 expirations. LJ
The 6560 VIC chip includes a clock generator circuit that

receives the input from a 14.31818 megahertz (million cycles per sec- r- -

ond) two-phase oscillator clock. In Europe, the PAL standard os- LJ
dilator clock is 4.436187 megahertz. This frequency is used to

generate the correct TV picture frequency. In the USA, this 14.31818 _

frequency is divided by the 6560 VIC chip, producing a 1.02272 M
megahertz clock line (1.108224 megahertz for PAL European) for use

as a +5 volt clock for the 6502 and 6522 chips.

To calculate the values for the LSB and MSB of timer 1 or 2 in

either VIA, so that you can obtain the desired time interval, use the
formula:

(microseconds per interrupt * 1.02272) —2

Let's go through an example of an interrupt every millisecond.

One millisecond equals 1000 microseconds, so our formula for this
example is:

(1000 * 1.02272)^2

which equals 1021 if we round off. The MSB value would be the

integer value of 1021/256, or 3. The LSB value is 1021 -(256*3),

which equals 253. In hex, our LSB/MSB calculated values are ($FD/

$03).

The value used in timer 1 to cause the 60-per-second IRQ is

17033 ($4289), expressed in LSB/MSB as 137/66 ($89/$42). We can

determine the amount of time this represents by reversing the for

mula given, arriving at:

(17033 + 2)/1.02272 = microseconds per interrupt

This is 16,656 microseconds, 16.6 milliseconds, or .0166 seconds.

The maximum value that the LSB/MSB can hold is $FFFR We

can determine the amount of time this represents by again reversing

the formula, arriving at:

(65,535 + 2)/l.02272 = microseconds per interrupt

This equals 64,081 microseconds, 64 milliseconds, or .064 seconds.

Keep in mind that a free-running timer is reloaded from the p

latches once the interrupt has been flagged in the interrupt flag reg- I I
ister. By modifying the latch LSB/MSB, you are changing more than

just the current time interval value.

The four VIA timers can be used to "wake up" a routine after a j [
certain amount of time, or to time external events such as tape

movement, or even how long the lawn sprinklers have been on. You

may also want to use a VIA timer as a stopwatch to see how much j I

time an event takes, or as a counter of events. Timer 2 can count '—'
pulses coming in on PB6, and a timer 1 expiration can send a pulse

out on PB7. j—j

168

u

H

n
The auxiliary control register at location 37136 ($912B) is used

to select the interrupt options associated with the timers. See that

Pj location for the available options, and refer to location 37161 ($9129)
for a further description of setting the timers. The interrupt enable

register at 37166 ($912E) is used to select whether an interrupt is

f[generated for an expiration of timers 1 and 2. Location 37166

($912E) describes in detail the use of this register. The IRQ vector at

788 ($314) can be changed to point to your routine to count the

interrupts that have occurred and do any processing you wish done.

37160 $9128 VIA2T2CL
Timer 2 low order (LSB) counter and LSB latch.

This timer is used by the Kernal for the timing involved with

detecting serial device timeouts, such as failure to respond to a com

mand. It's also used with timer l%pe read/write timing.

Putting a value here initializes the latch component, while read

ing this location obtains the value stored here and resets the 37165

($912D) interrupt flag.

See the further description of this byte at location 37161

($9129).

37161 $9129 VIA2T2CH
Timer 2 high order (MSB) counter and MSB latch.

Timer 2 is used by the Kernal for the timing involved with

detecting serial device timeouts—for instance, failure to respond to a

command—and with timer 1 tape read/write timing.

Bit 5 of location 37163 ($912B) selects the mode of timer 2 as

either an interval timer or a PB6 pulse counter. Bit 5 of location

37165 ($912D) is the interrupt flag, and bit 5 of location 37166

($912E) is used to enable the interrupt generated by timer 2.

Putting a value here initializes the latch component, stores the

LSB latch into the LSB counter component, clears the interrupt flag

in location 37165 ($912D), resets the IRQ line, and starts the timer.

This occurs whether timer 2 is already active or not, and thus can

HI retrigger it. Reading this location obtains the value stored here.
! In order to use this as an interval timer, you need to:

• Set the enable flag in bit 5 of 37165 ($912D), if desired.

P| • Set the mode for timer 2 in 37163 ($912B).
• Store the desired value in the LSB.

• Store the MSB of the timer period in 37161 ($9129). This

fi begins the countdown of timer 2. Before the countdown starts, how-

ever, the VIA copies the low order latch into the low order counter,

and sets the flag register 37165 ($912D) bit 5 to 0.

n#The counter in timer 2 is counted down at the rate of the sys

tem clock. See the description of the clock rate at location 37159

($9127).
169

u

U

• When the count in timer 2's LSB and MSB reaches 0, the flag

in 37165 ($912D) bit 5 is set to 1 and an IRQ is signaled to the 6502
if the bits in 37166 ($912E) allow it. f 1

• The counter in timer 2 rolls over and starts counting down '—'
from 65535 ($FFFF) so an interrupt routine can tell how long ago the
interrupt occurred. >—,

In order to use timer 2 as a PB6 pulse countdown counter, you

would:

• Set the enable flag in bit 5 of 37165 ($912D), if desired.

• Set the mode for timer 2 in 37163 ($912B).

• Set the data direction register for input on PB6.

• Determine the number of pulses to be counted. Timer 2 counts

down from this value and sets the interrupt flag when the count

rolls over from 0 to 65535. The IRQ is signaled if the interrupt for

this timer is enabled at location 37166 ($912E).

• Store the LSB of the count desired.

• Store the MSB of the count desired. This starts the count.

• When a negative pulse is detected on PB6, the counter will be
decremented.

• The interrupt bit can be cleared by reading the LSB of the

count or the countdown can be retriggered by writing to the MSB.

Timer 2 can also be used as a shift clock for the shift register at

37146 ($911A). See the description of that location.

37162 S912A
Shift register for parallel/serial conversion.

The Kernal does not use this shift register.

The shift register provides a mechanism to convert between

serial and parallel data and can be used for communicating with

devices on the user port of the VIC-20. This VIA does not have a

connection from CB1 and CB2 to the serial port, so this shift register

may be used for the user port only.

Serial I/O is slower but simpler than parallel I/O. A 4040 disk

drive on an IEEE-488 card installed in the VIC-20 parallel user port

is at least eight times faster than the serial 1540/1541 disk drive. If

The shift register can also be used to perform variable frequency

pulsing of an output line.

Bit 2 of both the interrupt enable register and the interrupt flag f~ 1

register corresponds to the shift register. '—'
Bits four through two of the auxiliary control register at 37163

($912B) are used to select the shift register mode. ;—;

This register shifts out bit 7 onto the CB2 line. Storing a value in I 1
the register starts the shift out. When used for input, the bit from

CB2 is put into bit 0. _

Reading or writing the shift register starts the shift in. To shift in !_J

170 _

U

(I

37163

the next byte of data, you need to read the value shifted into the
register. Bits are shifted and stored/sent whenever a pulse is
detected on line CB1. The shift register is shifted one bit to the left
afterward. This pulse can be generated in several ways.

An external clock, for instance a disk drive, can pulse the CB1
line up to 511.36 kHz. The system clock can also be converted to a
value of up to 511.36 kHz and used to clock CB1. The LSB of timer
2 can be used as a delay between CB1 pulses. A shift counter counts

the CB1 pulses and sets the interrupt flag after the eighth shift. In
free-running mode, the pulse counter is not used, and the bits cir

culate within the shift register.

See the VIC-20 Programmer's Reference Guide, page 232, for

details of using the shift register to obtain sound from the user port.

37163 S912B VIA2ACR
Auxiliary control register.

The auxiliary control register is used to control the options asso

ciated with timer 1, timer 2, the shift register, and the way that port

A and B are latched with data.

The Kernal initializes this register to 64 ($40) at power-on/reset

or when the RUN/STOP-RESTORE keys are pressed. The bit values

marked with an asterisk (*) are those initialized when the computer

is first turned on, or after the RUN/STOP-RESTORE keys are

pressed.
The bit values and these values' meanings in this register are:

Bits 7-6: Timer 1 options. (See the description of timer 1 starting at

location 37156, $9124.)

00 single interval mode; no PB7 output pulses

*01 free running mode; no PB7 output pulses

10 single interval mode; PB7 negative pulses

11 free running; PB7 square wave, invert of last pulse

Bit 5: Timer 2 options. (See the description of timer 2 starting at

location 37160, $9128.)

*0 single interval timing

r"j 1 countdown incoming PB6 pulses

' Bits 4-2: Shift register options. (See the description of the shift reg
ister starting at location 37162, $912A.)

*000 shift register disabled

001 input data on line CB2 to shift register bit 0 using timer 2

LSB; output clock pulses on line CB1.

010 input data on line CB2 to shift register bit 0 using system

clock; output clock pulses on line CB1.

011 output data on line CB2 from shift register bit 7 using timer

2 LSB; recirculate bit 7 to bit 0, free running. CB2 can be connected

to an amplifier for sound.

171

LJ

37164-q

100 output data on line CB2 from shift register bit 7 using timer

2 LSB as delay clock.

110 output data on line CB2 from shift register bit 7 using sys- f /

tern clock. '—'

111 output data on line CB2 from shift register bit 7 using the

external clock input on CB1. r~-.

Bit 1: Port B latch enable options. Port B is located at 37152 ($9120). LJ
*0 Port B to reflect changing values on pins.

1 Port in latch mode. If used for input, port B will show the sta

tus of the lines when a CB1 interrupt occurs. Otherwise, the chang

ing status of the lines is not reflected in the port.

Bit 0: Port A latch enable options. Port A is located at 37153 ($9121)

and 37167 ($912F).

*0 Port A to reflect changing values on pins.

1 Port in latch mode. If used for input, port A will show the sta

tus of the lines when a CA1 interrupt occurs. Otherwise, the chang

ing status of the lines is not reflected in the port.

37164 S912C VIA2PCR 222
Peripheral control register for handshaking.

This byte contains the options for CA1, CA2, CB1, and CB2

lines. The mirror of port A at location 37167 ($912F) can be used

instead of port A, if you do not want to change the related control

lines CA1 and CA2.

The Kernal serial device routines modify this location to select

the handshaking with the current serial device.

The INITVIA* Kernal routine sets this byte (as marked with an *

below) at power-on/reset or when the RUN/STOP-RESTORE keys

are pressed.

Each bit and its possible values are:

Bits 7-5: CB2 line control. CB2 is used for serial data out, since it's

attached to the serial port pin 5, as well as for interrupt input, device

output, or shift register input or output, in which case these bits are

ignored. The interrupt flag register (IFR) is at 37165 ($912D). Bit 3 of

the IFR is used for a CB2 interrupt flag.

000 Input mode

Set IFR bit 3 on a high to low transition of CB2 and clear IFR bit

3 when port B is read or written to.

001 Input mode

Set IFR bit 3 on a high to low transition of CB2, but do not clear

IFR bit 3 when port B is read or written to. IFR bit 3 is cleared by

writing a 1 to it.

010 Input mode

Set IFR bit 3 on a low to high transition of CB2 and clear IFR bit

3 when port B is read or written to.

172

H
> Oil Input mode

Set IFR bit 3 on a low to high transition of CB2, but do not clear

_ IFR bit 3 when port B is read or written to. IFR bit 3 is cleared by

I writing a 1 to it.
100 output mode (handshake)

CB2 line will be set low when port B is written to, and it will be

|""[set high when a CB1 transition occurs.
101 Output mode (pulse)

CB2 line will be set low for one cycle when port B is written to.

*110 Output mode (manual)

CB2 line to be held low.

Ill Output mode (manual)

CB2 line to be held high.

Bit 4: CB1 line control. CB1 is used to accept an interrupt for

received data, as a transition of voltage control line, and as an out

put for the shift register clocking pulses. This control line is attached

to the serial port service request in pin. The fourth bit of the IFR

(Interrupt Flag Register) at location 37165 ($912D) is used to flag a

CB1 interrupt.

0 IFR bit 4 is set on a high to low transition of CB1.

*1 IFR bit 4 is set on a low to high transition of CB1.

Bits 3-1: CA2 line control. CA2 is used for the serial clock output

line and is attached to serial port pin 4. By VIA design, it could be

used for interrupt input or device output. Bit 0 of the IFR at location

37149 ($91 ID) is used to flag a CB1 interrupt.

000 Input mode

Set IFR bit 0 on a high to low transition of CA2, and clear this

bit if port A is read or written to.

001 Input mode

Set IFR bit 0 on a high to low transition of CA2, but do not

clear it if port A is read or written to. IFR bit 0 is cleared by writing

a 1 to it.

010 Input mode

Set IFR bit 0 on a low to high transition of CA2, and clear the

bit if port A is read or written to.

p-| 011 Input mode

! Set IFR bit 0 on a low to high transition of CA2, but do not

clear it if port A is read or written to. IFR bit 0 is cleared by writing

a 1 to it.

100 Output mode (handshake)

Set CA2 low when port A is read or written to.

101 Output mode (pulse)

Output a one cycle pulse of 0 following a read or write of port A.

110 Output mode (manual)

CA2 is held low.

*111 Output mode (manual)

CA2 is held high.

173

u

u

Bit 0: CA1 line control. This bit is used for tape reading in the VIC- Lj
20. It is attached to the tape port pin D-4.

A CA1 line can normally be used to generate an interrupt on a - -

high to low, or low to high transition of CA1. Bit 1 of the IFR at LJ
location 37149 ($91 ID) is used to flag a CA1 interrupt.

The expansion port also has a line (pin W) that connects to the

6502 NMI pin. lj
*0 IFR bit 4 is set on a high to low transition of CB1.

1 IFR bit 4 is set on a low to high transition of CB1.

37165 $9120 VIA2IFR
Interrupt flag register.

This register is used to generate a VIA IRQ to the 6502 IRQ line

when any of bits 1-6 are on and the corresponding bit in 37166

($912E), the IER (Interrupt Enable Register) is set to 1, and bit 7 of

the IER is also on.

This is accomplished by the VIA tying bit 7 of this location to

the 6502 IRQ line. Bit 7 is turned on when any other bit in this byte

is flagged, or turned on. Note when reading bit 7 of the IER that it

will always be presented as a 1, but could in fact be a 0. It takes an

explicit write to bit 7 to insure its state.

The conditions that set and clear the interrupt flag bits are

received here and were discussed at location 37164 ($912C), but you

may also set or reset a flag by simply setting the appropriate bit in

this location.

The interrupt flags in this register have the following meanings:

Bit 7: IRQ occurred

This bit is set by any enabled interrupt flag bit being set. By

storing a 0 here, you clear all interrupts. It is also reset if all other

interrupt flags are currently 0's.

Bit 6: Timer 1 interrupt

This bit is set by an expiration of timer 1, and reset when a read

of timer 1 LSB or a write of timer 1 MSB takes place.

Bit 5: Timer 2 interrupt

Set by expiration of timer 2, this bit is reset when a read of

timer 2's LSB or a write of timer 2's MSB occurs. j J

Bit 4: CB1 transition interrupt

This bit is set by the transition of the CB1 line and reset by a

read or write on port B. I "i

Bit 3: CB2 transition interrupt LJ
Set by the transition of the CB2 line, bit 3 is reset by a read or

write on port B. —-

Bit 2: Shift register interrupt U
This bit is set by eight shifts of the shift register and reset by a

read or write to the shift register

Bit 1: CA1 transition interrupt j j

174

u

Bit 1 is set by a transition of the CA1 line, while it is reset by a

read or write of port A.

Bit 0: CA2 transition interrupt

This bit is set by a transition of the CA2 line and reset by a read

or write of port A.

37166 S9I2E VIA2IER*
Interrupt enable register (IER).

This byte is used to indicate which interrupt flags in location

37165 ($912D) (IFR) should cause a VIA IRQ to the 6502 IRQ line.

The interrupt bits in the IFR are set and reset regardless of the pro

grammer's wish to ignore or detect a particular condition. This byte

provides you with a means to enable/disable the generation of the

VIA IRQ.

The Kernal serial and tape routines set this byte extensively to

accomplish their appointed tasks.

The Kernal INITVIA* routine sets the IER so that only a timer

one (IRQ) interrupt is enabled. Its value at initialization is then 192

($C0).

Each bit in this byte corresponds to the same-numbered bit in

the IFR, except for bit 7 which is a control bit. If bit 7 is a 1, all the

following bits in this byte that contain a 1 enable the corresponding

bit in the IFR. For example, if this byte contained binary 1010 0101,

then interrupt bits 5, 2, and 0 of the IFR would be enabled and

would cause a VIA IRQ if those IFR bits were turned on.

If bit 7 is set to 0, the remaining bits in this byte that are set to

0 indicate those corresponding bits in the IFR that are to be disabled.

Binary 0101 1010 placed into this byte would cause bits 6, 4, 3, and

1 to be disabled in the IFR.

In practice, you would disable the bits of the IFR that you wish

to ignore, then enable those that you wish to use.

A value of binary 0111 1111 ($7F) would disable all interrupts,

while binary 1111 1111 ($FF) would enable all.

The whole byte must be set at once by POKEing a value into

this location. Changing a particular bit individually with an AND or

OR will have no effect. Note that when reading bit 7 of the IER, it

will always be presented as a 1, but could in fact be a 0. It takes an

explicit write to bit 7 to insure its state.

See location 37165 ($912D) for conditions that set the VIA IRQ

flags.

The individual bits of this register, along with each bit's func

tion, are:

Bit 7: Enable/disable control bit

0 Disable IFR bits corresponding to 1 bits in this byte.

*1 Enable IFR bits corresponding to 1 bits in this byte.

175

u

87187D

P
Bit 6: Timer 1 interrupt L-J

0 disabled

*1 enabled r ~,

Bit 5: Timer 2 interrupt LJ
The remaining bits of this byte are all initialized at 0, or set as

disabled. A 1 in any of the following bits enables that function. —

Bit 4: CB1 interrupt [J
Bit 3: CB2 interrupt

Bit 2: Shift register interrupt

Bit 1: CAl (tape I/O) interrupt

Bit 0: CA2 interrupt

37167 S9I2F VIA2PA2

This register is a mirror of port A I/O register at 37153 ($9121),

except that the CAl and CA2 control lines are not affected when

you use this reflection.

U

LJ

LJ

G
176

Q

Chapter 7

Input/Output

Expansion Blocks
and Screen

Color Map

u

D

D

LJ

D

U

D

D

0

D

37888-38399

Input / Output

Expansion Blocks

and Screen Color
Map
Location Range: 37168-37887 ($9130-$93FF)
Unused Input/Output Expansion Block 0

This block of 719 bytes can be used for future expansion RAM/

ROM space.

This area of the VIC-20 contains apparent reflections of the VIA

chip registers. These reflections are not reliable and should not be

used. This area is not on RAM or ROM, and it's only because of the

address decoding scheme used that VIA chip registers even seem to

be reflected here. This area really is available for future expansion

and should not be used in the absence of that expansion.

You're really accessing the VIA chip registers when POKEing

here, and a PEEK to this area,has a good chance of returning

incorrect values. Exhaustive testing with this area has proven its use

to be extremely unreliable and it should be avoided. You can use the

VIA chip registers directly and avoid problems.

Location Range: 37888-38911 ($9400-$97FF)
Screen Color Maps

37888-38399 $9400-$95FF COLORMAPS*
(handy location)

Screen color map (8K+ expanded VIC-20).

Bits 4-7 = not there

Bit 3 = multicolor if set to 1 or normal if set to 0

Bits 0-2 = foreground color value 0-7

The VIC-20 contains two RAM color maps, the first at this loca

tion and the second at location 38400-38911 ($9600-$97FF). Both

are used in exactly the same way. Which map is to be used is based

on the amount of expansion memory added to the VIC-20 and is

resolved during the power-on/reset routines. If the VIC-20 is

unexpanded or has only a 3K expansion, the color map at 38400

179

U

, U

0
($9600) is used. Otherwise, this color map is selected.

Location 36866 ($?002) can be examined to see which color map

is currently being usedf: If bit 7 is off, the color map used starts at i j

location 37888; otherwise, it starts at 38400. To see which color map

(CM) is used, you can enter the following line: _

CM=37888+(4*(PEEK(36866) AND 128)) {J

where CM is the beginning of the color map selected.

If you redefine the default screen map size, location, bitmap the

screen, or define alternate screens, your use of the color map will

need to be adjusted to correspond. See location 36869 ($9005) and

Appendix E for details of those color map adjustments.

Bits 3-1. Each color map is used by the 6560 VIC chip as a group of

506 bytes, ignoring the remaining six bytes in this area. In this 506

byte-block, each byte's bits 2-0 contain a foreground color number

that is used to color any pixels that are turned on in that correspond

ing position of the screen. The background color selected (see loca

tion 36879, $900F, VIC chip register) is used to color the pixels that

are turned off in the same character position.

Foreground color codes on the VIC are:

Black 0

White 1

Red 2

Cyan 3

Purple 4

Green 5

Blue 6

Yellow 7

The inverse color bit at location 36879 ($900F) can be used to

reverse the foreground and background colors, making all the

characters the background color, and the area behind them colored

by the color map contents.

When double-sized characters (8x16) are selected by setting the

bit at location 36867 ($9003), each position of the color map will

correspond to a double-sized character. In this case, the color map i j

need be only 253 characters long.

Bit 3 of the color map byte indicates whether the character is to

be displayed in normal high-resolution mode (if the bit is 0) or in (,

multicolor mode (if the bit is set to 1). If multicolor mode is selected lJ
for a character, the ones and zeros in that character's eight-byte pixel

map determine the colors used. .-

Every bit-pair in the pixel map for that character represents a (j
color code to be used, not the actual color number. Take a look at

Figure 7-1 for an example.
Multicolor and normal high resolution may both be used on the j j

u

37888-38399
1 S

n

n

screen at the same time

maps of characters.

\. Location 32768 ($8000) describes the pixel

Figure 7-1. Multicolor Bit Settings

Bits Color chosen

00 BackGround color

01 BOrder color

10 ForeGround color

11 Auxiliary color
J

Location set

36879

36879

Color Map

36878

Bit number

Example

PIXEL MAP

11 11 11 11

01 00 00 11

01 00 00 11

01 00 00 11

01 10 10 11

01 10 10 11

01 10 10 11

01 01 01 11

76 54 32 10

COLORS

AU AU AU AU

BO BG BG AU

BO BG BG AU

BO BG BG AU

BO FG FG AU

BO FG FG AU

BO FG FG AU

BO BO BO AU

n

n

See location 36879 ($900F) for a chart for background and bor
der colors, and 36878 ($900E) for the valid auxiliary colors.

Normally, you would choose the multicolor mode only when
you have defined your own custom character set. See 36869 ($9005).

By using the multicolor mode, half the possible character-width
resolution is lost because there are only four double bits across in

each row of the character, although it is still eight bits high. But the
color effects possible can create the illusion of a greater resolution.

The RAM chip that the color maps are located in is a four bit by
IK RAM chip. This means that each byte is actually made up of only
the four low-order bits. The four high-order bits of each byte only

appear to be present and are not usable in any way.

See the screen map description at location 4096 ($1000) for for

mulas that you can use to calculate the byte of the color map that

corresponds to a particular byte or bit in the screen map.

The foreground color code is kept in location 646 ($286) and can

be either placed there directly or selected by the CTRL key and one

of the color keys. After the VIC-20 finishes power-on/reset, the fore

ground color has been set to blue, or color code 6. When you type a

character on the keyboard, or PRINT it from a BASIC program, the

Kernal causes the color code in 646 ($286) to be placed at the appro

priate color map location for the character's screen position.

If all the color codes are left as set by the VIC-20, a blue charac

ter will appear on a white background. When you clear the screen

with the CLR key, the screen is filled with spaces and the color map

set to all white. These white color codes placed in the color map by

the Kernal when clearing the screen have little effect. This is because

the Kernal also fills the screen map with the space character which,

because it has no pixels turned on, causes the entire screen to be the

background color that you selected.

181

If you have selected a background color other than white and
now place a character in the screen map, it will display in white on
your selected background color, unless you also place a color code in
the corresponding color map location. If you select a foreground
color that is the same as the background color, the characters typed
will be on the screen, but you won't be able to see them. This can be
a handy trick at times. For instance, you could make a whole screen
of information suddenly appear by filling the color map with a
contrasting foreground color code.

Other locations related to the screen maps are:

201 ($C9) Current logical line, column of cursor. A summation of the
page 0/1 locations used by the Kernal screen editor and other
routines is also included at this location.

209 ($D1) Current screen map line

211 ($D3) Column number that the cursor is on
217 ($D9) Screen line link table

243 ($F3) Pointer to start of line in color RAM

243 ($F3) Address of the current line in color map
647 ($287) Original color under cursor

648 ($288) Screen map page number

780 ($30C) Plotting and color setting example

The routine COLORSET* uses the table COLORTBL* to find the
appropriate color code to store in this location when the CTRL and
color keys are pressed.

38400-38911 $9600-$97FF
Screen color map (unexpanded or 3K expanded VIC-20).

Please see location 37888-38399 ($9400-$95FF) for a complete
description of the use of both VIC-20 color maps.

Location Range: 38912-39935 ($9800-$9BFF)
Unused Input/Output Expansion Block 2

This 4096-byte area, which can be used for future RAM or ROM

expansion of the VIC-20, contains apparent reflections of other areas.

These reflections are not reliable and should not be used. This area

is available for future expansion and should not be used in the

absence of that expansion.

Location Range: 39936-40959 ($9C00-$9FFF)
Unused Input/Output Expansion Block 3

A 4096-byte area, this contains reflections of other areas. These

reflections are not reliable and should not be used. In the absence of

any expansion in this block, this should not be used.

182

- 40960-49151

Location Range: 40960-491SI ($A000-$BFFF)
8K Expansion Block 4

40960-49151 SAOOO-SBFFF RAMBLK4
8K RAM expansion block 4.

This block is primarily used for autostart ROM cartridges such
as games and other cartridge-based software. However, it may also
be used for user RAM expansion, even though BASIC will never see
this expansion since it's not contiguous with other RAM. The screen
map and character map should not be placed in expansion RAM.
The ROM or RAM at this location of memory is not required to be
autostarted. The following items must be present to activate the

autostart code in the Kernal:

40960 ($A000) Vector: power-on/reset routines

40962 ($A002) Vector: NMI (RESTORE key) routines

40964 ($A004) Data: $41 30 C3 C2 CD
A 0 C B M

with the high order bit on in the last three characters. Since the VIC-
20 hasn't finished its initialization routines when the cartridge is

autostarted, the following routines should be JSRed to:

$FD8D RAM test

$FD52 set vectors

$FDF9 initialize I/O, CLI

$E518 initialize screen

A BASIC program can be in the ROM cartridge. An ML routine

is used to initialize BASIC, modify the pointer to the beginning of
the ROM BASIC program (43, $2B), and place RUN in the keyboard

buffer.

See the article "RAM/ROM on the VIC for $20," in the Decem

ber 1982 issue of Commander for a description of how to modify

RAM to appear as ROM when needed.

At power-on/reset, the START routine at location 64802

($FD22) initializes the stack pointer, disables interrupts, and calls the
CHKAUTO* routine to check for an autostart ROM. If the A0CBM

characters were found by that routine, a JMP ($A000) is performed,

starting the ROM software.

The NMI routine will also check for an autostart ROM if the RE-

STORE key has been pressed and will JMP ($A002) if the A0CBM

characters are found.

Turn the Commodore 8K and 16K expansion boards' DIP switch

1 on for this block.

183

u

D

D

LJ

D

U

D

D

0

D

u

D

D

LJ

D

U

D

D

0

D

49152-57343

_ Location Range: 49152-57343 <$COOO-$DFFF)
Pi 8K BASIC ROM

This area contains the routines that comprise the BASIC inter

preter. BASIC is an integral part of the VIC-20 and is started and
given control automatically at power-on/reset unless an autostart

cartridge is plugged in. When LOAD is entered from the keyboard, it
is BASIC that calls for this action to be performed by the Kernal. To
allow ML programs to run in the VIC-20, BASIC is inevitably used
to modify its own range of memory and to load the ML instructions.

Even if a machine language monitor is used, SYS (a BASIC

word) is used to start the monitor. Since BASIC is always present in

the VIC-20, its routines for numeric and string manipulation,

mathematical functions, and I/O can be used to save you from hav
ing to redesign the same procedures, or at the very least can serve as

a model for your own ML routines.

If you're comparing the VIC-20 version of BASIC to PET BASIC,

look at the PET's BASIC 2.0. The low memory work areas are a bit
different, but the BASIC routines are quite similar in purpose and

location. However, BASIC 2.0 does not have the serial, color, sound,

and RS-232 routines that VIC-20 BASIC contains. The BASIC in the

Commodore 64 is functionally identical to that in the VIC-20,

although split into two sections.

The differences between the two machines are most noticeable

in the Kernal rather than BASIC. BASIC 4.0 for the PET includes

disk commands not in VIC-20 BASIC, and PET BASIC 1.0 has a dif

ferent low memory pointer structure. BASIC 1.0 allows spaces within

a keyword (such as IN PUT), while BASIC 2.0 does not.

As you become more familiar with the internal structure of the

VIC-20, you'll become adept at translating the bulk of material pub

lished for the PET into its equivalent on the VIC-20. Programming

P> the PET/CBM, by Raeto Collin West, published by COMPUTE!
Books in 1982, is a storehouse of PET/CBM information. Not for the

beginner, this is perhaps the most complete volume of information

P** available for Commodore products.

1 ^ BASIC is actually longer than 8K and spills over into the next
8K ROM where the Kernal routines are located.

nlnexamining the routines in BASIC, be aware that any routine

can be entered or jumped out of at virtually any point. The routine

descriptions below are individualized by the entry and exit points

rJ_1^ that are most often utilized. A routine to perform a given function

187

may in fact be entered at a point that causes what is almost a dif

ferent function to be performed. BASIC is very tricky and likes to

use an existing routine or part of an existing routine if possible,

rather than having to include the same instructions at two locations.

Many levels of JSRs, stack manipulation of the return address, and

other tricky techniques may be confusing when you're first examin
ing a routine.

It's typical to use one routine to set up parameters for an exist

ing routine to process. The descriptions below attempt to identify the

fact that another routine is called to perform the task attributed to a

particular routine. They also indicate places where BASIC falls

through, or doesn't exit at the end of a routine, but instead continues
on to the next sequential routine.

49152 $C000 COLDST
Vector to the routine for the cold start of BASIC, 58232 ($E378).

This vector is used to start BASIC at the end of the system's

power-on/reset routine at 64802 ($FD22) START. A JMP ($C000) is

performed as the last instruction of that routine. Any autostart car

tridge would cause the START routine to branch to it, rather than to

BASIC via this vector.

See the START routine for details of the power-on/reset func

tions performed.

See location 58232 ($E378) for the activities performed during

the cold start of BASIC.

49154 SC002 WARMST
Vector to the routine to the warm start of BASIC, 58471 ($E467).

When the RUN/STOP-RESTORE keys are both pressed, the

BREAK* routine at 65234 ($FED2) uses this vector, via a JMP

($C002), to go to the WARMBAS* routine after it has completed its

duties.

See the BREAK* routine at location 65234 ($FED2) for details of

the RUN/STOP-RESTORE and ML BRK instruction functions

performed.

See 58471 ($E467) WARMBAS* for the activities performed dur- ^_J
ing the warm start of BASIC.

49IS6 SC004 CBMBAS1C \ i
CBMBASIC characters. s—

49164 SCOOC aimifor , ,
(handy location) <—>

Keyword dispatch vector table, in token order.

This area contains vectors to the routines that handle each s, >

188

BASIC keyword. Functions and math operation vectors are in sepa

rate tables at locations 49234 ($C052) and 49280 ($C080), while the

BASIC words themselves are in a table at location 49310 ($C09E).
The vectors in this table point one byte before the actual routine, so

add one to the vectors in memory. This minus-one vector is used so

that the address may be placed on the stack, and so that an RTS

instruction will add one to the address on the stack and jump three.

The RTS is issued at the end of CHARGET.

This table is used by the routine at 51172 ($C7E4) that reads

and executes the next BASIC statement.

You can use this table to locate the routine that processes BASIC

keywords, then disassemble the routine to examine its methods and

dependencies.

The following table shows the contents of this area, except that

the LSB/MSB has been reversed, and that one has been added to the

routine address to reflect its true location.

Table 8-1. Bi

BASIC

Keyword

END

FOR

NEXT

DATA

INPUT*

INPUT

DIM

READ

LET

GOTO

RUN

IF

RESTORE

GOSUB

RETURN

REM

STOP

ON

WAIT

LOAD

SAVE

VERIFY

DEF

POKE

PRINT*

ASIC Keyword

Vector at

Dec Hex

49164 $C00C

49166 $C00E

49168 $C010

49170 $C012

49172 $C014

49174 $C016

49176 $C018

49178 $C01A

49180 $C01C

49182 $C01E

49184 $C020

49186 $C022

49188 $C024

49190 $C026

49192 $C028

49194 $C02A

49196 $C02C

49198 $C02E

49200 $C030

49202 $C032

49204 $C034

49206 $C036

49208 $C038

49210 $C03A

49212 $C03C

Routine

Dec Hex

51249 $C831

51010 $C742

52510 $CD1E

51448 $C8F8

52133 $CBA5

52159 $CBBF

53377 $D081

52230 $CC06

51621 $C9A5

51360 $C8A0

51313 $C871

51496 $C928

51229 $C81D

51331 $C883

51410 $C8D2

51515 $C93B

51247 $C82F

51531 $C94B

55341 $D82D

57701 $E165

57683 $E153

57698 $E162

54195 $D3B3

55332 $D824

51840 $CA80

189

BASIC

Keyword

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

NEW

Vector at

Dec Hex

49214 $C03E

49216 $C040

49218 $C042

49220 $C044

49222 $C046

49224 $C048

49226 $C04A

49228 $C04C

49230 $C04E

49232 $C050

Routine

Dec Hex

51872 $CAA0

51287 $C857

50844 $C69C

50782 $C65E

51846 $CA86

57639 $E127

57787 $E1BB

57796 $E1C4

52091 $CB7B

50754 $C642

u

D

LJ

U

The following keywords follow the dispatchable keywords in

the keyword table at 49310 ($C09E). They are not in the keyword

dispatch vector table since they never begin a BASIC statement.

FN

NOT

SPC

STEP

TAB

THEN

TO

49234 SC0S2 FUNDSP
Function dispatch vector table, in token order.

This area contains vectors to the routines that handle each

BASIC function. Keywords and math operation vectors are in sepa

rate tables at locations 49164 ($C00C) and 49280 ($C080), while the

BASIC words themselves are in a table at location 49310 ($C09E).

Functions are defined as those BASIC words that are followed

by parentheses. The expression within the parentheses is resolved

before the function is called.

Notice that the vector for USR is location 0000, the JMP opcode

and vector that the user set for the ML routine. The expression

evaluation routines beginning at 52638 ($CD9E) uses this table to set

the jump vector at location 84-86 ($54-56) to the routine for the

needed function. A JSR ($0054) is then done to the routine, equiva

lent to a GOSUB in BASIC.

You can use this table to locate the routine that processes BASIC

functions, then disassemble the routine to examine its methods.

The following table shows the contents of this area, except that

the LSB/MSB has been reversed.

190

H

n

H

n

Table 8-2.

BASIC

Function

SGN

INT

ABS

USR

FRE

POS

SQR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STR

VAL

ASC

CHR

LEFT

RIGHT

MID

49280

BASIC Function Handler

Vector at

Dec Hex

49234 $C052

49236 $C054

49238 $C056

49240 $C058

49242 $C05A

49244 $C05C

49246 $C05E

49248 $C060

49250 $C062

49252 $C064

49254 $C066

49256 $C068

49258 $C06A

49260 $C06C

49262 $C06E

49264 $C060

49266 $C072

49268 $C074

49270 $C076

49272 $C078

49274 $C07A

49276 $C07C

49278 $C07E

SC080

Vector Table

Routine

Dec Hex

56377 $DC39

56524 $DCCC

56408 $DC58

00000 $0000

54141 $D37D

54174 $D39E

57201 $DF71

57492 $E094

55786 $D9EA

57325 $DFED

57953 $E261

57960 $E268

58033 $E2B1

58123 $E30B

55309 $D80D

55164 $D77C

54373 $D465

55213 $D7AD

55179 $D78B

55020 $D6EC

55040 $D700

55084 $D72C

55095 $D737

OPTAB
Math operation dispatch vector table, in token order.

This area contains vectors to the routines that handle BASIC

math operations. Keywords and function vectors are in separate tables

at locations 49164 ($C00C) and 49234 ($C052), while the BASIC

words themselves are in a table at location 49310 ($C09E).

The math operation vectors are accompanied by a byte indi

cating the order of precedence for that math operation. Those with

higher precedence are performed before those with lower prece

dence. When two operations with equal precedence are encountered

on the same line, they're performed in order from left to right.

Order of precedence of expression evaluation

1. Formulas enclosed in parentheses

2. Exponentiation (t)

3. Negation {—xyz, where xyz is an expression)

4. Multiplication and division

5. Addition and subtraction

191

6. Relational tests: =, <>, <,>,<=,=> have equal precedence

7. NOT logical and bit operations

8. AND logical and bit operations

9. OR logical and bit operations

The formula evaluation routine FRMEVL at 52638 ($CD9E) uses

this table to find the routine to process the math operation and to

determine the order of precedence within the expression. FRMEVAL

sets the jump vector at location 34-35 ($22-23) to the routine for the

math operation. A JMP ($0022) is then done to the routine, equiva

lent to a GOTO in BASIC. The vectors in this table point one byte

before the actual routine, so add one to the vectors in memory.

You can use this table to locate the routine that processes BASIC

math operations then disassemble the routine to examine it.

The following table shows the contents of this area, except that

the LSB/MSB has been reversed. One has been added to the routine

address to reflect its true location.

Table 8-3. BASIC Math Operation Handler Vector Table

BASIC

Operation

uparrow

AND

OR

mondatic-

NOT

<=>

Precedence:

largest first

121 $79

121 $79

123 $7B

123 $7B

127 $7F

80 $50

70 $46

125 $7D

90$5A

100 $64

Vector at

Dec Hex

49280 $C080

49283 $C083

49286 $C086

49289 $C089

49292 $C08C

49295 $C08F

49298 $C092

49301 $C095

49304 $C098

49307 $C09B

Routine

Dec Hex

55402 $D86A

55379 $D853

55851 $DA2B

56082 $DB12

57211 $DF7B

53225 $CFE9

53222 $CFE6

57268 $DFB4

52948 $CED4

53270 $D016

49310 SC09E
(handy location)

BASIC keyword table in token number order.

The complete vocabulary of BASIC keywords, functions, and

math operators, minus the PI symbol, are stored here in token num

ber order. Each word ends with the high order bit on, a value of 128

($80) added to the value for the ASCII character. The table is ended

by a byte containing zero.

This table is used to tokenize the BASIC words when they are

entered in direct mode or added or changed in edit mode. The rou

tine that does this tokenization is at 50553 ($C579). When the
BASIC program is LISTed, the routine at 50970 ($C71A) uses this

192

n

n

n

n

n

table to detokenize the BASIC words.

Token number order corresponds to the order of words listed in

PI the following three tables. For instance, the last word in the first

' table comes before the first word in the second table. Note the

change of order in the tables; it differs from their order in memory.

i—j You can also refer to Appendix C, which lists the tokens in number

1 I order. Along with the three tables, there are two other elements in
the token number order; they follow the tables in this order.

• 49164 ($C00C) STMDSP Keywords

The keywords FN, NOT, SPC, STEP, TAB, THEN, and TO follow

the dispatchable keywords in the keyword table, since they never

begin a BASIC statement. Yet these keywords precede the first
words in the next table.

• 49280 ($C080) OPTAB Math operations

• 49234 ($C052) FUNDSP Functions

• GO

• 0 as end of table marker, causing SYNTAX ERROR message if

the token wasn't found in the table.

The word GO is added to allow GO TO to be considered a valid

word. The routine GONE, which reads and executes the next BASIC

statement, includes instructions to cause GO TO to use the same

routine as GOTO.

If you know that you want the word that corresponds to a given

token number (TN for example), the following routine will set X$ to

the corresponding word. The token number must be between 128
and 203:

Program 8-1. Token Number to Token Word

10 OPEN4,4

15 Y=0

20 X = 49310 : A = 49310

25 TN=139

30 Z =TN - 127

40 IP PEEK(X) > 127 THEN Y = Y+l : E = X : B = A :

A = E+l :IFY=ZTHEN55

| i 45 X = X + 1

50 GOTO 40

55 X$=IIM : FOR X = B TO E

60 X$ = X$+CHR$(PEEK(X) AND 127)

65 NEXT: PRINT#4,TN,X$: PRINT#4: CLOSE 4

Use OPEN 4,3 for screen display, rather than printing it out.

Lines 15-20 set values for Y, X, and A. Respectively, these are

initialized as the word counter, and as the start of the keyword table.

Line 25 sets TN (Token Number) to 139 for this demonstration. You

can use any number greater than 127 and less than 204.

193

H

u

When the end of the word is found, line 40 counts the word, —

saves it, ends it, begins again, and then sets the next beginning. X is

incremented in line 45 to look for the next byte of the table, while \" \

line 50 simply loops the program back to line 40 until the word is I—I
found. The range of the word in the table is set in line 55, and then

line 60 adds the character to X$, minus any high order bit. —

By changing a few lines, you can print the entire table out in [_]
token number order:

25 FOR TN=128 TO 203: REM PRINT ALL TOKEN WORDS

65 NEXT:PRINT#4,TN,X$:NEXT TN:PRINT#4:CLOSE

Depending on your particular need, you may want to consider

the technique outlined in location 153 ($99) for creating a

detokenized program listing on tape.

If you're programming in ML, you'll want to examine the rou

tine at $C724-C740 as a model for your own routine. It has too

many LIST dependencies to JSR to directly.

See Appendix C for a list of the tokens and their corresponding

token numbers.

49S66 SC19E ERRTAB
Table of BASIC error messages.

BASIC preempts the Kernal error messages in program mode.

BASIC has its own error messages, and prefers them over the Kernal

message of I/O ERROR plus an error number. See the list of Kernal

messages at location 61812 ($F174).

The following program can be used to produce a reference chart

showing the message number, vector address, message address, and

complete text of each message:

Program 8—2. Error Message Display

10 OPEN 4,4 : REM CHANGE TO 4,3 TO DISPLAY ON THE

{SPACE}SCREEN

20 PRINT#4,"NUM VECTOR MSG @{2 SPACES} MESSAGE
» . PRINT#4 < I

30 FOR V = 49960 TO 50019 STEP 2 : N = N + 1 : N$= LJ
11 "+RIGHT$(STR$(N),2)

40 S = PEEK(V) + (PEEK(V+1)*256)

50 PRINT#4,N$;V;SII{SHIFT-SPACE}"7 : T=0 M
60 PRINT#4,CHR$(PEEK(S+T) AND 127); : IF PEEK(S+ L"J

T) <128 THEN T=T+1: GOTO 60

70 PRINT#4 : NEXT

80 FOR X=l TO 20 : PRINT#4 : NEXT : END

194

u

u

D

n

H

^ Table 8-4. BASIC Error Messages
The last letter of each message has the high order bit on.

(j Dec Hex Error Message
1 $01 TOO MANY FILES

2 $02 FILE OPEN

PI 3 $03 FILE NOT OPEN
1 4 $04 FILE NOT FOUND

5 $05 DEVICE NOT PRESENT

6 $06 NOT INPUT FILE

7 $07 NOT OUTPUT FILE

8 $08 MISSING filename

9 $09 ILLEGAL DEVICE NUMBER

10 $0A NEXT WITHOUT FOR

11 $0B SYNTAX

12 $0C RETURN WITHOUT GOSUB

13 $0D OUT OF DATA

14 $0E ILLEGAL QUANTITY

15 $0F OVERFLOW

16 $10 OUT OF MEMORY

17 $11 UNDEF'D STATEMENT

18 12 BAD SUBSCRIPT

19 $13 REDIM'D ARRAY

20 $14 DIVISION BY ZERO

21 $15 ILLEGAL DIRECT

22 $16 TYPE MISMATCH

23 $17 STRING TOO LONG

24 $18 FILE DATA

25 $19 FORMULA TOO COMPLEX

26 $1A CAN'T CONTINUE

27 $1B UNDEF'D FUNCTION

28 $1C VERIFY

29 $1D LOAD

30 $1E BREAK (located in 50020 $C364 table)

H 49960 SC328 BMSGS
BASIC error message table vectors.

This area contains 30 pointers to the start of each message in

j| location 49566 ($C19E), in message number order. The BASIC rou
tine ERROR, which displays error messages, uses this table to deter

mine the location of the message text by the number given to it in .X.

j—j Because of this, other BASIC routines need not be concerned with er-

' ror message text, only error numbers.
See location 49566 ($C19E) for a program to print all the BASIC

n error messages and these pointers.

195

LJ

Q

50020 SC364 MISCMSG U
Miscellaneous messages.

Each message is ended with a byte containing zero. The mes- [J
sages (which include carriage returns, spaces, and linefeeds), are:

• <carriage return> OK <carriage return>

This message is displayed when VERIFY is successful in the j j
BASIC routine BLOAD, which also performs the VERIFY for the

BVERIF routine.

• <carriage return> <space> ERROR

The BASIC routine PRDY, which is part of the ERROR

sequence, causes this message to follow a message already displayed.

• <space> IN <space>

After the message ERROR has been displayed, the BASIC rou

tine PRDY calls the BASIC routine PRTIN to print this message and

the line number.

• <carriage return> <linefeed> READY. <carriage return>

<linefeed>

The BASIC routine READY displays this message for several

reasons, and goes to the routine MAIN, the main BASIC processing

loop.

• <carriage return> <linefeed> BREAK

BASIC'S routine PRDY prints this message and calls PRTIN to

print IN and the line number. These are printed when a program

encounters STOP or the RUN/STOP key is pressed.

50058 SC38A SCNSTK
Find FOR and GOSUB entries on the stack.

The stack at 256-511 ($1OO-1FF) STACK is searched for a

particular FOR variable, or for the first one. This area is called by

NEXT, FOR, and RETURN routines.

RETURN is looking for the return pointer on the stack and

deletes any FOR information it finds. This can be used to your

advantage by placing a loop you wish to terminate early in a

GOSUB routine.

See locations 73-74 ($49-4A) (FORPNT) and 256 ($100) j (

(STACK). ^

50104 SC3B8 MAKSPC p
Open space in memory for a new BASIC line or variable. LJ

This area is called when a new scalar variable is created or

when a BASIC line is stored or replaced. It calls RAMSPC ($C408) to p(

insure that the space is available, and to do garbage collection if not \~->
enough space is free. This also adjusts the STREND pointer at loca

tion 49-50 ($31-32), which indicates the start of free area. It then j—

falls through to the next routine. I)

196 ._

U

n _

n
50111 $C3BF MOVEBL

_ Move a block of memory.

! * When a new scalar variable is created, a BASIC line is stored or

replaced, or when garbage collection needs to move memory, this is

— called.

1 I This area calls RAMSPC ($C408) to check that space is available
and moves the program and/or variables upward to make room. By

calling this routine with .A/.Y set to the end of the BASIC dynamic

area desired, you could allocate space in that area for your own pur

poses, or use the technique to move blocks of memory upward.

However, this is an advanced topic to explore, and much coordina

tion is required with other pointers. See location 49 ($31), the

pointer to the start of the free area.

n

n

ram scan
Check stack requested space available.

Produces OUT OF MEMORY message if the requested amount

of stack space, multiplied by two, is unavailable. GOSUB, FOR, and

formula evaluation call this routine.

This can be a convenient routine to call from ML.

50184 SG408
Check that requested space in dynamic area is available.

This routine compares the to-be-allocated end address with the

contents of location 51-52 ($33-34), the pointer to the bottom of

BASIC active strings.

It calls for garbage collection if not enough space is free and

produces an OUT OF MEMORY message if the requested amount of

memory is still unavailable after that.

50229 SC435 MEMERR
Set OUT OF MEMORY error message code.

Falls through to the next routine.

S0231 SC437 ERROR
BASIC error message routine.

The number of the desired error message is passed to this rou

tine in .X. The routine PRTOS at ($CB3B) is called to display a ques

tion mark.

j—| This routine looks up the message number vector in the vector

1 ' table at 49960 ($C328) and displays the message the address points

to. The address points within the BASIC error message table at

— 49566 ($C19E). The first instruction of this routine is a JMP ($0300),

197

u

. . . D

so you can change the vector at 768 ($300) to point to a front-end or
alternate routine if you want.

This routine calls for a close of all input/output channels, resets j 1
the current channel in 19 ($13) to the screen (the error messages L-'
always appear on the screen—this cancels any CMD device that was
specified), and causes the stack to be cleared. p.

The routine at 51998 ($CB1E) is called to actually display the LJ
error message on the screen.

INPUT routines issue messages with a different routine, since
processing can continue in their case.

This routine then falls through to the next routine.

SC469 PRDY
Display ERROR, or another message pointed to.

This routine is also used to display the BREAK message instead
of the ERROR message.

It calls the routine PRTIN at 56770 ($DDC2) to display the word
IN and line number message if not in direct mode.

This routine then falls through.

S0292 SC474
Display READY, message.

The READY, message is displayed and the Kernal control mes

sages are enabled by this routine. See location 157 ($9D) for details
of these messages.

The routine PRTSTR at 51998 ($CB1E) is called to actually dis
play the error message on the screen.

This could be a convenient routine to call from ML.

This routine then falls through.

SC480 MAIN
Main BASIC loop, receive and execute or store BASIC line.

The first instruction in this routine is JMP ($0302), which nor

mally points back to the next sequential instruction. By changing 770
($302), you can intercept the keyboard input to BASIC. |_J

This routine calls GETLIN at location 50528 ($C560) to obtain a

line from the keyboard, then goes to the routine NEWLIN (the next

routine) if a line number is present on the entered line, or to the rou- j j

tine CRNCH if no line number is present. Direct commands and pro- '—'
gram lines are separated at this point because of this.

S0332 SC49C NEWLIN U
Store/replace a BASIC program line.

This routine tokenizes the line by calling CRNCH at 50553 r~i

198

U

n

n
($C579), then tries to locate the same line number in the BASIC pro

gram. If it's found, this routine deletes it. The newly entered line is

!""] added to the program in line number sequence, unless only a line

number was entered. The latter does not cause a new line to be

entered after the old line was deleted.

rn This routine resets the CHRGET 122-123 ($7A-7B) pointer to

' the start of the BASIC program when a line of BASIC is entered.
This is done by calling STXTPT ($C68E) to copy 43-44 ($2B-2C)

TXTTAB into TXTPTR.

The CLR routine at 50782 ($C65E) is called, losing all current

program variables.

The BASIC lines are also rechained by calling LNKPRG 50483

($C533).

50483 SC533
Rechain BASIC program lines.

This routine recalculates and stores program line link fields by

examining each line of the BASIC program, from where pointer 43-

44 ($2B-2C) TXTTAB is pointing up to an old link field containing

zeros. That signals the end of the program.

50528 SC560 GETLIN
Receive input from device and fill the BASIC text buffer.

This routine is also used for INPUT and INPUT#.

It calls the Kernal routine CHRIN 61966 ($F20E) through the

vector at 804 ($324) to obtain input characters from the open chan

nel until a carriage return or 89 characters have been received. A

STRING TOO LONG error message is displayed if no carriage return

is found within the 89-character input stream. The characters are

stored in the BASIC input buffer at 512-600 ($200-258). The car

riage return stores a 0 byte in that buffer. (The BASIC 2.0 feature of
a 15 ($0F) character on input suppressing the display of the charac

ters to the screen has been dropped.) The length of the BASIC input

buffer and the coding of this routine are the cause of the 88-byte

INPUT restriction.

50553 SC570
Tokenize the BASIC line in BASIC text buffer.

This routine tokenizes the line from and back into the BASIC

text buffer at location 512 ($200), using the table of tokens at 49310

($C09E). Bytes within quotes are not tokenized, and the ? word is

replaced by the PRINT token.

This is the routine that recognizes abbreviations for BASIC

keywords. TXTPTR at location 122 ($7A) is used as a pointer

through the process.

199

LJ

50707 □

U
The length of the resulting tokenized line is stored in 11 ($B). A

vector to this routine is at location 772-773 ($304-305).

50707 SC6I3 FINLIN -
Find the BASIC line from its line number. _

The two-byte integer line number in location 20-21 ($14-15) is j j
searched for in the BASIC program lines by this routine. Location

95-96 ($5F-60) is set to the address of the link field for that line, if

found, and the carry is set in .P. This routine is called by the routine

NEWLIN, and the BASIC keywords LIST, GOTO, and GOSUB.

The RTS at the end of this routine is used by many routines.

BASIC NEW.

This routine stores zeros in the first BASIC line field and sets

the end-of-BASIC program pointer at 45-46 ($2D-2E) to the con

tents of 43-44 ($2B-2C) plus two bytes. It also calls the routine

STXTPT 50830 ($C68E) to set TXTPTR to the beginning of the
BASIC program.

See location 43-44 ($2B-2C) for methods of recovering from an
inadvertent NEW.

This routine is called by routine INITBA 58276 ($E3A4) at
power-on/reset.

This falls through to the next routine.

SCCSE CLR
BASIC CLR.

First, a call is made to the ICLALL vector at 812-813 ($32C-

32D), which points at the abort-all-files routine CLALL at 62447
($F3EF).

The BASIC strings are eliminated by changing the pointer to the

bottom-of-BASIC active strings at 51-52 ($33-34) to the current con
tents of 55-56 ($37-38), which is the pointer to the end-of-BASIC

memory. The pointer to the end-of-BASIC program at 45-46 ($2D-

2E) is copied to 47-48 ($2F-30), the pointer to the end-of-BASIC LJ
variables, as well as copied to 49-50 ($31-32), the pointer to the

end-of-BASIC arrays, start of free area. This eliminates all scalar and

array variables. The variables have not been actually erased, though. I (

RESTORE is called to reset 65-66 ($41-42) to the beginning of the
BASIC program.

This routine is called when RUN is entered in direct mode, an i j
RS-232 OPEN is done, or NEW is issued. LJ

The temporary string stack at 22 ($16) TEMPPT is reset, and the

6502 stack pointer (.S) is also reset. For that reason, you won't want j—

to call this routine from within a subroutine. The stack pointer is set LJ

200 _

U

n

n to 506 ($1FA), leaving the most recent JSR return address on the

stack. This stack clearing is also called for by a warm restart (RUN/

r-1 STOP-RESTORE key) or an error message being issued by ERROR.

50830 SC68E STXTPT
Back up TXTPTR to the start of the program.

This routine copies the contents of location 43-44 ($2B-2C) into

location 122-123 ($7A-7B) so the program will be scanned from the

beginning.

If SYS 50830 is executed in a BASIC program, the program will

branch to the first line of the program.

This is called by the LOAD and NEW routines.

n

n

n

n

n

SGCOC LIST
BASIC LIST.

This performs the LIST function with its various formats of: no

line numbers, line number range, starting at line number, up to a

given line number, or only a specific line number.

The ending line number (or ($FFFF) for all) is stored in location

20-21 ($14-15). The LIST routine calls the routine FINLIN at 50707

($C613) to find the starting specified BASIC line. Location 95-96

($5F-60) is used as pointer through the BASIC program as it is

listed. Link fields on the BASIC lines are used to find the next line.

Routine PRTFIX 56781 ($DDCD) is used to print the line number.

The stop key is tested for after every line displayed.

LIST calls QPLOP 50970 ($C71A) to perform detokenizing of

the BASIC lines.

See location 153 ($99), the input device number, for instructions

for reading tape as though it were the keyboard, using LIST.

LIST does not recognize the fact that it is within a REM state

ment and will detokenize any tokens found there. This can cause a

SYNTAX ERROR message if the character has a code greater than

127, but not 255 (PI). Try including a shifted L in a REM, and you'll

receive a SYNTAX ERROR message.

REM-embedded cursor controls, color controls, and reverse con

trols will be printed as found, causing differences between the actual

program and displayed listing. This can be used to customize or dis

guise the program listing. When the same LIST is directed to a

printer with CMD, most of the manipulations done with REM-

embedded controls will be revealed.

SC71A QPLOP
List detokenized BASIC keywords.

This routine is logically part of the LIST routine ($C69C) and

may not be used as a separate routine. However, it is fairly short

201

LJ

□

! I
and may be used as a model. *—

All characters are sent to this routine, which branches to two

addresses, depending on whether the input was displayed as r~

untokenized or was not a token. I—I
A JMP off the vector at 774 ($306) is the first instruction in the

routine, normally jumping back to the next instruction. That vector -—

may be changed to intercept this routine, providing the capability to LJ
LIST added keywords.

51010 SC742 FOR
BASIC FOR.

FOR is one of the most powerful BASIC keywords. This routine

sets up the FOR environment and NEXT controls the repetition of

the desired loop. Eleven JSR calls are contained within FOR, demon

strating the large amount of work done for you by this word and

routine.

FOR saves the details of the requested loop on the stack; see the

description of the stack entry for FOR to location 256 ($100).

The variable used in FOR must be a scalar floating point. In

other words, there can be no % in the name. By reissuing a FOR

loop for the same variable name, the previous FOR and all inter-

nested FORs are cancelled. The variable used in FOR may be

changed within the loop to control the number of repetitions. How

ever, a variable used to express the upper limit of the loop will not

cause an early end of the loop if it's changed within the FOR loop.

This is because the upper limit is stored within the stacked items.

A FOR loop is always executed at least once.

If you leave off the name of a NEXT statement, you must insure

that the correct nesting of FOR loops is maintained.

51118 SC7AE NEWSTT
Finds (for execution) the next BASIC statement.

This routine tests for the STOP key being pressed, updates the

CURLINE location (57-58, $39-3A), which holds the current BASIC

line number, if not in direct mode, and positions TXTPTR to the - -j

beginning of the statement. I I
Location 776-777 ($308-309) contains a vector to this routine. If

the end of program is detected by a 0,0 in the link field, the END

routine is jumped to. { |
This calls the following routine (GONE) to execute the

statement.

Direct mode statements skip the CURLIN update. j j

51172 SC7E4 GONE
Execute the current BASIC statement. j t

202

U

n

n
If the statement doesn't start with a token, the routine LET is

jumped to.

f"[A vector to this routine is located at 776-777 ($308-309).

GO TO tokens are treated as though they were GOTO.

The dispatch vector tables starting at location 49164 ($C00C) are

searched and the proper vector for the token is pushed onto the

stack for the next RTS to cause a branch to that address.

S1229 SC81D RESTORE
BASIC RESTORE.

This resets the beginning of DATA statement scan by simply

copying the current pointer to the start of the BASIC program to

location 65-66 ($41-42), the pointer to the DATA statement.

n

n

n

n

SC82C TSTSTOP
Test for STOP key.

This routine is a JSR to the Kernal jump vector at 65505

($FFE1), falling through to the next routine.

SC82F RSTOP
BASIC STOP.

This routine also falls through to the next routine, skipping the

clear carry instruction to differentiate between STOP and END.

51249 SC831 END
BASIC END.

This routine clears the carry flag to indicate an END was issued.

The current BASIC line number is moved from 57 ($39) to 59 ($3B)
for a possible CONT being entered later. The current TXTPTR value

is also saved for the same reason. The value at location 57 ($39) is

copied to 59 ($3B). The return address is dropped from the stack and

READY, or BREAK IN nun is displayed.

SC857 CONT
BASIC CONT.

The saved TXTPTR at 61 ($3D) and the saved CURLIN at 59

($3B) are restored from 59 ($3B), where STOP, END, or the RUN/

STOP key saved them in routine END ($C831). Location 62 ($3E) is

tested for a 0 and a CAN'T CONTINUE error message is issued if

this value is found. (An ERROR caused the break—or program lines

were changed.)

Otherwise, CONT allows GONE ($C7E4) to execute BASIC

from where it was interrupted.

203

LJ

U

A GOTO line number may work when CANT CONTINUE is LJ
received, depending on file and variable requirements of the

program. ~-

51313 SC871 RUN
BASIC RUN. _

This routine resets the TXTPTR to the beginning of the program LJ
if no line number was entered with RUN, or causes the specified line

number to be acted upon by the GOTO routine. Either way, a CLR

is performed, losing all current variables.

S1331 SC883 GOSUB
BASIC GOSUB.

The following information is pushed onto the stack in the order

listed by this routine:

1. The current TXTPTR (location of the characters being scanned by

BASIC, so it can resume here at RETURN)

2. The CURLINE value (so that the current line can be resumed)

3. The constant value of 141 ($8D) (to identify the GOSUB entries

on the stack)

Then a JSR to the GOTO routine is performed.

A subroutine may call itself (called recursion), but some type of

exit logic must be included to prevent the stack from being filled by

GOSUB entries.

See the search direction discussion at location 20-21 ($14-15)

and the subroutine location discussion at 43-44 ($2B-2C) TXTTAB.

S1360 SC8A0 GOTO
BASIC GOTO.

The target line number is converted from character to LSB/MSB

using the DECBIN routine, which places the output integer in loca

tion 20-21 ($14-15). The MSB only of the current line and the MSB

of the target line are compared. If the target is higher, the routine

FINLIN ($C613) is called to find the line from the line number, and

TXTPTR is adjusted. Otherwise, TXTTAB is used as a parameter to p-:

FINLIN, and the scan for the line number starts at the beginning of LJ
the program. Once again TXTPTR is adjusted, and when CHRGET is

later called, that line will be executed.

51410 SC8D2 RETURN
BASIC RETURN. _

This routine calls SCNSTK 50058 ($C38A) to find the GOSUB U
entry, moves the CURLIN saved contents that are in the stack to

CURLIN and the TXTPTR saved in the stack to TXTPTR, thereby

u
204

u

directing NEWSTT 51118 ($C7AE) back to the statement following

GOSUB.

'H The routine also puts ($FF) into FORPNT+1 (73-74, $49-4A)

which effectively cancels any FORs from within the subroutine.

- 51448 SC8F8 SKIPST
1 BASIC DATA.

A very simple routine, this calls FIND2 51462 ($C906) to find

the next statement and falls through to the next routine.

Quotes can be used to include commas and colons in a DATA

string. Outside of quotes, a comma delimits the DATA item and a

colon ends the DATA statement.

A null DATA item is created by double commas or an ending

comma.

S14S1 SC8FB
Increment TXTPTR by amount in .Y.

This routine is called when several bytes of the current line/

statement need to be skipped. This is ended with an RTS that usu

ally goes back to the NEWSTT routine at 51118 ($C7AE).

S1462 SC906 FIND2
Scan the BASIC text buffer at 512 ($200) for delimiters.

FIND2 is usually used to find the next BASIC statement or line.

Locations 7 and 8 are used to contain the characters being searched

for. The routine automatically ends the search if an end-of-line zero

byte is found and ignores delimiters while inside quote marks.

SC928 IF
BASIC IF.

This is a fairly simple routine in comparison with the program

ming flexibility it gives you. It calls the FRMEVL routine at 52638

($CD9E) to do the hard part of reducing the expression to a single

term. IF then simply checks the exponent of Floating Point Accu

mulator 1 at 97 ($61) for a 0, which indicates the whole accumulator

is zero and the text is false. If it was a 0, IF calls FIND2 to skip the

rest of the line, jumps to BUMPTP, and then goes on to NEWSTT

for the next line to be executed. If the statement was true

(FACEXPoO), GONE ($C7E4) is branched to, unless a following

THEN was followed by numerics, in which case GOTO is branched

to. If a GOTO is encountered (GOTO must be followed with

numerics), the GOTO routine is also branched to.

GO TO (with a space between the words) is not valid after IF

unless it is preceded by THEN. Also, IF X THEN 80 is the equivalent

205

u

u

of IF X <> 0 THEN 80. Once more, IF X GOTO 80 is perfectly valid. U
The REM routine below is actually part of this IF routine, and IF

actually ends at 51530 ($C94A). r~j

51515 SC93B REM
BASIC REM. —

The REM routine calls FIND2 51462 ($C906) to skip the rest of U
the line, jumps to BUMPTP, and then goes on to NEWSTT to exe

cute the next line.

The REM routine is actually part of the previous IF routine.

S1S31 SC94B
BASIC ON.

GOSUB or GOTO must follow the variable name and GO TO

(with an embedded space) is invalid. This routine decrements the

LSB of FAC 101 ($65), until it reaches 0, skipping numbers between

commas until then. It then passes the GOTO or GOSUB token and

the target line number to the routine GONE at 51172 ($C7E4) to

execute.

If the list of line numbers is shorter than the value of the vari

able, the next statement is executed. For example:

ON X GOTO 100,200:PRINT "WHOOPS"

would print WHOOPS if X was 4.

ON SGN(X)+2 GOTO 10,20,30

will go to 10 if X is negative, 20 if 0, and 30 if positive.

If the variable could be 0 and you wish to GOTO/GOSUB on

that value, add at least 1 to the variable.

SIS63 SC96B DECBIN
Convert decimal line number to LSB/MSB format.

This routine is called by the BASIC commands GOTO, LIST,

and ON. It's also called by the routine NEWLIN when adding,

replacing, or deleting a BASIC line. - -

This is used to convert and range-check (0-63999) a line num- I 1

ber, placing the output LSB/MSB format in location 20-21 ($14-15).

S1621 SC9A5 LET _
BASIC LET.

This routine controls the reassignment or creation and initializa- ~

tion of scalar and array variables: strings, floating point, integer, TI$, \ J
and TL

When this routine is finished, the variable or descriptor has

been created or modified in the variable pool. j j

206

u

n

n

This is a rather long routine, with 17 JSRs. Not all are used for

the same variable types, though.

The following routines are always called:

EVLVAR ($D08B) evaluate variable

TYPCHK ($CD8A) type-match checking

FRMEVL ($CD9E) evaluate expression

with others called depending on the contents of locations 13 ($D)
(type of variable: 255 ($FF)=string; 00=numeric) and 14 ($E)

(numeric variable type: 128 ($80)=integer; 00=floating point),

which are used to determine the type of variable processed. These

flags are set by the initial call to the EVLVAR routine ($CF28).

Floating point variable assignment is passed to routine FACTFP

at 56272 ($DBD0) which stores the Floating Point Accumulator in

memory as a variable.

SI650 SC9G2 LET2
LET: Assign integer variable.

51674 SC9DA LETS
LET: Assign TI$.

SCA2C LET9
LET: Assign string variable.

51840 SCA80 PRINTN
BASIC PRINT*.

This routine calls CMD, the following routine, and then jumps

to the CLRCHN 65484 ($FFCC) routine to close the output channel.

51846 SCA8B CMD
BASIC CMD.

This routine calls OUTCHN 65481 ($FFC9) to open the output

channel, stores the file number in location 19 ($13), stores the cur-

rent channel number for BASIC I/O routines, and goes to the rou-

jj tine PRINT at 51872 ($CAA0) for the processing of any PRINT#

style parameters included. Since PRINT# calls this routine, there is a

very good chance that there will be parameters.

ft Unlike PRINT#4, CMD4 leaves the device in listen mode so that

] ' future output still is directed to the CMD device.
See location 19 ($13) for more information on CMD.

H 51866 SCA9A PRT1
The instructions from here to location 51871 ($CA9F) are part of

m the PRINT routine.

207

SCAAO PRINT
BASIC PRINT.

A long routine, PRINT includes instructions to handle the vari

ous forms of output parameters possible, such as floating point vari

able, TAB, SPC, semicolon, comma, strings, null strings, carriage

return/linefeed, PI, ST, TI$, and TI. U

All variables are converted to strings and eventually printed by

a call to the CCHROUT vector at 65490 ($FFD2) for each character.

S1944 SGAE8 PRT6

Part of PRINT, this tabs to the correct column for comma

delimiter.

SCAF8 PRT7
BASIC TAB, BASIC SPC.

This TAB and SPC processing routine is part of the routine

PRINT.

TAB and SPC are not for the printer, since they are based on

the current cursor position.

S1998 SCB1E PRTSTR

Another part of the PRINT routine, this prints a string ended by

a carriage return or when the length is decremented to 0.

This routine is called by several other routines to display mes

sages. It can also be called by machine language programs by setting

the .Y register to the MSB of the message address, and the .A reg

ister to the LSB. The message should be ended with a carriage

return, followed by a byte consisting of 0's.

52027 SCB3B PRTOS

This section of the PRINT routine prints format characters of

space, cursor right, or question marks. The latter is for the INPUT

routine.

5204S SGB4D IGRERR

Error message formatting routine for BASIC keywords GET,

INPUT, and READ.

S209I SCB7B GET
BASIC GET.

This routine disallows direct mode entry, opens the input chan

nel, if GET# was specified, by calling INPCHN ($FFC6), and storing
the channel number the BASIC I/O channel at location 19 ($13). It

208

n

calls READ ($CC06) to perform the I/O, and closes the input chan

nel if necessary by calling the CLRCHN routine at ($FFCC).

You can tell that a single character is being requested by GET,

rather than multiple characters by INPUT, when the blinking cursor

is not present. If you add a blinking cursor to your GET routine,

avoid the character used by the system. Otherwise, the program's

user can become confused.

GET (without a file number) retrieves one byte from the key

board buffer at 631 ($277), which is filled by the IRQ driven routine.

For tape, GET retrieves a single character from the BASIC tape

buffer at location 829-1019 ($33D-$3FB). When these characters are

exhausted, which is determined by testing location 166 ($A6), an

additional tape block is read into the buffer. For disk, ST must be

checked for a 64, meaning this is the last byte of data, because a

GET# beyond that point will return a carriage return.

S2133 SGBAS INPUTN
BASIC INPUT*.

This routine opens the input channel by calling the vector

INPCHN at 65478 ($FFC6) and stores the channel number in loca

tion 19 ($13). A call to INPUT ($CCBF) is made, then the input

channel is closed by calling the CLRCHN routine at ($FFCC).

Rather than EXTRA IGNORED, the extra data is simply dis

carded. A FILE DATA ERROR message is issued when the data type

is different from the variable type.

SCBBF INPUT
BASIC INPUT.

This routine disallows direct mode entry.

The PRTSTR routine 51998 ($CB1E) is called to print any

prompting message specified and the PRTOS routine at 52027

($CB3B) for the question mark. The latter is printed only if 19 ($13)

CHANNL indicates the keyboard.

GETLIN ($C560) is called to receive the input from the device

and fill the BASIC text buffer, then READ ($CC06) is jumped to.

That routine validates the input and assigns it to the proper variables

named.

An active CMD causes an INPUT prompt to be displayed on the

CMD device.

By placing two quote marks and a delete character into the key

board buffer at 631 ($277) and setting the number of characters in

the buffer to 3 at location 198 ($C6), you can allow commas and

colons to be entered in response to INPUT. You can do this by

entering the following line:

209

u

u

POKE 198,3:POKE 631,34:POKE 632,34:POKE 633,20:INPUT ^
"ENTER MLC OPCODE AND OPERANDS";ML$

The first quote mark puts the INPUT routine into a quoted-string j j

subroutine; the second cancels that mode for the screen editor so —'
that the INST, DEL, and cursor keys perform normally.

The input diversion subject, discussed at locations 153 ($99) and : ,

19 ($13), may be of interest to you. Also see the related discussion at I—f
512 ($200). Another reference is the article "Perfect Commodore

INPUT," by Blaine Standage, in the January 1983 issue of

COMPUTE!.

52230 SCC06 READ

This routine locates the next DATA item for READ, scans the

BASIC text buffer with CHRGET and modifications to TXTPTR,

and assigns incoming information to numeric or string variables,

producing error messages as needed.

Location 17 ($11) is used as a flag to indicate which of READ,

INPUT, or GET is active. Values in that location mean: 0=INPUT,

64 ($40)=GET, 152 ($98)=READ. See that location for additional

information.

SGGFG EXTRA
INPUT error messages.

EXTRA IGNORED and REDO FROM START messages, each

followed by carriage return, linefeed, and a zero byte are created by

this routine.

S2510 SCD1E NEXT
BASIC NEXT.

This routine determines if a FOR loop is needed, based on the

presence of a variable name with NEXT. See location 73-74 ($49-

4A) for additional information. This routine calls SCNSTK ($C38A) to

find the FOR entry, and if not found, issues the NEXT WITHOUT

FOR error message.

The stack entries for FOR are used to apply the STOP value to [_]
the variable and the maximum value specified by TO is checked. If

the loop is done, the stack entries for FOR are purged. Otherwise,

CURLIN and TXTPTR are overlaid from the stack values and j j
NEWSTT ($C7AE) is branched to. This executes the statement after ^
the FOR statement.

^ TYPGHK LJ
Variable type checking.

Different entry points to this routine provide four types of vari-

able type checking services for calling routines.

u

H

n

• The first entry point at 52618 ($CD8A) calls FRMEVL ($CD9E)

to evaluate the expression, then falls through to the next entry point.

• The second entry point at 52621 ($CD8D) clears the carry flag

to indicate that a numeric check is to be performed on a variable.

• The third entry point at 52623 ($CD8F) sets the carry flag to

_ indicate that a string check is to be performed.

j| • The final entry point at 52624 ($CD90) actually performs the

test by comparing the carry flag indicator to the variable type flag

that is stored in location 13 ($D), which is the type of variable flag

with settings of: 255 ($FF)=string, 00=numeric. If the type match

fails, then the message TYPE MISMATCH is indicated and the rou

tine ERROR ($C437) is branched to.

Numerous routines call this routine at any of the four entry

points whenever data needs to be checked before placing it in a vari

able or mixing it with other data.

S2638 SCD9E
Formula/expression evaluation.

This is another powerful routine that BASIC provides. This is

the master routine that drives subroutines which extend to location

53222 ($CFE6). However, other routines can call subroutines through

that location, too.

The function of these routines is to obtain, parse (break apart

syntactically), error check, combine by performing the indicated

operations, and resolve to the final answer any expression that the

BASIC program contains. This is done for both scalar and array vari

ables, including string or numeric expressions, as well as for constant

information and combinations of all.

These routines can call themselves (recursion) for inner levels of
expressions to be evaluated.

The type-of-variable flag at location 13 ($D) is set by the final

result, as is the numeric variable type flag at 14 ($E), if appropriate.

A numeric result is in location 97-102 ($61-66) when these

routines finish their work, while a string result is indicated by a

pointer in location 100-101 ($64-65). The length of the string will be

in location 97 ($61).

Math operation precedence was explored at location 49280

($C080), the math operation dispatch vector table.

Because of the usage of the stack to contain intermediate results,

an OUT OF MEMORY condition may occur if the expression is

exceedingly complex and stack space is minimal.

An example of an expression to be evaluated could be:

STR$(72/(X*A%(3)+(SQR(VAL(D$)))*COS(EXP(Z-INT(SY))

+EQ$+"%

which is nonsensical, but you can appreciate the power of these

211

u

u

routines by working out just the sequence of the operations to be I—'
performed.

The math operation table, the stack, the CHRGET routine, string - -

routines, floating point routines, stack manipulation routines, vari- j I

able type check,and function routines are used when they can aid

this master routine. r -

52867 SCE83 EVAL ~
Evaluate a single term of an expression.

This routine has a vector at location 778-779 ($30A-30B).

It performs reduction of a single expression term to its next-level

form. The PI symbol is replaced by its numeric floating point equiva

lent, a number in the program is converted to floating point, and

negation is performed.

52904 SGEA8 PIVAL
The floating point number PI=$82 $49 $0F $DA $A1.

52909 SCEAD
Factoring is continued.

NOT is processed, the FN performer at $D3F4 may be called,

SGN may be called, and so on.

52948 SCED4
BASIC NOT.

NOT is further processed. Part of the EVAL routine.

Some examples of NOT use:

NOT X=-(X+1), so NOT l = -2, NOT 0=1

NOT -1= 0 so NOT true=false

IF NOT TF THEN 840. If TF is 0 (false), then the program goes to

line 840.

SCEF1 PAREXP
Evaluation within parentheses is performed.

This is accomplished by calling the following syntax check I i

routines, then calling routine FRMEVL at 52638 ($CD9E) since inner

parentheses may be encountered.

S2983 SCEF7 RPACHK '
Syntax check for)

This falls through to SYNCHR at location 52991 ($CEFF). {J

u
212

n

52986 SCEFA
Syntax check for (

This is actually called before RPACHK ($CEF7), even though it's

placed after that routine. This also falls through to SYNCHR

($CEFF).

52989 SCEFD COMCHK
Syntax check for,

This routine falls through to SYNCHR at location 52991

($CEFF).

S2991 SCEFF SYNCHR
Syntax check for a specific character in .A from CHRGET.

This routine is called from many routines in BASIC.

53969 SCF08 SYNERR
Cause SYNTAX ERROR message via jump to ERROR ($C437).

53995 SCFOD FACTIO
Set up index for - (monadic minus).

53912 SCF14 VARRANGE
Check range of variable ?

53932 SCF28
Obtain variable name and type from EVLVAR ($D08B), check for

null string, and handle TI$, TI, and ST references.

53159 SCFA7 FACT17
Invoke function.

This routine uses the function dispatch vector table at FUNDSP

($C052) to set the address of the needed function in location 84-86

($54-56). A JSR ($0054) is then done to the routine.

^ The resolution of the function may need the repeated calling of

1 the FRMEVL ($CD9E) routines to perform inner expression

evaluation.

H 53222 SCFE8 ORR
BASIC OR.

r-| Sets .Y to ($FF) and falls through to the next routine. See the

• ' next routine for an OR truth table.

213

LJ

LJ

SCFE9 ANDD -
BASIC AND.

This routine performs both AND and OR functions, depending I /

on the value in .Y. AND is indicated by 00 in .Y while OR is 255

($FF). The parameters are converted into two-byte integer values

(—32768 to 32767) before processing. Strings, obviously, are not j™j

valid arguments. The result is floating point in FAC. *—'
Remember that AND and OR are the lowest in the order of

precedence table. Many program logic bugs concerning these state

ments can be traced if you remember this.

Table 8-5. AND/OR Truth Table

AND T F OR T F Resultant values

TTF TTT -1 = TRUE

FFF FTF 0 = FALSE

53270 SD016 COMPAR
Compare numerics or strings.

Also used for BASIC <,=,>.

This routine compares floating point numbers by calling

CMPFAC at 56411 ($DC5B), and compares strings using the next

routine. The floating point result is left in FAC and in .A : 0=not

equal; — 1=equal.

String comparisons also set .X as 0, 1, or 2, indicating that the

left-hand operand is greater, equal, or less.

S3294 SD02E CMPST
Compare strings.

Strings are compared and the floating point result is left in FAC:

0=not equal; — 1=equal.

S3377 $0081 DIM _
BASIC DIM.

This calls the next routine to create each dimension specified. i ,

For example: DIM A(3),L$(8),G(9) would call the EVLVAR routine LJ
three times, once for each dimension.

Remember that the zero element of a dimension exists, takes up

space, and may be used like any other element. | f
Also consider the push-up of arrays that must be done each

time a new scalar variable, including strings, is newly defined. This

may be avoided by defining all scalar variables before defining I j

214

u

n

n

' ' arrays. See the discussion at location 45-46 ($2D-2E) for details.
An array will automatically be DIMed to 11 elements (DIM

f] X(10)) if an element is referenced before the DIM statement is

' encountered. This can cause a REDIM'D ARRAY message if the DIM

is later encountered. Also keep in mind that a DIM statement should

i—* not be put within a loop.

I i A BAD SUBSCRIPT message is issued if the subscript exceeds

the DIM size.

Because of the unique way that arrays are stored in BASIC, you

can cause BASIC to reclaim the space taken by all arrays by includ
ing the following instructions:

POKE 49,PEEK(47): POKE 50,PEEK(48)

This program line causes the array storage pool to be ignored by

instructing BASIC that the end of arrays is the same location as the

end of scalar variables.

See Appendix B for a description of the internal format of

BASIC storage of variables.

53387 SD08B EVLVAR
Locate or create variable.

The variable name is checked for proper syntax. Locations 13

($D; type of variable) and 14 ($E; numeric variable type) are set to

indicate the qualities of the variable. Location 16 ($10) is set for an

FN or subscripted variable. Next, the name of the variable is saved

in location 69-70 ($45-46) with the appropriate high-order bit

settings to denote the variable type.

If the variable is an array, the routine ARY is called. Otherwise,

the next routine is called to locate the variable.

Appendix B has a description of the variable formats in storage.

53479 SD0E7 FNDVAR
Locate the variable.

The variable specified in location 69-70 ($45-46) is searched for,

p-^ beginning where the pointer to the start of variables specifies. This

! j pointer is at 45-46 ($2D-2E). The variable is searched for up to the

location indicated by the arrays start pointer, which is at 47-48

($2F-30).

H If the variable cannot be found, the routine MAKVAR at 53533

($D11D) is called to create the variable.

If the variable is found, the routine RETVP 53637 ($D185) is

called to create a pointer to the variable.

53523 SD113 CHRTST
Check if ASCII character is alphabetic.

215

This routine is used when checking the variable name for proper

syntax to insure that the first character is alphabetic. It's also used by

many other routines to perform an alphabetic test.

SD11D MAKVAR
Create new variable.

This tests the variable name for TI, TI$, or ST, and issues a

SYNTAX ERROR message if the user is trying to create a variable

with any of those names.

It calls for the relocation of any arrays to a location seven bytes

upward to allow the creation of a seven-byte variable descriptor. The

routine that moves the arrays upward is MAKSPC, at 50104

($C3B8). ARYTAB (array starting pointer) at 47-48 ($2F-30) is then

reset, and the seven-byte variable descriptor is created. This routine

then falls through.

SDI8S RETVP
Return the address of the found or created variable.

The address of the variable is stored in location 71-72 ($47-48),

the pointer to variable. This points to the byte just after the two-

character name in the variable descriptor, but location 95-96 ($5F-

60) points to the start of the variable descriptor.

S36S2 SD194
Calculate the length of an array descriptor.

This routine adds five (two-byte name, two-byte total size, one-

byte number of dimensions) to the number of dimensions specified,

multiplied by two, to obtain the length of the needed array

descriptor.

216

U

U

SD1AS MAXINT
Maximum integer value of 32768 in floating point.

Expressed as $90 80 00 00 00.

S3674 SD1AA INTIDX _
Convert floating point to two-byte fixed point in .A and .Y.

This is used for subscript conversion as well as other tasks.

It calls the routine MAKINT at location 53695 (D1BF) to convert LJ
floating point to an integer, and returns the value in .A and .Y.

Convert an expression to integer number.

Used for subscripts and other fixed expressions, this routine calls

FRMEVL at 52638 ($CD9E) to evaluate the expression, displays an [_J

u

[ILLEGAL QUANTITY message if the number is negative, and falls
through to the next routine.

H 53695 SD1BF MAKINT
Convert floating point to signed integer.

f^ This routine calls FPINT 56475 ($DC9B) to convert floating

point to integer.

53713 SDID1 ARY
Find an array item or create an array.

The stack is loaded with the description of the array variable,

GETSUB 53682 ($D1B2) is called to resolve subscript expressions,

and the array is searched for in the area bounded by the pointers to

the start of arrays at 47-48 ($2F-30) and to the end of arrays at 49-

50 ($31-32).

If the array is found, this routine jumps to ARY2 at 53837

($D24D) for testing of the subscript value. Otherwise, a jump is

made to ARY6 at 53857 ($D261) to create the array.

53829 SD245 BADSUB
Display BAD SUBSCRIPT message.

53832 SD248 1LQUAN
Display ILLEGAL QUANTITY message.

SD24D ARY2
Found the array, check the subscript range.

This checks to see whether the subscripts are within the size of

the array; it branches to one of the above message routines if not. It

also checks for redimensioning of an array.

If another DIM is specified with a different number of sub

scripts, this routine issues a REDIM'D ARRAY error message.

This then jumps to ARY14 at 53994 ($D2EA) to retrieve a

particular elemenft of an array.

S38S7 SD261 ARY6
Create an array.

This routine calls two routines: ARYHED at 53652 ($D194) to

calculate the size of the array descriptor needed and RAMSPC at

50184 ($C408) to insure the availability of enough memory for the

array. It also creates the array descriptor and calls M16 54092

($D34C) to calculate the array size when creating a multidimension

array. The pointer to the end of arrays at 49-50 ($31-32) is adjusted.

Finally, the whole of the new array is initialized to zeros.

217

S3994 SD2EA ARY14
Locate a particular array element.

This checks the range of the subscript and the number of sub

scripts specified. It calculates the address within the array descriptor

of the needed element and returns the address of the element in

location 71-72 ($47-48). The routine M16 at 54092 ($D34C) is called

to calculate the dimension size when locating elements in a

multidimension array.

SD34C M16
Compute multidimension array size.

Ml6 multiplies the size of the current dimension by the size of

the next dimension in an array.

54141 SD37D FRE
BASIC FRE.

This routine calls for garbage collection and calculates the free

area size.

See the garbage collection routine at 54566 ($D526). Garbage

collection can also be triggered by any request for scalar variable

space, string space, or array space when there's not enough room to

satisfy that request. The routine RAMSPC 50184 ($C408) is usually

responsible for calling for garbage collection when it detects that.

An interesting fact is that a string argument (FRE(XYZ)) causes

the temporary string of XYZ to be purged before garbage collection

is done. Garbage collection always processes the string storage

stacked pointers.

The FRE calculation is done by subtracting the pointer to the

end of arrays at 49-50 ($31-32) from the pointer to the bottom of

arrays at 51-52 ($33-34), with the result placed in .Y and .A. The

routine falls through to the next routine.

54161 $0391
Convert .Y (LSB) and .A (MSB) integer to floating point.

This routine actually sets up the conversion and calls INTFP1

56388 ($DC44) to do the actual work.
The reverse conversion is done by FPINT at 56475 ($DC9B).

S4174 SD39E POS
BASIC POS.

Calls the CPLOT* vector at 65520 ($FFF0) to get the position of

the cursor, then calls the routine MAKFP 54161 ($D391) to convert it

to a floating point number.

The expression within parentheses is ignored.

218

n

n

n

The contents of location 211 ($D3), the cursor position on logi

cal screen line, are retrieved and converted to floating point. You

could do the same with PS=PEEK(211).

POS is not for the printer, since it is based upon the current

cursor position.

SD3A6 NODIRM
Check if a statement is entered in direct mode.

The routine MAIN sets location 58 ($3A) to 255 ($FF) when

input from the keyboard is received without a line number.

This routine checks that location and displays an ILLEGAL

DIRECT message if that is the case.

This is called by any other routine that prohibits direct mode

commands.

Issue an UNDEF'D FUNCTION message for EVALFN ($D3F4).

The FN that was specified has not been defined by a previous

DEF FN statement.

S419S SD3B3 DEF
BASIC DEF.

This routine calls FN at 54241 ($D3E1) to check the syntax and

create the descriptor for the function. The routine NODIRM at 54182

($D3A6) is called to eliminate direct mode. More syntax checking is

done, and this routine pushes the following onto the stack: garbage

byte, the dependent variable's address (in DEF FNXX(A)=2*B, A is

the dependent variable), and the address of the DEF in the line.

The definition is skipped (not to be syntax checked till it is

actually used in an expression) by calling BUMPTP at 51448

($C8F8), and a jump is made to EVFN3 54351 ($D44F) to build the

descriptor for the function.

When a syntax error is discovered in a DEF FN statement, it will

be flagged as an error within the calling FN statement.

P] Even though the DEF statement must fit on one line of BASIC,
you can chain them in the following manner:

_, DEF FN Al(X)=6250/(M*(68+LL))

|j DEF FN AO(X)=COS(FNA1(-X))+(FI/FN)

The above example illustrates how one function can be extended by

rn including another. The program could issue Y=FN A0(312) to access

; | the combined function definition.

DEF FN must be encountered before any use of the function by

FN statements. Otherwise, an UNDEF'D FUNCTION error message

is issued.

219

The dependent variable's contents will not be changed by the

execution of the function; see the EVALFN ($D3F4) routine

description.

When a program issues LOAD for a shorter program, the DEF

FN variables need to be redefined since the variable points to the

program line containing the DEF FN statement in the old program.

See Appendix B for a description of the internal format of

BASIC statements and DEF FN variables.

Also refer to "User-Defined Functions: Defined," by Myron

Miller, in the September 1982 issue of COMPUTE!.

S4241 SD3E1
Check DEF FN and FN syntax.

This routine insures that an FN token follows the word DEF and

evaluates the syntax of the name of the function, which must follow

floating point variable naming conventions. It calls the variable loca

tion/creation routine EVLVAR at 53387 ($D08B) to cause the vari

able descriptor to be found or created for the function.

S4260 SD3F4 EVALFN
BASIC FN.

This routine calls the FN routine at 54241 ($D3E1) to check the

syntax of the FN statement and to obtain the address of the function

descriptor. It also causes the expression within parentheses

(FNXX(AB*C)) to be evaluated by PAREXP 52977 ($CEF1), and

stacks the contents of the dependent variable to preserve the current

value. In DEF FN NA(X)=3*X, X is the dependent variable. The rou

tine then uses the dependent variable descriptor area in the variable

pool as a work area to hold the floating point number obtained by

evaluating the expression on the right side of the = sign in the DEF
statement. The final result is placed in FAC, and the dependent vari

able is restored from the saved contents previously stacked. The rou

tine then falls through to the next routine.

Expression evaluation determines when to call this routine.

You'll notice that FN is not in the function or keyword dispatch vec

tor table.

S4351 SD44F EVFN3
Store DEF FN values into the function descriptor from stack.

$0465 STR
BASIC STR$.

This routine insures that the parameter given is numeric, calls

FLTASC 56797 ($DDDD) to convert FAC to ASCII, and then calls

MAKSTR 54407 ($D487) to create the string.

220

n

n

n

n

54389 SD475
Calculate new string length and vector.

Passing a pointer to the new string, this routine calls ALCSPC

54516 ($D4F4) to allocate memory space for a string.

When finished, FAC contains the string length in location 97

($61) and the next two bytes contain a pointer to the string.

54407 SD487
Scan and set up string.

This routine finds the end of the string, calculates the length of
the string, and calls ALC1 54389 ($D475) to allocate memory space

for the string. It then calls XFRST1 54920 ($D688) to save the string

in memory or checks the temporary string stack at location 22 ($16)
to insure that there is room for another descriptor. If not, it gives the
message FORMULA TOO COMPLEX. If the string originated from
the BASIC text buffer at 512 ($200), a temporary string stack descrip

tor is used to point to the string in the BASIC program.

Many routines, such as PRINT, INPUT, READ, STR$, and
expression evaluation, call this routine to perform string setup.

S4S16 SD4F4
Allocate memory space for a string.

Passing the amount of space needed for a string, this routine

checks that there is space available in free memory and adjusts the

pointer to the bottom of active strings at location 51-52 ($33-34) to

accommodate the string. If space is not available, GRBCOL is called,

and the memory allocation is tried again. If still not available, the

OUT OF MEMORY message is issued.

$0526 GRBCOL
Garbage collection.

Each time a string is redefined (changed in any way, including

concatenating with +), the string is actually rebuilt in the string area

at the high-end memory. Garbage collection is the process of scan

ning all the string descriptors in the variable pool, temporary string

stack, and arrays; finding the string that is still in use that is at the

highest location in memory; and moving it as high as possible in the

string storage area. Then all the descriptors are scanned again for the

next highest in-use string to be moved to the highest unused area of

the string pool. This continues through all the string descriptors,

until all in-use strings have been pushed upwards, overlaying any

discarded strings.

Any strings that have a length of zero in the descriptor are

ignored and will be recreated if referenced again. Then the pointer at

221

54717

51-52 ($33-34) is adjusted to reflect the new bottom of active
strings.

During all this collection time, the STOP key is not checked.

In the article "Learning about Garbage Collection," by Jim

Butterfield, in the March 1981 issue of COMPUTE!, an important set

of conclusions was demonstrated: Garbage collection will scan all the
string descriptors and repack the strings whether any have been

abandoned or not. A collection immediately after a collection will
still require the same activity twice. Strings that are part of a pro

gram line or DATA line don't affect the collection time. Abandoned
old strings don't take much time during collection—only those that

are kept cost time. Collection time is proportional to the square of

the number of strings manufactured using concatenation, RIGHTS,
MID$, LEFT$, and so on.

S4717 SD5BD GC0L13
Check if most eligible string to collect.

This routine is called by the garbage collect routine described

above to determine if the current string is at the highest memory

location.

54790 $0606 COLECT
Garbage collect a string.

This is called by the garbage collect routine GRBCOL to move

the string to high string memory and update the descriptor to point

to its new location. This routine then calls the routine MOVEBL

50111 ($C3BF) to actually move the string.

S484S $0630 ADDSTR
BASIC +, concatenate string.

The ADDSTR routine checks the length of the combined string

and issues a STRING TOO LONG message if needed. It then calls

ALCSPC 54516 ($D4F4) to allocate space for the combined length,

calls XFERSTR at 54906 ($D67A) to build the new string in the new

area, and calls for the deletion of the old temporary or permanent

strings.

SD67A XFERSTR
Move string in memory.

This is a utility subroutine called by several other routines to

move a string from one point to another.

Location 53-54 ($35-36) is used as a pointer to the target loca

tion and location 34-35 ($22-23) as a pointer to the source string.

222

n

n _

54947 SD6A3
Discard a temporary string.

[(The pointer to the string descriptor is passed to this routine in
location 100-101 ($64-65).

This routine calls the DELTSD 55003 ($D6DB) routine.

Fl If the string descriptor is on the temporary string stack, the rou
tine is not interested in reclaiming it, but saves a pointer to the

actual string in location 34-35 ($22-23). If the string is not on the
temporary stack and is the very last string in the string storage area,

the pointer to the bottom of active strings at location 51-52 ($33-34)

is moved up the length of the string to deallocate it.
This routine is called by several other routines. One reason it's

called by so many others is that it conveniently takes a pointer to a

string descriptor and returns a pointer to the actual string in location

34-35 ($22-23), with the length of the string left in .A.

55003 SDGDB DELTSD
Clean up the temporary string descriptor stack.

If the pointer to the string descriptor that the routine receives is

pointing into the temporary string descriptor stack, the descriptor is

deleted. See location 22-24 ($16-18).

55020 SD6EC CHR
BASIC CHR$.

Creates a descriptor on the temporary string stack for the newly

created one-byte string with the value specified in the argument.

55040 $0700 LEFT
BASIC LEFT$.

This routine calls the routine FINLMR at 55137 ($D761) for

parameters and creates a temporary string descriptor with the left-

hand amount of the string specified. It will not extend the string.

n 55084 SD72C RIGHT
1 l BASIC RIGHT$.

Calls FINLMR 55137 ($D761) for parameters and uses a com-

|""] plemented position parameter to allow the routine LEFT at 55040

1 * ($D700) to perform its task.

— SS09S SD737 MID
I I BASIC MID$.

This routine calls FINLMR at 55137 ($D761) for parameters,

|—| checks for a zero length string (ILLEGAL QUANTITY), and the

223

begin and end points are calculated, with the default of the end of
the string if the length is not specified. LEFT 55040 ($D700) is given
the task of actually doing the extraction and building of the new
string.

$0761 FINLMR
Obtain string parameters for LEFT$, MID$, and RIGHT$.

The first two parameters for these string functions are pulled
from the stack and stored in work areas.

SD77C LEN
BASIC LEN$.

This calls GSINFO 55170 ($D782) to obtain the length of the
string, then calls MAKFP at 54161 ($D391) to convert it to a floating
point number.

The string contents are not counted directly, and the length
parameter of the descriptor is used.

55170 SD782 CSINF0
Get string information.

GSINFO is called by the BASIC commands ASC, LEN, and VAL

to obtain the length of the string and a pointer to the string in loca

tion 34-35 ($22-23). This routine calls DELST 54947 ($D6A3) to
obtain the information.

5S179 SD78B ASC
BASIC ASC.

This calls GSINFO 55170 ($D782) to obtain the pointer to the

string; only the first character is converted to floating point by a call

to MAKFP 54161 ($D391).

An ILLEGAL QUANTITY message is issued if the length of the

string is 0, as in X$=////; you'll see recommendations for using

X=ASC(X$+CHR$(O)) to overcome this problem.

Readability of the program can be increased by using this func- , (

tion. For instance, POKE 7,58 is not as clear as POKE 7,ASC(:). LJ
The reverse of ASC is CHR$, not STR$.

55195 SD79B GETBYT _
Obtain number 0-255.

A one-byte parameter is obtained by evaluating the expression

and checking that it reduced to the range 0-255. (|
This routine calls GETSUB 53682 ($D1B2) to convert the result

to a positive integer. This type of value is used by POKE and WAIT

where the value cannot exceed the storage range of a single byte. j I

224

u

n

n

n

n

n

n

n

S5213 SD7AD VAL
BASIC VAL.

String information is obtained from GSINFO at 55170 ($D782),

CHRGET is used to scan the string after the previous TXTPTR is

saved, and ASCFLT 56563 ($DCF3) is called to turn the ASCII

numeric values into a floating point number. Sign characters, deci

mal points, exponentiation, and spaces are all valid. The first illogical

character, including a second decimal point, terminates the VAL

function, but the expression may contain other function calls (for

example, VAL(MID$(B$,6,8))).

When the length of the argument is 0, the returned value will

also be 0.

SD7EB GETAD
Get two parameters for POKE and WAIT.

A two-byte address is made into an integer in location 20-21

($14-15) by a call to the routine MAKADR at location 55287

($D7F7), and a one-byte (0-255) parameter is obtained by a call to

the GETBYT routine at 55195 ($D79B) and left in .X.

5S287 SD7F7
Convert floating point FAC to two-byte positive integer.

The range and sign of FAC are checked and an ILLEGAL

QUANTITY message is issued if negative, or greater than 65535.

This routine calls the routine FPINT 56475 ($DC9B) for the actual

conversion, and stores the result in location 20-21 ($14-15).

This routine is used by the SYSTEM (SYS), PEEK, and GETAD

routines.

SS309 SD80D PEEK
BASIC PEEK.

This routine uses the address developed by MAKADR, picks up

the byte of data at that address, and calls the routine MAKFP at

location 54161 ($D391) to convert it to a floating point number.

BASIC POKE.

The target address is developed by the GETAD routine; it also

hands back the value in .Y for POKE to place at that address. Thus

|—| POKE is rather short.

_ BASIC WAIT.

225

SD849 ADD05
Round FAC by .5.

This routine adds .5 to FAC by setting .A and .Y with .5 and

calling part of the routine PLUS at location 55399 ($D867). This rou

tine, in turn, is called by FLTASC 56797 ($DDDD) when converting

a floating point number to TI$ or to an ASCII string. This is also

called by the routine SIN, location 57960 ($E268).

S5376 SD850
Subtract memory contents from FAC.

This loads a floating point number in memory to FAC2 and falls

through to the next routine.

SS379 SD853 SUB
BASIC - (subtract).

This routine subtracts FAC from FAC2, the result placed in FAC.

This is accomplished by complementing the sign and jumping to the

routine PLUS 55402 ($D86A).

U

U

u
Two parameters are obtained from calling the GETADR routine

55275 ($D7EB), and a third is obtained or defaulted to zero by this

routine. The second parameter is stored in location 73 ($49) and the i 1

third in 74 ($4A). The contents of the address are exclusive-ORed '—'
with the third parameter and ANDed with the second; it then loops

until the result is not zero. —

See locations 197 ($C5), 653 ($28D), and 37137 ($9111) for U
examples of the use of the WAIT instruction.

Another reference is "All About Commodore's WAIT Instruc

tion," in the January 1983 issue of COMPUTE!, by Louis Sander.

$0862 PLUS1
Perform exponent preshifting (?) and fall through.

This routine apparently requests that the exponent be

denormalized prior to the mathematical function until both numbers ■

have equal exponents. I I
The routine called to perform this is ASRRES at location 55683

($D983).
See Appendix B for an explanation of normalization of floating j [

point numbers.

SD867 LAPLUS >
Add memory contents to FAC.

This loads a floating point number in memory to FAC2 and falls

through to the next routine. Qj

226

U

H

SS402 SD86A PLUS
BASIC + (add).

M The PLUS routine adds the contents of FAC2 to FAC, falling
through to the next routine if the result is negative, or skipping to

the routine NORMLZ 55550 ($D8FE) if it is not negative.

~ 55463 SD8A7 PLUS6
Make the result negative if a borrow was done.

This routine readjusts the exponent so that the resulting FAC is

negative. Entry points at $D8D2 and $D8D7 are used by many

routines to convert simple numbers that have plugged into FAC by

these routines into floating point.

SD8F7 ZERFAC
Zero out FAC and make sign positive since result was zero.

Renormalize the FAC result.

Add any fractions and normalize the result in FAC.

55623 SD947 COMFAC
Complement FAC entirely.

This routine changes FAC into the two's complement form by

reversing the bits with EOR ($FF) commands, and adding one.

55678 SD97E OVERFL
Issue OVERFLOW message and exit.

55683 SD983 ASRRES
Perform exponent preshifting (?) and fall through.

This routine apparently performs exponent denormalization

prior to mathematical function until both numbers have equal

exponents.

!~^ This is called by the following routines:

TIMES3 ($DA59)

_ FPINT ($DC9B)

j| PLUS ($D86A)

SS740 SD9BC FPC1
!™j Constant of one for a floating point accumulator.

$81, 00, 00, 00, 00

This constant is also used by FOR as a default STEP stack entry.

H This value is ORed in the second byte with 128 ($80) at 56251
($DBBB) when loaded into the accumulator.

227

55745

55745
Constants for

Table 8-6.

Constants

3.0

0.434255942

0.576584541

0.961800759

2.885390070

0.5 * SQR(2)

SQR(2)

-0.5

LOG(2)

55796
BASIC LOG.

SD9CI L99G9N
LOG function.

LOG Constants

Floating Point Representation

$03

$7F,5E,56,CB,79

$80,13,9B,0B,64

$80,76,38,93,16

$82,38,AA,3B,20

$80,35,04,F3,34

$81,35,04,F3,34

$80,80,00,00,00

$80,31,72,17,F8

SD9EA L99

u

nL-J

u

u

1 [

LJ

Calculation of LOG to base e of FAC to FAC, using the values at

LOGCON at location 55745 ($D9C1).

BASIC * multiplies FAC2 by FAC, leaving the result in FAC. The

routine TIMES3 55897 ($DA59) is called once for each mantissa

byte-pair.

SDA59
Multiply-a-byte subroutine.

This adds a mantissa byte the number of times specified in .A.

55948 SDA8C LODARG
Move floating point memory locations to FAC2.

.A and .Y point to the four bytes of memory that contain a

three-byte mantissa, plus a sign byte.

55991 SDAB7 MULDIV
Add exponents of FAC and FAC2.

This routine stores the sum of FAC and FAC2 exponents in FAC

exponent, testing for an OVERFLOW error.

59034 SDAE2 MULTEN
Multiply FAC by 10.

MULTEN is a subroutine called when converting floating point

228

u

u

u

u

Li

n

n

! f to an ASCII value, for example TI$. The PLUS routine 55402
($D86A) is called to do the task.

H S6057 SDAF9
+10 floating point constant: $84,20,00,00,00.

- 56062 SDAFE
Divide FAC by 10.

The routine DIVIDE at location 56082 ($DB12) is called to do

the work.

56079 SDBOF
Move floating point in memory to FAC2.

In preparation for division, this loads FAC2 from memory

location.

$DB12 DIVIDE
BASIC / (Divide FAC2 by FAC resulting in FAC).

Before performing the divide operation, a check for DIVISION

BY ZERO is made.

S6226 SDBA2 LODFAC
Move floating point memory into FAC.

This is called by other routines to load a floating point number

pointed to by .A and .Y into FAC.

56263 SDBC7 FAGTF2
Move FAC to memory.

This routine is called to store a floating point number into mem

ory location 92-96 ($5C-60), part of TEMPF3.

56266 SDBCA FAGTFI
Move FAC to memory.

nFACTFl is called to store a floating point number into memory

location 87-92 ($57-5B), part of TEMPF3. The second byte of the
value to be loaded is ORed with 128 ($80) when loading the Float-

*—I ing Point Accumulator.

Move FAC to memory.

1 I This is called to store a floating point number into memory, at
the location pointed to by 73-74 ($49-4A).

H
229

Li

U

0
-_ _ mm m HVSHm ■■■■

Perform move of FAC to memory.

The above routines fall through to this routine to actually if
accomplish the storing of FAC to memory, now pointed to by .X and

.Y. This routine uses the first two bytes of location 34-37 ($22-25)
as a pointer to the target location. p.

56316 SDBFC ATOF
Transfer FAC2 to FAC.

This is a loop that transfers five bytes from FAC2 to FAC; the

sixth byte (sign) is forced to be positive by storing a zero in it.

SDCOC RFTOA
Move FAC to FAC2, with rounding.

This calls the routine ROUND 56347 ($DC1B) and then falls
through.

SDCOF FTOA
Move FAC to FAC2, without rounding.

FTOA moves six bytes (the full exponent, mantissa, and sign) of
FAC to FAC2. 5

Round FAC by adjusting the rounding byte.

Location 112 ($70) is doubled, and if now greater than 128

($80), a one is added to the FAC.

Test the sign of FAC.

On exit, .A=0 if zero; 1 if positive; or 255 ($FF) if negative.

S6377 SDC39 SGN
BASIC SGN.

This calls the routine SGNFAC 56363 ($DC2B) then falls U
through.

SDC3C INTFP _
Convert the sign obtained above to 0 or —1 in FAC.

If entered without falling through from SGN 56377 ($DC39),
this routine converts .A to floating point in FAC. |_J

U
230

u

n

SDC44 IMTFPI
Convert a two-byte integer to floating point in FAC.

P] The number in location 98-99 ($62-63) is converted into FAC.

56468 SDG58 AB8
p BASIC ABS.

The FAC sign byte at 102 ($66) is shifted right one bit to

remove any negative sign. The high order bit equals 1 when neg

ative; 0 when positive.

56411 $DC5B CMPFAC
Compare FAC to memory.

.A and .Y point to the five-byte memory location to be com

pared with FAC. Afterward, .A=0 if equal; 1 if the memory location
is less than FAC; and 255 ($FF) if the memory location contains a

number greater than FAC.

The routine SGNFAC 56363 ($DC2B) may be called.

56475 SDC9B
Convert FAC floating point to signed integer.

The resulting four-byte integer is left in 98-101 ($62-65). Rou
tine INTFPl 56388 ($DC44) converts a two-byte integer into floating

point.

56524 SBCCC INT
BASIC INT.

FAC is rounded down to an integer in floating point format. The

result is four bytes in locations 98-101 ($62-65). This routine is
called by many functions requiring an integer in floating point

format.

Sometimes INT will round a number downward. This could be
avoided by INT(X+.5); however, if X is a negative number, this
would round it down, making it a greater value. To correctly round
negative or positive numbers, use SGN(X)*INT(ABS(X)+.5).

56553 SDCE9 FILFAG
Store the contents of .A in locations 98-101 ($62-65).

Used to zero out the locations.

56563 SDCF3
Convert an ASCII string to a floating point number in FAC.

This is called by VAL to evaluate and convert the string, allow

ing +, —, E, spaces, and a decimal point in the string. Note that

231

PRINT

PRTFIX

STR

FACT12

S7I0S

51872

56781

54373

53032

$CAA0

$DDCD

$D465

$CF28

SDFI1
0.5 constant for rounding and SQR.

$80,00,00,00,00

232

u

u

location 95 ($5F) is used as a switch to indicate that a decimal point I I
has already been processed.

SDD7E ASC18 _
Add .A to FAC.

Part of the ASCFLT routine at 56563 ($DCF3), this adds .A to p.
FAC by calling other routines. |_J

56755 $DDB3 FPG12
String to floating point conversion constants.

Table 8-7. String to Floating Point Constants

Constants Floating Point Representation
99,999,999.9 $9B,3E,BC,1F,FD

999,999,999.25 $9E,6E,6B,27,FD

1,000,000,000.0 $9E,6E,6B,28,00

56770 SDDG2 PRTIN
Issue message IN.

.A and .X are loaded with the contents of location 57-58 ($39-
3A), then fall through to the next routine.

$DDCD PRTFIX
Decimal number display routine.

An integer number (.A*256+.X) is converted to floating point in

FAC. The routine FLTASC 56797 ($DDDD) is called to convert the

number to a string, and the routine PRTSTR 51998 ($CB1E) is called
to print the number. This routine can be called from a machine lan
guage program.

S6797 SDDDD FLTASC
Convert FAC to TI$ or an ASCII string.

A fairly long and involved routine. A work area at 256-270
($100-10E) is used and the result is left in that area. [f

This routine is called by several others:

□

u

LJ

U

H

n
57110 SDF16

_ Powers of 10 table, in four-byte fixed integer format.

I This is used for converting strings

Constant Fixed Integer Representation

j—j -100,000,000 $FA,OA,1F,OO

1 +10,000,000 $00,98,96,80
-1,000,000 $FF,F0,BD,C0

+ 100,000 $00,01,86,A0

-10,000 $FF,FF,D8,F0

+ 1,000 $00,00,03,E8

-100 $FF,FF,FF,9C

+ 10 $00,00,00,0A

-1 $FF,FF,FF,FF

57146 SDF3A HMSCON
Constants for TI$ division conversion, in four-byte fixed integer

format.

Constant

60*60*60*10

+60*60*60

-60*60*10

+60*60

-60*10

+60

Fixed Integer *

$FF,DF,0A,80

$00,03,4B,C0

$FF,FF,73,60

$00,00,0E,10

$FF,FF,FD,A8

$00,00,00,3C

57170 SDF52
Unused area, filled with $BF,AA,AA,AA,AA,AA,AA,AA,AA,...

57201 SDF71 SQR
^ BASIC SQR.

I This moves FAC to FAC2, loads FAC with 0.5, and falls

through.

H 57211 SDF7B EXPONT
BASIC t (up arrow/power).

n

H
233

u

. . □

! 1

This routine calculates FAC2 to the FAC power, resulting in

FAC. It calls LOG 55786 ($D9EA) for FAC2, which is multiplied by

FAC and calls EXP 57325 ($DFED). f"j

S7268 SDFB4 NEGFAC
BASIC monadic — r—

Negate FAC by exclusive ORing the sign byte with a constant of '—'
255 ($FF). Zero is left unchanged.

$DFBF EXPCON
Table for EXP, in floating point format.

Used to calculate 2 to the N power.

Table 8-8. LOG and EXP Constants

Constant Floating Point Representation

1/LOG(2) $81/38/AA/3B/29

7 $07 count of values

.0000214987637 $71,34,58,3E,56

.000143523140 $74,16/7E,B3,1B

.00134226348 $77,2F,EE,E3,85

.00961401701 $7A,1D,84/1C/2A

.0555051269 $7C,63,59/58/0A

.240226385 $7E,75,FD,E7,C6

.693147186 $80,31,72,18,10

1.0 $81,00,00,00,00

SDFED EXP
BASIC EXP.

The value in FAC is multiplied by 1/LOG(2), converted to an

integer, and the table at 57279 ($DFBF) is applied to calculate e

(2.718281828) to the power of FAC, and left in FAC. EXP is the

reverse function of LOG. For EXP(X), the same results can be

achieved by 2.7182818 t X.

Excessive negative numbers will be set to 0 by this routine, I f

while arguments over about 88 will receive the OVERFLOW error

message.

Location Range: S7344-58S27 (SE000-SE49F)
BASIC Spillover into Kernal ROM _

BASIC spills over into this 8K ROM area up to location 58527 LJ
($E49F)—occupying a total of 1183 bytes. RND, SYS, OPEN,

CLOSE, LOAD, SAVE, VERIFY, additional trigonometic functions,

234

u

n

n and BASIC initialization routines take up the bulk of this 1K+

space.

rn The remainder of the 8K area contains the routines of the VIC's

1 I Kernal operating system. The Kernal handles all the I/O devices,
including the screen and keyboard, and provides routines that

_ BASIC and machine language can use to communicate with these

i] devices.

57408 SE040 SEREVL
Series evaluation subroutine.

This calls the next routine to accomplish the evaluation of com

plex trigonometric functions. A pointer is passed to this routine. This

pointer is stored in location 113-114 ($71-72) and is known as the

series evaluation pointer. It points to the table of constants for the
trigonometric function being evaluated by the evaluation routines.

This pointer will specify a location within the tables at 58171

($E33B), 55745 ($D9C1), 57284 ($DFC4), or 58092 ($E2EC). See

those constant tables and the routines around these locations for fur

ther information.

57430 SE056 SER2
Math series evaluation routine.

This routine computes polynomials based upon the table pointer

passed to it. This table pointer is stored in location 113-114 ($71-

72). The initial pointer passed to this routine points at the number of
table entries to be processed, which is followed by the table values.

SER2 multiplies and adds the coefficients to FAC to complete

the calculation.

SE08A RNDCI
Table of constants for RND.

This contains two floating point format numbers to use when

the argument passed to the BASIC command RND is a positive

number.

The first number is used to multiply the last seed by

11,879,546.4 ($98,35,44,7A,00); the second number,

.0000000392767778 ($68,28,Bl,46,00), is added to the result.

57492 SE094
BASIC RND.

See the discussions at location 139 ($8B) and 57482 ($E08A) for

details of the RND function.

235

u

D

SE0F6 PATCHBAS -
BASIC patch routines.

These routines are apparently inserted here to invoke CLR when j j
RS-232 is opened, and to display an error message if a called Kernal

routine returns with the carry bit set. BREAK is assumed if the carry

bit is set, but the error message number is zero. M

A BASIC routine will call these routines rather than calling the

Kernal routine directly or with indirect vectors. This adds yet another

level of calls for Kernal routines, but also facilitates further changes;

only one routine in BASIC needs to know the proper address for

these Kernal calls.

The patch routines handle calls to the following Kernal routines:

Table 8-9. Calls to the Kernal

Jump Calls Vector

Routine Action from Default

$E109 Output a character $FFD2 $0326 $F27A

$E10F Input a character $FFCF $0324 $F20E

$E115 Set output device $FFC9 $0320 $F309

$E11B Set input device $FFC6 $031E $F2C7
$E121 Get a character $FFE4 $032A $F1F5

A routine at $E0F6 is provided to handle the Kernal's returned

carry bit being set. BASIC routines that call the Kernal directly for

functions other than the ones provided in these routines commonly

branch to that entry point to issue the appropriate error message.

S7639 SEI27 SYSTEM
BASIC SYS.

The argument expression is evaluated, then type checked and

converted to a two-byte integer format by calling routine MAKADR

55287 ($D7F7), which stores the result in LSB/MSB format at loca

tion 20-21 ($14-15). A return address within the SYS routine is j 1

pushed onto the stack. Then the registers at locations 780-783 '—l

($30C-30F) are loaded and an indirect JMP is performed off the vec

tor stored in location 20-21 ($14-15). When SYS is reentered by the r ,

RTS of the target routine, the registers are stored in the SAVE area I I
of 780-783 ($30C-30F) for the next SYS to use.

You may modify these saved registers prior to issuing SYS so

that the correct parameters are passed. FAC, FAC2, and other loca- [_J
tions may need to be set, depending on the requirements of the tar

get routine(s).

D
236

n

n

S7701

57683 SEI53 SAVE
BASIC SAVE.

The routine calls PARSL 57809 ($E1D1) to set the filename,

device, and secondary address parameters. .X and .Y are loaded with

the contents of locations 45-46 ($2D-2E), which is the pointer to the

end of the BASIC program, and .A is loaded with the constant of 43

($2B), the zero page location of the pointer to the start of the BASIC

program. A JMP is then made to the Kernal SAVE routine via the

vector at $FFD8.

SE162 BVERIF
BASIC VERIFY.

This sets .A to 1 to indicate a VERIFY is in progress and falls

through to the next routine, skipping one instruction.

S7701 SE165
BASIC LOAD.

The first instruction of this routine loads .A with a zero to

indicate that a LOAD was requested. Note that this is skipped by

BVERIF.

The routine calls PARSL 57809 ($E1D1) to set the filename,

device number, and secondary address parameters. .X and .Y are

loaded with the contents of locations 43-44 ($2B-2C), the pointer to

the start of the BASIC program area, and .A is left as 1 or 0 to

indicate LOAD or VERIFY. A JMP is then made to the Kernal LOAD

routine via the vector at $FFD5. See that routine for more informa

tion regarding the LOAD sequence of events.

When the Kernal is finished, VERIFY will issue OK if in direct

mode, or VERIFY ERROR, depending on the ST setting.

LOAD will issue LOAD ERROR regardless of whether program

mode or direct mode is active. Otherwise, direct mode causes the

pointer to the end of the BASIC program at 45-46 ($2D-2E) to be

reset from the returned values in .X and .Y. The program lines are

r-] then rechained by calling the routine LNKPRG at 50483 ($C533).

! ' When LOAD is issued from a program, the current program is

ended and the LOADed program begins execution. Only the mes-

_ sage PRESS PLAY ON TAPE will be issued. No CLR is issued, so

i | the existing variables are not reset. Modified or constructed string
variables will be available, but functions must be redefined. The pro

gram being LOADed must not be larger than the LOADing program.

j| The commands 0 LOAD filename^ can be used to load/run a disk or
tape program if the device number is omitted or if it's ,1.

237

u

57787 D

U
S7787 SE1BB FOPEN
BASIC OPEN. r 1

The routine PAROC 57878 ($E216) is called to set the filename, l—'
device, secondary address, and argument expression that may be

specified with OPEN. See that routine for more details of the OPEN r~j

command. '—'
This JMPs off the COPEN* vector at $FFC0 to $031A and finally

to the Kernal routine OPEN at 62474 ($F40A).

S7796 SE1C4 FCLOSE
BASIC CLOSE.

The routine PAROC at 57878 ($E216) is called to set the file

number.

This then JMPs off the CCLOS vector at 65475 ($FFC3) to

$031C, and finally to the Kernal routine CLOSE 62282 ($F34A).
If closing tape, an end of file byte (0) is written, and perhaps an

I.D. 5 header, if opened with a secondary address of 2, to indicate

end of tape.

Disks are marked with an end-of-file marker in the last block

(sector) when the file is closed.

Failing to close an output file to disk can cause the file to be

irretrievable. If FILE NOT OPEN is received when attempting to

close it in direct mode, try OPEN 15,8,15:CLOSE 15.

Set LOAD, VERIFY, and SAVE parameters.

This is a rather curious routine that first calls the Kernal routine

SETNAM 65097 ($FE49), assuming that there is no filename, and

causes the device number and secondary address to default to 1 and

0 by calling the Kernal routine SETLFS 65104 ($FE50) with these

parameters set.

Then the routine IFCHRG 57859 ($E203) is called and returns if

any parameters were specified on the OPEN, VERIFY, or SAVE.

Otherwise, the IFCHRG returns to the routine calling this routine.

If this routine is reentered, it then calls the above mentioned

routines to set the specified parameters, calling IFCHRG for each

one, in order to exit with the default parameters as soon as there are

no more specified.

S78S9 SE203 IFCHRG
Check whether more characters are in the current statement.

If a call to CHRGET indicates that more characters are in this

statement, then return. Otherwise, return to the routine that called

the calling routine.

238

H

n

n

57887 SESOB
Skip any comma in parameters being scanned.

This routine calls the routine COMCHK 52989 ($CEFD) to do its

work, then falls through to the next routine.

57870 SE20E CHRERR
Insure that a parameter is present after a delimiting comma.

If a call to CHRGET indicates that more characters are in this

statement, then return. Otherwise, issue a SYNTAX ERROR message.

Handle parameters for OPEN and CLOSE.

This routine sets the filename, device, secondary address, and

argument expression that may be specified with OPEN or CLOSE.

The routine first calls the Kernal routine SETNAM 65097

($FE49), assuming that there is no filename, and causes the device

number and secondary address to default to 1 and 0 by calling the

Kernal routine SETFLS 65104 ($FE50) with these parameters set.

Then the routine IFCHRG 57859 ($E203) is called and returns if

any parameters were specified on the OPEN or CLOSE. Otherwise,

it returns to the routine calling this routine.

If this routine is reentered, it then changes the secondary

address (also called the command) for serial devices to 255 ($FF) and

passes it and the device number retrieved to the routine SETLFS at

65104 ($FE50).

Once again, the routine IFCHRG is called and returns if any

parameters were specified on the OPEN or CLOSE. Otherwise, it

returns to the routine calling this routine.

If this routine is reentered again, it calls SETLFS once again to

pass the specified device number and secondary address.

Finally, any specified filename is passed to SETNAM at 65097

($FE49).

All of this is done in this order to allow all parameters except

the file number to be optional.

S7953 SE261 COS
BASIC COS.

The cosine of FAC in radians is placed in FAC. This function

can also be performed with SIN(X+(?/2)). This adds a constant

value of ?/2 to the value and falls through to the next routine.

BASIC SIN.

Calculates the sine of FAC in radians. This is also used, with

239

u

, u

u
different constant values, for COS and TAN calculations.

This routine performs repetitive subtraction and division, using - -

the table of trigonometric constant values at 58077 ($E2DD) to [J
achieve the desired results.

To convert radians to degrees, the formula is: DEG=RAD*(180/

?). DEG will have a possible range of —90 to +90 degrees. ||

58033 SE2B1 TAN
BASIC TAN.

Determines the tangent of FAC in radians.

This routine calls SIN 57960 ($E268) and COS 57953 ($E261) to

help evaluate the expression.

SE2DD FPC20
Trigonometric evaluation constant values used for COS, SIN, and

TAN.

These table values are in five-byte floating point format.

Table 8—10. Trigonometric Constants

Constant

7/2

1*2

.25

5

-14.38139

42.007797

-76.70417

81.605223

-41.34170

6.2831853

165

S8I23
BASIC ATN.

Floating Point Representation

$81,49,0F,DA,A2

$83,49,0F,DA,A2

$7F,00,00,00,00

counter of following values

$84,E6,1A,2D,1B

$86,28,07,FB,F8

$87,99,68,89,01

$87,23,35,DF,E1

$86,A5,5D,E7,28

$83,49,0F,DA,A2

$A5 (one-byte)

SE30B A LJ

Determines the arctangent of FAC in radians. j J

Simpler than other trigonometric functions, this applies the

rather long table of constant values at ATNCON 58171 ($E33B).

58171 SE33B ATNCON LJ
Table of constant values for ATN evaluation.

The values are in five-byte, floating point format. j~~i

u

n

Table 8-11. ATN Constants

Constant Floating Point Representation

12 ($B) count of following values

-6.84793912 E-4 $76,63,8330,03

+4.85094216 E-3 $79,1E,F4,A6,F5

-.0161117018 $7B,83,FC,B0,10

+ .0342096380 $7C,OC,1F,67,CA

-.0542791328 $7C,DE,53,CB,C1

+ .0724571965 $7D,14,64,70,4C

-.0898023954 $7D,B7,EA,51,7A

+.1109324133 $7D,63,30,88,7E

-.1428398080 $7E,92,44,99,3A

+.1999991200 $7E,4C,CC,91,C7

+ .3333333160 $7F,AA,AA,AA,13

+ 1.000000000 $81,00,00,00,00

58232 SE378 COLDBA
Perform a cold start of BASIC.

This routine is pointed to by the vector stored in location 49152

($C000) COLDST*, that is branched upon as the last act of the

Kernal during its power-on/reset routine START 64802 ($FD22),

which the 6502 automatically jumps to via the vector stored in loca

tion 65532 ($FFFC).

This routine calls three routines, resets the stack pointer to 507

($1FB), and then jumps to READY 50292 ($C474) to display the

READY, message.

The three routines that are called are:

• INITVCTRS* 58459 ($E45B), which initializes the vectors

starting at 768 ($300).

• INITBA 58276 ($E3A4), which initializes CHRGET and the

page zero pointers.

• FREMSG 58372 ($E404), which displays the messages CBM

BASIC and BYTES FREE, then jumps to the NEW routine at 50754

($C642).

For more details of the functions performed, see the listed

routines.

A SYS 58232 will restart BASIC.

58247 SE387
CHRGET routine and RND seed to be copied to page zero RAM.

The CHRGET routine stored here is copied to locations 115-138

($73-$8A) and the seed value for RND is copied to locations 139-

143 ($8B-8F). This seed value is .811635157 ($80,4F,C7,52,58).

241

u

i U

n
The copying of this area to zero page is done by the routine

INITBA 58276 ($E3A4).

S8276 SE3A4 INITBA -
Initialize BASIC: Restore CHRGET and page zero pointers.

This routine is called by COLDBA* 58232 ($E378) during the P]

cold start of BASIC. ^
The CHRGET routine is copied from CGIMG 58247 ($E387) to

115-138 ($73-$8A); locations 0-6 are initialized as described at

those locations; various other locations in page zero are initialized;

and the address of the bottom of RAM is obtained by calling

MEMBOT 65154 ($FE82), and stored in 43-44 ($2B-2C). The top of

contiguous RAM is determined by calling MEMTOP 65139 ($FE73)

and stored in 51-52 ($33-34) and 55-56 ($37-38); a leading zero is

placed at the start of the BASIC program area; and one is added to

the pointer specifying that area. The pointer is at location 43-44

($2B-2C).

58372 SE404 FREMSG
Display cold start of BASIC messages.

This is called by COLDBA* 58232 ($E378) during the cold start

of BASIC.

This calculates the amount of free space in the BASIC area by

subtracting the start of BASIC program pointer at location 43-44

($2B-2C) from the pointer to the end of BASIC memory at location

55-56 ($37-38); it also displays the **** CBM BASIC V2 **** mes

sage, and the BYTES FREE message. These messages are located at

CBMMSG 58409 ($E429). Finally, a jump to the NEW routine at

50754 ($C642) is performed.

S8409 SE429 CBMMSG
BASIC cold start messages.

The **** CBM BASIC V2 **** and BYTES FREE messages.

58447 SE44F BASVCTRS
Six BASIC vectors to be copied to location 768 ($300).

The INITVCTRS* routine at 58459 ($E45B) copies these vectors

to RAM. See the description of these vectors at their RAM locations

768-778 ($300-$30A).

58459 $E45B INITVCTRS*
Copy BASIC vectors from ROM to RAM.

This is called by COLDBA* 58232 ($E378) during the cold start

of BASIC. Six BASIC vectors at location 58447 ($E44F) are copied to

242

n

1 RAM. See the description of these vectors at their RAM locations
768-778 ($300-$30A).

H 58471 SE467 WARMBAS
Perform a warm start of BASIC.

f—i When both the RUN/STOP and RESTORE keys are pressed, the

' ! BREAK* routine at 65234 ($FED2) uses the vector at ($C002) to
branch here after it has completed its duties.

See the BREAK* routine for details of the RUN/STOP-

RESTORE and ML BRK instruction functions performed.

The BASIC current I/O channel at 19 ($13) is reset to 0, indicat

ing the keyboard. Calls are made to the following routines:

CLRCHN 62451 ($F3F3) to reset all I/O channels to their defaults

(keyboard in, screen out); part of the CLR routine at 50810 ($C67A)

is called to reset the temporary string stack at 22 ($16); and the 6502

stack pointer (.S) is also reset.

Finally, this jumps to the routine READY 50292 ($C474) to dis

play the READY, message.

For more details of the function performed, see the listed

routines.

Notice that the BASIC program and variables have been pre

served and that only the stack entries have been lost.

58486 SE476 PATCHER*
Program patch area.

This contains two instructions that are used by the routine

BLOAD 57701 ($E165) to add calls which rechain the program lines

by calling routine LNKPRG 50483 ($C533), to call the routine

RESTOR at 51229 ($C81D), and to reset the temporary string stack

pointer and the 6502 stack pointer.

The remainder of this area is composed of bytes containing the

value 255 ($FF).

243

u

D

D

LJ

D

U

D

D

0

D

u

D

D

LJ

D

U

D

D

0

D

n

- Kernal ROM
„ Location Range: 58528-65535 ($E4A0-$FFFF)
' i

Kernal ROM
The Kernal handles all the I/O devices, including the screen and

keyboard, and provides routines that both BASIC and machine lan

guage routines can use to communicate with devices.

The Kernal is started when power-on/reset occurs. The 6502

chip automatically jumps to the location specified in location 65532

($FFFC), which is the Kernal start-up routine. See that location for a

description of the start-up activities.

Any Kernal routine can be entered or jumped out of at virtually

any point. The descriptions in this chapter are individualized by the

entry and exit points most often used. A routine to perform a given

function can, in fact, be entered at a point that causes a different

function to be processed.

The Kernal likes to use an existing routine if possible, rather

than forcing the computer to contain the same instructions at two

locations. Many levels of JSRs, stack manipulation of the return

address, and other techniques may be confusing when you're first

examining a routine. It's typical to use one routine to set up param

eters for an existing routine to process. The descriptions below

attempt to identify the fact that another routine is called to perform

the task attributed to a particular routine, and to indicate places

where the Kernal falls through (doesn't exit at the end of a routine,

but continues into the next sequential routine).

58528 SE4A6 SER0UT1
Serial: output a 1 on the serial data line.

This routine sets VIA2PCR* ($912C, bit 5) to 0 to indicate the

rn manual output mode; CB2 to be held low. This sends a 1 on the

• serial line.

This is called by all routines that send serial data.

H 58S37 SE4A9 SEROUTO
Serial: output a 0 on the serial data line.

<—, This routine sets VIA2PCR* ($912C, bit 5) to 1 to signal the
i i manual output mode; CB2 to be held high. A 0 is thus sent on the

serial line.

r^ It's called by all routines that send serial data.

i i

247

58546 SE4B2 SERGET

SE4CF entry point:

Addendum to close tape (write header I.D. 5).

SE500 IOBASE
Retrieve the address of the I/O memory page.

In the VIC-20, a call to this routine returns the address of the

first 6522 VIA chip in .X and .Y. The address of that chip is 37136-

37151 ($9110-$911F).

This routine is provided to give programs which use the VIA

type device to perform I/O operations the ability to locate the

address of that device for future compatibility on other similar

devices. There are PIAs and CIAs that are of the same type as the

VIA.

The routine RND 57492 ($E094) calls this routine to access the

VIA timers for the expression RND(O).

To utilize the vectored compatibility feature, always call this

routine through the jumping vector at 65523 ($FFF3).

Retrieve the maximum number of screen columns and lines.

For compatibility purposes, this routine returns the size of the

screen in columns and lines, and sets .X to indicate 22 columns and
.Y to signify 23 lines.

Be aware that these are constant values and are not obtained by
examining the 6560 VIC chip registers.

To utilize the vectored compatibility feature, always call this
routine through the jumping vector at 65517 ($FFED).

You may use this routine to determine if your program is run
ning on a VIC-20:

248

U

U

LJ

Serial: get an input bit from VIA1 and stabilize.

This retrieves a serial bit from VIA1PA2* at 37151 ($91 IF) and [_j
stabilizes it by testing until it remains constant. The bit is then

placed in .A. _

S8S56 SE4BG PATCHES* ~
Program patch area.

Preamble to LOADRAM 62786 ($F542) to display a SEARCH

ING message.

58561 SE4CI entry point:

Transfer 195-196 ($C3-C4) to 174-175 ($AE-AF) and display

LOADING or VERIFYING message.

n

n
SYS 65517:IF PEEK(781)<>22 OR

PEEK(782)<>23 GOTO xxx

The routine will branch to xxx if not a VIC-20.

SE50A PLOT
n Read or set the current cursor column and line.

The numbers used and returned correspond to the physical lines

and columns, not the logical linked lines.

If the carry flag is clear, .X is saved in location 214 ($D6), the

cursor line number; .Y is saved in 211 ($D3), the cursor row number;

and the cursor is moved to that position on the screen.

If the carry flag is set, .X is loaded from location 214 ($D6) and

.Y is loaded from 211 ($D3). These values are then returned to the

caller.

See location 217-241 ($D9-F1) for an example of using this rou

tine from BASIC.

The BASIC keywords POS, TAB, SPC, and a comma included in

PRINT parameters cause this routine to return the current cursor

position.

To utilize the vectored compatibility feature, always call this

routine through the jumping vector at 65520 ($FFF0).

58648 SE518 INITSK
Initialize the 6550 VIC chip, screen, and related pointers.

This is called by the power-on/reset and RUN/STOP-

RESTORE keys routines. It restores the keyboard and screen as I/O

defaults by calling SETIODEF* at location 58811 ($E5BB).

It also resets the 6560 VIC chip registers 36866 ($9002) and
36869 ($9005) from the screen page number stored in 648 ($288).

These are the screen address registers.

The cursor blink counts, keyboard table scan address, keyboard

buffer size, and current foreground color nybble in low memory

work areas are also reset. This routine then falls through to the

following routines.

~ S8719 SE55F CLSR
Clear the screen.

|—| See location 217-241 ($D9-F1) for an example of using this

routine.

This routine falls through.

H 58753 SES81 HOME
Move the cursor to the screen home position.

fl This falls through to the following routine.

249

u

U

SE587 SETSLINK* "
Reset the screen line link table pointers.

See location 217-241 ($D9-F1) for an example of using this rou- U
tine and an explanation of the screen line link table.

58805 SESB5 UNUSDNMI _
NMI entry for restore key (no entries to this routine found).

A short routine, this calls SETIODEF* 58811 ($E5BB) and then

JuMPs to the HOME* routine at 58753 ($E581). There appears to be

no reference to this routine.

58811 SESBB SETIODEF*
Reset the default device numbers.

This routine is called by INITSK* 58648 ($E518).

Locations 153-154 ($99-9A) are reset to indicate that the input

device number is now the keyboard (device 0) and the output device

is the screen (device 3). This then falls through to the next routine.

58819 SE5C3 INITVIC
Reset the VIC chip registers.

This routine sets the VIC chip registers from a table at VICINIT*

60900 ($EDE4) to 36864-36879 ($9000-900F) during power-on/reset

or RUN/STOP-RESTORE processing.

SESGF LP2
Get a character from the keyboard queue and shift it down.

.A is loaded with the first character in the keyboard buffer at

location 631 ($277). The count of characters in the buffer (at location

198, $C6) is decremented, and the characters remaining in the buffer
are shifted down to the beginning.

This is called by routines GETQUE* 58853 ($E5E5) and GETIN
61941 ($F1F5).

GETQUE j
Wait for character to appear in the keyboard buffer.

This routine is called by GET2RTN* at 58905 ($E619) as it is
obtaining characters up to a carriage return. M

The routine calls for the display of the current character, turns
off cursor flashes if there are characters in the keyboard buffer at 631
($277), calls LP2 58831 ($E5CF) to obtain a character, and loops in j" I
the calling instructions until it's returned a character. If SHIFT/RUN U
has been pressed, it places LOAD and RUN in the keyboard buffer

from location 60916 ($EDF4), and returns to GET2RTN* with a ; ■

LJ

250

LJ

H

n

n
character for it to process. It will return if it's not a carriage return-

forcing any previous keyboard buffer characters to be displayed.
PI The loop in this routine is the reason why INPUT# or calling
1 ' the routine CHRIN 61966 ($F20E) is not recommended for device 2,

RS-232. This loop will cause the other necessary protocol checking
r—» instructions not to be performed until a carriage return is received.
f I This can be disastrous for the handshaking RS-232 routines, since

they could get out of synchronization with the sending device.

59995 SE519 GET2RTH*
Empty and display the keyboard buffer up to a carriage return.

This is called by routine GETSCRN* 58959 ($E64F) to display
the keyboard buffer at 631 ($277) up to a carriage return.

In turn, it calls routine GETQUE* 58853 ($E5E5) to loop waiting

for another keyboard buffer character. It recalls that routine until it

returns with a carriage return.

This routine sets various low memory pointers to the beginning

and end of the character string obtained and displayed.

58959 SE64F GETSCRN
Obtain INPUT from screen.

Because this routine calls GET2RTN* 58905 ($E619), any key
board buffer contents will have been displayed on the screen. This
routine differentiates between keyboard and screen input, but reads
the screen for both. It's called by the routine CHRIN 61966 ($F20E).

59954 SEGB8 QUOTECK*
Test for quotes and set flag.

This sets the quote mode flag at location 212 ($D4) if the ASCII

value for a quote character (34) is in .A.

This quote mark check is performed when reading from the key

board or screen, and when writing to the screen.

59977 SE6C5 SETCHAR
j| Set up display of a character on the screen.

The routine PUTSCRN* at location 60074 ($EAAA) actually

_ stores a character on the screen, but this and other routines are

I (needed to check and set the environment before that action takes
place.

The state of insert and reverse mode is tested for and accom-

fl modated, the current color nybble is retrieved from location 646
1 ($286), the routine at SYNPRT* 60065 ($EAA1) is called to cause the

color for the screen location to be saved in the color map and the

|—I character to be displayed, and the routine calls the next routine to

' advance the cursor. It then exits.

251

n

u

U

1 I

See the routine SCRNOUT* at location 59202 ($E742); it calls

this routine.

59114 SE6EA SCROLL -
Advance the cursor on the screen, adds lines, and scroll.

After the cursor is advanced one position, the need for screen I j

scrolling and insertion of blank lines is determined and satisfied. '—)
See the routine SCRNOUT*, which calls this routine.

59181 SE72D RETREAT
Back up cursor into the previous logical screen line from the first

column of the current logical line.

Refer to the routine SCRNOUT* at 59202 ($E742). SCRNOUT*

calls this routine. Contrast this routine with BACKUP* at 59624

($E8E8).

SE742 SCRNOUT
Handle characters going to the screen.

This routine is the main driver routine (in other words, calls

other routines to accomplish the needed functions) for displaying

characters on the screen and handling control characters. In essence,

this is the heart of the screen editor.

The other screen-related routines are called as needed by this

routine to perform their tasks.

The actions of this routine vary, depending on whether direct or

program mode is active.

The following keys are given their meaning and screen function

by this routine:

INST

DEL

cursor keys

color keys

CLR

HOME

RVSON

RVSOFF

RETURN

SHIFT

Commodore key

SE8C3 NXTLINE
Advance cursor to the next logical screen line.

$E8D8 RTRN*
Handle the carriage return key.

This routine turns off quote mode, zeros the number of

outstanding inserts, turns off the reverse mode, and positions the

cursor to the start of the next logical line.

252

n

n

n

n

n

S9624 SE8E8
Move the cursor to the end of the previous physical screen line

| | from the first column of a continuation of a logical line.

Contrast this routine with the routine RETREAT* at location

_ 59181 ($E72D).
I !

SE8FA FORWARD
Move the cursor to the start of the next screen line if the cursor is

in the last column of the screen.

59666 SE9I2 COLORSET
Set the current foreground color code.

The color code table at COLORTBL* 59681 ($E921) is scanned

for the character in .A. If found, the number of the table entry

becomes the color code at location 646 ($286).

59681 SE921 COLORTBL*
Color code key table.

The ASCII values of the keys corresponding to each color code

are:

Table 9-1. ASCII Values 101 Color Codes

Dec Hex Color Code

144 $90

5 $05

28 $1C

159 $9F

156 $9C

30 $1E

31 $1F

158 $9E YEL

BLK

WHT

RED

CYN

PUR

GRN

BLU

0

1

2

3

4

5

6

f—1

I ! Code conversion table.

This 76-byte table has so far defied all my attempts to determine

its use. My guess is that it's a keyboard decoding table, but I haven't

found any references to it in the Kernal or BASIC.

SE975 SCRL
Scroll the screen.

A lot of work needs to be done to scroll the screen. An entire

logical line needs to be scrolled off the top and a complete logical

line scrolled in from the bottom while in direct mode.

253

u

u

u
The screen line link table at 217 ($D9) must be adjusted, the

screen map and color map lines must be moved, lines may need to

be erased, and low memory pointers need to be updated to reflect I J
the current cursor position. The STOP key is tested during this

routine.

59886 SE9EE OPEfflJN* -
Open up a blank physical line on the screen for inserts.

Inserting a blank line on the screen is another complex task for

the screen editor. Scrolling downward may need to be done, in addi

tion to all the tasks described for routine SCRL 59765 ($E975).

59990 SEA56 MOVLINE*
Move screen line.

Twenty-two bytes are moved from one screen line to another,

including the corresponding color map bytes.

60014 SEAOE SETADDR*
The address of the screen line and color line is set in memory.

A call to the routine COLORSYN* at 60082 ($EAB2) returns the

color map address for the screen line. The screen line link table

address is stripped of continuation flags. Both of these addresses are

stored in work areas for other screen routines.

60030 SEA7E LINPTR
Set a pointer to the address of the start of a screen line.

This determines the screen line address from both the screen

line link table and from the screen line LSB table at location 60925

($EDFD), given the number of the screen line to obtain the address

for. The pointer being set is located at 209-210 ($D1-D2).

60045 SEA8D CLRALINE
Blank out a physical screen line.

This moves spaces to 22 bytes of the screen map, pointed to by M
a temporary pointer, and sets the corresponding color map bytes to

the color code representing white.

60065 SEAA1 SYNPRT -
Synchronize color to byte and store character on screen.

The cursor blink countdown at location 205 ($CD) is set to 02, I I

and the routine COLORSYN* (60082 $EAB2) is called. This routine LJ
then falls through.

u

u

H

n

n

n

60074 SEAAA PUTSCRN
Store a character on the screen.

PUTSCRN* isn't an involved routine, since the routines called

by SETCHAR* have done all the hard work.

_ On entry, .A=screen POKE code; .X=foreground color. These

!] are placed in the appropriate screen map and color map positions
pointed to by temporary pointers.

60082 SEAB2 COLORSYN*
The address of the color map byte for screen map byte is found.

The screen map byte pointer in location 209-210 ($D1-D2) is

converted to a color map byte pointer in 243-244 ($F3-F4).

See location 217-241 ($D9-F1) for an example of using this

routine.

6009S SEABF IRQ
IRQ interrupt handler.

When the 6502 encounters an IRQ interrupt, it jumps off the

vector at 65534 ($FFFE) which points to the routine IRQROUT* at

location 65394 ($FF72). That routine will jump off the RAM vector at

location 788-789 ($314-315) to reach this routine if the interrupt

was not caused by a RUN/STOP-RESTORE key.

Normally, this routine is entered every 1/60 second because of

the interrupts generated by timer 1 of VIA2. The routine calls

UDTIM 63284 ($F734) to update the jiffy clock at location 160-162

($A0-A2) and to obtain the current keypress from 37167 ($912F)

and store it in location 145 ($91). The cursor is blinked and the tape

motor is turned off if appropriate. The routine SCNKEY 60190

($EB1E) is called to do the keyboard scan. Refer to that location for

more details.

Tape I/O interferes with accurate clocking and the RUN/STOP

key, since the vector at 788-789 ($314-315) is replaced during the

tape operation.

See the notes at location 788-789 ($314-315).

60190 SEB1E SCNKEY
Scan the keyboard for keypresses using 6522 VIA2.

The A and B ports of VIA2 (VIA2PB* ($9120) and VIA2PA1*

($9121)) are examined for keypresses using the techniques outlined

at those locations. Normally the table ASCII values of keys located

at NORMKEY* 60510 ($EC5E) are used to decode the key. Location

245-246 ($F5-F6) points to this table or any alternate table used.

Location 653 ($28D) is set to indicate any SHIFT, Commodore, or

CTRL key pressed. Location 203 ($CB) is set to the matrix coordinate

of the current key pressed; a value of 64 is set if no keys are pressed.

255

u

u

u
The vector at 655 ($28F) is used to call SETKEYS* 60380

($EBDC). Then the routine checks the repeater flag at 650 ($28A)

and repeats the key if the time intervals set in 651 and 652 ($28C) |_j

allow.

If the count of characters in the keyboard buffer (location 198,

$C6) is less than ten, the ASCII value of the key is placed in the r i

keyboard buffer at location 631 ($277) and the count is incremented. '—'
At exit, VIA2 is left in a mode to sense the RUN/STOP key

quickly.

60380 SEBDC SETKEYS*
Set keyboard decode table address in 245-246 ($F5-F6)

This routine is called by SCNKEY at 60190 ($EB1E) to deter

mine the correct keyboard decoding table to be used, based upon the

SHIFT key flags at location 653 ($28D). Location 657 ($291), the flag

to enable/disable the SHIFT/Commodore key switch, is checked

when selecting the proper table. The VIC chip register at 36869

($9005) is set to reflect any change in character sets. This routine has

many NOP instructions which indicate that it evidently had addi

tional functions or tests at one time. The Commodore 64 version has

been cleaned up.

The pointers in KEYVCTRS* 60486 ($EC46) are used as the cur

rent table address to be stored in location 245-246 ($F5-F6). See the

following routine for the possible table values.

60486 SEC46 KEYVCTRS*
Keyboard decode table addresses.

The routine SETKEYS* 60380 ($EBDC) uses this table to store

the current keyboard decode table address in locations 245-246

($F5-F6), based upon the shift flags in 653 ($28D).

Table 9-2. Keyboard Decoding Table

Shift flags m

Location 653 ($28D)

Dec

0

1

2

3

4

5

6

7

256

Binary

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

Keys being pressed

none

SHIFT

Commodore key

SHIFT + Commodore

CTRL

SHIFT + CTRL

Commodore + CTRL

SHIFT + CTRL +

Commodore

Decode 1

address i

60510

60575

60640

60510

or 60575

table

set in 245-246

$EC5E

$EC9F

$ECE0

$EC5E

$EC9F

(until pressed again)

60835

60835

60835

60835

$EDA3

$EDA3

$EDA3

$EDA3

Li
LJ

u

u

u

0

n 60777

li M«A SEC5E NORMKEYS*
Table used for decoding unshifted keys into ASCII.

I I Also used for CTRL plus SHIFT key decoding of keys.
Refer to Table 1-1, Keycode Values at Location 197 ($C5), for

the ASCII value for each key.

" 60575 SEG9F SHFTKEYS*
Table used for decoding SHIFTed keys into ASCII.

Also used for CTRL plus Commodore key decoding of keys.

60640 SECEO LOGOKEYS*
Table used for decoding Commodore SHIFTed keys into ASCII.

6070S SED21 CHARSET
Used to set uppercase/graphics character set.

The VIC chip control register at location 36869 ($9005) is set to

reference the uppercase/graphics character set.

60720 flEIBWE ffRAPHMODE*
Set the environment specified by graphics control characters.

This is called by the routine SCRNOUT* 59202 ($E742) to

implement the graphic modes specified by certain ASCII control

characters.

Table 9-3. Graphics Controls

CHR$ Effect

14 Select lowercase mode

142 Select uppercase mode

8 Disable shift to another case

9 Enable shift to another case

60763 SEDSB WRAPLINE

_ This routine is called by SCROLL 59114 ($E6EA) to mark the

| i next physical screen line in the screen line link table as no continu
ation of the current line.

- 60777 SED69 WHffTKEYS
Apparently unused keyboard decoding table.

From the values that are stored here, the table was perhaps to

|""| be used as a CTRL and Commodore key decoding table, but it's now
unable to be referenced. The Commodore 64 does not have this
table.

n
257

SEDA3 CTRLKEYS*

SEDFD LDTB2
Screen line link table LSB of lines in screen map.

This table is used by the routine LINPTR* 60030 ($EA7E) to

obtain the address of any given screen line and place it in location

209-210 ($D1-D2). The table contains 23 entries; the first contains 0,

and each succeeding entry is incremented by 22.

See location 217-241 ($D9-F1) for an example of using this

table in conjunction with the RAM located screen line link table.

U

0

LJ
Table used for decoding CTRL SHIFTed keys into ASCII.

This is also used when any other SHIFT key (SHIFT and/or |_J
Commodore key) is pressed while the CTRL key is pressed.

60900 SEDE4 VIGINIT* n
Initial values for VIC chip registers. ^

The routine INITVIC* 58819 ($E5C3) loads these values into the

VIC chip registers at 36864-36879 ($9000-900F) when power-on/

reset or RUN/STOP-RESTORE is being processed.

60916 SEDF4 RUNTB
LOAD and RUN words for SHIFT and RUN keys.

The characters LOAD and RUN (each followed by a carriage

return) are placed into the keyboard buffer at location 631 ($277) by

the routine GETQUE* when the left SHIFT key and RUN key are

pressed at the same time.

60948 SEEM
Serial: send talk with attention.

Bit 6 of the device number is turned on to instruct the serial

device to talk to the VIC-20. The routine then falls through to the

next routine, skipping the first instruction. .

The use of this routine is discussed in the VIC-20 Programmer's

Reference Guide. V |

60951 SEEI7 LISTEN
Serial: send listen with attention. -. —-,

Bit 5 of the device number is turned on to instruct the serial '—'
device to listen to the VIC-20. The routine then calls RSPAUSE*

61792 ($F160) to disable any RS-232 NMIs and falls through to the r-,

next routine. I—I
The use of this routine is also discussed in the VIC-20 Pro

grammer's Reference Guide. —

258

U

H

n

n
Serial: prepare to send serial command with attention.

The character to be sent is saved in location 149 ($95), and a

handshaking protocol sequence is sent to the device so that it will

listen to the command about to be sent. This routine then falls

n through.g

An alternate entry point to this routine is at 60992 ($EE40).

Entry at this point causes a send without the attention bit.

61001 SEE49 SRSEND*
Serial: send command or data to serial devices.

This sends the data or command to the addressed serial device,

checking to see that it acknowledges receipt of the transmission.

Location 165 ($A5) is used to count down the bits to be sent, which

are in location 149 ($95).

61108 SEEB4
Serial: set ST for timeout or DEVICE NOT PRESENT.

Depending on which instruction the routine is entered, it sets

the appropriate ST bits at location 144 ($90) by calling READIOST*

65130 ($FE6A).

61120 SEECO SECOND
Serial: send secondary address after listen command.

Once the serial device has been commanded to listen with the

LISTEN routine 60951 ($EE17), the secondary address is sent to it

after ORing with 96 ($60). The routine LIST1 60956 ($EE1C) is

called to send the secondary address, then this routine falls through.

The use of this routine is discussed in the VIC-20 Programmer's

Reference Guide.

61125 SEEC5 SGATN
Serial: clear attention.

This routine removes the serial attention bit from VIA1 port A,

bit 7. This is found in the VIA1PA2* routine at 37151 ($91 IF).

61134 SEECE TKSA
Serial: send secondary address after talk command.

Once the serial device has been told to talk (the routine TALK

does this), the secondary address is sent to it. The acknowledgment

from the device is awaited. Routines LIST1 60956 ($EE1C),

SEROUT0* 58537 ($E4A9), SCATN 61125 ($EEC5), SRCLKHI*

61316 ($EF84), and SERGET* 58546 ($E4B2) are called to perform

the task.

259

u

u

You can refer to the VIC-20 Programmer's Reference Guide for

details on how to use this routine.

61156 $EEE4 CIOUT U
Serial: send a byte on the serial line.

This routine is called after the serial device has been instructed i j

to listen (by the routine LISTEN) and after any needed secondary I—'
address has been sent with SECOND 61120 ($EEC0).

The character to be sent into location 149 ($95) is set by this

routine, which sends it via a call to SRSEND* 61001 ($EE49) when

this routine is next called, or when UNLSN 61188 ($EF04) is called.

Look at the VIC-20 Programmer's Reference Guide for details on

how to use this routine.

61174 SEEF6 UNTLK
Serial: send untalk command to serial devices.

All talking devices are instructed to stop talking when this is

issued. The routine actually falls through to the next routine to per

form much of the task.

The use of this routine is discussed in the VIC-20 Programmer's

Reference Guide.

61188 SEF04 UNLSN
Serial: send unlisten command to serial devices.

All listening devices are told to stop listening.

Refer to the VIC-20 Programmer's Reference Guide for a dis

cussion on how to use this routine.

Serial: receive byte from serial device.

The routines TALK 60993 ($EE41) and TKSA 61134 ($EECE) are

called prior to this routine to initiate and send the dialog.

This routine is discussed in the VIC-20 Programmer's Reference

Guide.

61316 SEF84 SRCLKHI U
Serial: set clock line high.

This turns off bit 1 of VIA2PCR* 37164 ($912C), causing CA2 to jj
be set to a low value. It's inverted to high by the circuitry.

This routine is called by several other routines to assist in the

serial handshaking sequences. j J

U
260

u

n

$EFSD SHCLKM*
Serial: set clock line low.

H Bit 1 of VIA2PCR* 37164 ($912C) is turned on by this routine,
causing CA2 to be set to a high value, which is inverted to low by

the circuitry.

fl This is called by other routines to assist in the serial

1 handshaking sequences.

61334 SEF96 WAITABIT
Serial: delay one millisecond.

Called by the routine LIST1 60956 ($EE1C), this routine uses

the second timer in VIA2 to time a one-millisecond delay, looping in

instructions that test for its expiration.

61347 SEFA3 RSNXTBIT9"
RS-232: send the next bit (NMI continuation routine).

This checks location 180 ($B4) to determine if all the bits for the

byte in 182 ($B6) have been sent. It calls RSPRTY* 61375 ($EFBF) to
calculate the parity when the entire byte has been sent. Location 181

($B5) is set to 1 or 0 for the next bit to be sent. Location 189 ($BD) is
used as a parity work byte. When an RS-232 interrupt occurs, VIA1

CB2 will be set high or low, depending on the value in location 181

($B5).

61375 SEFBF RSPRTY*
RS-232: calculate parity and stop bits value.

This is called by the above routine RSNXTBIT* to calculate the

parity and number of stop bits for a byte. Location 189 ($BD) is used

to determine which state the parity bit should have (1 or 0), depend

ing on the parity option chosen. Even or odd parity specifications

send the corresponding parity bit. For instance, even will send a one

parity only if the number of bits in the byte is odd, therefore making

it even. Mark parity always transmits parity bit of 1. Space parity

j—I always transmits a 0 parity bit.

61416 SEFE8 RSSTOPS
_ RS-232: transmit stop bits.

i ' Depending on the number of stop bits requested by the user,
this routine is called once or twice to generate and send either one

_ or two stop bits. This is accomplished by calling an alternate entry

) I point of RSNXTBIT* 61347 ($EFA3). Location 180 ($B4) is used to
calculate the needed stop bit configuration.

H

261

SEFEE RSNXTBYT*
RS-232: prepare the next byte to be sent from send buffer.

Called by routines RSNXTBIT* 61347 ($EFA3) and RSNMISET*

61710 ($F10E), this routine obtains the next byte to be sent from the
transmit buffer at the top of RAM created when the RS-232 device
was opened.

Because of an incorrect address in the code, this routine always

believes that Clear To Send and Data Set Ready are present.

The number of bits to send is placed in 180 ($B4), while loca

tions 181 ($B5) and 189 ($BD) are zeroed. The byte to be sent is

placed in 182 ($B6). The transmit buffer pointer at 669 ($29D) is
kept current.

61462 SF0I6 RSMISSNG
RS-232: set Clear To Send or Data Set Ready Missing status.

Meant to set the RS-232 status byte at 663 ($297) when either of

these two conditions is met, it seems that only Data Set Ready Miss

ing will be set because of the coding errors at OPENRS 62738

($F512) and RSNXTBYT* 61428 ($EFF4).

This is called when an error is detected when opening RS-232

or preparing the next byte to be sent.

61479 SF027 RSCPTBIT
RS-232: compute desired word length bit count

When opening the RS-232 device, this routine is called to cal

culate the correct number of data bits, based on the number specified

in the control register at location 659 ($293).

61494 SF036 RSINBIT
RS-232: receive an input bit (NMI driven).

Called by the routine RSNMI* 65246 ($FEDE) when a timer 2

interrupt is sensed, this routine calls RSSTRBIT* to determine if a

start bit was received. If so, then bit 0 of 167 ($A7) will contain the

inbound bit from the RS-232 device. Location 170 ($AA) is built bit r--:

by bit, and then RSINBYTE* 61551 ($F06F) is called to store the new LJ
byte in the receive buffer.

61515 SF04B RSSTPB1T _
RS-232: determine if all the stop bits have been received yet.

If the proper number of stop bits has not yet been received, the ■—

routine exits. Otherwise, it falls through to the next routine. Loca- | |
tions 167-168 ($A7-A8) are used to determine the number of stop

bits received.

U
262

u

H

H .

" 61S31 SF05B RSPREPIN
RS-232: prepare to receive the next input byte.

H The routine enables VIA 1 CB1 interrupts, disables timer 2 inter
rupts, and sets 169 ($A9) to indicate that a start bit is being sought.

p 61544 SF068 RSSTRB1T
RS-232: check for start bit in receive mode.

Location 169 ($A9) is tested to see if a start bit has been

received. If not, this goes to the routine RSPREPIN* 61531 ($F05B).

61SS1 SF06F RS1NBYTE
RS-232: put constructed byte into receive buffer.

If the receive buffer pointed to by location 668 ($29C) has room

for a character, this stores the byte in the buffer and falls through to

the next routine. Otherwise, it forgets the just-received character and

goes to RSOVERUN at location 61602 ($F0A2).

61S79 SF08B RS1NPRTY*
RS-232: parity checking of the input byte.

The parity option selected, if any, that was stored in 167 ($A7)
is compared to the input byte parity stored in location 171 ($AB). If

correct, the routine RSSTPBIT* 61515 ($F04B) is branched to. Other

wise, a branch is made to the RSPRTYER* routine at 61597 ($F09D).

61597 SF09D
RS-232: parity error on input byte.

This loads .A with the error code ($01) and goes to routine

RSINERR* at location 61610 ($F0AA).

61608 SF0A2 RSOVERUN
RS-232: buffer overrun on input byte.

This routine loads .A with the error code ($04) and goes to rou-

_ tine RSINERR* 61610 ($F0AA).

61665 SF0A5 RSBREAK
RS-232: break detected on input.

i ! .A is loaded with the error code ($80) and this routine goes to

RSINERR* at 61610 ($F0AA).

H 61608 SF0A8 RSFRAMER*
RS-232: framing error on input.

This loads .A with the error code ($02) and goes to routine

M RSINERR* 61610 ($F0AA).

263

U

U

SFOAA RSINERR "
RS-232: set input error status and continue.

After the RS-232 error status is posted in 663 ($297) for the user [j
to correct, the next input byte is prepared for by jumping to

RSPREPIN* 61531 ($F05B). _

61625 SF0B9 RSDVCERR ~
RS-232: ILLEGAL DEVICE message for LOAD or SAVE.

An ILLEGAL DEVICE NUMBER message is issued if a LOAD or

SAVE is attempted on an RS-232 device. The routine FILEMSG* at
location 63358 ($F77E) is called to issue the message.

61688 SFOBC RSOPNOUT
RS-232: open an RS-232 channel for output.

This routine is called by CHKOUT 62217 ($F309) to prepare an

RS-232 output channel. The routine performs the necessary x-line

handshake and simply returns for three-line handshaking.

61677 SFOED RSOUTSAU*
RS-232: store a character in the transmit buffer.

If there is no room in the transmit buffer, the routine loops until

the character can be stored in the buffer. Interrupts cause sending

routines to remove bytes from the buffer and send them along. The

transmit buffer at location 670 ($29E) is kept current.

This routine falls through to the next routine if transmission has

not been started; otherwise,it returns.

61688 SF102 RSPREP8T*
RS-232: set up NMI for transmission.

This prepares timer 1 of VIA 1 to interrupt at the needed time to

implement the selected baud rate. Location 665-666 ($299-29A)

contains the bit timing value for the baud rate.

The routine RSNXTBYT* 61422 ($EFEE) is called to begin

transmission. I j

61718 SF116 RSOPNIN
RS-232: open an RS-232 channel for input. j j

Called by routine CHKIN 62151 ($F2C7), this routine enables

timer 2 and CBl interrupts on VIAl and exits for three-line mode or

full duplex x-line handshaking. Half duplex x-line handshaking j j

causes a check for dataset-ready and clear-to-send to turn off, turns '—'
off request-to-send, and waits for data-terminal-ready to come on

before proceeding. r~>

264

u

n

H

n

n

n

n
6177S SF14F RSNXTIN

I—* RS-232: retrieve the next character from the receive buffer.

1 (GETIN at 61941 ($F1F5) calls this routine for the next RS-232
input byte. The receive buffer is emptied by this routine, returning a

|-^ 0 in .A if no characters are in the buffer.

61792 SF160 RSPAUSE
RS-232: check that serial and tape are idle, to protect from RS-232.

Tape and serial read/write routines call this routine to insure

that RS-232 NMI sequences are not currently active, which would
hinder tape and serial timing. If RS-232 is active, the routine loops

until the RS-232 sequence is finished.

61812 SFI74
Table of Kernal messages.

The last letter of each message has the high order bit on. To

cause a particular message to be printed, .Y is loaded with the index

of the message within this table, then the routine KMSGSHOW* at

61926 ($F1E6) is branched to. If an I/O ERROR message is to be
displayed, the FILEMSG routine at 63358 ($F77E) is branched to at

the appropriate entry point to cause the desired error number to fol

low the message.

Table 9-4. Kernal Error Messages

Index

Dec

00

12

27

46

73

81

89

99

106

Hex

$00

$oc

$1B

$2E

$49

$51

$59

$63

$6A

Message

(CR) I/O ERROR

This message is followed by a code number:

1 TOO MANY FILES

2 FILE OPEN

3 RLE NOT OPEN

4 FILE NOT FOUND

5 DEVICE NOT PRESENT

6 NOT INPUT FILE

7 NOT OUTPUT FILE

8 MISSING filename

9 ILLEGAL DEVICE NUMBER

(CR) SEARCHING FOR

(CR) PRESS PLAY ON TAPE

PRESS RECORD & PLAY ON TAPE

(CR) LOADING

(CR) SAVING

(CR) VERIFYING

(CR) FOUND

(CR) OK

265

u

u

jj
BASIC preempts the Kernal error message I/O ERROR in program

mode. BASIC has its own error messages and prefers them over the

Kernal message of I/O ERROR followed by an error number. See the I |

list of BASIC messages at location 49566 ($C19E). LJ
See location 157 ($9D) for the Kernal control/error message

selection indicator that enables or disables Kernal messages. The vec- j—j

tor at 65424 ($FF90) causes SETMSG at 65126 ($FE66) to reset loca- LJ
tion 157 ($9D) to the value in .A. You could set this yourself with a

POKE statement.

61922 SF1E2 SPMSG
Display LOADING or VERIFYING if control messages wanted.

This routine is called by 63082 ($F66A) to display the appro

priate message. It checks the flag at 157 ($9D) and skips the message

if Kernal control messages are turned off. These would be turned off

by BASIC in program mode; these messages are issued only in direct

mode.

This falls through to the next routine if the message is to be

displayed.

Print Kernal control messages.

This is called by any routine wanting to display a Kernal control

message. It leaves checking of location 157 ($9D), the Kernal mes

sage control, to the calling routine. .Y received is used as an index

into the message table at address 61812 ($F174).

61941 $F1FS GETIN
Routing routine for obtaining a character of input data.

The next input device character (or 0) will be placed in .A when

this routine is called. Contrast this with the routine CHRIN 61966

($F20E).

This routine routes the actual processing of this function to sev

eral different routines, based on the device currently being used as

indicated in location 153 ($99).

The vector at 65508 ($FFE4) should be used to access this rou

tine so that the 810 ($32A) RAM vector will be used.

If the input device is not the keyboard or RS-232, this goes to

CHRIN. If the input device is for the keyboard and location 198

($C6) indicates that the keyboard buffer is empty, then this simply

returns. If there are characters in the buffer, the LP2 at 58831

($E5CF) is called.

For RS-232 devices, routine RSNXTIN* 61775 ($F14F) is called.

BASIC READ, GET, and INPUT call this routine via the vector at

810 ($32A).

266

H

n

n
The use of this routine is discussed in the VIC-20 Programmer's

Reference Guide.

61966 SF20E CHRIN
Input characters from current input device.

l"! The result of calling this routine is that one byte of data is
obtained from the input device and placed into .A. The keyboard or

screen can return up to 88 bytes into the BASIC input buffer at 512

($200), one byte being returned by each call to this routine. Contrast

this with the routine GETIN 61941 ($F1F5).
This routine routes the actual processing of this function to sev

eral different routines, based on the device that is currently being

used as indicated in location 153 ($99).

The vector at 65487 ($FFCF) should be used to access this rou

tine so that the 804 ($324) RAM vector will be used.

For the keyboard or screen, the GETSCRN* routine at 59124

($E64F) is used.

For serial devices, the routine ACPTR 61209 ($EF19) is used;

refer to the interesting feature before the call in routine CHRINSR*

62052 ($F264).

For the RS-232 device, CHRINRS* 62063 ($F26F) is called.

Tape device handling falls through to the next routine.

Refer to the VIC-20 Programmer's Reference Guide for a short dis

cussion on the use of this routine.

62666 SF236 CHRINTP*
Obtain a byte from the tape buffer.

This calls CHRINTP2* 62032 ($F250) to point to the byte in the

tape buffer or request the next tape block. It tests for end of data and

sets location 144 ($90) to 64 ($40) if so.

62632 SF250 CHR1NTP2*
Load .A with next tape character, getting block when needed.

This routine calls JTP20 63626 ($F88A) to increment the pointer

in 166 ($A6) to the next byte, calling JTP20 63680 ($F8C0) to get the

next tape block if needed.

62052 SF264 CHRINSR
Obtain a byte from the serial line.

If ST in location 144 ($90) is other than 0, this routine returns a

carriage return as a data character in case you ignored EOI on serial.

Otherwise, this jumps to the routine ACPTR 61209 ($EF19).

267

u

u

u
62063 SF26F CHRINRS
Obtain a byte from the RS-232 device. --

This loops in a call to RSNXTIN* 61775 ($F14F) until a nonzero I—'
is returned.

Because of the possibility of an endless loop here, CHRIN is not r ~

recommended for RS-232 devices. See page 255 of the VIC-20 Pro- LJ
grammer's Reference Guide. GET# or the routine GETIN via the vec

tor at 65508 ($FFE4) should be used instead.

SF27A CHROUT
Output character to current output device.

Calling this routine sends one byte of data from .A to the output

device.

This routine routes the actual processing of this function to sev

eral different routines, based on the device that is currently being

used as indicated in location 154 ($9A).

The vector at 65490 ($FFD2) should be used to access this rou

tine so that the 806 ($326) RAM vector will be used.

For screen output, the routine SCRNOUT* 59202 ($E742) is

used; the routine CIOUT at 61156 ($EEE4) is used for serial output;

and for RS-232 output, the routine RSOUTSAV* 61677 ($F0ED) is

used.

Tape output is handled by falling through to the next routine.

SF290 CHROUTTP
Output a character to tape.

The character to be sent on an open channel is stored in location

158 ($9E).

This routine calls JTP20 63680 ($F8C0) to update the tape buffer

index in location 166 ($A6) to the next byte. When the buffer is full,

the routine WBLK 63715 ($F8E3) is called to write the block.

Check the VIC-20 Programmer's Reference Guide for details on

the use of this routine.

SF2G7 GHKIN
Open .X file number channel for input.

Once a file has been opened, this routine sets location 153 ($99),

the input device, to the associated (.X) file device number. It also

checks that the file is opened, that it was opened as an input file,

and that the device is present.

For serial devices, both an instruction to talk and the secondary

address are sent to the device.

For RS-232, this routine calls RSOPNIN* 61718 ($F116) to open

the channel.

268

The jump at 65478 ($FFC6) should be used to access this rou

tine so that the 798 ($31E) RAM vector will be used.

62217 SF309
Open .X file number channel for output.

Once a file has been opened, this routine sets 154 ($9A), the

output device, to the associated (.X) file device number. It checks

that the file is opened, that it was opened as an output file, and that

the device is present.

For serial devices, a command to listen, as well as the secondary

address, is sent to the device.

The routine RSOPNOUT* 62628 ($F0BC) is called to open the

channel for RS-232.

The jump at 65481 ($FFC9) should be used to access this rou

tine so that the 800 ($320) RAM vector will be used.

62282 SF34A CL68E
Close logical file number in .A.

The FNDFLNO* routine at 62415 ($F3CF) is called by this rou

tine to find the file information; SETFLCH* 62431 ($F3DF) is called

to get the index into the file tables.

If RS-232, the buffers are deallocated and the routine MEMTOP

65139 ($FE73) is called to return the two 256-byte areas to

availability.

If writing to tape, an end of file 0 is put into the end-of-tape

buffer 828 ($33C) and the buffer is written. If the secondary address

has bit 1 on, an end-of-tape header with tape I.D. 5 is also written.

Locations 152 ($98), the number of open files; 601 ($259), file

number table; 611 ($263), the device number table; and 621 ($26D),

secondary address table, are updated.

The jump at 65475 ($FFC3) should be used to access this rou

tine so that the 796 ($31C) RAM vector will be used.

62415 SF3GF FNDFLNO
Find file number (.X) in file table at 601 ($259).

If the file number is found, .P bit 1 is set so that BEQ is true.

This routine is called by the routines CHKIN, CHKOUT, CLOSE,

and OPEN.

62431 SF3DF SETFLCH
Set file characteristics of file (.X) into 184-186 ($B8-$BA).

File, secondary address, and device number are stored in the

indexes at 184-186 ($B8-BA) from the entries in the tables:

269

u

D

601 ($259) LAT File number table ^
611 ($263) FAT Device number table

621 ($26D) SAT Secondary address table F~j

62447 SF3EF CLALL
Abort all open files (with no close). ~

This sets location 152 ($98) to indicate no open files and falls 1—'
through to the next routine.

The jump at 65511 ($FFE7) should be used to access this routine

so that the 812 ($32C) RAM vector is used.

SF3F3 CLRCHN
Abort all open channels.

Locations 153 ($99), the input device, and 154 ($9A), the output

device, are reset to keyboard (0) and screen (3).

If serial devices were on open channels, this routine calls

UNLSN 61188 ($EF04) and/or UNTLK 61174 ($EEF6).

Pressing the STOP key calls this routine.

The jump at 65484 ($FFCC) should be used to access this rou

tine so that the 802 ($322) RAM vector is used.

62474 SF40A
Open a logical file, file number in 184 ($B8).

If file number 0 is used, this gets a FILE NOT AN INPUT FILE

error. It also calls FNDFLNO* 62415 ($F3CF) to insure that the file is

not already open and checks that this open doesn't exceed ten open

files.

File number, secondary address, and device number are stored

in the tables:

601 ($259) LAT File number table

611 ($263) FAT Device number table

621 ($26D) SAT Secondary address table

If a serial device is being opened, the routine SERNAME* at

62613 ($F495) is called; if an RS-232 device is being opened,

OPENRS* 62663 ($F4C7) is called. jj
When opening a file to be read from tape, this calls FNDHDR*

at 63591 ($F867) to find the specified file, or calls 63407 FAH

($F7AF) for the next file on the tape. T]

When opening an output file to tape, the routine TAPEH 63463 I—>
($F7E7) is called to write the new file header (I.D. 4).

The jump at 65472 ($FFC0) should be used to access this rou- j—,

tine so that the 794 ($31A) RAM vector will be used. • U

U
270

u

H

62813 SF4SS SEBNAHE*
Send secondary address and filename to serial device.

i ! The secondary address stored in location 185 ($B9) is sent to the

serial device stored in 186 ($BA) by calling LISTEN 60951 ($EE17)

_ and SECOND 61120 ($EEC0).

i I DEVICE NOT PRESENT is indicated if the return status 144

($90) has the high order bit on.

The filename pointed to by 187 ($BB) is sent by calling CIOUT

61156 ($EEE4) for each character.

62663 SF4G7
RS-232: open RS-232 device.

Up to four characters of the specified filename are stored in:

659 ($293) RS-232 control register

660 ($294) RS-232 command register

661-662 ($295-296) RS-232 nonstandard bit timing

The routine RSCPTBIT* 61479 (F027) is called to compute the

desired word length bit count, which is stored in location 664 ($298).

The clock time per bit is computed and stored in 665 ($299)

using the table at 65372 ($FF5C). The resulting values are copied to

37140-1 ($9114-5) and 37144-5 ($9118-9) when needed. These are

VIA l's timers.

For x-line handshaking, an erroneous (?) test for dataset ready at

37152 ($9120) is performed, which will always be true.

Two RS-232 buffers are allocated from the top-of-user-RAM

space by calling MEMTOP 65139 ($FE73) to read and later set the

pointers for top of RAM, after the top has been decremented by two

pages. RS-232 pointers at 247-248 ($F7-F8), 249-250 ($F9-FA), and

667-669 ($29B-29D) are initialized.

62786 SF542 LOAD
Load (or verify) to RAM from device number specified in 186

($BA).

The .X and .Y input parameters are the LSB/MSB address of the

starting RAM to be loaded or compared. These are stored in 195-196

($C3-C4) and a branch is performed off the vector in 816 ($330),

normally returning to the next instruction of the routine. .A input

parameter is 0 for LOAD or 1 for VERIFY. Keyboard, screen, and

RS-232 are illegal devices.

Serial device activity is routed to the LOADSER* routine at

62812 ($F55C), and tape functions are routed to the routine

LOADTP* 62929 ($F5D1).

The jump at 65493 ($FFD5) should be used to access this rou

tine to use the RAM vector at 816 ($330).

271

u

u

62812 SF55C LOADSER -
Load or verify RAM from a serial device.

Serial devices are sent the filename and a secondary address of j j
0, with some command bits on, and respond with a FILE NOT

FOUND condition or a pointer of the location of where the data was

saved from. This pointer at location 174-175 ($AE-AF) is overlaid j [

by 195-196 ($C3-C4) if a relocatable load was specified. Otherwise, LJ
it is used as the address for the start of the load. The file from disk is

then loaded to RAM.

62929 SF5D1 LOADTP
Load or verify RAM from tape.

The address to load the data to must be greater than 512 ($200)

or the ILLEGAL DEVICE message will display.

PRESS PLAY is requested, if needed. Either the next filename is

searched for by FAH 63407 ($F7AF) or the specified file is searched

for by the routine FNDHDR 63591 ($F867). See the explanation of

the tape header format at location 828 ($33C). The first byte of the

tape header is tested (the tape I.D.). If the tape I.D. is 3 (a

nonrelocatable tape) or if the I.D. is 1 and the secondary address in

185 ($B9) is nonzero, the starting address for the LOAD comes from

the second and third bytes in the tape header. However, if the tape

I.D. is 1 and the secondary address in 185 ($B9) is 0, it uses the

starting address specified in .X and .Y passed to the load routine.

The ending address of the LOAD is calculated from the starting

address plus the length saved in the tape header.

The message LOADING or VERIFYING and the filename are

displayed. LDBLK* 63689 ($F8C9) is called to read in the two pro

gram blocks.

The routine TSTOP at 63819 ($F94B) will be called to test for

the STOP key.

63947 SF947 SRCHING
Display SEARCHING message for tape device.

If location 157 ($9D) allows Kernal control messages, the mes- fj
sage is displayed and falls through to the next routine.

63065 $F659 FILENAME* r>
Display the filename. '—'

The filename pointed to by location 187-188 ($BB-BC) is dis-

played by calling the CHROUT routine at 62074 ($F27A) for each |~j

character. '—'

U
272

i !

n
63082 SF66A LDVRMSG*
Display LOADING or VERIFYING message.

! I The contents of location 147 ($93) are used to determine which
message is appropriate. This routine calls SPMSG at 61922 ($F1E2)

to do the actual displaying.

63093 SF675
Save RAM to device number specified in 186 ($BA).

.X and .Y are stored in 174-175 ($AE-AF) as the ending

address. The zero page index in .A is used to move the starting

address to location 193-194 ($C1-C2). The vector at 818 ($332) is

jumped from, normally returning to the next routine.

The jump at 65496 ($FFD8) should be used to access this rou

tine or the RAM vector at 818 ($332) for the next routine.

63122 SF692 SAVESER
Save RAM to serial device.

An RS-232, screen, or keyboard SAVE displays ILLEGAL

DEVICE message.

A tape SAVE is routed to the routine SAVETP* 63217 ($F6F1).

The rest of this routine handles serial devices. A check is made

to insure that a filename is present, SAVING along with the

filename is displayed, and the starting address of the SAVE is sent to

the disk for recording with the data or program. The RAM between

the start and end address is sent to disk by calling the CIOUT rou

tine at 61156 ($EEE4), with a test for the STOP key after every

character sent.

63217 SF6F1 SAVETP*
Save RAM to tape.

The tape buffer pointed to by 177-178 ($B1-B2) is checked to

insure that it is not located below 512 ($200); otherwise, an

ILLEGAL DEVICE error is displayed. PRESS RECORD AND PLAY

is displayed if needed. SAVING and any filename is also displayed.

The tape header I.D. is determined from the secondary address in

185 ($B9) and placed in the tape header. An even secondary address

results in a tape I.D. of 1 for a relocatable program, while an odd

secondary address results in a tape I.D. of 3 for a nonrelocatable pro

gram. The routine TAPEH 63463 ($F7E7) is called to write the tape

header with the start and end address of the area saved, as well as

the filename.

Routine WBLK 63715 ($F8E3) is called to write a three-second

leader onto the tape, followed by the save area in the format of two

identical blocks separated by a short interblock leader. Finally, if the

273

i \

63272 SF728
Display SAVING message.

If location 157 ($9D) allows Kernal control messages, this is dis

played by calling KMSGSHOW* 61926 ($F1E6); the routine

FILENAME* 63065 ($F659) is called to display a filename.

63284 SF734
Increment the jiffy clock at 160-162 ($A0-A2).

This updates the clock and resets it to 0 after 24 hours. Location

162 ($A2) is incremented every .01667 second (one jiffy; 1/60

second).

Location 37167 ($912F) is stored in 145 ($91) for STOP key test

ing purposes.

The IRQ routine 60095 ($EABF) calls this routine every jiffy.

Tape I/O interferes with accurate clocking and STOP key test

ing, although the routine TAPE periodically calls this routine.

The NMI* 65193 ($FEA9) routine also calls this routine.

The jump at 65514 ($FFEA) should be used to access this

routine.

63328 SF760
Put jiffy clock from 160-162 ($A0-A2) into .Y, .X, and .A.

This routine is called from LET 51621 ($C9A5) when TI$ is set

in BASIC.

The jump at 65502 ($FFDE) should be used to access this

routine.

6333S SF767 SETTIM
Set time into jiffy clock 160-162 ($A0-A2) from .Y, .X, and .A.

This is called from LET 51621 ($C9A5) when TI$ is set in

BASIC and should be accessed with the jump at 65499 ($FFDB).

63344 SF770
Check for STOP key in ($91), purge keyboard queue and channels

if so.

Location 145 ($91) is checked for a value of 254 ($FE). The

274

U

u

j i

secondary address has bit 1 on, an I.D. 5 (end of tape) header is LJ
written by calling TAPEH.

Routine TSTOP 63819 ($F94B) is called to test for the STOP r--

key. LJ
Figure 3-1 at location 833-1019 ($341-3FD) shows a typical

tape format. Refer to that diagram for details on each block written —

to tape. LJ

UDTIM routine at 63284 ($F734) stores the current keypress in that

location.

r-[■ Bit 1 of .P (or location 783 ($30F) if SYS 63344 is used) will be

* ' on if the STOP key was found; otherwise, .A contains the current

keypress value from the STOP key keyboard row.

^—t Tape I/O interferes with accurate clocking and the STOP key

? 1 test, although the routine TAPE periodically calls this routine.
The jump at 65505 ($FFE1) should be used to access this routine

to use the RAM vector at 808 ($328).

633S8 SF77E FILEMSG*
I/O error file error message handler.

Multiple entry points allow any particular error number to be

displayed, depending on the point of entry.

If location 157 ($9D) allows Kernal error messages, the message

is displayed by calling KMSGSHOW* 61926 ($F1E6) and then

CHROUT 62074 ($F27A) to display the error number.

See location 61812 ($F174) for the assigned error numbers.

63407 SF7AF FAH
Tape: find next tape header, .X back contains header I.D. number.

This finds the next tape header by calling RDTPBLKS* 63680

($F8C0) to load the next header into the tape buffer. If the first byte

in the buffer is not equal to 1, 3, 4, or 5, it keeps reading tape blocks

until a header is found.

If the header is not an I.D. 5 header, and location 157 ($9D)

allows Kernal control messages, the Found message and the filename

are displayed.

See location 828 ($33C) for an explanation of the tape header

I.D. meanings.

Routine TSTOP 63819 ($F94B) is called to test for the STOP

key.

63463 SF7E7 TAPEH
~-°< Tape: build an output tape header in the tape buffer area.

.A into this routine contains the tape header I.D.

The tape buffer is first cleared to all spaces. This routine then

fills the tape buffer (pointed to by 178-179 ($B2-B3)) with the

header I.D., the starting and ending address of the area saved, and

the filename. The latter is pointed to by location 187 ($BB) for the

length specified in address 183 ($B7).

This routine calls LDAD1 63572 ($F854) to temporarily (for this

routine only) reset both 193-94 ($C1-C2) to the start of the tape

buffer and 174-175 ($AE-AF) to the end-of-tape buffer. It also calls

the routine WBLK 63715 ($F8E3) to write a ten-second leader and

275

u

u

the tape header in the buffer onto the tape in the format of two

identical blocks, separated by a short interblock leader.

TSTOP 63819 ($F94B) is called to test for the STOP key. f]

6356S SF84D TPBUFA*
Tape: load tape buffer address from 178-179 ($B2-B3) into .X and r- -,

.Y. U

This is called by tape routines whenever the tape buffer address

is needed.

63S72 SF8S4 LDAD1
Tape: set load/save starting and ending pointers to the tape

buffer.

TPBUFA* at 63565 ($F84D) is called to obtain the address of the

tape buffer, which is then saved into the start-of-save pointer at

193-194 ($C1-C2); 192 is added and saved in the end-of-save

pointer at 174-175 ($AE-AF).

LDAD1 is called by tape routines whenever the tape buffer

address range is needed.

63S91 SF867 FNDHDR
Tape: find the tape header for a specified filename (or next).

The routine FAH 63399 ($F7AF) is called by this to find the next

tape header. If no filename was specified, then it returns to the caller

since the next tape file has been found. If a filename was specified,

the filename in the header to the desired name is compared to the

length specified in 183 ($B7). If the two don't match, this routine

loops until a match is found.

TSTOP at 63819 ($F94B) is called for the STOP key test.

63626 SF88A JTP26
Tape: increment the tape buffer character counter.

The count of the characters in the tape buffer counter at 166

($A6) is incremented. It's then compared to location 192 ($C0) to .-

determine if the tape buffer is full. LJ

SF894 CSTEL
Tape: display PRESS PLAY ON TAPE message. [J

The routine CS10 63659 ($F8AB) is called to determine the tape

button status and if necessary, KMSGSHOW* 61926 (F1E6) is called

to display the message. This routine loops while waiting for a tape \ j
button to be pressed.

Location 63819 ($F94B) is referenced to test for the STOP key.

U
276

U

n

H
SF8AB CS10

Tape: check tape's play/rewind/forward button status.

Location 37151 ($91 IF), bit 6 is tested. A BEQ instruction (bit 1

in .P is on) in the calling routine is taken if a tape button is pressed.

63671 SF8B7 CSTE2
Tape: display PRESS RECORD & PLAY ON TAPE message.

This routine calls CS10 63659 ($F8AB) to determine the tape

button status and if needed, calls part of the CSTEL routine at 63642

($F89A) to display the message and to loop while waiting for a but

ton to be pressed.

63680 SF8C0 RDTPBLKS
Tape: initiate tape header read.

The LDAD1 routine at 63572 ($F854) is called to set the load/

save starting and ending pointers to the tape buffer. Location 147

($93) is also set, so that it indicates a load operation; it then falls

through to the next routine.

63689 SF8C9 RBLK
Tape: read blocks from tape.

This calls CSTEL 63636 ($F894) to display a PRESS PLAY ON

TAPE message. IRQ interrupts are disabled to allow the changing of

the IRQ vector so that tape routines are interrupt-proof. This also

prepares parameters for and calls TAPE at 63732 ($F8F4) to enable

an alternate IRQ vector to point to the routine READT 63886 ($F98E).

6371S SF8E3 WBMK
Tape: write blocks to tape.

LDAD1 63572 ($F854) is called to set the load/save starting and

ending pointers to the tape buffer. Location 171 ($AB) is set by this

to cause a short leader to be written, tape buffer to tape.

The CSTE routine at 63671 ($F8B7) is called, which displays the

message PRESS RECORD & PLAY ON TAPE; the IRQ interrupts are

disabled to allow a changing of the IRQ vector so tape routines are

interrupt-proof; parameters are prepared for; and TAPE 63732

($F8F4) is called to enable an alternate IRQ vector to point to WRTZ

64680 ($FCA8). This routine then falls through.

63732 SF8F4 TAPE
Tape: common tape read/write, start tape operations.

TAPE disables all IRQ interrupts from VIA 2, the normal source.

It calls RSPAUSE* 61792 ($F160) to disable any RS-232 NMI

277

interrupts and saves the current IRQ vector from location 788-789

($314-315) to address 671-672 ($29F-2A0). See the latter location

for additional information.

The proper IRQ vector is set by a call to BSIV 64758 ($FCF6):

• If called for a save to tape, enables timer 2 VIA2 interrupts and

resets the IRQ vector to WRTZ 64680 ($FCA8).

• For a load from tape, enables CA1 VIA2 interrupts and resets the

IRQ vector to 63886 ($F98E).

This routine sets location 190 ($BE) to 2, the number of blocks

to be saved or loaded, and calls NEWCH 64475 ($FBDB) to set up a

new tape character. It turns on the tape motor by setting the proper

bits in 37148 ($911C) and delays one-third second for the motor to

gain speed.

The IRQ interrupt is enabled so that the next IRQ interrupt calls

WRTZ or READT.

During tape processing, this routine loops while testing for the

STOP key and updating the jiffy clock between IRQ interrupts.

When the IRQ vector is finally reset to the default IRQ vector, the

routine exits.

63819 SF94B TSTOP
Tape: check for the STOP key.

This routine calls the STOP key test routine STOP 63344

($F770) and exits if the key has not been pressed. If the key has

been pressed, this jumps to TNIF 64719 ($FCCF) to deactivate the

tape IRQ vector and restore the normal vector.

SF95D STTI
Tape: set time limit for tape dipole.

Timer 1 is set to a value which limits the amount of time the

tape can be read before an IRQ occurs. This seems to be used to

handle random errors, such as tape dropouts, preventing total

disruption of a tape load as well as possibly allowing recovery.

278

u

D

SF98E READT \)
Tape: read tape data bits into location 191 ($BF) (IRQ driven). LJ

The time between CA1 interrupt occurrences is determined for

the current dipole. This dipole time is later used to determine M

whether the dipole just read is noise, 0, 1, or a word marker.

When a word marker, which signifies the end of a byte, is

found, this routine jumps to TPSTORE* 64173 ($FAAD) to handle f"]

the byte just received. '—'
If the bit just received is in error (for instance, a parity error), an

error flag in 168 ($A8) is set. r ,

i I

u

n 64173

P—I

' The dipole timebase in 176 ($B0) is adjusted, based on the cal

culated value in 146 ($92); location 164 ($A4) is set to indicate

j—j which dipole was read.

1 i The value of the first dipole, which is also the bit value, is saved

in location 215 ($D7). If both dipoles were 0, a leader bit has been

^ read and location 150 ($96) is set to indicate the tape is either before

f | or between blocks.
If all eight data bits have not yet been received, the bit just

received is rotated into the high order bit of address 191 ($BF).

Sets location 182 ($B6) if any tape errors, such as parity or mis

matched dipoles, occurred during the reading of this byte.

If the byte has been fully processed, the routine RTI* 65366

($FF56) is branched to.

Refer to location 146 ($92) for a description of a dipole; the

location also includes Figure 1-2, which illustrates a square wave

cycle.

64173 SFAAD TPSTORE*
Tape: determine if to store the input character from tape.

This routine does a number of things. It starts looking for data if

enough leader has been read, checks for a long block condition, and

looks for a block countdown character, when one is expected. When

a block countdown is found, is it the first or second block? Is the

countdown character 1, indicating data is next? This routine also

checks for a short block condition present. Has the end of the LOAD

area been reached?

TPSTORE* also determines whether currently reading block one

or block two.

If verifying, it compares the tape byte with RAM. If not equal, it

sets location 182 ($B6) to indicate a verify error.

If loading, the routine checks 182 ($B6) for error flags. If there

are none, it stores the byte in RAM and proceeds. If an error is

indicated, it stores the address in the error log at 256-318 ($100-

13E) for attempted correction. The error index in 158 ($9E) is in-

!"""! cremented. If there are 31 errors, the read is aborted.
1 Error correction is attempted during the read of the second copy

of the tape block, using the erroneous byte pointers.

j—i When both blocks have been processed, the IRQ vector is reset

! ' to its normal default setting and a checksum (or parity) of the bytes

that were just read is computed. This checksum should be equal to

fmm^ the one that was read as the last byte of block two. If they're not

! I equal, ST in 144 ($90) is set to indicate a checksum error.

279

u

Li

SFBD2 RD300 ^
Tape: called to reset the tape read pointer.

The tape read pointer in 172-173 ($AC-AD) is loaded from M
193-194 ($C1-C2).

64475 $FBDB NEWCH i "j
Tape: new tape character setup. (—

This is called to prepare for a new character for tape input or

output. The bit count in location 163 ($A3) is reset to 8 and the

following related fields are zeroed: 164 ($A4), 168 ($A8), 169 ($A9),
and 155 ($9B).

64490 SFBEA TPTOGLE*
Tape: toggle the tape write line to invert the output signal.

The tape write line is flipped, reversing the signal polarity being

written to the tape. Depending on the entry point used to enter the

routine, various values are used for timer 2 for the time of the next

cycle.

64SI8 SFC06 BLKEND
Tape: end of block write processing.

This is called by the routine WRITE* 64523 (FCOB) once the

memory area and the checksum byte have been written for a block,

in order to set the high order bit of 173 ($AD) on, writing an

interblock leader.

This then jumps to RTI* 65366 ($FF56) to end the interrupt exit.

SFCOB WRITE
Tape: data write (IRQ driven).

This is the routine called with each VIA2 timer 2 interrupt to

actually write the cycles onto tape. This makes up two dipoles for

each bit to be saved or for writing a word marker. A word marker is

two long cycles, followed by two medium cycles.

TPTOGLE* 64490 ($FBEA) is called for each cycle written. M
This also checks location 173 ($AD) to see if the high order bit

is on, indicating the block SAVE is complete. If it is on, the routine

goes to WRTN.l 64661 ($FC95) to write a leader. i i

The value of the bit written in the first dipole is inverted so that '—'
the second dipole will write the opposite value. For example, if the

first dipole wrote cycles for values of 1-1, the second dipole will be , -,

0-0. Similarly, if the first half was 0-0, the second half is 1-1. Thus, U
a bit value of 1 is represented by four cycles of 1-1—0-0, while a 0

is represented by four cycles of 0-0—1-1. Bits are written with four

cycles, while they are read during tape load as two dipoles. j j

280

u

A parity work bit based on the bit being written is updated by

this routine. Location 189 ($BD) shifts right one bit, moving the next

bit to be sent into bit 0. When all eight bits have been written

(indicated by 163 ($A3) containing zero), the parity bit to be written

is prepared, as is the next byte to be sent. If all bytes from the save

area have been written, this writes the checksum byte and branches

to the BLKEND* routine at 64518 (FC06).

This routine jumps to RTI* 65366 ($FF56) to end the interrupt

exit.

64661 $FC95 WRTN1
Tape: block leader write (IRQ driven).

This handles the end-of-block processing. If the second block

was just saved, the tape motor is turned off by calling TNOFF 64776

($FD08).

If the first block was just saved, a long dipole is written, fol

lowed by 80 leader cycles.

SFCA8 WRTZ
Tape: leader write (IRQ driven).

WRTZ writes leader cycles to tape before blocks and between

blocks. Leader cycles are very close to the length of time of the

values written for 0 data cycles, and are indeed considered O's when

reading back the tape during tape load.

This routine resets the IRQ vector to 64523 ($FC0B) and enables

interrupts so the next IRQ caused by timer 2 goes to the WRITE*

routine to write a data block.

It also sets location 165 ($A5) to indicate that block countdown

characters are to be written before actually writing the data from the

save area to tape; it then jumps into the middle of the WRITE* rou

tine to write the block countdown characters.

Address 190 ($BE) is tested for the completion of writing both

blocks. If both are completed, this routine falls through.

64719 SFCCF
Tape: restore IRQ vector.

The tape IRQ vector is deactivated and the normal vector is

restored. This routine then calls TNOFF 64776 ($FD08) to stop the

tape motor, changes location 37152 ($9120) back to scan for the

STOP key, and restores the saved IRQ vector to 788-789 ($314-315)

from location 671-672 ($29F-2A0).

SFCF6 BSIV
Tape: reset the current IRQ vector.

This calls TNIF 64719 ($FCCF), then depending on the

281

Compare current to end of load/save pointers (tape and serial).

This routine compares the pointer to the current load/save byte

(172-173, $AC-AD) to the pointer to the end of the area (174-175,

$AE-AF). The carry flag is cleared if the end pointer is greater than

the current pointer.

This is called to determine if the load/save action has

completed.

Li

LJ

parameter passed in .X, sets the IRQ vector in 788-789 ($314-315) U
to one of the following addresses in the table at 65009 ($FDF1):

63886 ($F98E) Read tape block M
64680 ($FCA8) Write tape leader

64523 ($FC0B) Write tape

64776 SFD08 TN6FF U
Tape: kill motor.

Bits 3-1 of VIA1 routine VIA1PCR* 37148 ($911C) are set to l's

to stop the tape motor.

6478S SFD1B
Increment current load/save pointer (tape and serial).

One is added to the pointer which specifies the current load/

save byte in location 172-173 ($AC-AD).

64862 SFD22 START
Power-on/reset routine (checks for autostart cartridge).

The routine sets the stack pointer to an effective address of 511

($1FF) and clears the 6502 decimal mode; calls CHKAUTO* 64831

($FD3F) to check for an autostarting cartridge; branches to the

address contained in 40960 ($A000) if found; calls INITEM* 64909

($FD8D) to initialize memory and system contents; calls RESTOR

64850 ($FD52) to set the system vectors; calls INITVIA* 65017 j i

($FDF9) to initialize the 6522 VIA register; calls INITSK* 58648 LJ
($E518) to initialize the 6560 VIC chip registers and screen; enables

interrupts; and branches to the address contained in 49152 ($C000) j -.

to start BASIC. LJ
Location 65532 ($FFFC) contains the address of this routine for

the 6502 to branch on when a 6502 RESET is detected.

You can use SYS 64802 to perform the power-on/reset routine j j
(a cold restart) and SYS 64812 to skip the autostart cartridge test.

U

282 '

U

n

64877

SFD3F CHKAUTO
Check for an autostarting program at 40960 ($A000).

This routine is called by the routines START 64802 ($FD22) and

NMI* 65193 ($FEA9).

Starting at address 40964 ($A004), this checks for the five

characters AOCBM that are stored in location 64845 ($FD4D), setting

the zero flag if found. See location 40960 ($A000) for more
information.

64845 SFD4D AOCBM*
AOCBM characters with the high order bit on in the last three

characters. $41,30,C3,C2,CD

64850 $FD52 RESTOR
Cause the RAM system vectors to be reset to provided defaults.

This routine sets .X and .Y to the address of the provided system

vector table at 64877 ($FD6D) and falls through to the next routine

after clearing the carry flag in .P.

A jump to this routine is provided at location 65418 ($FF8A).

START 64802 ($FD22) and BREAK* 65234 ($FED2) both call

this routine for power-on/reset and RUN/STOP-RESTORE keys

processing.

SFD57 VECTOR
Read or set system RAM vectors.

Normally, this stores the 16 vectors from 64877-64908 ($FD6D-

$FD8C) into the RAM vectors in locations 788-802 ($314-322).

Entering this routine at location 64855 ($FD57) enables the carry

flag of .P, which determines whether a read or set of the vectors is

to be done. If carry is set, .X and .Y are used as the address where

the vectors are copied to from the current contents of 788-802

($314-322). If carry is clear, .X and .Y are used as the address of a

user vector table that should be stored into 788-802 ($314-322).

A jump to this routine is provided at location 65421 ($FF8D). To

modify one or more vectors, copy the RAM vectors to your user

area, modify the vectors required, and then call for the user vectors

to be copied to 788-802 ($314-322).

Default system vector address storage table.

Routine RESTOR 64850 ($FD52) copies these 16 vectors into the

RAM vectors in location 788-802 ($314-322). See that area for

details of the contents of this table.

283

u

u

$FD8D INITMEM* -
Initialize system memory.

This zeros 0-255 ($0-FF) and 512-1023 ($200-$3FF). It sets M
178-179 ($B2-B3) to point to the tape buffer at 828 ($33C) and starts
looking for RAM from 1024 ($400) by calling the routine TSTMEM*

65169 ($FE91). | I

This sets the screen map memory page into 648 ($288). See that l—J

location for additional details.

The start of RAM pointer is set into 641 ($281) by calling the

MEMTOP 65139 ($FE73) routine. See location 641 ($281) for further

details of the possible values in that location.

If RAM ends before 8191 ($1FFF), this goes into an error loop.

START at 64802 ($FD22) calls this routine.

6S009 SFDF1 IRQVCTRS*
IRQ vectors table.

64680 ($FCA8) Write tape leader

64523 ($FC0B) Write tape

60095 ($EABF) Normal default IRQ vector

63886 ($F98E) Read tape block

This table is used by the routine BSIV 64758 ($FCF6) to set or

restore the IRQ vector in 788-789 ($314-315) to the needed address.

6S017 SFDF9 1NITVIA
Initialize the 6522 VIA registers.

37136-37151 ($9110-$911F) 6522 VIA Chip 1

37152-37167 ($9120-$912F) 6522 VIA Chip 2

See those locations for additional information.

This routine is called by START 64802 ($FD22) and BREAK*

65234 ($FED2) for power-on/reset and RUN/STOP-RESTORE keys

processing.

Initialization values are:

Auxiliary control registers:

timer 1: (free-running mode); output on PB7 disabled

timer 2: set to an interval timer in one-shot mode

shift register: disabled

port B latch enable: to reflect the data on the pins

port A latch enable: to reflect the data on the pins

VIA1 peripheral control register:

CB2: manual output mode (CB2 held high)

CB1: interrupt flag on a high-to-low transition

CA2: manual output mode (CA2 held high)

CA1: interrupt flag on a low-to-high transition

VIA2 peripheral control register:

284

CB2: manual output mode (CB2 held low)
CB1: interrupt flag on a high-to-low transition

CA2: manual output mode (CA2 held high)

CA1: interrupt flag on a low-to-high transition

Data direction VIA1 port B: input

Data direction VIA1 port A: input, except PA7 output

Data direction VIA2 port B: output

Data direction VIA2 port A: input

VIA1 interrupt enable register: transition on CA1

VIA2 interrupt enable register: timer 1

VIA2 timer 1: 17033 ($4289)

65097 SFE49
The filename pointer and length are stored from .X, .Y, and .A.

Prior to a LOAD or SAVE, this routine is used to set the desired

filename information.

The length is stored from .A into location 183 ($B7). A 0

indicates that no filename is needed for tape.

The pointer to the filename is stored from .X and .Y into 187-

188 ($BB-BC).

See all of these locations for additional information.

The jump at 65469 ($FFBD) should be used to access this

routine.

6S104 SFE50 SETLFS
Set the current file number, device, and secondary address.

.A (file number) is stored into location 184 ($B8), .X (device

number) is stored into location 186 ($BA), and .Y (secondary

address) is stored into location 185 ($B9). A value of 255 ($FF) is
used in the latter to indicate no secondary address.

See these locations for additional information.

Prior to a LOAD or SAVE, this routine is used to set the desired

file and device information.

The jump at 65466 ($FFBA) should be used to access this

routine.

65111 SFE57
Reset RS-232 status, branch to 65128 ($FE68) for non-RS-232

status.

If the current device number in location 186 ($BA) is not a 2
(signifying RS-232), this routine branches to location 65128 ($FE68).
Otherwise, this zeros the RS-232 status in address 663 ($297). (The
Commodore 64 Kernal returns the status in .A as well as zeroing the

byte, but this was overlooked in the VIC and the .A returned is

zeroed.)

285

Use RS=PEEK(663):POKE 663,0 to obtain the RS-232 status,
not ST.

The jump at 65463 ($FFB7) should be used to access this
routine.

SFE66 SETMSG
Set the byte used to enable/disable Kernal message display.

This stores .A into 157 ($9D) and falls through. See location 157
($9D) for more details.

The jump at 65424 ($FF90) should be used to access this
routine.

6S128 $FE68 READIOST*
Load .A with the non-RS-232 I/O status ST.

.A is loaded with the current contents of 144 ($90) and this rou
tine then falls through. See location 144 ($90) for more details.

The jump at 65463 ($FFB7) should be used to access this
routine.

65130 SFE6A ORIOST*
OR .A with the contents of 144 ($90) ST and store there.

When reading the status information, the contents of 144 ($9A)
have already been loaded into .A, so there is no effect.

This routine can be used to add a status bit by loading .A with a
value to be ORed with 144 ($90).

The new value (or unchanged value) in .A is stored in 144
($9A).

See the device number, secondary address, and status code table
in Appendix D.

6S13S SFE6F SETTMO
Set timeout value for IEEE-488.

This stores .A in 645 ($285). It's used only with an IEEE-488

add-on card. A 0 in bit 7 enables a 64 millisecond timeout value,

while a 1 in that bit disables the timeout altogether. See location 645
($245) for additional information.

The jump at 65442 ($FFA2) should be used to access this
routine.

SFE73 MEMTOP
Read or set the top of memory pointer.

The carry flag in .P determines the action performed:

Carry clear: 643-644 ($283-284) set to .X .Y contents.

Carry set: .X .Y set to the contents of 643-644 ($283-284).

286

The jump at 65433 ($FF99) should be used to access this

routine.

n

n

n

n
Read or set the bottom of memory pointer.

r-| The carry flag in .P determines the action performed:

' ' Carry clear: 641-642 ($281-282) set to .X .Y contents.

Carry set: .X .Y set to the contents of 641-642 ($281-282).

The jump at 65436 ($FF9C) should be used to access this

routine.

6S169 SFE91 TSTMEM
Test a memory location.

TSTMEM* stores values in bits 6-0 of the byte pointed to by

193-194 ($C1-C2) + .Y, after saving the contents of the byte. The

original contents of the byte are restored after the testing is done.

On exit, the carry flag in .P is clear if the memory location

proved to be non-RAM and set if it is a RAM location.

This routine is called by INITMEM* 64909 ($FD8D) when test

ing the limits of RAM.

6S193 SFEA9 NMI*
NMI handler routine.

This routine processes RUN/STOP-RESTORE keys and VIA1

timer interrupts.

The 6502 chip jumps off the vector at 65530 ($FFFA) when an

NMI is sensed. The vector points to this routine.

After disabling the IRQ interrupts, a jump off the link at 792-

793 ($318-319) is performed, normally continuing with the next

instruction in the routine.

The .A, .X, and .Y registers are saved on the stack.
CHKAUTO* 64831 ($FD3F) is called and branches to the

address contained in 40962 ($A002) if an autostart cartridge is found,

whether the RUN/STOP key was pressed or not.

H If the VIA1 interrupt enable register at 37149 ($91 ID) indicates

1 that the interrupt is disabled, or the RESTORE key was pressed
without the RUN/STOP key, then this branches to RTI* 65366

H ($FF56).
1 I If the RESTORE key was not pressed, this goes instead to

RSNMI* 65246 ($FEDE).
— UDTIM 63284 ($F734) is called to update the jiffy clock, then

H calls the test STOP key routine STOP at 63344 ($F770). If the RUN/
STOP key was pressed with the RESTORE key, this falls through to
the following BREAK* routine. Otherwise, it branches to RTI* 65366

$

287

The vector at 65530 ($FFFA) should be used to access this

routine.

u

u

u

6S234 SFED2 BREAK* -
BREAK interrupt entry.

The BREAK* routine handles the BRK ML instruction ($00) and ft
RUN/STOP-RESTORE keys. You can cause a warm restart by

SYSing 65234.

RESTOR 64850 ($FD52) is called to reset the system vectors in

RAM, INITVIA* 65017 ($FDF9) to reinitialize the 6522 VIAs, and

INITSK* 58648 ($E518) to initialize the 6560 VIC chip registers and

screen. This then branches to the address contained in 49154

($C002) to perform a warm start of BASIC.

A vector to this routine is provided at location 790-791 ($316-
317).

6S246 SFEDE RSNMI
RS-232: NMI sequences.

An interrupt on VIAl timer 1 is used for RS-232 bit trans

mission scheduling, VIAl timer 2 is used for RS-232 bit reception,

and VIAl CB1 is used for RS-232 reception of a new byte.

This calls RSNXTBIT* 61347 ($EFA3) to send the next bit, or

RSINBIT* 61494 ($F036) to receive an input bit. It performs baud
rate calculations using 659 ($293) and the table at 65372 ($FF5C) in

order to set VIAl timer 2 for the next bit to be sent or received. This
falls through to the next routine.

65366 SFFS6 RT1
Restore 6502 registers from the stack and return from interrupt.

SFFSG BAUDTBL
RS-232: VIA timer 2 values for baud rate table.

If any of the NI (Not Implemented) values are chosen for the LJ
baud rate specification in location 659 ($293), the RS-232 control

register, values are retrieved past the end of this table using the

following routine's instructions as values. This results in the baud (j
rate being set to less than 50.

G

U
288

0

n

n

n

n

n

Table 9-5. Baud Rates and V1A1 Timer 2 Values

Baud

50

75

110

134.5

150

300

600

1200

(1800) 2400

2400

3600 (NI)

4800 (NI)

7200 (NI)

9600 (NI)

19200 (NI)

VIA1 Timer 2 Value

9.135 millisecond

6.060 millisecond

4.103 millisecond

3.337 millisecond

2.985 millisecond

1.447 millisecond

0.679 millisecond

0.294 millisecond

0.166 millisecond

0.102 millisecond

6S394 SFF72 IRQROUT*
IRQ routine initial 6502 entry point.

The 6502 chip uses the vector at 65534 ($FFFE) to branch upon

when an IRQ is sensed. That vector points to this routine. Further

IRQs are disabled by the 6502.

The 6502 causes the program counter (MSB/LSB) and .P to be

saved on the stack. This routine also places .A, .X, .Y, and the stack

pointer on the stack.

If the Break flag in .P is set, the vector at 790-791 ($316-317)

that points to the routine BREAK* at 65234 ($FED2) is branched

upon. Otherwise, the vector at 788-789 ($314-315) is used to branch

to the routine IRQ at 60095 ($EABF).

65413 SFF85 C4FFS*
Five unused bytes of 255 ($FF).

Location Range: 6S418-6S53S (SFF8A-SFFFF)
ROM Vectors

These contain a JMP opcode followed by the vector

6S418 SFF8A
JuMP to 64850 ($FD52) RESTOR.

SFF8D
JuMP to 64855 ($FD57) VECTOR.

CVECTOR

289

65424

65424
JuMP to 65126

65427
JuMP to 61120

65430
JuMP to 61134

65433
JuMP to 65139

65436
JuMP to 65154

65430
JuMP to 60190

65442
JuMP to 65135

65445
JuMP to 61209

65448
JuMP to 61156

65451
JuMP to 61174

65454
JuMP to 61188

65457
JuMP to 60951

65460
JuMP to 60948

65463
JuMP to 65111

65460
JuMP to 65104

290

SFF90
($FE66) SETMSG.

SFF93
($EEC0) SECOND.

SFF96
($EECE) TKSA.

SSFF99
($FE73) MEMTOP.

SFF9G
($FE82) MEMBOT.

SFF9E
($EB1E) SCNKEY.

SFFA2
($FE6F) SETTMO.

SFFA5
($EF19) ACPTR.

SFFA8
($EEE4) CIOUT.

SFFAB
($EEF6) UNTLK.

SFFAE
($EF04) UNLSN.

SFFB1
($EE17) LISTEN.

SFFB4
($EE14) TALK.

SFFB7
($FE57) READST.

SFFBA
($FE50) SETLFS.

CSETMSC

CSECOND

CTKSA

CMEMTOP*

t

CMEMBOT

CSCNKEY

C8ETTM0

GAGPTR*

CCI0UT

CUNTLK

CUNLSN*

GLISTEN*

CTALK*

CRDST

CSETLFS

u

IIILJ

LJ

U

U

U

u

u

LJ

n

n

H

65468 SFFBD CSETNAM
JuMP to 65097 ($FE49) SETNAM.

I I —- The following are indirect JMPs off a RAM vector
The RAM vectors can be set to go to your code

65472 SFFC6
JuMP off 794-795 ($31A-31B) IOPEN.

65475 SFFC3 CCL6S
JuMP off 796-797 ($31C-31D) ICLOSE.

65478 SFFC6
JuMP off 798-799 ($31E-31F) ICHKIN.

65481 SFFC9
JuMP off 800-801 ($320-321) ICKOUT.

65484 SFFCC
JuMP off 802-803 ($322-323) ICLRCH.

65487 SFFCF
JuMP off 804-805 ($324-325) IBASIN.

The following contain a JMP opcode followed by the vector

65483 SFFD5
JuMP to 62786 ($F542) LOAD.

65486 SFFD8
JuMP to 63093 ($F675) SAVE.

$FFDB CSETTIM*
JuMP to 63335 ($F767) SETTIM.

65562 SFFDE CRDTIM
JuMP to 63328 ($F760) RDTIM.

The following are indirect JMPs off a RAM vector

The RAM vectors can be set to go to your code

65565 SFFE1 ISCNTC
JuMP off 808-809 ($328-329) ISTOP.

65568 SFFE4 G6ETL
JuMP off 810-811 ($32A-32B) IGETIN.

291

6S526 SFFF6
Four unused bytes of 255 ($FF).

The following fixed vectors are used by the 6502 chip

65530 SFFFA VCTRNMI*
6502 vector to 65193 ($FEA9) NMI*.

65532 SFFFC VCTRRST
6502 vector to 64802 ($FD22) START.

65534 SFFFE VCTRIRQ
6502 vector to 6

u

u

65511 $FFE7
JuMP off 812-813 ($32C-32D) ICLALL.

The following have a JMP opcode followed

65514 $FFEA
JuMP to 63284 ($F734) UDTIM.

65517 SFFED
JuMP to 58629 ($E505) SCRN.

65520 SFFFO
JuMP to 58634 ($E50A) PLOT.

65523 SFFF3
JuMP to 58624 ($E500) IOBASE.

CCALL

by the vector

CUDTIM

-*

CSCREEIT

CPL0T

CIOBASE

u

D

0

292

u

D

D

LJ

D

U

D

D

0

D

n

P Appendix A

n
Using the Binary and

n Hexadecimal Memory

n Contents of the VIC-20

This appendix will show you how to manipulate and use the

information stored in the memory of the VIC-20 by demonstrating

the typical, practical things you'll want to do with the memory con

tents. You'll also see some convenient tools to help you use and de

cipher the contents of memory. We'll concentrate on the practical

aspects of pointer formats, setting and testing bits (Binary digiTS),

and determining what an individual byte contains. The theory of

why and how bytes contain information can best be addressed by

other excellent references. If you are totally unfamiliar with the con

cepts of binary numbers and hexadecimal notation, you may want to

consult an introductory work on those subjects. The practical

application of the theories is the focus of this appendix; the tools

provided, and your experience in using these tools, will help to show

you the theories involved.

Memory Contents
Let's start our examples with the problem of determining what a

memory location contains. PRINT PEEK(205) will display the deci
mal number equivalent of the binary contents of the eight-bit byte at

location 205. When you look up that address in the memory map,

you'll see that the content of memory location 205 is a cursor blink
countdown. Let's suppose that the number 21 was displayed by the

PEEK(205). (Since this memory location changes rapidly, you could
see different numbers here at any point in time.) By consulting the
code chart in Appendix C, you can see that 21 is stored in the byte

as the binary number 00010101, expressed in hexadecimal notation

as 15. You'll also notice that 21 could be the screen POKE code of
the letter U, or the 6502 operation code of ORA-ZX, depending on

the location of the byte containing that number. If you were PEEK-
ing in the BASIC or Kernal routines, there would be a good chance
that the 21 represents the ORA-ZX operation code, while a PEEK to
the screen RAM map would indicate that the letter U was stored

there for display purposes.
Type NEW on your VIC, then 10 GOTO10, and press the

ENTER key. Next, type in PEEK(4613) on an 8K+ expanded VIC or
PEEK(4101) on an unexpanded VIC. The number 137 you now see

295

u

Appendix A --

displayed is within the BASIC program area, as you can tell by look- I—I
ing up that memory location in the map. By consulting the section of

Appendix B that describes the internal storage format of BASIC pro- -—

grams, you'll see that the address you've PEEKed corresponds to the [J
first byte of the first BASIC line, after the link and line number

fields. The Appendix C code chart verifies that 137 is the token for _

the GOTO keyword in BASIC. 137 could also represent the f2 key ji
being pressed, or the reversed letter I in the screen RAM map. The

chart also shows you the binary and hexadecimal representation of

137. Remember that the binary format is how the byte actually

appears in memory, and that BASIC displays it in decimal format for

your convenience.

Manipulating Bits
Now let's examine and manipulate bits within a byte. The most

common bits that you'll want to change are in the 6560 VIC register

at location 36879. This byte contains the selected background color

in bits 7-4, the inverse color switch in bit 3, and the selected border

color in bits 2-0. You may want to turn to the description of this

byte in the map to familiarize yourself with its use.

A few terms need to be defined before you begin working with

bits. The term high order bit refers to bit 7 of a byte, and the term

high order three bits refers to bits 7-5. The low order bits are those

with lower bit numbers. The low order bit is bit 0, and the low order

two bits are bits 1-0. A nybble is a half byte (four bits); usually it's

clear which half byte is being discussed, as in the term low order

nybble. Bits are numbered from left to right within a byte, from 7 to
0.

Table A-l. Bit Positions, Decimal/Hex Values

Bit 7654 3210
Dec 128 64 32 16 8 4 2 1

Hex $80 $40 $20 $10 $08 $04 $02 $01

If this is your first exposure to binary numbers, you may find j (

that it seems a bit confusing at first, but as you use the bits (as you ^
undoubtedly will), you'll find that using bit values becomes second
nature. Refer to the VIC-20 Code Chart in Appendix C for a com- p]

plete table of each byte's binary, hexadecimal, and decimal numbers LJ
if you get confused.

As an example, you can check the background color location at
36879 to see what bits are set there. If you PEEK that location, you'll
receive a number such as 27, which doesn't match the possible color
codes for background colors. By looking up 27 in the code chart,

296

H

^ Appendix A

H
however, the binary column gives you the answer. Only one bit of
the four high order bits is on, or set to 1 (0001); that's the fourth bit.

fn As you can see from Table A-l, the fourth bit has a value of 16. To

I ' determine the 0-15 color code that this represents, simply divide it
by the rightmost bit of the high nybble; that bit is again the fourth

rf bit, which has a value of 16. 16/16 is 1, the color code for white. If
1 i the bit combination of the high nybble had been 0110, you could see

from Table A-l that bits 5 and 6 were on (indicated by a 1). You

simply add the bit values of these two on bits together (64+32=96),

and then to determine the color code, divide that result by 16 (96/

16=6). Six is the color code for blue.
A BASIC program you're running doesn't have the charts and

tables to refer to, so how would it determine the current background

color? The program could have variables set to all the possible

combinations and test for each one, or it could use a formula to
determine the value. Here are some bit testing and setting formulas

for your programs.

The variable BV is the Bit Value, BYTE is the target memory

byte, and RSLT is the result of the formula.

• To put BYTE bits 7-4 to RSLT bits 3-0 (this is the same as the

divide-by-the-rightmost-bit-value solution discussed):

RSLT=(PEEK(BYTE) AND 240)/16

• To put BYTE bits 3-0 to RSLT bits 7-4: RSLT=(PEEK(BYTE) AND

15)*16

• To load RSLT with only bits 2-0 (for example):

RSLT=PEEK(BYTE) AND 4+2+ 1

• To determine if a particular bit is on or off: RSLT=(PEEK(BYTE)

AND BV)/BV. RSLT=1 if the bit is on, or RSLT=0 if it is off.

• To reverse the setting of a bit in BYTE: POKE BYTE,(PEEK(BYTE)

AND 255-BV) OR (1-(PEEK(BYTE) AND BV)/BV)*BV

• To turn off a bit in BYTE: POKE BYTE,PEEK(BYTE) AND 255-BV

• To turn on a bit in BYTE: POKE BYTE,PEEK(BYTE) OR BV

• To put a 1 or 0 in RSLT back into a particular bit in BYTE: POKE

r^ BYTE,(PEEK(BYTE) AND 255-BV) OR (RSLPBV)

I i The examples, formulas, the bit number/value chart, and the
VIC-20 Code Chart should make your bit setting and testing a bit

_ simpler.

LSB/MSB Format
Using addresses, vectors, links, and pointers is important when

|""1 you're exploring the VIC computer. These are all stored in an LSB/
MSB (Least Significant Byte/Most Significant Byte) format. Again,

the reasons for the existence of this format are less important, for the

r—[purposes of this discussion, than the methods for using the format.

297

Appendix A

U

U

uThe LSB/MSB format of pointers and BASIC line numbers can be

decoded by using PTR=PEEK (LSB)+PEEK(MSB)*256.

The VIC-20 Code Chart in Appendix C can be useful when r~]

decoding or composing this format of numbers. Look at the column I—>
on that chart labeled MSB ADDR. For any given contents of a byte,

this column gives you the result of multiplying it by 256. If you were -.—

to PRINT PEEK(4), the number 209 would be displayed. Location 3- LJ
4 is a pointer to a BASIC routine. To find the address of that routine,

look up 209 in the Code Chart and note the MSB ADDR result of

53504. Now by doing PRINT PEEK(3) you'll see that 170 is the LSB

portion of the pointer. Adding 170 to 53504 gives us the address of

the routine in decimal: 53674. Of course, in a program you would

use PTR=PEEK(3)+PEEK(4)*256.

Going the other way with this conversion technique is necessary

when you're setting up location 1-2 for an upcoming USR instruc

tion, for instance. If the target routine just happened to be at location

53674 (it wouldn't be, but this allows a clearer example), you would

look in the Code Chart for the last line in the MSB ADDR column

that has a value less than 53674. You should find it to be 53504,

which is on the line for the decimal number 209. Now subtract

53504 from 53674 and you have the LSB number of 170; the MSB

number is the 209 you found on the VIC-20 Code Chart. In a pro

gram you would compute these LSB and MSB numbers by: POKE

2,INT(53674/256):POKE 1,53674 -(PEEK(2)*256). Using these tech

niques, you should have no problems using and setting LSB/MSB

format pointers and numbers.

The program below includes routines that can be used in your

own programs to perform conversions between decimal, binary, and

hexadecimal numbers up to two bytes in length (0-65535, $0-FFFF).

These routines are part of a program to display the contents of mem

ory in all three number systems, and in character format, as well as

the address of the location in both hexadecimal and decimal. This

program will be useful for performing number conversions and

displaying memory contents of the VIC-20 as you explore and use

the map information.

On an unexpanded VIC-20, this program should be entered in j~"j

an abbreviated form. For the unexpanded VIC-20, eliminate lines '—'
1000-1250, all REM statements, and lines containing only a colon

mark. No GOTO, THEN, or GOSUB statements reference these p",

lines. In addition, embedded spaces outside of quotes may be omit- I I
ted. The number of statements per line has been kept to a minimum

to improve the readability of the program.

The lines containing the subroutines for number conversions are | |
clearly marked, and the variables used as input and output by each

of the subroutines are indicated.

U
298

0

Appendix A

Program A-l. Number Conversion

1000 GO TO 1260{3 SPACES}[BYPASS NON-REM'ED HEADE

R]
1010 :

1020 "{18 SPACES}EA3************
ES3

1030 "{18 SPACES}-NUM.BASE.MAP-

1040 "{18 SPACES}IZg************

1050 :

1060 MAPPING THE VIC-20{7 SPACES}G.R.DAVIES

{11 SPACES}8/8/83

1070 :

1080 CONVERTS DEC OR HEX TO DEC/HEX/BIN AND DISPLA

YS MEMORY

1090 BYTES IN DECIMAL, HEXADECIMAL, BINARY, AND CH

ARACTER.

1100 :

1110 "ENTER ? AT THE PROMPT FOR RESPONSE FORMATS A

ND HELP.

1120 :

1130 :

1140 ***** NUMBER * CONVERSION * SUBROUTINES *
* * * *

1150 *{51 SPACES}*

1160 *{2 SPACES}DECIMAL TO HEXADECIMAL:{3 SPACES}L
INES{2 SPACES}2620 - 2730{5 SPACES}*

1170 *{51 SPACES}*
1180 *{2 SPACES}HEXADECIMAL TO DECIMAL:{3 SPACES}L

INES{2 SPACES}2490 - 2590{5 SPACES}*

1190 *{51 SPACES}*
1200 *{2 SPACES}DECIMAL TO BINARY:{8 SPACES}LINES

{2 SPACES}2760 - 2880{5 SPACES}*

1210 *{51 SPACES}*
1220 ***** NUMBER * CONVERSION * SUBROUTINES *

* * * *

1230 :

1240 :

1250 REM ***** TITLE FRAME *****

1260 PRINT"{CLR}{RVS}{2 SPACES}DECIMAL-HEX-BINARY

{6 SPACES}BASE CONVERTER{6 SPACES}AND MEMORY

{SPACE}DISPLAY{2 SPACES}"

1270 :

1280 :

1290 REM ***** MAIN PROMPTER *****

1300 PRINT"{RVS}ENTER:{OFF} NUMBER{16 SPACES}NUMBE
R{RVS}.{OFF}BYTES{6 SPACES}";

1310 PRINT"{RVS}?{OFF} FOR INSTRUCTIONS

1320 PRINT"{3 SPACES}{RVS}Q{OFF} TO QUIT."

299

U

Appendix A r \

1330 : LJ
1340 :

1350 REM ***** GET RESPONSE AND CHECK ***** -_

1360 INPUT N$ M

1370 N1$=LEFT$(N$,1)

1380 IF Nl$="?" THENGOSUB2920 : GOTO1300

1390 IF N1$="Q" THEN END f~]

1400 : LJ
1410 REM * EXTRACT $ *

1420 IF Nl$="$" OR (Nl$>"/" AND Nl$<"i") GOTO 1460

1430 PRINT"{RVS}*ERROR*{OFF} "Nl$" IN "N$" MUST BE

A $ OR DIGIT" : GOTO1360

1440 :

1450 REM * N2$=DIGITS ONLY, NO $ OR DOT *

1460 N2$=N$

1470 IF Nl$="$" THEN N2$=MID$(N$,2)

1480 :

1490 REM * FIND ANY DOT IN ENTRY *

1500 DOT=0

1510 FOR X=l TO LEN(N2$)

1520 IF MID$(N2$,X,1)=M.M THEN DOT=X

1530 NEXT

1540 :

1550 REM * SPLIT OUT ANY BYTE COUNT *

1560 IF DOT=0 GOTO 1610

1570 N3$=MID$(N2$,DOT+1)

1580 N2$=LEFT$(N2$,DOT-1)

1590 :

1600 REM * ROUTE HEX/DEC CONVERSIONS *

1610 IFN1$="$"GOTO1920

1620 :

1630 :

1640 REM ***** DECIMAL TO HEX CONVERSION *****

1650 REM * VALIDATE DEC *

1660 FORX=1 TO LEN(N2$)

1670 X$=MID$(N2$,X,1)

1680 IF X$<"0" OR X$>"9" GOTO 1710

1690 NEXT : GOTO1730

1700 REM (RESET LOOP) Ij""(

1710 FOR X=0 TO 0 : NEXT 1—1
1720 PRINT"{RVS}*ERROR*{OFF} "X$" IN "N2$" IS NOT

{SPACE}A DEC DIGIT" : GOTO 1360 —

1730 N2=VAL(N2$) [_J
1740 IF N2<65536 GOTO 1760

1750 PRINT"{RVS}*ERROR*{OFF} "N2$" IS ABOVE 65,535

11 : GOTO 1360

1760 DE=N2

1770 :

1780 REM * RE-ROUTE BYTE DISPLAY *

LJ

300

u

u

Appendix A

1790 IF DOT>0 GOTO 2210

1800 :

1810 REM * DO DEC->HEX->BIN *

1820 D=DE

1830 GOSUB2660

1840 HE$=H$

1850 D=DE

1860 GOSUB2800

1870 PRINT" {BLK}DEC="N27MHEX=$"H$:PRINT"BINIIB$H

{BLU}11

1880 GOTO 1360

1890 :

1900 :

1910 REM ***** HEXADECIMAL TO DECIMAL CONVERSION *
••

1920 REM * VALIDATE HEX *

1930 FOR X=l TO LEN(N2$)

1940 X$=MID$(N2$,X,1)

1950 IF X$<"0" OR X$>"F" OR (X$>"9" AND X$<"A") GO

TO 1980

1960 NEXT : GOTO2000

1970 REM (RESET LOOP)

1980 FOR X=0 TO 0 : NEXT

1990 PRINT"{RVS}*ERROR*{OFF} "X$" IN $"N2$" IS NOT

A HEX DIGIT (0-9,A-F).": GOTO 1360

2000 IF LEN(N2$)<5 GOTO 2040

2010 PRINT"{RVS}*ERROR*{OFF} $"N2$" IS ABOVE $FFFF

": GOTO1360

2020 :

2030 REM * DO HEX->DEC *

2040 HE$=RIGHT$("000"+N2$,4)

2050 H$=HE$

2060 GOSUB 2530

2070 DE=D

2080 :

2090 REM * RE-ROUTE BYTE DISPLAY *

2100 IF DOT>0 GOTO 2210

2110 :

2120 REM * DEC TO BINARY *

2130 GOSUB 2800

2140 PRINT" {BLK}DEC="DE;"HEX=$"HE$:PRINTIIBINliB$"

{BLU}"

2150 GOTO 1360

2160 :

2170 :

2180 REM ***** DISPLAY MEMORY CONTENTS *****

2190 REM * DISPLAY THE BYTE ADDRESS *

2200 REM * DECIMAL TO HEXADECIMAL *

2210 FOR CNT=0 TO VAL(N3$)-l

2220 D=DE

301

u

Appendix A q

2230 GOSUB 2660

2240 HE$=H$

2250 PRINT"{BLK}{RVS}AT UDE"{LEFT} $"HE$"{BLU} j~]

{OFF}11 LJ

2260 :

2270 REM * GET AND CONVERT THE BYTE CONTENTS * _

2280 BYTE=PEEK(DE) J f
2290 D=BYTE l"J
2300 GOSUB 2660

2310 D=BYTE

2320 GOSUB 2800

2330 H$=RIGHT$(H$,2)

2340 B$=RIGHT$(B$,9)

2350 :

2360 REM * FORM CHR$() *

2370 X$="{SHIFT-SPACE}"

2380 IF (BYTE>31 AND BYTE<128) OR BYTE>160 THEN X$

=X$+CHR$(BYTE)

2390 BY$=RIGHT$(" "+STR$(BYTE)+" ",4)

2400 :

2410 REM * SHOW THE CONTENTS *

2420 PRINT"{BLK}"BY$;"$"H$" ";B$;X$"{BLU}"

2430 DE=DE+1

2440 REM WRAP AROUND TO 0 AT 65535

2450 IF DE>65535 THEN DE=0

2460 NEXT : GOTO1360

2470 :

2480 :

2490 REM ##### HEXADECIMAL TO DECIMAL CONVERSION S

UBROUTINE #####

2500 REM{3 SPACES}VARIABLES: IN= H$ (FOUR HEX DIGI

TS, WITH LEADING ZEROS)

2510 REM{3 SPACES}VARIABLES: OUT=D (0-65535)

2520 REM{3 SPACES}THIS ROUTINE DESTROYS H$

2530 D=0

2540 FOR X=l TO 4

2550 D%=ASC(H$)

2560 D%=D%-48+(D%>64)*7

2570 H$=MID$(H$,2) jj
2580 D=16*D+D%

2590 NEXT : RETURN

2600 : 7]

2610 : LJ
2620 REM ##### DECIMAL TO HEXADECIMAL CONVERSION S

UBROUTINE ##### __

2630 REM{3 SPACES}VARIABLES: IN= D (<65536) M
2640 REM{3 SPACES}VARIABLES: OUT= H$ (FOUR HEX DIG

ITS)

2650 REM{3 SPACESjTHIS ROUTINE DESTROYS D r-j

LJ

302

u

n '.' ■■ •- ■■■:

H Appendix A

H

n

2660 H$=Htl

2670 D=D/4096

2680 FOR X=l TO 4

2690 D%=D

2700 X$=CHR$(48+D%- (D%>9) *7)

r-r 2710 h$=h$+x$

/ | 2720 D=16*(D-D%)

2730 NEXT : RETURN

2740 :

2750 :

2760 REM ##### DECIMAL TO BINARY CONVERSION ROUTINE

#####
2770 REM{3 SPACES}VARIABLES: IN= D (0^65535)

2780 REM{3 SPACES}VARIABLES: OUT =B$ (0000.0000 00

00.0000)

2790 REM{3 SPACES}THIS ROUTINE DESTROYS D

2800 X$="0"

2810 IF D>32767 THEN X$="l" : D=D-32768

2820 FOR X=14 TO 0 STEP-1

2830 Y=2tX

2840 X$=X$+RIGHT$(STR$((DANDY) >0),1)

2850 NEXT

2860 B$=LEFT$(X$,4)+"."+MID$(X$,5,4)+" "

2870 B$=B$+MID$(X$,9,4)+".n+RIGHT$(X$,4)

2880 RETURN

2890 :

2900 :

2910 REM ***** HELP FRAME *****

2920 PRINT"{CLR}{RVS}TO CONVERT:{OFF} ENTER THE DE

CIMAL NUMBER OR {RVS}${OFF}"

2930 PRINT"AND THE HEXADECIMAL":PRINT"(EX. 1024 OR

$400)"

2940 PRINT"{2 SPACES}WITH A MAXIMUM OF{5 SPACES}65

535 AND $FFFF.";

2950 PRINT"{4 SPACES}LEADING ZEROS MAY BE

{2 SPACES}OMITTED."

2960 PRINT"{RVS}TO DISPLAY:{OFF} ENTER DEC OR $HEX

_ ADDRESS {RVS}.{OFF} AND"

jj 2970 PRINT"THE NUMBER OF BYTES TODISPLAY";

2980 PRINT"(EX. $33C.10{2 SPACES}WILL DISPLAY 10 B

YTES AT 828 $33C

r-f 2990 PRINT"IF NO NUMBER ENTERED AFTER {RVS}.{OFF}

!) {SPACE}THEN 1 ASSUMED.
3000 RETURN

H

303

Appendix B

BASIC Araa Pointers and

Internal Storage Formats of

Variables and Lines

BASIC Area Pointers
The area of memory the VIC-20 uses for storage of a BASIC program

and its variables is located at varying location ranges, depending on

the amount of expansion memory added to the VIC-20. (Appendix E

explores the subject of relocation of VIC-20 memory by the system

or the user.) Regardless of the actual memory location range used for

the BASIC storage area, certain pointers in low memory are used by

BASIC to point to the limits of the BASIC area and to divide the

area into several sections. These consist of several variable storage

areas, an area for the BASIC program itself, and an unused area that

is available for use by BASIC during program execution. Each of

these areas, or pools, can expand or contract, with a few exceptions,

by simply altering the pointers to the pool and moving any contents

to the proper new location. This may involve moving an entire vari

able pool.

After the Kernal has initialized the VIC, the range of the BASIC

area is pointed to by:

■##-44 ($2B-2C) start of the BASIC are_& Qm m ^expanded VIC-
20 this pointer contains the address of 4ft97 ($1O01J.

• 5S-56 ($37-38) end of the BASIC area. The unexpanded VIC-20
has an address of 7680 -($1~E0O) in this location.

The Kernal uses a different set of pointers to keep track of the

top and bottom of the RAM space that contains the BASIC areas

641-642 ($281-282) and 643-644 ($283-284). BASIC has no effect

on these Kernal pointers.

Additional pointers are maintained by BASIC to point to the j ~j

boundaries of each type of variable pool: '—'
• #5M& ($2D-2E) start of {he scalar (ndriarray) viable pod.

• 47-48 ($2f-30J start of the a**ay vafiafefe pod. F "j

• #^S0 ($31-32) start of the free area.

• S1-S2 ($33-34) bottom of the string variable pool. __

The BASIC area may be reduced at the top and/or bottom by j j
adjusting the pointers at 43-44 and 55-56. This is useful when a

machine language (ML) program or data such as screen maps and

custom character sets is to be placed in the user RAM area without j j

304 __

u

Appendix B

BASIC destroying the information. After adjusting the top of BASIC
pointer at 55-56, a CLR statement should be used, which will cause

j| all the current BASIC variables to be lost. A NEW statement is
needed after adjusting the pointer at 43-44, causing the current

BASIC program and variables to be lost. You can refer to a program

!"■"[at location 55-56 that reserves space at the top or the bottom of the
' '' BASIC area by resetting the pointers. ♦

Advanced users can manipulate the pointers at 43-44 and 55-56

to do such things as allow multiple BASIC programs in RAM at one

time, place the BASIC area in the 40960 ($A000) ROM area, append
routines from other programs, and a variety of other techniques. The
actions that NEW and CLR perform are described in more detail at

their respective routine addresses in the map.

Once a BASIC program has been loaded into the BASIC area,

the pointer at 45-46 is set to point one byte past the end of the
BASIC program. The scalar variable pool will be started at this

address when the program is RUN. If additional lines are added to

the program, this pointer is pushed up as the lines are stored in their

proper line number sequence within the BASIC program area.

Higher numbered BASIC statements are pushed up to create room

for the new statements. Additionally, adding or changing BASIC

lines causes any variables still in the variable pools from a previous

RUN to be lost.

When RUN is entered, BASIC begins to allocate space from the

various variable pools to accommodate the variables defined in the

program.

As an example, Figure B-l shows the pointer relationships after

RUN was entered and the STOP key was pressed on an unexpanded

VIC-20, with the location in parentheses showing the result of enter

ing a direct mode FRE(O) that returned 235 bytes to the free area.

Figure B-l. Pointer Relationships

Pointer Area Use Location

rn 55-56 -> + + 7680

' i String Pool

51-52 -> + + 7323 (7558)

_ Free Area

j i 49-50 -> + + 6201

Array Pool

47-48 -> + + 6070

f] Scalar Pool
! 45-46"-> + + 6000

BASIC program

ri 43-44 - + + 4097

305

Appendix B

\
When variables such as scalar variables, function descriptors, or

string descriptors that point to the string in the string pool or BASIC

program are added to the scalar pool, all entries in the array pool j ~j

must be pushed up seven bytes (the size of all variables or descrip- ^
tors stored in the pool) into the free area. Added arrays decrease the

amount of the free area from the bottom, while strings stored in the ,—i

string pool decrease the free area from the top. Since adding or I)
changing a BASIC program clears the variables, no pushing up of

variables is involved.

A CLR statement causes the pointer at 51-52 to be the same as

55-56, eliminating the boundary for the string pool. Then the point

ers at 47-48 and 49-50 are overlaid with the address that is in the

pointer at 45-46, eliminating the other pool boundary pointers. The

only pointer of the group that has gone untouched is the pointer at

45-46, which specifies the end of the BASIC program.

The variables in the pools do not need to be erased since they

will be simply overlaid when the space they occupy is needed. A

NEW statement causes the pointer at 45-46 to be overlaid by the

pointer at 43-44. In addition, the end of program three-byte in

dicator is placed at the beginning of the BASIC program area. Loca

tion 43-44 in the memory map explains how to recover your

program from an unintentional NEW statement.

BASIC Statement Storage
BASIC program lines are stored in the program area in a compressed

format, called tokenized. Each line is preceded by a two-byte link

field that points in LSB/MSB format to the next BASIC line's link

field. (If you're unfamiliar with the LSB/MSB format, refer to

Appendix A for a short explanation.) Following the two-byte link

field is a two-byte line number field in LSB/MSB format, then the

tokenized BASIC line, ended with a byte containing 0.

The last BASIC program line has a link field that points to a

dummy link field of two bytes of zeros. This is the end-of-program

indicator that the pointer in 45-46 points just beyond for the start of

the scalar variable pool.

The tokenization of BASIC program lines replaces BASIC l]
keywords with a one-byte shorthand. You can see what these tokens

are by looking at the VIC-20 Code Chart in Appendix C. Variable

names, character strings, and line number references (for instance, ("1

GOTO 2000) are not tokenized. The stored BASIC lines appear as I—'
shown in Figure B-2.

BASIC Scalar Variables U
Integer scalar variables. The seven-byte field for an integer variable

is stored in the scalar variable pool in the format illustrated in Figure —,

B-3. U

306

U

Appendix B

Figure B-2. Stored BASIC lines

Link-field

LSB MSB

Line-number

LSB MSB

BASIC

line....

0

link-field

LSB MSB

Line-number

LSB MSB

BASIC

line....

0

Link-field

00 End of program

Figure B-3. Integer Scalar Variables

CHARl

+ 128

CHAR2

+ 128

MSB LSB 0 0 0

The characters occupying the first two bytes of the seven-byte

variable contain the first two characters of the variable name, with

128 added to the ASCII value of both characters. If the variable has

a name of one character (for example, Y%), the second character in

the variable is simply the value of 128. The percent sign is not

stored since the 128 added to each character identifies the variable as

an integer type. The actual value that the integer variable is set to is

in MSB/LSB format, a departure from line number and pointer LSB/

MSB format. The value is stored in binary with a negative number

indicated by the value having the high order bit on and the rest of

the number in two's complement form (the individual bits are

reversed and 1 is added). The valid range for an integer number is

-32768 to 32767. For example, A%=2797 would be stored as

detailed in Figure B-4.

Figure B-4. Integer Variable Example

charl

193

char2

128

MSB

10

LSB

237

0

0

0

0

0

0

(10 * 256) + 237 = 2797

Floating point scalar variables. The seven-byte field for a floating

poiht variable is stored in the scalar variable pool in the format

shown in Figure B-5.

307

Appendix B

Figure B-3. Floating Point Scalar Variables

CHAR1

+0

CHAR2

+0

EXP MANT1 MANT2 MANT3 MANT4

The first two bytes of the seven-byte variable contain the first

two characters of the variable name. If the variable has a one-

character name such as R, the second character in the variable is

zero. The variable is in exponent and four-byte mantissa form. For

example, the number 1.41421356 is stored as 129 53 04 243 52.

You'll better understand this after we examine the parts of a floating

point number.

Floating point exponent. The exponent of a floating point number

specifies the direction and magnitude that the decimal point (actually

the binary point) must be shifted (in number of bits) to obtain the

actual value, much like the scientific notation of numbers. A right

shift of one bit position of the binary point is expressed as 129 (1 +

128), while a left shift of one position would be 127 (-1 + 128). A

right shift of 127 positions results in an exponent value of 255 (127

+ 128), while a left shift of 128 is expressed as an exponent of 0

(—128 + 128). However, a 0 exponent is actually used to indicate a

zero floating point number, since normalization of the exponent

results in a 0 exponent only for a 0 floating point number.

Floating point mantissa. The high order bit of the first byte of the

mantissa is used as a sign bit, 0 indicating a positive number and 1 a

negative number. In scientific notation, 2,827,381.66 could be

expressed as .282738166 E7. This means that the decimal point is to

be shifted right seven positions or that ten to the seventh power

(10,000,000) is to be multiplied by the number. The number before

the E is called the mantissa.

Floating point numbers in the VIC-20 have a mantissa expressed

as a binary number, so the number is multiplied by two to the expo

nent power. BASIC normalizes the mantissa so that the bit on the

extreme left of the mantissa is the first significant bit (leading zero

bits are discarded). The number five is 00000101 in binary, which is

converted to 10100000 when normalized, and the exponent is set to

record the number of significant bits. Three significant bits (101), for

example, are stored in the exponent as 131 (3 + 128 = 131). The

mantissa of the number 5 would be stored as 160 00 00 00 in deci

mal, $A0 00 00 00 in hexadecimal, or 10100000 00000000 00000000

00000000 in binary. The sign of the mantissa is placed in the high

order bit of the first mantissa byte by storing a 0 if the number is

positive, or a 1 for a negative number. The result of our example is

then 32 00 00 00, $20 00 00 00, or 00100000 000000000 000000000

308

Appendix B

000000000. Remember that the exponent byte had been set to 131

, , ($83) after the mantissa was normalized.
i] When converting this format back to an unnormalized floating

point number, the first byte of the mantissa is loaded into the float
ing point accumulator sign byte, where the 0-if-positive or 1-if-

r"i negative rule applies. The first byte of the mantissa is ORed with
* 128 ($80), setting the bit that was used to hold the sign. Then the

complete mantissa is loaded into the floating point accumulator. The
mantissa is positive since the sign bit contains a 0. Because the expo

nent is greater than 128 (meaning a positive number), the mantissa

binary point is shifted 131-128=3 bits to the right. This results in

101.00000 00000000 which is the number 5 in decimal.
The range of values that a floating point variable can be set to is

approximately +/— 1.701 E38 (exponent being positive or neg

ative). A floating point variable will be displayed in scientific nota

tion at approximately +/- 999,999,999.2. See Figure B-6 for a

diagram of an example of a floating point mantissa's format and

values.

Figure B-6. Mantissa Example

Y = 1.41421356

CHAR1

89

CHAR2

00

EXP

129

MANT1

53

MANT2

4

MANT3

243

MANT4

47

Floating Point Accumulators
The six-byte floating point accumulators at locations 97-102 ($61-

66) and 105-110 ($69-6E) have a format much like the floating

point scalar variables, except that the mantissa's sign is located in a

byte of its own, freeing the high order mantissa bit for more pre

cision. The sign byte of the mantissa is set to 0 for positive numbers

and 255 ($FF) for negative numbers. The floating point accumulator

format would look something like Figure B-7.

Figure B-7. Floating Point Accumulator

1 EXP 1 MANT1 1 MANT2 1 MANT3 1 MANT4 [SIGN "]

For details of the exponent and mantissa bytes, see the explana

tion of the scalar floating point variables.

Examples of floating point numbers in an accumulator in hexa

decimal notation are:

309

Appendix B

Table B-l. Floatinn

Number

0

.25

.50

1

2

-1

-10

1E10

2E10

4E10

1E38

1E-38

1E-39

Exp

$00

$7F

$80

$81

$82

$81

$84

$A2

$A3

$A4

$FF

$02

$00

Point

Ml

00

80

80

80

80

80

A0

95

95

95

96

D9

A0

Numbers

M2

00

00

00

00

00

00

00

02

02

02

76

C7

00

in an

M3

00

00

00

00

00

00

00

F9

F9

F9

99

EE

00

Accui

M4

00

00

00

00

00

00

00

00

00

00

52

EE

00

imitator

Sign

00

00

00

00

00

FF

FF

00

00

00

00

00

00

Function Descriptors
The seven-byte field for a function descriptor is stored in the scalar

variable pool in the format shown in Figure B-8.

Figure B-

CHARl

+ 128

-8. Function Descriptors

CHAR2

+0

EXPRESSION

LSB MSB

VARIABLE

LSB MSB

FILL

CHAR

The first two bytes contain the first two characters of the vari

able name, with 128 added to the ASCII value of the first character.

If the variable has a name of one character (for instance, FN F), the

second character in the variable is 0. The expression pointer points

to the description of the function in the BASIC statement with the

DEF FN for the function. The variable pointer specifies the depen

dent variable in the scalar variable pool. The dependent variable in

DEF FN A (C)=1267/RT, for example, is C. The fill character in the

seventh byte is the first character of the expression after the = sign.

It has no significance and is placed there only to fill out the format.

For more details about user functions, see locations 71-72 ($47-48),

78-79 ($4E-4F), 54195 ($D3B3), and 54260 ($D3F4) in the memory

map.

Look at Figure B-9 for a moment for an example of a function

descriptor, its format, and its values.

Figure B-9. Function Descriptor Example

DEFFNA(C) = 1267 / RT

CHAR1

193

CHAR2

0

EXPRESSION

14 16

VARIABLE

3? 18

FILL

49

310

U

u

0

u

u

Appendix B

At location 4647 (18*256+39) we would find the floating point vari

able C to be 67 0 0 0 0 0 0.

String Scalar Variables
The seven-byte field for a string descriptor is stored in the scalar

variable pool in the format illustrated in Figure B-10.

Figure B-10. Staring Descriptor

CHARl

+0

CHAR2

+ 128

LENGTH POINTER

LSB MSB

0 0

The first two bytes of the descriptor contain the first two charac

ters of the variable name, with 128 added to the ASCII value of the

second character. If the variable has a name of one character (for

example, S$), the second character in the variable is set to the value

of 128. The dollar sign is not stored as part of the name.

The length byte contains the current length of the string. The

pointer to the string points to either the BASIC statement string defi

nition (for instance, S$="STRING") or to the location of the string

in the string pool. Strings may be transferred to the string pool from

the program by modifying them in any way, such as S$=S$+ ""

Take a look at Figure B-ll for an example of a string descriptor, its

format, and its values in that format.

Figure B-ll. Staring Descriptor Example

S$="STRING"+""

CHARl

83

CHAR2

128

LENGTH

6

POINTER

25029

0

0

0

0

Since the string was modified during its definition, it has been

stored in the string variable.

Away Variables
The array variables stored in the array pool share a common format

of header information, as illustrated in Figure B-12.

Figure B-12. BASIC Array Variable Header

CHARl CHAR2 LENGTH

LSB MSB

DIMENSIONS SUBN

MSB LSB

... SUB1

MSB LSB

311

Appendix B

The first two bytes of the descriptor contain the first two charac

ters of the variable name, following the previously described conven

tions for scalar variables. The length bytes contain the total size of

the array. The number-of-dimensions byte indicates how many sub

scripts must be used to reference the array, among other uses. There

are then two bytes for every dimension (starting with the last and

ending with the first) that contain the count of elements in the .

dimension, plus one. These counts are in reverse format, MSB/LSB.

Figure B-13 is an example of an array variable, complete with

values.

Figure B-13. Array Example

DIM AA(7,3,5)

U

U

u

u

D

CHAR1

65

CHAR2

65

LENGTH

203 3

DIMENSIONS

3

SUB3

06

SUB2

04

SUB1

08

After the array descriptor header, the variables are stored in the

formats previously described, but without any padding to fill out the

seven bytes. An integer is stored in two bytes, a floating point num

ber in five bytes, and a string descriptor is stored in three bytes. The

variables are stored in ascending order. For example, the variables in

DIM G(l,l,2) would be stored in the order: (0,0,0), (1,0,0), (0,1,0),

(1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1), (0,0,2), (1,0,2), (0,1,2), (1,1,2).

When an array is defined, it's stored in the array pool above the

scalar variables. When the next scalar variable is to be created, all

the arrays must be pushed up seven bytes to make room. Once a

variable has been defined, it takes up pool space and is present until

a CLR is issued. String variables can be redefined to a shorter length,

but this frees storage space only if they were in the string variable

pool and not being pointed to in the BASIC statement that defined

them. The seven-byte descriptor for the string is still, obviously, in

the scalar variable pool.

The routine that locates variables starts searching for them at

the start of the appropriate variable pool and works upward to the

end of the pool. The time needed to find a variable can be reduced

by defining it before other less-used variables.

312

j Appendix C

" VIC-20 Code Chart

This chart of VIC-20 codes will allow you to determine the appro

priate code number to use for achieving the desired control, screen,

and character effects. Further, the chart allows the rapid translation

of a code number into its various meanings within the VIC-20.

You'll find the chart quite complete and easy to use.

The chart lines are numbered from 0 to 255 decimal on both

sides of the page, with the equivalent hexadecimal number listed just

inside the decimal number.

The third and fourth columns list the character sets and asso

ciated control codes that correspond to the decimal and hexadecimal

numbers on that line. Look at line 156 and you'll notice that a

PRINT CHR$(156) will set the foreground color code to purple,

while on line 169 we see that PRINT CHR$(169) will print a square

halved diagonally, or a checkerboard square, depending on the

character set that is currently selected.

Line 14 shows that PRINT CHR$(14) will select the lowercase

character set (labeled SET2 on the chart) and PRINT CHR$(142)

enables uppercase mode (SET1).

The special character codes recognized by the VIC 1515/1525

printer are:

Taoie u-

CHR$()

8

10

13

14

15

16

17

18

26

27

145

146

-i. vic laia/iaza primer '

Meaning

Graphic dot mode

Linefeed

Carriage return

Double-sized characters

Normal-sized characters

Tab

Lowercase

Reverse on

Repeat

Dot addressing

Uppercase

Reverse off

Consult the printer manual for further information regarding the

use of these special printer codes.

The column on the Code Chart labeled BASIC Token is used

when examining the internal storage format of BASIC programs,

either in memory, on tape, or on disk.

313

n

Appendix C n

n
The Screen POKE column can be used to determine the needed

code for a character when you're storing characters directly into the

screen RAM map. There are sample programs (see location 4096, j |
$1000) for converting between CHR$ and screen POKE codes, when

you need to do this from within a program.

The binary bit representation of any desired byte contents can I I

be determined by consulting the Binary column for that hexadecimal '
or decimal number. You'll find this useful when designing your own

custom character sets; determining the effects of AND, OR, NOT,

and WAIT operations; finding the number to use to set or turn off a

particular bit in memory; as well as a host of other uses. Appendix B

discusses number systems and includes a program to perform

decimal/hexadecimal/binary conversions, as well as subroutines that

you can include in your programs.

True ASCII shows the interpretation of each character by a host

computer or a non-CBM printer. In almost all cases, True ASCII is

extended or modified, but it's important to understand the base

character set.

The ML 6502 operation code mnemonic that corresponds to

each possible byte contents is listed under 6502 Opcode. Suffixes are

appended to this column to denote the addressing mode implied. No

suffix indicates that the instruction operates in the absolute, relative,

or native addressing mode, depending on the instruction's purpose.

A Z suffix indicates that zero page is referenced, and J is used to

show an indirect addressing mode. Either I or Z can be accompanied

with X or Y indexes. The absolute addressing mode also allows these

indexes. An A suffix is present when the instruction operates on the

accumulator, unless that is explicit in the operation code. IM marks

the immediate-mode instructions. For example, ADC-IX indicates

that indirect, indexed addressing is implied by the instruction. Some

opcodes that are not listed can function as unsupported opcodes that

do rather strange combinations of supported opcodes. These are not

recommended, but it's often interesting to explore their effects.

The column titled MSB is used to determine the MSB address of

a two-byte LSB/MSB address. Look up the MSB number from the

address. This column shows the result of multiplying the MSB byte (|
by 256. For example, the address 04/53 in LSB/MSB format would

be resolved by looking up 53 in the chart (first determine if 04/53 is

represented in hexadecimal or decimal—PEEK gives decimal results); I I

53 decimal is MSB 13568 (53*256). Now simply add the 04 from the

LSB and the address is complete: (13568+4= 13572). This column

can also be used to perform the reverse operation of changing an i—i

address like 47874 into 02/187 ($02/BB) LSB/MSB format. » I

n

n

Appendix C

LI

u

uJ

! I

1

LJ

Table

Dec Hex

0 00

101

2 02

3 03

4 04

5 05

6 06

7 07

8 08

9 09

10 0A

HOB

12 OC

13 OD

HOE

15 OF

16 10

17 11

18 12

19 13

20 14

21 15

22 16

23 17

24 18

25 19

26 1A

27 IB

28 1C

29 ID

30 IE

31 IF

32 20

33 21

34 22

35 23

36 24

37 25

38 26

39 27

40 28

41 29

42 2A

43 2B

44 2C

45 2D

46 2E

47 2F

48 30

49 31

50 32

5133

C-1. VIC-20

CHR$

Setl

WHT

DISABLE2

ENABLE2

LINEFEED

RETURN

LOWCASE

CRSRDN

RVSON

HOME

DEL

REPEAT

DOTADDR

RED

CRSRRT

GRN

BLU

SPACE

!

QUOTES

4*

<

>

—

m

0

1

2

3

Set2

1

4*

&

<

>

-t-

*

—-

m

0

1

2

3

Code Chart

BASIC Screen

Token Setl

Q

R
B

C

D

E

R
G
H

I
J

K

l_

M
M

O

R

a

R
s

T

U

V
w

X

V

"Z

c

3

•*-

SPACE

!

POKE

Set2

@

cz

d

-r

i

J

k

1

m

YTI

o

P

IaJ

X

SJ

z:

C

d£

t-
•«-

!

QUOTES

41*

<

>

—

0

1

3

#

<

—

0

1

2
3

True

Binary ASCII

0000.0000 NULL

0000.0001 SOH

0000.0010 STX

0000.0011 ETX

0000.0100 EOT

0000.0101 ENQ

0000.0110 ACK

0000.0111 BEL

0000.1000 BS

0000.1001 HT

0000.1010 LF

0000.1011 VT

0000.1100 FF

0000.1101 CR

0000.1110 SO

0000.1111 SI

0001.0000 DLE

0001.0001 DC1

0001.0010 DC2

0001.0011 DC3

0001.0100 DC4

0001.0101 NAK

0001.0110 SYN

0001.0111 ETB

0001.1000 CAN

0001.1001 EM

0001.1010 SUB

0001.1011 ESC

0001.1100 FS

0001.1101 GS

0001.1110 RS

0001.1111 US

6502

Opcode

BRK

ORA-IX

ORA-Z

ASLZ

PHP

ORA-IM

ASL-A

ORA

ASL

BPL

ORA-IY

ORA-ZX

ASL-ZX

CLC

ORA-Y

ORA-X

ASL-X

0010.0000 SPACE JSR

0010.0001 !

0010.0010

0010.0011 #

0010.0100 $

0010.0101 %

0010.0110 &

0010.0111 '

0010.1000 (

0010.1001)

0010.1010 *

0010.1011 +

0010.1100 ,

0010.1101 -

0010.1110 .

0010.1111 /

0011.0000 0

0011.0001 1

0011.0010 2

0011.0011 3

AND-IX

QUOTES

BITZ

ANDZ

ROLZ

PLP

MSB

Addr

00

256

512

768

1024

1280

1536

1792

2048

2304

2560

2816

3072

3328

3584

3840

4096

4352

4608

4864

5120

5376

5632

5888

6144

6400

6656

6912

7168

7424

7680

7936

8192

8448

8704

8960

9216

9472

9728

9984

10240

AND-IM10496

ROL-A

BIT

AND

ROL

BMI

AND-IY

10752

11008

11264

11520

11776

12032

12288

12544

12800

13056

315

mmrr*

Dec Hex

52 34

53 35

54 36

55 37

56 38

57 39

58 3A

59 3B

60 3C

61 3D

62 3E

63 3F

64 40

65 41

66 42

67 43

68 44

69 45

70 46

71 47

72 48

73 49

74 4A

75 4B

76 4C

77 4D

78 4E

79 4F

80 50

81 51

82 52

83 53

84 54

85 55

86 56

87 57

88 58

89 59

90 5A

91 5B

92 5C

93 5D

94 5E

95 5F

96 60

97 61

98 62

99 63

100 64

10165

102 66

103 67

104 68

105 69

106 6A

107 6B

108 6C

CHR$

Setl

<*
S

6

7*
Q

9

Ji

<

>

m

R

B

c
D

E

R

G

H
I

J

K

L

M
M

a

R

d

R

S

T

U

V
w

X

V

z

c

£

■r

_

•

i
•*■■■

—"

_

i

i

-s

L.

Set2

4

5

6

7*
e

•

<

>

C9

JSL

t>

c=

d

■r
•3

F-»
1

J
k

1

m

m

CD

P

<t

r*

t

UL

\t

Ul

X

SJ

se

C

dE

J
-r

_

R
B

C

n

EE

R

O

H

I
JT

K

L.

BASIC

Token

Screen

Setl

S

&

7"
e

•

<

>

_

*

i
—

...

i

i

"i

1

X

o

*!•
1

•#

-I-

9
1

if

L POKE

Set2

•4
5

6

7>

e

9

:
•

ji

<

>

—.

R

£1

C
n

R
O

H
I

a-

K

L
M
M

O

R

Q
R

5

T

U

V
u

X

V

z:
-f-
a

i

K

SPRCE

■

1

»

1

*A0

1

1-
■

■

1

»
1

AM

1
h

■

True

Binary ASCII

0011.0100 4

0011.0101 5

0011.0110 6

0011.0111 7

0011.1000 8

0011.1001 9

0011.1010 :

0011.1011 ;

0011.1100 <

0011.1101 =

0011.1110 >

0011.1111 ?

0100.0000 @

0100.0001 A

0100.0010 B

0100.0011 C

0100.0100 D

10100.0101 E

0100.0110 F

0100.0111 G

0100.1000 H

0100.1001 I

0100.1010 J

0100.1011 K

0100.1100 L

0100.1101 M

0100.1110 N

0100.1111 O

0101.0000 P

0101.0001 Q

0101.0010 R

0101.0011 S

0101.0100 T

0101.0101 U

0101.0110 V

0101.0111 W

0101.1000 X

0101.1001 Y

0101.1010 Z

0101.1011 [

0101.1100\

0101.1101]

0101.1110 II

0101.1111 «-

0110.0000 SPACE

0110.0001 a

0110.0010 b

0110.0011 c

0110.0100 d

0110.0101 e

0110.0110 f

0110.0111 g

0110.1000 h

0110.1001 i

0110.1010 j

0110.1011 k

0110.1100 1

6502 MSB

Opcode Addr

13312

AND-ZX 13568

ROL-ZX 13824

14080

SEC 14336

AND-Y 14592

14848

. 15104

15360

AND-X 15616

ROL-X 15872

16128

RTI 16384

EOR-IX 16640

16896

17152

17408

EOR-Z 17664

LSR-Z 17920

18176

PHA 18432

EOR-IM 18688

LSR-A 18944

19200

JMP 19456

EOR 19712

LSR 19968

20224

BVC 20480

EOR-IY 20736

20992

21248

21504

EOR-ZX 21760

LSR-ZX 22016

22272

CLI 22528

EOR-Y 22784

23040

23296

23552

EOR-X 23808

LSR-X 24064

24320

RTS 24576

ADC-IX 24832

25088

25344

25600

ADC-Z 25856

ROR-Z 26112

26368

PLA 26624

ADC-IM 26880

ROR-A 27136

27392

JMP-I 27648

n

n

n

n

n

316

n

□

n

n

n

_l

u

Dec Hex

109 6D

110 6E

1116F

112 70

113 71

114 72

115 73

116 74

117 75

118 76

119 77

120 78

121 79

122 7A

123 7B

124 7C

125 7D

126 7E

127 7F

128 80

129 81

130 82

131 83

132 84

133 85

134 86

135 87

136 88

137 89

138 8A

139 8B

140 8C

141 8D

142 8E

143 8F

144 90

145 91

146 92

147 93

148 94

149 95

150 96

15197

152 98

153 99

154 9A

155 9B

156 9C

157 9D

158 9E

159 9F

160 A0

161 Al

162 A2

163 A3

CHR$

Setl Set2

v. M

*S M
r" a

"1 R
m a

— R

* S

1 T
<* U

X V
a w

1 V

♦ z:

1 1

IT K

LOAD/RUN

fl

f3

f5

i7

(2

f4

f6

f8

SHRTRN

UPCASE

BLK

CRSRUP

RVSOFF

CLR

INST

PUR

CRSRLFT

YEL

CYN

SHSPACE

fl B

—~ —■"

BASIC

Token

END

FOR

NEXT

DATA

INPUT#

INPUT

DIM

READ

LET

GOTO

RUN

IF

RE

STORE

GOSUB

RETURN

REM

STOP

ON

WATT

LOAD

SAVE

VERIFY

DEF

POKE

PRINT#

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

NEW

TAB(

Screen

Setl

ft.

—

r

•JU

—t-

1

1

™"

■

_J

■■

■w

ra

•si

Mi

in

af

H

SI

l«

U
a

■i

Bl

81

n

Sfl

sa
sa

IB

JU

Al
01

41

n

IN

rai

HI
Bl

B

IB

nun

hi

POKE

Set2

■-

—

r*

JL

-1

1

1

_■

"™"
Mi

■

■i

-J

mm

SI
S3
35|

5BI

9

Bl
ra

n

9

IB
VI
Wl

•a

si
7BI

n
n
as

ao

SB

a
tsi

IN

ra

m
Bl
cs

m

MM
lisa

hi

Hunmmrwr

True

Binary ASCII

0110.1101 m

0110.1110 n

0110.1111 o

0111.0000 p

0111.0001 q

0111.0010 r

0111.0011 s

0111.0100 t

0111.0101 u

0111.0110 v

0111.0111 w

0111.1000 x

0111.1001 y

0111.1010 z

0111.1011 {

0111.1100 !

0111.1101 }

0111.1110 "

0111.1111 DEL

1000.0000

1000.0001

1000.0010

1000.0011

1000.0100

1000.0101

1000.0110

1000.0111

1000.1000

1000.1001

1000.1010

1000.1011

1000.1100

1000.1101

1000.1110

1000.1111

1001.0000

1001.0001

1001.0010

1001.0011

1001.0100

1001.0101

1001.0110

1001.0111

1001.1000

1001.1001

1001.1010

1001.1011

1001.1100

1001.1101

1001.1110

1001.1111

1010.0000

1010.0001

1010.0010

1010.0011

Bam

6502

Opcode

ADC

ROR

BVS

ADC-IY

111 U

MSB

Addr

27904

28160

28416

28672

28928

29184

29440

29696

ADC-ZX 29952

ROR-ZX

SEI

ADC-Y

ADC-X

ROR-X

STA-IX

STY-Z

STA-Z

STX-Z

DEY

TXA

STY

STA

STX

BCC

STA-IY

STY-ZX

STA-ZX

STX-ZY

T\A

STA-Y

TXS

STA-X

LDY-IM

LDA-IX

LDX-IM

30208

30464

30720

30976

31232

31488

31744

32000

32256

32512

32768

33024

33280

33536

33792

34048

34304

34560

34816

35072

35328

35584

35840

36096

36352

36608

36864

37120

37376

37632

37888

38144

38400

38656

38912

39168

39424

39680

39936

40192

40448

40704

40960

41216

41472

41728

317

Appendix C

Dec Hex

164 A4

165 A5

166 A6

167 A7

168 A8

169 A9

170 AA

171 AB

172 AC

173 AD

174 AE

175 AF

176 BO

177 Bl

178 B2

179 B3

180 B4

181 B5

182 B6

183 B7

184 B8

185 B9

186 BA

187 BB

188 BC

189 BD

190 BE

191 BF

192 CO

193 Cl

194 C2

195 C3

196 C4

197 C5

198 C6

199 C7

200 C8

201 C9

202 CA

203 CB

204 CC

205 CD

206 CE

207 CF

208 DO

209 Dl

210 D2

211 D3

212 D4

213 D5

214 D6

215 D7

216 D8

217 D9

218 DA

219 DB

CHR$

Setl Set2

i i
m \

i

AM I

pp*" :

1

■

—

r

—i-

H

1
1

1

-J

■

mm

—

;a
■■

55

■B

—

!■

■1

sn
m

ai
■

■

m

n
—

IB

m
69

SO

29

■1

ra

ss

i

as

i

MM

1

h

■

-1

—

r

-JU

T"

-|

1

1

1

mm

m

—1

■■

mm

SS

"SI

■•3

Ml

ai

ai

H

SI

IS

u

Bl

Bl

M

-a

&a

JU

AI

01

41

AI
■B54

SS

BASIC Screen POKE True

Token Setl Set2 Binary ASCII

TO

FN

SPC(

THEN

NOT

STEP

tr

AND

OR

SGN

INT

ABS

USR

FRE

POS

SQR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STR$

VAL

ASC

CHR$

LEFTS

RIGHTS

MID$

GO

SI II

sa ca

si

p«

SI SI

a

■■

■i si

91 »•

■fl U

Bl

1010.0100

1010.0101

1010.0110

1010.0111

1010.1000

1010.1001

1010.1010

1010.1011

1010.1100

1010.1101

1010.1110

1010.1111

1011.0000

1011.0001

1011.0010

1011.0011

1011.0100

1011.0101

1011.0110

1011.0111

1011.1000

1011.1001

1011.1010

1011.1011

1011.1100

1011.1101

1011.1110

1011.1111

as noo.oooo

"SI 1100.0001

1:3 1100.0010

M 1100.0011

id noo.oioo

sal noo.oioi

aai lioo.ouo

Trt 1100.0111

1100.1000

1100.1001

1100.1010

1100.1011

1100.1100

1100.1101

Bl 1100.1110

yd 1100.1111

29
■I

ra

SS

1101.0000

1101.0001

1101.0010

1101.0011

1101.0100

1101.0101

1101.0110

91 1101.0111

1101.1000

1101.1001

1101.1010

1101.1011

ya

JU

AI

AI

SS

6502 MSB

Opcode Addr

LDY-Z

LDA-Z

LDX-Z

TAY

LDA-IM

TAX

LDY

LDA

LDX

BCS

LDA-IY

LDY-ZX

LDA-ZX

LDX-ZY

CLV

LDA-Y

TSX

LDY-X

LDA-X

LDX-Y

41984

42240

42496

42752

43008

43264

43520

43776

44032

44288

44544

44800

45056

45312

45568

45824

46080

46336

46592

46848

47104

47360

47616

47872

48128

48384

48640

48896

CPY-IM 49152

CMP-IX 49408

49664

49920

CPY-Z 50176

CMP-Z 50432

DEC-Z 50688

50944

INY 51200

CMP-IM 51456

DEX 51712

51968

CPY 52224

CMP 52480

DEC 52736

52992

BNE 53248

CMP-IY 53504

53760

54016

54272

CMP-ZX 54528

DEC-ZX 54784

55040

CLD 55296

CMP-Y 55552

55808

56064

n

n

n

n

n

318

n

n

n

n

n

Appendix G

J
Dec Hex

220 DC

221 DD

222 DE

223 DF

224 E0

225 El

226 E2

227 E3

228 E4

229 E5

230 E6

231 E7

232 E8

233 E9

234 EA

235 EB

236 EC

237 ED

238 EE

239 EF

240 FO

241 Fl

242 F2

243 F3

244 F4

245 F5

246 F6

247 F7

248 F8

249 F9

250 FA

251 FB

252 FC

253 FD

254 FE

255 FF

CHR$

Setl

39

■1

T71

■

■■

■n

■

m
H

996

■s

Mm

SI

wz

S5

SI

SI

■
■

■

■I
fgg

■■

■1

Ti

fti

SI
^|

m

Set2

■1

-Q-

388

■

■I
n

■
555

38S

■

■S
1^

■5

SI

■■

WZ

ss

SI

■

■

i^

mQ

"B

SI
mM

-0-

BASIC Screen

Token Setl

■1

rra

■i

■

■■■

■i

■■

55?

■:

r-

si

■■

wz

S£

S5

SI

■

■

■1
g^

■■

Tl

SI

■r

POKE

Set2

■1

-*•

sa

HI

■
MM

■1

PI

Bi

55?

3S8

■ S

■5

SI

mm

WZ

S5

SI

SI

HI

■

■

■I

ma

mml

^m

SI

True

Binary ASCII

1101.1100

1101.1101

1101.1110

1101.1111

1110.0000

1110.0001

1110.0010

1110.0011

1110.0100

1110.0101

1110.0110

1110.0111

1110.1000

1110.1001

1110.1010

1110.1011

1110.1100

1110.1101

1110.1110

1110.1111

1111.0000

1111.0001

1111.0010

1111.0011

1111.0100

1111.0101

1111.0110

1111.0111

1111.1000

1111.1001

1111.1010

1111.1011

1111.1100

1111.1101

1111.1110

1111.1111

6502

Opcode

CMP-X

DEC-X

CPX-IM

SBC-IX

CPX-Z

SBC-Z

INC-Z

INX

SBC-IM

NOP

CPX

SBC

INC

BEQ

SBC-IY

SBC-ZX

INC-ZX

SED

SBC-Y

SBC-X

INC-X

MSB

Addr

56320

56576

56832

57088

57344

57600

57856

58112

58368

58624

58880

59136

59392

59648

59904

60160

60416

60672

60928

61184

61440

61696

61952

62208

62464

62720

62976

63232

63488

63744

64000

64256

64512

64768

65024

65280

LJ

319

Appendix D

Device Numbers, Secondary

Addresses, and Status

Codes

n

n

n

n

n

This appendix summarizes the information in the body of the map

regarding device numbering, secondary address considerations, and

status codes returned by the Kernal when it performs I/O and re

lated information.

Within the following chart are note indicators denoted by [n],

where n is the number of the note in the section following the chart.

Following the chart are examples illustrating the use of device num

bers and secondary addresses. After the example section is a sum

mary of the memory locations related to this subject.

Table DHL Device Number, Secondary Address, and

Status Code

Number =
0

1

1

i

l

i

i

l

l

2

2

2

2

2

2

3

4/5

4/5

4/5

4/5

8-11

8-11

8-11

8-11

8-11

8-11

320

Device
KEYBOARD

TAPE

TAPE

TAPE

TAPE

TAPE

TAPE

TAPE

TAPE

[4] RS-232

4

4

A

A

4

RS-232

RS-232

RS-232

RS-232

RS-232

SCREEN

PRINTER

PRINTER

PRINTER

PRINTER

DISK

DISK

DISK

DISK

DISK

DISK

SecAddi Meaning

[1] [1]
0/1 [0] READ

0/1 [0] READ

0/1 [0] READ

0/1

0/1

0/1

1

2

0]
0

0

0

READ

READ

READ

WRITE

0] WRITE+EOT

1]

1

1

1

1

1

1

3]
5:
5

5

5

5

5

1

0 UPPERCASE

0 UPPERCASE

7 LOWERCASE

7 LOWERCASE

0 LOAD

0 LOAD

0 LOAD

1 SAVE

1 SAVE

1 SAVE

ST Meaning

[2]
4 Short block

8 Long block

16 Unrecoverable error or

VERIFY mismatch

32 Checksum error

64 End of file

-128 EOT [3]

[2]

[2]
128 BREAK detected

64 Dataset-ready missing

16 Clear-to-send missing [6]

4 Receive buffer overrun

2 Framing error

1 Parity error

[2]
1 Write timeout

-128 Device not present

1 Write timeout

-128 Device not present

[7]
2 Read timeout

-128 Device not present

[7]
1 Write timeout

-128 Device not present

o

n

n

n

n

LJ
Number

8-11

8-11

8-11

8-11

8-11

8-11

8-11

8-11

8-11

4-30

4-30

4-30

4-30

= Device

DISK

DISK

DISK

DISK

DISK

DISK

DISK

DISK

DISK

SERIAL

DEVICE

SERIAL

DEVICE

SERIAL

DEVICE

SERIAL

DEVICE

SecAddr

2-14

2-14

2-14

2-14

2-14

15

15

15

15

0-31

0-31

0-31

0-31

Meaning ST Meaning

DATA

CHANNEL [7]

DATA

CHANNEL 1 Write timeout

DATA

CHANNEL 64 Read timeout

DATA

CHANNEL 64 End of input (last item)

DATA

CHANNEL -128 Device not present

DOS CHAN

NEL [7]

DOS CHAN

NEL 1 Write timeout

DOS CHAN

NEL 2 Read timeout

DOS CHAN

NEL -128 Device not present

Per device 1 Write timeout

Per device 2 Read timeout

Per device 64 End of input (last item)

Per device -128 Device not present

Notes
0 Tape secondary addresses are not used in exactly the same way

throughout the VTC-20. In an OPEN statement, a 0 indicates READ,

a 1 specifies WRITE, and a 2 means WRITE with EOT. When

SAVEing or the Kernal's SETLFS routine is called in preparation for

a SAVE routine call, an odd-numbered secondary address causes the

tape header I.D. to be set to indicate that the program file cannot be

relocated. An even-numbered secondary address causes the program

file to be relocatable. Adding 2 to the secondary address causes a

tape EOT header to also be written.

For LOAD, or the SETLFS routine prior to calling the LOAD

routine, an odd secondary address causes the header information

(the start of save pointer) to be used to reload the program. For an

even-numbered secondary address, an address must be provided that

specifies the desired load point. However, even if an even number is

passed to SETLFS to indicate a relocatable load and an address is

provided for the starting point, if the program was saved as

nonrelocatable (via a secondary address that was odd at the time of

saving, causing a tape header I.D. 3), it will be loaded back to the

original location it resided at when it was saved. See location 828

($33C) in the memory map for more information about tape header

identifiers.

321

n

Appendix D n

n
1 The secondary address has no meaning for this device and 0-255

can be used. In the case of devices 0 and 3, the parameter can sim- , ,

ply be omitted on the OPEN statement. Omitting the parameter or | \

specifying 0 for other devices inhibits the sending of any following

string. User port attached devices can themselves require certain

secondary addresses. However, the VIC Modem does not. I j

2 No status codes are returned.

3 EOT is a tape header with an I.D. of 5 used to indicate that no

more files exist on the tape. For additional details, refer to the

explanation at location 828 ($33C).

4 The user port is typically used for RS-232 protocol devices, such as

modems and printers, but can be used for a variety of other devices

as well. For instance, joysticks, remote electrical switching devices,

and analog sensors may be connected. You can program the first

VIA in the VIC-20 to accomplish a wide range of device support

functions.

5 User port functions, including data direction, are controlled by

VIAl. RS-232 protocol on the user port is determined by the Kernal

RS-232 routines and OPEN settings of the RS-232 control register

(described at location 659, $293) and the RS-232 command register

(described at location 660, $294).

6 This status code will never be set. See the explanation at location

660 ($294). General RS-232 error recovery suggestions are discussed

at location 663 ($297).

7 The DOS channel (secondary address of 15) is used to send com

mands to the disk resident DOS and to receive error status. Four

variables are returned by the DOS channel in response to an

INPUT#15,A,B$,C,D. These are: error number (0 means none), error

description, track number, and block (sector) number. Consult the

VIC-1541 User's Manual for details of sending commands to DOS,

receiving the error status variables, and a table of the possible error

numbers.

Examples
Ten files may be opened at any one time, only five of them

being serial (disk/printer) files. File numbers greater than 127 cause j—,

a linefeed character to be sent after carriage returns. This feature is M
designed for non-CBM printers.

The OPEN command parameters are: I—|

OPEN file number,device number,secondary address/'filename or

disk command"

• OPEN 16 causes the default device of 1 and secondary address of P"}

n

Appendix D

I

0 to be used. The tape will be opened for a read operation. File

s number is the only mandatory OPEN parameter.

wJ • OPEN 1,0 prepares the keyboard for input. An attempt to

PRINT#1 will receive a NOT OUTPUT FILE error message.

j | • OPEN 1,1 opens the next found tape file for input since the

lJ secondary address defaults to zero.
• OPEN l,l,0,"FAST GAME" searches the tape for the specified

filename. Notice that the secondary address was needed in order to

specify the filename. OPEN 1,1,,"FAST GAME" could have been

used as well.

• OPEN 1,1,1,"ACCOUNTS" causes the creation of a tape header

with I.D. 4, indicating that BASIC program or ML generated data is

being written to tape. See the explanation of the tape header I.D. at

location 828 ($33C).

• OPEN 1,1,2,"HOME INVENTORY" also creates the same type of

tape header. Additionally, when the file is closed, an I.D. 5 header

will be written, indicating that there are no more files on the tape,

whether there actually are or not.

• OPEN 2,2,0,CHR$(6+32)+CHR$(32 + 16) sets the RS-232 control

options to 300 baud and a word length of seven bits, while the RS-

232 command options are being set to odd parity and half duplex.

• OPEN 3,3 allows the screen to be used for input or output

operations.

• OPEN 4,4 opens the printer in uppercase mode, since the default

secondary address is zero.

• OPEN 10,8,12,"0:STOCK ISSUES,S,W" prepares the 0 disk (the

zero and colon are optional on the VIC 1540 and 1541) to write by

virtue of the ,W parameter, a sequential file (specified by the ,S,)

using data channel 12, referred to as file 10 within the program. It

may be convenient to use the same file number as the data channel

number in order to avoid confusion. Besides ,S, for file type, you can

specify ,P, for program and ,U, for user files. The ,W parameter

would be ,R when reading the file. Consult the VIC-1541 User's Man-

> ! ual for additional details.

""" • OPEN 15,8,15,"V" requests that the DOS channel be used to send
the V command (VALIDATE) to DOS for processing. The disk direc-

- ! tory will be reorganized by DOS in response to this command.

Related Memory Locations
\ ! The following memory locations provide additional information on

^ the subject of device numbers, secondary addresses, and status
codes.

[\ 19 ($13) Current channel number for BASIC input/

immA output routines

323

144

152

153-154

154

183

184

185

186

187-188

601-610

611-620

621-630

663

($90)

($98)

($99-9A)

($9A)

($B7)

($B8)
($B9)

($BA)

($BB-BC)

($259-262)

($263-26C)

($26D-276)

($297)

ST status register

Number of currently open files

Device number of the current input file

Device number of the current output file

Number of characters in the filename

Current logical file number

Current secondary address being used

Current device number being used

Pointer to the current filename

Open file number table

Open device number table

Open secondary address table

RS-232 ST status register

n

n

n

n

n

n

324

n

H

n

Appendix E

Automatic and User

Relocation of Memory

Contents
Three important aspects of the relocation of VIC-20 memory con

tents are explored in this appendix: the relocations performed auto

matically by the Kernal when the VIC-20 is powered-on (or
reset) with expansion memory plugged in, methods for programs to
test and adjust to the standard memory expansion configurations,

and considerations when relocating the memory areas to suit your

program's needs.

Automatic Relocation by the Kernal
When the VIC-20 is turned on (or a reset switch is pressed on a
memory expansion board), the Kernal measures the amount of RAM
available and places the BASIC program area, screen map, and color
at positions in memory that allow the largest continuous block of
memory for the BASIC program area, consistent with restrictions

imposed by the addressing scheme used in the 6560 VIC chip. The
following table summarizes the major locations affected when add

ing memory expansion.

Table E-l. Effect of Adding Memory Expansion to
the VIC

Expansion

Added

OK

3K

8K

8K+3K

16K

16K+3K

24K

24K+3K

32K

32K+3K

Total

RAM

5K

8K

13K

16K

21K

24K

29K

32K

37K

40K

Bytes

Free

3583

6655

11775

11775

19967

19967

28159

28159

28159

28159

Color

Map

38400

38400

37888

37888

37888

37888

37888

37888

37888

37888

Screen

Map

7680

7680

4096

4096

4096

4096

4096

4096

4096

4096

BASIC

Start

4097

1025

4609

4609

4609

4609

4609

4609

4609

4609

BASIC

End

7680

7680

16384

16384

24576

24576

32768

32768

32768

32768

The BASIC start pointer is located at 43-44 ($2B-2C) and the

["""?. BASIC end pointer is at location 55-56 ($37-38). The Kernal pointer
at 641-642 ($281-282) (bottom of RAM) is normally pointing one

byte before the BASIC start pointer. The Kernal pointer at 643-644

r^ ($283-284) is normally pointing at the same location as the BASIC

■* end pointer. Appendix B discusses the pointers used by BASIC to

325

Appendix E

manage the various variable pools. If a Super Expander cartridge is
used in place of a normal 3K expansion memory board, subtract 135
bytes from the Bytes Free column and from the BASIC End column.

(The term K means 1024 bytes. Expansion memory is usually
added in increments of 8K or 16K, except for a single 3K expansion.)

The effects of memory expansion can be summarized as:

f 3K expansion doesn't cause relocation of any areas except the start
©I the BASIC program.

• Adding 8K or more expansion causes the BASIC program area, the
sireen map, and the color map to be relocated, but bidding additional
<#cpansicm does not cause further relocation schemes-

*Ctoe6 SK or m&te expansion is added, BASIC won't see or use any;
I1C expansion.

• Adding expansion memory above 24K (to either the 8K area at

40960 ($A000) and/or to the 3K expansion area) does not ificfease
the amount of RAM available to store a BASIC program. RAM areas

that BASIC cannot use for program storage can be used to store uses

data (with POKEs) or to contain machine language instructions. /

Finding the Relocatable Areas
When writing a program, you can include instructions that determine

the memory size and adjust the program to operate correctly when

additional memory expansion is plugged in. If this were done by all

program authors, the warning Runs only on an unexpanded VIC could

be eliminated. The following line determines the memory expansion

environment and sets the variables SM to the screen map location

and CM to the location of the color map. Since the screen map loca

tion affects the value to be POKEd into location 36869 to cause a

switch between the two possible character sets, PRINT CHR$(14)

should be used to switch to the lowercase set and PRINT CHR$(142)

to switch back to uppercase.

SM=7680:CM=38400:IF PEEK(648)=16 THEN SM=4096:CM=37888

The instructions set the default values for an unexpanded VIC,

then test the screen memory page number that was set by the Kernal

at power-on/reset. Location 641-642 ($281-282) in the memory

map includes a routine that can be used to unexpand the VIC, mak

ing it temporarily forget any memory expansion that is plugged in.

Instructions for reexpanding the memory are also included.

The screen memory starting location can also be determined by

WP(6^25&iithe color matp can be fbuftd With
6A3r) 128).

326

Appendix E

Relocation by the User
r-i The subject of user relocation of the BASIC area, the screen map,

1 I custom character sets, and the color map has three major consid
erations which must be resolved before starting any relocation. First,

^ how much expansion memory will be on the VIC? Second, remem-

1 i ber that expansion memory is not addressable by the 6560 VIC chip
and cannot be used for screen, color, or character memory (but is

available for a BASIC program area), and that the VIC chip imposes

restrictions on the starting address for the screen and character maps.

Also, decide which areas need to be relocated in order to achieve the

objectives of your program.

The third issue is not as straightforward as you might assume.

Since nonexpansion RAM is only 4096 bytes in length (locations

4096 through 8191) and because that area is normally either the

BASIC program area or a part of the BASIC area, plus the screen

map (on an 8K+ expanded VIC-20), the relocation of one area to

nonexpansion RAM may necessitate relocating the BASIC area and

perhaps choosing a more limited custom character set than you

would have preferred. It is also possible to expand or contract the

amount of space required for the screen map. Contraction is often

chosen on an unexpanded VIC-20.

A further complication is the demand by the VIC chip that

screen and character maps begin on certain address boundaries. A

table of possibilities is included in this appendix to help you deter

mine the possible and desirable combinations. Before you begin any

program that depends on relocated areas, you should take the time

to consider these issues and sketch out the relocated memory

configuration that you'll be working with.

Relocating BASIC
The first relocation of a memory area that you'll probably want to

perform will involve lowering or raising the boundaries for the BA

SIC area. The storage of machine language programs in memory

along with your BASIC program usually requires this adjustment of

<—[the BASIC area. Sometimes the tape buffer at 828 ($33C) provides

' ' some capability for this without adjusting BASIC pointers. In the di
rect mode,

P[POKE 642,PEEK(642)+NS:POKE 644,PEEK(644)-NL:SYS 58232

can be used to move the start of the BASIC area up NS pages, the

end down NL pages, as well as to cold start BASIC, destroying any

fl current program. By subtracting NS from 642, you can move the

1 ! start downward. By adding to NL, you make the end point move
upward. Locations 642 and 644 can also be set to the desired values

r™f directly, without the PEEK. A program is provided at location 55

r^ 327

Appendix E

($37) in the memory map to reserve space in the BASIC area from
the top or the bottom.

Moving the BASIC area to an entirely different location is easily

accomplished with the methods demonstrated in the program. Place

the new values into the appropriate pointers rather than adding to or

subtracting from them. At location 641-642 ($281-282) of the mem

ory map is a routine that can be used to unexpand the VIC, making

it temporarily forget any memory expansion that's plugged in.

Instructions for reexpanding the memory are also included.

Relocating Character Sets
The character sets won't actually be relocated*.but the goal is to pro
vide an alternate set of characters to be used alone or in conjunction

with the character maps provided in ROM. The number of characters

in the custom character set will largely determine where you'll place

it in memory. The wraparound method of addressing which i§ used

by the YIC chip can allow you fcp aiipss §art of liie st^ar^
character set as well as your ©vm eiastat character set i| p>u Ihoose
the address of your custom character set carefully. ¥m Ihe wt±l

expanded VJC-2Q, lowering the top-of-BASIC poiater at35-S6J$
38) by 512 bytes a*id placing the custom character set there will

achieve the wraparound effect.

COMPUTE'S First Book of VIC includes an article, "Custom

Character Sets for the VIC," by David Malmberg, which uses this

technique for a custom character design aid. Custom character sets

are needed when you tackle bitmapping of the screen, so it's a good

place to start your exploration of relocatable memory areas, and it

allows you to uniquely customize the screen displays of your pro

grams. Creating custom characters for the VIC-20 is discussed at

location 36869, the preamble to 32768, and in Appendix G.

The character map is used as a pixel map of the character for

the corresponding screen POKE code. If you never use a screen code

above value X, the character map will not be referenced above

(8*X) + 7 (or (16*X)+15) and may be used for other things. By start

ing the color map at 6144, for example, you could define up to 256

characters between 6144 and 8191. See location 36869 for details of

how to set the pointer to the character map and the subject of wrap

around, allowing access to the ROM maps as well as RAM character

sets.

Table E-2 shows the possible character map locations on the

VIC, as well as the number of characters that can be placed in each.

328

h Appendix E

H
Table E-2. Character Maps

D Character

i i Map Characters

4096-5119 1-128

^ 4096-6143 1-256

I i 4096-7167 1-384

4096-8191 1-512

5120-6143 1-128

5120-7167 1-256

5120-8191 1-384

6144-7167 1-128

6144-8191 1-256

7168-8191 1-128

Relocating the Screen and Color Map
These two areas are considered together because the color map loca
tion is dependent upon the screen map location. The primary reason

for relocating the screen map is to free the area it's residing in for
custom characters. Additionally, multiple screen maps can be used to
quickly flip between screens. More than 23 lines of 22 columns can

even be displayed on the TV screen if there is room in memory to

expand the screen map.

The screen map location also determines which color map will
be used. See location 36869 for additional details of this relationship.
The VIC chip can be told to display fewer or more than 22 columns

in 23 lines; the amount of screen RAM needed to display the speci

fied lines and columns will depend on these settings of the VIC chip

registers. If more than 512 bytes are to be displayed, you'll want to

choose a screen RAM location that causes the color map to begin at

37888 so that the 38400 color map can be used for the color nybbles

for the screen bytes beyond 512.

Table E-3 shows the possible screen map locations on the VIC,

as well as the corresponding color map locations.

H Table E-3. Screen Map-Color Map Locations
Screen Map

4096-4607

4608-5119

5120-5631

5632-6143

6144-6655

6656-7167

7168-7679

7680-8191

Color Map

37888

38400

37888

38400

37888

38400

37888

38400

329

LJ

Appendix E y

Examples of User Relocation of Character and
Screen Maps
In the article "High-Resolution Plotting," written by Paul F. Schatz LJ
and included in COMPUTErs First Book of VIC, the author chose (for

an unexpanded VIC-20) locations 4096-5631 for BASIC, 5632-6143
for the screen, and 6144-8191 for custom characters. He dem- M

onstrated a 16-line by 16-column bitmapped screen display. For an

expanded VIC-20, he chose a 22-column by 20-line display: 4096-

7615 holds the character map (220 characters, each 8*16 size), 7680-

8191 is used for the screen map, and BASIC is in expansion mem

ory. The Super Expander cartridge also uses this arrangement of
screen and character memory.

An alternate arrangement, with different goals in mind, was

chosen in "Creating Graphics on an Expanded VIC," by Ed Harris,

in the February 1983 issue of COMPUTE!. The screen map is re

located to 4096-4607; a 384-character set, with wraparound, was

placed at 5120-8191; and BASIC started at 8192 (an 8K+

expansion).

Table E-4 illustrates some typical locations you could use when

you relocate the character map, the screen map, and BASIC.

Table E-4. Typical Relocations

Unexpanded

6656 BASIC

6144 Screen Map

4096 Character Map

6144 Character Map

5632 Screen Map

4096 BASIC

Expanded

8192 BASIC

7680 Screen Map

7168 Character Map

8192 BASIC LJ
7168 Character Map

4096 Screen Map

8192 BASIC LJ
7680 Screen Map

4096 Character Map

8192 BASIC LJ
5120 Character Map

4096 Screen Map —

u

Appendix F

ft-

Block SAVE/LOAD Using the

Kernal Routines from BASIC

This program demonstrates the techniques that can be used to call

Kernal routines from a BASIC program by passing the required

parameters in the SYS register SAVE area. It also serves as a model

to be enhanced or extracted from to suit your particular purposes. As

currently coded, the program provides block SAVE and LOAD

capabilities similar to the LOAD and SAVE BASIC commands or a

machine language monitor such as VICMON. A block of memory

may be saved to tape in either a relocatable or nonrelocatable form,

later to be reloaded with the same program. Variables define the

filename, the address range to be saved, whether the format of the

tape is to allow relocation or not, and whether an end-of-tape header

should be written following the block of data.

The program could be enhanced in several ways. It could be

changed to perform verification on the saved data, support the disk,

supply prompts for the user, or to display instructions for the cre

ation of an external tape label with the filename, address range, and

relocatability indicator.

You could also extract part of this program to use as short

routines in your own programs. The 25-line SAVE routine can easily

be compressed to a five- or six-line subroutine, for example.

The subject of relocatable saved blocks may need more clarifica

tion. If RELO$=NO is specified for the save operation, the data

saved in a program type file format can't be relocated during a sub

sequent LOAD, even if RELO$=YES is requested during the load

operation. If RELO$=YES is specified when saved, the later LOAD

may request either YES or NO. When RELO$=YES is coded during

a LOAD, the FROM= variable tells the LOAD routine the starting

address of where the data should be loaded. The LAST= variable

j j has no meaning during a load operation.

Program F-l. Block SAVE/LOAD

! I 100 REM ******** BLOCK SAVE / LOAD USING THE KERNA
L ROUTINES ********

1.10 REM MAPPING THE VIC-20{13 SPACESjG, R. DAVIES

R {14 SPACES}8/8/83
1 f 120 :

130 ACT$="SAVE"

_. 140 NAME$=HA.FILEM

i I 150 FROM=24576

331

Li

Appendix F

U

U

160 LAST=24678

170 RELO?="YES"

180 EOT?=:INO"

190 FILE=11

200 LAST=LAST+1

210 NAME?=LEFT?(NAME?,94) : REM TRUNCATE NAME TO 9

4 CHARS

220 NL=LEN(NAME?)

230 :

240 IF ACT$ = "SAVE" AND LAST < FROM THEN PRINT "

{RVS}END < START":END

250 IF ACT? = "SAVE" AND LAST > 32767 THEN PRINT"

{RVSjCANT SAVE TO TAPE ABOVE 32767":END
260 :

270 PRINT"{RVS}"ACT$:PRINT"{RVS}NAME="CHR$(34);NAM
E?;CHR?(34)

280 PRINT"{RVS}START="FROM:PRINT"{RVS}END="LAST:PR
INT"{RVS}RELO="RELO§" EOT="EOT$

290 PRINT "O.K.? (Y/N)"

300 GET X$:IF X$="" GOTO300

310 IF X?="N" THEN END

320 IF X$o"Y" GOTO 300

330 :

340 POKE 144,0 : REM RESET STATUS

350 IF ACT$ = "SAVE" GOTO 400

360 IF ACT? = "LOAD" THEN 670

370 PRINT"{RVS}ACT? NOT = SAVE OR LOAD":END

380 :
390 ***** SAVE *****

400 POKE 780,128+64 : REM SET KERNAL MSGS ON

410 SYS 65424 : REM CALL SETMSG

420 :

430 POKE 780,FILE : REM FILE NUMBER

440 POKE 781,1{3 SPACES}: REM DEVICE

450 SA=0:IF RELO?= "NO" THEN SA=l

460 IF EOT? = "YES" THEN SA=SA+2

470 POKE 782,SA : REM SECONDARY ADDRESS

480 SYS 65466 : REM CALL SETLFS

490 : | f

500 POKE 780,NL : REM NAME LENGTH LJ
510 IF NAME?<>"" THEN FORX=1TONL:POKE672+X,ASC(MI

D?(NAME?,X,1)):NEXT

520 POKE 781,161: REM LSB OF NAME PTR ||
530 POKE 782,2 : REM MSB OF NAME PTR LmJ
540 SYS 65469 : REM CALL SETNAM

550 : • ,—,

560 POKE 780,251 :REM PAGE ZERO OFFSET TO START OF LJ
SAVE POINTER

570 POKE 252,INT(FROM/256) : REM MSB OF START OF S

AVE JJ

332

LJ

n

n Appendix F

580 POKE 25.1 ,FROM-PEEK(252)*256 : REM LSB OF START

OF SAVE

590 POKE 782,INT(LAST/256) : REM MSB OF END PLUS 1

600 POKE 781,LAST-PEEK(782)*256 : REM LSB OF END O

F SAVE +1

610 SYS 65496 : REM CALL SAVE

620 :

630 IF ST >< 0 THEN PRINT"{2 SPACES}{RVS}ST="ST:EN

D

640 PRINT:PRINT "* SAVE COMPLETED *":END

650 :

660 ***** LOAD *****

670 POKE 780,128+64 : REM SET KERNAL MSGS ON

680 SYS 65424 : REM CALL SETMSG

690 :

700 POKE 780,FILE : REM FILE NUMBER

710 POKE 781,1(3 SPACES}: REM DEVICE

720 SA=0:IF RELO$= "NO" THEN SA=l :REM USE HDR

730 POKE 782,SA : REM SECONDARY ADDRESS

740 SYS 65466 : REM CALL SETLFS

750 :

760 POKE 780,NL : REM NAME LENGTH

770 IF NAME$<>"" THEN FORX=1TONL:POKE672+X,ASC(MI

D$(NAME$,X,1)):NEXT

780 POKE 781,161: REM LSB OF NAME PTR

790 POKE 782,2 : REM MSB OF NAME PTR

800 SYS 65469 : REM CALL SETNAM

810 :

820 POKE 780,0 :REM LOAD INDICATOR

830 POKE 782,INT(FROM/256) : REM MSB OF START OF L

OAD

840 POKE 781,FROM-PEEK(782)*256 : REM LSB OF START

OF LOAD

850 SYS 65493 : REM CALL LOAD

860 :

870 REM{2 SPACES}IF ST = 36 THEN POKE 144,0 : REM
{SPACE}36 MAY BE NORMAL

880 IF ST >< 0 THEN PRINT" {RVS}ST="ST"{OFF}"

890 IF ST <> 0 THEN PRINT" {RVSjLOAD ERROR11 :END

900 PRINT:PRINT"* LOAD COMPLETED *" : END

333

u

Appendix G I (

Custom Characters and u
Bitmapping u

Custom Characters [j
The ability to define your own custom character sets is a powerful

tool for extending the display capabilities for the VIC. High-resolu

tion bitmapped displays are created using single- or double-sized (8

x 16) characters in a dynamically built custom character set. Separate

coloring of pairs of pixels can be obtained, freeing the display from

the limitations of character size coloring.

This appendix will briefly demonstrate the use of custom charac

ter sets, multicolor mode, and screen bitmapping. Before we begin,

you should be familiar with the discussions of the character sets that

are presented at locations 32768 ($8000) and 36869 ($9005) of the

memory map. You'll be using that information as you define a cus

tom character set.

For a maze-type game program, you could use the standard

character graphics to generate the actual maze design, and then use

custom characters to represent the figures in the maze. For our

example, we'll design characters for a takeoff on a well-known maze

game; we'll need a chomping Commodore logo symbol, a few ghosts

to chase it around, a cherry bonus symbol, and a power pill symbol.

Because we'll want to run the game on either an unexpanded or

expanded VIC-20, the BASIC area, screen map, and character map

will be positioned to work in either condition. Since the number of

custom characters is small, the routine at 641-642 will be placed on

the game's tape to unexpand any memory expansion. To that routine

you could add the POKE of characters 131 and 13 into the keyboard

buffer at 631-632, and 2 into location 198. This will cause the next

tape file to be loaded and run, which will be the maze game main

program. The program can then expect the memory configuration to

be unexpanded, with the screen at 7680. When the game is stopped

by the player's request, a SYS 64802 will be used to reexpand any

expansion and reset the VIC-20.

The first thing the game program needs to do is to lower the

upper limit of BASIC to protect the custom character set at locations

7168-7679. This location, with its 512 bytes, allows 64 custom

characters, as well as the wraparound indexing into the normal

character set reverse characters (although they will appear as

unreversed) for scores, titles, and the like. POKE 55,0: POKE 56,28

:CLR will protect our custom character set map. POKE

36869,PEEK(36869) AND 240 OR 15 will set the address of the cus

tomer character set in the VIC chip register. FOR X=0 TO

334

n Appendix G

8*64:POKE 7168+X,0:NEXT will clear out the 64-character area. The

next 64 characters are actually part of the screen map area, and you

can avoid them by not using the values from 64 to 127 as screen

POKE codes. The four custom characters can be set into the charac

ter set with the lines:

100 FOR X=0 TO 4*8-1:READ C

110 POKE 7168+X,C:NEXT:GOTO 300

120 DATA 56,124,84,124,124,124,84,0

130 DATA 0,2,4,56,124,116,56,0

140 DATA 120,255,222,192,222,255,120,0

150 DATA 146,56,124,238,108,124,56,146

300 :

The rest of your program would begin at line 300.

Now you can POKE into the screen map the locations where

you want your custom characters to appear: 0=ghost, 1= cherry,

2=logo, 3=power pill. The remaining 60 characters of the custom

character set can be used for any additional characters you'd like.

The POKE codes 64-127 should be avoided since they would obtain

character pixel mapping information from the ever-active screen map

area. The maze can be drawn by using screen POKE codes from 190

to 255. See the Code Chart in Appendix C, remembering to use

characters above 63 and that they will not appear in reverse. The

chart also shows that 129-154 are the screen POKE codes for the

alphabet, and 176-185 can be used for keeping score.

More than one 8x8 character pixel map can be used if you

want to create a shape larger than one character. For example, the

following statements define a four-character shape of a three-

dimensional cube that is constructed on the screen by POKEing the

first and second characters side by side, with the third and fourth

below them:

DATA 15,16,32,64,255,128,128,128

DATA 255,3,5,9,241,17,17,17

DATA 128,128,128,128,128,128,128,255

DATA 17,17,17,17,18,20,24,240

Multicolor mode may be used to color with 4 of 16 colors within

a character. Location 37888 describes multicolor mode; locations

36879 and 36878 note the valid color codes. A tiny American flag

could be created on the side of a ship with the line DATA

5,10,5,10,85,170,85,170 if the background color was blue, the border

red, and you POKE 9 (white foreground and multicolor mode) into

the color map location for the character.

You'll find a custom character editing program a great help

when you design characters. Some character editors will generate the

BASIC DATA statements that can be included in a program. There

335

Appendix G

are several good character editors available. One such editor

appeared in COMPUTERS First Book of VIC. By David Malmberg, it's

also included in the article "Custom Characters For the VIC."

Bitmapping
Bitmapping the screen requires a custom character set made of pixel

maps which describes every pixel on the screen to be mapped. This

isn't necessarily the whole screen, and in fact most bitmapping pro

grams (including the Super Expander cartridge) settle for 20 columns

by 22 lines. An unexpanded VIC-20 has to limit the area to be

bitmapped.

The first thing you must decide is the number of lines and col

umns that are to be bitmapped. A window on the screen must then

be created to fit that size. Every screen position showing requires

eight bytes to bitmap. If you choose the 22 line by 20 column for

mat, for instance, you'll need 22*20*8=3520 bytes for a character set

to bitmap that area. A (22*20)/2=220 byte screen map is also

needed. The total amount of memory required for the screen and

character maps for a 20 x 22 display is thus 3740 bytes. It's obvious

that BASIC has to be placed in expansion memory.

You can divide the needed screen map area in half by using the

double-sized character feature. Simply specify it in location 36867,

bit 0. You would need to use that feature anyway since it's the only

way that unique index numbers can be placed in all the displayed

screen map bytes.

For an unexpanded VIC-20, al2xl6(192 bytes) display area

leaves 1535 bytes of BASIC area free after the character set and

screen map are accounted for. This is done by placing BASIC at

6144, the screen at 5632, and 190 custom characters at 4096. Charac

ters with screen POKE codes of 192-255 will overlap the screen

area, so don't use them. The following direct mode lines set the

BASIC and screen boundaries:

POKE 43,0: POKE 44,24

NEW

POKE 648,22: SYS 58648 (See these two locations in the memory

map.)

Within your program, the statement POKE 36869,PEEK(36869) AND

240 OR 12 sets the character set pointer to 4096. To initialize the

screen map for bitmapping, you could use:

FOR X=0 TO 191:POKE 5632+X,X:NEXT

The character map area will include garbage that can be cleaned

out with FOR X=0 TO 1519:POKE 4096+X,0:NEXT. Locations

36878 and 36879 can be set to the desired color combinations, and

36867 could be set to double-sized characters. The screen size of 13

336

Appendix G

by 14 is set by POKE 36866,13+ 128 (the 128 is part of the screen

address) and POKE 36867,14*2. To center the window on the dis-

n play, POKE 36864,13 POKE 36865,40.

1 ! The color map starts at location 38400 and can be set to the

appropriate color code (multicolor bit included, if desired) when a

*—j character is placed on the screen. Remember that when double-sized

I i characters are selected, a color nybble corresponds to a double-sized

character. Alternatively, you may want to initialize the entire color

map to a particular default color code, so that you don't need to

bother with it for the bulk of your work.

All the setup is now done, and you're ready to set the custom

character map to whatever strikes your imagination and see it in

stantly appear at the same offset on the screen as the number of the

double-sized character. Location 4096 ($1000) has several formulas

that can be used to calculate pixel locations from the desired line and

column. Change the number 22 in those formulas to the width of

your chosen display window.

A 40-column screen. Here are the definitions for a half-width set of

letters and numbers. These definitions will allow you to create the

illusion of twice as many characters per line so a 40-column display

can be simulated. These definitions can be used with a large custom

character set, but are best suited for a bitmapped screen. When using

the definitions, store them someplace other than the custom charac

ter set, and move the needed 4 x 8 bit pixel map to the appropriate

right or left side of a 8 x 8 sized character, or quarter of the double-

sized character.

DATA 76,170,170,236,170,170,172,0: REM AB

DATA 76,170,138,138,138,170,76,0: REM CD

DATA 238,136,136,204,136,136,232,0: REM EF

DATA 106,138,138,174,170,170,106,0: REM GH

DATA 226,66,66,66,66,74,228,0: REM IJ

DATA 136,136,136,168,200,200,174,0: REM KL

DATA 160,236,234,170,170,170,170,0: REM MN

DATA 236,170,170,172,168,168,232,0: REM OP

r-i DATA 72,172,170,170,168,232,104,0: REM QR

\ i DATA 78,164,132,68,36,164,68,0: REM ST

DATA 170,170,170,170,170,164,228,0: REM UV

_ DATA 170,170,164,164,228,234,170,0: REM WX

I ; DATA 174,160,226,68,72,64,78,0: REM YZ

DATA 206,74,66,68,72,72,238,0: REM 12.

DATA 234,42,42,110,34,34,226,0: REM 34

H DATA 238,136,136,206,42,42,206,0: REM 56

! DATA 238,170,42,78,74,74,78,0: REM 78

DATA 228,170,170,234,42,42,36,0: REM 90

r-l DATA 0,0,0,0,0,2,68,0: REM .,

' s DATA 64,160,32,64,64,0,64,0: REM ? SPACE

337

Appendix H

Alphabetical Cross

Reference to the Location of
Memory Map Labels
Label

ABS

ACPTR

ADDPRC

ADDSTR

ADRAY1

ADRAY2

ALCSPC

ALC1

ANDD

ARG

ARGEXP

ARISGN

ARY

ARYHED

ARYTAB

ARY2

ARY6

ARY14

ASC

ASCFLT

ASCII

ASC18

ASRRES

ATN

ATNCON

ATOF

AUTODN

AOCBM

BACKUP

BAD

BADSUB

BASIC

BASICSPILL

BASTACK

BASVCTRS

BASZPT

BAUDOF

BAUDTBL

Defined at

56408 ($DC58)

61209 ($EF19)

1-2 ($1-2)

54845 ($D63D)

3-4 ($3-4)

5-6 ($5-6)

54516 ($D4F4)

54389 ($D475)

53225 ($CFE9)

105-110 ($69-6E)

105-110 ($69-6E)

111 ($6F)

53713 ($D1D1)

53652 ($D194)

47-48 ($2F-30)

53837 ($D24D)

53857 ($D261)

53994 ($D2EA)

55179 ($D78B)

56563 ($DCF3)

215 ($D7)
56702 ($DD7E)

55683 ($D983)

58123 ($E30B)

58171 ($E33B)

56316 ($DBFC)

658 ($292)

64845 ($FD4D)

59624 ($E8E8)

256-318 ($100-13E)

53829 ($D245)

49152-57343 ($C000-DFFF)

57344-58527 ($E000-E49F)

320-511 ($14O-1FF)

58447 ($E44F)

255 ($FF)

665-666 ($299-29A)

65372 ($FF5C)

u

u

u

u

u

u

u

u

u
338

i ,'
! ;

H

n
1 i

r^

n

n

BITCI

BITNUM

BITS

BITTS

BLKEND

BLNCT

BLNON

BLNSW

BLOAD

BMSGS

BREAK

BSAVE

BSIV

BSOUR

BSTOP

BUF

BUFPNT

BUMPTP

BVECTORS

BVERIF

CACPTR

CASEL

CASELRV

CASEU

CASEURV

CAS1

CBINV

CBMBASIC

CBMMSG

CCALL

CCHROUT

CCIOUT

CCLOS

CCLRCHN

CGETL

CGIMAG

CHANNL

CHARAC

CHARSET

CHKAUTO

CHKIN

CHKOUT

CHR

CHRERR

CHRGET

CHRGOT

168 ($A8)

664 ($298)

104 ($68)

180 ($B4)

64518 ($FC06)

205 ($CD)

207 ($CF)

204 ($CC)

57701 ($E165)

49960 ($C328)

65234 ($FED2)

57683 ($E153)

64758 ($FCF6)

149 ($95)

51247 ($C82F)

512-600 ($200-258)

166 ($A6)

51451 ($C8FB)

768-778 ($300-30A)

57698 ($E162)

65445 ($FFA5)

34816-35839 ($8800-8BFF)

35840-36863 ($8C00-8FFF)

32768-33791 ($8000-83FF)

33792-34815 ($8400-87FF)

192 ($C0)

790-791 ($316-317)

49156 ($C004)

58409 ($E429)

65511 ($FFE7)

65490 ($FFD2)

65448 ($FFA8)

65475 ($FFC3)

65484 ($FFCC)

65508 ($FFE4)

58247 ($E387)

19 ($13)

7 ($7)

60705 ($ED21)

64831 ($FD3F)

62151 ($F2C7)

62217 ($F309)

55020 ($D6EC)

57870 ($E20E)

115-138 ($73-8A)

121 ($79)

339

Appendix H

CHRIN

CHRINRS

CHRINSR

CHRINTP

CHRINTP2

CHROUT

CHROUTTP

CHRTST

CINCH

CINV

CIOBASE

CIOUT

CLALL

CLISTEN

CLOAD

CLOSE

CLR

CLRALINE

CLRCHN

CLSR

CMD

CMEMBOT

CMEMTOP

CMPFAC

CMPST

CMPO

CNTDN

CNVRTCD

COLDBA

COLDST

COLECT

COLOR

COLORMAPS

COLORSET

COLORSYN

COLORTBL

COMCHK

COMFAC

COMPAR

CONT

COPEN

COS

COUNT

CPLOT

CRDST

CRDTIM

61966 ($F20E)

62063 ($F26F)

62052 ($F264)

62000 ($F230)

62032 ($F250)

62074 ($F27A)

62096 ($F290)

53523 ($D113)

65487 ($FFCF)

788-789 ($314-315)

65523 ($FFF3)

61156 ($EEE4)

62447 ($F3EF)

65457 ($FFB1)

65493 ($FFD5)

62282 ($F34A)

50782 ($C65E)

60045 ($EA8D)

62451 ($F3F3)

58719 ($E55F)

51846 ($CA86)

65436 ($FF9C)

65433 ($FF99)

56411 ($DC5B)

53294 ($D02E)

176 ($B0)

165 ($A5)

59689 ($E929)

58232 ($E378)

49152 ($C000)

54790 ($D606)

646 ($286)
37888-38399 ($9400-95FF)

59666 ($E912)

60082 ($EAB2)

59681 ($E921)

52989 ($CEFD)

55623 ($D947)

53270 ($D016)

51287 ($C857)

65472 ($FFC0)

57953 ($E261)

11 ($B)

65520 ($FFF0)

65463 ($FFB7)

65502 ($FFDE)

u

u

u

u

u

340

u

u

u

LJ

U

p

n

S I

«■»

[»
(!

f |

} i

r-j

n

CRESTOR

CRNCH

CRSW

CSAVE

CSCNKEY

CSCREEN

CSECOND

CSETLFS

CSETMSG

CSETNAM

CSETTIM

CSETTMO

CSTEL

CSTE2

CS10

CTALK

CTKSA

CTRLKEYS

CUDTIM

CUNLSN

CUNTLK

CURLIN

CVECTOR

C3PO

C5FFS

DATLIN

DATPTR

DECBIN

DEF

DEFPNT

DELAY

DELST

DELTSD

DFLTN

DFLTO

DIM

DIMFLG

DIVIDE

DIVTEN

DPSW

DSCPNT

EAL

END

ENDCHR

ERROR

ERRTAB

65418 ($FF8A)

50553 ($C579)

208 ($D0)

65496 ($FFD8)

65439 ($FF9F)

65517 ($FFED)

65427 ($FF93)

65466 ($FFBA)

65424 ($FF90)

65469 ($FFBD)

65499 ($FFDB)

65442 ($FFA2)

63636 ($F894)

63671 ($F8B7)

63659 ($F8AB)

65460 ($FFB4)

65430 ($FF96)

60835 ($EDA3)

65514 ($FFEA)

65454 ($FFAE)

65451 ($FFAB)

57-58 ($39-3A)
65421 ($FF8D)

148 ($94)

65413 ($FF85)

63-64 ($3F-40)

65-66 ($41-42)

51563 ($C96B)

54195 ($D3B3)

78-79 ($4E-4D)

652 ($28C)

54947 ($D6A3)

55003 ($D6DB)

153 ($99)

154 ($9A)

53377 ($D081)

12 ($C)

56082 ($DB12)

56062 ($DAFE)

156 ($9C)

80-81 ($50-51)

174-175 ($AE-AF)

51249 ($C831)

8 ($8)

50231 ($C437)

49566 ($C19E)

Appendix H

341

Appendix H

EVAL

EVALFN

EVFN3

EVLVAR

EXP

EXPCON

EXPONT

EXTRA

FA?

FAG
1ACOV

FACTFP

FACTF1

FACTF2

FACT10

FACT12

FACT17

EAC2

FAH

FAT

FBUFPT

FCLOSE

FILEMSG

FILENAME

FILFAC

FIND2

FINLIN

FINLMR

FIRT

FLP05

FLTASC

FLTCON

FN

FNADR

FNDFLNO

FNDHDR

FNDVAR

FNLE1SJ

FOPEN

FOR

FORPNT

FORWARD

FOUR6

FPCTEN

FPC1

FPC12

52867 ($CE83)

54260 ($D3F4)

54351 ($D44F)

53387 ($D08B)

57325 ($DFED)

57279 ($DFBF)

57211 ($DF7B)

52476 ($CCFC)

1«6#1A)

97-102 ($61-66)

112 ($70)

56272 ($DBD0)

56266 ($DBCA)

56263 ($DBC7)

53005 ($CF0D)

53032 ($CF28)

53159 ($CFA7)

105-110 ($69-6E)
63407 ($F7AF)

611-620 ($263-26C)

113-114 ($71-72)

57796 ($E1C4)

63358 ($F77E)

63065 ($F659)

56553 ($DCE9)

51462 ($C906)

50707 ($C613)

55137 ($D761)

164 ($A4)

57105 ($DF11)

56797 ($DDDD)

57110 ($DF16)

54241 ($D3E1)

187-188 ($BB-BC)
62415 ($F3CF)

63591 ($F867)

53479 ($D0E7)

183 ($B7)
57787 ($E1BB)

51010 ($C742)

73-74 ($49-4A)

59642 ($E8FA)

83 ($53)

56057 ($DAF9)

55740 ($D9BC)

56755 ($DDB3)

u

u

u

u

u

342

u

Li

U

U

u

n
Appendix H

n

n

n

FPC20

FPINT

FRE

FREKZP

FREMSG

FRESPC

FRETOP

FRMEVL

FSBLK

FTOA

FUNDSP

GARBFL

GCOL13

GDBLN

GDCOL

GET

GETAD

GETBYT

GETIN

GETLIN

GETQUE

GETSCRN

GETSUB

GET2RTN

GONE

GOSUB

GOTO

GRAPHMODE

GRBCOL

GSINFO

HIBASE

HMSCON

HOME

IBASIN

IBSOUT

ICHKIN

ICKOUT

ICLALL

ICLOSE

ICLRCH

ICRNCH

IERROR

IEVAL

IF

IFCHRG

IGETIN

58077 ($E2DD)

56475 ($DC9B)

54141 ($D37D)

251-254 ($FB-FE)

58372 ($E404)

53-54 ($35-36)

51-52 ($33-34)

52638 ($CD9E)

190 ($BE)

56335 ($DC0F)

49234 ($C052)

15 ($F)

54717 ($D5BD)

206 ($CE)

647 ($287)

52091 ($CB7B)

55275 ($D7EB)

55195 ($D79B)

61941 ($F1F5)

50528 ($C560)

58853 ($E5E5)

58959 ($E64F)

53682 ($D1B2)

58905 ($E619)

51172 ($C7E4)

51331 ($C883)

51360 ($C8A0)

60720 ($ED30)

54566 ($D526)

55170 ($D782)

648 ($288)

57146 ($DF3A)

58753 ($E581)

804-805 ($324-325)

806-807 ($326-327)

798-799 ($31E-31F)

800-801 ($320-321)

812-813 ($32C-32D)

796-797 ($31C-31D)

802-803 ($322-323)

772-773 ($304-305)

768-769 ($300-301)

778-779 ($30A-30B)

51496 ($C928)

57859 ($E203)

810-811 ($32A-32B)

343

IGONE

IGRERR

ILOAD

ILQUAN

IMAIN

INBIT

INDEX

wmx

INITBA

INITMEM

INITSK

INITVCTRS

INITVIA

MTVIC

INPCHN

INPFLG

INPPTR

INPUT

INPUTN

INSRT

INT

INTFLG

INTFP

INTFP1

INTIDX

IOBASE

IOPEN

IQPLOP

IRQ

IRQROUT

IRQTMP

IRQVCTRS

ISAVE

ISCNTC

ISTOP

JMPER

JTP20

KERNAL

mm
KEYLOG

KEYTAB

KEYVCTRS

KMSGSHOW

KMSGTBL

KOUNT

KVECTOKS

776-777 ($308-309)

52045 ($CB4D)

816-817 ($330-331)

53832 ($D248)

770-771 ($302-303)

167 ($A7)

34-37 ($22-25)

200 ($C8)

58276 ($E34A)

64909 ($FD8D)

58648 ($E518)

58459 ($E45B)

65017 ($FDF9)

58819 <($E5C3f
65478($FFC6)

17 ($11)

65-67 ($43-44)

52159 ($CBBF)

52133 ($CBA5)

216 ($D8f
56524 ($DCCC)

14 ($E)

56380 ($DC3C)

56388 ($DC44)

53674 ($D1AA)

58624 ($E500)

794-795 ($31A-31B)

774-775 ($306-307)

60095 ($EABF)

65394 ($FF72)

671-672 ($29F-2A0)

65009 ($FDF1)

818-819 ($332-333)

65505 ($FFE1)

808-809 ($328-329)

84-86 ($54-56)

63626 ($F88A)

58528-65535 ($E4A0-FFFF)

631-640 ($277^1811 ^f
655-656 ($28F-290)

245-246 ($F5-F6)

60486 ($EC46)

61926 ($F1E6)

61812 ($F174)

651 ($28B)

788-819 ($314-1333)

u

u

u

u

u

344

u

0

U

U

U

Appendix fl

n

n

LA

LADIV

LAMIN

LAPLUS

LASTPT

LAT

LDAD1

LDTB1

LDTB2

LDTND

LDVRMSG

LEFT

LEN

LET

LET2

LET5

LET9

LINNUM

LINPTR

LIST

LISTEN

LIST1

LNKPRG

LNMX

LOAD

LOADSER

LODARG

LODFAC

LOG

LOGCON

LOGOKEYS

LPACHK

LP2

LSTSHF

LSTX

LXSP

MAIN

MAKADR

MAKFP

MAKINT

MAKSPC

MAKSTR

MAKVAR

MAXINT

MEMBOT

MEMERR

184 ($B8)

56079 ($DB0F)

55376 ($D850)

55399 ($D867)

23-24 ($17-18)

601-610 ($259-262)

63572 ($F854)

217-241 ($D9-F1)

60925 ($EDFD)

152 ($98)

63082 ($F66A)

55040 ($D700)

55164 ($D77C)

51621 ($C9A5)

51650 ($C9C2)

51674 ($C9DA)

51756 ($CA2C)

20-21 ($14-15)

60030 ($EA7E)

50844 ($C69C)

60951 ($EE17)

60956 ($EE1C)

50483 ($C533)

213 ($D5)

62786 ($F542)

62812 ($F55C)

55948 ($DA8C)

56226 ($DBA2)
55786 ($D9EA)

55745 ($D9C1)

60640 ($ECE0)

52986 ($CEFA)

58831 ($E5CF)

654 ($28E)

197 ($C5)

201-202 ($C9-CA)

50304 ($C480)

55287 ($D7F7)

54161 ($D391)

53695 ($D1BF)

50104 ($C3B8)

54407 ($D487)

53533 ($D11D)

53669 ($D1A5)

65154 ($FE82)

50229 ($C435)

345

Appendix H

MEMHIGH

MEMSIZ

MEMSTR

MEMTOP

MEMUSS

MID

MISCMSG

MODE

MOVEBL

MOVLINE

MSGFLG

MULDIV

MULTEN

MYCH

M16

M51AJB

M51CDR

M51CTR

NDX

NEGFAC

NEW

NEWCH

NEWLIN

NEWSTT

NEXT

NMI

NMINV ■

NODIRM

NORMKEYS

NORMLZ

NXTBIT

NXTLINE

OLDLIN

OLDTXT

ON

OPEN

OPENLIN

OPENRS

OPMASK

OPPTR

OPTAB

ORIOST

ORR

OUTCHN

OVERFL

PAREXP

643-644 ($283-284)

55-56 ($37-38)

641-642 ($281-282)

65139 ($FE73)

195-196 ($C3-C4)

55095 ($D737)

50020 ($C364)

657 ($291)

50111 ($C3BF)

59990 ($EA56)

157 ($9D)

55991 ($DAB7)

56034 ($DAE2)

191 ($BF)

54092 ($D34C)

661-662 ($295-296)

660 ($294)

659 ($293)

198 ($C6)

57268 ($DFB4)

50754 ($C642)

64475 ($FBDB)

50332 ($C49C)

51118 ($C7AE)

52510 ($CD1E)

65193 ($FEA9)

792-793 ($318-319)

54182 ($D3A6)

60510 ($EC5E)

55550 ($D8FE)

181 ($B5)

59587 ($E8C3)

59-60 ($3B-3C)

61-62 ($3D-3E)

51531 ($C94B)

62474 ($F40A)

59886 ($E9EE)

62663 ($F4C7)

77 ($4D)

75-76 ($4B-4C)

49280 ($C080)

65130 ($FE6A)

53222 ($CFE6)

65481 ($FFC9)

55678 ($D97E)

52977 ($CEF1)

u

u

u

u

346

u

U

U

U

U

i !

n

n

Appendix H

n

n

PAROC 57878 ($E216)

PARSL 57809 ($E1D1)

PATCHBAS 57590 ($E0F6)

PATCHER 58486 ($E476)

PATCHES 58556 ($E4BC)

PCNTR 163 ($A3)

PEEK 55309 ($D80D)

PG3FREE 784-787 ($310-313)

PIVAL 52904 ($CEA8)

PLOT 58634 ($E50A)

PLUS 55402 ($D86A)

PLUS1 55394 ($D862)

PLUS6 55463 ($D8A7)

PNT 209-210 ($D1-D2)

PNTR 211 ($D3)

POKE 55332 ($D824)

POS 54174 ($D39E)

PRDY 50281 ($C469)

PRINT 51872 ($CAA0)

PRINTN 51840 ($CA80)

PRTFIX 56781 ($DDCD)

PRTIN 56770 ($DDC2)

PRTOS 52027 ($CB3B)

PRTSTR 51998 ($CB1E)

PRTY 155 ($9B)

PRT1 51866 ($CA9A)

PRT6 51944 ($CAE8)

PRT7 51960 ($CAF8)

PTR1 158 ($9E)

PTR2 159 ($9F)

PUTSCRN 60074 ($EAAA)

QPLOP 50970 ($C71A)

QTSW 212 ($D4)

QUOTECK 59064 ($E6B8)

RAMBLK0 1024-4095 ($400-FFF)

RAMBLK1 8192-16383 ($2000-3FFF)

RAMBLK2 16384-24575 ($4000-5FFF)

RAMBLK3 24576-32767 ($6000^7FFF)

RAMBLK4 40960-49151 ($A000-BFFF)

RAMSPC 50184 ($C408)

RBLK 63689 ($F8C9)

RDTIM 63328 ($F760)

RDTPBLKS 62680 ($F8C0)

RD300 64466 ($FBD2)

READ 52230 ($CC06)

READIOST 65128 ($FE68)

347

Appendix H

READST

READT

READY

REM

RESHO

RESLST

RESTOR

RESTORE

RETREAT

RETURN

RETVP

RFTOA

RIBUF

RIDATA

RIDBE

RIDBS

RIGHT

RINONE

RIPRTY

RND

RNDCl

ROBUF

RODATA

RODBE

RODBS

ROPRTY

ROUND

RPACHK

RPTFLG

RSBREAK

RSCPTBIT

RSDVCERR

RSFRAMER

RSINBIT

RSINBYTE

RSINERR

RSINPRTY

RSMISSNG

RSNMI

RSNXTBIT

RSNXTBYT

RSNXTIN

RSOPNIN

RSOPNOUT

RSOUTSAV

65111 ($FE57)

63886 ($F98E)

50292 ($C474)

51515 ($C93B)

38-42 ($26-2A)

49310 ($C09E)

64850 ($FD52)

51229 ($C81D)

59181 ($E72D)

51410 ($C8D2)

53637 ($D185)

56332 ($DC0C)

247-248 ($F7-F8)

170 ($AA)

667 ($29B)

668 ($29C)

55084 ($D72C)

169 ($A9)

171 ($AB)

57492 ($E094)

57482 ($E08A)

139-143 ($8B-8f) X
249-250 ($F9-FA)

182 ($B6)

670 ($29E)

669 ($29D)

189 ($BD)

56347 ($DC1B)

52983 ($CEF7)

650($28A) X
61605 ($F0A5)

61479 ($F027)

61625 ($F0B9)

61608 ($F0A8)

61494 ($F036)

61551 ($F06F)

61610 ($F0AA)

61579 ($F08B)

61462 ($F016)

65246 ($FEDE)

61347 ($EFA3)

61422 ($EFEE)

61775 ($F14F)

61718 ($F116)

61628 ($F0BC)

61677 ($F0ED)

u

u

u

u

LJ

348

u

u

u

u

u

Appendix H

RSOVERUN

RSPAUSE

RSPREPIN

RSPREPOT

RSPRTY

RSPRTYER

RSSTAT

RSSTOPS

RSSTPBIT

RSSTRBIT

RTI

RTRN

RUN

RUNTB

RVS

SA

SAL

SAREG

SAT

SAVE

SAVESER

SAVETP

SAVING

SAVREGS

SCATN

SCNKEY

SCNSTK

SCREEN

SCREENX

SCRL

SCRN

SCRNOUT

SCROLL

SECOND

SEREVL

SERGET

SERNAME

SEROUTO

SEROUT1

SER2

SETADDR

SETCHAR

SETFLCH

SETIODEF

SETKEYS

SETLFS

61602 ($F0A2)

61792 ($F160)

61531 ($F05B)

61698 ($F102)

61375 ($EFBF)

61597 ($F09D)

663 ($297)

61416 ($EFE8)

61515 ($F04B)

61544 ($F068)

65366 ($FF56)

59608 ($E8D8)

51313 ($C871)

60916 ($EDF4)

199 ($C7)

185 ($B9)

172-173 ($AC-AD)

780 ($30C)

621-630 ($26D-276)

63093 ($F675)

63122 ($F692)

63217 ($F6F1)

63272 ($F728)

780-783 ($30C-30F)

61125 ($EEC5)

60190 ($EB1E)

50058 ($C38A)

7680-8191 ($1EOO-1FFF)

4096-4607 ($1000-llFF)

59765 ($E975)

58629 ($E505)

59202 ($E742)

59114 ($E6EA)

61120 ($EEC0)

57408 ($E040)

58546 ($E4B2)

62613 ($F495)

58537 ($E4A9)

58528 ($E4A0)

57430 ($E056)

60014 ($EA6E)

59077 ($E6C5)

62431 ($F3DF)

58811 ($E5BB)

60380 ($EBDC)

65104 ($FE50)

349

Appendix H

SETMSG

SETNAM

SETSLINK

SETTIM

SETTMO

SFDX

SGN

SGNFAC

SGNFLG

SHFLAG

SHFTKEYS

SIN

SIZE

SKIPST

SKPCOM

SPMSG

SPREG

SQR

SRBAD

SRCHING

SRCLKHI

SRCLKLO

SRSEND

STACK

STAL

START

STATUS

STKEY

STKSPC

STMDSP

STOP

STORFAC

STR

STREND

STT1

STXTPT

SUB

SUBFLG

SVXT

SXREG

SYNCHR

SYNERR

SYNO

SYNPRT

SYREG

SYSTEM

65126 ($FE66)

65097 ($FE49)

58759 ($E587)

63335 ($F767)

65135 ($FE6F)

203 ($CB)

56377 ($DC39)

56363 ($DC2B)

103 ($67)

653($28D)

60575 ($EC9F)

57960 ($E268)

82 ($52)

51448 ($C8F8)

57867 ($E20B)

61922 ($F1E2)

783 ($30F)

57201 ($DF71)

61108 ($EEB4)

63047 ($F647)

61316 ($EF84)

61325 ($EF8D)

61001 ($EE49)

256-511 ($100-lFF)

193-194 ($C1-C2)&
64802 ($FD22)

144 ($90)

145 ($91)

50171 ($C3FB)

49164 ($C00C)

63344 ($F770)

56276 ($DBD4)

54373 ($D465)

49-50 ($31-32)

63837 ($F95D)

50830 ($C68E)

55379 ($D853)

16 ($10)

146 ($92)

781 ($30D)

52991 ($CEFF)

53000 ($CF08)

150 ($96)

60065 ($EAA1)

782 ($30E)

57639 ($E127)

u

LJ

U

U

U

350

U

u

u

u

u

Appendix H

H

TALK

TAN

TANSGN

TAPE

TAPEH

TAPE1

TBLX

TBUFFR

TEMPF3

TEMPPT

TEMPST

TEMPI

TIME

TIMES

TIMES3

TIMOUT

TKSA

TNIF

TNOFF

TPBLOCK

TPBUFA

TPHBGN

TPHDRID

TPHEND

TPHFREE

TPHNAME

TPSTORE

TPTOGLE

TRMPOS

TSTMEM

TSTOP

TSTSTOP

TXTPTR

TXTTAB

TYPCHK

UDTIM

UNDEF

UNLSN

UNTLK

UNUSDNMI

USER

USRCMD

USRCMDS

USRPGMOK

USRPGM3K

USRPGM8K

60948 ($EE14)

58033 ($E2B1)

18 ($12)

63732 ($F8F4)

63463 ($F7E7)

178-179 ($B2-B3)

214 ($D6)

828-1019 ($33C-3FB)

87-96 ($57-60)

22 ($16)

25-33 ($19-21)

177 ($B1)

160-162 ($A0-A2)

55848 ($DA28)

55897 ($DA59)

645 ($285)

61134 ($EECE)

64719 ($FCCF)

64776 ($FD08)

829-1019 ($33D-3FB)

63565 ($F84D)

829-830 ($33D-33E)

828 ($33C)

831-832 ($33F-340)
1020-1023 ($3FC-3FF)

833-1019 ($341-3FD)

64173 ($FAAD)

64490 ($FBEA)

9 ($9)

65169 ($FE91)

63819 ($F94B)

51244 ($C82C)

122-123 ($7A-7B)

43-44 ($2B-2C)

52600 ($CD8A)

63284 ($F734)

54190 ($D3AE)

61188 ($EF04)

61174 ($EEF6)

58805 ($E5B5)

243-244 ($F3-F4)

814-815 ($32E-32F)

820-827 ($334-33B)

4096-7679 ($1000-lDFF)

4096-8191 ($1000-lFFF)

4608-8191 ($12OO-1FFF)

351

USRPOK

USRVCTRS

VAL

VALTYP

^V&RMAM

VAtPNT
VARRANGE

VARTAB
VCTRIRQ

VCTRNMI

VCTRRST

VECTOR

VECTORS

VERCHK

VERCK

VIA1ACR

VIA1DDRA

VIA1DDRB

VIA1IER

VIA1IFR

VIA1PA1

VIA1PA2

VIA1PB

VIA1PCR

VIA1SR

VIA1T1CH

VIA1T1CL

VIA1T1LH

VIA1T1LL

VIA1T2CH

VIA1T2CL

VIA2ACR

VIA2DDRA

VIA2DDRB

VIA2IER

VIA2IFR

VIA2PA1

VIA2PA2

VIA2PB

VIA2PCR

VIA2SR

VIA2T1CH

VIA2T1CL

VIA2T1HL

VIA2T1LL

VIA2T2CH

0($0)

673-767 ($2A1-2FF)

55213 ($D7AD)

13 ($D)

69-70 ($45-46)

71-72 ($47-48)

53012 ($CF14)

45-46 ($2D-2E|

65534 ($FFFE)

65530 ($FFFA)

65532 ($FFFC)

64855 ($FD57)

64877 ($FD6D)

10 ($A)

147 ($93)

37147 ($91IB)

37139 ($9113)

37138 ($9112)

37150 ($91IE)

37149 ($911D)

37137 ($9111)

37151 ($911F)

37136 ($9110)

37148($911C)

37146 ($911A)

37141 ($9115)

37140 ($9114)

37143 ($9117)

37142 ($9116)

37145 ($9119)

37144 ($9118)

37163 ($912B)

37155 ($9123)

37154 ($9122)

37166 ($912E)

37165 ($912D)

37153 ($9121)

37167 ($912F)

37152 ($9120)

37164 ($912C)

37162 ($912A)

37157 ($9125)

37156 ($9124)

37159 ($9127)

37158 ($9126)

37161 ($9129)

352

j I

j 1.

n

Appendix H

VIA2T2CL

VICCRA

VICCRB

VICCRC

VICCRD

VICCRE

VICCRF

VICCRO

VICCR1

VICCR2

VICCR3

VICCR4

VICCR5

VICCR6

VICCR7

VICCR8

VICCR9

VICINIT

VPRTY

WAIT

WAITABIT

WARMBAS

WARMST

WBLK

WHATKEYS

WRAPLINE

WRITE

WRTN1

WRTZ

WRT62

XFERSTR

XMAX

XSAV

ZERFAC

37160 ($9128)

36874 ($900A)

36875 ($900B)

36876 ($900C)

36877 ($900D)

36878 ($900E)

36879 ($900F)

36864 ($9000)

36865 ($9001)

36866 ($9002)

36867 ($9003)

36868 ($9004)

36869 ($9005)
36870 ($9006)

36871 ($9007)

36872 ($9008)

36873 ($9009)

60900 ($EDE4)

64785 ($FDU)

55341 ($D82D)

61334 ($EF96)

58471 ($E467)

49154 ($C002)

63715 ($F8E3)

60777 ($ED69)

60763 ($ED5B)

64523 ($FCOB)

64661 ($FC95)

64680 ($FCA8)

64795 ($FD1B)

54906 ($D67A)

649 ($289)

151 ($97)

55543 ($D8F7)

n

n

n

n

353

Appendix I

A Beginner's Guide to
Typing In Programs

What Is a Program?
A computer cannot perform any task by itself. Like a car without
gas, a computer has potential but without a program, it isn't going

anywhere. Most of the programs published in this book are written
in a computer language called BASIC. BASIC is easy to learn and is
built into all VIC-20s.

BASIC Programs
Computers can be picky. Unlike the English language, which is full
of ambiguities, BASIC usually has only one right way of stating
something. Every letter, character, or number is significant. A com
mon mistake is substituting a letter such as O for the numeral 0, a
lowercase 1 for the numeral 1, or an uppercase B for the numeral 8.
Also, you must enter all punctuation such as colons and commas just
as they appear in the book. Spacing can be important. To be safe,
type in the listings exactly as they appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces, such as

{DOWN}. Anything within a set of braces is a special character or
characters that cannot easily be listed on a printer. When you come

across such a special statement, refer to Appendix J, "How to Type
In Programs."

About DATA Statements
Some programs contain a section or sections of DATA statements.

These lines provide information needed by the program. Some

DATA statements contain actual programs (called machine lan

guage); others contain graphics codes. These lines are especially sen

sitive to errors. j I

If a single number in any one DATA statement is mistyped, *—'
your machine could lock up, or crash. The keyboard and STOP key

may seem dead, and the screen may go blank. Don't panic—no r »

damage is done. To regain control, you have to turn off your com- I—I
puter, then turn it back on. This will erase whatever program was in

memory, so always SAVE a copy of your program before you RUN it. If

your computer crashes, you can LOAD the program and look for LJ
your mistake.

Sometimes a mistyped DATA statement will cause an error mes

sage when the program is RUN. The error message may refer to the

354

Appendix I

' ' program line that READs the data. The error is still in the DATA
statements, though.

H Get to Know Your Machine
You should familiarize yourself with your computer before attempt-

ing to type in a program. Learn the statements you use to store and

! ! retrieve programs from tape or disk. You'll want to save a copy of
your program, so that you won't have to type it in every time you

want to use it. Learn to use your machine's editing functions. How

do you change a line if you make a mistake? You can always retype

the line, but you at least need to know how to backspace. Do you

know how to enter reverse video, lowercase, and control characters?

It's all explained in your VIC's manual, Personal Computing on the

VIC.

A Quick Review
1. Type in the program a line at a time, in order. Press RETURN at

the end of each line. Use the INST/DEL key to erase mistakes.

2. Check the line you've typed against the line in the book. You can

check the entire program again if you get an error when you RUN

the program.

3. Make sure you've entered statements in braces as the appropriate

control key (see Appendix J, "How to Type in Programs").

n

n

n

n
355

u

Appendix I

How to Type In Programs u
u

Many of the programs in mis book contain special control characters
(cursor control, color keys, reverse characters, and so on). To make it j—r

easy to know exactly what to type when entering one of these pro- LJ
grams into your computer, we have established the following listing

conventions.

Generally, VIC-20 program listings will contain words within

braces which spell out any special characters: {DOWN} would mean

to press the cursor down key. {5 SPACES} would mean to press the

space bar five times.

To indicate that a key should be shifted (hold down the SHIFT

key while pressing the other key), the key would be underlined in

our listings. For example, S would mean to type the S key while

holding the SHIFT key. This would appear on your screen as a heart

symbol. If you find an underlined key enclosed in braces (e.g., {10

N}), you should type the key as many times as indicated (in our
example, you would enter ten shifted NTs).

If a key is enclosed in special brackets, [< >], you should hold
down the Commodore key while pressing the key inside the special

brackets. (The Commodore key is the key in the lower left corner of

the keyboard.) Again, if the key is preceded by a number, you

should press the key as many times as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed in

braces, such as {A}. You should never have to enter such a character

on the VIC-20, but if you do, you would have to leave the quote

mode (press RETURN and cursor back up to the position where the

control character should go), press CTRL-9 (RVS ON), the letter in

braces, and then CTRL-0 (RVS OFF).

About the quote mode: You know that you can move the cursor

around the screen with the CRSR keys. Sometimes a programmer

will want to move the cursor under program control. That's why you

see all the {LEFT}'s, {HOME}'s, and {BLU}'s in our programs. The

only way the computer can tell the difference between direct and I I

programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you are

in the quote mode. If you type something and then try to change it f i

by moving the cursor left, you'll only get a bunch of reverse-video '—'
lines. These are the symbols for cursor left. The only editing key that

isn't programmable is the DEL key; you can still use DEL to back up ,—j

and edit the line. Once you type another quote, you are out of quote I I
mode.

You also go into quote mode when you INSerT spaces into a

356

D

Appendix J

n

n

line. In any case, the easiest way to get out of quote mode is to just

press RETURN. You'll then be out of quote mode and you can

cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color control

keys:

When You

Read:

{CLR}

{home}

{up}

{down}

{LEFT}

{RIGHT}

iRVS}

{OFF}

{BLK}

{WHT}

{red}

ICYN}

{PUR}

Press: See:

SHIFT

SHIFT

SHIFT

CLR/HOME |

CLR/HOME

4 CRSR f

f CRSR t

♦CRSR-^

♦CRSR-^

When You

Read: Press: See:

n

n

H

357

Appendix K

Screen Location Table

Row

10

15

20

22

7680(4096)

7702(4118)

7724(4140)

7746 (4162)

7768(4184)

7790(4206)

7812(4228)

7834

7856

7878

7900

4250)

4272)

4294)

4316)

7922 4338)

7944(4360)

7966(4382)

7988(4404)

8010(4426)

8032(4448)

8054(4470)

8076(4492)

8098(4514)

8120(4536)

8142(4558)

8164(4580)

u

D

LJ

U

D

10 15 20

Column

Note: Numbers in parentheses are for VICs with 8K or more of memory

expansion.

358

u

u

u

u

u

n

n

n

n

n

H

Appendix L

Screen Color Memory Table

Row

0 38400(37888)

38422(37910)

38444(37932)

38466(37954)

38488(37976)

5 38510(37998)

38532(38020)

38554(38042)

38576(38064)

38598(38086)

10 38620(38108)

38642(38130)

38664(38152)

38686(38174)

38708(38196)

15 38730(38218)

38752(38240)

38774(38262)

38796(38284)

38818(38306)

20 38840(38328)

38862(38350)

22 38884(38372)
n t: in 15 20

Column

Note: Numbers in parentheses are for VICs with 8K or more of

memory expansion.

359

Appendix M

ASCII Codes

sen

5

8

9

13

14

17

18

19

20

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

[CHARACTER

WHITE

DISABLE

SHIFT COMMODORE

ENABLE

SHIFT COMMODORE

RETURN

LOWERCASE

CURSOR DOWN

REVERSE VIDEO ON

HOME

DELETE

RED

CURSOR RIGHT

GREEN

BLUE

SPACE
1

»

#

$

%

&

(

)
*

+

-

/

0

1

ASCII (

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

:hara<

2

3

4

5

6

7

8

9

<

>

?

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

u

u

D

D
360

□

n Appendix II

H
ASCII CHARACTER ASCII CHARACTER

^83 S 120 [*}

M 84 T 121 O
85 U 122 H

r-^ 86 V 123 EB
j • 87 W 124 E

88 X 125 CD
89 Y 126 @
90 Z 127 S
91 [133 fl

92 £ 134 f3

93] 135 f5

94 t 136 f7
95 - 137 f2

96 B 138 f4
97 H 139 ft

98 UJ 140 f8
99 g 141 SHIFTED RETURN

100 H 142 UPPERCASE

101 n 144 BLACK
102 n 145 CURSOR UP

103 in 146 REVERSE VIDEO OFF

104 rn 147 CLEAR SCREEN

105 □ 148 INSERT

106 □ 156 PURPLE

107 □ 157 CURSOR LEFT

108 □ 158 YELLOW

109 S 159 CYAN
110 0 160 SPACE

111 D 161 B
fl 112 D 162 U

113 H 163 D
114 □ 164 D

H 115 S 165 D
116 D 166 H

— 117 C3 167 Q
I i 118 13 168 Q

119 D 169 B

361

Appendix M

ASCII

170

171

172

173

174

175

176

177

178

179

180

181

182

183

.184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

362

CHARACTER

m
a
B
H
u

H

G
C

□

□

a

a
EJ
B
H
B

m
B

s
B
D

a
□

s
IZI

ASCII

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

CHARACTER

□
a
■

a
E
E
E

SPACE

I

u
n
D
G

a

a
E
a

u

H
H

m

U

U

U

U

U

U

a

u

D

u

Appendix M

ASCII

244

245

246

247

248

249

250

251

252

253

254

255

CHARACTER

D

n
n

H

0-4, 6-7, 10-12, 15-16, 21-27, 128-132, 143, and 149-155

have no effect. 192-223 same as 96-127;224-254 same as

160-190; 255 same as 126.

H

363

0

Appendix M g

Screen Codes
u

Uppercase and Lower-and Uppercase and Lower-and

POKE Full Graphics Set Uppercase POKE Full Graphics Set Uppercase

0 @

1 A a 32 -space-

2 B

3 C

4 D d 35 # #

5 E e 36 $ $

6 F f 37 % %

7 G g 38 & &

8 H

9 1 i 40 ((

10 J j 41))

UK

12 L

13 M

14 N

15 O

16 P p 47 / /

17 Q q 48 0 0

18 R r 49 1 1

19 S s 50 2 2

20 T t 51 3 3

21 U u 52 4 4

22 V v 53 5 5

23 W w 54 6 6 LJ
24 X x 55 7 7

25 Y y 56 8 8 rf

26 Z z 57 9 9 LJ
27 [

28 £

29]

30 | |

u

@

a

b

c

d

e

f

g
h

i

j
k

1

m

n

o

P

q
r

s

t

u

V

w

X

y

z

[
£

]
t

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

—

i

n

#

$

%

&
/

(

)
*

+

-

/

0

1

2

3

4

5

6

7

8

9

<

=

F1

U

364

LJ

n Appendix N

n

n

POKE

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Uppercase and

Full Graphics Set

B
H

B
B

D
D

□
□

D

0
□
□
H

D

D
□

D
m

Lower- and

Uppercase

B
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

m

Uppercase and Lower- and

POKE Full Graphics Set Uppercase

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

- -space- -

i i

y y

n n
d □
□ d

□

E
a
CB
a
H

u

e
H

■ » ■

D

a

□
a
u
a
h
H
EJ
E
H

a

a
m
a
E
a
u

B

H

D
c
a

H

E
B

128-255 are reverse video of 0-127.

365

u

D

D

LJ

D

U

D

D

0

D

+(add)

Index of Subjects by Topic

Location

49280

54566

54845

55402

49280

55379

49280

56082

*

49280

55848

49280

53270

49280

53005

53270

49280

53270

ft

49280

57211

AOCBM

40960-49151

64831

64845

A6S

49234

56408

Description

($C080)

($D526)

($D63D)

($D86A)

($C080)

($D853)

($C080)

($DB12)

($C080)

($DA28)

($C080)

($D016)

($C080)

($CF0D)

($D016)

($C080)

($D016)

($C080)

($DF7B)

($A000-BFF

($FD3F)

($FD4D)

($C052)

($DC58)

Subject

Math operation dispatch vector table, in token

order

Garbage collection

BASIC +, concatenate string

BASIC + (add)

Math operation dispatch vector table, in token

order

BASIC - (subtract)

Math operation dispatch vector table, in token

order

BASIC / divide FAC2 by FAC resulting in FAC

Math operation dispatch vector table, in token

order

BASIC * multiply FAC2 by FAC, leaving the result

in FAC

Math operation dispatch vector table, in token

order

Compare numerics or strings; also used for BASIC

</ =, >

Math operation dispatch vector table, in token

order

Set up index for monadic minus

Compare numerics or strings; also used for BASIC

</ ==/>

Math operation dispatch vector table, in token

order

Compare numerics or strings; also used for BASIC

Math operation dispatch vector table, in token

order

BASIC ft (power)

8K RAM expansion block 4

Check for an autostarting program at 40960

($A000)

AOCBM characters with the high order bit on in the

last three

Function dispatch vector table, in token order

BASIC ABS

367

Accumulator

Accumulator—see FAC and FAC2

Alternate

AND

7

11

49280

53225

Array

11

12

38-42

45-46

screens—see Mi

($7)

($B)

($C080)

($CFE9)

($B)

($C)

($26-2A)

($2D-2E)

47-48

49-50

($2F-30)

($31-32)

113-114

50782

51621

52638

53377

53387

53479

53533

53652

53713

53837

53857

53994

54092

54141

54566

Appendix

ASC

49234

55170

55179

Ascn

56563

56797

60510

60575

60640

60835

ATN

49234

58123

58171

Auxiliary

368

($71-72)

($C65E)

($C9A5)

($CD9E)

($C081)

($D08B)

($D0E7)

($D11D)

($D194)

($D1D1)

($D24D)

($D261)

($D2EA)

($D34C)

($D37D)

($D526)

B

($C052)

($D782)

($D78B)

($DCF3)

($DDDD)

($EC5E)

($EC9F)

($ECE0)

($EDA3)

($C052)

($E30B)

($E33B)

color—see Color

Search-character for scanning BASIC statements

BASIC buffer index/array dimensions

Math operation dispatch vector table, in token

order

BASIC AND

BASIC buffer index/array dimensions

Flags for locate-or-build-array routines

BASIC multiplication work area

Pointer to the end of BASIC program, start of

variables

Pointer to the end of BASIC variables, start of

arrays

Pointer to the end of BASIC arrays, start of free

area

Series evaluation pointer

BASIC CLR

BASIC LET

Formula/expression evaluation

BASIC DIM

Locate or create variable

Locate the variable

Create new variable

Calculate the length of an array descriptor

Find an array item or create an array

Found the array, check the subscript range

Create an array

Locate a particular array element

Compute multidimension array size

BASIC FRE

Garbage collection

Format of variables and floating point accumulators

Function dispatch vector table, in token order

Get string information

BASIC ASC

Converts an ASCII string to a floating point num

ber in FAC

Convert FAC to TI$ or an ASCII string

Table used for decoding unshifted keys into ASCII

Table used for decoding SHIFTed keys into ASCII

Table used for decoding Commodore SHIFTed keys

into ASCII

Table used for decoding CTRL SHIFTed keys into

ASCII

Function dispatch vector table, in token order

BASIC ATN

Table of constant values for ATN evaluation

U

u

u

u

u

u

D

D

□

□

Cartridges

Auxiliary register

37146 ($911A)

37147 ($91 IB)

37159 ($9127)

37162 ($912A)

37163 ($912B)

65017 ($FDF9)

Background—see Color

Bitmap

4096-4607 ($1000-llFF)

32768-36863

36867

36869

37888-38399

($8000-8FFF)

($9003)

($9005)

($9400-95FF)

Border—see Color

BREAK

57-58

170

663

790-791

814-815

49154

($39-3A)

($AA)

($297)

($316-317)

($32E-32F)

($C002)

49566

50020

50281

51249

57590

58471

60095

61605

64850

65017

65193

65234

65394

Cartridges

24576-32767

40960-49151

49152

64802

64831

65193

65532

($C19E)

($C364)

($C469)

($C831)

($E0F6)

($E467)

($EABF)

($F0A5)

($FD52)

($FDF9)

($FEA9)

($FED2)

($FF72)

($6000-7FFF)

($A000-BFFF)

($C000)

($FD22)

($FD3F)

($FEA9)

($FFFC)

Shift register for parallel/serial conversion

Auxiliary control register

Timer 1 high order (MSB) latch byte

Shift register for parallel/serial conversion

Auxiliary control register

Initialize the 6522 VIA registers

Screen map RAM on VIC-20 with 8K or more

expansion

Character maps

Number of character lines displayed, part of raster

location

Screen map and character map addresses

Screen color map (8K+ expanded VIC-20)

Line number of the BASIC statement being

executed

Tape: input status flags, sync countdown/RS-232

byte assembly

RS-232 status register

Vector to the BREAK interrupt routine at 65234

($FED2)

User vector can be placed here, held over from PET

ML monitor

Vector to the routine to do the warm start of BASIC

58471 ($E467)

Table of BASIC error messages

Miscellaneous messages

Display ERROR or another message pointed to

BASIC END

BASIC patch routines

Perform a warm start of BASIC

IRQ handler

RS-232: break detected on input

Cause the RAM system vectors to be reset to pro

vided defaults

Initialize the 6522 VIA registers

NMI handler routine

BREAK interrupt entry

IRQ routine initial 6502 entry point

8K RAM expansion block 3

8K RAM expansion block 4

Vector to the routine for the cold start of BASIC

58232 ($E378)

Power-on/reset routine (checks for autostart

cartridge)

Check for an autostarting program at 40960

($A000)

NMI handler routine

6502 vector to 64802 ($FD22)

369

CA1 and GA2

CAl and CA2

146

181

37136-37151

37137

37139

37147

37148

37149

37150

37151

37152-37167

37153

37155

37163

37164

37165

37166

37167

51756

61316

61325

63732

($92)

($B5)

($9110-91 IF)

($9111)

($9113)

($91 IB)

($911C)

($91 ID)

($911E)

($91 IF)

($9120-912F)

($9121)

($9123)

($912B)

($912C)

($912D)

($912E)

($912F)

($CA2C)

($EF84)

($EF8D)

($F8F4)

63886

65017

($F98E)

($FDF9)

Tape: 0/1 bit timebase fluctuation during read

operations

Tape: flag for currently reading data or leader

6522 VIA chip 1

Port A I/O register

Eight bits, each of which corresponds to the same-

numbered bit

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

Mirror of port A I/O register at 37137 ($9111)

6522 VIA chip 2

Port A I/O register

Eight bits, each of which corresponds to the same-

numbered bit

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

Mirror of port A I/O register at 37153 ($9121)

LET: assign string variable

Serial: set clock line high

Serial: set clock line low

Tape: common tape read/write; start tape

operations

Tape: read tape data bits into location 191 ($BF)

(IRQ driven)

Initialize the 6522 VIA registers

U

D

U

U

D

CBl and CB2

181

37136-37151

37136

37137

37138

37146

37147

37148

37149

37150

37152-37167

37152

37162

37163

37164

37165

37166

50231

50292

51998

52159

56781

58528

58537

($B5)

($9110-911F)

($9110)

($9111)

($9112)

($911A)

($91 IB)

($911C)

($91 ID)

($91 IE)

($9120-912F)

($9120)

($912A)

($912B)

($912C)

($912D)

($912E)

($C437)

($C474)

($CB1E)

($CBBF)

($DDCD)

($E4A0)

($E4A9)

Tape: flag for currently reading data or leader

6522 VIA chip 1

Port B I/O register

Port A I/O register

Data direction register for port B

Shift register for parallel/serial conversion

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

6522 VIA chip 2

Port B I/O register

Shift register for parallel/serial conversion

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

BASIC error message routine

Display READY, message

Part of PRINT: print a string ended by a carriage

return

BASIC INPUT

Decimal number display routine

Serial: output a 1 on the serial data line

Serial: output a 0 on the serial data line

370

LJ

D

G

D

U

GHHGET

61347 ($EFA3) RS-232: send the next bit (NMI continuation

routine)

RS-232: prepare to receive the next input byte

RS-232: open an RS-232 channel for input

Initialize the 6522 VIA registers

RS-232: NMI sequences

Flag for reversed screen characters

Pointer to which keyboard table being used of four

possible

Ten-byte keyboard buffer

Current foreground color selected by color keys

Current SHIFT keys pattern

Flag to enable or disable combined SHIFT and

Commodore keys

Screen map RAM on VIC-20 with 8K+ expansion

Character maps

Uppercase and graphics nonreversed screen charac

ter map

Reversed uppercase and graphics screen character

map

Lowercase and uppercase nonreversed screen

character

Reversed lowercase and uppercase screen character

map

Number of character lines displayed, part of raster

location

Raster beam location bits 8-1

Screen map and character map addresses

8K RAM expansion block 4

Set keyboard decode table address in 245-246

($F5-F6)

Used to set uppercase/graphics character set

Set the environment specified by graphics control

characters

Valid character set relocation addresses

Screen map and character map addresses

BASIC CHR$

BASIC ASC

Saved TXTPTR of statement executing, to CONT

on

Get-BASIC-character routine

BASIC RND work area, last random number or ini

tial seed

Store/replace a BASIC program line

BASIC GOTO

Formula/expression evaluation

Syntax check for a specific character in .A from

CHRGET

BASIC VAL

Check whether more characters are in the current

statement

57870 ($E20E) Insure that a parameter is present after a delimiting

comma

61531

61718

65017

65246

Character

199

245-246

631-640

646

653

657

4096-4607

32768-36863

32768-33791

33792-34815

34816-35839

35840-36863

36867

36868

36869

40960-49151

60380

60705

60720

Appendix E

CHR$

36869

55020

55179

CHRGET

61-62

122-123

139-143

50332

51360

52638

52991

55123

57859

($F05B)

($F116)

($FDF9)

($FEDE)

($C7)

($F5-F6)

($277-280)

($286)

($28D)

($291)

($1000-1IFF)

($8000-8FFF)

($8000-83FF)

($8400-87FF)

($8800-8BFF)

($8C00-8FFF)

($9003)

($9004)

($9005)

($A000-BFFF)

($EBDC)

($ED21)

($ED30)

($9005)

($D6EC)

($D78B)

($3D-3E)

($7A-7B)

($8B-8F)

($C49C)

($C8A0)

($CD9E)

($CEFF)

($D7AD)

($E203)

371

Cleat to send

58232

58247

58276

Clear to send

663

37136

61422

($E232) Perform a cold start of BASIC

($E387) CHRGET routine and RND seed to be copied to

page 0 RAM

($E3A4) Initialize BASIC: restore CHRGET and page 0

pointers

($297) RS-232 status register

($9110) Port B I/O register

($EFEE) RS-232: prepare the next byte to be sent from

buffer

U

0

LJ

U

LJ

Clock—see TI, TI$, or Timer (VIA)

CLOSE

73-74

152

247-248

643-644

49164

57796

57878

CLR

22

45-46

47-48

49-50

($49-4A)

($98)

($F7-F8)

($283-284)'

($C00C)

($E1C4)

($E216)

($16)

($2D-2E)

($2F-30)

($31-32)

51-52

55-56

65-66

122-123

247-248

256-511

601-610

643-644

49164

50782

51313

57590

57701

CMD

19

154

37159

49164

50231

50844

51840

51846

52159

($33-34)

($37-38)

($41-42)

($7A-7B)

($F7-F8)

($100-lFF)

($259-262)

($283-284)

($C00C)

($C65E)

($C871)

($E0F6)

($E165)

($13)

($9A)

($9127)

($C00C)

($C437)

($C69C)

($CA80)

($CA86)

($CBBF)

Pointer to BASIC variable used in FOR loop

Number of currently open files, cannot exceed ten

RS-232: pointer to start of receiving buffer

Pointer to the end of user RAM memory, plus one

Keyword dispatch vector table, in token order

BASIC CLOSE

Handle parameters for OPEN and CLOSE

Pointer to available slot in temporary string stack

Pointer to the end of BASIC program, start of

variables

Pointer to the end of BASIC variables, start of

arrays

Pointer to the end of BASIC arrays, start of free

area

Pointer to the bottom of BASIC active strings

Pointer to the end of BASIC memory

Pointer to the current BASIC data item

Get-BASIC-character routine

RS-232: pointer to start of receiving buffer

STACK routine

Open logical file number table (ten one-byte

entries)

Pointer to the end of user RAM memory, plus one

Keyword dispatch vector table, in token order

BASIC CLR

BASIC RUN

BASIC patch routines

BASIC LOAD

Current channel number for BASIC I/O routines

Device number of output device

Timer 1 high order (MSB) latch byte

Keyword dispatch vector table, in token order

BASIC error message routine

BASIC LIST

BASIC PRINT#

BASIC CMD

BASIC INPUT

372

U

u

u

Lj

Li

Commodore key

Cold restart

64802 ($FD22)

Cold start of BASIC

49152 ($C000)

58232 ($E378)

58276 ($E3A4)

58372

58459

Color

201-202

209-210

217-241

243-244

646

647

780-783

4096-4607

32768-36863

36864-37135

36865

36866

36868

36869

36878

36879

37888-38399

38400-38911

58648

59077

59202

59666

59681

59765

59990

60014

60045

60065

60074

60082

($E404)

($E45B)

($C9-CA)

($D1-D2)

($D9-F1)

($F3-F4)

($286)

($287)

($30C-30F)

($1000-1IFF)

($8000-8FFF)

($9000-910F)

($9001)

($9002)

($9004)

($9005)

($900E)

($900F)

($9400-95FF)

($9600-97FF)

($E518)

($E6C5)

($E742)

($E912)

($E921)

($E975)

($EA56)

($EA6E)

($EA8D)

($EAA1)

($EAAA)

($EAB2)

Color map—see Color

Commodore key

203 ($CB)

Power-on/reset routine (checks for autostart

cartridge)

Vector to the routine for the cold start of BASIC

Perform a cold start of BASIC

Initialize BASIC: restore CHRGET and page 0

pointers

Display cold start of BASIC messages

Copy BASIC vectors from ROM to RAM

Cursor current logical position (line, column)

Pointer to the start of the logical line that the

cursor is on

Screen line link table

Pointer to the current physical screen lines color

map area

Current foreground color selected by color keys

Cursor: original color at this screen location

The BASIC SYS command uses this area to save

and load

Screen map RAM on VIC-20 with 8K+ expansion

Character maps

6560 VIC chip

Bits 7-0: vertical TV picture origin

Number of columns displayed, part of screen map

address

Raster beam location

Screen map and character map addresses

Sound volume and auxiliary color

Background color, border color, inverse color switch

Screen color map (8K+ expanded VIC-20)

Screen color map (unexpanded or 3K expanded

VIC-20)

Initialize the 6550 VIC chip, screen, and related

pointers

Set up display of a character on the screen

Handle characters going to the screen

Set the current foreground color code

Color code key table

Scroll the screen

Move screen line

The address of the screen line and color line is set

in memory

Blank out a physical screen line

Synchronize color to byte and store character on

screen

Store a character on the screen

The address of the color map byte for screen map

byte is found

Matrix coordinate of current key pressed (64 if

none)

373

Commodore 64

657 ($291)

4096-4607

32768-33791

33792-34815

34816-35839

35840-36863

36869

59202

60510

60575

60640

60777

60835

Also see CTRL;

Commodore 64

0

1-2

512-600

631-640

645

663

673-767

784-787

60380

60777

65111

CONT

57-58

59-60

61-62

49164

50844

51249

51287

COS

49234

57953

57960

58077

($1000-1 IFF)

($8000-83FF)

($8400-87FF)

($8800-8BFF)

($8C00-8FFF)

($9005)

($E742)

($EC5E)

($EC9F)

($ECE0)

($ED69)

($EDA3)

Keyboard

[

($0)

($1-2)

($200-258)

($277-280)

($285)

($297)

($2A1-2FF)

($310-313)

($EBDC)

($ED69)

($FE57)

($39-3A)

($3B-3C)

($3D-3E)

($C00C)

($C69C)

($C831)

($C857)

($C052)

($E261)

($E268)

($E2DD)

Counter (VIA)—see Timer

374

Flag to enable or disable combined SHIFT and

Commodore keys

Screen map RAM on VIC-20 with 8K+ expansion

Uppercase and graphics nonreversed screen charac

ter map

Reversed uppercase and graphics screen character

map

Lowercase and uppercase nonreversed screen

character map

Reversed lowercase and uppercase screen character

map

Screen map and character map addresses

Handle characters going to the screen

Table used for decoding unshifted keys into ASCII

Table used for decoding SHIFTed keys into ASCII

Table used for decoding Commodore SHIFTed keys

into ASCII

Apparently unused keyboard decoding table

Table used for decoding CTRL SHIFTed keys into

ASCII

6502 JMP opcode

The USR jump vector in LSB/MSB (displacement/

page) form

89-byte BASIC input buffer

Ten-byte keyboard buffer

Serial: timeout enable/disable flag

RS-232 status register

User indirect vectors or other storage area

Four bytes of unused page 3 space for your use

Set keyboard decode table address in 245-246

($F5-F6)

Apparently unused keyboard decoding table

Reset RS-232 status, branch to 65128 ($FE68) for

non-RS-232 status

Line number of the BASIC statement being

executed

Previous BASIC line number executed

Saved TXTPTR of statement executing, to CONT

on

Keyword dispatch vector table, in token order

BASIC LIST

BASIC END

BASIC CONT

Function dispatch vector table, in token order

BASIC COS

BASIC SIN

Trig evaluation constant values used for COS, SIN,

and TAN

u

u

u

u

u

U

U

U

LJ

U

Cursor

CTRL

197

203

212

245-246

646

653

657

32768-36863

37153

37159

37888-38399

60190

60486

60510

60575

60777

60835

Cursor

9

19

145

153

197

198

200

201-202

204

205

206

207

209-210

211

212

213

214

217-241

243-244

631-640

646

647

650

780-783

4096-4607

36864

($C5)

($CB)

($D4)

($F5-F6)

($286)

($28D)

($291)

($8000-8FFF)

($9121)

($9127)

($9400-95FF)

($EB1E)

($EC46)

($EC5E)

($EC9F)

($ED69)

($EDA3)

($9)

($13)

($91)

($99)

($C5)

($C6)

($C8)

($C9-CA)

($CC)

($CD)

($CE)

($CF)

($D1-D2)

($D3)

($D4)

($D5)

($D6)

($D9-F1)

($F3-F4)

($277-280)

($286)

($287)

($28A)

($30C-30F)

($1000-llFF)

($9000)

Matrix coordinate of last key pressed (64 if none)

Matrix coordinate of current key pressed (64 if

none)

Flag to indicate if within quote marks

Pointer to which keyboard table being used of four

possible

Current foreground color selected by color keys

Current SHIFT keys pattern

Flag to enable or disable combined SHIFT and

Commodore keys

Character maps

Port A I/O register

Timer 1 high order (MSB) latch byte

Screen color map (8K+ expanded VIC-20)

Scan the keyboard for keypresses using 6522 VIA2

Keyboard decode table addresses

Table used for decoding unshifted keys into ASCII

Table used for decoding SHIFTed keys into ASCII

Apparently unused keyboard decoding table

Table used for decoding CTRL SHIFTed keys into

ASCII

Column that the cursor was on just before last TAB

or SPC

Current channel number for BASIC I/O routines

Keyswitch PIA: bottom keyboard row scan

Device number of the current input device

Matrix coordinate of last key pressed (64 if none)

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

Pointer to the end of line for input

Cursor current logical position (line, column)

Cursor blink switch: 0=flash, non-0=quiet

Cursor countdown before blink

Character under cursor (in screen POKE code)

Cursor blink status; 1=reversed character,

0=nonreversed

Cursor position within the logical screen line

Cursor position within the logical screen line

Flag to indicate if within quote marks

Current screen line logical length (21,43,65,87)

Cursor: current physical screen line cursor is on (0-

22)

Screen line link table

Pointer to the current physical screen lines color

map area

Ten-byte keyboard buffer

Current foreground color selected by color keys

Cursor: original color at this screen location

Keyboard repeater flags

The BASIC SYS command uses this area to save

and load

Screen map RAM on VIC-20 with 8K+ expansion

Left edge of TV picture and interlace switch

375

Custom characters

36865

36866

37153

37159

37888-38399

50844

51960

52027

52091

52159

54174

58634

58648

58753

58853

59077

59114

59181

59202

59587

59608

59624

59642

59765

60065

60095

65520

($9001)

($9002)

($9121)

($9127)

($9400-95FF)

($C69C)

($CAF8)

($CB3B)

($CB7B)

($CBBF)

($D39E)

($E50A)

($E518)

($E581)

($E5E5)

($E6C5)

($E6EA)

($E72D)

($E742)

($E8C3)

($E8D8)

($E8E8)

($E8FA)

($E975)

($EAA1)

($EABF)

($FFFO)

Custom Characters—see Chars

DATA

15

17

43-44

57-58

63-64

65-66

631-640

4096-4607

32768-36863

49164

51229

51448

52230

54566

DEF

49164

($F)

($11)

($2B-2C)

($39-3A)

($3F-40)

($43-44)

($277-280)

($1000-1 IFF)

($8000-8FFF)

($C00C)

($C81D)

($C8F8)

($CC06)

($D526)

r$cooa

Bits 7-0: vertical TV picture origin

Number of columns displayed, part of screen map

address

Port A I/O register

Timer 1 high order (MSB) latch byte

Screen color map (8K+ expanded VIC-20)

BASIC LIST

BASIC TAB, BASIC SPC

Part of PRINT: print format characters of space,

cursor right

BASIC GET

BASIC INPUT

BASIC POS

Read or set the current cursor column and line

Initialize the 6550 VIC chip, screen, and related

pointers

Move the cursor to the screen home position

Wait for character to appear in the keyboard buffer

Set up display of a character on the screen

Advance the cursor on the screen, add lines, and

scroll

Back up cursor into the previous logical screen line

Handle characters going to the screen

Advance the cursor to the next logical screen line

Handle the carriage return key

Move the cursor to the end of the previous screen

line

Move the cursor to the start of the next screen line

Scroll the screen

Synchronize color to byte and store character on

screen

IRQ handler

JuMP to 58634 ($E50A)

Flag byte: LIST quote/collect done/tokenize

character

Indicate which of READ, INPUT, or GET is active

Pointer to the start of the tokenized BASIC

program

Line number of the BASIC statement being

executed

Current DATA line number in LSB/MSB form

Pointer to source of INPUT, GET, and READ

information

Ten-byte keyboard buffer

Screen map RAM on VIC-20 with 8K+ expansion

Character maps

Keyword dispatch vector table, in token order

BASIC RESTORE

BASIC DATA

BASIC READ

Garbage collection

Keyword dispatch vector table, in token order

u

G

U

U

U

376

u

u

u

LJ

U

Dipole

n

54195

54241

54260

54351

Device number

19

43-44

73-74

152

153

154

184

186

611-620

631-640

659

828-1019

828

37137

49310

50844

57701

57809

57878

58811

60948

60951

62151

62217

62282

62431

62474

62786

63093

65104

($D3B3)

($D3E1)

($D3F4)

($D44F)

($13)

($2B-2C)

($49-4A)

($98)

($99)

($9A)

($B8)

($BA)

($263-26C)

($277-280)

($293)

($33C-3FB)

($33C)

($9111)

($C09E)

($C69C)

($E165)

($E1D1)

($E216)

($E5BB)

($EE14)

($EE17)

($F3C7)

($F309)

($F34A)

($F3DF)

($F40A)

($F542)

($F675)

($FE50)

65111

65130

($FE57)

($FE6A)

65493

65496

Appendix D

DIM

11

12

49164

53377

53837

Dipole—see

($FFD5)

($FFD8)

($B)

($C)

($C00C)

($D081)

($D24D)

Tape

BASIC DEF

Check DEF FN and FN syntax

BASIC FN

Store DEF FN values into the function descriptor

from stack

Current channel number for BASIC I/O routines

Pointer to the start of the tokenized BASIC

program

Pointer to BASIC variable used in FOR loop

Number of currently open files, cannot exceed ten

Device number of the current input device

Device number of output device

Current logical file number being used

Current device number being used

Open device number table (ten one-byte entries)

Ten-byte keyboard buffer

RS-232 pseudo-6551 control register

Tape buffer area, 192 bytes, for headers and BASIC

program device

Tape header identifier byte (1-5)

Port A I/O register

BASIC keyword table in token number order

BASIC LIST

BASIC LOAD

Set LOAD, VERIFY, and SAVE parameters

Handle parameters for OPEN and CLOSE

Reset the default device numbers

Serial: send talk with attention

Serial: send listen with attention

Open .X file number channel for input

Open .X file number channel for output

Close logical file number in .A

Set file characteristics of file (.X) into 184-186

($B8-BA)

Open a logical file, file number in 184 ($B8)

LOAD (or VERIFY) to RAM from device number

specified in 186 ($BA)

Save RAM to device number specified in 186 ($BA)

Set the current file number, device, and secondary

address

Reset RS-232 status, branch to 65128 ($FE68) for

non-RS-232 status

OR .A with the contents of 144 ($90) ST and store

there

JuMP to 62786 ($F542)

JuMP to 63093 ($F675)

Device, secondary address, status chart

BASIC buffer index/array dimensions

Flags for locate-or-build-array routines

Keyword dispatch vector table, in token order

BASIC DIM

Check for redimensioning of an array

377

Double-sized characters

u

Lf

Disk

19

43-44

153

174-175

183

184

185

186

187-188

193-194

631-640

32768-36863

37146

37162

52091

57701

57796

62812

63122

Appendix D

Also see Serial

($13)

($2B-2C)

($99)

($AE-AF)

($B7)

($B8)

($B9)

($BA)

($BB-BC)

($C1-C2)

($277-280)

($8000-8FFF)

($911A)

($912A)

($CB7B)

($E165)

($E1C4)

($F55C)

($F692)

Current channel number for BASIC I/O routines

Pointer to the start of the tokenized BASIC

program

Device number of the current input device

Tape: ending address for LOAD, SAVE, and
VFRTFYv Eixir i

Number of characters in filename (0-187 or 0-16)

Current logical file number being used

Current secondary address being used (also called
command)

Current device number being used

Pointer to the current filename

Tape/Serial: pointer to the start of the I/O area

Ten-byte keyboard buffer

Character maps

Shift register for parallel/serial conversion

Shift register for parallel/serial conversion

BASIC GET

BASIC LOAD

BASIC CLOSE

Load or verify RAM from a serial device

Save RAM to serial device

Device, secondary address, status chart

Double-sized characters—see Character

Dynamic keyboard

198

631-640

END

57-58

59-60

61-62

49164

50020

51247

51249

51287

Error messages,

49566

49960

Also see Message

EXP

49234

57279

57325

Expansion

0-143

43-44

($C6)

($277-280)

($39-3A)

($3B-3C)

($3D-3E)

($C00C)

($C364)

($C82F)

($C831)

($C857)

BASIC

($C19E)

($C328)

($C052)

($DFBF)

($DFED)

($0-8F)

($2B-2C)

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

Ten-byte keyboard buffer

Line number of the BASIC statement being

cXcLUlcU

Previous BASIC line number executed

Saved TXTPTR of statement executing, to CONT

on

Keyword dispatch vector table, in token order

Miscellaneous messages

BASIC STOP

BASIC END

BASIC CONT

Table of BASIC error messages

BASIC error message table vectors

Function dispatch vector table, in token order

Tables for LOG and EXP, in floating point format

BASIC EXP

Page 0 working storage for BASIC

Pointer to the start of the tokenized BASIC

program

U

LJ

U

LJ

U

1 l

U
378

U

FAC

45-46

47-48

55-56

631-640

641-642

643-644

645

1024-4095

4096-4607

4096-7679

7680-8191

7680-8191

8192-16383

16384-24575

24576-32767

36869

36880-37135

37148

37164

37888-38399

40960-49151

Appendix E

Appendix E

FAC

97-102

103

104

105-110

111

112

51496

51531

51621

52638

52948

53005

53032

53159

53225

53270

53294

54260

54373

54389

55287

55341

55376

55379

55399

55402

($2D-2E)

($2F-30)

($37-48)

($277-280)

($281-282)

($283-284)

($285)

($400-FFF)

($1000-llFF)

($1000-lDFF)

($1EOO-1FFF)

($1EOO-1FFF)

($2000-3FFF)

($4000-5FFF)

($6000-7FFF)

($9005)

($9010-910F)

($911C)

($912C)

($9400-95FF)

($A000-BFFF)

($61-66)

($67)

($68)

($69-6E)

($6F)

($70)

($C928)

($C94B)

($C9A5)

($CD9E)

($CED4)

($CFOD)

($CF28)

($CFA7)

($CFE9)

($D016)

($D02E)

($D3F4)

($D465)

($D475)

($D7F7)

($D82D)

($D850)

($D867)

($D867)

($D86A)

Pointer to the end of BASIC program, start of

variables

Pointer to the end of BASIC variables, start of

arrays

Pointer to the end of BASIC memory

Ten-byte keyboard buffer

Pointer to the start of user RAM memory

Pointer to the end of user RAM memory, plus one

Serial: timeout enable/disable flag

3072 bytes of expansion RAM area

Screen map RAM on VIC-20 with 8K+ expansion

Continuation of RAM for the BASIC program on a

3K expanded VIC

Screen map RAM on VIC-20 with less than 8K

expansion expanded VIC-20

Screen map RAM on VIC-20 with only 3K

expansion

8K RAM expansion block 1

8K RAM expansion block 2

8K RAM expansion block 3

Screen map and character map addresses

Future expansion RAM/ROM space

Peripheral control register for handshaking

Peripheral control register for handshaking

Screen color map (8K+ expanded VIC-20)

8K RAM expansion block 4

Expansion effect on pointers

Statement to determine the expansion environment

BASIC Floating Point Accumulator 1

BASIC series evaluation number of items

High order FAC propagation word (overflow)

BASIC Floating Point Accumulator 2

FAC to FAC2 sign comparison

Low order of FAC mantissa for rounding

BASIC IF

BASIC ON

BASIC LET

Formula/expression evaluation

BASIC NOT

Set up index for monadic minus

Obtain variable name and type

Invoke function

BASIC AND

Compare numerics or strings

Compare strings

BASIC FN

BASIC STR$

Calculate new string length and vector

Convert floating point FAC to two-byte positive

integer

BASIC WAIT

Subtract memory contents from FAC

BASIC - (subtract)

Add memory contents to FAC

BASIC + (add)

379

FAC2

55463

55543

55550

55623

55786

55848

55948

55991

56034

56062

56079

56082

56226

56263

56266

56272

56276

56316

56332

56335

56347

56363

56380

56388

56408

56411

56475

56524

56563

56702

56781

56797

57201

57211

57268

57325

57430

57639

57953

57960

58033

58123

Appendix B

FAC2—see FAC

File number

19

73-74

152

153

154

184

185

($D8A7)

($D8F7)

($D8FE)

($D947)

($D9EA)

($DA28)

($DA8C)

($DAB7)

($DAE2)

($DAFE)

($DB0F)

($DB12)

($DBA2)

($DBC7)

($DBCA)

($DBD0)

($DBD4)

($DBFC)

($DC0C)

($DC0F)

($DC1B)

($DC2B)

($DC3C)

($DC44)

($DC58)

($DC5B)

($DC9B)

($DCCC)

($DCF3)

($DD7E)

($DDCD)

($DDDD)

($DF71)

($FD7B)

($DFB4)

($DFED)

($E056)

($E127)

($E261)

($E268)

($E2B1)

($E30B)

($13)

($49-4A)

($98)

($99)

($9A)

($B8)

($B9)

Make the result negative if a borrow was done

Zero out FAC and make sign positive since result

was zero

Renormalize the FAC result

Complement FAC entirely

BASIC LOG

BASIC * (multiply FAC2 by FAC, leaving the result

in FAC)

Move floating point memory locations to FAC2

Add exponents of FAC and FAC2

Multiply FAC by 10

Divide FAC by 10

Move floating point in memory to FAC2

BASIC / (divide FAC2 by FAC resulting in FAC)

Move floating point memory into FAC

Move FAC to memory

Move FAC to memory

Move FAC to memory

Perform move of FAC to memory

Transfer FAC2 to FAC

Move FAC to FAC2, with rounding

Move FAC to FAC2, without rounding

Round FAC by adjusting the rounding byte

Test the sign of FAC

Convert the sign obtained above to 0 or — 1 in FAC

Convert a two-byte integer to floating point in FAC

BASIC ABS

Compare FAC to memory

Convert FAC floating point to signed integer

BASIC INT

Convert an ASCII string to a floating point number

in FAC

Add .A to FAC

Decimal number display routine

Convert FAC to TI$ or an ASCII string

BASIC SQR

BASIC t (power)

Monadic minus

BASIC EXP

Math series evaluation routine

BASIC SYS

BASIC COS

BASIC SIN

BASIC TAN

BASIC ATN

Format of variables and floating point accumulators

Current channel number for BASIC I/O routines

Pointer to BASIC variable used in FOR loop

Number of currently open files, cannot exceed ten

Device number of the current input device

Device number of output device

Current logical file number being used

Current secondary address being used (also called
command)

u

u

u

u

LJ

380

U

LJ

U

LJ

0

FRE

601-610

659

51846

52091

57878

62151

62217

62282

62415

62431

62474

65104

65466

Fire button

37136-37151

37137

FN

70

71-72

78-79

49164

49310

52909

53387

54190

54195

54241

54260

54351

FOR

47-48

57-58

73-74

256-511

631-640

49164

50058

50171

51010

51410

52510

55740

($259-262)

($293)

($CA86)

($CB7B)

($E216)

($F2C7)

($F309)

($F34A)

($F3CF)

($F3DF)

($F40A)

($FE50)

($FFBA)

($9110-911F)

($9111)

($10)

($47-48)

($4E-4D)

($C00C)

($C09E)

($CEAD)

($D08B)

($D3AE)

($D3B3)

($D3E1)

($D3F4)

($D44F)

($2F-30)

($39-3A)

($49-4A)

($100-lFF)

($277-280)

($C00C)

($C38A)

($C3FB)

($C742)

($C8D2)

($CD1E)

($D9BC)

Open logical file number table (ten one-byte

entries)

RS-232 pseudo-6551 control register

BASIC CMD

BASIC GET

Handle parameters for OPEN and CLOSE

Open .X file number channel for input

Open .X file number channel for output

Close logical file number in .A

Find file number (.X) in file table at 601 ($259)

Set file characteristics of file (.X) into 184-186

($B8-BA)

Open a logical file, file number in 184 ($B8)

Set the current file number, device, and secondary

address

JuMP to 65104 ($FE50)

6522 VIA chip 1

Port A I/O register

Subscript or FN x flag byte

Pointer to the descriptor of the current BASIC

VdilClL/IC

Pointer to current FN descriptor (in variable

biurdgcj

Keyword dispatch vector table, in token order

BASIC keyword table in token number order

Factoring is continued

Locate or create variable

Issue an UNDEFD FUNCTION message for

EVALFN ($D3F4)

BASIC DEF

Check DEF FN and FN syntax

BASIC FN

Store DEF FN values into the function descriptor

from stack

Pointer to the end of BASIC variables, start of

arrays

Line number of the BASIC statement being

Pointer to BASIC variable used in FOR loop

STACK routine

Ten-byte keyboard buffer

Keyword dispatch vector table, in token order

Find FOR and GOSUB entries on the stack

Check stack requested space available

BASIC FOR

BASIC RETURN

BASIC NEXT

Constant to zero a floating point accumulator

Foreground—see Color

FRE

49-50 ($31-32)

51-52 ($33-34)

Pointer to the end of BASIC arrays of free area

Pointer to the bottom of BASIC active strings

381

Game port

49234

54141

Game port

36864-37135

36864

36865

36868

36870

36871

36872

37136-37151

37136

37137

37152-37167

37152

37154

($C052)

($D37D)

($9000-910F)

($9000)

($9001)

($9004)

($9006)

($9007)

($9008)

($9110-91 IF)

($9110)

($9111)

($9120-912F)

($9120)

($9122)

Garbage collection

15

22

49-50

51-52

78-79

83

84-86

87-96

50104

50111

50184

54141

54566

GET

17

19

67-68

73-74

75-76

113-114

145

198

201-202

512-600

631-640

37153

49164

52045

52901

52230

($F)

($16)

($31-32)

($33-34)

($4E-4D)

($43)

($54-56)

($57-60)

($C3B8)

($C3BF)

($C408)

($D37D)

($D526)

($11)

($13)

($43-44)

($49-4A)

($4B-4C)

($71-72)

($91)

($C6)

($C9-CA)

($200-258)

($277-280)

($9121)

($C00C)

($CB4D)

($CB7B)

($CC06)

Function dispatch vector table, in token order

BASIC FRE

6560 VIC chip

Left edge of TV picture and interlace switch

Bits 7-0: vertical TV picture origin

Raster beam location

Light pen horizontal screen location

Light pen vertical screen location

Potentiometer X/Paddle X value 255

6522 VIA chip 1

Port B I/O register

Port A I/O register

6522 VIA chip 2

Port B I/O register

Data direction register for port B

Flag byte: LIST quote/collect done/tokenize

character

Pointer to available slot in temporary string stack

Pointer to the end of BASIC arrays, start of free

area

Pointer to the bottom of BASIC active strings

Pointer to current FN descriptor (in variable

storage)

Constant for garbage collection (3 or 7)

Jump opcode and vector to function routine

BASIC numeric work area

Open space in memory for a new BASIC line or

variable

Move a block of memory

Check that requested space in dynamic area is

available

BASIC FRE

Garbage collection

Indicate which of READ, INPUT, or GET is active

Current channel number for BASIC I/O routines

Pointer to source of INPUT, GET, and READ

information

Pointer to BASIC variable used in FOR loop

Math operator displacement/INPUT TXTPTR

Series evaluation pointer

Keyswitch PIA: bottom keyboard row scan

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

Cursor current logical position (line, column)

89-byte BASIC input buffer

Ten-byte keyboard buffer

Port A I/O register

Keyword dispatch vector table, in token order

Error message formatting routine for GET, INPUT,

and READ

BASIC GET

BASIC READ, also common routines for GET and

INPUT

u

u

u

u

u

382

U

u

u

u

u

i i

n

n

n

n

n

n

n.

n

61941

GET#

19

153

828-1019

829-1019

52091

62063

GOSUB

20-21

43-44

57-58

73-74

256-511

780-783

49164

49234

50058

50707

51331

51410

51531

GOTO

20-21

43-44

57-58

49164

49280

49310

50707

51172

51331

51360

51496

51531

51563

($F1F5) Routing routine for obtaining a character of input

data

($13) Current channel number for BASIC I/O routines

($99) Device number of the current input device

($33C-3FB) Tape buffer area, 192 bytes, for headers and BASIC

program data

($33D-3FB) Tape block of 191 user data bytes from a BASIC

program

($CB7B) BASIC GET

($F26F) Obtain a byte from the RS-232 device

($14-15) Line number integer in two-byte LSB/MSB format

($2B-2C) Pointer to the start of the tokenized BASIC

program

($39-3A) line number of the BASIC statement being

executed

($49-4A) Pointer to BASIC variable used in FOR loop

($100-lFF) STACK

($30C-30F) The BASIC SYS command uses this area to save

and load

($C00C) Keyword dispatch vector table, in token order

($C052) Function dispatch vector table, in token order

($C38A) Find FOR and GOSUB entries on the stack

($C613) Find the BASIC line from its line number

($C883) BASIC GOSUB

($C8D2) BASIC RETURN

($C94B) BASIC ON

($14-15) Line number integer in two-byte LSB/MSB format

($2B-2C) Pointer to the start of the tokenized BASIC

program

($39-3A) line number of the BASIC statement being

executed

($C00C) Keyword dispatch vector table, in token order

($C080) Math operation dispatch vector table, in token

order

($C09E) BASIC keyword table in token number order

($C613) Find the BASIC line from its line number

($C7E4) Execute the current BASIC statement

($C883) BASIC GOSUB

($C8A0) BASIC GOTO

($C928) BASIC IF

($C94B) BASIC ON

($C96B) Convert decimal line number to LSB/MSB format

GO TO—see GOTO

I.D.—see Tape

IF

49164

51496

51515

INPUT

17

($C00C) Keyword dispatch vector table, in token order

($C928) BASIC IF

($C93B) BASIC REM

($11) Indicate which of READ, INPUT, or GET is active

383

INPUT*

19

67-68

73-74

75-76

113-114

198

201-202

512-600

631-640

49164

50231

50528

52027

52045

($13)

($43-44)

($49-4A)

($4B-4C)

($71-72)

($C6)

($C9-CA)

($200-258)

($277-280)

($C00C)

($C437)

($C560)

($CB3B)

($CB4D)

52091

52159

52230

52476

54407

58959

61941

INPUT#

19

153

828-1019

829-1019

49164

50528

52133

58853

INST

212

216

59077

INT

49234

56524

Interlace

36864

Interrupt

Also see IRQ

146

192

197

($CB7B)

($CBBF)

($CC06)

($CCFC)

($D487)

($E64F)

($F1F5)

($13)

($99)

($33C-3FB)

($33D-3FB)

($C00C)

($C560)

($CBA5)

($E5E5)

($D4)

($D8)

($E6C5)

($C052)

($DCCC)

($9000)

and NMI

($92)

($C0)

($C5)

Current channel number for BASIC I/O routines

Pointer to source of INPUT, GET, and READ

information

Pointer to BASIC variable used in FOR loop

Math operator displacement/INPUT TXTPTR

Series evaluation pointer

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

Cursor current logical position (line, column)

89-byte BASIC input buffer

Ten-byte keyboard buffer

Keyword dispatch vector table, in token order

BASIC error message routine

Receive input from device and fill the BASIC text

buffer

Part of PRINT: print format characters of space,,

cursor right

Error message formatting routine for GET, INPUT,

and READ

BASIC GET

BASIC INPUT

BASIC READ, also common routines for GET and

INPUT

INPUT error messages

Scan and set up string

Obtain INPUT from screen

Routing routine for obtaining a character of input

data

Current channel number for BASIC I/O routines

Device number of the current input device

Tape buffer area, 192 bytes, for headers and BASIC

program data

Tape block of 191 user data bytes from a BASIC

program

Keyword dispatch vector table, in token order

Receive input from device and fill the BASIC text

buffer

BASIC INPUT#

Wait for character to appear in the keyboard buffer

Flag to indicate if within quote marks

Number of outstanding inserts remaining

Set up display of a character on the screen

Function dispatch vector table, in token order

BASIC INT

Left edge of TV picture and interlace switch

Tape: 0/1 bit timebase fluctuation during read

operations

Tape: motor interlock switch

Matrix coordinate of last key pressed (64 if none)

u

LJ

U

U

u

384

u

u

u

u

0

n

n

n

n

n

n

205

256-511

631-640

647

652

788-789

790-791

792-793

814-815

34816-35839

36868

37136-37151

37140

37141

37143

37144

37145

37146

37147

37148

37149

37150

37152-37167

37153

37156

37157

37158

37159

37160

37161

37162

37163

37164

37165

37166

40960-49151

51287

52091

60095

60951

61347

61494

61531

61677

61698

61718

63689

63715

63732

63837

63886

($CD)
($100-lFF)

($277-280)

($287)

($28C)

($314-315)

($316-317)

($318-319)

($32E-32F)

($8800-8BFF)

($9004)

($9110-91 IF)

($9114)

($9115)

($9117)

($9118)

($9119)

($911A)

($91 IB)

($911C)

($91 ID)

($91 IE)

($9120-912F)

($9121)

($9124)

($9125)

($9126)

($9127)

($9128)

($9129)

($912A)

($912B)

($912C)

($912D)

($912E)

($A000-BFFF)

($C857)

($CB7B)

($EABF)

($EE17)

($EFA3)

($F036)

($F05B)

($F0ED)

($F102)

($F116)

($F8C9)

($F8E3)

($F8F4)

($F95D)

($F98E)

Interrupt

Cursor countdown before blink

STACK

Ten-byte keyboard buffer

Cursor: original color at this screen location

Delay before first repeat of key

Vector to the routine IRQ at 60095 ($EABF)

Vector to the interrupt routine BREAK* at 65234

($FED2)

Vector to the routine NMI* at 65197 ($FEAD)

User vector can be placed here; held over from PET

ML monitor

Lowercase and uppercase nonreversed screen

character map

Raster beam location

6522 VIA chip 1

Timer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 high order (MSB) latch byte

Timer 2 low order (LSB) counter and LSB latch

Timer 2 high order (MSB) counter and MSB latch

Shift register for parallel/serial conversion

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

6522 VIA chip 2

Port A I/O register

Timer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 low (LSB) latch byte

Timer 1 high order (MSB) latch byte

Timer 2 low order (LSB) counter and LSB latch

Timer 2 high order (MSB) counter and MSB latch

Shift register for parallel/serial conversion

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

8K RAM expansion block 4

BASIC CONT

BASIC GET

IRQ handler

Serial: send listen with attention

RS-232: send the next bit (NMI continuation

routine)

RS-232: receive an input bit (NMI driven)

RS-232: prepare to receive the next input byte

RS-232: store a character in the transmit buffer

RS-232: set up NMI interrupts for transmission

RS-232: open an RS-232 channel for input

Tape: read blocks from tape

Tape: write blocks to tape

Tape: common tape read/write; start tape

operations

Tape: set time limit for tape dipole

Tape: read tape data bits into location 191 ($BF)

(IRQ driven)

385

Inverse

64518

64523

64680

64802

65017

65193

65234

65246

65366

65394

65530

65534

color

($FC06)

($FC0B)

($FCA8)

($FD22)

($FDF9)

($FEA9)

($FED2)

($FEDE)

($FF56)

($FF72)

($FFFA)

($FFFE)

Inverse color—see Screen

IRQ

19

192

197

205

256-511

631-640

647

652

671-672

788-789

790-791

792-793

37136-37151

37145

37148

37149

37150

37152-37167

37153

37156

37157

37158

37159

37161

37165

37166

52091

60095

63284

63689

63715

63732

63819

63837

63886

($13)

($C0)

($C5)

($CD)

($100-lFF)

($277-280)

($287)

($28C)

($29F-2A0)

($314-315)

($316-317)

($318-319)

($9110-91 IF)

($9119)

($911C)

($911D)

($91IE)

($9120-912F)

($9121)

($9124)

($9125)

($9126)

($9127)

($9129)

($912D)

($912E)

($CB7B)

($EABF)

($F734)

($F8C9)

($F8E3)

($F8F4)

($F94B)

($F95D)

($F98E)

Tape: end of block write processing

Tape: data write (IRQ driven)

Tape: leader write (IRQ driven)

Power-on/reset routine (checks for autostart

cartridge)

Initialize the 6522 VIA registers

NMI handler routine

BREAK interrupt entry

RS-232: NMI sequences

Restore 6502 registers from the stack and return

from interrupt

IRQ routine initial 6502 entry point

6502 vector to 65193 ($FEA9)

6502 vector to 65394 ($FF72)

Current channel number for BASIC I/O routines
Tape: motor interlock switch

Matrix coordinate of last key pressed (64 if none)

Cursor countdown before blink

STACK

Ten-byte keyboard buffer

Cursor: original color at this screen location

Delay before first repeat of key

Temporary save area for the normal IRQ vector

during tape I/O

Vector to the routine IRQ at 60095 ($EABF)

Vector to the routine BREAK* at 65234 ($FED2)

Vector to the routine NMI* at 65197 ($FEAD)

6522 VIA chip 1

Timer 2 high order (MSB) counter and MSB latch

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

6522 VIA chip 2

Port A I/O register

Timer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 low (LSB) latch byte

Timer 1 high order (MSB) latch byte

Timer 2 high order (MSB) counter and MSB latch

Interrupt flag register

Interrupt enable register

BASIC GET

IRQ handler

Increment the jiffy clock at 160-162 ($A0-A2)

Tape: read blocks from tape

Tape: write blocks to tape

Tape: common tape read/write; start tape

operations

Tape: check for the RUN/STOP key

Tape: set time limit for tape dipole

Tape: read tape data bits into location 191 ($BF)

(IRQ driven)

u

u

u

u

u

386

LJ

U

U

U

LJ

n

n
jump to

64173 ($FAAD)

n

n

n

n
i I

n

64523

64661

64680

64719

64758

65009

65193

65394

65534

Joy—see Game

Jiffy

145

160-162

651

652

788-789

790-791

37152-37167

37157

37159

60095

63284

63328

($FCOB)

($FC95)

($FCA8)

($FCCF)

($FCF6)

($FDF1)

($FEA9)

($FF72)

($FFFE)

port

($91)

($A0-A2)

($28B)

($28C)

($314-315)

($316-317)

($9120-912F)

($9125)

($9127)

($EABF)

($F734)

($F760)

63335

63732

($F767)

($F8F4)

65193

65499

65502

65514

Jitters—see

JuMPto

64850

64855

65418

65421

65424

65427

65430

65433

65436

65439

65442

65445

65448

65451

65454

65457

($FEA9)

($FFDB)

($FFDE)

($FFEA)

Interlace

($FD52)

($FD57)

($FF8A)

($FF8D)

($FF90)

($FF93)

($FF96)

($FF99)

($FF9C)

($FF9F)

($FFA2)

($FFA5)

($FFA8)

($FFAB)

($FFAE)

($FFB1)

Tape: determine if to store the input character from

tape

Tape: data write (IRQ driven)

Tape: block leader write (IRQ driven)

Tape: leader write (IRQ driven)

Tape: restore IRQ vector

Tape: reset the current IRQ vector

IRQ vectors table

NMI handler routine

IRQ routine initial 6502 entry point

6502 vector to 65394

Keyswitch PIA: bottom keyboard row scan

Jiffy clock, realtime clock

Delay before other than first repeat of key

Delay before first repeat of key

Vector to the routine IRQ at 60095 ($EABF)

Vector to the routine BREAK* at 65234 ($FED2)

6522 VIA chip 2

Timer 1 most significant byte (MSB) of count

Timer 1 high order (MSB) latch byte

IRQ handler

Increment the jiffy clock at 160-162 ($A0-A2)

Put jiffy clock from 160-162 ($A0-A2) into .Y, .X,

and .A

Set time into jiffy clock 160-162 ($A0-A2) from .Y,

.X, and .A

Tape: common tape read/write; start tape

operations

NMI handler routine

JuMP to 63335 ($F767)

JuMP to 63328 ($F760)

JuMP to 63284 ($F734)

Cause the RAM system vectors to be reset to pro

vided defaults

Read or set system RAM vectors

JuMP to 64850 ($FD52)

JuMP to 64855 ($FD57)

JuMP to 65126 ($FE66)

JuMP to 61120 ($EEC0)

JuMP to 61134 ($EECE)

JuMP to 65139 ($FE73)

JuMP to 65154 ($FE82)

JuMP to 60190 ($EB1E)

JuMP to 65135 ($FE6F)

JuMP to 61209 ($EF19)

JuMP to 61156 ($EEE4)

JuMP to 61174 ($EEF6)

JuMPto 61188 ($EF04)

JuMP to 60951 ($EE17)

387

Keyboard

65460

65463

65466

65469

65493

65496

65499

65502

65514

65517

65520

65523

Keyboard

19

43-44

57-58

145

153

154

184

185

186

197

198

204

208

212

216

245-246

631-640

649

650

651

652

653

654

655-656

658

788-789

810-811

32768-36863

37136-37151

37137

37152-37167

37152

37153

37154

37159

37888-38399

388

($FFBA)

($FFB7)

($FFBA)

($FFBD)

($FFD5)

($FFD8)

($FFDB)

($FFDE)

($FFEA)

($FFED)

($FFF0)

($FFF3)

($13)

($2B-2C)

($39-3A)

($91)

($99)

($9A)

($B8)

($B9)

($BA)

($C5)

($C6)

($CC)

($D0)

($D4)

($D8)

($F5-F6)

($277-280)

($289)

($28A)

($28B)

($28C)

($28D)

($28E)

($28F-290)

($292)

($314-315)

($32A-32B)

($8000-8FFF)

($9110-91 IF)

($9111)

($9120-912F)

($9120)

($9121)

($9122)

($9127)

($9400-95FF)

JuMP to

JuMP to

JuMP to

JuMP to

JuMP to

JuMP to

JuMP to

JuMP to

JuMP to

JuMP to

JuMP to

JuMP to

60948 ($EE14)

65111 ($FE57)

65104 ($FE50)

65097 ($FE49)

62786 ($F542)

63093 ($F675)

63335 ($F767)

63328 ($F760)

63284 ($F734)

58629 ($E505)

58634 ($E50A)

58624 ($E500)

u

u

u

u

u

Current channel number for BASIC I/O routines

Pointer to the start of the tokenized BASIC

program

Line number of the BASIC statement being

executed

Keyswitch PIA: bottom keyboard row scan

Device number of the current input device

Device number of output device

Current logical file number being used

Current secondary address being used (also called

command)

Current device number being used

Matrix coordinate of last key pressed (64 if none)

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

Cursor blink switch; 0=flash, non-0=quiet

Flag indicating if input from screen (3) or keyboard

(0)
Flag to indicate if within quote marks

Number of outstanding inserts remaining

Pointer to which keyboard table being used of four

possible

Ten-byte keyboard buffer

Maximum number of characters in the keyboard

buffer

Keyboard repeater flags

Delay before other than first repeat of key

Delay before first repeat of key

Current SHIFT keys pattern

Previous SHIFT key pattern

Pointer to the default keyboard table setup routine

Screen scroll down enabled flag

Vector to the routine IRQ at 60095 ($EABF)

Vector to the routine GETIN at 61941 ($F1F5)

Character maps

6522 VIA chip 1

Port A I/O register

6522 VIA chip 2

Port B I/O register

Port A I/O register

Data direction register for port B

Timer 1 high order (MSB) latch byte

Screen color map (8K+ expanded VIC-20)

L)

U

U

U

U

H
Link table

n

j !

n

n

49060-49151

50304

50844

52091

52159

54182

57344-58527

58471

58528-65535

58648

58811

58831

58853

58905

58959

59064

59689

60095

60190

60380

60486

60777

60916

61941

61966

62451

63122

63344

65439

65508

LEFTS

84-86

54566

55040

55137

LEN$

55164

LET

49164

51172

51621

51650

51674

51756

($A000-BFFF)

($C480)

($C69C)

($CB7B)

($CBBF)

($D3A6)

($E000-E49F)

($E467)

($E4A0-FFFF)

($E518)

($E5BB)

($E5CF)

($E5E5)

($E619)

($E64F)

($E6B8)

($E929)

($EABF)

($EB1E)

($EBDC)

($EC46)

($ED69)

($EDF4)

($F1F5)

($F20E)

($F3F3)

($F692)

($F770)

($FF9F)

($FFE4)

($54-56)

($D526)

($D700)

($D761)

($D77C)

($C00C)

($C7E4)

($C9A5)

($C9C2)

($C9DA)

($CA2C)

8K RAM expansion block number 4

Main BASIC loop, receive and execute or store
DACTf linp
Dr\Dlv— llllc

BASIC LIST

BASIC GET

BASIC INPUT

Check if a statement is entered in direct mode

Perform a warm start of BASIC

Kernal* routine

Initialize the 6550 VIC chip, screen, and related

pointers

Reset the default device numbers

Get a character from the keyboard queue and shift

li uown

Wait for character to appear in the keyboard buffer

Empty and display the keyboard buffer up to a car

riage return

Obtain INPUT from screen

Test for quotes and set flag

Code conversion table

IRQ handler

Scan the keyboard for keypresses using 6522 VIA2

Set keyboard decode table address in 245-246

($F5-F6)

Keyboard decode table addresses

Apparently unused keyboard decoding table

LOAD and RUN words for SHIFT and RUN keys

Routing routine for obtaining a character of input
Hafaaaia

Input characters from current input device

Abort all open channels

Save RAM to serial device

Check for RUN/STOP key in ($91), purge key

board queue and channels if so

JuMP to 60190 ($EB1E)

JuMP off 810-811 ($32A-32B)

Jump opcode and vector to function routine

Garbage collection

BASIC LEFT$

Obtain string parameters for LEFT$, MID$, and

RIGHTS

BASIC LEN$

Keyword dispatch vector table, in token order

Execute the current BASIC statement

BASIC LET

LET: assign integer variable

LET: assign TI$

LET: assign string variable

Light pen—see Game port

Link table—see Screen

389

LIST

LIST

15

19

20-21

43-44

73-74

87-96

97-102

153

37159

49164

49310

50707

50844

50970

51563

LOAD

10

19

43-44

45-46

47-48

49-50

61-62

73-74

147

150

155

156

158

159

164

165

167

168

169

170

171

172-173

174-175

176

($F)

($13)

($14-15)

($2B-2C)

($49-4A)

($57-60)

($61-66)

($99)

($9127)

($C00C)

($C09E)

($C613)

($C69C)

($C71A)

($C96B)

($A)

($13)

($2B-2C)

($2D-2E)

($2F-30)

($31-32)

($3D-3E)

($49-4A)

($93)

($96)

($9B)

($9C)

($9E)

($9F)

($A4)

($A5)

($A7)

($A8)

($A9)

($AA)

($AB)

($AC-AD)

/{£ ATJ A "C\

($B0)

Flag byte: LIST quote/collect done/tokenize

character

Current channel number for BASIC I/O routines

Line number integer in two-byte LSB/MSB format

Pointer to the start of the tokenized BASIC

program

Pointer to BASIC variable used in FOR loop

BASIC numeric work area

BASIC floating point accumulator one

Device number of the current input device

Timer 1 high order (MSB) latch byte

Keyword dispatch vector table, in token order

BASIC keyword table in token number order

Find the BASIC line from its line number

BASIC LIST

List detokenized BASIC keywords

Convert decimal line number to LSB/MSB format

Tape: 0=LOAD, 1=VERIFY

Current channel number for BASIC I/O routines

Pointer to the start of the tokenized BASIC

program

Pointer to the end of BASIC program, start of

variables

Pointer to the end of BASIC variables, start of

arrays

Pointer to the end of BASIC arrays, start of free

area

Saved TXTPTR of statement executing, to CONT

on

Pointer to BASIC variable used in FOR loop

Tape: 0=LOAD, 1=VERIFY

Tape: block found flag, tape leader length bit count

Tape: character parity

Tape: dipole switch/byte-received flag

Tape: error log index/filename index/header I.D./

out byte

Tape: pass 2 error pointer/tape buffer filename

index

Serial: input byte/cycle counter. Tape: dipole

number

Tape: block sync countdown. Serial: countdown

Tape: write leader count/read block reverse counter

Tape: error flags; 0=no errors/long word marker

switch

Tape: dipole balance counter/medium word marker

switch

Tape: input status flags, sync countdown/RS-232

byte assembly

Tape: write leader counter/read checksum

comparison

Tape/Serial: start address for LOAD, SAVE, and

VERIFY

Tape: end address for LOAD, SAVE, and VERIFY

Tape: dipole timing adjustment values

LJ

0

U

U

390

u

D

U

U

u

H
LOAD

r-i

n

n

177

178-179

181

182

183

185

187-188

189

190

193-194

195-196

256-318

816-817

828-1019

828

829-830

49164

57701

57809

58486

60916

61625

62786

62812

63407

63565

63572

63680

63715

63732

63837

64173

64466

64523

64680

64785

64795

65097

65104

Appendix D

Appendix F

($B1)

($B2-B3)

($B5)

($B6)

($B7)

($B9)

($BB-BC)

($BD)

($BE)

($C1-C2)

($C3-C4)

($100-13E)

($330-331)

($33C-3FB)

($33C)

($33D-33E)

($C00C)

($E165)

($E1D1)

($E476)

($EDF4)

($F089)

($F542)

($F55C)

($F7AF)

($F84D)

($F854)

($F8C0)

($F8E3)

($F8F4)

($F95D)

($FAAD)

($F8D2)

($FC0B)

($FCA8)

($FD11)

($FD18)

($FE49)

($FE50)

Tape: dipole timing timer 2 difference

Tape: pointer to tape buffer

Tape: flag for currently reading data or leader

Tape: accumulator for number of read errors

Number of characters in filename (0-187 or 0-16)
Current secondary address being used (also called

command)

Pointer to the current filename

RS-232: send parity calculation work byte

Tape: which copy of block remaining to read/write

Tape/Serial: pointer to the start of the I/O area

Pointer to the RAM area being LOADed

62 bytes of tape error log, indexes of bad data

Vector to the routine LOAD at 62793 ($F549)

Tape buffer area, 192 bytes, for headers and BASIC

program data

Tape header identifier byte (1-5)

Starting address of where the tape data was written

from

Keyword dispatch vector table, in token order

BASIC LOAD

Set LOAD, VERIFY, and SAVE parameters

Program patch area

LOAD and RUN words for SHIFT and RUN keys

RS-232: ILLEGAL DEVICE message for LOAD or

SAVE

Load (or verify) to RAM from device number speci

fied in 186 ($BA)

Load or verify RAM from a serial device

Tape: find next tape header, .X back contains

header I.D. number

Tape: load tape buffer address from 178-179 ($B2-

B3) into .X and .Y

Tape: set LOAD/SAVE start and end pointers to

the tape buffer

Tape: initiate tape header read

Tape: write blocks to tape

Tape: common tape read/write; start tape

operations

Tape: set time limit for tape dipole

Tape: determine if to store the input character from

tape

Tape: called to reset the tape read pointer

Tape: data write (IRQ driven)

Tape: leader write (IRQ driven)

Compare current to end of LOAD/SAVE pointers

(tape and serial)

Increment current LOAD/SAVE pointer (tape and

serial)

The filename pointer and length are stored from .X,

.Y, and .A

Set the current file number, device, and secondary

address

Device, secondary address, status chart

Block SAVE/LOAD from BASIC programs

391

LOG

LOG

49234

55745

55786

57279

57325

Lowercase—see

Message

1-2

12

15

17

19

22

43-44

57-58

63-64

153

157

183

198

256-511

320-511

631-640

768-778

768-769

828-1019

49310

49566

49960

50171

50184

50229

50231

50281

50292

50528

50782

50844

51287

51998

($C052)

($D9C1)

($D9EA)

($DFBF)

($DFED)

Character

($1-2)

($C)

($F)

($11)

($13)

($16)

($2B-2C)

($39-3A)

($3F-40)

($99)

($9D)

($B7)

($C6)

($100-lFF)

($14O-1FF)

($277-280)

($300-30A)

($300-301)

($33C-3FB)

($C09E)

($C19E)

($C328)

($C3FB)

($C408)

($C435)

($C437)

($C469)

($C474)

($C560)

($C65E)

($C59C)

($C857)

($CB1E)

52045

52159

392

($CB4D)

($CBBF)

Function dispatch vector table, in token order

Constants for LOG function

BASIC LOG

Tables for LOG and EXP, in floating point format

BASIC EXP

The USR jump vector in LSB/MSB (displacement/

page) form

Flags for locate-or-build-array routines

Flag byte: LIST quote/collect done/tokenize

character

Indicate which of READ, INPUT, or GET is active

Current channel number for BASIC I/O routines

Pointer to available slot in temporary string stack

Pointer to the start of the tokenized BASIC

program

Line number of the BASIC statement being

executed

Current DATA line number in LSB/MSB form

Device number of the current input device

Kernal message control flag

Number of characters in filename (0-187 or 0-16)

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

STACK

Stack area used by BASIC, OUT OF MEMORY

message if exceeded

Ten-byte keyboard buffer

Table of indirect BASIC vectors

Vector to the routine to print a BASIC error mes

sage from a table

Tape buffer area, 192 bytes, for headers and BASIC

program data

BASIC keyword table in token number order

Table of BASIC error messages

BASIC error message table vectors

Check stack requested space available

Check that requested space in dynamic area is

available

Set OUT OF MEMORY error message code

BASIC error message routine

Display ERROR or another message pointed to

Display READY, message

Receive input from device and fill the BASIC text

buffer

BASIC CLR

BASIC LIST

BASIC CONT

Part of PRINT: print a string ended by a carriage

return

Error message formatting routine for GET, INPUT,

and READ

BASIC INPUT

u

D

U

u

u

u

LJ

U

U

LJ

MID$

n

n
1

i—r

■Mr

n

MMHT

n

f—i

n

52230

52476

52510

52600

53000

53533

53829

53832

53837

54182

54190

54407

54516

54845

55678

56770

57325

57590

57701

57870

58232

58372

58409

58471

58566

61625

61812

61922

61926

62812

63047

63082

63272

63358

63407

63636

63671

63689

63715

65126

65424

MID$

84-86

54566

55095

55137

($CC06)

($CCFC)

($CD1E)

($CD8A)

($CF08)

($D11D)

($D245)

($D248)

($D24D)

($D2A6)

($D3AE)

($D487)

($D4F4)

($D63D)

($D97E)

($DDC2)

($DFED)

($E0F6)

($E165)

($E20E)

($E378)

($E404)

($E429)

($E467)

($E4BC)

($F0B9)

($F174)

($F1E2)

($F1E6)

($F55C)

($F647)

($F66A)

($F728)

($F77E)

($F7AF)

($F894)

($F8B7)

($F8C9)

($F8E3)

($FE66)

($FF90)

($54-56)

($D526)

($D737)

($D761)

BASIC READ, also common routines for GET and

INPUT

INPUT error messages

BASIC NEXT

Variable type checking

Cause SYNTAX ERROR message via jump to

$C437

Create new variable

Display BAD SUBSCRIPT message

Display ILLEGAL QUANTITY message

Found the array, check the subscript range

Check if a statement is entered in direct mode

Issue an UNDEFD FUNCTION message for

EVALFN ($D3F4)

Scan and set up string

Allocate memory space for a string

BASIC +, concatenate string

Issue OVERFLOW message and exit

Issue message IN

BASIC EXP

BASIC patch routines

BASIC LOAD

Insure that a parameter is present after a delimiting

comma

Perform a cold start of BASIC

Display cold start of BASIC messages

BASIC cold start messages

Perform a warm start of BASIC

Program patch area

RS-232: ILLEGAL DEVICE message for LOAD or

SAVE

Table of Kernal messages

Display LOADING or VERIFYING if control mes

sages wanted

Print Kernal control messages

Load or verify RAM from a serial device

Display SEARCHING.... for tape device

Display LOADING or VERIFYING

Display SAVING message

I/O error file error message handler

Tape: find next tape header, .X back contains

header I.D. number

Tape: display PRESS PLAY ON TAPE message

Tape: display PRESS RECORD & PLAY ON TAPE

message

Tape: read blocks from tape

Tape: write blocks to tape

Set the byte used to enable/disable Kernal message

display

JuMP to 65126 ($FE66)

Jump opcode and vector to function routine

Garbage collection

BASIC MID$

Obtain string parameters for LEFT$, MID$, and

RIGHTS

393

Monitor

Monitor—see 'TV

Multicolor—see Color

Multiple screen—see Screen

Music—see Sound

NEW

43-44

45-46

47-48

49-50

55-56

122-123

256-511

49164

50754

50782

50830

58232

58372

NEXT

57-58

73-74

49164

51010

52510

NMI

181

792-793

37136-37151

37143

37145

37148

37149

37150

37152-37167

37161

37164

37165

37166

40960-49151

58805

60951

61347

61422

61494

61698

($2B-2C)

($2D-2E)

($2F-30)

($31-32)

($37-38)

($7A-7B)

($100-lFF)

($C00C)

($C642)

($C65E)

($C68E)

($E378)

($E404)

($39-3A)

($49-4A)

($C00C)

($C742)

($CD1E)

($B5)

($318-319)

($9110-911F)

($9117)

($9119)

($911C)

($91 ID)

($91 IE)

($9120-912F)

($9129)

($912C)

($912D)

($912E)

($A000-BFFF)

($E5B5)

($EE17)

($EFA3)

($EFEE)

($F036)

($F102)

Pointer to the start of the tokenized BASIC

program

Pointer to the end of BASIC program, start of

variables

Pointer to the end of BASIC variables, start of

arrays

Pointer to the end of BASIC arrays, start of free

area

Pointer to the end of BASIC memory

Get-BASIC-character routine

STACK

Keyword dispatch vector table, in token order

BASIC NEW

BASIC CLR

Back up TXTPTR to the start of the program

Perform a cold start of BASIC

Display cold start of BASIC messages

Line number of the BASIC statement being

executed

Pointer to BASIC variable used in FOR loop

Keyword dispatch vector table, in token order

BASIC FOR

BASIC NEXT

Tape: flag for currently reading data or leader

Vector to the routine NMI* at 65197 ($FEAD)

6522 VIA chip 1

Timer 1 high order (MSB) latch byte

Timer 2 high order (MSB) counter and MSB latch

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

6522 VIA chip 2

Timer 2 high order (MSB) counter and MSB latch

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

8K RAM expansion block 4

NMI entry for RESTORE key (no entries to this

routine found)

Serial: send listen with attention

RS-232: send the next bit (NMI continuation

routine)

RS-232: prepare the next byte to be sent from send

buffer

RS-232: receive an input bit (NMI driven)

RS-232: set up NMI for transmission

u

LJ

U

U

u

394

LJ

D

0

D

0

PBS, PB1, PBS, PBS, PB4, PBS, PBS, PB7

) i

61792 ($F160)

63284

63732

64831

65193

65246

65530

NOT

49164

49280

49310

52909

52948

57268

ON

20-21

49164

51531

51563

OPEN

152

183

184

187-188

247-248

643-644

660

833-1019

49164

50782

57809

57878

Appendix D

OR

7

11

18

780-783

49280

53222

53225

($F734)

($F8F4)

($FD3F)

($FEA9)

($FEDE)

($FFFA)

($C00C)

($C080)

($C09E)

($CEAD)

($CED4)

($DFB4)

($14-15)

($C00C)

($C94B)

($C96B)

($98)

($B7)

($B8)
($BB-BC)

($F7-F8)

($283-284)

($294)

($341-3FD)

($C00C)

($C65E)

($E1D1)

($E216)

($7)

(SB)
($12)

($30C-30F)

($C080)

($CFE6)

($CFE9)

RS-232: check that serial and tape are idle, to pro

tect from RS-232

Increment the jiffy clock at 160-162 ($A0-A2)

Tape: common tape read/write, start tape

operations

Check for an autostarting program at 40960

($A000)

NMI handler routine

RS-232: NMI sequences

6502 vector to 65193 ($FEA9)

Keyword dispatch vector table, in token order

Math operation dispatch vector table, in token

order

BASIC keyword table in token number order

Factoring is continued

BASIC NOT

BASIC monadic —

line number integer in two-byte LSB/MSB format

Keyword dispatch vector table, in token order

BASIC ON

Convert decimal line number to LSB/MSB format

Number of currently open files, cannot exceed ten

Number of characters in filename (0-187 or 0-16)

Current logical file number being used

Pointer to the current filename

RS-232: pointer to start of receiving buffer

Pointer to the end of user RAM memory, plus one

RS-232 pseudo-6551 command register

Filename of tape data

Keyword dispatch vector table, in token order

BASIC CLR

Set LOAD, VERIFY, and SAVE parameters

Handle parameters for OPEN and CLOSE

Device, secondary address, status chart

Search-character for scanning BASIC statements

BASIC buffer index/array dimensions

TAN/SIN sign/comparison results

The BASIC SYS command uses this area to save

and load

Math operation dispatch vector table, in token

order

BASIC OR

BASIC AND

Oscillator—see Sound

PA0, PAl, PA2, PA3, PA4, PA5, PA6, PA7—see VIA

Paddle—see Game port

Pause key—see Keyboard

PB0, PBI, PB2, PB3, PB4, PB5, PB6, PB7—see VIA

395

PEEK

20-21

49234

55309

PK?)
52867

52904

($14-15)

($CO52)

($D80D)

($CE83)

($CEA8)

Pixel—see Screen

Pixel map—see

POKE

20-21

157

49164

55195

55275

55332

61812

Port A—see VIA

Port B—see VIA

POS

49234

54174

58634

Power on

0-143

0

1-2

3-4

5-6

19

22

43-44

51-52

55-56

122-123

139-143

153

154

160-162

178-179

195-196

256-511

320-511

641-642

643-644

Screen

($14-15)

($9D)

($C00C)

($D79B)

($D7EB)

($D824)

($F174)

($C052)

($D39E)

($E50A)

($0-8F)

($0)
($1-2)

($3-4)

($5-6)

($13)

($16)

($2B-2C)

($33-34)

($37-38)

($7A-7B)

($8B-8F)

($99)

($9A)

($A0-A2)

($B2-B3)

($C3-C4)

($K)0-lFF)

($14O-1FF)

($281-282)

($283-284)

Line number integer in two-byte LSB/MSB format

Function dispatch vector table, in token order
BASIC PEEK

Evaluate a single term of an expression

The floating point number ?=$82 49 OF DA Al

Line number integer in two-byte LSB/MSB format
Kernal message control flag

Keyword dispatch vector table, in token order
Obtain number 1-255

Get two parameters for POKE and WAIT

BASIC POKE

Table of Kernal messages

Function dispatch vector table, in token order

BASIC POS

Read or set the current cursor column and line

Page 0 working storage for BASIC

6502 JMP opcode 76 ($4C)

The USR jump vector in LSB/MSB (displacement/
page) form

Vector to floating point to integer conversion

routines

Vector to the integer to floating point conversion

routines

Current channel number for BASIC I/O routines

Pointer to available slot in temporary string stack

Pointer to the start of the tokenized BASIC

program

Pointer to the bottom of BASIC active strings

Pointer to the end of BASIC memory

Get-BASIC-character routine

BASIC RND work area, last random number or ini

tial seed

Device number of the current input device

Device number of output device

Jiffy clock, realtime clock

Tape: pointer to tape buffer

Pointer to the RAM area being LOADed

STACK

Stack area used by BASIC, OUT OF MEMORY

message if exceeded

Pointer to the start of user RAM memory

Pointer to the end of user RAM memory, plus one

u

LJ

U

U

U

396

u

D

U

u

u

n

n

646

648

655-656

788-819

36866

37136-37151

37136

37138

37139

37147

37148

37152-37167

37154

37155

37163

37164

37888-38399

40960-49151

49152

50754

58232

58528-65535

58648

58819

60900

64802

64850

($286)

($288)

($28F-290)

($314-333)

($9002)

($9110-911F)

($9110)

($9112)

($9113)

($91 IB)

($911C)

($9120-912F)

($9122)

($9123)

($912B)

($912C)

($9400-95FF)

($A000-BFFF)

($C000)

($C642)

($E378)

($E4A0-FFFF)

($E518)

($E5C3)

($EDE4)

($FD22)

($FD52)

65017 ($FDF9)

65532 ($FFFC)

Precedence order

49280 ($C080)

PRINT

19

653

657

32768-36863

36866

37888-38399

49164

50553

51872

51944

51960

51998

($13)

($28D)

($291)

($800-8FFF)

($9002)

($9400-95FF)

($C00C)

($C579)

($CAA0)

($CAE8)

($CAF8)

($CB1E)

Current foreground color selected by color keys

Screen map RAM page number

Pointer to the default keyboard table setup routine

Table of 16 Kernal indirect vectors

Number of columns displayed, part of screen map

address

6522 VIA chip 1

Port B I/O register

Data direction register for port B

Eight bits, each of which corresponds to the same-

numbered bit

Auxiliary control register

Peripheral control register for handshaking

6522 VIA chip 2

Data direction register for port B

Eight bits, each of which corresponds to the same-

numbered bit

Auxiliary control register

Peripheral control register for handshaking

Screen color map (8K+ expanded VIC-20)

8K RAM expansion block 4

Vector to the routine for the cold start of BASIC

58232 ($E378)

BASIC NEW

Perform a cold start of BASIC

Kernal* routine

Initialize the 6550 VIC chip, screen, and related

pointers

Reset the VIC chip registers

Initial values for VIC chip registers

Power-on/reset routine (check for autostart

cartridge)

Cause the RAM system vectors to be reset to pro

vided defaults

Initialize the 6522 VIA registers

6502 vector to 64802 ($FD22)

Math operation dispatch vector table, in token

order

Current channel number for BASIC I/O routines

Current SHIFT keys pattern

Flag to enable or disable combined SHIFT and

Commodore keys

Character maps

Number of columns displayed, part of screen map

address

Screen color map (8K+ expanded VIC-20)

Keyword dispatch vector table, in token order

Tokenize the BASIC line in BASIC text buffer

BASIC PRINT

Part of PRINT: tab to the correct column for

comma delimiter

BASIC TAB, BASIC SPC

Part of PRINT: print a string ended by a carriage

return

397

PRINT*

52027 ($CB3B)

54407

58634

PRINT#

19

154

174-175

828-1019

829-1019

49164

51840

51846

Printer

19

153

185

186

32768-36863

37136

37159

50844

51960

54174

Appendix D

Also see Serial

($D487)

($E50A)

($13)

($9A)
($AE-AF)

($33C-3FB)

($33D-3FB)

($C00C)

($CA80)

($CA86)

($13)

($99)

($B9)

($BA)

($8000-8FFF)

($9110)

($9127)

($C69C)

($CAF8)

($D39E)

Raster—see Screen

READ

17

63-64

65-66

67-68

73-74

75-76

113-114

49164

52045

52230

54407

61941

REM

43-44

49164

50844

($11)

($3F-40)

($41-42)

($43-44)

($49-4A)

($4B-4C)

($71-72)

($C00C)

($CB4D)

($CC06)

($D487)

($F1F5)

($2B-2C)

($C00C)

($C69C)

Part of PRINT: print format characters of space,

cursor right

Scan and set up string

Read or set the current cursor column and line

Current channel number for BASIC I/O routines

Device number of output device

Tape: ending address for LOAD, SAVE, and

VERIFY

Tape buffer area, 192 bytes, for headers and BASIC

program data

Tape block of 191 user data bytes from a BASIC

program

Keyword dispatch vector table, in token order

BASIC PRINT#

BASIC CMD

Current channel number for BASIC I/O routines

Device number of the current input device

Current secondary address being used (also called

command)
Current device number being used

Character maps

Port B I/O register

Timer 1 high order (MSB) latch byte

BASIC LIST

BASIC TAB, BASIC SPC

BASIC POS

Device, secondary address, status chart

Indicate which of READ, INPUT, or GET is active

Current DATA line number in LSB/MSB form

Pointer to the current BASIC data item

Pointer to source of INPUT, GET, and READ

information

Pointer to BASIC variable used in FOR loop

Math operator displacement/INPUT TXTPTR

Series evaluation pointer

Keyword dispatch vector table, in token order

Error message formatting routine for GET, INPUT,

and READ

BASIC READ, also common routines for GET and

INPUT

Scan and set up string

Routing routine for obtaining a character of input

data

Pointer to the start of the tokenized BASIC

program

Keyword dispatch vector table, in token order

BASIC LIST

0

u

u

u

u

398

u

u

u

u

u

H

n

Reset

n

n

51496

51515

($C928)

($C93B)

Repeat—see Keyboard

Reset

0

1-2

3-4

5-6

19

($0)

($1-2)

($3-4)

($5-6)

($13)

22

43-44

45-46

51-52

55-56

122-123

139-143

153

154

178-179

195-196

256-511

320-511

641-642

643-644

646

648

655-656

788-819

36866

37136-37151

37136

37138

37139

37147

37148

37152-37167

37154

37155

37163

37164

37888-38399

40960-4915

49152

($16)

($2B-2C)

($2D-2E)

($33-34)

($37-38)

($7A-7B)

($8B-8F)

($99)

($9A)

($B2-B3)

($C3-C4)

($100-lFF)

($14O-1FF)

($281-282)

($283-284)

($286)

($288)

($28F-290)

($314-333)

($9002)

($9110-911F)

($9110)

($9112)

($9113)

($91 IB)

($911C)

($9120-912F)

($9122)

($9123)

($912B)

($912C)

($9400-95FF)

($A000-BFFF)

($C000)

BASIC IF

BASIC REM

6502 JMP opcode 76 ($4C)

The USR jump vector in LSB/MSB (displacement/

page) form

Vector to floating point to integer conversion

routines

Vector to the integer to floating point conversion

routines

Current channel number for BASIC I/O routines

Pointer to available slot in temporary string stack

Pointer to the start of the tokenized BASIC

program

Pointer to the end of BASIC program, start of

variables

Pointer to the bottom of BASIC active strings

Pointer to the end of BASIC memory

Get-BASIC-character routines

BASIC RND work area, last random number of ini

tial seed

Device number of the current input device

Device number of output device

Tape: pointer to tape buffer

Pointer to the RAM area being LOADed

STACK

Stack area used by BASIC, OUT OF MEMORY

message if exceeded

Pointer to the start of user RAM memory

Pointer to the end of user RAM memory, plus one

Current foreground color selected by color keys

Screen map RAM page number

Pointer to the default keyboard table setup routine

Table of 16 Kernal indirect vectors

Number of columns displayed, part of screen map

address

6522 VIA chip 1

Port B I/O register

Data direction register for port B

Eight bits, each of which corresponds to the same-

numbered bit

Auxiliary control register

Peripheral control register for handshaking

6522 VIA chip 2

Data direction register for port B

Eight bits, each of which corresponds to the same-

numbered bit

Auxiliary control register

Peripheral control register for handshaking

Screen color map (8K+ expanded VIC-20)

8K RAM expansion block 4

Vector to the routine for the cold start of BASIC

58232 ($E378)

399

u

0

50754

58232

58528-65535

58648

58819

60900

64802

64850

65017

65532

Reset switch

0-143

0

45-46

37136-37151

RESTORE

65-66

49164

51229

58486

($C642)

($E378)

($E4A0-FFFF)

($E518)

($E5C3)

($EDE4)

($FD22)

($FD52)

($FDF9)

($FFFC)

($0-8F)

($0)

($2D-2E)

($9110-91 IF)

($41-42)

($C00C)

($C81D)

($E476)

BASIC NEW

Perform a cold start of BASIC

Kernal* routine

Initialize the 6550 VIC chip, screen, and related

pointers

Reset the VIC chip registers

Initial values for VIC chip registers

Power-on/reset routine (check for autostart

cartridge)

Cause the RAM system vectors to be reset to pro-

VlucU U.cIaUll9

Initialize the 6522 VIA registers

6502 vector to 64802 ($FD22)

Page 0 working storage for BASIC

6502 JMP opcode 76 ($4C)

Pointer to the end of BASIC program, start of

VallaDlcd

6522 VIA chip 1

Pointer to the current BASIC data item

Keyword dispatch vector table, in token order

BASIC RESTORE

Program patch area

RESTORE key—see STOP/RESTORE

RETURN

57-58

73-74

49164

51331

51410

($39-3A)

($49-4A)

($C00C)

($C883)

($C8D2)

Reverse—see Screen; Keyboard

RIGHTS

84-86

54566

55084

55137

RND

139-143

49234

57482

57492

58247

58624

RS-232

19

55-56

139-143

400

($54-56)

($D526)

($D72C)

($D761)

($8B-8F)

($C052)

($E08A)

($E094)

($E387)

($E500)

($13)

($37-38)

($8B-8F)

Line number of the BASIC statement being

Pointer to BASIC variable used in FOR loop

Keyword dispatch vector table, in token order

BASIC GOSUB

BASIC RETURN

Jump opcode and vector to function routine

Garbage collection

BASIC RIGHT$

Obtain string parameters for LEFT$, MID$, and

RIGHT$

BASIC RND work area, last random number or ini-
4-5 a 1 cooH
nai seed

Function dispatch vector table, in token order

Table of constants for RND

BASIC RND

CHRGET routine and RND seed to be copied to

page 0 RAM

Retrieve the address of the I/O memory page

Current channel number for BASIC I/O routines

Pointer to the end of <QASIC memory

BASIC RND work area, last random number or ini

tial seed

u

u

U

- -

M

1 [

LJ

LJ

Li

146 ($92)

153

167

168

169

170

171

178-179

180

181

182

183

186

187-188

189

247-248

249-250

643-644

659

660

661-662

663

664

665-666

($99)

($A7)

($A8)

($A9)

($AA)

($AB)

($B2-B3)

($B4)

($B5)

($B6)

($B7)

($BA)

($BB-BC)

($BD)

($F7-F8)

($F9-FA)

($283-284)

($293)

($294)

($295-296)

($297)

($298)

($299-29A)

667

668

669

670

($29B)

($29C)

($29D)

($29E)

37136-37151

37136

37137

37140

37141

37143

37145

37148

37149

37150

50782

57590

58853

60951

61347

($9110-91 IF)

($9110)

($9111)

($9114)

($9115)

($9117)

($9119)

($911C)

($91 ID)

($91 IE)

($C65E)

($E0F6)

($E5E5)

($EE17)

($EFA3)

61375 ($EFBF)

Tape: 0/1 bit timebase fluctuation during read

operations

Device number of the current input device

Tape: write leader count/read block reverse counter

Tape: error flags; 0=no errors/long word marker

switch

Tape: dipole balance counter/medium word marker

switch

Tape: input status flags, sync countdown/RS-232

byte assembly

Tape: write leader counter/read checksum

comparison

Tape: pointer to tape buffer

Tape: miscellaneous flags/RS-232: various usage

Tape: flag for currently reading data or leader

Tape: accumulator for number of read errors

Number of characters in filename (0-187 or 0-16)

Current device number being used

Pointer to the current filename

RS-232: send parity calculation work byte

RS-232: pointer to start of receiving buffer

RS-232: pointer to the start of the transmitting

buffer

Pointer to the end of user RAM memory, plus one

RS-232 pseudo-6551 control register

RS-232 pseudo-6551 command register

RS-232 nonstandard bit timing specification

RS-232 status register

RS-232 number of bits to be sent/received

RS-232 system clock divided by baud

rate=microseconds

RS-232 dynamic index to the end of the receive

buffer

RS-232 dynamic index to the start of the receive

buffer

RS-232 dynamic index to the start of the transmit

buffer

RS-232 dynamic index to the end of the transmit

buffer

6522 VIA chip 1

Port B I/O register

Port A I/O register

imer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 high order (MSB) latch byte

Timer 2 high order (MSB) counter and MSB latch

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

BASIC CLR

BASIC patch routines

Wait for character to appear in the keyboard buffer

Serial: send listen with attention

RS-232: send the next bit (NMI continuation

routine)

RS-232: calculate parity and stop bits value

401

RUN

61416

61422

61462

61479

61494

61515

61531

61544

61551

61579

61597

61602

61605

61608

61610

61625

61628

61677

61698

61718

61775

($EFE8)

($EFEE)

($F016)

($F027)

($F036)

($F04B)

($F05B)

($F068)

($F06F)

($F08B)

($F09D)

($F0A2)

($F0A5)

($F0A8)

($F0AA)

($F0B9)

($F0BC)

($F0ED)

($F102)

($F116)

($F14F)

61792

61941

45-46

402

($F160)

($F1F5)

61966

62063

62074

62151

62217

62282

62474

62663

62786

63122

63732

65111

65128

65246

65372

65463

Appendix D

RUN

19

43-44

($F20E)

($F26F)

($F27A)

($F2C7)

($F309)

($F34A)

($F40A)

($F4C7)

($F542)

($F692)

($F8F4)

($FE57)

($FE68)

($FEDE)

($FF5C)

($FFB7)

($13)

($2B-2C)

($2D-2E)

RS-232: transmit stop bits

RS-232: prepare the next byte to be sent from send

buffer

RS-232: set clear-to-send or data-set-ready missing

status

RS-232: compute desired word length bit count

RS-232: receive an input bit (NMI driven)

RS-232: determine if all the stop bits have been re

ceived yet

RS-232: prepare to receive the next input byte

RS-232: check for start bit in receive mode

RS-232: put constructed byte into receive buffer

RS-232: parity checking of the input byte

RS-232: parity error on input byte

RS-232: buffer overrun on input byte

RS-232: break detected on input

RS-232: framing error on input

RS-232: set input error status and continue

RS-232: ILLEGAL DEVICE message for LOAD or

SAVE

RS-232: open an RS-232 channel for output

RS-232: store a character in the transmit buffer

RS-232: set up NMI for transmission

RS-232: open an RS-232 channel for input

RS-232: retrieve the next character from the receive

buffer

RS-232: check that serial and tape are idle, to pro

tect from RS-232

Routing routine for obtaining a character of input

data

Input characters from current input device

Obtain a byte from the RS-232 device

Output character to current output device

Open .X file number channel for input

Open .X file number channel for output

Close logical file number in .A

Open a logical file, file number in 184 ($B8)

RS-232: open RS-232 device

Load (or verify) to RAM from device number speci

fied in 186 ($BA)

Save RAM to serial device

Tape: common tape read/write; start tape

operations

Reset RS-232 status, branch to 65128 for non-RS-

232 status

Load .A with the non-RS-232 I/O status ST

RS-232: NMI sequences

RS-232: VIA timer 2 values for baud rate table

JuMP to 65111 ($FE57)

Device, secondary address, status chart

Current channel number for BASIC I/O routines

Pointer to the start of the tokenized BASIC

program

Pointer to the end of BASIC program, start of

variables

U

u

u

LJ

•U

U

u

u

u

u

[1

r—*

1 !

/ 1

p

n ■

47-48

49-50

157

40960-49151

49164

50782

51313

58853

60916

RVSOFF

199

32768-36863

32678-33791

34816-35839

35840-36863

36869

59202

RVSON

199

212

32768-36863

33792-34815

35840-36863

36869

59202

SAVE

43-44

45-46

147

155

158

165

168

169

170

171

172-173

174-175

178-179

183

($2F-30)

($31-32)

($9D)
($A000-BFFF)

($C00C)

($C65E)

($C871)

($E5E5)

($EDF4)

($C7)

($8000-8FFF)

($8000-83FF)

($8800-8BFF)

($8C00-8FFF)

($9005)

($E742)

($C7)

($D4)

($8000-8FFF)

($8400-87FF)

($8C00-8FFF)

($9005)

($E742)

($2B-2C)

($2D-2E)

($93)

($9B)

($9E)

($A5)

($A8)

($A9)

($AA)

($AB)

($AC-AD)

($AE-AF)

($B2-B3)

($B7)

Pointer to the end of BASIC variables, start of

arrays

Pointer to the end of BASIC arrays, start of free

area

Kernal message control flag

8K RAM expansion block 4

Keyword dispatch vector table, in token order

BASIC CLR

BASIC RUN

Wait for character to appear in the keyboard buffer

LOAD and RUN words for SHIFT and RUN keys

Flag for reversed screen characters

Character maps

Uppercase and graphics nonreversed screen charac

ter map

Lowercase and uppercase nonreversed screen

character map

Reversed lowercase and uppercase screen character

map

Screen map and character map addresses

Handle characters going to the screen

Flag for reversed screen characters

Flag to indicate if within quote marks

Character maps

Reversed uppercase and graphics screen character

map

Reversed lowercase and uppercase screen character

map

Screen map and character map addresses

Handle characters going to the screen

Pointer to the start of the tokenized BASIC

program

Pointer to the end of BASIC program, start of

variables

Tape: 0=LOAD, 1=VERIFY

Tape: character parity

Tape: error log index/filename index/header I.D./

out byte

Tape: block sync countdown/Serial: countdown

Tape: error flags, 0=no errors/long word marker

switch

Tape: dipble balance counter/medium word marker

switch

Tape: input status flags, sync countdown/RS-232

byte assembly

Tape: write leader counter/read checksum

comparison

Tape/Serial: start address for LOAD/SAVE/

VERIFY

Tape: ending address for LOAD/SAVE/VERIFY

Tape: pointer to tape buffer

Number of characters in filename (0-187 or 0-16)

403

187-188

189

190

193-194

195-196

818-819

828-1019

828

833-1019

49164

49310

57683

57809

61625

62812

63122

63217

63463

63572

63680

63715

63752

63886

64523

64661

64680

64719

64785

64795

65097

65104

Appendix D

Appendix F

Sealer—see

Screen

9

19

43-44

55-56

153

154

184

185

($BB-BC)

($BD)

($BE)

($C1-C2)

($C3-C4)

($332-333)

($33C-3FB)

($33C)

($341-3FB)

($C00C)

($C09E)

($E153)

($E1D1)

($F0B9)

($F55C)

($F692)

($F6F1)

($F7E7)

($F854)

($F8C0)

($F8E3)

($F8F4)

($F98E)

($FC0B)

($FC95)

($FCA8)

($FCCF)

($FD11)

($FD1B)

($FE49)

($FE50)

Variable^

($9)

($13)

($2B-2C)

($37-38)

($99)

($9A)

($B8)

($B9)

Pointer to the current filename

RS-232: send parity calculation work byte

Tape: which copy of block remaining to read/write

Tape/Serial: pointer to the start of the I/O area

Pointer to the RAM area being LOADed

Vector to the routine SAVE at 63109 ($F685)

Tape buffer area, 192 bytes, for headers and BASIC

program data

Tape header identifier byte (1-5)

Filename of tape data

Keyword dispatch vector table, in token order

BASIC keyword table in token number order

BASIC SAVE

Set LOAD, VERIFY, and SAVE parameters

RS-232: ILLEGAL DEVICE message for LOAD or

SAVE

Load or verify RAM from a serial device

Save RAM to serial device

Save RAM to tape

Tape: build an output tape header in the tape

buffer area

Tape: set LOAD/SAVE start and end pointers in

the tape buffer

Tape: initiate tape header read

Tape: write blocks to tape

Tape: common tape read/write; start tape

operations

Tape: read tape data bits into location 191 ($BF)

(IRQ driven)

Tape: data write (IRQ driven)

Tape: block leader write (IRQ driven)

Tape: leader write (IRQ driven)

Tape: restore IRQ vector

Compare current to end of LOAD/SAVE pointers

(tape and serial)

Increment current LOAD/SAVE pointer (tape and

serial)

The filename pointer and length are stored from .X,

.Y, and .A

Set the current file number, device, and secondary

address

Device, secondary address, status chart

Block SAVE/LOAD from BASIC programs

Column that the cursor was on just before last TAB

orSPC

Current channel number for BASIC I/O routines

Pointer to the start of the tokenized BASIC

program

Pointer to the end of BASIC memory

Device number of the current input device

Device number of output device

Current logical file number being used

Current secondary address being used (also called

command)

404

186

193-194

197

198

199

200

201-202

206

208

209-210

211

212

213

214

215

216

217-241

242

243-244

512-600

631-640

646

647

648

653

658

7680-8191

7680-8191

4096-4607

32768-36863

32768-33791

33792-34815

34816-35839

35840-36863

36864-37135

36864

36865

36866

36867

36868

36869

36870

36871

($BA)

($C1-C2)

($C5)

($C6)

($C7)

($C8)

($C9-CA)

($CE)

($D0)

($D1-D2)

($D3)

($D4)

($D5)

($D6)

($D7)

($D8)

($D9-F1)

($F2)

($F3-F4)

($200-258)

($277-280)

($286)

($287)

($288)

($28D)

($292)

($1EOO-1FFF)

($1EOO-1FFF)

($1000-1IFF)

($8000-8FFF)

($8000-83FF)

($8400-87FF)

($8800-8BFF)

($8C00-8FFF)

($9000-910F)

($9000)

($9001)

($9002)

($9003)

($9004)

($9005)

($9006)

($9007)

f I

Current device number being used

Tape/Serial: pointer to the start of the I/O area

Matrix coordinate of last key pressed (64 if none)

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

Flag for reversed screen characters

Pointer to the end of line for input

Cursor current logical position (line, column)

Character under cursor (in screen POKE code)

Flag indicating if input from screen (3) or keyboard

(0)
Pointer to the start of the logical line that the

cursor is on

Cursor position within the logical screen line

Flag to indicate if within quote marks

Current screen line logical length (21,43,65,87)

Cursor: current physical screen line cursor is on (0-

22)

ASCII value of last key pressed

Number of outstanding inserts remaining

Screen line link table

Save byte for screen line link table byte

Pointer to the current physical screen lines color

map area

89-byte BASIC input buffer

Ten-byte keyboard buffer

Current foreground color selected by color keys

Cursor: original color at this screen location

Screen map RAM page number

Current SHIFT keys pattern

Screen scroll down enabled flag

Screen map RAM on VIC-20 with less than 8K

expansion

Screen map RAM on VIC-20 with only 3K

expansion

Screen map RAM on VIC-20 with 8K+ expansion

Character maps

Uppercase and graphics nonreversed screen charac

ter map

Reversed uppercase and graphics screen character

map

Lowercase and uppercase nonreversed screen

character map

Reversed lowercase and uppercase screen character

map

6560 VIC chip

Left edge of TV picture and interlace switch

Bits 7-0: vertical TV picture origin

Number of columns displayed, part of screen map

address

Number of character lines displayed, part of raster

location

Raster beam location

Screen map and character map addresses

Light pen horizontal screen location

Light pen vertical screen location

405

Screen

36879

37159

37888-38399

50528

50844

52159

54174

58471

58629

58634

58648

58719

58753

58759

58811

58959

59064

59077

59144

59181

59202

59587

59624

59642

59765

59886

59990

60014

60030

60045

60065

60074

60082

60763

60925

61966

62074

62451

62786

63122

64802

64909

65234

($900F)

($9127)

($9400-95FF)

($C560)

($C69C)

($CBBF)

($D39E)

($E467)

($E505)

($E50A)

($E518)

($E55F)

($E581)

($E587)

($E5BB)

($E64F)

($E6B8)

($E6C5)

($E6EA)

($E72D)

($E742)

($E8C3)

($E8E8)

($E8FA)

($E975)

($E9EE)

($EA56)

($EA6E)

($EA7E)

($EA8D)

($EAA1)

($EAAA)

($EAB2)

($ED5B)

($EDFD)

($F20E)

($F27A)

($F3F3)

($F542)

($F692)

($FD22)

($FD8D)

($FED2)

Background color, border color, inverse color switch
Timer 1 high order (MSB) latch byte

Screen color map (8K+ expanded VIC-20)

Receive input from device and fill the BASIC text
buffer

BASIC LIST

BASIC INPUT

BASIC POS

Perform a warm start of BASIC

Retrieve the maximum number of screen columns
and lines

Read or set the current cursor column and line

Initialize the 6550 VIC chip, screen, and related

pointers

Clear the screen

Move the cursor to the screen home position

Reset the screen line link table pointers

Reset the default device numbers

Obtain INPUT from screen

Test for quotes and set flag

Set up display of a character on the screen

Advance the cursor on the screen, add lines, and

scroll

Back up cursor into the previous logical screen line

Handle characters going to the screen

Advance cursor to the next logical screen line

Move the cursor to the end of the previous screen

line

Move the cursor to the start of the next screen line

Scroll the screen

Open up a blank physical line on the screen for

inserts

Move screen line

The address of the screen line and color line is set

in memory

Set a pointer to the address of the start of a screen

line

Blank out a physical screen line

Synchronize color to byte and store character on

screen

Store a character on the screen

The address of the color map byte for screen map

is found

Called by routine SCROLL ($E6EA) to mark the

next physical screen line

Screen line link table LSB of lines in screen map

Input characters from current input device

Output character to current output device

Abort all open channels

Load (or verify) to RAM from device number speci

fied in 186 ($BA)

Save RAM to serial device

Power-on/reset routine (checks for autostart

cartridge)

Initialize system memory

BREAK interrupt entry

u

u

406

Serial

n

65517 ($FFED)

Appendix C

Appendix E

Screen line link—see Screen

Screen map—see Screen

Screen POKE—see Screen

JuMP to 58629 ($E505)

Code Chart with screen POKE codes

Valid screen relocation addresses

Secondary address

144 ($90)

153 ($99)

172-173 ($AC-AD)

174-175

184

185

195-196

601-610

621-630

828-1019

828

57683

57701

57787

57796

57809

57878

61120

61134

61156

62282

62431

62474

62613

62812

63217

65104

65130

65247

65430

65466

Appendix D

Serial

19

148

149

($AE-AF)

($B8)

($B9)

($C3-C4)

($259-262)

($26D-276)

($33C-3FB)

($33C)

($E153)

($E165)

($E1BB)

($E1C4)

($E1D1)

($E216)

($EEC0)

($EECE)

($EEE4)

($F34A)

($F3DF)

($F40A)

($F495)

($F55C)

($F6F1)

($FE50)

($FE6A)

($FF93)

($FF96)

($FFBA)

($13)

($94)

($95)

ST status of I/O completion

Device number of the current input device

Tape/Serial: start address for LOAD/SAVE/

VERIFY

Tape: ending address for LOAD, SAVE, and

VERIFY

Current logical file number being used

Current secondary address being used (also called

command)
Pointer to the RAM area being LOADed

Open logical file number table (ten one-byte

entries)

Open secondary address table (ten one-byte entries)

Tape buffer area, 192 bytes, for headers and BASIC

program

Tape header identifier byte (1-5)

BASIC SAVE

BASIC LOAD

BASIC OPEN

BASIC CLOSE

Set LOAD, VERIFY, and SAVE parameters

Handle parameters for OPEN and CLOSE

Serial: send secondary address after listen

command

Serial: send secondary address after talk command

Serial: send a byte on the serial line

Close logical file number in .A

Set file characteristics of file (.X) into 184-186

($B8-BA)

Open a logical file, file number in 184 ($B8)

Send secondary address and filename to a serial

device

Load or verify RAM from a serial device

Save RAM to tape

Set the current file number, device, and secondary

address

OR .A with the contents of 144 ($90) ST and store

there

JuMP to 61120 ($EEC0)

JuMP to 61134 ($EECE)

JuMP to 65104 ($FE50)

Device, secondary address, status chart

Current channel number for BASIC I/O routines

Serial: output deferred character flag

Serial: output buffered character

407

153

163

164

165

172-173

174-175

178-179

185

186

193-194

198

645

828-1019

37137

37139

37146

37148

37150

37160

37161

37162

37164

37166

57878

58528

58537

58546

60948

60951

60956

61001

61108

61120

61125

61134

61156

61174

61188

61209

61316

61325

61334

61792

61966

62052

($99)

($A3)

($A4)

($A5)

($AC-AD)

($AE-AF)

($B2-B3)

($B9)

($BA)

($C1-C2)

($C6)

($285)

($33C-3FB)

($9111)

($9113)

($911A)

($911C)

($91IE)

($9128)

($9129)

($912A)

($912C)

($912E)

($E216)

($E4A0)

($E4A9)

($E4B2)

($EE14)

($EE17)

($EE1C)

($EE49)

($EEBA)

($EEC0)

($EEC5)

($EECE)

($EEE4)

($EEF6)

($EF04)

($EF19)

($EF84)

($EF8D)

($EF96)

($F160)

($F20E)

($F264)

Device number of the current input device

Serial: input bit count/Tape: input/output bit count

Serial: input byte/cycle counter/Tape: dipole

number

Tape: block sync countdown/Serial: countdown

Tape/Serial: start address for LOAD/SAVE/

VERIFY

Tape: ending address for LOAD, SAVE, and

VERIFY

Tape: pointer to tape buffer

Current secondary address being used (also called

command)
Current device number being used

Tape/Serial: pointer to the start of the I/O area

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

Serial: timeout enable/disable flag

Tape buffer area, 192 bytes, for headers and BASIC

program data

Port A I/O register

Eight bits, each of which corresponds to the same-

numbered bit

Shift register for parallel/serial conversion

Peripheral control register for handshaking

Interrupt enable register

Timer 2 low order (LSB) counter and LSB latch

Timer 2 high order (MSB) counter and MSB latch

Shift register for parallel/serial conversion

Peripheral control register for handshaking

Interrupt enable register

Handle parameters for OPEN and CLOSE

Serial: output a 1 on the serial data line

Serial: output a 0 on the serial data line

Serial: get an input bit from VIA1 and stabilize

Serial: send talk with attention

Serial: send listen with attention

Serial: prepare to send serial command with

attention

Serial: send command or data to serial devices

Serial: set ST for timeout or DEVICE NOT

PRESENT

Serial: send secondary address after listen

command

Serial: clear attention

Serial: send secondary address after talk command

Serial: send a byte on the serial line

Serial: send untalk command to serial devices

Serial: send unlisten command to serial devices

Serial: receive byte from serial device

Serial: set clock line high

Serial: set clock line low

Serial: delay one millisecond

RS-232: check that serial and tape are idle, to pro

tect from RS-232

Input characters from current input device

Obtain a byte from the serial line

u

LJ

U

U

U

408

U

u

u

u

u

n

n

I ;

n

n

n
i ;

»•■■■»

62074

62151

62217

62451

62474

62613

62786

62812

63122

64785

64795

65427

65430

65445

65448

65451

65454

65457

65460

Appendix D

($F27A)

($F2C7)

($F309)

($F3F3)

($F40A)

($F495)

($F542)

($F55C)

($F692)

($FD11)

($FD1B)

($FF93)

($FF96)

($FFA5)

($FF48)

($FFAB)

($FFAE)

($FFB1)

($FFB4)

Serial port—see Serial

SGN

97-102

49234

52909

56377

SHIFT

183

203

657

4096-4607

33792-34815

34816-35839

35840-36863

36869

59202

60510

60835

($61-66)

($C052)

($CEAD)

($DC39)

($B7).
($CB)

($291)

($1000-1IFF)

($8400-87FF)

($8800-88FF)

($8C00-8FFF)

($9005)

($E742)

($EC5E)

($EDA3)

Also see Keyboard

Shift register—see VIA

SIN

18

49234

($12)

($C052)

Output character to current output device

Open .X file number channel for input

Open .X file number channel for output

Abort all open channels

Open a logical file, file number in 184 ($B8)
Send secondary address and filename in a serial

device

Load (or verify) to RAM from device number speci

fied in 186 ($BA)

Load or verify RAM from a serial device

Save RAM to serial device

Compare current to end of LOAD/SAVE pointers

(tape and serial)

Increment current LOAD/SAVE pointer (tape and

serial)

JuMP to 61120 ($EEC0)

JuMP to 61134 ($EECE)

JuMP to 61209 ($EF19)

JuMP to 61156 ($EEE4)

JuMP to 61174 ($EEF6)

JuMP to 61188 ($EF04)

JuMP to 60951 ($EE17)

JuMP to 50948 ($EE14)

Device, secondary address, status chart

BASIC Floating Point Accumulator 1

Function dispatch vector table, in token order

Factoring is continued

BASIC SGN

Number of characters in filename (0-187 or 0-16)

'Matrix-coordinate of current key pressed (64 if

none)

Flag to enable or disable combined SHIFT and

Commodore keys

Screen map RAM on VIC-20 with 8K+ expansion

Reversed uppercase and graphics screen character

map

Lowercase and uppercase nonreversed screen

character map

Reversed lowercase and uppercase screen character

map

Screen map and character map addresses

Handle characters going to the screen

Table used for decoding unshifted keys into ASCII

Table used for decoding CTRL SHIFTed keys into

ASCII

TAN/SIN sign/comparison results

Function dispatch vector table, in token order

409

Sound

57960

58077

Sound

36864-37135

36869

36874

36875

36876

36877

36878

37146

37147

37162

37163

SPC

9

49164

49310

51872

51960

58634

SQR

49234

57105

57201

ST

144

663

51872

52091

53032

53533

57701

61108

62000

62052

64173

65111

65128

65130

Appendix D

STEP

73-74

49164

49310

52510

55740

STOP

57-58

($E268)

($E2DD)

($9000-910F)

($9005)

($900A)

($900B)

($900C)

($900D)

($900E)

($911A)

($91 IB)

($912A)

($912B)

($9)

($C00C)

($C09E)

($CAA0)

($CAF8)

($E50A)

($C052)

($DF11)

($DF71)

($90)

($297)

($CAA0)

($CB7B)

($CF28)

($D11D)

($E165)

($EEB4)

($F230)

($F264)

($FAAD)

($FE57)

($FE68)

($FE6A)

($49-4A)

($C00C)

($C09E)

($CD1E)

($D9BC)

($29-3A)

BASIC SIN

Trig evaluation constant values used for COS, SIN
and TAN

6560 VIC CHIP

Screen map and character map addresses

Relative frequency of sound oscillator 1 (bass)

Relative frequency of sound oscillator 2 (alto)

Relative frequency of sound oscillator 3 (soprano)

Relative frequency of sound oscillator 4 (noise)

Sound volume and auxiliary color

Shift register for parallel/serial conversion
Auxiliary control register

Shift register for parallel/serial conversion
Auxiliary control register

Column that the cursor was on just before last TAB
or SPC

Keyword dispatch vector table, in token order

BASIC keyword table in token number order

BASIC PRINT

BASIC TAB, BASIC SPC

Read or set the current cursor column and line

Function dispatch vector table, in token order

0.5 constant for rounding and SQR

BASIC SQR

ST status of I/O completion

RS-232 status register

BASIC PRINT

BASIC GET

Obtain variable name and type

Create new variable

BASIC LOAD

Serial: set ST for timeout or DEVICE NOT

PRESENT

Obtain a byte from the tape buffer

Obtain a byte from the serial line

Tape: determine if to store the input character from

tape

Reset RS-232 status, branch to 61528 ($FE68) for

non-RS-232 status

Load .A with the non-RS-232 I/O status ST

OR .A with the contents of 144 ($90) ST and store

there

Device, secondary address, status chart

Pointer to BASIC variable used in FOR loop

Keyword dispatch vector table, in token order

BASIC keyword table in token number order

BASIC NEXT

Constant to zero a floating point accumulator

Line number of the BASIC statement being

executed

u

LJ

U

U

U

410

u

U

U

u

u

STOP key

n

59-60

49164

50020

51247

51287

STOP key

57-58

59-60

145

160-162

195-196

197

198

671-672

788-819

788-789

808-809

37136-37151

37138

37139

37147

37148

37149

37152-37167

37152

37153

37154

37155

37159

37163

37164

50020

50844

51118

51244

51287

54566

59765

60095

62451

62812

63122

63217

63284

63344

63407

63463

($3B-3C)

($C00C)

($C364)

($C82F)

($C857)

($39-3A)

($3B-3C)

($91)

($A0-A2)

($C3-C4)

($C5)

($C6)

($29F-2A0)

($314-333)

($314-315)

($328-329)

($9110-91 IF)

($9112)

($9113)

($91 IB)

($911C)

($91 ID)

($9120-912F)

($9120)

($9121)

($9122)

($9123)

($9127)

($912B)

($912C)

($C364)

($C69C)

($C7AE)

($C82C)

($C857)

($D526)

($E975)

($EABF)

($F3F3)

($F55C)

($F692)

($F6F1)

($F734)

($F770)

($F7AF)

($F7E7)

Previous BASIC line number executed

Keyword dispatch vector table, in token order

Miscellaneous messages

BASIC STOP

BASIC CONT

Line number of the BASIC statement being

executed

Previous BASIC line number executed

Keyswitch PIA: bottom keyboard row scan

Jiffy clock, realtime clock

Pointer to the RAM area being LOADed

Matrix coordinate of last key pressed (64 if none)

Number of characters (0-10) in the keyboard buffer

at 631 ($277)

Temporary save area for the normal IRQ vector

during tape I/O

Table of 16 Kernal indirect vectors

Vector to the IRQ at 60095 ($EABF)

Vector to the test STOP key routine at 63344

($F770)

6522 VIA chip 1

Data direction register for port B

Eight bits, each of which corresponds to the same-

numbered bit

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

6522 VIA chip 2

Port B I/O register

Port A I/O register

Data direction register for port B

Eight bits, each of which corresponds to the same-

numbered bit

Timer 1 high order (MSB) latch byte

Auxiliary control register

Peripheral control register for handshaking

Miscellaneous messages

BASIC LIST

Find (for execution) the next BASIC statement

Test for STOP key

BASIC CONT

Garbage collection

Scroll the screen

IRQ handler

Abort all open channels

Load or verify RAM from a serial device

Save RAM to serial device

Save RAM to tape

Increment the jiffy clock at 160-162 ($A0-A2)

Check for STOP key in $91, purge keyboard queue

and channels if so

Tape: find next tape header, .X back contains

header I.D. number

Tape: build an output tape header in the tape

buffer area

411

63591

63636

63732

($F867)

($F894)

($F8F4)

63819 ($F94B)

64719 ($FCCF)

65193 ($FEA9)

65505 ($FFE1)

STOP/RESTORE

19 ($13)

198 ($C6)

Tape: find the tape header for a specified filename
(or next)

Tape: display PRESS PLAY ON TAPE message

Tape: common tape read/write, start tape

operations

Tape: check for the STOP key

Tape: restore IRQ vector

NMI handler routine

JuMP off 808-809 ($328-329)

Current channel number for BASIC I/O routines

Number of characters (0-10) in the keyboard buffer
at 631 ($277)

u

LJ

U

LJ

LJ

646

649

788-819

790-791

792-793

36864-37135

36866

37136-37151

37138

37139

37147

37148

37152-37167

37154

37155

37159

37163

37164

49154

50782

58471

58648

58819

60900

64580

65017

65193

65234

STR$

54373

54407

55179

($286)

($289)

($314-333)

($316-317)

($318-319)

($9000-910F)

($9002)

($9110-91 IF)

($9112) Data

direction register

for port B

($9113)

($91 IB)

($911C)

($9120-912F)

($9122) Data

direction register

for port B

($9123)

($9127)

($912B)

($912C)

($C002)

($C65E)

($E467)

($E518)

($E5C3)

($EDE4)

($FD52)

($FDF9)

($FEA9)

($FED2)

($D465)

($D487)

($D78B)

Current foreground color selected by color keys

Maximum number of characters in the keyboard
buffer

Table of 16 Kernal indirect vectors

Vector to the routine BREAK* at 65234 ($FED2)

Vector to the routine NMI* at 65197 ($FEAD)

6560 VIC chip

Number of columns displayed, part of screen map
address

6522 VIA chip 1

Eight bits, each of which corresponds to the same-

iiiiiiiUcrCLi uii

Auxiliary control register

Peripheral control register for handshaking

6522 VIA chip 2

Eight bits, each of which corresponds to the same-
Til f TY^Vn^TV>/"J Vvi +
iiuiiiuercu uii

Timer 1 high order (MSB) latch byte

Auxiliary control register

Peripheral control register for handshaking

Vector to the routine to do the warm start of BASIC

BASIC CLR

Perform a warm start of BASIC

Initialize the 6550 VIC chip, screen, and related
«•*/%« y\ fai*c

Reset the VIC chip registers

Initial values for VIC chip registers

Cause the RAM system vectors to be reset to pro

vided defaults

Initialize the 6522 VIA registers

NMI handler routine

BREAK interrupt entry

BASIC STR$

Scan and set up string

BASIC ASC

u

u

LJ

1 !

412

U

R

R

R

R1 I

n

n

rt

SYS

1-2

19

20-21

153

154

217-241

780-783

828-1019

49164

55287

58639

TAB

9

49164

49310

51872

51960

58634

TAN

18

49234

57960

58033

58077

Tape

19

113-114

146

150

153

155

156

158

159

163

164

165

166

167

168

($1-2)

($13)

($14-15)

($99)

($9A)

($D9-F1)

($30C-30F)

($33C-3FB)

($C00C)

($D7F7)

($E127)

($9)

($C00C)

($C09E)

($CAA0)

($CAF8)

($E50A)

($12)

($C052)

($E268)

($E2B1)

($E2DD)

($13)

($71-72)

($92)

($96)

($99)

($9B)

($9C)

($9E)

($9F)

($A3)

($A4)

($A5)

($A6)

($A7)

($A8)

169

170

($A9)

($AA)

The USR jump vector in LSB/MSB (displacement/

page) form

Current channel number for BASIC I/O routines

line number integer in two-byte LSB/MSB format

Device number of the current input device

Device number of output device

Screen line link table

The BASIC SYS command uses this area to save

and load

Tape buffer area, 192 bytes, for headers and BASIC

program data

Keyword dispatch vector table, in token order

Convert floating point FAC to two-byte positive

integer

BASIC SYS

Column that the cursor was on just before last TAB

orSPC

Keyword dispatch vector table, in token order

BASIC keyword table in token number order

BASIC PRINT

BASIC TAB, BASIC SPC

Read or set the current cursor column and line

TAN/SIN sign/comparison results

Function dispatch vector table, in token order

BASIC SIN

BASIC TAN

Trig evaluation constant values used for COS, SIN,

and TAN

Current channel number for BASIC I/O routines

Series evaluation pointer

Tape: 0/1 bit timebase fluctuation during read

operations

Tape: block found flag, tape leader length bit count

Device number of the current input device

Tape: character parity

Tape: dipole switch/byte-received flag

Tape: error log index/filename index/header I.D./

out byte

Tape: pass 2 error pointer/tape buffer filename

index

Serial: input bit count/Tape: input/output bit count

Serial: input byte/cycle counter/Tape: dipole

number

Tape: block sync countdown/Serial: countdown

Tape: count of characters in the tape buffer

Tape: write leader count/read block reverse counter

Tape: error flags; 0=no errors/long word marker

switch

Tape: dipole balance counter/medium word marker

switch

Tape: input status flags, sync countdown/RS-232

byte assembly

413

Tape

171

172-173

174-175

($AB)

($AC-AD)

($AE-AF)

176

177

178-179

180

181

182

183

185

186

187-188

189

191

192

193-194

195-196

215

256-318

631-640

671-672

788-789

828-1019

828

829-830

831-832

833-1019

1020-1023

37137

37140

37143

37148

37150

37152

37156

37157

37158

37159

37160

37161

37164

37166

50844

52091

57701

57796

58566

($B0)

($B1)

($B2-B3)

($B4)

($B5)

($B6)

($B7)

($B9)

($BA)

($BE|-BC)

($BD)

($BF)

($C0)

($C1-C2)

($C3-C4)

($D7)

($100-13E)

($277-280)

($29F-2A0)

($314-315)

($33C-3FB)

($33C)

($33D-33E)

($33F-340)

($341-3FD)

($3FC-3FF)

($9111)

($9114)

($9117)

($911C)

($91 IE)

($9120)

($9124)

($9125)

($9126)

($9127)

($9128)

($9129)

($912C)

($912E)

($C69C)

($CB7B)

($E165)

($E1C4)

($E4BC)

Tape: write leader counter/read checksum

comparison

Tape/Serial: start address for LOAD, SAVE,

VERIFY

Tape: ending address for LOAD, SAVE, and

VERIFY

Tape: dipole timing adjustment values

Tape: dipole timing timer 2 difference

Tape: pointer to tape buffer

Tape: miscellaneous flags/RS-232: various usage

Tape: flag for currently reading data or leader

Tape: accumulator for number of read errors

Number of characters in filename (0-187 or 0-16)

Current secondary address being used (also called
command)
Current device number being used

Pointer to the current filename

RS-232: send parity calculation work byte

Tape: input byte currently being constructed

Tape: motor interlock switch

Tape/Serial: pointer to the start of the I/O area

Pointer to the RAM area being LOADed

ASCII value of last key pressed

62 bytes of tape error log, indexes of bad data

Ten-byte keyboard buffer

Temporary save area for the normal IRQ vector

during tape I/O

Vector to the routine IRQ at 60095 ($EABF)

Tape buffer area, 192 bytes, for headers and BASIC

program data

Tape header identifier byte (1-5)

Starting address of where the tape data was written

from

Ending address, plus one, of where the tape data

was written from

Filename of tape data

Unused area

Port A I/O register

Timer 1 least significant byte (LSB) of count

Timer 1 high order (MSB) latch byte

Peripheral control register for handshaking

Interrupt enable register

Port B I/O register

Timer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 low (LSB) latch byte

Timer 1 high order (MSB) latch byte

Timer 2 low order (LSB) counter and LSB latch

Timer 2 high order (MSB) counter and MSB latch

Peripheral control register for handshaking

Interrupt enable register

BASIC LIST

BASIC GET

BASIC LOAD

BASIC CLOSE

Program patch area

LI

U

U

u

414

U

L

U

U

LJ

n

n

n

n

n

H

n

H

n

n

Tape

60095 ($EABF) IRQ handler
61792 ($F160) RS-232: check that serial and tape are idle, to pro

tect from RS-232

62000 ($F230) Obtain a byte from the tape buffer

62032 ($F250) Load .A with next tape character, getting block

when needed

62096 ($F290) Output a character to tape

62282 ($F34A) Close logical file number in .A

62474 ($F40A) Open a logical file, file number in 184 ($B8)
62786 ($F542) Load (or verify) to RAM from device number speci

fied in 186 ($BA)

62812 ($F55C) Load or verify RAM from a serial device

63047 ($F647) Display SEARCHING.... message for tape device

63122 ($F692) Save RAM to serial device

63217 ($F6F1) Save RAM to tape

63407 ($F7AF) Tape: find next tape header, .X back contains

header I.D. number

63463 ($F7E7) Tape: build an output tape header in the tape

buffer area

65365 ($F84D) Tape: load tape buffer address from 178-179 ($B2-

B3) into .X and .Y

63572 ($F854) Tape: set LOAD/SAVE start and end pointers to

the tape buffer

63591 ($F867) Tape: find the tape header for a specified filename

(or next)

63626 ($F88A) Tape: increment the tape buffer character counter

63636 ($F894) Tape: display PRESS PLAY ON TAPE message

63659 ($F8AB) Tape: check tape play/rewind/forward button

status

63671 ($F8B7) Tape: display PRESS RECORD & PLAY ON TAPE

message

63680 ($F8C0) Tape: initiate tape header read

63689 ($F8C9) Tape: read blocks from tape

63715 ($F8E3) Tape: write blocks to tape

63732 ($F8F4) Tape: common tape read/write, start tape

operations

63819 ($F94B) Tape: check for the STOP key

63837 ($F95D) Tape: set time limit for tape dipole

63886 ($F98E) Tape: read tape data bits into location 191 ($BF)

(IRQ driven)

64173 ($FAAD) Tape: determine if to store the input character from

tape

64466 ($FBD2) Tape: called to reset the tape read pointer

64475 ($FBDB) Tape: new tape character setup

64490 ($FBEA) Tape: toggle the tape write line to invert the output

signal

64523 ($FCOB) Tape: data write (IRQ driven)

64661 ($FC95) Tape: block leader write (IRQ driven)

64680 ($FCA8) Tape: leader write (IRQ driven)

64719 ($FCCF) Tape: restore IRQ vector

64748 ($FCF6) Tape: reset the current IRQ vector

64776 ($FD08) Tape: kill motor

64785 ($FD11) Compare current to end of LOAD/SAVE pointers

(tape and serial)

64795 ($FD1B) Increment current LOAD/SAVE pointer (tape and

serial)

415

64909

65009

65097

Appendix D

($FD8D)

($FDF1)

($FE49)

Tape button—see Tape

Tape port—see Tape

TV

36864

36865

36866

36867

36868

36870

36871

36878

37159

TV columns,r

THEN

49164

49310

51496

TI—see Timer

TI$

113-114

160-162

256-266

37157

37159

51621

51674

51872

53032

53533

55341

56034

56797

57146

63328

63335

Timer

139-143

177

180

665-666

($9000)

($9001)

($9002)

($9003)

($9004)

($9006)

($9007)

($900E)

($9127)

rv lines, TV

($C00C)

($C09E)

($C928)

($71-72)

($A0-A2)

($100-10A)

($9125)

($9127)

($C9A5)

($C9DA)

($CAA0)

($CF28)

($D11D)

($D82D)

($DAE2)

($DDDD)

($DF3A)

($F760)

($F767)

($£B-8F)

($B1)

($B4)

($299-29A)

Initialize system memory

IRQ vectors table

The filename pointer and length are stored from .X,

.Y, and .A

Device, secondary address, status chart

Left edge of TV picture and interlace switch

Bits 7-0: vertical TV picture origin

Number of columns displayed, part of screen map

address

Number of character lines displayed, part of raster

location

Raster beam location

Light pen horizontal screen location

Light pen vertical screen location

Sound volume and auxiliary color

Timer 1 high order (MSB) latch byte

Keyword dispatch vector table, in token order

BASIC keyword table in token number order

BASIC IF

Series evaluation pointer

Jiffy clock, realtime clock

Temporary floating point to ASCII work area for

printing numbers

Timer 1 most significant byte (MSB) of count

Timer 1 high order (MSB) latch byte

BASIC LET

LET: assign TI$

BASIC PRINT

Obtain variable name and type

Create new variable

BASIC WAIT

Multiply FAC by 10

Convert FAC to TI$ or an ASCII string

Constants for TI$ division conversion

Put jiffy clock from 160-162 ($A0-A2) into .Y, .X,

and .A

Set time into jiffy clock 160-162 ($A0-A2) from .Y,

.X, and .A

BASIC RND work area, last random number or ini

tial seed

Tape: dipole timing timer 2 difference

Tape: miscellaneous flags/RS-232: various usage

RS-232 system clock divided by baud

rate=microseconds

LJ

U

u

D

U

416

U

LJ

U

LJ

U

H

H

n

n

n

n

n

n

n

n

788-789

792-793

37136

37140

37141

37143

37145

37146

37147

37149

37156

37157

37158

37159

37160

37161

37162

37163

37165

37166

58624

60095

61334

61494

61531

61698

61718

62663

63732

63837

64490

64523

64680

65017

65193

65246

65372

TO

73-74

49164

49310

52510

Token

8

11

15

($314-315)

($318-319)

($9110)

($9114)

($9115)

($9117)

($9119)

($911A)

($91 IB)

($911D)

($9124)

($9125)

($9126)

($9127)

($9128)

($9129)

($912A)

($912B)

($912D)

($912E)

($E500)

($EABF)

($EF96)

($F036)

($F05B)

($F102)

($F116)

($F4C7)

($F8F4)

($F95D)

($FBEA)

($FCOB)

($FCA8)

($FDF9)

($FEA9)

($FEDE)

($FF5C)

($49-4A)

($C00C)

($C09E)

($CD1E)

($8)

($B)

($F)

43-44

61-62

113-114

122-123

153

($2B-2C)

($3D-3E)

($71-72)

($7A-7B)

($99)

Vector to the routine IRQ at 60095 ($EABF)

Vector to the routine NMI* at 65197 ($FEAD)

Port B I/O register

Timer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 high order (MSB) latch byte

Timer 2 high order (MSB) counter and MSB latch

Shift register for parallel/serial conversion

Auxiliary control register

Interrupt flag register

Timer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 low (LSB) latch byte

Timer 1 high order (MSB) latch byte

Timer 2 low order (LSB) counter and LSB latch

Timer 2 high order (MSB) counter and MSB latch

Shift register for parallel/serial conversion

Auxiliary control register

Interrupt flag register

Interrupt enable register

Retrieve the address of the I/O memory page

IRQ handler

Serial: delay one millisecond

RS-232: receive an input bit (NMI driven)

RS-232: prepare to receive the next input byte

RS-232: set up NMI for transmission

RS-232: open an RS-232 channel for input

RS-232: open RS-232 device

Tape: common tape read/write, start tape

operations

Tape: set time limit for tape dipole

Tape: toggle the tape write line to invert the output

signal

Tape: data write (IRQ driven)

Tape: leader write (IRQ driven)

Initialize the 6522 VIA registers

NMI handler routine

RS-232: NMI sequences

RS-232: VIA timer 2 values for baud rate table

Pointer to BASIC variable used in FOR loop

Keyword dispatch vector table, in token order

BASIC keyword table in token number order

BASIC NEXT

Scan-quotes flag for scanning BASIC statements

BASIC buffer index/array dimensions

Flag byte: LIST quote/collect done/tokenize

character

Pointer to the start of the tokenized BASIC

program

Saved TXTPTR of statement executing/to CONT

on

Series evaluation pointer

Get-BASIC-character routine

Device number of the current input device

417

Uppercase

512-600

772-773

774-775

776-777

49164

49234

49280

49310

50332

50553

50844

50970

51172

51531

54241

Appendix C

Uppercase—see

User port

19

153

186

37136-37151

37136

37137

37140

37146

37162

USR

0

1-2

49234

VAL

113-114

49234

55170

55213

56563

Variables

45-46

49-50

50104

50111

50782

51010

51621

($200-258)

($304-305)

($306-307)

($308-309)

($C00C)

($C052)

($C080)

($C09E)

($C49C)

($C579)

($C69C)

($C71A)

($C7E4)

($C94B)

($D3E1)

Character

($13)

($99)

($BA)

($9110-91 IF)

($9110)

($9111)

($9114)

($911A)

($912A)

($0)

($1-2)

($C052)

($71-72)

($C052)

($D782)

($D7AD)

($DCF3)

($2D-2E)

($31-32)

($C3B8)

($C3BF)

($C65E)

($C742)

($C9A5)

89-byte BASIC input buffer

Vector to the BASIC tokenization routine

Vector to the BASIC routine that expands and
prints tokens

Vector to the BASIC routine that executes the next
BASIC token

Keyword dispatch vector table, in token order

Function dispatch vector table, in token order

Math operation dispatch vector table, in token
order

BASIC keyword table in token number order

Store/replace a BASIC program line

Tokenize the BASIC line in BASIC text buffer
BASIC LIST

List detokenized BASIC keywords

Execute the current BASIC statement

BASIC ON

Check DEF FN and FN syntax

Tokens for BASIC keywords in numerical order

Current channel number for BASIC I/O routines

Device number of the current input device

Current device number being used

6522 VIA chip 1

Port B I/O register

Port A I/O register

Timer 1 least significant byte (LSB) of count

Shift register for parallel/serial conversion

Shift register for parallel/serial conversion

6502 JMP opcode 76 ($4C)

The USR jump vector in LSB/MSB (displacement/

page) form

Function dispatch vector table, in token order

Series evaluation pointer

Function dispatch vector table, in token order

Get string information

BASIC VAL

Convert an ASCII string to a floating point number

inFAC

Pointer to the end of BASIC program, start of

variables

Pointer to the end of BASIC arrays, start of free

area

Open space in memory for a new BASIC line or

variable

Move a block of memory

BASIC CLR

BASIC FOR

BASIC LET

LJ

G

LJ

U

D

418

u

u

u

u

u

r

n

r

r

r

r

r

52638

53377

54141

Appendix B

Vector to

3-4

5-6

84-86

768-769

700-711

772-773

774-775

776-777

778-779

788-789

790-791

792-793

794-795

796-797

798-799

800-801

802-803

804-805

806-807

808-809

810-811

812-813

814-815

r 816-817

818-819

49152

49154

49164

($CD9E)

($D081)

($D37D)

($3-4)

($5-6)

($54-56)

($300-301)

($302-303)

($304-305)

($306-307)

($308-309)

($30At30B)

($314-315)

($316-317)

($318-319)

($31A-31B)

($31C-31D)

($31E-31F)

($320-321)

($322-323)

($324-325)

($326-327)

($328-329)

($32A-32B)

($32C-32D)

($32E-32F)

($330-331)

($332-333)

($C000)

($C002)

($C00C)

Vector to

Formula/expression evaluation

BASIC DIM

BASIC FRE
Format of variables and floating point accumulators

Vector to the routines that convert floating point to

integer

Vector to the routines that convert integer to float

ing point

Jump opcode and vector to function routine

Vector to the routine to print a BASIC error mes

sage from a table
Vector to the BASIC main routine (execute or store

statement)

Vector to the BASIC tokenization routine

Vector to the BASIC routine that expands and

prints tokens

Vector to the BASIC routine that executes the next

BASIC token

Vector to the BASIC routine that evaluates a

variable

Vector to the routine IRQ at 60095 ($EABF)

Vector to the routine BREAK* at 65234 ($FED2)

Vector to the routine NMI* at 65197 ($FEAD)

Vector to the open logical file routine OPEN at

62474 ($F40A)

Vector to the close logical file routine CLOSE at

62282 ($F34A)

Vector to the open input channel routine CHKIN at

62151 ($F2C7)

Vector to the open output channel routine

CHKOUT at 62217 ($F309)

Vector to the reset all channels routine CLRCHN at

62451 ($F3F3)

Vector to the input-from-device routine CHRIN at

61966 ($F20E)

Vector to the output-to-device routine CHROUT at

62074 ($F27A)

Vector to the test STOP key routine STOP at 63344

($F770)

Vector to the get-from-keyboard routine GETIN at

61941 ($F1F5)

Vector to the abort all files routine CLALL at 62447

($F3EF)

User vector can be placed here; held over from PET

ML monitor

Vector to the load from device routine LOAD at

62793 ($F549)

Vector to the Kernal SAVE to device routine SAVE

at 63109 ($F685)

Vector to the routine for the cold start of BASIC

58232 ($E378)

Vector to the routine to do the warm start of BASIC

58471 ($E467)

BASIC keyword handler routines dispatch vector

table

H

419

49234

49280

($C052)

($C080)

64719

65472

65475

65478

65481

65484

65487

65490

65505

65508

65511

65530

65532

65534

Also see JuMP

VERIFY

10

172-173

183

187-188

828-1019

49164

50020

57698

57701

57809

VIA

139-143

145

176

177

181

631-640

645

660

665-666

792-793

37136-37151

37136

37137

37138

37139

37140

37141

37142

($FCCF)

($FFC0)

($FFC3)

($FFC6)

($FFC9)

($FFCC)

($FFCF)

($FFD2)

($FFE1)

($FFE4)

($FFE7)

($FFFA)

($FFFC)

($FFFE)

to

($A)

($AC-AD)

($B7)

($BB-BC)

($33C-3FB)

($C00C)

($C364)

($E162)

($E165)

($E1D1)

($8B-8F)

($91)

($B0)

($B1)

($B5)

($277-280)

($285)

($294)

($299-29A)

($318-319)

($9110-91 IF)

($9110)

($9111)

($9112)

($9113)

($9114)

($9115)

($9116)

BASIC function handler routines dispatch vector
table

BASIC math operation handler routines dispatch
vector table

Tape: restore IRQ vector

JuMP off 794-795 ($31A-31B)

JuMP off 796-797 ($31C-31D)

JuMP off 798-799 ($31E-31F)

JuMP off 800-801 ($320-321)

JuMP off 802-803 ($322-323)

JuMP off 804-805 ($324-325)

JuMP off 806-807 ($326-327)

JuMP off 808-809 ($328-329)

JuMP off 810-811 ($32A-32B)

JuMP off 812-813 ($32C-32D)

6502 vector to 65193 ($FEA9)

6502 vector to 64802 ($FD22)

6502 vector to 65394 ($FF72)

Tape: 0=LOAD, 1=VERIFY

Tape/Serial: start address for LOAD/SAVE/

VERIFY

Number of characters in filename (0-187 or 0-16)

Pointer to the current filename

Tape buffer area, 192 bytes, for headers and BASIC

program data

Keyword dispatch vector table, in token order

Miscellaneous messages

BASIC VERIFY

BASIC LOAD

Set LOAD, VERIFY, and SAVE parameters

BASIC RND work area, last random number of ini

tial seed

Keyswitch PIA: bottom keyboard row scan

Tape: dipole timing adjustment values

Tape: dipole timing timer 2 difference

Tape: flag for currently reading data or leader

Ten-byte keyboard buffer

Serial: timeout enable/disable flag

RS-232 pseudo-6551 command register

RS-232 system clock divided by baud

rate=microseconds

Vector to the routine NMI* at 65197 ($FEAD)

6522 VIA chip 1

Port B I/O register

Port A I/O register

Data direction register for port B

Eight bits, each of which corresponds to the same-

numbered bit

Timer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 low (LSB) latch byte

u

u

Q

G

U

420

u

u

LJ

U

U

H

n

n

n

n

n

n

n

37143

37144

37145

37146

37147

37148

37149

37150

37151

37152-37167

37152

37153

37154

37155

37156

37157

37158

37159

37160

37161

37162

37163

37164

37165

37166

37167

55341

58528

58537

58546

58624

60095

60190

61125

61316

61325

61334

61347

61531

61698

61718

62663

63284

63659

63732

64523

64719

64776

64802

65017

65193

($9117)

($9118)

($9119)

($911A)

($91 IB)

($911C)

($91 ID)

($91 IE)

($91 IF)

($9120-912F)

($9120)

($9121)

($9122)

($9123)

($9124)

($9125)

($9126)

($9127)

($9128)

($9129)

($912A)

($912B)

($912C)

($912D)

($912E)

($912F)

($D82D)

($E4A0)

($E4A9)

($E4B2)

($E500)

($EABF)

($EB1E)

($EEC5)

($EF84)

($EF8D)

($EF96)

($EFA3)

($F05B)

($F102)

($F116)

($F4C7)

($F734)

($F8AB)

($F8F4)

($FC0B)

($FCCF)

($FD08)

($FD22)

($FDF9)

($FEA9)

Timer 1 high order (MSB) latch byte

Timer 2 low order (LSB) counter and LSB latch

Timer 2 high order (MSB) counter and MSB latch

Shift register for parallel/serial conversion

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

Mirror of port A I/O register at 37137 ($9111)

6522 VIA chip 2

Port B I/O register

Port A I/O register

Data direction register for port B

Eight bits, each of which corresponds to the same-

numbered bit

Timer 1 least significant byte (LSB) of count

Timer 1 most significant byte (MSB) of count

Timer 1 low order (LSB) latch byte

Timer 1 high order (MSB) latch byte

Timer 2 low order (LSB) counter and LSB latch

Timer 2 high order (MSB) counter and MSB latch

Shift register for parallel/serial conversion

Auxiliary control register

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

Mirror of port A I/O register at 37153 ($9121)

BASIC WAIT

Serial: output a 1 on the serial data line

Serial: output a 0 on the serial data line

Serial: get an input bit from VIA1 and stabilize

Retrieve the address of the I/O memory page

IRQ handler

Scan the keyboard for keypresses using 6522 VIA2

Serial: clear attention

Serial: set clock line high

Serial: set clock line low

Serial: delay one millisecond

RS-232: send the next bit (NMI continuation

routine)

RS-232: prepare to receive the next input byte

RS-232: set up NMI for transmission

RS-232: open an RS-232 channel for input

RS-232: open RS-232 device

Increment the jiffy clock at 160-162 ($A0-A2)

Tape: check tape play/rewind/forward button

status

Tape: common tape read/write, start tape

operations

Tape: data write (IRQ driven)

Tape: restore IRQ vector

Tape: kill motor

Power-on/reset routine (checks for autostart

cartridge)

Initialize the 6522 VIA registers

NMI handler routine

421

VIC chip

65234

65246

65372

65439

VIC chip

1024-4095

36864-37135

36865

36866

36868

36869

36870

36872

36880-37135

37136-37151

37159

37888-38399

58629

58648

58819

60380

60705

60900

64802

65234

Video matrix

4096-4607

($FED2)

($FEDE)

($FF5C)

($FF9F)

($400-FFF)

($9000-910F)

($9001)

($9002)

($9004)

($9005)

($9006)

($9008)

($9010-910F)

($9110-91 IF)

($9127)

($9400-95FF)

. ($E505)

($E518)

($E5C3)

($EBDC)

($ED21)

($EDE4)

($FD22)

($FED2)

($1000-1 IFF)

Voice—see Sound

WAIT

20-21

73-74

49164

55195

55275

55341

Warm start

49154

58471

65234

6502

0

1-2

84-86

87-96

122-123

255

($14-15)

($49-4A)

($C00C)

($D79B)

($D7EB)

($D82D)

($C002)

($E467)

($FED2)

($0)

($1-2)

($54-56)

($57-60)

($7A-7B)

($FF)

256-511

422

($1OO-1FF)

BREAK interrupt entry

RS-232: NMI sequences

RS-232: VIA timer 2 values for baud rate table

JuMP to 60190 ($EB1E)

3072 bytes of expansion RAM area

6560 VIC chip

Bits 7-0: vertical TV picture origin

Number of columns displayed, part of screen map
address

Raster beam location •

Screen map and character map addresses

Light pen horizontal screen location

Potentiometer X/Paddle X value

Future expansion RAM/ROM space

6522 VIA chip 1

Timer 1 high order (MSB) latch byte

Screen color map (8K+ expanded VIC-20)

Retrieve the maximum number of screen columns

and lines

Initialize the 6550 VIC chip, screen, and related

pointers

Reset the VIC chip registers

Set keyboard decode table address in 245-246
($F5-F6)

Used to set uppercase/graphics character set

Initial values for VIC chip registers

Power-on/reset routine" (checks for autostart

cartridge)

BREAK interrupt entry

Screen map RAM on VIC-20 with 8K+ expansion

Line number integer in two-byte LSB/MSB format

Pointer to BASIC variable used in FOR loop

Keyword dispatch vector table, in token order

Obtain number 1-255

Get two parameters for POKE and WAIT

BASIC WAIT

Vector to the routine to do the warm start of BASIC

Perform a warm start of BASIC

BREAK interrupt entry

6502 JMP opcode 76 ($4C)

The USR jump vector in LSB/MSB (displacement/
page) form

Jump opcode and vector to function routine

BASIC numeric work area.

Get-BASIC-character routine

BASIC temporary area for floating point to ASCII

conversion

STACK

u.

u

D

U

u

Lf

U

u

u

u

n

H

H
! !

r—*

1 1

780-783

780

781

782

783

37143

37145

37148

37149

37150

37152-37167

37159

37161

37164

37165

37166

50782

58232

58471

58486

60095

64802

65193

65366

65394

65526

65530

65532

65534

Appendix C

($30C-30F)

($30C)

($30D)

($30E)

($30F)

($9117)

($9119)

($911C)

($91 ID)

($91 IE)

($9120-912F)

($9127)

($9129)

($912C)

($912D)

($912E)

($C65E)

($E378)

($E467)

($E476)

($EABF)

($FD22)

($FEA9)

($FF56)

($FF72)

($FFF6)

($FFFA)

($FFFC)

($FFFE)

The BASIC SYS command uses this area to save

and load

6502 .A register

6502 .X register

6502 .Y register

6502 .P processor status register

Timer 1 high order (MSB) latch byte

Timer 2 high order (MSB) counter and MSB latch

Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

6522 VIA chip 2

Timer 1 high order (MSB) latch byte

Timer 2 high order (MSB) counter and MSB latch
Peripheral control register for handshaking

Interrupt flag register

Interrupt enable register

BASIC CLR

Perform a cold start of BASIC

Perform a warm start of BASIC

Program patch area

IRQ handler

Power-on/rest routine (checks for autostart

cartridge)

NMI handler routine

Restore 6502 registers from the stack and return

from interrupt

IRQ routine initial 6502 entry point

Four unused bytes of 255 ($FF)

6502 vector to 65193 ($FEA9)

6502 vector to 64802 ($FD22)

6502 vector to 65394 ($FF72)

Code Chart of 6502 operation codes

423

u

D

D

LJ

D

U

D

D

0

D

If you've enjoyed the articles in this book, you'll find
the same style and quality in every monthly issue of

COMPUTERS Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

computei'
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 DVIC-20 Q Other
01 02 03

□ $20 One Year US Subscription

□ $36 Two Year US Subscription

□ $54 Three Year US Subscription

Subscription rates outside the US:

□ $25 Canada
□ $45 Air Mail Delivery

□ $25 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card. Your subscription will begin with the next avail
able issue. Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.

□ Payment Enclosed □ VISA
□ MasterCard □ American Express

Acct. No. Expires

The COMPUTEf's Gazette subscriber list is made available to carefully screened organiza

tions with a product or service which may be of interest to our readers. If you prefer not to

receive such mailings, please check this box □.

u

D

D

LJ

D

U

D

D

0

D

COMPUTE! Books
P.O. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out order directly from COMPUTE!

For Fastest Service

Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title Price

Machine Language for Beginners $14.95*

Home Energy Applications $14.95*

COMPUTEI's First Book of VIC $12.95*

COMPUTED Second Book of VIC $12.95*

COMPUTED First Book ofVIC Games $12.95*

COMPUTED First Book of 64 $12.95*

COMPUTEI's First Book of Atari $12.95*

COMPUTED Second Book of Atari $12.95*

COMPUTED First Book of Atari Graphics $12.95*

COMPUTED First Book of Atari Games $12.95*

Mapping The Atari $14.95*

Inside Atari DOS $19.95*

The Atari BASIC Sourcebook $12.95*

Programmer's Reference Guide for TI-99/4A $14.95*

COMPUTED First Book of Tl Games $12.95*

Every Kid's First Book of Robots and Computers $ 4.95t

The Beginner's Guide to Buying A Personal

Computer $ 3.95t

* Add $2 shipping and handling. Outside US add $5 air mail; $2

surface mail,

t Add $1 shipping and handling. Outside US add $5 air mail; $2

surface mail.

Please add shipping and handling for each book

ordered.

Total enclosed or to be charged.

Total

All orders must be prepaid (money order, check or charge]. All
payments must be in US funds. NC residents add 4% sales tax.

□ Payment enclosed Please charge my; □ VISA □ MasterCard

□ American Express . Acc't. No. Expires /

Name

Address

City State

Country

Allow 4-5 weeks for delivery.

u

D

D

LJ

D

U

D

D

0

D

u

D

D

LJ

D

U

D

D

0

D

	Binder1.pdf
	mapping - front (Large).jpg
	mapping - back (Large).jpg

