Revised

COMPUTE"'s

B Lam
Edward H. Carlson
Wustrated by Paul D. Trap

A fun, easy-to-use guide fo leaming BASIC
on the Commodore 64. For kids and adults—
for any Commodore &4 user,

A COMPUTEI Books Publication §1295

2333 33 . 2333333 7

T DA

177270000

COMPUTEYs
Kids
and the
Commodore 64

Edward H. Carlson
lllustrated by Paul D. Trap

COMPUTE! Publications,nc. @

Greensboro, North Carolina

Copyright 1984, COMPUTE! Publications, Inc.

All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the
United States Copyright Act without the permission of the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-77-9

10987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, is one of the ABC
Publishing Companies and is not associated with any manufacturer of personal computers. Commodore 64 and
VIC-20 are trademarks of Commodore Electronics Limited.

C C

-

CCCCC

¢

CocCcCcrcc

]

1)

o~

)

I

3

-~

)

]

]

]

-

)

1 1

Contents
Acknowledgments i e v
Tothe Kids ...t i et e e vii
TotheParentsttt ittt e viii
Tothe Teacher it i i i et ix
About Programming i e X
About the BooKottt i e e xi
Introduction
1. NEW, PRINT, REM, and RUN i, 1
2. Color and the Keyboard oo, 10
3. LIST, Boxes in MeMOIYoiuuiiinniinneiineinennnennnenn. 17
4. The Cursor Keys and Drawing Pictures 25
5. Tricks with PRINT i i it 32
6. The INPUT Statementc.oiiiniiiiriiniiniinennnann. 39
7. The LET Statement, Gluing Strings oiviiiiinn... 44
8. The GOTO Statement and the RUN/STOP Key 50
9. The IF Statementc.iiiiiiinniriniineenneennnnnnenn. 59
10. Introducing Numbers i i 66
11. TABand Delay LoOpsvuiiiiiiitiiiie it 74
12. The IF Statement with Numbers 80
- 13. Random Numbers and the INT Function 87
14.Save to Disk ...t e 94
Graphics, Games, and All That
15. Some Shortcutsoouiii i e 101
16. Moving Pictures i e 111
17. FOR-NEXT LOOPS ..t vtit ittt it e et e e e enn 117
18. DATA, READ, RESTOREottt it 123
19. Sound Effectsc.iiiiii i 129
20. Names, Clocks, and Modesc.coviiiniinniinnennennnnn. 137
21. Color Graphicsttt 145
22. POKEing Graphicsottt 152
23. Secret Writing and the GET Statement 159
24. Pretty Programs, GOSUB, RETURN, END 165
25. Logic: AND, OR, NOTo i i e et 172
Advanced Programming .
26. Snipping Strings: LEFT$, MID$, RIGHTS$, LEN 180
27. Switching Numbers with Strings 187

28. Action Games and the FunctionKeys 193
29. MUSIC ..o e e 203
30. Arrays and The DIM Statement 210
BL. SPIites ... e e e 219
32. User-Friendly Programsc..oiiiiiiniiiiinnnnnnna.n. 229
33. Debugging, STOP, CONT i, 236
Appendix

Disk Usage i 243
Reserved Wordsttt i 246
Answers to ASSINMENtSttt i 247
GlOSSATY ittt e 266
Error Messagesuuuiiiiniiiiinint it 278
Topical Index i 282
Commands and Functions Indexo i ... 285

- C

C

CCd

L C

C

L.

L L CL

1

2}

“}

1)

y)

]

B

1

Acknowledgments

My sincere thanks go to Paul Sheldon Foote for suggesting I write a book on
teaching BASIC to children.

This book is sixth in a series that started with Kids and the Apple. Each book has
been written to fit the strengths of the computer in question and modified in re-
sponse to what I have learned about teaching children.

I am deeply grateful to my fellow staff members at the Michigan State University
“Computer Camp”’: Mark Lardie, Mary Winter, John Forsyth, and Marc Van
Wormer, each of whom shared their experiences with me and helped provide in-
sight into the minds of the children.

Mary Winter’s vast knowledge of Commodore and skill in presenting computing
topics to children have been especially helpful to me on many occasions.

Several families have used the Apple version of this book in their homes and of-
fered suggestions for improvement. I especially wish to thank George Campbell

and his youngsters, Andrew and Sarah; Beth O’Malia and Scott, John, and Matt;
Chris Clark and Chris Jr., Tryn, Daniel, and Vicky; and Paul Foote and David.

COMPUTE! Publications started publishing COMPUTE! magazine at about the
same time that I started writing articles on home computing. I am grateful that
COMPUTE! encouraged my writing career by accepting some of my early articles.
This encouragement continues with the publishing of the books from the Kids
and . . . series.

This book was originally published by Datamost, Inc. I greatly appreciate the skill
and energy of Stephen Levy in editing and assembling this book for COMPUTE!
Publications, Inc.

Paul Trap shares the title page honors with me. His drawings are an essential part
of the book’s teaching method. I am grateful to Paul for his lively ideas, cheerful
competence, and quick work which make him an ideal workmate.

My children have worked on this book in many ways, from typing and testing
programs to proofreading and indexing. In addition, they attemped to help the
“bald-headed one” to properly express juvenile taste. I thank Karen, Brian, and
Minda for their essential help.

My final and heartfelt thanks go to my wife, Louise. As absorbed in pro-
fessional duties as I, she nevertheless took on an increased share of family du-
ties as the book absorbed my free time. Without her support I could not have
finished the work.

vi

C € C

CCCC

(S W R PN B

C

3]

]

)

)

]

~
«

2

.

1}

N

To the Kids

This book teaches you how to write programs for the Commodore 64
computer.

You will learn how to make your own action games, board games, and word
games. You can entertain your friends with challenging games and provide
some silly moments at your parties with the short games you invent.

Perhaps your record collection or your paper route needs the organization your
special programs can provide. If you are working on the school yearbook,
maybe a program to handle the finances or records would be useful.

You may help your younger sisters and brothers by writing drill programs for
arithmetic facts or spelling words. Even your own schoolwork in history or a
foreign language may be made easier by programs you write.

How to use this book. Do all the examples. Try all the assignments. If you get
stuck, first go back and reread the lesson carefully from the top. You may have
overlooked some detail. After trying hard to get unstuck by yourself, you may go
ask a parent or teacher for help.

There are review questions for each lesson.
Be sure you can answer them before

EAT ALL THE BUGS IN YOUR
PROGRAMS!

N e
\ | &Sz
57
A /%4
gﬂ%ﬁﬂ[mwg
SO0
< 2

vii

o7 TABL22) "

To the Parents

This book is designed to teach BASIC on the Commodore 64 to youngsters
from 10 to 14 years old. It gives guidance, explanations, exercises, reviews, and
quizzes. Some exercises have room for the student to write in answers that you
can check later. Answers are provided in the back of the book for program
assignments.

Your child will probably need some help in getting started and a great deal of
encouragement at the sticky places. For further guidance, you may wish to read
my article in Creative Computing, April 1983, p. 168.

Learning to program is not easy because it requires handling some sophis-
ticated concepts. It also requires accuracy and attention to detail, which are not
typical childhood traits. For these reasons, it is a valuable experience for chil-
dren. They will be well rewarded if they can stick with the book long enough
to reach the fun projects that are possible once a repertoire of commands is
built up.

How to use this book. The book is divided into 33 lessons for the kids to do.
Each lesson is preceded by a “Notes” section which you should read. It outlines
the things to be studied, gives some helpful hints, and provides questions which
you can use verbally (usually at the computer) to see if the skills and concepts
have been mastered. '

These notes are intended for the parents,

but older students may also profit by

reading them. Younger students will probably
not read them, and can get all the

material they need from the lessons. For

the youngest children, it may be advis-

able to read the lesson out loud with them
and discuss it before they start work.

viii

C CC

C

CC

L & C

L C

C

1

To the Teacher

This book is designed for students in about the seventh grade. It teaches BASIC
and the features of the Commodore 64.

The lessons contain explanations (including cartoons), examples, exercises, and
review questions. Notes for the instructor, which accompany each lesson, sum-
marize the material, provide helpful hints, and give review questions.

The book is intended for independent study, but may also be used in a class-
room setting.

I view this book as teaching programming in the broadest sense, using the
BASIC language, rather than teaching BASIC. Seymour Papert has pointed out
in Mindstorms (Basic Books, 1980) that programming can teach powerful ideas.
Among these is the idea that procedures are entities in themselves. They can be
named, broken down into elementary parts, and debugged Some other con-
cepts include “chunking” ideas into “‘mind-sized bites,” organizing such mod-
ules in a hierarchical system, looping to repeat modules, and conditional testing
(the IF-THEN statement).

Each concept is tied to the student’s
everyday experiences through choice of
language to express the idea, through
choice of examples, and through car-
toons. Thus, metaphor is utilized in
making the “new”” material familiar to the
student.

|
57\
B

J

About Programming

There is a common misconception about programming a computer. Many peo-
ple think that ability in mathematics is required. Not so. The childhood activ-
ities that computing most resembles may be playing with building blocks and
writing an English composition.

Like a block set that has many copies of a few types of blocks, BASIC uses a
relatively small number of standard commands. Yet the blocks can be formed
into a unique and imaginative castle, and BASIC can be used to write an almost
limitless variety of programs.

Like an essay on the theme “How I Spent My Summer,” writing a program in-
volves skill and planning on all scales. To write a theme, a child must organize
thoughts on several scales, from the overall topic, to lead and summary para-
graphs and sentences, on down to grammar, punctuation, and spelling of each
word in the sentences.

Creativity in each of these activities—blocks, writing, and BASIC—has little
scope at the smallest level—individual blocks, words, and commands. At best,
a small bag of tricks is developed. For example, the child may discover that the
triangle block, first used to make roofs, makes splendid fir trees. What is
needed at the small scale is accuracy in syntax. Here, computing is an almost
ideal self-paced learning situation, because syntax errors are largely discovered
and pointed out by the BASIC interpreter as the child builds and tests the
program.

On a larger scale, creativity comes into full scope and many other latent abil-
ities of the child are developed. School skills such as arithmetic and language
arts are utilized as needed, and thus strengthened. But the strongest features of
programming are balanced between analysis (why doesn’t it work as I want)
and synthesis (planning on several scales, from the program as a whole down
through loops and subroutines to individual commands).

The analyﬁcal and synthetical skills learned in programming can be transferred
to more general situations and can help the child to a more mature style of
thinking and working.

C C

-
~

T N

L

S B U

T

C

4y ,))

B Y I B

A

About the Book

This book is arranged in 33 lessons, each with “Instructor Notes” and each
containing assignments and review questions.

For instructors who feel themselves weak in BASIC or who are beginners them-
selves, the student’s lessons form a good introduction to BASIC. The lessons
and notes differ in style. The lessons are pragmatic and holistic; the notes

and glossary are detailed and explanatory.

The book starts with a bare-bones introduction to programming, leading
quickly to the point where interesting programs can be written. See the notes
for lesson 6, “The INPUT Statement,” for an explanation. The central part of
the book emphasizes more advanced and powerful techniques. The final part
of the book continues building on this, but also deals with broader aspects of
the art of programming, such as editing, debugging, and user-friendly
programming.

The assignments involve writing programs—usually short ones. Of course,
many different programs are satisfactory solutions to these assignments. In
the back of the book I have included solutions for assigned programs, some
of them written by children who have used the book.

Lesson 14, “Saving to Disk,” can be studied anytime after the third lesson.

xi

2333 33 . 2333333 7

B 0 J I N

1

B

)

J 1 7]

1

Instructor Notes 1. NEW, PRINT, REM, and RUN

This lesson is an introduction to the computer. There are many minor questions
your student may have at the start, and you should pull up a chair and help in
the familiarization.

If something goes wrong and all else fails, tell your student to turn off the com-
puter, then turn it on and start again.

The light blue writing on a dark blue background may be hard to read. Instruc-
tions are given for making white letters. If these are still hard to read, then the
instructions to POKE 53281,0 to get a black background may be followed.

The contents of the lesson:

. Turning on the computer.

. Typing versus entering commands or lines. The RETURN key.

. The computer understands only a limited number of words.

. REM puts remarks in the program.

. What is a program? Numbered lines.

. Clearing the screen.

. White letters on a black background.

. Memory can be cleared with NEW,

. What is seen on the screen and what is in memory are different. (This may be

a hard concept for the student to understand at first.)

10. RUN makes the computer go to memory, look at the statements in the lines
(in order), and perform the statements.

11. You can skip numbers in choosing line numbers, and why you may want to
do so.

OO GO =

Questions:
1. Write a program that will print your name.

2. Make the program disappear from the TV screen but stay in memory.

3. Run it.

4. Erase the program from memory.

5. Clear the screen and write a program that prints HELLO.
6. Make it run.

7. Erase it from memory but leave it on the screen.

8. How do you make the letters nice and white?

L C C

L C

]

I

B SN BN

B

]

)

]

17 7]

Lesson 1. NEW, PRINT, REM, and RUN

How to Get Started
Turn on the computer. You will see a message on the screen. The last word is
READY.

Below READY is a flashing square. This square is called the cursor. When you see
it flashing, it means the computer is ready for you to type something in.

Cursor means runner. The little square runs along the screen and shows where
the next letter you type goes.

Typing
Type some things. What you type shows on the TV screen.

CURSOR, GO HOME!
The cursor’s home is in the corner of the screen at the top. Find the CLR/HOME
key (it’s on the top row, right side of the keyboard) and press it. The cursor jumps

to home.

Now type some more. You are writing over what is already on the screen. This is
a mess. Let’s get a nice clean screen.

Erasing the Screen
Two keys used together erase the screen.

Hold down one of the SHIFT keys and press the CLR/HOME key. The screen is
erased.

CLR stands for clear. Clear the screen means the same as erase the screen.

Command the Computer
Try this.

Type: GIVE ME CANDY
and press the RETURN key.

(If you make a mistake, press CLR/HOME
and start over.)

The computer printed

?SYNTAX ERROR
READY.

When the computer prints ?2SYNTAX ERROR, it means the computer did not
understand you.

The computer understands only about 70 words. You need to learn which words
the computer understands.

Here are the first four words to learn:

NEW, PRINT, REM, and RUN.

C C

CCoCoCoCc

C Lo CCCcC

1

1 1]

1

1

N

B I I

J o

1

Nice White Letters
If the letters on your TV screen are hard to read, try this:

Find the CTRL key.
Press it down and hold it down while you press the 2 key.

Now the letters you type will be pure white on a dark blue background.

Nice Black Background :
If it is still hard to read the letters on the TV, try this:

Type: POKE 53281,0 and press the RETURN key.

The background on the TV screen turns black. Adjust the TV controls to make the
writing on the screen easy to read.

The NEW Command
Type: NEW and press RETURN.

NEW empties the computer’s memory so you can put your program in it.

»

. % NEW l,
g ‘“‘1’5
B A M
¢S, 9 il
g3 AL]
CEaEE

How to Enter a Line
When we say enter, we will always mean to do these two things.

1. Type a line.
2. Then press the RETURN key.

Clear the screen and enter this line;

10 PRINT "HI"

(The “ marks are quotation marks. To make “ marks, hold down the SHIFT key
and press the key that has the 2 and the “ on it.)

(Did you remember to press the RETURN key at the end of the line?)
Now the line number 10 is in the computer’s memory.
It will stay in memory:

until you enter the NEW command, or
until you turn off the computer.

Line 10 is a very short program.

C CCC

I B I

C

C

Lo

CCr

1

| I B

i

1

11

3 I R

The Number 0 and the Letter O
The computer always writes the zero like this:

zero @

and the letter O like this:
letter O ©

You have to be careful to do the same.
Right: 16 PRINT “HI"

Wrong: 10 PRINT "HI"

What Is a Program?

A program is a list of statements for the computer to do. The statements are writ-
ten in lines. Each line starts with a number. The program you entered above has
only one line.

How to Run a Program)
A moment ago you put this program in memory: Q
16 PRINT “HI"

Now enter: RUN

(Did you remember to press the RETURN key?)

The RUN command tells the computer to look

in its memory for a program and then to obey
the statements it reads in the lines.

Did the computer obey the PRINT statement? The PRINT statement tells the com-
puter to print whatever is between the quotation marks. The computer printed:

HI

READY.

How to Number the Lines in a Program

Clear the screen.
Enter NEW and then this program:

1 REM HELLO
2 PRINT "HI"
3 PRINT "FRIEND"

This program has three lines. Each line starts with a statement. You have already
learned the PRINT statement. We will tell you about the REM statement in a
minute.

Usually you will skip numbers when writing the program.

Like this:

14 REM HELLO
20 PRINT "HI"
30 PRINT "FRIEND"

It is the same program but has different numbers. The numbers are in order, but
some numbers are skipped. You skip numbers so you can add new lines in be-
tween the old lines if the program needs fixing later.

Run the program you have entered. The computer starts with the lowest line
number and goes down the list in order and does what each line tells it to do.

The REM Statement

The REM statement is for writing little notes to yourself. The computer ignores
the notes. Use REM for putting the name of your program in the top line of the
program.

C CCEC

C C L

C

[

L CCEC

-

B D D R I R

]

-]

I T I T

Assignment 1:

1. Use the CLR/HOME key to put the cursor home.
Now use the same key (SHIFTed CLR/HOME) to erase the screen.

2. Use the command NEW. Explain what it does.

3. Write a program that uses REM once and PRINT twice. Then use the command
RUN to make the program obey the statements. Explain what it does.

e

Instructor Notes 2. Color and the Keyboard

The Commodore 64 has powerful color and graphics characters available from the
keyboard. They provide plenty of “’bells and whistles” to the student for increas-
ing program richness.

Each key has up to three functions, chosen by just pressing the key, or by press-
ing it while holding down the SHIFT, CTRL, or the Commodore key. For colors,
the CTRL key is held down while a color key (one of the number keys) is
pressed.

The CLR/HOME key homes the cursor when pressed. (Home is the upper left
corner of the screen.) Pressed with SHIFT, the CLR/HOME key erases the screen.

All these keys can be used in PRINT statements in a program. This gives the
Commodore 64 some very powerful options, and several lessons in the book are
devoted to exploiting them.

A white background is used in this lesson. Some colors do not show up well on
white. In fact, for each color screen, there will be some colors that give blurry
characters.

If you choose white for the screen color and also white for the letter color, you
will see nothing when you type! Try POKE 53821,15 for a gray screen that will
show letters of any color obtained from the color keys.

Pressing the CTRL and RVS ON keys at the same time gives reversed characters.
The reverse of a space is a colored block. A useful way to make color bars for
adjusting the color TV is to press CTRL and RVS ON, then hold down the space
bar to make a colored bar. Repeat for each of the colors you get from CTRL and a
color key. Then adjust your TV for best color. Yellow and perhaps purple are the
most sensitive to proper adjustment.

10

C CLCL

C C CLC

(R

.

.

C CLC

]

1

1

]

1 1)

1

2]

N

1

]

1

~

N

Questions:

1.

How do you do each of these things:

Make the computer type with red letters?
Erase the screen?

Empty the memory?

Print your name?

. How do you change the screen background color to white?
. What special key do you press to enter a line?
. What does the computer mean when it prints SYNTAX ERROR?

. How could you print FIRE with each letter in a different color?

11

Lesson 2. Color and the Keyboard

Turn your computer off, then on again. Now you're ready to start the lesson.

Making a White Background
Enter: POKE 53281,1

The screen turns white.

Careful! The number has to be exactly 53281. If you use another number by mis-
take, the computer may get “sick”” and you will have to turn it off, then on, to
make it well again.

Making Red Letters
Look at the 3 key. There are three things written on it.

The character 3 in the middle.
The character # at the top.
The word RED on the front of the key.

Here are the three things this key can do:

Press the 3 key. It prints 3.
Hold down the SHIFT key and press 3. It prints #.
Hold down the CTRL key and press 3. It changes the color!

(CTRL is short for control.
The CTRL key helps control
the color that is printed.)

The cursor is now red. Every
letter we type will be red, too.
Try it.

C C

C

-

L [

(.

C CCCLE

1

N

-1

N

1]

]

)

N

)

]

1

There are eight colors on the number keys. They are:

Black BLK
White WHT
Red RED
Cyan (blue-green) CYN
Purple PUR
Green GRN
Blue BLU
Yellow YEL

Type letters in different colors. Hold down the CTRL key and press one of the
color keys.

Now type. Try each color.

Tune the TV for Good Colors
Tune the TV color controls so that the letters you typed are the right colors.

If you can make a good yellow the rest of the colors are probably okay.

Rainbow Letters
You can make the computer change colors in the middle of a program. Tell the
computer what color by using a PRINT statement.

Enter:

10 REM RAINBOW
20 PRINT "..."
38 PRINT "POT"
40 PRINT "..."
58 PRINT "OF GOLD"

but don’t put dots in line 20 or line 40.

In line 20 press CTRL and the BLK key instead of dots.
In line 40 press CTRL and the YEL key instead of dots.

13

It will look like this on the screen:

R0 PRINT “H ”
40 PRINT “ 7 »

Run the program. It should print POT in black letters and OF GOLD in yellow
letters.

Oh, Oh! I’m in Trouble, Kids!
How can I tell you to press CTRL and a color key in a PRINT statement?

I can’t just use dots because you will not know what color I mean.

I know! I will use capital letters inside braces like these { } for color keys.
Look: R0 PRINT “{CYN}”

means R0 PRINT ‘“hold CTRL press CYN”’

gives 20 PRINT “N’ on the screen

but 20 PRINT “CYN”

means type the three letters C, Y, and N inside the quotation marks.

A Shortcut

Put the color key characters in the same PRINT statements as the words. The pro-
gram looks like this:

In the book On the screen
10 REM RAINBOW 10 REM RAINBOW
20 PRINT “{GRN}POT” 20 PRINT “ + POT”

30 PRINT “{YEL}OF GOLD” 30 PRINT “ 7 OF GOLD”

(Remember: “{GRN}" means hold down CTRL key and press 6 key.)

14

CCcC

C C CE©

I AU AR R N B O

1

b

]

.

]

-

B I I

1

1

More Rainbows
Run:
16 REM LUCKY

2@ PRINT "{RED}HI"
30 PRINT "{GRN}SALLY"

Run:

12 REM LEPRECHAUN
3¢ PRINT "{RED} P {cyYN} I {PUR} X {GRN} I {BLU} E {YEL} s"

I put spaces in line 30 so you can read it easily. You should not put in the spaces.
Without spaces it looks like this:

39 PRINT "{RED}P{CYN}I{PUR}X{GRN}I{BLU}E{YEL}S"
Aren’t you glad I put in the spaces?

How does line 30 look on the screen?

/?7}

’I{Mﬂwqﬂ”’”/‘m[”l"”//ﬂ/{m{{‘zt‘\»m{“ﬁ k)~ ”
)

' ‘a J

AT e PO

15

\[(//l el ,
" o1V
o

C

Other Instructions in PRINT Statements
Just as “{RED}"” in a PRINT statement means CTRL-RED,

“{CLR}” means SHIFTed CLR/HOME
and “{HOME}"” means CLR/HOME.

In each case, you press one or two keys and you see something funny on the
screen, not “{CLR}"”, “{RED}”, or “{HOME}".

Run this:

18 PRINT "{CLR}"

15 PRINT

20 PRINT " {WHT}HI"

25 PRINT

3¢9 PRINT “{CYN}HI AGAIN"

Lines 15 and 25 just print a blank line.
Change line 30 to:
3¢ PRINT "{HOME}{GRN}HI AGAIN"

and run it again.

Assignment 2:

1. Write a program that prints your first, middle, and last names, with the first
name green, the middle name yellow, and the last name red.

2. Now change the program so that each letter of your first name will have a dif-
ferent color.

16

. C

L C L

c btk

o

N

1

-

1 1

2 T T R I

N

Instructor Notes 3. LIST, Boxes in Memory

In this lesson:

LIST, LIST 30

Memory boxes holding lines

Erase one line from memory

Add a line between old lines
Replace a line

REM statement

CLR/HOME key in a program
INST/DEL key

Drawings using a PRINT statement

By definition there is a difference between a command and a statement, but the
BASIC interpreter does not distinguish between them. Later in the book I will ex-
plain the differences. For now your student needs to understand that the program
is stored in memory even when it is not visible on the screen, and that LIST just
lists the program to the screen. The special uses like LIST 100-300 and LIST -300
will be taken up later.

Computer memory as a shelf of boxes is a key model that we will develop in this
book. It is an important tool in helping the student understand variables and the
detailed workings of complicated expressions in a statement.

Using PRINT to draw pictures is demonstrated. It is better to draw some at the
end of each lesson than to do a lot now. After lesson 4, drawing helps develop
line-editing skills.

Questions:
1. How do you erase a line you no longer want?

2. Press CLR/HOME. Now, how do you show all of the program in memory on
the screen?

17

. How can you replace a wrong line with a corrected one?

. Suppose you want to put a line in between two lines you already have in mem-
ory. How do you do this?

. Explain how the computer puts program lines in “boxes” in memory. What
does it write on the front of the box?

. How do you make a program clear the screen when it starts?

18

C CC

I N DU

C

C CCCLECE

1)

1

I

1

| .

[N

l

A

) I

t

Lesson 3. LIST, Boxes in Memory

Clear the screen and erase the memory.
(Start each lesson by clearing screen and memory.)

Now enter:

10 REM HOUSE
20 PRINT "COME ON OVER"

Run this two-line program. Then clear the screen.
The program is gone from the screen.

But the program is not lost. It was stored in the computer’s memory. We can ask
the computer to show us the program again.

Listing the Program
Make the computer show you the whole program.

Enter: LIST

To make the computer show you just one line of
the program, enter LIST followed by the number
of the line, like this:

LIST 20

19

The Memory

The computer’s memory is like a shelf of boxes. There is a spot on the front of
each box to write its name. At the start, all the boxes are empty and no box has a
name.

When you entered: 16 REM HOUSE

the computer took the first empty box and wrote the name Line 10 on the front.
Then it put the statement REM HOUSE in the box and put the box back on the
shelf.

When you entered: 20 PRINT "COME ON OVER"

the computer took the second box and wrote Line 20 on its label. Then it put the

statement PRINT “COME ON OVER” in the box and put that box in its place on
the shelf.

Erasing a Line from Memory
To erase one line of the program, enter the line number with nothing after it.

To erase line 20, enter: 20

You still see the line on the screen, but do a LIST and you'll see that line 20 is
gone from memory.

20

C C

L.

L

C o C ..

N

J

]

N

-

N

3

2

1

;l

-

1

]

When you enter just a line number with nothing after it, the computer finds the
box with that line number on it, empties the box, and erases the name from the

front of the box.

How do you erase the whole program? (See lesson 1 for the answer if you forgot.)

What does the computer do to the boxes when you give it the command NEW?

Adding a Line

You can add a new line anywhere in the program, even between two old lines.
Just pick a line number between two old lines, and type your line in. The com-
puter puts it in the correct place.

Enter NEW and this: 10 REM MORE AND MORE
20 PRINT "MORE LINES WANTED"
4@ PRINT "NOW"

List it and run it. Now add this line:

15 PRINT "STILL"

21

List and run it again.

Fixing a Line

If a line is wrong, just type it over again. For example, in the above program line
number 40 can be changed by entering:

40 PRINT "DOGIE"

What did the computer do to the box named Line 40 when you entered the line?

22

C

C CCCCcC

C

I VU B SN B B

1]

-l

-

o

10

1

]

N

-l

)

1

N

The REM Statement
Enter NEW and this:

10 REM LAZY

2@ PRINT

3¢ PRINT “LINE 18 DOES NOTHING"
35 REM THIS LINE DOES NOTHING
40 LIST

REM means REMark. Use REM to write any
little note in the program that can help the
reader understand the program.

Using the CLR/HOME Key in a PRINT Statement
Suppose you want your program to start with a clean screen.

Run:

10 REM CLASSY CAR
20 PRINT "{CLR}{CYN}MERCEDES-BENZ"

Where it says “{CLR}"” in the PRINT statement, you should hold down the
SHIFT key and then press the CLR/HOME key. Where it says “{CYN}"”, hold
down the CTRL key and press the CYN key.

Picture Drawing
You can use the PRINT statement to draw pictures. Here is a picture of a car. Add
these lines to your program.

10 REM CLASSY CAR
2@ PRINT "{CLR}{CYN}MERCEDES-BENZ"
25 PRINT

30 PRINT " XXXXX"

40 PRINT "XXXXXXXXXXX"

5@ PRINT " o{7 SPACEsS}o"

23

Spaces are part of the drawing. Whenever you see braces, { }, it should tell you
something special needs to be done. On line 50 where it says {7 SPACES}, press
the space bar seven times. Here are the keystrokes for line 50:

5 0SPACE PRI N T SPACE “ SPACE O SPACE SPACE SPACE SPACE SPACE
SPACE SPACE O ”

Don’t forget the space on line 30.

Assignment 3:
1. What command will list line 10 of a program?

2. How do you tell the computer to list the whole program on the screen?
3. What does the computer do (if anything) when it sees the REM statement?
4. What does the computer put in the boxes on its shelf?

5. Use REM and PRINT to draw three flying birds on the screen.

24

Ct

R S N S

1

1

)

3 3

B

B I B |

1

)

J

Instructor Notes 4. The Cursor Keys and Drawing Pictures

This lesson concerns the CRSR arrow keys, the graphics symbols on many keys,
and the Commodore key.

The arrow keys are used in moving the cursor to any point on the screen. In
particular, moving the cursor onto any part of a line allows editing of the line.
Characters in a line are not affected by the cursor moving over them. Wherever
the cursor stops, you can type in new characters.

For now we will not consider the insertion of characters, only their replacement
by others or their deletion. When all is satisfactory, you can enter the line in the
computer by pressing RETURN.

You can even change the line number. This allows you to move a line to another
number. It also allows you to make copies of a line, either exact copies or slightly
modified copies.

Most keys have two graphics symbols on them. These can be printed on the
screen in the edit mode, or printed by a program. On a given key, the right
graphics symbol is selected by using the SHIFT key, and the left graphics symbol
by using a special key called the Commodore key.

The screen can be given any of 16 different colors by the statement POKE
53281,C. (C is a number from 0 to 15.) The change screen color statement can be
given in a program line.

Be careful that you do not choose a screen color that is the same as the letter
color! The writing would disappear until you changed one of the colors. In fact,
this can be exploited in making “invisible writing.” We will do this after the delay
loop is introduced.

Questions:
1. What is a cursor? What is it good for?

25

. Type the solid ball character on the screen. What keys do you need to use?

. Type the triangle graphics character that appears on the star key. What keys do
you need to use?

. Have your student demonstrate how to edit a line. This includes using the ar-
row keys to move the cursor to the interior of the line, modifying characters
there, and pressing RETURN to enter the line. '

. What happens if you hold the INST/DEL key down?

26

- C

I U B

L C

C CCECC

L U

11

|

B I B B

1ol

1

N

4]

Lesson 4. The Cursor Keys and Drawing Pictures

The Cursor Is a Flashing Square
The little flashing square is called the INPUT cursor. It shows you where the next
letter you type will appear on the screen.

The Arrow Keys
Find the two CRSR keys. (CRSR stands for cursor.)

One CRSR key has left and right arrows.

The other CRSR key has up and down arrows.

5 9
CRSR R
=>

These keys move the cursor.
Careful! We do not mean any of these arrow keys:
< 1 < >

If you press a CRSR key, the cursor moves in the direction of the lower arrow on
the key.

If you press SHIFT and a CRSR key, the cursor moves in the direction of the top
arrow on the key.

If you hold down the key, the cursor starts moving very fast!

Do this: Use the cursor arrow keys to move the cursor to the middle of the screen,
then type your name there.

Now put a border of colored stars (*) around your name.

27

The Graphics Characters

The Commodore computer has 62 graphics characters. You see them in little
squares on the front of many keys.

They are easy to use.

First find the SHIFT key. Now find the Commodore key. It is under the
RUN/STOP key and looks like a large C with a flag flying from its side.

To print graphics characters:

Hold down the SHIFT key and press a graphics key.
The character on the right will be put on the screen.

Or hold down the Commodore key and press a graphics key.
The character on the left will be put on the screen.

(You do not see the square that is on the key. You just see the character that is in-
side the square.)

Do this: Use the CRSR keys to move the cursor to the screen center and draw a
tiny red square. (Hint: Use the corner characters
that are on the O, P, @, and L keys.)

Now draw a large green square around the
red square. (Hint: Use the checker character —
on the + key.)

I

Fixing Messed-Up Lines
The cursor arrow keys help you fix errors in your typing.

Enter: 10 REM ZRAGON

28

CccCcCccCccact

C

C CC

L &

1

“l

1]

B I

§

1037700

Use the CRSR keys to move the cursor onto the Z.
Type a D instead.

Now the line is correct, reading:

10 REM DRAGON

Press RETURN to store the correct line in the memory.

The INSerT/DELete Key
The INST/DEL key is your eraser. (DEL is short for delete.) Try this:

20 PRINT " HI THERW (Leave the cursor after the W.)

Oops! The W should be an E.

You can erase the W by pressing the
INST/DEL key. Then type an E.

Do you see what is funny? That is right!
The INST/DEL key does not erase the
character that the cursor is on, it erases
the one next to it on the left!

Rule: The INST/DEL key always erases the
character next to the cursor on the
left.

P o//// ”l' \\\\

Hold down the INST/DEL key. The cursor whizzes along, erasing as it goes.
Careful! You may erase more than you want!

Speedy Erasing

29

Copycat Lines
Enter:

19 REM TWINS
2¢ PRINT “MEET MY TWIN"

Run the program.

List the program. Then use the cursor arrow keys to move the cursor on the 2 of
line 20. Type 3 then press the RETURN key.

Now run and list the program again. Line 20 has a twin line named 30.

Colored Screens
You know how to color the screen background black or white:

Black: 10 POKE 53281,0
White: 10 POKE 53281,1

Choose another color by picking another number instead of 0 or 1. Any number
from 0 to 15 can be used.

Enter:

19 REM RED FLASH
2@ PRINT " {WHT}HITHERE"
3@ POKE 53281,2

(Do you remember what to do when you see “{WHT}"?)

Assignment 4:

1. Try making different colored screens and different colors of letters on each
screen. Which combinations look best?

30

C C L

C CC

N

0 I B B

1 1

1 1 1

-

o

2. Practice using the INST/DEL and the CRSR keys. Type and fix these lines:

10 REM CAAAAAAT

19 REM TTIIGGEEERRR

3. Draw a smiley face on a colored screen.

4. Draw a valentine. Use lots of different graphics symbols.

31

Instructor Notes 5. Tricks with PRINT

In this lesson:

PRINT with a semicolon at the end
PRINT with semicolons between items
PRINT with commas between items
The “invisible” PRINT cursor
Characters and string constants
Review of keys

The lesson introduces the PRINT cursor which is invisible on the screen. It marks
the place where the next character will be placed on the screen by a PRINT state-
ment. (The INPUT cursor is the flashing square. It is familiar from the edit mode
and also appears when executing the INPUT command.)

When a PRINT statement ends with a semicolon, the PRINT cursor remains in
place at the end of the last printed character. The next PRINT will start writing
characters onto the end of the message printed by the current PRINT statement.

Without a semicolon at the end, the PRINT statement will advance the PRINT
cursor to the beginning of the next line as its last official act.

A PRINT statement can print several items, a mixture of string and numerical
constants, variables, and expressions. Numerical constants and variables have not
yet been introduced. The items are separated by semicolons or commas.

If commas are used, the items will be printed in columns.
A series of printed strings will have their characters in contact. If spaces are

desired, as in the “Toast and Jam” example, the spaces have to be put in the
strings explicitly.

32

C C C

C

C C

C C CC

L

(-

L

9

B I I

1 1

o

o

J

-

Questions:
1. Which cursor is a little flashing square? What statement puts it on the screen?

2. Which cursor is invisible? What statement uses it?
3. How do you make two PRINT statements print on the same line?

4. Will these two words have a space between them when run?

16 PRINT “HI";"THERE!"

If not, how do you put a space between them (two ways)?

33

Lesson 5. Tricks with PRINT

One Line or Many?
Enter this program:

19 REM YUMMY

20 PRINT

36 PRINT “TOAST"
40 PRINT “AND"
5@ PRINT "JAM"

and run it. Each PRINT statement prints a separate line.
Now enter:

3@ PRINT "TOAST "“;
40 PRINT "AND ";

(Don’t change or erase the other lines.) Be careful to put the space at the end
of “TOAST " and at the end of “AND " and the semicolon at the end of each

line.

Run it. What was different from the first time?

The Hidden Cursor

Remember the flashing square? It is the INPUT cursor and shows where the next
letter will appear on the screen when you type.

The PRINT statement also has a cursor, but it is invisible. It marks where the next
letter will appear when the computer is PRINTing.

34

C CLC

C C CLC

I

S T

L

B

1]

11

3 13 1 1 1

1

AL ST
wp- (B WSBLE/

Rule: The semicolon makes the invisible PRINT cursor wait in place on the
screen. The next PRINT statement adds on to what has already been written on

the same line. \ V /

Famous Pairs

The PRINT statement can print several strings, one after another.

(") between the strings. Look at line 80 below.

Enter:

10 REM NAME DROPPING
20 PRINT "{CLR} ENTER A NAME"

30 INPUT AS$

40 PRINT " ENTER ANOTHER"

50 INPUT B$

76 PRINT "{CLR} PRESENTING THAT FAMOUS TWOSOME"
75 PRINT

80 PRINT AS$;" AND ":B$

35

Put semicolons

(Remember, {CLR} means hold down the SHIFT key and press the
CLR/HOME key.) The INPUT statement will be explained in the next
lesson.

Don't forget to put a space before and after the “ AND " in line 80.

Squashed Together or Spread Out?
Enter NEW, then try this:

19 PRINT "ROCK";"AND";"ROLL";"STAR"

After you have run it, try also:
1@ PRINT "ROCK","AND","ROLL", "STAR"

Rule: A comma between items in a PRINT statement puts spaces between them
on the screen.

Characters
Look at these PRINT statements:

10 PRINT "JOE"

10 PRINT "#D47%3*3"
16 PRINT "19"

10 PRINT "3.14159265"
16 PRINT "I'M 14"

Letters, numbers, and punctuation marks are called characters.

Even a blank space is a character. Look at this:

19 PRINT " "

All the little drawings on the front of the keys are characters, too. They are called
graphics characters.

36

CC

C C CC

I N

1

1

]

1 1 1

1 1 1

a1 1 1

1

String Constants
Characters in a row make a string.

The letters are stretched out like beads on a string.
A string between quotation marks is called a string constant.
It is a string because it is made of letters, numbers, punctuation marks, and

graphics characters in a row. It is a constant because it stays the same. It doesn’t
change as the program runs.

37

Assignment 5:

1.

Write a program that asks for the name of a musical group and one of their
tunes. Then using just one PRINT statement, print the group name and the
tune name, with the word plays in between.

. Do the same, but use three PRINT statements to print on one line.

. Write a program that asks the user for three words. (Use three INPUT state-

ments.) Then print them on one line with spaces between them. (Use PRINT
with commas.)

38

C CCcCccCt

L C

L CC

C C CC

1

1

_)

|

1 1

]

]

1

N

]

1

]

Instructor Notes 6. The INPUT Statement

This lesson concerns the INPUT statement, the concept of a string variable, and
the difference between a programmer and a user.

In its simplest form, INPUT AS$, there is no message in quotes in front. We want
the student to concentrate on the central feature of an INPUT.

Similarly, we will give only the essential feature of each statement for the first
section of the book (through lesson 14). We want the student to see the forest
before going into details. The interesting programs require:

PRINT Allows output

INPUT input

GOTO infinite looping

IF branching and decisions
RND random numbers for games

The box concept is used again to introduce string variables. For the time being,
variable names are restricted to one letter. This allows faster typing and puts off
discussion of the complicated naming rules until after our sprint to the RND
function.

We will work with strings before numbers, because strings make for more in-
teresting programs and offer a less confusing entry into the logical concepts of
programming.

The “two hats” of the student—programmer and user of the program—cause
much confusion at assignment time. PRINT is the programmer speaking, while
the user’s comments are made only in response to an INPUT statement and are
stored in a string variable to be used or printed by the computer.

Questions:

1. What two different things does the computer put in boxes? (One at program-
ming time and one from an INPUT.)

39

2. How does the program ask a user to type in something?
3. How do you know the computer is waiting for an answer?
4. What is a letter with a dollar sign after it called?

5. Write a short program that uses REM, PRINT, and INPUT.

6. Are you in trouble if the computer answers ?EXTRA IGNORED after an input?
What made it do that?

40

C CCLCCEC

L

[

I T O S I

L

N

-

_)

-]

1 3

1

]

1

]

}

1

1

Lesson 6. The INPUT Statement

Use INPUT to make the computer ask for something.

Enter:

10 REM TALKY-TALK
15 PRINT "{CLR}"

20 PRINT “SAY SOMETHING"
25 INPUT AS$

30 PRINT

35 PRINT "DID YOU SAY"
4¢ PRINT A$

Run it. When you see a question mark, type HI and press the RETURN key.

The question mark was written by INPUT in line 25. The flashing cursor means
the computer expects you to type something in.

When you enter HI, the computer stores this word in a box named A$.

Later, in line 40, the program asks the computer to print whatever is in the box
named A$. :

String Variables

A$ is the name of a string variable.
The computer stores string variables in mem- ,
ory boxes just like the boxes it puts ,
program lines in. The name is written on
the front of the box and the string is

put inside the box.

41

Rule: A string variable name ends in a dollar sign (§). You can use any letter you
like for the name and then put a dollar sign after it.

A$ is called a variable because you can put different strings in the box at different
times in the program. The box can hold only one string at a time. Putting a new
string in a box erases the old string that was in the box.

Error Messages from INPUT
Run this three times:

19 INPUT AS
20 PRINT " ":A$

Try these answers:

HI
HI, THERE
HI: 123

Rule: Do not put any commas or colons in the string you type in answer to the
computer.

If you accidentally do put one in, the computer may answer:

?EXTRA IGNORED

and continue. This means that the computer chopped off everything after the
comma or colon and then continued running the program.

42

C C L

L CCEC

-

[

L.

.

L C C

1 1

]

]

1 3

N

]

1

B I

You Wear Two Hats—User and Programmer
You are a programmer when you write a program. The person who runs the pro-
gram is a user.

Of course, if you run your own program then you are the user.

When the programmer writes a PRINT statement, the programmer is speaking to
the user by writing on the screen.

When the programmer writes an INPUT statement, the programmer is asking the
user to say something to the computer.

It is like a game of “May I?”” The only time the user gets to say something is
when the programmer allows it by writing an INPUT statement in the program.

Assignment 6:
1. Write a program that asks for the user’s name and then says something silly to
the person by name.

2. Write a program that first asks for the the user’s favorite color—put it in a box
called C$—then asks for a favorite animal—put this in box C$ also. Have the
program PRINT C$. What will be printed? Run the program and see if you are
right.

43

Instructor Notes 7. The LET Statement, Gluing Strings

The LET statement and concatenation are introduced.
Concatenation of strings glues strings together to make a new string.

The box model is used to emphasize that LET is a replacement statement, not an
equal relationship in the sense used in arithmetic.

The box idea nicely separates the concepts name of the variable and value of the
variable. The name is on the label of the box, the value is inside. The contents of
the box may be removed for use. More exactly, a copy of the contents is made
and used when a variable is used, while the original contents remain intact. This
point is explained. When LET puts new contents in a box, the old contents are
automatically erased first.

Statements used so far:
NEW, PRINT, REM, RUN, LIST, INPUT, LET
Special keys discussed so far:

RETURN, CRSR arrows, SHIFT, CLR/HOME, CTRL, INST/DEL, and the Com-
modore key.

Questions:
1. LET puts things in boxes. So does INPUT. How are they different?

2. If you run this little program

10 LET A$="HI"
20 LET B$=A$§

what will be in box A$ at the end? What will be in box B$?

C C

L L C

I N

(-

-

L

L

701

-l

N

-

00

]

N

N

3. In this program

16 LET Q$="MOM"

what is “MOM” called? What is the name of the string variable in this pro-
gram? What is the value of the string variable after the program runs?

4. What is in each box after this program runs?

10 LET H$="FAT"
20 LET K$="SAUSAGE"
30 LET P$=H$+K$

Lesson 7. The LET Statement, Gluing Strings

The LET statement puts things in boxes. Enter and run:

10 PRINT "{CLR}"
20 LET W$="TRUCK"
40 PRINT W$

Here is what the computer does:
Line 10 The computer clears the screen.

Line 20 It sees that a box named W$ is needed. It looks in its memory for it. It
doesn’t find one, because W$ has not been used in this program before.
So it takes an empty box and writes W$ on the front, and then puts the
string “TRUCK” in it.

Line 40 The computer sees that it must print whatever is in box W$. It goes to
the box and makes a copy of the string “TRUCK" that it finds there. It
puts the copy on the TV screen. The string “TRUCK" is still in box W$.

46

L

C CCLC

L

(I B N

L CC

1]

-1

1

-}

1

_}

B I R

o

i

Names and Values
This line makes a string variable:

19 LET W$="MOPSEY"

The name of the variable is W$.
The value of the variable is put in the box.

In this line, the value of W$ is “MOPSEY”".

MY NAME IS W
TV VALUE 15 “MopSEY

g

Another Example
Enter and run:

10 LET D$="PICKLES"

20 LET A$=" AND "

30 PRINT "WHAT GOES WITH PICKLES?"
35 INPUT Z$

40 PRINT "{CLR}"

50 PRINT D$;A$;Z$

47

Explain what the computer does in each line.

10

20

30

35

40

50

Gluing the Strings
Here is how to stick two strings together to make a longer string.

Enter:

10
20
25
30
40
50
60
79

PRINT "{CLR}"
LET W$="HAR DE "
LET X$="HAR "
LET AS$=WS+X$
PRINT AS

PRINT

LET AS$=A$+X$
PRINT AS$

48

C CL

CCCC

i

T 1

3

1 3

4

-}

]

]

]

1

Before you run this program, try to guess what will be printed at line 40 and at
line 70:

40

70

Now run the program to see if you were right.
Lines 30 and 60 glue strings together.

Rule: The + sign sticks two strings together.

Assignment 7:

1. Write your own program that uses the LET statement and explain how it stores
things in boxes.

2. Write a program that inputs two strings, glues them together, and then prints
them.

49

Instructor Notes 8. The GOTO Statement and the
RUN/STOP Key

The GOTO statement allows loops that go on forever. It also helps in flow of
statement execution once we introduce the IF statement. It provides a slow and
easy entrance for the student into the idea that the flow of a program need not go
down the list of numbered lines.

For now its main use is to let programs run on for a reasonable length of time. In
each loop through, something can be modified.

The problem is how to stop it. The RUN/STOP key does this nicely. Sometimes
pressing the RUN/STOP key may not in fact stop the program. For example, if
the program reached an INPUT statement (and shows the question mark and
flashing cursor), pressing RUN/STOP does not stop the program. Try this. Hold
RUN/STOP down and then press the RESTORE key once or twice.

GOTO allows the bad habit of “spaghetti”” programming to grow. Examples of
spaghetti are shown to the student. Although some fun is had with them, make
sure the student is conscious of the problems that undisciplined use of GOTO
can cause.

We now have three of the four major elements that lead to meaningful program-
ming. They are PRINT, INPUT, and GOTO. Lacking is the IF statement, which
will change the computer from only a record player into a machine that can eval-
uate situations and make decisions accordingly.

50

I U

L C C

L

A R I AN I B

S

2 1

1

1

1

]

1

]

1

3

Questions:

1.

In this little program:

19 PRINT "HI"

20 GOTO 40

38 PRINT “BIG"
409 PRINT "“DADDY"

what will appear on the screen when it is run?

. What about this one:

16 PRINT "APPLE"
2@ PRINT "PIE";
38 GOTO 28

. How do you stop the program in question 2?

. Write a short program that asks your favorite movie star’s name and then

PRINTSs it over and over again.

51

Lesson 8. The GOTO Statement and the RUN/STOP Key

Jumping Around in Your Program
Try this program:

10 PRINT "{CLR}"

20 PRINT " YOUR NAME?"
25 INPUT N$

30 PRINT N$

35 PRINT

49 GOTO 30

Run this program. It never stops by itself! To stop your name from whizzing past
your eyes, press the RUN/STOP key. (It's on the left side of the keyboard.)

Line 40 uses the GOTO statement. It is like “Go to Jail” in a game of Monopoly.
Every time the computer reaches line 40, it has to go back to line 30 and print
your name again.

We will use GOTO often in programs.

52

C C €L

I T I

(I

C

(-

I R

1

1

-

-7

3

1

1

I

-1

1

More Jumping
Enter:

2@ PRINT "SAY SOMETHING"

30 INPUT S§

40 PRINT "DID YOU SAY'";s§;"'?2"
45 PRINT

58 GOTO 38

Run the program. Type an answer every time you see the ? and the flashing
cursor. Press the RUN/STOP key to end the program.

Notice the arrow from line 50 to line 30. It shows what the GOTO does. You may
want to draw such arrows in your program listings.

Kinds of Jumps
There are only two ways to jump: ahead or back.

Jumping back gives a loop.

14 PRINT "HI"
20 GOTO 19

53

The path through the program is like this:

16 PRINT "HI"

29 GOTO 194

The computer goes around and around in this loop. Press the RUN/STOP key to
stop.

Jumping ahead skips part of the program. Whatever for? We will see later in the
IF statement.

The RUN/STOP Key

The RUN/STOP key is a lifesaver. When you are in trouble, press RUN/STOP
and the computer will stop running the program and wait for your next com-
mand. Your program is still safe in memory.

If you are in really big trouble, press the RUN/STOP key and at the same time

press RESTORE. The computer does a warm start. Your program is still safe in
memory.

54

C CCCE

C L C

]

1

1

1

1

1

1

]

-l

(=

N

A Can of Spaghetti

Look at this:

10

108 PRINT

GOTO 79

PRINT "A"

GOTO 50

PRINT "S"

GOTO 25

PRINT "C"

GOTO 99

PRINT "U"

GOTO 40

PRINT "S PAGHETTTI "

GOTO 39

PRINT "E"

REM==-END==~

" wﬂm ! ”

55

This is not a good, clear program.
It is a “spaghetti” program.

Don'’t write spaghetti programs! Don’t jump around too much in your programs.

The INSerT/DELete Key
INST stands for INSerT which means “put in.”

When you hold down SHIFT and press the INST/DEL key, the computer sticks in
a space to the left of the cursor, and then moves the cursor onto it. Try this:

2@ PRINT "WHICH UP?"

Now use the CRSR arrows to move the cursor onto the U. Hold down the SHIFT
key and press the INST/DEL key four times. Then type WAY.

INSerT is the opposite of DELete. After you have inserted a space, you may type
a letter into it.

If you hold down the SHIFT and INST/DEL keys, the cursor whizzes along and
inserts a lot of spaces.

The INSerT/DELete Key Goes Crazy

After inserting spaces in a line, you may type letters, numbers, punctuation, and
graphics into the spaces and they will appear on the screen. But if you press the
CRSR, CLR/HOME, INST/DEL, or color keys, you will see funny characters on
the screen.

56

L

C CC

L C L

[

I

(I N

1 1

)

1

Assignment 8:

1. Just for practice in understanding the GOTO statement, draw the road map for
this spaghetti program:

16 REM >>>FORKED TONGUE>>>

1 1

|

B

a7

]

1

1

20

30

31

40

41

50

51

60

90

91

29

2. Write a program that prints TEEN POWER over and over.

GOTO 40

PRINT "N"

GOTO 60

PRINT "S"

GOTO 30

PRINT "E"

GOTO 99

PRINT "A"

PRINT "K"

GOTO 50

PRINT "B I T E"

57

3. How do you stop your program?

4. Write another that prints your name on one line, then a friend’s name on the
next, over and over. Print each name in a different color. Stop the program
with the RUN/STOP key.

5. Write a program that uses each of these statements: PRINT, INPUT, LET,
GOTO. It should also glue two strings together and use two colors of letters.

58

L CCCCcL

L

L L

(B

L CC

1]

2

3

N

1

.

il

11

1

1

Instructor Notes 9. The IF Statement
This lesson introduces the IF statement and treats the question of whether two
strings are the same or not.

IF is a powerful statement that is at the very heart of the computer as a logic
machine. It is an intricate statement and the student may need extra help at this
point.

The IF statement appeals both to our verbal and visual imagination. The “cake”
cartoon and the “fork in the road” cartoon illustrate these ideas. The GOTO state-
ment has already introduced the idea that the flow of a program can be altered.
To that idea we can now add the conditional test: If an expression is true, one
thing happens; if it is false, another.

Phrase A is used for the assertion being tested for truth. Statement C is used for
the statement to be done if the assertion is true.

Two levels of abstract ideas occur in the assertions. On the literal level we have
equal and not equal:

A$ = B$
C$ <> D$
The next level up, we have the truth or falsity of the assertion.
Some care will be needed to separate and clarify these notions.

When you see A = B it may not really be true that A is equal to B, because the
assertion may in fact be false.

59

The larger set of relations:
< > = =< =>

will be treated in later lessons.

Questions:
1. How do you make this program print THAT’S FINE?

15 PRINT "DOES YOUR TOE HURT?"
17 INPUT T$

209 IF T$="NAH" THEN GOTO 90
49 IF T$="SOME" THEN GOTO 15
99 PRINT "THAT'S FINE"

2. Write a short program which asks if you like chocolate or vanilla ice cream.

Answers to be C or V. For the C answer, print Yummy! For the V, print
Mmmmmm!

3. What do we mean by phrase A?
4. What do we mean by statement C?

5. Where is the “fork in the road” in an IF statement?

60

C C CLC

I

I A IV N

CC

111 1

1

']

1

-

1

]

1 1 1

Lesson 9. The IF Statement

Clear the memory and enter:

18 PRINT "{CLR}"
2@ PRINT "ARE YOU HAPPY?(YES OR NO)*

3@ INPUT AS$
40 IF A$="YES" THEN PRINT "I'M GLAD"
5@ IF A$="NO" THEN PRINT "TOO BAD"

Run the program several times. Try answering YES, NO, or MAYBE. What
happens?

YES

NO

MAYBE

The IF Statement
The IF statement has two parts:

10 IF phrase A THEN statement C
First, the computer looks at phrase A.
If it is true, the computer does statement C.

If phrase A is not true, then the computer goes on to the next line without doing
statement C.

It looks like this:

10 IF phrase A is true THEN do statement C
and then go on to the next line

or
10 IF phrase A is false THEN go on to the next line

61

Assignment 9A:

1. Clear memory and write a program that asks which you like better, football or

baseball. If the answer is baseball, the program should respond with PLAY
BALL. If the answer is football, PRINT some other remark on the screen.

The IF in English and in BASIC
In English:

IF your homework is done, THEN you may have some cake.

In BASIC:

40 IF A$="DONE" THEN PRINT"EAT SOME CAKE"

OUR HOMEWORK
IF Y/s DONE,

OU MAY HAE <
Tms:yn)g CAHES °

A Fork in the Road
When the computer sees IF, it must choose which road to take.

IF phrase A is true, it must go past the THEN and obey the statement it finds
there.

62

L CCCELC

L C

L L

C L L

L

-

]

1

B

N

1l

]

1 1]

IF phrase A is false, it goes down to the next line right away.

Here is the road map with the fork in the road marked:

3ﬂ\
o«
~N
40

IF A$="HUNGRY"\j—> THEN PRINT "iAD

—— —’/’A
ety (100 dulis /e

Y et ———

The Not Equal Sign

= means equal
<> means not equal
To make the <> sign:

Hold down the SHIFT key and press the < key, then the > key.

63

Using the <> Sign
40 IF phrase A THEN statement C

Phrase A is a phrase that is true or false.
Pick: B$<>"FIRE” for phrase A
Put it in an IF statement:

40 IF BS<>"FIRE" THEN PRINT "FEED HIM SOME HOT CHI
LI" :

IF the B$ box contains “COLD”
THEN BS$ is not equal to “FIRE”
and the expression B$<>"FIRE” is TRUE.

The computer will print FEED HIM SOME HOT CHILI.

Or
IF the B$ box contains “FIRE”
THEN the phrase B$<>"FIRE"” is FALSE
and the computer will not print anything.

Here is how it looks in a program:

10 PRINT "WITH DOGS IT'S A COLD NOSE"

11 PRINT

20 PRINT "WITH DRAGONS, IT'S..."

21 PRINT

25 PRINT "HOW IS YOUR DRAGON'S BREATH?"

26 PRINT

28 PRINT "(ENTER "FIRE" OR "COLD")"

29 PRINT

30 INPUT BS$

40 IF B$<>"FIRE" THEN PRINT "FEED HIM SOME HOT CHI
LI L)

5@ B$="FIRE" THEN PRINT "WATCH OUT!"

60 PRINT “NICE DRAGONI"

64

C L CCCCC

- ¢

[

[

C L CLC

J 1 1

3]

1]

1]

1]

1]

]

Assignment 9B:

1.

Write a pizza program. Ask what topping is wanted. Make the computer an-
swer something silly for each different choice. You can choose mushrooms,
pepperoni, anchovies, green peppers, or anything you want. You can also ask
what size.

. Write a color guessing game. One player INPUTs a color in string C$ and the

other keeps INPUTing guesses in string G$. Use two IF lines, one with a
phrase A

G$<>C$
for when the guess is wrong, and the other with an equal sign for when the
guess is right. The statement C prints wrong or right.

65

Instructor Notes 10. Introducing Numbers

Numerical variables and operations are introduced and the LET, INPUT, and
PRINT statements are revisited. The idea of memory as a shelf of boxes is ex-
tended to numbers. Again, for the time being, variable names are limited to one
letter.

The arithmetic operations are illustrated. The * symbol for multiplication will
probably be unfamiliar to the student. Division will produce decimal numbers,
but since most arithmetic will be addition and subtraction, with a little multiplica-
tion, familiarity with decimal numbers will be helpful but not essential.

It may seem strange to the student that the numbers in string constants cannot be
used directly in arithmetic. The VAL and STR$ functions, which will be in-
troduced later in the book, allow interconversion of numbers and strings.

A mixture of string and numerical values can be printed by PRINT.

The nonstandard use of = in BASIC, that it means replace, not equal, shows up in
statements such as:

LET N=N+1
A cartoon uses the box idea to illustrate this meaning of =.
Another idea from arithmetic that doesn’t work in a LET is shown below.
Arithmetic: N = 3 means the same as 3 = N.

BASIC: LET N = 3 is okay. LET 3 = N is not.

66

C CLC

[

C L

L. C

L L CCC

11]

]

]

1 1

J

]

)

]

1 1

]

Questions:

1.

Name the three kinds of boxes in memory. (That is, named by the kinds of
things stored in the boxes.)

. Explain why N = N + 1 for a computer is not like 5 = 5 + 1 in arithmetic.

. Give another example of bad arithmetic in a LET statement. Use the * or /

symbols.

. What does the computer mean by TYPE MISMATCH ERROR?

. Give an example of a program line that would have a TYPE MISMATCH

ERROR.

. Explain what is meant by the name of a variable and the value of a variable for

numerical variables. For string variables.

67

Lesson 10. Introducing Numbers

INPUT, LET, and PRINT

So far we have only used strings. Numbers can be used, too. Enter and run this
program:

10 PRINT "{CLR}"

20 PRINT "GIVE ME A NUMBER"

39 INPUT N

40 LET A=N+1

45 PRINT

5¢ PRINT "HERE IS A BIGGER ONE"
68 PRINT A

Arithmetic
The plus and minus signs are side by side in the top row of the keyboard.

Computers use * instead of X for a multiplication sign.
Try this. Change line 40 so that N is multiplied by 5.

Computers use / for a division sign. It is on the same key with the ?. Answers
will be given as decimals.

68

C

C €. C

L Lt

L CC CC

J o111

)

1 1

-

]

]

]

1

Variables
The name of a box that contains a string must end with a dollar sign. Examples:
N$, A$, Z$.

The name of a box that contains a number doesn’t have a dollar sign. Examples:
N, A, Z.

The thing that is put in the box is called the value of the variable.

Arithmetic in the LET Statement

10 LET A=2001

20 LET B=1983

38 LET C=A-B

40 PRINT " HOW MUCH LONGER, HAL?"
50 PRINT C;" YEARS"

Careful!

Numbers and strings are different. Example: “1985" is not a number. It is a string
constant because it is in quotes.

69

Rule: Even if a string is made up of number characters, it is still not a number.
Some numerical constants are 5, 22, 3.14, —50.
Some string constants are “HI"”, “7”, “TWO”, “3.14".

Rule: You cannot do arithmetic with the numbers in strings.

Correct: 10LETA =38+ "7
Wrong;: I10LETA$ =3+ 7
Wrong: 10 LET A = “3” + “7”

If you run either of these wrong lines, the computer will print:

TYPE MISMATCH ERROR IN 10

70

A U W

C

(I

C L

C CLC

L

I I B I

ﬁ

1

11

1

N

1

-]

]

1]

There are two types of variables: number and string.
You cannot put a number in a string box or a string in a number box.
Enter:

10 LET A=5
20 LET B$="10"
30 LET C=A+BS$§

Lines 10 and 20 are okay, line 30 is wrong. What will the computer do when you
run this little program?

Try to guess what each of these statements will print, then enter the line to see
what happens:

PRINT 5

PRINT “8”
PRINT “5 + 3”

PRINT “5”+3"

PRINT 5 + 3

Mixtures in PRINT
You can print numbers and strings in the same PRINT statement. (Just remember
that you cannot do arithmetic with the mixture.)

Correct: PRINT A;“SEVEN ;7"
PRINT A;B$

Run this line: 10 PRINT 5/2;“‘IS EQUAL TO 5/R”

A Funny Thing About the Equal Sign
The = sign in computing does not mean equals exactly. Look at this program:

10 LET N=N+1

71

This does not make sense in arithmetic. Suppose N is 7. This would say that:
7=7+1

which is not correct.

But it is okay in computing to say N = N + 1 because the = sign really means
replace. Here is what happens:

Look at this: 18 LET N=N+1

The computer goes to the box with N written on the front.
It takes the number 7 from the box.

It adds 1 to the 7 to get 8.

Then it puts the 8 in the box.

Another way to say the same thing is:

I0LETN =N +1

means LET (new N) equal (old N) plus one

72

C

l:

L L L E

C

C CCC

L

J 1

1

1

1

1 13

1

1

1

]

]

)~

]

Don’t Be Backward!

In arithmetic, you can put the two numbers on whichever side of the equal sign
you want. But in a LET statement you cannot.

Arithmetic: N=3
BASIC: LETN =3
LET3 =N
BASIC: LETN =B
LETB =N

LET N = B means

is the same as 3 = N

Correct
Wrong

is not the same as
Why not? (What is in each box
after the line runs?)

LETB =N means

Assignment 10:

1. Write a program that asks for your age and the current year. Then subtract and
print out the year of your birth. Be sure to use PRINT statements to tell what is
wanted and what the final number means.

2. Write a program that asks for two numbers and then prints out their product
(multiplies them). Be sure to use plenty of PRINTS to tell the user what is

happening.

73

Instructor Notes 11. TAB and Delay Loops

TAB follows the familiar tab function of a typewriter. Delay loops slow the pro-
gram down so that its operation can be more easily observed. They also are used
for portions of the program that must run at certain speeds and should then be
called timing loops.

TAB is used in a PRINT statement and is designed to act exactly like the TAB of a
typewriter, including its faults. Several TABs can be used in one PRINT statement,
but the arguments in the () must increase each time. That is, TAB cannot be used
to move the cursor back to the left.

Use of a semicolon between TAB and the thing to be printed is not always nec-
essary, but is recommended.

The Commodore 64 has a more general and powerful way of moving the cursor
around. You simply put CRSR arrows in quotes in a PRINT statement. This will
be illustrated in later lessons.

This lesson introduces loops in a painless way.

The delay loop is all on one line, with a colon to separate the NEXT statement.
The amount of delay is determined by the size of the loop variable. A value of
1000 gives about a one-second delay.

After seeing that the primary work of the loop is simply to count until a particular
value is reached before going on to the next instruction, it will be easier for the
student to handle loops in which things are going on inside.

74

I R

N I N I

C

(-

CCCC

1

1

1]

]

Questions:
1. Show how to write a delay loop that lasts for about two seconds.

2. Will this work for a delay loop?

120 FOR Q=100@ TO 5000
122 NEXT Q

3. Tell what the computer will do in each case:

16 PRINT "HI";TAB(8):"GOOD LOOKING!"
10 TAB(5);PRINT"OH-OH!"
16 PRINT TAB(10);"NOPE";TAB(1);"NOT HERE"

4. What is the argument in this statement?

20 PRINT TAB(5);"E.T.CALL HOME"

75

Lesson 11. TAB and Delay Loops

Using TAB in PRINT Statements

TAB in a PRINT statement is like the TAB on a typewriter. It moves the PRINT
cursor a number of spaces to the right.

(The PRINT cursor is invisible.)
The next thing to be printed goes where the cursor is.

Try this:

19 PRINT "123456789ABCDEF"
30 PRINT TAB(3):;"Y";TAB(8);"z"

Rule: After TAB(N), the next character will be printed in column N+1.
Careful!
Run this:

18 TAB(5)

You see SYNTAX ERROR IN 10. TAB() has to be in a PRINT statement. You can-
not use TAB(), or any function, by itself.

You Cannot TAB Backward

Try this:

10 PRINT "123456789ABCDEF"

20 PRINT "A";TAB(9);"B";TAB(3);:;"C"

TAB() can only move the printing to the right. You cannot move back to the left.

76

C CLC

(-

C CC

C C

L

C CCE

]

1

1

]

1

J 1

Your Name Is Falling!

18 PRINT "{CLR}"

15 LET N=1

28 PRINT "YOUR FIRST NAME"
30 INPUT W$

409 PRINT TAB(N);W$

5@ LET N=N+1

60 GO TO 40

Press RUN/STOP to stop the RUN.

This program prints your name in a diagonal down the screen, top left to bottom
right. Try other values of N. Try changing lines:

15 LET N=15
50 LET N=N-1

How Big a Space Can TAB() Make?

There are 40 spaces across the screen. You can use any number 0 through 39 in-

side the TAB() parentheses. Larger numbers make the computer skip lines. Num-

bers larger than 255 will give an error message when the program runs:
ILLEGAL QUANTITY ERROR IN XX.

where XX is the line number.

You can use TAB with strings, too.

Example:

10 PRINT F$;TAB(10);M$;TAB(15);L$

Here F$, M$, and L$ are the strings for the first, middle, and last names.

77

Functions Don’t Fight But They Have Arguments

TAB() is like a function. We will study functions like RND(), INT(), LEFT$(),
etc. The number inside the () is called the argument of the function. TAB() says
“move the cursor over” and the argument tells where to move it to.

C C CLC

E

Assignment 11A:

L L

1. Write a program that asks for last names and nicknames. Then print the last
name starting at column 1 and the nickname at column 10. Use a GOTO so the
program is ready for another name/nickname pair.

2. Write an “insult” program. It asks your name. Then it writes your name and
TABs over in the line and prints an insult.

Delay Loops

Here is a way to slow down parts of the program. It is called a delay loop.

Run this program:

REM HIDE AND SEEK

PRINT "{CLR}"

PRINT "HIDE!"

FOR I=1 TO 2000 :NEXT I

PRINT "COMING READY OR NOT!"

78

L CC

(-

L CC

3

]

]

N

1 1

11

]

1

o |

]

Line 40 is the delay loop. The computer counts from 1 to 2000 before going on to
the next line. It is like counting when you are “it” in a game of hide and seek.

b

”"\ /1,/:—4//"// g

Try changing the number 2000 in line 40 to some other number.

Each 1000 in the delay loop is worth about one second of time. Try this:

REM -- TICK TOCK --
PRINT "{CLR}"

INPUT “"WAIT HOW LONG";S
T=S*1000

FOR Q=1 TO T:NEXT Q
PRINT

PRINT S;" SECONDS ARE UP"

Assignment 11B:

1.

Write a slowpoke program that prints out a three-word message with several
seconds between each word.

. Write a digital clock program. It uses a timing loop to count seconds. INPUT

the present time in hours, minutes, and seconds. The clock then counts seconds
and prints them out. When 60 seconds have gone by, add one to the minutes
and put seconds back to zero. Same with hours. Run the clock a long time and
adjust the timing loop so that the clock keeps good time.

79

Instructor Notes 12. The IF Statement with Numbers

The IF statement is extended to numerical expressions. The logical relations used
in this lesson are:

= > < <>
It is a good idea to get the student to pronounce these expressions out loud. A <
B makes a lot more sense when pronounced “A is less than B” than when it’s just
allowed to flow over the eyeballs. The point (the little end) of the < and the >
symbols points to the smallest of the two numbers.
The use of nested IFs is demonstrated. This is a very powerful construction, but
may be confusing. Go through the example with your student to make sure that
the construction is understood.
A homemade loop is demonstrated in the “Guessing Game,” but not discussed.

The loop starts in line 50 and goes to 80. The exit test is made in line 57. The
logic of this loop is that of a DO WHILE.
P " = i

Questions: ‘\ / »

1. What part of the IF statement /

can be true or false?
(
A 1 !)
\ == ——)

1 (@*

80

v

<
—
@&@\

C CLCL

C L CE

I B

I S

i I I B

3

]

1

B

1

|

|

_J

2. What follows the THEN in an IF statement?

3. After this little program runs, what will be in box D?

10 LET D=4
15 IF 3<7 THEN LET D=9

4. Same question, but for 3 > 7.

81

Lesson 12. The IF Statement with Numbers

Try this:

10 REM *** TEENAGER ***

15 PRINT "{CLR}"

2@ PRINT “YOUR AGE?"

39 INPUT A

4@ IF A<13 THEN PRINT "NOT YET A TEENAGERI!"
5@ IF A>19 THEN PRINT “GROWN UP ALREADY!"

This IF statement is like the one that you used before with strings. Again we
have:

10 IF phrase A is true THEN do statement C
Phrase A can have these arithmetic symbols:

= equalto

> greater than

< less than

<> not equal to

Each phrase A is written with math symbols, but you should say it out loud in
English. For example:

A <> B is pronounced A is not equal to B.

5 < 7 is pronounced five is less than seven.

Practice
For these examples, LET A=7 and LET B=5 and LET C=5:

82

C CCLCL

(-

C

L

L

L

CCCC

o

1

1

1

3

-}

]

1l

]

O I

]

Say each phrase A out loud and tell if it is true or false:

e s e Mo s e Mo Mes M

An IF Inside an IF
The “Teenager” program above is missing something. Add:

60 IF A>12 THEN IF A<20 THEN PRINT "TEENAGER!"

To understand this, break it into two parts:

60 IF A>12 THEN (statement C) where

(statement G) is (IF A<R0 THEN PRINT “TEENAGER!")
This line first asks, “Is the age greater than 12?”

If the answer is yes, the line gets to ask the second question, “Is the age less
than 20?”

If the answer is again yes, the line prints TEENAGER!

If the answer to either question is no, the PRINT statement is not reached, so
nothing is printed.

Assignment 12A:

1. Draw the “fork in the road” diagram for line 60 above. There will be two forks
on the diagram.

83

Guessing Game

10 REM GUESSING GAME

15 POKE 53281,0

20 PRINT "{CLR}TWO-PLAYER GAME"

3@ PRINT "{DOWN}{CYN} FIRST PLAYER HIDE YOUR EYES!
"

32 PRINT "{DOWN}{GRN} SECOND PLAYER:"

34 PRINT " ENTER A NUMBER FROM 1 TO 1@0@{DOWN}"
49 INPUT N

45 PRINT "{CLR}"

5¢ PRINT "{DOWN}{YEL}MAKE A GUESS "

55 INPUT G

57 IF G=N THEN GOTO 90

60 IF G<N THEN PRINT "TOO SMALL"

65 IF G>N THEN PRINT "TOO BIG"

80 GOTO 50

99 REM GAME OVER

95 PRINT "{CLR}{RED}{3 DOWN}THAT'S IT!{wWHT}"

If you want to save this program on a disk, read lesson 14.

Usually, line 80 sends you to line 50 so that you can make more guesses. But if
G = N in line 57, then you skip to line 90 and print THAT'S IT!

84

N B

{

L

C O

o

1

]
i

1

1

1

3

1

bl

1

-l

]

1

Assignment 12B:
1. What happens in each line if G is 31 and N is 88:

50

55

57

60

65

80

What happens if G is 88 and N is 88:

50

55

57

60

65

80

2. Here is another program. What will it print, and how many times?

10 LET N=1

15 PRINT N;

20 IF N=13 THEN PRINT "{CYN}UNLUCKY! {WHT}"
30 LET N=N+2

40 IF N>30 THEN GOTO 99

58 GOTO 15

99 PRINT "DONE"

85

What will it print if line 10 is changed to:

18 LET N=2

. Write a program that says something about each number from one to ten. The

player enters a number and the computer prints something about each number:

“Three strikes, you're out” or “Seven is lucky,” etc.

. Write a game for guessing a card that player 1 has entered. Then player 2 must
enter the suit (club, diamond, heart, or spade) and the value (1 through 13) of

the card. The player first guesses the suit, then the program goes on to ask the
value. Keep score.

86

R TN U B N B

L

C CCC

C CC

2

N

1

3

B

]

1

R

-}

)

]

1

Instructor Notes 13. Random Numbers and the INT
Function

This lesson introduces two functions: RND and INT. These are very important in
games and are also handy in making interesting displays like kaleidoscopes.

The RND function produces pseudorandom decimal numbers larger than 0 and
smaller than 1. Such numbers are directly usable as probabilities, but integers in a
specific range, such as 1 to 6 for a die, or 1 to 13 for a suit of cards, are often
more directly usable.

Your student may be shaky in decimal arithmetic, but all that is required here is
multiplication of the random number by an integer, and perhaps also addition to
an integer. The computer does the multiplication, of course, so only a rough idea
of the desired result is necessary.

After extending the random number to a range larger than zero to one, conver-
sion to an integer is desired. The INT function does this by simply truncating the
number, deleting the decimal part. (For negative numbers the situation is a little
more complicated, and that rare case is not treated here.)

The concept of rounding off may be familiar to your student. INT will round off a
number if you first add 0.5 to it.

The concept of functions is again used in this lesson and is further clarified.

The nesting of one function in the parentheses of another is illustrated by using
RND in the argument of an INT function.

87

Questions:

1.

Tell what the computer will print for each case:
10 PRINT INT(G)

and the box G contains: 2, 2.1, 2.95, 3.001, 67, 0, 0.2

. Tell how the INT() function is different from rounding off numbers. Which

is easier for you to do?

. Tell how to change a number so that the INT() function will round it off.
. What does the RND(8) function do?

. How can you get random integers from 0 through 10? (Hint: INT(RND(8)*10) is

not quite right.)

. How can you get random integers from 5 through 8?

88

C CeCcecl

L.

C

[

(-

C CC

L

-}

1]

-l

)

1)

N

1

‘1

J

3]

1

Lesson 13. Random Numbers and the INT Function

The RND Function
When you throw dice, you can’t predict what numbers will come up.

When dealing cards, you can’t predict what cards each person will get.

You need some way to roll dice and deal cards and do other unpredictable things
with the computer.

Use the RND function to do this. RND stands for random.

Run this program:

180 REM RANDOM NUMBERS

2@ PRINT "{cLR}{2 DowN}"
25 LET N=RND(8)

30 PRINT N

409 IF N<.95 THEN GOTO 25

You see a lot of decimal numbers on the screen. The RND function in line 25
made them.

It doesn’t matter what number you put in the parentheses just so long as it is
greater than 0. I chose 8 because it is near the () signs on the keyboard, making it
easy to type (8).

RND gives numbers that are decimals larger than 0 but smaller than 1. To make
numbers larger than 1, you just multiply.

Change the program above to:

10 REM RANDOM NUMBERS
20 PRINT "{CLR}{2 DOWN}"
25 LET N=RND(8)*52

3@ PRINT N

49 IF N<45 THEN GOTO 25

and run it again.

89

Now the numbers are between 0 and 52
in size. They could be used for choosing
the 52 cards in a deck.

But:

We usually want whole numbers like 7 and 23 rather than decimal numbers like
7.03 and 23.62. Get them by using the INT function.

The INT Function

The INT function takes the number in its parentheses and throws away the deci-
mal part, leaving an integer (a whole number). Change the program above and
run again:

29 N=INT(N)

90

C C L

L C

L

I A I

L

~CC

L

')

I—'
i

I

o B

-1

1

1

]

B

How It Works
Use this one-line program:

10 PRINT INT(2.5)

to check how INT() works. Run it many times and try these numbers in the ():
0.3, 0.5, 0.9, 1.0, 1.1, 1.49, 1.51, 1.999. In each case, see that INT() just throws
away the decimal part of the number.

Rounding Off Numbers

Perhaps you know about rounding off numbers. If the decimal part starts with 0.5
or above, you round up. If it starts with 0.4 or below, you round down.

17.02 round down 17

3.1 down 3
103.43 down 103
4.5 up 5
82,917 wup 83

You round off numbers with the INT function by first adding 0.5 to the number.

Run:

10
20
25
39
40
45
50

REM ### ROUNDING OFF ###

PRINT "{CLR}{DOWN} GIVE ME A DECIMAL NUMBER"
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>