COMPUTE"’s

Edward H. Carlson
Mustrations by Paul D. Trap

For kids from 8 to 80. This entertaining, easy-to-use
guide to BASIC has everything you need to
get started programming on the
Commodore Amiga.

A COMPUTE! Books Publication. 514.95

Edward H. Carlson, Ph.D.
lllustrated by Paul D. Trap

Part of ABC Consumer Magazines, Inc.
Cne of the ABC Publishing Companies

COMPUTE! Publico’rions,lnc.@

Greensboro, North Carolina

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the
United States Copyright Act without the permission of the copyright owner is unlawful.

Printed in the United States of America
109876543
ISBN 0-87455-048-3

The author and publisher have made every effort in the preparation of this book to insure the accuracy of the programs and
information. However, the information and programs in this book are sold without warranty, either express or implied. Neither
the author nor COMPUTE! Publications, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly,
incidentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, is part of ABC
Consumer Magazines, Inc., one of the ABC Publishing Companies, and is not associated with any manufacturer
of personal computers. Amiga is a trademark of Commodore-Amiga, Inc.

Acknowledgments e v
Tothe Kids e vi
To the Parents vii
To the Teacher e e viii
About Programming ix
About the Book X
Introduction
1. Windows, PRINT, BEEP, CLS i 1
2. Programs, RUN, NEW, Strings 9
3. REM, SAY, TRANSLATES$, Editing Programs 16
4. Rainbow Colors 22
5. The INPUT Statementttt 29
6. Tricks with PRINT e e 34
7. The LET Statement e e 40
8. The GOTO Statement and the CTRL-C Keys 46
9. The IF Statement e 54
10. Introducing Numbers 61
11. TAB and Delay Loops i 69
12. The IF Statement with Numbers 75
13. Random Numbers and the FIX Function 81
14. Save to Disk e 89
Graphics, Games, and All That
15. Some SROrtCULS ..o e 97
16. LOCATE and UCASES i 107
17. FOR-NEXT Loops e 112
18. DATA, READ, and RESTORE 120
19, SoUNd ... 127
20. Drawing Pictures e 131
21. Subroutines and Subprograms 136
22, Windows and Color e e 143
23. Color Graphics 148

24. Arrays and the DIM Statement 154

Advanced Programming

25. Snipping Strings: LEFT$, MID$, RIGHTS$, LEN 162
26. MUSIC ..o 169
27. Switching Numbers with Strings 178
28. ASCII Code, ON-GOTO 184
29. Secret Writing and INKEY$ i i 192
30. Logic: AND, OR, NOT 198
31. STOP, CONT, Debugging i 207
32. Clear, Friendly Programs i, 214
Appendices 223
Disk Usage 225
BASIC Reserved Words i 227
GloSSary . .o 229
Answers to Selected Assignments o il 242
Index of Reserved Words i 263

Topic Index 265

My deepest thanks go to Paul Sheldon Foote for suggesting I write a book on
teaching BASIC to children.

This book continues a series that started with Kids and the Apple. The Amiga is so
different from previous computers covered in the series that I have extensively re-
written the material.

I helped prepare and teach in “The Computer Camp” summer camp at Michigan
State University for these last four summers. I am deeply grateful to my fellow
staff members at the summer camp: Mark Lardie, Mary Winter, John Forsyth, and
Marc Van Wormer, all of whom shared their experiences with me and helped
provide insight into the minds of the children.

Several families have used the Apple version of this book in their homes and of-
fered suggestions for improvement. [especially wish to thank George Campbell

and his youngsters, Andrew and Sarah; Beth O’Malia and Scott, John, and Matt;
Chris Clark and Chris Jr., Tryn, Daniel, and Vicky; and Paul Foote and David.

[greatly appreciate the skill and energy of Stephen Levy in editing and assem-
bling this book for COMPUTE! Publications, Inc.

Paul Trap shares the title page honors with me. His drawings are an essential part
of the book’s teaching method. I am grateful to Paul for his lively ideas, cheerful
competence, and quick work which make him an ideal workmate.

My final and heartfelt thanks go to my wife, Louise. As absorbed in professional
duties as I, she nevertheless took on an increased share of family duties as the
book absorbed my free time. Without her support I could not have finished the
work.

= e == e e e = e
S S — e e e e e e S

To the Kids

This book teaches you how to write programs for the Amiga computer.

You will learn how to make your own action, board, and word games. With
them, you may entertain your friends and provide some silly moments at your
parties.

Perhaps your record collection or your paper route needs the organization that
your special programs can provide. If you are working on the school yearbook,
maybe a program to handle the finances or records would be useful.

You may help your younger sisters and brothers by writing drill programs for
arithmetic facts or spelling. Even your own schoolwork in history or a foreign lan-
guage may be made easier by programs you write.,

How to use this book. Do all the examples. Try all the assignments. If you get
stuck, first go back and reread the lesson carefully from the top. You may have
overlooked some detail. After trying hard to get unstuck by yourself, you may go
ask a parent or teacher for help.

There are review questions for each lesson. Be sure you can answer them before
announcing that you have finished the lesson.

MAY THE BLUEBIRD OF HAPPINESS
EAT ALL THE BUGS IN YOUR
PROGRAMS!

Sy PN T g s

S Ao 5 54(42,3- d

=
Aoy B)

20 A
N7 R

vi

This book is designed to teach BASIC on the Amiga to youngsters in the range
from 10 to 14 years old. It gives guidance, explanations, exercises, reviews, and
quizzes. Some exercises have room for the student to write in answers that you
can check later. Answers are provided in the back of the book for program
assignments.

Your child will probably need some help in getting started and a great deal of en-
couragement at the sticky places. For further guidance, you may wish to read my
article in Creative Computing, April 1983, page 168.

Learning to program is not easy because it requires handling some sophisticated
concepts. It also requires accuracy and attention to detail which are not typical
childhood traits. For these very reasons it is a valuable experience for children.
They will be well rewarded if they can stick with the book long enough to reach
the fun projects that are possible once a repertoire of commands is built up.

How to use the book. The book is divided into 32 lessons for the kids to do.
Each lesson is preceded by a ““Notes” section which you should read. It outlines
the things to be studied, gives some helpful hints, and provides questions which
you can use verbally (usually at the computer) to see if the skills and concepts
have been mastered.

These notes are intended for the parents, but older students may also profit by
reading them. Younger students will probably not read them and can get all the
material they need from the lessons themselves. For the youngest children, it may
be advisable to read the lesson aloud with them and discuss it before they start
work.

vii

This book is designed for students in about the fifth grade up. It teaches BASIC
and the features of the Amiga computer.

The lessons contain explanations (including cartoons), examples, exercises, and re-
view questions. Notes for the instructor, which accompany each lesson, summa-
rize the material, provide helpful hints, and give good review questions.

The book is intended for independent study, but it may also be used in a class-
room setting.

I view this book as teaching programming in the broadest sense, using the BASIC
language, rather than teaching BASIC. Seymour Papert has pointed out in
Mindstorms (Basic Books, 1980) that programming can teach powerful ideas.
Among these is the idea that procedures are entities in themselves. They can be
named, broken down into elementary parts, and debugged. Some other concepts
include these: “chunking” ideas into ““mind-sized bites,”” organizing such modules

into a hierarchial system, looping to repeat modules, and conditional testing (the
IF-THEN statement).

Each concept is tied to the student’s
everyday experiences through choice of
language to express the idea, through
choice of examples, and through cartoons. 13 \J
Thus, visual and verbal metaphor is used N
in making the “'new”” material familiar
X

to the student.
o~
o)

A

viii

There is a common misconception about programming a computer. Many people
think that ability in mathmatics is required. Not so. The childhood activities that
computing most resembles may be playing with building blocks and writing an
English composition.

Like a block set that has many copies of a few types of blocks, BASIC uses a rela-
tively small number of standard commands and statements. Yet the blocks can be
formed into unique and imaginative castles, and BASIC can be used to write an
almost limitless variety of programs.

Like an essay on “How I Spent My Summer,” writing a program involves skill
and planning on several levels. To write an essay, a child must organize thoughts
from the overall topic to lead and summary paragraphs and sentences on down to
grammar, punctuation, and spelling of each word in the sentence.

Creativity in each of these activities—blocks, writing, and BASIC—has little scope
at the smallest level—individual blocks, words, or commands. At best, a small
bag of tricks is developed. For example, the child may discover that the triangle
block, first used to make roofs, makes splendid fir trees. What is needed at the
smaller scale is accuracy in syntax. Here computing is an almost ideal self-paced
learning situation, because syntax errors are largely discovered and pointed out by
the BASIC interpreter as the child builds and tests the program.

On a larger scale, creativity comes into full scope, and many other latent abilities
of the child are developed. School skills such as arithmetic and language arts are
utilized as needed, and thus are strengthened. But the strongest features of pro-
gramming are balanced between analysis (why doesn’t it work as I want) and
synthesis (planning on several size scales, from the program as a whole down
through loops and subroutines to individual commands).

The analytical and synthetical skills learned in programming can be transferred to

more general situations and can help the child to a more mature style of thinking
and working.

ix

This book was written for the Amiga computer and was tested on a machine hav-

ing 512K of memory, two disk drives, the color monitor, and version 1.1 of
Workbench.

For instructors who feel themselves weak in BASIC or who are beginners them-
selves, the student’s lessons form a good introduction to BASIC. The lessons and
notes differ in style. The lessons are pragmatic and holistic; the notes are detailed
and explanatory.

The book starts with a bare-bones introduction to programming, leading quickly
to the point where interesting programs can be written. The central part of the
book emphasizes more advanced and powerful techniques. The final part of the
book continues building on these, but also deals with broader aspects of the art of
programming such as editing, debugging, and user-friendly programming.

The assignments involve writing programs, usually short ones. Of course, many
different programs are satisfactory solutions to these assignments. In the back of
the book are solutions for assigned programs, some of them written by children
who have used the book.

Lesson 14, “Saving to Disk,” can be studied anytime after the first lesson.

(

o

This lesson is an introduction to the computer. Your student may have many ques-
tions at the start, and you should pull up a chair and help in the familiarization.

The Amiga is a very powerful computer, but before you begin to see any results,
you must go through a few setup steps. Stay with your student at least until the
end of the first lesson.

There are instructions for every step, and several reminders that my experience
with students indicates are helpful. But it is difficult to anticipate all the problems
each new user will encounter. Every novice on a computer must practice and ex-
periment until the ideas jell. More information about the use of the gadgets on
the windows can be found in the manuals that come with the computer. There
just is not enough room here to explain everything in detail.

Let’s discuss the enabling of windows and immediate mode. When BASIC is first
loaded from the Extras disk, you see two windows: a full-screen Output window
and a half-size List window. The List window is enabled (what you type appears
there). You must enable the Output window to do this lesson. Do this by clicking
the left mouse button while the pointer is somewhere inside the part of the Out-
put window that is showing. This puts you in immediate mode. The word BASIC
becomes solid, and LIST appears in ghost writing to indicate the change.

If the keyboard locks up (the computer won’t respond to any keystrokes) or if
things seem to be in a hopeless mess otherwise, put the Workbench disk in and
hold these three keys down at once: CTRL-Amiga-Amiga. (The Amiga keys have
a large red A on them. One A is solid red; the other is outline red.) This restarts
the system, but any program you had in memory will be lost. You have to reload
BASIC from the Extras disk.

Some early Amigas were shipped with ABasiC instead of Amiga BASIC. This
book treats Amiga BASIC, and some of the commands will not work in ABasiC.

The contents of the lesson:

O N ON U LN

. Turning on the computer; the windows, icons, and the mouse.

. The Kickstart, Workbench, and Extras disks.

. Typing versus entering statements or lines.

. Input cursor.

. Enabling a window.

. The computer understands only a limited number of instructions.
. Statements: PRINT, BEEP, CLS.

. Special keys: RETURN, SHIFT, BACK SPACE, CAPS LOCK.

At first, we use the two BASIC windows in their original locations and sizes. In a
later lesson, we expand the List window to cover the full screen.

1t is important not to remove a disk from the slot while the red disk drive light is on.
You may ruin the disk. Likewise, do not click the mouse buttons while the disk
drive light is on. It may crash the computer. This will not damage anything per-
manently, but will require you to restart the computer. You will lose any program
in memory. When you turn off the computer, pause at least ten seconds before
turning it on again. Otherwise, the computer may suffer electronic damage.

Questions

1.

2.

3.

Show how to load BASIC from its disk.
What is an icon?

Name the two different BASIC windows.

. Use PRINT to write in the Output window.
. How d§ you enable the Qutput window?

. What does the cursor look like?

. How do you clear the screen?

. How do you make the computer beep?

Put Kickstart and Workbench in Your Computer

Push the Kickstart disk into the disk drive slot on the front of the computer until
it clicks and drops down. Turn on the computer. The red light comes on the disk
drive, and you hear it buzzing. In a moment the screen will show an upside-
down picture of the Workbench disk.

When the red light on the drive goes out, take the Kickstart disk out of the drive
and put the Workbench disk in. Wait for it to load. When you see the Workbench
screen, and the red light on the drive goes out, take the Workbench disk out of
the drive.

A picture of a disk with the word Workbench is in the upper right corner of the
screen,

A little picture on the screen is called an icon.

Open the Extras Disk

Take the Workbench disk out of the drive slot and put the Extras disk in. The
drive starts, and in a moment the Extras disk icon appears in the upper right cor-
ner. It doesn’t matter if the Extras icon is on top of the Workbench icon.

Move the mouse until the arrow is on the Extras icon. Quickly, click the left
mouse button twice. Again, you’ll hear buzzing, and the red light will come on.
The disk icon turns black, and you see a little tan balloon with zz in it.

Soon the Extras window shows on the left of the screen. In it are some icons. The
AmigaBASIC icon is a box with orange flow lines on it.

Load BASIC

Now move the arrow onto the AmigaBASIC icon and double-click the left mouse
button. Black icon, buzzing, tan cloud, red disk light all show. In a moment the
two BASIC windows appear. One says BASIC in ghost writing, and the other says
LIST in dark writing.

The BASIC Windows
BASIC has two windows, called Output and List.

The window saying BASIC is called the Output window. In the Output window is
written some information about BASIC.

You use the Output window to tell the computer what to do. Then the computer
prints its answers in the Output window.

The List window is where you put the programs you write. The List window is
half-size and is inside the full-size Qutput window.

Enable the Output Window

Put the arrow under the writing in the Output window. Click the left mouse but-
ton. The word BASIC in ghost writing turns solid, and the word Ok appears in
the window. At the same time, the word LIST in the List window turns to ghost
writing.

When you point the arrow in a window and click the mouse button, the window
becomes active. When you make a window active, it means it has been enabled.
Only one window is enabled, or active, at a time. The window that is enabled has
dark writing. The other window has ghost writing. Whatever you type will show
in the window that is enabled.

Below Ok in the Output window is a little orange line called the cursor. It means
the computer is waiting for you to type in something.

Cursor means “runner.” The little line runs along the screen showing where the
next letter you type goes.

Typing

Type your name. What you type shows in the Output window. (If it appears in
the List window, you have not properly enabled the Output window. Read “En-
able the Output Window”” above.)

Now press the RETURN key.

Oh-oh! Screen flashed yellow, the computer beeped, the cursor disappeared, and
at the top of the screen, you see

Undefined subprogram

What is wrong? The computer understands only about 200 words, and your name
is not one of them. Whenever the computer doesn’t understand you, it prints an
error message at the top of the screen.

Making the Computer Go Again

Put the arrow into the OK box at the top of the screen and click the left button.
The computer prints a new Ok, and the orange cursor is in the Output window.

Command the Computer
You need to learn which words the computer understands.

The first three instructions you will learn are

PRINT, CLS, BEEP

Type: print “hi”

If you make a mistake, press the BACK SPACE key to erase the wrong letters.

Then type the correct letters. (The “ marks are quotation marks. To make *
marks, hold down the SHIFT key and press the ““ key that is next to the RETURN

key.)

Now press the RETURN key.

The computer obeys your instructions. In the Output window it prints
hi

Then it prints Ok, and the cursor appears to tell you that it is ready for another
command.

The PRINT statement tells the computer to write something in the Output win-
dow. It writes whatever words are inside the quotation marks after the PRINT
statement. (The computer doesn’t care whether you type instructions in capital
letters or small ones. If you want to type in capital letters, press the CAPS LOCK
key once. The little red light on the key comes on, meaning that what you type
will now be in capital letters. Press it again to go back to small letters.)

Type and Enter Are Not the Same
When we say enter, we will always mean to do these two things:

1. Type something.
2. Then press the RETURN key.

The Computer Beeps Like a Bird
Here is another statement:

Enter: beep

(Did you remember to press the RETURN key?)

The screen flashes yellow, and you hear a
beep. (If you did not hear the beep, check
to make sure that a cable runs from
Audio Input on the monitor to the
LEFT speaker connection on the back
of the computer. Also check that the
volume is turned up on the monitor.)

The Window Washer
The CLS statement tells the computer to erase the Output window.

Enter: cls
(Did you remember to press the RETURN key?)

The Output window is wiped clean, and the orange cursor line moves to the up-
per left corner of the screen. This position is the “home” of the cursor.

Assignment 1

1. Use the mouse to enable the List window. Then enable the Output window
again.

2. Now use the PRINT statement to write your name in the Output window.
3. Make the computer beep.
4. Now clear the Output window.

5. Practice starting the computer and loading BASIC until you are sure you can do
it correctly.

Instructor Notes 2.

In this lesson:

. What is a program?

. Windows menu: Show List, Show Output.

. Enable the List window and write the program there.

. Automatic capital letters for reserved words in a program.

. RUN to execute a program.

. Using Windows on the menu bar to show the List window.
. NEW to erase a program.

. PRINT with nothing after it to skip a line.

. Strings, characters, constants.

O OO DDk WN=

In Lesson 1, the computer executed instructions (like PRINT, CLS, and BEEP) in
the immediate mode. Once the execution was over, the statement disappeared
from memory.

A program is a list of statements kept in memory. You enter the statements in the
List window. To execute the statements in the program, you go to the Output
window and enter the command RUN in the immediate mode. After the program
executes, you can then go back to the List window to add additional instructions
or modify the program. At some point, a serious program is saved to disk, but we
will not do that yet.

The NEW command erases a program from memory.
The BASIC menu bar has four menus. One of these, Window, is necessary to
redisplay the List window after it is erased as part of the action of the RUN

command.

As an alternative to using the NEW and the RUN commands typed into the Out-
put window, you can use Start in the Run menu and New in the Projects menu.

-_—aTrea . = e = i — =

Some students may become confused by the many options and actions available
with mouse, keyboard, screen icons, menus, and windows. If so, it would be a
good idea to do a complete review, starting at the beginning of Lesson 1.

The idea of a string constant, used in Lesson 1, is explained. The numbers appear-
ing in a string, for example, 19", cannot be used directly in arithmetic.

Questions

1. How do you do each of these things:
Enable the List window Ve in /i
Make the computer beep W‘ By
Erase the Output window (!

Erase the program
Print your name /-

{

2. What is a character? Give some examples. What is a string?

3. What special key do you press to “enter” a line?

/) D AN
< AU Y

4. What does the computer mean when it Prints Undefined subprogram?
5. Write a program to print FIRE and make the computer beep.

6. After you run the program, how do you make the List window show again?
l&fu ‘.U:V_ nJ . _""i . ,

What Is a Program?

A program is a list of instructions for the computer to do. The instructions are
written in lines. Another name for instruction is “command” or “statement.”

Writing a Program

Program statements must be entered in the
List window. First, you must enable the
List window. Move the arrow to the middle
of the List window and click the left
button. The ghost word LIST turns

solid, and the orange cursor appears in

the upper left of the List window.

%F B

Type this line:

print‘‘hi”’

What you type appears in the List window. (If you make a typing mistake, read
the section “Fixing Mistakes”” below. Then fix the mistake.)

Now press RETURN. The small letters of the statement become capital letters. But
the “hi”” stays as small letters, The words in capitals are reserved words, or
keywords.

From now on in this book, all reserved words will be in capital letters and most

other things in small letters. But you do not need to use capital letters when you
type keywords into the computer. Let the computer do it for you.

11

Fixing Mistakes

The cursor is now below the P of PRINT. Use the mouse to move the arrow be-
tween the i and h of hi. Click the left button. The cursor jumps between the let-
ters. (If a little orange box covers one of the letters, or if some other orange mess
happens, move the arrow away, click the left button, and move the arrow back
and try again.)

Now press the BACK SPACE key once. The h disappears. Type h again. Again
you have “hi”.

Practice moving the cursor between other letters, then erasing the letter to the left
and retyping it.

The RUN Command

Notice that the computer did not obey you by printing hi. You must return to the
Output window and enter the command RUN to make the computer execute the
program.

We mean execute like the soldier executing the command “‘Left face!””—not execu-
tion by firing squad.

Move the arrow to the
Output window and click
the left button to enable
the window.

Enter: RUN

The computer obeys the command
by printing

hi. Q)

The computer also erases the List
window. How do you get it back?

12

> A o

|

Show the List Window

There are two ways.
Enter: 1list
or use the Windows menu.

To use the Windows menu, press and hold down the right (not left) button on the
mouse, and you now see the menu bar at the top of the screen change.

Holding the right button down, move the arrow onto the word Windows. The
word changes to orange on a black background, and some more words appear.

Still keeping the right button down, move the mouse so the arrow is on the
words Show List. They turn orange on black. Then let up on the button. The List
window will come back onto the screen.

You see that your program line PRINT‘‘hi”’ is still there.

Assignment 2A

Practice moving back and forth between the
List window and the Output window. (Enable one
window, then the other.) Run the program several times.

A Longer Program
Enable the List window. The cursor is below the first line. Add two lines to your
program.

Enter: BEEP
PRINT“computer’”’

Now your program has three lines.

Run the program. (Remember: Enable the Output window and enter RUN.)

13

The NEW Command
The computer just executed your program. It beeped and printed:

hi
computer

Now let’s erase the program so we can write another.
Enter in the Output window:
NEW

A large box flashes onto the top of the screen. It asks if you want to save the pro-
gram to disk. Answer no by moving the arrow into the NO box and clicking the
left button. Then enable the List window.

Printing an Empty Line
Enter this new program in the List window:

PRINT‘‘Here is the first line”’
PRINT
PRINT‘‘Skipped one line”

Run this program.

The second line of the program just prints a blank line.

String Constants
Look at these PRINT statements:

PRINT “JOE”

PRINT “‘#547%*$"’
PRINT ““19”

PRINT ‘‘3.14159265"
PRINT “I'm 14”
PRINT ““ 7

14

Letters, numbers, and punctuation marks are called characters. Even a blank space
is a character. Look at this:

PRINT ¢ 7

Characters in a row make a string. The letters are stretched out like beads on a
string. A string between quotation marks is called a string constant. It is a string
because it is made of letters, numbers, and punctuation marks in a row. It is a
constant because it stays the same. It doesn’t change as the program runs.

Assignment 2B
1. Write a program that prints your first, middle, and last names.

2. Now add a beep before it prints each name.

3. Erase the program with the NEW command.

4. Write a program that prints three flying birds. (Make the birds with minus
signs and the capital letter O. The minus sign is on the key above the P key.)

Run it.

5. Now add to the program to make the computer beep after printing each bird.

15

In this lesson:

. The REM for titles and remarks.

. The CLS statement in a program.

. Computer speech: the SAY statement used with the TRANSLATES$() function.

. Editing the program; moving the cursor in the List window. The BACK SPACE
key.

5. Moving and expanding the List window.

=W N =

Whatever shows in the List window is the current program.

The program is organized as lines. In Amiga BASIC, line numbers are optional.
Later, we will introduce this idea of numbering lines and line labels which are es-
sential for GOTO and GOSUB statements.

REM as a remark statement can be a bit confusing to new students. It needs be
distinguished from PRINT.

The difference between command and statement is hazy. Commands are used in
the immediate mode (when the Output window is enabled). Statements are in-
structions put into a program. But BASIC really treats statements and commands
the same. Most often, the RUN command is used in the immediate mode, and the
PRINT statement in a program. But, as we have seen, PRINT can be used in the
immediate mode, and it is possible to use such commands as RUN, NEW, and
LIST in programs.

Using PRINT to draw pictures is demonstrated. It is better to draw some at the
end of each lesson than to do a lot now. After Lesson 4, drawing helps develop
line-editing skills.

By now the student should be familiar with the differences between the List and
Output windows. So it is time to expand the List window to full size. This allows
longer program lines to be used.

2 o L e e S A N W BT
e ot o —— B T I T Y W T VY M W T

16

Questions

1.

2.

What i is the REM statement used for?

o) V) 1. ey

What window do you look in to see the program? How do you make that win-

dow appear if you don t see it?
U 41/ y

. What statement do you put in a program so that it will erase the Output

wmdow'?
- J< =

. How do you make, the List window larger or smaller? How do you move the

List window? f

/).,., | y (,;)

U

. What statements do you put in a program so that it will say “I'm an Amiga?”

What dlSk must be in the dlSk drlve for thls to work?

17

Enter NEW and enable the List window. You are ready to write a new program.

(Remember, you enter NEW in the Output window, then click the left button in
the List window.)

The REM Statement

REM means remark. Use REM to write any notes in a program that can help the
reader understand the program.

Enter:

REM I do windows
PRINT‘Scribble on the Output window”’

(Remember, you learned how to fix typing mistakes in the last lesson. Move the
cursor behind the error in the PRINT statement above. Use the BACK SPACE key
to erase the wrong letter. Then type the correct letter to fix it.)

Run the program. The computer ignores the first line because it starts with the
statement REM.

The computer obeys the statement in
the second line to print Scribble on the
Output window.

18

The CLS Statement in a Program
Activate the List window, and add these lines to the program and run it:

BEEP

CLS

PRINT“Clean again”
PRINT“That’s all, Folks”

The program again scribbles on the window. Then before you can even read it,
the computer beeps and the CLS statement erases the Output window. Run it
again.

The Computer Talks
Enter NEW and enable the List window.

Enter this program:

REM happy
PRINT ‘‘smile”
SAY TRANSLATE$(“‘smile’”)

Run it. The Workbench disk has to be in the
drive before you can hear the computer say
““smile’” out loud.

(If you do not hear the voice of the computer,
turn up the volume on the monitor. Also check
that a cable runs from the Audio Input on the
monitor to the LEFT speaker socket on the
back of the computer.)

Moving the List Window

Use the mouse to move the List window
around the screen. Put the mouse arrow
on the stripes beside the word LIST.
Click the left button and hold it down.
Now move the mouse. The window moves, too.

19

Move the List window to the upper left corner, covering up the word BASIC in
the Output window.

In the last lesson you learned how to enable a window. Remember? To see all of
the Output window, click the right mouse button, pull down the Windows menu,
and then release the button while on the Show Output item.

Big Window
Now use the mouse to show the List window again.

We want the List window to be full size like the Output window. Do this:

Find the squiggle in the little white box at the lower right corner of the List win-
dow. This white box is one of the gadgets of the window. Move the mouse arrow
onto this gadget. Then click and hold the left button down. Now move the
mouse. The List window changes size. Pull the corner of the List window to the
lower right corner of the screen. Now the List window is full size.

When you have two full-size windows, you can see only one at a time. You need
to use the mouse and the Windows menu to switch back and forth between them.

Or you can make the List window any size you want, then move it wherever you
want on the screen.

Picture Drawing

It'’s fun to draw pictures with the PRINT statement. Here is a picture of a car. En-
ter NEW before drawing the car.

REM $$$ Mercedes-Benz $$$
CLS

PRINT

PRINT‘ XXXXXX”
PRINT“XXXXXXXXXXXX
PRINT O o”

Don'’t forget to put the spaces in the PRINT lines. They are part of the drawing.

xXX
XXXXX XXxx
X
x
X x
xxixxx 23 x XB XXX XX
x* of
x
& Foy £
XX XXX XX x
¢ o peEary L
> X X
XXX XK XXxx"fo;‘")‘ % 0
R TP e Pl N
DTy ,":IA"‘ xFx

Assignment 3
1. Use some PRINT statements to draw an airplane.

2. Show how to make the List window a different size and how to move it
around on the screen.

3. What does the computer do (if anything) when it sees the REM statement?
What is the REM statement used for?

4. Use CLS, BEEP, REM, and PRINT to draw three flying birds on the screen.
Make each bird beep after it is drawn.

21

In this lesson:

1. The COLOR and PALETTE statements.

2. Foreground and background colors.

3. Printing in three colors on a colored background.

4. Cursor keys, holding a key down to repeat, the BACK SPACE key.

In a later lesson, we will use 16 colors to do graphics and text. But the standard
screens support only four colors in order to save memory. The PALETTE state-
ment mixes the primary colors (red, green, blue) and assigns the resulting color to
a color number: 0-3 on the standard screen (0-15 later). If you change a color mix
while a program is running, then wherever that color is used on the screen, it im-
mediately changes.

The COLOR statement assigns colors from the palette to two elements on the
screen: foreground and background. Foreground is called text in the book and is
the color PRINTed to the screen. If you change a COLOR assignment during a
program run, the new text and background colors apply only to further text
PRINTed. (The whole screen background will take on the new color if CLS is
executed.)

Special keys explained so far: SHIFT, CTRL, RETURN, CAPS LOCK, the two
AMIGA keys, and BACK SPACE. The four cursor keys (arrow keys) will be ex-
plained in this lesson.

ENTER is identical in results to RETURN. ALT will be used later to jump the
cursor around in the List window. The number keypad to the right of the key-

board duplicates the number keys in the top row of the standard typewriter key-
board.

Holding any key down a short time starts the auto-repeat feature of the keyboard.
This is very useful for making repeated characters, such as a line of characters or
spaces in a line, or for moving the cursor fast with the arrow keys.

22

When changing a line or text—correcting an error, for example—the change is not
permanent until the cursor has been moved off the line, either by pressing RE-
TURN, or by using the mouse or the cursor keys. This is a rather subtle point—
easily overlooked since the line may not appear any different with the cursor off
it. (But if there is a reserved word on the line in lowercase letters, it immediately
becomes capitalized when the cursor moves off the line.)

Questions

1. How many colors can you put on the screen at once? How do you make blue
letters on a white background?

2. Show how the PALETTE statement can make a yellow color (red plus green)
and put it in spot 3 on the palette.

3. What is a cursor? What is it good for? Demonstrate the use of the BACK SPACE
key.

4. Have your student demonstrate how to edit a line. This includes using the ar-
row keys to move the cursor to the interior of the line, modifying characters
there, and moving the cursor off the line to store it in memory. Also, show how
to use the repeat feature of the keyboard.

23

The BASIC screen can show four colors at once. They are numbered from 0 to 3.
Right now these colors are:

color 0 background blue

color 1 text white (the colors of the typed letters)
color 2 black (gadgets have this color)
color 3 orange (the cursor has this color)

Text means the color of the letters you print. Background means the color of the
screen where there are no letters.

The COLOR statement picks which of these colors to use for the text and which
to use for the background of what you print.

Try this:

COLOR 0,1 This makes blue writing on white background.
CLS This clears the whole screen to white.

The numbers in the COLOR statement have these meanings:

COLOR text, background

Try other color combinations like these:

COLOR 1,3

COLOR 0,4

COLOR 4,3

In fact, try every possible combination from 0,1 to 4,3. Just be careful to make the

two numbers different, because COLOR 0,0 makes blue writing on a blue back-
ground, and you cannot read what it says. (What does COLOR 2,2 look like?)

24

Mixing Your Own Paints

The PALETTE statement lets you mix red, green, and blue to make other colors.
The only catch is that you can have only four colors on the screen at once.

It’s like having three paint cans, each with a primary color. You have a palette
with room for only forr splotches of color. Instead of a color name, each place on
the palette has a nunber: 0, 1, 2, or 3. You take some red, green, and blue and
mix them together for color 0, then you mix different amounts for colors 1 and 2
and 3.

(Later in the book we’ll see how to have as many as 16 colors on the screen at
once.)

Try this:

COLOR 1,0 (This gets you back to white on blue.)
CLS

PALETTE 1, .5, 1, 1

This turns 1ll the writing on the screen to light blue. It even turns the writing you
already did to light blue.

Why? Remember that your last COLOR statement said ““color 1 for letters, color O
for background.” You just changed color 1 to something with less red in it. So the

writing looks bluish green.

25

Palette color number, how much red, green, blue

The amount of each color is a decimal number from 0 to 1.

The Pure Colors
Try these:

PALETTE 1, 1,0,0 pure red
PALETTE 1, O,1,0 pure green
PALETTE 1, 0,0,1 pure blue (hard to read)

And these:
PALETTE 1, 1,1,0 red + green = yellow

PALETTE 1, 1,0,1 red -+ blue magenta
PALETTE 1, 0,1,1 green + blue = cyan

l

What do you mix to get white? To get black?

Now make crazy mixtures like:

PALETTE 1, .7, .2, .1

When you get tired, put white back on palette spot 1:

PALETTE 1, 1,1,1

Rainbow Colors

We can choose any color for background and then print on it with three more
colors.

Run:
REM Leprechaun Rainbow
PALETTE O, 0, O, O

PALETTE 1, .7, .3, .1
PRINT

26

PRINT ‘“ Pot”
PALETTE 2, .1, .7, .3

COLOR 2, 0
PRINT ¢ of”
PALETTE 3, .1, .3, .9
COLOR 3, 0

PRINT * Gold”

After running, you have to do four
PALETTE statements to get back the
usual BASIC screen colors.

o

A
I‘j
P’ l: '

Wwgg)Il;l,/z{{///{/////// (1 //m\w;a,m"
* ’i /ﬂ" .
W

. o T
0. vk (ld\.l(}f\‘(/ o //{ﬁ

i

The Arrow Keys Move the Cursor

You know how to move the cursor in the List window by using the mouse and
clicking the left button.

You can also move the cursor with the cursor keys. Find the diamond of four ar-
row keys near the right bottom of the keyboard.

These keys move the cursor. Press one. Hold it down. If you try to move the
cursor out of the List window, the computer beeps and flashes a yellow screen.

Repeating Keys
Hold down the h key. You see:

hhhhhhhhhhhhhhhhhhhhhhhhh

This works for most keys. Hold down
a cursor arrow key. The cursor goes
whizzing along.

27

Erasing Letters
Enter:

Move the cursor between the E and the O. '
Press the BACK SPACE key. It erases the ¥g <P
S

letter E that was to the left of the cursor. \&\\\\\\\&,
\

Now hold down the BACK SPACE key. i\s

o crer o hng ot ohe R \\\\\\5\\2")
\\

dragging the right side of the line & A
with it, o N
(¢4

Assignment 4

1. Add to the Mercedes picture of Lesson 3 to make the car two-toned in color.
2. Draw a large “smiley face” in three colors.
3. In the List window, type this line. Then fix it to read CAT.

REM CAAAT

When you are done, move the cursor to another line so the correct line
will be stored in memory.

N\

AR \

A

v

In this lesson:

1. The INPUT statement.

2. String variables and boxes in memory.
3. Error message “Redo from start”.

4. The two hats: programmer and user.

This lesson is about the INPUT statement and string variables.

In the statement’s simplest form, INPUT A$, there is no message in quotation
marks in front. This allows the student to concentrate on the central feature of an
INPUT.

Similarly, we will give only the essential feature of each command for the whole
of the introduction of the book (through Lesson 14). We want the student to see
the forest before going into details. The statements required for interesting pro-
grams are:

PRINT output

INPUT input

GOTO allows infinite looping

IF branching and decisions
RND random numbers for games

The box concept is used to introduce string variables. For the time being, variable
names are restricted to one letter. This allows faster typing.

The “two hats” of the student—programmer and user of the programs—cause

much confusion at assignment time. PRINT is the programmer speaking, while
the user can speak only when invited by an INPUT statement.

29

Questions

1.

2.

A/ ‘) ! r i .
. How do you know the computer is waiting for an answer?

WAhat 'droiesﬂ tb(? compuffer put in boxes? C Lg

St _ , N DU
HOLW does the program ask the user to type in something? W D
A N _;“\ J P, /" \ I V

e Dy

I £y FS)) =

. What is a leWh a dollar sign after it called?

A, "LeJU

. Write a short program that uses CLS, PRINT, and INPUT.

<

=

. Are you in trouble if the computer answers with Redo from start after an in-

put? What made it do that? What do you do next?

/)1;/~ N et /P ‘, Y ;,« N et C :’ o > .
7, YT \ﬂ P/ AN A/N '-]"‘J TUSL O '/&_’;‘ ,/; , f
<) f Q :;/L T IR

30

Use INPUT to make the computer ask for something.
Enter:

REM Talky-Talk

SAY TRANSLATE$(‘‘say something”’)
PRINT‘‘type your answer”’

INPUT A$

SAY TRANSLATE$(*‘did you say’’)
SAY TRANSLATE$(A$)

Run it. When you see a question mark with the orange cursor after it, type hi and
press the RETURN key.

The question mark was written by INPUT in the fourth line.

When you type hi, the computer stores this word in a box named A$. Later, the
program asks the computer to SAY whatever is in the box named A$.

String Variables

A$ is the name of a string variable. The
computer stores string variables in
memory boxes. The name is written
on the front of the box and the

string is put inside the box.

31

Rule: A string variable name ends in a dollar sign ($). You can use any letter you
like for the name and then put a dollar sign after it.

A$ is called a variable because you can put different strings in the box at different
times in the program.

The box can hold only one string at a time. Putting a new string in a box auto-
matically erases the old string that was in the box.

Error Message from INPUT
Run this two times:

INPUT A$
PRINT A$

Try these answers:

hi
hi, there

Rule: Do not put any commas in
the string you type in answer to
the computer.

If you accidentally do put one in, the computer will answer
?Redo from start

and wait. This means that the computer wants you to try again, but do not put
any commas in the answer you type.

You Wear Two Hats—User and Programmer
You are a programmer when you write a program. The person who runs the pro-
gram is a user.

Of course, if you run your own program, then you are the user.

32

When the programmer writes a PRINT statement, the programmer is speaking to
the user by writing on the screen.

When the programmer writes an INPUT statement, the programmer is asking the
user to say something to the computer.

It is like a game of “May I?”” The only time the user gets to say something is
when the programmer allows it by writing an INPUT statement in the program.

Assignment 5

1. Write a program that asks for a person’s name and then says something silly to
the person by name.

2. Write a program that asks you to INPUT your favorite color and put it in a box
called C$. Then the program asks your favorite animal and puts this in box C$,
too. Have the program print C$. What will be printed? Run the program and
see if you are right.

33

In this lesson:

1. PRINT with a semicolon at the end.

2. PRINT with semicolons between items.

3. PRINT with a comma between items.

4. The “invisible’” PRINT cursor.

5. Stepping through the program with the Outline A and T keys.

This lesson introduces the PRINT cursor which is invisible on the Output win-
dow. It marks the spot where PRINT will put the next character on the screen.
(The input cursor is the flashing line.)

When a PRINT statement ends with a semicolon, the PRINT cursor remains in
place. The next PRINT will put its first character exactly in the spot following the
last character printed by the current PRINT statement.

Without a semicolon at the end, the PRINT statement will advance the PRINT
cursor to the beginning of the next line as its last official act.

A PRINT statement can print several items: a mixture of string and numeric
constants, variables, and the values of expressions. Numeric constants and vari-
ables have not yet been introduced. The items are separated by semicolons or
commas.

If commas are used, the items will be printed in columns.
The series of printed items will have their characters in contact. If spaces are de-

sired, as in the “toast and jam” example, the spaces have to be put in the strings
explicitly.

34

i
|
|
;‘
i
i
A
il

You can single-step through a program using the Outline A Amiga key and the T
key. The computer executes one statement at a time and, in the List window,
draws a box around the statement that was just executed. In order for this to be
done conveniently, the List window must be half-size or smaller. It should be lo-
cated on the right of the Output window so that you can see the output and the
list at the same time.

Questions
1. Which cursor is a little flashing line? What puts it on the screen?

Top 05t cLchmy TR weunte Lol v He oy
2. Which cursor is invisible? What statement uses it?

Pridoly curvre P
3. How do you make two PRINT statements print on the same line?
45\1110;5/ ds h bﬁ%&kh%h %71_
. Will thes ors avea ce between them when run?
ol LT EE&L iR

/
10 PRINT “hi’’; “therel” ‘\

If not, how do you put a space between thel(n?'ﬁ
&

35

Enter this program:

REM food
PRINT

PRINT *‘‘toast”
PRINT ‘‘and”
PRINT ‘“‘jam”

Run it. Each PRINT statement prints a separate line.
Now change the lines so the program looks like this:
PRINT “toast ’;

PRINT “and '’

PRINT ‘“jam”

Be careful to put the space at the end of “toast ”” and at the end of “and " and
the semicolon at the end of each line.

Run it.

ASCIL TSI
BEWSIBLES

The Hidden Cursor Ay, %)\ %}%ﬂ
Remember the orange line? It is the input Y‘m‘i" 4 TSNS

cursor and shows where the next letter w N 4 Af o
. S 2L
will appear on the screen when you type. - \/{l %
b |

What was different from the first time? 3

The PRINT statement also has a cursor, but —~ B L=
it is invisible. It marks where the next letter _ ‘\z;‘ M
will appear when the computer is printing. « L f/(7“ ,«} i

Rule: The semicolon makes the invisible PRINT cursor wait in place on the
screen. The next PRINT statement adds on to what has already been written on
the same line.

36

T e e e e e e e

Squashed Together or Spread Out?
Enter NEW, then try this:

PRINT ‘‘rock’;*‘and’’;‘‘roll”’
After you have run it, try also:

PRINT ‘“‘rock’,‘‘and”,‘‘roll”
PRINT “fancy”,“and”,“plain”

The comma in the PRINT statement separates items into columns.

AL

Famous Pairs
Enter and run:

REM famous

SAY TRANSLATE$(‘“‘enter a name’’)

INPUT A$

SAY TRANSLATE$(‘“‘enter another’)

INPUT B$

CLS

PRINT ‘‘Presenting that famous twosome:”’
PRINT

PRINT A$; and ”;B$

‘

Be sure to put a space before and after the * and ”.

37

One Step at a Time

Find the two A keys next to the space bar on the Amiga keyboard. Both are red,
but one is solid red and the other is outline red. Let’s call them the Solid A and
Outline A keys. In a moment you will use the Outline A key.

Enter:

REM steps

PRINTfirst step”

BEEP

PRINT‘‘second step’’

CLS

PRINT‘last step”

We need to see the Output window and a small List window at the same time.
Click in the List window to enable it (so the word LIST is solid, but BASIC in the

Output window is written in ghost letters).

Now we will single-step through the program. Hold down the Outline A key and
press the T key. Whenever you're to do this, we will say “press A-T.”

You see an orange box around the first line of the program.

Press A-T again. You see the box move to the second line. And in the Output
window, you see the results. The computer prints

first step
Press A-T again. The box moves down one line and the computer beeps.
Keep pressing A-T until the program is done.

Every time you press the A-T keys, the computer takes another step through the
program.

38

Assignment 6
1. Write a program that asks for the name of a musical group and one of their

tunes. Then using just one PRINT statement, print the group name and the
tune name, with the word plays in between.

2. Do the same, but use three PRINT statements to print on one line.

3. Single-step through your program using the Outline A and the T keys.

39

e T o ——

In this lesson:

. The LET statement used with strings.

. The box model for storing variables in memory.

. Distinguishing the value and the name of a variable.

. “Taking” a variable from a box is really taking a copy.
. Concatenation of strings, called “gluing’ in this book.
. Numbering lines.

O\ Ul W W N =

The concept of memory boxes is used to introduce the LET statement.

The box model emphasizes that LET is a replacement statement, not an equal
relationship in the sense used in arithmetic.

The box idea nicely separates the concepts name of the variable and value of the
variable. The name is on the label of the box; the value is inside. The contents of
the box may be removed for use, and new contents can be inserted. More exactly,
a copy of the contents is made and used when a variable is used, while the origi-
nal contents remain intact. When LET puts new contents in a box, the old con-
tents are automatically erased first.

In this book, concatenation of two strings to make a longer string, using the plus
(+) sign, is called “gluing” the strings.

Many forms of BASIC require that all statement lines in a program begin with a
number. As you have seen, line numbering is optional in Amiga BASIC. In addi-
tion, you can give names, or lgbels, to lines. Labels will be introduced in Lesson 8
and will be used more often than numbered lines.

Questions
1. LET puts things in boxes. So does INPUT. How are they different?

S = = e R r = B e e T e =]
—— me— — B S S —

40

2. In the program below, what is “MOM" called? What is the name of the string
variable in this program? What is the value of the string variable after the pro-
gram runs?

LET Q$=“MOM”
3. What is in each box after this program runs?
LET A$=<fat”

LET K$=*¢ sausagse”
LET P$=A% + K$

41

The LET statement puts things in boxes. Enter and run:

1 REM in the box
2 CLS

3 LET W$="truck”
4 PRINT W$

Here is what the computer does:

Line 1 The title of the program. The computer ignores it.

Line 2 The computer clears the screen.

Line 3 It sees that a box named W$ is needed. It looks in its memory for this
box. It doesn’t find the box because W$ has not been used in this pro-

gram before. So it takes an empty box and writes W$ on the front and
then puts the string ““truck’ in it.

Line 4 The computer sees that it must print whatever is in box W$. It goes to the
box and makes a copy of the string ““truck’ that it finds there. It puts the
copy on the screen. The string “truck” is still in box W$.

42

Numbered Lines

In the “box " program above, each program line started with a number. Amiga
BASIC lets you do this if you like. It helps when you want to talk about each line
of a program.

Names and Values
This line makes a string variable:

LET W$=“MOPSEY"”’
The name of the variable is W$.
The value of the variable is put in the box.

In this line, the value of W$ is “MOPSEY".

43

Another Example
Enter and run:

1 REM hungry

2 LET D$="‘‘pickles”

3 LET A$=‘“ and ”

4 PRINT “what goes with pickles?”
5 INPUT Z$

6 CLS

7 PRINT D$;A$:2$

Explain what the computer does in each line:

L il @ Aman

2 Rt mclwo i 4 j‘omr vk SO g:

3Mm«ij/h- wa, Saes it

W&té— Lo bedC VZAW) ,(,Jiﬂ M(}Qﬂw

"~

v

5 !NubL vw‘gox gOER %Nﬁzwﬂ)g, e Lo

6CQLQ/\J7\J $ Y

7 W\(’L Pl M R ggen. th(A pcchiep

Gluing the Strings

Here is how to stick two strings together to make a longer string. Enter:

1 REM funny, funny

2 LET W§="*"har de ”’

3 LET X$="*"har ”

4 LET L$=W$ + X$

5 SAY TRANSLATE$(L$)
6 LET L$=L$% + X$

7 SAY TRANSLATE$(L$)

44

Before you run this program, try to guess what the computer will say at line 5
and at line 7:

/
n / J ‘ A

5 h‘jﬂz 0& Jf/m,m ndfb /6’{1. p\wv_ ,L(,aj?_ N\

E 7

; &

Now run the program to see if you were right.

Rule: The plus (+) sign sticks two strings together.

Assignment 7

1. Write your own program that uses the LET statement and explain how it stores
things in boxes.

2. Write a program that inputs two strings, glues them together, and then prints
or speaks them.

45

=]

In this lesson:

1. Labels instead of line numbers.

2. The GOTO statement.

3. Using the CTRL-C keys to stop a running program.
4. Jumping forward.

5. Jumping backward and infinite loops.

6. “Spaghetti” programming.

The GOTO statement allows loops that go on forever. It also helps in the flow of
statement execution once we introduce the IF statement. It provides a slow and
easy entrance into the idea that the flow of a program need not go down the list
of instructions.

For now, GOTO’s main use is to let programs run on for a reasonable length of
time. In each loop through, something can be modified. We'll use CTRL-C to es-
cape the loop by ending the program.

Careless use of GOTO easily leads to “spaghetti’” programming. Examples of spa-
ghetti programs are shown. Although some fun is had with them, the idea is to
make the student aware of the mess that undisciplined use of GOTO can make.

Lines can be named with a label, which satisfies the function that line numbers
serve in other forms of BASIC. The label, always followed by a colon, can stand
on a line by itself, or it can be the first element in a line (followed by the
statement).

We now have three of the four major elements that lead to meaningful program-
ming. They are PRINT, INPUT, and GOTO. &till lacking is the IF statement,
which will change the computer from a sort of record player into a machine that
can evaluate situations and make decisions accordingly.

B e

Questions
1. When you run this program, what will appear on the screen.

PRINT “‘hi”’

GOTO done

PRINT “‘big”
done:PRINT ‘“‘daddy”

2. And this one:
PRINT “Incredible '’;
here: PRINT ‘“‘Amiga”
GOTO here

3. How do you stop the program in question 2?

4. Write a short program that beeps, asks your favorite movie star’s name, and
then does it over and over again.

47

Labels in Your Lines
Look at these four programs:

REM program 1
CLS
PRINT “hi”

10 REM program 3
R0 CLS
30 PRINT “hi”

REM program R
CLS
PRINT “hi”

sl: REM program 4
CLS
last: PRINT ‘“hi”

They all run exactly the same.

Program 1 is the way we have written most of the programs in this book so far.

In program 2, we indented two of the lines.

In program 3, we used line numbers. You can use any integers (whole numbers)
you want just as long as they are smaller than 65530.

In program 4, we used labels in two of the lines. The label is a single word fol-
lowed by a colon (). You cannot use reserved words like RUN, LET, PRINT, and
list of all reserved words in an appendix of this

so forth, as labels. There is a

48

B e = e p—— = e e
e e e e e e

Jumping Around in Your Program
Try this program:

REM whiz
CLS
PRINT ‘“‘your name?”’
INPUT N $
loop:
PRINT N $
PRINT
GOTO loop

Run this program. It never stops by itself. To stop your name from whizzing past
your eyes, hold down the CTRL key and press the C key.

The last line uses the GOTO statement. It is like “Go to Jail” in a game of Mo-
nopoly. Every time the computer reaches the bottom line, it has to go back to line
loop and print your name again.

We will use GOTO in many programs.

More Jumping
Enter:

REM shut up

PRINT ‘“‘say something”
again: INPUT S$

PRINT

PRINT ‘‘did you say’’;S$;«?”
PRINT

GOTO again

Run the program. Type an answer every time you see the question mark and the
input cursor. Press the CTRL-C keys to end the program.,

Notice the arrow from the bottom line to line again. It shows what the GOTO
does. You may want to draw arrows in your program listings.

49

Kinds of Jumps
There are only two ways to jump: ahead or back.

Jumping back makes a loop.

10 PRINT “HI”
R0 GOTO 10

The path through the program is like this:
R0 GOTO 10

The computer goes around and around in this loop. Press CTRL-C to stop.

Jumping ahead lets you skip part of the program. It is not useful yet, but we will
use it later when we learn about the IF statement.

50

e e e e e e e e >
e e T == e

The CTRL-C Keys

Pressing CTRL-C is a lifesaver. When you are in trouble, hold down the CTRL
key and press the C key. The program will stop running, and you will see Ok and
the cursor in the Output window. The computer is ready for your next command.
Your program is still safe in memory.

In the rest of this book, we will say “press CTRL-C” as a short way to tell you to
hold down the CTRL key and press the C key.

A Can of Spaghetti
Look at this:

10 REM Spaghetti
20 GOTO 70
30 PRINT “‘a”
31 GOTO B8O
40 PRINT “¢”
LY ¢,

C >
41 GOTO 90 A

B0 PRINT ‘“u”

51 GOTO 40

70 PRINT ‘‘Spaghetti”
71 GOTO 30

90 PRINT “‘e”’

91 PRINT

99 REM end

51

Whew!

This is not a good, clear program.
It is a ““spaghetti” program.
Don’t write spaghetti programs.

Don’t jump around too much
in your programs.

Assignment 8

1. Just for practice in understanding the GOTO statement, draw the road map for
this spaghetti program:

REM Forked Tongue
GOTO s

n: PRINT “‘n”
GOTO a

s: PRINT “S”
GOTO n

e: PRINT ‘“‘e”
GOTO whew

a; PRINT ‘‘a”
PRINT “k”
GOTO e

whew:
PRINT B i t e”

52

2. Rewrite the snake program above, leaving out the GOTOs.

3. Write a program that prints TEEN POWER over and over.

4. How do you stop your program?

5. Write another that prints your name on one line, then a friend’s on the next,
over and over. Sound a beep as each name is printed. Stop the program with

the CTRL-C keys.

6. Write a program that glues two strings together and that uses each of these
statements:

CLS, BEEP, PRINT, INPUT, LET, GOTO

53

In this lesson:

. The IF statement,

. Phrase A and statement C,
. “If"” in English.

. “If”" as a fork in the road.
. The not equal sign.

Gl W IN -

IF is a powerful but intricate statement that is at the very heart of the computer as
a logic machine.

The IF statement appeals both to our verbal and visual imagination. The “cake”
cartoon and the “fork in the road” cartoon illustrate these ideas.

The GOTO statement has already introduced the idea that the flow of control
down the program list may be altered. To that idea is now added the conditional

test: If an assertion is true, one thing happens; if it is false, another.

Phrase A is used for the assertion being tested for truth. Statement C is used for
the statement to be done if the assertion is true.

Two levels of abstraction occur in the assertions. On the literal level, we have the
assertions equal and not equal:

A$ = B$

C$ <> D$

On the next level up, we have the truth or falsity of the assertion.
Some care may be needed to separate and clarify these notions.

When you see A = B, it may not really be true that A equals B because the asser-
tion may actually be false.

54

.

e

The larger set of relations
< > = =< => <>

will be treated in later lessons.

Questions

1. How do you make this program print THAT’S FINE?
l.f‘u{{‘b No.

start: PRINT “DOES YOUR TOE HURT?”’

INPUT T$

IF T$= “NAH” THEN PRINT “THAT’S FINE”
IF T$= “NAH” THEN GOTO finished

IF T$<>“SOME”’ THEN GOTO start

finished: REM the end

2. Write a short program which asks if you like chocolate or vanilla ice cream.
Answers to be C or V. For the C answer, print Yummy!. For the V answer, print
Mmmmmm!.

3. What is meant by phrase A? By statement C? Where is the “fork in the road” in
an IF statement?

i ’: > (9
4 "D, oL;'» ook 4

- X

T Cq
| \ ! LL}‘
e & ["' 7)
~q - / . A [/,
~Jl ews A P[)f"\, !

55

Clear the memory and enter:

REM tell me

PRINT ‘“‘Are you happy? (yes OR no)”’
INPUT a$

IF a$=‘yes’ THEN PRINT “I'm glad”
IF a$=‘no” THEN PRINT ‘“Too bad”

Run the program several times. Try answering yes, no, or maybe. What
happens?

yes

no

maybe

Two Parts
The IF statement has two parts:

IF phrase A THEN statement C
First, the computer looks at phrase A.
If it is true, the computer does statement C.

If phrase A is not true, then the computer goes on to the next line without doing
statement C. It looks like this:

IF phrase A is true THEN do statement C and then go on to the next line
or

IF phrase is false THEN go on to the next line.

56

IF in English and in BASIC
In English:

IF your home work is done, THEN you may have some cake.
In BASIC:

IF a$="‘‘done’” THEN PRINT ‘‘eat cake”

IF YR HOMEWORK
/S DONE,
THEN You MAY HIVE N/
SOME CAKES =

Assignment 9A

Clear the List window and write a program that asks if you like baseball or Mo-
nopoly. If the answer is baseball, the program prints play ball. If the answer is
Monopoly, have it print something else.

A Fork in the Road

When the computer sees IF, the computer must choose which road to take.

IF phrase A is true, it must go past the THEN and obey the statement it finds
there.

57

IF phrase A is false, it goes down to the next line right away.

Here is the road map with the fork in the road marked:

\

30

40 211?‘ A$=“"HUNGRY” T THEN PRINT ‘“EAT”
0

The Not Equal Sign

= means equal.
<> means not equal.

To make the <> sign, hold down the SHIFT key and press the < key, then the >
key.

58

Using the <> Sign
IF phrase A THEN statement C

Phrase A is a phrase that is true or false.

Choose this for phrase A: b$<>*“FIRE”

Put it in an IF statement:

IF b$<>“FIRE’” THEN PRINT ‘Feed him hot chili”
IF the b$ box contains “COLD”

THEN b$ is not equal to “FIRE”

and the expression b$<>"FIRE” is TRUE.

The computer prints Feed him hot chili

Or:

IF the b$ box contains “FIRE”
THEN the phrase b$<>"FIRE” is FALSE
and computer will not pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>