

COMPUTEt's

Kids
and the
Amiga

Edward H. Carlson, Ph.D.
Illustrated by Paul D. Trap

!?2~!m~!!t~~blications,lnc .•
One 01 the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the
United States Copyright Act without the permission of the copyright owner is un lawful.

Printed in the United States of America

109876543

ISBN 0-87455-048-3

The author and publisher have made every effort in the preparation of this book to insure the accuracy of the programs and
information. However, the information and programs in this book are sold without warranty, either express or implied. Neither
the author nor COMPUTE! Publications, Inc., will be liable for any damages caused or alleged to be caused directly,. indirectly,
incidentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of COMPUTE' Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, is part of ABC
Consumer Magazines, Inc., one of the ABC Publishing Companies, and is not associated with any manufacturer
of personal computers. Amiga is a trademark of Commodore-Amiga, Inc.

Contents
Acknowledgments v
To the Kids vi
To the Parents vii
To the Teacher .. viii
About Programming ix
About the Book x

Introduction
1. Windows, PRINT, BEEP, CLS 1
2. Programs, RUN, NEW, Strings 9
3. REM, SAY, TRANSLATE$, Editing Programs 16
4. Rainbow Colors 22
5. The INPUT Statement 29
6. Tricks with PRINT 34
7. The LET Statement 40
8. The GOTO Statement and the CTRL-C Keys 46
9. The IF Sta temen t 54

10. Introducing Numbers 61
11 . TAB and Delay Loops 69
12. The IF Statement with Numbers 75
13. Random Numbers and the FIX Function 81
14. Save to Disk 89

Graphics, Games, and All That
15. Some Shortcuts 97
16. LOCATE and UCASE$ 107
17. FOR-NEXT Loops " " 112
18. DATA, READ, and RESTORE 120
19. Sound 127
20. Drawing Pictures 131
21. Subroutines and Subprograms .. 136
22 . Windows and Color 143
23 . Color Graphics 148
24. Arrays and the DIM Statement 154

Advanced Programming
25. Snipping Strings: LEFT$, MID$, RIGHT$, LEN 162
26. Music .. 169
27. Switching Numbers with Strings 178
28. ASCII Code, ON-GOTO 184
29. Secret Writing and INKEY$ 192
30. Logic: AND, OR, NOT 198
31. STOP, CaNT, Debugging 207
32. Clear, Friendly Programs 214

Appendices 223
Disk Usage 225
BASIC Reserved Words .. 227
Glossary 229
Answers to Selected Assignments 242

Index of Reserved Words 263
Topic Index .. 265

Acknowledgments

My deepest thanks go to Paul Sheldon Foote for suggesting I write a book on
teaching BASIC to children.

This book continues a series that started with Kids and the Apple. The Amiga is so
different from previous computers covered in the series that I have extensively re­
written the material.

I helped prepare and teach in "The Computer Camp" summer camp at Michigan
State University for these last four summers. I am deeply grateful to my fellow
staff members at the summer camp: Mark Lardie, Mary Winter, John Forsyth, and
Marc Van Wormer, all of whom shared their experiences with me and helped
provide insight into the minds of the children.

Several families have used the Apple version of this book in their homes and of­
fered suggestions for improvement. I especially wish to thank George Campbell
and his youngsters, Andrew and Sarah; Beth O'Malia and Scott, John, and Matt;
Chris Clark and Chris Jr., Tryn, Daniel, and Vicky; and Paul Foote and David.

I greatly appreciate the skill and energy of Stephen Levy in editing and assem­
bling this book for COMPUTE! Publications, Inc.

Paul Trap shares the title page honors with me. His drawings are an essential part
of the book's teaching method. I am grateful to Paul for his lively ideas, cheerful
competence, and quick work which make him an ideal workmate.

My final and heartfelt thanks go to my wife, Louise. As absorbed in professional
duties as I, she nevertheless took on an increased share of family duties as the
book absorbed my free time. Without her support I could not have finished the
work.

v

To the Kids

This book teaches you how to write programs for the Amiga computer.

You will learn how to make your own action, board, and word games. With
them, you may entertain your friends and provide some silly moments at your
parties.

Perhaps your record collection or your paper route needs the organization that
your special programs can provide. If you are working on the school yearbook,
maybe a program to handle the finances or records would be useful.

You may help your younger sisters and brothers by writing drill programs for
arithmetic facts or spelling. Even your own schoolwork in history or a foreign lan­
guage may be made easier by programs you write.

How to use this book. Do all the examples. Try all the assignments. If you get
stuck, first go back and reread the lesson carefully from the top. You may have
overlooked some detail. After trying hard to get unstuck by yourself, you may go
ask a parent or teacher for help.

There are review questions for each lesson. Be sure you can answer them before
announcing that you have finished the lesson.

MAY THE BLUEBIRD OF HAPPINESS
EAT ALL THE BUGS IN YOUR
PROGRAMS!

vi

To the Parents

This book is designed to teach BASIC on the Amiga to youngsters in the range
from 10 to 14 years old. It gives guidance, explanations, exercises, reviews, and
quizzes. Some exercises have room for the student to write in answers that you
can check later. Answers are provided in the back of the book for program
assignments.

Your child will probably need some help in getting started and a great deal of en­
couragement at the sticky places. For further guidance, you may wish to read my
article in Creative Computing, April 1983, page 168.

Learning to program is not easy because it requires handling some sophisticated
concepts. It also requires accuracy and attention to detail which are not typical
childhood traits. For these very reasons it is a valuable experience for children.
They will be well rewarded if they can stick with the book long enough to reach
the fun projects that are possible once a repertoire of commands is built up.

How to use the book. The book is divided into 32 lessons for the kids to do.
Each lesson is preceded by a "Notes" section which you should read. It outlines
the things to be studied, gives some helpful hints, and provides questions which
you can use verbally (usually at the computer) to see if the skills and concepts
have been mastered.

These notes are intended for the parents, but older students may also profit by
reading them. Younger students will probably not read them and can get all the
material they need from the lessons themselves. For the youngest children, it may
be advisable to read the lesson aloud with them and discuss it before they start
work.

vii

To the Teacher

This book is designed for students in about the fifth grade up. It teaches BASIC
and the features of the Amiga computer.

The lessons contain explanations (including cartoons), examples, exercises, and re­
view questions. Notes for the instructor, which accompany each lesson, summa­
rize the material, provide helpful hints, and give good review questions.

The book is intended for independent study, but it may also be used in a class­
room setting.

I view this book as teaching programming in the broadest sense, using the BASIC
language, rather than teaching BASIC. Seymour Papert has pointed out in
Mindstorms (Basic Books, 1980) that programming can teach powerful ideas.
Among these is the idea that procedures are entities in themselves. They can be
named, broken down into elementary parts, and debugged. Some other concepts
include these: "chunking" ideas into "mind-sized bites," organizing such modules
into a hierarchial system, looping to repeat modules, and conditional testing (the
IF-THEN statement).

Each concept is tied to the student's
everyday experiences through choice of
language to express the idea, through
choice of examples, and through cartoons.
Thus, visual and verbal metaphor is used
in making the "new" material familiar
to the student.

viii

. ,

About Programming

There is a common misconception about programming a computer. Many people
think that ability in mathmatics is required. Not so. The childhood activities that
computing most resembles may be playing with building blocks and writing an
English composition.

Like a block set that has many copies of a few types of blocks, BASIC uses a rela­
tively small number of standard commands and statements. Yet the blocks can be
formed into unique and imaginative castles, and BASIC can be used to write an
almost limitless variety of programs.

Like an essay on "How I Spent My Summer," writing a program involves skill
and planning on several levels. To write an essay, a child must organize thoughts
from the overall topic to lead and summary paragraphs and sentences on down to
grammar, punctuation, and spelling of each word in the sentence.

Creativity in each of these activities-blocks, writing, and BASIC-has little scope
at the smallest level-individual blocks, words, or commands. At best, a small
bag of tricks is developed. For example, the child may discover that the triangle
block, first used to make roofs, makes splendid fir trees. What is needed at the
smaller scale is accuracy in syntax. Here computing is an almost ideal self-paced
learning situation, because syntax errors are largely discovered and pointed out by
the BASIC interpreter as the child builds and tests the program.

On a larger scale, creativity comes into full scope, and many other latent abilities
of the child are developed. School skills such as arithmetic and language arts are
utilized as needed, and thus are strengthened. But the strongest features of pro­
gramming are balanced between analysis (why doesn't it work as I want) and
synthesis (planning on several size scales, from the program as a whole down
through loops and subroutines to individual commands).

The analytical and synthetical skills learned in programming can be transferred to
more general situations and can help the child to a more mature style of thinking
and working.

ix

About the Book

This book was written for the Amiga computer and was tested on a machine hav­
ing 512K of memory, two disk drives, the color monitor, and version 1.1 of
Workbench.

For instructors who feel themselves weak in BASIC or who are beginners them­
selves, the student's lessons form a good introduction to BASIC. The lessons and
notes differ in style. The lessons are pragmatic and holistic; the notes are detailed
and explanatory.

The book starts with a bare-bones introduction to programming, leading quickly
to the point where interesting programs can be written. The central part of the
book emphasizes more advanced and powerful techniques. The final part of the
book continues building on these, but also deals with broader aspects of the art of
programming such as editing, debugging, and user-friendly programming.

The assignments involve writing programs, usually short ones. Of course, many
different programs are satisfactory solutions to these assignments. In the back of
the book are solutions for assigned programs, some of them written by children
who have used the book.

Lesson 14, "Saving to Disk," can be studied anytime after the first lesson.

x

Instructor Notes I. Windows, PRINT, BEEP, CLB

This lesson is an introduction to the computer. Your student may have many ques­
tions at the start, and you should pull up a chair and help in the familiarization.

The Amiga is a very powerful computer, but before you begin to see any results,
you must go through a few setup steps. Stay with your student at least until the
end of the first lesson .

There are instructions for every step, and several reminders that my experience
with students indicates are helpful. But it is di fficult to anticipate all the problems
each new user will encounter. Every novice on a computer must practice and ex­
periment until the ideas jell . More information about the use of the gadgets on
the windows can be found in the manuals that come with the computer. There
just is not enough room here to explain everything in detail.

Let's discuss the enabling of windows and immediate mode. When BASIC is first
loaded from the Extras disk, you see two windows: a full-screen Output window
and a half-size List window. The List window is enabled (what you type appears
there). You must enable the Output window to do this lesson. Do this by clicking
the left mouse button while the pointer is somewhere inside the part of the Out­
put window that is showing. This puts you in immediate mode. The word BASIC
becomes solid, and LIST appears in ghost writing to indicate the change.

If the keyboard locks up (the computer won' t respond to any keystrokes) or if
things seem to be in a hopeless mess otherwise, put the Workbench disk in and
hold these three keys down at once: CTRL-Amiga-Amiga. (The Amiga keys have
a large red A on them. One A is solid red; the o ther is outline red.) This restarts
the system, but any program you had in memory will be lost. You have to reload
BASIC from the Extras disk.

Some early Amigas were shipped with ABasiC instead of Amiga BASIC. This
book treats Amiga BASIC, and some of the commands will not work in ABasiC.

The contents of the lesson:

1. Turning on the computer; the windows, icons, and the mouse.
2. The Kickstart, Workbench, and Extras disks .
3. Typing versus entering statements or lines.
4. Input cursor.
5. Enabling a window.
6. The computer understands only a limited number of instructions.
7. Statements: PRINT, BEEP, CLS.
8. Special keys: RETURN, SHIFT, BACK SPACE, CAPS LOCK.

At first, we use the two BASIC windows in their original locations and sizes. In a
later lesson, we expand the List window to cover the full screen.

It is important not to remove a disk from the slot while the red disk drive light is on.
You may ruin the disk. Likewise, do not click the mouse buttons while the disk
drive light is on. It may crash the computer. This will not damage anything per­
manently, but will require you to restart the computer. You will lose any program
in memory. When you turn off the computer, pause at least ten seconds before
turning it on again. Otherwise, the computer may suffer electronic damage.

Questions
1. Show how to load BASIC from its disk.

2. What is an icon?

3. Name the two different BASIC windows.

4. Use PRINT to write in the Output window.

5. How do you enable the Output window?

6. What does the cursor look like?

7. How do you clear the screen?

8. How do you make the computer beep?

2

Lesson 1. Windows, PRINT, BEEP, CLS

Put Kickstart and Workbench in Your Computer
Push the Kickstart disk into the disk drive slot on the front of the computer until
it clicks and drops down. Turn on the computer. The red light comes on the disk
drive, and you hear it buzzing. In a moment the screen will show an upside­
down picture of the Workbench disk.

When the red light on the drive goes out, take the Kickstart disk out of the drive
and put the Workbench disk in. Wait for it to load. When you see the Workbench
screen, and the red light on the drive goes out, take the Workbench disk out of
the drive.

A picture of a disk with the word Workbench is in the upper right corner of the
screen.

A little picture on the screen is called an icon.

Open the Extras Disk
Take the Workbench disk out of the drive slot and put the Extras disk in . The
drive starts, and in a moment the Extras disk icon appears in the upper right cor­
ner. It doesn't matter if the Extras icon is on top of the Workbench icon.

3

Move the mouse until the arrow is on the Extras icon. Quickly, click the left
mouse button twice. Again, you'll hear buzzing, and the red light will come on.
The disk icon turns black, and you see a little tan balloon with zz in it.

Soon the Extras window shows on the left of the screen. In it are some icons. The
AmigaBASIC icon is a box with orange flow lines on it.

Load BASIC
Now move the arrow onto the AmigaBASIC icon and double-click the left mouse
button. Black icon, buzzing, tan cloud, red disk light all show. In a moment the
two BASIC windows appear. One says BASIC in ghost writing, and the other says
LIST in dark writing.

The BASIC Windows
BASIC has two windows, called Output and List.

The window saying BASIC is called the Output window. In the Output window is
written some information about BASIC.

You use the Output window to tell the computer what to do. Then the computer
prints its answers in the Output window.

4

The List window is where you put the programs you write. The List window is
half-size and is inside the full-size Output window.

Enable the Output Window
Put the arrow under the writing in the Output window. Click the left mouse but­
ton. The word BASIC in ghost writing turns solid, and the word Ok appears in
the window. At the same time, the word LIST in the List window turns to ghost
writing.

When you point the arrow in a window and click the mouse button, the window
becomes active. When you make a window active, it means it has been enabled.
Only one window is enabled, or active, at a time. The window that is enabled has
dark writing. The other window has ghost writing. Whatever you type will show
in the window that is enabled.

Below Ok in the Output window is a little orange line called the cursor. It means
the computer is waiting for you to type in something.

Cursor means " runner." The little line runs along the screen showing where the
next letter you type goes.

5

Typing
Type your name. What you type shows in the Output window. (If it appears in
the List window, you have not properly enabled the Output window. Read "En­
able the Output Window" above.)

Now press the RETURN key.

Oh-oh! Screen flashed yellow, the computer beeped, the cursor disappeared, and
at the top of the screen, you see

Undefined subprogram

What is wrong? The computer understands only about 200 words, and your name
is not one of them. Whenever the computer doesn't understand you, it prints an
error message at the top of the screen.

Making the Computer Go Again
Put the arrow into the OK box at the top of the screen and click the left button.
The computer prints a new Ok, and the orange cursor is in the Output window.

Command the Computer
You need to learn which words the computer understands.

The first three instructions you will learn are

PRINT, CLS, BEEP

Type: print "hi"

If you make a mistake, press the BACK SPACE key to erase the wrong letters.
Then type the correct letters. (The" marks are quotation marks. To make"
marks, hold down the SHIFT key and press the" key that is next to the RETURN
key.)

Now press the RETURN key.

6

The computer obeys your instructions. In the Output window it prints

hi

Then it prints Ok, and the cursor appears to tell you that it is ready for another
command.

The PRINT statement tells the computer to write something in the Output win­
dow. It writes whatever words are inside the quotation marks after the PRINT
statement. (The computer doesn't care whether you type instructions in capital
letters or small ones. If you want to type in capital letters, press the CAPS LOCK
key once. The little red light on the key comes on, meaning that what you type
will now be in capital letters. Press it again to go back to small letters.)

Type and Enter Are Not the Same
When we say enter, we will always mean to do these two things:

1. Type something.
2. Then press the RETURN key.

The Computer Beeps Like a Bird
Here is another statement:

Enter: beep

(Did you remember to press the RETURN key?)

The screen flashes yellow, and you hear a
beep. (If you did not hear the beep, check
to make sure that a cable runs from
Audio Input on the monitor to the
LEFT speaker connection on the back
of the computer. Also check that the
volume is turned up on the monitor.)

7

The Window Washer
The CLS statement tells the computer to erase the Output window.

Enter: cIs

(Did you remember to press the RETURN key?)

The Output window is wiped clean, and the orange cursor line moves to the up­
per left corner of the screen. This position is the "home" of the cursor.

Assignment 1
1. Use the mouse to enable the List window. Then enable the Output window

again.

2. Now use the PRINT statement to write your name in the Output window.

3. Make the computer beep.

4. Now clear the Output window.

5. Practice starting the computer and loading BASIC until you are sure you can do
it correctly.

8

Instructor Notes 2. Programs, RUN, NEW, Strings

In this lesson:

1. Wha t is a program?
2. Windows menu: Show List, Show Output.
3. Enable the List window and write the program there .
4. Automatic capital letters for reserved words in a program.
5. RUN to exe.cute a program.
6. Using Windows on the menu bar to show the List window.
7. NEW to erase a program.
8. PRINT with nothing after it to skip a line.
9. Strings, characters, constants.

In Lesson I, the computer executed instructions (like PRINT, CLS, and BEEP) in
the immediate mode. Once the exe.cution was over, the statement disappeared
from memory.

A program is a list of statements kept in memory. You enter the statements in the
List window. To execute the statements in the program, you go to the Output
window and enter the command RUN in the immediate mode. After the program
executes, you can then go back to the List window to add additional instructions
or modify the program. At some point, a serious program is saved to disk, but we
will not do that yet.

The NEW command erases a program from memory.

The BASIC menu bar has four menus. One of these, Window, is necessary to
redisplay the List window after it is erased as part of the action of the RUN
command.

As an alternative to using the NEW and the RUN commands typed into the Out­
put window, you can use Start in the Run menu and New in the Projects menu.

9

Some students may become confused by the many options and actions available
with mouse, keyboard, screen icons, menus, and windows. If so, it would be a
good idea to do a complete review, starting at the beginning of Lesson 1.

The idea of a string constant, used in Lesson 1, is explained. The numbers appear­
ing in a string, for example, "19", cannot be used directly in arithmetic.

Questions
1. How do you do each of these things:

Enable the List window ~ ,(j\ .hM /J(/
Make the computer beep~ : e~
Erase the Output window c1.J2.
Erase the program ~. ~ : l '1 j..~ " JJ
Print your name (2.rl\f' -<J,/J'

2. ~h~t is a character? Give some examples. What is a string?
..u..AJ.J.nJL I!r 1\-,JN'k ... >(((fl <-l~ fl) f ~ CJv.,~

3. What special key do you press to "enter" a line?
/V~

4. What does the comput~r mean when it rints Undefined subprogram?
~ ~ jJt~ ~~t .1 1tJ2 /1

5. Write a program to print FIRE and make the computer beep.
p 1" F,.l'-(R, t,~") b -I

6. After you run the p'rogram, how do you make the List window show again?
~ .rJ.(.v-~

10

,

Lesson 2. Programs, RUN, NEW, Strings

What Is a Program?
A program is a list of instructions for the computer to do. The instructions are
written in lines. Another name for instruction is "command" or "statement."

Writing a Program
Program statements must be entered in the
List window. First, you must enable the
List window. Move the arrow to the middle
of the List window and click the left
button. The ghost word LIST turns
solid, and the orange cursor appears in
the upper left of the List window.

Type this line:

print"hi"

What you type appears in the List window. (If you make a typing mistake, read
the section "Fixing Mistakes" below. Then fix the mistake.)

Now press RETURN. The small letters of the statement become capital letters. But
the "hi" stays as small letters. The words in capitals are reserved words, or
keywords.

From now on in this book, all reserved words will be in capital letters and most
other things in small letters. But you do not need to use capital letters when you
type keywords into the computer. Let the computer do it for you.

11

Fixing Mistakes
The cursor is now below the P of PRINT. Use the mouse to move the arrow be­
tween the i and h of hi. Click the left button. The cursor jumps between the let­
ters. (If a little orange box covers one of the letters, or if some other orange mess
happens, move the arrow away, click the left button, and move the arrow back
and try again.)

Now press the BACK SPACE key once. The h disappears. Type h again. Again
you have "hi".

Practice moving the cursor between other letters, then erasing the letter to the left
and retyping it.

The RUN Command
Notice that the computer did not obey you by printing hi. You must return to the
Output window and enter the command RUN to make the computer execute the
program.

We mean execute like the soldier executing the command "Left face!" -not execu­
tion by firing squad.

Move the arrow to the
Output window and click
the left button to enable
the window.

Enter: RUN

The computer obeys the command
by printing

hi.

The computer also erases the List
window. How do you get it back?

12

,

Show the List Window
There are two ways.

Enter: list

or use the Windows menu.

To use the Windows menu, press and hold down the right (not left) button on the
mouse, and you now see the menu bar at the top of the screen change.

Holding the right button down, move the arrow onto the word Windows. The
word changes to orange on a black background, and some more words appear.

Still keeping the right button down, move the mouse so the arrow is on the
words Show List. They turn orange on black. Then let up on the button. The List
window will come back onto the screen.

You see that your program line PRINT"hi" is still there.

Assignment 2A
Practice moving back and forth between the
List window and the Output window. (Enable one
window, then the other.) Run the program several times.

A Longer Program
Enable the List window. The cursor is below the first line. Add two lines to your
program.

Enter: BEEP
PRINT"computer"

Now your program has three lines.

Run the program. (Remember: Enable the Output window and enter RUN.)

13

The NEW Command
The computer just executed your program. It beeped and printed:

hi
computer

Now let's erase the program so we can write another.

Enter in the Output window:

NEW

A large box flashes onto the top of the screen. It asks if you want to save the pro­
gram to disk. Answer no by moving the arrow into the NO box and clicking the
left button. Then enable the List window.

Printing an Empty Line
Enter this new program in the List window:

PRINT"Here is the first line"
PRINT
PRINT"Skipped one line"

Run this program.

The second line of the program just prints a blank line.

String Constants
Look at these PRINT statements:

PRINT "JOE"
PRINT "#847%*$"
PRINT" 19"
PRINT "3.14159265"
PRINT "I'm 14"
PRINT" "

14

Letters, numbers, and punctuation marks are called characters. Even a blank space
is a character. Look at this:

PRINT " "

Characters in a row make a string. The letters are stretched out like beads on a
string. A string between quotation marks is called a string constant. It is a string
because it is made of letters, numbers, and punctuation marks in a row. It is a
constant because it stays the same. It doesn't change as the program runs.

Assignment 28
1. Write a program that prints your first, middle, and last names.

2. Now add a beep before it prints each name.

3. Erase the program with the NEW command.

4. Write a program that prints three flying birds. (Make the birds with minus
signs and the capital letter O. The minus sign is on the key above the P key.)
Run it.

5. Now add to the program to make the computer beep after printing each bird.

15

Instructor Notes 3. REM, SAY, TRANSLATE$, Editing
Programs

In this lesson:

1. The REM for titles and remarks.
2. The CLS statement in a program.
3. Computer speech: the SAY statement used with the TRANSLATE$() function.
4. Editing the program; moving the cursor in the List window. The BACK SPACE

key.
S. Moving and expanding the List window.

Whatever shows in the List window is the current program.

The program is organized as lines. In Amiga BASIC, line numbers are optional.
Later, we will introduce this idea of numbering lines and line labels which are es­
sential for GOTO and GOSUB statements.

REM as a remark statement can be a bit confusing to new students. It needs be
distinguished from PRINT.

The difference between command and statement is hazy. Commands are used in
the immediate mode (when the Output window is enabled). Statements are in­
structions put into a program. But BASIC really treats statements and commands
the same. Most often, the RUN command is used in the immediate mode, and the
PRINT statement in a program. But, as we have seen, PRINT can be used in the
immediate mode, and it is possible to use such commands as RUN, NEW, and
LIST in programs.

Using PRINT to draw pictures is demonstrated. It is better to draw some at the
end of each lesson than to do a lot now. After Lesson 4, drawing helps develop
line-editing skills.

By now the student should be familiar with the differences between the List and
Output windows. So it is time to expand the List window to full size. This allows
longer program lines to be used .

16

Questions
1. What is the REM statement used for?

~Jj'vV r l1. ./fL/YVV.l..f' Jt..
2. What window do you look in to see the program? How do you make that win­

dow a pe r if you don't see it?
I ~r::ur I I l' l,(

3. What statement do you put in a program so that it will erase the Output
window?n _

L ..J..J~
4. How do you makm the p st ,:"indow larger or smaller? How do you move the

List window? ~L .Jv\,A 0 ~ f) . _II I G J_
J ovr ..uc ~ 1 t "!""'fl. L!J' Y

5. What statements do you put in a program so that it will say ''I'm an Amiga?"
What disk must be in the disk drive for this to work?

~~

17

Lesson 3. REM, SAY, TRANSLATE$, Editing Programs

Enter NEW and enable the List window. You are ready to write a new program.

(Remember, you enter NEW in the Output window, then click the left button in
the List window.)

The REM Statement
REM means remark. Use REM to write any notes in a program that can help the
reader understand the program.

Enter:

REM I do windows
PRINT"Scribble on the Output window"

(Remember, you learned how to fix typing mistakes in the last lesson. Move the
cursor behind the error in the PRINT statement above. Use the BACK SPACE key
to erase the wrong letter. Then type the correct letter to fix it.)

Run the program. The computer ignores the first line because it starts with the
statement REM.

The computer obeys the statement in
the second line to print Scribble on the
Output window.

18

The CLS Statement In a Program
Activate the List window, and add these lines to the program and run it:

BEEP
CLS
PRINT"Clean again"
PRINT"That's all, Folks"

The program again scribbles on the window. Then before you can even read it,
the computer beeps and the CLS statement erases the Output window. Run it
again.

The Computer Talks
Enter NEW and enable the List window.

Enter this program:

REM happy
PRINT "smile"
SAY TRANSLATE$("smile")

Run it. The Workbench disk has to be in the
drive before you can hear the computer say
" smile" out loud.

(If you do not hear the voice of the computer,
turn up the volume on the monitor. Also check
that a cable runs from the Audio Input on the
monitor to the LEFT speaker socket on the
back of the computer .)

Moving the List Window
Use the mouse to move the List window
around the screen. Put the mouse arrow
on the stripes beside the word LIST.
Click the left button and hold it down .
Now move the mouse. The window moves, too.

19

Move the List window to the upper left corner, covering up the word BASIC in
the Output window.

In the last lesson you learned how to enable a window. Remember? To see all of
the Output window, click the right mouse button, pull down the Windows menu,
and then release the button while on the Show Output item.

Big Window
Now use the mouse to show the List window again.

We want the List window to be full size like the Output window. Do this :

Find the squiggle in the little white box at the lower right corner of the List win­
dow. This white box is one of the gadgets of the window. Move the mouse arrow
onto this gadget. Then click and hold the left button down. Now move the
mouse. The List window changes size. Pull the corner of the List window to the
lower right corner of the screen. Now the List window is full size.

When you have two full-size windows, you can see only one at a time. You need
to use the mouse and the Windows menu to switch back and forth between them.

Or you can make the List window any size you want, then move it wherever you
want on the screen.

20

Picture Drawing
It's fun to draw pictures with the PRINT statement. Here is a picture of a car. En­
ter NEW before drawing the car.

REM $$$ Mercedes-Benz $$$
CLS
PRINT
PRINT" XXXXXX"
PRINT"XXXXXXXXXXXX"
PRINT" 0 0"

Don't forget to put the spaces in the PRINT lines. They are part of the drawing.

Assignment 3
1. Use some PRINT statements to draw an airplane.

2. Show how to make the List window a different size and how to move it
around on the screen.

3. What does the computer do (if anything) when it sees the REM statement?
What is the REM statement used for?

4. Use CLS, BEEP, REM, and PRINT to draw three flying birds on the screen.
Make each bird beep after it is drawn.

21

Instructor Notes 4. Rainbow Colors

In this lesson:

1. The COLOR and PALETTE statements.
2. Foreground and background colors.
3. Printing in three colors on a colored background.
4. Cursor keys, holding a key down to repeat, the BACK SPACE key.

In a later lesson, we will use 16 colors to do graphics and text. But the standard
screens support only four colors in order to save memory. The PALETTE state­
ment mixes the primary colors (red, green, blue) and assigns the resulting color to
a color number: 0-3 on the standard screen (0-15 later). If you change a color mix
while a program is running, then wherever that color is used on the screen, it im­
mediately changes.

The COLOR statement assigns colors from the palette to two elements on the
screen: foreground and background. Foreground is called text in the book and is
the color PRINTed to the screen. If you change a COLOR assignment during a
program run, the new text and background colors apply only to further text
PRINTed. (The whole screen background will take on the new color if CLS is
executed.)

Special keys explained so far: SHIFT, CTRL, RETURN, CAPS LOCK, the two
AMIGA keys, and BACK SPACE. The four cursor keys (arrow keys) will be ex­
plained in this lesson.

ENTER is identical in results to RETURN. ALT will be used later to jump the
cursor around in the List window. The number keypad to the right of the key­
board duplicates the number keys in the top row of the standard typewriter key­
board.

Holding any key down a short time starts the auto-repeat feature of the keyboard.
This is very useful for making repeated characters, such as a line of characters or
spaces in a line, or for moving the cursor fast with the arrow keys.

22

When changing a line or text-correcting an error, for example-the change is not
permanent until the cursor has been moved off the line, either by pressing RE­
TURN, or by using the mouse or the cursor keys. This is a rather subtle point­
easily overlooked since the line may not appear any different with the cursor off
it. (But if there is a reserved word on the line in lowercase letters, it immediately
becomes capitalized when the cursor moves off the line.)

Questions
1. How many colors can you put on the screen at once? How do you make blue

letters on a white background?

2. Show how the PALETTE statement can make a yellow color (red plus green)
and put it in spot 3 on the palette.

3. What is a cursor? What is it good for? Demonstrate the use of the BACK SPACE
key.

4. Have your student demonstrate how to edit a line. This includes using the ar­
row keys to move the cursor to the interior of the line, modifying characters
there, and moving the cursor off the line to store it in memory. Also, show how
to use the repeat feature of the keyboard.

23

Lesson 4. Rainbow Colors

The BASIC screen can show four colors at once. They are numbered from a to 3.
Right now these colors are:

color a background
color 1 text
color 2
color 3

blue
white (the colors of the typed letters)
black (gadgets have this color)
orange (the cursor has this color)

Text means the color of the letters you print. Background means the color of the
screen where there are no letters.

The COWR statement picks which of these colors to use for the text and which
to use for the background of what you print.

Try this:

COLOR 0,1 This makes blue writing on white background.
CLS This clears the whole screen to white.

The numbers in the COLOR statement have these meanings:

COLOR text, ba,okground

Try other color combinations like these:

COLOR 1,3
COLOR 0,4
COLOR 4,3

In fact, try every possible combination from 0,1 to 4,3. Just be careful to make the
two numbers different, because COLOR 0,0 makes blue writing on a blue back­
ground, and you cannot read what it says. (What does COLOR 2,2 look like?)

24

Mixing Your Own Paints
The PALETTE statement lets you mix red, green, and blue to make other colors.
The only catch is that you can have only four colors on the screen at once.

It's like having three paint cans, each with a primary color. You have a palette
with room for only fon splotches of color. Instead of a color name, each place on
the palette has a nup.lber: 0, 1, 2, or 3. You take some red, green, and blue and
mix them together for color 0, then you mix different amounts for colors 1 and 2
and 3.

(Later in the book we'll see how to have as many as 16 colors on the screen at
once.)

Try this:

COLOR 1,0
CLS
PALETTE 1, .6, 1, 1

(This gets you back to white on blue.)

This turns .Ill the writing on the screen to light blue. It even turns the writing you
already did to light blue.

Why? Remember that your last COLOR statement said " color 1 for letters, color 0
for background." You just changed color 1 to something with less red in it. So the
writing looks bluish green.

25

Palette color number, how much red, green, blue

The amount of each color is a decimal number from 0 to l.

The Pure Colors
Try these:

PALETTE 1, 1,0,Opure red
PALETTE 1, O,l,Opure green
PALETTE 1, 0,0,1 pure blue (hard to read)

And these:

PALETTE 1, 1,1,0
PALETTE 1, 1,0,1
PALETTE 1,0,1,1

red + green = yellow
red + blue = magenta
green + blue = cyan

What do you mix to get white? To get black?

Now make crazy mixtures like:

PALETTE 1, .7, .2, .1

When you get tired, put white back on palette spot 1:

PALETTE 1, 1,1,1

Rainbow Colors
We can choose any color for background and then print on it with three more
colors.

Run:

REM Leprechaun Rainbow
PALETTE 0, 0, 0, °
PALETTE 1, .7, .3, .1
PRINT

26

PRINT " Pot"
PALETTE 2, .1, .7, .3
COLOR 2,0
PRINT " of"
PALETTE 3, .1, .3, .9
COLOR 3,0
PRINT" Gold"

After running, you have to do four
PALETTE statements to get back the
usual BASIC screen colors.

The Arrow Keys Move the Cursor
You know how to move the cursor in the List window by using the mouse and
clicking the left bu tton.

You can also move the cursor with the cursor keys. Find the diamond of four ar­
row keys near the right bottom of the keyboard.

These keys move the cursor. Press one. Hold it down. If you try to move the
cursor out of the List window, the computer beeps and flashes a yellow screen.

Repeating Keys
Hold down the h key. You see:

hhhhhhhhhhhhhhhhhhhhhhhhh

This works for most keys. Hold down
a cursor arrow key. The cursor goes
whizzing along.

27

Erasing Letters
Enter:

REM aaaaaaaaaaEOiiiiiiiiiiiii

Move the cursor between the E and the O.
Press the BACK SPACE key. It erases the
letter E that was to the left of the cursor.

Now hold down the BACK SPACE key.
The cursor goes whizzing off to the
left, erasing all the a letters and
dragging the right side of the line ~

with it. ~

Assignment 4
1. Add to the Mercedes picture of Lesson 3 to make the car two-toned in color.

2. Draw a large "smiley face" in three colors.

3. In the List window, type this line. Then fix it to read CAT.

REM CAAAT

When you are done, move the cursor to another line so the correct line
will be stored in memory.

28

Instructor Notes 5. The INPUT Statement

In this lesson:

1. The INPUT statement.
2. String variables and boxes in memory.
3. Error message "Redo from start".
4. The two hats: programmer and user.

This lesson is about the INPUT statement and string variables.

In the statement's simplest form, INPUT A$, there is no message in quotation
marks in front . This allows the student to concentrate on the central feature of an
INPUT.

Similarly, we will give only the essential feature of each command for the whole
of the introduction of the book (through Lesson 14). We want the student to see
the forest before going into details. The statements required for interesting pro­
grams are:

PRINT
INPUT
GOTO
IF
RND

allows

output
input
infinite looping
branching and decisions
random numbers for games

The box concept is used to introduce string variables. For the time being, variable
names are restricted to one letter. This allows faster typing.

The "two hats" of the student-programmer and user of the programs-cause
much confusion at assignment time. PRINT is the programmer speaking, while
the user can speak only when invited by an INPUT statement.

29

Questions
1. What dges the comp,~ter put in boxes? C LS

S-t J2~Y'l -e~¥' ' 1 /IH
2. How does theaProgram ask the user to type in something? \ IN P Lt: r-llb

j 0 ~ ~ ~ " ''vi) ~ ~ 'r\ !
3. ow do you know the computer is waiting for an answer? \ '"

\,

4. W~~h a dollar sign after it called?

5. Write a short program that uses CLS, PRINT, and INPUT.

6. Are you in trouble if the computer answers with Redo from start after an in­
put? What made it do that? What do you do next?

~-, c1J::'l(f4A ry A.trl 1J~ S~~J:
S~ J- ('JlVC

30

Lesson 5. The INPUT Statement

Use INPUT to make the computer ask for something.

Enter:

REM Talky-Talk
SAY TRANSLATE$("say something")
PRINT"type your answer"
INPUT A$
SAY TRANSLATE$("did you say")
SAY TRANSLATE$(A$)

Run it. When you see a question mark with the orange cursor after it, type hi and
press the RETURN key.

The question mark was written by INPUT in the fourth line.

When you type hi, the computer stores this word in a box named A$. Later, the
program asks the computer to SAY whatever is in the box named A$.

Run the program again, and this time say something funny.

String Variables
A$ is the name of a string variable. The
computer stores string variables in
memory boxes. The name is written
on the front of the box and the
string is put inside the box.

31

Rule: A string variable name ends in a dollar sign ($). You can use any letter you
like for the name and then put a dollar sign after it.

A$ is called a variable because you can put different strings in the box at different
times in the program.

The box can hold only one string at a time. Putting a new string in a box auto­
matically erases the old string that was in the box.

Error Message from INPUT
Run this two times:

INPUT A$
PRINT A$

Try these answers:

hi
hi, there

Rule: Do not put any commas in
the string you type in answer to
the computer.

If you accidentally do put one in, the computer will answer

?Redo from start

and wait. This means that the computer wants you to try again, but do not put
any commas in the answer you type.

You Wear Two Hats-User and Programmer
You are a programmer when you write a program. The person who runs the pro­
gram is a user.

Of course, if you run your own program, then you are the user.

32

When the programmer writes a PRINT statement, the programmer is speaking to
the user by writing on the screen.

When the programmer writes an INPUT statement, the programmer is asking the
user to say something to the computer.

It is like a game of "May I?" The only time the user gets to say something is
when the programmer allows it by writing an INPUT statement in the program.

Assignment 5
1. Write a program that asks for a person's name and then says something silly to

the person by name.

2. Write a program that asks you to INPUT your favorite color and put it in a box
called C$. Then the program asks your favorite animal and puts this in box C$,
too. Have the program print C$. What will be printed? Run the program and
see if you are righ t.

33

Instructor Notes 6. Tricks with Print

In this lesson:

1. PRINT with a semicolon at the end.
2. PRINT with semicolons between items.
3. PRINT with a comma between items.
4. The "invisible" PRINT cursor.
5. Stepping through the program with the Outline A and T keys.

This lesson introduces the PRINT cursor which is invisible on the Output win­
dow. It marks the spot where PRINT will put the next character on the screen.
(The input cursor is the flashing line.)

When a PRINT statement ends with a semicolon, the PRINT cursor remains in
place. The next PRINT will put its first character exactly in the spot following the
last character printed by the current PRINT statement.

Without a semicolon at the end, the PRINT statement will advance the PRINT
cursor to the beginning of the next line as its last official act.

A PRINT statement can print several items: a mixture of string and numeric
constants, variables, and the values of expressions. Numeric constants and vari­
ables have not yet been introduced. The items are separated by semicolons or
commas.

If commas are used, the items will be printed in columns.

The series of printed items will have their characters in contact. If spaces are de­
sired, as in the "toast and jam" example, the spaces have to be put in the strings
explici tl y.

34

You can single-step through a program using the Outline A Amiga key and the T
key. The computer executes one statement at a time and, in the List window,
draws a box around the statement that was just executed. In order for this to be
done conveniently, the List window must be half-size or smaller. It should be lo­
cated on the right of the Output window so that you can see the output and the
list at the same time.

Questions

l. jr-;~~ is a li~ li1k'ha~t~e~ ~ ~y
2. Which cursor is invisible? What statement uses it?
p~~ p~

3. How do you m~ke WO PRINT st~tements print on t~~ame line?
P~ocSi~ ~~~o..cr- ~~

4. ~t~w.Jl:0r~sf~a~be~~)them when run?

10 PRINT "hi";"there!" "\

If not, how do you put a space between they;!

35

Lesson 6. Tricks with Print

Enter this program:

REM food
PRINT
PRINT "toast"
PRINT "and"
PRINT "jam"

Run it. Each PRINT statement prints a separate line.

Now change the lines so the program looks like this:

PRINT "toast ";
PRINT "and ";
PRINT "jam"

Be careful to put the space at the end of "toast "and at the end of "and "and
the semicolon at the end of each line.

Run it.

What was different from the first time?

The Hidden Cursor
Remember the orange line? It is the input
cursor and shows where the next letter
will appear on the screen when you type.

The PRINT statement also has a cursor, but
it is invisible. It marks where the next letter
will appear when the computer is printing.

Rule: The semicolon makes the invisible PRINT cursor wait in place on the
screen. The next PRINT statement adds on to what has already been written on
the same line.

36

Squashed Together or Spread Out?
Enter NEW, then try this:

PRINT "rock";"and";"roll"

After you have run it, try also:

PRINT "rock", "and", "roll"
PRINT "fancy", "and", "plain"

The comma in the PRINT statement separates items into columns.

\ ~ / , ,------, ~
I
I

c=p "11
1

I
I I
I I ~

~ L _____ --l

Famous Pairs
Enter and run:

REM famous
SAY TRANSLATE$("enter a name")
INPUT A$
SAY TRANSLATE$("enter another")
INPUT B$
CLS
PRINT "Presenting that famous twosome:"
PRINT
PRINT A$;" and ";B$

Be sure to put a space before and after the /I and "

37

~'I J

One Step at a Time
Find the two A keys next to the space bar on the Amiga keyboard. Both are red,
but one is solid red and the other is outline red. Let's call them the Solid A and
Outline A keys. In a moment you will use the Outline A key.

Enter:

REM steps
PRINT"first step"
BEEP
PRINT"second step"
CLS
PRINT"last step"

We need to see the Output window and a small List window at the same time.
Click in the List window to enable it (so the word LIST is solid, but BASIC in the
Output window is written in ghost letters).

Now we will single-step through the program. Hold down the Outline A key and
press the T key. Whenever you're to do this, we will say " press A-T."

You see an orange box around the first line of the program.

Press A-T again. You see the box move to the second line. And in the Output
window, you see the results. The computer prints

first step

Press A-T again. The box moves down one line and the computer beeps.

Keep pressing A -T un til the program is done.

Every time you press the A-T keys, the computer takes another step through the
program.

38

Assignment 6
1. Write a program that asks for the name of a musical group and one of their

tunes. Then using just one PRINT statement, print the group name and the
tune name, with the word plays in between.

2. Do the same, but use three PRINT statements to print on one line.

3. Single-step through your program using the Outline A and the T keys.

39

Instructor Notes 7. The LET Statement

In this lesson:

1. The LET statement used with strings.
2. The box model for storing variables in memory.
3. Distinguishing the value and the name of a variable.
4. "Taking" a variable from a box is really taking a copy.
5. Concatenation of strings, called "gluing" in this book.
6. Numbering lines.

The concept of memory boxes is used to introduce the LET statement.

The box model emphasizes that LET is a replacement statement, not an equal
relationship in the sense used in arithmetic.

The box idea nicely separates the concepts name of the variable and value of the
variable. The name is on the label of the box; the value is inside. The contents of
the box may be removed for use, and new contents can be inserted. More exactly,
a copy of the contents is made and used when a variable is used, while the origi­
nal contents remain intact. When LET puts new contents in a box, the old con­
tents are automatically erased first.

In this book, concatenation of two strings to make a longer string, using the plus
(+) sign, is called" gluing" the strings.

Many forms of BASIC require that all statement lines in a program begin with a
number. As you have seen, line numbering is optional in Amiga BASIC. In addi­
tion, you can give names, or labels, to lines. Labels will be introduced in Lesson 8
and will be used more often than numbered lines.

Questions
1. LET puts things in boxes. So does INPUT. How are they different?

40

2. In the program below, what is "MOM" called? What is the name of the string
variable in this program? What is the value of the string variable after the pro­
gram runs?

LET Q$ = "MOM"

3. What is in each box after this program runs?

LET A$ = "fat"
LET K$ =" sausage"
LET P$=A$ + K$

41

Lesson 7. The LET Statement

The LET statement puts things in boxes. Enter and run:

1 REM in the box
2 CLS
3 LET W$ = "truck"
4 PRINT W$

Here is what the computer does:

Line 1 The title of the program. The computer ignores it.

Line 2 The computer clears the screen.

Line 3 It sees that a box named W$ is needed. It looks in its memory for this
box. It doesn't find the box because W$ has not been used in this pro­
gram before. So it takes an empty box and writes W$ on the front and
then puts the string "truck" in it.

Line 4 The computer sees that it must print whatever is in box W$. It goes to the
box and makes a copy of the string "truck" that it finds there. It puts the
copy on the screen. The string "truck" is still in box W$.

\.

42

Numbered Lines
In the "box" program above, each program line started with a number. Amiga
BASIC lets you do this if you like. It helps when you want to talk about each line
of a program.

Names and Values
This line makes a string variable:

LET W$ = "MOPSEY"

The name of the variable is W$.

The value of the variable is put in the box.

In this line, the value of W$ is "MOPSEY".

f\Y NN1E 15 1,/$
t1Y VALUE /5 '/1cpjEr"

43

Another Example
Enter and run:

1 REM hungry
2 LET D$ = "pickles"
3 LET A$=" and "
4 PRINT "what goes with pickles?"
5 INPUT Z$
6 CLS
7 PRINT D$;A$;Z$

Explain what the computer does in each line:

Gluing the Strings
Here is how to stick two strings together to make a longer string. Enter:

1 REM funny, funny
2 LET W$="har de "
3 LET X$ = "har "
4 LET L$=W$ + X$
5 SAY TRANSLATE$(L$)
6 LET L$=L$ + X$
7 SAY TRANSLATE$(L$)

44

Before you run this program, try to guess what the computer will say at line 5

:nd;: e 1 k / hNL ~ fl=-?
7 __ __

Now run the program to see if you were right.

Rule: The plus (+) sign sticks two strings together.

Assignment 7
1. Write your own program that uses the LET statement and explain how it stores

things in boxes.

2. Write a program that inputs two strings, glues them together, and then prints
or speaks them.

45

Instructor Notes 8. The GOTO Statement and the
CTRL-C Keys

In this lesson:

1. Labels instead of line numbers.
2. The GOTO statement.
3. Using the CTRL-C keys to stop a running program.
4. Jumping forward.
5. Jumping backward and infinite loops.
6. "Spaghetti" programming.

The GOTO statement allows loops that go on forever. It also helps in the flow of
statement execution once we introduce the IF statement. It provides a slow and
easy entrance into the idea that the flow of a program need not go down the list
of instructions.

For now, GOTO's main use is to let programs run on for a reasonable length of
time. In each loop through, something can be modified. We'll use CTRL-C to es­
cape the loop by ending the program.

Careless use of GOTO easily leads to "spaghetti" programming. Examples of spa­
ghetti programs are shown. Although some fun is had with them, the idea is to
make the student aware of the mess that undisciplined use of GOTO can make.

Lines can be named with a label, which satisfies the function that line numbers
serve in other forms of BASIC. The label, always followed by a colon, can stand
on a line by itself, or it can be the first element in a line (followed by the
statement).

We now have three of the four major elements that lead to meaningful program­
ming. They are PRINT, INPUT, and GOTO. Still lacking is the IF statement,
which will change the computer from a sort of record player into a machine that
can evaluate situations and make decisions accordingly.

46

Questions
1. When you run this program, what will appear on the screen.

PRINT "hi"
GOTO done
PRINT "big"

done:PRINT "daddy"

2. And this one:

PRINT "Incredible ";
here: PRINT "Amiga"
GOTO here

3. How do you stop the program in question 2?

4. Write a short program that beeps, asks your favorite movie star's name, and
then does it over and over again.

47

Lesson 8. The GOTO Statement and the CTRL-C Keys

Labels In Your Unes
Look at these four programs:

REM program 1
CLS
PRINT "hi"

10 REM program 3
20 CLS
30 PRINT "hi"

REM program 2
CLS
PRINT "hi"

sl: REM program 4
CLS

last: PRINT "hi"

They all run exactly the same.

Program 1 is the way we have written most of the programs in this book so far.

In program 2, we indented two of the lines .

In program 3, we used line numbers. You can use any integers (whole numbers)
you want just as long as they are smaller than 65530.

In program 4, we used labels in two of the lines. The label is a single word fol­
lowed by a colon (:). You cannot use reserved words like RUN, LET, PRINT, and
so forth, as labels. There is a list of all reserved words in an appendix of this
book.

(

48

Jumping Around In Your Program
Try this program:

REM whiz
CLS

loop:

PRINT "your name?"
INPUT N$

PRINT N$
PRINT

GOTO loop

Run this program. It never stops by itself. To stop your name from whizzing past
your eyes, hold down the CTRL key and press the C key.

The last line uses the GOTO statement. It is like "Go to Jail" in a game of Mo­
nopoly. Every time the computer reaches the bottom line, it has to go back to line
loop and print your name again.

We will use GOTO in many programs.

More Jumping
Enter:

REM shut up
PRINT "say something"

(

again: INPUT S$
PRINT
PRINT "did you say";S$;"?"
PRINT
GOTO again

Run the program. Type an answer every time you see the question mark and the
input cursor. Press the CTRL-C keys to end the program.

Notice the arrow from the bottom line to line again. It shows what the GOTO
does. You may want to draw arrows in your program listings.

49

Kinds of Jumps
There are only two ways to jump: ahead or back.

Jumping back makes a loop.

10 PRINT "HI"
20 GOTO 10

The path through the program is like this:

10 PRINT "HI"

~
The computer goes around and around in this loop. Press CTRL-C to stop.

Jumping ahead lets you skip part of the program. It is not useful yet, but we will
use it later when we learn about the IF statement.

50

The CTRL-C Keys
Pressing CTRL-C is a lifesaver. When you are in trouble, hold down the CTRL
key and press the C key. The program will stop running, and you will see Ok and
the cursor in the Output window. The computer is ready for your next command.
Your program is still safe in memory.

In the rest of this book, we will say "press CTRL-C" as a short way to tell you to
hold down the CTRL key and press the C key.

A Can of SpagheHl
Look at this:

10 REM Spaghetti

20 GOTO 70

31 GOTO 50

40 PRINT "e"

41 GOTO 90

50 PRINT "u"

51 GOTO 40

70 PRINT "Spaghetti"

71 GOTO 30

90 PRINT "e"

91 PRINT

99 REM end

51

Whew!

This is not a good, clear program.

It is a " spaghetti" program.

Don't write spaghetti programs.
Don't jump around too much
in your programs.

Assignment 8
1. Just for practice in understanding the GOTO statement, draw the road map for

this spaghetti program:

REM Forked Tongue

GOTO s

n: PRINT "n"

GOTO a

s: PRINT "8"

GOTOn

e: PRINT "e"

GOTO whew

a: PRINT "a"

PRINT Ilk"~

GOTO e

whew:
PRINT " Bit e"

52

2. Rewrite the snake program above, leaving out the GOTOs.

3. Write a program that prints TEEN POWER over and over.

4. How do you stop your program?

5. Write another that prints your name on one line, then a friend's on the next,
over and over. Sound a beep as each name is printed. Stop the program with
the CTRL-C keys.

6. Write a program that glues two strings together and that uses each of these
statements:

CLS, BEEP, PRINT, INPUT, LET, GOTO

53

Instructor Notes 9. The IF Statement

In this lesson:

1. The IF statement.
2. Phrase A and statement C.
3. "If" in English.
4. "If" as a fork in the road.
5. The not equal sign.

IF is a powerful but intricate statement that is at the very heart of the computer as
a logic machine.

The IF statement appeals both to our verbal and visual imagination. The "cake"
cartoon and the "fork in the road" cartoon illustrate these ideas.

The GOTO statement has already introduced the idea that the flow of control
down the program list may be altered. To that idea is now added the conditional
test: If an assertion is true, one thing happens; if it is false, another.

Phrase A is used for the assertion being tested for truth. Statement C is used for
the statement to be done if the assertion is true.

Two levels of abstraction occur in the assertions. On the literal leveL we have the
assertions equal and not equal:

A$ = B$

C$ <> D$

On the next level up, we have the truth or falsity of the assertion.

Some care may be needed to separate and clarify these notions.

When you see A = B, it may not really be true that A equals B because the asser­
tion may actually be false.

54

The larger set of relations

< > =< = > <>

will be treated in later lessons.

Questions

1. Ht~ do you m~is program print THAT'S FINE?

star~RINT "DOES YOUR TOE HURT?"
INPUT T$
IF T$= "NAH" THEN PRINT "THAT'S FINE"
IF T$ = "N AH" THEN GOTO finished
IF T$<>"SOME" THEN GOTO start
finished: REM the end

2. Write a short program which asks if you like chocolate or vanilla ice cream.
Answers to be C or V. For the C answer, print Yummy!. For the V answer, print
Mmmmmm!.

3. What is meant by phrase A? By statement C? Where is the "fork in the road" in
an IF statement?

55

~ \

Lesson 9. The IF Statement

Clear the memory and enter:

REM tell me
PRINT "Are you happy? (yes OR no)"
INPUT a$
IF a$ = "yes" THEN PRINT "I'm glad"
IF a$ = "no" THEN PRINT "Too bad"

Run the program several times. Try answering yes, no, or maybe. What
happens?

yes __ __

no __ ___

maybe __ _

Two Parts
The IF statement has two parts:

IF phrase A THEN statement C

First, the computer looks at phrase A.

If it is true, the computer does statement C.

If phrase A is not true, then the computer goes on to the next line without doing
statement C. It looks like this :

IF phrase A is true THEN do statement C and then go on to the next line

or

IF phrase is false THEN go on to the next line.

56

IF In English and In BASIC
In English:

IF your home work is done, THEN you may have some cake.

In BASIC:

IF a$ = "done" THEN PRINT "eat cake"

IF YOJR HOMEWORK
/s fX)N~

1HEN YOU !1AY HAVE
SOME CAKE.'

Assignment 9A
Clear the List window and write a program that asks if you like baseball or Mo­
nopoly. If the answer is baseball, the program prints play ball. If the answer is
Monopoly, have it print something else.

A Fork In the Road
When the computer sees IF, the computer must choose which road to take.

IF phrase A is true, it must go past the THEN and obey the statement it finds
there.

57

IF phrase A is false, it goes down to the next line right away.

Here is the road map with the fork in the road marked:

3~ ~
40 (IF A$ = "HUNGRY" • THEN PRINT "EAT" :>
50

The Not Equal Sign
means equal.

<> means not equal.

1-

1~ljqfll!, ,lito/III/Will .
I/)-~ -_~

_____ -".J/.~/ '- ...

I

To make the <> sign, hold down the SHIFT key and press the < key, then the >
key.

58

Using the <> Sign
IF phrase A THEN statement C

Phrase A is a phrase that is true or false.

Choose this for phrase A: b$<>"FIRE"

Put it in an IF statement:

IF b$<>"FIRE" THEN PRINT "Feed him hot chili"

IF
THEN
and

the b$ box contains "COLD"
b$ is not equal to "FIRE"
the expression b$<>"FIRE" is TRUE.

The computer prints Feed him hot chili

Or:

IF
THEN
and

the b$ box contains "FIRE"
the phrase b$<>" FIRE" is FALSE
computer will not print anything.

59

Here is how it looks in a program:

EM Old Smokey
SAY TRANSLATE$("With dogs it's a cold nose. ")
SAY TRANSLATE$("With dragons, it's.")
SAY TRANSLATE$("How is your dragon's brath?")
PRINT "(Enter 'fire' OR 'cold')"
INPUT b$
IF b$<>"fire" THEN SAY TRANSLATE$("Feed him some hot cheeli."')
IF b$= "fire" THEN SAY TRANSLATE$ "Watch outl")
SAY TRANSLATE$("Nice dragon.")

(Notice that breath and chili are misspelled so that the computer will pronounce
them better.)

Assignment 98.
l. Write a "pizza" program. Ask what topping is wanted. Make the computer an­

swer something silly for each different choice. You can choose mushrooms,
pepperoni, anchovies, green peppers, and so on. You can also ask what size.

',' .

2. Write a color guessing ;:" '.
game. One player ~ "-: -, ..
INPUTs a color in string c$, . .. -:':.' ~ "

and the other keeps INPUTing guesses in
string g$. Use two IF lines, one with a phrase A

g$<>c$

for when the guess is wrong, and the
other with an equal sign for when the
guess is right. The statement C prints
wrong or righ t.

60

))

Instructor Notes 10. Introducing Numbers

In this lesson:

1. Numbers in PRINT, INPUT, and LET statements.
2. Arithmetic operations.
3. "Type mismatch" error message.
4. String and numeric variable names.
S. Can't do arithmetic (yet) with numbers in strings.
6. The equal sign is a replacement symbol, not an equality condition.

We introduce numeric variables and operations and revisit the LET, INPUT, and
PRINT statements. The idea of memory as a shelf of boxes is extended to num­
bers. For the time being, we continue to restrict variable names to one letter.

The arithmetic operations are illustrated. The * symbol for multiplication will
probably be unfamiliar to many students. Division gives decimal numbers, but
since most arithmetic will be addition and subtraction, with a little multiplication,
familiarity with decimal numbers is helpful but not essential.

Students may find it strange that the numbers in string constants cannot be used
directly in arithmetic. Later in the book, we will introduce the VAL and STR$
functions that allow interconversion of numbers and strings.

You can print a mixture of string and numeric values by using a single PRINT
statement.

The nonstandard use of the equal sign (=) in BASIC, that it means replace and
not equal, shows up in such statements as

LET N=N+l

Questions
1. What are the two kinds of boxes in memory (that is, named by the kinds of

things stored in the boxes).

61

2. Explain why N = N + 1 for a computer is not like 7 = 7 + 1 in arithmetic.

3. Give another example of bad arithmetic in a LET statement. Use the • or /
sign.

4. Give an example of a program line that would have a Type Mismatch error.

5. Explain what is meant by the " name of a variable" and the "value of a vari­
able" for numeric variables. For string variables.

62

Lesson 10. Introducing Numbers

Numbers In INPUT, LET, and PRINT
So far, we have used only strings. The computer can do arithmetic, too. Enter and
run this program:

REM bigger
SAY TRANSLATE$("Give me a number.")
INPUT N
LET N=N+l
SAY TRANSLATE$("Here is a bigger one.")
PRINT N

Arithmetic
The +, -, and'" signs are in the top row of the keyboard. The / sign is at the
bottom, with the ? sign.

Computers use'" instead of X for a multiplication sign.

Try this: In the bigger program above, change the LET statement so that N is
multiplied by 5.

Computers use / for a division sign.
Answers are decimals.

Try this: Change the LET so that N
is divided by five . What do you say
in the next line?

\\ Ii

63

Arithmetic In the PRINT Statement
REM waiting
LET a=2001
LET b=1986
PRINT" How much longer, Hal?"
PRINT a-b;"years."

Variable Names
The name of a box that contains a string must end with a dollar sign. Some ex­
amples are b$, A$, name$.

The name of a box that contains a number doesn't have a dollar sign. Here are
some examples: b, A, number.

The thing that is put in the box is called the value of the variable.

Variable name
LET a = 21 a
LET b$="hi" b$

flAME
BICYCU

Value
21

"hi"

flAME
IS/GreLEi

64

Numbers and Strings Are Different
Numbers and strings are different. "1986" is not a number. It is a string constant
because it is inside quotation marks.

Rule: Even if a string is made up of number characters, it is still not a number.

Some numeric constants: 5, 22, 3.14, -50

Some string constants: "HI", "7", "Two", "3.14"

There are two types of variables: string and numeric.

You cannot put a string in a number box or a number in a string box.

Correct:
Correct:
Wrong:
Wrong:

LET a = 10
LET b$ =" 10"
LET c$= 10
LET d = "10"

If you try to run one of the wrong lines, the computer will beep and print:

Type mismatch

To continue using the computer, you must click the left button in the OK box at
the top of the screen. If you show the List window,
you will see an orange box
around the part of the program
that is wrong.

Rule: You cannot do arithmetic
with the numbers in strings.

Correct: LET a = 3 + 7
Wrong: LET b = "3" + "7"

65

Combinations
Try to guess what each of these statements will print. Then enter the line to see
what happens:

PRINT 5 _________________________ __

PRINT "5" __ __

PRINT" 5 + 3" __ _

PRINT "5" + "3" __ _

PRINT 5 + 3 ______________________ _

Which of the lines above glues two strings?

Which line does addition of two numbers? _________________ __

Which line just tells you about an addition problem? _____________ __

Mixtures In Print
You can print numbers and strings in the same PRINT statement. (Just remember
that you cannot do arithmetic with the mixture.)

Correct: PRINT a;"seven";"7"
PRINT a;b$

Run this line: PRINT 5/2;"is equal to 5/2"

A Funny Thing About the Equal Sign
The = sign in computing does not mean equal. Look at this statement:

LET N=N+l

66

This does not make sense in arithmetic. Suppose N is 7. This would say that

7=7+1

which is not correct.

But it is okay in computing to say N = N + 1 because the = sign really means
replace. Here is what happens.

Look at this: LET N=N+ 1

The computer goes to the box with N written on the front. It takes the number 7
from the box. It adds 1 to the 7 to get 8. Then it puts the 8 back into the box.

Another way to say the same thing is

10 LET N N + 1

which means: LET (new N) equal (old N) plus one

67

Don't Be Backward
In arithmetic, you can put the two numbers on whichever side of the equal sign
you want. But in the LET statement you cannot.

In arithmetic: N = 3

In BASIC:

In BASIC:

LET N = 3
LET 3 = N

LET N = B
LET B = N

is the same as 3 = N

is correct
is wrong

is not the same as
Why not? (what is in each box after each statement
is run?)

LETN = Bmeans __ __

LET B = Nmeans __ __

Assignment 10
1. Write a program that asks for your age and the current year. Then subtract and

print out the year of your birth. Be sure to use PRINT statements to tell what is
wanted and what the final number means.

2. Write a program that asks for two numbers and then prints out their product
(multiplies them). Be sure to use lots of PRINTs to tell the user what is
happening.

68

Instructor Notes 11. TAB and Delay Loops

In this lesson:

1. The TAB() function .
2. Arguments in functions.
3. Delay loops: A special case of FOR-NEXT.
4. When numbers are printed, a space is put before and after them (the space

before a number is really for the sign; therefore, negative numbers have a mi­
nus sign in place of the space).

The TAB function mimics the tab key of a typewriter.

TAB must be used in a PRINT statement. Several TAB functions can be used in
one PRINT statement, but the arguments in the parentheses must increase each
time. That is, TAB cannot be used to move the cursor back to the left. Later we
treat the LOCATE statement which allows placement of the cursor anywhere on
the screen.

Use of a semicolon between TAB and the thing to be printed is not always neces­
sary, but is recommended.

The lesson discusses delay loops, which are useful in themselves, but are really
just empty FOR-NEXT loops. Delay loops slow the program down so that its op­
eration can more easily be observed. They also are called timing loops. FOR-NEXT
loops are given as a unit, leaving an explanation of how they work for a later
lesson.

Put the delay loops all on one line, with a colon to separate the NEXT statement.
The amount of delay is determined by the size of the loop variable. A value of
2500 gives about a one-second delay.

After becoming acquainted with the primary effect of the loop-simply to count
until a particular value is reached before going on to the next instruction-the
student can more easily handle loops in which things go on inside.

69

Questions
1. Show how to write a delay loop that lasts for about two seconds.

2. Will this work for a delay loop?

FOR q = 1000 TO 5000
NEXTq

3. Tell what the computer will do in each case:

10 PRINT "Hi";TAB(lO);"good looking!"
10 TAB(5);PRINT "OH-ORl"
10 PRINT TAB(l5);"nope";TAB(1);"not here"

4. What is the argument in this statement:

PRINT TAB(5);"E.T. call horne"

70

Lesson 11. TAB and Delay Loops

TAB in a PRINT statement is like the TAB on a typewriter. It moves the output
cursor a number of spaces to the right.

The output cursor is invisible.

The next thing to be printed goes where the cursor is.

Try this:

PRINT "123456789abcdef"
PRINT TAB(3);"y";TAB(7);"z"

Rule: After TAB(N), the next character will be printed in column N.

Careful! Try this: TAB (5)

You hear a beep and see Syntax error. You have to use TAB() in a PRINT
statement. You cannot use TAB() by itself.

71

You Cannot TAB Backward
Try this:

PRINT" 123456789abcdef"
PRINT "a";TAB(9);"b";TAB(3);"c"

The TAB() function can move the printing only to the right. You cannot move
back to the left. If you try to go back, the computer prints on the next line
instead.

Your Name Is Falling
LET n=1
PRINT"Your first name"
INPUT f$
again:
PRINT TAB(n);f$
LET n=n+1
GOTO again

Press CTRL-C to stop the run after your name disappears from the screen .

This program prints your name in a diagonal down the screen, top left to bottom
right. Try other values of n. Try these changes:

n to 50 in the first line
n = n -1 in the next-to-Iast line

Fat Numbers
Numbers have a space glued on each side before they are printed on the screen.

Try this program:

PRINT" 123456789"
PRINT 1;"a"; -3;"b"

72

It takes spaces 1, 2, and 3 to print 1
space 4 a
spaces 5 and 6 - 3
space 8 b

If the number is nega tive, a minus sign (-) instead of a space is put on the left.

Functions Don't Fight, But They Have Arguments
TAB() is a function. Another function is TRANSLATE$(). We will study other
functions like RND(), INT(), and LEFT$(). The number inside the () is called the
argument of the function. TAB() says "move the cursor over," and the argument
tells where to move it to.

Assignment IIA
1. Write a program that asks for last names and nicknames. Then print the last

name starting at column 5 and the nickname at column 15. Use a GOTO so the
program is ready for another name/nickname pair.

2. Write an "Insult" program. It asks your name. Then it beeps, and writes your
name. Then it TABs over in the line and prints an insult.

73

Delay Loops
Here is a way to slow
down parts of a program.
It is a delay loop.

Run this program:

REM Game
BEEP
PRINT "hide"
pause: FOR I = 1 TO 9000:NEXT I
PRINT "coming ready or not"
BEEP

1778
179 ;­/' ?

£..000 ..

11

Line pause is the delay loop. The computer counts from 1 to 9000 before going
on to the next line. It is like counting when you are "it" in a game of hide and
seek.

Try changing the number 9000 in line pause to some other number.

Each 2500 in the delay loop is worth about one second of time. Try this:

REM tick tock
PRINT"Wait how many seconds?"
INPUT s
BEEP
many = s"'2500
FOR t=l TO many:NEXT t
BEEP
PRINT s;"seconds are up"

Assignment liB
Write a "Slowpoke" program that prints out a short message with several seconds
between each word. Have the computer beep before each word.

74

Instructor Notes 12. The IF Statement with Numbers

In this lesson:

1. The IF statement used with numbers.
2. Nested IF statements.
3. Practice with < and> and <> signs.

In this lesson the IF statement is extended to numeric expressions. The logical re­
lations used in this lesson are

> < <>

It's a good idea to get the student to pronounce these expressions aloud. A < B
makes a lot more sense when pronounced" A is less than B" than when it's just
allowed to flow over the eyeballs. The points (the little ends) of the < and>
signs point to the smallest of the two numbers.

We demonstrate the use of nested IFs. This powerful construction may be confus­
ing. Go through the example to make sure the construction is understood.

A homemade loop is shown in the "Guessing Game." The IF at the end of a
block of statements keeps the loop going until the condition G = N is satisfied.

Questions
1. What part of the IF statement can be true or false?

2. What follows the THEN in an IF statement?

PuWNt
3. Aiter this program runs, what will be in box d?

LET d=4
IF 9yftt THEN LET d = 9

4. Same question, but for 3 > 7.

75

Lesson 12. The IF Statement with Numbers

Try this:

REM Teenager
start: PRINT"Your age?"
INPUT A
IF A<13 THEN PRINT"Not yet a teenager!"
IF A> 19 THEN PRINT"Grown up already!"

These IF statements are like the one
that you used before with strings.
Again, we have:

IF phrase A is true THEN do statement 0

Phrase A can have these arithmetic symbols:

equal to
> grea ter than
< less than
<> not equal to

Each phrase A is written with math
language, but you should say it out
loud in English. For example,

A <> B is pronounced
"A is not equal to B."

5 < 7 is pronounced
"five is less than seven."

76

Practice
For the following examples, LET A=7, LET B=5, and LET C=5.

Say each phrase A aloud and tell whether it is true or false:

A=B T F B=C T F
A>B T F B<C T F
A<B T F B<>C T F
A=C T F A<>B T F

An IF Inside an IF
The "Teenager" program above is missing something. Add this line at the end:

IF A>12 THEN IF A<20 THEN PRINT "Teenager!"

This is a nested IF statement. Break it into two parts:

IF A>12 THEN (statement G) where

(statement C) is (IF A<20 THEN PRINT "Teenagerl")

This line first asks, "Is the age greater than 12?"

If the answer is yes, the line gets to ask the second question, "Is the age less than
20?" .

If the answer is again yes, the line prints "Teenager!"

If the answer to either question is no, the PRINT statement is not reached, so
nothing is printed.

Assignment 12A
Draw the "fork in the road" diagram for the nested IF line above. There will be
two forks on the diagram.

77

Guessing Game
REM GUESSING GAME
start:
PRINT' 'Two-player game"
SAY TRANSLATE$("First player turn your back.")
a$="Second player enter a number from one to a hundred."
SAY TRANSLATE$(a$)
INPUT N
CLS
SAY TRANSLATE$("First player turn around.")
guess:
SAY TRANSLATE$("Make a guess.")
INPUT G
IF G<N THEN SAY TRANSLATE$("Too small")
IF G>N THEN SAY TRANSLATE$("Too big")
IF G<>N THEN GOTO guess
over:
SAY TRANSLATE$("Congratulations. That's it!")

If you want to save this program on a disk, read
Lesson 14.

When the guess, G, is not equal to the answer, N,
then the computer says "Too small" or "Too big"
and goes to line guess again. But if G = N,
then none of the IF phrases is true, and
the program moves down to the last
statement and ends.

78

Assignment 128
1. Tell what happens in each of the five lines from guess to over if G is 31 and

N is 88:

If G is 88 and N is 88:

2. Here is another program. What will it print, and how many times?

LET n=l
start:
IF n = 13 THEN PRINT "unlucky!"
LET n=n+2
IF n <30 THEN GOTO start
PRINT "done"

What will it print if the first line is changed to

LET n=2

79

3. Write a program that says something about each number from one to ten. The
player enters a number and the computer prints something about each number:
"Three strikes, you're out" or "Seven is lucky," and so on.

4. Add to the "Guessing Game" program so that it prints You're Hot whenever
the guesser is close to the right number.

5. Add to the "Guessing Game" program so that it tells the player how many
guesses it took to get the right one.

6. Write a game for guessing a card that someone has entered. You must enter the
suit (club, diamond, heart, or spade) and the value (1 through 13). First, the
player guesses the suit, then the program goes on to ask the value. Keep score.

80

Instructor Notes 13. Random Numbers and the FIX
Function

In this lesson:

1. The RND function.
2. The FIX function .
3. The RANDOMIZE statement.
4. The TIMER function.
5. Nesting func tion calls.

RND adds randomness in games and also helps make interesting displays like ka­
leidoscopes. You seed the random number generator with the RANDOMIZE
statement and the TIMER function.

The RND function produces pseudorandom decimal numbers larger than 0 and
smaller than 1.0. Such numbers are directly usable as probabilities, but integers in
a specific range, such as 1 through 6 for a die or 1 through 13 for a suit of cards,
are often more usable by students . The FIX function preforms the job of turning
decimal numbers into integers.

The computer resets the RND function at the beginning of each run, so it will
generate exactly the same set of pseudorandom numbers each time the program
runs . This is usually awkward. We don't want an exact replay each time we run a
game program.

The RANDOMIZE statement reseeds the pseudorandom generator so that each
run of a program will produce different numbers. RANDOMIZE asks the user to
input a seed number. To avoid this, just add the function TIMER after RANDOM­
IZE. This gives RANDOMIZE a seed number which depends on how long the
computer has been on. That is usually sufficiently random to serve as a good
seed.

After extending the random number to a range larger than 0 to I, we often want
to convert it to an integer. The FIX function does this by simply truncating the
number-throwing away the decimal part.

81

For positive numbers, FIX works the same as the INT function which many BA­
SICs have (including Amiga BASIC). But for negative numbers, FIX just drops the
decimal part, while INT drops down to the next more negative number. FIX will
round off a number if you first add 0.5 to it (-0.5 for negative numbers).

The concept of functions is again used in this lesson and is further clarified.

Nesting one function inside the parentheses of another is illustrated by using
RND in the argument of a FIX function.

Questions
1. Tell what the computer will print for each case when g contains 2, 2.1, 2.95,

3.001, 67, 0 and 0.2:

PRINT FIX(g)

2. Tell how the FIX() function is different from rounding off numbers. Which is
easier for you to do?

3. Tell how to change a number so that the FIX() function will round it off.

4. What does the RND() function do?

5. How can you get random integers (whole numbers) from 0 through 10? (Hint:
FlX(RND"'10) is not quite right.)

82

Lesson 13. Random Numbers and the FIX Function

When you throw dice, you can't predict what numbers will come up.

When you deal cards, you can't predict what cards each person will get.

The computer needs some way to let you roll dice and deal cards and do many
other unpredictable things.

Use the RND function to do this . RND stands for " random."

~prograrn
REM Random Numbers
start:
LET n=RND
PRINT n
IF n<.95 THEN GOTO start

You see a lot of decimal numbers on the screen. The RND function made them.

83

Every Program Run Is Different
Run the program again. Notice that you get exactly the same random numbers
the second time as the first time.

This is not so good. Each time you start running a game program, you want dif­
ferent cards or dice to show.

Here is what to do. Add the following line before start: in the above program:

RANDOMIZE TIMER

Run the program several times to see the different numbers with each run.

Bigger Random Numbers
RND gives numbers that are decimals larger than 0 but smaller than 1. To make
numbers larger than 1, you just multiply.

Change the last three lines in the above program to

LET n=RND+52
PRINT n
IF n<46 THEN GOTO start

Run it again several times.

Now the numbers are between 0 and 52. They could be used for choosing the 52
cards in a deck.

But we want whole numbers like 7 and 23 rather than decimal numbers like 7.03
and 23.62 . So we use the FIX function.

The FIX Function

/

FIX() takes the number in parentheses and throws away the decimal part, leaving
an integer. Add this line before the PRINT n in the above program:

n=FIX(n)

84

Here is the entire program:

REM Random Numbers
RANBOMIZE TIMER
start:
LET n=RND*52
n=FIX(:p.)
PRINT n
IF n<46 THEN GO TO start

How It Works
Use this one-line program to see
how FIX() works:

PRINT FIX(2.6)

Run it many times and try these numbers in the parentheses: 0.3, 0.5, 0.9, 1.0,
1.1, 1.49, 1.51, and 1.999. In each case, see that FIX() just throws away the deci­
mal part of the number.

Rounding Off Numbers
Perhaps you know about rounding off numbers. If the decimal part starts with 0.5
or more, you round up . If it starts with 0.4 or below, you round down.

17.02 down 17
3.1 down 3
103.43 down 103
4.5 up 5
82.917 up 83

You round off numbers with the FIX function by first adding 0.5 to the number.

85

Run this:

REM ROUNDING OFF
start:
PRINT "GIVE ME A POSITIVE DECIMAL NUMBER"
INPUT n
IF n <0 THEN GOTO start
PRINT "ROUNDED TO THE NEAREST INTEGER"
PRINT FIX(n + 0.5)
FOR t=l TO 1000:NEXT t
GOTO start

Try the program with numbers like 3.4999 and 3.5 and other numbers you
choose.

Roiling the Bones
Generally, dice games use two dice. One of them is called a die. Here is a pro­
gram that acts like rolling a single die:

REM ONE DIE
RANDOMIZE TIMER
start:
LET r=RND
PRINT "Random number";TAB(15);r
LET s=r*6
PRINT "Times 6"; TAB(15);s
LET i = FIX(s)
PRINT "Integer part"; TAB(15);i
LETd=i+l
PRINT "Die shows"; TAB(15);d
PRINT
PRINT "ANOTHER? <yin> "
INPUT y$
IF y$ = "y" THEN GOTO start

86

What Goes Inside the ()?
Numbers: LET X=FIX(34.7)

Variables: LET X = FIX(J)

Expressions: LET X=FIX(3"'Y+2)

Functions: LET X = FIX(RND)

Here is how to save a lot of room.

Instead of this:

LET R=RND
LET S=R"'6
LET 1= FIX(S)
LET D=l+I

Use just one line:

LET D = 1 + FIX(RND"'6)

Random Numbers In the Middle
Suppose your game has a funny die that shows only 6, 7, or 8 when you roll it.

Run this:

LET d = FIX(RND"'3) + 6

How it works:

Expression

RNO
RNO"'3
FIX(RNO"'3)
FIX(RNO*3) + 6

Makes numbers from
(small to large)
0.01 0.99
0.03 2.97
o 2
6 8

87

Assignment 13
1. Write a program that "rolls" two dice, called dl and d2. Show the number on

dl and on d2 and the sum of the dice. You do not need the variables r, s, and i
in the program above. They were used to show how the final answer was
found.

2. Write a "Paper, Scissors, and Rock" game, with you against the computer. (Pa­
per wraps rock, rock breaks scissors, scissors cut paper.) The computer chooses
a number I, 2, or 3 using the RND function: 1 is paper, 2 is scissors, 3 is rock.
You INPUT your choice as p, s, or r, and the computer figures out who won
and keeps score.

88

Instructor Notes 14. Save to Disk

In this lesson:

1. SAVE, LOAD, FILES, KILL, and NAME commands.
2. Use only a backup of the Extras disk, not the original.
3. Put the disk's write-protect tab on "Write Enable."
4. SAVE overwrites the disk and LOAD overwrites memory.
5. When a program is saved to disk, the original is still in the computer's

memory.
6. The "filename.info" files for Workbench icons.
7. Filenames can be 30 characters long and include punctuation.
S. Good filenames.

Refer to the appendix for making a backup of the Extras disk. Only the backup
should be used in this lesson.

This lesson shows how to save programs to the disk and how to load them again.

Other statements and commands used in this chapter are

NEW REM LIST PRINT

This lesson can be used anytime after Lesson 3. Most of the programs up to this
point were relatively short and uninteresting, not worth saving. The process of
programming was being emphasized, not the end result of useful programs.

However, your own judgment should prevail. You can insert this chapter at an
earlier point in the flow of lessons so that programs which your student is proud
of can be saved.

You can use any mixture of capital and small letters for a filename. But when the
computer goes looking for the filename you type in, it ignores the difference be­
tween capital and small letters.

89

Questions

1. WlW f~C+{7') (1 I(t-~
2. H1 Ion~~me:e?./ r- (iJ

3. Can punct~ar~~ a filename? Can the filename have spaces in it?

4. H~n you check that a program was actually saved to disk?
f\ C T'\
"f'-'L-

5. What happens to a program already in memory if you LOAD another program?

JY-
6. Does t e ilename have to be the same as the program name?

tV\)
7. If a program is put into a file, is it still in memory?

90

14. Save to Disk

If you already have a program in the computer, skip to "Saving a Program." If
not, enter this program:

REM hi
PRINT "hi"

Saving a Program
Check that your disk is still in the drive.

You should not use the original Extras disk.
You should always use a backup copy. There
is always a chance that you can ruin the
disk. Be sure that you do not remove a disk
while the red disk drive light is on.

Check that the plastic write-protect
tab is pushed away from the edge of
the disk. It may say "Write Enable"
or "Ok" in this position.

Enter: SAVE "hi"

You will hear a whirring. The disk drive red light goes on. When the red light
goes off and the whirring stops, a copy of your program is stored on the disk.

(If the computer answers Device I/O error or shows a Volume Extras is write
protected box, you may need to slide the little tab on the disk all the way
down.)

Your original program is still in the computer's memory.

91

Easy Filenames
The filename of your program
is hi.

We used the name hi because
it is easier to remember if the
file has the same name as
the program.

If your program has a different name, save it
again under the correct name.

Ir
The FILES Command
Let's see if the program is really stored on the disk.

En ter: FILES

After a whirring and the red light, you will see a list of all the files on the disk.
Your file will say

hi

You will see another file called

hLinfo

This file holds the icon for your file. You do not see the icon while you are in
BASIC. It may appear when you use the Workbench screen.

92

Good Filenames
A filename:

• can be up to 30 characters long;
• is enclosed in double quotation marks (like "hi");
• can include numbers, spaces, and most punctuation in it.

A filename cannot contain a slash U), colon (:), quotation mark ("), or an asterisk
(*).

A short filename is best because there is less to type, but it should be long
enough to make clear what is in the file. Try to use the same name that is in the
REM in the first line of the program.

Good names:

L 12 teenager
telephone list
tic tac toe
german vocab.

Wrong names:

CAT:DOG (has a colon in it)
a123456789b123456789c123456789d12345 (too long) .

Loading the Program
Enter: NEW

Enable the List window and look at it. The List window is now empty because
NEW erased the program from the computer's memory.

Let's get the program back. Enable the Output window by clicking the left mouse
button while the mouse arrow is in the Output window.

Enter: load"hi"

93

You hear the whirring and see the red
light, but is the program now in
memory? Enable the List
window to find out.

Erasing a File
So far, so good. But what if you change your mind and want to throwaway a
file?

Enter: KILL"hi"

And then enter: FILES

to see if it is really gone from the disk.

Oh-oh! Your file hi is gone, but hLinfo is still there.

Enter: KILL"hLinfo"

to remove this icon file from
your disk.

94

Dangerous Commands
Careful: Both SAVE and LOAD are dangerous to your stored programs.

If you save a program to a filename you have already used on the disk, your new
program will erase the one already on disk.

Likewise, if you load a program into the computer's memory, but you already had
a different program in memory, the program you load will erase the one already
in memory.

Renaming a File
You can change a filename with the NAME command.

If your file is named hi and you want to rename it hello, enter this:

NAME "hi" AS "hello"

Commands
These five commands are used with files:

SAVE "filename"
LOAD "filename"
FILES
KILL "filename"
NAME "filename1" as "filename;:;]"

The Project Menu
Click the right button on the mouse, and pull down the Projects menu.

There are five items, and most have to do with files:

New
Open
Save

Save as
Quit

Like the NEW command, erases the program from memory.
Like LOAD, lets you load a new program.
Like SAVE, lets you save the program in memory to disk. It uses the
filename you see at the top of the Output window.
Same, but asks for a different filename.
Lets you leave BASIC and return to the Workbench.

95

Assignment 14
1. Write a short program (four lines) and save it on the disk.

2. Enter NEW and write another short program. Save it.

3. Enter NEW and then enter FILES to see if the programs were saved. Load each
program and run it.

4. Tryout the KILL command on one of the programs.

5. Tryout the NAME command on one of the programs.

6. Repeat the practice with the SAVE, LOAD, FILES, and KILL commands until
you are sure that you understand them.

/

96

V' fi Instructor Notes 15. Some Shortcuts

In this lesson:

1. ? Used for PRINT
2. LET Omission
3. INPUT Used with a message and with a list of variables
4. INPUT Error message
5. THEN 33 Instead of THEN GOTO 33
6. : Used between statements on a line
7. ' In place of REM
8. Commands compared with statements

Now that we've reached RND and learned how to save programs on disk, all the
elements are in place for the student to write substantial programs.

The colon is used to shorten and clarify programs by putting several statements
on one line. A line should contain statements that have something in common.

The colon allows you to put a short subroutine consisting of several statements
after an IF. This makes using a GOTO unnecessary for reaching the extended seg­
ment of a program. A shorter and much less cluttered program results. The colon
then becomes a powerful and nontrivial means of improving the clarity of a pro­
gram.

The colon can mess up a program, too. Be careful about adding other statements
onto a GOTO, a REM, or an IF line.

INPUT followed by a message has two forms: If the message is followed by a
semicolon, a question mark is printed on the screen; if the message is followed by
a comma, no question mark is printed. In that case, you will probably want the
message to end with a space.

97

Questions
1. What shortcut does a question mark give?

--S ~}U-'U. ' -r
2. H~~ you~ tell that the word LET is missing from the LET statement?

f IN... »L dYY\. ~' >

3. An INPUT statement can have a message after it. Then what two punctuation
marks can follow the quotation marks? ~-.:J:t' ('1iYI r(l V

4. Why is it sOq}etimes good to put two state~me line, separated by

a colon? S;~ S I); d
5. What is wrong with each of these lines?

10 REM beginningO GOTO write
10 GOTO 500 s$ = "Fast"

6. If the computer prints ?Redo from start after the user answers an INPUT,
there are two things that could be wrong. What are they?
r '.fJr: j --t f

'--' ~ Xh .A.Y~ 'J J cv~

C~ -M' S~rJ!/Yl-e.

98

Lesson 15. Some Shortcuts

A PRINT Shortcut
Instead of typing PRINT, just type a question mark.

In the List window, enter

? "hi"

and press Return . The computer substitutes the word PRINT for the question
mark.

A LET Shortcut
These two lines do the same thing:

10 LET A=41
10 A=41

Also these two:

20 LET B$ = "hi"
20 B$ = "hi"

99

You can leave out the word LET from the LET statement. The computer knows
that you mean LET whenever the line starts with a variable name followed by an
equal sign.

When the line starts with a name followed by a colon (:), the computer knows it
is a line label. When the line starts with a name followed by a space, the com­
puter knows it is a subprogram call (more in Lesson 21).

An INPUT Shortcut
Instead of

10 PRINT "What is your name"
20 INPUT N$

you can use

10 INPUT "What is your name";N$

Put a semicolon between the message "What is your name" and the variable. The
computer prints a question mark after the message

What is your name?

and the orange cursor. Then it waits for you to enter an answer.

If you do not want the question
mark, use a comma instead of the
semicolon, like this:

10 INPUT "Enter your name ",N$

It is a good idea to end the message
with a space if you use the comma.

100

Another INPUT Shortcut
You can INPUT several things in one statement. Put commas between the
variables.

Run:

INPUT "Location"; X,Y

When you see: Location? on the screen, you enter two numbers with a
comma between them.

Location? 5,6

Another example:

INPUT "Month, Day, Year";M$,D,Y

After the ?, type: September,29,1986

Error Message In INPUT
If you do not enter enough answers, or if you enter too many, the computer says

?Redo from start
?

and shows the orange cursor. You must enter all the things asked for, with com­
mas between them.

Example:

INPUT "Month, Day, Year";M$,D,Y

?MAY,l
?Redo from start
?May,1,1987

101

Another Way to Get an Error Message
Run:

10 INPUT N ,A$

Try these pairs of answers:

1, B
B, 1
1, 1
B, B

The error message ?Redo from start is put on the screen whenever the user an­
swers a string for a number.

(It is okay to answer with a number for a string, because the computer says
"Okay, 1986 is a string.")

A THEN Shortcut
Instead of

IF a = b THEN GOTO start

use

IF a=b THEN start

A REM Shortcut
Instead of typing REM, you can just type a single quotation mark n.
INPUT N$, The name of the user

is the same as

INPUT N$:REM The name of the user

102

A Colon Shortcut
Put several statements on a line with a colon (:) between them.

Instead of

Q=17*3
R=Q+2
PRINT R

use

Q=17*3:R=Q+2:PRINT R

When to Use the Colon Shortcut
Use the colon shortcut to make the program clearer by putting similar statements
on the same line. For example,

instead of

X=o
y=o
Z=O

write

X=o:Y=o:Z=o

The Colon After an IF Statement
You can avoid messy IF blocks by using colons.

Without a colon:

REM Guess
RANDOMIZE TIMER
g=l
a = FIX(RND* 1 0) + 1

103

guess:
INPUT "Guess a number from 1 to lO";b
IF b=a then right
PRINT "Sorry, try again"
g=g+l
goto guess
right:
PRINT "You got it in";g;"guesses"

With colons:

REM Guess
RANDOMIZE TIMER
g= l:a=FIXCRND·IO)+ 1
guess:
INPUT "Guess a number from 1 to lO";b
IF b<>a THEN PRINT "Sorry, try again":g=g+ l:goto guess
PRINT "You got it in";g;"guesses"

All the statements in the path a<>b is TRUE are on the line after THEN.

Careful: Do not put something on the end of an IF line that doesn't belong.

Example:

35 IF a=b THEN PRINT "Alike"
40q=r

is not the same as

37 IF a=b THEN PRINT "Alike":q =r

because q=r in line 40 is always done, no matter whether a=b is true or not. But
q=r in line 37 is done only if a=b is true.

104

Some More Mistakes with Colons
The REM and the GOTO statements must be last on a line. Anything following
them is ignored.

Correct: p = 3 : REM p is the price

Wrong: REM P is the price : p = 3

Because the computer ignores everything else on a line after reading REM.

Correct: R = P + 1 : GOTO 88
here: 8=3

Wrong: R=P+l: GOTO 88 : 8=3

Because the computer goes to line 88 and can never come back to do the 5=3
statement.

Commands, Statements, and Lines
Commands and statements tell the computer to do
something. The commands and statements we
have used so far include:

BEEP, CLS, COLOR, FILES, GOTO, IF,
INPUT, KILL, LET, LOAD, NAME,
NEW, PRINT, RANDOMIZE, RUN,
and SAVE,

105

We have also used these functions:

RND, FIX, TRANSLATE$, TAB, TIMER

Statements are instructions to the computer which are usually used in a program.
Commands are usually used alone in the Output window. FILES, KILL, LOAD,
NAME, NEW, RUN, and SAVE are commands.

Assignment 15
1. Write a program that uses each of the shortcuts at least once.

2. Write a vacation program. It asks how much you want to spend. Then it tells
where you should go or what you should do.

3. Write a crazy program that asks your name. The program has three funny ways
of saying you are crazy. The program randomly chooses one of these and prints
it after your name.

106

Instructor Notes 16. LOCATE and UCASE$

In this lesson:

1. The LOCATE statement.
2. Lines and columns in the Output window.
3. The UCASE$() function.

The LOCATE statement is used to move the output cursor to any point on the
Output window.

LOCATE allows flexible manipulation of text on the screen and also allows a
crude form of graphics made up of letters and other characters.

The full-size Output window is 61 characters across and 20 lines down. Remem­
ber the phrase "line, column" (which line down, which column across) to get the
order of arguments in the LOCATE L,C statement. (We will find that the order is
reversed when we get to graphics . There we need the phrase "X,Y" with X across
and Y down.)

The UCASE$() function takes any string and changes all its lowercase letters to
uppercase . It does not change punctuation or numbers. It has two uses. One is in
making alphabetical lists. We will return to this in a later lesson. The other is in
matching strings in INPUT statements. If you ask for YES or NO and get yes,
you need to convert to uppercase before comparing the strings in an IF statement.

Questlons
1. If you f) want t~l~int the next word on line 12 at the left, what statement do you

use?~

2. If you want to print the next character on line 6, indented 20 spaces, what

S~YL ,t!se? '~CJj6
3. How can J ou print never again, wai~ a second, then erase just the word

again? W:~A.. ,~,)j

107

4. Show how to print the two words FAT and CAT on the same line with CAT
printed first, starting at space 25, and then after a delay of about a second, FAT
printed starting at space 5.

5. Show how to change the string d$ = "tiny letters" into capital letters .

108

Lesson 16. LOCATE and UCASE$

The LOCATE statement lets you put the output cursor anywhere within the Out­
put window.

There is room for 20 lines of typing when the Output window is full height. The
lines are numbered from 1 at the top to 20 at the bottom.

Each line can hold 61 characters when the Output window is full width. They are
numbered from 1 on the left to 61 on the right.

Run this:

REM LOCATE
LOCATE 10,1:PRINT "line 10 first"
FOR t = 1 TO 900:NEXT t
LOCATE 1,1 :PRINT "line 1 next"
FOR t= 1 TO 900:NEXT t
LOCATE 17,1 :PRINT "line 17 last"

The first number in LOCATE tells which line the output cursor will go to.

109

Jumping Anywhere on the Screen
Run:

REM line and column
start:
LOCATE I, l:PRINT "Which line
LOCATE 1,13:INPUT L
LOCATE I, I:PRINT "Which column
LOCATE 1,13:INPUT C
LOCATE L,C:PRINT ".";
FOR t= 1 TO 6000 : NEXT t
GO TO start:

Press CTRL-C to stop the program.

"

"

The second number in LOCATE tells which column the output cursor will go to.

Erasing What You Write
REM jumping here
again:
L = FIXCRND·20) + 1
C=FIX(RND·68)+ 1
LOCATE L,C:PRINT "here";
FOR t= 1 TO 1000:NEXT t
LOCATE L,C:PRINT " ";
GOTO again:

How do you make the program stop?

The UCASE$() Function
Sometimes you want to make all the
letters in a string into capital letters
(also known as uppercase letters).
The UCASE$() function
does this.

110

Run:

REM ALL CAPS
again:
PRINT"Give me a sentence typed in smallletters":PRINT
INPUT s$: PRINT
t$ = UCASE$(s$)
PRINT"Here it is in capital letters:": PRINT
PRINT" ";t$
ask:
INPUT" Another <Y or N>";a$:PRINT
IF UCASE$(a$)= "Y" THEN again
IF UCASE$(a$)<>"N" THEN ask

Look at the last two lines. It doesn't matter whether the CAPS LOCK key light is
on or not. The user's answer is made into a capital letter before it is tested against
the "Y" and the "N".

UCASE$() is handy when you want to make an alphabetical list whose words
contain both uppercase and lowercase letters. We will do this in a later lesson.

Assignment 16
1. Use the RND function to write your name at random places on the screen.

Make it write your name many times all over the screen.

2. Use LOCATE to write your name in a large X on the screen.

3. Change the above program so that if you enter your name in small letters, it
still makes the X in large letters. Use UCASE$().

III

Instructor Notes 17. FOR-NEXT Loops

In this lesson:

1. The FOR, NEXT, and STEP statements.
2. Values for the loop variable and for STEP.
3. Nested loops.
4. Skipping the loop if it is satisfied at entry.
5. Indenting loop interiors in the listing.
6. The Run menu.

A loop is made of a FOR statement (which may contain a STEP value) and a
NEXT statement. These statements may be separated by several lines, and yet
they are strongly interdependent. The student builds on the notion of a delay
loop and learns the utility of repeating a set of commands in the middle of a loop.

Nested loops are introduced by using an example where the inside loop is a delay
loop.

Amiga BASIC, unlike some other versions, detects whether the exit condition of a
FOR-NEXT loop is satisfied before the loop is run even once. This makes for
cleaner logic in your programs, but may show an unexpected bug if you copy cer­
tain non-Amiga programs into Amiga BASIC.

The FOR statement is evaluated just once at the time the loop is entered. It puts
the starting value of the loop variable into variable storage where it is treated just
as any other numeric variable. The STEP value, the ending value, and the address
of the first statement after the FOR are put on a stack.

From then on, all the looping action takes place at the NEXT statement. Upon
reaching NEXT, the loop variable is incremented by the value of the STEP and
compared with the end value. If the loop variable is larger than the end value (or
smaller in the case of negative STEPs), NEXT passes control to the statement after
itself. Otherwise, it sends control to the statement after the FOR statement.

112

Because BASIC treats the loop variable just like any other variable, it can be used
or changed in the body of the loop. Jumping into the middle of a loop is usually a
disaster. Jumping out of a loop before reaching NEXT is commonly done, but in
some cases (especially where subroutines are involved) may give hard to find
bugs.

The Run menu is handy for starting, stopping, suspending, and continuing pro­
gram runs. In addition, it lets you step through the program just as the A-T keys
do, but it requires a lot of mouse movement. It is easier to automatically step
through a program using Trace On from the menu.

Trace On slows the program down and also highlights the current statement in
the List window with an orange box.

Questions
1. What is the loop variable in this line?

FOR Q=l TO 10: PRINT T$: NEXT Q

2. Write a loop that prints the numbers from 0 to 20 by twos.

3. Write a "Ten Little Indians" program loop that prints from ten down to zero
Indians.

113

Lesson 17 . FOR-NEXT Loops

Remember the delay loop? The computer counted from 1 to 2000 and then went
on.

FOR t=l TO 2000:NEXT t

The computer is smarter than that. It can do other things while it is counting.

Run this:

REM counting
FOR i=5 TO 20
PRINT i
NEXTi

The loop can start on any number and end on any higher number.

Try changing the FOR line in these ways:

FOR 1=100 TO 101

FOR 1=-7 TO 13

FOR 1= 1.3 TO 5 .7

114

)1

Mark Up Your Llstlngs
Show where the loops are by arrows:

REM on paper
FOR 1=0 TO 7
PRINT I
NEXT I

STEPs
The computer was counting by ones in the above programs. To make it count by
twos, change the FOR statement to this:

FOR i= 10 TO 30 STEP 2

Assignment 17 A
Have the computer count by fives from a to 100.

Count Down Loops
You can make the computer count down by using a negative STEP.

Try this:

REM countdown
FOR i= 10 to 1 STEP -1
PRINT i
FOR t= 1 to 600:NEXT t
NEXTi

Nested Loops
In this program, we have one loop inside another.

The outside loop is FOR i ... NEXT i.

115

The inside loop is FOR t .. . NEXT t.

These are nested loops. They are like the baby's set
of toy boxes which fit inside each other.

Loop Variables
To make sure that each FOR statement knows which NEXT statement belongs to
it, the NEXT statement ends in the loop variable name.

FORj=l TO 740: NEXT j

Here, j is the loop variable.

Badly Nested Loops
The inside loop must be all the way inside:

Right: FOR X=3 TO 7

~
FOR Y=3TO 7

PRINT X*Y
NEXTY

NEXT X

Wrong:

@
FORX = 3TO 7

FOR Y=3 TO 7
PRINT X*Y

NEXT X
NEXTY

Don't let the lines connecting one FOR-NEXT pair cross the arrow of another
pair.

116

Nonsense Loops
Amiga BASIC skips loops that are not supposed to run.

Run this:

1 REM nonsense
2 PRINT K
3 FOR K=5 TO 3
4 PRINT K;"Got here!"
5 NEXT K
6 PRINT K

This is a nonsense loop. The FOR statement says that K should start at 5 and get
bigger, until it is larger than 3. But it is bigger than 3 to start with.

So you want the computer to skip the whole loop, jumping down to line 6. It
does.

In line 2, it prints O. This is because the variable K has not been defined yet.
When a variable is used that hasn't been defined, it is given the value O.

Line 3 sets K to 5, then notices that the loop should not run. So it skips down to
the line after the NEXT, which is line 6.

Line 6 prints the value of K, which is 5.

The program never reaches line 4, so it never prints Got here!.

The Run Menu
Start Same as the RUN command

Stop Same as CTRL-C or the END statement

Continue Same as the CONT command (Lesson 31)

Suspend Same as the STOP command (Lesson 31)

117

Trace On (Off) Used for debugging (an automatic version of Step)

Step Same as the A-T keys (Lesson 6)

Enter:

REM stop
FOR i = 1 TO 10000
LOCATE 1,I:PRINT i
NEXT i

Flying Boxes For Debugging
Remember the A-T keys that step the program along? (See Lesson 6.) The Trace
On menu item does this automatically.

Start the program again. Using the right mouse button, select Trace On from the
Run menu and then Show List from the Windows menu. The orange boxes start
flying around the List window lines as the numbers print onto the screen.

118

Assignment 17B
1. Write a program that prints your name 15 times.

2. Make it indent each time by two spaces more. It will go diagonally down the
screen. Use TAB in a loop.

3. Now make it write your name 20 times, starting at the bottom of the screen
and going up. Use LOCATE in a loop.

4. Now make it write your name on one line, your friend's name on the next, and
keep switching until each name is written five times.

119

Instructor Notes 18. DATA, READ, and RESTORE

In this lesson:

1. The DATA, READ, and RESTORE statements.
2. Ways to put data into a program.
3. Pointer to items in a DATA statement.
4. Skipping items in DATA statements.
5. Why use DATA?
6. RESTORE the pointer to a given DATA statement.
7. Using quotation marks around data items.
8. Type mismatch error.

The idea of a p0inter is used in this lesson. A pencil in the instructor's hand,
pointing to items in a DATA statement, helps clarify this concept.

The DATA statement contains data items separated by commas. The items can be
a mixture of string constants and numeric constants.

You put data in the DATA statement at the time you write the program. READ
gets one data item from the DATA statement and advances the pointer to the
next item. RESTORE puts the pointer back to the beginning of any designated
DATA statement.

You can never change any of the data in the statement unless you rewrite the
program. Of course, you can READ the data into a variable box, then change
what is in the box.

You must READ the data to be able to use it. Normally, it is read in order. If you
want to skip some data that is in a given DATA statement, you have to read and
throwaway the items before it. This procedure is illustrated in the program "Lots
of data," where Sun and Mon are read and not used. Tu and Wed are printed.

120

In Amiga BASIC, you can skip data items by arranging them in different DATA
statements, and pointing to the one you want with a RESTORE NNN statement,
where NNN is the line label or line number of the DATA statement. This is espe­
cially handy in modular programs where several different modules have their
own DATA statements. Each such module should start with a RESTORE to the
start of its own DATA section.

You can read only numbers into numeric variables and string constants into string
variables. However, remember that numeric characters can be put into string
constants. An ~xample is shown.

Questions
1. What happens if you try to READ more data items than are in the DATA state­

ments?

2. What rule tells you where to put the DATA statements in the program? Where
can you put READ statements?

3. Can you put numeric data and string data in the same DATA statement?

4. Can you change the items in a DATA statement while the program runs?

5. The idea of a pointer helps in thinking about DATA statements. Explain how.

121

Lesson 18. DATA, READ, and RESTORE

There are two kinds of data in your programs:

1. The data you INPUT through the keyboard.

REM First kind of data
SAY TRANSLATE$("Your pet peeve")
INPUT p$
SAY TRANSLATE$("Reallyl You do not like "+p$)

In this program, p$ is data entered by the user as the program runs.

2. The data that is stored in the program at the time it is written.

REM The second kind of data
X=57
Y$ = "FLAVORS"
PRINT X;Y$

In this program, X and Y$ are data stored in the program by the programmer
when it was written.

Storing Lots of Data
It is okay to store small amounts of data in LET statements. But it is awkward to
store large amounts of data that way.

Use the DATA statement to store large amounts of data.

Use the READ statement to get the data from the DATA statement.

1 REM Lots of data
2 DATA Sun, Mon, Tu, Wed, Th, Fri, Sat
3 READ Dl$,D2$,D3$,D4$
4 PRINT D3$,D4$

122

After the program runs, box 01$ holds the first item in the DATA list (Sun), box
D2$ holds the second (Mon), and so on.

Strange Rules
1. It doesn't matter where the DATA statement is in the program.

Do this: Move line 2 in the above program to the end of the program. Call it
line 5. (Use the Copy and the Paste items in the Edit menu.)

Run the program. It works just the same.

2. It doesn't matter how many DATA statements there are.

Do this: Break the DATA statement into two:

6 DATA Sun, Mon, Tu
6 DATA Wed, Th, Fri, Sat

Run the program. It works just the same as before.

123

It Is Polite for the READ Statement to Point
READ uses a pointer. It always points to the next item to be read.

You can't see the pointer. Just imagine it is there.

When the program starts, the READ pointer points to the first item in the first
DATA statement in the program.

Each time the program executes a READ statement, the pointer moves to the next
item in the DATA list.

If the pointer gets to the end of one DATA statement, it automatically goes to the
next DATA statement, farther down in the program listing.

It doesn't matter if there are a lot of lines between.

Do this: Move line 5 back to line 2. (Leave line 6 alone.)

2 DATA Sun, Mon, Tu

6 DATA Wed, Th, Fri, Sat

Run the program. It works just the same.

FaIling Off the End of the DATA Planks
When the pointer reaches the last item in the last
DATA statement in the program, there are no
more items left to read. If you try to READ
again, you will see an error message:

Out of DATA

124

Back to Square One
At any point in the program, you have only three choices for the READ pointer.

1. You can do another READ-then the pointer moves ahead one item.

2. You can RESTORE-then the READ pointer is put back to the beginning of the
first DATA statement in the program.

3. You can RESTORE nnn-the nnn is a label or line number of a DATA state­
ment. The READ pointer is put on the first item in that DATA statement.

Try this: Add a line after line 2 and run the program again:

RESTORE 6

This time the computer starts with data line 6, and prints

Fri Sat

Quotation Marks Around Data Items
String items in a DATA statement can have quotation marks around them.

Try this:

2 DATA Sun, Mon, "Tu"

Mixtures of DATA
The DATA statement can hold strings or numbers in any order.

But you must be careful in your READ statement to have the correct type of vari­
able to match the item of data.

Correct:

DATA 77,fuzz
READN
READ B$

125

Wrong:

DATA 77,fuzz
READ B$
READN

You can't put fuzz in a number box.

Assignment 18
Write a program naming your relatives. When you ask the computer UNCLE, it
gives the names of all your uncles. The DATA statements will have pairs of items.
The first item is a relation like FATHER or COUSIN. The second item is a per­
son's name. Of course, you may have several sisters, for example, each with a
DATA statement.

l26

Instructor Notes 19. Sound

In this lesson:

1. The SOUND statement.
2. Making the scale.
3. Setting the volume level.
4. Use of DATA to store notes.
5. Rests and tempo.

The SOUND statement produces a tone of specified pitch and duration.

Remember that the BEEP statement just makes a short attention-getting sound
whose pitch and length are not under programmer control.

Amiga BASIC does not have full sound effect capability. It lacks an envelope gen­
erator that could control the attack and decay of notes. It can, however, make
musical tones that are accurate in pitch.

Two, three, or four arguments are needed in the SOUND statement. The first is
the pitch in cycles per second, or hertz (Hz). This variable takes values from 20 to
15000. These values span or exceed the pitch range of the human ear.

The second argument is a length number from 0 to 77. The number is the dura­
tion of the sound in terms of a clock that ticks 18.2 times a second.

Music is most conveniently made if you use the SUB programs described in Les­
son 21. These make an array to hold the scale and use a string of conventional
letter symbols for the melody. In this lesson, we show a simpler technique using
the DATA statement to hold notes.

Questions
1. What does the statement SOUND 500,30 do?

2. Which pitch numbers give deep sounds? Which give high notes?

3. What is the largest number that you can use for making a long note?

127

Lesson 19. Sound

The Amiga computer has two sound statements.

BEEP SOUND

BEEP plays one note, always the same note for the same length of time. Use it to
get the user's attention.

SOUND plays a single note. You can choose both the pitch (from very low to
very high) and the length of the note.

The sounds are played through the stereo jacks on the back of your computer.
You can connect the left speaker jack to the Audio Input on the back of the moni­
tor. Or you can connect both left and right jacks to a stereo preamplifier to play
music through your stereo system.

Playing One Note
Run:

, Johnny One Note
, SOUND freq, duration, volume, voice
, freq = 20 to 15000
, duration = 0 to 77
, volume = 0 to 255

voice = 0 to 3
SOUND 440,25,255,0 'concert A pitch

You may type just the last line in, omitting all the REMs.

(If you do not hear a sound, check that the volume is turned up on the monitor,
and that a cable runs from the left phono jack on the back of the computer to the
AUDIO INPUT jack on the monitor.)

The first number after SOUND is the pitch-low or high. Any number from 20 to
15000 is allowed, but it is easiest to hear sounds from 100 to 5000. The number is
the pitch of the note measured in hertz (cycles per second).

128

Try this: Change the 440 pitch in "Johnny One Note" to other numbers, from 110
to 4400.

The second number is how long the note lasts-its duration. The largest number,
77, gives the longest sound-about four seconds.

The third number is how loud the sound is-its volume. The loudest is 255.

The fourth number tells which voice you want.
Voices 0 and 2 play through the left jack;
voices 1 and 3, through the right.

You can play simple musical tunes
using SOUND statements.

Making Music
Here is a tempered scale of musical notes:

Note
C (below middle C)
C#
D
D#
E
F
F#
G
G#
A
A#
B
C (middle C)

Number
130.810
138.592
146.833
155.564
164.814
174.614
184.997
195.998
207.653
220.000
233.082
246.942
261.626

129

Note
C#
D
D#
E
F
F#
G
G#
A
A#
B
C (above middle C)

Number
277.183
293.665
311.127
329.628
349.228
369.995
391.996
415.305
440.000
466.164
493 .883
523.251

Playing the Scale
REM The Scale
FOR i=1 TO 8: READ p
SOUND p,10,255,0
NEXTi
DATA 261.626, 293.665, 329.628
DATA 349.228, 391.996, 440.000
DATA 493.883, 523.251

The notes of the scale of C are stored in DATA statements. Then the program
reads the notes and plays them with the SOUND statement.

To make a rest in your music, use

SOUND 20,L,0

where L is the duration of the rest.

The Tempo of the Music
The second number in the SOUND
statement gives the length of the note.
Any number from 0 to 77 is okay. Use
these numbers for a whole note in these
tempos:

Largo very slow 18
Andante slow 15
Moderato medium 10
Allegro fast 8
Presto very fast 6

Assignment 19
1. Change the "Scale" program to play in a higher octave. Just multiply all note

pitches by 2 to go up by one octave.

2. Write a program to playa short tune, like "Mary Had a Little Lamb." Use a
DATA statement to store the pitch numbers.

130

Instructor Notes 20. Drawing Pictures

In this lesson:

1. The LINE, CIRCLE, and PSET statements.
2. The x,y coordinates on the screen.
3. The line may show on the screen even if you put its ends off the screen.
4. The circle may be partly off the screen.
5. LOCATE and PRINT can put put text on the screen with the drawings.

The Amiga can produce high-resolution graphics (640 X 200 dots on the screen).
In this lesson, we just make white lines on the blue screen. In a later lesson, we
will extend our art work to 16 colors.

Think of the Output window as a graph with the axes crossing at the home posi­
tion (upper left). The x-axis runs horizontally with x values from 0 to 617; y is
vertical with values from 0 to 185. (Not 640 and 200 because part of the screen is
window borders.) The statements PSET, LINE, and CIRCLE all use the notation
(x,y) for points needed in the statement.

PSET plots a single point.

LINE needs two points, the start and the end. Lesson 23 explains how to pick a
color for the line, and how to use LINE to make rectangles in outline and filled
with color.

Give the center point and the radius for CIRCLE. In Lesson 23, a color is added,
and you learn to draw ellipses.

BASIC does not object if part of the picture you specify is off the screen. For ex­
ample, you can say CIRCLE (-20,-30),120 and only part of the circle shows
on the screen. (Even the center is off the screen.)

131

Questions
1. Where on the screen will PSET 310,90 put a dot?

2. How do you draw a circle centered on the screen?

3. How many dots can you fit across the screen?

4. How many dots can you fit down the screen?

5. Write a short program to draw a large X on the screen.

132

Lesson 20. Drawing Pictures

The PSET statement lets you draw tiny dots on the screen.

The screen is like a sheet of graph paper with 617 squares across and 185 squares
down.

Run:

REM dots
start: LOCATE 1,1
INPUT"x,Y from (0,0) to (617,185)",x,y
PSET(x,y)
GOTO start

Try numbers near the middle and work your way to the edges. End the run with
CTRL-C

Drawing Lines
The LINE statement draws a line between two points on the screen.

133

Run:

REM bird's nest
PRINT" Give x,Y of the start and the end of the line."
PRINT" x,Y,x,Y "
FOR t= 1 TO 9000 : NEXT t : CLS
start: LOCATE 1,1
INPUT x1,y1,x2,y2
LINE (x1,y1)-(x2,y2)
FOR t= 1 TO 5000 : NEXT t
LOCATE 1,1
PRINT"
GOTO start

Press CRTL-C to end the run.

"

It is okay if the ends of the line are off the screen just so the line crosses the
screen somewhere.

Drawing Circles
The CIRCLE statement draws a circle with a center point given by (x,y) and a
radius r.

Run:

REM Circles
PRINT" x, y, r "
start:
FOR t= 1 TO 5000 : NEXT t
LOCATE 1,1 : PRINT"
LOCATE 1,1 : INPUT x,y,r
CIRCLE (x,y),r
LOCATE 10,20 : PRINT "circle"
GOTO start

"

It doesn't matter if the whole circle doesn't fit on the screen or even if the center
of the circle is off the screen.

134

Mixtures of LeHers and Graphics
You can mix them all up on the screen, using PRINT, PSET, LINE, and CIRCLE
in the same program. Use LOCATE
to place the printing where you want
it on the screen.

Stepping Off from Here
STEP can be added to the front of an (x, y) symbol. This means you move from
where you are by the distances x and y, instead of moving from the home corner
by x and y.

Run:

REM rolling stones
PSET(20,5)
FOR i=l TO 20
CIRCLE STEP(30,10),3+5+i
NEXTi

Assignment 20
1. Use CIRCLE to draw a snowperson. Use LINE for the arms, and PSET for eyes,

nose, mouth, and buttons.

2. Use LINE to draw your school's initials. Save to disk.

135

Instructor Notes 21. Subroutines and Subprograms

In this lesson:

1. The GOSUB, RETURN, and END statements.
2. The CALL, SUB, STATIC, and END SUB statements.
3. Saving a program file in ASCII format: SAVE"file,"A.
4. The MERGE command.

Like GOTO, GOSUB causes a jump to another line number. But with GOSUB,
control returns to the calling line when RETURN is executed.

The END statement can be put anywhere in the program, and you can use as
many END statements as you wish. All that END does is to return control to the
immediate mode.

Subroutines are useful in both short and long programs.

A subprogram is more flexible than a subroutine because it can be used with
many different programs. Save a subprogram on disk with a special type of SAVE
command:

SAVE "filename, "A

This format allows it to be added to the end of any other program using the
MERGE command.

Call a subprogram with the CALL statement. Or call it by just using the subpro­
gram name as the only word in a statement. (Now you see why you get an Un­
defined subprogram error in the Output window when you misspell a reserved
word.) The computer assumes that a label will have a colon after it, while a sub­
program name will not.

There are two important features of subprograms not discussed in this book: Pa­
rameters can be passed to and from a subprogram, and subprogram variables can
be declared as global variables.

136

In this book, we treat only the case where subprogram variables are all local. The
values of local variables apply only within the subprogram and are not carried
outside the subprogram. .

A subprogram's variables are declared as local by putting the word STATIC after
the subprogram name. This means you can reuse the variable name in the main
program or in another subprogram, and the computer does not mix them up or
use the values created for one of them for any of the others.

Questions
1. What happens when the statement END is executed?

2. How is GOSUB different from GOTO?

3. What happens when RETURN is executed?

4. If RETURN is executed before GOSUB, what happens?

5. How many END statements are you allowed to put in one program?

6. Why do you want to have subroutines in your programs?
7. How are subprograms different from subroutines?

8. What does the MERGE command do? What special kind of SAVE do you use
so that the subprogram can be MERGEd?

137

Lesson 21. Subroutines and Subprograms

Run this program, then save it to disk:

REM Take a trip
mainloop:
PRINT "Hop to the subroutine"
GOSUB cottage
PRINT "Back from the subroutine"
FOR T= 1 TO lOOO:NEXT T:PRINT
PRINT "Hop again"
GOSUB cottage
PRINT "Home for good."
END
cottage: ' subroutine

PRINT "Got here okay."
FOR T=l TO lOOO:NEXT T : BEEP: PRINT
PRINT "Pack your bags, back we go ."
FOR T=l TO lOOO:NEXT T
RETURN

The mainloop in this program starts in the second line and ends at END. There
is a subroutine starting at cottage and ending with RETURN.

The END statement tells the computer that the program is over. The computer
goes back to the immediate mode.

138

The COSUB statement calls the subroutine. This means the computer goes and
performs the instructions in the subroutine, then comes back.

The COSUB statement is like a COTO statement except that the computer re­
members where it carne from so that it can go back there again.

The RETURN statement tells the computer to go back to the statement immedi­
ately following the GOSUB.

Assignment 21A
The delay loop is written three times in the above program. Add another subrou­
tine with a delay loop in it, and COSUB every time you need a delay. Use the la­
bel delay.

What Good Is a Subroutine?
In a short program, a subroutine is not much good.

In a long program, it does two things:

1. It saves you work and it saves space in memory. You do not have to repeat the
same program lines in different parts of the program.

2. It makes the program easier to understand and faster to write and debug.

The END Statement
The program may have zero, one, or
many END statements.

Rule: The END statement tells the
computer to stop running and go
back to the immediate mode.

139

Bricks for Building Your Program
Subroutines may be called several times from different parts of the same program.

Sometimes it is better to build modules that can be used over in other programs.
Then we should write them (or convert them by editing) into subprograms and
save them to disk separately from the program.

Here is an example. First, we write a subprogram and save it to disk in a different
way. Then we write a program that CALLs the SUBprogram.

SUB trademark STATIC
CLS
LOCATE 3,1
PRINT TAB(20); "Jane Ellen Smith"
PRINT TAB(20); "123 Shady Oak Street"
PRINT TAB(20); "Bad Axe MI 12346"
PRINT TAB(20); "(123) 466-7899"
PRINT
END SUB

The word STATIC after the subprogram name is required.

Save this subprogram to disk in ASCII format like this:

SA VE"trademark.sub",A

The .sub on the end of the name is one way of reminding yourself that this is
not a program, but a subprogram.

The Master Programmer
Now write a program that needs the trademark subprogram:

REM Your Masterpiece
mainloop:

, Here starts your main loop.
, But first you want to identify
, your work to the user.

140

CALL trademark
, Now that's out of the way,
, let your program do its work.

END

Save the program like this:

SA VE"masterpiece"

Running the Combination
When it comes time to run "masterpiece", load from disk like this:

LOAD"masterpiece"

MERGE"trademark.sub"

Then RUN.

Some Shortcuts
Rather than

CALL trademark

you can omit the CALL:

trademark

If "masterpiece" always uses "trademark.sub", you can save the two together un­
der one name. Do this:

LOAD' 'masterpiece"

MERGE"trademark.sub"

SAVE' 'masterpiece.full"
You do not need the ,A on the SAVE when doing this because you will not use
the MERGE statement when loading.

141

Assignment 21 B
1. Write a short program that uses subroutines. It doesn't have to do anything

useful, just print some silly things.

In it put three subroutines:

Call one of them twice from the main program.
Call one of them from another subroutine.
Call one of them from an IF statement.

2. Write a short subprogram and save it with SAVE"filename",A. Then write a
short program that calls the subprogram. MERGE the subprogram into the pro­
gram and save them both. Run the combination.

142

Instructor Notes 22. Windows and Color

In this lesson:

1. The SCREEN statement.
2. The WINDOW statement.
3. The COLOR and the PALETTE statements revisited.
4. A SUBprogram for mixing colors.

The SCREEN statement reserves room in memory for a window. The standard
BASIC Output window uses a high-resolution, noninterlaced screen with four col­
ors . If you want more than four colors, you need to use SCREEN to reserve more
memory. We will use only one set of options: high-resolution, noninterlaced, full­
size screen with 16 colors. This option is not standard in BASIC because it uses
four times as much memory as the 4-color screen.

The WINDOW statement actually opens the window for view. There are many
options available, including small windows, the use of the mouse to move and re­
size the window, and so forth. But we will discuss only the full-size window be­
cause that gives most room for drawing.

Questions
1. Suppose your program has the statement SCREEN 3,640,200,4,2. What does

this do?

2. Now add to your program to open a window with the name "Drawing Pad"?
How do you do this?

3. How many colors are there to choose from?

143

Lesson 22. Windows and Color

In Lesson 20, we made white drawings on a blue background. Now let's put 16
different colors on the screen at once.

The SCREEN statement is used to set aside some memory for a 16-color window.
Then the WINDOW statement displays a new Output window to paint on.

SCREEN 2, 640, 200, 4, 2

id, width, height, depth, mode

(id = identification number)

We will always use the same SCREEN numbers you see here. It saves enough
memory for a full-size, high-resolution screen with 16 colors. (The depth number
helps tell how many colors you can put on the screen. Mode 2 is for high-resolu­
tion, no line interlacing.)

Depth
Number

1
2
3
4
5

Number of
Colors

2
4
8

16
32

(Depth 5 cannot be used with mode 2 or 4.)

The WINDOW Statement
WINDOW 2, "Hot Stuff", , ,2

WINDOW id,"window title", , ,screen id number

The id for the usual Output window in BASIC is 1. So you can use number 2, 3,
or 4 (or 1 if you don't mind messing up the standard Output window).

144

If you want your window to appear on the screen you have created, you must ex­
ecute a SCREEN statement before your WINDOW statement. The screen id num­
ber in the WINDOW statement must be the same as the id number in the
SCREEN statement.

The "window title" is a string constant that appears in the title bar of the window.

REM An open and shut window
SCREEN 3, 640, 200, 4, 2
WINDOW 4, "Hot Stuff" ",3
WINDOW CLOSE 4
SCREEN CLOSE 3
END

Assignment 22A
Add to the above program so that it prints Here we arel when the window Hot
Stuff is open. Let it print Back again when you have returned to the standard
BASIC Output window.

Sixteen Colors
Now that we have saved room for
16 colors in the screen memory,
how do we put the colors on the
screen? Use the COLOR statement
you learned about in Lesson 4, but
now with colors from 0 through 15
in the text and the background places.

COLOR text, background

145

Jumping Rainbow Sentence
Run:

REM jumping rainbow sentence
RANDOMIZE TIMER
SCREEN 3,640,200,4,2
WINDOW 5",,3
COLOR 2,2 : CLS ' clear background to black
FOR 1= 1 TO 9 ' read 9 words
READ w$
x=FIX(RND"'55)+ 1 ' which column
y = FIX(RND'" 19) + 1 ' which row
c= FIX(RND'" 11) +4 ' which color
COLOR c,2 ' set text color
LOCATE y,x : PRINT w$ 'place the cursor
FOR t= 1 TO 1000 : NEXT t
NEXT I
FOR t= 1 TO 4000 : NEXT t
WINDOW CLOSE 5
SCREEN CLOSE 3
DATA Watch, out, your, pop, is
DATA spilling, on, your, keyboard.

Rainbow Ball
REM rainbow ball
SCREEN 3,640,200,4,2
WINDOW 3",,3
C=3 : COLOR c,2 : CLS
FOR 1=1 TO 60
1 LOCATE 12,1
2 PRINT "0"
3 FOR T=l TO 200 : NEXT T
4 LOCATE 12,I:PRINT " ";
5 C=C+ 1 : IF C>15 THEN C=3
6 COLOR C,2
NEXT I
WINDOW CLOSE 3
SCREEN CLOSE 3
COLOR 1,0

146

The FOR-NEXT loop moves a ball across the screen, changing its color as it goes.

Lines 1 and 2 put the ball on the screen in a new spot.

Then line 3 waits for a moment.

Line 4 erases the ball that was just printed.

Line 5 increases the color number by one each time the ball is moved. When the
color number reaches 16, it changes back to color 3.

Assignment 22B
1. Change the rainbow ball so that it falls instead of moving across the screen.

2. Add to the number guessing game in Lesson 12 so that a large colored star
shows when the correct answer is guessed. Use a timing loop so that the star
shows for a few seconds before the game starts again.

3. Write a program to draw Sinbad's Magic Carpet. Let the user choose how
many colors are in the rug, and what colors. Then draw a pattern of colored
letters on the screen.

4. Make a program to write your name in a big colored X on the screen.

147

Instructor Notes 23. Color Graphics

In this lesson:

1. Line drawings in the colors of your choice: PSET, LINE, CIRCLE.
2. The LINE statement with B for "draw a box" and F for "fill with color. II
3. The PAINT statement for filling areas with color.
4. Arcs of circles with CIRCLE.
5. Angles are given in radians.
6. Making "pies" by using negative angles in CIRCLE.
7. Making ellipses by changing the "shape" number.

This lesson tells how to draw and paint in 16 colors (high-resolution graphics).

Amiga BASIC uses a palette, with 16 numbered positions (0-15) on which to
, place colors that you mix yourself from the primary colors red, yellow, and blue.

The colors can be used in printing and in graphics. In printing, the COLOR state­
ment specifies the text and the background colors.

In graphics, the background is selected with a COLOR statement, but the colors
of the lines and solids are specified in the PSET, LINE, and CIRCLE statements at
the time of drawing.

Any closed area can be filled with solid color by the PAINT statement. The point
(x,y) must be inside the area to be colored. The color number tells which paint
dab defined by a PALETTE statement to paint with.

The border number in the PAINT statement tells the color of the border of the
area being fill~ in with color. If a border color is not specified, then it is the
same as the fill color.

The LINE statement also allows you to draw rectangular boxes. Just add the letter
B (for box) on the end of the statement. Adding BF (for box fill) makes the box a
solid color.

148

Arcs of circles require adding two angles to the CIRCLE statement: the beginning
and ending angles of the arc. These angles are measured in radians, and this is
explained in the lesson. If an angle is negative, then a line connects its end of the
arc to the center of the circle. If both angles are negative, you can make sections
for pie charts.

Finally, the "circle" can have unequal radii, making it an ellipse, or the arc of an
ellipse.

Questions
1. How do you make a rectangle with upper left corner at (30,10) and lower right

corner at (60,110)?

2. How many palettes can you choose from? What colors are on each one?

3. What does the (30,40) mean in this statement:

PAINT (30,40),3,1

What does the 3 mean?
What does the 1 mean?

4. What does the 2 mean in

CIRCLE (90,112),55,2

5. How would you paint the above circle a solid white? (Your answer should say
something about PALETTE and something about PAINT.

149

Lesson 23. Color Graphics

To draw dots, lines, and circles in the colors of your choice, add a color number
to PSET, LINES, and CIRCLE.

Example:

REM colored lines
PALETTE 3,.7,.2,.2
PSET(160,100),3
LINE(20,20)-(400,150),3
CIRCLE(160,100),50,3

The color number in the PSET, LINE, or CIRCLE statement tells what color on
the palette you will paint with.

PSET (x, y),color
LINE (x1,y1)-(x2,y2),color
CIRCLE (x, y),radius, color

Outline a Colored Box
The LINE statement can also draw a rectangle. Just add the letter B (for box) after
the color number.

Run:

LINE (60,80)-(120,160),3
LINE (50,70)-(130,170),3,B

Solid Color for the Box
By adding an F, you'll change the outline box into a solid color box.

LINE (50,70)-(130,170),3,BF

The letter F stands for fill and means the computer fills in the box outline with
color.

l50

Solid Colors for Everything
The PAINT statement fills in any shape outline with color. Make the outline by
drawing lines with LINE or circles with CIRCLE.

Try:

REM Hard Ball
CIRCLE (300,100),80,1
PAINT (300,100),1

The (x,y) point in the PAINT must be inside the circle. But it doesn't matter
where. Try changing the value in the above PAINT statement to (379,100) and
run it again . It still works. But try (381,100), and it colors the whole screen out­
side the circle.

Dueling Artists
Here is a program that fills both circles and rectangles with solid colors.

Run:

REM dueling artists
SCREEN 2,640,200,4,2
WINDOW 2,,,,2
COLOR 0,2:CLS

151

FOR b=3 TO 13
CIRCLE (200,90),150,b
PAINT (150,90),b
FOR t=l to 500:NEXT t
LINE (270,20)-(600,160),b+2,bf
NEXTb
FOR t= 1 to 5000:NEXT t
SCREEN CLOSE 2
WINDOW CLOSE 2
COLOR 1,0

Pies, Bananas, and Pancakes
The CIRCLE statement makes arcs of circles, and also ellipses and arcs of ellipses.
(An ellipse is a squashed circle.)

CIRCLE (x,y),radius,aolor,start angle,end angle,shape

There are three tricks here. The first is in the angles. They are measured in radi­
ans, not degrees.

Degrees
360
180
90

Radians
2"'pi
pi
pi/2

Full circle
Half circle
Right angle

And so forth. Pi is, of course, our old friend 3.1416.

The second trick is in making real pies rather than arcs. You just make the two
angles negative. Then a straight line connects the center of the circle with each
end of the arc. You have a "pie."

The third trick is in the shape. If shape = 0.44, then you get a circle. If shape is
smaller, the" circle" looks squashed, as if you sat on a soft basketball. If shape is
larger than 0.44, the" circle" looks like a football standing on end.

CIRCLE (300,100),60,3,0,3.14
CIRCLE (300,100),60,3,-.1,-.5
CIRCLE (300,100),60,3",.1
CIRCLE (300,100),60,3",3

Makes a half circle, color 3
Makes a piece of pie
Makes a squashed ball
Makes a football on end

152

Try:

REM bananas
RANDOMIZE TIMER
SCREEN 2,640,200,4,2
WINDOW 2",,2
COLOR 0,2:CLS
pi=3.14159265#
FOR i= 1 TO 100
x = FIXCRND+600)
y = FIXCRND+180)
r = FIXCRND+l 00) + 10
c = FIX(RND+16)
a = FIX(RND+2+pi)
b = FIXCRND+2+pi)
q=RND+l+.l
CIRCLE(x,y),r,c,a,b,q
NEXTi
FOR t = 1 to 3000:NEXT t
WINDOW CLOSE 2
SCREEN CLOSE 2
COLOR 1,0

Assignment 23
1. Draw your school's initials, and make them

flash on and off with your school's colors.

2. Draw the flag of your country and color
it correctly.

153

Instructor Notes 24. Arrays and the DIM Statement

In this lesson:

1. The DIM statement.
2. Arrays as families with members.
3. The array name is the family name.
4. Members have first names in parentheses. These are the indices, or subscripts.
5. Each member is stored in its own box.
6. Array members have numeric or string values.
7. Each array member has a value of zero, or empty, for numbers and strings, re­

spectively, before its first use.

Arrays with one index are described first. The array itself is compared to a family,
and the individual elements of the array to family members. The index value is
the "first name" of the member.

Two-dimensional arrays can be compared to the numbers on a calendar month
page or the rectangular array of cells on the TV screen.

The concept of arrays is not too difficult. The trick is to see how they help in pro­
gramming. There are a large variety of uses for arrays, and many do not seem to
fall into recognizable categories.

You can use them to store lists of information. Connected lists also can occur. The
telephone number program uses two-line arrays-one for names, the other for
numbers. They are indexed the same, so a single index number can retrieve both
the name and the number that goes with it.

Another general use of arrays is to store numbers which cannot neatly be ob­
tained from an equation. An example is the number of days in each of the 12
months.

Games often use two-dimensional arrays or greater to store information about the
playing board.

154

If you forget to DIMension an array before use, the BASIC interpreter gives it a
dimension of 10. If you try to use an element larger than that assigned to the ar­
ray, the Subscript out of range error message is printed.

Questions
1. What does the DIM BD(6) statement do?

2. Where do you put the DIM statement in the program?

3. What is the index, or subscript, of an array?

155

Lesson 24. A:rrays and the DIM Statement

Meet the Array family. Each member of the family is a variable. The f$ family are
string variables.

f$(O) = "dad"
f$(l) = "mom"
f$(2) =' 'Karen"

Here is a family of numeric variables:

N(O)= 43
N(l)= 13
N(2)= 0
N(3)= 0

The family has a "last name" like A() or B$(). Each member has a number inside
the () for a "first name." The array always starts with the first name O.

Instead of family, we should say array.

Instead of first name, we should say index number, or subscript.

156

The DIM Statement Reserves Boxes
When the Array family go to a movie, they always reserve seats first. They use a
DIM statement to do this.

The DIM statement tells the computer to reserve a row of boxes for the array.
DIM stands for DIMension which means size.

DIM A(3)

saves four memory boxes, one each for the variables A(O), A(l), A(2), and A(3).
These boxes are for numbers and contain the number 0 to start with. Another
example:

DIM A(3),b$(4)

This time, DIM reserves four boxes for the A() array and five for the string array
b$(). The boxes named b$(O) through b$(4) are for strings and are empty to start
with.

Rule: Put the DIM statement early in the program, before the array is used in any
other statement.

Making a List
Enter:

REM In a row
DIM A$(5)
PRINT" Enter a word:"
FOR N=O TO 5
INPUT A$(N) : PRINT
IF N<>5 THEN PRINT"Another:"
NEXT N : PRINT
REM Put in a row
PRINT" Here they are in a row:"
PRINT: PRINT" ";
FOR 1=0 TO 5
PRINT A$(I);" ";
NEXT I

157

You can use a member of the array by itself. Look at this line:

Boat$(2) = "yellow submarine"

Or the array can be used in a loop where the index keeps changing. Find two
places in the program "In a row" that do this.

Making Two Lists
Enter:

REM Phone List
DIM Nam$(20), Num$(20) 'NAME is a reserved word
PRINT" Enter names and numbers:"
PRINT" (Enter 'Q' to quit)" : PRINT
1=0
enter:
INPUT" Name: ",Nam$(I)
IF UCASE$(Nam$(I))="Q" THEN tail
INPUT" Number: ",Num$(I): PRINT

158

1=1+ 1 : GOTO enter
tail :
PRINT
FOR Z = 1 TO 1- 1
PRINT Nam$(Z);TAB(20);Num$(Z)
NEXTZ

One Dimension, Two Dimension, ...
The arrays that have one index are called one-dimensional arrays.

But arrays can have two or more indices. Two-dimensional arrays have their fam­
ily members put in a rectangle like the days in a month on a calendar.

The DIM statement for a two-dimensional array has two numbers in it. For
example,

DIM stuff(2,3)
stuff(O, 1) = 3.14159265

159

The Magic Square
Use the Edit menu features Cut, Copy, and Paste to help enter this program.
Copy the row starting s(l, 1) and then paste it twice below itself. Then edit these
two rows with the BACK SPACE and number keys.

Likewise, the FOR loops can be copied and edited.

Run:

REM Magic Square
setup:

S(1,1)=8: S(1,2)=3 : s(1,3)=4
s(2,1)=1 : s(2,2)=5 : s(2,3)=9
s(3,1)=6: s(3,2)=7 : s(3,3)=2

PRINT" The magic square:"
FOR j = 1 TO 3 : PRINT TAB(20);
FOR i=l TO 3: PRINT s(j,i);
NEXT i,j

done:
PRINT
PRINT" The sums:"
FOR j= 1 to 3: t=O
FOR i= 1 to 3: t=t+s(j,i)
NEXTi
PRINT" Row";j;"sums to ";t
NEXTj

Assignment 24
1. Write a program that stores the number of days in each month in an array.

Then when you ask the user to enter a number <1 to 12>, it prints out the
number of days in that month. Use a DATA statement to hold the days. Then
READ the data into the array by using a loop.

2. Write a program so that the computer plays the card game War against the
user. Have an array hold the 52 cards in the deck. Deal them at random into
two arrays, one for each player. In each turn of play, each player plays the
cards from his or her deck in order. If the cards played by user and computer

160

don't match, they both are put in the booty pile. If they do match, there will be
a battle. In the battle, both players play their next cards. The high card wins
the whole booty pile.

3. Add to the "Magic Square" program so that the sum of each column and the
sum of each of the two diagonals of the square are printed out.

161

Instructor Notes 25. Snipping Strings: LEFT$, MID$,
RIGHT$, LEN

In this lesson:

1. The functions LEFT$, MID$, RIGHT$, LEN.
2. Concatenation.
3. LEN counts all characters, even spaces.
4. The < symbol can test strings for alphabetical order.
S. The INSTR() function.

These functions together with the concatenation operation (+) allow complete
freedom to cut up strings and glue them back in any order.

The MID$ function in Amiga BASIC exists in three forms . The only form dis­
cussed in this book is the one with three arguments. The second form, with the
last argument omitted, is similar to the RIGHT$ function. A third form allows a
part of one string to be substituted for another. While this may be handy at times,
its syntax is unlike any other BASIC function. When a student is more experi­
enced in using string functions, reading the Amiga BASIC manual plus some
experimenting should suffice to learn the extended forms of the MID$ function.

The LEN function counts the characters in a string, including punctuation and
spaces. Counting spaces may confuse the student.

The less-than «) and greater-than (» signs in an IF statement may be used to
test which of two strings comes first alphabetically. If the first letters of the two
strings are identical, then the second letters are tested automatically. Very handy.
However, the ASCII number is being tested, so A and a are not the same in this
test. The UCASE$ function can be used to put all letter characters into capitals
before the test is done.

The INSTR function is perfect when you need to search for a small string buried
in a longer string.

162

Questions
1. If you want to save the STAR from STARS AND STRIPES, what function will

you use? What arguments?

2. If you want to count the number of characters in the string PQ$, what function
do you use? What argument?

3. What is wrong with each of these lines?

A$ = LEFT$(4,D$)
RIGHT$(R$,3) = "pqrst"
F$ = MID$(A,3)
J$=LEFT(R$,YT)

4. What two arguments does the RIGHT$() function need?

s. What function will snip the third and fourth letters out of a word.

6. Write a short program that takes the word computer and makes it into putercom.

163

Lesson 25. Snipping Strings: LEFT$, MID$, RIGHT$, LEN

Gluing Strings
You already know how to glue strings together:

a$="con" + "cat" + "en" + "ation"
PRINT a$

The real name for gluing is concatenation.

Concatenation means "make a chain ." Maybe we should call them chains instead
of strings.

Snipping Strings
Let's cut a piece off a string. Enter and run:

REM Snipping the left end off
PRINT" Changing Spanish to French"
s$ = "Am1ga"
PRINT" The Spanish say ";s$
f$=LEFT$(s$,3)
PRINT" The French say ";f$

The LEFT$ function snips off the left end of the string. The snipped off piece can
be put into a string variable box or printed or whatever.

164

Rule: The LEFT$() function needs two things inside the parentheses:

1. The string you want to snip.
2. The number of characters you want to keep.

Snipping the Other End
RIGHT$() is like LEFT$(), except the characters are saved off the right end of the
string. The order of the letters is still left to right.

More Snipping and Gluing
Run:

REM Scissors and Glue
shelly $ = ' 'clambake"
PRINT" What do you do at a ";shelly$ + "?"
PRINT" You ";
PRINT RIGHT$(shelly$,4) +" "+ LEFT$(shelly$,4) + "s."

The pieces of string you snip off can be glued back together in a different order.

How Long Is the String?
Run:

REM Long rope
INPUT" Give me a word: ",word$
PRINT
l=LEN(word$)
PRINT" The string: "';word$;" ,,,
PRINT" is ";l;"characters long."

The function LEN() tells the number of characters in the string. It counts every­
thing in the string, even the spaces.

165

CuHlng a Piece Out of the Middle
The MID$ function cuts a piece out of the middle of the string.

Run:

REM Sailor
PRINT" How do you row a boat?"
plank$ = "board"
PRINT" Take a ";plank$;
twig$ = MID$(plank$,2,3)
PRINT" and cut off the part that is an";twig$;"."

The line twig$ =MID$(plank$,2,3) means:

Get the string from box plank$ (this box holds board). Count over two letters and
start saving letters into box twig$. Save three letters. They are oar.

166

Look Ma, No Spaces
Enter:

REM no spaces
PRINT: PRINT
PRINT "Give me a long sentence"
PRINT
INPUT S$
L=LEN(S$)
T$=" "
FOR 1=1 TO L
L$ = MID$(S$,I, 1)
IF L$<>" " THEN T$=T$+L$
NEXT I
PRINT:PRINT T$

Line L$=MID$(S$,I,1)
snips just one letter at a
time from the middle of
the string.

Alphabetical Order
Try these:

IF "A" < "E" THEN PRINT "A comes before E"
IF "ca"<"cz" THEN PRINT "CA comes before CZ"

Run each one. Then change the < to a > and run again . The less-than and
greater-than signs can be used to see if two strings are in alphabetical order.

167

A String Within a String
The INSTR function tells how far into a long string a short piece of string is
buried.

Run:

REM dig me out
m$ = "ldou bodjcugmldkijrockbloyu bfundywkkfdbdylkdofgkodyvnsbod

majru"
PRINT" Where is the fun in all this?"
x = INSTR(m$, "fun' ')
PRINT" X marks the spot: ";x

Count along in m$ and see that the number x is the location of the letter f in fun.

Assignment 25
1. Write a secret cipher making program. You give it a sentence, and it finds how

long the sentence is. Then it switches the first letter with the second, the third
with the fourth, and so on. Example:

THIS IS A TEST becomes HTSII S AETTS

2. Write a question answering program. You give it a question starting with a
verb, and it reverses verb and noun to answer the question . Example:

ARE YOU A TURKEY? becomes YOU ARE A TURKEY.

3. Write a Pig Latin program. It asks for a word. Then it takes all the letters up to
the first vowel and puts them on the back of the word, followed by AY. If the
word starts with a vowel, it adds only LAY. Examples:

BOX becomes
APPLE becomes

OXBAY
APPLELAY

168

Instructor Notes 26. Music

In this lesson:

1. Subprogram for defining the chromatic tempered scale.
2. A music notation both the user and the computer can understand.
3. Subprogram to playa single note, given the notation for it.
4. Main program to play "Row, Row, Row."

The SOUND statement plays a note of a given pitch and duration. To make mu­
sic, the pitch must belong to a scale, and the durations must allow music in good
tempo. By creating a subprogram, "note", to do all the work, we'll be able to use
the subprogram in any other future music-making programs.

The tempered scale is defined as 12 notes that divide an octave into equal inter­
vals. By "equal intervals" we do not mean equally spaced in frequency, but rather
that each note is higher in frequency than the previous one by the same factor.

The pitch, frequency in cycles per second, increases by a factor of two for the
same note in the next higher octave. So we need a number that multiplied by it­
self 12 times gives 2. This is a job for the exponential and logarithmic functions,
but they are not explained in this book.

The computer now is in tune and knows how to make notes of various lengths. It
is time to pick a notation to replace the staff notation read by musicians. Our no­
tation should be easy to type, easy to remember, and easy to form as we read the
staff notation.

We store our music in DATA statements, and each note occupies four characters.
The first two are the letter name of the note, with a space or a # sign after it as
appropriate. The second two letters tell the note length. For example QQ for a
quarter note and Q. for a dotted quarter note. (The doubling of the Q has no
meaning, but a second Q makes for easier reading than just putting a space
there.)

169

Having settled the notation, we write the music subprogram to read a four­
character note and convert it to the two numbers, pitch and duration, needed by
the SOUND statement. It then sounds the note and returns to the main program
which gives it the next note.

All this is a bit complicated and may be too difficult for younger children. If you
find your student becoming frustrated with this material, you may want to skip
this lesson.

Although the concepts here are complex, once mastered, your student will be able
to add music to any program with a minimum of fuss. The Amiga runs so fast
that it has time to do all this music notation translating and still be able to do
other things while the music is playing.

Questions
1. How do subprograms help save us work?

2. What does a dot after a note mean?

3. What does C# mean in a our string of music?

4. What does + mean in our string?

5. How do you tell the computer to playa half note?

170

Lesson 26. Music

A music-playing subprogram is an excellent example of the advantage of using
subprograms.

First, we write a subprogram to tell the computer how to play in tune and to keep
good tempo. We will call it "notes" .

Then we write a subprogram to play just one note, for example, "'playa quarter
note in C#." We will call this subprogram "music".

Finally, we write a main program that plays some tune. We will play "'Row, Row,
Row."

The subprograms "notes" and "music" can be used over and over again, when­
ever you want to have some music in one of your programs. Just MERGE them
onto the end of whatever program needs music.

The Notes Subprogram
Enter:

SUB notes(ca,a(l),t(l» STATIC
I defines a tempered scale at the lowest octave
I stores note durations
f=EXP(LOG(2)/12)
n=ca/8 I ca is "concert a" or about 445 Hz.
FOR i=l TO 12

a(i)=n I a(i) is an array uf 12 notes 1n an octave
n=n*f I f is the twelth root of 2

NEXT i
t=l
FOR i=l TO 12 STEP 2

t(i)=t t(i+l)=t*1.5
t=t*2

NEXT i
END SUB

Save to disk:

SAVE"notes.sub" ,A

171

This subprogram uses two arrays: a(i) holds the pitch numbers of the 12 notes of
an octave, and t(i) holds the note length numbers from a dotted whole note to a
sixteenth note.

First, the subprogram picks the pitch for concert A. The frequency of this note is
about 445 hertz (Hz). You can change the number 445 a little to bring the com­
puter in tune with any instruments you want to play along with the computer.

Then the pitches of the 12 notes are made by a mathematical trick. You do not
need to understand how the EXP and LOG functions do this. The pitches are
stored in the array a(i).

Finally, the set of note lengths are made and stored in t(i).

Writing Music Without a Staff
Musicians use a musical staff to write the notes. We need to choose some other
way to tell the computer which note to play. It should be easy to look at a staff of
notes and then write the correct translation for the computer to use.

Here is how the first two measures of " Row, Row, Row" will look. There are five
notes:

DATA C Q., C Q., C QQ, D II, E Q.

In words, the pitches are C, C, C, D, E.

In words, the lengths are dotted quarter, dotted quarter, quarter, eighth, dotted
quarter. (Remember that a dot after a quarter note means "hold it as long as a
quarter and an eighth together.")

So each note takes exactly four spaces in the DATA statement-the first two for
the note pitch, and the second two for the note length .

Note names:

A A# B C C# D D# E F F# G G#

172

Note lengths:

W. dotted whole (worth 11/2 whole notes)
WW whole
H. dotted half
HH half
Q. dotted quarter
QQ quarter
I. dotted eighth (we don't want to call it E!)
II eighth
S. dotted sixteenth
SS sixteenth

The Muslc Subprogram
Enter:

SUB music(s$,b(l),t(),m) STATIC
1$ =" A A#13 C C#D D#E F F#G G#" 'find the pitch

n$=LEFT$(5$,2)
n =INSTR(1$,n$)/2
f =b(n)*b*m

d$ =" SSS.III.UUQ.HHH.WWW." 'find the duration
t$=RIGHT$(s$,2)
i =INSTR(d$,t$)/~
t =t(i)*2

SOUND f,t : SOUND 50,1 'play the note and stop it
END SUB

173

Save to disk with this format:

SA VE"music.sub" ,A

This subprogram starts by putting names of the 12 notes in the string 1$. Only
sharps are used in these names-no flats. You could modify the program so that
flats come in, too.

Next, the note string from the Row, Row, Row program is broken into its two
parts-the first two letters being the note name and the second giving the note
duration.

Then the computer searches 1$ to find the note name. It counts how far into 1$
the note is because this tells how far into the array b(i) its pitch number is.

In the same manner, the note duration (like QQ) is located in d$, and this tells
where in t(i) the duration number is. These two numbers are put into the SOUND
statement, and the note comes out. Then the "music" subprogram sends the com­
puter back to the main program.

174

Merging Programs
Below is the Row, Row, Row program. The program is in three parts. The second
and third parts are the two subprograms from above: "music" and "notes". You
do not need to retype these parts. The whole purpose of subprograms is that you
can reuse them in other programs.

To enter Row, Row, Row, begin by entering NEW, and enter only the first part of
the program up to and including the END statement. Next, activate the Output
window by clicking in it and enter

MERGE "music. sub"

You will notice that "music.sub" has been added (appended) to the end of the
program in memory, Row, Row, Row. To append the final part of our program,
enter this in the Output window:

MERGE "notes. sub"

Here's a copy of all three parts put together. Remember, you do not have to re­
type the last two parts:

REM ~ow, row, row
DIM b(13),t(13) 'holds 12 notes in an octave
ca=445 : m=l 'is "concert A" pitch
CALL notes(ca,b(),t(» 'stores the frequencies & durations
RESTORE song

<,jetnote:
READ s$ 'get the note
IF s$="+" THEN m=m*2 : GO TO getnote
IF s~="-" THEN m=m/2 : GOTO getnote
IF s$="END" THEN END 'note: END must be capital letters
CALL music(s~,b(),t(),m) 'SOUND plays the note

GOTO getnote
song:

DATA C Q. ,C Q. ,e QU,D II,E Q.
DATA E QQ,D II,E QU,F II,G H. ,+
DATA C II,C II,e 11,- ,G II,G II,G II
DATA E II,E II,E II,e II,e II,C II
DATA G UQ,F II,E QU,D II,e H. ,END

END

175

SUB music(s~,b(l),t(),m) STATIC
1$ =" A A#B C C#D D#E F F#G G#" 'find the pitch
n$=LEFT~(s$,2)
n =INSTR(1$,n$)/2
f =b(n)*8*m

d$ =" SSS.III.QQQ.HHH.WWW." 'find the duration
t$=RIGHT$(s$,2)
i =INSTR(d$,t$)/2
t =t(i)*2

SOUND f,t : SOUND 50,1 'play the note and stop it
END SUB

SUB notes(ca,a(l),t(l» STATIC
, defines a tempered scale at the lowest octave
, stores note durations
f=EXP(LOG(2)/12)
n=ca/8 ca is "concert a" or about 445 Hz.
FOR i=l TO 12

a(i)=n ' a(i) is an array of 12 notes in an octave
n=n*f ' f is the twelth root of 2

NEXT i
t=l
FOR i=l TO 12 STEP 2

t(i)=t t(i+l)=t*1.5
t=t*2

NEXT i
END SUB

The first part of the program calls the
"notes" subprogram to make the arrays. ~> ..
Then starting at the getnote label, the
program reads the DATA statements one
note at a time and calls the "music" subprogram
to play each note. The last note is not a note at all,
but the word END. The computer knows the tune is over.

176

Writing Other Tunes
To change music from "staff" to "computer" notation, read the notes on the staff,
and write them on paper like this: name, length. When you come to a bar mark in
the score, write a bar mark on the paper.

Now put the notes from the paper into DATA statements. It is easier to check the
program against the paper if each DATA statement holds one or two full bars.
The start of Row Row, Row looks like this:

DATA C Q., C Q., C QQ, D II, E Q.

One other thing goes into the DATA statement. If you want the notes to play an
octave higher, you put a plus sign (+) followed by three spaces. If you want to
play an octave lower, use a minus sign (-).

Assignment 26
1. Change the string in the Row, Row, Row program so that it plays very fast,

very slow, an octave higher, an octave lower.

2. Change the Row, Row, Row program so that it plays another tune.

177

Instructor Notes 27. Switching Numbers with Strings

In this lesson:

1. The STR$ and the VAL functions.
2. Review of functions and their arguments.
3. Functions compared with statements.
4. Meaning of return a value.
S. Arguments which are functions.

STR$ takes an argument that is a number and changes it into a string that has the
same appearance.

VAL takes a string and creates a numeric value from it. It accepts decimals and
scientific notation (such as 1.2E + 13). If the first character is not a decimal digit,
or a plus or minus sign, it returns the value zero. Otherwise, it scans the number,
terminating at the first nonnumeric character (other than the E of the scientific
notation).

This interconversion of the two main types of variables-numeric and string­
adds great flexibility to programs involving numbers.

You can slice up a number and rearrange its digits by first converting it to a
string. This is demonstrated in the "numbers into strings" example. The assigned
problem that makes a number play leapfrog by repeatedly putting its rear digit in
the front uses this idea.

Questions
1. If your number "marches" too quickly in your solution to assignmant 27-2,

how do you slow it down?

2. If your program has the string "GEORGE WASHINGTON WAS BORN IN
1732," write a few lines to answer the question "How long ago was Washing­
ton born?" (You need to get the birth date out of the string and convert it to a
number.)

178

3. What is a "value." What is meant by "a function returns a value"? What are
some of the things you can do with the value?

4. What is an argument of a function? How many arguments does the RIGHT$()
function have? How many for the CHR$() function?

5. Each line below has errors. Explain what is wrong.

FIX(Q) =65
D$ = LEFT(R$, 1)
PW$=VAL(F$)
PRINT CHR$

179

Lesson 27. Switching Numbers with Strings

This lesson explains two functions: VAL() and STR$().

Making Strings Into Numbers
We have two kinds of variables-strings and numbers. We can change one kind
into the other.

Run:

REM Making strings into numbers
L$ =" 123" : M$ = "789"
L=VAL(L$) : M=VAL(M$)
PRINT L : PRINT M : PRINT" ---"
PRINT L+M

VAL stands for value. It changes the string into a number, if it can.

180

Making Numbers Into Strings
Run:

REM Making numbers into strings
PRINT
INPUT" Give me a number" ,NB
PRINT
N$=STR$(NB) : L=LEN(N$)
FOR I=L TO 1 STEP -1
B$ =B$ + MID$(N$,I,1)
NEXT I
PRINT" Here it is backward ";B$

STR$ stands for string. It changes a number into a string.

Functions Again
In this book we use these functions :

RND()
LEFT$()
MID$()
VAL()
ASq)
UCASE$()

FIX()
RIGHT$()
LEN()
STR$()
CHR$()

Rules About Functions
Functions may have () with one or
more arguments inside them. For
example,

MID$(D$,5,J) has three arguments: D$, 5, and J.

The arguments may be numbers or strings or both.

A function is not a statement. It cannot begin a line.

181

Right: D = LEN$(C8$)

Wrong: LEN (C8$) = 6

A function acts just like a number or a string. We say the function returns a
value. The value can be put in a box or printed just like any other number or
string. The function may even be an argument in another function.

The arguments tell which value is returned.

(Remember, string values go in string variable boxes; numeric values go in nu­
meric boxes.)

Practice with Functions
For each function . in the list below, give the name of the agrument, and tell
whether the argument value is a number or a string. Tell whether the argument is
a variable, constant, or function.

FIX(Q) fn

arg

MID$(RI$,E,2) fn

arg

arg

arg

VAL(ER$) fn

arg

STR$(RND*91) fn

arg

182

Assignment 27
1. Write a program that asks the user for a number. Then make another number

that is backward from the first, and add them together. Print all three numbers
like an addition problem (with plus sign and a line under the numbers).

2. Make a number "leapfrog" slowly across the screen. First, write it on the
screen. Then take its left digit and move it to the front. Keep repeating. Don't
forget to erase each digit when you move it.

I(~

183

Instructor Notes 28. ASCII Code, ON-GOTO

In this lesson:

1. ASCII numbers explained.
2. The ASC() and CHR$() functions.
3. ASCII extended to foreign letters.
4. The SWAP function .
5. The MOUSE statement.
6. The ON-COTO and ON-COSUB statements.

This lesson treats the ASCII code for characters and the functions ASC() and
CHR$() that change characters into ASCII numbers and vice versa.

The ASCII code is primarily intended to standardize signals between hardware
pieces such as computers with printers, terminals, and other computers. But
within programs the ASCII numbers also are useful. The letters are numbered in
increasing order, so the ASCII numbers are useful in alphabetizing. The numeric
digits are also in order, and the punctuation marks have ASCII numbers.

Strictly speaking, there are only 128 ASCII characters, and some of these are sup­
posed to signal mechanical actions on a Teletype machine. It is more convenient
to define a full byte's worth of characters (making 256 characters), and each com­
puter manufacturer uses the extra characters in a unique way. Commodore as­
signs them to various graphics, math, and foreign language symbols.

The SWAP statement takes any two variables (numeric or string) and exchanges
their values.

A "sketcher" program demonstrates the MOUSE statement and reviews other ele­
ments of good program design .

The ON-COTO and ON-COSUB statements allow a variable that takes on con­
secutive values 1, 2, 3, 4, ... , to send control to various places in the program.

184

Questions
1. Does ASC(S$) return a string or a number for its value?

2. Does ASC(S$) have a string or a number for its argument?

3 . Same two questions for CHR$(N).

4. Which letter has the larger ASCII code number, B or W?

5. Do you know the ASCII number for the character I? Is it the number I?

6. What will the computer do if you run this line:

PRINT CHR$(32); CHR$(65)

Try it.

185

Lesson 28. ASCII Code, ON-GOTO

Numbering the Letters In the Alphabet
That's easy, you say. "A is 1, B is 2, C is 3, "

Well, for some strange reason, it goes like this: A is 65, B is 66, C is 67,

These numbers are called the ASCII code of the characters. ASCII is pronounced
"ask-key."

The punctuation marks and number digits have ASCII code numbers, too.

ASC() Changes Characters Into Numbers
Use the ASq) function to change characters into ASCII numbers.

186

Run:

REM What number is this key?
PRINT "Press keys to see the ASCII number"
again:
INPUT C$
PRINT C$;TAB(5);ASC(C$)
GO TO again

Tryout some letters, digits, and punctuation. Hold down SHIFT and press letters.

Press CTRL-C to end the program. Then save it to disk.

CHR$() Changes Numbers Into Characters
Use CHR$() to change ASCII code numbers into a string holding one character.

Run:

REM DISPLAY ASCII
FOR 1=0 TO 255
PRINT I, CHR$(I)
PRINT
FOR T=l TO 200: NEXT T
NEXT I

Save the program to disk.

Use CHR$() to print the many ASCII characters that are not on the keyboard.
They include some mathematics symbols and foreign letters.

CHR$ () Is the Reverse of ASC()
We showed these two functions: ASq) and CHR$().

ASq) gives you the ASCII number for the first character in the string.

CHR$() does the reverse. It gives you the character belonging to each ASCII
number.

187

The ASCII Numbers for Characters
Here are the groups of characters and their ASCII numbers:

o to 31
32 to 47
48 to 57
58 to 64
65 to 90
91 to 96
97 to 122

control characters for printers
punctuation

123 to 127
128 to 255

number digits
punctuation
capital letters
punctuation
small letters
punctuation
mostly foreign letters

Alphabetlcal List
ASCII numbers can also help in making alphabetical lists.

Run:

REM Alphabetize
PRINT
INPUT "Give me a letter: ",A$
PRINT
INPUT "Give me another: ",B$
PRINT
A = ASC(A$) : B = ASC(B$)
REM Put in alphabetioal order by

188

11

REM seeing which has the lower ASCII number.
IF A> B THEN SWAP A,B : PRINT
PRINT "Here they are in alphabetical order"
PRINT
PRINT CHR$(A);TAB(6);CHR$(B)

The SWAP statement takes any two variables (here A and B) and exchanges their
values. It works for strings, too. Try this:

REM Who is first?
m$ = "Macintosh"
a$="Amiga"
SWAP m$, a$
PRINT m$, a$

The Mouse Dances on Graph Paper
Enter and save this program to disk:

REM --- sketcher --­
SCREEN 2,640,200,3,2
WINDOW 2",,2

CALL primarycolors
COLOR O,1
PAINT(0,0),1
c=0
GOSUB message

draw:

'high resolution screen
'new output window using screen

'white forground, black backgnd
'color screen black
'white start color for drawing

s=MOUSE (0) : x=MOUSE(l) : y=MOUSE(2)
PSET (x,y),c
k$=INKEY$

IF k$="c"
IF k$="q"
IF k$="h"
IF k$=""

LOCATE 1,1 : PRINT k$
THEN CLS 'clear screen
THEN done 'quit program
THEN GOSUB message
THEN k$=" " 'avoid null. gums up PSET

k=ASC(k$) 'convert keystroke to number
IF k$<>" " THEN c=k-48 : IF c>7 THEN c=7
GO TO draw:

done:
WINDOW CLOSE
WINDOW 1
SCREEN CLOSE

END
message:

LOCATE 1,1

2

2

'graceful exit from program
'close the high res window
'open usual BASIC window
'release the hi res memory

189

PRINT" press h for HELP"
PRINT" press c for clear screen"
PRINT" press numbers 0 - 7 for change of colors"
PRINT" 1 is black, doesn't show on screen"
PRINT" press q for quit"

RETURN

STATIC SUB primarycolors
FOR i=0 TO 7

READ r l READ g
PALETTE i,r,g,b

NEXT i

: READ b READ c$

RESTORE
DATA 1.00, 1.00,
DATA 0.00, 0.00,
DATA 0.00, 0.00,
DATA 0.00, 1.00,
DATA 1.00, 0.00,
DATA 0.0"', 1.00,
DATA 1.00, 0.00,
DATA 1.00, 1.00,

END SUB

1.00 ,white
0.00 ,black
1. 00 ,blue
0.00 ,green
0.00 ,red
1.00 ,cyan
1.00 ,magenta
0.00 ,yellow

The MOUSE() function can let you know where the mouse-pointer is on the
screen. Then you can use PSET to write a dot there.

The ON-GOTO Statement
Look:

ON K GOTO red, white, blue

If K Is
1
2
3

GOTO
red
white
blue

If K is something else, go to the next line

Instead of GOTO, you can put a GOSUB:

190

Run:

REM counting
FOR 1=1 TO 4
ON I GOSUB one, two, three, four
NEXT I
END
one: PRINT" One" : RETURN
two: PRINT" Two, button your shoe": RETURN
three: PRINT" Three" : RETURN
four: PRINT" Four, shut the door" : RETURN

After the COTO or COSUB, you can put one, two, or as many labels as you
want. Each label must belong to a line somewhere in the program.

Assignment 28
1. Write a program which asks for a word. Then it rearranges all the letters in al­

phabetical order.

2. Write a program that speaks "Double Dutch." It asks for a sentence, then re­
moves all the vowels and prints it out.

3. Add to the sketcher program so that you can use a wider brush to paint with.
Let the user enter b for brush or d for dot. Use LINE instead of PSET so that a
broad brush stroke is drawn instead of a dot.

191

Instructor Notes 29. Secret Writing and INKEY$

In this lesson:

1. The INKEY$ and WHILE-WEND statements.
2. Review of the INPUT statement, with and without message.
3. Use for passwords and for character manipulation at input.

INKEY$ requests a single character from the keyboard and puts it into the box of
a specified string variable.

There is no screen display at all. No prompt or cursor is displayed, and the key­
stroke is not echoed to the screen.

One utility of the INKEY$ statement lies just in this fact. For example, a secret
password may be received with a series of INKEY$'s without displaying it to
bystanders.

Another advantage is that no RETURN key pressing is required. User-friendly
programming uses INKEY$ as a simpler way to get single-key user responses. If
you need to have the program wait for a keystroke, use the WHILE-WEND state­
ment to wait for a keystroke . This is demonstrated in the lesson.

Because the INKEY$ statement doesn't wait for a key to be pressed, it is suited to
action games.

If you want to input numeric values with INKEY$, get them as strings and con­
vert them to numbers using the VAL() function discussed in Lesson 27.

Questions
Compare INPUT and INKEY$. For each item, reply INPUT or INKEY$:

(a) Gets whole words and sentences.

(b) Shows a cursor.

192

(c) Gets one character.

(d) Prints on the screen.

(e) Does not need the RETURN key.

193

Lesson 29. Secret Writing and INKEY$

There are two ways to use INPUT:

Without a message:

INPUT A$
INPUT N

With a message:

INPUT "Name, age ";Nam$,Age

Either way, the computer waits for you to type a word, sentence, or number.

Then you press the RETURN key to tell the computer that you have finished
entering.

The INKEY$ statement
The INKEY$ statement is different from INPUT. It gets a single character from the
keyboard.

It doesn't wait.

It checks to see whether a key is being pressed. If so, it puts the character into the
string variable box.

You do not have to press RETURN.

INKEY$ for Invisible Typing
With INKEY$, nothing shows on the screen:

No question mark will show.
No cursor will show.
What you type will not show.

194

To see what happens, you have to PRINT the variable.

Run:

REM RunAway
start:
K$=INKEY$
PRINT K$
GO TO start

Press CTRL-C to stop the
program.

The computer prints a blank
line until you press a key.
Then it prints the character._

Try holding down the A key.

See? The computer prints A. Then the A starts to repeat, and you see a string of
letters up the screen.

Making the Computer Walt
In the above program, replace the line

K$=INKEY$

with

key: K$ = INKEY$: IF K$ =" " THEN key

Now the computer is more polite. It keeps looking until a key is pressed.

WHILE-WEND
Another way to do the same thing is with the statements WHILE and WEND.

195

Let's rewrite the program:
REM RunAway
start:
K$=" "
WHILE K$=" ":K$=INKEY$:WEND
PRINT K$
GOTO start

WHILE says stay here as long as K$ =" " (no key pressed). So when you press a
key, the program moves onto the next line.

As long as K$=" ", the program will continue to do everything between the
WHILE and WEND statements. We could have put other statements between
WHILE and WEND. Try this:

REM Waiting
N$=" "
WHILE N$=" "
PRINT " Please press a key"
PRINT" so I can rest.":PRINT
N$=INKEY$:WEND
PRINT: PRINT
PRINT" Thanks!"

Secret Writing
Use INKEY$ in guessing games. You can enter a character without the other
player being able to see it.

Run this program:

REM secret
start:
PRINT " Press any key"
K$=" ":WHILE K$=" ":K$=INKEY$:WEND
FOR T=l TO 1000 : NEXT T : BEEP
PRINT" The key you pressed was ";K$
GOTO start

Press CTRL-C to end the program.

196

Making Words of Letters
The INKEY$ statement gets one letter at a time. To make words, glue the strings.

REM Get a Secret Word
PRINT" Type a word. End it with a 'RETURN'."
W$ =" ":Wback =" "
key:
L$=" ":WHILE L$=" ":L$=INKEY$:WEND
fin: IF ASC(L$) = 13 THEN done
W$=W$ + L$
Wback$=L$ + Wback$: GOTO key
done:
FOR T=l TO 3000 : NEXT T
PRINT" Here is the secret word: ";W$
PRINT
PRINT " For fun, here it is backwardl "; Wback$

How does the computer know when the word is all typed in? Line fin checks
whether the RETURN key was pressed. The ASCII number of the RETURN key is
13. It branches to print the word if the RETURN key was pressed.

Assignment 29
1. Write a program that has a menu for the user to choose from. The user makes

a choice by typing a single letter. Use INKEY$ to get the letter. Here's an ex­
ample of a program line to make a menu:

PRINT "WHICH COLOR? <R=RED, B=BLUE, G=GREEN>"

2. Write a sentence making game. Each sentence has a noun subject, a verb, and
an object. The first player types a noun (like The donkey). The second player
types a verb (like sings). The third player types another noun (like the tooth­
pick). Use INKEY$ so that no player can see the words of the others. You may
expand the game by having adjectives before the nouns.

197

Instructor Notes 30. Logic: AND, OR, NOT

In this lesson:

1. The AND, OR, and NOT relations.
2. True and false are numbers, -1 and 0, respectively.
3. The =, <>, <, >, <=, and >= signs.

This lesson discusses the AND, OR, and NOT relations and the numeric values
for true and false.

Two abstract ideas in this lesson may give difficulty. One is that true and false
have numeric values of -1 and O. Any expression that is of the form of an asser­
tion (phrase A), has a numeric value of 0 or -1. This number is treated just like
any other number. It can be stored in a numeric variable, printed, or used in an
expression. Most often, it is used in an IF statement.

The other abstract idea compounds the confusion. The IF statement doesn't really
look to see whether phrase A is present. Rather, it looks for a numeric value be­
tween IF and THEN. Any number that is nonzero is treated as true. We call this a
little white lie.

You can use the logical values in equations that at first glance look ridiculous. For
example,

INPUT A
B = 5 - 7*(A<3)
PRINT B

The value of B will be 12 or 5 depending on whether A is less than 3 or not.

198

Questions
1. For each IF statement, tell whether anything will be printed:

IF 3=3 THEN PRINT "true1"
IF 3=3 OR 0=2 THEN PRINT "true2"
IF NOT (3=3) THEN PRINT "true3"
IF 3=3 AND 0=2 THEN PRINT "true4"
IF "A" = "B" THEN PRINT "true5"
IF NOT ("A" = "B") THEN PRINT "true6"

2. What numbers will each of these lines print?

A=O: PRINT A; NOT A
A=O: B=-l : PRINT A AND B
A=O: B=O : PRINT A AND B
A = -1 : B = - 1 : PRINT A AND B
A=O: B=-l : PRINT A OR B
A=O: B=O : PRINT A OR B
A=-l : B=-l : PRINT A OR B
PRINT NOT-1
PRINT NOT 0

199

Lesson 30. Logic: AND, OR, NOT

Run:

REM AND, OR, NOT
INPUT" Your first name ",n$
PRINT
INPUT" Your age ";age
SAY TRANSLATE$(n$)
tat = TRANSLA TE$(' 'is a teenager")
nta$ = TRANSLATE$("is not a teenager")
sst =TRANSLATE$("and is sweet sixteen")
jm$ =TRANSLATE$("but just missed")
1 ta=(age>12 AND age<20)
2 IF ta THEN SA Y(ta$)
3 IF NOT ta THEN SA Y(nta$)
4 IF age=16 THEN SAY(ss$)
6 IF age=12 OR age=20 THEN SAY(jm$)

What Does AND Mean?
Two things are true about teenagers: They are over 12 years old and they are less
than 20 years old. Look at this line.

IF (you are over 12) AND (you are less than 20) THEN (you are a
teenager).

What Does OR Mean?
In this next line, the OR is used. Two things are said: "age is 12" and "age is 20."

Only one of them needs to be true for you to have "just missed" being a teen­
ager.

IF (you are 12) OR (you are 20) THEN (you just missed being a teenager).

200

True and False Are Numbers
How does the computer do it? It says true and false are numbers.

Rule: True is the number -1.

False is the number O.

(It is easy to remember that 0 is false because zero is the grade you get if your
homework is false.)

To see these numbers, enter this in the immediate mode:

PRINT 3=7

The computer checks to see whether 3 really does equal 7. It doesn't, so it prints
a 0, meaning false.

And this:

PRINT 3=3

201

The computer checks to see whether 3 =3. It does, so the computer prints -I,
meaning true.

Puttlng True and False In Boxes
The numbers for true and false are treated just like other numbers. They can be
stored in boxes with numeric variable names on the front. Run this:

N = (3=22) : PRINT N

The number 0 is stored in the box N because 3 = 22 is false.

And this:

N = "E" = "E" : PRINT N

The number -1 is stored in the box N because the two letters inside the quota­
tion marks are the same. So the statement "8" = "8" is true.

Whole strings are tested for equality. Run:

PRINT "ab" = "ac"

The computer prints 0 for false because the second letters of the two strings are
not the same.

The IF Statement Tells Llftle White Lies
The IF statement looks like this:

IF (phrase A) THEN (statement 0)

Try these in the immediate mode:

IF 0 THEN PRINT "TRUE"

IF -1 THEN PRINT "TRUE"

202

Now try this:

IF 22 THEN PRINT "TRUE"

What does it print? ______________________ _

Rule: In an IF statement, the computer looks at phrase A.

If it is zero, the computer says phrase A is false and skips what is after THEN.

If it is not zero, the computer says phrase A is true and obeys the statement after
THEN.

The IF statement tells little white lies. True is supposed to be the number -1, but
the IF stretches the truth to say "true is anything that is not false." That is, any
number that is not zero is true.

:r.'M TRULY
TRUEl

203

What Does NOT Mean?
NOT changes false to true and true to false. Try this:

REM Double Negative
N=O
PRINT "N ";TAB(15);N
PRINT "NOT N";TAB(15);NOT N
PRINT "NOT NOT N ";TAB(15);NOT (NOT N)
, The computer knows that
, "I don't have no ... "
, means "I do have "

Be sure to put a space after each NOT.

I'M NOT NfJT
FRLLlNG

204

The NOT makes sense only when used with 0 or -1. Try this. Change the sec­
ond line to

N=-l

It still makes sense. But try

N=3

You do not get true or false as numbers printed. (You do not get -1 or 0.)

The Logical Signs
You can use these six signs in phrase A:

= equal
<> not equal
< less than
> greater than
< = less than or equal
> = greater than or equal

You have to press two keys to make the <> sign and the < = and > = signs.

The last two are new, so look at this example to see the difference between <
and <=:

2<=3 is true
3<=3 is true
4<=3 is false

2<3 is true
3<3 is false
4<3 is false

These two phrase A phrases mean the same:

2<=Q (2<Q) OR (2 = Q)

205

Assignment 30
1. Tell what will be found in the box N if:

N=4=4
N= "G"<>"S"
N=5>7
N=3>2 AND 3<2
N=4=3 OR 4=4
N=NOT 0
N=5>=4

2. Tell whether the word JELLYBEAN will be printed:

IF 0
IF -1
IF 9
IF 3<>0
IF 0 OR 1
IF "A" = "Z"
IF NOT (0) OR 0
IF 4<=5

THEN PRINT "JELLYBEAN"
THEN PRINT "JELLYBEAN"
THEN PRINT "JELLYBEAN"
THEN PRINT "JELLYBEAN"
THEN PRINT "JELLYBEAN"
THEN PRINT "JELLYBEAN"
THEN PRINT "JELLYBEAN"
THEN PRINT "JELLYBEAN"

3. Write a program to detect a double negative in a sentence. Look for negative
words like not, no, don't, won't, can't, nothing, and count them. If there are two
such words, there is a double negative. Test the program on this sentence:
COMPUTERS AIN'T GOT NO BRAINS.

206

Instructor Notes 31. STOP, CONT, Debugging

In this lesson:

1. The STOP statement.
2. The CONT command.
3. Compare ways to start or restart a program: RUN, GOTO, CONT.
4. How to debug a program.

STOP and CONT help in debugging a program. Proper use of CTRL-C, GOTO,
delay loops, and the PRINT statement also contributes to bug squashing.

An inexperienced programmer feels hopeless inertia when a program doesn't
work right. Rather than sitting and staring, it is more useful to try some changes.
Any changes are better than none, but random changes are very inefficient. The
best changes are those that eliminate sections of the program from the list of pos­
sible hiding places for the bug.

Debugging uses certain tricks to help systematically isolate a bug and puzzle out
what is wrong. Delay loops slow down the program so that you can see what is
happening. PRINT statements give the values of a variable. STOP statements halt
the program at strategic points so that you can puzzle for as long as you want
before continuing. After the bug is found and corrected, remove these helping
statements from the program.

Don't overlook those techniques you can use after the program is stopped with
CTRL-C, STOP, or END. You can PRINT out any variable values you like in or­
der to see what the program has done. You can also do arithmetic in the PRINT
statement to check what the program should be doing. You can even use LET in
the immediate mode to change variable values before CONTinuing the run .

Lesson 17 showed how the Trace On option from the Run menu helps in step­
ping through the program faster than manual stepping with the A-T keys. Now
we show how the TRON and TROFF statements allow you to pick which parts of
the program to subject to the trace. This allows you to skip tracing in those parts
of the program that are okay, and so speeds up the debugging task.

207

As programs grow in complexity, more of the bugs result from unforeseen interac­
tions between separate parts of the program. Lesson 32 treats modular program­
ming and other schemes for helping make programs easier to understand and
therefore easier to debug.

Questions
1. How are the STOP statement and CTRL-C keys different?

2. Can you pick in which line CTRL-C will stop the program? Can you pick with
the STOP statement?

3. How are the STOP and END statements different?

4. What does the CONT command do?

5. Why would you put STOP statements in your program?

6. How do delay loops help you debug a program?

7. How do extra PRINT statements help you debug a program?

8. Why do you remove the STOP and extra PRINT statements from the program
after you have fixed the errors?

208

Lesson 31. STOP, CO NT , Debugging

The STOP Statement
Enter and run:

REM Secret STOP
RANDOMIZE TIMER
N = FIX(RND·199)
FOR I= 1 TO 200
IF I = N THEN STOP
NEXT I
PRINT" Done"

The program will stop, and the computer will print

OK

The STOP statement stopped the computer when I was equal to N . So the
PRINT" Done" statement was not reached. The program is not really over. You
can start it again . But wait.

What do you suppose the secret value of I was?

Enter in immediate mode:

PRINT I

The CONT Command Starts the Program Again
Enter the command CaNT. Try it.

209

This time, the program starts at 1= N and continues until the loop is finished.
Then the program prints

Done

STOP Is Like END
STOP makes the computer stop and enter the immediate mode.

It is like END, except you can CONTinue after a STOP statement, but not after an
END statement. Try changing STOP to END in the above program and repeat the
CaNT command after the program runs and stops. (You will get a Can't con­
tinue error message. Click the left button in the Ok box.)

You can have as many STOP statements in your program as you like.

STOP is used for debugging your program.

Another Way to Stop the Program
Remember, you can stop running the program with
the CTRL-C keys.

Enter:

REM Go forever
start: cls:PRINT:?
PRINT "Mud" : GOSUB pause
PRINT" Turtles" : GOSUB pause
PRINT" of" : GOSUB pause
PRINT" the" : GOSUB pause
PRINT" World" : GOSUB pause
PRINT" Unite" : GOSUB pause
GOTO start
pause: FOR T=l TO lOOO:NEXT T:RETURN

210

/1

Run it. Press CTRL-C. This stops the program wherever it is. It prints

Ok

and enters the immediate mode. The CONT command starts the program again at
the same spot.

The trouble with stopping most programs this way is that you do not know
where in the program the computer is.

Why STOP?
You put STOP in whatever part of your program is
not working right. Then you run the program. After
it stops, you look to see what happened.

program ran.

You are in the immediate mode. You can:

List parts of the program and study them.

Use the PRINT statement to look at variables. Do they have the values
you expected?

Do little calculations on the computer in the "calculator mode" (another
name for the immediate mode) to check what the computer is doing.

Use the LET statement to change the values of variables.

If you find the trouble, you may add lines, change lines, or delete lines.

211

Review of Stopping and Starting
The three ways to stop a program are STOP, END, and CTRL-C.

There are four ways to start a program:

your old friend RUN
RUN XX
GOTO XX
CaNT

where XX is a line number or label
where XX is a line number or label
if you have not changed the program

What is the difference between these four ways?

CaNT and GOTO XX use whatever values are currently in the variable boxes.

CaNT starts at the line where STOP or CTRL-C stopped the program. GOTO XX
starts at line XX.

You may use the CaNT command if you have not

added a line,
deleted a line,
or changed a line by editing it.

RUN and RUN XX throwaway all the current variable boxes.

RUN starts at the first line of the program; RUN XX starts at line XX.

Debugging

Little errors in your program are called bugs.

Here is a list of items that will help you figure out
what is wrong when your program doesn't run right.

1. If the computer printed an error message, an orange box in the List window
shows what line it stopped on. Careful, the mistake may really be in another
line.

212

2. If the computer just keeps running, but doesn't do the right thing, stop it and
put some PRINT statements in that will tell what is happening.

3. Or you can put STOP statements in the program.

4. If the program runs so fast that you can't tell what
is happening, put in some delay loops to slow it down.

5. Use the Trace On choice from the Run menu. Or you
can put a TRON statement at the beginning of the spot
in your program that is giving you trouble. Put a TROFF
statement at the end of the messy spot.

Assignment 31

After you have found and fixed the
program, take the PRINTs, the STOPs,
the delay loops, and the TROFF and TRON
statements out of the program.

Practice debugging. Write a program that has some loops and a lot of PRINT and
STOP statements and delay loops in it. When it stops (from STOP, END, or
CTRL-C), print out some variable results in the immediate mode and modify the
variables with LET statements. Try starting the program with CONT, RUN, RUN
XX, and GOTO XX. Keep trying things until you understand how these com­
mands help in debugging.

213

Instructor Notes 32. Clear, Friendly Programs

In this lesson:

1. Users need a smooth-running program.
2. A programmer wants clear listings.
3. An outline for medium- and large-size programs.
4. Offering instructions and giving prompts.
S. Avoid scrolling. Use LOCATE and erase old writing.
6. Avoid the RETURN key. Use INKEY$.
7. Use UCASE$ to avoid uncertainty about capital and small letters.
8. Trapping errors upon input.

This lesson shows how to write clear programs which interact with the user in a
friendly way.

Programs should be clearly structured from a programmer's point of view, and
spaghetti programs should be avoided. This lesson presents a format for writing
programs. While methods of imposing order on the task are largely a matter of
taste, the methods used here can serve to introduce the ideas.

User-friendly programming requires more than opening a bag of tricks. Success
depends mostly on the attitude of the programmer. "Turn your annoyance detec­
tors up to high" as you write and debug the program. Play the part of the users
and try to anticipate difficulties they will have.

Make your screen displays easy to read. Avoid scrolling. Place the cursor with
LOCATE and print what you want. Then, when done, erase by again placing the
cursor with LOCATE and print a string of blanks.

Use INKEY$ whenever your user must input a single keystroke (as in answering a
question with Y or N). This saves the annoyance of having to press the RETURN
key.

Trap errors. When asking for a number in a given range, or for certain letters or
words, check that the input satisfies the conditions. If not, make the user try
again.

214

When you call for a complicated set of inputs, let the user enter the whole set.
Then ask if entries are okay. If they're not, give an opportunity to fix things.

Questions
1. Should your program give instructions whether the user wants them or not?

2. What is a main loop? What does it do?

3 . What is an error trap? How would you trap errors if you asked your user to en­
ter a number from 1 to 5?

4. In what part of the program are most of the COSUB statements found?

5. How do you avoid scrolling too much?

6. How do you help the user if he or she accidentally puts the CAPS LOCK key
down?

7. Why put the "starting stuff" section of the program at the end of the program?

215

Lesson 32. Clear, Friendly Programs

There are two kinds of users:

1. Most want to run the program. They need:

instructions
prompts
clear writing on the screen
no clutter on the screen
erasing old stuff from the screen
not too much key pressing
protection from their own errors

2. Some want to change the program. They need:

a program made in parts
each part with a title in a REM
explanations in the program

Don't forget that you are a user of your own programs, too. Be kind to yourself.

Programs Have Four Parts
1. Starting stuff (at the beginning of the program run)

gives instructions to the user
draws a screen display
sets variables to their starting values
asks the user for starting information

2. Main loop

controls the order in which tasks
are done

calls subroutines to do the tasks

216

3. Subroutines and subprograms

perform parts of the program

4. Description

tells the user about the program

Program Outline
REM program name

desc: 'description
'REMs that give a description of the
'program, variable names, and so forth

main: 'main loop
'calls subroutines
END

sUbl: 'subroutines
'subroutines go here
RETURN

sub2: 'second subroutine
RETURN

init: 'starting stuff
'asks for starting information
'sets variable values, DIMensions arrays
'gives instrucvions
GOTO main

subprogl:
'subprograms are MERGEd to the end
END SUB

217

Put a Description at the Beginning
A programmer reads your listing to understand the program and perhaps to
modify it. The description tells how the program works and what the variable
names mean.

Put the Main Loop Next
The main loop is an outline of the program. Put it near the front. It shows what
subroutines and subprograms are used.

The subroutines do most of the work. The programmer wants to read them care­
fully to see what happens.

Put Starting Stuff at the End
The starting stuff gets the program started. It gives help and instructions, asks the
user questions, DIMensions arrays, stores initial values of variables, and holds
DATA statements and strings.

It may be the biggest part of the program. Although it contains many important
details, it does not help the reader very much to understand the outline of the
program. Put it out of the way near the back.

Information Please
PRINT "Do you want instructions <Yin> "

This lets a beginner see instructions and lets
others say no.

218

<YIN}

Tie a String Around the User's Finger
Use a prompt to remind users what choices they have.

In this example:

<yin>

the choice is y for yes or n for no.

Beginners need long prompts. Other users like short prompts.

Don't Give the User a Headache
Scrolling gives headaches.

BASIC usually scrolls. It writes new lines at the
bottom of the screen and pushes old lines up.

It is like the scrolls the Romans used for writing .
They unwound from the bottom and wound
up at the top.

Avoid scrolling. Use LOCATE to print just
where you want. Erase by printing a string
of blanks to the same spot.

Use delay loops to keep the writing on
the screen while the user reads it.

Ouch! My Fingers Hurt
Use INKEY$ to enter single letters. This saves
having to press RETURN.

PRINT "Do you need instructions? <Yin> "
keyl:
R$=" ":WHILE R$=" ":R$=INKEY$:WEND
IF R$ = "y" THEN inst

219

o

Watch Out for the CAPS LOCK Key
Just when you expect the user to enter small letters, uppercase are used. Use the
UCASE$() statement to fix this problem. So the last line above is better written as

IF UCASE$(R$)="Y" THEN inst

Set Traps for Errors
Add this line below the other three lines:

IF UCASE$(R$)<>"N" THEN keyl

You gave the user only two choices, y and n. Send the user back for another
chance if you do not get an answer you want.

Traps make your program bombproof so that users will be unable to goof it up.

Sensible Numbers

old: INPUT" Your age,"age
IF age<O OR age>120 THEN old

Test user inputs to see whether the numbers make sense. If not, there is an error,
and the user should try again.

220

Assignment 32
1. Make a program to write a very large number, 50 digits. Pick the digits at ran­

dom. Put a comma between each set of 3 digits.

2. Write a secret cipher program. The user chooses a password and makes a ci­
pher alphabet like this:

If the password is DRAGONETTE, remove the repeated letters, get DRAGONET,
put it at the front of the alphabet and the rest of the letters after it in normal order.

DRAGONETBCFHIJKLMPQSUVWXYZ cipher alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ normal alphabet

The user chooses to code or decode from a menu.

221

Disk Usage

As the instructions that came with the Amiga state, you
should make copies of the Kickstart and Workbench
disks packed with your computer. You should never
use the originals for everyday tasks. Make one or
more copies for working disks and put aside the
originals for making backups. The manual that came
with the Amiga explains how to make copies of disks.

Prepare a copy of Workbench for the exclusive use of your student. We will call
this copy of Workbench the "Studentdisk".

This Studentdisk will also have room to hold the Amiga BASIC files from the Ex­
tras disk. This means that booting the computer will involve only two disks, a
copy of Kickstart and the Studentdisk, rather than the three disks mentioned in
Lesson 1: Kickstart, Workbench, and Extras. And all your student's programs can
be saved to the Studentdisk.

Warning: Never remove a disk from the disk drive until the red drive light goes
out. The temptation to remove a disk early is great, because the screen may indi­
cate that you are done with the current step and should remove the disk, but the
red light is not yet out. Ignore the screen and watch for the red light to go out.

Starting the System
Begin by placing your copy of the Kickstart disk into the slot of the computer
(metal end in and metal disk side down). Turn on the computer. After the disk
drive makes a few grunts, the screen shows a hand holding a Workbench disk
(upside down) as a reminder to remove Kickstart and insert the Workbench disk
in the drive (in this case, insert Studentdisk).

After Workbench finishes loading, the title bar says
(in the S12K version computer with Workbench release 1.1)

Workbench release 1.1: 426576 free memory

and shows a disk icon with Workbench written under it.

225

Two Disks ot Once
Now take the Studentdisk with Workbench on it out and insert the Extras disk.
The Extras icon appears. It may even partly cover the Studentdisk icon. This does
no harm, but you can move the Extras icon by moving the arrow onto the icon,
holding the left button down, moving the red disk to a nearby spot, and releasing
the button. The Extras icon jumps to the new location and remains black. Fine.
Now double-click the left button on the Extras icon, and its window will be
loaded to the screen.

Copying Amigo BASIC
Find the Amiga BASIC icon in the Extras window. Place the pointer so that it is
on the Amiga BASIC icon. Press and hold down the left button. Now draw the
mouse while continuing to hold down the left button so the encircled X is
squarely over the Extras disk icon; release the left button. You are telling the sys­
tem to copy Amiga BASIC to the Studentdisk. You'll need to insert and remove
disks a few times; follow the instructions that appear on the screen. Remember
not to remove a disk while the red light is on.

Loading BASIC
Now reload the Studentdisk window by double-clicking the Studentdisk icon.
This time the Amiga BASIC icon appears in the window, but probably on top of
the other icons. Clean up the window by selecting (right button) the Clean Up
choice from the Special menu.

Now double-click on the BASIC icon to load BASIC.

You see the familiar BASIC and List windows.

226

BASIC Reserved Words

Reserved words discussed in this book are in bold.

ABS DATA IF
ALL DATE$ IMP
AND DECLARE INKEY$
APPEND DEF INPUT
AREA DEFDBL INSTR
AREAFILL DEFINT INT
AS DEFLNG

KILL
ASC DEFSNG
ATN DEFSTR LBOUND

BASE
DELETE LEFT$
DIM LEN

BEEP LET
BREAK ELSE

LIBRARY
CALL

ELSE IF
LINE

CDBL END LIST
CHAIN

EOF
LLIST

CHOIR
EQV

LOAD
CHR$

ERASE
LaC

CINT
ERL

LOCATE
CIRCLE ERR LOF
CLEAR

ERROR
LOG

CLNG
EXIT

LPOS
CLOSE

EXP
LPRINT

CLS FIELD LSET
COLLISION FILES MENU
COLOR FIX MERGE
COMMON FN MID$
CO NT FOR

MKD$
COS FRE

MKI$
CSNG FUNCTION

MKL$
CSRLIN GET MKS$
CVD GOSUB MOD
CVI GOTO MOUSE
CVL
CVS HEX$

227

NAME RND UBOUND
NEW RSET UCASE$
NEXT RUN USING
NOT

SADD USR

OBJECT SAVE VAL
OCT$ SAY VARPTR
OFF SCREEN
ON SCROLL

WAIT

OPEN SGN
WAVE

OPTION BASE SHARED
WEND

OR SIN
WHILE

OUTPUT SLEEP
WIDTH

PAINT SOUND
WINDOW

PALETTE SPACE$
WRITE

PATTERN SPC XOR

PEEK SQR

PEEKL STATIC

PEEKW STEP

POINT STICK

POKE STOP

POKEL STR$

POKEW STRIG

POS STRING$

PRESET SUB

PRINT SWAP

PSET SYSTEM

PTAB TAB
PUT TAN

RANDOMIZE THEN

READ TIME$

REM TIMER

RESET TO

RESTORE TRANSLATE$

RESUME TROFF

RETURN TRON

RIGHT$

228

Glossary

argument
The variable, number, or string that appears in the parentheses of a function.

INT(N) has N as an argument.
as an argument. LEN(W$) has W$

array
A set of variables that have the same name. The members of the array are num­
bered. The numbers appear in parentheses after the variable name. See also
subscript.

A(O)
B$(7)
CD(3,M+l)

arrow keys

is the first member of the array A.
is the eighth member of the array B$.
is a member of the array CD.

The four keys on the computer that have arrows on them. They move the input
cursor to the left and right, and up and down.

ASCII
Stands for American Standard Code for Information Interchange. Each character
has an ASCII number.

assertion
The name of a phrase that can be true or false. The phrase A in an IF statement is
an assertion. An assertion has a numeric value of 0 or -1. See also expression,
false, logic, phrase A, true.

The assertion "A"<>"B" is true.
The assertion 3 = 4 is false.

background
The part of the screen that is blank, not having characters on it.

229

BASIC
Beginners's All-purpose Symbolic Instruction Code. A computer language origi­
nated by John Kemeny and Thomas Kurtz at Dartmouth College in the early
1960s.

blank
The character that is a space.

branch
A point in a program where there is a choice of which statement to execute next.
An IF statement is a branch. So is an ON-GOTO statement. A branch is not the
same as a jump where there is no choice. See also jump.

buffer
A storage area in memory for temporary storage of information being input or
output from the computer.

buHon
The mouse has two buttons. Pushing the right button shows the menu bar. Mov­
ing the mouse arrow on a menu word shows the choices you have under that
menu word, and releasing the right button selects one of those choices. The left
button controls loading files by double-clicking on an icon, moving the cursor in
the List window, and editing (Cut, Save, and Paste) from the Edit menu when in
the List window.

call
Using a GOSUB calls the subroutine. You can call a subprogram by giving its
name, or by using CALL followed by its name. Putting a function in a statement
calls the function. Call means that the computer goes and performs the com­
mands in the subroutine or subprogram. Then it returns to the calling spot.

carriage return
On a typewriter, you push the lever that moves the carriage carrying the paper so
a new line can begin. In computing, it means the cursor is moved to the start of
the line, but not down to the next line. See also CRLF, linefeed.

character
Letters, digits, punctuation marks, and the space are characters.

230

checksum
In some I/O operations, the computer adds together all the character numbers.
The resulting sum is the checksum. If the data was transmitted correctly, the
checksum calculated after the data is received will agree with that calculated
before the data was sent. See also I/O.

clear
To erase. Used in "clear the screen" and" clear memory."

column
Things arranged vertically. See also row.

command
In BASIC, a command makes the computer do some action, such as LOAD a pro­
gram or clear memory with NEW. See also expression, statement. Some com­
mands need expressions to be complete:

SAVE "myprogram"

concatenation
Sticking two strings together.

constant
A number or string that does not change as the program runs. It is stored right in
the program line, not in a box with a name on the front. See also line.

CRLF
Short for Carriage Return followed by Line Feed. On a typewriter, this is just
called a carriage return. See also carriage return, linefeed.

cursor
A marker that shows where the next character on the screen or in a storage buffer
will be placed. Cursor means "runner." The cursor runs along the screen as you
type. There are two kinds of cursors in the Amiga computer:

Input cursor A flashing line on the screen.
PRINT cursor Invisible; "shows" where next character will be printed.

231

data
BASIC has two kinds of data: numeric and string. Logical data (true, false) is a
type of numeric data.

debug
To run a program so that you can find the errors and fix them. You fix the errors
by editing the program. See also edit.

delay loop
A part of the program that just uses up time and does nothing else.

FOR T = 1 TO 2000:NEXT T

duration
A number in a SOUND statement that tells how long the sound will last.

edit
To retype parts of a program to correct it.

enable
To make a window active. You do this by clicking on the left mouse button while
the pointer is inside the window.

enter
To put information into the computer by typing, then pushing the RETURN key.
The information goes into the input buffer as it is typed. When RETURN is
pressed, the computer uses the information.

erase
To destroy information in memory or write blanks to the screen. See also clear.

error trap
Part of a program that checks for mistakes in information that the user has en­
tered, or checks to see whether computed results are within reasonable bounds.

232

execute
To run a program or to perform a single command or statement.

expression
A portion of a statement that has a single value, either a number or a string. See
also value.

7*X+l
"DOPE "<> N$
A$ + "HAT"

false
The number O. See also assertion, logic, true.

fork in the road
A branch point in the program. See also branch.

function
BASIC has a number of functions built in. Each function has a name followed by
arguments. The function has a single value (numeric or string) determined by its
arguments. See also argument, value. The functions treated in this book are

ASO, ORR$, FIX, LEFT$, LEN, MID$,
RIGHT$, RND, STR$, VAL, TAB, TIMER,
TRANSLATE$, UOASE$

gadget
A little spot on a window that does certain things when you click a mouse button
in it. Here are some of the gadgets: the lower right corner is a sizing gadget, the
upper right corner is a foreground-background gadget, the upper left corner is an
erase window gadget, and the top bar of the window is a moving gadget. Also
possible are scroll gadgets on the edges of the window.

garbage
A random mess of characters in memory. Usually due to human or machine error.

233

graphics
Picture drawing.

Icon
A little picture in a window that stands for the name of a file. You can load the
file by double-clicking the left mouse button. See also button, mouse.

Index
An array name is followed by one or more numbers or numeric variables inside
parentheses. Each number is an index. Another word for index is subscript.

Q(7,J) 7 and J are indices.

Integers
The whole numbers, positive, negative and zero.

~o .
Input/Output. Input from keyboard, disk, etc. Output to screen, printer, disk, etc.

lump
The GOTO statement makes the computer jump to another line in the program
rather than execute the next line.

Klckstart
A program loaded from the Kickstart disk when you first turn on your Amiga.
Kickstart is needed to boot the system. As soon as Kickstart is loaded, it shows a
picture of the Workbench disk, meaning you must put it in the drive to continue
booting the system.

line
Lines may start with a label (followed by a colon) or a line number. The line
proper starts with a statement which may have expressions, arguments, and so
forth, following it. The line may end at that point, or it may have a colon with
another statement.

234

Parts of a line:

tz: IF 7<=INT(Z) THEN PRINT LEN(Q$+ "R")+2;"RAT":GOTO 40

tz:
IF 7<=INT(Z) THEN PRINT ... "RAT"
GOTO 40
7<=INT(Z)
7<=INT(Z)
LEN (Q$+"R")+2;"RAT"
INT(Z)
LEN(Q$)
Z
Q$+"R"
7, "R," 2, "RAT"
<=,+
IF, INT, THEN, PRINT, LEN, GOTO

line buffer

label
statement
statement
assertion
expression
expression
function
function
argument
argument
constants
operations
reserved words

The storage space that receives the characters you type in. See also buffer.

lInefeed
To move the cursor straight down to the next line. The ASCII number 10 signals
this command to the screen or printer. See also carriage return, CRLF.

line label
A word followed by a colon that begins a line and names it. Programmers gener­
ally label (or number) only some lines, for example, those heading a module in
the program or lines that are targets of COTO, COSUB, etc.

line number
A number (in place of a label) at the beginning of a program line.

listing
A list of all the lines in a program.

235

load
To transfer the information in a file on disk to the memory of the computer by
using the LOAD command.

logic
The part of a program that compares numbers or strings. The relations =, <>, <,
>, < =, and > = are used. See also assertion, phrase A.

loop
A part of the program that is done over and over again. There are many kinds of
loops: FOR-NEXT and WHILE-WEND are two examples of loops discussed in
this book.

loop variable
The number that changes as the loop is repeated.

FOR 1=1 TO 5
NEXT I

memory
The part of the computer where information is stored. Memory is made of semi­
conductor chips, but we think of it as "boxes" with labels on the front and infor­
mation inside.

menu
Pull-down menus come as part of the Amiga screen style.
Homemade menus are a list of choices shown on the screen. Each choice has a
letter or number beside it. The program user presses a key to pick which choice is
wanted.

message
A statement that tells what is expected in an INPUT statement.

INPUT "AGE";A

236

monitor
(1) We use it to mean a box with a TV-type screen that is connected to the com­
puter which displays text and graphics. It is different from a TV in that it cannot
receive TV signals directly. (2) In machine language programming, a monitor is a
control program.

mouse
A device with a ball on the underside. Moving it on the table moves an arrow on
the screen. The mouse has two buttons. See also button.

nesting
When one thing is inside another. In a program, we nest loops. Inside a state­
ment, we can nest expressions or functions.

L=INT(LEN(P$) +3) nested functions
X=5*(6+(7*(8+K))) nested parentheses

FOR i=l TO 10
FOR j = 1 TO 6:NEXT j nested loop
NEXTi

number
One type of information in BASIC. The other is string. The numbers are generally
decimal numbers. See also integers, string.

operation
In arithmatic: addition, subtraction, multiplication, and division, with symbols +,
-, *, and;' The only operation for strings is concatenation (+).

phrase A
In this book, the name given to an assertion in an IF statement. See also assertion.

IF A>4 THEN 600
A>4 is "phrase An

pitch
The number in a SOUND statement that tells the musical pitch of the sound. The
pitch can be high or low.

237

pixel
Picture element. The smallest dot that is placed on the screen in graphics.

pointer
A number in memory that tells where in a list of DATA you are at the present
moment.

program
A list of lines containing statements. The computer executes the statements in or­
der when the RUN command is entered. The program is stored in a special part
of memory. Only one program can be stored at a time.

prompt
A little message you put on the screen with an INPUT to remind the user what
kind of answer you expect. Its name comes from the hint that actors in a play get
from the prompter if they forget their lines.

pseudorandom number
A number that is calculated in secret by the computer using the RND function. It
is usually called a random number. Pseudorandom emphasizes that the number
really is not random (since it is calculated by a known method), but is just not
predictable by the user of the computer.

punctuation
The characters such as period, comma, /' ?, !.

random numbers
Numbers that cannot be predicted, like the numbers that show after the roll of
dice, or the number of heads you get in tossing a coin ten times.

remark
A comment you make in the program by putting it in a REM statement. The com­
puter ignores REM statements.

REM the graphics setup subroutine
, Used instead of the word REM

238

reserved words
A list of words and abbreviations that BASIC recognizes as commands, state­
ments, or functions. Reserved words cannot be used as variable names.

return a value
When a function is used (called), its spot in the expression is replaced with a
value (a number or a string). This is called returning a value.

row
Things arranged horizon ally (across). See also column.

RUN mode
The action of the computer when it is executing a program is called operating in
the RUN mode. You get into the RUN mode from the immediate mode by entering
RUN. When the computer ends the program for any reason, it returns to the im­
mediate mode.

save
To put the program that is in the computer's memory on disk.

screen
The monitor screen (similar to a TV screen) that is hooked up to the computer.
See also monitor.

scrolling
The usual way the computer writes to the screen is to put the new line below the
previously printed line. When the last screen line is printed, all the old lines are
moved up and the text on the top line disappears from the display. This is called
scrolling.

simple variable
A variable that is not an array variable.

stack
A data type used in machine language programming. The data elements are ar­
ranged in a column and the last one put on is the first one taken off.

239

starting stuff
The name given in this book to initialization material in a program. It includes
REMs for describing the program, input of initial values of variables, setup of ar­
ray dimensions, drawing screen graphics, and any other things that need to be
done just once at the beginning of a program run.

statement
An instruction in a program is usually called a statement.

string
A type of data in BASIC. It consists of a row of characters. See also number.

subroutine
A section of a program that starts with a line called from a CaSUB statement and
ends with a RETURN statement. It may be called from more than one place in
the program.

subscript
Another name for index. A number in the parentheses of an array. It tells which
member of the array is being used. See also index.

syntax
The way a statement in BASIC is spelled. A syntax error means that the spelling
of a statement, command, function, or variable name is wrong, the punctuation is
wrong, or the order of parts in the line is wrong.

timing loop
A loop that does nothing except use up a certain amount of time. See also delay
loop.

title
The name of a program or subroutine. Put it in a REM statement.

true
Has the value -1. See also assertion, false, logic.

240

type
To press keys on the computer. Typing is different from entering. See also enter.

value
The value of a variable is the number or string stored in the memory box belong­
ing to the variable. See also variable.

variable
A value which can be changed while the program is running. Each variable is
stored in a box in memory which is reserved for that variable. The box holds a
value. When the computer sees a variable name in an expression, it goes to the
box and takes a copy of what is in the box back to the expression and puts it
where the variable name was. Then it continues to evaluate the expression. See
also variable name.

variable, array
See array.

variable, simple
See simple variable.

variable name
A variable is either a string variable or a numeric variable. The name tells which.
String variables have names ending in a dollar sign ($). Numeric variables do not.

window
A portion of the screen (or all of it) with a border which shows some kind of out­
put. Windows have gadgets in the corners and may show icons. They may have a
title at the top. The screen may also show a menu in the title bar, but this is not
part of the window because different windows may show the same menu. Win­
dows can change size, and one window may partly or completely cover another
window. See also gadget, icon.

Workbench
The operating system you see on the screen in the form of windows and icons. It
is loaded from the Workbench disk after the Kickstart disk is loaded. You need
Workbench in the computer to do any other task.

241

Answers to Selected Assignments

Lesson 2

REM Names
PRINT "Minda"
PRINT "Anne"
PRINT "Carlson"

REM --- birds --­
CLS
PRINT
BEEP
PRINT "---0---"

PRINT
BEEP
PRINT "
PRINT
BEEP
PRINT " --0-- 11

Lesson 4

REM (((smi le)))
COLOR 0,1
PALETTE 3,1,0,0
CLS
PRINT
PRINT
PRINT
COLOR 3,1
PRINT "
PRINT "
PRINT
PRINT
COLOR 0,1

\ 0/"

00

00

00"

00"

PRINT " * * "
PRINT "
PRINT "

* * II

242

Lesson 5

REM --- talking
CLS
SAY TRANSLATE$("Hello. What is your name?")
INPUT N$
SAY TRANSLATE$("Well"+N$+"it is silly to talk to computers")

END

REM --- In the Box --­
CLS
PRINT" What is your favorite color?"
INPUT C$
PRINT
PRINT" I put that in the box C$."
PRINT
PRINT" Now, what is your favorite animal?"
INPUT C$
PRINT
PRINT" I put that in box C$ also."
PRINT
PRINT" Now let's see what is in box C$."
PRINT
PRINT" It is "
PRINT C$

Lesson 6

REM --- Music
CLS
PRINT " What is your favorite musical group?"
INPUT g$
CLS
PRINT " What tune do they play?"
INPUT t$
CLS
PRINT
PRINT g$;" plays ";t$

243

Lesson 7

REM «< Feelings »>
SAY TRANSLATE$(" How is the wether'?")

REM weather is misspelled so it will sound better
INPUT w$
SAY TRANSLATE$(" And how do you feel'?")
INPUT f$
a$="You mean"+w$+"and"+f$
SAY TRANSLATE$(a$)

Lesson 8

REM === Teen Power
COLOR 0,1
CLS
start:

PRINT " TEE N
PRINT
PRINT
PRINT

GOTO start

POW E R "

REM press CTRL-C to end the program
REM enter COLOR 1,0 to restore white on blue screen

Lesson 9

REM +++ Color Guessing Game +++
CLS
SAY TRANSLATE$("
SAY TRANSLATE:;>("
INPUT c$
CLS
SAY TRANSLATE~("
guess:

Player 1 turn your back")
Player 2 enter a color")

Player 1 turn around and ~uess")

INPUT g$
IF g$<>c:;>
IF g$= c$
IF g:;; <>c:;;

THEN SAY TRANSLATE:;>(" Wrony, try again")
THEN SAY TRANSLATE$(" Riyht ")
THEL'I (iOTO guess

244

Lesson 10

REM ***** Birth Year *****
CLS
PRINT 0 How old are you?
INPUT a
PRINT 0 And what year is this?
INPUT y
b=y-a
PRINT 0 Has you birthday come yet this year. "
PRINT" <Yin> 0

keyl: INPUT y$
IF y$= "yO THEN answer
IF y$<> "n" THEN keyl
b=b-l
answer:
PRINT" You were borr.. in ";b;"."

REM ***** Multiplication *****
CLS
PRINT

PRINT" Give me a number."
INPUT A

PRINT
PRINT" Give me another."
INPUT B

PRINT
C=A * B
PRINT" Here is their product: ";C

Lesson 11

REM ::::: Nicknames
CLS

SAY TRANSLATE$(" What is your last name? ")
PRINT

INPUT Last$
CLS

SAY TRANSLATE$ (0 Someone type the nickname. 0)
PRINT

INPUT Nick$
CLS
FOR t=l TO 500~ : NEXT t

SAY TRANSLATE$(" You are called: o + Nick$ + Last$)
PRINT TAB(5);Last$;TAB(15);Nick$

245

REM s low
CLS

p 0 k e

PRINT
BEEP
FOR t=l TO 2000:NEXT t

SAY TRANSLATE$("i am")
BEEP
FOR t=l TO 2000:NEXT t

SAY TRANSLATE$("very")
BEEP
FOR t=l TO 2000:NEXT t

SAY TRANSLATE$("very")
BEEP
FOR t=l TO 2000:NEXT t

SAY TRANSLATE$("sleepy")

Lesson 12

REM +++ I Got Your Number +++
another:

CLS : PRINT
PRINT" Give me a number between zero and ten:"
INPUT N : PRINT

IF N<0 OR N>l0 THEN another
IF N=0 THEN PRINT" I got plenty of nothing.
IF N=l THEN PRINT" I'm number onel"
IF N=2 THEN PRINT" Two is company."
IF N=3 THEN PRINT" Three's a crowd."
IF N=4 THEN PRINT" A foursomel"
IF N=5 THEN PRINT" Five Alive."
IF N=6 THEN PRINT" Six flags."
IF N=7 THEN PRINT" Lucky seven."
IF N=8 THEN PRINT" Eight is enough."
IF N=9 THEN PRINT" Nine lives."
IF N=10 THEN PRINT" Ten gallon hatl"
PRINT:PRINT "Another?":INPUT y$
IF y$="yes" THEN another

PRINT" That's all, folks"

246

PRINT

Lesson 13

REM AAA Roll Dem Bones
CLS : PRINT
RANDOMIZE TIMER
a$=" Roll the dice"

again:
CLS : PRINT : PRINT
LET dl=I+FIX(RND*6)
LET d2=I+FIX(RND*6)
LET d =dl+d2
SAY TRANSLATE$(a$)
PRINT : PRINT :PRINT
PRINT a$
PRINT TAB(15)i nThe first die nidI
PRINT TAB(l5)i nThe second die n i d2
PRINT TAB(l5)i nThe dice show nid
SAY TRANSLATE$(nThe first die shows"+STR$(dl»
SAY TRANSLATE$("The second die shows"+STR$(d2»
SAY TRANSLATE$("The dice show "+STR$(d »
PRINT" Another roll? <yin>"
INPUT y$
IF UCASE$(y$)="Y" THEN again

END

REM »> Paper, Scissors, Rock »>
CLS : PRINT : PRINT PRINT
RANDOMIZE TIMER
PRINT TAJ:l(l9)" Play the"
PRIN'f
PRINT TAB(19)i" Pap e r PRINT
PRINT TAH(l9)i" Sci s s 0 r sPRINT
PRINT TAB(19)i" Roc K PRINT
PRINT
PRINT TAB(l9)i" Game a',lainst the computerl"
PRINT
PRINT" Enter 'Q' to end the ',lame."
PRINT
PRINT" Enter your choice <p,s,r>n
PRINT
PRINT" YOU COMPu'rER"

a',lain:
c=FIX(RJ.'olD*J)+1

IF c=l THEN c$=npn
IF c=2 THEN c$="S"
IF c=3 THEN c$="R"

kyl: y~=INKEY$: IF y$="" THEN kyl
y$=UCASE~(y$)

247

IF y$=IU" THEN
Pl{INT y$,c$

tie:

END 'exit from the program

IF y$=c$ THEN SAY TRANSLATE$ ("TIE") : Go'ra again
who.wins:

IF y$="P" AND
IF y$="P" AND
IF y$="S" AND
11:' y$="S" AND
IF y$=IR" AND
IF y$=IR" AND

C$="S" THEN SAY TAA.NSLATE$("COMPUTJ::l{ WINS")
c$=IR" THEN SAY TRAl.'jSLATE$("YOU WIN")
C$=lIp" THEN SAY TAANSLATE$ ("YOU WIN")
C$="l{" THEN SAY TRANSLATE$("COMPUTER WINS")
C~="p"
c$=1I8"

GOTO again

Lesson 15

REM »> Vacation »>
CLS : PRINT

THEN SAY TRANSLAT:t:$ (II COl'lPUTEl{ WINS")
THEN SAY TRANSLATE$("YOU WIN")

b$=" If you don't like that, try again."
C$=" Not even two red cents to rub together!"
a$=" Vacation choosing program"

PRINT a$: PRINT
SAY TRANSLATE$(a$)

a$=" pick your vacation by the amount you can spend."
PRINT a$: PRINT
SAY TRANSLATE$(a$)

again:
RESTORE
a$=" How many dollars can you spend""

PRINT a$: PRINT
SAY TRANSLATE$(a$)

INPUT d
SAY TRANSLATE$(STR$(d»
IF d=0 THEN SAY TRANSLATE$(c$) END

READ a$
IF d>l THEN READ a$
IF d>5 THEN READ a$
IF d>2000000& THEN READ a$
'etc.
PRINT a$
SAY TRANSLATE$(a$)
IF d<>0 THEN SAY TRANSLATE$(b$) GOTO again
END
DATA II Flip pennies with your kid sister."
DATA II Spend the afternoon in beautiful Hog Wallow Michigan."
DATA II Enter a pickle eating contest in Scratchy Back Tennessee."
, etc.
DATA II Treat your whole class to a 'round the world trip."
DATA etc.

248

REM I@#$%A&* Crazy *&A%$#@I
CLS : PRINT : RANDOMIZE TIMER
a$=" What is your name?"
PRINT a$: PRINT
SAY TRANSLATE$(a$)

INPUT namee$
CLS :PRINT
PRINT namee$

z=FIX(RND*3)+1
al$=" Has one brick short of a full load."
a2$=" Has bats in the attic."
a3$=" Has not got both oars in the water."

ON z GOTO 1,2,3
1 PRINT al$

SAY TRANSLATE$(namee$+al$) :END
2 PRINT a2$

SAY TRANSLATE$(namee$+a2$) :END
3 PRINT a3$

SAY TRANSLATE$(namee$+a3$) :END

Lesson 16

REM AAA Jumping Name
CLS
RANDOMIZE TIMER

INPUT" Your name"~n$
CLS

y=RND*19+1
PRINT n$~
1000:NEXT t

FOR 6=1 TO 50
x=RND*60+1
LOCATE y,x

FOR t=l TO
LOCATE y,x : PRINT STRING$(LEN(n$)," ")

NEXT 6

REM +++++ Name X +++++
CLS : INPUT "Your name"~na$
FOR x=l TO 22 LOCATE x,x+25
FOR x=l TO 22 : LOCATE x,49-x

LOCATE 1,40

CLS
PRINT na$
PRINT na$

249

NEXT x
NEXT x

Lesson 17

REM &&&&& Counting By Fives &&&&&
CLS
FOR n=5 TO 1130 STEP 5
PRINT n
FOR t=l TO 11300 : NEXT t
NEXT n

REM +++ Rising Name +++
CLS
INPUT "What is your name? ",na$
CLS
FOR i=21 TO 2 STEP -1
LOCATE i,50-i*2
PRINT na$:
NEXT i

Lesson 18

REM --- Relations
SAY TRANSLATE$("Relations")

start:
CLS : PRINT
PRINT" Enter a relationship like 'father' or 'sister'"
PRINT" (Enter 'quit' to end program)" : PRINT
INPUT" Relation":w$

IF w$="quit" THEN END
fl=f3 : RESTORE

more:
READ r$: READ n$
IF r$="end" THEN GOSUB norel : GOTO start
IF r$=w$ THEN GOSUB findrel
GOTO more

findrel: 'Find relative subroutine
PRINT r$:" ":n$
SAY TRANSLATE$ (r$+", "+n$)
£1=1 : RETURN

norel: 'No (more) relatives subroutine
IF fl=f3 THEN: SAY TRANSLATE$(" You do not have a "+w$)
FOR t=l TO 5f3f30:NEXT t
RETURN

DATA father,
DATA mother,
DATA sister,
DATA sister,

William
Jane
Nancy
Anne

250

DATA grandfather, John
DATA grandfather, Mike
DATA grandmother, Sue
DATA grandmother, Constance
DATA uncle, Harry
DATA aunt, Vivian
DATA cousin, Mary
DATA end, end

Lesson 19

REM 77777 Data Music 77777
FOR i=l TO 7
READ a : a=a*2
SOUND a,1~,255

FOR t=l TO 20~ : NEXT t I short space between notes
SOUND a,1,0

NEXT i
DATA 262,246,220,246,262,262,262,-1

Lesson 20

REM »» Cheers
READ a,b,j$
LOCATE 1,1

for the Schwartz Creek Trout
: PSET (a,b)

sketch:
READ x
READ Y
READ j$

LINE - STEP (x,y)
a=x : b=y
LOCATE 1,1
FOR t=l TO 5000
GO TO sketch

done:
DATA 2~0, 30
DATA 200, 0
DATA 0, 12
DATA -85, 0
DATA 0, 100
DATA -30, 0
DATA 0,-100
DATA -85, 0
DATA 0, -12
DATA 999

PRINT j$ + "

IF x=999 THEN done

PRINT j$
NEXT t

+ "

, upper left corner
, draw top
, down a bit
, back to stem
, down to bottom
, across bottom
, up to cross piece
, back toward start
, up to beginning
, end of drawing flag

251

"

Lesson 21

REM »»> A Hot Computer »»>
CLS
SAY TRANSLATE$(" This is your Amiga Speaking ")
SAY TRANSLATE$(" I feel a little sick. Can you help me? ")
GOSUB answer

END
answer:

INPUT a$
IF a$="y" THEN GOSUB helpful
IF a$="n" THEN GOSUB selfish

GOSUB neutral
helpful:

RETURN
RETURN
RETURN

SAY TRANSLATE$(" Then give me some bytes. They make me feel
good. ")
RETURN

selfish:
SAY TRANSLATE$(" Well, see if I ever give you another wordl")
RETURN

neutral:
SAY TRANSLATE$(" Hayl Make up your mindl
RETURN

Lesson 22

REM ::::: Sinbad's Carpet
CLS RANDOMIZE TIMER
SCREEN 2,640,200,4,2
WINDOW 2,"Sinbad's Carpet"",2

CALL paintcans
FOR i=10 TO 35

COLOR i/3+j/5,1
LOCATE j, i
LOCATE 25-j, i
LOCATE 25-j, 41-i
LOCATE j, 41-i

NEXT j,i
FOR t=l TO 9999

WINDOW CLOSE 2
END

SUB paintcans STATIC
FOR i=0 TO 15

FOR j=4 TO 14

PRINT 110"

PRINT .. a ..
PRINT 110"
PRINT 110"

NEXT t
SCREEN CLOSE 2

READ r : READ g : READ b
PALETTE i,r,g,b

READ c$

NEXT i

252

")

COLOR 1,0

RESTORE
DATA 1.00, 1.00, 1.00 ,white
DATA 0.00, 1Il.1Il0, 0. III 0 ,black
DATA 0.40, 0.60, 1.00 ,dark blue
DATA 0.00, 0.93, 0.87 ,aqua
DATA 0.47, 0.87, 1.00 , sky blue
DATA 0.80, 0.60, "'.53 ,brown
DATA 0.73, 0.73, 0.73 ,grey
DATA 0.33, 0.87, 0."'0 ,green
DATA 0.73, 1.1Il0, 1Il.0'" ,lime green
DATA 1.00, 0.73, 0.00 ,orange
DATA 0.80, 0.00, 1Il.93 ,purple
DATA 1.00, 0.60, 0.67 ,cherry
DATA 0.93, 0.20, 0.00 ,red
DATA 1.00, 0.87, 0.73 ,tan
DATA 1.00, 0.13, 0.93 ,violet
DATA 1.00, 1.00, 0.13 ,yellow

END SUB

Lesson 23

REM »»> School Colors »»>
CLS

red

, Make initials as in the solution A20.2
, We will just make a letter '0' here
SCREEN 1,640,200,4,2 : WINDOW 2,"School Colors",,16
flash:
CLS
CIRCLE (300,100),90
CIRCLE (300,100),70
PAINT (380,100),1
FOR t=l TO 3000 : NEXT t
PAINT (380,100),3
GOTO flash

253

Lesson 24

REM « (Mon ths »)
CLS : PRINT : PRINT : PRINT
DIM d (12), m$ (12)
FOR 1=1 TO 12 : READ d(I)
FOR 1=1 TO 12 : READ m$(I)
INPUT" Month number <1-12>";m
PRINT" " m$(m);" has";d(m);"days."

NEXT I
NEXT I
PRINT

DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
DATA Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec

Lesson 25

REM ***** Cipher Maker *****
CLS : PRINT
PRINT" Cipher Making Program" PRINT
PRINT" Enter a sentence for coding:"

INPUT s$: s$=s$+" "

FOR i=l TO 1 STEP 2
p$==MID$(s~,i,2)
q$=MID$(p$,2,1)+MID$(p$,1,1)
l$=l$+q$

NEXT i

l=LEN(s$)

'break into pairs
'reverse letters in pair
'assemble output

PRINT

PRINT" Here is the coded sentence:": PRINT
PRINT" " ; 1$

REM 11111 Question Answerer 11111
CLS : PRINT
a$=" Question Answerer"

, Only works for questions with first words verb.
PRINT a$: PRINT
SAY TRANSLATE$(a$)
a$=" Enter a question"
PRINT a$
SAY TRANSLATE$(a$)
INPUT q$: l=LEN(q$)
SAY TRANSLATE$(q$)
IF RIGHT$(q$,1)="1" THEN q$=LEFT$(q$,l-l)+"."

verb:
FOR i=l TO 1 'look for the end of the first word
c$=MW$ (q$, i, 1)
IF c$<>" " THEN spl

254

sl=i : i=l
spl: NEXT i
v$=MID$(q$,l,sl)

subject:
FOR i=sl+l TO 1 'look for the end of the first word

c$=MID$ (q$, i, 1)
IF c$<>" " THEN sp2
s2=i : i=l
sp2: NEXT i
s$=MID$(q$,sl+1,s2-s1)

answer:
st$=s$+v$+MID$(q$,s2+1,1-s2)
PRINT
PRINT" ";UCASE$(st$)
SAY TRANSLATE$(st$)

REM ### Pig Latin ###
CLS : PRINT

a$=" Pig Latin Program"
PRINT a$: SAY TRANSLATE$(a$) : PRINT
PRINT" Enter 'quit' to end the program."
FOR t=l TO 9000:NEXT t

start:
CLS : PRINT

a$="Give me a word."
PRINT a$: SAY TRANSLATE$(a$)

PRINT

INPUT w$: l=LEN(w$) 'get word and its length
FOR i=l TO 1 'look for first vowel

v$=MID$(w$,i,l)
IF v$="a" THEN done
IF v$="e" THEN done
IF v$="i" THEN done
IF v$="o" THEN done
IF v$="u" THEN done

NEXT i
done: 'found it, rearrange the word

IF i=l THEN l$=w$+"lay" : GOTO sayit 'starts with vowel
l$=MID$(w$,i,l-i+l) 'get back part of word
l$=l$+MID$(w$,l,i-l) 'add first syllable to end
l$=l$+"ay" 'add "ay"

sayit:
PRINT" ";1$: SAY TRANSLATE$(l$)

FOR t=l TO 4000:NEXT t 'pause
IF w$="quit" THEN fini 'end program?

GOTO start
fini:

SAY TRANSLATE$("program ends") END

255

Lesson 27

REM ~~~ Leapfrog
CLS : PRINT

start:
INPUT" Give me a number:",n

IF n>4999999& THEN PRINT" Too big!"
b$=""
n$=STR$(n)
n$=MID$(n$,2,1)
FOR i=l TO 61-1

CLS
l=LEN(n$)
l=LEN(n$)

LOCATE ll,i PRINT""
LOCATE ll,i+l PRINT n$

FOR t=l TO 200 : NEXT t
n$=MID$(n$,2,1-1)+MID$(n$,1,1)

NEXT i

Lesson 28

REM III Alphabetical III
CLS : PRINT

GOTO start

PRINT" This program arranges the letters of a word in
PRINT" alphabetical order." PRINT
PRINT" Give me a word:"
INPUT w$: l=LEN(w$) w$=UCASE$(w$)
k=l
FOR i=65 TO 65+26
FOR j=l TO 1

g=ASC(MID$(w$,j,l))

, count all A's, then B's, etc.
, go though letters of word

IF g=i THEN h$=h$+CHR$(g) k=k+l
NEXT j,i
PRINT" Here it is in alphabetical order:" PRINT
PRINT" ";h$

256

REM l@#$%A&* Double Dutch *&A%$#@l
CLS : PRINT
SAY TRANSLATE$("double dutch")

again:
CLS : PRINT
PRINT" Enter
a$=" Give me

'quit' to end the program"
a sentence"

PRINT a$
INPUT s$

SAY TRANSLA'rE$ (a$)
: IF s$="quit" THEN END

S5$=1I1I

FOR i=l TO LEN(s$)
l$=MID$(s$,i,l)

IF l$="a" THEN l$="uu"
IF l$="e" THEN 1$="00"
IF l$="i" THEN l$="da"
IF 1$="0" THEN l$="ii"
IF l$="u" THEN l$="ee"

ss$=ss$+l$
NEXT i
a$="Here it is in Double Dutch"

SAY TRANSLATE$(a$)
SAY TRANSLATE$(ss$)
PRINT ss$
FOR t=l TO 9000 : NEXT t

GOTO again

257

PRINT

PRINT

Lesson 29

REM I I I I Silly Sentences I I I I
CLS
SAY TRANSLATE$("Silly sentences")
SAY TRANSLATE$("Press the wi key if you want instructions")
SAY TRANSLATE$("Press the space bar to continue")
keyl: y$=INKEY$: IF y$="" THEN keyl
IF UCASE$(y$)=IY" THEN GOSUB instructs

again:
getsubject:

S$="" : CLS 'erase the last sentence
SAY TRANSLATE$("Somebody enter a sUbject.")
GOSUB getphrase

getverb:
SAY TRANSLATE$("Somebody enter a verb.")
GOSUB getphrase

getobject:
SAY TRANSLATE$("Somebody enter an object.")
GOSUB getphrase

sillysaying:
SAY TRANSLATE$(s$)
CLS : PRINT
PRINT" Press the space bar to continue" PRINT
PRINT" Press 'Q' to end the program."

choice:
key2: y$=INKEY$: IF y$="" THEN key2
IF UCASE$(y$)="U" THEN END
GO TO again

getphrase:
key3: y$=INKEY$: IF y$="" THEN key3
IF ASC(y$)=13 THEN s$=s$+" II : RETURN
s$=s$+y$: GOTO getphrase

instructs:
PRINT" Three players enter parts of a sentence."
PRINT" (No player can see what the others are entering.)":PRINT
PRINT" The first player enters a subject."
PRINT" (The person doing something.)" : PRINT
PRINT" The second player enters a verb."
PRINT" (The action word.)" : PRINT
PRINT" The third player enters the object."
PRINT" (The person or thing to whom the action is done.)"

FOR t=l TO 20000:NEXT t
RETURN

258

Lesson 30

REM === Ain't got no ===
CLS : PRINT
PRINT" Enter 'quit' to end the program" : PRINT

getsentence:
PRINT" Enter
PRINT

a sentence. No punctuation except appostrophe."

INPUT 5$
5$=5$+" "

lookfornegs:

s$=UCASE$(S$)
l=LEN(s$)

: IF s$="QUIT" THEN END

, nw is the number of negative words in the sentence
, sb is the beginning letter place of the word
, se is the end place

nw=0 : sb=l se=l
cutwords: 'run through the sentence

FOR i=l TO 1
l$=MID$(s$,i,l)
IF 1$=" " THEN sb=se

NEXT i

'look for the space at a word end
: se=i+l GOSUB negword

printresult: PRINT
IF nw=0 THEN PRINT" No negative words."
IF nw=l THEN PRINT" A negative sentence."
IF nw=2 THEN PRINT" A double negative."
IF nw>2 THEN PRINT" Hard to understandl"

FOR t=l TO 5000:NEXT t : PRINT
GOTO get sentence

negword:
lw=se-sb-l
w$=MID$(s$,sb,lw)

nextword:
READ nw$

IF nw$="END" THEN RESTORE
IF w$=nw$ THEN nw=nw+l

GOTO nextword
listofwords:

RETURN

DATA NO,NOT,NEVER,NONE,NOTHING,DON'T,DOESN'T,AREN'T
DATA AIN'T,ISN'T,DIDN'T,HAVEN'T,HASN'T,HADN'T
DATA WOULDN'T,COULDN'T,SHOULDN'T,END

try these:
'I like junk food.
'I don't eat junk food.
'I don't eat no junk food.
'I don't never eat no junk food.

259

Lesson 32

REM +++++ A Jillion +++++
CLS : PRINT
SAY TRANSLATE$("Here
FOR k=l TO 18

is a big big number.")
'do 18 lines

FOR i=l TO 15
FOR j=l TO 3

d=FIX(RND*10)+48
PRINT d$:

NEXT j

'15 triplets per line
'three numbers per triplet

d$=CHR$(d)

IF k=18 AND i=15 AND j=4 THEN skip
PRINT",": 'put comma after triplet
skip:

NEXT i
PRINT 'skip to next line
NEXT k
SAY TRANSLATE$("How big is it?")

REM ????? Code - Decode ?????
CLS : PRINT
a$="abcdefghijklmnopqrstuvwxyz"
b$=a$

shorten.password:
PRINT" Input the password":PRINT
INPUT pw$
f$=LEFT$(pw$,l)

FOR i=2 TO LEN(pw$) : 11$=MID$(pw$,i,1)
FOR j=l TO LEN(f$) : 12$=MID$(f$, j,l)

IF 11$=12$ THEN jump
NEXT j : f$=f$+ll$

jump: NEXT i : pw$=f$
PRINT" The shortened password is"
PRINT: PRINT" "~pw$

remove. letters:
FOR j=l TO LEN(pw$)

12$=MID$(pw$,j,1)
IF 12$=LEFT$(a$,1) THEN a$=MID$(a$,2) : GOTO jmp2

FOR i=l TO LEN(a$)

IF 11$=12$
NEXT i
jmp2: NEXT j

form.cipher.alphabet:
a$=pw$+a$: PRINT
PRINT" Alphabets:"
PRINT

11$=MID$(a$, i,l)
THEN a$=LEFT$(a$,i-l)+MID$(a$,i+l)

TAB(23) ~ "plain"

260

PRINT" ";b$
PRINT" ";a$
PRINT

choice:
TAB(23);"cipher"

PRINT" Code or decode? <c/d> "
kyl: y$=INKEY$: IF y$="" THEN kyl
IF UCASE$(y$)="C" THEN code
IF UCASE$(y$)="D" THEN decode
GOTO kyl

code:
PRINT
PRINT" Input message to be coded:"
ky2: l$=INKEY$: IF 1$="" THEN ky2

PRINT

l$=UCASE$(l$) : l=ASC(l$) : IF 1=13 THEN codel
PRINT 1$; : cl$=l$ I default is no change
IF 1>64 AND 1<87 THEN cl$=MID$(a$,1-64,1)
ct$=ct$+cl$

GOTO ky2
codel:
PRINT : PRINT ct$
GOTO finish

decode:
PRINT
PRINT" Input message to be decoded:"
ky3: l$=INKEY,;; IF 1$="" THEN ky3

l$=UCASE$(l$) : 1=ASC(1$) ~F 1=13 THEN out
PRINT 1$; : cl$=l$ I default = won't find letter
FOR i=l TO 26 ' is letter in cipher alphabet?

IF 1$=UCASE$(MID$(a$,i,1» THEN c1$=MID$(b$,i,1)
NEXT i
ct$=ct$+cl$

GOTO ky3
out:

PRINT
PRINT ct$

finish:
END

261

Index of Reserved Words

ALT 22
AND 198, 200
AS 95
ASC 181, 184, 186
BEEP 3, 6, 105, 127, 128
CALL 136, 140, 141
CHR$ 181, 184, 187
CIRCLE 131, 134, 135, 148, 150-52
CLS 3, 6, 8, 16, 17, 105
COWR 22, 24, 105, 145, 148
CONT 207, 209-12
CRLF 231
DATA 120, 122-26, 127, 130, 177, 218
DIM 154, 157-60, 218
END 117, 136, 138, 139, 207, 210
ENTER 22, 232
EXP 172
FILES 92, 95, 105
FIX 81, 84, 106, 181
FOR 69, 112, 114-16
GOSUB 16, 136, 139
GOTO 16, 29, 46, 49, 54, 97, 105, 136, 139, 207, 212
IF 29, 46, 54, 56-60, 75-78, 97, 103, 105, 162, 202,

203
INKEY$ 192, 194-97,214,219
INPUT 29-33, 46, 61, 63, 97, 100-102
INSTR 162, 168
INT 73, 82
KILL 94, 95, 105
LEFT$ 73, 162, 164, 181
LEN 162, 165, 181
LET 40, 42-45, 61, 63, 68,97,99, 100, 105, 122, 207
LINE 131, 133-35, 148
LIST 4,89
WAD 93, 95, 105, 236
LOCATE 69, 107, 109, 110, 135,214,219
WG 172
MERGE 136, 141, 171
MID$ 162, 165, 181
MOUSE 184, 190
NAME 95,105

NEW 9, 14,89, 93, 105
NEXT 69,116
NOT 198, 204
ON-GOSUB 184, 190
ON-GOTO 184, 190
OR 198, 200
PAINT 148, 151
PALETTE 22,24-27, 148
PRINT 3, 6, 7, 16, 29, 34, 36-39, 46, 61, 63-66,69,

71,89,97,99,105,135,195,207
PSET 131, 133, 135, 148, 150, 190
RANDOMIZE 81, 84, 105
READ 120, 122, 124-26
REM 16, 17,89,97, 102, 105
RESTORE 120, 125
RETURN 22, 136,138, 139,192,219
RIGHT$ 162, 165, 181
RND 29, 73, 81, 83, 84, 106, 181
RUN 9,12,105,117,212,239
SAVE 91, 95, 105, 136,239
SAY 16
SCREEN 143, 144, 239
SOUND 127-30, 169
STATIC 137, 140
STEP 112, 115, 135
STOP 117, 207, 209-13
STR$ 61, 178, 180, 181
SUB 127, 140
SWAP 184, 189
TAB 69, 71-73, 106
THEN 97, 102, 139, 202, 203
TIMER 81, 84, 106
TRANSLATE$ 16, 73, 106
TROFF 207
TRON 207, 213
UCASE$ 107, 110, 111, 162, 181,220
VAL 61,178,180,181,192
WEND 195
WHILE 195
WINDOW 143, 144

263

Topical Index

• See asterisk or multiplication sign
: See colon
/ See division sign
$ See dollar sign
= See equal sign
> = See greater-than or equal sign
> See greater-than sign
< = See less-than or equal sign
< See less-than sign
<> See not equal sign
() See parentheses
+ See plus sign
? See question mark
, See single quotation mark
/ See slash
ABa siC 1
active window 5
A keys (Solid and Outline) 38
alphabetizing 167, 188
ALT key 22
Amiga BASIC 1, 112, 117, 121, 127, 162, 225, 226
Amiga keys 1
AND 198, 200
arc 149, 152
argument 69,73, 107, 127, 178, 181 , 182, 229
array 127, 154, 156-60, 172, 218, 229
arrow keys 22, 27, 229
AS 95
ASC 181, 184, 186
ASCII code 140, 162, 184, 186-90, 197, 229

chart 188
assertion 54, 198, 229
asterisk (multiplication sign) 61 , 63
A-T keys 113, 118
audio input 7, 19, 128
auto-repeat 22. See also repeating keys
axes 131
B (box) 148, 150
background 22, 24, 145, 148, 229
BACK SPACE key 6, 22, 28
backup 89, 91, 225
BASIC 230
BEEP 3, 6, 105, 127, 128
blank 230
border 148
box 29, 31 , 40, 42
branch 230
buffer 230
bugs 212
button 230
byte 184
calculator mode 211. See also immediate mode

265

call 230
CALL 136, 140, 141
capital letters 107, 110
CAPS LOCK key 7, Ill, 220
carriage return 230
center point 131, 134
characters 15, 184, 186, 230
checksum 231
CHR$ 181, 184, 187
circle 150
CIRCLE 131, 134, 135, 148, 150-52
clean up 226
clear 231
CLS 3, 6, 8, 16, 17, 105
colon 46, 48, 93, 97, 100, 103-5, 136
color 22, 24-27, 144-48
COLOR 22, 24, 105, 145, 148
column 231
comma 32, 34, 37, 100, 120
command 6, 7, 11, 16,97, 105, 231
concatenation 40, 44, 162, 164- 68, 197,231
constant 231
CO NT 207, 209-12
continue 117
copy 160
crash 2
CRLF 231
CTRL 1
CTRL-C key 46, 49-51, 72, 110, 117, 133, 134, 187,

195, 207, 210. See also stopping the program
cursor 5, 24, 27, 192, 214, 231
cursor, invisible 71
cursor, output 71
cursor keys 22, 27
cut 160
cycles per second 127. See also hertz (Hz)
damage 2
data 122, 232
DATA 120, 122-26, 127, l30, 177, 218
debugging 118, 232
debugging a program 207, 209-13
decimal 63, 81, 84,178
delay loop 69, 74, 112, 114, 207, 219, 232
depth number 144
Device I/O error 91
dice 86
DiMension 154, 155, 157-60, 281
disk 2
disk, using 225, 226
disk drive light 2, 3
disk drive slot 3
division 61

division sign 63
dollar sign 64
drawing 21 , 131, 133-35
duration 127, 129, 174, 232
edit 232
editing programs 16
Edit menu 160
ellipse 149, 152
enabling 5, 11, 232
enabling windows 1
END 117, 136, 138, 139, 207, 210
enter 7
ENTER 22, 232
equal intervals 169
equal sign 54, 66-68
erasing 12, 28, 94, 110, 219, 232
error 212, 220
error message 6, 32, 61, 65, 71 , 91, 101, 102, 124,

136, 154
errors, correcting 12
error trap 232
execute 12, 233
EXP 172
expression 233
Extras disk 1, 3, 89, 91 , 225, 226
F (fill) 148, 150
false 54, 233

numeric value 198, 201 - 5
filename 92, 93
FILES 92, 95, 105
fill color 148
FIX 81 , 84, 106, 181
FOR 69, 112, 114-16
foreground 22
fork in the road 233
FOR-NEXT 69
FOR-NEXT loop 112, 114-18
frequency 172
function 69, 73, 106, 178, 181, 182, 233
function, nesting 81, 82
gadget 1, 20, 24, 233
garbage 233
ghost writing 1, 4, 5
global variable 136
gluing 40, 197. See also concatenation
GOSUB 16, 136, 139
GOTO 16, 29, 46, 49, 54, 97, 105, 136, 139, 207, 212
graphics 107, 131, 135, 148, 150-53, 234
greater-than or equal sign 205
greater-than sign 162, 167
hertz (Hz) 127, 128
home position 8, 131
icon 3,234
id (identification number) 144
IF 29, 46, 54, 56-60, 75-78, 97, 103, 105, 162, 202,

203

immediate mode 1, 138, 211
index number 154, 156, 234
INKEY$ 192, 194-97,214,219
INPUT 29-33, 46, 61 , 63, 97, 100-102, 105, 107, 194
INSTR 162, 168
INT 73, 82
integer 48, 84, 234
invisible cursor 36. See also PRINT cursor
invisible typing 194
I/O (Input/Output) 234
jacks 128
jump 234
keywords 11. See also reserved words
Kickstart disk 3, 225, 234
KILL 94, 95, 105
label 46, 48, 100, 125, 136, 191
LEFT$ 73, 162, 164, 181
LEN 162, 165, 181
length 127, 128
less-than or equal sign 205
less-than sign 162, 167
LET 40, 42-45, 61, 63, 68, 97, 99, 100, 105, 122, 207
line 150, 234
LINE 131, 133-35, 148, 150
line, numbering 40, 43
line, parts of a 235
line buffer 235

266

linefeed 235
line label 235
line number 16, 125, 235
LIST 4,89
listing 235
List window 1, 2, 9, 11, 13
WAD 93, 95, 105,236
loading the disk 226
loading the program 3, 4, 89, 93
local variable 137
WeATE 69, 107, 109, 110, 135, 214,219
LOG 172
logic 198, 200-206, 236
logical signs 205
loop 46, 50, 75, 112, 236
loop variable 116, 236
main loop 216, 218
melody 127
memory 2, 236
menu 9, 236
MERGE 136, 141, 171
message 236
MID$ 162, 165, 181
minus sign 15, 177, 178
modular programs 121 ,
modules 121
monitor 7, 237
mouse 237
MOUSE 184, 190

mouse button 1, 2
multiplication sign 61, 63
music 169, 171-77
music, writing 172-75
musical notes 129
"Music Subprogram" program 173
name 40, 43, 100
NAME 95,105
negative numbers 82
nested IF 75, 77
nested loops 112, 115, 116
nesting 237
new 9, 95
NEW 9, 14, 89, 93, 105
NEXT 69,116
NOT 198, 204
note lengths 172, 173
note names 172
not equal sign 54, 58, 59
"Notes Subprogram" program 171
numbers 61 , 63-68, 75, 196,220,237
numeric constant 65, 120
numeric expressions 75
numeric value 178, 192
numeric variable 112, 121, 156, 178, 180,202,61
octave 169, 177
ON-GOSUB 184, 190
ON-GOTO 184, 190
open 95
opera tion 237
OR 198 200
Outline A key 35, 38
Out of DATA 124
output cursor 71
Output window 8, 107, 109
PAINT 148, 151
palette 148
PALETTE 22, 24-27, 148
parameters 136
parentheses 87, 156, 165
paste 160
phrase A 54, 56, 75, 198, 237
pi 152
pitch 127,128,169, 172,237
pixel 238
plus sign 45, 63, 162, 177, 178
pointer 120, 124, 237
positive numbers 82
PRINT 3, 6, 7, 16, 29, 34, 36-39, 46, 61, 63-66, 69,

71,89,97,99, 105, 135, 195, 207
PRINT cursor 34, 36
prin ting blank line 14
program 9, 11, 16, 216-21, 237
program, writing 11
programmer 29, 32, 33, 214
program outline 217-21

Projects menu 9,95
prompt 219, 237
PSET 131, 133, 135, 148, 150, 190
pseudorandom number 238
punctuation marks 186, 238
question mark 63, 97, 99, 100
quit 95
quotation marks 6, 7, 15, 93, 125
radian 149, 152
radius 131, 134
RANDOMIZE 81, 84, 105
random numbers 81,83-88, 238
READ 120, 122, 124-26
?Redo from start 32, 101
REM 16, 17,89,97, 102, 105, 238
remark 238
repea ting keys 22, 27
reserved words 11, 23, 48, 227-28, 239
rest 130
restarting the computer 2
RESTORE 120, 125
RESTORE nnn 125
RETURN 22,136,138,139,192, 219
return a value 239
RETURN key 7
RIGHT$ 162, 165, 181
right mouse button 13
RND 29, 73, 81, 83, 84, 106, 181
rounding off numbers 82, 85
row 239
" Row, Row, Row" program 175-6
RUN 9, 12, 105, 117, 212, 239
Run menu 9, 113, 117, 207, 213
RUN XX 212
SAVE 91, 95, 105, 136, 239
Save as 95
saving a program 78, 89, 91, 136
SAY 16
scale 127, 127
scientific notation 178
SCREEN 143, 144, 239
scrolling 214, 219, 239
secret writing 194
seed 81
semicolon 34, 36, 69
shape 152
Show List 13
signs, arithmetic 75, 76
simple variable 239
single quotation mark 97, 102
slash (/) 93
Solid A key 38
sound 7, 19, 127-30
SOUND 127-30, 169
space 36, 37, 72, 100, 167, 204
spaghetti programming 46, 51, 52, 214

267

Special menu 226
stack 112, 239
start 9, 117
starting a program 212
starting stuff 240
starting the computer 6, 84, 225
statement 11, 16,97, 105, 178, 181, 240
statement C 54, 56
STATIC 137, 140
step 118
STEP 112, 115, 135
stop 117
STOP 117, 207, 209-13
stopping the program 46, 49, 51, 207, 210-12. See

also CTRL-C key
STR$ 61, 178, 180, 181
string 9, 15, 40, 44, 64, 102, 107, 125, 164-68, 181,

187, 240
string constant 10, 14, 15, 61, 65, 120
string variable 29-32,121,156,178, 180,192
"Studentdisk" 225
SUB 127,140
subprogram 136,140,141,169,171,217,218
subprogram call 100
subroutine 97, 136,138,139,217, 218,240
subscript 156, 240
Subscript out of range 155
su btraction sign 63
suspend 117
SWAP 184, 189
syntax 240
syntax error 71
TAB 69, 71-73, 106
tempered scale 169
tempo 130
text 22, 24, 145, 148
THEN 97, 102, 139, 202, 203
TIMER 81 , 84, 106
timing loop 69, 240. See also delay loop
title 240

T key 35, 39
Trace Off 118
Trace On 113, 118,207, 213
TRANSLATE$ 16, 73, 106
TROFF 207
TRON 207, 213
true 54, 240

numeric value 198, 201-5
truncating 81
turning on the computer 3
two-dimensional array 154, 159
Type mismatch 61 , 65
typing 5-7, 240
UCASE$ 107, 110, 111, 162, 181, 220
undefined subprogram 6, 136
uppercase letters 107, 110
user 29, 32, 33, 214, 216
user-friendly programming 214
VAL 61, 178, 180, 181, 192
value 40,43, 180, 182, 241
variable 32, 65, 156, 218, 241. See also string variable

and numeric variable
variable, array 241
variable, simple 241
variable name 40, 43, 64, 241
variable value 40, 43, 64
voice 129
volume 129
WEND 195
WHILE 195
WHILE-WEND 192, 195, 196
WINDOW 143, 144
windows 3, 4-5, 143-47,241

List 4, 5
moving 19, 20
Output 4

Windows menu 13, 20
Workbench disk 1,3,19,92, 225,241
write-protect tab 91

268

COMPUTE! Books

Ask your retailer for these COMPUTEI Books or order
directly from COMPUTEI,
Call toll free (in US) 1-800-346-6767 (in NY 212-887-
8525) or write COMPUTE! Books, P,O, Box 5038, FD,R,
Station, New York, NY 10150,

Quantity Tltl.

COMPUTEI's Beginner's Guide to the Amigo
(025-4)
COMPUTEI's AmigaDOS Reference Guide
(047-5)
Elementary Amigo BASIC (041-6)
COMPUTE!'s Amigo Programmer's Guide (028-9)
COMPUTEI's Kids and the Amigo (048-3)
Inside Amigo Graphics (040-8)
Advanced Amigo BASIC (045-9)

PrIc.· Total

$16.95 __

$14.95 __
$14.95 __
$16.95 __
$14.95 __
$16.95 __
$16.95 __

·Add $2,00 per book for shipping and handling,
Outside US odd $5.00 air moil or $2.00 surface moll.

Ne residents add 4.5-/_ sales tax
Shipping. handling: $2.00/book

Total payment

All orders must be prepaid (check, charge, or money order),
All payments must be in US funds,
NC residents add 4,5% sales tax,
o Payment enclosed ,
Charge 0 Visa 0 MasterCard 0 American Express
Acct, No, Exp, Date, ___ _
Name, __ __

Address __ _

City ________________________ _

• Allow 4-5 weeks for delivery.
Prices and availability subject to change,
Current catalog available upon request .

State ___ _ Zip __ _

•

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order
directly from COMPUTE!.
Call toll free (in US) 1-800-346-6767 (in NY 212-887-
8525) or write COMPUTE! Books, p,O, Box 5038, FD,R,
Station, New York, NY 10150,

QuanHty Title

COMPUTE!'s Beginner's Guide to the Amiga
(025-4)
COMPUTEI's AmigaDOS Reference Guide
(047-5)
Elementary Amiga BASIC (041-6)
COMPUTE!'s Amiga Programmer's Guide (028-9)
COMPUTE!'s Kids and the Amiga (048-3)
Inside Amiga Graphics (040-8)
Advanced Amiga BASIC (045-9)
COMPUTE!'s Amiga Applications (053-X)

Price· Total

$16.95 __

$14.95 __
$14.95 __
$16.95 __
$14.95 __
$16.95 __
$16.95 __
$16.95 __

·Add $2.00 per book for shipping and handling.
Outside US odd $5.00 air moil or $2.00 surface moil.

NC residents add 4.5% sales tax ____ _
NY residents add 8.25% sales tax ____ _
Shipping Ir handling: $2.00jbook ____ _

Total payment ____ _

All orders must be prepaid (check, charge, or money order) ,
All payments must be in US funds,

o Payment enclosed ,
Charge 0 Visa D MasterCard 0 American Express

Acct , No, Exp, Date ___ _
Name _______________________ _

Address _____________________ _

City ____________ _

• Allow 4-5 weeks for delivery.
Prices and availability subject to change,
Current catalog available upon request .

State ___ _ Zip __ _

If you've enjoyed the articles in this book, you'll find
the same style and quality in every monthly issue of
COMPUTEI Magazine, Use this form to order your sub­
scription to COMPUTE I ,

For Fastest Service
Call Our Toll-Free US Order Line

1-800-247-5470
In IA call 1-800-532-1272

COMPUTE!
P.o. Box 10954
Des Moines, IA 50340

My computer Is:
D Commodore 64 or 128 D TI-99j4A D IBM PC or PCjr D VIC-20
DApple DAtari DAmlga DOther _________ _
D Don't yet have one",

D $24 One Year US Subscription
D $45 Two Year US Subscription
D $65 Three Year US Subscription
Subscription rates outside the US:
D $30 Canada and Foreign Surface Mail
D $65 Foreign Air Delivery

Name

Address

City State
Country

Zip

Payment must be in US funds drawn on a US bank, international
money order, or charge card.
o Payment Enclosed 0 Visa
o MasterCard 0 American Express

Acct, No, Expires !
(Required)

Your subscription will begin with the next available issue, Please
allow 4-6 weeks for delivery of first issue, Subscription prices subject
to change at any time.

